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Abstract The authors’ variant of variational design sensitivity analysis in struc-
tural optimisation is highlighted in detail. A rigorous separation of physical quanti-
ties into geometry and displacement mappings based on an intrinsic presentation of
continuum mechanics build up the first step. The variations with respect to design
and displacements are easily available in a second step. The subsequent discrete
matrix expressions are used to formulate the finite element equations in a third step.
The fourth step elaborates the derived Matlab implementation while the fifth step
shows the computational behaviour for an academic example. Both, the general
case of nonlinear structural behaviour and the linearised approximation are outlined.
The advocated scheme is compared with the well-known analytical differentiation
approach of the discrete finite element equations.

1 Introduction

Several approaches to sensitivity analysis such as an overall finite difference scheme,
a semi-analytical approach, a discrete analytical method, an automatic differentiation
technique and some different flavours of the variational approach are well-known in
structural optimisation. All mentioned techniques finally yield the correct gradient
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Fig. 1 Different order of steps within variational and analytical sensitivity analysis

value up to somemanageable approximation errors. Nevertheless, the methods differ
significantly if not only the correctness of the resulting gradient value is considered.

This paper focuses on the authors’ variant of variational design sensitivity analysis
which is based on an intrinsic presentation of continuummechanics. The advantages
of this viewpoint are described in comparison with the discrete analytical differen-
tiation of the finite element equations. The later method is well-known and widely
used in structural optimisation, see e.g. [11, 21] for details.

The central differences of both methods, i.e. an initial variation followed by the
discretisation step in case of the variational approach and the discretisation of the
continuous equations accompanied by the analytical differentiation of the resulting
discrete equations, respectively, are highlighted in Fig. 1.

The overall scheme for variational design sensitivity analysis is outlined in Sect. 2
and the intrinsic presentation of continuum mechanics is summarised in Sect. 3. In
Sect. 4, the discretisation of variational sensitivities is performed. Some remarks
on its implementation follow in Sect. 5. The alternative differentiation approach is
explained in Sect. 6. In Sect. 7, the computational performance of both approaches
is compared. The most significant results are summarised in Sect. 8.

2 Outline of Variational Design Sensitivity Analysis

The layout of sensitivity analysis is described and its discrete formulation is derived.

2.1 Continuous Formulation of Sensitivity Analysis

In structural analysis, the displacements u ∈ V are computed for any given design
X ∈ S by solving the weak form of equilibrium R(u, X; v) = 0 for any test function
v ∈ V . Here, V and S denote the spaces of admissible displacements and designs,
which are parametrized by time t and design s, respectively, see Sect. 3. Thus, the
partial variations of any function (·) are indicated by δu(·) and δX (·) with variations
δu ∈ V and δX ∈ S, respectively. But, no variation must violate equilibrium, i.e.

δR = δX R + δu R = p(u, X; v, δX) + k(u, X; v, δu) = 0. (1)
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Here, δu R = k(u, X; v, δu) is the tangent stiffness operator and δX R = p(u, X; v,

δX) denotes the tangent pseudo load operator. We can solve the sensitivity equation
for a given design variation δX to obtain the displacement variation δu.

k(u, X; v, δu) = −Q(u, X; v) ∀ v ∈ V (2)

Herein, Q(u, X; v) := p(u, X; v, δX) is the pseudo load which maps the (mate-
rial) design variation δX to a (physical) pseudo load Q. This observation motivates
the term pseudo load operator for the operator p. Furthermore, a sensitivity equation
for the material or inverse motion problem as well as for the dual or adjoint problem
can be derived in the same manner, see [24] for details.

As a consequence, the existence of a (linear) sensitivity operator S, evaluated at
the current equilibrium point (u, X), can be deduced from Eq. (1) with

δu = S(u, X; δX). (3)

The optimisation model consists of objective and constraint functions f (u, X).
Therefore, β(u, X; δX) and γ (u, X; δu) denote linear forms obtained by varying f
with respect to design or displacements. Thus, the total variation of the function f
with respect to any design variation δX yields the linear operator α = β + γ ◦ S

δ f = δX f + δu f = β(δX) + γ (δu) = (β + γ ◦ S) (δX) = α(δX). (4)

For a specific function fi and any design variation δX j , Eq. (4) transforms to

δ fi j = αi (u, X; δX j ). (5)

Remark 1 (Linear operators in sensitivity analysis) All variations of residuals,
objectives and constraints can be obtained by a straightforward analysis on the contin-
uum mechanical level. At any equilibrium point (u, X), the resulting linear operator
S : S → V and the linear form α : S → R describe the reaction of the mechanical
systems in case of a design perturbation. The central sensitivity operator S is only
implicitly known and further progress can only be achieved on the discrete level.

Special emphasis is given to a combined presentation of the tangent stiffness
operator and the tangent pseudo load operator permitting a minimal overlay for
performing the variational design sensitivity analysis, see Sect. 3.

2.2 Fundamentals of Discrete Approximations

The general idea of discretisation is outlined without referring to a specific method.
We introduce the discrete approximations for the state uh and the design Xh

to obtain a matrix description of the derived residual and tangent forms. These
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approximations depend on the displacement parameters Û ∈ R
nu and the design

parameters X̂ ∈ R
nx . Here, nu and nx are the dimensions of the introduced approxi-

mation spaces, i.e. nu denotes the number of the discrete state variables in Vh ⊂ V
and nx the number of the discrete design variables in Sh ⊂ S. We introduce in
the same manner the discrete approximations for the corresponding variations, i.e.
δÛ ∈ R

nu and δ X̂ ∈ R
nx. Furthermore, the test function vh is given by V̂ ∈ R

nu.
The continuous forms can be evaluated for any discrete design Xh and the asso-

ciated discrete displacements uh , i.e. we obtain the functionals and bilinear forms

R(uh, Xh; vh) = V̂
T

R̂ with residual vector R̂ ∈ R
nu, (6)

k(uh, Xh; vh, δuh) = V̂
T

K̂ δÛ with stiffness matrix K̂ ∈ R
nu×nu, (7)

p(uh, Xh; vh, δXh) = V̂
T

P̂ δ X̂ with pseudo load matrix P̂ ∈ R
nu×nx. (8)

The details in case of the finite element method are explained in Sect. 4.3.

2.3 Properties of Discrete Sensitivity Relations

The discrete version of Eq. (1) evaluated at (uh, Xh) reads

δR = V̂
T

δ R̂ = V̂
T

[
K̂ δÛ + P̂ δ X̂

]
= 0 (9)

and we obtain the well-known discrete condition

δ R̂ = K̂ δÛ + P̂ δ X̂ = 0. (10)

Additionally, the discrete version of Eq. (2) with Q̂ ∈ R
nu being the pseudo load

vector of the physical residual problem associated to the functional Q(uh, Xh; ·) is

K̂ δÛ = − Q̂ with Q̂ := P̂ δ X̂ . (11)

Furthermore, the discrete version of Eq. (3) takes the form

δÛ = Ŝ δ X̂ with Ŝ := −K̂
−1

P̂, (12)

where Ŝ ∈ R
nu×nx denotes the sensitivity operator matrix, i.e. we can evaluate the

sensitivity equation for arbitrary admissible variations δ X̂ in the material space.
Finally, the sensitivity of the function f with respect to design variations can be

deduced from Eq. (4) to yield

δ f = b̂
T

δ X̂ + ĉT δÛ, (13)
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where δÛ and δ X̂ denote the variation of the discrete displacement and nodal coor-
dinate vectors, respectively. The discretised variation of the displacements given in
Eq. (12) can be inserted. Considering several objectives fi with i = 1, 2, . . . , nf and
several variations of design δ X̂ j with j = 1, 2, . . . , ndv yields

δ fi j =
[

b̂
T
i − ĉTi K̂

−1
P̂

]
δ X̂ j =

[
b̂
T
i + ĉTi Ŝ

]
δ X̂ j = âTi δ X̂ j . (14)

Remark 2 (Discrete form of sensitivity analysis). The continuous linear mapping
δu = S(δX) transfers to the computable discrete equation δÛ = Ŝ δ X̂ and the linear
form δ f = α(δX) transfers to the computable discrete equation δ f = âT δ X̂ .

3 Basics on the Intrinsic Viewpoint of Continuum Mechanics

The authors’ viewpoint on variational design sensitivity analysis within a general
continuum mechanical framework relies on a rigorous separation of physical quan-
tities into geometry and displacement mappings, see [4–6] for further details. This
viewpoint is based on intrinsic coordinates which have been introduced to mechan-
ics in [30] advancing the traditional presentation [34]. The intrinsic coordinates are
also named convected, curvilinear, local or natural coordinates depending on which
feature should be highlighted in the specific setting. Unfortunately, the mathematical
background, i.e. the body can be described as differentiable manifold, is not always
present. However, all available knowledge should be explored to obtain general the-
oretical results and efficient numerical formulations, see Sect. 3.5.

The advocated integrated approach for deriving the variations within direct analy-
sis and variational design sensitivity analysis based on intrinsic coordinates differs
conceptually from the material derivative approach, see e.g. [2], and the domain
parametrization approach, see e.g. [33], respectively. Furthermore, the relation-
ship to configurational mechanics has been outlined in [24, 27]. These different
approaches are briefly sketched in Sect. 3.6.

This section summarises the theoretical framework used for variational design
sensitivity analysis. The results can be used to apply a subsequent discretisation
step.

3.1 Separation of Point and Tangent Mappings

The separation approach yields a decomposition of the design (s) and time (t)
dependent deformation mapping x = ϕX(X(s), t) into two independent mappings,
i.e. a design dependent geometry mapping X = κ�(�, s) and a time dependent
motion mapping x = μ�(�, t). Furthermore, an intrinsic displacement mapping
u = v�(�, s, t) = μ�(�, t) − κ�(�, s) can be introduced. All intrinsic quantities
are indicated using a subscript �.
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Fig. 2 Configurations and
mappings

This viewpoint using intrinsic coordinates� ∈ B can be enhanced by the common
Lagrangian viewpoint based on the reference coordinates X ∈ K and indicated by a
subscript X. Furthermore, the Eulerian viewpoint is based on the current coordinates
x ∈ M and is indicated by a subscript x. Consequently, the referential deformation
mapping is given by the composition ϕX = μ� ◦ κ−1

� , see Fig. 2.

Remark 3 (Design as part of mechanics) The most significant enhancement of the
advocated approach over the traditional presentation of continuum mechanics is the
introduction of the geometrymapping κ�. Thus, continuummechanics is understood
as a theory of two fundamental mappings, i.e. geometry κ� : B → K and motion
μ� : B → M, which decompose the deformation mapping ϕX = μ� ◦ κ−1

� .
Therefore, the design of structures can be rigorously founded, see [4–6].

3.2 Gradients, Strains and Stresses

Different gradient operators grad, Grad and GRAD corresponding to the variables
x, X and � of the considered domains M,K and B, respectively, can be defined.
The intrinsic motion gradient M� = GRADμ� and the intrinsic geometry gradient
K� = GRAD κ� are used to decompose the referential deformation gradient
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Fig. 3 Tangent mappings
between tangent spaces

FX = GradϕX = GRADμ� [GRAD κ�]
−1 = M� K−1

� . (15)

The pull-back and push-forward transformation between the tangent spaces at the
current placementT xM, at the reference placementT XK and at the intrinsic para-
meter space T �B, see Fig. 3, are based on K�, M�, FX and on their determinants
JK� = det K�, JM�

= det M� and JFX = det FX.
Similarly, the referential displacement gradient HX = Grad vX can be split into

the intrinsic displacement gradient and the inverse intrinsic geometry gradient

HX = Grad vX = GRAD v� [GRAD κ�]
−1 = H� K−1

� . (16)

Remark 4 (Decomposition of referential deformation and displacement gradients)
The decomposition of referential gradients into two independent intrinsic gradients,
see e.g. Eqs. (15) and (16), is a central prerequisite for efficiently deriving variations,
see Sect. 3.3. Furthermore, it serves as a master copy for discrete computational
methods, e.g. the technique to compute Cartesian derivatives in the finite element
method, see Sect. 4.2.
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The (referential) Green-Lagrange strain tensor E and the linear strain tensor ε can
be considered as functions of the (referential) displacement gradient

E = 1

2

(
HX + HT

X + HT
X HX

)
and ε = 1

2

(
HX + HT

X

)
. (17)

The Cauchy stress tensor T, the Kirchhoff stress tensor τ = JFX T, the (1) Piola-
Kirchhoff stress tensor P = τ F−T

X and the (2) Piola-Kirchhoff stress tensor S =
F−1
X P collapse to the linear stress tensor σ in case of linearised elasticity.

3.3 Variations of Gradients, Strains and Stresses

The total variation of the deformation gradient FX can be derived using the multi-
plicative decomposition FX = M� K−1

� and the variations of the tangent mappings
δK� = GRAD δX and δM� = GRAD δx, i.e.

δFX = δM� K−1
� + M� δK−1

� = δM� K−1
� − M� K−1

� δK� K−1
� , (18)

where δ[K−1
� ] = −K−1

� δK� K−1
� has been used. The total variation δFX can be split

into partial variations δuFX and δX FX, i.e. w.r.t. displacements δu or geometry δX

δFX = δuFX + δX FX = [
FX

]′
u + [

FX
]′

X = Grad δu − Grad u Grad δX (19)

using the notation
[
FX

]′
u (u, δu)= Grad δu and

[
FX

]′
X (u, δX)= −Grad uGrad δX.

Furthermore, the variations of the Jacobians JK�, JM�
and JFX can be performed

based on δ(det B) = det B B−T : δB, where B is either K�, M� or FX.
The first partial variations of the Green-Lagrange strain tensor E(u) yield

E′
u(u, δu) = sym

(
AT

u Grad δu
)

= sym
(
FT
X Grad δu

)

E′
X (u, δX) = sym

(
AT

X Grad δX
)

= −sym
(
FT
X Grad u Grad δX

)
, (20)

where the abbreviations Au = FX and AX = −GradTu FX have been used. The
second partial variations with additional variation of the displacements �u read

E′′
u X (u, δu, δX) = −sym(GradTδX HT

X Grad δu + FT
X Grad δu Grad δX)

E′′
uu(u, δu,�u) = sym(GradTδu Grad�u). (21)

The variations of the linearised strain tensor ε are less complex, i.e.

ε′
u(δu) = sym(Grad δu) and ε′

X(u, δX) = −sym(HX Grad δX), (22)



Efficient Variational Design Sensitivity Analysis 237

and the second partial variations are

ε′′
uu = 0 and ε′′

u X (δu, δX) = −sym(Grad δu Grad δX). (23)

The variation of stresses in case of hyperelastic material behaviour deliver the
referential and linear elasticity tensors, i.e.C andE, respectively, and the expressions

δS = ∂S
∂E

: δE = C : δE and δσ = ∂σ

∂ε
: δε = E : δε. (24)

3.4 Weak Form of Equilibrium and Its Variations

The weak form of equilibrium R = Rint − Rext = 0 is a linear form of the test
function v evaluated for current geometry and displacement mappings, i.e.

R(u, X; v) =
∫

K
S : E′

u(u, v) dVX − F(X; v) (25)

in case of a general nonlinear theory. We consider for physical body forces bX

Rext = F(X; v) =
∫

K
bX · v dVX =

∫

B
bX · v JK� dV�, (26)

i.e. the external virtual work is deformation independent for notational simplicity.
An outline of the variational design sensitivity analysis is given in Sect. 2, and Eq.

(1) needs two partial variations of the weak form. In the general nonlinear case, the
tangent stiffness operator k is defined by k = δu R with

k(u, X; v, δu) =
∫

K

{
E′

u(u, v) : C : E′
u(u, δu) + S : E′′

uu(v, δu)
}
dVX (27)

with variations of the Green-Lagrange strain tensor E given in Eqs. (20) and (21).
The corresponding variation δX R leads to the pseudo load operator p,

p(u, X; v, δX) =
∫

K

{
S : E′′

u X (u, v, δX) + E′
u(u, v) : C : E′

X (u, δX)

+ S : E′
u(u, v)Div δX

}
dVX − F ′

X (X; v, δX). (28)

The design variation of Eq. (26), to be used in Eqs. (28) and (32), leads to

F ′
X (X; v, δX) =

∫

K
bX · v Div δX dVX. (29)
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The linearised version on the linear domain 	 simplifies to the expression

Rlin(u, X; v) =
∫

	

Grad v : σ d	 − F(X; v). (30)

Consequently, the linear stiffness operator of the linear theory is constant

klin(X; v, δu) =
∫

	

Grad v : E : sym{Grad δu} d	, (31)

and the linear pseudo load operator depends linearly on the displacements

plin(u, X; v, δX) =
∫

	

Grad v : E : sym{−Grad u Grad δX} d	

−
∫

	

{σ : Grad v Grad δX − σ : Grad u Div δX} d	
− F ′

X (X; v, δX). (32)

Further equivalent formulations can be derived and the overall expression can be
transformed onto the intrinsic parameter space B using dVX = JK� dV�.

To summarise, all continuous expressions needed for structural and sensitivity
analysis have been derived on the continuous level using the intrinsic viewpoint.

Remark 5 (Efficiency of theoretical development) A significant advantage of the
variational approach is the similarity of all variations in the physical space, i.e.
with respect to displacements, with those in the material space or design space, i.e.
with respect to geometry. The advocated intrinsic viewpoint offers the possibility to
derive both variations in parallel (at the same time and done by the same researcher)
minimising the overall effort.

3.5 Impact of Differential Geometry on Computations

Continuum mechanics is based on differential geometry and the obtainable results
can be presented with different mathematical rigour due to the readers background.
We report the most important features and refer to literature for further reading.

Manifolds can be characterised as sets which can be covered by a finite number
of charts consisting of a subset and coordinate mapping. Thus, for any element of
the set, there is at least one chart which describes the body in an open environment
of the chosen element using a coordinate system. All those charts together build up
an atlas. Importantly, the special choice of the atlas does not effect the properties of
the set. The manifold is termed differentiable if the transformation between different
coordinate descriptions is sufficiently smooth.
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Themanifold properties can be summarised as follows: The material bodies under
consideration are described by numerous local coordinate systems. This property is
valid on all levels, i.e. in theory as well as in computations. The consequences for
the finite element method are outlined in Sect. 4.1.

Remark 6 (Efficiency of interaction between continuous and discrete formulations)
The interaction between theoretical investigations on the continuous level and the
computational strategies on the discrete level are organised consistently using the
intrinsic viewpoint. This minimises the number of concepts used in theory and com-
putations and increases the efficiency of the development. Thus, all theoretical results
have a discrete representation. And conversely, any discrete technique has a contin-
uous origin.

3.6 Comparison with Other Variational Approaches

Several continuous formulations of sensitivity analysis have been available since
decades, see e.g. [3, 12, 18, 19, 31] among others for further details and references.
Two concepts, namely the material derivative approach (MDA), see e.g. [2, 13, 29],
and the domain parametrization approach (DPA), see e.g. [17, 33], respectively,
which are based on the traditional viewpoint published in [34] attractedwide attention
in literature. In MDA, the effect of a design variation is understood by using the
analogy to a physical time derivative consisting of a local and a convective part. In
DPA, an additional master reference placement is introduced to which the different
designs are related. Both approaches are valuable and important results have been
derived based on them, see e.g. [28].

Another concept of mechanics to which the presented approach can be compared
with is Eshelbian mechanics or configurational mechanics, see [14, 16, 20]. The
differences occur in the description of modifications in the material space, i.e. an
inverse motion is considered from an artificially fixed current placement. Again, the
traditional concept from [34] is used to model phenomena which are actual beyond
the theoretical framework, see [24, 27] for further hints.

To summarise, none of the mentioned concepts use the manifold structure of
continuum mechanics outlined in [30] in order to benefit from the decompositions
outlined in Figs. 2 and 3. These elements are an significant improvement which eases
the modelling of inverse geometry problems.

Besides these differences, all variational variants have the same strategy for sen-
sitivity in common, see Fig. 1. Thus, most remarks highlighting the advantages of the
variational approach over the discrete approach are valid for all variants. The compu-
tational methods are generated from a continuous theory, which requires an infinite
dimensional space of admissible geometry mappings S and an infinite dimensional
space of admissible displacement mappings V , by a discretisation step. Hereby, the
infinite dimensional function spaces S and V are substituted by finite dimensional
subspaces, say Sh ⊂ S and Vh ⊂ V .
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Remark 7 Most properties of the discrete solution are already available and known
for the original continuous problem. Thus, a thorough theoretical knowledge eases
the interpretation of computational techniques as well as computational results.

4 FEM Discretisation of Continuous Sensitivity Expressions

In computations, the geometry κ� is realised by computer aided geometric design
(CAGD) using shape functions such as non-uniform rational B-splines (NURBS).
The displacement v� is approximated by the finite element method (FEM) using
Ansatz functions. In case of an isoparametric finite element method, both shape and
Ansatz functions are low order polynomials, say (bi- or tri-) linear functions. The
details for sensitivity expressions are outlined in this section.

Three steps must be performed to derive the finite element equations from the
continuous setting. Firstly, the considered domain must be subdivided into elements
and an efficient computational scheme must be set up, see Sect. 4.1. Secondly, the
tensorial notation should be transformed into amatrix notation, see Sect. 4.2. Thirdly,
the chosen approximations for geometry and displacements must be inserted into the
matrix formulation, see Sect. 4.3.

4.1 Adaptation of the Manifold Properties to the FE Method

The material bodies are differentiable manifolds, see Sect. 3.5, i.e. any discretisation
should not destroy this property. Therefore, all results quoted in Sect. 3 are inde-
pendent from the choice of the intrinsic coordinates {�1,�2,�3} and the intrinsic
parameter domain B, i.e. both can be adopted to the special needs.

Within the finite element framework and without loss of generality, a suitable
atlas is introduced by partitioning the placements K and M as well as the intrinsic
parameter domainB into a finite number of sub-domainsKe,Me andBe. These sub-
domains are linked to the local parameter domain Re ≡ R = [−1, 1]m , where m
refers to the dimension of the problem. The local parameter domainR is unique and
constant for all sub-domains and its local coordinates are labelled ζ . Furthermore,
the point mappings κζ : R → K andμζ : R → M aswell as the tangentmappings
Kζ : T ζR → T XK andMζ : T ζR → T xM, respectively, replace themappings
introduced in Sect. 3. We omit the index e in most cases to shorten the notation.

Remark 8 (Finite element mesh is a special atlas of the body) The above description
characterises the finite element mesh and the mappings from the local parameter
space onto each element. Thus, every modification so far is a direct consequence of
the intrinsic presentation of continuum mechanics. The finite element mesh, i.e. the
subdivision of the body and its placements in a finite number of subdomains, is a
special atlas suitable for efficient computations. Thus, this adaptation to the finite
element method is exact because no approximation has been introduced so far.
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4.2 Matrix Representation of Gradients, Strains and Stresses

Using the introducedCartesian basis systems {Zi }, {Ei }, {ei }, see Fig. 3, the displace-
ment and reference placement vectors read

u = vX(X) = ui Ei and X = κ�(�) = Xi Ei . (33)

Here, the coefficients ui can be considered either as functions of the referential
coordinates Xi or of the intrinsic coordinates �i , i.e.

ui = υi
X(X1, X2, X3) = υ�(�1,�2,�3) and Xi = κ�(�1,�2,�3), (34)

respectively. The referential and intrinsic gradients of the displacement mapping as
well as the intrinsic gradient of the reference mapping and its inverse are given by

HX = Grad vX = ∂vi
X

∂Xj Ei ⊗ E j , H� = GRAD v� = ∂vi
�

∂� j Ei ⊗ Z j

K� = GRAD κ� = ∂κ i
�

∂� j Ei ⊗ Z j , K−1
� = Grad κ−1

� = ∂�i

∂ X j Zi ⊗ E j .

(35)

All quantities are depicted using bold letters in upright shape, i.e. serif type for vectors
(e.g. �, X, x, u) and sans serif type for tensors of 2nd order (e.g. K�, M�, FX).

The relationship between the referential gradient GradHX and the intrinsic gra-
dients GRADH� and GRADK� has been established in Sect. 3, see Eq. (16). Con-
sequently, the matrix and coordinate versions can be derived yielding

HX = H� K−1
� with

∂vi
X

∂ X j
= ∂vi

�

∂�k

∂�k

∂ X j
. (36)

Herein, the Jacobian matrix of the coordinate transformation is

K� ≡ J K� =
[

∂κ i
�

∂� j

]
with K−1

� ≡ J−1
K�

=
[

∂�i

∂ X j

]
=

[
∂κ i

�

∂� j

]−1

. (37)

The coefficient matrix K� of the tensorial geometry gradient K� is labelled as Jaco-
bian matrix J K� of the coordinate transformation between intrinsic and referential
coordinates. Here, J K� is preferred over K� to distinguish it properly from the
stiffness matrix K̂ . Thus, Eq. (36) and a similar expression for local coordinates read

HX = H� K−1
� = H� J−1

K�
and HX = Hζ K−1

ζ = Hζ J−1
Kζ

. (38)
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Similar results are available for the deformation gradient

FX = M� K−1
� = M� J−1

K�
and FX = Mζ K−1

ζ = Mζ J−1
Kζ

. (39)

The coefficient matrices FX = [xi, j ] and HX = [ui, j ] are outlined above, where
xi, j and ui, j denote derivatives of xi and ui with respect to X j , respectively. The
unitymatrix is I = [δi j ]. The coefficientmatrix of the 2. Piola-Kirchhoff stress tensor
S = [Si j ] can bewritten inVoigt notation S̄ = [S11, S22, S12]T. Similarly, E = [Ei j ]
and Ē = [E11, E22, 2 E12]T are used for the Green-Lagrange strain tensor. Finally,
C = [Ci j ] is the corresponding Voigt matrix of a fourth-order elasticity tensor, i.e.
either C in the nonlinear case or E in the linear case, respectively.

Remark 9 (From tensorial to matrix notation) The reduction of the general tensorial
to a matrix notation with respect to Cartesian base vectors is a necessary step to
obtain a numerical method. But, it is nearly impossible to generalise results obtained
on the matrix level back to the more general tensorial theory.

4.3 Fundamentals of Finite Element Approximation

The finite element approximation is based on shape and Ansatz functions. Following
the isoparametric concept, the state u and the geometry X are approximated by
the same functions NI (ζ ) defined on a fixed (local) parameter space with (local)
coordinates (ζ 1, ζ 2, ζ 3). According to the classical Bubnov-Galerkin technique also
the test functions are interpolated using the shape functions NI (ζ ).

The state function u, the test function v and the geometry X are approximated in
every element Ke in the form

ue
h =

n∑
I=1

NI uI , ve
h =

n∑
I=1

NI v I and Xe
h =

n∑
I=1

NI X I . (40)

The corresponding displacement and design variations are

δue
h =

n∑
I=1

NI δuI and δXe
h =

n∑
I=1

NI δX I , (41)

where n denotes the number of nodes per element. The vectors for nodal values read

uI =
[

u1
I

u2
I

]
, v I =

[
v1I

v2I

]
, X I =

[
X1

I

X2
I

]
, δuI =

[
δu1

I

δu2
I

]
, δX I =

[
δX1

I

δX2
I

]
. (42)

For notational simplicity, the explicit forms of all derived matrices are given for the
two-dimensional case only.
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The discrete residual and the tangent forms, see Sect. 2.2, can now be specified.
The discrete element contributions Re

h, ke
h, pe

h are collected over all elements and the
element matrices re, ke and pe consists of all nodal contributions, i.e. overall

R(uh, Xh; vh) =
nel∑
e=1

[
n∑

I=1

vTI re
I

]
= V̂

T
R̂, (43)

k(ûh, X̂h; vh, δuh) =
nel∑
e=1

[
n∑

I=1

n∑
J=1

vTI ke
I J δuJ

]
= V̂

T
K̂ δÛ, (44)

p(ûh, X̂h; vh, δXh) =
nel∑
e=1

[
n∑

I=1

n∑
J=1

vTI pe
I J δX J

]
= V̂

T
P̂ δ X̂ . (45)

The techniques to assemble the global quantities Û, V̂ , X̂, δÛ, δ X̂ and R̂, K̂ , P̂ are
well-known, seeSect. 5 for hints on the implementation. Thus, the nodal contributions
re

I , ke
I J and pe

I J still need to be specified.
Further details aswell as the implementation of sensitivity relations of thematerial

or inverse motion problem and for the dual or adjoint problem is given in [24].

4.4 FEM Approximations of Gradient and Divergence

The gradient and the divergence of any quantity ae
h , which is either u, v, δu or δX ,

with respect to the approximation Xe
h of the referential geometry, defined on each

element in form of Eq. (40), is given for

ae
h =

n∑
I=1

NI a I by Grad ae
h =

n∑
I=1

a I LT
I and Div ae

h =
n∑

I=1

LT
I a I , (46)

where L I denotes the gradient of the shape function NI , i.e.

L I := Grad NI = [
NI,1 NI,2

]T = [
NI,X NI,Y

]T
, (47)

where the notation (X, Y ) can be used instead of (X1, X2).

4.5 FEM Approximation of Variations of the Strain Tensor

The variation of the Green-Lagrange strain tensor E with respect to the state u is

E′
u(u, δu) = sym

(
AT

u Grad δu
)

with Au := FX,
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see Eq. (20). The corresponding finite element approximation can be written as

Ē
′
u(uh, δuh) = [

(E ′
u)11 (E ′

u)22 2 (E ′
u)12

]T =
n∑

I=1

BuI δuI (48)

with

BuI =
⎡
⎣

A11
u NI,X A21

u NI,X

A12
u NI,Y A22

u NI,Y

A11
u NI,Y + A12

u NI,X A21
u NI,Y + A22

u NI,X

⎤
⎦ . (49)

Furthermore, the design variation of E has been introduced in Eq. (20) too

E′
X (u, δX) = sym

{
AT

X Grad δX
}

with AX := −Grad Tu FX.

The finite element approximation can be written in the same manner as above

Ē
′
X (uh, δXh) = [

(E ′
X )11 (E ′

X )22 2 (E ′
X )12

]T =
n∑

I=1

Bs I δX I (50)

with

Bs I =
⎡
⎢⎣

A11
X NI,X A21

X NI,X

A12
X NI,Y A22

X NI,Y

A11
X NI,Y + A12

X NI,X A21
X NI,Y + A22

X NI,X

⎤
⎥⎦ . (51)

4.6 Approximation of Residual and Tangent Forms

Using the above introduced finite element approximations, the nodal contributions
of the discrete element residual vector at node I is given by

re
I =

∫

Ke
BT

uI S̄ dVX − f e
I . (52)

The vector f e
I is the standard nodal vector of the external forces. Furthermore, the

nodal contributions of the element matrices ke and pe are obtained as

ke
I J =

∫

Ke

{
BT

uI C Bu J + LT
I SL J I

}
dVX, (53)
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pe
I J =

∫

Ke

{
BT

uI C Bs J − LT
I SL J H − FSL J LT

I + FSL I LT
J

}
dVX

−
∫

Ke
NI bX LT

J dVX. (54)

Remark 10 (Similarity of stiffness and pseudo load matrix) It is important to observe
that the structures of stiffness and pseudo load computations are fully similar. Thus,
sensitivity information can be derived, implemented and computed on the element
level with a small additional effort compared to ‘standard’ FEM computations.

4.7 Possible Fields of Application

There is a great number of fields where the presented sensitivity relations can be
applied. All quantities are derivedwith respect to coordinates of FE-nodes. Parameter
free shape optimisation can be performed based on these derivatives utilising some
additional tools like filters and mesh control techniques. Recent works on this topic
are [1, 9, 15, 22, 32]. Gradients for geometry based shape optimisation can be
calculated extending the presented sensitivities by the corresponding design velocity
fields. R-adaptivity is concerned with improvement of finite element solution on the
same mesh. Here, the number of degrees of freedom and mesh topology are fixed.
Only the mesh form is changed. A review, much more details and examples on this
topic can be found in [26]. Fracture mechanics deals with the propagation of cracks
in materials. Here, the strain energy release and the direction of crack growth can
be directly derived from the material residuum, see [25] for details and examples.
Furthermore, the technique was applied to history dependent problems, see [7].

Last but not least, the pseudo load and sensitivity matrices P̂ and Ŝ, respectively,
can be decomposed using a singular value decomposition (SVD). The insight gained
from the singular value structure and from the interpretation of the corresponding
singular vectors can be used for model reduction, see [15].

5 Details on Numerical Implementation

In this section, we present a prototype implementation of the quantities and topics
concerned with structural optimisation introduced in the previous chapters. There-
fore, the well-known structure of the nonlinear finite element method is extended
to sensitivity analysis, i.e. the pseudo load matrix P̂ from Eq. (54) is added. How-
ever, we do not focus on general details of FEM, see the standard literature on finite
element analysis, for example [8, 10, 35, 36].

The presented Matlab code, i.e. the element routine, is part of an educational
in-house finite element analysis environment for general nonlinear problems. We
concentrate on the plane strain two-dimensional case using a quadrilateral four node
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element with bilinear shape functions, which is sufficient to explain the necessary
steps for sensitivity analysis. The extension to three dimensions and to higher order
elements is straightforward.

We slightly differ from the notation used in the previous sections in order to avoid
super- and subindices, but themeaning of the variables in the code should be obvious.
We abbreviate the Cartesian and local coordinates (X1, X2) and (ζ 1, ζ 2)with (X,Y)

and (a,b), respectively.
We name the function containing the element matrices

for the referred plane, pure displacement formulation for nonlinear problems. The
overall implementation can be found in the appendix. Its integration into an already
existing environment for structural analysis is easy to handle by using the standard
Matlab syntax for function calls

[Out1, Out2, ...] = FunctionName(In1, In2, ...).

The input quantities, namely coorde,mate,be,Ue, contain the nodal coordinates
of the current element, properties of the chosen material, information about body
forces per unit volume acting on the system and the displacements for all degrees of
freedom of the element, respectively. These details are specified below.

The discretisation of the domain delivers a matrix with the global X- and Y-
coordinates of all nodes of the generated mesh. On element level, the necessary
coordinate matrix for the plane two-dimensional case has the form

coorde =
[
X1 . . . Xn
Y1 . . . Yn

]T
=

[
X1 X2 X3 X4
Y1 Y2 Y3 Y4

]T
, (55)

where n is the overall number of nodes of the element and in our case is n = 4.
Furthermore, the introduced matrix mate contains the material properties of the
current element with the componentsmate(1) for theYoung’smodulus,mate(2)
for the Poisson’s ration and mate(3) for the thickness of the element. The matrix
be represents the body forces per unit volume in the possible directions X and Y,
i.e. it contains the components be = [

bX bY
]T. The last input value Ue includes the

displacements of all nodes in the directions X and Y. Therefore, its dimension is the
number of degrees of freedom of the current element ndof× 1 and in the referred
case 8× 1

Ue = [
U1 . . . Undof

]T = [
U1 U2 U3 U4 U5 U6 U7 U8

]T
. (56)

The output quantities Rint for the internal residual, Fvol for the contribution of
body forces to the external residual, K as the well known tangent stiffness matrix and
the tangent pseudo load matrix P were already introduced in the previous sections.
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We apply Gauss quadrature with four Gauss points stored in matrix gpoints
with the four related weights in weights, which are organised within an external
function

and provide the matrix representations for the chosen numgp = 4 integration points

gpoints =
[
a1 a2 a3 a4
b1 b2 b3 b4

]T
, weights = [

w1 w2 w3 w4
]T

. (57)

The bilinear shape functions are delivered by an external function as well

and depend on the local coordinates a,b of the integration points and the coordinates
of the nodes of the element. The output matrices contain the shape functions, sum-
marised in Nmat, the derivatives of the shape functions with respect to the global
coordinates X and Y, summarised in N_X,N_Y and the determinant of the Jacobian
detJ. The explicit forms of the matrices are as follows

Nmat =
[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]
(58)

and

N_X = [
N1,X N2,X N3,X N4,X

]T
, N_Y = [

N1,Y N2,Y N3,Y N4,Y
]T

. (59)

The gradient of the displacements is performed by the function

and delivers a matrix

Gradu =
[
u1,X u1,Y

u2,X u2,Y

]
. (60)

Different constitutive equations, for example St. Venant or Neo-Hooke, can be used.
The (3 × 3) material matrix C and the (2 × 2) matrix S of the 2. Piola-Kirchhoff
stresses are computed in the external function

The number of degrees of freedom dof for the current node are computed using
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Here,dof is the number of overall degrees of freedom per node andni is the number
of the current node of interest. Same holds true for the node nj.

Due to the fact, that the B-operator has a similar structure for each necessary case,
we introduce the external function Bmat for its computation

Here, the introduced derivatives of the shape functions N_X,N_Y and a matrix A are
the required inputs. ThematrixA represents thematrix representationA_u = F of the
deformation gradient for the matrices for structural analysis or A_X = −GraduTF
for the contribution to the pseudo load matrix within sensitivity analysis

In the end and with all given hints the element matrices and simultaneously the
outputs of the element function can be computed.All output quantities use the number
of degrees of freedom for the determination of their dimensions. Therefore, the
internal residual Rint as well as the contribution of the body forces to the external
residual Fvol have the dimension ndof× 1 = 8× 1 and are organised as follows

Rint = [
R1 R2 . . . Rndof

]T = [
R1 R2 R3 R4 R5 R6 R7 R8

]T (61)

and

Fvol = [
F1 F2 . . . Fndof

]T = [
F1 F2 F3 F4 F5 F6 F7 F8

]T
. (62)

The computation of Fvol for the contribution of body loads to external residual
vector Rext is realised in the following lines

where dV results from the integration over the domain.
For the physical residual vector Rint the B-operator Bui as well as the vector

representation of the 2. Piola-Kirchhoff stresses

is necessary and can be updated for each integration point as follows

The symmetric tangent stiffness matrix K and the tangent pseudo load matrix
P, which is not symmetric in general, have the same structure and are both of the
dimension ndof× ndof = 8× 8. Their computation is pretty similar and can be
organised even in the same loops over the nodes, due to similar dependencies
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Section7 shows a simple application of the presented approach for sensitivity
analysis. It is useful to comprehend the mentioned aspects and can be easily realised
within tutorials or lectures on structural optimisation using the presented element
formulation.

6 Analytical Derivatives of Discrete Equations

The discrete differentiation approach focuses on the discrete matrix formulation
which has been derived for the finite element method, see Fig. 1. In this approach,
all derivatives of the discrete functions with respect to the discrete variables are
computed based on standard calculus, i.e. using chain and product rules. The method
iswell-knownwith extensive discussion in literature, see e.g. [11, 21].Nevertheless, a
few details are presented to highlight essential differences. For simplicity, the design
variable s represents any nodal coordinate Xi

I with i = 1, 2 and I = 1, 2, 3, 4.
Furthermore, we abbreviate the Jacobian matrix by J and its determinant by J =
det J .

6.1 Design Derivatives of Shape Functions and Jacobians

The isoparametric concept is an important concept in FEM and the computation of
the Cartesian derivatives of the shape functions and of the Jacobian determinant play
a central role in the discrete differentiation approach.

Remark 11 (Isoparametric concept is derived from continuous theory) In teaching
finite elements, the (iso-) parametric technique to compute the Cartesian derivatives
of the shape functions is often argued to be a novel concept introduced by FEM.
This is wrong, because the underlying structure of differential geometry has been
ignored.

Thus, the analytical or numerical differentiation of discrete functions belonging to
the (iso-) parametric technique re-compute those results which are already available
in more general form on the continuous level. Instead of using results from Sect. 3.3,
Eq. (16) applied to the displacement approximation (40) is differentiated again

∂

∂s

[
NI,X NI,Y

] = ∂

∂s

([
NI,a NI,b

]
J−1

)
= [

NI,a NI,b
] ∂

∂s
J−1. (63)
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The Jacobian J as discrete version of Kζ or K ζ ≡ J Kζ , see Eq. (37), is given by

J =
[

X,a X,b

Y,a Y,b

]
=

[
X1 X2 X3 X4
Y1 Y2 Y3 Y4

]
⎡
⎢⎢⎣

N1,a N1,b
N2,a N2,b
N3,a N3,b
N4,a N4,b

⎤
⎥⎥⎦ . (64)

The derivative of the inverse of the Jacobian with respect to nodal coordinates or
design variables can be obtained using the identity I = J−1 J which leads to

∂ I
∂s

= ∂ J−1

∂s
J + J−1 ∂ J

∂s
= 0 and therefore to

∂ J−1

∂s
= −J−1 ∂ J

∂s
J−1. (65)

The design variable s is an abbreviation for the nodal coordinates X I , YI of all nodes
I = 1, 2, 3, 4 of the element. Thus, the design derivative of Eq. (64) yields

∂ J
∂s

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
NI,a NI,b

0 0

]
for s = X I

[
0 0

NI,a NI,b

]
for s = YI

. (66)

Further necessary quantity is the first derivative of the determinant of the Jacobian
J = det J = X,aY,b − Y,a X,b. It can be obtained by performing the product rule

∂ J

∂s
= ∂ X,a

∂s
Y,b + X,a

∂Y,b

∂s
− ∂Y,a

∂s
X,b − Y,a

∂ X,b

∂s
. (67)

The nonlinear B-operator BuI is quoted in Eq. (49). In the framework of the discrete
sensitivity analysis its derivative with respect to the design variables has to be pro-
vided, i.e. every element of BuI must be differentiated. With the introduced quantity
Au = FX = I + Grad u, see Sect. 4.5, its derivative corresponds to the derivative
of the deformation gradient

∂ Au

∂s
= ∂ FX

∂s
= ∂

∂s
(I + Grad u) = ∂ Grad u

∂s
. (68)

The definition of the gradient in Eq. (46) allows the computation of the derivative
with respect to the nodal coordinates or the design variables in the following way

∂ Grad u
∂s

= ∂

∂s

(
n∑

I=1

uI LT
I

)
=

n∑
I=1

uI
∂ LT

I

∂s
=

n∑
I=1

uI

[
∂ NI,X

∂s
∂ NI,Y

∂s

]
. (69)
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6.2 Design Derivatives of the Linear Stiffness Matrix

In the framework of a static and linear finite element analysis, the discrete equilibrium
condition is usually presented as K̂ Û = F̂. Thus, sensitivity analysis reads

∂ K̂
∂s

Û + K̂
dÛ
ds

= ∂ F̂
∂s

and therefore
d Û
ds

= K̂
−1

[
∂ F̂
∂s

− ∂ K̂
∂s

Û

]
, (70)

where s is a scalar valued design variable. This approach suggests to differentiate
the linear stiffness matrix by applying the chain rule to all element contributions ke

∂ke

∂s
= ∂

∂s

(∫

Re
BTC B J dVζ

)
=

∫

Re

∂

∂s

(
BTC B J

)
dVζ

=
∫

Re

(
∂ BT

∂s
C B + BTC

∂ B
∂s

)
J dVζ +

∫

Re
BTC B

∂ J

∂s
dVζ , (71)

where the analytical derivatives of B and J are discussed above.

Remark 12 (No derivative of the stiffness matrix is necessary) The variational sensi-
tivity analysis emphasises that the continuous residuum (weak form) must be varied
or alternatively, that the discrete residual vector must be differentiated. The special
form K̂ Û = F̂ is irritating and leads to a higher effort than needed, i.e. additional
analytical derivatives must be derived and must be implemented. Last but not least,
the computational performance is less efficient as outlined in Sect. 7.

6.3 Design Derivatives of Nonlinear Residual Vectors

Referring Remark 12, the design sensitivity analysis for the static nonlinear case has
to be performed starting with the discrete equilibrium condition for finite element
analysis introduced in Eq. (52). In detail, the derivative with respect to the scalar
valued design variable s can be evaluated by

∂ re
I

∂s
= ∂

∂s

(∫

Ke
BT

uI S̄ dVX − f e
I

)
. (72)

For the internal part of the residual the derivative reads

∂

∂s

∫

Ke
BT

uI S̄ dVX = ∂

∂s

∫

Re
BT

uI S̄ J dVζ =
∫

Re

∂

∂s

(
BT

uI S̄J
)
dVζ

=
∫

Re

(
∂ BT

uI

∂s
S̄ + BT

uI
∂ S̄
∂s

)
J dVζ +

∫

Re
BT

uI S̄
∂ J

∂s
dVζ

(73)
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and similar for the external part

∂ f e
I

∂s
= ∂

∂s

∫

Ke
NI bI dVX = ∂

∂s

∫

Re
NI bI J dVζ =

∫

Re
NI bI

∂ J

∂s
dVζ . (74)

The essential steps for the derivative of the nonlinear B-operator and of the Jacobian
determinant are already detailed in Sect. 6.1. For the derivative of stresses S the
derivative of strains E = 1

2 (FTF − I) = 1
2

(
HT + H + HTH

)
with H = Grad u

has to be discussed. The derivative of H can be found in Eq. (69). A lot of further
aspects and details concerning sensitivity analysis of nonlinear systems are discussed
and presented in [21] as well.

Remark 13 (Comparable quantities should not be treated differently) It has been
shown, that the stiffness matrix and pseudo load matrix originate from partial vari-
ations of the residual with respect to displacements or design, respectively. It is
common and good practice in computational mechanics, to perform all variations
with respect to the state variables on the continuous level before applying a subse-
quent discretisation step. But it is a strong discrepancy, if the differentiation of the
discrete residual vector is advocated for deriving the pseudo load matrix.

7 Numerical Example

The example illustrates the usage of the variational design sensitivity analysis and
should serve as a benchmark problem suitable for comparing different sensitivity
analysis techniques. It is equally applicable for linear and nonlinear problems.

7.1 Structural Optimisation Problem

The dimensions of the structure (height and width) are h = 2 and w = 6. The
geometry is defined by a Bézier patch with 8 control points and the corresponding
control polygon is pictured in Fig. 4b. The material properties are Young’s modulus
E = 21000 and Poisson’s ratio ν = 0.3. The constitutive model is either the classical
Hooke’s law in the linear case or the Neo-Hooke’s law in the nonlinear case. The
load q̄ = 3 is a line load. The applied boundary conditions are pictured in Fig. 4a.
The FE-mesh consists of 675 elements and 736 nodes with 1472 degrees of freedom.

Vertical positions (y coordinates) of 4 lower control points are used as design
variables. The vertical displacement ul of the upper right corner is to be minimised
taking into account a constant volume constraint V = V0. Here, V and V0 denote the
current and initial volumes. The resulting force Q of the line load q is kept constant.

Sequential quadratic programming (SQP) is utilised to solve the optimisa-
tion problem. The algorithm converges after sixteen iterations. The corresponding
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(a) (b)

Fig. 4 Cantilever beam: initial structure. a Mechanical system. b Optimisation model
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Fig. 5 Cantilever beam: optimisation results. a Displacement history. b Optimised design

iteration history (steps 0–15) for the objective function is pictured in Fig. 5a. The
displacement ul is decreased to about two-thirds of its initial value. The optimised
design in terms of nonlinear structural analysis is presented in Fig. 5b. The structure
is stiffened with respect to bending stress.

7.2 Performance Comparison of Different Strategies

Performance tests have been run for linear and nonlinear structural analysis. In each
case, the computation of the pseudo load matrix using either the variational for-
mulation P̂var, see Sect. 4, or the discrete formulation P̂dis, see Sect. 6, have been
performed. The absolute as well as the relative computation times for assembling the
pseudo load matrices referred to the computation time for assembling the stiffness
matrix K̂ are presented in Table1.

Table 1 Computation times for pseudo load matrices

Absolute values in seconds Relative factors compared with K̂ Speedup

K̂ P̂var P̂dis K̂ P̂var P̂dis

Linear 0.0465 0.2210 0.5431 1 4.7 11.7 2.5

Nonlinear 0.2758 0.3575 1.0455 1 1.3 3.8 2.9
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Referring this times, the usage of the variational formulation provides a speed
up of 2.5 for the linear and of 2.9 for the nonlinear computations in contrast to the
discrete formulation. Beyond that, the times prove that the effort for the provision of
the (nonlinear) pseudo load matrix using the variational formulation is in the same
range as for the stiffness matrix. Due to the fact, that the linear stiffness matrix is
constant and independent of displacements, the factors differ bit more than for the
nonlinear case. Regarding the overall computation time for the presented example
in the previous section, one ends up at least with a speed up of 1.3 for the nonlinear
and of 1.7 for the linear case.

Remark 14 (Variational technique shows superior computational performance)The
invested effort into a rigorous theoretical development and its careful implementa-
tion yields a minimal number of floating-point operations compared to the discrete
differentiation approach. This advantage remains for all advanced computational
techniques such as High Performance Computing (HPC) on all available hardware.
Thus, in a long term run, there is no alternative to an investment in theoretical rigour.

8 Conclusions

The proposed variational design sensitivity analysis is considered to be the most
efficient technique to determine the gradients of objective or constraint functions
with respect to design variables in structural optimisation. The effort of a rigorous
separation of physical quantities into geometry and displacement mappings based on
an intrinsic presentation of continuum mechanics pays off with fundamental insight.

Moreover, the quote There’s nothing more practical than a good theory, see [23],
perfectly characterises the outlined benefits of a thorough theoretical investigation for
the subsequent discretisation, implementation and computation of design sensitivity
analysis in structural optimisation. Overall fourteen remarks, embedded in the text,
substantiate the correctness of this statement.

Appendix: MATLAB Source Code

The appended Matlab source code contains two functions, i.e. plane_nl for the
computation of the element matrices and Bmat for the B-matrices needed in struc-
tural analysis and sensitivity analysis, see Sect. 5 for detailed explanations.
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