
ERBlox: Combining Matching Dependencies
with Machine Learning for Entity Resolution

Zeinab Bahmani1, Leopoldo Bertossi1(B), and Nikolaos Vasiloglou2

1 Carleton University, School of Computer Science, Ottawa, Canada
zeinabbahmani@cmail.carleton.ca, bertossi@scs.carleton.ca

2 LogicBlox Inc., Atlanta, GA 30309, USA

Abstract. Entity resolution (ER), an important and common data
cleaning problem, is about detecting data duplicate representations for
the same external entities, and merging them into single representations.
Relatively recently, declarative rules calledmatching dependencies (MDs)
have been proposed for specifying similarity conditions under which
attribute values in database records are merged. In this work we show
the process and the benefits of integrating three components of ER: (a)
Classifiers for duplicate/non-duplicate record pairs built using machine
learning (ML) techniques, (b) MDs for supporting both the blocking
phase of ML and the merge itself; and (c) The use of the declarative
language LogiQL -an extended form of Datalog supported by the Log-
icBlox platform- for data processing, and the specification and enforce-
ment of MDs.

Keywords: Entity resolution · Matching dependencies · Support-vector
machines · Classification · Datalog

1 Introduction

Entity resolution (ER) is a common and difficult problem in data cleaning that
has to do with handling unintended multiple representations in a database of the
same external objects. Multiple representations lead to uncertainty in data and
the problem of managing it. Cleaning the database reduces uncertainty. In more
precise terms, ER is about the identification and fusion of database records
(think of rows or tuples in tables) that represent the same real-world entity
[8,15]. As a consequence, ER usually goes through two main consecutive phases:
(a) detecting duplicates, and (b) merging them into single representations.

For duplicate detection, one must first analyze multiple pairs of records,
comparing the two records in them, and discriminating between: pairs of dupli-
cate records and pairs of non-duplicate records. This classification problem is
approached with machine learning (ML) methods, to learn from previously known
or already made classifications (a training set for supervised learning), building a
classification model (a classifier) for deciding about other record pairs [10,15].

In principle, in ER every two records (forming a pair) have to be compared,
and then classified. Most of the work on applying ML to ER work at the record
c© Springer International Publishing Switzerland 2015
C. Beierle and A. Dekhtyar (Eds.): SUM 2015, LNAI 9310, pp. 399–414, 2015.
DOI: 10.1007/978-3-319-23540-0 27

400 Z. Bahmani et al.

level [10,11,21], and only some of the attributes, or their features, i.e. numerical
values associated to them, may be involved in duplicate detection. The choice of
relevant sets of attributes and features is application dependent.

ER may be a task of quadratic complexity since it requires comparing every
two records. To reduce the large number two-record comparisons, blocking tech-
niques are used [2,19,23]. Commonly, a single record attribute, or a combination
of attributes, the so-called blocking key, is used to split the database records into
blocks. Next, under the assumption that any two records in different blocks are
unlikely to be duplicates, only every two records in a same block are compared
for duplicate detection.

Although blocking will discard many record pairs that are obvious non-
duplicates, some true duplicate pairs might be missed (by putting them in differ-
ent blocks), due to errors or typographical variations in attribute values. More
interestingly, similarity between blocking keys alone may fail to capture the rela-
tionships that naturally hold in the data and could be used for blocking. Thus,
entity blocking based only on blocking key similarities may cause low recall. This
is a major drawback of traditional blocking techniques.

In this work we consider different and coexisting entities. For each of them,
there is a collection of records. Records for different entities may be related via
attributes in common or referential constraints. Blocking can be performed on
each of the participating entities, and the way records for an entity are placed
in blocks may influence the way the records for another entity are assigned to
blocks. This is called “collective blocking”. Semantic information, in addition to
that provided by blocking keys for single entities, can be used to state relation-
ships between different entities and their corresponding similarity criteria. So,
blocking decision making forms a collective and intertwined process involving
several entities. In the end, the records for each individual entity will be placed
in blocks associated to that entity.

Example 1. Consider two entities, Author and Paper. For each of them, there is
a set of records (for all practical purposes, think of database tuples in a single
table). For Author we have records of the form a = 〈name, . . . , affiliation, . . . ,
paper title, . . .〉, with {name, affiliation} the blocking key; and for Paper, records
of the form p = 〈title, . . . , author name, . . .〉, with title the blocking key. We want
to group Author and Paper records at the same time, in an entwined process.
We block together two Author entities on the basis of the similarities of authors’
names and affiliations.

Assume that Author entities a1,a2 have similar names, but their affiliations
are not. So, the two records would not be put in the same block. However, a1,a2
are authors of papers (in Paper records) p1,p2, resp., which have been put in
the same block (of papers) on the basis of similarities of paper titles. In this case,
additional semantic knowledge might specify that if two papers are in the same
block, then corresponding Author records that have similar author names should
be put in the same block too. Then, a1 and a2 would end up in the same block.

In this example, we are blocking Author and Paper entities, separately, but
collectively and in interaction. �

ERBlox: Combining Matching Dependencies 401

Collective blocking is based on blocking keys and the enforcement of semantic
information about the relational closeness of entities Author and Paper, which is
captured by a set of matching dependencies (MDs). So, we propose “MD-based
collective blocking” (more on MDs right below).

After records are divided in blocks, the proper duplicate detection process
starts, and is carried out by comparing every two records in a block, and classi-
fying the pair as “duplicates” or “non-duplicates” using the trained ML model
at hand. In the end, records in duplicate pairs are considered to represent the
same external entity, and have to be merged into a single representation, i.e.
into a single record. This second phase is also application dependent. MDs were
originally proposed to support this task.

Matching dependencies are declarative logical rules that tell us under what
conditions of similarity between attribute values, any two records must have
certain attribute values merged, i.e. made identical [16,17]. For example, the MD

DeptB [dept] ≈ DeptB [dept] → DeptB [city] .= DeptB [city] (1)

tells us that for any two records for entity (or relation or table) DeptB that have
similar values for attribute dept attribute, their values for attribute city should
be matched, i.e. made the same.

MDs as introduced in [17] do not specify how to merge values. In [6,7],
MDs were extended with matching functions (MFs). For a data domain, an MF
specifies how to assign a value in common to two values. We adopt MDs with
MFs in this work. In the end, the enforcement of MDs with MFs should produce
a duplicate-free instance (cf. Section 2 for more details).

MDs have to be specified in a declarative manner, and at some point enforced,
by producing changes on the data. For this purpose, we use the LogicBlox plat-
form, a data management system developed by the LogicBlox1 company, that
is centered around its declarative language, LogiQL. LogiQL supports relational
data management and, among several other features [1], an extended form of
Datalog with stratified negation [9]. This language is expressive enough for the
kind of MDs considered in this work.2

In this paper, we describe our ERBlox system. It is built on top of the Log-
icBlox platform, and implements entity resolution (ER) applying to LogiQL,
ML techniques, and the specification and enforcement of MDs. More specifi-
cally, ERBlox has three main components: (a) MD-based collective blocking, (b)
ML-based duplicate detection, and (c) MD-based merging. The sets of MDs are
fixed and different for the first and last components. In both cases, the set of
MDs are interaction-free [7], which results, for each entity, in the unique set of
blocks, and eventually into a single, duplicate-free instance [7]. We use LogicQL
to declaratively implement the two MD-based components of ERBlox.

The blocking phase uses MDs to specify the blocking strategy. They express
conditions in terms of blocking key similarities and also relational closeness (the
1 www.logicblox.com.
2 For arbitrary sets of MDs, we need higher expressive power [7], such as that provided
by answer set programming [3].

www.logicblox.com

402 Z. Bahmani et al.

semantic knowledge) to assign two records to a same block (by making the block
identifiers identical). Then, under MD-based collective blocking different records
of possibly several related entities are simultaneously assigned to blocks through
the enforcement of MDs (cf. Sect. 5 for details).

On the ML side, the problem is about detecting pairs of duplicate records.
The ML algorithm is trained using record-pairs known to be duplicates or non-
duplicates. We independently used three established classification algorithms:
support vector machines (SVMs) [24], k-nearest neighbor (K-NN) [14], and non-
parametric Bayes classifier (NBC) [4]. We used the Ismion3 implementations of
them due to the in-house expertise at LogicBlox. Since the emphasis of this work
is on the use of LogiQL and MDs, we will refer only to our use of SVMs.

We experimented with our ERBlox system using as dataset a snapshot of
Microsoft Academic Search (MAS)4 (as of January 2013) including 250 K authors
and 2.5 M papers. It contains a training set. The experimental results show
that our system improves ER accuracy over traditional blocking techniques [18],
which we will call standard blocking, where just blocking-key similarities are
used. Actually, MD-based collective blocking leads to higher precision and recall
on the given datasets.

This paper is structured as follows. Section 2 introduces background on
matching dependencies and their semantics, and SVMs. A general overview of
the ERBlox system is presented in Sect. 3. The specific components of ERBlox
are discussed in Sects. 4, 5, and 6. Experimental results are shown in Sect. 7.
Section 8 presents conclusions.

2 Preliminaries

2.1 Matching Dependencies

We consider an application-dependent relational schema R, with a data domain
U . For an attribute A, DomA is its finite domain. We assume predicates do not
share attributes, but different attributes may share a domain. An instance D for
R is a finite set of ground atoms of the form R(c1, . . . , cn), with R ∈ R, ci ∈ U .

We assume that each entity is represented by a relational predicate, and its
tuples or rows in its extension correspond to records for the entity. As in [7],
we assume records have unique, fixed, global identifiers, rids, which are positive
integers. This allows us to trace changes of attribute values in records. Record
ids are placed in an extra attribute for R ∈ R that acts as a key. Then, records
take the form R(r, r̄), with r the rid, and r̄ = (c1, . . . , cn). Sometimes we leave
rids implicit, and sometimes we use them to denote whole records: if r is a record
identifier in instance D, r̄ denotes the record in D identified by r. Similarly, if
A is a sublist of the attributes of predicate R, then r[A] denotes the restriction
of r̄ to A.

3 http://www.ismion.com.
4 http://academic.research.microsoft.com. For comparison, we also tested our system
with data from DBLP and Cora.

http://www.ismion.com
http://academic.research.microsoft.com

ERBlox: Combining Matching Dependencies 403

MDs are formulas of the form: R1[X̄1] ≈ R2[X̄2] → R1[Ȳ1]
.= R2[Ȳ2] [16,17].

Here, R1, R2 ∈ R (and may be the same); and X̄1, X̄2 are lists of attribute names
of the same length that are pairwise comparable, that is, Xi

1 and Xi
2, and also

Ȳ1, Ȳ2, share the same domain.5 The MD says that, for every pair of tuples (one
in relation R1, the other in relation R2) where the LHS is true, the attribute
values in them on the RHS have to be made identical. Symbol ≈ denotes generic,
reflexive, symmetric, and application/domain dependent similarity relations on
shared attribute domains.

A dynamic, chase-based semantics for MDs with matching functions (MFs)
was introduced in [7]. Given an initial instance D, the set Σ of MDs is iteratively
enforced until they cannot be applied any further, at which point a resolved
instance has been produced. In order to enforce (the RHSs of) MDs, there are
binary matching functions (MFs) mA : DomA × DomA → DomA; and mA(a, a′)
is used to replace two values a, a′ ∈ DomA that have to be made identical. MFs
are idempotent, commutative, and associative, and then induce a partial-order
structure 〈DomA,�A〉, with: a �A a′ :⇔ mA(a, a′) = a′ [5,6]. It always holds:
a, a′ �A mA(a, a′). In this work, MFs are treated as built-in relations.

There may be several resolved instances for D and Σ. However, when (a)
MFs are similarity-preserving (i.e., a ≈ a′ implies a ≈ mA(a′, a′′)); or (b) Σ is
interaction-free (i.e., each attribute may appear in either the RHS or LHS of
MDs in Σ), there is a unique resolved instance that is computable in polynomial
time in |D| [7].

2.2 Support Vector Machines

The SVMs technique [24] is a form of kernel-based learning. SVMs can be
used for classifying vectors in an inner-product vector space V over R. Vectors
are classified in two classes, with a label in {0, 1}. The algorithm learns from
a training set, say {(e1, f(e1)), (e2, f(e2)), (e3, f(e3)), . . . , (en, f(en))}. Here,
ei ∈ V, and for the feature (function) f : f(ei) ∈ {0, 1}.

SVMs find an optimal hyperplane, H, in V that separates the two classes
where the training vectors are classified. Hyperplane H has an equation of the
form w • x + b, where • denotes the inner product, x is a vector variable, w is
a weight vector of real values, and b is a real number. Now, a new vector e in V
can be classified as positive or negative depending on the side of H it lies. This
is determined by computing h(e) := sign(w • e + b). If h(e) > 0, e belongs to
class 1; otherwise, to class 0.

It is possible to compute real numbers α1, . . . , αn, such that the classifier h
can be computed through: h(e) = sign(

∑
i αi · f(ei) · ei • e + b) (cf. Fig. 3).

3 Overview of ERBlox

A high-level description of the components of ERBlox is given in Fig. 1. It shows
the workflow supported by ERBlox when doing ER. ERBlox’s three main compo-
5 A more precise notation for the MD would be: ∀x1

1 · · · ∀ym
2 (
∧

j R1[x
j
1] ≈j R2[x

j
2] −→

∧
k R1[y

k
1]

.
= R2[y

k
2]).

404 Z. Bahmani et al.

Fig. 1. Overview of ERBlox

nents are: (1) MD-based collective blocking (path 1,3,5, {6,8}), (2) ML-based
record duplicate detection (the whole initial workflow up to task 13, inclusive),
and (3) MD-based merging (path 14,15). In the figure, all the boxes in light
grey are supported by LogiQL. As just done, in the rest of this section, numbers
in boldface refer to the edges in this figure.

The initial input data is stored in structured text files. (We assume these
data are already standardized and free of misspellings, etc., but duplicates may
be present.) Our general LogiQL program that supports the whole workflow
contains some rules for importing data from the files into the extensions of
relational predicates (think of tables, this is edge 1). This results in a relational
database instance T containing the training data (edge 2), and the instance D
on which ER will be performed (edge 3).

Fig. 2. Feature-based similarity

The next main task is blocking, which
requires similarity computation of pairs of
records in D (edge 5). For record pairs
〈r1, r2〉 in T , similarities have to be com-
puted as well (edge 4). Similarity com-
putation is based on similarity functions,
Sf i : DomAi

× DomAi
→ [0, 1], each of

which assigns a numerical value, called
similarity weight, to the comparisons of
values for a record attribute Ai (from a
pre-chosen subset of attributes) (cf. Fig. 2). A weight vector w(r1, r2) =
〈· · · ,Sf i(r1[Ai], r2[Ai]), · · · 〉 is formed by similarity weights (edge 7). For more
details on similarity computation see Sect. 4.

Since some pairs in T are considered to be duplicates and others non-
duplicates, the result of this process leads to a “similarity-enhanced” database
Ts of tuples of the form 〈r1, r2, w(r1, r2), L〉, with label L ∈ {0, 1} indicating if
the two records are duplicates (L = 1) or not (L = 0). The labels are consistent
with the corresponding weight vectors. The classifier is trained using Ts, leading
to a classification model (edges 9,10).

ERBlox: Combining Matching Dependencies 405

For records in D, similarity measures are needed for blocking, to decide if
two records r1, r2 go to the same block. Initially, every record has its rid assigned
as block (number). To assign two records to the same block, we use matching
dependencies that specify and enforce (through their RHSs) that their blocks
have to be identical. This happens when certain similarities between pairs of
attribute values appearing in the LHSs of the MDs hold. For this reason, simi-
larity computation is also needed before blocking (workflow 5,6,8). This simi-
larity computation process is similar to the one for T . However, in the case of
D, this does not lead directly to the same kind of weight vector computation.
Instead, the computation of similarity measures is only for the similarity predi-
cates appearing in the LHSs of the blocking-MDs. (So, as the evaluation of the
LHS in (1) requires the computation of similarities for dept-string values.)

Notice that these blocking-MDs may capture semantic knowledge, so they
could involve in their LHSs similarities of attribute values in records for different
kinds of entities. For example, in relation to Example 1, there could be similarity
comparisons involving attributes for entities Author and Paper, e.g.

Author(x1, y1, bl1)∧Paper(y1, z1, bl3) ∧ Author(x2, y2, bl2)∧
Paper(y2, z2, bl4) ∧ x1 ≈1 x2 ∧ z1 ≈2 z2 → bl1

.= bl2,
(2)

expressing that when the similarities on the LHS hold, the blocks bl1, bl2 have
to be made identical.6 The similarity comparison atoms on the LHS are con-
sidered to be true when the similarity values are above predefined thresholds
(edges 5,8).7

H

Fig. 3. Classification hyper-
plane

This is the MD-based collective blocking stage
that results in database D enhanced with infor-
mation about the blocks to which the records are
assigned. Pairs of records with the same block
form candidate duplicate record pairs, and any two
records with different blocks are simply not tested
as possible duplicates (of each other).

After the records have been assigned to blocks,
pairs of records 〈r1, r2〉 in the same block are con-
sidered for the duplicate test. As this point we
proceed as we did for T : the similarity vectors
w(r1, r2) have to be computed (edges 11,12).8 Next, tuples 〈r1, r2, w(r1, r2)〉
are used as input for the trained classification algorithm (edge 12).

6 These MDs are more general than those introduced in Sect. 2.1: they may contain
regular database atoms, which are used to give context to the similarity atoms in
the same antecedent.

7 At this point, since all we want is to do blocking, and not yet decisions about
duplicates, we could, in comparison with what is done with pairs in T , compute less
similarity measures and even with low thresholds.

8 Similarity computations are kept in appropriate program predicates. So similarity
values computed before blocking can be reused at this stage, or whenever needed.

406 Z. Bahmani et al.

The result of the trained ML-based classifier, in this case obtained through
SVMs as a separation hyperplane H, is a set M of record pairs 〈r1, r2, 1〉 that
come from the same block and are considered to be duplicates (edge 13).9 The
records in these pairs will be merged on the basis of an ad hoc set of MDs (edge
15), different from those used in edges 6,8.

Informally, the merge-MDs are of the form: r1 ≈ r2 → r1
.= r2, where the

antecedent is true when 〈r1, r2, 1〉 is an output of the classifier. The RHS is a
shorthand for: r1[A1]

.= r2[A1] ∧ · · · ∧ r1[Am] .= r2[Am], where m is the total
number of record attributes. Merge at the attribute level uses the matching
functions mAi

.
We point out that MD-based merging takes care of transitive cases provided

by the classifier, e.g. if it returns 〈r1, r2, 1〉, 〈r2, r3, 1〉, but not 〈r1, r3, 1〉, we
still merge r1, r3 (even when r1 ≈ r3 does not hold). Actually, we do this by
merging all the records r1, r2, r3 into the same record. Our system is capable of
recognizing this situation and solving it as expected. This relies on the way we
store and manage -via our LogiQL program- the positive cases obtained from
the classifier (details can be found in Sect. 6). In essence, this makes our set of
merging-MDs interaction-free, and leads to a unique resolved instance [7].

The following sections provide more details on ERBlox and our approach
to ER.

4 Initial Data and Similarity Computation

We describe now some aspects of the MAS dataset, highlighting the input for-
and output of each component of the ERBlox system. The data is represented
and provided as follows. The Author relation contains authors names and their
affiliations. The Paper relation contains paper titles, years, conference IDs, jour-
nal IDs, and keywords. The PaperAuthor relation contains papers IDs, authors
IDs, authors names, and their affiliations. The Journal and Conference relations
contain short names, full names, and home pages of journals and conferences,
respectively. By using ERBlox on this dataset, we determine which papers in
MAS data are written by a given author. This is clear case of ER since there
are many authors who publish under several variations of their names. Also the
same paper may appear under slightly different titles, etc.10

From the MAS dataset, which contains the data in structured files, extensions
for intentional, relational predicates are computed by LogiQL-rules of the general
program, e.g.

file in(x1, x2, x3) → string(x1), string(x2), string(x3). (3)
lang : physical : filePath[‘ file in] = ”author .csv”. (4)
+author(id1, x2, x3) ← file in(x1, x2, x3), string : int64:convert [x1] = id1. (5)
9 The classifier also returns pairs or records that come from the same block, but are not
considered to be duplicate. The set thereof in not interesting, at least as a workflow
component.

10 For our experiments, we independently used two other datasets: DBLP and Cora
Citation.

ERBlox: Combining Matching Dependencies 407

Here, (3) is a predicate schema declaration (metadata uses “→”), in this case
of the “ file in” predicate with three string-valued attributes,11 which is used
to store the contents extracted from the source file, whose path is specified by
(4). Derivation rules, such as (5), use the usual “←”. In this case, it defines the
author predicate, and the “+” in the rule head inserts the data into the predicate
extension. The first attribute is made an identifier [1]. Figure 4 illustrates a small
part of the dataset obtained by importing data into the relational predicates.
(There may be missing attributes values.)

Author AID Name Affiliation Bl#
659 Jean-Pierre Olivier de Ecole des Hautes 659

2546 Olivier de Sardan Recherche Scientifique 2546
612 Matthias Roeckl German Aerospace Center 612

4994 Matthias Roeckl Institute of Communications 4994

Paper PID Title Year CID JID Keyword Bl#
123 Illness entities in West Africa 1998 179 West Africa, Illness 123
205 Illness entities in Africa 1998 179 Africa, Illness 205
769 DLR Simulation Environment m3 2007 146 Simulation m3 769
195 DLR Simulation Environment 2007 146 Simulation 195

PaperAuthor PID AID Name Affiliation
123 659 Jean-Pierre Olivier de Ecole des Hautes
205 2546 Olivier de Sardan Recherche Scientifique
769 612 Matthias Roeckl German Aerospace Center
195 4994 Matthias Roeckl Institute of Communications

Fig. 4. Relation extensions from MAS using LogiQL rules

As described above, in ERBlox, similarity computation generates similarity
weights, which are used to: (a) compute the weight vectors for the training data T
and the data in D under classification; and (b) do the blocking, where similarity
weights are compared with predefined thresholds for the similarity conditions in
the LHSs of blocking-MDs.12

We used three well-known similarity functions [13], depending on the
attribute domains. “TF-IDF cosine similarity” [22] used for computing simi-
larities for text-valued attributes, whose values are string vectors. It assigns low
weights to frequent strings and high weights to rare strings. It was used for
attribute values that contain frequent strings, such as affiliation. For attributes
with short string values, such as author name, we applied “Jaro-Winkler simi-
larity” [25]. Finally, for numerical attributes, such as publication year, we used
“Levenshtein distance” [20], which computes similarity of two numbers on the
basis of the minimum number of operations required to transform one into
the other.

11 In LogiQL, each predicate has to be declared, unless it can be inferred from the rest
of the program.

12 As described at the end of Sect. 3, these similarity computations are not used with
the MDs that support the final merging process (cf. Sect. 6).

408 Z. Bahmani et al.

Similarity computation for ERBlox is supported by LogiQL-rules that define
similarity functions. In particular, similarity computations are kept in extensions
of program predicates. For example, if the similarity weight of values a1, a2 for
attribute Title is above the threshold, a tuple TitleSim(a1, a2) is created by the
program.

5 MD-Based Collective Blocking and Duplicate Detection

Since every record has an identifier, rid, initially each record uses its rid as
its block number, in an extra attribute Bl#. In this way, we create the initial
blocking instance from the initial instance D, also denoted with D. Now, blocking
strategies are captured by means of (blocking) MDs of the form:

Ri(X̄1,Bl1) ∧ Ri(X̄2,Bl2) ∧ ψ(X̄3) → Bl1
.= Bl2. (6)

Here Bl1,Bl2 are variables for block numbers, and Ri is a database (record) pred-
icate. The lists of variables X̄1, X̄2 stand for all the attributes in Ri, but Bl#.
Formula ψ is a conjunction of relational atoms and comparison atoms via simi-
larity predicates; but it does not contain similarity comparisons of blocking num-
bers, such as Bl3≈ Bl4.13 The variables in the list X̄3 appear in Ri or in another
database predicate or in a similarity atom. It holds that (X̄1 ∪ X̄2) ∩ X̄3 = ∅.
For an example, see (2), where Ri is Author.

In order to enforce these MDs on two records, we use a binary matching
function m

Bl# , to make two block numbers identical: m
Bl#(i, j) := i if j ≤ i.

More generally, for the application-dependent set, ΣBl , of blocking-MDs we
adopt the chase-based semantics for entity resolution [7]. Since this set of MDs
is interaction-free, its enforcement results in a single instance DBl , where now
records may share block numbers, in which case they belong to the same block.
Every record is assigned to a single block.

Example 2. These are some of the blocking-MDs used for the MAS dataset:

Paper(pid1, x1, y1, z1, w1, v1, bl1) ∧ Paper(pid2, x2, y2, z2, w2, v2, bl2) ∧ (7)
x1 ≈Title x2 ∧ y1 = y2 ∧ z1 = z2 → bl1

.
= bl2.

Author(aid1, x1, y1, bl1) ∧ Author(aid2, x2, y2, bl2) ∧ (8)
x1 ≈Name x2 ∧ y1 ≈Aff y2 → bl1

.
= bl2.

Paper(pid1, x1, y1, z1, w1, v1, bl1) ∧ Paper(pid2, x2, y2, z2, w2, v2, bl2) ∧ (9)
PaperAuthor(pid1, aid1, x

′
1, y

′
1) ∧ PaperAuthor(pid2, aid2, x

′
2, y

′
2) ∧

Author(aid1, x
′
1, y

′
1, bl3) ∧ Author(aid2, x

′
2, y

′
2, bl3) ∧ x1 ≈Title x2 → bl1

.
= bl2.

Author(aid1, x1, y1, bl1) ∧ Author(aid2, x2, y2, bl2) ∧ x1 ≈Name x2 ∧ (10)
PaperAuthor(pid1, aid1, x1, y1) ∧ PaperAuthor(pid2, aid2, x2, y2) ∧
Paper(pid1, x

′
1, y

′
1, z

′
1, w

′
1, v

′
1, bl3) ∧ Paper(pid2, x

′
2, y

′
2, z

′
2, w

′
2, v

′
2, bl3) → bl1

.
= bl2.

13 Actually, this natural condition makes the set of blocking-MDs interaction-free, i.e.
for every two blocking-MDs m1, m2, the set of attributes on the RHS of m1 and
the set of attributes on the LHS of m2 on which there are similarity predicates, are
disjoint [7].

ERBlox: Combining Matching Dependencies 409

Informally, (7) tells us that, for every two Paper entities p1,p2 for which the
values for attribute Title are similar and with same publication year, conference
ID, the values for attribute Bl# must be made the same. By (8), whenever
there are similar values for name and affiliation in Author, the corresponding
authors should be in the same block. Furthermore, (9) and (10) collectively
block Paper and Author entities. For instance, (9) states that if two authors are
in the same block, their papers p1, p2 having similar titles must be in the same
block. Notice that if papers p1 and p2 have similar titles, but they do not have
same publication year or conference ID, we cannot block them together using
(7) alone. �

We now show how these MDs are represented in LogiQL, and how we use
LogiQL programs for declarative specification of MD-based collective blocking.14
In LogiQL, an MD takes the form:

Ri[X̄1]=Bl2, Ri[X̄2]=Bl2 ←− Ri[X̄1] = Bl1, Ri[X̄2] = Bl2, ψ(X̄3), Bl1 < Bl2,
(11)

subject to the same conditions as in (6). An atom Ri[X̄]=Bl states that predicate
Ri is functional on X̄ [1]. It means each record in Ri can have only one block
number Bl#.

Given an initial instance D, a LogiQL program PB(D) that specifies MD-
based collective blocking contains the following (kind of) rules:

1. For every atom R(rid , x̄, bl) ∈ D, the fact R[rid , x̄] = bl . (Initially, bl := rid .)
2. For every attribute A of Ri, facts of the form A-Sim(a1, a2), with

a1, a2 ∈ DomA, the finite attribute domain. They are obtained by similarity
computation.

3. The blocking-MDs as in (11).
4. Rules to represent the consecutive versions of entities during MD-

enforcement:

R-OldVersion(r1, x̄1, bl1) ← R[r1, x̄1] = bl1, R[r1, x̄1] = bl2, bl1 < bl2.

For each rid, r, there could be several atoms of the form R[r, x̄] = bl ,
corresponding to the evolution of the record identified by r due to MD-
enforcement. The rule specifies that versions of records with lower block
numbers are old.

5. Rules that collect the latest versions of records. They are used to form blocks:

R-MDBlock [r1, x̄1] = bl1 ← R[r1, x̄1] = bl1, ! R-OldVersion(r1, x̄1, bl1).

In LogiQL, “!”, as in the body above, is used for negation [1]. The rule collects
R-records that are not old versions.

14 Notice that since we have interaction-free sets of blocking-MDs, stratified Datalog
programs are expressive enough to express and enforce them [3]. LogiQL supports
stratified Datalog.

410 Z. Bahmani et al.

Programs PB(D) as above are stratified (there is no recursion involving nega-
tion). Then, as expected in relation to the blocking-MDs, they have a single
model, which can be used to read the final block number for each record.

Example 3. (ex. 2 cont.) Considering only MDs (7) and (9), the portion of
PB(D) for blocking Paper entities has the following rules:

2. Facts such as: TitleSim(Illness entities in West Africa, Illness entities in Africa).

TitleSim(DLR Simulation Environment m3 ,DLR Simulation Environment).

3. Paper [pid1, x1, y1, z1, w1, v1] = bl2,Paper [pid2, x2, y2, z2, w2, v2] = bl2 ←
Paper [pid1, x1, y1, z1, w1, v1] = bl1,Paper [pid2, x2, y2, z2, w2, v2] = bl2,

TitleSim(x1, x2), y1 = y2, z1 = z2, bl1 < bl2.
Paper [pid1, x1, y1, z1, w1, v1] = bl2,Paper [pid2, x2, y2, z2, w2, v2] = bl2 ←

Paper [pid1, x1, y1, z1, w1, v1] = bl1,Paper [pid2, x2, y2, z2, w2, v2] = bl2,TitleSim(x1, x2),
PaperAuthor(pid1, aid1, x

′
1, y

′
1),PaperAuthor(pid2, aid2, x

′
2, y

′
2),

Author [aid1, x
′
1, y

′
1] = bl3,Author [aid2, x

′
2, y

′
2] = bl3, bl1 < bl2.

4. PaperOldVersion(pid1, x1, y1, z1, w1, v1, bl1)←Paper [pid1, x1, y1, z1, w1, v1] = bl1,

Paper [pid1, x1, y1, z1, w1, v1] = bl2, bl1 < bl2.

5. PaperMDBlock [pid, x̄1] = bl1 ← Paper [pid1, x1, y1, z1, w1, v1] = bl1,

PaperOldVersion(pid1, x1, y1, z1, w1, v1, bl1).

Restricting the model of the program to the relevant attributes of predicate
PaperMDBlock returns: {{123, 205}, {195, 769}}, i.e. the papers with pids 123
and 205 are blocked together; similarly for those with pids 195 and 769. �

As described above, the input to the trained classifier is a set of tuples of the
form 〈r1, r2, w(r1, r2)〉, with w(r1, r2) the computed weight vector for records
(with ids) r1, r2 in a same block.15

Example 4. (ex. 3 cont.) Consider the blocks for entity Paper. If the “journal
ID” values are null in both records, but not the “conference ID” values, “journal
ID” is not considered for a feature. Similarly, when the conference ID values are
null. However, the values for “journal ID” and “conference ID” are replaced by
“journal full name” and “conference full name” values, found in Conference and
Journal records, resp. In this case then, attributes Title, Year, ConfFullName or
JourFullName and Keyword are used for corresponding feature for weight vector
computation.

Considering the previous Paper records, the input to the classifier con-
sists of: 〈123, 205, w(123, 205)〉, with w(123, 205) = [0.8, 1.0, 1.0, 0.7], and
〈195, 769, w(195, 769)〉, with w(195, 769) = [0.93, 1.0, 1.0, 0.5] (actually the con-
tents of the two square brackets only). �

Several ML techniques are accessible from LogicBlox platform through the
BloxMLPack library, that provides a generic Datalog interface. Then, ERBlox
can call an ML-based record duplicate detection component through the general
LogiQL program. In this way, the SVMs package is invoked by ERBlox.

15 The features considered in a weight vector computation depend on whether they
have a strong discrimination power, i.e. do not contain missing values.

ERBlox: Combining Matching Dependencies 411

The output is a set of tuples of the form 〈r1, r2, 1〉 or 〈r1, r2, 0〉, where r1, r2 are
ids for records of entity (table) R. In the former case, a tuple R-Duplicate(r1, r2)
is created (as defined by the LogicQL program). In the previous example,
the SVMs method return 〈[0.8, 1.0, 1.0, 0.7], 1〉 and 〈[0.93, 1.0, 1.0, 0.5], 1〉, then
PaperDuplicate(123, 205) and PaperDuplicate(195, 769) are created.

6 MD-Based Merging

When EntityDuplicate(r1, r2) is created, the corresponding full records r̄1, r̄2
have to be merged via record-level merge-MDs of the form R[r1] ≈ R[r2] −→
R[r̄1]

.= R[r̄2], where R[r1] ≈ R[r2] is true when R-Duplicate(r1, r2) has been cre-
ated according to the output of the SVMs classifier. The RHS means that the two
records are merged into a new full record r̄, with r̄[Ai] := m

Ai
(r̄1[Ai], r̄2[Ai]) [7].

Example 5. (ex. 4 cont.) We merge duplicate Paper entities enforcing the MD:
Paper [pid1] ≈ Paper [pid2] −→ Paper [Title,Year ,CID ,Keyword]

.
= Paper [Title,

Year ,CID , Keyword]. �

The portion, PM , of the general LogiQL program that represents MD-based
merging contains rules as in 1.–4. below:

1. The atoms of the form R-Duplicate mentioned above, and those representing
the matching functions (MFs) m

A
.

2. For an MD R[r1] ≈ R[r2] −→ R[r̄1]
.= R[r̄2], the rule:

R[r1, x̄3] = bl , R[r2, x̄3] = bl ←− R-Duplicate(r1, r2), R[r1, x̄1] = bl ,
R[r2, x̄2] = bl , m(x̄1, x̄2) = x̄3,

which creates two records (one of them can be purged afterwards) with dif-
ferent ids but all the other attribute values the same, and computed com-
ponentwise according to the MFs for m. Here, x̄1, x̄2, x̄3 stand each for all
attributes of relation R, except for the id and the block number (represented
by bl). (Block numbers play no role in merging.)

3. As for program PB(D) given in Sect. 5, rules specify the old versions of a
record:

R-OldVersion(r1, x̄1) ← R[r1, x̄1] = bl , R[r1, x̄2] = bl , x̄1 ≺ x̄2.

Here, x̄1 stands for all attributes other than the id and the block number; and
on the RHS x̄1 ≺ x̄2 means componentwise comparison of values according
to the partial orders defined by the MFs.

4. Finally, rules to collect the latest version of each record, building the final
resolved instance: R-ER(r1, x̄1) ← R[r1, x̄1] = bl , ! R-OldVersion(r1, x̄1).

Notice that the derived tables R-Duplicate that appear in the LHSs of the
MDs (or in the bodies of the corresponding rules) are all computed before (and
kept fixed during) the enforcement of the merge-MDs. In particular, a duplicate
relationship between any two records is not lost. This has the effect of making the
set of merging-MDs interaction-free, which results in a unique resolved instance.

412 Z. Bahmani et al.

7 Experimental Evaluation

We now show that our approach to ER can improve accuracy in comparison
with standard blocking. In addition to the MAS, we used datasets from DBLP
and Cora Citation.

Fig. 5. The experiments (MAS)

In order to emphasize the impor-
tance of semantic knowledge in block-
ing, we consider standard blocking and
two different sets of MDs, (1) and
(2), for MD-based collective blocking.
Under (1), we define blocking-MDs for
all the blocking keys used for stan-
dard blocking, but under (2) we have
MDs for only some of the used block-
ing keys. In both cases, in addition to
properly collective blocking MDs.

We use three measures for the comparisons of blocking techniques. One is
reduction ratio, which is the ratio (minus 1) of the number of candidate record-
pairs over the initial number of records. The higher this value, the less candidate
record-pairs are being generated, but the quality of the generated candidate
record pairs is not taken into account. We also use recall and precision measures.
The former is the number of true duplicate candidate record-pairs divided by the
number of true duplicate pairs, and precision is the number of true candidate
duplicate record-pairs divided by the total number of candidate pairs [12].

Figures 5, 6 and 7 show the comparative performance of ERBlox. They show
that standard blocking has higher reduction ratio than MD-based collective
blocking version (1). This means that less candidate record-pairs are being gen-
erated by standard blocking. However, the precision and recall of MD-based
blocking version (1) are higher than standard blocking, meaning that MD-based
blocking version (1) can lead to improved ER results at the cost of larger blocks,
and thus more candidate record pairs that need to be compared.

Fig. 6. The experiments (DBLP)

In blocking, this is a common
tradeoff that needs to be considered.
On the one hand, having a large
number of smaller blocks will result
in fewer candidate record-pairs that
will be generated, probably increasing
the number of true duplicate record-
pairs that are missed. On the other
hand, blocking techniques that result
in larger blocks generate a higher num-
ber of candidate record-pairs that will
likely cover more true duplicate pairs,
at the cost of having to compare more
candidate pairs [12]. The experiments are all done before MD-based merging.

ERBlox: Combining Matching Dependencies 413

Fig. 7. The experiments (Cora)

Interestingly, MD-based blocking
version (2) has higher reduction ratio,
recall, and precision than standard
blocking. This emphasizes the impor-
tance of MDs supporting collective
blocking, and shows that blocking
based on string similarity alone fails
to capture the relationships that nat-
urally hold in the data.

As expected, the experiments show
that different sets of MDs for MD-
based collective blocking have different impact on reduction ratio, so as standard
blocking depends on the choice of blocking keys. However, the quality of MD-
based collective blocking, in its two versions, dominates standard blocking for
the three datasets.

8 Conclusions

We have shown that matching dependencies, a new class of data quality/cleaning
semantic constraints in databases, can be profitably integrated with traditional
ML-methods, in our case for entity resolution. They play a role not only in
the intended goal of merging duplicate representations, but also in the record
blocking process that precedes the learning task. At that stage they allow to
declaratively capture semantic information that can be used to enrich the block-
ing activity. MDs declaration and enforcement, data processing in general, and
machine learning can all be integrated using the LogiQL language.

Acknowledgments. Part of this research was funded by an NSERC Discovery grant
and the NSERC Strategic Network on Business Intelligence (BIN). Z. Bahmani and
L. Bertossi are very much grateful for the support from LogicBlox during their intern-
ship and sabbatical visit.

References

1. Aref, M., ten Cate, B., Green, T.J., Kimelfeld, B., Olteanu, D., Pasalic, E., Veld-
huizen, T.L., Washburn, G.: Design and Implementation of the LogicBlox System.
In: Proceeding SIGMOD 2015, pp. 125–141 (2015)

2. Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods for
record linkage. In: Proceeding ACM SIGKDD Workshop on Data Cleaning, Record
Linkage, and Object Identification , pp. 234–256 (2003)

3. Bahmani, Z., Bertossi, L., Kolahi, S., Lakshmanan, L.: Declarative entity resolution
via matching dependencies and answer set programs. In: Proceeding KR 2012, pp.
380–390 (2012)

4. Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach.
Neural Comput. 12(3), 2385–2404 (2000)

414 Z. Bahmani et al.

5. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., EuijongWhang, S.,
Widom, J.: Swoosh: a generic approach to entity resolution. VLDB J. 18(1), 255–
276 (2009)

6. Bertossi, L., Kolahi, S., Lakshmanan, L.: Data cleaning and query answering with
matching dependencies and matching functions. In: Proceeding ICDT 2011. ACM
Press (2011)

7. Bertossi, L., Kolahi, S., Lakshmanan, L.: Data cleaning and query answering with
matching dependencies and matching functions. Thoer. Comp. Syst. 52(3), 441–
482 (2013)

8. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1), 1–41 (2008)
9. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,

Heidelberg (1989)
10. Christen, P., Goiser, K.: Quality and complexity measures for data linkage and

deduplication. In: Guillet, F., Hamilton, H. (eds.) Quality Measures in Data Min-
ing. SCI, pp. 127–151. Springer, Heidelberg (2007)

11. Christen, P.: Automatic record linkage using seeded nearest neighbour and support
vector machine classification. In: Proceeding SIGKDD 2008, pp. 151–159 (2008)

12. Christen, P.: A survey of indexing techniques for scalable record linkage and dedu-
plication. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2011)

13. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string metrics for match-
ing names and records. In: Proceeding Workshop on Data Cleaning and Object
Consolidation 2003, pp. 123–134 (2003)

14. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf.
Theor. 13(1), 21–27 (1967)

15. Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate record detection: a survey.
IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)

16. Fan, W.: Dependencies revisited for improving data quality. In: Proceeding PODS
(2008)

17. Fan, W., Jia, X., Li, J., Ma, S.: Reasoning about Record Matching Rules. PVLDB
2(1), 407–418 (2009)

18. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. J. Am. Stat. Soc. 64(1),
328–339 (1969)

19. Herzog, T.N., Scheuren, F.J., Winkler, W.E.: Data Quality and Record Linkage
Techniques. Springer, New York (2007)

20. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
33(1), 31–88 (2001)

21. Rastogi, V., Dalvi, N.N., Garofalakis, M.N.: Large-scale collective entity matching.
PVLDB 4(4), 208–218 (2011)

22. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Inf. Process. Manage. 24(5), 513–523 (1988)

23. Euijong Whang, S., Menestrina, D., Koutrika, G., Theobald, M., Garcia-Molina,
H.: Entity resolution with iterative blocking. In: Proceeding SIGMOD 2009, pp.
219–232 (2009)

24. Vapnik, V.N.: Statistical Learning Theory. Wiley (1998)
25. Winkler, W.E.: The State of record linkage and currentresearch problems. Techni-

cal Report, U.S. Census Bureau (1999)

	ERBlox: Combining Matching Dependencies with Machine Learning for Entity Resolution
	1 Introduction
	2 Preliminaries
	2.1 Matching Dependencies
	2.2 Support Vector Machines

	3 Overview of ERBlox
	4 Initial Data and Similarity Computation
	5 MD-Based Collective Blocking and Duplicate Detection
	6 MD-Based Merging
	7 Experimental Evaluation
	8 Conclusions
	References

