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Abstract. Vacuity checking is traditionally performed after model
checking has terminated successfully. It ensures that all the elements of
the specification have played a role in its satisfaction by the system. The
need to check the quality of specifications is even more acute in property-
based design, where the specification is the only input, serving as a basis
to the development of the system. Inherent vacuity adapts the theory of
vacuity in model checking to the setting of property-based design. Essen-
tially, a specification is inherently vacuous if it can be mutated into a
simpler equivalent specification, which is known, in the case of specifica-
tions in linear temporal logic, to coincide with the fact the specification
is satisfied vacuously in all systems.

A recent development in formal methods is an extension of the
Boolean setting to a multi-valued one. In particular, instead of Boolean
automata, which either accept or reject their input, there is a growing
interest in weighted automata, which map an input word to a value from
a semiring over a large domain. A distributive finite lattice is a special
case of a semiring, and lattice automata are used in several methods for
reasoning about multi-valued objects. We study inherent vacuity in the
setting of lattice automata, namely the ability to mutate the value of
a transition in the automaton without changing its language. We define
the concept of inherent vacuity in lattice automata, study the complexity
of deciding different types of vacuity, and relate the setting to the one
known for linear temporal logics.

1 Introduction

In recent years, we see a growing awareness to the importance of assessing the
quality of (formal) specifications. In the context of model checking, the quality
of the specification is assessed by analyzing the effect of applying mutations to
the formulas. If the system satisfies the mutated specification, we know that
some elements of the specification do not play a role in its satisfaction, thus the
specification is satisfied in some vacuous way [5,28]. Vacuity is successfully used
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in order to improve specifications and detect design errors [26] and has been a
subject of extensive research [4,5,10,18,28,31].

Property assurance is the activity of eliciting specifications that faithfully
capture designer intent [7,33]. Obvious quality checks one may perform for a
given specification are non-validity and satisfiability [34]. More involved quality
checks are studied in the PROSYD project [32]. As discussed in [33], checking
vacuity of the specifications in the context of property assurance would be of
great importance. While early work on vacuity was done in the context of model
checking, researchers have also developed the concept of “vacuity without design”
[13], which is formalized for linear temporal logic (LTL) formulas in [17], by
means of inherent vacuity.

Consider a system S and a formula ϕ. We say that a subformula ψ of ϕ does
not affect the satisfaction of ϕ in S if S also satisfies the formula ∀x.ϕ[ψ ← x], in
which ψ is replaced by a universally quantified proposition. Then, a formula ϕ is
vacuously satisfied in S if ϕ has a subformula that does not affect its satisfaction
in S [4]. Now, as defined in [17], the formula ϕ is inherently vacuous if there
exists a subformula ψ of ϕ such that ϕ ≡ ∀x.ϕ[ψ ← x] or, equivalently, if for
every system S, if S |= ϕ, then S satisfies ϕ vacuously.

The framework in [17] studies specifications given by LTL formulas. A recent
development in formal methods is an extension of the Boolean setting to a multi-
valued one. In particular, instead of Boolean automata, which either accept or
reject their input, there is a growing interest in weighted automata, which map
an input word to a value from a semiring over a large domain [15,30]. Focusing
on applications in formal verification, the multi-valued setting arises directly in
quantitative verification [21] and in reasoning about quality of systems [1], and
indirectly in applications like abstraction methods, in which it is useful to allow
the abstract system to have unknown assignments to atomic propositions and
transitions [35], query checking [11], which can be reduced to model checking over
multi-valued systems, and verification of systems from inconsistent viewpoints
[23], in which the value of the atomic propositions is the composition of their
values in the different viewpoints.

As mentioned above, in the multi-valued setting, the automata map words to
a value from a semiring over a large domain. A distributive finite lattice is a spe-
cial case of a semiring. A lattice 〈A,≤〉 is a partially ordered set in which every
two elements a, b ∈ A have a least upper bound (a join b) and a greatest lower
bound (a meet b). Finite lattices are useful in many of the applications of the
multi-valued setting described above. For example (see Fig. 1), in the abstraction
application, researchers use the lattice L3 of three fully ordered values [8], as well
as its generalization to Ln [12]. In query checking, the lattice elements are sets of
formulas, ordered by the inclusion order [9]. When reasoning about inconsistent
viewpoints, each viewpoint is Boolean, and their composition gives rise to prod-
ucts of the Boolean lattice, as in L2,2 [16]. Finally, when specifying prioritized
properties of system, one uses lattices in order to specify the priorities [3].

In a nondeterministic lattice automaton on finite words (LNFW, for
short) [27], each transition is associated with a transition value, which is a
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lattice element. Intuitively, the value indicates the truth of the statement “the
transition exists”. Each state in the LNFW is associated with an initial value
and an acceptance value, indicating the truth of the statements “the state is
initial/accepting”, respectively. The value of a run r of an LNFW A is the meet
of the values of all the components of r: the initial value of the first state, the
transition values of all the transitions taken along r, and the acceptance value of
the last state. The value of a word w is then the join of the values of all the runs
of A on w. Accordingly, an LNFW over an alphabet Σ and lattice L induces
an L-language L : Σ∗ → L. Note that traditional finite automata (NFWs) cor-
respond to LNFWs over the lattice L2. In a deterministic lattice automaton on
finite words (LDFW, for short), exactly one state has an initial value that is not
⊥ (the least lattice element), and for every state q and letter σ, at most one state
q′ is such that the value of the transition from q to q′ with σ is not ⊥. Thus, an
LDFW A has at most one run whose value is not ⊥ on each input word, and
the value of this run is the value of the word in the language of A.

Since being introduced in [27], lattice automata have been used in different
contexts. Fully-ordered lattices are sometimes useful as is (for example, when
modeling priorities [3]), and sometimes thanks to the fact that real values can
often be abstracted to finitely many linearly ordered classes. The power-set lat-
tice models a wide range of partially-ordered values. For example, as mentioned
above, in a setting with inconsistent viewpoints, we have a set of agents, each
with a different viewpoint of the system, and the truth value of an atomic propo-
sition or a formula indicates the set of agents according to whose viewpoint the
atomic proposition or the formula are true. As another example, in [2] the authors
study a model of incomplete information in the multi-valued setting using lat-
tice automata. Researchers have also studied theoretical properties of lattice
automata, like their minimization and approximation [19,20], and a bisimula-
tion relation for them [14].

We study vacuity and inherent vacuity in lattice automata. Essentially, the
goal is to formalize the ability to mutate the value of a transition in the automa-
ton without changing its language. Consider a transition τ in an LNFW. We
say that τ is v-tolerant, for a value v of the lattice, if changing the value of τ to
v does not change the language of A. We say that a transition τ is universally
flexible (∀-flexible, for short) if τ is v-tolerant for every value v in L. Likewise,
τ is existentially flexible (∃-flexible, for short) if τ is v-tolerant for some value v
in L that is different from the value of τ .

Natural decision problems arise from the above definitions. Specifically, the
∀-FLEXIBILITY problem is to decide, given an LNFW and a transition τ in
it, whether τ is ∀-flexible, and dually for the ∃-FLEXIBILITY problem. Solving
the flexibility decision problems, we distinguish between four classes of LNFWs,
induced by the branching structure of the LNFW (that is, whether it is deter-
ministic or non-deterministic), and the lattice with respect to which it is defined
(that is, whether the lattice is fully or partially ordered). Note that our definition
of ∀-flexible is similar to the definition of “does not affect the satisfaction” for
LTL formulas, in the sense that the mutated component is universally quantified.
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In the case of LTL, checking whether a sub formula ψ affect the the satisfac-
tion of a specification ϕ, it is possible to check only the “most challenging”
mutation – one that replaces ψ by true or by false, according to the polarity
of ψ in ϕ [28]. Given a transition τ , in A, deciding whether τ is universally
or existentially flexible can be done by checking all the mutations of the value
of τ . An intermediate question we study is whether it is sufficient to check a
single “most challenging”mutation. We show that both universal and existential
flexibility are NLOGSPACE-complete for LDFWs and PSPACE-complete for
LNFWs, regardless of the type of the lattice. The difference between full-order
LNFWs and partial-order LNFWs is reflected, however, in the time complexity
of the problems.

As done in [17] for LTL formulas, we introduce and compare two definitions of
inherent vacuity for lattice automata. Given two LNFWs A and A′, we say that
the language of A′ is contained in the language of A, denoted L(A′) ≤ L(A), if
for every word w ∈ Σ∗, we have L(A′)(w) ≤ L(A)(w). For two LNFWs A and
A′ such that L(A′) ≤ L(A), we say that a transition τ in A does not affect the
containment of L(A′) in L(A), if for every v ∈ L, the inequality L(A′) ≤ L(A)
holds also when changing the value of τ in A to v. Also, A′ is vacuously contained
in A if there is a transition τ in A that does not affect the containment of L(A′)
in L(A). Now, an LNFW A is inherently vacuous if there exists a ∀-flexible
transition in A, which we show to be equivalent to a definition according to
which A is inherently vacuous if for every LNFW A′, if L(A′) ≤ L(A), then
A′ is vacuously contained in A. Thus, as in the case of LTL formulas, the two
definitions coincide.

Due to the lack of space, some proofs are missing and can be found in a full
version, in the authors’ URLs.

2 Preliminaries

2.1 Lattices

Let 〈A,≤〉 be a partially ordered set, and let P be a subset of A. An element
a ∈ A is an upper bound on P if a ≥ b for all b ∈ P . Dually, a is a lower bound
on P if a ≤ b for all b ∈ P . An element a ∈ A is the least element of P if
a ∈ P and a is a lower bound on P . Dually, a ∈ A is the greatest element of P if
a ∈ P and a is an upper bound on P . A partially ordered set 〈A,≤〉 is a lattice
if for every two elements a, b ∈ A both the least upper bound and the greatest
lower bound of {a, b} exist, in which case they are denoted a ∨ b (a join b) and
a ∧ b (a meet b), respectively. A lattice is fully ordered if every two elements
in it are comparable. Note that w.l.o.g. every fully-ordered lattice corresponds
to the lattice 〈{0, . . . , n},≤〉 for some n. For ease of presentation, from now
on we assume that every fully-ordered lattice is the lattice 〈{0, . . . , n},≤〉 for
some n. We use a < b to indicate that a ≤ b and a �= b. We say that a is
a child of b, denoted a ≺ b, if a < b and there is no c such that a < c < b.
A lattice is complete if for every subset P ⊆ A both the least upper bound
and the greatest lower bound of P exist, in which case they are denoted

∨
P
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and
∧

P , respectively. In particular,
∨

A and
∧

A are denoted � (top) and ⊥
(bottom), respectively. A lattice 〈A,≤〉 is finite if A is finite. Note that every
finite lattice is complete. A lattice 〈A,≤〉 is distributive if for every a, b, c ∈ A,
we have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Consider a lattice L = 〈A,≤〉. We sometimes abuse notation and refer to
L also as a set of elements, and thus talk about elements l ∈ L (rather than
l ∈ A). A join irreducible element l ∈ L is a value, other than ⊥, such that for
all a, b ∈ L, if a ∨ b ≥ l then either a ≥ l or b ≥ l. We denote the set of join
irreducible elements of L by JI(L). By Birkhoff’s representation theorem for
finite distributive lattices, in order to prove that a = b it is sufficient to prove
that for every join irreducible element l, it holds that a ≥ l iff b ≥ l.

Fig. 1. Some lattices.

In Fig. 1 we describe some finite lattices. The elements of the lattice L2 are
the usual truth values 1 (true) and 0 (false) with the order 0 ≤ 1. The lattice
Ln contains the values 0, 1, . . . , n − 1, with the order 0 ≤ 1 ≤, . . . ,≤ n − 1. The
lattice L2,2 is the Cartesian product of two L2 lattices, thus (a, b) ≤ (a′, b′) if
both a ≤ a′ and b ≤ b′. Finally, the lattice 2{a,b,c} is the power set of {a, b, c}
with the set-inclusion order. In this lattice, for example, {a} ∨ {b} = {a, b},
{a} ∧ {b} = ⊥, {a, c} ∨ {b} = �, and {a, c} ∧ {b} = ⊥. Note that the join
irreducible elements of the lattice Ln are all the elements in the lattice except
for ⊥. In the case of the lattice 2{a,b,c}, the join irreducible elements are all the
singletons, that is, JI(L) = {{a}, {b}, {c}}.

We define the graph of L as the undirected graph 〈A,E≺〉 in which E≺(v, v′)
iff v ≺ v′ or v′ ≺ v. The distance between two elements a, b ∈ L, denoted
dist(a, b), is the shortest path from a to b in the graph of L. For example, in
the fully-ordered lattice L, we have dist(i, j) = |i − j|, and in the power-set
lattice, the distance coincides with the Hamming distance, thus dist(X1,X2) =
|(X1 \ X2) ∪ (X2 \ X1)|. When dist(a, b) = 1, we say that a and b are neighbors.
Note that a and b are neighbors iff a ≺ b or b ≺ a. For two elements i and j in a
fully-ordered lattice, we define i+ j as min{�, i+ j} and i− j as max{⊥, i− j}.

For a set X of elements, an L-set over X is a function S : X → L assigning
to each element of X a value in L. It is convenient to think about S(x) as the
truth value of the statement “x is in S”. We say that an L-set S is Boolean if
S(x) ∈ {�,⊥} for all x ∈ X.
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Consider a lattice L and an alphabet Σ. An L-language over Σ is an L-set
over Σ∗. Thus, an L-language L : Σ∗ → L assigns a value in L to each word over
Σ. For two L-languages L1 and L2, we say that L1 is contained in L2, denoted
L1 ≤ L2, if for every word w ∈ Σ∗ it holds that L1(w) ≤ L2(w). The meet of
two languages L1 and L2, denoted L1 ∧L2, is the language that maps each word
w ∈ Σ∗ to the meet of the values of w in L1 and in L2; that is, for all w, we have
that (L1 ∧ L2)(w) = L1(w) ∧ L2(w). The join of L1 and L2, denoted L1 ∨ L2, is
defined dually, thus, for every w, we have (L1 ∨ L2)(w) = L1(w) ∨ L2(w).

Below is a useful extension of Birkhoff’s representation theorem [6] from
equality to inequality.

Proposition 1. Consider a lattice L and two elements a, b ∈ L. If for every
join irreducible element l ∈ L it holds that a ≥ l implies b ≥ l, then b ≥ a.

2.2 Lattice Automata

A nondeterministic lattice automaton on finite words (LNFW, for short) [27] is
a six-tuple A = 〈L, Σ,Q,Q0, δ, F 〉, where L is a finite lattice, Σ is an alphabet,
Q is a finite set of states, Q0 ∈ LQ is an L-set of initial states, δ ∈ LQ×Σ×Q is
an L-set of transitions, and F ∈ LQ is an L-set of accepting states. An LNFW
is a full-order LNFW if L is a fully-ordered lattice. Otherwise, it is called a
partial-order LNFW to emphasize that the lattice is not fully-ordered. We use
|A| to refer to the size of A, that is, |A| = |Q × Σ × Q|.

A run of A on a word w = σ1 · σ2 · · · σn is a sequence r = τ1, . . . , τn of
n successive transitions, where τi ∈ Q × Σ × Q. Let q0, . . . , qn be such that
τi = 〈qi−1, σi, qi〉 for every 1 ≤ i ≤ n. In particular, q0 is the first state of the
run, and qn is the last state of the run. The value of r is val(r) = Q0(q0) ∧∧n

i=1 δ(τi)∧F (qn). Intuitively, Q0(q0) is the value of q0 being initial, δ(τi) is the
value of taking the transition τi, namely, the value of qi being a successor of qi−1

when σi is the input letter, F (qn) is the value of qn being accepting, and the
value of r is the meet of all these values.

We refer to Q0(q0) ∧ ∧n
i=1 δ(τi) as the traversal value of r and refer to F (qn)

as its acceptance value. For a word w, the value of A on w, denoted A(w), is
the join of the values of all the possible runs of A on w. That is, val(A, w) =∨{val(r) : r is a run of A on w}. The L-language of A, denoted L(A), maps
each word w to its value in A. That is, L(A)(w) = val(A, w).

Let A be an LNFW, and δ1, δ2 be L-sets of transitions of A. We say that
δ1 ≤ δ2 if for every transition τ ∈ Q × Σ × Q, it holds that δ1(τ) ≤ δ2(τ).

An LNFW is deterministic (LDFW, for short) if there is exactly one state
q ∈ Q, called the initial state of A, such that Q0(q) �= ⊥, and for every state
q ∈ Q and letter σ ∈ Σ, there is at most one state q′ ∈ Q, called the σ-successor
of q, such that δ(q, σ, q′) �= ⊥. Note that if A is deterministic, then it has at
most one run on w whose value is not ⊥.

Traditional nondeterministic automata over finite words (NFW, for short)
correspond to LNFW over the lattice L2. Indeed, over L2, the value of a run r
is either �, in case the run uses only transitions with value � and its final state
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has value �, or ⊥ otherwise. Also, the value of A on w is � iff the value of some
run on it is �. This reflects the fact that a word w is accepted by an NFW if
some legal run on w is accepting. Similarly, traditional deterministic automata
over finite words (DFW, for short) correspond to LDFW over the lattice L2.

Below is a simple yet useful proposition about the relation between two
LNFWs.

Proposition 2. Let A1 = 〈L, Σ,Q,Q0, δ1, F 〉 and A2 = 〈L, Σ,Q,Q0, δ2, F 〉
be LNFWs such that δ1 ≤ δ2. Then, for every word w ∈ Σ∗, it holds that
L(A1)(w) ≤ L(A2)(w).

3 Vacuity in Lattice Automata

The essence of vacuity is detection of components of the specification that play
no role in its satisfaction. In this section we formalize and study this intuition
in the setting of lattice automata. That is, we formalize and study the influence
that the value of a single transition has or may not have on the language of a
lattice automaton.

We start by defining tolerance and flexibility of transitions, which formalize
and quantify the ability to mutate the value of transitions without changing
the language of the automaton. We first need some definitions regarding runs of
lattice automata.

Consider an LNFW A = 〈L, Σ,Q,Q0, δ, F 〉. We say that a run r on a word
w is a critical run in A if removing it from the set of runs of A on w changes the
value of w in A. Formally, L(A)(w) �= ∨{val(r′) : r′ �= r is a run of A on w}.
Note that for the case of a full-order LNFW, a run r on a word w is critical iff
L(A)(w) = val(r) and there is no run r′ �= r on w such that L(A)(w) = val(r′).

Consider a run r, and let q0 and qn be the first and last states of r,
respectively. For a transition τ taken in r, the value of r without τ , denoted
val−τ (r), is Q0(q0)∧∧

τ ′∈{r\τ} δ(τ ′)∧F (qn). We say that τ is a bottleneck in r if
val(r) �= val−τ (r). That is, removing the effect of τ from the value of r changes
it. Note that since the value of a run r on w is the meet of the values of all
its components (transitions, initial state and accepting state), for the case of a
fully-ordered lattice, the value of a run is actually determined by the minimal
value throughout the run. Thus, in a full-order LNFW, a transition τ is a bot-
tleneck in a run r iff δ(τ) is the minimal value in r, and there is no other value
v throughout the run r such that δ(τ) = v.

For a transition τ in A, we use Aτ←v to denote A with the value δ(τ) being
changed to v. We say that τ is v-tolerant if changing δ(τ) to v does not change
the language of A; that is, if L(A) = L(Aτ←v).

We say that a transition τ is universally flexible with respect to δ (∀-flexible,
for short, when δ is clear from the context) if τ is v-tolerant for every value v in
L. Likewise, τ is existentially flexible with respect to δ (∃-flexible, for short) if τ
is v-tolerant for some value v �= δ(τ) in L.
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Remark 1. Recall that an LNFW over the lattice L2 is a standard NFW. In
this case, we get that a transition τ is ∀-flexible iff τ is ∃-flexible. Consider
an NFW A′ = 〈Σ,Q,Q0, δ, F 〉. For every q, q′ ∈ Q and σ ∈ Σ, the transition
τ = 〈q, σ, q′〉 is flexible if it exists in A′, and removing it does not change the
language of A′, or if it does not exist in A′, and adding it as a transition does
not change the language of A′. Note that a transition in an NFW is flexible iff its
corresponding transition in the matching LNFW over the lattice L2 is ∀-flexible,
or, equivalently, ∃-flexible. ��
Two basic questions we would like to study consider the universal and existential
flexibility of transitions, as formally specified below.

– ∀-FLEXIBILITY: Given an LNFW and a transition τ in it, decide whether τ
is ∀-flexible.

– ∃-FLEXIBILITY: Given an LNFW and a transition τ in it, decide whether τ
is ∃-flexible.

Remark 2. The definitions above refer to a single transition. That is, our study
examines the influence of the value of a single transition on the language of the
automaton. In the full version, we consider also sets of transitions. There, we
define ∀-uniform-flexibility, which indicates that we can mutate the vector of val-
ues of the transitions in the set to any uniform vector of values without changing
the language, and ∀-mixed-flexibility, which indicates that we can mutate the
vector of values to any vector without changing the language of the automa-
ton. We prove equivalence between these two definitions, study also the dual
∃-uniform-flexibility and ∃-mixed-flexibility notions, and study the complexity of
the corresponding decision problems. ��

4 Useful Observations on Tolerance and Flexibility

In this section we provide some useful observations towards the solution of the
flexibility decision problems. We distinguish between four classes of LNFWs,
induced by the branching structure of the LNFW (that is, whether it is deter-
ministic or non-deterministic), and the lattice with respect to which it is defined
(that is, whether the lattice is fully or partially ordered). Note that the four
classes are partially ordered according to their generalization, with the deter-
ministic linear class being a special case of the nondeterministic linear and the
deterministic partially ordered classes. The latter two classes are not ordered,
and are special cases of the most general class, namely the one of nondetermin-
istic and partial-order LNFWs. Accordingly, we are going to present positive
results on the most general class for which they apply, and present negative
results on the most restricted ones. Throughout the section we refer to a lattice
automaton A = 〈L, Σ,Q,Q0, δ, F 〉.

In the context of vacuity in LTL, we say that a subformula ψ of a specifica-
tion ϕ does not affect the satisfaction of ϕ in a system S that satisfies ϕ if S
also satisfies the specification obtained from ϕ by replacing ψ by a universally
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quantified atomic proposition. Thus, the approach taken there is the universal
one – all mutations of ψ should result in a formula that is satisfied in S. It is
shown in [28] that rather than checking ϕ with ψ being replaced by a universally
quantified atomic proposition, it is sufficient to check a single “most challeng-
ing”mutation – one that replaces ψ by true or by false, according to the polarity
of ψ in ϕ. Given a transition τ in A, deciding whether τ is ∀-flexible or ∃-flexible
can be done by checking all the replacements to δ(τ). One of the questions we
would like to answer is whether it is sufficient to change δ(τ) to ⊥, �, or perhaps
to another single value in order to answer the flexibility questions.

We first show that there is no single value v ∈ L such that for every transition
τ in A, the transition τ is ∀-flexible iff τ is v-tolerant. This holds already for
full-order LDFWs.

Example 1. Consider the LDFW A with L = {1, 2, 3}, described in Fig. 2.

Fig. 2. No single value to check.

It is easy to see that L(A)(bb) = 2 and L(A)(aa) = ⊥. The transitions τ1 and
τ2 are not ∀-flexible. Indeed, if we change δ(τ1) to ⊥, we get L(A)(bb) = ⊥, and
if we change δ(τ2) to � we get L(A)(aa) = 2. Assume by way of contradiction
that there is a value v ∈ L that satisfies the requirement in the claim. If v ≥ 2,
then changing δ(τ1) to v does not change the language of A. Thus, we get that
τ1 is not ∀-flexible, but is v-tolerant. Otherwise, v < 2 and changing δ(τ2) to v
does not change the language of A. Thus, we get that τ2 is not ∀-flexible, but
is v-tolerant. Hence, there is no single value that enables us to determine the
∀-flexibility of all the transitions in A. ��
Thus, we can not expect to check flexibility of all the transitions in a lattice
automaton using a single value, in particular the values ⊥ and � do not serve
as a single replacement. In the following sections we check the situation for a
single transition, and we consider universal and existential flexibility in the four
classes of lattice automata.

4.1 Full-Order LDFW

Universal flexibility Recall that a transition τ of A is ∀-flexible if τ is v-tolerant
for every value v in L. Since L is fully ordered, it is tempting to believe that we
can check the tolerance of τ with respect to a single “most challenging” value.
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The transition τ1 in the LDFA in Example 1 demonstrates that �-tolerance
does not imply ∀ flexibility. Indeed, τ1 is �-tolerant but is not ∀-flexible, as
changing δ(τ1) to ⊥ changes L(A)(bb) to ⊥. As we now show, however, a unique
check is sufficient for checking universal flexibility. This is similar to the case of
subformulas in LTL, where a unique (either true or false) mutation is sufficient,
and depends on the polarity of the mutated subformula. Here, the original value
plays the role of the polarity.

Proposition 3. Consider a transition τ in a full-order LDFW A. If δ(τ) �= ⊥,
then τ is ∀-flexible iff τ is ⊥-tolerant. If δ(τ) = ⊥, then τ is ∀-flexible iff τ is
�-tolerant.

Proof. We start with the case δ(τ) �= ⊥. First, if τ is ∀-flexible, then, by defin-
ition, τ is ⊥-tolerant. Now, since A is deterministic, if changing δ(τ) to ⊥ does
not change the language of A, then the value of every run that traverses τ was
⊥ before the change. Since L is fully ordered, this means that every run that
traverses τ had value ⊥ in it, either in a transition or in an initial or an accepting
state. Thus, the value of every run that traverses this transition is ⊥ regardless
what δ(τ) is, or in other words, τ is ∀-flexible.

We continue to the case δ(τ) = ⊥. First, if τ is ∀-flexible, then, by definition,
τ is �-tolerant. Now, if τ is �-tolerant, then we have L(A) = L(Aτ←�). Let
v be a value in L. By Proposition 2, since ⊥ ≤ v ≤ � we have that L(A) ≤
L(Aτ←v) ≤ L(Aτ←�). Thus, we get that L(A) = L(Aτ←v) for every v ∈ L,
namely, τ is ∀-flexible, and we are done.

Existential Flexibility. Recall that a transition τ of A is ∃-flexible if τ is
v-tolerant for some value v �= δ(τ) in L. The transition τ1 in the LDFA in
Example 1 demonstrates that ∃-flexibility does not imply ⊥-tolerance. Indeed,
while changing δ(τ1) to ⊥ changes L(A)(bb) to ⊥, the transition τ1 is �-tolerant.
As in the case of universal flexibility, however, a unique check is sufficient.

Lemma 1. Consider a transition τ in an LDFW A. If τ is a bottleneck in some
run, then it is not ∃-flexible.

Proof. Since A is over a fully ordered lattice, then τ being a bottleneck in some
run implies that δ(τ) is the meet of all the values throughout that run, and there
is no value throughout that run that equals δ(τ). Thus, since A is deterministic,
changing δ(τ) to a lower value decreases the value of some word in the language
of A, and changing δ(τ) to a greater value increases the value of some word in
the language of A. Thus, the transition τ is not ∃-flexible.

Proposition 4. Consider a transition τ in an LDFW A. If δ(τ) �= �, then τ
is ∃-flexible iff τ is �-tolerant. If δ(τ) = �, then τ is ∃-flexible iff τ is (� − 1)-
tolerant.

Proof. We start with the case δ(τ) �= �. First, if τ is �-tolerant, then, by
definition, τ is ∃-flexible. Now, if τ is ∃-flexible, then by Lemma 1 we get that τ
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is not a bottleneck in any run. Thus, we can increase δ(τ) without changing the
language and τ is �-tolerant.

We continue to the case δ(τ) = �. First, if τ is (� − 1)-tolerant, then, by
definition, τ is ∃-flexible. Now, if τ is ∃-flexible, then τ is v-tolerant for some
value v �= � in L. Thus, we have L(Aτ←v) = L(A). Since v ≤ (�−1) ≤ τ , we get
by Proposition 2 that L(Aτ←v) ≤ L(Aτ←(�−1)) ≤ L(A), and so L(Aτ←(�−1)) =
L(A). Namely, the transition τ is (� − 1)-tolerant.

4.2 Full-Order LNFW

In Propositions 3 and 4 we showed that in the case of full-order LDFW, if
δ(τ) �= ⊥ then τ is ∀-flexible iff τ is ⊥-tolerant, and that if δ(τ) �= � then τ is
∃-flexible iff τ is �-tolerant. As we now show in Example 2 below, This does not
hold for LNFWs.

Example 2. with Let L = {1, 2, 3}. Consider the LNFW A1 described in the left
of Fig. 3.

Fig. 3. Propositions 3 and 4 do not hold for partial-order LDFWs.

It is easy to see that L(A1)(a) = L(A1)(ac) = 2. Consider the upper-left
transition τ . If we change δ(τ) to ⊥ we get an equivalent LNFW. However, τ
is not ∀-flexible. Indeed, changing δ(τ) to � changes L(A1)(a) and L(A1)(ac)
to �.

Consider now the LNFW A2 described in the right of the figure. It is easy
to see that L(A2)(aa) = 2. Consider the upper-left transition τ . If we change
δ(τ) to ⊥ we get an equivalent LNFW. However, τ is not �-tolerant. Indeed,
changing δ(τ) to � changes L(A2)(aa) to �. ��
Example 2 is a negative result for the class of full-order LNFWs. In Propositions 5
and 6 we will show a positive result for the more general partial-order LNFW.

4.3 Partial-Order LDFW

In Example 2 we showed that Propositions 3 and 4, which apply to full-order
LDFWs, do not hold for full-order LNFWs. Below we show that they do not hold
for partial-order LDFWs either. Thus, we conclude that Propositions 3 and 4
are tight for full-order LDFWs and do not hold for partial-order LDFWs or for
LNFWs.
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� ⊥ �(σ1, {a}) (σ2, {b})
τ

Fig. 4. Propositions 3 and 4 do not hold for full-order LNFWs.

Example 3. Let L = 2{a,b}. Consider the LDFW A described in Fig. 4.
It is easy to see that L(A)(σ1 · σ2) = ∅. Consider the left transition τ . If

we change δ(τ) to ⊥ we get an equivalent LDFW. However, τ is not ∀-flexible.
Indeed, changing δ(τ) to {a, b} changes L(A)(σ1 · σ2) to {b}. Thus, there exists
a partial-order LDFW with a transition τ in it, such that δ(τ) �= ⊥ and τ is
⊥-tolerance but is not ∀-flexible.

Further observe that τ , which is ⊥-tolerance and hence ∃-flexible, is not
�-tolerant. Indeed, changing δ(τ) to � changes L(A2)(σ1 · σ2) to {b}. Thus,
there exists a partial-order LDFW with a transition τ in it, such that δ(τ) �= �
and τ is ∃-flexible but is not �-tolerant. In particular, ∃-flexibility does not imply
�-tolerance. ��
Example 3 is a negative result for the class of partial-order LDFWs. In
Propositions 5 we will show a positive result for the more general partial-order
LNFW. The last negative result we are going to show concerns existential flex-
ibility and shows that there, checking even both extreme values � and ⊥ may
not be of help. In Example 4 below we formalize this intuition.

Example 4. Consider the LDFW A with L = 2{a,b,c}, described in Fig. 5.

Fig. 5. τ is ∃-flexible, but is neither ⊥-tolerant nor �-tolerant.

It is easy to see that L(A)(σ1 ·σ2) = {b}. Consider the left transition τ . If we
change δ(τ) to {b} we get an equivalent LDFW, thus, τ is ∃-flexible. However,
changing δ(τ) to ⊥ changes L(A)(σ1 · σ2) to ⊥, and changing δ(τ) to � changes
L(A)(σ1 · σ2) to {b, c}, thus, τ is neither ⊥-tolerant nor �-tolerant. ��

4.4 Partial-Order LNFW

Universal Flexibility. As shown in Examples 2 and 3, checking only ⊥-tolerance
or �-tolerance is not sufficient in order to determine ∀-flexibility. As we show,
however, in Proposition 5 below, checking both is sufficient, even in the most
general model.

Proposition 5. A transition τ in an LNFW A is ∀-flexible iff τ is both
⊥-tolerant and �-tolerant.
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Proof. If τ is ∀-flexible, then, by definition, τ is ⊥-tolerant and �-tolerant. Now,
if τ is ⊥-tolerant and �-tolerant, we have L(Aτ←⊥) = L(A) = L(Aτ←�). Let v
be a value in L. By Proposition 2, since ⊥ ≤ v ≤ �, we have that L(Aτ←⊥) ≤
L(Aτ←v) ≤ L(Aτ←�). Since L(Aτ←⊥) = L(Aτ←�), it must be that L(Aτ←⊥) =
L(Aτ←v) = L(Aτ←�). This holds for every v ∈ L, thus, we get that τ is v-
tolerant for every v ∈ L, that is, τ is ∀-flexible, and we are done.

By Proposition 2, since ⊥ ≤ δ(τ) ≤ �, we have L(Aτ←⊥) ≤ L(A) ≤
L(Aτ←�). Hence, the two tolerance checks from Proposition 5 can be performed
in a single language-containment check:

Lemma 2. Consider an LNFW A. A transition τ in A is ∀-flexible iff
L(Aτ←�) ≤ L(Aτ←⊥).

Existential flexibility. Unlike the case of ∀-flexibility, which amounts to tolerance
of the two extreme values, namely �-tolerance and ⊥-tolerance, Example 4 shows
that this is not true for ∃-flexibility, even in LDFW. As we prove below, we can
still avoid checking all possible values and restrict attention to the neighbors of
the original value of the mutated transition.

Lemma 3. Let τ be a transition in an LNFW A. If τ is v′-tolerant for some
v′ ∈ L, then τ is v′′-tolerant for every value v′′ ∈ L such that (δ(τ) ∧ v′) ≤ v′′ ≤
v′, v′ ≤ v′′ ≤ (δ(τ) ∨ v′), (δ(τ) ∧ v′) ≤ v′′ ≤ δ(τ), or δ(τ) ≤ v′′ ≤ (δ(τ) ∨ v′).

Lemma 3 implies that the search for a value with respect to which a transition is
tolerant can consider only the neighbors of the current value. Formally, we have
the following. The proof, which appears in the full version, analyzes all possible
relations between the value of δ(τ) and a value that witnesses its ∃-flexibility.

Proposition 6. Consider an LNFW A and a transition τ in A. The transition
τ is ∃-flexible iff τ is v′-tolerant for some neighbor v′ of δ(τ) in the graph of the
lattice L.

Remark 3. In order to justify the need to check all the neighbors of δ(τ), consider
the LDFW A with L = 2{a,b,c,d}, described in Fig. 6.

Fig. 6. Checking tolerance for neighbors.

Consider the right transition τ ′. If δ(τ ′) = {a, b, d}, then the only value v
for which τ is v-tolerant is {a, b}. If δ(τ ′) = {a, c, d}, then the only value v for
which τ is v-tolerant is {a, c}. If δ(τ ′) = {b, c, d}, then the only value v for which
τ is v-tolerant is {b, c}. If δ(τ ′) = {a, b, c}, then the only value v for which τ is
v-tolerant is {a, b, c, d}. It is easy to see that in each case, the only value that
can give an indication for the ∃-flexibility of τ is a neighbor of δ(τ). Also, note
that every neighbor of δ(τ) is useful in one of the cases. Thus, it is required to
check at least all the neighbors of δ(τ) in order to determine ∃-flexibility. ��
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5 Complexity of the Decision Problems

In this section we use the observations from Sect. 4 in order to find the complexity
of the flexibility decision problems.

We first prove a lower bound for the flexibility problem in DFWs and NFWs.
As discussed in Remark 1, an NFW corresponds to an LNFW over the lattice L2,
and similarly, a DFW corresponds to an LDFW over this lattice. Then, universal
and existential flexibility coincide, and a transition in an NFW is flexible iff the
corresponding transition in the matching LNFW over the lattice L2 is ∀-flexible
and ∃-flexible. Accordingly, the FLEXIBILITY problem for NFW is to decide,
given an NFW and a transition τ in it, whether τ is flexible.

Theorem 1. The FLEXIBILITY problem is NLOGSPACE-hard for DFWs and
is PSPACE-hard for NFWs.

Proof. We start with DFWs and describe a reduction from the non-reachability
problem, proven to be NLOGSPACE-hard in [24,25]. Given a graph G = 〈V,E〉
and two vertices u, v, we construct a DFW A = 〈Σ,Q, q0, δ, F 〉 with a transition
τ such that τ is flexible iff v is not reachable from u. The DFW A is similar to
G, with an additional transition τ from v to a new state. We define A so that
this new transition is flexible iff v is not reachable from u. Intuitively, v is not
reachable from u off τ is not reachable from an initial state, which determines
τ ’s flexibility.

Formally, A = 〈E ∪ {enew}, V ∪ {q}, u, δ, {q}〉. For every edge e ∈ E such
that e = (w,w′), we add to A a transition τ ′ = 〈w, e, w′〉. That is, all the edges
of the graph are transitions in the automaton with different letters. We also add
to A the transition τ = 〈v, enew, q〉 , where enew /∈ E, and q /∈ V . Note that A
is a DFW, as required, and that this reduction is computable using logarithmic
space. In the full version we prove that indeed τ is flexible iff v is not reachable
from u.

For the nondeterministic setting, we show a reduction from the universality
problem for NFWs, namely, the problem of deciding, given an NFW A, whether
L(A) = Σ∗. The reduction is to the flexibility problem for NFWs. Since the
universality problem is PSPACE-hard [29], hardness in PSPACE follows.

Given an NFW A = 〈Σ,Q,Q0, δ, F 〉, we define A′ = 〈Σ′, Q′, Q′
0, δ

′, F ′〉 to
be similar to A, with an additional component that includes, among others, a
transition τ that is going to be flexible iff L(A) = Σ∗. Intuitively, if L(A) = Σ∗,
then the additional component does not contribute to the language of A, and
τ is flexible. If, however, L(A) �= Σ∗, there are words that are accepted only
using the new component, so τ is not flexible. We assume that if there is a word
w /∈ L(A), then w is of length at least 1. This assumption does not affect the
hardness of the universality problem.

Formally, A′ = 〈Σ ∪ {σnew}, Q ∪ {s0, sf}, Q0 ∪ {s0}, δ′, F ∪ {sf}〉. We obtain
A′ from A by adding to A a transition τ = 〈q, σnew, q〉, for every accepting
state q ∈ F . Next, we add to A′ an additional component with two states:
s0 and sf (see Fig. 7). The state s0 is added to the set of initial states, and
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the state sf is added to the set of accepting states. For each σ ∈ Σ, we add
a transition 〈s0, σ, s0〉, and a transition 〈s0, σ, sf 〉. Finally, we add a transition
τ = 〈sf , σnew, sf 〉. Note that the reduction is computable using logarithmic
space. In the full version we prove that indeed τ = 〈sf , σnew, sf 〉 is flexible iff
L(A) = Σ∗.

Fig. 7. The new component added to A′.

Theorem 2. The ∀-FLEXIBILITY problem is NLOGSPACE-complete for
LDFWs and is PSPACE-complete for LNFWs.

Proof. We start with the upper bounds. As shown in Lemma 2, in order to
check whether a transition τ is ∀-flexible, it is sufficient to perform a single
containment check: L(Aτ←�) ≤ L(Aτ←⊥). The language-containment problem
is in NLOGSPACE and PSPACE, for LDFWs and LNFWs, respectively [27],
implying the required upper bounds.

Now, since flexibility in DFWs and NFWs corresponds to universal flexibility
in LDFWs and LNFWs, respectively, the lower bounds follow from Theorem 1.

Theorem 3. The ∃-FLEXIBILITY problem is NLOGSPACE-complete for
LDFWs and is PSPACE-complete for LNFWs.

Proof. For the upper bounds, consider an LNFW A = 〈L, Σ,Q,Q0, δ, F 〉, and
let τ be a transition in A with δ(τ) = v. By Proposition 6, the transition τ is
∃-flexible iff τ is v′-tolerant for some neighbor v′ of v in the graph of the lattice
L; that is, L(A) = L(Aτ←v′). By Proposition 2, for a value v′ ∈ L such that
v′ > v we have L(A) ≤ L(Aτ←v′), and for a value v′ ∈ L such that v′ < v, we
have L(Aτ←v′) ≤ L(A). Hence, it is sufficient to check for every neighbor v′ of v
such that v′ > v, if L(Aτ←v′) ≤ L(A) holds, and for every neighbor v′ of v such
that v′ < v or if L(A) ≤ L(Aτ←v′) holds. We get that τ is ∃-flexible iff there
exists a neighbor of v for which the corresponding inequality holds. The upper
bound now follows from the known NLOGSPACE and PSPACE complexities of
the language-containment problem, for LDFWs and LNFWs, respectively.

Finally, since flexibility in DFWs and NFWs corresponds to existential
flexibility in LDFWs and LNFWs, respectively, the lower bounds follow from
Theorem 1.

By Theorems 2 and 3, the complexity of the flexibility problems coincide
for full-order and partial-order lattice automata. The difference between the
two settings is reflected in the time-complexity analysis of the algorithms we
described. Given an LNFW A over a lattice L, let n = |A|,m = |L|, and k = |JI|.
Precisely, we have the following.
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Theorem 4. The ∀-FLEXIBILITY problem can be decided in time O(n(m+n))
for full-order LDFWs, in time O(kn(m + n)) for partial-order LDFWs, and in
time O(k(nm + 2O(n))) for LNFWs.

Theorem 5. The ∃-FLEXIBILITY problem can be decided in time O(n(m+n))
for full-order LDFWs, in time O(rkn(m+n)) for partial-order LDFWs, in time
O(k(nm + 2O(n))) for full-order LNFWs, and in time O(rk(nm + 2O(n))) for
partial-order LNFWs, where r is the number of the neighbors of δ(τ) in the
graph of L.

Remark 4. In practice, systems and specifications are sometimes underspeci-
fied as the designer intentionally does not care about some values in some
configurations [22]. Our algorithms can be easily changed to handle settings
in which a transition can get the value ∅ (?don?t care?) or get a set of possible
values. In this case, flexibility gets additional significance, as we can assume that
the value of transitions for which the designer did bother to specify a value is
important. For example, if a transition has a value different than ∅, and it turns
out to be ∀-flexible, we can assume that there is an error in the modeling of the
specification, since this transition could have also gotten the value ∅. ��

6 Inherent Vacuity with Analogy to Temporal Logic

In [17], the authors introduce two different definitions of inherent vacuity for
LTL formulas and prove that they coincide. Consider an LTL formula ϕ. We
say that a subformula ψ of ϕ does not affect the satisfaction of ϕ in S if S also
satisfies the formula ∀x.ϕ[ψ ← x]. We refer to the formula ∀x.ϕ[ψ ← x] as the
ψ-strengthening of ϕ. Also, we say that a formula ϕ is vacuously satisfied in S
if ϕ has a subformula that does not affect its satisfaction in S [4].

We can now describe the two different definitions of inherent vacuity for
LTL formulas from [17]. According to the first definition, an LTL formula ϕ
is inherently vacuous (by mutation) if there exists a subformula ψ of ϕ such
that ϕ ≡ ∀x.ϕ[ψ ← x]. That is, ϕ is equivalent to its ψ-strengthening. As
opposed to the first definition, the second one does not restrict attention to
a single subformula. According to the second definition, an LTL formula ϕ is
inherently vacuous (by reference) if for every system S, if S |= ϕ, then S satisfies
ϕ vacuously. In this section we introduce two different definitions of inherent
vacuity for lattice automata, analogous to the definitions in [17], and show that
they coincide as well.

Given two LNFWs A and A′ such that L(A′) ≤ L(A), we say that a transition
τ in A does not affect the containment of L(A′) in L(A), if for every v ∈ L it
holds that L(A′) ≤ L(Aτ←v). Note that this requirement applies to every value
in L. Also, A′ is vacuously contained in A if there is a transition τ in A that
does not affect the containment of L(A′) in L(A).

Definition 1. An LNFW A is inherently vacuous by mutation if there exist a
transition τ in A that is ∀-flexible. We then say that A is inherently vacuous by
mutation with witness τ .
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Definition 2. An LNFW A is inherently vacuous by reference if for every
LNFW A′, if L(A′) ≤ L(A), then A′ is vacuously contained in A.

Theorem 6. An LNFW A is inherently vacuous by mutation iff A is inherently
vacuous by reference.

Proof. For the first direction, assume that A = 〈L, Σ,Q,Q0, δ, F 〉 is inherently
vacuous by mutation. Then, there is a transition τ in A that is ∀-flexible, that
is, for every v ∈ L it holds that L(A) = L(Aτ←v). Accordingly, for every LNFW
A′, if L(A′) ≤ L(A), then for every v ∈ L we have that L(A′) ≤ L(Aτ←v), and
so A′ is vacuously contained in A. Thus, A is inherently vacuous by reference.

For the second direction, assume that A is inherently vacuous by reference,
and assume, by way of contradiction, that A is not inherently vacuous by muta-
tion. Then, there exist no transition τ in A that is ∀-flexible. It is not hard
to prove that then, there is no transition τ in A such that for all LNFWs A′

with L(A′) ≤ L(A), the transition τ does not affect the containment of L(A′) in
L(A). Indeed, since L(A) ≤ L(A), the existence of such a transition would have
implied universal flexibility of τ .

Let k be the number of transitions in A. By the assumption, for every
candidate transition τi, with 1 ≤ i ≤ k, there is an LNFW Ai =
〈L, Σ,Qi, Q

0
i , δi, Fi〉 such that L(Ai) ≤ L(A) but there is a value v ∈

L such that L(Ai) � L(Aτi←v). Without loss of generality, we assume
that the state spaces Qi are pairwise disjoint. Let A′ be the LNFW
obtained by “putting all the LNFWs Ai next to each other”. Formally,
A′ = 〈L, Σ,

⋃{Qi}1≤i≤k,
⋃{Q0

i }1≤i≤k,
⋃{δi}1≤i≤k,

⋃{Fi}1≤i≤k〉. Note that,
naturally, L(A′) =

∨
1≤i≤k L(Ai). Since L(Ai) ≤ L(A) for every 1 ≤ i ≤ k

we get that
∨

1≤i≤k L(Ai) ≤ L(A) and thus L(A′) ≤ L(A). Now, since A is
inherently vacuous by reference, then A′ is vacuously contained in A. Let τi be
a transition that does not affect the containment of L(A′) in L(A). Then, for
every v ∈ L it holds that L(A′) ≤ L(Aτi←v). Since L(Ai) ≤ L(A′), we get that
for every v ∈ L it holds that L(Ai) ≤ L(Aτi←v), and so τi does not affect the
containment of L(Ai) in L(A), and we have reached a contradiction.

Thus, as in the case of LTL formulas, the two definitions of inherent vacuity
coincide.

Remark 5. As discussed in Sect. 1, lattices and lattice automata have practical
applications in formal methods. Some of the applications use the specification
formalism latticed LTL (LLTL, for short), which extends LTL by mapping com-
putations in which atomic propositions have values from a lattice into lattice
values [12]. The translation of LTL into automata [36] has been extended to
a translation of LLTL into latticed automata [27]. When applied to the lattice
automata obtained from LLTL formulas, vacuity in the automata correspond to
vacuity in the formulas. Since changes in subformulas induce changes in transi-
tions from all states of the automaton that are associated with these subformulas,
the relevant type of vacuity is the one discussed in Remark 2, namely when the
value of a set of transitions is mutated. ��
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