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Dedicated to Prof. Nikolay Banichuk
on the occasion of his 70th birthday



Foreword

Professor Nikolay Banichuk

Professor Nikolay Banichuk is a member of the Russian Engineering Academy, the
International Academy of Astronautics and the National Committee on Theoretical
and Applied Mechanics (Russia). He is the Head of the Laboratory of Mechanics
and Optimization of Structures at the Institute for Problems in Mechanics (IPM) and
Professor of the Moscow Institute of Physics and Technology (MPTI). Professor
Banichuk is one of the leading scientists in the modern fields of solid mechanics,
optimal structural design, computational mechanics, optimization and variational
theory, numerical methods, and computational algorithms. He has written 12 books,
260 scientific articles, and authored more than 200 reports for scientific meetings.

Nikolay Banichuk was born in Komsomolsk-on-Amur-river (East Russia) in
1944, the son of Vladimir Banichuk and Iraida Ivanova. His father was a railway
engineer and participated in such famous constructions of railways as
Moscow-Peking, Baikal-Amur, Sakhalin, and Stalingrad. For these reasons,
Nikolay’s family moved around various places, and Nikolay received a variety of
impressions and accumulated important experience. In spite of often moving to new
locations, Nikolay was a good student and received a classical education.

In 1961, Nikolay Banichuk entered the Moscow Institute of Physics and
Technology (MPTI, Aeromechanical Faculty), where he became deeply acquainted
with physical and mathematical knowledge. Nikolay combined his studies in MPTI
with practice at the Institute for Problems in Mechanics (IPM) and at the Computer
Center of Russian Academy of Sciences. During his studies at MPTI, Nikolay
participated, under my supervision, in the creation of an effective computational
algorithm of local variations and carried out research on elastic-plastic and
visco-plastic variational problems with unknown boundaries. In 1967 Banichuk
received his diploma of Engineer-Physicist-Researcher from MPTI and continued
his investigations as a postgraduate student and researcher under my supervision.

Two years later, Nikolay Banichuk defended his dissertation devoted to
numerical solution of nonlinear problems with unknown boundaries arising
in mechanics of contact interaction, in deformation of nonelastic material, and in
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fracture mechanics with curvilinear cracks and earned a doctoral degree in
Physico-Mathematical Sciences from IPM.

In 1969, Nikolay entered the IPM in the position of a “junior scientific
researcher.” Among his first tasks was the optimal design of structures interacting
with moving gas or fluids. He also initiated pioneering studies on applications of
game theory, especially those of differential games to the problems of the structural
optimization with uncertainties. He started his teaching career as a Lecturer at the
Aerophysics and Applied Mathematics Faculty of MPTI. During these years, his
research in the area of structural mechanics and optimization became well known,
and in 1979 he defended his dissertation on the shape optimization for elastic
bodies and received his second scientific degree (doctor habitaliation) in Phys-Math
from IPM.

After defending his dissertation, Nikolay accepted an invitation from the famous
mechanician of the twentieth century, Alexander Ishlinsky (Director of IPM now
the Institute carries his name), to occupy a position of the head of laboratory, to
formulate its scientific thematics, and form the team of the laboratory. In this
connection, Ishlinsky recommended the formation of a laboratory collective from
the young scientists and mainly from personal students, thus allowing the team to
grow in depth but not in extent. From this time onwards Banichuk, as the head
of the laboratory and then as the head of the department, very closely interacted
with Ishlinsky. Banichuk began concentrating on the development of analytical,
computational, and experimental methods for problems of analysis and design of
large space structures. He has obtained important results for large space flexible
deployable antenna reflectors. For the obtained results, Banichuk was awarded the
Gagarin’s medal (twice) and the Korolev medal, and he was elected to the
International Academy of Astronautics, at first as a correspondent member and then
as a full member (academician).

The first seminar around mechanics and optimization of structures was organized
by Nikolay Banichuk in IPM in 1980 and attracted many promising students.
Starting from 1981, as a professor of MPTI and Moscow Aviation Technology
Institute, he delivered lectures devoted to applied mathematics and mechanics,
including numerical analysis and optimization theory. He was a supervisor for
21 academic dissertations. He devoted about 20 years to attestation and qualifica-
tion activities as a member and vice-chairman of the governmental highest attes-
tation commission on mathematics and mechanics.

Banichuk’s engineering activities spread to engineering construction in large
protection systems, to the earth reflector and structural problems for new aircraft.
He was elected as Academician of Russian Engineering Academy, and then as
Academician-Secretary of Russian Engineering Academy and the member of its
presidium.

International scientific cooperation plays an important role in Professor
Banichuk’s activity. The most fruitful relations he has are those with scientists from
Finland (Jyväskylä), Italy (Cagliary), Germany (Hannover, Braunschweig),
Portugal (Lisbon), Denmark (Lyngby), USA (Iowa City), Netherlands (Delft), and
UK (London), and many others. In these places, he has received prestigious
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scientific grants and delivered invited lectures. He has served also as chairman and
as member of organizing committees in many international conferences.

In 1968, Nikolay met his wife, Natalia Evgenievna Shinaeva, a most gracious
and lovely lady. Four years later, his son Alexey was born. Now Nikolay is a
grandpa to his 16-year-old grandchild. His sister, Natalia Vladimirovna, also
became a mathematician.

The science and engineering community looks forward to many more years of
Nikolay’s active participation, his leadership, and his continued contributions to
science and engineering. More importantly, we, his friends, look forward to many,
many years of his congenial and helpful personality, his ever-smiling and energetic
face, his cautious wisdom, his tremendous sense of humor, and the sheer enjoyment
of being with, and learning from a most charming and amazing gentleman!

Moscow Prof. Felix L. Chernousko
June 2015 Member of the Russian Academy of Sciences
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Preface

This book collects results presented at the International Conference for
Mathematical Modeling and Optimization in Mechanics (MMOM 2014) 6–7 March
2014, Jyväskylä, Finland, which was dedicated to the 70th jubilee of Professor
Nikolay Banichuk. The book consists of three parts: numerical analysis, mathe-
matical modeling in mechanics, and optimization. This structure reflects the three
main lines of the conference closely related to the scientific interests of
Prof. Nikolay Banichuk and his colleagues.

Part I of the book contains four papers related to rather different but important
problems in modern numerical analysis.

The first paper, by O. Pironneau, is devoted to highly nonlinear coupled models
used for modeling of aortic flow. The paper combines analysis of viscous incom-
pressible flow based on Navier–Stokes equations with ideas of shape optimization.
Two next papers present new results on a posteriori error estimation methods for
boundary value problems. The paper by O. Mali extends known a posteriori esti-
mates of the functional type to the case of nonsymmetric elliptic operators. Another
paper (by M. Nokka and S. Repin) is focused on applications of a posteriori
estimates to iteration Uzawa methods for the stationary Bingham flow problem. The
last paper in this part (by J.I. Toivanen) considers applications of the parametric
level set method (which is one of the key tools of topology optimization) to
methods of automatic differentiation. The author uses an adjoint approach to per-
form sensitivity analysis, but contrary to standard implementations the state prob-
lem is differentiated in its discretized form. The paper contains several examples
demonstrating the performance of the method.

Part II collects the papers associated with mathematical modeling of mechanics.
It starts with the paper by Yuli D. Chashechkin, where the author discusses

harmonization of analytical, numerical, and laboratory models of flows. This is
mainly an overview paper aimed to present historical development of models and
concepts in the theory of fluids. Other papers in this section are concerned with
mathematical models of various mechanical and technological objects. Effects of
friction in sliding contact of a sphere and a viscoelastic half space are studied in the
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paper by I. Goryacheva, F. Stepanov, and E. Torskaya. Multiaxial fatigue criteria
are used by N. Burago and I. Nikitin in an analysis of a complicated technical
system. The paper by T. Saksa and J. Jeronen is devoted to dynamic analysis of
viscoelastic Poynting Thompson beams. A projection approach to analysis of
natural vibrations for beams with nonsymmetric cross-sections is presented in the
paper by V. Saurin and G. Kostin. In the paper by N. Banichuk, A. Barsuk,
J. Jeronen, P. Neittaanmäki, and T. Tuovinen, the authors consider bifurcation type
problems arising in the theory of elastic stability.

Part III contains publications related to optimization methods.
The papers presented in this section can be classified into two groups. The first

group mainly deals with optimization algorithms, while the second is more oriented
to optimization and sensitivity analysis of engineering problems.

The first paper, by M.M. Mäkelä, N. Karmitsa and O. Wilppu, presents new
algorithms of nonconvex multiobjective optimization based on the proximal bundle
method. Parallelization of Nash genetic algorithms for solving inverse problems in
structural engineering is discussed in the work of J. Périaux and D. Greiner.

A variant of variational design sensitivity analysis in structural optimisation
using rigorous separation of physical quantities into geometry and displacement
mappings is exposed in the paper by F.-J. Barthold, N. Gerzen, W. Kijanski, and
D. Materna. The paper by G. Kostin and V. Saurin studies dynamics modeling and
control design for elastic systems with distributed parameters, with the help of
variational methods. Finally, contact optimization problems are considered in the
work of I. Páczelt, A. Baksa, and Z. Mróz, and some problems of multipurpose
optimization of deformed structures are investigated in the paper by A. Sinitsin,
S. Ivanova, E. Makeev, and N. Banichuk.

The articles collected in the volume present only a part of the results of the
conference. The editors tried to select contributions that are the most interesting.
Some of them contain new results related to concrete mathematical or mechanical
problems. Other articles were included by us because they overview the state of the
art and discuss open questions related to a certain topic on mechanics, optimization
methods, or modern technology. All the papers have been reviewed by two inde-
pendent reviewers.

Jyväskylä Pekka Neittaanmäki
June 2015 Sergey Repin

Tero Tuovinen
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Part I
Numerical Analysis



Computational Issues for Optimal Shape
Design in Hemodynamics

Olivier Pironneau

Abstract A Fluid-Structure Interaction model is studied for aortic flow, based on
Koiter’s shell model for the structure, Navier–Stokes equations for the fluid and
transpiration for the coupling. It accounts for wall deformation while yet working
on a fixed geometry. The model is established first. Then a numerical approximation
is proposed and some tests are given. The model is also used for optimal design
of a stent and possible recovery of the arterial wall elastic coefficients by inverse
methods.

Keywords Fluid-structure interaction · Compliant walls · Finite element method ·
Convergence analysis · Navier–Stokes equations · Blood flow

Mathematical Subject Classification: 35Q30 · 74K25 · 65M60 · 65N12

1 Introduction

Hemodynamics, a special branch of computational fluid dynamics, posesmany prob-
lems of modeling, data acquisition, computation and visualization. However, even
as of now it is a valuable tool to understand aneurisms, to design stents and heart
valves, etc. (see, for example, [6, 10, 11]).

In this paper, we shall focus on algorithms for fluid flowswith compliant walls like
aortic flow, theirmodelisation, numerical simulation and inverse techniques. Blood in
large vessels like the aorta is Newtonian and flows in a laminar regime with Reynolds
number of a few thousands. The Navier–Stokes equation for incompressible fluid is
a good model for it. A blood vessel on the other hand is a complex structure for

O. Pironneau (B)
Laboratoire Jacques-Louis Lions (LJLL), Sorbonne Universités,
UPMC Univ Paris 06, UMR 7598, Boite Courrier 187,
75252 Paris Cedex 05, France
e-mail: Olivier.Pironneau@upmc.fr

© Springer International Publishing Switzerland 2016
P. Neittaanmäki et al. (eds.), Mathematical Modeling and Optimization
of Complex Structures, Computational Methods in Applied Sciences 40,
DOI 10.1007/978-3-319-23564-6_1
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4 O. Pironneau

which linear elasticity is only a first crude approximation and for which the Lamé
coefficients do not have a universal value and can vary with individuals.

Nevertheless, like many authors ([8, 9], for instance) we shall use Koiter’s linear
shell theory.

2 Koiter’s Shell Model for Arteries

The following hierarchy of approximations for the displacement d of the aortic wall
will be made:

• Small displacement linear elasticity instead of large displacement (needed for the
heart).

• No contact inequalities with the surrounding organs.
• Shell model for the mean surface.
• With reference to the mean surface, normal displacement of the walls only.

Let Σ be the shell surface representing the mean position of the blood vessel. Let
n(x) be the normal at x ∈ Σ . Let d(x, t) be the displacement of the wall at x at time
t . Normal displacement implies d = ηn.

In [8] it is shown that under such conditions, Koiter’s model reduces to the fol-
lowing equation of η on Σ :

ρsh∂t tη − ∇ · (T∇η) − ∇ · (C∇∂tη) + a∂tη + bη = f s, (1)

where ρs is the density and h the thickness of the vessel, T is the pre-stress tensor, C
is a damping term, a, b are viscoelastic terms and f s the external normal force, i.e.
the normal component of the normal stress tensor −σ s

nn . As with all second order
wave type equations two conditions must be given at t = 0, for instance

η|t=0 = η0, ∂tη|t=0 = η′
0.

Remark 1 When [h, T, C, a] � b, the Eq. (1) leads to the so-called surface pressure
model

− σ s
nn = bη, with b = Ehπ

A(1 − ξ2)
, (2)

where A is depends on the geometry of the artery’s cross section and equal to the
cross section surface when it is circular; E is the Young modulus, ξ the Poisson
coefficient.

Some typical values are (in themetric systemMKSA) for a heart beat of one pulsation
per second:

E = 3MPa, ξ = 0.3, A = π R2, R = 0.013, h = 0.001, ρ f = 9.81 × 106,
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leading to b = 3.3 × 107 ms−2 and giving displacements in the range of
0.1 × 10−3 m and flow rates around 2 × 10−5 m3s−1 for aortic flows.

3 Fluid Equations

The Navier–Stokes equations in a moving domain Ω(t) define the velocity u and the
pressure p,

ρ f
(

∂u

∂t
+ u · ∇u

)
+ ∇ p − μ∇ · (∇u + ∇uT ) = 0, ∇ · u = 0, (3)

where ρ f is the density of the fluid and μ is the viscosity.
Continuity on Σ of fluid and solid velocities implies

u = ∂d

∂t
:= n

∂η

∂t
, on Σ.

With the surface pressure model, continuity of normal stresses implies

σ
f

nn := n · (μ(∇u + ∇uT ) − p)n = −σ s
nn := bη.

Notice that as a consequence of the hypothesis of normal displacements only of the
structure, there is no provision to write the continuity of the tangential stresses.

For aortic flow there also an inflow and an outflow boundary Γi and Γo on which
we will prescribe pressure and no tangential velocity. If S = Γi ∪ Γo, then the
boundary Γ is

Γ := ∂Ω(t) = Σ ∪ S = Σ ∪ Γi ∪ Γo.

In [8] and many other publications, the matching conditions on Σ are written on the
boundary of a fixed reference domain ∂Ω0 because Koiter’s shell model works with
a fixed mean surface Σ .

With the notations of [5], assume that the domain of the fluid is Ωt = At (Ω0)

with At : x0 → xt := At (x0). Let

uτ (x, t) = u(At (A
−1
τ (x)), t), ∀x ∈ Ωτ . (4)

Then in Ωt at t = τ , the Navier–Stokes equations are in ALE format

ρ f ∂uτ

∂t
+ (uτ − cτ ) · ∇uτ + ∇ p − μ∇ · (∇uτ + ∇uT

τ ) = 0,

∇ · uτ = 0, with cτ (x) = −∂At (A −1
τ (x))

∂t
|t=τ .
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4 Transpiration Conditions for the Fluid

4.1 Conservation of Energy

We begin with an important remark on the conservation of energy.
The variational formulation of (3)—divided by ρs—is, for all û, p̂

∫
Ω(t)

[
û · (∂t u + u · ∇u) + ∇ p · û − p̂∇ · u

+ ν

2
(∇u + ∇uT ) : (∇û + ∇ûT )

]
=

∫
Ω(t)

f s · û.

(5)

An energy balance is obtained by taking û = u and p̂ = −p,

∂t

∫
Ω(t)

u2

2
+ ν

2

∫
Ω

|∇u + ∇uT |2 =
∫

Ω

f s · û −
∫

∂Ω

pu · n, (6)

because

∂t

∫
Ω(t)

u · w =
∫

Ω(t)
∂t (u · w) +

∫
∂Ω

v u · w,

∫
Ω

((u∇u) · u) =
∫

∂Ω

u · n
u2

2
=

∫
∂Ω

v

2
u · u,

where v = u · n is the normal speed of ∂Ω .
With transpiration conditions we intend to work on a fixed domain with zero

tangential velocity but non zero normal velocity u · n = w. In that case, in order to
preserve energy, the relation (5) on a fixed domain Ω needs to be modified into

∫
Ω

[
û · (∂t u + u · ∇u) + ∇ p̃ · û − p̂∇ · u

+ ν

2
(∇u + ∇uT ) : (∇û + ∇ûT )

]
−

∫
∂Ω

w

2
u · û =

∫
Ω

f s · û

or equivalently into

∫
Ω

[
û · (∂t u − u × ∇ × u) + ∇ p̃ · û − p̂∇ · u

+ ν

2
(∇u + ∇uT ) : (∇û + ∇ûT )

]
=

∫
Ω

f s · û,

where p̃ = p + 1
2 |u|2 is the dynamic pressure.
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Remark 2 Notice that the difference between p and p̃ is second order with respect to
the displacement, so exchanging one for the other in the shell model is a modification
well within the small displacement hypothesis. However, it makes a difference on
Γi , Γo and pΓ should be changed accordingly.

From now on we drop the tilde on p.
Finally, we recall the identity (see [4], for instance) which holds whenever

u × n = 0 and shows that we can use several forms for the viscous terms, namely,

∫
Ω

[∇ × u · ∇ × v + ∇ · u∇ · v] =
∫
Ω

∇u : ∇v

=
∫
Ω

[
1

2
(∇u + ∇uT ) : (∇v + ∇vT ) − ∇ · u∇ · v

]
.

Hence a variational formulation adapted to the problem is to find u with u × n = 0
and, such that for all p̂ and all û with û × n = 0 we have

∫
Ω

[û · (∂t u − u × ∇ × u) − p∇ · û − p̂∇ · u + ν∇ × u · ∇ × v]

+
∫
∂Ω

pu · n =
∫
Ω

f s · û. (7)

4.2 Transpiration

As the wall vessel is {x + ηn : x ∈ Σ} and as, by Taylor,

u(x + ηn) = u(x) + η∇u · n(x) + o(η),

matching the velocities of fluid and structure may be presented in the form

u + η
∂u

∂n
= n

∂η

∂t
+ o(η), u × n = 0 on Σ. (8)

For a torus with small radius r and large radius R, at a point of coordinates ((R +
r cos θ) cosϕ, (R + r cos θ) cosϕ, r sin θ), a straightforward calculation shows that

u × n = 0, ∇ · u = 0 ⇒ n · ∂u

∂n
= (1 + r

R
cos2 θ)

u · n

r
.

In view of this, (8) becomes

u · n = ∂tη
(
1 + η

r

(
1 + r

R
cos2 θ

))−1
, u × n = 0. (9)



8 O. Pironneau

Similarly, the normal component of the normal stress tensor is

σ
f

nn = p + 2
(
1 + r

R
cos2 θ

) μ

r
u · n.

Therefore, for quasi toroidal geometry and large R, the relation (1) reads

ρsh∂t tη − ∇ · (T∇η) − ∇ · (C∇∂tη) + a∂tη + bη

= p + 2
(
1 + r

R
cos2 θ

) μ

r
∂tη

(
1 + η

r

(
1 + r

R
cos2 θ

))−1
.

So, in fine, the domain Ω no longer varies in time but on a part of its boundary we
have the conditions

u · n = ∂tη
(
1 + η

r

(
1 + r

R
cos2 θ

))−1
, u × n = 0,

ρsh∂t tη − ∇ · (T∇η) − ∇ · (C∇∂tη) + a∂tη + bη = p,

where a is a non linear function of η.

Remark 3 Notice that η � r , i.e. large vessels, allows us to eliminate η and write
everything in terms of ∂t p and un := u · n. It suffices to differentiate the last equation
with respect to t and use the first one and integrate in time,

p = p0 + L (u · n)

:=
∫ t

0
(ρsh∂t t un − ∇ · (T ∇un) − ∇ · (C∇∂t un) + a∂t un + bun) . (10)

5 Variational Formulation and Approximation

Coming back to (7) and using (10), we arrive at the following:

Continuous Problem Find u with u × n = 0 and, for all p̂ and all û with û × n = 0

∫
Ω

[
û · (∂t u − u × ∇ × u) − p∇ · û − p̂∇ · u + ν∇ × u · ∇ × v

]

+
∫

Σ

(p0 + L (u · n)) u · n = −
∫

S
pΓ û · n.
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5.1 Approximation in Time

From now on, for clarity, we consider only the case of the surface pressure model,
i.e. h = T = C = a = 0,L (u · n) = bu · n. However, everything below extends to
the full model.

We define U (t) = ∫ t
0 u(s)ds and use the integration rule U m+1 = U m + um+1dt

and
V = {u ∈ H1(Ω)d | u × n = 0 on ∂Ω}, Q = L2(Ω).

Time Discrete Problem Let p(t) = p0 + bU (t). We seek um+1 ∈ V , p̂m+1 ∈ Q,
satisfying for all û ∈ V and p̂ ∈ Q the following identity:

∫
Ω

[
û ·

(
um+1 − um

δt
− um+ 1

2 × ∇ × um+θ

)

− pm+1∇ · û − p̂∇ · um+ 1
2 + ν∇ × um+ 1

2 · ∇ × û

]

+
∫

Σ

[
bû · n(um+ 1

2 δt + U m) · n
]

= −
∫

S
pΓ û · n,

(11)

where um+ 1
2 = 1

2 (u
m+1 + um) and θ = 0 for a semi-explicit linear scheme of the

first order or θ = 1
2 for a fully implicit nonlinear scheme of the second order.

5.2 Convergence

A convergence analysis was done in [3]; we recall the results. We denote uδ the
linear in time interpolate of {um}M

1 on (0, T ) = ∪M
1 [(m − 1)δt, mδt]. For clarity

let’s assume that S = ∅.
Lemma 1 If Ω is C 1,1 or polyhedral and u0 ∈ L2(Ω)3, p0 ∈ H1/2(Σ), then
the weak solution of the continuous problem verifies u ∈ L2(H2), ∂t u ∈ L2(L2),
p ∈ L2(H1), and u × n = 0 in L2(L4(Σ)), ∂t p = bu · n in L2(H1/2(Σ)),
p(0) = p0.

Theorem 1 The solution of the time discretized variational problem satisfies

‖uδ‖L∞(L2) + √
ν ‖uδ‖L2(H1) + b ‖δt

n+1∑
k=1

uk · n‖L∞(L2(Σ))

≤ C

(
‖u0‖0,2,Ω + 1√

ν
‖p0‖L2(Σ)

)
.
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Fig. 1 Freefem++ implementation for problem (11)

Theorem 2 If Ω is simply connected, there is a subsequence (uδ′ , pδ′) which con-
verges to the continuous problem in L2(W) × H−1(L2), where

W = {w ∈ L2(Ω) | ∇ × w ∈ L2(Ω), ∇ · w ∈ L2(Ω), n × w|Σ = 0}.

5.3 Spatial Discretization with Finite Elements

The easiest way is to use penalization to enforce u × n = 0 by adding to the boundary
integral 1

ε

∫
Σ

um+1×n · û×n. Thenwemay use conforming triangular or tetrahedral
elements P2 or P1 + bubble for the velocities and P1 elements for the pressure.

A freefem++ implementation (see [7]) is shown in Fig. 1.

6 Optimization and Inverse Problems

6.1 Optimal Stents with the Surface Pressure Model

A stent is a device to reinforce part of a cardiac vessel and/or to change the topology
of the flow by its rigidity. This results in a change of the coefficient b. So with a first
order scheme in time we can consider

min
b(x)

J =
∫

Σ×(0,T )

F(p) dx dt
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subject to

∫
Ω

[
û ·

(
um+1 − um

δt
− um+1 × ∇ × um

)
− pm+1∇ · û − p̂∇ · um+1

]

+
∫

Ω

ν∇ × um+1 · ∇ × û
∫

Σ

[bû · n(um+ 1
2 δt + U m) · n] = −

∫
S

pΓ û · n

∀û ∈ Vh, p̂ ∈ Qh .

(12)

For instance, F = |p|4 will minimize the time averages pressure peak on Σ .

6.2 Inverse Problems

Can we recover the structural parameters of the vessel walls from the observation of
the pressure?

Consider the minimization problem

min
b(x),x∈Σ

J (u, p, b) := 1

2

∫
Ω×(0,T )

(pm − pm
d )2, (13)

subject to (12) or to

∫
Ω

[
û ·

(
1

δt

(
um+1 − um(x − um(x)δt)

))
− pm+1∇ · û − p̂∇ · um+1

]

+
∫

Ω

ν∇ × um+1 · ∇ × û +
∫

Σ

b(um+1δt + U m) · û = −
∫

Γ

pΓ ûn

∀û ∈ Vh, p̂ ∈ Qh with û × n|Γ = 0; U m+1 = U m + um+1δt.
(14)

The difference between (12) and (14) is the numerical treatment of the nonlinear
term: implicit Euler in the first and Characteristic-Galerkin in the second.

6.3 Calculus of Variations

To set up a descent algorithm we must do a sensitivity analysis of the problem. This
is done with a “Calculus of Variations”.

When a parameter varies it triggers a variation of u, p, which we call δu, δp. To
compute themwe linearise the Navier–Stokes equations. These written globally over
(0, T ) in a weak form are as follows:
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M−1∑
0

δt

(∫
Ω

[
ûm+1 ·

(
1

δt

(
δum+1 − δum(x − um(x)δt)

))

− δpm+1∇ · ûm+1 − p̂m+1∇ · δum+1
]

+
∫

Ω

ν∇ × δum+1 · ∇ × ûm+1 +
∫

Σ

rm+1(δU m+1 − δU m − δum+1δt)

+
∫

Σ

(
b(δum+1δt + δU m) + δb(um+1δt + U m)

)
· ûm+1

)
= 0

∀ûm ∈ Vh, p̂m ∈ Qh, rm with ûm × n|Γ = 0. (15)

If ûM+1 = 0, r M+1 = 0, then it can be rearranged and presented in the form

M−1∑
0

δt

(∫
Ω

[
1

δt

(
ûm+1 − ûm+2(x + um(x)δt)

)

× δum+1 − δpm+1∇ · ûm+1 − p̂m+1∇ · δum+1
]

+
∫

Ω

ν∇ × δum+1 · ∇ × ûm+1 +
∫

Σ

((rm+1 − rm+2)δU m+1 − rm+1δum+1δt)

+
∫

Σ

(
b(δum+1δt + δU m) + δb(um+1δt + U m)

)
· ûm+1

)
= 0.

(16)

6.4 Adjoint State

To express the variations in terms of δb, we need to introduce an adjoint state v,
solution of the following,

M−1∑
0

δt

(∫
Ω

[
1

δt

(
vm+1 − vm+2(x + um(x)δt)

)

× v̂m+1 − q̂m+1∇ · vm+1 − qm+1∇ · ûm+1
]

+
∫

Ω

ν∇ × ûm+1 · ∇ × vm+1 +
∫

Σ

(rm+1 − rm+2)V̂ m+1 − rm+1v̂m+1δt

+
∫

Σ

b(v̂m+1δt + V̂ m) · vm+1
)

=
M−1∑
0

δt
∫

Ω

(pm+1 − pm+1
d )q̂m+1, (17)
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for all v̂, q̂ such that v̂ × n = 0 on ∂Ω . Denote V m = rmδt . Then V m+1 =
V m+2 − bvm+2δt and

∫
Ω

[
1

δt

(
vm+1 − vm+2(x + um(x)δt)

)
· v̂ − q̂∇ · vm+1 − qm+1∇ · v̂

]

+
∫

Ω

ν∇ × vm+1 · ∇ × v̂ +
∫

Σ

(bvm+1δt − V m+1) · v̂ =
∫

Ω

(pm+1 − pm+1
d )q̂,

(18)

for all v̂, q̂ such that v̂ × n = 0 on ∂Ω .

6.5 Computation of Gradients with Respect to b

Letting v̂ = δum+1, q̂ = δpm+1 and summing in m, from 1 to M after multiplication
by δt gives,

M−1∑
0

δt
∫

Ω

(pm+1 − pm+1
d )δpm+1

=
M−1∑
0

δt

(∫
Ω

[
1

δt

(
vm+1 − vm+2(x + um(x)δt)

)
· δum+1

− δpm+1∇ · vm+1 − qm+1∇ · δum+1
]

+
∫

Ω

ν∇ × δum+1 · ∇ × vm+1

+
∫

Σ

(
(bvm+1 − rm+1)δum+1δt − δU m+1(rm+2 − rm+1 − bvm+2)

))

=
M−1∑
0

δt

(∫
Ω

[
1

δt

(
δum+1 − δum(x − um(x)δt)

)
· vm+1

− δpm+1∇ · vm+1 − qm+1∇ · δum+1
]

+
∫

Ω

ν∇ × δum+1 · ∇ × vm+1

+
∫

Σ

(
bvm+1δum+1δt + δU mbvm+1 + (δU m+1 − δU m − δum+1δt)rm+1))

= −
M−1∑
0

δt
∫

Σ

δb(um+1δt + U m) · vm+1 = −
∫

Σ

δb

(
δt

M−1∑
0

U m · vm

)
,
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because U 0 = vM = 0. To minimize in H1-norm, we solve for g ∈ H1
0 (Σ),

∫
Σ

∇s g · ∇sw = −
∫

Σ

(
δt

M−1∑
0

U m · vm

)
w, ∀w ∈ H1

0 (Σ)

⇒ δ J =
∫

Σ

∇s g · ∇sδb. (19)

6.6 Numerical Tests

We take the test case documented in [2]. It is a 2-d problem for the upper part of
a symmetric straight vessel. The geometry is the rectangle (0, L) × (0, R) with
L = 6 and R = 0.5. Pressure is imposed at both end, zero on the right and p1 =
1
2 pmax(1 − cos(2π t

tmax
)) with pmax = 2000 and tmax = 0.005.

The mesh is uniform 60 × 10. The step size is δt = 2 × 10−4 and there are 60
time steps in this simulation, so T = 0.012 = 2.4tmax. The P2 × P1 element is used
for velocity-pressure. The objective is to see if it is possible to reconstruct b on the
upper wall from the pressure in the vessel.

So we first solve the direct problem with b = bd := 2 × 105(1 + 6 x
L (1 − x

L ))

approximated with the P1 element. We call the computed pressure {pm
d (x)}M−1

0 .
Then, we solve (13) with 50 iterations of an H1

0 -projected gradient method with
fixed step size, λ = 106.

Algorithmic Steps

• Compute pd by a time loop from 0 to T and store on disk.
• Optimization loop:

1. Compute u, p by a time loop from 0 to T and store on disk u, p, U .
2. Compute v, p by a time loop from T down to 0 requiring to read from disk pd ,

u, p, U .
3. Compute gradient by solving (19).
4. Compute cost function and ‖∂x g‖20.
5. Update b by b ← b − λg.
6. Modify b by b ← max{min(b, bmax), bmin}.

• Display results.

We choose bmax = 2× 105(1+ 12 x
L (1− x

L )), bmin = 2× 105(1+ 2 x
L (1− x

L )).
The results are shown in Figs. 2, 3, and 4.
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Fig. 2 g (left) and J (right) versus iteration number in log-log scale. Initially J = 1403 and after
50 gradient iterations J = 1.27 while g decreases from 1.2 × 10−4 to 3.3 × 10−9

Fig. 3 Target bd (top curve) and computed b after 50 iterations. Initial Pressure map after one
iteration (top), final pressure after 50 gradient iterations (middle) and target pressure pd (bottom).
The color scales are linear from −986 to 896 except for p0 which has a range from −680 to 782

Fig. 4 Flow velocity vectors u (middle) and adjoint flow velocity vectors v (bottom) at final time
after 50 gradient iterations. The color scales are linear from 0 (saffron) to 0.03 (red) for u and 0
(saffron) to 2.9 (red) for v. The singularity at the top left corner is due to a theoretical incompatibility
between the normal velocities at this corner
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6.7 Preliminary 3D Tests

Experiment 1

This is only a feasibility test with F = p4; The geometry is a quarter of a torus
with R = 4 and r = 1. It is discretized with 1395 vertices and 6120 elements. The
number of unknown of the coupled system [u, p] is 23940 with the P1-bubble/P1

element and Crank-Nicolson implicit scheme. The viscosity is ν = 0.01; we chose
ε = ν. The final time is T = 1, the time step is dt = 0.1 and the pressure difference
imposed at Γi (top) and Γo bottom is 6 cos2(π t).

The flow is stored on disk at every iteration ready to be reused backward in time
for the adjoint equations. Starting with b = 200, after three iterations of steepest
descent with fixed step size, the cost function is decreased from 1200 to 900. But as
there is no constraint b is much reduced at the top near Γi . Consequently the vessel
wall becomes fragile as shown by a simulated wall motion by x → x + ∑

um · ndt
at every time step, as shown in Fig. 5.

Experiment 2

The same computations has been made but now b is constrained to be greater than
b0/2. Amesh double the size of the previous one has been used, with 191808 degrees
of freedom. The initial value of b is b0 = 200. After 10 iterations, similar to Experi-
ment 1 but with a projected gradient method for the optimization, the results of Fig. 6
are found.

Experiment 3

Finally we run an identification test of b from the observation of the wall displace-
ment, ideally, u · n. However, the formulation does not allow it because the extra
integral in the adjoint variational formulation is in competition with a similar term
from the surface pressure model, so we used p/b. For this first test the criteria is

J =
∫

Σ×(0,T )

|p − pd |2dxdt,

where pd is obtained from a reference computation (introduction of b in the criteria
makes the problem harder) with

b = 200 + 100 cos x cos y cos z.

The results are shown in Fig. 7.
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Fig. 5 Top left optimization criteria versus iteration number. Top right the coefficient b(x) after 3
iterations. Bottom left effect of the change of b on the dilatation of the vessel and some iso surfaces
of constant pressure. Bottom right a snap shot of the adjoint pressure and some iso surfaces

Because of the computing cost, we made only an initial study; the target is not
reached, but 5 iterations go into the right direction. To do better one would have to
used a varying step size gradient method and a better computer (this being done on
a macbook pro, takes about 15 min).
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Fig. 6 Top optimization criteria
∫
Σ×(0,T )

p4 versus iteration number. Bottom the coefficient b(x)

after 4 iterations. Right effect of the change of b on the dilatation of the vessel
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Fig. 7 Top optimization
criteria

∫
Σ×(0,T )

(p − pd )2

versus iteration number.
Middle the target b. Bottom
the coefficient b(x) after 5
iterations
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7 Conclusion

In this paper, we have introduced a reduced fluid structure model based on a transpi-
ration condition and applied it on a problem arising from hemodynamics. We have
shown that it has good stability property. In [3] a comparison study is made with full
fluid-structure models on moving domains; it is shown to give very similar results.

The greatest advantage of this reduced model is its computational speed and
unconditional stability. As inverse problems are important in hemodynamics [1], it
could be a good idea to use it. This preliminary study shows that it is indeed feasible.

Acknowledgments Special thanks to Frédéric Hecht for his help with freefem++ andMarc Thiriet
and Sunčica Čanić for helpful discussions.
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Functional A Posteriori Error Estimate
for a Nonsymmetric Stationary
Diffusion Problem

Olli Mali

Abstract In this paper, a posteriori error estimates of functional type for a stationary
diffusion problem with nonsymmetric coefficients are derived. The estimate is guar-
anteed and does not depend on any particular numerical method. An algorithm for
the global minimization of the error estimate with respect to an auxiliary function
over some finite dimensional subspace is presented. In numerical tests, global min-
imization is done over the subspace generated by Raviart-Thomas elements. The
improvement of the error bound due to the p-refinement of these spaces is investi-
gated.

1 Introduction

In this paper, we derive a posteriori error estimates of the functional type for a class of
elliptic problems with nonsymmetric coefficients. Since mid 90’s (see [8]), estimates
of this type has been derived for awide range of problems (see, e.g.,monographs [5, 6,
9] and references therein). However, the case of a stationary diffusion problem,where
coefficients are not symmetric has not been studied before. Problems of this type are
not very typical among other elliptic equations but they arise in certain models (see,
e.g., [1, 2]). It is shown that the derived estimate has the standard properties of a
deviation estimate for a linear problem, i.e., it is guaranteed and computable. The
derivation of the estimate is based on the method of integral identities and a special
case of Cauchy-Schwartz-Bunyakovsky inequality.
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Consider the Poisson problem

−divA∇u = f in Ω ⊂ R
d (1)

u = 0 on Γ := ∂Ω, (2)

where Ω a is simply connected domain with a Lipschitz-continuous boundary,
f ∈ L2(Ω), and A ∈ L∞(Ω,Rd×d) is strictly positive definite, bounded, and
has a bounded inverse A−1 ∈ R

d×d in Ω . Moreover, A is positive definite, i.e., there
exists constant c > 0 such that

(Aξ , ξ)Rd ≥ c‖ξ‖2
Rd , ∀ξ ∈ R

d , a.e. in Ω. (3)

The generalized solution u ∈ H1
0 (Ω) satisfies the integral identity,

(A∇u,∇w)L2(Ω,Rd ) = ( f, w)L2(Ω), ∀w ∈ H1
0 (Ω). (4)

2 Error Majorant

For symmetric problems with A ∈ L∞(Ω,Rd×d
sym ) the respective guaranteed upper

bounds (error majorants) have been presented in [5, 6, 9] and other publications cited
therein. It has the form

M(v, y) := (A∇v − y,∇v − A−1y)
1/2
L2(Ω,Rd )

+ CF√
c
‖ div y + f ‖L2(Ω),

where v ∈ H1
0 (Ω), y ∈ H(div,Ω), andCF is the constant in the Friedrichs inequality

‖w‖L2(Ω) ≤ CF‖∇w‖L2(Ω,Rd ), ∀w ∈ H1
0 (Ω). (5)

A special case of the Cauchy-Schwartz-Bunyakovsky inequality presented below
is required to obtain an analogous error estimate in the nonsymmetric case.

Lemma 1 Let U be a Hilbert space whose field is real numbers, A : U → U is
continuous, bounded, strictly positive definite, and has a continuous inverse A−1.
Moreover,

B := (Id + AT A−1)−1

is continuous and bounded. Then,

(y, q)U ≤ 2(Ay, y)
1/2
U (A−1Bq, Bq)

1/2
U , ∀y, q ∈ U . (6)
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Proof Since A is strictly positive definite,

0 ≤ (A(y − γ A−1q), y − γ A−1q)U

= (Ay, y)U − γ (y, (Id + AT A−1)q)U + γ 2(A−1q, q)U .

Selecting (assume y �= 0 and q �= 0, otherwise (6) holds trivially)

γ = 2(Ay, y)U

(y, (Id + AT A−1)q)U

yields
(y, (Id + AT A−1)q)2U ≤ 4(Ay, y)U (A−1q, q)U ,

where setting q = Bq = (Id + AT A−1)−1q leads to (6).

Theorem 1 Let v ∈ H1
0 (Ω) and u be the solution of (4). Then

(A∇(u − v),∇(u − v))1/2
L2(Ω,Rd )

≤ M(v, y), ∀y ∈ H(div,Ω),

where

M(v, y) := 2(A−1B(y − A∇v), B(y − A∇v))1/2
L2(Ω,Rd )

+ CF√
c
‖ div y + f ‖L2(Ω)

(7)

and
B := (I + AT A−1)−1.

The constants CF and c are defined in (5) and (3), respectively.

Proof Subtracting (A∇v,∇w)L2(Ω,Rd ) from both sides of (4) and applying the in-
tegration by parts formula

(y,∇w)L2(Ω,Rd ) = (− div y, w)L2(Ω), ∀y ∈ H(div,Ω), w ∈ H1
0 (Ω)

yields

(A∇(u − v),∇w)L2(Ω,Rd ) = (y − A∇v,∇w)L2(Ω,Rd ) + (div y + f, w)L2(Ω).

The first term can be estimated from above by (6), where U := L2(Ω,Rd) and
A := A. The second term is estimated from above by the Hölder inequality, (5), and
(3), which leads to
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(A∇(u − v),∇w)L2(Ω,Rd )

≤ 2(A−1B(y − A∇v), B(y − A∇v))1/2
L2(Ω,Rd )

(A∇w,∇w)
1/2
L2(Ω,Rd )

+ CF√
c
‖ div y + f ‖L2(Ω)(A∇w,∇w)

1/2
L2(Ω,Rd)

.

Setting w = u − v leads to (7).

Remark 1 Two parts of the majorant are related to the violations of the duality
relation and the equilibrium condition, respectively. They are denoted by

MDual := (A−1B(y − A∇v), B(y − A∇v))1/2
L2(Ω,Rd )

,

MEqui := ‖ div y + f ‖L2(Ω).

3 Global Minimization of the Error Majorant

Squaring and applying theYoung’s inequality yields a quadratic formof themajorant,
which is more suitable for the minimization over y.

Corollary 1 Let v ∈ H1
0 (Ω) and u be the solution of (4), then,

(A∇(u − v),∇(u − v))L2(Ω,Rd ) ≤ M
2
(v, y, β), ∀y ∈ H(div,Ω), β > 0,

where

M
2
(v, y, β) := 4(1 + β)(A−1B(y − A∇v), B(y − A∇v))L2(Ω,Rd )

+ 1 + β

β

C2
F

c
‖ div y + f ‖2L2(Ω)

. (8)

Corollary 2 The minimizers

M
2
(v, ŷ, β) = min

y∈H(div,Ω)
M

2
(v, y, β),

M
2
(v, y, β̂) = min

β>0
M

2
(v, y, β)

satisfy

C2
F

c
(div ŷ, div q)L2(Ω) + 2β

(
(A−1Bq, Bŷ)L2(Ω,Rd ) + (A−1Bŷ, Bq)L2(Ω,Rd )

)
,

= −C2
F

c
( f, div q)L2(Ω) + 2β

(
(A−1Bq, BA∇v)L2(Ω,Rd ) + (A−1BA∇v, Bq)L2(Ω,Rd )

)
,

∀q ∈ H(div, Ω) (9)
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and

β̂ =
CF√

c ‖ div y + f ‖L2(Ω)

2(A−1B(y − A∇v), B(y − A∇v))1/2
L2(Ω,Rd )

, (10)

respectively.

Proof The functional M
2
(v, y, β) is quadratic and convex w.r.t. y. Thus the neces-

sary and sufficient condition for the minimizer ŷ is

d

dt
M

2
(v, ŷ + tq, β)

∣∣∣
t=0

= 0, ∀q ∈ H(div,Ω),

which leads to (9). Similarly,

d

dβ
M

2
(v, y, β̂) = 0

yields (10).

Remark 2 If A is symmetric, then (9) reduces to

C2
F

c

∫
Ω

div ŷ div qdx + β

∫
Ω

A−1ŷ · qdx

= −C2
F

c

∫
Ω

f div qdx + β

∫
Ω

∇v · qdx ∀q ∈ H(div,Ω).

There are many alternatives how to compute the value of the majorant (see, e.g.,
[5, Chap. 3]). Here, the global minimization of the majorant over finite dimensional
subspace is presented. The minimization is done iteratively by solving (9) and (10)
subsequently.

Let y = ∑N
j=1 c jφ j and Qh := span(φ1, . . . ,φN ) ⊂ H(div,Ω), i.e., φ j ( j ∈

{1, . . . , N }) are the global basis functions. Then (9) leads to a system of linear
equations (

C2
F

c
S + 2βM

)
c = −C2

F

c
b + 2βz, (11)

where

Si j := (divφ j , divφi )L2(Ω), (12)

Mi j := (A−1Bφ j , Bφi )L2(Ω,Rd ) + (A−1Bφi , Bφ j )L2(Ω,Rd ), (13)

bi := ( f, divφi )L2(Ω), (14)
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zi := (A−1Bφi , BA∇v)L2(Ω,Rd ) + (A−1BA∇v, Bφi )L2(Ω,Rd ), (15)

and c ∈ R
N is the (column) vector of unknown coefficients. The natural choice is

to generate Qh using Raviart-Thomas elements (see [7]). The global minimization

procedure for M
2
is described in Algorithm 1.

Algorithm 1: Computation of the majorant for the problem (1)–(2)

Input: v {approximate solution}, A, {diffusion coefficient matrix} f , {RHS of the
problem}, CF , {Constant in (5)}, c, {Constant in (3)}, Imax {maximum number of
iterations}, ε {stopping criteria for M}
Generate S, M, b, and z in (12)–(15).
Compute norms ‖ f ‖ and ‖∇v‖.
Set β1 := 1, Mk = ∞ and k = 0. {initialize parameters}

while k < Imax and Mk+1−Mk

Mk
> ε do

k = k + 1

Solve ck+1 from

(
C2

F
c S + 2βkM

)
ck+1 = −C2

F
c b + 2βkz.

M
Equi
k+1 =

√
cT

k+1Sck+1 + 2cT
k+1b + ‖ f ‖2

M
Dual
k+1 =

√
cT

k+1Mck+1 − 2cT
k+1z + ‖∇v‖2

βk+1 = CFM
Equi
k+1

2
√

cM
Dual
k+1

Mk+1 = 2M
Dual
k+1 + CF√

cM
Equi
k+1

end while
y = ∑N

j=1 ck jφ j

Output:Mk+1 {Upper bound for the approximation error}, y {Approximation of
the minimizer}

Remark 3 Note that in Algorithm 1, the global matrices S and M have to be assem-
bled only once. The coefficient matrix in (11) is symmetric regardless of the fact that
A is not.

4 Numerical Tests

Algorithm 1 is very convenient to implement using any finite element software, e.g.,
FEniCS [4] and FREEFEM++ [3]), which allows user to define problems using weak
forms. This is true for all estimates of the functional type presented in [5, 6, 9]. The
following tests are computed using FEniCS finite element package. Here, we apply
Algorithm 1 to estimate the error of a finite element approximation for a test example,
where the exact solution is known.
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Example 1 Let Ω = (0, 1) × (0, 1), A =
(

a b
c d

)
, u(x1, x2)= sin(k1πx1)

sin(k2πx2), and

f (x1, x2)= π2
(
(a + d)k21 sin(k1πx1) sin(k2πx2)

− (b + c)k1k2 cos(k1πx1) cos(k2πx2)
)

.

Select A =
(
2 1
0 3

)
, then c = 2, A−1 = 1

6

(
3 −1
0 2

)
and B = 1

23

(
11 2
−3 12

)
.

The approximate solution v ∈ Vh of Example 1 is computed on a mesh Th ,
using triangular Courant elements of the order p1. The space Qh is generated using
the Raviart-Thomas elements of order p2 on the same mesh. The amount of global
degrees of freedomare denoted by N1 = dim(Vh) and N2 = dim(Qh). The efficiency
index of the majorant is

Ieff :=
√√√√ M

2
(v, y, β)

(A∇(u − v),∇(u − v))L2(Ω,Rd )

. (16)

The majorant is computed for different meshes with k1 = 1, k2 = 1, and p1 = 1 in
Table1.

The efficiency of the majorant and the number of iterations (in Algorithm 1,
ε = 10−6) do not depend on the mesh size. For p2 = 2 and p2 = 3, Qh can

Table 1 Example 1: k1 = 1, k2 = 1, and p1 = 1

N1 p2 N2 k M
2
(v, yk , βk) M

Dual
k M

Equi
k Ieff

441 1 1240 3 1.76E+00 2.46E−02 2.06E+00 6.6480

441 2 4080 3 3.15E−01 1.78E−02 2.09E−03 1.1858

441 3 8520 4 2.68E−01 1.78E−02 1.07E−06 1.0090

1681 1 4880 3 8.85E−01 6.23E−03 5.17E−01 6.6452

1681 2 16160 3 1.45E−01 4.44E−03 1.31E−04 1.0920

1681 3 33840 4 1.33E−01 4.44E−03 1.68E−08 1.0023

6561 1 19360 2 4.43E−01 1.56E−03 1.29E−01 6.6445

6561 2 64320 3 6.97E−02 1.11E−03 8.20E−06 1.0458

6561 3 134880 3 6.66E−02 1.11E−03 2.62E−10 1.0006

14641 1 43440 2 2.95E−01 6.95E−04 5.75E−02 6.6443

14641 2 144480 3 4.58E−02 4.93E−04 1.62E−06 1.0305

14641 3 303120 3 4.44E−02 4.93E−04 2.30E−11 1.0003

40401 1 120400 2 1.77E−01 2.50E−04 2.07E−02 6.6443

40401 2 400800 3 2.71E−02 1.78E−04 2.10E−07 1.0183

40401 3 841200 3 2.67E−02 1.78E−04 1.07E−12 1.0002
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Table 2 Example 1: k1 = 2, k2 = 3, and p1 = 2

N1 p2 N2 k M
2
(v, yk , βk) M

Dual
k M

Equi
k Ieff

1681 1 1240 3 2.60E+01 3.94E−01 6.10E+02 189.9638

1681 2 4080 3 2.15E+00 6.05E−03 3.92E+00 15.6634

1681 3 8520 2 2.53E−01 4.71E−03 1.26E−02 1.8496

6561 1 4880 3 1.32E+01 9.51E−02 1.56E+02 380.2599

6561 2 16160 3 5.41E−01 3.89E−04 2.49E−01 15.6199

6561 3 33840 3 4.93E−02 3.00E−04 1.99E−04 1.4258

25921 1 19360 3 6.60E+00 2.36E−02 3.94E+01 760.6287

25921 2 64320 2 1.35E−01 2.45E−05 1.56E−02 15.6082

25921 3 134880 3 1.05E−02 1.88E−05 3.12E−06 1.2139

58081 1 43440 3 4.40E+00 1.05E−02 1.75E+01 1140.9677

58081 2 144480 2 6.02E−02 4.84E−06 3.09E−03 15.6060

58081 3 303120 2 4.41E−03 3.72E−06 2.74E−07 1.1430

practically present the exact minimizer of the majorant, since the efficiency index is

almost one. Note that in this caseM
Dual

is almost the exact error andM
Equi

vanishes.
Results of a similar experiment in the case k1 = 2, k2 = 3, and p1 = 2 are depicted
in Table2. It is easy to see that lowest order Raviart-Thomas elements are not able to
represent the minimizer properly and in the case p2 = 1, the efficiency index of the
majorant is poor. Again, in the p-refined spaces the estimate improves significantly.

Example 2 Let Ω := (0, 1) × (0, 1) × (0, 1), f (x1, x2, x3) = x1x2x3, and

A =
⎛
⎝1000 20 −500

−3 30 16
2 0 3

⎞
⎠ .

Then,

A−1 ≈
⎛
⎝ 7.4490978E − 04 −4.9660652E − 04 1.2680020E − 01

3.3934779E − 04 3.3107104E − 02 −1.2001324E − 01
−4.9660652E − 04 3.3107101E − 04 2.4879987E − 01

⎞
⎠

and

B ≈
⎛
⎝ 1.0126139 −0.4980245 2.0416897

−0.0160603 0.5154516 −0.0408795
−0.0060666 0.009230 −0.0280656

⎞
⎠ .

In Example 2, the exact solution is not known. Instead a reference solution was
computed using third order Courant type elements with 29791 global degrees of
freedom. The approximations were computed using linear tetrahedral Courant type
elements and the space Qh is generated using tetrahedral Raviart-Thomas elements



Functional A Posteriori Error Estimate … 29

Table 3 Example 2, p1 = 1

N1 p2 N2 k M
2
(v, yk , βk) M

Dual
k M

Equi
k Ieff

125 1 864 4 4.67E−02 1.15E−05 1.57E−03 10.0122

125 2 3744 3 8.47E−03 6.99E−06 9.43E−06 1.8164

125 3 9792 3 5.26E−03 6.68E−06 8.94E−09 1.1284

343 1 2808 3 3.12E−02 5.81E−06 6.85E−04 9.2258

343 2 12312 3 5.24E−03 3.65E−06 1.86E−06 1.5489

343 3 32400 3 3.81E−03 3.65E−06 7.85E−10 1.1241

729 1 6528 3 2.35E−02 3.48E−06 3.83E−04 9.1082

729 2 28800 3 3.78E−03 2.21E−06 5.88E−07 1.4642

729 3 76032 3 2.97E−03 2.64E−06 1.40E−10 1.1527

1331 1 12600 3 1.88E−02 2.31E−06 2.44E−04 7.8120

1331 2 55800 3 2.94E−03 1.47E−06 2.41E−07 1.2208

of order p2. The resultswere depicted onTable3 and they show similar characteristics
as in the two dimensional example.

5 Summary

An upper functional deviation estimate (majorant) for nonsymmetric stationary dif-
fusion problem is derived. An algorithm for the global minimization of the majorant
over a finite dimensional subspace is presented and tested. The efficiency of the ma-
jorant depends on the particular problem (i.e., the exact solution) and the relation of
spaces Vh and Qh . The question is that how accurately Vh can represent u (in the
energy norm) in comparison with the ability of Qh to represent the minimizer of
the majorant. If Qh is “better”, then the estimate is very accurate and the other way
round. The crude overestimation in Table2 shows that using a “worse” space for the
computation of the minimizer.
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Error Estimates of Uzawa Iteration
Method for a Class of Bingham Fluids

Marjaana Nokka and Sergey Repin

Abstract The paper is concerned with fully guaranteed and computable bounds of
errors generated by Uzawa type methods for variational problems in the theory of
visco-plastic fluids. The respective estimates have two forms. The first form contains
global constants (such as the constant in the Friedrichs inequality for the respective
domain), and the second one is based upon decomposition of the domain into a
collection of subdomains and uses local constants associated with subdomains.

Keywords Bingham fluid · Uzawa algorithm · A posteriori estimates

Mathematical Subject Classification: 65N15

1 Introduction

Models of fluids with nonlinear viscosity are widely used in engineering applications
and natural sciences (e.g., for modeling of creamy substances, flow of blood, lymph
or waxy crude oil) [4, 11, 12].

Mathematical models of Bingham type fluids started receiving serious attention in
the 60s and the 70s in the framework of general studies related to variational inequal-
ities (see, e.g., [7]). Variational posings of stationary models were studied since [17]
in many publications. A consequent exposition of results related to regularity of
solutions can be found in, e.g., [9, 10]. In [2, 3, 6, 13–15], the reader will find a
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deeply elaborated theory of numerical approximations and respective computational
algorithms. For non-stationary problems there are also several known approaches
(e.g., the operator splitting method [6, 14, 23]).

Uzawa type methods are often used for solving nonlinear problems generated by
models of viscous fluids. Each step of this iterationmethod includes solving a suitable
linear problem and redefinition of the Lagrangemultiplier (which is typically reduced
to projection on a certain convex set). General theory of Uzawa type approximations
is well developed (see, e.g., [13]) and the conditions sufficient to guarantee that the
respective iteration sequence converges to the exact solution are known. However, in
practical computations we need to know and explicitly control the error associated
with a particular iteration. In other words, we wish to have explicitly computable and
realistic estimates of errors generated by Uzawa iterations. The goal of this paper
is to deduce such type estimates for a simple stationary models with Bingham type
dissipative potential. Simple forms of the Uzawa iteration algorithm may generate
sequences with rather low convergence rate. Therefore, in practice, advanced forms
of this algorithm are often used (e.g., one of the most known modifications is known
as the augmented Lagrangian method). In this paper we do not consider these algo-
rithms. This analysis will be presented in the next publication, which will use results
of the present paper.

2 Governing Equations

Evolution of a generalized Newtonian fluid in a bounded Lipschitz domain Ω ∈ R
d ,

(d = 2, 3) is described by the differential equation of motion

ut − div σ + (u · ∇u) = f − ∇ p in Ω, (1)

incompressibility condition
div u = 0 in Ω, (2)

and the differential inclusion
σ ∈ ∂π(∇u) (3)

that reflectsmechanical properties of the fluid. The system (1)–(3) should be supplied
with proper initial and boundary conditions (see, e.g., [7] for a consequent discussion
of the mathematical statement). Here that ∂ denotes the subdifferential and π is the
dissipative potential of the fluid. Many physically interesting models are described
by the dissipative potentials in the form

π(ε) = 1

m
ν|ε|m + k∗|ε|
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where m > 1 is associated with the energy growth at infinity, ν > 0 is the viscosity
parameter, and k∗ ≥ 0 is the plasticity parameter. Models with dissipative potentials
of this type are known as models of Bingham fluids. In particular, the most known
Bingham fluid model is described by the potential

1

2
ν|ε|2 + k∗|ε| k∗ > 0.

Nowadays it is commonly accepted that the system (1)–(3) adequately describes the
behaviour of various nonlinear fluids (in particular, it is used for computer simulation
of the blood flow, see, e.g., [4, 5, 8]).

Let Ω ⊂ R
d (d = 2, 3) be a bounded and connected domain with Lipschitz

continuous boundary ∂Ω . Belowwe consider a simple stationary anti-plane problem
of the Bingham fluid in a long domain Ω × ]0, L[, with the potential

π(ε) = 1

2
Aε : ε + k∗|ε|,

where k∗ > 0 and A is a symmetric matrix satisfying the condition

c21|ξ |2 ≤ Aξ · ξ ≤ c22|ξ |2 ∀ξ ∈ R
d , c2 ≥ c1.

Henceforth, we use two equivalent norms generated by the matrix A:

|||v|||2 :=
∫

Ω

A∇v · ∇vdx and |||η|||2∗ :=
∫

Ω

A−1η · η dx .

In this case (see, e.g., [7, 13]), the problem can be reduced to the variational inequal-
ity: Find the velocity u ∈ V0 + u0 such that

a(u, w − u) +
∫

Ω

( j (∇w) − j (∇u))dx ≥ 
(w − u) ∀w ∈ V0 + u0, (4)

where
V0 :=

{
v ∈ V := H1(Ω) | v = u0 on ∂Ω

}
,

u0 ∈ V is given and defines Dirichlet type boundary conditions, a : V × V → R is
a bilinear V -elliptic form

a(v, w) :=
∫

Ω

A∇v · ∇wdx,

and j : Rd → R is a convex continuous function, which in our case is defined by
the relation

j (∇w) = k∗|∇w|.
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The inequality (4) is equivalent to the following variational problem: Find u ∈
V0 + u0 such that

J (u) = inf
w∈V0+u0

J (w), (5)

where

J (w) := 1

2
a(w, w) +

∫
Ω

j (∇w)dx − 
(w).

Due to well-known results in the theory of variational calculus, the problem (5)
associated with a strictly convex and lower semicontinuous functional is uniquely
solvable (see, e.g., [7]).

3 First Form of the Majorant

Our analysis is based on functional type a posteriori estimates. For the considered
class of problems (and many other variational inequalities) have been studied in [20–
22]. Now, our goal is to obtain somewhat different forms of these estimates adapted
to approximations generated byUzawamethod. Similar estimates have been recently
presented in [18] for the Oseen problem.

Theorem 1 For any v ∈ V0 + u0, η ∈ L2(Ω,Rd) and y ∈ L2(Ω,Rd), the
functional M1⊕(v, y, η, α, β) gives an upper bound of the deviation from the exact
solution u in terms of the energy norm, i.e.

|||u − v|||2 ≤ M1⊕(v, y, η, α, β)

:= 2

γ
D j (∇v, η) + 1

αγ
|||A∇v + η − y|||2∗

+ 1

βγ
‖Div y + f ‖2−1,Ω,

where α, β > 0, γ := 2 − α − β > 0,

‖Div y + f ‖−1,Ω := sup
w∈V0(Ω)

∫
Ω

( f w − y · ∇w)dx

‖∇w‖ ,

D j (∇v, η) :=
∫

Ω

( j (∇v) + j∗(η) − η · ∇v)dx

=
{∫

Ω
(k∗|∇v| − η∇v)dx if |η| ≤ k∗,

+∞ otherwise
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is the compound functional associated with j , and j∗ : Rd → R is the Young-Fenchel
conjugate of j .

Proof Substituting v ∈ V0 + u0 into (4), we obtain

a(u − v, u − v) +
∫

Ω

( j (∇v) − j (∇u))dx ≥ 
(v − u) − a(v, u − v),

that implies

|||u − v|||2 ≤
∫

Ω

( j (∇v) − j (∇u))dx + 
(u − v) + a(v, v − u).

Let η ∈ L2(Ω,Rd). Due to the Fenchel-Young inequality we have

∫
Ω

− j (∇u)dx ≤
∫

Ω

( j∗(η) − η · ∇u)dx .

Hence,

|||u − v|||2 ≤ a(v, u − v) +
∫
Ω

η · ∇(v − u)dx

+
∫
Ω

( j (∇v) + j∗(η) − η · ∇v)dx + 
(u − v).

For any y ∈ L2(Ω,Rd) the following identity holds:

∫
Ω

(w div y + y · ∇w)dx = 0, ∀w ∈ V0.

Therefore, we have

|||u − v|||2 ≤ D j (∇v, η) −
∫
Ω

( f + div y)(v − u)dx

+
∫
Ω

(A∇v + η − y) · ∇(v − u)dx .

Notice that
∫

Ω

(A∇v + η − y) · ∇(v − u)dx ≤ |||A∇v + η − y|||∗|||v − u|||

≤ α

2
|||u − v|||2 + 1

2α
|||A∇v + η − y|||2∗, (6)
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where α > 0. Also
∣∣∣∣
∫

Ω

( f + Div y)(v − u)dx

∣∣∣∣ ≤ ‖Div y + f ‖−1,Ω |||u − v|||

≤ β

2
|||u − v|||2 + 1

2β
‖Div y + f ‖2−1,Ω, (7)

where β > 0. By (6) and (7) we obtain the required result. �

4 Uzawa Type Algorithm

Numerical analysis of the variational problem (4) can be performed by different
methods. Many of them are discussed in [2, 13, 15, 16] (see also numerous pub-
lications cited therein). The classical Uzawa algorithm for solving problem (4) has
been introduced in [1] and systematically analysed in, e.g., [3, 24]. In the context of
Bingham fluids it has been studied in [6]. Below we consider the simplest (classical)
form of the Uzawa method.

Define
λ0 ∈ K := {

λ ∈ L∞(Ω) | |λ| ≤ 1
}

and generate the sequence {un, λn}, n = 1, 2, . . ., by the following algorithm:

Algorithm 1

Step 1. For known λn and given ρ > 0 compute un+1 ∈ V0 as a generalized solution
of the problem:

∫
Ω

(A∇un+1 · ∇w + k∗λn · ∇w − f w)dx = 0, ∀w ∈ V0. (8)

Step 2. Define
λn+1 = Π(λn + ρk∗∇un+1),

where Π : L∞ → K is the projection operator on the set K

Π(λ)(x) = λ(x)

max (1, |λ(x)|) , a.e. in Ω.

Step 3. Set n = n + 1 and go to Step 1.

It is well known (see, e.g., [6]) that approximations generated by this algorithm
converge to the exact solution (as n → ∞) in the sense that

un → u in V
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provided that

0 < ρ < ρ̄ := 2c1
k2∗

.

Suppose that the Eq. (8) has a solution {u, λ} ∈ V0 × L∞(Ω). It is well known that
the pair {u, λ} is a saddle point of the Lagrangian functional L : V0 × L∞(Ω) → R

defined by

L(v, μ) := 1

2
a(v, v) +

∫
Ω

k∗μ · ∇vdx −
∫

Ω

f vdx .

We have
L(u, μ) ≤ L(u, λ) ≤ L(v, λ) ∀v ∈ V0, μ ∈ L∞(Ω),

and
{u, λ} = inf

v∈V0
sup

μ∈L∞(Ω)

L(v, μ).

In order to deduce computable and realistic estimate of un − u in terms of the
energy norm, we use results of previous section. Set

v = un,

η = k∗λn−1,

y = A∇un + k∗λn−1.

In this case,
|||A∇un + k∗λn−1 − y|||2∗ = 0

and in view of (8), we find that

‖Div y + f ‖−1,Ω = sup
v∈V0

∫
Ω

(−A∇un+1 · ∇w − k∗λn · ∇w + f w)dx

‖∇w‖ = 0.

We use the estimate in Theorem 1 and let α, β → 0. Then, we arrive at the following
result.

Theorem 2 Let un be the exact solution computed the step n of the Uzawa algorithm.
Then

|||u − un|||2 ≤
∫

Ω

(k∗|∇un| − λn−1 · ∇un)dx

:= MU z
1⊕(un, λn−1). (9)

Since λn−1 ≤ 1, we see that MU z
1⊕(un, λn−1) is nonnegative.

The estimate (9) would give a complete answer to the question stated if we would
have un (exact solution of the boundary value problem in the first step of Uzawa
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method). In practice, the problem is solved on a certain meshT h (as usual h denotes
the characteristic size of cells). For this case, we need an advanced form of the error
majorant, which takes into account approximation errors. We are now concerned
with the derivation of such a majorant.

Let V0h be finite dimensional subspace of V0 and un
h ∈ V0h + u0 be an approxi-

mation of un calculated in the nth step of Uzawa algorithm. We wish to estimate the
difference between u and un

h . We have

|||u − un
h ||| ≤ |||u − un||| + |||un − un

h |||
≤

∫
Ω

(k∗|∇un| − λn−1 · ∇un)dx + |||un − un
h |||

≤
∫

Ω

(k∗|∇(un − un
h + un

h)| − λn−1 · ∇(un − un
h + un

h)) dx

≤
∫

Ω

(k∗|∇un
h | − λn−1 · ∇un

h)dx + 2k∗‖∇(un − un
h)‖ + |||un − un

h |||

≤
∫

Ω

k∗(|∇un
h | − λn−1 · ∇un

h)dx +
(
2k∗
c1

+ 1

)
|||un − un

h |||. (10)

In order to find the upper bound for the approximation error |||un −un
h ||| we follow

the derivation method presented in [22].
Subtracting

∫
Ω

A∇un
hdx from the nth step of the Uzawa algorithm (8), we have

for all w ∈ V0 and all y ∈ Q := {y ∈ L2(Ω,Rd) | div(y) ∈ L2(Ω)}
∫

Ω

A∇(un − un
h) · ∇wdx =

∫
Ω

( f w − k∗λn−1 · ∇ − A∇un
h · ∇w)dx

=
∫

Ω

( f w + w div y + (y − A∇un
h − k∗λn−1) · ∇w)dx

=
∫

Ω

(r(y)w + d(un
h, λn−1, y) · ∇w)dx, (11)

where
r(y) := div y + f

and
d(v, λ, y) := y − A∇v − k∗λ.

If the domain Ω is simple, we can estimate |||un − un
h ||| by using global constant CΩ

arriving from Friedrichs inequality. For simple domains upper and lower bounds for
CΩ can be found analytically. From (11) we find that

∫
Ω

r(y)wdx ≤ CΩ‖r(y)‖‖∇w‖
≤ c1CΩ‖r(y)‖|||w|||.
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Set w := un
h − un . Then

∫
Ω

r(y)wdx ≤ c1CΩ‖r(y)‖|||un − un
h |||

and ∫
Ω

d(un
h, λn−1, y) · ∇wdx ≤ |||d(un

h, λn−1, y)|||∗|||un − un
h |||.

Now (11) yields the estimate

|||un − un
h ||| ≤ c1CΩ‖r(y)‖Ωi + |||d(un

h, λn−1, y)|||∗. (12)

In view of (10) and (12) we obtain the following result.

Theorem 3 For any y ∈ Q, we have the estimate

|||u − un
h ||| ≤ (

2k∗
c1

+ 1)E h(un
h, λn−1

h , y) +
∫

Ω

(k∗|∇un
h | − λn−1 · ∇un

h)dx, (13)

where the first term

E h(un
h, λn−1

h , y) := c1CΩ‖r(y)‖ + |||d(un
h, λn−1, y)|||∗

is related to the approximation error and the second term presents the error associ-
ated with the Uzawa method.

The estimate (13) contains the constant CΩ , which the upper bound can be easily
found for the simple domains. If, however, Ω is a complicated domain (in the sense
of geometry) and the problem involves different boundary conditions (e.g., mixed
Dirichlet-Neumann conditions), then a guaranteed upper bound may be difficult to
find. In order to avoid this, we use another way to estimate the term

∫
Ω

r(y)wdx .

Theorem 4 For any y ∈ Q̃ := {y ∈ Q | {div y + f }Ωi = 0}, we have the estimate

|||u − un
h ||| ≤

(
2k∗
c1

+ 1

)
E h(un

h, λn−1
h , y)+

∫
Ω

(
k∗|∇un

h | − λn−1 · ∇un
h

)
dx, (14)

where the first term

E h(un
h, λn−1

h , y) = c1

(
N∑

i=1

diam(Ωi )π
−1‖r(y)‖Ωi

)
+ |||d(un

h, λn−1, y)|||∗

is related to the approximation error and the second term presents the error associ-
ated with the Uzawa method.
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Proof We start by using similar methods as we used above. Subtracting
∫
Ω

A∇un
hdx

from the nth step of the Uzawa algorithm (8) we have for all w ∈ V0 and all y ∈
Q := {y ∈ L2(Ω,Rd) | div(y) ∈ L2(Ω)}

∫
Ω

A∇(un − un
h) · ∇wdx =

∫
Ω

(r(y)w + d(un
h, λn−1, y) · ∇w)dx . (15)

Henceforth we set w = un − un
h and assume that Ω is represented as a set of

nonintersecting convex subdomains Ωi , i = 1, . . . , N , i.e.,

Ω̄ =
N∑

i=1

Ω̄i .

Also, we impose additional conditions on y:

y ∈ Q̃ := {
y ∈ Q | {div y + f }Ωi = 0

}
,

where

{y}Ωi := 1

|Ωi |
∫

Ωi

ydx

denotes the mean value of y in a domain Ωi . By means of the Payne-Weinberger
estimate [19], we obtain

∫
Ω

r(y)(un − un
h)dx =

N∑
i=1

∫
Ωi

(div y + f )(un − un
h − {un − un

h}Ωi )dx

=
N∑

i=1

‖r(y)‖Ωi ‖un − un
h − {un − un

h}Ωi ‖Ωi

≤
(

N∑
i=1

diam(Ωi )π
−1‖r(y)‖Ωi

)
‖∇(un − un

h)‖. (16)

Also, ∫
Ω

d(un
h, λn−1, y) · ∇wdx ≤ |||d(un

h, λn−1, y)|||∗|||un − un
h |||. (17)

Combining (16) and (17), we find that for any y ∈ Q̃,

|||un − un
h ||| ≤ c1

(
N∑

i=1

diam(Ωi )π
−1‖r(y)‖Ωi

)
+ |||d(un

h, λn−1, y)|||∗. (18)

Finally, by using (15) and (18) we obtain the estimate (14).
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5 Concluding Remarks

The paper is devoted to analysis of a class of free boundary problems motivated by
models of nonlinear viscous fluids. We presented fully guaranteed and computable
bounds of errors for approximations generated by Uzawa type methods. The first of
the two models is presented by Theorem 3 and it involves a global constant, which
is a constant in the Friedrichs type inequality. The second is presented by Theorem 4
and involves local constants. For the complicated domains the latter one is preferable,
because the global constant might be difficult to find.
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An Automatic Differentiation Based
Approach to the Level Set Method

Jukka I. Toivanen

Abstract This paper discusses an implementationof theparametric level setmethod.
Adjoint approach is used to perform the sensitivity analysis, but contrary to stan-
dard implementations, the state problem is differentiated in its discretized form. The
required partial derivatives are computed using tools of automatic differentiation,
which avoids the need to derive the adjoint problem from the governing partial dif-
ferential equation. The augmented Lagrangian approach is used to enforce volume
constraints, and a gradient based optimization method is used to solve the subprob-
lems. Applicability of the method is demonstrated by repeating well known com-
pliance minimization studies of a cantilever beam and a Michell type structure. The
obtained topologies are in good agreement with reference results.

Keywords Automatic differentiation · Level set method · Topology optimization

Mathematical Subject Classification: 35Q93 · 65D25 · 74P05

1 Introduction

The level set method was proposed in [1, 20] for the topology optimization of struc-
tures. The basic idea of the method is quite general, and similar techniques can in
principle be applied to any problem for which we are able to perform the shape
sensitivity analysis. For example, problems of fluid mechanics and electromagnetics
are considered in [6, 16] respectively.

The shape sensitivity analysis is usually conducted in the continuous setting,
which requires deriving an adjoint equation from the governing partial differential
equation, and subsequent discretization in order to numerically evaluate the sensitiv-
ity. While this approach is well established for traditional fields of application, such
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as structural mechanics, new areas of application and multidisciplinary design cases
may be problematic. In fluid mechanics, for example, effect of the turbulence model
is often neglected during sensitivity analysis to simplify calculations [13].

An alternative approach is to perform the differentiation of the problem after
discretization. In principle this can be done by manually differentiating all com-
putations, and implementing the corresponding differentiated code. However, the
use of automatic differentiation (AD) minimizes the risk of programming errors, and
reduces application development time significantly. Moreover, if the code is changed
for example tomodify source terms, boundary conditions, the objective functional, or
the constraints, the gradient computation is updated (almost) automatically. AD tools
can be applied even on simulation codes of commercial complexity, as demonstrated
in [3].

In this work, the parametric level set method is implemented using automatic dif-
ferentiation to compute the derivatives of the discrete problem. Dynamic exploitation
of sparsity [4] is utilized, and AD is applied only to the assembly process, not on the
whole solver. Together with the discrete adjoint approach this technique provides an
efficient means to perform the sensitivity analysis, since only the nodes residing near
the zero level curve need to be used as independent variables in the differentiation
process.

Applicability of the method is demonstrated by solving topology optimization
problems related to structural mechanics. The proposed framework is very generic
and can be easily extended to other problems.

2 Sensitivity Analysis

This paper deals with the level set method [15], where the material region Ω is
defined implicitly using a scalar function Ψ :

Ω = {x ∈ D | Ψ (x) > 0} . (1)

Here D is a reference domain containing all admissible geometries. Such defini-
tion naturally permits topological changes, such as merging and splitting of material
regions. The level set method can also be extended to include mechanism for nucle-
ating new holes away from the boundaries [5], but such extensions are outside the
scope of this work.

In parametric level set methods, the scalar functionΨ has an explicit parametriza-
tion by means of some design variables α. This approach is used in this work, due to
the following attractive properties: there is no need for an upwind solution scheme,
velocity extension, or reinitialization of the level set function [12].

Unlike the material distribution approach to the topology optimization [2, 14],
the level set method is based on the sensitivity analysis with respect to variations in
the shape of the material region. The sensitivity analysis is usually conducted in the
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continuous setting, which requires deriving an adjoint equation from the governing
partial differential equation, and implementing an appropriate discretization. This is
a complicated and error-prone task.

It is well known in the shape optimization community that the shape sensitivity
analysis can be performed in the discrete setting as well, by differentiating the alge-
braic form of the problemwith respect to themovement of themesh. This process can
be automated with the help of automatic differentiation, or by providing sensitivity
computation routines in a finite element library. However, such an approach is not
commonly used to implement the level set method. The purpose of this work is to
show that the discrete adjoint shape sensitivity analysis is feasible in the context of
the level set method, and that all sensitivity computations can be automatized using
AD without significant computational overhead.

Let the set of algebraic equations arising from the finite element discretization of
the state problem be denoted by

r(q(α),α) = 0. (2)

Here r is the residual vector, α are the geometrical design variables, and q is a
vector containing the basis function expansion coefficients. Using the discrete adjoint
shape sensitivity analysis, the derivative of an objective function J = J (q(α),α) is
obtained as

d J

dαi
=

∑
j,k

∂ J

∂xk
j

∂xk
j

∂αi
+ γ T

⎛
⎝∑

j,k

∂r

∂xk
j

∂xk
j

∂αi

⎞
⎠ , (3)

where the adjoint vector γ satisfies

(
∂r
∂q

)T

γ = −
(

∂ J

∂q

)T

. (4)

Here x j = (x1j , . . . , xdimj ) represents the coordinates of the j th mesh node and dim
is the dimension of the geometry (dim = 2 in this paper).

In the classical shape optimization [10], the geometrical changes are governed by
a so called design velocity field, and the sensitivities ∂x j/∂α are known thereof. In
practise the mesh is often adapted to the changes of the geometry using some mesh
deformation method (see, e.g., [7, 11]), which can be differentiated to obtain the
sensitivity information.

In the level set approach [15], however, themesh is not actually deformed. Instead,
a fixed mesh is used, and the boundary of the geometry is given implicitly as

∂Ω = {x ∈ D | Ψ (x) = 0} . (5)

This work proposes to perform the sensitivity analysis on the discretized problem
and the use the Eqs. (3) and (4) to compute the gradient of the objective. To this
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end, a relation between geometrical changes and the scalar function Ψ needs to be
established in order to obtain the design velocity ∂x/∂α for mesh nodes residing near
the zero level curve. Sensitivity of nodes away from the boundary is assumed to be
zero, and they are neglected from the differentiation process.

Let x be a point residing on the zero level curveΨ (x) = 0. Assuming that a change
in the design variable αi causes x to move along the normal vector ∇Ψ/|∇Ψ |, we
obtain the relation

∂x
∂αi

= − ∂Ψ

∂αi

∇Ψ

|∇Ψ |2 . (6)

Even though the mesh nodes are not actually moving, we use these sensitivities as
the design velocity field in (3) to compute an approximate gradient of the objective.

The reference domain is not allowed to change its shape. Thus the nodes on the
boundary of D do not move, and we set

∂x
∂αi

· n := 0 ∀i (7)

for all nodes x residing on ∂ D. Here n is the boundary normal.
To sum things up, the following approach for the sensitivity analysis in the context

of the parametric level set method is proposed:

1. Solve the state problem (2).
2. Compute ∂ J/∂q, ∂ J/∂x, and ∂r/∂x using automatic differentiation.
3. If the problem is not self-adjoint, solve the adjoint problem (4).
4. Compute the gradient of J using (3), where ∂xk

j /∂αi is obtained from the level
set function using Eq. (6).

Notice, that we have formally performed the sensitivity analysis without using any
information about the state problem, which presents only implicitly through the
residual representation (2). This is the main benefit of the proposed approach: since
the automatic differentiation is used to compute the shape derivatives, there is no
need to manually derive any problem specific sensitivity expressions.

3 Parametrization of the Level Set Function

In this paper, the compactly supported C2-continuous radial basis functions [22]
are utilized to explicitly parametrize the level set function. Let us consider a set of
N × M basis functions, whose knots are distributed over the domain D ⊂ R

2 so that
coordinates (b1i j , b2i j ) of the knot i j are

b1i j = x1min + (i − 1) · δR B F , b2i j = x2min + ( j − 1) · δR B F , (8)
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where j = 1, . . . , M , i = 1, . . . , N , the point (x1min, x2min) is the lower left corner
of the rectangle D, and δR B F is a given parameter. The radial basis function (RBF)
associated with this knot is

ψi j (x) = max
{
0, 1 − ri j (x)

}4
(4ri j (x) + 1), (9)

where

ri j (x) =
√

(x1 − b1i j )
2 + (x2 − b2i j )

2

rs
, (10)

and radius of the support rs > 0 is a given parameter.
The parametrized level set function ψ(α) is defined as the linear combination

ψ(α) =
N∑

i=1

M∑
j=1

αi jψi j . (11)

The design variables of the parametrized optimization problem are represented by
the vector α = (α11, α12, . . . , αN M ).

4 Automatic Differentiation

We consider a new framework for implementing the parametrized level set method,
in which manual derivation of the sensitivity expressions is no longer required. The
use of automatic differentiation [9] is proposed for computing the partial derivatives
of the discretized problem. Below a brief overview of AD is given.

Automatic differentiation exploits the fact that the computer program can be
represented as a sequence of elementary arithmetic operations, and systematically
applies the chain rule of differentiation to these operations. There are two main
variants of AD: the forward and the reverse modes. Using the reverse mode, the
gradient of a single objective function can be computed in a time that is independent
on the number of design variables. However, information about every operation that
is performed during the computation needs to be stored to a so called tape, and the
tape must be traversed in reverse order to compute the gradient. If AD is applied to a
complete solver code, the tape may become so large that it needs to be stored to the
disk. Since disk access is very slow, this step may actually dominate the computation
time [19].

In the so-called forward mode AD, which is used in this work, the derivatives are
propagated forward in the execution chain. If applied in a naïve manner, the compu-
tation time is directly proportional to the number of derivatives that are computed.
Fortunately, this limitation can be overcome by applying AD only to the assembly
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process, performing the differentiation with respect to the mesh nodal coordinates,
and exploiting sparsity.

Assume that there exists n independent variables a = (a1, . . . , an), and that
we are interested in the derivatives of some output variables with respect to these
independent variables. Now consider an elementary arithmetic operation Φ of two
arguments

C = Φ(A(a), B(a)). (12)

Since the forward mode AD is used, the partial derivatives of the arguments A and
B are known, as they have already been computed and stored when the arguments
themselves where evaluated. We can proceed and compute the partial derivatives of
the result variable C as

∂C

∂ai
= ∂Φ

∂ A

∂ A

∂ai
+ ∂Φ

∂ B

∂ B

∂ai
. (13)

In the traditional implementations this is done for all i = 1, . . . , n, and the compu-
tational cost is therefore proportional to n. If the arguments depend only on a few
independent variables, then ∂C/∂ai = 0 for most i , and a lot of computation is
performed in vain.

Instead, the AD code used in this work performs so called sparse forward propa-
gation [4], where only the non-zero partial derivatives are stored and computed. Let
us define the index domain of variable Y as χ(Y ) = {i | ∂Y/∂ai �= 0}. The key idea
behind our implementation is to store the index domain of each variable to a vector in
increasing order, and the actual derivatives to another vector in the same order. The
index domain of the result variable C above is χ(C) = χ(A)∪χ(B). Exploiting the
ordering of the index domains, χ(C) can be formed, and the corresponding deriva-
tives computed, in a time that is directly proportional to the size of the set χ(C). In
particular, computational cost of the operation does not depend on n.

The implementation is based on the operator overloading capabilities of the C++
programming language, and uses a custom data type addouble to represent a real
variable and its derivatives with respect to the independent variables. Arithmetic
operations involving this data type have been redefined so that they implement also
the computation of the derivative information. Details of the implementation can be
found in [19].

Exploitation of the sparsity is essential for the efficiency of the proposed method.
There are as many as 6000 design variables in the numerical examples considered
in this paper. Clearly, approaches where the computational cost scales in direct pro-
portion to the number of design variables are infeasible. In this work, such scaling is
avoided as follows: like mentioned in Sect. 2, AD is used to compute the derivatives
of the residual vector r with respect to the mesh nodal coordinates. In FEM, each
component of the residual vector depends only on the shapes of the elements that
belong to the support of one particular test function, which means that ∂ri/∂xk

j �= 0
only for very few j . The radial basis functions used to parametrize the level set func-
tion are compactly supported, which makes the vectors ∂xk

j /∂α sparse as well. We
will return to this topic when computation times are discussed in Sect. 7.3.
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Such sparsity could be exploited in other ways as well, for example by applying
AD elementwise during the assembly. However, a lot of implementation effort is
saved by the fact that sparsity is exploited in the automatic differentiation.

5 Augmented Lagrangian Method

Topology optimization problems typically include a volume constraint

0 = �(α) :=
(∫

D
H(ψ(α))

)
− Vmax, (14)

where H is the Heaviside function and Vmax is given. This constraint is handled using
the augmented Lagrangian approach.

The kth iteration of the method consists of solving the subproblem

min
α

LA(α, λ, ν) = min
α

(
J (α) − λk�(α) + 1

2νk
�2(α)

)
, (15)

where λk is a Lagrange multiplier, and νk is a penalty parameter. These parameters
are then updated according to rules

λk+1 = λk − �(αk)

νk
, νk+1 = δνk, (16)

where δ ∈ ]0, 1[, and αk is the approximate solution to the subproblem. Initially
λ0 = 0 and ν0 is a given parameter.

6 Optimization Method

Gradient based methods are obviously preferred for solving the subproblems (15)
due to their efficiency, but there are some complications involved. Namely, the opti-
mization problem has a very large number of variables, which calls for a lightweight
method. Moreover, there is some numerical noise in the function due to approxima-
tions made in the level set approach. Therefore, the optimization method must not
be too sensitive to accuracy of the supplied gradient information.

A class of optimization methods based on conservative convex separable approx-
imations was proposed in [18]. These methods construct a convex approximation
f̃ k of the objective function f (α) : X ⊂ R

m → R at the current iterate αk . The
approximation is modified until it becomes conservative in the sense that
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f̃ k(αk∗) ≥ f (αk∗), (17)

where αk∗ is the minimizer of the approximating function. The point αk∗ then
becomes the new iterate αk+1. For such process, global convergence towards a
Karush-Kuhn-Tucker point was proved in [18] under suitable assumptions.

In [17], it was proposed to use spherical quadratic approximation having the form

f̃ k(α) = f (αk) + ∇ f (αk)T (α − αk) + ck

2
(α − αk)T (α − αk).

Also, convergence of the method was proved, when it is applied to general positive-
definite quadratic functions. This approximation is strictly convex if ck > 0. The
minimizer can be readily obtained without performing any line searches, and it is
given by the relation

αk∗ = αk − ∇ f (αk)

ck
. (18)

Since there is a certain numerical noise, maximum step length control is added to
the optimizationmethod to improve robustness.With thismodification, the algorithm
used in this work can be written as follows:

1. Select ξ > 0, ρ > 1 and c1 > 0. Set k = 1.
2. Compute αk∗ using (18).
3. If αk∗ is acceptable (the condition (17) holds), goto step 5.
4. Set ck = ρck . Goto step 2.
5. Set αk+1 = αk∗

.
6. If ‖αk+1 − αk‖ < ξ or k = kmax STOP.
7. Compute ck+1. Set k = k + 1 and goto step 2.

To compute the scalar ck+1, we follow essentially the approach presented in [23] and
set

ck+1 = max

(
(αk − αk+1)T (∇ f (αk) − ∇ f (αk+1))

(αk − αk+1)T (αk − αk+1)
, β, ‖∇ f (αk)‖/η

)
. (19)

The first part of this expression is obtained by matching gradient vectors in the least
squares sense, the condition ck+1 ≥ β is enforced to keep the approximation strictly
convex, and the condition ck+1 ≥ ‖∇ f (αk)‖/η enforces maximum step length η.

7 Numerical Examples

This section contains the results of numerical computations, which were performed
on a HP ProLiant DL585 server equipped with 4 AMD Opteron 885 2.6 GHz dual
core processors and 64 GB memory. Parallelization was not exploited. The version
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4.0 of the SuperLU library [8] was used to solve the linear systems representing the
state problems. In all cases, linear finite elements and unstructured meshes were used
in order to maintain maximum flexibility of meshing.

We consider the well known compliance minimization problem, where the objec-
tive functional is

J (u(α),α) =
∫

D
Ei jkl(α)εi j (u)εkl(u) (20)

and the state problem in the variational form reads: find u ∈ V such that

∫
D

Ei jkl(α)εi j (u)εkl(v) −
∫

Γ1

g · v = 0 ∀v ∈ V . (21)

Here u is the displacement, Ei jkl is the elasticity tensor, εi j is the strain tensor, g
denotes the surface load and V = {v ∈ H1(D)d | v|Γ0 = 0}. By performing the
standard discretization with linear finite elements the problem (21) is converted to
the discrete residual form present in Eq. (2).

Only for the sake of clarity we consider two-dimensional problems and assume
that the plane stress conditions hold. The so called ersatz material approach is used,
in which the void regions are governed by weak material, and the problem is posed
over the entire reference domain. It is assumed that the material is isotropic and the
material parameters are constant within each element. The design variables affect the
state problem through the tensor Ei jkl(α) as follows. The Young’s modulus has the
values 2.1 × 1011 and 1.0 in material and void regions respectively, and if the zero
level set cuts through the element, it is interpolated between these values accordingly.
The Poisson’s ratio has the value 0.3.

The radius of support of the radial basis functions was related to the parameter
δR B F as rs = 4δR B F in all examples. This guarantees sufficient overlap between the
basis functions, but on the other hand, provides significant sparsity. The parameters
used in the optimization algorithm had the following values in all examples: c1 = 1,
β = 10−4, ρ = 4, ξ = 10−6, kmax = 50. The number of outer iterations in the
augmented Lagrangian framework was 5.

The proposed approach is not extremely sensitive to the choice of parameters,
but couple of them do play some role in the process. Namely, the initial value of the
penalty parameter ν and the value of the parameter δ can affect the final topology.
If ν is initially too large, the penalty term will have little effect, and the material
portion of the domain will grow. During this phase some of the holes present in
the initial guess can disappear. Since there is no nucleation mechanism, the holes
can not reappear at later iterations, and the amount of holes in the final topology is
reduced. On the other hand, if ν is initially too small or it is decreased too quickly
(δ is too small) the opposite can happen, and some material regions disappear. The
correct choices of ν0 and δ depend on the relative magnitudes of the objective and
the penalty terms.
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Fig. 1 Initial guess for the cantilever beam example

7.1 Cantilever Beam

In the first example, the reference domain is a rectangle of size 4 × 2, from which a
fraction of 0.5 is allowed to be occupied by material in the final design. A vertical
point load of 40kN is applied at the middle of the right edge, and zero displacement
constraints are specified on the left edge. The parameter δR B F is 0.05, resulting in
80 × 40 = 3200 design variables. The mesh had 3645 nodes and 7529 elements.

The initial design is as shown in Fig. 1. The grey regions in the figure denote
elements that are cut by the zero level curve, and in which the Young’s modulus is
interpolated between the extreme values. The vectors appearing in the figure denote
the sensitivity of the objective with respect to movement of the mesh nodes, so that
the length of the vector is proportional to the magnitude of the sensitivity. Figure2
shows the geometry at some intermediate stages during the optimization. Notice that
the holes with the largest sensitivities quickly start to shrink during the optimization,
whereas the holes with little effect on the objective tend to grow in order to meet the
volume constraint.

Since movement of nodes inside material or void regions only affects the solution
of the problem through discretization error, they are excluded from the sensitivity
analysis. In other words, only the nodes belonging to the grey elements are declared
as independent variables of the automatic differentiation. This significantly increases
efficiency of the proposed approach, since theAD implementation inherently exploits
such sparsity.

Values of the objective and the constraint terms during the optimization are shown
in Fig. 3. The maximum step length during the optimization was η = 0.025. The
initial penalty parameter ν0 was 20.0, and the parameter δ was 0.5. The iterations of
the augmented Lagrangian method are clearly visible in Fig. 3, as after each update
of ν and λ the value of the constraint violation starts to decrease more rapidly.

The parameters were not specifically chosen to minimize the number of opti-
mization iterations. This could be achieved by decreasing kmax or choosing a larger
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Fig. 2 Geometry of the cantilever during the optimization. a After 20 iterations. b After 40 itera-
tions. c After 60 iterations. d Final geometry
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Fig. 3 Optimization history of the cantilever beam

tolerance parameter ξ . The total number of function and gradient evaluations was
233, which is only moderately larger than the number of optimization iterations. This
means that the optimization method was able to accept most of the design candidates
without the need to adjust ck to make the approximation conservative.

The final design, shown in Fig. 2, is consistent with the results presented, for
example, in [1, 12].

7.2 Michell Type Structure

The next example considers a Michell type structure. The reference domain has the
dimensions 2×1.2. The bottom corners have pinned supports, and vertical point load
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Fig. 4 Initial and final geometry of the Michell type structure. a Initial guess. b Final geometry
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Fig. 5 Optimization history of the Michell type structure

of 40 kN is applied at the middle of the bottom edge. The initial guess is presented in
Fig. 4. In this example δR B F = 0.02, resulting in 100× 60 = 6000 design variables.
The mesh had 16637 nodes and 33747 elements. The material volume fraction in the
final design was specified to be 0.3. The parameters ν0, δ and η had the values 10, 0.2,
and 0.025, respectively. The total number of function and gradient evaluations was
334. The final design shown in Fig. 4 has the same topology than the result presented
in [21], and it is consistent with the analytical solution of the problem. Figure 5 shows
the progress of objective and constraint values during the optimization.

7.3 Computation Times

In this section, the computational efficiency of the proposed method is discussed.
To this end, the CPU times required for various tasks were recorded during the
optimization runs, and are shown in Table1. The numbers represent average values
over all iterations of the optimization.

Every time the design variables change, the value and the gradient of the scalar
function at each mesh node are computed and stored. The average time required to
do so is shown in the first row of Table1.
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Table 1 Average durations of tasks in CPU seconds

Cantilever Michell

Scalar function evaluation 0.334 1.491

State problem solution 0.252 2.310

Assembly 0.054 0.258

Linear system solution 0.189 2.011

Gradient evaluation 0.097 0.398

Computation of ∂r/∂x 0.072 0.290

The state problem corresponding to the updated design must also be solved. The
total time required to solve the state problem is shown in the second row of Table1.
This includes assembling the system matrix, and solving the linear system. The
durations of these tasks are shown separately in the table.

Finally, Table1 represents the time required to evaluate the full gradient of the
objective function. This includes computing the partial derivatives ∂r/∂x, using
relation (6) to compute those terms ∂x j/∂αi that are not zero due to the compact
supports of the radial basis functions, and using the relation (3) to compute the final
values.

The time required to perform one optimization iteration is used mostly in scalar
function evaluation, state problem solution, and gradient evaluation. The time
required for other operations is almost negligible.

In both cases, computing the gradient takes less time than the solution of the state
problem. Notice that both problems are self-adjoint, and thus there is no need to
solve an adjoint problem. On the other hand, majority of the time required to solve
the state problem is actually spent in the linear system solver.

Computing ∂r/∂x takes slightly more time than the assembly of the state prob-
lem. This is no surprise, since this phase is implemented simply by performing the
assembly again, this time using AD to compute ∂r/∂x. This process could be opti-
mized: since only some nodes take part in the sensitivity analysis, it would suffice to
go through only those elements that share some of these nodes.

Table1 shows that evaluation of the scalar function takes a significant amount of
time. To avoid going through all radial basis functions while evaluatingΨ at given x,
a quadtree data structure is exploited to exclude RBFs that can not have a non-zero
value at that point. This process could be optimized as well, by exploiting the fact
that the mesh is fixed.

In conclusion, the timings show that the proposed combination of discrete adjoint
approach, and automatic differentiation performing the sparse forward propagation,
is an efficient means to perform the sensitivity analysis. Even though both problems
have thousands of design variables, the sensitivity analysis is computationally cheap
compared to the state problem solution.
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8 Conclusions

A new approach for implementing the parametrized level set method is proposed.
Contrary to the traditional implementations, the state problem is differentiated in its
discretized form, which enables the use of automatic differentiation (AD) to perform
the shape sensitivity analysis. The cumbersome derivation of the adjoint problem
from the governing partial differential equation is avoided altogether, which is the
main benefit of the proposed method.

AD is used in the forward mode, and storing the computation to a ‘tape’ is there-
fore not required. Nevertheless, the time required to compute the gradient does not
grow in the number of design variables, since AD is not applied to the whole code.
Instead the discrete adjoint approach is used to efficiently compute the gradient of
the objective function. To this end the assembly process is differentiated, so that the
output variables are the components of the residual vector, and the input variables are
the mesh nodal coordinates. The resulting vectors of partial derivatives are extremely
sparse, which is exploited by the AD implementation. Namely, the code performs so
called sparse forward propagation, in which only the non-zero partial derivatives are
computed and stored.

Volume constraints were enforced using the augmented Lagrangian approach, and
a gradient based optimization method was used to solve the resulting subproblems.
Two well known topology optimization studies were used as test cases, and the
classical results were recovered. However, the proposed method is quite generic, and
could be extended to other problems as well.

Acknowledgments The author was financially supported by Academy of Finland, grant #257589.

References

1. G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity analysis and a
level-set method. J. Comput. Phys. 194(1), 363–393 (2004)

2. M.P. Bendsøe, Optimal shape design as a material distribution problem. Struct. Multidiscip.
Optim. 1(4), 193–202 (1989)

3. C.H.Bischof,H.M.Bücker,A.Rasch, Sensitivity analysis of turbulencemodels using automatic
differentiation. SIAM J. Sci. Comput. 26(2), 510–522 (2004)

4. C.H. Bischof, P.M. Khademi, A. Buaricha, C. Alan, Efficient computation of gradients and
Jacobians by dynamic exploitation of sparsity in automatic differentiation. Optim. Methods
Softw. 7(1), 1–39 (1996)

5. M. Burger, S.J. Osher, A survey on level set methods for inverse problems and optimal design.
Eur. J. Appl. Math. 16(2), 263–301 (2005)

6. V.J. Challis, J.K. Guest, Level set topology optimization of fluids in Stokes flow. Int. J. Numer.
Methods Eng. 79(10), 1284–1308 (2009)

7. A. de Boer, M.S. van der Schoot, H. Bijl, Mesh deformation based on radial basis function
interpolation. Comput. Struct. 85(11–14), 784–795 (2007)

8. J.W.Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li, J.W.H. Liu, A supernodal approach to sparse
partial pivoting. SIAM. J. Matrix Anal. Appl. 20(3), 720–755 (1999)



An Automatic Differentiation Based Approach to the Level Set Method 57

9. A. Griewank, A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation, 2nd edn. (SIAM, Philadelphia, 2008)

10. J. Haslinger, R.A.E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation,
and Computation (SIAM, Philadelphia, 2003)

11. B.T. Helenbrook, Mesh deformation using the biharmonic operator. Int. J. Numer. Methods
Eng. 56(7), 1007–1021 (2003)

12. Z. Luo, M.Y. Wang, S. Wang, P. Wei, A level set-based parameterization method for structural
shape and topology optimization. Int. J. Numer. Methods Eng. 76(1), 1–26 (2008). doi:10.
1002/nme.2092

13. J.E.V. Peter,R.P.Dwight,Numerical sensitivity analysis for aerodynamic optimization: a survey
of approaches. Comput. Fluids 39(3), 373–391 (2010)

14. G.I.N. Rozvany, M. Zhou, T. Birker, Generalized shape optimization without homogenization.
Struct. Multidiscip. Optim. 4(3–4), 250–252 (1992)

15. J.A. Sethian, A. Wiegmann, Structural boundary design via level set and immersed interface
methods. J. Comput. Phys. 163(2), 489–528 (2000)

16. H. Shim, V.T.T. Ho, S. Wang, D.A. Tortorelli, Level set-based topology optimization for elec-
tromagnetic systems. IEEE Trans. Magn. 45(3), 1582–1585 (2009)

17. J.A. Snyman, A.M. Hay, The spherical quadratic steepest descent (SQSD) method for uncon-
strained minimization with no explicit line searches. Comput. Math. Appl. 42(1–2), 169–178
(2001)

18. K.Svanberg,Aclass of globally convergent optimizationmethods basedon conservative convex
separable approximations. SIAM J. Optim. 12(2), 555–573 (2002)

19. J.I. Toivanen, R.A.E. Mäkinen, Implementation of sparse forward mode automatic differentia-
tion with application to electromagnetic shape optimization. Optim. Methods Softw. 26(4–5),
601–616 (2011)

20. M.Y.Wang,X.Wang,D.Guo,A level setmethod for structural topology optimization. Comput.
Methods Appl. Mech. Eng. 192(1–2), 227–246 (2003). doi:10.1016/S0045-7825(02)00559-5

21. S.Y. Wang, K.M. Lim, B.C. Khoo, M.Y. Wang, An extended level set method for shape and
topology optimization. J. Comput. Phys. 221(1), 395–421 (2007). doi:10.1016/j.jcp.2006.06.
029

22. H.Wendland, Piecewise polynomial, positive definite and compactly supported radial functions
of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995)

23. D.N. Wilke, S. Kok, A.A. Groenwold, The application of gradient-only optimization methods
for problems discretized using non-constant methods. Struct. Multidiscip. Optim. 40, 433–451
(2010)

http://dx.doi.org/10.1002/nme.2092
http://dx.doi.org/10.1002/nme.2092
http://dx.doi.org/10.1016/S0045-7825(02)00559-5
http://dx.doi.org/10.1016/j.jcp.2006.06.029
http://dx.doi.org/10.1016/j.jcp.2006.06.029


Part II
Mathematical Modeling in Mechanics



Differential Fluid
Mechanics—Harmonization of Analytical,
Numerical and Laboratory Models of Flows

Yuli D. Chashechkin

Abstract Concepts of a “solid body motion” and “fluid flow” are compared taking
into account the condition of inobservability of a “fluid particle”. General proper-
ties of the fundamental set of fluid mechanics equations, accepted for describing
fluid flows, are analyzed taking into account the compatibility condition. Hierarchy
of periodic flows is classified basing on the order of linearized set of governing
equations. Results of theoretical analysis of infinitesimal periodic flows in a stably
stratified fluid including periodic internal waves and accompanied family of small
scale components are given. Calculations of periodic internal waves propagation and
generation in a fluid with arbitrary stable profile of buoyancy are compared with
data of schlieren observations in laboratory. Fine flow structure observed behind
uniformly towing strip is discussed in context of a given model. Some conclusions
and recommendations on improvement techniques of a fluid dynamics experiment
are presented.
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1 Introduction

Each historical period is characterized by its own requirements to the theoretical
and experimental fluid mechanics. During antic and medieval time hydrological
problems were solved on the basis of elementary geometry and common sense.
New approaches based on theoretical and experimental modeling started arising
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simultaneously in many countries, and it was G. Galiley who complemented the
development of the general principles by consideration of applied tasks, selection
of physical quantities and creating of instruments for experimental determination of
their values. Later a decisive influence on the experimentswas provided by theoretical
works based on the ideas of Newton, d’Alembert and Euler to use partial differential
equations for calculations of liquid and gas flows. At the end of the XIX century O.
Reynolds introduced statistical methods in the fluid mechanics that predetermined
methodology of experimental design, data processing and development of theories
for all the XX century.

Beginning of the XXI century was marked by several important features. The
concentration of the population on the shorelines has increased sensitivity to adverse
effects of natural variability of the atmosphere and hydrosphere. Use as intermediates
products poisonous and biologically hazardous substances, preserving its negative
effects even at low concentrations stimulated further development of the theory of
flows and transport of substances.

At the same time, the development of remote sensing instruments has shown
that flows of different length scales are characterized by a fine internal structure
that can regular or chaotic. Many data indicate that the fine structure is the intrinsic
inseparable property of the fluid flow. Current theories are oriented on description
of individual flow components like waves, vortices, jets, boundary layers and so on.
Accordingly, the future theory should be directed on calculation of all flow properties
in their completeness, including both the dynamics and geometry of flows over the
global and fine scales. To find a right way for development of the theory at first it
is necessary to come back to the foundations of mechanics to discuss in modern
language basic principles taking into account long history of fluid dynamics.

The first closed set of governing equations for compressible and incompressible
homogeneous fluid was published by Euler [1]. The influence of Euler’s ideas was
very strong and had predetermined selection of physical variables and mathematical
methods to describe fluid flows. In derivation of equations Euler used concept of a
“fluid particle” the motion of which can be traced and characterized by velocity on
analogy of a solid body movement. However, in a homogeneous fluid deformable
“fluid particle” having no distinguished boundaries cannot be identified and traced
experimentally. So the principle of selection of parameters characterizing fluid flows
must be discussed more carefully taking into account necessary condition of a theory
proving by its comparison with experiment and following the concept of “observ-
ability” of handled physical quantities.

At the end of XVIII century B. Franklin wrote short paper [2] presenting results of
observations of behavior of interface between oil and water in a lighting ship lamp in
the rough sea and its modeling by placement lamp on a children’s swing. He argued
to study dynamics of non-homogeneous fluids but his ideas were ignored up to the
end of XX century.

The next important step in the theory of homogeneous fluid flows was done by
C.M.H. Navier. Basing on de Laplace hypothesis of the molecular structure of matter
he supplemented the Euler’s equations by an additional term describing action of
shear stresses in the moving viscous fluid [3]. New equations were met skeptically
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by contemporaries, who classified them as a hypothesis that needs in experimental
confirmation. Existence and uniqueness of 3D solutions of the Navier equations is
still unproven.

The equations of viscous homogeneous fluids motions were several times
re-derived until G.G. Stokes gave them a modern interpretation and constructed
a number of key solutions [4]. Hydrodynamics at the end of XIX century was criti-
cized by a number of scientists, including the great D.I. Mendeleeff who indicated a
weakness of experimental methods [5] and ignorance individual properties of fluids
which are described by the state equations which he experimentally constructed for
gases, pure fluids and water solutions [6, 7].

The accuracy of measurements of fluid flows by many orders worse than in the
mechanics of solids. One of the reasons of current situation is the loss of observ-
ability principle control for physical quantities involved into the theory. It is well
known that only invariants are observable quantities which can be measured with
prescribed accuracy and their values do not depend on selection of coordinate frame.
The list of invariants in the solid body mechanics includes distances between bodies
in space, time intervals between events and mass of the body. What are appropriate
physical quantities for fluids and invariants of fluid flows? To answer this question
it is necessary to come back to axiomatic of fluid mechanics.

2 Kinematics of Motion

Theoretical mechanics is based on the concepts of number, space, discrete or contin-
uous medium which is immersed in the space and motions or flows that are changes
the dynamic state and values of the physical parameters of solids, liquids or gases.
Mathematical basis of the theory is the notion of non-dimensional real number, the
properties of which are given here axiomatically [8].

The concepts of “space” and “time” in classical mechanics are introduced a pri-
ori and characterized by their own dimensions. They are assumed to be homoge-
neous, isotropic and independent on each other or immersed bodies and the physical
processes involved.

The main parameter of the physical body in the mechanics is its mass M charac-
terized by its own dimension. The body mass is a positive scalar measure of inertia,
gravity interaction and the amount of a substance. The mass is invariant and con-
served when the body is moving in a space or contracted into a “material point”. In
the physical mechanics is assumed that space where the bodies are placed, is metric
(Euclidean) and three-dimensional, allowing the use of a Cartesian coordinate frame.

Mathematical description of motion is based on vector sets axiomatics with dif-
ferent operations and important rule of external composition, which means that mul-
tiplication of vector by scalar remains the product in the same vector space [8].
This rule ensures the internal unity of theoretical solid body mechanics, abstract and
applied mathematics.
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The unification is based on the identity of the two physical and two mathematical
definitions of a “material point” motion. Parameter of the continuous motion is time
t that is also a scalar quantity of its own dimension. The first physical definition of
the mechanical motion (displacement) that is change of mutual positions of bodies
is based on the registration of distances between the objects. In the second dynamic
definition the motion of the body with mass M is characterized by the momentum
p(x1, x2, x3) and energy E = p2/2M which are also observable quantities.

Themathematical definition of themotion requires the introduction of the abstract
absolute stationary coordinate frame with center at the point O in the space R3. The
position of body center in the initial and subsequent times is determined by the radius
vector.

In kinematic definition the motion it is characterized by trajectory that is an enve-
lope of all positions of radius vectors r for the material point, and is described by the
velocity

v = d St

dt

dr
d S

= τ
d St

dt

and the acceleration

w = dv
dt

where τ is a unit vector in the direction of the tangent to the trajectory St .
Motion as a mathematical (geometric) concept is defined as a continuous oper-

ation of transformation of the space R3 into itself with parameter t , saving the dis-
tances between points and the relative arrangement of the objects [8]. Under these
conditions, determinant of the matrix of the transformation coefficients αik is equal
‖αik‖ = +1. Orthogonal transformation with determinant ‖αik‖ = −1, not saving
the orientation and mutual locations of the figures, characterizes reflection relative
to certain axis.

Decomposition of mechanical motions comprises mutually independent rectilin-
ear displacement (shift) at a velocity vt and/or rotation about the instantaneous center
O with an angular velocityΩΩΩ

δr = vtδt + ΩΩΩ × δr. (1)

Motion is characterized by a group of transformations, including independent sub-
groups of translations and rotations (commutative special orthogonal group SO(2) in
two-dimensional space and special non-commutative group SO(3) in the 3D space).
Transformations of the space described by the group of motions are studied by ele-
mentary geometry.

From properties of the external composition in axiomatic of the vector spaces
follows that the velocity v and momentum p, which differ by a scalar multiplier M ,
belong to the same vector space. Consequently, the velocities defined physically or
mathematically (both cinematically and geometrically) are identical and four def-
initions of the body motion are equivalent. Excess of related invariants of motion
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(any value from the set M , p, E is expressed in terms of the other two) provides
a chance for construction of various forms of the solid mechanics (Newtonian,
Lagrangian, Hamiltonian) and selecting the most convenient representation for spe-
cific problems.

3 Concept of “Fluid Flow”

Macroscopic hydrodynamics is based on the conception of “continuous medium”,
which occupies the whole space or a part of it and prescribes the use of continuous
functions for the description of the entire range of scales. “Continuous medium”,
including substances in different phase states (liquid, gas, plasma), is described by
the physical quantities of the dual nature that are mechanical and atomic-molecular.
Mechanical quantity is the same density which characterizes the inertial and gravi-
tational properties of the media, atomic-molecular properties determine dissipative
(kinetic) and thermodynamic parameters (pressure, temperature, density).

An important property of a continuous medium is its fluidity that is the ability
to deform or move under an arbitrarily small forcing. Decomposition of the fluid
velocity, by definition ofCauchy-Helmholtz [9], in addition to translation and rotation
operators, allows changing the shape of the medium element

vi (rr + δrk) = vi (rk) + εi jkΩ jδrk + ∂vi

∂xl
δrl , (2)

where εi jk is the unit antisymmetric tensor of the third rank. Additional deformation
term ∂vi

∂xl
δrl eliminates the independence of the translation and rotation operators,

changes the group properties of operator of a fluid motion as a whole.
Conditions of homogeneity, continuity and deformability of a continuousmedium

are incompatible with demand of identifying individual “fluid particle”, having no
physically distinguishable boundaries. As the size of “fluid particle” tends to zero its
mass also decreases indefinitely, and the object of study is lost in contrast with the
solid body preserving its mass.

This contradiction is resolved by extending the list of physical parameters of the
flow by introducing of the density field, making their own value at every point of
the medium, which varies with time ρ = ρ(x, t) as independent physical quantity
defined dynamically.

Incorporating the concept of variable density in theory in contrast with constant
mass of the material point eliminates the condition of identity of vector spaces
of velocity, determined by cinematically and momentum of the media since the
density of a real fluid is independent variable depending on coordinates and time
ρ = ρ(x, y, z, t).

Difference in the decomposition of operators of the “motion” and the “fluid flow”
reflects the contrast between empty space which is equivalent to the space with
countable discrete material points of masses Mi , whose motion is the transformation
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into itself and is characterized by a group, and continuum of a deformed medium
immersed in the space.

Thus, to describe the body motion (or self-transformation of the space with mass
Ml in points (i, j, k)) is sufficient to perform transformations of three-dimensional
Euclidean space R

3. For flows description, in addition to space coordinates, it is
necessary to address additional physical quantities characterizing the thermodynamic
parameters of the medium, and consider their changes. It means that the dimension
of the extended space of hydrodynamics problems is higher than 3D metric space.
The unique physically reasonable criterion to select the physical quantities in the
theory of fluid flows is the observability condition.

Conventionally continuous medium (fluid) is characterized by density ρ(x1,
x2, x3), pressure P(x1, x2, x3), temperature T (x1, x2, x3), concentration of dissolved
or suspended matters Si (x1, x2, x3), thermodynamic potentials and their derivatives
that are variables having a clear physical sense and being accessible to observation.
This duality of physical quantities significantly complicates the description of fluid
flows that are the self-consistent changes in the physical fields of different nature.

In this approach the main parameter characterizing a fluid flow is momentum per
unit volume of medium, the flow invariant which is manifested in the forcing action
of the flow on the body immersed in the liquid, or the flow rate through the selected
cross-section.

For identifying fluid flows in the experiment different markers (solid particles,
droplets of immiscible liquids or gas bubbles) having some unique features which
allow to distinguish them from surrounding fluid and to trace the fluid velocity are
used.

But introducing of an additional physical object (marker) is transformed a pure
fluid into a new, more complex multicomponent medium. Moreover, every marker is
a dynamically independent object with its own behavior which is distinguished from
the flow of the basic fluid both in wavy [10] and vortex flows [11].

As an example of independent behavior of the carrying and marker fluids, defor-
mation of the round spot of solvable dye placed in the center of cavern produced by
the compound vortex in cylindrical tank is shown [11]. The round dye spot in the
centre of a surface vortex cavern is deformed into spiral arm oriented opposite to the
main stream (Fig. 1).

Solid-state marker in the same vortex flow is transported in the direction of the
main stream slightly slowly than the carrying fluid, so that the soluble dye, washable
out from its surface is mainly transported forward (Fig. 2a). The marker also slides
over the surface of the vortex cavern, leaving behind the coloured wake (Fig. 2b). At
the same time the marker twists about its own axis, disturbing the flow in its vicinity
[12]. The combined effect of introduced perturbation of fluids and displacement of
the dye separation point on the marker surface vastly complicates the form of the
colored area, which is similar to turbulent flow structure. However, the dye from the
liquid spot in the same flow forms the smooth spiral structures in Fig. 3, indicating
homogeneity of the flow and absence of intensive transverse fluctuations.

Even more complex flow pattern is observed when the initial dye spot offsets
from the center of the vortex (Fig. 3). In this case, the dye is mainly transported in



Differential Fluid Mechanics—Harmonization of Analytical … 67

Fig. 1 The transformation of the round spot of Uranil dye solution in the centre of cavern on the
free surface of the compound vortex into one spiral arm (red curve in Fig. 4b is contour of initial
dye spot [11])

Fig. 2 Complex structure of coloured upstream and downstream ink dye wakes washed out from
the plastic square marker free drifting on the surface of compound vortex cavern

the direction of the main surface flow to the cavern center [13]. The spot itself slides
relative to its initial position and leaves the colored wake behind. At the same time
all the dye bands split up into individual fibers. This behavior of the dye eliminates
the possibility of rational determination of the position of the colored area center of
mass necessary for calculating the fluid velocity.

The universal character of the simultaneous rotation of the solid body around
a vortex center and twisting around its own axis was for the first time noticed by
Decartes [14].
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Fig. 3 Spinning of noncentral Uranil dye spot on the free surface of compound vortex into pair of
upstream and downstream spiral arms and splitting into individual fibers [13]

So, the present of any markers disturb the flow of the carrying fluid. Twisting of
the solid body additionally perturbs the local environment. Too small markers are
involved in Brownian motion. Diffusion effects impact on the transport of soluble
impurities. The dynamics of droplets of immiscible liquids or gas bubbles affect
surface tension effects and diffusion.

The combined action of many factors causes uncontrolled movements of markers
different from the fluid flows, which they are submerged into. Conventional hypothe-
sis of “passive admixture” of impurities is not provedmathematically or confirmed in
experiments with a precision control of positions or concentrations of marker fields.

Absence of criteria of “liquid particles” identification means that the “fluid veloc-
ity” is a derivative mathematical parameter, but not physically observable physical
characteristics of the flow. The necessity to satisfy the criterion of observability for
physical quantities was stated by Stokes, Maxwell and Reynolds, and many others
scientists, but analysis of the conditions of observability of the “fluid particle” was
not previously held.

Observable parameter of the fluid flow is momentum p that can be evaluated
measuring the forcing action of the fluid on the obstacle and the flow rate through
the selected cross-section of the flow. Then the fluid velocity is defined as the ratio
of the two observed variables that are momentum and density of the fluid v =
p(x, t)/ρ(x, t) in the given points of the absolute coordinate frame. Two independent
methods of moment determination allow developing of the procedure for the direct
estimation of the measurement error.

Hence, the conventional definition “Fluidflow is an intuitive physical notionwhich
is represented mathematically by a continuous transformation of three-dimensional
Euclidean space into itself...” [15], cannot be applied to fluid flows which should be
interpreted as the momentum flux by the fluid, supplemented by variations of others
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physical parameters. Attempt to trace the difference between concepts “motion” and
“fluid flow” was made in [16], but the analysis was limited to the consideration
of phenomena in 3D Euclidean space without employing condition of the physical
quantities observability.

Once more important consequence of the differences in the concepts of “motion”
and “fluid flows” is the next. In solid mechanics, there is only one macroscopic way
to transfer mechanical energy and the time scale of the process is determined by the
ratio of the linear scale (distance or body size) to velocity.

In fluid flows the energy of mechanical motion can transform into the internal
energy and vice versa. Depending on the nature of the flow energy exchange can
be defined as external (mechanical, as in the case of solid mechanics) and internal
(atomic-molecular) degrees of freedom. Additional time scales can be large when
the influence of diffusion effects is important, and are sufficiently small when a rapid
release of the available potential energy takes place, for example, due to annihi-
lation of free liquid surface when different fluids merge. Diffusion effects generate
long-living structural features, and energetic short time phenomena produce high fre-
quency flow components (for example, short capillary waves and sound when falling
drops impact on a liquid surface [17, 18]). The additional free parameters complicate
the picture of the process and make it difficult to develop universal methods for flow
calculations.

So the principle of physical parameter observation prescribes the choice of the
physical quantities, characterizing the fluid flow.The list of them includesmomentum
vector per unit volume of themedium p, as the indicator of acting force, matter and/or
the energy transport and quantities of dual nature characterizing the mechanical and
thermodynamic properties of the fluid that are density ρ, pressure P , temperature T ,
concentration of the i th impurity Si , entropy s, total energy E . The equation of state
is given as function of the density dependence on other thermodynamic quantities
ρ = ρ(p, T, Si ) and one of the thermodynamic potentials—internal energy e =
e(p, T, Si ), enthalpy, free energy, orGibbs potential, as parameter defining the energy
transformation. Accounting mutual impact of simultaneously occurring large-scale
processes of the mechanical nature and atomic–molecular processes on small scales
is necessary for self-consistent calculation of dynamics and structure of flows both
at the global and fine scales. The basis for flow calculations constitutes conservation
laws of observables physical quantities presented in the local differential forms.

4 Basic Equations and Local Symmetries

Set of fundamental conservation laws for the given fluid characterized by the equation
of state ρ = ρ(p, T, Si ) includes the continuity equation preserved in the form given
by d’Alembert and Euler [1]

∂ρ

∂t
+ ∇i (pi ) = 0 (3)
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and balance equations representing laws of conservations of momentum, energy and
substances re-wrote for open dissipative media that are Navier–Stokes equations in
vector notation

∂pi

∂t
+ ∂Παi

∂xα

= ρ fi , (4)

Fourier equation describing the transfer of the total energy of an elementary volume
of fluid including internal energy, the kinetic energy of motion and potential energy
in the fields of external forces

∂ρε

∂t
+ ∂

∂xi
(εpi + J i(ε)) = 0. (5)

Balance of components concentration is determined by generalized Fick’s equation

∂ρ(n)

∂t
+ ∂

∂xi
(pi,n + J i

(n)) = 0, ρ =
∑

ρ(n). (6)

Here Πi j = pi p j/ρ + Pδi j − σi j is the momentum flux tensor; σi j is the viscous
stress tensor, pi,n is momentum of i th impurity, fi is the density of external forces
(including Coriolis and buoyancy forces).

Calculations of the flow energy when it is necessary to take into account the
change of internal energy are used on basis of the second law of thermodynamics
for irreversible processes that is the condition of positive definiteness of the entropy
production P(s) whose differential form is

∂ρs

∂t
+ ∂

∂xi
(spi + J (s)) = P(s), (7)

where s is the entropy per unit mass, J(ε), J(n), and J(s) are fluxes of energy lows,
nth impurities and entropy.

The system (2)–(6) is written under the assumption of the existence of local
thermodynamic equilibrium, supposing that the characteristic atomic-molecular
processes are fast and equilibration times are substantially shorter than the character-
istic times of mechanical processes forming gradients of thermodynamic quantities.

In the assumption of the smallness of the gradients, the set of equations (2)–(6)
takes the traditional form firstly presented in the first edition of [19] published in
1944

ρ = ρ(P, S, T ), (8)

∂ρ

∂t
+ ∇i (pi ) = 0, (9)

∂(pi )

∂t
+

(
p j

ρ
∇ j

)
pi = −∇i P + ρgi + νΔ(pi ) + 2εi jk p jΩk + fi , (10)
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∂ρT

∂t
+ ∇ j · (p j T ) = Δ(κT ρT ) + QT , (11)

∂ρSi

∂t
+ ∇ j · (p j Si ) = Δ(κSρSi ) + QSi , (12)

where Ωk is angular velocity of the global rotation of the liquid, gi is acceleration
of gravity, ν, κT , κS are the kinematic viscosity, thermal conductivity and diffusion,
QT , QSi are densities of salt and temperature sources, ∇ and Δ are Hamilton and
Laplace operators, respectively. Here velocity of fluid is determined dynamically as
the ratio of two invariant quantities vi = pi/ρ. Type of the state equation is chosen
taking into account the composition of the medium and the nature of the studied
flows.

System (8)–(12) involves the dissipation of momentum, but does not consider the
impact of processes with rapid changes in internal energy. Forcing and source terms
in the right-hand sides of the set (8)–(12) can be permanent, slow with characteristic
time TM ≈ L/U and rather short (τm � TM ) but intensive when describe action
of strong atomic-molecular forces. Short time “shocks” which can locally perturb
smooth flow fields manifest itself in generation of sound and another high frequency
waves or in change of the fine flow structure.

Condition of compatibility applied to the set of the governing equations (8)–(12)
or similar, determines the rank of the nonlinear set, the order of the linear version, the
degree of the characteristic (dispersion) equation and, consequently, the number of
independent functions that constitute the complete solution of the linearized problem.
Rank and degree of the set can be defined as the order of the highest derivative if
the set can be re-written for one of selected variables. Due to the historical tradition
the set (8)–(12) is usually considerably simplified by omitting some terms (mostly
linearized) or converted into constitutive set with the replacement of basic equations
by new ones. Degree of correspondence for basic and transformed sets is not usually
evaluated.

To search a specific problem solution of the basic set of equations is supplemented
by physically reasonable initial and boundary conditions, representing a decay of the
flow in dissipative medium with time and distance, condition of impermeability and
no-slip of liquid on solid surfaces, constant stress on different sides of the contacting
fluids interface.

System (8)–(12) is well-posed and self-consistent. The compatibility condition
indicates that the set has high rank and high dimension of the extended space of
the problem. General properties of the set are characterized by the family of local
symmetries.

The calculations showed that the set (8)–(12) is invariant with respect to group of
continuous symmetries for the operators [20]
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X1 = ∂t , X2 = ∂x , X3 = ∂y, X4 = ∂z,

X5 = y∂x − x∂y + v∂u − u∂v,

X6 =
(

z + gt2

2

)
∂x − x∂z + (w + gt)∂u − u∂w,

X7 =
(

z + gt2

2

)
∂y − y∂z + (w + gt)∂v − v∂w,

X8 = t∂x + ∂u, X9 = t∂y + ∂v, X10 = t∂z + ∂w.

(13)

The set (13) contains operators of shifts in time and space X1, . . . , X4; rotations in the
horizontal plane X5; rotations in free fallen coordinate frame in a uniformgravity field
X6, X7, and the last line represents generators of Galilean transformation groups X8,
X9, X10. Symmetries of the set (8)–(12) exactly correspond to the “first principles”
of physics reflecting the invariant properties of the time and space and equivalence of
all inertial coordinate frames which were used to construct the governing equations
set [19].

Nonidentity transformations, which are widely used for simplification of the basic
set or derivation of new sets of constitutive equations, change the form of symmetries.
For example, neglecting compressibility, temperature and diffusion reduces the set
(8)–(12) to the conventional Navier–Stokes equations for homogeneous fluid [19]

∂vi

∂xi
= 0 ρ

dvi

dt
= − ∂ P

∂xi
+ ρν

∂2vi

∂xl∂xl
+ ρδi3gi . (14)

In uniform gravity field g = ∇Φ the set (14) is transformed to the standard form by
redefinition of pressure (P ′ = P

ρ
− Φ) and is characterized by the next rich family

of the group symmetries generators:

Y1 = y∂x − x∂y + v∂u − u∂v,

Y2 = z∂x − x∂z + w∂u − u∂w, Y3 = z∂y − y∂z + w∂v − v∂W ,

Y4 = ∂t , Y5 = 2t∂t + r∂r − v∂v − 2P∂P ,

Yχ1 = χ1∂x + χ̇1∂u − ρχ̈1x∂P , Yχ2 = χ2∂y + χ̇2∂v − ρχ̈2y∂P ,

Yχ3 = χ3∂z + χ̇3∂w − ρχ̈3z∂P ,

(15)

where (χ1, χ2, χ3) are arbitrary functions of time (describing laws of coordinate
frames motions).

In the family of generators (15) infinite-dimensional sub-algebras Yχ1 , Yχ2 , Yχ3

appear, which are transformed into operators of shift if χ1 = χ2 = χ3 = 1 and
into operators of Galilean transformations if χ1 = χ2 = χ3 = 1 + t . For arbi-
trary functions (χ1, χ2, χ3) infinite-dimensional sub-algebras Yχ1 , Yχ2 , Yχ3 generate
transformations expanding Galilean relativity principle to coordinate frames moving
with arbitrary rectilinear accelerations.

The family (15) contains operator of the group of expansion Y5, which has no
analogues in the set (13). The presence of the expansion operator explains the wide
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spreading of the boundary layer approximations in hydro- and aerodynamics of
homogeneous fluid [19]. Symmetries of sets (8)–(12) and (13) manifest deep differ-
ence in structures of solutions describing flows of homogeneous and stratified fluids.
Constitutive models are mostly characterized by poor set of symmetries [20].

Currently, both in techniques of small approximations or constitutive models
constructions the non-identity transformations of the basic set are used as a rule.
Hence every constitutive or particular truncated system of governing equations is
characterized by its own specific group of symmetry and a family of conserved
parameters. In result the sense of the same symbols written in similar equations
is changed and does not correspond to the sense defined by the fundamental set
(8)–(12). Absence of universal description of fluid motion blocks development of
experimental hydrodynamics.

Sincemathematical methods for constructing complete solutions of such complex
systems as (8)–(12) are not designed up to date, of practical interest are the results of
qualitative analysis of equations, in particular, evaluation of their own temporal and
spatial scales for stratified flows. In environmental and technological conditions the
density of the liquid ρ = ρ(x, y, z, t) is variable because of temperature and concen-
tration fields inhomogeneities. The density gradient dρ/dz defines the stratification
scale Λ = |d ln ρ/dz|−1, buoyancy frequency N = √

g/Λ and period Tb = 2π/N
which change within wide range. In the field of mass forces buoyancy effects lead
to the formation of stable stratification, damping displacements of fluid layers in the
direction of gravity.

However, changes the of real fluids density are usually small and produces small
impact on the inertial properties of the flows. Nevertheless, conservation of terms
describing the stratification effects in the governing equations set is important since
gravity acceleration is large. In this regard, it is useful to consider three types of
medium: stratified fluids when buoyancy scale frequency and period are in the list of
main parameters; then weakly stratified fluids, when the scale of buoyancy substan-
tially exceeds the values of other length scales of the problem (so called potentially
homogeneous fluid); and actually homogeneous liquid whose density is assumed to
be constant in the entire space. Using a weak but variable density helps to save the
rank of complete non-linear set and order of the linearized set of governing equations
and analyzes additional solutions which are lost in approximation of homogeneous
fluid. Some of general properties of the basic set (8)–(12) solutions can be evaluated
from analysis of intrinsic length scale.

5 Characteristic Length Scales of the Fluid Flows

The Eqs. (8)–(12) supplemented by conventional initial and boundary conditions is
characterized by a number of distinguished length scales significantly different in
magnitudes. Part of them is defined by parameters of the studied stratified medium
and flow geometry. The rest depends on flow dynamics that is by characteristic
momentum or velocity.
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Large scales characterizing initial or boundary conditions includes the scale of
stratification Λρ = |d ln ρ/dz|−1, geometric lengths, e.g., the size of the obstacle
L , and typical scales of a flow component like width of a jet, distinguished vortices
or wave lengths of attached surface λg = 2πU 2/g and internal gravity waves λi =
2πU

√
Λ/g (U is a relative velocity of the wave source with respect to surrounding

fluid).
Set of small scales is defined by dissipative properties of media describing by

kinematic coefficients in the set (8)–(12) and characteristic frequencies (buoyancy
N or global rotation Ω) or velocity U . The list includes small scales of Stokes
type δν

N = √
ν/N , δκT

N = √
κT /N , δκS

N = √
κS/N which are similar to the Stokes

length scale δν
ω = √

ν/ω on the oscillating plane [19], Ekman type δν
Ω = √

ν/Ω ,
δ
κT
Ω = √

κT /Ω , δ
κS
Ω = √

κS/Ω or Prandtl type δν
U = ν/U , δ

κT
N = κT /U and

δ
κS
U = κS/U . The last group of scales characterizes fine structure in jets and wakes
past the moving obstacle. Since kinematic coefficients are usually small the values
of large and small length scales are distinguished on several orders of magnitude.

Besides the basic scales the fundamental set can be categorized by secondary
scales which are important in some particular problems. For example, dissipative-

gravity length scale Lν = 3
√

Λ(δν
N )2 = 3

√
gν/N defines critical conditions of the

source size producing unimodal or bi-modal periodic internal waves [21]. Multiplic-
ity of intrinsic scales reflects the complex internal flow structure of fluid flows. Large
number of intrinsic scales is also associated with a high dimension in the extended
space of the problem. In experiments macro scales of the length determine the area
size of the visualized flow, which should contain all flows components and micro
scales prescribing temporal and spatial resolution of the measuring and recording
instruments.

Macro- and micro scale relationships define traditional dimensionless complexes
that are Reynolds Re = L/δν

U = U L/ν � 1 and Peclet numbers described effects
of temperature and salinity PeT = L/δ

κT
U = U L/κT � 1, PeS = L/δ

κS
U =

U L/κS � 1. These ratios are large in the environment and laboratory experiments. In
most cases, the change in density of the flow scale is small and ratios of length scale
C = Λ/L = ρo/δρ � 1 and Cν

N = L/δν
N = √

L2N/ν � 1 with the kinematic
viscosity or CκT

N , CκS
N with thermal or substance diffusivity are large. The presence

of large relationships in the set with small coefficients in the terms along with the
highest derivatives gives a room for theory of singular perturbations to calculate a
wide range of processes, primarily slow flows such as diffusion induced on topogra-
phy or small amplitude internal waves describing by the linearized set of governing
equations.

As calculations show, all the flow components propagate coherently and fill the
entire space. Mechanical energy is transported by large-scale components. Energy
dissipation and vorticity are associated with the fine-structure components, which
form the flow structure. Contrast of the flow pattern is underlined by contaminants
which are accumulated on interfaces. Loci of fine flow components depend on geom-
etry and energy of the processes.
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6 Classification of Infinitesimal Components of Periodic
Flows

Periodic, (or more exactly, almost periodic) flows, such as compact vortices and
waves are traditional objects in fluid mechanics. Studies of known forms of oscilla-
tions and waves unify different branches of science, vortices are specific to liquids
and gas flows. Conventionally, many types of waves are studied on the basis of spe-
cial approximate equations describing (more or less completely) basic features of
particular phenomenon such as, e.g., acoustic waves in compressible media, gravity
surface or internal waves in stratified fluid or inertial waves in rotating environment
[19]. However, since the symmetry of wave equations and the fundamental set of
the Eqs. (8)–(12) are significantly different [20], solutions of model systems can not
describe all the properties of periodic flows, or reflect wrongly some of them. In this
regard, it is necessary to study periodic solutions of the non-linear fundamental set,
taking into account the condition of compatibility of its constituent equations.

Due to complexity of the fundamental nonlinear set, at the first stage the complete
solution of the linearized version is constructed. Attention is paid to study the wave
processes in a viscous fluid described by orthogonal functions. To select exponential
functions for investigation of elementary waves, the problem was analyzed in an
infinite medium filling the whole space.

Complete solutions were constructed using singular perturbation theory that is
an expansion on direct and inverse value of a small parameter ε of the problem. In
unbounded stratified media all variables of small periodic motions with fixed real
positive frequency ω and complex wave number k = k1 + ik2 (describing wave
energy dissipation) can be found in form of products of individual amplitude factor
v = v0τ(r, t), p = p0τ(r, t), ρ = ρ0τ(r, t) by integrals of plane waves τ(r, t) =
exp(i(kr − ωt)). Stationary waves are searched in form of Fourier expansions

A =
∑

j

∫ +∞

−∞

∫ +∞

−∞
a j (kx , ky) exp(i(kz j (kx , ky)z + kx x + ky y − ωt))dkx dky,

(16)

where A is pressure, density, components of velocity, temperature or salinity. Here
summation is performed over all roots of dispersion relation, following after substi-
tution of expansion (16) into the linearized set (8)–(12), supplemented by boundary
conditions on solid boundaries and at infinity.

Dispersion relation follows from compatibility condition after substitution (16)
into linearized set of the Eqs. (8)–(12) and is presented below in factorized form of
the algebraic equation of tenth power [22]

Dν(k, ω) · Fω(k, ω) = 0, (17)
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where

Fω(k, ω) = −Dν(k, ω)DκT (k, ω)DκS (k, ω)

(
k2 + i

kz(ΛT + ΛS)

ΛT ΛS

)

+ DκT (k, ω)

(
ωkz

ΛS
Dν(k, ω) − N 2

S k2⊥
)

+ DκS (k, ω)(
ωkz

ΛT
Dν(k, ω)

− N 2
T k2⊥),

Dν(k, ω) = −iω + νk2, DκT (k, ω) = −iω + κT k2, DκS (k, ω) = −iω + κSk2,

k2 =
∑

i

k2i , k2⊥ = k2 − k2z .

Regular solutions of the equation (17) have typical wave forms with large real and
small imaginary part |k1| � |k2|. Another part of solution (17) has typical singular
perturbed form and can be expand to series where exponential factor γ is defined
after substitution in governing equation

kz = ε−γ (k0 + εk1 + ε2k2 + · · · ), γ > 0.

Imaginary parts of these roots are not small |k1| ≈ |k2| and inverse proportional to
dissipative coefficient |k| ≈ √

ω/ν. They describe small scale flow components.
Hierarchy of fluid mechanics fundamental equations sets is presented in Fig. 4.

Complete set of the governing equations (8)–(12) on the Level A for 7 variables
(vector of momentum, density, pressure, temperature and salinity) has tenth order.
Among its periodic solutions there are two of regular types while the rest eight are of
singular perturbed type. Part of solutions can be omitted due to boundary conditions
on infinity [23]. Regular disturbed solutions in of zero buoyancy frequency limit
match continuously with solutions of Navier–Stokes and Euler sets.

The linearized Navier–Stokes equations have 6th order for both stratified and
homogeneous fluids (level C). System is solvable and all small scale flow components
are different in stratified environment (left column). One of them is universal and
does not depend on geometry (Stokes type). The second fine viscose component is
specific internal and depends on the angle ϕ of a solid boundary slope to the horizon
corresponding to terms containing k2⊥ in Eq. (17). In limiting case of homogeneous
fluid both singular solutions become identical, so the problem becomes degenerated
and ill-posed [22].

In the right column of Fig. 4 degenerate sets are placed on levels B, C and D.
Degeneration can be caused by geometrical and physical reasons. In the first case
due to symmetry of the boundary (round body with vertical axis) the reduction
of configuration space dimension of the problem occurs and initially 3D problem
transforms into 2D [23] or even 1D problems. These approximations lead to loss of
some solutions or even whole classes of solutions (for example, for 3D motions on
long cylinder).
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Fig. 4 Hierarchy of fluid mechanics fundamental equations sets

Approximation of homogeneous fluid results in another type of degeneration
(right column, level C). In this case, different solutions of viscous fine structure flow
become identical and the 3D problem becomes ill-posed. Only particular solutions
containing part of the whole family of complete solutions are calculated in this case.
In the ideal fluid approximation (level D) only regular part of solutions is described.

The arrows connecting the individual elements of the scheme indicate the direc-
tions of possible transitions between different levels which can be regular or asymp-
totic. Models of the highest order (level A) allow the transition to the lower-order
model when the dissipative coefficient or density gradient tend to zero. In such
transitions two final states are formed. In one of them, in the case of potentially
homogeneous fluid, density variations are considered to be negligibly small and the
stratification is essentially unaffected by the dynamics of processes. However, the
conservation of system rank leaves the set of equations well-posed and solvable. In
another actually homogeneous fluid the density of the liquid assumed to be constant
from the beginning. In this case the system of 3D equations degenerates and becomes
ill-posed.

All properties of the complete and reduced solutions illustrate the theory of peri-
odic internal wave generation in a continuously stratified liquid when the source of
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waves is oscillating part of an infinite plane oriented under arbitrary angle to horizon.
This problem is 2D and 3D generalizations of classical Stokes problem of oscillating
plane in a homogeneous viscous fluid [19]. Calculations are compared with the data
of schlieren visualization of the wave fields in tank filled with continuously stratified
brine [24].

7 Diffusion Induced Flows on Obstacles

Diffusion-induced flows (DiF) are the most universal forms of flows in the environ-
mental and laboratory conditions because for their generation only stable stratifica-
tion and non-trivial geometry of a solid boundary are required. They play a key role in
the processes of passive substances transport in the atmosphere and the hydrosphere.
Diffusion induced flows aremanifested as intensive valley andmountain winds in the
stably stratified atmosphere and density flows in oceans. A great number of physical
processes are essentially influenced by diffusion-induced flows, such as melting of
icebergs, migration of tectonic plates and transport of minerals and bio-spices. It may
also trigger a propulsion mechanism of self-movement of neutral buoyancy solids
in stably stratified fluid. The problem represents an advance in knowledge of the
fundamental aspects of the generic problem of non-equilibrium processes in fluids
as an example of the successful integration of analytics, experiments and numerical
simulations to explore physical mechanisms.

Numerical solution of the 2D truncated non-linear set (8)–(12) where temperature
effects were neglected was constructed to describe both large and small scale flow
components

ρ = ρ00(exp(−z/Λ) + s), div v = 0,

∂v
∂t

+ (v∇)v = − 1

ρ00
∇ P + νΔv − sg,

∂s

∂t
+ v · ∇s = κSΔs + νz

Λ
.

(18)

Here, s is the salinity disturbance including constant salt contraction coefficients,
v = (vx , vy, vz) is vector of the induced velocity, P is the pressure except for the
hydrostatic one. The consideration is conducted in the laboratory coordinate frame
directed by the gravity force (undisturbed fluid is at the state of rest). The problem
corresponds to the level B in the general scheme (Fig. 4).

At the initial moment t = 0 a thin impermeable sloping plate of length L is placed
into a quiescent stratified fluid free of any mechanical disturbances. Physically valid
initial and boundary conditions, which are unperturbed flow fields before the initial
moment, no-slip for velocity components and no-flux for substance on the plate’s
surface and attenuation of all perturbations at infinity were used
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(a) (b) (c)

Fig. 5 Pattern of streamlines of diffusion induced flows: a, b on the sloping and horizontal strip of
length L = 5cm; c on the wedge

v, s|t≤0 = 0, (19)

vξ |Σ = vζ |Σ = 0, (20)[
∂s

∂n

]∣∣∣∣
Σ

= 1

Λ

∂z

∂n
, v, s|ξ,ζ→∞ = 0, (21)

where n is external normal to the plate’s surface Σ .
The problem (18)–(21) was analyzed numerically using an open software package

OpenFOAM [25]. The developed algorithm works in all ranges of the flow parame-
ters corresponding to laboratory, atmosphere and hydrosphere conditions, including
zero angles of inclination of the impermeable surface to horizon when conditions
of existence of stationary asymptotic solutions are violated. Calculations showed
individual patterns of various physical parameters of the problem, part of which is
represented in Figs. 5 and 6.

Due to interaction of the buoyancy and dissipation effects pattern of induced
flow is rather complex and includes vortex cells with size of the obstacle length
and sequence of short waves near the tips. In the flow patterns of streamlines thin
interfaces separate a number of regular cells (positive direction by rotating marked
green). Above the horizontal plate cells of different signs are located oppositely
relative to the principal planes. Asymptotic calculations of stationary flow cannot be

(a) (b) (c)

Fig. 6 Fields of disturbances in the diffusion induced flows around the plate inclined under angle
ϕ = 10◦ to horizon (N = 1.26 s−1, L = 5cm): a dynamic vorticity ΩΩΩ; b tempo of vorticity
baroclinic generation Ω̇ΩΩ; c the rate of the mechanical energy dissipation ε (different scales are on
the axes)
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performed by methods proposed in [26] in the whole space because of alternative
convergence and divergence of flows on the centerline above and below the strip.

There exists a noticeable difference in fields of stream functions (for multicellular
agreed rotation directions in adjacent cells, typical for systems of internal waves),
vorticity and velocity dissipation of mechanical energy presented in Fig. 6.

Complex fine structure of a flow is expressed in the dynamic vorticity field
ΩΩΩ = rot v (Fig. 6a). Due to the line of isopycnics and isobars crossing an additional
vorticity is generated baroclinically with the tempo Ω̇ΩΩ = dΩΩΩ/dt = ∇ P × ∇ρ−1

both in the close vicinity and at some distance from the obstacle (Fig. 6b). The forma-
tion of new fine components in the vicinity of the edges of the plate is caused by the
joined action of buoyancy, limiting the height of elevation or sinking of separating
jets, viscosity and diffusivity effects (Fig. 6b). Complex picture ofmechanical energy
dissipation rate (Fig. 6c) differs significantly from the smooth field of streamlines.
Field of the mechanical energy dissipation rate ε has specific “rosettes” shape, which
is typical for pattern of dissipative gravity waves or “zero frequency” waves [27].

The calculated field of the density gradient perturbation in the diffusion induced
flow on the horizontal or inclined plate, and the wedge, manifesting large-scale
components, defined by the obstacle size, and thin interfaces with transverse scales
δν

N = √
ν/N or δ

κS
N = √

κS/N , at long times is consistent with the schlieren image
of the flow. The “natural rainbow method” with horizontal slit and regular grating
[24] was used for visualization the of the refractive index gradient near the plate in
a laboratory tank (Fig. 7a, b).

Fig. 7 Images of diffusion induced flows: a, b schlieren and numeric visualization of density
gradient perturbations on sloping motionless strip (L = 5cm, N = 0.84 s−1, Tb = 7, 5s, ϕ = 40◦);
c smokes and water vapor in Yuzhno-Sakhlinsk valley
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In the images in Fig. 7, one can see standing out extensive streaky structures
which are directly adjacent to the extreme points of the obstacles. The length of the
interfaces increases with the sensitivity of the registration method. Flow induced by
diffusion lead to self-inducedmotion of free neutral buoyancy obstacles in a stratified
medium which is absent in a homogeneous fluid. Calculated velocities of fluid, the
forces and angular moments acting on the wedge, consistent with the data of direct
measurements of the velocity of self-motion of free neutral buoyancy wedge in a
laboratory tank [28].

Detailed calculations of velocity profiles in the middle of the sloping plate is
consistent with the formulas derived by Prandtl [26], but the thickness of salinity
perturbation layer is less than for the velocity layer.

Diffusion induced flows, often are observed in the atmosphere with on relief with
topography inhomogeneities (mountain or valley winds). Their intensity can reach
high values in a relatively thin surface layer, especially on glaciers or in time of a
bright sunlight, as well as in marine environments, where are the determining factors
are gravity and rotation. Details of the flow patterns depend on the profiles of the
buoyancy frequency and geometry of the underlying surface. The overall pattern of
the flow in the cavity (double vortex and sinking jet over the center and outgoing stripe
flows along the valley slopes) is often presented among the atmospheric processes
[29]. As an example of the diffusion induced flow pattern in the atmosphere the
photographs at first glance paradoxical pictures of industrial smokes in Yuzhno-
Sakhalinsk (Fig. 7c) is given.

8 Theory of Periodic Internal Wave Propagation

The last fifty years, much attention has been paid to internal waves—a special kind
of gravitational waves inside a stably stratified fluid. Internal waves are generated in
the atmosphere and ocean during restructuring of large-scale processes, flows around
topography, under the action of periodic and random force factors and transport
data of the source parameters over long distances. The waves accelerate jet streams,
intensifymixing, and heat upper atmosphere. In the ocean depths, thesewaves control
the variability of physical fields and can destroy technical installations.

Under natural conditions, the structure, spectra, and amplitudes of wave fields
can be determined. Since environmental variability makes it difficult to identify
sources of the generation and paths of propagation of internal waves, the observations
of natural systems are complemented by laboratory and mathematical modeling.
The calculations of beams of periodic waves in a viscous stratified medium are in
agreement with experimental data for different types of stratification.

The problems of internal wave generation are usually solved in the approximation
of an ideal fluid or by introducingmass and force sources. The resultingwave patterns
are generally consistent with laboratory data; however, the parameters of model
sources depend on experimental conditions. Inclusion of dissipative factors gives a
room for more complete description of the dynamics and structure of internal waves.
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In the analytical description ofwaves, theBoussinesq approximation for an incom-
pressible exponentially stratified fluid is mostly used. When considering the infini-
tesimal wave, the system of equations (8)–(12) is usually truncated, only diffusion
of the stratified component is counted (in the calculations—salt in water) and have
the form

ρ0
∂v
∂t

= −∇ P + νρ0Δv − σρ0gez, ∇ · v = 0,

∂σ

∂t
− νz

Λ
= κSΔσ, ρ0(z) = ρ0(S(z)) = ρ00(z)e

z
Λ ,

(22)

where P , σ and v are the disturbances of fluid pressure, concentration (with included
salt contraction coefficient) and the velocity vector, respectively, ν and κS are the
constant coefficients of kinematic viscosity and diffusion, respectively; the unitary
vector ez is directed upward. In a general case the buoyancy scale Λ(z), frequency
N (z) and period Tb(z) are functions of the depth z. The problem correspond to level
B in scheme presented in Fig. 4.

From dispersion relation for elementary periodic waves sin ϑ = ω/N it follows
thatwaves propagate from the source along a radius-vectorwhose slope to the horizon
is determined by the ratio of thewaveω to buoyancy N (z) frequency, and became ver-
tical at the critical height where both frequencies become equal [30]. Thewidth of the
wave beamand the amplitude of vertical displacement h(x, z)which are also changed
presented in calculations [31] in the spectral form h(x, z) = ∫ ∞

0 f (z, k) exp(ikx)dk,
k is wave number.

Solution of the equations (22) in the coordinate frame (q, p) associated with the
wave beam the vertical displacement of fluid particles is described by the formu-
lae [31]

h(q, p) =
√

Nω(z0)

Nω(z1)

∫ ∞

0
A0(k) exp

{
ikp − νdk3[Q(z1) + q]

2N (z1) cosϑ

}
dk, (23)

where A0(k) is spectral amplitude of the source, νd = ν + κS is sum of dissipative

coefficients, N 2
ω(z) = N2(z)−ω2

ω2 is difference between buoyancy and wave frequency
square normalized by the wave frequency.

Local length scale along the center line of the wave beam is

Q(z) = Nω(z)√
(1 + N 2

ω(z))3

∫ z1

z0

(1 + N 2
ω(z′))2

Nω(z′)
dz′,

where the points z0, z1 are positions of wave source and observations.
Length scale Q(z) associated with the geometric length of the center line L(x) =∫ z1

z0

√
1 + N 2

ω(z′)dz′ by the integral relation
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Q(z) =
√

L2
z (z) − 1

L3
z (z)

∫ z1

z0

L4
z (z

′)√
L2

z (z
′) − 1

dz′, Lz(z) = d L/dz.

It stratification is exponential N (z) = const, Q(z) = L(z) the expression for wave
amplitudes takes the conventional form

h(q, p) =
∫ ∞

0
A1(k) exp

{
ikp − νdk3[L1 + q]

2N1 cosϑ

}
dk

of the general internal wave type [30].
In regions where buoyancy frequency decreases with height and become less

than the frequency of the propagating wave, the beam is reflected from critical level
and partially leaks into non-wave zone. For this case, typical wave beams shape is
shown in Fig. 8 (different sensors of the wave induced displacements of fluid layers
are shown too). Amplitude attenuations in reflected and leakage through critical
level 2D internal waves beams calculated in [31] were tested in special experiments,
where velocity field was measured by particle image velocimeter (PIV) instrument.
The vertical velocity fields of the incoming and reflected waves agree within few
percent with theory of beams in an arbitrary smooth stratification [32].

Unfortunately PIV instruments are characterized by low spatial resolutions, in
experiments [32] δx = 3.9mm and Δz = 2.9mm. These values exceed the

Fig. 8 Periodic internal waves beams near a critical level in a stratified fluid with the non-uniform
profile of buoyancy frequency
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microscales δν
N , δ

κS
N , δν

U , δ
κS
U so the instrument [32] cannot resolve fine scale flow

components accompanying the periodic internal wave beam and forming on critical
level, as it was calculated in [31], too.

9 Generation of Periodic Internal Waves

In studying of the periodic internal wave generation problem the linearized set of
governing equations (22) is supplemented by no-slip and no-fluxboundary conditions
on all moving and stagnant solid boundaries. Detailed calculations were performed
for oscillation strip [33] or disk placed on horizontal [21] or sloping infinite plane,
or moving part of vertical cylinder [23]. The problem corresponds to level C in the
hierarchy in Fig. 4.

All periodic flow components propagating along with internal waves in the strat-
ified viscous fluids were calculated analytically for a circular piston performed peri-
odic oscillations on horizontal plane. Regular components occupy the whole space
(weak background in Fig. 12a, b) and are the most profound in the wave cone sloping
under the angle ϑ to horizon (sin ϑ = ±ω/N ). The ratio of disc diameter to viscous
wave length scale (LκS

ν = 3
√

(ν + κS)g/N ) defines modal structure of the beam. The
fine (singular) components are formed on emitting surface and create thin envelopes
of the wave cone. Transverse scales of the singular components are characterized
by two universal microscales of velocity δν

N = √
ν/N and salinity (concentration)

δ
κS
N = √

κS/N fields, respectively.
The singular components are characterized by a high level of vorticity and rate

of energy dissipation. During the wave period, the envelopes are being gradually
distributed across the whole beam and finally concentrated into thin edges interfaces.
Outer and inner envelopes are shown in Fig. 9a, b in convergence phases. Locations
of singular components of periodic internal waves demonstrate pattern of the second
derivatives of velocity in Fig. 9c.

(a) (b) (c)

Fig. 9 Calculated pattern of flow in the central cross section of the conical periodic wave beam
produced by a horizontal disc of radius R = 4cm oscillating in the vertical direction (ω = 1 s−1,
velocity amplitude U = 0.25cm/c, Tb = 5.2 s); a, b the velocity horizontal component νr ; t =
0; 0.25Tb; c its second derivative ∂2νr /∂z2, t = 0 [21]
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(a) (b) (c)

Fig. 10 Schliren image of internal waves produced by vertically oscillating disc in a stratified brine
(N = 0.88 s−1, D = 5cm, A = 0.25cm): a–c ω/N = 0.55; 0.97; 1.27

Schlieren images of periodic internal wave beams of small amplitude produced
by vertically oscillating disc in continuously stratified brine are given in Fig. 10. Due
to axial symmetry of the flow only central cross section is visualized. All four wave
beams are well outlined in Fig. 10a when ω < N . Images of the wave beams are
antisymmetric since motions of the fluid particles occur in opposite directions above
and below the disc. Right and left parts of the image in Fig. 10 are antisymmetric
also as horizontal displacements in beams occur in opposite directions.

Thin horizontal strips in the central part in Fig. 10a represent the flows, induced by
diffusion on the disc. Elliptic domain around the disc shows a near field region where
non-linear effects are significant. Small edge vortex rings are formed in vicinity of
the disc trajectory turning points.

Internal waves crests and troughs are oriented vertically when the frequency of
the disc oscillations reaches the buoyancy frequency (ϑ = π/2). In this case, the
singular disturbances becomeweaker, and the near field region in Fig. 10b is extended
in vertical direction.Weak secondarywaves are visible in upper left part of the picture.
Both regular and singular elements of fluid motions are gradually shrinking to the
source if the frequency of oscillations exceeds the buoyancy frequency (ω > N ) and
only edge vortices and diffusion induced flows still exist in Fig. 10c.

While regular and singular components are emitted by the disc edge along all
available directions non-linear effects are most expressed inside the conical domain
located directly under the discwhere thewaves are intersected and the inner envelopes
are converged.

More intensive internal waves are produced by the vertically oscillating sphere. In
this case high gradient beam envelopes are visualized by schlieren instruments. Thin
dashed lines in the central part in Fig. 11a, b mark the body turning horizons. Elliptic
domain around the sphere and double dark vertical lines near the sphere poles in
Fig. 11 show the near field region where non-linear effects are significant.

Dark sloping lines bounds internal wave beams of large amplitude. Sharp
mushroom-like interfaces are formed in domains of convergences of high gradient
envelopes of the wave beam directly in the fluid body without any contact with solid
boundaries. Short horizontal interfaces do not destroy the stratification in Fig. 11c.
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(a) (b) (c)

Fig. 11 Schlieren images of periodic flows induced by oscillating sphere (D = 4.5cm), (method
“slit-thread”): a–c Tb = 11.2, 7.3, 11.2 s; H = 1, 2.8, 2.8cm, ω/N = 0.73, 0.8, 0.8

Gradually, high gradient interfaces outlines the near field domain around moving
sphere. Their vertical extension exceeds the size H of the sphere displacement.
Forming vortices covered by high gradient interfaces moves to the sphere in contrast
with local disturbances moving in opposite direction [34].

Calculations show that wave and fine flow components propagate coherently, and
fill the entire space. Mechanical energy is transported by large-scale components.
Energy dissipation and vorticity are associated with the fine-structure components,
which form the flow structure. Contrast of the flow pattern is underlined by contami-
nants which are accumulated on the interfaces. The need for registration ofmultiscale
flow components imposes additional requirements on experimental methods that
need to visualize large-scale and resolve fine components. In conventional exper-
iments, fine components are not resolved and manifesting themselves as random
fluctuations of the measured parameters.

10 Fine Structure of the Flow Field Behind Uniformly
Moving Obstacle

Uniformmotion of an obstacle in the stratified fluid radically change the image of the
flow. Periodic internal waves are transformed into attached waves stationary moving
with the source [30] and a rich family of fine flow components is observed. The
real flow structure depends on parameters of the fluid and stratification, shape of the
obstacle and its velocity. Here the examples of the flow structure evolution are given
for the uniformly towing body of the most simple shape that is for vertical strip [35].

On the parameter range under current study the optical visualization made it pos-
sible to reveal the flows of three types: laminar flow with clearly expressed upstream
blocked fluid and split downstream density wake bounded by two plane density
envelopes (Fig. 12a); transitional flow with imbedded oblique streaky structures and
attached internal waves in the process of their formation (Fig. 12b); stratified flow
with developed field of attached internal waves, and bubble vortex inside the down-
stream wake with pronounced fine structure (Fig. 12c).
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Fig. 12 Schlieren images of flow side view around uniformly towing vertical strip of height 2.5cm
in a continuously stratified fluid.Curved vertical lines are densitymarkers used for precisemeasure-
ments of buoyancy frequency and horizontal component of velocity: a upstream and bounded by
high gradient envelope downstream wake (Tb = 17.4s, U = 0.033cm/s, Fr = 0.036, Re = 8.25);
b sloping streaky structures in the downstream wake (Tb = 12.5s, U = 1.06cm/s, Fr = 0.084,
Re = 26.5); c fine structure of downstream vortex bubbles synchronized with pronounced pattern
of attached internal waves (Tb = 12.5s, U = 0.37cm/s, Fr = 0.3, Re = 92.5)

At low velocities introduced disturbances are concentrated in a relatively narrow
layer near the body motion horizon. In this layer a smooth upstream disturbance
and a downstream density wake bounded by high-gradient envelopes are clearly
expressed in Fig. 12a. Ahead of the strip, two groups of dissipation-gravity waves
(dark and light long bands) proceed from the plate edges; they enclose the central
region of completely blocked fluid which moves together with the plate. The vertical
dimension of the blocked fluid decreases with the distance from the plate.

The contours of density markers 1–4 (vertical curved lines in Fig. 12a) illustrate
the profile of the horizontal velocity component (the rightmost marker is the vertical
reference line). The shapes of the density markers 1–3 ahead of the strip demonstrate
the influence of oppositely-directed jets, namely, the flow between the plate horizons
and the counter-flows above and below its edges. The internal density marker 3 in
the blocked fluid retains its original vertical shape, which indicates the motion of the
fluid as the whole, at the velocity equal to that of the body.

The density marker 4 past the body has single maximum at the axis of the motion.
Within the velocity shear layers there are thin high-gradient envelopes bounding
the density wake. The envelopes do not touch the plate edges but approach its back
surface at distances ±0.45cm from its center. Upstream dissipation-gravity waves
are formed at the strip edges. The flow velocity maximum at the downstream wake
axis (marker 4) exceeds the strip velocity, which is due to the participation of the
buoyancy forces in the wake flow formation.

A small increase in the strip velocity qualitatively changes the general flow pat-
tern: group of attached internal waves is formed behind the body, while the system of
oblique extended high-gradient interfaces appears above and below the narrow den-
sity wake in Fig. 12b. The blocked fluid region shrinks and its apex comes closer to
the body. In the leading disturbances, along with the dissipation-gravity waves, there
are observable upstream transient waves, or extended oblique rays which smoothly
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go into attached internal waves past the strip. The central high-gradient interface is
clearly expressed within the wake.

Behind the strip, in the region ofmaximumvelocity shear outside the densitywake
covered by own high gradient envelops, there are set of fine-structure interfaces, 0.5–
2.5cm in length and 0.05–0.12cm in thickness, whose inclinations to the horizontal
line vary from±55 to±16◦ with the wake age. The velocity profiles remain smooth,
despite a considerable complication of the density gradient field.

With increase in the velocity, these are internal waves filling the entire field of
observation in Fig. 12c, become the main structure element of the stratified flow
pattern. In the slot-thread schlieren method, the images of the internal wave crests
and troughs are different: black curves correspond to the crests and double gray
curves to the troughs. The deviation of the phase surface shapes from the circle,
which is typical attached, compact-source-generated waves behind a body, is due to
the Doppler-effect-induced variation in the wave frequency. The distance between
the two last depressions is 4.7cm, which corresponds to the theoretical value of the
attached internal wavelength defined by the body velocityU and the buoyancy period
λ = U Tb = 4.6cm. Attached waves are transformed into transient waves ahead of
the body; their crests and troughs (oblique bands in Fig. 12c) are gradually widen.

The blocked fluid region ahead of the plate shrinks to the small triangle, 2.25cm
in height, whose base, 1.3 cm in length, does not reach the plate edges. The blocked
fluid region is adjoined by almost horizontal phase surfaces of the leading dissipation-
gravity waves, which (Fig. 12b) are formed on the density wake envelopes, near the
points of their separation—at 0.6cm from the plate edges.

The back surface of the strip is adjoined with a wedge-shaped bottom vortex,
filled with system of interfaces inclined to the axis of the motion. The density wake
is split into separate high-gradient interfaces, which are placed horizontally in the
compression (thin) regions of the wake, where depression is at the top and crest is at
the bottom, whereas in the shape of the “vortex rotor” in the wake expansion regions
the crest is at the top of the wake and the depression of the attached internal wave is
at its bottom.

Typical thickness of the interfaces is 0.08cm, the distance between the center of
the first separate vortex bubble and the strip is 5.31cm, and the distance between
the first and second bubbles is 6.19cm. The variation of the distances between the
bubbles and their difference from the attached internal wavelength λ = 4.6cm is
due to the inhomogeneity of the horizontal component of the wake flow velocity and
change of the local value of buoyancy frequency inside the wake.

Apart from the attached internal waves, whose scale λ = U Tb is determined by
the body velocity U and the buoyancy period, the flow pattern in Fig. 12c contains
fine-structured disturbances, whose mean thickness (0.1cm) are close to value of the
universal viscous scale δν

N = √
ν/N = 0.11cm. Under these conditions the Prandtl

scale δν
U = ν/U = 0.03cm.

With the formation of high-gradient interfaces is associated increase in the
backscattering coefficient of sound waves takes place, which provides high acoustic
contrast of the downstream wake whose efficient height is significantly larger than
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the size of the density wake bounded by own high-gradient interfaces. Thickness of
the interfaces tends closer to the universal viscous scale δν

N with increasing distance
from the strip [35].

11 Conclusion

Observations of the environment in a wide range of length scales and data of labora-
tory experiments have shown that all kinds of flows are characterized by pronounced
structure including distinguished large scale and rich family of small scale com-
ponents that are a set of high gradient interfaces near boundaries and inside the
fluid body. Large scale flow components are responsible for transport of substances,
momentum and energy. Fine flow components affect flow energy dissipation, vor-
ticity generation and vortex pattern, transport, separation and structurization of sub-
stances.

The analysis of Axioms of Mechanics showed that all four definitions of “a
solid body motion”—two physical (through variations of distances between bod-
ies, momentum or energy) and two mathematical (kinematic and geometric) are
identical and not equivalent to the concept of “fluid flow” which is the transport of
momentum of continuous medium. Concept of “fluid flow” is more complex than
the “motion” due to the ability of a “fluid particle” to change its shape (deformation)
and split into separate fibers.

The mathematical basis of the flow description is complete set of fundamental
governing equations: continuity for density, momentum, energy and concentrations
of dissolved or suspended components together with the equation of state for density.
The fundamental set defines the fluid flow as the momentum flux accompanied with
self-consistent changes of thermodynamic parameters and as a process which occurs
in a functional space of a high dimension.

The fundamental set is well posed, self-consistent and forms a basis for adequate
modeling, forecasting and controlling of the flow.

The condition of compatibility for set of governing equations determines the
rank of the complete system, the order of its linearized form and the degree of
the characteristics (dispersion) equation that prescribes the number of independent
structural component of flows and their linear length scales. Complete solutions of
the fundamental system that describe dynamics and structure of flows are consistent
with data from laboratory experiments and allow direct transfer laboratory data to
natural conditions.

The list of observable parameters defined by the fundamental set of equations
includes basic physical quantities (density, momentum, energy and concentration
of dissolved or suspended components), thermodynamic parameters, kinetic coeffi-
cients and characteristic of physical fields andwave propagation. Velocity of the fluid
due to the uncertainty boundaries of the “deforming and splitting fluid particles” is
unobservable parameter.
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New instruments and protocols must be constructed for simultaneous observation
of large-scale flow structure and identification of fine components together defining
scenarios of environmental systems evolution and allowing measuring their physical
parameters.

Requirement of the experiment completeness demands the simultaneous record-
ing of all fundamental physical variables fields, visualization of large scale and
resolution of fine flow components with the ability of direct estimation of the mea-
surement accuracy.
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Effect of Friction in Sliding Contact
of a Sphere Over a Viscoelastic
Half-Space
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Abstract Imperfect elasticity of contacting solids results in hysteretic losses during
the deformation. In rolling/sliding contact, the losses cause the resistant force, which
is called the mechanical component of the friction force. Another cause of the fric-
tion is related to the energy losses in formation and breaking of the adhesive bridges
between the contacting bodies (adhesive component of friction). In this study the
combined effect of the adhesive and mechanical components of friction is analysed
based on the consideration of the 3-D contact problem for the spherical indenter
sliding with a constant velocity at the boundary of the viscoelastic half-space. The
material properties are characterized by the linear viscoelastic solid with one relax-
ation time. The Coulomb-Amonton law of friction is used to describe the adhesive
friction inside the contact region. A numerical-analytical method is developed to
solve the contact problem and to find the contact stress distribution. The dependence
of the mechanical component of friction force on the adhesive friction coefficient for
various load-velocity conditions is studied.

Keywords Viscoelastic half-space · Sliding contact · Friction · Contact stress ·
Boundary elements

Mathematical Subject Classification: 74D05

I. Goryacheva (B) · F. Stepanov · E. Torskaya
IPMech RAS, Prosp. Vernadskogo 101, Block 1, Moscow 119526, Russia
e-mail: goryache@ipmnet.ru

F. Stepanov
e-mail: stepanov_ipm@mail.ru

E. Torskaya
e-mail: torskaya@mail.ru

© Springer International Publishing Switzerland 2016
P. Neittaanmäki et al. (eds.), Mathematical Modeling and Optimization
of Complex Structures, Computational Methods in Applied Sciences 40,
DOI 10.1007/978-3-319-23564-6_6

93



94 I. Goryacheva et al.

1 Introduction

There are two main sources of energy dissipation in sliding contact of deformable
bodies. One is related to the formation and breaking of the adhesive bridges at the real
contact spots within the nominal contact region (adhesive component of friction).
The other one arises due to hysteretic losses in deformation cycles of imperfect elastic
materials (mechanical component of friction). Due to these sources the friction force
occurs if one body moves over the other.

To study the effect of the imperfect elasticity, the 2-D sliding contacts of the rigid
or viscoelastic cylinder and the viscoelastic half space were considered in [3–8, 11–
13]. It was indicated in these studies that even for the case of the absence of the shear
stress within the contact region (adhesion effect is neglected) the contact pressure
is distributed non symmetrically and the shift of the contact region occurs. Hence
the resistance force (mechanical component of friction force) arises due to imperfect
elasticity of contacting bodies. The model of a linear viscoelastic solid is usually
used to analyze effects of the imperfect elasticity in sliding contacts of deformable
bodies.

In [5] the authors studied the effect of the shear stress τ within the contact due to the
adhesive friction in sliding contact of the viscoelastic cylinder over the viscoelastic
half space with a constant velocity V (2-D problem formulation). The adhesive
friction within the contact region was taken into account by the relation similar to
the Amonton law of friction, i.e.,

τ = μp sign(V ). (1)

Here, p is the contact pressure, μ is the adhesive friction coefficient.
The effect of the adhesive interaction of the contacting surfaces outside of the

contact zone in sliding of the rigid cylinder over the viscoelastic half space was
studied in [10] in the case where the shear stress is absent within the contact region.
3-D contact problem for a rigid sphere sliding over the viscoelastic half-space was
considered in [2] under the assumption that there is no shear stress within the contact
region. The influence of the imperfect elasticity of the base on the shape of the
contact region and the contact pressure distribution was analyzed for the various
load-velocity conditions.

In this study, the effect of the shear contact stress on the contact characteristics and
the mechanical component of the friction force is analyzed based on consideration
of the 3-D contact problem for the smooth rigid indenter sliding with a constant
velocity over the boundary of the viscoelastic half-space. Contact shear and normal
stresses are related by the Amonton law (1).
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2 Problem Formulation

Consider the casewhere the rigid indenter with smooth surfacemoveswith a constant
velocity V over the viscoelastic half-space in the direction of the axis 0x (Fig. 1).
The indenter shape is described by the function f (x, y). The indenter is loaded by a
vertical force Q. It is assumed that the shear stresses within the contact region (which
arises due to friction satisfy the Amonton law (1)) are opposite to the direction of
sliding. This situation corresponds to the case of anisotropic friction [15]. To provide
the equilibrium conditions, tangential force T directed at Ox-axis is also applied to
indenter, i.e., T = μQ. The half-space is described by the coordinates |x | < ∞,
|y| < ∞, and z ≤ 0. In the moving Cartesian system of coordinates (x, y, z) related
to the indenter, the following boundary and equilibrium conditions (z = 0) are
considered:

w(x, y) = f (x, y) + D, (x, y) ∈ Ω,

τxz = μσz, (x, y) ∈ Ω,

σz = 0, τxz = 0, (x, y) /∈ Ω,

τyx = 0, −∞ < x < +∞,−∞ < y < +∞, (2)

Q =
∫ ∫

Ω

p(x, y) dx dy,

p(x, y) = −σz(x, y).

Here, Ω is the unknown contact region, w(x, y) is the normal displacement of the
half-space surface, D is the indenter penetration, and σz , τxz , and τyz are the normal
and shear stresses, respectively.

Under the assumption that the shear modulus G(t) is a time-dependent operator
and the Poisson ratio is constant, the mechanical behavior of the viscoelastic half-
space is described by the following constitutive equation [14]:

Fig. 1 Scheme of contact
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γ (t) = 1

G
σ(t) + 1

G

t∫
−∞

σ(τ)K (t − τ) dτ, (3)

K (t ′) = k exp

(
− t ′

λ

)
.

Here, γ (t) and σ(t) are the shear deformation and shear stress components, respec-
tively, G is the instantaneous shear modulus, λ is the retardation time and 1/k is the
relaxation time.

3 Solution Method

Wefirst consider sliding of the concentrated forcewith a constant velocityV along the
elastic half-space boundary at the x-axis direction. The force has a normal component
P and a tangential component T directed to the x-axis. The moving Cartesian system
of coordinates (x, y, z) is related to the force. In this system, the point where the
force is applied has the coordinates (ξ, η, 0). In the case of neglecting inertial terms,
the normal displacements at the surface (z = 0) are determined by the relation

w(x, y) = (1 − 2υ)T (ξ − x)

4πGr2
− (1 − υ)P

2πGr
, (4)

where G and υ are the shear modulus and the Poisson ratio of the elastic material,
r = √

(ξ − x)2 + (η − y)2 (see [14]).
Relation (4) can be used for determining normal displacements of the viscoelastic

half-space boundary under similar load conditions. With the assumption that the
shear modulus is a time-dependent operator (3) and the Poisson ratio is constant,
we obtain the following relations for the vertical displacements of the viscoelastic
surface provided that the concentrated load moves at the x-axis direction with the
constant velocity V :

w(x, y) = (1 − 2υ)T

4πG

⎡
⎣ξ − x

r2
+

0∫
−∞

K (−τ)
ξ − x − τ

r21
dτ

⎤
⎦

− (1 − υ)P

2πG

⎡
⎣1

r
+

0∫
−∞

K (−τ)
1

r1
dτ

⎤
⎦ .

(5)
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Here K (t) is the creep kernel and r1 = √
(ξ − x − V τ)2 + (η − y)2 (see [1, 14]).

In the case of the normal stress p(x, y) and the tangential stress τxz(ξ, η) distributed
over the half-space (z = 0) within the loading region Ω , we can deduce from (5)
the following relationship for the vertical displacement of the viscoelastic half-space
surface (z = 0) (see [1]):

w(x, y) = −1 − υ

2πG

∫ ∫
Ω

p(x, η)

⎡
⎣1

r
+

0∫
−∞

K (−τ)
1

r1
dτ

⎤
⎦ dξ dη

+ 1 − 2υ

4πG

∫ ∫
Ω

τ1(x, η)

⎡
⎣ξ − x

r2
+

0∫
−∞

K (−τ)
ξ − x − V τ

r21
dτ

⎤
⎦ dξ dη.

Taking into account that the creep kernel K (t ′) is the exponential function (3) and
introducing the notation

u = ξ − x − V τ

λV
,

we deduce the following integral relationship between the normal displacement
w(x, y) of the surface of the viscoelastic half-space (considering in the moving
system of coordinates) loaded by the distributed normal and tangential stress within
the region Ω (moving with the constant velocity V ):

w(x, y) = −1 − υ

2πG

∫ ∫
Ω

p(x, η)

[
1

r
+ 1

V
k I1

(
ξ − x

λV
,
η − y

λV

)]
dξ dη

+ 1 − 2υ

4πG

∫ ∫
Ω

τxz(x, η)

[
ξ − x

r2
+ 1

V
k I2

(
ξ − x

λV
,
η − y

λV

)]
dξ dη,

(6)

I1(α, β) = eα

∞∫
α

e−uudu

u2 + β2 ,

I2(α, β) = eαβ

∞∫
α

e−udu

u2 + β2 .

The Eq. (6) with the boundary conditions (2) is used to solve the contact problem.
A boundary element method is used to find the contact pressure distribution. We

use a mesh of square elements which covers the unknown contact region. Amounts
of elements along the axes 0x and 0y are N1 and N2, respectively. The pressure
is assumed to be constant in each element. A normal displacement of the surface
in the center of an arbitrary element is obtained by summation of displacements
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caused by the pressure applied to each element (influence coefficients). The influence
coefficients are determined by the following relationship:

k j
i = 2

π2c

Δ/2∫
−Δ/2

Δ/2∫
−Δ/2

[
1√

(ξ ′ − xi j )2 − (η′ − yi j )2

+
n∑

i=1

BeA(ξ ′−xi j )

∞∫
A(ξ ′−xi j )

e−udu√
u2 + A2(η′ − yi j )

]
dξ ′ dη′.

Here, c = G/Gl , Gl is the relation of instant and longitudinal shear modulus, A =
(Q R/Gl)

1/3/(λV ) and B = k(Q R/Gl)
1/3/V are dimensionless parameters, which

include the material characteristics and sliding contact parameters, (x ′, y′, ξ ′, η′) =
(x, y, ξ, η)/(Q R/Gl)

1/3 are dimensionless coordinates, Δ is the element size and
(x2i j + y2i j )

1/2 is distance between the centers of the elements. The matrix equation
which is needed to calculate the contact pressure, follows from the relations (2):

⎛
⎜⎜⎜⎝

Δ2 . . . Δ2 0
k11 . . . k1N −1
...

. . .
...

...

k N
1 . . . k N

N −1

⎞
⎟⎟⎟⎠ ×

⎛
⎜⎜⎜⎝

p1
...

pN

D

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Q
f1
...

fN

⎞
⎟⎟⎟⎠ . (7)

Here, p1 . . . pN are unknown constant pressures inside each square element, and
f1 . . . fN are the indenter shape in the centers of the elements. The matrix in (7) has
the dimension of N = (N1 × N2)

2 and it is solved by an iteration method.
Themechanical component of friction force T ∗, appeared due to hysteretic losses,

is calculated by the relation

T ∗ = 1

R

∫ ∫
Ω

xp(x, y) dx dy.

The mechanical component of the friction coefficient is determined by the relation
μ∗ = T ∗/Q.

4 Results and Discussion

The method described above is used to find the contact characteristics, i.e., pressure
and shear stress distributions and the contact region as well as the friction force for
the sliding contact of a spherical indenter over the viscoelastic half-space. The shape
of the indenter is described by the following function:

f (x, y) = x2 + y2

2R
. (8)
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Analysis of the Eq. (6) with the boundary conditions (2) allows us to conclude that
the dimensionless contact pressure p′ = p(x, y)/Gl R2 and other contact character-
istics depend on the dimensionless parameters A and B, which include the material
characteristics and sliding contact parameters, relation of instant and longitudinal
shear modulus c, dimensionless velocity V ′ = V λ/R, relative load Q′ = Q/Gl R2

and friction coefficient μ.
Figure2 represents contact pressure distributions for elastic (a) and viscoelastic

(b) half-spaces under the same loading-velocity conditions and the friction coefficient
μ = 0.5. For the mechanical parameters used in calculations, the distribution of the
contact pressure is non-symmetrical, and it is effected by the sliding velocity and
the friction coefficient. The pressure maximum shifts in the direction of motion and
the contact region is not circular. The cross sections of the pressure distributions are
compared in Fig. 2c. The contact zone is smaller and the maximum contact pressure
is larger in the case of viscoelastic material (curve 2 in Fig. 2c) compared to elastic
one (curve 1 in Fig. 2c). The shapes of pressure distributions are essentially different.

Fig. 2 Contact pressure distribution for the elastic solution (a), viscoelastic solution (b), and
comparison of the two (c): V ′ = 0.75, ν = 0.47, Q′ = 20, μ = 0.5, A = 2.31, B = 11.58, c = 1
(curve 1), c = 5 (curve 2)
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Fig. 3 The effect of tangential force on pressure distribution (a) and contact spot (b) V ′ = 0.75,
ν = 0.3, Q′ = 20, A = 2.31, B = 23.17, c = 5; μ = 0.5 (curve 1 in (a), solid line in (b)), μ = 0
(curve 2 in (a), dashed line in (b))

The effect of shear stresses within the contact region on the shape of contact
spot and a pressure distribution can be analyzed using the results presented in Fig. 3.
Figure3a illustrates the cross-section y = 0 of the pressure distributions in the
presence (curve 1) or in the absence (curve 2) of the shear stress within the contact
region for the same normal load and a sliding velocity. Existence of the shear stress
leads to the increase of a maximum pressure and the shift of the contact region to the
direction of sliding. The contact zone configurations for both cases are presented in
Fig. 3b.

The effect of a sliding velocity on contact characteristics has also been analyzed
(see Fig. 4). The contact region configurations for the same viscoelastic material,
the same normal and tangential load and for three sliding velocities are presented in
Fig. 4a–c. The results indicate that increase of the velocity leads to decrease of the
size of the contact zone (“flowing-up” effect) and to increase of the contact shift.
One can see that the back side of the a contact spot being closer to the indenters
center with the increase of velocity. The shape of a contact spot is also different for
different velocities and this occurs because of material viscosity. Figure4d illustrates
the pressure distributions in the cross section y = 0 for the cases considered in
Fig. 4a–c. The maximum value of the pressure within the contact region increases as
the velocity increases.

The nonsymmetrical distribution of the contact pressure and the contact shift
affect the mechanical component of the friction coefficient μ∗. Figure5 illustrates
the dependence of themechanical component of the friction coefficient on the dimen-
sionless velocity for the case of no shear stress within the contact region (curve 1) and
for the case of the existence of the adhesive friction (curve 2). The results indicate that
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Fig. 4 The effect of velocity on contact spot and pressure distribution ν = 0.47, Q′ = 20,μ = 0.5;
a V ′ = 0.5, curve 1 in (d), b V ′ = 0.75, curve 2 in (d), c V ′ = 2.0, curve 3 in (d)

the mechanical component of the friction coefficient for both cases is non monoton-
ical function of velocity. The resistant force and the mechanical component of the
friction coefficient grows with the increase of velocity until they reach some max-
imum values and then decrease. The results of calculations also indicate that the
adhesive friction within the contact region influences on the mechanical component
of the friction force which arises due to hysteretic losses in the contacting bodies.
The presence of the shear stress within the contact region leads to the increase of the
mechanical component of the friction coefficient μ∗.
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Fig. 5 The effect of velocity on hysteretic losses μ = 0 (curve 1) and μ = 0.7 (curve 2), ν = 0.3,
Q′ = 20, c = 5

5 Conclusions

The numerical-analytical method is developed to solve the friction contact problem
for a spherical slider and a viscoelastic half-space. The method is used to analyze
the contact pressure distribution for various load-velocity conditions and to study
the effect of the shear contact stress due to adhesive friction on the contact pressure
distribution and on the mechanical component of the friction force arising due to
hysteretic losses inside the contacting bodies.

The results of calculations indicate that the shear contact stresses increase the
maximum contact pressure value and the shift of the contact region to the front of the
indenter. The mechanical component of friction force arisen due to hysteretic losses
inside the contacting bodies also increases with increase of the adhesive friction
coefficient. It means, that the mechanical component of friction depends on the
adhesive friction within the contact region. Commonly used superposition of friction
forces of different nature is not correct for the case of boundary (adhesive) and
hysteretic friction.
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Stability of a Tensioned Axially Moving
Plate Subjected to Cross-Direction
Potential Flow

Juha Jeronen, Tytti Saksa and Tero Tuovinen

Abstract We analyze the stability of an axiallymovingKirchhoff plate, subjected to
an axial potential flowperpendicular to the direction ofmotion. The dimensionality of
the problem is reduced by considering a cross-directional cross-section of the plate,
approximating the axial response with the solution of the corresponding problem of
a moving plate in vacuum. The flow component is handled via a Green’s function
solution. The stability of the cross-section is investigated via the classical Euler type
static linear stability analysis method. The resulting eigenvalue problem is solved
numerically using Hermite type finite elements. As a result, the critical velocity and
the corresponding eigenfunction are determined. It is seen that even at very low free-
stream fluid velocities, the buckling shape may become antisymmetric in the cross
direction.

Keywords Axially moving · Kirchhoff plate · Stability · Eigenvalue problem
Mathematical Subject Classification: 74F10 · 74B05 · 76B99 · 65N25

1 Introduction

Models of out-of-plane vibrations of axially movingmaterials are commonly consid-
ered in the context of industrial production processes, such as paper making. Typical
models include axially moving strings, beams, panels (plates with cylindrical defor-
mation), membranes and plates. Research into the field began at the end of the 19th
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century [15]. Other important classical studies include, e.g., Sack [13], Archibald and
Emslie [1], Swope and Ames [16], and Simpson [14]. The field has remained active
to this day; stability problems of axially moving materials have been considered,
e.g., by Parker [11], Kong and Parker [9], and Wang et al. [17].

Problems of out-of-plane behaviour of axially moving materials share some of
their mathematical formulationwith those of axially compressed stationarymaterials
and those of gyroscopic systems, leading to questions of stability. The problem
parameter of interest is the axial velocity of the material.

In the case of lightweight materials, such as paper, the fluid–structure interac-
tion between the travelling material and the surrounding air must be accounted for,
because the inertial contribution of the surrounding air is significant. The surround-
ing air is known to change both the frequencies of natural vibration and the critical
velocity of the travelling material (see, e.g., [7, 10, 12]).

The present study concentrates on the stability analysis of an axially moving
Kirchhoff plate in an open draw, subjected to an axial potential flow perpendic-
ular to the direction of motion. The dimensionality of the problem is reduced by
considering a cross-directional cross-section of the plate, approximating the axial
response with the solution of the corresponding problem of a moving plate in vac-
uum. The flow component is handled via a Green’s function solution [6, 8], leading
to a one-dimensional integrodifferential model. The stability of the cross-section is
investigated via the classical Euler type static linear stability analysis method. The
eigenvalue problem is solved numerically using Hermite type finite elements.

2 Problem Setup

Consider a travelling, rectangular, isotropic Kirchhoff plate in the plane region

Ω ≡ {(x, y) | 0 < x < �, −b < y < b}, (1)

simply supported on the edges x = 0, � and free of tractions on the edges y = ±b,
see Fig. 1.

The dynamic equation of small vibrations of an isotropic, axially moving Kirch-
hoff plate, travelling at constant velocity V0 in the x direction, subjected to a constant
axial tension T0, applied at the rollers, and an aerodynamic reaction loading qf(w), is

mw,t t + 2mV0w,xt + (mV 2
0 −T0)w,xx + D(w,xxxx + 2w,xxyy + w,yyyy) = qf(w).

(2)

Subscripts after a comma denote partial differentiation. Here w is the transverse
displacement, m is the mass per unit area of the middle surface of the plate, and the
bending rigidity D is given by

D = Eh3

12(1 − ν2)
, (3)
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Fig. 1 Axially travelling
plate subjected to
cross-direction flow. Steady
state

where E is the Young’s modulus of the material, ν its Poisson ratio, and h the
thickness of the plate.

The boundary conditions are set as SFSF:

w = w,xx = 0 at x = 0, �, (4)

w,yy + νw,xx = 0 at y = ±b, (5)

w,yyy + (2 − ν)w,xxy = 0 at y = ±b. (6)

Static stability analysis, applied to Eq. (2), is concerned with determining
non-trivial steady-state solutions and the corresponding critical velocities as
eigenfunction-eigenvalue pairs (w, V0). In the steady state, (2) reduces to

(mV 2
0 − T0)w,xx + D(w,xxxx + 2w,xxyy + w,yyyy) = qf(w). (7)

It can be observed [5, 8] that near the middle point of an open draw, the buckling
shape is not much altered by the introduction of an aerodynamic load, when com-
pared to the vacuum case. Based on this observation, let us introduce the following
approximation.

The steady-state solution in the vacuum case is of the form [4]

w(x, y) = Ag(x) f (y) = A sin
(

kπ
x

�

)
f (y), (8)

where A is an arbitrary constant and k = 1, 2, 3, . . . . We approximate the flow as
two-dimensional in the yz plane for each fixed x , and approximate these slices as
being independent of each other. Observe that (8) fulfills the boundary condition (4)
identically.

By differentiating (8) twice with respect to x , we obtain

w,xx = −
(

kπ

�

)2

w ≡ βw, (9)
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where the constant β is defined by the obvious identification. Using (8) as a trial
function and inserting (9) to (7), and taking into account that qf(w), describing the
aerodynamic reaction of a potential flow, is linear in w, we obtain

(mV 2
0 − T0)β f + D(β2 f + 2β f ′′ + f (4)) = qf( f ), (10)

which is an approximate equation for the steady-state solution near the midpoint of
a long open draw. The x dependence has been eliminated; f = f (y).

3 Solution Approach

Let us define
α = (mV 2

0 − T0)β + Dβ2, (11)

and transform (10) into dimensionless coordinates in the usual manner:

ŷ ≡ y/b, ∂(·)/∂y → (1/b)∂(·)/∂ ŷ, f̂ (ŷ) ≡ f (bŷ). (12)

Applying the transformation and collecting terms, we have

α f̂ + D

(
2β

b2
f̂ ′′ + 1

b4
f̂ (4)

)
= qf( f̂ ), −1 < ŷ < 1. (13)

Equation (13) can be considered as an eigenvalue problem for the pair (α, f̂ ). The
eigenvalue α gives the critical velocity V ∗

0 via Eq. (11), while the eigenfunction f̂
describes the slice of the buckling form in the yz plane (refer to Fig. 1).

If α > 0, we observe that the axial tension is seen by the cross-directional cross-
section as a linear elastic foundation with stiffness α. Considering that β < 0, we
find that α > 0 at least until V0 = √

T/m, and slightly further if D > 0.
Now the aerodynamic reaction qf( f ) can be written explicitly in terms of f (y)

via a Green’s function solution for the Neumann problem of the Laplace equation
for a plane with a slit [5, 6, 8]. In the general dynamic case, we have

qf( f̂ , t) = −bρf
τ 2

(
∂

∂t
+ τ

b
v∞

∂

∂ ŷ

) ∫ 1

−1
N (η, ŷ)

(
∂

∂t
+ τ

b
v∞

∂

∂η

)
f̂ (η, t) dη.

(14)

The parameter τ is an arbitrary characteristic time used for nondimensionalizing the
time coordinate, v∞ is the free-stream velocity of the potential flow, and N (η, y) is
the aerodynamic kernel (Green’s function):
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N (η, ŷ) ≡ 1

π
ln

∣∣∣∣1 + Λ(η, ŷ)

1 − Λ(η, ŷ)

∣∣∣∣ , where Λ(η, ŷ) ≡
[
(1 − ŷ)(1 + η)

(1 − η)(1 + ŷ)

]1/2
. (15)

For details, see the references.
Specializing to steady state, as ∂/∂t → 0, the characteristic time τ cancels, and

we obtain

qf( f̂ ) = −ρfv2∞
b

∂

∂ ŷ

(∫ 1

−1
N

(
η, ŷ

) ∂

∂η
f̂ (η) dη

)
. (16)

This results in a one-dimensional integro-differential model in terms of f (y). In this
approach, a flow solver is not needed; the pressure difference is obtained directly by
solving the strongly coupled model.

After inserting (16) into (13), multiplying both sides of the equation by a test
functionψ , integrating over the domain of ŷ, performing the appropriate integrations
by parts, moving the aerodynamic reaction term to the left-hand side, and finally
multiplying both sides of the equation by b4, we have the weak form

αb4
∫ 1

−1
f̂ ψ d ŷ − 2βb2D

∫ 1

−1
f̂ ′ψ ′ d ŷ + D

∫ 1

−1
f̂ ′′ψ ′′ d ŷ

+ 2βb2D
[

f̂ ′ψ
]1

ŷ=−1
+ D

[
f̂ (3)ψ

]1
ŷ=−1

− D
[

f̂ ′′ψ ′]1
ŷ=−1

− ρfb
3v2∞

∫ 1

−1

(∫ 1

−1
N (η, ŷ)

∂

∂η
f̂ (η) dη

)
ψ ′(ŷ) d ŷ

+ ρfb
3v2∞

[(∫ 1

−1
N (η, ŷ)

∂

∂η
f̂ (η) dη

)
ψ(ŷ)

]1
ŷ=−1

= 0, −1 < ŷ < 1. (17)

Note that with the F boundary conditions, all boundary terms give a nonzero contri-
bution.

To implement the free edge boundary conditions, we insert the trial function (8)
into the boundary conditions (5) and (6), and solve for f̂ ′′ and f̂ (3), respectively. We
obtain that on the free edges,

1

b2
f̂ ′′ + νβ f̂ = 0 ⇒ f̂ ′′ = −νβb2 f̂ , (18)

1

b3
f̂ (3) + 1

b
(2 − ν)β f̂ ′ = 0 ⇒ f̂ (3) = (ν − 2)βb2 f̂ ′. (19)

Expressions (18) and (19) are then inserted into the boundary terms in (17).
Finally, the weak form is discretized using finite elements. We use the standard

Galerkin representation

f̂ (ŷ) =
∞∑

n=1

fnϕn(ŷ), (20)
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where fn are the unknown coefficients, and ϕn are basis functions for each global
degree of freedom. In the numerical implementation, the series is truncated at a finite
upper limit N .

Continuity of the basis functions across element boundaries must be C1 due to
the bending term, which involves second derivatives in the weak form. In this study,
this was achieved by using elements of the Hermite type.

We proceed by the standard Galerkin method, where the test functions ϕ j are
taken as the same functions as the basis. Inserting (20) to (17), and moving the first
term to the right-hand side, this leads to a generalized linear eigenvalue problem in
the following form:

{
2βb2D(C jn + Γ C

jn) + D
[
D jn + (ν − 2)βb2Γ 1

jn − νβb2Γ 2
jn

]

+ (ρfb
3v2∞)(c jn + Γ c

jn)
}

fn = −αb4A jn fn, for all j = 1, . . . , N ,

(21)

where summation over n = 1, . . . , N is implied. In this problem for f̂ (ŷ), there are
no Dirichlet boundary conditions, so there is no need to eliminate any of the degrees
of freedom.

The matrices in (21) are given by

A jn =
∫ 1

−1
ϕnϕ j d ŷ, C jn = −

∫ 1

−1
ϕ′

nϕ′
j d ŷ, Γ C

jn = [
ϕ′

nϕ j
]1

ŷ=−1 ,

D jn =
∫ 1

−1
ϕ′′

nϕ′′
j d ŷ, Γ 1

jn = [
ϕ′

nϕ j
]1

ŷ=−1 , Γ 2
jn = −

[
ϕnϕ′

j

]1
ŷ=−1

,

c jn = −
∫ 1

−1

(∫ 1

−1
N (η, ŷ)

∂

∂η
ϕn(η) dη

)
ϕ′

j (ŷ) d ŷ,

Γ c
jn =

[(∫ 1

−1
N (η, ŷ)

∂

∂η
ϕn(η) dη

)
ϕ j (ŷ)

]1
ŷ=−1

. (22)

These matrices are assembled by summing local elementwise contributions in the
standard manner. Due to the support of each global basis function spanning only
two elements (one element at the ends of the domain), most matrices will be sparse,
with the exception of c jn and Γ c

jn , which will be full due to the inner integral.
The full matrices, however, present no practical issue, because the problem is one-
dimensional, and thus the number of degrees of freedom will be relatively small.

Note that Eq. (17) is always valid, whereas in (21) we have applied the boundary
conditions (18) and (19). The matrices Γ C

jn and Γ 1
jn in (22) are the same; this is a

coincidence due to the boundary condition (19).
Equation (21) is solved by applying a standard solver for generalized linear eigen-

value problems. The critical velocity V ∗
0 is computed from the eigenvalue α via
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Eq. (11), and the cross-directional slice of the buckling shape, f̂ (ŷ), is assembled via
Eq. (20) (using a finite upper limit N ). Finally, the full buckling shape is obtained
from (8).

4 Numerical Examples

In the following are some numerical examples. The number of elements used was 40.
The problem parameters were set as follows, considered typical for paper production
applications:

T0 = 500N/m, m = 0.08 kg/m2, E = 109 N/m2,

b = 0.5m, h = 10−4 m, ν = 0.3, ρf = 1.225 kg/m3. (23)

The bending rigidity D was calculated from Eq. (3). The constants α and β were
determined by (11) and (9), respectively.

The aspect ratio of the plate and the fluid free-stream velocity were varied across
the examples. To change the aspect ratio, the span length � was varied, keeping the
span half-width b as constant.

Figure2 shows the behaviour of the lowest critical velocity V ∗
0 as a function of

the plate shape parameter �/b and fluid free-stream velocity v∞. The behaviour is
qualitatively similar to that of a travelling panel subjected to axial flow, when the
fluid flow parameters are changed (see [8, Fig. 40]).

Figures3, 4, 5, 6, 7, 8, 9, 10 and 11 show the critical buckling mode for various
aspect ratios and fluid velocities. In each figure, the left subfigure shows the shape

Fig. 2 Behaviour of the
lowest critical velocity V ∗

0 as
a function of the plate shape
parameter �/b and fluid
free-stream velocity v∞. In
the blank area, there is no
physically meaningful
solution
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Fig. 3 Critical buckling mode for �/b = 10, v∞ = 0

Fig. 4 Critical buckling mode for �/b = 10, v∞ = 0.2

Fig. 5 Critical buckling mode for �/b = 10, v∞ = 0.5

of the slice, f̂ (ŷ), and the right subfigure shows the complete buckling mode w,
composed according to Eq. (8). The free constant A was chosen to normalize the
maximum of w to 1.
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Fig. 6 Critical buckling mode for �/b = 1, v∞ = 0

Fig. 7 Critical buckling mode for �/b = 1, v∞ = 0.2

Fig. 8 Critical buckling mode for �/b = 1, v∞ = 0.5

Figures3, 4 and 5 demonstrate a long and narrow span (�/b = 10), Figs. 6, 7 and
8 a span that is twice as wide as long (�/b = 1, leading to aspect ratio �/(2b) = 1/2),
and Figs. 9, 10 and 11 a span that is short and wide. The effect of the aspect ratio
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Fig. 9 Critical buckling mode for �/b = 0.1, v∞ = 0

Fig. 10 Critical buckling mode for �/b = 0.1, v∞ = 1.0

Fig. 11 Critical buckling mode for �/b = 0.1, v∞ = 2.5

is qualitatively similar to the corresponding vacuum case; for short and wide spans,
the displacement in the buckling mode becomes localized near the free edges of the
travelling plate (see [4]).



Stability of a Tensioned Axially Moving Plate … 115

From the figures, we observe that first, the buckling mode is very sensitive to
the parameter values, while the critical velocity is not. Secondly, for some values of
the problem parameters, the buckling mode becomes antisymmetric with respect to
ŷ = y/b. In the corresponding vacuum case, the buckling mode that corresponds to
the lowest critical velocity is always symmetric [4].

5 Conclusion

The present study concerned the stability analysis of an axially moving Kirchhoff
plate in an open draw, subjected to an axial potential flow perpendicular to the
direction of the travelling motion. The problem was solved in a two-dimensional
approximation, which allowed semi-analytical solution of the fluid flow subproblem.
The approximate problem was reduced into an eigenvalue problem by applying
classical Euler stability analysis. The lowest critical plate velocity and the buckling
shape were determined numerically using Hermite type finite elements.

It was seen that the parameters affecting the plate behaviour are the plate aspect
ratio, �/(2b), and the fluid effect coefficient, which is controlled by the free-stream
fluid velocity v∞. The aspect ratio of the plate was seen to have the same effect as in
the vacuum case (see [4]). For short and wide spans, the displacement in the buckling
mode becomes localized near the free edges.

When either of the two parameters was increased from zero, the critical velocity
decreased from its vacuum value. At fixed �/b > 0 (respectively v∞), there was a
limit value of v∞ (resp. �/b), where the buckling occurs already at V0 = 0. This
behaviour of the lowest critical velocity as a function of the problem parameters is
typical for this kind of equations.

It was observed that the buckling mode is very sensitive to the parameter values,
while the critical velocity is not. The same observation holds for several related
models, see, e.g., [2–4].

For some values of the problem parameters, the buckling mode was observed
to become antisymmetric with respect to the plate width coordinate y. In the cor-
responding vacuum case, the buckling mode that corresponds to the lowest critical
velocity is always symmetric.
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Multiaxial Fatigue Criteria and Durability
of Titanium Compressor Disks
in Low- and Very-high-cycle Fatigue Modes

Nikolay Burago and Ilia Nikitin

Abstract Life duration for titanium disks of low temperature part of compressor
aero-engineD30-Ku is investigated. Several criteria andmodels are tested under con-
ditions of low-cycle fatigue (LCF) and very-high-cycle fatigue (VHCF). Parameters
of the criteria andmodels are determined fromuniaxial fatigue tests for titanium alloy
VT3-1. Stress-strain state of disks and blades is calculated taking into account cyclic
centrifugal, aerodynamic, contact loads and blade vibrations. Calculated stresses and
strains are used as input data for multiaxial models of LCF andVHCF regimes. Loca-
tion and scales of fracture as well as time to fracture are calculated. The results of
calculations are in good agreement with observations during engine exploitation and
correspond to data of fractographic investigations of damaged disks.

Keywords Fracture and damage · Fatigue criteria
Mathematical Subject Classification: 74R20

1 Introduction

In this paper we consider the problem of determining the duration of safe operation
of structures. In experiments [1] it is shown that under the action of cyclic loads after
several millions or billions of cycles the material may be damaged even if during
this time only small elastic deformations were observed and in the material there
were no signs of macroscopic defects. To date, several phenomenological models of
fatigue failure have been developed [2, 5–9, 11–13], generalizing the experimental
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Fig. 1 Fracture in disks for compressor of aero engines D30-KU-154

data for the case of a multiaxial stress-strain state. To determine the safe operation
life of structures for such models it is sufficient calculate the stress-strain state using
the linear theory of elasticity. Available models of fatigue failure are divided into
three groups, the first of which is based on the criteria of stress state [5, 7, 11], the
second group is based on criteria for strain state [2, 6, 12], and third group is based
on the calculation of the kinetics of damage [8]. The physical nature of damage in
the material structure under the action of cyclic loads, which is investigated in e.g.
[1, 10], is still an active topic of study.

Fatigue fracture of disks of gas turbine engines (GTE) is a well-known phenom-
enon [10]. The gas turbine engines are subjected to various cyclic loads. The cycles
of “take-off-flight-landing” correspond to low cycle fatigue. The presence of small
vibrations with R = σmin/σmax > 0.8 corresponds to very high cycle fatigue.

It is demonstrated that such additional loads can essentially alter the picture of
damage accumulation in service. There were several unpredicted cases of damage to
titanium rotor disks in the low pressure compressor stage in the D30-KU-154 engine
(Fig. 1). The fatigue failures may take place earlier than in accordance with the LCF
criteria, and that is why a new numerical approach is developed here in order to
estimate and to compare life duration predictions not only for the LCF but also for
the VHCF regimes.

The finite elementmodel for the diskwith blades under consideration is developed
in [3] and the 3D stress-strain state is analyzed there taking into account centrifu-
gal and aerodynamic loads, contact and vibration loads. Aero-elastic effects due to
mutual influence of aerodynamic loads and structural shape changes are also taken
into account.

It is assumed that during the flight cycle the maximum values of stresses and
strains correspond to the aircraft flight velocity of 200m/s and the disk rotation
frequency of 3000 rpm. It is assumed that during many years of safe exploitation the
disks are subjected only to elastic deformations and do not contain cracks. Our first
goal is to calculate disk life duration as the limiting number of cycles to failure and
to detect the location of failure using fatigue criteria [2, 4–9, 11–13] for LCF regime
of cyclic loading. The results are compared to available in-flight data.
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Our second goal is to study the VHCF regime of cyclic loading due to additional
action of high frequency axial vibrations of blade shroud ring. The maximum vibra-
tion amplitude is assumed to be at a disk rotation frequency of 3000 rpm. Evaluations
of life duration are presented in terms of the number of vibration cycles according
to various VHCF criteria.

Until now, in the literature there are no experimental data and theoretical multi-
axial models applicable to the considered material (titanium alloy VT3-1) for VHCF
regime. Therefore the known multiaxial LCF criteria are generalized here and are
applied to study the VHCF regime. The generalization is performed using similarity
of the left and right branches of bimodal fatigue curves. The values of parameters for
generalized criteria are determined using the few available experimental data found
for VHCF regime.

There are noother publications on the life duration estimates for three-dimensional
structure in VHCF regime in scientific literature yet. The calculated results for the
low-cycle and very-high-cycle fatigue are compared. It is found that in the life dura-
tion estimates are close to each other. That is why the VHCF mechanism should be
taken into account in the resource estimates of GTE.

2 Computational Model of Contact Structure “Disk and
Blades”

The application of finite element method for contact structure disk and blades is
described in [3]. The three-dimensional stress-strain state of the contact system of
the compressor disk and blades (Fig. 2) is numerically analyzed using finite-element
method. The distributed aerodynamic loads are approximated using analytical meth-
ods based on modification of classical solutions to the problem of flow about a lattice
of plates at arbitrary angle of attack. The solution of aerodynamic problem is obtained
using theory of complex variablemethods and the isolated profile hypothesis with the
blade deformable shape changes taken into account [3]. The combined action of cen-
trifugal, aerodynamic and contact loads is taken into account. First, stress-strain state
is calculated for the full computational model “disk with 22 blades” (Fig. 2a) using
a rough grid with a number of elements of about 105. Then, the solution obtained
from the calculation of the full model is used to move the boundary conditions onto
the sides of the disk sector with a single blade (Fig. 2b), which is calculated using
the refined grid with the same number of finite elements of about 105, which is quite
acceptable for calculations on a personal computer. Calculated stresses and strains
are used in LCF and VHCF models for life duration estimations.

Extended numerical model is used for VHCF analysis taking into account low-
amplitude axial vibrations of shroud ring. The vibrations cause axial displacements
of the shroud ring. The vibrations along the ring take the form of 12–16 half waves.
For the disc-blade sector calculation it was assumed that the displacement of right
side of shroud ring is equal to zero and that the displacement of its left side varies
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Fig. 2 The contact system of the compressor disk and blades: a disk-blades contact structure, b
disk sector with blade and part of shroud ring

Fig. 3 The contact system of the compressor disk and blades: a schematic for vibration analysis,
b the slot of dovetail-type connection

in the range the maximal vibration amplitude of ±1mm (Fig. 3a) for a frequency of
3000 rpm. Vibration stresses are imposed on the basic stresses and then are used in
VHCF models for life duration estimations. The most dangerous area is shown in
Fig. 3b.
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3 Low Cycle Fatigue Models

3.1 LCF Models Based on the Stress State Estimation

The coefficients in criteria of fatigue fracture are determined from the experiments
for uniaxial cyclic loading for different values of stress ratio R = σmin/σmax, where
σmax and σmin are the maximum and minimum stresses during the cycle. These
values are used to define the stress amplitude σa = (σmax − σmin)/2. In the case of
uniaxial deformation, the test data are described using Wohler curves, which can be
analytically written by using the Basquin formula [4]:

σ = σu + σc Nβ (1)

Here σu is the fatigue limit, σc is the fatigue strength factor, β is the fatigue strength
exponent, and N is the number of cycles to fracture. A typical amplitude fatigue
curve is depicted in Fig. 4. The curve consists of two branches corresponding to
two fatigue regimes, the low cycle fatigue regime with fatigue limit σu and very
high cycle fatique regime with fatigue limit σ̃u . The regime of interest is located
in the left branch of the curve for life duration N < 107 cycles. The problem of
fatigue fracture is that the spatial function of the life duration distribution N must
be determined from equations in the form (1) generalized to multi-axis stress state
and containing the calculated stresses for the structure under study. Below the basic
methods of generalizing the results of uniaxial tests to multi-axis stress state are
considered [4].

Fig. 4 Typical fatigue Wohler’s curve for metals. Here σB is the strength limit, σu and σ̃u are
fatigue limits for LCF and VHCF regimes respectively
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3.1.1 Sines Model

According to Sines [11], the uniaxial fatigue curve (1) may be generalized to multi-
axis stress state as

Δτ/2 + αsσmean = S0 + ANβ (2)

where

σmean = (σ1 + σ2 + σ3)mean

Δτ =
√

(Δσ1 − Δσ2)
2 + (Δσ1 − Δσ3)

2 + (Δσ2 − Δσ3)
2/3

Here the parameter σmean is the mean stress over a loading cycle. The parameter Δτ

is the change in the octahedral tangent stress per cycle. The parameter Δτ/2 is the
octahedral tangent stress amplitude. Parameters αs, S0, A and β are experimental.
The model parameters for uniaxial fatigue curves are determined in [4]:

S0 = √
2σu/3, A = 10−3β

√
2(σB − σu)/3

αs = √
2(2k−1 − 1)/3, k−1 = σu/(2σu0)

Here σu and σu0 are the fatigue limits according to fatigue curves for R = −1 and
R = 0, N ≈ 107−108 cycles. It is assumed that the decrease of strength limit σB is
negligible up to the values N ≈ 103 (Fig. 4).

3.1.2 Crossland Model

According to Crossland [5], the uniaxial fatigue curve (1) may be generalized to
multi-axis stress state as

Δτ/2 + αc(σmax − Δτ/2) = S0 + ANβ, σmax = (σ1 + σ2 + σ3)max (3)

Here σmax is the maximum sum of principal stresses in a loading cycle, and αc, S0, A
andβ parameters determined fromexperimental data. Thefinal expressions formodel
parameters of the multiaxial model are determined in [4] for R = −1 and R = 0 as

S0 = σu

[√
2/3 + (1 − √

2/3)αc

]
A = 10−3β

[√
2/3 + (1 − √

2/3)αc

]
(σB − σu)

αc = (k−1
√
2/3 − √

2/6)
/[

(1 − √
2/6) − k−1(1 − √

2/3)
]

k−1 = σu/(2σu0)
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3.1.3 Findley Model

The form of this model for the multi-axis stress state is proposed by Findley [7]

(Δτs/2 + αFσn)max = S0 + ANβ (4)

Here τs and σn are the absolute magnitudes of tangent stress and normal stress for
the plane with normal vector ni . For this plane, the combinationΔτs/2+αFσn takes
a maximum value. The model parameters are

S0 = σu

(√
1 + αF

2 + αF

)
/2,

A = 10−3β(
√
1 + αF

2 + αF )(σB − σu)/2

αF =
[√

5k−1
2 − 2k−1/2 − k−1(1 − k−1)

] [
k−1(2 − k−1)

]−1

Approximate parameter values for the titanium alloy Ti-6Al-4V [4] (which are
used in the computational example considered below) are limit strength ofσB = 1100
MPa, fatigue limits based on σa(N ) amplitude curves for R = −1 and R = 0 of
σu = 450 MPa and σu0 = 350 MPa, exponent in the power-law dependence on the
number of cycles of β = −0.45, Young’s modulus of E = 116 GPa, shear modulus
of G = 44 GPa, and Poisson’s ratio of ν = 0.32.

3.2 LCF Models Based on the Strain State Estimation

Classical Coffin-Manson relation [10] describing uniaxial fatigue fracture on the
basis of deformations is

Δε/2 = (2N )bσc/E + εc(2N )c

Here σc is the (axial) fatigue strength coefficient, εc is the (axial) fatigue plasticity
coefficient, b and c are the fatigue strength and fatigue plasticity exponents. Models
generalizing the Coffin-Manson relation to the case of multi-axis fatigue fracture are
briefly outlined below.

3.2.1 Brown-Miller Model

This model is proposed by Brown and Miller [2]; it takes into account the influence
of tensile strains at the plane of maximum shear strain:

Δγmax

2
+ αbmΔε⊥ = β1

σc − 2σ⊥mean

E
(2N )b + β2εc(2N )c (5)
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Here γi j = 2εi j , εi j are the strain tensor components; Δγmax/2 is the range of the
maximum shear strains attained on the plane;Δε⊥ is the range of the tensile strains on
this plane, and σ⊥mean is the cycle-average tensile stress on this plane. Approximate
values for the coefficients are provided in [? ]:αbm = 0.3,β1 = (1+ ν)+(1− ν)αbm ,
β2 = 1.5 + 0.5αbm .

3.2.2 Fatemi-Socie Model

This model is proposed by Fatemi and Socie [6]; it takes into account the influence
of the normal stresses at the plane of maximum shear strains:

Δγmax

2
(1 + k

σ⊥max

σy
) = τc

G
(2N )b0 + γc(2N )c0 (6)

Here σ⊥max is the cycle-maximum normal stress on the plane where γmax is attained,
σy is the material yield strength, τc is the fatigue (shear) strength coefficient, γc is
the fatigue (shear) plasticity coefficient, b0 and c0 are the fatigue strength and fatigue
plasticity exponents. The coefficient k is approximately equal to k = 0.5 [4].

3.2.3 Smith-Watson-Topper Model

This model is described in [12] and accounts for the influence of the normal stress
at the plane of maximum tensile strain:

Δε1

2
σ⊥1max = σc

2

E
(2N )2b + σcεc(2N )b+c (7)

Here Δε1 is the change in the maximum principal strain per cycle and σ⊥1max is the
maximum normal stress at the plane of maximum tensile strain. The fatigue parame-
ters for titanium alloys for this class of models are selected based on experimental
data [4]: σc = 1445 MPa, εc = 0.35, b = −0.095, c = −0.69, τc = 835 MPa,
γc = 0.20, b0 = −0.095, c0 = −0.69, σy = 910 MPa.

3.3 LCF Models Based on Damage Estimation

3.3.1 Lemaitre-Chaboche Model

The differential equation for damage D accumulated under multi-axis cyclic loading
is proposed in [8] and after integration may be written as

N = 1

(1 + β)aM

[
(1 − 3b2σ)

AI I a

]β 〈
(σu − σV M )

(AI I a − A∗)

〉
(8)
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Here the notation from [8] is used

AI I a = 0.5
√
1.5

(
Si j,max − Si j,min

) (
Si j,max − Si j,min

)
σV M = √

0.5Si j,maxSi j,max
σ = (σ1 + σ2 + σ3)mean/3
A∗ = σ10 (1 − 3b1σ)

aM = a/Mβ
0

The parameters Si j,max and Si j,min are maximum and minimum values of stress
deviator during loading cycle; the angle brackets are defined as: 〈X〉 = 0 for X < 0
and 〈X〉 = X for X ≥ 0. The model parameters for a titanium alloy are given in
[8]: β = 7.689, b1 = 0.0012, b2 = 0.00085 1/MPa, aM = 4.1 × 10−28, σ10 = 395
MPa, and σu = 1085 MPa.

3.3.2 The Liege University (LU) Model

This model is proposed and validated in [6]. In this case, the integrated differential
equation for the damage is

N = γ + 1

C

〈
σu − θ · σV M

AI I a − A∗

〉
f −(γ+1)
cr (9)

Here the notation from [8] is used

fcr = 1
b (AI I a + aσH − b) , fcr > 0

A∗ = σ−1 (1 − 3sσH )

σH = (σ1 + σ2 + σ3)max/3

The model parameters are taken from [8]: a = 0.467, b = 220 MPa, γ = 0.572,
C = 7.12 × 10−5, θ = 0.75, s = 0.00105 1/MPa, σ−1 = 350 MPa, σu = 1199
MPa.

3.4 Results of LCF Calculations

As an example, we consider the problem of fatigue fracture of GTE compressor disks
under low-cycle-fatigue (LCF) conditions. For each FLC (flight loading cycle) it is
assumed thatmaximal loads and rotation correspond to cruising speed of aircraft. The
problem is to calculate the life duration of the disk (N—the number of FLCs before
fracture) from relations (2)–(9). To this end, it is necessary to calculate the stress
state of the contact system of the compressor disk and blades under the combined
action of centrifugal, aerodynamic and contact loads.
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The input parameters include the angular velocity of rotationω = 314 rad/s (3000
rpm), the dynamic pressure at infinity ρv2∞/2 =26000 N/m2, corresponding to a
flow velocity of 200m/s and the air density of 1.3kg/m3. The total number of finite
elements does not exceed 1,00,000 making it possible to solve the problem using
usual personal computer. The material properties are E = 116 GPa, ν = 0.32, and
ρ = 4370 kg/m3 for the disk (titanium alloy), E = 69 GPa, ν = 0.33 and ρ = 2700
kg/m3 for the blades and blade shroud ring (aluminum alloy), and E = 207 GPa,
ν = 0.27 and ρ = 7860 kg/m3 for the fixing pins (steel).

The computations [3] indicate that the most dangerous areas are situated in the
contact area of dovetail-type between the disk and the blades. The computations
[3] also indicate that the best correspondence of computational and experimental
data for stress concentration is provided when the detachment and slip of contact-
ing elements (disk and blades) are taken into account. At the fixing pins boundary
(Fig. 2b) the conditions of complete adhesion are used according to technological
considerations. The zone of maximum tensile stress concentration is situated in the
left (rounded) corner of the contact area of dovetail-type (Fig. 3b). The stress con-
centration is increased from the front to the rear portion of the groove according to
observable nucleation of fatigue failure in the rear portion of the disk [10].

3.5 Estimate of Service Life for Structure Elements According
to LCF Criteria

In Fig. 5a–h, the computed number of flight cycles before fracture N for the chosen
criteria and multi-axis models of fatigue fracture are displayed for the left corner of
disk-blade contact joint of dovetail-type (in the zones of maximum stress concentra-
tion). The boundary of contact zone near the left corner of the groove is depicted by
solid line (Fig. 6).

In Fig. 5a–h, the horizontal axis represents the dimensionless coordinate of the
rounding of the groove’s left corner; the vertical axis represents the dimensionless
coordinate across the groove depth. The Sines, Lemaitre-Chaboche, Brown-Miller,
and Smith-Watson-Topper criteria provide estimates for the service life of gas turbine
engine disks of approximately 20,000–50,000 cycles. The Crossland and LU criteria
predict the possibility of fatigue fracture after fewer than 20,000 flight cycles. On
the whole, all of the criteria predict similar locations for the fatigue fracture regions.
The Fatemi-Socie criterion gives a service life prediction of approximately 1,00,000
cycles. The deviation of the Fatemi-Socie estimate from the results based on the other
criteria suggests that the shear mechanism of multi-axis fatigue fracture, which is
reflected in this criterion, is not purely realized in flight loading. Remark that 25,000
flight cycles correspond to an in-service lifetime of 50,000 h for two hour flights.
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Fig. 5 Life duration estimates in the area of failure initiation for LCFmodels: a Sines, b Crossland,
c Findley, d Brown-Miller, e Fatemi-Socie, f Smith-Watson-Topper, g Lemaitre-Chaboche, h Liege
University

Fig. 6 The area of failure
initiation; it is indicated by
solid lines and situated in the
slot of dovetail-type
connection

4 Very High Cycle Fatigue Models

An alternative fatigue mechanism may also be examined for high frequency axial
vibrations of the shroud ring. The amplitude of vibrations and stress state disturbances
near stress concentrators are relatively small, but the number of high frequency
vibrations can be as high as 109−1010, and evaluation of the very-high-cycle fatigue
(VHCF) regime is necessary because fatigue may take place even if stress levels
are below classical fatigue limits [7]. At present there is no experimentally verified
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multi-axis VHCF theory for titanium alloy. In order to obtain life duration estimates
the known multi-axis LCF models (2), (4), and (6) are used, taking into account
general assumptions about VHCF curves. A typical fatigue curve is presented in
Fig. 4, and in case of VHCF the right portion of the curve for N > 108 is of interest.

4.1 Generalization of Sines Model

The VHCF parameters are determined using one-dimensional fatigue curves in a
manner similar to the LCF case. The similarity between the left and right halves of
the fatigue curve is taken into account through the substitution σB → σu , σu → σ̃u

and σu0 → σ̃u0, where σ̃u and σ̃u0 are new fatigue limits for right half of the fatigue
curve for asymmetry factors R = −1 and R = 0, N > 1011 cycles (Fig. 4). The
VHCF parameter values for the generalized Sines model (2) are

S0 = √
2σ̃u/3, A = 10−8β

√
2(σu − σ̃u)/3,

αs = √
2(2k−1 − 1)/3, k−1 = σ̃u/σ̃u0/2

4.2 Generalization of Crossland Model

By analogy the VHCF parameters for the generalized Crossland model (4) are

S0 = σ̃u

[√
2/3 + (1 − √

2/3)αc

]
, A = 10−8β(σu − σ̃u)

[√
2/3 + (1 − √

2/3)αc

]

4.3 Generalization of Findley Model

The VHCF parameters for the generalized Findley model (6) are

S0 = σ̃u

(√
1 + αF

2 + αF

)
/2, A = 10−8β(σu − σ̃u)(

√
1 + αF

2 + αF )/2

For titanium alloy the following parameter values are used σu = 450 MPa, σ̃u =
250 MPa, σ̃u0 = 200 MPa. β = −0.3

4.4 Results of VHCF Calculations

The maximum stress concentration occurs near the rounding of the groove’s left
corner. The calculated limits of N (number of safe vibration cycles) for a selected
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Fig. 7 Life duration estimates in the area of failure initiation for VHCF models: a Sines, b Cross-
land, c Findley

area of the left corner are depicted in Fig. 7. The results were obtained using the
VHCF generalized criteria of Sines, Crossland, and Findley. Despite the rather low
additional vibration stress amplitude level in this case, zones of fatigue failure are also
appeared. The fatigue failure zones are situated near the rear portion of the groove’s
left corner (in the same location as in the LCF case). The safe vibration loading cycle
number is approximately equal to 109−1010, corresponding to an in-service lifetime
of 50,000 h.
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5 Conclusions

A numerical model is developed to estimate the service life of structural elements for
both LCF (flight cycles) and VHCF (vibrations) regimes. Comparative estimates of
life duration for GTE compressor disk-blade contact structures were obtained using
Sines, Crossland, and Findley fatigue models. The life duration estimates obtained
for LCF and VHCF mechanisms coincided closely with the observed service life of
titanium compressor disks in the D30-KU-154 GTE. So, original and generalized
fatigue failure criteria may be used for estimating in-service life duration of titanium
disks.

Although presented life duration estimates are rather approximate, they highlight
the possibility of fatigue fracture development in structural elements for both LCF
(flight cycles) and VHCF (high frequency low amplitude vibrations) regimes. The
most serious hazardmayhappendue tomutual actionof the bothmechanismsbecause
they may cause the fatigue failure developed almost simultaneously and in the same
location.
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Dynamic Analysis for Axially Moving
Viscoelastic Poynting–Thomson Beams

Tytti Saksa and Juha Jeronen

Abstract This paper is concerned with dynamic characteristics of axially mov-
ing beams with the standard linear solid type material viscoelasticity. We consider
the Poynting–Thomson version of the standard linear solid model and present the
dynamic equations for the axially moving viscoelastic beam assuming that out-of-
plane displacements are small. Characteristic behaviour of the beam is investigated
by a classical dynamic analysis, i.e., we find the eigenvalues with respect to the beam
velocity.With the help of this analysis, we determine the type of instability and detect
how the behaviour of the beam changes from stable to unstable.

Keywords Beams · Viscoelasticity · Stability
Mathematical Subject Classification: 35Q74 · 65N25 · 74D05 · 74G55 · 74G60 ·
74H55 · 74K10 · 74S20

1 Introduction

Stability of axially moving beams has been studied for a long time beginning in the
1970s when Simpson pointed out that the behaviour of translating beams differs
from that of stationary beams [14]. Simpson studied the natural frequencies of the
translating beam and found out that the beam undergoes divergence instability at a
sufficiently high translation velocity. Stability of axially moving elastic beams has
been further studied, e.g., by Wickert and Mote, who presented the equations of
motion in a canonical form and the expressions for the critical transport velocities
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explicitly [20]. Kong and Parker derived an analytical expression for the natural
frequencies of the translating elastic beam having small bending stiffness [4].

Eigenvalues (related to eigenfrequencies or natural frequencies), stability, and
critical velocities for axially moving viscoelastic beams were studied by Oh et al.
[10] and Lee and Oh [6]. They used the (two-parameter) Kelvin–Voigt model for
viscoelasticity and the partial time derivative in the constitutive relations. Mocken-
sturm and Guo [9] suggested that for axially moving materials, one should use the
material time derivative in the viscoelastic constitutive relations. The material time
derivative has been used in the recent studies for moving viscoelastic materials (see,
e.g., [3, 16]). For example, Saksa et al. [11] studied the stability of axially moving
viscoelastic Kelvin–Voigt beams and panels with the help of eigenvalues and using
the material time derivative. They also introduced a fifth boundary condition for the
dynamic equation, which involves spatial derivatives up to the fifth order.

Three-parametermodels for linear viscoelasticity havebeen also applied inmodels
of axially moving beams. The standard linear solid (SLS) model, consisting of two
springs and one dashpot, has two variants, both of which are often referred as the SLS
model. One of the variants is also known as the Poynting–Thomsonmodel, consisting
of a Kelvin–Voigt body and a spring connected in series. The other one is known as
the Zener model, consisting of a Maxwell body and a spring connected in parallel.
Marynowski and Kapitaniak [8] used the Zener model for modelling viscoelasticity
in an axially moving beam with time-dependent tension. They concentrated mainly
on bifurcation phenomena of a non-linear model but considered also the stability
of the linearized system. They found out that the instability occurs at some critical
velocity in a form of flutter and that the critical velocity increases if the damping
coefficient characterizing the viscoelasticity is increased. Seddighi and Eipakchi [12]
computed natural frequencies and critical speeds for axially moving Euler-Bernoulli
and Timoshenko beams using the Zener version of the standard linear solid model
for viscoelasticity. In their study, the critical speeds (divergence velocities) were
determined by solving the steady-state equations. However, they did not perform
dynamic analysis to find out if the divergence instability is the first instability. They
reported that viscoelasticity had no effect on the critical speed. In all the above
studies with the standard linear solid model, the material time derivative was used in
the viscoelastic constitutive relations.

The Poynting–Thomson model has been used for axially moving beams byWang
[18], Wang and Chen [19]. They concentrated on asymptotic stability analysis and
steady-state response determination.

Here, we study the stability of axially moving viscoelastic beams using the
Poynting–Thomsonmodel and classical dynamic analysis. The eigenvalues are deter-
minedwith respect to the beamvelocity to characterize the behaviour and the possible
types of stability. The derivation of the dynamic equations for an axially moving SLS
beam has been given in [8, 12, 18, 19]. The derivation method presented in [8] dif-
fers from the derivation of the others in the definition of bending moment and, thus,
results in different equations. We will follow quite closely the lines of [12, 18, 19].
Since the dynamic analysis has not been performed for this form of equations, we
will focus on that. In addition, we will use five boundary conditions for the resulting
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dynamic equation with up to fifth order spatial derivatives, whereas in the previous
studies only four boundary conditions were used. The equations will be discretized
using the finite difference method and numerical results will be presented.

2 Axially Moving Viscoelastic Poynting–Thomson Beam

We consider an axially moving viscoelastic beam, travelling at a constant velocity
V0 in the positive x direction (Fig. 1). The beam is supported at x = 0 and x =
�. The function describing the transverse displacement of the beam is denoted by
w = w(x, t). For the standard linear solid, viscoelasticity is characterised by the
following stress–strain relation:

Γ σ = �ε,

where

ε = −z
∂2w

∂x2
,

and

Γ (·) = a0(·) + a1
d

dt
(·), �(·) = b0(·) + b1

d

dt
(·), d

dt
(·) = ∂

∂t
(·) + V0

∂

∂x
, (1)

σ is the normal stress due to bending, and ε is the axial bending strain. In (1), the
constants a0, a1, b0 and b1 describe the rheological properties of the standard linear
solid. Table1 shows the parameters ai and bi (i = 0, 1) in the case of Poynting–
Thomson and Zener models.

In this study, we will concentrate on the Poynting–Thomson version of the stan-
dard linear solid. The dashpot–spring model for the Poynting–Thomson body is
shown in Fig. 2. In the limit E1 → ∞, we obtain the Kelvin–Voigt body. If we

Fig. 1 A travelling beam
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Table 1 Rheological parameters for Poynting–Thomson and Zener models

a0 a1 b0 b1

Poynting–Thomson (E1 + E2) η E1E2 E1η

Zener E2 η E1E2 (E1 + E2)η

Fig. 2 Dashpot–spring
model for the
Poynting–Thomson body 1

2

remove the spring described by E2, i.e. we set E2 = 0, then we will have a Maxwell
model of viscoelasticity. For the viscosity coefficient η, we have

η = tRE2, (2)

where tR is the retardation/creep time.
The dynamic equation for the axially moving beam is expressed as (see, e.g., [7,

8, 19])

m
d2w

dt2
= ∂2M

∂x2
+ T0

∂2w

∂x2
, (3)

where m is the mass of the beam per unit length, M is the bending moment, and T0
is constant tension applied at the ends. We denote by Γ M the equivalent bending
moment (see, e.g., [15]) and by J the moment of inertia:

Γ M = −J�
∂2w

∂x2
, J =

∫
A

z2d A, (4)

where A is the cross-sectional area of the beam. We operate by Γ (·) on both sides
of (3) and insert (4) assuming sufficient continuity for M to obtain

mΓ

(
d2w

dt2

)
= −J

∂2

∂x2

(
�

∂2w

∂x2

)
+ T0Γ

(
∂2w

∂x2

)
. (5)
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Inserting (1) into (5), we finally have

a1
a0

[
∂3w

∂t3
+ 3V0

∂3w

∂x∂t2
+

(
3V 2

0 − T0
m

)
∂3w

∂x2∂t
+ V0

(
V 2
0 − T0

m

)
∂3w

∂x3

]
+ ∂2w

∂t2

+ 2V0
∂2w

∂x∂t
+

(
V 2
0 − T0

m

)
∂2w

∂x2
+ Jb0

ma0

∂4w

∂x4
+ Jb1

ma0

(
∂5w

∂x4∂t
+ V0

∂5w

∂x5

)
= 0.

(6)

The boundary conditions read

w(0, t) = ∂w

∂x
(0, t) = ∂2w

∂x2
(0, t) = 0, w(�, t) = ∂w

∂x
(�, t) = 0. (7)

In the derivation of (7), we assume continuity of the equivalent bendingmomentΓ M
instead of the actual bending moment. The derivation of the boundary conditions (7)
in the case of a Kelvin–Voigt beam (panel) with assumption of the continuity of the
bending moment M is given in [11].

The characteristic behaviour of the beam will be studied by inserting the time-
harmonic trial function

w(x, t) = exp(st)W (x) (8)

into the dynamic equation (6) and the boundary conditions (7). Here, s = iω and ω

is the angular frequency of small transverse vibrations. The complex eigenvalues s
characterize the behavior of the system. If real part of s is positive, unstable behavior
is encountered, and otherwise the behavior is considered stable.

3 Dimensionless Form and Numerical Considerations

For the numerical considerations, we transform the dynamic equation (6) into a
dimensionless form. We choose the dimensionless parameters (characterizing the
velocity, bending stiffness, relaxation time, and retardation/creep time respectively)
as follows:

c = V0√
T0/m

, α = Jb0
a0T0�2

, β = a1
√

T0
a0�

√
m

, γ = b1
√

T0
b0�

√
m

, (9)

and the characteristic time is chosen to be

τ = �

√
m

T0
. (10)

The x-axis is scaled by � and the t-axis by τ .
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With the chosen dimensionless parameters given in (9)–(10) and inserting the
standard time-harmonic trial function (8) into (6), we obtain the dimensionless form
of the equation

s3βW + s2
(
3cβ

∂W

∂x
+ W

)
+ s

[
2c

∂W

∂x
+ β(3c2 − 1)

∂2W

∂x2
+ αγ

∂4W

∂x4

]

+
[
(c2 − 1)

∂2W

∂x2
+ c(c2 − 1)β

∂3W

∂x3
+ α

∂4W

∂x4
+ αγ c

∂5W

∂x5

]
= 0.

(11)

This Eq. (11) generates an eigenvalue problem such that s is the eigenvalue, and
the dimensionless axial speed c will be varied. The boundary conditions for the
dimensionless function W are

W (0) = ∂W

∂x
(0) = ∂2W

∂x2
(0) = 0, W (1) = ∂W

∂x
(1) = 0.

The eigenvalue problem, (11), is reduced to a first order problem:

⎡
⎣−M2 −M1 −M0

β I 0 0
0 β I 0

⎤
⎦

⎡
⎣ s2W

sW
W

⎤
⎦ = sβ

⎡
⎣ s2W

sW
W

⎤
⎦ (12)

in which sβ are the eigenvalues to be found and the operators Mi are defined by the
relations

M0(·) = (c2 − 1)
∂2

∂x2
(·) + c(c2 − 1)β

∂3

∂x3
(·) + α

∂4

∂x4
(·) + αγ c

∂5

∂x5
(·),

M1(·) = 2c
∂

∂x
(·) + β(3c2 − 1)

∂2

∂x2
(·) + αγ

∂4

∂x4
(·),

M2(·) = 3cβ
∂

∂x
(·) + I (·),

where I is the identity operator. Notice that the matrix equation (12) cannot be
reduced to the elastic case by setting β = γ = 0 (since the order of the elastic system
is lower). However, Eq. (11) is reduced to the elastic case by setting β = γ = 0 and
to Kelvin–Voigt by setting β = 0.

The matrix equation, (12), was discretized via the central finite differences of the
second order asymptotic accuracy. The reader will find a systematic discussion of
the discretization in [11].
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4 Numerical Solution

In the numerical examples, we study the dynamic characteristics of the axially mov-
ing Poynting–Thomson beamwith two different types of materials, both of which are
often studied in the context of axially moving materials. For the first material exam-
ple, we use parameters representing steel [6–8], and for the second one, parameters
representing paper [1, 5, 11, 17].

Geometric parameters for the span length � = 1m and width b = 0.2m were
chosen to be equal for the both studied material examples. Parameters depending on
the studied material are given in Table2. If we refer to a beam made of steel, then we
mean that the problem parameters in Table2 assigned for ‘steel’ have been used in
the computations. Similarly, we refer to a beam made of paper. The creep time, (2),
was given the values tR = 1 × 10−4 s, 1 × 10−3 s. In computations, the parameter
E1 was varied. In the finite difference method, we chose the number of computation
points on the x-axis to be n = 200.

The parameters (in Table2) representing steel were chosen similarly to the numer-
ical studies in [6–8]. In those studies, the maximal value used for the creep time in
the computations was 6.8 × 10−4 s (lying between our choices 1 × 10−4 s and
1× 10−3 s). For paper, we use the same material parameter values as was used, e.g.,
in [2, 11] except for the elastic Young modulus, for which we use (a more realistic
value of) 2× 109 N/m2 instead of 109 N/m2. The chosen parameter values represent
approximately a paper material with a low basis weight [13, 21].

To compare the dynamic characteristics predicted by the Kelvin–Voigt and
Poynting–Thomson models, we present in Fig. 3 the three first eigenvalue pairs for
the moving Kelvin–Voigt beam made of steel. In Figs. 4, 5, 6 and 7, the three first
eigenvalue pairs are presented for the Poynting–Thomson beam with three different
values for E1. Recall that having E1 = ∞, we obtain the Kelvin–Voigt beam case.
Notice also that in the discretization for the Kelvin–Voigt beam case, the matrix
equation (12) is not applicable. A systematic discussion on the solution process for
the Kelvin–Voigt beam case is described in [11].

Comparing Figs. 3, 4, 5 and 6, we see that the bigger the value of E1 is, the closer
the results given by the Poynting–Thomson model are qualitatively to the results
given by the Kelvin–Voigt model, as expected. In addition, if E1 < E2, increasing
the creep time tR changes the type of the first instability from divergence to flutter
as seen in Figs. 6 and 7.

Table 2 Material parameters representing a beam made of steel or paper

h (m) ρ (kg/m3) A = bh (m2) m = ρ A (kg/m) E2 (N/m2) T0 (N)

Steel 0.0015 7800 3× 10−4 2.34 2 × 1011 2500

Paper 0.0001 800 2× 10−5 0.016 2 × 109 100
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Fig. 3 Eigenvalues (first three pairs) for an axially moving Kelvin–Voigt beam made of steel.
Different numerical solver is applied for this case with “E1 = ∞” in the Poynting–Thomson
parameters. The eigenvalues are plotted with respect to the dimensionless beam velocity c. Top
We present the results for the case tR = 1 × 10−4 s. Bottom We present the results for the case
tR = 1 × 10−3 s
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Fig. 4 Eigenvalues (first three pairs) for an axially moving Poynting–Thomson beammade of steel.
The eigenvalues are plotted with respect to the dimensionless beam velocity c. Results are presented
for the case E1 = 10 × E2. Notice that the scaling of the y axis is different for the real and the
imaginary parts of s. Top We present the results for the case tR = 1 × 10−4 s. Bottom We present
the results for the case tR = 1 × 10−3 s
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Fig. 5 Eigenvalues (first three pairs) for an axially moving Poynting–Thomson beammade of steel.
The eigenvalues are plotted with respect to the dimensionless beam velocity c. Results are presented
for the case E1 = E2. Notice that the scaling of the y axis is different for the real and the imaginary
parts of s. Top We present the results for the case tR = 1 × 10−4 s. Bottom We present the results
for the case tR = 1 × 10−3 s
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Fig. 6 Eigenvalues (first three pairs) for an axially moving Poynting–Thomson beammade of steel.
The eigenvalues are plotted with respect to the dimensionless beam velocity c. Results are presented
for the case E1 = 0.1 × E2 and tR = 1 × 10−4 s. Notice that the scaling of the y axis is different
for the real and the imaginary parts of s. Top The value of dimensionless velocity c is between 0
and 1.05. Bottom Zoom to the area, where the first instability is detected
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Fig. 7 Eigenvalues (first three pairs) for an axially moving Poynting–Thomson beammade of steel.
The eigenvalues are plotted with respect to the dimensionless beam velocity c. Results are presented
for the case E1 = 0.1 × E2 and tR = 1 × 10−3 s. Notice that the scaling of the y axis is different
for the real and the imaginary parts of s. Top The value of dimensionless velocity c is between 0
and 1.05. Bottom Zoom to the area, where the first instability is detected
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The phenomenon that increasing the creep time may change the type of insta-
bility from divergence to flutter has been also encountered in previous studies for
viscoelastic beam models. Marynowski and Kapitaniak [7] compared Kelvin–Voigt
and Bürgers internal damping for models for axially moving viscoelastic beams. For
their four-parameter Bürgersmodel (which is obtained by adding a viscous damper in
series to a Poynting–Thomson body), they obtained that with small values of internal
damping the dynamic behaviour of the beam was similar to that of a Kelvin–Voigt
beam, and for larger values of internal damping, one obtains flutter instability as a
first type of instability.

In their later research [8],Marynowski andKapitaniak continued onZener internal
damping in the context of axially moving beams. As mentioned in the introduction,
their definition for the bending moment differed from that of ours and some other
authors, so that the dynamic equation was also a bit of different form (also otherwise
than the constants that are defined differently for the Zener and Poynting–Thomson
models). Their version of the Zener model predicted a flutter type of instability as
the first instability.

Comparing the two cases in Figs. 6 and 7, we see that the critical flutter velocity
for a large value of creep time (tR = 1× 10−3 s, Fig. 7) is drastically lower than the
critical divergence velocity for a lower value of creep time (tR = 1× 10−4 s, Fig. 6).
Also the flutter velocity of Poynting–Thomson beam is lower than the divergence
velocity of the Kelvin–Voigt beam. Marynowski and Kapitaniak [8] found also that
the critical velocities for the non-linear parametrically excited beam predicted by
the Bürgers and Zener models are significantly lower than the critical velocity in the
case of a Kelvin–Voigt model.

To compare the dynamic behaviour of different types of materials, the three first
eigenvalue pairs were computed also for an axially moving beam made of paper (see
Table2). The eigenvalues for the case of paper material are presented in Figs. 8, 9,
10, 11, 12 and 13.

Compared to steel, paper presents material with a small density and a small bend-
ing stiffness. For such material, we see from Figs. 8, 9, 10, 11, 12 and 13 that we
encounter flutter already with a relatively large ratio of E1/E2 compared to steel.
In the previously studied case of the Kelvin–Voigt model, viscosity introduced to
an elastic model had a stabilizing effect [11], which was pronounced in the case of
paper material. On contrary, the Poynting–Thomson model introduces an instability
region of flutter, which, with respect to the beam velocity, is encountered a lot earlier
than the divergence.
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Fig. 8 Eigenvalues (first three pairs) for an axially moving Poynting–Thomson beam made of
paper. The eigenvalues are plotted with respect to the dimensionless beam velocity c. Results are
presented for the case E1 = 100 × E2 and tR = 1 × 10−4 s. Notice that the scaling of the y axis
is different for the real and the imaginary parts of s. Top The value of dimensionless velocity c is
between 0 and 1.0. Bottom Zoom to the area, where the first instability is detected
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Fig. 9 Eigenvalues (first three pairs) for an axially moving Poynting–Thomson beam made of
paper. The eigenvalues are plotted with respect to the dimensionless beam velocity c. Results are
presented for the case E1 = 100 × E2 and tR = 1 × 10−3 s. Notice that the scaling of the y axis
is different for the real and the imaginary parts of s. Top The value of dimensionless velocity c is
between 0 and 1.0. Bottom Zoom to the area, where the first instability is detected
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Fig. 10 Eigenvalues (first three pairs) for an axially moving Poynting–Thomson beam made of
paper. The eigenvalues are plotted with respect to the dimensionless beam velocity c. Results are
presented for the case E1 = 10 × E2 and tR = 1 × 10−4 s. Notice that the scaling of the y axis
is different for the real and the imaginary parts of s. Top The value of dimensionless velocity c is
between 0 and 1.0. Bottom Zoom to the area, where the first instability is detected
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Fig. 11 Eigenvalues (first three pairs) for an axially moving Poynting–Thomson beam made of
paper. The eigenvalues are plotted with respect to the dimensionless beam velocity c. Results are
presented for the case E1 = 10 × E2 and tR = 1 × 10−3 s. Notice that the scaling of the y axis
is different for the real and the imaginary parts of s. Top The value of dimensionless velocity c is
between 0 and 1.0. Bottom Zoom to the area, where the first instability is detected
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Fig. 12 Eigenvalues (first three pairs) for an axially moving Poynting–Thomson beam made of
paper. The eigenvalues are plotted with respect to the dimensionless beam velocity c. Results are
presented for the case E1 = E2 and tR = 1×10−4 s. Notice that the scaling of the y axis is different
for the real and the imaginary parts of s. Top The value of dimensionless velocity c is between 0
and 1.0. Bottom Zoom to the area, where the first instability is detected
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Fig. 13 Eigenvalues (first three pairs) for an axially moving Poynting–Thomson beam made of
paper. The eigenvalues are plotted with respect to the dimensionless beam velocity c. Results are
presented for the case E1 = E2 and tR = 1×10−3 s. Notice that the scaling of the y axis is different
for the real and the imaginary parts of s. Top The value of dimensionless velocity c is between 0
and 1.0. Bottom Zoom to the area, where the first instability is detected
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5 Conclusions

In this paper, characteristic behaviour of an axially moving viscoelastic beam was
investigated with respect to the beam velocity modelling the viscoelasticity by
the Poynting–Thomson version of the standard linear solid. The derivation of the
dynamic equation describing the transverse displacement of the beam was outlined
briefly. For the resulting equation of the fifth order in space, five boundary conditions
were introduced following the derivation in [11].

In the numerical examples, two different types of materials were studied: steel
and paper. The former presents material with a relatively high density and a large
bending stiffness and the latter is an example of material with a lower density and a
very small bending stiffness. In the case of steel-likematerial, the standard linear solid
(Poynting–Thomson version) beam model gave qualitatively similar predictions to
the Kelvin–Voigt beam model. We may conclude that, for steel, the Kelvin–Voigt
model gave as good predictions of the characteristic behaviour of axially moving
viscoelastic beams as the more complicated Poynting–Thomson model.

In the case of paper, the moving beam was found to lose stability in the sense of
flutter if the creep time is large enough. Also the ratio of the elastic moduli E1 and
E2 was found to significantly affect the predictions of the dynamic behaviour of the
beam.

Recall that the Poynting–Thomson body is composed of a Kelvin–Voigt body
connected in series with a spring. Thus, we expected the dynamic characteristics of
the Poynting–Thomson beam to be qualitatively similar to that of the Kelvin–Voigt
beam, if the elastic modulus E1 related to the spring becomes large enough. For both
steel and paper, the numerical results of the dynamic analysis were in agreement with
this expectancy. Decreasing the ratio E1/E2 changed the predictions of the type of
the first instability from divergence to flutter. The first critical flutter velocity was
drastically lower than the first divergence velocity. This effect was more pronounced
in the case ofmaterial with a relatively low density and a very small bending stiffness.
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A Projection Approach to Analysis
of Natural Vibrations for Beams
with Non-symmetric Cross Sections

Vasily Saurin and Georgy Kostin

Abstract A projection approach based on the method of integro-differential
relations and semi-discretization technique is applied to analyze natural variations of
rectilinear elastic beams with non-symmetric cross sections. A numerical algorithm
is proposed to compose compatible approximating systems of ordinary differential
equations. It is shown that the beam vibrations cannot be separated into four indepen-
dent types of longitudinal, bending, and torsional motions if a non-symmetric cross
section is considered. In this case, all these motions can interact with one another.
Nevertheless, only one type of displacement and stress fields makes the largest con-
tribution in the amplitudes of the corresponding vibrations. Several eigenfrequencies
and eigenforms of a beamwith the isosceles cross section are presented and analyzed.

Keywords Natural beam vibrations · Eigenvalue problem · Theory of elasticity ·
Projection approach · Semi-discretization
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1 Introduction

In applications, the conventional classes of beam-type flexible bodies are prismatic
rods, shafts, pipes, etc. To construct a reliable beam model in the frame of the linear
theory of elasticity, it is important to consider the spatial distribution of displacement
and stress fields. Initial-boundary or eigenvalue problems of beam motions may
possess symmetry properties which allow us to reduce the dimension of the original
system and effectively apply novel numerical approaches.
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Among simplified models proposed for approximate solution of spatial dynamic
problems in elasticity, a special place takes the theory of Euler–Bernoulli beams
based on hypotheses put forward by Bernoulli [1]. Despite the fact that this theory
is applicable for a wide class of problems, it does not consider such effects of stress-
strain state in some elastic beam as shear displacements, warping, deformation of the
cross section, interaction of longitudinal and lateral motions depending on Poisson’s
ratio, etc.

Advanced formulae for longitudinal and bending motions of elastic beams were
proposed allowing to take into account compression–tension in the cross section
(Rayleigh’s correction [7]) as well as its rotations and shears (Timoshenko beam
[8]). In the classical model of beam torsion discussed, for example, in [9], the cross-
sectional warping is taken into account, which is found as a solution of Poisson’s
plane problem. In the model proposed by Reissner [6], a variational approach com-
bined with a pre-defined displacement distribution in the lateral direction is used to
derive the equations describing the elastic bending of a thin plate (beam). Variational
formulations are also utilized to obtain compatible beam equations of higher order
by taking into account in different ways the spatial distribution of displacements in
a lengthy elastic body [5].

The presented paper is devoted to an approach in which the original problem in
partial differential equations (PDEs) is approximated by a system of ordinary differ-
ential equation (ODEs) based on the method of integro-differential relations (MIDR)
[4]. The projection technique developed in [2] was applied to 3D linear elasticity
problems with semi-discrete approximations for the displacement vector and the
stress tensor. The approximations include a polynomial expansion of finite dimen-
sion over some coordinate components and unknown functions over one remaining
component [3].

As compared to the classical Galerkin method, the variational approach described
in other studies of the authors [4] possesses some advantages: it guarantees optimal-
ity properties of the numerical solution for some approximations, provides explicit
error estimates, and supposes the exact implementation of the initial, boundary, and
momentum balance conditions. Some drawbacks of the variational method are dou-
bling the dimension of the resulting ODE system and worsening the numerical sta-
bility of the results. The projection approach based on the MIDR allows us to reduce
the ODE dimension and to improve the numerical stability in such a way that all the
advantages mentioned about the variational technique still hold.

In this study, free natural vibrations are analyzed for an elastic body (beam)
shaped like a right prism with an isosceles triangular cross section. The choice of
the object under study is stipulated by the following circumstances. First of all,
such an elastic prism contains specific features which are typical for linear elasticity
problems associated with various types of boundary conditions andwith the presence
of corner points. Secondly, it allows to use polynomial representations of stresses
and displacements to approximate an elastic state of the prism. Another reason is that
such a beam element can be used to compose structures withmore complicated cross-
sectional shapes (e.g., thin-walled beams) and applied to specific FEM algorithms.
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The paper is structured as follows: In Sect. 2, a 3D eigenvalue problem of free
vibrations is considered for some elastic body occupying a prismatic domain with
the triangular cross section. A semi-discretization procedure is described in Sect. 3
to approximate displacements and stresses by means of polynomial trial functions
with respect to the cross-sectional coordinates. In Sect. 4, a projection algorithm is
presented to compose approximating test systems of ODEs. The results of numerical
analysis for an elastic beam with the isosceles cross section are discussed in Sect. 5.
Finally, brief conclusions are given.

2 Modelling of Elastic Beam Dynamics

Consider a long rectilinear prismatic body (beam) with a triangular cross section as
in Fig. 1. The origin of the Cartesian coordinate system is placed at the barycenter
of one prism base. The axis x is directed to the other base along the beam length,
and, hence, the axes y and z are parallel to the body cross sections. It is assumed
that the beam is made of homogeneous isotropic material with the volume density
ρ, Young’s modulus E , and Poisson’s ratio ν.

The elastic vibrations of the beam are described by the following PDE system

ε − C−1 : σ = 0 , ∇ · σ + ρω2u = 0 . (1)

Here, C is the elastic moduli tensor, σ is the stress tensor with the components σx ,
σy , σz , τxy , τxz , and τyz . The components of the displacement vector u denote as u,
v, w; ω is the frequency of natural vibrations. The Cauchy strain tensor ε has the
components

Fig. 1 Prismatic beam with a triangular cross section
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εx = ∂u

∂x
, εy = ∂v

∂y
, εz = ∂w

∂z
, εxy = 1

2

(
∂u

∂y
+ ∂v

∂x

)
,

εxz = 1

2

(
∂u

∂z
+ ∂w

∂x

)
, εyz = 1

2

(
∂v

∂z
+ ∂w

∂y

)
.

(2)

The boundary constraints can be divided into two groups. The conditions on the
lateral sides of the beam can be attributed to the first part. In frame of the projection
approach discussed in this paper, these relations have to be satisfied before constitut-
ing an approximating ODE system. In contrast, the second group consisting of the
conditions on the prism bases is implemented together with the system of ODEs.

Let us represent first the boundary conditions which are referred to as the first
group. To be more particular, only a free beam is studied here. This means that no
displacements are determined on the prism faces. The boundary conditions in the
stresses defined on the lateral sides of the beam can be divided in turn into two
subgroups due to the fact that these sides are parallel to the x-axis. The equations
which relate to the shear stresses τxy and τxz have the form

τxyn(i)
y + τxzn(i)

z = 0 . (3)

The other relations combine the components σy , σz , and τyz :

σyn(i)
y + τyzn(i)

z = 0 and τyzn(i)
y + σzn(i)

z = 0 (4)

for the prism faces Γi with i = 1, 2, 3. Here n(i)
x = 0, n(i)

y , n(i)
z are the components

of the normal vectors n(i) to Γi .
The following boundary conditions are given on the bases of the prism at x = 0

and x = l (the second group):

σx (0, y, z) = τxy(0, y, z) = τxz(0, y, z) = 0 ,

σx (l, y, z) = τxy(l, y, z) = τxz(l, y, z) = 0 ,
(5)

where l is the length of the beam.

3 Semi-discretization of Displacement and Stress Fields

In accordance with the semi-discretization method, the unknown trial functions
u(x, y, z) and σ(x, y, z) are found as complete polynomials with respect to the
beam lateral coordinates y and z. Approximations of the displacement and stress
fields are taken in the form
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u =
∑

i+ j+k=N1

u(i jk)(x)pi jk , v =
∑

i+ j+k=N2

v(i jk)(x)pi jk ,

w =
∑

i+ j+k=N3

w(i jk)(x)pi jk , σx =
∑

i+ j+k=N4

σ
(i jk)
x (x)pi jk ,

τxy =
∑

i+ j+k=N5

τ
(i jk)
xy (x)pi jk , τxz =

∑
i+ j+k=N6

τ
(i jk)
xz (x)pi jk ,

σy =
∑

i+ j+k=N7

σ
(i jk)
y (x)pi jk , σz =

∑
i+ j+k=N8

σ
(i jk)
z (x)pi jk ,

τyz =
∑

i+ j+k=N9

τ
(i jk)
yz (x)pi jk , pi jk = [g1(y, z)]i [g2(y, z)] j [g3(y, z)]k .

(6)

The choice of the numbers Ni , i = 1, . . . , 9, in Eq. (6) is discussed in Sect. 4. The
following system of linear basis functions defined by the coordinates y and z of the
triangular cross section is introduced in Eq. (6) as

g1 = z2 − z3
2S

(y − y2) − y2 − y3
2S

(z − z2) ,

g2 = z3 − z1
2S

(y − y3) − y3 − y1
2S

(z − z3) ,

g3 = z1 − z2
2S

(y − y1) − y1 − y2
2S

(z − z1) .

(7)

Here, yi and zi for i = 1, 2, 3 are the coordinates of the triangle vertices and

2S = y1z2 + y2z3 + y3z1 − y2z1 − y3z2 − y1z3 (8)

is the doubled area of the cross section. In literature [10], the functions gi , i = 1, 2, 3,
given in Eq. (7) are referred to as barycentric coordinates or L -coordinates, but it is
worth noting that they are linear functions (g-functions in what follows), which have
a simple geometric interpretation. The function g1(x) is equal to zero at the triangle
edge defined by the coordinates (y2, z2), (y3, z3) and reaches its maximum value
in the triangle at the vertex with the coordinates (y1, z1). The same properties are
inherent to the other functions g2 and g3 with the only difference in the permutation
of indices: 1 → 2, 2 → 3, 3 → 1. Additionally, the sum of all these functions is
equal to unity:

g1(y, z) + g2(y, z) + g3(y, z) ≡ 1 .

To integrate expressions depending on the g-functions over the triangular element,
it is useful to know the following analytical formula

∫
S

(g1)
i (g2)

j (g3)
k d S = i ! j !k!

(i + j + k + 2)!2S , (9)

where the section area S is defined by Eq. (8).
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The basic idea in solving the problem (1)–(5) is to apply the approximations (6)
and the projection approach discussed in [3]. These approximations must satisfy
exactly the boundary conditions (3)–(5). After that, an ODE system with respect to
the unknown coefficients introduced in Eq. (6) is composed through the components

rx = ∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ ρω2u ,

ry = ∂τxy

∂x
+ ∂σy

∂y
+ ∂τyz

∂z
+ ρω2v ,

rz = ∂τxz

∂x
+ ∂τyz

∂y
+ ∂σz

∂z
+ ρω2w

(10)

of the equilibrium vector r and the components

ξx = ∂u

∂x
− σx

E
+ ν

E

(
σy + σz

)
, ξyz = 1

2

(
∂v

∂z
+ ∂w

∂y

)
− τyz

2G
,

ξy = ∂v

∂y
− σy

E
+ ν

E
(σx + σz) , ξz = ∂w

∂z
− σz

E
+ ν

E

(
σx + σy

)
,

ξxy = 1

2

(
∂u

∂y
+ ∂v

∂x

)
− τxy

2G
, ξxz = 1

2

(
∂u

∂z
+ ∂w

∂x

)
− τxz

2G

(11)

of Hooke’s tensor ξ , where the shear modulus G = E/(2 + 2ν) is introduced. By
using the notation introduced in Eqs. (10) and (11), the constitutive relations (1) can
be rewritten in the compact form

ξ = 0 , r = 0 . (12)

Here, the tensor ξ reflects Hooke’s law, i.e. the linear dependence of the Cauchy
strain tensor on the stress one. In turn, the equilibrium vector r characterizes the
relation between the stresses and themomentum density. The second equation in (12)
describes the momentum balance. All the components of ξ and r become zero (either
strongly or weakly) on the exact solution. If the ansatz functions (6) are used then
the nonzero values of these components define the quality of the corresponding
approximate solution.

In the proposed approach, the polynomial approximations (6) of degrees Nm for
m = 1, . . . , 9 have to possess the following properties. Firstly, it is necessary that
such approximations are able to satisfy exactly the boundary conditions (3) and (4).
Secondly, it is important to select correctly a specific space of test functions (13)
corresponding to each component of the constitutive vector-function

{
rx , ry, rz, ξx , ξy, ξz, ξxy, ξxz, ξyz

}
,

which is composed of the relations (10) and (11). This choice must guarantee that
the system of differential-algebraic equations (DAEs), which results from the corre-
sponding projections of the components on these polynomial spaces, is consistent.
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Note that the choice of polynomial approximations (6) designates the way to deter-
mine a subspace of test functions for which the integral projections should be calcu-
lated. The space of complete polynomials of degree Km > 0 (m = 1, . . . , 9)

PKm =
⎧⎨
⎩

∑
i+ j+k=Km

ci jkm pi jk(y, z) , ci jkm ∈ R

⎫⎬
⎭ (13)

with the monomials pi jk defined in Eq. (6) is suitable for this purpose.
It is also desirable in a numerical algorithm that the structure of theseDAE systems

does not change with the approximation order. The rather complicated form of the
constitutive and equilibrium relations (1) as well as the boundary conditions (3), (4)
implies that, in general case, the parameters Ni and Ki may differ from one another.

After implementationof the boundary conditions (3) and (4), the equilibriumequa-
tions of Eq. (1) contain Ñd independent stresses {σ (i jk)

x (x), τ
(i jk)
xy (x), τ

(i jk)
xz (x)} and,

in accordance with Eq. (10), their derivatives with respect to the spatial coordinate x .
Similarly, Ñu independent derivatives of {u(i jk)(x), v(i jk)(x), w(i jk)(x)} are included
in the components of Hooke’s tensor (11). It is possible to show that the total differ-
ential order of the DAEs is equal to Ñd + Ñu and the following inequality Ñd �= Ñu

is valid. It is worth noting that only the above-mentioned stress functions can be used
to satisfy the boundary constraints (5) (2Ñd conditions altogether). Therefore, the
DAE system would be consistent only if Ñd = Ñu . To improve the system a certain
number of the stress or displacement functions should be eliminate. The maximal
differential order Nd of a desirable system is chosen according to

Nd = 2min
{

Ñd , Ñu

}
.

This condition brings some complexity in the composing of such a system. Neverthe-
less these difficulties can be eliminated, as it is shown below, by choosing appropriate
displacements and stresses as well as corresponding projections of the constitutive
relations.

4 Integral Projections in the Eigenvalue Problem

The choice of trial and test spaces is no unique procedure as shown, for example,
in [4]. Let us constrain ourselves to the case when the test spaces Pm defined in
Eq. (13) are identical to each other, that is Km = N0 for all m = 1, . . . , 9. Here N0
is a positive integer. This number is simultaneously the degree of approximations of
σx in Eq. (6) (N4 = N0). Due to the fact that the components of displacements are
not subject to any boundary conditions on the prism sides, it is suitable to define the
related integers as

N1 = N2 = N3 = N0 .
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Note that the projection of the components ξx , ξxy , ξxz of Eq. (11) (Hooke’s tensor)
on the space PN0 gives the following ODEs of the first order

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
S
ξx pi jkd S = 0∫

S
ξxy pi jkd S = 0 for i + j + k = N0∫

S
ξxz pi jkd S = 0

(14)

with respect to all the displacement functions u(i jk)(x), v(i jk)(x), w(i jk)(x). The
dimension of the system (14) is

Nd

2
= 3

2
(N0 + 1)(N0 + 2) .

Thus, the final number of independent stress functions selected from the whole set
{σ (i jk)

x (x), τ
(i jk)
xy (x), τ

(i jk)
xz (x)} in Eq. (6) has to be equal to Nd/2 as well.

The other projections of Hooke’s law

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
S
ξy pi jkd S = 0∫

S
ξz pi jkd S = 0 for i + j + k = N0∫

S
ξyz pi jkd S = 0

(15)

define Nd/2 algebraic equations with respect to stress and displacement functions.
In the second step, the boundary conditions (3) on the lateral faces of the beam

are satisfied. To make it and build the necessary number of differential equations, let
us define the following integers

N5 = N6 = N7 = N8 = N9 = N0 + 2 .

This means that it is necessary to fulfill N0 + 3 boundary conditions on each beam
side (linear relations at each monomial), or 3(N0 + 3) as a whole, with respect to
the stress functions τ

(i jk)
xy (x), τ (i jk)

xz (x). Consequently, the approximations of τxy and
τxz contain only

Ñτ = (N0 + 3) (N0 + 4) − 3 (N0 + 3) (16)

independent coefficients τ
(i jk)
xy (x), τ (i jk)

xz (x) after implementation of these equations.
By introducing a new notation τ̃m(x) with m = 1, . . . , Ñτ for the remaining

coefficients τ
(i jk)
xy (x) and τ

(i jk)
xz (x), the approximation of the shear stresses satisfying

the boundary conditions (3) can be presented as
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{
τxy

τxz

}
=

Ñτ∑
m=0

τ̃m(x)

{
ϑ̃ (m)

xy (y, z)
ϑ̃(m)

xz (y, z)

}
. (17)

Here, ϑ̃ (m)
xy (y, z) and ϑ̃

(m)
xz (y, z) are basis functions obtained in agreement with these

boundary conditions (3).
After resolving the relations in Eq. (4), the approximations of σy , σz , and τyz

contain

Nσ = 3

2
(N0 + 3) (N0 + 4) − 3 (2N0 + 5) = Nd

2

independent coefficients σ
(i jk)
y (x), σ (i jk)

z (x), τ (i jk)
yz (x). Renumbering of these coef-

ficients can provide the relevant stress approximation in the form

⎧⎨
⎩

σy

σz

τyz

⎫⎬
⎭ =

Nσ∑
m=0

σm(x)

⎧⎪⎨
⎪⎩

ϑ(m)
y (y, z)

ϑ(m)
z (y, z)

ϑ(m)
yz (y, z)

⎫⎪⎬
⎪⎭ . (18)

Here ϑ
(m)
y (y, z), ϑ(m)

z (y, z), and ϑ
(m)
yz (y, z) are new basis functions consistent with

the boundary conditions (4). So, the number Nσ of the functions σm(x) is enough to
solve exactly system (15) with respect to these coefficients.

Approximation of the equilibriumequations implies the vanishing of the following
complete projections of the vector components rx , ry , rz in Eq. (10):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
S

rx pi jkd S = 0∫
S

ry pi jkd S = 0 for i + j + k = N0 .∫
S

rz pi jkd S = 0

(19)

It can be seen that two last relations of Eq. (19) define Nτ = Nd/3 differential
equations, which only include the derivatives of the functions τxy and τxz . According
to Eq. (16), the number of the available variables Ñτ is bigger than Nτ and this
difference is equal to

Ñτ − Nτ = N0 + 2 .

To reduce the number of the variables τ̃m(x), m = 1, . . . Ñτ , the corresponding
approximation of Eq. (17) is transformed in the following way. First, the complete
projections of the functions τxy and τxz on the space PN0 are calculated:

∫
S
τxy pi jkd S = 0 and

∫
S
τxz pi jkd S = 0 for i + k + l = N0 . (20)
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After that, system (20) is resolved with respect to Nτ coefficients τ̃m(x) selected
arbitrarily.

In composing a system of consistent ODEs, it is necessary to solve underde-
termined systems of algebraic equations with respect to τ̃m(x). If the calculations
are performed analytically then the choice of variables for which the Eq. (20) are
resolved is not so essential. But in numerical computations, a special approach should
be applied, e.g., based on the Gauss elimination method to diminish computational
errors. At the beginning of this successive process, the equation is chosen which
contains the coefficient of maximum absolute value. After that, the variable at the
maximum coefficient is expressed from this equation. The procedure accompanied
with an appropriate transformation is repeated Nτ − 1 times.

After solving Eq. (20) and substituting the result into Eq. (17), the following
expression is obtained

{
τ O

xy

τ O
xz

}
=

Ñτ∑
m=Nτ +1

τm(x)

{
ϑ(m)

xy (y, z)
ϑ(m)

xz (y, z)

}
. (21)

Here, τm(x) for m = Nτ + 1, . . . , Ñτ are new coefficients, which are linear com-
binations of τ̃n(x) for n = 1, . . . , Ñτ , whereas ϑ

(m)
xy (y, z) and ϑ

(m)
xz (y, z) are new

basis functions orthogonal to the polynomial space PN0 .
Let us find a representation of τxy and τxz equivalent to Eq. (20) through a new

basis including the obtained functions ϑ
(m)
xy (y, z) and ϑ

(m)
xz (y, z). For this purpose,

compose the following system of equations

∫
S

(
τxyϑ

(m)
xy (y, z) + τxzϑ

(m)
xz (y, z)

)
dydz = 0 for m = Nτ + 1, . . . , Ñτ (22)

and resolve it with respect to some coefficients τ̃i (x) by the Gauss elimination
method.

After substituting the solution of Eq. (22) into Eq. (17) and collecting similar
terms, the following expression is obtained

{
τ P

xy

τ P
xz

}
=

Nτ∑
m=1

τm(x)

{
ϑ(m)

xy (y, z)
ϑ(m)

xz (y, z)

}
.

Here similarly to Eq. (21), τm(x) for m = 1, . . . , Nτ are new coefficients, whereas
ϑ

(m)
xy (y, z) and ϑ

(m)
xz (y, z) are new basis components, which are orthogonal to τ O

xy

and τ O
xz . It is able to verify that the obtained approximations

{
τxy

τxz

}
=

{
τ P

xy

τ P
xz

}
+

{
τ O

xy

τ O
xz

}

satisfy the boundary conditions (3).
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Thus, the final consistent DAE system includes Eqs. (14), (15), and (19) with
variables σ

(i jk)
x , u(i jk), v(i jk), w(i jk), τm , σm . The systems of differential equations

(14) and (19) can be resolved with respect to the first derivatives of the corresponding
variables σ

(i jk)
x , u(i jk), v(i jk),w(i jk), τm . It is necessary to do so by taking into account

the solution of the algebraic system (15) with respect to the variables σm .
After that, all the differential variables

σ
(i jk)
x (x) , u(i jk)(x) , v(i jk)(x), w(i jk)(x) for i + j + k = N0 and

τm(x) for m = 1, . . . , Nτ

can be collected into a vector a(x) ∈ R
Nd of design parameters with the dimension

Nd = 3(N0 + 1)(N0 + 2) .

After assembling the differential equations, the resulting ODE system can be rewrit-
ten in the vector form

da

dx
+ K a = 0 , (23)

where K ∈ R
Nd×Nd is a square matrix.

In this case, the characteristic equation takes the following form

det (K (ω) + λI ) = 0 (24)

with the unit matrix I . Equation (24) does not contain the zero root λ(ω) = 0 at
ω �= 0. In other words, the general solution of the eigenvalue problem is a linear
combination of only exponentials.

Let us assemble a vector a1 of design parameters σ
(i jk)
x (x), v(i jk)(x), w(i jk)(x)

and an other vector a2 of u(i jk)(x), τm(x). The vector a can be rewritten in such a
way that a = [aT

1 , aT
2 ]T. The components of the derivative da2(x)

dx are included in
the first relations of Eq. (14) and the two last relations of Eq. (19) that depend on
the components of vector a1 in accordance with Eqs. (10), (11), (18). Vice versa,
the components of da1(x)

dx are included in the first relations of Eq. (19) and the two
last relations of Eq. (14) that depend on the components of vector a2 (see Eqs. (10)
and (11)). This means that the vector equation (23) has the following form

d

dx

[
a1
a2

]
+

[
0 K12

K21 0

] [
a1
a2

]
= 0 , K12, K21 ∈ R

Nd
2 × Nd

2 . (25)

By using the specific structure of the matrix K , it is always possible to reduce the
ODE system of first order (23) to an equivalent system of Nd/2 differential equations
including the purely second derivatives of stress and displacement functions. After
identical transformations, the ODEs (25) can be presented as
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d2a1
dx2

− K12K21a1 = 0 . (26)

Hence, a new eigenvalue μ = λ2 can be introduced to solve effectively the boundary
value problem (5), (26). The characteristic equation for Eq. (26)

det (K12(ω)K21(ω) + μI ) = 0

with respect to μ has the polynomial order twice less than Eq. (24). By exploiting
the symmetry properties of the boundary value problem with respect to the cross
section x = l/2 and the form of the general solution of Eq. (26) (the eigenvalues λ

are always paired), the original problem can be decomposed onto two subproblems
(symmetric and antisymmetric) with the dimensions twice less than the total one.

The natural frequencies ωi for i = 1, . . . , Nd as well as the corresponding eigen-
forms of stresses and displacements are found under condition that the determinant
of a boundary algebraic system is equal to zero. This system is obtained after sub-
stituting the general solution of the system (23) into the boundary conditions (5).

5 Natural Vibrations of a Beam with the Isosceles
Cross Section

Consider free natural vibrations of the rectilinear beam shown in Fig. 1 with the cross
section in the form of an isosceles triangle. Let the base b be parallel to the y-axis
and the height h be oriented along the z-axis. The homogeneous isotropic elastic
material is described by three dimensional constants: Young’s modulus, Poisson’s
ratio and the volume density. By using the π theorem, it is possible to redefine
three dimensional parameters for linear elasticity problems. Here, Young’s modulus
E = 1, the volume density ρ = 1, and the base of the isosceles triangle b = 1 are
defined. The other system parameters are not to choose arbitrary. Poisson’s ration
ν = 0.3 given in the study is typical for many structural materials. The dimensionless
height of the beam cross section h = 1 and the beam length l are chosen to underline
that the considered elastic body has the shape of a thin beam.

Due to the symmetry of the cross section with respect to the z-axis, the governing
ODE system can be decomposed into two independent subsystems. At that, one of
the subsystems describes coupled bending-torsional (bt) and torsional-bending (tb)
motions of the beam. This system involves, for example, only even functions σx with
respect to the variable z. The other subsystem describes the bending-longitudinal
(bl) and longitudinal-bending (lb) beam vibrations. Only odd functions σx of Eq. (6)
fit to this subsystem.

The coupling of bending with either tension or torsion is caused by an asymmetry
of the beam cross section with respect to the y-axis. In this case, natural vibrations
cannot be separated into four independent types of longitudinal, bending, and tor-
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sionalmotions as it is supposed for beamswith a symmetric cross sections [3]. Never-
theless, only one type of displacement and stress fields makes the largest contribution
in the corresponding amplitudes of vibrations. This is a reason to introduce the clas-
sification of eigenfrequencies and attendant eigenforms with two letters abbreviating
corresponding fields. The first letter denotes the dominant type of motion.

To obtain a reliable numerical solution, a sufficiently high degree N0 of polyno-
mial projections should be exploited. In accordance with the MIDR, the constitutive
functionals proposed in [4] can be applied to estimate the quality of the solution.
In this paper, the convergence of six real eigenvalues μn ∈ R, n = 1, . . . , 6, are
alternatively analyzed to define a necessary approximation dimension. Only these
eigenvalues of the ODE system (26) tend to zero if the frequency ω vanishes and
mainly determine the beam eigenforms for lower frequencies. If ω � 1 then the
others μn , n = 7, . . . , Nd/2, govern only transient processes near the boundary at
x = 0 and x = l (Saint-Venant’s effects).

For example, the first six eigenvalues μn versus the polynomial degree N0 are
shown in Fig. 2 for ω = 1. The pair of eigenvalues μ1 < 0 and μ2 > 0 presented by
the lines with squares determines the bending-longitudinal forms described above.
The negative values μ3 < 0 marked by circles are for the longitudinal-bending
motions. The pair of lines passing through the extremal values μ4 < 0 and μ5 > 0
marked by triangles corresponds to the bending-torsional vibrations. The coupled
torsional-bending motions is related with the last eigenvalue μ6 < 0 marked by
rhombuses. All the valuesμn converge rather fast. At N0 = 4, the maximum relative
error ∣∣∣∣μn(N0) − μn(N0 − 1)

μn(N0 − 1)

∣∣∣∣ = 0.02

Fig. 2 Six basic eigenvalues μn versus approximation order N0
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is found for the torsional-bending form. This approximation order will be used in
what follows to solve the eigenvalue problem of beam vibrations.

A important attribute of elastic structure dynamics is the wave-frequency charac-
teristics of a system. The dependence of the eigenvalues μn , n = 1, . . . , 6, on the
frequency ω is represented in Figs. 3 and 4. As it has been mentioned above, the
six basic values μn(ω) depicted by curves 1–3 start at the coordinate origin. When

Fig. 3 Real parts of eigenvalues μ versus the frequency ω for the longitudinal-bending vibrations

Fig. 4 Real parts of eigenvalues μ versus the frequency ω for the torsional-bending vibrations
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the frequency ω tends to zero, the asymptotic behavior of these curves agrees with
the wave-frequency characteristics for longitudinal, torsional, and lateral vibrations
derived in the frame of the Euler–Bernoulli beam model. As the quantity μ corre-
sponds with the square of the wave number λ, the function μ3(ω) related with the
beam compression and tension congruences to the classical one

μ3 = −ω2 + O(ω3)

(curves 2 in Fig. 3). The similar characteristic for torsion

μ6 = −4.416ω2 + O(ω3)

(curves 2 in Fig. 4) is also in a good correspondence with the conventional model [4].
For the Euler–Bernoulli beam bending around every principal axis of inertia, two

real and two imaginary eigenvalues λn , n = 1, 2, 3, 4, are equal to each other in
absolute magnitude and depend on the frequency ω as a square root. This charac-
teristic holds asymptotically for the 3D beam model under study (curves 1 and 3 in
Figs. 3 and 4) so that

μ1 = − ω√
Jy

+ O(ω2) , μ2 = ω√
Jy

+ O(ω2) ,

μ4 = − ω√
Jz

+ O(ω2) , μ5 = ω√
Jz

+ O(ω2) ,

Jy =
∫

S
z2d S = 1

36
, Jz =

∫
S

y2d S = 1

48
.

(27)

Here, Jy and Jz are the moments of inertia respectively about the axes y and z.
In contrast to the conventional model, these bending-longitudinal and bending-

torsional functions are convex. The negative eigenvaluesμ1(ω) andμ4(ω) are strictly
decreasing, whereas the positive ones μ2(ω) and μ5(ω) attain their maximal values
at ω ≈ 1.104 and ω ≈ 1.232, respectively.

The functionμ2(ω) changes its sign at the critical frequency ω
(1)
l ≈ 1.233. It was

found out [4] that the beam eigenforms change dramatically when passing through
such critical points. At the next singular frequency ω

(2)
l ≈ 2.763, one complex

conjugate pair of longitudinal-bending eigenvalues (their real part is shown in Fig. 3
by curve 4) turns into two positive real values, one of which (curve 6) is strictly
increasing, whereas the other (curve 5) decreases, changes its sign at the frequency
ω

(3)
l ≈ 2.794, and quickly gets flatter after passing closely over the eigenvalueμ2(ω)

(curve 3).
For the bending-torsional vibrations, the interreaction of the corresponding eigen-

values is more sophisticated. A positive eigenvalue (curve 4 in Fig. 4) meets the value
μ5(ω) (curve 3) at the singular point ω

(1)
t ≈ 2.255. The newly formed functions

(curve 5) keep complex conjugate for ω ∈ (ω
(1)
t , ω

(2)
t ) with ω

(2)
t ≈ 2.285 where

they turn into real and then diverge from each other for ω ≥ ω
(2)
t . One of these
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curves (6) crosses the ω-axis at ω
(3)
t ≈ 2.306; the other (7) do so at ω

(3)
t ≈ 2.555.

One more real eigenvalue (curve 8) appears in the chosen wave-frequency domain.
The next step of the proposed algorithm is in resolving the homogeneous boundary

constraints (5) on the basis of the general solution obtained for the system (23).
In accordance with the dimension of the stress functions σx (x, y, z), τxy(x, y, z),
τxz(x, y, z) with respect to the cross-sectional coordinates y and z, this solution
depends on Nd unknown coefficients which are determined with Nd/2 conditions at
the beam end x = 0 and the same number at the other end x = l. The linear algebraic
system resulting from these conditions has a nontrivial solution if it is degenerate or,
in other words, the determinant of the corresponding system matrix equals to zero.

Another important characteristic can be defined by finding all the beam lengths
l(ω) at which such a degeneration takes place for some fixed frequency. As it can be
seen in Fig. 5 for the bending-longitudinal as well as longitudinal-bending vibrations,
the function l(ω) generates two sets of curves (solid and dashed, respectively) on the
plane {ω, l} ∈ R

2. The curves of one set do not intersect with the other; the points of
intersection correspond to the case of multiple determinant roots and require special
attention (only one such point {ω, l} = {0.233, 13.38} presents in Fig. 5). All the
curves asymptotically converge to the axes ω = 0 and l = 0. Much the same picture
appears for the bending-torsional and torsional-bending subsystem (solid and dashed
curves in Fig. 6, respectively). In the depicted frequency-space domain, as much as
twomultiple roots have a place ({ω, l} = {0.194, 7.56} and {ω, l} = {0.244, 12.26}).

By fixing the beam length (as an example, l = 10) in the Figs. 5 and 6, the
whole frequency spectrum of the elastic beam in the chosen range of ω < 0.4
can be restored. The numerical values of the natural frequencies for corresponding

Fig. 5 Beam length l versus frequency ω for the longitudinal-bending vibrations
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Fig. 6 Beam length l versus frequency ω for the torsional-bending vibrations

Table 1 Eigenfrequencies
for the beam with the
isosceles cross section for
ω < 0.4

i 1 2 3 4

ω
(i)
bt 0.0448 0.1193 0.2235 0.3497

ω
(i)
tb 0.1496 0.2992 – –

ω
(i)
bl 0.0515 0.1359 0.2521 0.3909

ω
(i)
lb 0.3140 – – –

eigenmodes obtained in accordance with the proposed projection algorithms at N0 =
4 are given in Table1.

The first mode of bending-longitudinal vibrations corresponding to the frequency
ω

(1)
bl is shown in Fig. 7. In contrast to the form of bending vibrations according to

the Euler–Bernoulli model, the bending-longitudinal motions are characterized not
only by transverse displacementw0(x) but also the longitudinal displacements u0(x).
Here w0 and u0 are the following integral characteristics

w0(x) = 1

S

∫
S

w(x, y, z)d S and u0(x) = 1

S

∫
S

u(x, y, z)d S .

The amplitudes w0(x) and u0(x) calculated at N0 = 4 can be compared by the
following ratio

β1 = maxx∈[0,l] |w0(x)|
maxx∈[0,l] |u0(x)| = 68350 . (28)

At that, the deflections w0 are strongly dominant over u0.
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Fig. 7 Bending-longitudinal
eigenform: lateral (w0(x),
solid curve) and longitudinal
(u0(x), dashed curve)
displacements for the
frequency ω

(1)
bl

The first longitudinal-bending mode of natural vibrations with the frequency ω
(1)
lb

is shown in Fig. 8. This form includes not only the component of the longitudinal
displacements u0, as follows from the classical concept, but also the lateral w0. At
that, the displacements u0 are dominant over w0. The inverse amplitude ratio

Fig. 8 Longitudinal-bending
eigenform: lateral (w0(x),
solid curve) and longitudinal
(u0(x), dashed curve)
displacements for the
frequency ω

(1)
lb
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Fig. 9 Bending-torsional
eigenform: bending (αz(x),
solid curve) and torsional
(αz(x), dashed curve) angles
for the frequency ω

(1)
bt

β2 = maxx∈[0,l] |u0(x)|
maxx∈[0,l] |w0(x)| = 48540 . (29)

at ω
(1)
bl is quite large conversely to the longitudinal-bending vibrations at ω

(1)
lb . By

taking into account Eq. (29), the influence of the longitudinal displacements can be
neglected in the most cases. The values β1 and β2 show that the relationship between
longitudinal and lateral vibrations is quite weak and can be ignored under certain
assumptions for both eigenforms.

Thefirst bending-torsional and torsional-bending formsof natural beamvibrations
are shown in Figs. 9 and 10, respectively. Amplitude relations change appreciably
for the bending-torsional and torsional-bending modes. To compare the bending and
torsion, the functions

αz(x) = 1

Jz

∫
S

u(x, y, z)yd S

and

αx (x) = 1

2Jx

∫
S
(v(x, y, z)z − w(x, y, z)y)d S with Jx = Jy + Jz

(solid and dashed curves in Figs. 9 and 10, respectively) are introduced. Here, αz(x)

is the integral rotation of the beam cross sectionwith respect to the z-axis,αx (x) is the
average angle of cross-sectional rotation around the x-axis. The principal moments
of inertia Jy and Jz for the isosceles cross section are introduced in Eq. (27).
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Fig. 10 Torsional-bending
eigenform: bending (αz(x),
solid curve) and torsional
(αx (x), dashed curve) angles
for the frequency ω

(1)
tb

The function αz(x) is dominant for the bending-torsion type of natural beam
motions. However, the characteristic amplitude ratio for the frequency ω

(1)
bt

β3 = maxx∈[0,l] |αz(x)|
maxx∈[0,l] |αx (x)| ≈ 131

is not so large as in the previous two examples (see Eqs. (28) and (29)).
The inverse amplitude ratio

β4 = maxx∈[0,l] |αx (x)|
maxx∈[0,l] |αz(x)| ≈ 115

characterizes the relation between torsion and bending beam vibrations for the eigen-
frequency ω

(1)
bt .

6 Conclusions

The influence of cross-sectional asymmetry on the natural frequencies and forms
of elastic beam vibrations has been discussed in the paper. It is found out that the
naturalmotions of such beams cannot be divided into purely longitudinal, bending, or
torsional. Due to asymmetry, such motions are coupled to each other. The frequency-
wave analysis of free elastic vibrations is performed for the right triangular prism.The
general features of eigenfrequencies and eigenforms are illustrated on the example
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of combined torsional, longitudinal, and lateral vibrations for the beams with an
isosceles cross section. Spectrum characteristics of the beams and their specific
resonance properties caused by the lack of symmetry are discussed.
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On Bifurcation Analysis of Implicitly Given
Functionals in the Theory of Elastic Stability
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Abstract In this paper, we analyze the stability and bifurcation of elastic systems
using a general scheme developed for problems with implicitly given functionals. An
asymptotic property for the behaviour of the natural frequency curves in the small
vicinity of each bifurcation point is obtained for the considered class of systems. Two
examples are given. First is the stability analysis of an axially moving elastic panel,
with no external applied tension, performing transverse vibrations. The second is the
free vibration problem of a stationary compressed panel. The approach is applicable
to a class of problems in mechanics, for example in elasticity, aeroelasticity and
axially moving materials (such as paper making or band saw blades).
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1 Introduction

Elastic stability analysis comes with a long tradition. The present form of static
stability analysis was originally developed by [1], for a differential equation describ-
ing the bending of a beam or column. Dynamic stability analysis for linear elastic
systems, extending Euler’s method, is due to [2] following the pioneering work by
Lyapunov. According to [3], the stability behaviour of some axiallymovingmaterials
is mathematically analogous to the buckling of a compressed column, enabling the
use of these techniques also in the context of axially moving materials.

Previously (see, e.g., [4–7]), we have considered many approaches for modelling
of moving materials. The conclusions drawn can be applied, for example, to the
processing of paper or steel, fabric, rubber or some other continuous material, and
looping systems such as band saws and timing belts.

The most often used models for an axially moving material have been travelling
flexible strings, membranes, beams, and plates. The research field of axially moving
materials can be traced back to [8]. Among the first English-language papers on
moving materials were [9, 10]. All these studies considered axially moving ideal
strings. The analytical solution describing the free vibrations of the axially moving
ideal string was derived by [11]. Dynamics and stability considerations were first
reviewed in the article by [12].

The effects of axial motion of the web on its frequency spectrum and eigenfunc-
tions were investigated in the classic papers by [13, 14]. It was shown that the natural
frequency of each mode decreases when the transport speed increases, and that the
travelling string and beam both experience divergence instability at a sufficiently
high speed. However, in the case of the string, this result was recently contrasted by
[15], who showed using Hamiltonian mechanics that the ideal string remains stable
at any speed.

The loss of stability was studied with an application of dynamic and static
approaches in the article by [16]. It was shown by means of numerical analysis
that in the all cases instability occurs when the frequency is zero and the critical
velocity coincides with the corresponding velocity obtained from static analysis.
Similar results were obtained for travelling plates by [17].

The dynamical properties of moving plates have been studied by [18, 19], and the
properties of a moving paper web have been studied in the two-part article by [20,
21]. Critical regimes and other problems of stability analysis have been studied, e.g.,
by [22, 23]. Moreover, in the articles [24–26] the author discusses widely dynamical
aspects of the axially moving web. In [27] the authors considered transverse vibra-
tions of the axially accelerating viscoelastic beam and in [28] dynamic behavior
of a simply supported beam subjected to an axial transport of mass is studied. An
extensive literature review related to areas presented in this paper can be found, for
example, in [29]. Some approaches to bifurcation problems and estimation of critical
parameters were also presented by [30, 31].

In this article, we analyze the stability and bifurcation of elastic systems using
a general scheme developed for problems with implicitly given functionals.
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As examples, the approach is first applied to the stability problem of a vibrating,
axially moving elastic panel, with no external applied tension, and finally a station-
ary compressed panel is considered.

2 Bifurcation Method of Stability Analysis

In this section, we present the general formal scheme, which explains in general
terms the idea used in the subsequent sections. For any particular case, the scheme
requires proper clarification and imposing additional conditions that guarantee the
mathematical correctness of the considered problem. Particularly important is that the
scheme, as presented here, requires that the spectral problem depends continuously
on the problem data. Often this is reasonable, but not always.

Consider the generalized spectral boundary value problem (for a sheaf of opera-
tors) described by the equation

L ( u(x), λ, γ ) =
m∑

k=0

n∑
�=0

λkγ �Lk� (u(x)) = 0 , (1)

where γ is a real-valued loading parameter, λ is a spectral parameter, andLk� (u(x))

are given differential operators applied to the behaviour function u(x), defined in
the domain Ω (x ∈ Ω). Boundary conditions are considered as included in the
differential operator L (u(x)).

The particular choice of the form (1) is motivated by applications in mechanics,
especially elastic systems. Although time does not appear explicitly as a variable, the
form lends itself to investigation of time-harmonic solutions, because these can be
recast as complex-valued pseudo-steady-state problems (typically quadratic eigen-
value problems). Many models describing e.g. free vibrations and stability of elastic
systems interacting with external media (liquid or gas) can be reduced to the con-
sidered form. The form is also encountered in problems related to axially moving
materials, as demonstrated in the examples further below.

In mechanics applications, the spectral parameter λ is often a complex-valued
frequency of free vibration, and the load parameter γ can be e.g. an external force,
or the drive velocity of an axially moving material.

Let the function v(x) be the eigenfunction (corresponding to an eigenvalue λ) of
the spectral problem

L ∗ (v(x), λ, γ ) = 0 , (2)

which is adjoint to the problem (1). (In the special case of a self-adjoint problem, v(x)

coincides with u(x). In this general treatment, we do not assume self-adjointness.)
For simplicity, we leave aside the case of eigenvalues λ with multiplicity higher

than one, only noting that then u(x) and v(x) should be chosen so that they correspond
to the same mode (which then cannot be identified by the eigenvalue alone).
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Multiple eigenvalues arise at bifurcation points, and sometimes also due to sym-
metries in the problem. In the latter case, the multiplicity is not confined to a single
point on the problem parameter axis. One particular example are the free vibrations
of a homogeneous, isotropic square plate with simply supported boundary conditions
on all edges; e.g. modes (1, 2) and (2, 1) then share the same eigenfrequency for the
obvious geometric reason.

We multiply equation (1) by v(x) and integrate over the domain, obtaining

Φ (λ, J00, . . . , Jmn, γ ) :=
m∑

k=0

n∑
�=0

λkγ � Jk� = 0 , (3)

where the functionals Jk�, k = 1, 2, . . . m; � = 1, 2, . . . , n are defined as

Jk�(v, u) := (v,Lk�u) =
∫

Ω

v(x)Lk�u(x) dΩ . (4)

For the remainder of this section, let us formally consider γ as an independent
variable, and λ as a dependent variable.

In this view, the relation (3) can be considered as an implicit expression for λ.
The function Φ (λ, J00, . . . , Jmn, γ ) is a polynomial of the degree m with respect to
λ, thus having exactly m complex-valued roots (due to the fundamental theorem of
algebra), which are the eigenvalues

λ1 = ϕ1 (J00, . . . , Jmn, γ ) , . . . , λm = ϕm (J00, . . . , Jmn, γ ) . (5)

The functions ϕ1, . . . , ϕm represent (3) as formally solved for λ (once for each of the
m roots), with γ and Jk� (for all k, �) considered as parameters. The functions input to
the functionals Jk�(v, u), here v(x) and u(x), also play the role of (function-valued)
parameters inside the right-hand sides of (5).

With this in mind, consider the expression Jk�(g, f ) for arbitrary admissible
functions g = g(x) and f = f (x), which are taken not to depend on k, �. It can
be shown that at any fixed value of the problem parameter γ , if ∂Φ/∂λ �= 0 at the
solution points (u, v, λ) (subscript omitted), then the functions ϕ1, . . . , ϕm have zero
variation at the point (g, f ) = (v, u), i.e. when the input functions are chosen as the
eigenfunctions u(x) and v(x) of the direct and adjoint spectral problems (1), (2). At
this point, the functions ϕ1, . . . , ϕm obtain the values λ1, . . . , λm .

Let us show that the claimed properties hold by examining the behaviour of Φ

around a solution point (u, v, λ), where u(x) and v(x) are the eigenfunctions of the
problems (1) and (2), respectively, and λ is the corresponding eigenvalue (subscript
omitted). Because this point is a solution of (3), if we (formally) write (5) at this
point, the left-hand side will be the eigenvalue. Thus we actually only need to show
the zero variation property.
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Consider arbitrary small variations of the functions

u(x) → u(x) + δu(x), v(x) → v(x) + δv(x) , (6)

giving rise to an unknown small variation in the output of (5),

λ → λ + δλ . (7)

At any fixed γ , the perturbed value of Φ is then given by

Φ̃ = Φ(λ + δλ, J00 + δ J00, . . . , Jmn + δ Jmn, γ )

=
m∑

k=0

n∑
�=0

(λ + δλ)kγ �(Jk� + δ Jk�) .
(8)

Using Eq. (1) for u(x) and adjoint equation (2) for v(x), noting definition (4) for Jk�,
and performing elementary operations, we obtain (up to first order in the perturba-
tions)

Φ̃ = Φ(λ, J00, . . . , Jmn, γ ) + ∂Φ

∂λ
δλ +

m∑
k=0

n∑
�=0

λkγ �δ Jk�

= Φ(λ, J00, . . . , Jmn, γ ) + ∂Φ

∂λ
δλ + (δv, L u) + (v, δL u)

= Φ(λ, J00, . . . , Jmn, γ ) + ∂Φ

∂λ
δλ + (δv, L u) + (

L ∗v, δu
) = 0 ,

(9)

where on the last line we have required that the perturbed point is also a solution
point of (3).

The first (unperturbed) term is zero because of (3). The third and fourth terms are
also equal to zero because u(x) and v(x) satisfy, respectively, the equationsL u = 0,
L ∗v = 0. Thus, it follows from (9) that in order to stay on the set of solutions, the
perturbation must satisfy

∂Φ

∂λ
δλ = 0 . (10)

Recall that δλ is an unknown to be determined. If ∂Φ/∂λ �= 0 at the unperturbed
value λ (which was assumed), then wemust have δλ = 0, as claimed. Thus, provided
that the condition ∂Φ/∂λ �= 0 holds, the point (g, f ) = (v, u) is either an extremum
or an inflection point for each of the functions ϕ1, . . . , ϕm .

Next, let us study the dependence of λk , k = 1, 2, . . . , m, on the parameter γ . It
can be shown that the functionals J00, . . . , Jmn can be considered as constant when
the function Φ(λ, J00, . . . , Jmn, γ ) is differentiated with respect to γ .
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This property follows simply by writing the total derivative

dΦ

dγ
= ∂Φ

∂λ

dλ

dγ
+ ∂Φ

∂γ
+

m∑
k=0

n∑
�=0

∂Φ

∂ Jk�

dJk�

dγ
, (11)

and evaluating the double sum:

m∑
k=0

n∑
�=0

∂Φ

∂ Jk�

dJk�

dγ
=

m∑
k=0

n∑
�=0

λkγ � dJk�

dγ

=
m∑

k=0

n∑
�=0

λkγ �

[(
dv

dγ
, Lk�u

)
+

(
v,Lk�

du

dγ

)]

=
[(

dv

dγ
, L u

)
+

(
v,L

du

dγ

)]

=
[(

dv

dγ
, L u

)
+

(
L ∗v,

du

dγ

)]
= 0 ,

(12)

where we have used the linearity of Φ with respect to each Jk�, and the equalities
L u = 0 and L ∗v = 0. Thus we are left with

dΦ

dγ
= ∂Φ

∂λ

dλ

dγ
+ ∂Φ

∂γ
. (13)

From the perspective of parametric studies in mechanics, where the stability of the
system is investigated as a function of the problem parameter γ , the function Φ =
Φ(λ, J00, . . . , Jmn, γ ) can be considered as a function of only two variables λ and
γ , and denoted as F(λ, γ ), i.e.

F(λ, γ ) :=
m∑

k=0

n∑
�=0

λkγ n Jk� = 0 . (14)

This equation can be taken as an implicit relation for λ = λ(γ ), determining a set of
functions λ1(γ ), . . . , λm(γ ).

In correspondence with the fundamental theorem on implicit functions (see, e.g.,
[32]), a unique solution of (14) exists in a small vicinity of the fixed values λ = λ̃,
γ = γ̃ , if ∂ F/∂λ �= 0 at the point (λ∗, γ ∗).

Thus nonuniqueness of the solution of (14), or in other words, a bifurcation of the
considered system, can occur for some values λ = λ∗, γ = γ ∗ when the condition
of the theorem on implicit functions is violated. Hence the bifurcation values λ∗ and
γ ∗ are found with the help of the equations

F(λ∗, γ ∗) = 0,
∂ F(λ∗, γ ∗)

∂λ
= 0 . (15)
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Let us denote by (λ∗
1, γ

∗
1 ), (λ∗

2, γ
∗
2 ), . . . the solutions of the nonlinear system of

equations (15), representing points on the (λ, γ ) plane, and investigate the behaviour
of the functions λi = λi (γ ) in a small vicinity of the bifurcation points (λ∗

k , γ
∗
k ). For

brevity, the subscript indices of the considered functions and points will be omitted.
Let us represent the function F(λ, γ ) in a small vicinity of the point (λ∗, γ ∗) as

a series expansion,

F(λ, γ ) = F(λ∗, γ ∗) + ∂ F(λ∗, γ ∗)
∂λ

[
λ − λ∗] + ∂ F(λ∗, γ ∗)

∂γ

[
γ − γ ∗]

+ 1

2

∂2F(λ∗, γ ∗)
∂λ2

[
λ − λ∗]2 + ∂2F(λ∗, γ ∗)

∂λ∂γ

[
λ − λ∗] [

γ − γ ∗]

+ 1

2

∂2F(λ∗, γ ∗)
∂γ 2

[
γ − γ ∗]2 + · · ·

(16)

At a bifurcation point, we have the relation (15), i.e. F(λ∗, γ ∗) = 0 and ∂ F/∂λ = 0.
This eliminates the first two terms on the right-hand side. Retaining only the lowest-
order nonzero terms, we are left with

F(λ, γ ) = ∂ F(λ∗, γ ∗)
∂γ

[
γ − γ ∗] + ∂2F(λ∗, γ ∗)

∂λ∂γ

[
λ − λ∗] [

γ − γ ∗]

+ 1

2

∂2F(λ∗, γ ∗)
∂λ2

[
λ − λ∗]2 + · · ·

(17)

Let us now represent the behaviour of the function λ = λ(γ ) in the vicinity of the
bifurcation point (λ∗, γ ∗) as

λ(γ ) = λ∗ + α
[
γ − γ ∗]ε + · · · , (18)

where α and ε are determined with the help of the condition F(λ, γ ) = 0. By
substituting (18) into (17), Eq. (17) is transformed into

F̃ = F̃(γ − γ ∗) ≡ 0 ,

whichmust be satisfied identically. Here F̃(γ −γ ∗) is a series expansionwith respect
to γ − γ ∗. As a result we have

F(λ, γ ) = ∂ F(λ∗, γ ∗)
∂γ

[
γ − γ ∗] + α

∂2F(λ∗, γ ∗)
∂λ∂γ

[
γ − γ ∗]1+ε

+ α2

2

∂2F(λ∗, γ ∗)
∂λ2

[
γ − γ ∗]2ε + · · · ≡ 0 .

(19)

To find an approximation in the lowest nonzero order, we pick the value of ε to match
the orders of different terms in (19). Once a value is chosen, we omit any remaining
higher-order terms and analyze the result.
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There are three possibilities. First, ε = 0 matches the orders of the first two
terms, but eliminates them in favor of the third term, which becomes a constant.
If this constant is nonzero, this is not a solution of (19). The second possibility is
matching the orders of the last two terms with ε = 1, eliminating them and leaving
only the first term. If the coefficient ∂ F/∂γ �= 0, this is not a solution of (19).

The final possibility is to match the orders of the first and third terms with 2ε = 1,
eliminating the second term. This is the typical general case. It is valid when

∂ F(λ∗, γ ∗)
∂γ

�= 0,
∂2F(λ∗, γ ∗)

∂λ2
�= 0 . (20)

If either or both of these terms vanish, the analysis must be repeated retaining the
lowest-order nonzero terms for that particular case.

Inserting ε = 1/2 into (19) and dropping the higher-order term obtains

F(λ, γ ) = ∂ F(λ∗, γ ∗)
∂γ

[
γ − γ ∗] + α2

2

∂2F(λ∗, γ ∗)
∂λ2

[
γ − γ ∗] + · · · ≡ 0 , (21)

which is satisfied identically in the lowest nonzero order by

α2 = −2

(
∂ F(λ∗, γ ∗)

∂γ

) (
∂2F(λ∗, γ ∗)

∂λ2

)−1

. (22)

From (18) we have the asymptotic representation

λ(γ ) = λ∗ + α
√

γ − γ ∗,
∣∣γ − γ ∗∣∣ � 1 , (23)

provided that the inequalities (20) are satisfied.
As is seen from (14) and (22), the value α is expressed in terms of (derivatives

of) the functional F , and does not require the analytical solution of the behavioural
equation in an explicit manner.

Most importantly, the asymptotic result (23) is general for systems of the form (1)
(with the appropriate additional assumptions for each particular case). The square
root property in the dependence λ(γ ) around each bifurcation point holds for any
member of the class of systems to which the general scheme applies.

3 Stability of an Axially Moving Panel

As an example, let us consider the stability problem of an axially moving elastic
panel (plate undergoing cylindrical deformation), with no external applied tension,
performing transverse vibrations. In the fixed (laboratory, Euler) coordinate sys-
tem the equation of small transverse vibrations and the corresponding boundary
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conditions can be written as

∂2w

∂t2
+ 2V0

∂2w

∂x∂t
+ V 2

0
∂2w

∂x2
+ D

ρS

∂4w

∂x4
= 0 ,

w(0, t) = w(�, t) = 0, D
∂2w(0, t)

∂x2
= D

∂2w(�, t)

∂x2
= 0 ,

(24)

where w = w(x, t) describes the transverse displacement, ρ is the density of the
material, S the cross-sectional area of the panel, t time and x ∈ [0, �].

Time-harmonic transverse vibrations of the panel are represented as

w(x, t) = eiωt u(x) , (25)

and the dimensionless variables

x = �x̃, ω̃2 = ρSω2�4

D
, Ṽ0

2 = ρS�2

D
V 2
0 (26)

will be used. The tilde will be omitted.
We obtain

ω2u − 2iωV0
du

dx
− V 2

0
d2u

dx2
− d4u

dx4
= 0 ,

u(0) = u(1) = 0,

(
d2u

dx2

)
x=0

=
(
d2u

dx2

)
x=1

= 0 .

(27)

In (25)–(27) ω is a (complex-valued) frequency (playing the role of the eigenvalue
λ), u = u(x) is the amplitude function, and i the imaginary unit. The axial drive
velocity V0 plays the role of the loading parameter γ .

After multiplication of the Eq. (27) by the complex conjugate amplitude function
u∗(x) and performing integration, taking into account the boundary conditions (27),
we obtain

Φ = aω2 + 2bV0ω + V 2
0 c − d = 0 , (28)

where

a =
∫ 1

0
uu∗ dx > 0 ,

ib =
∫ 1

0
u∗ du

dx
dx = −

∫ 1

0
u
du

dx

∗
dx > 0, (b real)

c = −
∫ 1

0
u∗ d2u

dx2
dx =

∫ 1

0

du

dx

du

dx

∗
dx > 0 ,

d =
∫ 1

0
u∗ d4u

dx4
dx =

∫ 1

0

d2u

dx2
d2u

dx2

∗
dx > 0 .

(29)
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The quantities a, b and d are obviously real-valued, because each integrand (con-
sidered pointwise) is of the form zz∗ ≡ ‖z‖ for some complex number z. As for b,
the product z1z∗

2, where z1 = x1 + y1i and z2 = x2 + y2i are arbitrary complex
numbers, is real-valued only if x1y2 + x2y1 = 0, which does not hold in general.

Instead, consider themiddle two forms in the definition of b in (29). Their equality
incorporates additional information from the boundary conditions, namely u(0) =
u(1) = 0 (and correspondingly for u∗); this can be interpreted as resulting from an
integration by parts. By summing the two forms of the definition, we have

2ib =
∫ 1

0

[
u∗ du

dx
− u

du

dx

∗]
dx =

∫ 1

0

[
u∗ du

dx
−

(
u∗ du

dx

)∗ ]
dx . (30)

The integrand (considered pointwise) is of the form z − z∗, and hence the real part
cancels. Thus 2ib must be pure imaginary, and b is real-valued.

Using the notation a, b, c, d for the considered functionals, determined by the
expressions (29), we find the coefficient α in the asymptotic representation of the
function λ(γ ). We have (Φ = F)

∂ F

∂V0
= 2 (bω + cV0) ,

∂2F

∂ω2 = 2a , (31)

and consequently,

α2 = −2
bω + cV0

a
. (32)

Thus we have the following asymptotic representation for the dependence ω(V0) in
the vicinity of the bifurcation point (ω∗

k , V ∗
0 ):

ω(V0) ≈ ω∗ ±
√

−2
bω∗ + cV ∗

0

a

√
V0 − V ∗

0

= ω∗ ±
√
2

b2 − ac

a2 V ∗
0

√
V0 − V ∗

0 .

(33)

Note that for the considered problem, the equationΦ(ω, a, b, c, d, V0) can be solved
with respect to the variable ω. As a result, we have

ω1,2(V0) =
−bV0 ±

√
(b2 − ac)V 2

0 + ad

a
. (34)

It is possible now to analyze the dependence ω(V0), determined by expression (34)
in the small vicinity of the bifurcation point (ω∗, V ∗

0 ). Taking into account the rep-
resentations for the bifurcation values of harmonic vibration frequency and velocity
of axial motion,
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ω∗ = −b

a
V ∗
0 , (b2 − ac)(V ∗

0 )2 = −ad , (35)

and the asymptotic expression

V 2
0 ≈ (V ∗

0 )2 + 2V ∗
0

[
V − V ∗

0

]
,

∣∣V0 − V ∗
0

∣∣ � 1 , (36)

we obtain the asymptotic result

ω1,2 ≈ ω∗ ±
√
2

b2 − ac

a2 V ∗
0

√
V0 − V ∗

0 ,
∣∣V0 − V ∗

0

∣∣ � 1 , (37)

which coincides with the asymptotic representation (33), as expected.

4 Harmonic Vibrations of a Compressed Panel

Asa second example,we consider the problemof harmonic vibrations of a (stationary,
not axiallymoving) panel compressed by the forceγ (γ > 0). The following relations
will be used for the amplitude functions u(x) (x ∈ [0, 1]):

d4u

dx4
+ γ

d2u

dx2
− ω2u = 0,

u(0) = u(1) = 0,

(
d2u

dx2

)
x=0

=
(
d2u

dx2

)
x=1

= 0 .

(38)

Let us investigate the asymptotic behaviour of the frequency ω as a function of the
loading parameter γ , i.e. ω = ω(γ ), using the discussed perturbation method. To do
this, wemultiply the Eq. (38) by the function u(x), which coincides in the considered
case with u∗(x) (because the problem (38) is self-adjoint), and perform integration.

As a result, we will find the following expression for Φ as a function of the
functionals a, c and d (as defined in (29)). We have

Φ(ω, a, c, d, γ ) = −aω2 − γ c + d = 0 . (39)

The functionals a, c and d can be expressed with the help of eigenmodes of vibra-
tions

uk(x) = Bk sin (kπx) .
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We find

ak =
∫ 1

0
(uk(x))2 dx = B2

k

2
,

ck =
∫ 1

0

(
duk

dx

)2

dx = k2π2

2
B2

k ,

dk =
∫ 1

0

(
d2uk

dx2

)2

dx = k4π4

2
B2

k .

(40)

In correspondence with the general formulas (22)–(23), the asymptotic behaviour of
the frequencies in the vicinity of the bifurcation points

ω∗
k = 0 , γ ∗

k = k2π2 (41)

will be described by the expressions

ωk = ωk(γ ) = ±α

√
γ − k2π2,

∣∣∣γ − k2π2
∣∣∣ � 1 , (42)

and the value of the coefficient α will be given by

α2 = −2

(
∂ F(ω∗

k , γ ∗
k )

∂γ

) (
∂2F(ω∗

k , γ ∗
k )

∂ω2

)−1

= −k2π2 . (43)

5 Conclusions

In this paper, we studied the stability and bifurcation of elastic systems using a
general scheme developed for problems with implicitly given functionals. The most
important observation gained from the analysis is, that in the small vicinity of each
bifurcation point, a square root type of dependence takes place for the eigenvalue
(complex eigenfrequency) as a function of the problem parameter. This is a general
property, which holds for any system of the class considered.

After a general exposition, the approach was applied to two examples: the trans-
verse elastic stability of an axially moving elastic panel with no external applied
tension, and the free vibrations of a compressed panel.

The presented approach has applications, for example, in elasticity, aeroelasticity
and axially moving materials.
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Proximal Bundle Method for Nonsmooth
and Nonconvex Multiobjective Optimization

Marko M. Mäkelä, Napsu Karmitsa and Outi Wilppu

Abstract We present a proximal bundle method for finding weakly Pareto optimal
solutions to constrained nonsmooth programming problems with multiple objec-
tives. The method is a generalization of proximal bundle approach for single objec-
tive optimization. The multiple objective functions are treated individually without
employing any scalarization. The method is globally convergent and capable of
handling several nonconvex locally Lipschitz continuous objective functions sub-
ject to nonlinear (possibly nondifferentiable) constraints. Under some generalized
convexity assumptions, we prove that the method finds globally weakly Pareto opti-
mal solutions. Concluding, some numerical examples illustrate the properties and
applicability of the method.

Keywords Multiobjective optimization · Nonsmooth optimization · Bundle
methods

Mathematical Subject Classification: 90C26 · 90C29 · 65K05 · 46N10

1 Introduction

Nonsmooth (nondifferentiable) optimization problems arise in very many fields of
applications, for example, in optimal shape design (see, e.g., [2, 5, 13]), economics
[21] and mechanics [19]. On the other hand, instead of one criterion the applications
typically have several, often conflicting objectives. During the last three decades
the rapid development has been characteristic to the areas of nonsmooth (see, e.g.,
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[1, 4, 8, 10–12, 18, 22]) and multiobjective optimization (see, e.g., [16, 17, 20,
23]), separately. Conversely the consideration of both of these approaches in the
same framework, i.e. nonsmooth multiobjective optimization, is much less frequent.
Thus there exists an increasing demand to be able to solve efficiently optimization
problems with several, possible nonsmooth, objective functions.

In this paper we present a proximal bundle based method for constrained non-
convex nonsmooth programming problems with multiple objectives. The method
generalizes the proximal bundle approach for single objective optimization [9] by
employing the ideas presented in [7, 17, 24]. We can prove, that under some general-
ized convexity assumptions [15] the method can find globally weakly Pareto optimal
solutions. Unlike the most multicriteria optimization methods the multiple objective
functions are treated individually without employing any scalarization.

The method is readily implementable and descent, i.e., the value of each objective
function is expected to get an improvement at each iteration. Thus the starting point
is projected to the weakly Pareto optimal set through the negative orthant of the
decision space. This means that the user can control via choosing the starting point
which kind of optimal solution is generated. Hence the method can be used either as
a part of interactive multiobjective optimization methods producing the efficiently
(weakly) Pareto optimal counterparts of nonoptimal solutions or, by choosing several
starting points, a good spread of (weakly) Pareto optimal solutions.

The paper is organized as follows. Section2 contains some preliminary concepts
and results of nonsmooth and multiobjective optimization theory. The algorithm of
the multicriteria proximal bundle (MPB) method is described in Sect. 3. Some con-
vergence results are presented in Sect. 4. Finally, Sect. 5 is devoted to some numerical
examples illustrating the properties and applicability of the method.

2 Preliminaries

Let us consider a nonsmooth multiobjective optimization problem of the form

{
minimize { f1(x), . . . , fk(x)}
subject to x ∈ S,

(1)

where

S = {x ∈ R
n | g j (x) ≤ 0, j = 1, . . . , m}.

The objective functions fi : Rn → R and the constraint functions g j : Rn → R

are supposed to be locally Lipschitz continuous (not necessarily smooth nor convex).
For a locally Lipschitz continuous function f : Rn → R the Clarke generalized
directional derivative [3] at x in the direction d ∈ R

n is defined by
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f ◦(x; d) = lim sup
y→x
t↓0

f (y + td) − f (y)

t

and the Clarke subdifferential [3] of f at x by

∂ f (x) = {ξ ∈ R
n | f ◦(x; d) ≥ ξTd for all d ∈ R

n},

which is a nonempty, convex and compact subset of Rn . Note, that if a locally
Lipschitz continuous function attains its local minimum at x∗, then

0 ∈ ∂ f (x∗). (2)

For a finite maximum of locally Lipschitz continuous functions we have the fol-
lowing subderivation rule.

Theorem 1 ([3]) Let fi : R
n → R be locally Lipschitz continuous at x for all

i = 1, . . . , m. Then the function

f (x) = max
i=1,...,m

[fi(x)]

is locally Lipschitz continuous at x and

∂ f (x) ⊆ conv{∂fi(x) | (fJi(x) = f (x), i = 1, . . . , m}, (3)

where conv denotes the convex hull of a set.

A function f : Rn → R is weakly semismooth if the classical directional derivative

f ′(x, d) = lim
t↓0

f (x + td) − f (x)

t

exists for all x and d, and

f ′(x, d) = lim
t↓0 ξ(x + td)Td,

where ξ(x + td) ∈ ∂f (x + td).
A function f : Rn → R is f ◦-pseudoconvex [6], if it is locally Lipschitz contin-

uous and for all x, y ∈ R
n

f (y) < f (x) implies f ◦(x; y − x) < 0

and f ◦-quasiconvex, if

f (y) ≤ f (x) implies f ◦(x; y − x) ≤ 0.
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Note, that a convex function is always f ◦-pseudoconvex, which again is f ◦-
quasiconvex (see, e.g., [15]). Next we present two important properties of f ◦-
pseudoconvex functions.

Theorem 2 ([6]) An f ◦-pseudoconvex function f attains its global minimum at x∗,
if and only if

0 ∈ ∂ f (x∗).

The proof of the following useful result can be found, for example, in [1].

Theorem 3 Let fi : Rn → R be f ◦-pseudoconvex for all i = 1, . . . , m. Then the
function

f (x) = max
i=1,...,m

[fi(x)]

is also f ◦-pseudoconvex.

Note, that for an f ◦-quasiconvex function f the level set levα f := {x ∈ R
n |

f (x) ≤ α} is a convex set for all α ∈ R (see, e.g., [15]).
A vector x∗ is said to be a global Pareto optimum of (1), if there does not exist

x ∈ S such, that

fi (x) ≤ fi(x
∗) for all i = 1, . . . , k and fj(x) < fj(x

∗) for some j.

Vector x∗ is said to be a global weak Pareto optimum of (1), if there does not exist
x ∈ S such, that

fi (x) < fi(x
∗) for all i = 1, . . . , k.

Vector x∗ is a local (weak) Pareto optimum of (1), if there exists δ > 0 such, that x∗
is a global (weak) Pareto optimum on B(x∗; δ) ∩ S. Trivially every Pareto optimal
point is weakly Pareto optimal.

The contingent cone and polar cone of set S ⊆ R
n at point x are defined respec-

tively as

KS(x) = {
d ∈ R

n | there exist ti ↓ 0 and di → d with x + tidi ∈ S
}

S≤ = {d ∈ R
n | sTd ≤ 0, for all s ∈ S}.

The closure of a set S is denoted by cl S. A set C ⊂ R
n is a cone if λx ∈ C for all

λ ≥ 0 and x ∈ C. We also denote

ray S = {λx | λ ≥ 0, x ∈ S} and cone S = ray conv S.

In other words ray S is the smallest cone containing S and the conic hull cone S the
smallest convex cone containing S. Furthermore, let
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F(x) =
k⋃

i=1

∂fi(x)

and

G(x) =
⋃

j∈J(x)

∂gj(x), where J(x) = { j | gj(x) = 0}.

For the optimality condition we pose the following constraint qualification

G≤(x) ⊆ KS(x). (4)

Now we can present the following generalized KKT optimality conditions.

Theorem 4 ([15]) If x∗ is a local weak Pareto optimum of (1) and the constraint
qualification (4) is valid, then

0 ∈ conv F(x∗) + cl coneG(x∗). (5)

Moreover, if fi are f ◦-pseudoconvex for all i = 1, . . . , k and g j are f ◦-quasiconvex
for all j = 1, . . . , m, then the condition (5) is sufficient for x∗ to be a global weak
Pareto optimum of (1).

A feasible point x∗ ∈ S is called a substationary point for problem (1), if it satisfies
the necessary optimality condition (5).

3 Multiobjective Proximal Bundle Method

In this section we develop the MPB (Multiobjective Proximal Bundle) method. The
original proximal bundle method of [9] for nonsmooth convex and unconstrained
single objective optimization was generalized to handle nonconvex and constrained
problems in [13]. The MPB method is a further extension into a multiobjective case.
The strategy of handling several objective functions is based on the ideas presented
in [7, 17, 24]. The idea, in brief, is to move into a direction where the values of all
the objective functions improve simultaneously.

3.1 Direction Finding

TheMPBmethod is not directly based on employing any scalarizing function. Some
kind of scalarization is, however, needed in deriving the minimization method for
all the objective functions. Theoretically, we utilize the improvement function H :
R

n × R
n → R defined by
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H(x, y) = max
i=1,...,k
j=1,...,m

[ fi (x) − fi (y), g j (x)].

Now we obtain the following connection between the improvement function and the
problem (1).

Theorem 5 A necessary condition for x∗ ∈ R
n to be a global weak Pareto optimum

of (1) is that

x∗ = arg min
x∈Rn

H(x, x∗). (6)

Moreover, if fi are f ◦-pseudoconvex for all i = 1, . . . , k, g j are f ◦-quasiconvex
for all j = 1, . . . , m and the constraint qualification (4) is valid, then the condition
(6) is sufficient for x∗ to be a global weak Pareto optimum of (1).

Proof Suppose first, that x∗ ∈ R
n is a global weak Pareto optimum of (1). Since

x∗ ∈ S we have g j (x∗) ≤ 0 for all j = 1, . . . , m, thus H(x∗, x∗) = 0. If x∗ would
not be a global minimizer of H(·, x∗), there would exist y∗ ∈ R

n such that

H(y∗, x∗) < H(x∗, x∗) = 0.

Thenwe have g j (y∗) < 0 for all j = 1, . . . , m, in other words, y∗ ∈ S. Furthermore,
fi (y∗) < fi (x∗) for all i = 1, . . . , k, which contradicts the global weak Pareto
optimality of x∗.

Suppose next that (6) holds true. Suppose also that fi are f ◦-pseudoconvex for
all i = 1, . . . , k, g j are f ◦-quasiconvex for all j = 1, . . . , m and (4) is valid. Since
x∗ is a global minimizer of H(·, x∗) by (2), Theorem 3 and Lemma 2.10 of [14] we
have

0 ∈ ∂ H(x∗, x∗) = conv

⎧⎨
⎩

k⋃
i=1

∂ fi (x∗) ∪
⋃

j∈J (x∗)
∂g j (x∗)

⎫⎬
⎭

= conv
{

F(x∗) ∪ G(x∗)
}

⊆ conv
{
conv F(x∗) ∪ conv G(x∗)

}
= {

λ conv F(x∗) + (1 − λ) conv G(x∗) | λ ∈ [0, 1]} .

Then there exists λ ∈ (0, 1] such that

0 ∈ conv F(x∗) + 1 − λ

λ
conv G(x∗)

⊆ conv F(x∗) + ray conv G(x∗)
= conv F(x∗) + cone G(x∗)
⊆ conv F(x∗) + cl cone G(x∗).

Thus, Theorem 4 implies that x∗ is a global weak Pareto optimum of (1). �
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Let xh be the current approximation to the solution of (1) at the iteration h. Then,
by Theorem 5, we seek for the search direction dh as a solution of

{
minimize H(xh + d, xh)

subject to d ∈ R
n .

(7)

Since (7) still is a nonsmooth problem, we must approximate it somehow. Let us
assume for a moment that the problem (1) is convex. We suppose that, at the iteration
h besides the current iteration point xh , we have some auxiliary points y j ∈ R

n

from the past iterations and subgradients ξ
j
fi

∈ ∂ fi (y j ) for j ∈ J h = {1, . . . , h},
i = 1, . . . , k, and ξ

j
gl ∈ ∂gl(y j ) for j ∈ J h , l = 1, . . . , m. We linearize the objective

and the constraint functions at the point y j by

f̄i, j (x) = fi (y j ) + (ξ
j
fi
)T (x − y j ) for all i = 1, . . . , k, j ∈ J h, and

ḡl, j (x) = gl(y j ) + (ξ
j

gl )
T (x − y j ) for all l = 1, . . . , m, j ∈ J h .

Now we can define a convex piecewise linear approximation to the improvement
function by

Ĥ h(x) = max
i=1,...,k
l=1,...,m

j∈J h

[ f̄i, j (x) − fi (xh), ḡl, j (x)]

and we get an approximation to (7) by

{
minimize Ĥ h(xh + d) + 1

2uh‖d‖2
subject to d ∈ R

n,
(8)

where uh > 0 is some weighting parameter. The penalty term 1
2uh‖d‖2 is added

to guarantee the existence and uniqueness of a solution to (8) and also to keep the
approximation local enough. Notice that (8) still is a nonsmooth problem, but due to
its minmax-nature it is equivalent to the following (smooth) quadratic problem

⎧⎪⎨
⎪⎩
minimize v + 1

2uh‖d‖2
subject to −αh

fi , j + (ξ
j
fi
)T d ≤ v, i = 1, . . . , k, j ∈ J h

−αh
gl , j + (ξ

j
gl )

T d ≤ v, l = 1, . . . , m, j ∈ J h,

(9)

where

αh
fi , j := fi (x

h) − f̄i, j (x
h), i = 1, . . . , k, j ∈ J h, and

αh
gl , j := −ḡl, j (x

h), l = 1, . . . , m, j ∈ Jh,

are so-called linearization errors.
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In the nonconvex case, we replace the linearization errors by subgradient locality
measures

βh
fi , j := max[|αh

fi , j |, γ fi ‖xh − yj‖2],
βh

gl , j := max[|αh
gl , j |, γgl ‖xh − yj‖2],

where γ fi ≥ 0 for i = 1, . . . , k and γgl ≥ 0 for l = 1, . . . , m, (γ fi = 0 if fi is
convex and γgl = 0 if gl is convex).

3.2 Line Search

Let (dh, vh) be a solution of (9). We perform the following two-point line search
strategy, which will detect discontinuities in the gradients of the objective functions.
We assume that mL ∈ (0, 1

2 ), m R ∈ (mL , 1) and t̄ ∈ (0, 1] are some fixed line search
parameters. First, we search for the largest number th

L ∈ [0, 1] such that

max
i=1,...,k

[ fi (xh + th
Ldh) − fi (xh)] ≤ mLth

Lvh, and

max
l=1,...,m

[gl(xh + th
Ldh)] ≤ 0.

If th
L ≥ t̄ , we take a long serious step:

xh+1 = xh + th
Ldh and yh+1 = xh+1,

if 0 < th
L < t̄ , then we take a short serious step:

xh+1 = xh + th
Ldh and yh+1 = xh + th

Rdh

and if th
L = 0, we take a null step:

xh+1 = xh and yh+1 = xh + th
Rdh,

where th
R > th

L is such that

−βh+1
fi ,h+1 + (ξ h+1

fi
)T dh ≥ m Rvh .

The iteration is terminated when

− 1
2vh < εs,

where εs > 0 is an accuracy parameter supplied by the user.
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3.3 Algorithm

Next we aggregate the previous subsections and present the algorithm of the multi-
objective proximal bundle method.

Algorithm 1. MPB

Step 1. (Initialization) Select a feasible starting point x1 ∈ S, a final accuracy toler-
ance εs > 0, an initial weight u1 > 0, line search parameters mL ∈ (0, 1

2 ),
m R ∈ (mL , 1) and t̄ ∈ (0, 1]. Choose the distance measure parameters
γ fi ≥ 0 for i = 1, . . . , k and γgl ≥ 0 for l = 1, . . . , m, (γ fi = 0 if fi is
convex and γgl = 0 if gl is convex). Set h := 1, y1 := x1 and calculate
ξ1fi

∈ ∂ fi (y1) for i = 1, . . . , k and ξ1gl
∈ ∂gl(y1) for l = 1, . . . , m.

Step 2. (Direction finding) Solve the problem (9) in order to get the solution (dh, vh).
Step 3. (Stopping criterion) If − 1

2vh < εs , then STOP.
Step 4. (Line search) Find the step sizes th

L ∈ [0, 1] and th
R ∈ [th

L , 1]. Set

xh+1 = xh + th
Ldh and yh+1 = xh + th

Rdh .

Step 5. (Updating) Set h := h + 1, calculate ξ h
fi

∈ ∂ fi (yh) for i = 1, . . . , k and

ξ h
gl

∈ ∂gl(yh) for l = 1, . . . , m. Choose J h ⊆ {1, . . . , h} and update the
weight uh . Go to Step 2.

The subgradient aggregation strategy due to [8] is used to bound the storage
requirements (i.e., the size of the index set J h). We use the line search algorithm of
[13] to produce the step-sizes th

L and th
R in Step 4, and a modification of the weight

updating algorithm of [9] is used to update the weight uh in Step 5.

4 Convergence Analysis

Next we give two important convergence results. First we prove, that for f ◦-
pseudoconvex functions Algorithm 1 produces a global weak Pareto optimum of
the problem (1), while in more general case it ends up with a substationary point.

Theorem 6 Let fi and g j be f ◦-pseudoconvex and weakly semismooth functions
for all i = 1, . . . , k and j = 1, . . . , m, and the constraint qualification (4) be
valid. If Algorithm 1 stops with a finite number of iterations, then the solution is a
global weak Pareto optimum of (1). On the other hand, any accumulation point of
an infinite sequence of solutions generated by Algorithm 1 is global weak Pareto
optimum of (1).

Proof Due to Theorem 3 the improvement function H is f ◦-pseudoconvex. The
formulation of Algorithm 1 implies, that it is equivalent to the proximal bundle
algorithm applied to unconstraint single objective optimization of H . According
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to the convergence analysis of the standard proximal bundle algorithm (see, e.g.,
[9, 22]) if it stops with a finite number of iterations, then the solution xh is a
substationary point of a weakly semismooth H , in other words 0 ∈ ∂ H(xh, xh).
Then by Theorem 2 function H attains its global minimum at xh . Since every f ◦-
pseudoconvex function is also f ◦-quasiconvex, the first assertion follows from The-
orem 5. The proof of the case, when Algorithm 1 generates an infinite sequence of
solutions, goes similarly. �

Note, that in order to guarantee the f ◦-pseudoconvexity of the improvement
function H also the constraint functions g j are supposed to be f ◦-pseudoconvex in
Theorem 6 although only the f ◦-quasiconvexity was required in Theorem 5.

Finally we show, that in more general case the algorithm produces substationary
points of the problem (1).

Theorem 7 Let the functions of (1) be weakly semismooth. If Algorithm 1 stops with
a finite number of iterations, then the solution is a substationary point (i.e. satisfies
the necessary optimality condition (5)). On the other hand, any accumulation point
of an infinite sequence of solutions generated by Algorithm 1 is a substationary point.

Proof The proof is analogous to that of Theorem 6. �

5 Numerical Experiments

The efficiency and the reliability of the method is shown by some numerical exper-
iments. Algorithm 1 was implemented in Fortran 77. The test runs have been per-
formed on an Intel® Core™ 2 Duo CPU E8400 (3.00GHz, 2.99GHz) PC computer.

5.1 General Tests

We wanted to test the method in different functions classes. First we formulated
several f ◦-pseudoconvex objective functions. Next we combined f ◦-pseudoconvex
functions with classical convex test examples from [1]. Finally some nonconvex test
examples [1] being not f ◦-pseudoconvex nor f ◦-quasiconvex were solved. Further-
more, some f ◦-quasiconvex constraint functions were used in all the test examples.
Thus the used function classes were

1. f ◦-pseudoconvex objective functions
2. f ◦-pseudoconvex + convex objective functions
3. Non(generalized)convex objective functions.

In all the test cases the number of variables n varied from 2 to 4, the number of
objective functions k from 2 to 4, and the number of constraint functions m from 0
to 2. The numerical results are presented in Table1, where the first column refers
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Table 1 Computational
results

Test class # Problems Iterations Func. calls

1 36 5.1 6.7

2 70 10.4 15.4

3 6 8.7 13.2

All 112 8.6 12.5

to the above mentioned test classes, the second column tells the number of the test
problems in the class. Finally, the last two columns are devoted to the average of
the used iterations and function evaluations, respectively. The last line summarizes
the overall average numbers. The parameters of MPB were tuned as follows: εs =
10−5, mL = 0.01, m R = 0.5, t̄ = 0.01, γ fi = 0.5 (0 for convex objectives) for
i = 1, . . . , k and γgl = 0.5 for l = 1, . . . , m. The initial weight was chosen by

u1 = 1

k

k∑
i=1

‖ξ1fi
‖.

In order to summarize the numerical results reported in Table1 we can state that
MPBmethod seems to be reliable and efficient in all the test classes. The reason why
it needed more resources in class 2 with convex problems is the complexity of some
single test problems.

5.2 Numerical Example

In order to illustrate the functioning ofMPB inmore detail we consider the following
problem:

⎧⎪⎨
⎪⎩
minimize f1(x) = √‖x‖ + 2

f2(x) = max
{−x1 − x2,−x1 − x2 + x21 + x22 − 1

}
subject to g(x) = max

{
x21 + x22 − 10, 3x1 + x2 + 1.5

} ≤ 0,

Table 2 Results of the numerical example

h xh ( f1(x), f2(x)) Accuracy

0 (−0.5000000,−0.5000000) (1.645329, 1.000000) 0.5181928

1 (−0.4153649,−0.3124033) (1.587367, 0.7277682) 0.9826704 × 10−2

2 (−0.4360219,−0.2067399) (1.575612, 0.6427618) 0.3053751 × 10−2

3 (−0.4641460,−0.1123331) (1.574022, 0.5764790) 0.4805499 × 10−3

4 (−0.4622420,−0.1137555) (1.573542, 0.5759975) 0.4842027 × 10−4

5 (−0.4620497,−0.1138994) (1.573493, 0.5759491) 0.4867036 × 10−5
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Fig. 1 Iteration points of the
numerical example
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Fig. 2 Results with several
starting points
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where f1 is clearly f ◦-pseudoconvex (see [1]), f2 is convex and g convex and thus
f ◦-quasiconvex. We used first the starting point x1 = (−0.5,−0.5) and the solution
iteration by iteration is reported in Table2.

The numerical results are depicted in Fig. 1, where red and blue colors refer to f1
and f2, respectively. Together with the iteration points (black, final solution violet)
there can be seen also the unconstrained and constrained optima and contour lines of
the objectives. Note, that the Pareto optimal solutions lie on the line segment between
red and blue points.
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In Fig. 2 we illustrate the functioning of MPB by starting the optimization from
several starting points. According to the character of the method,MPB projects those
points to the Pareto optimal set by using the Chebyshev metric.

6 Conclusions

We have derived a multiobjective version of the proximal bundle method for non-
smooth and nonconvex optimization. The objective functions are treated individually
without employing any scalarization. Themethod is globally convergent and descent,
and under some generalized convexity assumptions it can be proved to find globally
weakly Pareto optimal solutions. This kind of method is needed in many application
areas. Especially, it can be used as a part of interactive multiobjective optimization
methods producing efficiently (weakly) Pareto optimal counterparts of nonoptimal
solutions [16, 17, 20] or, by choosing several starting points, generating a good
spread of (weakly) Pareto optimal solutions.

Acknowledgments This work is financially supported by the University of Turku and the Vilho,
Yrjö and Kalle Väisälä foundation.
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Efficient Parallel Nash Genetic Algorithm
for Solving Inverse Problems in Structural
Engineering

Jacques Périaux and David Greiner

Abstract A parallel implementation of a game-theory based Nash Genetic
Algorithm (Nash-GAs) is presented in this paper for solving reconstruction inverse
problems in structural engineering. We compare it with the standard panmictic
genetic algorithm in a HPC environment with up to eight processors. The proce-
dure performance is evaluated on a fifty-five bar sized test case of discrete real
cross-section types structural frame. Numerical results obtained on this application
show a significant achieved increase of performance using the parallel Nash-GAs
approach compared to the standard GAs or Parallel GAs.

Keywords Parallel genetic algorithms · Nash games · Structural optimization ·
Finite element analysis · Inverse problems · Bar structures
Mathematical Subject Classification: 74P99 · 68Y20 · 49M27

1 Introduction

Hybridization of game theory based methods with evolutionary optimization
algorithms has been used to enhance the performance of optimizers in hilly search
spaces, both in single-objective and multi-objective optimization problems. Par-
ticularly, in the case of aeronautical engineering problems the use of Nash based
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algorithms and its parallelization have improved the efficiency of these methods,
where the computation of the fitness function (objective function or cost function
in terms of evolutionary computation) is associated frequently with high computa-
tional CPU costs in detailed design (see, e.g., Périaux et al. [15, 16]). A summary
paper of parallel evolutionary algorithms in CFD applications can be found in [1],
where it is explained that excepted the master-slave model (only acting as a hardware
accelerator), the parallelization can change significantly the algorithm behaviour and
convergence.

In this paper, we introduce and show the advantages of the use of a parallel
implementation of the Nash evolutionary algorithm [10–12, 17] to speed up solving
inverse problems in structural engineering. In Sect. 2 we briefly describe the Nash
evolutionary algorithm, while Sect. 3 introduces the structural engineering problem
to be optimized. In Sect. 4, the structural test case used in this work is implemented
on a HPC environment. Section5 covers the results and their analysis, and finally in
Sect. 6 conclusions of the research are outlined.

2 Nash Evolutionary Algorithms

Nash evolutionary algorithms were introduced by Sefrioui and Periaux [17] for solv-
ing Computational FluidDynamics (CFD) optimization problems. They are based on
hybridizing the mathematical concepts of Nash equilibrium [13, 14] with the nature
inspired search procedure.

Nash equilibrium is a symmetric competitive game where players maximize their
payoffs while taking into account the strategies of their competitors. Therefore, a
set of sub-populations co-evolve simultaneously each of which deals only with a
partition of the design variables. These subpopulations interact to evolve towards
the Nash equilibrium; in the case of a single objective problem, a virtual Nash game
approach can also be applied in inverse shape optimization CFD problems as a speed
up technique versus the standard panmictic evolutionary algorithm [10, 11].

In a Nash Evolutionary Algorithm, the solution candidates (chromosomes) of
each subpopulation, only include as genotypic information used in the mating and
mutation processes, those belonging to its partition (player in terms of game theory
vocabulary); the rest of the genotypic information is introduced mandatorily by the
best solution obtained by the other subpopulations in the previous generation, as
shown in Fig. 1. Therefore a search space partitioning in the sense of evolutionary
optimization is performed,which results in an accelerated convergence (as commonly
accepted in the evolutionary computation community: the shorter the chromosome
length used, the faster the convergence curve achieved).

This approach has been successfully applied in the case of inverse problemswhere
the fitness function objective is a sum of separable terms (such as the case of many
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Mandatory Variables (player 2): generation i-1 Optimized Variables (player 1):
generation i

Optimized Variables (player 2): generation i
Mandatory Variables (player 1):
generation i-1

Optimizing Variables of player in present generation

Best Variables of player in previous generation

Individual of
Subpopulation 1
(Player 1)

Individual of
Subpopulation 2
(Player 2)

Fig. 1 Nash genetic algorithm population scheme; 2 players case

shape optimization problems). The use of these Nash evolutionary algorithms in the
case of structural engineering problems has been introduced successfully by Greiner
et al. [5, 6].

In this paper, the above innovative strategies are applied to capture the solution
of a structural engineering problem with a parallel implementation of the Nash evo-
lutionary algorithm and evaluate the particular gain due to its parallelization.

3 Structural Problem

Structural inverse problems are handled in this research. The objective is to obtain the
structure which most fits the maximum stresses of reference. The optimum structural
bar design is defined as a design in which some location of every bar member in the
structure has a maximum stress value as accurately equal as the maximum stress of
reference for that bar. The fitness function is

fitness function = min

√√√√Nbars∑
i=1

(σmax,i − σmax,Ri )
2, (1)

where σmax,i is the maximum calculated stress and σmax,Ri the maximum stress of
reference, both corresponding to bar i , and Nbars is the number of bars. Variable
search space is constrained and described in Sect. 4 (see Table8 for the particular test
case handled in this paper); no additional constraints are present in this optimiza-
tion problem. Stresses of the structural bars are calculated using a direct stiffness
matrix calculation program (with Hermite approximation functions), which implies
the resolution of its associated linear equation system (see, e.g., [9]).

A value of zero means a perfect fit in maximum stresses between the searched
solution and the reference solution. In the special case of defining as maximum
stresses of reference, the set of a previously known structural design, then the prob-
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Table 1 Overview of geometry parameters

Geometry parameters Value (m)

Column length (Height)—H 2.8

Beam length (Width)—W 5.6

lem is a reconstruction inverse (RI) problem. Results corresponding to this type of
problem are shown and discussed in Sect. 5.

4 Test Case Definition

The purpose of this benchmark is to set a fifty-five bars sized frame structure test case
in the context of inverse and/or optimization problems, defined by Greiner et al. [4].
This test case has already been used considering the problem ofweightminimization,
and following the template introduced in the Finnish design test case database [18].

We consider the case of discrete cross-section type variables. In this structural
problem, the variables of the chromosome are the type of cross-section of each bar,
which can be selected from a fixed database of normalized cross-sections; in this
test case, the standard European IPE (e.g., IPE-100, IPE-120, IPE-200, etc.) and
HEB (e.g., HEB-200, HEB-300, etc.) types are selected. As these variables are not
continuous, but discrete, they are coded in a discrete manner using 1s and 0s (binary
codification type, particularly binary gray codification); a set size of 16 cross-sections
is assigned for each bar. Table8 shows the detailed search space used.

Themain objective of this benchmark is to test and compare different optimization
approaches for structural design. We refer to Greiner et al. [3, 7].

The computational domain, boundary conditions, loadings and design variable
numbering are shown in Fig. 2. Boundary conditions consist in embedded connec-
tions at the bottom joining the columns of the structure to the ground (horizontal and
vertical displacements and in-plane rotations are not allowed). Calculation of the bar
stresses are evaluated through a stiffness matrix calculation software (bar frames).

Geometry parameters, height H and width W , are given in Table1, and material
properties: density, Young modulus, and maximum stresses of columns and beams,
which correspond to standard construction steel, are shown in Table2. Each bar
variable has associated an independent optimization variable whose selection set (or
search space) is described in Table8 (see Appendix).

Description with respect to modeling and physical properties is presented as fol-
lows: frame bar structure stiffness matrix calculation (rigid nodes: resisting moment
capabilities); elastic behaviour of steel is assumed; no buckling effect is included.

One loading case is included, with nodal loads as in Fig. 2 (values in tons) and
with vertical uniform load at every beam D = 39,945N/m. The own weight of steel
bars has also to be considered into account.
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Table 2 Material properties (standard steel)

Parameter Value

Density 7850kg/m3

Young modulus 2.1 × 105MPa

Maximum stress (columns) 200MPa

Maximum stress (beams) 220MPa

Stresses constraints (MPa) are:

σmax,i ≤ 200, ∀i, with i = 1, . . . , N columns,

σmax,i ≤ 220, ∀i, with i = 1, . . . , N beams,

The quantities of interest are:

• Values of the fitness function as described in Sect. 3,
• Cross-section type sizing for each bar, and,
• Maximum stress of each bar.

With respect to the inverse reconstruction problem, the cross-section types corre-
sponding to the design shown in Table7 (seeAppendix) have been taken as reference,
where also the correspondent maximum value of each bar stress is shown in Table9
(see Appendix). The stresses of reference are those belonging to the real design cor-
responding to IPE330 in all beams (bars 1 to 25) and HEB450 in all columns (bars
26 to 55).

Fig. 2 Computational domain, boundary conditions and loadings available in [4]
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5 Results and Discussion

5.1 Nash Variable Territory Splitting

Two different split of territories used by Nash players have been compared in the
experimental results:

1. A two players Nash partition (two subpopulations) where the split territory is
set among beams and columns (Nash 2pl) is used as shown in Fig. 3. Therefore,
beams are optimized by player—subpopulation P1 and columns are optimized
by player—subpopulation P2. This territory splitting does not include boundary
conditions used by each player.

2. A three players Nash partition (three subpopulations) where the split territory is
set among left-center-right (Nash 3pl) has been used as shown in Fig. 4. There-
fore, the left part is optimized by player—subpopulation P1, the center part
is optimized by player—subpopulation P2 and the right part is optimized by
player—subpopulation P3. This territory splitting includes boundary conditions
used by each player.

These algorithm configurations are also compared with the standard panmictic Evo-
lutionary Algorithm, where no splitting of territory and a whole single population
are considered for numerical experiments.

5.2 Experiment Definition: Nash Genetic Algorithm

Statistics obtained from one hundred independent executions for each case will be
considered to measure the relative increased performance of the game theory based
evolutionary algorithm approach versus the standard approach.

Numerical results corresponding to a population size of 100 individuals, uniform
crossover, a mutation rate of 0.4%, an elitist generational replacement strategy keep-
ing the two best individuals, and a stopping criterion of 100,000 function evaluations
are considered here. Gray coding is used, in accordance with its good behaviour in
structural frame optimum design (see, e.g., [2, 8]).

The performance of the panmictic GA strategy versus the Nash GA strategies
(as described in Sect. 5.1) has been compared. In each case, also results from a
standard panmictic population are shown for comparison, each of them executed
100 independent times to perform the following statistics and figures.

A Parallel Nash-GA has been implemented with MPI-C/C++ and the three algo-
rithms are tested: Standard Panmictic GA, Nash GA 2 players (beam-column parti-
tioning), Nash GA 3 players (left-center-right partitioning). For each, eight config-
urations of central processing unit (CPU) are taken into account, in a master-slave
parallel evolutionary algorithm configuration, as follows:

• Sequential time (only 1 CPU): Seq.
• 1 Master + 1 Slave (2 CPU): 1M + 1S
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Fig. 3 A beam-column territory domain decomposition of Nash GA (Nash 2pl)

Fig. 4 A left-center-right domain territory decomposition of three partitioning Nash GA (Nash
3pl)

• 1 Master + 2 Slaves (3 CPU): 1M + 2S
• 1 Master + 3 Slaves (4 CPU): 1M + 3S
• 1 Master + 4 Slaves (5 CPU): 1M + 4S
• 1 Master + 5 Slaves (6 CPU): 1M + 5S
• 1 Master + 6 Slaves (7 CPU): 1M + 6S
• 1 Master + 7 Slaves (8 CPU): 1M + 7S

An Intel Core i7-3770-3.40GHz processor (four cores and eight threadswith enabled
hyper-threading technology) is used as a hardware platform.
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Table 3 Comparison of CPU time required to achieve the best solution (null value)

Time
(seconds)

Panmictic GA Nash GA 2 players Nash GA 3 players

Average Std Dev Average Std Dev Average Std Dev

Seq. 5.654 1.158 3.348 0.373 3.044 0.384

1M+1S 5.456 1.102 3.465 0.383 3.062 0.361

1M+2S 2.871 0.583 1.804 0.249 1.538 0.175

1M+3S 2.006 0.362 1.220 0.130 1.091 0.139

1M+4S 2.213 0.485 1.403 0.182 1.206 0.164

1M+5S 2.032 0.503 1.154 0.137 1.046 0.131

1M+6S 1.684 0.368 0.991 0.123 0.881 0.107

1M+7S 1.386 0.249 0.837 0.106 0.744 0.085

Table 4 Comparison of number of whole total fitness function evaluations required to achieve the
best solution (null value)

Number of
evaluations

Panmictic GA Nash GA 2 players Nash GA 3 players

Average Std Dev Average Std Dev Average Std Dev

Seq. 52039.0 10655.3 30793.6 3460.4 28312.3 3590.1

1M+1S 50321.1 10136.0 31824.6 3517.9 28271.2 3361.5

1M+2S 51425.5 10425.9 31315.0 4127.1 27468.0 3110.2

1M+3S 51628.4 9407.0 31260.1 3382.3 27962.5 3529.3

1M+4S 50770.9 10266.9 32142.1 3563.5 27392.5 3382.3

1M+5S 54724.2 13518.8 31195.4 3721.7 28053.6 3487.2

1M+6S 52998.4 11633.6 31211.1 3887.2 27545.0 3333.1

1M+7S 51292.3 9354.8 31442.4 4029.2 27724.3 3247.4

5.3 Results: Nash Genetic Algorithm

Associated to the reconstruction problem, Tables3, 4, 5 and 6 include the results
corresponding to 100 independent executions of the different algorithm strategies.
Table3 shows the average and standard deviation of the time in seconds required
to the achievement of the best solution (zero value); Table4 shows the average and
standard deviation of the whole total number of fitness function evaluations required
to the achievement of the best solution (zero value); Table5 shows the average of the
number of fitness function evaluations per subpopulation (Nash player) required to
the achievement of the best solution (zero value); and Table6 shows the average of
speed-up obtained by the Nash GA algorithms in terms of gain expressed in number
of fitness evaluations per subpopulation.

From Table3, a maximum difference of computing time is obtained when com-
paring the sequential hardware resources in the standard panmictic GA elapsing an
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Table 5 Average number of fitness evaluations per subpopulation comparison

Number of evaluations Panmictic GA Nash GA 2 players Nash GA 3 players

Seq. 52039.02 15396.8 9437.4

1M+1S 50321.08 15912.3 9423.7

1M+2S 51425.54 15657.5 9156.0

1M+3S 51628.4 15630.1 9320.8

1M+4S 50770.9 16071.1 9130.8

1M+5S 54724.22 15597.7 9351.2

1M+6S 52998.44 15605.6 9181.7

1M+7S 51292.26 15721.2 9241.4

average standard deviation time of 5.654±1.158s, versus the case of one master and
seven slaves in the Nash GAwith 3 players elapsing 0.744±0.085s, implying a time
reduction factor of 7.6. When comparing the gain obtained only due to the increased
hardware resources (dividing the time of the case of sequential algorithm by the time
of the case of one master and seven slaves), panmictic GA, Nash GA 2 players and
Nash GA 3 players achieve a speed-up of 4.08, 4.00 and 4.09, respectively.

From Table4, we observe that the range of whole total fitness function evalu-
ations required by each algorithm type is independent of the available hardware
resources, and the variations shown in the table are only due to the stochastic nature of
each set of 100 executions per case. Therefore, the maximum and minimum average
± standard deviation number of fitness functions evaluations of panmictic GA, Nash
GA 2 players and Nash GA 3 players, are (50321.1; 54724.2) ± (9354.8; 13518.8),
(30793.6; 32142.1) ± (3382.3; 4127.1) and (27392.5; 28312.3)±(3110.2; 3590.1),
respectively.

Table5 includes the number of fitness evaluations considering the number of
players used by each algorithm. Therefore, when considering more than one player,
(more than one population/subpopulation), the number of evaluations required by
each subpopulation decreases in the cases of the Nash GAs, while the case of pan-
mictic GA remains unchanged. The maximum and minimum average number of
fitness functions evaluations per subpopulation of Nash GA with 2 players and Nash
GA with 3 players, are (15396.8; 16071.1) and (9130.8; 9437.4), respectively.
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Table 6 Average number of fitness evaluations per subpopulation speed-up

Number of evaluations Panmictic GA Nash GA 2 players Nash GA 3 players

Seq. 1 3.38 5.51

1M+1S 1 3.16 5.34

1M+2S 1 3.28 5.62

1M+3S 1 3.30 5.54

1M+4S 1 3.16 5.56

1M+5S 1 3.51 5.85

1M+6S 1 3.40 5.77

1M+7S 1 3.26 5.55

Table6 expresses the previous values of Table5 in terms of net speed-up with
respect to the panmictic GA. The maximum and minimum average gain per subpop-
ulation of Nash GA with 2 players and Nash GA with 3 players, are (3.16; 3.51) and
(5.34; 5.85), respectively.

Figures5, 6 and 7, show for each algorithm type, panmictic GA, Nash GA with 2
players and Nash GA with 3 players, respectively, the relation among the CPU time
required to achieve the best solution (null value) and the respective total number
of evaluations required. Each dot in these figures corresponds to one of each 100
independent executions which was able to obtain that best solution. The different
hardware resources are distinguished inside each figure. Results when comparing
the performance of each algorithm with constant hardware resources are shown in
Figs. 10, 11, 12, 13, 14, 15, 16 and 17.

Figures8 and 9 include, respectively, the average and standard deviation out of 100
independent executions, of the whole total number of fitness evaluations versus the
total elapsed MPI-time required to achieve the best solution (null value), classified
by algorithm type.

5.4 Discussion: Nash Genetic Algorithm

The speed up of the Nash GAs in terms of reduction of number of fitness function
evaluations per subpopulation, according to shown results, particularly Tables4, 5, 6
and Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, is inherent to the algorithm subpopulation
structure and procedure, and independent of the hardware platform of execution.
A super-linear speed-up is observed both in the Nash GA with two players (two
subpopulations), where a gain between 3.16 and 3.51 is achieved, and in the Nash
GA with three players (three subpopulations), where a gain between 5.34 and 5.85
is achieved.

Results of speed up in terms of CPU time, according to shown results, particularly
Table3 and Figs. 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, and 17, should be interpreted



Efficient Parallel Nash Genetic Algorithm … 215

Fig. 5 Panmictic standard genetic algorithm. Comparing parallel implementations with different
hardware resources and the sequential version. 100 independent executions

conditioned by the particular hardware used in this work, an Intel Core i7-3770-
3.40 GHz processor (4 cores with 8 threads using hyperthreading technology). Some
hardware slowdown can be clearly observed in Fig. 14 (as well as in Figs. 5, 6 and
7), where the fifth thread is activated when increasing the CPU demand from 4 to 5.
Nevertheless, as Table3 gain per algorithm type indicates, finally a calculation time
gain of 4 is achieved in all cases (panmictic GA, Nash GA 2 players, Nash GA 3
players) when running the case of one master and seven slaves.

6 Conclusions

The performance of a master-slave parallel implementation of Nash genetic algo-
rithms in inverse problems, particularly the reconstruction problem, in structural
engineering, has been tested in a fifty-five bar sized frame test case. It has shown an
important increased speed-up, even achieving super-linear gains in terms of the fit-
ness function evaluations per player/subpopulationwhen comparedwith the standard
panmictic genetic algorithm.

In addition, it has been considered the benefits coming from enhanced parallel
implementation capability of this type of algorithms, where significant CPU time
reduction has been attained.
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Fig. 6 Nash genetic algorithmwith two players. Comparing parallel implementationswith different
hardware resources and the sequential version. One hundred independent executions

Fig. 7 Nash genetic algorithm, three players. Comparing parallel implementations with different
hardware resources and the sequential version. One hundred independent executions
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Fig. 8 Number of fitness function evaluations average required to achieve the best solution (null
value), classified by type of algorithm, from one hundred independent executions

Fig. 9 Number of fitness function evaluations standard deviation required to achieve the best
solution (null value), classified by type of algorithm, from one hundred independent executions
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Fig. 10 Comparing the three algorithms when using only one CPU (sequential computation)

Fig. 11 Comparing the three algorithms when using two CPUs (master and one slave computation)
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Fig. 12 Comparing the three algorithmswhenusing threeCPU(master and two slaves computation)

Fig. 13 Comparing the three algorithms when using four CPUs (master and three slaves compu-
tation)
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Fig. 14 Comparing the three algorithmswhenusingfiveCPUs (master and four slaves computation)

Fig. 15 Comparing the three algorithmswhen using six CPUs (master and five slaves computation)



Efficient Parallel Nash Genetic Algorithm … 221

Fig. 16 Comparing the three algorithms when using seven CPUs (master and seven slaves com-
putation)

Fig. 17 Comparing the three algorithms when using eight CPUs (master and eight slaves compu-
tation)
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Appendix

See Tables 7, 8 and 9.
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Table 8 Search space of variables (beams 1–25 and columns 26–55)

Bar number Bar variable Cross-section
type set

Bar number Bar variable Cross-section
type set

1 v1 From IPE080
to IPE500

26 v26 From HEB100
to HEB450

2 v2 From IPE080
to IPE500

27 v27 From HEB100
to HEB450

3 v3 From IPE080
to IPE500

28 v28 From HEB100
to HEB450

4 v4 From IPE080
to IPE500

29 v29 From HEB100
to HEB450

5 v5 From IPE080
to IPE500

30 v30 From HEB100
to HEB450

6 v6 From IPE080
to IPE500

31 v31 From HEB100
to HEB450

7 v7 From IPE080
to IPE500

32 v32 From HEB100
to HEB450

8 v8 From IPE080
to IPE500

33 v33 From HEB100
to HEB450

9 v9 From IPE080
to IPE500

34 v34 From HEB100
to HEB450

10 v10 From IPE080
to IPE500

35 v35 From HEB100
to HEB450

11 v11 From IPE080
to IPE500

36 v36 From HEB100
to HEB450

12 v12 From IPE080
to IPE500

37 v37 From HEB100
to HEB450

13 v13 From IPE080
to IPE500

38 v38 From HEB100
to HEB450

14 v14 From IPE080
to IPE500

39 v39 From HEB100
to HEB450

15 v15 From IPE080
to IPE500

40 v40 From HEB100
to HEB450

16 v16 From IPE080
to IPE500

41 v41 From HEB100
to HEB450

(continued)
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Table 8 (continued)

Bar number Bar variable Cross-section
type set

Bar number Bar variable Cross-section
type set

17 v17 From IPE080
to IPE500

42 v42 From HEB100
to HEB450

18 v18 From IPE080
to IPE500

43 v43 From HEB100
to HEB450

19 v19 From IPE080
to IPE500

44 v44 From HEB100
to HEB450

20 v20 From IPE080
to IPE500

45 v45 From HEB100
to HEB450

21 v21 From IPE080
to IPE500

46 v46 From HEB100
to HEB450

22 v22 From IPE080
to IPE500

47 v47 From HEB100
to HEB450

23 v23 From IPE080
to IPE500

48 v48 From HEB100
to HEB450

24 v24 From IPE080
to IPE500

49 v49 From HEB100
to HEB450

25 v25 From IPE080
to IPE500

50 v50 From HEB100
to HEB450

51 v51 From HEB100
to HEB450

52 v52 From HEB100
to HEB450

53 v53 From HEB100
to HEB450

54 v54 From HEB100
to HEB450

55 v55 From HEB100
to HEB450
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Efficient Variational Design Sensitivity
Analysis

Franz-Joseph Barthold, Nikolai Gerzen, Wojciech Kijanski
and Daniel Materna

Abstract The authors’ variant of variational design sensitivity analysis in struc-
tural optimisation is highlighted in detail. A rigorous separation of physical quanti-
ties into geometry and displacement mappings based on an intrinsic presentation of
continuum mechanics build up the first step. The variations with respect to design
and displacements are easily available in a second step. The subsequent discrete
matrix expressions are used to formulate the finite element equations in a third step.
The fourth step elaborates the derived Matlab implementation while the fifth step
shows the computational behaviour for an academic example. Both, the general
case of nonlinear structural behaviour and the linearised approximation are outlined.
The advocated scheme is compared with the well-known analytical differentiation
approach of the discrete finite element equations.

1 Introduction

Several approaches to sensitivity analysis such as an overall finite difference scheme,
a semi-analytical approach, a discrete analytical method, an automatic differentiation
technique and some different flavours of the variational approach are well-known in
structural optimisation. All mentioned techniques finally yield the correct gradient
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Fig. 1 Different order of steps within variational and analytical sensitivity analysis

value up to somemanageable approximation errors. Nevertheless, the methods differ
significantly if not only the correctness of the resulting gradient value is considered.

This paper focuses on the authors’ variant of variational design sensitivity analysis
which is based on an intrinsic presentation of continuummechanics. The advantages
of this viewpoint are described in comparison with the discrete analytical differen-
tiation of the finite element equations. The later method is well-known and widely
used in structural optimisation, see e.g. [11, 21] for details.

The central differences of both methods, i.e. an initial variation followed by the
discretisation step in case of the variational approach and the discretisation of the
continuous equations accompanied by the analytical differentiation of the resulting
discrete equations, respectively, are highlighted in Fig. 1.

The overall scheme for variational design sensitivity analysis is outlined in Sect. 2
and the intrinsic presentation of continuum mechanics is summarised in Sect. 3. In
Sect. 4, the discretisation of variational sensitivities is performed. Some remarks
on its implementation follow in Sect. 5. The alternative differentiation approach is
explained in Sect. 6. In Sect. 7, the computational performance of both approaches
is compared. The most significant results are summarised in Sect. 8.

2 Outline of Variational Design Sensitivity Analysis

The layout of sensitivity analysis is described and its discrete formulation is derived.

2.1 Continuous Formulation of Sensitivity Analysis

In structural analysis, the displacements u ∈ V are computed for any given design
X ∈ S by solving the weak form of equilibrium R(u, X; v) = 0 for any test function
v ∈ V . Here, V and S denote the spaces of admissible displacements and designs,
which are parametrized by time t and design s, respectively, see Sect. 3. Thus, the
partial variations of any function (·) are indicated by δu(·) and δX (·) with variations
δu ∈ V and δX ∈ S, respectively. But, no variation must violate equilibrium, i.e.

δR = δX R + δu R = p(u, X; v, δX) + k(u, X; v, δu) = 0. (1)
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Here, δu R = k(u, X; v, δu) is the tangent stiffness operator and δX R = p(u, X; v,

δX) denotes the tangent pseudo load operator. We can solve the sensitivity equation
for a given design variation δX to obtain the displacement variation δu.

k(u, X; v, δu) = −Q(u, X; v) ∀ v ∈ V (2)

Herein, Q(u, X; v) := p(u, X; v, δX) is the pseudo load which maps the (mate-
rial) design variation δX to a (physical) pseudo load Q. This observation motivates
the term pseudo load operator for the operator p. Furthermore, a sensitivity equation
for the material or inverse motion problem as well as for the dual or adjoint problem
can be derived in the same manner, see [24] for details.

As a consequence, the existence of a (linear) sensitivity operator S, evaluated at
the current equilibrium point (u, X), can be deduced from Eq. (1) with

δu = S(u, X; δX). (3)

The optimisation model consists of objective and constraint functions f (u, X).
Therefore, β(u, X; δX) and γ (u, X; δu) denote linear forms obtained by varying f
with respect to design or displacements. Thus, the total variation of the function f
with respect to any design variation δX yields the linear operator α = β + γ ◦ S

δ f = δX f + δu f = β(δX) + γ (δu) = (β + γ ◦ S) (δX) = α(δX). (4)

For a specific function fi and any design variation δX j , Eq. (4) transforms to

δ fi j = αi (u, X; δX j ). (5)

Remark 1 (Linear operators in sensitivity analysis) All variations of residuals,
objectives and constraints can be obtained by a straightforward analysis on the contin-
uum mechanical level. At any equilibrium point (u, X), the resulting linear operator
S : S → V and the linear form α : S → R describe the reaction of the mechanical
systems in case of a design perturbation. The central sensitivity operator S is only
implicitly known and further progress can only be achieved on the discrete level.

Special emphasis is given to a combined presentation of the tangent stiffness
operator and the tangent pseudo load operator permitting a minimal overlay for
performing the variational design sensitivity analysis, see Sect. 3.

2.2 Fundamentals of Discrete Approximations

The general idea of discretisation is outlined without referring to a specific method.
We introduce the discrete approximations for the state uh and the design Xh

to obtain a matrix description of the derived residual and tangent forms. These
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approximations depend on the displacement parameters Û ∈ R
nu and the design

parameters X̂ ∈ R
nx . Here, nu and nx are the dimensions of the introduced approxi-

mation spaces, i.e. nu denotes the number of the discrete state variables in Vh ⊂ V
and nx the number of the discrete design variables in Sh ⊂ S. We introduce in
the same manner the discrete approximations for the corresponding variations, i.e.
δÛ ∈ R

nu and δ X̂ ∈ R
nx. Furthermore, the test function vh is given by V̂ ∈ R

nu.
The continuous forms can be evaluated for any discrete design Xh and the asso-

ciated discrete displacements uh , i.e. we obtain the functionals and bilinear forms

R(uh, Xh; vh) = V̂
T

R̂ with residual vector R̂ ∈ R
nu, (6)

k(uh, Xh; vh, δuh) = V̂
T

K̂ δÛ with stiffness matrix K̂ ∈ R
nu×nu, (7)

p(uh, Xh; vh, δXh) = V̂
T

P̂ δ X̂ with pseudo load matrix P̂ ∈ R
nu×nx. (8)

The details in case of the finite element method are explained in Sect. 4.3.

2.3 Properties of Discrete Sensitivity Relations

The discrete version of Eq. (1) evaluated at (uh, Xh) reads

δR = V̂
T

δ R̂ = V̂
T

[
K̂ δÛ + P̂ δ X̂

]
= 0 (9)

and we obtain the well-known discrete condition

δ R̂ = K̂ δÛ + P̂ δ X̂ = 0. (10)

Additionally, the discrete version of Eq. (2) with Q̂ ∈ R
nu being the pseudo load

vector of the physical residual problem associated to the functional Q(uh, Xh; ·) is

K̂ δÛ = − Q̂ with Q̂ := P̂ δ X̂ . (11)

Furthermore, the discrete version of Eq. (3) takes the form

δÛ = Ŝ δ X̂ with Ŝ := −K̂
−1

P̂, (12)

where Ŝ ∈ R
nu×nx denotes the sensitivity operator matrix, i.e. we can evaluate the

sensitivity equation for arbitrary admissible variations δ X̂ in the material space.
Finally, the sensitivity of the function f with respect to design variations can be

deduced from Eq. (4) to yield

δ f = b̂
T

δ X̂ + ĉT δÛ, (13)
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where δÛ and δ X̂ denote the variation of the discrete displacement and nodal coor-
dinate vectors, respectively. The discretised variation of the displacements given in
Eq. (12) can be inserted. Considering several objectives fi with i = 1, 2, . . . , nf and
several variations of design δ X̂ j with j = 1, 2, . . . , ndv yields

δ fi j =
[

b̂
T
i − ĉTi K̂

−1
P̂

]
δ X̂ j =

[
b̂
T
i + ĉTi Ŝ

]
δ X̂ j = âTi δ X̂ j . (14)

Remark 2 (Discrete form of sensitivity analysis). The continuous linear mapping
δu = S(δX) transfers to the computable discrete equation δÛ = Ŝ δ X̂ and the linear
form δ f = α(δX) transfers to the computable discrete equation δ f = âT δ X̂ .

3 Basics on the Intrinsic Viewpoint of Continuum Mechanics

The authors’ viewpoint on variational design sensitivity analysis within a general
continuum mechanical framework relies on a rigorous separation of physical quan-
tities into geometry and displacement mappings, see [4–6] for further details. This
viewpoint is based on intrinsic coordinates which have been introduced to mechan-
ics in [30] advancing the traditional presentation [34]. The intrinsic coordinates are
also named convected, curvilinear, local or natural coordinates depending on which
feature should be highlighted in the specific setting. Unfortunately, the mathematical
background, i.e. the body can be described as differentiable manifold, is not always
present. However, all available knowledge should be explored to obtain general the-
oretical results and efficient numerical formulations, see Sect. 3.5.

The advocated integrated approach for deriving the variations within direct analy-
sis and variational design sensitivity analysis based on intrinsic coordinates differs
conceptually from the material derivative approach, see e.g. [2], and the domain
parametrization approach, see e.g. [33], respectively. Furthermore, the relation-
ship to configurational mechanics has been outlined in [24, 27]. These different
approaches are briefly sketched in Sect. 3.6.

This section summarises the theoretical framework used for variational design
sensitivity analysis. The results can be used to apply a subsequent discretisation
step.

3.1 Separation of Point and Tangent Mappings

The separation approach yields a decomposition of the design (s) and time (t)
dependent deformation mapping x = ϕX(X(s), t) into two independent mappings,
i.e. a design dependent geometry mapping X = κ�(�, s) and a time dependent
motion mapping x = μ�(�, t). Furthermore, an intrinsic displacement mapping
u = v�(�, s, t) = μ�(�, t) − κ�(�, s) can be introduced. All intrinsic quantities
are indicated using a subscript �.
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Fig. 2 Configurations and
mappings

This viewpoint using intrinsic coordinates� ∈ B can be enhanced by the common
Lagrangian viewpoint based on the reference coordinates X ∈ K and indicated by a
subscript X. Furthermore, the Eulerian viewpoint is based on the current coordinates
x ∈ M and is indicated by a subscript x. Consequently, the referential deformation
mapping is given by the composition ϕX = μ� ◦ κ−1

� , see Fig. 2.

Remark 3 (Design as part of mechanics) The most significant enhancement of the
advocated approach over the traditional presentation of continuum mechanics is the
introduction of the geometrymapping κ�. Thus, continuummechanics is understood
as a theory of two fundamental mappings, i.e. geometry κ� : B → K and motion
μ� : B → M, which decompose the deformation mapping ϕX = μ� ◦ κ−1

� .
Therefore, the design of structures can be rigorously founded, see [4–6].

3.2 Gradients, Strains and Stresses

Different gradient operators grad, Grad and GRAD corresponding to the variables
x, X and � of the considered domains M,K and B, respectively, can be defined.
The intrinsic motion gradient M� = GRADμ� and the intrinsic geometry gradient
K� = GRAD κ� are used to decompose the referential deformation gradient
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Fig. 3 Tangent mappings
between tangent spaces

FX = GradϕX = GRADμ� [GRAD κ�]
−1 = M� K−1

� . (15)

The pull-back and push-forward transformation between the tangent spaces at the
current placementT xM, at the reference placementT XK and at the intrinsic para-
meter space T �B, see Fig. 3, are based on K�, M�, FX and on their determinants
JK� = det K�, JM�

= det M� and JFX = det FX.
Similarly, the referential displacement gradient HX = Grad vX can be split into

the intrinsic displacement gradient and the inverse intrinsic geometry gradient

HX = Grad vX = GRAD v� [GRAD κ�]
−1 = H� K−1

� . (16)

Remark 4 (Decomposition of referential deformation and displacement gradients)
The decomposition of referential gradients into two independent intrinsic gradients,
see e.g. Eqs. (15) and (16), is a central prerequisite for efficiently deriving variations,
see Sect. 3.3. Furthermore, it serves as a master copy for discrete computational
methods, e.g. the technique to compute Cartesian derivatives in the finite element
method, see Sect. 4.2.
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The (referential) Green-Lagrange strain tensor E and the linear strain tensor ε can
be considered as functions of the (referential) displacement gradient

E = 1

2

(
HX + HT

X + HT
X HX

)
and ε = 1

2

(
HX + HT

X

)
. (17)

The Cauchy stress tensor T, the Kirchhoff stress tensor τ = JFX T, the (1) Piola-
Kirchhoff stress tensor P = τ F−T

X and the (2) Piola-Kirchhoff stress tensor S =
F−1
X P collapse to the linear stress tensor σ in case of linearised elasticity.

3.3 Variations of Gradients, Strains and Stresses

The total variation of the deformation gradient FX can be derived using the multi-
plicative decomposition FX = M� K−1

� and the variations of the tangent mappings
δK� = GRAD δX and δM� = GRAD δx, i.e.

δFX = δM� K−1
� + M� δK−1

� = δM� K−1
� − M� K−1

� δK� K−1
� , (18)

where δ[K−1
� ] = −K−1

� δK� K−1
� has been used. The total variation δFX can be split

into partial variations δuFX and δX FX, i.e. w.r.t. displacements δu or geometry δX

δFX = δuFX + δX FX = [
FX

]′
u + [

FX
]′

X = Grad δu − Grad u Grad δX (19)

using the notation
[
FX

]′
u (u, δu)= Grad δu and

[
FX

]′
X (u, δX)= −Grad uGrad δX.

Furthermore, the variations of the Jacobians JK�, JM�
and JFX can be performed

based on δ(det B) = det B B−T : δB, where B is either K�, M� or FX.
The first partial variations of the Green-Lagrange strain tensor E(u) yield

E′
u(u, δu) = sym

(
AT

u Grad δu
)

= sym
(
FT
X Grad δu

)

E′
X (u, δX) = sym

(
AT

X Grad δX
)

= −sym
(
FT
X Grad u Grad δX

)
, (20)

where the abbreviations Au = FX and AX = −GradTu FX have been used. The
second partial variations with additional variation of the displacements �u read

E′′
u X (u, δu, δX) = −sym(GradTδX HT

X Grad δu + FT
X Grad δu Grad δX)

E′′
uu(u, δu,�u) = sym(GradTδu Grad�u). (21)

The variations of the linearised strain tensor ε are less complex, i.e.

ε′
u(δu) = sym(Grad δu) and ε′

X(u, δX) = −sym(HX Grad δX), (22)
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and the second partial variations are

ε′′
uu = 0 and ε′′

u X (δu, δX) = −sym(Grad δu Grad δX). (23)

The variation of stresses in case of hyperelastic material behaviour deliver the
referential and linear elasticity tensors, i.e.C andE, respectively, and the expressions

δS = ∂S
∂E

: δE = C : δE and δσ = ∂σ

∂ε
: δε = E : δε. (24)

3.4 Weak Form of Equilibrium and Its Variations

The weak form of equilibrium R = Rint − Rext = 0 is a linear form of the test
function v evaluated for current geometry and displacement mappings, i.e.

R(u, X; v) =
∫
K

S : E′
u(u, v) dVX − F(X; v) (25)

in case of a general nonlinear theory. We consider for physical body forces bX

Rext = F(X; v) =
∫
K

bX · v dVX =
∫
B

bX · v JK� dV�, (26)

i.e. the external virtual work is deformation independent for notational simplicity.
An outline of the variational design sensitivity analysis is given in Sect. 2, and Eq.

(1) needs two partial variations of the weak form. In the general nonlinear case, the
tangent stiffness operator k is defined by k = δu R with

k(u, X; v, δu) =
∫
K

{
E′

u(u, v) : C : E′
u(u, δu) + S : E′′

uu(v, δu)
}
dVX (27)

with variations of the Green-Lagrange strain tensor E given in Eqs. (20) and (21).
The corresponding variation δX R leads to the pseudo load operator p,

p(u, X; v, δX) =
∫
K

{
S : E′′

u X (u, v, δX) + E′
u(u, v) : C : E′

X (u, δX)

+ S : E′
u(u, v)Div δX

}
dVX − F ′

X (X; v, δX). (28)

The design variation of Eq. (26), to be used in Eqs. (28) and (32), leads to

F ′
X (X; v, δX) =

∫
K

bX · v Div δX dVX. (29)
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The linearised version on the linear domain 	 simplifies to the expression

Rlin(u, X; v) =
∫

	

Grad v : σ d	 − F(X; v). (30)

Consequently, the linear stiffness operator of the linear theory is constant

klin(X; v, δu) =
∫

	

Grad v : E : sym{Grad δu} d	, (31)

and the linear pseudo load operator depends linearly on the displacements

plin(u, X; v, δX) =
∫

	

Grad v : E : sym{−Grad u Grad δX} d	

−
∫

	

{σ : Grad v Grad δX − σ : Grad u Div δX} d	
− F ′

X (X; v, δX). (32)

Further equivalent formulations can be derived and the overall expression can be
transformed onto the intrinsic parameter space B using dVX = JK� dV�.

To summarise, all continuous expressions needed for structural and sensitivity
analysis have been derived on the continuous level using the intrinsic viewpoint.

Remark 5 (Efficiency of theoretical development) A significant advantage of the
variational approach is the similarity of all variations in the physical space, i.e.
with respect to displacements, with those in the material space or design space, i.e.
with respect to geometry. The advocated intrinsic viewpoint offers the possibility to
derive both variations in parallel (at the same time and done by the same researcher)
minimising the overall effort.

3.5 Impact of Differential Geometry on Computations

Continuum mechanics is based on differential geometry and the obtainable results
can be presented with different mathematical rigour due to the readers background.
We report the most important features and refer to literature for further reading.

Manifolds can be characterised as sets which can be covered by a finite number
of charts consisting of a subset and coordinate mapping. Thus, for any element of
the set, there is at least one chart which describes the body in an open environment
of the chosen element using a coordinate system. All those charts together build up
an atlas. Importantly, the special choice of the atlas does not effect the properties of
the set. The manifold is termed differentiable if the transformation between different
coordinate descriptions is sufficiently smooth.
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Themanifold properties can be summarised as follows: The material bodies under
consideration are described by numerous local coordinate systems. This property is
valid on all levels, i.e. in theory as well as in computations. The consequences for
the finite element method are outlined in Sect. 4.1.

Remark 6 (Efficiency of interaction between continuous and discrete formulations)
The interaction between theoretical investigations on the continuous level and the
computational strategies on the discrete level are organised consistently using the
intrinsic viewpoint. This minimises the number of concepts used in theory and com-
putations and increases the efficiency of the development. Thus, all theoretical results
have a discrete representation. And conversely, any discrete technique has a contin-
uous origin.

3.6 Comparison with Other Variational Approaches

Several continuous formulations of sensitivity analysis have been available since
decades, see e.g. [3, 12, 18, 19, 31] among others for further details and references.
Two concepts, namely the material derivative approach (MDA), see e.g. [2, 13, 29],
and the domain parametrization approach (DPA), see e.g. [17, 33], respectively,
which are based on the traditional viewpoint published in [34] attractedwide attention
in literature. In MDA, the effect of a design variation is understood by using the
analogy to a physical time derivative consisting of a local and a convective part. In
DPA, an additional master reference placement is introduced to which the different
designs are related. Both approaches are valuable and important results have been
derived based on them, see e.g. [28].

Another concept of mechanics to which the presented approach can be compared
with is Eshelbian mechanics or configurational mechanics, see [14, 16, 20]. The
differences occur in the description of modifications in the material space, i.e. an
inverse motion is considered from an artificially fixed current placement. Again, the
traditional concept from [34] is used to model phenomena which are actual beyond
the theoretical framework, see [24, 27] for further hints.

To summarise, none of the mentioned concepts use the manifold structure of
continuum mechanics outlined in [30] in order to benefit from the decompositions
outlined in Figs. 2 and 3. These elements are an significant improvement which eases
the modelling of inverse geometry problems.

Besides these differences, all variational variants have the same strategy for sen-
sitivity in common, see Fig. 1. Thus, most remarks highlighting the advantages of the
variational approach over the discrete approach are valid for all variants. The compu-
tational methods are generated from a continuous theory, which requires an infinite
dimensional space of admissible geometry mappings S and an infinite dimensional
space of admissible displacement mappings V , by a discretisation step. Hereby, the
infinite dimensional function spaces S and V are substituted by finite dimensional
subspaces, say Sh ⊂ S and Vh ⊂ V .
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Remark 7 Most properties of the discrete solution are already available and known
for the original continuous problem. Thus, a thorough theoretical knowledge eases
the interpretation of computational techniques as well as computational results.

4 FEM Discretisation of Continuous Sensitivity Expressions

In computations, the geometry κ� is realised by computer aided geometric design
(CAGD) using shape functions such as non-uniform rational B-splines (NURBS).
The displacement v� is approximated by the finite element method (FEM) using
Ansatz functions. In case of an isoparametric finite element method, both shape and
Ansatz functions are low order polynomials, say (bi- or tri-) linear functions. The
details for sensitivity expressions are outlined in this section.

Three steps must be performed to derive the finite element equations from the
continuous setting. Firstly, the considered domain must be subdivided into elements
and an efficient computational scheme must be set up, see Sect. 4.1. Secondly, the
tensorial notation should be transformed into amatrix notation, see Sect. 4.2. Thirdly,
the chosen approximations for geometry and displacements must be inserted into the
matrix formulation, see Sect. 4.3.

4.1 Adaptation of the Manifold Properties to the FE Method

The material bodies are differentiable manifolds, see Sect. 3.5, i.e. any discretisation
should not destroy this property. Therefore, all results quoted in Sect. 3 are inde-
pendent from the choice of the intrinsic coordinates {�1,�2,�3} and the intrinsic
parameter domain B, i.e. both can be adopted to the special needs.

Within the finite element framework and without loss of generality, a suitable
atlas is introduced by partitioning the placements K and M as well as the intrinsic
parameter domainB into a finite number of sub-domainsKe,Me andBe. These sub-
domains are linked to the local parameter domain Re ≡ R = [−1, 1]m , where m
refers to the dimension of the problem. The local parameter domainR is unique and
constant for all sub-domains and its local coordinates are labelled ζ . Furthermore,
the point mappings κζ : R → K andμζ : R → M aswell as the tangentmappings
Kζ : T ζR → T XK andMζ : T ζR → T xM, respectively, replace themappings
introduced in Sect. 3. We omit the index e in most cases to shorten the notation.

Remark 8 (Finite element mesh is a special atlas of the body) The above description
characterises the finite element mesh and the mappings from the local parameter
space onto each element. Thus, every modification so far is a direct consequence of
the intrinsic presentation of continuum mechanics. The finite element mesh, i.e. the
subdivision of the body and its placements in a finite number of subdomains, is a
special atlas suitable for efficient computations. Thus, this adaptation to the finite
element method is exact because no approximation has been introduced so far.
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4.2 Matrix Representation of Gradients, Strains and Stresses

Using the introducedCartesian basis systems {Zi }, {Ei }, {ei }, see Fig. 3, the displace-
ment and reference placement vectors read

u = vX(X) = ui Ei and X = κ�(�) = Xi Ei . (33)

Here, the coefficients ui can be considered either as functions of the referential
coordinates Xi or of the intrinsic coordinates �i , i.e.

ui = υi
X(X1, X2, X3) = υ�(�1,�2,�3) and Xi = κ�(�1,�2,�3), (34)

respectively. The referential and intrinsic gradients of the displacement mapping as
well as the intrinsic gradient of the reference mapping and its inverse are given by

HX = Grad vX = ∂vi
X

∂Xj Ei ⊗ E j , H� = GRAD v� = ∂vi
�

∂� j Ei ⊗ Z j

K� = GRAD κ� = ∂κ i
�

∂� j Ei ⊗ Z j , K−1
� = Grad κ−1

� = ∂�i

∂ X j Zi ⊗ E j .

(35)

All quantities are depicted using bold letters in upright shape, i.e. serif type for vectors
(e.g. �, X, x, u) and sans serif type for tensors of 2nd order (e.g. K�, M�, FX).

The relationship between the referential gradient GradHX and the intrinsic gra-
dients GRADH� and GRADK� has been established in Sect. 3, see Eq. (16). Con-
sequently, the matrix and coordinate versions can be derived yielding

HX = H� K−1
� with

∂vi
X

∂ X j
= ∂vi

�

∂�k

∂�k

∂ X j
. (36)

Herein, the Jacobian matrix of the coordinate transformation is

K� ≡ J K� =
[

∂κ i
�

∂� j

]
with K−1

� ≡ J−1
K�

=
[

∂�i

∂ X j

]
=

[
∂κ i

�

∂� j

]−1

. (37)

The coefficient matrix K� of the tensorial geometry gradient K� is labelled as Jaco-
bian matrix J K� of the coordinate transformation between intrinsic and referential
coordinates. Here, J K� is preferred over K� to distinguish it properly from the
stiffness matrix K̂ . Thus, Eq. (36) and a similar expression for local coordinates read

HX = H� K−1
� = H� J−1

K�
and HX = Hζ K−1

ζ = Hζ J−1
Kζ

. (38)
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Similar results are available for the deformation gradient

FX = M� K−1
� = M� J−1

K�
and FX = Mζ K−1

ζ = Mζ J−1
Kζ

. (39)

The coefficient matrices FX = [xi, j ] and HX = [ui, j ] are outlined above, where
xi, j and ui, j denote derivatives of xi and ui with respect to X j , respectively. The
unitymatrix is I = [δi j ]. The coefficientmatrix of the 2. Piola-Kirchhoff stress tensor
S = [Si j ] can bewritten inVoigt notation S̄ = [S11, S22, S12]T. Similarly, E = [Ei j ]
and Ē = [E11, E22, 2 E12]T are used for the Green-Lagrange strain tensor. Finally,
C = [Ci j ] is the corresponding Voigt matrix of a fourth-order elasticity tensor, i.e.
either C in the nonlinear case or E in the linear case, respectively.

Remark 9 (From tensorial to matrix notation) The reduction of the general tensorial
to a matrix notation with respect to Cartesian base vectors is a necessary step to
obtain a numerical method. But, it is nearly impossible to generalise results obtained
on the matrix level back to the more general tensorial theory.

4.3 Fundamentals of Finite Element Approximation

The finite element approximation is based on shape and Ansatz functions. Following
the isoparametric concept, the state u and the geometry X are approximated by
the same functions NI (ζ ) defined on a fixed (local) parameter space with (local)
coordinates (ζ 1, ζ 2, ζ 3). According to the classical Bubnov-Galerkin technique also
the test functions are interpolated using the shape functions NI (ζ ).

The state function u, the test function v and the geometry X are approximated in
every element Ke in the form

ue
h =

n∑
I=1

NI uI , ve
h =

n∑
I=1

NI v I and Xe
h =

n∑
I=1

NI X I . (40)

The corresponding displacement and design variations are

δue
h =

n∑
I=1

NI δuI and δXe
h =

n∑
I=1

NI δX I , (41)

where n denotes the number of nodes per element. The vectors for nodal values read

uI =
[

u1
I

u2
I

]
, v I =

[
v1I

v2I

]
, X I =

[
X1

I

X2
I

]
, δuI =

[
δu1

I

δu2
I

]
, δX I =

[
δX1

I

δX2
I

]
. (42)

For notational simplicity, the explicit forms of all derived matrices are given for the
two-dimensional case only.
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The discrete residual and the tangent forms, see Sect. 2.2, can now be specified.
The discrete element contributions Re

h, ke
h, pe

h are collected over all elements and the
element matrices re, ke and pe consists of all nodal contributions, i.e. overall

R(uh, Xh; vh) =
nel∑
e=1

[
n∑

I=1

vTI re
I

]
= V̂

T
R̂, (43)

k(ûh, X̂h; vh, δuh) =
nel∑
e=1

[
n∑

I=1

n∑
J=1

vTI ke
I J δuJ

]
= V̂

T
K̂ δÛ, (44)

p(ûh, X̂h; vh, δXh) =
nel∑
e=1

[
n∑

I=1

n∑
J=1

vTI pe
I J δX J

]
= V̂

T
P̂ δ X̂ . (45)

The techniques to assemble the global quantities Û, V̂ , X̂, δÛ, δ X̂ and R̂, K̂ , P̂ are
well-known, seeSect. 5 for hints on the implementation. Thus, the nodal contributions
re

I , ke
I J and pe

I J still need to be specified.
Further details aswell as the implementation of sensitivity relations of thematerial

or inverse motion problem and for the dual or adjoint problem is given in [24].

4.4 FEM Approximations of Gradient and Divergence

The gradient and the divergence of any quantity ae
h , which is either u, v, δu or δX ,

with respect to the approximation Xe
h of the referential geometry, defined on each

element in form of Eq. (40), is given for

ae
h =

n∑
I=1

NI a I by Grad ae
h =

n∑
I=1

a I LT
I and Div ae

h =
n∑

I=1

LT
I a I , (46)

where L I denotes the gradient of the shape function NI , i.e.

L I := Grad NI = [
NI,1 NI,2

]T = [
NI,X NI,Y

]T
, (47)

where the notation (X, Y ) can be used instead of (X1, X2).

4.5 FEM Approximation of Variations of the Strain Tensor

The variation of the Green-Lagrange strain tensor E with respect to the state u is

E′
u(u, δu) = sym

(
AT

u Grad δu
)

with Au := FX,



244 F.-J. Barthold et al.

see Eq. (20). The corresponding finite element approximation can be written as

Ē
′
u(uh, δuh) = [

(E ′
u)11 (E ′

u)22 2 (E ′
u)12

]T =
n∑

I=1

BuI δuI (48)

with

BuI =
⎡
⎣ A11

u NI,X A21
u NI,X

A12
u NI,Y A22

u NI,Y

A11
u NI,Y + A12

u NI,X A21
u NI,Y + A22

u NI,X

⎤
⎦ . (49)

Furthermore, the design variation of E has been introduced in Eq. (20) too

E′
X (u, δX) = sym

{
AT

X Grad δX
}

with AX := −Grad Tu FX.

The finite element approximation can be written in the same manner as above

Ē
′
X (uh, δXh) = [

(E ′
X )11 (E ′

X )22 2 (E ′
X )12

]T =
n∑

I=1

Bs I δX I (50)

with

Bs I =
⎡
⎢⎣

A11
X NI,X A21

X NI,X

A12
X NI,Y A22

X NI,Y

A11
X NI,Y + A12

X NI,X A21
X NI,Y + A22

X NI,X

⎤
⎥⎦ . (51)

4.6 Approximation of Residual and Tangent Forms

Using the above introduced finite element approximations, the nodal contributions
of the discrete element residual vector at node I is given by

re
I =

∫
Ke

BT
uI S̄ dVX − f e

I . (52)

The vector f e
I is the standard nodal vector of the external forces. Furthermore, the

nodal contributions of the element matrices ke and pe are obtained as

ke
I J =

∫
Ke

{
BT

uI C Bu J + LT
I SL J I

}
dVX, (53)
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pe
I J =

∫
Ke

{
BT

uI C Bs J − LT
I SL J H − FSL J LT

I + FSL I LT
J

}
dVX

−
∫
Ke

NI bX LT
J dVX. (54)

Remark 10 (Similarity of stiffness and pseudo load matrix) It is important to observe
that the structures of stiffness and pseudo load computations are fully similar. Thus,
sensitivity information can be derived, implemented and computed on the element
level with a small additional effort compared to ‘standard’ FEM computations.

4.7 Possible Fields of Application

There is a great number of fields where the presented sensitivity relations can be
applied. All quantities are derivedwith respect to coordinates of FE-nodes. Parameter
free shape optimisation can be performed based on these derivatives utilising some
additional tools like filters and mesh control techniques. Recent works on this topic
are [1, 9, 15, 22, 32]. Gradients for geometry based shape optimisation can be
calculated extending the presented sensitivities by the corresponding design velocity
fields. R-adaptivity is concerned with improvement of finite element solution on the
same mesh. Here, the number of degrees of freedom and mesh topology are fixed.
Only the mesh form is changed. A review, much more details and examples on this
topic can be found in [26]. Fracture mechanics deals with the propagation of cracks
in materials. Here, the strain energy release and the direction of crack growth can
be directly derived from the material residuum, see [25] for details and examples.
Furthermore, the technique was applied to history dependent problems, see [7].

Last but not least, the pseudo load and sensitivity matrices P̂ and Ŝ, respectively,
can be decomposed using a singular value decomposition (SVD). The insight gained
from the singular value structure and from the interpretation of the corresponding
singular vectors can be used for model reduction, see [15].

5 Details on Numerical Implementation

In this section, we present a prototype implementation of the quantities and topics
concerned with structural optimisation introduced in the previous chapters. There-
fore, the well-known structure of the nonlinear finite element method is extended
to sensitivity analysis, i.e. the pseudo load matrix P̂ from Eq. (54) is added. How-
ever, we do not focus on general details of FEM, see the standard literature on finite
element analysis, for example [8, 10, 35, 36].

The presented Matlab code, i.e. the element routine, is part of an educational
in-house finite element analysis environment for general nonlinear problems. We
concentrate on the plane strain two-dimensional case using a quadrilateral four node
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element with bilinear shape functions, which is sufficient to explain the necessary
steps for sensitivity analysis. The extension to three dimensions and to higher order
elements is straightforward.

We slightly differ from the notation used in the previous sections in order to avoid
super- and subindices, but themeaning of the variables in the code should be obvious.
We abbreviate the Cartesian and local coordinates (X1, X2) and (ζ 1, ζ 2)with (X,Y)

and (a,b), respectively.
We name the function containing the element matrices

for the referred plane, pure displacement formulation for nonlinear problems. The
overall implementation can be found in the appendix. Its integration into an already
existing environment for structural analysis is easy to handle by using the standard
Matlab syntax for function calls

[Out1, Out2, ...] = FunctionName(In1, In2, ...).

The input quantities, namely coorde,mate,be,Ue, contain the nodal coordinates
of the current element, properties of the chosen material, information about body
forces per unit volume acting on the system and the displacements for all degrees of
freedom of the element, respectively. These details are specified below.

The discretisation of the domain delivers a matrix with the global X- and Y-
coordinates of all nodes of the generated mesh. On element level, the necessary
coordinate matrix for the plane two-dimensional case has the form

coorde =
[
X1 . . . Xn
Y1 . . . Yn

]T
=

[
X1 X2 X3 X4
Y1 Y2 Y3 Y4

]T
, (55)

where n is the overall number of nodes of the element and in our case is n = 4.
Furthermore, the introduced matrix mate contains the material properties of the
current element with the componentsmate(1) for theYoung’smodulus,mate(2)
for the Poisson’s ration and mate(3) for the thickness of the element. The matrix
be represents the body forces per unit volume in the possible directions X and Y,
i.e. it contains the components be = [

bX bY
]T. The last input value Ue includes the

displacements of all nodes in the directions X and Y. Therefore, its dimension is the
number of degrees of freedom of the current element ndof× 1 and in the referred
case 8× 1

Ue = [
U1 . . . Undof

]T = [
U1 U2 U3 U4 U5 U6 U7 U8

]T
. (56)

The output quantities Rint for the internal residual, Fvol for the contribution of
body forces to the external residual, K as the well known tangent stiffness matrix and
the tangent pseudo load matrix P were already introduced in the previous sections.
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We apply Gauss quadrature with four Gauss points stored in matrix gpoints
with the four related weights in weights, which are organised within an external
function

and provide the matrix representations for the chosen numgp = 4 integration points

gpoints =
[
a1 a2 a3 a4
b1 b2 b3 b4

]T
, weights = [

w1 w2 w3 w4
]T

. (57)

The bilinear shape functions are delivered by an external function as well

and depend on the local coordinates a,b of the integration points and the coordinates
of the nodes of the element. The output matrices contain the shape functions, sum-
marised in Nmat, the derivatives of the shape functions with respect to the global
coordinates X and Y, summarised in N_X,N_Y and the determinant of the Jacobian
detJ. The explicit forms of the matrices are as follows

Nmat =
[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]
(58)

and

N_X = [
N1,X N2,X N3,X N4,X

]T
, N_Y = [

N1,Y N2,Y N3,Y N4,Y
]T

. (59)

The gradient of the displacements is performed by the function

and delivers a matrix

Gradu =
[
u1,X u1,Y

u2,X u2,Y

]
. (60)

Different constitutive equations, for example St. Venant or Neo-Hooke, can be used.
The (3 × 3) material matrix C and the (2 × 2) matrix S of the 2. Piola-Kirchhoff
stresses are computed in the external function

The number of degrees of freedom dof for the current node are computed using
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Here,dof is the number of overall degrees of freedom per node andni is the number
of the current node of interest. Same holds true for the node nj.

Due to the fact, that the B-operator has a similar structure for each necessary case,
we introduce the external function Bmat for its computation

Here, the introduced derivatives of the shape functions N_X,N_Y and a matrix A are
the required inputs. ThematrixA represents thematrix representationA_u = F of the
deformation gradient for the matrices for structural analysis or A_X = −GraduTF
for the contribution to the pseudo load matrix within sensitivity analysis

In the end and with all given hints the element matrices and simultaneously the
outputs of the element function can be computed.All output quantities use the number
of degrees of freedom for the determination of their dimensions. Therefore, the
internal residual Rint as well as the contribution of the body forces to the external
residual Fvol have the dimension ndof× 1 = 8× 1 and are organised as follows

Rint = [
R1 R2 . . . Rndof

]T = [
R1 R2 R3 R4 R5 R6 R7 R8

]T (61)

and

Fvol = [
F1 F2 . . . Fndof

]T = [
F1 F2 F3 F4 F5 F6 F7 F8

]T
. (62)

The computation of Fvol for the contribution of body loads to external residual
vector Rext is realised in the following lines

where dV results from the integration over the domain.
For the physical residual vector Rint the B-operator Bui as well as the vector

representation of the 2. Piola-Kirchhoff stresses

is necessary and can be updated for each integration point as follows

The symmetric tangent stiffness matrix K and the tangent pseudo load matrix
P, which is not symmetric in general, have the same structure and are both of the
dimension ndof× ndof = 8× 8. Their computation is pretty similar and can be
organised even in the same loops over the nodes, due to similar dependencies
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Section7 shows a simple application of the presented approach for sensitivity
analysis. It is useful to comprehend the mentioned aspects and can be easily realised
within tutorials or lectures on structural optimisation using the presented element
formulation.

6 Analytical Derivatives of Discrete Equations

The discrete differentiation approach focuses on the discrete matrix formulation
which has been derived for the finite element method, see Fig. 1. In this approach,
all derivatives of the discrete functions with respect to the discrete variables are
computed based on standard calculus, i.e. using chain and product rules. The method
iswell-knownwith extensive discussion in literature, see e.g. [11, 21].Nevertheless, a
few details are presented to highlight essential differences. For simplicity, the design
variable s represents any nodal coordinate Xi

I with i = 1, 2 and I = 1, 2, 3, 4.
Furthermore, we abbreviate the Jacobian matrix by J and its determinant by J =
det J .

6.1 Design Derivatives of Shape Functions and Jacobians

The isoparametric concept is an important concept in FEM and the computation of
the Cartesian derivatives of the shape functions and of the Jacobian determinant play
a central role in the discrete differentiation approach.

Remark 11 (Isoparametric concept is derived from continuous theory) In teaching
finite elements, the (iso-) parametric technique to compute the Cartesian derivatives
of the shape functions is often argued to be a novel concept introduced by FEM.
This is wrong, because the underlying structure of differential geometry has been
ignored.

Thus, the analytical or numerical differentiation of discrete functions belonging to
the (iso-) parametric technique re-compute those results which are already available
in more general form on the continuous level. Instead of using results from Sect. 3.3,
Eq. (16) applied to the displacement approximation (40) is differentiated again

∂

∂s

[
NI,X NI,Y

] = ∂

∂s

([
NI,a NI,b

]
J−1

)
= [

NI,a NI,b
] ∂

∂s
J−1. (63)



250 F.-J. Barthold et al.

The Jacobian J as discrete version of Kζ or K ζ ≡ J Kζ , see Eq. (37), is given by

J =
[

X,a X,b

Y,a Y,b

]
=

[
X1 X2 X3 X4
Y1 Y2 Y3 Y4

]
⎡
⎢⎢⎣

N1,a N1,b
N2,a N2,b
N3,a N3,b
N4,a N4,b

⎤
⎥⎥⎦ . (64)

The derivative of the inverse of the Jacobian with respect to nodal coordinates or
design variables can be obtained using the identity I = J−1 J which leads to

∂ I
∂s

= ∂ J−1

∂s
J + J−1 ∂ J

∂s
= 0 and therefore to

∂ J−1

∂s
= −J−1 ∂ J

∂s
J−1. (65)

The design variable s is an abbreviation for the nodal coordinates X I , YI of all nodes
I = 1, 2, 3, 4 of the element. Thus, the design derivative of Eq. (64) yields

∂ J
∂s

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
NI,a NI,b

0 0

]
for s = X I

[
0 0

NI,a NI,b

]
for s = YI

. (66)

Further necessary quantity is the first derivative of the determinant of the Jacobian
J = det J = X,aY,b − Y,a X,b. It can be obtained by performing the product rule

∂ J

∂s
= ∂ X,a

∂s
Y,b + X,a

∂Y,b

∂s
− ∂Y,a

∂s
X,b − Y,a

∂ X,b

∂s
. (67)

The nonlinear B-operator BuI is quoted in Eq. (49). In the framework of the discrete
sensitivity analysis its derivative with respect to the design variables has to be pro-
vided, i.e. every element of BuI must be differentiated. With the introduced quantity
Au = FX = I + Grad u, see Sect. 4.5, its derivative corresponds to the derivative
of the deformation gradient

∂ Au

∂s
= ∂ FX

∂s
= ∂

∂s
(I + Grad u) = ∂ Grad u

∂s
. (68)

The definition of the gradient in Eq. (46) allows the computation of the derivative
with respect to the nodal coordinates or the design variables in the following way

∂ Grad u
∂s

= ∂

∂s

(
n∑

I=1

uI LT
I

)
=

n∑
I=1

uI
∂ LT

I

∂s
=

n∑
I=1

uI

[
∂ NI,X

∂s
∂ NI,Y

∂s

]
. (69)
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6.2 Design Derivatives of the Linear Stiffness Matrix

In the framework of a static and linear finite element analysis, the discrete equilibrium
condition is usually presented as K̂ Û = F̂. Thus, sensitivity analysis reads

∂ K̂
∂s

Û + K̂
dÛ
ds

= ∂ F̂
∂s

and therefore
d Û
ds

= K̂
−1

[
∂ F̂
∂s

− ∂ K̂
∂s

Û

]
, (70)

where s is a scalar valued design variable. This approach suggests to differentiate
the linear stiffness matrix by applying the chain rule to all element contributions ke

∂ke

∂s
= ∂

∂s

(∫
Re

BTC B J dVζ

)
=

∫
Re

∂

∂s

(
BTC B J

)
dVζ

=
∫
Re

(
∂ BT

∂s
C B + BTC

∂ B
∂s

)
J dVζ +

∫
Re

BTC B
∂ J

∂s
dVζ , (71)

where the analytical derivatives of B and J are discussed above.

Remark 12 (No derivative of the stiffness matrix is necessary) The variational sensi-
tivity analysis emphasises that the continuous residuum (weak form) must be varied
or alternatively, that the discrete residual vector must be differentiated. The special
form K̂ Û = F̂ is irritating and leads to a higher effort than needed, i.e. additional
analytical derivatives must be derived and must be implemented. Last but not least,
the computational performance is less efficient as outlined in Sect. 7.

6.3 Design Derivatives of Nonlinear Residual Vectors

Referring Remark 12, the design sensitivity analysis for the static nonlinear case has
to be performed starting with the discrete equilibrium condition for finite element
analysis introduced in Eq. (52). In detail, the derivative with respect to the scalar
valued design variable s can be evaluated by

∂ re
I

∂s
= ∂

∂s

(∫
Ke

BT
uI S̄ dVX − f e

I

)
. (72)

For the internal part of the residual the derivative reads

∂

∂s

∫
Ke

BT
uI S̄ dVX = ∂

∂s

∫
Re

BT
uI S̄ J dVζ =

∫
Re

∂

∂s

(
BT

uI S̄J
)
dVζ

=
∫
Re

(
∂ BT

uI

∂s
S̄ + BT

uI
∂ S̄
∂s

)
J dVζ +

∫
Re

BT
uI S̄

∂ J

∂s
dVζ

(73)
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and similar for the external part

∂ f e
I

∂s
= ∂

∂s

∫
Ke

NI bI dVX = ∂

∂s

∫
Re

NI bI J dVζ =
∫
Re

NI bI
∂ J

∂s
dVζ . (74)

The essential steps for the derivative of the nonlinear B-operator and of the Jacobian
determinant are already detailed in Sect. 6.1. For the derivative of stresses S the
derivative of strains E = 1

2 (FTF − I) = 1
2

(
HT + H + HTH

)
with H = Grad u

has to be discussed. The derivative of H can be found in Eq. (69). A lot of further
aspects and details concerning sensitivity analysis of nonlinear systems are discussed
and presented in [21] as well.

Remark 13 (Comparable quantities should not be treated differently) It has been
shown, that the stiffness matrix and pseudo load matrix originate from partial vari-
ations of the residual with respect to displacements or design, respectively. It is
common and good practice in computational mechanics, to perform all variations
with respect to the state variables on the continuous level before applying a subse-
quent discretisation step. But it is a strong discrepancy, if the differentiation of the
discrete residual vector is advocated for deriving the pseudo load matrix.

7 Numerical Example

The example illustrates the usage of the variational design sensitivity analysis and
should serve as a benchmark problem suitable for comparing different sensitivity
analysis techniques. It is equally applicable for linear and nonlinear problems.

7.1 Structural Optimisation Problem

The dimensions of the structure (height and width) are h = 2 and w = 6. The
geometry is defined by a Bézier patch with 8 control points and the corresponding
control polygon is pictured in Fig. 4b. The material properties are Young’s modulus
E = 21000 and Poisson’s ratio ν = 0.3. The constitutive model is either the classical
Hooke’s law in the linear case or the Neo-Hooke’s law in the nonlinear case. The
load q̄ = 3 is a line load. The applied boundary conditions are pictured in Fig. 4a.
The FE-mesh consists of 675 elements and 736 nodes with 1472 degrees of freedom.

Vertical positions (y coordinates) of 4 lower control points are used as design
variables. The vertical displacement ul of the upper right corner is to be minimised
taking into account a constant volume constraint V = V0. Here, V and V0 denote the
current and initial volumes. The resulting force Q of the line load q is kept constant.

Sequential quadratic programming (SQP) is utilised to solve the optimisa-
tion problem. The algorithm converges after sixteen iterations. The corresponding
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(a) (b)

Fig. 4 Cantilever beam: initial structure. a Mechanical system. b Optimisation model
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Fig. 5 Cantilever beam: optimisation results. a Displacement history. b Optimised design

iteration history (steps 0–15) for the objective function is pictured in Fig. 5a. The
displacement ul is decreased to about two-thirds of its initial value. The optimised
design in terms of nonlinear structural analysis is presented in Fig. 5b. The structure
is stiffened with respect to bending stress.

7.2 Performance Comparison of Different Strategies

Performance tests have been run for linear and nonlinear structural analysis. In each
case, the computation of the pseudo load matrix using either the variational for-
mulation P̂var, see Sect. 4, or the discrete formulation P̂dis, see Sect. 6, have been
performed. The absolute as well as the relative computation times for assembling the
pseudo load matrices referred to the computation time for assembling the stiffness
matrix K̂ are presented in Table1.

Table 1 Computation times for pseudo load matrices

Absolute values in seconds Relative factors compared with K̂ Speedup

K̂ P̂var P̂dis K̂ P̂var P̂dis

Linear 0.0465 0.2210 0.5431 1 4.7 11.7 2.5

Nonlinear 0.2758 0.3575 1.0455 1 1.3 3.8 2.9
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Referring this times, the usage of the variational formulation provides a speed
up of 2.5 for the linear and of 2.9 for the nonlinear computations in contrast to the
discrete formulation. Beyond that, the times prove that the effort for the provision of
the (nonlinear) pseudo load matrix using the variational formulation is in the same
range as for the stiffness matrix. Due to the fact, that the linear stiffness matrix is
constant and independent of displacements, the factors differ bit more than for the
nonlinear case. Regarding the overall computation time for the presented example
in the previous section, one ends up at least with a speed up of 1.3 for the nonlinear
and of 1.7 for the linear case.

Remark 14 (Variational technique shows superior computational performance)The
invested effort into a rigorous theoretical development and its careful implementa-
tion yields a minimal number of floating-point operations compared to the discrete
differentiation approach. This advantage remains for all advanced computational
techniques such as High Performance Computing (HPC) on all available hardware.
Thus, in a long term run, there is no alternative to an investment in theoretical rigour.

8 Conclusions

The proposed variational design sensitivity analysis is considered to be the most
efficient technique to determine the gradients of objective or constraint functions
with respect to design variables in structural optimisation. The effort of a rigorous
separation of physical quantities into geometry and displacement mappings based on
an intrinsic presentation of continuum mechanics pays off with fundamental insight.

Moreover, the quote There’s nothing more practical than a good theory, see [23],
perfectly characterises the outlined benefits of a thorough theoretical investigation for
the subsequent discretisation, implementation and computation of design sensitivity
analysis in structural optimisation. Overall fourteen remarks, embedded in the text,
substantiate the correctness of this statement.

Appendix: MATLAB Source Code

The appended Matlab source code contains two functions, i.e. plane_nl for the
computation of the element matrices and Bmat for the B-matrices needed in struc-
tural analysis and sensitivity analysis, see Sect. 5 for detailed explanations.
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1 Introduction

The design of control strategies for dynamic systems with distributed parameters
has been actively developed in recent decades. Optimization of dynamic models of
elastic structures is an important problem arising in a large variety of applications in
science and engineering. Theoretical foundations of optimal control problems with
linear partial differential equations (PDEs) and convex functionals were established
by Lions [17, 18]. Linear hyperbolic equations are studied in [1, 4]. An introduction
to the control of vibrations can be found in [13]. Oscillating elastic networks are
investigated in [10, 14, 16]. Since accurate modelling of these systems leads to a
description in terms of PDEs, control design is usually based on specific approaches
to solving direct and inverse problems.

Two different methods to the control design for distributed parameter processes
can be emphasized. In the first approach, (the so-called late lumping), the control
is directly designed for distributed parameter models and then converted to a finite-
dimensional approximation. The infinite-dimensional control strategies can rely on
specific spectrum analysis of the linear system operator (see, e.g., [3, 7]). The control
method considered in [5] enables one to construct a constrained distributed control
in closed form and ensures that the system is brought to a given state in a finite
time. This method is based on a decomposition of the original system into simple
subsystems by the Fourier approach. In [9], a numerical approach for the solution of
PDE-constrained optimal control problems is adapted to hyperbolic equations. The
method of choice proposed there is either a full discretization method for small size
problems or the vertical method of lines for medium size problems.

In applications, the second approach, early lumping, is used for numerical control
design. In accordance with this approach, the initial-boundary value problem is first
discretized and reduced to a system of ordinary differential equations (ODEs), e.g.,
by means of the Rayleigh-Ritz or Galerkin methods. A family of Galerkin approx-
imations based on solutions of the homogeneous beam equation was constructed
and sufficient conditions for stabilizability of such finite-dimensional systems were
derived in [19]. Alternatively, the finite-difference or finite-element method (FEM)
can be used as it is shown in [2, 6]. The direct discretization approaches are also
known in optimal control theory (e.g., see [15]).

Oneof the disadvantages of the early lumping is that it is rather difficult to relate the
discretized system with its original distributed model. However, this connection can
be estimated by following the method of integro-differential relations (MIDR) [12].
These estimates allow us to qualify finite-dimensional modelling, refine a coarse
solution and make necessary corrections of the control law. TheMIDRwas extended
in [11] to the optimal control design of elastic rodmotions. In the paper, this approach
is combined with the Ritz method and FEM to minimize the mean energy distributed
in an elastic structure during controlled processes.

The paper is structured as follows: In Sect. 2, the PDE system that models the
elastic rod dynamics is introduced. A variational formulation of the considered
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initial-boundary value problem is proposed in Sect. 3. In Sect. 4, a finite element
algorithm is described based on this generalized statement. An optimal control prob-
lem for the elastic structure is formulated in Sect. 5. In the next section, the inverse
dynamic problem is related with the proposed variational formulation of the direct
problem. Section7 is devoted to the FEM procedure including the successive mini-
mization of the constitutive and control functionals. In Sect. 8, a numerical example of
system modelling and optimization is presented and discussed. Finally, conclusions
and a brief outlook are given.

2 Modelling of Elastic Rod Dynamics

As an example of elastic structure dynamics, longitudinal displacements of a thin
rectilinear elastic rod are considered. In the Lagrange coordinate system, one end of
the rod at x = 0 can move in accordance with some control law u(t), whereas the
other end at x = L is free of load [11]. No external distributed forces are supposed.

Small vibrations of the elastic rod can be described by the linear equations

{t, x} ∈ Ω : p = ρ(x)wt and s = κ(x)wx , (1)

{t, x} ∈ Ω : pt = sx (2)

with the initial and boundary conditions

t = 0 : p = p0(x) and w = w0(x),

x = 0 : w = w0(0) + u(t) with u(0) = 0, x = L : s = 0.
(3)

Here,Ω = (0, T )× (0, L) is the time-space domain, T is the time instant, ρ denotes
the function of rod linear density, and κ is its distributed stiffness. The linear momen-
tum density p(t, x), the normal stresses in the cross section s(t, x), and the displace-
ments w(t, x) are unknown functions. Some initial momentum density p0(x) and
displacements w0(x) are given.

The choice of the example is stipulated by its practical relevance and possible
extensions. The equations of elastic rod motions (1)–(3) describe also a wide class
of dynamic systems with distributed parameters, starting with the classical spring
model, including the elastic shaft torsion, and so on. Although the rod considered in
the paper has internal parameters uniformly distributed along its length, the proposed
algorithm can be easily generalized onto the non-uniform case. Nevertheless, the
hyperbolic system with constant geometrical and mechanical parameters can serve
itself a useful application for numerical verification of the control algorithm.
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3 Variational Statement of the Direct Dynamic Problem

The solution p∗(t, x), s∗(t, x), w∗(t, x) of the initial-boundary value problem
(1)–(3) may not exist in the classical sense (this depends on regularity of the func-
tions κ(x), ρ(x), p0(x), w0(x), u(t)). To generalize the problem, we consider an
integral statement of the constitutive laws proposed in [11] instead of the local for-
mulation (1).

Let us introduce two auxiliary constitutive functions needed to relate the momen-
tum density and velocities as well as the normal stresses and strains along the elastic
rod in accordance with (1):

η(t, x) = wt − p

ρ(x)
, ξ(t, x) = wx − s

κ(x)
. (4)

On the solution these functions must be equal to zero.
For the direct problem of elastic rod motions, the generalized statement can be

formulated as follows: Find the functions p∗(t, x), s∗(t, x), w∗(t, x) such that the
integral equation

Φ[p, s, w] =
∫
Ω

ϕ dΩ = 0 with ϕ = 1

2

(
ρ(x)η2 + κ(x)ξ2

)
(5)

holds as well as the constraints (2) and (3). Here, Φ is the constitutive functional
in the energy norm with ϕ as the function of quadratic residual for the constitutive
equations (1).

It is worth noting that the integrand ϕ defined in (5) has a dimension of linear
energy density and nonnegative. This fact directly follows from properties of ϕ,
which imply that the functional Φ is also nonnegative. This allows us to reduce the
integro-differential problem (2), (3), (5) to a variational one: Find those functions
p∗(t, x), s∗(t, x), w∗(t, x) that minimize the functional

Φ[p∗, s∗, w∗] = min
p,s,w

Φ[p, s, w] = 0 (6)

subject to the constraints (2) and (3).
Denote the actual and arbitrarily chosen admissible momentum, stress, displace-

ment fields via p∗, s∗, w∗ and p, s, w, respectively. Define

p = p∗ + δp, s = s∗ + δs, w = w∗ + δw,

where δp, δs, δw are the respective variations of momentum density, stresses, and
displacements. Then,

Φ[p, s, w] = Φ[p∗, s∗, w∗] + δΦ + δ2Φ.
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Here, Φ[p∗, s∗, w∗] = 0 in accordance with (5). The first variation of the functional
can be presented as the sum δΦ = δpΦ + δsΦ + δwΦ of the variations with respect
to the unknowns p, s, w. It follows from the quadratic structure of the functional Φ
that the second variation δ2Φ = Φ[δp, δs, δw] is also nonnegative.

Let us express explicitly the first variation of the functional Φ and, consequently,
the system of Euler–Lagrange equations with the corresponding natural conditions
for the variational problem (2), (3), (6). For this purpose, the relation between the
momentum function p and the stress function s imposed by the differential equa-
tion (2) should be used together with the corresponding relation between their vari-
ations

δpt = δsx .

The necessary condition of stationarity is obtained after integration by parts of
the relation for δΦ and taking into account the problem constraints (2) and (3),

δpΦ + δsΦ + δwΦ = 0, (7)

δpΦ = −
∫
Ω

ηδp dΩ, δsΦ = −
∫
Ω

ξδs dΩ,

δwΦ = −
∫
Ω

(ρ(x)ηt + (κ(x)ξ)x ) δw dΩ

+
L∫

0

[ρ(x)ηδw]t=T dx +
T∫

0

[κ(x)ξδw]x=L dt.

From (7), we see that δΦ = 0 over all admissible variations δp, δs, δw if the equalities
(1) hold.

Introduce an auxiliary function

ζ(t, x) = −
t∫

0

η(τ, x)dτ

and get the expression for the first variations with respect to p and s after some
equivalent transformations as follows

δ pΦ + δsΦ =
∫
Ω

ζ tδp dΩ −
∫
Ω

ξδs dΩ

=
∫
Ω

(ζ x − ξ) δs dΩ +
L∫

0

[ζ δp]t=T dx +
T∫

0

[ζ δs]x=0 dt. (8)
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By using (7) and (8), it is possible to derive the Euler-Lagrange system with the
corresponding boundary and terminal conditions

ρ(x)ζ t t − (κ(x)ζ x )x = 0, ξ = ζ x ;
ζ |x=0 = ζ x |x=L = ζ |t=T = ζ t |t=T = 0.

(9)

This homogeneous system is a terminal-boundary value problem with respect to the
variable ζ(t, x). It can be shown that there is only a trivial solution of this problem
and hence ξ = 0 and η = 0. In other words, if the solution p∗, s∗, w∗ of the
problem (1)–(3) exists in the classical sense then the system of necessary conditions
(9) together with the essential constraints (2) and (3) is equivalent to the original
problem of elastic rod motion (1)–(3). This means that the statement (2), (3), (5) is
given correctly in terms of the calculus of variations.

4 Finite Element Technique Based on the Ritz Method

The system (1)–(3) is solved by variational approach, which is a modification of
the Ritz method based on the MIDR discussed in [12]. The law of momentum
balance (2) holds automatically if two auxiliary functions (kinematic w̃(t, x) and
dynamic r̃(t, x)) are introduced such that

p = r̃x (t, x) + p0(x), s = r̃t (t, x), w = w̃(t, x) + w0(x). (10)

The initial and boundary conditions for the new variables w̃ and r̃ are defined as
follows:

t = 0 : w̃ = 0 and r̃ = 0, x = 0 : w̃ = u(t), x = L : r̃ = 0. (11)

Let us restate the initial-boundary value problem (1)–(3) in the variational form.
Find the functions w̃∗(t, x) and r̃∗(t, x) subject to the constraints (11) and such that

Φ[w̃∗, r̃∗] = min
w̃,r̃

Φ[w̃, r̃ ], Φ = 1

2

∫
Ω

(
ρ(x)η2 + κ(x)ξ2

)
dΩ, (12)

η = w̃t − r̃x + p0(x)

ρ(x)
, ξ = w̃x + w′

0(x) − r̃t

κ(x)
,

Here,η and ξ are the constitutive functions (4) expressed through thenew independent
variable w̃ and r̃ .

To solve the minimization problem (11)–(12), we use piecewise polynomial
approximationswith respect to the time and space. For the triangulation of the domain
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Fig. 1 Triangulation of the time-space domain Ω

Ω shown in Fig. 1, these approximations are given by the relations

w̃ ∈ S h
w =

⎧⎪⎪⎨
⎪⎪⎩

w̃(t, x) : w̃ =
K∑

k+l=0

w(kl)
jmntk xl , {t, x} ∈ Δ jmn,

j = 1, . . . , 4, m = 1, . . . , M, n = 1, . . . , N

⎫⎪⎪⎬
⎪⎪⎭

∩ C0.

r̃ ∈ S h
r =

⎧⎪⎪⎨
⎪⎪⎩

r̃(t, x) : r̃ =
K∑

k+l=0

r (kl)
jmntk xl , {t, x} ∈ Δ jmn,

j = 1, . . . , 4, m = 1, . . . , M, n = 1, . . . , N

⎫⎪⎪⎬
⎪⎪⎭

∩ C0.

(13)

Here, Δ jmn denotes the corresponding subdomain of a triangular mesh described in
Fig. 1.

The mesh is defined by the nodes on the axes t and x as follows:

xm > xm−1, m = 1, . . . , M + 1, x1 = 0, xM+1 = 1;
tn > tn−1, n = 1, . . . , N + 1, t1 = 0, tN+1 = T .
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The domainΩ is divided by the straight lines x = xm and t = tn (see Fig. 1) into M N
rectangles Ωmn = (tn, tn+1) × (xm, xm+1) with m = 1, . . . , M and n = 1, . . . , N .

The rectangle vertices {tn, xm} are denoted by Amn with the corresponding edges
Akl Amn between Akl and Amn . For brevity, let Tmn = Amn Am,n+1 and Lmn =
Amn Am+1,n .

The diagonals of the rectangleΩmn (see Fig. 2) divide it in turn into four triangles

Δmn,1 = Bmn Amn Am,n+1, Δmn,2 = Bmn Am,n+1Am+1,n+1,

Δmn,3 = Bmn Am+1,n+1Am+1,n, Δmn,4 = Bmn Am+1,n Amn .
(14)

Here, Bmn is the intersectionpoint of the diagonals Amn Am+1,n+1 and Am,n+1Am+1,n .
Let us introduce the notation for the inclined edges of the triangle (14). We denote

Qmn,1 = Bmn Am,n+1, Qmn,2 = Bmn Am+1,n+1,

Qmn,3 = Bmn Am+1,n, Qmn,4 = Bmn Amn .

Fig. 2 Mesh structure on the rectangle Ωmn



A Variational Approach to Modelling and Optimization … 267

The unknown functions w̃(t, x) and r̃(t, x) are approximated in each of 4M N
triangles Δnmj by a complete bivariate polynomial of the order K in the Bézier-
Bernstein form [8]. In accordance with this form, the variables w̃ and r̃ in any
triangle Δ ⊂ Ω with the vertices Ai = {ti , xi } ∈ Ω , i = 1, 2, 3 (a local vertex
indexing is given bypassing the triangle contour counterclockwise) are expressed by
the relations

w(t, x) =
K∑

k+l=0

wkl BK
kl (t, x), r(t, x) =

K∑
k+l=0

rkl BK
kl (t, x),

BK
kl (t, x) = K !

k!l!(K − k − l)!bk
1(t, x)bl

2(t, x)bK−k−l
3 (t, x),

(15)

Here, the linear functions

b1(t, x) = d−1(x2 − x3)(t − t3) − d−1(t2 − t3)(x − x3),

b2(t, x) = d−1(x3 − x1)(t − t1) − d−1(t3 − t1)(x − x1),

b3(t, x) = d−1(x1 − x2)(t − t2) − d−1(t1 − t2)(x − x2),

are introduced and

d = det T, T =
⎡
⎣ t1 t2 t3

x1 x2 x3
1 1 1

⎤
⎦ ,

whereT is the extended coordinatematrix,which determinant d equals to the doubled
area of the triangle Δ. The functions bi , the so-called barycentric coordinates, have
the following properties:

bi (ti , xi ) = 1, bi (t j , x j ) = 0, i �= j, i, j = 1, 2, 3, b1 + b2 + b3 = 1.

According to the Eq. (15), for a chosen piecewise polynomial, the total number
of parameters w(mnj)

kl and r (mnj)
kl in the mesh element Δmnj is equal to NΔ = (K +

1)(K + 2)/2. These degrees of freedom can be symbolically marked by circles as it
is shown in Fig. 2 for K = 4.

The vector ẑ = {ẑi } ∈ R
Nl consisting of all such local parameters has the dimen-

sion Nl = 8MNNΔ. The sequence of the vector components ẑi can be chosen so
that

ẑi1 = w(mnj)
kl , ẑi2 = r (mnj)

kl , i1 = j0 + k0, i2 = NΔ + j0 + k0,

j0 = 4 (2 ((m − 1)N + n − 1) + j − 1) NΔ, k0 = k(2K − k + 3)

2
+ l + 1,

m = 1, . . . , M, n = 1, . . . , N , j = 1, 2, 3, 4,

k = 0, . . . , K , l = 0, . . . , K − k.

(16)
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Here, j0 is the index of the last coefficient for the previous triangle, k0 defines one-
dimensional indexing of the Bézier-Bernstein coefficients w(mnj)

kl related with Δmnj .
Let us define the vector of discontinuous basis functions

a(t, x) = {ai (t, x)} ∈ R
Nl ,

which corresponds to ẑ in accordance with the relation

ai1 = ai2 =
{

B(mnj)
kl (t, x), {t, x} ∈ Δmnj ,

0, {t, x} /∈ Δmnj .

The Bézier-Bernstein polynomial B(mnj)
kl of the order K is introduced in the triangle

Δmnj by relations similar to (15). The corresponding indices i1 and i2 are given
in (16). In this case, the approximations of dynamic and kinematic fields can be
presented as follows:

û = ŵT(t, x)ẑ, r̂ = r̂T(t, x)ẑ, ŵ = Ewa(t, x), r̂ = Er a(t, x). (17)

Here,

Ew =

⎡
⎢⎢⎢⎢⎣

E0
w 0 · · · 0

0 E0
w · · · 0

...
...

. . .
...

0 0 · · · E0
w

⎤
⎥⎥⎥⎥⎦ ∈ R

Nl×Nl , where E0
w =

[
INΔ 0

0 0

]

Er =

⎡
⎢⎢⎢⎢⎣

E0
r 0 · · · 0

0 E0
r · · · 0

...
...

. . .
...

0 0 · · · E0
r

⎤
⎥⎥⎥⎥⎦ ∈ R

Nl×Nl , where E0
r =

[
0 0
0 INΔ

]
,

and In denotes the identity matrices of the dimension n × n.

5 Optimal Control Problem

Now we consider an inverse dynamic problem for the elastic rod model discussed
above. In accordance with the variational formulation of the initial-boundary value
problem (11)–(12), minimum of the constitutive functional Φ[r̃ , w̃] is first sought
for any sufficiently smooth function u(t) ∈ U . The control problem is to find such
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a function u∗(t) ∈ U that moves the elastic rod at the fixed time instant T to the
finale state

t = T : p = 0, w = wT = const, u = uT = wT − w0(0) (18)

and minimizes the mean energy Ē of the rod

J [u∗] = min
u∈U

J [u], J = Ē . (19)

Here

Ē = Ψ

T
, Ψ =

T∫
0

E dt, E =
L∫

0

ψ dx, (20)

ψ = 1

2

(
ρ−1(x) (r̃x + p0(x))2 + κ(x)

(
w̃x + w′

0(x)
)2)

. (21)

Here, E is the total mechanical energy of the moving elastic structure with its linear
density ψ expressed through the variables r̃(t, x, u) and w̃(t, x, u).

6 Discretization and Regularization of the Control Problem

According to (11) and (13), the admissible control function u(t) = w̃(t, 0) taken in
numerical realization has to be piecewise polynomial. Let û = [u1, . . . , uK N ]T ∈
R

K N be the vector of control parameters. In this case, the K N components of the
vector û are used to meet 2K M + 2 terminal conditions in the optimal control
problem (18)–(20). Even if the terminal values (18) are admissible for the splines
r̃(t, x) ∈ S h

r and w̃(t, x) ∈ S h
w , themomentum density and displacements resulting

from (10) with the approximations (13) for terminal constraints more general than
the piecewise polynomial ones cannot be apparently satisfied.

The terminal conditions (18) can be weakened by introducing some tolerance
ε1 > 0. For example, the total energy of the rod at the end of the controlled process
can be constrained by some small value

E1 = E(T ) ≤ ε1 	 Ē .

As it has been shown in numerical calculations, the accuracy of approximate
solutions may dramatically fall down through the optimization of the control input
u(t). To regulate the error level and ensure the reliability of modelling, an upper limit
of the error functional Φ should be given

E2 = T −1Φ ≤ ε2 	 E1.
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Such a tolerance can be guaranteed by two isoperimetric conditions imposed on
the energy functionals

E1 = ε1 and E2 = ε2. (22)

After parametric optimization of the functional Φ according to (11)–(13) for a arbi-
trary vector û, the problem (18)–(20) with the integral conditions (22) is equivalent
to the following minimization: Find the control vector û∗ that moves the rod end at
x = 0 in the fixed time T to the final positionwT andminimizes the energy functional

J (û∗
) = min

û
J (û), w(T, 0) = wT ; J = Ē + γ1E1 + γ2E2, γ1,2 ≥ 0. (23)

Here, Ē is the mean energy of the rod, E1 is the terminal energy of the system, E2
is the integral error of approximate solution, γ1 and γ2 are the weighting factors
introduced to achieve the given values of E1 and E2 in accordance with (22), ψ is
the rod energy density.

The optimal control vector û∗ as well as the corresponding function u∗(t) =
u(t, û∗), the approximation of displacements w∗(t, x) = w(t, x, û∗), momentum
density p∗(t, x) = p(t, x, û∗), and normal stresses s∗(t, x) = s(t, x, û∗) are found
in accordance with the algorithm described below.

7 Numerical Algorithm of Control Optimization

As it is seen in (13), the unknown functions r̃(t, x) and w̃(t, x) on the triangleΔmnj of

the time-space mesh are defined by the parameters r (mnj)
kl and w(mnj)

kl , which number
is equal to 2NΔ = (K + 1)(K + 2). The local parameters have been collected into a
vector ẑ ∈ R

Nl with the dimension Nl = 8M N NΔ in accordance with (16) and the
approximations (13) can be presented as in (17).

By satisfying the continuous conditions imposed on the fields r̃(t, x) and w̃(t, x),
the matrix Q ∈ R

Nl×Ng is derived. It relates the global and local parameter vectors
according to the relation ẑ = Qz. The resulting continuous fields are expressed in
the vector form as follows:

r̃(t, x, z) = rT(t, x)z, w̃(t, x, z) = wT(t, x)z. (24)

For the optimal control problem, the vector of global parameters can be presented
by the relations

z = [
yT uT qT

]T ∈ R
Ng , y ∈ R

Ny , u ∈ R
Nu , q ∈ R

Nq ,

Ng = Ny + Nu + Nq , Ny = 4K M N , Nu = K N − 1.
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Here, y is the vector of designed parameters, u denotes the vector of control parame-
ters that remain after satisfying the terminal displacement condition in (23), q is the
vector of system parameters that depends only on the terminal value uT . It is always
possible to reduce the problem to the case uT = 1 by scaling and to eliminate the
vector q from consideration.

After substituting the approximation r̃(t, x, z) and w̃(t, x, z) from (13) into the
functional of (12) and integrating over the domain Ω , we obtain

Φ̃(z) = Φ[ũ, r̃ ] = 1

2
zTFz + fTz + f.

By taking into account the structure of the vector z and quadratic form of the
functional Φ, the matrix F ∈ R

Ng×Ng and the vector f ∈ R
Ng are defined in the

form

F =
⎡
⎣Fyy Fyu 0

FT
yu Fuu 0
0 0 0

⎤
⎦ , f =

⎡
⎣fy

fu

0

⎤
⎦ ,

{
Fyy = FT

yy ∈ R
Ny×Ny Fuu = FT

uu ∈ R
Nu×Nu ,

fy ∈ R
Ny , fu ∈ R

Nu f ∈ R.

Minimum of the function Φ̃ is attained if

y = ỹ = −F−1
yy

(
Fyuu + fy

)
.

Similarly, the control functional Ĵ (z) = J [ũ, r̃ ] in (23) is quadratic with respect
to the vector z and can be represented in the form

Ĵ (y, u) = 1

2

[
y
u

]T [
Jyy Jyu

JTyu Juu

] [
y
u

]
+

[
jy

ju

]T [
y
u

]
+ J0,

where

Jyy = JTyy ∈ R
Ny×Ny , Juu = JTuu ∈ R

Nu×Nu , jy ∈ R
Ny , ju ∈ R

Nu , J0 ∈ R.

After that, the vector of design parameter ỹ is substituted into the cost function
Ĵ (y, u) and we obtain

J̃ (u) = Ĵ (ỹ(u), u) = 1

2
uTGu + gTu + G, G = GT.

As a result, the original control problem is reduced to the unconstrained minimiza-
tion for the function J̃ (u). The optimal control vector is found as u∗ = −G−1g
and the design parameter vector as y∗ = ỹ(u∗). By changing the vector z for the
optimal vector z∗ = [

(y∗)T (u∗)T q
]T

in (24) and taking into account (10), approx-
imations of the momentum density, stress and displacement fields are obtained as
p̃∗ = p̃(t, x, z∗), s̃∗ = s̃(t, x, z∗), w̃∗ = w̃(t, x, z∗).
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The relative energy error Δ of the approximate solution is given by the relation

Δ = Φ̃(z∗)Ψ̃ −1(z∗), Ψ̃ (z) = Ψ [r̃(t, x, z), w̃(t, x, z)],

where Ψ = T Ē is the energy integral over the time interval [0, T ] defined in (20).

8 Simulation and Solution Quality Estimates

We choose the dimensionless parameters of the system ρ = κ = L = 1, the initial
functions p0(x) = w0(x) = 0, and the control parameters T = 4,wT = 1, γ1 = 104,
γ2 = 10−4. The algebraic order of the approximating system is Ny = 4M N K 2. For
the test control function

u = u0(t) = 3t2T −2 − 2t3T −3, (25)

the relative integral errorΔ = E2 Ē−1 versus the dimension Ny is presented in Fig. 3.
The so-called h-convergence is depicted by solid lines for homogeneous meshes

(M = N = 1÷7) and different polynomial orders (from K = 3 to K = 6). The rate
of p-convergence when the polynomial degree is varied (K = 3 ÷ 7) is given by a
dashed line for the fixed triangulation with M = N = 1. We see that the accuracy
of numerical solutions grows up fast if the dimension increases.

Fig. 3 Relative error Δ versus the approximation dimension Ny
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Fig. 4 Local error distribution ϕ(t, x)

Local values of the solution error can be defined by the function ϕ(t, x). The
time-space error distribution is depicted in Fig. 4 for the following approximation
parameters: K = 6 and M = N = 4. The relative integral error for the mesh is
equal to Δ = 6.4 × 10−7. The mean mechanical energy over the process equals to
Ē = 0.0984.

It can be verified that there exists a piecewise polynomial solution for this specific
test control parameters. Moreover, the polynomials are defined on those triangular
subdomains of the time-space domain Ω which are bounded by the characteristic
lines

x − t = 0, x − t = 2, x + t = 2, x + t = 4.

The order of the polynomials is equal to 3 and p(t, x) = s(t, x) = w(t, x) ≡ 0 if
t ≤ x .

It turns out for the mesh topology under consideration that some of the trian-
gle edges coincide with these characteristic lines if N = 4M . In this case, the
exact solution can be found (up to the round-off error) by using the finite-element
approximations of the unknown functions r̃(t, x) and w̃(t, x) with the polynomial
order K ≥ 3. Such a superconvergence property is exploited below to obtained the
momentum, stress and displacement fields. The relative displacements of the elastic
rod w(t, x) − u(t) with the control input u = u0(t) are shown in Fig. 5 for K = 3,
M = 1, and N = 4.

The distributions of themomentum density p(t, x) and the normal stresses p(t, x)

for the same test control u0(t) are depicted in Figs. 6 and 7, respectively. Here,
the nonanaliticity along the characteristic lines can be seen more distinctively. It is
certainly difficult to approximate rather accurately place where the function breaks



274 G. Kostin and V. Saurin

Fig. 5 Relative rod displacements w(t, x) − u0(t) for the test motion

Fig. 6 Momentum density p(t, x) for the test motion

if such a line is located inside a mesh element. These breaks cause error surges for
unappropriate meshes as it can be seen in Fig. 4.

The optimal control as a piecewise polynomial function has been found for the
given parameters K = 3, M = 1, and N = 4 (Ny = 144, Nu = 11). In Fig. 8, the
optimal control displacement of the rod end u∗(t) (dash-dot curve) is compared with
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Fig. 7 Stress distribution s(t, x) for the test motion

Fig. 8 Test control u0(t) versus optimal control u∗(t)

the test control u0(t) considered in (25) (dashed curve). The optimal input is near
to linear one, but the moderate deviation from the uniform motion u∗(t) − T −1t ,
which is traced in this figure by solid curve with the scaling factor of 10, influences
sufficiently on the whole elastic deformations of the rod.
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Fig. 9 Absolute rod displacements w(t, x) for the optimal motion

Fig. 10 Momentum density p(t, x) for the optimal motion

The optimal displacements of the rod points w̃∗ as a function of the time t and coor-
dinate x are shown in Fig. 9. The optimal momentum p̃∗(t, x) and stresses s̃∗(t, x)

are depicted in Figs. 10 and 11, respectively.
By using the obtained control law, a sufficiently low value of terminal energy

E1 = 9 × 10−11 is attained as compared with the average energy of the elastic rod
Ē = 0.0636. The relative error achieved for the optimal control does not exceed
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Fig. 11 Stress distribution s(t, x) for the optimal motion

Δ < 10−15. The weighting coefficients are chosen so that the following inequality
holds: E2 	 E1 	 Ē .

It is worth noting that any significant vibrations of the rod are not excited dur-
ing the control process. The corresponding changes in the dimension of the spline
approximation (13) and, therefore, in control dimension does not cause any signifi-
cant decreasing of the minimized mean energy for the control process as presented
in Table1.

Table 1 Optimal energy values versus approximation and control dimensions

Space intervals Time intervals Polynomial order Control
dimension

Mean energy

1 4 3 11 0.0636

1 4 4 15 0.0634

1 4 5 19 0.0633

2 8 3 23 0.0634

2 8 4 31 0.0633

2 8 5 40 0.0632
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9 Conclusions and Outlook

In this paper, a control algorithm for energy optimization in structural dynamics
has been proposed and discussed. This control strategy is based on the MIDR, varia-
tional approach, and on finite element techniques. The verification of optimal control
laws has been performed by taking into account the explicit local and integral error
estimates.

In a subsequent research, we plan to apply the optimization algorithm proposed
in this paper to more complex elastic systems with non-uniformly distributed para-
meters and to motions of 2D and 3D elastic bodies. Various mesh refinement and
mesh adaptation approaches can be applied to increase the solution accuracy. Other
dynamical models of solids, e.g., viscoelastic body and structures with geometrical
and physical nonlinearity are to be considered from the viewpoint of the calculus
of variation. Optimal problems with non-quadratic cost functions and control con-
straints and other inverse problems such as identification, measurements, etc. can
also be considered as a great challenge for the method proposed.
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Contact Optimization Problems
for Stationary and Sliding Conditions

István Páczelt, Attila Baksa and Zenon Mróz

Abstract The contact stress distribution is frequently not regular. It may contain
singularities reducing the lifetime of machine elements. In order to eliminate such
stress singularities, the application of contact pressure control is recommended in
the contact conditions. In the paper, several classes of optimization problems are for-
mulated for stationary and sliding contacts. Further, they are illustrated by specific
examples. The relation to wear process is made as a natural way to attain the steady
state contact profile satisfying the optimality conditions corresponding to minimiza-
tion of the wear dissipation rate. It is assumed that the displacements and strains are
small and the materials of the contacting bodies are elastic.

Keywords Contact optimization problems · Steady wear state · Generalized wear
dissipation power · Variational principles · p-version of the finite element method

Mathematical Subject Classification: 74A55 · 74F05 · 74P10 · 74S05

1 Introduction

A designer always tends to avoid singularities within the contact regions in order to
keep stresses at a low level. This tendency leads to optimal design of contact surface
shape and proper material selection, thus generating a class of contact optimization
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problems. The design parameters in structural optimization are usually defined as
material moduli, structure size and shape, characteristic dimensions, supports, loads,
inner links, reinforcement and topology. Here, we refer to the books by Banichuk
and Neittaanmäki [1] and Banichuk [2]. The sensitivity analysis for optimization
of different kind of structures and loading conditions was developed in Mróz et al.
[3–7]. In engineering practice the interaction at connections of machine elements is
frequently modeled as unilateral contact problems. Haslinger and Neittaanmäki [8]
dealt with the mathematical aspects of contact optimization problems.

Contact pressure distribution is sensitive to friction conditions, geometry, stiffness
of contacting bodies and loading conditions. The peak contact pressure distribution
and the boundary stress concentration can be reduced by using special mathematical
(linear or quadratic) programming techniques and shape sensitivity analysis.

The contact pressure optimization was analyzed for an elastic punch on a rigid
substrate assuming the linear elasticity relations, cf. [9–12]. In some earlier works
[13–15], the maximum contact pressure was chosen as the objective function, but
it was not differentiable. In the articles [8–10, 16], the total potential energy was
considered as a cost function and the integral measure of the gap function was used
as an isoparametric constraint.

A nearly constant contact pressure distribution was achieved in [14, 15] by an
appropriate shape optimization for axially symmetric bodies, assuming that the
change in radius has no effect on the stiffness and compliance matrices. Our works
[17–20] provide a new type solutions for 2D and 3D problems, in which the con-
tact pressure distribution is partially controlled by minimizing the maximal contact
pressure.

Discretization of the domain by p-version of the finite element method is advan-
tageous [21], since it results in fast convergence and high order mapping assures
accurate geometry for the shape optimization.

An extensive survey of contact pressure optimization problems was presented by
Hilding et al. [22]. Optimization problems with frictional contact were investigated
in [23–30]. Special methods (level set method, evolutionary approach) were also
used for topology optimization [31, 32]. An interesting solution was presented in
[33] for multiple load cases and for incomplete external loading data by Banichuk
and Ivanova [34]. Mathematical programming technique is used by many authors for
shape optimization of structures in frictionless contact cases [35–40]. In [41], a uni-
fied shape optimization approach was developed for both minimization of boundary
stress concentration and of peak contact pressure. Shape modifications in the itera-
tional process were based on the distribution of the stress field, and the modification
step was controlled by the relative deformation.

Numerous papers were devoted to a redesign procedure aimed at the wear reduc-
tion for rail and wheel by generation of new profiles of contacting bodies [42–44].
Similarly, the o-ring seal shape optimization is important for infallible work of the
o-ring seal construction [45].

In [46–48], several classes of optimization problems have been considered with
account of wear process. It was demonstrated that minimization of the generalized
wear volume rate, generalized friction dissipation power and generalized wear dissi-
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pation power and application of the optimality conditions provides different contact
pressure distributions and local wear rates. In general, both singular and regular
regimes of the wear rate and pressure distribution may occur [46]. The wear rule was
presented by a nonlinear relation of wear rate to friction traction and relative sliding
velocity, similar to the Archard rule. It was assumed that the relative sliding velocity
between contacting bodies results from translation and rotation of two bodies. In
this case for steady wear state the contact pressure is reached by minimization of
the wear dissipation power. The specified pressure distribution can next be used for
calculation of the wear shape form. Analytical solutions have also been presented
for contact wear problems, cf. Goryacheva [49].

Contact optimization problems for kinematical constraints were studied in the
paper by Páczelt [50]. Another interesting problem was concerned with optimization
of round-off rollers aimed at themaximization of admissible loads of rolling bearings
[51]. In the optimization of roller shape, the influence matrix is derived from the
solution of the elastic half-space problem [52], and the mirror technique is also
applied in this program [20].

Contact analysis problems are non-smooth due to unilateral contact condi-
tions, requiring variational stress or displacement inequalities to be applied for the
boundary-value problem solution. In the case of contact friction conditions, typical
in treating contact slip or sliding and induced wear growth, the loading-unloading
conditions and the active slip rule constitute an additional source of non-smooth
response. The solution of contact analysis problems will not be discussed in detail
in the paper. The contact optimization problems of min-max or max-min character,
related to local state values, are also non-smooth.

2 Optimal Design for Controlled Contact Pressure

In our analysis, it is assumed that the bodies are in the conformal contact on the
whole subdomain Ωc of the contact zone Sc = Ω , (Fig. 1). We introduce the surface
coordinates s, t and assume that the following pressure distribution is reached due
to shape optimization [18]:

pn(x) = c(x)pn,max, (1)

where the assumed control function c(x) must satisfy the condition 0 ≤ c(x) ≤ 1,
and

pn,max = max pn(x) x = [s, t]. (2)

In the subdomain Ωnc(Ω = Ωc
⋃

Ωnc), the contact pressure is not controlled and
does not exceed the values specified by (1), so that

χ(x) = c(x)pmax − p(x) ≥ 0 x ∈ Ωnc. (3)
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Fig. 1 Control function
c(x) = c(s) · c̃(t)

f2

c

t

s

Sc

L2

L
L4

L3

L1

f3

Let us introduce the functions depending on the varying position parameter s

C∗(s) = f2 + ( f3 − f2)
s − L2

L3 − L2
, f2 ≥ 0, f3 ≥ 0, (4)

and

c(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ s ≤ L1,

C∗(s)
{
3
(

s−L1
L2−L1

)2 − 2
(

s−L1
L2−L1

)3}
, L1 ≤ s ≤ L2,

C∗(s), L2 ≤ s ≤ L3,

C∗(s)
{
1 − 3

(
s−L3

L4−L3

)2 + 2
(

s−L3
L4−L3

)3}
, L3 ≤ s ≤ L4,

0, L4 ≤ s ≤ L .

(5)

Here some of the parameters f2, f3, Li , i = 1, 2, 3, 4, are fixedwhile the other are
determined in the optimization process. It is assumed that the pressure distribution
now is

c(x) = c(s) · c̃(t), (6)

where we set c̃(t) = 1 in view of one parameter variation of contact pressure. Note
that for f2 = f3, L1 = L2 = 0, L3 = L4 = L , we obtain uniform distribution
pressure over Ωc.

An extensive study of this type contact optimization problems for 2D and 3D
models using the control functions of type (4)–(6) was presented in [19].
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3 Optimization Problems for Axisymmetric Bodies
with Arbitrary Meridian Profile

3.1 Specified Punch Displacement

Assume that the uniform vertical displacement w0 is prescribed on the top punch
surface (Fig. 2). The pressure distribution parameters f2, f3, L j , j = 1, . . . , 4,
are fixed but the maximum pressure is subject to control. The minimal gap gmin is
assumed to be zero. Now s is defined as s = r − ri , where r denotes the radius and
ri is the internal punch radius. We formulate the following optimization problem:

Problem 1 Minimize themaximal contact pressure pn,max by determining the initial
gap function g = g(s), such that g(s∗) = gmin = 0, where s = 0 at the internal
punch radius ri , i.e.,

min

{
pn,max | pn ≥ 0, d = d(s, u(l)

n ) = g + u(2)
n − u(1)

n = 0, l = 1, 2

χ(s) = c(s) pn,max − pn(s) = 0, min g = gmin = 0

}
.

(7)

After determining the optimal gap function g = g (s), the resultant contact force can
be calculated by the formula

F∗
p = 2π

re∫
ri

pn cosα r
√
1 + (

f ′
m

)2dr, (8)

where re denotes the external punch radius, α is the direction of the contact normal,
fm = fm(r) of the meridian curve, f ′

m = d fm
dr .

Problem 2 Assume now that the minimal gap gmin does not vanish but its value is
determined in the optimization process. The value of Fp transmitted by the contact
area is now specified, so that we have another problem

min

{
pn,max | pn ≥ 0, d = d

(
s, u(l)

n

)
= 0, l = 1, 2, χ = 0,

Fp = 2π

re∫
ri

pn cosα r
√
1 + (

f ′
m

)2dr

}
. (9)

Problem 3 If the constraint on effective stress σeq is introduced, then the value of Fp

cannot be selected arbitrarily and its maximum value constitutes an unspecified vari-
able. The problem ofmaximization of the contact force can be formulated as follows:
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Fig. 2 Contact of cylindrical bodies: a on a plane surface, b on a toroidal surface
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max
{

Fp | min
[

pn,max | pn ≥ 0, d = 0, χ = 0
]
, σeq ≤ σu

}
, (10)

where σu is the ultimate stress.

Problem 4 An alternative design problem can be considered if the punch displace-
ment w0 is maximized within the imposed stress constraint σeq ≤ σu and the gap
constraint gmin = 0. Then, the problem is formally defined as follows:

max
{
w0 | min

[
pn,max | pn ≥ 0, d = 0, χ = 0, gmin = 0

]
, σeq ≤ σu

}
. (11)

This problem belongs to a class of displacement induced contact optimization prob-
lems.

3.2 Traction Induced Loading

Assume that the uniform axial pressure σz = − p̃ is applied at the top punch surface
(Fig. 2) with the resulting force F0 = π(r2e − r2i ) p̃. A typical optimization problem
is to minimize the maximal contact pressure with specification of initial gap function
g = g(s) and proper selection of parameters L1, L2, L3, and L4. In the next examples,
we set f2 = f3 = 1. If these parameters are varied and are determined in the optimiza-
tion process, then L1 = L2 = 0, L3 = L4 = re − ri are the optimal values and the
uniform pressure distribution is attained in the contact domain. We have the problem

Problem 5
min {pmax | pn ≥ 0, d = 0, χ = 0, gmin = 0} . (12)

There are numerous studies of this problem (see, e.g., [12–14]).

3.3 Rotating Punch Under Compressive Loading

Assume now that the punch rotateswith respect to its axis with the angular velocityω,
(Fig. 2). Denote by τn the shear stress, by μ the friction coefficient and by u̇τ = rω

the relative velocity. Specify the dissipation power due to frictional sliding at the
contact surface. Then,

DF =
∫
Sc

τ n · u̇τ dS = ωμ

re∫
ri

2πr2 pn cosα

√
1 + ( f ′

m)2 dr = MT ω, (13)

where MT is the torque.
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Problem 6 Assume now that the uniform vertical traction σz = − p̃ is applied at the
top boundary of the punch. Consider the problem of torque maximization assuming
the parameters L1 and L2 as unspecified and L3, L4 as fixed. Then, we have

max
g(s),L1

{
MT = μ

re∫
ri

2πr2 pn cosα

√
1 + ( f ′

m)2 dr
∣∣∣pn,max ≤ p0, pn ≥ 0, d = 0,

Fp − F0 = 0, χ = v(s, L1, L2(L1))pn,max − pn(s) = 0, gmin = 0

}
,

(14)

where p0 is a given pressure value. It is obvious that the contact pressure is shifted
to the external boundary r = re.

Problem 7 A similar solution is obtained when the additional stress constraint is
introduced and the value of pn,max cannot be fixed in advance. The solution is gen-
erated by maximizing the value of L1 and the problem formulation is

max
g(s),L1

{
MT | pn ≥ 0, d = 0, Fp − F0 = 0, χ = χ(s, pn, L1) = 0, σeq ≤ σu , gmin = 0

}
.

(15)

Problem 8 In order to minimize the dissipation power or torque, assume that L1 =
0, L2 = 0 and L4 − L3 are fixed, however, L4 and L3 may vary. The optimization
problem now is formulated as follows:

min
g(s),L4

{
DF | pn ≥ 0, d = 0, Fp − F0 = 0, χ = χ(s, pn, L4) = 0, gmin = 0

}
.

(16)

Problem 9 If the stress constraint σeq ≤ σu is imposed, then the dissipation power
is minimized with respect to the parameter L4. In this case, we have the problem

min
g(s),L4

{
DF | pn ≥ 0, d = 0, Fp − F0 = 0, χ = χ(s, pn, L4) = 0, σeq ≤ σu , gmin = 0

}
.

(17)

4 Optimization Problems for a Steady Wear State

Relative sliding motion of two elastic bodies in contact induces wear process and
contact shape evolution. In this case, shape modification is associated with the mate-
rial removal due to wear and the related boundary motion in the normal contact
direction. The velocity of contact shape modification is specified by the wear rate
ẇi,n for i th body. A modified Archard wear rule [46] specifies the wear rate ẇi,n of
the i th body in the normal contact direction. Following the previous work [46–48] it
is assumed that
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ẇi,n = βi (τn)bi ‖u̇τ ‖ai = βi (μpn)bi ‖u̇τ ‖ai = βi (μpn)bi v
ai
r = β̃i pbi

n v
ai
r , i = 1, 2,

(18)
where μ is the friction coefficient, βi , ai , bi are the wear parameters, β̃i = βiμ

bi , vr

is the relative velocity between the bodies in the tangential direction of the contact
surface. The shear stress at the contact surface is denoted by τn and calculated in terms
of the contact pressure pn by using the Coulomb friction law τn = μpn . For analysis
of the wear process and contact shape optimization three types of functionals can be
taken. First, the generalized wear volume rate [46, 47] can be presented as follows:

Ẇ (q) =
2∑

i=1

⎛
⎜⎝
∫
Sc

ẇq
i dS

⎞
⎟⎠

1
q

=
2∑

i=1

⎛
⎜⎝
∫
Sc

(β̃i pbi
n vai

r )q dS

⎞
⎟⎠

1
q

=
2∑

i=1

A
1
q
i . (19)

Next, the generalized friction dissipation power at the surface Sc [46, 47] is

D(q)
F =

⎛
⎜⎝
∫
Sc

(μpnvr )
q dS

⎞
⎟⎠

1
q

= B
1
q , (20)

and the generalizedwear dissipation power [47] in the newmodified form equals [53]

D(q)
w =

J∑
j=1

2∑
i=1

⎛
⎜⎜⎝

∫

S( j)
c

(tc
i · ẇi )

q dS

⎞
⎟⎟⎠

1
q

=
J∑

j=1

2∑
i=1

C
( j) 1q
i , (21)

where q is called the control parameter. The contact surface is assumed to be sepa-
rated in J parts (Fig. 3), but the rigid body displacement is assumed to be specified
by the same degree of freedom. The introduction of the wear rate vector ẇi coaxial
with the rigid body wear velocity provides a new concept in the description of the
wear process [47].

The transient process tends to a steady state occurring at fixed contact stress and
strain distribution. It has been shown in [47, 53] that the steady state conditions for
the wear problem are obtained fromminimization of the generalizedwear dissipation
power at q = 1

Dw =
J∑

j=1

2∑
i=1

⎛
⎜⎜⎝

∫

S( j)
c

(tc
i · ẇi ) dS

⎞
⎟⎟⎠ =

J∑
j=1

2∑
i=1

C ( j)
i , (22)

where tc
i is the contact traction, ẇi is the wear rate vector of the i th body [47, 53].
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Fig. 3 Plane structure with three separated contact zones of body B1 can rotate around support
Os and translate vertically. The body B2 (disk) is assumed to rotate with constant angular velocity
generating the relative sliding velocity vr on the contact surface

Equations (23), (24) contain three different optimization problems for different
objective functions Ẇ (q), D(q)

F , D(q)
w . Thus for generalized functionals the optimiza-

tion problems are stated by requiring minimization of one of the objective functions
placed in the column of (23).

Problem 10

min

⎧⎪⎨
⎪⎩

Ẇ (q)

D(q)
F

D(q)
w

∣∣∣∣∣∣∣
pn ≥ 0, d = 0, gmin = 0, Equilibrium equations for the punch

⎫⎪⎬
⎪⎭ .

(23)

In the alternative class of optimization problems, the local stress constraint is intro-
duced and themax-min formulation for one of the objective functions is applied, thus

Problem 11

max
q

{
min

{Ẇ (q)

D(q)
F

D(q)
w

∣∣∣∣ pn ≥ 0, d = 0, gmin = 0,

Equilibrium equations for the punch

}
, σeq ≤ σu

}
.

(24)
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The minimum of the wear dissipation power corresponds to the steady wear state.
In this case the optimization problem is

Problem 12

min {Dw | pn ≥ 0, d = 0, gmin = 0, Equilibrium equations for the punch} .

(25)

We can now formulate a new optimization problem of contact shape by requiring
maximization of the loading pressure p̃ subject to the constraint set on the Mises
equivalent stress in the steady wear state not exceeding the value σu , that is σeq ≤ σu ,
thus

Problem 13

max
p̃

{
min {Dw | pn ≥ 0, d = 0, gmin = 0, Equilibrium equations for the punch} ,

σeq ≤ σu

}
. (26)

The set of state relations should be added to all formulations of optimization prob-
lems, namely balance of linear momentum, constitutive equation (the Hooke law),
strain-displacement relations, and the boundary conditions:

σ · ∇ + f = 0, σ = C : ε, ε = 1

2

[
∇u + (∇u)T

]
,

σ · n = t0 on St , u = u0 on Su,

(27)

where σ and ε are the stress and strain tensors, C is the elasticity 4th order tensor, f
denotes the body force per unit volume, t0 and u0 are the tractions and displacements
on the boundary portions St and Su , ∇ is the gradient differential operator, · denotes
the scalar product and : denotes the double scalar product. T stands for the transpose.

In the contact zone Sc, the contact pressure is pn = −n · σ · n and for the
Coulomb friction condition, in the slip case, the shear stress is τn = μ pn , where μ

is the coefficient of friction.
For Problems 10–13 formulae for the distribution of the contact pressure can

explicitly be defined by the optimality conditions. If the heat generation and thermal
distortion are accounted for, then an interesting result is obtained, namely, the contact
pressure distribution does not depend on the temperature state, but the corresponding
contact surface shape depends on temperature state, that is the shapes are different
for state with temperature and for state without temperature [54].

For axisymmetric bodies, the contact pressure distribution in the steady wear state
has the following form [46]:



292 I. Páczelt et al.

⎧⎪⎪⎨
⎪⎪⎩
min Ẇ (q), pn = QẆ r− aq

bq−1 (cosα)
1

bq−1 if bq − 1 	= 0,

min D(q)
F , pn = Q DF r− q

q−1 (cosα)
1

q−1 if q − 1 	= 0,

min D(q)
w , pn = Q Dwr− aq

(b+1)q−1 (cosα)
1

(b+1)q−1 if (b + 1)q − 1 	= 0,

(28)

where QẆ , Q DF , Q Dw are calculated from the equilibrium condition of the punch.
An example demonstrating how the parameter q affects the stress state will be shown
in this paper (see part Sect. 6.2.3).

5 Iterative Solution of the Contact Shape Optimization
Problem

We use the p-version of the finite element method for solving the optimization prob-
lems. Then, Problems 1–13 are reduced to nonlinear programming problems. This
class of problems is solved by a special iteration process. We distinguish iterations of
two types. In the first type iteration process the optimal shape is determined for fixed
values of the control parameters f2, f3, Li , i = 1, 2, 3, 4, (in Problems 10–13 using
the Eq. (28)) specifying contact pressure distribution. The maximization or mini-
mization of objective function is then performed for unspecified pmax and g = g(s).
However, for some problems the selected values of parameters may violate the stress
constraint. If the effectiveMises stress σeq must be below a prescribed ultimate stress
σu , (σeq ≤ σu) then the optimization problem includes this additional condition and
the solution requires another iteration, labeled as the second type iteration process.

5.1 First Type Iteration Process

The first iterative scheme for contact shape optimization was discussed in detail by
Páczelt [17]. Here we only outline the consecutive steps.

The iterative process is described by the following scheme:

1. Solution of the original contact problem: specification of the contact pressure

p(0)
n = p(0)

n (s), p(0)
max, k = 0.

2. k = k + 1.
3. Let the controlled pressure distribution be defined in accordance with (3),

p(k)
n (s) = c(s)p∗.

Consider first the displacement induced loading. The value of the parameter p∗
is obtained from the contact problem solution at the previous iterative step k − 1,
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p∗ = max p(k−1)
n (s).

For the case of traction or mixed boundary condition, the solution of contact
problem is not required for calculation of the p∗. The value of p∗ at each step is
specified from the load equilibrium condition, thus

F0 = 2π

re∫
ri

p∗c(r) cosαr
√
1 + ( f ′

m)2 dr.

4. After the previous steps the contact pressure is known. The separated bodies are
now loaded by the pressures p(k)

n (s) and−p(k)
n (s) and in the case of frictional con-

tact also by the shear stresses μp(k)
n (s) and −μp(k)

n (s) in the tangential direction
at the contact surface Sc. From the finite element solution for separated bodies
the normal displacements u(1)

n and u(2)
n are determined (u(1)

n for the punch, u(2)
n

for the substrate body).
5. Calculate the discontinuity of normal displacements

m(s) = u(1)
n − u(2)

n = [un] .

6. Specify the minimal value minm(s) = m(s∗).
7. Generate the new initial gap:

{
in Problems 1, 5–13: if g(s) = m(s) − m(s∗) ⇒ g(x),

in Problems 2–4: if g(s) = m(s).

8. Solution of the contact problemwith the newgap: specification of contact pressure
p(k)

n = p(k)
n (s).

9. Repeat the steps 2–8 until the convergence condition is satisfied:

gtol = 2π

re∫
ri

∣∣∣∣∣
g(k) − g(k−1)

g(k)

∣∣∣∣∣ r
√
1 + ( f ′

m)2 dr ≤ 10−4.

5.2 Second Type Iteration Process

Now, we discuss the second type iteration process, which is coupled with the first
type iteration. When the stress constraint max σeq ≤ σu is imposed at any Gaussian
integration point, the values of parameters assumed as fixed or specified in the first
type iteration should nowbe updated in order to satisfy the stress constraint. Referring
to Problem 4, where the displacement w0 is to be maximized, the value of (w0)max
assumed in the first type iteration must be reduced in the second type process. Sim-
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ilarly, in Problem 6 the value of L1 assumed in the first type iteration should be
reduced, when Problem 7 is formulated with stress constraint. In Problem 8 the fric-
tion dissipation power is minimized and this leads to minimization of parameter L4.
However, in Problem 9 the minimal value of L4 reached in the first type iteration
should be increased to meet the stress constraint.

Denote generally by f the parameter which should be updated in the iteration.
The loading process is characterized by the variable istep specifying the consecutive
iteration number, istep = 1, 2, 3, . . .. The value of f is calculated by the following
formula: f = f0 + Δ f · (istep − 1), where f0 and Δ f are chosen in advance. For
instance, for Problem 9 there is f0 = re − ri = L , Δ f = −(re − ri )/10. The
optimization problem is solved by the first type iteration at the fixed f . At each istep
a new shape is determined for the upper body.

The effective stress value σeq is calculated at the Gaussian integral points of the
finite elements and at the boundary points as well: (ξ = −1, ξ1, ξ2, . . . , ξN G , 1) and
(η = −1, η1, η2, . . . , ηN G, 1), where ξ , η are the local normal co-ordinates, N G
denotes the number of integration points. When the equivalent stress constraint is
violated at the istep = istep∗∗, the value of f is properly updated. Assume that for
the value f = f ∗ at the istep = istep∗∗ − 1 the effective stress is σ ∗

eq < σ u and the
parameter equals f = f ∗∗ and effective stress exceeds the ultimate value σ ∗∗

eq ≥ σ u

at the next loading step istep = istep∗∗. The optimal value of f = f opt (i) is searched
in the interval f ∗ < f opt (i) < f ∗∗ by the following linearization process:

f opt (i) = f ∗ + ( f ∗∗(i−1) − f ∗)
σu − σ ∗

eq

σ
∗∗(i−1)
eq − σ ∗

eq

,

where
f ∗∗(0) = f ∗∗, σ ∗∗(0)

eq = σ ∗∗
eq .

At each step i of the second type iteration the contact shape is specified in the first
iteration process. The second type iteration process will run until

σu − σ
∗∗(i)
eq

σu
≤ 0.005.

6 Examples

For numerical demonstration of the optimization problems, we select examples of
two types. First, the optimal design for maximization of the contact force will be
discussed for the interacting bodies depicted in Fig. 2a, and, second, we will present
Problems 7 and 9 for cylindrical bodies with toroidal contact surface.

Assume that the body B1 is rotatingwith the angular velocityω around the−z axis,
and the second body B2 is fixed. Material parameters of the bodies are as follows:
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Young modulus E = 2 × 105 MPa, Poisson ratio νP = 0.3, coefficient of friction
μ = 0.25. The ultimate equivalent stress is assumed at the level σu = 250 MPa.

The results were obtained for p-approximations of the order up to p = 8. In
Problem 7 of the second example, the convergence of calculations is demonstrated
with increasing p. This is done in order to demonstrate the efficiency of the p-version
approximations for the considered class of optimal control problems.

6.1 First Example: Solution of Problem 4

We set the geometric parameters of cylinders as follows:

r (1)
i = 20mm, r (1)

e = 120mm, r (2)
i = 20mm, r (2)

e = 140mm,

h = h(1) = h(2) = 100mm (see Fig. 4a).

The control parameters in (5) are L1 = 0, L2 = 4mm, L3 = 96mm, L4 = 100mm,
f2 = f3 = 1. The boundary conditions are: on the cylindrical surfaces r = ri and
r = r (l)

e (l = 1, 2) the traction free boundaries, t(l)0 = 0 (l = 1, 2), the bottom surface
z = 0 of body B2 is constrained, v = w = 0 and the upper surface z = 2h of punch
B1 is subjected to the axial displacement w0 = 0.15 mm and to rotational motion
v = rωt in the circumferential direction (see Fig. 2). In order to achieve an accurate
solution of the finite element approximation, we use the quadratic p-version finite
elements of order 8 in the truncated space [21]. In Fig. 4, the initial discretization
mesh is shown and variation of Fp, max σeq and of DF/(μω) = MT /μ is visualized
during the consecutive iteration steps.

The contact condition d = 0, pn ≥ 0 were checked at the Lobatto integration
points (N L = 9). In the initial configuration (flat contact surfaces) there is no initial
gap between bodies and the stress singularity occurs at the external edge of contact
zone r = re = 120 mm, z = h(2) = 100 mm.

The optimal value of Fp equals Fopt
p = 9223.2 kN and was computed within the

interval F∗
p = 8×106 N < Fopt

p < F∗∗
p = 10×106 N using the linear interpolation

rule according to formula of the 2nd type iteration process. In our case, only one
step of this iteration was required.

Figure5a shows the distribution of the radial stress σr , the shearing stress in
the circumferential direction, calculated on the contact surface by the formulae
τt z = μpn = −μσz , the normal stress σz and σeq within the punch in the opti-
mal configuration. Figure5b shows the fields of the same stresses for the lower body
B2. It is seen that max σeq is reached at the location r = ri , z = 0. The control of
the contact pressure generates a nonsingular stress state in the bodies, with the stress
σz vanishing at the points (r = ri , z = h) and (r = re, z = h).

Figure6 illustrates the evolution of shape of the contact surface for different values
of the resultant contact force Fp, calculated by the formula Fp = 2×106 ∗(N S−1),
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Fig. 4 The results of the second type iteration steps in the solution of Problem 4. Number of
solution (N S = istep + 1): 1—initial configuration, 2, 3, …, 6—control function with Fp =
2 × 106 ∗ (N S − 1), 7—optimal solution

where N S is the number of solution, N S = istep + 1. The optimal shape is marked
by (o).

6.2 Second Example

Consider now two cylindrical bodies interacting on a toroidal contact surface of
curvature radius R0 with its centre located at the distance e from the cylinder axis,
Fig. 2b. The radius of the contact point P in the meridional plane is r = e + R0 sin α.
The body B1 is uniformly loaded by the axial traction σz = − p̃ which corresponds
to the resultant force F0. The p version finite element mesh is demonstrated in Fig. 7.
The number of elements in the contact region in the horizontal direction is 12 and
in the vertical direction is 9 for both bodies. The horizontal (curved) and vertical
lines correspond to the Lobatto integration points. Integration points are p + 1 = 9,
where p is the polynomial order of approximated displacement fields. The lower
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Fig. 5 Stress distribution for the optimized design of Problem 4. a in body B1, b in body B2, σr
radial stress, σz normal stress, τ f z ≡ τϕz shear stress and σeq von Mises effective stress
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Fig. 6 Shape evolution in the optimization process for the first example

body in the horizontal interval ri ≤ r ≤ r (2)
e is divided by four elements. We select

the following geometric and material parameters (the model of debris motion [48]
is not applied here):

ri = r (1)
i = r (2)

i = 10mm, re = r (1)
e = 100mm, r (2)

e = 120mm,

h = h(1) = h(2) = 80mm, e = 55mm, R0 = 100mm, E = 2 × 105 MPa,

νP = 0.3, p̃ = 80MPa, μ = 0.25, μd = 0.

In calculations, we use the wear parameters β̃1 	= 0, β̃2 = 0, and a = b = 1.
The contact problem was solved by applying the penalty method with the penalty

parameter equal 1000 E . Contact springs are placed in the normal direction to the
contact surface, that is in the direction nc.

6.2.1 Solution of Problem 7

Problem 7 was solved with the following initial values of control parameters are
assumed: L1 = 0, L2 = 10mm, L3 = 80mm, L4 = 90mm, f2 = f3 = 1 (see
Fig. 1). The problem is solved by istep = 13. The final values of control parameters
are: L1 = 53.798mm, L2 = 63.798mm, L3 = 80mm, L4 = 90mm. The distrib-
ution of contact pressure is presented in Fig. 8a, the gaps at different iterative steps
are shown in Fig. 8b. The torque is MT = 5.153e + 07Nmm.

The distributions of the σz and σeq are illustrated in Fig. 9, and convergence of the
p-version solutions is demonstrated in Fig. 10. We selected 3 ≤ p ≤ 8 and built the
convergence curves for control parameter L1, torque MT , maximal contact pressure
pmax and normal gap gn at the perimeter point of the contact zone r = 10. The
convergence rate is very high. The number of degrees of freedom (NDF) of the FE
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Fig. 7 Finite element mesh for contacting bodies
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Fig. 8 Analysis results of Problem 7: a contact pressure distribution, b contact gap at different
iteration steps

model is the following: at p = 3 → N DF = 2714, p = 4 → N DF = 4290,
p = 5 → N DF = 6370, p = 6, → N DF = 8954, p = 7 → N DF = 12042,
p = 8 → N DF = 15634. Practically the results do not change for p ≥ 6, thus
the applied mesh is correct for the convergence solution with increasing polynomial
order of finite elements.
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Fig. 9 Distribution of stress components in body 1 at the maximal moment MT : a distribution of
σz , b distribution of σeq
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Fig. 10 Convergence of the finite element solution for elastic system of cylindrical bodies (see
Fig. 7), a convergence of the control parameter L1, b convergence of the torque MT , c convergence
of the maximal contact pressure pmax, d convergence of the normal gap at point r = 10
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Fig. 11 Analysis results of Problem 9; a contact pressure distribution, b gaps at different iteration
steps
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Fig. 12 Distribution of stress component in body 1 at the minimal moment MT : a distribution of
τ f z ≡ τϕz , b distribution of σeq

6.2.2 Solution of Problem 9

Figures11 and 12 demonstrate results related to Problem9. The final values of control
parameters are L1 = 0, L2 = 10mm, L3 = 53.46mm, L4 = 63.46mm. The torque
is MT = 2.94e + 07Nmm (σeq = 250MPa).

6.2.3 The Effect of Value of the Control Parameter q, Problems 10 and 11

We have solved Problem 10 defined by (23) for different values of parameter q.
The calculated torque is presented in Fig. 13 and the contact pressure in Fig. 14.
Theoretically the min value of the torque is Mmin

T = riμF0 cosα0, the maximum
value is Mmax

T = reμF0 cosα0. These values are marked by ◦ and ⊕ in Fig. 13. Here
the α0 is the angle of contact normal at radius ri and re.
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If q tends to 0, then the contact pressure has simple forms resulting from the
respective minimization problems, namely:

min DF : pn = Q DF r− q
q−1 (cosα)

1
q−1 → Q DF

cosα
,

min Dw : pn = Q Dwr− aq
(b+1)q−1 (cosα)

1
(b+1)q−1 → Q Dw

cosα
,

where from the equilibrium condition of the punch there is

Q DF = Q Dw = F0

Sc
= 2488141.6

32260.51
= 77.13MPa.
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If q tends to 1, then the solution becomes singular for the problemmin DF , and at
q → 0.5 (a = b = 1) the solution is singular for the problem min Dw. The specified
contact shape for q near singular values is demonstrated in Fig. 15. The shape is
characterized by sharp punch edges at re and ri where the contact pressure reaches
very high values. In this case, the effective stress exceeds the elasticity limit and
the problem requires an elastic-plastic analysis. However, the problem can be treated
within the linear elasticity relations provided the stress constraint σeq ≤ σu is applied
and the admissible maximal value of q is specified, that is Problem 11 is solved. This
problem was solved in four iterations. The initial control parameter is q = 0.01 and
the optimized value is qopt = 0.247. The contact pressure and vertical gap forms are
shown in Fig. 16. The torque in this case is Mopt

T = 4.4055e + 07Nmm.



304 I. Páczelt et al.

0 20 40 60 80 100
0

100

200

300

400

500

600

 r [mm]

p n [M
P

a]
Load p~=80 MPa,  Normal pressure and 
             shear stress[MPa]

Theoretical optimal contact pressure (−.)

Optimal pressure: −σn (−)

Contact pressure at original construction (.)

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 r [mm]

sh
ap

e 
[m

m
]

Load p~=80 MPa,  Shapes [mm]

Normal gap 5: (o), Vertical gap 5: (+)

Normal gap 1: (−), Vertical gap 1: (− −)

(a) (b)

Fig. 17 Steady wear state: a contact pressure distribution for the problem min D(q)
w at q = 1, b

shape (1st type iteration is finished after 5 steps)

0
20

40
60

80
100 60

80

100

120

140

160

−1500

−1000

−500

0

500

z [mm]
r [mm]

σ f [M
P

a]

0
20

40
60

80
100 60

80

100

120

140

160

0
200
400
600
800

1000
1200

z [mm]
r [mm]

σ eq
 [M

P
a]

(a) (b)

Fig. 18 Stress distribution in the steady wear state: a σ f ≡ σϕ , b σeq

6.2.4 Solution for the Steady Wear State, Problem 11 and 12

It was stated previously, cf. [46–48] that the steady wear state solution is reached by
minimization of the generalized wear dissipation power for the value q = 1 of the
control parameter. Solving Problem 12, the contact pressure distribution is specified
and shown in Fig. 17a, next the optimal gap is determined and presented in Fig. 17b.
The distribution of circumferential stress σϕ is shown in Fig. 18a and the effective
Mises stress distribution is demonstrated in Fig. 18b. It is seen, that much higher
values are reached at the lower points of the cylindrical surface r = ri . These values
exceed the elasticity limit as σu � σeq with the effective stress much higher than σu .
For real description of the wear process, an elastic-plastic analysis should be applied.

The torque is

Mmin
T < MT (D(q=1)

w ) = 3.42e + 07Nmm < Mmax
T .
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If Problem 13 is solved, then the specified max p̃ = 17.1MPa. The different
value of p̃ provides different contact pressure distribution and wear gaps between
the bodies (see Fig. 19a, b). The values of max σeq and of torque are demonstrated
in Fig. 19c, d.

6.3 Contact Shape Optimization for Sliding Punches
with Account for Wear

In this section, our analysis is referred to the case of monotonically or reciprocally
sliding punches with account for friction and wear effect. It will be demonstrated that
the wear process, tending to its steady state, generates different contact shapes and
pressure distributions for a relative monotonic or reciprocal sliding motion along the
contact surface. Also, it is demonstrated that solutions for monotonic slidingmotions
can be used for approximation of the contact shape for periodic sliding motion.
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Fig. 20 Contact between punch and strip

The wear process can be analysed with account for heat generation and thermal
strain distortion effect [48]. In this case the thermal distortion does not affect the
contact pressure distribution reached in a steady state, but the corresponding contact
shape attained in the wear process differs essentially from that attained with neglect
of heat generation [54].

6.3.1 Strip Monotonically Moving in the Leftward (−) or Rightward (+)
Directions

Let us analyse the wear of punch (Body 1) shown in Fig. 20. The following geometric
parameters are assumed: the punch height is h = 100mm, its width is L = 60mm,
the thickness of punch and strip is tth = 10mm. The punch is loaded by the uniform
pressure p̃ = 16.666MPa on the upper boundary z = 200mm. The resultant vertical
force is F0 = 10 kN. The wear parameters are: β̃1 = 5 × 10−6, β̃2 = 0, a1 = 1,
b1 = 1. The strip ismoving in left (–) or in right (+) directionwith the constant relative
velocity vr = 200mm/s. The bodies are in the plane stress state. The coefficient of
friction is μ = 0.25. The upper part of punch and strip are assumed to be made of
the same materials E (1) = 2 × 105 MPa, ν(1)

P = 0.3 and the lower punch portion of
height 20mm is characterized by the material parameters E (2) = 1.3 × 105 MPa,
ν

(2)
P = 0.23. The punch now is allowed to execute a rigid body wear velocity λ̇F [48,

55] parallel to the axis z. The optimal pressure for the steady wear state is constant:
p+

n = p−
n = p̃.

The calculation of the initial gap that is the wear shape is performed by loading
separately each body by the optimal contact pressure and friction stress. In this case
the bodies are not allowed for the rigid body motion in the vertical direction. For
monotonic sliding the equation requiring the total contact gap to vanish specifies the
wear gap g, thus the formulae of Sect. 5.1 are used.
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Fig. 21 Shapes for the
steady wear states induced
by the strip monotonically
translating in leftward or
rightward directions
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The steady state contact shapes can be found in Fig. 21. Note that for the leftward
motion it is assumed that g(x = 1070mm) = 0, and for the rightward sliding
g(x = 1130mm) = 0. Taking the average value of optimal solutions for monotonic
sliding in two directions, a very good approximation of the shape of the periodic
sliding of the strip is obtained [55].

6.3.2 Strip Sliding Periodically in the Leftward and Rightward Direction

The wear process is induced by the reciprocal strip translation. It is assumed that
only the punch undergoes wear (see Fig. 19). The wear parameters are: β̃1 =
1.25π × 10−8, β̃2 = 0, a1 = 1, b1 = 1, the coefficient of friction is μ = 0.25.
The displacement of B2 is: u = −u0 cosωτ , where u0 = 1.5mm, ω = 10 rad/s,
τ denotes the time. It is supposed in the steady state wear analysis that the contact
pressure distribution is fixed during semi-cycle and varies discontinuously during
sliding reversal in the consecutive semi-cycle. The contact pressures are denotes by
p+

n , p−
n , respectively.

Using the wear rule (18) the wear dissipation work in one cycle of sliding motion
has the following form for β̃1 	= 0, β̃2 = 0:

Ew =
T∗∫
0

Dwdτ =
T∗/2∫
0

∫

S(1)
c

p+
n ẇ+

1,ndS dτ +
T∗∫

T∗/2

∫

S(1)
c

p−
n ẇ−

1,ndS dτ, (29)

and for a1 = b1 = 1, there is



308 I. Páczelt et al.

Ew

2u0β̃1
=

∫

S(1)
c

{(
p+

n

)2 + (
p−

n

)2}
dS = E+

w

2u0β̃1
+ E−

w

2u0β̃1
. (30)

In the steady wear state Ew reaches the minimum value. We note that p+
n and

p−
n are not uniformly distributed at the contact interface. During the steady periodic

response the wear increment accumulated during one cycle should be compatible at
each point x ∈ Sc with the rigid body punch motion. The total accumulated wear
increment must be constant along the contact domain. The normal wear increment
in one period equals

Δw1,n = β̃1

[
p+b

n + p−b
n

]
(u0ω)a1

T∗/2∫
0

|sinωτ |a1 dτ,

which for a1 = b1 = 1 is Δw1,n = β̃1[p+
n + p−

n ]2u0. The averaged normal wear
rate in one period is equal to

¯̇w1,n = Δw1.n

T∗
= β̃1[p+

n + p_n]
T∗

2u0, (31)

where T∗ is the time period.
To assure the uniform wear increment accumulated during full cycle at each point

of the contact zone, the following condition should be satisfied

p+
n + p−

n = 2pm = const. (32)

In our case, pm = p̃.
According to the Signorini contact condition in the normal direction the contact

pressure must be positive in the contact zone and distance after deformation between
the bodies is positive:

d±
n = u(2)±

n − u(1)±
n + gn ≥ 0, (33)

where u(i)
n = u(i) · nc is the normal displacement of the i th body, gn is the initial gap

(shape of Body 1 in the steady state). This shape is not specified and must be found
in the optimization process. The Signorini conditions for the whole period have the
form

p±
n d±

n = 0, p±
n ≥ 0, d±

n ≥ 0. (34)

In this case, the optimization problem is
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Problem 14

min
gn

{∫
Sc

1

2
(p+

n + p−
n − 2pm)2 dS | p±

n ≥ 0, d±
n ≥ 0, p±

n d±
n = 0,

Equilibrium equations for the punch

}
, (35)

where the minimum of (35) provides the contact pressure distribution satisfying (32)
and contact conditions (34). Solving first the minimization problem (35), next the
initial gap (contact shape of the body 1) will be found (Fig. 22).

7 Concluding Remarks

In this paper, we have discussed some optimization problems assuming the pre-
scribed form of contact pressure in the subdomain of contact zone including the
optimization problems associated with the wear process. Parameters of the contact
pressure distribution were assumed to be fixed, or some of them were determined in
the optimization process.

Using the prescribed form of the pressure distribution, a smooth stress state in the
contact domain can be specified. A special iteration method was applied for solving
optimization problems. In calculations, the p-version of finite element method was
used. The generalized friction dissipation power and generalized wear dissipation
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power provides both regular and singular regimes of the wear and stress states. Also,
the characters of singular solutions are discussed.

The steady wear state is reached at minimum of the generalized wear dissipation
power for the control parameter q = 1. The numerical examples are presented for
axisymmetric bodies and plane structures. Problem 4 for a cylindrical punch was
discussed, for Problems 7 and 9 the maximal value of torque and minimal value
of the friction dissipation on a toroidal contact surface were determined. In these
examples, we applied the control function (3)–(6) with fixed parameters (in Problem
4) and with calculated values L1 or L4 for Problems 7 and 9, respectively.

Using the generalized friction dissipation power and wear dissipation power, we
can determine also the torque for Problem 11 but its value is smaller than that for
Problem 7. Preserving the stress constraint set in Problem 13, the maximum value of
loading pressure p̃ can be specified. In this way, the admissible load level of system
ensuring the stress constraint σeq ≤ σu in the steady wear state can be determined.
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mization of layered plate made from given set of materials in context of optimization
of ballistic limit velocity. Incomplete data concerning the thickness of layers of opti-
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1 Introduction

Multipurpose optimization in mechanics and optimal design of structures and struc-
tural elements plays an important role in modern problems of engineering. There
are two basic approaches for solving of multipurpose problems: the Pareto-approach
and the Nash-approach [1, 8].

According to Pareto-approach that is used in our considerations the minimization
(or maximization) of vector functional

J (h) = {J1(h), . . . , Ji (h), . . . , JN (h)}T → min
h∈Λh

(1)

must be performed on the setΛh of admissible design variables h ∈ Λh . The compo-
nents of this vector functional are the treated optimization criteria J1(h), …, Ji (h),
…, JN (h). Minimum in (1) is considered in the Pareto sense, i.e.

h∗ = arg min
h∈Λh

J (h) (2)

is the solution of the problem (1) and there does not exist any other solution h̃ ∈ Λh

for which
Ji (h̃) ≤ Ji (h

∗) (3)

and at least for one component Js the strong inequality

Js(h̃) < Js(h
∗) (4)

is valid. For finding the optimal solution h∗ the minimization of an objective weight-
ing functional or a preference functional

JC (h) =
N∑

i=1

Ci Ji (h) → min
h∈Λh

(5)

can be realized where Ci ≥ 0, i = 1, . . . , N and
∑N

i=1 Ci = 1. For any set of
coefficients (factors) Ci there is one optimal solution h∗, i.e. one point in the space
of functionals J1, . . . , JN . All such points create the Pareto-front.

For comparison, the other approach (the so-called Nash-approach) has a game
character. According to this approach there are two optimality criteria

J1(h1, h2), J2(h1, h2), h1 ∈ Λh1 , h2 ∈ Λh2 (6)

and two “players”—two design variables h1 and h2. The sequence of Nash-
minimization may be described as follows:

Step 1: Suppose that the first approximation of optimal solution h∗
2 is given.
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Step 2: The first criterion is minimized by the first “player” with given h∗
2

J1(h1, h∗
2) → min

h1∈Λh1

(7)

and the first approximation of optimal solution h∗
1 is found:

h∗
1 = arg min

h1∈Λh1

J1(h1, h∗
2). (8)

Step 3: The second criterion is minimized by the second “player” with given h∗
1

J2(h
∗
1, h2) → min

h2∈Λh2

(9)

and the second approximation of optimal solution h∗
2 is found:

h∗
2 = arg min

h2∈Λh2

J2(h
�
1, h2). (10)

Step 4: Return to the Step 2 or stop the process of optimization.
The solution of the Nash-optimization problem defines in the space of functionals

some equilibrium point.
Further we consider in the paper the multipurpose optimization problem for mul-

tilayered plate structure in context of high-speed striker penetration and the shape
multipurpose optimization problem for the rigid punch moving on the surface of
elastic half-space.

2 Multipurpose Optimization of Multilayered Shield
Structure Under Penetration of High-Speed Rigid Strikers

The multilayered structure is considered that is composed of n homogeneous layers
made from rm different materials (n, rm are given). It is supposed that the thicknesses
of these layers are not known apriori but the sum L of them (the total thickness of the
shield structure) is given. The material of each layer with number i is characterized
by two constant values: dynamical rigidity Ai

0 and density Ai
2. The quantities of the

structure are described by two piecewise functions A0(x), A2(x) and for convenience
the natural parameterization of thematerial quantities is applied by using of piecewise
function

t = t (x), x ∈ [0, L], t ∈ {ti = i}, (11)

i.e. Ai+1
0 , Ai+1

2 ∈ {(A0)s, (A2)s}, s = 1, 2, . . . , rm .
For high-speed penetration of rigid axisymmetric strikers the resistance force

D(x) of the layered media (shield) is connected with parameters of layer materials
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Ai
0, Ai

2, their thicknesses Δi and the shape y = y(x) of the striker of the length l as
[3, 4]

D(x) = Dnose(x) + Dlat (x) = B0(x) + B2(x)v2, (12)

B0(x) = πr2A0(x) − 2π
∫ x∗∗

x∗
A0(η)yyηdη, (13)

B2(x) = πr2A2(x) − 2π
∫ x∗∗

x∗

A2(η)yy3η
1 + y2η

dη, (14)

where Dnose(x) and Dlat (x) are the parts of the resistance force acting on the nose
surface and the lateral surface of the striker, r is the radius of truncated nose part of
striker, 0 ≤ x ≤ L + l and x∗, x∗∗ define the size of the region of interaction of the
striker with the shield, yη = dy/dη. Taking into account the relations (12)–(14) we
can describe the penetration process by the ordinarily differential equation

M0v
dv

dx
= −D, 0 < x < L (15)

with the boundary condition at x = 0

(v)x=0 = vimp. (16)

Here v(0) = v0 = vimp > 0 is the striker velocity at the moment of impact, M0 is its
mass and v = v(x) is the velocity distribution. The initial (impact) velocity when

v(x) > 0, x ∈ [0, L + l),

(v)x=L+l = 0 (17)

is called “the ballistic limit velocity”, i.e.

v(0) = vimp = vBLV . (18)

This parameter is treated here as the general characteristic of shield structure. For
convenience we introduce the new variable ξ as

ξ = L + l − x, dξ = −dx (19)

and transform the problem (15) with the unknown apriori initial condition (16) into
the problem of finding of striker velocity distribution v = v(ξ) for given distribution
of materials in the layered structure

dv2

dξ
= β(α + v2) (20)
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with the given initial condition

(
v2

)
ξ=0

= 0, (21)

where

α = Bo

B2
, β = 2B2

M0
. (22)

Two optimality criteria are chosen for multipurpose optimization in Pareto-sense
of considered multilayered shield structure. The first is maximum of ballistic limit
velocity vBLV or minimum of the quantity (−vBLV ), that is the functional

Jv = −vBLV (t,Δ) (23)

is minimized and t is the piecewise function (11), Δ = (Δ1,Δ2, . . . , Δn). The
second minimizing functional is the mass of the structure

Jm = Ssur f

∫ L

0
A2(t (x))dx, (24)

where Ssur f is the area of the layer surface (for example, the unit of the area).
Note that the functional (24) can characterize, for example, the cost (or other mass
characteristic) of the structure with the correspond function A2(t (x)). The total
thickness of the plate was given, but thicknesses of separate layers were unknown
as well as their positions (order) in the structure. Taking into account the scalar
functionals (23), (24) we can formulate the multipurpose minimization problem of
the vector functional [1, 8]

J ∗ = J (h∗) = min
h∈Λh

{
Jv

Jm

}
, (25)

where h = (t,Δ) = (t,Δ1,Δ2, . . . , Δn) and Λh is the given set of admissible
design variables. Note that operation of minimization in (25) is considered in Pareto
sense (2)–(4).

For investigation of the multipurpose problem formulated above let us apply the
method of minimization of objective weighting functional or preference functional

JC = Cv Jv + Cm Jm (26)

under following conditions supposed on the weighting factors Cv and Cm :

1 ≥ Cv ≥ 0, 1 ≥ Cm ≥ 0, (27)

Cv + Cm = 1. (28)
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Thus, the problem of minimization of the vector functional (25) is transformed to
the problem of minimization of scalar functional (26) with the conditions (27), (28),
that is

J ∗
C = JC (h∗) = min

h∈Λh
JC (h). (29)

For solving the optimization problem (29) with incomplete data about the layer
thicknesses the evolutionary computationalmethod known as genetic algorithm (GA)
[5] is applied for different values of problem parameters. It is supposed that the
structure is composed of n thin layers, so that

Δ1 = Δ2 = · · · = Δn = L

n
(n = 20), (30)

Table 1 Materials properties Materials s (A0)s , N/m2 (A2)s , kg/m3

Aluminum 1 350× 106 2765

Soft steel 2 1850× 106 7830

Copper 3 910× 106 8920

Duraluminum 4 1330× 106 2765

Fig. 1 Optimal layered plate against penetration of cylindrical striker for Cm = 0
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each of one can be occupied by one of the possible materials. The minimized func-
tional (26) can be represented as

JC = Cv Jv + Cm Jm = (1 − Cm)Jv + Cm Jm → min
t∈Λt

, (31)

where 0 ≤ Cm ≤ 1 andΛt is set of admissible piecewise t . Therewere 10 individuals
(strings or layer distributions) in each generation, the number of generations was
equal to 500 for 10 different initializations of the finding process. Four materials are
represented in Table1 as possible for optimized structure [3, 4].

In Fig. 1 the optimal distribution of materials (red—copper, blue—steel) within
layered structure (L = 0.1m, Ssur f = 1 m2) and the striker velocity decreasing for
cylinder striker (R = 0.005m, M0 = 0.05kg) are shown for arbitrary mass of the
structure (Cm = 0).

The material distributions for different values of objective weighing factor Cm of
the mass criterion for the case of cylindrical striker are given in Fig. 2. Dark regions
in Fig. 2 denote copper layers and gray regions—steel layers. The factor Cm has the
following values: (1) 0–0.02; (2) 0.3; (3) 0.4; (4) 0.5; (5) 0.55.

Fig. 2 Optimal distributions of materials against penetration of cylindrical striker
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Fig. 3 Optimal layered plate for truncated conical striker, Cm = 0.25

In Fig. 3 the optimal distribution of materials (blue—steel, violet—duraluminum)
within layered structure (L = 0.1m) and the striker velocity decreasing for truncated
conical striker (R = 0.005m, M0 = 0.05kg, r = 0.002m, l = 0.02m) are shown
for Cm = 0.

Figure4 shows the monotonic dependence of objective weighting functional JC

on the weighting factor Cm for cylindrical (dashed line), truncated conical (thin solid
line) and conical (thick solid line) strikers.

Fig. 4 Monotonic dependence of objective weighting functional JC on the factor Cm
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Fig. 5 Convergence of the genetic algorithm

Convergence of the genetic algorithm is illustrated in Fig. 5 by the dependence of
the preference functional value on the number of generation for cylindrical striker
and different values of factor Cm .

It should be noted that all results are received without taking into account the
processes of striker entrance and exit (as well as the layer boundaries influence on
this process).

3 Multipurpose Optimization of The Rigid Punch Shape

Let us consider the interaction of a rigid punch with the elastic half-space (z ≥ 0)
taking into account friction and wear. The system of coordinates Oxyz is fixed with
the punch, which moves in x-direction with the constant relative velocity V . The
relative movement is considered in frame of quasi-static formulation. It is supposed
that the rectangular contact region Ω f is symmetric with respect to the axes Ox ,
Oy: Ω f = [−a ≤ x ≤ a, −b ≤ y ≤ b], where a, b are the given constants. The
normal stresses σzz and the tangential stresses σxz

σzz(x, y, 0) = −p(x, y), p(x, y) ≥ 0,

σxz = τ0 + μp(x, y) (32)

are acting in the contact region Ω f , where p ≥ 0 is the contact pressure and τ0, μ
are the friction constants [6]. The boundary conditions for the theory of elasticity
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problem in the half-space z ≥ 0 are written in the form

w = f (x, y), σxz = τ0 − μσzz, σyz = 0 (x, y) ∈ Ω f ,

σzz = 0, σxz = 0, σyz = 0, (x, y) ∈ Ω0. (33)

Here w = w(x, y) is the z-component of the vector of elastic displacements, f (x, y)

denotes the punch shape contacting with the elastic medium and Ω0—the region of
elastic half-space surface free from loads.

For the known distribution p(x, y), (x, y) ∈ Ω f the resulting force P and the
total moment M with respect to the y-axis which acted on the punch are defined as

P = JP =
∫

Ω f

pdΩ f , M = JM =
∫

Ω f

xpdΩ f . (34)

The punch shape f = f (x, y) is accepted as a desirable design variable. The friction
dissipation power

JF ( f ) =
∫

Ω f

(τ0 + μp( f ))V dΩ f , (35)

the wear volume rate

JW ( f ) =
∫

Ω f

KW pn( f )V mdΩ f , (36)

and the discrepancy functional

JD( f ) =
∫

Ω f

(p( f ) − pg)
2dΩ f (37)

are taken into account as the components of the minimized vector-functional J

J ( f ) = {JF ( f ), JW ( f ), JD( f )}T → min
f

. (38)

Here KW is the wear constant, n > 1, m > 0 are given parameters of contacting
materials [6] and pg = pg(x, y) is given objective function, T is the transposition
operator.

The optimization problem is to find the optimal punch shape f (x, y) that mini-
mizes the vector-functional (38) under the constraints

JP = P∗, JM = M∗, (39)

where P∗ ≥ 0 and M∗ ≥ 0 are the given values. We suppose that the value of the
total force P∗ is sufficiently large in comparison with the value of the moment M∗,
i.e. the condition p(x, y) ≥ 0, (x, y) ∈ Ω f is satisfied [2].
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Formulated optimization problem can be decomposed to two separately solved
problems [2]. The first problem consists in finding of the optimal pressure distribution
p∗ ∈ Ω f that minimizes the vector-functional

J (p) = {JF (p), JW (p), JD(p)}T → min
p∈Λp

, (40)

Λp = {p ≥ 0, JP (p) = P∗, JM (p) = M∗}. (41)

The second problem is to find the normal displacements w∗(x, y) for the optimal
pressure distribution p∗(x, y) and corresponding friction forces, i.e. to define the
optimal punch shape f∗(x, y) = w∗(x, y).

For solving of the multi-criteria Problems (40)–(41) (Pareto-optimization) the
scalar linear weight-functional JC is constructed and minimized (see, for example,
[1, 8]):

JC (p) = CF JF (p) + CW JW (p) + CD JD(p) → min
p∈Λp

, (42)

CF ≥ 0, CW ≥ 0, CD ≥ 0, CF + CW + CD = 1.

As a result the optimal pressure distribution p∗(x, y) depending on the weight coef-
ficients CF , CW , CD can be defined with application of well known technique of
Lagrange multipliers. The necessary condition of optimality of the functional (42)
under the constraints (39) can be written as

δ J L
C (p) = δ{JC (p) − λP JP (p) − λM JM (p)}

=
∫
Ω f

{CFμV + nCW KW pn−1V m + 2CD(p − pg) − λP − λM x}δpdΩ f = 0,

(43)

where λP and λM are the Lagrange multipliers defined from the conditions (39). We
assume for simplicity n = 2, m = 1, pg = P∗/S, where S is the area of contact
region Ω f . If μ is the constant value and the region Ω f is symmetric with respect
to the axes Ox , Oy, the optimal pressure distribution p∗ can be defined as

p∗ = P�

S
+ M∗

Iy
x, (44)

where Iy is the moment of inertia of Ω f . Note that in this special case p∗ do not
depend on theweight coefficientsCF ,CW ,CD . Ifμ = μ(x, y)we havemore general
dependence

p∗ = P�

S
+ Δ1 +

(
M∗

Iy
+ Δ2

)
x, (45)

Δ1 = CF V

2 (CW KW V + CD)

(
1

S

∫
Ω f

μdΩ f − μ

)
,
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Δ2 = CF V

2 (CW KW V + CD) Iy

∫
Ω f

μxdΩ f .

In accordance with considered decomposition approach the second problemmust
be solved to define the optimal shape distribution f∗(x, y) corresponding to the
defined optimal pressure p∗(x, y) and acting friction forces. For this purpose we use
the exact solution [7]

w(x, y) = κ0
Q0

z

ρ
+ κ f

(x − x ′)Q0
x

ρ2 , ρ2 = (x − x ′)2 + (y − y′)2, (46)

κ0 = 1 − ν2

π E
, κ f = (1 + ν)(1 − 2ν)

2π E

of the problem for the pointed force

Q = {
Qx , Qy = 0, Qz

} =
{

Q0
xδ(x − x ′, y − y′), 0, Q0

zδ(x − x ′, y − y′)
}

,

Q0
x =

∫
Ω f

(τ0 + μp∗
(
x ′, y′)

)
dx ′dy′, Q0

z =
∫

Ω f

p∗(x ′, y′)dx ′dy′

(47)

loaded at the point (x, y). Here ν is a Poisson coefficient, E is Young modulus and δ

is Dirac function. By integration of the right side of the expression (46) on the region
Ω f we obtain

f∗(x, y)

= κ0

∫
Ω f

p∗(x ′, y′)dx ′dy′√
(x − x ′)2 + (y − y′)2

+ κ f

∫
Ω f

(x − x ′)(τ0 + μp∗(x ′, y′))dx ′dy′

(x − x ′)2 + (y − y′)2
.

(48)

Let us introduce the new variables ρ, θ . We have

x ′ − x = ρ cos θ, y′ − y = ρ sin θ,

ρ(x, y, x ′, y′) =
√

(x − x ′)2 + (y − y′)2, dΩ = ρdρdθ, (49)

and

f∗(x, y) = κ0

∫ 2π

0
dθ

∫ R(θ)

0
p∗(x + ρ cos θ, y + ρ sin θ)dρ

−μκ f

∫ 2π

0
cos θdθ

∫ R(θ)

0
p∗(x + ρ cos θ, y + ρ sin θ)dρ

− τ0κ f

∫ 2π

0
R(θ) cos θdθ, (50)
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Fig. 6 Contact region

where r(θ) is the distance between the fixed point N(x, y) and the boundary of the
region Ω f (Fig. 6). The expression (44) can be rewritten as

p∗ = p∗(x) = C + Ax ′ = C + A(x + ρ cos θ), (51)

C = P∗

S
, A = M∗

Iy
.

Then we obtain the following relation for the optimal punch shape

f∗(x, y) = κ0(C + Ax)D0(x, y) + 1

2
κ0ADC (x, y)

− μκ f [(C + Ax)D0C (x, y) + 1

2
ADCC (x, y)] − τ0κ f D0C (x, y),

(52)

D0 =
∫ 2π

0
Rdθ, DC =

∫ 2π

0
R2 cos θdθ,

D0C =
∫ 2π

0
R cos θdθ, DCC =

∫ 2π

0
R2 cos2 θdθ.

For considered rectangular region Ω f function D0 can be written in the form

D0 = 1

2
[(a − x)ϕ1(x, y) + (b − y)ϕ2(x, y) + (a + x)ϕ3(x, y) + (b + y)ϕ4(x, y)], (53)

ϕ1 = ln

(
ρ1 + b + y

ρ1 − b − y

ρ2 + b − y

ρ2 − b + y

)
, ϕ2 = ln

(
ρ2 + a − x

ρ2 − a + x

ρ3 + a + x

ρ3 − a − x

)
,
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ϕ3 = ln

(
ρ3 + b − y

ρ3 − b + y

ρ4 + b + y

ρ4 − b − y

)
, ϕ4 = ln

(
ρ4 + a + x

ρ4 − a − x

ρ1 + a − x

ρ1 − a + x

)
,

ρ21 = (a − x)2 + (b + y)2, ρ22 = (a − x)2 + (b − y)2,

ρ23 = (a + x)2 + (b − y)2, ρ24 = (a + x)2 + (b + y)2.

Performing the analogues transformations we obtain the following expressions for
the functions DC , D0C , DCC :

DC = (a − x)2ϕ1/2 − (a + x)2ϕ3/2 + (b − y)2(1/ cos γ3 − 1/ cos γ4)

+ (b + y)2(1/ cos γ8 − 1/ cos γ7),

D0C = (a − x)(γ1 + γ2) + (a + x)(γ5 + γ6) + (b − y) ln
cos γ4

cos γ3
− (b + y) ln

cos γ8

cos γ7
,

DCC = (a − x)2(γ1 + γ2) + (a + x)2(γ5 + γ6) − (b − y)2(γ3 + γ4)

− (b + y)2(γ7 + γ8) + (b − y)2(cot γ2 + cot γ5) + (b + y)2(cot γ6 + cot γ1),

where

γ1 = arcsin
b + y

ρ1
, γ2 = arcsin

b − y

ρ2
, γ3 = arcsin

a − x

ρ2
, γ4 = arcsin

a + x

ρ3
,

γ5 = arcsin
b − y

ρ3
, γ6 = arcsin

b + y

ρ4
, γ7 = arcsin

a + x

ρ4
, γ8 = arcsin

a − x

ρ1
.

In Fig. 7 the quantity z = f∗/κ0 characterizing the optimal punch shape for C = 1,
A = 0.1, a = b = 1, ν = 0.25, μ = τ0 = 0.3 is presented.

Fig. 7 Optimal punch shape
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4 Some Notes and Conclusions

In Sect. 2 of the paperwe studied themultipurpose optimization problem formultilay-
ered plate structure dynamically interacting with high-speed axisymmetric strikers.
The layers of the structure were made from the given set of materials. Such scalar
criterions as ballistic limit velocity, and total mass of the structure are considered as
components of the vector-functional and the problem of optimization is treated in
the Pareto-sense with application of the method of objective weighting. In contrast
to previous investigations of the layered plates and protective coatings we developed
the procedure of global optimum finding, based on evolutionary stochastic methods
(genetic algorithm). Incomplete data concerning the thickness of layers of optimized
multilayered shield structure are taken into account. The optimal structure was con-
structed numerically, i.e. the sequence and thicknesses of the layers were defined
by the genetic algorithm. Note that the number of treated scalar criterions can be
increased as well as the number of given materials. It should be also noted that all
results are received without taking into account the processes of striker entrance and
exit (as well as the layer boundaries influence on this process).

In Sect. 3 of this paper we formulated and investigated the problem of multipur-
pose optimization of the rigid punch shape that minimizes the wear volume rate,
the friction dissipation power and the functional, characterized by the discrepancy
between the pressure distribution corresponding to a certain punch shape and the
specified (required) pressure distribution. The relative movement of the punch is
considered in frame of quasi-static formulation. Effective decomposition method has
been developed in frame of multipurpose optimization problem in the Pareto-sense
and analytical solution of the shape optimization problem has been found. Note, that
the proposed approach can be applied to the case of a system of moving punches. The
number of considered and optimized functionals can be increased. It is reasonable
to take into account the wear dissipation power in the future investigations.
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