
Chapter 5
High-Throughput Screening Data Analysis

Hanspeter Gubler

Abstract An overview over the role and past evolution of High Throughput
Screening (HTS) in early drug discovery is given and the different screening
phases which are sequentially executed to progressively filter out the samples with
undesired activities and properties and identify the ones of interest are outlined.
The goal of a complete HTS campaign is to identify a validated set of chemical
probes from a larger library of small molecules, antibodies, siRNA, etc. which lead
to a desired specific modulating effect on a biological target or pathway. The main
focus of this chapter is on the description and illustration of practical assay and
screening data quality assurance steps and on the diverse statistical data analysis
aspects which need to be considered in every screening campaign to ensure best
possible data quality and best quality of extracted information in the hit selection
process. The most important data processing steps in this respect are the elimination
of systematic response errors (pattern detection, categorization and correction), the
detailed analysis of the assay response distribution (mixture distribution modeling)
in order to limit the number of false negatives and false discoveries (false discovery
rate and p-value analysis), as well as selecting appropriate models and efficient
estimation methods for concentration-response curve analysis.

Keywords Compound and RNAi screening processes • Data quality control •
Data normalization • Correction of systematic response errors • Hit identification
and ranking • Dose-response curve analysis

5.1 Introduction

5.1.1 HTS in Drug Discovery

The beginnings of High-Throughput Screening (HTS) in the pharmaceutical and
biotech industry go back to the early 1990s when more and more compounds needed
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to be tested for a broader series of targets in an increasing number of biological assay
systems. In some companies the investigation of larger compound series for activity
in a biochemical or cell-based assay systems had its origins in natural product
screening, but was extended to look for modulating effects of compounds from
the historical and growing in-house collections and added libraries of compounds
from combinatorial synthesis. The goal of HTS is the identification of a subset of
molecules (small molecular compounds, siRNA, antibodies, antibody conjugates,
etc.) from a larger library which have a modulating effect on a given biological
target. A large part of HTS work was, and still is, centered on investigating
the effects of small molecules against various intra- and extracellular molecular
targets and identifying compounds and compound series with a desired mode of
action. In the past 20 years these compound collections have been strongly and
continually enhanced by complementing the initially available sets with further
sets from in-house syntheses, carefully selected additions from commercial sources,
various classes of natural products, and known drugs. Stored libraries of compounds
covering a broad chemical space are thus available for repeated screening or picking
for special purpose investigations and have reached several 100,000 in many biotech
and screening service companies, as well as academic facilities, and >1 million (up
to 2 million) in most major pharmaceutical companies. Automated compound stores
and retrieval systems are in use in most of the companies and allow fast replication
of compound library copies into assay plates for regular screening and fast picking
of sub-libraries of smaller sets of compounds for more focused screens and follow-
up confirmation and verification of any activity found in the broader initial (primary)
screening rounds (Fox et al. 2006; Pereira and Williams 2007; Mayr and Fuerst
2008; Mayr and Bojanic 2009; Macarron et al. 2011).

On the experimental side essentially all High-Throughput Screening experiments
are performed in a highly automated, standardized and controlled fashion using
microtiter plates with 96, 384 or 1536 wells, i.e. grids of ‘reaction containers’
embedded in rectangular plastic plates following an industry standard format with
typically between 50–300 �L (96), 10–100 �L (384) and 1–10 �L (1536) working
volumes containing the biological material (proteins, cells, cell fragments), assay
buffer, reagents and the compound (or other) sample solutions whose activities
will be determined. Nowadays the industrial HTS labs essentially only use 384-
and 1536 well plates, whereas lower throughput labs may still perform a part of
their experiments and measurements in 96-well plates. Most of the quality control
diagnostics and data analysis aspects discussed later in this chapter can—and
should—be applied irrespective of actual plate formats and throughput (ultrahigh,
high, mid or low).

In essentially the same time period the sequencing of the human (and other)
genomes has allowed to identify several thousand potential molecular targets for
pharmaceutical intervention, some (but by far not all) of them coming with an
understanding of the function and, thus, allowing the pursuit of drug discovery
efforts. Large efforts in functional genomics, i.e. the determination of the function
of genes, RNA transcripts and the resulting protein products as well as their
regulation are needed on top of generating the pure sequence information to identify
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potentially druggable targets (Sakharkar et al. 2007; Bakheet and Doig 2009). The
methods of identification and validation of disease-relevant molecular targets are
wide and diverse (Kramer and Cohen 2004; Hughes et al. 2011). Information from
DNA, RNA and protein expression profiling, proteomics experiments, phenotypic
observations, RNAi (RNA interference) screens and extensive data mining and
bioinformatics approaches is used to link information on diseases, gene functions
and biological interaction networks with molecular properties. In RNAi screening
larger libraries of siRNA or shRNA samples are used to investigate the modulation
of gene function, the subsequent modification of protein expression levels and
resulting loss of function in large scale high-throughput experiments (genome-scale
RNAi research, genome-wide screens seeking to identify all possible regulators of a
biological process, or screens limited to a subset of target genes related to a specific
biological pathway) using phenotypic readouts (Matson 2004; Root et al. 2006).
Several of the target identification and validation approaches thus share a series
of technological elements (automation, measurement equipment and data analysis
methods) with the ‘classical’ plate-based small molecule HTS, and most of the
data quality assessment methods and hit selection steps described below can be
directly applied in these areas. Some of the differences in specific analysis steps for
particular types of probes, e.g. for RNAi screens will be mentioned.

A high degree of automation and standardized assay execution processes are key
ingredients for effective HTS and quite large investments into the development and
deployment of robotics and automated laboratory equipment have been made by
the industry in the past two decades. Many vendors have also developed smaller
automation workstations or work cells which can be installed and used in smaller
laboratories. As with most initially specialized technologies we are also seeing
here a movement from the centralized industry labs into low- and mid-throughput
laboratories which are more distributed in drug discovery organizations, and also
into academic institutions (Kaiser 2008; Baker 2010). The large body of experience
gained over more than two decades in the pharmaceutical industry and larger gov-
ernment laboratories about optimized sample management and screening processes,
possible screening artifacts and suitable data analysis techniques can beneficially
be applied in the institutions which have more recently adopted these technologies.
On the other hand, some of the statistical error correction methods described further
below were elaborated within the last decade in academic institutions and are now
benefitting the whole screening community.

Robotic screening systems come either as fully integrated setups where all assay
steps (plate movement, reagent addition, compound addition, incubation, readouts,
discarding of used plates) are scheduled and executed in automated fashion, or as a
series of separate independent workstation cells which are used sequentially, often
with a ‘manual’ transfer of plate batches between them. The large fully integrated
HTS systems can process and measure up to 100,000 compounds or even more
per day (ultra-high throughput screening, uHTS), depending on assay technology,
details of the assay protocol and processing times for individual steps. Workstation
based mid-throughput screening (MTS) typically reaches throughputs of 10,000–
20,000 samples/day (e.g. in batches of 20–50 384 well plates per day). Throughput
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will naturally be smaller if lengthy process steps like e.g. incubation phases are
needed or if the measurement time is prolonged, either because of limitations of the
measurement instrument, or because the course of a biochemical reaction needs to
be followed for a certain amount of time. The aspect of performing the complete
set of experiments of a particular screen in separate batches of individual plates is
clearly very important and will have an effect on the necessary data analysis steps.

The optimization of the high throughput screening processes has over time
gone through different phases which have initially focused on obtaining higher
throughput and larger numbers of screened entities, then on higher sophistication
in assay optimization, standardization of processes, miniaturization, added pilot-,
counter- and orthogonal screening experiments, as well as improved analysis
techniques, i.e. a focus on higher efficiency and better data quality, and in the
last 8–10 years the screening and decision making processes were set up in much
more flexible ways to better allow diversified and case-by-case handling for each
campaign—either full deck screens or adapted focused screens including best
possible validation of results with parallel specificity and selectivity screens to
obtain higher quality and better characterized hits than resulting from the ‘raw’ hit
list of the main screen (Mayr and Fuerst 2008; Macarron et al. 2011).

Counter screens are used to identify compound samples which don’t show an
activity directed towards the intended biological target, but which nonetheless give
positive readouts (‘false positive responses’ in an assay) by interfering with the
readout mechanism or act otherwise nonspecifically. Some compounds will even
do this in concentration dependent manner, thus mimicking a desired activity. This
can occur due to aggregation, colored components of assay ‘cocktail’, fluorescence,
inhibition of detection enzymes (reporter mechanism), cytotoxicity, etc. (Thorne
et al. 2010; Hughes et al. 2012).

An orthogonal screen is based on an assay which uses a different format or a
different readout mechanism to measure the same phenomenon and confirm that the
activity is really directed towards the target of interest. Compounds which are active
in both the original and orthogonal assay are usually prioritized for follow-up work.

Selectivity screens are used to determine whether a particular compound is acting
solely on the target of interest or also on other targets of the same family (e.g.
enzymes, protease inhibitors, related ion channels, receptor families, etc.).

Counter-, orthogonal and selectivity screens are thus used to stratify the hit
list of the putative actives on the target of interest. The selection of the main
screening assay and the setup of suitable filter-experiments coupled with optimal
data analysis approaches to extract the cleanest and most complete information
possible are important ingredients for the success of HTS-based hit discovery
projects. Secondary follow-up assays for further confirmation and quantification
of the desired modulation of the target and possibly determination of mechanisms
of action will need similar care in processing of the underlying plate-based
data and best possible characterization of concentration-dependent responses. Hit
compounds or compound series possessing suitable pharmacological or biological
and physicochemical properties and characterized in such a complete fashion,
including a final structural verification, can then be considered possible starting
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points for further chemical optimization, i.e. become a ‘lead compound’ or a ‘lead
series’ in a given drug discovery project (Hughes et al. 2011).

High-Throughput Screening methods and tools in their diverse forms (using
biochemical, cell- or gene-based assay systems) with small molecular compounds,
siRNA, shRNA, antibodies, antibody drug conjugates, or other probes to modulate
the intended target or biological process of interest using a wide variety of assay
and readout technologies have thus become an essential research tool for drug
discovery, i.e. screening for hits and leads, functional genomics (target discovery),
biomarker detection and identification in proteomics using mass spectrometry
readouts , automated large scale characterization of samples (e.g. for sample quality
assessment), as well as the detailed characterization of hit series with biophysical
measurements, often using label-free assay technologies, and ADMET (absorption,
distribution, metabolism, excretion, toxicity) screens (Macarron et al. 2011). In
all cases the choice of the most suitable statistical methods for the different data
analysis steps forms an important part of the usefulness and success of this toolset.

5.1.2 HTS Campaign Phases

Compound Screening Typically several different rounds of screens are run for
each project in compound based drug discovery. An initial primary screen is
applied to assess the activity of a collection of compounds or other samples and
to identify hits against a biological target of interest, usually employing single
measurements (n D 1) due to the sheer number of samples which need to be
processed. The primary screen identifies actives from a large diverse library of
chemical probes, or alternatively, from a more focused library depending on pre-
existing knowledge on a particular target. Selected hits and putative actives are
then processed in second stage confirmation screen, either employing replicates at
a particular single concentration, or a concentration response curve with just a few
concentration points. In Table 5.1 we show the typical experimental characteristics
(numbers of replicates, numbers of concentrations) of various screening phases
for a large compound based HTS campaign in the author’s organization as an
illustration for the overall experimental effort needed and the related data volumes
to be expected. The numbers are also representative for other larger screening
organizations. The addition of counter- or selectivity measurements will of course
lead to a correspondingly higher effort in a particular phase.

If primary hit rates are very high and cannot be reduced by other means then
counter-screens may need to be run in parallel to the primary screen (i.e. one has
to run two large screens in parallel!) in order to reduce the number of candidates
in the follow phase to a reasonable level and to be able to more quickly focus on
the more promising hit compounds. If primary hit rates are manageable in number
then such filter experiments (whether counter- or selectivity-screens) can also be
run in the confirmation phase. Selectivity measurements are often delayed to the
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Table 5.1 Typical phases in compound-based high-throughput screening campaigns

Screening phase # of replicates
# concentrations/
sample

Total # of different
test samples

Total # of
wells

Pilot 2–3 1 103–104 2�104

Primary 1 1 105–1.5�106 105–1.5�106

Confirmation (experiment
with replicates)

2–4 1 103–5�104 104–2�105

Confirmation (experiment
with concentration
dependent measurements)

1 2–4 103–5�104 104–2�105

Validation (detailed
concentration dependence
of response, potency
determination)

1–4 8–12 103–5�104 104–106

validation screening phase in order to be able to compare sufficient details of the
concentration-response characteristics of the compounds which were progressed to
this stage on the different targets, and not just have to rely on single-point or only
very restricted concentration dependent measurements in the previous phases. Thus,
the actual details of the makeup of the screening stages and the progression criteria
are highly project dependent and need to be adapted to the specific requirements.

A validation screen, i.e. a detailed measurement of full concentration-response
curves with replicate data points and adequately extended concentration range, is
then finally done for the confirmed actives, as mentioned, possibly in parallel to
selectivity measurements.

The successful identification of interesting small-molecule compounds or other
type of samples exhibiting genuine activity on the biological target of interest is
dependent on selecting suitable assay setups, but often also on adequate ‘filter’
technologies and measurements, and definitely, as we will see, also on employing
the most appropriate statistical methods for data analysis. These also often need to
be adapted to the characteristics of the types of experiments and types of responses
observed. All these aspects together play an important role for the success of a given
HTS project (Sittampalam et al. 2004).

Besides the large full deck screening methods to explore the influence of the of
the particular accessible chemical space on the target of interest in a largely unbiased
fashion several other more ‘knowledge based’ approaches are also used in a project
specific manner: (a) focused screening with smaller sample sets known to be active
on particular target classes (Sun et al. 2010), (b) using sets of drug-like structures
or structures based on pharmacophore matching and in-silico docking experiments
when structural information on the target of interest is available (Davies et al. 2006),
(c) iterative screening approaches which use repeated cycles of subset screening
and predictive modeling to classify the available remaining sample set into ‘likely
active’ and ‘likely inactive’ subsets and including compounds predicted to likely
show activity in the next round of screening (Sun et al. 2010), and (d) fragment
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based screening employing small chemical fragments which may bind weakly
to a biological target and then iteratively combining such fragments into larger
molecules with potentially higher binding affinities (Murray and Rees 2008).

In some instances the HTS campaign is not executed in a purely sequential
fashion where the hit analysis and the confirmation screen is only done after
the complete primary run has been finished, but several alternate processes are
possible and also being used in practice: Depending on established practices in
a given organization or depending on preferences of a particular drug discovery
project group one or more intermediate hit analysis steps can be made before
the primary screening step has been completed. The two main reasons for such
a partitioned campaign are: (a) To get early insight into the compound classes of
the hit population and possible partial refocusing of the primary screening runs by
sequentially modifying the screening sample set or the sequence of screened plates,
a process which is brought to an ‘extreme’ in the previously mentioned iterative
screening approach, (b) to get a head start on the preparation of the screening
plates for the confirmation run so that it can start immediately after finishing
primary screening, without any ‘loss’ of time. There is an obvious advantage in
keeping a given configuration of the automated screening equipment, including
specifically programmed execution sequences of the robotics and liquid handling
equipment, reader configurations and assay reagent reservoirs completely intact
for an immediately following screening step. The careful analysis of the primary
screening hit candidates, including possible predictive modeling, structure-based
chemo-informatics and false-discovery rate analyses can take several days, also
depending on assay quality and specificity. The preparation of the newly assembled
compound plates for the confirmation screen will also take several days or weeks,
depending on the existing compound handling processes, equipment, degree of
automation and overall priorities. Thus, interleaving of the mentioned hit finding
investigations with the continued actual physical primary screening will allow the
completion of a screen in a shorter elapsed time.

RNAi Screening RNAi ‘gene silencing’ screens employing small ribonucleic acid
(RNA) molecules which can interfere with the messenger RNA (mRNA) production
in cells and the subsequent expression of gene products and modulation of cellular
signaling come in different possible forms. The related experiments and progression
steps are varying accordingly. Because of such differences in experimental design
aspects and corresponding screening setups also the related data analysis stages and
some of the statistical methods will then differ somewhat from the main methods
typically used for (plate-based) single-compound small molecule screens. The latter
are described in much more depth in the following sections on statistical analysis
methods.

Various types of samples are used in RNAi (siRNA, shRNA) screening: (a) non-
pooled standard siRNA duplexes and siRNAs with synthetically modified structures,
(b) low-complexity pools (3–6 siRNAs with non-overlapping sequences) targeting
the same gene, (c) larger pools of structurally similar silencing molecules, for which
measurements of the loss of function is assessed through a variety of possible
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phenotypic readouts made in plate array format in essentially the same way as for
small molecule compounds, and also—very different—(d) using large scale pools
of shRNA molecules where an entire library is delivered to a single population of
cells and identification of the ‘interesting’ molecules is based on a selection process.

RNAi molecule structure (sequence) is essentially known when using approaches
(a) to (c) and, thus, the coding sequence of the gene target (or targets) responsible for
a certain phenotypic response change can be inferred in a relatively straightforward
way (Echeverri and Perrimon 2006; Sharma and Rao 2009). RNAi hit finding
progresses then in similar way as for compound based screening: An initial primary
screening run with singles or pools of related RNAi molecule samples, followed
by a confirmation screen using (at least 3) replicates of single or pooled samples,
and if possible also the individual single constituents of the initial pools. In both
stages of screening statistical scoring models to rank distinct RNAi molecules
targeting the same gene can be employed when using pools and replicates of related
RNAi samples (redundant siRNA activity analysis, RSA, König et al. 2007), thus
minimizing the influence of strong off-target activities on the hit-selection process.
In any case candidate genes which cannot be confirmed with more than one distinct
silencing molecule will be eliminated from further investigation (false positives).
Birmingham et al. (2009) give an overview over statistical methods used for RNAi
screening analysis. A final set of validation experiments will be based on assays
measuring the sought phenotypic effect and other secondary assays to verify the
effect on the biological process of interest on one hand, and a direct parallel
observation of the target gene silencing by DNA quantitation, e.g. by using PCR
(polymerase chain reaction) amplification techniques). siRNA samples and libraries
are available for individual or small sets of target genes and can also be produced for
large ‘genome scale’ screens targeting typically between 20,000 and 30,000 genes.

When using a large-scale pooled screening approach, as in d) above, the selection
of the molecules of interest and identification of the related RNA sequences pro-
gresses in a very different fashion: In some instances the first step necessary is to sort
and collect the cells which exhibit the relevant phenotypic effect (e.g. the changed
expression of a protein). This can for example be done by fluorescence activated cell
sorting (FACS), a well-established flow-cytometric technology. DNA is extracted
from the collected cells and enrichment or depletion of shRNA related sequences
is quantified by PCR amplification and microarray analysis (Ngo et al. 2006).
Identification of genes which are associated with changed expression levels using
‘barcoded’ sets of shRNAs which are cultured in cells both under neutral reference
conditions and test conditions where an effect-inducing agent, e.g. a known pathway
activating molecule is added (Brummelkamp et al. 2006) can also be done through
PCR quantification, or alternatively through massive parallel sequencing (Sims et al.
2011) and comparison of the results of samples cultured under different conditions.
These are completely ‘non-plate based’ screening methods and will not be further
detailed here.
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5.2 Statistical Methods in HTS Data Analysis

5.2.1 General Aspects

In the next sections we will look at the typical process steps of preparing and
running a complete HTS campaign, and we will see that statistical considerations
play and important role in essentially all of them because optimal use of resources
and optimal use of information from the experimental data are key for a successful
overall process. In the subsequent sections of this chapter we will not touch on all of
these statistical analysis aspects with the same depth and breadth, not least because
some of these topics are actually treated in more detail elsewhere in this book, or
because they are not very specific to HTS data analysis. We will instead concentrate
more on the topics which are more directly related to plate-based high-throughput
bioassay experiments and related efficient large scale screening data analysis.

5.2.2 Basic Bioassay Design and Validation

Given a particular relevant biological target the scientists will need to select
the assay method, detection technology and the biochemical parameters. This is
sometimes done independently from HTS groups, or even outside the particular
organization. Primarily the sensitivity (ability to detect and accurately distinguish
and rank order the potency of active samples over a wide range of potencies, e.g.
based on measurements with available reference compounds) and reproducibility
questions need to be investigated in this stage. Aspects of specificity in terms
of the potential of a particular assay design and readout technology to produce
signals from compounds acting through unwanted mechanisms as compared to the
pharmacologically relevant mechanism also need to be assessed.

The exploration and optimization of assay conditions is usually done in various
iterations with different series of experiments employing (fractional) factorial
design, replication and response surface optimization methods to determine robust
response regions. The potentially large series of assay parameters (selection of
reagents, concentrations, pH, times of addition, reaction time courses, incubation
times, cell numbers, etc.) need to be investigated at multiple levels in order to be able
to detect possible nonlinearities in the responses (Macarron and Hertzberg 2011).
The practical experimentation involving the exploration of many experimental
factors and including replication often already takes advantage of the existing
screening automation and laboratory robotics setups to control the various liquid
handling steps, which otherwise would be rather cumbersome and error-prone when
performed manually (Taylor et al. 2000). Standard methods for the analysis of
designed experiments are used to optimize dynamic range and stability of the assay
readout while maintaining sensitivity (Box et al. 1978; Dean and Lewis 2006). Most
often the signal-to-noise ratio SNR, signal window SW and Z0-factor are used as
optimization criteria. See the section on assay quality measures and Table 5.2 below
for the definition of these quantities.
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5.2.3 Assay Adaptation to HTS Requirements
and Pilot Screening

The adaptation of assay parameters and plate designs with respect to the positioning
and numbers of control samples, types of plates, plate densities and thus, liquid
volumes in the individual plate wells, to fulfill possible constraints of the automated
HTS robotics systems needs to follow, if this was not considered in the initial
assay design, e.g. when the original bioassay was designed independently of the
consideration to run it as a HTS. The initially selected measurement technology
often has an influence on the obtainable screening throughput. If these design steps
were not done in initial collaboration with the HTS groups, then some of the assays
parameters may have to be further changed and optimized with respect to relevant
assay readout quality measures (see Table 5.2) for the assay to be able to run under
screening conditions. Again, experimental design techniques will be employed,
albeit with a now much reduced set of factors. These assay quality metrics are all
based on the average response levels x of different types of controls, corresponding
to readout for an inactive probe (N, neutral control) or the readout for a ‘fully active’
probe (P, positive control) and the respective estimates of their variability (standard
deviation) s.

The quality control estimators in Table 5.2 are shown as being based on the mean
x and standard deviation s, but in practice the corresponding outlier resistant ‘plug-
in’ equivalents using the median Qx and median absolute deviation (mad) Qs estimators
are often used, where Qs includes the factor 1.4826 to ensure consistency with s, so
that E .Qs.x// D E .s.x// D � if x � N.�; �2) (Rousseeuw and Croux 1993).

The quality measures which incorporate information on variability of the controls
often much more useful than simple ratios of average values because probability
based decision making in the later hit selection process needs to take into account
the distributions of the activity values. In order to gain a quick overview and also
see aspects of the distribution of the measured values (e.g. presence of outliers,
skewness) which are not represented and detected by the simple statistical summary
values the data should always be visualized using e.g. categorized scatterplots,
boxplots, strip plots and normal quantile-quantile plots.

Possible modifications of the original assay design may entail gaining higher
stability of response values over longer time scales or in smaller volumes to be able
to run larger batches of plates, shortening some biochemical reaction or incubation
phases to gain higher throughput, or to have smaller influence of temperature
variations on responses, etc. Such modifications may sometimes even have to be
done at the cost of reduced readout response levels. As long as the assay quality
as measured by a suitable metric stays above the acceptance criteria defined by the
project group such ‘compromises’ can usually be done without large consequences
for the scientific objectives of the HTS project.

Besides the optimization of the assay signal range and signal stability an
important part of the quality determination and validation in the assay adaptation
phase is the initial determination of assay reproducibility for samples with varying
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degrees of activity using correlation- and analysis of agreement measures, as well
providing rough estimates on expected false positive and false negative rates which
are based on the evaluation of single point %-activity data at the planned screening
concentration and the determination of the corresponding concentration-response
data as an activity reference for the complete standard ‘pilot screening library’
of diverse compounds with known mechanisms of action and a wide range of
biological and physicochemical properties for use in all HTS assays in the pilot
screening phase (Coma et al. 2009a, b). See Table 5.3 for an overview of typical
analyses performed in this phase.

These investigations with the standard pilot screening library will sometimes
also allow one to gain early information on possible selectivity (to what extent are
compounds acting at the target vs. other targets of the same family) and specificity
(is the compound acting through the expected mechanism or through an unwanted
one) of the assay for an already broader class of samples available in the pilot
screening library than are usually investigated in the initial bioassay design.

While the detailed evaluation of factors and response optimization using exper-
imental design approaches with replicated data are feasible (and necessary) at
the assay development and adaptation stages, this is no longer possible in the
actual large primary HTS runs. They will usually need to be executed with n D 1
simply because of the large scale of these experiments with respect to reagent
consumption, overall cost and time considerations. Because of this bulk- and batch
execution nature of the set of measurements collected over many days or weeks
it is not possible to control all the factors affecting the assay response. Given
these practical experimental (and resource) restrictions, the observed random and
systematic variations of the measured responses need to be accommodated and
accounted for in the data analysis steps in order to extract the highest quality
activity- and activity-rank order information possible. The use of optimal data
normalization and hit selection approaches are key in this respect.

5.2.4 Assay Readouts, Raw and Initial Derived Values

Raw readouts from plate readers are generated in some instrument-specific units
(often on an ‘arbitrary’ scale) which can be directly used for data quality and
activity assessment, but in other assay setups there may be a need for an initial data
transformation step. This can be needed when performing time- or temperature-
dependent measurements which need a regression analysis step to deliver derived
readouts in meaningful and interpretable physical units (assay readout endpoints),
e.g. using inverse estimation on data of a calibration curve, determining kinetic
parameters of a time-course measurement or protein melting transition temperatures
in a thermal shift assay, or extracting the key time course signal characteristics
in a kinetic fluorescence intensity measurement. Sometimes such derived infor-
mation can be obtained directly from the instrument software as an alternate or
additional ‘readout’, but when developing new assays and measurement methods
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it is sometimes necessary to be able to add different, more sophisticated or more
robust types of analyses as ad-hoc data preprocessing steps. It is a definite advantage
if a standard software framework is available where such additional analysis steps
and related methods can be easily explored, developed and readily plugged into the
automated assay data processing path, e.g. by using R scripts (R Development Core
Team 2013) in the Pipeline Pilot

®
(http://accelrys.com/products/pipeline-pilot/),

Knime (https://www.knime.org/) or similar analytics platform included upstream
of an organization’s standard screening data processing system, where data thus
transformed can then easily be processed using the available standard HTS data
analysis methods in the same way as any other type of screening reader output.

Assay and readout technologies have gone through many changes and advance-
ments in the past years. Whereas initially in HTS the measurement of only
one or very few (2–3) readout parameters per well (e.g. fluorescence intensities
at two different wavelengths) was customary—and still is for many practical
applications—the advent of automated microscopy and cellular imaging coupled
with automated image analysis (image based High Content Analysis or Screening,
HCA, HCS) which can detect changes in the morphology of cells or of separately
labeled cell compartments (nucleus, membrane, organelles, etc.), thus resulting in a
large number of parameters for a given well or even for each individual cell, has led
to the need for the exploration and evaluation of suitable multivariate statistical data
analysis methods (Hill et al. 2007). Intensities, textures, morphological and other
parameters from the segmented images are captured at several different wavelengths
and corresponding feature vectors are associated with each identified object or well
(Abraham et al. 2004; Carpenter 2007; Duerr et al. 2007; Nichols 2007). Cell level
analysis enables the analysis of the various cell-cycles and the separation of the
effects of the probes on cells in a particular state (Loo et al. 2007; Singh et al. 2014).
Besides the now quite broadly used image based HCS approaches there are several
other assay technologies which produce multivariate readouts of high dimensions,
Cytof (Qiu et al. 2011), Luminex gene expression profiling (Wunderlich et al.
2011), RPA (van Oostrum et al. 2009), laser cytometry (Perlman et al. 2004 ), and
others, with medium throughput . For most of these technologies the most suitable
optimal data analysis methods are still being explored. Questions of normalization,
correction of systematic errors, discrimination and classification are under active
investigation in many labs (Reisen et al. 2013; Kümmel et al. 2012; Abraham et al.
2014; Singh et al. 2014; Smith and Horvath 2014; Haney 2014). It is clear that all
these different types of assay technologies can benefit from a common informatics
infrastructure for large scale multivariate data analysis, which includes a large
set of dimension reduction, feature selection, clustering, classification and other
statistical data analysis methods, as well as a standardized informatics systems
for data storage and metadata handling, coupled to high performance computing
resources (compute clusters) and large volume file stores and databases (Millard
et al. 2011).

The high numbers of readout parameters (300–600) (Yin et al. 2008; Reisen
et al. 2013) which must be simultaneously analyzed and the much higher data
volumes which need to be processed introduce new aspects into high-throughput

http://accelrys.com/products/pipeline-pilot/
https://www.knime.org/


5 High-Throughput Screening Data Analysis 97

screening data analysis which are usually not covered by the available features in
the established standard screening informatics systems (Heyse 2002; Gunter et al.
2003; Kevorkov and Makarenkov 2005; Gubler 2006; Boutros et al. 2006; Zhang
and Zhang 2013). This makes these data much more challenging to analyze from the
point of view of methodology, complexity of assay signals and the sheer amounts
of data. But it is clear that these types of screening technologies and efficient
methods to analyze the large data volumes will become even more important and
widespread in future. While one can say that the analysis methods for standard
HTS data have been largely settled—at least from the point of view of the main
recommended data processing and quality assurance steps as outlined in this
chapter—this is definitely not yet the case for the high dimensional multivariate
screening data analysis, especially when going to the single cell level. Note that the
screening literature occasionally refers to multi-parametric analysis in this context.
Systematic investigations on advantages and disadvantages of particular methods
and the preferred approaches for determining assay and screening quality metrics,
correction of systematic response errors, classification of actives, etc. with such
types of data are ongoing and are naturally more complex than for the cases where
just a few readout parameters can be processed in a largely independent manner up
to the point where the final values need to be correlated to each other (Kümmel et al.
2012).

5.2.5 Assay Quality Measures

The overall error which accumulates over the many different chemical, biological
and instrumental processing steps to obtain the final readout in a screening assay
needs to be kept as small as possible so that there is high confidence in the set
of compounds identified as active in a screening campaign. The assay quality
metrics to measure and monitor this error are based on simple location and scale
estimates derived from raw readout data from the different types of wells on
a microtiter plate (zero-effect and full inhibition of full activation controls for
normalization of the data, reference controls exhibiting responses in the middle of
the expected response range, background wells, and test sample wells). Different
quality indicators have been proposed to measure the degree of separability between
positive and zero-effect (neutral) assay controls: Signal to background ratio or high-
low ratio, coefficient of variation, signal to noise ratio, Z- and Z0-factor (not to be
confused with a Z-score) (Zhang et al. 1999), strictly standardized mean difference
(SSMD) (Zhang et al. 2007) and others are in routine use to optimize and measure
assay response quality (see Table 5.2).

The Z0-factor has become an accepted and widely used quality metric to assess
the discriminatory power of a screening assay. It is a relative measure and quantifies
the ‘usable window’ for responses between the upper and lower controls outside
of their respective 3s limits. Z0 can be between �1 (if the control averages which
define the response limits are identical), 0 when the two 3s limits ‘touch’ each other,
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and 1 if the standard deviation of the controls becomes vanishingly small. Z0 is an
empirical point measure and the derivation of its large sample interval estimator was
only recently published (Majumdar and Stock 2011). The sampling uncertainty of
Z0 should be considered when setting acceptance thresholds, especially for lower
density plates with small numbers of control wells. Small sample intervals can be
estimated by bootstrap resampling (Iversen et al. 2006). Other quality indicators
than those listed were proposed and described in the literature (e.g. assay variability
ratio, signal window and others), but are not so widely used in standard practice
because they are related to the Z0-factor and don’t represent independent information
(Sui and Wu 2007; Iversen et al. 2006). The V-factor is a generalization of the Z0-
factor to multiple response values between xN and xP (Ravkin 2004).

Some screening quality problems can occur for actual sample wells which are
not captured by control well data and the measures listed in Table 5.2, e.g. higher
variability for sample wells than for control wells, additional liquid handling errors
due to additional process steps for sample pipetting, non-uniform responses across
the plates, etc. Such effects and tools for their diagnosis are described in more detail
further below in the screening data quality and process monitoring section.

In Fig. 5.1 we show an example of the behavior of the High/Low control ratio
(HLR) and the Z0 factor for a set of 692 1536-well plates from a biochemical screen
exhibiting several peculiarities: (a) clear batch boundary effects in the ratio of the
HLR values for batch sizes varying between 80 and 200 plates, (b) ‘smooth’ time
dependence of the HLR (fluorescence intensity) ratio due to the use of continuous
assay product formation reaction and related detection method, (c) no ‘strongly
visible’ influence of the varying HLR on the Z0-factor, i.e. a negligible influence
of the varying HLR on the relative ‘assay window’, (d) an interleaved staggering
pattern of HLR which is due to the use of a robotic system with two separate
processing lanes with different liquid handling and reader instruments. This latter
aspect may be important to take into account when analyzing the data because any
systematic response errors, if they occur at a detectable and significant level, are
likely to be different between the two subsets of plates, hence a partially separate
analysis may need to be envisaged. We also see that for assays of this nature setting
a tight range limit on HLR will not make sense; only a lower threshold could be
useful as a potential measurement failure criterion.

5.2.6 Screening Data Quality and Process Monitoring

Automated screening is executed in largely unattended mode and suitable pro-
cedures to ensure that relevant quality measures are staying within adequate
acceptance limits need to be set up. Some aspects of statistical process control (SPC)
methodology (Shewhart 1931; Oakland 2002) can directly be transferred to HTS as
an ‘industrial’ data production process (Coma et al. 2009b; Shun et al. 2011).

Data quality monitoring of larger screens using suitably selected assay quality
measures mentioned above and preferably also for some of the additional screening
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Fig. 5.1 (a) Screening quality control metrics: High/Low ratio HLR for complete screening run
showing batch start and end effects, signal changes over time and alternating robot lane staggering
effects (inset). (b)Z0-factor (assay window coefficient) for the same plate set with occasional
low values for this metric, indicating larger variance of control values for individual plates, but
generally negligible influence of robot lane alternation on assay data quality (inset, saw tooth
pattern barely visible)

quality measures listed below in Table 5.4, can be done online with special software
tools which analyze the data in an automated way directly after the readout is
available from the detection instruments (Coma et al. 2009b), or at least very soon
after completing the running of a plate batch with the standard data analysis tools
which are in use, so that losses, potential waste and the need for unnecessarily
repetitions of larger sets of experiments are minimized. As in every large scale
process the potential material and time-losses and the related financial aspects
cannot be neglected and both plate level and overall batch level quality must be
maintained to ensure a meaningful completion of a screening campaign.

Systematic response errors in the data due to uncontrolled (and uncontrollable)
factors will most likely also affect some of the general and easily calculated quality
measures shown in Table 5.4, and they can thus be indirect indicators of potential
problems in the screening or robotic automation setup. When using the standard
HTS data analysis software tools to signal the presence of systematic response



100 H. Gubler

Ta
bl

e
5.

4
Sc

re
en

in
g

qu
al

ity
m

et
ri

cs

M
et

ri
c

E
st

im
at

io
n

ex
pr

es
si

on
C

om
m

en
ts

a
Z

-f
ac

to
r

R
Z

-f
ac

to
r

(r
ob

us
t)

Sc
re

en
in

g
W

in
do

w
C

oe
ffi

ci
en

t
1

�
3

. s
P

C
s C

/

j x P
�

x C
j

M
ea

n,
st

an
da

rd
de

vi
at

io
n

or
m

ed
ia

n,
m

ad
us

e
in

th
e

sa
m

e
w

ay
as

fo
r

Z
0
/R

Z
0

fa
ct

or
(Z

ha
ng

et
al

.1
99

9)

b
M

ax
im

um
,m

in
im

um
,o

r
ra

ng
e

of
sy

st
em

at
ic

er
ro

r
O So

n
pl

at
e

p
m

ax
p

� O S ip
� ,m

in
p

� O S ip
� ,

m
ax

p

� O S ip
� �

m
in

p

� O S ip
�

H
.G

ub
le

r,
20

14
,u

np
ub

lis
he

d
w

or
k

c
V

E
P

,F
ra

ct
io

n
of

re
sp

on
se

va
ri

an
ce

‘e
xp

la
in

ed
’

by
th

e
es

tim
at

ed
sy

st
em

at
ic

er
ro

r
co

m
po

ne
nt

s
(p

at
te

rn
)

on
pl

at
e

p

Qs2 p

� O S ip
�

=
Qs2 p

� x i
p

�
C

om
a

et
al

.(
20

09
b)

d
M

or
an

’s
I,

sp
at

ia
l

au
to

co
rr

el
at

io
n

co
ef

fic
ie

nt

nX
n iD

1

X
n jD

1
w

ij
. x

i
�

x/
� x j

�
x�

X
n iD

1

X
n jD

1
w

ij

X
n iD

1
. x

i
�

x/
2

w
ith

ne
ig

hb
or

w
ei

gh
ts

w
ij

(e
.g

.w
ij

D
1

if
ia

nd
ja

re
ne

ig
hb

or
w

el
ls

w
ith

in
a

gi
ve

n
ne

ig
hb

or
ho

od
di

st
an

ce
ı
,e

.g
.ı

D
2,

sh
ar

in
g

bo
un

da
ri

es
an

d
co

rn
er

po
in

ts
,a

nd
w

ij
D

0
ot

he
rw

is
e,

an
d

al
so

w
ii

D
0
).

A
ls

o
di

st
an

ce
ba

se
d

w
ei

gh
ts

w
ij

D
1
=
d˛ ij

ca
n

be
us

ed

U
se

fo
r

st
at

is
tic

al
te

st
of

nu
ll

hy
po

th
es

is
th

at
no

si
gn

ifi
ca

nt
sp

at
ia

lc
or

re
la

tio
n

is
pr

es
en

to
n

a
pl

at
e,

i.e
.n

o
sy

st
em

at
ic

lo
ca

tio
n

de
pe

nd
en

ts
am

pl
e

re
sp

on
se

de
vi

at
io

n
fr

om
th

e
av

er
ag

e
nu

ll-
ef

fe
ct

re
sp

on
se

ex
is

ts
(M

or
an

19
50

;M
ur

ie
et

al
.2

01
3)

O
th

er
sp

at
ia

la
ut

oc
or

re
la

tio
n

co
ef

fic
ie

nt
s

ca
n

al
so

be
us

ed
fo

r
th

is
te

st
,e

.g
.G

ea
ry

’s
C

ra
tio

(G
ea

ry
19

54
)

T
he

se
m

ea
su

re
s

ar
e

fo
cu

se
d

on
sa

m
pl

e-
w

el
la

re
a

of
pl

at
es

In
st

ea
d

of
m

ea
n

x
an

d
st

an
da

rd
de

vi
at

io
n

s
es

tim
at

or
s

th
e

m
ed

ia
n

Qxa
nd

m
ad

Qsa
re

of
te

n
us

ed
as

ro
bu

st
pl

ug
-i

n
re

pl
ac

em
en

ts
.I

n
or

de
r

to
ro

ug
hl

y
de

te
rm

in
e

sy
st

em
at

ic
er

ro
r

es
tim

at
es

O S ip
in

th
e

in
it

ia
l

H
T

S
m

on
it

or
in

g
st

ag
e

a
m

od
el

w
hi

ch
is

ve
ry

qu
ic

kl
y

ca
lc

ul
at

ed
ca

n
be

ch
os

en
(e

.g
.s

pa
tia

lp
ol

is
h,

po
ly

no
m

ia
l

or
pr

in
ci

pa
lp

at
te

rn
m

od
el

s,
se

e
Ta

bl
e

5.
6)

.F
or

th
e

fin
al

an
al

ys
is

of
th

e
sc

re
en

in
g

pr
od

uc
tio

n
ru

ns
th

e
m

os
ts

ui
ta

bl
e

er
ro

r
m

od
el

in
g

m
et

ho
d

fo
r

th
e

de
te

rm
in

at
io

n
of

th
e

sy
st

em
at

ic
pl

at
e

ef
fe

ct
s

w
ill

be
us

ed
an

d
th

e
sc

re
en

in
g

qu
al

ity
m

ea
su

re
s

be
fo

re
an

d
af

te
r

co
rr

ec
tin

g
th

e
da

ta
fo

r
th

e
sy

st
em

at
ic

er
ro

rs
ca

n
be

co
m

pa
re

d



5 High-Throughput Screening Data Analysis 101

errors or a general degradation of the readout quality, then the broad series of
available diagnostic tools can efficiently flag and ‘annotate’ any such plate for
further detailed inspection and assessment by the scientists. This step can also be
used to automatically categorize them for inclusion or exclusion in a subsequent
response correction step.

A note on indexing in mathematical expressions: In order to simplify notation
as far as possible and to avoid overloading the quoted mathematical expressions we
will use capital index letters to indicate a particular subset of measured values (e.g. P
and N as previously mentioned, C compound samples), and we will use single array
indexing of measured or calculated values of particular wells i whenever possible.
In those situations where the exact row and column location of the well in the two-
dimensional grid is important we will use double array indexing ij. The explicit
identification of the subset of values on plate p is almost always required, so this
index will appear often.

These additional metrics are relying on data from the sample areas of the
plates and will naturally provide additional important insight into the screening
performance as compared to the control sample based metrics listed in Table 5.2.
As for the previously mentioned control sample based assay quality metrics it is
even more important to visualize such additional key screening data quality metrics
which are based on the (compound) sample wells in order to get a quick detailed
overview on the behavior of the response data on single plates, as well as its variation
over time to obtain indications of data quality deteriorations due to instrumental
(e.g. liquid handling failures), environmental (e.g. evaporation effects, temperature
variations) and biochemical (e.g. reagent aging) factors, or due to experimental
batch effects, e.g. when using different reagent or cell batches. Direct displays of the
plate data and visualizations of the various assay quality summaries as a function
of measurement time or sequence will immediately reveal potentially problematic
data and suitable threshold settings can trigger automatic alerts when quality control
metrics are calculated online.

Some of the listed screening quality metrics are based on direct estimation of
systematic plate and well-location specific experimental response errors Sijp, or are
indicators for the presence of spatial autocorrelation due to localized ‘background
response’ distortions, e.g. Moran’s I coefficient which also allows the derivation of
an associated p-value for the ‘no autocorrelation’ null hypothesis (Moran 1950).
Similar visualizations as for the HLR and Z0-factor shown in Fig. 5.1 can also
be generated for the listed screening quality metrics, like the Z-factor (screening
window), Moran coefficient I, or the VEP measure.

In Fig. 5.2 we show examples of useful data displays for response visualizations
of individual plates. In this case both the heatmap and the separate platewise
scatterplot of all data, or boxplots of summary row- and column effects of a 384-well
plate clearly show previously mentioned systematic deviations of the normalized
response values which will need to be analyzed further. In the section on correction
of systematic errors further below we also show an illustration of the behavior of the
Moran coefficient in presence of systematic response errors, and after their removal
(Fig. 5.6).
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Fig. 5.2 (a) Example plate data heatmap showing visibly lower signal in border areas due to
evaporation effects. (b) Scatterplot of normalized response values of all individual wells with grid
lines separating different plate rows. (c) Boxplot of column summaries, and (d) Boxplot of row
summaries, all showing location dependent response differences across the plate and offsets of
row- and column medians from 0

It is also recommended to regularly intersperse the screening plate batches with
sets of quality control plates without compounds (providing a control of liquid
handling performance) and plates containing only inhibitor or activator controls and,
if relevant, further reference compound samples exhibiting intermediate activity to
provide additional data on assay sensitivity. ‘QC plates’ without compounds or other
types of samples (just containing assay reagents and solvents) are also very helpful
for use in correcting the responses on the compound plates in cases where it is not
possible to reliably estimate the systematics errors from an individual plate or a set
of sample plates themselves. This is e.g. the case for plates with large numbers of
active samples and very high ‘hit rates’ where it is not possible to reliably determine
the effective ‘null’ or ‘background’ response, as well as for other cases where a
large number of wells on a plate will exhibit nonzero activity, especially also all
concentration- response experiments with the previously selected active samples
from the primary screens. For these situations we have two possibilities to detect
and correct response values: (a) Using the mentioned QC control plates (Murie et al.
2014), and (b) using plate designs with ‘uniform’ or ‘uniform random’ placement
of neutral control wells across the whole plate, instead of placing the controls in a
particular column or row close to the plate edges (Zhang 2008), as is often done in
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practice. Such an arrangement of control well locations will allow the estimation of
systematic spatial response deviations with the methods which only rely on a small
number of free parameters to capture the main characteristics and magnitude of the
background response errors, as e.g. polynomial response models.

5.2.7 Integration of Diagnostic Information
from Automated Equipment

Modern liquid handlers (e.g. acoustic dispensers) often have the capability to deliver
success/failure information on the liquid transfer for each processed well and this
information can be automatically joined with the reader data through plate barcode
and well matching procedures, and then considered for automated valid/invalid
flagging of the result data, provided suitable data management processes and
systems are available. Also other types of equipment may be equally able to signal
failures or performance deterioration at the plate or well level which then can also
be correlated with reader data and be integrated in suitable alerting and flagging
mechanisms for consideration during data analysis.

5.2.8 Plate Data Normalization

Uncontrolled experimental factors will influence the raw assay readouts on each
individual plate. This can be likened to the existence of multiplicative and possibly
also additive systematic errors between individual plates p which can be represented
by the measurement model xip D �p .m C �i/ C bp, where xip is the measured raw
value in well i on plate p , m is the ‘intrinsic’ null-effect response value of the assay,
� i is a sample (compound) effect, with � i D 0 if inactive, and �p and bp are plate-,
instrument- and concentration dependent gain factors and offsets, respectively. xip

can then also equivalently be represented as

xip D mp C �p�i C 	ip � xp C 
ip C 	ip (5.1)

when also including an error term 	ip � N
�
0; �2

p

�
and setting mp D �pm C bp,


ip D �p�i. We make E
�
	ip

� D �p explicitly depend on plate index p because
this often corresponds to experimental reality, especially between different plate
batches. Reagent aging and evaporation as well as time shifts in some process steps
will usually lead to smooth trends in plate averages within batches, whereas e.g. the
effect of cells plated at very different times may show up as a more discrete batch
effect of responses. Plate-level normalization procedures use the response values
of specific wells to bring the response values into a standardized numerical range
which can be easily interpreted by scientists, usually a 0–100 % scale with respect to
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the no-effect and the ‘maximal’ effect obtainable with the given assay parameters.
In this particular context ‘plate normalization’ is simply understood to adjust the
average responses between the different plates: Control based normalization via
specifically selected control wells, sample based normalization via the ensemble
of all sample wells if the number of active wells is ‘small enough’. The use of
robust estimation procedures with high breakdown limits is critical for successful
sample based normalization because of the likely presence of ‘outliers’, i.e. active
compounds with larger response deviations in usually one and sometimes both
possible response directions.

Normalization of Compound Screening Data In the experiment- and plate design
for small molecule compound screening one usually has two types of controls
to calibrate and normalize the readout signals to a 0–100 % effect scale: A set
of wells (neutral or negative controls) corresponding to the zero effect level (i.e.
no compound effect) and a set of wells (positive controls) corresponding to the
assay’s signal level for the maximal inhibitory effect, or for activation- or agonist
assays, corresponding to the signal level of an effect-inducing reference compound.
In the latter case the normalized %-scale has to be understood to be relative to
the chosen reference which will vary between different reference compounds, if
multiple are known and available, and hence has a ‘less absolute’ meaning compared
to inhibition assays whose response scale is naturally bounded by the signal level
corresponding to the complete absence of the measured biological effect. In some
cases an effect-inducing reference agonist agent may not be known and then the
normalization has to be done with respect to neutral controls only, i.e. using Fold-
or any of the Z- or R-score normalization variants shown in Table 5.5.

Normalization of RNAi Screening Data In RNAi screens which use functional
readouts any gene silencing event can in principle lead to an inhibition or to
an enhancement of the observed phenotypic readout (e.g. a simple cell viability
measurement). It is thus advisable to use several different types of controls to be
able to assess screen quality and calibrate the response scale. In any case, siRNA
controls which have no specific silencing effect on the target gene(s) need to be
designed and used as negative controls, and siRNAs which target some genes having
a previously known association with the biological process under study and leading
to a modulation of the desired readout can be used as positive controls. In a particular
screen it is desirable to employ positive controls of different strengths (e.g. weak
inhibition, strong inhibition) to compare the often strongly varying observed siRNA
effects to the effect sizes of known influencers of a complex biological pathway,
and also to use controls exhibiting different effect directions (inhibitors, enhancers)
to be able to assess the reliability of the assay response scale in either direction.
Besides the natural use of the positive controls as screening QC indicators to assess
screen stability, derive assay window quality Z0-factors, etc. the effect sizes of the
positive controls need to be considered as almost ‘arbitrary’ reference response
levels allowing to classify individual siRNA responses as ‘weak’ to ‘very strong’,
which is similar to the use of different types of agonist assay reference wells in
compound screening providing different relative normalization scales as described
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in the last paragraph. Plate-based RNAi screening data are usually normalized to
the Fold scale based on the neutral controls (see Table 5.5) and actual relative effect
‘sizes’ of individual single siRNA samples in either direction are either assessed by
using R-scores, and in the case of replicates by using a t-statistic, or preferably the
SSMD-statistic for unequal sample sizes and unequal variances between siRNA and
neutral controls (Zhang 2011a, b). This type of SSMD- based normalization, and in
a similar way the consideration of magnitudes of R-score values, already touches on
the hit selection process as described further below.

Table 5.5 lists the most frequently used data normalization expressions and
it can easily be seen that the values from the various expressions are centered
at 0, 1, or 100 and linearly related to each other. The normalized values are
proportional to the biological modulation effect � i, provided the assay and readout
system response is linear as assumed in Eq. (5.1), and when disregarding 	ip and
systematic response errors. For nonlinear (but monotone) system responses the
rank orders of the normalized activity values are maintained. With the presence of
experimental random and systematic measurement errors this strict proportionality
and/or concordance in rank ordering of the sample activities � i within and across
plates is of course no longer guaranteed. Especially in cell-based assay system
the assay response variability can be relatively large and also the relative rank
ordering of sample activities from primary screening and the follow-up IC50 potency
determinations can differ considerably, mostly due to concentration errors in the
different experiments (Gubler et al. 2013).

Besides these average plate effects (‘gain factor differences’) other response
differences at the well, row or column level occur frequently in actual experimental
practice. They often occur in a similar fashion on multiple plates within a batch and
it is important to take these location- and batch dependent errors into account to be
able to identify hits in an efficient way. We deal with the detection and correction
of these effects separately in the next section, but of course they belong to the same
general topic of assay response normalization.

If we observe plate-to-plate or batch-to-batch variations of �p then the use of
Z- or R-score-based normalization is advised to allow the application of a mean-
ingful experimentwise hit selection threshold for the entire screen. If systematic
response errors are detected on the plates then the final scoring for hit selection
needs to be done with the corrected activity values, otherwise the hit list will be
clearly biased. The scoring expressions are based on estimated center Qx and scale Qs
values and correspond to a t-statistic, but the actual null-distribution of the inactive
samples in a primary screen will usually contain a very large number of values, so
that we can assume f0 � N .0; 1/ for the R-scores of this null-effect subset after
correction. We will revisit this aspect in the section on hit-selection strategies.
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5.2.9 Well Data Normalization, Detection and Correction
of Systematic Errors in Activity Data

In this section we deal with the detection, estimation and correction of and assay
response artifacts. The series of different process steps in assay execution and the
different types of equipment and environmental factors in a typical plate based
screen often lead to assay response differences across the plate surfaces (i.e.
non-random location effects), both as smooth trends (e.g. due to time drifts for
measurements of different wells in a plate), bowl shapes (often due to environmental
factors like evaporation, temperature gradients), or step-like discrete striping pat-
terns (most often due to liquid handling equipment imperfections (dispensing head,
needle or pin) leading to consistently lower or higher than average readings, and
combinations of some or all of these types of effects. Also gradients in the step-
like artifacts can sometimes be observed due to the time ordering of dispensing
steps. Often, but not always, these effects are rather similar on a whole series
of plates within a measurement batch which obviously will help in estimation
and subsequent correction procedures. Individual well patterns can obviously only
be estimated if they repeat on all or a subset (batch) of plates, otherwise they
are confounded with the effect of the individual compound samples. Automatic
partitioning of the sets of readouts to reflect common patterns and identification
of those respective different systematic patterns is an important aspect for efficient
and effective response correction steps. Temporal changes of non-random response
patterns are related to batch-wise assay execution, reagent aging effects, detection
sensitivity changes or changes in environmental factors and may appear gradual or
sudden.

It is obvious that systematic spatial or temporal response artifacts will introduce
bias and negatively affect the effectiveness of hit finding especially for samples
with weak and moderate size effects and will influence the respective false decision
rates in hit selection. Such effects should thus be corrected before attempting
hit selection or using these data for other calculation steps. Especially when
considering fragment based screens with low-molecular samples of relatively low
potency, natural product (extract) screens with low amounts of particular active
ingredients, or RNA interference screens where small to moderate size effects can
be of interest (corresponding to full knockdown of a gene with a small effect, or
partial knockdown of a gene with strong effects), or if one simply is interested in
detecting active samples in the whole range of statistically significant modulating
effects then these response correction methods become crucial to allow optimized
and meaningful analyses. The positive influence of the response correction on the
hit confirmation rate, the reproducibility of the activity in follow-up screens or
secondary assays can be clearly demonstrated (Wu et al. 2008).

An important prerequisite for successful estimation of response corrections using
the actual screening sample data is the assumption that the majority of these samples
are inactive and that active samples are randomly placed on the various plates. For
screens with high rates of non-zero response wells it is advised to place neutral
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control wells (showing no effect on the assay readout) spread ‘uniformly’ across
the plates, and not, as is often the case, in the first or last columns of the plates,
and use them to check for the occurrence, estimation and correction of systematic
response errors. Sometimes the plate layout designs which can be produced by
compound management and logistics groups in an automated way are limited due
to restrictions of the robotic liquid handling equipment, but in order to produce
reliable screening results an optimal design of control well placement is important
and liquid handling procedures should be adapted to be able to produce assay plates
in such a way. Such specially designed plates with a suitable spatial spread and
location of control wells can be used to derive ‘smooth’ (e.g. polynomial) average
response models for each plate (or for a set of plates) which do not rely on the
assumption that the majority of the test samples are inactive. For example in RNAi
screening many of the samples or sample pools have usually some effect in the
assay, leading to a large range of responses and related problems to efficiently use
correction methods which rely on estimations of the null response based on the
sample wells themselves. The response level of ‘truly inactive’ samples is difficult to
determine in this case and consequently an efficient plate designs with well-chosen
controls in the described sense or the use of interspersed control plates for error
correction in a measurement batch can become important (Zhang 2008). Cell-based
screens, including RNAi screens, often need additional and prolonged incubation
periods which often exacerbate assay noise, response bias and artifacts in the border
regions of the plates.

In actual practice it also happens that structurally and bioactivity-wise similar
compounds are placed near each other because of the way the stored compound
master plates were historically constructed (often from groups of similar compounds
delivered to the central compound archives in a batch) even for ‘random’ HTS
libraries, or simply due to the makeup of plates in focused libraries which exhibit
larger rates of activity on selected target classes (e.g. enzyme inhibitors). Modern
compound management setups today allow a more flexible creation of screening
plates, but the presence of spatial clusters of activity or of known subsets of very
likely active samples of on particular plates need to be considered for the decision
to include or exclude selected plate subsets from the standard way of background
response estimation and related processing.

Well-level assay response normalization and correction of the spatial and
temporal patterns is in essence just a ‘more sophisticated’ form of the sample
based normalization mentioned in the previous paragraph. Because of the expected
presence of at least some ‘active’ wells (i.e. outliers for the purpose of background
response estimation) it is highly advisable to use robust (outlier resistant) estimation
methods when relying on the actual screening sample wells to derive the response
models. The robustness breakdown limits for different methods are of course quite
variable and need to be considered separately for each. The breakdown bounds for
the median polish procedure were elaborated by Hoaglin et al. (1983).

As mentioned in the process monitoring section graphical displays are important
to visually detect and often also quickly diagnose the potential sources of the
error patterns. Also the visualizations of the error patterns and of the subsequently
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corrected data, including suitable graphics of the corresponding (now improved)
quality metrics is an important practical element of screening quality assurance
(Brideau et al. 2003; Coma et al. 2009b).

It is also important to note that data correction steps should only be applied if
there is evidence for actual systematic errors, otherwise their application can result
in variance bias, albeit with a magnitude strongly dependent on the actual correction
method used. Such variance bias can have an influence on the hit identification
step because the corresponding activity threshold choices can be affected in an
unfavorable fashion. Suitably constructed quality metrics which are based e.g. on
Moran’s I spatial autocorrelation coefficient (see Table 5.4 item d) can be used to
determine whether a systematic error is present and whether corresponding response
correction should be applied or not. ‘Suitably’ means that the weight matrix needs
to minimally cover the neighborhood region which is expected to exhibit strong
correlations when systematic errors of a particular type are present, e.g. by using
a neighborhood range ı D 2 around grid point fi0, j0g for setting the weights
wij D 1 for all fi; j W .0 � ji � i0j � ı/ ^ .0 � jj � j0j � ı/g with wi0j0 D 0 and
wij D 0 otherwise for the situations where discrete response ‘striping’ effects in
every second row or column can occur due to some liquid handling errors besides
the possible smoother spatial responds trends across the plate surface. Different
ı extents in row and column directions or use of different weighting functions
altogether may be more optimal for other types of expected patterns.

We have separated the assay response normalization into plate-level normaliza-
tion as outlined in the previous section, including the calculation of various assay
quality metrics according to Tables 5.1 and 5.2, and the possible subsequent row,
col and well-level effect response adjustment procedures. In essence the latter can
be considered as a location-dependent sample-based data normalization step. In
Table 5.6 we show several such modeling and correction methods for location
dependent systematic errors of well-level data in plate based screening which have
been developed and described within the past 10–15 years (Heyse 2002; Heuer et al.
2002; Brideau et al. 2003; Kevorkov and Makarenkov 2005; Gubler 2006; Malo
et al. 2006; Makarenkov et al. 2007; Birmingham et al. 2009; Bushway et al. 2010;
Dragiev et al. 2011; Zhang 2011a; Mangat et al. 2014)

In Fig. 5.2 we have already seen data containing typical systematic response
errors. As an illustration of model performance obtained with some of the
approaches listed in Table 5.6 we show the same data in Fig. 5.3a with three
different error model representations in Fig. 5.3b, c and the resulting corrected data,
after applying the loess error model based correction in Fig. 5.3e. The corresponding
row-wise boxplot of the corrected data in Fig. 5.3e can be compared to uncorrected
case in Fig. 5.2d and the resulting smaller variances as well as better centering on
zero are immediately evident.

For further illustration of various diagnostics and response modeling methods we
will here use a simulated screening plate data of limited size (50 384-well plates)
with normalized percent inhibition data scaled between 0 (null effect) and �100 (full
inhibition) exhibiting several features which are typically found in real HTS data
sets: Edge effects due to evaporation, response trends due to temperature gradients,
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Fig. 5.3 (a) Same normalized plate data as in Fig. 5.2a. (b) Median polish representation of
systematic error, which is inadequate in this case because a R*C interaction term is not included.
(c) loess model representation of systematic error using 2nd degree polynomial local regression.
(d) Robust mixed linear effects model representation of systematic error using rlmer function
with R*C interaction terms. (e) Corrected data after loess error pattern subtraction. (f) Boxplot
of row summaries corresponding to corrected data of Fig. 5.3e (compare with Fig. 5.2d, without
correction)

liquid handling response stripes which vanish after a series of dispensing steps in
interleaved row-wise dispensing, single dispensing needle malfunction, plate batch-
effects with different dominant error patterns between batches, assay response noise
� N

�
0; �2

�
with � D 5 , and a response distribution of the randomly placed hits with

an overall hit rate of 5 % which is approximated as �Gamma(1, 0.025), leading to
a median inhibition of hits around �30 %, i.e. obtaining a smaller number of hits
with strong inhibition and a larger number with moderate and small values which is
the usual situation screening.
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Fig. 5.4 (a) Heatmaps of simulated data set of 50 plates. Different types of systematic errors are
visible, see text (b) Assay-map of the same data set, in this arrangement and ordering of the well-
index allowing a quick identification of row- and individual well-effects (e.g. response error for
well 233 in a subset of plates). (c) Plate-by-plate correlation matrix of well values for the complete
data set, allowing the identification and grouping of plates with similar error patterns either visually
or using hierarchical clustering

This simulated data set is represented as a heat map series in Fig. 5.4a and as
the corresponding ‘assay map’ (Gubler 2006) in Fig. 5.4b. The assay map is a
single heat map of the complete data set where the 2D row- and col- location is
transformed into a linear well-index and data displayed as a contiguous (well-index,
plate measurement sequence index) map. Response errors affecting particular wells
or well-series in a set of sequentially processed plates are then immediately visible,
as e.g. in our case a consistently lower response of well 233 in plates 1 to 40 due to a
“defective” dispensing tip. Other batch effects are visible in both types of heatmaps.

Our principal goal in performing HT screens is the identification of interesting
compounds which perturb the response of the biological test system. As per Eq.
(5.1) and extending the indexes to two dimensions i,j we can model the observed
response xijp in row i, column j and plate p as xijp D xp C 
ijp C 	ijp, allowing for a
simple estimation of the relative compound effect size as
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O
ijp D xijp � xp: (5.2)

The compound effect 
 ijp is of course fully confounded with 	ijp for the n D 1
primary screening case. Separate estimation of 
 ijp and 	ijp can only be made
when measuring replicates, as is often done in RNAi screens, or when running
confirmation screens with replicates. As previously discussed, in actual screening
practice we almost always have systematic response errors Sijp present in the
experimental data, and thus now find correspondingly disturbed readout values

xijp D xp C 

0

ijp C Sijp C 	ijp: (5.3)

In Table 5.6 we have listed various methods which are used to determine the
systematic error terms S and focus now on the influence of this term on the apparent
compound effect 


0

ijp as determined in the data normalization step. For a given
measured data value xijp Eqs. (5.1) and (5.3) give



0

ijp D 
ijp � Sijp (5.4)

for an otherwise unchanged null effect readout level xp and observed activity value
xijp. Without a suitable estimate for Sijp we have again complete confounding
of compound effect, systematic error and random error components. By using
information based on spatial and temporal correlation of the observed experimental
response values from a series of wells an estimate OSijp for the location- and plate-
sequence related systematic error can be obtained. Using this estimated value the

term
�

xp C OSijp

�
is now in essence the shifted plate- and location-dependent actual

null-effect reference level which needs to be used in the different normalization
expression if we want to consider the influence of OSijp on the relative compound
responses on the % scale. Equation (3) describes the behavior of assay response
values around the average null-effect (neutral control) response xp D xN;p, but when
e.g. calculating normalized percent inhibition values a ‘similar’ systematic error
OS0

ijp is also assumed to be present at the level of the full effect controls xP;p. This
value which participates in defining the %-effect scaling at location i,j, cannot be
directly estimated from the data. While it is usually possible to determine OSijp near
the xN;p response level quite reliably because in small molecule compound HTS
most samples are inactive, and we thus possess a lot of data for its estimation, or
we are able to base the estimation on designed control well positions and their
responses, we can only make assumptions about the influence of the systematic
error factors on response values around the xP;p level, unless detailed experiments
about this aspect would be made. A purely additive response shift as per Eq. (5.3)
for all possible magnitudes of the assay responses is an unreasonable assumption,
especially if all values derived from a particular readout technology are limited to
values � 0. In the case of an inhibition assay the positive control xP corresponds
usually to small readout signal values

�
xP;p < xN;p

�
and we can either assume that

S
0

ijp D 0 at small signal levels, or we can assume a fractional reduction of the
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amplitude of the systematic error which is scaled linearly with the corresponding
“High/Low” ratio as

OS0

ijp D OSijp
xP;p

xN;p
; (5.5)

i.e. a multiplicative influence of the systematic errors on the assay signal magnitude.
A typical normalization expression (e.g. for NPI) with explicit consideration of the
systematic error contributions at the xN and—if relevant—at the xP level forms the
basis for integrating the response value correction into a reformulated expression
for corrected NPI values:

NPIi;p corrected D 100
xi �

�
xN;p C OSi;p

�
�

xP;p C OS0

i;p

�
�

�
xN;p C OSi;p

�

D 100
xi �

�
xN;p C OSi;p

�

xP;p

�
1 C OSi;p=xN;p

�
�

�
xN;p C OSi;p

� ; (5.6)

noting that this is a now a plate- and well-location dependent normalization of
the assay response data xi which eliminates the systematic batch-, plate- and well-
level response distortions. As mentioned previously the corresponding modification
for other simple normalization expressions can be derived in an analogous way.
The difference between varying assumptions for the behavior of S

0

with changing
absolute response leads to slightly different values for NPIcorrected, the difference
between the two being larger for smaller High/Low ratios of the assay controls
(dynamic range of the assay response). Using Eq. (5.5) and the NPI expression
from Table 5.5 we obtain:

NPIi;p corrected D NPIi;p
�
xN;p � xP;p

� C 100OSi;p�
xN;p � xP;p

� �
1 C OSi;p=xN;p

� ; (5.7)

or for the S
0

i;p D 0 case:

NPIi;p corrected D NPIi;p
�
xN;p � xP;p

� C 100OSi;p

xN;p C OSi;p � xP;p

: (5.8)

These are useful relationships because in practice the simple NPIi,p which are
based on plate-level controls without consideration of location-dependent effects
are already available from the preceding data analysis step which converts the
‘arbitrary’ raw data values to a common % or fold scale. The NPI values are
then used for various diagnostic graphics (heat maps, scatterplots, boxplots, etc.)
and provide a basis for comparing the uncorrected and the subsequently corrected
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response values in a quick overview fashion (and to help in the visual detection of
systematic response artifacts). The described OS0

p correction ambiguity does of course
not have any influence on the scoring methods which only rely on data centering
with respect to the null-effect levels xN , or better, with respect to the estimated actual

null-effect response levels
�

xN C OSij

�
.

It is clear that the modeling approaches have to be chosen according to the
actual types of patterns occurring in the data set, hence visual inspection, possible
partitioning of data sets, and choice of an optimal model have to go hand in
hand. Automatic partitioning of the plate data set can be done very efficiently by
clustering the p � p correlation matrix of the pairwise inter-plate well values for
all p plates. Response values for the samples or for samples together with neutral
controls can be included in the correlations. Larger correlation values will be found
for the plates which exhibit similar spatial response distortions, while we will
have E .corr .xk; xl// D 0 for independent random distributions of the responses
on plates k and l. The correlation matrix for our example data set with added
(hierarchical) clustering information is shown in Fig. 5.4c. The main 4 sub-clusters
can clearly be associated with the 4 discernable groups of plates with distinct error
patterns (edge effects: 1- 20, edge effects C striping: 21–25, striping only 26–40, no
systematic pattern: 41–50), in complete agreement with the structure of the data set.

Another method for the grouping of ‘similar’ plates which can be used for the
purpose of partitioning is changepoint analysis (Hinkley 1970; Horvath 1993; Barry
and Hartigan 1993) in a suitable set of QC indicators which are sensitive to specific
differences in the systematic error pattern in the ordered sequence of plates. The
first two components UiDi; i D 1::2 of a robust principal pattern analysis using the
robpca method (Hubert et al. 2005) for the entire simulated plate data set are shown
in Fig. 5.5a, b.

The two represented principal patterns clearly correspond to the main visible
systematic error features of particular subsets of the plates with evaporation edge
effects, liquid handling stripes in alternate rows which taper off at higher column
numbers, as well as the single-well pipetting failure at (row D 10, col D 17).
The corresponding principal component loadings V

0

i are shown in Fig 5.5c, d,
respectively. Now we can use these PCA loadings, or similarly, the ICA mixture
weights, from such an exploratory diagnostic analysis of the complete data set
for changepoint (i.e. pattern- or plate batch-boundary) detection as indicated in
these figures. The red horizontal lines indicate the extent of the data series with
common mean and variance properties according to an analysis using the PELT
method (Killick et al. 2012) which is also implemented in the R changepoint
package (Killick and Eckley 2014). The superset of the changepoint locations from
these 2 principal component loadings is in complete agreement with the pattern-
and plate ‘batch’ boundaries (k D 20, 25, 40) which we had identified before and
correspond to the properties of the generated data set. For plates 41 to 50 the
average contribution from either of these two pattern components is close to 0,
as indicated by the position of the red (mean) lines. The information from such
an overview analysis, jointly together with the indicators of the significance of the
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Fig. 5.5 (a) First principal pattern, and (b) second principal pattern extracted from the example
plate data set with a robust principal component analysis, reflecting the dominant error patterns
in the data: evaporation edge effects, tapered striping in alternate rows and defective pipetting tip
in well 233. (c) loading factors of first principal pattern, and (d) loading factors for 2nd principal
pattern, both with overlaid changepoint detection segments (red lines)

Moran autocorrelation coefficients I from each plate allow us to quickly judge which
plate sets we should include or exclude from any pattern modeling steps.

The principal pattern methods can be used both as quick diagnostic pattern
detection tool, as just described, and of course also as basis for the data correction
step. In Fig. 5.6 we demonstrate the application of this 2-component robust principal
component model to the whole data set, with normalized data shown in a, error
pattern in b, and resulting corrected data set in c. We also illustrate the behavior of
the spatial autocorrelation coefficient before and after data correction and clearly
see that the autocorrelated response contributions are removed to such an extent
that Moran’s I values (Fig. 5.6d, e) are significantly reduced and most of the
corresponding p-values (Fig. 5.6f, g) are now below the ˛ D 0.05 level which is
indicated by the dashed line.

Based on these ‘cleaned’ screening plate data sets where now all or most
of the discernable systematic response errors have been eliminated using one
of the described error-modeling and correction approaches the further screening
data analysis steps are either (a) hit sample selection in primary screening, or
(b) calculation of further quantities of interest based on data from a whole series of
individual wells originating from one or several plates (e.g. concentration-response
curve characterizations, compound potency determinations).



120 H. Gubler

0

d

f g

e

−0
.1

0.
1

15
10

5

-lo
g 1

0(
p)

M
or

an
 I

0
0.

3

−0
.1

0.
1

0.
3

10 20 30 40 50

0 10 20

plate sequence number plate sequence number

30 40 50 0 10 20 30 40 50

0 10 20 30 40 50

c

b

a

Fig. 5.6 (a) Example plate set, normalized data. (b) Systematic errors of plate data as estimated
with a two-component principal pattern model. (c) Corrected plate data set after elimination of
estimated systematic error values. (d) Moran autocorrelation coefficient for example plate data set
before correction, and (e) after correction. (f) p-values of Moran coefficients before correction, and
(g) their p-values after correction
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The ultimate optimality criterion for the error modeling and data correction steps
is of course a maximized confirmation rate, i.e. a minimized rate of false discoveries
in the list of selected hits, possibly under the constraint of an upper limit of the
number of samples which can be selected and progressed into a next screening
stage because of economic and resource constraints, and as small as possible false
negative rate. Minimizing the false discovery rate in the primary screening hit
list is expected to result in maximized confirmation rate of the putative hits in
follow-up experiment, which is either a screen measuring the activity of the hits
with independent replicates or a screen with concentration dependent measurements
(Zhang et al. 2000; Wu and Liu 2008; Prummer 2012).

5.2.10 Sample Activity Ranking, Scoring and Tests
of Significance

Since the hit identification from a single-concentration primary HTS with many
expected actives is a large scale multiple hypothesis testing problem we need to
consider practical methods for controlling the false-positive rate. The basic goal
is to identify as many significant actives as possible which are not part of the
null distribution, while at the same time incurring only a low proportion of false
positives. The ‘false discovery rate’ statistic introduced two decades ago (Benjamini
and Hochberg 1995) and related follow-up work by many authors (Efron et al.
2001; Efron 2004, 2010; Storey 2002; Storey and Tibshirani 2003; Dalmasso et al.
2005; Strimmer 2008a) has led to further development of the methodology and
to its adaptation to the practical needs of large scale biological experimentation
in genomics and screening. It is an ideal statistic for this purpose, because a
straightforward normal p-value based threshold is not very informative in terms
of presence of the interesting non-null component, because it is only related to
the proportion of the samples with null-activity above this threshold. Methods
like the q-value analysis and others (Storey and Tibshirani 2003; Strimmer 2008a)
were shown to maintain high statistical power in many situations of biological
experimentation and convey the necessary information about the proportion of the
significant actives which are statistical false positives. These methods are very useful
in practice because the ‘success rate’ of the subsequent follow-up verification of the
detected activity from the primary screen is directly related to the q-value threshold,
and the follow-up experimental confirmation and verification work (and related
‘costs’) can then be optimized in this respect.

In the screening data analysis context the mentioned false discovery rate
FDR (proportion of false positives from the potentially interesting number of
samples above the selection threshold, FDR D FP/(TP C FP)) and the false negative
rate FNR (proportion of missed actives from the total number of real actives,
FNR D FN/(TP C FN)) are the most informative and useful criteria for decision
making at the primary hit selection stage.
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From the explanations in the previous sections it is clear that the overall activity
ranking of the probes to select the most ‘interesting’ should be done based on data
which are corrected for any systematic response artifacts on a particular plate and
also across the various plates measured in a screen. Activity ranking in primary
screening can either be done using the normalized responses or by considering
a related score value. Whereas the well–level data correction approaches have
adjusted for systematic bias in the average responses, there may still be remaining
differences in terms of systematic shifts of the assay variance, either plate-to-plate,
batch-to-batch, or systematic differences related to the sample classes exposed to the
screen (e.g. natural product fractions or extracts, single small molecular compounds,
compound-mixtures, combinatorial library pools, siRNA pools etc.). Performing the
analysis of the screening results based on scoring approaches can account for such
differences in the assay “noise”. Its calculation can be based either on the (robust)
variance estimation for the test sample area of the plates, or on the neutral control
samples. In all analyses of corrected %-scale normalized or scored data we are
working with scaled residuals rijp / xijp � xp for hit ranking and selection.

If the estimation of the scale value Osp, which is used for determining Z- or R-
scores is based on the control samples, then the often limited number of them on a
single plate can result in a large uncertainty of this estimate, especially for the lower
plate densities of 96 and 384. For smaller n it may be advisable to use shrinkage
estimation methods for the determination of the variance (Cui et al. 2005; Tong
and Wang 2007; Murie et al. 2009) and obtain a regularized and more efficient
estimate Qsp by borrowing information from other (‘neighboring’) plates to prevent
individual increases in the rates of false positives and/or false negatives when the
corresponding platewise score values are over- or underestimated. But also for
higher density plates variance shrinkage can be advantageous if the control well
areas on some individual plates contain systematic errors which may not have been
eliminated by the previously described response corrections if the ‘process-history’
of sample wells and control wells differ, which can be the case in some types
of assays. The decomposition of the plate set into subsets belonging to particular
measurement batches with similar response properties and separate estimation
within these batch boundaries as well as adaptive local adjustment of the shrinkage
parameters � and wp in

Qs2
p D �Os2

p C .1 � �/ s2
p;wp

(5.9)

on the time-ordered set of plates p will likely lead to a more efficient scale estimate
Qsp, but the resulting score values may not be bias-free (see further below). The
shrinkage parameters can be optimized by e.g. minimizing the calculated false
discovery rate for a given Z- or R-score threshold, or maximizing the number of
putative hits for a given preset FDR value, i.e. the fraction of identified hits which are
“not interesting” based on purely statistical considerations. � describes the mixing
between the value Osp of a particular individual plate and a component sp;wp which
has higher bias and lower variance, and which itself depends on a ‘smoothing’
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parameter wp. The calculation of sp;wp can e.g. be based on local averaging or on
kernel smoothing of the values from ‘neighboring’ plates (Prummer 2012).

A scatterplot of (normal distribution) p-values from Z- or R-scores on the
y-axis and the NPI, percent change, or fold change values (Cui and Churchill
2003) on the x-axis can be very useful to identify samples which exhibit a certain
minimal %-effect change, and at the same time assess their statistical ‘significance’
(probability that the null-hypothesis of ‘no biological’ activity is true). Similar types
of visualizations are also used in gene expression analysis, genome scale RNAi
screens, or genome-wide association studies (GWAS).

As an illustration of the hit analysis we now return to the actual biochemical
example screen which we have used in the section on assay- and screening QC
metrics to show the typical behavior of selected measures for a complete screen with
around 1 Mio pure compound samples in 692 1536-well plates. In this particular
screen the plate data set was corrected with a ‘robust’ SVD modeling procedure
which was composed of an initial median polish run, trimming of those data points
which exhibit large residual values rijp > 4 madp

�
xijp

�
by replacing their values

with the model values, and finally calculating a SVD model across the whole screen
using this modified data set where the set of wells with large activity (NPI) values
were thus effectively omitted from the final modeling step (method not listed in
Table 5.6). This is the REOF procedure which is available, among several others
previously listed in the standard Novartis NIBR in-house HTS data analysis software
system (Gubler 2006). The scatterplot of normalized activity values (negative NPI
values) and the corresponding normal distribution p-values calculated from the
R-scores are shown in Fig. 5.7. This (half-) volcano plot allows a good simultaneous
assessment of activity values and their statistical significance. A similar plot can of
course be generated from %-activity and R-score values for situations where proper
p-values cannot be obtained.

A threshold along the %-activity or along the p-value or score axis can e.g.
be chosen so that the total number of hits is below some maximal number of
samples which can be progressed to the next screening stage, while simultaneously
considering the false discovery rate as outlined below. A %-activity threshold can
also include a consideration of the minimal potency of potential hit samples, i.e. an
estimate of the maximal acceptable IC50 value which is of interest in further analysis
by transforming the NPI values to such an IC50 by assuming an ‘ideal’ concentration
response relationship (see Eq. (5.11) below). For example when setting a threshold
at 50 % inhibition we would expect to be able to detect hit compounds with IC50

values which are smaller than the concentration used in the screening run (Gubler
et al. 2013). For samples without known concentration in screening (e.g. siRNA,
shRNA) such a direct translation can of course not be done.

A two component mixture model for the overall distribution function of the
normalized activity values of all results from a particular screen can be defined as

f .x/ D �0f0.x/ C .1 � �0/ fA.x/ (5.10)
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Fig. 5.7 (Half-) volcano plot of an actual 1Mio sample HTS with %-inhibition values on x-axis
and -log10(p) values of R-scores on y-axis. R-scores were corrected for average bias as outlined in
text. %-inhibition values and initial R-scores calculated after removal of systematic response errors

with proportion �0 of the null-distribution function f0(x) for the inactive samples
and proportion .1 � �0/ for the alternative distribution fA(x) of the active samples.
When applying this approach in practice to a large number of Z-, R- or equivalent
score values, then it is reasonable to assume f0.x/ � N .0; 1/, provided that
centering, possible error correction and the scaling values were estimated correctly
for the calculation of x. Especially the unbiased estimation of Qs is crucial for
transforming scores into normal probability p-values, as f0.p/ � U .0; 1/ only when
this prerequisite is fulfilled. In this sense the shape of the distribution for ‘larger’
p-values, where the influence of fA becomes negligible, can be used as a practical
consistency check for the appropriateness of the scale estimates Qs used in the score
calculations.

In practice we may also encounter situations where f0(x) is not normally
distributed as is the case e.g. after the application of the simple median polish
procedure. Given an initial normal distribution of values the residuals will in this
case usually appear leptokurtic with a central narrower peak and a related density
depression in its immediate neighborhood due to the various ‘median’ operations,
whereas the wider tail areas follow relatively closely a normal distribution density
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with a slight excess at larger x. In such situations it is also very likely that the
scale Qs will be underestimated and score values come out too large when compared
to the original residual scale. Due to both possible reasons it does also no longer
make sense to assign normal distribution p-values to the resulting corrected score
values x. If there is interest to explicitly extract fA(x) from such an activity- or
score distribution then a Bayesian mixture modeling approach with appropriate
empirical priors may be used, now with f0(x) itself already being a mixture of
a narrow and a broad component. If this is not done, or cannot be done, then
simple activity rankings will have to suffice for hit identification in routine screening
data analysis, but the additional highly useful information on e.g. estimated false
discovery rates cannot be obtained from the data. In any case, a lower limit for the
hit-threshold, in terms of %-activity or score values, can be derived from QsN of the N
controls, because in practice we always have QsN � QsC due to additional experimental
variability for the compound samples C as compared to the more homogeneous set
of neutral controls N.

In our particular illustration of screening hit analysis the R-scores were initially
calculated using the platewise QsN values based on a loess based variance shrinkage
procedure as described above. The corresponding score values were then used to
estimate the mixture components and perform a false discovery rate analysis using
the fdrtool R package (Strimmer 2008b). In order to compensate for any remaining
bias in the score estimates x the following procedure was applied: An average
R-score bias correction factor was derived from comparing the null distributions
f0.xN/ � N.0; s2

N) for fxN W x 2 Ng and f0.xC/ � N.0; s2
C) for fxC W x 2 Cg,

then rescaling the scores x as x
0 D x=sN , resulting in f0.x

0

N/ � N.0; 1) and
f0.x

0

C/ � N.0; s2
C=s2

N) where sC/sN should now be close to 1 if we assume that the
same average variance estimation bias is present in the control and compound data
samples. In this case this is borne out by the actual data from this screen and can
be seen in Fig. 5.8a where we obtain f0.x

0

C/ � N.0; 1:022/ after the described bias
correction with the normal null-density scaling factor of sN D 0:93.

Using the same set of scaled R-score values x
0

we can also see that the cor-
responding normal distribution p-values in Fig. 5.8b show the ‘expected’ behavior,
i.e. they are essentially flat in the large p region corresponding to a normal f0 density
with an average value of the proportion of samples following the null distribution of
O�0 D 0:84 and with a peak related to the alternative fA distribution of the non-null
samples at small p-values. Incidentally, we obtain consistent �0 values of 0.86 also
from fdrtool and 0.85 from the qvalue R packages (Storey and Tibshirani 2003).
This consistency allows us to have confidence in the related tail area ‘Fdr’ (Efron
2004) values as reported by qvalue (see Fig. 5.8c) where we can see that Fdr �0.1
for up to a total number of identified hits (significant tests) of nhit Š 49,000, also
in agreement with the direct p-value histogram analysis of the Fdr fraction. This
q-value (�0.1) corresponds in this particular case to a one-sided p-value of 0.006
and a Z (R-score) threshold of around 2.5. When limiting nhit to 16,000 by selecting
a R-score cutoff of around 4, then we obtain an expected Fdr close to 0. This means
that we can expect a very high hit confirmation rate—close to 100 %—in a follow-
up verification experiment.



126 H. Gubler
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Fig. 5.8 (a) Decomposition of bias-corrected R-score values into null- and alternative mixture
components using R package fdrtool. (b) p-value distribution of the same dataset with indication
of hit selection threshold of p D 0.006 (red vertical line) and estimated percentage of null samples
O�0 D 0.84 (red horizontal line). (c) Expected false positives as function of total number of
significant tests following from tail area false discovery rate analysis using R package qvalue,
with red marker lines for Fdr D 0.1

With an average QsN value of 4.5 % (rescaled as per the described average bias
correction procedure), this score threshold can be converted into a %-inhibition
(NPI) threshold of 4�4.5 % D 18.0 %. Disregarding the different plate-to-plate
variances which are taken into account in the R-scores, but not in the NPI values,
we can then loosely say that the actually chosen threshold value of 20 % inhibition
for this screen is thus quite ‘conservative’ with respect to the false discovery rate
criterion. From such a mixture distribution- and p-value histogram analysis we
can also get estimates for the proportion of the non-detected active samples for
the threshold setting corresponding to Fdr D 0.1 example value and obtain a false
negative FNR D 0.39 in this case, or FNR D 0.68 for the threshold at R-score D 4.
A set of p-value distribution and FDR analyses for different screening assays done
by Prummer (2012) shows quite good agreement between estimated confirmation
rates and the actually observed ones for a series of screens where follow-up
experiments were performed as complete concentration-response measurements.
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When analyzing screening data with replicates the (compound-) sample specific
data variability can be estimated, resulting in the possibility to apply more powerful
for hit-selection methods than for the n D 1 case where we are essentially assuming
that every sample has the same variability. Of course it is always possible to
simply average the normalized responses from the replicates and analyze them
in the same way as the unreplicated primary data. This is not a real problem in
small molecule compound screening, but e.g. for RNAi screening where we expect
differences of variability among different siRNA samples it is essential to apply
statistical methods which consider these possible sample specific differences. When
comparing different RNAi treatment effects to each other the use of good estimates
of the variability and use of efficient statistics becomes crucial. Many different
approaches for analyzing and identifying hits from replicated data have been
developed for gene expression array data (Kerr and Churchill 2001; McDavid et al.
2013; Baldi and Long 2001; Smyth 2004) and for RNAi screening (Birmingham
et al. 2009), including Bayesian modeling and hypothesis testing approaches (Zhang
et al. 2008). SSMD-based analysis (see Table 5.2) and hit selection rules for RNAi
screening data with and without replication, as well as statistical methods for
comparison of gene effects between groups are discussed in depth in a book by
Zhang (2011a).

Gene expression experiments are usually using both biological and technical
replication, i.e. measuring readout variability of responses from different sample
sources and from different measurements of the same sample in a given experiment.
Also in RNAi screening we can have similar situations: replicates from different
sample preparations or simply multiple measurements of the same sample. Estima-
tion and modeling of the error components from the replicated sample, the replicated
measurements from of a single sample and combining these with the estimates
from the neutral control samples can be done in different ways to provide more
efficient variance estimation for subsequent hypothesis testing. Regularized variance
estimations for use in hit selection methods often use shrinkage and Bayesian
approaches and will lead to more powerful ‘regularized’ hypothesis testing (e.g.
regularized t-statistics, Baldi and Long 2001; Tusher et al. 2001; Murie et al. 2009).
The advantage of Bayesian methods is to allow incorporating balanced information
from sample wells and control wells in the posterior distributions and then assigning
probabilities to the test samples of belonging to either of the no-effect, activation
or inhibition groups. The wide area of statistical methods for gene expression
analysis and identification of differentially expressed genes (equivalent to effect-
size assessment and hit selection for replicated screening data) was worked on
extensively in the past 10–15 years and it is impossible to cover in this short chapter
and we refer the reader to the extensive base of published literature on (primarily)
microarray, but also RNAi screening data analysis (Birmingham et al. 2009, and
references therein).

As mentioned previously in the section on data normalization for RNAi screens
the siRNA effects are often better quantified by using the SSMD-statistic than by
using R-scores, especially when working with replicates. In a similar fashion than
shown in the previous volcano plot example for a compound-based ‘%-inhibition



128 H. Gubler

screen’ we can also plot p-values based on SSMD analysis and the Fold-change
values, instead of using the Z- or R-score based p-values and the %-inhibition values,
to arrive at an equivalent visualization (even including the various types of controls
in the same plot for additional information content). The derivation of FP, FN and
related FDR rates based on the SSMD-statistic is outlined in much detail in Zhang
(2011a).

In contrast to the RNAi screening and gene expression analysis areas publications
on the topic of replication for small-molecule HTS data in full primary screens
are practically non-existent because replicate measurements are essentially only
done in the initial pilot phase where the focus is primarily on assessing the degree
of agreement, and then again in the confirmation stage, i.e. after the primary
screening hit selection where the analysis is again more centered around verifying
the initially detected primary screening effect of the putative hits. Determining
responses from replicated measurements using samples from the same or from
different formulations of the same compound at a single concentration and/or the
determination of a verifiable and plausible concentration dependence of the sought
effect is the prime focus in this phase, but this is no longer a large-scale multiple
hypothesis testing process with the associated need to control false positive (false
discovery) and false negative rates.

We note again that the final hit list is often additionally filtered by considering
counter screening results besides the results from the main screen, and we also need
to mention that the HTS community often uses the term ‘false positives’ in the sense
that a chemical test sample may well be verifiably active in a given assay through
a target-independent effect, but inactive towards the actual biological target, as e.g.
detected by a counter screen. This is obviously not the same use of the term ‘false
positive’ as in statistics.

In compound screening additional elimination and selection steps are often made
to modify the primary hit list, either by applying filters which identify unwanted
chemical structure elements and compounds possessing specific chemical property
values, or also augmenting the hit list based on structure-activity considerations
(‘hit list enrichment’) with related similar compounds for subsequent confirmation
or other follow-up experiments (Sun et al. 2010; Varin et al. 2010; Mulrooney et al.
2013).

5.2.11 Calculation of Derived Quantities from Normalized
Plate and Well %Activity Data

The estimated standard errors and the unbiasedness of derived summary results or
of parameters of calculations of derived quantities which are themselves based on
a whole series of %-activity values in different wells in one or multiple plates also
depend on best possible plate data quality in a very similar way as the data used
for primary hit selection. Thus, every effort should be made to apply the response
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error correction methods outlined above also in these types of experiments. Because
most of these types of experiments rely on a high percentage of non-null data the
previously described modeling approaches can often not be used directly. Useful
models of the systematic errors can nonetheless be established by using control
data from suitable plate designs (‘uniform’ placement of control wells across the
plates), or often better, by a separate set of control plates measured in parallel to
the sample plates. The advantage of the latter approach is that we are then also
able to model and correct for possible striping, edge effects and more ‘complicated’
patterns than e.g. linear or 2nd degree polynomial response surface dependencies
which are essentially the only practical possibilities when using a limited number
of control wells as pattern model anchor points on the sample plates. An example
of such control plate correction approaches (CPR, control plate regression) and
assessment of their success in concentration-response screens was described by
Murie et al. (2014).

The most frequent case of calculations of such derived results from High-
Throughput Screening plate experiments is the determination of the concentration-
response curve (CRC) characteristics of the compound samples and the estimation
of the parameters of the simple phenomenological sigmoidal 4-parameter-logistic
(4PL) Hill curve function

y D f 4PL.x/ D Ainf C
�
A0 � Ainf

�

1 C 10˛.log10.x/�log10.AC50//
(5.11)

if a significant concentration dependence exists in the experimental range employed
in such a screen (Ritz and Streibig 2005; Formenko et al. 2006). In Eq. (5.11) we
have concentration x, response y, and the 4 function parameters A0, Ainf (lower and
upper plateau values), AC50 (inflection point) and ˛ (Hill slope parameter), and
f 4PL .AC50/ D �

Ainf C A0

�
=2. Note our use of the generic term AC50 instead of

the specific terminology IC50 for inhibition (IC: inhibitory concentration) and EC50

for activation experiments (EC: effective concentration).
The original Hill function (Hill 1910) has a theoretical basis in simple ligand

binding theory, albeit with some unrealistic mechanistic assumptions (Goutelle
et al. 2008). For all practical purposes in screening, especially for more complex
cellular assays where potentially a whole cascade of biochemical reaction steps is
involved, it should be viewed more as a convenient empirical model. Rankings of
the ‘strength’ of the validated hit compound effects are usually based on the AC50

parameter, but for some types of assays Ainf ,
�
Ainf � A0

�
or an ‘area under the curve’

effect measure which combines potency and efficacy into a single number are also
considered (Huang and Pang 2012).

Even if the compounds for concentration dependent measurements are pre-
selected to have shown activity in the previous concentration-independent screening
primary runs the number of cases of ‘incomplete’ curves is usually still quite high,
of course dependent on chosen hit threshold, previously used primary screening
concentration and actual concentration range of the CRC experiments. In the HTS
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confirmation and validation screens the concentration range is held constant and not
adapted on a compound by compound basis as might be done in low throughput
compound profiling experiments. An accurate and independent determination of all
regression function parameters is then not always possible and the analysis software
needs to produce sensible results also in the initial presence of high degrees of
parameter correlations, e.g. by automatic identification of ill-determined parameters
and sensible application of constraints, or by switching to simpler fallback models,
if needed.

HTS production-quality software for automated nonlinear regression fitting of
large series (i.e. thousands or tens of thousands) of concentration-response curves
needs to work in a highly robust fashion, use autostarting methods for estimation of
initial parameters, and be able to handle outliers, e.g. by using resistant regression
algorithms (M-estimation, IRLS iterative reweighted least squares) (Normolle 1993;
Street et al. 1988). Also the likely presence of outliers needs to be signaled as
diagnostic information. The analysis methods implemented in the software also
need to be able to deal flexibly with other frequent ‘unusual’ situations like
completely inactive compounds which lead to �constant activity values over the full
concentration range making it impossible to derive the 4 parameters of Eq. (5.11)
in a meaningful way, or with the mentioned ‘incomplete curves’ where e.g. the
response plateau at higher concentrations is not reached, and generally with unusual
non-sigmoidal curve shapes (e.g. bell-shaped, inversely bell-shaped, multiphasic).

If experimental curve shapes do not follow the sigmoidal shape of Eq. (5.11)
then derived parameters can be strongly biased, up to the level of being completely
misleading to the analyst, e.g. when trying to represent a bell-shaped curve with
f4PL. Thus, the detection of lack of fit and the selection of alternate models for
the regression analysis is an important topic for large scale concentration response
curve fitting in screening. A pragmatic modeling approach is to move away from a
parametric representation of a given curve and choose a nonparametric model fNP as
per Eq. (5.12)

y D f NP .x; ‚/ : (5.12)

if this is necessary. This model switching decision can e.g. be based on predefined
lack of fit criteria together with the occurrence of large parameter dependency
values. Depending on the actual model choice for fNP, a preparatory optimization
of one or more model parameters ‚ for use in the actual curve analysis may be
needed to reflect the experimental design and the typical assay variability. This can
e.g. be done by assessing penalized likelihood measures, e.g. the Akaika information
criterion (Akaike 1974), or using generalized cross validation (Craven and Wahba
1979) on the complete curve data set by varying ‚ within appropriate ranges.
A practical choice for fNP is e.g. a smoothing spline function (Frommolt and Thomas
2008), possibly including monotonicity constraints (Kelly and Rice 1990). It is
understood that the x values in these functions are the logarithmic concentrations
log10(x). For simplicity of notation we are not explicitly mentioning the logarithms
in the remainder of this section.
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Instead of the previous 4 model parameters in Eq. (5.11) we then use surrogate
values which provide an equivalent characterization of the concentration-response
relationship, e.g. the set of values f (xmin), f (xmax), min(f (x)), max(f (x)), arg minx

f (x), arg maxx f (x), and also the ‘absolute’ AC50 (concentration of the intersection
of the fitted curve with the 50 % level as given by the N and P controls) abs
AC50 D fx W f .x/ D 50g, as well as an approximate ‘equivalent Hill slope’ ˛ �
4.df =dx/xDabsAC50

= .ln.10/ .f .xmax/ � f .xmin///, together with proper consideration
of non-existent or multiple intersections in the set fx W f .x/ D 50g.

Such a nonparametric approach is also useful for confirmation CRC experiments
where only 2–4 different concentrations may be used to verify the existence of
reasonable concentration dependences and to obtain a rough estimate of abs AC50

for the putative hits, making it essentially impossible to use parametric nonlinear
regression methods. For the analysis of such experiments the choice of interpolation
splines for fNP are preferred over smoothing spline functions.

For some types of assays (e.g. cell proliferation inhibition) the abs AC50 value—
which can of course also be directly calculated from f4PL(x) when using the model
represented by Eq. (5.11)—can be biologically more meaningfully interpreted
than the AC50 function parameter (Sebaugh et al. 2011). In such experiments the
concentration where 50 % response inhibition with respect to the control values
is reached will have an easily interpretable meaning, whereas the position of the
AC50 concentration (i.e. the inflection point of the curve) can e.g. be influenced
by the fact that we can obtain cell count readings at high concentrations which lie
below the 100 % inhibition baseline value (when cells are killed) or that the 100 %
inhibition level is not reached (cell growth cannot be completely inhibited), i.e. we
can have �A D ˇ̌

Ainf � A0

ˇ̌
>100 % or �A <100 %. As a consequence the position

of the inflection point is less informative than the position of the intersection of the
response curve with a particular prescribed inhibition level.

When considering AC50 or abs AC50 potency rank orders for the final selection
of hits in the confirmation or validation screens the MSR (minimum significant
ratio) which was optimally already derived in the assay adaptation stage (see
Table 5.3) can be used as an indicator for assessing the ‘significance’ of potency
differences (Eastwood et al. 2005, 2006). Other relevant measures in this context,
when comparing the potency values from the target specific screen and one or
several parallel selectivity screens, are the MSSR (minimum significant selectivity
ratio) and MSRSR (minimum significant ratio of selectivity ratios) values. They are
calculated in a similar way as MSR (Goedken et al. 2012) and give information on
the confidence limits of the selectivity ratio SR D AC50(off-target assay)/AC50(on-
target assay) and of ratios of SR values for different compounds.
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5.3 Open Questions and Ongoing Investigations in the HTS
and HCS Data Analysis Methods Field

Many aspects of small-molecule and RNAi High-Throughput Screening data
analysis were explored in the past 10–15 years and several publications describe
the details of the most relevant statistical aspects for the analysis of HTS data:

• Detection, modeling and correction of systematic error patterns of the plate-based
screening readouts and to minimize selection bias, and thus allowing

• Optimal activity scoring and ranking of active features in the hit selection process
to minimize the false discovery rate, minimize the number of false negatives and
maximize the success rate of follow-up screening stages.

Nonetheless, in the author’s opinion several specific areas merit to be explored
and reported in more depth for the benefit of the whole HTS and HCS community:

• Which are the most optimal plate designs for replicate single concentration and
concentration-response experiments? Which are the most optimal locations for
replicate data points distributed on a single plate, or on multiple ‘replicate’ plates,
given certain types of systematic errors?

• Is there an overall ‘best’ modeling and correction method for certain types of
systematic error patterns? Which methods are overall most efficient and have the
least amount of bias?

• Standard testing datasets and platform for comparing different analysis methods,
including test and performance results.

• Response error modeling methods involving many median operations in their
calculation (like e.g. the median polish and the simplified B-score methods) often
lead to strongly non-normal distributions of the residuals. What is the best and
most practical way to perform false discovery rate analyses in such cases?

The following are questions, active research topics and future directions of
necessary statistical work in the area of high-dimensional multivariate screening
data analysis. The ‘classical’ HTS assays, readout technologies and associated
data analysis methods as outlined in this chapter will keep a lot of their present
importance, and even become more pervasive in academia and smaller biological
research laboratories for target identification, target validation and screening for
active chemical features. But active research and development of statistical data
analysis methods in the HTS/HCS field now center much more on these general
questions:

• What are the most optimal normalization, feature selection, dimension reduction,
error correction, scoring and classification methods for high-dimensional mul-
tivariate data from phenotypic image based High-Content Screening and other
similar sources of such data? Under which conditions are the particular methods
applicable? What are their advantages and disadvantages?
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• What is the influence of imaging parameters and noise on the localization of
subcellular features and what is the influence of different types of image analysis
artifacts on HCS data analysis? How do these affect the derived (usually lower
dimensional) final measures and classification results?

• What are the most suitable and informative analysis methods, including normal-
ization and possible systematic error correction questions, for single cell data and
multivariate time-course data?
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