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Preface

The International Conference on Scalable Uncertainty Management (SUM) is an
annual conference that was launched in 2007 with the goal of exploiting and
strengthening the connection between the artificial intelligence and database commu-
nities, aiming at bringing together all those researchers interested in the management of
uncertain, incomplete, or inconsistent information. Such information originates com-
monly in applications where significant computational effort is needed to process data
in a meaningful and semantically justifiable manner. Typical applications of that kind
include databases, the Web, and the life sciences.

Previous SUM conferences have been held in Washington DC (USA) in 2007, in
Naples (Italy) in 2008, in Washington DC (USA) in 2009, in Toulouse (France) in
2010, in Dayton (USA) in 2011, in Marburg (Germany) in 2012, again in Washington DC
(USA) in 2013, and in Oxford (UK) in 2014.

This volume contains the papers presented at the Ninth International Conference on
Scalable Uncertainty Management (SUM 2015) held in Québec City, Canada, Sep-
tember 16–18, 2015.

The call for papers for SUM 2015 solicited submissions in all areas of managing and
reasoning with substantial and complex kinds of uncertain, incomplete, or inconsistent
information. These include applications in decision support systems, risk analysis,
machine learning, belief networks, logics of uncertainty, belief revision and update,
argumentation, negotiation technologies, semantic web applications, search engines,
ontology systems, information fusion, information retrieval, natural language pro-
cessing, information extraction, image recognition, vision systems, data and text
mining, and the consideration of issues such as provenance, trust, heterogeneity, and
complexity of data and knowledge.

The call for papers resulted in 49 submissions, among which 41 were regular papers
and 8 were short papers. In a rigorous reviewing process, each submitted article was
reviewed by at least three Program Committee members. Based on the review reports
and intense discussions, 25 regular papers (one was later withdrawn by the author) and
3 short papers were accepted for publication and presentation at the conference.

In addition, the conference greatly benefited from invited lectures by three
world-leading researchers: Jean-Marie De Koninck, Lise Getoor, and Ronald R. Yager.
This volume also contains the abstracts of the three invited talks as well as an article for
one of them.

A conference such as this can only succeed as a team effort. We would like to thank
several people and institutions. We thank all the authors of submitted papers, the
invited speakers, and the conference participants. We are grateful to the members of the
Program Committee and the external reviewers, to Alfred Hofmann and Springer for
providing assistance and advice in the preparation of the proceedings, and to the



creators and maintainers of the conference management system EasyChair. Special
thanks go to Patrick Maupin and his team for being our hosts and for the wonderful
days in Québec City.

July 2015 Christoph Beierle
Alex Dekhtyar
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The Hollow Universe of Mathematics

Jean-Marie De Koninck

Département de mathématiques et de statistique,
Université Laval, Québec G1V 0A6, Canada

In many fields of mathematics, the set of known results is very thin compared
with the set of conjectures and hypothesis which have not yet been proved.
Particularly remarkable is the hollow universe that sometimes seems to separate
the world of the known from what we believe to be reality. Through various
examples from number theory, we will attempt here to explore that hollow
universe separating these two worlds.



Large-scale Collective Inference
using Probabilistic Soft Logic

Lise Getoor

Computer Science Department, University of California, Santa Cruz, USA

One of the challenges in big data analytics is to efficiently learn and reason
collectively about extremely large, heterogeneous, incomplete, noisy interlinked
data. Collective reasoning requires the ability to exploit both the logical and
relational structure in the data and the probabilistic dependencies. In this talk I
will overview our recent work on probabilistic soft logic (PSL), a framework for
collective, probabilistic reasoning in relational domains. PSL is able to reason
holistically about both entity attributes and relationships among the entities. The
underlying mathematical framework, which we refer to as a hinge-loss Markov
random field, supports extremely efficient, exact inference. This family of
graphical models captures logic-like dependencies with convex hinge-loss
potentials. I will survey applications of PSL to diverse problems ranging from
information extraction to computational social science. Our recent results show
that by building on state-of-the-art optimization methods in a distributed
implementation, we can solve large-scale problems with millions of random
variables orders of magnitude faster than existing approaches.



Intelligent Technologies for Internet
Social Applications

Ronald R. Yager

Machine Intelligence Institute, Iona College
New Rochelle, NY 10801, USA

The Internet has provided for a rapid growth of computer mediated social net-
works and other social interactions. One focus here is to discuss how to enrich
the domain of social network modeling by introducing ideas from fuzzy sets and
related intelligent technologies. We approach this extension in a number of ways.
One is with the introduction of fuzzy graphs representing the networks. This
allows a generalization of the types of connection between nodes in a network.
A second and perhaps more interesting extension is the use of the fuzzy set based
paradigm of computing with words to provide a bridge between a human net-
work analyst’s linguistic description of social network concepts and the formal
model of the network. We also will describe some methods for sharing infor-
mation obtained in these types of networks we used for computer mediated group
decision making.
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The Mysterious World of Normal Numbers

Jean-Marie De Koninck(B)

Département de Mathématiques et de Statistique,
Université Laval, Québec G1V 0A6, Canada

jmdk@mat.ulaval.ca

Abstract. Given an integer q ≥ 2, a q-normal number (or a normal
number) is a real number whose q-ary expansion is such that any pre-
assigned sequence of length k ≥ 1, of base q digits from this expansion,
occurs at the expected frequency, namely 1/qk. Even though there are
no standard methods to establish if a given number is normal or not, it is
known since 1909 that almost all real numbers are normal in every base
q. This is one of the many reasons why the study of normal numbers has
fascinated mathematicians for the past century. We present here a brief
survey of some of the important results concerning normal numbers.

1 Introduction

Flip a coin. If you obtain heads, write 0; if you obtain tails, write 1. Keep flipping
the coin, writing 0’s and 1’s depending on the outcome. After 100 times, count
the number of 0’s and 1’s: you will most likely count approximately 50 of each.
Then, count how many times you obtained two consecutive 0’s: it will most likely
be approximately 25 times, since the possible outcomes of two consecutive flips
are 00, 01, 10 and 11, and the probability that any such particular outcome
occurs is 1/4. Similarly, if you keep flipping the coin many times, the probability
that a given sequence of length k occurs will be around 1/2k; that’s what you
expect will happen: it would be perfectly normal ! This is why we say that the
sequence of 0’s and 1’s obtained by flipping a coin creates a random sequence,
that is, a binary normal sequence. This is why if a1, a2, a3, . . . is the infinite
sequence of 0’s and 1’s obtained by flipping a coin (for ever!), we say that the
expression 0.a1a2a3 . . . represents a normal number.

Humans have always been interested in creating random numbers. In fact,
random number generators have applications in gambling, lotteries, computer
simulation, cryptography, completely randomized design, and many other areas
where producing an unpredictable result needs to be achieved. Normal numbers
have their practical use in that they provide an infinite source of pseudorandom
numbers. However, the real interest for the study of normal numbers lies in the
fact tha they are extremely difficult to identify and that they are very mysterious
in many other aspects.

2 Basic Definitions

Given an integer q ≥ 2, a q-normal number (or a normal number) is a real
number whose q-ary expansion is such that any preassigned sequence of length
c© Springer International Publishing Switzerland 2015
C. Beierle and A. Dekhtyar (Eds.): SUM 2015, LNAI 9310, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-23540-0 1



4 J.-M. De Koninck

k ≥ 1, of base q digits from this expansion, occurs at the expected frequency,
namely 1/qk. Clearly, rational numbers cannot be normal since only a particular
sequence of digits is repeated infinitely often.

Equivalently, given a positive irrational number η whose expansion is

η = �η� + 0.a1a2a3 . . . = �η� +
∞∑

j=1

aj

qj
, with each aj ∈ {0, 1, . . . , q − 1},

where �η� stands for the integer part of η, we say that η is a q-normal number if
the sequence {qmη}, m = 1, 2, . . . (here {y} stands for the fractional part of y),
is uniformly distributed in the interval [0, 1).

Both definitions are equivalent, because the sequence {qmη}, m = 1, 2, . . .,
is uniformly distributed in [0, 1) if and only if for every integer k ≥ 1 and
b1 . . . bk ∈ {0, 1, . . . , q − 1}k, we have

lim
N→∞

1
N

#{j ≤ N : aj+1 . . . aj+k = b1 . . . bk} =
1
qk

.

A real number is said to be simply normal in base q if each digit d ∈
{0, 1, . . . , q − 1} occurs with frequency 1/q. Of course, a number can be simply
normal without being a normal number (such is the case of the binary number
0.1010101010101 . . .).

A real number is said to be absolutely normal if it is normal in each base
q ≥ 2.

Normal numbers are mysterious for many reasons. For instance, the constant

π = 3.1415926535897932384626433832795028841971693993751 . . .

has not yet been proved to be a normal number, although it is widely believed
that it is. Similarly, the frequently used

Euler constant e = 2.718281828459045235360287471352662497757247 . . .√
2 = 1.414213562373095048801688724209698078569671 . . .

log 2 = 0.693147180559945309417232121458176568075500 . . .

Apery number
∞∑

n=1

1
n3

= 1.202056903159594285399738161511449990764986 . . .

Golden number
1 +

√
5

2
= 1.618033988749894848204586834365638117720309 . . .

have not yet been proven to be normal numbers, although numerical evidence
seems to indicate that they are. What is even more disturbing is the fact that
none of the above numbers has been shown to be simply normal. For instance,
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it is possible that venturing along the decimals of π, from some point on, one
could not any longer find the digit 0. Even though no one believes that could be
the case, we can’t disprove it.

On the other hand, it is widely believed that every irrational algebraic number
is normal. Nevertheless, no algebraic irrational number has yet been proved to
be normal (in any base).

Despite our inability to prove that any member of this large family of numbers
is normal, Émile Borel [6] showed in 1909 that almost all real numbers (with
respect to the Lebesgue measure) are absolutely normal.

3 A Story Line

Here is a story line of some of the key results obtained concerning normal num-
bers.

– 1909: Borel [6] introduces the concept of normal number and proves that
almost all real numbers are absolutely normal.

– 1917: Sierpiński [23] provides an alternative proof that almost all real numbers
are normal. It is an existence theorem, that is Sierpiński does not point out to
any particular normal numbers. Here is the general idea of Sierpiński’s proof.
For each number ε ∈ (0, 1], he first constructs a set Δ(ε) which is the union
of countably many open intervals with rational endpoints, namely

Δ(ε) :=
∞⋃

q=2

∞⋃

m=1

∞⋃

n=nm,q(ε)

q−1⋃

p=0

Δq,m,n,p ,

where Δq,m,n,p is the set of all open intervals of the form
(

b1
q

+
b2
q2

+ · · · +
bn

qn
− 1

qn
,
b1
q

+
b2
q2

+ · · · +
bn

qn
+

2
qn

)

such that ∣∣∣∣
cp(b1, b2, . . . , bn)

n
− 1

q

∣∣∣∣ ≥ 1
m

,

where each bi ∈ {0, 1, . . . , q − 1} and where cp(b1, b2, . . . , bn) represents the
number of times that the digit p appears amongst the digits b1, b2, . . . , bn. The
idea is that Δq,m,n,p contains all the numbers that are not normal in base q.
He then proves that every positive real number < 1 which is external to Δ(ε)
is absolutely normal. Finally, he shows that μ(Δ(ε)) < ε for every ε ∈ (0, 1],
that is that the Lebesgue measure of the set Δ(ε) tends to 0 with ε, thereby
establishing that almost all numbers are normal.

– 1933: Champernowne [9], an undergraduate student, proves that the number

C10 = 0.123456789101112131415161718192021 . . . ,

made up from the concatenation of the positive integers, is normal in base 10.
Observe that, by concatenating the sequence of integers written in any base
q ≥ 2, one can show that it provides a q-normal number.
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– 1946: Copeland and Erdős [10] prove that the number
0.23571113171923293137 . . . , obtained by the concatenation of the prime
numbers, is normal in base 10. Observe that the same result holds by
concatenating the sequence of prime numbers written in any base q ≥ 2.
More generally, they prove that if a1, a2, a3, . . . is an increasing sequence of
positive integers (expressed in base q) such that, for each positive θ < 1,
#{ai ≤ x} > xθ provided x ≥ x0(θ), then 0.a1a2a3 . . . is a q-normal number.
Since π(x) >

x

log x
for all x ≥ 11 (here π(x) stands for the number of primes

not exceeding x), then as a particular case we get that 0.235711131719 . . . is
indeed normal in base 10.
As another application of the general Copeland and Erdős result, we have that
since each prime p ≡ 1 (mod 4) can be written as p = r2 + s2 with r, s ∈ N,
and since #{p ≤ x : p ≡ 1 (mod 4)} > c x/ log x for all c < 1

2 provided x is
large enough, it follows that #{ni ≤ x : ni = r2 + s2} > cx/ log x for large x,
thus implying that the number 0.n1n2n3 . . . = 0.5131729 . . . is normal.

– 1946: Copeland and Erdős [10] also conjecture that if f(x) is any non con-
stant polynomial whose values at x = 1, 2, 3, . . . are positive integers, then
0.f(1)f(2)f(3) . . . is a normal number in base 10.

– 1952: Davenport and Erdős [11] prove this conjecture.
– 1956: Cassels [8] comes up with a large family of simply normal numbers by

considering the function f : [0, 1] → R defined by

f(x) =
∞∑

j=1

xj

3j
,

where x1, x2, . . . denote the binary digits of x. Then, one can easily establish
that for almost all x ∈ [0, 1], f(x) is simply normal with respect to every base
q ≥ 2 which is not a power of 3.

– 1992: Nakai and Shiokawa [21] prove that if f ∈ R[X] is such that f(x) > 0
for x > 0, then the real number 0.�f(1)��f(2)��f(3)� . . . , where �f(n)� stands
for the integer part of f(n) expressed in base q ≥ 2, is normal in base q. They
also show that the same result holds if

f(x) = α0x
β0 + α1x

β1 + · · · + αdx
βd ,

where the αi’s and βi’s are real numbers with β0 > β1 > · · · > βd ≥ 0 and
f(x) > 0 for x > 0.

– 1997: Nakai and Shiokawa [22] prove that if f ∈ Z[X] is any noncon-
stant polynomial such that f(x) > 0 for x > 0, then the number
0.f(2)f(3)f(5)f(7) . . . f(p) . . . is normal in base 10.

– 2008: Madritsch, Thuswaldner and Tichy [19] extend the results of Nakai and
Shiokawa by showing that, if f is an entire function of logarithmic order, then
the numbers

0.�f(1)�q�f(2)�q�f(3)�q . . . and 0.�f(2)�q�f(3)�q�f(5)�q�f(7)�q . . . ,

where �f(n)�q stands for the base q expansion of the integer part of f(n), are
normal.
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4 Series Representing Normal Numbers

In 1971, Stoneham considered constants represented by convergent series as pos-
sible candidates for normality.

As we mentioned in Sect. 1, no one has been able to show that log 2 =
∞∑

n=1

1
n2n

is a normal number. Nevertheless, Stoneham [24] was able to show that the
number

α2,3 :=
∞∑

n=3k>1

1
n2n

=
∞∑

k=1

1
3k23k

is normal in base 2. More generally, observe that log
b

b − 1
=

∞∑

n=1

1
nbn

. In 2002,

Bailey and Crandall [4] proved that, if b, c ≥ 2 are coprime integers, then the

number αb,c :=
∑

n=ck>1

1
nbn

=
∞∑

k=1

1
ckbck is normal in base b. They even showed

that if r = 0.r1r2 . . . ∈ [0, 1), then α2,3(r) :=
∞∑

n=1

1
3n23n+rn

is a normal number

in base 2, thereby providing an uncountable class of normal numbers in base 2.
Is α2,3 normal in bases other than 2? Not always! In fact, in 2006, Bailey and

Borwein [1] proved that α2,3 is not a 6-normal number. Their idea was based on
the fact that since the expression

63
m

α2,3 mod 1 ≈ (3/4)3
m

3m+1

(Here x = θ mod 1 means that θ = x−�x�) is very small for large m, this causes
the number α2,3, in base 6, to have long stretches of 0’s beginning at position
3m + 1, and as we know this is not acceptable for a normal number!

5 Equidistribution

A sequence of positive numbers x0, x1, x2, . . ., each smaller than 1, is said to be
equidistributed if, for any 0 ≤ c < d < 1,

lim
N→∞

1
N

#{0 ≤ j < N : xj ∈ [c, d)} = d − c.

In 2001, Bailey and Crandall [3] considered the sequence x0, x1, . . . defined
by x0 = 1 and, for each n ≥ 1, by

xn =
(

2xn−1 +
1
n

)
mod 1.

They showed that if one could prove that this sequence is equidistributed in
[0, 1], then it would imply that log 2 is a binary normal number.



8 J.-M. De Koninck

Similarly, consider the sequence y0, y1, . . . defined by y0 = 1 and, for each
n ≥ 1, by

yn =
(

16yn−1 +
120n2 − 89n + 16

512n4 − 1024n3 + 712n2 − 206n + 21

)
mod 1.

They showed that if one could prove that this sequence is equidistributed in
[0, 1], then it would imply that π is a 16-normal number (and hence a 2-normal
number as well).

These results raise a natural question: Is it easier to prove the equidistribution
of the sequence (xn)n≥1 or the normality of log 2? What about the sequence
(yn)n≥1 and its corresponding number π? Nobody knows!

6 Abnormal Numbers

Surely, if we have so much difficulty finding normal numbers, it should be easy
to find many numbers which are not normal. It turns out that, except for the
rational numbers, this task is not so easy!

A number is said to be abnormal in base q if it is not normal in base q. For
instance, the binary number

∞∑

n=1

n

2n2 = 0.10100001100001000000001010000000011000000000001110 . . .

is clearly abnormal since one can easily show that almost all of its digits in base
2 are zeros.

A less obvious example of a binary abnormal number is the amazing Devil’s

staircase number, namely the number f(x) :=
∞∑

n=1

�nx�
2n

with x ∈ [0, 1]. Here is

the graph of f(x):

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

This function has amazing properties. Bailey and Crandall [4] studied this func-
tion and proved that, for x ∈ (0, 1),

– f is monotone increasing,
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– f is continuous at every irrational x, but discontinuous at every rational x,
– f(x) ∈ R \ Q if and only if x ∈ R \ Q,
– if x is irrational, then f(x) is transcendental,
– the range of f([0, 1]) is a set of measure zero,

– if x = a/b with a, b ∈ N and a/b < 1, then f(x) =
1

2b − 1
+

∞∑

m=1

1
2�m/x� , while

if x is irrational, then f(x) =
∞∑

m=1

1
2�m/x� .

But then the most interesting property of f(x) shown by Bailey and Crandall is
that it is never 2-normal.

7 Absolutely Abnormal Numbers

A number is said to be absolutely abnormal if it is not normal in every base
q ≥ 2. In May 2000, during a survey talk by Glynn Harman, Andrew Granville
asked about a specific absolutely abnormal number. In response, Carl Pomer-

ance suggested considering the Liouville number 	 :=
∞∑

n=1

(n!)−n!. Recall that a

number β is said to be a Liouville number if, given any large integer m, there
exists a rational p/q such that

0 <

∣∣∣∣β − p

q

∣∣∣∣ <
1

qm
.

Observe that it is known that every Liouville number is transcendental. As of
now, no one has proved that 	 is absolutely abnormal. Intrigued by Granville’s
question, Martin [20] considered the very fast growing sequence

d2 = 22, d3 = 32, d4 = 43, d5 = 516, d6 = 630 517 578 125, . . .

with the recursive rule

dj = jdj−1/(j−1) (j ≥ 3).

Then he proved that the number
∞∏

j=2

(
1 − 1

dj

)
= 0.6562499999956991 999 . . . 999︸ ︷︷ ︸

23,747,291,559 9’s

85284042016 . . .

is a Liouville number and in fact an absolutely abnormal normal.
More generally, given any sequence of positive integers n2, n3, . . ., set d2 = 2n2

and
dj = jnjdj−1/(j−1) (j ≥ 3)

and consider the number

α :=
∞∏

j=2

(
1 − 1

dj

)
.

Martin proved that α is an absolutely abnormal number, thus providing an
uncountable family of absolutely abnormal numbers.
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8 Using the Prime Factorization to Construct Normal
Numbers

As of 2011, all known normal numbers were essentially of one of the types
described in Sects. 3 and 4. In 2011, a totally different approach was initiated.
It is based on the idea that the prime factorization of integers is locally chaotic
but globally very regular. Here is how it goes.

Let q ≥ 2 be a fixed integer and let ℘ stand for the set of all primes. Let
℘0, ℘1, . . . , ℘q−1 be disjoint sets of primes such that

℘ = R ∪ ℘0 ∪ ℘1 ∪ · · · ∪ ℘q−1,

where R is a given finite (perhaps empty) set of primes. We call
R, ℘0, ℘1, . . . , ℘q−1 a disjoint classification of primes.

A simple example of a disjoint classification of primes is obtained by letting
q = 2 and setting R = {2}, ℘0 = {p ∈ ℘ : p ≡ 1 (mod 4)} and ℘1 = {p ∈ ℘ :
p ≡ 3 (mod 4)}.

Now, for each integer q ≥ 2, let Aq := {0, 1, . . . , q − 1}. Given an integer
t ≥ 1, we say that an expression of the form i1i2 . . . it, where each ij ∈ Aq,
is a word of length t. The symbol Λ will denote the empty word. Now, given a
disjoint classification of primes R, ℘0, ℘1, . . . , ℘q−1, let the function H : ℘ → Aq

be defined by

H(p) =
{

j if p ∈ ℘j for some j ∈ Aq,
Λ if p ∈ R.

Let A∗
q be the set of finite words over Aq and consider the function T : N → A∗

q

defined by
T (n) = T (pa1

1 · · · par
r ) = H(p1) . . . H(pr),

where we omit H(pi) = Λ if pi ∈ R. For convenience, we set T (1) = Λ. Finally,
given a set of integers S, let π(S) := #{p ∈ ℘ ∩ S}. In 2011, De Koninck and
Kátai [13] proved the following result.

Theorem 1. Let q ≥ 2 be an integer and let R, ℘0, ℘1, . . . , ℘q−1 be a disjoint
classification of primes. Assume that, for a certain constant c ≥ 5,

π([u, u + v] ∩ ℘j) =
1
q
π([u, u + v]) + O

(
u

logc u

)

uniformly for 2 ≤ v ≤ u, j = 0, 1, . . . , q − 1, as u → ∞. Moreover, let T be
defined on N by

T (n) = T (pa1
1 · · · par

r ) = H(p1) . . . H(pr),

where

H(p) =
{

j if p ∈ ℘j for some j ∈ Aq,
Λ if p ∈ R.

Then, ξ = 0.T (1)T (2)T (3)T (4) . . . is a q-normal number.
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Example: Let q = 2, R = {2}, ℘0 = {p : p ≡ 1 (mod 4)} and
℘1 = {p : p ≡ 3 (mod 4)}. In particular, {T (1), T (2), . . . , T (15)} =
{Λ,Λ, 1,Λ, 0, 1, 1,Λ, 1, 0, 1, 1, 0, 1, 10}. Then, it follows from Theorem 1 that
ξ = 0.T (1)T (2)T (3)T (4) . . . = 0.101110110110 . . . is a binary normal number.

Although we will not give here a proof of Theorem 1, let us at least mention that
a key element of its proof is a 1995 result of De Koninck and Kátai [12] which
we state here as Theorem A.

Theorem A. Let R, ℘0, ℘1, . . . , ℘q−1 be a disjoint classification of primes such
that

π([u, u + v] ∩ ℘i) = δiπ([u, u + v]) + O

(
u

(log u)c1

)

holds uniformly for 2 ≤ v ≤ u, i = 0, 1, . . . , q − 1, where c1 ≥ 5 is a con-
stant, δ0, δ1, . . . , δq−1 are positive constants such that

∑q−1
i=0 δi = 1. Assume that

limx→∞ wx = +∞, wx = O(log log log x),
√

x ≤ Y ≤ x and 1 ≤ k ≤ c2 log log x,
where c2 is an arbitrary constant. LetA ≤ log log x with P (A) ≤ wx. Then, as
x → ∞, letting ω(n) stand for the number of distinct prime factors of n,

#{n = An1 ≤ Y : p(n1) > wx, ω(n1) = k, H(n1) = i1 . . . ik}

= (1 + o(1))δi1 · · · δik

Y

A log Y

(log log x)k−1

(k − 1)!
ϕwx

(
k − 1

log log x

)
F

(
k − 1

log log x

)
,

where

ϕw(z) :=
∏

p≤w

(
1 +

z

p

)−1

and F (z) :=
1

Γ(z + 1)

∏

p

(
1 +

z

p

) (
1 − 1

p

)z

.

De Koninck and Kátai [15] also proved the following.

Theorem 2. Let q ≥ 2 be a fixed integer. Given a positive integer

n = pe1
1 · · · pek+1

k+1

(here, k can be zero), let

cj(n) :=
⌊

q log pj

log pj+1

⌋
∈ Aq (j = 1, . . . , k).

Define the arithmetic function H by

H(n) = H(pe1
1 · · · pek+1

k+1 ) =
{

c1(n) . . . ck(n) if k ≥ 1,
Λ if k ≤ 0.

Then the number ξ = 0.H(1)H(2)H(3) . . . is a q-normal number.
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9 A Question Raised by Shparlinski

Let P (n) stand for the largest prime factor of the integer n ≥ 2. In 2010, Igor
Shparlinski asked if the number

0.P (2)P (3)P (4)P (5)P (6) . . .

is normal in base 10.
In 2011, De Koninck and Kátai [14] answered Shparlinski’s question in the

affirmative and actually proved more, as stated in Theorem 3 below.
But first some notation. Given a positive integer n, write its q-ary expansion

as
n = ε0(n) + ε1(n)q + · · · + εt(n)qt,

where each εi(n) ∈ Aq and εt(n) �= 0. Then write

n = ε0(n)ε1(n) . . . εt(n).

Theorem 3. Let F ∈ Z[x] be a polynomial with positive leading coefficient and
positive degree, and such that F (x) > 0 if x > 0. Then the number

ξ = 0.F (P (2)) F (P (3)) F (P (4)) . . . . . .

is normal.

We only give here a sketch of the proof of Theorem 3.

Let L(n) := Lq(n) =
⌊

log n

log q

⌋
+ 1, that is, the number of digits of n in base

q. Given a word θ = i1i2 . . . it ∈ At
q, we write λ(θ) = t. Also, let νβ(θ) stand for

the number of times that the subword β occurs in the word θ. A key element of
the proof of Theorem 3 is the following 1996 result of Bassily and Kátai [5].

Let F ∈ Z[x]be a polynomial with positive leading coefficient and of
positive degree r. Let β ∈ Ak

q . Assume that κu is a function of u such
that κu > 1for all u. Setting

Vβ(u) := #
{

p ∈ ℘ ∩ [u, 2u] :
∣∣∣∣νβ(F (p)) − L(ur)

qk

∣∣∣∣ > κu

√
L(ur)

}
,

then, there exists a positive constant c such that

Vβ(u) ≤ cu

(log u)κ2
u

.

One can easily see that from this result it follows that given β1, β2 ∈ Ak
q with

β1 �= β2 and setting

Δβ1,β2(u) := #
{

p ∈ ℘ ∩ [u, 2u] :
∣∣∣νβ1(F (p)) − νβ2(F (p))

∣∣∣ > κu

√
L(ur)

}
,
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then, for some positive constant c,

Δβ1,β2(u) ≤ cu

(log u)κ2
u

. (9.1)

Now, given a large number x, let Ix = [x, 2x] and set θ =
F (P (n0)) F (P (n1)) . . . F (P (nT )), where n0 is the smallest integer in Ix, and
nT the largest.

It is clear that the proof of Theorem 3 will be complete if we can show that,
given an arbitrary word β ∈ Ak

q , we have

νβ(θ)
λ(θ)

∼ 1
qk

(x → ∞).

Since the number of digits of each prime p ∈ Ix is of order log x, it follows
by the definition of θ that

λ(θ) ≈ r x log x,

which reveals the true size of λ(θ).
Letting δ be a small positive number, one can easily show that the number

of integers n ∈ Ix for which either P (n) < xδ or P (n) > x1−δ is ≤ cδx, implying
that we may write

νβ(θ) =
∑

n∈Ix
xδ≤P (n)≤x1−δ

νβ(F (P (n))) + O(T ) + O(δx log x). (9.2)

Let us now introduce the finite sequence u0, u1, . . . , uH defined by u0 = xδ

and thereafter by uj = 2uj−1 for each 1 ≤ j ≤ H, where H is the smallest

positive integer for which 2Hu0 > x1−δ, so that H =
⌊

(1 − 2δ) log x

log 2

⌋
+ 1.

Now, for each prime p, let R(p) := #{n ∈ Ix : P (n) = p}. We have, in light
of (9.2) and the fact that T = O(x),

νβ(θ) =
∑

xδ≤p≤x1−δ

νβ(F (p))R(p) + O(δx log x). (9.3)

Let β1, β2 ∈ Ak
q with β1 �= β2. Then, using (9.3), we have

|νβ1(θ) − νβ2(θ)| ≤
∑

xδ≤p≤x1−δ

∣∣∣νβ1(F (p)) − νβ2(F (p))
∣∣∣ R(p) + O(δx log x)

=
H−1∑

j=0

∑

uj≤p<uj+1

∣∣∣νβ1(F (p)) − νβ2(F (p))
∣∣∣ R(p) + O(δx log x)

=
H−1∑

j=0

Sj(x) + O(δx log x), (9.4)

say.
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Set Ψ(x, y) := #{n ≤ x : P (n) ≤ y}. Then, letting z = log x/ log y, it is well
known that

Ψ(x, y) = ρ(z)x + O

(
x

log y

)
uniformly for 2 ≤ y ≤ x,

where ρ stands for the Dickman function (see for instance Theorem 9.14 in the
book of De Koninck and Luca [18]).

We then have, as x → ∞,

R(p) = Ψ

(
2x

p
, p

)
− Ψ

(
x

p
, p

)

= ρ

(
log(2x/p)

log p

)
2x

p
− ρ

(
log(x/p)

log p

)
x

p
+ O

(
x

p log p

)

= (1 + o(1))ρ
(

log x

log p
− 1

)
x

p
,

from which it follows that

Sj(x) ≤ 2x

uj

∑

uj≤p<uj+1

∣∣∣νβ1(F (p)) − νβ2(F (p))
∣∣∣ . (9.5)

Set κu := log log u. We will say that p ∈ [uj , uj+1) is a good prime if
∣∣∣νβ1(F (p)) − νβ2(F (p))

∣∣∣ ≤ κu

√
L(ur),

and a bad prime otherwise.
Splitting the sum Sj(x) into two sums, one running on the good primes and

one running on the bad primes, it follows from (9.5) and the Bassily-Kátai result
(9.1) that

Sj(x) ≤ 2x

uj
κuj

√
L(ur

j)
uj

log uj
+

2x

uj

uj log uj+1

(log uj)κ2
uj

= 2x ·
⎧
⎨

⎩
κuj

√
L(ur

j)

log uj
+

log uj+1

(log uj)κ2
uj

⎫
⎬

⎭

≤ 4x

{
r log log uj√

log uj

+
1

(log log uj)2

}
.

Summing the above inequalities for j = 0, 1, . . . ,H − 1, we obtain that∑H−1
j=0 Sj(x) = o(x log x) as x → ∞ and thus that, in light of (9.4), for some

constant c > 0,

|νβ1(θ) − νβ2(θ)| ≤ cδx log x + o(x log x). (9.6)

Now let ξN be the first N digits of the infinite word

F (P (2)) F (P (3)) F (P (4)) . . .
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and let m be the unique integer such that

ξ̃N := F (P (2)) F (P (3)) . . . F (P (m)),

where λ(ξ̃N ) ≤ N < λ(ξ̃NF (P (m + 1))), so that λ(F (P (m + 1))) � log m �
log N , implying in particular that ξN and ξ̃N have the same digits except for at
most the last �log N� ones.

Let 2x = m and consider the intervals Ix, Ix/2, Ix/(22), . . . , Ix/(2L), where
L = 2[log log x], that is,

Ix/2L Ix/22 Ix/2 Ix

| | · · · | | | | | | 2x = m

and write
τj = F (P (a)) . . . F (P (b)) (j = 0, 1, . . . , L),

where a is the smallest and b the largest integer in Ix/(2j).

Moreover, let
μ = F (P (2)) . . . F (P (s)),

where s is the largest integer which is less than the smallest integer in Ix/(2L).
It is clear that

∣∣∣νβ1(ξ̃N ) − νβ2(ξ̃N )
∣∣∣ ≤ |νβ1(μ) − νβ2(μ)| +

L∑

j=0

|νβ1(τj) − νβ2(τj)| (9.7)

and that
νβ(μ) ≤ λ(μ) ≤ x

2L
· r log x = o(x). (9.8)

Applying estimate (9.6) L + 1 times (with θ = ξ̃N ) by replacing successively 2x
by x, x/2, x/22, . . . , x/2L, we obtain from (9.7) and in light of (9.8), that

∣∣∣νβ1(ξ̃N ) − νβ2(ξ̃N )
∣∣∣ ≤ cδN + o(N) (N → ∞). (9.9)

Now, one can easily see that
∑

γ∈Ak
q

νγ(θ) = λ(θ) − k + 1,

from which it follows that

qkνβ(θ) − λ(θ) =
∑

γ∈Ak
q

(νβ(θ) − νγ(θ)) + O(1),

implying that, setting θ = ξN and using (9.9),

∣∣qkνβ(ξN ) − λ(ξN )
∣∣ ≤

∑

γ∈Ak
q

|νβ(ξN ) − νγ(ξN )| + O(1)
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≤ (cδN + o(N))qk,

from which it follows that, observing that λ(ξN ) = N ,

lim sup
N→∞

∣∣∣∣
νβ(ξN )

N
− 1

qk

∣∣∣∣ ≤ cδ.

Since δ > 0 can be chosen arbitrarily small, it follows that

lim sup
N→∞

νβ(ξN )
N

=
1
qk

,

thus establishing that ξ is normal.

Later, in De Koninck and Kátai [16], we showed how the concatenation of
the successive values of the smallest prime factor p(n), as n runs through the
positive integers, can also yield a normal number.

10 Using the Number of Prime Factors of an Integer
to Create Normal Numbers

In the previous section, we showed that the number 0.P (2)P (3)P (4) . . . is a
normal number. What if we replace the function P (n) by some other arithmetic
function f(n)? Will we still get a normal number? Not always. Take for instance
the function ω(n) which counts the number of distinct prime factors of n. One
can easily show that the concatenation of the successive values of ω(n), say
by considering the real number ξ := 0.ω(2) ω(3) ω(4) ω(5) . . ., where each m
stands for the q-ary expansion of the integer m, will not yield a normal number.
Indeed, since the interval I := [eer−1

, eer

], where r := �log log x�, covers most of

the interval [1, x] and since
∣∣∣∣
ω(n)

r
− 1

∣∣∣∣ <
1

r1/4
, say, with the exception of a small

number of integers n ∈ I, it follows that ξ cannot be normal in basis q.
Recently, Vandehey [25] used another approach to yet create normal numbers

using certain small additive functions. He considered irrational numbers formed
by concatenating some of the base q digits from additive functions f(n) that
closely resemble the prime counting function Ω(n) :=

∑
pρ‖n ρ. More precisely, he

used the concatenation of the last �y log log log n
log q � digits of each f(n) in succession

and proved that the number thus created turns out to be normal in basis q if
and only if 0 < y ≤ 1/2.

In De Koninck and Kátai [17], we showed that the concatenation of the
successive values of |ω(n) − �log log n�|, as n runs through the integers n ≥ 3,
yields a normal number in any given basis q ≥ 2. Moreover, we showed that the
same result holds if we consider the concatenation of the successive values of
|ω(p + 1) − �log log(p + 1)�|, as p runs through the prime numbers.
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11 Final Remarks

In 2004, Bailey, Borwein, Crandall and Pomerance [2] proved that if x is an
algebraic number of degree d > 1, then there exists a positive constant C such
that the binary expansion of x through position n has at least Cn1/d ones,
provided n is sufficiently large. For instance, choose x =

√
2. It is algebraic of

degree 2. Hence according to this result, the first n digits of
√

2 must include
at least c

√
n ones (for some positive constant c). Of course, if we could prove

that
√

2 is normal, then the first n digits should include approximately n/2 ones.
This means that we are far from the truth.

Many authors have shown a great interest for the study of normal numbers.
The recent book of Bugeaud [7] contains many other results concerning this
fascinating topic along with many open problems on normal numbers.
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17. De Koninck, J.-M., Kátai, I.: The number of prime factors function on shifted
primes and normal numbers. In: Rassias, T.M., Tóth, L. (eds.) Topics in Math-
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Abstract. BEL is a probabilistic description logic (DL) that extends the
light-weight DL EL with a joint probability distribution over the axioms,
expressed with the help of a Bayesian network (BN). In recent work it
has been shown that the complexity of standard logical reasoning in BEL
is the same as performing probabilistic inferences over the BN.

In this paper we consider conjunctive query answering in BEL. We
study the complexity of the three main problems associated to this set-
ting: computing the probability of a query entailment, computing the
most probable answers to a query, and computing the most probable
context in which a query is entailed. In particular, we show that all
these problems are tractable w.r.t. data and ontology complexity.

1 Introduction

Description Logics (DLs) [3] are a family of knowledge representation formalisms
that have been successfully employed for modeling the knowledge of many appli-
cation domains. Its success has been specially clear in the bio-medical sciences,
with the development and use of very large ontologies [29]. Very briefly, an ontol-
ogy is simply a collection of axioms that provide some explicit knowledge of the
application domain; different reasoning tasks are then used to extract additional
knowledge that is implicit within this ontology.

As with most logic-based formalisms, one of the issues that limit the applica-
bility of DLs to real-world ontologies is their incapability to model and handle
uncertainty in their statements. To address this limitation, many extensions of
DLs for reasoning with uncertainty have been proposed over the last two decades;
see e.g. [24] for a thorough, although slightly outdated, survey. A very relevant
modeling choice that needs to be made is how to represent and handle the joint
probability of axioms. Most probabilistic extensions of DLs avoid this problem
by implicitly assuming that all axioms are (probabilistically) independent from
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each other. Unfortunately, this is a very strong assumption that cannot be guar-
anteed to hold in general. Very recently, it was proposed to represent the logical
and probabilistic dependencies of the axioms in an ontology through a Bayesian
network (BN) ranging over a class of sub-ontologies, called contexts. This idea
gave rise to the family of Bayesian DLs [9].

To understand the properties of Bayesian DLs, the complexity of standard
reasoning on BEL, the Bayesian extension of the light-weight DL EL [2,6], was
studied in detail. In particular, it was shown that standard reasoning in this logic
remains tractable w.r.t. the size of the logical component of the input, although
intractable w.r.t. the BN [11,12]. These analysis have also shown their impact
in practice, we refer the reader to the recent prototypical reasoner BORN [8] for
such details (available at http://lat.inf.tu-dresden.de/systems/born).

In this paper we build on top of previous work [7], and study the complexity
of answering conjunctive queries over a probabilistic knowledge base expressed in
BEL. Given the probabilistic knowledge, we focus on computing the probability
of entailing a given query. Moreover, we study the problem of finding the most
probable answers to a query, and the most probable contexts that entail a query.
As is standard in query answering, we parameterize the complexity measures
according to different input parameters. Among our results, we show that all the
reasoning problems that we study remain tractable w.r.t. the size of the ontology.
This means that it is possible to handle large ontologies efficiently, assuming that
the probabilistic component and the query remain relatively small.

2 Preliminaries

We first briefly introduce the basic notions for query answering in the light-
weight DL EL and its Bayesian extension BEL, and the complexity measures
that we will study throughout this paper.

As with all DLs, the main components of EL are concepts, that are built
from concept- and role-names using a set of constructors. Let NI, NC and NR

be mutually disjoint sets of individual-, concept- and role-names, respectively.
EL concepts are built by the grammar rule C:: = A | � | C � C | ∃r.C, where
A ∈ NC and r ∈ NR. The semantics of EL is given by interpretations. An
interpretation is a tuple I = (ΔI , ·I) where ΔI is a non-empty domain and ·I
is an interpretation function that maps every individual name a to an element
aI ∈ ΔI , every concept name A to a set AI ⊆ ΔI , and every role name r to a
binary relation rI ⊆ ΔI × ΔI . The interpretation function ·I is extended to EL
concepts as shown in the upper part of Table 1.

The domain knowledge is encoded through a set of axioms that restrict the
class of interpretations considered. A TBox T is a finite set of general concept
inclusions (GCIs) of the form C � D, where C, D are concepts. An ABox is
a finite set of concept assertions C(a) and role assertions r(a, b), where a, b ∈
NI, C is a concept, and r ∈ NR. An ontology is a pair O = (T ,A) where T is
a TBox and A an ABox. We use the term axiom as a general expression for
GCIs and assertions. The interpretation I satisfies an axiom λ iff it satisfies the

http://lat.inf.tu-dresden.de/systems/born
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Table 1. Syntax and semantics of EL

Name Syntax Semantics

Top � ΔI

Conjunction C � D CI ∩ DI

Exist. Rest. ∃r.C {d | ∃e ∈ ΔI : (d, e) ∈ rI , e ∈ CI}
GCI C � D CI ⊆ DI

Concept assertion C(a) aI ∈ CI

Role assertion r(a, b) (aI , bI) ∈ rI

conditions on the lower part of Table 1. It is a model of the ontology O = (T ,A)
iff it satisfies all the axioms in T and A. For the rest of this paper we will denote
as NI(A) the set of all individual names that appear in the ABox A.

In the presence of an ontology, one is often interested in deciding entailment
and finding answers to a (conjunctive) query. Let NV be a set of variables, which
is disjoint from NC, NR, and NI. An atom is an expression of the form A(χ) or
r(χ, ψ), where A ∈ NC, r ∈ NR, and χ, ψ ∈ NI ∪ NV. A conjunctive query (CQ)
q is a non-empty set of atoms associated to a set DV(q) ⊆ NV of distinguished
variables. If DV(q) = ∅, then q is called a Boolean CQ. A special case of a CQ is
an instance query, which consists of only one atom A(χ) with A ∈ NC.

Let q be a Boolean CQ and IV(q) be the set of all individual names and
variables appearing in q. The interpretation I satisfies q if there exists a function
π : IV(q) → ΔI such that (i) π(a) = aI for all a ∈ NI ∩ IV(q), (ii) π(χ) ∈ AI for
all A(χ) ∈ q, and (iii) (π(χ), π(ψ)) ∈ rI for all r(χ, ψ) ∈ q. In this case, we call
π a match for I and q. The ontology O entails q (O |= q) iff every model of O
satisfies q. For an arbitrary CQ q, a function a : DV(q) → NI(A) is an answer
to q w.r.t. O iff O entails the Boolean CQ a(q) obtained by replacing every
distinguished variable χ ∈ DV(q) with a(χ). Conjunctive query answering (CQA)
is the task of finding all answers of a CQ, and query entailment is the problem
of deciding whether an ontology entails a given Boolean CQ.

It is known that in EL query entailment is tractable if the query is fixed,
but NP-complete if the query is considered as part of the input [27]. EL does
not enjoy the so-called full first order rewritability which has been considered as
a key feature for CQA, since it allows one to reduce the problem to standard
tasks in relational database management systems. However, other methods like
the combined approach [26] have been successfully used in this setting.

The Bayesian DL BEL [11] has been introduced as a probabilistic extension
of EL. In BEL probabilities are encoded through a Bayesian network (BN) [17];
that is, a pair B=(G,Φ), where G=(V,E) is a finite directed acyclic graph (DAG)
whose nodes represent Boolean random variables, and Φ contains, for every node
x ∈ V , a conditional probability distribution PB(x | π(x)) of x given its parents
pa(x). If V is the set of nodes in G, we say that B is a BN over V . In a BN,
every variable x ∈ V is considered to be conditionally independent of its non-
descendants given its parents. Thus, every BN B defines a unique joint probability
distribution over V given by the so-called chain rule, defined as
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PB(V ) =
∏

x∈V

PB(x | π(x)).

In BEL concepts are constructed as for EL. The difference appears in encoding
the domain knowledge through axioms. BEL generalizes classical ontologies by
annotating the axioms with a context, defined by a set of literals from a BN.

Let V be a finite set of Boolean variables. A V -context is a conjunction of
literals from V . A (V − GCI)(resp. V − assertion) is an expression of the form
〈λ : κ〉 where λ is a GCI (resp. an assertion) and κ is a V -context. A V -TBox
(resp. V -ABox) is a finite set of V -GCIs (resp. V -assertions). A BEL knowledge
base (KB) is a tuple K = (B, T ,A) where B is a BN over V , T is a V -TBox and
A is a V -ABox.

x

y

z

x

0.7
y

x 0.7
¬x 0.5

z

x y 0.3
x ¬y 0.1

¬x y 0
¬x ¬y 0.9

Fig. 1. The BN BABC over the variables {x, y, z}

Example 1. The tuple K = (TABC,AABC,BABC) where

TABC := { 〈A � ∃r.B : {y}〉 , 〈B � C : {x}〉}
AABC := { 〈A(a) : {x}〉 , 〈r(a, b) : {z}〉 , 〈C(b) : {x, z}〉 , 〈A(c) : {y}〉}

and BABC is the BN given in Fig. 1 represents a BEL KB.

Intuitively, a BEL KB provides a propositional abstraction over an EL KB.
More formally, given a BEL KB K = (B, T ,A) and a context κ, we define the
restriction of K w.r.t. κ as an EL ontology Kκ = (Tκ,Aκ) by setting

Tκ := {C � D | 〈C � D : μ〉 ∈ T , κ |= μ},

Aκ := {C(a) | 〈C(a) : μ〉 ∈ A, κ |= μ} ∪ {r(a, b) | 〈r(a, b) : μ〉 ∈ A, κ |= μ}.

We will usually speak of contextual axioms, or V -axioms to address both
V -GCIs and V -assertions; if it is clear from the context, we will also drop the
prefix V . The intuition behind the contextual axioms is to enforce an axiom
to hold within a given context, but not necessarily in others. To formalize this
intuition, we extend the notion of an interpretation, to also consider the context
variables. A V -interpretation is a tuple I = (ΔI , ·I ,VI) where (ΔI , ·I) is a
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classical EL interpretation, and VI is a valuation of the variables in V . The V -
interpretation I satisfies the axiom 〈λ : κ〉 (I |= 〈λ : κ〉) iff either (i) VI �|= κ, or
(ii) (ΔI , ·I) |= λ. It is a model of the TBox T (resp. ABox A) iff it satisfies all
the axioms in T (resp. A).

There is a strong link between the restrictions and the contextual interpreta-
tions. For any valuation W of the variables in V , KW represents all the EL axioms
that must be satisfied by any contextual interpretation of the form (ΔI , ·I ,W).

In BEL, uncertainty is represented through a BN that describes a joint prob-
ability distribution over the context variables. BEL is linked to this distribution
using multiple world semantics: a probabilistic interpretation defines a proba-
bility distribution over a set of (contextual) interpretations; this distribution
is required to be consistent with the joint probability distribution provided by
the BN. Formally, a probabilistic interpretation is a pair P = (I, PI), where I is
a set of V -interpretations and PI is a probability distribution over I such that
PI(I) > 0 only for finitely many interpretations I ∈ I. P is a model of the TBox
T (resp. ABox A) if every I ∈ I is a model of T (resp. A). P is consistent with
the BN B if for every valuation W of the variables in V it holds that

∑

I∈I,VI=W
PI(I) = PB(W).

The probabilistic interpretation P is a model of the KB (B, T ,A) iff it is a
probabilistic model of T , A and consistent with B.

In previous work, the standard reasoning problems for EL have been extended
to their probabilistic variant in BEL, leading to tight complexity bounds for
several problems [11,12]. Particularly, it has been shown that the complexity of
these tasks is bounded by the complexity of reasoning in EL and in the BN.

In the next sections we will study the complexity of different query-related
reasoning tasks in BEL. As is customary in the context of conjunctive queries,
we will consider the complexity w.r.t. different parameters. The measures we
consider here are: (i) data complexity, where only the ABox is considered as part
of the input; (ii) ontology complexity, which considers both, the ABox and the
TBox; (iii) network complexity, w.r.t. the size of the BN; (iv) KB complexity,
which uses the whole KB as input; and (v) combined complexity in which the
input is measured in terms of the KB and the query.

3 Probabilistic Query Entailment

The problem of deciding whether a Boolean CQ is entailed by a BEL KB is
not interesting, since it ignores the probabilistic information encoded in the BN.
Recall that a BEL KB describes a probability distribution over different worlds,
in which some conditions must hold. In this setting, we are interested in finding
the probability of observing a world in which the query is entailed.
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Definition 2 (Probabilistic Entailment). Let K be a BEL KB, P = (I, P )
a probabilistic interpretation and q a Boolean CQ. The probability of q w.r.t. P
is

PP(q) :=
∑

I∈I, (ΔI ,·I)|=q

P (I).

The probability of q w.r.t. K is PK(q) := infP|=K PP(q). The query q is entailed
with probability p ∈ (0, 1] iff PK(q) ≥ p.

Recall that for a given EL KB K and a valuation W, KW defines an EL
ontology that contains all the axioms that must be satisfied by any contextual
interpretation using the valuation W. We show that considering the restrictions
KW over valuations W is enough to decide probabilistic query entailment.

Theorem 3. For every BEL KB K = (B, T ,A) and Boolean CQ q it holds that
PK(q) =

∑
KW |=q PB(W).

Proof. We define the probabilistic interpretation R = (JR, PJR) where

(i) JR =
⋃2n−1

i=0 Ii = (ΔIi , ·Ii ,VIi)
(ii) PJR(Ii) = PB(Wi) with Wi = VIi for all 0 ≤ i ≤ 2n − 1
(iii) (ΔIi , ·Ii) |= KWi

for all 0 ≤ i ≤ 2n − 1
(iv) (ΔIi , ·Ii) |= q iff KWi

|= q for all 0 ≤ i ≤ 2n − 1

Notice that, we can ensure (iii) by the fact that every EL ontology has a
model.

It follows from the construction that R |= (T ,A) and R is consistent with B.
Hence, R is a model of K. We show the probability of q w.r.t. R to be

PR(q) :=
∑

Ii∈JR
(ΔIi ,·Ii )|=q

PJR(Ii) =
∑

KWi
|=q

PB(Wi),

which concludes PK(q) ≤ ∑
KW |=q PB(W).

Assume now that the inequality is strict. This implies the existence of a model
S = (JS , PJS ) such that

PS(q) =
∑

I∈JS
(ΔI ,·I)|=q

PJS (I) <
∑

KW |=q

PB(W).

This holds iff for some W where KW |= q and PB(W) > 0 it holds that
∑

(ΔI ,·I ,W)∈JS
(ΔI ,·I)|=q

PJS (I) < PB(W).

Since
∑

I∈JS ,VI=W PJS (I) = PB(W) by the definition of a model, there exists a
contextual interpretation (ΔI′

, ·I′
,VI′

) ∈ JS where VI′
= W and (ΔI′

, ·I′
) �|= q

while KW′ |= q. It follows that (ΔI′
, ·I′

) �|= KW and (ΔI′
, ·I′

,VI′
) �|= (T ,A),

which contradicts with the assumption that S is a model. ��
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Theorem 3 provides a simple method for computing the probability of a query
q w.r.t. a BEL KB: one needs only to compute, for each valuation W, the EL
ontology KW and decide whether this ontology entails q, adding the probabil-
ities (w.r.t. B) of all the worlds for which this test is positive. We illustrate
probabilistic query entailment on our running example.

Example 4. Consider the BEL KB provided in Example 1 and the Boolean
CQ q = {A(χ), r(χ, ψ), C(ψ)}. Clearly, KW |= q only for worlds W such that
W |= (x ∧ y) ∨ (x ∧ z). Hence, we get PK(q) = PBABC((x ∧ y) ∨ (x ∧ z)) = 0.511.

Since there are 2|V | valuations, EL query entailment is decidable in polyno-
mial time in ontology complexity, and computing the probability of a valuation
is polynomial in |V |, we obtain the following result.

Theorem 5. Probabilistic query entailment is polynomial w.r.t. data and ontol-
ogy complexity and in ExpTime w.r.t. network, KB, and combined complexity.

Notice that the algorithm sketched above iterates over all the possible scenarios
described by the BN and performs an entailment test in each of them. The
positive complexity results w.r.t. data and ontology complexity arise from the
fact that in these settings the size of the BN is assumed to be constant. In order
to obtain a better upper bound w.r.t. network complexity, we can dualize this
idea; i.e., iterate over all the sub-ontologies performing standard probabilistic
inferences at each iteration.

Theorem 6. Probabilistic query entailment is PP-complete w.r.t. network com-
plexity.

Proof. The lower complexity bound follows from the complexity of standard
reasoning in BEL [12]. To show membership, we define a sub-ontology of a given
BEL KB K = (B, T ,A) as a pair O = (T ′,A′) such that T ′ ⊆ T and A′ ⊆ A.
Each sub-ontology O = (T ′,A′) defines a context

con(O) =
∧

〈λ:κ〉∈T ′
κ ∧

∧

〈λ:κ〉∈A′
κ,

and an EL ontology OEL = (T ′
EL,A′

EL)

T ′
EL := {C � D | 〈C � D : κ〉 ∈ T ′ for some context κ},

A′
EL := {C(a) | 〈C(a) : κ〉 ∈ A′ for some context κ}} ∪

{r(a, b) | 〈r(a, b) : κ〉 ∈ A′ for some context κ}}.

For every contextual interpretation I = (ΔI , ·I ,VI) with I |= (T ,A), we observe
that if VI |= con(O), then (ΔI , ·I) |= OEL. For a given Boolean CQ q, we define

conK(q) :=
∨

OEL|=q

con(O).
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From Theorem 3, we know that PK(q) = PB(con(q)). Thus, it suffices to
compute the probability of the DNF formula con(q) to obtain the probability of
the query q. Since Bayesian network inferences are PP-complete [28], and the
class PP is closed under intersection and complementation [4], it follows that
probabilistic query entailment is also in PP w.r.t. network complexity. ��

We consider now the case of combined complexity, in which the ontology, the
BN, and the query are all considered as part of the input. We show that in this
case, the complexity of probabilistic query entailment is at most PSpace.

Theorem 7. Probabilistic query entailment is in PSpace w.r.t. combined com-
plexity.

Proof. Theorem 3 ensures that to compute PK(q) it suffices to check for every
valuation W, whether KW |= q, and in case it does, compute PB(W). KW can
be constructed by adding all axioms λ to KW where 〈λ : κ〉 ∈ K and W |= κ.
This requires only linear time on both |K| and |V |. Deciding whether KW |= q
is an NP-complete problem w.r.t. the sizes of K and q. Finally, PB(W) can be
computed in time polynomial on the size of B, using the chain rule for BNs. A
PSpace algorithm avoids storing exponentially many valuations of the variables
in V simultaneously; instead iterates for each valuation independently. ��
Obviously, this result also yields a PSpace upper bound for this problem w.r.t.
KB complexity. In terms of lower bounds, Theorem 6 shows that probabilistic
query entailment is also PP-hard w.r.t. KB and combined complexity. Unfortu-
nately, we were unable to obtain tight complexity bounds for these measures.

4 Probabilistic Query Answering

In query answering we do not restrict to Boolean CQs anymore, but consider
queries that may contain distinguished variables. As described before, in this case
we are interested in finding the possible substitutions of these distinguished vari-
ables into individuals appearing in the ontology such that the resulting Boolean
CQ is entailed; these substitutions are called answers. To find all these answers,
one could simply perform a query entailment test for each of the possible sub-
stitutions. There are exponentially many such substitutions, measured on the
number of individuals in the ontology, and potentially all of them can be answer
to a given query, and receiving so many results might be uninformative to a user.
Rather than providing all possible answers to a query, we are interested in finding
a limited number of them having the highest probability of being entailed.

Let q be a query with the distinguished variables DV(q), and K = (B, T ,A)
a BEL KB. Recall that every function a : DV(q) → NI(A) defines a Boolean CQ
obtained by replacing every χ ∈ DV(q) in q with a(χ). Abusing of the notation,
we call this query a(q). We call any function a : DV(q) → NI(A) an answer to
q w.r.t. K, and define its probability as PK(a) := PK(a(q)). Clearly, since an
answer defines a Boolean CQ, computing the probability of such an answer is



Probabilistic Query Answering in the Bayesian Description Logic BEL 29

exactly as hard as probabilistic query entailment in all measures considered. We
use this probability as a means to identify the most relevant answers, returning
only those that are most likely to be observed.

Definition 8 (top-k answer). Let q be a query, K be a BEL KB, and k ∈ N.
A top-k answer to q w.r.t. K is a tuple (a1, . . . , ak) of different answers to q
w.r.t. K such that (i) for all i, 1 ≤ i < k, PK(ai) ≥ PK(ai+1), and (ii) for every
other answer a, PK(ak) ≥ PK(a).

In other words, a top-k answer is an ordered tuple of the k answers that have the
highest probability. We assume that k is a constant that is fixed a priori. Thus,
it is not considered part of the input of the problem. Obviously, since different
answers may have the same degree, top-k answers are not unique. Here we are
only interested in finding one of these tuples. Stating it as a decision problem,
we want to verify whether a given tuple is a top-k answer.

Example 9. Consider the BEL KB K = (TABC,AABC,BABC) provided in Example 1
and the query q = {A(χ)} with χ ∈ DV. We are interested in identifying the top-1
answer to q w.r.t. K. Notice that both a0 : χ �→ a and a1 : χ �→ c are answers to q
with positive probability. Clearly, a0 is the top-1 answer since PK(a0) > PK(a1).

Assuming that the size of q and the BN B are fixed, then there are polynomi-
ally many answers to q w.r.t. K, and for each answer a, we can compute PB(a)
performing constantly many EL query entailment tests. Thus, it is possible to
verify whether (a1, . . . , ak) is a top-k answer in polynomial time w.r.t. ontology
complexity. Likewise, if the ontology and the query are constant, then we can
compute PB(a) through constantly many probabilistic inferences in the BN, as
described in the previous section. Overall, we obtain the following result.

Corollary 10. Deciding top-k answers is in PTime w.r.t. data and ontology
complexity and PP-complete w.r.t. network complexity.

We consider now the case of the combined complexity, in which all the elements
are considered as part of the input and show that our problem is at least hard
to the level coNPPP; that is a class known to be between PH (the limit of the
polynomial hierarchy) and PSpace [30]

Theorem 11. Deciding whether a tuple A is a top-k answer is coNPPP-hard
w.r.t. KB complexity.

Proof. We provide a reduction from the decision version of the maximum a-
posteriori (D-MAP) problem for BNs [17]. Formally, given a BN B over V , a
set Q ⊆ V , a context κ, and p > 0, the D-MAP problem consists of deciding
whether there exists a valuation μ of the variables in Q such that PB(κ ∧ μ) >
p. Consider an arbitrary but fixed instance of D-MAP described by the BN
B = ((V,E), Φ), the context κ, Q ⊆ V , and p > 0. We introduce a new Boolean
random variable z not appearing in V . Using this variable, we construct a
new DAG (V ′, E) with V ′ = V ∪ {z} and a new BN B′ = ((V ′, E), Φ′), where
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PB′(v | pa(v)) = PB(v | pa(x)) for all v ∈ V , and PB′(z) = p. Consider the BEL
KB K = (B′, ∅,A) where

A := {〈Ax(ax) : x〉 , 〈Ax(bx) : ¬x〉 , 〈Ax(c) : z〉 | x ∈ Q}∪{〈B(a) : κ〉 , 〈B(c) : z〉},

and query q := {Ax(χx) | x ∈ Q} ∪ {B(χ)}, where all the variables are
distinguished; i.e., DV(q) = {χx | x ∈ Q} ∪ {χ}. It is easy to see that the
mapping a0 : DV(q) → {c} that maps all the distinguished variables to the
individual name c ∈ NI(A) is an answer to this query and PK(a0) = p. Moreover,
any other answer that maps any variable to c will have probability at most p,
since it can only be entailed in contexts satisfying z. Suppose that there is an
answer a such that PK(a) > p. This answer must map every variable χx to either
ax or bx and χ to a. Let μa :=

∧
a(χx)=ax

x ∧ ∧
a(χx)=bx

¬x. By construction, μa

is a valuation of the variables in Q, PB(κ ∧ μa) > p, and a(q) is only entailed by
valuations satisfying the context κ∧μa. Overall this means that a0 is not a top-1
answer iff there is a valuation μ of the variables in Q such that PB(κ∧μ) > p. ��

In the previous section we have shown that probabilistic query entailment
is decidable in PSpace w.r.t. combined complexity. Since PSpace is a deter-
ministic complexity class, we can in fact compute the precise probability of
an entailment using only polynomial space. To show that a tuple is not a top-k
answer, we can guess a new answer and show that its probability is strictly larger
than some answer in the tuple. Overall, this means that top-k query answering
remains in PSpace w.r.t. combined complexity.

Obtaining most probable answers for a query is a crucial task for the domains,
where imprecise characterizations of knowledge is necessary. The next section is
dedicated to another reasoning task that can be seen dual to top-k answers,
namely top-k contexts.

5 Most Likely Contexts for a Query

Dually to finding the most likely answers to a query, we are also interested in
finding the k most likely contexts that entail a given Boolean query q. More
precisely, suppose that we have already observed that the query q holds; then,
we are interested in finding out which is the current context. As in the previous
section, we do not consider one, but search for a fixed number of contexts that
are the most likely to hold.

As explained before, Kκ specifies the minimal conditions that must be sat-
isfied in any contextual interpretation that satisfies the context κ. If Kκ entails
the Boolean query q, then we say that q holds in context κ. We are interested
in finding out the most likely contexts in which a given query holds.

Definition 12 (top-k mlc). Let q be a CQ, K a BEL KB, and k ∈ N. κ1, . . . , κk

are top-k most likely contexts (top-k mlc) for q w.r.t. K if Kκi
entails q for all

i, 1 ≤ i ≤ k; PB(κi) ≥ PB(κi+1) for all i, 1 ≤ i ≤ k; and there is no other context
κ such that Kκ |= q and PB(κ) > PB(κk).
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We illustrate top-k mlc with our continuing example. In this case, we are
interested in finding out the 2 most likely context that entail the query.

Example 13. Consider the BEL KB K and query q provided in Example 1.
Clearly all contexts κ that entail q are such that κ |= {x, y} ∨ {x, z}. The top-2
contexts are then 〈{x, y}, {x, z}〉 since PBABC({x, y}) > PBABC({x, z}) > PBABC(κ)
for any other context κ.

We show that deciding top-k mlc is tractable w.r.t. ontology complexity.
Furthermore, we obtain a coNPPP lower bound for the combined complexity
as an analogous result to top-k answer. Differently from top-k answer; for this
reasoning problem, we are able to show that this complexity bound is tight.

Theorem 14. Top-k mlc is polynomial w.r.t. data, and ontology complexity,
and coNPPP-complete w.r.t. KB and combined complexity.

Proof. If the BN is fixed, then the number of contexts is constant, and they can
be ordered w.r.t. their complexity in constant time. The top-k mlc problem is
then solved by applying a constant number of EL CQ entailment tests, yielding
a polynomial upper bound w.r.t. ontology complexity.

For the combined complexity, coNPPP-hardness is immediate since deciding
one most likely context for simple queries is already coNPPP-hard w.r.t. KB
complexity [12]. We prove that top-k mlc is in coNPPP : If a tuple is not a top-k
mlc, then guess a new context κ and show using a PP oracle that Kκ |= q and
PB(κ) > PB(κk). ��

In terms of network complexity, a PP-hardness follows easily from the com-
plexity of probabilistic entailment in BNs. The upper bound w.r.t. network com-
plexity requires polynomially many calls to a PP oracle.

Theorem 15. Top-k mlc is PP-hard and in PPP w.r.t. network complexity.

Proof. We show that top-k mlc is in PPP w.r.t. networks complexity. Recall that
if T , A and q are fixed, then there is a constant number of contexts that entail
the consequence, using only the Boolean variables that appear in T and A; call
this number 	. However, the BN B may also contain other variables. If 	 < k,
then we need to expand the previously found contexts with new literals from
B until enough contexts have been found. In the worst case, this would require
a polynomial number (in the size of B) of probabilistic entailments. Thus, this
algorithm only yields a PPP upper bound w.r.t. network complexity. ��
To reduce the complexity of finding the most likely contexts, we consider a
special case of the problem in which we are interested in full valuations of all the
variables in the BN B. We call this problem top-k worlds. In this case, deciding
PB(W) > PB(Wk) requires only polynomial time w.r.t. network complexity, since
the chain rule of BNs yields the probability of a valuation in polynomial time.
The problem is also easier than the top-k mlc w.r.t. the combined complexity:
simply check whether PK(W) > PK(Wk) and decide KW |= q, where the former
can be done in time polynomial and the latter is complete for the class NP.
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Table 2. BEL reasoning problems and their complexity

Problem Data ont. Network KB Combined

Probabilistic entailment P P PP-c PP-h in PSpace

Probability of an answer P P PP-c PP-h in PSpace

top-k answer P P PP-c PP-h coNPPP/PSpace

top-k mlc P P PP/PPP coNPPP-c coNPPP-c

top-k worlds P P P coNP-c coNP/Πp
2

Notice that, top-k contexts and top-k answers are dual to each other, but
they do not necessarily overlap. Consider for instance the case, where all top-k
answers to a query q are retrieved from the same context κ. In this case, top-k
contexts for q will contain other contexts than κ with the assumption that k > 1.
Top-k contexts is particularly informative where the diversity of knowledge is
important.

6 Related Work

Probabilistic query answering is an important reasoning task that has been
widely studied in different domains such as relational databases [15,18,20], RDF
graphs [21] and XML databases [1,22]. As mentioned before, there are many
DL-based probabilistic ontology languages [24]. Surprisingly, only few of them
concentrate on query answering.

In the probabilistic extension of Datalog+/- [19] authors are interested in
retrieving the answers that are above a threshold value that is set a priori. In
contrast to BEL, in probabilistic Datalog+/- the underlying semantics is based
on Markov logic networks. The Prob-DL family [25] extends classical DLs with
subjective probabilities, also known as Type II probabilities [23]. The main dif-
ference with our logic is that Prob-EL introduces probabilities as a concept
constructor, whereas we allow only probabilities over axioms.

More closely related to BEL is BDL-Lite [16]. As is in BEL, BDL-Lite only
allows probabilities over axioms and conditional dependencies are represented
faithfully. However, as it has been pointed before [12], the authors use a closed
world assumption, which easily leads to inconsistencies.

7 Conclusions

In this paper we continued the analysis of the complexity of reasoning in the
Bayesian DL BEL, and considered tasks associated to conjunctive queries. Specif-
ically, we have studied the complexity of deciding probabilistic entailment of a
Boolean CQ, and of verifying that a tuple of answers to a CQ are those with
the highest probability of being entailed. Dually, we consider also the problem of
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finding the most likely contexts that entail a Boolean query. All these complexity
results are summarized in Table 2.

As it can be seen from the table, if one considers only the purely logical com-
ponents of the problem (ontology complexity), then reasoning is tractable, which
is consistent with the complexity of reasoning in classical EL. The network com-
plexity is also typically the same as performing standard probabilistic inferences
over a BN. However, the complexity tends to increase if we combine these factors
and consider also the query. Unfortunately, to the best of our efforts, we were
unable to close all the gaps in the complexity results. Our conjecture is that the
KB and the combined complexity coincide in all the problems considered here;
in particular, we expect all the problems described in Table 2, with the exception
of top-k worlds, to be (co)NPPP-complete w.r.t. these two complexity measures.

The algorithm for deciding query entailment through the computation of
con(q) provides a tight upper bound for this problem w.r.t. network complexity.
However, it would be impractical to implement as it iterates over all possible sub-
ontologies. Arguably, techniques such as weighted model counting [14] would
lead towards more practical algorithms for this problem. We will explore the
possibility of extending the Bayesian ontology reasoner BORN with an efficient
query entailment service using such techniques.

The proof of hardness for top-k query answering w.r.t. combined complexity
uses a very simple query which is in fact acyclic. Thus, contrary to classical
EL [5], restricting to acyclic queries does not suffice for reducing the complexity
of reasoning. On the other hand, for simple instance queries the combined com-
plexity should not be higher than the network complexity. This claim can be
shown by adapting the proof structures from [10] to the completion-based algo-
rithm for ELO as pointed in [7]. It would be interesting to find other meaningful
restrictions that reduce the complexity of these reasoning tasks.

One important open issue is the use of partial information in our reasoning
problems, through conditioning. For example, one could be interested in finding
the context κ with the highest probability of occurring, given that a query q
holds. Notice that this problem is different from finding the most likely context
since in this case, we do not require that Kκ entails the query q.

Another future direction id to extend the framework to consider also temporal
queries over dynamic ontologies in which the probabilistic knowledge evolves over
time as described in [13].

Most of the notions and ideas presented here are independent of the logical
formalism used. Indeed, although the specific complexity bounds found are spe-
cific to the properties of the DL EL, the reasoning algorithms presented usually
require only classical query entailment tests, and hence can be adapted to other
ontological languages where these tests are decidable, without major trouble.
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3896, pp. 1059–1068. Springer, Heidelberg (2006)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL. In: Proceedings of the IJCAI
2005. Morgan Kaufmann Publishers (2005)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press, Cambridge (2007)

4. Beigel, R., Nick, R., Spielman, D.A.: PP Is closed under intersection. J. Comput.
Syst. Sci. 50(2), 191–202 (1995)
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Abstract. Plate-based probabilistic models combine a few relational
constructs with Bayesian networks, so as to allow one to specify large and
repetitive probabilistic networks in a compact and intuitive manner. In
this paper we investigate the combined, data and domain complexity of
plate models, showing that they range from polynomial to #P-complete
to #EXP-complete.

1 Introduction

The desire to tackle complex decision scenarios, where many variables interact
and vast quantities of data are collected, has produced various modeling lan-
guages based on graphs. For instance, Bayesian and Markov networks offer visu-
ally pleasant tools by which one can represent interacting variables [5,10,15]. In
practice, several scenarios display repetitive patterns that can be best encoded
using relations, domains, and individuals. To address this reality, formalisms
have been proposed that combine features of Bayesian and Markov networks
with relational languages; for instance, plates [12], Markov logic networks [17],
relational Bayesian networks [8].

Plate-based probabilistic models are possibly the simplest and most success-
ful of these “probabilistic relational models”. By capturing symmetries in the
model, plates make communication and modelling much more efficient. Plates
are simple to draw, easy to understand, and quite powerful in what they can
represent. Plate models have been extensively used in statistical practice [11]
since they were introduced with the BUGS project [7,12]. In machine learning,
they have been used (often informally) to convey several models since their first
appearance [3]. One example is the smoothed Latent Dirichlet Allocation (sLDA)
model [1], usually represented with plates as in Fig. 1 (explained later).

In this paper we present results on the inferential complexity of plate models,
a topic that seems not to have received due attention. There are (at least) three
kinds of complexity results that are of interest in this context [4]: first, the
combined complexity of inferences, where model, evidence and domain are given
as input; second, the data complexity, where query, evidence and domain are
given as input (and we fix a model); finally, the domain complexity, where only
the domain is given as input (and model, query and evidence are fixed).

We start with the original plate models (Sect. 2), where nodes in a plate can
only have children inside the same plate, and we investigate their inferential
complexity (Sect. 3). We first look into the combined complexity, which we show
c© Springer International Publishing Switzerland 2015
C. Beierle and A. Dekhtyar (Eds.): SUM 2015, LNAI 9310, pp. 36–49, 2015.
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Fig. 1. Smoothed Latent Dirichlet Allocation, a plate model.

to be #P-complete; this is a surprising result given that plates can generate
grounded models that are exponentially large on their description size (hence a
naive approach to inference would take exponential time). We show data com-
plexity also to be #P-complete, and domain complexity to be constant. We then
move to more general plate models where a node can have children in any plate
(Sect. 4). Here it is necessary to allow “aggregation functions” that specify prob-
ability values. We focus on the simplest combination functions, and show that
combined complexity leads to #EXP-complete inference, while data complexity
leads to #P-complete inference.

2 Plates

In this section we define plate models and some related concepts; because the
literature does not have a standard formalization, we start from somewhat basic
notions. We only deal with finite spaces, so every variable has finitely many
values, leaving for the future a study of continuous variables [19].

A Bayesian network consists of a directed acyclic graph where each one of
its n nodes is a random variable Xi, and where the following Markov condition
holds: any Xi is independent of its nondescendants given its parents. Addition-
ally, a Bayesian network contains a set of conditional probability distributions:
for each Xi, we have P(Xi = xi|pa(Xi) = πi) for all values xi and πi (pa(Xi)
denotes the parents of Xi in the graph). The Markov condition implies the fac-
torization P(X1 = x1, . . . , Xn = xn) =

∏n
i=1 P(Xi = xi|pa(Xi) = πi), where πi

is the projection of x1, . . . , xn on pa(Xi) [15]. As a simple example [10], assume
we want to infer the performance of John (a student), as given by his grade; the
performance is affected by John’s intelligence and by the course’s difficulty. This

is graphically represented as GradeDifficulty Intelligence . Now we may be
interested in a set of students; we use Grade(ci, sj) to denote the grade of stu-
dent sj in course ci; similarly, Difficulty(ci) denotes the difficult of the ith course
and Intelligence(sj) the intelligence of the jth student. A Bayesian network for
two students and two courses is shown in Fig. 2. The very same model can be
described using plates as in Fig. 3 [7].

To define plate models more formally, we adopt the following concepts, mixing
definitions by Koller and Friedman [10, Chap. 6] and terminology by Poole [16].
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Grade(c1, s1)

Grade(c1, s2)

Grade(c2, s1)

Grade(c2, s2)

Difficulty(c1)

Difficulty(c2)

Intelligence(s1)

Intelligence(s2)

Fig. 2. Bayesian network with repetitive structure.

Fig. 3. Plate model for the network in Fig. 2.

We first take any logical variable (logvar) to be typed, ranging over a finite set,
called its domain. Note: in the language of plates each logical variable is uniquely
attached to a symbol, from which we can deduce its domain. A parameterized vari-
able (parvariable) X is a function that yields a random variable X(x 1, . . . , x k) for
each instantiation of the logvars x 1, . . . , x k (all typed). All the random variables
in the image of a parvariable take values in the same space (hence we can unam-
biguously talk about the space of values of parvariables). Denote by logvar(X)
the tuple of logvars associated with parvariable X. A plate graph consists of a
directed acyclic graph where each node Xi is a parvariable, and such that for any
Xi and Y ∈ pa(Xi), logvar(Y ) ⊆ logvar(Xi).1 If two nodes share a logvar they
are said to belong to the same plate. Each plate is usually indicated by a rectan-
gle, containing the parvariables that belong to the plate, and information about
the logvars in the plate. A plate model consists of a plate graph and, additionally,
a template conditional probability distribution for each parvariable Xi, that yields
P(Xi = xi|pa(Xi) = πi) for all possible values xi and πi. Template distributions
are often called parfactors [16]; the latter word is also used to refer to arbitrary
functions over parvariables.

To specify the semantics of plate models, we need an additional piece of
notation. Suppose we have an ordered set of logvars −→x = (x 1, . . . , x k) and one
of its possible instantiations, −→a = (a1, . . . , ak); then, given another ordered set
of logvars, −→x ′, denote by −→x ′[−→x /−→a ] the ordered set where, for each possible i,
x i is replaced by ai.

Concerning semantics, a plate model represents a (possibly large) Bayesian
network, constructed as follows. First, for each parvariable X, generate all instan-
tiations of logvar(X) (as they range over their domains), and for each instanti-
ation −→a create a node X(−→a ). Second, for each parvariable X, generate again

1 Note that the definition of plate model in Ref. [10] does not require acyclicity, but this
seems to be a necessary requirement in all the relevant literature.
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all instantiations of its logvars; for each instantiation −→a = (a1, . . . , ak) and for
each Y in pa(X), add an edge from Y (logvar(Y )[logvar(X)/−→a ]) to X(−→a ). Third,
associate each grounded parvariable with the corresponding template conditional
distribution.

The graph in Fig. 2 is the “grounding” of the plates model in Fig. 3: x runs
over a set containing courses c1 and c2, and y runs over a set containing students
s1 and s2. To complete specification of the grounded Bayesian network, we must
have template probabilities. Suppose, for instance, that all variables are binary,
and P(Difficulty(x ) = 0) = 1/3. Then we have both P(Difficulty(c1) = 0) = 1/3
and P(Difficulty(c2) = 0) = 1/3 in the grounded Bayesian network.

The plates we have defined so far are the “classic” plates that first appeared
with the BUGS system [12]. One of their limitations is that a node only has
children inside the same plate (we assume there is a “base plate” containing
all nodes). In practice plate models go beyond this, by letting a node to have
children in other plates. See for instance the sLDA model in Fig. 1: here φ(z) has
a child W (x , y). The semantics of these enhanced plates is discussed in Sect. 4.

3 The Complexity of “Classic” Plate Models

We now examine the complexity of inference with classic plate models. In this
context, an inference typically refers to the calculation of a conditional probabil-
ity P(Q|E), where Q and E are sets of assignments {X(−→a ) = x} (understood as
conjunctions). We assume that Q and E are not contradictory (i.e., that they do
not contain different assignments to the same variable) and that P(E) > 0 so that
the inference is well-defined. Note that checking whether this last assumption
holds is again an inference problem. As an example of inference, consider com-
puting P(Difficulty(c1)=1|Intelligence(s2)=1,Grade(c1, s2)=0,Grade(c2, s2)=1).
The set Q is the query and the set E is the evidence.

To discuss the complexity of inferences, we need a few concepts. The com-
plexity class #P is the class of integer-valued functions computed by counting
Turing machines in polynomial time; a counting Turing machine is a standard
nondeterministic Turing machine that prints in binary notation, on a separate
tape, the number of accepting computations induced by the input [21]. Thus,
#P contains the counting versions of NP-complete problems. If a problem is #P-
hard and can be solved with one call to a #P oracle and with polynomial-time
computations (i.e., if it belongs to FP#P [1]), it is said to be #P[1]-equivalent [6].
Roth [18] showed that inference in Bayesian networks is #P-hard. Because infer-
ence can be reduced to counting solutions of NP-complete problems followed by
a normalization step [5], the problem is #P[1]-equivalent [6]. Note that one can-
not assert #P-completeness of such inferences, as #P produces integers and
inference produces rationals. Later we will need the class #EXP; that is, the
class of functions computed by counting Turing machines in exponential time
(the number of accepting paths may have exponential size) [13]. A problem is
#EXP[1]-equivalent if it is #EXP-hard and can be solved with one call to a
#EXP oracle whose result x is processed through a function h(x) that requires
polynomial time with respect to the size of x.



40 F.G. Cozman and D.D. Mauá

A plate model can specify any Bayesian network: just define all parvariables
without logvars. Hence the calculation of P(Q|E) for plate models is #P-hard.
Now consider a generic plate model, with as many logvars (as many plates)
as needed. For each plate, a domain must be specified; suppose the domain is
given as a list of elements. This assumption means, in essence, that we are not
contemplating compact ways to specify the domain (for instance, one might just
give a number N in binary notation, with the understanding that the domain is
{1, 2, . . . , N}; we do not deal with this case here).

Even an explicit specification for domains can lead to exponentially large
grounded Bayesian networks. By taking M nested plates, each with a domain
consisting of N elements, a single parvariable can specify NM random variables.
Here is a simple example. Suppose we are interested in groups of individuals; for
instance, we wish to model the parvariable Family that indicates whether or not
M individuals are related. We draw:

Assuming we have N individuals, the grounding of this plate model has NM

grounded nodes. In this example inference is trivial as all random variables are
independent. If we instead had several parvariables connected in complex ways,
we might face a very dense, exponentially large Bayesian network. This might
suggest that calculation of probability values would take us to #EXP in the worst
case. The nice fact about plate models is that inference has the same complexity
of Bayesian networks, despite the possibly exponential size of grounded Bayesian
networks:

Theorem 1. Inference in plate models is #P[1]-equivalent.

Proof. Clearly, the problem is #P-hard, so it suffices to show it can be com-
puted with one call to #P plus polynomial-time post-processing. We achieve
this by showing that, in any given inference, only a polynomially-large fragment
of the (possibly exponentially-large) grounded Bayesian network is necessary,
and inference in this fragment is known to be #P[1]-equivalent.

We are to compute P(Q|E). Suppose we produce the complete grounded
Bayesian network. All nodes that appear in Q and in E appear in this network.
The fragment consisting of these grounded nodes and their (grounded) ances-
tors is the sub-network that contains all information needed for inference; other
grounded nodes can be discarded [15]. This fragment may contain disconnected
sub-networks; the only sub-network that matters for the computation of P(Q|E)
is the sub-network that contains the grounded parvariables in Q. Refer to this
fragment of the original grounded as the requisite network.

Suppose there are m grounded nodes in Q∪E. For any grounded node W in
this set, the number of ancestors of W is less than the number of (parvariable)
nodes in the plate model. For instance, in our last example, the ancestors of a
grounding of Grade contain exactly one grounding of Difficulty and one grounding
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of Intelligence. Now if there are n parvariables in the plate model, there are at
most mn grounded nodes in the requisite network. By running inference in this
requisite network, we obtain the desired result. ��

This result focuses on the combined complexity of plate models; that is, the
complexity of inference when plate model, query, evidence, and domains are
given as input. However, in practice we may be more interested in the com-
plexity of inferences when the model is fixed. This is justified when we expect
the model to be small but the data to be abundant. For instance, we may be
interested in modeling relations in a social network; we may have a few relations
(friendship, marriage, etc.), but an enormous amount of data. The complex-
ity of inference when query, evidence and domains are inputs (and the model
is fixed) is called the data complexity of inference; similarly, we may be inter-
ested in a fixed model and fixed query/evidence, with only the domains as the
input; in this case we have domain complexity [4]. Data and domain complex-
ities are directly related to the concepts of lqe-liftability and domain-liftability
that are often employed in the literature on lifted inference of probabilistic rela-
tional models [9]. Lqe-liftability means that data complexity is polynomial, and
domain-liftability means that domain complexity is polynomial.

Concerning the data complexity of plates, we have:

Theorem 2. Inference in plate models when the model is fixed is #P[1]-
equivalent.

Proof. Given Theorem 1, we only need to show hardness. Consider a monotone
2-CNF formula on propositional variables a1, . . . , an with m clauses. We call ai

and aj left and right variables, respectively, of the clause ai ∨ ak. We assume
an ordering of the clauses, so that we can refer to the left (right) variable of
ith clause. Counting the number of assignments to the variables that make the
sentence true is a #P-complete problem [21].

Build the plate model in Fig. 4. Both the logvars x and y index the propo-
sitions in the CNF formula; their domains are {1, . . . , n}. A grounded variable
Left(i) represents the proposition ai when it appears as the left variable in a
clause. Similarly, Right(j) represents aj when it appears as the right variable.
Impose P(Left(x )) = 1/2, P

(
Right(y)

)
= 1/2. The Equivalence(x , y) parvariable

enforces that Left(i) and Right(j) must take on the same value whenever they
represent the same proposition; this is achieved by imposing

P
(
Equivalence(x , y) = 1|Left(x ),Right(y)

)
=

{
1, if Left(x ) = Right(y),
0, if Left(x ) 	= Right(y).

Finally, Disjunction(x , y) encodes a clause with propositions Left(x ) and Right(y):
P
(
Disjunction(x , y) = 1|Left(x ),Right(y)

)
= 0 if Left(x ) = Right(y) = 0 and

P
(
Disjunction(x , y) = 1|Left(x ),Right(y)

)
= 1 otherwise.

Now create the evidence E that contains for each i = 1, . . . , N (that is, for
each proposition), the assignment {Equivalence(i, i) = 1}. Likewise, create the
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Fig. 4. A plate model that counts satisfying assignments of monotone 2-CNF formulas.

query Q containing for each clause the assignment {Disjunction(i, j) = 1}, where
ai and aj are, respectively, the left and right variables of the ith clause. Building
this plate model takes polynomial time in the size of the CNF formula. One can
check that P(Q|E) equals the number of satisfying assignments of the formula
up to a (polynomial-time computable) constant. ��

The proof of Theorem 1 shows that the size of domain is irrelevant once the
model, query and evidence are fixed. Hence, domain complexity is constant:

Theorem 3. Inference in plate models, when the model, query and evidence are
fixed, takes constant time.

4 Enhanced Plate Models

We now consider plate models where a node in a plate can have children in
other plates; we refer to these as enhanced plate models. As before, to guarantee
that such a definition works for all cases, we assume that there is a “base plate”
encompassing all nodes, so that a node outside of all drawn plates is already in
the base plate, and it can have children in other plates. We do not draw the base
plate in our plate models.

A popular model that employs enhanced plate models is sLDA, depicted in
Fig. 1. Here the logvar z runs over a set of topics, while x runs over a set of
documents, and y runs over a designated set of strings. The node W (x , y) is the
child of φ(z); grounding produces:

Now consider a particular grounded variable W (d, s); the number of parents
of this variable in the grounded graph depends on the number of topics (that is,
on the size of domain of z). Hence the template probability P

(
W (x , y)|φ(z)

)

must specify which procedure is to be used to produce probability values
given the domains. The typical solution is to allow aggregation functions to be
given [10], where an aggregation function takes a set of groundings, and assign-
ments for them, and produces a probability value out of them. Another strategy
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is used in relational Bayesian networks, where combination functions are adopted
to compute probability values [8]. Now we need to be careful when selecting a
family of aggregation functions lest the complexity of inference may be dictated
by the complexity of a single aggregation function. For example, consider allow-
ing a function that counts the number of solutions of an EXP-complete problem.
Then clearly the inference problem is #EXP-hard. On the other extreme, con-
sider aggregation functions that return constant values; these functions act as if
disconnecting the parents from the child, and do not add any expressivity over
classic plate models.

We choose to investigate the simplest possible language, where all parvari-
ables are binary (have two values), and aggregation functions are specified using
existential quantifiers. Such quantifiers can describe many common phenomena;
for instance, they can be used to specify Noisy-Or models [15]. Moreover, existen-
tial quantifiers are easily computed, and concisely specified. Say we have a par-
variable Y with parent X(x ), and x takes values in {a1, . . . , aN}. The grounded
Bayesian network contains the variable Y with parents X(a1), . . . , X(aN ). Then
the corresponding conditional distribution is P(Y = 1|X(a1), . . . , X(aN )) = 0 if
X(a1) = · · · = X(aN ) = 0 and P(Y = 1|X(a1), . . . , X(aN )) = 1 otherwise. This
can be stated more concisely as Y = ∃x X(x ).

Now suppose the model has another variable Z with P(Z|Y ) = 1 if Z 	= Y
and P(Z|Y ) = 0 if Z = Y . That is, Z = ¬Y . Then P(Z|X(x )) = ¬∃x X(x ) =
∀x ¬X(x ). Thus we assume, as a syntactic sugar, that we can specify aggregation
functions containing arbitrary logical formulas with existential and universal
quantifiers, and that we specify the aggregation function as a first-order logical
expression: for example, Y =

(∃x ∀yZ(x , y) ∧ ¬X(x ) → W (y)
)
.

Given that we may have a polynomial number of nested plates, and this
produces an exponential number of groundings, one might suspect that inference
with enhanced plates requires exponential effort. However, it is not obvious how
to prove this, because the language of plate models does not allow us to directly
build standard complete problems for exponential classes. We have the restriction
that each logvar is tied to a plate/domain; hence we cannot write a logical
expression such as X(x ) → ¬X(y), where the same parvariable X appears with
distinct logvars. However, our main result in this section shows that exponential
behavior is actually realized:

Theorem 4. Inference in enhanced plate models is #EXP[1]-equivalent.

Proof. To prove pertinence, note that an enhanced plate model can be grounded
into an exponentially larger Bayesian network, and inference can be carried out
in that network (which implies it can be solved with one call to a #EXP machine
and some exponential-time post-processing).

To prove hardness, we resort to bounded domino problems; indeed, we will
build a plate model (Fig. 5) that encodes a domino problem. A domino system
consists of a finite set D of tiles and a pair of compatibility relations H and
V , both on D × D, respectively expressing horizontal and vertical constraints
between tiles. The idea is that tiles are to be placed in points of a torus Ns ×Nt,
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where Ns denotes the integers modulo s, and that adjacent tiles need to satisfy
the constraints H and V . Such a torus is denoted compactly by U(s, t).

Some tiles, the initial conditions, are assigned to the first n points in the
bottom row of torus U(s, t). We denote by d0i the ith initial condition; that is,
the initial condition for point (i, 0). The torus has a tiling if it is possible to
cover the whole torus while respecting the compatibility relations and the initial
conditions. That is, there must be a mapping τ : U(s, t) → D such that for
all (x, y) ∈ U(s, t), (i) (τ(x, y), τ(x + 1 mod s, y)) ∈ H; (ii) (τ(x, y), τ(x, y + 1
mod t)) ∈ V ; (iii) τ(i, 0) = d0i for 0 ≤ i < n.

Börger et al. showed that given a (time/space) bounded Turing machine
one can construct a bounded domino system that reproduces its behavior [2,
Theorem 6.1.2]. Unfortunately in their construction the number of accepting
paths in the Turing machine and the number of tilings in the domino system
may differ, and this is inappropriate for a counting class such as #EXP. We need
to produce a parsimonious reduction [14, Sect. 18.1]; that is, a reduction that
preserves the number of accepting paths in the Turing machine. To do it, we must
recapitulate the construction by Börger et al. They start by assuming that we
have a simple nondeterministic Turing machine M over alphabet Σ containing
a blank character. That is, the Turing machine works on a single semi-infinite
tape where cells are numbered from 0 on; the machine never tries to move to the
left of the first cell, and at every stage of the computation there is some integer
n such that cells 0 to n contain non-blank characters and all other cells contain
blanks; finally, the machine has a unique accepting state qa, in which the tape
contains only blanks and the head is in the first cell. Given any Turing machine,
we can enlarge it polynomially so that it satisfies these restrictions, as described
by the following result (the proof is omitted due to space constraints, but it can
be produced by an explicit construction):

Lemma 1. Let M be a simple nondeterministic Turing machine with alphabet
Σ, input alphabet Σ′, and set of states Q. An input x is a sequence σ′

0σ
′
1 . . . σ′

n−1.
Then there exists a domino system and a linear-time reduction that takes any
input x to a sequence d0 of n tiles such that:
(i) if M accepts x in time t0 and space s0 then for any accepting computation
there is a single tiling for torus U(s,t) with initial condition d0 where s and t are
polynomials on s0, t0, and M;
(ii) if M does not accept x then the torus U(s,t) is not tiled with initial condition
d0 for all s, t ≥ 2.

Hence, counting the number of tilings is a #EXP-complete problem. From
now on we assume that we have a domino system with m tiles (|D| = m)
specifying a torus U(2n, 2n) and initial conditions d0i . . . d0n−1. Our goal is to
reduce the problem of counting tilings to an inference in an enhanced plate
model. Our reduction is inspired by a similar result by Tobies [20].

First we need to represent the positions of the torus; we do so by creating
2n logical variables x0,0, . . . , x0,n−1 and x1,0, . . . , x1,n−1. All these variables have
the same binary domain {0, 1}. The idea is that these variables represent the
coordinates of a position (x, y) in the torus in the following way: an assignment
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Fig. 5. Counting tilings of a torus with a plate model. Each plate is actually a set of
n nested plates, one for each logvar in the indicated vector of logvars. Nodes s3, s4, s5
and s5 encode auxiliary logical expressions indicated in the text.

−→a to −→x 0 = (x0,0, . . . , x0,n−1) represents the value of x (the column) in binary
notation, while an assignment

−→
b to −→x 1 = (x1,0, . . . , x1,n−1) represents the value

of y (the row) in binary notation. To make the presentation more clear and
succinct, we treat all these logical variables as a single variable −→x whose domain
are the natural numbers between zero and 22n. One should bear in mind that
this is simply syntactic sugar (so the reduction is polynomial in the input).

The proof builds two torus, which we force to be identical. The positions
of the second torus are represented by the logical variables −→y whose combined
domain are the natural numbers between zero and 22n − 1. Here again, this is
simply syntactic sugar to avoid writing 2n logical variables with binary domains.
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We create parvariables X0(
−→x ), . . . , Xn−1(

−→x ) and Y0(
−→x ), . . . , Yn−1(

−→x ) to
represent the x- and y-coordinates of the positions in binary notation. Thus
a position (x, y) is encoded as x =

∑n−1
i=0 Xi(x, y) · 2i and y =

∑n−1
i=0 Yi(x, y) · 2i.

The row and column of a position in the second torus are represented by parvari-
ables X+

0 (−→y ), . . . , X+
n−1(

−→y ) and Y +
0 (−→y ), . . . , Y +

n−1(
−→y ). We impose P(Xi = 1) =

P
(
X+

i = 1
)

= P(Yi = 1) = P
(
Y +

i = 1
)

= 1/2 (here and elsewhere we omit log-
vars to save space). We need to specify the concept of adjacent positions; to this
end we introduce parvariables East(−→x ,−→y ) and North(−→x ,−→y ), and specify:

East(−→x ,−→y ) =
n−1∧

k=0

(∧k−1
j=0Xj(

−→x )) → (Xk(−→x ) ↔ ¬X+
k (−→y )) ∧

n−1∧

k=0

(∨k−1
j=0¬Xj(

−→x )) → (Xk(−→x ) ↔ X+
k (−→y )),

∧
n−1∧

k=0

((Yk(−→x ) → Y +
k (−→y )) ∧ (¬Yk(−→x ) → ¬Y +

k (−→y ))),

North(−→x ,−→y ) =
n−1∧

k=0

(∧k−1
j=0Yj(

−→x )) → (Yk(−→x ) ↔ ¬Y +
k (−→y )) ∧

n−1∧

k=0

(∨k−1
j=0¬Yj(

−→x )) → (Yk(−→x ) ↔ Y +
k (−→y )

∧
n−1∧

k=0

((Xk(−→x ) → X+
k (−→y )) ∧ (¬Xk(−→x ) → ¬X+

k (−→y ))).

Parvariable East(−→x ,−→y ) indicates whether −→y is the position immediately to the
right of −→x ; similarly, North(−→x ,−→y ) indicates whether −→y is the position imme-
diately above −→x . We need to enforce that the positions of −→x and −→y with
−→x = −→y have the same encoding: EqualX(−→x ,−→y ) =

∧n−1
k=0 Xk(−→x ) ↔ X+

k (−→y ),
EqualY(−→x ,−→y ) =

∧n−1
k=0 Yk(−→x ) ↔ Y +

k (−→y ). We can now create variables to define
the adjancency of every position: A1 = ∀−→x : ∃−→y : East(−→x ,−→y ), A2 = ∀−→x : ∃−→y :
EqualX(−→x ,−→y ), A3 = ∀−→y : ∃−→x : EqualX(−→x ,−→y ), A4 = ∀−→x : ∃−→y : North(−→x ,−→y ),
A5 = ∀−→x : ∃−→y : EqualY(−→x ,−→y ), A6 = ∀−→y : ∃−→x : EqualY(−→x ,−→y ).

We then need to represent the base row (so that we can establish an
origin and initial conditions for the torus). We create a parvariable B′

i(
−→x ),

for each i = 0, . . . , n − 1, such that B′
i(

−→x ) reflects the binary encoding of
i, as follows: B′

0(
−→x ) =

∧n−1
k=0 ¬Xk(−→x ), B′

1(
−→x ) = X0(

−→x ) ∧ ∧n−1
k=1 ¬Xk(−→x ),

B′
2(

−→x ) = ¬X0(
−→x ) ∧ X1(

−→x ) ∧ ∧n−1
k=2 ¬Xk(−→x ), and so on. Now specify B(−→x ) =∧n−1

k=0 ¬Yk(−→x ) and, for each i ∈ {0, . . . , n − 1}, Bi(
−→x ) = B′

i(
−→x ) ∧ B(−→x ). The

parvariable B(−→x ) indicates that the position is in the base row, and the par-
variable Bi(

−→x ) indicates that the position is in the ith column. Together, they
specify the relevant part of the base row that we need to specify the initial tiles.
We must enforce an origin for the torus, so we introduce: A7 = ∃−→x : B0(

−→x ).
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At this point, by fixing
∧7

i=1 Ai we build a torus of size 2n × 2n. It remains
to represent the horizontal, vertical and initial constraints.

We introduce a pair Cj(
−→x ) and C+

j (−→y ) for each possible tile. For each tile
j = 1, . . . , m, we impose P

(
Cj(

−→x )
)

= P
(
C+

j (−→y )
)

= 1/2. Each position of the
torus must have one and only one tile:

A8 = ∀−→x :

⎛

⎝
∨

j∈C
Cj(

−→x )

⎞

⎠ ∧
⎛

⎝
∧

j∈C,k∈C,j �=k

¬(Cj(
−→x ) ∧ Ck(−→x ))

⎞

⎠ .

Moreover, the tiles must satisfy the horizontal and vertical restrictions:

A9 = ∀−→x :
∧

j∈C
Cj(

−→x ) → (∀−→y : East(−→x ,−→y ) → ∨k:(j,k)∈HC+
k (−→y )),

A10 = ∀−→x :
∧

j∈C
Cj(

−→x ) → (∀−→y : North(−→x ,−→y ) → ∨k:(j,k)∈V C+
k (−→y )).

Now make both sets of parvariables related to tiles behave the same:

A11 =
∧

j∈C
∀−→x : ∀−→y : C+

j (−→y ) ∧ East(−→x ,−→y ) → Cj(
−→x ),

A12 =
∧

j∈C
∀−→x : ∀−→y : C+

j (−→y ) ∧ North(−→x ,−→y ) → Cj(
−→x ).

Finally, we impose the initial conditions: A13 = ∀x :
∧n−1

i=0 Bi(
−→x ) → C0

i (−→x ),
where C0

i represents the ith tile as given by initial condition.
Computing the probability of A14 =

∧13
i=1 Ai produces the probability that

a tiling is built satisfying all horizontal and vertical restrictions and the initial
condition. If we can recover the number of tilings of the torus from this prob-
ability, we obtain the number of accepting computations of the exponentially-
bounded Turing machine we started with. Assume we have P(A14 = 1). Then
P(A14 = 1) × 2δ is the number of truth assignments that build the torus
satisfying horizontal and vertical relations and initial conditions, where δ =
22n(2n+22n+1 +m). However, this number is not equal to the number of tilings
of the torus. To see this, consider the grounded Bayesian network where each a
in the domain is associated with a “slice” containing groundings Xi(a), Yi(a),
Cj(a) and so on. If a particular configuration of these indicator variables corre-
sponds to a tiling, then we can produce the same tiling by permuting all elements
of the domain with respect to the slices of the network. Intuitively, we can fix a
tiling and imagine that we are labelling each point of the torus with an element
of the domain; clearly every permutation of these labels produces the same tiling
(this intuition is appropriate because each a corresponds to a different point in
the torus). So, in order to produce the number of tilings of the torus, we must
compute P(A14 = 1)×2δ/(22n!), where we divide the number of satisfying truth
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assignments by the number of repeated tilings. Consequently we obtain the num-
ber of accepting computations of the original Turing machine just by processing
the inference P(A14 = 1), proving the desired result. ��

Concerning the data complexity of enhanced plates, we have:

Theorem 5. Inference in enhanced plate models when the model is fixed is
#P[1]-equivalent.

Proof. Hardness follows from Theorem 2. To show pertinence, consider that, once
the plate model is fixed, the arity of any relation is fixed. And given the domains
as input, the combined domain has size that is a polynomial on the domains
(where the maximum arity appears in the exponent). So one can then produce a
grounded Bayesian network of size polynomial in the input. The result follows as
inference in the grounded Bayesian network belongs to FP#P[1]. ��

Concerning domain complexity, the fact that one can build complex logical
expressions using plates (see the proof of Theorem 4) suggests that polynomial
behavior cannot be expected [9]. However, we have not been able to provide
precise lower and upper bounds on domain complexity, so we leave this as a
challenge for future work.

5 Conclusion

Plates allow large Bayesian networks to be concisely described, and are partic-
ularly useful when one faces scenarios with many variables and intricate rela-
tions. Despite the popularity of plate models, few results on their complexity
are available. We have presented here a number of results concerning the com-
plexity of “classic” and enhanced plates; the former display #P[1]-equivalent
combined/data complexity (despite the fact that they may induce exponentially
large groundings), while the latter display #EXP[1]-equivalent combined com-
plexity and #P[1]-equivalent data complexity. The results on enhanced plates
are obtained when all relations are binary and aggregation functions are based
on existential quantification. It is not difficult to see that exponential complexity
there stems from the nesting of plates; in fact, if the level of nesting is limited,
the combined complexity goes down to #P[1]-equivalent.

There are several avenues open for future work. The domain complexity of
enhanced plate models is an open problem. Also, plate models are often aug-
mented with additional resources to allow recursive descriptions and structural
uncertainty [10]; the complexity of these more sophisticated languages deserves
analysis. Finally, it would be interesting to examine more restricted languages;
for instance, languages where evidence can only be “positive”, or where aggre-
gation functions can only have some bounded complexity.
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Abstract. The construction of probabilistic models that can represent
large systems requires the ability to describe repetitive and hierarchical
structures. To do so, one can resort to constructs from description logics.
In this paper we present a class of relational Bayesian networks based on
the popular description logic DL-Lite. Our main result is that, for this
modeling language, marginal inference and most probable explanation
require polynomial effort. We show this by reductions to edge cover-
ing problems, and derive a result of independent interest; namely, that
counting edge covers in a particular class of graphs requires polynomial
effort.

1 Introduction

The search for an expressive and tractable formalism that can represent uncer-
tainty and repetitive structures or hierarchical terminologies, is not an easy one.
Most probabilistic models are propositional [14,24], while combinations of logic
and probabilities are typically quite flexible but intractable [3,18]. However, there
are proposals that try to balance expressivity and complexity by mixing logi-
cal constructs with graphs and independence relations [17,32,33]; for instance,
probabilistic relational models [16] and relational Bayesian networks [21]. A few
variants of these latter models even allow for polynomial time inferences by
significantly restricting the syntax [15,29].

In this paper we investigate the computational complexity of a modeling lan-
guage that combines features of relational Bayesian networks with constructs of
the popular description logic DL-Lite [1,7]. In essence, we consider Bayesian net-
works which can be concisely specified using terminological assertions expressed
in DL-Lite and marginal probability assertions on basic concepts and roles. For
instance, we obtain a Bayesian network through the assertions

Employee ≡ Person � ∃salary, P(Person) = 1/3, P(salary) = 1/4,

which encodes knowledge that an employee is defined as a person who receives a
salary, an object is a person with probability 1/3 and two objects are connected
through the relation salary with probability 1/4.

Our main contribution here is to show that marginal inferences and most
probable explanations can be generated in polynomial time in our modeling
c© Springer International Publishing Switzerland 2015
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language. So, we identify an island of tractability with non-trivial expressivity,
offering a language that can be easily meshed with ontologies and relational
schema.

The paper is organized as follows. We with some necessary background in
Sect. 2. We then present DL-Lite Bayesian networks (Sect. 3) and their complex-
ity with respect to marginal inferences and most probable explanations (Sects. 4
and 5). Some of our results depend on a polynomial algorithm for counting edge
covers, a result of independent interest that is briefly presented in Sect. 6. The
connections with related work is discussed in Sect. 7. Section 8 comments on
possible extensions and concludes the paper.

2 Bayesian Networks, and DL-Lite

A Bayesian network consists of an acyclic directed graph whose nodes are ran-
dom variables X1, . . . , Xn, and a collection of conditional probability distribu-
tions, one distribution for each random variable given its parents. In this work,
we consider only Boolean variables: we assume that each variable Xi takes on
values 1 (“true”) and 0 (“false”). The product of all conditional probability
distributions determines a joint probability distribution over all variables, such
that P(X1 = x1, . . . , Xn = xn) =

∏n
i=1 P(Xi = xi|pa(Xi) = πi), where pa(Xi)

denotes the parents of Xi and πi is the projection of {x1, . . . , xn} onto pa(Xi).
A Bayesian network is extensively specified when its probability distributions are
specified through tables of rational numbers.

A marginal inference is the computation of the probability of a number of
assignments {Xi = xi} (query) given other assignments (evidence). This is a
#P-complete problem [36], and NP-hard even to approximate [11].1 Other com-
mon inference is most probable explanation (MPE), where one seeks an assign-
ment to all variables that maximizes their joint probability given some evidence.
Polynomial-time inference in extensively specified networks seems to require,
under widely accepted assumptions about complexity classes, a bound on graph
treewidth [25,26], hence the interest in networks with restricted expressivity
[9,13,15,19,31,35].

To study the inferential complexity of various classes of Bayesian networks
beyond the treewidth barrier, we have proposed a convenient framework in which
to specify networks with binary variables [10]. In this framework, a directed
acyclic graph is given where each node is a random variable; each root variable
X is associated with a marginal probability P(X = 1) = α, and each non-root
variable Y is associated with a formula Y ⇔ φ, where φ is a well-formed formula
on the parents of Y ; the latter is equivalent to specifying that P(Y = 1|φ) = 1
if φ is true and zero otherwise. By restricting the language from which φ can
be selected, one obtains a class of Bayesian networks (a language is simply a
1 Recall that #P is the class of integer-valued functions computed by counting Turing

machines in polynomial time; a counting Turing machine is a standard nondetermin-
istic Turing machine that prints in binary notation, on a separate tape, the number
of accepting computations induced by the input.
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set of well-formed formulas). For instance, if the language consists of all propo-
sitional sentences, we can represent any joint probability distribution (perhaps
introducing fresh variables). Or we may employ a sub-Boolean language with
only conjunction and disjunction, as in the next network:

X1 X2

X3 X4

P(X1) = 1/4, P(X2) = 1/2,

X3 ⇔ X1 ∧ X2, X4 ⇔ X2 ∨ X3.

A relational Bayesian network consists of a directed acyclic graph whose
nodes are relations r1, . . . , rn [21,22], plus a set of real-valued functions soon
to be explained. To interpret a relational Bayesian network, first take a set of
individuals D, called a domain. A grounding of k-ary relation r is denoted by
r(a1, . . . , ak), where a1, . . . , ak ∈ D. Given a relational Bayesian network and
a domain, one can build a directed acyclic graph where each possible ground-
ing is a node, and where an arc is added between two groundings if there is
an arc between their corresponding relations in the network. The real-valued
functions we have mentioned specify the probability of each grounding given its
parents’ grounding. In Jaeger’s original proposal [21], these real-valued functions
are restricted to a few basic forms. Here we focus on the restricted syntax pro-
posed in [10]: for each root relation r we have an assessment P(r) = α, where α is
a rational in [0, 1]. And for each non-root k-ary relation s we have an equivalence
s(x1, . . . , xk) ⇔ φ(x1, . . . , xk), where each xi denotes a logical variable and φ is
a well-formed formula in a first-order language. Our strategy in this paper is to
restrict φ to constructs from the DL-Lite description logic.

DL-Lite is particularly interesting because it captures a great deal of fea-
tures found in conceptual modeling by ER or UML diagrams, and yet common
inference services have polynomial complexity [7]. A whole family of variants
of DL-Lite has been developed [1], and in fact this family is the basis of one
of the OWL QL profile (http://www.w3.org/TR/owl2-profiles/). To recap, DL-
Lite is a description logic that deals with concepts, roles, and individuals; we
treat those as unary relations, binary relations, and constants. Some of the con-
cepts are marked as primitive ones. Given a primitive concept s, both s and ¬s
are formulas, to be interpreted respectively as s(x) and ¬s(x). Given a role r,
both ∃r and ∃r− are formulas, to be interpreted respectively as ∃y : r(x, y) and
∃y : r(y, x) (r− is an inverse role). Also, if φ and ϕ are formulas, then φ � ϕ is a
formula (interpreted as φ ∧ ϕ). Finally, a concept definition s ≡ φ is interpreted
as ∀x : s(x) ⇔ φ(x). Note that any formula φ can have only one free logical
variable. A primitive concept cannot appear in the left-hand side of a concept
definition (indeed this characterizes primitive concepts). Inverse roles are defined
as ∀x, y : r−(y, x) ⇔ r(x, y). The semantics of DL-Lite uses a domain D and an
interpretation I that maps each individual to an element of D, each concept to a
subset of D, and each role to a set of pairs in D ×D. The semantics of a formula
in essence reads the formula as a first-order formula and uses D and I in the
usual semantics of first-order logic [7].

http://www.w3.org/TR/owl2-profiles/
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Example 1. The following concept definitions express simple facts about fami-
lies: first, female ≡ ¬male; also, father ≡ male � ∃parentOf, mother ≡ female �
∃parentOf, son ≡ male � ∃parentOf−, daughter ≡ female � ∃parentOf−.

3 DL-Lite Bayesian Networks

We now consider the class of relational Bayesian networks over binary variables
where each conditional probability is specified through a DL-Lite formula. A
DL-Lite Bayesian network is a relational Bayesian network that consists of a
directed acyclic graph where each node is a unary or binary relation, and such
that

– each root relation r is associated with an assessment P(r) = α, for a rational
α ∈ [0, 1], and

– each non-root relation r is either a unary relation associated with a concept
definition r ≡ φ, where φ is a formula in DL-Lite only mentioning parent
relations, or an inverse role s− with s as its single parent.

Example 2. The graph and assessments in Fig. 1, plus the concept definitions in
Example 1, specify a DL-Lite Bayesian network.

Fig. 1. A DL-Lite Bayesian network.

The semantics of DL-Lite Bayesian networks is given by a simple combination
of semantics for relational Bayesian networks and for DL-Lite. That is, consider
a domain D containing individuals; in this paper we assume every domain to
be finite and given as a list of elements. We also assume, as most first-order
probabilistic logics do, that interpretations are rigid [3] in that an element cor-
responds to the same individual in every possible interpretation of relations.
For each concept s and individual a, produce the grounding s(a); likewise, for
each role r and each pair of individuals (a, b), produce the grounding r(a, b). A
set with all possible interpretations is obtained by considering all possible truth
assignments for these groundings. We can associate each grounding with a ran-
dom variable that takes each possible interpretation either to 1 (the grounding
is true in that interpretation) or to 0 (otherwise). To simplify the notation, we
use the same symbol for a grounding and its associated random variable. Now
construct a grounded graph. First, each grounding is a node. Second, take each
concept definition s ≡ φ; for each grounding s(a), specify as its parents the
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Fig. 2. Grounded network, domain D = {a, b}.

groundings that appear in φ(a). Third, associate with each root grounding the
corresponding grounded probabilistic assessment. For instance, suppose we have
assessments P(s) = α′ and P(r) = α′′ for concept s and role r; then, attach to
grounding s(a) the assessment P(s(a)) = α′, and similarly, attach to grounding
r(a, b) the assessment P(r(a, b)) = α′′.

Example 3. Take D = {a, b}. Then the relational Bayesian network in Example 2
induces the Bayesian network in Fig. 2 (where names of relations have been
shortened, e.g. parentOf has become pa).

DL-Lite Bayesian networks can be argued for in two ways. First, they offer
an intuitive and disciplined language in which to express relational Bayesian
networks; in essence, DL-Lite is used to reduce the complexity of Jaeger’s com-
bination functions [21,22]. Second, they offer a simple way to create probabilistic
acyclic ontologies; this is particularly valuable as acyclic ontologies are common
in practice [2].

To these inviting features we add a third, most important one: useful infer-
ences in DL-Lite Bayesian networks require polynomial effort. The inferences of
interest are as follows. Suppose we have a DL-Lite Bayesian network B and a
domain D (as a list of individuals). To compute a marginal inference P(Q|E)
for sets of assignments Q and E, we calculate P(Q ∧ E)/P(E). So, our central
inference problem is to compute P(E) for a given set of assignments (the evi-
dence). That is, inference in DL-Lite Bayesian networks boils down to computing
marginals, as usual in Bayesian networks.

For reasons to be clear, we say that evidence is positive when all assign-
ments attach value 1 (true). For instance, {male(John) = 1, female(Mary) = 1}
is positive evidence. Similarly, {father(John) = 0,mother(Mary) = 0} is negative
evidence.

Another problem is to find a most probable explanation (MPE); that is, to
find an interpretation for all groundings of the DL-Lite Bayesian network B with
respect to domain D, that maximizes the probability and is consistent with a
given set of assignments (evidence) E.

As a digression, note that we argue in Sect. 8 that results in the next section
can be adapted to produce fully-polynomial time approximations in a larger set
of languages that can be directly useful in conceptual modeling.
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4 Marginal Inferences

Our main result is that (marginal and MPE) inference in a DL-Lite Bayesian
network requires polynomial effort as long as evidence is positive. One conse-
quence of this result is that DL-Lite Bayesian networks are dqe-/domain-liftable
for positive evidence [4,23]. Another point is that our results offer explicit algo-
rithms for a class of two-variable logics [5].

The focus on positive assignments is justified, as conjuntion (a subset of
DL-Lite) leads to #P-hardness with arbitrary evidence [10]. Our first result is:

Theorem 1. With a DL-Lite Bayesian network, a domain, and positive evi-
dence as input, inference is polynomial-time computable in the size of the input.

We prove this theorem by a quadratic-time reduction to multiple indepen-
dent problems of counting weighted edge covers with uniform weights in a very
particular class of graphs. Then we show (in Sect. 6) that the latter problem can
be solved in quadratic time (hence the total time is quadratic).

We first transform the relational network into an equal-probability model.
Collapse each role r and its inverse r− into a single node r. For each (collapsed)
role r, insert variables er ≡ ∃r and e−

r ≡ ∃r−; replace each appearance of the
formula ∃r by the variable er, and each appearance of ∃r− by e−

r . This transfor-
mation does not change the probability of E, and it allows us to easily refer to
groundings of formulas ∃r and ∃r− as groundings of er and e−

r , respectively.
Observe that only the nodes with assignments in E and their ancestors are rel-

evant for the computation of P(E), as every other node in the Bayesian network is
barren [14]. Hence, we can assume without loss of generality that E contains only
leaves of the network. If E contains only root nodes, then P(E) can be computed
trivially as the product of marginal probabilities which are readily available from
the specification. Thus assume that E assigns a positive value to at least one leaf
grounding s(a), where a is some individual in the domain. Then by construction
s(a) is associated with a logical sentence X1 ∧ · · ·∧Xk, where each Xi is either a
grounding of non-primitive unary relation in individual a, a grounding of a prim-
itive unary relation in a, or the negation of a grounding of a primitive unary rela-
tion in a. It follows that P(E) = P(s(a) = 1|X1 = 1, . . . , Xk = 1)P(E′) = P(E′),
where E′ is E after removing the assignment s(a) = 1 and adding the assignments
{X1 = 1, . . . , Xk = 1}. Now it might be that E′ contains both the assignments
{Xi = 1} and {Xi = 0}. Then P(E) = 0 (this can be verified efficiently). So
assume there are no such inconsistencies. The problem of computing P(E) boils
down to computing P(E′); in the latter problem the node s(a) is discarded for
being barren. Moreover, we can replace any assignment {¬r(a) = 1} in E′ for
some primitive concept r with the equivalent assignment {r(a) = 0}. By repeat-
ing this procedure for all internal nodes which are not groundings of er or e−

r ,
we end up with a set A containing positive assignments of groundings of roles
and of concepts er and e−

r , and (not necessarily positive) assignments of ground-
ings of primitive concepts. Each grounding of a primitive concept or role is (a
root node hence) marginally independent from all other groundings in A; hence
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P(A) = P(B|C)
∏

i P(Ai), where each Ai is an assignment to a root node, B
are (positive) assignments to groundings of concepts er and e−

r for relations r,
and C ⊆ {A1, A2, . . . } are groundings of roles (if C is empty then assume it
expresses a tautology). Since the marginal probabilities P(Ai) are available from
the specification the joint

∏
i P(Ai) can be computed in linear time in the input.

We thus focus on computing P(B|C) as defined (if B is empty, we are done).
To recap, B is a set of assignments er(a) = 1 and e−

r (b) = 1 and C is a set of
assignments r(c, d) = 1 for arbitrary roles r and individuals a, b, c and d.

For a role r, let Dr be the set of individuals a ∈ D such that er(a) = 1 is in
B, and let D−

r be the set of individuals a ∈ D such that B contains e−
r (a) = 1.

Let gr(r) be the set of all groundings of relation r, and let r1, . . . , rk be the roles
in the (relational) network. By the factorization property of Bayesian networks
it follows that

P(B|C) =
∑

gr(r1)

· · ·
∑

gr(rk)

k∏

i=1

∏

a∈Dri

P(eri(a) = 1|pa(eri(a)),C)×
∏

a∈D−
ri

P(e−
ri (a) = 1|pa(e−

ri (a)),C)P(gr(rk)|C) ,

which by distributing the products over sums is equal to

k∏

i=1

∑

gr(ri)

∏

a∈Dr

P(er(a)=1|pa(er(a)),C)
∏

a∈D−
r

P(e−
r (a)=1|pa(e−

r (a)),C)P(gr(rk)|C) .

Consider an assignment r(a, b) = 1 in C. By construction, the children of the
grounding r(a, b) are er(a) and e−

r (b). Moreover, the assignment r(a, b) = 1
implies that P(er(a) = 1|pa(er(a)),C) = 1 (for any assignment to the other
parents) and P(e−

r (b) = 1|pa(er(a)),C) = 1 (for any assignment to the other
parents). This is equivalent in the factorization above to removing r(a, b) from C
(as it is independent of all other groundings), and removing individuals a from Dr

and b from D−
r . So repeat this procedure for every grounding in C until this set

is empty (this can be done in polynomial time). The inference problem becomes
one of computing γ(r) =

∑
gr(ri)

∏
a∈Dr

P(er(a) = 1|pa(er(a)))
∏

a∈D−
r
P(e−

r (a) =
1|pa(e−

r (a)))P(gr(rk)) for every relation ri, i = 1, . . . , k. We will show that this
problem can be reduced to a tractable instance of counting weighted edge covers.

To this end, consider the graph G whose node set V can be partitioned into
sets V1 = {e−

r (a) : a ∈ D \ D−
r }, V2 = {er(a) : a ∈ Dr}, V3 = {e−

r (a) : a ∈ D−
r },

V4 = {er(a) : a ∈ D \ Dr}, and for i = 1, 2, 3 the graph obtained by considering
nodes Vi ∪ Vi+1 is bipartite complete. An edge with endpoints er(a) and e−

r (b)
represents the grounding r(a, b); we identify every edge with its corresponding
grounding. We call this graph the intersection graph of B with respect to r and
D. The parents of a node in the graph correspond exactly to the parents of
the node in the Bayesian network. For example, the graph in Fig. 3 represents
the assignments B = {er(a) = 1, er(b) = 1, er(d) = 1, e−

r (b) = 1, e−
r (c) = 1},
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Fig. 3. Representing assignments by graphs.

with respect to domain D = {a, b, c, d, e}. The black nodes (resp., white nodes)
represent groundings in (resp., not in) B. For clarity’s sake, we label only a few
edges.

Before showing the equivalence between the inference problem and counting
edges covers, we need to introduce some graph-theoretic notions and notation.
Consider a (simple, undirected) graph G = (V,E). Denote by EG(u) the set of
edges incident on a node u ∈ V , and by NG(u) the open neighborhood of u. For
U ⊆ V , we say that C ⊆ E is a U -cover if for each node u ∈ U there is an edge
e ∈ C incident in u (i.e., e ∈ EG(u)). For any fixed real λ, we say that λ|C| is the
weight of cover C. The partition function of G is Z(G,U, λ) =

∑
C∈EC(G,U) λ|C|,

where U ⊆ V , EC(G,U) is the set of U -covers of G and λ is a positive real.
If λ = 1 and U = V , the partition function is the number of edge covers. The
following result connects counting edge covers to marginal inference in DL-Lite
Bayesian networks.

Proposition 1. Let G = (V1, V2, V3, V4, E) be the intersection graph of B with
respect to a relation r and domain D. Then γ(r) = Z(G,V2 ∪V3, α/(1−α))/(1−
α)|E|, where α = P(r(x, y)).
Proof. Let B = V2 ∪ V3, and consider a B-cover C. The assignment that sets
to true all groundings r(a, b) corresponding to edges in C, and sets to false
the remaining groundings of r makes P(er(a) = 1|pa(er(a))) = P(e−

r (b) =
1|pa(e−

r (b))) = 1 for every a ∈ Dr and b ∈ D−
r ; it makes P(gr(r)) = P(r)|C|(1 −

P(r))|E|−|C| = (1−α)|E|α|C|/(1−α)|C|, which is the weight of the cover C scaled
by (1 − α)|E|. Now consider a set of edges C which is not a B-cover and obtains
an assignment to groundings gr(r) as before. There is at least one node in B that
does not contain any incident edges in C. Assume that node is e(a); then all par-
ents of e(a) are assigned false, which implies that P(er(a) = 1|pa(er(a))) = 0.
The same is true if the node not covered is a grounding e−(a). Hence, for each
B-cover C the probability of the corresponding assignment equals its weight
up to the factor (1 − α)|E|. And for each edge set C which is not a B-cover its
corresponding assignment has probability zero. �

We have thus established that, if a particular class of edge cover counting
problems is polynomial, then marginal inference in DL-Lite Bayesian networks
is also polynomial. Since the former is shown to be true in Sect. 6, this concludes
the proof of Theorem 1.
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5 Most Probable Explanations

Using previous techniques, we can also show the following result:

Theorem 2. With a DL-Lite Bayesian network, a domain, and positive evi-
dence as input, finding a most probable explanation is polynomial-time com-
putable in the size of the input.

In this theorem we are interested in finding an assignment X to all groundings
that maximizes P(X∧E), where E is a set of positive assignments. Perform the
substitution of formulas ∃r and ∃r− by logically equivalent concepts er and e−

r as
before. Consider a non-root grounding s(a) in E which is not the grounding of er
or e−

r ; by construction, s(a) is logically equivalent to a conjunction X1∧· · ·∧Xk,
where X1, . . . , Xk are unary groundings. Because s(a) is assigned to true, any
assignment X with nonzero probability assigns X1, . . . , Xk to true. Moreover,
since s(a) is an internal node, its corresponding probability is one. Hence, if we
include all the assignments Xi = 1 to its parents in E, the MPE value does not
change. As in the computation of inference, we might generate an inconsistency
when setting the values of parents; in this case halt and return zero (and an
arbitrary assignment). So assume we repeated this procedure until E contains
all ancestors of the original groundings which are groundings of unary relations,
and that no inconsistency was found. Note that at this point we only need to
assign values to nodes which are either not ancestors of any node in the original
set E, and to groundings of (collapsed) roles r.

Consider the groundings of primitive concepts r which are not ancestors of
any grounding in E. Setting its value to maximize its marginal probability does
not introduce any inconsistency with respect to E. Moreover, for any assign-
ment to these groundings, we can find a consistent assignment to the remaining
groundings (which are internal nodes and not ancestors of E), that is, an assign-
ment which assigns positive probability. Since this is the maximum probability
we can obtain for these groundings, this is a partial optimum assignment.

We are thus only left with the problem of assigning values to the groundings
of relations r which are ancestors of E. Consider a relation r such that P(r) ≥ 1/2.
Then assigning all groundings of r to true maximizes their marginal probability
and satisfies the logical equivalences of all groundings in E. Hence, this is a
maximum assignment (and its value can be computed efficiently). So assume
there is a relation r with P(r) < 1/2 such that a grounding of er or e−

r appear in
E. In this case, the greedy assignment sets every grounding of r; however, such an
assignment is inconsistent with the logical equivalence of er and e−

r , hence obtains
probability zero. Now consider an assignment that assigns exactly one grounding
r(a, b) to true and all the other to false. This assignment is consistent with
er(a) and er(b), and maximizes the probability; any assignment that sets more
groundings to true has a lower probability since it replaces a term 1−P(r) ≥ 1/2
with a term P(r) < 1/2 in the joint probability. More generally, to maximize
the joint probability we need to assign to true as few groundings r(a, b) which
are ancestors of E as possible. This is equivalent to a minimum cardinality edge
covering problem as follows.
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For every relation r in the relational network, construct the bipartite complete
graph Gr = (V1, V2, E) such that V1 is the set of groundings er(a) that appears
and have no parent r(a, b) in E, and V2 is the set of groundings e−

r (a) that appears
and have no parents in E. We identify an edge connecting er(a) and e−

r (b) with
the grounding r(a, b). For any set C ⊆ E, construct an assignment by attaching
true to the groundings r(a, b) in C and false to every other grounding r(a, b).
This assignment is consistent with E if and only if C is an edge cover; hence the
minimum cardinality edge cover maximizes the joint probability (it is consistent
with E and attaches true to the least number of groundings of r). This concludes
the proof of Theorem 2.

6 Counting Edge Covers

In this section we discuss the fact that, for graphs such as those representing
formulas in DL-Lite, the partition function can be computed in polynomial time.
Specifically, we consider graphs G = (V,E) whose nodes can be partitioned into
four disjoint sets V1, V2, V3, V4 such that the subgraph obtained by considering
only edges Vi and Vi+1 is complete bipartite (i = 1, 2, 3). We call such graphs
stepwise bipartite complete. For lack of space, we only present the main ideas;
details and proofs can be found elsewhere [30].

We partition the nodes into white nodes W = V1 ∪ V4 and black nodes B =
V2∪V3. As we will be interested only in B-covers, we will refer to them simply as
covers. An edge e = (u, v) is classified into one of three categories with respect to
the partition W,B: it is a free edge if u, v ∈ W ; a dangling edge if u ∈ W, v ∈ B,
or a regular edge if u, v ∈ B. For convenience, we fix λ and write Z(G) to denote
Z(G,λ). Computing Z(G) for general graphs is #P-complete even for λ = 1
[6], and admits a FPTAS for bounded λ [27,28]. We will show that for stepwise
bipartite complete graphs, the problem can be solved in polynomial time.

Let e be an edge and u be a vertex in G = (W,B,E). We define the following
operations and notation: G − e = (W,B,E \ {e}) and G − u = (W ∪ {u}, B \
{u}, E). These operations do not change the vertex set (only the partition), and
are associative (e.g., G − e − f = G − f − e, G − u − v = G − v − u, and
G− e−u = G−u− e). Hence, if E = {e1, · · · , ed} is a set of edges, we can write
G − E to denote G − e1 − · · · − ed applied in any arbitrary order. The same is
true for any combination of these operations.

The following results, easily derived from the work of Lin, Liu and Lu [27],
show that the partition function can be computed recursively on smaller graphs
and solved efficiently when no black nodes exist:

Proposition 2. Let e = (u, v) be an edge. (1) If e is dangling edge with u colored
black then Z(G) = (1 + λ)Z(G − e − u) − Z(G − EG(u) − u). (2) If e is a free
edge of G then Z(G) = (1 + λ)Z(G − e). (3) If u is an isolated white node (i.e.,
NG(u) = ∅) then Z(G) = Z(G − u).

The result above allows us to decompose the problem of computing Z(G)
into two smaller problems until the the problems are simple enough to be solved
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Fig. 4. Algorithm PF. Takes a graph G = (V1, V2, V3, V4, E) with V2 = {u1, . . . , un}
and V3 = {v1, . . . , vm}, a node w ∈ V1 ∪ V4, and nonnegative integers k1 and k2.

by a simple count (of free edges). That approach however generates an expo-
nential number of recursions. A polynomial-time algorithm can be obtained by
exploiting the symmetries in the graphs, obtained through graph isomorphism.

Two graphs are isomorphic if there is an edge-preserving bijection between
the nodes of the two graphs that also preserves their color. Two isomorphic
graphs have the same value of the partition function. The next result shows
that the order in which operations of edge removal and and node whitening are
performed among isomorphic nodes does not affect the value of Z(G):

Proposition 3. Let u1, . . . , un be the nodes in V2 (V3) and w be a node in V1

(V4). Given any permutation σ on V2 (V3) and nonnegative integers k1 +k2 ≤ n
the graphs G′ = G − EG(u1) − · · · − EG(uk1) − (w, uk1+1) − · · · − (w, uk1+k2) −
u1 −· · ·−uk1+k2 and G′′ = G−EG(σ(u1))−· · ·−EG(σ(uk1))− (w, σ(uk1+1))−
· · · − (w, σ(uk1+k2)) − σ(u1) − · · · − σ(uk1+k2) are isomorphic.

Using these facts, Algorithm PF (Fig. 4) produces Z(G).

Theorem 3. Let G be a stepwise bipartite complete graph. Then Algorithm PF
with an arbitrary node w in V4 and k1 = k2 = 0 outputs Z(G) in time and
memory polynomial in the number of nodes and edges of G if the calls are cached
(so that no two calls with same arguments are performed).

The algorithm PF requires the existence of dangling edges. Now it might
be that the graph contains no white nodes (hence no dangling edges), that is,
that G is complete bipartite graph. The next result shows how to decompose
the problem of computing the partition function into problems of computing the
partition function in smaller graphs.

Proposition 4. Let G be a bipartite complete graph and e = (u, v) be some
edge. Then Z(G) = (1+λ)Z(G−e−u−v)−Z(G−EG(v)−v)−Z(G−EG(u)−
u)−Z(G−EG(u)−EG(v)−u−v). The graphs in the right-hand side are either
bipartite complete or stepwise bipartite complete with a dangling edge.
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7 Related Work

In previous work [10] we have shown that marginal inference can be computed
in polynomial-time in models described by a restricted version of the language
considered here, one that does not admit inverse roles. The absence of inverse
roles leads to Bayesian networks composed of disconnected components, where
each component contains all concepts related to an individual; the complexity
of inferences with “positive” evidence is then easily seem to be polynomial by
applying d-separation. The use of inverse roles connects components related to
different individuals, so the same argument cannot be used.

There have been many attempts at combining description logics with prob-
abilities. Heinsohn [20] was one of the first to propose modeling languages that
allow uncertainty into terminological descriptions. Much of the work in prob-
abilistic description logics is however hindered by intractability of inferences.
The DL-Lite language was conceived as a lightweight knowledge representation
scheme to represent large bases of relational data with very efficient reasoning
services. The simplicity and computational efficiency of the DL-Lite language
have led many researchers to use it as a building block of modeling languages
that combine description logics and Bayesian networks. For instance, D’Amato
et. al [12] proposed a variant of DL-Lite where the interpretation of each sen-
tence is conditional on a context. The context is specified by a Bayesian network,
and is hence probabilistic. The probability of concepts can then be extended to
determine the probability of logical expressions. A similar approach was taken by
Ceylan and Peñalosa in their Bayesian Description Logic [8], with minor seman-
tic differences. A different approach is to extend the syntax of DL-Lite sentences
with probabilistic subsumption connectives, as in the Probabilistic DL-Lite [34].
Differently from our proposal here, none of those works use DL-Lite to specify
(large) Bayesian networks.

8 Extensions, and Conclusion

The previous results can be directly extended in some important ways. For
example, if we allow negative groundings of roles in the evidence, then most
of the proof of Theorem 1 follows; the difference is that the intersection graphs
obtained do not satisfy the same symmetries. We can then resort to approxima-
tions for weighted edge cover counting [28], so as to develop a fully polynomial-
time approximation scheme (FPTAS) for inference. For most probable explana-
tions, the problem remains polynomial. Similarly, we could allow for different
groundings of the same relation to be associated with different probabilities;
the proofs given here can be modified to develop a FPTAS for inference. This
implies that both probabilistic relational models (PRMs) [17] and recursive rela-
tional Bayesian networks (RRBNs) [22], when appropriately restricted to DL-
Lite constructs, allow for inference through FPTAS. We intend to pursue details
of such conceptual modeling tools in the future.

Other possible extensions of our results merit attention. First, one might
investigate whether there are similar polynomial/FPTAS results not only for the
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many existing variants of DL-Lite [1], but also for networks specified through
other popular description logics such as EL and ALC [2], or even other languages
such as temporal logics.

To conclude, DL-Lite Bayesian networks offer a flexible and effective lan-
guage, that can be used to specify probabilistic acyclic ontologies or entity-
relationship diagrams. Usual services, such as inference and explanations, have
tractable algorithms that can be used directly or called during learning.
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Abstract. In this paper we study state space search problems where
the costs of transitions are uncertain. Cost uncertainty can be due to the
existence of several scenarios impacting the entire set of transitions; it
can also result from local random factors impacting each transition inde-
pendently, or from more complex combinations of these two cases. This
leads us to consider three different settings for handling cost uncertainty
in state space graphs. For each of them, we recall some key properties
of first-order and second-order stochastic dominance. Then we propose
dominance-based heuristic search algorithms to determine the set of pos-
sibly optimal solutions with respect to the expected utility model and
Yaari’s model, with and without assuming risk aversion. Finally, to pre-
serve scalability on large-size instances, we adapt these algorithms for the
fast determination of an ε-covering of the potentially optimal solutions.

Keywords: State space search · Uncertainty · Stochastic dominance

1 Introduction

State-space search is a general formal framework that can be used to solve var-
ious practical optimization problems with a combinatorial structure, including,
for instance, shortest path determination, actions planning, scheduling, game
search and puzzle solving. The usual representation of a problem is a state space
graph, the nodes of which represent different possible states of a system, and the
arcs represent the possible transitions. Hence the problem consists in finding a
shortest path in this graph (explicitly or implicitly known), from a given initial
node to a goal node [11,13].

Baseline algorithms such as A∗ [7] proposed for finding the shortest path
in a state-space graph standardly assume that costs are deterministic. How-
ever, in practical applications, many external factors may impact on transi-
tion costs (e.g., travel times may depend on the local weather) which makes
costs uncertain. In this paper we consider state space search problems with
uncertain transition costs1, with or without probabilistic dependencies among
1 Note that transitions are still assumed to be deterministic which makes a significant

difference with Markov Decision Processes [2,16].
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the costs. To every transition in the graph, and therefore to every path in
the graph, is associated a random variable defining its uncertain prospect in
terms of cost. In this context of search with stochastic costs, we are inter-
ested in determining the preferred paths for a decision maker (DM) whose
preferences are represented by standard decision models such as the expected
utility [18,19] or the dual expected utility [22]. Since we are in a cost min-
imization context, these models switch to expected disutility functions to be
minimized.

Some prior works in this area concern the determination of the preferred paths,
assuming the decision model is given, see e.g. [3–5,8,10,12]. Compared to this line,
here we do not assume that the decision model is completely known. In particular,
the DM’s attitude towards risk may not be known precisely which precludes any
precise preference-based optimization. However, most decision models considered
in decision making under risk are monotonic with respect to the first order sto-
chastic dominance, or even with the second order stochastic dominance whenever
the decision maker is risk-averse. Consequently, we are interested in determining
the set of non-dominated solution paths with respect to one or both of these dom-
inance relations. For instance, first order non-stochastically dominated solutions
correspond exactly to the set of all possibly optimal solutions for an expected disu-
tility minimizer. It even works when no information about the disutility function is
available. This computation provides the DM with the set of uncertain prospects
that are non-dominated. It is a pre-selection step towards the final decision. Simi-
lar remarks hold for the second-order stochastic dominance and risk-averse DMs,
motivating the development of algorithms for determining the set of stochastically
non-dominated solution paths in state space graphs.

This topic has been addressed in different settings by the past, see e.g.,
[14,20,21]. However, the impact of multiple uncertainties on the costs make
new challenges arise. It complicates the computation of non-dominated solution
paths, while this computation appears to be a critical issue. Indeed, the number
of non-dominated solutions may grow with the size of the problem. Our aim here
is to present a general setting encompassing different contexts of uncertainty and
to propose exact and approximate algorithms for the determination of stochas-
tically non-dominated solution paths. More precisely, the paper is organized as
follows2: in Sect. 2 we recall some preliminary definitions and properties that
will be used throughout the paper. In Sect. 3 we introduce a search algorithm
for the determination of the set of non-dominated solution paths, and we estab-
lish its admissibility in different settings. Then, a near admissible algorithm for
approximating the set of non-dominated solution paths is provided in Sect. 4.
Finally we provide in Sect. 5 the results of numerical experiments3 performed on
random instances of state space graphs.

2 For the deep readers, the detailed proofs of our lemmas and theorems can be down-
loaded at:
https://infotomb.com/yh2mt.pdf.

3 One can reproduce this paper’s results by using the following C++ programs:
https://infotomb.com/2b07w.zip.

https://infotomb.com/yh2mt.pdf
https://infotomb.com/2b07w.zip
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2 Preliminaries

2.1 State Space Graph Under Cost Uncertainty

Let G = (N,A) denote a state space graph where N is a finite set of nodes4,
and A is the set of arcs representing feasible transitions. This set of transitions
A denotes A = {(n, n′) : n ∈ N,n′ ∈ S(n)} where S(n) ⊆ N is the set of
all successors n′ of node n. A path P = 〈a1, . . . , ax〉 is a sequence of feasible
transitions 〈(n0, n1), (n1, n2), . . . , (nx−1, nx)〉 from a node to the next one. Let
P(n, n′) denote the set of all paths from the node n to the node n′. Given the
source node s and the goal node t, we call a solution-path, a path from s to t
(i.e. an element of P(s, t)). Let us now introduce the uncertainty settings.

Let R = {r1, . . . , rs} denote the set of regions. Transition a ∈ A belongs
to the region r(a) ∈ R. Indeed, the set of transitions is partitioned into the
regions by A = ∪r∈RAr, where Ar = {a ∈ A | r(a) = r}. For each region
r ∈ R, let Ωr = {ωr

1, . . . , ω
r
mr

} denote the set of regional scenarios and let PΩr

denote the independent probability measure over the scenarios of this region r.
In each region r, each scenario ωr occurs with a probability PΩr (ωr) ∈ [0, 1]
and

∑
ωr∈Ωr PΩr (ωr) = 1. The set of overall scenarios is Ω = ×r∈RΩr, and an

overall scenario (ωr | r ∈ R) ∈ Ω is denoted by ω and gives for each region r,
the scenario occurring there. The overall probability measure is PΩ = ⊗r∈RPΩr .
That is: each ω = (ωr | r ∈ R) occurs with probability PΩ(ω) =

∏
r∈R PΩr (ωr).

Example 1 (Rabban Bar Sauma’s Travel from Beijing to Paris). The path-
planning of a travel on a graph is a problem as old as man himself [1,6,15,17].
Year 1287 AD; Rabban [17] wants to travel from Beijing to Paris. For this pur-
pose, he needs to cross several regions, where different scenarios can occur. In
the Pamir region, the weather can be snow (blocking mountain passes), rain
(flooding some valleys), or sun (drying the desert). In Syria, the war can put
at risk the Chinese-Christians (like Rabban) of being hated on some roads. In
Italy, a rare volcanic eruption would cut some roads. What path to choose in
this setting where for several roads the cost is uncertain?

Recall that one can define a random variable (r.v.) X in three manners.
Firstly, X can be defined as an integer-valued function of the scenarios X : Ω →
N, giving birth to a density (PΩ(X(ω) = k) | k ∈ N) that gives for each cost
4 In dynamic programming, nodes are referred as states.
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k ∈ N, its probability P(X = k). Secondly, X is completely characterized by this
density (P(X = k) | k ∈ N). Thirdly, recall that two r.v.s X and Y can be added
into X + Y , which is functionally defined by (X + Y )(ω) = X(ω) + Y (ω) and
characterized by the density P(X + Y = k) = P(∪k

t=0{X = t} ∩ {Y = k − t}).
The scope of X is S(X) = {k ∈ N | P(X = k) > 0}.

In this paper, the cost of each transition a ∈ A depends on the regional
scenario of the region r(a) it belongs to. For each transition a ∈ A, it is a
random variable Xa : Ωr(a) → N giving for each regional scenario ωr(a) ∈ Ωr(a),
the random cost Xa(ωr(a)) ∈ N of using transition a when the regional scenario
ωr(a) occurs. Similarly, for a path P and an overall scenario ω, let XP (ω) =∑

a∈P Xa(ωr(a)) =
∑

r∈R

∑
a∈P∩Ar

Xa(ωr) denote the cost of using path P
when the overall scenario ω = (ωr|r ∈ R) ∈ Ω occurs.

More particularly, our framework generalizes three sub-settings. The two
firsts are well known in the literature and are extreme cases.

1. In Setting (S1), we have |R| = 1, hence Ωr ≡ Ω = {ω1, . . . , ωm} with m
bounded by a constant, and the random variables are totally dependent. In
the literature under risk this setting is referred to as Savage’s framework [18].
The paths of the graph have random costs that can be seen as Savage’s acts,
i.e. functions of the form XP : Ω → N that give for any state ω ∈ Ω the cost
XP (ω) of path P . Here, the comparison of paths amounts to comparing acts
and the preferences over paths are inherited from preferences over acts.

2. In Setting (SA), we have R = A, hence the random variables of each transi-
tion are independent. The costs of arcs (transitions) are seen as probabilistic
lotteries (random variables with a finite support). Hence, the cost of each
path is a lottery as well, obtained by summation over the arcs composing
the path. Hence a lottery is associated to any path. Here the comparison
of paths amounts to comparing lotteries like in the framework of von Neu-
mann and Morgenstern [19] and the preferences over paths are inherited from
preferences over lotteries.

3. Between these two settings, the Setting (SR) is legitimate in many concrete
problems, when uncertainty occurs in independent regions for distinct polit-
ical/meteorological/geological reasons (see e.g. Example 1). In Setting (SR),
we just assume that the regions are in a number |R| bounded by a constant
and are rather contiguous (Contiguousness will be specified later).

While Setting (S1) models a total dependence of the transitions’ costs towards
a set of scenarios, Setting (SA) models the opposite, that is for each transition,
a total independence between the scenarios. Setting (SR) is in-between.

In each setting, deciding a path P yields a random variable (r.v.) XP =∑
a∈P Xa, that is also a probability density on the finite set of costs [[0,M ]]5.

Therefore, in this paper, the preferences and dominances will be stated on r.v.s.

5 Assume that the costs of each solution-path is bounded below by 0 and above by M ∈
N, and that each integer-valued random variable has the same bounds throughout
this paper.
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For a set of paths P, we will denote the set of r.v.s associated to each path by
X (P) = {XP | P ∈ P}.

Given a probability-space (Ω, 2Ω ,P) and an integer-valued random variable
X : Ω → [[0,M ]], let GX : [[0,M ]] → [0, 1] denote the decumulative function
defined for t ∈ [[0,M ]], by GX(t) = P(X > t). The decumulation can be operated
a second time, to define the second order decumulative function G2

X for t ∈
[0,M ], by G2

X(t) =
∫ M

t
GX(x)dx. Note that the present variables X are discrete,

hence the function GX , extending its scope from [[0,M ]] to R is a step function
such that GX([t − 1, t[) = {GX(t − 1)}, for each t ∈ [[−1,M ]]. More precisely,
going forward on the integers from −1 to M , we have GX(−1) = 1 and for
each t ∈ [[0,M ]], GX(t) = GX(t − 1) − P(X = t). Consequently, G2

X is piecewise
linear. The (characterizing) breakpoints of G2

X have their abscissa in [[0,M ]]
and their ordinate defined by: G2

X(M) = 0 and for each t ∈ [[1,M ]], G2
X(t −

1) =
∫ t

t−1
GX(x)dx + G2

X(t) = G2
X(t) + GX(t − 1), hence for each t ∈ [[0,M −

1]], G2
X(t) =

∑M−1
k=t GX(k).

2.2 Decision Criteria Under Risk

A risk-averse decision maker can be modelled as follows [18,19]. Between a
random variable and a mean preserving spread of this random variable, the
risk-averse DM will prefer the former. Alternatively, when the (non-decreasing)
disutility function w : [0,M ] → R represents the subjective or psychological
evaluation of the costs, a risk averse DM puts more weight on the marginal
improvements of higher costs. That is: assuming a convex function w models
risk aversion.

To model decision criteria under risk and for risk-aversion, let us now define
dominance relations between [[0,M ]]-valued random variables. The optimization
of the expected utility is a standard criterion under risk and for risk aversion.
In this cost-minimization setting, it writes as an expected disutility that we aim
to minimize.

Definition 1 (Expected disutility and Risk-aversion). Given a random
variable X and a non-decreasing disutility w : [0,M ] → R, the expected disutility
of X is:

E[w(X)] =
∑M

x=0
P (X = x)w(x)

For two random variables X and Y , it induces the following dominance relations:

X �EW Y ⇔ E[w(X)] ≤ E[w(Y )] and X ≺EW Y ⇔ E[w(X)] < E[w(Y )]

Assuming a convex function w models risk aversion.

The optimization of Yaari’s model is a dual criterion under risk and for risk
aversion, using a non-decreasing transformation ϕ : [0, 1] → [0, 1] of decumula-
tives.
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Definition 2 (Yaari’s Criterion and Risk-aversion). Given a random vari-
able X and a non-decreasing transformation ϕ : [0, 1] → [0, 1] such that ϕ(0) = 0
and ϕ(1) = 1, Yaari’s evaluation of X is defined by:

Eϕ[X] =
M∑

x=0

(ϕ(GX(x − 1)) − ϕ(GX(x))) x

For two random variables X and Y , it induces the following dominance relations:

X �YAA Y ⇔ Eϕ[X] ≤ Eϕ[Y ] and X ≺YAA Y ⇔ Eϕ[X] < Eϕ[Y ]

Assuming ϕ(p) ≥ p models weak risk aversion.

Though standard, the dominances ≺EW and ≺YAA leave the disutility and
transformation functions subjected to undetermined arbitrary choices. To avoid
this arbitrariness, the partial dominance relations ≺FD, ≺FSD and ≺SSD below
produce many optima, do not assume any disutility function, are compatible6

with ≺EW and ≺YAA, and hence encompass all the optima of ≺EW and ≺YAA,
whatever the disutility or transformation functions might be.

Definition 3 (Functional Dominance). Given a set of scenarios Ω and two
random variables X and Y from Ω to [[0,M ]], X weakly functionally dominates
Y , denoted by X �FD Y , if and only if:

∀ω ∈ Ω, X(ω) ≤ Y (ω)

The functional dominance ≺FD is the assymetric part of �FD and then also
requires that there exists at least one scenario w ∈ Ω such that X(ω) < Y (ω).

This simplest dominance is a scenario-wise comparison of the cost outcomes, and
does not take account for probabilities. In setting (S1), deciding if X �FD Y takes
time O(m). However, in setting (SA), deciding X �FD Y on m = O(

∏
a∈A ma)

overall scenarios would be intractable. Also, the functional dominance is a non-
discriminative partial order, producing many incomparable random variables
and many optima.

Definition 4 (First Order Stochastic Dominance). Given two random
variables X and Y on [[0,M ]], X weakly stochastically dominates Y (to the first
order), denoted by X �FSD Y , if and only if:

∀t ∈ [[0,M ]], GX(t) ≤ GY (t)

The first order stochastic dominance ≺FSD is the assymetric part of �FSD and
then also requires that there exists at least one t in [[0,M ]] such that GX(t) <
GY (t).

6 That is, ≺YAA and ≺EW are monotonic with respect to ≺FSD and ≺SSD.
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The intuition behind this standard definition is that for each cost threshold
t ∈ [[0,M ]], Y puts more probability on the more costly outcomes than X,
making X preferred to Y . Under setting (S1), since X �FSD Y can be tested by
comparing only the steps, it can be tested in O(|S(X) ∪ S(Y )|) = O(2m) time.
Under setting (SA), since the support of X and Y is finite, it is straightforward
to test X �FSD Y in O(M) time.

Definition 5 (Second Order Stochastic Dominance). Given two random
variables X and Y on [[0,M ]], X weakly stochastically dominates Y to the second
order, denoted by X �SSD Y , if and only if:

∀t ∈ [0,M ], G2
X(t) ≤ G2

Y (t)

The second order stochastic dominance ≺SSD is the assymetric part of �SSD and
then also requires that there exists at least one t in [0,M ] such that G2

X(t) <
G2

Y (t).

The second order stochastic dominance models risk aversion. For instance, given
a variable X, a mean preserving spread Y of X is more risky and hence less pre-
ferred. To compute if X �SSD Y , one only has to test the Pareto dominance on the
O(|S(X) ∪ S(Y )|) = O(M) breakpoints. Let us now define formally the subset of
the best random variables, with respect to a weak dominance relation �.

Definition 6 (The �-non-dominated subset). Given a multi-set L of ran-
dom variables and a weak dominance relation �, the complete �-non-dominated
sub(multi)set is:

M(L,�) = {X ∈ L : ∀Y ∈ L, Y � X ⇒ X � Y }
Denoting the asymmetric-part of � by ≺, it is equally: M(L,�) = {X ∈
L : ∀Y ∈ L, not(Y ≺ X)}. The �-non-dominated subset M(L,�) exactly
contains one element per equivalence class in the quotient set M(L,�)/ ∼. (It
is not a multi-set.)

Theorem 1 below justifies the computation of M(L,�FSD) and M(L,�SSD) as a
pre-selection tool for the optimization of ≺EW and ≺YAA, whatever the unknown
disutility function or whatever the unknown probability transformation.

Theorem 1 [9,19,22]. For two r.v.s X and Y , one has: X �FD Y ⇒ X �FSD

Y ⇒ X �SSD Y . Consequently, given a set L of random variables, one has:

M(L,�FD) ⊇ M(L,�FSD) ⊇ M(L,�SSD)

• Moreover, denoting by F↑ the set of non-decreasing disutility functions, we
have:
X ≺FSD Y ⇔ ∀w ∈ F↑,X ≺EW Y
hence: M(L,�FSD) =

⋃
w∈F↑ M(L,�EW)

• Denoting the set of convex non-decreasing disutility functions by C↑ ⊆ F↑, we
have:
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X ≺SSD Y ⇔ ∀w ∈ C↑ : X ≺EW Y
hence: M(L,�SSD) =

⋃
w∈C↑ M(L,�EW)

• Concerning Yaari’s model, denoting by Φ the set of increasing probability trans-
formations ϕ such that ϕ(0) = 0 and ϕ(1) = 1, then we have:
X ≺FSD Y ⇔ ∀ϕ ∈ Φ,X ≺YAA Y
hence: M(L,�FSD) =

⋃
ϕ∈Φ M(L,�YAA)

• More particularly, denoting by ΦC ⊆ Φ the subset of transformations ϕ that
satisfy ϕ(p) ≥ p (weak risk aversion), then we have that:
X ≺FSD Y ⇒ ∀ϕ ∈ ΦC ,X ≺YAA Y
hence: M(L,�FSD) ⊇ ⋃

ϕ∈ΦC M(L,�YAA)

Applying this Theorem, a risk averse DM, in order to make his choice, can just
focus on the subset of the �FSD or �SSD optima.

Definition 7 (�-Dominance Based Search Problem). Given �∈ {�FSD,
�SSD}, a state space graph G = (N,A) under uncertainty, and two nodes s ∈ N
and t ∈ N , one wants to find one path per equivalence class in the quotient set
M(X (P(s, t)),�)/∼.

3 DBA∗ Algorithms

In this section, we introduce a dominance-based algorithm framework for the
�-DBS problems, and we establish its admissibility for settings (S1), (SA)
and (SR).

Given a state space graph G = (N,A) under uncertainty, a �-dominance
based search algorithm for the DBS Problem proceeds in all generality as follows.
It starts from the source node s and develops partial solution paths (labels). At
each iteration, it selects the most promising partial solution-path in memory
- a so called label - and develops it, by using the transitions starting from its
state-node (the last node of the partial path), into new paths extended by a
new transition. When such a label reaches the goal node t, it is memorized as a
complete solution-path. The iterations (select a label and develop it) stop when
the set of solution-paths that were already discovered, dominate each promising
label remaining in memory.

Theorem 2 (Correctness of Algorithm 1). Given a state space graph under
the uncertainty setting (S1), (SA) or (SR), and �∈ {�FSD,�SSD}, Algorithm 1
solves �-DBS:

• by using �LOC:=�FD for (S1),
• by using �LOC:=�FSD for (SA),
• or for (SR) by using �LOC:=�FD or �LOC:=�FSD (depending on the node..).

More precisely, each label � = [P, n,X] represents a partial solution, hence a
path P from the source node s ∈ N to the state node n ∈ N , which yields the
cost r.v. X. Along with X, more informations can be memorized in a label �,
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Algorithm 1: Dominance Based Search
Input: A State Space Graph G = (N, A) under uncertainty, with a source node

s and a goal node t, overall dominance �, local dominance �LOC

Output: The subset of �-non-dominated solution paths.

1. INITIALIZATION
insert label [〈〉, s, 0] into OPEN and L(s)

2. CHECK TERMINATION
if OPEN = ∅ then return L(t)

3. LABEL EXPANSION
� = [P, n, XP ] ←− pop(OPEN)
for each node n′ ∈ S(n), denoting a = (n, n′) do

create �′ := [〈P, a〉, n′, XP + Xa]
if LocalPruning(L(n′), �LOC, �′) then discard �′

else if OverallPruning(L(t), �, �′) then discard �′

else if n′ = t then UpdateInsert(�′, �, L(t)) else
UpdateInsert(�′, �LOC, L(n′))
OPEN ← OPEN ∪ �′

Go to 2.

like the first and second order decumulative functions GX and G2
X , and further

heuristic evaluations. At each step, the set of open labels, denoted by OPEN,
contains references to labels (or partial paths) which will still possibly generate
an �-non-dominated solution path. Since we are dealing with partial orders,
note that there are many non-dominated solutions to each node. Consequently,
on each state-node n ∈ N , we maintain a set L(n), the currently existing set of
labels (partial paths) ending on n. The procedure UpdateInsert(�′,�LOC,L(n′))
removes from L(n′) all the labels �′′ ∈ L(n′) which r.v. is �LOC-dominated by
the r.v. of �′, and finally adds �′ to L(n).

In the following subsections, for each setting, we specify Algorithm 1. We
precise the representation and computation (using +) of the random variables
X. Then, we precise how Bellman’s principle is used by �LOC in LocalPruning.
Then, we use lower bounding heuristics in OverallPruning. Finally, we specify
the search priority used for the selection, development and removal of a label �
in pop(OPEN).

3.1 Specification of Algorithm 1 under Setting (S1)

For a label � = [P, n,X], the representation of the random variable X depends
on the setting, and so is the case for a transition a ∈ A and the computation of
X + Xa.

In setting (S1), the probability PΩ is overall. Hence, one simply has to repre-
sent the function X : Ω → N as an m-dimensional vector (X(ω) | ω ∈ Ω). And
X + Y is defined for ω ∈ Ω by (X + Y )(ω) = X(ω) + Y (ω), hence it is the
addition of two m-dimensional vectors, which takes time Θ(m).
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For the local pruning rules, Bellman’s principle would state that “the par-
tial sub-paths of optimal solution paths are optimal too”. For the purpose of
computing the set of �FSD or �SSD-optimal solutions, it adapts as follows, in
the procedures LocalPruning and UpdateInsert, when a label � reaches a node
n and can be compared with other paths of P(s, n) in memory (in L(n)). The
dominance �SSD, in addition of being partial and producing many optima, is
well known to not satisfy Bellman’s principle, as it is not additive. Indeed, one
can have three random variables7 X,Y and Z such that X �SSD Y and not
X +Z �SSD Y +Z. With �FSD, the same issue occurs under Setting (S1). Such
a local pruning requires a compatible and additive dominance �LOC. The local
preference �LOC must satisfy additivity: X �LOC Y ⇒ X +Z �LOC Y +Z, and
must be compatible with the global preference �, that is: X �LOC Y ⇒ X � Y ,
in order to conclude that X + Z dominates Y + Z. Here, it is straightforward
that �FD can always be used for �LOC:

Lemma 1 (Additivity of �FD). Let X, Y and Z be three random variables.
If X �FD Y , then X + Z �FD Y + Z.

In order to save computational efforts, let us now discard the partial-
solutions that will obviously be dominated by a known complete solution. In
a �-dominance based search algorithm for � ∈ {�FSD,�SSD}, we define a
heuristic as a function H : N → X from nodes N to random variables X , which
satisfies:

∀P ∈ P(n, t), H(n) �FD XP (1)

It is used in OverallPruning(L(t),�, �), as follows. Suppose that you generated
a new label � ending on the node n and yielding the r.v. X� and suppose that
you already know a complete solution �∗ ∈ L(t) that yields the r.v. Z. If Z �
X� + H(n), then one is sure that all the solutions that could be generated from
� would be �-dominated by �∗. Indeed, since �FD is (always) additive, then
H(n) �FD XP implies X� + H(n) �FD X� + XP for each path P in P(n, t).
Consequently, by the compatibility of � ∈ {�FSD,�SSD} with �FD, and by
the transitivity of � ∈ {�FSD,�SSD} we have Z � X� + XP , hence � can be
discarded.

In setting (S1), H(n) can be defined by satisfying Equation (1), for each
ω ∈ Ω:

H(n)(ω) = min{XP (ω) : P ∈ P(n, t)}
This amounts to focus on each scenario ω ∈ Ω separately, and then to compute
the shortest path for this scenario.

3.2 Specification of Algorithm 1 under Setting (SA)

In setting (SA), we just know that X is a random variable on [[0,M ]] (or on its
scope S(X) = {x ∈ [[0,M ]] | P(X = x) �= 0} ⊆ [[0,M ]]). We represent it as a
7 Where X and Y are thought as the cost r.v.s of paths of P(s, n), and Z of a path of

P(n, t).
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map, which for each x ∈ S(X) maps to P(X = x). With such maps, for two r.v.s
X,Y , the r.v. Z = X + Y is defined for z ∈ [[0,M ]] by P(Z = z) = P(X + Y =
z) =

∑z
t=0 P(X = t)P(Y = z − t) because of the independence X ⊥ Y assumed

in setting (SA). This is easily computed in a forward manner, by operating for
each (x, y) ∈ S(X) × S(Y ) the addition P(Z = x + y)+ = P(X = x)P(Y = y).

Concerning the local pruning with Setting (SA), the functional dominance
seems intractable, as it is formulated on m =

∏
a∈A ma scenarios. Fortunately,

the stochastic dominance �FSD becomes possible because the r.v.s are indepen-
dent in (SA). Even more pruning than �FD, �FSD is additive and can be tested
in time O(|S(X) ∪ S(Y )|).
Lemma 2 (Additivity of �FSD under Independence). Let X, Y and Z be
three random variables such that X ⊥ Z and Y ⊥ Z.

If X �FSD Y , then X + Z �FSD Y + Z.
Corollary: In Setting (SA), one can use �FSD as a local pruning rule.

To bound below the r.v.s of going from node n to the goal t, with Setting
(SA), the most optimistic overall scenario is when each transition realizes its
lowest cost ca = min{Xa(ωa) | ωa ∈ Ωa}. We defined H(n) as the deterministic
variable which always costs the shortest path from n to t in the graph where
each transition a costs ca ∈ N.

3.3 Specification of Algorithm 1 under Setting (SR)

With Setting (SR), assuming a bounded number of regions, for each path P ,
the r.v. XP is decomposed into the regions by XP =

∑
r∈R XP,r where XP,r =∑

a∈P∩Ar
Xa. In order to represent XP , knowing for each region r ∈ R the

probability PΩr , in the same manner as for Setting (S1), one only has to maintain
the |R| |Ωr|-dimensional vectors

(
XP,r(ωr) | ωr ∈ Ωr

)
associated to each region

r ∈ R. Then, computing
∑

r∈R XP,r is easily added in the same manner as in
setting (SA), since the regions are independent and |R| is bounded.

For the local-dominances, on a state-node n, Lemmas 1 and 2 suggest to use
the local dominances �FD or �FSD, depending on the independence between
the cost r.v.s of P(s, n) and P(n, t). Indeed, if the cost r.v.s of P(s, n) and
P(n, t) are independent, one can apply the dominance �FSD for LocalPruning
and UpdateInsert. Otherwise, when there are dependencies, one has to use
�FD which amounts to a | ×r∈R Ωr|-dimensional Pareto-dominance on vectors(∑

r∈R XP,r(ωr) | ω ∈ ×r∈RΩr
)
. The next definition gives a sufficient condition

on node n, to apply �FSD as a local pruning rule.

Definition 8 (Separating Node). Given a state space graph G = (N,A)
under the uncertainty setting (SR) with the regions R and the partition of tran-
sitions A = ∪r∈RAr, a separating node, is a node n such that:

∀P ∈ P(s, n), ∀P ′ ∈ P(n, t), r(P ) ∩ r(P ′) = ∅
For instance, under the Setting (SA), all nodes are separating, while under (S1),
none are. On an acyclic layer graph where each region is contiguous, the nodes
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of a layer separating two regions are separating nodes, while the nodes inside of
a region are not.

To define a heuristic H(n), recall that we need to satisfy Equation (1). To
fill this purpose, we define H for each n ∈ N and each ω = (ωr | r ∈ R) ∈ Ω, as
follows:

H(n)(ω) =
∑

r∈R

min{XP,r(ωr) | P ∈ P(n, t)} ≤ min{XP (ω) | P ∈ P(n, t)}

Hence, computing H requires to solve
∑

r∈R |Ωr| shortest path problems.

3.4 Search Priority

For the purpose of guiding the search quickly to the goal, one must define search
priorities telling what labels to develop first. For a given label, the priority
information must be easy to compute and cannot be perfectly informed. Here,
we decide to develop the label � = [P, n,X�] that minimizes E[X� + H(n)].
However, such a search priority may fail to early provide complete solutions. So
we slightly modified the priority to shoot greedy developments towards the goal
(depth-first), once in a while. This provides a few complete solution-paths, in
order to trigger OverallPruning.

4 Near Admissible DBA∗ Algorithms

In this section, we provide a near admissible generalization of Algorithm 1 for
the DBS Problem. The aim is to improve the computation times of Algorithm 1
by computing a representative sample of non-dominated solutions. To this end,
for ε > 0, we generalize the dominance relations to the following approximate
(1 + ε)-dominance relations:

Definition 9 (Approximate Dominances). For two random variables X,Y
and an ε > 0, the expected-disutility (for a non-decreasing disutility function
w : [0,M ] → R), Yaari’s (for a transformation ϕ), first order and second order
ε-approximate dominances are respectively defined by:

X �(ε)
EW Y ⇔ E[w(X)] ≤ (1 + ε)E[w(Y )]

X �(ε)
YAA Y ⇔ Eϕ[X] ≤ (1 + ε)Eϕ[Y ]

X �(ε)
FSD Y ⇔ ∀t ∈ [[0,M ]], GX(t) ≤ (1 + ε)GY (t)

X �(ε)
SSD Y ⇔ ∀t ∈ [[0,M ]], G2

X(t) ≤ (1 + ε)G2
Y (t)

Definition 10 (�(ε)-Covering). For a set of random variables L given ε > 0,
a �(ε)-covering L(ε) is a subset L(ε) ⊆ L, such that:

∀X ∈ L, ∃Y ∈ L(ε), : Y �(ε) X



State Space Search with Stochastic Costs and Risk Aversion 79

For instance, L �(ε)-covers itself, but in order to simplify computation, we are
more interested in small coarse coverings. That is, the approximate �-DBS prob-
lem we address aims to compute a �(ε)-covering of what the exact problem’s
solution-set would be. For this purpose, we make Algorithm 1 use �(ε) in the
OverallPruning.

Interestingly, Theorem 1 generalizes to approximations: Theorems 3 and 4
show how a coarse optimization with �(ε)

SSD or �(ε)
FSD, enables to approximately

encompass the set of all the optima for �EW or �YAA, providing a succinct set
of solutions for risk-averse decision-makers.

Theorem 3. For ε > 0 and random variables X and Y :

X �(ε)
FSD Y ⇒ X �(ε)

SSD Y (2)

X �(ε)
FSD Y ⇒ ∀w ∈ F↑, X �(ε)

EW Y (3)

X �(ε)
SSD Y ⇒ ∀w ∈ C↑, X �(ε)

EW Y (4)

Similarly, it follows that if L(ε) is an �(ε)
FSD-covering of L, then for each non-

decreasing function w ∈ F↑ and a corresponding optimum r.v. X ∈ M(L,�EW),
we have:

∃Y ∈ L(ε) such that: Y �(ε)
EW X

and if L(ε) is an �(ε)
SSD-covering of L, then for each non-decreasing convex func-

tion w ∈ C↑ and a corresponding optimum r.v. X ∈ M(L,�EW), we have:
∃Y ∈ L(ε) such that: Y �(ε)

EW X

Concerning Yaari’s dominance, as the approximate dominance �(ε)
FSD is stated on

the probabilities, one must require some regularity on ϕ. Let ΦC
κ ⊆ ΦC denote

the set of κ-Lipschitz (weakly risk averse) probability transformations.

Theorem 4. For ε > 0 and random variables X and Y :

X �(ε)
FSD Y ⇒ ∀ϕ ∈ ΦC

κ , X �(κε)
YAA Y (5)

Similarly, it follows that if L(ε) is an �(ε)
FSD-covering of L, then for each regular

and weakly risk-averse transformation ϕ ∈ ΦC
κ and a corresponding optimum r.v.

X ∈ M(L,�YAA), we have:

∃Y ∈ L(ε) such that: Y �(κε)
YAA X

For instance, if L∗ is a 0.01%-covering of the �FSD-optimal solutions L, then
for ϕ(p) = sin((π/2)p), we are sure that there exists Y ∈ L∗ such that Eϕ[.] is
at most 1+ (0.01× 1.58) times the optimum of Eϕ[.] on L, since ϕ is κ-Lipschitz
with κ = 1.58.

5 Numerical Experiments

In order to simulate a significant branching width, we did experiments 8 on layer
graphs composed of L + 1 ∈ N layers with 10 nodes-per-layer, and the source
8 One can reproduce this paper’s results by using the following C++ programs:

https://infotomb.com/2b07w.zip.

https://infotomb.com/2b07w.zip
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Table 1. Computation times under Setting (S1) and Setting (SA)

Setting (S1) Setting (SA)

�FSD �SSD �FSD �SSD

L exact 5 % 10 % exact 5 % 10 % exact 5 % 10 % exact 5 % 10 %

20 7.9 7.3 6.6 3.0 2.7 2.6 9.8 7.2 6.6 6.8 6.6 6.4

25 30.6 28.0 25.2 9.4 8.6 7.9 17.5 14.5 14.0 14.2 13.6 13.3

30 102.0 92.4 82.5 27.2 24.0 22.3 27.0 24.4 23.6 23.6 23.4 22.7

35 - - - 73.4 64.5 59.5 39.2 36.0 35.2 35.4 34.7 33.9

40 - - - 179.2 156.9 146.2 55.6 51.5 49.9 49.3 48.0 47.8

Table 2. Computation times under Setting (SR)

2 regions 3 regions 4 regions

�FSD �SSD �FSD �SSD �FSD �SSD

L exact 5 % 10 % exact exact 5 % 10 % exact exact 5 % 10 % exact

10 0.7 0.6 0.5 0.3 2.2 1.7 1.4 0.9 6.8 4.9 4.1 2.9

15 6.6 5.1 4.2 2.0 44.2 30.7 24.0 11.7 - - - -

20 18.4 13.9 11.2 4.2 - - - 45.7 - - - -

and goal at the ends. (Hence, there are 10(L+1)+2 nodes.) From each layer to
the next one, there are all the 10 × 10 transitions. (Hence there are 100L + 20
transitions.) For Setting (S1, |R| = 1) there are 3 scenarios and the costs are
drawn in {1, . . . , 100}. For Setting (S2, R = A), the random variable Xa of
each transition is obtained by drawing 3 Dirac masses on the costs {1, . . . , 100}.
For Setting (SR), there are |R| = 2, 3, 4 contiguous regions, and there are 3
scenarios-per-region, with costs drawn in {1, . . . , 100} for each transition and
each scenario. We tested Algorithm 1 for �FSD and �SSD, exactly, for ε = 5%,
and for ε = 10%. Some results are summarized in Tables 1 and 2, depicting the
average cpu-times (seconds) on 100 random instances.

Observations. Under Setting (S1), the computation times grow exponentially
with respect to the layer graph’s length, due to the fact that the branching width
is significant. Focusing on �SSD enables to improve the length of the instances
solved. Under Setting (SA), the computation times seem to increase polynomially
with respect to the graph’s length. Under Setting (SR), Algorithm 1 enables to
solve instances up to 200 nodes, for 2 to 4 regions. Computing �SSD is significantly
faster. Approximations seem to just slightly improve the computation times.

6 Conclusion

In order to model the preferences of a risk averse decision-maker with no
arbitrary choice, we applied the first and second order stochastic dominances.
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For these preferences, we provided an algorithm on state space graphs with sto-
chastic costs. Our general framework encompasses three cost uncertainty settings
ranging from total dependence to total independence. Our programs scale-up to
graphs with 400 nodes. While our theorems show that approximating the sto-
chastic dominances would indeed transfer the precision to the expected utility
or Yaari’s criterion, the corresponding schemes mildly improve the computation
times.

Prospects. We have reasons to think that a FPTAS is not possible in these
settings, due to the fact that approximations ought to be both on costs and
probabilities. We strongly suspect that using bidirectional search instead of uni-
directional search would significantly improve the computation times.

Acknowledgements. I wish to thank Patrice Perny and Olivier Spanjaard for their
interesting discussions on the problem, and the reviewers for their comments.
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Abstract. We present and evaluate the power of a new framework for
weighted model counting and inference in graphical models, based on
exploiting the topology of the junction tree representing the formula.
The proposed approach uses the junction tree topology in order to craft a
reduced set of partial assignments that are guaranteed to decompose the
formula. We show that taking advantage of the junction tree structure,
along with existing optimization methods borrowed from the CNF-SAT
domain, can translate into significant time savings for weighted model
counting algorithms.

1 Introduction

Weighted Model Counting (WMC) on a propositional knowledge base in Con-
junctive Normal Form (CNF) is an effective and popular approach to solve prob-
lems of exact probabilistic inference [1,4,21], conformant planning [10], and the
study of hard combinatorial problems [11] by taking advantage of local struc-
tures. WMC is based on the model counting or #SAT problem [11], where the
objective is to count the number of assignments that satisfy the propositional
formula. WMC generalizes model counting by assigning a weight to each literal,
and computing the weighted sum of satisfying assignments.

Model counting (and WMC) is #P-hard in general [23]. However, much work
is devoted to create methods that capitalize on local structure in the form of
determinism and context specific independence to enable significant speedups
compared to classic inference approaches [9,17].

In this work we continue this line of research and propose a novel approach
for performing WMC that is based on message passing in junction trees. We
observe that the topology of a formula’s junction tree reveals structure that can
be utilized for enhancing the performance of WMC. The algorithm we propose
in this work generates compact factors that contain a small set of mutual exclu-
sive and exhaustive partial assignments that are guaranteed to decompose the
formula.

We evaluate the proposed approach on three benchmarks, comparing it to
c2d [6], a leading compiler for WMC. The empirical analysis leads to interesting
observations about the pros and cons of each of the methods.

The rest of the paper is organized as follows. Junction trees are introduced
in Sect. 2 followed by the introduction of CNF-trees and their role in modeling
c© Springer International Publishing Switzerland 2015
C. Beierle and A. Dekhtyar (Eds.): SUM 2015, LNAI 9310, pp. 83–98, 2015.
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the underlying conditional independences between formula variables (Sect. 3).
Next, we outline the main idea of the paper, where formula decomposition is
performed by partial assignments (Sect. 4). We show how to generate the reduced
set of partial assignments (modeled as tree-CPTs) in Sect. 5. Section 6 presents
the empirical evaluation. We conclude with a discussion of related work (Sect. 7)
and concluding remarks (Sect. 8).

2 Background: The Junction Tree Algorithm

In what follows, we denote variables in upper case letters (e.g., X) and their
instantiations in lower case (e.g., x). Sets of variables are denoted using bold
upper case letters (e.g., X) and their instantiations in bold lower case letters
(e.g., x).

A Probabilistic Graphical Model (PGM) is a graph G(V,E) in which nodes
represent random variables X = {Xi : i ∈ V }, and edges represent direct depen-
dencies between them. The graphical model contains a set of discrete functions
F, termed factors, that are defined over a subset of its variables. Factors are
typically represented as tables, indexed by variable instantiations. Formally, a
factor is a function F (Y) : y → [0, 1] where y is an instantiation of Y. The prob-
ability distribution defined by the graphical model is Pr(X) = 1

Z
∏

Fi∈F Fi(Xi)
where Xi ⊆ X, and Z, termed partition function, normalizes the probability to
sum to one.

One of the prominent methods for performing exact probabilistic inference
in graphical models is the Junction Tree algorithm [12,17]. Let G(X, E) be a
PGM. A Junction Tree for G is a tree T (C), defined over a set of nodes C that
satisfy the following properties:

1. Each node Ci ∈ C is associated with a set of variables Yi ⊆ X from the PGM
and a factor Gi(Yi) (not to be confused with the PGM factors denoted Fi).

2. For each factor Fk(Xk) in the PGM, there exists a tree node Ci ∈ C such that
Xk ⊆ Yi.

3. If nodes Ci, Cj ∈ C are both associated with a variable X ∈ X, then every
node on the path connecting them in T is also associated with X.

The edges of the junction tree are labeled with the intersection of their endpoints.
A separator, Si,j , connects nodes Ci and Cj and is referred to as a separator
node.

Inference in junction trees is performed by passing messages between adjacent
clique nodes. Evidence, E = e is materialized by eliminating inconsistent factor
entries. The message passing is carried out in two phases, inward - from the
leaves towards the root, and outward - from the root towards the leaves. A
node Ci sends a message to its neighbor, Cj , only after it has received messages
from the rest of its neighbors Nbri \ Cj . The message μi→j(Sij) from node Ci

to Cj is a tabular factor defined over their intersection, Sij = Yi ∩ Yj , as
follows: μi→j(Sij) =

∑
Yi\Sij

Gi

∏
k∈Nbri\Cj

μk→i. Once message propagation
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completes, each tree-node factor holds the marginal distribution i.e., Gi(Yi) =
Pr(Yi, e).

The width of a junction tree is the size of its largest node minus one. The
treewidth tw(G) of a graph G is the minimum width among all possible junction
trees for G. In general, minimizing the graph width is known to be NP-complete.
Since the junction-tree algorithm relies on tabular factors for performing the
marginalization operation required for message-passing, the runtime of the algo-
rithm depends, exponentially, on its width. Therefore, bounded width implies
tractability in graphical models.

3 CNF-Trees: Junction Trees for CNFs

In this section we introduce common notation and define CNF-trees, which are
specialized junction-trees for Boolean formulas in CNF. The proposed algorithm,
described in Sect. 4.1, operates over this structure.

A literal l of a binary variable X is either a variable or its negation, which are
denoted by x, x̄, respectively. The variable corresponding to a literal l is denoted
by var(l). Each literal, l, is associated with a weight pl ∈ [0, 1]. An assignment is a
function γ : V → {0, 1} and will be denoted by its set literals γ = {l1, l2, . . . , lk}.
An assignment’s weight is defined as the product of its literal weights. The
projection of an assignment γ over a subset of its vars Y ⊆ var(γ) is denoted γ|Y.
For example, given the assignment γ = {x1, x̄2, x3}, then γ|{X2,X3} = {x̄2, x3}.

A Boolean formula f over variables X maps each instantiation x to either
true or false. f(X) is in Conjunctive Normal Form (CNF), constructed from a
conjunction of clauses, each a disjunction of literals. We denote by φ1, φ2, . . . , φn

the set of unique clauses in f , where every φi represents a set of literals. The
variables in a clause φi are denoted var(φi), and the clauses of f that contain
a literal l are denoted clauses(l). We assume that the formula f is simplified,
meaning, for every pair of clauses φi, φj ∈ f , φi � φj . Conditioning a CNF
formula f on literal l, denoted f |l, consists of removing the literal l̄ from all
clauses, and dropping the clauses that contain l. Conditioning a formula on an
assignment, or a set of literals γ = {l1, l2, . . . , lk}, denoted f |γ, amounts to
conditioning it on every literal l ∈ γ. We say that an assignment γ is consistent
if f |γ �= 0. We say that a variable X affects the formula’s outcome if f |x �= f |x̄.
We denote by var(f) the set of variables that affect the formula. A pair of
formulae f1, f2 are disjoint if var(f1) ∩ var(f2) = ∅. The weighted model count
or probability that f is satisfied is denoted by Pr(f) and the two terms may be
used interchangeably.

Let Gf (X, E) denote the primal graph of f(X), where nodes represent vari-
ables and there is an edge between pairs of variables that belong to a common
clause.

Definition 1 (CNF-tree). Let f(X) be a Boolean formula in CNF with primal
graph Gf (X, E). A CNF-tree for f is a rooted junction tree, Tr(C), for Gf (X, E)
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where each clause φi ∈ f is represented as a leaf node with factor Fφi
(y), Y ⊆

var(φi):

Fφi
(y) =

⎧
⎪⎨

⎪⎩

0 if φi|y = 0
1 if φi|y = 1
1 − ∏

l∈φi|y Pr(l̄) otherwise
(1)

According to the junction tree properties, each clause, φi ∈ f , is associated
with a node Ci ∈ C such that var(φi) ⊆ Xi. This node-clause relationship is
reflected in the tree by attaching a leaf, representing the clause, to its associated
tree-node. For example, consider the CNF formula, its junction and CNF-trees
in Fig. 1. The shaded leaf nodes represent clauses.

Configuring the leaf-node factors to return the probability that their respec-
tive clause is satisfied is equivalent to introducing evidence which prohibits
assignments that falsify the formula. Thereby, the weighted model count of f
can be performed by message-passing on the CNF-tree.

In the general setting, a separator set Si,j = Xi ∩ Xj , between junction
tree nodes Ci, Cj , enables inducing independence between variables on different
sides of the edge only when all of the variables in Si,j were assigned a value [8].
We observe, however, that in CNF-trees this requirement may be too strict as
illustrated in Example 1.

Example 1. Consider the CNF-tree in Fig. 1. The partial assignment γ1 = {x1}
renders the disjoint variable-sets on the two sides of the edge, (C0, C1) (marked)
independent, even though variables X2 and X4 remain unassigned. The reason
for this is that given x1, the original formula is reduced to f |x1 = φ6︸︷︷︸

f1

φ5φ7︸ ︷︷ ︸
f2

.

Fig. 1. A formula, f = ∧7
i=1φi, and its corresponding junction and CNF trees
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Variables X3,X6, and X7 become irrelevant to f ’s outcome following the partial
assignment x1, and can be disregarded. The variables that belong to the dis-
joint components in the reduced formula f |x1, namely var(f1) and var(f2), are
conditionally independent given x1.

Example 1 motivates the search of a set of partial assignments to the factors
of a CNF-tree that will render their subtrees independent. Partial, rather than
complete assignments, may reduce factor sizes, enabling more efficient inference.

4 Decomposition by Partial Assignments

The next two sections lay out the main contribution of the paper. We first explain
how the CNF-tree structure can be utilized for generating tree-Conditional-
Probability-Tables (tree-CPTs) [2] consisting of a small set of mutual exclu-
sive and exhaustive partial assignments, which are guaranteed to decompose
a formula. We then define tree-CPT cardinality and suggest optimizations for
size reduction. Tree-CPTs, introduced in [2], is a representation which captures
Context-Specific-Independence which can be exploited for probabilistic infer-
ence. We adopt this structure in order to represent partial assignments of CNF-
tree-node members, but give it a different semantics.

Let Tr(C) be a CNF-tree rooted at node r. For each tree node Ci ∈ C, Fi(Xi)
is the factor associated with this node, Ti is the subtree rooted at Ci, and fi is
the subformula induced by the clauses in this subtree. For example, the formulae
represented by subtrees T1, T2 rooted at nodes C1, C2, respectively, in Fig. 1c are
f1 = φ1φ4φ6, and f2 = φ2φ5φ7. The children of tree-node Ci are denoted chi.

Definition 2. Let Tr(C) be a CNF-tree rooted at node r and Ci ∈ C a node in
Tr with chi = {C1, C2, . . . , Cm}. Let Y = y be a partial assignment to Xi. y
is called a valid (partial) assignment to Xi if the following two conditions are
satisfied:

1. Y = y is consistent (fi|y �= 0)
2. fi|y is decomposed to sub-formulas f1|y, f2|y, . . . , fm|y, which are pairwise

disjoint.

Our goal is to generate the smallest factor for each CNF-tree node. Namely,
per each node, we would like to identify the smallest set of mutual exclusive
and exhaustive valid partial assignments (Definition 2). The factors will be
represented by tree-CPTs [2] where non-terminal vertices represent variables
and terminal vertices correspond to the assignment defined by the path from
the root. The variable corresponding to a vertex v in the tree-CPT is denoted
var(v), its parent p(v), and its right and left children corresponding to assign-
ment var(v) = 1/0 as vr/vl, respectively. The set of assignments represented by
terminal nodes in Fi will be denoted γi, their cardinality ki = |γi|, and for each
γ ∈ γi, the assignment’s marginal probability will be denoted Pr(γ). For each
vertex v in the tree-CPT, we denote the path from the root to v, and the assign-
ment it dictates, by Pv. The assignment Pv will be referred to as v’s context. We
say that literal l ∈ Pv if l|Pv = 1.
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Fig. 2. Two possible tree-CPTs for root-node C0 (X0 = {X1, X2, X4, X5}) of the
junction tree in Fig. 1c.

Example 2. An example of two possible tree-CPTs for root-node C0 in the CNF-
tree of Fig. 1c appear in Fig. 2. Note the terminal vertex in Fig. 2a that repre-
sents assignment γ2 = {x̄2, x1}. The partial assignment γ2 induces subformulae
f1|γ2 = φ6, f2|γ2 = φ5φ7, and f3|γ2 = ∅, which correspond to subtrees T1, T2, T3,
respectively. Given assignment γ2, these subformulae are consistent and pairwise
disjoint, e.g., var(f1|γ2)∩var(f2|γ2) = ∅, thus the partial assignment γ2 is valid.

4.1 Message-Passing in CNF-Trees

The procedure for performing WMC over CNF-trees is presented in Algorithm 1,
taking a CNF-tree Tr, which represents fr, and a partial (possibly empty) assign-
ment e, and returning the probability that fr|e is satisfied. The algorithm avoids
repeated computation of equivalent CNFs using a cache whose key represents
the CNF. The function nextValid (Line 6) retrieves the next valid assignment
to process. We detail the generation of valid assignments in Sect. 5.

Algorithm 1. MP(Tr, e), returns Pr(fr|e)
1 if r is a leaf-node then
2 return Fr(e) // By Eq. 1

3 if cache(fr|e) �= nil then
4 return cache(fr|e)
5 Pr(fr|e) ← 0.0 // init the return value

6 while γ ← nextValid(γ, fr|e,Xi \ var(e)) �= nil do
7 Pr(fr|eγ) ←∏l∈γ pl // assignment weight

8 foreach node n ∈ chr do
9 Pr(fn|eγ) ← MP(Tn, eγ) // recurse

10 Pr(fr|eγ) ← Pr(fr|eγ) · Pr(fn|eγ)// Thm. 1

11 Pr(fr|e) ← Pr(fr|e) + Pr(fr|eγ) // Thm. 1

12 cache(fr|e) ← Pr(fr|e)
13 return Pr(fr|e)
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Theorem 1 establishes the soundness of the algorithm. Its proof is inductive
and follows from the validity (Definition 2) of the tree-CPT assignments. Due
to space constraints proofs are omitted.

Theorem 1. Let Tr be a CNF-tree representing CNF fr. The call MP(Tr, e)
returns Pr(fr|e).

5 Generating Small Tree-CPTs

Algorithm 1 motivates the search for small tree-CPTs. Each tree-CPT internal
vertex induces an instantiation of the variable it represents. Therefore, we begin
by observing the conditions that forgo the requirement to instantiate a variable.

Definition 3 (safe variable). Let Ci be a CNF-tree node with arguments Xi,
and let γ be an assignment. A variable X ∈ Xi is called safe if there is at most
a single node, Cj ∈ chi, such that X ∈ var(fj |γ). The set of variables in Xi that
are safe under assignment γ are denoted safei(γ).

We first note that by Definition 3, instantiated variables are safe because they
cannot appear in any induced sub-formula associated with a node’s subtrees.

To relate safe variables to compact CPT-trees let Fi(Xi) be Ci’s CPT-tree,
and let vertex v ∈ Fi have context Pv. If X ∈ safei(Pv), and Pv is consistent
(recall, fi|Pv �= 0) then, by Definition 3, there is a valid assignment that contains
Pv, but not X. Furthermore, a context Pv for which all the node arguments are
safe, is a valid assignment by definition.

The variation between tree-CPTs, and hence the efficiency of the WMC algo-
rithm, stems from the different ordering of variable instantiation (see Fig. 2).
Definition 4 gives the ordering constraints between the arguments of a node Ci,
which will be used to derive its tree-CPT.

Definition 4 (Conditioning graph). The conditioning graph of a CNF-tree-
node Ci is a directed graph Di(Li, Ei), where Li = {x, x̄ : X ∈ Xi} is the
set of literals of Xi. There is an edge (l1, l2) ∈ Ei if ∃φ1, φ2 ∈ fi such that

1. φ1, φ2 ∈ clausesi(var(l1)) \ clausesi(l2)
2. Node Ci is their Least Common Ancestor (LCA) in the CNF-tree.

The compliment of Di is denoted D̄i.

The intuition behind the conditioning graph becomes apparent when looking
at absent edges, or at the conditioning-graph’s compliment, D̄i. If, for example,
x1 → x2 ∈ D̄i, that is, x1 → x2 /∈ Di, then, by Definition 4, any two clauses that
contain X1 (i.e., x1 or x̄1), but not the literal x2, are confined to the same subtree
of node Ci. Practically, this means that given an assignment in which x2 = 1,
the set of unsatisfied clauses containing variable X1 are confined to (at most) a
single subformula represented by one of Ci’s subtrees. In other words, variable
X1 is safe (Definition 3) for any assignment where x2 is set. Essentially, given
two literals, l1 and l2, the conditioning graph answers the following question:
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“Given l2 = 1 is var(l1) safe ?”. If l1 → l2 ∈ D̄i then the answer is affirmative,
otherwise negative.

We also note the following about the conditioning graph and its compliment.
First, for each variable X ∈ Xi, outi(x) = outi(x̄) because the out-edges are
determined by the existence of a variable (i.e., literal x or x̄) in the clauses of
Definition 4. Also, since assigning a variable makes it safe, then neither the con-
ditioning graph nor its compliment contain edges from a literal to its compliment
or self-loops.

Example 3. Figure 3 presents the conditioning graph of the root C0 of the CNF-
tree in Fig. 1. The edge x5 → x2 (x̄5 → x2) is due to clauses φ7 and φ3. Both
clauses contain x5 but not x2, and their least common ancestor in the CNF-tree
is C0.

Fig. 3. The conditioning graph, D0 of node C0 of the CNF-tree in Fig. 1c

We now characterize a subclass of safe variables in context Pv (Definition 3),
denoted Yv, using the conditioning graph.

Definition 5. Let Ci denote a node in a rooted CNF-tree with conditioning
graph Di, and tree-CPT Fi(Xi). Let v be a vertex in the tree-CPT Fi, with
context Pv, then:

Yv = {X ∈ Xi : ∃l ∈ Pv : x → l ∈ D̄i}

Theorem 2. Let v be a vertex in Fi with context Pv. Then Yv ⊆ safei(v).

Theorem 2 characterizes the set of arguments whose clauses are confined to
a single subformula induced by the subtrees of node Ci, given the assignment
dictated by Pv. By Theorem 2, X will not require instantiation in order to extend
Pv to a valid assignment. The importance of the variable-set Yv stems from the
fact that it can be statically identified by considering only the structure of the
CNF-tree.

The complement of the variable set Yv, described in Definition 5, has incom-
ing edges to all of the literals set by the assignment Pv. We define this set of
variables, Zv, recursively as follows.
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Definition 6. Let v be a vertex in CPT-tree Fi, with parent p(v), and variable
var(p(v)). The variable-set Zv is:

Zv =

⎧
⎪⎨

⎪⎩

Xi if Pv = ∅ or v is the root
Zp(v) ∩ ini(var(p(v))) if var(p(v)) = 1
Zp(v) ∩ ini(var(p(v))) if var(p(v)) = 0

According to Definitions 5 and 6, we have that Yv ∩ Zv = ∅, and for every
vertex v ∈ Fi, Xi = Yv ∪ Zv ∪ var(Pv).

Example 4. Let v refer to the right child of X2 in the tree-CPT of Fig. 2a
(var(v) = X5). Then Zv = Zp(v) ∩ in0(x2) = {x1, x2, x4, x5} ∩ {x5} = {x5}.
In this case variable X5 requires instantiation in context x2 in order to extend
the partial assignment {x2} to one that is valid.

5.1 Tree-CPT Cardinality

To express the size of a node’s tree-CPT Fi(Xi) with children chi and condition-
ing graph Di we denote (with a slight abuse of notation) the variable associated
with each tree-CPT vertex v, var(v) = V , and its literals v and v̄ respectively.
T : Zv → N maps Zv to the number of valid assignments in the subtree rooted
at vertex v:

T (Zv) =
{

1 if Zv = ∅
T (Zv ∩ ini(v)) + T (Zv ∩ ini(v̄)) o.w

(2)

This expression considers only the variable set Zv because by Theorem 2,
the members of the compliment set, Yv, are safe (Definition 3), and thus do not
require instantiation.

When Zv = ∅ then no variable requires instantiation, and a single terminal
node can represent the valid assignment. Otherwise, the total size of the tree-
CPT rooted at vertex v is determined by the size of the tree-CPTs rooted at
its left and right children vl, vr respectively. By Definition 6, Zvl = Zv ∩ ini(v̄)
and Zvr = Zv ∩ ini(v). It is easy to see that repeated expansion of Eq. 2 can
lead to the known exponential bound for the number of valid assignments in the
tree-CPT, whenever for each tree-CPT vertex v:

Zv ∩ ini(v) = Zv ∩ ini(v̄) = Xi \ {var(Pv) ∪ {V }}

That is, in the worst case the complexity of Algorithm 1 is exponential in the
size of the largest node in the CNF-tree, or the width of the formula’s primal
graph. In Sect. 6 we show that despite this worse-case behavior, and with the
assistance of the optimization discussed next, Algorithm 1 performs well on
known benchmarks.
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5.2 Optimizations for Generating Small Tree-CPTs

We broadly address two types of optimizations that we apply to Algorithm 1,
aimed at minimizing the size of the tree-CPTs. The first is a heuristic that
selects the next node-member to assign, using the analysis in Sect. 5.1. The
second is Unit Propagation and conflict directed clause learning, adapted from
the CNF-SAT domain.

A tree-CPT can be viewed as a binary decision tree where terminal nodes
identify valid assignments. Constructing an optimal decision tree, one with fewest
nodes, is generally an NP-hard problem [15]. We apply a heuristic strategy that,
at each stage, selects the variable that minimizes the cardinality of the variable-
set that is common to its left and right tree-CPTs. Formally:

arg min
v

(|Zv ∩ ini(v)) ∩ (Zv ∩ ini(v̄)|)

Ties may be broken by selecting the variable that further minimizes the set of
unsafe variables at either of its sub trees. That is:

arg min
v

[max (|ini(v) ∩ Zv|, |ini(v̄) ∩ Zv|)]

Unit Propagation (UP) refers to the process of iteratively assigning literals
of unit clauses until none are left. It is part of both DPLL-based model counters
[21,22] and compilers that generate d-DNNF circuits [6,19]. Specifically, if
φ = {l} is a unit clause of a CNF formula f , then the UP process deletes
all occurrences of l̄, and all clauses containing l, which are now satisfied. Each
valid assignment generated by Algorithm 1 is extended by applying unit propa-
gation. That is, the valid assignments are guaranteed to decompose the formula
and ensure that no unit clauses are present. Unit propagation is applied after
every variable assignment during the tree-CPT construction.

If UP results in a conflict, then a new clause is learned by applying the first
Unique Implication Point schema [18]. The newly learned clause is added to
the subformula being processed, fi. We note that the learned clauses are used
only during unit propagation, in order to detect conflicts early. They are not
represented as leaves in the CNF-tree, and are not considered during caching.
Also, since different nodes represent different subformulas, then each CNF-tree
node holds its own local set of conflict clauses.

6 Empirical Evaluation

We evaluate the proposed approach on a set of benchmark networks from the
UAI probabilistic inference challenge.1 We compare our results with the C2D
compiler [6], part of the Ace system.2 Besides evaluating the efficiency of the
proposed approach, we discuss the properties of networks that benefit from it.
The experimental setup is given in Sect. 6.1, followed by results and analysis in
Sect. 6.2. We implemented our algorithm in C++3 and carried out the experiments
1 Available online at http://www.cs.huji.ac.il/project/PASCAL/showNet.php.
2 Available online at http://reasoning.cs.ucla.edu/ace/.
3 Code is available at: https://github.com/batyak/PROSaiCO/.

http://www.cs.huji.ac.il/project/PASCAL/showNet.php
http://reasoning.cs.ucla.edu/ace/
https://github.com/batyak/PROSaiCO/
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on a 2.33 GHz quad-core AMD64 with 8 GB of RAM running CentOS Linux 6.6.
Individual runs were limited to a 2000-s time-out.

6.1 Overview and Methodology

The compilation process of C2D is guided by a binary tree, termed dtree whose
leaves are associated with the clauses of f . The dtree determines the instanti-
ation order materialized in the d-DNNF [5,6]. Figure 4 depicts a dtree of the
CNF of Fig. 1a. Each internal node, T , is associated with a variable-set, called
separator [11], which is the variable-set common to the left and right subtrees of
the node. Once these variables have been assigned, the formulae represented by
the two subtrees become disjoint. Darwiche [6] observed that there is no need to
set all variables in the dtree-node T in order to decompose the formula. That is,
after setting a subset of the dtree-node variables, enough clauses may become
satisfied such that the rest of the T ’s variables are no longer shared between
the formulas represented by its left and right children. For this reason the C2D
compiler recomputes the separator for T each time a variable of T is decided [6].
Within each separator, the C2D compiler chooses the variable that appears in
the largest number of unsatisfied clauses.

Darwiche shows that the clusters of a dtree satisfy the junction-tree property
([8], Theorem 9.10). That is, the maximal clusters of a dtree can be connected
such that they constitute a junction-tree. Once the junction-tree is created, we
can attach the clauses as leaf nodes to obtain the CNF-tree. Applying our algo-
rithm to a junction tree corresponding to the dtree generated by the C2D com-
piler, enables comparing the two approaches on an even ground, although our
proposed approach is not limited to binary junction trees. Furthermore, we can
gain insight into the types of networks that benefit from our proposed approach,
which requires more analysis at each junction tree node.

There is a wide range of settings for C2D, and in particular for generating the
dtree. We experimented with the default provided by Ace, termed dtBnMinfill.
This option instructs the program to generate a dtree for the original Bayesian

Fig. 4. CNF and corresponding dtree.
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network using the minfill heuristic [16], which is widely known for generating
small induced width elimination orders. Each leaf in the resulting dtree corre-
sponds to one of the network CPTs. Then, each leaf is replaced with the dtree
that represents the corresponding CPT.

6.2 Experimental Results

We report the results obtained for Grid, Promedas, and Segmentation networks.
The evaluation is presented using scatter plots. Each instance is represented as
a point in the chart whose x, y coordinates represent runtime, in seconds, of
WMC JT and C2D, respectively. Points above the y = x line represent problem
instances where WMC JT performs better. Axes are log-scale. We also mark a
linear trendline (which translates to exponential trendline due to the log-scale)
with it R2 value.

Grid Networks. The nodes in random grid networks represent binary variables
that are arranged in an N × N square. Each CPT is generated uniformly at
random. The fraction of the nodes that are assigned deterministic CPTs, having
only 0 and 1 probability entries, is captured by the deterministic ratio.

Figure 5 shows the results over the grid networks for three deterministic
ratios. All networks solved by at least one of the solvers are present. On the
grids with a 50% deterministic ratio, WMC JT outperformed C2D on 39 out of the
60 instances. On one instance, C2D did not complete within the designated time-
out. On the grids with a 75% deterministic ratio, WMC JT outperformed C2D on
43 out of the 110 instances, while C2D outperformed WMC JT on 63 instances. On

Fig. 5. Grid networks: points above the y = x line represent instances where WMC JT is
better.
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Fig. 6. Points above the y = x line represent instances where WMC JT is better.

the 90% benchmark, WMC JT outperformed C2D on only 13 of the 100 instances.
Therefore, we can conclude that in general, with less determinism WMC JT tends
to outperform C2D. When the underlying network contains a large percentage
of deterministic factors (90%), a small fraction of the node members determine
the rest through UP and the time invested by WMC JT in the generation of con-
ditioning graphs and small tree-CPTs may be too costly.

Promedas and Segmentation. Promedas stands for “PRObabilistic MEdical
Diagnostic Advisory System”. The Promedas benchmark contains 238 Markov
networks, consisting of binary variables, which were converted from layered
noisy-or Bayesian networks that represent real-world medical diagnosis cases.
The networks’ treewidth is up to 60, and many of them are considered too
difficult for exact algorithms4. Results are plotted in Fig. 6a. Out of the 238
networks, WMC JT processed 102 networks within the designated timeout, while
C2D completed 89. Out of the 89 networks processed by both algorithms, C2D
outperformed WMC JT on 65, while WMC JT outperformed C2D on 24. On the Seg-
mentation benchmark, Fig. 6b, WMC JT outperformed C2D on all 50 instances.

Overall, we observe that WMC JT tends to outperform C2D over instances with
a low to medium percentage of deterministic factors. Furthermore, the results
and trendlines of the Promedas and Segmentation benchmarks (Fig. 6) suggest
that the relative performance of WMC JT improves on “harder” instances, those
which require more CPU cycles for both algorithms. That said, we note that
the algorithm execution time is determined by many variables. These include
the d-tree used, its orientation and the variable order generated by the heuristic
described in Sect. 5.2.

7 Related Work

We position our work along two dimensions: exhaustive search vs. knowledge
compilation, and dynamic vs. static decomposition.

DPLL-based algorithms exhaustively explore the search-tree for a formula,
while pruning unsatisfiable branches. At the heart of the search-based tech-
niques for weighted model counting are two operations, a Shannon expansion

4 http://graphmod.ics.uci.edu/uai08/Evaluation/Report/Benchmarks.

http://graphmod.ics.uci.edu/uai08/Evaluation/Report/Benchmarks
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on a decision variable Z, that is, Pr(f) = Pr(f |z̄) Pr(z̄) + Pr(f |z) Pr(z) and
the partitioning of the formula into disjoint components [11]. Extensions that
tremendously improve the performance of DPLL-based algorithms include non-
chronological backtracking, [1], conflict directed clause-learning (CDCL), and
variable branching heuristics [21].

In knowledge compilation, the formula is compiled into a representation that
enables computing the probability of evidence in time that is polynomial in its
size [4,19]. These representations are based on Negation Normal Form (NNF)
circuits [7] where internal nodes represent either conjunctions or disjunctions
and leaf nodes represent constants or literals. Circuits that enable tractable
model counting, termed deterministic-DNNF (d-DNNF), must be decomposable
and deterministic. The former requires children of conjunction nodes to share
no variables, and the latter requires children of disjunction nodes to be mutual
exclusive. State-of-the-art model counting compilers, C2D [6] and DSharp [19],
generate Decision-DNNF circuits that ensure determinism as follows. Each or
node, n, is associated with a variable X such that n’s right and left children repre-
sent subformulas fn|x, and fn|x̄ respectively. This method of ensuring determin-
ism is closely related to the instantiation step of DPLL-based algorithms [13,14].
Our proposed approach fits knowledge compilation, where the CNF-tree may be
reused to answer different queries.

Static variable instantiation order is used to compile formulas to Ordered
Binary Decision Diagrams (OBDDs) [3]. In contrast, a fully dynamic order,
applied in DPLL-based algorithms, becomes effective in formulae that can be
decomposed by a small number of well selected variables. DPLL-based algo-
rithms attempt to decompose the formula into disjoint components after each
instantiation. Nevertheless, despite the use of clever heuristics [20], there is no
guarantee to the effectiveness of the instantiation in terms of partitioning the
residual formula into disjoint components [11], making fully-dynamic variable
instantiation inefficient when applied to heavily connected formulae.

The approach presented in this paper, as well as the dtree-guided C2D app-
roach, may be considered semi-dynamic because the variable instantiation order
is largely determined by the structure and orientation of the CNF-tree (or dtree).
Our approach, however, takes a more holistic view and identifies the set of valid
assignments that are guaranteed to decompose the formula. It also makes a
deliberate effort to minimize the cardinality of this set by careful ordering of the
node members.

8 Conclusions

We present CNF-trees of Boolean formulae to reveal structure that can be used to
enhance the performance of WMC algorithms. We present a method for utilizing
this structure in order to generate small tree-CPTs, and evaluate it over a set of
known benchmarks. As part of future research we intend to characterize CNF-
trees that enable efficient WMC.
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Abstract. We describe a prototypical software framework for probabilis-
tic inductive logic programming which supports the seamless combination
of non-monotonic reasoning, probabilistic inference and parameter learn-
ing. While building upon existing as well as new approaches to proba-
bilistic Answer Set Programming, our framework distinguishes itself from
related works by placing virtually no restrictions on the annotation of
knowledge with probabilities. User-configurable algorithms provide for
general as well as specialized, scalable approaches to inference and para-
meter learning, allowing for adaptability with regard to complex reasoning
and weight learning tasks.

1 Introduction and Related Work

This short paper presents PrASP (Probabilistic Answer Set Programming) which
is both a probabilistic logic programming language and a software for probabilis-
tic inference and machine learning (parameter learning) based on Answer Set
Programming (ASP). Reasoning in the presence of uncertainty and relational
structures (such as social networks and Linked Data) is an important aspect of
knowledge discovery and representation for the Web, the Internet Of Things,
and other heterogeneous and complex domains. Probabilistic logic programing,
and the ability to learn probabilistic logic programs from data, can provide an
attractive approach to uncertainty reasoning and statistical relational learning,
since it combines the deduction power and declarative nature of logic program-
ming with probabilistic inference abilities traditionally known from graphical
models, such as Bayesian and Markov networks. The main enhancement pro-
vided by PrASP over (non-probabilistic) ASP as well as existing probabilistic
approaches to ASP is the possibility to annotate any formulas with probabilities
(including formulas in full FOL syntax, albeit over finite domains of discourse
only), while providing, in addition to general inference algorithms, specialized,
scalable inference algorithms for special cases where certain assumptions hold
(e.g., independence of probabilistic events).

Related approaches include, e.g., PRISM, P-Log, ProbLog, Markov Logic Net-
works (MLN) and others - [1–5] support probabilistic inference based onmonotonic
reasoning, whereas [6–9] are based on non-monotonic logics. Probabilistic logic
programming belongs to the wider area of probabilistic programming with further
c© Springer International Publishing Switzerland 2015
C. Beierle and A. Dekhtyar (Eds.): SUM 2015, LNAI 9310, pp. 99–105, 2015.
DOI: 10.1007/978-3-319-23540-0 7
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approaches such as [10,11]. Our approach is influenced by P-log [7], which, like
our framework, computes probability distributions over answer sets (that is, pos-
sible worlds are identified with stable models). However, P-log as well as [8] do not
allow for annotating arbitrary formulas (including FOL formulas) with weights.
[9] allows to associate probabilities with abducibles (only) and to learn both rules
and probabilistic weights from given data (in form of literals). ProbLog [3] allows
for probabilistic facts and definite clauses, and approaches to probabilistic rule and
parameter learning (from interpretations) also exist forProbLog. Inference is based
on weighted model counting, which is similarly to our approach, but uses Boolean
satisfiability instead of stable model semantics. Another important approach out-
side the area of ASP are Markov Logic Networks (MLN) [5]. A Markov Logic Net-
work consists of first-order formulas annotated with weights (which are, in contrast
to our approach, not probabilities).

2 Probabilistic Inference

In this section, we briefly describe the formal language and inference approaches
of PrASP. Compared to [12], the syntax of PrASP programs has been extended
with interval and non-ground weights, and new inference algorithms have been
added.

Let Φ be a set of function, predicate and object symbols and L(Φ) a first-order
language over Φ with the usual connectives (including both strong negation “-”
and default negation “not”) and first-order quantifiers. It can be assumed that
this language covers both ASP and FOL syntax (ASP “specialties” such as choice
constructs can be seen as syntactic sugar which we omit here in order to keep
things simple). A PrASP program (background knowledge) is a non-empty finite
set Λ = {[li;ui]fi} ∪ {[li;ui|ci]fi} ∪ {indep({f i

1, ..., f
i
n})} of annotated formulas,

fi, ci, f
i
j ∈ L(Φ), and optional independence constraints. [l;u]f asserts that the

probability of f is within interval [l, u] (i.e., l ≤ Pr(f) ≤ u) whereas [l;u|c]f
states that the probability of f conditioned on formula c is within interval [l, u]
(l ≤ Pr(f |c) ≤ u). Formulas can be non-ground (including existentially or uni-
versally quantified variables in FOL formulas). For the purpose of this paper,
weights need to be ground (real numbers), however, the prototype implemen-
tation also allows for certain non-ground weights. An independence constraint
indep({f i

1, ..., f
i
n}) specifies that the set of formulas {f i

1, ..., f
i
n} is mutually inde-

pendent in the probabilistic sense (independence can also be discovered by ana-
lyzing the background knowledge, but this is computationally more costly of
course).

If the weight is omitted, weight [1; 1] is assumed. Point probability weights
[p] are translated into weights of the form [p; p] (analogously for conditional
probabilities). Weighted formulas can intuitively be seen as constraints which
specify which possible worlds (in the form of answer sets) are indeed possible,
and with which probability. w(f) denotes the weight of formula f . The fi and
ci are formulas either in FOL syntax (by means of a transformation into ASP
syntax [13]) or ASP/AnsProlog syntax.
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The semantics of a program Λ is defined in terms of a probability distribution
over the answer sets (possible worlds) of the so-called spanning program ρ(Λ) of
Λ, which is defined as the disjunctive program generated by removing all weights
and transforming each formerly weighted formula f or ¬f into a disjunction
f |¬ f , where ¬ stands for default negation. FOL syntax (optional) is converted
into ASP syntax [13]. We write θ |=Λ f iff θ is an answer set of ρ(Λ) ∪ f . For
further formal details please refer to [12].

We define the parameterized probability distribution μl(Λ,Θ, q) over set
Θ = {θi ∈ Θ} of answer sets of ρ(Λ), a PrASP program Λ = {([pi]fi, i =
1..n)} ∪ {([pi|ci]fc

i )} ∪ {indep({f i
1, ..., f

i
k})} and query formula q as maximum

entropy solution {Pr(θi) : θi ∈ Θ} of the following inequalities (constraints)
such that Prl(q) =

∑
θi∈Θ:θi�Λq Pr(θi) is minimized (analogously, μu denotes

the maximizing distribution).

l(f1) ≤
∑

θi∈Θ:θi�Λf1

Pr(θi) ≤ u(f1) ... l(fn) ≤
∑

θi∈Θ:θi�Λfn

Pr(θi) ≤ u(fn) (1)

∑

θi∈Θ

θi = 1 (2)

∀θi ∈ Θ : 0 ≤ Pr(θi) ≤ 1 (3)

At this, l(fi) and u(fi) denote the endpoints of the probability interval (weight)
of unconditional formula fi (analogous for endpoints l(fc

i |ci) and u(fc
i |ci) of

conditional probabilities). In addition to the constraints above, indep-declaration
of the form indep({f i

1, ..., f
i
r}) in the program induce constraints of the following

form:
∏

fi
k={1..r}

l(f i
k) ≤

∑

θj∈Θ:θj�Λ

∧
fi

k={1..r}

Pr(θj) ≤
∏

fi
k={1..r}

u(f i
k) (4)

and any conditional probability formula [pi|ci]fc
i ) in the program induces con-

straints
∑

θj∈Θ
Pr(θj)ν(θj , f

c
i ∧ c1) +

∑
θj∈Θ

−l(fc
i |ci)Pr(θj)ν(θj , ci) > 0

∑
θj∈Θ

Pr(θj)ν(θj , f
c
i ∧ ci) +

∑
θj∈Θ

−u(fc
i |ci)Pr(θj)ν(θj , ci) < 0

At this, we define ν(θ, f) =

{
1, if θ �Λ f

0, otherwise
For small systems, PrASP can compute minimizing and maximizing proba-

bility distributions using linear programming and a maximum entropy solution
amongst a number of candidate distributions (solutions of an underdetermined
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system) can be discovered using gradient descent. However, to make distribution
search tractable, we need to use different algorithms, as described in the next
section. That is, the linear system above could normally not be used directly for
inference (except for very small systems), it serves mainly as a means to define
the semantics of PrASP formulas.

The result of query [?] q is defined as the interval [Prl(q), P ru(q)] (anal-
ogously for conditional queries [?|c] f, where we compute Pr(f |c) using
Pr(f ∧ c)/Pr(c)).

An example PrASP program (background knowledge):

coin(1..10).

[0.4;0.6] coin_out(1,heads).

[[0.5]] coin_out(N,heads) :- coin(N), N != 1.

1{coin_out(N,heads), coin_out(N,tails)}1 :- coin(N).

n_win :- coin_out(N,tails), coin(N).

win :- not n_win. [0.8|win] happy. :- happy, not win.

The line starting with [[0.5]]... is syntactic sugar for a set of weighted rules
where variable N is instantiated with all its possible values (i.e.,
[0.5] coin_out(2,heads) :- coin(2), 2 != 1 and
[0.5] coin_out(3,heads) :- coin(3), 3 != 1). It would also be possible to use
[0.5] as annotation of this rule, in which case the weight 0.5 would specify the
probability of the entire non-ground formula instead.
1{coin out(N,heads), coin out(N,tails)}1 (Gringo ASP syntax) denotes that a
coin comes up with either heads or tails but not both. Our system accepts query
formulas in format [?] a, which asks PrASP for the marginal probability of a
and [?|b] a which computes Pr(a|b).

2.1 Sampling and Inference Algorithms

PrASP (as a software system) contains a variety of exact and approximate sam-
pling and inference algorithms. Using command line options, the user selects a
pipeline of alternative simplification, sampling and inference or learning steps
(depending on the nature of the respective problem). E.g., the user might chose
to sample possible worlds using uniform sampling and to pass on the resulting
models to a simulated annealing algorithm which computes a probability dis-
tribution over the sampled possible worlds. Finally, this distribution is used to
compute the probabilities of the query formulas. Inference algorithms available
in PrASP version 0.7:

Linear Programming: Direct solution for the linear inequalities system
described before. Very fast for very small systems, intractable otherwise.

Various Sampling Algorithms (“initial sampling”): Can sometimes
directly compute a distribution which complies with the constraints expressed
in the PrASP program.
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Parallel Simulated Annealing: Can be used in combination with an initial
sampling stage (e.g., Algorithm 1). This approach performs simulated annealing
for inference problems where no assumptions can be made about independence
or other properties of the program (except consistency).

Iterative Refinement: An adaptation of the algorithm described in [14] which
reaches minimal Kullback−Leibler divergence to the uniform distribution (i.e.,
max. entropy).

Direct Counting: Weights are transformed into unweighted formulas and
queries are then solved by mere counting of models (see [12] for details).

For lack of space, we describe only one initial sampling algorithm. The inter-
esting property of this algorithm is its ability to provide a suitable distribution
over possible worlds directly if all weighted formulas in the PrASP program are
mutually independent (analogously to the independence assumption typically
made by distribution semantics-based approaches). More concretely, Algorithm
1 samples answer sets and computes a probability distribution over these mod-
els which reflects the weights provided in the PrASP program, provided that
all uncertain formulas in the program describe a stochastically independent set
of events. Other user-provided constraints (such as conditional probabilities in
the PrASP program) are ignored here. Also, Algorithm 1 does in general not
compute a maximum entropy solution.

Algorithm 1. Sampling from models of spanning program (point probabilities
only)
Require: max number of samples n, set of uncertain formulas uf =

{[w(uf i)]uf i with 0 < w(uf i) < 1}, set of certain formulas cf = {cf i : w(uf i) = 1}
(i.e., with probability 1)

1: i ← 1
2: for i ≤ |uf | do
3: ri ← random element of Sym({1, ..., n}) (permutations of {1, ..., n})
4: i ← i + 1
5: end for
6: m ← {}, j ← 1
7: parfor j ∈ {1, ..., n} do
8: p ← {}, k ← 1
9: for k ≤ |uf | do

10: if rkj ≤ n · w(uf k) then p ← p ∪ uf k else p ← p ∪ ¬uf k endif
11: k ← k + 1
12: end for
13: s ← model sampled uniformly from models of program cf ∪ p (∅ if UNSAT)
14: m ← m � {s}
15: end parfor
Ensure: Multiset m contains samples from all answer sets of spanning program such

that

16: ∀uf i : w(uf i) ≈ |{s∈m:s|=uf i}|
|m| iff set uf mutually independent.
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Algorithm 1 can optionally be combined in a pipeline-like fashion with simu-
lated annealing or iterative refinement: if Algorithm 1 doesn’t already compute
a suitable probability distribution, e.g., simulated annealing discovers this (as
part of its energy calculation) and iteratively adjusts the distribution.

While for space-related reasons this paper focuses on inference, PrASP also
allows for inductive reasoning (parameter learning). Please refer to [12] for
details.

2.2 Initial Experiment

The main goal of PrASP is not to outperform existing approaches in terms
of speed but to provide a flexible, scalable and highly configurable framework
which puts as few restrictions as possible on what users can express while being
competitive with more specialized approaches if the respective conditions (e.g.,
event independence) are met.

The following shows how
PrASP copes with a typical
benchmark task (the well-
known friends-and-smokers
problem [5]) which can
be tractably solved using
the algorithms described
above. In this scenario,
a randomly chosen num-
ber of persons are friends,
a randomly chosen sub-
set of all people smoke,
there is a certain probability
of being stressed ([[0.3]]

stress(X)), stress causes smoking (smokes(X) :- stress(X)), some friends
influence each other with a certain probability ([[0.2]] influences(X,Y)
and smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y)?). Smoking
might lead to asthma ([[0.4]] h(X). asthma(X) :- smokes(X), h(X)). The
query comprises of asthma(X) for all persons.

We compared the performance (duration in dependency of the number of
people in the social network) of the current prototype of PrASP with that
of Tuffy 0.3 (http://i.stanford.edu/hazy/hazy/tuffy/), a recent implementation
of Markov Logic Networks which uses databases to increase scalability) and
ProbLog2 2.1. The results (see figure) have been averaged over five trials.
ProbLog2 scores best in this scenario. PrASP, using Algorithm1, does quite
well for most of episodes but looses on ProbLog2. Tuffy does very well below
212 persons, then performance breaks in (possibly due to some cache overflow).
Times are in ms using a i7 4-cores/3.4Ghz processor.

http://i.stanford.edu/hazy/hazy/tuffy/
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3 Conclusion

We have presented a new software framework for uncertainty reasoning and
parameter estimation based on Answer Set Programming. In contrast to most
other approaches to probabilistic logic programming, the philosophy of PrASP
is to provide a very expressive formal language on the one hand and a variety of
inference algorithms which are able to take advantage of certain problem domains
which facilitate “fast track” reasoning and learning (in particular inference in
the presence of event independence) on the other. Ongoing work focuses mainly
on the development and integration of further inference algorithms. This work
was sponsored by SFI grant n. SFI/12/RC/2289.
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Abstract. Ontology-based Data Access has intensively been studied as
a very relevant problem in connection with semantic web data. Often it
is assumed, that the accessed data behaves like a classical database, i.e.
it is known which facts hold for certain. Many Web applications, espe-
cially those involving information extraction from text, have to deal with
uncertainty about the truth of information. In this paper, we introduce
an implementation and a benchmark of such a system on top of relational
databases. Furthermore, we propose a novel benchmark for systems han-
dling large probabilistic ontologies. We describe the benchmark design and
show its characteristics based on the evaluation of our implementation.

1 Motivation

Ontology-based Data Access (ODBA) has received a lot of attention in the
Semantic Web Community. In particular, results on light weight description
logics that allow efficient reasoning and query answering provide new possibil-
ities for using ontologies in data access. One approach for ontology-based data
access is to rewrite a given query based on the background ontology in such a
way that the resulting – more complex – query can directly be executed on a
relational database. This is possible for different light-weight ontology languages,
in particular the DL-Lite family [1].

At the same time, it becomes more and more clear that many applications
in particular on the (Semantic) Web have to deal with uncertainty in the data.
Examples are large-scale information extraction from text or the integration of
heterogeneous information sources. To cope with uncertainty, the database com-
munity has investigated probabilistic databases where each tuple in the database
is associated with a probability indicating the belief in the truth of the respective
statement. Querying a probabilistic database requires not only to retrieve tuples
that match the query, but also to compute a correct probability for each answer.

The goal of our work is to develop data access methods that can use back-
ground knowledge in terms of a light weight ontology and also deal with uncer-
tainty in the data. A promising idea for efficiently computing probabilistic query
answers is to use existing approaches for OBDA based on query rewriting and
pose the resulting query against a probabilistic database that computes answers
with associated probabilities.

A number of approaches have been proposed for combining description log-
ics with probabilistic reasoning. An overview of early approaches is [2], more
c© Springer International Publishing Switzerland 2015
C. Beierle and A. Dekhtyar (Eds.): SUM 2015, LNAI 9310, pp. 106–120, 2015.
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recent approaches include Disponte/Bundle [3,4] or Pronto [5], and Log-linear
Description Logics [6]. On the other hand, the logic programming and statistical
relational learning community has developed probabilistic versions of datalog-
style languages (e.g. Problog [7]) that can be used to partially model ontological
background knowledge. While for many of these languages efficient subsets have
been identified (e.g. [4,5]) and optimized reasoning algorithms have been pro-
posed, none of the existing approaches is really designed to handle large amounts
of data as we find on the Web. For example, the full dataset extracted from Web
pages by the NELL (Never Ending Language Learning) Project [8] currently
contains about 50 million statements with associated probabilities.

Jung et al. have shown that query rewriting for OBDA can directly be lifted
to the probabilistic case [9]. Furthermore, they prove that the complexity results
and the dichotomy of safe (data complexity in PTime) and unsafe (in #P-hard)
queries also carries over. To the best of our knowledge, no evaluation on the
performance and scalability of the approach was conducted, and there exists
no implemented system. We believe, that combining the power of probabilistic
database systems with the DL-Lite approach to ODBA – namely rewriting the
query using the background ontology in such a way that the resulting query
posed against a database returns the correct results – is a way to scale up to
datasets of the size of NELL and beyond.

The main contributions presented in the paper are the following:

– a preliminary implementation of a system that can answer safe probabilistic
queries over large probabilistic knowledge bases up to several hundred millions
of facts.

– a synthetic benchmark dataset for probabilistic OBDA on the basis of the
LUBM benchmark that can be scaled to an arbitrary number of probabilistic
statements

– a comparison of the prototype to a state of the art system using that dataset
and a real world knowledge base

The paper is structured as follows: We show how the distribution semantics is
applied to DL-Lite in Sect. 2. Section 3 is concerned with implementing reasoning
on top of probabilistic databases. In Sect. 4 we describe the datasets that can
be used for benchmarking probabilistic OBDA. An experimental evaluation of a
prototype for large-scale probabilistic OBDA is given in Sect. 5. Related work is
discussed in Sect. 6 and we conclude and give an outlook in Sect. 7.

Motivating Example. Consider the following assertions about Arnold
Schwarzenegger and his wife Maria Shriver from the NELL dataset:

1.00 Politicanus(Arnold Schwarzenegger)

1.00 Actor(Arnold Schwarzenegger)

0.50 hasoffice(Arnold Schwarzenegger, President)

1.00 husbandof(Arnold Schwarzenegger,M Shriver)

0.75 agentcontrols(NBC,M Shriver)

1.00 acquired(NBC, Telemundo)
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While some of the statements are considered to be definitely true – either
because they have been part of the seeds used for training the extractor or
because enough evidence has been found – some of them, however, are only
believed to be true with a certain probability. Knowledge bases like NELL [8]
or ReVerb [10] contain huge amounts of information. The NELL project, for
example, has extracted more than 50 million possible facts about the world.
Accessing the stored information in a meaningful way requires to query the
knowledge base. In this work, we consider positive conjunctive queries that allow
us for example to ask for all politicians that have been president and actor or
for all politicians married to someone who is under control of a company:

∃X. (politician(X), actor(X), hasoffice(X, president))

∃X.∃Y.∃Z. (politician(X), spouse(X,Y ), agentcontrolledby(Y,Z), company(Z))

It has been shown that there is a fundamental difference between these two
queries as the data complexity of the first query is in PTIME whereas the second
is #P-hard. Answering these queries requires background knowledge about the
terminology used in the query and the data. In particular, we can derive the
following DL-LiteR axioms from the metadata in the NELL knowledge base,
stating that US politicians are politicians, agentcontrolledby is the inverse of
agentcontrols and that the domain of the acquired relation is company.

politicianus � politician

agentcontrolledby � agentcontrols−

∃acquired � company

Using these axioms, we can compute the probability that Arnold
Schwarzenegger is a correct answer to these queries. By benchmarking our pro-
totypical implementation we want to address the question the question whether
answering such queries scales serviceably.

2 DL-LiteR and the Distribution Semantics

In this section we briefly introduce DL-Lite, the description logic underlying
the OWL 2 QL profile. Then we detail how the distribution semantics for prob-
abilistic description logics [4] is applied to DL-LiteR .

In DL-LiteR concepts and roles are formed in the following syntax [11]:

B → A | ∃R C → B | ¬B

R → P | P− E → R | ¬R
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where A denotes an atomic concept, P an atomic role, and P− the inverse of
the atomic role P . B denotes a basic concept, i.e. either an atomic concept or a
concept of the form ∃R, where R denotes a basic role, that is, either an atomic
role or the inverse of an atomic role. C denotes a general concept, which can be
a basic concept or its negation, and E denotes a general role, which can be a
basic role or its negation.

A DL-LiteR knowledge base (KB) K = 〈T ,A〉 models a domain in terms
of a TBox T and an ABox A. A TBox is formed by a finite set of inclusion
assertions of the form B � C or R � E. An ABox is formed by a finite set of
membership assertions on atomic concepts and on atomic roles, of the form A(a)
or P (a, b) stating respectively that the object denoted by the constant a is an
instance of A and that the pair of objects denoted by the pair of constants (a, b)
is an instance of the role P .

The semantics of a DL is as an interpretation I = (ΔI , ·I), consisting of
a nonempty interpretation domain ΔI and an interpretation function ·I that
assigns to each concept C a subset CI of ΔI , and to each role R a binary
relation RI over ΔI :

AI ⊆ ΔI

P I ⊆ ΔI × ΔI

(P )I = {(o2, o1)|(o1, o2) ∈ P I}
(∃R)I = {o | ∃o′.(o, o′) ∈ RI}
(¬B)I = ΔI \ BI

(¬R)I = ΔI × ΔI \ RI

An interpretation I is a model of C1 � C2, where C1,C2 are general concepts
if CI

1 ⊆ CI
2 . Similarly, I is a model of E1 � E2, where E1, E2 are general roles

if EI
1 ⊆ EI

2 .
To specify the semantics of membership assertions, the interpretation func-

tion is extended to constants, by assigning to each constant a a distinct object
aI ∈ ΔI . This enforces the unique name assumption on constants. An interpre-
tation I is a model of a membership assertion A(a) (resp., P (a, b)), if aI ∈ AI

(resp., (aI , bI) ∈ P I).
Given an assertion α and an interpretation I, I � α denotes the fact that

I is a model of α. Given a (finite) set of assertions λ, I � λ denotes the fact
that I is a model of every assertion in λ. A model of a KB K = 〈T ,A〉 is an
interpretation I such that I � T and I � A. A KB is satisfiable if it has at least
one model. A KB K logically implies an assertion α, written K � α, if all models
of K are also models of α. Similarly, a TBox T logically implies an assertion α,
written T � α, if all models of T are also models of α.

A TIP-OWL knowledge base T KB = 〈T ,A, P 〉 consists of a DL-LiteR T-
Box T , an ABox A, and a probability distribution P : A → [0, 1]. Abusing
terminology, we say that KB ⊆ T KB if they have the same T-Box and the A-
Box of KB is a subset of the A-Box of T KB. We adopt the independent tuple
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semantics in the spirit of the probabilistic semantics for logic programs proposed
in [7] and define the probabilistic semantics of a TIP-OWL knowledge base in
terms of a distribution over possible knowledge bases as follows:

Definition 1. Let T KB = 〈T ,A, P 〉 be a TIP-OWL knowledge base. Then the
probability of a DL-LiteR Knowledge Base KB = 〈T ,A′〉 ⊆ T KB is given by:

P (KB|T KB) =
∏

a′∈A′
P (a′) ·

⎛

⎝1 −
∏

a∈A\A′
P (a)

⎞

⎠

Based on this semantics, we can now define the probability of existential
queries over TIP-OWL knowledge bases as follows. First, the probability of a
query over a possible knowledge base is one if the query follows from the knowl-
edge base and zero otherwise:

P (Q|KB) =
{

1 KB |= Q
0 otherwise

Taking the probability of possible knowledge bases into account, the probabil-
ity of an existential query over a possible knowledge base becomes the product
of the probability of that possible knowledge base and the probability of the
query given that knowledge base. By summing up these probabilities over all
possible knowledge bases, we get the following probability for existential queries
over TIP-OWL knowledge bases:

P (Q|T BK) =
∑

KB⊆T KB
P (Q|KB) · P (KB|T KB)

This defines a complete probabilistic semantics for TIP-OWL knowledge
bases and queries.

3 Implementing Reasoning on Top of Probabilistic
Databases

In this section, we first briefly recall the idea of first-order rewritability of queries
in DL-Lite and then show that the query rewriting approach proposed by [11]
can be used on top of tuple independent probabilistic databases for answering
queries in TIP-OWL without changing the semantics of answers.

3.1 Query Rewriting

Query processing in DL-LiteR is based on the idea of first-order reducibility. This
means that for every conjunctive query q we can find a query q′ that produces
the same answers as q by just looking at the A-Box. Calvanese et al. also define a
rewriting algorithm that computes a q′ for every q by applying transformations
that depend on the T-Box axioms.
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Given a consistent T-Box T the algorithm takes a conjunctive query q0 and
expands it into a union of conjunctive queries U starting with U = {q0}. The
algorithm successively extends U by applying the following rule:

U = U ∪ {q[l/r(l, I)]}
where q is a query in U , l is a literal in q, I is an inclusion axiom from T and r
is a replacement function that is defined as follows:

l I r(l, I)

A(x) A′ � A A′(x)
A(x) ∃P � A P (x, )
A(x) ∃P− � A P ( , x)
P (x, ) A � ∃P A(x)
P (x, ) ∃P ′ � ∃P P ′(x, )
P (x, ) ∃P ′− � ∃P P ′( , x)

l I r(l, I)

P ( , x) A � ∃P− A(x)
P ( , x) ∃P ′ � P− P ′(x, )
P ( , x) ∃P ′− � ∃P− P ′( , x)
P (x, y) P ′ � P P ′(x, y)
P (x, y) P ′− � P− P ′(x, y)
P (x, y) P ′ � P− P ′(y, x)
P (x, y) P ′− � P P ′(y, x)

Here ’ ’ denotes an unbound variable, i.e., a variable that does not occur in any
other literal of any of the queries.

Definition 2 (Derived Query). Let Q = L1 ∧· · ·∧Lm be a conjunctive query
over a DL-Lite terminology. We write Q

r→ Q′ if Q′ = Q ∨ Q[Li/r(Li, I)] for
some literal Li from Q. Let r→∗

denote the transitive closure of r→, then we call
every Q′ with Q

r→∗
Q′ a derived query of Q. Q′ is called maximal if there is no

Q′′ such that Q
r→∗

Q′′ and Q′ r→∗
Q′′.

Using the notion of a maximal derived query, we can establish the FOL-
reducibility of DL-Lite by rephrasing the corresponding theorem from [11].

Theorem 1 (FOL-Reducibility of DL-Lite (from [11])). Query answering
in DL-LiteR is FOL-reducible. In particular, for every query Q with maximal
derived query Q′ and every DL-LiteR T-Box T and non-empty A-Box A we
have T ∪ A |= Q if and only if A |= Q′.

Example. We illustrate the rewriting using the queries and the three ontological
axioms from the motivating example. For the first query, the subclass relation
between politicianus and politician triggers a rewriting leading to the new query
Q′(X) ⇐ politicianus(X), actor(X), hasoffice(X, president) which has to be
united with the original query to form the new query Q ∨ Q′. This query can be
simplified to:

(politician(X) ∨ politicianus(X))∧
actor(X) ∧ hasoffice(X, president)
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For the second query, the rewriting is slightly more complicated, but still
can be computed in a single go through the query. Each of the axioms triggers
a rewriting. Besides the rewriting already performed for the first query, the lit-
eral agentcontrolledby(Y,Z) can be rewritten to agentcontrols(Z, Y ). Secondly,
the literal company(Z) can be rewritten to acquired(Z, ), after simplification
leading to the following rewritten query:

(politician(X) ∨ politicianus(X) ∧ spouse(X,Y )

∧(agentcontrolledby(Y,Z) ∨ agentcontrols(Z, Y ))

∧(company(Z) ∨ acquired(Z, ))

The resulting query can now directly be executed on the probabilistic data-
base.

3.2 Correctness of Query Processing

Implementing TIP-OWL on top of probabilistic databases can now be done in
the following way. The A-Box is stored in the probabilistic database. It is easy to
see that the probabilistic semantics of TIP-OWL A-Boxes and tuple independent
databases coincide. What remains to be done is to show that the idea of FOL-
reducibility carries over to our probabilistic model. In particular, we have to
show that a rewritten query has the same probability given a knowledge base
with empty T-Box as the original query given a complete knowledge base. This
result is established in the following corollary.

Corollary 1. Let T KB = 〈T ,A,P〉 be a TIP-OWL knowledge base and
T KB′ = 〈∅,A,P〉 the same knowledge base, but with an empty T-Box. Let fur-
ther Q be a conjunctive query and Q′ a union of conjunctive queries obtained by
rewriting Q on the basis of T , then

P (Q|T KB) = P (Q′|T KB′)

We can easily see that the semantics of queries over a TIP-OWL A-Box
with empty T-Box directly corresponds to the tuple-independence semantics
used in probabilistic databases [12], thus queries posed to correctly constructed
probabilistic database have the same probability as a TIP-OWL query with
empty T-Box. From Theorem 1 we get, that P (Q|KB) does not change as T ,A |=
Q if and only if A |= Q′. Further, as P (KB|T KB) only depends on A this part
also stays unchanged.

4 Benchmark Data for Probabilistic OBDA

We use two different datasets for our experimental evaluation. The first dataset
is the ontology and knowledge base created by NELL, which presents a large real-
world dataset consisting of uncertain data. Second, to assess the scalability of
the approach, we created a modified version of the Lehigh University Benchmark
(LUBM), a synthetic benchmark for OWL reasoners that generates datasets of
various sizes.
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4.1 NELL

NELL is an Open Information extraction system that extracts facts from text
found in a large corpus of web pages. As a result, NELL generates triples like
wifeof(katie holmes, cruise), called candidate beliefs, that are annotated
with different levels of confidence in terms of a number in the range (0, 1].

Within the context of our approach these candidate beliefs form the A-Box
of our TIP-OWL knowledge base, while the confidences are interpreted as prob-
abilities. NELL organizes extracted facts in a terminology consisting of con-
cepts (called categories in NELL context) and roles (relations) and specifies
domain and range restrictions, property symmetry, and disjointness of concepts
and properties. We use the DL-LiteR fragment of this terminology as T-Box of
our TIP-OWL knowledge base. We use the high confidence knowledge base of
NELL (iteration 860) which contains only facts with a score of at least 0.75. It
contains 2.3 million extracted facts about 1.8 million objects as compared to the
full dataset with about 50 million. The T-Box, which is the same for all datasets,
consists of 558 concepts, 1 255 properties, and 5 132 axioms (Table 1).

Table 1. Size of the different NELL and LUBM datasets.

Dataset Assertions

NELL full 2 259 750
NELL filtered 467 943

Dataset Assertions % distinct

LUBM 1 717 250 54.77
LUBM 10 7 232 663 55.69
LUBM 100 71 698 666 55.66
LUBM 200 143 311 100 55.67
LUBM 500 361 432 844 55.12
LUBM 1000 719 097 512 55.32

To show the benefits and the scalability of our approach, we defined the
following queries that are posed against the TIP-OWL version of NELL.

QA(X) ⇐person(X)

QB(X) ⇐person(X), bornin(X, paris)

QC(X) ⇐book(X),movie(X)

QD(Z) ⇐hasParent(X,Y ), hasparent(Y, Z)

QE(X) ⇐actor(X), directordirectedmovie(X,Y ), writerwrotebook(X,Z)

QF (X) ⇐politician(X), actor(X), hasoffice(X, president)

We use this dataset mainly to investigate the benefits of using background knowl-
edge and reasoning on top of probabilistic data in terms of increased recall.

4.2 Probabilistic LUBM

The Lehigh University Benchmark (LUBM) [13] is a well known and widely used
benchmark for OWL-based reasoning systems. Lutz et al. published a DL-LiteR
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version of LUBM [14]. Additionally, to restricting the expressivity of the ontol-
ogy, they modified it to make it more suitable in an OBDA setting: First, they
added multiple concept inclusions with existential restriction on the right hand
side, second they extended the class hierarchy to be closer to real-world ontolo-
gies in its size.

We chose to extendLUBMover other synthetic benchmarks like SP2Bench [15],
BSBM [16], or FishMark [17]. SP2Bench and BSBM only provide a very simple or
no ontology, but rather focus on complex queries. FishMark contains an expressive
ontology more suitable for our evaluation. However, it does not provide a genera-
tor for datasets of various sizes. Lutz et al.’s version of the LUBM ontology is of
sufficient complexity to evaluate the scalability of reasoning in an OBDA setting,
and it offers the possibility to generate datasets of different sizes.

We generated the benchmark dataset for probabilistic OBDA in two steps: 1.
We extended the generator to create probabilistic ABoxes. 2. To increase the
complexity of the probabilistic reasoning, we created redundancies in the dataset.
In the first step we extended the implementation of the data generator to attach
probabilities to every ABox axiom. Those probabilities are randomly distributed
in (0,1]. We did not include a fixed percentage of certain axioms. The generator
thus creates datasets of various size with probabilistic axioms. However, each
axiom is contained exactly once, thereby trivializing the calculation of the final
probabilities in a result set. To alleviate this, we used the option to change the
seed that LUBM uses to determine the number of instances of departments,
professors, students, etc. For every dataset size, we generated five ABoxes each
with a different seed (0, 1, 42, 776, 141984). Combined, these five ABox serve
as one probabilistic benchmark dataset. Note that our probabilistic version of
LUBM is roughly five times larger than the normal LUBM of the same size, i.e.
LUBM 1 contains only one university, whereas probabilistic LUBM 1 contains
five different versions of that university, with different numbers of departments,
professors, students, etc.

In the evaluation we used the original LUBM queries for which probabilities
can be computed efficiently, i.e. queries 1, 3–6, and 10–14:

Q1(X) ⇐ takesCourse(X,univ0 dept0), type(X, graduateStudent)

Q3(X,Y1, Y2, Y3) ⇐ publicationAuthor(X,univ0 asstProf0), type(X, publication)

Q4(X) ⇐ worksFor(X,univ0 dept0), name(X,Y1), emailAddress(X,Y2),

telephone(X,Y3), type(X, professor)

Q5(X) ⇐ memberOf(X,univ0 dept0), type(X, person)

Q6(Z) ⇐ type(X, student)

Q10(X) ⇐ takesCourse(X,univ0 graduateCourse0), type(X, student)

Q11(X) ⇐ subOrgOf(X,univ0), type(X, researchGroup)

Q12(X,Y ) ⇐ worksFor(X,Y ), type(X, chair), subOrgOf(Y, univ0),

type(Y, department)

Q13(X) ⇐ hasAlumnus(univ0, X), type(X, person)

Q14(X) ⇐ type(X,undergraduateStudent)
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Q11 and Q12 require the reasoner to handle the transitive object property
subOrgOf. However, transitive object properties are not allowed in DL-LiteR .
To circumvent this and still be able to use this query in the evaluation, we man-
ually extended those queries to handle transitivity up to the maximum depth
occurring in the data (in this case 2).

5 Experimental Evaluation

We evaluate our implementation of query processing for TIP-OWL on the two
datasets presented in the previous section. Our main goal is to show that our
implementation scales to vers large A-Boxes and outperforms existing methods
on safe queries.

5.1 Setting

Within our experiments we focus on answering the following two questions:

1. What are the benefits of exploiting the TBox by using it in the query rewriting
process for a dataset like NELL?

2. How well does our algorithm scale with respect to different types of queries
and subsets of NELL and a probabilistic LUBM, and compared to another
system?

For answering the first question, we compare query results with and without
query rewriting. We expect that rewriting the queries yields larger result sets.
In particular, we expect that many interesting results are missed out when we
ask the query directly without any expansion.

For answering the second question, we compare our implementation against
the ProbLog system [7], which also uses the independent tuple semantics. While
ProbLog does not support the complete expressivity of DL-Lite1, it returns
identical results for any safe conjunctive query over the dataset. For the com-
parison with ProbLog, we used a subset of the data consisting of about half a
million facts. Additionally, to assess the general scalability of the approach, we
run our implementation on different sizes of probabilistic LUBM, i.e. 1, 10, 100,
200, 500, and 1000 universities.

Experiments were run on a virtual machine with 4 cores (2.4 GHz) and 16 GB
RAM running Ubuntu 14.10 Server. We used PostgreSQL 9.4 64 bit and ProbLog
2. We used to default settings of the database and did no special tuning apart
from increasing the available RAM. The NELL dataset was loaded into a single
table. The LUBM datasets use different tables for class, object, and data prop-
erty assertions, one of each for different sizes of the benchmark. Query rewriting
was done manually at this point, but we do not expect a significant impact on
this step on the overall performance. As ProbLog always has to load all the data
and does not provide persistent storage like a database system, we measured

1 In particular, axioms of the form A � ∃R cannot be represented in ProbLog.
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the time ProbLog takes to parse the file without a query and subtracted that
amount from the query time.

An existing probabilistic database like MayBMS was not used, as we encoun-
tered serious issues with complex JOINs resulting from the query rewriting.

5.2 Results

NELL Dataset. Table 2 shows the results of comparing query answering with
and without rewriting.

Table 2. Number of results with and without reasoning, and increase in query size
(predicates)

Plain Rewritten

# res # pred # res # pred

QA 5 405 1 319 986 148

QB 1 2 4 152

QC 352 2 414 12

QD 0 2 80 40

QE 0 3 1 11

QF 2 4 14 29

The number of results generally increases – sometimes dramatically (cf. QA) –
and we can even find answers to QD which produced no results without rewrit-
ing. The large increase in results for QA is due to person being a very general
concept of the NELL hierarchy and most instances are described using more
specific concepts. QD has no answers without rewriting because the relation
personhasparent is never used, but only its inverse parentofperson.

Exploiting the T-Box often changes the probabilities for an individual answer
to a query as new evidence is added to the computation. For example the proba-
bility for concept:person:sandy being a person in QA or QB increase from 0.96875
to 1.0. The knowledge base only states that Sandy is a person with probability
0.96875. Through the rewriting step, the statement that Sandy graduated from
State University with probability 1.0 is also included, resulting in her definitely
being a person because of graduatedfrom having person as domain.

Tables 3 and 4 show the results of comparing TIP-OWL with ProbLog.
As expected our approach takes significantly more time loading the data

as index structures have to be created and ProbLog only seems to do minimal
preprocessing. The results in Table 4 show, however, that this effort is overcom-
pensated by more efficient query answering.

Table 4 shows the time needed for answering queries over the full dataset
and the reduced one. To accommodate for the fact that ProbLog always has to
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Table 3. Dataset loading times (sec)

full filtered

ProbLog 24.393 sec 5.383 sec

SQL Loading 193.040 sec 12.163 sec

SQL Indexing 1 007.291 sec 47.427 sec

Table 4. Query performance in seconds, averaged over 10 runs

QA QB QC QD QE QF

ProbLog (filtered) - 97.667 1.812 - 2.673 9.589

ProbLog (full) - - - - - -

Prob. SQL (filtered) 10.423 3.524 0.107 0.024 1.421 0.628

Prob. SQL (full) 8.846 5.488 0.097 0.011 0.888 0.617

SQL (full) 5.002 3.196 0.017 0.009 0.637 0.340

load the data anew, loading time has been subtracted from the query times for
ProbLog shown in Table 4.

The query response times clearly show that our database-driven approach is
more efficient for handling large datasets. ProbLog is not able to answer any of
the questions using the full dataset within a 30 min timeout. Also for the filtered
dataset, ProbLog fails for QA and QD with an out of memory error and not with
a timeout as for the full dataset. For the queries where both return answers,
our approach is between 15 and 30 times faster. We can observe that query
processing even becomes more efficient for the larger dataset. After analyzing
the generated query plans, we found that the query planner chooses a suboptimal
query plan for the smaller dataset. We suppose this is due to weaker statistics.
The overhead of the probabilistic SQL compared to the plain rewritten SQL
seems to be proportional to the number of computed answers. QA, QC and QD,
and QF , with a larger number of results, are twice to five times as slow as the
plain queries; QB and QE with very few results show almost no difference in
query time.

LUBM Dataset. Table 5 shows the results using the probabilistic LUBM
datasets. We only compared the performance of our implementation on different
size of the data. We ran the queries with a timeout of 60 min. ProbLog is not
able to handle even the smallest of those datasets.

The query response times show, that in general, the probabilistic reasoning
does not have a negative impact on scalability. Overall, the times increase linearly
in the size of the data. Query 1, which has a constant result that does not change
with the size of the dataset, also has a constant response time. When processing
Query 5, the database erroneously scans the complete table of data property
assertions, which takes most of the time for computing results. This could be
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Table 5. Query response times (seconds) of our implementation on various sizes of the
probabilistic LUBM dataset. A timeout (response time > 60 min) is denoted as “-”.

Q1 Q3 Q4 Q5 Q6 Q10 Q11 Q12 Q13 Q14

LUBM 1 < 0.1 < 0.1 1.5 2.7 0.7 0.3 0.2 0.8 0.3 0.3

LUBM 10 < 0.1 1.0 3.4 27.3 7.4 2.4 0.2 0.9 2.9 2.4

LUBM 100 < 0.1 32.2 50.5 350.9 74.2 33.2 0.3 2.0 76.2 33.2

LUBM 200 < 0.1 100.0 134.6 2 622.2 172.1 63.9 0.5 3.2 172.5 63.9

LUBM 500 < 0.1 201.8 440.2 - 508.0 192.0 1.1 6.9 612.1 1 941.9

LUBM 1000 < 0.1 643.8 904.7 - 874.7 365.1 1.6 232.3 1430.3 -

Table 6. Query mixes per hour (QMpH) for different dataset sizes. The number indi-
cates how often the set of benchmark queries could be executed within one hour. The
queries are executed in random order.

Dataset LUBM 1 LUBM 10 LUBM 100 LUBM 200

QMpH 418.6 66.4 5.4 0.2

Optimum 514.3 75.0 5.8 1.0

% 81.4 % 88.5 % 93.1 % 20 %

alleviated by tuning the query planner, resulting in a better query execution plan.
Query 13 and especially Query 14 produce a large number of results, thus they
become I/O-bound for larger datasets, i.e. their performance is limited by disk
speed, resulting in a large jump in the query time. The disks for our test virtual
machine are attached via network, resulting in this large drop in performance.

To evaluate the scalability under a more realistic workload we tested how
often the set of all ten queries can be executed within one hour (inspired by the
BSBM benchmark). The queries are executed in random order. Table 6 shows
the number of query mixes processed in an hour for different sizes of the LUBM
dataset. Up to 70 million facts, the performance scales well and is close to the
expected optimum based on the query times under ideal settings. For the smaller
datasets, the response time are slightly farther away from the optimum due to
a relatively higher overhead of establishing a database connection etc. Beyond
70 million facts, there is a huge drop in performance due to I/O-bound queries
and the poor I/O performance of the virtual machine.

6 Related Work

Apart from ProbLog, two other systems for probabilistic reasoning with a similar
semantic are Pronto [5] and Bundle [3]. They can handle probabilistic knowl-
edge bases formulated in SROIQ and SHOIN (D), respectively. However, their
main focus is not pOBDA, but probabilistic TBox reasoning (classification, sat-
isfiability, . . . ), thus their performance in query answering is very limited. Both
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can only run simple instance checking for single individuals and classes. Prob-
abilistic deductive databases [18] provide a similar solution, but to the best of
our knowledge there is no system available and thus it is hard to estimate their
scalability to large-scale knowledge bases.

Regarding the benchmark dataset, Klinov et al. [19] proposed a systematic
approach to evaluate reasoning in probabilistic description logics which is, how-
ever, more geared towards complex TBoxes and not large-scale query answering.
Lanti et al. [20] very recently published a dataset, based on real world data, spe-
cially tailored for benchmarking OBDA systems. They also provide a generator
to scale the dataset in size. It will be interesting to analyze their dataset and
also extend it for benchmarking probabilistic OBDA systems.

7 Conclusion and Future Work

In this paper we described a preliminary implementation of a probabilistic OBDA
system for large-scale knowledge bases. It combines tractability for a certain class
of queries with the benefits of ontology-based query rewriting. While making
many simplifying assumptions the approach is well suited for large-scale knowl-
edge bases with facts generated using machine learning techniques and provides
a pragmatic alternative for theoretically more interesting but less feasible models
as the one proposed in [3,5].

We used the NELL knowledge base as a real-world example and a probabilis-
tic extension of LUBM to evaluate the system. We demonstrated that it scales
well compared to another state-of-the-art system and is able to compute query
answers in a reasonable amount of time for knowledge bases containing several
million facts.

We plan to provide a stable implementation of the approach in the near future
and address the problem of uncertain T-Box elements. Furthermore, we plan to
develop a more thorough benchmark based on recent proposals for benchmarks
specifically aimed at OBDA [20].

Acknowledgement. The authors want to thank Christian Meilicke for his ongoing
support and fruitful discussions about the topic of this paper.
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Abstract. We consider the problem of reasoning over probabilistic
knowledge bases with different priority levels. While we assume that
the knowledge is consistent on each level, there can be inconsisten-
cies between different levels. Examples arise naturally in hierarchical
domains when general knowledge is overwritten with more specific infor-
mation. We extend recent results on inconsistency-tolerant probabilistic
reasoning to propose a solution for this problem.

1 Introduction

Often our evaluation of the likelihood of an event depends on the level of abstrac-
tion that we employ. For instance, you might agree that it is likely that a bird
flies. However, a penguin is also a bird, but usually does not fly. It is intuitively
clear that our beliefs about penguins are more specific and therefore should
overwrite our beliefs about birds; but it can be difficult to automatically resolve
conflicts betweens rules, in particular, if there are transitive dependencies.

Example 1. Let us consider a probabilistic version of an access control policy
scenario from [4]. Suppose we have different files and different users and want
to automatically deduce the probability that a user has access to a file. If the
probability is 1, we might grant access immediately, otherwise we might send a
confirmation request to the system administrator. If the probability is very low,
say smaller than 0.1, we might want to send a warning in addition.

If no knowledge about the user and the file is available, the access probability
should be 0. However, we want to have specialized rules for particular types of
users and files. For instance, if we know that a user is an employee, we want
to be less restrictive and increase the probability to 0.5. Of course there can
be exceptions, for instance, if the file is confidential. On the other hand, this
exception should not apply to executive managers. Finally, we never want to
grant access if a user is blacklisted for some reason.

Obviously, we can make this example arbitrarily complex. The key problem
is that if we ask for the probability that a user has access to a file, different rules
may apply. How can our system decide, as autonomously as possible, which rules
apply and which rules have to be excluded to avoid inconsistencies?
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-23540-0 9
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This question is closely related to problems considered in belief merging [15]
and non-monotonic reasoning [4,6,16] and several proposals have been made to
deal with priorities in non-probabilistic logics [2,3,5,25]. There also exist sev-
eral belief merging approaches for probabilistic logics when no priorities exist
[1,7,13,26]. Whereas the goal in [13] is to consolidate the knowledge bases, the
goal in [1,26] is to find a probability function that best captures all knowledge
bases. In [7], a set of probability functions is considered, which is close to sat-
isfying the inconsistent pieces of information (this will be made more precise at
the end of the paper).

Our approach builds up on work in [22–24] and is related to ideas considered
in [7] as will be discussed at the end of the paper. We suppose that our knowledge
base consists of subsets of increasing priority and a set of integrity constraints
that have to be maintained. Since we cannot assume that subsets of different pri-
ority are pairwise consistent, the overall knowledge base might be (and probably
will be) inconsistent. That is, the knowledge base has no classical probabilistic
models, i.e., there are no probability functions that satisfy all constraints in the
knowledge base. We define two notions of priority models. Strict priority models
are constructed by starting with the models of the integrity constraints. Then
this set is successively decreased by selecting the best models with respect to a
subset of our priority knowledge base starting with the subset of highest priority.
This approach provides some nice guarantees for subsets with high priority, but
subsets of low priority can be completely ignored. To overcome this problem,
weighted priority models take all knowledge bases into account but weigh them
with respect to their priority. We prove some interesting properties and illustrate
both approaches by means of our access control policy example. We consider a
general probabilistic framework, but illustrate the ideas by means of a relational
probabilistic logic similar to those considered in [10,17].

The remainder of this paper is organized as follows: In Sect. 2, we explain
our formal framework and discuss some basics from [22–24]. We then introduce
and investigate priority knowledge bases, strict and weighted priority models in
Sect. 3. In Sect. 4, we discuss related work and conclude in Sect. 5.

2 Linear Probabilistic Knowledge Bases and Generalized
Models

To begin with, we describe a general framework to define our probabilistic knowl-
edge bases. Let us assume that our knowledge can be represented by means of
a set of random variables X = {X1, . . . , Xn}. Each X ∈ X has a finite domain
dom(X). If dom(X) = {0, 1}, we call X a Boolean random variable. An assign-
ment (X1 = x1, . . . , Xn = xn) to X is sometimes abbreviated by (x1, . . . , xn)
or just by x if the order of the variables in X is clear from the context or not
important. If Y ⊆ X and x is an assignment to X , x|Y denotes the assignment
y to Y that is obtained from x by restricting to the variables in Y. The set of
all assignments to X is denoted by ΩX and is called the set of possible worlds.
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Example 2. To model our access control policy, we consider a relational
probabilistic language similar to [10,17]. We build up formulas over a
finite set of typed predicate symbols, a finite set of typed individuals
and an infinite set of (typed) variables. We allow the usual logical con-
nectives, but do not allow quantifiers. Let us consider the types User
and File and the predicates grantAccess(User,File), employee(User), exec(User),
blacklisted(User), confidential(File), where exec abbreviates executive man-
ager. Let alice and bob be individuals of type User and let file1, file2
be individuals of type File. We regard the 12 ground atoms grantAccess
(alice,file1), . . . , confidential(file2) as Boolean random variables and our possible
worlds correspond to truth assignments to the ground atoms.

Given a set of random variables X , we denote by PX the set of all joint
probability distributions over X . If P ∈ PX , Y ⊆ X , Z = X \ Y, then the joint
probability distribution PY over Y obtained from P by marginalizing out Z is
PY(Y) =

∑
z P (Y, z), where the sum ranges over the variable assignments to Z.

Given a subset Y ⊆ X , a linear probabilistic constraint function l over PX with
scope scope(l) = Y is a function l : PX → R that has the form

l(P ) =
∑

y

PY(y) fl(y),

where f : ΩY → R is called the feature function of l. Roughly speaking, in prob-
abilistic logics, constraint functions correspond to rules and feature functions
indicate whether a world verifies or falsifies a rule, see, e.g., [10] for a detailed
example. We say that P ∈ PX satisfies l iff l(P ) = 0 and l(P ) = 0 is called the
linear probabilistic constraint corresponding to l. A linear probabilistic knowledge
base over PX is a set KB consisting of linear probabilistic constraint functions
over PX . The scope of KB is the union of the scopes of the constraints in KB,
i.e., scope(KB) =

⋃
c∈KB scope(c). We say that P ∈ PX satisfies KB iff P satisfies

all l ∈ KB. The set

Mod(KB) = {P ∈ PX | l(P ) = 0 for all l ∈ KB}
of all probability distributions satisfying KB is called the set of models of KB.
KB is called consistent if Mod(KB) �= ∅. Otherwise, KB is called inconsistent.

Remark 1. Note that each constraint function can as well be written as a sum
over ΩX :

l(P ) =
∑

y

PY(y) fl(y) =
∑

y

∑

z

P (y, z) fl(y) =
∑

x∈ΩX

P (x) fl(x|Y).

The second equation is obtained by putting in the definition of the marginal
PY , the third equation by using the fact that each two assignments y, z to Y,Z
correspond to an assignment x to X = Y � Z.

Example 3. In our running example, we represent rules by probabilistic condi-
tionals (φ|ψ)[ρ], where the conclusion φ and the premise ψ are formulas in our
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language and ρ ∈ [0, 1] is a probability, c.f. [10,17]. For instance, the probabilis-
tic conditional (grantAccess(U,F ) | confidential(F ))[0] expresses intuitively that
users usually do not have access to confidential files. If the premise ψ is tauto-
logical, we just omit it. For instance, (blacklisted(U))[0.05] expresses that users
are usually not blacklisted. We define the probability of a ground formula φ with
respect to a joint probability distribution P to be

P (φ) =
∑

x∈Ω

P (x) 1{φ}(x),

where the indicator function 1{φ} yields 1 iff φ evaluates to true under x in the
usual sense (and 0 otherwise). P satisfies a ground conditional (φ|ψ)[ρ] iff

P (φ ∧ ψ) = P (ψ) · ρ.

Note that this definition coincides with conditional probability whenever
P (ψ) > 0. P satisfies a general conditional (φ|ψ)[ρ] iff P satisfies each ground
instance of (φ|ψ)[ρ]. For instance, P satisfies (blacklisted(U))[0.05], iff P satisfies
its ground instances (blacklisted(alice))[0.05] and (blacklisted(bob))[0.05]. To see
that our conditionals indeed induce linear constraint functions, recall that P
satisfies a ground conditional (φ|ψ)[ρ] iff

0 = P (φψ) − P (ψ) · ρ = P (φψ) − (P (φψ) + P (φψ)) · ρ

= P (φψ) · (1 − ρ) − P (φψ) · ρ

=
∑

x∈Ω

P (x) 1{φψ}(x) · (1 − ρ) −
∑

x∈Ω

P (x) 1{φψ}(x) · ρ

=
∑

x∈Ω

P (x) · (1{φψ}(x) · (1 − ρ) − 1{φψ}(x) · ρ)
︸ ︷︷ ︸

:=f(Y)

.

From Remark 1, we see that this is a linear probabilistic constraint. The scope
Y of the feature function f is the set of ground atoms appearing in (φ|ψ)[ρ] and
the feature function is defined by f(Y) = 1{φψ}(x|Y) · (1 − ρ) − 1{φψ}(x|Y) · ρ.
Note that the feature function yields 1 − ρ if the conditional is verified and
−ρ if the conditional is falsified. Correspondingly, each general conditional
induces a set of constraints (one for each ground instance). For instance,
(blacklisted(U))[0.05] induces two constraints, one for (blacklisted(alice))[0.05]
and one for (blacklisted(bob))[0.05]. The scope of the first one is blacklisted(alice),
the scope of the second one is blacklisted(bob). However, for the sake of clarity, we
will usually just write the general conditional, but keep in mind that it represents
several constraints.

To reason with probabilistic knowledge bases, we can use the probability
distributions in Mod(KB) to compute (conditional) probabilities for arbitrary
formulas. For instance, given a formula φ, the probabilistic entailment problem
is to derive upper and lower bounds on P (φ) for P ∈ Mod(KB) [11,17,20].
Formally, we want to solve

optP∈Mod(KB) P (φ),
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where opt ∈ {min,max}. The lower bound l and the upper bound u on the
probability of φ, is the result of the minimization an maximization problem,
respectively.

Another way to reason with Mod(KB) is to find a unique probability function
P ∗ ∈ Mod(KB) that optimizes some quality criterion like the entropy. Then one
can use P ∗ directly to compute probabilities for formulas [10,12,21]. However,
if KB is inconsistent, no such probability distribution exists and there is no way
to infer reasonable information with these approaches.

To reason with inconsistent knowledge bases, we can replace Mod(KB) with
a set of probability distributions which satisfy the knowledge base as best as
possible [7,22]. The idea in [22] is to use those probability functions that min-
imally violate the knowledge base. To make this idea more precise, it is useful
to represent linear constraint functions by matrices. To avoid ambiguity in this
representation, we have to impose an ordering on the possible worlds and on the
constraints. Let N = |ΩX | and consider an arbitrary but fixed order x1, . . . , xN

of the worlds in ΩX . Let l be a linear constraint over PX . The constraint matrix
corresponding to l is the (1 × N)-matrix Al which has the entry fl(xj |Yl

) at the
j-th position for 1 ≤ j ≤ N . Let KB be a linear probabilistic knowledge base
over PX , let M = |KB| and consider an arbitrary but fixed order l1, . . . , lM of
the constraints in KB. Then the constraint matrix corresponding to KB is the
(1 × N)-matrix

AKB =

⎛

⎝
Al1

. . .
AlM

⎞

⎠.

To keep our notation simple, we identify probability functions P over ΩX with
column vectors, whose i-th entry is the probability of the i-th world. Then P
satisfies KB iff

AKBP =

⎛

⎝
Al1P
. . .

AlM P

⎞

⎠ =

⎛

⎝

∑
x∈ΩX P (x) fl(x|Y1)

. . .∑
x∈ΩX P (x) fl(x|YM

)

⎞

⎠ =

⎛

⎝
0

. . .
0

⎞

⎠.

Now given a knowledge base KB and some continuous vector norm ‖.‖, we
consider the following minimization problem:

min
P∈PX

‖AKBP‖ (1)

The minimum exists; it is 0 if and only if KB is consistent [22]. In particular,
in the latter case, the minimal solutions are just the models of KB. Conversely,
if KB is inconsistent, the minimal solutions minimally violate KB with respect
to ‖.‖. Therefore, the optimal solutions of (1) are called generalized models of
KB, see [22,23] for more details. Consistent probabilistic reasoning approaches
can be generalized to inconsistency-tolerant probabilistic reasoning approaches
by just replacing the models with the generalized models [23,24].
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3 Linear Priority Knowledge Bases and Priority Models

Now let us get back to our initial problem. We have a knowledge base that con-
tains rules with different levels of priority. Whereas we can assume that the
knowledge base is consistent on each particular level, there can be conflicts
between different levels. We could apply generalized reasoning approaches to
the whole (inconsistent) knowledge base to deduce new information. However,
the results will not necessarily reflect what we want. The reason is that we can-
not define that some rules are more important than others. That is, instead
of overwriting knowledge of low priority with knowledge of higher priority, we
would merge the knowledge independently of the priority.

To overcome this problem, we will partition our knowledge base in subsets
with different priority levels. In order to account for knowledge that has to
be respected independently of the priority, we will also allow a set of integrity
constraints that is guaranteed to be satisfied if it is consistent. We will call a
Priority Knowledge Base valid iff the knowledge on each level is consistent with
the integrity constraints.

Definition 1 (Linear Priority Knowledge Base, Validity). Let X be a
set of random variables. A linear priority knowledge base over X is a tuple
(KB1, . . . ,KBk, IC), where KB1, . . . ,KBk, IC are linear probabilistic knowledge
bases over X . For 1 ≤ i ≤ k, KBi is called the subset with priority i. The
elements in IC are called integrity constraints. k is called the number of priority
levels. (KB1, . . . ,KBk, IC) is called valid iff KBi ∪IC is consistent for 1 ≤ i ≤ k.

Remark 2. Note that validity implies that IC is consistent for otherwise KBi∪IC
is inconsistent for 1 ≤ i ≤ k.

Example 4. Let us continue our running example and consider the priority
knowledge base KB = (KB1,KB2,KB3,KB4,KB5, IC), where

KB1 = {(grantAccess(U,F ))[0], (blacklisted(U))[0.05]}
KB2 = {(grantAccess(U,F ) | employee(U))[0.5],

(blacklisted(U) | employee(U))[0.01]}
KB3 = {(grantAccess(U,F ) | confidential(F ))[0]}
KB4 = {(grantAccess(U,F ) | exec(U))[0.7],

(blacklisted(U) | exec(U))[0.001]}
KB5 = {(exec(alice))[1], (employee(bob))[1], (confidential(file1))[1]}
IC = {(employee(U) | exec(U))[1], (grantAccess(U,F ) | blacklisted(U)(F ))[0]}

On the first level, we define generic knowledge. If no knowledge is available, we
do not want to grant access. Also, we make the assumption that it is rather
unlikely that a user is blacklisted. On the second level, we increase the access
probability and decrease the blacklist probability for employees. On level 3, we
make an exception for confidential files. Afterwards, we further increase access
probability and decrease blacklist probability for executive managers on level 4.
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The last level contains domain knowledge. We know that alice is an executive
manager, bob is an employee and file1 is confidential. Our integrity constraints
state that executive managers are employees and that we do not grant access to
blacklisted users.

We will now make two proposals to define the models of priority knowledge
bases.

3.1 Strict Priority Models

Our first approach is motivated by the desire to guarantee that all rules in the
subset with the highest priority hold. After this goal is achieved, we look at
the next subset successively. That is, we start with the models of our integrity
constraints. Then we successively decrease this set by selecting the best models
with respect to a subset of our priority knowledge base starting with the subset
of highest priority. The following definition describes this approach precisely.

Definition 2 (Strict Priority Models). Let KB = (KB1, . . . ,KBk, IC) be a
linear priority knowledge base over X and let ‖.‖ be some continuous vector
norm. We let

SPModk+1
‖.‖ (KB) = Mod(IC) and

SPModi
‖.‖(KB) = arg min

P∈SPModi+1
‖.‖ (KB)

‖AKBi
P‖ for i = k, . . . , 1.

Let SPMod‖.‖(KB) = SPMod1
‖.‖(KB). The elements in SPMod‖.‖(KB) are called

the strict priority models of KB.

Remark 3. 1. To enhance readability, we usually omit the subscript ‖.‖, but
keep in mind that SPMod(KB) depends on the selected norm.

2. Strict priority models are defined recursively. We let SPModk+1(KB) be the
set of models of our integrity constraints IC. Then we go backwards for
i = k, . . . , 1 and let SPModi(KB) be the set of probability distributions in
SPModi+1(KB) that minimally violate the constraints in KBi.

Before looking at an example, we state some basic results of technical interest.

Lemma 1. Let KB = (KB1, . . . ,KBk, IC) be a linear priority knowledge base
over X and let ‖.‖ be some continuous vector norm. If KB is valid, then

1. SPModi(KB) is non-empty, compact and convex for 1 ≤ i ≤ k + 1.
2. ∅ �= SPMod(KB) = SPMod1(KB) ⊆ · · · ⊆ SPModk(KB).

Proof. 1. First note that validity of KB implies that Mod(IC) �= ∅. In particu-
lar, Mod(IC) is a subset of PX that is defined by linear equality constraints.
Therefore, SPModk+1(KB) = Mod(IC) is also compact and convex. Now we
proceed by induction and show that if SPModi+1(KB) is non-empty, com-
pact and convex, so is SPModi(KB). Continuity of ‖.‖ and compactness of
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SPModi+1(KB) imply that a minimum of arg minP∈SPModi+1(KB) ‖AKBiP‖
exists and that the set of minima (that is, SPModi(KB)) is closed. As a
subset of SPModi+1(KB), SPModi(KB) is also bounded and therefore com-
pact. In particular, the objective function f(x) = ‖AKBix‖ is convex since
‖.‖ is convex (this follow from homogeneity and the triangular inequality for
norms) and the composition of convex and linear functions is convex. This
implies that SPModi(KB) is also convex.

2. Non-emptiness follows from (1), the subset relationships follow from the
definition. �
The practical importance of Lemma 1.1 is that it guarantees the existence

of a minimum if we minimize some continuous function over SPMod(KB) and
that the minimum is unique if the function is also strictly convex. Lemma1.2
is immediate, but is mentioned for emphasis. Given the strict priority models,
Lemma 1.1 allows us to apply the usual reasoning approaches. For instance, we
can compute upper and lower bounds on the probability of formulas [11,17,20] or
select a best strict priority model to compute probability of formulas [10,12,21].

Example 5. Let us compute upper and lower bounds on some formulas for the
knowledge base in Example 4. To keep things simple, we will only ask for the
probability of ground formulas. More strictly speaking, given a ground formula
φ, we want to solve

optP∈SPMod(KB) P (φ),

where opt ∈ {min,max}. Like for the Probabilistic Entailment Problem, the
lower bound l and the upper bound u on the probability of φ, is the result of the
minimization an maximization problem, respectively. We write φ[l, u] to denote
the result. If l ≈ u, we sometimes just write φ[l] to enhance readability. For
instance, we have the following rounded results when using the Euclidean norm
to determine our strict priority models:

grantAccess(alice,file1)[0.7] grantAccess(bob,file1)[0]
grantAccess(alice,file2)[0.7] grantAccess(bob,file2)[0.5]
blacklisted(alice)[0.0001] blacklisted(bob)[0.01].

Recall that alice is an executive manager and that file1 is confidential. Note
that the first query shows that the knowledge about executive managers in KB4

suppresses the knowledge about confidential files in KB3 as desired.

What can we say about strict priority models in general? The following propo-
sition states that valid linear priority knowledge bases always have strict priority
models and that these always satisfy our integrity constraints and the subset with
highest priority.

Proposition 1 (Upmost Consistency). Let KB = (KB1, . . . ,KBk, IC) be a
linear priority knowledge base over X and let ‖.‖ be some continuous vector
norm. If KB is valid, then

∅ �= SPMod(KB) ⊆ Mod(KBk ∪ IC). (2)
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Proof. Since SPMod(KB) = SPMod1(KB), it follows that ∅ �= SPMod
(KB) ⊆ SPModk(KB) from Lemma 1.2. Therefore, it suffices to show that
SPModk(KB) = Mod(KBk ∪ IC) to prove the claim. By validity, KBk ∪ IC is
consistent. Therefore, we have minP∈SPModk+1(KB) ‖AKBk

P‖ = 0 and the mini-
mal elements are models of KBk. In particular, they are also models of IC because
we optimize over SPModk+1(KB). Hence, SPModk(KB) ⊆ Mod(KBk ∪IC). Con-
versely, if P ∈ Mod(KBk∪IC), then AKBk

P = 0 and therefore P ∈ SPModk(KB).
Hence, SPModk(KB) = Mod(KBk ∪ IC), which completes the proof. �
So strict priority models always satisfy the integrity constraints and the rules of
highest priority. In fact, a slightly stronger property holds. If all knowledge bases
from level l up to k are consistent, then the strict priority models are models of
KBl, . . . ,KBk and of IC.

Proposition 2 (Upward Consistency). Let KB = (KB1, . . . ,KBk, IC) be a
linear priority knowledge base over X and let ‖.‖ be some continuous vector
norm. If KB is valid and

⋃k
i=l KBi is consistent, then

SPMod(KB) ⊆ Mod(
k⋃

i=l

KBi ∪ IC). (3)

Proof. Like in the proof of Proposition 1, it suffices to show that SPModl(KB) =
Mod(

⋃k
i=l KBi∪IC). We prove the claim by induction on the difference d = k−l.

For d = 0, i.e., l = k, we proved the claim in Proposition 1. Now suppose that
the claim holds for all natural numbers lower than d and consider

⋃k
i=k−d−1 KBi.

Since
⋃k

i=k−d−1 KBi is consistent by assumption, so is
⋃k

i=k−d KBi and therefore
SPMod(KB)k−d = Mod(

⋃k
i=k−d KBi ∪ IC) by our induction hypothesis. Now,

SPModk−d−1(KB) = arg min
P∈SPModk−d(KB)

‖AKBk−d−1P‖

= arg min
P∈Mod(

⋃k
i=k−d KBi∪IC)

‖AKBk−d−1P‖.

Since,
⋃k

i=k−d−1 KBi is consistent by assumption, we can proceed like in the proof
of Proposition 1 to show that minP∈Mod(

⋃k
i=k−d KBi∪IC) ‖AKBk−d−1P‖ = 0 and to

conclude from this that SPModk−d−1(KB) = Mod(
⋃k

i=k−d−1 KBi ∪ IC). �
The assumption of Proposition 2 will usually be only satisfied for subsets with

high priority. What can we say about subsets with low priority? Intuitively, there
should be at least some guarantees for constraints that are independent of higher
priority levels. Indeed, the following proposition states that if there is a subset of
constraints C ⊆ KBl on level l whose scope is disjunct from the scope of all knowl-
edge bases with level greater than l, than C is still satisfiable on level l + 1.
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Proposition 3 (Upward Independence). Let KB = (KB1, . . . ,KBk, IC) be a
valid linear priority knowledge base over X and let ‖.‖ be some continuous vector
norm. Let C ⊆ KBl for some l < k such that scope(C)∩ scope(

⋃k
p=l+1 KBp) = ∅.

Then
Mod(C) ∩ SPModl+1(KB) �= ∅. (4)

Proof. First note that by validity, Mod(C) �= ∅ (for otherwise KBl and hence
KBl ∪ IC were inconsistent) and SPModl+1(KB) �= ∅. Let Y = scope(C) and let
Z = X \ Y. Let P (1) ∈ Mod(C) and let P

(1)
Y denote the probability distribution

obtained from P (1) by marginalizing out Z. Let P (2) ∈ SPModl+1(KB) and let
P

(2)
Z denote the probability distribution obtained from P (2) by marginalizing out

Y. Then P (y, z) = P
(1)
Y (y)P (2)

Z (z) is a probability distribution over X since for
all assignments x to X , we have P (x) = P

(1)
Y (y)P (2)

Z (z) ≥ 0 and
∑

x P (x) =
∑

y

∑
z P (y, z) = (

∑
y P

(1)
Y (y))(

∑
z P

(2)
Z (z)) = 1. Furthermore, for all c(1) ∈

SPModl+1(KB) with scope scope(c(1)) = Y(1), we have

c(1)(P ) =
∑

y

∑

z

P
(1)
Y (y)P (2)

Z (z) fc(1)(y|Y(1))

= (
∑

z

P
(2)
Z (z))(

∑

y

P
(1)
Y (y) fc(1)(y|Y(1))) = 0,

since P (1) ∈ Mod(c(1)). Hence, P ∈ Mod(C). Analogously, it follows that for all
c(2) ∈ SPModl+1(KB), we have that c(2)(P ) = c(2)(P (2)). But this implies that
also P ∈ SPModl+1(KB) (for P (2) and P yield the same objective value for all
optimization problems) and therefore Mod(C) ∩ SPModl+1(KB) �= ∅. �

So if C is independent of subsets of higher priority, we know that there is
at least one model of C in SPModl+1(KB). However, this does not mean that
a model of C will be in SPModl(KB) because the probability distributions in
Mod(C) ∩ SPModl+1(KB) might strongly violate the remaining constraints in
KBl \ C. This case, however, is only possible if there are dependencies between
C and KBl \ C as explained in the following proposition. In fact, if there are
no such dependencies, then even SPModl(KB) ⊆ Mod(C) holds, i.e., all P ∈
SPModl(KB) are models of C.

Proposition 4 (Level Independence). Let KB = (KB1, . . . ,KBk, IC) be a
valid linear priority knowledge base over X and let ‖.‖ be some continuous vector
norm. Let C ⊆ KBl for some l < k such that Mod(C) ∩ SPModl+1(KB) �= ∅. If
scope(C) ∩ scope(KBl \ C) = ∅, then

SPModl(KB) ⊆ Mod(C). (5)

Proof. For the sake of contradiction, assume that P (l) ∈ SPModl(KB) and that
P (l) �∈ Mod(C). Let Y = scope(C) and let Z = X \Y. Then scope(KBl \C) ⊆ Z
by assumption. Let PC ∈ (Mod(C) ∩ SPModl+1(KB)) and let PC

Y denote the
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probability distribution obtained from PC by marginalizing out Z. Let P
(l)
Z

denote the probability distribution obtained from P (l) by marginalizing out Y.
Just like in the proof of Proposition 3, we can check that P (y, z) = PC(y)P (l)

Z (z)
is a probability distribution over X that coincides with PC for the constraints
in C and that coincides with P (l) for the constraints in KBl \ C. That is,
c(P ) = c(P (l)) for all c ∈ KBl \ C and c(P ) = 0 for all c ∈ C since
PC ∈ Mod(C). This implies in particular that P ∈ SPModl+1(KB). But
since P (l) �∈ Mod(C), there is a c ∈ C such that c(P (l)) �= 0. But this
means that ‖AKBl

P‖ < ‖AKBl
P (l)‖ contradicting P (l) ∈ SPModl(KB) (for then

‖AKBl
P (l)‖ = minP ′∈SPModi+1(KB) ‖AKBiP

′‖). Hence, if P (l) ∈ SPModl(KB),
then P (l) ∈ Mod(C) must also hold. �
Remark 4. Note that by the subset relationships from Lemma 1.2, SPModl

(KB) ⊆ Mod(C) implies that SPMod(KB) ⊆ Mod(C). That is, if the assump-
tions of Upward and Level Independence are satisfied for C, then each strict
priority model of KB will also be a model of C.

3.2 Weighted Priority Models

Even though strict priority models have some nice properties, they cannot guar-
antee that subsets of low priority have any influence on the final outcome of
SPMod(KB) unless they are consistent with or independent of the upper levels.
In fact, in some extreme cases, SPModl(KB) might contain only a single distri-
bution for some l > 1. Then SPModl′(KB) = SPModl(KB) whenever 1 ≤ l′ < l.
In order to allow that each subset of our priority knowledge base has some influ-
ence on the final outcome, let us consider another approach to define models
of prioritized knowledge bases. Instead of considering the subsets successively
based on their priorities, we consider them simultaneously but weigh them with
respect to their priority.

Definition 3 (Weighted Priority Models). Let KB = (KB1, . . . ,KBk, IC)
be a linear priority knowledge base over X , let ‖.‖ be some continuous vector
norm and let w : {1, 2, . . . , k} → R>0 be some monotonically increasing weight
function. We let

WPModw
‖.‖(KB) = arg min

P∈Mod(IC)
‖
⎛

⎝
w(1) · AKB1

. . .
w(k) · AKBk

⎞

⎠ P‖

and call WPModw
‖.‖(KB) the set of weighted priority models of KB.

Remark 5. 1. Again, we omit the superscript w and the subscript ‖.‖ to
enhance readability, but keep in mind that SPMod(KB) depends on both.

2. The symbol · denotes scalar multiplication. Hence, each row in AKBi is mul-
tiplied by w(i).
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WPMod(KB) has the same nice properties like SPMod(KB). The claim follows
from similar arguments like Lemma 1.1, so that we omit the proof.

Lemma 2. Let KB = (KB1, . . . ,KBk, IC) be a linear priority knowledge base
over X and let ‖.‖ be some continuous vector norm. If KB is valid, then
WPMod(KB) is non-empty, compact and convex.

Hence, in particular, WPMod(KB) is always non-empty and by definition a sub-
set of Mod(IC). We emphasize this as a counterpart to Propositions 1 and 2.
Note that we can guarantee only that the integrity constraints are satisfied.

Proposition 5 (Integrity). Let KB = (KB1, . . . ,KBk, IC) be a linear priority
knowledge base over X and let ‖.‖ be some continuous vector norm. If KB is
valid, then

∅ �= WPMod(KB) ⊆ Mod(IC).

Example 6. Let us compute probability bounds like in Example 4, but this time
using weighted priority models. We use again the Euclidean norm and the weight
function w(p) = 2 ·p (in theory, we might have used the identity function as well,
but it caused numerical problems). This yields the following rounded results:

grantAccess(alice,file1)[0.44] grantAccess(bob,file1)[0.14]
grantAccess(alice,file2)[0.63] grantAccess(bob,file2)[0.4]
blacklisted(alice)[0.005] blacklisted(bob)[0.018].

The fact that the access probability for file2 is significantly lower for alice than
for bob indicates that all levels have been taken into account. However, given the
access probability of alice for file1, one might argue that the lower levels have too
much influence (alice being an executive manager should weigh stronger than
file1 being confidential). To increase the weight of the upper priority levels, let
us consider a non-linear weight function. We let w(p) = 10p−1 for 1 ≤ p ≤ 5.
This yields the following rounded results:

grantAccess(alice,file1)[0.693] grantAccess(bob,file1)[0.005]
grantAccess(alice,file2)[0.7] grantAccess(bob,file2)[0.5]
blacklisted(alice)[0.001] blacklisted(bob)[0.01].

There is still a minor decrease in the access probability of alice for file1, but
overall the results are very close to what one might expect when looking at the
priority knowledge base from Example 4.

There is probably no immediate counterpart to the independence properties
of strict priority models if we do not make any restrictions on the weight function.
In fact, the whole point of weighted priority models is to allow that each subset of
the knowledge base influences the outcome, so that we should not expect strong
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independence properties between priority levels. We might prove some weaker
independence properties which do not make use of the priorities, but we leave
this for future work.

3.3 Implementations

Probabilistic Entailment with strict and with weighted priority models has been
implemented in the Java library Log4KR1. The optimization problems are solved
by OjAlgo2. You can find the source code and some source examples in the
subdirectory

edu.cs.ai.log4KR.structuredLogics.priorityReasoning

of the corresponding directories. Note that numerical problems might cause odd
results.

4 Related Work

If we consider a trivial priority knowledge base consisting only of a single sub-
set with priority 1 and do not demand that this subset is consistent, both the
strict and the weighted priority models correspond to the generalized models
from [22–24]. In this sense, prioritized reasoning generalizes generalized reason-
ing approaches from [23,24]. Generalized reasoning, in turn, generalizes common
probabilistic reasoning [10–12,17,20,21] in the sense that the generalized models
are the usual probabilistic models if the knowledge base is consistent.

Daniel generalized probabilistic models in a similar way and called his gen-
eralization the best candidates [7]. To define best candidates, he identified linear
constraint functions with the hyperplanes corresponding to their solution sets.
Given a probability function P and a linear constraint c, he defined the gap
between P and c as the Euclidean distance between P and the hyperplane cor-
responding to c. The best candidates can then be defined as the solution set

arg min
P∈PX

∏

c∈R
h(

√
2n gap(P, c)),

where h is some strictly decreasing, (strictly) positive and continuous log-concave
function such that h(0) = 1, see [7], Definition 13. The best candidates satisfy
similar nice properties like the generalized models, namely they form a compact
and convex set, which corresponds to the usual models if R is consistent. Daniel
considered only reasoning with the best candidate having maximum entropy,
but, in principle, the best candidates can also be applied to other probabilistic
reasoning approaches.

Figure 1 illustrates the relationships between the different notions of models.

1 https://www.fernuni-hagen.de/wbs/research/log4kr/index.html.
2 http://ojalgo.org/.

https://www.fernuni-hagen.de/wbs/research/log4kr/index.html
http://ojalgo.org/
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Fig. 1. Generalizations of Probabilistic Models: Generalized Models and Best Candi-
dates generalize Probabilistic Models. Strict and Weighted Priority Models generalize
Generalized Models (see Sect. 4 for details).

5 Conclusions

We proposed two methods to reason with linear probabilistic knowledge bases
with priorities. Strict priority models provide some nice guarantees. The rules
with highest priority are guaranteed to be satisfied; the same is true for rules with
lower priority if they are consistent with or independent of higher priority levels.
However, high priority rules can be so restrictive that low priority rules become
meaningless. In such cases, weighted priority models can be more appropriate.
If we make no restrictions on the weight function, they can only guarantee that
the integrity constraints are satisfied. However, sometimes this is just what we
want to guarantee that even low priority rules are taken into account.

Our results hold for linear probabilistic knowledge bases in general. These
arise naturally from different probabilistic logics, see, e.g., [9,10,14,20] for some
examples beyond our simple relational language. In fact, the results can be gen-
eralized to inequality constraints by just introducing slack variables as done in [8]
for generalized models. Inequality constraints are, indeed, desirable to allow
imprecise probabilities like in [9,17–19]. However, since the notation becomes
more cumbersome, we did not consider inequality constraints here.

We also did not discuss computational aspects. However, note that we can
apply similar ideas like in [23,24] to show that several interesting reasoning
problems for priority knowledge bases can be solved by convex programming
techniques. For instance, computing upper and lower bounds on the probability
of formulas corresponds to a convex program. If we restrict to p-Norms, the prob-
lem remains convex if we allow conditional probabilities and becomes quadratic
for p = 2 and linear for p = 1,∞.
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Abstract. An approach to classification, based on a formal modeling of
analogical proportions linking the features of 4 items, has been recently
shown to be surprisingly successful on difficult benchmarks. Analogi-
cal proportions are homogeneous logical proportions. Homogeneous here
refers both to the structure of their logical expression and to the speci-
ficity of their truth tables. In contrast, heterogeneous proportions express
that there is an intruder among 4 truth values, which is forbidden to
appear in a specific position. The 2 types of proportions are of an oppo-
site nature. However heterogeneous proportions can also be considered
as a basis for classification by considering that a new item can be added
to a class only if its addition leaves the class as even as possible: the
new item should rarely be an intruder with respect to any triple of items
known to be in the class. Experiments show that this new evenness-based
classifier gets good results on a number of representative benchmarks. Its
accuracy is both compared to the ones of well-known classifiers and to
previous analogy-based classifiers. A discussion investigates on what type
of particular benchmarks the evenness-based classifiers outperform the
analogical ones and when it is the opposite.

1 Introduction

It has been acknowledged for a long time that proportions play an important
role in our perception and understanding of reality. Indeed proportions are a
matter of comparisons expressed by differences or ratios that are equated to
other differences or ratios. Two centuries ago, Gergonne [4,5] was the first to
explicitly relate numerical (geometric) proportions to the ideas of interpolation
and regression.

It is only in the last decade that analogical proportions, i.e., statements of
the form A is to B as C is to D, where each capital letter refers to a situation
described by a vector of feature values, have been formalized first in terms of
subsets of properties that hold true in a given situation [6,15], and then in a
logical manner [9]. Quite early, it was shown that a formal view of analogical
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proportions may be the basis of a new type of classifier that performs well on
some difficult benchmarks [1,8]. This was confirmed by other implementations
directly based on a logical view of analogical proportions [3].

Besides, it was shown that analogical proportions belong to a larger family
of so-called logical proportions that relate a 4-tuple of Boolean variables [11],
where the 8 logical proportions that are code-independent are of particular inter-
est since their truth status remain unchanged if a property is encoded positively
or negatively. These 8 logical proportions divide into 4 homogeneous propor-
tions, which include the analogical proportion and 3 related proportions, and 4
heterogeneous proportions [14]. A heterogeneous proportion expresses the idea
that there is an intruder among the 4 truth values, which is forbidden to appear
in a specific position. Intuitively speaking, an item properly assigned to a class
should not be (too much) an intruder in this class. It suggests that heteroge-
neous proportions may be also of interest as a basis for designing a new type of
classifier. This is the topic of the paper.

The paper is organized as follows. The next section provides the necessary
background on logical proportions, introducing the two types of proportions:
the homogeneous ones and the heterogeneous ones, by especially emphasizing a
code independency property. In Sect. 3, new results are established that single
out these proportions in terms of permutations, of parity in the structure of
their truth tables, and of unicity of the solution in an equation solving process.
These particular features are meaningful when it comes to classification, and
prepare the ground for Sect. 4 where heterogeneous proportions are extended to
a logical formula defining evenness. This formula paves the way for Sect. 5 where
an evenness measure is defined, quantifying the way a new item conforms with
a set of existing items. This measure relies on a heterogeneous proportion: it is
all the larger as the item is not an intruder with respect to any triple of items
known to belong to the class. In Sect. 5, an evenness-based classifier is proposed,
with two implementation options. Results on classical benchmarks are reported
and analyzed in Sect. 6. They are also compared with both standard classifiers
and analogical proportion-based classifiers. In spite of a very simple underlying
formal framework, evenness-based classifiers appear to perform well on a number
of benchmarks.

2 Logical Proportions: A Brief Overview

Logical proportions have been defined and studied in [13]: they are in some
sense a Boolean counterpart to numerical proportions. They involve 4 items.
Considering 2 Boolean variables a and b representing a given feature attached
to 2 items A and B, a∧ b and a∧ b indicate that A and B behave similarly w.r.t.
the given feature (they are called “similarity” indicators), a ∧ b and a ∧ b the
fact that A and B behave differently (they are called “dissimilarity” indicators).
When we have 4 items A,B,C,D, for comparing their respective behavior in a
pairwise manner, we are led to consider logical equivalences between similarity,
or dissimilarity indicators, such as a ∧ b ≡ c ∧ d for instance.



Evenness-Based Reasoning with Logical Proportions 141

Definition 1. A logical proportion T (a, b, c, d) is the conjunction of two equiv-
alences between indicators for (a, b) on one side and indicators for (c, d) on the
other side.

For instance, ((a∧ b) ≡ (c∧d))∧ ((a∧ b) ≡ (c∧d)) is a logical proportion. It has
been established that there are 120 syntactically and semantically distinct logical
equivalences. There are two ways for distinguishing remarkable subsets among
the 120 proportions: either by investigating their structure, or by investigating
their semantics (i.e. their truth table). In this section, we shall see that both
investigations lead to the same conclusion: there are two groups of 4 proportions
which stand out of the crowd.

A property which appears to be paramount in many reasoning tasks is code
independency: there should be no distinction when encoding information posi-
tively or negatively. In other words, encoding truth (resp. falsity) with 1 or with
0 (resp. with 0 and 1) is just a matter of convention, and should not impact the
final result. When dealing with logical proportions, this property is called code
independency and can be expressed as

T (a, b, c, d) =⇒ T (a, b, c, d)

From a structural viewpoint, remember that a proportion is built up with a pair
of equivalences between indicators chosen among 16 equivalences. So, to ensure
code independency, the only way to proceed is to first choose an equivalence
then to pair it with its counterpart where every literal is negated: for instance
a ∧ b ≡ c ∧ d should be paired with a ∧ b ≡ c ∧ d in order to get a code
independent proportion. This simple reasoning shows that we have only 16/2 =
8 code independent proportions whose logical expressions are given below.

A:((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

R:((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

P:((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

I: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

H1: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

H2: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

H3: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

H4: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

Only 4 among these proportions make use of similarity and dissimilarity indi-
cators without mixing these types of indicators inside one equivalence: for this
reason, these 4 proportions A,R, P, I are called homogeneous proportions. For
instance, an informal reading of A would be: “a differs from b as c differs from
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d and vice versa.” This expresses the meaning of an analogical proportion, i.e.,
a statement of the form “a is to b as c is to d”. In some sense, A is a qualita-
tive form of comparison of differences, reminiscent to the concept of derivative
where we study the ratio f(a)−f(b)

a−b with f(a) = c and f(b) = d, which is close to
numerical proportions.

Obviously, we can permute the variables and check, for instance, if a given
proportion still holds when permuting the 2 first variables. We denote pij the
permutation of variable in position i with variable in position j. For instance p14
permutes the variables in extreme positions 1 and 4 while p23 permutes variables
in mean positions. And p12(a) = b, p12(b) = a, p12(c) = c, p12(d) = d.

Definition 2. A proportion T is stable w.r.t. permutation pij iff

T (a, b, c, d) =⇒ T (pij(a), pij(b), pij(c), pij(d))

It can be checked that A is stable w.r.t. the extremes p14 or the means p23
permutations. This is observable on the truth tables (see Table 1, where only the
patterns that make the logical proportion true appear).

In fact, R and P are closely related to A via permutations. Namely we have

A(a, b, c, d) ≡ P (a, d, c, b) ≡ R(a, b, d, c)

R and P enjoy other types of permutation stability which are easily deducible
from the permutation properties of A. Besides, I is the only logical proportion
that is stable w.r.t. any permutation of two of its variables. This last, remarkable
result is proved in [12].

In fact, when d is fixed, exchanging the variables a, b, c amounts to move from
one homogeneous proportion to another, with I remaining an exception. Thus
A,R, P collectively maintain a form of exchangeability property with respect to
a, b, c, while I ensures it by itself. These exchangeability properties are of par-
ticular interest when applying homogeneous logical proportions to classification.

The 4 remaining code independent logical proportions H1,H2,H3,H4 are
called heterogeneous proportions: it is clear that they mix similarity and dissim-
ilarity indicators inside each equivalence. The index i in Hi refers to a position
inside the formula Hi(a, b, c, d). The truth tables for code independent propor-
tions are shown below where only the patterns leading to 1 (which make the
logical proportion true) are given.

In the following section, we investigate new results, focusing on the hetero-
geneous proportions.

3 Specificity of Heterogeneous Proportions

In order to get a clear understanding of the heterogeneous proportions and to
extract relevant properties, we now investigate their truth tables.
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Table 1. Homogeneous/heterogeneous proportions valid patterns

A R P I H1 H2 H3 H4

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0

0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1

1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0

0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1

1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0

3.1 Heterogeneity and Exchangeability

When observing the truth table of the heterogeneous proportions in Table 1, an
obvious semantics appears: Hi holds when there are exactly 3 parameters with
identical Boolean values (=1 for example) and the parameter in position i is one
of these identical values.

Definition 3. Given 4 Boolean values a, b, c, d in this order such that 3 of them
are identical and the remaining one is different, the position i ∈ [1, 4] of this
remaining value is called the intruder position or the intruder for brevity.

Then, Hi holds iff there is an intruder among the 4 values a, b, c, d and this
intruder is not at position i. This suggests that Hi should be stable w.r.t. the
permutations which do not affect position i. In fact a little bit more can be
established:

Property 1. Apart from I, Hi are the only logical proportions stable w.r.t any
permutation which does not affect position i.

The special case of I which satisfies any permutation has been already men-
tioned [13]. In Table 1, we can check that the Hi’s are stable w.r.t. the per-
mutations which do not affect position i. Showing that they are the only ones
among the 120 logical properties to this permutation property requires a tedious
checking procedure that cannot be summarized here.
Property 1 is quite satisfactory and confirms the informal semantics of Hi. It
will be useful when applying heterogeneous proportions to classification. In the
next subsection, we establish some results about the parity of the number of
1 or 0 in truth tables for heterogeneous proportions, which are contrasted with
homogeneous proportions. This leads to a model of oddity and non oddity (or
evenness) of a given value, among a set of 4 values.

3.2 Parity of the Number of 1 or 0 in Tables

Since logical proportions are Boolean formulas involving 4 variables, their truth
tables have 16 rows, where only 6 lead to 1 (see [13] for a complete investigation).
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One could ask if any truth table having 6 lines leading to 1 and 10 lines leading
to 0 corresponds to a logical proportion. A simple numbering argument shows
that this is not the case. On top of that, we can build classes of patterns which
cannot be valid for any proportion:

Property 2. A logical proportion can satisfy
neither the class of valuation {0111, 1011, 1101, 1110}
nor the class {1000, 0100, 0010, 0001}.

Proof: An equivalence between indicators is of the form l1 ∧ l2 ≡ l3 ∧ l4. If
this equivalence is valid for {0111, 1011}, it means that its truth value does
not change when we switch the truth value of the 2 first literals from 0 to 1:
there are only 2 indicators for a and b satisfying this requirement: a ∧ b and
a ∧ b. If this equivalence is still valid for {1101, 1110}, its truth value does not
change when we switch the truth value of the 2 last literals from 0 to 1: there
are only 2 indicators for c and d satisfying this requirement: c ∧ d and c ∧ d.
Then the equivalence l1 ∧ l2 ≡ l3 ∧ l4 is just a ∧ b ≡ c ∧ d, a ∧ b ≡ c ∧ d,
a∧ b ≡ c∧ d or a∧ b ≡ c∧ d. None of these equivalences satisfies the whole class
{0111, 1011, 1101, 1110}. Same reasoning for the other class. ��
Applying a similar reasoning, we can build other non satisfiable classes of pat-
terns:

Property 3. A logical proportion cannot satisfy a class of 4 patterns including
3 patterns of one of the previous classes appearing in Property 2 and where the
4th pattern is just the negation componentwise of the remaining pattern of the
class.

For instance, there is no logical proportion valid for {0111, 1011, 1101, 0001} or
for {0111, 0100, 1101, 1110}. This remark helps establishing the following result:

Property 4. Heterogeneous proportions are the only proportions whose valid
patterns have only an odd number of 1.

Proof: From the truth tables, we observe that the only valid patterns for hetero-
geneous proportions have an odd number of 1. Let us now consider a proportion
whose the 6 valid patterns carry an odd number of 1. As there are exactly 8
patterns with an odd number of 1, and thanks to the previous property, this
proportion includes necessarily 3 patterns from each of the previous classes. If
the valid patterns in one class are obtained from the valid patterns from the
other class just by negating all the variables, the proportion is code indepen-
dent and then, it is a heterogeneous proportion. In the opposite case, it means
that we have at least one pattern in the first class with no negated counter-
part in the other class: for instance, 1110, 1101, 1011 are valid but 0001 is not
a valid pattern, leaving only 1000, 0100, 0010 to complete the truth table of a
logical proportion. Property 3 applies telling that there is no proportion valid
for 1110, 1101, 1011, 1000. ��
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A similar property holds for homogeneous proportions:

Property 5. Homogeneous proportions are the only proportions whose valid
patterns have only an even number of 1.

Ultimately, we may consider that homogeneous proportions denote evenness
while heterogeneous ones denote oddity. We now show the specificity of het-
erogeneous (and homogeneous) proportions from a reasoning point of view.

3.3 Inference and Univocal Proportions

There is a way to infer unknown properties of a partially known object D starting
from the knowledge we have about its other specified properties, and assuming
that a logical proportion T holds componentwise with three other objects A, B,
C, also represented in terms of the same n Boolean features. This can be done
via an induction principle that can be stated as follows (where J is a subset of
[1, n], and xi denotes the truth value of feature i for object X ∈ {A,B,C,D}):

∀i ∈ [1, n] \ J, T (ai, bi, ci, di)
∀i ∈ J, T (ai, bi, ci, di)

This can be seen as a continuity principle assuming that if it is known that a
proportion holds for some attributes, this proportion should still hold for the
other attributes. It generalizes the inference principle used with the analogi-
cal proportion [12,15] for prediction and classification purposes. From a strict
logical viewpoint, this inference rule is unsound as there is no guarantee that
the conclusion holds when the premisses hold. Nevertheless, specially when the
ratio |J|

n is close to 1, which means that proportions hold on a large number of
attributes, it is natural to consider that such a proportion may also hold on the
small number of remaining attributes.

This principle requires the unicity of the solution of equation T (a, b, c, x) = 1
where x is unknown, when it exists. Namely, given 3 Boolean values a, b, c, we
want to determine for what logical proportion T the equation T (a, b, c, x) = 1 is
solvable, and in such a case, if the solution is unique.

Definition 4. A proportion T will be called 4-univocal iff, when the equation
T (a, b, c, x) = 1 is solvable, the solution is unique. In a similar manner, one may
define proportions that are 1, 2, or 3-univocal. T is univocal when it is i-univocal
for every i ∈ [1, 4].

First of all, it is easy to see that there are always cases where the equation
T (a, b, c, x) = 1 has no solution. Indeed, the triple a, b, c may take 23 = 8 values,
while any proportion T is true only for 6 distinct valuations, leaving at least
2 cases with no solution. For instance, when we deal with H4, the equations
H4(0, 0, 0, x) and H4(1, 1, 1, x) have no solution.

We have the following result:

Property 6. The homogeneous and the heterogeneous proportions are the only
proportions which are univocal.
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Proof: From the truth tables, we see that the 2 types of proportions satisfy the
property. Now, a proportion which is not i-univocal is necessarily valid both
for a pattern with an odd number of 1, and for a pattern with an even num-
ber of 1. Then, properties 4 and 5 exclude homogeneous and heterogeneous
proportions. ��

This shows how it would be possible to generate an object which is not an
intruder with respect to three other objects.

4 Evenness via Heterogeneous Proportions

Since oddity, captured via heterogeneous proportions, is the opposite concept of
evenness, there is a way to define evenness via heterogeneous proportions only.
We investigate a way to do it in the next subsection.

4.1 A Proportion-Based Definition of Evenness

Let us recall the semantics of Hi: Hi holds iff there is an intruder among a, b, c, d
and the parameter in position i is not this intruder. As a consequence, Hi implies
that there is a majority of values among (a, b, c, d) and the value in position i
conforms to the majority of values appearing among the 3 other positions (i.e. the
set of values {a, b, c, d} is more or less even). But the reverse implication does not
hold since when the 4 parameters have identical value, ∀i ∈ [1, 4],Hi(a, b, c, d)=0.
Then, to have a concise Boolean definition for “there is a majority of values
among the parameters a, b, c, d and the parameter in position i belongs to this
majority of values”, we need to consider the case where all the values are identical
by using the following formula:

Eveni(a, b, c, d) =def Hi(a, b, c, d) ∨ Eq(a, b, c, d)

where Eq(a, b, c, d) =def (a = b) ∧ (a = c) ∧ (a = d). Thus, with Eveni we take
into account the special case where all the values are equal. The truth table of
Even4 is given in Table 2. It is clear that Even4 holds only when the value of d
belongs to a majority of the parameter’s values. And does not hold in an opposite
situation where there is no majority of values as it is the case for Even4(0011)
or Even4(0110). From a practical perspective, when we have 3 Boolean values
a, b, c, there is necessarily a value which constitutes a majority. In that case,
when adding a new value d, Even4(a, b, c, d) can act as the flag indicating that
d conforms to this majority, or if we prefer that adding d to the set a, b, c does
not break the evenness of it. Note that Even4(a, b, c, d) does not depend on the
ordering of a, b, c.

4.2 Dealing with Missing Values

Missing information is quite common in real life datasets and a way to extend
the semantics of analogical proportion to deal with this issue has been deeply
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Table 2. H4, Eq and Even4 truth values

H4 Eq Even4

0 0 0 0 0 1 1

0 0 0 1 0 0 0

0 0 1 0 1 0 1

0 0 1 1 0 0 0

0 1 0 0 1 0 1

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 1 1 1 0 1

1 0 0 0 1 0 1

1 0 0 1 0 0 0

1 0 1 0 0 0 0

1 0 1 1 1 0 1

1 1 0 0 0 0 0

1 1 0 1 1 0 1

1 1 1 0 0 0 0

1 1 1 1 0 1 1

investigated in [14] for instance. In fact, such an approach can be also applied
here, as explained now.Let us focus on Even4. Still keeping a logical app-
roach and considering that ? denotes a missing value (i.e. an information is
unknown), the idea is to extend the truth table of the Even4 formula as follows:
Even4(?, 0, 0, 0) = Even4(0, ?, 0, 0) = Even4(0, 0, ?, 0) = 1, Even4(?, 1, 1, 1) =
Even4(1, ?, 1, 1) = Even4(1, 1, ?, 1) = 1, and Even4(x, y, z, t) = 0 for any other
pattern including at least a missing value ?. It is clear that, with the 6 first
patterns, whatever the candidate value of the missing feature, the 4th argument
belongs to the majority and cannot be an intruder. In all the remaining cases,
where we have no certainty regarding the status of d, we adopt a cautious behav-
iour by considering that Even4 does not hold. Note that, we are only dealing
with Boolean data in this paper. An extension to numerical data is under work
and we do not deal with dataset involving uncertain data in that context.

5 An Evenness-Based Classifier

Homogeneous proportions have been successfully used for classification purposes
in the past ([1,3,10]). As classification is at most a matter of heterogeneity as a
matter of homogeneity, it is quite natural to investigate the use of heterogeneous
proportions for such tasks applying the following principle: A new item can join
a class if it does not appear odd in this class. Obviously, to encode real life data,
it is more realistic to use Boolean vectors instead of simple Boolean values. Thus,



148 M. Bounhas et al.

we need a way to measure evenness for Boolean vectors. Let us investigate how
heterogeneous proportions thanks to the Boolean formula Eveni can help us to
design such a measure.

5.1 Evenness Measure for Boolean Vectors

To measure to what extent a vector
−→
d conforms to a set of three other vectors−→a ,

−→
b ,−→c , it is quite natural to consider the number

m(−→a ,
−→
b ,−→c ,−→d ) =def Σn

i=1Even4(ai, bi, ci, di) ∈ [0, n]

(for sake of the simplicity, we still keep the notation Even4 for the formula
and its truth value). When m(−→a ,

−→
b ,−→c ,−→d ) = n, there does not exist a feature

where
−→
d behaves as an intruder. Then, it is acceptable that

−→
d joins the club of

a, b, c (where a, b, c is a proper sampling). Clearly, the bigger m(−→a ,
−→
b ,−→c ,−→d ), the

larger the number of features for which
−→
d conforms to the majority in −→a ,

−→
b ,−→c ,

the better
−→
d conforms to vectors −→a ,

−→
b ,−→c . Measuring to what extent a vector−→

d conforms to a whole set S of vectors, can be done via the previous definition
m(−→a ,

−→
b ,−→c ,−→d ). We compute m(−→a ,

−→
b ,−→c ,−→d ) for every distinct (to take into

account exchangeability) triple (−→a ,
−→
b ,−→c ) in S3, made of distinct elements, then

we add all these numbers to get a clear evenness-measure as follows:

Even(S,
−→
d ) = Σ−→a ,

−→
b ,−→c ∈S

m(−→a ,
−→
b ,−→c ,−→d ).

The final result belongs to [0, n · (|S|
3

)
].

5.2 Algorithm

Given a class C having some homogeneity, adding to this class the new item−→
d to be classified may perturb the homogeneity or evenness: in other words,
C ∪ {−→

d } may be less homogeneous or less even than C itself. Being able to
measure this evenness leads to a quite natural classification principle: allocate
to

−→
d the label corresponding to the class maximizing the evenness when

−→
d is

added. The previous section provides a clear evenness measure of
−→
d w.r.t. a class

C as Even(C,−→d ). Obviously we have to take into account the relative size of the
different classes C. Then it would be fair to introduce a normalization factor:

– To consider the number of triples available as an increasing function of |C|,
we have to divide the actual evenness measure by

(|C|
3

)
which, for large values

of |C|, has |C|3 as order of magnitude,
– To acknowledge the fact that, in case of equal evenness measure, we should

favor the largest class: in some sense, we have to multiply the actual even-
ness measure by a factor proportional to |C|, leading to a factor 1

|C|2
instead of 1

|C|3 .
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But, so it is relevant to consider the normalized version of Even, norm-Even
as:

norm-Even(C,−→d ) =
1

|C|2Even(C,−→d )

This leads to the following procedure which has been implemented in the
Algorithm 1 below, where

−→
d is a new item to be classified:

1. For each class (or label) C, compute norm-Even(C,−→d ).
2. Allocate to

−→
d the label argmaxC norm-Even(C,−→d )

To optimize the computation, we have at least two options :

– In order to better control the meaning of norm-Even(C,−→d ) (which has to be
maximized), we may focus on triples for which

−→
d is an intruder for at most

n − l features, where l = 0, 1, · · · . Instead of keeping all the triples, we can
just choose a threshold l ∈ [0, n], then consider m(−→a ,

−→
b ,−→c ,−→d ) only for the

triples (−→a ,
−→
b ,−→c ) in C3 such that m(−→a ,

−→
b ,−→c ,−→d ) ≥ l, i.e. we want Even to

hold over at least l features. This leads to a modified definition of evenness
measure as below:

norm-Evenl(C,−→d ) =
1

|C|2 Σ−→a ,
−→
b ,−→c ∈Ss.t.m(−→a ,

−→
b ,−→c ,

−→
d )≥l

m(−→a ,
−→
b ,−→c ,−→d )

– In terms of structural complexity, the initial function norm-Even(C,−→d ) is in
O(|C|3) just because we look for triples of elements. In order to reduce the com-
plexity, we can filter the triples (−→a ,

−→
b ,−→c ) by choosing −→c to be a neighbour

(in the sense of Hamming distance) of
−→
d . So the normalization factor is now

C instead of |C|2 which lead to a more tractable function k-norm-Even(C,−→d )
which is square in the size of the sample set.

k-norm-Even(C,−→d ) =
1
|C|Σ−→a ,

−→
b ,−→c ∈Cm(−→a ,

−→
b ,−→c ,−→d )

where −→c is among the k nearest neighbours of
−→
d .

Obviously, mixing the 2 optimizations leads to k-norm-Evenl(C,−→d ):

k-norm-Evenl(C,−→d ) =
1
|C|Σ−→a ,

−→
b ,−→c ∈Ss.t.m(−→a ,

−→
b ,−→c ,

−→
d )≥l

m(−→a ,
−→
b ,−→c ,−→d )

where −→c is among the k nearest neighbours of
−→
d . The previous procedure can

now be described with the pseudo-code of Algorithm 1. Algorithm 1 can deal
with missing values thanks to the extension of Sect. 4.2.

It is clear that l and k are parameters to be tuned and we experiment with
different values in the next section. We have also implemented another way to
predict labels for the new comer

−→
d . We consider separately each −→c among
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Algorithm 1. Evenness-based algorithm
Input: a training set TS of examples z = (x, cl(x))
a threshold l ∈ [0, n] � n is the number of attributes
an integer k ≥ 1

a new item
−→
d ,

Partition TS into sets C of examples having the same label cl. � cl is the label of
the class C
for each C do

Compute k-norm-Evenl(C,
−→
d )

end for � we get a list of integer

cl(
−→
d ) = argmaxlabel(C){k-norm-Evenl(C,

−→
d )}

return cl(
−→
d )

the k nearest neighbours, and combine −→c with pairs (−→a ,
−→
b ) in each subset C,

this leads to compute k-norm-Evenl(C,−→d ) for each class and get a class label
corresponding to this nearest neighbour −→c (by choosing the maximum value).
Finally we apply a majority vote among all class labels obtained for different
neighbours k. We refer to this procedure as Algorithm 2 (with vote).

6 Experimentations and Discussion

The experimental study is based on several data sets selected from the U.C.I.
machine learning repository [7], focusing on classification problems with cate-
gorical attributes only:

- Balance and Car are multiple classes datasets.
- TicTacToe, Voting, Spect, Monk1, Monk2 and Monk3 datasets are binary

class problems.
- Monk3 has noise added (in the training set only).
- Voting and Spect datasets contain only binary attributes. Voting dataset

contains missing attribute values.

For all categorical (non binary) attributes where the range of attribute values is
finite, but greater than 2, we apply the following procedure to convert them into
Boolean attributes. Considering an attribute domain {v1, · · · , vm}, we can bina-
rize it by means of the m properties “having or not value vi”. For instance, a tri-
valued attribute having candidate values v1, v2, v3, can respectively be encoded
as 100, 010, 001. It means, in that case, that, e.g.,110 does not represent a value
and will never appear in the dataset.

These data sets are described in Table 3.
Table 4 provides accuracies results for the two evenness-based classifiers

obtained with a 10-fold cross validation and for two values of k and l (k being
the number of nearest neighbors of d, l refers to the number of attributes j of d
such that dj belongs to a majority). The best results are in bold.
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Table 3. Description of datasets

Datasets Instances Nominal Att. Binary Att. Classes

Balance 625 4 20 3

Car 743 6 21 4

TicTacToe 405 9 27 2

Voting 435 - 16 2

Spect Heart 267 - 22 2

Monk1 432 6 15 2

Monk2 432 6 15 2

Monk3 432 6 15 2

Table 4. Accuracy results for the two classifiers

Datasets Without vote With vote

k � = n � = n − 1 � = n � = n − 1

Balance 5 83.06±3.43 88.02±1.11 85.43±1.58 89.17 ± 2.15

11 84.16±2.64 86.88±2.11 86.7±2.6 88.82±2.23

Car 5 91.96±2.71 90.64±4.38 92.73±3.44 89.88±2.78

11 92.23±2.89 91.31±4.46 92.33±3.2 90.56±2.54

TicTac 5 84.51±5.37 88.21±4.24 86.7±5.28 89.16±4.27

11 85.97±5.31 89.43±4.17 86.72±5.01 89.16±4.12

Voting 5 95.17±2.66 95.16±3.03 95.38±2.1 95.38±2.1

11 95.17±2.66 95.16±3.03 95.83±2.06 95.83±2.06

Spect 5 84.34±3.98 76.57±5.96 83.94±4.49 78.31±2.47

11 84.34±3.98 77.63±4.32 83.17±4.94 77.53±2.84

Monk1 5 100 100 100 99.35±1.96

11 100 100 100 99.56±1.3

Monk2 5 57.85±4.9 61.79±4.66 59.05±3.47 66.68±1.28

11 62.02±4.44 64.11±4.12 65.29±3.18 66.9±0.85

Monk3 5 100 99.3±1.49 100 99.31±1.5

11 100 99.3±1.49 100 99.07±1.56

We compare evenness-based classifiers to well-known classifers in Table 5, includ-
ing SVM, k-Nearest Neighbors IBk for k=1, k=10 and JRip an optimized propo-
sitional rule learner. Accuracy results for SVM, IBk and JRip are obtained by
applying the free implementation of Weka software. The column Analogy in
Table 5 refers to the results obtained with [3] with the Boolean coding.
When we analyze results in Table 4, we can see that:
• In general, the best classification rates are obtained for l = n. This means that
the classifier is likely to be more accurate when the classification is made on the



152 M. Bounhas et al.

Table 5. Classification results of well-known classifiers

Datasets SVM IBk JRIP Analogy Algo2

(k=1, k=10) (k=11,l=n)

Balance 90 83, 83 76 87 87

Car 91 92, 92 91 94 92

TicTac 100 98, 93 95 100 87

Voting 96 93, 92 95 78 96

Spect 81 75, 81 81 41 83

Monk1 75 100, 100 98 99 100

Monk2 67 44 , 64 73 99 65

Monk3 100 100, 99 100 99 100

basis of triples w.r.t. which d is not an intruder for any attributes. However, for
some datasets such as Balance and Monk2, the classifier needs to consider more
levels l when it is difficult to satisfy the constraint m(−→a ,

−→
b ,−→c ,−→d ) ≥ l for l = n

or even l = n−1. Thus, we also tested smaller levels of l and for “Balance” data
set, we get an accuracy equal to 90.13 ± 1.95 for l = n − 3.
• The classification success of the classifier for Balance, and Car (which have
multiple classes) demonstrates its ability to deal with multiple class data sets.
• The two “evenness”-based classifiers (Algorithms 1 and 2), with or without
vote, exhibit similar results, with the exception of “Balance” and “Monk2” where
Algorithm 2 is slightly better.
• Table 5 highlights the fact that the proposed classifier performs more or less
in the same way as the best known algorithms. Especially, the basic classifier,
with large k works as well as any other classifiers for data sets Balance (for
l = n − 3), Spect., Voting, Monk1 and Monk3 (for l = n). We can also see that
“evenness”-based classifiers work as well as IBk for all datasets except Tic Tac
Toe.
• If we compare the “evenness”-based classifiers with an analogical proportion-
based classifier [3], we first noticed that both algorithms exhibit very good results
for data sets Balance, Car, Monk1 and Monk3 when compared to the state of
the art ML algorithms like IBK or SVM.
• However, “evenness”-based classifiers seems to be less efficient when classifying
Monk2 and Tic Tac Toe data sets. Regarding Monk2, it is known that the under-
lying function (“having exactly two attributes with value 1”) is more complicated
than the functions underlying Monk1 and Monk3, and involves all the attributes
(while in the two other functions only 3 attributes among 6 are involved in the
discrete coding). We suspect that the existence of a large discontinuity in the
classification of data (a nearest neighbor d of c will not generally be labeled
with the same class cl(c)) may be too difficult to apprehend using heterogeneous
proportions. For Tic Tac Toe, we also notice that all attributes are involved in
the classification function. Moreover, this data set contains the largest number
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of attributes among all datasets which may require a larger amount of data for
an accurate prediction.
• On the contrary, it is clear that “evenness”-based classifiers outperform the
analogy-based classifier [3] for data sets Spect and Voting (see Table 5). From
experiments, we notice that bad results for analogy-based classifier with Spect
and Voting datasets seem to be due to the number of voters (−→a ,

−→
b ) which

is equal to 0 for many examples to be classified. Regarding the analogy-based
classifiers, when considering a particular item

−→
d , and a neighbor −→c ∈ BH(

−→
d , r)

(where BH(
−→
d , r) denotes the Hamming ball with center

−→
d and radius r) the

number of voters (−→a ,
−→
b ) is only a small subset of the set of pairs differing on

r attributes. Due to the fact that two constraints have to be satisfied in the
analogical proportion-based approach: the pairs (−→a ,

−→
b ) and (−→c ,−→d ) differ on

the same attribute(s) and the associated class equation should be solvable, if
only one attribute in the pair (−→a ,

−→
b ) is not satisfied, this pair will be discarded.

In order to reduce the effect of the first constraint in the analogy-based
classifier [3], we reimplemented the analogy-based classifier for numerical data
described in [2] on the datasets Spect and Voting (this algorithm seeks for only
triples which form with d an analogy on a maximum number of attributes, and
not necessarily on all attributes as the algorithm used in [3]). We obtained
an accuracy respectively equal to 73.38±4.68 and 95.85±3.09 (using the func-
tion: A and k = 11). This accuracy improvement shows that, for some datasets
whose attributes are highly dissimilar (the case of Spect for example), it is faith-
ful to relax the constraint “the pairs (−→a ,

−→
b ) and (−→c ,−→d ) differ on the same

attribute(s)” by satisfying the analogical proportion only on a maximum (as it
is the case in [2] and in “evenness”-based classifiers) instead of all attributes.

Lastly, one may find that there is a flavor of conformal prediction [16] in our
approach. Nevertheless, even if our evenness measure can also be considered as
a conformity measure, the way we use it in our approach is quite different from
the pure conformal framework. We do not make use of any p-value which is one
of the added value underlying conformal predictors. The inherent complexity of
conformal predictors, added to the one of our evenness-based classifier would
likely lead to non tractable algorithms. However, this is an option that has to
be investigated.

7 Conclusion

We have shown how specific are heterogeneous proportions among logical pro-
portions, and their ability to express oddity. On this basis, we have described
and experimented a new type of classifier directly based on the idea that a new-
comer in a class should not appear too much as an intruder, using heterogeneous
proportions. The results obtained on benchmarks are competitive with respect
to well-established classifiers, as well as with analogy-based classifiers relying on
homogeneous proportions.
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5. Gergonne, J.D.: Théorie de la règle de trois. Annales de Math. Pures et Appl 7,
117–122 (1816)

6. Lepage, Y.: Analogy and formal languages. In: Proceeding FG/MOL 2001, pp.
373–378 (2001). http://www.slt.atr.co.jp/lepage/pdf/dhdryl.pdf.gz

7. Mertz, J., Murphy, P.: Uci repository of machine learning databases (2000). http://
www.ftp://ftp.ics.uci.edu/pub/machine-learning-databases

8. Miclet, L., Bayoudh, S., Delhay, A.: Analogical dissimilarity: definition, algorithms
and two experiments in machine learning. JAIR 32, 793–824 (2008)

9. Miclet, L., Prade, H.: Handling analogical proportions in classical logic and fuzzy
logics settings. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol.
5590, pp. 638–650. Springer, Heidelberg (2009)

10. Moraes, R.M., Machado, L.S., Prade, H., Richard, G.: Classification based on
homogeneous logical proportions. In: Bramer, M., Petridis, M. (eds.) Proceeding
of AI-2013, The Thirty-third SGAI International Conference on Innovative Tech-
niques and Applications of Artificial Intelligence, pp. 53–60. Springer, Cambridge,
England, UK (2013)

11. Prade, H., Richard, G.: Reasoning with logical proportions. In: Lin, F.Z.,
Sattler, U., Truszczynski, M. (eds.) Proceeding 12th International Conference on
Principles of Knowledge Representation and Reasoning, KR 2010, Toronto, 9–13
May 2010, pp. 545–555. AAAI Press (2010)

12. Prade, H., Richard, G.: Homogeneous logical proportions: Their uniqueness and
their role in similarity-based prediction. In: Brewka, G., Eiter, T., McIlraith, S.A.
(eds.) Proceeding 13th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR 2012), Roma, 10–14 June, pp. 402–412. AAAI Press
(2012)

13. Prade, H., Richard, G.: From analogical proportion to logical proportions. Logica
Universalis 7(4), 441–505 (2013)

14. Prade, H., Richard, G.: Homogenous and Heterogeneous logical proportions.
IfCoLog J. Logics Appl. 1(1), 1–51 (2014)

15. Stroppa, N., Yvon, F.: Analogical learning and formal proportions: definitions and
methodological issues. Technical report D004, ENST-Paris (2005)

16. Vovk, V., Gammerman, A., Saunders, C.: Machine-learning applications of algo-
rithmic randomness. In: International Conference on Machine Learning, pp. 444–
453 (1999)

http://www.slt.atr.co.jp/lepage/pdf/dhdryl.pdf.gz
http://www.ftp://ftp.ics.uci.edu/pub/machine-learning-databases
http://www.ftp://ftp.ics.uci.edu/pub/machine-learning-databases


Multivariate Cluster-Based Discretization
for Bayesian Network Structure Learning

Ahmed Mabrouk1, Christophe Gonzales2(B), Karine Jabet-Chevalier1,
and Eric Chojnaki1

1 Institut de Radioprotection et de Sûreté Nucléaire,
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Abstract. While there exist many efficient algorithms in the literature
for learning Bayesian networks with discrete random variables, learning
when some variables are discrete and others are continuous is still an
issue. A common way to tackle this problem is to preprocess datasets
by first discretizing continuous variables and, then, resorting to classical
discrete variable-based learning algorithms. However, such a method is
inefficient because the conditional dependences/arcs learnt during the
learning phase bring valuable information that cannot be exploited by
the discretization algorithm, thereby preventing it to be fully effective
In this paper, we advocate to discretize while learning and we propose a
new multivariate discretization algorithm that takes into account all the
conditional dependences/arcs learnt so far. Unlike popular discretization
methods, ours does not rely on entropy but on clustering using an EM
scheme based on a Gaussian mixture model. Experiments show that our
method significantly outperforms the state-of-the-art algorithms.

Keywords: Multivariate discretization · Bayesian network learning

1 Introduction

For several decades, Bayesian networks (BN) have been successfully exploited
for dealing with uncertainties. However, while their learning and inference mech-
anisms are relatively well understood when they involve only discrete variables,
their coping with continuous variables is still often unsatisfactory. One actually
has to trade-off between expressiveness and computational complexity: on one
hand, conditional Gaussian models and their mixing with discrete variables are
computationally efficient but they definitely lack some expressiveness [12]; on the
other hand, mixtures of exponentials, bases or polynomials are very expressive
but at the expense of tractability [15,20]. In between lie discretization meth-
ods which, by converting continuous variables into discrete ones, can provide a
satisfactory trade-off between expressiveness and tractability.
c© Springer International Publishing Switzerland 2015
C. Beierle and A. Dekhtyar (Eds.): SUM 2015, LNAI 9310, pp. 155–169, 2015.
DOI: 10.1007/978-3-319-23540-0 11
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In many real-world applications, BNs are learnt from data and, when there
exist continuous attributes, those are often discretized prior to learning, thereby
opening the path to exploiting efficient discrete variable-based learning algo-
rithms. However such an approach is doomed to be ineffective because the
conditional dependences/arcs learnt during the learning phase bring valuable
information that cannot be exploited by the discretization algorithm, thereby
severely limiting its effectiveness. However, there exist surprisingly few papers
on discretizing while learning, probably because it incurs substantial computa-
tional costs and it requires multivariate discretization instead of just a univari-
ate one. In this direction, MDL and Bayesian scores used by search algorithms
have been adapted to include multivariate discretizations taking into account
the BN structure learnt so far [6,13]. But, to be naturally included into these
scores, the latter heavily rely on entropy-related maximizations which, as we
shall see, is not very well suited for BN learning. In [21], a non-linear dimen-
sionality reduction process called GP-LVM combined with a Gaussian mixture
model-based discretization is proposed for BN learning. Unfortunately, GP-LVM
looses the random variable’s semantics and the discretization does not rely on
the BN structure. As a consequence, the method does not exploit all the useful
information.

Unlike in BN learning, multivariate discretization has often been exploited in
Machine Learning for supervised classification tasks [1,2,5,9,22]. But the goal is
only to maximize the classification power w.r.t. one target variable. As such, only
the individual correlations of each variable with the target are of interest and, thus,
only bivariate discretization is needed. BN structure learning is fundamentally dif-
ferent because the complete set of conditional dependences between all sets of vari-
ables is of interest and multivariate discretization shall most often involve more
than two variables. This makes these approaches not easily transferable to BN
learning. In [11], the authors propose a general multivariate discretization relying
on genetic algorithms to construct rulesets. However, the approach is very limited
because it is designed to cope with only one target and the domain size of this vari-
able needs to be small to keep the method tractable.

Discretizations have also been exploited in unsupervised learning (UL), but
those are essentially univariate [4,8,16,17], which make them usable per se only
as a preprocess prior to learning. However, BN learning can be related to UL
in the sense that all the BN’s variables can be thought of as targets whose dis-
cretized values are unobserved. This suggests that some key ideas underlying UL
algorithms might be adapted for learning BN structures. Clustering is one such
popular framework. In [14], for instance, multivariate discretization is performed
by clustering but, unfortunately, independences between random variables are
only considered given a latent variable. This limits considerably the range of
applications of the method because numerous continuous variables require the
latent one to have a large domain size in order to get good quality discretizations.
This approach is therefore limited to small datasets and, by not exploiting the
BN structure, it is best suited as a BN learning preprocess. Finally, by relying on
entropy, its effectiveness for BN learning is certainly not optimal. However, here,
we advocate to exploit clustering methods for discretization w.r.t. BN learning.
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More precisely, we propose a new clustering-based approach for multivariate
discretization that takes into account the conditional dependences among vari-
ables discovered during learning. By exploiting clustering rather than entropy,
it avoids the shortcomings induced by the latter and, by taking into account the
dependences between random variables, it significantly increases the quality of
the discretization compared to state-of-the-art clustering approaches.

The rest of the paper is organized as follows. Section 2 recalls BN learning
and discretizations. Then, in Sect. 3, we describe our approach and justify its cor-
rectness. Its effectiveness is highlighted through experiments in Sect. 4. Finally,
some concluding remarks are given in Sect. 5.

2 Basics on BN Structure Learning and Discretization

Uppercase (resp. lowercase) letters X,Z, x, z, represent random variables and
their instantiations respectively. Boldface letters represent sets.

Definition 1. A (discrete) BN is a pair (G,θ) where G = (X,A) is a directed
acyclic graph (DAG), X = {X1, ...,Xn} represents a set of discrete random
variables1, A is a set of arcs, and θ = {P (Xi|Pa(Xi))}n

i=1 is the set of the
conditional probability distributions (CPT) of the variables Xi in G given their
parents Pa(Xi) in G. The BN encodes the joint probability over X as:

P (X) =
n∏

i=1

P (Xi|Pa(Xi)). (1)

To avoid ambiguities between continuous variables and their discretized coun-
terparts, letters, when superscripted by “◦”, e.g., X̊, x̊, represent variables and
their instantiations prior to discretization, else they are discretized (for discrete
variables, X = X̊ and x = x̊). In the rest of the paper, n always denotes the num-
ber of variables in the BN, and we assume that X̊1, . . . , X̊l are discrete whereas
X̊l+1, . . . , X̊n are continuous. D̊ and D denote the input databases before and
after discretization respectively and are assumed to be complete, i.e., they do
not contain any missing data. N refers to their number of records.

Given D̊ = {x̊(1), x̊(2), . . . , x̊(N)}, BN learning consists of finding DAG G that
most likely accounts for the observed data in D̊. When all variables are discrete,
i.e., D = D̊, there exist many efficient algorithms in the literature for solving this
task. Those can be divided into 3 classes [10]: (i) the search-based approaches
that look for the structure optimizing a score (BD, BDeu, BIC, AIC, K2, etc.);
(ii) the constraint-based approaches that exploit statistical independence tests
(χ2, G2, etc.) to find the best structure G; (iii) the hybrid methods that exploit
a combination of both. In the rest of the paper, we will focus on search-based
approaches because our closest competitors, [6,13], belong to this class.

1 By abuse of notation, we use interchangeably Xi ∈ X to denote a node in the BN
and its corresponding random variable.
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Basically, these algorithms start with a structure G0 (often empty). Then, at
each step, they look in the neighborhood of the current structure for another
structure, say G, that increases the likelihood of structure G given observations
D, i.e., P (G|D). The neighborhood is often defined as the set of graphs that differ
from the current one only by one atomic graphical modification (arc addition, arc
deletion, arc reversal). P (G|D) is computed locally through the aforementioned
scores, their differences stemming essentially from different a priori hypotheses.
More precisely, assuming a uniform prior on all structures G, we have that:

P (G|D) =
P (D|G)P (G)

P (D)
∝ P (D|G) =

∫

θ

P (D|G,θ)π(θ|G)dθ, (2)

where θ is the set of parameters of the CPTs of a (discrete) BN with structure
G. Different hypotheses on prior π and on θ result in the different scores (see,
e.g., [18] for the hypotheses for the BIC score used later).

When database D̊ contains continuous variables, those can be discretized. A
discretization of a continuous variable X̊ is a function f : R → {0, . . . , g} defined
by an increasing sequence of g cut points {t1, t2, ..., tg} such that:

f (̊x) =

⎧
⎨

⎩

0 if x̊ < t1,
k if tk ≤ x̊ < tk+1, for all k ∈ {1, . . . , g − 1}
g if x̊ ≥ tg.

Let F be a set of discretization functions, one for each continuous variable. Then,
given F , if D denotes the (unique) database resulting from the discretization of
D̊ by F ., Eq. (2) becomes:

P (G|D̊,F) ∝ P (D̊|G,F) = P (D|D̊,G,F)P (D̊|G,F) = P (D̊|D,G,F)P (D|G,F),

Assuming that all databases D̊ compatible with D given F are equiprobable, we
thus have that:

P (G|D̊,F) ∝ P (D|G,F) =
∫

θ

P (D|G,F ,θ)π(θ|F ,G)dθ. (3)

BN structure learning therefore amounts to find structure G∗ such that G∗ =
ArgmaxG P (G|D,F). Note that P (D|G,F ,θ) corresponds to a classical score
over discrete data. π(θ|F ,G) is the prior over the parameters of the BN given
F . Equation (3) is precisely the one used when discretization is performed as a
preprocess before learning.

When discretization is performed while learning, like in [6,13], both the struc-
ture and the discretization should be optimized simultaneously. In other words,
the problem consists of computing ArgmaxF,G P (G,F|D̊), where finding the best
discretization amounts to find the best set of cut points (including the best size
for this set) for each continuous random variable. And we have that:

P (G,F|D̊) = P (G|F , D̊)P (F|D̊) ∝ P (F|D̊)
∫

θ

P (D|G,F ,θ)π(θ|F ,G)dθ. (4)
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Input: a database D̊, an initial graph G, a score function sc on discrete variables
Output: the structure G of the Bayesian network

1 repeat
2 Find the best discretization F given G
3 {Xl+1, . . . , Xn} ← discretize variables {X̊l+1, . . . , X̊n} given F
4 G ← G’s neighbor that maximizes scoring function sc w.r.t. {X1, . . . , Xn}
5 until G maximizes the score;

Algorithm 1. Our structure learning architecture.

As can be seen, the resulting equation combines the classical score on the dis-
cretized data (the integral) with a score P (F|D̊) for the discretization algo-
rithm itself. The logarithm of latter corresponds to what [6,13] call DLΛ(Λ) +
DLD̊→D(D̊, Λ) and Sc(Λ; D̊) respectively.

3 A New Multivariate Discretization-Learning Algorithm

As mentioned earlier, we believe that taking into account the conditional depen-
dences between random variables is important to provide high-quality dis-
cretizations. Our approach thus follows Eq. (4) and our goal is to compute
ArgmaxF,G P (G,F|D̊). Optimizing jointly over F and G is too computation-
ally intensive a task to be usable in practice. Fortunately, we can approximate
it efficiently through a gradient descent, alternating optimizations over F given
a fixed structure G and optimizations over G given a fixed discretization F . This
suggests the BN structure learning method described as Algorithm 1.

Multivariate discretization is much more time consuming than univariate dis-
cretization. As such, Line 2 could thus incur a strong overhead to the learning
algorithm because the discretization search space increases exponentially with
the number of variables to discretize. To alleviate this problem without sacrific-
ing too much in accuracy, we suggest a local search algorithm that iteratively
fixes the discretizations of all the continuous variables but one and optimizes
the discretization of the latter (given the other variables) until some stopping
criterion is met. As such, discretizations being optimized one continuous variable
at a time, the combinatorics and the computation time are significantly limited.
Line 2 can thus be detailed as Algorithm2.

Input: a database D̊, a graph G, a scoring function sc on discrete variables
Output: a discretization F

1 repeat
2 i0 ← Select an element in {l + 1, . . . , n}
3 Discretize X̊i0 given G and {X1, . . . , Xi0−1, Xi0+1, . . . , Xn}
4 until stopping condition;

Algorithm 2. One-variable discretization architecture.
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3.1 Discretization Criterion

To implement Algorithm 2, a discretization criterion to be optimized is needed.
Basic ideas include trying to find cut points minimizing the discrepancy between
the frequencies or the sizes of intervals [tk, tk+1). A more sophisticated approach
consists of limiting as much as possible the quantity of information lost after
discretization, or equivalently to maximize the quantity of information remain-
ing after discretization. This naturally calls for maximizing an entropy. This is
essentially what our closest competitors, [6,13], do.

But entropy may not be the most appropriate measure when dealing with
BNs. Actually, consider a variable A with domain {a1, a2, a3}. Then, it is pos-
sible that, for some BN, P (A = a1) = 1

6 , P (A = a2) = 1
3 and P (A = a3) = 1

2 .
With a sufficiently large database D, the frequencies of observations of a1, a2, a3

in D would certainly lead to estimate P (A) ≈ [16 , 1
3 , 1

2 ]. Now, assume that the
observations in D are noisy, say with a Gaussian noise with an infinitely small
variance, as in Fig. 1. Then, after discretization, we shall expect to have 3 inter-
vals with respective frequencies 1

6 , 1
3 and 1

2 , i.e., intervals similar to (−∞, t1),
[t1, t2) and [t2,+∞) of Fig. 1. However, w.r.t. entropy, the best discretization cor-
responds to intervals [−∞, s1), [s1, s2) and [s2,+∞) of Fig. 1 whose frequencies
are all approximately equal to 1

3 (entropy is maximal for equiprobable intervals).
Therefore, whatever the infinitesimal noise added to data in D, an entropy-based
discretization produces a discretized variable A with distribution [13 , 1

3 , 1
3 ] instead

of [16 , 1
3 , 1

2 ]. This suggests that entropy is probably not the best criterion for dis-
cretizing continuous variables for BN learning.

Figure 1 suggests that clustering would probably be more appropriate: here,
one cluster/interval per Gaussian would provide a better discretization. In this
paper, we assume that, within every interval, each continuous random variable,
say X̊i0 , is distributed w.r.t. a truncated Gaussian. Over its whole domain of
definition, it is thus distributed as a mixture of truncated Gaussians, the weights
of the latter being precisely the CPT of Xi0 in the discrete BN. In particular, if
X̊i0 has some parents, there are as many mixtures as the product of the domain
sizes of the parents. The parameters of such a discretization scheme are therefore:
(i) a set of g cut points (to define g +1 intervals) and (ii) a mean and a variance
for each interval (to define its Gaussian). Figure 1 actually illustrates the fact
that the means of the Gaussians need not necessarily correspond to the middles
of the intervals. For instance, the mean of the third Gaussian is a3 whereas the

a1 a2 a3t1 t2

s1 s2

Fig. 1. Discretization: entropy v.s. clustering.
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third interval, [t3,+∞), has no finite middle. Here, even finite interval middles,
like that of [t1, t2), do not correspond to the means of the Gaussians.

For each continuous random variable X̊i0 , this joint optimization problem is
really hard due to the normalization requirements that the integrals of the trun-
cated exponential of each interval must sum to 1 (which cannot be expressed
using closed-form formulas). Therefore, to alleviate the discretization computa-
tional burden, we propose to approximate the computation of the cut points,
means and variances using a two-step process: first, we approximate the density
of the joint distribution of {X1, . . . , Xi0−1, X̊i0 ,Xi0+1, . . . , Xn} as a mixture of
untruncated Gaussians and we determine by maximum likelihood the number
of cut-points as well as the means and variances of the Gaussians. This can be
easily done by an Expectation-Maximization (EM) approach. Then, in a second
step, we compute the best cut points w.r.t. the Gaussians. As each Gaussian is
associated with an interval, the parts of the Gaussian outside the interval can
be considered as a loss of information and we will therefore look for cut points
that minimize this loss. Now, let us delve into the details of the approach.

3.2 Discretization Exploiting the BN Structure

For the first discretization step of X̊i0 , we estimate the number g of cut-points and
the Gaussians’ means and variances. Assume that structure G is fixed and that all
the other variables are discrete. The density over all the variables, p(X̊), is equal to
p(X̊i0 |Pa(X̊i0))

∏
i�=i0

P (Xi|Pa(Xi)), where p(X̊i0 |Pa(X̊i0)) represents a mixture
ofGaussians for each value of X̊i0 ’s parents (there are a finite number of values since
all the variables but X̊i0 are discrete). P (Xi|Pa(Xi)) should be the CPT of discrete
variable Xi but, unfortunately, it is not well defined if X̊i0 ∈ Pa(Xi) because, in
this case, Pa(Xi) has infinitely many values. This is a serious issue since this CPT
is used in the computation ofP (D|G,F ,θ) of Eq. (4). Fortunately, this problem can
be overcome by enforcing that X̊i0 has no child while guaranteeing that the density
remains unchanged. Actually, in [19], an arc reversal operator is provided that,
when applied, never alters the density/probability distribution. More precisely,
when reverting arc X → Y , Shachter showed that if all the parents of X are added
to Y and all the parents of Y except X are added to X, then the resulting BN
encodes the same distribution. As an example of these transformations, reversing

Q P
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Q P

X

Y
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Fig. 2. Shachter’s arc reversals.
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arc X → V of Fig. 2.(a) results in Fig. 2.(b) and, then, reversing arc X → W
results in Fig. 2.(c).

Therefore, to enforce that X̊i0 has no child, if {i1, . . . , ic} denotes the set of
indices of the children variables of X̊i0 , sorted by a topological order of G, then,
by reversing sequentially all the arcs Xij → X̊i0 , j = 1, . . . , c, we get:

p(X̊) = p(X̊i0 |Pa(X̊i0)) ×
∏

i�={i0,...,ic}
P (Xi|Pa(Xi)) ×

c∏

j=1

P (Xij |Pa(Xij )),

p(X̊) = p(X̊i0 |MB(X̊i0)) ×
∏

i�={i0,...,ic}
P (Xi|Pa(Xi))

×
c∏

j=1

P (Xij |
j⋃

h=1

(Pa(Xih)\{X̊i0}) ∪ Pa(X̊i0)),

where MB(X̊i0) is the Markov blanket of X̊i0 in G:

Definition 2. The Markov blanket of any node in G is the set of its parents, its
children and the other parents of its children.

Note that, in the last expression of p(X̊), only the first term involves X̊i0 ,
hence all the other CPTs are well defined (they are finite CPTs). As a side effect,
only p(X̊i0 |MB(X̊i0)) needs be taken into account to discretize X̊i0 since none
of the other terms is related to X̊i0 . It shall be noted here that these arc reversals
are applied only for determining the parameters of the discretization, i.e., the
set of cut points, means and variances of the Gaussians, they are never used to
learn the BN structure. Now, let us see how the parameters of the mixture of
Gaussians p(X̊i0 |MB(X̊i0)) maximizing the likelihood of dataset D̊ can be easily
estimated using an EM algorithm.

3.3 Parameter Estimation by an EM Algorithm

Let qi0 represent the (finite) number of values of MB(X̊i0). For simplicity, we
will denote by {1, . . . , qi0} the set of values of the joint discrete random variable
MB(X̊i0). Let g denote the number of cut points in the discretization and let
{N (μk, σk) : k ∈ {0, . . . , g}} be the corresponding set of Gaussians. Then:

p(X̊i0 = x̊i0 |MB(X̊i0) = j) =
g∑

k=0

πjkf (̊xi0 |θk) ∀ j ∈ {1, . . . , qi0},

where f(·|θk) represents the density of the normal distribution of parameters
θk = (μk, σk), and πjk represents the weights of the mixture (with the constraint
that πjk ≥ 0 for all j, k and

∑g
k=0 πjk = 1 for all j). Remember that each value

of MB(X̊i0) induces its own set of weights {πj0, . . . , πjg}. Now, we propose to
estimate parameters θk from D̊ by maximum likelihood. For this, EM is well-
known to efficiently provide good approximations [3] (due to the mixture, direct
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maximum likelihood is actually hard to estimate). Assuming that data in D̊ are
i.i.d., the log-likelihood of D̊ given Θ =

⋃g
k=0(

⋃qi0
j=1{πjk} ∪ {θk}) is equal to:

L(D̊|Θ) =
N∑

m=1

log p(X̊i0 = x̊
(m)
i0

|MB(̊xi0)
(m),Θ),

where x̊
(m)
i0

represents the observed value of X̊i0 in the mth record of D̊. Thus:

L(D̊|Θ) =
qi0∑

j=1

∑

m:MB(̊xi0 )
(m)=j

log

[
g∑

k=0

πjkf (̊x(m)
i0

|θk)

]
. (5)

To solve ArgmaxΘ L(D̊|Θ), EM [3] iteratively alternates expectations (E-
step) and maximizations (M-step) until convergence toward a local maximum
which is guaranteed to correspond to the Argmax we look for due to the concavity
of the log-likelihood function. In this paper, we just need to apply the standard
EM, considering for weights πjk only the records in the database that correspond
to MB(̊xi0)

(m) = j. More precisely, for each record of D̊, let Z(m) be a random
variable whose domain is {0, . . . , g}, and such that Z(m) = k if and only if
observation x̊

(m)
i0

has been generated from the kth Gaussian. Let Qt
m(Z(m)) =

P (Z(m) |̊x(m)
i0

,Θt), i.e., Qt
m(Z(m)) represents the distribution that, at the tth

step of the algorithm, x̊
(m)
i0

is believed to have been generated by such and such
Gaussian. Then, EM is described in Algorithm3.

In the EM algorithm, only the M-step can be computationally intensive.
Fortunately, here, we can derive in closed-form the optimal values of Line 4:

Proposition 1. At the E-step, probability Qt+1
m (k) =

πt
jkf (̊x(m)

i0
|θt

k)
∑g

k′=0 πt
jk′f (̊x(m)

i0
|θt

k′)
,

where πt
jk and θt

k are weights, means and variances in Θt. The optimal

Input: a database D̊, a number g of cut points
Output: an optimal set of parameters Θ

1 Select (randomly) an initial value Θ0

2 repeat
// E-step (expectation)

3 Qt+1
m (Z(m)) ← P (Z(m) |̊x(m)

i0
,Θt) ∀ m ∈ {1, . . . , N}

// M-step (maximization)

4 Θt+1 ← Argmax
Θ

qi0∑

j=1

∑

m:MB(x̊i0 )(m)=j

g∑

k=0

Qt+1
m (k) log

[
πjkf (̊x

(m)
i0

|θk)

Qt+1
m (k)

]

5 until convergence;
Algorithm 3. The EM algorithm.
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parameters of the M-step are respectively:

πt+1
jk =

∑
m:MB(̊xi0 )

(m)=j Qt+1
m (k)

∑
m:MB(̊xi0 )

(m)=j

∑g
k′=0 Qt+1

m (k′)
,

μt+1
k =

∑N
m=1 Qt+1

m (k)̊x(m)
i0∑N

m=1 Qt+1
m (k)

σt+1
k =

√√√√
∑N

m=1 Qt+1
m (k)(̊x(m)

i0
− μt+1

k )2
∑N

m=1 Qt+1
m (k)

.

Using Algorithm 3 with the formulas of Proposition 1, it is thus possible to
determine the means and variances of the Gaussians. However, our ultimate
goal is not to compute them but to exploit them to discretize variable X̊i0 ,
i.e., to determine the best cut points t1, . . . , tg. Let us see how this task can be
performed.

3.4 Determination of the Cut Points

As mentioned at the end of Subsect. 3.1, each Gaussian N (μk, σk) is associated
with an interval [tk, tk+1)2 and the parts of the Gaussian outside the interval
can be considered as a loss of information. The optimal set of cut points T̂ =
{t̂1, . . . , t̂g} is thus that which minimizes this loss. In other words, it is equal to:

T̂ = Argmin
{t1,...,tg}

g∑

k=1

∫ +∞

tk

f(x|θk−1)dx +
∫ tk

−∞
f(x|θk)dx,

where θk represents pairs (μk, σk). As each Gaussian N (μk, σk) is associated
with interval [tk, tk+1), we can assume that t̂k ∈ [μk−1, μk), for all k. Therefore:

T̂ =

{
Argmin

tk∈[μk−1,μk)

∫ +∞

tk

f(x|θk−1)dx +
∫ tk

−∞
f(x|θk)dx : k ∈ {1, . . . , g}

}
. (6)

All the t̂k can thus be determined independently. In addition, as shown below,
their values are the solution of a quadratic equation:

Proposition 2. Let u(tk) represent the sum of the integrals in Eq. (6). Let αk

be a solution (if any) within interval (μk−1, μk) of the quadratic equation in tk:

t2k

(
1

σ2
k−1

− 1
σ2

k

)
+ 2tk

(
μk

σ2
k

− μk−1

σ2
k−1

)
+

(
μ2

k−1

σ2
k−1

− μ2
k

σ2
k

− 2log
σk

σk−1

)
= 0. (7)

Then t̂k is, among {μk−1, μk, αk}, the element with the highest value of u(·)
(which can be quickly approximated using a table of the Normal distribution).

2 Without loss of generality, we consider here that the μk’s resulting from the EM
algorithm are sorted by increasing order.
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Proof. Let g(·) and h(·) be two functions such that ∂g(x)/∂x = f(x|θk−1) and
∂h(x)/∂x = f(x|θk). Then:

t̂k = Argmin
tk∈[μk−1,μk)

u(tk) = Argmin
tk∈[μk−1,μk)

∫ +∞

tk

∂g(x)
∂x

dx +
∫ tk

−∞

∂h(x)
∂x

dx

= Argmin
tk∈[μk−1,μk)

−g(tk) + h(tk) + lim
t→+∞[g(t) − h(−t)].

Let us relax the optimization problem and try to find the Argmin over R. Then
the min is obtained when ∂u(tk)/∂tk = 0 or, equivalently, when ∂(−g(tk) +
h(tk))/∂tk = −f(tk|θk−1) + f(tk|θk) = 0. Since f(·|θ) represents the density of
the Normal distribution of parameters θ, this is equivalent to:

− 1√
2πσk−1

exp

(

− 1
2

(
tk−μk−1

σk−1

)2
)

+ 1√
2πσk

exp

(

− 1
2

(
tk−μk

σk

)2
)

= 0,

or, equivalently:

σk

σk−1
=

exp

[

− 1
2

(
tk−μk

σk

)2
]

exp

[

− 1
2

(
tk−μk−1

σk−1

)2
] = exp

[
1

2

(
tk − μk−1

σk−1

)2

− 1

2

(
tk − μk

σk

)2
]

,

which, by a log transformation, is equivalent to:

2 log
σk

σk−1
=

t2k
σ2

k−1

− 2μk−1tk

σ2
k−1

+
μ2

k−1

σ2
k−1

− t2k
σ2

k

+
2μktk

σ2
k

− μ2
k

σ2
k

.

This corresponds precisely to Eq. (7). So, to summarize, if the optimal solution
lies inside interval (μk−1, μk), then it satisfies Eq. (7). Otherwise, either u(tk)
is strictly increasing or strictly decreasing within (μk−1, μk), which implies that
the optimal solution for t̂k is either μk−1 or μk, which completes the proof. �

3.5 Score and Number of Cut Points

To complete the description of the algorithm, there remains to determine the
number of cut points. Of course, the higher the number of cut points, the higher
the likelihood but the lower the compactness of the representation. To reach
of good trade-off, we simply propose to exploit the penalty functions included
into the score used for the evaluation of different BN structures (see Line 5 of
Algorithm 1). Here, we used the BIC score [18], which can be locally expressed as:

BIC(X̊i0 |MB(X̊i0)) = L(D̊|Θ) − |Θ|
2

log(N) (8)

where L(D̊|Θ) is the log-likelihood with the parameters estimated by EM, given
the current structure G. |Θ| represents the number of parameters, i.e., |Θ| =
qi0×g+2×(g+1): the 1st and 2nd terms correspond to the number of parameters
πjk and of (μk, σk) needed to encode the conditional distributions (recall that
there are g +1 Gaussians and qi0 represents the domain size of MB(X̊i0)). Now,
the best number of cut points is simply that which optimizes Eq. (8).
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4 Experimentations

In this section, we highlight the effectiveness of our method, hereafter denoted
MGCD (for Mixture of Gaussians Clustering-based Discretization), by compar-
ing it with the algorithms provided in [6,17], hereafter called Ruichu and Fried-
man respectively. Step 4 of Algorithm 1 was performed using a simple Tabu
search method. For the comparisons, three criteria have been taken into account:
(i) the quality of the structure learnt by the algorithm (which strongly depends
on that of the discretization); (ii) the computation time and (iii) the quality of
the learnt CPT parameters, which has been evaluated by their prediction power
on the values taken by some variables given observations.

For the first two criteria, we randomly generated discrete BNs following the
guidelines given in [7]. Those contained from 10 to 30 nodes and from 12 to 56
arcs. Each node had at most 6 parents and its domain size was randomly chosen
between 2 and 5. The CPTs of these BNs represented the πjk of the preceding
section. From these BNs, we generated continuous datasets containing from 1000
to 10000 records as follows: for each random variable Xi, we mapped its finite set
of values into a set of consecutive intervals {[tk−1, tk)}|Xi|

k=1 of arbitrary lengths.
Then, we assigned a truncated Gaussian to each interval, the parameters (μk, σk)
of which were randomly chosen. Finally, to generate a continuous record, we
first generated a discrete record from the discrete BN using a logic sampling
algorithm. Then, this record was mapped into a continuous one by sampling from
the truncated exponentials. Overall, 350 continuous datasets were generated.

To compare them, the BN structures produced by Ruichu, Friedman and
MGCD were converted into their Markov equivalence class, i.e., into a partially
directed DAG (CPDAG). Such a transformation increases the quality of com-
parisons since two BNs encode the same distribution iff they belong to the same
equivalence class. The CPDAGs were then compared w.r.t. their true and false
positive rate metrics (TPR and FPR). TPR (resp. FPR) represents the percent-
age of arcs/edges belonging to the learnt CPDAG that also exist (resp. do not
exist) in the original CPDAG. Both metrics describe how well the dependences

Fig. 3. Averages of the TPR (left) and FPR (right) metrics for BNs with 10 to 30
nodes in function of the sample sizes.
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Table 1. Runtime ratio comparisons between discretization approaches.

Approaches / Dataset sizes 1000 5000 7500 10000

Friedman 2.762444 3.350782 3.404958 3.361540

Ruichu 0.8872389 1.1402535 1.1334637 1.1032982

Table 2. Prediction accuracy rates for discrete target variables in the Child and
Sachs standard BNs (http://www.bnlearn.com/bnrepository/) w.r.t. the percentage
of observed variables in the Markov blanket.

datasets sizes 30% Markov blanket 60% Markov blanket 100% Markov blanket

MGCD Ruichu Friedman MGCD Ruichu Friedman MGCD Ruichu Friedman

Child 1000 60.90 59.30 58.99 62.76 60.90 59.96 67.53 65.34 63.33

2000 61.59 56.62 58.05 62.41 59.24 60.55 67.29 64.71 63.03

5000 64.88 62.29 60.05 66.07 62.95 61.94 69.42 65.39 63.82

10000 65.81 62.48 61.75 67.44 63.85 63.51 70.49 66.92 65.79

Sachs 1000 56.63 54.78 57.59 57.22 55.04 58.74 65.67 61.06 64.65

2000 56.96 56.16 54.02 59.72 57.58 56.64 65.80 62.24 60.22

5000 57.69 55.00 55.15 59.80 57.96 56.38 65.51 64.15 64.47

10000 60.35 57.50 57.33 61.67 58.26 59.22 70.04 65.74 64.61

between variables are preserved by learning/discretization. Figure 3 shows the
average TPR and FPR over the 350 generated databases. As can be seen, MGCD
outperforms the others for all dataset sizes: MGCD’s TPR is about 10 % higher
than Ruichu and 40 % higher than Friedman, and MGCD’s FPR is between 20 %
and 40 % lower than the other methods. MGCD’s performance w.r.t. Ruichu’s
can be explained by that fact that, unlike Ruichu’s, it fully takes into account
the conditional dependences between all the random variables. Its performance
w.r.t. Friedman’s can be explained by our choice of exploiting clustering rather
than an entropy-based approach. Table 1 provides computation time ratios (other
method’s runtime / MGCD’s runtime). As can be seen, our method slightly out-
performs Ruichu’s (but is 10 % better in terms of TPR and more than 20 %
better in terms of FPR) and it significantly outperforms Friedman’s (about 3
times faster) while at the same time being 40 % higher in terms of TPR.

Finally, we compared the discretizations w.r.t. the quality of the produced
CPTs. To do so, we generated from two classical BNs, Child and Sachs, 100
continuous databases using the same process as above except that: (i) the dis-
tributions inside intervals were uniform instead of Gaussians (to penalize our
approach since data do not fit its hypotheses), and (ii) some small sets of vari-
ables were kept discrete and served as multilabel targets. Databases were split
into a learning (2/3) and a test (1/3) part. For each record in the latter, we
computed the distribution (learnt by each of the 3 algorithms on the learning
database) of each target given some observations on their Markov blanket and
we estimated the value of the target by sampling it from the learnt distribu-
tion. The percentages of correct predictions are shown in Table 2. As we can

http://www.bnlearn.com/bnrepository/
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see, our algorithm outperforms the other algorithms, especially Ruichu’s, which
fails to have correct predictions due to its univariate discretization not taking
into account the conditional dependencies among random variables. Friedman’s
results are closer to ours but recall that it is about 3 times slower than ours.

5 Conclusion

We have proposed a new multivariate discretization algorithm designed for
BN structure learning, taking into account the dependences among variables
acquired during learning. Our experiments highlighted its efficiency and effec-
tiveness compared to state-of-the-art algorithms, but more experiments are of
course needed to better assess the strengths and the shortcoming of our pro-
posed approach. For future work, we plan to improve our algorithm, notably by
directly working with truncated Gaussians instead of the current approximation
by mixture of Gaussians. But such an improvement is not trivial due to the fact
that, in this case, no closed-form solution exists for determining the cut points.
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Abstract. This paper presents GDPSM a power steady model (PSM)
based on generalized Dirichlet observations for modeling and predicting
compositional time series. The model’s unobserved states evolve accord-
ing to the generalized Dirichlet conjugate prior distributions. The obser-
vations’ distribution is transformed into a set of Beta distributions each
of which is re-parametrized as a unidimensional Dirichlet in its expo-
nential form. We demonstrate that dividing the modeling problem into
multiple smaller problems leads to more accurate predictions. We eval-
uate this model with the web service selection application. Specifically,
we analyze the proportions of the quality classes that are assigned to
the web services interactions. Our model is compared with another PSM
that assumes Dirichlet observations. The experiments show promising
results in terms of precision errors and standardized residuals.

Keywords: Time series · State space models · Generalized Dirichlet

1 Introduction

Time series of continuous proportions or compositional data, have been ana-
lyzed and modeled using various approaches [1,5]. This kind of series presents
itself in domains varying from economics (e.g., yearly gross domestic product),
to chemistry (e.g., chemical compositions), to political sciences (e.g., vote and
seat shares). Generally, time series of compositional data are multivariate and
denoted by time-dependent vectors of proportions that sum to one. To model
such data, one might resort to standard techniques such as the multivariate
autoregressive integrated moving average (ARIMA) [17] and Kalman filters [9].
However, due to the positive nature of the components of compositional data
and their sum to one constraint, these techniques are not applicable [1].
c© Springer International Publishing Switzerland 2015
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Various approaches have been proposed to deal with the positivity and
dependence of the compositional data’s components. For instance, Aitchi-
son proposed the mapping of the data from the positive simplex S

d =
{(s1, . . . , sd), s.t.

∑d
i=1 si < 1}, to the d-dimensional real space R

d [1]. Specif-
ically, he suggested the additive and multiplicative logistic transforms. Inspired
by Aitchison’s proposals, the authors in [5] employed the multivariate ARIMA
to model compositional time series transformed using the above additive logistic
transform. The practicality of this transform has been shown via a public opin-
ion polls application. However, one limitation of such approach is dealing with
zero values of si which yield yi = ±∞. In the same line of research, [12] used
the same transform with multivariate dynamic linear models. To circumvent
the zero-infinity issue, looking for a replacement for the additive transformation
might be the answer. For instance, [19] proposed an alternative approach that
employs a hyperspherical transform. This was intended to overcome the positiv-
ity and unit-sum constraints of compositional data. It also promised to solve the
problems that arise with cases that have zero-valued components. This approach
is based on modeling each component of the time series by the available data
instances. The time series are first mapped through a non-linear dimensional-
ity reduction approach onto a hypersphere. As such, the dimension d of a time
series is reduced to d−1. Furthermore, [2] suggested the Box-Cox transformation
which is a general form of the additive logistic transformation. Afterwards, the
authors proposed a regression model, framed in a dynamic Bayesian structure,
to model compositional time series.

Additionally, forecasting is another major part of the body of time series
literature. [7] provides a review for time series forecasting models including
exponential smoothing methods, ARIMA, state space and structural models,
Kalman filters, and autoregressive conditional heterscedastic models. A stochas-
tic extension to traditional autoregressive moving average (ARMA) time series
models was proposed in [16]. State space models consist of observation and state
processes that may be non-linear and non-Gaussian. The main usage of such
models is to deduce the properties of the states given the knowledge from the
observations. It is noteworthy to mention that all ARMA and ARIMA may be
written as state space models. In the case of linear processes, Kalman filters are
used to solve the corresponding state space models. The authors in [8] developed
a Dirichlet state space model to forecast compositional time series. They also
propose an estimation approach of the trends, covariates, and interventions in
time series. A motor vehicle production data set that consists of the number of
vehicle production in Japan, the United States, and the rest of the world during
the years 1947 to 1987.

Motivation: As mentioned earlier, a wide range of real applications in varied
domains involve compositional time series. The majority of these applications
handle series that consist of yearly, quarterly, or monthly proportions. However,
with the plethora of online data, some compositional time series may arise on
a daily or even hourly basis. For example, the geographic distribution of the
users of social media websites may be measured on an hourly basis for various
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business related functions. Therefore, given the large amount of available data,
the need to understand this data, and the benefits in turning it into actionable
insights, building a modeling and forecasting model for compositional time series
becomes of unprecedented significance.

Contributions: In this paper, we build upon and extend the literature of com-
positional time series forecasting by the following contributions. (1) We propose
to model and forecast compositional time series based on a novel PSM in which
the observations are assumed to follow a generalized Dirichlet (GD) distribution.
(2) We transform the GD distribution of d dimensions to d Beta distributions
which, in turn, are transformed to d unidimensional Dirichlet distributions in
their exponential form. This approach partitions the modeling and forecasting
of (d + 1)-dimensional time series into d smaller problems with fewer parame-
ters to learn. (3) We evaluate our model with a new application, web service
selection, in comparison to outdated ones used in the literature. (4) We com-
pare our model’s forecasting performance to that of the Dirichlet-based power
steady model (DPSM) proposed in [8]. We show the merits of our model via
standardized residuals and mean squared error (MSE) of the predictions.

The rest of the paper is organized as follows. Section 2 describes the GD dis-
tribution and the transformations that it undergoes to be represented by multi-
ple Dirichlet distributions. Section 3 highlights the characteristics of state space
models and the details of the proposed time series model based on the GDPSM
are described in Sect. 4. The experimental evaluation of the proposed model using
various simulated data are presented and discussed in Sect. 5. Section 6 concludes
the paper by summarizing its main contributions and suggesting directions for
future work.

2 Generalized Dirichlet Formulation

Let X = (X1, . . . , Xd+1) denote a vector of proportions that follows a d-
dimensional GD distribution with the parameters vector α = (α1, β1, . . . ,
αd, βd). The probability distribution function of X is given by:

p(X1, ...,Xd) =
d∏

l=1

Γ (αl + βl)
Γ (αl) + Γ (βl)

Xαl−1
l

(
1 −

l∑

j=1

Xj

)γl

, (1)

for
∑d

l=1 Xd < 1 and 0 < Xl < 1, for l = 1, ..., d, where αl > 0, βl > 0,
γl = βl − αl+1 − βl+1, for l = 1, ..., d − 1, and γd = βd − 1. Also, note that
Γ (x) =

∫ ∞
0

tx−1e−tdt. Since X follows a generalized Dirichlet and is completely
neutral, it can be transformed to d independent Beta distributions [3,20]. Let
Y = (Y1, . . . , Yd) be the result of the following transformation:

Yj =

{
Xj , if j = 1,

Xj

1−X1−···−Xj−1
, if 2 ≤ j ≤ d.

(2)
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The parameters vector α can be estimated by considering that each of the Yj has
a Beta distribution with parameters αj and βj . Therefore, the joint probability
distribution of Y can be written as follows:

p(Y |α) =
d∏

l=1

B(αl, βl)−1Y αl−1
l (1 − Yl)βl−1, (3)

where B(αl, βl) = Γ (αl)Γ (βl)
Γ (αl+βl)

. The Beta distribution belongs to the exponential
family in which each density is given by the following:

p(Y |θ) = H(Y )exp
( S∑

s=1

ηs(θ)Tl(Y ) + Φ(θ)
)
, (4)

where ηs(θ) are called the natural parameters, Tl(Y ) are the sufficient statistics,
H(Y ) is a base measure, and Φ(θ) is referred to as the log-partition function.
Equation (3) can thus be written as an exponential density:

p(Y |α) = exp
[ d∑

l=1

log(B(αl, βl)−1) + (αl − 1) log Yl + (βl − 1) log(1 − Yl)
]

=
d∏

l=1

1
Yl(1 − Yl)

exp
[ d∑

l=1

log(
Γ (αl + βl)
Γ (αl)Γ (βl)

+ αl log Yl +
2d∑

l=d+1

βl log(1 − Yl)
]
. (5)

Let S = 2d, then we have:

H(Y ) =
d∏

l=1

1
Yl(1 − Yl)

, (6)

T (Yl) =

{
log Yl for l = 1, . . . , d,

log(1 − Yl) for l = d + 1, . . . , 2d,
(7)

ηl(θ) =

{
αl for l = 1, . . . , d,

βl for l = d + 1, . . . , 2d,
(8)

Φ(θ) =
d∑

l=1

log
( Γ (αl + βl)

Γ (αl)Γ (βl)

)
. (9)

In the case of exponential density functions, a conjugate prior on θ is of the
following form [13]:

π(θ) ∝ exp
( S∑

s=1

ρsηs(θ) + κΦ(θ)
)
, (10)
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where (ρ1, . . . , ρS) and κ are the prior’s hyperparameters. Therefore, the conju-
gate prior family to d-dimensional GD distributions transformed to d indepen-
dent Beta written in their exponential form (Eq. (5)) is given by:

π(θ) ∝ exp
[ d∑

l=1

ρlαl +
2d∑

l=d+1

ρlβl + κ

d∑

l=1

log
( Γ (αl + βl)

Γ (αl)Γ (βl)

)]
. (11)

The d Beta distributions that generate Y , are also simplified unidimensional
Dirichlet distributions. In K + 1 dimensions, the Dirichlet density of a vector of
proportions, Y = (Y1, . . . , YK+1), is given by:

p(Y |α) =

∏K+1
j=1 Γ (αj)

Γ (
∑K+1

j=1 αj)

K+1∏

j=1

Yj
αj−1, (12)

where α = (α1, . . . , αK+1) is the parameters vector,
∑K+1

j=1 Yj = 1 and 0<Yj<1.
This distribution can also be depicted by Y ∼ Dir(α). In the exponential form,
the density (12) becomes:

p(X |θ) = exp
[
log

(
Γ

(
K+1∑

l=1

αl

)
−

K+1∑

l=1

log(Γ (αl)
)

+
K+1∑

l=1

αl log(Xl) −
K+1∑

l=1

log(Xl)
]
. (13)

In [8], Eq. (13) is re-parametrized to separate the effects of its mean,

θ =
(

α1∑K+1
j=1 αj

, . . . , αK+1∑K+1
j=1 αj

)
, and spread τ =

∑K+1
j=1 αj . As a result, we get:

p(Z |θ, τ) = exp
[
τZT θ + τ

∑K+1
j=1 Wj

K + 1
− log

( ∏K+1
j=1 Γ (θjτ)

Γ (
∑K+1

j=1 θjτ)

)]
, (14)

where W = log(X ) and Z = W −
∑K+1

l=1 Wl

K+1 . In case K = 2, the Beta distribution
of each Yj can be written in the exponential form of a unidimensional Dirichlet
as follows:

p(Yj |θ) = exp
[
log

( Γ (α1 + α2)
Γ (α1)Γ (α2)

)
+ α2 log(1 − Yj)

+ α1 log(Yj) − log(Yj) − log(1 − Yj)
]
. (15)

Following the same re-parametrization, Eq. (15) becomes:

p(Z ′|θ′, τ ′) = exp
[
τ ′(Z ′T θ′ + W ′

j) − log
( ∏K

l=1 Γ (θ′
lτ

′)

Γ (
∑K

l=1 θ′
lτ

′)

)]
, (16)
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where θ′ = (θ′
1 = α1

τ ′ , θ′
2 = α2

τ ′ ), τ ′ = α1 + α2, W ′
j = log(Yj)+log(1−Yj)

2 , and
Z ′

j = (log(Yj) − W ′
j , log(1 − Yj) − W ′

j). Given these parameters, we represent
the distribution of Y by Y ∼ DirBeta(τ ′θ′). A conjugate prior family to the
Dirichlet distributions in their exponential form is:

p(θ′|σ, κ, τ ′) ∝ exp
[
σ
[
τ ′κT θ′ − log

(Γ (τ ′θ′
1)Γ (τ ′θ′

2)
Γ (τ ′θ′

1 + τ ′θ′
2)

)]]
. (17)

3 State Space Models

Dynamic linear models (DLM) can be represented in what is called a state
space form. This representation consists in identifying the change of an observed
variable (aka observation vector) in terms of another unobserved variable (aka
state vector). The authors in [10] proposed a steady model for DLM that is
only defined for normal distributions and is equivalent to an ARIMA(0,1,1)
model. However, [14] generalized this model by redefining it across non-Gaussian
distributions. More specifically, it was generalized to cases where the conditional
probability of the observations given the states follows an exponential family
distribution. The generalized model, also known as the PSM, is defined by:

{
(xt|yt) ∼ PR(ω),
p(xt+1|yt) ∝ p(xt|yt)k,

(18)

where 0 < k < 1 and PR(ω) is the conjugate prior for the exponential family
distribution of p(yt|xt). This model was first developed to be applied to univari-
ate observations. However, [15] generalized the PSM of a time series to handle
multivariate processes. Specifically, a symmetric multivariate PSM in which the
process evolution is defined based on the density of the parameter vector is pro-
posed. This generalization was also introduced as part of a Bayesian forecasting
framework. However, this model undergoes some limitations when the observa-
tions follow a Dirichlet distribution [8], which are mostly due to the fact that
the PSM estimates both the dispersion and location of the distribution at the
same time. This problem can be solved by using the re-parametrized form of the
Dirichlet distribution (Eq. (13)) which allows the separation of the dispersion τ
and the location θ.

4 Generalized Dirichlet Power Steady Model (GDPSM)

Given a time series of proportions denoted by X : {X t = (Xt1, . . . , Xtd+1)},
where t = 1, . . . , T , we first assume that each vector in this time series follows
a GD distribution X t ∼ GD(αt1, . . . , αtd, βt1, . . . , βtd). Afterward, we apply the
geometric transformation denoted by Eq. (2) on each of these vectors [3,4]. Using
this transformation, X t is transformed to W t that follows a Beta distribution
with parameters (αtl, βtl) which define the GD distribution of X t, where 1 ≤
l ≤ d. Since Beta distributions are special cases of Dirichlet distributions, we
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finally model the time series by T × d unidimensional Dirichlet distributions,
Xtl = Dir(αtl1 , αtl2). Each of the T × d distributions is then re-parametrized as
per Eqs. (15) and (16). Subsequently, we build T × d state space models, each
of which is based on an unobserved state θ′, to model each of the observations
(W11, . . . , W1d, . . . , WT1, . . . , WTd). These observations are denoted by:

(Wtj |θ′
t, τ

′
t) ∼ DirBeta(τ ′

tθ
′
t), (19)

where 1 ≤ j ≤ d and θ′
t follows the PSM given by Eq. (18). In other words, the

conditional probability of θ′
t+1 given the observations W1j , . . . , Wtj , is defined as:

p(θ′
t+1|W t) ∝ p(θ′

t|W t)γ where 0 < γ < 1. (20)

Equation (20) reveals an interesting property of the (θ′
t+1|W t) and (θ′

t|W t)
distributions; their modes are equal, but the dispersion of the former is greater.

4.1 Time Series Model

The GD time series model is defined by two steps similar to those of a
Gaussian Kalman filter: a prediction and an update step. In the prediction step,
p(θ′

t+1|W t) is computed using Eq. (20). Both sides of this equation follow the
conjugate prior given by Eq. (17), each with different parameters. Formally, this
is given by:

p(θ′
t+1|W t) ∼ exp

[
σt+1|t

[
τ ′
tκ

T
t+1|tθ

′
t+1 − log

(
Γ (τ ′

tθ
′
t+1,1)Γ (τ ′

tθ
′
t+1,2)

Γ (τ ′
tθ

′
t+1,1 + τ ′

tθ
′
t+1,2)

)]]
,

(21)

p(θ′
t|W t) ∼ exp

[
σt|t

[
τ ′
tκ

T
t|tθt

′ − log
(

Γ (τ ′
tθ

′
t1)Γ (τ ′

tθ
′
t2)

Γ (τ ′
tθ

′
t1 + τ ′

tθ
′
t2)

)]]
. (22)

The prediction step consists of Eq. (24), which is a known fact and (25), which
is derived by taking the log of Eq. (20), and the two equations above:

σt+1|t
[
τ ′
tκ

T
t+1|tθ

′ − log
(

Γ (τ ′
tθ

′
1)Γ (τ ′

tθ
′
2)

Γ (τ ′
tθ

′
1 + τ ′

tθ
′
2)

)]

= γσt|t
[
τ ′
tκ

T
t|tθ

′ − log
(

Γ (τ ′
tθ

′
1)Γ (τ ′

tθ
′
2)

Γ (τ ′
tθ

′
1 + τ ′

tθ
′
2)

)]
, (23)

knowing that:
κt+1|t = κt|t, (24)

therefore,
σt+1|t = γσt|t. (25)

γ is a model parameter, such that 0 < γ < 1. As for the update step, we need to
compute p(θ′

t+1|W t+1) which, according to Bayes’ theorem, can be written as:

p(θ′
t+1|W t+1) = p(W t+1|θ′

t+1) × p(θ′
t+1), (26)
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where p(W t+1|θ′
t+1) is the data likelihood that follows, in this case, the GD

reformulated as DirBeta(τ ′
tθ

′
t) and given by Eq. (16). p(θ′

t+1) is the prior and
is given by Eq. (17). Therefore, applying the log to both sides of Eq. (26) yields
the following:

σt+1|t+1 = σt+1|t + 1, (27)

κt+1|t+1 =
(

1 − 1
σt+1|t+1

)
κt+1|t +

1
σt+1|t+1

zt+1. (28)

4.2 Model Evaluation

We evaluate our model by the standardized residuals, the mean squared error
(MSE) of the predictions, and the correlations between the residuals at lag 0.
We compare our results with those of DPSM. The standardized residuals are
computed as follows [8]:

Rt =
Z t − E[Z t|Dt−1])

var[Z t|Dt−1]
, (29)

where Dt−1 denotes all the observations available at time (t−1). E[Z t|Dt−1] and
var[Z t|Dt−1] are the respective posterior mean and variance of the prediction
density, formally given by:

p(Z t+1|W t) =
∫

p(Z t+1|θt+1)p(θt+1|W t)dθt+1. (30)

Since there is no direct solution for this density, we use the approximation pro-
posed in [18] and used in [8]. Given the density p(Zt+1|W t), its mean is approx-
imated as follows:

E[p(Z t+1|W t)] = E[p(Z t+1|Θ)], (31)

where Θ = (σ, κ, τ ′). According to [6,8], if a variable follows the Dirichlet distri-
bution in Eq. (16) with the conjugate prior given by Eq. (17), then the following
equality holds:

E[p(Z t+1|Θ)] = E[p(Z t+1|σ, κ, τ ′)] = κ. (32)

Therefore, the posterior mean of the density in Eq. (30) is equal to κ. The poste-
rior variance also lacks an exact solution and is solved in [18] by approximating
each term of the following:

var[p(Z t+1|Dt−1)] = E[p(Z t+1|Dt−1)2] − (E[p(Z t+1|Dt−1)])2. (33)

Furthermore, we compute the correlations at lag 0 between the residuals
of each pair of dimensions in the analyzed time series. These correlations are
additional indicators of the model quality; the weaker the correlations the better
the model. Stronger correlations imply that further modeling is necessary to
better fit the time series [8].
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5 Experiments

Application: Web Service Selection. Business applications are increas-
ingly being deployed as autonomous web applications that are published and
used on the web (Web Services). The abundance of web services that provide
similar functionalities creates a competitive market while rendering the selec-
tion of services that best meet the consumers requirements a challenging task.
A common solution to this problem considers the trustworthiness of services as
a selection criterion based on the outcomes of various quality of service (QoS)
metrics, including response time, throughput, reliability, availability, security,
and cost. Therefore, the quality of a web service changes continuously during its
lifetime. Therefore, we assume that a component for service performance moni-
toring already exists [21]. A web service consumer can then evaluate and store,
after each interaction with any web service, the values of multiple QoS metrics.
Then, each vector of QoS metrics’ values are classified into a priori defined qual-
ity classes [11]. Afterwards, we count based on a predefined time interval, the
number of interactions with a web service that belong to each of the defined
quality classes.

The main objective is then to model the QoS-based behavior of web services
and predict their future performance to assist the web service selection process.
To evaluate our GD time series model, we run different simulations with synthetic
data due to the unavailability of real QoS data sets. We are aware of two real
data sets; QWS and WS-Dream. The former includes the averages over time of
multiple QoS metrics’ measurements of 2, 507 web services monitored over a six-
day period. As such, the data set includes one quality for each of the monitored
web services. The latter reports the response time, http code, and http message
of 100 web services over a large number of invocations from 150 computers
distributed in more than 20 countries. However, the time of each invocation is
not available which makes it hard to build a realistic time-series model for each
of the monitored web services. Therefore, we validate our approach with multiple
simulated data that embed time-variant processes.

5.1 Simulation 1: Trigonometric Functions

We evaluate our model with the outcomes of a web service’s transactions that
are classified into D quality classes such as Very Good, Good, and Average. We
make the assumption that the proportions C = {C1; ...;CD} of each class during
a specific period of time, follow a latent model that we specify using trigono-
metric functions. At each time step, the number of transactions are counted and
assigned to their corresponding quality class. Their overall evolution is mod-
eled by oscillating functions as a web service performance is not constant. We
propose to use trigonometric functions as they are easy to handle and to gen-
erate with various settings (mean, amplitude, frequency). These functions can
be expressed in the form C ′

i(t) = Fi + γi trigi(fi t) + νit, i = 1, . . . , D, where
trigi(fi t) is either the cosine or sine function of frequency fi randomly taken
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Fig. 1. Sample data (left) with zoom (right)

in the range [0.0001, 0.009]. These values keep the functions variations at a rea-
sonable level, see Fig. 1. γi is a scaling factor controlling the amplitude of the
number of transactions within a given class, Ai is a translation coefficient that
controls the average number of transactions of a given class per time step, and
νt is a white Gaussian noise. t represents the time steps and D the number or
quality classes (equal to 3 or 6 here). As νit is unbounded, the functions C ′

i

can sporadically go below 0. These rare occurrences are individually handled by
assigning a low random value to the sample, within the predefined range [10, 50].
In our experiments, we fixed Ai = 1200 and γi = 1000 for all i’s, and the Signal-
to-Noise Ratio has been set to 20. These values can be adapted if a more realistic
model is needed without impact on the overall performance of the method pre-
sented here. All values are rounded in order to get integers which represent the
number of transactions over a given period of time for a given quality class.
The proportion vectors are finally obtained by normalizing the C ′

i functions,
Ci(t) = C′

i(t)∑D
d=1 C′

d(t)
, where the function Ci represents the proportions of requests

that have been processed in Good, Average, Poor,... standing by the web service
among the total number of requests sent during a given period of time. The
algorithm takes these proportions Ci(t), t = 1, . . . , 1000, as input data, of which
the first 20 samples are only used for training purpose and the 980 remaining
samples are used as testing data. In the first experiment, we compare GDPSM
and DPSM with the data obtained from Simulation 1 for 5 different values of
γ = {0.001 0.250 0.500 0.750 0.999}, averaged over 10 runs, for the cases of 3
and 6 quality classes.

Three Quality Classes Results. Figure 1 displays the data simulated in one of
the 10 runs. The standardized residuals computed by Eq. (29) for GDPSM and
DPSM averaged over each of the d − 1 dimensions, are displayed in Table 1
(left). For all values of γ, our model’s residuals are slightly smaller than the ones
given by the DPSM. The correlations at lag 0 between the residuals of the first
two dimensions computed by DPSM and GDPSM are −0.4529 and −0.0092,
respectively. This shows that our model explains the time series better than
DPSM.
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Table 1. Standardized residuals (left) and MSE (right) for 3-dimensional data

Dimension 1 Dimension 2
γ DPSM GDPSM DPSM GDPSM

0.001 0.665 0.632 0.647 0.639
0.250 0.666 0.631 0.653 0.645
0.500 0.673 0.637 0.663 0.658
0.750 0.670 0.667 0.696 0.698
0.999 0.855 0.838 0.899 0.900

Dimension 1 Dimension 2
γ DPSM GDPSM DPSM GDPSM

0.001 0.166 0.067 0.190 0.144
0.250 0.134 0.054 0.154 0.117
0.500 0.116 0.048 0.132 0.101
0.750 0.119 0.050 0.132 0.101
0.999 0.558 0.276 0.587 0.445
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Fig. 2. Actual versus predicted data for the first (left) and second (right) dimensions

Furthermore, Table 1 (right) shows the MSE of both GDPSM and DPSM
which demonstrate that our model yields more accurate predictions than
DPSM for both dimensions. To visualize the prediction performance of our
model, we display Z , the symmetric log ratio of the quality class proportions
after being transformed using Eq. (2) (actual data) versus the predicted data
(E[p(Z t+1|W t)]) in Fig. 2. This figure demonstrates that our model is capable
of predicting the time series and providing a smoother distribution than that of
the actual ones. The latter is actually due to the fact that we are using a noisy
signal. The prediction mostly fits the functional part of the model.

Six Quality Classes Results. We rerun the same experiment with another set
of 10 different simulated 6-dimensional data, each of which is represented by
the trigonometric function defined earlier. This aims to further validate the effi-
ciency of partitioning the time series model into d simpler problems to solve and
thus lead to lower prediction errors. The average of the standardized residuals
of GDPSM and DPSM over the 10 simulated data are displayed in Table 2. For
clarity, we only present the results for γ = 0.001 which raised the best perfor-
mance for the 3-dimensional residuals (see Table 1). It is noteworthy to mention
that other values of γ give equivalent results with the exception of γ = 0.999
that leads to significantly degraded results. This mostly confirms what has been
observed in [8]. The correlations at lag 0 between each pair of dimensions are
given in Table 3.

Our model shows better performance due to the overall smaller correlations.
Table 4 illustrates the out-performance of GDPSM in comparison to DPSM in
terms of goodness-of-fit. The MSE of GDPSM ’s predictions for all the dimensions
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Table 2. Standardized residuals for GDPSM and DPSM with 6-dimensional data

Dimension

1 2 3 4 5

DPSM 0.642 0.625 0.669 0.705 0.693

GDPSM 0.555 0.541 0.620 0.675 0.674

Table 3. Residuals correlations at lag 0

DPSM GDPSM
1 1
-0.242 1 -0.040 1
-0.197 -0.193 1 -0.027 -0.032 1
-0.144 -0.200 -0.160 1 -0.005 -0.014 -0.017 1
-0.195 -0.172 -0.196 -0.182 1 0.001 0.001 0.001 0.0003 1

Table 4. MSE for GDPSM and DPSM with 6-dimensional data

γ Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5

DPSM GDPSM DPSM GDPSM DPSM GDPSM DPSM GDPSM DPSM GDPSM

0.001 0.238 0.075 0.226 0.072 0.221 0.071 0.215 0.074 0.230 0.135

0.250 0.194 0.061 0.185 0.059 0.179 0.057 0.174 0.060 0.186 0.110

0.500 0.169 0.054 0.162 0.052 0.155 0.050 0.149 0.051 0.161 0.095

0.750 0.178 0.057 0.170 0.055 0.156 0.050 0.146 0.052 0.165 0.096

0.999 0.730 0.241 0.714 0.246 0.735 0.254 0.719 0.281 0.677 0.427
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Fig. 3. Actual (left) versus predicted (right) 6-dimensional function-based data

are two to three times smaller than those of DPSM. Figure 3 reports the actual
and predicted data.

5.2 Simulation 2: Random Data

In this simulation, we test our model with randomly generated 3 and 6 dimen-
sional data. The quality class of a web service interactions do vary according
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Table 5. Standardized residuals (left) and MSE (right) for 3-dimensional random data

Dimension 1 Dimension 2
γ DPSM GDPSM DPSM GDPSM

0.001 0.798 0.792 0.801 0.810
0.250 0.799 0.792 0.800 0.810
0.500 0.800 0.792 0.799 0.810
0.750 0.804 0.794 0.802 0.810
0.999 0.808 0.798 0.804 0.804

Dimension 1 Dimension 2
γ DPSM GDPSM DPSM GDPSM

0.001 0.126 0.071 0.126 0.097
0.250 0.101 0.056 0.102 0.078
0.500 0.084 0.047 0.085 0.065
0.750 0.072 0.040 0.073 0.055
0.999 0.064 0.036 0.064 0.049
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Fig. 4. Actual (left) versus Predicted (right) 3-dimensional random data
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Fig. 5. Actual (left) versus Predicted (right) 6-dimensional random data

to the time they occurred. In Simulation 1, we showed that GDPSM is capa-
ble of modeling and forecasting time series generated from noisy time-varying
functions. However, it is equally essential for the proposed model to perform
well with random data to prove its robustness. Similar to Simulation 1, we com-
pute the standardized residuals, the residuals correlations, and the MSE of the
predictions.

Three Quality Classes Results. Table 5 displays the DPSM and GDPSM stan-
dardized residuals (left) and MSE (right) of predictions. Figure 4 shows the
actual and predicted data. The correlations between the residuals of the two
dimensions as computed by DPSM and GDPSM are −0.4862 and 0.0116, respec-
tively (Fig. 5).
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Table 6. Standardized residuals for GDPSM and DPSM with 6-dimensional random
data

Dimension

1 2 3 4 5

DPSM 0.801 0.816 0.803 0.794 0.789

GDPSM 0.802 0.810 0.811 0.795 0.799

Table 7. Residuals correlations at lag 0

DPSM GDPSM
1 1
-0.067 1 -0.051 1
-0.011 -0.070 1 -0.101 -0.107 1
-0.300 -0.278 -0.299 1 -0.103 -0.103 -0.242
-0.169 -0.201 -0.199 -0.309 1 0.015 0.0174 0.026 0.034 1

Table 8. MSE for GDPSM and DPSM with 6-dimensional random data

γ Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5

DPSM GDPSM DPSM GDPSM DPSM GDPSM DPSM GDPSM DPSM GDPSM

0.001 0.137 0.046 0.203 0.075 0.175 0.077 0.494 0.203 0.314 0.158

0.250 0.111 0.037 0.162 0.060 0.140 0.062 0.394 0.162 0.252 0.127

0.500 0.093 0.031 0.135 0.050 0.117 0.051 0.327 0.135 0.210 0.105

0.750 0.079 0.027 0.116 0.043 0.100 0.044 0.280 0.115 0.180 0.090

0.999 0.069 0.023 0.102 0.038 0.088 0.038 0.245 0.101 0.158 0.080

Six Quality Classes Results. We repeat the same experiment above with
6-dimensional simulated random data. It is noteworthy to mention that we select
6 as the higher number of dimensions since it would not realistically make sense
to classify a web service quality into more than 6 classes (Tables 6, 7 and 8).

6 Conclusion

This paper presents a power steady model that is based on observations that fol-
low a generalized Dirichlet distribution. This model is optimized by dividing the
problem of the model parameters estimation into multiple smaller problems. As
such, the resulting model consists of multiple power steady models that depend
on Dirichlet distributed observations. We evaluate the proposed approach by
applying it to the web service selection problem where the time series consist
of the proportions of quality classes to which a web service was assigned over a
period of time. These time series are simulated using two different mechanisms;
either generated from trigonometric functions or from random distributions. The
experimental results show that our model performs better than a single Dirichlet
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PSM in terms of standardized residuals and goodness-of-fit of the predictions.
Evaluating this model with real compositional time series is left for a future work
after collecting the values of various QoS metrics of multiple web services for a
three-month period.
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Abstract. On the one hand, clustering methods are of a particular inter-
est to automatically identify the inner structure of a data set. On the
other hand, fuzzy partitions are particularly suitable to define a sub-
jective and domain dependent vocabulary that may then be used to
personalize an information system. To make the translation of raw data
into knowledge easier, we propose in this paper to generate personalized
linguistic and graphical explanations of a cluster-based data structure.

1 Introduction

Initiated by the U.S. government in the late 60’s, the data publishing phenom-
enon has then emerged later in Europe, between 2000 and 2010. Published data
now constitute an essential source of knowledge for various professions and its
management raises many interesting challenges. Indeed, a raw data set cannot
be directly managed and interpreted by a final user, who is generally a domain
expert but not often a computer scientist specialized in data and knowledge
management. Making data talk and giving end users clear explanations of the
data is e.g. the role of communication managers and journalists as well. The fact
that making editorial content from raw data is now considered as a journalistic
area in its own right, namely data journalism, shows how crucial this data is.
This is why efficient methods and intuitive tools have to be developed to help
domain experts, data journalists [1–3] and communication managers in our case,
make the most of these open data sets.

As a first step in the process of translating raw data into knowledge, we
propose in this paper to generate a graphical visualization and linguistic expla-
nations of the data inner structure. Whereas most of the existing approaches
to data summarization generate linguistic and graphical explanations directly
from raw data, the approach presented in this paper is guided by a cluster-based
structure of the data. Clustering methods are indeed of a particular interest to
automatically discover and to summarize the structure of a data set. Even if
grouping objects by similarity is a natural cognitive process and leads to a data
structure that is more understandable than the one obtained with other data
models (relational, ontological, hierarchical, etc.), interpreting clusters may be
abstruse for unexperienced users. This is why we propose to generate linguistic
explanations of such a cluster-based data structure. A way to make these expla-
nations even more valuable and to speed up the appropriation of a new data set
c© Springer International Publishing Switzerland 2015
C. Beierle and A. Dekhtyar (Eds.): SUM 2015, LNAI 9310, pp. 186–200, 2015.
DOI: 10.1007/978-3-319-23540-0 13
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is to personalize the knowledge discovery process through the use of the expert’s
vocabulary. Experts usually possess their own vocabulary to describe data and
properties, and a vocabulary is obviously composed of subjective and sometimes
imprecise linguistic terms.

In our approach, instead of producing a flat set of linguistic explanations,
the idea is to exhibit the structural properties of the different clusters using
linguistic and graphical explanations. These explanations thus describe the typ-
ical properties of each cluster, which by definition means to focus on properties
shared exclusively by objects of the same group. Thus, the goal of these explana-
tions is to help users determine the discriminative properties of the most typical
elements of each cluster. An example of such an explanation is: “most of the ele-
ments from cluster C1 satisfy P a” whereas “most of the elements of cluster C2

satisfy P b”, where P a and P b are conjunctions of terms taken from the expert
vocabulary. Moreover, each explanation is associated with a truth degree and a
score related to the typicality of the subset covered by the explanation.

The rest of the paper is organized as follows. Section 2 recalls the basic notions
involved in this approach, namely: clustering and fuzzy-set-based vocabulary.
Section 3 introduces the notion of a typicality-based explanation of a clustering
and explains how these explanations may be efficiently computed. Section 4 then
shows how these explanations are presented to the expert, first linguistically
and then graphically. Finally, before concluding, Sect. 5 puts our approach in
perspective with respect to existing works in the domain of linguistic summaries
and the personalization of knowledge management systems.

2 Preliminaries

2.1 Cluster-Based Data Structure

An open data set is generally a tabular structure, which contains the descrip-
tion of n items {x1, x2, ..., xn}. Each item, say x, is described by m attributes
A1, A2, ..., Am, respectively defined on domain Dj , j = 1..m, where x.A denotes
the value taken by the item x on attribute A.

The data underlying structure, defined by subgroups of similar data, is auto-
matically obtained using a clustering algorithm [4]. In the considered task, three
requirements must be taken into account when selecting an appropriate algorithm:
it must be scalable in order to be able to process large data sets and if possible
incremental so as to manage data evolution in an efficient way. It must also be able
to automatically determine the appropriate number of clusters: the aim being to
identify the underlying data structure, it is not justified to assume that the data
expert knows how many clusters should be identified. Third, each cluster must be
associated with a representative, called its centre, corresponding to the most typ-
ical object of the cluster. With its linear/incremental way of managing the data
and the automatic detection of the number of clusters, the l-fcmed-select algorithm
introduced in [5] fulfills our requirements. However, to obtain a data structure eas-
ier to explain and understand, one will use a crisp (i.e. non fuzzy) version of the
algorithm.
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Thus, the data set is structured into k clusters: {C1, C2, ..., Ck}, each of them
possessing a centre denoted by Ml, l = 1..k. During this structuration process,
each item is assigned to one cluster, items(C) denotes the set of items assigned to
cluster C and cluster(x) denotes the cluster to which item x has been assigned.

An item is assigned to a cluster because of its similarity wrt. the other items of
the group, whose quantification requires a ressemblance measure r, and its dissim-
ilarity wrt. items of the other groups, that relies on a dissimilarity measure, here
denoted by d. The distance d between two items is computed as follows: d(x1, x2) =
1/m

∑m
i=1 di(x1.Ai, x2.Ai), where di is di(a, b) = |a−b|

max(a,b) if Ai is of a numerical
type, whereas for categorical values di(a, b) = 1 if a �= b, di(a, b) = 0. The distance
used for numerical attributes has been chosen to as to take into account the stretch
of the attribute’s definition domain. The resemblance measure r is simply based
on the distance r(x1, x2) = 1 − d(x1, x2). The combination of these two measures
of intra-similarity, denoted by intrasim(x), and inter-dissimilarity, interdis(x),
may be interpreted as a degree of typicality [6] that we denote by typ(x). Internal
similarity, external similarity and typicality of an object x are defined as follow:

intrasim(x) =
1

|cluster(x)|
∑

y∈cluster(x)

r(x, y), (1)

interdis(x) =
1

|D| − |cluster(x)|
∑

y/∈cluster(x)

d(x, y), (2)

typ(x) = �(intrasim(x), interdis(x)), (3)

where � is an aggregation operator that may be pessimistic (� = min), opti-
mistic (� = max) or be an operator of compromise (mean, weighted-mean,
OWA, etc.). The weighted-mean typ(x) = α × intrasim(x)+ β × interdis(x))

α+β is used
in this work with weights defined so as to favor intra-similarity (α = .6, β = .4).

From a cluster C and a typicality measure typ, a fuzzy set denoted by FC
is defined to represent the typicality of its members:

FC = {typ(x1)/x1, ...., typ(xl)/xl}. (4)

This approach leads to a fuzzy interpretation of the clusters, but differs from
fuzzy clustering techniques: instead of having items belonging gradually to dif-
ferent clusters, an item belongs to one cluster and possesses a certain degree of
typicality. We consider this data structure easier to understand and explain.

2.2 Vocabulary

Generally, a lexicon explaining, more or less roughly, the meaning of each attribute
is published with the data set. Based on this lexicon, a subjective and domain
dependent vocabulary V is defined through linguistic variables, associating each
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attribute of interest with a set of linguistic labels and a strong fuzzy partition [7]:
formally, for attribute Aj , j = 1..m, aj denotes the number of associated modali-
ties and Vj = {vj1, . . . vjaj

} their associated fuzzy sets. The strong partition prop-
erty imposes that ∀j = 1..m, ∀x ∈ Dj ,

∑aj

k=1 μvjk
(x.Aj) = 1. It is also imposed

that an item cannot satisfy more than 2 modalities on each dimension.
Figure 1 and Table 1 illustrate partitions defined respectively on a numerical

and a categorical domain.

Fig. 1. Numerical partition Table 1. Categorical partition

An item x ∈ D can then be rewritten as a vector of
∑m

k=1 ak membership
degrees 〈μv11(x.A1), . . . , μv1a1

(x.A1), . . . , μvm1(x.Am), . . . , μvmam
(x.Am)〉. Due to

the partition properties, the above vector has at most 2m nonzero components.
Figure 2 graphically presents a toy example of a clustering on a very simple

two-dimensional data set, and also shows how these domains are rewritten by
two fuzzy partitions. Table 2 details the items assignment in the two clusters as
well as their rewriting in terms of the vocabulary.

Fig. 2. Clusters and a vocabulary Table 2. Tuples ordered by typicality
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3 Explaining Clusters Using the Expert Vocabulary

3.1 Item/Set Explanations and Typicality-Cut of a Cluster

The data set is structured into groups according to the intra-similarity of their
members and the inter-dissimilarity with members of other groups, as a result
of the clustering algorithm. Explanations of this structure are in our approach
also guided by these two measures and more precisely by their aggregation as a
measure of typicality (cf Eq. (3)).

Thus, explanations have to focus on the properties that make a group of
elements typical. An explanation is composed of linguistic labels taken from the
expert vocabulary and expressed in one conjunctive way, at most a conjunct per
attribute.

Definition 1. Let x be an item whose satisfaction vector wrt. a vocabulary V
is 〈μv11(x.A1), . . . , μv1a1

(x.A1), . . . , μvm1(x.Am), . . . , μvmam
(x.Am)〉. An expla-

nation E of an item x is a conjunction of vij , i = 1..m, j = 1..ai such that
∀vij, μvij

(x.Aj) > 0, and ∀vij , vkl ∈ E, i �= k. μE(x) is classically interpreted as
the degree of satisfaction/validity of the explanation E for the item x (the min
t-norm is used in our case to aggregate the μvij

(x)’s st. vij ∈ E).

Definition 2. A conjunction of labels E taken from V is an explanation of a
set S iff. E is an explanation of all x ∈ S and the sigma-count [8] is used to
quantify the validity of E regarding S:

μE(S) = Σcount
E (s) =

∑
x∈S μE(x)

|S| . (5)

A cluster of size n contains 2n − 1 nonempty subsets and for each of them
an exponential number of explanations, wrt. the number of dimensions on which
each item is described, may be envisaged. It would obviously be inefficient and
not informative to consider all these possible combinations of subsets and expla-
nations. The overall objective being to explain the typicality-based inner struc-
ture of the data set, explanations our approach provides are also guided by the
typicality of the clusters’ items. As illustrated by Fig. 3, the idea is to find expla-
nations for nested α-cuts of the clusters, and more precisely their fuzzy versions
representing the typicality of their members (Sect. 2.1). Let FC be the fuzzy
interpretation of a cluster C. In the same way as the α-cut applied to a classical
fuzzy set E, the α-cut of FC, denoted by FCα, returns a crisp set containing
the items belonging to C whose typicality is at least equal to α:

FCα = {x ∈ C, typ(x) ≥ α}.

The goal of the explanation process is to associate explanations to α-cuts
of the different clusters, i.e. to α-cuts. For an explanation E, one looks for the
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xcentre

FC
1

FC
2

FC
3

FC
4

Fig. 3. Typicality-cuts of a cluster FC, where α1 > α2 > α3 > α4 > 0

largest subset (α-cut) S of a cluster that E explains, this largest subset S being
called the maximal set explained by E.

Definition 3. Let FC be the fuzzy set representing the typicality of the elements
assigned to cluster C, and E an explanation of FCα, i.e. the α-cut of FC. FCα

is said to be the maximal set explained by E iff. � ∃α′ < α such that E is
also an explanation of FCα′

.

3.2 Computation of the Explanations and Their Maximal Sets

As a first step of the clustering explanation process, one generates all the possible
pairs 〈explanation, maximal explained α-cut〉 for each cluster. By definition of
an explanation (Definitions 1 and 2) and by the fact that one wants to associate
each explanation with its maximal explained set (Definition 3), the candidate
explanations to explore are all the possible explanations of the cluster’s centre.

As detailed by Algorithm 1, in order to identify the explanations and the
associated maximal α-cuts of a cluster Ci (or more precisely its fuzzy interpreta-
tion FCi), one considers as candidate explanations all the possible conjunctions
of modalities satisfied by Mi (line 1), Mi being the centre of Ci, taking care
that each conjunction involves at most one modality for each dimension. Then,
to determine the maximal subset of Ci that is explained by each candidate
explanation, α-cuts from Ci are treated in a decreasing order of their typicality
degree (loop line 5). If an explanation E is valid for a given α-cut (FCα) but is
no more verified when considering the next α′-cut, α′ < α (line 9), then the pair
〈E,α-cut〉 is stored as a validated explanation and its maximal associated set is
FCα (line 11). Moreover, E and other conjunctions containing E are removed
from the set of candidate explanations (line 12). This process is iterated until
there is no more candidate explanation or the whole cluster is explained.

This algorithm has only a linear data complexity wrt. the cardinality of the
cluster to explain and an exponential data complexity with respect to the number
of dimensions on which each item is described. This is not a real limitation in
practice as this number is generally rather low.
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Data: α-cuts of a cluster Ci in a decreasing order of α:

FCα1

i ⊆ FCα2

i ⊆ ... ⊆ FCαn

i = Ci}
Result: set of pairs 〈explanation, explained subset〉
1: candidateExp ← allExp(Mi)
2: validExp ← ∅
3: curS = {FCα1

i }
4: j = 2
5: while candidateExp �= ∅ and j ≤ n do

6: Stemp = curS ∪ {FCαj

i }
7: for E ∈ candidateExp do
8: if E not an explanation of Stemp then
9: validExp ← validExp ∪ {〈E, curS〉}

10: candidateExp ← candidateExp/{E′ ⊆ E}
11: end if
12: end for
13: curS = Stemp

14: end while
Algorithm 1: Explanations of a cluster

Table 3. Rolling out of Algorithm 1 on C1

α-cuts of C1 ↓ typicality Candidate explanations Validated explanations

S1 = FC.65
1 = {t3} {P11, P21, P22, P11 ∧ P21,

P11 ∧ P22}
∅

S2 = FC.634
1 = S1 ∪ {t6} {P11, P22, P11 ∧ P22} {(P21, S1), (P11 ∧ P21, S1)}

S3 = FC.628
1 = S2 ∪ {t2} {P11} {(P22, S2), (P11 ∧ P22, S2)}

S3 = FC.627
1 = S3 ∪ {t6} {P11}

S3 = FC.614
1 = S3 ∪ {t1} {P11}

S3 = FC.585
1 = S3 ∪ {t5} {P11} {(P11, S3)}

α-cuts of C2 ↓ typicality Candidate explanations Validated explanations

S1′
= FC.679

2 = {t10} {P13, P21, P13 ∧ P21} ∅
S1′

= FC.677
2 = S1′ ∪ {t9} {P13, P21, P13 ∧ P21} ∅

S1′
= FC.674

2 = S1′ ∪ {t8} {P13, P21, P13 ∧ P21} ∅
S1′

= FC.514
2 = S1′ ∪ {t7} {P13, P21, P13 ∧ P21} {(P13, S1′

), (P21, S1′
), (P13 ∧ P21, S1′

)}

Table 3 shows the result produced by Algorithm 1 when applied to the clusters
from Table 2.

3.3 Representativity of an Explanation

From Algorithm 1, one obtains a set of explanations for different α-cuts of each
cluster (it is worth recalling that α is a typicality threshold in our case). To be
informative, an explanation should also make it possible to distinguish between
a cluster, or a subset of this cluster, and other clusters. Thus, a degree of rep-
resentativity may be attached to an explanation in order to quantify how much
this explanation discriminates a given set of items from subsets of other clusters.



Linguistic and Graphical Explanation of a Cluster-Based Data Structure 193

To quantify the representativity of an explanation E for a given set S, one checks
the extent to which E is also valid for subsets of the other clusters having at
least the same level of typicality as S. As said in the introduction, we consider
that, in our context of a cluster-based data structure, explanations must help
users quickly identify the discriminative properties of the most typical elements
of each cluster.

Let E be a validated explanation for the α-cut of FCi. The representativity
of E with respect to FCα

i , denoted by τE(FCα
i ), quantifies the extent to which

E explains FCα
i and does not explain any another FCα′

j , j �= i, α′ ≥ α, hence:

τE(FCα
i ) = min(μE(FCα

i ), 1 − maxFCα′
j ,j 	=i,α′≥αμE(FCα′

j )). (6)

Example 1. Table 3 gives the explanations found for different subsets of the
clusters illustrated in Fig. 2. For each of these validated explanations, one com-
putes its representativity degree. To illustrate the way the representativity of
an explanation is quantified, let us take the example of the explanation P21

associated with the subset S1 = {t3} of cluster C1. The validity of P21 for
S1 is μP21(S

2) = 0.9 and its typicality level is 0.65. To determine the rep-
resentativity of P21 for S1, one checks the validity of P21 for α′-cuts of C2,
α′ ≥ 0.65: as FC.65

2 = {t10, t9, t8} and μP21(FC.65
2 ) = 1, then τP21(FC.65

1 ) = 0
and τP21(FC.65

2 ) = 1− 0.9 = 0.1. Table 4 gives the representativity degree of the
explanations enumerated in Table 3.

Table 4. Representativity of the explanations

Explanations Representativity

P21 for S1 = {t3} 0

P11 ∧ P21 for S1 = {t3} 0.9

P11 ∧ P22 for S2 = {t3, t6} 0.55

P22 for S2 = {t3, t6} 0.55

P11 for S3 = C1 0.87

P13 for S1′
= C2 0.775

P21 for S1′
= C2 0.1

P13 ∧ P21 for S1′
= C2 0.775

4 Explanations Visualization

4.1 Explanations Ranking

The process described in Sect. 3 generates for each cluster a set of explanations.
An explanation E is related to a subset S of the concerned cluster C, and more
precisely an α-cut of its fuzzy version representing the typicality of its members.
Four indicators may be attached to each pair (E,S), namely:
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– |S|
|C| the proportion of elements from C in S,

– α the typicality threshold of the α-cut S, α = minx∈Styp(s),
– μE(S) the validity of E for the subset S,
– τE(S) the representativity degree of the explanation E relatively to S.

We consider that the most informative explanations are those discriminating
the most typical elements of each cluster. So as to rank-order the explanations
according to the data structure, the representativity of the explanations (τE(S))
and the typicality of the elements (α) it explains are aggregated to obtain a score
that is attached to each explanation:

score(E,FCα) = α × τE(S).

For each cluster, explanations are ordered according to their scores. The two
other properties, namely the proportion ( |S|

|C| ) and the validity of the explanation
(μE(S)), are linguistically and graphically presented to the user (Subsects. 4.2
and 4.3).

4.2 Linguistic Explanation

A first way to help users understand the data structure is to translate the expla-
nations associated with each cluster into linguistic statements. One uses the
classical protoform Q y′s areE to generate these linguistic explanations. In our
case, Q is replaced by a linguistic label representing the proportion |S|

|C| and E is
the conjunction of properties taken from the expert’s vocabulary that explains S.

Fig. 4. Linguistic variable to describe a proportion

Thus, in addition to the domain-specific vocabulary (Sect. 2.2), a linguis-
tic variable is used to linguistically express the proportion of items explained
by E (Fig. 4). This partition is predefined using common sense default values,
but it may be revised by the user. When a proportion falls in the transition
area between two modalities of the partition, for the sake of clarity, only one
linguistic explanation is generated using the most representative modality. How-
ever, the satisfaction degree is used to quantify the truth value of the linguistic
explanation [9]:

Ψ(Q elements of C are E) = μQ(
1

|C|
∑

x∈S

μE(x)). (7)
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Example 2. Explanations found in Example 1 are ordered according to their
score (Subsect. 4.1) and translated into linguistic explanations (Table 5):

Table 5. Linguistic version of the explanations

Explanation Q Score Truth Linguistic translation

P11 ∧ P21 for S1 = {t3} Few 0.65 0.15 Few of the elements from C1 are
P11 and P21

P11 for S3 = C1 All 0.585 1 All the elements from C1 are P11

P11 ∧ P22 for S2 = {t3, t6} Some 0.55 0.07 Some of the elements from C1 are
P11 and P22

P22 for S2 = {t3, t6} Some 0.55 1 Some of the elements from C1 are
P22

P13 for S1′
= C2 All 0.514 0.8 All of the elements from C2 are P13

P13 ∧ P21 for S1′
= C2 All 0.514 1 All of the elements from C2 are

P13 and P21

P21 for S1′
= C2 All 0.1 0.8 All of the elements from C2 are P21

4.3 Graphical Visualization

As a picture speaks a million words, a graphical representation of these expla-
nations is also generated using the D3.js javascript library (http://d3.js). Each
explanation is represented by a bubble whose radius tells us about the proportion
of items from the cluster that is covered by the explanation, and the darkness of
the bubble is proportional to the score of the explanation. This way, it is easy to
identify at first sight big dark bubbles that correspond to the most informative
and global explanations. To better analyze the discriminative properties of each
cluster, two views of these explanations are proposed. The first one gathers all
the found explanations (Fig. 5), whereas the second one splits them according
to the cluster they describe (Fig. 6).

Figures 5 and 6 graphically show the explanations found for the toy clustering
illustrated in Fig. 2 1. This visualization, and especially the split view by cluster,
tells us a lot about the cluster-based structure, using terms of the vocabulary.
The size of the bubble for cluster C2 indicates the homogeneity of its items
regarding their rewriting in terms of the vocabulary. It indeed shows that all the
items from C2 satisfy the properties P 13 and P 21, and according to the shade
of gray of the bubbles one may determine that individually P 13 (bottom left
bubble) is a more discriminative explanation than P 21 (top left bubble) for C2.

The proposed explanation process of a cluster-based data structure has then
been applied to the well know iris dataset available on the UCI machine learning
1 The animated graphical explanations of the toy dataset may be found at the following

url http://gsmits.iutlan.univ-rennes1.fr/toyExample.html.

http://d3.js
http://gsmits.iutlan.univ-rennes1.fr/toyExample.html
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Fig. 5. Gathering of all the explanations for the toy dataset

Fig. 6. Explanations by cluster for the toy dataset

repositery (https://archive.ics.uci.edu/ml/datasets/Iris)2. Figure 7 illustrates the
explanations found for the three clusters found by the clustering algorithm
applied to the iris dataset. The small but dark bubbles associated with clus-
ter C3 show that the most typical iris of this type (Iris-virginica) possesses
discriminative properties, e.g. “petal length is long and petal width is large”,
but also that these explanations covers a small proportion of the cluster. On the
contrary, cluster C1 (for iris-setosa) is entirely covered by two explanations but
that are not so discriminative (the two big light bubbles for the explanations
“sepal length is short and petal length is short” and “sepal length is short and
petal width is narrow”). Cluster C2 containing iris of type versicolor is mainly
explained by the properties ‘petal length is medium and petal width is medium’,
properties that are shared by most of the items from C2.

Interesting conclusions may be quickly drawn from such a graphical visual-
ization of the explanations found for a cluster-based data structure. E.g., from a
visual explanation composed of small bubbles only, one may conclude that the
properties of the cluster centres are not shared by the remainder of their respec-
tive cluster, thus that the clusters are of a low compactness. A visual explanation
2 The animated graphical explanations of the iris dataset may be found at the following

url http://gsmits.iutlan.univ-rennes1.fr/iris.html.

https://archive.ics.uci.edu/ml/datasets/Iris
http://gsmits.iutlan.univ-rennes1.fr/iris.html
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Fig. 7. Explanations by cluster for the iris dataset

composed of light bubbles only may result from an inadequate vocabulary wrt.
the data structure. This inadequacy may e.g. come from too generic terms of
the vocabulary that cover a too large part of the definition domain. Perspectives
for future works concern the interpretation of such visualization to assess the
cluster validity and vocabulary adequacy wrt. to the data structure as it is done
numerically in [10,11].

Finally, the application of the proposed approach to these two small datasets
confirms the low complexity of our explanation process. The time needed to
rewrite the items in the terms of the expert vocabulary and to generate the
explanations, the linguistic as well as the graphical explanations, is really low
(around 0.2 s for the iris data set).

5 Related Works

Helping users or experts understand a data set by summarizing it is not a new
research area as many interesting investigations have been conducted on this
problem [12]. Existing approaches mainly differ on the nature of the considered
summaries. Whereas linguistic protoforms constitute the most commonly used
explanation structure [13–15], Raschia and Mouaddib introduced in [16] a hier-
archical summarizing process and in [17] Yager shows how the OWA operator
may be used as a generic tool to generate many interesting statistics about a
data set.

This task of data summarization has then been adapted to particular types
of data as time series [18] or logs, web logs for instance [19]. However, to the
best of our knowledge, only a few of the existing summarizing approaches take
the data structure into account [16]. Whereas clusters are used in our approach
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as a data model, groups of rewritten items are formed in [16] so as to obtain a
hierarchy of summaries. Aforementioned approaches to linguistic summarization
are all based on a confrontation between the data or its structure and a user
vocabulary. It is considered in this work that the vocabulary is in adequacy wrt.
the clustering [10] even if modifications of the vocabulary may be envisaged so
as to improve this adequacy [11].

The typicality of the elements inside their cluster plays a crucial role in
the proposed explanation mechanism. In different application contexts, from
machine learning [6,20] to cooperative answering [21], it has been shown that
the notions of typicality and subsequently of prototypes are particularly useful
to help users explore and understand a data set.

Finally, this work also makes a connection between soft computing and data
visualization [22]. Explaining and then exploring data through visual represen-
tation is an issue that gets much attention from researchers [23], developers and
designers. The gallery available on the d3.js website is an illustration of this
phenomenon. Whereas data visualization generally aims at producing attractive
and synthesized views of raw data, we produce a graphical representation of
knowledge extracted from the data. Knowledge extraction from Open Data sets
and its visualization is a crucial issue for helping data journalists and communi-
cation managers make the most of published data [24,25].

6 Conclusion

The Open Data initiative has changed the work methods of many journalists and
communication managers that have to rapidly transform raw data into editorial
contents or presentations. To help them in this task, we propose a novel sum-
marization strategy guided by the cluster-based structure of the data sets. The
underlying hypotheses of this work are that, first it is easier to understand the
main trends of a data set when groups of somewhat similar items are formed and,
then when synthetic explanations are produced. Finally, as a first step toward
the understanding of a new dataset, it appears natural to produce discrimina-
tive explanations of the typical items of each group. It is in this sense that the
proposed approach generates first synthetic linguistic explanations of the data
structure and then an additional graphical visualization of these explanations.
An interesting property of this explanation process is its low complexity and
the fact that only a small number of explanations is generated. However, these
explanations only concern the typical items of each cluster. This is why we are
currently working on an incremental explanation process and its visualization
that will make it possible to identify both typical and atypical properties.
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15. Kacprzyk, J., Zadrożny, S.: Linguistic database summaries and their protoforms:
towards natural language based knowledge discovery tools. Inf. Sci. 173(4), 281–
304 (2005)

16. Raschia, G., Mouaddib, N.: Saintetiq: a fuzzy set-based approach to database sum-
marization. Fuzzy Sets Syst. 129(2), 137–162 (2002)

17. Yager, R.R.: A human directed approach for data summarization. In: 2006 IEEE
International Conference on Fuzzy Systems, pp. 707–712. IEEE (2006)
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Abstract. This paper deals with belief graphical models and
probability-possibility transformations. It first analyzes some properties
of transforming a credal network into a possibilistic one. In particular,
we are interested in satisfying some properties of probability-possibility
transformations like dominance and order preservation. The second part
of the paper deals with using probability-possibility transformations in
order to perform MAP inference in credal networks. This problem is
known for its high computational complexity in comparison with MAP
inference in Bayesian and possibilistic networks. The paper provides pre-
liminary experimental results comparing our approach with both exact
and approximate inference in credal networks.

Keywords: Credal networks · Possibilistic networks · Probability-
possibility transformations

1 Introduction

Belief graphical models such as Bayesian [4], credal [3] and possibilistic networks
[2] are powerful tools for representing and reasoning with uncertain information.
Bayesian networks allow to compactly encode a probability distribution thanks
to the conditional independence relationships existing between the variables.
Credal networks, based on the theory of credal sets, generalize Bayesian net-
works in order to allow some flexibility regarding the model parameters. Indeed,
credal networks are often seen as probabilistic graphical models with relaxed
parameters. They are for instance used in robustness analysis and for encoding
incomplete and ill-known knowledge and reasoning with the knowledge of groups
of experts. Possibilistic networks are the counterparts of Bayesian networks based
on possibility theory [7,17].

Many uncertainty frameworks exist, some of which are generalizations of
some other ones. For instance, imprecise probability theory [10,15] is a general-
ization of probability theory while possibility theory [7,17] is an alternative non
additive uncertainty theory particularly suited for handling incomplete, quali-
tative and partial information. In order to cast the information encoded within
c© Springer International Publishing Switzerland 2015
C. Beierle and A. Dekhtyar (Eds.): SUM 2015, LNAI 9310, pp. 203–219, 2015.
DOI: 10.1007/978-3-319-23540-0 14
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one setting into another uncertainty framework, transformations are used. They
are mechanical transformations satisfying some desirable properties like consis-
tency and order preservation. Many works are done for instance for transform-
ing probability measures into possibilistic ones [9,17]. However, in the context
of belief graphical models and knowledge bases, only few works addressed some
related issues [1,13]. Transformations can be useful in various contexts such
as (i) using the existing tools (e.g. algorithms and software) developed in one
setting rather than developing everything from scratch for the other setting or
(ii) exploiting information provided in different uncertainty languages as it is
often the case in some multiple expert applications. In this paper, we are mainly
interested in probability-possibility transformations for computational complex-
ity purposes. More precisely, in this preliminary work, our objective is to exploit
probability-possibility transformations to efficiently perform MAP inference in
credal networks where this task is NPPP -hard in the general case [12]. The main
contributions of the paper are:

– Proposing and analyzing a transformation allowing to turn a credal network
into a possibilistic network.

– Proposing a kind of approximate approach for MAP inference in credal net-
works by means of probability-possibility transformations.

– Providing preliminary experimental studies showing that MAP inference could
efficiently be carried out using our approach with a high accuracy rate.

2 A Brief Refresher on Credal and Possibilistic Networks

This section briefly presents the belief graphical models dealt with in this paper.

2.1 Bayesian Networks

Bayesian networks (BN ) are well-known probabilistic graphical models [4]. They
allow to compactly represent a probability distribution over a set of variables of
interest. A BN is specified by:

– A graphical component with nodes and edges forming a directed acyclic graph
(DAG). Each node represents a variable Ai of the modeled problem and the
edges encode independence relationships among variables.

– A quantitative component, where each variable Ai is associated with a local
probability distribution p(Ai|par(Ai)) for Ai in the context of its parents
par(Ai).

The joint probability distribution encoded by a Bayesian network is computed
using the following chain rule:

P (A1, .., An) =
n∏

i=1

P (Ai|par(Ai)) (1)
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2.2 Credal Networks

Credal networks are probabilistic graphical models based on imprecise proba-
bilities. Imprecise probability theory [10,15] generalizes probability theory to
encode imprecise and ill-known information. A key notion in this theory is the
one of credal set.

Definition 1 (Credal set). A credal set is a convex set of probability distrib-
utions.

Intuitively, if K is a convex set of probability measures, then mixing any two
distributions p1 and p2 from K will result in a distribution p belonging to K.
Mixing here means linearly combining a set of distributions p1 ... pk as follows:
p =

∑k
i=1(ai ∗ pi) where

∑k
i=1 ai = 1. A credal set is often interpreted as a

set of imprecise beliefs in the sense that the true uncertainty model (probability
measure) is in this set but there is no way to determine it exactly due to lack
of knowledge. In order to characterize a credal set, one can use a (finite1) set of
extreme points (edges of the polytope representing the credal set), probability
intervals or linear constraints.

Interval-based probability distributions (IPD for short) are a very natural and
common way to specify imprecise and ill-known information. In an IPD IP , every
interpretation ωi ∈ Ω is associated with a probability interval IP (ωi) = [li, ui]
where li (resp. ui) denotes the lower (resp. upper) bound of the probability of ωi.

Definition 2 (Interval-based probability distribution). Let Ω be the set
of possible worlds. An interval-based probability distribution IP is a function that
maps every interpretation ωi ∈ Ω to a closed interval [li, ui] ⊆ [0, 1].

An IPD should satisfy the following constraints in order to ensure that the
underlying credal set is not empty and every lower/upper probability bound is
reachable.

∑

ωi∈Ω

li ≤ 1 ≤
∑

ωi∈Ω

ui

∀ωi ∈ Ω, li +
∑

ωj �=i∈Ω

uj ≥ 1 and ui +
∑

ωj �=i∈Ω

lj ≤ 1

In order to give a formal semantics for IPDs, let us first define the concept of
compatible probability distribution.

Definition 3 (Compatible probability distribution). A probability distri-
bution p over Ω is said compatible with IP iff ∀ωi ∈ Ω, p(ωi) ∈ IP (ωi).

1 It is important to note that the number of extreme points can reach N ! where N is
the number of interpretations [16].
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Note that while a standard probability distribution p induces a complete order
over the set of possible worlds Ω, an IPD IP may induce a partial order since
some interpretations may be incomparable in case of overlapping intervals. In
this paper, a credal set Ki associated with a variable Ai having an interval-
based probability distribution IP denotes the closed convex set of (standard)
probability distributions p that are compatible with IP . Let us now introduce
probabilistic graphical models based on credal sets, called credal networks [3,12].

Definition 4 (Credal network). A credal network CN =<G,K> is a proba-
bilistic graphical model where

– G = <V,E> is a directed acyclic graph (DAG) encoding conditional indepen-
dence relationships where V = {A1, A2, .., An} is the set of variables of interest
(Di denotes the domain of variable Ai) and E is the set of edges of G.

– K = {K1,K2, ..,Kn} is a collection of local credal sets, each Ki is associated
with the variable Ai in the context of its parents par(Ai).

Such credal networks are called separately specified credal networks as the only
constraints on probabilities are specified in local tables for each variable in the
context of its parents. Note that in practice, in local tables, one can either specify
a set of extreme points characterizing the credal set as in JavaBayes2 software
or directly local IPDs.

A credal network CN can be seen as a set of Bayesian networks BN s, each
encoding a joint probability distribution. In this paper, we deal only with discrete
variables and the semantics associated with a CN is a set of compatible BN s,
defined as follows:

Definition 5 (Compatible Bayesian network). Let CN = <G,K> be a
credal network and BN = <G,CPT> be a Bayesian networks. BN is said com-
patible with CN iff

1. BN and CN have exactly the same structure (hence they encode the same
conditional independence relations).

2. For each variable Ai, ∀ai ∈ Di, pBN (ai|par(ai)) ∈ Ki(ai|par(ai)).

According to this semantics, a credal network CN encodes a set of joint prob-
ability distributions, called extensions and denoted ext(CN ), where each joint
distribution p ∈ ext(CN ) is encoded by a compatible Bayesian network. Given
an extension ext(CN ), one can compute a joint IPD (interval-based joint prob-
ability distribution) as follows:

P (a1a2..an) = min
p ∈ ext(CN )

(p(a1a2..an)) (2)

P (a1a2..an) = max
p ∈ ext(CN )

(p(a1a2..an)) (3)

2 http://www.cs.cmu.edu/∼javabayes/Home/.

http://www.cs.cmu.edu/~javabayes/Home/
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In Eqs. 2 and 3, p(a1a2..an) is computed with the well-known chain rule in
Bayesian networks (see Eq. 1). Note that the vertices of ext(CN ) can be obtained
by considering only the set of vertices of the local credal sets Ki associated with
the variables [3]. As for marginalization and conditioning, they are defined as
follows:
Let K(A1..An) be a credal set over the set of variables A = {A1..An}. Let X
and Y be two disjoint subsets of A such that X ∪ Y = A. Then,

K(X) = CH({
∑

Y

p(X,Y ) with p(X,Y ) ∈ K(A1..An)}) (4)

where CH is the convex hull operator. As for conditioning, let e be an evidence,
then

K(A1..An|e) = CH({p(A1..An|e) with p(A1..An) ∈ K(A1..An) and p(e) > 0})
(5)

2.3 Possibilistic Networks

A possibilistic network PN = <G,Θ> is specified by:

(i) A graphical component G consisting of a directed acyclic graph (DAG) where
vertices represent the variables and edges represent direct dependence rela-
tionships between variables.

(ii) A numerical component Θ allowing to weight the uncertainty relative to each
variable using local possibility tables. The possibilistic component consists
in a set of local possibility tables θi = π(Ai|par(Ai)) for each variable Ai in
the context of its parents par(Ai) in the network PN .

Note that all the local possibility distributions θi must be normalized, namely
∀i = 1..n, for each parent context par(ai), maxai∈Di

(π(ai | par(ai)) = 1.
In the possibilistic setting, the joint possibility distribution is factorized using

the following possibilistic counterpart of the chain rule:

π(a1, a2, .., an) = ⊗n
i=1(π(ai|par(ai))). (6)

where ⊗ denotes the product or the min-based operator depending on the quan-
titative or the qualitative interpretation of the possibilistic scale [7].

3 Probability-Possibility Transformations

3.1 Form Probability Distributions to Possibilistic Ones

Many probability-possibility transformations exist [6,9,17]. Most of the works
address desirable properties and propose some transformations that satisfy such
properties. Among these transformations, the optimal transformation (OT ) [6]
defines a consistency condition requiring that
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1. the obtained possibility distribution π dominates the original probability dis-
tribution p (namely, φ ⊆ Ω,P (φ) ≤ Π(φ)).

2. the obtained possibility distribution π preserves the order of elementary
worlds encoded in p (namely, ∀(ωi, ωj) ∈ Ω2, p(ωi) > p(ωj) ⇒ π(ωi) > π(ωj)
and p(ωi) = p(ωj) ⇒ π(ωi) = π(ωj)).

The optimal transformation (OT ) transforms p into π as follows:

πi =
∑

j/pj≤pi

pj , (7)

where πi (resp. pi) denotes π(ωi) (resp. p(ωi)). The transformation of Eq. 7 guar-
antees that the obtained possibility distribution π is the most specific3 (hence
most informative) one that is consistent and preserving the order of interpreta-
tions.

The author in [14] addressed the commutativity of transformations with
respect to some operations but the aim was to show that the obtained dis-
tributions are not identical. Some of these issues were also dealt with in the
context of fuzzy interval analysis [8]. In [1], we dealt with some issues about
probability-possibility transformations especially those regarding reasoning tasks
and graphical models. In particular, we showed that:

– there is no transformation that can preserve the order of arbitrary events
through some reasoning operations like marginalization.

– for the independence of events and variables, we showed that there is no
transformation that preserves the independence relations,

– when the uncertain information is encoded by means of graphical models, we
showed that no transformation can preserve the order of interpretations and
events.

In this paper, we deal with some of these issues in the context of credal networks.

3.2 From Interval-Based Probability Distributions to Possibilistic
Ones

When transforming uncertain information expressed by means of probability
intervals to a possibility distribution, there is to the best of our knowledge only
one work [11] where the authors learn possibility distributions from empirical
data by transforming confidence intervals to possibility distributions. The start-
ing point of this transformation is to consider an IPD as a means of encoding
a partial order M over Ω. Indeed, contrary to precise probability distributions
which encode complete order relations over Ω, interval-based ones encode partial
orders in the form ωi <IP ωj in case where ui < lj . Let M be the partial order
encoded by an IPD IP and let C be the set of linear extensions (complete orders)
that are compatible with the partial order M. The transformation proposed in
[11] proceeds as follows:
3 Let π′ and π′′ be two possibility distributions, π′ is more specific than π′′ iff ∀ωi∈Ω,

π′(ωi) ≤ π′′(ωi).
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– For every linear extension Cl ∈ C and for each ωi ∈ Ω, compute:

πCl(ωi) = max
p1..pn

(
∑

pj≤pi

pi) (8)

subject to the following constraints (in order to explore only compatible prob-
ability distributions satisfying the current linear extension Cl):

⎧
⎨

⎩

pi ∈ [li, ui]∑
i=1..n pi = 1

p1..pn satisfy the linear extension Cl

– Build the distribution π that dominates all the distributions πCl as follows:
∀ωi ∈ Ω,

π(ωi) = max
Cl∈C

(πCl(ωi)) (9)

The motivation of using Eq. 9 is to guarantee that the obtained possibility
distribution π dominates the probability intervals IP . This transformation
tries on one hand to preserve the order of interpretations induced by IP and
the dominance principle requiring that ∀φ ⊆ Ω,P (φ) ≤ Π(φ) on the other
hand.

There are two main drawbacks with the transformation of Eqs. 8 and 9:

– The first issue is about the computational complexity of such transformation.
Applied directly, this latter can consider in the worst case N ! linear exten-
sions where N is the number of possible worlds. The authors proposed in [11]
an algorithm allowing to achieve some improvements during this transforma-
tion but it is still very costly when one considers variables having domains
exceeding a dozen values, which is common in many applications.

– The second concern lies in the fact that this transformation does not guarantee
that the obtained distribution is optimal is terms of specificity. Indeed, it was
shown in [5] that the transformation of Eq. 9 results in a loss of information as
it is not the most specific one dominating the considered IPD. The authors in
[5] suggest that any upper generalized R-cumulative distribution F built from
one linear extension Cl ∈ C can be viewed as a possibility distribution and it
also dominates all the probability distributions that are compatible with the
IPD. Let Cl be a linear extension compatible with the partial order M induced
by an IPD. Let φ1, φ2..φn be subsets of Ω such that φi = {ωj |ωj ≤Cl

ωi}.
The upper cumulative distribution F built from one linear extension Cl is as
follows (see [5] for more details):

F (φi) = min(
∑

ωj∈φi

uj , 1 −
∑

ωj �∈φi

lj) (10)

The obtained cumulative distribution F is a possibility distribution dominat-
ing IP and it is such that P (φi) = Π(Ai).
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Regarding the commutativity of transformations with respect to change oper-
ations like marginalization and conditioning used to answer MAP queries, since
probability distributions are special cases of IPDs, it can be expected that for
the commutativity issue, the transformations exhibit the same properties. This
is the focus of the next section.

4 Commutativity of Interval-Based Probability-
Possibility Transformations with Respect
to Marginalization and Conditioning

This section checks whether the interval-based probability-possibility transfor-
mations are commutative with respect to two major change operations that are
marginalization and conditioning. Namely, the question dealt with here is: Given
an IPD IP , do we get exactly the same results when (i) we first transform IP into
a possibility distribution π then apply the change operation in the possibilistic
setting and when (ii) we first apply the change operation in the interval-based
setting then transform the result into a possibility distribution. Proposition 1
provides the answer for marginalization:

Proposition 1. Let TR be an interval-based probability-possibility transforma-
tion4. Then there exists an IPD IP , two events φ ⊆ Ω, ψ ⊆ Ω with φ �= ψ, and
π = TR(IP ) such that P (φ) < P (ψ) but Π(φ) > Π(ψ).

Proposition 1 asserts that no interval-based probability-possibility transforma-
tion can guarantee the preservation of the order of events as shown in the fol-
lowing example.

Example 1. Let IP be an IPD of Table 1 where Ω = {ω1, ω2, ω3, ω4} and π =
TR(IP ). In this example, α1, α2 and α3 are possibility degrees such that 1 >
α1 > α2 > α3 in order to satisfy the preference preservation principle. Now,
let φ and ψ be two events such that φ = {ω1} and ψ = {ω2, ω3}. We have
Π(φ) = 1 > Π(ψ) = max(α1, α2) while P (φ) = .4 < P (ψ) = .6.

As shown in Example 1, the strict order of events is not preserved by TR because
of the different behavior of the additivity axiom in the probabilistic setting and
the maxitivity axiom of the possibilistic setting used by the marginalization
operation.

As a consequence of Proposition 1, we have the following Lemma:
4 In the rest of this paper, TR denotes an interval-based probability-possibility trans-

formation satisfying the following principles:

– Dominance: The possibility distribution π obtained from the IPD IP by TR
dominates every probability distribution p compatible with IP , namely ∀φ ⊆ Ω,
π(φ) ≥ p(φ).

– Order preservation: Given two interpretations ωi ∈ Ω and ωj ∈ Ω, π(ωi) < π(ωj)
iff p(ωi) < p(ωj).
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Table 1. Example showing the loss of the order of events.

ωi IP (ωi) π(ωi)

ω1 [.36, .4 ] 1

ω2 [.35, .35] α1

ω3 [.25, .25] α2

ω4 [ 0, .04] α3

Lemma 1. Let TR be an interval-based probability-possibility transformation.
Then there exists an IPD IP over Ω = {ω1, ω2, .., ωn} and a partition Ω′ =
{W1,W2...Wk} of Ω with k < n. Let π = TR(IP ), IP ′ is obtained by marginal-
izing IP on Ω′ according to Eq. 4 and π′ is obtained by marginalizing π on Ω′

in the possibilistic setting. Then there may exist an event Wi ∈ Ω′ such that

π(Wi) �= π′(Wi).

Proof (Proof sketch). The proof follows from Proposition 1 since if the order of
events is not preserved then the underlying marginalized distributions must be
different.

Let us now check the commutativity issue with respect to conditioning. For
standard probability distributions, we have the following finding [1]:

Proposition 2. Let p be a probability distribution over Ω and let φ ⊆ Ω be an
evidence. Let TR be a probability-possibility transformation, p′ be a probability
distribution obtained by conditioning p by φ, π′′ = TR(p′) and π′ is the possibility
distribution obtained by conditioning π = TR(p) by φ. Then, ∀ωi, ωj ∈ Ω,

π′(ωi) < π′(ωj) iff π′′(ωi) < π′′(ωj).

Note that Proposition 2 is valid in both the product and the min-based pos-
sibilistic settings and it states that the order of interpretations is not affected
by the order of applying the transformation and the conditioning operation. For
IPDs, the following proposition states that the partial order encoded by IP after
conditioning is preserved in the (complete) order induced by π after conditioning
on the same evidence.

Proposition 3. Let IP be an IPD over Ω and let φ ⊆ Ω be an evidence. Let
TR be an interval-based probability-possibility transformation, IP ′ = IP (.|φ)
be a posterior probability distribution obtained by conditioning IP by φ, π′′ =
TR(IP ′) and π′ = π(.|φ) is the possibility distribution obtained by conditioning
π = TR(IP ) by φ. Then,

∀ωi, ωj ∈ Ω, π′(ωi) < π′(ωj) iff π′′(ωi) < π′′(ωj).
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Proof (Proof sketch). The idea of the proof is that since conditioning in both
the probabilistic and possibilistic settings consists in discarding the worlds that
are not models of the evidence φ (by assigning them a 0 probability/possibility
degree) then renormalizing the obtained distribution. Hence, the order of inter-
pretations that are models of φ is not affected by the order of application of
transformation/conditioning operations.

Let us now see how one can use probability-possibility transformations to per-
form some inference queries in credal networks.

5 A Probability-Possibility Transformation Based
Approach for Inference in Credal Networks

In [13] a natural transformation of Bayesian networks into possibilistic networks
is proposed using the existing probability-possibility transformations such as OT .

5.1 From Credal Networks to Possibilistic Networks

A straightforward way to transform a credal network into a possibilistic network
is as follows:

Definition 6 (Credal-possibilistic network transformation). Let CN be
a credal network, PN CN is a possibilistic network obtained from CN and
defined by:

– A graphical component G which is the same graph as the credal network hence
PN CN encodes the same independence relations as CN .

– A collection of local possibility tables πi obtained by transforming local credal
sets Ki with TR, a transformation from interval-based probability distribution
into possibilistic ones.

The advantage of transforming a graphical model using Definition 6 is to preserve
the independence relationships while transforming only local tables.

Example 2. Let CN be the credal network of Fig. 1 over two binary variables A
and B. Using the transformation of Eq. 9, the credal network CN of Fig. 1 will
be transformed to the possibilistic network PN of Fig. 2.

In the following, we address two main questions: (i) Does the distribution πPN
dominate IPCN (the joint interval-based distribution encoded by CN )? and (ii)
Is the partial order of interpretations induced by IPCN preserved by the trans-
formation TR?

Regarding the first question, the two following propositions provide the
answer. For elementary worlds ωi ∈ Ω, Proposition 4 ensures that the computed
possibility distribution dominates the corresponding probability degrees in case
where the credal network CN is a Bayesian network (namely, all the intervals in
CN are singletons).
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A

B

A [IP(A)]
F [.5, .9]
T [.1, .5]

A B IP(B|A)
F F [.36, .4 ]
F T [.35, .35]
T F [.25, .25]
T T [ 0, .04 ]

Fig. 1. Example of a credal network
CN .

A

B

A π(A)
F 1
T 1

A B π(B|A)
F F 1
F T .64
T F .29
T T .04

Fig. 2. The possibilistic network
PNCN obtained from the credal
network CN of Fig. 1.

Proposition 4. Let TR be a probability-possibility transformation. Let BN be
a standard Bayesian network and let pBN be the underlying joint probability
distribution encoded by BN . Let PN be a possibilistic network such that PN =
TR(BN ) and πPN be the joint possibility distribution encoded by PN . Then
∀ωi ∈ Ω,

πPN (ωi) ≥ PBN (ωi).

Proof (Proof sketch). Let ωi = a1a2...an be an instantiation of the network
variables A1, A2...An. We have in the product-based possibilistic set-
ting, for every variable value ai in its parents context par(ai), pBN (ai|
par(ai)) ≤ πPN (ai|par(ai)), guaranteed by the transformation TR. Then∏n

i=1(pBN (ai|par(ai))) ≤ ∏n
i=1(πPN (ai|par(ai))). The proof follows similarly

for min-based possibilistic networks.

Now, regarding arbitrary events φ ⊆ Ω, the issue is still open. If we use the
optimal transformation OT , the following proposition states that the obtained
joint possibility distribution does not guarantee to dominate the joint probability
distribution.

Proposition 5. Let OT be the optimal probability-possibility transformation.
There may exist a standard Bayesian network BN encoding a joint probability
distribution denoted pBN . Let PN be a possibilistic network such that PN =
OT (BN ) and πPN be the joint possibility distribution encoded by PN . Then
there may exist an event φ ⊆ Ω such that

ΠPN (φ) �≥ PBN (φ)

The following counter-example shows that ΠPN (φ) ≥ PBN (φ) is not guaranteed
when using the optimal transformation OT .

Example 3. Let BN be the Bayesian network of Fig. 3 over two variables A and
B having the domains DA = {a1, a2} and DB = {b1, b2, b3} respectively.
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A

B

A p(A) π(A)
a1 .6 1
a2 .4 .4

A B p(B|A) π(B|A)
a1 b1 .6 1
a1 b2 .3 .4
a1 b3 .1 .1
a2 b1 .5 1
a2 b2 .3 .5
a2 b3 .2 .2

Fig. 3. Example of a Bayesian network
BN and the possibilistic network PN
obtained from BN using the optimal
transformation OT .

A B p(A,B) π(A,B)

a1 b1 .36 1
a1 b2 .18 .4
a1 b3 .06 .1
a2 b1 .2 .4
a2 b2 .12 .2
a2 b3 .08 .08

Fig. 4. Joint probability and possi-
bility distributions encoded by the
networks BN and PN of Fig. 3.

The joint distributions encoded by the networks BN and PN are given
in Fig. 4. From Fig. 4, one can compute P (b3) = .06 + .08 = .14 > Π(b3) =
max(.1, .08) = .1.

Example 3 clearly shows that the transformation OT does not guarantee that
when transforming a Bayesian network to a possibilistic network, the underlying
joint possibility distribution dominates the corresponding probability distribu-
tion.

Now, how about the order of interpretations encoded by a credal network
when it is transformed into a possibilistic network? The following proposition
answers this question. Recall that the objective here is to check if the order of
interpretations induced by IPCN (the joint IPD encoded by the credal network
CN ) is preserved in the obtained joint possibility distribution πPN encoded by
the possibilistic network PN .

Proposition 6. Let TR be a transformation from credal networks to possibilis-
tic ones. Then there exists a credal network CN and two interpretations ωi ∈ Ω
and ωj ∈ Ω such that

pCN (ωi) < p
CN

(ωj) but πPN (ωi) ≥ πPN (ωj).

where p
CN

and pCN denote lower and upper bounds induced by CN and πPN

denotes the joint possibility distribution induced by PN using the transforam-
tion of Definition 6. The following gives a counter-example.

Example 4. Let CN be the credal network of Fig. 5 over two disconnected vari-
ables A and B. Note that the IPD IP (A) in CN is a permutation5 of the IPD of
B. Hence, the transformation of IP (A) and IP (B) by TR gives π(A) and π(B)
where π(B) is also a permutation of π(A). In this example, since TR is assumed
to preserve the partial order of interpretations, we have 1 > α1 > α2 > α3.
The probability and possibility degrees of interpretations a1b3 and a2b2 are

5 The permutation property of probability-possibility transformations is discussed
in [14].
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p(a1b3) = 0.36 ∗ 0.24 = 0.0864 and p(a2b2) = 0.26 ∗ 0.26 = 0.0676. Clearly,
p(a1b3) > p(a2b2). Now, π(a1b3) = min(α2, 1) and π(a2b2) = min(α1, α1) then,
π(a1b3) < π(a2b2). It is clear that the relative order of interpretations is reversed
whatever is the used transformation in the ordinal setting. In the same way, in
the product-based possibilistic setting, the relative order of interpretations can
not be preserved by any transformation.

A B

A IP (A) π(A)
a1 [.36, .4 ] 1
a2 [.26, .26] α1
a3 [.24, .24] α2
a4 [ .1, .14] α3

B IP (B) π(B)
b1 [ .1, .14] α3
b2 [.26, .26] α1
b3 [.24, .24] α2
b4 [.36, .4 ] 1

Fig. 5. Counter-example for Proposition 6.

Up to now, the findings of this paper are rather negative but transformations
from credal networks into possibilistic ones can be very helpful for certain types
of queries in credal networks as it is shown in the following sections.

5.2 MAP Inference in Credal Networks Through Credal-Possibilistic
Network Transformation

Inference in probabilistic graphical models generally consists in computing the
probability of an event. In credal networks, this equivalently comes down to com-
puting lower or upper probabilities of an event of interest. Let A = {A1, A2...An}
be the set of variables of the probabilistic model. Let O ⊆ A be the set of observed
variables and let o be an instantiation of observation variables O. Let also Q ⊆ A
be the set of query variables and let q be instantiation of the query variables.
There are three main query types when reasoning with belief graphical models:

– Computing the probability of an event q of interest (Pr) given an evidence o.
– Computing the most plausible explanation (MPE). Given an observation o

of some variables, the objective is to compute the most probable instantiation
q of all the remaining (unobserved) variables Q. Note that here O ∪ Q = A
and Q ∩ O = ∅.

– Computing the maximum a posteriori (MAP ). Given some observations o of
the values of some variables O, the objective is to compute the most probable
instantiation q of the query variables Q. In MAP queries, Q ∩ O = ∅. Note
that MPE queries are special cases of MAP ones.

In credal networks, the inference problem equivalently comes down to compute
either the lower or the upper bound of an event of interest. As for MPE and
MAP queries, there are different criteria to choose the most probable instantia-
tion of query variables given the observations. The commonly used criterion in
credal networks is the one of interval-dominance and refers to non-dominated
instantiations of query variables.
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Definition 7 (Interval-dominance). An instantiation qi of query variables Q
dominates another instantiation qj iff P (qi|o) > P (qj |o) where o is an instanti-
ation of observation variables O.

The following table summarizes complexity results of inference in Bayesian and
credal networks [12].

Query Polytree Bounded treewidth Multiply-connected

Bayesian Networks Pr Polynomial Polynomial PP-Complete

MPE Polynomial Polynomial NP-Complete

MAP NP-Complete NP-Complete NPPP -Complete

Credal Networks Pr NP-Complete NP-Complete NPPP -Complete

MPE Polynomial Polynomial NP-Complete

MAP ΣP
2 -Complete ΣP

2 -Complete NPPP -Hard

It is obvious that even in polytrees, MAP inference is a hard task. In practice,
the size of networks and the set of extreme points of local credal sets is often
large. This motivates approximate inference approaches where the goal is to
provide bounds of the real bounds of probabilities. In this work, we provide a
kind of approximate inference approach for MAP inference in CN s by transform-
ing the credal network CN into a possibilistic network PN used to answer the
queries. Note that the complexity of inference in possibilistic networks is similar
to inference in Bayesian networks.

6 Experimental Studies

The objective of this section is to empirically evaluate the accuracy of perform-
ing MAP inference in credal networks by transforming them into possibilistic
networks. In order to evaluate our approach, we carried out a set of experimen-
tations on the well-known and publicly available credal networks benchmark6.
This latter contains a set of credal networks with different topologies and para-
meters in .bif format. Table 2 gives some details on the networks used in our
experimentations. Table 2 shows that the number of variables in the used net-
works varies from 6 up to 37. As for variable domains, their sizes vary between
2 and 8. In this preliminary study, we are interested only in MAP queries where
given some observed variables, the task is to find the most probable values of
some other non observed variables, called query variables. In this experimenta-
tion, we report results where the number of observed variables and the observed
values are randomly chosen. The queries concern only one variable chosen ran-
domly. Now, in order to compare the results of MAP inference in credal networks
and their possibilistic counterpart, each query Q is submitted to a credal network

6 http://ipg.idsia.ch/software/.

http://ipg.idsia.ch/software/
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CN then to the corresponding possibilistic network PN obtained from CN . The
results are compared through the accuracy criterion defined as follows:

accuracy(Q1, Q2...Qn) =
1
n

∑

i:1..n

|CNMAP (Qi) ∩ PNMAP (Qi)|
|CNMAP (Qi) ∪ PNMAP (Qi)| , (11)

where CNMAP (Qi) (resp. PNMAP (Qi)) denotes the results of the query Qi sub-
mitted to the network CN (resp. PN ). This criterion evaluates the coincidence
between the results of CN to the MAP queries and the ones of PN .

Table 2. Credal networks used in the experimentations.

Networks Topology # Nodes max domain size

Alarm Multiply-connected 37 4

Insurance Multiply-connected 27 5

Poly Polytree 10, 20, 30 4

Multi Multiply-connected 6, 10, 20 8

In Table 3, we provide the accuracy (see Eq. 11) of MAP inference achieved
through our credal-possibilistic network transformation approach with respect
to the results of credal networks. More precisely, the column Exact vs Appr
provides the accuracy of an approximate inference algorithm in credal networks
achieved with the GL2U software7 on each network category. The column Exact
vs CD (resp. Exact vs MD) provides the accuracy of possibilistic networks
obtained by our credal-possibilistic network transformation where local tables
are transformed using the cumulative distribution of Eq. 10 (resp. Masson and
Denoeux’s transformation [11] considering all the linear extensions). Note also
that we evaluated only product-based possibilistic networks and the experiments
are performed on a few dozen requests on a laptop.

Table 3. Credal networks used in the experimentations.

Networks Exact vs Appr Exact vs CD Exact vs MD

Alarm 75 % 100 % timeout

Insurance 50 % 100 % timeout

Poly 83 % 100 % timeout

Multi 90 % 38 % 48 %

The results of Table 3 clearly show that, on one hand, the credal-possibilistic
network transformation based approach can ensure a high accuracy rate and,
on the other hand, the results are often better than those obtained with an
approximate approach.
7 http://people.idsia.ch/∼sun/gl2u-ii.htm.

http://people.idsia.ch/~sun/gl2u-ii.htm
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7 Conclusions

This paper dealt with probability-possibility transformations in the context of
credal networks. We first analyzed some issues related to the commutativity
of transformations with respect to marginalization and conditioning, two main
change operations used for MAP inference. We then proposed an approach allow-
ing to perform MAP inference in credal networks with a lower computational
costs. Finally, we provided experimental studies showing the efficiency of the
proposed approach in terms of accuracy. Future works will deal with extensive
experimental studies as well as using our credal-possibilistic network transfor-
mation based approach for achieving classification with credal networks in real
applications.

Acknowledgements. This work is done with the support of a CNRS funded project
PEPS FaSciDo 2015 - MAPPOS.
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Abstract. A new translation from Partially Observable MDP into Fully
Observable MDP is described here. Unlike the classical translation, the
resulting problem state space is finite, making MDP solvers able to solve
this simplified version of the initial partially observable problem: this
approach encodes agent beliefs with possibility distributions over states,
leading to an MDP whose state space is a finite set of epistemic states.
After a short description of the POMDP framework as well as notions of
Possibility Theory, the translation is described in a formal manner with
semantic arguments. Then actual computations of this transformation
are detailed, in order to highly benefit from the factored structure of the
initial POMDP in the final MDP size reduction and structure. Finally
size reduction and tractability of the resulting MDP is illustrated on a
simple POMDP problem.

1 Introduction

It is claimed that Partially Observable Markov Decision Processes (POMDPs)
[17] finely models an agent acting under uncertainty in a partially hidden environ-
ment. However, solving a POMDP, i.e. the computation of an optimal strategy
for the agent, is a really difficult task: the problem is PSPACE-complete [12].
Classical approaches try to solve this problem using Dynamic Programming [3],
or via approximate computation. These include for instance heuristic search [18]
and Monte Carlo approaches [16].

The approach proposed here simplifies a POMDP problem before solving it.
The transformation described leads to a fully observable MDP on a finite number
of epistemic states, i.e. a problem modeling an agent acting under uncertainty in
a fully observable environment [13]. As such a finite state space MDP problem is
P-complete [12] this transformation qualifies as a simplification, and any MDP
solver can return a policy for this translated POMDP.

Most of the POMDP algorithms draw upon the agent belief during the
process, defined as the probability of the actual system state knowing all the
system observations and agent actions from the beginning. This belief is updated
c© Springer International Publishing Switzerland 2015
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at each time step using Bayes’ rule and the new observation. The initial belief,
or prior probability distribution over the system states, is part of the definition
of the POMDP. However in practice, the initial system state can be unknown:
for instance, in a robotic exploration context, the initial location of the agent,
or initial presence of an entity in the scene. Defining the process with a uniform
probability distribution as initial belief (e.g. over all locations or over entity pres-
ence) is a subjectivist answer [5], i.e. all probabilities are the same because no
event is more plausible than another: it corresponds to equal betting rates. How-
ever the subsequent belief updates will eventually mix up frequentist probability
distributions defining the POMDP with the initial belief which is a subjective
probability, and it does not always make sense.

More than only a simplification of the initial POMDP problem, the theoreti-
cal framework used here for the belief representation formally models an agent’s
knowledge about the system state: the proposed translation defines beliefs as
possibility distributions over system states s ∈ S: these kinds of distributions are
denoted by π (counterpart of probability notation p) and represent fuzzy sets of
system states, as the indicator (characteristic) function of this set. Recall that
the indicator function of a classical set A ⊆ S is 1A(s) = 1 if s ∈ A and 0 other-
wise. Values of a fuzzy set indicator function π are chosen in a finite and totally
ordered scale L = {1 = l1, l2, . . . , 0} with l1 > l2 > . . . > 0 i.e. π : S → L. If
s ∈ S is such that π(s) = li, s is in the fuzzy set described by π, with degree li.
Possibilistic beliefs used in this work will represent fuzzy sets of possible states. If
the current possibilistic belief coincides with the distribution π(s) = 1 ∀s ∈ S, all
system states are totally possible, and it models therefore a total ignorance about
the current system state: qualitative possibilistic beliefs can model agent initial
ignorance. The perfect knowledge of the current state, say s̃ ∈ S, is encoded by a
possibility distribution equal to the classical indicator function of the singleton
π(s) = 1{ s=s̃ }(s). Between these two extrema, the current knowledge of the
system is described by a set of entirely possible states, {s ∈ S s.t. π(s) = 1},
and successive sets of less plausible ones {s ∈ S s.t. π(s) = li } down to the set
of impossible states {s ∈ S s.t. π(s) = 0}.

The major originality of this work comes from the finiteness of the scale L:
the number of possible beliefs about the system state is, as well, finite (smaller
than #(LS) = (#L)#S), while the set of all probability distributions over S is
infinite. The translation described here leads then to an MDP whose finite state
space is the set of possible possibilistic beliefs, or epistemic states.

In addition to POMDP simplification and knowledge modelling, this quali-
tative possibilistic framework offers some interesting properties: the possibilistic
counterpart of Bayes’ rule leads to a special belief behaviour. Indeed the agent
can possibly change their mind radically and rapidly, and under some condi-
tions the increased specificity of the belief is enforced, i.e. the knowledge about
the current state is non decreasing with time steps [6]. Finally, in order to fully
define the resulting MDP, the translation has to attach a reward function to its
states: as the new (epistemic) state of the problem is a possibility distribution,
a dual measure, called necessity, can be computed from it. Defined as the Cho-
quet integral using the necessity measure, the reward of an epistemic state is a
pessimistic evaluation of the actual reward.
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However the number of possibilistic belief distributions, or fuzzy epistemic
states, grows exponentially with the number of initial POMDP system states.
The so called simplification of the problem does not transform the PSPACE
POMDP problem into a polynomial one: as the new state space size is expo-
nential in the previous one, the resulting problem is EXPTIME. The proposed
translation tries to generate as few epistemic states as possible taking carefully
into account potential factorized structures of the initial POMDP.

The first section is devoted to the presentation of the Markov Decision
Processes, the main concern of this paper. Tools from Possibility Theory are
also defined to make this paper self-contained. Follows a section describing the
first contribution of this work, which is the translation itself, presented in a for-
mal way. As the resulting state space of the built MDP is too big to make this
problem tractable without factorization tricks in practice, the next section details
the proper way to preprocess its attributes. Finally, the last section illustrates
the relevance of this approach with a simple robotic mission problem.

2 Background

The work developed in this paper remains in the classical MDP and POMDP
frameworks, which are recalled in this section: possibilistic material necessary to
build the promised translation are then presented.

2.1 Markov Decision Processes

A Markov Decision Process (MDP) [1] is a well suited framework for sequential
decision making under uncertainty, when the agent involved has a full knowl-
edge of the actual system state. Such a process is formally defined by a 4-tuple
〈S,A, T, r〉 where S is a finite set of system states s ∈ S. The finite set A con-
sists of all actions a ∈ A available for the agent. The Markov dynamics of the
system is described by the transition function T : S × A × S → [0, 1]. This func-
tion is defined as the transition probability distribution of the system states: if
action a ∈ A is chosen by the agent, and the current system state is s ∈ S, the
next state s′ ∈ S is reached with probability T (s, a, s′) = p (s′ | s, a ). Finally, a
reward function r : S ×A → R is defined to model the goal of the agent. Indeed,
solving an infinite horizon MDP problem consists in computing a strategy, i.e.
a function d defined on S and whose values are actions a ∈ A, maximizing the
expected discounted total reward: E

[∑+∞
t=0 γt · r (st, dt )

]
where dt = d(st) ∈ A

and 0 < γ < 1 is the discount factor.
A Partially Observable MDP (POMDP) [17] makes a step further in the mod-

eling flexibility, allowing the agent not to know which system state is the current
one. The formal definition of a POMDP is the 7-tuple 〈S,A, T,Ω,O, r, b0〉, where
the system state S, the set of actions A, the transition function T and the reward
function r remain the same as for the MDP definition. In this model, the current
system state s ∈ S cannot be used as available information for the agent: the
agent knowledge about the actual system state comes from observations o ∈ Ω,
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where Ω is a finite set. The observation function O : S ×A×Ω → [0, 1] gives for
each action a ∈ A and reached system state s′ ∈ S, the probability distribution
over possible observations o′ ∈ Ω: O(s′, a, o′) = p (o′ | s′, a ). Finally, the initial
belief b0 : S → [0, 1] is the prior probability distribution over the state space S:
b0(s) = p (s0 = s ), ∀s ∈ S.

At a given time step t > 0, the agent belief is defined as the probability
of the tth system state st conditioned on all the past actions and observations,
and with the prior b0, i.e. bt(s) = ps0∼b0 (st = s | a0, o1, . . . , at−1, ot ). It can
be easily recursively computed using Bayes’ rule: at time step t, if the belief is
bt, the chosen action a ∈ A and the new observation o′ ∈ Ω, the next belief is
bt+1(s′) ∝ O(s′, a, o′) · ∑

s∈S T (s, a, s′) · bt(s). Successive beliefs are computed
from observations perceived by the agent, and are then available during the
process. Let us denote by PS the infinite set of probability distributions over S:
seen as an MDP whose states are probabilistic beliefs, an optimal strategy for
the infinite horizon POMDP is looked for among strategies d : PS → A such
that successive actions dt = d(bt) ∈ A maximize the expected discounted total
reward, which can be rewritten

E

[
+∞∑

t=0

γt · r (st, dt )

]
= E

[
+∞∑

t=0

γt · r (bt, dt )

]
, (1)

defining r(bt, a) =
∑

s∈S r(s, a) · bt(s) as the reward of belief bt. As the focused
problem (POMDP) has been formally defined, possibilistic tools are now pre-
sented in the next section.

2.2 Possibility Theory

In our context, distributions defined in the Possibility Theory framework are
valued in a totally ordered scale L = {1 = l1, l2, . . . , 0} ⊆ [ 0, 1 ] with l1 > l2 >
. . . > 0. A possibility measure Π defined on a finite set S is a fuzzy mea-
sure valued in L, such that ∀A,B ⊂ S, Π(A ∪ B) = max {Π(A),Π(B)},
Π(∅) = 0 and Π(S) = 1. It follows that this measure is entirely defined by the
associated possibility distribution, i.e. the measure of the singletons: ∀s ∈ S,
π(s) = Π({s}). Properties of this measure lead to the possibilistic normaliza-
tion: maxs∈S π(s) = Π(S) = 1. If s, s ∈ S are such that π(s) < π(s), it means
that s is less plausible than s. States with possibility degree 0, i.e. states s ∈ S
such that π(s) = 0, are impossible (same meaning as p(s) = 0), and those such
that π(s) = 1 are entirely possible (but not necessarily the most probable ones).

After the introduction of a possibility measure over a set Ω, the joint possi-
bility measure on S × Ω is defined in a qualitative way: ∀A ⊂ S, ∀B ⊂ Ω

Π(A,B) = min {Π (A | B ) ,Π (B )} = min {Π (B | A ) ,Π (A )}. (2)

Note the similarities between Possibility and Probability Theory, replacing max
by + and min by ×. Moreover, Possibility Theory has its own conditioning [9]:

Π (A | B ) =
{

1 if Π(A,B) = Π(B)
Π (A,B ) otherwise (3)
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which is nothing more than the least specific measure fulfilling the condition
described by Eq. 2. It can also be seen more easily as the joint measure normalized
in a possibilistic manner.

These tools from Qualitative Possibility Theory are enough to define the
announced translation. The next section is then devoted to the building of an
MDP with fuzzy epistemic states from a POMDP.

3 A Hybrid POMDP

As claimed by Zadeh, “most information/intelligent systems will be of hybrid
type” [19]: the idea developed here is to use a granulated representation of the
agent knowledge using possibilistic beliefs instead of probabilistic beliefs in the
POMDP framework. The first advantage of this granulation is that strategy
computations are performed by reasoning on a finite set of possibilistic beliefs
(called then epistemic states): the set of all possibility distributions defined over
S, denoted by ΠS is the set LS without non-normalized functions, and then

#ΠS = #L#S − (#L − 1)#S , (4)

while the set of probability distributions over S is infinite. First, such beliefs are
formally defined, as well as their own updates.

3.1 Possibilistic Belief

Consider that possibility distributions similar to those used to define the initial
POMDP are available: a transition distribution, giving the possibility degree of
reaching s′ ∈ S from s ∈ S using action a ∈ A, π (s′ | s, a ) ∈ L; as well as
an observation one, giving the possibility degree of observing o′ ∈ Ω, in a sys-
tem state s′ ∈ S after the use of a ∈ A, π (o′ | s′, a ) ∈ L. Indeed, this work
is devoted to two kinds of practical problems. On the one hand real problems
modeled as POMDPs are often intractable: our granulated approach is in this
case a simplification of the initial POMDP, and possibility distributions are com-
puted from the POMDP probability distributions, using a possibility-probability
transformation [10]. On the other hand, some problems lead to POMDPs with
partially defined probability distributions: some estimated probabilities have no
strong guarantees. A more faithful representation is given with possibility distri-
butions modeling the inherent imprecision, defining transition and observation
possibility distributions.

Let bπ
0 : S → L be an initial possibilistic belief, normalized as any possibility

distribution: maxs∈S bπ(s) = 1. As in the probabilistic case, possibilistic belief
can be defined recursively using the possibilistic belief update [6], derived from
Bayes’ rule based on the conditioning (3): at time step t, if the possibilistic belief
is bπ

t , action a ∈ A and observation o′ ∈ Ω specify the next belief

bπ
t+1(s

′) = u(bπ
t , a, o′)(s′) =

{
1 if π (o′, s′ | bπ

t , a ) = max
s̃∈S

π (o′, s̃ | bπ
t , a )

π (o′, s′ | bπ
t , a ) otherwise

(5)
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where the joint possibility distribution over Ω × S π (o′, s′ | bπ
t , a ) is equal to

maxs∈S min {π (o′ | s′, a ) , π (s′ | s, a ) , bπ
t (s)}. Note that keeping a qualitative

view for the belief update, i.e. using the min operator to compute joint possibility
distributions as defined in Eq. 2, allows to reason on a finite set of beliefs, as no
new values are created: the classical product is used in the quantitative part of
Possibility Theory, but is not considered in this work. Moreover, the use of a
qualitative belief update has already been used in planning [7].

3.2 Setting Up Transition Functions

If the agent selects action a ∈ A in epistemic state bπ ∈ ΠS , the next epis-
temic state depends only on the next observation, as highlighted by possi-
bilistic belief update (5). The probability distribution over observations con-
ditioned on the reached state is part of the POMDP definition via the obser-
vation function O. The probability distribution over observations conditioned
on the previous state is obtained using transition function T : p (o′ | s, a ) =∑

s′∈S O(s′, a, o′) · T (s, a, s′). This distribution and the possibilistic belief bπ

about the system state, can lead to an approximated probability distribution
over the next observations. Indeed, a probability distribution over the system
state, bπ ∈ PS , can be derived from bπ: a proper way to construct bπ ∈ PS is
the use of the pignistic transformation [8], minimizing the arbitrariness in the
translation into probability distribution: numbering system states with the order
induced by distribution bπ, 1 = bπ(s1) � bπ(s2) � . . . � bπ(s#S+1) = 0, with
s#S+1 an artificial state such that bπ(s#S+1) = 0 introduced to simplify the
formula,

bπ(si) =
#S∑

j=i

bπ(sj) − bπ(sj+1)
j

. (6)

Note that this probability distribution corresponds to the center of mass of the
probability distributions family induced by the possibility measure defined by
distribution bπ [10], and respects the Laplace principle of Insufficient Reason
(ignorance leads to uniform probability). Then an approximate distribution over
o′ ∈ Ω is defined as

p (o′ | bπ, a ) =
∑

s∈S
p (o′ | s, a ) · bπ(s). (7)

Finally, summing over concerned observations, the transition probability distri-
bution over epistemic states is defined as

T̃ (bπ, a, (bπ)′) = p ( (bπ)′ | bπ, a ) =
∑

o′|u(bπ,a,o′)=(bπ)′
p (o′ | bπ, a ) . (8)

3.3 Reward Aggregation

After the transition function, it remains to assign a reward to each epistemic
state: in the classical probabilistic translation, the reward assigned to a belief b is
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the reward expectation according to the probability distribution b:
∑

s∈S r(s, a) ·
b(s). Here, the agent knowledge is represented with a possibility distribution bπ,
which is less informative than a probability one: it accumulates uncertainty due
to possibilistic discretization and due to possible agent ignorance. A way to
define a reward pessimistic about these uncertainties for each epistemic state bπ

is to aggregate the reward on states using the dual measure of the possibility
distribution bπ, and the Choquet integral.

The dual measure of a possibility measure Π : 2S → L is called necessity
measure and is denoted by N . This measure is defined by ∀A ⊆ S, N (A) =
1−Π(A) where A is the complementary set of A : A = S\A. Recall notation L =
{ l1 = 1, l2, l3, . . . , 0}. For a given action a ∈ A, reward values, {r(s, a) | s ∈ S }
are denoted by {r1, r2, . . . , rk } with r1 > r2 > . . . > rk, and k � #S. An
artificial value rk+1 = 0 is also introduced to simplify the formulae.

The discrete Choquet integral of the reward function with respect to the
necessity measure N is defined, and then simplified, as follows:

Ch(r,N )=
k∑

i=1

(ri − ri+1) · N ({r(s) � ri } )=
#L−1∑

i=1

(li − li+1) · min
s∈S s.t.
π(s)�li

r(s). (9)

More on possibilistic Choquet integrals can be found in [4]. This reward aggrega-
tion using the necessity measure leads to a pessimistic estimation of the reward:
as an example, the reward mins∈S r(s, a) is assigned in case of total ignorance.
Note that, if the necessity measure N is replaced by a probability measure P,
Choquet integral coincides with the expected reward based on P.

3.4 MDP with Epistemic States

This section summarizes the complete translation using the main equa-
tions of the previous sections. This translation takes for input a POMDP:
〈S,A, T,Ω,O, r, b0〉 and returns an epistemic state-based MDP: 〈S̃,A, T̃ , r̃〉. The
state space is S̃ = ΠS . The (approximate) transition functions are T̃ , such that
∀(bπ, b̃π) ∈ Π2

S , ∀a ∈ A, T̃ (bπ, a, (bπ)′) = p ( (bπ)′ | bπ, a ) defined with Eqs. 7
and 8. The reward of a belief bπ is r̃(a, bπ) = Ch (r(a, .),Nbπ), defined with
Eq. 9 and where Nbπ is the necessity measure computed from bπ. Finally, as in
the probabilistic framework (see Eq. 1), the criterion of this MDP is the expected
total reward: E(bπ

t )∼T̃

[∑+∞
t=0 γt · r̃ (bπ

t , dt )
]
.

While the resulting state space is finite, only really small POMDP problems
can be solved with this translation without computation tricks. Indeed, ΠS grows
exponentially with the number of system states (see Eq. 4), which makes the
problem intractable even for state of the art MDP solvers.

Purely possibilistic counterparts of the (PO)MDPs, called Qualitative Possi-
bilistic (PO)MDPs, have been already defined [14] and efficiently used for plan-
ning under uncertainty problems [7]. These π-(PO)MDPs are quite different from
the model exposed in this paper. For instance, they do not use quantitative data
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as probabilities or rewards. Dynamics is described in a purely qualitative possi-
bilistic way. Frequentist information about the problem cannot be encoded: these
frameworks are indeed dedicated to situations where the probabilistic dynamic
of the studied system is lacking. Moreover, possible values of the reward function
are chosen among the degrees of the qualitative possibilistic scale. A commen-
surability assumption between reward and possibility degrees, i.e. a meaning of
why they share the same scale, is needed to use the criteria proposed in these
frameworks. Our model bypass these demands: a real number is assigned to
each possibilistic belief (epistemic state), using the Choquet integral, instead
of a qualitative utility degree: it represents the reward got by the agent when
reaching this belief (in an MDP fashion) as detailed in Sect. 3.3. Moreover, the
dynamics of our process is described with probability distributions: approximate
probabilistic transition functions between current and next beliefs, or epistemic
states, are given in Sect. 3.2. Finally, our model can be solved by any MDP solver
in practice: it eventually becomes a classical probabilistic fully observable MDP
whose state space is the finite set ΠS . Here, the term hybrid is used because only
the beliefs about the current state are defined as possibility distributions, and all
variables keep a probabilistic dynamics: the agent reasons based on a possibilis-
tic analysis of the system state (the possibilistic belief, or epistemic state), and
transition probability distributions are defined between these epistemic states.

4 Benefit from Factorization

This section carefully derives a tractable MDP problem from a factored
POMDP [2]: some factorization and computational tricks are described here to
reduce its size and to make it factorized. First, the definition of a factored POMDP
is briefly outlined, followed by some notations about variable dependences helpful
for describing how distributions are dealt with. Next, a classification of the state
variables is made to strongly adapt computations according to the nature of the
system state. The way possibility distributions are defined is presented, and the
description of the use of the possibilistic Bayes’ rule in practice ends this section.

4.1 Factored POMDPs

Partially Observable Markov Decision Processes can be defined in a factor-
ized way. The state space is described with Boolean variables of the set S =
{s1, . . . , sm }: S = s1 × . . . × sm. The notation S

′ = {s′
1, . . . , s

′
m } is also used.

The set of Boolean observation variables O = {o1, . . . , on } describes also the
observation space Ω = o1 × . . . × on. For simplicity, and as state s ∈ S and
observation o ∈ Ω notations are no longer reused in this paper, only variables
are denoted with these letters from now: sj ∈ S and oi ∈ O.

The factorized description continues defining, ∀j ∈ {1, . . . , m} and ∀a ∈ A,
a transition function T a

j (S, s′
j) = p

(
s′

j

∣∣ S, a
)
, about the state variable s′

j . One
observation function is also given for each observation variable: Oa

i (S′, o′
i) =

p (o′
i | S

′, a ), ∀i ∈ {1, . . . , n} and ∀a ∈ A. It is here understood that S
′ are
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independent conditional on S and the action a, and that {o′
i }n

i=1 are independent
conditional on S

′ and a.

4.2 Notations and Observation Functions

Transitions of the final MDP make it more handy if each variable depends
on only few previous variables: the procedure to exploit such simplifications
brought by the structure of the initial POMDP during the translation, needs
the following notations. In practice, for each i ∈ {1, . . . , n} not all state vari-
ables influence observation variable o′

i; similarly, for each j ∈ {1, . . . , m}, not
all current state variables influence the next state variable s′

j : observation vari-
able o′

i depends on some state variables which are called parents of o′
i as they

appears as “parents nodes” in a Bayesian network illustrating dependencies
of the process, and denoted by P(o′

i) =
{

s′
j ∈ S

′ s.t. o′
i depends on s′

j

}
. Like-

wise, probability distributions of the next state variable s′
j depend on some

current state variables, denoted by P(s′
j) =

{
sk ∈ S s.t. s′

j depends on sk

}
. It

leads to the following rewriting of probability distributions: T a
j (P(s′

j), s
′
j) =

p
(
s′

j

∣∣ P(s′
j), a

)
and Oa

i (P(o′
j), o

′
i) = p

(
o′

i | P(o′
j), a

)
. Finally, the fol-

lowing subset of S is useful to specify observation dynamics: Q(o′
i) ={

sk ∈ S s.t. ∃s′
j ∈ P(o′

i) s.t. sk ∈ P(s′
j)

}
= ∪s′

j∈P(o′
i)

P(s′
j) ⊆ S. Probability dis-

tributions of variables P(o′
i) also benefit from previous rewritings: thanks to state

variables independences, ∀i = 1, . . . , n,

p (P(o′
i) | S, a ) =

∏

s′
j∈P(o′

i)

T a
j (P(s′

j), s
′
j) = p (P(o′

i) | Q(o′
i), a ) . (10)

The observation probability distributions knowing previous state variables are

∀i = 1, . . . , n, p (o′
i | Q(o′

i), a ) =
∑

v∈2P(o′
i
)

p (o′
i | v, a ) · p (v | Q(o′

i), a ) . (11)

Therefore a possibilistic belief defined on 2Q(o′
i) is enough to get the approximate

probability distribution of an observation variable: such an epistemic state, leads
to a probability distribution bπ over 2Q(o′

i) via the pignistic transformation (6).
The approximateprobability distribution of the ith observationvariable, factorized
counterpart of Eq. 7, is: ∀i = 1, . . . , n,

p (o′
i | bπ, a ) =

∑

v∈2Q(o′
i
)

p (o′
i | v, a ) · bπ(v). (12)

4.3 State Variable Classification

State variables s ∈ S do not play the same role in the process: as already studied
in the literature [11], some variables can be visible for the agent, and this mixed-
observability leads to important computational simplifications. Moreover, some
variables do not affect observation variables, and this structure reduces the final
MDP complexity.
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– A state variable sj is said to be visible, if ∃oi ∈ O, observation variable, such
that P(o′

i) =
{

s′
j

}
and ∀a ∈ A, p

(
o′

i | s′
j , a

)
= 1{ o′

i=s′
j } i.e. if o′

i = s′
j surely.

The set of visible state variables is denoted by Sv = {sv,1, sv,2, . . . , sv,mv
}.

The observation variables corresponding to the visible state variables can be
removed from the set of observation variables: the number of observation
variables becomes ñ = n − mv.

– Inferred hidden variables are simply ∪ñ
i=1P(o′

i), i.e. all hidden variables
influencing the (remaining) observation variables. The set of inferred hidden
variables is Sh = {sh,1, sh,2, . . . , sh,mh

} and it contains possibly visible vari-
ables.

– Non-inferred hidden variables or fully hidden variables, denoted by
Sf , consists of hidden state variables which do not influence any observation,
i.e. all the remaining state variables. The fully hidden variables are denoted
by sf,1, sf,2, . . . , sf,mf

, and the corresponding set is Sf .

The classification allows to avoid some computations for visible variables: if
sv ∈ Sv, and ov is the associated observation, computations of the distribution
over P(o′

v), Eq. 10, and of the distribution over o′
v, Eq. 11, are unnecessary:

the distribution over s′
v (= o′

v) needed is simply given by T a (P(s′
v), s′

v ). The
counterpart of Eq. 12 is then simply

p (s′
v | bπ, a ) =

∑

2P(s′
v)

T a (P(s′
v), s′

v ) · bπ(P(s′
v)) (13)

where bπ is the probability distribution over 2P(s′
v) extracted from the possibilis-

tic belief over the same space, using pignistic transformation (6).

4.4 Beliefs Process Definition and Handling

This section is meant to define marginal beliefs instead of a global one, in order to
benefit from the structure of the initial POMDP. Possibilistic belief distributions
have different definitions according to which class of state variables they concern.

As visible state variables are directly observed, there is no uncertainty over
these variables. Two epistemic states (possibilistic belief distribution) are pos-
sible for visible state variable s′

v,j : b′
v,T (s′

v,j) = 1{ s′
v,j=�} and b′

v,F (s′
v,j) =

1{ s′
v,j=⊥}. As a consequence, one Boolean variable β′

v,j ∈ {,⊥} per visi-
ble state variables is enough to represent this belief distribution in practice: if
s′

v,j = , then the next belief is b′ = b′
v,T represented by the belief variable

assignment β′
v,j = , otherwise, the next belief is b′ = b′

v,F , and β′
v,j = ⊥.

For each i ∈ 1, . . . , ñ, each inferred hidden variable constituting P(o′
i) is an

input of the same possibilistic belief distribution: the non-normalized belief is

∀i = 1, . . . , ñ, b̃′(P(o′
i)) = max

v∈2Q(o′
i
)
min {π (o′

i,P(o′
i) | v, a ) , b(v)} , (14)

where the joint possibility distributions over o′
i×P(o′

i) are π (o′
i,P(o′

i) | Q(o′
i), a )

= min
{

π (o′
i | P(o′

i), a ) ,mins′
j∈P(o′

i)
π

(
s′

j

∣∣ P(s′
j), a

)}
. The possibilistic
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normalization, ∀w ∈ 2P(o′
i), b′(w) =

{
1 if w ∈ argmax

v∈2P(o′
i
) b̃′(v);

b̃′(w) otherwise.
finalizes

this rewriting of the belief update (5). In practice, if l = #L, and pi = #P(o′
i),

the number of belief states is l2
pi − (l−1)2

pi , and then the number of belief vari-
ables is nh,i = �log2(l2

pi −(l−1)2
pi )�. A belief variable of an inferred hidden state

variable is denoted by βh. As well, for each j ∈ 1, . . . , mf , the non-normalized
belief defined on fully hidden variable sf,j is

b̃′(s′
f,j) = max

v∈2
P(s′

f,j
)
min

{
π

(
s′

f,j

∣∣ v, a
)
, b(v)

}
, (15)

which leads to the actual new belief b′ after the possibilistic normalization. As
each fully hidden variable is considered independently from the others, the num-
ber of belief variables is nf = �log2(l2 − (l − 1)2)� = �log2(2l − 1)�. A belief
variable of a fully hidden state variable is denoted by βf .

Finally the actual global epistemic state b′(S′) is upper bounded by the

less informative belief (bπ)′(S′) = min
{

mv

min
j=1

b′(s′
v,j),

ñ
min
i=1

b′(P(o′
i)),

mf

min
k=1

b′(s′
f,k)

}
.

The latter is considered as the agent belief to make the final MDP factorized.
Note that the belief over the inferred hidden variables (14) and the distribution
over observation variables (12), need a belief distribution over Q(o′

i) ⊆ S. Like-
wise, the belief over the fully hidden state variables (15) needs a belief distribu-
tion over variables P(s′

f,j) ⊆ S. Moreover, approximate probability distributions
over visible state variables (13) need a belief distribution over P(s′

v,i) ⊆ S. These
beliefs can be computed by marginalizing bπ(S) using the max operator.

5 Solving a POMDP with a Discrete MDP Solver

A practical version of the factored MDP achieved in the previous section is
described here. A concrete POMDP problem and the resulting MDP illustrate
then the state space size reduction of our detailed possibilistic translation.

5.1 Resulting Factored MDP

A belief update depends only on the next observation (see Eq. 5): the transition
of a belief is then deterministic conditional on the next observation. A simple
trick is used to keep this determinism in the final MDP: a flipflop Boolean vari-
able is introduced, changing its state at each step, denoted by f . It artificially
divides a classical time step of the POMDP into two phases. During the first
phase, called the observation generation phase, non-identity transition functions
are the probability distributions over observation variables (12) and visible state
variables (13). During the second phase, called the belief update phase, non-identity
transition functions are the deterministic transitions of the belief variables: vari-
ables βv are updated knowing the value of the corresponding visible variable sv;
variables β1

h, . . . , β
nh,i

h are updated knowing the value of the observation variables
oi, and using update (14); finally, variables β1

f , . . . , β
nf

f are updated using update
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t t + 1

vt

βt−1

vt

βt

rt

vt+1
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vt+1

βt+1

rt+1

at at+1

Fig. 1. ID of the resulting MDP: thickest arrows are non-identity transitions.

(15). The state space is then defined as: S = f × s1v × . . . × smv
v × o1 × . . . ×

oñ × β1
v × . . . × βmv

v × β1
h × . . . × βñ

h × β1
f × . . . × β

mf

f , where ∀i = 1, . . . , ñ,

βi
h represents Boolean variables β1,i

h , . . . , β
nh,i,i
h , and ∀k = 1, . . . , mf , βj

f repre-

sents Boolean variables β1,j
f , . . . , β

nf ,j
f . Figure 1 is the Influence Diagram (ID) of

the resulting MDP where βt represents all belief variables, and vt the visible vari-
ables: the flipflop variable f , observations and visible state variables. The resulting
MDP is a factored MDP thanks to the flipflop trick.

5.2 For a Concrete POMDP

A problem inspired by the RockSample problem [18] is described in this section
to illustrate the factorized possibilistic discretization of the agent belief, from a
factored POMDP: a rover is navigating in a place described by a finite number
of locations l1, . . . , ln, and where m rocks stand. Some of these m rocks are of
interest in the scientific mission of the rover, and it has to sample them. However,
sampling a rock is an expensive operation. The rover is thus equipped with a
long range sensor making it capable of estimating if the rock has to be sampled.
Finally operating time of the rover is limited, but its battery level is available.

Variables of this problem can now be set, and classified as in Sect. 4.3: as the
battery level is directly observable by the agent (the rover), the set of visible state
variables consists of the Boolean variables encoding it: Sv = {B1, B2, . . . , Bk }.
The agent knows the different locations of the rocks, however the nature of each
rock is to be estimated. The set of inferred hidden state variables consists of
m Boolean variables Ri encoding the nature of the ith rock,  for “scientif-
ically good” and ⊥ otherwise: Sh = {R1, R2, . . . , Rm }. When the ith rock is
observed using the sensor, it returns a noisy observation of the rock in {,⊥},
modeled by the Boolean variable Oi: the set of observation variables is then
O = {O1, O2, . . . , Om }. Finally, no localization equipment is provided: the agent
estimates its location from its initial information, and its actions. Each location
of the rover is formally described by a variable Lj , which equals  if the rover
is at the jth location, and ⊥ otherwise. The set of fully hidden variables consists
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thus of these n variables: Sf = {L1, L2, . . . , Ln}. The initial location is known,
leading to a deterministic initial belief: bπ

0 (Sh) = 1 if L1 =  and Lj = ⊥ ∀j �= 1,
and 0 otherwise. However the initial nature of each rock is not known. Instead of
a uniform probability distribution, Possibility Theory allows to represent initial
ignorance about the nature of rocks with the possibility distribution bπ

0 (Sh) = 1,
for each variable assignment.

Classical POMDP solvers are based on probabilistic beliefs over the state
space defined by Sh, Sf and even Sv if Mixed-Observability [11] is not taken
into account. The approach presented in this paper leads to an MDP with
a finite space of epistemic states. Finally, the factorization tricks lead to a
reduction of the state space size: with a flat translation of this POMDP,
�log2(#L2n+m+k − (#L − 1)2

n+m+k

)� Boolean variables are necessary. Taking
advantage of the POMDP structure, the resulting state space is encoded with
1+2k +m+(m+n)�log2(2#L−1)� Boolean variables: the flipflop variable, the
visible variables and associated beliefs variables, the observation variables, and
the belief variables associated to the fully hidden and inferred hidden variables.
Moreover, the dynamics of the resulting MDP is factored, and lots of transi-
tions are deterministic, thanks to the flipflop variable trick. These simplifying
structures are beneficial to the MDP solvers, leading to faster computations.

6 Conclusion

This paper describes a hydrid translation of a POMDP into a finite state space
MDP one. Qualitative Possibility Theory is used to maintain an epistemic state
during the process: the belief space has a granulated representation, instead of
a continuous one as in the classical translation. The resulting MDP is entirely
defined computing transition and reward functions over these epistemic states.
Definitions of these functions use respectively the pignistic transformation, used
to recover a probability distribution from an epistemic state, and the Choquet
integral with respect to the necessity, making the agent pessimistic about its
ignorance. A practical way to implement this translation is then described: with
these computation tricks, a factored POMDP leads to a factored and tractable
MDP. This promising approach will be tested on the POMDPs of the IPPC
competition [15] in a future work: the provided problem descriptions are indeed
in the form of the factored POMDPs introduced in Sect. 4.
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Abstract. Directed evidential networks (DEVNs) can be seen, at
present, as an extremely powerful graphical tool for representing and rea-
soning with uncertain knowledge in the framework of evidence theory.

The main purpose of this paper is twofold. Firstly, it introduces hybrid
directed evidential networks which generalize the standard DEVNs.
Secondly, it presents an algorithm for performing inference over singly-
connected hybrid evidential networks.

1 Introduction

Over the few last decades, many different theories of uncertainty management
have been introduced, such as probability theory [5], fuzzy set theory [11], and
Dempster-Shafer belief function theory [6]. The belief function theory has proven
to be prevalent and suitable for managing uncertainties in many domains. The
invention of evidential networks has represented an important stepping stone
in the development of approaches for knowledge representation and reasoning
under the theory of belief functions.

Several evidential networks have been reported in the literature [1,7,10].
Xu and Smets have presented Evidential Networks with Conditional belief func-
tions (ENCs) [10]. Unlike conditional probabilities which are specified per child
node in probabilistic graphical models, conditional belief functions encoding the
independence relations among the variables in these evidential networks are spec-
ified per edge1. In spite of their remarkable power for representation of uncertain
knowledge and evidential inference, ENCs have many inherent limitations. One
of their limitations is the fact that the algorithm used for the propagation of
belief functions in these networks is limited to graphs having only binary rela-
tions between the variables.

Directed EVidential Networks with conditional belief functions (DEVNs)
have been proposed as an alternative framework to ENCs [1]. One of the most
1 In Bayesian networks, conditional probabilities are specified per child node, i.e. for
each node given all its parents. However, in ENCs, if there are two edges going from
nodes A and B to their common child node C, then two conditional belief function
distributions have to be defined: a distribution for C given A and another one for C
conditionally to B.
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powerful features of DEVNs is their ability to model not only binary relations
between variables but also n-ary relations (i.e. relations for any number of nodes).
Compared to ENCs, DEVNs are more flexible for the representation of condi-
tional relations. In fact, DEVNs can be weighted by conditional belief functions
specified either per edge (i.e. per single parent), like in ENCs, or per child node
(i.e. for all parents) like in Bayesian networks. Despite the great flexibility of
DEVNs in modeling conditional relations between the variables, algorithms for
belief propagation in singly-connected DEVNs were limited to networks with
conditionals specified per edge [2]. To fill this gap, we presented, in a recent
paper, a new algorithm for reasoning in singly-connected DEVNs where condi-
tional beliefs are specified per child node [4].

Quantifying a DEVN amounts to assessing belief function distributions for
each of the network’s variables conditional on their direct predecessors in the
directed graph. In many domains, information is available to this end from
domain experts. In some cases, an expert may be able to provide a conditional
belief function distribution for a variable given all its parents. But in some other
cases, he may feel confident providing estimates of belief functions for a variable
given each of its parents separately. For instance, a medical domain’s expert
may easily report the belief function distribution of a particular disease given
all its symptoms. If we consider also a situation in which late trains and broken
alarm clocks are valid excuses or causes for being late, an expert may easily
estimate the belief function of being late knowing that the alarm clock did not
go off and that trains were delayed. Now, if we consider an other situation in
which anaemia can cause feeling cold. Knowing that being in Russia in winter
can also be a cause of feeling cold, an expert may be more confident to provide
two belief function distributions for feeling cold given each of its causes sepa-
rately (i.e. feeling cold given anaemia and feeling cold given being in Russia in
winter) than one belief function distribution of feeling cold given the two causes
together. Since the choice of the quantification manner made by an expert may
vary depending on the variable and its parents, and assuming that the expert
have to use the same manner for specifying all the conditional distributions in
a DEVN (i.e. either all the distributions are specified given all the parents (per
child node) or all of them are defined per single parent (per edge)), an evidential
model that would allow combining the two manners for quantifying the network
has been lacking so far.

With the purpose of coupling conditionals specified per edge with condition-
als specified per child node in the same network, we introduce hybrid DEVNs
(HDEVNs). The motivation to develop HDEVNs stems from the desire to pro-
vide more freedom and flexibility. This flexibility regards the quantification of
the evidential graphical models with numerical belief functions: HDEVNs can
cope with both conditionals specified per one parent and conditionals specified
for all parents.

The remainder of the paper is organized as follows. Section 2 reminds some
formal background on belief function theory. In Sect. 3, we recall the DEVNs.
Section 4 first introduces the proposed HDEVNs for dealing with conditionals
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specified per edge and conditionals specified per child node and then presents
our algorithm for the belief propagation in singly-connected HDEVNs. Section 5
illustrates the HDEVN and the proposed algorithm for inference over it.

2 Belief Function Theory: Theoretical Background

The belief function theory is a rich and flexible framework for handling incom-
plete and uncertain knowledge [3,6,9]. In this section, we briefly introduce the
theory of belief functions with an emphasis on its basic concepts.

2.1 Basics of Belief Function Theory

In belief function theory, the frame of discernment of a variable Ni denoted by
ΘNi , is defined to be a finite non empty set of all its possible elementary values.
These elementary values are exhaustive and mutually exclusive.

Each subset of ΘNi belongs to its power set which is denoted by 2ΘNi and
formally defined as: 2ΘNi = {S : S ⊆ ΘNi}.

A basic belief assignment (bba), referred also to as a mass function is a
mapping mNi : 2ΘNi → [0, 1] verifying:

∑

S⊆ΘNi

mNi(S) = 1 (1)

where mNi(S), called basic belief mass, is considered to be the part of belief that
supports exactly the proposition S without supporting any strict subset of S.

Total ignorance is represented by the mass function mNi (ΘNi) = 1 which is
called a vacuous belief.

A plausibility function associated with a bba mNi assigns to every subset S of
ΘNi the sum of basic belief masses of the subsets Q of ΘNi which are compatible
with S. Given a bba mNi , the plausibility function, denoted by plNi , is defined,
for S ⊆ ΘNi , as follows:

plNi(S) =
∑

Q∩S �=∅
mNi(Q) (2)

The bba mNi can be recovered from plNi as follows:

mNi(S) =
∑

Q⊆S

(−1)|S−Q|(1 − plNi(¬Q)) (3)

2.2 Operations on Belief Functions

We consider two variables X and Y associated with the frames of discernment
ΘX and ΘY, respectively, and two finite sets of variables A and B associated with
the frames ΘA and ΘB , respectively. The frames ΘA and ΘB are the Cartesian
products of the frames associated with the variables the sets A and B include,
respectively.
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A bba mAB defined on the product space ΘAB = ΘA ×ΘB can be marginal-
ized on ΘA by transferring each mass mAB(S) for S ⊆ ΘAB to its projection on
ΘA. The marginalization of mAB on ΘA is defined as follows:

mAB↓A(S′) = mA(S′) =
∑

S⊆(ΘAB),S↓A=S′
mAB(S) (4)

where S↓A represents the projection of S ⊆ ΘAB to ΘA.
In general, it is not possible to retrieve the original bba mAB from its marginal

mAB↓A on ΘA. However, the least informative bba, such that its projection on
ΘA is mAB↓A can be computed. This defines the vacuous extension of mA to the
product space ΘAB which is computed as follows:

mA↑AB(S′) = mAB(S′) =
{

mA(S) if S′ = S × ΘB , S ⊆ ΘA

0 otherwise (5)

Two bba’s mA and mB defined on the spaces ΘA and ΘB , respectively, can
be combined to produce a single bba mAB defined ⊆ ΘAB , as follows:

(mA ⊗ mB)(S) = mAB(S) =
∑

S1∩S2=S

mA↑AB(S1) × mB↑AB(S2) (6)

where both mA↑AB and mB↑AB are computed using the Eq. (5).
Now, let us consider a set of conditional plausibility functions {plX[y’](x) :y’∈

ΘY, x ⊆ ΘX} which quantifies the plausibility of a subset x of ΘX when we know
which element y’ of ΘY holds. The Disjunctive Rule of Combination (DRC) has
been derived by Smets [8] to build the plausibility function plX[y](x) for any
x ⊆ ΘX conditionally to any subset y ⊆ ΘY as follows:

plX[y](x) = 1 −
∏

y’∈y

(1 − plX[y’](x)) (7)

Smets has also derived the Generalized Bayesian Theorem (GBT) as a dual
function of the DRC to build the conditional plausibility function plY[x](y) for
any subset y of ΘY given any subset x ⊆ ΘX as follows:

plY[x](y) = plX[y](x) = 1 −
∏

y’∈y

(1 − plX[y’](x)) (8)

3 Directed Evidential Networks with Conditional Belief
Functions

A directed evidential network with conditional belief functions (DEVN) is
defined by a directed acyclic graph (DAG) G=(N,E) where N= {N1, . . . , Nn}
denotes a finite set of nodes and E= {E1, . . . , Ey} denotes a set of edges. Each
node Ni in G represents a random variable and takes its values on a frame of
discernment ΘNi . Each root node Ni in G is associated with an a priori mass
function mNi satisfying the axiom given by the Eq. (1). Local conditional distri-
butions can be defined in DEVNs in two different manners:
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(i) Per edge: each edge going from a node Nk to a node Ni in G is associated
with a conditional mass function m[Nk](Ni)2 over Ni given Nk. By adopting
this manner for specifying the conditionals, we get a DEVN weighted with
conditionals defined per single parent and close to conditionals in ENCs.
A DEVN with conditional distributions defined per edge is illustrated in
Fig. 1. Each variable Ni (i = 1, . . . , 5) takes its values on the frame ΘNi

= {θi1, θi2}.
(ii) Per child node: each child node Ni is associated with a conditional mass

function m[Pa(Ni)](Ni) over Ni given all its parent nodes Pa(Ni). When we
adopt this manner for specifying conditionals, we get a DEVN weighted with
conditionals defined per child node in the context of all the parents.
Figure 2 shows a DEVN with conditionals specified per child node.

3.1 Reasoning in Singly-Connected DEVNs with Conditional Belief
Functions Defined per Edge

The DRC and the GBT, proposed by Smets for dealing with conditionals spec-
ified for a variable conditionally to another one, provide the necessary tools
2 The notations m[Nk](Ni) and mNi [Nk] used throughout this paper correspond to the
classical notation m(Ni|Nk).
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Fig. 3. DRC and GBT for belief propagation in DEVNs with conditionals specified per
edge

for belief propagation in singly-connected evidential networks with conditionals
specified per edge. A simple DEVN D, shown on the left side of Fig. 3, illustrates
the application of the DRC and the GBT for reasoning in these evidential net-
works. D consists of two nodes: a parent node Y and a child node X which are
associated with the a priori bba’s mY

0 and mX
0 , defined over ΘY and ΘX, respec-

tively. The edge (Y, X) is weighted by a set of conditional plausibility functions
plX[y’](x) defined for x ⊆ ΘX conditionally to y’∈ ΘY.

The DRC can be applied for top down propagation to compute the message
αY→X that the parent node Y sends to its child node X for each x ⊆ ΘX.
αY→X is defined as follows [8]:

αY→X = plX(x) =
∑

y⊆ΘY

mY
0 (y) × plX[y](x) (9)

where plX[y](x) is given by Eq. (7).
Similarly, the GBT can be used for bottom up propagation to compute the

message αX→Y that the parent node Y receives from its child node X for any
y ⊆ ΘY. αX→Y is defined as follows:

αX→Y = plY(y) =
∑

x⊆ΘX

mX
0 (x) × plY[x](y) (10)

where plY[x](y) is given by Eq. (8).
The algorithm for inference in singly-connected directed evidential networks

with conditionals specified per edge is based on a local propagation down and
up the network, using (9) or (10), depending on the direction in which a message
is circulated between two neighboring nodes. To illustrate this algorithm, which
is detailed in [2], let us consider again the DEVN D of Fig. 3. Reasoning with
conditionals specified per edge in this network consists in two phases as follows:

(1) Top Down Propagation
(a) Compute the message plY→X that Y sends to X: plY→X = αY→X

(using (9))



240 W. Laâmari and B. Ben Yaghlane

(b) Compute the bba mY→X corresponding to plY→X (using (3))
(c) Compute the mass function distribution mX of X: mX = (mY→X ⊗ mX

0 )

(2) Bottom Up Propagation
(a) Compute the message plX→Y that X sends to Y: plX→Y = αX→Y

(using (10))
(b) Compute the bba mX→Y corresponding to plX→Y (using (3))
(c) Compute the mass function distribution mY of Y: mY = (mX→Y ⊗ mY

0 )

3.2 Reasoning in Singly-Connected DEVNs With Conditional
Belief Functions Defined per Child Node for All the Parents

In [4], we have explained how it is still possible to use the DRC and the GBT to
perform the top down propagation and the bottom up propagation, respectively,
in singly-connected DEVNs weighted by conditionals defined for each child node
given all its parent nodes. The left side of Fig. 4 shows a singly-connected DEVN
D with conditionals defined per child node: X is a child node associated with
the conditional plausibility function plX[P1, . . . , Pn], and Y= {P1, . . . , Pn} is the
set of its parent nodes, where each parent node Pi ∈ Y has an a priori bba mPi

0 .
Our propagation algorithm first transforms the initial evidential network with

conditionals defined per child node given all the parents D into a tree structure
(see the right side of Fig. 4) [4]. The tree is obtained by merging all the

parent nodes Pi of each child node X in the DEVN in a single joint node Y. Going
through a transformation of the initial network into a tree structure allows to
exploit the GBT and the DRC in order to perform the top down propagation
and the bottom up propagation. As shown on the right side of Fig. 4, all the
parent nodes Pi of X are merged in a single node Y = {P1, . . . ,Pn} in D”. All
the mass distributions mPi

0 of the single parent nodes of X are extended to the
joint space ΘY using (4), then they are combined using (6) to produce the mass
distribution mY

0 of Y. The resulting combined mass function mY
0 is stored in

the table associated with the node Y. Once we have computed the distribution
of the composed parent node Y in D”, we can make the propagation up and
down the tree using the DRC and GBT through a conditional node X|Y (i.e.
X|P1, . . . ,Pn) linking the child node X with the new parent node Y.

Reasoning over the DEVN D of Fig. 4 proceeds in two phases as follows:

(1) Top Down Propagation
(a) Compute for each parent node Pi ∈ Y the message mPi→Y that Pi sends

to Y: mPi→Y = mPi↑Y

0 (using (5))
(b) Compute the mass function distribution mY

0 of Y: mY
0 = (mP1→Y ⊗ .. ⊗

mPn→Y)
(c) Compute the message plY→X that Y sends to X: plY→X = αY→X

(using (9))
(d) Compute the bba mY→X corresponding to plY→X (using (3))
(e) Compute the mass function distribution mX of X: mX = (mY→X ⊗ mX

0 )



Fig. 4. DRC and GBT for inference in singly-connected DEVN with conditionals spec-
ified per child node

(2) Bottom Up Propagation
(a) Compute the message plX→Y that X sends to Y: plX→Y = αX→Y

(using (10))
(b) Compute the bba mX→Y corresponding to plX→Y (using (3))
(c) Compute for each parent node Pi in Y the message mY→Pi

that Y sends
to Pi: mY→Pi

= ((⊗mPj→Y) ⊗ mX→Y)↓Pi , where Pj ∈ Y − Pi

(d) Compute for each parent node Pi in Y the mass function distribution
mPi : mPi = mPi

0 ⊗ mY→Pi

The construction algorithm of the tree structure D” corresponding to any
singly-connected DEVN D with conditionals specified per child node, and the
belief propagation algorithm over it can be found in [4].

4 Hybrid Directed Evidential Networks for Handling
Conditionals Specified per Edge and Conditionals
Specified per Child Node

The following section introduces our hybrid directed evidential network with
conditional belief functions (HDEVN) and details how to deal with both condi-
tionals specified per edge and conditionals specified per child node.

4.1 Knowledge Representation in Singly-Connected HDEVNs

A hybrid directed evidential network with conditional belief functions is a DEVN
in which some conditionals are defined per edge and some others are specified
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per child node given all the parents. HDEVNs appear to be better suited to cap-
ture human knowledge values: Indeed, the numerical parameters of an evidential
network can be, in general, learned from a data set or obtained by an expert.
Estimating belief function distributions with the help of human experts is a
difficult and time consuming task, especially when the problems are very com-
plicated or when there are numerous variables involved. Thus, the development
of a hybrid evidential network able to cope with both conditional parameters
specified per child node and conditional parameters specified per edge helps the
expert estimate the parameters required for a typical application in a flexible
way and gives him greater freedom and more choices.

An example of HDEVN is shown in Fig. 5. In this network N5 is associated
with a conditional defined per child node, while N6 is associated with two con-
ditionals defined per edge.

Fig. 5. A hybrid directed evidential network with conditional belief functions

4.2 Reasoning in Singly-Connected HDEVNs

The algorithm for reasoning in singly-connected HDEVNs includes a linkage
between the principle of reasoning in singly-connected DEVNs with conditionals
specified per edge proposed in [2] and presented in Sect. 3.1 and the one for
reasoning in singly-connected DEVNs with conditionals specified per child node
presented in Sect. 3.2.

In a singly-connected DEVN with conditionals specified per edge, the belief
function propagation algorithm acts directly on the initial graph by applying the
DRC and the GBT for inferring beliefs between each child node and each of its
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parent nodes through the conditional node between them. For coping with con-
ditionals specified given all the parents, we have to go through a transformation
of the initial network into a tree structure. This transformation allows to exploit
the DRC and the GBT for the propagation up and down through the tree [4].

The inference algorithm that we propose in this paper for reasoning in singly-
connected HDEVNs is principally based on an extended version of our tree con-
struction’s method proposed in [4]. This extension allows to consider the two
kinds of conditionals.

Since in a HDEVN there are child nodes with conditionals specified per single
parent and child nodes associated with conditionals defined for all the parent
nodes, the corresponding tree is constructed so that at a time a child node Ni in
the HDEVN is selected and its corresponding subtree is built depending on the
following two cases:

• Case 1: if Ni is associated with conditional distributions specified per edge,
then the corresponding subtree is obtained by introducing a conditional node
between Ni and each of its parent nodes Pa(Ni) (as shown on the right side of
Fig. 3). Each conditional node connecting Ni to one of its parent nodes Nk ∈
Pa(Ni) is weighted by the conditional distribution m[Nk](Ni).

• Case 2: if Ni is associated with a conditional belief function specified for all
its parents Pa(Ni), then the corresponding subtree is obtained by merging all
the parent nodes in a single node, representing all the predecessors of Ni, then
by introducing a conditional node connecting Ni to the single parent node
(as shown on the right side of Fig. 4). The conditional node is weighted by the
conditional distribution m[Pa(Ni)](Ni).

The tree construction’s method ends when all the child nodes in the HDEVN
are selected. This method is formally presented in the following section.

Construction of the Tree Structure for Reasoning in Singly-Connected
HDEVNs: Let H= (N, E) denote a singly-connected HDEVN and let C ⊆ N

be the set of child nodes with only one parent in H, FParents ⊆ N be the set of
child nodes having more than one parent and associated with conditionals given
all their parents in H and FEdge ⊆ N be the set of child nodes having more than
one parent and for which conditionals are specified per edge. Pa(Ni) denotes the
parents of a node Ni in H. The construction process of the tree structure H”
corresponding to H is formally described by Algorithm1.

Belief Propagation in Singly-Connected HDEVNs: The propagation
algorithm in singly-connected HDEVNs is based on the propagation principles
described in Sect. 3.1 where conditional distributions are defined per one parent
and in Sect. 3.2 where conditional distributions are defined for all the parents.

The belief propagation algorithm is based on a message passing through
the graph H”. The message passing algorithm (MPA) involves principally two
phases: the top down propagation phase and the bottom up propagation phase.
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Algorithm 1. Construct a Tree Structure H” from a HDEVN H

Require: H=(N,E)
Ensure: H”=(N”,E”)

Initialization
η ← C ∪ FEdge;
ζ ← FParents;
ϑ ← ∅; /∗ ϑ denotes the set of non conditional nodes in H”∗/
β ← ∅; /∗ β denotes the set of conditional nodes in H”∗/
E” ← ∅; /∗ E”denotes the set of undirected edges in H”∗/
N”← ∅;/∗ N” denotes the set of nodes in H”∗/
while |ζ| ≥ 1 do

Pick a candidate variable c ∈ ζ
P ← Pa(c)
n1 ← P
ϑ ← ϑ ∪ {n1}
while |P| ≥1 do

n2 ← p where p ∈ P
ϑ ← ϑ ∪ {n2}
E”← E”∪ {(n2,n1)}
P ← P-{n2}

end while
n3 ← {c|Pa(c)}
n4 ← {c}
ϑ ← ϑ ∪ {n4}
β ← β ∪ {n3}
E”← E”∪ {(n1,n3),(n3,n4)}
ζ ← ζ-{c}

end while
while |η| ≥ 1 do

Pick a candidate variable c ∈ η
P ← Pa(c)
n1 ← {c}
ϑ ← ϑ ∪ {n1}
while |P| ≥1 do

n2 ← p where p ∈ P
ϑ ← ϑ ∪ {n2}
n3 ← {c|p}
β ← β ∪ {n3}
E”← E”∪ {(n2,n3),(n3,n1)}
P ← P-{n2}

end while
η ← η-{c}

end while
N” ← ϑ ∪ β
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Before running the MPA, an initialization phase is applied during which
each conditional distribution in H is associated with the corresponding condi-
tional node in H” and each a priori distribution in H is associated with the
corresponding non-conditional node in H”. A vacuous belief is associated with
each non-conditional node in H” having no a corresponding a priori distribution
in H.

The MPA consists in two phases:

(1) A Top down Propagation Phase applied by passing messages inwards,
starting from the roots towards the leaves. During this phase, each non-root
node Ni:
(a) receives:

(i) either a message from each of its parent nodes (Case 1)3. Each mes-
sage is computed using the steps (a) and (b) of the top down propagation
method described in Sect. 3.1,
(ii) or one message from all its parent nodes (Case 2)4. This message is
computed using the steps (a), (b), (c) and (d) of the top down propaga-
tion method described in Sect. 3.2

(b) updates its distribution by combining its own a priori one with the mes-
sage(s) received from its parent(s) using (6).

(2) A Bottom up Propagation Phase applied by distributing messages away
from the leaves, until reaching the roots. Each non-leaf node Nj:
(a) receives a message from each of its child nodes (Case 3)5. Each message

is computed using the steps (a) and (b) of the bottom up propagation
method described in Sect. 3.1

(b) receives a message from each of its child nodes (Case 4)6. This message
is computed using the steps (a), (b) and (c) of the bottom up propagation
method described in Sect. 3.2

(c) updates its distribution by combining its a priori distribution with the
message(s) received from its parent(s) and its child node(s) using (6).

5 Illustration

Let us consider the simple HDEVN, the a priori mass functions and the condi-
tional plausibility functions corresponding to the mass functions of Fig. 5. The
mass functions mN3

0 , mN5
0 and mN6

0 correspond to the vacuous beliefs.

3 Case 1 occurs when the child node Ni is associated with conditionals specified per
single parent.

4 Case 2 occurs when the child node Ni has one conditional distribution defined for
all its parents.

5 Case 3 occurs when Nj has one or more child nodes associated with conditionals
specified per single parent.

6 Case 4 occurs when Nj has one or more child nodes associated with conditionals
specified for all the parents.
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Fig. 6. The tree structure H” corresponding to the HDEVN of Fig. 5

The tree H” is built from the HDEVN H of Fig. 5 using Algorithm 1. The mes-
sages of the inward pass (i.e. the top down propagation phase) and the outward
pass (i.e. the bottom up propagation phase) performed on H” are generated in the
order shown in Fig. 6. These messages are computed as follows:

’
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6 Conclusion and Future Work

An extension of the DEVNs, called HDEVNs, was proposed in this paper to deal
with both conditionals specified per child node and those specified per edge. An
inference algorithm for belief propagation in singly-connected HDEVNs was also
proposed in this paper, based on the DRC and the GBT which can be used to
deal with both conditionals specified per edge and conditionals defined per child
node. In future works, we propose to deal with multiply-connected HDEVNs.
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Abstract. Possibilistic networks offer a qualitative approach for mod-
eling epistemic uncertainty. Their practical implementation requires the
specification of conditional possibility tables, as in the case of Bayesian
networks for probabilities. This paper presents the possibilistic coun-
terparts of the noisy probabilistic connectives (and, or, max, min, . . . ).
Their interest is illustrated on an example taken from a human geogra-
phy modeling problem. The difference of behaviors in some cases of some
possibilistic connectives, with respect to their probabilistic analogs, is
discussed in details.

1 Introduction

Bayesian networks [11] can be built in two ways: statistical and subjective. In
the first case, a supposedly large dataset involving a number of variables is avail-
able, and the Bayesian network is obtained by some machine learning procedure.
The probability tables thus obtained have a frequentist flavor, and the simplest
network possible is searched for. On the contrary, Bayesian networks can be spec-
ified using expert knowledge. In this case, the structure of a network relating
the variables is first given, often relying on causal connections between variables
and conditional independence relations the expert is aware of. Then probability
tables must be filled by the expert. They consist, for each variable in the network,
of conditional probabilities for that variable, conditioned on each configuration
of its parent variables. Note that, even if causal relations as perceived by the
expert are instrumental in building a simple and interpretable network, the joint
probability distribution obtained by combining the probability tables no longer
accounts for causality. Another difficulty arises for causality-based Bayes net-
works: if variables are not binary and/or the number of parent variables is more
than two, the task of eliciting numerical probability tables becomes tedious, if
not impossible to fulfill. Indeed, the number of probability values to be supplied
increases exponentially with the number of parent variables.

To alleviate the elicitation task, the notion of noisy logical gate (or con-
nective) has been introduced, based on the assumption of independent causal
c© Springer International Publishing Switzerland 2015
C. Beierle and A. Dekhtyar (Eds.): SUM 2015, LNAI 9310, pp. 249–263, 2015.
DOI: 10.1007/978-3-319-23540-0 17
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influences that can be combined. As a result, one small conditional probability
table is elicited per parent variable, and the probability table of each variable
given its parents is obtained by combining these small tables by a so-called noisy
connective [6,10], which may include a so-called leakage factor summarizing the
causal effect of variables not explicitly present in the network.

While the notion of noisy connective solves the combinatorial problem of col-
lecting many probability values to a large extent, the issue remains that people
cannot always provide precise probability assessments. Let alone the fact that
the probability scale is too fine-grained for human perception of belief or frequen-
cies, some conditional probability values may be ill-known or plainly unknown
to the experts. The usual Bayesian recommendation in the latter case is to use
uniform distributions, but it is well-known that these do not properly model igno-
rance. Alternatively, one may use imprecise probability networks (called credal
networks) [12], qualitative Bayesian networks [14] or possibilistic networks [3].
While the two first options extend probabilistic networks to ill-known parame-
ters (with an interval-based approach for the former and an ordinal approach
for the latter), possibilistic networks represent a more drastic departure from
probabilistic networks. In their qualitative version, possibilistic networks can be
defined on a finite chain of possibility values and do not refer to numerical val-
ues. This feature may make the collection of expert information on conditional
tables easier than requiring precise numbers obeying the laws of probability.

In this paper, we propose possibilistic counterparts of noisy connectives of
probabilistic networks. As possibilistic uncertainty is merely epistemic and due
to a lack of information, we shall speak of uncertain connectives. After recall-
ing probabilistic networks with noisy gates, we present the corresponding app-
roach for possibilistic networks and present various uncertain gates, especially
the AND, OR, MAX, and MIN functions.1 Finally, the approach, including algo-
rithmic issues, is illustrated on a belief network stemming from an application
to human geography.

2 Probabilistic Networks with Independent
Causal Influences

Consider a set of independent variables X1, . . . , Xn that influence the value of
a variable Y . In the ideal case, there is a deterministic function f such that
Y = f(X1,X2, . . . , Xn). In order to account for uncertainty, one may assume
the existence of intermediary variables Z1, . . . , Zn, such that Zi expresses the
fact that Xi will have a causal influence on Y , and to what extent (Zi has
the same domain as Y ). It is assumed that the relation between Xi and Zi is
1 The idea of possibilistic uncertain gates was first considered empirically by [13]

directly in the setting of possibilistic logic, at a time where possibilistic networks
had not yet been introduced. It seems that the question of possibilistic uncertain
gates has not been reconsidered ever since, if we except a recent study in the broader
setting of imprecise probabilities [1] and a preliminary outline in French by the
authors [4].
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probabilistic and that Xi is independent of other variables given Zi. Besides, we
consider the deterministic function as affected by the auxiliary variables Zi only.
In other words, we get a probabilistic network such that

P (Y,Z1, . . . , Zn,X1,X2, . . . , Xn) = P (Y,Z1, . . . , Zn) ·
n∏

i=1

P (Zi | Xi), (1)

where P (Y,Z1, . . . , Zn) = 1 if Y = f(Z1, Z2, . . . , Zn) and 0 otherwise. This is
called a noisy function. In particular, notice that the dependence tables between
Y and X1, . . . , Xn can now be obtained by combining simple conditional prob-
ability distributions pertaining to single factors:

P (y | x1, . . . , xn) =
∑

z1,...,zn:y=f(z1,...,zn)

n∏

i=1

P (zi | xi). (2)

This is the assumption of independence of causal influence (ICI) [6]. In the case
of Boolean variables, it is assumed that P (zi = 0 | xi = 0) = 1 (no cause, no
effect), while P (zi = 0 | xi = 1) can be positive (the effect may or may not
appear when the cause is present).

Canonical ICI models are obtained by means of specific choice of the function
f . For instance, if all variables are Boolean, f will be a logical connective. In
this case, we speak of noisy OR (f = ∨), noisy AND (f = ∧); if the range of the
Zi’s and Y is a totally ordered set, usual gates are the noisy MAX (f = max),
or MIN (f = min).

The approach may be further refined by allowing f to summarize the poten-
tial effect of external variables not taken into account: this is the leaky model.
Now, Y also depends on a leak variable Z� not explicitly related to specifically
identified causes, i.e., Y = f(Z1, Z2, . . . , Zn, Z�). The domain of Z� is supposed
to be the range of f , i.e., the domain of Y and this variable is independent of
the other ones. Hence, the leakage model may be written as:

P (Y,Z1, . . . , Zn, Z�,X1, . . . , Xn) = P (Y,Z1, . . . , Zn) · P (Z�) ·
n∏

i=1

P (Zi | Xi),

so that

P (y | x1, . . . , xn) =
∑

z1,...,zn,z�:y=f(z1,...,zn,z�)

P (z�) ·
n∏

i=1

P (zi | xi). (3)

For instance, in the case of Boolean variables, P (y = 1 | x1 = 0, . . . , xn = 0)
may be positive due to such external causes.

We will now turn to the question whether the same kind of ICI approach can
be used to elicit possibilistic networks as well.

3 Canonical Possibilistic Networks

Possibility theory [7,16] is based on maxitive set functions associated to pos-
sibility distributions. Formally, given a universe of discourse U , a possibility
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distribution π : U → [0, 1] pertains to a variable X ranging on U and represents
the available (incomplete) information about the more or less possible values of
X, assumed to be single-valued. Thus, π(u) = 0 means that X = u is impos-
sible. The consistency of information is expressed by the normalization of π :
∃u ∈ U, π(u) = 1, namely, at least one value is fully possible for X. Distinct
values u and u′ may be simultaneously possible at degree 1. A state of complete
ignorance is represented by the distribution π?(u) = 1,∀u ∈ U . A possibility
measure of an event A ⊆ U is defined by

Π(A) = sup
u∈A

π(u).

Possibility measures are maxitive, i.e.,

∀A,∀B,Π(A ∪ B) = max(Π(A),Π(B)).

The underlying assumption is that the agent focuses on most plausible values,
neglecting other ones. A dual measure of necessity N(A) = 1−Π(U\A) expresses
the certainty of event A as the impossibility of non-A.

A possibilistic network [2,3] has the same structure as a Bayesian network.
The joint possibility for n variables linked by an acyclic directed graph is
defined by

π(x1, . . . , xn) = ∗i=1,...,nπ(xi | pa(Xi)),

where xi is an instantiation of the variable Xi, and pa(Xi) an instantiation of
the parent variables of Xi. The operation ∗ is the minimum (in the qualitative
case) or the product (in the numerical case).

Deterministic models Y = f(X1, . . . , Xn) are defined as in the probabilis-
tic case:

π(y | x1, . . . , xn) =

{
1 if y = f(x1, . . . xn);
0 otherwise.

(4)

Let us define possibilistic models with independent causal influences (ICI). We
use a deterministic function Y = f(Z1, . . . , Zn) with n intermediary causal vari-
ables Zi, as for the probabilistic models. Now, π(y | x1, . . . , xn) is of the form:

π(y | z1, . . . , zn) ∗ π(z1, . . . , zn | x1, . . . , xn),

where π(y | z1, . . . , zn) obeys Eq. 4. Again, each variable Zi only depends (in an
uncertain way) on the variable Xi. Thus, we have π(z1, . . . , zn | x1, . . . , xn) =
∗i=1,...,nπ(zi | xi). This leads to the equality

π(y | x1, . . . , xn) = max
z1,...,zn:y=f(z1,...,zn)

∗i=1,...,nπ(zi | xi), (5)

whose similarity with Eq. 2 is striking. Notice that, when ∗ = min, Eq. 5 boils
down to applying the extension principle [16] to function f , assuming fuzzy-
valued inputs F1, . . . , Fn, where the membership function of Fi is defined by
μFi

(zi) = π(zi | xi).
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In case we suppose that y depends also in an uncertain way on other causes
summarized by a leak variable Z�, then the counterpart of Eq. 3 reads:

π(y | x1, . . . , xn) = max
z1,...,zn,z�:y=f(z1,...,zn,z�)

∗i=1,...,nπ(zi | xi) ∗ π(z�). (6)

In the following, we provide a detailed analysis of possibilistic counterparts of
noisy gates.

3.1 Uncertain OR and AND Gates

The variables are assumed to be Boolean (i.e., Y = y or ¬y, etc.). The uncertain
OR (counterpart of the probabilistic “noisy OR”) assumes that Xi = xi for at
least one variable Xi represents a sufficient cause for getting Y = y, and Zi = zi

indicates that Xi = xi has caused Y = y. This gives f(Z1, . . . , Zn) =
∨n

i=1 Zi.
The uncertainty indicates that the causes may fail to produce their effects. Zi =
¬zi indicates that Xi = xi did not cause Y = y due to the presence of some
inhibitor that prevents the effect from taking place. We assume it is more possible
that Xi = xi causes Y = y than the opposite (otherwise one could not say that
Xi = xi is sufficient for causing Y = y). Then we must define π(zi | xi) = 1 and
π(¬zi | xi) = κi < 1. Besides, π(zi | ¬xi) = 0, since when Xi is absent, it does
not cause y. Hence the causal elementary possibility table:

π(Zi|Xi) xi ¬xi

zi 1 0
¬zi κi 1

Note that in the case of a probabilistic network, π(zi | xi) is replaced by 1 − κi

in the above table. We can then obtain the table of the conditional possibility
distribution π(Y | X1, . . . , Xn) by means of Eq. 5:

π(y | X1, . . . , Xn) = max
z1,...,zn:z1∨...∨zn=1

∗n
i=1π(zi | Xi)

=
n

max
i=1

π(zi | Xi) ∗ (∗j �=i max(π(zj | Xj)π(¬zj | Xj));

π(¬y | X1, . . . , Xn) = max
z1,...,zn:z1∨...∨zn=0

∗n
i=1π(zi | Xi)

= π(¬z1 | X1) ∗ . . . ∗ π(¬zn | Xn).

Let us denote by x a configuration of (X1, . . . , Xn), and let I+(x) = {i : Xi = xi}
and I−(x) = {i : Xi = ¬xi}. Then we get:

– π(¬y | x) = ∗i=1,...,nπ(¬zi | Xi = xi) = ∗i∈I+(x)κi;
– π(y | x) = 1 when x �= (¬x1, . . . ,¬xn);
– π(¬y | ¬x1, . . . ,¬xn) = 1, π(y | ¬x1, . . . ,¬xn) = 0: ¬y (no effect) can be

obtained for sure only if all the causes are absent.

For n = 2, this gives the conditional tables:

π(y | X1X2) x1 ¬x1
x2 1 1

¬x2 1 0

π(¬y | X1X2) x1 ¬x1
x2 κ1 ∗ κ2 κ2

¬x2 κ1 1
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More generally, if there are n causes, we have to provide the values of n para-
meters κi.

For the uncertain OR with leak, we now assume that f(Z1, . . . , Zn) =∨n
i=1 Zi ∨ Z�, where Z� is an unknown external cause. We assign π(z�) = κ� < 1

considering that z� is not a usual cause. We thus obtain

– π(¬y | x) = ∗i=1,...,nπ(¬zi | Xi = xi) ∗ π(¬z�) = ∗i∈I+(x)κi;
– π(y | x) = 1, if x �= (¬x1, . . . ,¬xn);
– π(¬y | ¬x1, . . . ,¬xn) = 1;
– π(y | ¬x1, . . . ,¬xn) = κ� (even if the causes xi are absent, there is still a

possibility for having Y = y, namely if the external cause is present).

Indeed, we get (letting ¬x = ¬x1, . . . ,¬xn),

π(y | ¬x1, . . . ,¬xn) = max(π(y | ¬x, z�) ∗ π(z�), π(y | ¬x,¬z�) ∗ π(¬z�)))
= max(1 ∗ κ�, 0 ∗ 1) = κ�.

For n = 2, the conditional table becomes:

π(y | X1X2) x1 ¬x1
x2 1 1

¬x2 1 κ�

π(¬y | X1X2) x1 ¬x1
x2 κ1 ∗ κ2 κ2

¬x2 κ1 1

The only 0 entry has been replaced by the leakage coefficient. For n causes, we
have now to provide the values of n + 1 parameters κi.

The uncertain AND (counterpart of the probabilistic “noisy AND”) uses
the same local conditional tables but it assumes that Xi = xi represents a
necessary cause for Y = y. We again build the conditional possibility table
π(Y | X1, . . . , Xn) by means of Eq. 5 with f(Z1, . . . , Zn) =

∧n
i=1 Zi. Thus,

we find

– π(¬y | x1, . . . , xn) = maxz1,...,zn:¬y=z1∧...∧zn
∗n

i=1π(zi | xi) = maxn
i=1 π(¬zi |

xi) = maxn
i=1 κi;

– π(y | x1, . . . , xn) = 1;
– π(¬y | x) = 1, π(y | x) = 0 if x �= (x1, . . . , xn) (if at least one of the causes is

absent, the effect is necessarily absent).

For n = 2, Eq. 5 yields the conditional tables:

π(y | X1X2) x1 ¬x1
x2 1 0

¬x2 0 0

π(¬y | X1X2) x1 ¬x1
x2 max(κ1, κ2) 1

¬x2 1 1

More generally, if there are n causes, we have to assess n values for the
parameters κi. The case of the uncertain AND with leak corresponds to the
possibility π(zL) = κL < 1 that an external factor ZL = zL causes Y = y
independently of the values of the Xi. Namely f(Z1, . . . , Zn, ZL) = (

∧n
i=1 Zi) ∨

ZL. For n = 2, Eq. 5 then gives the conditional tables:

π(y | X1X2) x1 ¬x1
x2 1 κL

¬x2 κL κL

π(¬y | X1X2) x1 ¬x1
x2 max(κ1, κ2) 1

¬x2 1 1
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3.2 Comparison with Probabilistic Gates

It is interesting to compare the possibilistic and probabilistic tables. Consider
those of the noisy OR [6], where κi = P (¬zi | xi):

P (y | X1X2) x1 ¬x1
x2 1 − κ1κ2 1 − κ2

¬x2 1 − κ1 0

P (¬y | X1X2) x1 ¬x1
x2 κ1κ2 κ2

¬x2 κ1 1

There is an important difference between the behaviors of uncertain and noisy
OR if ∗ = min. In the possibilistic tables, we see (using the associated necessity
measure N , and Boolean notations for the instantiations of x1 and x2) that
N(y | 11) = max(N(y | 10), N(y | 01)) while P (y | 11) > max(P (y | 10), P (y |
01)), so that the presence of two causes does not reinforce the certainty of the
effect wrt the presence of the most influential cause. Hence qualitative possibility
networks will be less expressive than probabilistic networks. If ∗ = product,
N(y | 11) = 1 − κ1κ2 > max(N(y | 10), N(y | 01)) as with the probability case.

Another major difference will occur in case the effects of causes are not
frequent, as when P (¬zi | xi) = κi > 0.5, i = 1, 2. Then it may happen that
P (y | x1x2) = 1 − κ1κ2 > 0.5, that is the presence of the two causes makes
the effect frequent. Then a possibilistic rendering of this case must be such that
π(¬zi | xi) = 1 > π(zi | xi) = λi (say). However, there is no way of observing this
reversal effect, since π(y | x1x2) = max(λ1∗λ2, λ1, λ2) = max(λ1, λ2) < 1. Hence
π(¬y | x1x2) = 1 and N(y | x1x2) = 0. In other words, using the uncertain OR,
two causes that are individually insufficient to make an effect plausible are still
insufficient to make it plausible if joined together. Note that this fact reminds of
the property of closure under conjunction for necessity measures in possibility
theory (N(y1) > 0 and N(y2) > 0 imply N(y1 ∧ y2) > 0) which fail to hold in
probability theory.

One way to address this problem is to define the global conditional possibility
tables π(Y | X1,X2) enforcing π(y | x1x2) > π(¬y | x1x2) even if π(y | x1) <
π(¬y | x1) and π(y | x2) < π(¬y | x2), which is perfectly compatible with
possibility theory. We will outline a solution of this kind in the next section for
the uncertain MAX, which is a generalization of the uncertain OR. However, one
cannot build the global table from the marginal ones using an uncertain OR.

3.3 Uncertain MAX and MIN Gates

The uncertain MAX is a multiple-valued extension of the uncertain OR, where
the output variable (hence the variables Zi) is valued on a finite, totally ordered,
severity or intensity scale L = {0 < 1 < · · · < m}. We assume that Y =
max(Z1, . . . , Zn). Zi = zi ∈ L represents the fact that Xi alone has increased
the value of Y at level zi. The conditional possibility distributions π(y | xi) are
supposed to be given. We can then compute the conditional tables, as

π(y | x1, . . . , xn) = max
z1,...,zn:y=max(z1,...,zn)

∗n
i=1π(zi | xi)

=
n

max
i=1

π(Zi = y | xi) ∗ (∗j �=iΠ(Zj ≤ y | xj)) .
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In a causal setting, we assume that y = 0 is a normal state, and y > 0 is more
or less abnormal, y = m being fully abnormal. Suppose that the domain of Xi

is L as well. It is natural to assume that:

– if Xi = j then Zi = j, which means Π(Zi = j | Xi = j) = 1;
– Π(Zi > j | Xi = j) = 0 (a cause having a weak intensity cannot induce an

effect with strong severity);
– 0 < Π(Zi < j | Xi = j) < 1 (a cause having strong intensity may sometimes

only induce an effect with weak severity, or may even have no effect at all);
– An effect with severity weaker than the intensity of a cause is all the less

plausible as the effect is weak. This leads to suppose the following inequalities:

0 < π(Zi = 0 | Xi = j) < π(Zi = 1 | Xi = j) < . . . < π(Zi = j | Xi = j) = 1.

This leads to state the left-hand side table below (for 3 levels of strength 0, 1, 2).

π(Zi | Xi) Xi = 2 Xi = 1 Xi = 0
Zi = 2 1 0 0

Zi = 1 κ12
i 1 0

Zi = 0 κ02
i κ01

i 1

π(Zi | Xi) Xi = 2 Xi = 0
Zi = 2 1 0

Zi = 1 κ12
i 0

Zi = 0 κ02
i 1

where 0 < κ02
i < κ12

i < 1, 0 < κ01
i < 1. In case we have m levels of strength, we

have to assess m(m+1)
2 coefficients. On the right-hand side is the corresponding

table when the variables Xi are Boolean (then the middle column is dropped).
The global conditional possibility tables are thus obtained by applying Eq. 5,

using the values of π(Zi | Xi), as given in the above table.

π(Y = j|x) =
n

max
i=1

π(Zi = j|xi) ∗ (∗� �=iΠ(Z� ≤ j|x�)).

For n = 2, m = 2, when the Xi’s are three-valued and Boolean, respectively,
the following conditional tables are obtained (in the Boolean case, only 4 lines
remain):

x π(2 | x) π(1 | x) π(0 | x)

(2, 2) 1 max(κ12
1 , κ12

2 ) κ02
1 ∗ κ02

2
(2, 1) 1 1 κ02

1 ∗ κ01
2

(2, 0) 1 κ12
1 κ02

1
(1, 2) 1 1 κ01

1 ∗ κ02
2

(1, 1) 0 1 κ01
1 ∗ κ01

2
(1, 0) 0 1 κ01

1
(0, 2) 1 κ12

2 κ02
2

(0, 1) 0 1 κ01
2

(0, 0) 0 0 1

x π(2 | x) π(1 | x) π(0 | x)

(2, 2) 1 max(κ12
1 , κ12

2 ) κ02
1 ∗ κ02

2
(2, 0) 1 κ12

1 κ02
1

(0, 2) 1 κ12
2 κ02

2
(0, 0) 0 0 1

More generally, If we have m levels of strength, and n causal variables,
we need nm(m+1)

2 coefficients for defining the uncertain MAX. If we take into
account the leak, we have to add m(m+1)

2 coefficients per variable, in order to
replace the 0 by a leak coefficient in the conditional tables π(Zi | Xi) (assuming



Uncertain Logical Gates in Possibilistic Networks 257

that an effect of strong severity may take place even if the causes present have
a weak intensity).

As for the uncertain MAX wrt uncertain OR, the uncertain MIN is a multiple-
valued extension of the uncertain AND, where variables are valued on a the
intensity scale L = {0 < 1 < . . . < m}. We assume that Y = min(Z1, . . . , Zn).
We can then compute the conditional tables, as

π(y | x1, . . . , xn) = max
z1,...,zn:y=min(z1,...,zn)

∗n
i=1π(zi | xi)

=
n

max
i=1

π(Zi = y | xi) ∗ (∗j �=iΠ(Zj ≥ y|xj)).

The conditional possibility tables are thus obtained by applying Eq. 5, using
the same values of π(Zi | Xi), as in the case of the uncertain MAX. For n = 2,
m = 2, this gives the following conditional tables (for ternary and binary inputs,
respectively):

x π(2|x) π(1|x) π(0|x)

(2, 2) 1 max(κ12
1 , κ12

2 ) max(κ02
1 , κ02

2 )

(2, 1) 0 1 max(κ02
1 , κ01

2 )

(2, 0) 0 κ12
1 1

(1, 2) 0 1 max(κ01
1 , κ02

2 )

(1, 1) 0 1 max(κ01
1 , κ01

2 )
(1, 0) 0 0 1

(0, 2) 0 κ12
2 1

(0, 1) 0 0 1
(0, 0) 0 0 1

x π(2|x) π(1|x) π(0|x)

(2, 2) 1 max(κ12
1 , κ12

2 ) max(κ02
1 , κ02

2 )

(2, 0) 0 κ12
1 1

(0, 2) 0 κ12
2 1

(0, 0) 0 0 1

As observed in the previous section when comparing the uncertain OR to the
noisy OR, the simultaneous presence of a number of causes, which, taken in iso-
lation, do not normally produce an effect, may lead to a plausible effect under a
noisy MAX, which can never be the case with an uncertain MAX. Yet situations
of this kind do arise in applications and are fully compatible with possibility
theory. In order to make the elicitation of possibility tables describing such sit-
uations easy, an appropriate uncertain gate has to be designed, by providing a
suitable uncertain function f which can trigger an effect through the accumu-
lation of enough weak causes. One idea we have tested in order to approximate
such behavior is the proposal of the uncertain MAX with thresholds, described in
Sect. 4, which, in addition to the usual parameters of an uncertain MAX, takes
a threshold θj for each value yj of the effect variable Y (threshold gates also
exist in the probabilistic setting [6]). Such threshold is an integer expressing the
minimum number of causes that have to concur in order for effect yj to become
possible.

4 Implementation

A prototype involving the uncertain connectives defined above, allowing to exe-
cute possibilistic models such as the one described in Sect. 5 has been imple-
mented in R. Here, we give some details about the practical implementation
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Algorithm 1. uncertain-MAX(Y, prm).
Generate a conditional possibility table for variable Y given its causes X1, . . . , Xn

using the uncertain MAX with the given parameters prm.
Input: Y : the effect variable; prm = {〈condi,ki〉}: a set of normalized possibility distributions

ki = (κi1, . . . , κi‖Y ‖), maxj=1,...,‖Y ‖{κij} = 1, which apply when condition condi holds;
condi = (〈Xij , xij〉), a (possibly empty) array of pairs of a cause variable Xij and one of its
values xij ; condi holds if Xij = xij holds for all j; an empty condition always holds.

Output: π(Y | X1, . . . , Xn): a conditional possibility distribution of Y given its causes X1, . . . , Xn.
1: π(Y |X1, . . . , Xn) ← 0
2: for all x ∈ X1 × . . . × Xn do
3: K ← {k : 〈condi,k〉 ∈ prm,x |= condi} {Select the parameters that apply to x}
4: for all y = (y1, . . . , y‖K‖) ∈ Y ‖K‖ do

5: β ← mini=1,...,‖K‖{κiyi
}

6: ȳ ← maxi=1,...,‖K‖{yi}
7: π(ȳ | x) ← max{β, π(ȳ | x)}
8: end for
9: end for

10: return π(Y | X1, . . . , Xn)

of the uncertain connectives defined in the paper. Due to space limitations, we
focus in particular on the uncertain MAX (and its variant with thresholds),
whose implementation is non-trivial.

The way the uncertain MAX is implemented is shown in Algorithm 1. The
parameter prm taken as input by this algorithm may be thought of as repre-
senting a set of rules of the form

Xi1 = xi1 ∧ . . . ∧ Xim
= xim

⇒ Y ∼ (κ(y1), . . . , κ(yn)), (7)

where the Xij
on the left-hand side are parent variables of Y in the possibilistic

graphical model, the xij
are one of their values, and (κ1(y1), . . . , κ1(yn)) is a

normalized possibility distribution over the values of variable Y , i.e., for all
y ∈ Y , κ(y) ∈ [0, 1], and maxy∈Y κ(y) = 1. Notice that this generalizes the
uncertain gates to the case of multivalued variables. The left-hand side of a rule
may be empty (i.e., m = 0): in that case, the rule is interpreted as if it were

� ⇒ Y ∼ (κ�(y1), . . . , κ�(yn)). (8)

Such rules may be used to represent leak coefficients, which apply to all possible
combinations of causes.

The antecedents of the rules fed into the uncertain MAX must cover all
possible combinations x ∈ X1 × . . . × Xn of the values of the parent variables of
Y in order to ensure that the resulting conditional possibility distribution π(Y |
X1, . . . , Xn) be normalized. We may notice that, if a leak rule of the form of Eq. 8
is given, that rule alone already covers all combinations of parent variable values
and is thus a sufficient condition for the normalization of π(Y | X1, . . . , Xn); in
that case, the parameters of the uncertain MAX may be underspecified.

The uncertain MAX with thresholds, whose implementation is shown in
Algorithm 2, has an additional parameter, which consists of an array of thresh-
olds (θ1, . . . , θ‖Y ‖), with θi ∈ {1, 2, . . . , ‖X1 × . . . × Xn‖}. Each threshold is
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Algorithm 2. uncertain-MAX-threshold(Y, prm, thr).
Generate a conditional possibility table for variable Y given its causes X1, . . . , Xn

using the uncertain MAX with thresholds with parameters prm and thresholds
thr .
Input: Y : the effect variable; prm = {〈condi,ki〉}: a set of normalized possibility distributions

ki = (κi1, . . . , κi‖Y ‖), maxj=1,...,‖Y ‖{κij} = 1, which apply when condition condi holds;
condi = (〈Xij , xij〉), a (possibly empty) array of pairs of a cause variable Xij and one of
its values xij ; condi holds if Xij = xij holds for all j; an empty condition always holds;
thr = (θ1, . . . , θ‖Y ‖): the minimal number of combinations of values of the causes for which
each value of Y is more possible than the leak.

Output: π(Y | X1, . . . , Xn): a conditional possibility distribution of Y given its causes X1, . . . , Xn.
1: π(Y |X1, . . . , Xn) ← 0
2: κ� ← 0
3: for all 〈condi,k〉 ∈ prm : condi =  do
4: κ� ← max{κ�,k}
5: end for
6: for all x ∈ X1 × . . . × Xn do
7: cnt ← 0 {A vector of counters, one for each y ∈ Y }
8: K ← {k : 〈condi,k〉 ∈ prm,x |= condi} {Select the parameters that apply to x}
9: for all y = (y1, . . . , y‖K‖) ∈ Y ‖K‖ do

10: β ← mini=1,...,‖K‖{κiyi
}

11: ȳ ← maxi=1,...,‖K‖{yi}
12: if β > κ�(ȳ) then
13: cnt ȳ ← cnt ȳ + 1
14: end if
15: if cnt ȳ ≥ θȳ then
16: β ← 1
17: end if
18: π(ȳ | x) ← max{β, π(ȳ | x)}
19: end for
20: end for
21: return π(Y | X1, . . . , Xn)

associated with one value y of Y and represents the minimal number of combi-
nations of the causes for which y is more possible than the baseline possibility
given by the leak coefficients (κ(y) > κ�(y)), or zero if no leak is provided.

5 Application

The metropolitan area of Aix-Marseille in southern France has experienced ongo-
ing social polarization since the 1980s. The geography of unemployment, on the
one hand, and the concentration of high-skilled professionals, on the other, con-
tribute considerably to the structuring of a contrasted metropolitan social mor-
phology [5,9]. Knowledge of factors inducing social polarization of the munici-
palities in the metropolitan area is nevertheless uncertain. Several factors con-
tribute to the valorization or to the devalorization of the municipal residential
space. But these factors have “soft”, uncertain impacts on the phenomena under
investigation: the same causes can not always lead to the same effects. A proba-
bilistic model of these socio-spatial mechanisms has already been proposed [15]
(cf. Fig. 1) in the form of a Bayesian network (BN). The BN was built using
expert knowledge elicited through noisy logical gates (OR, AND, and MAX).
We thus developed a possibilistic network (PN) using uncertain logical gates
(OR, AND, standard MAX, and MAX-threshold) in order to link the same 26
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Fig. 1. The BN model for the valorization/devalorization of municipalities in the study
area (from [15]).

variables of the BN (there is only one (ternary) MAX-threshold, with 7 parents).
The parametrization of the PN was made compatible with the BN parametriza-
tion using the “most prudent” probability-to-possibility preference-preserving
transformation, i.e., the T−1

1 converse transformation of [8], well suited to treat-
ing subjective probabilities, in order to transform probabilistic parameters into
possibilistic ones.

In Fig. 2 we show how an uncertain OR logical gate can be used to generate
a TPC. Only three parameters must be elicited: the possibilistic force of the
two parent variables on the child variable (necessity of the consequence given
that the parents are sufficient causes) and the leak parameter, which takes into
account the activation of the consequence from secondary causes not included in
the model. This table allows possibilistic inference from uncertain knowledge. If,
for example, for a given municipality of the study area, we are relatively certain
of having natural areas (Π = 1, N = 0.5) and if it is only partially possible that
we have valorized agricultural areas (Π = 0.5), we can infer that it is relatively
certain (N = 0.5) that the municipality in question has environmental amenities.

Another difference with the probabilistic model is the possibility of keeping
track of the ki parameters in the inference, in order to follow the sensitivity of
results to the parameters of uncertain causation. The advantage of uncertain
logical gates can be better appreciated in the whole model (Fig. 1). Evolution is,
for example, a ternary variable (having three values: no evolution, valorization,
and devalorization) depending on 5 binary variables and a 4-value variable. The
TPC is thus made of 3 × 25 × 4 = 384 parameters, whereas the uncertain MAX-
threshold gate used in our PN model only requires 27 parameters.

Both the BN and the PN model were thus used to produce trend sce-
narios for social polarization in the 439 municipalities of the Aix-Marseille



Uncertain Logical Gates in Possibilistic Networks 261

Fig. 2. Generation of a TPC through an uncertain OR logical gate.

metropolitan area. The future state variable that is inferred in these scenar-
ios is the ternary variable Situation T2, having three possible values: Valorized
(V ), Devalorized (D) or Other (O).

Both scenarios are based on uncertain knowledge of relationships among vari-
ables and produce uncertain evaluation of the future state of the metropolitan
area in terms of social polarization. Nevertheless, the probabilistic model infers
a most probable value of Situation T2 for each municipality. This often gives a
fallacious impression of certainty: probability differences between inferred values
can be relatively small. The possibilistic model, using a min-max logic, produces
in many cases sets of completely possible values (Π = 1). We thus decided to test
the significance of the probability differences in the BN model: only probability
differences exceeding a given threshold were considered different. For a given
threshold, we could thus infer even with the BN small sets of most probable
values for some municipalities.

If no threshold is considered, the most probable values inferred by the BN
and the completely possible values inferred by the PN coincide only in 54.7 %
of cases. In the remaining cases, possibilistic results are more uncertain and
always include probabilistic results (most probable values are always completely
possible for the PN).

The best agreement between the two models is obtained with thresholds
0.20 and 0.25 (lower and higher values give worse results). 72.4 % and 77.2 % of
the inferred values are then identical. Most probable values are almost always
compatible with PN solutions: they are included in the completely possible values
as, for example, when {V,O} are the most probable values and {V,O,D} is the
set of completely possible values. The inverse is not always the case: depending
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on threshold value, 24 % and 18 % of possibilistic solutions are not included in
the most probable values.

In conclusion, uncertain logical gates made the construction of the PN model
possible. The use of most probable solutions of the BN model often gives a false
impression of certainty. In order to compare results from the BN and the PN
models, we need to enlarge the notion of most probable values: solutions whose
probabilities differ less than 0.20/0.25 must be considered as equally probable.
In this case, the solutions of the two models are identical for around three quar-
ters of the municipalities of the study area. Despite this, the possibilistic model
integrates a larger amount of uncertainty in the solutions inferred. Indeed, in
the remaining quarter of municipalities, completely possible values inferred by
the PN are normally larger sets than most probable values inferred by the BN.
The BN model also tends to overestimate the valorization of municipalities in
the study area: the PN model often infers complete uncertainty ({V,O,D} all
equally possible) whereas the most possible values are just V or {V,O}. A fur-
ther analysis of the parametrization of the two models is nevertheless necessary
in order to assess the origin of such a bias.

6 Conclusion

This is the first detailed study of the counterpart of the main probabilistic noisy
gates for possibilistic networks, together with an illustrative implementation on
a human geography application. Uncertain possibilistic gates are of primary
interest for the practical use of possibilistic networks, when uncertainty has an
epistemic flavor. The study has revealed some noticeable differences of behav-
ior between noisy gates and uncertain possibilistic gates, in particular when the
cumulation of causes having a rare effect may increase the plausibility of the
effect. Generally speaking, possibilistic modeling appears to be more cautious.
A detailed comparative study of the expressive power of Bayesian nets and pos-
sibilistic networks is a topic for further investigation, as well as the development
of a complete panoply of uncertain possibilistic gates.
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Segmentation Sociale. L’Harmattan, Paris (1996)

6. Dı́ez, F., Drudzel, M.: Canonical probabilistic models for knowledge engineering.
Technical report CISIAD-06-01 (2007)

7. Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)
8. Dubois, D., Prade, H., Sandri, S.: On possibility/probability transformations. In:

Lowen, R., Roubens, M. (eds.) Fuzzy Logic, pp. 103–112. Kluwer Academic Pub-
lishers, Dordrecht (1993)

9. Fusco, G., Scarella, F.: Métropolisation et ségrégation sociospatiale. Les flux des
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Abstract. Rule-based argumentation systems are developed for reason-
ing about defeasible information. They take as input a theory made of a
set of strict rules, which encode strict information, and a set of defeasi-
ble rules which describe general behaviour with exceptional cases. They
build arguments by chaining such rules, define attacks between them,
use a semantics for evaluating the arguments, and finally identify the
plausible conclusions that follow from the rules.

One of the main attack relations of such systems is the so-called under-
cutting which blocks the application of defeasible rules in some contexts.
In this paper, we show that this relation is powerful enough to capture
alone all the different conflicts in a theory. We present the first argumen-
tation system that uses only undercutting and fully characterize both
its extensions and its plausible conclusions under various acceptability
semantics.

Keywords: Rule-based argumentation · Undercutting · Acceptability
semantics

1 Introduction

Rule-based argumentation systems are developed for reasoning about defeasible
information. As a major feature, they take as input a theory made of a set of
facts, a set of strict rules, which encode strict information, and a set of defea-
sible rules which describe general behaviour with exceptional cases. They build
arguments by chaining such rules, define attacks between them, use a semantics
for evaluating the arguments, and finally identify the plausible conclusions that
follow from the rules. Examples of such systems are ASPIC [2], its extended
version ASPIC+ [14], Delp [8] and the system developed in [11]. Some of these
systems satisfy the rationality postulates proposed in [3]. However, the plausible
conclusions of any of these systems have never been characterized. Thus, despite
the wide use of these systems, their outputs are still unknown.

Besides that, systems like Delp use rebuttal as attack relation between argu-
ments. Rebuttal captures the fact that the conclusions of two arguments are
inconsistent. Systems like ASPIC [2] and Pollock’s system [13] use, in addition
to rebuttal, undercut which blocks the application of defeasible rules in partic-
ular contexts. Let us illustrate this relation by an example borrowed from [13].
Consider the following argument (a):
c© Springer International Publishing Switzerland 2015
C. Beierle and A. Dekhtyar (Eds.): SUM 2015, LNAI 9310, pp. 267–281, 2015.
DOI: 10.1007/978-3-319-23540-0 18
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“The object is red (or) because it looks red (lr)”.

This argument uses of the defeasible rule lr ⇒ or (meaning that generally, if an
object looks red, then it is red). Assume now another argument (b) which states
the following:

“The rule lr ⇒ or is inapplicable since the object is illuminated by a red
light”.

The argument b undercuts a and the conclusion (or) of a is not drawn from the
theory. Undercut deals with the exceptions of defeasible rules. Indeed, every excep-
tion of a defeasible rule gives birth to an attack from any argument involving the
exception toward any argument using the rule. In the example, being illuminated
by a red light is a specific case where the rule lr ⇒ or cannot be applied.

In this paper, we argue that undercut can do more than dealing with excep-
tions of defeasible rules. It can also perfectly play the role of rebuttal, and deal
thus with inconsistency in a theory. The basic idea is the following: any defeasible
rule x ⇒ y should be blocked when ¬y follows from the theory. We propose the
first rule-based argumentation system that uses undercutting as its single attack
relation. We show that it satisfies the rationality postulates discussed in [3] under
naive, stable and preferred semantics. From a conceptual point of view, this sys-
tem is much simpler than existing ones that combine rebuttal and undercut. For
instance, in order to satisfy the postulates, ASPIC and ASPIC+ require a different
variant of rebuttal for each semantics. Our system satisfies the postulates under
all semantics. Moreover, restricted rebut, one of the variants of rebuttal, is based
on an assumption which is not intuitive. Indeed, this relation compares only the
rules whose heads are inconsistent, and neglects the remaining structure of the
arguments. For instance, it considers that the argument (x1, x1 ⇒ y1, y1 → z)
attacks the argument (x2, x2 → y2, y2 ⇒ ¬z) since z follows from a strict rule
while ¬z follows from a defeasible one. Note that the converse is not true even if
the first rule of the first argument is defeasible while that of the second argument
is strict. In our system, we do not make such assumptions. The second main con-
tribution of the paper consists of providing the first and full characterizations of
the extensions as well as the set of plausible conclusions of our system under naive,
stable and preferred semantics proposed in [7].

The paper is organized as follows: Sect. 2 defines the rule-based system we
are interested in, Sect. 3 analyses its properties, Sect. 4 characterizes its outputs
(extensions and plausible conclusions), and Sect. 5 compares it with existing sys-
tems. The proofs can be downloaded from http://www.irit.fr/∼Leila.Amgoud/
sum15.pdf.

2 Rule-Based Systems

As in [1], three kinds of information are distinguished: Facts representing factual
information like ‘Tweety is a bird’, strict rules representing strict information
like ‘Penguins do not fly’ and defeasible rules describing general behavior with

http://www.irit.fr/~Leila.Amgoud/sum15.pdf
http://www.irit.fr/~Leila.Amgoud/sum15.pdf
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exceptional cases like ‘Birds fly’. In what follows, L is a set of literals, i.e. atoms
or negation of atoms, representing knowledge. The negation of an atom x from
L is denoted ¬x. L′ is a set of atoms used for naming rules. The two sets satisfy
the constraint L ∩ L′ = ∅. Every rule has a single name and two rules cannot
have the same name. Throughout the paper, rules are named r, r1, r2, . . . . The
function Rule(ri) returns the rule whose name is ri.

• Facts are elements of L.
• Defeasible rules are of the form x1, . . . , xn ⇒ x and x, x1..., xn are literals in

L.
• Strict rules are of the form x1, . . ., xn → x where x1, . . ., xn are literals of L

and

{
x ∈ L or
x ∈ L′ and Rule(x) is defeasible.

Note that the names of rules cannot appear in bodies of (strict or defeasible)
rules. This means that it is not possible to represent information of the form
“if rule r is applied (or is blocked), then y holds”. Moreover, strict rules can-
not be blocked. By default, any defeasible rule can be applied, unless explicitly
mentioned in the language by strict rules x1, . . ., xn → x with x ∈ L′. Such a
rule is read as follows: If x1, . . . , xn hold, then the defeasible rule x is always not
applicable.

Definition 1 (Theory). A theory is a triple T = (F ,S,D) where F ⊆ L is
a set of facts and S ⊆ L′ (respectively D ⊆ L′) is a set of strict (respectively
defeasible) rules.

Notations: For each rule x1, . . . , xn → x (as well as x1, . . . , xn ⇒ x) whose
name is r, the head of the rule is Head(r) = x and the body of the rule is
Body(r) = {x1, . . . , xn}. Let T = (F ,S,D) and T ′ = (F ′,S ′,D′) be two theories.
We say that T is a sub-theory of T ′, written T � T ′, iff F ⊆ F ′ and S ⊆ S ′ and
D ⊆ D′. The relation � is the strict version of � (i.e., it is the case that at least
one of the three inclusions is strict). Finally, Defs(T ) = D.

Let us now show how new information is produced from a given theory. This
is generally the case when (strict and/or defeasible) rules are fired in a derivation
schema.

Definition 2 (Derivation schema). Let T = (F ,S,D) be a theory and
x ∈ L ∪ L′. A derivation schema for x from T is a finite sequence d =
〈(x1, r1), . . . , (xn, rn)〉 s.t.

– xn = x
– for i = 1 . . . n,

• xi ∈ F and ri = ∅, or
• ri ∈ S ∪ D and Head(ri) = xi and Body(ri) ⊆ {x1, .., xi−1}
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Seq(d) = {x1, . . . , xn}.
Facts(d) = {xi | i ∈ {1, . . . , n}, ri = ∅}.
Strict(d) = {ri | i ∈ {1, . . . , n}, ri ∈ S}.
Def(d) = {ri | i ∈ {1, . . . , n}, ri ∈ D}.
CN(T ) denotes the set of all literals that have a derivation schema from T .

It is clear from the definition that CN is monotonic.

Example 1. Let T1 = (F1,S1,D1) be a theory such that F1 = {p, b}, S1 =
{(r1) p → ¬f} and D1 = {(r2) b ⇒ f}. From T1, we have the following minimal
derivations:

• d1 = 〈(p, ∅)〉
• d2 = 〈(b, ∅)〉
• d3 = 〈(p, ∅), (¬f, r1)〉
• d4 = 〈(b, ∅), (f, r2)〉

A notion of consistency and another of coherence are associated with this
language.

Definition 3 (Consistency–Coherence). A set X ⊆ L is consistent iff
�x, y ∈ L such that x = ¬y. It is inconsistent otherwise. A theory T = (F ,S,D)
is consistent iff CN(T ) is consistent. It is coherent iff CN(T ) ∩ D = ∅.

The set of strict rules should be closed under transposition. This is required
for ensuring the rationality postulates proposed in [3].

Definition 4 (Closure under transposition). Let S be a set of strict rules.
For any rule r = x1, . . . , xn → x with x ∈ L, r′ is a transposition of r iff r′ =
x1, . . ., xi−1, ¬x, xi+1, . . ., xn → ¬xi for some 1 ≤ i ≤ n.
We define Clt(S) as the minimal set such that:

• S ⊆ Clt(S), and
• If r ∈ Clt(S) and r′ is a transposition of r then r′ ∈ Clt(S).

We say that S is closed under transposition iff Clt(S) = S.

Throughout the paper, we will consider undercut for capturing all the possi-
ble conflicts between arguments. Thus, undercut will be used both for blocking
general rules in presence of exceptions of such rules, and also for handling incon-
sistency. For that purpose, for each defeasible rule r, the theory should contain
the strict rule ¬Head(r) → r. This closure captures simply the fact that the two
literals Head(r) and ¬Head(r) cannot hold at the same time.

Definition 5 (Closed theory). A theory T = (F ,S,D) is closed iff

• S is closed under transposition, and
• for every defeasible rule r = x1, . . . , xn ⇒ x ∈ D, ¬x → r ∈ S.
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Example 1 (Cont). The closed version of T1 is T ′
1 = (F1,S ′

1,D1) such that
S ′
1 = {(r1) p → ¬f, (r3) f → ¬p, (r4) ¬f → r2}.

The backbone of an argumentation system is naturally the notion of argu-
ments. They are built from a closed theory using the notion of derivation schema
as follows.

Definition 6 (Argument). Let T = (F ,S,D) be a closed theory. An argument
defined from T is a pair (d, x) s.t.

• x ∈ L ∪ L′

• d is a derivation schema for x from T
• �T ′ � (Facts(d), Strict(d), Def(d)) s.t. x ∈ CN(T ′)

An argument (d, x) is strict iff Def(d) = ∅.
Unlike ASPIC and ASPIC+ systems, arguments are minimal in our system.

An argument may have several sub-parts, each of which is called sub-argument.

Definition 7 (Sub-argument). An argument (d, x) is a sub-argument of
(d′, x′) iff (Facts(d), Strict(d), Def(d)) � (Facts(d′), Strict(d′), Def(d′)).

Notations: Arg(T ) denotes the set of all arguments built from theory T in the
sense of Definition 6. If a = (d, x) is an argument, Conc(a) = x and Sub(a) is the
set of all its sub-arguments. For a set E of arguments, Concs(E) = {x | (d, x) ∈ E}
and Th(E) is a theory such that:

Th(E) = (
⋃

(d,x)∈E
Facts(d),

⋃

(d,x)∈E
Strict(d),

⋃

(d,x)∈E
Def(d)).

The undercutting relation is defined as follows:

Definition 8 (Undercutting). Let T = (F ,S,D) be a closed theory and
(d, x), (d′, x′) ∈ Arg(T ). (d, x) undercuts (d′, x′), denoted by (d, x) Ru (d′, x′),
iff x ∈ Def(d′).

Example 1 (Cont). The set Arg(T ′
1 ) contains:

• a1 : (〈(b, ∅)〉, b)
• a2 : (〈(p, ∅)〉, p)
• a3 : (〈(p, ∅), (¬f, r1)〉,¬f)
• a4 : (〈(p, ∅), (¬f, r1), (r2, r4)〉, r2)
• a5 : (〈(b, ∅), (f, r2)〉, f)
• a6 : (〈(b, ∅), (f, r2), (¬p, r3)〉,¬p)

a4 undercuts both a5 and a6 since r2 ∈ Def(d5) and r2 ∈ Def(d6).

Strict arguments cannot be attacked using this relation.

Proposition 1. Let T = (F ,S,D) be a theory. For any argument a ∈
Arg((F ,S, ∅)), �b ∈ Arg(T ) such that bRua.
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Note that self-attacking arguments may exist.

Example 2. Consider the theory T2 = (F2,S2,D2) s.t. F2 = {x}, S2 =
{(r1) t → r2}, and D2 = {(r2) x ⇒ t}. The set Arg(T2) contains the three
arguments:

• a1 : (〈(x, ∅)〉, x)
• a2 : (〈(x, ∅), (t, r2)〉, t)
• a3 : (〈(x, ∅), (t, r2), (r2, r1)〉, r2)
The argument a3 undercuts itself and a2.

Throughout the paper, we study the following rule-based argumentation sys-
tem.

Definition 9 (AS). An argumentation system (AS) defined over a closed the-
ory T = (F ,S,D) is a pair H = (Arg(T ),Ru) where Ru ⊆ Arg(T ) × Arg(T ).

Arguments are evaluated using extension-based semantics [7]. These seman-
tics are based on two key notions:

• Conflict-freeness: A set E of arguments is conflict-free iff �a, b ∈ E s.t. aRub.
• Defence: A set E of arguments defends an argument a iff for all argument b

s.t. bRua, ∃c ∈ E s.t. cRub.

Definition 10 (Semantics). Let H = (Arg(T ),Ru) be an argumentation sys-
tem defined over a closed theory T and E ⊆ Arg(T ).

• E is a naive extension iff it is a maximal (w.r.t. set ⊆) conflict-free set.
• E is a preferred extension iff it is a maximal (w.r.t. set ⊆) conflict-free set

which defends all its elements.
• E is a stable extension iff E is conflict-free and ∀a ∈ Arg(T ) \ E, ∃b ∈ E such

that bRua.

Notations: Extx(H) denotes the set of all extensions of system H under seman-
tics x where x ∈ {n, p, s}, n (resp. p, s) stands for naive (resp. preferred, stable).
When we do not need to refer to a particular semantics, we write Ext(H) for
short.

The extensions of a system are used for defining the plausible conclusions to
be drawn from the theory over which the system is built. A literal is a plausible
conclusion iff it is a common conclusion to all the extensions.

Definition 11 (Plausible conclusions). The set of plausible conclusions of
an argumentation system H is

Output(H) =
{∅ if Ext(H) = ∅⋂

Ei ∈ Ext(H) Concs(Ei) else.
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Example 1 (Cont). The argumentation system H1 = (Arg(T ′
1 ),Ru) has

a single stable extension which is also preferred: E = {a1, a2, a3, a4}. Thus,
Output(H1) = {p, b,¬f, r2}.

Example 2 (Cont). The argumentation system H2 = (Arg(T2),Ru) has a
single preferred extension: E = {a1} and thus Output(H2) = {x}. However,
Output(H2) = ∅ under stable semantics since Exts(H) = ∅.

3 Properties of the System

Let us now analyse the properties of the argumentation system defined in the
previous section. We show that it satisfies all the rationality postulates proposed
in [3]. Indeed, every extension (under any of the reviewed semantics) contains
all the sub-arguments of its arguments. The system is also coherent, that is it
is not possible for an extension to use a defeasible rule in one of its arguments,
and at the same time to block that rule by another argument. In addition,
for preferred and stable semantics, every extension returns a consistent set of
conclusions (unless the strict part of the theory is inconsistent) and the set
of conclusions of every extension is closed under strict rules (under stable and
preferred semantics), that is it is not possible that an extension supports a
conclusion x and forgets y if x → y ∈ S.

Theorem 1. Let H = (Arg(T ),Ru) be an argumentation system built over a
closed theory T = (F ,S,D) s.t. Ext(H) �= ∅. For all E ∈ Ext(H), the following
hold:

• The theory Th(E) is coherent,
• For each a ∈ E, Sub(a) ⊆ E,

Under stable and preferred semantics, consistency and closure under strict
rules are also satisfied. However, both properties are violated under naive seman-
tics. This is not surprising since naive semantics does not take into account the
orientation of attacks, and thus the crucial distinction between strict rules and
defeasible ones.

Theorem 2. Let H = (Arg(T ),Ru) be an argumentation system built over a
closed theory T = (F ,S,D) s.t. Extx(H) �= ∅ with x ∈ {s, p}. For each E ∈
Extx(H), the following hold:

• Concs(E) is consistent iff CN((F ,S, ∅)) is consistent,
• Concs(E) = CN((Concs(E),S, ∅)),

The following properties follow from the previous theorem.

Corollary 1. Let H = (Arg(T ),Ru) be an argumentation system built over a
closed theory T = (F ,S,D) s.t. Extx(H) �= ∅ with x ∈ {s, p}. The following
hold:
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• Output(H) is consistent iff CN((F ,S, ∅)) is consistent,
• Output(H) = CN((Output(H),S, ∅)).

The previous results show that the outcomes of the argumentation system
(its extensions and set of plausible conclusions) satisfy nice properties under
stable and preferred semantics. However, they do not say anything about the
kind of conclusions the system draws from a theory. We answer this question in
the next section.

4 The Outputs of the System

This section provides formal characterizations of the outputs of the system under
the three reviewed semantics. For each semantics, we characterize the extensions
in terms of sub-theories of the theory over which the system is built, delimit the
number of extensions, and fully characterize the set of plausible conclusions.

4.1 Naive Semantics

A sub-theory that corresponds to a naive extension is called option.

Definition 12 (Option). An option of a closed theory T = (F ,S,D) is a
sub-theory (F ′,S ′,D′) such that

• F ′ = F , S ′ ⊆ S and D′ ⊆ D
• (F ′,S ′,D′) is coherent
• ∀r ∈ S ′ ∪ D′, Body(r) ⊆ CN((F ′,S ′,D′))
• �S ′′,D′′ such that (F ′,S ′,D′) � (F ′,S ′′,D′′) and (F ′,S ′′,D′′) satisfies the

previous conditions.

Opt(T ) denotes the set of options of the closed theory T .

Thus, an option is obtained by taking all the facts and a maximal (w.r.t set
inclusion) subset of (strict and defeasible) rules so that the sub-theory remains
coherent and all the added rules are applicable. Notice that no priority is given
to strict rules over defeasible ones. This is explained by the fact that naive
semantics does not distinguish between attackers and attacked arguments.

Example 3. Consider the closed theory T3 = (F3,S3,D3):

F3

{
x
y

S3

⎧
⎨

⎩

t → r2 (r4)
u → r1 (r5)
s → r3 (r6)

D3

⎧
⎨

⎩

x ⇒ t (r1)
y ⇒ u (r2)
t ⇒ s (r3)

The theory T3 has three options:

• O1 = (F3, ∅, {r1, r2, r3}) CN(O1) = {x, y, t, u, s}
• O2 = (F3, {r4}, {r1, r3}) CN(O2) = {x, y, t, s, r2}
• O3 = (F3, {r5}, {r2}) CN(O3) = {x, y, u, r1}
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Let us now establish the relationship between naive extensions of an argu-
mentation system and the options of the closed theory over which it is built.
Each naive extension returns one option and two naive extensions cannot return
the same option.

Theorem 3. Let H = (Arg(T ),Ru) be an AS built over a closed theory T .

• For all E ∈ Extn(H), there exists a single option O ∈ Opt(T ) such that
Th(E) = O and Concs(E) = CN(O). We put: Option(E) def= O.

• For all E , E ′ ∈ Extn(H), if Option(E) = Option(E ′) then E = E ′.
• For all E ∈ Extn(H), E = Arg(Option(E)).

The following theorem shows that inversely, each option leads to one naive
extension and two different options do not return the same naive extension.

Theorem 4. Let H = (Arg(T ),Ru) be an AS built over a closed theory T .

• For all O ∈ Opt(T ), Arg(O) ∈ Extn(H).
• For all O ∈ Opt(T ), O = Option(Arg(O)).
• For all O1,O2 ∈ Opt(T ), if Arg(O1) = Arg(O2), O1 = O2.

Example 3 (Cont). The arguments built from T3 are summarized below.

• a1 : (〈(x, ∅)〉, x)
• a2 : (〈(y, ∅)〉, y)
• a3 : (〈(x, ∅), (t, r1)〉, t)
• a4 : (〈(x, ∅), (t, r1), (r2, r4)〉, r2)
• a5 : (〈(y, ∅), (u, r2)〉, u)
• a6 : (〈(y, ∅), (u, r2), (r1, r5)〉, r1)
• a7 : (〈(x, ∅), (t, r1), (s, r3)〉, s)
• a8 : (〈(x, ∅), (t, r1), (s, r3), (r3, r6)〉, r3)

The graph of attacks is depicted in the Fig. 1 below:

Fig. 1. Graph of attacks built from the theory T3

The AS H3 = (Arg(T3),Ru) has three naive extensions E1 = {a1, a2, a3,
a5, a7}, E2 = {a1, a2, a3, a4, a7} and E3 = {a1, a2, a5, a6} which capture the
options O1, O2 and O3 respectively. Indeed, Th(E1) = O1 (resp. Th(E2) = O2,
Th(E3) = O3) and Concs(E1) = CN(O1) (resp. Concs(E2) = CN(O2), Concs(E3) =
CN(O3)).

From the previous correspondence, the number of naive extensions is delim-
ited.
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Corollary 2. Let H = (Arg(T ),Ru) be an AS. It holds that |Extn(H)| =
|Opt(T )|.

The plausible conclusions of an argumentation system under naive semantics
are the literals that follow from all the options of the theory over which the
system is built.

Corollary 3. Let H = (Arg(T ),Ru) be an AS. Output(H) =
⋂

O∈Opt(T ) CN(O).

Example 3 (Cont). Under naive semantics, Output(H) = CN(O1) ∩ CN(O2) ∩
CN(O3) = {x, y}.

4.2 Stable Semantics

The sub-theories of a closed theory that capture stable extensions are called
strong options and are defined as follows:

Definition 13 (Strong Option). A strong option of a closed theory T =
(F ,S,D) is a sub-theory (F ′,S ′,D′) such that

• F ′ = F , S ′ = S and D′ ⊆ D
• (F ′,S ′,D′) is coherent
• ∀r ∈ D′, Body(r) ⊆ CN((F ′,S ′,D′))
• ∀r /∈ D′ we have: either r ∈ CN(F ′,S ′,D′) or ∃x ∈ Body(r) such that x /∈

CN(F ′,S ′,D′)

SOpt(T ) denotes the set of strong options of theory T .

In a strong option O = (F ,S,D′), it is not necessary that all the strict rules of
S are applicable. Let S′′ be the subset of strict rules that are applicable in O, i.e.,
S ′′ = {r ∈ S | Body(r) ⊆ CN(O)}. Then, the sub-theory O′ = (F ,S ′′,D′) is an
option of T which clearly has the same conclusions as O (i.e., CN(O) = CN(O′)).
In addition, every strict (resp. defeasible) rule r which is kept outside O′ is
not applicable (resp. is not applicable or is such that r ∈ CN(O′)). This latter
constraint does not hold necessarily for every option. Accordingly, every strong
option corresponds to a single option but the converse is not true.

Thus, in addition to an “internal condition” (coherence) satisfied by both
options and strong options, the latter require an additional “external condition”
which consists of justifying each rule kept outside. Notice, that this idea is not
new in non-monotonic reasoning. We find it namely in the distinction between
Reiter’s extensions [15] and Lukaszewicz’s extensions [12] in default logic as well
as between answer sets [10] and ι-answer sets [9] in logic programming. Let
us illustrate strong options and their relationship with options in our running
example.

Example 3 (Cont). The theory T3 has one strong option O = (F3,S3, {r2}).
Note that the only strict rule in S3 which is applicable for O is r5. If we discard
from O the remaining non-applicable strict rules, we get exactly the option O3
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(CN(O) = CN(O3)). Note also that each rule which is not included in O3 is
justified. Namely, the strict rules r4 and r6 are note applicable (t ∈ Body(r4),
t /∈ CN(O3), s ∈ Body(r6), and s /∈ CN(O3)); the defeasible rule r1 is such that
r1 ∈ CN(O3) and the defeasible rule r3 is not applicable (t ∈ Body(r3) and
t /∈ CN(O3)). So O3 gives rise to a strong option by adding all the non-applicable
strict rules. This is not the case for O1 and O2. Indeed, adding the missing strict
rules to them leads to incoherent sub-theories.

It is worthy to say that a closed theory may not have strong options. This
is not surprising since as we will show, there is a bijection between the set of
stable extensions and the set of strong options. Indeed, every stable extension
gives birth to a strong option and two stable extensions cannot return the same
strong option.

Theorem 5. Let H = (Arg(T ),Ru) be an argumentation system built over a
closed theory T s.t. Exts(H) �= ∅.
• For all E ∈ Exts(H), there exists a single strong option O ∈ SOpt(T ) s.t.
Th(E) � O and Concs(E) = CN(O). We put SOption(E) def= O.

• For all E , E ′ ∈ Exts(H), if SOption(E) = SOption(E ′) then E = E ′.
• For all E ∈ Exts(H), E = Arg(SOption(E)).

Inversely, every strong option leads to one stable extension and two strong
options cannot lead the same stable extension.

Theorem 6. Let H = (Arg(T ),Ru) be an argumentation system built over a
closed theory T s.t. Exts(H) �= ∅.
• For all O ∈ SOpt(T ), Arg(O) ∈ Exts(H).
• For all O ∈ SOpt(T ), O = SOption(Arg(O)).
• For all O1,O2 ∈ SOpt(T ), if Arg(O1) = Arg(O2) then O1 = O2.

Example 3 (Cont). Among the three naive extensions of the argumentation
system H3 built from T3, the only stable extension is E3 which captures the
strong options O. Indeed, Th(E3) � O and Concs(E3) = CN(O).

We have seen so far that there is a one to one correspondence between naive
(resp. stable) extensions and options (resp. strong options). We have also shown
that every strong option is a sub-theory of one option. Thus, the number of
stable extensions of a rule-based system is delimited as follows.

Corollary 4. Let H = (Arg(T ),Ru) be an argumentation system built over a
closed theory T . The following holds: 0 ≤ |Exts(H)| = |SOpt(T )| ≤ |Opt(T )|.

Under stable semantics, the plausible conclusions of an AS are the literals
that follow from all the strong options of the theory over which the system is
built.

Corollary 5. Let H = (Arg(T ),Ru) be an argumentation system built over a
closed theory T s.t. Exts(H) �= ∅. Output(H) =

⋂
O∈SOpt(T ) CN(O).
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Example 3 (Cont). O is the only strong option of T3. Thus, Output(H) =
CN(O) = {x, y, u, r1}.

Let us summarize: rule-based argumentation systems may not have stable
extensions in which case they miss intuitive conclusions like facts. Systems that
do have stable extensions return exactly the literals that follow from all the
strong options of the closed theory at hand.

4.3 Preferred Semantics

We show next that the sub-theories that capture preferred extensions are the
so-called preferred options.

Definition 14. (Preferred Option). A preferred option of a closed theory
T = (F ,S,D) is a sub-theory (F ′,S ′,D′) s.t.

• F ′ = F , S ′ = S and D′ ⊆ D
• (F ′,S ′,D′) is coherent
• ∀r ∈ D′, Body(r) ⊆ CN((F ′,S ′,D′))
• ∀D′′ ⊆ D, if ∃r′ ∈ D′ such that r′ ∈ CN(F ,S,D′′) then ∃r′′ ∈ D′′ such that

r′′ ∈ CN(F ,S,D′)
• �D′′ such that D′ ⊂ D′′ and (F ′,S ′,D′′) satisfies the previous conditions.

POpt(T ) denotes the set of preferred options of theory T .

Preferred options are between options and strong options of a theory T .

• Every strong option of T is a preferred option of T . The converse is not true.
• Every preferred option is a sub-part of an option. More precisely, for every

preferred option O = (F ,S,D′), if S ′′ is the subset of strict rules that are
applicable in O, i.e., S ′′ = {r ∈ S | Body(r) ⊆ CN(O)}, then there is a unique
option O′ such that O′′ = (F ,S ′′,D′) � O′ and CN(O) = CN(O′′) ⊆ CN(O′).

Example 3 (Cont). There are three sub-theories of T3 that satisfy the four
first conditions of Definition 14: Op0 = (F3,S3, ∅), Op1 = (F3,S3, {r2}) and
Op2 = (F3,S3, {r1}). The maximal ones (that satisfy also the last condition of
Definition 14) are Op1 and Op2. Notice that Op1 is exactly the unique strong
option of T3. The other preferred option Op2 captures a sub-part of the option
O2 = (F3, {r4}, {r1, r3}). Indeed, by keeping in Op2 only the strict rues that
are applicable we obtain: Op′

2 = (F3, {r4}, {r1}). We have : Op′
2 � O2 and

CN(Op2) = CN(Op′
2) ⊆ CN(O2).

Now, we show that every preferred extension leads to a preferred option and
two preferred extensions cannot return the same preferred option.

Theorem 7. Let H = (Arg(T ),Ru) be an AS built over a closed theory T .

• For all E ∈ Extp(H), there exists a single preferred option O ∈ POpt(T ) s.t.

Th(E) � O and Concs(E) = CN(O). We put: POption(E) def= O.
• For all E , E ′ ∈ Extp(H), if POption(E) = POption(E ′) then E = E ′.
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• For all E ∈ Extp(H), E = Arg(POption(E)).

Inversely, every preferred option corresponds to a unique preferred extension
and two preferred options cannot return the same preferred extension.

Theorem 8. Let H = (Arg(T ),Ru) be an AS built over a closed theory T .

• For all O ∈ POpt(T ), Arg(O) ∈ Extp(H).
• For all O ∈ POpt(T ), O = POption(Arg(O)).
• For all O1,O2 ∈ POpt(T ), if Arg(O1) = Arg(O2) then O1 = O2.

Example 3 (Cont). The system H3 constructed from T3 has two preferred
extensions: Ep1 = {a1, a2, a5, a6} and Ep2 = {a1, a2, a3, a4}. They capture the
preferred options Op1 and Op2 respectively. Indeed, Th(Ep1) � Op1 (resp.
Th(Ep2) � Op2) and Concs(Ep1) = CN(Op1) (resp. Concs(Ep2) = CN(Op2)).

The number of preferred extensions of an argumentation system H is exactly
the number of preferred options of the theory over which the system is built.

Corollary 6. Let H = (Arg(T ),Ru) be an argumentation system built over a
closed theory T . It holds that |Extp(H)| = |POpt(T )|.

The plausible conclusions of an argumentation system, under preferred
semantics, are the literals that follow from all the preferred options of the theory
at hand.

Corollary 7. Let H = (Arg(T ),Ru) be an argumentation system built over a
closed theory T . Output(H) =

⋂
O∈POpt(T ) CN(O).

Example 3 (Cont). Output(H3) = CN(Op1) ∩ CN(Op2) = {x, y}.

5 Related Work

There are a couple of rule-based argumentation systems in the literature. Some
of them like ASPIC and its extended version ASPIC+ are shown to satisfy
the rationality postulates defined in [3], namely the consistency and closure
under strict rules of their sets of plausible conclusions. While this is testimony
to some strength of these formalisms, it does not say anything about the kind
of plausible conclusions they draw from a theory. Surprisingly, the outputs of
these systems (their extensions and their plausible conclusions) have never been
characterized. The authors of those systems provide only examples to show that
the outputs are meaningful. This is certainly not sufficient. Our paper is the first
that attempts a systematic study of the outcomes of rule-based systems under
naive, stable and preferred semantics. There are two notable exceptions. The first
work, done in [1], considered a fragment of our logical language and rebuttal as
attack relation. Blocking rules was not allowed. Extensions were characterized in
terms of sub-theories. However, some sub-theories may not have corresponding
extensions. Thus, there is no bijection between the two. Our formalism is thus
more general and our characterisations of its outcomes are more accurate since
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they are one-to-one correspondences. The second work, done in [4], investigated
the link between the logic programming semantics and argumentation ones. The
theory over which an argumentation system is built is a logic program, that
is, only one type of rules is used. Thus, the logical language is very different
from ours.

In addition to the characterizations of the system’s outcomes, the other main
novelty of our paper is the exclusive use of undercut for encoding conflicts
between arguments. This relation is always coupled with rebuttal which han-
dles inconsistency in other systems. In our paper, we have shown that undercut
is powerful enough to perfectly fulfil the role of rebuttal. Moreover, the system
satisfies all the rationality postulates under any semantics while in ASPIC and
ASPIC+, for each semantics, one should use a different definition of rebuttal in
order to satisfy the postulates.

Regarding the definition of undercut, there are three proposals in the lit-
erature which are all equivalent. The first definition is the one followed in our
paper and in [14]. The idea is to assign a name to every defeasible rule and to
allow these names to be in heads of other rules. Unlike in [14], in our paper,
names of rules may only be in heads of strict rules. The reason is that undercut
shows exceptions of defeasible rules, and exceptions are certain information. For
instance, in case of penguin, the rule “birds fly” is not applicable. The second
proposal, given in [13] and followed in [3], uses an objectivation operator which
transforms any defeasible rule into a literal. The latter plays the role of the name
of the rule in our system. The last definition, proposed in [5,6], extends the log-
ical language by a new form of rules with which one can block defeasible rules.
Whatever the definition is, none of these systems characterized its outcomes.

Acknowledgments. This work benefited from the support of AMANDE ANR-13-
BS02-0004 and ASPIQ ANR-12-BS02-0003 projects of the French National Research
Agency.
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Abstract. Many works have proposed architectures and models to
incorporate explanation within agent’s design for various reasons (i.e.
human-agent teamwork improvement, training in virtual environment
[10], belief revision [8], etc.), with this novel architectures a problematic is
emerged: how to communicate these explanations in a goal-directed and
rule-governed dialogue system? In this paper we formalize Walton’s CE

dialectical system of explanatory dialogues in the framework of Prakken.
We extend this formalization within the Extended CE system by gener-
alizing the protocol and incorporating a general account of dialectical
shifts. More precisely, we show how a shift to any dialogue type can take
place, as an example we describe a shift to argumentative dialogue with
the goal of giving the explainee the possibility to challenge explainer’s
explanations. In addition, we propose the use of commitment and under-
standing stores to avoid circular and inconsistent explanations and to
judge the success of explanation. We show that the dialogue terminates,
under specific conditions, in finite steps and the space complexity of the
stores evolves polynomially in the size of the explanatory model.

1 Introduction

The design of explanation facilities for intelligent systems is an active research
area and a widely recognized problem [11,14] in Artificial Intelligence. In multi-
agent systems (MAS), following the influential Walton and Krabbe typology
of dialogues [21], different dialogue types have been proposed. Negotiation dia-
logues deal with resource limitation. Deliberation dialogues deal with planning
collaborative actions. Persuasion dialogues deal with resolution of conflicts of
opinion.

When it comes to explanation between autonomous agents, the concept of
dialectical explanatory dialogue has been addressed by [19,20] as a way to for-
malize explanatory dialogues within a dialectical system called CE. The dialogue
takes place between an explainer and an explainee, the goal is to get the explainee
to understand something whose truthfulness is agreed upon. As stated by Walton
“CE represents a basic or minimal system of explanation dialogue that provides
a beginning framework that is very simple, but can be extended by constructing
more complex systems” [19].

Building upon the state of the art, the objective of the paper is to pro-
vide a formal framework of explanatory dialogue called ECE system (Extended
c© Springer International Publishing Switzerland 2015
C. Beierle and A. Dekhtyar (Eds.): SUM 2015, LNAI 9310, pp. 282–297, 2015.
DOI: 10.1007/978-3-319-23540-0 19
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CE system) that extends and generalizes the CE system. The guidelines of the
contribution lay in the following points:

– Generalization: we generalize the sequential protocol of [19,20] and intro-
duce a more flexible protocol (liberal protocol) where the explainee and the
explainer can backtrack to early stages in the dialogue. We give a general
account of dialectical shifts in ECE and as an example we describe a shift to
argumentative dialogue to facilitate arguing over explanations (as argued for
in [14]).

– Extension: we introduce commitment and understanding stores to avoid cir-
cular and inconsistent explanations and to judge the success of explanation.
We allow for nested explanation requests and feedback when the explainee
cannot understand something in the explanation.

We formalize the ECE dialogue system in the general framework of [16] and
modify it to suit the formal specification of an explanatory dialogue. We choose
Prakken’s framework for its flexibility and implementability in Prolog [4]. The
ECE dialogue is assumed to take place between two autonomous agents (i.e.
humans or intelligent agents) without adhering to a specific internal model.

This work complements the efforts [8–10] of equipping agents with explana-
tion facilities by facilitating explanation exchange in a goal-directed and rule-
governed dialogue system. Furthermore, this work contributes to the enrichment
of communication in multi-agent systems by promoting a new type of dialogues
that intends to capture the concept of explanation. In knowledge-based systems,
the state of the art covers extensively explanatory dialogues [5,6,13] but none
of the existing approaches has formally studied these dialogues by abstracting
away from any domain-specific knowledge. Our work can serve as a theoretical
background under which these systems can be evaluated and compared.

The paper is organized as follows. In Sect. 2 we recall Prakken’s system for
argumentative dialogues [16] and the CE system of explanatory dialogues [19,20].
Then, in Sect. 3 we present the formalization of the Extended CE (ECE) system
and we study its properties. Next, in Sect. 4 we present the second component
of ECE system, i.e. dialectical shift. In Sect. 5 we apply our system on a detailed
example. Section 6 concludes the paper.

2 Background

2.1 Argumentative Dialogue (ARG System)

The system of argumentative dialogues (denoted as ARG) is a many-player turn-
taking game between proponents and opponents arguing in favor or against
a statement. We consider here the formal dialogue system for argumentation
defined in [16] (denoted as ARG). ARG has a topic language Lt, a logic L , a con-
text K ⊆ Lt (assumed consistent and remains the same throughout a dialogue)
and a topic T ∈ Lt. Lt is a logical language whose well-formed formulae are
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denoted by Greek letters, ψ,ϕ, φ, etc.1. The logic L is assumed to be an argu-
mentation logic with compliance to Dung [7] where arguments can be attacked
and defended. For an argument A we denote by prem(A), conc(A) its premises
and conclusion respectively.

The system ARG has also a communication language Lc along with a pro-
tocol P . The communication language specifies the utterances used throughout
the dialogue and P organizes their use (which utterance succeeds the other).
According to P , for each utterance the replying utterances can be seen either as
an attack or a surrender (see Table 1). The dialogue incorporates participants.
In our case we consider only two participants Pr = {p, o}, the proponent and
the opponent, each of which has a commitment store Ci ⊆ Lc such that i ∈ Pr
(similar to commitment function of [16]). The stores publicly indicate statements
within the topic language Lt a participant is committed to (i.e. committed to
their truthfulness). ARG has effect rules that specify for an arbitrary utterance
l ∈ Lc its effect on the commitments of the participants. At the beginning of
the dialogue the stores of the participants are empty. Then, they get updated
within the dialogue. Formally, the commitment store Ci ∈ {Cp, Co} stays intact
if and only if the participant i ∈ Pr utters why(ϕ). Otherwise, it is changed as
follows:

– Ci = Ci ∪{ϕ} iff the participant i has put forward claim(ϕ) or concede(ϕ).
– Ci = Ci \{ϕ} iff the participant i has put forward retract(ϕ) (i is no longer

committed to ϕ).
– Ci = Ci ∪ prem(A) ∪ conc(A) iff the participant i has put forward argue(A)

(i is committed to the premises and the conclusion of the argument A).

The dialogue has a turntaking rule that specifies who is allowed to talk next.
The dialogue has also termination rules that indicate when the dialogue termi-
nates. The outcome rules are activated after the termination of the dialogue,
they determine the winner of the dispute in the dialogue.

Table 1. Reply structure. The arguments A and B and the attack relation are defined
according to L . �

Utterances Attacks Surrenders

claim(ϕ) why(ϕ) concede(ϕ)

why(ϕ) argue(A) (conc(A) = ϕ) retract(ϕ)

argue(A) why(ϕ) (ϕ ∈ prem(A)),
argue(B) (B attacks A)

concede(ϕ) (ϕ ∈ perm(A) or
ϕ = conc(A))

concede(ϕ) no attack no surrender

retract(ϕ) no attack no surrender

1 Throughout the paper we always use Greek letters ψ, ϕ, φ, etc. as metavariables for
syntactically different well-formed formula (wff), and Γ , Γ0,. . . for sets of wffs.
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When it comes to the dialectical shift, we shall deal with the ARG dialogue
system as described above with: (1) a liberal protocol P and a reply structure as
mentioned in Table 12; (2) claim(ϕ) or argue(A) as opening moves where ϕ and
conc(A) are the topic of the dialogue; and (3) the non-deterministic turntaking
rule that dictates that the proponent starts with a single move, then the dialogue
switches to the opponent and then it becomes everyone’s turn.

2.2 Explanatory Dialogue (CE System)

The system of explanatory dialogues (denoted as CE) is a two-player turn-
taking formal dialogue system of explanation [19,20]. It takes place between
an explainer and an explainee. The speech acts of requesting and providing an
explanation are represented as dialogue moves in the system.

The moves allowed within CE are two distinct sets of moves: one for the
explainer and another set for the explainee. The dialogue always starts with an
assertion of a statement by the explainer, i.e. assert(ϕ) and then the explainee
requests an explanation for ϕ, i.e. explain(ϕ) (ϕ is accessible by the two parties
and believed to be true). Next, the explainer can offer an explanation attempt
or declares her/his inability to explain. In first case the explainee can ask for
further explanations or acknowledge her/his understanding. In [20] a shift to
examination dialogue is introduced allowing to test explainee’s understanding
and to judge the success of the explanation.

In this paper we build upon the CE system described in [19,20] and extend
and generalize it as mentioned in the introduction.

3 The Extended CE System

Relying on Prakken’s framework for formalizing dialogue systems [16], in this
section we formalize the ECE system (Extended CE) of explanatory dialogues.

3.1 The Formal Framework

Topic Language, Participants and the Logic. The ECE system of explana-
tory dialogues takes place between two participants Pr = {E, X}, the explainer
E and the explainee X. ECE has a topic language Lt and a logic L and a context
K ⊆ Lt which is assumed to be consistent throughout the dialogue and it is
shared between E and X. The purpose of the dialogue is to facilitate under-
standing transference by means of explanation about a statement T ∈ K (closed
wff if Lt is a first-order or higher language), this statement is assumed to be true
by both participants.

The Explanatory Model. Each participant i ∈ {E, X} in ECE has an explana-
tory model Ei = 〈Lt,�x, E〉 which consists of the topic language Lt and a finite
explanatory relation denoted as �x and defined over 2Lt ×Lt

′ such that Lt
′ ⊆ Lt

2 See [16] for a full description of the protocol.
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is the set of closed wffs of Lt. The parameter x varies over a common and non-
empty set E of explanation types. �x intends to identify those wffs in Lt that
can be considered as an explanation for another closed wff in Lt. An explana-
tion contains an explanandum which is the thing to be explained and explanans
which are the facts and rules that together bear explanatory relevance to the
explanandum. The parameter x defines |E| explanatory relations, e.g. mechanis-
tic, terminological, etc. (see [11] for explanation types).

Due to the controversy around explanatory models [15], in this formalization
we just consider an abstract setting where the model Ei can provide an explana-
tion for an arbitrary explanandum. Formally, given a set Γ of wffs and a closed
wff ϕ we read Γ �x ϕ as “Γ is an x-explanation of ϕ” such that x ∈ E.

The Communication Language. The dialogue is endowed with a communi-
cation language Lc where l ∈ Lc is of the form as described in Table 2: “Utter-
ances”. In fact, Lc = LE

c∪LX
c where LE

c (resp. LX
c) is the performative utterances of

the explainer (resp. the explainee). For a given communication language a reply
relation R specifies for each l ∈ Lc its appropriate replies. R allocates replies
according to the syntax and the content of the utterance (Table 2: “Reply”).
Please notice that in the reply relation the explainee cannot ask for an explana-
tion if she/he possesses or has already acquired one, this will prevent redundant
requests. It is formally defined as follows, the explainee X asks explain(ρ) iff
�Γ ′ such that Γ ′ �x ρ in EX.

The Protocol. The dialogue is governed by a protocol P that organizes the use
of Lc. To define P we need to define the notion of a dialogue, which in turn is
based on the notion of moves.

A move [16] is a tuple m = 〈ID , p, l, t〉 such that: (1) ID ∈ N∗, the identifier
of the move, (2) p ∈ {E, X}, the participant p who played the move, (3) l ∈ Lc,
the utterance l put forward by the participant p and (4) t ∈ N, the target move t.
For a given move m we denote id(m) = ID , pr(m) = p, sp(m) = l and tr(m) = t.
We denote by M the set of all moves.

An explanatory dialogue in ECE is a dialogue in the sense of [16], that is, a
sequence of moves where the explainer/explainee can reply to each other in a
non-sequential way. This generalizes CE by rendering the dialogue liberal in the
sense that it gives the liberty to the two participants to backtrack to early stages
in the dialogue.

Definition 1 (Explanatory Dialogue). An explanatory dialogue is a
sequence of moves d = 〈m1, . . . , mn〉. The sequence di = 〈m1, . . . , mi〉 such that
i < n is denoted by di, where d0 is the empty dialogue. The set of all explanatory
dialogues, denoted by M<∞, is the set of all sequences di such that i ∈ N∗ and
for each jth element in di where 0 < j � i, it is the case that (1) id(mj) = j;
(2) tr(m1) = 0; and:

(3) tr(mj) = k for some mk preceding mj in the sequence.

If (sp(mj), sp(mk)) ∈ R (in the reply relation) we say that mj replies to mk in d.
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Table 2. The communication language Lc of ECE. �

Utterances Description Reply

assert(ϕ) E reports a statement ϕ that is
accepted as factual by both
parties

explain(ϕ) iff �Γ s.t
Γ �x ϕ in EX

explain(ϕ) X requests an explanation for ϕ attempt(Γ, ϕ) iff Γ �x ϕ
in EE otherwise
inability(ϕ)

attempt(Γ, ϕ) E explains ϕ by Γ positive(ϕ),
negative(ρ, ϕ) s.t
ρ ∈ Γ , negative(Γ, ϕ)

inability(ϕ) E has no explanation no reply and the dialogue
terminates if ϕ is the
topic

positive(ϕ) X understands the explanation
of ϕ

no reply and the dialogue
terminates if ϕ is the
topic

negative(ρ, ϕ) X doesn’t understand ρ in the
explanation of ϕ

explain(ρ) iff �Γ ′ s.t
Γ ′ �x ρ in EX

negative(Γ, ϕ) X doesn’t understand the whole
explanation

no reply

Unlike the turntaking function defined in [19,20] which allows one move at
a turn policy, we define a non-deterministic turn taking policy.

Definition 2 (Turntaking Function). A turntaking function T is defined as
follows T : M<∞ −→ 2{E,X}. T assigns to every dialogue the next legal turn as
follows:

– T (d0) = {E}, T (d1) = {X}, else T (di) = {E, X}.
Let us recall the concept of protocol from [16] and then define ECE’s protocol.

We denote by dom(X) the domain of the function X. A protocol P for a dialogue
system is a function P from a nonempty subset D ⊆ M<∞ to 2M where for every
dialogues d = 〈m1, . . . , mn〉 and moves m′ we have d ∈ dom(P ) and m ∈ P (d) iff
d = 〈m1, . . . , mn,m′〉 ∈ dom(P ). The elements of dom(P ) are the legal dialogues
while those of P (d) are the moves allowed after d. If d is a legal dialogue and
P (d) = ∅, then d is a terminated dialogue.

Definition 3 (ECE’s Protocol). A protocol P for the ECE system is defined as
follows: for all moves m and all legal dialogues d. m ∈ P (d) iff:

R1 : pr(m) ∈ T (d) (it is the turn of pr(m));
R2 : If d = d0 then sp(m) is of the form assert (ϕ);
R3 : If d 	= d0 and m 	= m1, then m replies to tr(m);
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R4 : If m replies to m′, then pr(m) 	= pr(m′) (one cannot respond to one’s own
moves);

R5 : If there is m′ in d such that tr(m) = tr(m′) then sp(m) 	= sp(m′) (two
replies to a move should be different).

R6 : For any m′ ∈ d such that tr(m′) = tr(m) and sp(m′) = positive(ϕ),
sp(m) 	= negative(Γ, ϕ) (understanding cannot be revoked).

A comment about R6 is in order here. The underlying assumption of this
rule is that the agent is prudent in the sense that he/she declares his/her under-
standing iff she/he is sure about it. This rule may seem restrictive in certain
cases where one can have the illusion of understanding and he/she should be
provided with a second chance by revoking understanding, despite the fact that
this could be an interesting phenomenon to study we limit the scope of the paper
to the aforementioned assumption for the sake of simplicity.

The Stores, Effect Rules and Outcome Rules. In CE system [19,20] stores
have not been proposed as part of the system. In the ECE system we extend CE
by adding commitment and understanding stores to:

– Keep a clear view of explainee’s state of understanding so he/she can backtrack
and request more explanations.

– Judge the success of the explanatory dialogue.
– Track the consistency of the explanation. For example, imagine that the

explainer is explaining ϕ by an explanation Γ = {ψ, β} where he/she is com-
mitted to the truthfulness of ¬ψ, this would be contradictory.

– Avoid circular explanations. This means that it is forbidden to explain ψ by
{ϕ} such that ϕ is asked to be explained (this could provoke the infinite chain
explain(ϕ), attempt({ψ}, ϕ), explain(ψ), attempt({ϕ}, ψ), . . . , etc.).

Let us formally introduce the notion of stores.

Definition 4 (Stores). The sets NUS X,CS E ⊆ Lt denote respectively the
understanding and commitment stores where the subscribes refer to the partici-
pants.

A store st ∈ {NUS X,CS E} is inconsistent iff st 
 ψ and st 
 ¬ψ for some ψ ∈ Lt

(
 is the inference relation of L ).
For the explainee, an understanding store NUS X serves as an understanding

indicator of his/her current understanding state. Note that NUS X represents
what is not yet understood instead of what has been understood. For the
explainer, a commitment store CS E represents explainer’s commitments to the
truthfulness of certain statements. The explainee (resp. explainer) does not have
a commitment (resp. understanding) store. Let us specify the rules to update
the stores.

Definition 5 (Effect Rules). Let d be a legal dialogue, NUS X and CS E be
explainee’s and explainer’s current stores and m is the next legal move after d.
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– If sp(m) = explain(ϕ) then NUS X = NUS X ∪ {ϕ},
– If sp(m) = positive(ϕ) then (1) NUS X = NUS X \ {ϕ}.
– If sp(m) = assert(ϕ) then CS E = CS E ∪ {ϕ},
– If sp(m) = attempt(Γ, ϕ) then CS E = CS E ∪ Γ ∪ {ϕ}.

The first set of effect rules on NUS X indicate that when the explainee requests
an explanation about ϕ we presume that he/she could not understand ϕ, thus
we add it to NUS X and we revoke it when he/she acknowledge understanding.
The second set of effect rules on CS E state that the explainer is committed to the
truthfulness of the explanans (elements of the explanation) and the explanan-
dum.

In what follows we extend Definition 3 with the following rule that considers
the stores to avoid circular explanation.

Definition 6 (ECE’s Protocol Extended Rules). Let P be the protocol of
ECE, d be a legal dialogue and m be a move. Then m is a legal move after d iff
m ∈ P (d) and:

R7 : If sp(m) = attempt(Γ, ϕ) then there is no ψ ∈ Γ such that ψ ∈ NUS X.

From now on we say that a move m is legal after a dialogue d if and only if it
satisfies protocol rules R1-R7.

A successful explanatory dialogue is a dialogue where the explainee’s under-
standing store is empty. Certainly, we cannot be sure whether the understanding
has really taken place but it is one way to quantify the success and failure of
an explanatory dialogue. Another alternative would be the use of examination
dialogue as proposed in [20]. In our system, instead of limiting shifts to exami-
nation dialogues we provide a general account of dialectical shifts which can be
instantiated to capture any shift (including the one of examination dialogue).

3.2 Properties

In what follows we present interesting results of the ECE system. We investigate
termination, number of steps before termination and space complexity of the
stores.

As one may notice the protocol of ECE induces a tree structure on any legal
explanatory dialogue (see the example in Sect. 5), this is due to the possibility of
backtracking and multiple replies to certain moves, e.g. the move attempt can
be answered by at least two moves negative and positive. Therefore, in this
section we deal with this induced tree structure in which the nodes correspond
to moves and an edge from a move m to m′ means m′ replies to m.

One of the interesting properties of ECE is termination, that means when-
ever two participants start an explanatory dialogue and certain conditions are
respected we can guarantee termination in finite steps.

Lemma 1. Let ϕ be an explanandum and let X be the set of all explanations of
ϕ in EE. If X is finite then explain(ϕ) has a finite number of child nodes.
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Lemma 2. Let the explanandum ϕ be the topic of a legal explanatory dialogue
d and let Γ be an explanation of ϕ in EE. If Γ is finite then every branch in the
dialogue that starts with attempt(Γ, ϕ) terminates.

To study termination we define the explanans relation between Lt’s elements.

Definition 7 (Explanans and Explanans Path). Let EE = 〈Lt,�x, E〉 be the
explanatory model of the explainer. We define the binary relation N ⊆ Lt × Lt

such that (ϕ′, ϕ) ∈ N iff there exists an explanation Γ such that ϕ′ ∈ Γ and
Γ explains ϕ, and we read it “ϕ′ is an explanan of ϕ”. We denote by D(ϕ) the
explanatory depth of ϕ which corresponds to the length of the longest explanans
path in N that starts with ϕ.

Corollary 1. Let EE = 〈Lt,�x, E〉 be the explanatory model of the explainer. If
�x is finite then so is N . Consequently, for every explanandum ϕ in EE, D(ϕ)
is finite.

The previous lemmas guides as towards the termination property. The intu-
ition is that if the width of the corresponding tree of the dialogue is finite then
the dialogue terminates. Note that the depth of the tree is also finite because
(a) no repetition is allowed, (b) understanding cannot be revoked and (c) the
explanatory model of the explainer is finite (Sect. 3) hence the depth of the tree
is finite.

Proposition 1 (Termination). If the conditions in Lemmas 1 and 2 hold for
every explanandum ϕ then any legal explanatory dialogue d will terminate in
finite steps.

Note that a step here corresponds to a move at a given turn. We consider
in what follows the maximum number of steps (in worst-case) the dialogue will
undertake until the termination. The worst-case scenario is when the dialogue is
of the shape of a somewhat saturated tree, this corresponds to the case where for
every explanation request explain there is an explanation attempt attempt
and for every explanation attempt there are two negative acknowledgments
negative each of which are followed by an explanation request. In fact this
happens when the explainee has requested an explanation about every state-
ment made by the explainer and in return he/she obtained explanations about
every request he/she made but unfortunately understood nothing. Considering
an arbitrary explanandum ϕ as an input the following holds.

Proposition 2 (Termination Steps). Let EE be the explanatory model of the
explainer, D(ϕ) be the explanatory depth of an arbitrary ϕ and X be the set of
all its explanations. Assume that ∀Γ ∈ X, |Γ | = |X| = k. Then every legal
explanatory dialogue d with topic ϕ will terminate at most in O(kD(ϕ)) steps.

We consider the space complexity of the stores CS E and NUS X. In the worst-
case scenario (the same as the previous) the size of CS E and NUS X will converge
to the size of the content of the explanatory model of the explainer, this is
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explained as follows (1) the size of NUS X increases due to the nested explanation
requests made by the explainee, (2) the size of CS E increases also because the
explainer will provide explanations for every request, this results in an update
of CS E. In what follows we consider as inputs the explanatory model and an
arbitrary explanandum ϕ, but since the size of the explanatory model is much
bigger than the size of the memory allocated to ϕ, then ϕ will not be considered.
We show in what follows that the stores polynomially evolve in the size of the
explanatory model.

Proposition 3 (Evolution of Stores). Let EE = 〈Lt,�x, E〉 be the explana-
tory model of the explainer and Σ = {Γ, ψ | ∃x((Γ, ψ) ∈ �x)} be the content
of the explanatory model EE. In the worst-case scenario |CS E| = |NUS X| = |Σ|.
Consequently, any legal explanatory dialogue d has an O(|Σ|) worst-case space
complexity.

This happens in the worst-case when the dialogue charges the whole content
of the explanatory model twice, one corresponds to the CS E and the other for
NUS X.

4 Dialectical Shifts in ECE System

In this section we present the second extension of CE [19,20] by introducing and
formalizing the concept of a dialectical shift within ECE. We start by a formal
account of dialectical shift then we show how a simple shift from ECE to ARG can
be instantiated in such formalism.

4.1 Dialectical Shifts in ECE

Generally, a shift between two distinct systems SYS and SYS′ should consider the
following questions: (1) what is the direction of the shift? (2) when the shift is
licit [21]? (3) what happens to the stores when we shift? (4) what are the effects
of the outcome of one system on the other? To answer these questions we need
to introduce the notion of state, licit states and receiving states.

Definition 8 (State). A state of a dialogue system SYS is a tuple 〈T,C,M〉
such that T ∈ Lt is the topic, C is the set of current stores, M is the current
move (the most recent move in the dialogue).

For instance, if SYS is the ECE system then C = {CS E,CX,NUS X} such that
CX is the commitment store of the explainee in the last argumentative dialogue.
If SYS is the ARG system then C = {Co, Cp} (opponent’s and proponent’s stores).
The set of all possible states of a given dialogue system SYS is denoted as CSYS.
The sets SSYS, RSYS ⊆ CSYS are called the set of licit states and receiving states
of SYS respectively.

Licit states are states from which one can shift to another dialogue. RSYS repre-
sents the set of states a given dialogue system can begin with when a shift occurs.
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For instance, the state s = 〈T,C,M〉 where T = {ϕ}, C = {Co = ∅, Cp = ∅},
M = {m = 〈1, p,claim(ϕ), 0〉} is a receiving state of the argumentative dialogue
which happens to be also an initial state as defined in Subsect. 2.1. For any dia-
logue system SYS that anticipates a shift to another dialogue system SYS′, the sets
SSYS and RSYS′ should be nonempty. At least, RSYS′ is set to ISYS′ such that ISYS′

is the set of all initial states of SYS′. Nevertheless, providing RSYS′ with more states
stays a matter of choice.

After defining the licit and receiving states we present the general definition
of a shift. A shift is a transition from one system to another under a specific
condition. the first system should be in a state where the shift is allowed (licit
states).

Definition 9 (Shift Function). Let SYS and SYS′ be two distinct dialogue sys-
tems and let SSYS and RSYS′ be the sets of licit states (resp. receiving states) of
the dialogue system SYS (resp. SYS′). A shift is a function S : SSYS → 2RSYS′ .

From Definitions 8 and 9, on can see that the content of SSYS, RSYS, SSYS′

and RSYS′ for two distinct dialogue systems defines the type of the shift (one-way
or two-way) and the direction (from which to which system) and nested or not
nested. If SSYS 	= ∅ and RSYS′ 	= ∅ and the other sets are empty, then this is a
one-way shift from SYS to SYS′. If SSYS′ 	= ∅ and RSYS 	= ∅ and the other sets
are empty then this is a one-way shift from SYS′ to SYS. If all of these sets are
not empty, then this is a two-way shift in both directions, and it is a nested
shift where one can shift from SYS to SYS′ then shift back to SYS′ and so on.
Otherwise the shift does not occur.

4.2 Dialectical Shift from ECE to ARG

Consistency, plausibility and sense-making are among the important conditions
for an explanatory dialogue as mentioned in [19]. Our hypothesis is that a dialec-
tical shift from ECE to ARG could help in satisfying such conditions by giving the
explainer (resp. explainee) the possibility to provide support (resp. questions)
for (resp. the) explanation by means of arguments.

The shift is one-way from ECE to ARG where we cannot shift back until the
argumentative dialogue within ARG comes to an end. This means that the argu-
mentative dialogue is embodied in ECE and we cannot call an instance of ECE
from within an instance of an argumentative dialogue. The commitment store
CS E of the explainer in ECE dialogue persists in the argumentative dialogue and
will be used and updated. In other words the explainer will not change his com-
mitments if a shift occurs. Finally, at the end of the argumentative dialogue two
things will happen. Firstly, the explainee will have a commitment store CX that
will be shared between all argumentative dialogues (in case of multiple shifts).
Secondly, explainee’s understanding store will be updated at the end with respect
to the outcome of the argumentative dialogue. For instance if the explainee had
doubts about a statement ψ in the explanation and the explainer wins the argu-
mentative dialogue then ψ will be deleted from the explainee’s understanding
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store NUS X. Otherwise NUS X will still have ψ and if the ECE dialogue ends, the
explanation will be judged unsuccessful.

Since we are dealing in our case with one-way shift from ECE to the argu-
mentative dialogue we only need to set RECE = ∅ and SARG = ∅ and define the
rest, i.e. SECE 	= ∅ and RARG 	= ∅.

Definition 10 (ECE’s Licit and Receiving States). Let CECE, SECE and RECE

be respectively the set of all states, licit and receiving states of the ECE system, let
CARG, SARG and RARG be respectively the set of all states, licit and receiving states
of the ARG system and let s = 〈T,C,M〉 be a state. Then:

– SECE = {s|s ∈ CECE, sp(M) = attempt(Γ, ϕ)}.
– RARG = {s|s ∈ CARG, sp(M) ∈ {claim(ϕ),argue(A)}}.
Such that Γ is an x-explanation of ϕ and A is an argument.

As one may notice, SECE contains those states where the move is attempt(ϕ)
(ϕ is an arbitrary wff) and RARG contains states which represent the initial states
of the ARG dialogue (states where M is either claim(ϕ) or argue(A)).

Under the specifications of Definition 10, in what follows we instantiate the
shift function in our context (from ECE to ARG).

Definition 11 (ECE’s Shift Function). Let SECE and RARG be the sets of licit
states (resp. receiving states) of the dialogue system ECE (resp. the argumentative
dialogue system ARG). Let s = 〈T,C,M〉 be a state of ECE such that sp(M) is
attempt(Γ, ϕ). Then, the shift function S is specified as follows: S(s) = R′ such
that for each s′ = 〈T ′, C ′,M ′〉 ∈ R′:

– T ′ = ψ such that ψ ∈ Γ ,
– C ′ = {CE

′,CX
′} such that CE

′ = CS E and CX
′ = CX where {CS E,CX} ⊂ C,

– M ′ = m such that m = 〈1, p,X, 0〉, X ∈ {claim(T ′),argue(A)}, conc(A) =
T ′.

The function dictates that if the utterance of the current move is
attempt(Γ, ϕ) then we can shift to an argumentative dialogue where the partic-
ipants are the explainer (as the proponent) and the explainee (as the opponent)
and the topic is arguing over one of the explanans (say ψ) of the explanation Γ
such that the proponent starts either by claim(ψ) or argue(A) (conc(A) = ψ).
The shift function also specifies the migration of stores from one dialogue to
another. In our case the commitment store CE

′ of the explainer in ARG is set to
his commitment store CS E of ECE, similarly the commitment store CX

′ of the
explainee in ARG is set to the commitment store of the previous shift.

When the argumentative dialogue ARG comes to an end, the stores of the ECE
dialogue are updated as follows:

• If the explainer wins then we update NUS X according to Definition 5, else
NUS X persists as it was. In all cases, CS E = CE

′ and CX = CX
′.

The commitment store of the explainee within the argumentative dialogue
will be kept within ECE for further shifts. Both understanding NUS X and com-
mitment CS E stores of ECE will be updated according to the outcome of ARG
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dialogue as indicated above. When we shift back to ECE, the dialogue continues
from where is left off according to the protocol P .

It is noteworthy that explainer’s commitment store CS E is shared between all
instances of the argumentative dialogue because before any shift CS E is migrated
to CE

′ and updated within the shift and then CE
′ is migrated back to CS E at

the end of the shift (the same applies to CX).

5 Example Dialogue

In this section we apply the ECE dialogue system to an example about explaining
why coal is black (inspired from [20]).

Figure 1(a) is a tree representation of a segment of an ECE dialogue where the
subscript in participants name refers to dialogue stages (i.e. E1 means E at stage 1),
an edge between two nodes means that the lower one replies to the higher one. The
gray dashed box represents the ARG dialogue after a shift. Figure 1(b) explains the
meaning of the logical symbols. Figure 1(c) shows the evolution of stores within
ECE and ARG (in ARG, stages 4–9 are replaced by 4′–9′), column S refers to the
stage, the 2nd–3rd columns represent the stores of ECE and the rest represent
the stores of ARG, the brace ARG focuses on the content of the stores of ARG within
the shift. “n/a” means that the content is unavailable (because the shift has not
taken place yet), Ans at stage n refers to the content of the store at stage n − 1,
we may not use Ans when it’s clear.

In Fig. 1(a), the explainer E states a fact which the explainee doesn’t under-
stand, hence the explainee X requests an explanation at stage 2. Next, at stage
3, E offers an explanation Γ . Since we are in a licit state, we have two scenar-
ios: either (1) continue within ECE dialogue or (2) shift to ARG dialogue. Let us
start with (1), X at stage 4 says he doesn’t understand ρ and he requests an
explanation for it. Next at stage 6, the explanation Γ ′ is presented. After that,
X acknowledges the understanding of ρ, although it seems that the whole expla-
nation doesn’t make sense to him, thus at stage 8 he declares that he doesn’t
understand the whole explanation of ϕ. At stage 9, E gives another explanation
Γ ′′ which X could understand, the dialogue can terminate and the explanation
is judged successful.

Let us see scenario (2): at stage 3, E might have doubts about ψ, maybe
it seems implausible that the earth is aged more than million years. Thus the
shift takes place where X asks “why” in which he demands a justification (not
explanation). Next, E (proponent) presents two arguments at stage 6′, 7′ after
which X (opponent) concedes. Now the ARG dialogue ends and the commitment
store CX

′ will persist in ECE and will be used in future shifts. Note that nothing
prevents us from continuing the ECE dialogue. The evolution of the stores is
presented in Fig. 1(c) (4th–5th columns) where the stores at stage 1–2 haven’t
been set since the shift hasn’t started. At stage 3 (where the shift starts) the
commitment store of E in ECE is migrated to CE

′ and updated (stages 6′, 7′) by
adding the premises of arguments A,B. When X concedes (at stages 8′,9′) ψ is
added to CX

′ and at the end of the shift (stage 10) CE
′ is migrated back to CS E.
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Fig. 1. An example of an ECE dialogue.

6 Conclusion and Future Work

In this paper we have proposed a dialectical system for explanatory dialogue
called ECE. This system captures and generalizes the dialectical system CE [19,20]
by incorporating a more general protocol, a new component (dialectical shift),
an additional structure (stores). We have proposed the use of commitment and
understanding stores to avoid circular and inconsistent explanations. We intro-
duced and formalized dialectical shifts and we applied it to capture the argu-
mentative aspects of explanatory dialogues. We have shown that the dialogue
terminates and the space complexity is polynomial.

We left, for future work, the study of the previous properties in the presence
of a dialectical shift and multi-shifts wihtin ECE. The paper provides no semantic
for the dialogue, a good starting point would be [8,12] where a change in beliefs
can occur if an explanation is provided. This could give raise to an operational
semantics for ECE system.

In previous work [1,2] we have proposed explanation facilities based on a
custom-tailored dialogue for inconsistent-knowledge bases, we focused in this
work on the bigger picture where a more general setting is considered, i.e. a
dialogue between an explainer and an explainee within a formal framework which
is independent from any domain-related specifications. This framework can be
enriched by investigating explainee mental models that account for reasoning
fallacies (such as the work described in [3]). We plan to test such explanation
dialogue primarily in the DUR-DUR project which aims at providing decision-
support systems in Agronomy. Although the specificity of this application, the
generic approach presented here is promising for other Agronomy related real
world cases such as [17,18].
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Abstract. In this paper we are interested in the computational and for-
mal analysis of the persuasive impact that an argument can produce on a
human agent. We propose a dual process cognitive computational model
based on the highly influential work of Kahneman and investigate its rea-
soning mechanisms in the context of argument evaluation. This formal
model is a first attempt to take a greater account of human reasoning and
is a first step to a better understanding of persuasion processes as well
as human argumentative strategies, which is crucial in collective decision
making domain.

Keywords: Cognitive computational models · Dual process reasoning ·
Persuasion · Argument

1 Introduction

Gaining more and more attention, persuasion is a crucial aspect of human inter-
action and is closely linked to social groups creation and dynamics [30,33]. With
the recent rise of computer science technology, the study of persuasion began to
transcend its original fields (including psychology, rhetoric and political sciences)
and to take lasting root in the artificial intelligence (AI) domain.

In the AI domain, two predominant trends may be identified: interactive
technologies for human behavior and dialogue protocols for persuasion. The
former trend aims at producing systems able to persuade humans to change
their behavior for another one considered better [21]. It has often been used
in the context of health-care [19], environment [5] or education [12]. Such an
approach, by definition, is human-machine oriented. The latter trend, derived
from logic and philosophy authors such as Hamblin [13], Perelman [22] or
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Walton [31], aims at creating normative dialogue protocols ensuring rational
interactions between agents [1,20,24]. The proposed protocols regulate the per-
suasion processes engaged between agents such that conflicts are resolved in a fair
manner. These approaches are often machine-machine oriented and prescriptive.

In this paper we are interested in the computational and formal analysis of the
persuasive interactions that occur between humans. Since humans are known to
be subject to reasoning biases, we are interested in the link between persuasion
and cognitive biases. The importance of this subject has, in particular, been
highlighted in the field of law in the context of a court [8] or psychology [15]. This
formalisation is a first step towards a better understanding of human persuasion
strategies and may help to detect and notify cognitive biases, e.g. in protocols
handling collective decision making.

Several works in psychology analyze cognitive biases with the help of dual
process theory [2,9–11,26,29], where reasoning may be achieved thanks to two
different processes, one being heuristic, superficial and fast, and the other being
scrupulous, thorough and slow. Indeed, according to Kahneman [29], the first
system (called S1) deals with quick and instinctive thoughts and is based on
associations such as cause-effect, resemblance, valence, etc. The second system
(called S2) is used as little as possible and is a slow and conscious process
that deals with what we commonly call reason. Cognitive biases arise mostly
when the superficial reasoning is used. In their seminal article [29], Tversky and
Kahneman explain how supposedly “rational” judgments are based on data with
limited validity and processed according to heuristic rules. They illustrate their
thesis with a number of biases empirically demonstrated (such as the illusion of
validity, retrievability of instances, anchoring, framing, etc.). This diptych has
been popularized in many domains including persuasion [6,23]. In the Elabora-
tion Likelihood Model [23], two routes might be used to persuade someone: the
central route, which calls for a careful examination of the received message, and
the peripheral route, using simple cues to evaluate the position advocated by an
orator. While works such as [23,29] coincide in spirit, our aim is to unify them
into a formal framework with four cognitive profiles for evaluating an argument
such that a more engaged agent will use a deeper reasoning (S2) while a quiescent
agent will only use associations (S1).

After defining a new cognitive model and two reasoning processes based on
[29] as well as [23] in Sect. 2, we present how an argument might be evaluated
and its effect on the agent’s mind in Sect. 3. Finally, some properties are shown
in Sect. 4.

2 Towards a Computational Model of Cognitive
Evaluation

2.1 Cognitive Model

In this paper, our aim is to define a computational cognitive model of the eval-
uation of an argument. Based on Kahneman’s theory, we propose to define an
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agent cognitive model as two components: AT (an association table linking a
formula to an ordered set of formulae and to a flag encoding an appreciation)
and KB (a logical knowledge base) in order to encode S1 and S2 respectively.1

Formally, we consider a propositional language and we denote by L the set of
well formed formulae of this language given the usual connectives ∧, ∨, →, ¬
and the constants ⊥ and �. The set of symbols in the language is denoted by
V. � denotes classical inference. The fact that a symbol s appears in a formula
ϕ is denoted by s ∈ ϕ. We also consider a propositional language, denoted LG,
based on a set of symbols VG distinct from V (VG ∩V = ∅). Formulae of LG are
called generic formulae.

Definition 1 (Association Table). An agent’s association table AT is a set
of triples of the form (ϕ, (S,
S), f) where:

– ϕ ∈ L is a well formed formula representing a piece of knowledge,
– S ⊆ L is a set of well formed formulae associated to ϕ endowed with a total

strict order 
S⊆ S × S, the pair (S,
S) is called a stack (when there is no
ambiguity, the total order will be omitted),

– f ∈ {⊕,,�} is a flag stating that ϕ is respectively accepted, rejected or not
specified (also called empty flag) in the association table.

The set of all well formed formulae in the association table is denoted by LAT ,
i.e., LAT =

⋃
(ϕ,S,f)∈AT {ϕ}. Given a formula ϕ ∈ LAT , the stack S associated

with ϕ in AT will be denoted by AT (ϕ), the ith element of S is denoted AT (ϕ, i),
and the top element of this stack is denoted Top(ϕ) (Top(ϕ) = AT (ϕ, 1)). For-
mally, Top(ϕ) = ϕ0 s.t. ∀ϕ′ �= ϕ0 ∈ AT (ϕ), ϕ0 
S ϕ′. The flag f associated to ϕ
is denoted by flag(ϕ). If f is a flag then −f is a flag such that −⊕ = , − = ⊕
and −� = �. Note that AT is implicit in the definitions of Top and flag.

A knowledge base contains Strict and Defeasible Beliefs, Appreciations (i.e.
associations of formulae to flags) and a set of Appreciation Rules2 called a-rules
as described below.

Definition 2 (Knowledge Base). A knowledge base KB built on L and LG

is a quadruplet KB = (F,Δ,A,R) s.t. F ⊆ L is a set of formulae, Δ is a set of
default rules, A is a set of appreciations and R is a set of a-rules, where

– A default rule is denoted a � b with (a, b) ∈ L×L with the intended meaning
“if a is true then generally b holds”.

– An appreciation is a pair (ϕ, f) ∈ L×{⊕,,�} meaning that ϕ is associated
to the flag f .

– An a-rule has the form (EK , EA) � (ψ, f) where EK ⊆ LG × LG is a set of
pairs of generic formulae (called generic default rules), EA ⊆ LG × {⊕,,�}
is a set of generic appreciations, ψ ∈ LG is a generic formula and f ∈ {⊕,}
is a flag. This kind of rule has the intended meaning “if all the default rules
EK apply in a given context and if all the appreciations EA hold then generally
the new appreciation (ψ, f) is valid”.

1 Note that S1 and S2 are linked as we will see in (1) of Definition 3.
2 Inspired from the Desire-Generation rules (of Rahwan and Amgoud [25]).
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The use of default rules has two main interests. First, it simplifies the writing:
it allows us to express a rule without mentioning every exception to it. Second, it
allows us to reason with incomplete descriptions of the world: if nothing is known
about the exceptional character of the situation, it is assumed to be normal, and
reasoning can be completed.

Definition 3 (Cognitive Model). A cognitive model is a tuple κ =
(KB,AT, λ, i):

– KB = (F,Δ,A,R) is a knowledge base,
– AT is an association table such that: ∀ϕ,ϕ′ ∈ L, ∀f ∈ {⊕,,�},

• if ϕ ∈ F then ∀s, s′ ∈ ϕ, s ∈ AT (s′),
• if ϕ � ϕ′ ∈ Δ then ϕ′ ∈ AT (ϕ),
• if (ϕ, f) ∈ A then flag(ϕ) = f ,

(1)

– λ ∈ N is an integer value representing the threshold above which the agent feels
to be enough aware about the topic of a formula to be able to reason rationally,

– i : L → {0, 1, 2} is a three value marker that gives the interest level of the
agent relatively to a formula.

In other words, (1) expresses the link between KB and AT , more precisely,
every pair of symbols belonging to a given formula in F , and every pair of
formulae in Δ linked by a default rule, are associated in AT and the flags in
AT comply with A. In case of ambiguity about the current cognitive model, the
symbols AT , Top, flag will be indexed by the cognitive model κ they refer to.

Example 1. We illustrate here the question of performing the separation of
durum wheat cereal (or other plants in the field such as peas) after the harvest
that was done within an ANR DUR-DUR3 meeting. As our keen internship
student was performing his literature review, he quickly learned that post harvest
separation (phs) is efficient (eff), which implies a process that is not expensive
(¬exp). His KB contains formulae such as phs � eff and eff� ¬exp. However,
during a coffee break, he heard a colleague working on post harvest separation
with optical harvest devices (opt) and learned that these instruments are generally
very long to produce (ltp): phs∧ opt � ltp. He is certain that long production is
not efficient: ltp → ¬eff. While he still does not know whether to accept or reject
the post harvest separation, the first thing he now associates post harvest with
is the long time to produce, something he disapproves of. This is represented by
the flag  in AT (see Fig. 1) and by the appreciation (ltp,) in KB.

2.2 System 1 and System 2 Reasoning

Let us see how to use this representation framework in order to reason. In this
paper, we call reasoning the process of evaluating the acceptability of a formula
3 French funded project aiming at improving durum wheat sustainability (http://

www.agence-nationale-recherche.fr/?Project=ANR-13-ALID-0002).

http://www.agence-nationale-recherche.fr/?Project=ANR-13-ALID-0002
http://www.agence-nationale-recherche.fr/?Project=ANR-13-ALID-0002
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· · · phs · · · ltp · · ·

� ltp

· · ·
 · · ·

· · ·

Fig. 1. Partial representation of the associative table.

ϕ ∈ L, i.e., mapping ϕ to a flag in {⊕,,�}. The reasoning is not the same in
S1 and S2. In S1, reasoning is based on the association table AT while in S2 it is
based on an inference principle. We propose to encode S1-reasoning as follows: if
the current formula has a non-empty flag, then this flag is returned; else, if the
current concept has an empty flag, the concepts of the stack associated to the
current concept are evaluated recursively, in an order relative to their position
in the stack and the number of iterations.

We first define a reflection path Rϕ associated to a concept ϕ thanks to a
sequence Dϕ of iterations from the initial formula ϕ. This sequence contains the
successive depths di in the stacks corresponding to formulae with an emptyflag
that are necessary to follow in order to find a formula with a non-empty flag. The
reflection path jumps recursively from a formula ϕi to a formula ϕi+1 if ϕi+1

appears in the stack of ϕi at the depth di (each depth di in the sequence should
not exceed the total depth of each stack AT (ϕi)). Note that many reflection
paths can be built from a formula ϕ; this is why we will select the cheapest one
in terms of cognitive effort.

Definition 4 (Reflection Path). A reflection path Rϕ = (ϕ1, . . . , ϕn) from ϕ
is a sequence of n ≥ 1 formulae corresponding to a sequence (d1, . . . , dn−1) of
n − 1 integers such that ϕ1 = ϕ and recursively

∀1 ≤ i < n, ϕi+1 = AT (ϕi, di), with di ≤ |AT (ϕi)| and flag(ϕi) = �.

We denote flag(Rϕ) the flag associated to the last concept reached by the

sequence Rϕ, hence, flag(Rϕ) =
{
flag(ϕn) �= � if n is finite,
� otherwise.

The cognitive weight associated to a reflection path Rϕ = (ϕ1, . . . ϕn) asso-
ciated to the integers (di)1≤i<n is weight(D) =

∑n−1
i=1 di + n.

The cognitive weight associated to a sequence allows to take into account
both the depth in the stack and the number of iterations. The more deep and
long is the sequence, the more it requires an effort to the agent. S1-reasoning
will amount to find and follow reflection paths of minimal cognitive weight until
a non-empty flag is reached. Hence, S1-reasoning consists in finding a non-empty
flag to associate to a concept while minimizing4 the cognitive effort.
4 Note that we could also have given more weight to the depth in the stack than to

iteration or conversely, hence transform the equation into weight(D) = α.
∑n

i=1 di +
β.n with a “smart” tuning of the ratio between α and β (this tuning should be based
on psychological experiments).
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Definition 5 (S1-reasoning). Given a cognitive model κ = (KB,AT, λ, i),
We call S1-entailment, denoted by |∼1, the inference obtained by following a
reflection path: ϕ |∼1ψ iff ψ ∈ Rϕ and Rϕ is finite.

We define S1-reasoning5, about a formula ϕ, denoted eval1(ϕ, κ), as
eval1(ϕ) = flag(Rϕ) where Rϕ is a reflection path from ϕ s.t. there is no reflec-
tion path R′

ϕ from ϕ with weight(R′
ϕ) < weight(Rϕ).

Example 2. Given the association table shown in Fig. 1, the result of eval1(phs)
is . Indeed, since the formula phs has the flag �, the S1-reasoning gets the
top formula of the stack associated to phs, which is ltp; the reflection path is
Rphs = (phs, ltp) and its associated sequence is (1). The flag of ltp being different
than �, it is the result of the evaluation.

Concerning S2, the study of the best rational model among all the proposals
done in the AI literature is out of the scope of the paper. We propose to use, for
the sake of illustration, the idea of defeasible approach of [3], called “contextual
entailment” which is an extension of the “preferential entailment” [17]. Prefer-
ential entailment is an inference relation satisfying “desirable” postulates (listed
in Sect. 4).

The set of conclusions that one can obtain by using a “preferential entail-
ment” is usually regarded as the minimal set of conclusions that any reason-
able non-monotonic consequence relation for default reasoning should generate.
Moreover, it correctly addresses the specificity problem: results issued from sub-
classes override those obtained from super-classes [28]. Unfortunately, in spite of
these two advantages, “preferential entailment” is too cautious and suffers from
the so-called irrelevance problem: from a rule “generally, if a then b”, it is not
possible to deduce that b follows from a ∧ d even if d is irrelevant to a and b.
A typical example of irrelevance problem is that from“generally, birds fly” it is
not possible to deduce that “red birds fly”.

The approach proposed in [3] has shown to be an extension of “preferential
entailment” which corrects this problem. This is why we choose to build S2 on the
same idea. This is based on the identification of default rules having exceptions
in a given context:

Definition 6 ([3]). Let c be a consistent formula considered as the current con-
text, let Δ be a set of default rules. A default rule a � b ∈ Δ has an exception
with c if and only if one of the two conditions holds:

5 In practice, a constructive method to obtain Rϕ could be an adaptation of Dijkstra
algorithm on a graph where the vertices are partial reflection paths. An arc would
link a vertex to another vertex if it corresponds to an extension of the path of one
iteration (hence there would be as many arcs starting from a given vertex as the
stack corresponding to this vertex is deep), namely there would be an arc between
(ϕ1, ϕ2) and (ϕ1, ϕ2, ϕ3). The algorithm should start from the vertex corresponding
to the empty path (i.e. it corresponds to the initial concept ϕ) and find a shortest
path to a vertex with a non-empty flag. The length of a path would be the weight

of the reflection path Rϕ contained in the last vertex of the path.
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1. a ∧ c ∧ b is inconsistent,
2. ∃ϕ ∈ L, c � ϕ and a ∧ ϕ |∼Δ¬b,

where |∼Δ is the inference relation defined by the closure of the preference entail-
ment relation |∼ over the set obtained by interpreting each default a � b ∈ Δ as
a |∼b.

Definition 7 (S2-entailment). Given a knowledge base KB = (F,Δ,A,R),
S2-entailment, denoted |∼2, is defined by ∀ϕ,ϕ′ ∈ L, ϕ |∼2ϕ

′ iff Fϕ ∪ {ϕ} � ⊥
and Fϕ ∪{ϕ} � ϕ′, where Fϕ = F ∪{a → b|a � b ∈ Δ has no exception with ϕ}.
Example 3. The student’s KB is s.t. Δ = {phs � eff, eff� ¬exp, phs∧ opt �
ltp} and F = {ltp → ¬eff}. It holds that phs |∼2¬exp (using Cautious monotony
on phs |∼ eff and eff |∼¬exp and Cut on phs∧eff |∼¬exp and phs |∼eff and due
to the fact that Contextual entailment generalizes Preferential entailment, see
Proposition 1).

Note that we are not yet in position to define S2-reasoning, which could
evaluate the flag of a formula ϕ given a cognitive model κ. In order to do so we
should define an aggregation function that combines all the possible flags that
could be obtained for ϕ given the available beliefs, appreciations and a-rules.
However, we have enough material to define the evaluation of one argument as
shown in the next section.

3 Argument Evaluation

3.1 Argument and Profiles

We first give a (restrictive) definition of an argument, since we only consider
arguments in favor of appreciations and not in favor of beliefs as it is the case
in, for instance, [1].

Definition 8. (Argument). An argument is a tuple (s, h, w, (c, f)) where s is
a formula (the speaker enunciating the argument), h is a pair (Kh, Ah) with a set
of default rules Kh and a set of appreciations Ah ⊆ L × {⊕,,�} (the premise
of the argument), w is an a-rule (the warrant), c is a formula (the conclusion)
and f ∈ {⊕,} is a flag stating that the argument conclusion should be accepted
or rejected.

This definition is syntactic. Hence, quadruplets containing premises not
linked with the conclusion may comply with our definition. It is up to the lis-
tener to declare if the argument is valid semantically. This is the aim of this
section. In the ELM model [23], the determination of the “route” for persua-
sion is made thanks to two main factors: the interest in processing the message
and the ability (wrt knowledge and cognitive availability) to process it. In our
model, the interest is given by the function i (see Definition 3). An agent may
be not interested by a formula ϕ (i(ϕ) = 0), interested (i(ϕ) = 1) or “fanatic”
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(i(ϕ) = 2). The knowledge is represented by the size of the stack related to
ϕ in AT . This size is compared to the agent’s threshold λ (see Definition 3) in
order to link the quantity of information the agent has to his feeling about being
sufficiently aware on ϕ.

We use these factors for distinguishing several profiles of agents (note that
we leave the cognitive availability for future work). In order to make a clear-cut
categorisation of the possible engagements and to comply with the notions used
in the ELM model, we define four levels of engagement: unconcerned, enthu-
siastic, quiescent or engaged with increasing involved level of cognition (see
Definitions 11–14). Such profiles represent typical (and extreme) dispositions wrt
the evaluation of an argument which goes beyond the classical idea to propose
credulous and sceptical attitudes (see e.g. [1]).

Definition 9 (Profile). The profile of an agent is a function that maps a
formula ϕ ∈ L and a cognitive model κ = (KB,AT, λ, i) to an element of
{unc, ent, qui, eng}:

profile(ϕ, κ) =

⎧
⎪⎪⎨

⎪⎪⎩

unc if i(ϕ) = 0
qui if i(ϕ) = 1 and |AT (ϕ)| < λ
eng if i(ϕ) = 1 and |AT (ϕ)| ≥ λ
ent if i(ϕ) = 2

The following postulate expresses that if an agent is enthusiastic about a
formula ϕ, then she has an opinion about ϕ.

Postulate 1. profile(ϕ, κ) = ent implies flagκ(ϕ) �= �.

The next section details the value of the function evalarg defined below.

Definition 10 (Evaluation of an Argument). Given a cognitive model
κ = (KB, AT , λ, i), an argument a = (s, h, w, (c, f)) and a profile p =
profile(c, κ), let evalarg be a function that maps a and p to an evaluation
of the argument in {⊕,,�}, denoted as evalarg(a, p).

3.2 Argument Evaluation According to Profiles

In this section, we define formally how the evaluation is done with respect to
the four profiles.
Unconcerned. As its name implies, the unconcerned profile represents the fact
that no interest is given by the agent in the received argument. Hence, an uncon-
cerned agent will not bother trying to evaluate this argument and will just dis-
card it.

Definition 11 (Unconcerned Evaluation). Given an argument a = (s, h, w,
(c, f)), the evaluation of a by an unconcerned agent unc is never done.

Enthusiastic. The enthusiastic profile represents the fact that an agent is
already convinced. As such, she does not feel the need to evaluate rationally
the argument and will just check if the flag of the argument’s conclusion corre-
spond to the flag in her AT .
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Definition 12 (Enthusiastic Evaluation). Given an argument a = (s, h, w,
(c, f)), the evaluation of a by an enthusiastic agent evalarg(a, ent) = ⊕ iff
eval1(c) = f else evalarg(a, ent) = .

Quiescent. A quiescent profile represents an “ideally instinctive” agent evaluat-
ing an argument thanks to her S1. More precisely, when receiving an argument,
the agent evaluates the argument’s conclusion and the speaker. She will accept
the argument if she agrees with the conclusion and does not reject the speaker,
or vice-versa.

Definition 13 (Quiescent Evaluation). Given an argument a = (s, h, w,
(c, f)), the evaluation of a by a quiescent agent with a cognitive model κ is
defined as follows:

evalarg(a, qui) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⊕ if (eval1(c, κ) = f and eval1(s, κ) �= ) or
(eval1(c, κ) �= −f and eval1(s, κ) = ⊕),

 if (eval1(c, κ) = −f and eval1(s, κ) �= ⊕) or
(eval1(c, κ) �= f and eval1(s, κ) = ),

� otherwise

In future work, we plan to take into account the extra sources of persuasion
such as the context created by the source of information including trustworthi-
ness and charisma of the source, the contextual mood of the agent, etc.

Example 4. During a long and very technical meeting, when a partner said
that “since post harvest separation is highly expensive, which is undesirable, post
harvest has to be rejected”, our internship student did not have the cognitive
ability to rationally consider this argument. While he would not have agreed with
a deeper analysis, he instead relied on his S1, where post harvest separation
is associated with something he rejects (see Fig. 1), and therefore accepted the
argument.

Engaged. An engaged profile represents an “ideally rational” agent evaluating
an argument exclusively thanks to her knowledge base. In this work, we propose
to define an engaged agent as someone who evaluates an argument wrt its set
of warrants that are encoded in a way to capture critical questions (see [4,32]).
An engaged agent has to pass three steps before validating an argument: validity
of the warrant (“Am I able to recognize this scheme of thought as a valid one?”
translated into “Does it already exists in my personal base of a-rules”)6; a syn-
tactic validity of the use of the warrant in the argument (“Is the warrant conform
with the premises and conclusions of the argument?” translated in terms of exis-
tence of a unification function σ); rational validation of applicability (“Are the
premises correct and necessary ?” translated into the use of contextual inference
in order to prove them).

6 Note that we propose to be neutral wrt an argument that uses an unknown warrant.
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Definition 14 (Engaged Evaluation). Given an argument a = (s, h, w,
(c, f)), with h = (Kh, Ah), the evaluation of a by an engaged agent with a cog-
nitive model κ = (KB,AT, λ, i) with KB = (F,Δ,A,R) is defined as follows:

evalarg(a, eng) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊕ if

⎧
⎨

⎩

w ∈ R and
∃σ : VG → V s.t. σ(w) = (h � (c, f)) and
∀(x � y) ∈ Kh, x |∼2y and ¬x |�∼2y and Ah ⊆ A

 if

⎧
⎨

⎩

w ∈ R and
�σ : VG → V s.t. σ(w) = (h � (c, f)) or
∃(x � y) ∈ Kh, x |�∼2y or ¬x |∼2y or Ah �⊆ A

� otherwise

Example 5. Several days after the meeting, our internship student thought of
the partner’s argument again. Now that he is able to analyze the argument more
rationally, he can recognize its type (w ∈ R): his set of warrants R contains two
a-rules, w1 = ({a � b}, {(b,)}) � (a,) and w2 = ({a � b}, {(b,⊕)}) �
(a,⊕) which encode the schemes associated to arguments from positive or neg-
ative consequences (see [32] for a definition of these argumentation schemes).
Since h = ({phs � exp}, {(exp, )}) and the conclusion is (phs,), the argu-
ment is well formed wrt w1; however, w2 is not applicable. Then, he checks if
the premise holds: as seen in Ex. 3, phs |∼2¬exp, and thus phs |�∼2exp. Hence,
he rejects the argument.

3.3 Argument Influence on the Agent’s Mind

Once the argument has been evaluated by an agent, her cognitive model may
have to be modified to account for the persuasive impact of the argument. Such
modifications can either be the change of a flag value, the addition of a new
association or the addition of a new rule. Definition 15 gives the functions rep-
resenting these modifications.

Definition 15 (Update Operations). Given two cognitive states κ = (KB,
AT, λ, i) with KB = (F,Δ,A,R) and κ′, two formulae x, y ∈ L, a set of default
rules D ⊆ L × L and a flag f ∈ {⊕,,�}, we define:

– noop(κ) = κ
– setflag(κ, x, f) = κ′ where κ′ = ((F,Δ,A′, R), AT ′, λ, i) with

• LAT ′ = LAT ∪ {x},
• ∀ϕ ∈ LAT s.t. ϕ �= x, flagκ′(ϕ) = flagκ(ϕ) and AT ′(ϕ) = AT (ϕ),
• flagκ′(x) = f and A′ = A \ {(x, flagκ(x))} ∪ {(x, f)} and AT ′(x) =

AT (x).
– push(κ, (x, y)) = κ′ where κ′ = (KB′, AT ′, λ, i) with

• if x �∈ LAT then AT ′ = AT ∪ {(x, Sx,�)} with Sx = {y},
• else

∗ ∀ϕ ∈ LAT s.t. ϕ �= x, flagκ′(ϕ) = flagκ(ϕ) and AT ′(ϕ) = AT (ϕ),
∗ flagκ′(x) = flagκ(x) and AT ′(x) = AT (x) ∪ {y} with Top(x) = y,

– addrule(κ,D) = κ′ s.t. κ′ = (F,Δ ∪ D,A,R), AT, λ, i).
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Depending on the profile, the cognitive model will be modified in different
ways. These differences aim at representing the fact that the persuasion may
be deeper depending on the cognitive involvement of the agent. Table 1 gives
the functions to apply to κ in order to update it, according to the possible
evaluations of an argument by an agent and her profile. The “×” in the ent and
unc lines corresponds to impossible cases due to, respectively, Postulate 1 and
Definition 11.

Table 1. Update of a cognitive state κ.

profile(c, κ) evalarg((s, h, w, (c, f)))

� � ⊕
unc push(κ, (c, h))a × ×
ent × push(κ, (c, h)) push(κ, (c, h))

setflag(κ, s, �) push(κ, (h, c))

setflag(κ, s, ⊕)

qui × push(κ, (c, h)) push(κ, (c, h))

setflag(κ, c, −f) push(κ, (h, c))

setflag(κ, s, �) setflag(κ, c, f)

setflag(κ, s, ⊕)

eng noop noop addrule(κ, Kh)

setflag(κ, c, f)
a An argument is never evaluated by an unconcerned agent. However,
we represent the fact that, like enthusiastic and quiescent agents, she is
unconsciously influenced by what she hears.

4 Properties and Postulates

We have not yet been able to experiment in presence of human subjects in order
to validate our model, but we have started to explore its rational properties.

4.1 Entailment Properties

Let us examine the properties of S1 and S2-entailment. Due to the construction
of |∼2 on the basis of contextual entailment, it follows that |∼2 is obeying the
same properties.

Proposition 1. |∼2 obeys the axiom and the five inference postulates of [17]:

– Reflexivity: a |∼2a,
– Left logical equivalence: if � a ↔ b and a |∼2c then b |∼2c,
– Right weakening: if a � b and c |∼2a then c |∼2b,
– Cut: if a ∧ b |∼2c and a |∼2b then a |∼2c,
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– Cautious monotony: if a |∼2b and a |∼2c then a ∧ b |∼2c,
– Or: if a |∼2c and b |∼2c then a ∨ b |∼2c.

It is not the same for |∼1, since it may be sensitive to the syntax, i.e., nothing
prevents to have a different stack for two equivalent formulae.

Proposition 2. – |∼1 obeys Reflexivity only for the formulae that admit
finite reflection paths

– |∼1 obeys Left logical equivalence only if AT is syntax dependent i.e. ϕ ↔ ψ
iff AT (ϕ) = AT (ψ),

– |∼1 does not obey Right weakening
– Transitivity holds, namely, a |∼1b and b |∼1c implies a |∼1c
– Cut, Cautious monotony and Or: do not necessarily hold.

Proof. Reflexivity : if ∃Ra s.t. flag(Ra) �= � then a ∈ Ra hence a |∼1a otherwise
it is not the case. Right weakening : since b can be deducible logically from a
but not in AT (a). ıTransitivity : it means that b ∈ Ra and c ∈ Rb, hence if
flag(b) = � then c ∈ Ra else c = b hence c ∈ Ra as well. Cut, Cautious
Monotony and Or : it is due to the independence of associations wrt logic (hence
“logical and” is not necessarily compatible with associations), ��

4.2 Incorporation Property

Let us notice that after receiving an argument, the knowledge of an agent can
only increase: more precisely, among the formulae that were already present, the
number of flags that are not empty decreases (however some new formula may
be added with an empty flag) and the number of associations grows. Moreover
some rules can also be added in the case of an engaged profile.

Proposition 3. Let κ = ((F,Δ,A,R), AT, λ, i), κ′ = ((F ′,Δ′, A′, R′), AT ′,
λ′, i′) such that κ′ is the cognitive model obtained from κ after the utterance
of an argument. It holds that LAT ⊆ LAT ′ , ∀ϕ ∈ LAT , AT (ϕ) ⊆ AT ′(ϕ), and
F = F ′, Δ ⊆ Δ′, R = R′, λ = λ′ and i = i′.

Note that the flag values are non-monotonic since a formula can obtain either
an accepted, rejected or empty flag depending on the engagement profile.

4.3 Public Opinion Axioms

According to [34], the model of how information is transformed in public opinion
follows four axioms mentioned below. Our proposal satisfies these axioms:

Reception Axiom: The greater the level a person’s level of cognitive engage-
ment with an issue the more likely he/she will be exposed to and comprehend
political messages concerning that issue. It holds since an unconcerned agent
does not evaluate the argument, an enthusiastic agent takes it into account if
she agrees with the conclusion, a quiescent agent evaluates it with S1-reasoning
and an engaged agent evaluates it with S2-entailment. Hence, the more engaged
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an agent is, the more information she takes into account (in the following order:
unconcerned, enthusiastic, quiescent, engaged).

Resistance Axiom: People tend to resist arguments that are inconsistent with
their political predispositions but they do so only to the extent that they posses the
contextual information necessary to perceive a relationship between the message
and their predispositions. Unconcerned, enthusiastic and engaged agents may
resist an argument since they are not influenced by its flag. A quiescent agent
resists arguments that are against her opinion or uttered by a source she rejects
(see Definition 13).

Accessibility Axiom: The more recently a consideration has been called to
mind, or thought about, the less time it takes to retrieve that consideration or
related considerations from memory and bring them to the top of the head for
use. This axiom is satisfied concerning the association table AT since every kind
of profile add the new piece of information at the top of the stack (see Table 1).

Response Axiom: Individuals answer survey questions by averaging across the
considerations that are immediately salient or accessible to them. It holds for
quiescent and enthusiastic: a quiescent agent evaluates a formula by considering
the most immediately accessible information and an enthusiastic agent evaluates
only the immediate value of a formula. However, it does not hold for unconcerned
and engaged agents: one does not evaluate the formula, and the other evaluates
the formula with her knowledge base.

5 Conclusion

This paper is a first proposal of a formalization of dual process theory and
its link with human persuasion. Based on the ELM model of persuasion, we
define four profiles evaluating an argument in different ways. One of the profiles
aims at reasoning thanks to an association table, and another is based on a
logical inference mechanism named contextual entailment. This mechanism is
a possible implementation of S2 and can be changed without jeopardizing the
cognitive model. Moreover, each profile integrates the contents of the received
argument differently. Accordingly to public opinion axioms, the more cognition
was involved in its evaluation, the more persuasive content will take root in the
mind of the agent.

Related Work. Dual process theories have already been implemented for prob-
lem solving. Namely, [14] with an extension of the CLARION architecture that
relies on two modules: a bottom-level (resp. top-level) module handling implicit
knowledge (resp. explicit knowledge), which recall the S1 and S2 systems but is
not based on formal logic. [27] proposes a general intelligence cognitive archi-
tecture composed of a long-term memory independent of specific tasks and a
capacity-limited working memory. The S1 and S2 systems allow them to distin-
guish between perception and imagination and are represented thanks to two



Towards a Dual Process Cognitive Model for Argument Evaluation 311

binary relations on the element of the long-term memory and two propagation
processes. Some works, similarly to ours but not in a logical framework, aim at
explaining purely human processes. For instance, [18] studies the emergence of
emotions thanks to a three-levels cognitive architecture: S1 (the reactive level)
and S2, subdivided into the algorithmic level and the reflective level. The first
one is responsible for fast and instinctive behaviours, the second one is used for
cognitive control and the last one handles rational behavior.

In [16] is a different approach for persuasion, since the NAG program is able
to analyze and generate arguments with the aim of persuading a human user.
In order to do so, NAG comprises two different models, a normative model that
is able to judge the correctness of an argument (in terms of links between the
premises and the conclusion), and a user model, that is able to evaluate the
persuasion capability of an argument on the user. Hence, NAG is interestingly
able to analyze an argument given by the user and to try to generate a coun-
terargument which is at the same time correct and specifically designed to be
effective on the user. Since NAG has to persuade a human user, it requires a
representation of her cognitive profile, in particular her reasoning errors such as
cognitive biases. Major differences exist between our approach and NAG. First,
NAG is intended to interact with users, and as such it is human-machine ori-
ented. Then, the model does not rely on a logical dual process but is based on
a Bayesian network; cognitive biases are thus taken into account by the modi-
fication of probability degrees while, in our framework, biases are due to faulty
appreciations, warrants or beliefs. Finally, the authors do not use argumentation
schemes (encoded in our warrants base R) and thus do not have a clear definition
of argument and ways to evaluate them.

Perspectives. Since this work is a first attempt to formalize a two-process
cognitive model and its links with argument evaluation, numerous perspectives
can be envisaged. Namely, a refined definition of the weights associated to the
reflection paths could help to account for the various heuristics Kahneman and
Tversky described. Moreover, we would like to investigate a way to compute
the cognitive availability of an agent in order to determine her ability to engage
in the argument evaluation. Such study would benefit from the definition of a
profile corresponding to a continuum between the quiescent and the engaged
profiles. Such a profile might be more adapted to represent human reasoning
with its bounded rationality, and may help to better capture the difference of
persuasion strategies that can be used according to the proximity to S1 or S2-
reasoning. Moreover, a more realistic model should take into account social influ-
ence [7] between agents when exchanging arguments. In the same way, the study
of rhetorical mechanisms could improve the evaluation of argument with another
dimension. Finally, the public opinion axioms of [34] show that results from psy-
chology studies can be used to guide our research, and as such it would be useful
to validate our proposal by an empirical study with human beings.
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Abstract. An argumentation system can undergo changes (addition or
removal of arguments/interactions), particularly in multiagent systems.
In this paper, we are interested in dynamics of abstract bipolar argu-
mentation systems, i.e. argumentation systems using two kinds of inter-
action: attacks and supports. We propose change characterizations that
use and extend previous results defined in the case of Dung abstract
argumentation systems.

Keywords: Dynamics of bipolar Argumentation · Deductive support

1 Introduction

The main feature of argumentation is the ability to deal with incomplete and/or
contradictory information, especially for reasoning [1,19]. Moreover, argumenta-
tion can be used to formalize dialogues between several agents by modeling the
exchange of arguments in, e.g., negotiation between agents [3,4]. An argumenta-
tion system (AS for short) consists of a collection of arguments interacting with
each other through a relation reflecting conflicts between them, called attack. An
issue of argumentation is then to determine “acceptable” sets of arguments (i.e.,
sets able to defend themselves collectively while avoiding internal attacks), called
“extensions”, and thus to reach a coherent conclusion. Formal frameworks have
greatly eased the modeling and study of AS. In particular, the framework of [19]
allows for abstracting from the “concrete” meaning of the arguments and relies
only on binary interactions that may exist between them. This approach enables
the user to focus on other aspects of argumentation, including its dynamic side.
Indeed, in the course of a discussion or due to the acquisition of new pieces of infor-
mation, an AS can undergo changes such as the addition of a new argument or
the removal of an argument considered as illegal. This is of particular interest for
dialogs in a multiagent system since it is unrealistic to consider that the argu-
mentation system reflecting the dialog can be statically defined. Moreover, it is
important to reuse as far as possible computations carried out in the original sys-
tem. That’s why it is interesting to characterize these changes by giving properties
describing a change operation and to provide conditions under which these prop-
erties hold. This has been done in several papers1, especially [9], for Dung AS with
only attacks.
1 See for instance [7,8,11,17,18].
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In this paper, we are interested in the extension of this work to bipolar AS
(BAS for short), i.e. AS augmented with a second kind of interaction, the support
relation. This relation represents a positive interaction between arguments and
has been first introduced by [21,29]. In [12], the support relation is left general
so that the resulting bipolar framework keeps a high level of abstraction. How-
ever there is no single interpretation of the support, and a number of researchers
proposed specialized variants of the support relation: deductive support [10],
necessary support [23,24], evidential support [25,26]. Each specialization can be
associated with an appropriate modelling using appropriate complex attacks.
These proposals have been developed quite independently, based on different
intuitions and with different formalizations. [14] presents a comparative study in
order to restate these proposals in a common setting, the bipolar argumentation
framework. The idea is to keep the original arguments, to add complex attacks
defined by the combination of the original attacks and the supports, and to
modify the classical notions of acceptability. An important contribution of [14]
is to highlight a kind of duality between the deductive and the necessary inter-
pretations of support, which results in a duality in the modelling by complex
attacks. Handling support is a growing concern: [27] gives a translation between
necessary supports and evidential supports; [28] proposes a justification of the
necessary support using the notion of subarguments; [22] studies an extension of
the necessary support; [20] gives a logical study of bipolar systems; [16] proposes
a general framework for taking into account recursive attacks and supports.
However, there is no work concerning the study of the dynamics of a bipolar AS
while it is an essential issue for modelling the actions of the participants to a
multiagent system:

Example 1. Journalists during an editorial board discuss about the publication
of an information I:

Journalist J1 (Argument a): I is important, we must publish it;
Journalist J2 (Argument b): I is about a person X, it is forbidden to publish

without the agreement of the concerned person and X disagrees with the
publication;

Journalist J1 (Argument c): X is a public person (she is the Prime Minister);
in this case, her agreement is not mandatory;

Journalist J2 (Argument d): However, I have heard about X’s resignation;
Journalist J3 (Argument e): I now understand why CNN has announced

yesterday the postponement of the Council of Ministers;
Journalist J4 (Argument f): However, yesterday was April Fools’ Day; so

CNN news announced yesterday are not reliable.

This example illustrates a typical situation between agents that exchange argu-
ments in order to take a decision (here, publish or not publish information I).
In this dialog, one can see arguments (here, informal arguments correspond-
ing to pieces of dialog), attacks (for instance Argument b attacks Argument a),
supports (between Argument d and Argument e); and the dynamics of argumen-
tation is illustrated by the dynamics of the dialog: at each step of the dialog, the
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global argumentation system evolves (here, by the addition of an argument and
an interaction).

In this paper, we define the update of BAS and characterize it in a spe-
cial case: a BAS reduced to an AS that is changed by the introduction of a
new argument that interacts with another argument using supports. Such an
update is realized using a combination of the works of both domains (bipolar
argumentation and dynamics of argumentation).

Background is given in Sect. 2 for AS and BAS, and in Sect. 3 for change
operations. Section 4 proposes a change operation concerning a BAS. Charac-
terizations of this new change operation are presented in Sect. 5. Finally, Sect. 6
concludes and suggests perspectives. The proofs are given in [15].

2 Abstract Bipolar Argumentation System

2.1 Abstract Argumentation System

Dung’s abstract framework consists of a set of arguments and only one type of
interaction between these arguments, these interactions representing attacks.

Definition 1 (Dung AS). A Dung argumentation system (AS, for short) is
a pair 〈A,R〉 where A is a finite and non-empty set of arguments and R is a
binary relation over A (a subset of A × A), called the attack relation.

An AS can be represented by a directed graph denoted by G, in which nodes
represent arguments and edges are defined by the attack relation: ∀a, b ∈ A, aRb
is represented by a �→ b. Semantics introduced by Dung enable to characterize
admissible sets of arguments that satisfy a form of optimality. Here we only use
(see [6] for a survey of semantics in abstract AS):

Definition 2 (Admissibility, Extensions). Given AS = 〈A,R〉 and S ⊆ A,

• S is conflict-free in AS if and only if (iff for short) there are no arguments
a, b ∈ S, such that (s.t. for short) aRb.

• a ∈ A is acceptable in AS with respect to (wrt for short) S iff ∀b ∈ A s.t.
bRa, ∃c ∈ S s.t. cRb. F denotes the characteristic function of AS defined by
∀S ⊆ A, F(S) = {x s.t. x is acceptable in AS wrt S}.

• S is admissible in AS iff S is conflict-free and each argument in S is acceptable
in AS wrt S.

• S is a preferred extension of AS iff it is a maximal (wrt ⊆) admissible set in
AS.

• S is a stable extension of AS iff it is conflict-free and for each a �∈ S, there is
b ∈ S s.t. bRa.

• S is the grounded extension of AS iff it is the least fixpoint of F .

Example 2. Let AS be represented by the following graph. {a} and {b, d} are the
two preferred extensions, {b, d} is also stable and ∅ is the grounded extension.
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The status of an argument is determined by its membership to the exten-
sions of the selected semantics: e.g., an argument is “skeptically accepted” (resp.
“credulously”) if it belongs to all the extensions (resp. at least to one extension)
and “rejected” if it does not belong to any extension.

2.2 Abstract Bipolar Argumentation System

The abstract bipolar argumentation framework presented in [13] extends Dung’s
framework in order to take into account both negative interactions expressed by
the attack relation and positive interactions expressed by a support relation
(see [2] for a more general survey about bipolarity in argumentation).

Definition 3 (BAS). A bipolar argumentation system (BAS, for short) is a
tuple 〈A,Ratt,Rsup〉 where A is a finite and non-empty set of arguments, Ratt

is a binary relation over A called the attack relation and Rsup is a binary relation
over A called the support relation.

A BAS can still be represented by a directed graph Gb, with two kinds of
edges: let a and b ∈ A, aRattb (resp. aRsupb) means that a attacks b (resp. a
supports b) and it is represented by a �→ b (resp. by a → b).

Among the different variants defined for interpreting a support between argu-
ments, [10] proposed the notion of deductive support. This notion is intended to
enforce the following constraint: If bRsupc then the acceptance of b implies the
acceptance of c, and as a consequence the non-acceptance of c implies the non-
acceptance of b. The support used in Example 1 can be considered as a deductive
one (If X has resigned then the Council of Ministers must be postponed):

Example 1 (cont’d). The bipolar argumentation system corresponding to the

editorial board can be represented by:

In order to compute semantics of a BAS, one of the main proposals is to
translate the BAS into an AS expressing the new attacks due to the presence of
supports (this kind of “flattening” is studied for instance in [20]). For deductive
support, two kinds of attack can be added. The first one, called mediated attack
in [10], corresponds to the case when bRsupc and aRattc: the acceptance of a
implies the non-acceptance of c and so the non-acceptance of b.

Definition 4 (Mediated attack). [10] Let BAS = 〈A,Ratt,Rsup〉. There is
a mediated attack from a to b iff there is a sequence a1Rsup . . .Rsupan−1, and
anRattan−1, n ≥ 3, with a1 = b, an = a. MRsup

Ratt
denotes the set of mediated

attacks generated by Rsup on Ratt.

Moreover, the deductive interpretation of support justifies the introduction
of another attack (called supported attack in [13]): if aRsupc and cRattb, the
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acceptance of a implies the acceptance of c and the acceptance of c implies the
non-acceptance of b; so, the acceptance of a implies the non-acceptance of b.

Definition 5 (Supported attack). [13] Let BAS = 〈A,Ratt,Rsup〉. There is
a supported attack from a to b iff there is a sequence a1Rsup . . .Rsupan−1Rattan,
n ≥ 3, with a1 = a, an = b. SRsup

Ratt
denotes the set of supported attacks generated

by Rsup on Ratt.

So, the deductive interpretation of support produces new kinds of attack,
from a to b, in the following cases:

By iterating the construction, d-attacks can be defined:2

Definition 6 (d-attacks). [14] Let BAS = 〈A,Ratt,Rsup〉 with Rsup being a
set of deductive supports. There exists a d-attack from a to b iff

• either aRattb, or aSRsup
Ratt

b, or aMRsup
Ratt

b (Basic case),
• or there exists an argument c s.t. there is a sequence of supports from a to c

and c d-attacks b (Case 1),
• or there exists an argument c s.t. a d-attacks c and there is a sequence of

supports from b to c (Case 2).

DRsup
Ratt

denoted the set of d-attacks generated by Rsup on Ratt. 〈A,DRsup
Ratt

〉 is
called the deductive associated Dung AS of BAS and denoted by ASBAS.

Example 1 (Cont’d). The deductive associated Dung AS can be represented by

(a mediated attack appears from f to d):
Then, in this system, using for instance the preferred semantics, one can

conclude to the acceptability of a (so the information I will be published).

Turning BAS into ASBAS enables to consider the semantics defined by Dung.
Moreover, the first step leading to add new attacks, it falls within works about
dynamics of AS.

3 Dynamics in Argumentation Systems

When studying argumentation dynamics, an important issue is to save compu-
tation, that is to reuse as far as possible previous computations carried out in
the original argumentation system. This issue has been extensively discussed
in [9] with the following methodology: A typology of change operations has been
proposed and the impact of each change operation on the computation of the
2 It generalizes mediated, supported and also the “super-mediated attack” defined

in [14].
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extensions has been studied. So, the work of [9] is particularly suitable for our
purpose and easily adaptable.3 In this paper, following Example 1, we use the
change operations corresponding to either the addition of an argument and the
interactions (only attacks) involving it, or the addition of some interactions:

Definition 7 (Addition in an AS). Let AS = 〈A,R〉.
1. Let z be an argument and Iz be a set of interactions s.t. Iz ⊆ (A × {z}) ∪

({z}×A). Adding z and Iz is a change operation, denoted by ⊕z
Iz

, providing
a new system s.t.: ⊕z

Iz
〈A,R〉 = 〈A ∪ {z},R ∪ Iz〉.

2. Let I be a set of interactions s.t. I ⊆ (A × A) and I ∩ R = ∅. Adding I is
a change operation, denoted by ⊕I , providing a new system s.t.: ⊕I〈A,R〉 =
〈A,R ∪ I〉.

The AS resulting of a change, denoted by AS′ = 〈A′,R′〉, is represented by G′.

In each case, given a semantics, the set of extensions of AS (resp. AS′) is
denoted by E (resp. E′), with E1, . . . , En (resp. E ′

1, . . . , E ′
n) standing for the exten-

sions. We consider the same semantics before and after the change.
The impact of a change operation has been studied in [9] through the notion

of change property that can be seen as a set of pairs (G,G′), where G and G′ are
argumentation graphs. Here we just recall some of these properties.

Properties about the set of extensions. Change properties express structural
modifications of an AS that are caused by a change operation. For that purpose,
a partition based on three possible cases of evolution of the set of extensions has
been defined in [9]: the extensive (resp. restrictive, constant) case, in which the
number of extensions increases (resp. decreases, remains the same).

For each case, numerous sub-cases are proposed and denoted by a letter
(e for the extensive case, r for the restrictive case and c for the constant case)
subscripted by the expression γ − γ′, where γ (resp. γ′) describes the set of
extensions before (resp. after) the change. Thus γ and γ′ can be:

• ∅: the set of extensions is empty,
• 1e: the set of extensions is reduced to one empty extension,
• 1ne: the set of extensions is reduced to one non-empty extension,
• k (resp. j): the set of extensions contains k (resp. j) extensions s.t. 1 < k

(resp. 1 < j < k: note that the symbol j is used only if the symbol k belongs
also to the expression γ − γ′).

For instance, the notation e∅−1ne means that the change increases the num-
ber of extensions (so it is an extensive case), with no initial extension (∅) and

3 Other works could be considered for addressing the issue of incremental computation
in a dynamic context. [5] for instance presents a more general approach dealing with
modularity in abstract argumentation, based on the partition of an argumentation
framework in interacting subframeworks. However, the application to our purpose is
not straightforward and requires further investigation.
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one non-empty final extension (1ne). Nevertheless, some special sub-cases of the
constant case are denoted by another method since they are based on notions
distinct from the emptiness or the number of the extensions; for these sub-cases,
the subscript is replaced by a qualifier. For instance, the c-conservative case
describes the case where the extensions remain unchanged after the change.

Here is the formal definition of these changes:

Definition 8 (Extensive, Restrictive and Constant changes). The
change from G to G′ is extensive (resp. restrictive, constant) iff |E| < |E′| (resp.
|E| > |E′|, |E| = |E′|).4

1. The sub-cases of extensive changes from G to G′ are:
(a) e∅−1ne iff |E| = 0 and |E′| = 1, with E ′ �= ∅.
(b) e∅−k iff |E| < |E′|, |E| = 0 and |E′| > 1.
(c) e1e−k iff |E| < |E′| and |E| = 1, with E = ∅.
(d) e1ne−k iff |E| < |E′| and |E| = 1, with E �= ∅.
(e) ej−k iff 1 < |E| < |E′|.

2. The sub-cases of restrictive changes from G to G′ are:
(a) r1ne−∅ iff |E| = 1, with E �= ∅, and |E′| = 0.
(b) rk−∅ iff |E| > |E′|, |E| > 1 and |E′| = 0.
(c) rk−1e iff |E| > |E′| and |E′| = 1, with E ′ = ∅.
(d) rk−1ne iff |E| > |E′| and |E′| = 1, with E ′ �= ∅.
(e) rk−j iff 1 < |E′| < |E|.

3. The sub-cases of constant changes from G to G′ are:
(a) c-conservative iff E = E′.
(b) c1e−1ne iff E = {{}} and E′ = {E ′}, with E ′ �= ∅.
(c) c1ne−1e iff E = {E}, with E �= ∅ and E′ = {{}}.
(d) c-expansive iff E �= ∅ and |E| = |E′| and ∀Ei ∈ E,∃E ′

j ∈ E′, ∅ �= Ei ⊂ E ′
j

and ∀E ′
j ∈ E′,∃Ei ∈ E, ∅ �= Ei ⊂ E ′

j.
(e) c-narrowing iff E �= ∅ and |E| = |E′| and ∀Ei ∈ E,∃E ′

j ∈ E′, ∅ �= E ′
j ⊂ Ei

and ∀E ′
j ∈ E′,∃Ei ∈ E, ∅ �= E ′

j ⊂ Ei.
(f) c-altering iff |E| = |E′| and it is neither c-conservative, nor c1e−1ne, nor

c1ne−1e, nor c-expansive, nor c-narrowing.

Definition 8.3a–c and 3f are fairly straightforward. Definition 8.3d states that
a c-expansive change is a change where all the extensions of G, which are initially
not empty, are increased by some arguments. A c-narrowing change, according
to Definition 8.3e, is a change where all the extensions of G are reduced by some
arguments without becoming empty.

Example 1 (Cont’d). All agents always propose constant changes, since they
want to take a decision without ambiguity. For instance, consider the second turn
of the dialog: using the preferred semantics, the current extension is {c, a}, and
J2 chooses a c-altering change because she totally disagrees with this extension.

4 Let S be a set, |S| denotes the cardinality of S.
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Properties about the acceptability of a set of arguments. A change can also have
an impact on the acceptability of sets of arguments. For instance, in a dialog,
it would be interesting to know whether the addition (or the removal) of an
argument modifies the acceptability of the arguments previously accepted. We
say “monotony from G to G′” when every argument accepted before the change
is still accepted after the change, i.e., no accepted argument is lost and there is
a (not necessarily strict) expansion of acceptability.5

Definition 9 (Simple expansive monotony). The change from G to G′ sat-
isfies the property of simple expansive monotony iff ∀Ei ∈ E,∃E ′

j ∈ E′, Ei ⊆ E ′
j.

Note that [9] describes many other properties such as, for instance, a property
of “enforcement”6 that would be interesting for J1 in Example 1 in order to
obtain the acceptability of Argument a.

4 A Change Operation Taking into Account Support

First of all, it should be noted that turning BAS = 〈A,Ratt,Rsup〉 into its
deductive associated Dung system ASBAS corresponds to the update of a specific
system, AS = 〈A,Ratt〉, the reduction of BAS to its direct attacks (see Fig. 1).
The next step is to allow for updating a BAS. So Definition 7 is generalized:

Fig. 1. The translation of BAS into ASBAS is an update

Definition 10 (Addition in a BAS). Let BAS = 〈A,Ratt,Rsup〉.
1. Let z be an argument, Iaz (resp. Isz) be a set of attacks (resp. supports)

concerning z. Isz ∪ Iaz is denoted by Iz. We assume that Iz ⊆ (A × {z}) ∪
({z} × A).
Adding z and Iz is a change operation, denoted by ⊕z

(Ia,Is), providing a new
BAS s.t.: ⊕z

(Ia,Is)〈A,Ratt,Rsup〉 = 〈A ∪ {z},Ratt ∪ Iaz,Rsup ∪ Isz〉.
5 A second case, referred as “monotony from G′ to G”, has been described in [9]. It is

not used in this paper.
6 This property is described in [8] and only considers the status of an argument after

the change without taking into account the evolution of extensions. Of course, many
other possibilities could be defined (e.g. combining extensiveness and monotony).
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2. Let Ia (resp. Is) be a set of attacks (resp. supports). Is ∪ Ia is denoted by
I. We assume that I ⊆ (A × A) and I ∩ (Ratt ∪ Rsup) = ∅.
Adding I is a change operation, denoted by ⊕(Ia,Is), providing a new BAS
s.t.: ⊕(Ia,Is)〈A,Ratt,Rsup〉 = 〈A,Ratt ∪ Ia,Rsup ∪ Is〉.

The system resulting of a change is denoted by BAS′ = 〈A′,Ratt
′,Rsup

′〉 and its
deductive associated Dung AS is denoted by ASBAS

′
.

Due to lack of place, in this paper, we only study the case corre-
sponding to Definition 10.1. As we consider deductive support and from Def-
initions 10 and 6, the following consequence obviously holds:

Consequence 1. Let BAS = 〈A,Ratt,Rsup〉. Let ⊕z
(Ia,Is) be a change opera-

tion on BAS producing BAS′. ASBAS
′
= 〈A ∪ {z},DRsup∪Isz

Ratt∪Iaz
〉.

Due to the above result, it seems natural to study the update of BAS by
comparing ASBAS and ASBAS

′
. However, it is not always possible to identify a

unique change on ASBAS, as defined in Definition 7, that produces ASBAS
′
. Indeed,

the addition of an argument with interactions in BAS can induce the addition
in DRsup

Ratt
of new attacks between arguments of A (see Example 3).

Example 3. Let BAS = 〈{a, b}, ∅, ∅〉, let us apply on BAS the change ⊕z
(Ia,Is)

with Iaz = {(a, z)} and Isz = {(b, z)}; in this case, following Definitions 10.1
and 6, ASBAS

′
contains the new attack (a, b) that does not concern z (and this

attack appears only because there is a support from b to z).

Another example shows that this problem also exists even if Iaz = ∅:

Example 4. Consider BAS = 〈{a, b, c}, {(c, a)}, ∅〉, and apply on BAS the
change ⊕z

(Ia,Is) with Iaz = ∅ and Isz = {(b, z), (z, c)}; in this case, follow-

ing Definitions 10.1 and 6, ASBAS
′
contains the new attack (b, a) that does not

concern z.

So, if we add an argument z with at least one support in BAS, the change of
ASBAS into ASBAS

′
cannot always be expressed using either Definition 7.1 (since

attacks are added that do not concern z), or Definition 7.2 (since the argument
z is added). The links between the different systems are illustrated by Fig. 2.

This suggests to consider elementary changes (addition of one attack or one
support). In this paper, we consider two particular cases. The first one concerns
a BAS with only one support from z to a, z being unattacked. In this case, Defi-
nition 6 obviously implies that z has in ASBAS exactly the same role as a in AS:

Proposition 1. Let BAS = 〈A,Ratt,Rsup〉 with Rsup = {(z, a)} and z is not
attacked in BAS. The following properties hold:

• if a is unattacked in BAS then z is unattacked in ASBAS (no direct attack, no
direct or inductive supported or mediated attack on z);
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Fig. 2. Links between the different systems

• if a is attacked by b in BAS then z is attacked by b in ASBAS (this is a mediated
attack on z);

• if a attacks b in BAS then z attacks b in ASBAS (this is a supported attack).
• if a is defended by c against b in BAS then z is defended by c against b in
ASBAS (the defence of a direct attack on a can be used for the defence of the
mediated attack on z).

• if c is defended by b against a in BAS then c is defended by b against z in ASBAS

(a mediated attack can be used as a defence against a supported attack).

A second particular case concerns a BAS with only one support on an
unattacked argument. In this case, Definition 6 obviously implies that the set
of attacks remains unchanged:

Proposition 2. Let BAS = 〈A,Ratt,Rsup〉 with Rsup = {(a, z)} and z unattac-
ked by BAS. Then DRsup

Ratt
= Ratt.

Moreover, in these particular cases, following Definition 10.1, Propositions 1
and 2, the addition of one argument involved in only one support in BAS cannot
add attacks between arguments of A and preserves acceptability:

Proposition 3. Let BAS = 〈A,Ratt,Rsup〉 s.t. Rsup = ∅.7 Let ⊕z
(Ia,Is) be a

change operation defined on BAS with Iaz = ∅, |Isz| = 1 and producing BAS′.

• ∀x, y ∈ A, s.t. y does not attack x in BAS then there is no attack from y to x

in ASBAS
′
.

• ∀y ∈ A, if y is unattacked in BAS then it remains unattacked in ASBAS
′
.

• Consider F (resp. F ′) the characteristic function of AS (resp. ASBAS
′
). ∀S ⊆

A, F(S) ⊆ F ′(S).

Thus, considering a BAS reduced to an AS (i.e. without any support), if we
add only one argument with one support, the links between the different systems
are given by Fig. 3.

So we are able to characterize the addition of a support by an addition of
attacks. In the next section, we study this simplified change operation.
7 In this case, BAS is reduced to an AS. So BAS, its reduction AS and ASBAS collapse.
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Fig. 3. Links between systems if there is no support in BAS

5 Characterizing the Addition of an Argument
and a Support

In Sect. 5.1 (resp. Sect. 5.2), we give some results about the characterization of
the addition of a supported (resp. supporting) argument in a BAS.

5.1 Case of an Added Supported Argument

In this case, as a direct application of Proposition 2, we prove that the update of
a BAS without supports has a deductive associated Dung AS that corresponds
to the addition of an argument without interaction into the initial BAS.

Proposition 4. Let BAS = 〈A,Ratt,Rsup〉 s.t. Rsup = ∅. Let ⊕z
(Ia,Is) be a

change operation defined on BAS with Iaz = ∅ and Isz = {(a, z)} and producing
BAS′. ASBAS

′
= ⊕z

∅
〈A,Ratt〉.

Due to Proposition 4, Definitions 7.1 and 10.1, we have:

Proposition 5. Let BAS = 〈A,Ratt,Rsup〉 s.t. Rsup = ∅. Let ⊕z
(Ia,Is) be a

change operation defined on BAS with Iaz = ∅ and Isz = {(a, z)} and producing
BAS′. Let s be a semantics ∈ {grounded, preferred, stable}. E is an extension of
AS under s iff E ′ = E ∪ {z} is an extension of ASBAS

′
under s. Moreover, there

is no stable extension in AS iff there is no stable extension in ASBAS
′
.

And an obvious consequence of Proposition 5 is:

Consequence 2. The change ⊕z
(∅,{(a,z)}) is only either c-expansive, or c1e−1ne,

or c-conservative. In the last case, the only possibility is E = E′ = ∅.

Some examples of this change are given in Table 1.

5.2 Case of an Added Supporting Argument

In this case, the existence of cycles is preserved as shown by:

Proposition 6. Let BAS = 〈A,Ratt,Rsup〉 s.t. Rsup = ∅. Let ⊕z
(Ia,Is) be a

change operation defined on BAS with Iaz = ∅, Isz = {(z, a)} and producing
BAS′.
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• If a belongs to a cycle of attacks in BAS then z belongs to a new cycle of
attacks in ASBAS

′
and the length of both cycles is the same.

• If a does not belong to a cycle of attacks in BAS then there is no cycle of
attacks in ASBAS

′
involving z.

This result is proven using Definitions 4–6 and by reductio ad absurdum for
the second item. Moreover, following Definition 6 and Proposition 1, we can char-
acterize the impact of this change for stable semantics:

Table 1. Addition of a supported argument in an AS

Proposition 7. Let BAS = 〈A,Ratt,Rsup〉 s.t. Rsup = ∅. Let ⊕z
(Ia,Is) be a

change operation defined on BAS with Iaz = ∅ and Isz = {(z, a)} and producing
BAS′. Let E be a stable extension of AS:

• if a �∈ E then E is a stable extension of ASBAS
′
;

• if a ∈ E then E ∪ {z} is a stable extension of ASBAS
′
.

And more generally, the simple expansive monotony of the change operation
can be proven:
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Table 2. Addition of a supporting argument in an AS
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Proposition 8. Let BAS = 〈A,Ratt,Rsup〉 s.t. Rsup = ∅. Let s be a semantics
belonging to {grounded, preferred, stable}. Let ⊕z

(Ia,Is) be a change operation
defined on BAS with Iaz = ∅ and Isz = {(z, a)} and producing BAS′.

∀E extension of AS under s, ∃E ′ an extension of ASBAS
′
under s s.t. E ⊆ E ′.

This result is proven using Definition 2, Propositions 1 and 3, by induction
on the characteristic function for the grounded semantics, showing that E is
admissible in ASBAS

′
for the preferred semantics and following Proposition 7 for

the stable semantics. An obvious consequence of the two previous results is:

Consequence 3. The change ⊕z
(∅,{(z,a)}) cannot be restrictive, nor c-narrowing,

nor c-altering, nor c1ne−1e.

Some examples of this change are given in Table 2.

6 Conclusion and Future Works

This paper presents preliminary work about change for abstract bipolar argu-
mentation systems, i.e. where there exist two kinds of interaction, attacks and
supports. The central idea is to take advantage of two kinds of previous works,
works about dynamics in argumentation systems (AS) and works about bipolar
argumentation systems (BAS). Indeed, it has been shown that a BAS can be
turned into a standard Dung’s AS by adding appropriate attacks. Our main con-
tribution is to show how the addition of one argument together with one support
involving it (and without any attack) impacts the extensions of the resulting sys-
tem. In this particular case, we have clearly identified the attacks that must be
added and we have obtained specific properties which enable to characterize this
change. These characterizations refine and complete the results presented in [9]
that cannot be used directly for characterizing the impact of these new attacks
(the conditions used in [9] are too strong with regard to our case and thus they
cannot be satisfied here). Our work is of particular interest in a multiagent con-
text if we do not want to recompute the extensions when a agent gives a new
argument that supports (or is supported by) an already existing argument.

Although our results are given for elementary changes (addition of one argu-
ment and one support), they can be generalized considering that the addition of
a set of arguments with interactions can be viewed as a sequence of elementary
additions. Nevertheless, in order to achieve this generalization, there are two
issues to be solved: (1) characterize the addition of an argument with attacks
(as was done for AS; results given in [9] will be useful) and (2) study the addition
of interactions (this operation has been defined in [9] for AS and in our paper
for BAS but not completely studied). This future study could also give a way
for computing directly the ASBAS of a BAS.

Moreover, our work concerns only a special variant of support, the deductive
one. Using the duality between necessary and deductive supports, our results can
be easily translated for necessary support. However, it remains to adapt them
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to the case of a generalized support (a support from a set of arguments to an
argument as proposed by [22]).

And finally, it would be interesting to extend this study to the case of non
abstract BAS.
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Abstract. aspic+ is one of the most widely used systems for structured
arguments and includes the use of both strict and defeasible rules. Here
we consider using just the defeasible part of aspic+. We show that using
the resulting system, it is possible, in a well defined sense, to capture the
same information as using aspic+ with strict rules.

1 Introduction

Argumentation theory is concerned with the way that intelligent agents discuss
whether some statement holds. In the past few years, formal argumentation
frameworks have been heavily studied and applications have been proposed in
fields such as natural language processing, the semantic web and multi-agent sys-
tems. Studying argumentation provides results which help in developing tools
and applications in these areas. Dung’s seminal work [8] tells us how to handle
the conflicts between arguments. However, it says nothing about the structure
of arguments, or how to construct arguments and attack relationships from a
knowledge base. Providing the logical basis for argumentation has been the sub-
ject of several authors, including [4,9,10]. This paper is concerned with we the
work that started with the aspic [2] framework, and we briefly summarise this
work below.

Following [2,6] pointed out that aspic may lead to some non-intuitive results,
suggested that all argumentation frameworks must satisfy three rationality pos-
tulates in order to avoid these anomalies, and showed how aspic could be mod-
ified to satisfy them. [12] presented an extension of aspic, called aspic+, which
also satisfies the postulates under certain restrictions. [1,13] provide further
discussion of the approach. [11] modified the aspic+ framework, to develop a
more general structured framework for argumentation with preferences. [5,14]
presented some examples where aspic-like systems could lead to non-intuitive
results and gave solutions. Finally, [7] looked at a new variation of aspic+ which
still satisfies the rationality postulates while loosening the restriction on rebut
that aspic+ requires to satisfy the rationality postulates.

Here we continue this line of work, considering another variation of aspic+

which only contains defeasible elements. We find that, like the system in [7], our
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system can both loosen the restrictions on aspic+ and still satisfy the rationality
postulates, while being able to establish exactly the same set of conclusions as
aspic+ from the corresponding knowledge-base.

2 Background

2.1 Abstract Argumentation

An abstract argumentation framework [8] is a pair AF = 〈A,Defeats〉, where
A is a set of arguments, and Defeats is a binary relation collecting all pairs of
arguments A and B such that A defeats B, i.e. Defeats ⊆ A × A. An argu-
ment is called acceptable iff it can defend itself, that is, all of its defeaters have
been defeated. A subset S of A is said to be conflict-free if there are no argu-
ments in S that defeat an argument in S. Given an abstract argumentation
framework, one is typically interested in which of the arguments are acceptable.
This is done through argument-based semantics, which define different ways to
determine acceptability. [8] defines several semantics — complete, grounded, pre-
ferred and stable. A given semantics will specify some (possibly empty) sets of
acceptable arguments for a given argumentation framework. These sets are also
called argument-based extensions, or simply extensions. The conclusions of the
arguments in an extension are called the justified conclusions.

The state-of-the-art way to establish the extensions is through the labeling
approach, which is nicely summarized by [3]. This approach can be described in
terms of a labeling function LF which maps from arguments to a set of labels
{IN, OUT, UNDEC}. Not all labelings are helpful in determining acceptability, and
we determine the helpful labelings through the idea of legality. For a legal labeling
LF , an argumentation framework, 〈A,Defeats〉, and an argument x ∈ A:

1. x is legally IN iff x is labeled IN and every y ∈ A that defeats x is labeled
OUT.

2. x is legally OUT iff x is labeled OUT and there is at least one y ∈ A that defeats
x and is labeled IN.

3. x is legally UNDEC iff there is no y ∈ A that defeats x such that y is labeled IN,
and there is at least one y ∈ A that defeats x such that y is labeled UNDEC.

Note that the UNDEC state occurs when x cannot be labeled IN (because it
has at least one defeater that is not OUT), and cannot be labeled OUT (because
it has no IN defeater). If an argument is not legally labeled, it is said to be
illegally labeled. More precisely, an argument is illegally labeled l, where l ∈
{IN, OUT, UNDEC}, if it is not legally labeled l.

With the notion of legality tying labelings to Defeats relations, we can iden-
tify acceptable sets of arguments through the notions of admissibility and com-
pleteness. An admissible labeling has no arguments that are illegally IN, and no
arguments that are illegally OUT. A complete labeling is an admissible labeling
that, in addition, has no arguments that are illegally UNDEC. Then, given a com-
plete labeling LF , we have: (1) LF is a grounded labeling iff there is no complete



332 Z. Li and S. Parsons

labeling with a smaller set of IN arguments; (2) LF is a preferred labeling iff
there is no complete labeling with a larger set of IN arguments; and (3) LF is a
stable labeling if it contains no UNDEC arguments.

The labeling approach exactly matches Dung’s semantics [8]. If LF is a com-
plete labeling, then every x labeled IN by LF is in the complete extension, and
so on for grounded, preferred and stable labelings. If an argument is in a given
extension, we say that it is justified in the corresponding semantics.

2.2 ASPIC+ Argumentation Framework

Next, we review the aspic+ argumentation framework in [11]. This defines two
kinds of inference rules: strict rules (denoted →), meaning the conclusion is
always accepted without any exception, and defeasible rules (denoted ⇒), mean-
ing the conclusion is accepted unless there is an exception.

.

Before defining precisely what an argument is, we need to introduce some notions
which can be defined just understanding that an argument is made up of some
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subset of the knowledge K, along with a sequence of rules, that lead to a conclu-
sion. Given this, Prem(·) returns all the premises, Conc(·) returns the conclusion
and TopRule(·) returns the last rule in the argument. Sub(·) returns all the sub-
arguments of a given argument, that is all the arguments that are subset of the
given argument.

Definition 5 (Argument). An argument A from of an argumentation theory
AT = 〈〈L,R, n〉,K〉 is:

1. φ if φ ∈ K with: Prem(A) = {φ}; Conc(A) = {φ}; Sub(A) = {A}; TopRule(A)
= undefined.

2. A1, . . . , An → (or ⇒) φ if Ai are arguments such that there exists a strict
(or defeasible) rule Conc(A1), . . . , Conc(An) → (or ⇒) φ in Rs(or Rd).
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An); Conc(A) = φ; Sub(A) = Sub(A1) ∪
. . . ∪ Sub(An) ∪ {A}; TopRule(A) = Conc(A1), . . . , Conc(An) → (or ⇒) φ.

We write A(AT) to denote the set of arguments from the theory AT .

We say that an argument A is consistent iff {Conc(A′)|A′ ∈ Sub(A)} is consistent.
We further say that an argument A is strict if A only contains strict rules, that
is Rs �= ∅ and Rd = ∅;1. Similarly, we say: A is defeasible if A contains at least
one defeasible rule, Rd �= ∅; A is firm if A only contains axioms, Kn �= ∅, Kp = ∅;
A is plausible if A contains ordinary premises.

An argument can be attacked in three ways: on its ordinary premises, on its
conclusion, or on its inference rules:

Definition 6 (ASPIC+ Attack). An argument A attacks an argument B iff
A undermines, rebuts or undercuts B, where:

– A undermines B (on B′) iff Conc(A) = φ for some B′ = φ ∈ Prem(B) and
φ ∈ Kp.

– A rebuts B (on B′) iff Conc(A) = φ for some B′ ∈ Sub(B) of the form
B′′

1 , . . . , B′′
2 ⇒ φ.

– A undercuts B (on B′) iff Conc(A) = n(r) for some B′ ∈ Sub(B) such that
TopRule(B) is a defeasible rule r of the form φ1, . . . , φn ⇒ φ.

We denote “A attacks B” by (A,B).

Note that, in the aspic+ attack relation, rebutting is restricted. That is an argu-
ment with a strict TopRule can rebut an argument with a defeasible TopRule,
but not vice versa.

Attacks can be distinguished as to whether they are preference-dependent
(rebutting and undermining) or preference-independent (undercutting). The for-
mer succeed only when the attacker is preferred. The latter succeed whether or
not the attacker is preferred.
1 This is not same as definition of “strict” as in [11] where the only condition was that

Rd = ∅. Here we insist that a strict argument includes at least one strict rule. As a
consequence, the notions of “strict” and “defeasible” are not duals, and an argument
can be neither strict or defeasible — but only if it contains only premises and/or
axioms.
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Definition 7 (Preference Ordering). A preference ordering  is a binary
relation over arguments, i.e.,  ⊆ A × A, where A is the set of all arguments
constructed from the knowledge base in an argumentation system. We say A’s
preference level is less than or equal to that of B iff A  B.

In general, neither aspic+ nor our defeasible system make any assumptions
on the properties of the preference ordering, but in establishing a relationship
between the two systems, we make use of the weakest link principle from [11].
This assumes two pre-orderings ≤,
them into A ≺ B if:

– the defeasible rules in A include a rule which is weaker than (strictly less than
according to ≤) all the defeasible rules in B, and

– the ordinary premises in A include an ordinary premise which is weaker
(strictly less than according to ≤′) all the ordinary premises in B.

A ≺ B is then defined as usual as A  B and B � A. By combining the
definition of arguments, attack relations and preference ordering, we have the
following definitions:

Definition 8 (Structured Argumentation Framework). A structured
argumentation framework is a triple 〈A, att,〉, where A is the set of all argu-
ments constructed from the knowledge in the argumentation system, att is the
attack relation,  is an preference ordering on A.

Definition 9 (ASPIC+ Defeat). A defeats B iff A undercuts B, or if A
rebuts/undermines B on B′ and B′’s preference level is less than or equal to
that of A (B′  A).

Then the idea of an argumentation framework follows from Definitions 5 and 9.

Definition 10 (Argumentation Framework). An (abstract) argumentation
framework AF corresponding to a structured argumentation framework SAF =

such that

e

Let’s call this set of argumentsA, so that:A = {A1, A2, A3, B1, B2, B
′
1, B

′
2, B,C}.

Note that Prem(B) = {c; e}, Sub(B) = {B1;B2;B′
1;B

′
2;B}, Conc(B) = b, and

TopRule(B) = d, f → b. The attacks between these arguments are shown in
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Fig. 1(a). These make up the set att = {(C,B′
1), (B

′
1, C), (C,B′

2), (C,B), (B,A2),
(A3, B2), (A3, B)} With a preference order  defined by : A2 ≺ B;C ≺ B;C ≺
B′

1;C ≺ B′
2, we have the structured argumentation framework 〈A, att,〉. This

structured argumentation framework establishes a defeat relation Defeats =
{(B′

1, C), (B,A2), (A3, B), (A3, B2)} which is shown in Fig. 1(b). With this, we
can finally write down the argumentation framework 〈A,Defeats〉. Note that
this is not a rational aspic+ framework, since the strict rules are not closed
under transposition, but serves to explain the concepts introduced above.

A1

A2

A3

B1

B2

B′
1

B′
2

B

C

(a) Attack relation

A1

A2

A3

B1

B2

B′
1

B′
2

B

C

(b) Defeat relation

Fig. 1. The attack and defeat relations from Example 1. A dotted arrow shows under-
cutting, a dashed arrow shows rebutting, and a solid arrow shows undermining.

3 ASPIC+
D: A Purely Defeasible System

3.1 Definition

The full definition of aspic+
D starts from a variation on the aspic+ notion of

an argumentation system where there are only defeasible elements:

p.

Arguments in aspic+
D are then defined as in Definition 5, but there are no strict

rules or axioms so there are no strict or firm arguments.
Since any aspic+

D argumentation theory is an aspic+ argumentation theory
with an empty set of strict rules and an empty set of axioms, we have:
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Proposition 1. For a given language L, ATD, the set of all possible aspic+
D

argumentation theories, is a subset of AT, the set of all possible aspic+ argu-
mentation theories.

Proof. Pick any +

〈ASD,Kp〉 where ASD

where AT = 〈AS,Kp〉
(an aspic+ theory with no strict rules). Having made no specific assumptions
about the composition of ATD, the result holds for all possible aspic+

D theories.

However, despite the fact that the set of all possible aspic+
D theories is a subset

of all possible aspic+ theories, we can translate any specific aspic+ theory into
a specific aspic+

D theory. We demonstrate this by defining a translation:

aspic+ ATD is the defeasible

AS and write ATD = def(AT ) and ASD = def(AS). We call the set of rules
Rd′ that were strict in AT the set of converted rules, and the set of premises
Kp′ that were axioms in AT are the set of converted premises. The defeasible
version of an argument A ∈ A(AT ) is an argument AD ∈ A(ATD) such that
every axiom in A is replaced by the corresponding converted premise, and every
struct rule in A is replaced by the corresponding converted rule.

In other words, ATD is the defeasible version of AT , if every axiom of AT
becomes an ordinary premise of ATD, and every strict rule in AT becomes a
defeasible rule of AT , while all other components of AT are unchanged.

Given a preference order  over the elements of an aspic+ theory AT , we
will need to specify the preference order D over the defeasible version of the
theory. One way to specify D is as follows in terms of the pre-orderings over
the rules and premises of ATD.

=sf .



On Argumentation with Purely Defeasible Rules 337

where r =sf r′ if r ≤sf r′ and r′ ≤sf r, r <sf r′ if r ≤sf r′ and r′ �≤sf r,
k =′

sf k′ if k ≤′
sf k′ and k′ ≤′

sf k, and k <′
sf k′ if k ≤′

sf k′ and k′ �≤′
sf k.

In other words, all the elements of ATD that were defeasible in AT have the
same preference order as in AT , and all elements that were strict in AT are
strictly higher in the preference order than any element that was defeasible in
AT . The notion of attack in aspic+

D differs from that in aspic+ in that there is
no restriction on rebut, and any rule can be undercut:

Definition 16 (ASPIC+
D Attack). An argument A attacks an argument B

iff A undermines, rebuts or undercuts B, where:

– A undermines B (on B′) iff Conc(A) = φ for some B′ = φ ∈ Prem(B).
– A rebuts B (on B′) iff Conc(A) = φ for some B′ ∈ Sub(B).
– A undercuts B (on B′) iff Conc(A) = n(r) for some B′ ∈ Sub(B).

With these definitions, we can once again combine the definition of arguments,
attack relations and the preference ordering from Definition 7 to get notions
of a structured argumentation framework and defeat that are the same as for
aspic+. To begin to understand the relationship between aspic+ and aspic+

D,
consider this version of Example 1:

Example 2. Consider the aspic+
D argumentation system ASD which is the defea-

sible version of the system AS in Example 1. We have Rd = {a ⇒ b; c ⇒ d; e ⇒
f ; a ⇒ nd; d, f ⇒ b}, Kp = {a; c; e; e}, and n(c ⇒ d) = nd. We can construct the
arguments:

A1 = [a];A2 = [A1 ⇒ b];A3 = [A1 ⇒ nd];
B1 = [c];B2 = [B1 ⇒ d];B′

1 = [e];B′
2 = [B′

1 ⇒ f ];B = [B2, B
′
2 ⇒ b];

C = [e];

Compared with the attacks in Example 1, there is an additional attack here: A2

rebuts B. With the same preference ordering  over arguments as in Example 1,
the defeat relation remains same.

3.2 Properties of ASPIC+
D

We begin by showing that aspic+
D satisfies the three rationality postulates that

were introduced in [6] and since then have been considered the basic requirement
of a sensible argumentation system. Without strict rules, two of these postulates
follow immediately.

Proposition 2 (Closure under Strict Rules). The conclusions of any
extension an aspic+

D theory are closed under strict rules.

Proof. With no strict rules, the conclusion follows immediately.
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Proposition 3 (Direct Consistency). The conclusions of any extension of
an aspic+

D theory are consistent.

Proof. Suppose the conclusions of one of the extensions E are inconsistent, i.e.,
there exist two arguments A,A′ ∈ E such that Conc(A) = Conc(A′). If Conc(A) ∈
K, by Definition 6, then A′ undermines A. On the other hand, if Conc(A) �∈ K, by
Definition 6, then A′ rebuts A. Either way, A′ attacks A in any case. Similarly,
A attacks A′.

According to Definition 9, at least one of the attack relations is a defeat
relation. Therefore, E is not conflict-free and thus E is not an extension under
Dung’s semantics. The contradicition defeats the assumption of inconsistency
and the result holds.

Proposition 4 (Indirect Consistency). The closure under strict rules of the
conclusions of any extension of an aspic+

D theory is consistent.
Proof. With no strict rules, this follows immediately from Proposition 3.

Despite the triviality of two of the results, it is worth noting that there are no
restrictions on the semantics for which these results hold — they hold for all the
standard Dung semantics. Thus aspic+

D goes further than the aspic- of [7] in
extending the scope of reasoning possible with unrestricted rebut since aspic-
only satisfied the rationality postulates for the grounded semantics. Of course,
this extension is achieved by giving up strict rules, and it is natural to ask what
the consequence is for what can be represented in an aspic+

D theory. Would using
aspic+

D mean any restriction on what can be represented? Our main result is to
show that there is no restriction on what can be represented in aspic+

D compared
with what can be represented in aspic+ in the sense that for any aspic+ theory
we can build an aspic+

D theory with the same justified conclusions. We start
with the observation that:

Proposition 5. For a given language L, there is a defeasible version ATD of
any aspic+ argumentation theory AT .

Proof. Consider the clauses of Definition 14 as a series of rewrite rules. Any
AT can be converted into its defeasible version by turning every axiom into an
ordinary premise and every strict rule into a defeasible rule.

This means that whatever information we have in an aspic+ theory, we can
capture it in an aspic+

D theory — we don’t lose the ability to represent infor-
mation about the world by using aspic+

D rather than aspic+. However, it is not
just representing information that is important. The set of arguments that can
be constructed from a theory, and, in particular, the justified conclusions of a
theory are also important.

Proposition 6. Given an aspic+ theory AT and its defeasible version ATD,
|A(AT )| = |A(ATD)| and for every A ∈ AT there is exactly one AD ∈ A(ATD)
such that AD is the defeasible version of A.

Proof. We show there is a 1-to-1 map between A(AT ) and A(ATD). For each
argument that is just a premise or an axiom A = [φ], we have AD = [φ] that
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is just a premise; for each argument A = [A1, . . . , An ⇒ φ], we have AD =
[A1D , . . . , AnD

⇒ φ]; for each argument A = [A1, . . . , An → φ], we have AD =
[A1D , . . . , AnD

⇒ φ].

Thus any aspic+ theory can be turned into an aspic+
D theory, and we can gen-

erate the same number of arguments, but arguments that had strict components
will now only have defeasible components. Furthermore, there are preference
orderings such that the same preferences exist between aspic+

D arguments as
between the corresponding aspic+ arguments:

Proposition 7. Consider the set of arguments A of an aspic+ theory AT and
the set of arguments AD constructed from the defeasible version of the theory
ATD. If the preference order over ATD is the strict-first version of that over
AT , then using the weakest link principle, for any A,B ∈ A, and AD, BD ∈ AD
where AD, BD are the defeasible versions of A and B, AD D BD iff A  B.

Proof. Let AT = 〈AS,Kn ∪ Kp〉 and ATD = 〈ASD,Kp′ ∪ Kp〉. Consider the
preference order ≤ over rules in AT , and the preference order ≤′ over premises.
Let 〈≤D,≤′

D〉 contain all the relations in 〈≤,≤′〉. Since AFD has more defeasible
elements than AF , we need to determine where these elements fit in the ordering.
With a strict-first ordering, the translated strict rules/axioms have the highest
preference ordering, and so the weakest links in A(ATD) are not the translated
strict rules/axioms. Furthermore, all the remaining rules/premises in ATD have
the same preference ordering as in AT . Therefore, ATD and AT have the same
preference ordering over arguments.

In other words, using the weakest link principle, we can take a set of aspic+

arguments create the defeasible versions of those arguments and still have the
same preference ordering as over the original set of arguments. This allows us to
show our main result, that we can construct a defeasible version of a given aspic+

framework such that the justified conclusions of both theories are the same.

Proposition 8. Consider a rational aspic+ theory AT and its defeasible ver-
sion ATD where the preference ordering over ATD is the strict-first version of
the ordering over AT . Under the weakest link principle, the justified conclusions
of AT and ATD are the same.

Proof. From Proposition 6 we know that for every argument in A(ATD), there is
an argument in A(AT ), with the same conclusion, and vice versa. From Proposi-
tion 7, we know that under the weakest link principle, the preference order  over
A(ATD)is the same as the preference order D over A(ATD). Now, consider the
attack relations att and attD over A(AT ) and A(ATD). If (A,A′) ∈ att, then
(AD, A′

D) ∈ attD and there is an attack between the defeasible versions of the
arguments AD and A′

D. However, attD can contains more attacks. (AD, A′
D) can

be in attD when (A,A′) �∈ att iff (1) A′ is (just) an axiom in AT or (2) A′ has a
strict TopRule and the attack is not permitted by restricted rebut. We now show,
in turn, that these additional attacks do not affect the justified conclusions.
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First, if A′ is an axiom, then A′
D, which as a lone premise that is the defeasible

version of an axiom, has the highest possible preference. Thus it can only be
defeated by an AD that has the highest level of preference. Such an argument is
the defeasible version of a strict argument. However, if A was strict, AT would
not be rational (it would have two strict elements in conflict). Therefore, we have
the same defeat relations over A(AT ) and A(ATD) and hence the same justified
conclusions for AT and ATD.

Second, if TopRule(A′) is strict, there are two sub-cases that concern us. (a) If
AD ≺ A′

D, the attack does not become a defeat. Thus AFD and AF have the
same defeat relation, therefore they have the same justified conclusions. (b) If
A′

D  AD, then there is one more defeat relation over A(ATD) than over A(AT ).
We will show that this additional defeat relation has no effect. Consider applying
all the defeat relations except this additional one — there are three possibilities
for the status of A′

D which will be mirrored by the status of A′ which does not
have to contend with this additional defeat, and for each of these, we have to
consider all three possibilities for the status of AD.

(1) A′
D is labeled IN. If AD is labeled IN, then AT has two IN arguments, A

and A′, and the conclusions of these arguments are in the set of justified
conclusions. However, since AD and A′

D rebut one another, the conclusions
of A and A′ are contradictory, violating direct consistency. Thus A and A′

cannot both be IN, and so neither can A′
D and AD before the application of the

new defeat. If AD is labeled OUT then adding the defeat relation (AD, A′
D)

has no effect. If AD is labelled IN, the situation is more complicated. We
start by noting that A will also be UNDEC, and then consider how this can
be the case. A has a strict top rule, so A′ = [A′

1, . . . , A
′
n → a] where the

top rule is p1, . . . , pn → a. Similarly, A = [A1, . . . , An ⇒ a] with a top
rule q1, . . . , qn ⇒ a. By closure under transposition, there exists a strict rule
p1, . . . , pi−1, a, pi+1, . . . , pn → pi in AT . Since A′

D  AD, it is not possible
for A′ to be strict, so A′ has at least one defeasible sub-argument, and hence
a sub-argument with a defeasible top-rule. Lets assume that this is one of
the A′

1, . . . , A
′
n that combine with the strict top rule, and call it A′

i. Using
the strict rule from the transposition of the top rule, we get an argument
B = [A′

1, . . . , A
′
i−1, A,A′

i+1. . . . , A
′
n → pi] which rebuts A′. B is A plus the

A′
j, j �= i, and the transposed strict rule. If A′

1, . . . , A
′
n do not have defeasible

top rules, then we chain the corresponding transposed stricttop rule(s) to B
to build an argument that attacks A′ further down the argument tree until we
get an argument, call it B′, which rebuts A′ on its defeasible sub-argument.
Now, A′  B′ since A′  A and B′ is A plus some sub-arguments of A′ and a
sequence of strict (transposed) rules. Therefore B′ defeats A′. Moreover, any
defeater of B′ must be a defeater of A or A′. Next we consider the labeling.
Since A′ is labeled IN, all the defeaters of A′ are labeled OUT. Since A is
labeled UNDEC, all the defeaters of A are labeled OUT or UNDEC. Therefore, the
defeaters of B, which are the defeaters of A or A′, are labelled OUT or UNDEC.
Thus B is labeled IN or UNDEC. Since B defeats A′, A′ can not be labeled IN,
contradicting what we started with.
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(2) A′
D is labeled OUT. Adding one more defeat relation (AD, A′

D) has no effect.
(3) A′

D is labeled UNDEC. If AD is labeled OUT or UNDEC, then adding the defeat
relation (AD, A′

D) has no effect. However, if AD is labeled IN, then applying
the last defeat relation means that A′

D will now be labeled OUT while A′, which
does not have to contend with (A,A′), will be UNDEC.

So A′
D cannot be initially labeled IN. If it is labelled OUT, the status of A′

D cannot
change as a result of the additional defeat. If A′

D is initially labeled UNDEC, the
status of A′

D can change. However, by showing that A′
D does not defeat any other

arguments we can show that this change does not affect the justified conclusions.
Consider an argument B ∈ A(ATD) that is attacked by A′

D. A′
D cannot undercut

B since the conclusion of A′
D is not a “rule” (if it were a rule, there would be no

rebut between AD and A′
D and there would be no new defeat relation to consider).

A′
D can not undermine B since the conclusion of A′

D is not a premise because
we know that A′ and hence A′

D has a TopRule. So we can only be dealing with a
rebut, and since we already know that AD rebuts AD, B has to be an argument
of which AD is a sub-argument. Since A′

D ≺ AD, A′
D does not defeat B.

Thus, in all of these three sub-cases of (b), the additional defeat (AD, A′
D) has

no effect on the status of the arguments in A(ATD), again there is no difference
between the justified conclusions of AT and ATD, and the result holds.

This result justifies our claim that aspic+
D makes it possible to represent the same

information as aspic+. Given an aspic+ theory, we can encode the information
in purely defeasible form in an aspic+

D theory that gives us exactly the same
set of (justified) conclusions. The following example helps to show how this is
possible.

Example 3. Consider that we start with the following theory AT1 (given the
same language as before), closed under transposition:

the
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A1 A2 A3

B2B1 B3 B4

(a)

A1 A2 A3

B2B1 B3 B4

(b)

A1 A2 A3

B2B1 B3 B4

(c)

A1 A2 A3

B2B1 B3 B4

(d)

A1 A2 A3

B2B1 B3 B4

(e)

A1 A2 A3

B2B1 B3 B4

(f)

Fig. 2. Attack and defeat relations for AT1 and AT2. (a) Attack relations for AT1 and
Defeat relations for AT1 in case (a), (b) Defeat relations for AT1 case (b), (c) Defeat
relations for AT1 in case (c), (d) Attack relations for AT2 and Defeat relations for AT2

in case (a), (e) Defeat relations for AT2 case (b), (f) Defeat relations for AT2 case c)

The attack relations are shown in Fig. 2(d). Now let’s consider the different
possible preference orderings over rules:

(a) a ⇒ b = b′ ⇒ c2. By the weakest link principle, all the attack relations
are defeat relations, see Fig. 2(a) and (d). Here AT2 has additional defeat
relations, but they are directed at arguments that are already defeated.
Under the grounded semantics, the set of arguments in the extension is
{A1, B1, B2} and {A1, B1, B2}, and the justified conclusions are {a, a′, b′}
and {a, a′, b′}.

(b) a ⇒ b < b′ ⇒ c. By the weakest link principle, the defeat relations are
shown in Fig. 2(b) and (e). Again AT2 has an additional defeat relation,
but again it has no effect on the justified conclusions. Under the grounded
semantics, the set of arguments in the extension is {A1, B1, B2, B3, B4},
{A1, B1, B2, B3, B4} and {A1, A2, B1, B2, B3}, and the justified conclusions
are {a, b, a′, b′, c} and {a, b, a′, b′, c}.

(c) a ⇒ b > b′ ⇒ c. By the weakest link principle, the defeat relations are
shown in Fig. 2(c) and (f). As before AT2 has additional defeats, but they
have no effect. Under the grounded semantics, the set of arguments in the
extension is {A1, A2, A3, B1, B2}, and {A1, A2, A3, B1, B2}, and the justified
conclusions are {a, b, a′, b′, c} and {a, b, a′, b′, c}.

For all the cases, the justified conclusions of AT1 and AT2 are exactly same.

4 Conclusion

We have shown that aspic+
D, the defeasible subset of aspic+, has the same

functionality in terms of knowledge representation as aspic+. Both formalisms
2 A = B is defined as A ≤ B and B ≤ A.
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draw the same justified conclusions from corresponding argumentation systems.
In addition, aspic+

D goes further than aspic+and aspic- in the sense of satisfying
the rationality postulates with unrestricted rebut for all of Dung’s semantics.
In our view, this justifies the choice of aspic+

D in any application that might
use aspic+. Proposition 5 tells us that using aspic+

D means we can represent
exactly the same information that we could in aspic+, and Proposition 8 tells
us that provided that we encode strict rules as defeasible rules with the highest
level of preference and use the weakest link principle, the same set of justified
conclusions will be obtained as if we had used aspic+. In that sense, we do not
lose anything over what is possible in aspic+ by using aspic+

D. In addition, and
in contrast to aspic+, we do not have to impose any restrictions on aspic+

D in
order for it to accord to the rationality principles, which, as [7] points out, is
rather counter-intuitive and hard to explain to users.
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Abstract. Central in standard possibilistic logic (where propositional
logic formulas are associated with lower bounds of their necessity mea-
sures), is the notion of inconsistency level of a possibilistic logic base.
Formulas whose level is strictly above this inconsistency level constitute a
sub-base free of any inconsistency. Some extensions, based on the notions
of paraconsistent completion of a possibilistic logic base, and of safely
supported formulas, have been proposed for handling formulas below the
level of inconsistency. In this paper we further explore these ideas, and
show the interest of considering the minimal inconsistent subsets in this
setting. Lines for further research are also outlined.

1 Introduction

Reasoning under inconsistency [6,13], or evaluating the inconsistency of a knowl-
edge base [10,11] have raised a lot of interest in artificial intelligence for a long
time. However, the different approaches which have been proposed do not usu-
ally take into account the fact that all the formulas in a knowledge base are
not necessarily equally certain. Possibilistic logic [8] provides a simple way for a
partial handling of inconsistency by taking advantage of a stratification of the
knowledge base according to the certainty level associated to the logical formu-
las. Then we can compute an inconsistency level for a propositional knowledge
base, and all the formulas whose certainty is strictly above this inconsistency
level form a consistent sub-base. The formulas whose certainty is equal to or
smaller than the inconsistency level remain drown in inconsistency, including
formulas that are not involved in any minimal inconsistent subsets. This state of
fact can be somewhat remedied by defining a paraconsistent completion of the
knowledge base, and by using a so-called safely supported entailment relation
[3,5]. Strangely enough, this entailment is more productive than the possibilis-
tic logic entailment, but it nevertheless preserves the consistency of the set of
consequences. Yet it has remained largely ignored. This short paper revisits the
approach and shows its relation with minimal inconsistent subsets.

The paper is structured as follows. Section 2 deals with the flat case [4] where
formulas are not associated with certainty levels. We present the idea of para-
consistent completion as a basis for analyzing the conflicts, and then identify the
safely supported consequences. In Sect. 3, we deal with possibilistic logic formu-
las, and extend the previous definitions. Then a new characterization of safely
supported entailment is proposed. Lines for further research are also discussed.
c© Springer International Publishing Switzerland 2015
C. Beierle and A. Dekhtyar (Eds.): SUM 2015, LNAI 9310, pp. 347–353, 2015.
DOI: 10.1007/978-3-319-23540-0 23
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2 Flat Propositional Knowledge Bases

Let Σ = {pi | i = 1, . . . , n} denote a propositional logic knowledge base. Σ may
be inconsistent. Let us first recall two basic notions, needed in the forthcoming
discussion: the notions of support for a proposition and of minimal inconsistent
subset. A Σ-based support (or reason, or argument) for a proposition p is a
subset Sp of propositions in Σ such that (i) Sp is consistent; (ii) Sp � p (where
� is the classical logic consequence relation); (iii) �S′ ⊂ Sp such that S′ � p.
In other words, Sp is a minimal consistent subset of propositions in Σ that
together entail p. Likewise, a minimal inconsistent subset of Σ is a minimal
subset of propositions that entail ⊥: a non empty subset S⊥ of Σ such that (i)
S⊥ is inconsistent (S⊥ � ⊥); (ii) �S′ ⊂ S⊥ such that S′ � ⊥.

For a complete analysis of the inconsistency situation of formulas in Σ, we
need to define the “paraconsistent completion” Σcomp of Σ.

2.1 Paraconsistent Completion

For analyzing the potential conflicts in Σ, it is convenient to proceed with
the following construction. The paraconsistent completion Σcomp of Σ is
obtained by applying the following procedure: to each formula pi in Σ,
one associates i) the set of reasons for pi, and ii) the set of reasons
for ¬pi. More formally, Σcomp = {(pi, {P1, · · ·, Pr}, {C1, · · ·, Cs}) | pi ∈ Σ,
Pi is a reason for pi, Cj is a reason for ¬pi}.

Clearly, if pi ∈ Σ, then (pi, {P1,· · ·, Pr}, {C1,· · ·, Cs}) ∈ Σcomp, and if ∃j
s.t. pj ≡ ¬pi then (¬pi, {P ′

1, · · · , P ′
s}, {C ′

1, · · · , C ′
r}) ∈ Σcomp with ∀i P ′

i =
Ci,∀j C ′

j = Pj . Note that as soon as pi∈Σ, the set of reasons for pi is not empty:
it contains at least {pi}.

The reasons for and against pi can be summarized by triples of the form
(pi, πi, γi) for i = 1, . . . , n where πi ∈ {0, 1}, γi ∈ {0, 1}, and: (i) pi ∈ Σ; (ii)
πi = 1 for acknowledging the fact that ∃Pk, a reason for pi; (iii) γi = 1 if ∃Cl

that is a reason for ¬pi, and γi = 0 if �Cl (no reason for ¬pi). Let Σpara =
{(pi, πi, γi) : i = 1, . . . , n}. Note that πi 	= 0 (hence = 1), since each pi ∈ Σ
supports itself.

If min(πi, γi) = 1, then pi is said to be paraconsistent (in the sense of
“conflicting”). Thus in Σ, there are two kinds of propositions, the formulas
pi such as γi = 0 which should be considered as true, and the formulas that
are paraconsistent. Note that strictly speaking there is no formula of the form
(pj , 0, 1) in Σpara since the information that pj is false appears there only under
the form (¬pj , 1, 0), i.e. ¬pj is true. However, note also that one may have
(pi, {{pj}}, {C1,· · ·, Cs}) ∈ Σcomp, where no Ck contains ¬pj , which might be
understood as suggesting that pj , being only supported by itself, is questionable.
Besides, there is no formula of the form (pk, 0, 0) in Σpara (it would express that
there is no reason for pk, nor for ¬pk).
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2.2 Safely Supported Propositions

Once Σcomp and Σpara are built from Σ, one can evaluate reasons S in favor of a
proposition p by means of the two evaluations, Def(S) and Uns(F ), respectively
revealing the potential weakness of its support and its lack of safety:

– Def(S)=mini{πi|(pi,πi,γi)∈Σpara and pi∈S}.

In fact, one always have Def(S) = 1 since ∀i, pi ∈ S, we have πi = 1, and the
case Def(S) = 0 is impossible here since pi is in Σ ( pi ∈ Σ is understood as
(pi, 1)). We shall see that when propositional formulas become weighted, we still
always have Def(S) > 0, but Def(S) may be “close to 0”.

– Uns(S)=maxi{γi|(pi,πi,γi)∈Σpara and pi ∈S}.

Clearly, Uns(S) = 0 if ∀i | pi ∈ S γi = 0, i.e. if S does not contain any
paraconsistent formula, while Uns(S) = 1 if ∃i | pi ∈ S γi = 1, i.e. there is at
least one paraconsistent formula in S. Thus, Uns(S) reflects if there are a reason
pro and a reason against an element of S that can be both built from formulas
in Σ.

A reason S in favor of proposition p is free iff Def(S) > Uns(S), i.e. iff all the
formulas in S are believed to be true and none is inconsistent with other formulas
in Σ. By extension, in this case, we shall say all the formulas in S are free as well.
Moreover, any formula in a minimal inconsistent subset S⊥ = {r1, r2, · · · , rk}
of Σ is not free, since S⊥ \ {rj} is consistent and ∀j, S⊥ \ {rj} � ¬rj . Thus, if
∃S⊥, rj ∈ S⊥ ⊆ Σ then (rj , 1, 1) ∈ Σpara, i.e., rj is a paraconsistent formula in
Σ. If a formula is involved in several minimal inconsistent subsets, one might
think that this formula could be considered as more “paraconsistent” since there
exists several distinct reasons against it. However, this looks debatable since a
“basic” piece of information often used in inferences may have some chance to
be, on the contrary, strongly established.

In the classical case, Def(S) > Uns(S) ⇔ Uns(S) = 0, since then Def(S) =
1. Thus, a proposition p is safely supported if it exists a reason S for it which
is free. The safely supported propositions are just the consequences of the set
of free ones. It follows that the set of safely supported formulas in Σ is always
consistent. So in particular, p and ¬p cannot be both safely supported.

This departs from the so-called argumentative inference [2], which is more
adventurous than the safely supported inference, since it may lead to an incon-
sistent set of conclusions, but not to direct contradictions such as p and ¬p. The
argumentative inference amounts to conclude p if there is a reason for p and no
reason for ¬p in Σ.

For instance, consider the base Σ = {r,¬r ∨ p,¬r, r ∨ q}. Then, we can infer
both p and q argumentatively from Σ. In contrast, the reader can check that
Σpara = {(r, 1, 1), (¬r, 1, 1), (¬r ∨ p, 1, 0), (r ∨ q, 1, 0)}, from which one can infer
neither that p nor q is safely supported.

Still, as recalled in the discussion section, one can also infer (p, 1, 1) and
(q, 1, 1) from Σpara, thus acknowledging that p and q are indeed paraconsistent
conclusions.
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We now examine how the notions of reason, of paraconsistent completion,
and of safely supported proposition can become graded.

3 Possibilistic Logic Bases

We now assume that the propositions that are elements of a reason supporting a
proposition may be pervaded with uncertainty. More precisely, the propositions
pi are now replaced by possibilistic logic formulas [8] of the form (pi, ai), i.e., pi is
believed with certainty at least ai, ai’s belonging to a linearly ordered, bounded
scale S = {s1 = 1 > s2 > · · · > sn+1 = 0}, with top and bottom elements
denoted by 1 and 0 respectively.

Let Σ = {(pi, ai) | i = 1, · · · ,m}, where ai is the strength with which pi is
believed to be true in Σ. The higher ai, the higher the strength. Thus, (p, a) is
subsumed by (p, b) as soon as b > a. So, it is assumed that Σ does not contain
both (pi, ai) and (pj , aj) with pi ≡ pj and ai 	= aj . Let Σ∗ = {pi | (pi, ai) ∈
Σ}. Similarly, if S ⊆ Σ, S∗ denotes the set of propositions appearing in the
possibilistic formulas in S without their weight. The set of propositions Σ∗ is
not assumed to be consistent. In possibilistic logic, this amounts to say that the
inconsistency level of Σ is strictly positive [8].

A subset S of Σ is said to be a reason for p iff (i) S∗ is consistent; (ii)
∃a > 0, S �π (p, a) where �π is the possibilistic logic entailment1; (iii) �S′ ⊂ S
such that S′ �π (p, b) with b > 0.

In other words, S is such that S∗ is a minimal consistent subset of propo-
sitions that entail p and a is the minimum of the weights of the formulas in S.
a is the weight of the reason. Clearly there may exist distinct reasons S and S′

(with S∗ 	= S′∗) for p in Σ. Thus the pair (S, (p, a)) is a (possibilistic) argument
for p with strength a, with a = min{ai | (pi, ai) ∈ S}.

3.1 Graded Paraconsistent Completions

On this basis, one can extend the completions Σcomp and Σpara to a possibilistic
logic base Σ. Namely to each formula pi in Σ∗, one may associate i) the set of
reasons for pi, and the set of reasons for ¬pi, or ii) or only the weights of the
best reason for pi and of the best reason for ¬pi.

More formally, the first one is defined by

Σcomp = {(pi, {P1, · · · , Pr}, {C1, · · · , Cs}) | (pi, ai) ∈ Σ,Pi is a (graded)
reason for pi, Cj is a (graded) reason for ¬pi}.

The second completion is defined by

Σpara = {(pi, πi, γi) | (pi, ai) ∈ Σ, πi is the greatest weight of a reason for pi

in Σ, γi is the greatest weight of a reason for ¬pi in Σ}.

Note that πi ≥ ai.

1 Possibilistic inference is governed by the resolution rule (¬p ∨ q, a), (p ∨ r, b) �π

(q ∨ r,min(a, b)) [8].
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Example. Σ = {(p, s1), (¬p ∨ q, s2), (¬p, s3), (¬r, s4), (r, s5), (¬r ∨ q, s6)} (with
s6 > 0)

Then Σpara =
{(p, s1, s3), (¬p ∨ q, s2, 0), (¬p, s3, s1), (¬r, s4, s5), (r, s5, s4), (¬r ∨ q, s2, 0)}.

Σcomp = {(p, {(p, s1)}, {(¬p, s3)}),
(¬ p ∨ q, {(¬p ∨ q, s2)}, ∅), (¬p, {(¬p, s3), {(p, s1)}), (¬r, {(¬r, s4)}, {(r, s5)}),
(r, {(r, s5)}, {(¬r, s4)}), (¬r ∨ p, {{(p, s1), (¬p ∨ q, s2)}, {(¬r, s4)}}, ∅)}.

3.2 Graded Safely Supported Propositions

The notion of safely supported proposition then extends to possibilistic propo-
sitional formulas with weights. Once Σpara is built from Σ, one can evaluate
reasons S in favor of pi in the following way, by means of the two measures [3,5]:

– Def(S) = min{πi | ((pi, πi, γi) ∈ Σpara and pi ∈ S∗}.
– Uns(S) = max{γi | ((pi, πi, γi) ∈ Σpara and pi ∈ S∗}

Def(S) reflects the less certain belief in S, Uns(S) the most strongly attacked
belief in S. Note that we always have Def(S) > 0, but Def(S) may be equal to
sn, and thus now “close to 0”.

A reason is free iff Def(S) > Uns(S), i.e. iff its certainty is above the strength
of the strongest attack. Then a proposition p is safely supported if it exists a
reason S that is free for it. It can be shown [5] that the set of safely supported
consequences of a base Σ is always consistent. So in particular, p and ¬p cannot
be both safely supported.

It clearly generalizes the case of a binary scale, i.e. a scale S with only two
levels 1 and 0 , (where the condition Def(S) > Uns(S) can only hold under the
form Uns(S) = 0), which means that all the formulas in S are fully believed and
none is attacked. In the graded case, the formulas involved in S are only more
believed than they are attacked.

Let us come back to minimal inconsistent subsets. Let S be a minimal incon-
sistent subset in Σ∗, and let inc(S) = min{aj | (pj , aj) ∈ Σ, pj ∈ S} be
the level of inconsistency of S. Then, inc(Σ) = max{inc(S) : S
minimal inconsistent subset of Σ}, where inc(Σ) = max{a | Σ �π (⊥, a)} and
�π is the standard possibilistic entailment defined by possibilistic resolution [8].
Moreover, it appears that if (pi, πi, γi) ∈ Σpara, we have

γi = max{inc(Ck) : (pi, ai) ∈ Σ, pi ∈ Ck, Ck minimal inconsistent subset
of Σ}
with inc(Ck) = min{aj | (pj , aj) ∈ Σ, pj ∈ Ck}. In fact we have the fol-
lowing result: the safely supported entailment from Σ coincides with the pos-
sibilistic entailment from the consistent possibilistic logic base Σcons obtained
from Σ by deleting, in all minimal inconsistent subsets S of Σ, the formulas
with a certainty level equal to inc(S). Namely Σcons = Σ \ {(pi, ai) | (pi, ai) ∈
S, S minimal inconsistent subset of Σ, ai = inc(S)}.
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3.3 Lines for Further Research

The construction of Σcomp and of Σpara is reminiscent of the motivations of Bel-
nap for introducing his well-known four-valued logic [1]. Belnap was considering
several sources of information for which an atomic formula p may be known to
be true, known to be false, or unknown. This may be naturally encoded by one of
the four triples (p, 1, 0) (p is held for true according to sources), (p, 0, 1) (p is held
for false according to sources), (p, 1, 1) (this is the paraconsistent case p is true
according to some sources and false according to others), and (p, 0, 0) stands for
the case where the truth status of p is unknown for sources. In Belnap’s calculus
(p, 1, 1) and (q, 0, 0) yields (p∧ q, 0, 1), which may appear strange at first glance.
As pointed out in [7], this may be understood in the following way. On the one
hand, we have both an argument in favor of p true and an argument in favor of
p false. On the other hand we have no argument either in favor of q true or in
favor of q false. This is enough to build an argument in favor of p∧ q false (from
the argument in favor of p false) and we cannot build any argument in favor of
p ∧ q true (since one has no argument in favor of q true).

Yet, there already exists an extension of possibilistic logic inference that
can be defined from Σpara (and then extended toΣcomp). It is based on the
following generalized resolution rule [9] where the paraconsistency of formulas
can be propagated

(¬p ∨ q, π1,γ1), (p ∨ r, π2,γ2) � (q ∨ r,min(π1,π2),max(γ1,γ2)).
There is also another inference rule that holds in the logic of supporters [12],

a logic closely related to possibilistic logic, which corresponds to the case where
there are no reasons against in Σcomp, and where the scale S is binary:

(¬p ∨ q, P1), (¬p ∨ r, P2) � (¬p ∨ r, P1 ∪ P2).
This rule was proposed moreover in an ATMS-like perspective, where two

kinds of literals are distinguished, as in the following example:
Example. Given Assumptions = {A,B,C}, and the knowledge base Σ =
{(p,A), (q,B), (¬q ∨ p,C)}, p in Σcomp is then supported by two reasons, i.e.,
we have (p, {{A}, {B,C, }}, ∅).

Such inference rules may provide the starting point for reasoning directly in
terms of arguments, and not only about arguments.

4 Concluding Remarks

This short paper is intended to show that the benefit of taking into account
the certainty levels of formulas when reasoning under inconsistency may be still
much higher than the one already obtained by applying standard possibilistic
logic where only formulas strictly above the inconsistency level of the knowledge
base are salvaged. Indeed when inconsistency takes place, it is often due to the
presence of formulas in which we are not fully confident. Considering minimal
inconsistent subsets provides a local view of where the conflicts take place, and
then the deletion of the less certain formulas inside these subsets enables us
to restore consistency while keeping more information than with the standard
possibilistic logic view.
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Abstract. Consistent Query Answering (CQA) has by now been widely
adopted as a principled approach for answering queries on inconsistent
databases. The consistent answer to a query q on an inconsistent data-
base db is the intersection of the answers to q on all repairs, where a
repair is any consistent database that is maximally close to db. Unfortu-
nately, computing consistent answers under primary key constraints has
already exponential data complexity for very simple conjunctive queries,
which is completely impracticable.

In this paper, we propose a new framework for divulging an inconsis-
tent database to end users, which adopts two postulates. The first pos-
tulate complies with CQA and states that inconsistencies should never
be divulged to end users. Therefore, end users should only get consistent
query answers. The second postulate states that the data complexity
of user queries must remain tractable (i.e., in P or even in FO). User
queries with exponential data complexity will be rejected. We investigate
which consistent query answers can still be obtained under such access
postulates.

1 Introduction

Inconsistent, incomplete and uncertain data is widespread in the internet and
social media era. This has given rise to a new paradigm for query answering,
called Consistent Query Answering (CQA). This paradigm starts with the notion
of repair , which is a new consistent database that minimally differs from the
original inconsistent database. In general, an inconsistent database can have
many repairs. In this respect, database repairing is different from data cleaning
which aims at a unique cleaned database.

In this paper, we assume that the only constraints are primary keys, one per
relation. A repair of an inconsistent database db is a maximal subset of db that
satisfies all primary key constraints. Primary keys will be underlined. For exam-
ple, the database of Fig. 1 stores ages and cities of residence of male and female
persons. For simplicity, assume that persons have unique names (attribute N).
Every person has exactly one age (attribute A) and city (attribute C). However,
distinct tuples may agree on the primary key N , because there can be uncer-
tainty about ages and cities. In the database of Fig. 1, there is uncertainty about
c© Springer International Publishing Switzerland 2015
C. Beierle and A. Dekhtyar (Eds.): SUM 2015, LNAI 9310, pp. 354–367, 2015.
DOI: 10.1007/978-3-319-23540-0 24
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M N A C
Ed 48 Mons
Ed 48 Paris
Dirk 29 Mons

F N A C
An 37 Mons
Iris 37 Paris

Fig. 1. Example database with primary key violations.

the city of Ed (it can be Mons or Paris). The database can be repaired in two
ways: delete either M(Ed, 48,Mons) or M(Ed, 48,Paris).

When database repairing results in multiple repairs, CQA shifts from stan-
dard semantics to certainty semantics. Given a query, the certain answer (also
called consistent answer) is defined as the intersection of the answers on all
repairs. That is, for a query q on an inconsistent database db, CQA replaces the
standard query answer q(db) with the certain answer, defined by the following
intersection: ⋂

{q(r) | r is a repair of db}. (1)

Thus, the certainty semantics exclusively returns answers that hold true in every
repair. Given a query q, we will denote by �q� the query that maps a database
to the answer defined by (1).

A practical obstacle to CQA is that the shift to certainty semantics involves
a significant increase of complexity. When we refer to complexity in this paper,
we mean data complexity, i.e., the complexity in terms of the size of the database
(for a fixed query) [1, p. 422]. It is known for long [7] that there exist conjunctive
queries q that join two relations such that the data complexity of �q� is already
coNP-hard. If this happens, CQA is completely impracticable.

This paper investigates ways to circumvent the high data complexity of CQA
in a realistic setting, which is based on the following assumptions:

– If a query returns an answer to a user, then every tuple in that answer should
belong to the certain answer. In Libkin’s terminology [16], query answers must
not contain false positives, i.e., tuples that are not certain.

– The only queries that can be executed in practice are those with data com-
plexity in P or, even better, in FO. FO is the descriptive complexity class
that captures all queries expressible in relational calculus.

Therefore, if the data complexity of a query �q� is not in P, then the best
we can go for is an approximation without false positives (also called under-
approximation), computable in polynomial time. The term strategy will be used
for queries that compute such approximations. Intuitively, a strategy can be
regarded as a two-step process in which one starts by issuing a number of well-
behaved queries �qi�, for i ∈ {1, . . . , �}, which can then be subject to a post-
processing step. In this paper, well-behaved queries are those that are accepted
by a query interface, e.g., self-join-free conjunctive queries qi such that �qi� is in
FO, and post-processing is formalized as queries built-up from the �qi�’s.

We next illustrate our setting by an example. Consider the following scenario
with two persons, called Bob and Alice. The person called Bob owns a database
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that is publicly accessible only via a query interface which restricts the syntax
of the queries that can be asked. Our main results concern the case where the
interface is restricted to self-join-free conjunctive queries. The database schema
including all primary key constraints is publicly available. However, Bob is aware
that his database contains many mistakes which should not be divulged. There-
fore, whenever some end user asks a query q, Bob will actually execute the
query �q�. That is, end users will get exclusively consistent answers. But, for
feasibility reasons, Bob will reject any query q for which the data complexity of
�q� is too high. In this paper, we assume that Bob considers that data complex-
ity is too high when it is beyond FO. The person called Alice interrogates Bob’s
database, and she will be happy to get exclusively consistent answers. Unfortu-
nately, her query q will be rejected by Bob if the data complexity of �q� is too
high (i.e., not in FO). If this happens, Alice has to change strategy. Instead of
asking q, she can ask a finite number of queries q1, q2, . . . , q� such that for every
i ∈ {1, . . . , �}, the data complexity of �qi� is in FO, and hence the query qi will
be accepted by Bob. No restriction is imposed on the number � of queries that
can be asked. The best Alice can hope for is that she can compute herself the
answer to �q� (or even to q) from Bob’s answers to �q1�, . . . , �q�� by means of
some post-processing. The question addressed in this paper is: Given that Alice
wants to answer q, what queries should she ask to Bob?

Here is a concrete example. Assume Bob owns the database of Fig. 1. Inter-
ested in stable couples1, Alice submits the query q1 which asks “Get pairs of
ages of men and women living in the same city”:

q1 = {y, w | ∃x∃u∃z (M(x, y, z) ∧ F (u,w, z))}.

The consistent answer is {(48, 37), (29, 37)}. However, the query �q1� that returns
the certain answer is known to have coNP-hard data complexity [13,14]. There-
fore, Bob will reject q1. Alice changes strategy and asks the query q2 which asks
“Get pairs of ages and city of men and women living in the same city”:

q2 = {y, w, z | ∃x∃u (M(x, y, z) ∧ F (u,w, z))}. (2)

Since the data complexity of �q2� is known to be in FO [13,14], Bob will exe-
cute �q2�. The query q2 returns {(29, 37, Mons), (48, 37, Mons)} on one repair,
and {(29, 37, Mons), (48, 37, Paris)} on the other repair, so the certain answer
is {(29, 37,Mons)}. This in turn allows Alice to derive a certain answer to the
original query: since (29, 37,Mons) belongs to the answer to �q2�, it is correct to
conclude that (29, 37) belongs to the answer to �q1�. An interesting question is
whether Alice has a better strategy that divulges even more answers to �q1�.

The technical contributions of this paper are as follows. We first show that
the following problem is undecidable: Given a relational calculus query q, is
�q� in FO? In view of this undecidability result, we then limit our attention
to strategies that are first-order combinations (using disjunction and existential

1 According to [6], marital stability is higher when the wife is 5+ years younger than
her husband.
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quantification) of queries �q� that are known to be in FO. We show how to build
optimal strategies under such syntax restrictions.

This paper is organized as follows. Section 2 discusses related work. Section 3
provides some mathematical definitions. Section 4 introduces our new frame-
work for studying consistent query answering under primary key constraints,
and introduces the problem OPTSTRATEGY. Intuitively, OPTSTRATEGY asks,
given a query q, to find a new query q′ that gets the largest subset of consistent
answers while still obeying the restrictions imposed by our framework. Section 5
provides ways to solve OPTSTRATEGY in restricted settings. Finally, Sect. 6
concludes the paper.

2 Related Work

Consistent query answering (CQA) was proposed in [2] as a principled approach
to handle data quality problems that arise from violations of integrity con-
straints. See the textbooks [3,10] for comprehensive overviews of these domains.

Fuxman and Miller [11] were the first ones to focus on CQA under the restric-
tions that consistency is only with respect to primary keys and that queries are
self-join-free conjunctive. See [21] for a survey on consistent query answering
to conjunctive queries under primary key constraints. Some recent results not
covered by this survey can be found in [13,14].

Instead of returning the query answers true in every repair, one could
return the query answers true in, e.g., a majority of repairs. This leads to
the counting variant of CQA, which has been studied in [17,18]. As observed
in [20], the counting variant of CQA under primary key constraints is closely
related to query answering in block-independent-disjoint (BID) probabilistic
databases [8,9]. Alternatively, one can obtain approximations by restricting the
set of repairs. This approach has been considered in [5] in the setting of ontology-
based data access.

Our work can also be regarded as querying “consistent views,” in the sense
that Bob returns exclusively consistent answers. It has been observed long
ago [19] that consistent views are not closed under relational calculus. In other
words, the position of the �·� construct in a query does matter. For example,
for the database of Fig. 1, the query {x | ∃y∃z�M(x, y, z)�} returns only Dirk,
while �{x | ∃y∃zM(x, y, z)}� returns both Ed and Dirk. Bertossi and Li [4] have
used views to protect the secrecy of data in a database. In our setting, the query
answers that are to be hidden from end users are those that are not true in every
repair.

3 Preliminaries

We assume disjoint sets of variables and constants. If x is a sequence containing
variables and constants, then vars(x) denotes the set of variables that occur in x.
A valuation over a set U of variables is a total mapping θ from U to the set of
constants.
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Atoms and Key-equal Facts. Each relation name R of arity n, n ≥ 1, has a
unique primary key which is a set {1, 2, . . . , k} where 1 ≤ k ≤ n. We say that R
has signature [n, k] if R has arity n and primary key {1, 2, . . . , k}. We say that R
is all-key if n = k. For all positive integers n, k such that 1 ≤ k ≤ n, we assume
denumerably many relation names with signature [n, k].

If R is a relation name with signature [n, k], then R(s1, . . . , sn) is called
an R-atom (or simply atom), where each si is either a constant or a variable
(1 ≤ i ≤ n). Such an atom is commonly written as R(x,y) where the primary-key
value x = s1, . . . , sk is underlined and y = sk+1, . . . , sn. An R-fact (or simply
fact) is an R-atom in which no variable occurs. Two facts R1(a1, b1), R2(a2, b2)
are key-equal if R1 = R2 and a1 = a2.

We will use letters F,G,H for atoms. For an atom F = R(x,y), we denote
by key(F ) the set of variables that occur in x, and by vars(F ) the set of variables
that occur in F , that is, key(F ) = vars(x) and vars(F ) = vars(x) ∪ vars(y).

Uncertain Databases, Blocks, and Repairs. A database schema is a finite
set of relation names. All constructs that follow are defined relative to a fixed
database schema.

A database is a finite set db of facts using only the relation names of the
schema. We often refer to databases as “uncertain databases” to stress that such
databases can violate primary key constraints.

A block of db is a maximal set of key-equal facts of db. The term R-block
refers to a block of R-facts, i.e., facts with relation name R. An uncertain data-
base db is consistent if no two distinct facts are key-equal (i.e., if every block of
db is a singleton). A repair of db is a maximal (with respect to set containment)
consistent subset of db. We write rset(db) for the set of repairs of db.

Queries and Consistent Query Answering. We assume that the reader is
familiar with relational calculus [1, Chapter 5] and with the notion of queries [15,
Definition 2.7]. By FO, we denote the descriptive complexity class that contains
the queries expressible in relational calculus.

For every m-ary (m ≥ 0) relational calculus query q, we define �q� as the
m-ary query that maps every database db to

⋂{q(r) | r ∈ rset(db)}. Clearly, if
db is a consistent database, then �q�(db) = q(db).

Given two m-ary queries q1 and q2, we say that q1 is contained in q2, denoted
by q1 
 q2, if for every database db, q1(db) ⊆ q2(db). We write q1 � q2 if q1 
 q2
and q2 �
 q1. We say that q1 and q2 are equivalent , denoted by q1 ≡ q2, if q1 
 q2
and q2 
 q1.

A 0-ary query is called Boolean. If q is a Boolean query, then q maps any
database to either {〈〉} or {}, corresponding to true and false respectively.

A conjunctive query is a relational calculus query of the form {z | ∃yB} where
B is a conjunction of atoms. The conjunction B and the query are said to be self-
join-free if no relation name occurs more than once in B. We write vars(B) for
the set of variables that occur in B. By a slight abuse of notation, we denote by B
also the set of conjuncts that occur in B. For example, if B1 = R(x)∧R(x)∧R(y)
and B2 = R(x) ∧ R(y) ∧ R(z), then we may write B1 ⊆ B2.
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Significantly, the following example shows that �q� may not be expressible in
relational calculus, even if q is self-join-free conjunctive.

Example 1. Let q1 = {〈〉 | ∃x∃y∃z
(
R(x, z) ∧ S(y, z)

)}. The query q1 is self-join-
free conjunctive. It follows from [13] that �q1� is not in FO (i.e., not expressible
in relational calculus).

Let q2 = {〈〉 | ∃x∃y
(
R(x, y) ∧ S(y, b)

)}, where b is a constant. Then, �q2� is
equivalent to the following relational calculus query:

∃x∃y(R(x, y)∧
∀y

(
R(x, y) → (

S(y, b) ∧ ∀z
(
S(y, z) → z = b

))))
. ��

4 A Framework for Divulging Inconsistent Databases

In this section, we formalize the setting that was described and illustrated in
Sect. 1. The setting is captured by the language called CQAFO, which consists
of first-order quantification and Boolean combinations of atomic formulas of the
form �q�, where q is any relational calculus query. The atomic formulas �q� cap-
ture that the database owner Bob only returns certain answers. Subsequently, the
end user Alice, who interrogates Bob’s database, can do some post-processing on
Bob’s outputs. In our setting, we assume that Alice uses first-order quantification
and Boolean combinations of Bob’s answers.

Example 2. The scenario in Sect. 1 is captured by the CQAFO query

{y, w | ∃Z�∃x∃u (M(x, y, Z) ∧ F (u,w,Z))�}.

The formula within �·� is the query (2). The quantification ∃Z corresponds to Alice
projecting away the cities column returned by Bob. For readability, we will often
use upper case letters for variables that are quantified outside the range of �·�. ��
Example 3. The following query allows Alice to find the names of men with more
than two cities in the database:

{x | �∃y∃zM(x, y, z)� ∧ ¬∃Z�∃yM(x, y, Z)�}.

To understand this query, it may be helpful to notice that {x,Z | �∃yM(x, y, Z)�}
returns tuple (n, c) whenever c is the only city of residence encoded for the person
named n. ��

4.1 The Language CQAFO

Syntax of CQAFO

– If q is a relational calculus query, then �q� is a CQAFO formula.
– If ϕ1 and ϕ2 are CQAFO formulas, then ϕ1 ∧ϕ2, ϕ1 ∨ϕ2, and ¬ϕ1 are CQAFO

formulas.
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– If ϕ is a CQAFO formula, then ∃xϕ and ∀xϕ are CQAFO formulas.

If ϕ is a CQAFO formula, then free(ϕ) denotes the set of free variables of ϕ
(i.e., the variables not bound by a quantifier). If x is a tuple containing the free
variables of ϕ, we write ϕ(x).

A CQAFO query is an expression of the form {x | ϕ}, where x is a sequence
of variables and constants containing each variable of free(ϕ). If x contains no
constants and no double occurrences of the same variable, then such query is
also denoted ϕ(x).

Semantics. Let db be an uncertain database. Let ϕ(x) be a CQAFO formula,
and a be a sequence of constants (of same length as x). We inductively define
db |= ϕ(a).

– If ϕ(x) = �q(x)� for some relational calculus query q(x), then db |= ϕ(a) if
for every repair r of db, r |= q(a);2

– db |= ¬ϕ(a) if db �|= ϕ(a);
– db |= ϕ1 ∧ ϕ2 if db |= ϕ1 and db |= ϕ2;
– db |= ϕ1 ∨ ϕ2 if db |= ϕ1 or db |= ϕ2;
– if ψ(x) = ∃yϕ(y,x), then db |= ψ(a) if db |= ϕ(a′,a) for some a′;
– if ψ(x) = ∀yϕ(y,x), then db |= ψ(a) if db |= ϕ(a′,a) for all a′.

Let Q = {x′ | ϕ(x)} be a CQAFO query. The answer Q(db) is the smallest
set containing θ(x′) for every valuation θ over vars(x) such that for some a,
θ(x) = a and db |= ϕ(a). Notice that vars(x′) = vars(x), but x′, unlike x, can
contain constants and multiple occurrences of the same variable. If x′ contains
no variables, then Q is Boolean.

4.2 Restrictions on Data Complexity

The language CQAFO of Sect. 4.1 captures our first postulate which states that
the database owner Bob returns exclusively certain answers. But we do not
prohibit that end user Alice does some post-processing on Bob’s answers. In this
section, we will add our second postulate which states that Bob rejects queries
q if the data complexity of �q� is not in FO. Unfortunately, Bob has to face the
following undecidability result.

Theorem 1. The following problem is undecidable. Given a relational calculus
query q, is �q� in FO?

Proof. Let q1 = {〈〉 | ∃x∃y∃z
(
R(x, z) ∧ S(y, z) ∧ ϕ

)} where ϕ is a closed rela-
tional calculus formula such that all relation names in ϕ are all-key. We show
hereinafter that �q� is in FO if and only if ϕ is unsatisfiable. The desired result
then follows by [1, Theorem 6.3.1], which states that (finite) satisfiability of
relational calculus queries is undecidable.

Obviously, if ϕ is unsatisfiable, then �q1� ≡ false, and hence �q1� is in FO.
2 r |= q(a) is defined in the standard way.
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We show next that if ϕ is satisfiable, then �q1� is not in FO. Assume that ϕ is
satisfiable. Let q0 = ∃x∃y∃z

(
R(x, z) ∧ S(y, z)

)
. Let CERTAIN0 and CERTAIN1

be the problems defined next.

– CERTAIN0: Given a database db, determine whether every repair of db sat-
isfies q0.

– CERTAIN1: Given a database db, determine whether every repair of db sat-
isfies q1.

Let db0 be a database that is input to CERTAIN0. We show a polynomial-
time many-one reduction from CERTAIN0 to CERTAIN1. Let S be the database
schema that contains the relation names occurring in ϕ. An algorithm can con-
sider systematically every finite database db′ over S and test db′ |= ϕ, until a
database db′ is found such that db′ |= ϕ. The algorithm terminates because ϕ is
satisfiable. Since the computation of db′ does not depend on db0, it takes O(1)
time. Since all relation names in db′ are all-key, we have that db′ is consistent.
Clearly, q0 is true in every repair of db0 if and only if q1 is true in every repair of
db0 ∪ db′. So we have established a polynomial-time many-one reduction from
CERTAIN0 to CERTAIN1. Since CERTAIN0 is coNP-hard [13], it follows that
CERTAIN1 is coNP-hard. Since FO � coNP [12], it follows that CERTAIN1 is
not in FO. ��

By Theorem 1, there exists no algorithm that allows Bob to decide whether
he has to accept or reject a relational calculus query. In general, little is known
about the complexity of �q� for relational calculus queries q. One of the stronger
known results is the following.

Theorem 2. ([13]). The following problem is decidable in polynomial time.
Given a self-join-free conjunctive query q, is �q� in FO? Moreover, if �q� is
in FO, then a relational calculus query equivalent to �q� can be effectively con-
structed.

In view of Theorems 1 and 2, the following scenario is the best we can go for
with the current state of art.

1. The database owner Bob only accepts self-join-free conjunctive queries q such
that �q� is in FO. Thus, Bob rejects every query that is not self-join-free con-
junctive, and rejects a self-join-free conjunctive query q if �q� is not in FO.

2. As before, Alice can do some first-order post-processing on the answers
obtained from Bob.

Under these restrictions, we focus on the following research task: given that Alice
wants to answer a self-join-free conjunctive query q on a database owned by Bob,
develop a strategy for Alice to get a subset (the greater, the better) of certain
answers. Our framework applies to Boolean queries by representing true and
false by {〈〉} and {} respectively. A formal definition follows.



362 F. Geerts et al.

4.3 Strategies

Strategies for a query q are defined next as relational calculus queries that can
be expressed in CQAFO and that are contained in �q�.
Definition 1. Let q be a self-join-free conjunctive query. A strategy for q is a
CQAFO query ϕ such that ϕ 
 �q� and for every atomic formula �q′� in ϕ, we
have that q′ is a self-join-free conjunctive query such that �q′� is in FO.

A strategy ϕ for q is optimal if for every strategy ψ for q, we have ψ 
 ϕ.
The problem OPTSTRATEGY takes in a self-join-free conjunctive query q and
asks to determine an optimal strategy for q.

Some observations are in place.

– If the input to OPTSTRATEGY is a self-join-free conjunctive q such that �q�
is in FO, then the CQAFO query �q� is itself an optimal strategy.

– Every strategy ϕ is in FO, because all atomic formulas �q′� are required to
be in FO. Therefore, if Alice wants to answer a query q such that �q� is not
in FO, then there is no strategy ϕ such that ϕ ≡ �q�.

– There is no fundamental reason why the input query to OPTSTRATEGY is
required to be self-join-free conjunctive query. However, developing strategies
for more expressive queries is left as an open question.

5 How to Construct Good Strategies?

Let q be a self-join-free conjunctive query. In this section, we investigate ways
for constructing good (if not optimal) strategies for q of a particular syntax.
In Sect. 5.1, we take the most simple approach: take the union of queries �qi�
contained in �q�, where qi is self-join-free conjunctive and �qi� is in FO. We then
show that the strategies obtained in this way cannot be optimal. Therefore, an
enhanced approach is developed in Sect. 5.2.

5.1 Post-processing by Unions only

Assume that the input to OPTSTRATEGY is a self-join-free conjunctive query
q(z). In this section, we look at strategies of the form

�⋃

i=1

�qi�, (3)

where each qi is of the form {zi | ∃yiBi} in which zi has same length as z and
Bi is a self-join-free conjunction of atoms.3

We use union (with its standard semantics) instead of disjunction to avoid
notational difficulties. For example, the union

{x, a | �R(x, a)�} ∪ {x, y | �S(x, y)�},

3 Notice that is can be easily verified that �{zi | ∃yiBi}� ≡ {zi | �∃yiBi�}.
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where a is a constant, is semantically clear, and is equivalent to

{x, y | �R(x, y) ∧ y = a� ∨ �S(x, y)�},

in which equality is needed. It would be wrong to write {x, y | �R(x, a)� ∨
�S(x, y)�}, an expression that is even not domain independent [1, p. 79].

Clearly, a formula of the form (3) is a strategy if for every i ∈ {1, . . . , �}, �qi�
is in FO and �qi� 
 �q�. The latter condition is equivalent to qi 
 q as shown
next.

Lemma 1. Let q and q′ be self-join-free m-ary conjunctive queries. Then, q 
 q′

if and only if �q� 
 �q′�.
Proof. Let q = {z | ∃yB} and q′ = {z′ | ∃y′B′}, where z and z′ both have the
same length m.

=⇒ Straightforward. ⇐= Assume �q� 
 �q′�. Let μ be an injective
mapping with domain vars(B) that maps each variable to a fresh constant not
occurring elsewhere. Since μ is injective, its inverse μ−1 is well defined. Let
db = μ(B). Clearly, db is consistent and q(db) = {μ(z)} = �q�(db). From
�q� 
 �q′�, it follows μ(z) ∈ q′(db) = �q′�(db). Then, there exists a valuation
θ over vars(B′) such that θ(B′) ⊆ db and θ(z′) = μ(z). Then μ−1 ◦ θ(B′) ⊆ B
and μ−1 ◦ θ(z′) = z. Since μ−1 ◦ θ is a homomorphism from q′ to q, it follows
q 
 q′ by the Homomorphism Theorem [1, Theorem 6.2.3]. ��

Lemma 1 does not hold for conjunctive queries with self-joins, as shown next.

Example 4. Let q = {〈〉 | R(a, b) ∧ R(a, c)}. For every uncertain database db,
�q�(db) = {}. Let q′ be a query such that q �
 q′ (such query obviously exists).
Then, �q� 
 �q′� and q �
 q′. ��

Lemma 1 allows us to construct strategies of the form (3), as follows. Assume
that the input to OPTSTRATEGY is a self-join-free conjunctive query q(z). For
some positive integer �, generate self-join-free conjunctive queries q1, . . . , q� such
that for each i ∈ {1, . . . , �}, qi 
 q and �qi� is in FO. The condition qi 
 q is
decidable by [1, Theorem 6.2.3]; the condition that �qi� is in FO is decidable
by Theorem 2. Then by Lemma 1,

⋃�
i=1�qi� is a strategy for q.

Unfortunately, Theorem3 given hereinafter states that there are cases where
no strategy of the form (3) is optimal. We first generalize Lemma 1 to unions.

Lemma 2. Let q0, q1, . . . q� be self-join-free m-ary conjunctive queries. Then,
�q0� 
 ⋃�

i=1�qi� if and only if for some i ∈ {1, . . . , �}, q0 
 qi.

Proof. ⇐= Straightforward. =⇒ Assume �q0� 
 ⋃�
i=1�qi�. Let q0 = {z0 |

∃y0B0}, where B0 is self-join-free. Let μ be an injective mapping with domain
vars(B0) that maps each variable to a fresh constant not occurring elsewhere.
Since μ is injective, its inverse μ−1 is well defined. Let db = μ(B0). Clearly,
db is consistent and q0(db) = {μ(z0)} = �q0�(db). From �q0� 
 ⋃�

i=1�qi�, it
follows that we can assume i ∈ {1, . . . , �} such that μ(z0) ∈ qi(db) = �qi�(db).
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Let qi = {zi | ∃yiBi}. Then, there exists a valuation θ over vars(Bi) such that
θ(Bi) ⊆ db and θ(zi) = μ(z0). Then μ−1 ◦ θ(Bi) ⊆ B0 and μ−1 ◦ θ(zi) = z0.
Since μ−1 ◦ θ is a homomorphism from qi to q0, it follows q0 
 qi. ��
Theorem 3. There exists a self-join-free conjunctive query q such that for every
strategy ϕ of the form (3) for q, there exists another strategy ψ of the form (3)
for q such that ϕ � ψ.

Proof. Let q = {〈〉 | ∃x∃y∃z
(
R(x, z) ∧ S(y, z)

)}. Then �q� is not in FO [14]. For
every constant c, let qc be the query defined by {〈〉 | ∃y∃z

(
R(c, z) ∧ S(y, z)

)}.
For every constant c, we have that �qc� 
 �q� and �qc� is in FO.

Let ϕ be a strategy for q of the form (3). Let A be the greatest set of constants
such that for all c ∈ A, there exists some i ∈ {1, . . . , �} such that qi ≡ qc. Let b
be a constant such that b �∈ A. Clearly ϕ 
 ϕ ∪ �qb� 
 �q�. It suffices to show
that ϕ � ϕ ∪ �qb�, meaning that ϕ is not optimal.

Assume towards a contradiction that �qb� 
 ϕ. By Lemma 2, there exists
i ∈ {1, . . . , �} such that qb 
 qi 
 q. Let qi be the existential closure of
(R(s, t) ∧ S(u, v)). From qi 
 q, it follows that t = v. From qb 
 qi and b �∈ A, it
follows that s, t, u are pairwise distinct variables. But then qi ≡ q, contradicting
that �qi� is in FO. We conclude by contradiction that ϕ � ϕ ∪ �qb�. ��

5.2 Post-processing by Unions and Quantification

The proof of Theorem3 indicates that strategies of the form (3) lack expressive-
ness because the number of constants in such strategies is bounded. An obvious
extension is to look for strategies that replace constants with existentially quan-
tified variables. The following example shows how such extension solves the lack
of expressiveness that underlies the proof of Theorem3.

Example 5. Let q = ∃x∃y∃z
(
R(x, z) ∧ S(y, z)

)
. Let ϕ be the CQAFO formula

defined by ϕ := ∃X�∃y∃z
(
R(X, z) ∧ S(y, z)

)�. It can be shown that ϕ is a
strategy for q, i.e., ϕ 
 �q� and �∃y∃z

(
R(X, z) ∧ S(y, z)

)� is in FO. Recall from
Example 2 that the use of upper case X is for readability. ��

Assume that the input to OPTSTRATEGY is a self-join-free conjunctive query
q(z). In this section, we investigate strategies of the form

�⋃

i=1

Qi, (4)

where for each i ∈ {1 . . . , �}, Qi is a CQAFO query of the form

{zi | ∃Xi�∃yiBi�}, (5)

in which zi has the same length as z, and Bi is a self-join-free conjunction
of atoms. It is understood that zi, Xi, and yi have, pairwise, no variables in
common, and that vars(ziXiyi) = vars(Bi). For readability, we will use upper
case Q to refer to CQAFO queries of the form (5). The main tools for constructing
strategies of the form (4) are provided by Theorems 4 and 5.
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Theorem 4. The following problem is decidable in polynomial time. Given a
CQAFO query Q of the form (5), is Q in FO? Moreover, if Q is in FO, then a
relational calculus query equivalent to Q can be effectively constructed.

Proof. A CQAFO query Q of the form (5) is in FO if and only if �∃yiBi� is in
FO. The latter condition is decidable by Theorem2.

Theorem 5. Given a self-join-free conjunctive query q1 and a CQAFO query
Q2 of the form (5), it can be decided whether Q2 
 �q1�.
Proof. (Crux.) Let q1 = {z1 | ∃y1B1} and Q2 = {z2 | ∃X2�∃y2B2�}. It can be
shown that Q2 
 �q1� if and only if there exists a valuation θ over vars(B1) such
that θ(z1) = z2 and θ(B1) ⊆ B2. ��

We point out that Theorem 5 is interesting in its own right. It is well known [1,
Corollary 6.3.2] that containment of relational calculus queries is undecidable.
A large fragment for which containment is decidable is the class of unions
of conjunctive queries. Notice, however, that the queries in the statement of
Theorem 5 need not be monotone (and even not first-order), and that decidabil-
ity of query containment for such queries is not obvious.

Example 6. Let Q = {x | ∃Y �R(x, Y )�}. Let db = {R(a, 1)} and db′ =
{R(a, 1), R(a, 2)}. Then db ⊆ db′, but Q(db) = {a} is not contained in
Q(db′) = {}. Hence Q is not monotone. We have that Q is equivalent to the
following relational calculus query:

{x | ∃y (R(x, y) ∧ ∀y′ (R(x, y′) → y = y′))}. ��
Assume that the input to OPTSTRATEGY is a self-join-free conjunctive query

q(z). Theorem 5 allows us to build a strategy of the form (4) for q as follows. Let
A be the set of constants that occur in q. Let ϕ be the disjunction of all (up to
variable renaming) CQAFO formulas Qi of the form (5) that use exclusively
constants from A such that Qi 
 �q� and Qi is in FO. Clearly, there are at most
finitely many such formulas (up to variable renaming). Containment of Qi in �q�
is decidable by Theorem 5. Finally, the condition that Qi is in FO is decidable
by Theorem 4. The following theorem remedies the negative result of Theorem3.

Theorem 6. For every self-join-free conjunctive query q, there exists a com-
putable strategy ϕ of the form (4) for q, such that for every strategy ψ of the
form (4) for q, ψ 
 ϕ.

Proof. Assume that the input to OPTSTRATEGY is a self-join-free conjunc-
tive query q(z). Let ϕ be the strategy defined in the paragraph preceding this
theorem. Let Q = {z0 | ∃X�∃yB�} be a query of the form (5) where B is a self-
join-free conjunction of atoms such that Q is in FO and Q 
 �q�. If all constants
that occur in B also occur in q, then Q is already contained in some disjunct of
ϕ (by construction of ϕ). Assume next that B contains some constants that do
not occur in q, and let these constants be a1, . . . , am. For i ∈ {1, . . . , m}, let Xi
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be a new fresh variable. Let B′ be the conjunction obtained from B by replacing
each occurrence of each ai with Xi. Let Q′ = {z0 | ∃X∃X1 · · · ∃Xm�∃yB′�}.
From the proof of Theorem2, it follows Q′ 
 �q�. It can be easily seen that
Q 
 Q′. Furthermore, from [13], it follows that Q′ is in FO. Since all constants
that occur in B′ also occur in q, we have that Q′ is already contained in some
disjunct of ϕ (by construction of ϕ).

To conclude, whenever Q = {z0 | ∃X�∃yB�} is a query of the form (5) where
B is a self-join-free conjunction of atoms such that Q is in FO and Q 
 �q�, we
have that ϕ ∪ Q 
 ϕ. ��

So far, we have imposed no restrictions on the size of the computable strategy
ϕ in the statement of Theorem 6. From a practical point of view, it is interesting
to construct, among all optimal strategies ϕ of the form (4), the one with the
smallest number � of disjuncts. It is an open question, however, how to minimize
strategies of the form (4).

6 Conclusion

We have studied a realistic setting for divulging an inconsistent database to
end users. In this setting, users access the database exclusively via syntactically
restricted queries, and get exclusively consistent answers computable in FO data
complexity. If the data complexity is higher, then the query will be rejected, in
which case users have to fall back on strategies that obtain a large (the larger,
the better) subset of the consistent answer. Such strategies combine answers
obtained from several “easier” queries.

Although our setting applies to arbitrary queries and constraints, we searched
for strategies when constraints are primary keys, and the database is accessible
only via self-join-free conjunctive queries for which consistent query answering
is in FO. Under these access restrictions, we showed how to construct strate-
gies that combine answers by means of union and quantification. It is an open
question whether our strategies can still be improved, e.g., by using negation.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: PODS, pp. 68–79. ACM Press (1999)

3. Bertossi, L.E.: Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2011)

4. Bertossi, L.E., Li, L.: Achieving data privacy through secrecy views and null-based
virtual updates. IEEE Trans. Knowl. Data Eng. 25(5), 987–1000 (2013)

5. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering
for robust ontology-based data access. In: IJCAI. IJCAI/AAAI (2013)

6. Cao, N.V., Fragnire, E., Gauthier, J.-A., Sapin, M., Widmer, E.D.: Optimizing the
marriage market: an application of the linear assignment model. Eur. J. Oper. Res.
202(2), 547–553 (2010)



First-Order Under-Approximations of Consistent Query Answers 367

7. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple
deletions. Inf. Comput. 197(1–2), 90–121 (2005)
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Abstract. Answer set programming is a form of declarative program-
ming that can be used to elegantly model various systems. When the
available knowledge about these systems is imperfect, however, the
resulting programs can be inconsistent. In such cases, it is of interest
to find plausible repairs, i.e. plausible modifications to the original pro-
gram that ensure the existence of at least one answer set. Although sev-
eral approaches to this end have already been proposed, most of them
merely find a repair which is in some sense minimal. In many applica-
tions, however, expert knowledge is available which could allow us to
identify better repairs. In this paper, we analyze the potential of using
expert knowledge in this way, by focusing on a specific case study: gene
regulatory networks. We show how we can identify the repairs that best
agree with insights about such networks that have been reported in the
literature, and experimentally compare this strategy against the baseline
strategy of identifying minimal repairs.

1 Introduction

Answer Set Programming (ASP) is a form of declarative programming mainly
oriented towards NP-hard problems [19]. It enables a form of non-monotonic
reasoning by virtue of a negation-as-failure operator with a purely declarative
semantics [12]. An ASP program is a set of rules that describes a problem [19].
This set of rules is fed to answer set solvers that find stable models (i.e. answer
sets) of the program at hand. These answer sets then directly correspond to
the solutions of the considered problem. Alternatively, answer set programs are
sometimes also used to simulate systems (e.g. for solving planning problems
[17,18]), in which case answer sets typically correspond to sequences of states.

We are interested in the case where ASP programs have no answer sets. We
call these programs inconsistent, and we look for ways to restore their consis-
tency. For example, in a search problem, having no answer sets could mean that
the problem is over-constrained, and we may want to look at ways to relax the
problem. In applications where ASP programs simulate a system, inconsisten-
cies could mean that the rules describing the system being simulated are not in
c© Springer International Publishing Switzerland 2015
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agreement with available observations. We may want to find a way to adapt the
description of the system, which amounts to a form of belief revision for answer
set programs [7]. In this paper, we will focus on the latter type of ASP programs.

While different methods exist for repairing ASP programs, most of them
are based on finding some sort of minimal repair, e.g. adding or removing the
smallest number of facts to ensure that the program has at least one answer
set [1,2,10]. While this is a reasonable principle in the absence of any further
information, in real-world applications, we often have access to some kind of
expert knowledge about the system being modelled that can be exploited to
identify the most plausible repair (which may not necessarily be minimal).

To demonstrate this idea, let us consider the following biological setup: in
Fig. 1, we have a table containing time-series observed data about which of three
genes were active at different time points, and a draft of a Gene Regulatory
Network (GRN) which might not be correct. A GRN is a directed graph that
represents the way a group of genes affect one another. GRNs can be modeled
in different ways [4,6,13], with one popular model being boolean networks [24].
Treating a GRN as a boolean network implies that an edge from gene A to
gene B can either represent a positive regulation, which means that A activates
B, or a negative regulation, which means that A inhibits B. If A is active at
a specific time step, and A activates B, B becomes active in the next time
step. Similarly, if A is active and A inhibits B, B becomes inactive in the next
time step. More details about activation rules are provided in Sect. 3. The GRN
graph might have missing edges and/or erroneous edges due to the complexity
of network generation methods [8,20], and as a result it might be inconsistent
with the observed experimental data in the table. The task at hand is to repair
the network to make it consistent with the table. A common method of repair
would be to find the smallest number of modifications to the graph that makes
it consistent with the table. Based on the GRN and table in Fig. 1, since gene 2
stays active from t = 1 to t = 2, a minimal repair would be to remove the edge
2 � 2. The repaired network is shown in Fig. 2(a).

However, there is a known property about GRNs that states that the diame-
ter (i.e. the length of the longest of the shortest paths between two nodes in the
graph) of a GRN tends to be very small. Considering this information leads to
another repair, which is shown in Fig. 2(b). Notice that this repair is not min-

T gene1 gene2 gene3

t=0 + - -
t=1 - + -
t=2 - + +

Fig. 1. A time-series table which is inconsistent with a given GRN. Edges with pointed
endpoints denote activations. Edges with flat endpoints denote inhibitions. The edge
2 � 2 causes the inconsistency.
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(a) (b)

Fig. 2. Two possible repairs for the GRN from Fig. 1. (a) A minimal repair (diame-
ter = 2). (b) A repair that minimizes the diameter of the graph (diameter = 1).

imal (we removed the edge 2 � 2 and added the edge 3 � 1), but the diameter
of this new graph (diameter = 1) is smaller than the one in the previous repair
(diameter = 2). We have thus generated a repair, which could be more plausible
than the minimal repair.

The aim of this paper is to assess the viability of using informal, expert-
provided rules of thumb for repairing inconsistent ASP programs, focusing on
the specific use case of GRNs. In particular, we show how expert knowledge
about GRNs found in the biological literature can be formalized in ASP and
we experimentally compare the quality of the resulting repairs against baseline
methods. Note that while we only consider GRNs in our experiments, the pro-
posed method is entirely generic, being applicable to any setting where expert
knowledge can be formalized in ASP.

This paper is structured as follows. First, in Sect. 2 we provide some back-
ground on answer set programming. In Sect. 3, we describe the considered use
case of gene regulatory networks, summarizing in particular the available expert
knowledge from the biological literature. Section 4 then shows how this expert
knowledge can be encoded in ASP and how these encodings can be used to
identify plausible repairs. Subsequently, in Sect. 5, we discuss our experimental
results where we apply our approach on five known gene regulatory networks.
Finally, we conclude in Sect. 6.

2 Answer Set Programming

Answer Set Programming (ASP) is a declarative problem solving language
[12,19], which requires users to describe a problem as a set of rules. ASP solvers
can then find the answer sets (see below), which correspond to the solutions of
the encoded problem. An ASP rule has the form

h ← a1, . . . , aj ,not bj+1, . . . ,not bk. (1)

where h, a1, . . . , aj and bj+1, . . . , bk are called atoms. Let r be an ASP rule of
form (1). head(r) = h is the head of r and body(r) = {a1, . . . , aj , not bj+1, . . . ,
not bk} is the body of r. Let body+(r) = {a1, . . . , aj} and body−(r) =
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{bj+1, . . . , bk}. The “,” in body(r) represents a conjunction. If body(r) = ∅, then
r is called a fact. For convenience, often the symbol ← is omitted when writing
facts in ASP. If head(r) = ∅, then r is called a constraint. Constraints act as
filters on the possible answer sets. Indeed, answer set programs will follow a
generate-and-test methodology, in which a set of rules is used to generate can-
didate solutions and constraints are then used to filter these candidates. The
keyword not represents negation-as-failure in ASP, where not a intuitively holds
whenever we cannot derive that a holds. An answer set program Π is a set of
ASP rules of the form r. A set of atoms X is closed under Π if for any rule r ∈ Π,
head(r) ∈ X whenever body+(r) ⊆ X. The smallest set of atoms closed under Π
is denoted by Cn(Π). The reduct ΠX of Π relative to X is defined by

ΠX = {head(r) ← body+(r) | r ∈ Π and body−(r) ∩ X = ∅}.
A set X of atoms is called an answer set (i.e. stable model) of Π if Cn(ΠX) = X.
For example, let Π be the answer set program formed by the rule c ← not b and
the fact a. This program has one answer set {a, c}.

In practice, it is often easier to encode ASP programs using first-order rules
like R(X1,X2,X3) ← Q(X1,X2), not S(X3). Such rules should be seen as a com-
pact representation of a set of ASP rules, called the groundings of the first-order
rule, which are obtained by considering all possible instantiations of the variables
by constants appearing in the program. There are ASP grounders (e.g. gringo)
that combine a set of constant (ground) facts and ungrounded rules to give us an
equivalent ground program. These programs are then solved using an ASP solver
(e.g. clasp) to give us answer sets that correspond to solutions of our problem.

3 Case Study: Biological Networks

Biological networks are an established application of ASP [9,11]. Such networks
offer a good opportunity for assessing how expert knowledge can help with repair-
ing inconsistencies, as several rules of thumb that could be derived about such
networks have been described in the biological literature. In this section, we
briefly recall what Gene Regulatory Networks are, and present a setup where
inconsistencies arise. We also provide a summary of the relevant properties found
in the literature that we can formulate into rules of thumb.

A Gene Regulatory Network (GRN) is a network that represents the inter-
actions between a group of cell genes. The nodes of the network are the genes,
whereas the edges of the network encode the interactions between the genes.
There are two types of possible interactions between a pair of genes: a gene
either activates another gene, or inhibits another gene. This means that if gene
A activates gene B, and A is active at time step t, then B becomes active at time
step t+1. Likewise, if gene A inhibits gene B, and A is active at time step t, then
B becomes inactive at time step t+1. In the case where a gene is activated and
inhibited simultaneously, different activation rules may be applied to determine
its subsequent state [23]. Different kinds of experimental observations can be
used to automatically construct GRNs [8,20].
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Our setup consists of the following. We have an automatically generated GRN
describing a cell cycle. Since it has been automatically constructed, it is likely to
be imperfect, in the sense that we may obtain observations that are inconsistent
with the behaviour predicted by the network, which would mean that it needs to
be revised. We also have a time-series table that lists the state of the correspond-
ing genes in this GRN at consecutive time steps. At every time step, a given gene
can either be active or inactive. The table we have at our disposal corresponds
to data that has been experimentally observed, but was not available during the
GRN generation process. Our problem then comes down to checking whether the
GRN is inconsistent with the data from the time-series table, i.e. whether it fails
to correctly predict how the states of the genes evolve, and in that case, repair it.

Several methods have been developed that use ASP to repair inconsisten-
cies found in GRNs [10,11,22]. These methods often consist of finding some
kind of minimal repair. However, expert knowledge about GRNs can be used
to derive rules of thumb that help in finding more plausible repairs, which are
not necessarily minimal. In [16], it is stated that every gene network converges
to a final stable state (Property 1). This allows us to create an extra check to
find whether the GRN we are trying to repair converges to a stable state that
indeed corresponds to the final time step in the table. In [13], Kauffman found
that a genetic network will behave chaotically unless there is a restriction on
the number of regulatory inputs and outputs per node (Property 2). This can
be encoded as a rule of thumb where the number of input and output edges of
every node should be limited. Another rule of thumb can be derived from the
fact that various biological properties in a gene network depend on the number
of non-zero interactions between the nodes of this network, as is discussed in [14]
(Property 3). This allows us to derive that similar gene networks would more
likely have a similar number of total interactions. Also in [14], it is observed
that nodes tend to be positively regulated by nodes that are active at earlier
states of a cell cycle and negatively regulated by nodes that are active later in
the process (Property 4). In [5], it is stated that the diameter (i.e. the length of
the shortest path between the two nodes that are furthest apart in the network)
of GRN graphs tend to be very small (Property 5). In [15], the idea of dominant
motifs (i.e. sub-graphs) is discussed, where these motifs tend to occur frequently
in multiple kinds of GRNs. This allows us to formulate a rule of thumb that sim-
ilar networks are likely to share the same dominant motifs (Property 6). Finally,
[27] states that the size of the basin of attractors (i.e. the stable states to which
most initial states of the network converge to) in a GRN is a vital quantity
in terms of understanding network behaviour and may relate to other network
properties such as stability (Property 7). This allows us to check whether the
state of the repaired network with the largest basin size corresponds indeed to
the final stable state in the time-series table.

4 Repairing ASP Programs Using Rules of Thumb

In this section, we show how inconsistent ASP programs can be repaired. In
Sect. 4.1, we encode the facts of our program, which correspond in our case to
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a GRN and a table with observed data, and show the rule that checks our pro-
gram’s consistency. We then recall in Sect. 4.2 how a minimal repair of an incon-
sistent ASP program can be found, using the meta-programming technique pro-
posed in [10]. Finally, in Sect. 4.3 we improve the baseline method from Sect. 4.2
by taking into account rules of thumb. We illustrate the main idea by focusing
on the biological properties of GRNs that we discussed in the previous section.

4.1 Encoding GRNs in ASP

In this section, we recall how a GRN and corresponding time-series table can be
encoded in ASP, as presented in [9,11,22,23]. This includes the observed time-
series table data, as well as the GRN graph that might be inconsistent with the
table. For every gene i, we introduce the fact gene(i). For every edge from gene i
to gene j, we introduce the fact activates(i, j) if i activates j, or inhibits(i, j) if
i inhibits j. As for the time-series table, we include facts of the form active(i, t)
and inactive(i, t) which indicate that gene i is active at time t and that gene i
is inactive at time t respectively. We also represent every time step with the fact
time(i) with 0 ≤ i ≤ tfinal, with tfinal representing the final time step that the
gene regulatory network converge to.

Then, to check for consistency between the graph and the table, three things
need to be done. First, we write activation and inhibition rules for the graph
that determine whether a gene is activated or inhibited (or neither) at each time
step. We use the following activation rule: if a gene is positively regulated by at
least one other gene, and it is not negatively regulated by any other gene, then
it is activated. A similar rule is used to determine when a gene is inhibited. This
is shown in (2). Second, we determine the state for every gene at every time step
based on its state given by the table, and on the activation and inhibition rules
from the graph. This is shown in (3). Third, we check if the states of the genes
generated by the activation and inhibition rules of the graph correspond with
the states of the genes in the time-series table, shown in (4),

receivesAct(Y, T ) ← activates(X,Y ), active(X,T ).
receivesInh(Y, T ) ← inhibits(X,Y ), active(X,T ).

activated(Y, T ) ← receivesAct(Y, T − 1), not receivesInh(Y, T − 1).
inhibited(Y, T ) ← receivesInh(Y, T − 1), not receivesAct(Y, T − 1).

← activated(Y, T ), inhibited(Y, T ).

(2)

inactive(Y, T ) ← active(Y, T − 1), inhibited(Y, T ).
active(Y, T ) ← active(Y, T − 1), not inhibited(Y, T ).
active(Y, T ) ← inactive(Y, T − 1), activated(Y, T ).

inactive(Y, T ) ← inactive(Y, T − 1), not activated(Y, T ).

(3)

← active(Y, T ), inactive(Y, T ). (4)

resulting in an inconsistent program if and only if the data from the graph and
the time-series table do not correspond to one another.
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4.2 Minimal Repair

The repair operations consist of either adding or removing an edge between two
genes. Thus, we generate four possible repair choices for every pair of nodes:
add a new activation edge, add a new inhibition edge, remove an existing edge
or do nothing. This introduces the facts addActEdge(U, V ), addInhEdge(U, V )
and removeEdge(U, V, S) respectively. Then, to take the generated repair into
account, we create the facts activates(i, j) and inhibits(i, j) using the following

activates(U, V ) ← edge(U, V, 1), not removeEdge(U, V, 1).
activates(U, V ) ← addActEdge(U, V ).
inhibits(U, V ) ← edge(U, V,−1), not removeEdge(U, V,−1).
inhibits(U, V ) ← addInhEdge(U, V ).

(5)

The ASP program constructed so far has one answer set for each possible repair
of the original GRN that will make it consistent with the table. To consider
minimal repairs only, we first define the cost of a repair, using the following rules

addEdge(U, V, 1) ← addActEdge(U, V ).
addEdge(U, V,−1) ← addInhEdge(U, V ).

costAdding(X) ← X = #count{addEdge(U, V, S)}.
costRemoving(Y ) ← Y = #count{removeEdge(U, V, S)}.

repairCost(Z) ← costAdding(X), costRemoving(Y ), Z = X + Y.

#minimize[repairCost(Z) = Z].

(6)

These rules contain aggregates and conditions supported by the ASP solver clasp.
Aggregates behave like built-in functions in the ASP solver. For example, in
(6), the aggregate #count intuitively counts the number of instances of the
literals addEdge and removeEdge, and stores the results in variables X and
Y respectively. Whereas the aggregate #minimize adds an optimization value
that minimizes the number held by the variable Z in the literal repairCost(Z).
This intuitively minimizes the cost of the repair. In addition, the 5th rule in (6)
contains the condition Z = X + Y . This condition can be added to the body of
a rule, and has to be satisfied for the rule to be satisfied.

4.3 Using Rules of Thumb for Identifying Plausible Repairs

While the idea of finding a minimal repair, as explained for GRNs in Sect. 4.2,
is defensible in cases where we have no further information, it is far from opti-
mal. First, there is no reason why the correct repair has to be minimal; as
we will see in Sect. 5, in the case of GRNs the correct repair is actually rarely
minimal. Second, there can be exponentially many minimal repairs, and with-
out further knowledge we would have to select one arbitrarily. We assume that
in most real-world applications, however, we have access to some kind of back-
ground knowledge that could help us identify plausible repairs. Such background
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knowledge usually comes in the form of rules of thumb. In this section, we will
consider the seven principles about GRNs that we found in the literature (see
Sect. 3). We will briefly explain how each of these principles can be encoded as
some kind of soft constraint in ASP. These soft constraints will introduce penalty
weights if they are not satisfied by correct repairs. These individual penalties are
then added up and included in the repair cost that already contains the cost of
adding and removing an edge. The repair that makes the graph consistent with
the time-series table and has the lowest overall cost will be selected as the best
repair. Note that we cannot realistically expect any training data to be available
to learn weights (e.g. reflecting the importance of each principle), making our
approach quite different from e.g. approaches for repairing using soft constraints
in Markov logic [21,25]. Therefore, we instead set the weights in a uniform man-
ner, i.e. they are chosen such that each principle roughly has the same impact
on the choice of repair. In other words, our approach is only based on a direct
encoding of available expert knowledge. The effectiveness of such a strategy will
be experimentally analyzed in Sect. 5.

Property 1: Last Time Step as Fixed State. We create a new time step
(tfinal+1) in the table with the state of the genes identical to their states at
(tfinal). Then, we perform a similar consistency check as we did in rules (2)–(4).
If the repair is still correct, i.e. if the graph is still consistent with the table after
the addition of the time step (tfinal+1), then the time step (tfinal) is indeed a
fixed state, and no cost is added to the repair. Otherwise, we increase the cost
of the repair by a constant value equal to the total number of initial edges in the
network. Since we are repairing by adding and removing edges, we choose the
maximum penalty for every property to be equal to the total number of initial
edges in the network.

Property 2: Degree of a Gene. We need to find the degree of a gene, given
by k = kin + kout with kin being the number of incoming edges and kout the
number of outgoing edges of the gene. We then need to make sure that these
degrees fall within a certain range. We explain how we obtain this range in
Sect. 5. We then call kBadGenes the number of genes that have a k degree that
falls outside the range limits. The penalty from this property is then multiplied
by the ratio of initial edges per gene for every “bad gene” found. This makes sure
that the maximum penalty is equal to the total number of initial edges in the
network (if all the genes of the network are “bad genes”, the maximum penalty is
penaltymax = (genestotal) × (edgesinitial/genestotal) = edgesinitial). This property
is added using the following rules:

edgeAfterRepair(U, V ) ← activates(U, V ).
edgeAfterRepair(U, V ) ← inhibits(U, V ).

kOut(C,X) ← X = #count{edgeAfterRepair(C,D)}, gene(C).
kIn(C,X) ← X = #count{edgeAfterRepair(D,C)}, gene(C).
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kDegree(C,Z) ← kIn(C,X), kOut(C, Y ), Z = X + Y. (7)
kBadGene(C) ← kDegree(C,Z), Z < kmin.

kBadGene(C) ← kDegree(C,Z), Z > kmax.

kBadGenes(X) ← X = #count{kBadGene(C)}.

Property 3: Total Number of Edges. To encode this property, we count the
total number of interactions between the genes and check whether this number
falls within a certain range limit (see Sect. 5). If the number is outside the range
we set, a penalty equal to the total number of initial edges is added to the repair
cost. Otherwise, the penalty is zero.

Property 4: Likely Interactions Based on Gene State. For this property,
we divide the genes into likely activators and likely inhibitors based on whether
they are active during the first half or the second half of the cycle respectively.
The same gene can be both a likely activator and a likely inhibitor. We then
check the outgoing edges of every gene, and increase the cost of the repair every
time a likely activator (that is not also a likely inhibitor) inhibits another gene,
or a likely inhibitor (that is not also a likely activator) activates another gene.
The penalty is increased by 1 for every “bad” edge found, with the maximum
penalty being the total number of initial edges in the network. We encode this
property using the following rules:

likelyAct(C) ← active(C, T ), T <= thalf .

likelyInh(C) ← active(C, T ), T > thalf .

badEdge(C,D) ← likelyAct(C), inhibits(C,D), not likelyInh(C), C ! = D.

badEdge(C,D) ← likelyInh(C), activates(C,D), not likelyAct(C), C ! = D.

badEdges(X) ← X = #count{badEdge(C,D)}. (8)

Property 5: Network Diameter. To encode this property, we first need to
make sure that every gene of the network is reachable, using the following rules:

link(X,Y ) ← edgeAfterRepair(X,Y ), X ! = Y.

link(Y,X) ← edgeAfterRepair(X,Y ), Y ! = X.

reachable(X) ← link(1,X).
reachable(Y ) ← reachable(X), link(X,Y ).

← gene(X), not reachable(X).

(9)

Then, we find the shortest distance between every pair of genes by finding all
the possible paths between them, and minimizing the number of path links. The
greatest value of these shortest distances is the diameter of the network.
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dist(X,Y, 1) ← link(X,Y ), X ! = Y.

dist(X,Y, 2) ← link(X,A), link(A, Y ), X ! = Y.

dist(X,Y, 3) ← link(X,A), link(A,B), link(B, Y ), X ! = Y.

. . . (10)
smallestDist(X,Y,D) ← D = #min[dist(X,Y,C) = C], dist(X,Y,Z).

diameter(D) ← D = #max[smallestDist(X,Y,C) = C].

The penalty cost that is added depends on the diameter that was found. Again,
if the diameter falls within a certain range limit (see Sect. 5), no penalty is added
to the repair cost. Otherwise, the cost is increased by a penalty equal to the total
number of initial edges in the network.

Property 6: Dominant Motifs. A motif is a small pattern with usually 3 or
4 nodes that is found repeatedly in a network graph. It does not matter which
genes these nodes correspond to, or the type of the edges between the nodes. For
this property, we use an external program described in [26] to find the dominant
motifs of popular GRNs in the literature. The GRN that we are repairing is
not used during this step. We then encode these motifs in our program and try
to maximize the number of their instances in the repaired network. For every
instance of dominant motif that we find in the repaired network, we decrease
the penalty of this property by 1, starting with the maximum penalty equal to
the total number of initial edges in the network (the minimum penalty is zero).

Property 7: Size of Basin of Attractors. To use this property, we need
to find the final state of every possible initial state of a network. To do this,
we use a standalone program described in [3]. We then need to make sure that
the most popular final state of the network given by the output of this program
corresponds indeed to its state at the final time step (tfinal) given by the time-
series table. To apply this property, we adapt the answer sets of our program in
the following way. For each repaired network (i.e. for each answer set), we add
a penalty equal to the total number of initial edges in the network if its most
popular final state does not correspond to the state at the final time step (tfinal)
given by the table. Otherwise, we do not add any penalty.

5 Experimental Results

To test our approach, we use the following 5 GRNs: Budding Yeast, Fission Yeast,
C. Elegans, Arabidopsis and Mammalian Cell Cycle. We corrupt each of these
GRNs by adding and removing edges, and then try to repair them. Every time
we corrupt a network, we remove R randomly chosen edges, and subsequently
add N randomly chosen edges (choosing between activation and inhibition edges
with equal probability). We set N and R as percentages of the initial number of
edges for each network that we are corrupting. For our experiments, we consider
7 corruption setups by varying the percentages N and R in the following way:
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(a) Budding Yeast network
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(b) Fission Yeast network
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(c) C. Elegans network
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(d) Arabidopsis network

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

Corruption setup

F
1

sc
o
re

/
J
a
cc

a
rd

in
d
ex

F1 score without RoTh

F1 score with RoTh

Jaccard index without RoTh

Jaccard index with RoTh

(e) Mammalian Cell Cycle network

Fig. 3. Average F1 score and Jaccard index for 7 corruption setups of 5 GRNs, with
and without the addition of Rules of Thumb (RoTh).

N = 20 %/R = 80 %, N = 30 %/R = 70 %, N = 40 %/R = 60 %, N = 50 %/R = 50 %,
N = 60 %/R = 40 %, N = 70 %/R = 30 % and N = 80 %/R = 20 %.

Every time we select a network to corrupt and repair, we learn the relevant
parameters of the rules of thumb from the other four, uncorrupted networks. For
Property 2, we learn the degrees kmin and kmax from the other four networks by
setting kmin as the smallest degree value of the other four networks and kmax as
the largest degree value. The range [diametermin, diametermax] in Property 5 is
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learned similarly, where diametermin is the smallest diameter value of the other
four networks, and diametermax is the largest diameter value. For Property 3,
the range of the total number of edges is calculated as follows. We learn from
the other four networks the ratio of number of edges per node, and we keep
the minimum (ratiomin) and maximum (ratiomax) values that we find. Then, we
determine what the expected number of edges should be for the test network by
multiplying these two ratios with the number of nodes in the test network.

To evaluate our results, we use the F1 score and Jaccard index which we
calculate as follows. Let A be the set of edges of the repaired network and B
the set of edges of the original network. We write |A| and |B| for the number of
edges of the repaired and original network respectively. The F1 score is given by
F1 = 2×(precision×recall)/(precision+recall), with precision = |A∩B| / |B| and
recall = |A∩B| / |A|. The Jaccard index is given by J(A,B) = |A∩B| / |A∪B|.
We run every experiment (i.e. every corruption setup on every network) 10 times
and report the average F1 score and Jaccard Index of the best repair that was
found. In the case where multiple repairs with the same minimum cost were
found, we select the first repair that we get from the solver as best repair. We
have used the grounder gringo and the solver clasp to run our experiments.

The results of our experiments are shown in Fig. 3. Each graph corresponds
to a different GRN. The dashed lines represent the average F1 score and Jaccard
index of the best repair without the addition of rules of thumb (i.e. best minimal
repair), and the solid lines represent the same values after the addition of rules of
thumb. We notice a consistent improvement in both metrics with the addition
of rules of thumb. Instead of only minimizing the number of applied repair
operations, the addition of rules of thumb also focuses on preserving the biggest
number of properties that were found in similar GRNs. This allows the repairing
process to avoid many mistakes. For example, while a minimal repair can have a
node detached from the rest of the graph, a more plausible repair that keeps all
the nodes of a GRN connected can be achieved by simply following a rule that
describes this property.

6 Conclusion and Discussion

In this paper, we have explored how expert knowledge, in the form of rules of
thumb, can be used to find better ways of repairing an inconsistent ASP program.
As a case study, we have focused our experiments on a biological setup where
a GRN and a time-series table are in conflict with each other. Our experiments
have shown that our method of repairing by using rules of thumb leads to a
better performance in terms of F1 score and Jaccard measure. This leads to
more plausible repairs than when simply selecting the minimal one, with only
very limited access to training data.

The idea of adding soft constraints to prefer a model over another is not new.
Many applications of Markov logic strongly utilize this concept [21,25]. However,
combining the idea of rules of thumb with the ease by which ASP can model
systems provides a framework that elegantly takes advantage of both soft and
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hard constraints. Compared to Markov logic, ASP offers us more flexibility in
the term of what we optimize, e.g. we are not restricted to minimizing the sum
of penalties, although that is how we used the rules of thumb in this paper. In
the future, it would be interesting to do an experimental comparison between
our ASP approach and its Markov logic counterpart.
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Abstract. In this paper we deal with propositional fuzzy formulae con-
taining several propositional symbols linked with connectives defined in
a lattice of truth degrees more complex than Bool. Instead of focusing on
satisfiability (i.e., proving the existence of at least one model) as usually
done in a SAT/SMT setting, our interest moves to the problem of finding
the whole set of models (with a finite domain) for a given fuzzy formula.
We reuse a previous method based on fuzzy logic programming where
the formula is conceived as a goal whose derivation tree, provided by our
FLOPER tool, contains on its leaves all the models of the original for-
mula, together with other interpretations. Next, we use the ability of the
FuzzyXPath tool (developed in our research group with FLOPER) for
exploring these derivation trees once exported in XML format, in order
to discover whether the formula is a tautology, satisfiable, or a contra-
diction, thus reinforcing the bi-lateral synergies between FuzzyXPath
and FLOPER.

Keywords: Fuzzy logic programming · Automatic theorem proving ·
Fuzzy XPath

1 Introduction

Research on SAT (Boolean Satisfiability) and SMT (Satisfiability Modulo The-
ories) [9] represents a successful and large tradition in the development of highly
efficient automatic theorem solvers for classic logic. More recently there also
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exist attempts for covering fuzzy logics, as occurs with the approaches presented
in [6,21]. Moreover, if automatic theorem solving supposes too a starting point
for the foundations of logic programming as well as one of its important appli-
cation fields [7,12,16,20], in [11] we showed some preliminary guidelines about
how fuzzy logic programming [8,13,14,17,19] can face the automatic proving of
fuzzy theorems by making use of the FLOPER environment developed in our
research group [18] (visit http://dectau.uclm.es/floper/). The main goal of the
present paper is to reinforce this last method of [11] by means of the FuzzyX-
Path tool developed too with FLOPER as described in [2,4,5] (the application
is freely available from http://dectau.uclm.es/fuzzyXPath).

Let us start our discussion with an easy motivating example. Assume that we
have a very simple digital chip with just a single input port and just one output
port, such that it reverts on Out the signal received from In. The behaviour of
such chip can be represented by the following propositional formula F : (¬In ∧
Out) ∨ (In ∧ ¬Out). Depending on how we interpret each propositional symbol,
we obtain the following final set of interpretations for the whole formula:

I1 : {In = 0, Out = 0} ⇒ F = 0 I2 : {In = 0, Out = 1} ⇒ F = 1
I3 : {In = 1, Out = 0} ⇒ F = 1 I4 : {In = 1, Out = 1} ⇒ F = 0

A SAT solver easily proves that F is satisfiable since, in fact, it has two models
(i.e., interpretations of the propositional variables In and Out that assign 1 to
the whole formula) represented by I2 and I3. An alternative way for explic-
itly obtaining such interpretations consists of using the fuzzy logic environment
FLOPER developed in our research group. As we will explain in the rest of
the paper, when FLOPER executes the following goal representing formula
F “(@not(i(In)) & i(Out)) | (i(In) & @not(i(Out)))” with respect to a
fuzzy logic program composed by just two rules: “i(1) with 1” and “i(0) with
0”, it generates an execution tree where models I2 and I3 appear as leaves (see
[11]). Each branch in the tree starts by interpreting variables In and Out and
continues with the evaluation of operators (connectives) appearing in F .

Note that whereas formula F describes the behaviour of our chip in an
“implicit way”, the whole set of models I2 and I3 “explicitly” describes how
the chip successfully works (any other interpretation not being a model, repre-
sents an abnormal behaviour of the chip), hence the importance of finding the
whole set of models for a given formula.

Assume now that we plan to model an “analogic” version of the chip, where
both the input and output signals might vary in an infinite range of values
between 0 and 1, such that Out will simply represent the “complement” of In.
The new behaviour of the chip can be expressed again by the same previous
formula, but taking into account now that connectives involved in F could be
defined in a fuzzy way as follows (see also Fig. 1 afterwards):

¬x = 1 − x Product logic’s negation
x ∧ y = min(x, y) Gödel logic’s conjunction
x ∨ y = min(x + y, 1) �Lukasiewicz logic’s disjunction

http://dectau.uclm.es/floper/
http://dectau.uclm.es/fuzzyXPath
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Here we could use an SMT solver to prove that F is satisfiable, as done in [6,11],
but the goal of this paper is to use techniques based on fuzzy logic programming
for discovering models.

On the other hand, the eXtensible Markup Language (XML) is widely used
in many areas of computer software to represent machine readable data. XML
provides a very simple language to represent the structure of data, using tags to
label pieces of textual content, and a tree structure to describe the hierarchical
content. XML emerged as a solution to data exchange between applications
where tags permit to locate the content. XML documents are mainly used in
databases. The XPath language [10] was designed as a query language for XML
in which the path of the tree is used to describe the query. XPath expressions
can be adorned with boolean conditions on nodes and leaves to restrict the
number of answers of the query. XPath is the basis of a more powerful query
language (called XQuery) designed to join multiple XML documents and to give
format to the answer. In [2,4,5] we have presented an XPath interpreter (together
with a debugger, as documented in [1,3]) extended with fuzzy commands which
somehow rely on the implementation based on fuzzy logic programming by using
FLOPER.

In [5] we illustrated the mutual benefits between the FLOPER program-
ming environment and the FuzzyXPath interpreter. Initially FLOPER was
conceived as a tool for implementing flexible software applications – as it is the
case of FuzzyXPath – coded with the fuzzy logic language MALP and offering
options for compiling fuzzy rules to standard Prolog clauses, running goals and
drawing execution trees. Such trees, once modeled in XML format inside the
proper FLOPER tool, can be then analyzed by the FuzzyXPath interpreter –
by means of simple XPath queries augmented with fuzzy commands – in order
to discover details (such as fuzzy computed answers, possible infinite branches
and so on) of the computational behaviour of MALP programs after being exe-
cuted into FLOPER. The main goal of this paper is to use FuzzyXPath for to
automate the process of directly extracting the set of models contained on the
proof trees associated to fuzzy formulae explained before, once such trees have
been exported by FLOPER in XML format.

2 Fuzzy Logic Programming and FLOPER

In what follows we describe a very simple subset of the Multi-Adjoint Logic
Programming language, MALP in brief, (see [17] for a complete formulation
of this framework), which in essence consists of a first-order language, L, con-
taining variables, constants, function symbols, predicate symbols, and several
(arbitrary) connectives to increase language expressiveness: implication connec-
tives (denoted by ←1,←2, . . .); conjunctive connectives (∧1,∧2, . . .), disjunctive
connectives (∨1,∨2, . . .), and hybrid operators (usually denoted by @1,@2, . . .),
all of them are grouped under the name of “aggregators”. Although these con-
nectives are usually binary operators, our framework also admits aggregators of
any arity denoted as @(x1, . . . , xn). By definition, the truth function for an n-ary
aggregation operator [[@]] : Ln → L is required to be monotonous.



388 J.M. Almendros-Jiménez et al.

&P(x, y) x ∗ y |P(x, y) x + y − x ∗ y ←P (x, y) min(1, x/y)

&G(x, y) min(x, y) |G(x, y) max{x, y} ←G (x, y)
1 if y ≤ x

x otherwise

&L(x, y) max(0, x + y − 1) |L(x, y) min{x + y, 1} ←L (x, y) min{x − y + 1, 1}

Fig. 1. Conjunctors, disjunctors and implications from Product, Gödel and �Lukasiewicz
logics.

Additionally, our language L contains the values of a lattice (L,≤) and a set of
connectives interpreted over such lattice. In general, L may be the carrier of any
complete bounded lattice where a L-expression is a well-formed expression com-
posed by values of L, as well as variable symbols, connectives and primitive oper-
ators (i.e., arithmetic symbols such as ∗,+,min, etc.). In what follows, we assume
that the truth function of any connective @ in L is given by its corresponding
connective definition, that is, an equation of the form @(x1, . . . , xn) � E, where
E is a L-expression not containing variable symbols apart from x1, . . . , xn. For
instance, some fuzzy connective definitions in the lattice ([0, 1],≤) are presented
in Fig. 1 (from now on, this lattice will be called V along this paper), where
labels L, G and P mean respectively �Lukasiewicz logic, Gödel logic and product
logic (with different capabilities for modeling pessimistic, optimistic and realistic
scenarios, respectively).

This subset of MALP is intended to cope with fuzzy propositional formulae
like P ∧Q → P ∨Q, where propositions P and Q are interpreted as values of the
lattice. To this end, a program is defined as a set of rules (also called “facts”)
of the form “H with v”, where H is an atomic formula or atom (usually called
head), and v is its associated truth degree (i.e., a value of L). More precisely,
in our application, heads have always the form “i(v)” and each program rule
looks like “i(v) with v”. It is noteworthy to point out that even when we use the
same names for constants (building data terms) and truth degrees, the Herbrand
Universe of each program and the carrier set of its associated lattice should never
be confused, since they are in fact disjoint sets.

A goal is a formula built from atomic formulas B1, . . . , Bn (n ≥ 0 ), truth
values of L, conjunctions, disjunctions and aggregations, submitted as a query to
the system. In this subset of MALP, the atomic formulas of a goal have always
the form “i(P )”, being P a variable symbol. In this way, when running a simple
goal like “i(P )” (as done in Fig. 2), we could obtain several answers meaning
something like “when P = v, then the resulting truth degree is v”, representing
all possible interpretations in L for proposition P in the original formula.

The procedural semantics of this subset of the MALP language consists of
an operational phase (based on admissible steps that exploits the atoms in the
goal), followed by an interpretive phase (that performs arithmetic operations to
interpret the resulting formula on the lattice). In the following, C[A] denotes
a formula where A is a sub-expression which occurs in the – possibly empty –
context C[]. Moreover, C[A/A′] means the replacement of A by A′ in context C[].
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Definition 1 (Admissible Step). Let Q be a goal and let σ be a substitution.
The pair 〈Q;σ〉 is a state. Given a program P, an admissible computation is
formalized as a state transition system, whose transition relation →AS is defined
as the least one satisfying 〈Q[A];σ〉 →AS 〈(Q[A/v])θ;σθ〉, where A is the
selected atom in Q, θ = mgu({H = A})1 and “H with v” in P. An admissible
derivation is a sequence 〈Q; id〉→AS · · · →AS〈Q′; θ〉.
If we exploit all atoms of a given goal, by applying admissible steps as much as
needed during the operational phase, then it becomes a formula with no atoms
(a L-expression) which can be then interpreted w.r.t. lattice L as follows.

Definition 2 (Fuzzy Computed Answer). Let P be a program, Q a goal and
σ a substitution. Assume that [[@]] is the truth function of connective @ in the
lattice (L,≤) associated to P, such that, for values r1, . . . , rn, rn+1 ∈ L, we have
that [[@]](r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive com-
putation as a state transition system, whose transition relation →IS is defined as
the least one satisfying: 〈Q[@(r1, . . . , rn)];σ〉 →IS 〈Q[@(r1, . . . , rn)/rn+1];σ〉.
An interpretive derivation is a sequence 〈Q;σ〉→IS · · · →IS〈Q′;σ〉. When Q′ =
r ∈ L, the state 〈r;σ〉 is called a fuzzy computed answer (f.c.a.) for that deriva-
tion.

Fig. 2. A work-session with FLOPER solving goal i(P).

The parser of our FLOPER tool [18] has been implemented by using the
Prolog language. Once the application is loaded inside a Prolog interpreter, it
1 Here mgu(E) denotes the most general unifier of an equation set E [15].
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shows a menu which includes options for loading/compiling, parsing, listing and
saving MALP programs, as well as for executing/debugging fuzzy goals. More-
over, FLOPER has been recently equipped with new options, called “lat” and
“show”, for allowing the possibility of respectively changing and displaying the
lattice associated to a given program.

A very easy way to model truth-degree lattices for being included into the
FLOPER tool is based on the following guidelines. All relevant components of
each lattice are encapsulated inside a Prolog file which must necessarily contain
the definitions of a minimal set of predicates defining the set of valid elements
(member/1 predicate), the top and bottom elements (top/1 and bot/1 predi-
cates), the full or partial ordering established among them (leq/2 predicate),
as well as the repertoire of fuzzy connectives which can be used for their subse-
quent manipulation. If we have, for instance, some fuzzy connectives of the form
&label1 (conjunction), |label2 (disjunction) or @label3 (aggregation) with arities
n1, n2 and n3 respectively, we must provide clauses defining the connective pred-
icates “and label1/(n1+1)”, “or label2/(n2+1)” and “agr label3/(n3+1)”, where
the extra argument of each predicate is intended to contain the result achieved
after the evaluation of the proper connective. Finally, for the purposes of the cur-
rent work, we also require for each lattice a Prolog fact of the form members(L)
being the L a list containing the set of truth degrees belonging to the modeled
lattice (or at least a representative subset of them when working with infinite
lattices) for being used when interpreting propositional variables of fuzzy formu-
lae. For instance, a lattice defining the simplest notion of binary lattice should
implement predicate member/1 with facts member(0) and member(1) (including
also members([0,1])) and the Boolean conjunction could be defined by the pair
of facts and bool(0, ,0) and and bool(1,X,X).

Consider now the following partially ordered lattice F in the diagram of
Fig. 3, which is equipped with conjunction, disjunction and implication connec-
tives based on the Gödel logic described in Fig. 1, but with the particularity
that now, in the general case, the Gödel ’s conjunction must be expressed as
&G(x, y) � inf(x, y), where it is important to note that we must replace the use
of “min” by “inf ” in the connective definition (and similarly for the disjunction
connective, where “max” must be substituted by “sup”).

To this end, observe in the Prolog code accompanying the graphic in Fig. 3
that we have introduced clauses defining the primitive operators “pri inf/3”
and “pri sup/3” which are intended to return the infimum and supremum of
two elements. Related with this fact, we must point out the following aspects:

– Since truth degrees α and β are incomparable, then any call to goals of the
form “?- leq(alpha,beta).” or “?- leq(beta,alpha).” will always fail.

– The goal “?- pri inf(alpha,beta,X).”, instead of failing, successfully pro-
duces the desired result “X=bottom”.

– Note anyway that the implementation of the “pri inf/3” predicate is manda-
tory for coding the general definition of “and godel/3” (a similar reasoning
follows for “pri sup/3” and “or godel/3” ).
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⊥

member(bottom). member(alpha).

member(beta). member(top).

members([bottom,alpha,beta,top]).

leq(bottom,X). leq(alpha,alpha).

leq(beta,beta). leq(X,top).

and godel(X,Y,Z) :- pri inf(X,Y,Z).

pri inf(bottom,X,bottom):-!.

pri inf(alpha,X,alpha):-leq(alpha,X),!.

pri inf(beta,X,beta):-leq(beta,X),!.

pri inf(top,X,X):-!.

pri inf(X,Y,bottom).

α β

Fig. 3. Lattice of truth degrees F modeled in Prolog.

3 Looking for Models with FuzzyXPath

The subset of the MALP language detailed in Sect. 2 suffices for developing
a simple fuzzy theorem prover, where it is important to remark that our tool
can cope with different lattices (not only the real interval [0,1]) containing a
finite number of elements -marked in “members”- maintaining full or partial
ordering among them. Hence, we can use FLOPER for enumerating the whole
set of interpretations and models of fuzzy formulae. To this end, only a concrete
lattice L is required in order to automatically build a program composed by a
set of facts of the form “i(α) with α”, for each α ∈ L. For instance, the MALP
program associated to lattice F in Fig. 3 looks like:

i(top) with top.
i(alpha) with alpha.
i(beta) with beta.
i(bottom) with bottom.

Once the lattice and the residual program have been loaded into FLOPER, the
formula to be evaluated is introduced as a goal to the system following some
conventions:

– If P is a propositional variable in the original formula, then it is denoted as
“i(P)” in the goal F .

– If & is a conjunction of a certain logic “label” in the original formula, then it
is denoted as “&label” in goal F .

– For disjunctions, negations and implications, use respectively the patterns
“|label”, “@no label” and “@im label” in F .

– For other aggregators use “@label” in F .



392 J.M. Almendros-Jiménez et al.

Fig. 4. A work-session with FLOPER solving formula P ∨ Q (16 interpretations, 9
models).

In what follows we discuss some examples related with the lattice shown in
Fig. 3 and its residual MALP program just seen before. Firstly, if we execute
goal “i(P)” into FLOPER, we obtain the four interpretations for P shown in
Fig. 2. On the other hand, consider now the propositional formula P ∨ Q, which
is translated into the MALP goal “(i(P) | i(Q))” and after being executed
with FLOPER, the tool returns a tree as seen in Fig. 4 whose 16 leaves represent
the whole set of interpretations, where 9 of them -inside blue clouds- are models
(see part of the corresponding XML file produced by FLOPER in Fig. 5). Here,
each state contains its corresponding goal and substitution components and they
are drawn inside yellow circles. Admissible steps, coloured in blue, are labelled
with the program rule they exploit. Finally, those blue circles annotated with
word “is”, correspond to interpretive steps. Sometimes we include blue circles
labelled with “result” which represents a chained sequence of interpretive steps.

Let us recall now that XPath was designed as a query language for XML text
in which the path of the underlying tree of any XML document is used to describe
the query (subsequent nodes on XPath expressions are separated by one slash ‘/’
or a double slash ‘//’, being this last case useful for overriding several nodes).
Moreover, XPath expressions can be adorned with Boolean conditions (between
square brackets ‘[]’) on nodes and leaves to restrict the number of answers of
the query. In our fuzzy version of XPath, a FuzzyXPath expression defines,
w.r.t. an XML document, a sequence of subtrees of the XML document where
each subtree has an associated retrieval status value, rsv. XPath conditions,
which are defined as fuzzy operators applied to XPath expressions, compute a
new rsv from the rsv’s of the involved XPath expressions, which at the same time,
provides a rsv to the node. We consider three fuzzy versions for each one of the
classical conjunction and disjunction operators describing pessimistic, realistic
and optimistic scenarios, see Fig. 1. In XPath expressions the fuzzy versions of
the connectives make harder to hold conditions, and therefore can be used to
debilitate/force conditions. Furthermore, assuming two given rsv’s r1 and r2, the
avg operator is obviously defined with a fuzzy taste as (r1 + r2)/2, whereas its
priority-based variant, i.e. avg{p1, p2}, is defined as (p1 ∗ r1 + p2 ∗ r2)/p1 + p2.
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<node>

<rule>R0</rule>

<goal>or_godel(i(P),i(Q))</goal>

<substitution>{}</sub>

<children>

<node>

<rule>R1</rule>

<goal>or_godel(bottom,i(Q))</goal>

<sub>{P/bottom}</sub>

<children>

<node>

<rule>R1</rule>

<goal>or_godel(bottom,bottom)</goal>

<sub>{Q/bottom,P/bottom}

</sub>

<children>

<node>

<rule>result</rule>

<goal>bottom</goal>

<sub>{Q/bottom,P/bottom}

</sub>

<children>

</children>

</node>

</children>

</node>

...

Fig. 5. Part of the XML file representing the execution tree shown in Fig. 4.

With our FuzzyXPath tool we have executed “//node[goal=’top’]/sub”
against the XML file shown in Fig. 5, which was generated by FLOPER when
producing the proof tree drawn in Fig. 4, thus returning as output the new
XML document listed in Fig. 6. As illustrated in Fig. 5, note that the XML files
representing proof trees exported by FLOPER, are always rooted with the node
label, whose children are based on four kinds of ‘tags’ (this structure is nested
as much as needed):

– rule, which indicates the program rule exploited to reach the current node
(the virtual rule R0 is pointed out only in the initial node),

– goal, which contains the MALP expression under evaluation, that is, the for-
mula that the system is trying to prove on its current initial/intermediate/final
step. Note that, when in our example such value is top, then we have found a
model, where the values assigned to the propositional symbols of the formula
are collected in the following tag...

– sub, acronym of “substitution”, which accumulates the variable bindings per-
formed along a fuzzy logic derivation (i.e., chain of computational steps along
a branch of the execution tree) and whose meaning in our target setting,
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<result>

<sub rsv=1>{Q/top,P/top}</sub>

<sub rsv=1>{Q/alpha,P/top}</sub>

<sub rsv=1>{Q/beta,P/top}</sub>

<sub rsv=1>{Q/bottom,P/top}</sub>

<sub rsv=1>{Q/top,P/alpha}</sub>

<sub rsv=1>{Q/beta,P/alpha}</sub>

<sub rsv=1>{Q/top,P/beta}</sub>

<sub rsv=1>{Q/alpha,P/beta}</sub>

<sub rsv=1>{Q/top,P/bottom}</sub>

</result>

Fig. 6. XML file obtained after evaluating an XPath query.

reveals the way of interpreting the propositions contained on a formula for
obtaining its models. See for instance Fig. 6, where the nine solutions labeled
with this tag and reported in the output XML document, indicate each one
the truth values for the propositional variables that satisfy the formula with
the maximum truth degree. And finally,

– children, which contains the set of underlying nodes of the tree in a
nested way.

Consider now the more involved formula P ∧Q → P ∨Q which becomes into
the MALP goal “(i(P) & i(Q)) @impl (i(P) | i(Q))”. When interpreted
by FLOPER, the system returns a list of answers having all them the maximum
truth degree “top”, which proves that this formula is a tautology, as wanted.
Assume now a more general version with the following shape Fn = P1∧. . .∧Pn →
P1 ∨ . . . ∨ Pn. With respect to the efficiency of the method presented here, we
have studied the behaviour of formula Fn in the table of Fig. 7. In the horizontal
axis we represent the number n of different propositional variables appearing in
the formula, whereas the vertical axis refers to the number of seconds needed
to obtain the whole set of interpretations (all them are models in this case)
for the formula. The benchmarks have been performed using a computer with
processor Intel Core Duo, with 2 GB RAM and Windows Vista. Both the red and
blue lines refers to the method just commented along this paper, but whereas
the red line indicates that the derivation tree has been produced by performing
admissible and interpretive steps according Definitions 1 and 2, respectively, the
blue line refers to the execution of the Prolog code obtained after compiling with
FLOPER the MALP program and goal associated to our intended formula.

The results achieved in Fig. 7 show that our method has a nice behaviour
in both cases, even for formulae with a big number of propositional variables.
Of course, the method does not try to compete with SAT techniques (which are
always faster and can deal with more complex formulae containing many more
propositional variables), but it is important to remark again that in our case, we
face the problem of finding the whole set of models for a given formula, instead
of only focusing on satisfiability.
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Fig. 7. Efficiency of the method.

We address now formula Fn because it illustrates one key point of this paper.
Note that there are |L|n interpretations for that formula, where |L| is the cardi-
nality of the carrier set of lattice L that models truth degrees. For our example
lattice of Fig. 3, with four elements, we have 4n interpretations. Consider, for
example, that we are interested in proving that a certain formula, say F5, is a
tautology. In [11] we would have to search at least one interpretation that is not
model of F5 to prove that it is not a tautology, but since there exist 45 = 1024
interpretations, this task is not suitable to be made by hand. To overcome this
problem we use FuzzyXPath to automatically search in the XML file generated
by FLOPER. The manual task, then, is reduced to designing the FuzzyXPath
query. In this case, since we are interested in proving that F5 is a tautology, our
FuzzyXPath query should be //node[rule=‘result’ & goal<>‘top’]/sub,
that is, the system searches nodes whose rule tag contain the text “result” (i.e.,
we are looking for leaves in the tree) and whose tag goal is not “top” (in order
to exclude models). If the output of this query is an empty list of nodes, as it
actually is, the formula F5 is proven to be a tautology, as desired.

FuzzyXPath can also be used for determining the satisfiability of a for-
mula. Consider again formula P ∨ Q whose set of interpretations are shown
in Fig. 4. The query //node[rule=‘result’ & goal<>‘top’]/sub seen above,
shows that this formula is not a tautology, since its further evaluation returns
the non-empty set:

<result>

<sub rsv=1>{Q/alpha,P/alpha}</sub>

<sub rsv=1>{Q/bottom,P/alpha}</sub>

<sub rsv=1>{Q/beta,P/beta}</sub>

<sub rsv=1>{Q/bottom,P/beta}</sub>
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<sub rsv=1>{Q/alpha,P/bottom}</sub>

<sub rsv=1>{Q/beta,P/bottom}</sub>

<sub rsv=1>{Q/bottom,P/bottom}</sub>

</result>

Consider now the new query (which is almost antagonist to the previous one)
//node[rule=‘result’ & goal=‘top’]/sub. In this case, if the output is the
empty set, the tested formula is a contradiction (i.e., there is no interpretation
satisfying it). Otherwise, it is satisfiable. Furthermore, with FuzzyXPath we
can come back to the main purpose of [11], that is listing the set of models of a
formula instead of just deciding whether it is satisfiable or not. In particular, the
query to list the set of models is the one presented for deciding the satisfiability
of the formula at the beginning of this paragraph. Observe in Fig. 6 the output
of this query w.r.t. formula P ∨ Q.

Until now we have made use of FuzzyXPath to decide immediately the
satisfiability or not of a certain formula. With respect to the queries we have
presented, we were interested only in whether their answer set were empty or
not. Now we present a query which, by making use of the fuzzy capabilities of
FuzzyXPath, returns the list of interpretations together with extra information
(into the rsv attribute) about the extent in which they satisfy the formula or
not. Consider again formula P ∨ Q, part of whose derivation tree is represented
in the form of the XML file provided by FLOPER in Fig. 5. This formula is
satisfiable but not a tautology, that is, some of its interpretations satisfy it but
other ones do not.

Let us focus now on query //node[rule=‘result’&(goal=‘top’ avg{3,1},
goal<>‘top’)]/sub for such formula. Here, we ask for those states which are
leaves of the tree (condition rule=‘result’) and which are either models (con-
dition goal=‘top’) or not (condition goal<>‘top’), with the particularity that
if the leaf is a model, it fulfils the query at a 75 % and, if it is not, with a 25 %.
The result is the set of interpretations with a rsv value (the degree in which they
fulfil the query) between 0.75 and 0.25, as shown in the following table:

<result>

<sub rsv=0.75>{Q/top,P/top}</sub>

<sub rsv=0.75>{Q/alpha,P/top}</sub>

<sub rsv=0.75>{Q/beta,P/top}</sub>

<sub rsv=0.75>{Q/bottom,P/top}</sub>

<sub rsv=0.75>{Q/top,P/alpha}</sub>

<sub rsv=0.75>{Q/beta,P/alpha}</sub>

<sub rsv=0.75>{Q/top,P/beta}</sub>

<sub rsv=0.75>{Q/alpha,P/beta}</sub>

<sub rsv=0.75>{Q/top,P/bottom}</sub>

<sub rsv=0.25>{Q/alpha,P/alpha}</sub>

<sub rsv=0.25>{Q/bottom,P/alpha}</sub>

<sub rsv=0.25>{Q/beta,P/beta}</sub>

<sub rsv=0.25>{Q/bottom,P/beta}</sub>

<sub rsv=0.25>{Q/alpha,P/bottom}</sub>

<sub rsv=0.25>{Q/beta,P/bottom}</sub>
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<sub rsv=0.25>{Q/bottom,P/bottom}</sub>

</result>

This set of answers briefly show the set of interpretations of the formula. For
formulas like F5, whose XML file of 5.5 MB would be impossible to check by
hand, this method offers a quick look of the answers, even when they are very
numerous.

4 Conclusions and Future Work

In this paper we have recasted from our previous works [5,11], two applications
developed with our fuzzy logic programming environment FLOPER in order to
feedback and reinforce themselves. In the first paper we proposed a technique
for evaluating propositional fuzzy formulae in an alternative way than fuzzy
SAT/SMT methods, while in the second work we used the FuzzyXPath inter-
preter for analyzing derivation trees exported by FLOPER in XML format in
order to help the analysis of fuzzy logic computations. In the current paper we
have applied this last capability of FuzzyXPath focusing exclusively on deriva-
tion trees associated to fuzzy formulae developed according the methodology
proposed in [11]. As a result, we have presented an automatic technique useful
for determining important features of such formulae (tautology, contradiction,
etc.) by making use of XPath queries with a fuzzy taste. As future work, we
are nowadays introducing fuzzy thresholding techniques in our application for
improving the efficiency of the tool.
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Abstract. Entity resolution (ER), an important and common data
cleaning problem, is about detecting data duplicate representations for
the same external entities, and merging them into single representations.
Relatively recently, declarative rules calledmatching dependencies (MDs)
have been proposed for specifying similarity conditions under which
attribute values in database records are merged. In this work we show
the process and the benefits of integrating three components of ER: (a)
Classifiers for duplicate/non-duplicate record pairs built using machine
learning (ML) techniques, (b) MDs for supporting both the blocking
phase of ML and the merge itself; and (c) The use of the declarative
language LogiQL -an extended form of Datalog supported by the Log-
icBlox platform- for data processing, and the specification and enforce-
ment of MDs.

Keywords: Entity resolution · Matching dependencies · Support-vector
machines · Classification · Datalog

1 Introduction

Entity resolution (ER) is a common and difficult problem in data cleaning that
has to do with handling unintended multiple representations in a database of the
same external objects. Multiple representations lead to uncertainty in data and
the problem of managing it. Cleaning the database reduces uncertainty. In more
precise terms, ER is about the identification and fusion of database records
(think of rows or tuples in tables) that represent the same real-world entity
[8,15]. As a consequence, ER usually goes through two main consecutive phases:
(a) detecting duplicates, and (b) merging them into single representations.

For duplicate detection, one must first analyze multiple pairs of records,
comparing the two records in them, and discriminating between: pairs of dupli-
cate records and pairs of non-duplicate records. This classification problem is
approached with machine learning (ML) methods, to learn from previously known
or already made classifications (a training set for supervised learning), building a
classification model (a classifier) for deciding about other record pairs [10,15].

In principle, in ER every two records (forming a pair) have to be compared,
and then classified. Most of the work on applying ML to ER work at the record
c© Springer International Publishing Switzerland 2015
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level [10,11,21], and only some of the attributes, or their features, i.e. numerical
values associated to them, may be involved in duplicate detection. The choice of
relevant sets of attributes and features is application dependent.

ER may be a task of quadratic complexity since it requires comparing every
two records. To reduce the large number two-record comparisons, blocking tech-
niques are used [2,19,23]. Commonly, a single record attribute, or a combination
of attributes, the so-called blocking key, is used to split the database records into
blocks. Next, under the assumption that any two records in different blocks are
unlikely to be duplicates, only every two records in a same block are compared
for duplicate detection.

Although blocking will discard many record pairs that are obvious non-
duplicates, some true duplicate pairs might be missed (by putting them in differ-
ent blocks), due to errors or typographical variations in attribute values. More
interestingly, similarity between blocking keys alone may fail to capture the rela-
tionships that naturally hold in the data and could be used for blocking. Thus,
entity blocking based only on blocking key similarities may cause low recall. This
is a major drawback of traditional blocking techniques.

In this work we consider different and coexisting entities. For each of them,
there is a collection of records. Records for different entities may be related via
attributes in common or referential constraints. Blocking can be performed on
each of the participating entities, and the way records for an entity are placed
in blocks may influence the way the records for another entity are assigned to
blocks. This is called “collective blocking”. Semantic information, in addition to
that provided by blocking keys for single entities, can be used to state relation-
ships between different entities and their corresponding similarity criteria. So,
blocking decision making forms a collective and intertwined process involving
several entities. In the end, the records for each individual entity will be placed
in blocks associated to that entity.

Example 1. Consider two entities, Author and Paper. For each of them, there is
a set of records (for all practical purposes, think of database tuples in a single
table). For Author we have records of the form a = 〈name, . . . , affiliation, . . . ,
paper title, . . .〉, with {name, affiliation} the blocking key; and for Paper, records
of the form p = 〈title, . . . , author name, . . .〉, with title the blocking key. We want
to group Author and Paper records at the same time, in an entwined process.
We block together two Author entities on the basis of the similarities of authors’
names and affiliations.

Assume that Author entities a1,a2 have similar names, but their affiliations
are not. So, the two records would not be put in the same block. However, a1,a2
are authors of papers (in Paper records) p1,p2, resp., which have been put in
the same block (of papers) on the basis of similarities of paper titles. In this case,
additional semantic knowledge might specify that if two papers are in the same
block, then corresponding Author records that have similar author names should
be put in the same block too. Then, a1 and a2 would end up in the same block.

In this example, we are blocking Author and Paper entities, separately, but
collectively and in interaction. �
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Collective blocking is based on blocking keys and the enforcement of semantic
information about the relational closeness of entities Author and Paper, which is
captured by a set of matching dependencies (MDs). So, we propose “MD-based
collective blocking” (more on MDs right below).

After records are divided in blocks, the proper duplicate detection process
starts, and is carried out by comparing every two records in a block, and classi-
fying the pair as “duplicates” or “non-duplicates” using the trained ML model
at hand. In the end, records in duplicate pairs are considered to represent the
same external entity, and have to be merged into a single representation, i.e.
into a single record. This second phase is also application dependent. MDs were
originally proposed to support this task.

Matching dependencies are declarative logical rules that tell us under what
conditions of similarity between attribute values, any two records must have
certain attribute values merged, i.e. made identical [16,17]. For example, the MD

DeptB [dept ] ≈ DeptB [dept ] → DeptB [city ] .= DeptB [city ] (1)

tells us that for any two records for entity (or relation or table) DeptB that have
similar values for attribute dept attribute, their values for attribute city should
be matched, i.e. made the same.

MDs as introduced in [17] do not specify how to merge values. In [6,7],
MDs were extended with matching functions (MFs). For a data domain, an MF
specifies how to assign a value in common to two values. We adopt MDs with
MFs in this work. In the end, the enforcement of MDs with MFs should produce
a duplicate-free instance (cf. Section 2 for more details).

MDs have to be specified in a declarative manner, and at some point enforced,
by producing changes on the data. For this purpose, we use the LogicBlox plat-
form, a data management system developed by the LogicBlox1 company, that
is centered around its declarative language, LogiQL. LogiQL supports relational
data management and, among several other features [1], an extended form of
Datalog with stratified negation [9]. This language is expressive enough for the
kind of MDs considered in this work.2

In this paper, we describe our ERBlox system. It is built on top of the Log-
icBlox platform, and implements entity resolution (ER) applying to LogiQL,
ML techniques, and the specification and enforcement of MDs. More specifi-
cally, ERBlox has three main components: (a) MD-based collective blocking, (b)
ML-based duplicate detection, and (c) MD-based merging. The sets of MDs are
fixed and different for the first and last components. In both cases, the set of
MDs are interaction-free [7], which results, for each entity, in the unique set of
blocks, and eventually into a single, duplicate-free instance [7]. We use LogicQL
to declaratively implement the two MD-based components of ERBlox.

The blocking phase uses MDs to specify the blocking strategy. They express
conditions in terms of blocking key similarities and also relational closeness (the
1 www.logicblox.com.
2 For arbitrary sets of MDs, we need higher expressive power [7], such as that provided
by answer set programming [3].

www.logicblox.com
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semantic knowledge) to assign two records to a same block (by making the block
identifiers identical). Then, under MD-based collective blocking different records
of possibly several related entities are simultaneously assigned to blocks through
the enforcement of MDs (cf. Sect. 5 for details).

On the ML side, the problem is about detecting pairs of duplicate records.
The ML algorithm is trained using record-pairs known to be duplicates or non-
duplicates. We independently used three established classification algorithms:
support vector machines (SVMs) [24], k-nearest neighbor (K-NN) [14], and non-
parametric Bayes classifier (NBC) [4]. We used the Ismion3 implementations of
them due to the in-house expertise at LogicBlox. Since the emphasis of this work
is on the use of LogiQL and MDs, we will refer only to our use of SVMs.

We experimented with our ERBlox system using as dataset a snapshot of
Microsoft Academic Search (MAS)4 (as of January 2013) including 250 K authors
and 2.5 M papers. It contains a training set. The experimental results show
that our system improves ER accuracy over traditional blocking techniques [18],
which we will call standard blocking, where just blocking-key similarities are
used. Actually, MD-based collective blocking leads to higher precision and recall
on the given datasets.

This paper is structured as follows. Section 2 introduces background on
matching dependencies and their semantics, and SVMs. A general overview of
the ERBlox system is presented in Sect. 3. The specific components of ERBlox
are discussed in Sects. 4, 5, and 6. Experimental results are shown in Sect. 7.
Section 8 presents conclusions.

2 Preliminaries

2.1 Matching Dependencies

We consider an application-dependent relational schema R, with a data domain
U . For an attribute A, DomA is its finite domain. We assume predicates do not
share attributes, but different attributes may share a domain. An instance D for
R is a finite set of ground atoms of the form R(c1, . . . , cn), with R ∈ R, ci ∈ U .

We assume that each entity is represented by a relational predicate, and its
tuples or rows in its extension correspond to records for the entity. As in [7],
we assume records have unique, fixed, global identifiers, rids, which are positive
integers. This allows us to trace changes of attribute values in records. Record
ids are placed in an extra attribute for R ∈ R that acts as a key. Then, records
take the form R(r, r̄), with r the rid, and r̄ = (c1, . . . , cn). Sometimes we leave
rids implicit, and sometimes we use them to denote whole records: if r is a record
identifier in instance D, r̄ denotes the record in D identified by r. Similarly, if
A is a sublist of the attributes of predicate R, then r[A] denotes the restriction
of r̄ to A.

3 http://www.ismion.com.
4 http://academic.research.microsoft.com. For comparison, we also tested our system
with data from DBLP and Cora.

http://www.ismion.com
http://academic.research.microsoft.com
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MDs are formulas of the form: R1[X̄1] ≈ R2[X̄2] → R1[Ȳ1]
.= R2[Ȳ2] [16,17].

Here, R1, R2 ∈ R (and may be the same); and X̄1, X̄2 are lists of attribute names
of the same length that are pairwise comparable, that is, Xi

1 and Xi
2, and also

Ȳ1, Ȳ2, share the same domain.5 The MD says that, for every pair of tuples (one
in relation R1, the other in relation R2) where the LHS is true, the attribute
values in them on the RHS have to be made identical. Symbol ≈ denotes generic,
reflexive, symmetric, and application/domain dependent similarity relations on
shared attribute domains.

A dynamic, chase-based semantics for MDs with matching functions (MFs)
was introduced in [7]. Given an initial instance D, the set Σ of MDs is iteratively
enforced until they cannot be applied any further, at which point a resolved
instance has been produced. In order to enforce (the RHSs of) MDs, there are
binary matching functions (MFs) mA : DomA × DomA → DomA; and mA(a, a′)
is used to replace two values a, a′ ∈ DomA that have to be made identical. MFs
are idempotent, commutative, and associative, and then induce a partial-order
structure 〈DomA,�A〉, with: a �A a′ :⇔ mA(a, a′) = a′ [5,6]. It always holds:
a, a′ �A mA(a, a′). In this work, MFs are treated as built-in relations.

There may be several resolved instances for D and Σ. However, when (a)
MFs are similarity-preserving (i.e., a ≈ a′ implies a ≈ mA(a′, a′′)); or (b) Σ is
interaction-free (i.e., each attribute may appear in either the RHS or LHS of
MDs in Σ), there is a unique resolved instance that is computable in polynomial
time in |D| [7].

2.2 Support Vector Machines

The SVMs technique [24] is a form of kernel-based learning. SVMs can be
used for classifying vectors in an inner-product vector space V over R. Vectors
are classified in two classes, with a label in {0, 1}. The algorithm learns from
a training set, say {(e1, f(e1)), (e2, f(e2)), (e3, f(e3)), . . . , (en, f(en))}. Here,
ei ∈ V, and for the feature (function) f : f(ei) ∈ {0, 1}.

SVMs find an optimal hyperplane, H, in V that separates the two classes
where the training vectors are classified. Hyperplane H has an equation of the
form w • x + b, where • denotes the inner product, x is a vector variable, w is
a weight vector of real values, and b is a real number. Now, a new vector e in V
can be classified as positive or negative depending on the side of H it lies. This
is determined by computing h(e) := sign(w • e + b). If h(e) > 0, e belongs to
class 1; otherwise, to class 0.

It is possible to compute real numbers α1, . . . , αn, such that the classifier h
can be computed through: h(e) = sign(

∑
i αi · f(ei) · ei • e + b) (cf. Fig. 3).

3 Overview of ERBlox

A high-level description of the components of ERBlox is given in Fig. 1. It shows
the workflow supported by ERBlox when doing ER. ERBlox’s three main compo-
5 A more precise notation for the MD would be: ∀x1

1 · · · ∀ym
2 (
∧

j R1[x
j
1] ≈j R2[x

j
2] −→

∧
k R1[y

k
1 ]

.
= R2[y

k
2 ]).
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Fig. 1. Overview of ERBlox

nents are: (1) MD-based collective blocking (path 1,3,5, {6,8}), (2) ML-based
record duplicate detection (the whole initial workflow up to task 13, inclusive),
and (3) MD-based merging (path 14,15). In the figure, all the boxes in light
grey are supported by LogiQL. As just done, in the rest of this section, numbers
in boldface refer to the edges in this figure.

The initial input data is stored in structured text files. (We assume these
data are already standardized and free of misspellings, etc., but duplicates may
be present.) Our general LogiQL program that supports the whole workflow
contains some rules for importing data from the files into the extensions of
relational predicates (think of tables, this is edge 1). This results in a relational
database instance T containing the training data (edge 2), and the instance D
on which ER will be performed (edge 3).

Fig. 2. Feature-based similarity

The next main task is blocking, which
requires similarity computation of pairs of
records in D (edge 5). For record pairs
〈r1, r2〉 in T , similarities have to be com-
puted as well (edge 4). Similarity com-
putation is based on similarity functions,
Sf i : DomAi

× DomAi
→ [0, 1], each of

which assigns a numerical value, called
similarity weight, to the comparisons of
values for a record attribute Ai (from a
pre-chosen subset of attributes) (cf. Fig. 2). A weight vector w(r1, r2) =
〈· · · ,Sf i(r1[Ai], r2[Ai]), · · · 〉 is formed by similarity weights (edge 7). For more
details on similarity computation see Sect. 4.

Since some pairs in T are considered to be duplicates and others non-
duplicates, the result of this process leads to a “similarity-enhanced” database
Ts of tuples of the form 〈r1, r2, w(r1, r2), L〉, with label L ∈ {0, 1} indicating if
the two records are duplicates (L = 1) or not (L = 0). The labels are consistent
with the corresponding weight vectors. The classifier is trained using Ts, leading
to a classification model (edges 9,10).
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For records in D, similarity measures are needed for blocking, to decide if
two records r1, r2 go to the same block. Initially, every record has its rid assigned
as block (number). To assign two records to the same block, we use matching
dependencies that specify and enforce (through their RHSs) that their blocks
have to be identical. This happens when certain similarities between pairs of
attribute values appearing in the LHSs of the MDs hold. For this reason, simi-
larity computation is also needed before blocking (workflow 5,6,8). This simi-
larity computation process is similar to the one for T . However, in the case of
D, this does not lead directly to the same kind of weight vector computation.
Instead, the computation of similarity measures is only for the similarity predi-
cates appearing in the LHSs of the blocking-MDs. (So, as the evaluation of the
LHS in (1) requires the computation of similarities for dept-string values.)

Notice that these blocking-MDs may capture semantic knowledge, so they
could involve in their LHSs similarities of attribute values in records for different
kinds of entities. For example, in relation to Example 1, there could be similarity
comparisons involving attributes for entities Author and Paper, e.g.

Author(x1, y1, bl1)∧Paper(y1, z1, bl3) ∧ Author(x2, y2, bl2)∧
Paper(y2, z2, bl4) ∧ x1 ≈1 x2 ∧ z1 ≈2 z2 → bl1

.= bl2,
(2)

expressing that when the similarities on the LHS hold, the blocks bl1, bl2 have
to be made identical.6 The similarity comparison atoms on the LHS are con-
sidered to be true when the similarity values are above predefined thresholds
(edges 5,8).7

H

Fig. 3. Classification hyper-
plane

This is the MD-based collective blocking stage
that results in database D enhanced with infor-
mation about the blocks to which the records are
assigned. Pairs of records with the same block
form candidate duplicate record pairs, and any two
records with different blocks are simply not tested
as possible duplicates (of each other).

After the records have been assigned to blocks,
pairs of records 〈r1, r2〉 in the same block are con-
sidered for the duplicate test. As this point we
proceed as we did for T : the similarity vectors
w(r1, r2) have to be computed (edges 11,12).8 Next, tuples 〈r1, r2, w(r1, r2)〉
are used as input for the trained classification algorithm (edge 12).

6 These MDs are more general than those introduced in Sect. 2.1: they may contain
regular database atoms, which are used to give context to the similarity atoms in
the same antecedent.

7 At this point, since all we want is to do blocking, and not yet decisions about
duplicates, we could, in comparison with what is done with pairs in T , compute less
similarity measures and even with low thresholds.

8 Similarity computations are kept in appropriate program predicates. So similarity
values computed before blocking can be reused at this stage, or whenever needed.
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The result of the trained ML-based classifier, in this case obtained through
SVMs as a separation hyperplane H, is a set M of record pairs 〈r1, r2, 1〉 that
come from the same block and are considered to be duplicates (edge 13).9 The
records in these pairs will be merged on the basis of an ad hoc set of MDs (edge
15), different from those used in edges 6,8.

Informally, the merge-MDs are of the form: r1 ≈ r2 → r1
.= r2, where the

antecedent is true when 〈r1, r2, 1〉 is an output of the classifier. The RHS is a
shorthand for: r1[A1]

.= r2[A1] ∧ · · · ∧ r1[Am] .= r2[Am], where m is the total
number of record attributes. Merge at the attribute level uses the matching
functions mAi

.
We point out that MD-based merging takes care of transitive cases provided

by the classifier, e.g. if it returns 〈r1, r2, 1〉, 〈r2, r3, 1〉, but not 〈r1, r3, 1〉, we
still merge r1, r3 (even when r1 ≈ r3 does not hold). Actually, we do this by
merging all the records r1, r2, r3 into the same record. Our system is capable of
recognizing this situation and solving it as expected. This relies on the way we
store and manage -via our LogiQL program- the positive cases obtained from
the classifier (details can be found in Sect. 6). In essence, this makes our set of
merging-MDs interaction-free, and leads to a unique resolved instance [7].

The following sections provide more details on ERBlox and our approach
to ER.

4 Initial Data and Similarity Computation

We describe now some aspects of the MAS dataset, highlighting the input for-
and output of each component of the ERBlox system. The data is represented
and provided as follows. The Author relation contains authors names and their
affiliations. The Paper relation contains paper titles, years, conference IDs, jour-
nal IDs, and keywords. The PaperAuthor relation contains papers IDs, authors
IDs, authors names, and their affiliations. The Journal and Conference relations
contain short names, full names, and home pages of journals and conferences,
respectively. By using ERBlox on this dataset, we determine which papers in
MAS data are written by a given author. This is clear case of ER since there
are many authors who publish under several variations of their names. Also the
same paper may appear under slightly different titles, etc.10

From the MAS dataset, which contains the data in structured files, extensions
for intentional, relational predicates are computed by LogiQL-rules of the general
program, e.g.

file in(x1, x2, x3) → string(x1), string(x2), string(x3). (3)
lang : physical : filePath[‘ file in] = ”author .csv”. (4)
+author(id1, x2, x3) ← file in(x1, x2, x3), string : int64:convert [x1] = id1. (5)
9 The classifier also returns pairs or records that come from the same block, but are not
considered to be duplicate. The set thereof in not interesting, at least as a workflow
component.

10 For our experiments, we independently used two other datasets: DBLP and Cora
Citation.
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Here, (3) is a predicate schema declaration (metadata uses “→”), in this case
of the “ file in” predicate with three string-valued attributes,11 which is used
to store the contents extracted from the source file, whose path is specified by
(4). Derivation rules, such as (5), use the usual “←”. In this case, it defines the
author predicate, and the “+” in the rule head inserts the data into the predicate
extension. The first attribute is made an identifier [1]. Figure 4 illustrates a small
part of the dataset obtained by importing data into the relational predicates.
(There may be missing attributes values.)

Fig. 4. Relation extensions from MAS using LogiQL rules

As described above, in ERBlox, similarity computation generates similarity
weights, which are used to: (a) compute the weight vectors for the training data T
and the data in D under classification; and (b) do the blocking, where similarity
weights are compared with predefined thresholds for the similarity conditions in
the LHSs of blocking-MDs.12

We used three well-known similarity functions [13], depending on the
attribute domains. “TF-IDF cosine similarity” [22] used for computing simi-
larities for text-valued attributes, whose values are string vectors. It assigns low
weights to frequent strings and high weights to rare strings. It was used for
attribute values that contain frequent strings, such as affiliation. For attributes
with short string values, such as author name, we applied “Jaro-Winkler simi-
larity” [25]. Finally, for numerical attributes, such as publication year, we used
“Levenshtein distance” [20], which computes similarity of two numbers on the
basis of the minimum number of operations required to transform one into
the other.

11 In LogiQL, each predicate has to be declared, unless it can be inferred from the rest
of the program.

12 As described at the end of Sect. 3, these similarity computations are not used with
the MDs that support the final merging process (cf. Sect. 6).
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Similarity computation for ERBlox is supported by LogiQL-rules that define
similarity functions. In particular, similarity computations are kept in extensions
of program predicates. For example, if the similarity weight of values a1, a2 for
attribute Title is above the threshold, a tuple TitleSim(a1, a2) is created by the
program.

5 MD-Based Collective Blocking and Duplicate Detection

Since every record has an identifier, rid, initially each record uses its rid as
its block number, in an extra attribute Bl#. In this way, we create the initial
blocking instance from the initial instance D, also denoted with D. Now, blocking
strategies are captured by means of (blocking) MDs of the form:

Ri(X̄1,Bl1) ∧ Ri(X̄2,Bl2) ∧ ψ(X̄3) → Bl1
.= Bl2. (6)

Here Bl1,Bl2 are variables for block numbers, and Ri is a database (record) pred-
icate. The lists of variables X̄1, X̄2 stand for all the attributes in Ri, but Bl#.
Formula ψ is a conjunction of relational atoms and comparison atoms via simi-
larity predicates; but it does not contain similarity comparisons of blocking num-
bers, such as Bl3≈ Bl4.13 The variables in the list X̄3 appear in Ri or in another
database predicate or in a similarity atom. It holds that (X̄1 ∪ X̄2) ∩ X̄3 = ∅.
For an example, see (2), where Ri is Author.

In order to enforce these MDs on two records, we use a binary matching
function m

Bl# , to make two block numbers identical: m
Bl#(i, j) := i if j ≤ i.

More generally, for the application-dependent set, ΣBl , of blocking-MDs we
adopt the chase-based semantics for entity resolution [7]. Since this set of MDs
is interaction-free, its enforcement results in a single instance DBl , where now
records may share block numbers, in which case they belong to the same block.
Every record is assigned to a single block.

Example 2. These are some of the blocking-MDs used for the MAS dataset:

Paper(pid1, x1, y1, z1, w1, v1, bl1) ∧ Paper(pid2, x2, y2, z2, w2, v2, bl2) ∧ (7)
x1 ≈Title x2 ∧ y1 = y2 ∧ z1 = z2 → bl1

.
= bl2.

Author(aid1, x1, y1, bl1) ∧ Author(aid2, x2, y2, bl2) ∧ (8)
x1 ≈Name x2 ∧ y1 ≈Aff y2 → bl1

.
= bl2.

Paper(pid1, x1, y1, z1, w1, v1, bl1) ∧ Paper(pid2, x2, y2, z2, w2, v2, bl2) ∧ (9)
PaperAuthor(pid1, aid1, x

′
1, y

′
1) ∧ PaperAuthor(pid2, aid2, x

′
2, y

′
2) ∧

Author(aid1, x
′
1, y

′
1, bl3) ∧ Author(aid2, x

′
2, y

′
2, bl3) ∧ x1 ≈Title x2 → bl1

.
= bl2.

Author(aid1, x1, y1, bl1) ∧ Author(aid2, x2, y2, bl2) ∧ x1 ≈Name x2 ∧ (10)
PaperAuthor(pid1, aid1, x1, y1) ∧ PaperAuthor(pid2, aid2, x2, y2) ∧
Paper(pid1, x

′
1, y

′
1, z

′
1, w

′
1, v

′
1, bl3) ∧ Paper(pid2, x

′
2, y

′
2, z

′
2, w

′
2, v

′
2, bl3) → bl1

.
= bl2.

13 Actually, this natural condition makes the set of blocking-MDs interaction-free, i.e.
for every two blocking-MDs m1, m2, the set of attributes on the RHS of m1 and
the set of attributes on the LHS of m2 on which there are similarity predicates, are
disjoint [7].
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Informally, (7) tells us that, for every two Paper entities p1,p2 for which the
values for attribute Title are similar and with same publication year, conference
ID, the values for attribute Bl# must be made the same. By (8), whenever
there are similar values for name and affiliation in Author, the corresponding
authors should be in the same block. Furthermore, (9) and (10) collectively
block Paper and Author entities. For instance, (9) states that if two authors are
in the same block, their papers p1, p2 having similar titles must be in the same
block. Notice that if papers p1 and p2 have similar titles, but they do not have
same publication year or conference ID, we cannot block them together using
(7) alone. �

We now show how these MDs are represented in LogiQL, and how we use
LogiQL programs for declarative specification of MD-based collective blocking.14
In LogiQL, an MD takes the form:

Ri[X̄1]=Bl2, Ri[X̄2]=Bl2 ←− Ri[X̄1] = Bl1, Ri[X̄2] = Bl2, ψ(X̄3), Bl1 < Bl2,
(11)

subject to the same conditions as in (6). An atom Ri[X̄]=Bl states that predicate
Ri is functional on X̄ [1]. It means each record in Ri can have only one block
number Bl#.

Given an initial instance D, a LogiQL program PB(D) that specifies MD-
based collective blocking contains the following (kind of) rules:

1. For every atom R(rid , x̄, bl) ∈ D, the fact R[rid , x̄] = bl . (Initially, bl := rid .)
2. For every attribute A of Ri, facts of the form A-Sim(a1, a2), with

a1, a2 ∈ DomA, the finite attribute domain. They are obtained by similarity
computation.

3. The blocking-MDs as in (11).
4. Rules to represent the consecutive versions of entities during MD-

enforcement:

R-OldVersion(r1, x̄1, bl1) ← R[r1, x̄1] = bl1, R[r1, x̄1] = bl2, bl1 < bl2.

For each rid, r, there could be several atoms of the form R[r, x̄] = bl ,
corresponding to the evolution of the record identified by r due to MD-
enforcement. The rule specifies that versions of records with lower block
numbers are old.

5. Rules that collect the latest versions of records. They are used to form blocks:

R-MDBlock [r1, x̄1] = bl1 ← R[r1, x̄1] = bl1, ! R-OldVersion(r1, x̄1, bl1).

In LogiQL, “!”, as in the body above, is used for negation [1]. The rule collects
R-records that are not old versions.

14 Notice that since we have interaction-free sets of blocking-MDs, stratified Datalog
programs are expressive enough to express and enforce them [3]. LogiQL supports
stratified Datalog.
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Programs PB(D) as above are stratified (there is no recursion involving nega-
tion). Then, as expected in relation to the blocking-MDs, they have a single
model, which can be used to read the final block number for each record.

Example 3. (ex. 2 cont.) Considering only MDs (7) and (9), the portion of
PB(D) for blocking Paper entities has the following rules:

2. Facts such as: TitleSim(Illness entities in West Africa, Illness entities in Africa).

TitleSim(DLR Simulation Environment m3 ,DLR Simulation Environment).

3. Paper [pid1, x1, y1, z1, w1, v1] = bl2,Paper [pid2, x2, y2, z2, w2, v2] = bl2 ←
Paper [pid1, x1, y1, z1, w1, v1] = bl1,Paper [pid2, x2, y2, z2, w2, v2] = bl2,

TitleSim(x1, x2), y1 = y2, z1 = z2, bl1 < bl2.
Paper [pid1, x1, y1, z1, w1, v1] = bl2,Paper [pid2, x2, y2, z2, w2, v2] = bl2 ←

Paper [pid1, x1, y1, z1, w1, v1] = bl1,Paper [pid2, x2, y2, z2, w2, v2] = bl2,TitleSim(x1, x2),
PaperAuthor(pid1, aid1, x

′
1, y

′
1),PaperAuthor(pid2, aid2, x

′
2, y

′
2),

Author [aid1, x
′
1, y

′
1] = bl3,Author [aid2, x

′
2, y

′
2] = bl3, bl1 < bl2.

4. PaperOldVersion(pid1, x1, y1, z1, w1, v1, bl1)←Paper [pid1, x1, y1, z1, w1, v1] = bl1,

Paper [pid1, x1, y1, z1, w1, v1] = bl2, bl1 < bl2.

5. PaperMDBlock [pid, x̄1] = bl1 ← Paper [pid1, x1, y1, z1, w1, v1] = bl1,

PaperOldVersion(pid1, x1, y1, z1, w1, v1, bl1).

Restricting the model of the program to the relevant attributes of predicate
PaperMDBlock returns: {{123, 205}, {195, 769}}, i.e. the papers with pids 123
and 205 are blocked together; similarly for those with pids 195 and 769. �

As described above, the input to the trained classifier is a set of tuples of the
form 〈r1, r2, w(r1, r2)〉, with w(r1, r2) the computed weight vector for records
(with ids) r1, r2 in a same block.15

Example 4. (ex. 3 cont.) Consider the blocks for entity Paper. If the “journal
ID” values are null in both records, but not the “conference ID” values, “journal
ID” is not considered for a feature. Similarly, when the conference ID values are
null. However, the values for “journal ID” and “conference ID” are replaced by
“journal full name” and “conference full name” values, found in Conference and
Journal records, resp. In this case then, attributes Title, Year, ConfFullName or
JourFullName and Keyword are used for corresponding feature for weight vector
computation.

Considering the previous Paper records, the input to the classifier con-
sists of: 〈123, 205, w(123, 205)〉, with w(123, 205) = [0.8, 1.0, 1.0, 0.7], and
〈195, 769, w(195, 769)〉, with w(195, 769) = [0.93, 1.0, 1.0, 0.5] (actually the con-
tents of the two square brackets only). �

Several ML techniques are accessible from LogicBlox platform through the
BloxMLPack library, that provides a generic Datalog interface. Then, ERBlox
can call an ML-based record duplicate detection component through the general
LogiQL program. In this way, the SVMs package is invoked by ERBlox.

15 The features considered in a weight vector computation depend on whether they
have a strong discrimination power, i.e. do not contain missing values.
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The output is a set of tuples of the form 〈r1, r2, 1〉 or 〈r1, r2, 0〉, where r1, r2 are
ids for records of entity (table) R. In the former case, a tuple R-Duplicate(r1, r2)
is created (as defined by the LogicQL program). In the previous example,
the SVMs method return 〈[0.8, 1.0, 1.0, 0.7], 1〉 and 〈[0.93, 1.0, 1.0, 0.5], 1〉, then
PaperDuplicate(123, 205) and PaperDuplicate(195, 769) are created.

6 MD-Based Merging

When EntityDuplicate(r1, r2) is created, the corresponding full records r̄1, r̄2
have to be merged via record-level merge-MDs of the form R[r1] ≈ R[r2] −→
R[r̄1]

.= R[r̄2], where R[r1] ≈ R[r2] is true when R-Duplicate(r1, r2) has been cre-
ated according to the output of the SVMs classifier. The RHS means that the two
records are merged into a new full record r̄, with r̄[Ai] := m

Ai
(r̄1[Ai], r̄2[Ai]) [7].

Example 5. (ex. 4 cont.) We merge duplicate Paper entities enforcing the MD:
Paper [pid1] ≈ Paper [pid2] −→ Paper [Title,Year ,CID ,Keyword ]

.
= Paper [Title,

Year ,CID , Keyword ]. �

The portion, PM , of the general LogiQL program that represents MD-based
merging contains rules as in 1.–4. below:

1. The atoms of the form R-Duplicate mentioned above, and those representing
the matching functions (MFs) m

A
.

2. For an MD R[r1] ≈ R[r2] −→ R[r̄1]
.= R[r̄2], the rule:

R[r1, x̄3] = bl , R[r2, x̄3] = bl ←− R-Duplicate(r1, r2), R[r1, x̄1] = bl ,
R[r2, x̄2] = bl , m(x̄1, x̄2) = x̄3,

which creates two records (one of them can be purged afterwards) with dif-
ferent ids but all the other attribute values the same, and computed com-
ponentwise according to the MFs for m. Here, x̄1, x̄2, x̄3 stand each for all
attributes of relation R, except for the id and the block number (represented
by bl). (Block numbers play no role in merging.)

3. As for program PB(D) given in Sect. 5, rules specify the old versions of a
record:

R-OldVersion(r1, x̄1) ← R[r1, x̄1] = bl , R[r1, x̄2] = bl , x̄1 ≺ x̄2.

Here, x̄1 stands for all attributes other than the id and the block number; and
on the RHS x̄1 ≺ x̄2 means componentwise comparison of values according
to the partial orders defined by the MFs.

4. Finally, rules to collect the latest version of each record, building the final
resolved instance: R-ER(r1, x̄1) ← R[r1, x̄1] = bl , ! R-OldVersion(r1, x̄1).

Notice that the derived tables R-Duplicate that appear in the LHSs of the
MDs (or in the bodies of the corresponding rules) are all computed before (and
kept fixed during) the enforcement of the merge-MDs. In particular, a duplicate
relationship between any two records is not lost. This has the effect of making the
set of merging-MDs interaction-free, which results in a unique resolved instance.
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7 Experimental Evaluation

We now show that our approach to ER can improve accuracy in comparison
with standard blocking. In addition to the MAS, we used datasets from DBLP
and Cora Citation.

Fig. 5. The experiments (MAS)

In order to emphasize the impor-
tance of semantic knowledge in block-
ing, we consider standard blocking and
two different sets of MDs, (1) and
(2), for MD-based collective blocking.
Under (1), we define blocking-MDs for
all the blocking keys used for stan-
dard blocking, but under (2) we have
MDs for only some of the used block-
ing keys. In both cases, in addition to
properly collective blocking MDs.

We use three measures for the comparisons of blocking techniques. One is
reduction ratio, which is the ratio (minus 1) of the number of candidate record-
pairs over the initial number of records. The higher this value, the less candidate
record-pairs are being generated, but the quality of the generated candidate
record pairs is not taken into account. We also use recall and precision measures.
The former is the number of true duplicate candidate record-pairs divided by the
number of true duplicate pairs, and precision is the number of true candidate
duplicate record-pairs divided by the total number of candidate pairs [12].

Figures 5, 6 and 7 show the comparative performance of ERBlox. They show
that standard blocking has higher reduction ratio than MD-based collective
blocking version (1). This means that less candidate record-pairs are being gen-
erated by standard blocking. However, the precision and recall of MD-based
blocking version (1) are higher than standard blocking, meaning that MD-based
blocking version (1) can lead to improved ER results at the cost of larger blocks,
and thus more candidate record pairs that need to be compared.

Fig. 6. The experiments (DBLP)

In blocking, this is a common
tradeoff that needs to be considered.
On the one hand, having a large
number of smaller blocks will result
in fewer candidate record-pairs that
will be generated, probably increasing
the number of true duplicate record-
pairs that are missed. On the other
hand, blocking techniques that result
in larger blocks generate a higher num-
ber of candidate record-pairs that will
likely cover more true duplicate pairs,
at the cost of having to compare more
candidate pairs [12]. The experiments are all done before MD-based merging.
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Fig. 7. The experiments (Cora)

Interestingly, MD-based blocking
version (2) has higher reduction ratio,
recall, and precision than standard
blocking. This emphasizes the impor-
tance of MDs supporting collective
blocking, and shows that blocking
based on string similarity alone fails
to capture the relationships that nat-
urally hold in the data.

As expected, the experiments show
that different sets of MDs for MD-
based collective blocking have different impact on reduction ratio, so as standard
blocking depends on the choice of blocking keys. However, the quality of MD-
based collective blocking, in its two versions, dominates standard blocking for
the three datasets.

8 Conclusions

We have shown that matching dependencies, a new class of data quality/cleaning
semantic constraints in databases, can be profitably integrated with traditional
ML-methods, in our case for entity resolution. They play a role not only in
the intended goal of merging duplicate representations, but also in the record
blocking process that precedes the learning task. At that stage they allow to
declaratively capture semantic information that can be used to enrich the block-
ing activity. MDs declaration and enforcement, data processing in general, and
machine learning can all be integrated using the LogiQL language.
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Abstract. This paper presents a method for fast matching of data
attributes contained in a high-volume data stream against an incom-
plete database of known attribute values. The method is applied to
vessel observational data and databases of known vessel characteristics,
with emphasis on vessel identity attributes. Due to the large quantity
of streaming observations, it is desirable to compute the best matching
identity to a sufficient confidence level rather than include all possi-
ble identity information in the matching result. The question of which
observed attributes to use in the calculation is addressed using informa-
tion theory and the combination of the information conveyed by each
attribute is addressed using evidence theory. An algorithm is developed
which matches observations to known identities with a configurable level
of desired confidence, represented as a χ2 value for statistical significance.

Keywords: Entropy · Transferrable belief model · Generalized Bayes
theorem · Database · Intelligence · Information · Data errors

1 Introduction

Data quality is a continual issue when dealing with an automated processing sys-
tem. Introducing the requirement for real-time processing magnifies the problem
by creating an environment where pausing and reflecting on the quality issue
impacts the time criticality of the system.

Here we consider data quality as related to both errors (i.e., incorrect values)
and inconsistencies (e.g., CA as compared to CAN for Canada; syntax issues; dif-
fering vocabularies issues). Inconsistencies are often related to vocabularies issues
that sometime require semantic level matching [1]. Such data quality issues influ-
ence the system’s ability to process the incoming data stream. Some simplistic
views of how to deal with data inconsistency have been reported. For example,
[2] examined inconsistencies in vessel information reported from a selection of
open websites. This investigation illustrated the complexities associated with
vocabulary matching when aggregating multiple information sources.
c© Springer International Publishing Switzerland 2015
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Data inconsistencies are also influenced by the data volume. As volume
increases, the ability of a user to identify and correct the data drops dramati-
cally. Of course each data stream will be unique and in some sense these differ-
ences are related to the data attributes in the stream. Also, as fewer restrictions
are placed on the data attribute, the automatic identification of quality issues
becomes more problematic. An example of this case is a name text field. The
observed and reported name of a person, object or thing, has such variation that
few restrictions can be placed on the attribute content. A system’s ability to
learn and correct is influenced by the data attributes and the content permitted
in those attributes.

2 Problem Formulation

Commercially provided databases of ship identities are available, containing iden-
tifying information based on regulation and registration information. This knowl-
edge base is represented as a database table, herein referred to as the Reference
Table (RT). An incoming data stream of vessel observations is considered the tar-
get data and each incoming target record consists of numerous target attributes.
In order to verify the identity of the target, one must associate these target
attributes with the values in the RT entries. Figure 1 illustrates this problem.

Fig. 1. Illustration of the sparse attribute association problem. ai are the attribute
types and RTj are the reference table identities. Note that there are missing attribute
values in both the report and the reference table rows.

Let A be the set of possible attributes, and ai be the elements of set A. For the
results presented here, the set of attribute element labels in the data are: vessel
name, Maritime Mobile Service Identifier (MMSI), International Radio Call-sign
(IRCS), and International Maritime Organization (IMO) number. To formalize
the description of observations, a target observation at time k, denoted by zk

consists of a set of attributes: zk = {ai} ai ∈ A. The reference table contains the
set of known targets, each with a set of attributes RTj = {ai} ai ∈ A.
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An additional challenge arises since the accuracy of the values of ai in zk is
not ideal due to possible errors either from observation or transmission faults.
However, it is assumed that the rate of error is known for a specific source or sen-
sor. For example, an analysis of 561,771 distinct real-world observations resulted
in IMO values that were incorrect in 2.37 % of the cases, and MMSI values that
were incorrect 6.64 % of the cases. These values provide a priori indications on
the accuracy of information contained in each attribute. The problem described
here is similar to the information retrieval problem with missing data [3] with
the additional complexities of an uncertain query and query speed requirement.

3 Cost of Attribute Search

The entire RT must be searched for each attribute, since one must assume that
there are errors in the attribute values and therefore the first result may not be
the only, nor correct result. Furthermore, this means that one cannot necessarily
use a previous attribute value match to narrow the RT search space. In order
to reduce the number of attribute comparisons required to declare a match,
the proposed approach is to achieve a significant level of confidence as early as
possible in matching against the RT, even if not all observed attributes are used
in the association.

Each attribute ai in zk carries with it some measure of information when
considered against the RT. In this case, the quantification of information gain
as the change in information entropy by the attribute is used as the attribute
selection criteria. A similar approach has been used by others [4] to quantify
database vulnerabilities to deriving hidden fields from a subset of known fields.
In this case, the hidden field is the identifier RTj . Information gain is also used for
decision trees in machine learning [5]. The information gain (IG) of an attribute
can be calculated as the difference between the entire RT (first sum in Eq. 1),
and the conditional entropy from the attribute (second sum in Eq. 1).

IG(RT, ai) = −∑
v pt · logept − ∑

v∈ai

|{t∈RT |ti=v}|
|RT | · H({t ∈ RT |ti = v}) (1)

where pt is the probability of a value occurring in the RT, and can be calculated
in the frequentist approach from the RT as pt = 1

|RT | . The set entropy is defined
as H(X) = −∑

x px · logepx. Alternatively, the Laplace correction [6] can be
used to estimate pt by assuming pt as a posterior Bayesian estimate, which
better accounts for the possibility that the RT is not complete. The information
gain IG(RT, ai) for each attribute is an indication of the value of that attribute
for discriminating the value of RTj . When an observation zk is evaluated, those
attributes with higher information gain should be searched first as they provide
the strongest evidence (for or against) the association. The following section will
discuss how each attribute comparison is combined using evidence theory.
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4 Uncertainty Model

The potential outcomes for each observed attribute are expressed in Table 1 as
four possible cases, with a joint likelihood p1 · p2 · p3 as a function of the target
birth rate λb, observation rate λo, and error rate λe. The probability p1 relates
to the likelihood that the observed target is or is not described in the RT, p2
relates to the likelihood that the RT has or has not a non-null value for the
attribute, and p3 relates to the likelihood that the observed attribute is correct
or incorrect. Note that the values for λe and λo are conditional on which source
and sensor is providing the observation.

Table 1. Joint likelihood calculation for attribute match cases.

Case Condition(s) p1 p2 p3

I: z /∈ RT λb
λo

II: z ∈ RT , ai /∈ RTj 1 − λb
λo

1 − |RTj |
|RT |

III: z ∈ RT , ai ∈ RTj , ai error 1 − λb
λo

|RTj |
|RT | λe

IV: z ∈ RT , ai ∈ RTj , ai correct 1 − λb
λo

|RTj |
|RT | 1 − λe

The generalized Bayesian Theorem (GBT) in the transferrable belief model
(TBM) is a standard method for the combination of evidence [7]. The pmf
f(RTj |z) is used in the basic belief assignment (bba), as explained later in the
text. The bba is a function on the set of hypotheses (Ω) which consists of ele-
ments of the power set for the possible combinations for values of RTj on the
set space 2Ω . The bba function, generates the basic belief mass, which has the
property that the sum of the values equals 1 [12], i.e.

∑
A∈Ω m(A) = 1.

In our work, the open-world assumption is adopted, which relaxes this
sum such that the hypothesis m(∅) can also have a non-zero mass which rep-
resents the evidence (or lack of evidence) that the match is not contained
in the RT. This assumption accepts the fact that it is possible the RT is
incomplete and that no solution may be possible. The lower bound on the
combined evidence is represented by the belief function defined as bel(A) =∑

∅�=B⊆A m(B),∀A ⊆ Ω, and the upper bound by the plausibility function
defined as pl(A) =

∑
B:A∩B �=∅ m(B).

In GBT, the mass function is created assuming that pl(RTj |p) = P (RTj |p)
and therefore, the mass bba is assigned such that pl(RTj) = p(RTj) for the
singleton hypotheses [7]. In our application of the GBT, the probability mass
function (pmf) f(RTj |z) used in the bba is calculated using the joint likelihoods
(p1 ·p2 ·p3) in Table 1. The null set receives the combined likelihoods from cases I
and II, and possible matches receive the combined likelihoods from cases III and
IV, which are then normalized. Other techniques exist for generating the bba,
such as the use of Akaike information criterion [11], or expert training sets [5].
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Fig. 2. Two examples of searching the RT. Attributes are searched in order from left
to right. The horizontal dashed red line and text box indicate the cut-off probability
to declare a match with α = 0.001.

Each set of evidence generated by an attribute of the observed report zk, the
set of matches, will not necessarily intersect. This is a typical case where each
source of evidence is over a non-exhaustive frame of discernment. There are many
approaches to deal with this situation [8]. The approach adopted here is to use
the disjunctive rule of combination to combine the evidence [9]. This supports the
combination of evidence from multiple attributes which may provide evidence
for non-intersecting hypotheses [10].

To declare a confident match, a statistical hypothesis test is set up to deter-
mine if there is enough evidence to make a decision. If there is not enough
evidence, more attributes must be included. Since the mass functions are rep-
resented on the set space 2Ω , the pignistic transform [7] is used to collapse the
evidence onto the singular hypothesis set for decision making.

BetP (A) =
∑

X⊆Ω
|A∩X|

|X|
m(X)

1−m(∅) (2)

The pignistic probability for each potential matching RTj at each stage is cal-
culated. To indicate confidence in the result, a likelihood ratio test is used. Here,
we take H0 as RTH0 where BetP (RTH0) = sup(BetP (RTj)) and H1 as the next
highest RTH1 �= RTH0. The test statistic is defined as Λ(t) = L(H0|z)/L(H1|z)
using BetP as the likelihood, and a threshold η is chosen to reject the null
hypothesis according to the desired confidence in the match. The higher the
desired confidence, the more information required to achieve the level of confi-
dence and the more computational burden to select and combine the evidence.

The χ2 distribution percent point function (quantile) is used with significance
level α to reject the null hypothesis. H0 is rejected if Λ(t) < η = Q(α, χ2(1)). If
H0 is rejected, then another attribute must be included in the estimate. If there
are no more attributes to check, then the observation is declared as not matched.
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5 Results and Conclusion

The algorithm was implemented in Python 2.7 and used the open source library
for Dempster-Shafer theory calculations [13]. Real unclassified production data
from the Royal Canadian Navy (RCN), and a commercial RT consisting of almost
600,000 records was used. Figure 2 shows two examples of observations being
associated to the RT. Note that vessel identities have been obfuscated. The first
example achieves the desired confidence after considering the IMO, IRCS, and
Name of the vessel. The second example is missing an IMO value in zk but is
able to achieve the desired confidence using the reported MMSI and IRCS.

The implementation was evaluated against real data and was able to achieve
a processing rate of up to tens of thousands of records per second. Future work
involves an in-depth analysis of the Receiver Operating Characteristics and inclu-
sion of fuzzy comparisons such as soundex, edit distance, and Metaphones.
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