Chapter 10

General Toxicology, Safety Pharmacology,
Reproductive Toxicology, and Juvenile
Toxicology Studies

Steven A. Bailey, Dingzhou Li and David M. Potter

Abstract This chapter provides a survey of key nonclinical safety assays. For each
study type, we discuss the typical study designs employed, including a summary of
the type of endpoints collected. We then provide an overview of common statistical
approaches in each setting. There are some general themes that are common across
the study types (e.g., trend testing). At the same time, the different study types may
have features that require special consideration (e.g., cross-over designs for safety
pharmacology studies, intra-litter correlation in reproductive toxicology studies).
While some of the design aspects of these studies are to some extent “fixed” by
precedent across the industry, we do address sample size and power considerations,
as this information can be valuable to understanding how statistical results can
contribute to the overall interpretation of these studies. Finally, for any discussion of
statistical approaches, there are likely to be multiple reasonable approaches. We’ve
attempted to cover some of the more common approaches in detail, but we recognize
that our treatment is not exhaustive. Where possible, we have provided references
for further reading.

Keywords Toxicology ¢ Juvenile toxicology ¢ Reproductive toxicology ¢ Safety
pharmacology ¢ Preclinical safety * Trend testing

10.1 Introduction

As was discussed in Chap. 9, a range of safety studies must be conducted prior
to clinical trials. General toxicology, genetic toxicology and safety pharmacology
studies, for example, must be conducted prior to Phase I clinical trials. The need
for and timing of other safety studies, such as reproductive toxicology and carcino-
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genicity studies, will depend on the type of drug (e.g., small molecule, biologic)
and the intended patient population. These safety studies are termed “regulatory”
studies because of requirements and guidance from regulatory agencies on the
scope, duration, and timing of these studies. The three main regulatory bodies, the
US Food and Drug Administration (FDA), the European Medicines Agency (EMA),
and the Japanese Pharmaceutical and Medical Devices Agency (PMDA), differ in
some instances in their recommendations regarding the safety studies needed to
support various stages of clinical development. There have, however, been efforts to
standardize and harmonize recommendations across the three regions (International
Conference on Harmonization 2010). This chapter addresses general toxicology,
safety pharmacology, reproductive toxicology, and juvenile toxicology studies.

10.2 General Toxicology

10.2.1 Overview

The overall objectives of general toxicology studies include identifying target
organ toxicity (i.e., which organs are potentially affected), characterizing the dose—
response or exposure-response relationship, assessing the potential reversibility of
test article effects, and identifying possible endpoints to use to monitor adverse
events in clinical trials. A wide range of endpoints are collected during these studies.
Quantitative endpoints include body weight, food consumption, organ weights, and
clinical pathology measurements. Clinical pathology can include hematology, serum
chemistry, and urinalysis endpoints. In addition, more qualitative endpoints include
clinical signs, gross pathology, and histopathology. Toxicokinetics (measurement of
exposure to the test article) are included in these designs to monitor drug exposure
levels, to aid with interpretation of findings in the study, and aid in selecting starting
clinical doses.

An expectation of these studies is that they establish a dose—response relation-
ship, from no effect to adverse effect. To do this, most studies include a control
and at least three doses of the drug being evaluated, with doses chosen to exceed
anticipated clinical doses, and the high dose chosen to induce toxicity in order
to help identify target organ toxicity. The highest dose selected is typically the
“maximum tolerated dose” (MTD) meaning that animals show evidence of toxicity
(e.g., decreased body weight, changes in clinical signs) but do not experience
mortality or morbidity. Dose selection and its impact on the effective and efficient
use of animals is a critical consideration in these studies. If doses are chosen too
high (potentially causing mortality), or too low to cause any toxicity, studies may
need to be repeated.

The studies are typically conducted in a rodent species (e.g., rat) and a non-rodent
species (e.g., dog, non-human primate (NHP)). For rodents, there are typically 10
animals per sex per treatment group. For non-rodents, 3—4 animals per sex per group
is common. In many cases, exploratory (i.e., non-regulatory) studies are conducted
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in advance of the regulatory studies in order to inform the design of the regulatory
studies. These studies are typically smaller (e.g., 5 rodents per sex per group, 1
non-rodent per sex per group).

The duration of a general toxicology study is chosen based on the clinical
studies it supports. The first set of general toxicology studies are in support of
Phase I clinical trials in humans. Initial “dose-range finding” (DRF) studies are
non-regulatory studies that seek to identify the maximum tolerated dose (MTD)
to inform dose selection in subsequent regulatory studies. Their duration is usually
2 weeks or less, but may be much longer depending on the half-life of the test
article. Regulatory studies, typically up to 1 month in duration, are then conducted.
To support Phase II studies, longer (typically up to 6 months) regulatory studies
are required, again, in both rodents and non-rodents. To support Phase III studies
and post-approval use in patients, regulatory studies up to 9 months in duration
are conducted, usually in non-rodents. In addition, carcinogenicity assessments for
lifetime exposure are conducted (typically 2 years in rats and 6 months in transgenic
mice). Some recent research on the design and analysis of carcinogenicity studies is
presented in Chap. 12.

For the most part, these studies are “multi-dose” or “repeat-dose” studies,
meaning that the drug is administered regularly (e.g., daily) during the course
of the study. “Acute” studies, by contrast, are characterized by either a one-time
administration of the drug or possibly repeated doses in a short time-frame (e.g., 1
day).

The results of these studies, in conjunction with other nonclinical safety assess-
ments, contribute to the identification of No Observed Adverse Effect Level
(NOAEL). Definitions of the NOAEL vary somewhat, but in general it is taken to
be the highest experimental dose without an adverse effect. Note that confidence
in the determination of the NOAEL will depend on the study design. For an
excellent review and discussion of the NOAEL and its limitations, as well as
alternative approaches, see Dorato and Engelhardt (2005). Included in their article
is a discussion of the Benchmark Dose (BMD) Method (BMD), introduced by
Crump (1984). The idea is to fit a dose-response model to the study data and select
through calibration (i.e., inverse prediction) the dose level that corresponds to a
prespecified adverse response (e.g., a certain percentage increase over the control
group response). Then, the lower bound on a confidence interval for the dose level
is used as the identified dose. For a review of the BMD approach, see Filipsson et al.
(2003).

10.2.2 Statistical Analysis Methods
10.2.2.1 Comparing Dose Groups to Control

Since these are parallel group designs, typically with a control and three dose
groups, the analysis options are relatively straightforward. Analysis of variance
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(ANOVA) methods can be used, with pairwise comparisons of each dose group
back to control. Because the primary comparisons of interest are typically relative
to a single control group, Dunnett’s Test (Dunnett 1955) is often used. Trend testing
methods are also used, taking advantage of the natural ordering of the dose groups
in most studies. This approach allows for an overall assessment of a dose—response
relationship, and with sequential testing variations (Tukey et al. 1985), also provides
a way of estimating a “no statistical-significance of trend dose [NOSTASOT]”,
as Tukey described it. Assuming a control group and three dose groups (low,
intermediate, and high), a sequential trend test could be conducted as shown in the
flowchart in Fig. 10.1.

The advantage of trend testing methods is that for monotonic dose-response
patterns, the methods are more sensitive than pairwise comparisons alone. Note
that the NOSTASOT for a particular endpoint is being declared based on a lack
of statistical significance, which could result due to lack of a true effect, or due to a
lack of power to detect an effect.

There are several options for implementing trend testing. One common approach
is to estimate linear contrasts in the context of an ANOVA. Consider the data shown
in Table 10.1 and Fig. 10.2 for the liver enzyme alanine aminotransferase (ALT)
from a hypothetical 1-month general toxicology study. Elevations in ALT often
reflect changes in liver structure or function.

The data suggest an elevation in ALT levels with increasing dose. Note also that
variation appears to increase with the magnitude of ALT. This is common for many
clinical pathology parameters, and a log transformation is often appropriate. For
this example, Levene’s Test didn’t suggest strong evidence of unequal variance
(p=0.085), and hence we analyze the data on the original scale. The overall
F-test from an ANOVA indicates a significant difference among the groups (F = 23,
p<0.001, df =3.16). The toxicologist is specifically interested in which dose
groups differ from control, and so pairwise comparisons are conducted. Table 10.2
shows the results of pairwise comparisons using Dunnett’s Test and a sequential
trend test.

Table 10.3 shows the linear contrasts used for the trend test. Contrast 1 tests for
an overall linear trend among all four dose groups. Contrast 2 tests for a linear trend
among the control, low, and intermediate dose groups only, and it is only conducted
if Contrast 1 is statistically significant. Similarly, Contrast 3 tests for a difference
between the control and low dose group and is only conducted if Contrast 2 is
statistically significant. For these data, both the high and intermediate doses would
be declared significantly different from control, at the 5 % level. Note that using this
sequential approach, testing at subsequent doses only occurs if the initial contrast
is statistically significant. Hence, the overall (i.e., family-wise) error rate of the
procedure is less than or equal to a.

In contrast, Dunnett’s Test indicates a difference between the high dose group
and control only, at the 5 % level. In general, in settings where monotonic dose—
response patterns are expected, then trend testing methods will be more powerful
than Dunnett’s Test. Simulations can be used to assess the extent of the advantage.
For example, assume that the true mean levels of ALT are (21,24,26,29) in the



10 General Toxicology, Safety Pharmacology, Reproductive Toxicology. . .

Conduct 2-sided trend test
across all dose groups.

X

,,/'/ \\\ | Conclude no dose groups
" Trend test ™. | significantly different from control.
4 tod ——No—»
. S|gn|ﬁcant?/_/

N NOSTASOT is high dose.

Conduct 1-sided trend test (in direction suggested
by overall trend test) across control, low, and
intermediate dose groups.

/X\\
AN ' Conclude only high dose
" Trend test ™. | significantly different from control.
“._significant? o —w
g o | NOSTASOT is intermediate dose.

.. -
N

Yes

: v
Conduct 1-sided trend test (in direction suggested
by overall trend test) across control and low dose
groups.

X
TN Conclude high dose and intermediate

i dose groups significantly different from

/’/ Trend test \‘\

N significant? _ P No control.
. =
M NOSTASOT is low dose.
Yes
Y
Conclude high,

intermediate, and
low dose groups
different from
control.

Fig. 10.1 Flow chart for sequential trend testing
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Table 10.1 Example

hypothetical ALT (U/L) data
from a 1-month general
toxicology study in rats
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Table 10.2 Summary of

pairwise comparisons

for ALT

Table 10.3 Linear contrasts
for trend testing with four
treatment groups

S.A. Bailey et al.
Control | Low dose | Intermediate dose | High dose
21.3 17.3 33.6 40.3
16.9 20.2 22.8 48.5
24.4 23.1 28.3 34.5
19.2 27.6 25.2 38.6
21.3 19.2 26.0 51.0
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Fig. 10.2 Scatterplot of example ALT data
P-value
Treatment N |Mean |SD |Dunnett | Trend
Control 5 1206 |28 |- -
Low 5 (215 4.0 (098 0.39
Intermediate |5 |27.2 |4.1 |0.10 0.02
High 5 |42.6 |69 |<0.01 <0.01
Contrast 1 | Contrast 2 | Contrast 3
Control -3 -1 —1
Low —1 0 1
Intermediate 1 1 0
High 3 0 0




10 General Toxicology, Safety Pharmacology, Reproductive Toxicology. . . 237

Table 10.4 Power to detect differences between high dose group and
control using sequential trend test and Dunnett’s test

N per group | Power — Trend test (%) | Power — Dunnett’s test (%)

3 32.0 17.4
4 42.7 25.9
5 52.9 33.8
6 61.2 42.3
7 70.0 51.6
8 75.7 58.5
9 80.4 63.9
10 84.4 69.2
15 96.1 89.5
20 98.9 96.2
Simulated group means =(21.24,26,29). Standard deviation = 6.
10,000 runs

control, low dose, intermediate dose, and high dose groups respectively, and that
our estimate (from historical control data) of the standard deviation is 6. For a range
of sample sizes, Table 10.4 shows the proportion of times the high dose group was
significantly different from the control group at the 5 % level.

In addition to the linear contrasts approach, there are other methods for testing
for trends. For example, some methods assume only a monotonic response. The null
and alternative hypotheses in this setting are:

Ho: py = po = 3 = g
Hat gy < po < 3 < pa(orpin = o > fi3 > Ua)

with at least one strict inequality. One method due to Williams (1971, 1972) is
basically a series of pairwise t-tests of each dose group versus control, based on
amalgamated means. Because of this similarity to the traditional ¢ test, it was
termed the 7 test. The amalgamation procedure enforces a non-decreasing (or non-
increasing) ordering of the sample means, using the pooled adjacent violators
(PAV) algorithm Consider an example where the dose group means are (2,4,6,5)
as shown in Fig. 10.3. The PAV algorithm moves left to right, checking for non-
monotonicity among adjacent pairs. In this case, the intermediate and high dose
groups violate monotonicity, so their means are averaged. The final group means
are thus (2,4,5.5,5.5). In a second more extreme example, assume that the dose
group means are (2,7,7,1), as shown in Fig. 10.4. In this case, the intermediate
and high dose group means violate monotonicity, and so their means are pooled,
resulting in group mean equal to (2,7,4,4). Because the low dose group mean now
violates monotonicity when compared to the pooled intermediate and high dose
group means, those three group means are pooled, resulting in (2,5,5,5) for the final
amalgamated group means. In addition to the pairwise t-tests based on amalgamated
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Fig. 10.4 Example of multiple-step amalgamation procedure
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Fig. 10.5 Example of non-monotonic relationship with dose group

means due to Williams, there is also a trend test based on amalgamation means. This
test, called the FZ test (Barlow et al. 1972).is essentially an overall ANOVA F-test

based on amalgamated means. For more details on the 7 and E tests, including
critical values and calculation of p-values, see the original papers, as well as Bailey
(1998).

Occasionally in general toxicology studies, the observed pattern in group means
with increasing dose is not monotonic. See, for example, data shown in Fig. 10.5.
In these cases, sequential trend testing methods lead to one of two conclusions.
In one case, the initial trend test will not be significant, so the sequential testing
stops with no dose groups being declared different from control. In a second case,
the initial trend test across all dose groups will be significant (due to the influence
of the low and intermediate dose groups), leading to the high dose group being
declared significant. In the case shown in Fig. 10.3, the initial trend test (using
linear contrasts) is significant (p = 0.016), leading to the conclusion that the high
dose group differs from control. In either of the two cases, interpretation can be
challenging. One way of addressing this issue is to include a check for monotonicity
upfront. One approach to testing for non-monotonicity is based on comparing the
group means with the amalgamated means, using an F-test. See Healey (1999) for
more details. If there is evidence of non-monotonicity, then the results from pairwise
comparisons (say, using Dunnett’s Test) could be provided instead. Alternatively,
the approach taken by Bretz and Hothorn (2003) could be considered, in which
multiple contrast tests (MCT’s) are used to identify a potential trend only up to a
given dose level.
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10.2.2.2 Parametric vs. Nonparametric Methods

In a typical statistical comparison of groups (e.g., using an ANOVA model), the
researcher checks (often visually) distributional assumptions such as normality
of the residuals and equal variability across treatment groups. Depending on the
assessment, it might make sense to transform the dependent variable (e.g., log)
or use a nonparametric approach. However, in the analysis of general toxicology
studies, the statistical methods are often implemented as part of automated systems;
the same model will be run for multiple endpoints, possibly across multiple
timepoints. Hence, it may not be feasible to check data distributions and other
assumptions for each model at the time of analyses. There are at least three
approaches to handling this issue.

One approach is to automate the assessment of the distributional or other
assumptions prior to analysis. This approach is often represented as a “decision
tree” (not to be confused with classification and regression trees used in predictive
modeling) or flow chart. For example, depending on an initial test of normality, the
data may or may not be rank transformed, or undergo some other transformation,
prior to analysis. Note that in some systems we have encountered, data are analyzed
nonparametrically if an initial test suggests a departure from the assumption of
constant variability across treatment groups. Many nonparametric approaches (e.g.,
Wilcoxon, Kruskal-Wallis) still rely on the homogeneous variance assumption,
however. A second approach is to evaluate historical control data to evaluate
the distribution of each endpoint. Those variables that deviate appreciably from
normality could be routinely analyzed using a log or rank transformation; these
choices for each endpoint would be prespecified in the automated system. A third
approach is to use a rank transformation for all parameters. This would guard against
cases where an extreme value may mask a potential effect, and in general won’t
result in an appreciable loss of power. For example, using the setup in the previous
section, with mean ALT equal to (21, 24, 26, 29), we can compare the power of a
rank-based approach to the original, using the sequential trend test based on linear
contrasts. The results are shown in Table 10.5 and suggest some loss of power with
the rank-based approach, but typically only a few percentage points in this scenario.

In addition to applying contrast-based trend tests to the ranks of the data, there
other nonparametric implementations of trend tests, including those due to Shirley
(1977) and Jonckheere (1954).

10.2.2.3 Sex Effects

General toxicology studies are typically conducted in both sexes. Traditionally,
statistical analyses have been conducted separately for each sex. There may be a
gain in sensitivity by conducting a combined analysis including a model term for
sex (i.e., as a block) in the ANOVA. The challenge arises if there is a statistical
interaction between sex and dose for one or more parameters in a given study. It
is not uncommon to observe sex-related differences in exposure due to differential
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Table 10.5 Power comparison of parametric and rank-based sequential trend tests

Based on original data values Based on ranks

Low Intermediate | High Low Intermediate | High
N per group |dose (%) |dose (%) dose (%) |dose (%) |dose (%) dose (%)
3 15.6 24.4 32.0 15.9 24.9 31.7
4 17.7 30.0 42.7 17.9 30.0 41.3
5 19.3 354 529 18.7 344 50.4
6 21.6 39.6 61.2 21.2 39.2 58.9
7 23.0 45.4 70.0 22.9 44.7 67.6
8 26.4 49.6 75.7 26.0 48.7 73.0
9 27.5 53.6 80.4 26.7 53.1 78.0
10 29.4 57.0 84.4 28.5 56.4 82.7
15 38.2 73.0 96.1 37.4 71.6 95.2
20 47.6 83.5 98.9 46.5 82.3 98.6

True group means = [21,24,26,29]. Sequential linear contrast approach

metabolism or hormonal influence. In this case, the toxicologist will want to evaluate
the impact of treatment separately for each gender. Again, since these analyses are
often automated, the conventional approach has been to assume the potential for an
interaction, and analyze by gender. This is an area for continued development.

10.2.2.4 Time Effects

Some endpoints, such as organ weights, can be collected only once in a general
toxicology study. Others, such as body weights and food intake, are captured more
frequently (e.g., weekly). Clinical chemistry, hematology, and urinalysis parameters
are typically collected at the end of study, but may also be collected multiple times
(e.g., monthly in a 3-month study). In some cases, and especially for large animal
studies (e.g., NHP, dog), a baseline measurement (i.e., prior to any dosing) may be
taken for each animal. In these studies, it is typical for the toxicologist and/or clinical
pathologist to focus on changes from baseline values, rather than comparing control
and test article-administered animals at each time point, especially when the sample
sizes are small (e.g. 3/sex/group).

Incorporating a baseline adjustment (i.e., as a covariate) into an ANOVA model
may, in some cases, improve the power of these analyses. However, it is important
to evaluate the extent of correlation between baseline and follow-up measurements
for each endpoint. A recent internal Pfizer study of clinical pathology control data
from 20 GLP general toxicology studies in NHP’s showed a substantial range in
correlation (approximately 0.15-0.95) across about 45 endpoints. Some endpoints
(e.g., ALT) had within-animal correlations above 0.90. Others (e.g., glucose) were
in the range of 0.35. Overall, more than 1/3 of the endpoints had within-animal
correlations below 0.5; for these endpoints, including a baseline covariate may
actually reduce the sensitivity of statistical tests.
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Table 10.6 Reference ranges

N . Analyte Range | Units
for select clinical chemistry al 91218 JdL
parameters, based on Wistar ucose = mg
rats Potassium 3.3-5.0 | mmol/L

Cholesterol 30-71 | mg/dL

Alanine Aminotransferase (ALT) |15-66 | U/L

10.2.2.5 Reference Ranges

In addition to comparisons between dose groups and concurrent controls in a general
toxicology study, for many endpoints there are well-established reference ranges,
based on historical control data, against which to compare individual data values.
A reference range is defined as an interval in which some percentage (e.g. 95 %) of
an endpoint’s values would fall, assuming a healthy population of subjects. These
intervals can serve as the basis for determining whether individual drug-treated
animals are unusual in their response. There are both parametric and nonparametric
approaches to constructing these intervals. For the former case, the data (possibly
transformed) are assumed to be normally distributed, and quantiles (e.g., 2.5 % and
97.5 %) are derived based on normal theory. In the nonparametric case, the sample
quantiles are computed directly from the data. Some example reference ranges for
Wistar Han IGS rats based on recent historical control data at Pfizer are shown in
Table 10.6. These reference ranges were calculated using the EP Evaluator software
(EP Evaluator 2005), which uses a nonparametric approach (Clinical and Laboratory
Standards Institute 2000). When constructing reference ranges, it’s important to note
that there are species, strain, and age differences (e.g., a Wistar Han IGS rat is not
the same as a Sprague-Dawley rat), reference ranges drift over time, and may be
specific to a facility or testing platform.

An important step in computing reference ranges is to ensure that the samples
used are relatively homogeneous with respect to key attributes like age, sex, and
species, to the extent that these factors affect the normal range of values.

With a well-constructed historical control database, meaningful investigations
into other possible sources of variation (e.g. seasonal) can be performed. See Sect.
9.3.2 in Chap. 9 for further information on plotting historical control data.

10.2.3 Sample Size and Power Considerations

Assessing the statistical power of general toxicology studies poses several chal-
lenges. In a simple two-sample comparison (one treatment group and one control
group) for a given variable, a typical sample size calculation relies on an estimate
of variability and a required difference to detect between group means. Estimating
biological variability is relatively straightforward, given an adequate set of historical
control data. Elucidating a single agreed-upon difference to detect for a given
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endpoint is often more difficult, as it may depend on a particular toxicologist’s
experience as well as the particular compound being studied and the disease area. In
addition, a change in a single endpoint is rarely interpreted on its own; instead, the
change is interpreted in the context of changes in other endpoints, both quantitative
and qualitative. In this sense, the statistical results are univariate in nature, but the
interpretation by the toxicologist is multivariate. Even having agreed on a difference
to detect each endpoint, the question remains as to how to assess the suitability of
the sample size relative to all of the collected endpoints (food consumption, body
weights, organ weights, and clinical pathology data).

In general, the sample sizes used in general toxicology studies appear to be driven
primarily by regulatory guidance and historical precedent. For example, an excellent
review article by Sparrow et al. (2011) states:

In regulatory general toxicology studies the animal numbers used are not driven by
statistical input. There are several reasons for this, such as the potential hazards of a
substance being unknown in advance of the studies being conducted. Therefore, there is
no specific change that the study can be statistically powered to detect. In addition, the
frequency of the potential hazard is unknown in the initial toxicology studies and may turn
out to be a frequently occurring or a low incidence change.

Due to the multifactorial nature of toxic changes, assessment of toxicity in all species
is made by examination of the data generated for each individual animal by integration
and correlation of in-life and post mortem findings. Experience has demonstrated that the
numbers used and illustrated in this manuscript are sufficient to identify the most potential
hazards, a dose/exposure response for the hazards and to generate data sets that are sufficient
to provide study sponsors and regulators with information that allows decisions to be made
about clinical trials and marketing.

Even with fixed sample sizes, the machinery of power calculations can still be
used. That is, given a sample size and an estimate of variability, we can compute
the minimum detectable difference (MDD) for each endpoint, assuming 80 %
power. This can lead to fruitful discussions about the types of changes that can
be meaningfully detected with statistical analyses.

10.3 Safety Pharmacology Studies

10.3.1 Overview

The main objective of safety pharmacology studies is to understand potential
undesirable pharmacodynamic effects of a test article or an intervention on phys-
iological functions in relation to exposure in the therapeutic range and above.
A more comprehensive definition of safety pharmacology studies is given in ICH
S7A guideline (International Conference on Harmonization 2001). We focus on the
three major types of in vivo safety pharmacology studies: pulmonary-respiratory,
cardiovascular (CV), neurofunctional (NF) experiments. Each type focuses on an
important aspect of the possible acute adverse effects (typically within 48 h after
dosing) caused by the test article or the intervention.
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10.3.2 Pulmonary-Respiratory Studies

The focus of pulmonary-respiratory studies is to de-risk targets and test articles
that may possess respiratory issues. The typical study design is a parallel group.
Following a period of acclimation, unrestrained animals are placed in a whole
body plethysmograph chamber for approximately 6 h. Originating from the pressure
change in the chamber, the respiratory signal is routed through an amplifier to a
data acquisition system, and the respiratory parameters are logged by the computer.
The main parameters in the pulmonary-respiratory study are the tidal volume (i.e.,
the normal volume of air displaced between normal inhalation and exhalation),
respiratory rate, and minute volume (i.e., the volume of air inhaled or exhaled from
the lung per minute). The raw data (usually a data point every 5 s) are then averaged
into some sequential time interval bins, including one at the baseline (i.e., prior to
dosing), for subsequent statistical analysis.

10.3.3 Cardiovascular Studies

The primary goal of the CV studies is to determine if there is a CV risk associated
with a test article or an intervention, measured by blood pressure, heart rate,
and electrocardiogram readings. Typically, these endpoints are collected from
“telemeterized” animals that are free to move about during the course of the
study. A clear advantage of this technology is that it has minimal interference
with the animal’s normal function. Multi-channel signals are transmitted wirelessly
from surgically-placed electrodes to the receiver in the monitoring room, giving a
comprehensive recording of the cardiovascular changes in real time. At an adequate
sampling rate, such a data acquisition system provides a more accurate picture of
the dynamics in the physiology and may capture minute responses that would not
be possible using non-ambulatory (i.e., recumbent) approaches, which require the
animal to be restrained.

10.3.4 Neurofunctional Studies

Effects of the test article or the intervention on the central nervous system (CNS) are
typically evaluated using assessments of motor activity, coordination, sensory/motor
reflex responses, behavioral changes, and body temperature. Two key study types
are the functional observation battery (FOB) and locomotor activity (LMA). FOB
is the mainstay observational assay designed to identify points of CNS concern for
follow-up. It consists of a battery of endpoints (the number varying from company to
company, usually 20 to 30) covering different aspects of CNS issues, such as activity
and excitability, and autonomic, neuromuscular, and sensory/motor responses. Most
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of the endpoints are binary (Yes/No), with the rest having more than two levels (e.g.,
Normal, Mild, and Severe). Upon completion of the FOB and body temperature
assessment, the animal will be immediately placed into its assigned locomotor
activity chamber and LMA testing will begin. LMA will include assessments of
both horizontal (XY ambulation) and vertical movements (rearing).

10.3.5 Statistical Analyses
10.3.5.1 Overview

Although these studies measure different physiological aspects of the animal, the
statistical analysis methods are similar across study types, depending on the nature
of the endpoint of interest. For continuous endpoints, the main tool is ANOVA
or ANCOVA. If a baseline or pre-dose measurement exists, ANCOVA with the
baseline as a covariate is recommended as in general, it will be a more powerful
approach (Senn 2007).

The discrete endpoints are typically analyzed using pairwise Fisher’s exact
tests or the Chi-square test. Since directionality is presumed for adverse events
(i.e., Abnormal is always worse than Normal), comparisons between dose groups
are made using one-tailed tests. Additionally, the Cochran—Armitage test or the
Jonckheere—Terpstra test may be performed when the intent is to characterize a dose
response relationship.

10.3.5.2 Super-Intervals

In safety pharmacology studies, particularly in CV studies, the raw data coming out
of the data acquisition systems usually have high resolutions (at the sampling rate
of 200 Hz there is a data point every 0.005 s). Even if the software uses a procedure
to construct “moving-average” summaries of the individual recordings into longer
intervals such as 15-min time bins, the process still generates a huge amount of data
over a period of 24—48 h. Therefore, further coarse-graining is needed to reduce the
data quantity without significant loss of fidelity in representing the characteristic
physiology. To that end, the so-called super-interval binning method (Sivarajah et al.
2010) has been proposed to take into account the particular pharmacokinetics profile
of the test article in a given experiment, and has been shown to have reasonably good
performance in pilot studies using many known positive controls. With this method,
each animal typically ends up with four to six observations per day per treatment.
An example of super-intervals is shown in Fig. 10.6.
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Fig. 10.6 Example of super-intervals in a cardiovascular study

10.3.5.3 Repeated Measures vs. the Cross-Sectional approach

The statistician has several options with the super-intervals. One approach is a
repeated-measure ANOVA/ANCOVA, which takes into account the within-subject
correlation across time intervals. Alternatively, ANOVA/ANCOVA models can
be fit at each time interval (this approach is often called a “time-by-time” or
“cross-sectional” approach). The rationale of either approach will be discussed in
subsequent sections for each study type. An advantage of the time-by-time approach
is that identifying and/or modeling the precise form of the correlation is not a
concern. On the other hand, the approach may suffer from the loss of statistical
power relative to the repeated measures approach (detailed discussion on this will
be provided in Sect. 10.3.6).

The repeated-measure approach is fairly straightforward except when it comes to
the choice of covariance structure. When the super-intervals have equal lengths and
are evenly spaced, it is natural to assume an AR(1) structure between observations
on the same animal. In contrast, when the super-intervals vary significantly in length
and position, the AR(1) structure may not fit as well. One approach is to try several
candidate structures and use criteria such as AIC or BIC to select the best model.
However, this procedure may not be robust against data changes, meaning that
missing data, replacement animals, or even the experimental day could change the
overall structure. Furthermore, simulation studies have shown that using criteria
such as AIC, one could still select an incorrect covariance structure. Furthermore,
with small sample sizes in some safety pharmacology studies, we may not be able to
afford to use an overly complex structure. With these considerations, it is common
to start with the simplest structure: compound symmetry. Only when the estimate of
the intra-class correlation is negative would we consider alternatives to compound
symmetry. In fact, when negative intra-class correlation happens, it is usually due



10 General Toxicology, Safety Pharmacology, Reproductive Toxicology. . . 247

Compound
Treatment Differences from Vehicle (95% Confidence Intervals)
Diastolic Blood Pressure (mmHg)

Diastolic Blood Pressure
(mmHg)
o

1.00 to 4.50 to 10.00 to
3.00 hr 9.00 hr 20.00 hr

Low Dose Intermediate Dose High Dose

Fig. 10.7 Example confidence intervals from CV study

to one or two animals that behaved drastically differently from the rest. In this case,
we may have to abandon the repeated-measure paradigm altogether and switch to
the cross-sectional method.

10.3.5.4 The Use of Confidence Intervals

Although significance testing and p-values have been extensively used in assessing
test article effects, confidence intervals are also recommended. Confidence intervals
and significance testing are linked as they have the same components (e.g. difference
in means and standard error of that difference); however, a confidence interval
provides more information than a single p-value. An example of the 95 % confidence
intervals for treatment effects in a hypothetical CV study is shown in Fig. 10.7. The
statistical significance and magnitude of the treatment effect at each time interval as
well as their evolution over time can be clearly identified from the figure.

Confidence intervals also serve as a useful bridge between statistical significance
and biological relevance. In Fig. 10.8, each confidence interval corresponds to a
hypothetical CV study. Consider a common CV endpoint, the QT interval. A drug-
induced prolongation of the QT intervals can lead to serious adverse effects.
Typically, a heart-rate adjusted version, the “corrected QT (QTc)” is used. Suppose
a QTc change of 8 ms or higher is considered biologically important. Then our
conclusions based on the confidence intervals are:

* Study 1 was both statistically significant and biologically relevant (indicating a
QTc prolongation);



248 S.A. Bailey et al.

f———06 — Study1

) Study 2

=]

f———0 —— Study3

—-5 — Study4

4 6
Change in QTc (ms)

(- Y E R —— ———

[
]

Fig. 10.8 Confidence intervals for QTc measurements from hypothetical CV studies

* Study 2 was statistically significant but its biological relevance was unknown;

* Study 3 was statistically significant but not biologically relevant;

* Study 4 was neither statistically significant nor biologically relevant;

e Study 5 was not statistically significant and its biological relevance was
unknown.

Therefore, Studies 2 and 5 did not provide definitive information about the
biological relevance of the QTc effect, and hence either further reduction in the
measurement variability or a larger sample size is needed in those cases.

10.3.5.5 Trend and Monotonicity Testing

Many safety pharmacology endpoints are likely to demonstrate a monotonic dose
response relationship. In these cases, greater statistical power can be achieved using
trend testing methods. For that reason, a decision-tree type of analysis is sometimes
adopted. Specifically, a monotonicity test (see some of the methods discussed in
Sect. 10.2.2.1) is carried out upfront. If monotonicity cannot be rejected, then the
significance of the treatment effect of each dose will be determined from a sequential
trend test. On the other hand, if monotonicity is rejected, then the significance of the
treatment effect will be based on pairwise comparisons (i.e., t-test) between each
dose and the vehicle. This decision-tree method is able to detect treatment effects
that would otherwise not be caught by either method (i.e., trend test or pairwise
t-test).
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Table 10.7 Latin squares design for crossover study

Animals | Treatment 1 | Treatment 2 | Treatment 3 | Treatment 4

1 Vehicle Low Intermediate | High

2 Low High Vehicle Intermediate
3 Intermediate | Vehicle High Low

4 High Intermediate | Low Vehicle

10.3.5.6 The Crossover Design

The crossover design is common in large animal safety pharmacology studies. In
such design, each animal receives all the treatments in a randomized sequence, with
a washout period between treatments. Such choice of design is mainly driven by the
relatively large between-animal variability and smaller sample sizes. Nevertheless,
the suitability of the crossover design is also determined by the pharmacokinetics
of the test article. If the washout period is not sufficient for the test article to be
eliminated from the animal, or in other words, if significant carryover effects are
present between treatments, the crossover design is not recommended. For that
reason, such a design is not usually adopted for biologics, which tend to have longer
half-lives than small molecules.

There are three factors in the crossover design for a typical CV study: treatment
(vehicle vs. various dose levels of a test article), period (the day or week when the
animal is treated), and animal. Therefore, a Latin square is employed to balance
all the factors (Table 10.7). Since a typical study has four doses (vehicle, low,
intermediate, and high dose), the 4 x 4 square has become the most commonly used
design. It then follows that the treatments take place on four different days and the
number of animals is a multiple of four.

An improved design is the Williams square in which the first-order carryover
effects are also balanced (The Latin square in Table 10.7 is also a Williams square).
In other words, in such a design every treatment immediately follows the other
treatments once and only once. Note that there are 24 different 4 x 4 Williams
squares, the choice of which needs to be clearly conveyed and agreed upon with
the study director. A study that has an odd number of doses requires two different
Williams squares to balance the first-order carryover effects.

10.3.6 Power of Safety Pharmacology Studies

It is crucial to understand the power of a particular assay or animal model before
applying it to routine studies. An underpowered design would lead to futility,
whereas an overpowered one wastes resources, including animals. Moreover, the
discriminant power is an important factor when developing a new assay or model
that may replace an existing one; comparing the sensitivity of both assays is an
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important criterion in the decision. We will first discuss the power analysis for
continuous variables as it is relatively more straightforward, the basic statistical tool
for which is the non-central t- or F-distribution assuming the underlying distribution
is normal. Next we will turn to categorical variables, whose power analysis is more
complicated.

Besides the assay itself, the statistical design and analysis are also important
components of the power analysis and sample size calculation. Since the major
safety pharmacology study designs are either crossover or parallel groups, it follows
that the comparison between within- and between-animal variability is critical to the
experimental design.

In practice, a cohort of recent studies is selected to estimate the biological
variability (between and/or within) from each study. To do this, an ANOVA-based
model is fit to either the entire set of data or only the control arm of the data. Then,
a representative metric (e.g., the median) of all the variability estimates can be used
for the power analysis or sample size calculation. Note that the variability estimates
from the control data may demonstrate a more identifiable distribution, but their
magnitudes could be less than the ones in the treated data, and hence underestimate
the overall variability. A remedy for this would be to inflate the estimate by some
amount, e.g., using the 75th percentile instead of the median from all the studies.

Whenever baseline data are present, we would recommend doing the power
analysis both with and without baseline adjustment and then plotting the power
curves of both cases on the same graph. This visual comparison will serve as a
useful tool to help educate the scientists on the importance of baseline adjustment
and thus the benefits of using ANCOVA. An example of the power plot is given in
Fig. 10.9 comparing the power of ANOVA to that of ANCOVA.

As mentioned in Sect. 10.3.5.3, the repeated-measures analysis can be more
powerful than the cross-sectional approach. Given that the experimental unit (e.g.,
animal) is not changed between the two approaches, this claim may seem counter-
intuitive. The key factor is the correlation among the observations from the same
experimental unit. The benefit of the repeated-measure analysis increases when the
correlation becomes smaller. In other words, when the observations from the same
animal become more like uncorrelated samples, the repeated-measures analysis,
which includes all the observations from the same animal, effectually enlarges the
sample size and hence yields more power than the cross-sectional analysis which
only takes one sample at a time. More detailed discussion of the statistical power
of repeated-measures and split-plot designs can be found in Rochon (1991) and
Bradley and Russell (1998).

When discussing power calculations, it may be necessary to remind the scientist
that statistical power (or the minimum detectable difference, for that matter) derived
in the above manner is a prospective estimate rather than a descriptive metric of the
set of studies selected for the power analysis. Therefore, since we do not know the
true treatment effect of these studies, one should not use the power or sample size
estimate to “verify” that they apply to those studies. In other words, the power is a
conditional probability (i.e., the probability that, with a significance test, a study is
found to have a treatment effect size greater than a certain value out of all the studies
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Fig. 10.9 Example of power comparison between ANOVA and ANCOVA models

whose true effect sizes are greater than that value) as opposed to an unconditional
one (i.e., of all the studies conducted, regardless of their true treatment effect sizes).
Based on our experience, misunderstandings sometimes occurred if such difference
had not been clarified beforehand.

In contrast, the power analysis of categorical data from Safety Pharmacology
studies can be more complex because: (1) the prior prevalence of some adverse
events may not be known with sufficient precision, especially for rare events;
and (2) it can be challenging to define a treatment effect “size” for categorical
data. Power analysis of categorical data in many cases is based on the non-central
distribution of the test statistic. A detailed discussion and examples are provided in
Lachin (2011).

10.3.7 Other Issues in Safety Pharmacology Study Analysis
10.3.7.1 Missing Data

When a subset of the data is missing, the ordinary mean of the group differences may
no longer be an unbiased estimate of the treatment effect. To address this, the use
of fitted means (also known as least-squares means) is recommended for statistical
reporting. The concept of fitted means can be challenging to communicate, and
is often met with some resistance because the fitted means can differ from
the ordinary means. However, the importance of using the fitted means can be
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Table 10.8 Example study Period 1 | Period 2
data from two-period parallel ;
Vehicle 2,5 9,12, 15

group study
Drug 6,6,7,7 |16

clearly explained using an example study with two factors and unequal number of
observations at each combination of factors. The hypothetical endpoint in Table 10.8
comes from a single-dose parallel-group study with two treatment periods. The
apparent means of the vehicle and drug groups are (24+5+9+4+ 124 15)/5=28.6
and (64647474 16)/5=8.4, respectively, whereas the fitted means of
the vehicle and drug groups are 0.5 x[(2+45)/24 (94 124 15)/3]1="7.75 and
05x[(6+6+747)/4416] =11.25, respectively. This discrepancy is also
known as the Simpson’s paradox. The fitted mean takes into account the unequal
number of animals in each combination of the factors, and appropriately weights
each combination, providing unbiased estimates of the true group means. Missing
data in a crossover design pose similar problems, and in some cases can be more
difficult to address. This problem cannot be alleviated by simply increasing the
sample size.

10.3.7.2 'When the Sample Size Is Too Small

For some investigative or exploratory Safety Pharmacology studies, a study design
with very small sample sizes may be chosen. This may lead to significantly
underpowered studies. Moreover, even at a seemingly moderate sample size, the
power of some study designs can be much lower than other designs. For example,
a common GLP Safety Pharmacology cross-over design includes four animals, four
dose groups, and four periods. Suppose that the underlying within-animal standard
deviation of QTc is 4 ms. Then such a design can provide a statistical power of 66 %
to detect QTc changes of 8 ms and higher. In contrast, with a 2 x 2 crossover design
including four animals, two dose groups and two periods, the power to detect the
same magnitude of change is reduced to 46 %.

Baseline adjustment can be also questionable when the sample size is too small.
With an extremely small n, there is like to be complete confounding between animal
(as a block effect) and baseline. It is also possible that the post-dose data are
positively correlated with baseline when all the animals are examined, whereas such
correlation becomes negative within each individual animal.

10.3.7.3 Use of Toxicokinetics (TK) Data

It is recommended that the statistician have a good working knowledge of the termi-
nology and basic concepts in TK. Occasionally, TK parameters need to be included
in a statistical model to account for variation in exposure levels; they might also
be indirectly compared to the statistical results to better understand the correlation
between the exposure and treatment effect. Furthermore, TK/PK parameters play
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an important role in cross-species and preclinical-to-clinical translation studies, as
drug effects across different species are more appropriately compared at similar
exposures.

10.4 Reproductive Toxicology Studies

10.4.1 Overview

The study of reproductive and developmental toxicology in pharmaceutical devel-
opment owes its beginnings to the marketing of Thalidomide in the late 1950s
(McBride 1961; Weaver and Brunden 1998a). Thalidomide was marketed for
respiratory infections, insomnia, coughs, colds, and headaches. Thalidomide was
also taken routinely by pregnant mothers to control morning sickness, however at
that point in time drug testing during pregnancy was not routinely performed. While
Thalidomide was initially considered safe, experts estimate that by the time it was
removed from the market in November 1961, Thalidomide use resulted in the birth
of more than 10,000 children with serious birth defects, many of whom subsequently
died prior to their first birthday. As a result, the hurdles required for drug approval
were modified, and the study of reproductive toxicology was added as a requirement
for drug approval in many countries throughout the world.

Reproductive toxicology focuses on the study of toxicities associated with the
reproductive process. This includes effects on male or female sexual function and
mating behavior, female fertility, maternal care, and pup growth and development.

Developmental toxicology, also known as teratology, focuses on the study of
toxicities associated with the development of the offspring. This includes effects
on fetal development such as birth weight and developmental birth defects. Some
consider developmental toxicology to be a subset of reproductive toxicology. The
term “Teratology” refers to developmental toxicology, but is sometimes erroneously
used to refer to reproductive toxicology as well.

Studies are designed to evaluate both reproductive and developmental toxicity
simultaneously when possible. Studies are generally performed in either rats, mice,
and/or rabbits. Periodically, studies are performed in non-human primates, but due
to cost and sample size issues, these studies are rare and only performed when
studies in the usual species will not suffice (e.g., no biological action).

Three standard study types are performed. These study types are outlined in the
International Conference on Harmonization (ICH) guidelines, which were originally
published in 1992 and most recently modified in 2005 (International Conference on
Harmonization 2005). The three study types are defined as follows:

1. Fertility, reproductive performance, and early embryonic development
This study focuses on the period from prior to mating through implantation of
the embryo in the uterus. Both males and females are dosed prior to mating,
although sometimes a pair of studies where a single sex is dosed in each is
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performed. Animals are allowed to mate, and females are sacrificed during
gestation at some point after the mid-point of gestation. This study is conducted
in a single species, most likely rats.
2. Embryo-Fetal Developmental Toxicity
This study focuses on the ability of the mothers to successfully carry the
pregnancy, on potential birth defects in the offspring, and on toxicity during the
period of organ formation and development of the offspring. Females are dosed
starting after the implantation of the embryo, and are sacrificed just prior to the
end of gestation. This study is conducted in two species, most likely rats and
rabbits.
3. Perinatal and postnatal toxicity
This study focuses on the late stages of pregnancy and on the early stages
of the pup’s life. Females are dosed starting after implantation and continues
through lactation until the pups are weaned. This study is conducted in a single
species, most likely rats.

10.4.2 Study Design and Endpoints Collected

Studies typically have a control group and three or four dosed groups. The high dose
level is chosen with the intent of inducing a toxic effect at the high dose level on the
dosed animal (mother or father). The lowest dose is chosen to have no observable
adverse effects, and the middle doses are typically chosen equally spaced between
the low and high dosage levels on a log-scale. If a toxic effect can be induced on
one of the non-reproductive parameters collected on the parent (e.g. body weight),
without having any negative effect on the offspring, then the drug is ‘safe’ from a
reproductive toxicity standpoint. The logic is that the offspring are protected from
reproductive toxicities because the parents would never be dosed at a level that
high. Therefore, the presence of a treatment effect on a parental, non-reproductive
parameter is not a detrimental finding for the study.

The endpoints collected in each of the study types listed above are outlined in
Table 10.9.

Note that Table 10.9 is an example of the standard set of parameters collected in
each of the study types. Different testing facilities, and even separate studies within
a testing facility may modify this list depending on the study design, the anticipated
action of the test compound, and other information that may be available during
protocol preparation.

10.4.3 Statistical Analysis

In general, the statistical issues discussed previously in the general toxicology
section (Sect. 10.2) such as normality of the data, equality of variances and the use
of trend testing for dose—response are applicable for reproductive toxicology studies
as well.
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In addition, the issue of defining the appropriate experimental unit is critical
for reproductive studies. The experimental unit is defined as the unit to which the
treatment is applied (Chen 1998, 2000; Palmer 1974; Selwyn 1988; Staples and
Haseman 1974; Weaver and Brunden 1998b). For reproductive studies, this is either
the mother or the father. However, many of the parameters collected in these studies
are collected on the offspring. It is well established that litter-mates are more similar
than pups from different litters. Failure to account for the intra-litter correlation
by treating the offspring data as independent experimental units will inflate the
Type I error rate and result in an invalid statistical analysis. For some data types,
the solution may be simple (e.g. a nested ANOVA design). However, for many of
the data types collected in these studies (e.g. count data), the appropriate statistical
approach may not be obvious.

From a statistical standpoint, another topic of interest is the varied data types
that require analysis. In a general toxicity study, most parameters are continuous
in nature. A reproductive toxicity study, on the other hand, is likely to contain
continuous (e.g. body weights), count (e.g. number corpora lutea per litter),
proportions (e.g. resorptions per litter), and dichotomous (e.g. mating index) data.
Some standard statistical approaches generally utilized for each of these data types
are outlined below.

10.4.3.1 Statistical Analysis of Continuous Endpoints

Most maternal and paternal endpoints (e.g., body weight, food intake, time to mate,
gestation length, estrous cycle length) are continuous in nature. These parameters
can be analyzed using the methods outlined previously in the general toxicology
discussion.

Some parameters measured on the offspring (fetal weight, pup weight) are
continuous in nature. However, because these parameters are not collected on inde-
pendent animals, the analysis must account for this fact. This can be accomplished
by the use of a nested ANOVA, using the litter as a factor in the model. Alternatively,
sometimes a litter average is generated, and the standard general toxicology methods
are applied to the litter averages.

In addition, for pup weight and fetal weight, the weight of the offspring is
dependent on the size of the litter (Chen and Gaylor 1992; McCarthy 1967). In
general, larger litters have smaller offspring. This can be addressed through the use
of a covariate for the litter size in the model.

10.4.3.2 Statistical Analysis of Counts

Many of the parameters collected are counts of the number of occurrences per
litter. Some examples of these are the number of corpora lutea per litter, number of
implants, number of resorptions, number dead pups, and the number of live per litter.
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It is important to note that for some of these parameters, there is a high percentage
of zeroes among the litters in a study.

Count data can be analyzed using the generalized estimating equation approach
(Liang and Zeger 1986; Zeger and Liang 1986). This approach is outlined in detail
in Chen (1998). However, in some cases where there is a high proportion of 0
observations, the iterative fitting process required for this model may not converge
to a solution. Because of this, count data are often analyzed using nonparametric
rank-based methods such as a Kruskal-Wallis test or the Jonckheere trend test.

10.4.3.3 Statistical Analysis of Proportion Data

Many of the parameters collected are proportions of responders per litter. Whenever
possible, the proportion per litter is a better endpoint for analysis than counts, since
counts can also be influenced by changes in the litter size due to competing drug
effects (Bailey 2008; Chen 1998). Some examples of these are proportion resorbed
per litter, proportion live per litter, and proportion with malformations per litter
(either individual malformations or some form of a combined category). In addition,
similar to the count parameters, some parameters have a high percentage of zeroes
among the litters in a study.

A common approach to the analysis of proportion data is to use a beta-
binomial model (Williams 1975). Alternatively, this data can be analyzed using a
generalized estimating equation approach (Chen 1998). Alternatively the data can be
transformed using an arc-sine transformation and analyzed using standard ANOVA
methods. Finally, a nonparametric rank-based approach such as a Kruskal-Wallis
test or the Jonckheere trend test are often utilized for their robustness, simplicity
and understandability.

10.4.3.4 Statistical Analysis of Dichotomous Endpoints

Parameters with dichotomous response data are generally maternal parameters,
such as estrous cycles (cycling normally), and mating and fertility indices. Also,
sometimes the presence of fetal examination findings in a litter (any fetus with a
finding) is analyzed as dichotomous data.

Dichotomous data are expressed as a 2 x C contingency table, where C is the
number of groups in the study. The data are summarized as the percent responding
per dosage group, and standard contingency table methods, such as the Chi-square
test, Cochran—Armitage test, or the Fisher Exact Test are used for the analysis.
Ciminera proposed a randomization test for dose—response trend that is an extension
of the Fisher Exact test for histopathology data (Ciminera 1985) that would be
applicable here as well.
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10.4.3.5 Multivariate Approaches

Over the years there have been a number of publications proposing simultaneous
analysis of multiple endpoints (Catalano et al. 1993; Catalano and Ryan 1992; Chen
et al. 1991; Ryan 1992). One of the justifications for this type of approach is to
reduce the number of analyses being performed on the study, thereby reducing
the overall study-wide Type I error. This type of approach can also increase the
power of detecting effects if the outcomes under consideration are due to a common
biological mechanism.

These approaches have seen limited implementation in the pharmaceutical
industry. The study scientists are reticent to identify parameters that they feel can be
grouped for analysis without also considering the analysis results from each of the
component analyses. Therefore, this would lead to more analyses being performed
on a study, rather than less. Also, if a significant result is found, the study scientists
want to know what components of the combination contributed to the significant
result. While these approaches are nice in theory, they are too complex for many
study scientists to understand and embrace.

10.5 Juvenile Toxicology Studies

Prior to 1994, drug testing was generally performed on adult animals in toxicity
studies, and on adult subjects in clinical trials. If a drug was approved, it was
then often prescribed to children, generally at lower doses, under the assumption
that children would respond similarly to the compound as adults. However, due to
differences in pharmacology, and differences in development (e.g. the human brain
at birth is neurologically equivalent to a rat brain at 2 weeks of age), this assumption
is often not true.

In 1994, in order to address this gap, the FDA encouraged manufacturers to
survey existing data of marketed compounds to determine if there was sufficient
evidence to support pediatric use information in the drug’s label. When this did not
markedly increase the number of products with adequate pediatric labeling, the FDA
created a regulation, approved in December 1998, requiring that pediatric safety and
effectiveness be addressed either through studies or through a waiver in NDAs and
BLAs. At that point in time, Juvenile toxicology studies to support pediatric clinical
trials started to become more common. The regulations were invalidated in 2002
by the federal courts, but then resurrected by Congress as the Pediatric Research
Equity Act (PREA) in December 2003. The PREA was then renewed by Congress
in 2007. Conduct of the nonclinical aspects of a pediatric program are governed by
FDA guidelines issued in 2006 (U.S. Food and Drug Administration 2006).

Juvenile toxicology studies are similar in scope to regulatory toxicity studies,
with the difference in the age of the animals at the initiation of dosing. The age
and duration of dosing is dependent on the anticipated age of the target human
population, and should correlate with the corresponding stage of development in
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Table 10.10 Litter-mate intraclass correlation for selected parameters

Parameter Intraclass correlation (%)*
Pup weights during weaning (days 0-21) | 69-72
Clinical Pathology at weaning 19-55

“Intraclass correlation is the proportion of the variance that can be
attributed to which litter the pup is from

the test animals (Zoetis and Walls 2003). Therefore it is possible that dosing may
start as early as 1 day of age. This causes problems because there is the temptation,
to minimize animal usage for ethical reasons, to treat the animals as independent
units where in reality they are not. Examples of litter-mate intraclass correlation
for various parameters, based on historical data, are listed below in Table 10.10.
Due to this intraclass correlation, the total number of animals required to maintain
sufficient power in the study is greater than a study where adult animals are dosed
(Bailey 2006). For example, for a parameter that has a 50 % litter-mate intraclass
correlation, a study with 40 pups in 10 litters (4 pups/litter) has an ‘effective’ sample
size of 16. This means that these 40 pups give the same amount of information as
16 pups if the pups came from 16 independent litters.

In addition to the usual parameters collected in a regulatory toxicology study,
neurobehavioral parameters are sometimes collected if there is reason to believe the
test compound might affect brain function or development. The same issues listed
above apply for these parameters as well. An effective analysis of these parameters
can be difficult, because of the small sample sizes and the large variability inherent
in these parameters.

Parameters collected in these studies are continuous in nature. Therefore, the
methods outlined in the Reproductive Toxicology section for continuous parameter
are also applicable for the analysis of Juvenile Toxicology studies.
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