Existential Fixed-Point Logic as a Fragment
of Second-Order Logic

Andreas Blass

Mathematics Department, University of Michigan,
Ann Arbor, MI 48109-1043, USA
ablass@umich.edu

To Yuri Gurevich, on the occasion of his75th birthday.

Abstract. The standard translation of existential fixed-point formulas
into second-order logic produces strict universal formulas, that is, formu-
las consisting of universal quantifiers on relations (not functions) followed
by an existential first-order formula. This form implies many of the pleas-
ant properties of existential fixed-point logic, but not all. In particular,
strict universal sentences can express some co-NP-complete properties
of structures, whereas properties expressible by existential fixed-point
formulas are always in P. We therefore investigate what additional syn-
tactic properties, beyond strict universality, are enjoyed by the second-
order translations of existential fixed-point formulas. In particular, do
such syntactic properties account for polynomial-time model-checking?

1 Introduction

In [3], Yuri Gurevich and I pointed out numerous pleasant properties of exis-
tential fixed-point logic (IFPL), the logic roughly described as first-order logic,
minus universal quantification, plus the least-fixed-point operator for positive
inductive definitions. (This and other concepts used in this introduction are
explained in more detail in Sect.2.) In that paper, we also showed that for-
mulas of existential fixed-point logic can be translated into equivalent formulas
in a fragment of second-order logic called “strict Vi”. Many, but not all of the
pleasant properties of IFPL formulas are consequences of this translation; that
is, they are enjoyed not only by JFPL formulas but by all strict Vi formulas.
The “not all” here refers particularly to PTime model-checking for all 3FPL
formulas; strict V} formulas do not all enjoy this property unless P=NP.

This situation suggests that perhaps the second-order translations of 3JFPL
formulas actually lie in a smaller fragment of second-order logic, a subset of
the strict V] fragment, such that the subset enjoys PTime model-checking. Of
course, one could trivially define such a subset, namely the set of formulas
that result from the standard translation procedure applied to IJFPL formulas.

Partially supported by NSF grant DMS-0653696

© Springer International Publishing Switzerland 2015
L.D. Beklemishev et al. (Eds.): Gurevich Festschrift IT 2015, LNCS 9300, pp. 52-68, 2015.
DOI: 10.1007/978-3-319-23534-9_3

Existential Fixed-Point Logic as a Fragment of Second-Order Logic 53

The purpose of this paper! is to give a more detailed description of a subset with
the desired properties.

We first show, in Sect. 3, that the model-checking problem for any JFFPL
sentence reduces to the propositional satisfiability problem for instances of a
corresponding quantifier-free first-order formula. We describe the structure of
these quantifier-free formulas and exploit that structure to transform these for-
mulas, in Sects.4 and 6, in a way that, on the one hand, does not alter the
satisfiability of their instances but, on the other hand, ultimately leads to Horn
formulas, so that satisfiability can be decided in polynomial time.

Along the way, the material in Sect.5 presents an apparently new
satisfiability-preserving transformation of propositional formulas in conjunctive
normal form.

2 Preliminaries

2.1 Existential Fixed-Point Logic

In this subsection, we review the syntax and semantics of existential fixed-point
logic.

A wvocabulary for existential fixed-point logic (3FPL) consists of a vocabulary
in the usual sense for first-order logic (predicate symbols and function symbols
with specified natural numbers as arities) plus a specification, for each predi-
cate symbol, whether it is positive or negatable. Terms and atomic formulas are
defined as in first-order logic (without equality, for simplicity). Then JFPL for-
mulas of a vocabulary L are defined by the following recursion, in which we omit
some parentheses to improve readability.

— Atomic formulas of L are L-formulas.

— If ¢ is an atomic L-formula whose predicate symbol is negatable, then —¢ is
an L-formula.

— If ¢ and v are L-formulas, then so are ¢ A1 and ¢ V 9.

— If ¢ is an L-formula and z is a variable, then 3z ¢ is an L-formula.

— Let L’ = LU{Py,...,P;} be a language obtained by adding to L some k
new (i.e., not already in L) positive predicate symbols P;, say of arities r;. Let
X1,...,X} be lists of distinct variables of lengths r;, respectively. Let d1, ..., 0
and ¢ be L’-formulas. Then

Let Pi(x1) < 81,..., Px(xg) < 0 then ¢

is an L-formula. Formulas of this form are called fixed-point formulas, the
predicate symbols P; are called the recursion variables, the §;’s are called
their defining formulas, and ¢ is called the conclusion.

[un

My talk at Yuri Gurevich’s 70th birthday conference in Brno contained much of
the present paper’s material, but I had overlooked what I now call the conjunction
problem in Sect. 3. The solution of that problem given here in Sect. 4 is new. This
paper is, except for preliminary material, disjoint from my written contribution [2]
to Yuri’s 70th birthday celebration.

54 A. Blass

Free variables of a formula are defined as in first-order logic with the addi-
tional clause that a variable is free in the fixed-point formula

Let Pi(x;) < 01,..., Pr(xx) < 0} then ¢

if either it is free in some §; and is not in the list x; or it is free in .

The semantics of IFPL is defined like that of first-order logic, with the follow-
ing additional clause for fixed-point formulas. Let 6 be the fixed-point formula
displayed above. Let 2 be an L-structure with underlying set A, and let values in
A for the free variables of 6 be given. Consider any k-tuple (Ry, ..., Ry) of rela-
tions on A, where each R; is r;-ary. Let (2(, Ry, ..., Ry) be the L’-structure that
agrees with 2 as an L-structure and interprets the additional predicate symbols
P; as the corresponding R;. Each of the L’-formulas ¢; defines, in (2, Ry, ..., Ry),
an rj-ary relation S; on A. In detail, an 7;-tuple a of elements of A is in S; if
d; is true in (A, Ry, ..., Rx) when the variables x; are interpreted as a and the
other free variables have their originally given interpretations. This construction
A sending k-tuples (Ry, ..., Ry) to k-tuples (S1,...,S%) is a monotone opera-
tor on k-tuples of relations of arities r; on A. (Monotonicity is with respect to
componentwise set-thoretic inclusion; it follows from the requirement that the
P;’s are positive in the §;’s.) Let A be the least fixed-point of this monotone
operator. Then the interpretation of 6 in 2 is defined to be the interpretation of
the conclusion ¢ in (A, A>).

Less formally, the “Let ... then ...” construction produces the least fixed-
point of any definable positive operator on (tuples of) relations, and then uses
that fixed-point in a further formula ¢.

The absence of the universal quantifier would be meaningless if we allowed
negation of arbitrary formulas, as one can simulate Yz with =32 —. This is why
negation is allowed only on atomic formulas. The distinction between positive
and negatable predicate symbols and the prohibition of negation on positive
atomic formulas serve to ensure that the §; in the fixed-point formula 6 above
contain only positive occurrences of the recursion variables P; and thus define
a monotone operator A. They also serve to ensure that the conclusion ¢ in 6
contains only positive occurrences of the predicates Pj; without such a restric-
tion, we could surreptitiously introduce the negation of a positive predicate)
by writing Let P(z) «— @Q(x) then —P(z), which would be equivalent to —=Q(z).

The definition of IFPL formulas is a recursion involving all vocabularies
simultaneously, because fixed-point formulas of one vocabulary L can have sub-
formulas, like the d;’s and ¢ above, from a larger vocabulary L'. In effect, the
additional symbols P; of L’ play the role of bound second-order variables. This
connection with second-order logic will be clarified in the next subsection.

2.2 Translation to Second-Order Logic

In this subsection, we review the standard translation from JIFPL formulas to
strict V} formulas of second-order logic. As mentioned in the introduction, these
are formulas obtained from existential formulas of first-oder logic by prefixing

Existential Fixed-Point Logic as a Fragment of Second-Order Logic 55

them with a string (possibly an empty string) of universal second-order quanti-
fiers over predicate symbols.?

Note that there is a symbiosis between the two requirements (1) that the
second-order quantifiers apply to predicate symbols and not function symbols
and (2) that the first-order part of the formula be purely existential. Each of
these requirements alone would be meaningless. Specifically, if we imposed only
requirement (1) but allowed arbitrary first-order parts, then we could use the
first-order part to say that the universally quantified predicates are the graphs of
functions, thereby making (1) pointless. If, on the other hand, we imposed only
requirement (2) but allowed universal quantification of functions rather than
predicates, then arbitrary first-order parts could be simulated by converting
them to Herbrand normal form (the dual of Skolem normal form).

We now check, by induction on FJFPL formulas ¢, that they are equivalent
to strict V} formulas. This is obvious in the case of atomic or negated atomic
formulas.

In the case of conjunctions and disjunctions, we write the conjuncts or dis-
juncts in strict V1 form using different bound second-order variables, combine
them with A or V, and pull the second-order quantifiers out as a prefix using the
usual prenexing rules.

In the case of existential quantification, we pull the second-order universal
quantifiers out of the scope of the new existential first-order quantifier using the
logical equivalence

(Fz)(VP) (P(...)) < (VP')(3x)p(P'(z,...)).

Here the arity of P’ exceeds that of P by one, and every occurrence of P in
the body of the formula is changed to an occurrence of P’ with the additional
argument x.

Finally, in the case of fixed-point formulas, we use the fact that

Let Py(x1) < d1,..., Px(xi) < O then ¢

is equivalent to

(VPy)...(VP,)

k
(/\(in)(éi — Pi(x))> — 4.

i=1

To see the equivalence, note that, since the P;’s occur only positively in ¢, if
© holds for the intended interpretation A°® of the P;’s, then it also holds for
all larger relations, and, in particular, for all relations closed under the operator
A. And this is precisely what the second-order formula above says: ¢ holds
whenever the (interpretations of the) P; are closed under the operator A given
by the defining formulas d;.

2 The terminology “strict Vi” was chosen in analogy with “strict IT{” in [1, Sect. 8.2].

The difference is that “strict I71” is used in a set-theoretic context and allows not
only existential quantifiers but also bounded universal quantifiers (Vax € y) in the
first-order part of the formula.

56 A. Blass

Now if we insert into this equivalent formula some strict V} forms of the §;’s
and ¢ and then apply standard prenex operations, the result is in strict V1 form,
as desired. Note, in particular, that the universal first-order quantifiers Vx; are
in the antecedent of an implication so the first-order part is existential.

The preceding proof, showing that JFPL formulas can be translated to equiv-
alent strict V} formulas, would become an algorithm for carrying out the transla-
tion if we added some unimportant details, such as the choice of bound variables
and the order in which similar quantifiers are pulled out during prenex opera-
tions. We assume henceforth that these details have been supplied, and we refer
to the resulting algorithm as the standard translation from JFPL to strict V1.

In [3] some semantical properties of IFPL formulas were established by show-
ing that they actually hold for all strict V} formulas. These properties include
the facts that

— The set of valid JFPL sentences is a complete computably enumerable set.

— The set of satisfiable IFPL sentences is a complete computably enumerable
set.3

— If a formula is satisfied by some elements in a structure, then this fact depends
only on a finite part of the structure.

But at least one important property of IFPL formulas, namely PTime model-
checking, does not (unless P=NP) hold for arbitrary strict Vi formulas. Specifi-
cally, on undirected graphs, regarded as structures with a single binary relation
E of adjacency, the strict V1 formula

3 3
(VP (VP2)(VP3)(32)(3y) | /\ ~Pila) v _\/(E(x, y) A Pi(x) A Pi(y))

i=1

expresses that the graph is not 3-colorable, a co-NP-complete property.

This situation suggests that perhaps the second-order translations of 3JFPL
formulas are not merely strict V1 but have some additional syntactic property
that ensures their PTime decidability. The main purpose of this paper is to
establish such an additional property.

3 Model-Checking

In this section, we discuss model-checking for strict Vi sentences. That is, we
consider, for any fixed strict V1 sentence ¢ in vocabulary L, the following decision
problem:* An instance is a finite L-structure 2 and the question is whether

A = .

3 The expected duality between validity and satisfiability is not available for logics,
like IFPL, that are not closed under negation.

* We are dealing here with what is often called data complexity of the model-checking
problem. That is, we regard the “data” 2 as the input, and we measure resource
usage relative to the size of 2, while the “query” ¢ is held fixed.

Existential Fixed-Point Logic as a Fragment of Second-Order Logic 57

It is convenient to address this problem by considering the negation of ¢
instead. It has a standard translation to a strict 3} sentence; that is, =¢ can be
put into the form

(3R1)...(3Rm) ¥

where the R; are predicate symbols and where 1 is a universal first-order sen-
tence of the vocabulary L' = LU {Ry,..., R,,}. This strict 31 sentence is true
in 2 if and only if there are relations® R; on the underlying set A such that all
instances of ¢ are true for this interpretation of the existentially quantified pred-
icate variables in —p. Here “instances of " refers to all the formulas obtained
by replacing the (universally) quantified first-order variables in ¢ by arbitrary
elements of A.

This criterion for 2 | —¢ is essentially a question of propositional satisfi-
ability. Indeed, consider the set X of all instances of ¥. These are quantifier-
free L'(A)-sentences, where L'(A) is the language obtained from L' = L U
{R1,...,Rn} by adding (names for) all the elements of A as constant symbols.
In these sentences, replace each atomic sentence that uses an L-predicate symbol
(i.e., any predicate symbol other than the R;’s) by its truth value in 2. What
remains is a set X’ of sentences that are Boolean combinations of instances of
the R;’s. Regard all these instances of R;’s as propositional variables. Any truth
assignment to these propositional variables amounts to a choice of relations R;;
the truth assignment satisfies X’ if and only if the R; relations satisfy 1. There-
fore = is true in 2 if and only if X’ is (truth-functionally) satisfiable.

The process leading from ¢ and 2 to X’ can be summarized as follows.

1. Perform the standard translation of ¢ to strict V} form.

2. Negate the result and push the negation in past quantifiers and connectives,
until only atomic formulas are negated; the result is the standard strict 3}
form of —.

3. Delete all quantifiers, but remember which predicate symbols were bound
second-order variables.

4. Form all instances of the resulting formula, replacing the first-order variables
by (names of) elements of 2 in all possible ways.

5. Inthe resulting formulas, replace the atomic subformulas whose predicate sym-
bols are in the vocabulary of 2 (as opposed to the predicate symbols that were
quantified second-order variables before step 3) by their truth values in 2.

The resulting set of formulas is the propositional translation X’ of —. Its propo-
sitional variables are of the form R(a), where R was a bound second-order vari-
able before step 3, and a is a tuple of elements of 2.

Note that we have arranged the steps so that the input A of our model-
checking problem enters the process only at step 4.

The propositional translation has two key properties. First, 2 |= ¢ if and only
if the propositional translation of - is not satisfiable. Second, the propositional

5 To avoid excessive notation, we use the same symbols for these relations as for the
corresponding symbols in our strict 3] sentence.

58 A. Blass

translation is, for fixed ¢, computable in polynomial time from 2. In particular,
the size of the propositional translation of —¢ is bounded by the product of

— |A|4, where d is the number of universally quantified, first-order variables in
the strict V] translation of ¢, because these are the variables that must be
replaced, in all possible ways, by elements of A,

— log | A| to account for the length in bits of the names of the elements of A, and

— a constant, namely the length of the formula obtained in step 3 above, before
2A entered the process.

Thus, we have a PTime reduction of the model-checking problem for a (fixed)
JFPL sentence ¢ to a propositional satisfiability problem. Our goal is to detect
the special properties of the propositional translations of IFPL sentences that
make their satisfiability decidable in PTime. For example, if the propositional
translations always consisted of Horn formulas, then that would provide a PTime
solution of the model-checking problem. We therefore turn our attention to the
structure of the formulas that arise in the propositional translations of FFPL
sentences.

Let us begin by disposing of a tempting error. When we translated 3JFPL
formulas 6 into second-order logic, the second-order variables originated from
the recursion variables P; in the P;(x) « J;(x) parts of fixed-point formulas.
Those P;’s are positive predicate symbols. So they occur only positively in the
strict Vi form of 6, and therefore the resulting propositional variables occur
only negatively in the propositional translation of —. It is, of course, trivial
to decide satisfiability of propositional formulas in which all the variables occur
only negatively; just give them all the value “false” and see whether the formulas
become true.

The error in the preceding paragraph is that, although the P; are positive
predicate symbols and therefore occur only positively in the defining formulas
d; and in the conclusion ¢, they nevertheless acquire negative occurrences in the
strict V1 translation. Specifically, the underlined occurrences in the translation

k
(/\(\fxi) 0 = P(x))) = w]

i=1

(VPy)...(VPy)

of a fixed-point formula are negative. So the situation is not so trivial as the
preceding paragraph would suggest.

A better, but still incorrect approach involves rewriting the translation of a
fixed-point formula exhibited above in the logically equivalent form

(VP,)...(VP,)

k
%2 V \/ E'X,L(_'PZ(XZ) A\ (S,L)‘| .

i=1

The negation, in strict 3} form, then looks like

@3Py)...(3P)

k

i=1

Existential Fixed-Point Logic as a Fragment of Second-Order Logic 59

The first-order body of this formula is a conjunction of £+ 1 subformulas, each of
which contains at most one positive occurrence of a P;. When we form instances
of this body, we get at most one positive literal in each conjunct. That is, we get
only Horn clauses, and it is well-known that satisfiability of sets of Horn clauses
is decidable in PTime.

There are two errors in this approach. The first is that IFPL formulas are
not simply fixed-point formulas like the one under consideration here. In partic-
ular, we might have the conjunction of two (or more) such formulas. Then the
propositional translation of the negation will be a disjunction of formulas like
those here, and, when put into conjunctive normal form, will have two (or more)
positive literals in some of its clauses. We shall address this conjunction problem
in Sect. 4.

The second error in the argument above is that a conjunct P;(x) V —¢; can
have more positive occurrences of literals than just the visible P;(x). If the
formula d; contains some fixed-point formulas as subformulas, then the second-
order variables arising from those subformulas will have negative occurrences
(analogous to the underlined P;’s above) in §; and therefore positive occurrences
in the conjunct P;(x)V —d; under consideration. So the conjunctive normal forms
of our propositional translations need not be Horn formulas.

Notice that this error is relevant only when recursions are nested, that is,
when the defining formula §; in a recursive clause P;(x;) < 0; contains further
fixed-point formulas. Accordingly, we call this the nesting problem; we shall
address it in Sects. 5 and 6.

It is known that nesting of recursions is never really needed in JFPL. For
example, the nested recursion

Let P(z) « [Let Q(y) « §(P,Q,x,y) then (P, Q,x)] then ¢(P)

(where we have indicated which predicate symbols and bound variables are avail-
able in the subformulas) is equivalent to

Let P(z) < 0(P,Q5,2), Q'(2,y) < (P, Q,,z,y) then o(P),

where @', means the binary predicate symbol Q" with z inserted as its first argu-
ment. For the general proof that unnested recursions suffice, see, for example,
[5, Sect.1.C].

One can similarly circumvent the conjunction problem, because conjunctions
in dFPL formulas can be pushed inward to apply only to atomic and negated
atomic formulas. For example, the conjunction

(Let P(z) « &(x) then ¢) A (Let P'(y) < &§'(y) then ¢')
is equivalent to
Let P(x) « 6(z),P'(y) < ¢§'(y) then p A ¢’

(where we assume that bound variables have been renamed if necessary to avoid
clashes).

60 A. Blass

In a sense, these observations explain, via the strict Vi translation, why JFPL
has PTime model-checking. Explicitly: Given an JFPL sentence, rewrite it to
avoid nested recursions and to avoid conjunctions of compound formulas. Then
produce the propositional translation of the negation of the new IFPL sentence,
using a conjunctive normal form of its matrix. The result consists of Horn clauses,
for which satisfiability is decidable in PTime. (The use of the conjunctive normal
form can exponentially increase the size of the formula, but this doesn’t matter as
we are considering a single formula at a time and measuring complexity relative
to the structure 21.)

Unfortunately, this does not quite answer our original question, which con-
cerned the direct translation of arbitrary IFPL formulas to strict V1 form, with-
out pre-processing to eliminate nested recursions and non-trivial conjunctions.

Fortunately, the satisfiability problem for the sets of formulas that actually
arise can be transformed, on the level of propositional logic, to an equivalent sat-
isfiability problem for Horn formulas. In the following sections, we shall carry out
this transformation. In Sect. 4, we show how to convert the formulas that actually
arise to formulas that avoid the conjunction problem; the conversion preserves
satisfiability. In Sects. 5 and 6, we do the same for the nesting problem. Section 5
isolates the relevant construction in general, not just for the formulas obtained by
translating JFPL formulas; this general, satisfiability-preserving transformation
seems to be of independent interest. The application of the general transforma-
tion to the nesting problem for translated JFPL formulas is described in Sect. 6.

Remark 1. The general theme of this paper is that model-checking for a certain
class of second-order formulas is in polynomial time because it can be reduced
to the propositional satisfiability problem for Horn formulas. The same theme
occurs in a paper [4] of Erich Grédel. The class of second-order formulas consid-
ered there, called SO-HORN, is, however, quite different from the class arising
here from dFPL. The appropriate comparison would be between SO-HORN and
the strict 3} formulas arising from the negations of IFPL formulas. In both cases,
the second-order quantifiers range only over relation variables, and in both cases
the first-order matrix is required to be a universal formula, but the smiilarity
ends there. SO-HORN allows both universal and existential second-order quan-
tifiers, whereas strict 31 requires the second-order quantifiers to be existential.
On the other hand, the quantifier-free parts of SO-HORN formulas are required
to already be in Horn form (at least with regard to the quantified predicate sym-
bols), whereas, as we have seen above, we must deal with non-Horn formulas.
Indeed, the following sections are primarily devoted to the problem of converting
our formulas to Horn form without altering the satisfiability of their instances.

4 Conjunctions

To avoid annoying distractions during our manipulations of formulas, we assume
from now on that there are no clashes of variables in our FFPL formulas. That
is, no (first-order) variable has both free and bound occurrences, nor is any such

Existential Fixed-Point Logic as a Fragment of Second-Order Logic 61

variable bound twice (by 3 or by the fixed-point construction); also no predicate
symbol occurs more than once as a recursion variable. This simplification can,
of course, be achieved by renaming bound variables and recursion variables as
necessary. We shall refer to this convention as the “no clashes” assumption.

We point out, for future reference, a consequence of the no clashes assump-
tion. Suppose that, in some FJFPL sentence ¢, a certain variable x occurs in two
or more fixed-point subformulas, say with recursion variables P and @. Then
the scope of that x must include both of those fixed-point subformulas. As a
result, when one converts ¢ to strict Vi form, the second-order quantifiers VP
and V@Q will be pulled out of the scope of an 3z, and so the predicate symbols P
and @ will have their arities increased and will have x inserted as an additional
argument. Thus, if occurs in two or more fixed-point subformulas of ¢, then
the recursion variables of those subformulas will, in the strict V} translation of ¢,
have z among their arguments. We shall refer to this observation as “argument
joining”.

As a first step in the solution of the conjunction problem, we describe care-
fully the class of formulas that arise from steps 1 to 3 in the process described
above for obtaining X’ from ¢ and 2(. As remarked there, these three steps do
not involve 2, which enters only at steps 4 and 5. So we are working with just an
JFPL formula . We first produce the standard strict 3} form of -, and then
we delete all the quantifiers, obtaining a quantifier-free first-order formula in the
vocabulary consisting of the vocabulary of ¢ plus amplified recursion variables
from . Here “amplified” refers to the extra argument places that recursion vari-
ables acquire when, in the production of the strict Vi form, they are pulled out
of the scope of first-order existential quantifiers. By inspection of the definitions
of IFPL formulas and of their standard translations to strict Vi form, we see
that the quantifier-free formulas obtained by this process are among the primary
formulas defined as follows.

Definition 2. The primary formulas of a vocabulary L form the smallest class
such that

— atomic formulas whose predicate symbol is negatable are primary,

— negations of arbitrary atomic formulas are primary,

— conjunctions of primary formulas are primary,

— disjunctions of primary formulas are primary, and

— if @ and 6y, . ..,0p are primary formulas for the vocabulary LU {Py, ..., Py},
where the P; are new positive predicate symbols, then

k
an /\(Pi(xi) Vv 4;)
i=1
is primary.
We refer to the last item in this list of constructors as the miz constructor,
because it mixes conjunction and disjunction. Each P; occurring there will be

called a key predicate, and x; and §; will be called its associated variables and
formula, respectively.

62 A. Blass

Note that the primary formulas include all negated atomic formulas, but they
include the unnegated ones only when the predicate symbol is negatable. This
strange-sounding situation — the predicate must be negatable in order to appear
unnegated — arises from the fact that we are working with the translations not
of dFPL formulas themselves but of their negations. Note further that a positive
predicate can have at most one positive occurrence in a primary formula, namely
an occurrence as the key predicate of a mix construction. Here the “at most one”
claim follows from our no clashes assumption.

In this new context, argument joining becomes the fact that, if « is a primary
formula and if a variable occurs in two or more subformulas of « obtained by
the mix construction, then that variable is among the arguments of the key
predicates of those mix subformulas.

The next definition describes a subclass of the primary formulas for which
the conjunction problem does not arise. In fact, formulas in this subclass have
an especially useful structure, which we describe, in terms of their parse trees,
after the definition.

Definition 3. The basic secondary formulas of a vocabulary L form the smallest
class such that

— atomic formulas whose predicate symbol is negatable are basic secondary,
— negations of arbitrary atomic formulas are basic secondary,

— conjunctions of basic secondary formulas are basic secondary, and

— disjunctions of basic secondary formulas are basic secondary.

The secondary formulas of a vocabulary L form the smallest class such that

— all basic secondary formulas are secondary, and

— if a and 4y, ...,) are secondary formulas for the vocabulary LU{Py,..., Py},
where the P; are new positive predicate symbols, then the result of the mix
construction,

k

an N\(Pixi) Vi),

i=1
is secondary.

Thus, secondary formulas are built by the same constructors as primary formulas
but, in a secondary formula, the mix constructors must be applied after all the
others, not intermingled with the others.

It is useful to consider parse trees showing how secondary formulas are built
from basic secondary ones. The internal nodes of such a tree correspond to the
mix construction a/\/\le (P;(x;)Vd;); such a node has 2k+1 children, one for «,
k for the key predicate subformulas P;(x;), and k corresponding to the associated
0;’s. Of these, the k corresponding to P;(x;) are leaves of the parse tree; the other
k+1 might be leaves or internal nodes. All the leaves of the parse tree are either
of the P;(x;) form just mentioned or basic secondary formulas. Notice that the
leaves of the P;(x;) sort are the only place where positive predicate symbols have
positive occurrences.

Existential Fixed-Point Logic as a Fragment of Second-Order Logic 63

The main result in this section will say that every primary formula can be
transformed into a secondary one while preserving the essential property relevant
for IFPL. That essential property is, in view of the results of Sect. 3, instance-
equisatifiability, defined as follows.

Definition 4. Two sets of quantifier-free formulas ¥; and X5 (in a first-order
language that extends L) are equisatisfiable if, whenever there exists a truth
assignment satisfying one of them, there also exists a (possibly different) truth
assignment satisfying the other. They are instance-equisatisfiable if, for every L-
structure A, X (A) and Xo(2A) are equisatisfiable, where X;(21) is obtained from
i by replacing the variables by elements of 2 in all possible ways and then
replacing all atomic subformulas whose predicate is in L by their truth values
in 2.

Notice that the construction of X;(2() from X; described in this definition is
exactly the last two steps, 4 and 5, in the construction of X’ in Sect.3. Thus,
for the purpose of model-checking IFPL formulas, the X’ there, which consists
of primary formulas, can safely be replaced by any instance-equisatisfiable set of
formulas. That is how we shall use the following proposition and its corollary.

Proposition 5. The conjunction and disjunction of two secondary formulas are
each instance-equisatisfiable with a secondary formula.

Proof. We proceed by induction on the two given secondary formulas, and we
treat the most difficult case, namely where both of them arise from the mix
construction. (If both of the given formulas are basic, then the result is trivial.
If one arises from mix and the other is basic, then the proof is easier, or one can
regard the basic formula as resulting from a mix in which the number of key
predicates happens to be zero.) Suppose, therefore, that the given formulas are

k
7= aAl /\(Pi(xi)\/éi) and + = a’/\/\(PZ’(x;)\/(S’

i=1

Their conjunction vy A+’ is not merely instance-equisatisfiable but tautologically
equivalent with

>;v

(ana) A N\ (Pi(x) V6;) /\/\ V8,

=1

which is a secondary formula with k+k’ key predicates, because, by the induction
hypothesis, a A o’ is a secondary formula.
For the disjunction, we use

>a~

0 (aVa')A

k)/
IANCACHRENE
=1

64 A. Blass

which is a secondary formula, as above, because aV o/ is secondary by induction
hypothesis. It is easy to see that 6 tautologically implies v V 4'. The converse,
however, is not generally correct; we do not get equivalence but only instance-
equisatisfiability.

To prove the non-trivial direction of instance-equisatisfiability, suppose we
have an L-structure 2 and truth assignment v satisfying all the instances of
vV v/, where by “instance” we understand, as in the definition of instance-
equisatisfiability, the result of substituting elements of 2 for variables and then
replacing all atomic formulas involving L-symbols by their truth values in 2.
Notice that the predicate symbols in v and «' are all either L-symbols or key
predicates of mix constructions.

To emphasize the essential idea of the proof, we first consider the special case
where v and 4’ have no (first-order) variables in common. In this case, we claim
that v either satisfies all instances of v or satisfies all instances of 4" (not merely
some instances of the one and the remaining instances of the other). Suppose
the claim were false, so some instance of v, and some other instance of v/ were
falsified by v. Then we could form a third instance, giving the variables in y the
same values as in the first instance (thus making v false under v) and giving the
variables in 7’ the same values as in the second instance (thus making + false
under v). But then this third instance would make vV’ false under v, contrary
to our choice of v.

Thus, we may suppose without loss of generality, that v satisfies all instances
of v. Now we can produce a truth assignment v* satisfying 6 as follows. Let v*
assign the value “true” to all those atomic formulas whose predicate symbol is
one of the key predicates P/ of 4/, and let v* agree with v on all other atomic
formulas. The difference between v and v*, affecting only the P/, will not affect
7, because the P/ don’t occur in 7 (thanks to the no clashes assumption). Thus

v* satisfies v and therefore satisfies the part (aVa') A /\le(Pi(xi) V ;) of 6. But

it also satisfies the remaining conjunct, /\f;l(PZ’(x;) V 8}) of 6. So v* satisfies 0
as required.

The preceding argument used the assumption that v and 4’ have no common
variables. We now indicate how to modify it to accommodate common variables,
say the list y of variables. We no longer claim that v satisfies all instantiations
of v or all instantiations of +'; instead, we claim that, for any fixed instantiation
of y, v satisfies all its extensions to instantiations of v or all its extensions to
instantiations of 4'. In other words, whether v or 4’ is satisfied (by v) may
depend on the instantiation but only via the values assigned to the common
variables y. The proof of this modified claim is exactly as in the easier argument
given above; once we fix the values of y, the remaining variables, occurring in
only one of v and 7/, can be treated as before.

In the easier argument, we obtained v* by modifying the truth values assigned
by v to the key predicates of 4/, under the assumption that v satisfied all
instances of . Of course, if v had satisfied all instances of 4/, then we would
have modified the truth values assigned to the key predicates of . Now in the
present, more complicated situation, the decision as to which predicates should

Existential Fixed-Point Logic as a Fragment of Second-Order Logic 65

get new truth values may depend on the values assigned to y. Thanks to argu-
ment joining, this is no problem. The variables y occur as arguments of all the
key predicates in v and in 4'. So we can modify the values assigned to instances
of P; with certain values for the y arguments and modify the values assigned
to instances of P} with other values for the y arguments. What we do with
one instantiation of y has no effect on what happens with other instantiations.
(Another way to view this argument is that we treat the variables y as new
constant symbols and consider separately all the expansions of 2 giving values
to these new constants. That reduces the problem to the easier case already
treated.)
This completes the proof of the proposition.

Corollary 6. Fvery primary formula is instance-equisatisfiable with a sec-
ondary formula.

Proof. Induction on primary formulas, using Proposition 5 for the only nontrivial
cases.

The proofs of the proposition and corollary provide an explicit algorithm for
converting a primary formula to an instance-equisatisfiable secondary one.

5 Satisfiability and Trimming

This section is entirely about propositional logic, specifically about satisfiability
of sets of clauses. Here “clause” means, as usual, a disjunction of literals, i.e.,
of propositional variables and negations of propositional variables. So a set of
clauses is semantically equivalent to a conjunctive normal form, namely the
conjunction of its clauses.

Theorem 7. Let I' be a set of clauses, let p be a propositional variable, and
let Q be a set of propositional variables other than p. Suppose that, whenever a
clause in I' contains a negative occurrence of a variable from Q, it also contains
a positive occurrence of p or of some wvariable from Q. Obtain I from I' by
deleting positive occurrences of p from those clauses that also contain positive
occurrences of at least one variable from Q. Then I' is satisfiable if and only if
I is.

Proof. One direction is trivial, because any truth assignment that satisfies all
the clauses in I will certainly satisfy the corresponding clauses in I, since the
latter differ from the former at most by having additional disjuncts.

Suppose, therefore, that we have a truth assignment v that satisfies all the
clauses in I'. If it makes p false, then it also satisfies all the clauses in I,
because the positive occurrences of p that were removed when we produced I
were not satisfied by v and so some other disjuncts in those clauses must have
been satisfied.

So we may assume that v makes p true. In this situation, v need not satisfy
I, but we can find another truth assignment v’ that will satisfy I"’. Let v’ make

66 A. Blass

all the variables in @ true, and let it agree with v on all the other variables. To
show that v’ satisfies every clause v in I"', we consider three cases.

First, suppose 7y is one of the clauses that was altered, by removing the pos-
itive disjunct p, when we transformed I" to I". Recall that we undertook such
a removal only when the clause in I contained, along with p, a positive occur-
rence of some variable from Q. Such variables are true under v/, and therefore
our clause 7 is also true under v’

It remains to consider those clauses v that were not changed in the transition
from I' to I'". These were true under v, but we need that they are true under
v’. That is very easy to check for those clauses v in which variables from @
occur only positively. Since, in going from v to v/, the only changes were that
variables in), which might have been false under v, became true under v’, any
clause containing them only positively cannot change from true under v to false
under v’.

There remain those clauses «y that are the same in I" and in I but have neg-
ative occurrences of some variable(s) from). By the hypothesis of the theorem,
every such v also has positive occurrences of p or of some variable from (. Since
p and all variables from @Q are true under v’, it follows that v’ satisfies all such
clauses ~.

Definition 8. The transformation from I' to I described in the theorem is
called trimming I or, in more detail, trimming p using Q).

6 Trimming to Horn Form

In this section, we complete the reduction of the model-checking problem for any
JFPL sentence to a decidable case of the propositional satisfiability problem,
namely the satisfiability of sets of Horn clauses.

Given an JFPL sentence ¢, we saw in Sect.3 how to reduce the problem
“Given 2, decide whether ¢ is true in 27 to the problem of satisfiability of the
set of all /-instances of a certain formula constructed from ¢. That formula is pri-
mary, in the sense defined in Sect. 4 and, as proved there, instance-equisatisfiable
with a certain secondary formula. So the model-checking problem for ¢ is reduced
to determining the satisfiability of the instances of this secondary formula.

The next step is to convert this secondary formula, say 1, into conjunctive
normal form. (As mentioned earlier, the possible exponential increase in the
formula’s size caused by this conversion is not a problem, because we are consid-
ering the model-checking problem for a fixed formula, with only the structure A
as input. The set of all 2-instances still has size polynomial in the size of 2.) We
now look into the structure of this conjunctive normal form and its 2-instances
(for arbitrary).

Recall that, when forming 2-instances of 1, we replace any atomic subformu-
las that use predicates from L by their truth values in 2. The atomic subformulas
of an instance therefore use only the predicates not in L, which are the recursion
variables of ¢ and the key predicates of the primary and secondary formulas

Existential Fixed-Point Logic as a Fragment of Second-Order Logic 67

derived from . We shall use the letters P and @ to stand for such predicates in
the following discussion.

Let us consider the conjunctive normal form of a secondary formula ¢, paying
particular attention to the positive occurrences of atomic subformulas using the
P, Q predicates. Basic secondary formulas are built using A and V from atomic
subformulas, subject to the condition that positive predicates — which include
the P,Q predicates — occur only negatively. So there are not yet any positive
occurrences of P’s and)’s at this basic stage. That situation changes when we
apply the mix construction to produce secondary formulas of the form

k

an \(Pi(xi) V).

=1

Now each P; has a positive occurrence, and, in addition, other P’s and @’s may
have positive occurrences in « and in the §;’s. To convert a A /\le(Pi(xi) vV 4;)
to conjunctive normal form, we would first convert « and the §;’s to conjunctive
normal form and then, for each i, distribute P;(x;) V — across the conjunctive
normal form of §;. Thus, each conjunct of that conjunctive form acquires P;(x;)
as a new literal. Note that such a conjunct may already have other positive
occurrences of other P’s and @’s, but only when these are the key predicates
of subformulas of §;. Thus, those other P’s and QQ’s come from mix subformulas
that are descendants of the current mix formula a A /\le(PZ-(xZ-) V é;) in the
parse tree of 1). We emphasize that, in this conjunct, the new positive P and
previously present) are key predicates of comparable mix nodes of the parse
tree.

Repeating this process for every application of the mix constructor in 1,
we arrive at a conjunctive normal form 6 in which every individual conjunct
has, because of the comparability noted at the end of the preceding paragraph,
the following crucial property: All the positive occurrences of P’s and @Q’s in it
originated from mix nodes in a single branch of the parse tree of 1.

From now on, to make contact with the terminology of Sect.5, we shall
identify the conjunction € with the set of its conjuncts, which may thus be
called clauses.

Consider a P and a @ such that the mix node with key P is an ancestor
of the mix node with key @ in the parse tree of ¢. So P is some P; in a mix
formula o A /\le(Pi(xi) V 4;), while @ is the key of a mix subformula of ¢;.
That mix subformula contains all the occurrences of () in 1), because of our no
clash assumption. As a result, in the conjunctive normal form 6, every clause
with an occurrence of @ also has a positive occurrence of P(x;). (We need
this information only for the negative occurrences of @, but it is true for all
occurrences of Q.)

Recall that, in this situation, when we formed the strict V} form of ¢ (as the
first step toward ¢ and 0), the variables x; associated to P; became additional
arguments of). Because of that, when we now form instances of 6, all clauses
containing negative occurrences of any particular instance of @) will also contain
a positive occurrence of the corresponding instance of P;(x;). This means, by

68 A. Blass

Theorem 7, that we can delete positive occurrences of any instance of P from any
clause that also contains a positive occurrence of a corresponding instance Q.

These deletions can be uniformly summarized as follows, in terms of 6 itself
rather than its instances: In any clause containing positive occurrences of P and
@, where @ originated in a descendant of the mix formula of P, one can delete
the occurrence of P. But, in every conjunct of 6, the positively occurring P’s
and @)’s originated along a branch, and so one can delete all the positive P’s and
Q’s except the one farthest from the root of the parse tree of .

That leaves at most one positive P in any clause; all instances then have
at most one positive literal. That is, we have only Horn clauses in the trimmed
conjunctive normal form.

7 Summary

The strict ¥} translation of any JFPL sentence has a special syntactic form. Its
quantifier-free matrix is the negation of what we called a primary formula in
Sect. 4, and the occurrences of variables are constrained by the no clash assump-
tion and the argument joining property. This special form ensures polynomial-
time model-checking, because this special syntactic form allows, first, reduction
to a secondary formula (still subject to no clashes and argument joining) and,
second, trimming to Horn form. Then the original IFPL sentence holds in 2 if
and only if the set of all 2-instances of this Horn form is not satisfiable.

Acknowledgement. Because of the last-minute discovery of the conjunction problem,
this paper was submitted after the official deadline, leaving less than the normal time
for refereeing. Nevertheless, the referee provided a very useful report. I thank him or
her for the report, in particular for informing me about the existence and relevance
of [4].

References

1. Barwise, J.: Admissible Sets and Structures: An Approach to Definability Theory.
Perspectives in Mathematical Logic. Springer-Verlag, Berlin (1975)

2. Blass, A.: Existential fixed-point logic, universal quantifiers, and topoi. In: Blass,
A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol.
6300, pp. 108-134. Springer, Heidelberg (2010)

3. Blass, A., Gurevich, Y.: Existential fixed-point logic. In: Bérger, E. (ed.) Compu-
tation Theory and Logic. LNCS, vol. 270, pp. 20-36. Springer, Heidelberg (1987)

4. Gradel, E.: Capturing complexity classes by fragments of second-order logic. The-
oret. Computer Sci. 101, 35-57 (1992)

5. Moschovakis, Y.N.: Elementary Induction on Abstract Structures. Studies in Logic
and the Foundations of Mathematics. North-Holland, New York (1974)

	Existential Fixed-Point Logic as a Fragment of Second-Order Logic
	1 Introduction
	2 Preliminaries
	2.1 Existential Fixed-Point Logic
	2.2 Translation to Second-Order Logic

	3 Model-Checking
	4 Conjunctions
	5 Satisfiability and Trimming
	6 Trimming to Horn Form
	7 Summary
	References

