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Yuri Gurevich (June 2004 in Kraków, Poland)
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Preface

This Festschrift is published in honor of Yuri Gurevich, on the occasion of his 75th
birthday. Yuri Gurevich has made fundamental contributions to the broad spectrum of
logic and computer science, including decision procedures, the monadic theory of
order, abstract state machines, formal methods, foundations of computer science,
security, and much more. Many of these areas are reflected in the articles in this
Festschrift and in the presentations at the “Yurifest” symposium, which was held in
Berlin, Germany, on September 11 and 12, 2015.

Yuri has spent his life in three different countries—the Soviet Union, Israel, and the
USA—and has worked in at least as many scientific fields: on the interface between
algebra and logic in the Soviet Union, on the monadic theory of order in Israel, and on
logic and computer science in the USA. As Yuri would point out, with characteristic
understatement, he has “always had a taste for foundational questions.”1

The best known work of Yuri’s Soviet period is on the decision problem for the
ordered abelian groups. His 1964 thesis proved the decidability of the first-order theory
of these groups; later, he showed the decidability of the richer theory that includes
quantification over convex subgroups. Yuri also worked on the decision problem for
first-order logic, completing in particular the decision problem for the prefix-vocabulary
fragments of pure logic of predicates and functions. In Israel, Yuri worked with Saharon
Shelah on the monadic theory of linear orders. The Forgetful Determinacy Theorem of
Gurevich and Harrington is from this period as well. The theorem asserts the existence
of a special kind of winning strategy in a class of infinite games, and has lead to a greatly
simplified proof of Michael Rabin’s result that the monadic theory of two successors is
decidable.

In 1982, the University of Michigan hired Yuri as a professor of computer science
on the promise that the algebraist and logician would become a computer scientist.
And, indeed, Yuri immediately began making deep contributions to his new field.
There are numerous results in complexity theory, in particular on average-case com-
plexity. Yuri also worked on many questions on the interface between logic and
computer science, including the introduction, together with Erich Grädel, of metafinite
model theory, and the formulation of the conjecture that there is no logic that captures
polynomial time computability on unordered structures.

Yuri felt that, while many foundational questions in mathematical logic had been
settled, the foundational questions about computer science and the nature of compu-
tation were still wide open. To answer some of these questions, Yuri invented abstract
state machines (ASMs). Unlike most other formal methods at the time, ASMs are
operational, rather than declarative. Yuri’s “ASM thesis” states that every algorithm
can be faithfully represented as an ASM. In 1998, Jim Kajiya at Microsoft Research

1 Yuri Gurevich. Logician in the land of OS: Abstract State Machines in Microsoft. Invited talk at
LICS 2001.



realized the potential of ASMs and invited Yuri to start a new group, the Foundations
of Software Engineering (FSE) group. At Microsoft, Yuri made many contributions
involving ASMs, including the notion of “choiceless polynomial time” computation,
and also many other contributions to computer science topics not directly related to
ASMs, such as efficient file transfer, software testing, security, and authorization.

To a great number of researchers in algebra, logic, and computer science, Yuri
Gurevich is a unique integrating figure, a cherished colleague, and a dear friend. In
2010, on the occasion of Yuri’s 70th birthday, a symposium took place in Brno, the
Czech Republic, that brought together many of Yuri’s collaborators. Now, five years
later, we have again asked Yuri’s colleagues to come together for a symposium and to
contribute to a volume in his honor. This Festschrift is the result of this effort. The
articles cover a wide range of topics and still merely give a glimpse of the scope and
depth of Yuri’s many areas of interest.

The Yurifest symposium was co-located with the 24th EACSL Annual Conference
on Computer Science Logic (CSL 2015). The editors would like to thank the organizers
of CSL for their help with many practical issues. The symposium received generous
support from the German Research Foundation (DFG) and from Microsoft Research.
Thanks are also due to the anonymous referees of the contributions to this volume, and,
last but not least, to the contributors for their immediate and enthusiastic commitment
to participating in the second Yurifest.

To Yuri Gurevich, the great logician in the land of OS, with deep admiration,
gratitude, and affection. Happy birthday!

July 2015 Lev D. Beklemishev
Andreas Blass

Nachum Dershowitz
Bernd Finkbeiner
Wolfram Schulte
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K-trivial, K-low and MLR-low Sequences:
A Tutorial

Laurent Bienvenu1(B) and Alexander Shen2

1 LIAFA, CNRS, University Paris Diderot – Paris 7, Paris, France
laurent.bienvenu@computability.fr

2 University of Montpellier, CNRS, on Leave from IITP RAS, Montpellier, France
alexander.shen@lirmm.fr

Abstract. A remarkable achievement in algorithmic randomness and
algorithmic information theory was the discovery of the notions of K-
trivial, K-low and Martin-Löf-random-low sets: three different definitions
turn out to be equivalent for very non-trivial reasons [1,3,5]. This survey,
based on the course taught by one of the authors (L.B.) in Poncelet
laboratory (CNRS, Moscow) in 2014, provides an exposition of the proof
of this equivalence and some related results.

We assume that the reader is familiar with basic notions of algorithmic
information theory (see, e.g., [7] for introduction and [8] for more detailed
exposition). More information about the subject and its history can be
found in [2,6].

1 Notation

We consider the Cantor space B
N of infinite binary sequences a0a1 . . .; points in

this space are idendified with sets (each sequence is considered as a characteristic
sequence of a set of natural numbers) or paths in the full binary tree (nodes
are elements of B

∗, i.e., binary strings; a sequence a is a path going through
its prefixes (a)n = a0a1 . . . an−1). We denote plain Kolmogorov complexity by
C (x); we use C (x, y) to denote complexity of pairs and C (x | y) for conditional
complexity. The arguments x, y here are binary strings, natural numbers (that
are often identified with binary strings using a standard bijection) or some other
finite objects. Similar notation with K instead of C is used for prefix complexity.

By m(x) we denote the discrete a priori probability of x, the largest lower
semicomputable semimeasure on N; it is equal to 2−K(x) up to a Θ(1)-factor. The
same notation is used when x is a binary string (identified with the corresponding
natural number) or some other finite object.

2 K-trivial Sets: Definition and Existence

Consider an infinite bit sequence and complexities of its prefixes. If they are
small, the sequence is computable or almost computable; if they are big, the
sequence looks random. This idea goes back to 1960 s and appears in algorithmic
c© Springer International Publishing Switzerland 2015
L.D. Beklemishev et al. (Eds.): Gurevich Festschrift II 2015, LNCS 9300, pp. 1–23, 2015.
DOI: 10.1007/978-3-319-23534-9 1



2 L. Bienvenu and A. Shen

information theory in different forms (Schnorr–Levin criterion of randomness in
terms of complexities of prefixes, the notion of algorithmic Hausdorff dimension).
The notion of K-triviality is on the low end of this spectrum; here we consider
sequences that have prefixes of minimal possible prefix complexity:

Definition 1. An infinite binary sequence a0a1a2 . . ., is called K-trivial if its
prefixes have minimal possible (up to a constant) prefix complexity, i.e., if

K (a0a1 . . . an−1) = K (n) + O(1).

Note that n can be reconstructed from a0 . . . an−1, so K (a0 . . . an−1) cannot be
smaller than K (n)−O(1). Note also that every computable sequence is K-trivial,
since a0 . . . an−1 can be computed given n. These two remarks together show that
a K-trivial sequence is very close to being computable. And indeed, if we were to
replace prefix complexity by plain complexity C in the definition, the resulting
notion, call it C -triviality, would be equivalent to being computable (it is in
fact enough to have C (a0a1 . . . an−1) � log n + O(1) to ensure that a0a1a2 . . . is
computable, see for example [8, problems 48 and 49]). Nonetheless, we shall see
below that non-computable K -trivial sequences do exist. But before that, let us
prove the following result, due to Chaitin.

Theorem 1. Every K-trivial sequence is 0′-computable.

Here 0′ is the oracle for the halting problem.

Proof. Assume that the complexity of the n-bit prefix (a)n = a0a1 . . . an−1 is
K (n) + O(1). Recall that (a)n has the same information content as (n, (a)n),
and use the formula for the complexity of a pair:

K ((a)n) = K (n, (a)n) + O(1) = K (n) + K ((a)n |n,K (n)) + O(1);

This means that
K ((a)n |n,K (n)) = O(1).

So (a)n belongs to a 0′-computable (given n) list of n-bit strings that has
size O(1). Therefore, a is a path in a 0′-computable tree of bounded width
and is 0′-computable. Indeed, assume that the tree has k infinite paths that all
diverge before some level N . At levels after N we can identify all the paths, since
all other nodes have finite subtrees above them, and we may wait until only k
candidates remain. ��
The existence of non-computable K-trivial sets is not obvious, but not very
difficult to establish, even if we additionally require the set to be enumerable.
Here we identify a set A with its characteristic sequence a0a1a2 . . . (where ai = 1
if and only if i ∈ A).

Theorem 2. There exists an enumerable undecidable K-trivial set.
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This result was proven by Solovay in the 1970s.
Let us make some preparations for this proof which will be useful in the rest

of the paper. First, to deal with K -triviality, it is easier to use a priori discrete
probability m instead of K (see, e.g., [7] or [8] for more background on m and
its relation to prefix complexity; recall that m(x) coincides with 2−K(x) up to a
Θ(1)-factor). In this setting, a sequence a0a1 . . . is K-trivial if and only if

m(a0a1 . . . an−1) ≥ m(n)/O(1)

Since m is multiplicatively maximal among all lower semicomputable semi-
measures, the statement of Theorem 2 can be rephrased as follows:

for every lower semicomputable semimeasure μ, there exist an enumer-
able set A with its characteristic sequence a = a0a1a2 . . . and a lower
semicomputable semimeasure ν such that

ν(a0a1 . . . an−1) ≥ μ(n)/O(1).

In fact, we need this only for μ = m, but the argument works for any lower
semicomputable semimeasure μ (and in any case the statement for μ = m is
stronger and implies the same inequality for every μ, though with a different
constant in O(1)-notation).

Proof. To prove Theorem 2, let us assume that μ is a lower semicomputable
semimeasure. We want to build an enumerable set A that corresponds to a
sequence a0a1a2 . . ., together with a lower semicomputable semimeasure ν such
that ν(a0a1 . . . an−1) matches μ(n) up to a multiplicative constant for all n.
When we see that μ increases the weight of some n, we should respond by
increasing the ν-weight of some node (=string) of length n, achieving the same
weight (up to O(1)-factor). Moreover, all these nodes should lie on the tree path
that corresponds to some enumerable set A.

Doing this would be trivial for a computable sequence a: constructing ν, we
just place at a0a1 . . . an−1 the same weight as the current value of μ at n. This
(evidently) gives a semimeasure since the sum of the weights is the same for μ
and ν.

But we want A to be non-computable. To achieve this, we will ensure that
A is simple in Post’s sense. Recall that a simple set is an enumerable set A
with infinite complement such that A has non-empty intersection with every
Wn that is infinite. Here by Wn we denote the n-th enumerable set in some
natural numbering of all (computably) enumerable sets. As in Post’s cllassical
construction, we want for every n to add some element of Wn greater than 2n
into A, and then forget about Wn. The bound 2n guarantees that A has infinite
complement. In Post’s construction the elements are added without reserva-
tions: as soon as some element that is greater than 2n is discovered in Wn, it is
added to A. But now, when adding such an element to A, we have to pay some-
thing for this action. Indeed, when we add some number u to A, the path in
the Cantor space corresponding to it (i.e., A’s characteristic sequence) changes.
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The ν-weights put on the node a0a1 . . . au−1 and all its extensions are lost, and
should be recreated along the new path (starting from length u). All this lost
amount can be called the cost of the action.

Now we can explain the construction. Initially our set A is empty, and the
corresponding path a in Cantor space is all zeros. Observing the growth of the
semimeasure μ, we replicate the corresponding values along a. We also enumerate
all Wn in parallel. When a new element u is enumerated into Wn, we add this
element to A if the following two conditions are satisfied:

– u > 2n;
– the cost of adding u is small, say, less than 2−n, so the total cost for all n is

bounded.

Here the cost of the action is the total ν-weight we had placed on the nodes
along the current path a starting from level u: this weight is lost and needs to
be replicated along the new path. In this way the total ν-weight is bounded.
Indeed, the lost weight is bounded by

∑
n 2−n (recall that we take care of each

Wn at most once), and the replicated weight is bounded by
∑

μ(n).
If Wn is infinite, it contains arbitrarily large elements, and the cost of adding

u is bounded by
μ(u) + μ(u + 1) + μ(u + 2) + . . . ,

which is guaranteed to go below the 2−n threshold for large u. So for every
infinite Wn, some element u of Wn will be added to A at some stage of the
construction. As we have seen, the total ν-weight is bounded by

∑
n μ(n) +∑

n 2−n. By construction, we have ν(a0a1 . . . an−1) ≥ μ(n) for all n. It remains
to divide ν by some constant to make the total weight bounded by 1. ��
This proof can be represented in a game form. In such a simple case this looks
like an overkill, but the same technique is useful in more complicated cases, so it
is instructive to look at this version of the proof. The game field consists of the
set of the natural numbers (lengths), the full binary tree, and sets W1,W2, . . . (of
natural numbers). The opponent increases the weights assigned to lengths: each
length has some weight that is initially zero and can be increased by the opponent
at any moment by any non-negative rational number; the only restriction is that
the total weight of all lengths should not exceed 1. Also the opponent may add
new elements to any of the sets Wi; initially they are empty. We construct a
path a in the binary tree that is a characteristic sequence of some set A, initially
empty, by adding elements to A; we also increase the weights of nodes of the
binary tree in the same way as the opponent does for lengths; our total weight
should not exceed 2.

One should also specify when the players can make moves. It is not important,
since the rules of the game always allow each player to postpone moves. Let us
agree that the players make their moves in turns and every move is finite: finitely
many weights of lengths and nodes are increased by some rational numbers, and
finitely many new elements are added to Wi and A. This is the game with full
information, the moves of one player are visible to the other one.
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The game is infinite, and the winner is determined in the limit, assuming
that both players obey the weight restrictions. Namely, we win if

– for the limit path a our weight of (a)n is not less than the opponent’s weight
of n;

– for each n, if Wn is infinite, then Wn has a common element with A.

The winning strategy is as described: we match the opponent’s weight along
the current path, and also we add some u to A and change the path, matching
the opponent’s weights along the new path, if u belongs to Wn, is greater than
2n and the cost of the action, i.e., our total weight along the current path above
u, does not exceed 2−n.

This is a computable winning strategy. Indeed, the limit weights of all lengths
form a converging series, so if Wn is infinite, it has some element that is greater
than 2n and for which the loss, bounded by the tail of this series, is less than
2−n.

Imagine now that we use this computable winning strategy against the
“blind” computable opponent that ignores our moves and just enumerates from
below the a priori probability (as lengths’ weights) and the sets Wi (the list con-
tains all enumerable sets). Then the game is computable, our limit A is an enu-
merable simple set, and our weights for the prefixes of a (and therefore m((a)n),
since the limit weights form a lower semicomputable semimeasure) match m(n)
up to O(1)-factor.

3 K-trivial and K-low Sequences

Now we know that non-computable K-trivial sequences do exist. Our next big
goal is to show that they are computationally weak. Namely, they are K-low in
the sense of the following definition.

Consider a bit sequence a; one can relativize the definition of prefix complex-
ity using a as an oracle (i.e., the decompressor algorithm used in the definition
of complexity may use the values of ai in its computation). For every oracle this
relativized complexity K a does not exceed (up to an O(1) additive term) the
non-relativized prefix complexity, since the decompressor may ignore the oracle.
But it can be smaller or not, depending on a.

Definition 2. A sequence a is K-low if K a(x) = K (x) + O(1).

In other words, K-low oracles are useless for compression (or, more precisely,
decompression) purposes.

Obviously, computable oracles are low; the question is whether there exist
non-computable low oracles. Note that “classical” undecidable sets, like the halt-
ing problem, are not K-low: with oracle 0′ the table of complexities of all n-bit
strings has complexity O(log n), but its non-relativized complexity is n − O(1).
One can also consider the relativized and non-relativized complexities of the
prefixes of Chaitin’s Ω-numbers: the n-bit prefix has complexity about n but
its 0′-relativized complexity is about log n, since Ω-numbers are 0′-computable.
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Note also that K-low oracles are K-trivial, since K a((a)n) = K a(n) + O(1): the
sequence a is computable in the presence of oracle a.

It turns out that the reverse implication is true, and all K-trivial sequences
are K-low. This is quite surprising. For example, one may note that the notion
of a K-low sequence is Turing-invariant, i.e., depends only on the computational
power of the sequence, but for K-triviality there are no reasons to expect this,
since the definition deals with prefixes.

On the other hand, it is easy to see that if a and b are two K-trivial sequences,
then their join (the sequence a0b0a1b1a2b2 . . .) is also K-trivial. Indeed, as we
have mentioned, the K-triviality of a sequence a means that K ((a)n |n,K (n)) =
O(1). If at the same time K ((b)n |n,K (n)) = O(1), then the näıve bound for
the complexity of a pair guarantees that

K ((a)n, (b)n |n,K (n)) = O(1),

so
K (a0b0a1b1 . . . an−1bn−1 |n,K (n)) = O(1),

and therefore

K (a0b0a1b1 . . . an−1bn−1) = K (n) + O(1).

It remains to note that K (n) = K (2n) + O(1) and that we can extend the
equality to sequences of odd length, since adding one bit changes the complexity
of the sequence and its length only by O(1). The analogue result for K-low
sequences is not obvious: if each of the sequences a and b separately do not
change the complexity function, why should their join be equally powerless in
that regard? The usual proof of this result uses the equivalence between triviality
and lowness.

The proof of the equivalence (every K-trivial sequence is K-low) requires a
rather complicated combinatorial construction. It may be easier to start with a
weaker statement: no K-trivial sequence (used as an oracle) computes the halting
problem. This statement is indeed a corollary of the equivalence result, since 0′

(the halting set) is not K-low, as we have seen, and every sequence computable
with a K-low oracle is obviously K-low. The proof of this weaker statement is
given in the next section. On the other hand, the full proof (hopefully) can be
understood without the training offered in the next section, so the reader may
also skip it and go directly to Sect. 5.

4 K-trivial Sequences Cannot Compute 0′

In this section we prove that a K-trivial sequence cannot compute 0′, in the
following equivalent version:

Theorem 3. No K-trivial sequence can compute all enumerable sets.

Note that, together with the existence result proved above (Theorem 2), this
theorem provides an answer to classical Post’s problem, the question whether
non-complete enumerable undecidable sets exist.

The rest of the section is devoted to the proof of Theorem 3.
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The Game Template. To make the proof of this theorem more intuitive, we
first reformulate it in terms of a two-player game. Imagine that we want to prove
that all K-trivial sequences have some property P , and our opponent wants to
show that we are wrong, i.e., to construct a K-trivial sequence a that does not
have the property P . We already know that all K-trivials are 0′-computable,
so we may assume that our opponent presents a 0′-computable sequence a as a
computable pointwise approximation (using Shoenfield’s limit lemma). At every
moment of the game the opponent chooses some values ai; they may be changed
during the game, but for each i the number of changes in ai during the game
should be finite, otherwise the opponent loses.

We want to show that the sequence constructed by the opponent is either
not K-trivial or has property P . For that we challenge the opponent by building
a semimeasure μ on integers by gradually increasing the weights of each integer.
Recall the proof of Theorem 2; now the opponent tries to certify that a is K-
trivial and is therefore in the same position in which we were in that proof.
In other words, he is obliged to match our increases along the path a, i.e., he
must construct a semimeasure ν on strings such that ν((a)n) ≥ μ(n)/O(1) for
the limit sequence a. At the same time the opponent needs to ensure that the
limit sequence does not have the property P . In other terms, the opponent wins
if (1) the limit sequence exists and does not have the property P ; (2) ν is a
semimeasure (the sum of all weight increases is bounded by 1); (3) ν((a)n) ≥
μ(n)/O(1).

If we have a computable winning strategy in this game, then every K-trivial
sequence a has property P . Indeed, assume that there exists some K-trivial
sequence that does not have this property. Then, by Theorem 1, the opponent
can present this sequence as a computable pointwise approximation, and also use
increasing approximations to m (on strings) for ν. Our computable strategy will
then generate some lower semicomputable semimeasure μ, and the inequality
ν((a)n) ≥ μ(n)/O(1) is guaranteed by the maximality of m and the triviality of
a, so the opponent wins against our winning strategy—a contradiction.

Remark 1. One may also note that if the opponent has a computable winning
strategy in the game, then there exists a K-trivial sequence a that does not have
the property P . Indeed, let this strategy play and win against m (as μ); the
resulting sequence will be K-trivial and will not have the property P . So the
question whether all K-trivial sequences have property P or not can be resolved
by providing a computable winning strategy for one of the players.

The Game for Theorem 3. We follow this scheme (in slightly modified form)
and consider the following game. The opponent approximates some sequence a
by changing the values of Boolean variables a0, a1, a2, . . ., so a(i) is the limit
value of ai. (For the ith bit of a we use the notation a(i) instead of usual ai,
since ai is used as the name of ith variable.) He also assigns increasing weights
to strings; the total weight should not exceed 1. We assume that initially all
weights are zeros. We also assume that the initial values of the ai’s are zeros
(just to be specific).
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We assign increasing weights to integers (lengths); the sum of our weights is
also bounded by 1. Since the property P says that a computes all enumerable
sets, we also challenge this property and construct some set W by irreversibly
adding elements to it.

The opponent wins the game if

– each variable ai is changed only finitely many times (so some limit sequence
a appears);

– the (opponent’s) limit weight of (a)i, the i-bit prefix of a, is greater than our
limit weight of i, up to some multiplicative constant;

– the set W is Turing-reducible to a.

Again, it is enough to show that we can win this game using a computable
winning strategy. Indeed, assume that some K-trivial a computes 0′. We know
that a is limit computable, so the opponent can computably approximate it, and
at the same time approximate from below the a priori probabilities m(s) for all
strings s (ignoring our moves). Our strategy will then behave computably, gener-
ating some lower semicomputable semimeasure on lengths, and some enumerable
set W . Then, according to the definition of the game, either this semimeasure is
not matched by m((a)i), or W is not Turing-reducible to a. In the first case a
is not K-trivial; in the second case a is not Turing-complete.

Reduction to a Game with Fixed Machine and Constant. How can
we computably win this game? First we consider a simpler game where the
opponent has to declare in advance some constant c that relates the semimeasures
constructed by the two players, and the machine Γ that reduces W to a. Imagine
that we can win this game: assume that for each c and Γ we have a uniformly
computable strategy that wins in this c-Γ -game, defined in a natural way. Since
the constant c in the definition of the c-Γ -game is arbitrary, we may use c2

instead of c and assume by scaling that we can force the opponent to spend
more than 1 while using only 1/c total weight and allowing him to match our
moves up to factor c.

Now we mix the strategies for different c and Γ into one strategy. Note that
two strategies that simultaneously increase weights of some lengths can only help
each other, so we only need to ensure that the sum of the increases made by all
strategies is bounded by 1. More care is needed for the other condition related
to the set W . Each of the strategies constructs its own W , so we should isolate
them. For example, to mix two strategies, we split N into two parts N1 and N2,
say, odd and even numbers, and let the first and second strategy construct a
subset of N1 and N2, respectively. Of course, then each strategy is not required
to beat the machine Γ ; it should beat its restriction to Ni (the composition of Γ
and the embedding of Ni into N). In a similar way we can mix countably many
strategies (splitting N into countably many infinite sets in a computable way).

It remains to consider some computable sequence ci > 0 such that
∑

1/ci � 1
and a computable sequence Γi that includes every machine Γ infinitely many
times. (The latter is needed because we want every Γ to be beaten with arbi-
trarily large constant c.) Combining the strategies for these games as described,
we get a computable winning strategy for the full game.
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When constructing a wnning strategy for the c-Γ -game, it is convenient to
scale this game and require the opponent to match our weights exactly (without
any factor) but allow him to use total weight c instead of 1. We will prove the
existence of the winning strategy by induction: assuming that a strategy for
some c is given, we construct a strategy for a bigger c′. Let us first construct the
strategy for c < 2.

Winning a Game with c < 2: Strong Strings. This winning strategy deals
with some fixed machine Γ and ensures Γ a �= W at one fixed point, say, 0 (i.e.,
the strategy ensures that 0 ∈ Γ a �⇔ 0 ∈ A); the other points are not used.
Informally, we wait until the opponent puts a lot of weight on strings that imply
0 /∈ Γ a. If this never happens, we win in one way; if it happens, we then add 0
to W and win in a different way.

Let us explain this more formally. We say that a string u is strong if it (as a
prefix of a) enforces that Γ a(0) is equal to 0, i.e., Γ outputs 0 on input 0 using
only oracle answers in u. Simulating the behavior of Γ for different oracles,
we can enumerate all strong strings. During the game we look at the following
quantity:

the total weight that our opponent has put on all known strong strings.

This quantity may increase because the opponent distributes more weight or
because we discover new strong strings, but it never decreases. We try to force
the opponent to increase this quantity (see below how). As we shall see, if he
refuses, he loses the game, and the element 0 remains outside W . If the quantity
comes close to 1, we change our mind and add 1 into W . After that all the weight
put on strong strings is lost for the opponent: they cannot be the prefixes of a
such that Γ a = W , if 1 ∈ W . So we can make our total weight equal to 1 in an
arbitrary way (adding weight somewhere if the total weight was smaller than 1),
and to counter this the opponent needs to use additional weight 1 along some
final a that avoids all strong strings, therefore his weight comes close to 2.

Winning a Game with c < 2: Gradual Increase. So our goal is to force
the opponent to increase the total weight of strong strings (or nodes, since we
identify strings with nodes in the full binary tree). Let us describe our strategy
as a set of substrategies (processes) that run in parallel. For each strong node x
there is a process Px; we start it when we discover that x is strong. This process
tries to force the opponent to increase the weight of some extension of x, i.e.,
some node above x (this node is automatically strong); we want to make the
lengths of these strings different, so for every string x we fix some number lx
that is greater than |x|, the length of x.

The process Px is activated when the current path (i.e., the characteristic
function of the current approximation to a) goes through node x. Otherwise
Px sleeps; it may happen that some Px never becomes active. When awake, Px

always sees that the current path goes through x. The process Px gradually
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increases the weight of length lx: it adds some small δx to the weight of lx and
waits until the opponent matches1 this weight along the current path (whatever
this path is), then increases the weight again by δx, etc. The value of δx is fixed
for each x in such a way that

∑
x δx is small (formally: we need it to be smaller

than 1− c/2). The process repeats this increase by δx until it gets a termination
signal from the supervisor (see below for the conditions when this happens).
Note that at any moment the current path may change in such a way that x is
not an initial segment of it anymore. Then Px is suspended and wakes up only
when, due to a later change of the current path, x lies on it again (and this may
never happen).

The supervisor sends the termination signal to all the processes when (and
if) the total weight they have distributed goes above a fixed threshold close to 1
(formally, we need this threshold to be greater than c/2). After that the strategy
adds 0 to W , as explained above.

Let us show that this is indeed a winning strategy. Consider a game where it
is used. By construction, we do not violate the weight restriction. If the opponent
has no limit path, he loses, so we can assume that some limit path a exists. There
are two possible cases:

– Case 1: The processes Px never reach the threshold for the total weight used,
and no termination signal is ever sent (thus 0 never enters W ). This can be
because of two reasons:

• There is no strong node on the limit path a. In this case, the opponent
loses because Γ a(0) �= 0 while 0 /∈ W , so Γ a �= W .

• There exists a strong node x on the limit path a, and its associated process
Px remains active from some point onward, but the opponent refuses to
match our weight at length lx. In this case the opponent fails to match
our weight on some prefix of a, and thus loses.

– Case 2: The processes Px do reach the fixed total threshold, the termination
signal is sent, and 0 is added to W . As we observed, all the weight we put on
lengths was matched by our opponent on strong nodes, except for some small
amount (at most

∑
x δx). Now all the opponent’s weight is lost since he must

change the path and the limit path does not have strong prefixes. Then we
distribute the remaining weight arbitrarily and win.

This finishes the explanation on how to win the c-Γ -game for c < 2.

Induction Statement. The idea of the induction step is simple: instead of
forcing the weight increase for some extension of a strong node u directly, we
recursively call the described strategy at the subtree rooted at u, adding or not
adding some other element to W instead of 0. This cuts our costs almost in half,
since we know how to win the game with c close to 2. In this way we can win
the game for arbitrary c < 3, and so on.
1 A technical remark: note that in our description of the game we have required that

the opponent’s weight along the path is strictly greater than our weight: if this is
true in the limit, it happens at some finite stage.
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To be more formal, we consider a recursively defined process P (k, x, α, L,M)
with the following parameters:

– k > 0 is a rational number, the required coefficient of weight increase;
– x is the root of the subtree where the process operates;
– α > 0 is also a rational number, our “budget” (how much weight we are

allowed to use);
– L is an infinite set of integers (lengths where our process may increase

weight);2

– M is an infinite set of integers (numbers that our process is allowed to add
to W ).

The process can be started or resumed only when x is a prefix of the cur-
rent path a, and is suspended when a changes and this is no more true. The
process then sleeps until x is an initial segment of the current path again. It
is guaranteed that P never violates the rules (about α, L, and M). Running
in parallel with other processes (as part of the game strategy) and assuming
that other processes do not touch lengths in L and numbers in M , the process
P (k, x, α, L,M) guarantees, if not suspended forever or terminated externally,
that one of the following possibilities is realized:

– the limit path a does not exist;
– W �= Γ a for limit a;
– the opponent never matches some weight put on some length in L;
– the opponent spends more than kα weight on nodes above x with lengths in L.

Base Case: k < 2. Now we can adapt the construction of the previous section
and construct a process P (k, x, α, L,M) with these properties for arbitrary k < 2.
For each y above x we select some ly ∈ L greater than the length of y, different
for different y, and also select some positive δy such that

∑
δy is small compared

to the budget α. We choose some m ∈ M and consider y (a node above x) as
strong if it guarantees that Γ a(m) = 0. Then for all strong y we start the process
Py that is activated when y is in the current path and increases the weight of ly
in δy-steps waiting until the opponent matches it. We terminate all the processes
when (and if) the total weight used becomes close to α, and then add m to W ,
thus rendering useless all the weight placed by the opponent on strong nodes.

The restrictions are satisfied by the construction. Let us check that the
declared goals are achieved. If there is no limit path, there is nothing to check.
If the limit path a does not go through x, we have no obligations (the process is
suspended forever). So we assume that the limit path goes through x.

Assume first that the total weight used by all Py did not come close to α, so
the termination signal was not sent. In this case m /∈ W . If there is no strong
node on the limit path a, then Γ a(m) is not 0, so W �= Γ a. If there is a strong
2 To use infinite sets as parameters, we should restrict ourselves to some class of

infinite sets. For example, we may consider infinite decidable sets and represent
them by programs enumerating their elements in increasing order.
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node y on the limit path, then the process Py was started and worked without
interruptions, starting from some moment. So either some of the δy-increases
was not matched (third possibility) or the termination signal was sent (so there
are no obligations).

It remains to consider the case when m was added to W and termination
signal was sent to all Py. In this case the total weight used is close to α, and
after adding m to W it is lost, so either our weight is not matched or almost 2α
is spent by the opponent on nodes above x (recall that all processes are active
only when the current path goes through x).

Induction Step. The induction step is similar: we construct the process

P (k, x, α, L,M)

in the same way as for the induction base. The difference is that instead of
δy-increasing the weight of ly the process Py now recursively calls

P (k′, y, δy , L′,M ′)

with some smaller k′, say, k′ = k − 0.5, the budget δy, and some L′ ⊂ L and
M ′ ⊂ M . If the started process forces the opponent to spend more than k′δy on
the nodes above y with lengths in L′ and terminates, then a new process

P (k′, y, δy , L′′,M ′′)

is started for some other L′′ ⊂ L and M ′′ ⊂ M , etc. All the subsets L′, L′′, . . .
should be disjoint, and also disjoint for different y, as well as M ′,M ′′, . . .. So we
should first of all split L into a sum of disjoint infinite subsets Ly parametrized
by y and then split each Ly into L′

y +L′′
y + . . . (for the first, second, etc. recursive

calls). The same is done for M , but here, in addition to the sets My, we select
some m outside all My. We add this m to A when our budget is exhausted (thus
forcing the opponent to spend more weight). As before, strong nodes are defined
as those that guarantee Γ a(m) = 0.

We start the processes Py as described above: each of them makes a poten-
tially infinite sequence of recursive calls with the same k′ = k − 0.5 and budget
δy. The process Py is created for each discovered strong node y, but is sleeping
while y is not on the current path. We take note of the total weight used by all
Py (for all y) and send a termination signal to all Py when this weight comes
close to the threshold α, so it never crosses this threshold.

Let us show that we achieve the declared goal, assuming that the recursive
calls fulfill their obligations. First, the restrictions about L, M and α are guaran-
teed by the construction. If there is no limit path, we have no other obligations.
If the limit path exists but does not go through x, our process will be suspended
externally, and again we have no obligations. So we may assume that the limit
path goes through x, and that our process is not terminated externally. If the
weight used by all Py did not cross the threshold, and the limit path does not go
through any strong node (defined using m), then W �= Γ a for the limit path A,



K-trivial, K-low and MLR-low Sequences: A Tutorial 13

since m /∈ W and Γ a(m) does not output 0. If the limit path goes through
some strong y, the process Py will be active starting from some point onward,
and makes recursive calls P (k′, y, δy , L′,M ′), P (k′, y, δy , L′′,M ′′), etc. Now we
use the inductive assumption and assume that these calls achieve their declared
goals. Consider the first call. If it succeeds by achieving one of three first alterna-
tives (among the four alternatives listed above), then we are done. If it succeeds
by achieving the fourth alternative, i.e., by forcing the opponent to spend more
than k′δy on the weights from L′, then the second call is made, and again either
we are done or the opponent spends more than k′δy on the weights from L′′. And
so on: at some point we either succeed globally, or exhaust the budget and our
main process sends the termination signal to all Py. So it remains to consider
the latter case. Then all the weight spent, except for the δy’s for the last call at
each node, is matched by the opponent with factor k′, and on the final path the
opponent has to match it with factor 1, so we are done (assuming that k < k′ +1
and

∑
y δy is small enough).

This finishes the induction step, so we can win every c-Γ -game by calling the
recursive process at the root. As we have explained, this implies that K-trivial
sets do not compute 0′.

5 K-trivial Sequences Are K-low

Now we want to prove the promised stronger result [5]:

Theorem 4. All K-trivial sequences are K-low.

Proof. In this theorem the property P that we want to establish for an arbitrary
K-trivial sequence a says that K a(x) � K (x) − O(1) for all x ∈ B

∗, or that

ma(x) � m(x) · O(1) for all x ∈ B
∗.

Let us represent ma(·) in the following convenient way. The sequence a is a path
in a full binary tree. Imagine that at every node of the tree there is a label of the
form (i, η) where i is an integer, and η is a non-negative rational number. This
label is read as “please add η to the weight of i”. We assume that the labelling
is computable. We also require that for every path in the tree the sum of all
rational numbers along the path does not exceed 1. Having such a labelling, and
a path a, we can obey all the labels along the path, and obtain a semimeasure
on integers. This semimeasure is semicomputable with oracle a.

This construction is general in the following sense. Consider a machine M
that generates a lower semicomputable discrete semimeasure ma when given
access to an oracle a. We can find a computable labelling that gives the same
semimeasure ma (in the way described) for every oracle a. (Note that, according
to our claim, the labelling does not depend on the oracle.) Indeed, we may
simulate the behavior of M for different oracles a, and look at the part of a that
has been read when some increase in the output semimeasure happens. This can
be used to create a label (i, η) at some tree node u: the number i is where the
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increase happened, η is the size of the increase, and u is the node that guarantees
all the oracle answers used before the increase happened. We need to make the
labelling computable; also, according to our assumption, each node has only one
label (adds weight only to one object). Both requirements can be easily fulfilled
by postponing the weight increase: we push the queue of postponed requests up
the tree. If the sum of the increase requests along some path a becomes greater
than 1, this means that for this path a we do not obtain a semimeasure. As usual,
we can trim the requests and guarantee that we obtain semimeasures along all
paths, without changing the existing valid semimeasures.

We may assume now that some computable labelling is fixed that corre-
sponds to the universal machine: for every path a the semimeasure resulting
from fulfilling all requests along a, equals ma.

Game Description. As in the previous section, we prove the theorem by show-
ing the existence of a winning strategy in some game, which follows the same
template.

As before, the opponent approximates some sequence a by changing the val-
ues of Boolean variables a0, a1, a2, . . . and assigns increasing weights to strings;
the total weight should not exceed 1 (we again assume that initially all weights
and the values of the ai’s are zeros) while we assign increasing weights to integers
(lengths); the sum of our weights is also bounded by 1.

Moreover (this is the part of the game tailored for the theorem to be proven),
throughout the game we also assign increasing weights to another type of inte-
gers, called objects: on these we compare our semimeasure with the semimeasure
ma determined by the opponent’s limit path a.3

The opponent wins the game if all of the following three conditions are
satisfied:

– the limit sequence a exists;
– the opponent’s semimeasure along the path exceeds our semimeasure on

lengths up to some constant factor, i.e., there exists some c > 0 such that
for all i the opponent’s weight of the prefix (a)i is greater than our weight of i
divided by c; for brevity we say in this case that the opponent’s semimeasure
∗-exceeds our semimeasure.

– our semimeasure on objects does not ∗-exceed ma.

Once again it is enough to construct a computable winning strategy in this
game. Also, as in the previous section, we can consider an easier (for us) version
of the game where the opponent starts the game by declaring some constant c
that he plans to achieve for the second condition, and we need to beat only this c.
If we can win this game for any c = 22k declared in advance, then by scaling
we can win the 2k-game using only 2−k of our capital, and it then suffices to
combine all the corresponding strategies (we also assume that the total weight on

3 Formally speaking, we construct two semimeasures on integers; to avoid confusion,
it is convenient to call their arguments “lengths” and “objects”.
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objects for the kth strategy is bounded by 2−k, but this is for free, since we only
need to ∗-exceed ma without any restrictions on the constant). So it remains
to win the game for each c. And again, it is convenient to scale that game and
assume that the opponent needs to match our weights on lengths exactly (not
up to 1/c-factor) while his total weight is bounded by c (not 1).

Winning the Game for c < 2. For c = 1 the game is trivial, since we require
that the opponent’s weight along the path is strictly greater than our weight on
lengths, so it is enough to assign weight 1 to some length. We start our proof by
explaining the strategy for the case c < 2.

The idea can be explained as follows. The näıve strategy is to assume all
the time that the current path a is final, and to just assign the weights to
objects according to ma, computed based on the current path a. (In fact, at
each moment we look at some finite prefix of a and follow the labels that appear
on this prefix.) If indeed a never changes, this is a valid strategy: we achieve ma,
and never exceed the total weight 1 due to the assumption about the labels. But
if the path suddenly changes, then all the weight placed because of nodes on the
old path which are now outside the new path, is lost. If we now follow all the
labels on the new path, then our total weight on objects may exceed 1 (the total
weight was bounded only along every path individually, but now we have placed
weight according to labels both on the old path and on the new path).

There is some partial remedy: we may match the weights only up to some
constant, say, use only 1% of what the labels ask. This is possible since the
game allows us to match the measure with arbitrary constant factor. This way
we can tolerate up to 100 changes in the path (each new path generates new
weight of at most 0.01). However, this does not really help since the number
of changes is (of course) unbounded. In fact, the strategy described so far must
fail, as otherwise it would prove that all 0′-computable sets are K-low, which is
certainly not the case. For a successfull proof we must take advantage of the fact
that a is K-trivial.

How can we discourage the opponent from changing the path? Like in the
previous proof we may assign a non-zero weight to some length and wait until the
opponent matches this weight along the current path. This provides an incentive
for the opponent not to leave a node where he has already put weight: if he does,
this weight would be wasted, and he would be forced to put the same weight
along the final path a second time. After that we may act as if the final path
goes through this node and follow the labels (as described). Doing this, we know
at least that if later the path changes and we lose some weight, the opponent
loses some weight, too. This helps if we are careful enough.

Let us explain the details. It would be convenient to represent the strategy
as a set of parallel processes: for each node x we have a process Px that is awake
when x is a prefix of the current path, and sleeps when x is not. When awake,
the process Px tries to create the incentive for the opponent not to leave x, by
forcing him to increase the weight of some node above x. To make the processes
more independent and to simplify the analysis, let us assume that for every node
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x some length lx � |x| is chosen, lengths assigned to different nodes are different,
and Px increases only the weight of lx.

Now we are ready to describe the process Px. Assume that node x has label
(i, η) that asks to add η to the weight of object i. The process Px increases the
weight of lx, adding small portions to it and waiting after each portion until the
opponent matches this increase along the current path (i.e., in the lx-bit prefix
of the current path). If and when the weight of lx reaches εη (where ε is some
small positive constant; the choice of ε depends on c, see below), the process
increases the weight of object i by εη as well and terminates.

The processes Px for different nodes x run in parallel independently, except
for one thing: just before the total weight spent by all processes together would
exceed 1, we terminate them, blocking the final weight increase that would have
brought the total weight above 1. After that our strategy stops working and
hopes that the opponent would be unable to match already existing weights not
crossing the threshold c.

Concerning the small portions of weight increases mentioned above: for each
node x we choose in advance the size δx of the portions used by Px, in such
a way that

∑
x δx < ε. Note that here we use the same small ε as above. In

this way we guarantee that the total loss (caused by last portions that were not
matched because the opponent changes the path instead and does not return,
so the process is not resumed) is bounded by ε.

It remains to prove that this strategy wins the c-game for c close to 2, assum-
ing that ε is small enough. First note two properties that are true by construction:

– the sum of our weights for all lengths does not exceed 1;
– at every moment the sum of (our) weights for all objects does not exceed the

sum of (our) weights for all lengths.

Indeed, we stop the strategy just before violating the first requirement, and the
second is guaranteed for each x-process and therefore for the entire strategy.

If there is no limit path, the strategy wins the game by definition. So assume
that a limit path a exists. Now we count separately the weights used by processes
Px for x’s on the limit path a, and for others (incomparable with a). Since the
weights for x are limited by ε · (the request in x), and the sum of all requests
along a is at most 1, the sum of the weights along a is bounded by ε. Now there
are two possibilities: either the strategy was stopped when trying to cross the
threshold, or it runs indefinitely.

In the first case the total weight is close to 1: it is at least 1 − ε, since the
next increase will cross 1, and all the portions δx are less than ε. So the weight
used by processes outside a is at least 1 − 2ε, and if we do not count the last
(unmatched) portions, we get at least 1 − 3ε of weight that the opponent needs
to match twice: it was matched above x for Px, and then should be matched
again along the limit path (that does not go through x; recall that we consider
the nodes outside the limit path). So the opponent needs to spend at least 2−6ε,
otherwise he loses.

In the second case each process Px for x on the limit path is awake starting
from some point onward, and is never stopped, so it reaches its target value εη
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and adds εη to the object i, if (i, ε) is the request in node x. So our weights on
the objects match ma for limit path a up to factor ε, and the opponent loses. We
know also that the total weight on objects does not exceed 1, since it is bounded
by the total weight on lengths.

We therefore have constructed a winning strategy for the 2 − 6ε game, and
by choosing a small ε we can win the c-game for any given c < 2.

Using This Strategy on a Subtree. To prepare ourselves for the induction,
let us look at the strategy previously described and modify it for use inside a
subtree rooted at some node x. We also scale the game and assume that we
have some budget α that we are allowed to use (instead of total weight 1). To
guarantee that the strategy does not interfere with other actions outside the
subtree rooted at x, we agree that it uses lengths only from some infinite set L
of length and nobody else touches these lengths. Then we can assign ly ∈ L for
every y in the subtree and use them as before.

Let us describe the strategy in more details. It is composed of processes Py for
all y above x. When x is not on the actual path, all these processes sleep, and the
strategy is sleeping. But when the path goes through x, some processes Py (for y
on the path) become active and start increasing the weight of length ly by small
portions δy (the sum of all δy now is bounded by αε, since we scaled everything
by α). A supervisor controls the total weight used by all Py, and as soon as it
reaches α, terminates all Py. When the process Py reaches the weight αεη, it
increases the weight of object i by αεη (here (i, η) is the request at node y).
So everything is as before, but scaled by α and restricted to the subtree rooted
at x.

What does this strategy guarantee?

– The total weight on lengths used by it is at most α.
– The total weight on objects does not exceed the total weight on lengths.
– If the limit path a exists and goes through x, then either

• the strategy halts and the opponent either fails to match all the weights
or spends more than cα on the subtree rooted at x; or

• the strategy does not halt, and the semimeasure on objects generated by
this strategy ∗-exceeds ma, if we omit from ma all the requests on the
path to x.

The argument is the same as for the full tree: if the limit path exists and the
strategy does not halt, then all the requests along the limit path (except for
finitely many of them below x) are fulfilled with coefficient αε. If the strategy
halts, the weight used along the limit path does not exceed αε (since the sum of
requests along each path is bounded by 1). The weight used in the other nodes
of the x-subtree is at least α(1−2ε), including at least α(1−3ε) matched weight
that should be doubled along the limit path, and we achieve the desired goal for
c = 2 − 6ε.

Remark 2. In the statement above we have to change ma by deleting the requests
on the path to x. We can change the construction by moving requests up the
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tree when processing node x to get rid of this problem. One may also note that
omitted requests deal only with finitely many objects, so one can average the
resulting semimeasure with some semimeasure that is positive everywhere. So
we may ignore this problem in the sequel.

How to Win the Game for c < 3. Now we make the crucial step: we show
how one can increase c by recursively using our strategies. Recall our strategy
for c < 2, and change it in the following ways:

– Instead of assigning some length lx for each node x, let us assign an infinite
(decidable uniformly in x) set Lx of integers; all elements should be greater
than |x| (the length of x) and for different x these sets should be disjoint (this
is easy to achieve).

– We agree that process Px (to be defined) uses only lengths from Lx.
– As before Px is active when x is on the current path, and sleeps otherwise.
– Previously Px increased the weight of lx in small portions, and after each small

increase waited until the opponent matched this increase along the current
path. Now, instead of that, Px calls the x-strategy described in the previous
section, with small α = δx, waits until this strategy terminates forcing the
opponent to spend almost 2δx, then calls another instance of the x-strategy,
waits until it terminates, and so on. For this, Px divides Lx into infinite subsets
L1
x + L2

x + . . ., using Ls
x for the sth call of an x-strategy, and using δx as the

budget for each call.

There are several possibilities for the behavior of an x-strategy called recur-
sively. It may happen that it runs indefinitely. This happens when x is an initial
segment of the limit path, the x-strategy never exceeds its budget δx, and the
global strategy does not come close to 1 in its total spending. It this case we win
the game, since the part of the semimeasure on objects built by the x-strategy
is enough to ∗-exceed ma. This case is called “the golden run” in the original
exposition of the proof.

If x is not on the limit path, the execution of the x-strategy may be inter-
rupted; in this case we only know that it spent not more than its budget, and
that the weight used for objects does not exceed the weight used for lengths.
This is similar to the case when an increase at lx was not matched because the
path changed.

The x-strategy may also terminate. In this case we know that the opponent
used almost twice the budget (δx) on the extensions of x, and a new call of the
x-strategy is made for another set of lengths. This is similar to the case when
the increase at lx was matched; the advantage is that now the opponent used
almost twice our weight.

Finally, the strategy may be interrupted because the total weight used by
x-processes for all x came close to 1. After that everything stops, and we just
wait until the opponent will be unable to match all the existing weights or forced
to use total weight close to 3. Indeed, most of our weight, except for O(ε), was
used not on the limit path and already matched with factor close to 2 there —
so matching it again on the limit path makes the total weight close to 3.
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Induction Step. Now it is clear how one can continue this reasoning and
construct a winning strategy for arbitrary c. To get a strategy for some c, we
follow the described scheme, and the process Px makes sequential recursive calls
of c′-strategies for smaller c′. We need c − c′ < 1, so let us use c′ = c − 0.5.
More formally, we recursively define a process S(c, x, α, L) where c is the desired
amplification, x is a node, α is a positive rational number (the budget), and L
is an infinite set of integers greater than |x|.4 The requirements for S(c, x, α, L):

– It increases only weights of lengths in L.
– The total weight used for lengths does not exceed α.
– At each step the total weight used for objects does not exceed the total weight

used for lengths.
– Assuming that the process is not terminated externally (this means that x

belongs to the current path, starting from some moment), it may halt or not,
and:

• If the process halts, the opponent uses more that cα on strings that have
length in L and are above x.

• If the process does not halt and the limit path a exists, the part of the
semimeasure on objects generated by this process alone is enough to ∗-
exceed ma.

The implementation of S(c, x, α, L) uses recursive calls of S(c − 0.5, y, β, L′);
for each y above x a sequence of those calls is made with β = δy and sets L′

that are disjoint subsets of L (for different y these L′ are also disjoint), similar
to what we have described above for the case c < 3. ��

6 K-low and MLR-low Oracles

In this section we present one more characterization of K-low (or K-trivial)
sequences: this class coincides with the class of sequences that (being used as ora-
cles) do not change the notion of Martin-Löf randomness. As almost all notions
of computability theory, the notion of Martin-Löf randomness can be relativized
to an oracle a; this means that the algorithms that enumerate Martin-Löf tests
now may use the oracle a. In this way we get (in general) a wider class of effec-
tively null sets, and therefore fewer but more pronouncedly random sequences.
However, for some a, relativizing to a leaves the class of Martin-Löf random
sequences unchanged.

Definition 3. A sequence a is MLR-low if every Martin-Löf random sequence
is Martin-Löf random relative to the oracle a.
4 The pedantic reader may complain that the parameter is an infinite set. It is in

fact enough to consider infinite sets from some class, say, decidable sets (as we
noted in the previous section), or just arithmetic progressions. Such sets are enough
for our purposes and have finite representation. Indeed, an arithmetic progression
can be split into countably many arithmetic progressions. For example, 1, 2, 3, 4, . . .
can be split into 1, 3, 5, 7, . . . (odd numbers), 2, 6, 10, 14 . . . (odd numbers times 2),
4, 12, 20, 28, . . . (odd numbers times 4), etc.
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The Schnorr–Levin criterion of randomness in terms of prefix complexity shows
that if a is K-low, then a is also MLR-low. The other implication is also true but
more difficult to prove.

Theorem 5. Every MLR-low sequence is K-low.

We will prove a more general result, but first let us give the definitions.

Definition 4. Let a and b be two sequences, considered as oracles. We say that
a �LK b if

K b(x) � K a(x) + O(1).

We say that a �LR b if every sequence that is Martin-Löf random relative to b
is also Martin-Löf random relative to a.

If one oracle b is stronger in the Turing sense than another oracle a, then b
allows to generate a larger class of effectively null sets, and the set of random
sequences relative to b is smaller that the set of random sequences relative a; the
Kolmogorov complexity function relative to b is also smaller than Kolmogorov
complexity function relative to a. Therefore, we have a �LR b and a �LK b. So
both orderings are coarser than the Turing degree ordering.

We can now reformulate the definitions of K-lowness and MLR-lowness: a
sequence a is K-low if a �LK 0 and is MLR-low if a �LR 0. So to prove Theorem 5
it is enough to prove the following result [4]:

Theorem 6. The conditions a �LK b and a �LR b are equivalent.

Proof. The left-to-right direction once again follows directly from the Schnorr–
Levin randomness criterion. The proof in the other direction is more difficult5,
and will be split in several steps.

Recall that the set of non-random sequences (in the Martin-Löf sense; we do
not use other notions of randomness here) can be described using a universal
Martin-Löf test, that is, represented as the intersection of effectively open sets

U1 ⊃ U2 ⊃ U3 ⊃ . . .

where Ui has measure at most 2−i for all i. The following observation goes back
to Kučera and says that the first layer of this test, the set U1, is enough to
characterize all non-random sequences.

Lemma 1. Let U be an effectively open set of measure less than 1 that contains
all non-random sequences. Then a sequence x = x0x1x2 . . . is non-random if and
only if all its tails xkxk+1xk+2 . . . belong to U .

5 This was to be expected. The relation a �LK b is quantitative: it states that two
functions coincide with O(1)-precision; whether the relation a �LR b holds, on the
other hand, is a qualitative yes/no question. One can also consider the quantitative
version, with randomness deficiencies, but this is unnecessary: the relation �LR is
already strong enough to obtain an equivalence.
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Proof. If x is non-random, then all its tails are non-random and therefore belong
to U . For the other direction we represent U as the union of disjoint intervals
[u0], [u1], . . . (by [v] we denote the set of all sequences that have prefix v). Their
total measure ρ =

∑
2−|ui| is less than 1. If all tails of x, including x itself,

belong to U , then x starts with some ui. The rest is a tail that starts with
some uj , etc., so x can be split into pieces that belong to {u0, u1, . . .}. The set
of sequences of the form “some ui, then something” has measure ρ, the set of
sequences of the form “some ui, some uj , then something” has measure ρ2, etc.
These sets are effectively open and their measures ρn effectively converge to 0.
So their intersection is an effectively null set and x is non-random. ��
The argument gives also the following:

Corollary 1. A sequence x is non-random if there exists an effectively open
set U of measure less than 1 such that all tails of x belong to U .

This corollary can be relativized, so randomness with oracle a can be character-
ized in terms of a-effectively open sets of measure less that 1: a sequence x is
a-nonrandom if there exists an a-effectively open set U of measure less than 1
such that all tails of x belong to U. This gives one implication in the following
equivalence (here we denote the oracles by capitals letter to distinguish them
from sequences):

Lemma 2. Let A and B be two oracles. Then A �LR B if and only if every
A-effectively open set of measure less than 1 can be covered by some B-effectively
open set of measure less than 1.

Proof. The “if” direction (⇐) follows from the above discussion: if x is not A-
random, its tails can be covered by some A-effectively open set of measure less
than 1 and therefore by some B-effectively open set of measure less than 1, so x
is not B-random.

In the other direction: assume that U is an A-effectively open set of measure
less than 1 that cannot be covered by any B-effectively open set of measure less
than 1. The set U is the union of an A-enumerable sequence of disjoint intervals
[u1], [u2], [u3], etc. Consider a set V that is B-effectively open, contains all B-
non-random sequences and has measure less than 1 (e.g., the first level of the
universal B-Martin-Löf test). By assumption U is not covered by V , so some
interval [ui] of U is not entirely covered by V .

The set V has the following special property: if it does not contain all points
of some interval, then it cannot contain almost all points of this interval, i.e., the
uncovered part must have some positive measure. Indeed, the uncovered part is
a B-effectively closed set, and if it has measure zero, it has B-effectively measure
zero, so all non-covered sequences are B-non-random, and therefore should be
covered by V .

So we found an interval [ui] in U such that [ui] \ V has positive measure.
Then consider the set V1 = V/ui, i.e., the set of infinite sequences α such that
uiα ∈ V . This is a B-effectively open set of measure less than 1, so it does
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not cover U (again by our assumption). So there exists some interval [uj ] not
covered by V/ui. This means that [uiuj ] is not covered by V . We repeat the
argument and conclude that the uncovered part has positive measure, so V/uiuj

is a B-effectively open set of measure less than 1, so it does not cover some [uk],
etc. In the limit we obtain a sequence uiujuk . . . whose prefixes define intervals
not covered fully by V . Since V is open, this sequence does not belong to V , so
it is B-random. On the other hand, it is not A-random, as the argument from
the proof of Lemma 1 shows. ��

Let us summarize how far we have come so far. Assuming that A �LR B, we have
shown that every A-effectively open set of measure less than 1 can be covered
by some B-effectively open set of measure less than 1. What we need to show
is that A �LK B, i.e., K B � K A (up to an additive constant), or mA � mB

(up to a constant factor). This can be reformulated as follows: for every lower
A-semicomputable converging series

∑
an of reals there exists a converging lower

B-semicomputable series
∑

bn of reals such that an � bn for every n.
So to connect our assumption and our goal, we need to find a way to convert

a converging lower semicomputable series into an effectively open set of measure
less than 1 and vice versa. We may assume without loss of generality that all ai

are strictly less than 1. Then
∑

an < ∞ is equivalent to

(1 − a0)(1 − a1)(1 − a2) . . . > 0.

This product is a measure of an A-effectively closed set

[a0, 1] × [a1, 1] × [a2, 1] × . . .

whose complement

U = {(x0, x1, . . .) | (x0 < a0) ∨ (x1 < a1) ∨ . . .}
is an A-effectively open set of measure less than 1. (Here we split Cantor space
into a countable product of Cantor spaces and identify each of them with [0, 1]
equipped with the standard uniform measure on the unit interval.) We are finally
ready to apply our assumption and find some B-effectively open set V that
contains U .

Let us define b0 as the supremum of all z such that

[0, z] × [0, 1] × [0, 1] × . . . ⊂ V

This product is compact for every z, and V is B-effectively open, so we can
B-enumerate all rational z with this property, and their supremum b0 is lower
B-semicomputable. Note that all z < a0 have this property (the set [0, a0) ×
[0, 1] × [0, 1] × . . . is covered by U), so a0 � b0. In a similar way we define all
bi and get a lower B-semicomputable series bi such that ai � bi. It remains to
show that

∑
bi is finite. Indeed, the set

{(x0, x1, . . .) | (x0 < b0) ∨ (x1 < b1) ∨ . . .}
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is a part of V , and therefore has measure less than 1; its complement

[b0, 1] × [b1, 1] × [b2, 1] × . . .

has measure (1 − b0)(1 − b1)(1 − b2) . . ., therefore this product is positive and
the series

∑
bi converges. This finishes the proof. ��
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Abstract. Automatic program verification and symbolic model check-
ing tools interface with theorem proving technologies that check satisfi-
ability of formulas. A theme pursued in the past years by the authors of
this paper has been to encode symbolic model problems directly as Horn
clauses and develop dedicated solvers for Horn clauses. Our solvers are
called Duality, HSF, SeaHorn, and µZ and we have devoted considerable
attention in recent papers to algorithms for solving Horn clauses. This
paper complements these strides as we summarize main useful properties
of Horn clauses, illustrate encodings of procedural program verification
into Horn clauses and then highlight a number of useful simplification
strategies at the level of Horn clauses. Solving Horn clauses amounts to
establishing Existential positive Fixed-point Logic formulas, a perspec-
tive that was promoted by Blass and Gurevich.

1 Introduction

We make the overall claim that Constrained Horn Clauses provide a suitable basis
for automatic program verification, that is, symbolic model checking. To sub-
stantiate this claim, this paper provides a self-contained, but narrowly selected,
account for the use of Horn clauses in symbolic model checking. It is based on
experiences the authors had while building tools for solving Horn clauses. At the
practical level, we have been advocating the use of uniform formats, such as the
SMT-LIB [6] standard as a format for representing and exchanging symbolic
model checking problems as Horn clauses. The authors and many of our colleagues
have developed several tools over the past years that solve Horn clauses in this
format. We illustrate three approaches, taken from Duality, SeaHorn and HSF,
for translating procedural programs into Horn clauses. At the conceptual level,
Horn clause solving provides a uniform setting where we can discuss algorithms
for symbolic model checking. This uniform setting allows us to consider integra-
tion of separate algorithms that operate as transformations of Horn clauses. We
illustrate three transformations based on recent symbolic model checking litera-
ture and analyze them with respect to how they simplify the task of fully solving
clauses. As a common feature, we show how solutions to the simplified clauses can
be translated back to original clauses by means of Craig interpolation [22].
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L.D. Beklemishev et al. (Eds.): Gurevich Festschrift II 2015, LNCS 9300, pp. 24–51, 2015.
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1.1 Program Logics and Horn Clauses

Blass and Gurevich [15] made the case that Existential positive Least Fixed-point
Logic (E+LFP) provides a logical match for Hoare logic: Partial correctness of
simple procedural imperative programs correspond to satisfiability in E+LFP.
We can take this result as a starting point for our focus on Horn clauses. As we
show in Sect. 2.1, the negation of an E+LFP formula can be written as set of
Horn clauses, such that the negation of an E+LFP formula is false if and only
if the corresponding Horn clauses are satisfiable.

The connections between Constrained Horn Clauses and program logics origi-
nates with Floyd-Hoare logic [29,37,53]. Cook’s [21] result on relative complete-
ness with respect to Peano arithmetic established that Hoare’s axioms were
complete for safety properties relative to arithmetic. Clarke [20] established
boundaries for relative completeness. Cook’s result was refined by Blass and
Gurevich.

In the world of constraint logic programming, CLP, expressing programs as
Horn clauses and reasoning about Horn clauses has been pursued for several
years, spearheaded by Joxan Jaffar and collaborators [41]. The uses of CLP for
program analysis is extensive and we can only mention a few other uses of CLP
for program analysis throughout the paper. Note that the more typical objective
in constraint logic programming [2,42] is to use logic as a declarative program-
ming language. It relies on an execution engine that finds a set of answers, that
is a set of substitutions that are solutions to a query. In an top-down evaluation
engine, each such substitution is extracted from a refutation proof.

In the world of deductive databases [19], bottom-up evaluation of Datalog
programs has, in addition to top-down, been explored extensively. Bottom-up
evaluation infers consequences from facts and project the consequences that
intersect with a query. Each such intersection corresponds to a refutation proof
of a statement of the form “query is unreachable”. Note that if the intersection
is empty, then the smallest set of consequences closed under a Datalog program
is a least model of the program and negated query.

Rybalchenko demonstrated how standard proof rules from program verifica-
tion readily correspond to Horn clauses [32], and we have since been promoting
constrained Horn clauses as a basis for program analysis [12].

1.2 Paper Outline

Figure 1 summarizes a use of Horn clauses in a verification workflow. Sections 3
and 4 detail translation of programs into clauses and simplifying transformations
on clauses, respectively. Section 2 treat Horn clause basics. It is beyond the scope
of this paper to go into depth of any of the contemporary methods for solving
clauses, although this is central to the overall picture.

In more detail, in Sect. 2, we recall the main styles of Horn clauses used in
recent literature and tools. We also outline contemporary methods for solving
clauses that use strategies based on combinations of top-down and bottom-up
search. As the main objective of solving Horn clauses is to show satisfiability,
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Section 4
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Fig. 1. Horn clause verification flow

in contrast to showing that there is a derivation of the empty clause, we intro-
duce a notion of models definable modulo an assertion language. We call these
symbolic models. Many (but not all) tools for Horn clauses search for symbolic
models that can be represented in a decidable assertion language. Note that sym-
bolic models are simply synonymous to loop invariants, and [16] demonstrated
that decidable assertion languages are insufficient for even a class of very simple
programs. Section 3 compares some of the main approaches use for converting
procedural programs into clauses. The approaches take different starting points
on how they encode procedure calls and program assertions and we discuss how
the resulting Horn clauses can be related. Section 4 summarizes three selected
approaches for transforming Horn clauses. Section 4.1 recounts a query-answer
transformation used by Gallagher and Kafle in recent work [30,46]. In Sect. 4.2
we recall the well-known fold-unfold transformation and use this setting to recast
K-induction [64] in the form of a Horn clause transformation. Section 4.3 dis-
cusses a recently proposed optimization for simplifying symbolic model checking
problems [49]. We show how the simplification amounts to a rewriting strategy
of Horn clauses. We examine each of the above transformation techniques under
the lens of symbolic models, and address how they influence the existence and
complexity of such models. The treatment reveals a common trait: the transfor-
mations we examine preserve symbolic models if the assertion language admits
interpolation.

2 Horn Clause Basics

Let us first describe constrained Horn clauses and their variants. We take the
overall perspective that constrained Horn clauses correspond to a fragment of
first-order formulas modulo background theories.

We will assume that the constraints in constrained Horn Clauses are for-
mulated in an assertion language that we refer to as A. In the terminology of
CLP, an assertion language is a constraint theory. In the terminology of SMT,
an assertion language is a logic [6]. The terminology assertion language is bor-
rowed from [52]. Typically, we let A be quantifier-free (integer) linear arithmetic.
Other examples of A include quantifier-free bit-vector formulas and quantifier-
free formulas over a combination of arrays, bit-vectors and linear arithmetic.
Interpretations of formulas over A are defined by theories. For example, inte-
ger linear arithmetic can be defined by the signature 〈Z,+,≤〉, where Z is an
enumerable set of constants interpreted as the integers, + is a binary function
and ≤ is a binary predicate over integers interpreted as addition and the linear
ordering on integers.
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Schematic examples of constrained Horn clauses are

∀x, y, z . q(y) ∧ r(z) ∧ ϕ(x, y, z) → p(x, y)

and

∀x, y, z . q(y) ∧ r(z) ∧ ϕ(x, y, z) → ψ(z, x)

where p, q, r are predicate symbols of various arities applied to variables x, y, z
and ϕ,ψ are formulas over an assertion language A. More formally,

Definition 1 (CHC: Constrained Horn Clauses). Constrained Horn
clauses are constructed as follows:

Π ::= chc ∧ Π | �
chc ::=∀var . chc | body → head
pred ::= upred | ϕ

head ::= pred
body ::=� | pred | body ∧ body | ∃var . body
upred ::= an uninterpreted predicate applied to terms

ϕ ::= a formula whose terms and predicates are interpreted over A
var ::= a variable

We use P,Q,R as uninterpreted atomic predicates and B,C as bodies. A
clause where the head is a formula ϕ is called a query or a goal clause. Con-
versely we use the terminology fact clause for a clause whose head is an unin-
terpreted predicate and body is a formula ϕ.

Note that constrained Horn clauses correspond to clauses that have at most one
positive occurrence of an uninterpreted predicate. We use Π for a conjunction
of constrained Horn clauses and chc to refer to a single constrained Horn clause.

Convention 1. In the spirit of logic programming, we write Horn clauses as
rules and keep quantification over variables implicit. Thus, we use the two rep-
resentations interchangeably:

∀x, y, z . q(y) ∧ r(z) ∧ ϕ(x, y, z) → p(x) as p(x) ← q(y), r(z), ϕ(x, y, z)

Example 1. Partial correctness for a property of the McCarthy 91 function can
be encoded using the clauses

mc(x, r) ← x > 100, r = x − 10
mc(x, r) ← x ≤ 100, y = x + 11,mc(y, z),mc(z, r)

r = 91 ← mc(x, r), x ≤ 101

The first two clauses encode McCarthy 91 as a constraint logic program. The last
clause encodes the integrity constraint stipulating that whenever the McCarthy
91 function is passed an argument no greater than 101, then the result is 91.
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Some formulas that are not directly Horn can be transformed into Horn
clauses using a satisfiability preserving Tseitin transformation. For example, we
can convert1

p(x) ← (q(y) ∨ r(z)), ϕ(x, y, z) (1)

into

s(y, z) ← q(y) s(y, z) ← r(z) p(x) ← s(y, z), ϕ(x, y, z) (2)

by introducing an auxiliary predicate s(y, z).
A wider set of formulas that admit an equi-satisfiable transformation to con-

strained Horn clauses is given where the body can be brought into negation
normal form, NNF, and the head is a predicate or, recursively, a conjunction
of clauses. When we later in Sect. 3 translate programs into clauses, we will see
that NNF Horn clauses fit as a direct target language. So let us define the class
of NNF Horn clauses as follows:

Definition 2 (NNF Horn)

Π ::= chc ∧ Π | �
chc ::=∀var . chc | body → Π | head

head ::= pred
body ::= body ∨ body | body ∧ body | pred | ∃var . body

The previous example suggests there is an overhead associated with converting
into constrained Horn clauses.

Proposition 1. NNF Horn clauses with n sub-formulas and m variables can be
converted into O(n) new Horn clauses each using O(m) variables.

Thus, the size of the new formulas is O(n·m) when converting NNF Horn clauses
into Horn clauses. The asymptotic overhead can be avoided by introducing a the-
ory of tupling with projection and instead pass a single variable to intermediary
formulas. For the formula (1), we would create the clauses:

s(u) ← q(π1(u)) s(u) ← r(π2(u)) p(x) ← s(〈y, z〉), ϕ(x, y, z) (3)

where π1, π2 take the first and second projection from a tuple variable u, and
the notation 〈x, y〉 is used to create a tuple out of x and y.

Several assertion languages used in practice have canonical models. For exam-
ple, arithmetic without division has a unique standard model. On the other hand,
if we include division, then division by 0 is typically left under-specified and there
is not a unique model, but many models, for formulas such as x/0 > 0.

1 Note that we don’t need the clause s(x, y) → q(y) ∨ r(z) to preserve satisfiability
because the sub-formula that s(x, y) summarizes is only used in negative scope.
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Recall the notion of convexity [55], here adapted to Horn clauses. We will
establish that Horn clauses and an extension called universal Horn clauses are
convex. We show that a further extension, called existential Horn clauses, is
not convex as an indication of the additional power offered by existential Horn
clauses. Let Π be a set of Horn clauses, then Π is convex if for every pair of
uninterpreted atomic predicates P , Q:

Π |= P ∨ Q iff Π |= P or Π |= Q

Proposition 2. Suppose A has a canonical model I(A), then Horn clauses over
A, where each head is an uninterpreted predicate, are convex.

The proposition is an easy consequence of

Proposition 3. Constrained Horn clauses over assertion languages A that have
canonical models have unique least models.

This fact is a well known basis of Horn clauses [25,40,67]. It can be estab-
lished by closure of models under intersection, or as we do here, by induction on
derivations:

Proof. Let I(A) be the canonical model of A. The initial model I of Π is
defined inductively by taking I0 as ∅ and Ii+1 := {r(c) | (r(x) ← body(x)) ∈
Π, Ii |= body(c), c is a constant in I(A)}. The initial model construction sta-
bilizes at the first limit ordinal ω with an interpretation Iω. This interpreta-
tion satisfies each clause in Π because suppose (r(x) ← body(x)) ∈ Π and
Iω |= body(c) for c ∈ I(A). Then, since the body has a finite set of predicates,
for some ordinal α < ω it is the case that Iα |= body(c) as well, therefore r(c)
is added to Iα+1.

To see that Proposition 2 is a consequence of least unique models, consider a
least unique model I of Horn clauses Π, then I implies either P or Q or both,
so every extension of I implies the same atomic predicate.

While constrained Horn clauses suffice directly for Hoare logic, we applied
two kinds of extensions for parametric program analysis and termination. We
used universal Horn clauses to encode templates for verifying properties of array-
based systems [14].

Definition 3 (UHC). Universal Horn clauses extend Horn clauses by admit-
ting universally quantifiers in bodies. Thus, the body of a universal Horn clause
is given by:

body ::=� | body ∧ body | pred | ∀var . body | ∃var . body

Proposition 4. Universal Horn clauses are convex.

Proof. The proof is similar as constrained Horn clauses, but the construction of
the initial model does not finish at ω, see for instance [14,15]. Instead, we treat
universal quantifiers in bodies as infinitary conjunctions over elements in the
domain of I(A) and as we follow the argument from Proposition 3, we add r(c)
to the least ordinal greater than the ordinals used to establish the predicates in
the bodies.
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Existential Horn clauses can be used for encoding reachability games [9].

Definition 4 (EHC). Existential Horn clauses extend Horn clauses by admit-
ting existential quantifications in the head:

head ::=∃var . head | pred

Game formalizations involve handling fixed-point formulas that alternate least
and greatest fixed-points. This makes it quite difficult to express using for-
malisms, such as UHC, that are geared towards solving only least fixed-points.
So, as we can expect, the class of EHC formulas is rather general:

Proposition 5. EHC is expressively equivalent to general universally quantified
formulas over A.

Proof. We provide a proof by example. The clause ∀x, y . p(x, y) ∨ q(x) ∨ ¬r(y),
can be encoded as three EHC clauses

(∃z ∈ {0, 1} . s(x, y, z)) ← r(y) p(x, y) ← s(x, y, 0) q(x) ← s(x, y, 1)

We can also directly encode satisfiability of UHC using EHC by Skolemizing
universal quantifiers in the body. The resulting Skolem functions can be con-
verted into Skolem relations by creating relations with one additional argu-
ment for the return value of the function, and adding clauses that enforce that
the relations encode total functions. For example, p(x) ← ∀y . q(x, y) becomes
p(x) ← sk(x, y), q(x, y), and (∃y . sk(x, y)) ← q(x, y). Note that (by using stan-
dard polarity reasoning, similar to our Tseitin transformation of NNF clauses)
clauses that enforce sk to be functional, e.g., y = y′ ← sk(x, y), sk(x, y′) are
redundant because sk is introduced for a negative sub-formula.

As an easy corollary of Proposition 5 we get

Corollary 1. Existential Horn clauses are not convex.

2.1 Existential Fixed-Point Logic and Horn Clauses

Blass and Gurevich [15] identified Existential Positive Fixed-point Logic
(E+LFP) as a match for Hoare Logic. They established a set of fundamental
model theoretic and complexity theoretic results for E+LFP. Let us here briefly
recall E+LFP and the main connection to Horn clauses. For our purposes we will
assume that least fixed-point formulas are flat, that is, they use the fixed-point
operator at the top-level without any nesting. It is not difficult to convert for-
mulas with arbitrary nestings into flat formulas, or even convert formulas with
multiple simultaneous definitions into a single recursive definition for that mat-
ter. Thus, using the notation from [15], a flat E+LFP formula Θ is of the form:

Θ : LET
∧

i

pi(x) ← δi(x) THEN ϕ
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where pi, δi range over mutually defined predicates and neither δi nor ϕ contain
any LET constructs. Furthermore, each occurrence of pi in δj , respectively ϕ is
positive, and δj and ϕ only contain existential quantifiers under an even number
of negations. Since every occurrence of the uninterpreted predicate symbols is
positive we can convert the negation of a flat E+LFP formula to NNF-Horn
clauses as follows:

Θ′ :
∧

i

∀x(δi(x) → pi(x)) ∧ (ϕ → ⊥)

Theorem 1. Let Θ be a flat closed E+LFP formula. Then Θ is equivalent to
false if and only if the associated Horn clauses Θ′ are satisfiable.

Proof. We rely on the equivalence:

¬(LET
∧

i

pi(x) ← δi(x) THEN ϕ) ≡ ∃p . (
∧

i

∀x . δi(x) → pi(x)) ∧ ¬ϕ[p]

where p is a vector of the predicate symbols pi. Since all occurrences of pi are
negative, when some solution for p satisfies the fixed-point equations, and also
satisfies ¬ϕ[p], then the least solution to the fixed-point equations also satisfies
¬ϕ[p].

Another way of establishing the correspondence is to invoke Theorem 5
from [15], which translates E+LFP formulas into ∀1

1 formulas. The negation
is an ∃1

1 Horn formula.

Remark 1. The logic U+LFP, defined in [15], is similar to our UHC. The differ-
ences are mainly syntactic in that UHC allows alternating universal and exis-
tential quantifiers, but U+LFP does not.

2.2 Derivations and Interpretations

Horn clauses naturally encode the set of reachable states of sequential programs,
so satisfiable Horn clauses are program properties that hold. In contrast, unsat-
isfiable Horn clauses correspond to violated program properties. As one would
expect, it only requires a finite trace to show that a program property does not
hold. The finite trace is justified by a sequence of resolution steps, and in par-
ticular for Horn clauses, it is sufficient to search for SLD [2] style proofs. We call
these top-down derivations.

Definition 5 (Top-down Derivations). A top-down derivation starts with a
goal clause of the form ϕ ← B. It selects a predicate p(x) ∈ B and resolves it
with a clause p(x) ← B′ ∈ Π, producing the clause ϕ ← B \ p(x), B′, modulo
renaming of variables in B and B′. The derivation concludes when there are no
predicates in the goal, and the clause is false modulo A.
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That is, top-down inferences maintain a goal clause with only negative predi-
cates and resolve a negative predicate in the goal with a clause in Π. Top-down
methods based on infinite descent or cyclic induction close sub-goals when they
are implied by parent sub-goals. Top-down methods can also use interpolants
or inductive generalization, in the style of the IC3 algorithm [17], to close sub-
goals. In contrast to top-down derivations, bottom-up derivations start with
clauses that have no predicates in the bodies:

Definition 6 (Bottom-up Derivations). A bottom-up derivation maintains
a set of fact clauses of the form p(x) ← ϕ. It then applies hyper-resolution on
clauses (head ← B) ∈ Π, resolving away all predicates in B using fact clauses.
The clauses are inconsistent if it derives a contradictory fact clause (which has
a formula from A in the head).

Bottom-up derivations are useful when working with abstract domains that have
join and widening operations. Join and widening are operations over an abstract
domain (encoded as an assertion language A) that take two formulas ϕ and ϕ′

and create a consequence that is entailed by both.
For constrained Horn clauses we have

Proposition 6 (unsat is r.e.). Let A be an assertion language where sat-
isfiability is recursively enumerable. Then unsatisfiability for constrained Horn
clauses over A is r.e.

Proof. Recall the model construction from Proposition 3. Take the initial model
of the subset of clauses that have uninterpreted predicates in the head. Checking
membership in the initial model is r.e., because each member is justified at level
Ii for some i < ω. If the initial model also separates from ⊥, then the clauses are
satisfiable. So assuming the clauses are unsatisfiable there is a finite justification
(corresponding to an SLD resolution derivation [2]), of ⊥. The constraints from
A along the SLD chain are satisfiable.

From the point of view of program analysis, refutation proof corresponds to a
sequence of steps leading to a bad state, a bug. Program proving is much harder
that finding bugs: satisfiability for Horn clauses is generally not r.e.

Definition 7 (A-Definable Models). Let A be an assertion language, an A-
definable model assigns to each predicate p(x) a formula ϕ(x) over the language
of A.

Example 2. A linear arithmetic-definable model for the mc predicate in Example 1
is as follows:

mc(x, y) := y ≥ 91 ∧ (y ≤ 91 ∨ y ≤ x − 10)

We can verify that the symbolic model for mc satisfies the original three Horn
clauses. For example, x > 100 ∧ y = x − 10 implies that y > 100 − 10, so y ≥ 91
and y ≤ x − 10. Thus, mc(x, r) ← x > 10, r = x − 10 is true.
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Presburger arithmetic and additive real arithmetic are not expressive enough
to define all models of recursive Horn clauses, for example one can define mul-
tiplication using Horn clauses and use this to define properties not expressible
with addition alone [16,63]. When working with assertion languages, such as
Presburger arithmetic we are interested in more refined notions of completeness:

Definition 8 (A-Preservation). A satisfiability preserving transformation of
Horn clauses from Π to Π ′ is A-preserving if Π has an A-definable model if
and only if Π ′ has an A-definable model.

We are also interested in algorithms that are complete relative to A. That is,
if there is an A-definable model, they will find one. In [47] we identify a class
of universal sentences in the Bernays Schoenfinkel class and an associated algo-
rithm that is relatively complete for the fragment. In a different context Revesz
identifies classes of vector addition systems that can be captured in Datalog [61].
In [11] we investigate completeness as a relative notion between search methods
based on abstract interpretation and property directed reachability.

2.3 Loose Semantics and Horn Clauses

A formula ϕ is satisfiable modulo a background theory T means that there is
an interpretation that satisfies the axioms of T and the formula ϕ (with free
variables x). Thus, in Satisfiability Modulo Theories jargon, the queries are of
the form

∃f . Ax(f) ∧ ∃x . ϕ (4)

where f are the functions defined for the theory T whose axioms are Ax. The
second-order existential quantification over f is of course benign because the
formula inside the quantifier is equi-satisfiable.

When the axioms have a canonical model, this condition is equivalent to

∀f . Ax(f) → ∃x . ϕ (5)

In the context of Horn clause satisfiability, the format (5) captures the proper
semantics. To see why, suppose unk is a global unknown array that is initialized
by some procedure we can’t model, and consider the following code snippet and
let us determine whether it is safe.


0 : if (unk [x] > 0) goto : error

In this example, the interpretation of the array unknown is not fully specified.
So there could be an interpretation of unknown where the error path is not taken.
For example, if 
0 is reached under a context where unk [x] is known to always
be non-positive, the program is safe. Consider one possible way to translate this
snippet into Horn clauses that we denote by Safe(
0, unk):

∀x . (� → 
0(x)) ∧ (
0(x) ∧ unk [x] > 0 → ⊥).
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These clauses are satisfiable. For example, we can interpret the uninterpreted
predicates and functions as follows: unk := const(0), 
0(x) := �, where we use
const(0) for the array that constantly returns 0. This is probably not what we
want. For all that we know, the program is not safe. Proper semantics is obtained
by quantifying over all loose models. This amounts to checking satisfiability of:

∀unk∃
0 . Safe(
0, unk)

which is equi-satisfiable to:

∀unk , x . ((� → 
0(unk , x)) ∧ (
0(unk , x) ∧ unk [x] > 0 → ⊥)).

which is easily seen to be false by instantiating with unk := const(1).

3 From Programs to Clauses

The are many different ways to transition from programs to clauses. This section
surveys a few of approaches used in the literature and in tools. The conceptually
simplest way to establish a link between checking a partial correctness property
in a programming language and a formulation as Horn clauses is to formulate an
operational semantics as an interpreter in a constraint logic program and then
specialize the interpreter when given a program. This approach is used in the
VeriMAP [24] tool an by [30]. The methods surveyed here bypass the interpreter
and produce Horn clauses directly. Note that it is not just sequential programs
that are amenable to an embedding into Horn clauses. One can for instance
model a network of routers as Horn clauses [51].

3.1 State Machines

A state machine starts with an initial configuration of state variables v and
transform these by a sequence of steps. When the initial states and steps are
expressed as formulas init(v) and step(v,v′), respectively, then we can check
safety of a state machine relatively to a formula safe(v) by finding an inductive
invariant inv(v) such that [52]:

inv(v) ← init(v) inv(v′) ← inv(v) ∧ step(v,v′) safe(v) ← inv(v) (6)

3.2 Procedural Languages

Safety of programs with procedure calls can also be translated to Horn clauses.
Let us here use a programming language substrate in the style of the Boogie [4]
system:

program ::= decl∗

decl ::=def p(x) { local v;S }
S ::=x := E | S1;S2 | if E then S1 else S2 | S1�S2

| havoc x | assert E | assume E

| while E do S | y := p(E) | goto 
 | 
 : S

E ::= arithmetic logical expression
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def main (x) {
assume init(x) ;
z := p(x) ;
y := p(z) ;
assert ϕ1(y) ;

}

def p(x) {
z := q(x) ;
ret := q(z) ;
assert ϕ2(ret) ;

}

def q (x) {
assume ψ(x, ret) ;

}

Fig. 2. Sample program with procedure calls

In other words, a program is a set of procedure declarations. For simplicity of
presentation, we restrict each procedure to a single argument x, local variables v
and a single return variable ret . Most constructs are naturally found in standard
procedural languages. The non-conventional havoc(x) command changes x to
an arbitrary value, and the statement S1�S2 non-deterministically chooses run
either S1 or S2. We use w for the set of all variables in the scope of a procedure.
For brevity, we write procedure declarations as def p(x) {S} and leave the return
and local variable declarations implicit. All methods generalize to procedures
that modify global state and take and return multiple values, but we suppress
handling this here. We assume there is a special procedure called main, for the
main entry point of the program. Notice that assertions are included in the
programming language.

Consider the program schema in Fig. 2. The behavior of procedure q is defined
by the formula ψ, and other formulas init , ϕ1, ϕ2 are used for pre- and post-
conditions.

Weakest Preconditions. If we apply Boogie directly we obtain a translation
from programs to Horn logic using a weakest liberal pre-condition calculus [26]:

ToHorn(program) := wlp(Main(), �) ∧
∧

decl∈program

ToHorn(decl)

ToHorn(def p(x) {S}) := wlp

(
havoc x0;assume x0 = x;
assume ppre(x);S, p(x0, ret)

)

wlp(x := E, Q) := let x = E in Q

wlp((if E then S1 else S2), Q) := wlp(((assume E;S1)�(assume ¬E;S2)), Q)

wlp((S1�S2), Q) := wlp(S1, Q) ∧ wlp(S2, Q)

wlp(S1;S2, Q) := wlp(S1,wlp(S2, Q))

wlp(havoc x, Q) := ∀x . Q

wlp(assert ϕ, Q) := ϕ ∧ Q

wlp(assume ϕ, Q) := ϕ → Q

wlp((while E do S), Q) := inv(w) ∧

∀w .

(
((inv(w) ∧ E) → wlp(S, inv(w)))

∧ ((inv(w) ∧ ¬E) → Q)

)

wlp(y := p(E), Q) := ppre(E) ∧ (∀r . p(E, r) → Q[r/y])

wlp(goto �, Q) := �(w) ∧ Q

wlp(� : S, Q) := wlp(S, Q) ∧ (∀w . �(w) → wlp(S, Q))
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The rule for � duplicates the formula Q, and when applied directly can
cause the resulting formula to be exponentially larger than the original program.
Efficient handling of join-points has been the attention of a substantial amount of
research around large block encodings [10] and optimized verification condition
generation [5,28,33,50]. The gist is to determine when to introduce auxiliary
predicates for join-points to find a sweet spot between formula size and ease of
solvability. Auxiliary predicates can be introduced as follows:

wlp((S1�S2), Q) := wlp(S1, p(w)) ∧ wlp(S2, p(w)) ∧ ∀w . (p(w) → Q)

Procedures can be encoded as clauses in the following way: A procedure
p(x) is summarized as a relation p(x, ret), where x is the value passed into the
procedure and the return value is ret .

Proposition 7. Let prog be a program. The formula ToHorn(prog) is NNF
Horn.

Proof. By induction on the definition of wlp.

Example 3. When we apply ToHorn to the program in Fig. 2 we obtain a set of
Horn clauses:

main(x) ← �
ϕ1(y) ← main(x), init(x), p(x, z), p(z, y)

ppre(x) ← main(x), init(x)
ppre(z) ← main(x), init(x), p(x, z)

p(x, y) ∧ ϕ2(y) ← ppre(x), q(x, z), q(z, y)
qpre(x) ← ppre(x)
qpre(z) ← ppre(x), q(x, z)
q(x, y) ← qpre(x), ψ(x, y)

Error Flag Propagation. The SeaHorn verification system [34] uses a special
parameter to track errors. It takes as starting point programs where asserts have
been replaced by procedure calls to a designated error handler error . That is,
assert ϕ statements are replaced by if ¬ϕ then error(). Furthermore, it assumes
that each procedure is described by a set of control-flow edges, i.e., statements
of the form 
in : S;goto 
out, where S is restricted to a sequential composition
of assignments, assumptions, and function calls.

To translate procedure declarations of the form def p(x) { S }, SeaHorn uses
procedure summaries of the form

p(x, ret , ei, eo),

where ret is the return value, and the flags ei, eo track the error status at entry
and the error status at exit. If ei is true, then the error status is transferred.
Thus, for every procedure, we have the fact:

p(x, ret,�,�) ← � .
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In addition, for the error procedure, we have:

error(ei, eo) ← eo .

We will use wlp to give meaning to basic statements here as well, using the duality
of wlp and pre-image. To translate procedure calls that now take additional
arguments we require to change the definition of wlp as follows:

wlp(y := p(E), Q) := ∀r, err . p(E, r, ei, err) → Q[r/y, err/ei].

where err is a new global variable that tracks the value of the error flag.
Procedures are translated one control flow edge at a time. Each label 
 is

associated with a predicate 
(x0,w, eo). Additionally, the entry of a procedure p
is labeled by the predicate pinit(x0,w, eo) and the exit of a procedure is labeled
by a predicate pexit(x0, ret , eo). An edge links its entry 
in(x0,w, eo) with its exit

out(x0,w

′, e′
o), which is an entry point into successor edges. The rules associated

with the edges are formulated as follows:

pinit(x0,w,⊥) ← x = x0 where x occurs in w

pexit(x0, ret ,�) ← 
(x0,w,�) for each label 
, and ret occurs in w

p(x, ret ,⊥,⊥) ← pexit(x, ret ,⊥)
p(x, ret ,⊥,�) ← pexit(x, ret ,�)


out(x0,w
′, eo) ← 
in(x0,w, ei) ∧ ¬ei ∧ ¬wlp(S,¬(ei = eo ∧ w = w′))

A program is safe if the clauses compiled from the program together with:

⊥ ← Mainexit(x, ret ,�)

are satisfiable.

Example 4. When we create clauses directly from program in Fig. 2 we get the
following set of clauses:

⊥ ← main(⊥,�)
main(ei, eo) ← init(x), p(x, z, ei, e

′
o), p(y, z, e′

o, e
′′
o ),¬ϕ1(y), error(e′′

o , eo)
main(ei, eo) ← init(x), p(x, y, ei, e

′
o), p(y, z, e′

o, eo), ϕ1(y)
p(x, ret, ei, eo) ← q(x, z, ei, e

′
o), q(z, ret, e′

o, e
′′
o ),¬ϕ2(ret), error(e′′

o , eo)
p(x, ret, ei, eo) ← q(x, z, ei, e

′
o), q(z, ret, e′

o, eo), ϕ2(ret)
q(x, ret, ei, eo) ← ψ(x, ret), ei = eo

p(x, ret,�,�) ← �
q(x, ret,�,�) ← �
main(�,�) ← �
error(ei, eo) ← eo
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Transition Summaries. The HSF tool [32] uses summary predicates that cap-
ture relations between the program variables at initial locations of procedures
and their values at a program locations within the same calling context. Transi-
tion summaries are useful for establishing termination properties. Their encoding
captures the well-known RHS (Reps-Horwitz-Sagiv) algorithm [3,60] that relies
on top-down propagation with tabling (for use of tabling in logic programming,
see for instance [68]). Thus, let w be the variables x, ret , local variables v and
program location π for a procedure p. Then the translation into Horn clauses
uses predicates of the form:

p(w,w′).

To translate a procedure call 
 : y := q(E); 
′ within a procedure p, create
the clauses:

p(w0,w4) ← p(w0,w1), call(w1,w2), q(w2,w3), return(w1,w3,w4)
q(w2,w2) ← p(w0,w1), call(w1,w2)
call(w,w′) ← π = 
, x′ = E, π′ = 
qinit

return(w,w′,w′′) ← π′ = 
qexit
,w′′ = w[ret′/y, 
′/π]

The first clause establishes that a state w4 is reachable from initial state w0 if
there is a state w1 that reaches a procedure call to q and following the return of
q the state variables have been updated to w4. The second clause summarizes
the starting points of procedure q. So, if p can start at state w0 For assertion
statements 
 : assert ϕ; 
′, produce the clauses:

ϕ(w) ← p(w0,w), π = 


p(w0,w[
′/π]) ← p(w0,w), π = 
, ϕ(w)

Other statements are broken into basic blocks similar to the error flag encoding.
For each basic block 
 : S; 
′ in procedure p create the clause:

p(w0,w
′′) ← p(w0,w), π0 = 
, π′′ = 
′,¬wlp(S, (w �= w′′))

Finally, add the following clause for the initial states:

main(w,w) ← π = 
maininit
.

Note that transition summaries are essentially the same as what we get
from ToHorn. The main difference is that one encoding uses program labels
as state variables, the other uses predicates. Otherwise, one can extract the pre-
condition for a procedure from the states that satisfy p(w,w), and similarly
the post-condition as the states that satisfy p(w,w′) ∧ π′ = 
exit. Conversely,
given solutions to ppre and p, and the predicates summarizing intermediary loca-
tions within p one can define a summary predicate for p by introducing program
locations.
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3.3 Proof Rules

The translations from programs to Horn clauses can be used when the purpose
is to to check assertions of sequential programs. This methodology, however is
insufficient for dealing with concurrent programs with recursive procedures, and
there are other scenarios where Horn clauses are a by-product of establishing pro-
gram properties. The perspective laid out in [32] is that Horn clauses are really a
way to write down search for intermediary assertions in proof rules as constraint
satisfaction problems. For example, many proof rules for establishing termina-
tion, temporal properties, for refinement type checking, or for rely-guarantee
reasoning can be encoded also as Horn clauses.

As an example, consider the rules (6) for establishing invariants of state
machines. If we can establish that each reachable step is well-founded, we can
also establish termination of the state machine. That is, we may ask to solve for
the additional constraints:

round(v, v′) ← inv(v) ∧ step(v, v′). wellFounded(round). (7)

The well-foundedness constraint on round can be enforced by restricting the
search space of solutions for the predicate to only well-founded relations.

Note that in general a proof rule may not necessarily be complete for estab-
lishing a class of properties. This means that the Horn clauses that are created
as a side-effect of translating proof rules to clauses may be unsatisfiable while
the original property still holds.

4 Solving Horn Clauses

A number of sophisticated methods have recently been developed for solving
Horn clauses. These are described in depth in several papers, including [11,
23,24,27,32,38,43,48,54,63]. We will not attempt any detailed survey of these
methods here, but just mention that most methods can be classified according
to some main criteria first mentioned in Sect. 2.2:

1. Top-down derivations. In the spirit of SLD resolution, start with a goal and
resolve the goals with clauses. Derivations are cut off by using cyclic induction
or interpolants. If the methods for cutting off all derivation attempts, one can
extract models from the failed derivation attempts. Examples of tools based
on top-down derivation are [38,48,54].

2. Bottom-up derivations start with clauses that don’t have uninterpreted pred-
icates in the bodies. They then derive consequences until sufficiently strong
consequences have been established to satisfy the clauses. Examples of tools
based on bottom-up derivation are [32].

3. Transformations change the set of clauses in various ways that are neither
top-down nor bottom-up directed.

We devote our attention in this section to treat a few clausal transformation tech-
niques. Transformation techniques are often sufficiently strong to solve clauses
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directly, but they can also be used as pre-processing or in-processing techniques
in other methods. As pre-processing techniques, they can significantly simplify
Horn clauses generated from tools [8] and they can be used to bring clauses into
a useful form that enables inferring useful consequences [46].

4.1 Magic Sets

The query-answer transformation [30,46], a variant of the Magic-set transfor-
mation [68], takes a set of horn clauses Π and converts it into another set Πqa

such that bottom-up evaluation in Πqa simulates top down evaluation of of Π.
This can be an advantage in declarative data-bases as the bottom-up evalua-
tion of the transformed program avoids filling intermediary tables with elements
that are irrelevant to a given query. In the context of solving Horn clauses, the
advantage of the transformation is that the transformation captures some of the
calling context dependencies making bottom-up analysis more precise.

The transformation first replaces each clause of the form ϕ ← B in Π by a
clause g ← B,¬ϕ, where g is a fresh uninterpreted goal predicate. It then adds
the goal clauses gq ← �, ⊥ ← ga for each goal predicate g. We use the super-
scripts a and q in order to create two fresh symbols for each symbol. Finally, for
p(x) ← P1, . . . , Pn, ϕ in Π the transformation adds the following clauses in Πqa:

– Answer clause: pa(x) ← pq(x), P a
1 , . . . , P a

n , ϕ
– Query clauses: P q

j ← pq(x), P a
1 , . . . , P a

j−1, ϕ for j = 1, . . . , n.

Where, by P1, . . . , Pn are predicates p1, . . . , pn applied to their arguments. Given
a set of clauses Π, we call the clauses that result from the transformation just
described Πqa.

A symbolic solution to the resulting set of clauses Πqa can be converted into
a symbolic solution for the original clause Π and conversely.

Proposition 8. Given a symbolic solution ϕq, ϕa, ψq
1, ψa

1 , . . . , ψq
n, ψa

n, to the
predicates p, p1, . . . , pn, then p(x) := ϕq → ϕa, P1 := ψq

1 → ψa
1 , . . . , Pn :=

ψq
n → ψa

n solves p(x) ← P1, . . . , Pn, ϕ. Conversely, any solution to the original
clauses can be converted into a solution of the Magic clauses by setting the query
predicates to � and using the solution for the answer predicates.

Note how the Magic set transformation essentially inserts pre-conditions into
procedure calls very much in the same fashion that the ToHorn and the transition
invariant translation incorporates pre-conditions to procedure calls.

Remark 2. Sect. 4.3 describes transformations that eliminate pre-conditions
from procedure calls. In some way, the Magic set transformation acts inversely
to eliminating pre-conditions.

4.2 Fold/Unfold

The fold/unfold transformation [18,65,66] is also actively used in systems that
check satisfiability of Horn clauses [36,57] as well as in the partial evaluation
literature [45].
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The unfold transformation resolves each positive occurrence of a predicate
with all negative occurrences. For example, it takes a system of the form

q(y) ← B1

q(y) ← B2

p(x) ← q(y), C
into

p(x) ← B1, C
p(x) ← B2, C

(8)

To define this transformation precisely, we will use the notation φ|ι to
mean the sub-formula of φ at syntactic position ι and φ[ψ]ι to mean φ with
ψ substituted at syntactic position ι. Now suppose we have two NNF clauses
C1 = H1 ← B1 and C2 = p(x) ← B2 such that for some syntactic position
ι in B1, B1|ι = p(t). Assume (without loss of generality) that the variables
occurring in C1 and C2 are disjoint. The resolvent of C1 and C2 at position ι is
H1 ← B1[B2σ]ι, where σ maps x to ti. We denote this C1〈C2〉ι. The unfolding of
C2 in C1 is C1〈C2〉ι1 · · · 〈C2〉ιk where ι1 . . . ιK are the positions in B1 of the form
p(t). That is, unfolding means simultaneously resolving all occurrences of p.

The unfold transformation on p replaces each clause C1 with the set of clauses
obtained by unfolding all the p-clauses in C1. The unfold transformation is a very
frequently used pre-processing rule and we will use it later on in Sect. 4.3. It sim-
plifies the set of clauses but does not change the search space for symbolic models.
As we will see in many cases, we can use the tool of Craig interpolation [22] to
characterize model preservation.

Proposition 9. The unfold transformation preserves A-definable models if A
admits interpolation.

Proof. Take for instance a symbolic model that contains the definition p(x) := ϕ
and satisfies the clauses on the right of (8) together with other clauses. Assume
that the symbolic model also contains definitions r1(x) := ψ1, . . . , rm(x) := ψm

corresponding to other uninterpreted predicate symbols in B1, B2, C and in other
clauses. Then ((B1 ∨B2) → (C → p(x)))[ϕ/p, ψ1/r1, . . . , ψm/rm] is valid and we
can assume the two sides of the implication only share the variable y. From our
assumptions, there is an interpolant q(y).

We can do a little better than this in the case where there is exactly one p-
clause C : p(x) ← B. We say the reinforced resolvent of C with respect to clause
H ← B′ at position ι (under the same conditions as above) is H ← B′[p(t)∧Bσ]ι.
Instead of replacing the predicate p(t) with its definition, we conjoin it with the
definition. This is valid when there is exactly one p-clause. In this case the
original clauses and the reinforced clauses have the same initial models (which
can be seen by unfolding once the corresponding recursive definition for p).
Reinforced resolution induces a corresponding notion of reinforced unfolding.
The reinforced unfold transformation on p applies only if there is exactly one p-
clause. It replaces each clause C with the clause obtained by reinforced unfolding
the unique p-clause in C. As an example:

p(y) ← B
q(x) ← p(y), φ unfolds into

p(y) ← B
q(x) ← p(y), B, φ

(9)
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Proposition 10. The reinforced unfold transformation preserves A-definable
models if A admits interpolation.

Proof. Consider the example of (9), and suppose we have a solution I for the
unfolded system (the right-hand side). Let p′(y) be an interpolant for the valid
implication BI → (p(y) ∧ φ → q(x))I. Taking the conjunction of p′ with I(p),
we obtain a solution for the original (left-hand side) system. This construction
can be generalized to any number of reinforced resolutions on p by using the
conjunction of all the interpolants (but only under the assumption that there is
just one p-clause).

The fold transformation takes a rule q(x) ← B and replaces B everywhere in
other rules by q(x). For example it takes a system of the form:

q(x) ← B
p(x) ← B,C
r(x) ← B,C ′

into
q(x) ← B
p(x) ← q(x), C
r(x) ← q(x), C ′

(10)

To create opportunities for the fold transformation, rules for simplification and
creating new definitions should also be used. For example, the rule q(x) ← B is
introduced for a fresh predicate q when there are multiple occurrences of B in
the existing Horn clauses.

Remark 3. The fold/unfold transformations do not refer to goal, sub-goals or fact
clauses. Thus, they can be applied to simplify and solve Horn clauses independent
of top-down and bottom-up strategies.

K-induction and Reinforced Unfold. K-induction [64] is a powerful tech-
nique to prove invariants. It exploits the fact that many invariants become induc-
tive when they are checked across more than one step. To establish that an
invariant safe is 2-inductive for a transition system with initial state init and
transition step it suffices to show:

init(v) → safe(v)
init(v) ∧ step(v,v′) → safe(v′) (11)

safe(v) ∧ step(v,v′) ∧ safe(v′) ∧ step(v′,v′′) → safe(v′′)

Formally, 2-induction can be seen as simply applying the reinforced unfold trans-
formation on safe. That is, in NNF we have:

safe(v′) ← init(v′) ∨ (safe(v) ∧ step(v,v′))

which unfolds to:

safe(v′′) ← init(v′′) ∨ (safe(v′) ∧ (init(v′) ∨ (safe(v) ∧ step(v,v′)) ∧ step(v′,v′′)))

which is equivalent to the clauses above. We can achieve K-induction for arbi-
trary K by simply unfolding the original definition of safe K − 1 times in itself.
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Checking that any given predicate φ is K-inductive amounts to plugging it in
for safe and checking validity. Interestingly, given a certificate π of K-induction
of φ and feasible interpolation [58], the proof of Proposition 10 gives us a way
to solve the original clause set. This gives us an ordinary safety invariant whose
size is polynomial in π (though for propositional logic it may be exponential in
the size of the original problem and φ).

4.3 A Program Transformation for Inlining Assertions

To improve the performance of software model checking tools Gurfinkel, Wei
and Chechik [35] used a transformation called mixed semantics that eliminated
call stacks from program locations with assertions. It is used also in Corral,
as described by Lal and Qadeer [49], as a pre-processing technique that works
with sequential and multi-threaded programs. The SeaHorn verification tool [34]
uses this technique for transforming intermediary representations. In this way,
the LLVM infrastructure can also leverage the transformed programs. The tech-
nique transforms a program into another program while preserving the set of
assertions that are provable. We will here be giving a logical account for the
transformation and recast it at the level of Horn clauses. We will use Horn
clauses that are created from the ToHorn transformation and we will then use
Horn clauses created from the error flag encoding. We show in both cases that
call stacks around assertions can be eliminated, but the steps are different. They
highlight a duality between the two translation techniques: Boogie inserts predi-
cates to encode safe pre-conditions to procedures. SeaHorn generates predicates
to encode unsafe post-conditions of procedures. Either transformation eliminates
the safe pre-condition or the unsafe post-condition.

Optimizing ToHorn. Recall the Horn clauses from Example 3 that were
extracted from Fig. 2. The clauses are satisfiable if and only if:

ϕ2(y) ← init(x), ψ(x, z), ψ(z, y)
ϕ1(y) ← init(x), ψ(x, z1), ψ(z1, z), ψ(z, z2), ψ(z2, y)

is true. There are two main issues with direct inlining: (1) the result of inlining
can cause an exponential blowup, (2) generally, when a program uses recursion
and loops, finite inlining is impossible.

As a sweet spot one can inline stacks down to assertions in order to create
easier constraint systems. The transformation proposed in [35,49] converts the
original program into the program in Fig. 3.

It has the effect of replacing the original Horn clauses by the set

ϕ1(y) ← init(x), p(x, z), p(z, y) (12)
ϕ2(z) ∧ ppre(z) ← init(x), q(x, z1), q(z1, z)

ϕ2(y) ← init(x), p(x, z), q(z, z1), q(z1, y)
ppre(x) ← init(x)
p(x, y) ← ppre(x), q(x, z), q(z, y), ϕ2(y)
q(x, y) ← ψ(x, y)
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def main (x) {
assume init(x) ;
z := p(x) � goto pe ;
y := p(z) � x := z; goto pe ;
assert ϕ1(y) ;
assume ⊥ ;

pe :
z := q(x) � goto qe ;
y := q(z) � x := z; goto qe ;
assert ϕ2(y) ;
assume ⊥ ;

qe :
assume ψ(x, y) ;
assume ⊥ ;

}

def p(x) {
z := q(x);
ret := q(z);
assume ϕ2(y) ;

}

def q (x) {
assume ψ(x, ret) ;

}

Fig. 3. Program with partially inlined procedures

Part of this transformation corresponds to simple inlining of the calling con-
texts, but the transformation has another effect that is not justified by resolution
alone: The formula ϕ2(y) is used as an assumption in the second to last rule.
The transformation that adds ϕ2 as an assumption is justified by the following
proposition:

Proposition 11. The following clauses are equivalent:

ϕ ← B
P ← B

ϕ ← B
P ← B,ϕ

We could in fact have baked in this transformation already when generating Horn
clauses by pretending that every assert is followed by a matching assume, or
by defining:

wlp(assert ϕ,Q) := ϕ ∧ (ϕ → Q)

Furthermore, the clauses from our running example are equi-satisfiable to:

ϕ1(y) ← init(x), p(x, z), p(z, y) (13)
ϕ2(z) ← init(x), q(x, z1), q(z1, z)
ϕ2(y) ← init(x), p(x, z), q(z, z1), q(z1, y)

p(x, y) ← q(x, z), q(z, y), ϕ2(y)
q(x, y) ← ψ(x, y)

These clauses don’t contain ppre. The place where ppre was used is in the rule
that defines p. To justify this transformation let us refer to a general set of Horn
clauses Π, and
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– Let P : C1, C2, . . . be the clauses where P occurs negatively at least once.
– Let R : Q ← D1, Q ← D2, . . . be the clauses where Q occurs positively and

assume Q does not occur negatively in these clauses.

Proposition 12. Let P ← Q ∧ B be a clause in Π. Then Π is equivalent to
{P ← B} ∪ Π if the following condition holds: For every clause C ∈ P let C ′ be
the result of resolving all occurrences of P with P ← Q ∧ B, then there exists a
sequence of resolvents for Q from R, such that each resolvent subsumes C ′.

The intuition is of course that each pre-condition can be discharged by consid-
ering the calling context. We skip the tedious proof and instead give an example
tracing how the proposition applies.

Example 5. Consider the clause q(x, y) ← qpre(x), ψ(x, y) from (3). We wish to
show that qpre(x) can be removed from the premise. Thus, take for example
the clause qpre(z) ← ppre(x), q(x, z) where q occurs negatively. Then resolv-
ing with q produces C ′: qpre(z) ← ppre(x), qpre(x), ψ(x, y). The pre-condition is
removed by resolving with qpre(x) ← ppre(x), producing the subsuming clause
qpre(z) ← ppre(x), ppre(x), ψ(x, y). A somewhat more involved example is the
clause p(x, y) ← ppre(x), q(x, z), q(z, y). We will have to resolve against q in
both positions. For the first resolvent, we can eliminate qpre as we did before.
Resolving against the second occurrence of q produces

p(x, y) ← ppre(x), q(x, z), qpre(z), ψ(z, y).

This time resolve with the clause qpre(z) ← ppre(x), q(x, z) producing

p(x, y) ← ppre(x), q(x, z), q(x′, z), ppre(x′), ψ(z, y),

which is equivalent to p(x, y) ← ppre(x), q(x, z), ψ(z, y).

The resulting Horn clauses are easier to solve: the burden to solve for ppre has
been removed, and the clauses that constrain P have been weakened with an
additional assumption. However, similar to other transformations, we claim we
can retrieve a solution for ppre if A admits interpolation.

Error Flag Specialization. We can arrive to the same result using special-
ization of the Horn clauses generated from Sect. 3.2 followed by inlining. The
specialization step is to create fresh copies of clauses by grounding the values of
the Booleans ei and eo.

Consider the clauses from Example 4. We specialize the clauses with respect
to ei, eo by instantiating the clauses according to the four combinations of the
ei, eo arguments. This reduction could potentially cause an exponential increase
in number of clauses, but we can do much better: neither p(x, y,�,⊥) nor
q(x, y,�,⊥) are derivable. This reduces the number of instantiations significantly
from exponential to at most a linear overhead in the size of the largest clause.
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To reduce clutter, let pfail(x, y) be shorthand for p(x, y,⊥,�) and pok(x, y) be
shorthand for p(x, y,⊥,⊥).

⊥ ← mainfail (14)
mainfail ← init(x), pfail(x, y)
mainfail ← init(x), pok(x, y), pfail(y, z)
mainfail ← init(x), pok(x, y), pok(y, z),¬ϕ1(y)

pfail(x, ret) ← qfail(x, z)
pfail(x, ret) ← qok(x, z), qfail(z, ret)
pfail(x, ret) ← qok(x, z), qok(z, ret),¬ϕ2(ret)
pok(x, ret) ← qok(x, z), qok(z, ret), ϕ2(ret)
qok(x, ret) ← ψ(x, ret)

In the end we get by unfolding the post-conditions for failure mainfail, pfail

and qfail:

⊥ ← init(x), qok(x, z), qok(z, y),¬ϕ2(y) (15)
⊥ ← init(x), pok(x, y), qok(y, u), qok(u, z),¬ϕ2(z)
⊥ ← init(x), pok(x, y), pok(y, z),¬ϕ1(y)

pok(x, ret) ← qok(x, z), qok(z, ret), ϕ2(ret)
qok(x, ret) ← ψ(x, ret)

which are semantically the same clauses as (13).

5 Conclusions and Continuations

We have described a framework for checking properties of programs by check-
ing satisfiability of (Horn) clauses. We described main approaches for mapping
sequential programs into Horn clauses and some main techniques for transform-
ing Horn clauses. We demonstrated how many concepts developed in symbolic
model checking can be phrased in terms of Horn clause solving. There are many
extensions we did not describe here, and some are the focus of active research.
Let us briefly mention a few areas here.

Games. Winning strategies in infinite games use alternations between least
and greatest fixed-points. Horn clauses are insufficient and instead [9] encodes
games using EHC, which by Proposition 5 amounts to solving general universally
quantified formulas.

Theories. We left the assertion language A mostly unspecified. Current Horn
clause solvers are mainly tuned for real and linear integer arithmetic and Boolean
domains, but several other domains are highly desirable, including strings, bit-
vectors, arrays, algebraic data-types, theories with quantifiers (EPR, the Bernays
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Schoenfinkel class). In general A can be defined over a set of templates or syn-
tactically as formulas over a grammar for a limited language. For example, the
sub-language of arithmetic where each inequality has two variables with coeffi-
cients ±1 is amenable to specialized solving. Finally, one can also treat separation
logic as a theory [56].

Consequences and Abstraction Interpretation In CLP. While the
strongest set of consequences from a set of Horn clauses is a least fixed-point over
A, one can use abstract domains to over-approximate the set of consequences.
Thus, given a set of Horn clauses Π over assertion language A compute the
strongest consequences over assertion language A′ ⊆ A.

Classification. There are several special cases of Horn clauses that can be
solved using dedicated algorithms [63]. An example of “easier” clauses is lin-
ear Horn clauses that only contain at most one uninterpreted predicate in the
bodies. Naturally, recursion-free Horn clauses can be solved whenever A is decid-
able. Horn clauses obtained from QBF problems with large blocks of quantified
variables are solved more efficiently if one realizes that clauses can be rewritten
corresponding to re-ordering variables.

Higher-Order Programs. The interpreter approach for assigning meanings to
programs can be extended to closures in a straight-forward way. Closures encode
function pointers and state and they can be encoded when A supports algebraic
data-types [13]. This allows establishing properties of functional programs where
all closures are defined within the program. The more general setting was given
a custom proof system in [31], and modern approaches to proving properties
of higher-order rewriting systems use a finite state abstraction as higher-order
Boolean programs [59]. A different approach extracts Horn clauses from refine-
ment based type systems for higher-order programs [44,62].

Beyond A-definable Satisfiability. Our emphasis on A-definable models is
partially biased based on the methods developed by the authors, but note that
methods based on superposition, infinite descent and fold/unfold can establish
satisfiability of Horn clauses without producing a A-definable model. Some other
clausal transformation techniques we have not described are based on accelerat-
ing transitive relations [1,27,39].

Aggregates and Optimality. Suppose we would like to say that a program
has at most a 2 · n reachable states for a parameter n. We can capture and
solve such constraints by introducing cardinality operators that summarize the
number of reachable states. Note that upper bounds constraints on cardinalities
preserve least fixed-points: If there is a solution not exceeding a bound, then any
conjunction of solutions also will not exceed a bound. Lower-bound constraints,
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on the other hand, are more subtle to capture. Rybalchenko et al. use a symbolic
version of Barvinok’s algorithm [7] to solve cardinality constraints. Instead of
proving bounds, we may also be interested in finding solutions that optimize
objective functions.

We would like to thank Dejan Jovanovic and two peer reviewers for extensive
feedback on an earlier version of the manuscript.
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Abstract. The standard translation of existential fixed-point formulas
into second-order logic produces strict universal formulas, that is, formu-
las consisting of universal quantifiers on relations (not functions) followed
by an existential first-order formula. This form implies many of the pleas-
ant properties of existential fixed-point logic, but not all. In particular,
strict universal sentences can express some co-NP-complete properties
of structures, whereas properties expressible by existential fixed-point
formulas are always in P. We therefore investigate what additional syn-
tactic properties, beyond strict universality, are enjoyed by the second-
order translations of existential fixed-point formulas. In particular, do
such syntactic properties account for polynomial-time model-checking?

1 Introduction

In [3], Yuri Gurevich and I pointed out numerous pleasant properties of exis-
tential fixed-point logic (∃FPL), the logic roughly described as first-order logic,
minus universal quantification, plus the least-fixed-point operator for positive
inductive definitions. (This and other concepts used in this introduction are
explained in more detail in Sect. 2.) In that paper, we also showed that for-
mulas of existential fixed-point logic can be translated into equivalent formulas
in a fragment of second-order logic called “strict ∀1

1”. Many, but not all of the
pleasant properties of ∃FPL formulas are consequences of this translation; that
is, they are enjoyed not only by ∃FPL formulas but by all strict ∀1

1 formulas.
The “not all” here refers particularly to PTime model-checking for all ∃FPL
formulas; strict ∀1

1 formulas do not all enjoy this property unless P=NP.
This situation suggests that perhaps the second-order translations of ∃FPL

formulas actually lie in a smaller fragment of second-order logic, a subset of
the strict ∀1

1 fragment, such that the subset enjoys PTime model-checking. Of
course, one could trivially define such a subset, namely the set of formulas
that result from the standard translation procedure applied to ∃FPL formulas.
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The purpose of this paper1 is to give a more detailed description of a subset with
the desired properties.

We first show, in Sect. 3, that the model-checking problem for any ∃FPL
sentence reduces to the propositional satisfiability problem for instances of a
corresponding quantifier-free first-order formula. We describe the structure of
these quantifier-free formulas and exploit that structure to transform these for-
mulas, in Sects. 4 and 6, in a way that, on the one hand, does not alter the
satisfiability of their instances but, on the other hand, ultimately leads to Horn
formulas, so that satisfiability can be decided in polynomial time.

Along the way, the material in Sect. 5 presents an apparently new
satisfiability-preserving transformation of propositional formulas in conjunctive
normal form.

2 Preliminaries

2.1 Existential Fixed-Point Logic

In this subsection, we review the syntax and semantics of existential fixed-point
logic.

A vocabulary for existential fixed-point logic (∃FPL) consists of a vocabulary
in the usual sense for first-order logic (predicate symbols and function symbols
with specified natural numbers as arities) plus a specification, for each predi-
cate symbol, whether it is positive or negatable. Terms and atomic formulas are
defined as in first-order logic (without equality, for simplicity). Then ∃FPL for-
mulas of a vocabulary L are defined by the following recursion, in which we omit
some parentheses to improve readability.

– Atomic formulas of L are L-formulas.
– If ϕ is an atomic L-formula whose predicate symbol is negatable, then ¬ϕ is

an L-formula.
– If ϕ and ψ are L-formulas, then so are ϕ ∧ ψ and ϕ ∨ ψ.
– If ϕ is an L-formula and x is a variable, then ∃x ϕ is an L-formula.
– Let L′ = L ∪ {P1, . . . , Pk} be a language obtained by adding to L some k

new (i.e., not already in L) positive predicate symbols Pi, say of arities ri. Let
x1, . . . ,xk be lists of distinct variables of lengths ri, respectively. Let δ1, . . . , δk
and ϕ be L′-formulas. Then

Let P1(x1) ← δ1, . . . , Pk(xk) ← δk then ϕ

is an L-formula. Formulas of this form are called fixed-point formulas, the
predicate symbols Pi are called the recursion variables, the δi’s are called
their defining formulas, and ϕ is called the conclusion.

1 My talk at Yuri Gurevich’s 70th birthday conference in Brno contained much of
the present paper’s material, but I had overlooked what I now call the conjunction
problem in Sect. 3. The solution of that problem given here in Sect. 4 is new. This
paper is, except for preliminary material, disjoint from my written contribution [2]
to Yuri’s 70th birthday celebration.
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Free variables of a formula are defined as in first-order logic with the addi-
tional clause that a variable is free in the fixed-point formula

Let P1(x1) ← δ1, . . . , Pk(xk) ← δk then ϕ

if either it is free in some δi and is not in the list xi or it is free in ϕ.
The semantics of ∃FPL is defined like that of first-order logic, with the follow-

ing additional clause for fixed-point formulas. Let θ be the fixed-point formula
displayed above. Let A be an L-structure with underlying set A, and let values in
A for the free variables of θ be given. Consider any k-tuple (R1, . . . , Rk) of rela-
tions on A, where each Ri is ri-ary. Let (A, R1, . . . , Rk) be the L′-structure that
agrees with A as an L-structure and interprets the additional predicate symbols
Pi as the corresponding Ri. Each of the L′-formulas δj defines, in (A, R1, . . . , Rk),
an rj-ary relation Sj on A. In detail, an rj-tuple a of elements of A is in Sj if
δj is true in (A, R1, . . . , Rk) when the variables xj are interpreted as a and the
other free variables have their originally given interpretations. This construction
Δ sending k-tuples (R1, . . . , Rk) to k-tuples (S1, . . . , Sk) is a monotone opera-
tor on k-tuples of relations of arities ri on A. (Monotonicity is with respect to
componentwise set-thoretic inclusion; it follows from the requirement that the
Pi’s are positive in the δj ’s.) Let Δ∞ be the least fixed-point of this monotone
operator. Then the interpretation of θ in A is defined to be the interpretation of
the conclusion ϕ in (A,Δ∞).

Less formally, the “Let . . . then . . . ” construction produces the least fixed-
point of any definable positive operator on (tuples of) relations, and then uses
that fixed-point in a further formula ϕ.

The absence of the universal quantifier would be meaningless if we allowed
negation of arbitrary formulas, as one can simulate ∀x with ¬∃x ¬. This is why
negation is allowed only on atomic formulas. The distinction between positive
and negatable predicate symbols and the prohibition of negation on positive
atomic formulas serve to ensure that the δi in the fixed-point formula θ above
contain only positive occurrences of the recursion variables Pj and thus define
a monotone operator Δ. They also serve to ensure that the conclusion ϕ in θ
contains only positive occurrences of the predicates Pj ; without such a restric-
tion, we could surreptitiously introduce the negation of a positive predicate Q
by writing Let P (x) ← Q(x) then ¬P (x), which would be equivalent to ¬Q(x).

The definition of ∃FPL formulas is a recursion involving all vocabularies
simultaneously, because fixed-point formulas of one vocabulary L can have sub-
formulas, like the δi’s and ϕ above, from a larger vocabulary L′. In effect, the
additional symbols Pi of L′ play the role of bound second-order variables. This
connection with second-order logic will be clarified in the next subsection.

2.2 Translation to Second-Order Logic

In this subsection, we review the standard translation from ∃FPL formulas to
strict ∀1

1 formulas of second-order logic. As mentioned in the introduction, these
are formulas obtained from existential formulas of first-oder logic by prefixing
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them with a string (possibly an empty string) of universal second-order quanti-
fiers over predicate symbols.2

Note that there is a symbiosis between the two requirements (1) that the
second-order quantifiers apply to predicate symbols and not function symbols
and (2) that the first-order part of the formula be purely existential. Each of
these requirements alone would be meaningless. Specifically, if we imposed only
requirement (1) but allowed arbitrary first-order parts, then we could use the
first-order part to say that the universally quantified predicates are the graphs of
functions, thereby making (1) pointless. If, on the other hand, we imposed only
requirement (2) but allowed universal quantification of functions rather than
predicates, then arbitrary first-order parts could be simulated by converting
them to Herbrand normal form (the dual of Skolem normal form).

We now check, by induction on ∃FPL formulas ϕ, that they are equivalent
to strict ∀1

1 formulas. This is obvious in the case of atomic or negated atomic
formulas.

In the case of conjunctions and disjunctions, we write the conjuncts or dis-
juncts in strict ∀1

1 form using different bound second-order variables, combine
them with ∧ or ∨, and pull the second-order quantifiers out as a prefix using the
usual prenexing rules.

In the case of existential quantification, we pull the second-order universal
quantifiers out of the scope of the new existential first-order quantifier using the
logical equivalence

(∃x)(∀P )ϕ(P (. . . )) ⇐⇒ (∀P ′)(∃x)ϕ(P ′(x, . . . )).

Here the arity of P ′ exceeds that of P by one, and every occurrence of P in
the body of the formula is changed to an occurrence of P ′ with the additional
argument x.

Finally, in the case of fixed-point formulas, we use the fact that

Let P1(x1) ← δ1, . . . , Pk(xk) ← δk then ϕ

is equivalent to

(∀P1) . . . (∀Pk)

[(
k∧

i=1

(∀xi) (δi =⇒ Pi(x))

)

=⇒ ϕ

]

.

To see the equivalence, note that, since the Pi’s occur only positively in ϕ, if
ϕ holds for the intended interpretation Δ∞ of the Pi’s, then it also holds for
all larger relations, and, in particular, for all relations closed under the operator
Δ. And this is precisely what the second-order formula above says: ϕ holds
whenever the (interpretations of the) Pi are closed under the operator Δ given
by the defining formulas δi.
2 The terminology “strict ∀1

1” was chosen in analogy with “strict Π1
1” in [1, Sect. 8.2].

The difference is that “strict Π1
1” is used in a set-theoretic context and allows not

only existential quantifiers but also bounded universal quantifiers (∀x ∈ y) in the
first-order part of the formula.
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Now if we insert into this equivalent formula some strict ∀1
1 forms of the δi’s

and ϕ and then apply standard prenex operations, the result is in strict ∀1
1 form,

as desired. Note, in particular, that the universal first-order quantifiers ∀xi are
in the antecedent of an implication so the first-order part is existential.

The preceding proof, showing that ∃FPL formulas can be translated to equiv-
alent strict ∀1

1 formulas, would become an algorithm for carrying out the transla-
tion if we added some unimportant details, such as the choice of bound variables
and the order in which similar quantifiers are pulled out during prenex opera-
tions. We assume henceforth that these details have been supplied, and we refer
to the resulting algorithm as the standard translation from ∃FPL to strict ∀1

1.
In [3] some semantical properties of ∃FPL formulas were established by show-

ing that they actually hold for all strict ∀1
1 formulas. These properties include

the facts that

– The set of valid ∃FPL sentences is a complete computably enumerable set.
– The set of satisfiable ∃FPL sentences is a complete computably enumerable

set.3

– If a formula is satisfied by some elements in a structure, then this fact depends
only on a finite part of the structure.

But at least one important property of ∃FPL formulas, namely PTime model-
checking, does not (unless P=NP) hold for arbitrary strict ∀1

1 formulas. Specifi-
cally, on undirected graphs, regarded as structures with a single binary relation
E of adjacency, the strict ∀1

1 formula

(∀P1)(∀P2)(∀P3)(∃x)(∃y)

[
3∧

i=1

¬Pi(x) ∨
3∨

i=1

(E(x, y) ∧ Pi(x) ∧ Pi(y))

]

expresses that the graph is not 3-colorable, a co-NP-complete property.
This situation suggests that perhaps the second-order translations of ∃FPL

formulas are not merely strict ∀1
1 but have some additional syntactic property

that ensures their PTime decidability. The main purpose of this paper is to
establish such an additional property.

3 Model-Checking

In this section, we discuss model-checking for strict ∀1
1 sentences. That is, we

consider, for any fixed strict ∀1
1 sentence ϕ in vocabulary L, the following decision

problem:4 An instance is a finite L-structure A and the question is whether
A |= ϕ.

3 The expected duality between validity and satisfiability is not available for logics,
like ∃FPL, that are not closed under negation.

4 We are dealing here with what is often called data complexity of the model-checking
problem. That is, we regard the “data” A as the input, and we measure resource
usage relative to the size of A, while the “query” ϕ is held fixed.
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It is convenient to address this problem by considering the negation of ϕ
instead. It has a standard translation to a strict ∃1

1 sentence; that is, ¬ϕ can be
put into the form

(∃R1) . . . (∃Rm)ψ

where the Ri are predicate symbols and where ψ is a universal first-order sen-
tence of the vocabulary L′ = L ∪ {R1, . . . , Rm}. This strict ∃1

1 sentence is true
in A if and only if there are relations5 Ri on the underlying set A such that all
instances of ψ are true for this interpretation of the existentially quantified pred-
icate variables in ¬ϕ. Here “instances of ψ” refers to all the formulas obtained
by replacing the (universally) quantified first-order variables in ψ by arbitrary
elements of A.

This criterion for A |= ¬ϕ is essentially a question of propositional satisfi-
ability. Indeed, consider the set Σ of all instances of ψ. These are quantifier-
free L′(A)-sentences, where L′(A) is the language obtained from L′ = L ∪
{R1, . . . , Rm} by adding (names for) all the elements of A as constant symbols.
In these sentences, replace each atomic sentence that uses an L-predicate symbol
(i.e., any predicate symbol other than the Ri’s) by its truth value in A. What
remains is a set Σ′ of sentences that are Boolean combinations of instances of
the Ri’s. Regard all these instances of Ri’s as propositional variables. Any truth
assignment to these propositional variables amounts to a choice of relations Ri;
the truth assignment satisfies Σ′ if and only if the Ri relations satisfy ψ. There-
fore ¬ϕ is true in A if and only if Σ′ is (truth-functionally) satisfiable.

The process leading from ϕ and A to Σ′ can be summarized as follows.

1. Perform the standard translation of ϕ to strict ∀1
1 form.

2. Negate the result and push the negation in past quantifiers and connectives,
until only atomic formulas are negated; the result is the standard strict ∃1

1

form of ¬ϕ.
3. Delete all quantifiers, but remember which predicate symbols were bound

second-order variables.
4. Form all instances of the resulting formula, replacing the first-order variables

by (names of) elements of A in all possible ways.
5. In the resulting formulas, replace the atomic subformulas whose predicate sym-

bols are in the vocabulary of A (as opposed to the predicate symbols that were
quantified second-order variables before step 3) by their truth values in A.

The resulting set of formulas is the propositional translation Σ′ of ¬ϕ. Its propo-
sitional variables are of the form R(a), where R was a bound second-order vari-
able before step 3, and a is a tuple of elements of A.

Note that we have arranged the steps so that the input A of our model-
checking problem enters the process only at step 4.

The propositional translation has two key properties. First, A |= ϕ if and only
if the propositional translation of ¬ϕ is not satisfiable. Second, the propositional
5 To avoid excessive notation, we use the same symbols for these relations as for the

corresponding symbols in our strict ∃1
1 sentence.



58 A. Blass

translation is, for fixed ϕ, computable in polynomial time from A. In particular,
the size of the propositional translation of ¬ϕ is bounded by the product of

– |A|d, where d is the number of universally quantified, first-order variables in
the strict ∀1

1 translation of ϕ, because these are the variables that must be
replaced, in all possible ways, by elements of A,

– log |A| to account for the length in bits of the names of the elements of A, and
– a constant, namely the length of the formula obtained in step 3 above, before
A entered the process.

Thus, we have a PTime reduction of the model-checking problem for a (fixed)
∃FPL sentence ϕ to a propositional satisfiability problem. Our goal is to detect
the special properties of the propositional translations of ∃FPL sentences that
make their satisfiability decidable in PTime. For example, if the propositional
translations always consisted of Horn formulas, then that would provide a PTime
solution of the model-checking problem. We therefore turn our attention to the
structure of the formulas that arise in the propositional translations of ∃FPL
sentences.

Let us begin by disposing of a tempting error. When we translated ∃FPL
formulas θ into second-order logic, the second-order variables originated from
the recursion variables Pi in the Pi(x) ← δi(x) parts of fixed-point formulas.
Those Pi’s are positive predicate symbols. So they occur only positively in the
strict ∀1

1 form of θ, and therefore the resulting propositional variables occur
only negatively in the propositional translation of ¬ϕ. It is, of course, trivial
to decide satisfiability of propositional formulas in which all the variables occur
only negatively; just give them all the value “false” and see whether the formulas
become true.

The error in the preceding paragraph is that, although the Pi are positive
predicate symbols and therefore occur only positively in the defining formulas
δi and in the conclusion ϕ, they nevertheless acquire negative occurrences in the
strict ∀1

1 translation. Specifically, the underlined occurrences in the translation

(∀P1) . . . (∀Pk)

[(
k∧

i=1

(∀xi) (δi =⇒ Pi(x))

)

=⇒ ϕ

]

of a fixed-point formula are negative. So the situation is not so trivial as the
preceding paragraph would suggest.

A better, but still incorrect approach involves rewriting the translation of a
fixed-point formula exhibited above in the logically equivalent form

(∀P1) . . . (∀Pk)

[

ϕ ∨
k∨

i=1

∃xi(¬Pi(xi) ∧ δi)

]

.

The negation, in strict ∃1
1 form, then looks like

(∃P1) . . . (∃Pk)

[

¬ϕ ∧
k∧

i=1

(∀xi) (Pi(xi) ∨ ¬δi)

]

.
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The first-order body of this formula is a conjunction of k+1 subformulas, each of
which contains at most one positive occurrence of a Pi. When we form instances
of this body, we get at most one positive literal in each conjunct. That is, we get
only Horn clauses, and it is well-known that satisfiability of sets of Horn clauses
is decidable in PTime.

There are two errors in this approach. The first is that ∃FPL formulas are
not simply fixed-point formulas like the one under consideration here. In partic-
ular, we might have the conjunction of two (or more) such formulas. Then the
propositional translation of the negation will be a disjunction of formulas like
those here, and, when put into conjunctive normal form, will have two (or more)
positive literals in some of its clauses. We shall address this conjunction problem
in Sect. 4.

The second error in the argument above is that a conjunct Pi(x) ∨ ¬δi can
have more positive occurrences of literals than just the visible Pi(x). If the
formula δi contains some fixed-point formulas as subformulas, then the second-
order variables arising from those subformulas will have negative occurrences
(analogous to the underlined Pi’s above) in δi and therefore positive occurrences
in the conjunct Pi(x)∨¬δi under consideration. So the conjunctive normal forms
of our propositional translations need not be Horn formulas.

Notice that this error is relevant only when recursions are nested, that is,
when the defining formula δi in a recursive clause Pi(xi) ← δi contains further
fixed-point formulas. Accordingly, we call this the nesting problem; we shall
address it in Sects. 5 and 6.

It is known that nesting of recursions is never really needed in ∃FPL. For
example, the nested recursion

Let P (x) ← [Let Q(y) ← δ(P,Q, x, y) then θ(P,Q, x)] then ϕ(P )

(where we have indicated which predicate symbols and bound variables are avail-
able in the subformulas) is equivalent to

Let P (x) ← θ(P,Q′
x, x), Q′(x, y) ← δ(P,Q′

x, x, y) then ϕ(P ),

where Q′
x means the binary predicate symbol Q′ with x inserted as its first argu-

ment. For the general proof that unnested recursions suffice, see, for example,
[5, Sect. 1.C].

One can similarly circumvent the conjunction problem, because conjunctions
in ∃FPL formulas can be pushed inward to apply only to atomic and negated
atomic formulas. For example, the conjunction

(Let P (x) ← δ(x) then ϕ) ∧ (Let P ′(y) ← δ′(y) then ϕ′)

is equivalent to

Let P (x) ← δ(x), P ′(y) ← δ′(y) then ϕ ∧ ϕ′

(where we assume that bound variables have been renamed if necessary to avoid
clashes).
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In a sense, these observations explain, via the strict ∀1
1 translation, why ∃FPL

has PTime model-checking. Explicitly: Given an ∃FPL sentence, rewrite it to
avoid nested recursions and to avoid conjunctions of compound formulas. Then
produce the propositional translation of the negation of the new ∃FPL sentence,
using a conjunctive normal form of its matrix. The result consists of Horn clauses,
for which satisfiability is decidable in PTime. (The use of the conjunctive normal
form can exponentially increase the size of the formula, but this doesn’t matter as
we are considering a single formula at a time and measuring complexity relative
to the structure A.)

Unfortunately, this does not quite answer our original question, which con-
cerned the direct translation of arbitrary ∃FPL formulas to strict ∀1

1 form, with-
out pre-processing to eliminate nested recursions and non-trivial conjunctions.

Fortunately, the satisfiability problem for the sets of formulas that actually
arise can be transformed, on the level of propositional logic, to an equivalent sat-
isfiability problem for Horn formulas. In the following sections, we shall carry out
this transformation. In Sect. 4, we show how to convert the formulas that actually
arise to formulas that avoid the conjunction problem; the conversion preserves
satisfiability. In Sects. 5 and 6, we do the same for the nesting problem. Section 5
isolates the relevant construction in general, not just for the formulas obtained by
translating ∃FPL formulas; this general, satisfiability-preserving transformation
seems to be of independent interest. The application of the general transforma-
tion to the nesting problem for translated ∃FPL formulas is described in Sect. 6.

Remark 1. The general theme of this paper is that model-checking for a certain
class of second-order formulas is in polynomial time because it can be reduced
to the propositional satisfiability problem for Horn formulas. The same theme
occurs in a paper [4] of Erich Grädel. The class of second-order formulas consid-
ered there, called SO-HORN, is, however, quite different from the class arising
here from ∃FPL. The appropriate comparison would be between SO-HORN and
the strict ∃1

1 formulas arising from the negations of ∃FPL formulas. In both cases,
the second-order quantifiers range only over relation variables, and in both cases
the first-order matrix is required to be a universal formula, but the smiilarity
ends there. SO-HORN allows both universal and existential second-order quan-
tifiers, whereas strict ∃1

1 requires the second-order quantifiers to be existential.
On the other hand, the quantifier-free parts of SO-HORN formulas are required
to already be in Horn form (at least with regard to the quantified predicate sym-
bols), whereas, as we have seen above, we must deal with non-Horn formulas.
Indeed, the following sections are primarily devoted to the problem of converting
our formulas to Horn form without altering the satisfiability of their instances.

4 Conjunctions

To avoid annoying distractions during our manipulations of formulas, we assume
from now on that there are no clashes of variables in our ∃FPL formulas. That
is, no (first-order) variable has both free and bound occurrences, nor is any such



Existential Fixed-Point Logic as a Fragment of Second-Order Logic 61

variable bound twice (by ∃ or by the fixed-point construction); also no predicate
symbol occurs more than once as a recursion variable. This simplification can,
of course, be achieved by renaming bound variables and recursion variables as
necessary. We shall refer to this convention as the “no clashes” assumption.

We point out, for future reference, a consequence of the no clashes assump-
tion. Suppose that, in some ∃FPL sentence ϕ, a certain variable x occurs in two
or more fixed-point subformulas, say with recursion variables P and Q. Then
the scope of that x must include both of those fixed-point subformulas. As a
result, when one converts ϕ to strict ∀1

1 form, the second-order quantifiers ∀P
and ∀Q will be pulled out of the scope of an ∃x, and so the predicate symbols P
and Q will have their arities increased and will have x inserted as an additional
argument. Thus, if x occurs in two or more fixed-point subformulas of ϕ, then
the recursion variables of those subformulas will, in the strict ∀1

1 translation of ϕ,
have x among their arguments. We shall refer to this observation as “argument
joining”.

As a first step in the solution of the conjunction problem, we describe care-
fully the class of formulas that arise from steps 1 to 3 in the process described
above for obtaining Σ′ from ϕ and A. As remarked there, these three steps do
not involve A, which enters only at steps 4 and 5. So we are working with just an
∃FPL formula ϕ. We first produce the standard strict ∃1

1 form of ¬ϕ, and then
we delete all the quantifiers, obtaining a quantifier-free first-order formula in the
vocabulary consisting of the vocabulary of ϕ plus amplified recursion variables
from ϕ. Here “amplified” refers to the extra argument places that recursion vari-
ables acquire when, in the production of the strict ∀1

1 form, they are pulled out
of the scope of first-order existential quantifiers. By inspection of the definitions
of ∃FPL formulas and of their standard translations to strict ∀1

1 form, we see
that the quantifier-free formulas obtained by this process are among the primary
formulas defined as follows.

Definition 2. The primary formulas of a vocabulary L form the smallest class
such that

– atomic formulas whose predicate symbol is negatable are primary,
– negations of arbitrary atomic formulas are primary,
– conjunctions of primary formulas are primary,
– disjunctions of primary formulas are primary, and
– if α and δ1, . . . , δk are primary formulas for the vocabulary L ∪ {P1, . . . , Pk},

where the Pi are new positive predicate symbols, then

α ∧
k∧

i=1

(Pi(xi) ∨ δi)

is primary.

We refer to the last item in this list of constructors as the mix constructor,
because it mixes conjunction and disjunction. Each Pi occurring there will be
called a key predicate, and xi and δi will be called its associated variables and
formula, respectively.
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Note that the primary formulas include all negated atomic formulas, but they
include the unnegated ones only when the predicate symbol is negatable. This
strange-sounding situation — the predicate must be negatable in order to appear
unnegated — arises from the fact that we are working with the translations not
of ∃FPL formulas themselves but of their negations. Note further that a positive
predicate can have at most one positive occurrence in a primary formula, namely
an occurrence as the key predicate of a mix construction. Here the “at most one”
claim follows from our no clashes assumption.

In this new context, argument joining becomes the fact that, if α is a primary
formula and if a variable occurs in two or more subformulas of α obtained by
the mix construction, then that variable is among the arguments of the key
predicates of those mix subformulas.

The next definition describes a subclass of the primary formulas for which
the conjunction problem does not arise. In fact, formulas in this subclass have
an especially useful structure, which we describe, in terms of their parse trees,
after the definition.

Definition 3. The basic secondary formulas of a vocabulary L form the smallest
class such that

– atomic formulas whose predicate symbol is negatable are basic secondary,
– negations of arbitrary atomic formulas are basic secondary,
– conjunctions of basic secondary formulas are basic secondary, and
– disjunctions of basic secondary formulas are basic secondary.

The secondary formulas of a vocabulary L form the smallest class such that

– all basic secondary formulas are secondary, and
– if α and δ1, . . . , δk are secondary formulas for the vocabulary L∪{P1, . . . , Pk},

where the Pi are new positive predicate symbols, then the result of the mix
construction,

α ∧
k∧

i=1

(Pi(xi) ∨ δi),

is secondary.

Thus, secondary formulas are built by the same constructors as primary formulas
but, in a secondary formula, the mix constructors must be applied after all the
others, not intermingled with the others.

It is useful to consider parse trees showing how secondary formulas are built
from basic secondary ones. The internal nodes of such a tree correspond to the
mix construction α∧∧k

i=1(Pi(xi)∨δi); such a node has 2k+1 children, one for α,
k for the key predicate subformulas Pi(xi), and k corresponding to the associated
δi’s. Of these, the k corresponding to Pi(xi) are leaves of the parse tree; the other
k+1 might be leaves or internal nodes. All the leaves of the parse tree are either
of the Pi(xi) form just mentioned or basic secondary formulas. Notice that the
leaves of the Pi(xi) sort are the only place where positive predicate symbols have
positive occurrences.
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The main result in this section will say that every primary formula can be
transformed into a secondary one while preserving the essential property relevant
for ∃FPL. That essential property is, in view of the results of Sect. 3, instance-
equisatifiability, defined as follows.

Definition 4. Two sets of quantifier-free formulas Σ1 and Σ2 (in a first-order
language that extends L) are equisatisfiable if, whenever there exists a truth
assignment satisfying one of them, there also exists a (possibly different) truth
assignment satisfying the other. They are instance-equisatisfiable if, for every L-
structure A, Σ1(A) and Σ2(A) are equisatisfiable, where Σi(A) is obtained from
Σi by replacing the variables by elements of A in all possible ways and then
replacing all atomic subformulas whose predicate is in L by their truth values
in A.

Notice that the construction of Σi(A) from Σi described in this definition is
exactly the last two steps, 4 and 5, in the construction of Σ′ in Sect. 3. Thus,
for the purpose of model-checking ∃FPL formulas, the Σ′ there, which consists
of primary formulas, can safely be replaced by any instance-equisatisfiable set of
formulas. That is how we shall use the following proposition and its corollary.

Proposition 5. The conjunction and disjunction of two secondary formulas are
each instance-equisatisfiable with a secondary formula.

Proof. We proceed by induction on the two given secondary formulas, and we
treat the most difficult case, namely where both of them arise from the mix
construction. (If both of the given formulas are basic, then the result is trivial.
If one arises from mix and the other is basic, then the proof is easier, or one can
regard the basic formula as resulting from a mix in which the number of key
predicates happens to be zero.) Suppose, therefore, that the given formulas are

γ = α ∧
k∧

i=1

(Pi(xi) ∨ δi) and γ′ = α′ ∧
k′
∧

i=1

(P ′
i (x

′
i) ∨ δ′

i).

Their conjunction γ ∧γ′ is not merely instance-equisatisfiable but tautologically
equivalent with

(α ∧ α′) ∧
k∧

i=1

(Pi(xi) ∨ δi) ∧
k′
∧

i=1

(P ′
i (x

′
i) ∨ δ′

i),

which is a secondary formula with k+k′ key predicates, because, by the induction
hypothesis, α ∧ α′ is a secondary formula.

For the disjunction, we use

θ = (α ∨ α′) ∧
k∧

i=1

(Pi(xi) ∨ δi) ∧
k′
∧

i=1

(P ′
i (x

′
i) ∨ δ′

i),
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which is a secondary formula, as above, because α∨α′ is secondary by induction
hypothesis. It is easy to see that θ tautologically implies γ ∨ γ′. The converse,
however, is not generally correct; we do not get equivalence but only instance-
equisatisfiability.

To prove the non-trivial direction of instance-equisatisfiability, suppose we
have an L-structure A and truth assignment v satisfying all the instances of
γ ∨ γ′, where by “instance” we understand, as in the definition of instance-
equisatisfiability, the result of substituting elements of A for variables and then
replacing all atomic formulas involving L-symbols by their truth values in A.
Notice that the predicate symbols in γ and γ′ are all either L-symbols or key
predicates of mix constructions.

To emphasize the essential idea of the proof, we first consider the special case
where γ and γ′ have no (first-order) variables in common. In this case, we claim
that v either satisfies all instances of γ or satisfies all instances of γ′ (not merely
some instances of the one and the remaining instances of the other). Suppose
the claim were false, so some instance of γ, and some other instance of γ′ were
falsified by v. Then we could form a third instance, giving the variables in γ the
same values as in the first instance (thus making γ false under v) and giving the
variables in γ′ the same values as in the second instance (thus making γ′ false
under v). But then this third instance would make γ ∨ γ′ false under v, contrary
to our choice of v.

Thus, we may suppose without loss of generality, that v satisfies all instances
of γ. Now we can produce a truth assignment v∗ satisfying θ as follows. Let v∗

assign the value “true” to all those atomic formulas whose predicate symbol is
one of the key predicates P ′

i of γ′, and let v∗ agree with v on all other atomic
formulas. The difference between v and v∗, affecting only the P ′

i , will not affect
γ, because the P ′

i don’t occur in γ (thanks to the no clashes assumption). Thus
v∗ satisfies γ and therefore satisfies the part (α∨α′)∧∧k

i=1(Pi(xi)∨δi) of θ. But
it also satisfies the remaining conjunct,

∧k′

i=1(P
′
i (x

′
i) ∨ δ′

i) of θ. So v∗ satisfies θ
as required.

The preceding argument used the assumption that γ and γ′ have no common
variables. We now indicate how to modify it to accommodate common variables,
say the list y of variables. We no longer claim that v satisfies all instantiations
of γ or all instantiations of γ′; instead, we claim that, for any fixed instantiation
of y, v satisfies all its extensions to instantiations of γ or all its extensions to
instantiations of γ′. In other words, whether γ or γ′ is satisfied (by v) may
depend on the instantiation but only via the values assigned to the common
variables y. The proof of this modified claim is exactly as in the easier argument
given above; once we fix the values of y, the remaining variables, occurring in
only one of γ and γ′, can be treated as before.

In the easier argument, we obtained v∗ by modifying the truth values assigned
by v to the key predicates of γ′, under the assumption that v satisfied all
instances of γ. Of course, if v had satisfied all instances of γ′, then we would
have modified the truth values assigned to the key predicates of γ. Now in the
present, more complicated situation, the decision as to which predicates should
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get new truth values may depend on the values assigned to y. Thanks to argu-
ment joining, this is no problem. The variables y occur as arguments of all the
key predicates in γ and in γ′. So we can modify the values assigned to instances
of Pi with certain values for the y arguments and modify the values assigned
to instances of P ′

i with other values for the y arguments. What we do with
one instantiation of y has no effect on what happens with other instantiations.
(Another way to view this argument is that we treat the variables y as new
constant symbols and consider separately all the expansions of A giving values
to these new constants. That reduces the problem to the easier case already
treated.)

This completes the proof of the proposition.

Corollary 6. Every primary formula is instance-equisatisfiable with a sec-
ondary formula.

Proof. Induction on primary formulas, using Proposition 5 for the only nontrivial
cases.

The proofs of the proposition and corollary provide an explicit algorithm for
converting a primary formula to an instance-equisatisfiable secondary one.

5 Satisfiability and Trimming

This section is entirely about propositional logic, specifically about satisfiability
of sets of clauses. Here “clause” means, as usual, a disjunction of literals, i.e.,
of propositional variables and negations of propositional variables. So a set of
clauses is semantically equivalent to a conjunctive normal form, namely the
conjunction of its clauses.

Theorem 7. Let Γ be a set of clauses, let p be a propositional variable, and
let Q be a set of propositional variables other than p. Suppose that, whenever a
clause in Γ contains a negative occurrence of a variable from Q, it also contains
a positive occurrence of p or of some variable from Q. Obtain Γ ′ from Γ by
deleting positive occurrences of p from those clauses that also contain positive
occurrences of at least one variable from Q. Then Γ is satisfiable if and only if
Γ ′ is.

Proof. One direction is trivial, because any truth assignment that satisfies all
the clauses in Γ ′ will certainly satisfy the corresponding clauses in Γ , since the
latter differ from the former at most by having additional disjuncts.

Suppose, therefore, that we have a truth assignment v that satisfies all the
clauses in Γ . If it makes p false, then it also satisfies all the clauses in Γ ′,
because the positive occurrences of p that were removed when we produced Γ ′

were not satisfied by v and so some other disjuncts in those clauses must have
been satisfied.

So we may assume that v makes p true. In this situation, v need not satisfy
Γ ′, but we can find another truth assignment v′ that will satisfy Γ ′. Let v′ make
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all the variables in Q true, and let it agree with v on all the other variables. To
show that v′ satisfies every clause γ in Γ ′, we consider three cases.

First, suppose γ is one of the clauses that was altered, by removing the pos-
itive disjunct p, when we transformed Γ to Γ ′. Recall that we undertook such
a removal only when the clause in Γ contained, along with p, a positive occur-
rence of some variable from Q. Such variables are true under v′, and therefore
our clause γ is also true under v′.

It remains to consider those clauses γ that were not changed in the transition
from Γ to Γ ′. These were true under v, but we need that they are true under
v′. That is very easy to check for those clauses γ in which variables from Q
occur only positively. Since, in going from v to v′, the only changes were that
variables in Q, which might have been false under v, became true under v′, any
clause containing them only positively cannot change from true under v to false
under v′.

There remain those clauses γ that are the same in Γ and in Γ ′ but have neg-
ative occurrences of some variable(s) from Q. By the hypothesis of the theorem,
every such γ also has positive occurrences of p or of some variable from Q. Since
p and all variables from Q are true under v′, it follows that v′ satisfies all such
clauses γ.

Definition 8. The transformation from Γ to Γ ′ described in the theorem is
called trimming Γ or, in more detail, trimming p using Q.

6 Trimming to Horn Form

In this section, we complete the reduction of the model-checking problem for any
∃FPL sentence to a decidable case of the propositional satisfiability problem,
namely the satisfiability of sets of Horn clauses.

Given an ∃FPL sentence ϕ, we saw in Sect. 3 how to reduce the problem
“Given A, decide whether ϕ is true in A” to the problem of satisfiability of the
set of all A-instances of a certain formula constructed from ϕ. That formula is pri-
mary, in the sense defined in Sect. 4 and, as proved there, instance-equisatisfiable
with a certain secondary formula. So the model-checking problem for ϕ is reduced
to determining the satisfiability of the instances of this secondary formula.

The next step is to convert this secondary formula, say ψ, into conjunctive
normal form. (As mentioned earlier, the possible exponential increase in the
formula’s size caused by this conversion is not a problem, because we are consid-
ering the model-checking problem for a fixed formula, with only the structure A
as input. The set of all A-instances still has size polynomial in the size of A.) We
now look into the structure of this conjunctive normal form and its A-instances
(for arbitrary A).

Recall that, when forming A-instances of ψ, we replace any atomic subformu-
las that use predicates from L by their truth values in A. The atomic subformulas
of an instance therefore use only the predicates not in L, which are the recursion
variables of ϕ and the key predicates of the primary and secondary formulas
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derived from ϕ. We shall use the letters P and Q to stand for such predicates in
the following discussion.

Let us consider the conjunctive normal form of a secondary formula ψ, paying
particular attention to the positive occurrences of atomic subformulas using the
P,Q predicates. Basic secondary formulas are built using ∧ and ∨ from atomic
subformulas, subject to the condition that positive predicates — which include
the P,Q predicates — occur only negatively. So there are not yet any positive
occurrences of P ’s and Q’s at this basic stage. That situation changes when we
apply the mix construction to produce secondary formulas of the form

α ∧
k∧

i=1

(Pi(xi) ∨ δi).

Now each Pi has a positive occurrence, and, in addition, other P ’s and Q’s may
have positive occurrences in α and in the δi’s. To convert α ∧ ∧k

i=1(Pi(xi) ∨ δi)
to conjunctive normal form, we would first convert α and the δi’s to conjunctive
normal form and then, for each i, distribute Pi(xi) ∨ − across the conjunctive
normal form of δi. Thus, each conjunct of that conjunctive form acquires Pi(xi)
as a new literal. Note that such a conjunct may already have other positive
occurrences of other P ’s and Q’s, but only when these are the key predicates
of subformulas of δi. Thus, those other P ’s and Q’s come from mix subformulas
that are descendants of the current mix formula α ∧ ∧k

i=1(Pi(xi) ∨ δi) in the
parse tree of ψ. We emphasize that, in this conjunct, the new positive P and
previously present Q are key predicates of comparable mix nodes of the parse
tree.

Repeating this process for every application of the mix constructor in ψ,
we arrive at a conjunctive normal form θ in which every individual conjunct
has, because of the comparability noted at the end of the preceding paragraph,
the following crucial property: All the positive occurrences of P ’s and Q’s in it
originated from mix nodes in a single branch of the parse tree of ψ.

From now on, to make contact with the terminology of Sect. 5, we shall
identify the conjunction θ with the set of its conjuncts, which may thus be
called clauses.

Consider a P and a Q such that the mix node with key P is an ancestor
of the mix node with key Q in the parse tree of ψ. So P is some Pi in a mix
formula α ∧ ∧k

i=1(Pi(xi) ∨ δi), while Q is the key of a mix subformula of δi.
That mix subformula contains all the occurrences of Q in ψ, because of our no
clash assumption. As a result, in the conjunctive normal form θ, every clause
with an occurrence of Q also has a positive occurrence of P (xi). (We need
this information only for the negative occurrences of Q, but it is true for all
occurrences of Q.)

Recall that, in this situation, when we formed the strict ∀1
1 form of ϕ (as the

first step toward ψ and θ), the variables xi associated to Pi became additional
arguments of Q. Because of that, when we now form instances of θ, all clauses
containing negative occurrences of any particular instance of Q will also contain
a positive occurrence of the corresponding instance of Pi(xi). This means, by
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Theorem 7, that we can delete positive occurrences of any instance of P from any
clause that also contains a positive occurrence of a corresponding instance Q.

These deletions can be uniformly summarized as follows, in terms of θ itself
rather than its instances: In any clause containing positive occurrences of P and
Q, where Q originated in a descendant of the mix formula of P , one can delete
the occurrence of P . But, in every conjunct of θ, the positively occurring P ’s
and Q’s originated along a branch, and so one can delete all the positive P ’s and
Q’s except the one farthest from the root of the parse tree of ψ.

That leaves at most one positive P in any clause; all instances then have
at most one positive literal. That is, we have only Horn clauses in the trimmed
conjunctive normal form.

7 Summary

The strict ∀1
1 translation of any ∃FPL sentence has a special syntactic form. Its

quantifier-free matrix is the negation of what we called a primary formula in
Sect. 4, and the occurrences of variables are constrained by the no clash assump-
tion and the argument joining property. This special form ensures polynomial-
time model-checking, because this special syntactic form allows, first, reduction
to a secondary formula (still subject to no clashes and argument joining) and,
second, trimming to Horn form. Then the original ∃FPL sentence holds in A if
and only if the set of all A-instances of this Horn form is not satisfiable.
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Abstract. We develop a general, non-probabilistic model of prediction
which is suitable for assessing the (un)predictability of individual phys-
ical events. We use this model to provide, for the first time, a rigorous
proof of the unpredictability of a class of individual quantum measure-
ment outcomes, a well-known quantum attribute postulated or claimed
for a long time.

We prove that quantum indeterminism—formally modelled as value
indefiniteness—is incompatible with the supposition of predictability:
measurements of value indefinite observables are unpredictable. The proof
makes essential use of a strengthened form of the Kochen-Specker theo-
rem proven previously to identify value indefinite observables. This form
of quantum unpredictability, like the Kochen-Specker theorem, relies on
three assumptions: compatibility with quantum mechanical predictions,
non-contextuality, and the value definiteness of observables correspond-
ing to the preparation basis of a quantum state.

We explore the relation between unpredictability and incomputabil-
ity and show that the unpredictability of individual measurements of a
value indefinite quantum observable complements, and is independent
of, the global strong incomputability of any sequence of outcomes of this
particular quantum experiment.

Finally, we discuss a real model of hypercomputation whose computa-
tional power has yet to be determined, as well as further open problems.

1 Introduction

The outcomes of measurements on a quantum systems are often regarded to be
fundamentally unpredictable [33]. However, such claims are based on intuition
and experimental evidence, rather than precise mathematical reasoning. In order
to investigate this view more precisely, both the notion of unpredictability and
the status of quantum measurements relative to such a notion need to be carefully
studied.
c© Springer International Publishing Switzerland 2015
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Unpredictability is difficult to formalise not just in the setting of quantum
mechanics, but that of classical mechanics too. Various physical processes from
classical chaotic systems to quantum measurement outcomes are often considered
unpredictable, and various definitions, both domain specific [30] or more general
[13], and of varying formality, have been proposed. For precise claims to be made,
the appropriate definitions need to be scrutinised and the results proven relative
to specific definitions.

Quantum indeterminism has been progressively formalised via the notion of
value indefiniteness in the development of the theorems of Bell [5] and, particu-
larly, Kochen and Specker [16]. These theorems, which have also been experimen-
tally tested via the violation of various inequalities [29], express the impossibility
of certain classes of deterministic theories. The conclusion of value indefiniteness
from these no-go theorems rests on various assumptions, amounting to the refusal
to accept non-classical alternatives such as non-locality and contextual determin-
ism. And if value indefiniteness is, as often stated, related to unpredictability,
any claims of unpredictability need to be similarly evaluated with respect to,
and seen to be contingent on such assumptions.

In this paper we address these issues in turn. We first discuss various existing
notions of predictability and their applicability to physical events. We propose
a new formal model of prediction which is non-probabilistic and, we argue, cap-
tures the notion that an arbitrary single physical event (be it classical, quan-
tum, or otherwise) or sequence thereof is ‘in principle’ predictable. We review
the formalism of value indefiniteness and the assumptions of the Kochen-Specker
theorems (classical and stronger forms), and show that the outcomes of measure-
ments of value indefinite properties are indeed unpredictable with respect to our
model. Thus, in this framework unpredictability rests on the same assumptions
as quantum value indefiniteness. Finally, we discuss the relationship between
quantum randomness and unpredictability, and show that unpredictability does
not, in general, imply the incomputability of sequences generated by repeating
the experiment ad infinitum. Thus, the strong incomputability of sequences of
quantum measurement outcomes appears to rest independently on the assump-
tion of value indefiniteness.

2 Models of Prediction

To predict—in Latin prædicere, “to say before”—means to forecast what will
happen under specific conditions before the phenomenon happens. Various defin-
itions of predictability proposed by different authors will be discussed regarding
their suitability for capturing the notion of predictability of individual physi-
cal events or sequences thereof in the most general sense. While some papers,
particularly in physics and cryptographic fields, seem to adopt the view that
probabilities mean unpredictability [4,33], this is insufficient to describe unpre-
dictable physical processes. Probabilities are a formal description given by a
particular theory, but do not entail that a physical process is fundamentally,
that is, ontologically, indeterministic nor unpredictable, and can (often very rea-
sonably) represent simply an epistemic lack of knowledge or underdetermination
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of the theory. Instead, a more robust way to formulate prediction seems to be
in terms of a ‘predicting agent’ of some form. This is indeed the approach taken
by some definitions, and that we also will follow.

In the theory of dynamical systems, unpredictability has long been linked
to chaos and has often been identified as the inability to calculate with any
reasonable precision the state of a system given a particular observable initial
condition [30]. The observability is critical, since although a system may presum-
ably have a well-defined initial state (a point in phase-space), any observation
yields an interval of positive measure (a region of phase space). This certainly
seems the correct path to follow in formalising predictability, but more generality
and formalism is needed to provide a definition for arbitrary physical processes.

Popper, in arguing that unpredictability is indeterminism, defines predic-
tion in terms of “physical predicting machines” [21]. He considers these as real
machines that can take measurements of the world around them, compute via
physical means, and output (via some display or tape, for example) predictions
of the future state of the system. He then studies experiments which must be
predicted with a certain accuracy and considers these to be predictable if it is
physically possible to construct a predictor for them.

Wolpert [31] formalised this notion much further in developing a general
abstract model of physical inference. Like Popper, Wolpert was interested in inves-
tigating the limits of inference, including prediction, arising from the simple fact
that any inference device must itself be a physical device, hence an object whose
behaviour we can try to predict. While Wolpert’s aim was not so focused on the
predictability arising from the nature of specific physical theories, he identified
and formalised the need for an experimenter to develop prediction techniques and
initialise them by interacting with the environment via measurements.

A more modern and technical definition of unpredictability was given by
Eagle [13] in defining randomness as maximal unpredictability. While we will
return to the issue of randomness later, Eagle’s definition of unpredictability
deserves further attention. He defined prediction relative to a particular theory
and for a particular predicting agent, an approach thus with some similarity
to that of Wolpert. Specifically, a prediction function is defined as a function
mapping the state of the system described by the theory and specified epistem-
ically (and thus finitely) by the agent to a probability distribution of states at
some time. This definition formalises more clearly prediction as the output of
a function operating on information extracted about the physical system by an
agent.

Popper’s and Wolpert’s notions of predictability perhaps lack generality by
requiring the predictor to be embedded, that is, physically present, in its environ-
ment [28], and are not so suited to investigating the predictability of particular
physical processes, but rather of the physical world as a whole. Similarly, Eagle’s
definition renders predictability relative to a particular physical theory.

In order to relate the intrinsic indeterminism of a system to unpredictability,
it would be more appropriate to have a definition of events as unpredictable in
principle. Thus, the predictor’s ignorance of a better theory might change their
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associated epistemic ability to know if an event is predictable or not, but would
not change the fact that an event may or may not be, in principle, predictable.

Last but not least, it is important to restrict the class of prediction functions
by imposing some effectivity (i.e. computability) constraints. Indeed, we suggest
that “to predict” is to say in advance in some effective/constructive/computable
way what physical event or outcome will happen. Thus, motivated by the Church-
Turing Thesis, we choose here Turing computability. Any predicting agent oper-
ating with incomputable means—incomputable/infinite inputs or procedures
that can go beyond the power of algorithms (for example, by executing infinitely
many operations in a finite amount of time)—seems to be physically highly
speculative if not impossible. Technically, “controlled incomputability” could be
easily incorporated in the model, if necessary.

Taking these points into account, we propose a definition—similar in some
aspects to Wolerpt’s and Eagle’s definitions—based on the ability of some com-
putably operating agent to correctly predict using finite information extracted
from the system of the specified experiment. For simplicity we will consider
experiments with binary observable values (0 or 1), but the extension to finitely
or countable many (i.e. finitely specified) output values is straightforward. Fur-
ther, unlike Eagle [13], we consider only prediction with certainty, rather than
with probability. While it is not difficult nor unreasonable to extend our def-
inition to the more general scenario, this is not needed for our application to
quantum measurements; moreover, in doing so we avoid any potential pitfalls
related to probability 1 or 0 events [32].

Our main aim is to define the (correct) prediction of individual events [13],
which can be easily extended to an infinite sequence of events. An individual
event can be correctly predicted simply by chance, and a robust definition of
predictability clearly has to avoid this possibility. Popper succinctly summarises
this predicament in Ref. [21, 117–118]:

“If we assert of an observable event that it is unpredictable we do not
mean, of course, that it is logically or physically impossible for anybody to
give a correct description of the event in question before it has occurred;
for it is clearly not impossible that somebody may hit upon such a descrip-
tion accidentally. What is asserted is that certain rational methods of
prediction break down in certain cases—the methods of prediction which
are practised in physical science.”

One possibility is then to demand a proof that the prediction is correct, thus
formalising the “rational methods of prediction” that Popper refers to. However,
this is notoriously difficult and must be made relative to the physical theory
considered, which generally is not well axiomatised and can change over time.
Instead we demand that such predictions be repeatable, and not merely one-off
events. This point of view is consistent with Popper’s own framework of empirical
falsification [20,22]: an empirical theory (in our case, the prediction) can never
be proven correct, but it can be falsified through decisive experiments pointing to
incorrect predictions. Specifically, we require that the predictions remain correct
in any arbitrarily long (but finite) set of repetitions of the experiment.
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3 A Model for Prediction of Individual Physical Events

In order to formalise our non-probabilistic model of prediction we consider a
hypothetical experiment E specified effectively by an experimenter. We for-
malise the notion of a predictor as an effective (i.e. computational) method
of uniformly producing the outcome of an experiment using finite information
extracted (again, uniformly) from the experimental conditions along with the
specification of the experiment, but independent of the results of the experi-
ments. An experiment will be predictable if any potential sequence of repetitions
(of unbounded, but finite, length) of it can always be predicted correctly by such
a predictor.

In detail, we consider a finitely specified physical experiment E producing a
single bit x ∈ {0, 1} (which, as we previously noted, can readily be generalised).
Such an experiment could, for example, be the measurement of a photon’s polar-
isation after it has passed through a 50-50 polarising beam splitter, or simply the
toss of a physical coin with initial conditions and experimental parameters spec-
ified finitely. Further, with a particular instantiation or trial of E we associate
the parameter λ which fully describes the trial. While λ is not in its entirety
an obtainable quantity, it contains any information that may be pertinent to
prediction and any predictor can have practical access to a finite amount of this
information. In particular this information may be directly associated with the
particular trial of E (e.g. initial conditions or hidden variables) and/or relevant
external factors (e.g. the time, results of previous trials of E). We can view λ
as a resource that one can extract finite information from in order to predict
the outcome of the experiment E. Any such external factors should, however, be
local in the sense of special relativity, as (even if we admit quantum non-locality)
any other information cannot be utilised for the purpose of prediction [17]. We
formalise this in the following.

An extractor is a physical device selecting a finite amount of information
included in λ without altering the experiment E. It can be used by a predicting
agent to examine the experiment and make predictions when the experiment is
performed with parameter λ. Mathematically, an extractor is represented by a
(deterministic) function λ �→ ξ(λ) ∈ {0, 1}∗ where ξ(λ) is a finite string of bits.
For example, ξ(λ) may be an encoding of the result of the previous instantiation
of E, or the time of day the experiment is performed. As usual, the formal model
is significantly weaker: here, an extractor is a deterministic function which can
be physically implemented without affecting the experimental run of E.

A predictor for E is an algorithm (computable function) PE which halts on
every input and outputs either 0, 1 (cases in which PE has made a prediction),
or “prediction withheld”. We interpret the last form of output as a refrain from
making a prediction. The predictor PE can utilise as input the information ξ(λ)
selected by an extractor encoding relevant information for a particular instanti-
ation of E, but must not disturb or interact with E in any way; that is, it must
be passive.

As we noted earlier, a certain predictor may give the correct output for a trial
of E simply by chance. This may be due not only to a lucky choice of predictor,
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but also to the input being chosen by chance to produce the correct output.
Thus, we rather consider the performance of a predictor PE using, as input,
information extracted by a particular fixed extractor. This way we ensure that
PE utilises in ernest information extracted from λ, and we avoid the complication
of deciding under what input we should consider PE ’s correctness.

A predictor PE provides a correct prediction using the extractor ξ for an
instantiation of E with parameter λ if, when taking as input ξ(λ), it outputs 0
or 1 (i.e. it does not refrain from making a prediction) and this output is equal
to x, the result of the experiment.

Let us fix an extractor ξ. The predictor PE is k correct for ξ if there exists
an n ≥ k such that when E is repeated n times with associated parame-
ters λ1, . . . , λn producing the outputs x1, x2, . . . , xn, PE outputs the sequence
PE(ξ(λ1)), PE(ξ(λ2)), . . . , PE(ξ(λn)) with the following two properties:

1. no prediction in the sequence is incorrect, and
2. in the sequence there are k correct predictions.

The repetition of E must follow an algorithmic procedure for resetting and
repeating the experiment; generally this will consist of a succession of events
of the form “E is prepared, performed, the result (if any) recorded, E is reset”.

If PE is k-correct for ξ we can bound the probability that PE is in fact oper-
ating by chance and may not continue to give correct predictions, and thus give
a measure of our confidence in the predictions of PE . Specifically, the sequence
of n predictions made by PE can be represented as a string of length n over
the alphabet {T, F,W}, where T represents a correct prediction, F an incorrect
prediction, and W a withheld prediction. Then, for a predictor that is k-correct
for ξ there exists an n ≥ k such that the sequence of predictions contains k T ’s
and (n − k) W ’s. There are

(
n
k

)
such possible prediction sequences out of 3n

possible strings of length n. Thus, the probability that such a correct sequence
would be produced by chance tends to zero when k goes to infinity because

(
n
k

)

3n
<

2n

3n
≤

(
2
3

)k

.

Clearly the confidence we have in a k-correct predictor increases as k → ∞.
If PE is k-correct for ξ for all k, then PE never makes an incorrect prediction
and the number of correct predictions can be made arbitrarily large by repeating
E enough times. In this case, we simply say that PE is correct for ξ. The infin-
ity used in the above definition is potential not actual: its role is to guarantee
arbitrarily many correct predictions.

This definition of correctness allows PE to refrain from predicting when it
is unable to. A predictor PE which is correct for ξ is, when using the extracted
information ξ(λ), guaranteed to always be capable of providing more correct
predictions for E, so it will not output “prediction withheld” indefinitely. Fur-
thermore, although PE is technically used only a finite, but arbitrarily large,
number of times, the definition guarantees that, in the hypothetical scenario
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where it is executed infinitely many times, PE will provide infinitely many cor-
rect predictions and not a single incorrect one.

While a predictor’s correctness is based on its performance in repeated trials,
we can use the predictor to define the prediction of single bits produced by the
experiment E. If PE is not correct for ξ then we cannot exclude the possibility
that any correct prediction PE makes is simply due to chance. Hence, we propose
the following definition:

the outcome x of a single trial of the experiment Eperformed with para-
meter λ ispredictable (with certainty) if there exist an extractor ξ and
a predictor PE which is correct for ξ, and PE(ξ(λ)) = x.

Accordingly, PE correctly predicts the outcome x, never makes an incorrect
prediction, and can produce arbitrarily many correct predictions.

4 Computability Theoretic Notions of Unpredictability

The notion of unpredictability defined in the previous section has both physical
components (in extracting information from the system for prediction via ξ)
and computability theoretic ones (in predicting via an effective procedure, PE).
Both these components are indispensable for a good model of prediction for
physical systems, but it is nonetheless important to discuss their relation to pure
computability theoretic notions of prediction, since these place unpredictability
in a context where the intuition is stripped to its abstract basics.

The algorithmic notions of bi-immunity (a strong form of incomputability)
and Martin-Löf randomness describe some forms of unpredictability for infinite
sequences of bits [9]. A sequence is bi-immune if it contains no infinite com-
putable subsequence (i.e., both the bits of the subsequence and their positions
in the original sequence must be computable). A sequence is Martin-Löf random
if all prefixes of the sequence cannot be compressed by more than an additive
constant by a universal prefix-free Turing machine (see [9,12] for more details).
Thus, for a bi-immune sequence, we cannot effectively compute the value of any
bit in advance and only finitely many bit-values can be correctly “guessed”, while
a Martin-Löf random sequence contains no “algorithmic” patterns than can be
used to effectively compress it.

However, the notions of predictability presented by Tadaki [27] are perhaps
the most relevant for this discussion. An infinite sequence of bits x = x1x2 . . .
is Tadaki totally predictable if there exists a Turing machine F : {0, 1}∗ →
{0, 1,W} that halts on every input, and satisfies the following two conditions:
(i) for every n, either F (x1 . . . xn) = xn+1 or F (x1 . . . xn) = W ; and (ii) the
set {n ∈ N

+ | F (x1 . . . xn) �= W} is infinite; F is called a total predictor for x.
A similar notion, called Tadaki predictability, requires only that F halts on

all input x1 . . . xn, and thus may be a partially computable function instead of
a computable one. This emphasises that, as we mentioned earlier, the notion of
predictability can be strengthened or weakened by endowing the predictor with
varying computational powers.
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Tadaki predictability can be related to various other algorithmic notions of
randomness. For example, no Martin-Löf random sequence is Tadaki (totally)
predictable [27, Theorem 4], while all non-bi-immune sequences are Tadaki totally
predictable. This last fact can be readily proven by noting that a non-bi-immune
sequence x must contain a computable subsequence (k1, xk1), (k2, xk2), . . . .
Equivalently, there is an infinite computable set K ⊂ N and a computable func-
tion f : K → {0, 1} such that for all k ∈ K, f(k) = xk. Hence, for a string
σ ∈ {0, 1}∗ the function

F (σ) =

{
f(|σ| + 1), if |σ| + 1 ∈ K,
W, otherwise,

is a Tadaki total predictor for x (|σ| is the length of σ).
Furthermore, the notion of Tadaki total unpredictability is strictly stronger

than bi-immunity, since there exist bi-immune, totally predictable sequences.
For example, let x = x1x2 . . . be a Martin-Löf random sequence (and hence bi-
immune [9]). It is not difficult to show that y = y1y2 · · · = x1x1x2x2 . . . created
by doubling the bits of x is bi-immune. However, y has a Tadaki total predictor
F defined as

F (σ1 . . . σn) =

{
σn, if n is odd,
W, if n is even,

since this correctly predicts the value of every bit at an even position in y.
This notion of predictability can be physically interpreted in the following

way. Consider a black-box B(x) with a button that, when pressed, gives the
next digit of x; by repeating this operation one can slowly learn, in order, the
bits of x. A sequence is Tadaki predictable if there is a uniform way to compute
infinitely often xn+1 having learnt the initial segment x1 . . . xn, with the proviso
that we must know in advance when—that is, the times at which—we will be
able to do so.

When viewed from the physical point of view described above, there is a
clear relation to our notion of predictability. In particular, we can consider a
deterministic experiment Ex that consists of generating a bit from the black-box
B(x), and asking if Ex is predictable for the ‘prefix’ extractor ξp(λi) = x1 . . . xi−1

for the trial of Ex producing xi—that is, using just the results of the previous
repetitions of Ex. It is not too difficult to see that Ex is predictable if and only
if x is Tadaki totally predictable. Indeed, equate the function F from Tadaki’s
definition and the predictor PE , as well as the outputs ‘W ’ and “prediction
withheld”.

In general, algorithmic information theoretical properties of sequences could
be explored using our model of prediction via such an approach. However,
the relation between these notions exists only when one considers particular,
abstract, extractors such as ξp. The generality of our model originates in the
importance it affords to physical properties of systems, via extractors, which are



On the Unpredictability of Individual Quantum Measurement Outcomes 77

essential for prediction in real systems. Depending on the physical scenario inves-
tigated, then, physical devices might allow us to extract information allowing to
predict an experiment, regardless of the algorithmic content of this information,
as long as finite information suffices for a single prediction.

5 Quantum Unpredictability

We now apply the notion developed above to formally justify the well-known
claim that quantum events are completely unpredictable.

5.1 The Intuition of Quantum Indeterminism and Unpredictability

Intuitively, it would seem that quantum indeterminism corresponds to the
absence of physical reality ; if no unique element of physical reality corresponding
to a particular physical quantity exists, this is reflected by the physical quan-
tity being indeterminate. That is, for such an observable none of the possible
exclusive measurement outcomes are certain to occur and therefore we should
conclude that any kind of prediction of the outcome with certainty cannot exist,
and the outcome of this individual measurement must thus be unpredictable.
For example, an agent trying to predict the outcome of a measurement of a pro-
jection observable in a basis unbiased with respect to the preparation basis (i.e.
if there is a “maximal mismatch” between preparation and measurement) could
do no better than blindly guess the outcome of the measurement.

However, such an argument is too informal. To apply our model of unpre-
dictability the notion of indeterminism needs to be specified much more rigor-
ously: this implies developing a formalism for quantum indeterminism, as well
as a careful discussion of the assumptions which indeterminism is reliant on.

5.2 A Formal Basis for Quantum Indeterminism

The phenomenon of quantum indeterminism cannot be deduced from the Hilbert
space formalism of quantum mechanics alone, as this specifies only the proba-
bility distribution for a given measurement which in itself need not indicate
intrinsic indeterminism. Indeterminism has had a role at the heart of quantum
mechanics since Born postulated that the modulus-squared of the wave function
should be interpreted as a probability density that, unlike in classical statistical
physics [18], expresses fundamental, irreducible indeterminism [7]. In Born’s own
words, “I myself am inclined to give up determinism in the world of atoms.” The
nature of individual measurement outcomes in quantum mechanics was, for a
period, a subject of much debate. Einstein famously dissented, stating his belief
that [8, p. 204] “He does not throw dice.” Nonetheless, over time the conjec-
ture that measurement outcomes are themselves fundamentally indeterministic
became the quantum orthodoxy [33].

Beyond the blind belief originating with Born, the Kochen-Specker theorem,
along with Bell’s theorem, are among the primary reasons for the general accep-
tance of quantum indeterminism. The belief in quantum indeterminism thus
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rests largely on the same assumptions as these theorems. In the development
of the Kochen-Specker theorem, quantum indeterminism has been formalised as
the notion of value indefiniteness [1], which allows us to discuss indeterminism in
a more general formal setting rather than restricting ourselves to any particular
interpretation. Here we will review this formalism, as well as a stronger form of
the Kochen-Specker theorem and its assumptions which are important for the
discussion of unpredictability.

For a given quantum system in a particular state, we say that an observable
is value definite if the measurement of that observable is predetermined to take a
(potentially hidden) value. If no such predetermined value exists, the observable
is value indefinite. Formally, this notion can be represented by a (partial) value
assignment function (see [1] for the complete formalism).

In addressing the question of when we should conclude that a physical quantity
is value definite, Einstein, Podolsky and Rosen (EPR) give a sufficient criterion
of physical reality in terms of certainty and predictability in [14, p. 777]. Based
on this accepted sufficient condition for the existence of an element of physical
reality, we allow ourselves to be guided by the following “EPR principle”:1

EPR principle: If, without in any way disturbing a system, we can predict
with certainty the value of a physical quantity, then there exists a definite
value prior to observation corresponding to this physical quantity.

As we discussed earlier, the notion of prediction the EPR principle refers to
needs to be effective; further, we note that the constraint that prediction acts
“without in any way disturbing a system” is perhaps non-trivial [17], but is
equally required by our model of prediction.

The EPR principle justifies the subtle but often overlooked

Eigenstate principle: If a quantum system is prepared in a state |ψ〉, then
the projection observable Pψ = |ψ〉〈ψ| is value definite.

This principle is necessary in order to use the strong Kochen-Specker theorem
to single-out value indefinite observables, and is similar to, although weaker,
than the eigenstate-eigenvalue link (as only one direction of the implication is
asserted) [25].

A further requirement called admissibility is used to avoid outcomes impos-
sible to obtain according to quantum predictions. Formally, admissibility states
that an observable in a context—that is, a set of mutually commuting (i.e. com-
patible) observables—cannot be value indefinite if all but one of the possible
measurement outcomes would contradict quantum mechanical identities given
the values of other, value definite observables in the same context. In such a
case, the observable must have the definite value of that sole ‘consistent’ mea-
surement outcome.

1 They continue: “It seems to us that this criterion, while far from exhausting all pos-
sible ways of recognizing a physical reality, at least provides us with one such way,
whenever the conditions set down in it occur.”
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Here is an example: given a context {P1, . . . , Pn} of commuting projection
observables, if P1 were to have the definite value 1, all other observables in this
context must have the value 0. Were this not the case, there would be a possibility
to obtain the value 1 for more than one compatible projection observable, a direct
contradiction of the quantum prediction that one and only one projector in a
context give the value 1 on measurement. Note that we require this to hold
only when any indeterminism (which implies multiple possible outcomes) would
allow quantum mechanical predictions to be broken: were P1 to have the value
0, admissibility would not require anything of the other observables if the rest
were value indefinite, as neither a measurement outcome of 0 or 1 for P2 . . . Pn

would lead to a contradiction.
The Kochen-Specker theorem [16] shows that no value assignment func-

tion can consistently make all observables value definite while maintaining the
requirement that the values are assigned non-contextually—that is, the value of
an observable is the same in each context it is in. This is a global property: non-
contextuality is incompatible with all observables being value definite. However,
it is possible to go deeper and localise value indefiniteness to prove that even
the existence of two non-compatible value definite observables is in contradic-
tion with admissibility and the requirement that any value definite observables
behave non-contextually, without requiring that all observables be value defi-
nite. Thus, any mismatch between preparation and measurement context leads
to the measurement of a value indefinite observable: this is stated formally in
the following strong version of the Kochen-Specker theorem.

Theorem 1 (From [1,3]). Let there be a quantum system prepared in the state
|ψ〉 in dimension n ≥ 3 Hilbert space C

n, and let |φ〉 be any state neither
orthogonal nor parallel to |ψ〉, i.e. 0 < |〈ψ|φ〉| < 1. Then the projection observ-
able Pφ = |φ〉 〈φ| is value indefinite under any non-contextual, admissible value
assignment.

Hence, accepting that definite values, should they exist for certain observables,
behave non-contextually is in fact enough to derive rather than postulate quan-
tum value indefiniteness.

5.3 Contextual Alternatives

It is worth keeping in mind that, while indeterminism is often treated as an
assumption or aspect of the orthodox viewpoint [7,33], this usually rests implic-
itly on the deeper assumptions (mentioned in Sect. 5.2) that the Kochen-Specker
theorem relies on. If these assumptions are violated, deterministic theories could
not be excluded, and the status of value indefiniteness and unpredictability would
need to be carefully revisited.

If this were the case, perhaps the simplest alternative would be the explicit
assumption of (albeit non-local) context dependant predetermined values. Many
attempts to interpret quantum mechanics deterministically, such as Bohmian
mechanics [6], can be expressed in this framework. Since such a theory would
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no longer be indeterministic, the intuitive argument for unpredictability would
break down, and the theory could in fact be totally predictable. However, pre-
dictability is still not an immediate consequence, as such hidden variables could
potentially be “assigned” by a demon operating beyond the limits of any pre-
dicting agent (e.g. incomputably).

Another possibility would be to consider the case that any predetermined
outcomes may in fact not be determined by the observable alone, but rather
by “the complete disposition of the apparatus” [5, Sect. 5]. In this viewpoint,
even when the macroscopic measurement apparatuses are still idealised as being
perfect, their many degrees of freedom (which may by far exceed Avogadro’s or
Loschmidt’s constants) contribute to any measurement of the single quantum.
Most of these degrees of freedom might be totally uncontrollable by the experi-
menter, and may result in an epistemic unpredictability which is dominated by
the combined complexities of interactions between the single quantum measured
and the (macroscopic) measurement device producing the outcome.

In such a measurement, the pure single quantum and the apparatus would
become entangled. In the absence of one-to-one uniqueness between the macro-
scopic states of the measurement apparatus and the quantum, any measurement
would amount to a partial trace resulting in a mixed state of the apparatus,
and thus to uncertainty and unpredictability of the readout. In this case, just
as for irreversibility in classical statistical mechanics [18], the unpredictability of
single quantum measurements might not be irreducible at all, but an expression
of, and relative to, the limited means available to analyse the situation.

5.4 Unpredictability of Individual Quantum Measurements

With the notion of value indefiniteness presented, let us now turn our attention to
applying our formalism of unpredictability to quantum measurement outcomes
of the type discussed in Sect. 5.2.

Throughout this section we will consider an experiment E performed in
dimension n ≥ 3 Hilbert space in which a quantum system is prepared in a
state |ψ〉 and a value indefinite observable Pφ is measured producing a single bit
x. By Theorem 1 such an observable is guaranteed to exist, and to identify one
we need only a mismatch between preparation and observation contexts. The
nature of the physical system in which this state is prepared and the experiment
performed is not important, whether it be photons passing through generalised
beam splitters [23], ions in an atomic trap, or any other quantum system in
dimension n ≥ 3 Hilbert space.

We first show that experiments utilising quantum value indefinite observers
cannot have a predictor which is correct for some ξ. More precisely:

Theorem 2. If E is an experiment measuring a quantum value indefinite
observable, then for every predictor PE using any extractor ξ, PE is not cor-
rect for ξ.

Let us fix an extractor ξ, and assume for the sake of contradiction that there
exists a predictor PE for E which is correct for ξ. Consider the case when the
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experiment E is repeatedly initialised, performed and reset an arbitrarily large
but finite, number of times in an algorithmic “ritual” generating a finite sequence
of bits x1x2 . . . xn.

Since PE never makes an incorrect prediction, each of its predictions is cor-
rect with certainty. Then, according to the EPR principle we must conclude that
each such prediction corresponds to a value definite property of the system mea-
sured in E. However, we chose E such that this is not the case: each xi is the
result of the measurement of a value indefinite observable, and thus we obtain a
contradiction and conclude no such predictor PE can exist.

Moreover, since there does not exist a predictor PE which is correct for some
ξ, for such a quantum experiment E, no single outcome is predictable with
certainty.

Theorem 3. If the experiment E described above is repeated a) an arbitrarily
large, but finite number of times producing the finite sequence x1x2 . . .xn, or b)
hypothetically, ad infinitum, generating the infinite sequence x = x1x2 . . . , then
no single bit xi can be predicted with certainty.

6 Incomputability, Unpredictability, and Quantum
Randomness

While there is a clear intuitive link between unpredictability and randomness, it
is an important point that the unpredictability of quantum measurement out-
comes should not be understood to mean that quantum randomness is “truly
random”. Indeed, the subject of randomness is a delicate one: randomness can
come in many flavours [12], from statistical properties to computability theo-
retic properties of outcome sequences. For physical systems, the randomness of
a process also needs to be differentiated from that of its outcome.

As mentioned earlier, Eagle has argued that a physical process is random if it
is “maximally unpredictable” [13]. In this light it may be reasonable to consider
quantum measurements as random events, giving a more formal meaning to the
notion of “quantum randomness”. However, given the intricacies of randomness,
it should be clear that this refers to the measurement process, and does not
entail that quantum measurement outcomes are maximally random. In fact,
maximal randomness in the sense that no correlations exist between successive
measurement results is mathematically impossible [9,15]: there exist only degrees
of randomness with no upper limit. As a result, any claims regarding the quality
of quantum randomness need to be analysed carefully.

Indeed, in many applications of quantum randomness stronger computabil-
ity theoretic notions of randomness, such as Martin-Löf randomness [9], which
apply to sequences of outcomes would be desirable. It is not known if quantum
outcomes are indeed random in this respect. However, it was shown previously
[1,10] that a sequence x produced by repeated outcomes of a value indefinite
observable must be bi-immune.2 This result was proved using a further physical
2 See Sect. 4 for definitions.
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assumption, related to and motivated by the EPR principle, called the e.p.r.
assumption.3 This assumption states that, if a repetition of measurements of an
observable generates a computable sequence, then this implies these observables
were value definite prior to measurement. In other words, it specifies a particular
sufficient condition for value definiteness.

Given the relation between unpredictability and Tadaki total unpredictabil-
ity (which implies bi-immunity) discussed in Sect. 4, it is natural to ask whether
the bi-immunity of sequences generated by measuring repeatedly a value indef-
inite observable is a general consequence of its unpredictability, or if it is an
independent consequence of value indefiniteness.

The links between unpredictability and Tadaki total unpredictability we
explored earlier are relative to the use of specific extractors—such as ξp—and,
as we discussed, need not hold when other more physically relevant extractors
are considered. Furthermore, for the unpredictability of an experiment E to
guarantee that any outcome of an infinite repetition of E be incomputable—a
much weaker statement than bi-immunity—it would have to be the case that
(taking the contrapositive) if even a single infinite repetition λ1, λ2, . . . of E
could generate a computable sequence this would imply that E is predictable.
However, the definition of a predictor PE for E requires that PE gives correct
predictions for all repetitions. Hence, we will elaborate a simple example of
an unpredictable experiment E that can produce both computable and incom-
putable sequences, showing that unpredictability does not imply incomputability
(let alone bi-immunity).

Let d be the dyadic map; that is, the operation on infinite sequences of
bits defined by d(x1x2x3 . . . ) = x2x3 . . . . This operation is well known to be
chaotic and equivalent (more precisely, topologically conjugate) to many others,
e.g. the logistic map with r = 4 [11]. Let us consider an experiment Ed which
involves iterating the dyadic map k ≥ 2 times on a ‘seed’ x = 0x2x3 . . . until
xk+1 = 0. In other words, given x we look for the smallest integer k ≥ 2 such that
xk+1 = 0, hence dk(x) = 0xk+2xk+3 . . . . If such a k exists, then the outcome of
the experiment is xk+2 ∈ {0, 1}. We assume that such an Ed(ideally) is physically
implementable. We have chosen this example for simplicity; a more ‘physically
natural’ example might be the evolution of a chaotic double pendulum from
some set initial condition (up to finite accuracy) for which the outcome is read
off once the pendulum returns sufficiently close to its initial conditions.

This experiment can, of course, be repeated in many different ways to gen-
erate an infinite sequence, but it suffices to consider the simplest case where the
transformed seed x(1) = dk(x) after one iteration is taken as the seed for the
next step; note that this, by design, satisfies the requirement that the first bit
of x(1) is 0 (i.e., x

(1)
1 = 0), provided k exists. Let us assume further that any

sequence x = x1x2 . . . such that x1 = 0 is a valid physical seed. For the case of a

3 Here, e.p.r. stands for ‘elements of physical reality, not ‘Einstein, Podolsky and
Rosen’ as in the EPR principle.’
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double pendulum this is akin to assuming that the position of a pendulum can
take any value in the continuum—not an unreasonable, if nonetheless important,
assumption.

Let y = y1y2 . . . be an arbitrary infinite sequence, and consider the sequence
x = 010y10y20y3 . . . . For any such sequence x of this form, d2(x) = 0y10y2 . . . ,
so the outcome of Ed with seed x is precisely y1, and the new seed x(1) = d2(x) =
0y10y2 . . . . Similarly, for all i, starting with the seed x(0) = x, the outcome of the
ith repetition is precisely yi, since a minimum number of k = 2 applications of
d suffices for the first bit of d2(x(i−1)) to be 0, and the seed after this repetition
is precisely x(i) = 0yi0yi+1 . . . . Hence, starting with the seed x one obtains the
infinite sequence y by repeating Ed to infinity. In particular, since y can be any
sequence at all, one can obtain both computable and incomputable sequences
by repeating Ed.

Let us show also that Ed is unpredictable. Let us assume, for the sake of
contradiction, that there exists a predictor PEd

and extractor ξd such that PEd

is correct for ξd. Then PEd
must give infinitely many correct predictions using

ξd for any two runs λ1λ2 . . . and λ′
1λ

′
2 . . . which differ only in their seeds x and

x′. In particular, this is true if x,x′ are sequences of the form 0a1a2 . . . where
ai ∈ {1t00, 1t01} for all i, and t ≥ 1 is fixed, since these are possible seeds for
Ed. For such seeds x,x′ the minimum k ≥ 2 such that the first bit of dk(x) is
0 is precisely k = t + 1. Furthermore, if we let x(0) = x and x(i) = dki

(
x(i−1)

)

be the seed for the ith repetition of Ed, then ki = t + 1 for all i; that is, each
iteration of Ed shifts the seed precisely t+1 bits. Thus, to make infinitely many
predictions for Ed starting with seeds x and x′ correctly, PE must have access,
via ξd, to more than t + 3 bits of the current seed, since the first t + 2 bits of
x(i) and x′(i) are the same for all i. However, since t is arbitrary, and the same
extractor ξd must be used for all repetitions regardless of the seed, this implies
that ξd is arbitrarily accurate, which it is, again, not unreasonable to assume to
be physically impossible. Consequently, Ed must be unpredictable.

The construction of Ed may be slightly artificial and its unpredictability relies,
of course, on certain physical assumptions about the possibility of certain extrac-
tors. However, this concrete example shows that there is no mathematical obsta-
cle to an unpredictable experiment producing both computable and incomputable
outcomes when repeated, and is, at the very least, physically conceivable.

Any link between the unpredictability of an experiment and computability
theoretic properties of its output thus relies critically on physical properties—
and assumptions—of the particular experiment. Indeed, this careful dependance
on the particular physical description of E is one of the strengths of this
general model. This gives the model more physical relevance as a notion of
(un)predictability than purely algorithmic proposals.

The bi-immunity of quantum randomness is a crucial illustration of this
fact. Using a slightly a stronger additional hypothesis on the nature of value
(in)definiteness, bi-immunity can be guaranteed for every sequence of quantum
random bits obtained by measuring a value indefinite observable [1]. For this
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particular quantum experiment bi-immunity complements, and is independent
of, unpredictability.4

7 Summary

In this paper, we addressed two specific points relating to physical unpredictabil-
ity. Firstly, we developed a generalised model of prediction for both individual
physical events, and (by extension) infinite repetitions thereof. This model for-
malises the notion of an effective prediction agent being able to predict ‘in prin-
ciple’ the outcome of an effectively specified physical experiment. This model
can be applied to classical or quantum systems of any kind to assess their
(un)predictability, and doing so to various systems, particularly classical, could
be an interesting direction of research for the future.

Secondly, we applied this model to quantum measurement events. Our goal
was to formally deduce the unpredictability of single quantum measurement
events, via the strong Kochen-Specker theorem and value indefiniteness, rather
than rely on the ad hoc postulation of these properties.

More specifically, suppose that we prepare a quantum in a pure state corre-
sponding to a unit vector in Hilbert space of dimension at least three. Then any
complementary observable property of this quantum—corresponding to some
projector whose respective linear subspace is neither collinear nor orthogonal
with respect to the pure state vector—is value indefinite. Furthermore, the out-
come of a measurement of such a property is unpredictable with respect to our
model of prediction.

Quantum value indefiniteness is key for the proof of unpredictability. In this
framework, the bit resulting from the measurement of such an observable prop-
erty is “created from nowhere” (creatio ex nihilo), and cannot be causally con-
nected to any physical entity, whether it be knowable in practice or hidden.
While quantum indeterminism is often informally treated as an assumption in
and of itself, it is better seen as a formal consequence of Kochen-Specker theo-
rems in the form of value indefiniteness. (Indeed, without these theorems such an
assumption would appear weakly grounded.) Yet this derivation of value indef-
initeness rests on the three assumptions: admissibility, non-contextuality, and
the eigenstate principle. As we discussed in Sect. 5.3, models in which some of
these assumptions are not satisfied exist.

The single-bit unpredictability of the output obtained by measuring a value
indefinite quantum observable complements the fact—proven in [1] with an addi-
tional hypothesis—that such an experiment generates, in the limit, a strongly
incomputable sequence. We show that this additional hypothesis is necessary in
the sense that unpredictable experiments are, in general, capable of generating
both incomputable and computable infinite sequences.

The unpredictability and strong incomputability of these quantum measure-
ments “certify” the use of the corresponding quantum random number generator
4 Recall that bi-immunity need not imply unpredictability either.
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for various computational tasks in cryptography and elsewhere [19,24,26]. As a
consequence, this quantum random number generator can be seen and used
as an incomputable oracle, thus justifying a form of hypercomputation. Indeed,
no universal Turing machine can ever produce in the limit an output that is
identical with the sequence of bits generated by this quantum oracle [2]. More
than that—no single bit of such sequences can ever be predicted. Evaluating
the computational power of a (universal) Turing machine provided with a quan-
tum random oracle certified by maximum unpredictability is a challenging, both
theoretical and practical, open problem.

In this context incomputability appears maximally in two forms: individu-
alised—no single bit can be predicted with certainty (Theorem 3); that is, an algo-
rithmic computation of a single bit, even if correct, cannot be formally certified;
and, relative to slightly stronger hypotheses, asymptotic via bi-immunity—only
finitely many bits can be correctly predicted via an algorithmic computation.

Finally, we emphasise that the indeterminism and unpredictability of quantum
measurement outcomes proved in this paper are based on the strong form of the
Kochen-Specker, and hence require at minimum three-dimensional Hilbert space.
The question of whether this result can also be proven for two-dimensional Hilbert
space without simply assuming value indefiniteness is an open problem; this ques-
tion is important not only theoretically, but also practically, because many current
quantum random generators are based on two-dimensional measurements.
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Abstract. The Ehrenfeucht-Fräıssé method for first-order logic and fur-
ther logics relevant in descriptive complexity has been quite successful.
However, for key problems such as P �= NP or NP �= co-NP no progress
has been achieved using it. We show that for these problems we can not
get the board for the corresponding Ehrenfeucht-Fräıssé game in poly-
nomial output time, even if we allow probabilistic methods to obtain the
board. In order to get this result in the probabilistic case, we need an
additional hypothesis, namely that there is an algorithm, the verifier,
verifying in a reasonable time that the two structures of the board sat-
isfy the same properties expressible in a suitable fragment of the logic.
The (non)existence of such a verifier is related to a logic version of the
planted clique conjecture.

1 Introduction

Infinitemodel theory and indescriptive complexity theory theEhrenfeucht-Fräıssé
method for first-order logic FO is mainly used to obtain inexpressibility results and
hierarchy results. While Fräıssé [9] introduced this method in more algebraic terms,
Ehrenfeucht [6] phrased it in an appealing game-theoretic form. Concerning gen-
eralizations, games were developed for further logics, mainly for logics relevant in
descriptive complexity theory such as least fixed-point logic LFP, (monadic) exis-
tential second-order logic (monadic) Σ1

1, and finite variable logics.
An inexpressibility result for a logic L shows that a given property is not

definable (or expressible) in L. A hierarchy result states that a certain increasing
sequence H1 ⊆ H2 ⊆ . . . of classes Hm of sentences of a given logic is strict; that
is, that for every m ∈ N there is a property of finite structures expressible
by some sentence of Hm+1 but by no sentence of Hm. Often, to obtain such
an inexpressibility result, Ehrenfeucht-Fräıssé games have been used. The finite
variable hierarchy (FOm)m∈N is an example of a strict hierarchy. Here FOm

consists of those FO-formulas which contain at most m variables.
Suppose we want to show, using the Ehrenfeucht-Fräıssé method, that for

(finite) ordered graphs “eveness” of the cardinality of the vertex set is not
expressible in FO, or equivalently, that for every m ∈ N “eveness” is not express-
ible by an FOm-sentence. Here FOm denotes the set of sentences of first-order
logic of quantifier rank at most m. One chooses ordered graphs Gm and Hm that
c© Springer International Publishing Switzerland 2015
L.D. Beklemishev et al. (Eds.): Gurevich Festschrift II 2015, LNCS 9300, pp. 87–108, 2015.
DOI: 10.1007/978-3-319-23534-9 5
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are paths of length 2m + 1 and 2m, respectively, and shows that Gm ≡FOm Hm,
that is, that Gm and Hm satisfy the same sentences of FOm. The latter property
is shown by playing, more precisely, by analyzing the Ehrenfeucht-Fräıssé game
(for first-order logic) with board (Gm,Hm). It is not hard to show that the size
of the board (Gm,Hm) must be exponential in m.

Let us mention some further results obtained by the Ehrenfeucht-Fräıssé
method (or by a probabilistic generalization of it):

– Reachability in directed graphs is not expressible in monadic Σ1
1 [1].

– For ordered graphs connectivity is not expressible in monadic Σ1
1 [20].

– The finite variable hierarchy for FO on ordered structures is strict [12,18].
– The arity hierarchy is strict for LFP [10].
– For every k ∈ N the hierarchy whose mth member consists of formulas with

at most m nested k-ary fixed-point operators is strict for LFP [15].

We know (see Theorem 1) that P �= NP if and only if for every m there are a
3-colorable ordered graph Gm and an ordered graph Hm, which is not 3-colorable,
such that Gm and Hm are indistinguishable by sentences of LFP of “quantifier
rank” or length at most m; this last property, denoted by Gm ≡LFPm

Hm, would
be shown by the Ehrenfeucht-Fräıssé game for LFP. Let us call such a sequence
(Gm,Hm)m∈N a (3-Col,LFP)-sequence. Furthermore, NP �= co-NP if and only
if there is a (3-Col,Σ1

1)-sequence, where a (3-Col,Σ1
1)-sequence is defined in a

similar way. In [8], the authors remark:

It is known that Σ1
1 �= Π1

1 if and only if such a separation can be proven
via second-order Ehrenfeucht-Fräıssé games. Unfortunately, “playing”
second-order Ehrenfeucht-Fräıssé games is very difficult, and the above
promise is still largely unfulfilled; for example, the equivalence between
the NP = co-NP question and the Σ1

1 = Π1
1 question has not so far led

to any progress on either of these questions.

And Kolaitis remarks in [7, page 56]:

Although . . . Ehrenfeucht-Fräıssé games yield a sound and complete
method for studying ESO-definability [that is, Σ1

1-definability] (and thus
potentially leading to the separation of NP and co-NP), so far this app-
roach has had rather limited success. The reason is that formidable com-
binatorial difficulties arise in implementing this method . . . when dealing
with ESO-formulas in which at least one of the existentially quantified
second-order variables has an arity bigger than 1.

Definitely the authors are right with their observation that “playing” second-
order Ehrenfeucht-Fräıssé games is very difficult. However, in order to derive the
last two hierarchy results mentioned above, the corresponding authors success-
fully apply games for logics containing nonmonadic second-order quantifiers.

In the example of “eveness” we already observed that the size of a board
(Gm,Hm) of ordered graphs has to be exponential in m. On the other hand,
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analyzing most of the successful applications of the Ehrenfeucht-Fräıssé method
obtained so far, we realized that the boards (Gm,Hm)m∈N could be constructed
in polynomial output time, that is, in time (|V (Gm)| + |V (Hm)|)O(1). However,
by a simple and standard diagonal argument we show:

(A) No (3-Col,LFP)-sequence can be generated in polynomial output time.

Even more, to the best of our knowledge, it is open whether we can get such a
sequence of boards by an algorithm more efficient than brute force.

Mostly in successful applications of the Ehrenfeucht-Fräıssé method the main
task consisted in constructing boards such that one can find an argument show-
ing, via Ehrenfeucht-Fräıssé games for the given logic, that the corresponding
structures are indistinguishable to a certain extent. As mentioned, for a proof
of P �= NP via the Ehrenfeucht-Fräıssé method, already the presumably easier
step of merely constructing the sequence of boards (and forgetting about the
concrete verification of their indistinguishability) is hard. This makes our “neg-
ative” result even stronger with respect to the existence of positive applications
of the Ehrenfeucht-Fräıssé method for sufficiently rich logics. It is an interest-
ing challenge, though: how can we use the Ehrenfeucht-Fräıssé method to prove
P �= NP if we must necessarily work with non-constructive boards?

What happens if we allow probabilistic algorithms1 to yield the boards for
the Ehrenfeucht-Fräıssé method? Such random constructions have been used for
two of the applications mentioned above, namely to show that reachability in
directed graphs is not definable in monadic second-order logic and in the proof
of Rossman [18] that the finite variable hierarchy for first-order logic on ordered
graphs is strict. It turns out that in order to derive a probabilistic generalization
of (A) of the type “No (3-Col,LFP)-sequence can be generated by a proba-
bilistic algorithm in polynomial output time” we need a further assumption,2

namely that there is a verifier, that is, an algorithm that in a reasonable time
verifies that with high probability the board (Gm,Hm) satisfies

Gm ∈ 3-Col,Hm /∈ 3-Col, and Gm ≡LFPm Hm.

So we get:

(B) Assume that there is a pseudorandom generator. No (3-Col,LFP)-sequence
having a verifier can be generated by a probabilistic algorithm in polynomial
output time.

Is the assumption of the existence of a verifier necessary? The question is related
to the planted clique conjecture. This conjecture claims that there is no polyno-
mial time algorithm that detects a clique of size 4 · log n, which has been planted

1 At least here we should mention that there exist successful applications of the
Ehrenfeucht-Fräıssé method, where the boards are not defined by a (probabilis-
tic) algorithm; for example, in [21] random graphs with edge probability n−α are
considered, where n is the cardinality of the vertex set and α is irrational.

2 Besides the assumption of the existence of a pseudorandom generator.
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uniformly at random in a random graph with n vertices and edge probability
1/2. In this article we introduce a stronger conjecture, a logic version LPCC of
the planted clique conjecture. It is not hard to show:

(C) If LPCC holds, then a (3-Col,LFP)-sequence can be generated by a prob-
abilistic algorithm in polynomial output time.

As already the planted clique conjecture implies P �= NP, so does LPCC. Can
we refute LPCC? We show that this is the case for some strengthening of LPCC.

The content of the different sections is the following. After fixing some nota-
tion (in Sect. 2), we recall the Ehrenfeucht-Fräıssé method in Sect. 3. In Sect. 4,
first we study the minimum size of the board (Gm,Hm) of a (3-Col,LFP)-
sequence and then we prove statement (A). Section 5 is devoted to a proof of
the probabilistic generalization of this result, stated as (B) above. In Sect. 6 we
introduce the logic version LPCC of the planted clique conjecture and derive
statement (C) in Sect. 7. In Sect. 8 we show that some strengthened versions of
LPCC are refutable. Finally, in the last section we mention extensions of our
results and some further results related to the topic of this article. Moreover, we
state some conjectures and open questions.

2 Preliminaries

For a natural number n we set [n] := {1, . . . , n}. For a graph G we denote by
V (G) and E(G) its vertex set and its edge set, respectively. We speak of an
ordered graph G if G comes with an ordering of its vertex set. As already men-
tioned, in this article graph always means finite graph. A problem (or, property)
Q of ordered graphs is a class of ordered graphs closed under isomorphism.

We assume familiarity with basic notions of first-order logic FO and of least
fixed-point logic LFP. Concerning LFP, till Sect. 8 essentially we only need the
Immerman-Vardi Theorem, which we recall in the next section.

Let L be a logic. A property Q of ordered graphs is definable in L (or,
expressible in L) if there is a sentence of L such that Q is its class of models.

3 The Ehrenfeucht-Fräıssé-method

Let us denote by FOm the set of sentences of first-order logic of quantifier rank
(= maximum number of nested quantifiers) at most m and by LFPm the set of
LFP-sentences ϕ of length |ϕ| ≤ m. Here |ϕ| denotes the number of symbols in
ϕ (that is, the number of connectives, quantifiers, LFP-operators, variables, . . . ;
however, two occurrences, say, of the same variable in ϕ count as two symbols).

Let L be one of the logics FO or LFP and denote by Lm the corresponding set
FOm or LFPm. The Ehrenfeucht-Fräıssé method relies on the following result.

Theorem 1. For L ∈ {FO, LFP} and a problem Q of ordered graphs the fol-
lowing are equivalent:
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(i) For all m ∈ N there are ordered graphs Gm and Hm with

Gm ∈ Q, Hm /∈ Q, and Gm ≡Lm
Hm. (1)

(ii) Q is not definable in L.

So, in order to show that the problem Q is not definable in the logic L ∈
{FO,LFP}, it suffices to exhibit a (Q,L)-sequence in the sense of the follow-
ing definition.

Definition 2. Assume L ∈ {FO,LFP} and let Q be a problem of ordered
graphs. A sequence (Gm,Hm)m∈N of ordered graphs is a (Q,L)-sequence if for
al m ∈ N

Gm ∈ Q, Hm /∈ Q, and Gm ≡Lm
Hm.

In many concrete applications of Theorem1, Ehrenfeucht-Fräıssé-games are
applied to show that Gm ≡Lm

Hm. We recall the Ehrenfeucht-Fräıssé-game for
FO (see [4,10,15] for the Ehrenfeucht-Fräıssé-game for LFP and other extensions
of FO by fixed-point operators). Let G and H be ordered graphs and m ∈ N.
The Ehrenfeucht-Fräıssé-game Gm(G,H) (with boards G and H) is played by
two players called Spoiler and Duplicator. The game consists of a sequence of m
rounds. In round i of the game, first Spoiler picks a graph (either G or H) and a
vertex of his choice in that graph. Duplicator then replies by picking a vertex of
his choice in the other graph. Thus, after m rounds, vertices u1, . . . , um in V (G)
and v1, . . . , vm in V (H) have been selected, ui and vi being the vertices chosen
in round i. Duplicator wins if the induced ordered subgraphs G[{u1, . . . , um}]
and H[{v1, . . . , vm}] (induced by G on {u1, . . . , um} and by H on {v1, . . . , vm},
respectively) are isomorphic via the mapping f(ui) := vi for i ∈ [m]. It should
be clear what it means that Duplicator has a winning strategy for the game
Gm(G,H).

Theorem 3 (Ehrenfeucht-Fräıssé-Theorem). Let G and H be ordered
graphs and m ∈ N. Then Duplicator has a winning strategy for the game
Gm(G,H) if and only if G ≡FOm H.

The following simple application of the Ehrenfeucht-Fräıssé-game shows that
the class Even of ordered graphs with vertex set of even cardinality is not
definable in FO: For m ∈ N let the ordered graphs Gm and Hm be paths of
length 2m + 1 and 2m, respectively. Then Duplicator has a winning strategy for
the game Gm(Gm,Hm). In fact, in the ith round he picks his vertex, ui or vi,
such that for all j ∈ [i − 1],

dGm(ui, uj) = dHm(vi, vj) or
(
dGm(ui, uj) > 2m−i and dHm(vi, vj) > 2m−i

)
.

Here dG(u, u′) denotes the distance of the vertices u and u′ in the graph G.
Thus, Gm ≡FOm Hm and hence, (Gm,Hm)m∈N is an (Even,FO)-sequence.

The graphs Gm and Hm just constructed have size exponential in m. We
can’t do it better: the sizes of the graphs of every (Q,FO)-sequence for any
problem Q of ordered graphs must be exponential in m. This follows from the
following result, which can easily been derived.
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Proposition 4. Let m ∈ N. If G and H are nonisomorphic ordered graphs,
then

G ≡FOm+3 H implies |V (G)|, |V (H)| > 2m.

4 A Logical Reformulation of P �= NP

Immerman and Vardi have proven that least fixed-point logic LFP captures the
complexity class P in the following sense.

Theorem 5 (Immerman-Vardi Theorem). A problem of ordered graphs is
decidable in polynomial time if and only if it can be defined in least fixed-point
logic LFP.

As the problem 3-Col, the 3-colorability problem of ordered graphs, is
NP-complete, we get:

Corollary 6. P �= NP if and only if 3-Col is not definable in LFP.

We defined ϕ an LFPm-sentence with |ϕ| ≤ m. The previous corollary together
with Theorem 1 yield:

Corollary 7. P �= NP if and only if there is a (3-Col,LFP)-sequence, that is,
a sequence (Gm,Hm)m∈N of ordered graphs such that for all m,

Gm ∈ 3-Col, Hm /∈ 3-Col, and Gm ≡LFPm
Hm.

Assume P �= NP. What can we say about the minimum size of the graphs
of a (3-Col,LFP)-sequence and what about the running time of an algorithm
generating a (3-Col,LFP)-sequence? We set

size(3-Col)(m) := min
{
max{|V (G)|,|V (H)|} ∣∣ G and H are ordered graphs with

G ∈ 3-Col, H /∈ 3-Col, and G ≡LFPm H
}
.

Recall that a problem Q has circuit size c, where c : N → N, if for n ∈ N, c(n)
is the least d ∈ N such there exists a (Boolean) circuit C with n input variables
of size ≤ d such that for every x with |x| = n,

x ∈ Q ⇐⇒ C(x) = 1 (i.e., C accepts x).

In [5] we derived the following lower and upper bound for size(3-Col)(m).

Proposition 8. Assume P �= NP. Then:

(a) There is an ε > 0 such that for all m ∈ N we have 2ε·m ≤ size(3-Col)(m).
(b) If the circuit size of 3-Col is not in 2o(n), then for all ε > 0 and infinitely

many m,
size(3-Col)(m) ≤ 2(1+ε)·m·log m.

Definition 9. An algorithm A generates the sequence (Gm,Hm)m∈N if A on
input m ∈ N outputs (Gm,Hm).



The Ehrenfeucht-Fräıssé Method and the Planted Clique Conjecture 93

By systematically testing, for � = 1, 2, . . ., all graphs G and H with vertex sets
of cardinality ≤ � whether they satisfy

G ∈ 3-Col, H /∈ 3-Col, and G ≡LFPm
H,

we obtain from the previous result an upper bound for the time needed to get the
graphs of a (3-Col,LFP)-sequence, even of a sequence with boards of minimum
size:

Proposition 10 ([5]). If P �= NP, then there is an algorithm that generates a
(3-Col,LFP)-sequence in time 2O(size(3-Col)(m)2). The sequence (Gm,Hm)m∈N

generated by the algorithm satisfies size(3-Col)(m) = max
{|V (Gm)|, |V (Hm)|}.

By Proposition 4, the boards of all (Q,FO)-sequences for any problem Q of
ordered graphs must have size exponential in m. However we could construct
the graphs Gm and Hm of an (Even,FO)-sequence in polynomial output time,
that is, in time (|V (Gm)| + |V (Hm)|)O(1). In fact, we realized that in most suc-
cessful applications of the Ehrenfeucht-Fräıssé method showing that a property
is not definable in a given logic, the boards for the corresponding game can be
constructed in polynomial output time. So we ask, is it possible to construct a
(3-Col,LFP)-sequence in polynomial output time? By a standard diagonaliza-
tion argument we show that this is not possible:

Theorem 11. No (3-Col,LFP)-sequence can be constructed in polynomial
output time.

Proof. We sketch the main steps of a proof (for more details see [5]). Assume
for a contradiction that the algorithm A generates a (3-Col,LFP)-sequence
(Gm,Hm)m∈N in polynomial output time. By passing to a suitable subsequence
(cf. the proof of Lemma,16), we can assume that (Gm,Hm)m∈N is monotone,
that is, that it satisfies

max
{|V (Gm)|, |V (Hm)|} < min

{|V (Gm+1)|, |V (Hm+1)|
}
.

Furthermore, we can assume (again by passing to a suitable subsequence) that
|V (Gm)| ≥ |V (Hm)| for all m ∈ N or that |V (Gm)| ≤ |V (Hm)| for all m ∈ N.
Then we can transform A into an algorithm B running in polynomial time such
that for all m ∈ N,

B accepts Gm and B rejects Hm.

By the Immerman-Vardi Theorem there is an LFP-sentence ϕB, say ϕB ∈
LFPm0 , such that for all ordered graphs G,

G |= ϕB ⇐⇒ B accepts G.

In particular, for all m ∈ N,

Gm |= ϕB and Hm � |= ϕB.

For m ≥ m0, this equivalence contradicts Gm ≡LFPm
Hm. �
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The same proof works for every property Q of ordered graphs (instead of
3-Col), even more: By definition, an LFP-sequence is a sequence (Gm,Hm)m∈N

of ordered graphs Gm and Hm with

Gm �∼= Hm (Gm and Hm are not isomorphic) and Gm ≡LFPm Hm.

Clearly every (Q,LFP)-sequence for any property Q of ordered graphs is an
LFP-sequence. We state the following result, which can be derived similarly to
Theorem 11.

Theorem 12 ([5]). No LFP-sequence can be generated in polynomial output
time.

We should mention that also for first-order logic there are problems Q such
that no (Q,FO)-sequence can be generated in polynomial output time:

Example 13. Let B ⊆ {0, 1}∗ be a P-bi-immune set; that is, neither B nor
{0, 1}∗ \ B contains an infinite subset decidable in polynomial time. For x ∈ B,
x = x1 . . . xs with xi ∈ {0, 1}, let G(x) be the ordered graph with vertex set
[s + 1], with the natural ordering on [s + 1], and with edge set {{i, i + 1} | i ∈
[s] and xi = 1}. Let Q(B) be the smallest class of ordered graphs containing
all G(x) with x ∈ B and closed under isomorphism. No (Q(B),FO)-sequence
can be generated in polynomial output time. For a contradiction assume that
(Gm,Hm)m∈N is a (Q(B),FO)-sequence generated in polynomial output time.
As above we can assume that the sequence is monotone and that |V (Gm)| ≥
|V (Hm)| for all m ∈ N or that |V (Gm)| ≤ |V (Hm)| for all m ∈ N. In the first
case, B contains an infinite subset in P and in the second case {0, 1}∗ \ B.

5 On Random (3-Col,LFP)-Sequences

We have seen that we cannot construct a (3-Col,LFP)-sequence in polynomial
output time. What happens if we consider random sequences? There are suc-
cessful applications of the Ehrenfeucht-Fräıssé-method where the graphs of the
corresponding sequences are constructed randomly. For example, in this way it
has been shown that reachability in directed graphs is not definable in monadic
second-order logic (see [1]) and that the finite variable hierarchy for first-order
logic on ordered graphs is strict (see [18]).

We aim at a result showing limitations of the probabilistic Ehrenfeucht-
Fräıssé-method similar to Theorem 11. For this purpose we have to take into con-
sideration a further property of such sequences (Gm,Hm)m∈N satisfied in most
successful applications of the Ehrenfeucht-Fräıssé-method obtained so far. For
(3-Col,LFP)-sequences (Gm,Hm)m∈N this property ensures that we can verify
that Gm ∈ 3-Col, Hm /∈ 3-Col, and that Gm ≡LFPm

Hm in a reasonable time.
Condition (r2) of the following definition of random (3-Col,LFP)-sequence con-
tains the precise formulation.

Definition 14. A probabilistic algorithm P generates a random (3-Col,LFP)-
sequence (Gm,Hm)m∈N if (r1) and (r2) are satisfied.



The Ehrenfeucht-Fräıssé Method and the Planted Clique Conjecture 95

(r1) For every m ∈ N the algorithm P, on input m, first deterministically com-
putes the vertex sets V (Gm) and V (Hm), and then it constructs the ordered
graphs Gm and Hm probabilistically.

(r2) There is an algorithm V, the verifier, such that (a)–(c) hold.
(a) For all ordered graphs G and H and all m ∈ N,

if V accepts (G, H, m), then G ≡LFPm H, G ∈ 3-Col, and H /∈ 3-Col.

(b) For sufficiently large m ∈ N and all m′ ≥ m,

Pr
[
V accepts (Gm′ ,Hm′ ,m)

] ≥ 1
(|V (Gm′)| + |V (Hm′)|)O(1)

.

(c) The running time of V on input (G,H,m) is bounded by f(m)·(|V (G)|+
|V (H)|)O(1) for some computable function f : N → N.

In this section we show:

Theorem 15. Assume that there is a 2��/c�-pseudorandom generator3 for some
natural number c ≥ 1. Then there is no probabilistic algorithm that generates a
random (3-Col,LFP)-sequence (Gm,Hm)m∈N in polynomial output time.

The following lemmas will finally yield a proof of Theorem15 along the fol-
lowing lines: For a contradiction we assume that there exists a probabilistic
algorithm P generating a random (3-Col,LFP)-sequence in polynomial output
time. Essentially we use the pseudorandom generator to derandomize the algo-
rithm P. In this way we obtain a deterministic algorithm which generates a
(3-Col,LFP)-sequence (Gm,Hm)m∈N in polynomial output time. This contra-
dicts Theorem 11.

As in the deterministic case we say that a probabilistic algorithm P gen-
erates a random monotone (3-Col,LFP)-sequence if it generates a random
(3-Col,LFP)-sequence (Gm,Hm)m∈N, which in addition to (r1) and (r2) satis-
fies (r3), where

(r3) for all m ∈ N, max{|V (Gm)|, |V (Hm)|} < min{|V (Gm+1)|, |V (Hm+1)|}.

If furthermore (r4) and (r5) hold, where

(r4) �log (|V (Gm)| + |V (Hm)|) < �log (|V (Gm+1)| + |V (Hm+1)|)

(r5) f(m) ≤ max{|V (Gm)|, |V (Hm)|} (where f is the computable function of
(r2)(c) used to bound the running time of the verifier V),

then we speak of a strongly monotone (3-Col,LFP)-sequence.
For our proof of Theorem15 we need to show that we can restrict ourselves

to strongly monotone (3-Col,LFP)-sequences.

3 We recall the notion of a pseudorandom generator in Definition 17.
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Lemma 16. If there is a probabilistic algorithm generating a random
(3-Col,LFP)-sequence in polynomial output time, then there is a probabilistic
algorithm that generates a strongly monotone random (3-Col,LFP)-sequence in
polynomial output time.

Proof. Similar to Proposition 4 one gets an increasing function s : N → N such
that s(m) is computable in space O(log m) and such that for all ordered graphs
G and H and all m ∈ N,

if G ≡LFPs(m) H and G �∼= H, then|V (G)|, |V (H)| > m.

Assume that the (3-Col,LFP)-sequence (Gm,Hm)m∈N is generated by the prob-
abilistic algorithm P in polynomial output time. Recall that the universes of Gm

and Hm are obtained deterministically. We define a function h : N → N induc-
tively by

h(m) :=

{
s(0), if m=0,

s
(
max{|V (Gh(m−1))|, |V (Hh(m−1))|}

)
, if m > 0.

As Gh(m) ≡LFPh(m) Hh(m), that is, Gh(m) ≡LFP
s

(
max{|V (Gh(m−1))|,|V (Hh(m−1))|}

)

Hh(m), we have

|V (Gh(m))|, |V (Hh(m))| > max
{|V (Gh(m−1))|, |V (Hh(m−1))|

}
.

As Gh(m) ≡LFPh(m) Hh(m), we have Gh(m) ≡LFPm
Hh(m). Therefore, it is routine

to show that the probabilistic algorithm, which on input m first computes h(m)
and then simulates P on h(m), generates a random monotone (3-Col,LFP)-
sequence in polynomial in output time.

So we may assume that the (3-Col,LFP)-sequence (Gm,Hm)m∈N generated
by P is monotone. We will get the sequence satisfying (r4) and (r5) as a subse-
quence of (Gm,Hm)m∈N, therefore it will be itself monotone. We may assume
that the function f : N → N mentioned in (r2) is time constructible. We define
g : N → N by

g(k) :=

⎧
⎪⎨

⎪⎩

the least m such that f(0) ≤ max{|V (Gm)|, |V (Hm)|}, if k = 0,

the least m such that f(k) ≤ max{|V (Gm)|, |V (Hm)|} and⌈
log (|V (Gg(k−1))| + |V (Hg(k−1))|)

⌉
< �log (|V (Gm)| + |V (Hm)|)�, if k > 0.

Again it is routine to show that the probabilistic algorithm, which on input m
first computes g(m) and then simulates P on g(m), generates a random and
strongly monotone (3-Col,LFP)-sequence in polynomial output time. �

Before turning to the main step of the proof of Theorem15, for the reader’s
convenience we recall the definition of pseudorandom generator (following
[3, Definition 20.2]).
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Definition 17. Let c ∈ N. An algorithm G is a 2��/c�-pseudorandom generator
if it satisfies (g1) and (g2).

(g1) On every input s ∈ {0, 1}∗ the algorithm G computes a string G(s) ∈
{0, 1}∗ with |G(s)| = 2�|s|/c� in time 2|s|.

(g2) For every � ∈ N and every circuit C of size at most t3, where t := 2��/c�,
we have

∣
∣
∣
∣ Pr
s∈{0,1}�

[
C(G(s)) = 1

] − Pr
r∈{0,1}t

[
C(r) = 1

]
∣
∣
∣
∣ < 1/10.

In the left term we consider the uniform probability space on {0, 1}�, in the
right term the uniform probability space on {0, 1}t.

Lemma 18. Assume

– there is a 2��/c�-pseudorandom generator G for some c ∈ N;
– there is a probabilistic algorithm P that generates a strongly monotone random

(3-Col,LFP)-sequence (Gm,Hm)m∈N in polynomial output time.

Then there is a deterministic algorithm A such that for every m ∈ N the algo-
rithm A on input m computes a sequence of pairs

(G1
m,H1

m), . . . , (Gtm
m ,Htm

m )

of ordered graphs, where all Gi
m have V (Gm) as vertex set, and all Hi

m have
V (Hm) as vertex set (recall that V (Gm) and V (Hm) are the vertex sets deter-
ministically computed by P on input m). Moreover, the following conditions (a1)–
(a3) hold:

(a1) The algorithm A runs in time (|V (Gm)|+ |V (Hm|)O(1); in particular, tm =
(|V (Gm)| + |V (Hm|)O(1).

(a2) For sufficiently large m ∈ N,

Pr
p∈[tm]

[
Gp

m ≡LFPm Hp
m, Gp

m ∈ 3-Col and Hp
m /∈ 3-Col

]

≥ Pr
p∈[tm]

[
V accepts (Gp

m, Hp
m, m)

]
> 1/2,

where V, the verifier, is the algorithm associated with P and mentioned in
condition (r2) of Definition 14. Note that the first inequality holds by this
condition.

(a3) For every m ∈ N we have
− max{|V (Gm)|, |V (Hm)|} < min{|V (Gm+1)|, |V (Hm+1)|}
− �log (|V (Gm)| + |V (Hm)| < �log (|V (Gm+1| + |V (Hm+1)|);
− f(m) ≤ max{|V (Gm)|, |V (Hm)|} (where f is the function mentioned in
(r2)(c)).
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Proof. For the probabilistic algorithm P we choose the verifier V according to
(r2). By (r5) we know that V on input (Gm,Hm,m) runs in time polynomial in
(|V (Gm)|+ |V (Hm)|). We can assume that P satisfies (r2)(b′) instead of (r2)(b),
where

(r2)(b′) for sufficiently large m ∈ N, Pr
[
V accepts (Gm,Hm,m)

] ≥ 4/5.

This is achieved by the standard amplification method. More precisely, by repeat-
ing the algorithm P, on input m, polynomial many times, that is, polynomial in
(|V (Gm)| + |V (Hm)|) many times, and each time checking whether V accepts
(Gm,Hm,m), where (Gm,Hm) is the output of P.

By the properties of P, we know that for some d ∈ N with d ≥ 10:

– The running time of P on m is bounded by (|V (Gm)| + |V (Hm)|)d.
– The running time of the algorithms V on inputs (G,H,m) with f(m) ≤

max{|V (G)|, |V (H)|} is bounded by (|V (G)| + |V (H)|)d.

We let A be the following deterministic algorithm:

A // m ∈ N in unary

1. simulate the (deterministic) part of the computation of P
2. on input m yielding the universes V (Gm) and V (Hm)
3. n ← |V (Gm)| + |V (Hm)|
4. � ← c · �d · log n
5. for all s ∈ {0, 1}� do
6. compute G(s)
7. simulate P on input m where in the simulation
8. the internal coin tosses of P are replaced according to G(s)
9. output (Gs

m,Hs
m), the output of this simulation of P.

Then (a1) holds as 2� = (|V (Gm)| + |V (Hm)|)O(1). Since P generates strongly
monotone sequences, also (a3) holds. It remains to establish (a2). For a contra-
diction assume that

for infinitely many m ∈ N : Pr
p∈[tm]

[
V accepts (Gp

m,Hp
m,m)

] ≤ 1/2. (2)

For every m ∈ N we let

nm := |V (Gm)| + |V (Hm)|.

Clearly there is an algorithm that decides in time O(nd+1) whether a given n ∈ N

is equal to nm for some m ∈ N, and if so, outputs m (which is unique by (a3)).
We consider the following algorithm D:
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D // r ∈ {0, 1}∗

1. compute an m with |r| = 2�d·log nm�

2. if no such m exists then reject
3. compute the output (Gm,Hm) of P on input m if
4. the internal coin tosses of P are replaced according to r
5. simulate V on (Gm,Hm,m)
6. if the simulation rejects then reject
7. accept.

By (r2)(b′), for sufficiently large m ∈ N, and hence sufficiently large n∗ :=
2�d·log nm�,

Pr
r∈{0,1}n∗

[
D accepts r

]
= Pr

p∈[tm]

[
V accepts (Gp

m,Hp
m,m)

] ≥ 4/5. (3)

Furthermore note that by (2),

for infinitely many m and � := c · �d · log nm : Pr
s∈{0,1}�

[
D(G(s)) = 1

] ≤ 1/2.

(4)
Moreover, as f(m) ≤ max{|V (Gm)|, |V (Hm)|} (by the strong monotonicity
of the random (3-Col,LFP)-sequence computed by P), we see that the run-
ning time of D is bounded by O(|r|1+1/d) ≤ O(|r|1.1). Using the Cook-Levin’s
reduction, from the algorithm D we can construct, for every m ∈ N and
n∗ := 2�d·log nm�, a circuit Cn∗ such that for every r ∈ {0, 1}n∗

,

Cn∗(r) = 1 ⇐⇒ D accepts r (5)

and such that for the size |Cn∗ | of the circuit Cn∗ we have

|Cn∗ | = O
(
(n∗)2.2

)
. (6)

By (3) and (5), for sufficiently large m ∈ N, and hence sufficiently large n∗ =
2�d·log nm�,

Pr
r∈{0,1}n∗

[
Cn∗(r) = 1

]
= Pr

p∈[tm]

[
V accepts (Gp

m,Hp
m,m)

] ≥ 4/5.

By (4) and (5), we know that for infinitely many m ∈ N and � := c · �d · log nm
we have for n∗ = 2�d·log nm�,

Pr
s∈{0,1}�

[
Cn∗(G(s)) = 1

] ≤ 1/2.

Together with the previous inequality, for such an m and the corresponding
� and n∗,

∣
∣
∣ Pr

r∈{0,1}n∗

[
Cn∗(r) = 1

] − Pr
s∈{0,1}�

[
Cn∗(G(s)) = 1

]∣∣
∣ ≥ 4/5 − 1/2 > 1/10,

which, by (6), contradicts (g2) in Definition 17.
�
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Proof of Theorem 15: Assume that there is a probabilistic algorithm that gener-
ates a random ordered (3-Col,LFP)-sequence in polynomial output time. We
show that there is a deterministic algorithm which generates a (3-Col,LFP)-
sequence in polynomial output time. This contradicts Theorem 11.

By Lemmas 16 and 18 there is an algorithm A with the properties stated in
Lemma 18. We show that the following algorithm S generates a (3-Col,LFP)-
sequence (G′

m,H ′
m)m∈N in polynomial output time.

S // m ∈ N

1. simulate A on input m to compute (G1
m,H1

m), . . . , (Gtm
m ,Htm

m )
2. for all i ∈ [tm] do
3. simulate V on (Gi

m,Hi
m,m)

4. if the simulation accepts then output (Gi
m,Hi

m) as (G′
m,H ′

m)
and halt

By (a2) of Lemma 18, the algorithm S will halt on input m and yield the desired
(G′

m,H ′
m). By (a3) of Lemma 18, the algorithm V is applied to inputs (G,H,m)

with f(m) ≤ max{|V (G)|, |V (H)|}; on such inputs its running time is bounded
by (|V (G)| + |V (H)|)O(1). Together with (a1), this shows that S runs in polyno-
mial output time. �
In contrast to deterministic algorithms generating “standard” (3-Col,LFP)-
sequences we require of randomized (3-Col,LFP)-sequences (Gm,Hm)m∈N that
the property

Gm ≡LFPm
Hm, Gm ∈ 3-Col, and Hm /∈ 3-Col

can be checked in a reasonable time (the existence of the verifier, see property
(r2) in Definition 14). What happens if we drop this requirement? The following
sections address this problem.

6 The Planted Clique Conjecture

In the standard planted clique problem, we are given a graph G whose edges are
generated by starting with a random graph with universe [n], then “planting”
(adding edges to make) a random clique on k vertices; the problem asks for efficient
algorithms finding such a clique of size k. The problem was addressed in [2,13,16],
the authors of the last paper mention that it was suggested by M. Saks. It has
applications in cryptography [14], algorithmic game theory [11,17], and classi-
cal complexity [19]. Here we study some consequences for the Ehrenfeucht-Fräıssé
method of a “logic reformulation” of the planted clique problem.

The Erdős-Rényi probability space ER(n, 1/2) is obtained as follows. We
start with the set [n] of vertices. Then we choose every e ∈ (

[n]
2

) (
:= {X ⊆ [n] |

|X| = 2}) as an edge with probability 1/2, independently of the choices of other
edges.
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For G ∈ ER(n, 1/2) the expected size of a maximum clique is approximately
2 · log n. Clearly, the probability that G ∈ ER(n, 1/2) contains a clique of size k
is bounded by (

n
k

)

· 2−
(

k
2

)
.

For k = 4 · log n we have
(

n
k

)

·2−
(

k
2

)
≤ n4·log n·2−

(
k
2

)
= 24·log 2n·22·log n−8·log 2n ≤ 2−2·log 2n = n−2·log n.

Thus

Proposition 19. PrG∈ER(n,1/2)

[
G contains a clique of size 4 · log n

]
= 1

nΩ(logn) .

For any graph G with vertex set [n] and A ⊆ [n] we denote by G + K(A) the
graph obtained from G by adding edges such that the subgraph induced on A is
a clique. For n ∈ N and k ∈ [n] we consider a second distribution ER(n, 1/2, k):
pick a random (ordered) graph G ∈ ER(n, 1/2) and a uniformly random subset
A of [n] of size k and plant in a clique on A in G, thus getting G + K(A).4 We
view G and G + K(A) as ordered graphs equipped with the natural ordering
on [n].

The following decision version PCC(δ) of the planted clique conjecture
states that no polynomial time algorithm distinguishes between the distribu-
tions ER(n, 1/2) and ER(n, 1/2, 4 · log n) more than δ(n).

Conjecture 20 (The Planted Clique Conjecture PCC (δ)). Let δ : N → R

with 0 < δ(n) < 1 for all n ∈ N. For every polynomial time algorithm A there is
an n0 ∈ N such that for all n ≥ n0,
∣
∣∣
∣ Pr
G∈ER(n,1/2)

[
A accepts G

]− Pr
G+K(A)∈ER(n,1/2, 4·log n)

[
A accepts G + K(A)

]
∣
∣∣
∣ ≤ δ(n).

Clearly, if δ(n) ≤ δ′(n) for all n ∈ N, then PCC(δ) implies PCC(δ′). In [14] the
assumption PCC(1 − 1/q) for some q ∈ N[X], that is, for some polynomial q
with natural numbers as coefficients, has been put to good use.

Proposition 21. For q ∈ N[X], the statement PCC(1 − 1/q) implies P �= NP.

Proof. By Proposition 19 we know that for sufficiently large n,

Pr
G∈ER(n,1/2)

[
G contains a clique of size 4 · log n

]
< 1/q(n). (7)

If P = NP, then there is a (deterministic) polynomial time algorithm A deciding
whether a graph contains a clique of size 4 · log n. For such an A we have by (7),

Pr
G+K(A)∈ER(n,1/2, 4·log n)

[
A accepts G+K(A)

]− Pr
G∈ER(n,1/2)

[
A accepts G

]
> 1− 1

q(n)
.

This contradicts to PCC(1 − 1/q). �
4 In the following the notation G+K(A) ∈ ER(n, 1/2, k) should give the information
that the random graph was G and that the random subset of [n] of size k was A.
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By the Immerman-Vardi Theorem, on ordered graphs polynomial time algo-
rithms correspond to LFP-sentences. Therefore, PCC(δ) just says that for every
LFP-sentence ϕ and all sufficiently large n,

∣
∣
∣
∣ Pr
G∈ER(n,1/2)

[
G |= ϕ

] − Pr
G+K(A)∈ER(n,1/2, 4·log n)

[
G + K(A) |= ϕ

]
∣
∣
∣
∣ ≤ δ(n).

This holds if

Pr
G+K(A)∈ER(n,1/2, 4·log n)

[
G |= ϕ ⇐⇒ G + K(A) |= ϕ

] ≥ 1 − δ(n). (8)

For our intended application to the Ehrenfeucht-Fräıssé-method we need an even
stronger assumption, namely that for every m ∈ N and all sufficiently large n,

Pr
G+K(A)∈ER(n,1/2, 4·log n)

[
for all ϕ ∈ LFPm :

(
G |= ϕ ⇐⇒ G+K(A) |= ϕ

)] ≥ 1−δ(n),

or more succinctly,

Pr
G+K(A)∈ER(n,1/2, 4·log n)

[
G ≡LFPm

G + K(A)
)] ≥ 1 − δ(n).

We shall need an effective bound for the rate of convergence. So we introduce
the following logic version LPCC(ε) of the planted clique conjecture.

Conjecture 22 (LPCC (ε)). Let ε : N → R with 0 < ε(n) < 1 for all n ∈ N.
There is a computable function f : N → N such that for every m ∈ N and all
n ≥ f(m),

Pr
G+K(A)∈ER(n,1/2, 4·log n)

[
G ≡LFPm

G + K(A)
] ≥ ε(n).

The previous remarks show:

Proposition 23. Let ε : N → R with 0 < ε(n) < 1 for all n ∈ N. Then LPCC(ε)
implies PCC(1 − ε).

By this proposition and Proposition 21, we get

Corollary 24. For q ∈ N[X], LPCC(1/q) implies P �= NP.

Assume that LPCC(ε) holds. By taking a natural number m such that LFPm

contains a sentence expressing that the number of edges is even, we see
that limn∈N ε(n) ≤ 1/2. In Proposition 26 we generalize this and show that
limn→∞ ε(n) must be 0.

7 The Planted Clique Conjecture and (3-Col,LFP)-
sequences

The following result shows that, assuming LPCC(1/q), there is a probabilistic
algorithm yielding a random sequence (Gm,Hm)m∈N such that

Gm ≡LFPm
Hm, Gm ∈ 3-Col, and Hm /∈ 3-Col (9)
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holds with high probability. By Theorem15 we cannot have a verifier for this
algorithm, that is an efficient algorithm that verifies the properties stated in (9)
(assuming the existence of a pseudorandom generator).

Theorem 25. Assume that LPCC(1/q) holds for some polynomial q ∈ N[X].
Then there is a probabilistic algorithm P which on input m ∈ N generates a pair
(Gm,Hm) of ordered graphs in time (|V (Gm)| + |V (Hm)|)O(1) such that

Pr
[
Gm ≡LFPm Hm, Gm ∈ 3-Col, and Hm /∈ 3-Col

] ≥ 1
(|V (Gm)| + |V (Hm)|)O(1)

.

Moreover, P on input m ∈ N first deterministically computes the vertex sets of
the graphs Gm and Hm.

Proof. Consider the problem

Clique(4 · log )
Instance: An n ∈ N and an ordered graph G with

|V (G)| = n.
Problem: Does G have a clique of size 4 · log n?

The proof relies on the following two facts (we leave the details to the reader):

– “LPCC(1/q) for some q ∈ N[X]” essentially states that there is a prob-
abilistic algorithm P which generates a

(
Clique(4 · log ),LFP

)
-sequence

(Gm,Hm)m∈N of ordered graphs in polynomial output time such that

Pr
[
Gm ≡LFPm Hm, Gm ∈ Clique(4 · log ), and Hm /∈ Clique(4 · log )

]

≥ 1
(|V (Gm)| + |V (Hm)|)O(1)

.

– As Clique(4 · log ) is in NP and 3-Col is NP-complete and has a padding
function, we can transform the

(
Clique(4 · log ),LFP

)
-sequence into a

(3-Col,LFP)-sequence. �

8 Some Remarks on the Logic Version of the Planted
Clique Conjecture

In this section we show (see Lemma 27) that with positive asymptotic probability
we can distinguish the LFPm-theory of the graphs G and G + K(A) by modulo
counting their edges (see Lemma 27 for the precise statement). Using this fact,
we refute LPCC(ε) unless limn∈N ε(n) = 0.

Proposition 26. Let ε : N → R
+. If LPCC(ε) holds, then limn∈N ε(n) = 0
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Proof. It suffices to show that for every positive δ ∈ R there is an m ∈ N such
that

lim
n→∞ Pr

G+K(A)∈ER(n,1/2, 4·log n)

[
G ≡LFPm

G + K(A)
] ≤ δ.

This is an immediate consequence of the following lemma as there are LFP-
sentences expressing in an ordered graph that the number of edges is congruent
i modulo � (for � ∈ N and i ∈ {0, . . . , � − 1}). �

Lemma 27. Let � ∈ N and i ∈ {0, . . . , �−1}. Then for every nondecreasing and
unbounded function h : N → N,

lim
n→∞ Pr

G+K(A)∈ER(n,1/2, h(n))

[ |E(G + K(A))| − |E(G)| ≡ i mod �
]

=
1
�
.

Proof. Let n ∈ N and k ∈ [n]. Then, for every graph G with vertex set [n], every
subset A of [n] of size k, and every i ∈ {0, 1, . . . , � − 1}, we have

∣
∣E(G+K(A))

∣
∣−|E(G)| ≡ i mod � ⇐⇒ ∣∣E(G)∩E(K(A))

∣
∣ ≡
(

k

2

)

− i mod �. (10)

Here, E(K(A)) denotes the set of edges of the clique on A. We set s(k) :=
(
k
2

)
.

Then |E(K(A))| = s(k). For every r ∈ {0, 1, . . . , � − 1}, we let ar(k) be the
number of those subsets of E(K(A)), whose cardinality is equivalent to r modulo
�; thus

ar(k) =
j≡r mod �∑

0≤j≤s

(
s(k)

j

)

.

Note that ar(k) does not depend on n (and in particular, not on the chosen
subset A of [n] of size k). By (10), we get for all n ≥ k, all subsets A of [n] of
size k, and all i ∈ {0, 1, . . . , � − 1},

Pr
G∈ER(n,1/2)

[ ∣
∣E(G + K(A))

∣
∣ − ∣

∣E(G)
∣
∣ ≡ i mod �

]
=

as(k)−i

2s(k)
. (11)

Claim 1. Let r ∈ {0, 1, . . . , � − 1}. Then (here a�(k) := a0(k)),

lim
k→∞

|ar+1(k) − ar(k)|
2s(k)

= 0.

Proof of Claim 1: First we show that there is a positive ι ∈ R such for all
sufficiently small positive δ ∈ R and all n ∈ N with (1/2 − δ) · n ∈ N,

(
n

(1/2 − δ) · n

)

= O

(
2(1−ιδ2)·n

√
n

)

. (12)

In fact, using Stirling’s formula

√
2πn ·

(n

e

)n

≤ n! ≤ e · √n ·
(n

e

)n

,
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we get for n ∈ N and ε ∈ R with ε · n ∈ N,
(

n

ε · n

)

≤ e · 2H(ε)·n

2π · √
ε · (1 − ε) · n

. (13)

Here H : (0, 1) → R denotes the binary entropy function defined by

H(ε) = −ε · log ε − (1 − ε) · log (1 − ε).

Recall that H attains 1, its maximum value, at ε = 1/2. We want to bound the
values of H in the neighborhood of 1/2. Let δ ∈ R with 0 ≤ δ < 1/2. Then

H(1/2 − δ) = −(1/2 − δ) · log (1/2 − δ) − (1/2 + δ) · log (1/2 + δ).

Using the Taylor series for log x, we get from this equality that there is an ι ∈ R

with ι > 0 such that for sufficiently small δ ∈ R with δ ≥ 0,

H(1/2 − δ) ≤ 1 − ι · δ2. (14)

Hence, assuming in addition that δ < 1/
√

8 and (1/2 − δ) · n ∈ N,
(

n

(1/2 − δ) · n

)

≤ e · 2(1−ι·δ2)·n

2π · √
(1/4 − δ2) · n

(by (13) and (14))

= O

(
2(1−ι·δ2)·n

√
n

)

(as δ2 < 1/8),

which is the desired equality.
Now let j, s ∈ N satisfy 0 ≤ j < s. Note that

(
s

j + 1

)

−
(

s

j

)

=
s − 2j − 1

j + 1
·
(

s

j

)

. (15)

We distinguish two cases.
Case j ≤ s/2 − 3

√
s2: Then j ≤ (1/2 − δ) · s for δ ∈ (s−2/3, s−1/3). If (1/2 − δ) ·

s ∈ N, we get by (12)

(
s

j + 1

)

−
(

s

j

)

≤ s ·
(

s

(1/2 − δ) · s

)

≤ s · O

(
2(1−ι·δ2)·s

√
s

)

(by (15) and (12))

= O

(
s · 2s

√
s · 2ι· 3√s

)

= O

(√
s · 2s

2ι· 3√s

)

.

Case s/2 − 3
√

s2 < j < s/2: Then
(

s

j + 1

)

−
(

s

j

)

≤ 2 3
√

s2

s/2 − 3
√

s2 + 1
·
(

s

s/2

)

(by (15)

= O

(
2s

s−2/3+3/3+1/2

)

= O

(
2s

s5/6

)

.
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Putting all together we get the statement of Claim 1 as follows

ar+1(k) − ar(k) =

j≡r+1 mod �∑

0≤j≤s(k)

(
s(k)

j

)

−
j≡r mod �∑

0≤j≤s(k)

(
s(k)

j

)

≤
j≡r mod �∑

0≤j<s(k)/2

((
s(k)

j + 1

)

−
(

s(k)

j

))

=

j≡r mod �∑

0≤j≤s(k)/2− 3
√

s(k)2

((
s(k)

j + 1

)

−
(

s(k)

j

))

+

j≡r mod �∑

s(k)/2− 3
√

s(k)2<j<s(k)/2

((
s(k)

j + 1

)

−
(

s(k)

j

))

= O

(
s(k) · √

s · 2s(k)

2ι· 3
√

s(k)

)
+ O

(
s(k)2/3 · 2s(k)

s(k)5/6

)
(by the equalities derived above)

= o(2s(k))

Similarly we can show ar(k) − ar+1(k) = o(2s(k)). �
Claim 2. Let δ > 0. If k is sufficiently large, then for all n ≥ k, all subsets A of
[n] of size k, and all i ∈ {0, 1, . . . , � − 1}, we have

1
�

− δ ≤ Pr
G∈ER(n,1/2)

[ ∣
∣E(G + K(A))

∣
∣ − ∣

∣E(G)
∣
∣ ≡ i mod �

]
≤ 1

�
+ δ.

Proof of Claim 2: For every i ∈ {0, 1, . . . , � − 1} let

pi(k) :=
as(k)−i(k)

2s(k)
.

Claim 1 implies that for every ι > 0 and all sufficiently large k,
∣
∣pi+1(k) − pi(k)

∣
∣ ≤ ι.

Thus,
p0(k) − i · ι ≤ pi(k) ≤ p0(k) + i · ι. (16)

As
∑�−1

j=0 j = � · (� − 1)/2, we obtain

� · p0(k) − � · (� − 1)
2

· ι ≤
�−1∑

j=0

pj(k) = 1 ≤ � · p0(k) +
� · (� − 1)

2
· ι

Hence,
1
�

− (� − 1)
2

· ι ≤ p0(k) ≤ 1
�

+
(� − 1)

2
· ι. (17)

Choosing ι small enough, (16) and (17) imply for all sufficiently large k and
every i ∈ {0, 1, . . . , � − 1},

1
�

− δ ≤ pi(k) ≤ 1
�

+ δ.
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As for all n ≥ k, all subsets A of [n] of size k, and all i ∈ {0, 1, . . . , � − 1}, we
have (compare (11))

pi(k) =
as(k)−i

2s(k)
= Pr

G∈ER(n,1/2)

[ ∣
∣E(G + K(A))

∣
∣ − ∣

∣E(G)
∣
∣ ≡ i mod �

]
,

this yields our claim. �
Clearly, Claim 2 immediately implies the statement of Lemma 27. �

9 Further Results and Open Questions

In Sect. 4 we have seen that for no problem Q of ordered graphs there exists a
(Q,LFP)-sequence, which can be generated in polynomial output time. Recall
that LFP captures polynomial time on ordered graphs. More generally, let L be
a logic capturing one of the complexity classes LOGSPACE, P, or PSPACE on
(ordered) graphs: Then, for no problem Q of (ordered) graphs we can generate
a (Q,L)-sequence (Gm,Hm) by an algorithm which satisfies the resource bound
in |V (Gm)|+ |V (Hm)| characteristic for the corresponding complexity class, e.g.,
not in space O(log (|V (Gm)|+|V (Hm)|)) for LOGSPACE. Furthermore there are
extensions of these results to “nondeterministic classes” such as NLOGSPACE
and NP and extensions for so-called Ajtai-Fagin games adequate for (monadic)
Σ1

1 (see [5] for most of these results).
We are far from understanding when an efficiently computable (Q,L)-sequence

exists. Even for first-order logicwe have no simple and informative characterization
of the problems Q with a (Q,FO)-sequence computable in polynomial output time.
Besides the “negative”Example 13,we have a positive result: IfQ is NP-hard under
FO-reductions (a property shared by many natural NP-complete problems), then
a (Q,FO)-sequence can be generated in polynomial output time.

In Sect. 5 we have mentioned that in most applications of the Ehrenfeucht-
Fräıssé-method the verification that Gm and Hm satisfy the same sentences of the
corresponding logic of “quantifier rank” or length ≤ m was done by an algorithm
running in time f(m) · (|V (Gm)| + |V (Hm)|)O(1) for some computable function
f . In the Appendix of [5], we have shown this explicitly for two (nontrivial)
applications of the method. However, this is not always the case; for example, not
for the highly nontrivial application of the Ehrenfeucht-Fräıssé-method in [21].

We have seen in Sect. 6 that LPCC(1/q) for some q ∈ N[X] implies P �= NP.
Can one refute the statement “there is a q ∈ N[X] with LPCC(1/q)?” or are
there results or insights which make the statement plausible?

Furthermore, we ask: Is it true that for every single LFP-sentence ϕ we have

lim
n→∞ Pr

G+K(A)∈ER(n,1/2, 4·log n)

[
G |= ϕ ⇐⇒ G + K(A) |= ϕ

] ≥ 1/2?
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LIAFA, CNRS UMR 7089, Université Paris 7 Denis Diderot, Paris, France
{cc,seg}@liafa.univ-paris-diderot.fr

Abstract. We compare the monadic second-order theory of an arbitrary
linear ordering L with the theory of the family of subsets of L endowed
with the operation on subsets obtained by lifting the max operation on L.
We show that the two theories define the same relations. The same result
holds when lifting the min operation or both max and min operations.

1 Introduction

We initiated a couple of years ago an investigation aiming at comparing the
theory of a monadic second-order structure S = 〈U,P(U);=U ,∈, ω1, . . . , 〉 and
that of the associated first-order structure T = 〈P(U);=, Ω1, . . . , 〉 where Ωi is
the operation ωi lifted to subsets: Ωi(X1, . . . , ) = {ωi(x1, . . . , ) | x1 ∈ X1, . . .}.
The structure T can be viewed as follows: lift all operations to subsets and
consider the sole formulas about S with no occurrence of an individual variable,
whether free or bound. Let us stress that the inclusion relation and the Boolean
operations on sets are not given as primitives in T . The structure T is clearly
definable in S : the unique sort of T (namely P(U)) is among the two sorts of S
(which are U and P(U)) and the lifted operations Ωi’s are definable in S. The
general issue is: what can be known of S within T ? More precisely,

(Q1) Concerning relations on P(U), does definability in S implies definability
in T ? This question reduces to the following one: is it possible to define in
T the class of singleton sets and the set-inclusion relation hence to define
in T the most natural isomorphic copy of S.

(Q2) In case question (Q1) receives negative answer then
(*) which S-definable families of subsets of U are also T -definable?
(**) is it still possible to define in T an isomorphic copy of S ?

In previous works we studied two particular cases: S1 = 〈N; =N,∈,+〉 and
S2 = 〈Σ∗; =Σ∗ ,∈, ·〉, cf. [4,5]. We showed that in these two cases question (Q1)
has a negative answer but question (∗) gets a positive solution: an isomorphic
copy of S is definable in T . Let us give a brief account for S1. Consider the maps
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σ : P(N) → P(N) and f : N → P(N) such that σ(X) = {0} ∪ (1 + X) and
f(n) = {0} ∪ (1 + n + N). We proved that the ranges of σ and f and the images
under σ and f of membership and addition, namely, the four predicates

σ(P(N)) ⊆ P(N) f(N) ⊆ P(N) {(f(x), σ(X)) | x ∈ X} ⊆ PN) × P(N)
{(f(x), f(y), f(z)) | x, y, z ∈ N, z = x + y} ⊆ P(N) × P(N) × P(N)

are all definable in T with respective complexities Σ1, Π3, Δ4 and Δ5.
In this paper we consider an arbitrary linear order L with possibly minimum

and maximum elements and show that its monadic second-order theory is equiv-
alent to the first-order theory of its power set when the order relation is lifted by
defining the predicate Max(X,Y,Z) where X = {max{y, z} | y ∈ Y, z ∈ Z}. The
situation is much simpler than above since question (Q1) gets a positive answer:
we can express in T the predicates “X is a singleton” and “X is a subset of Y ”.

Let us recall that the monadic theory of a linear order has been intensively
studied. As a prelude to the general monadic theory of linear orders, Gurevich
1964 [6] proved the decidability of the theory of linear orders with one-place
predicates. Büchi 1960 [1] proved the decidability of the monadic theory of the
order on N. The result has been extended to all countable ordinals, Büchi 1973
[2], and then to all ordinals < ω2, Büchi and Zaiontz 1983 [3]. The decision
problem for the monadic theory of the ordinal ω2 happens to depend on axioms
of set theory, Gurevich et al. 1983 [7], Lifsches and Shelah 1992 [12]. The monadic
theory of the order on R is undecidable, Shelah 1975 [14], and in fact very
complex, Gurevich 1979 [8], Gurevich and Shelah 1982-84 [9–11].

We now give a brief outline of the paper. Section 2 recalls the basics on linear
orderings. It also introduces the two structures to be compared. In Sect. 3 we
study for its own sake the structure obtained by lifting a linear ordering to
subsets. We consider it both as a monoid and as a partial ordering of which we
give a couple of alternative characterizations.

The expressibility of singletons is obtained in Sect. 4 by a careful study of
the set of immediate predecessors of a given subset in the lifted ordering since
the cardinal of this set discriminates the singletons among all subsets. The same
is done for pairs.

Membership of an element to an arbitrary subset (more exactly, inclusion of
a singleton set in a set) is the second ingredient to prove the equivalence of the
two structures and it is considered in Sect. 5. Two different expressions are given
according to whether or not the ordering possesses a zero. The two expressions
have the same complexity Δ4 but they are based on different approaches which
we found interesting to keep.

The equivalence of different structures, mainly those introduced in paragraph
2.2 along with their natural variants is established in Sect. 6.

2 Preliminaries

2.1 Linear Orders

This section is meant to keep this paper self-contained. We recall the basic
definitions on orderings, see e.g., [13]
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Definition 1. An element a ∈ L is an upper bound of X ⊆ L if x ≤ a for
all x ∈ X. It is a least upper bound if it is an upper bound and for all upper
bounds b it holds a ≤ b. It is the maximum element of X and denoted max(X)
if furthermore it belongs to X. If L has a maximum element we denote it by 1.

A final segment is a subset which is upward saturated, i.e., x ∈ X and y ≥ x
implies y ∈ X. It is a closed final segment if it is of the form {x | x ≥ a} for
some a ∈ L, else it is an open final segment.

The notions of lower bound, greatest lower bound glb(X) and minimum
element min(X) of a set X are defined in the obvious similar way. So is the
notion of minimum element 0.

Definition 2. Two elements a, b are successive if a < b and the condition a ≤
c ≤ b implies c = a or c = b. We then say that a is an immediate predecessor
of b and that b is an immediate successor of a.

An element is a successor if it admits an immediate predecessor, it is a prede-
cessor if it admits an immediate successor.

If a ∈ L is not a successor and if it is not 0, it is a limit.

Notation 3. The final segments canonically associated to a subset X ⊆ L are
denoted by

X≥ = {y | ∃x ∈ X x ≤ y} (the smallest final segment containing X)
X> = {y | ∃x ∈ X x < y}

and the set of strict lower bounds by

X< = {y | ∀x ∈ X y < x}
Lemma 4. Given two final segments F, G ⊆ L we have

F � G or F = G or G � F

Proof. Assume F = G, i.e., without loss of generality assume there exists x ∈
F \ G. Then for all y ∈ G we have x ≥ y or equivalently x < y. But then
G ⊆ {z ∈ L | x < z} � F . �

Remark 5. The following elementary observation underlies many proofs of this
paper. It helps having it in mind.

For all nonempty subsets X ⊆ L exactly one of the following conditions
holds.

– X has a minimum and X< is empty or has a maximum (e.g., in any finite
linear order).

– X has a minimum and X< is nonempty and has no maximum (consider the
order A + B with A = B = N and take X = B).

– X has no minimum and X< is empty or has a maximum (consider the order
A + B with A = B = −N and take X = B).

– X has no minimum and X< is nonempty and has no maximum (consider the
order A + B with A = N, B = −N and take X = B).



112 C. Choffrut and S. Grigorieff

2.2 Logical Structures

Given an arbitrary linear order ≤ on a nonempty set L, we consider the struc-
ture 〈L; =,max〉 or 〈L; =,max, 0, 1〉 where max has the natural interpretation
max{x, y} = x if x ≤ y and y otherwise and 0 and 1 are respectively the mini-
mum and maximum elements (in case they exist).

We consider the operation on P(L) obtained by lifting the max operation
on L.

Definition 6. For X,Y ⊆ L, we set

X ↑ Y = {max{x, y} | x ∈ X, y ∈ Y }
We compare the two associated structures dealing with sets:

S =
{ 〈L,P(L);=,∈,max〉

or 〈L,P(L);=,∈,max, 0, 1〉 , T = 〈P(L);=, ↑〉 (1)

Now, we define precisely what question (Q1) supra means for the two struc-
tures S and T . Question (Q1) (slightly revisited) is as follows: given any second-
order formula φ for S with m first-order and n second-order variables, does there
exist some first-order formula ψ for T with m+n first-order variables such that,
for all a1, . . . , am ∈ L and A1, . . . , An ∈ P(L) the following equivalence holds

〈L,P(L);=,∈,max〉 |= φ(a1, . . . , am, A1, . . . , An)
⇐⇒

〈P(L);=, ↑〉 |= ψ({a1}, . . . , {am}, A1, . . . , An)
(2)

An easy induction on formulas φ shows that it suffices to get such a formula
ψ for the two particular formulas φ expressing the predicates “X = {x}” and
“{x} ⊆ X”.

Observe that the reverse question “given ψ get φ” is straightforward since
the lifting of operations from L to P(L) can be expressed in S.

In all cases, when showing that a predicate is expressible in the language we
give an estimate of its syntactic complexity. We recall that a predicate is Σn

(resp. Πn) if it is defined by a formula that begins with some existential (resp.
universal) quantifiers and alternates n−1 times between series of existential and
universal quantifiers. It is Δn if it is both Σn and Πn. It is Σn ∧ Πn if it is
defined by a conjunction of a Σn formula and a Πn formula.

3 Lifted Structure

Every linear ordering L is a lattice which allows one to view it as a universal
algebra equipped with binary operations of lower and upper bound of two ele-
ments. Here we show that the lifted binary operation of P(L) allows us to define
a partial ordering which makes it a join-semilattice. We investigate P(L) both
as an algebra and as a partially ordered set.
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3.1 The Semigroup 〈P(L), ↑〉
Here we are interested in the algebraic structure of the operation ↑ on the subsets
of L.

Lemma 7. 1. The operation ↑ on P(L) is idempotent, commutative and asso-
ciative and admits the empty set ∅ as an absorbing element.
2. The operation ↑ has a neutral element if and only if (L,≤) has a minimum
element 0. In this case, {0} is the neutral element of ↑.
3. The operation ↑ distributes over the set union.

Proof. Straightforward.

Corollary 8. 1. The predicate X = ∅ is Π1 expressible in 〈P(L);=, ↑〉.
2. If L has a minimum element 0 then the predicate X = {0} is Π1.

Proof. 1. Since ∅ is absorbing in 〈P(L);=, ↑〉 and there is at most one absorbing
element, X = ∅ holds if and only if ∀Y X ↑ Y = X.
2. Similarly, {0} is the unique neutral element in 〈P(L);=, ↑〉, hence X = {0}
holds if and only if ∀Y X ↑ Y = Y . �

3.2 A Characterization of the Operation ↑
Because of Lemma 4, for two given final segments one is included into the other.
Therefore the following result exhausts all possible cases. Its purpose is to work
as much as possible with subsets rather than applying the original Definition 6
which mixes subsets and elements.

Lemma 9. For all X,Y ⊆ X we have

X ↑ Y = (X ∪ Y ) ∩ X≥ ∩ Y ≥ =
{

Y ∪ (X ∩ Y >) = Y ∪ (X ∩ Y ≥) if Y ≥ ⊆ X≥

X ∪ (X> ∩ Y ) = X ∪ (X≥ ∩ Y ) if X≥ ⊆ Y ≥

Proof. If z ∈ X ↑ Y then z = x ∨ y for some x ∈ X and y ∈ Y . If x ≤ y then
z = y ∈ X≥ ∩ Y and if x ≥ y then z = x ∈ X ∩ Y ≥. In both cases we have
z ∈ (X ∪ Y ) ∩ X≥ ∩ Y ≥. Conversely, let z ∈ (X ∪ Y ) ∩ X≥ ∩ Y ≥. If z ∈ X then
z ∈ X∩Y ≥ hence z ≥ y for some y ∈ Y and z = z∨y ∈ X ↑ Y . Similarly, if z ∈ Y
then z is also in X ↑ Y . This proves equality X ↑ Y = (X ∪Y )∩X≥ ∩Y ≥. Since
X ⊆ X≥ and Y ⊆ Y ≥, the other stated equalities (under assumption Y ≥ ⊆ X≥

or X≥ ⊆ Y ≥) are derived by simple set computation. �

3.3 The Partially Ordered Set 〈P(L),�〉
We consider the following binary relation on subsets which happens to be an
ordering.

Definition 10. For X,Y ⊆ L we let X � Y ⇐⇒ X ↑ Y = Y .
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E.g., if Y is the singleton {y} then X � Y ⇐⇒ ∀x ∈ X x ≤ y. In particular,
if X,Y are the singletons {x}, {y} then {x} � {y} ⇐⇒ x ≤ y.

Proposition 11. 1. The relation � is a partial ordering on P(L) with ∅ as
maximum element.
2. The order � has a minimum element if and only if (L,≤) has a minimum
element 0. In this case, {0} is the minimum element of �.
3. The order � restricted to P(L) \ {∅} has a maximum element if and only if
(L,≤) has a maximum element 1. In this case, {1} is the maximum element of
this restriction of �.

Proof. 1. Reflexivity and antisymmetry are clear. We prove transitivity. Suppose
X � Y � Z then X ↑ Y = Y and Y ↑ Z = Z hence

X ↑ Z = X ↑ (Y ↑ Z) = (X ↑ Y ) ↑ Z = Y ↑ Z = Z.
Since ∅ is absorbing for ↑ it is the maximum element of (P(L),�).
Claims 2, 3 are straightforward. �

Lemma 12. If X � Y then Y ⊆ X≥ hence Y ≥ ⊆ X≥.

Proof. Apply equality X ↑ Y = Y and Lemma 9: X ↑ Y ⊆ X≥. �

As usual, we denote by X ≺ Y the strict ordering defined by X � Y and
X = Y .

Remark 13. It is a simple exercise to verify that 〈P(L),�〉 is a linear order if
and only if L has at most two elements.

With a structure of linear ordering L is naturally associated a structure of
lattice. We lifted the linear ordering to a partial ordering on the power set of L.
This partial ordering is not associated with a structure of lattice, only with a
structure of join semilattice.

Proposition 14. 〈P(L);�〉 is a join semilattice: X ↑ Y is the join of X and Y .

Proof. Since (X ↑ Y ) ↑ X = (X ↑ Y ) ↑ Y = X ↑ Y we have X,Y � X ↑ Y .
Suppose X,Y � Z. Then (X ↑ Y ) ↑ Z = (X ↑ Z) ↑ Y = Z ↑ Y = Z hence
X ↑ Y � Z. This proves that X ↑ Y is the join of X,Y . �

Remark 15. The � order may have no meet. For instance, consider the set L =
ω∗ of negative or null integers with the usual order and let X = −2N and
Y = −(2N+1). Then Z � X if and only if Z is an infinite subset of X. Similarly
with Y . Thus, X,Y have no common lower bound.

Considering the same sets as subsets of ω∗ in the linear order ω +ω∗, Z � X
if and only if Z ⊆ ω ∪ X and Z ∩ ω = ∅ or Z ∩ ω∗ is infinite. Thus, X,Y have
common lower bounds which are exactly the nonempty subsets of ω. However,
any common lower bound Z is strictly upper bounded by another common lower
bound T : if z ∈ Z then let T = {t ∈ ω | t > z}.
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3.4 Final Segments

It is clear that final subsets play a special rôle. Indeed, the partial order restricted
to the final segments is linear and more importantly the binary operation ↑
and the partial order � between arbitrary subsets use final segments in their
alternative definitions, such as Lemmas 9 and 18.

Lemma 16. If F is a final segment and F � Y then Y is a final segment.

Proof. Suppose y ∈ Y and z ≥ y. Equality F ↑ Y = Y shows that y ≥ x for
some x ∈ F . But then z ≥ x and since F is upwards closed we have z ∈ F hence
z = max{z, y} ∈ F ↑ Y = Y . Thus, Y is upwards closed. �

Lemma 17. If F, G are final segments then F ↑ G = F ∩ G. In particular,
F � G if and only if F ⊇ G.

Proof. Since F and G are final segments we have F = F ≥ and G = G≥. By
Lemma 9 we obtain F ↑ G = (F ∪ G) ∩ F≥ ∩ G≥ = (F ∪ G) ∩ F ∩ G = F ∩ G. �

3.5 A Characterization of the Ordering �
The following is an alternative definition of the relation � in set theoretical
terms.

Lemma 18. For all X,Y ⊆ L we have X � Y if and only if

X ∩ Y ≥ ⊆ Y ⊆ X≥ . (3)

Note. Observe that the last occurrence of X≥ in the above expression cannot be
replaced by X> (take X = Y where X has a minimal element).

Proof. The statement follows from the next inclusions
{

X ↑ Y ⊆ Y ⇐⇒ X ∩ Y ≥ ⊆ Y ⇐⇒ X ∩ Y > ⊆ Y
X ↑ Y ⊇ Y ⇐⇒ Y ⊆ X≥

Indeed, condition X ↑ Y ⊆ Y holds if and only if, for all x ∈ X and y ∈ Y ,
x > y ⇒ x ∈ Y (resp. x ≥ y ⇒ x ∈ Y ), which means X ∩ Y > ⊆ Y (resp.
X ∩ Y ≥ ⊆ Y ). Condition X ↑ Y ⊇ Y holds if and only if for all y ∈ Y there
exists x ∈ X such that x ≤ y, which means Y ⊆ X≥. �

The following “constructive” characterization of the relation ≺ will help when
determining the immediate �-predecessors of a subset (cf. Sect. 4.1).

Lemma 19. The condition X ≺ Y holds if and only if one of the following two
conditions is satisfied:

X≥ = Y ≥ and X � Y (4)

X \ Y ≥ = ∅ and X ∩ Y ≥ ⊆ Y (5)
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Proof. ⇒. By Lemma 18 we know that X ≺ Y if and only if X = Y and
(3) above holds. The last inclusion Y ⊆ X≥ of (3) yields Y ≥ ⊆ X≥.
If X≥ = Y ≥ holds then X = X ∩ X≥ = X ∩ Y ≥ ⊆ Y by the first inclusion of
(3) and thus X � Y , showing that condition (4) is true. Otherwise Y ≥

� X≥

hence X \ Y ≥ = ∅. Since we also have X ∩ Y ≥ ⊆ Y we see that condition (5) is
true.
⇐. Conversely, suppose condition (4) is satisfied: X≥ = Y ≥ and X � Y holds.
Then X ∩ Y ≥ ⊆ Y ∩ Y ≥ = Y ⊆ Y ≥ = X≥ and, by Lemma 18 X � Y . Since
X � Y we have X ≺ Y .

Suppose condition (5) is satisfied. Then X≥ \ Y ≥ = ∅ and Lemma 4 yields
Y ≥ ⊆ X≥. Thus, using the assumption X ∩ Y ≥ ⊆ Y , we get X ∩ Y ≥ ⊆ Y ⊆
Y ≥ ⊆ X≥ hence X � Y (by Lemma 18). Now, X = Y since X \ Y ≥ = ∅. Thus,
X ≺ Y . �

4 Defining Single Elements

As said in the introduction, the objective of this paper is to show that the two
structures S and T (cf. (1) in Sect. 2.2) can be identified when properly encoded.
This requires in particular to prove that individual variables can be recovered in
the structure T . This is achieved in Theorem26.

We illustrate our approach by means of examples. With L = N, one can
convince oneself that every singleton {a} can be defined by the number of sub-
sets X such that X ≺ {a} (e.g., with a = 0 there is no strict predecessor, with
a = 1 there are exactly 2 strict predecessors, namely {0}, {0, 1}, with a = 2
there are exactly 6 strict predecessors, namely {0}, {0, 1}, {0, 2}, {0, 1, 2}, {1},
{1, 2}). This however cannot be extended to linear orders such as Z and worse it
suggests a new formula must be designed for each singleton. Luckily, whatever
the linear order, the fact of being a singleton is defined by a unique formula
asserting how many immediate predecessors it has. E.g., in Z it is the case for
the three values of a above that there is exactly one immediate predecessor. The
definability of singletons in established in Theorem26. As we make no assump-
tion on L in the investigation of the possible immediate predecessors we are led
to consider different cases according to whether or not the given subset of L
has a minimum, a greatest lower bound, a lower bound or no lower bound (as
observed in Remark 5).

4.1 Immediate Predecessors

The notion of immediate predecessors is as expected (cf. Definition 2).

Notation 20. We denote by Suc(X,Y ) the Π1-predicate asserting that Y is an
immediate successor of X (or X is an immediate predecessor of Y ), i.e.

X ≺ Y ∧ ∀Z (X � Z � Y ⇐⇒ (Z = X ∨ Z = Y )) (6)

We state the main result of this subsection.
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Theorem 21. X and Y are successive sets for � (i.e. Suc(X,Y ) is true) if and
only if one of the following conditions holds

1. Y = X ∪ {a} for some a ∈ X≥ \ X (in particular, a is not the minimum
element of Y )

2. X = Y ∪ {b} where b is the maximum element of {z | ∀y ∈ Y z < y}

We first inquire under which condition a subset X of Y is an immediate
predecessor.

Lemma 22. A subset X � Y is an immediate predecessor of Y if and only if
X = Y \ {a} where a ∈ Y is not the minimum element in Y .

Proof. ⇐. Assume a is not minimum in Y . Then Y ≥ = (Y \ {a})≥. Because
of Y \ {a} � Y Lemma 19 implies Y \ {a} ≺ Y . Assume there exists Z such
that Y \ {a} ≺ Z ≺ Y . Lemma 12 yields Y ≥ ⊆ Z≥ ⊆ (Y \ {a})≥ which implies
equalities (Y \ {a})≥ = Z≥ = Y ≥ hence Y \ {a} � Z � Y (by Lemma 19) which
is impossible. This proves that Y \ {a} is an immediate predecessor of Y .
⇒. Conversely, assume X is an immediate predecessor of Y and X � Y . This
last inclusion implies X \ Y ≥ = ∅ hence the first case of Lemma 19 applies:
X≥ = Y ≥. If Y \ X contains two elements b, c = a then X � (X ∪ {b}) � Y
and X≥ ⊆ (X ∪ {b})≥ ⊆ Y ≥ hence X≥ = (X ∪ {b})≥ = Y ≥ which, again by
Lemma 19, implies X ≺ (X ∪ {b}) ≺ Y , contradicting the assumption that X is
an immediate predecesor of Y . We conclude that Y \X has exactly one element,
i.e. Y = X ∪ {a} for some a /∈ X. Since X≥ = Y ≥. this element a cannot be the
minimum element of Y . �

In the next lemma it is assumed that the set of strict lower bounds of Y has a
maximum. This is for example the case if the linear order L is Noetherian (i.e.
reverse of an ordinal) and the set Y is not coinitial in L.

Lemma 23. Assume that the set L \ Y ≥ = {z | ∀y ∈ Y z < y} has a maximum
element b (i.e. either b is a predecessor of the minimum element of Y or Y has
no minimum element but has a greatest lower bound which is b).
Then Y ∪ {b} is an immediate predecessor of Y .

Proof. Since b ∈ (Y ∪ {b}) \ Y ≥ and (Y ∪ {b}) ∩ Y ≥ = Y the second condition
of Lemma 19 is satisfied hence Y ∪ {b} ≺ Y . Assume that Z satisfies

Y ∪ {b} ≺ Z ≺ Y (7)

By Lemma 12 we have

Y ≥ ⊆ Z≥ ⊆ (Y ∪ {b})≥ = Y ≥ ∪ {b}
hence Z≥ = (Y ∪ {b})≥ or Z≥ = Y ≥.

Assume first Z≥ = Y ≥. Applying Lemma 19 with inequality Z ≺ Y , we get
Z � Y . Since condition Z≥ = Y ≥ implies Z≥

� (Y ∪{b})≥, applying Lemma 19
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to inequality Y ∪ {b} ≺ Z yields (Y ∪ {b}) ∩ Z≥ ⊆ Z. Now, (Y ∪ {b}) ∩ Z≥ =
(Y ∪ {b}) ∩ Y ≥ = Y hence Y ⊆ Z, contradicting the strict inclusion Z � Y .

Assume now that Z≥ = (Y ∪ {b})≥. Then Lemma 19 applied to inequality
Y ∪ {b} ≺ Z yields Y ∪ {b} � Z. The same Lemma applied to inequality Z ≺ Y
yields Z ∩ Y ≥ ⊆ Y . Now, since Z≥ = (Y ∪ {b})≥ = Y ≥ ∪ {b}, we have Y ≥ =
Z≥ \ {b} and inclusion Z ∩ Y ≥ ⊆ Y becomes Z \ {b} ⊆ Y hence Z ⊆ Y ∪ {b}
which contradicts the strict inclusion Y ∪ {b} � Z. �

Proof of Theorem 21. It suffices to prove that there exist no other predecessor
than those defined in the previous two lemmas.

Let X be an immediate predecessor of Y . Lemma 19 insures that the two
following cases are exhaustive.
Case X \ Y ≥ = ∅ and X � Y . We conclude by Lemma 22 that X is as claimed
in the first item of Theorem 21.
Case X \ Y ≥ = ∅ and X ∩ Y ≥ ⊆ Y . We distinguish three subcases.
Subcase X ∩ Y ≥

� Y . We show that this subcase is impossible. Since X is the
disjoint union of X \ Y ≥ and X ∩ Y ≥, we have X � (X \ Y ≥) ∪ Y . Also,

X ↑ ((X \ Y ≥) ∪ Y ) =
(
X ↑ (X \ Y ≥)

) ∪ (X ↑ Y )
=

(
X ↑ (X \ Y ≥)

) ∪ Y
=

(
(X \ Y ≥) ↑ (X \ Y ≥)

) ∪ (
(X ∩ Y ≥) ↑ (X \ Y ≥)

) ∪ Y
= (X \ Y ≥) ∪ (X ∩ Y ≥) ∪ Y
= (X \ Y ≥) ∪ Y since X ∩ Y ≥ ⊆ X ↑ Y = Y .

Thus, X ≺ (X \Y ≥)∪Y . We also have (X \Y ≥)∪Y ≺ Y since (X \Y ≥)∪Y = Y
and ((X \ Y ≥) ∪ Y ) ↑ Y = ((X \ Y ≥) ↑ Y ) ∪ (Y ↑ Y ) = Y . This contradicts the
fact that X is an immediate predecessor of Y .
Subcase X ∩ Y ≥ = Y and L \ Y ≥ has a maximum element b. Then X \ Y ≥ ⊆
{z | z ≤ b}. Observe that X � ({b} ∪ Y ) ≺ Y since ({b} ∪ Y ) ↑ Y = Y and

X ↑ ({b} ∪ Y ) = ((X \ Y ≥) ∪ Y ) ↑ ({b} ∪ Y ) = {b} ∪ Y

Since X is an immediate predecessor of Y this implies X = Y ∪ {b}. This case
is covered by Lemma 23 and gives the second item of Theorem 21.

Subcase X ∩ Y ≥ = Y and L \ Y ≥ has no maximum element. We show that
this subcase is impossible. Recall an assumption of the case (of which this is
a subcase): X \ Y ≥ = ∅. Let d ∈ X \ Y ≥ ⊆ L \ Y ≥. Since L \ Y ≥ has no
maximum element, there exists some c ∈ Y ≥ such that d < c. Pose X0 =
{z ∈ Y ≥ | z ≥ c} and observe that Y ↑ X0 = Y (since X0 is disjoint from
Y ≥) and also (X \ Y ≥) ↑ X0 = X0 (inclusion: use the fact that X0 is a final
segment, containment: inequality d < c implies {d} ↑ X0 = X0, conclude with
the fact that d ∈ X). Using the assumption equality X ∩ Y ≥ = Y , we obtain
X = (X \ Y ≥) ∪ Y hence

X ↑ (X0 ∪ Y ) = ((X \ Y ≥) ∪ Y ) ↑ X0) ∪ (X ↑ Y )

=
(
(X \ Y ≥) ↑ X0

) ∪ (Y ↑ X0) ∪ (X ↑ Y ) = X0 ∪ Y
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Since X = X0 ∪ Y (witnessed by d) and X0 ∪ Y = Y (witnessed by c) we get
X ≺ X0 ∪ Y ≺ Y , which is a contradiction. �

Corollary 24. The set {a} has an immediate predecessor in 〈P(L),�〉 if and
only if a has a predecessor c (necessarily unique) in the linear order 〈L,≤〉. In
that case, {c, a} is the unique immediate predecessor of {a}.

4.2 Singleton Sets

With the help of the previous inquiry on the immediate predecessors of a given
subset, the characterization of the singletons is obtained by a simple bookkeeping
on the number of their immediate predecessors. We start with listing all possible
numbers of immediate predecessors of a given subset.

Proposition 25. Let X be a nonempty subset with cardinality |X|.
1. If X is infinite then it has infinitely many immediate predecessors.
2. If X is finite and nonempty then
- if min(X) is 0 or a limit, then X has |X| − 1 immediate predecessors,
- otherwise (i.e., if min(X) is a successor) X has |X| immediate predecessors.
The set of immediate predecessors is gathered in Table 1.

Table 1. Immediate predecessors of a nonempty finite set X

Min(X) is 0

or limit in L

Min(X) is the

successor of b in L

X = {x1, . . . , xn}
with x1 < . . . < xn

X \ {xi}, 2 ≤ i ≤ n
X \ {xi}, 2 ≤ i ≤ n

{b} ∪ X

X = {x} no immediate predec. {b, x}

Proof. This is a direct consequence of Theorem 21. �

Theorem 26. The following families are definable with the stated complexity:

HasPred0(X) ≡ X has no predecessor Π2

HasPredn(X) ≡ X has exactly n predecessors Σ2 ∧ Π2

SingLimit(X) ≡ X = {x} for some limit x ∈ L Π2

SingSucc(X) ≡ X = {x} for some successor x ∈ L Σ2 ∧ Π2

Single(X) ≡ X = {x} for some x ∈ L Σ2 ∧ Π2

Proof. Recall that X = ∅, X = {0} and Suc(Z,X) are Π1 (cf. Corollary 8 and
Notation 20).
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• For HasPred0(X) consider the Π2 formula ∀Z ¬Suc(Z,X).
• When n ≥ 1, for HasPredn(X) consider the Σ2 ∧ Π2 formula

∃Z1, . . . , Zn

(
(

∧

1≤i≤n

Suc(Zi,X)) ∧ (
∧

1≤i<j≤n

Zi = Zj)
)

∧ ∀T1, . . . , Tn+1

(
(

∧

1≤i≤n+1

Suc(Ti,X)) =⇒
∨

1≤i<j≤n+1

Ti = Tj

)

Applying Proposition 25 and the above, we see that
• SingLimit(X) can be taken to be the Π2 conjunction of HasPred0(X) with
the formulas expressing that X = ∅, {0}.
• Observe that a set X has a unique predecessor in P(L) in only two cases:

(1) X = {u, v} and u < v and u is 0 or a limit element in L. Then in P(L) the
unique predecessor of X is {u} which itself has no predecessor in P(L).

(2) X = {x} and x has a predecessor z in L. Then in P(L) the unique predecessor
of X is {z, x} which itself has a predecessor {z} (it may also have another
one, {v, z, x} in case z has a predecessor v in L).

Thus, SingSucc(X) can be taken to be the Σ2 ∧ Π2 formula

X = ∅, {0} ∧ HasPred1(X) ∧ ∃Z, T (Suc(T, Z) ∧ Suc(Z,X))

• Single(X) is the formula X = {0} ∨ SingLimit(X) ∨ SingSucc(X). �

4.3 Recovering the Linear Order

We already observed that the relation ≤ is expressible with the relation � on
the singletons. For future use (in Proposition 38), we give an estimate of the
complexity of the formula.

Lemma 27. The following relations are Σ2 ∧ Π2 :

Leq = {({x}, {y}) | x ≤ y} R = {({x}, {y}) | y is the successor of x}
Proof. Observe that x ≤ y if and only if {x} � {y}. It suffices to define Leq(X,Y )
via the formula Single(X) ∧ Single(Y ) ∧ X � Y and R(X,Y ) via the formula
Single(X) ∧ Single(Y ) ∧ Suc(X,Y ). �

4.4 Pairs

The operation ↑ is not appropriate to express that an element belongs to a subset.
Indeed, {a} ↑ X = X holds if and only if a is a lower bound of X, i.e., if a is the
minimum in which case it belongs to X or is a strict lower bound and then it
does not belong to X. This ambiguity is lifted if instead of the singleton {a} we
use paris of the form {z, a} as will be amply employed in Sect. 5. The following
result is the key to the proof that the membership predicate is definable with
complexity Δ4.
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Proposition 28. The following predicates have the stated complexities:

R(Z,P ) ≡ Z = {z}, P = {z, a} for some z < a Σ2 ∧ Π2

K(P ) ≡ P = {0, a} for some a ∈ L Δ2

Pair0(A,P ) ≡ A = {a}, P = {0, a} for some a ∈ L Π3

Pair(Z,A, P ) ≡ Z = {z}, A = {a}, P = {z, a} for some z < a Π3

Proof. Observe (Theorem 21 and Table 1) that {z} is the immediate predecessor
of a set P if and only if P is of the form {z, a} for some a > z. This shows that
the above predicate R is defined by the Σ2 ∧Π2 formula Single(Z)∧ Suc(Z,P )
whereas K is defined by the Σ2 formula ∃Z (Z = {0} ∧ Suc(Z,P )) and the Π2

formula ∀Z (Z = {0} ⇒ Suc(Z,P )).
Also, for all u we have {z, a} � {u} if and only if a ≤ u. Thus, a triple

(Z,A, P ) is in Pair if and only if (Z,P ) ∈ R and A is the smallest singleton set
which dominates P . Considering the conjunction of the definition of (Z,P ) ∈ R
with the formula ∀U (Single(U) ⇒ (P � U ⇔ A � U)) shows that Pair is Π3.
Finally, Pair0 can be Π3 expressed as ∀Z (Z = {0} ⇒ Pair(Z,A, P )). �

5 Defining Membership

In this section we solve the second ingredient of our proof, namely we show that
the predicate x ∈ X can be encoded in the structure T . More precisely we show
that the membership predicate

{(A,X) | A = {a} for some a ∈ X}
is Δ4.

Before proving the general case (cf. Theorem 37) we consider the case where
L has a minimum element 0 since we then get a simpler proof (cf. Sect. 5.3 and
Theorem 35).

We give an intuition of the way we proceed in this simpler case. Let a ∈ L
and X ⊆ L. The condition {0, a} ↑ X = X is equivalent to {a} ↑ X ⊆ X. This
last condition is itself equivalent to the fact that a is a strict lower bound of X
or that a belongs to X. In order to rule out the former condition, it suffices to
say that a≥ ⊆ X≥. This is the reason why the definability of the final segments
and the upward closure of a subset take so much place in this section.

5.1 Defining Final Segments

Lemma 29. Consider the Π1 predicate Φ(X) which expresses that any two �-
upper bounds of X are � comparable.

Φ(X) ≡ ∀Y,Z
(
(X � Y ∧ X � Z) ⇒ (Y � Z ∨ Z � Y )

)

Then Φ(X) holds if and only if X is a final segment or X = {a}≥ \ {a+} where
a+ is the immediate successor of a in L (in case there is some).
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Proof. ⇐, 1st case. Assume X is a final segment. Conditions X � Y and X � Z
imply that Y and Z are also final segments by Lemma 16 and these segments
are �-comparable by Lemma 4.
⇐, 2d case. Assume now that a has an immediate successor a+ and X = {a}≥ \
{a+} = {a} ∪ {a+}>. Consider some X ≺ U . Since U = ({a} ∪ {a+}>) ↑ U we
have {a} ↑ U ⊆ U hence

U ⊆ {a}≥ (*)

Subcase a ∈ U . Then X = X ↑ {a} ⊆ X ↑ U = U . Since U ⊆ {a}≥ = X ∪ {a+}
and U = X we see that U = {a}≥ is a final segment.
Subcase a /∈ U and a+ ∈ U . Then U = X ↑ U ⊇ ({a}∪{a+}>) ↑ {a+} = {a+}≥.
Using (*) and the case assumption, we see that U = {a+}≥ is a final segment.
Subcase a /∈ U and a+ /∈ U . Then (*) yields U ⊆ {a+}> and U = X ↑ U =
({a} ∪ {a+}>) ↑ U = {a+}> ↑ U hence U = {a+}> ↑ U , i.e. {a+}> � U . As
an upper bound of the final segment {a+}>, the set U is also a final segment
(cf. Lemma 16).

Thus, in all cases the set U is a final segment. Since all upper bounds
U of X are final segments they are pairwise �-comparable (by Lemma 4 and
Proposition 11). This proves that property Φ(X) is true.

⇒. We first show that condition Φ(X) implies that X≥ \ X has at most one
element. By way of contradiction, assume there exist distinct b, c ∈ X> \ X.
Without loss of generality for some a ∈ X we have a < b < c. Then X ≺ X ∪{b}
and X ≺ X ∪ {c} and b, c respectively witness that (X ∪ {b}) ↑ (X ∪ {c}) is
different from X ∪ {b} and X ∪ {c} which shows that X ∪ {b} and X ∪ {c} are
incomparable, contradicting condition Φ(X).

At this point we know that if X is not a final segment but satisfies Φ then
X = X≥ \ {b} where b > a for some a ∈ X.

We claim that a is the minimum element of X. By way of contradiction,
suppose c ∈ X is such that c < a. Letting U = X≥ = X ∪{b} and V = X ∩{c}≥,
we have X ↑ U = U and X ↑ V = V whereas U ↑ V = {c}≥ is different from both
U and V . Thus, U, V are incomparable upper bounds of X, contradicting Φ(X).
We now know that X = {a}≥ \{b} where a < b. We claim that b is the successor
in L of this minimum element a of X. By way of contradiction, suppose c is such
that a < c < b. Letting U = {a}≥ and V = X \ {a} = {a}> \ {b}, we again
have X ↑ U = U and X ↑ V = V whereas U ↑ V = {a}≥ ↑ ({a}> \ {b}) = {a}>

because b = b ∨ c ∈ {a}≥ ↑ ({a}> \ {b}). Thus, U ↑ V is different from both U
and V hence U, V are incomparable upper bounds of X, contradicting Φ(X). �

Lemma 30. The predicate X is a final segment is Σ2 ∨ Π2. In case L has a
minimum element it is Π2.

Proof. First, we consider the special case where L has a minimum element.
The idea is to define the final segments X by saying: for all {0, a}, we have
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{0, a} ↑ X = X, a property which is expressible by the Π2 formula

∀Y,Z ((Z = {0} ∧ Suc(Z, Y )) ⇒ Y ↑ X = X) .

Assume X is a final segment, i.e. X = X≥. We have {0, a} ↑ X = {0, a} ↑
X≥ = X ∪ ({a} ↑ X≥). Now, if a ∈ X then {a} ↑ X = X ∩ {a}≥ ⊆ X and
if a /∈ X = X≥ then all elements of X dominate a hence {a} ↑ X = X. In
both cases, we see that {0, a} ↑ X = X. Assume X is not a final segment. Then
there exists a < b with a ∈ X, b ∈ X. Since b = b ↑ a ∈ {0, b} ↑ X we see that
{0, b} ↑ X = X.

We now make no assumption on whether or not L has a minimum element.
Consider the Π1 predicate Φ(X) from Lemma 30. Rephrasing this last Lemma,
there are three different possibilities for the set X to satisfy Φ:

1. X = L
2. X is a final segment different from L
3. X = {a}≥ \ {a+}, where a+ is the L-successor of a.

We discriminate case 3 from cases 1 and 2 as follows:

Case 1i: X = L and there is no minimum element in L.
Then L has no immediate successor.
Case 1ii: X = L and L has a minimum element 0 which admits a successor 0+.
Then L \ {0+} = {0}≥ \ {0+} is a strict predecessor of X which satisfies Φ.
Case 1iii: X = L and L has a minimum element 0 which is right limit.
Then L has an immediate successor L \ {0} which has no immediate successor.
Case 2. X is a final segment different from L
Then L is a strict predecessor of X which satisfies Φ.
Case 3. X = {a}≥ \ {a+}, where a+ is the L-successor of a. Then X satisfies
the following two properties:

(α) X has an immediate successor (namely, {a}≥) which itself has an immediate
successor (namely {a}>), unlike Cases 1i and 1ii,

(β) X has no strict predecessor which satisfies Φ, unlike Cases 1ii and 2.

Indeed, concerning (β), every (not necessarily immediate) predecessor Y of
X is of one of the following two forms:

i. Y = X \ Z with ∅ = Z ⊆ {a+}>.

ii. Y = Z ∪ T where ∅ = Z and Z ∩ X≥ = ∅ and T ⊆ X.
Consequently, Y is not a final segment and Y ≥ \ Y contains two elements

except if (case (ii)) Y is of the form Y ≥ \ {a+}. In this last case either Y has no
minimum or it has a minimum and a+ is not its immediate successor in L.

This proves that the Σ2 ∨ Π2 formula

Φ(X) ∧ ¬
(
(∃U, V (Suc(X,U) ∧ Suc(U, V )) ∧ ∀Y ≺ X ¬Φ(Y )

)

expresses that X is a final segment. �
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Corollary 31. The predicate X = L is Π3.

Proof. Lemma 17 insures that L is the �-minimal final segment:

X is final ∧ ∀Y (Y is final ⇒ X � Y )

Since the predicate “is final” is Σ2 ∨ Π2 this formula is Π3. �

5.2 Upwards Closure

Given X ⊆ L we recall that X≥ = {x ∈ L | ∃y ∈ X, y ≤ x}.

Lemma 32. The relation {(X,Y ) | Y = X≥} is Π3.

Proof. Observe that X≥ is the �-minimum final set Z such that X � Z. Thus,
Y = X≥ is Π3 expressible:

Y is final ∧ X � Y ∧ ∀Z ((Z is final ∧ X � Z) ⇒ Y � Z) �

5.3 Membership When L has a Minimum Element 0

Lemma 33. For all a ∈ L and X ⊆ L it holds

a ∈ X> ⇐⇒ {a} ↑ X = X.

Proof. By Lemma 18 the condition {a} ↑ X = X implies X ⊆ {a}≥, i.e., a ∈ X>.
Conversely, a ∈ X> implies ∅ = {a} ∩ X> ⊆ X ⊆ {a}≥ and we conclude by the
same lemma. �

Lemma 34. For all a ∈ L and X ⊆ L we have

a ∈ X ⇐⇒ a ∈ X≥ ∧ ({0, a} ↑ X = X)

Proof. ⇒. If a ∈ X then a ∈ X≥ and {a} ↑ X ⊆ X hence {0, a} ↑ X =
X ∪ ({a} ↑ X) = X.
⇐. By contraposition it suffices to show that if a /∈ X and a ∈ X≥ then {0, a} ↑
X = X. But this is clear since then a ∈ {a} ↑ X and a fortiori a ∈ {0, a} ↑ X
whereas a /∈ X. �

Theorem 35. Assume L has a minimum element 0. Then the following mem-
bership predicate is Δ4

IsIn(A,X) ≡ A = {a} for some a ∈ X

Proof. Let ϕ(A, Z, U, X, Y ) be the Π3 conjunction of the formulas expressing
that A = {a} and Z = {0, a} for some a (which is Σ2 ∧ Π2 by Proposition 28)
and the formulas expressing that U = A≥ and Y = X≥ (which are Π3 by
Lemma 32). Observe that a ∈ X≥ if and only if {a}≥ ↑ X≥ = {a}≥. Using
Lemma 34, IsIn(A,X) can be expressed by the following Σ4 and Π4 formulas:

∃Z,U, Y (ϕ(A, Z, U, X, Y ) ∧ U ↑ Y = U ∧ Z ↑ X = X)
∀Z,U, Y (ϕ(A, Z, U, X, Y ) ⇒ (U ↑ Y = U ∧ Z ↑ X = X)) �



Monadic Theory of a Linear Order Versus the Theory of Its Subsets 125

5.4 Membership in the General Case

The definition of membership we are looking for is based on the following
characterization.

Lemma 36. Let a ∈ L and X ⊆ L. The following three conditions are
equivalent:

1. a ∈ X
2. either

({a}≥
� X≥ and ∀z ∈ (X≥ \ {a}≥) X ↑ {z} = X ↑ {z, a})

or {a}≥ = X≥

3. either
({a}≥

� X≥ and ∃z ∈ (X≥ \ {a}≥) X ↑ {z} = X ↑ {z, a})

or {a}≥ = X≥

Proof. (1) ⇒ (2). Assume a ∈ X. Then {a} ⊆ X hence {a}≥ ⊆ X≥. If {a}≥ =
X≥ then we are done so we assume {a}≥

� X≥. Let z /∈ {a}≥, i.e. z < a.
Since a ∈ X we have equality X ↑ {a} = X ∩ {a}≥ and since z < a we have
X ∩ {a}≥ ⊆ X ∩ {z}≥ ⊆ X ↑ {z}. Thus, X ↑ {a} ⊆ X ↑ {z} and

X ↑ {z} ⊆ X ↑ {z, a} = (X ↑ {z}) ∪ (X ↑ {a}) = X ↑ {z}
which implies X ↑ {z} = X ↑ {z, a}. This proves the first disjunct in the
expression of point 2 (even a little more since we do not need the constraint
z ∈ X≥).
(2) ⇒ (3). Trivial.

¬(1) ⇒ ¬(3). Assume a /∈ X. Since {a}≥ and X≥ are final segments,
Lemma 4 insures that {a}≥ and X≥ are comparable for inclusion.
Case {a}≥ = X≥. Then a is the minimum element of X hence a ∈ X,
contradiction.
Case X≥

� {a}≥. Then (3) trivially fails (as wanted).
Case {a}≥

� X≥. Let z ∈ X≥ \ {a}≥. Then there exists b ∈ X such that
b ≤ z < a. We have a = max{b, a} ∈ X ↑ {z, a} whereas a /∈ X ↑ {z} (since
a /∈ X and z < a). Thus, X ↑ {z, a} = X ↑ {z} and (3) fails. �

Theorem 37. The following membership predicate is Δ4

IsIn(A,X) ≡ A = {a} for some a ∈ X

Proof. Let α(T, U) be a Π3 formula expressing that U = T≥ (cf. Lemma 32).
Recall that, for final segments F, G we have F ⊆ G if and only if G � F (cf.
Lemma 17). Also, z ∈ F if and only if {z}≥ ⊆ F if and only if F � {z}≥. Let
θ∃(X,Y,A,U) and θ∀(X,Y,A,U) be the following Σ4 and Π4 formulas

∃Z, V, P
(
Single(Z) ∧ α(Z, V ) ∧ Y � Z ∧ U � Z ∧ Pair(Z,A, P )

∧ X ↑ Z = X ↑ P
)

∀Z, V, P
(
Single(Z) ∧ α(Z, V ) ∧ Y � Z ∧ U � Z ∧ Pair(Z,A, P )

=⇒ X ↑ Z = X ↑ P
)

Recall that
- if F is a final segment then z ∈ F ⇐⇒ {z}≥ ⊆ F ,
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- Pair(Z,A, P ) means that Z = {z}, A = {a} and P = {z, a} for some z < a.
Let α(Z, V ) be a Π3 formula expressing that V = Z≥ (cf. Lemma 32) and let
θ∃(X,Y,A,U) and θ∀(X,Y,A,U) be the following Σ4 and Π4 formulas

∃Z, V, P (Pair(Z,A, P ) ∧ α(Z, V ) ∧ Y � Z ∧ U � Z ∧ X ↑ Z = X ↑ P )
∀Z, V, P (Pair(Z,A, P ) ∧ α(Z, V ) ∧ Y � Z ∧ U � Z) =⇒ X ↑ Z = X ↑ P )

which, applied to Y = X≥, A = {a} and U = {a}≥ express respectively

∃z ∈ (X≥ \ {a}≥) X ↑ {z} = X ↑ {z, a}
∀z ∈ (X≥ \ {a}≥) X ↑ {z} = X ↑ {z, a}

Let Φ(X,Y,A,U) be the Π3 conjunction of α(X,Y ) and α(A,U). Using the
Σ2 ∧ Π2 predicate Single from Theorem 26, consider the Σ4 and Π4 formulas

Single(A) ∧ ∃Y,U
(
Φ(X,Y,A,U) ∧ ((Y ≺ U ∧ θ∃(X,Y,A,U)) ) ∨ U = Y

)

Single(A) ∧ ∀Y,U
(
Φ(X,Y,A,U) ⇒ ((Y ≺ U ∧ θ∀(X,Y,A,U)) ) ∨ U = Y

)

Conditions (2) and (3) of Lemma 36 show that these formulas define the predicate
IsIn. �

6 Final Proofs

6.1 Defining the Downarrow Operation with Uparrow

Proposition 38. The predicate X ↓ Y = Z is Π5.

Proof. Recall the Σ2 ∧ Π2 predicate Leq = {({a}, {b}) | a ≤ b} (cf. Lemma 27).
Let θ(A,B,C) be the Σ2 ∨ Π2 formula expressing that A = {a}, B = {b} and
C = {min(a, b)}, for some a, b ∈ L :

(Leq(A,B) ⇒ C = A) ∧ (Leq(B,A) ⇒ C = B)

Using a Σ4 definition of IsIn (cf. Theorem 37), the following formula is Π5

∀C (IsIn(C, Z) ⇒ ∃A,B (IsIn(A,X) ∧ IsIn(B, Y ) ∧ θ(A,B,C)))
∧ ∀A,B,C (IsIn(A,X) ∧ IsIn(B, Y ) ∧ θ(A,B,C) ⇒ IsIn(C, Z))

and defines the predicate X ↓ Y = Z.

6.2 Defining the Uparrow Operation with the Order

Proposition 39. The ↑ operation is Π1 definable in 〈P(L);�〉.
Proof. Proposition 14 insures that ↑ is the join operation in 〈P(L);�〉. Thus, the
Π1 formula

∀U ((X � U ∧ Y � U) ⇐⇒ Z � U)

is a definition of the predicate X ↑ Y = Z in 〈P(L);�〉. �



Monadic Theory of a Linear Order Versus the Theory of Its Subsets 127

6.3 Equivalent First-Order Structures

With the notion of equivalence of structure defined in paragraph 2.2, we may
state the main result. We also give, at no cost, an easy extension by considering
not only the (x, y) �→ max{x, y} function lifted to sets but also the (x, y) �→
min{x, y} function lifted to sets.

Theorem 40. For a given linear ordering L the three structures

S1 = 〈P(L);=, ↑〉 S2 = 〈P(L);=, ↓〉 S3 = 〈P(L);=,�〉
are first-order interpretable one from each other and, in each of them, one can
define a structure isomorphic to

S4 = 〈L,P(L);=L, <,∈〉
for the isomorphism mapping a subset of L to itself and an element a ∈ L to the
singleton set {a}.
Proof. Theorem 37 and Lemma 27 show that the map x �→ {x} and X �→ X
defines an isomorphism between the multisorted structure S4 and a multisorted
structure S ′

1 expressible in S1 :

S ′
1 = 〈U,P(L); Eq, Leq, IsIn〉

where

⎧
⎪⎪⎨

⎪⎪⎩

U = {X | X ⊆ L, Single(X)}
Eq = {(X,Y ) | Single(X) ∧ Single(Y ) ∧ X = Y }
Leq = {(X,Y ) | Single(X) ∧ Single(Y ) ∧ X ≺ Y }

IsIn = {(X,Y ) | Single(X) ∧ IsIn(X,Y )}
.

Proposition 14 (and the fact that � is defined with ↑) shows that the opera-
tion of S1 is interpretable in S3 and vice-versa. Thus, S1 and S3 are equivalent.

Proposition 38 shows that the operation of S2 is interpretable in S1. Observ-
ing that ↑ and ↓ considered in the reverse linear order (L,≥) are respectively ↓
and ↑ in (L,≤), we see that the operation of S1 is interpretable in S2. Thus, S1

and S2 are equivalent.
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Abstract. Quasi-trees generalize trees in that the unique “path” between
two nodes may be infinite and have any finite or countable order type,
in particular that of rational numbers. They are used to define the rank-
width of a countable graph in such a way that it is the least upper-bound
of the rank-widths of its finite induced subgraphs. Join-trees are the cor-
responding directed “trees” and they are also useful to define the modular
decomposition of a countable graph.We define algebras with finitely many
operations that generate (via infinite terms) these generalized trees. We
prove that the associated regular objects (those defined by regular terms)
are exactly the ones definable by (i.e., are the unique models of) monadic
second-order sentences. These results use and generalize a similar result
by W. Thomas for countable linear orders.

1 Introduction

We define and study countable quasi-trees that generalize trees in that the unique
“path” between two nodes may be infinite and have any order type, in particular
that of rational numbers. Our motivation comes from the notion of rank-width,
a complexity measure of finite graphs investigated first in [12,13]. Rank-width
is based on graph decompositions formalized with finite subcubic trees. In order
to extend rank-width to countable graphs in such a way that the compactness
property holds, i.e., that the rank-width of a countable graph is the least upper-
bound of those of its finite induced subgraphs, we base decompositions on sub-
cubic quasi-trees [5]. For a comparison, the natural extension of tree-width to
countable graphs has the compactness property [11] and does not need quasi-
trees.

Our objective is to obtain finitary descriptions (usable in algorithms) of cer-
tain quasi-trees. For this purpose we define in [6] an algebra of quasi-trees with
finitely many operations such that the finite and infinite terms over these oper-
ations define all quasi-trees. The regular quasi-trees are those defined by regular
terms. We prove in [6] that a quasi-tree is regular if and only if it is monadic
second-order definable, i.e., is the unique model (up to isomorphism) of a monadic
second-order sentence.

This definition uses another notion of generelized tree for the following rea-
son. An algebra that generates all finite (unrooted) trees must also include the
finite rooted trees and have an operation that build trees by gluing two rooted
c© Springer International Publishing Switzerland 2015
L.D. Beklemishev et al. (Eds.): Gurevich Festschrift II 2015, LNCS 9300, pp. 129–141, 2015.
DOI: 10.1007/978-3-319-23534-9 7
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trees at their roots. Trees are then obtained from rooted trees by an opera-
tion that makes the root into an ordinary node. In a similar way, we define
quasi-trees from the corresponding directed structures that we call join-trees.
A join-tree is a partial order (N,≤) such that every two elements have a least
upper-bound (called their join) and each set {y | y ≥ x} (denoted by [x,+∞[) is
linearly ordered. The modular decomposition of a countable graph is a (labelled)
join-tree [7].

In this introductory article, we mainly consider binary join-trees: they can be
seen as directed subcubic quasi-trees. In [6], we define algebras of rooted trees,
of ordered rooted trees, of join-trees, of ordered join-trees and of quasi-trees.
Binary join-trees and subcubic quasi-trees form subalgebras of two of them. In
all cases, an object is regular if and only if it is monadic second-order definable.

A linear order whose elements are labelled by letters from an alphabet is
called an arrangement. Regular arrangements are studied in [2,10], and their
monadic second-order definability is proved in [14]. We use the result of [14] in
order to generalize it to join-trees and quasi-trees.

2 Definitions, Notation and Basic Facts

All ordered sets, trees and logical structures are finite or countably infinite.
We denote by ω the first infinite ordinal and also the linear order (N,≤).
Let (V,≤) be a partial order. The least upper bound of x and y is denoted by

x�y if it exists and is called their join. A line is a subset Y that is linearly ordered
and satisfies the following convexity property : if x, z ∈ Y , y ∈ V and x ≤ y ≤ z,
then y ∈ Y . Particular notations for convex sets (not necessarly linearly ordered)
are [x, y] denoting {z | x ≤ z ≤ y}, ]x, y] denoting {z | x < z ≤ y}, ]−∞, x]
denoting {y | y ≤ x} (even if V is finite), ]x,+∞[ denoting {y | x < y} etc.

2.1 Finite and Infinite Terms

Let F be a finite set of operations, each given with a fixed arity. We call such
a set a signature. We denote by T (F ) (resp. T∞(F )) the set of finite (resp.
finite and infinite) terms written with the symbols of F . A typical example
(easily describable linearly) is, with f binary and a and b nullary, the term
t∞ = f(a, f(b, f(a, f(b, f(....)))))) that is the unique solution in T∞(F ) of the
equation t = f(a, f(b, t)). (We do not accept “terms” of the form ...g(g(a))...
with countably many occurrences of function symbol g to the left of the nullary
symbol a). Positions in a term are designated by Dewey words (i.e., by sequences
of positive integers that encode branchings; an example is given below). The set
Pos(t) of positions of a term t is ordered by ≤t, the reversal of the prefix order.

We have a structure of F -algebra on T∞(F ) of which T (F ) is a subalgebra.
If M = 〈M, (fM)f∈F 〉 is an F -algebra, a value mapping is a homomorphism
h : T∞(F ) → M. Its restriction to finite terms is uniquely defined.

Regular terms
A term t ∈ T∞(F ) as regular if there is a mapping h from Pos(t) into a finite

set Q and a mapping τ : Q → F × Seq(Q) such that:
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if u is an occurrence of a symbol f of arity k, then τ(h(u)) =
(f, (h(u1), ..., h(uk))) where (u1, ..., uk) is the sequence of sons of u.
(Seq(Q) is the set of finite sequences of elements of Q).

Intuitively, τ : Q → F × Seq(Q) is the transition function of a top-down
deterministic automaton with set of states Q, h(ε) is the initial (root) state and
h defines its unique run. This is equivalent to requiring that t has finitely many
different subterms, or is a component of a finite system of equations that has a
unique solution in T∞(F ). (The set of unknowns of such a system is in bijection
with Q). The above term t∞ is regular.

A term t can be represented by the relational structure 
t� := (Pos(t),
≤t, (bri)1≤i≤ρ(F ), (labf )f∈F ) where bri(u) is true if and only if u is the i-th son
of his father and labf (u) is true if and only if f occurs at position u. (ρ(F ) is
the maximal arity of a symbol in F ). It is regular if and only if 
t� is monadic
second-order definable (in short, MS-definable), i.e., is, up to isomorphism, the
unique model of a monadic second-order (MS) sentence, see [15].

2.2 Arrangements

We review a notion introduced in [2] and further studied in [10,14]. Let X be a
set (say of letters). A linear order (V,≤) equipped with a labelling mapping lab :
V → X is called an arrangement over X. It is simple if lab is injective. We denote
by A(X) the set of arrangements over X. Every linear order (V,≤) is identified
with the simple arrangement (V,≤, lab) such that lab(v) := v for each v. If w =
(V,≤, lab) ∈ A(X) and h : X → Y , then, h(w) := (V,≤, h ◦ lab) ∈ A(Y ).

An arrangement can be considered as a generalized word. The concatenation
of linear orders yield a concatenation of arrangements denoted by •. We denote
by Ω the empty arrangement and by a the one reduced to a single occurrence
of a ∈ X. Clearly, w • Ω = Ω • w = w for every w. The infinite word w = aω

is the arrangement over {a} with underlying order ω; it is a solution of the
equation w = a • w, and even its initial solution, a canonical one, unique up to
isomorphism. This notion is defined in [2]. Similarly, the arrangement w = aη

over {a} with underlying linear order (Q,≤) (that of rational numbers) is the
initial solution of the equation w = w • (a • w). We will generalize arrangements
to tree structures.

Let X be a set of nullary symbols and t ∈ T∞({•, Ω} ∪ X). Hence, Pos(t) ⊆
{1, 2}∗. The value of t is the arrangement val(t) := (Occ(t,X),≤lex, lab) where
Occ(t,X) is the set of positions of elements of X and lab(u) is the symbol of X
occurring at position u. We say that t denotes w if w is isomorphic to val(t).

For an example, t• = •(a, •(b, •(a, •(b, •(.........)))))) denotes the infinite word
abab... . Its value is defined from Occ(t•, {a, b}) = 2∗1, lexicographically ordered
by 1 < 21 < 221 < ..., by lab(2i1) = a if i is even and lab(2i1) = b if i is odd.
The arrangements aω and aη are denoted by the terms that are respectively the
unique solutions in T∞({•, Ω, a}) of the equations w = a•w and w = w•(a•w).

An arrangement is regular if it is denoted by a regular term. (The term t•
is regular). The arrangement aη is also regular. An arrangement is regular if
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and only if it is a component of the initial solution of a regular system of equa-
tions over F [2] or the value of a regular expression in the sense of [10].

We will use the result of [14] that an arrangement over a finite alphabet is
regular if and only if is MS-definable. For this result, we represent an arrangement
w over X by the relational structure 
w� := (V,≤, (laba)a∈X) where laba(u) is
true if and only if lab(u) = a.

2.3 Trees and Rooted Trees

A tree is a finite or countable, undirected, acyclic and connected graph. (Being
acyclic, it has no loop and no parallel edges.) The set of nodes of a tree T is NT .

A rooted tree is a tree equipped with a distinguished node called its root.
Its edges are directed towards the root. The level of a node x is the number of
edges of the path from it to the root. The father of a node x (its immediate
ancestor) is denoted by pT (x) and its set of sons by Sons(x). The set of nodes
NT is partially ordered by ≤T such that x ≤T y if and only if y is on the unique
path from x to the root. Then x�T y defined as the least upper bound of {x, y},
the join of x and y, is their least common ancestor. We will specify a rooted
tree T by (NT ,≤T ) and we will omit the index T when T is clear. If x is a node
of T , then T/x is the subtree issued from x, defined as (NT/x,≤T � NT/x) where
NT/x :=]−∞, x].

A partial order (N,≤) is (NT ,≤T ) for some rooted tree T if and only if it
has a greatest element max and, for each x ∈ N , the set [x,max] is finite and
linearly ordered. These conditions imply that any two elements have a join.

2.4 Join-Trees

We have used join-trees in [7] for defining modular decomposition of countable
graphs. Quasi-trees, that are the corresponding undirected structures will be
defined in Sect. 4.

(2.1) Definition: Join-trees.

A join-tree is a pair J = (N,≤) such that:

(1) N is a finite or countable set called the set of nodes,
(2) ≤ is a partial order on N such that, for every node x, the set [x,+∞[
(the set of nodes y ≥ x) is linearly ordered,
(3) every two nodes x and y have a join x � y.

A minimal node is a leaf. The set of strict upper-bounds of a nonempty set
X ⊆ N is a line L. If L has a smallest element, we denote it by X̂ and we say
that X̂ is the top of X.

(2.2) Definitions: Directions and degrees.

Let J = (N,≤) be a join-tree and x one of its nodes. Let ∼ be the equivalence
relation on ]−∞, x[ such that z ∼ y if and only if z � y < x. Each equivalence
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class C is called a direction of J relative to x. The set of directions relative to
x is denoted by Dir(x) and the degree of x is the number of its directions. The
leaves are the nodes of degree 0. A join-tree is binary if its nodes have degree
at most 2. We call it a BJ-tree.

(2.3) Definition: Structured binary join-tree.

Let J = (N,≤) be a BJ-tree. For each set X ⊆ N , we denote by ↓ X the union
of the convex sets ]−∞, x] for x ∈ X. A structuring of J is a set U of nonempty
lines forming a partition of N that satisfies some conditions, stated with the
following notation : if x ∈ N , then U(x) denotes the line of U containing x,
U−(x) := U(x)∩]−∞, x[ and U+(x) := U(x)∩ [x,+∞[. (The set [x,+∞[ has no
top but can have a greatest element that we do not specify). The conditions are:

(1) exactly one line of U has no strict upper-bound, hence, no top; we
call it the axis, denoted by A; we also require that if A has a smallest
element, then its degree is 0 or 1,
(2) each other line U has a top Û ,
(3) for each x in N , the sequence y0 = x, y1, y2, ... such that yi+1 = Û(yi)
is finite. Its last element is yk ∈ A (hence yk+1 is undefined). We call k
the depth of x.

The nodes on the axis are those at depth 0. The lines [yi, yi+1[ for i =
0, ..., k − 1 and [yk,+∞[ (as in 3) above) are convex subsets of pairwise distinct
lines of U . We have [x,+∞[= [y0, y1[∪[y1, y2[∪... ∪ [yk,+∞[, [yi, yi+1[= U+(yi)
for each i < k, [yk,+∞[= U+(yk) ⊆ A and the depth of yi is k − i.

We call such a triple (N,≤,U) a structured binary join-tree, an SBJ-tree for
short. Every linear order is an SBJ-tree whose elements are all of depth 0.

(2.4) Example: Fig. 1 shows a structuring of a BJ-tree, where U = {U0, ..., U5},
A = U0. The directions relative to x2 are U−(x2)∪U1 and U2∪U3. The maximal
depth of a node is 2.

(2.5) Definition: SBJ-trees as relational structures.

Let J = (N,≤,U) be an SBJ-tree. Let S(J) be the relational structure (N,≤,
N0, N1) such that N0 is the set of nodes at even depth and N1 = N − N0 is the
set of those at odd depth. (N0 and N1 are sets but we consider them also as
unary relations).

If X ⊆ N then G(X) := (X,→) is the directed graph such that x → y if
and only if x < y and [x, y] ⊆ X. We say that X is laminar if the connected
components of G(X) are lines, so that X is the union of pairwise disjoint lines
of J , that we call the components of X.

(2.6) Proposition: For J and S(J) as above, the following properties hold:

(1) the sets N0 and N1 are laminar, U is the set of their components and
the axis A is a component of N0,
(2) there is an MS formula ϕ(N0, N1) expressing that a structure (N,≤,
N0, N1) is S(J) for some SBJ-tree J = (N,≤,U),
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Fig. 1. A structured join-tree.

(3) there exist MS formulas θAx(X,N0, N1) and θ(u,U,N0, N1) express-
ing, respectively, in a structure (N,≤, N0, N1) = S(N,≤,U), that X is
the axis and that U ∈ U ∧ u = Û .

The proof is easy from the definitions. The construction of ϕ uses the fact
that the finiteness of a linearly ordered set is MS-expressible.

(2.7) Proposition: Every join-tree has a structuring.

Proof sketch: Let J = (N,≤) be a join-tree. Let us choose an enumeration of N
and a maximal line B0 ; it contains each line [x,+∞[ for x ∈ B0. For each i > 0,
we choose a maximal line Bi containing the first node not in Bi−1 ∪ ... ∪ B0. We
define U0 := B0 and, for i > 0, Ui := Bi−(Ui−1∪...∪U0) = Bi−(Bi−1∪...∪B0).
We define U as the set of lines Ui. ��

Each line is the linearly ordered set of leaves of an ordered, finite or countable,
binary rooted tree. By combining the trees of the lines of U , we can build a
binary tree that represents (is a precise MS-definable way) a BJ-tree. This type
of construction has first been defined and used in [7]. Proposition 3.6 below and
the proofs in [6] give it an algebraic meaning.

2.5 The Rank-Width of a Countable Graph

Rank-width and modular decomposition (cf. [7]) motivate the study of quasi-
trees and join-trees. Rank-width is a width measure on finite graphs investigated
first in [12,13]. Here is its generalization to countable graphs. We let G be the
class of finite or countable, undirected graphs without loops or parallel edges.
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(2.8) Definition : Rank-width.

(a) Let G ∈ G, let X and Y be pairwise disjoint sets of vertices. The associated
adjacency matrix is M : X × Y → {0, 1} with M [x, y] = 1 if and only if x
and y are adjacent. If U ⊆ X and W ⊆ Y , we denote by M [U,W ] the matrix
that is the restriction of M to U × W . Ranks are over GF (2). The rank of M ,
defined as the maximum cardinality of an independent set of rows (equivalently,
of columns) is denoted by rk(M); it belongs to N ∪ {ω}. It is convenient to take
rk(M [∅,W ]) = rk(M [U, ∅]) = 0.

(2.8.1) Fact : If X ∪Y is infinite, then rk(M) = sup{rk(M [U,W ]) | U ⊆ X,W ⊆
Y,U and W are finite}.

(b) Let T be a binary join-tree with set of leaves VG. We call it a layout of G.
The rank of T is the least upper-bound of the ranks rk(M [X ∩ VG,Xc ∩ VG])
where X ⊆ NT is directed and downwards closed. The rank-width of G, denoted
by rwd(G), is the smallest rank of a layout. Discrete rank-width, denoted by
rwddis(G) is similar except that layouts are binary (countable) trees. Hence,
rwd(G) ≤ rwddis(G). For finite graphs, we get the rank-width of [12].

The notation G ⊆i H means that G is an induced subgraph of H [9].

(2.9) Theorem [5]: (1) If G ⊆i H, then rwd(G) ≤ rwd(H) and rwddis(G) ≤
rwddis(H),

(2) Compactness : rwd(G) = Sup{rwd(H) | H ⊆i G and H is finite},
(3) Compactness with gap : rwddis(G) ≤ 2.Sup{rwd(H) | H ⊆i G and H is

finite}.
The gap function in (3) is n �→ 2n, showing a weak form of compactness. A

similar gap occurs for the clique-width of countable graphs [4].

Proof sketch: (1) is clear from the definitions. (2) is proved by Koenig’s Lemma.
(3) is based on the fact that a countable linear order is the ordered set of leaves
of a binary tree; this construction is adapted from [7]. ��

We now leave rank-width and we consider binary join-trees.

3 The Algebra of Binary Join-Trees

We define three operations on structured binary join-trees (SBJ-trees). The finite
and infinite terms over these operations define all SBJ-trees.

(3.1) Definition : Operations on structured binary join-trees.

Concatenation along axes.

Let J = (N,≤,U) and J ′ = (N ′,≤′,U ′) be disjoint SBJ-trees, with respective
axes A and A′. We define:

J • J ′ := (N ∪ N ′,≤′′,U ′′) where :
x ≤′′ y :⇐⇒ x ≤ y ∨ x ≤′ y ∨ (x ∈ N ∧ y ∈ A′),
U ′′ := {A ∪ A′} ∪ (U−{A}) ∪ (U ′−{A′}).
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J • J ′ is an SBJ-tree with axis A ∪ A′; its depth is the maximum of those of
J and J ′.

This operation generalizes the concatenation of linear orders: if (N,≤) and
(N ′,≤′) are disjoint linear orders, then the SBJ-tree (N,≤, {N})•(N ′,≤′, {N ′})
corresponds to the concatenation of (N,≤) and (N ′,≤′) usually denoted by
(N,≤) + (N ′,≤′).

The empty SBJ-tree:
The nullary symbol Ω denotes the empty SBJ-tree.

Extension:
Let J = (N,≤,U) be an SBJ-tree, and u /∈ N . Then:

extu(J) := (N ∪ {u},≤′, {u} ∪ U) where :
x ≤′ y :⇐⇒ x ≤ y ∨ y = u,
the axis is {u}.

Then extu(J) is an SBJ-tree. The depth of v ∈ N is its depth in J plus 1.
When handling SBJ-trees up to isomorphism, we use the notation ext(J) instead
of extu(J).

Forgetting structuring:
If J is an SBJ-tree as above, fgs(J) := (N,≤) is the underlying BJ-tree

(binary join-tree).
Anticipating the sequel, we observe that a linear order a1 < ... < an , iden-

tified with the SBJ-tree ({a1, ..., an},≤, {{a1, ..., an}}) is defined by the term
t = exta1(Ω) • exta2(Ω) • ... • extan

(Ω). The binary (actually unary) join-tree
({a1, ..., an},≤) is defined by the term fgs(t) and also by the term fgs(extan

(extan−1(...(exta1(Ω)))..))).

(3.2) The algebra SBJT

We let F be the signature {•, ext,Ω}. We obtain an algebra SBJT whose domain
is the set of isomorphism classes of SBJ-trees. Concatenation is associative with
neutral element Ω. We denote by T∞(F ) and T (F ) the sets of terms and finite
terms over F .

(3.3) Definitions : The value of a term.

Let t ∈ T∞(F ) .
(a) We compare positions of t as follows: u ≈ v if and only if every position

w such that u <t w ≤t u � v or v <t w ≤t u � v is an occurrence of •. This
relation is an equivalence.

We will also use the lexicographic order ≤lex .
(b) We define the value val(t) := (N,≤,U) of t as follows:

N := Occ(t, ext), the set of occurences of the symbol ext (or of the
symbols exta if nodes are designated) in t,
u ≤ v :⇐⇒ u ≤t w ≤lex v for some w ∈ N such that w ≈ v,
U is the set of equivalence classes of ≈ .
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(3.3.1) Claim: The mapping val is a value mapping into SBJT.
We say that t denotes J if J is isomorphic to val(t), and, in this case, we

also say that fgs(t) denotes the BJ-tree fgs(J).

(3.4) Examples and remarks.

(1) The term t that is the unique solution of the equation t = t • t denotes
the empty SBJ-tree Ω.

(2) Let t1 be the solution in T∞(F ) of the equation t = ext(ext(Ω)) • t. We
can write this term linearly by naming a, b, c, d, e, f, ... the nodes created by the
operations ext :

t1 = exta(extb(Ω)) • (extc(extd(Ω)) • (exte(extf (Ω)) • ...))).

Its value is shown in Fig. 2. The bold edges link nodes in the axis.

Fig. 2. The SBJ-tree val(t1).

(3.5) Definition: Flat terms

(a) A term t ∈ T∞(F ) is flat if no occurrence of ext is below any other
occurrence of ext. (Any two occurrences of ext are equivalent with respect to
≈). The value of a flat term is a simple arrangement over Occ(t, ext).

(b) Let t ∈ T∞(F ) and u ∈ Pos(t). We denote by Max(t, u) the set of
maximal occurrences of ext in t that are below or equal to u. We define t{u} as
the flat term obtained from t/u by replacing by extw(Ω) each of its subterms
t/w, for all w ∈ Max(t, u). In t{u} the operations ext are indexed by positions
from Pos(t). It follows that t{ε} = extε(Ω) if t = ext(t′). The value of t{u} is a
simple arrangement over Max(t, u).

For t1 as in the previous example, t1{ε} = exta(Ω)•(extc(Ω)•(exte(Ω)•...));
it denotes the arrangement ace... (here we keep the original naming of posi-
tions). If t2 = ext(ext(Ω)) • (ext(ext(Ω)) • ext(ext(Ω))) then t2{ε} = ext1(Ω) •
(ext21(Ω) • ext22(Ω)).
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(3.5.1) Claim: Let J = (N,≤,U) = val(t), cf. Definition 3.3. Then val(t{ε})
= (A,≤) (the axis) and, if U ∈ U and Û = pt(u), we have val(t{u}) = (U,≤).

(3.6) Proposition: Every SBJ-tree is the value of a term.

Proof sketch: Let S = (N,≤,U) be an SBJ-tree. For each U in U , we define
a flat term that denotes (U,≤). We combine these terms in order to get a term
denoting S. ��
For the example of Fig. 1, if ti is a flat term denoting Ui, then we obtain the term
t0[t1, t2[t3], t4[t5]] where [...] denotes appropriate substitutions to occurrences
of Ω.

(3.7) Definition: Description schemes for SBJ-trees.

An SBJ-scheme is a triple S = (Q,wAx, (wq)q∈Q) such that Q is a set, wAx ∈
A(Q) (is an arrangement over Q), and for each q, wq ∈ A(Q). It is regular if Q
is finite and the arrangements wAx and wq are regular.

An SBJ-scheme S describes an SBJ-tree J = (NJ ,≤,U) if there exists a mapping
r : NJ → Q such that r(AJ ,≤) = wAx and for every x ∈ NJ , wr(x) = r(U,≤) if
U ∈ U and Û = x, and wr(x) = Ω if x = Û for no U ∈ U . As (U,≤) is considered
as the arrangement (U,≤, IdU ), its image under r is an arrangement over Q. We
also say that S describes the BJ-tree fgs(J).

(3.8) Proposition: Every SBJ-scheme S describes an SBJ-tree J(S) that is
unique up to isomorphism.

Proof sketch: Given S = (Q,wAx, (wq)q∈Q), we construct J(S) by defining first
its axis so as to be isomorphic to wAx, by a mapping rAx. Then we add the nodes
at depth 1 by adding nonempty lines U isomorphic to wq �= Ω such that Û = x
for each x in the axis such that rAx(x) = q. The isomorphism between such a line
U and wq is rx. We proceed in a similar way with the nodes of depth 2,3.... We
obtain an SBJ-tree. The mapping r is the union of the mappings rAx and rx for
all relevant x. Unicity holds because each step is forced, up to isomorphism. �
(3.9) Definition: Regular objects.

A BJ-tree (resp. an SBJ-tree) T is regular if it is denoted by fgs(t) (resp. by t)
where t is a regular term in T∞(F ).

(3.10) Theorem: The following properties of a BJ-tree J are equivalent:
(1) J is regular,
(2) J is described by a regular scheme,
(3) J is MS-definable.

Proof sketch: (1)=⇒(2) Let J = fgs(J ′) with J ′ denoted by a regular term t
in T∞(F ). Let h : Pos(t) → Q and τ be as in Sect. 2.1. If x is an occurrence of
ext with son u, the flat term t{u} is regular. It defines the simple arrangement
(U,≤) where Û = x. Its image h(U,≤) is a regular arrangement over Q.

Furthermore, if h(x) = h(x′) = q, then the corresponding terms t{u} and t{u′}
are isomorphic and h(U,≤) and h(U ′,≤) are also isomorphic (with x′ = pt(u′)
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and Û ′ = x′). We can denote them by wq. We let wAx be h(val(t{ε})). These
definitions give us a regular scheme describing J ′, hence, also J .

(2)=⇒(3) Let J = (N,≤) be a BJ-tree. (This property of (N,≤) is MS-
expressible). Assume J = fgs(J ′) where J ′ = (N,≤,U) is described by a regular
SBJ-scheme R with Q = {1, ...,m} and regular arrangements over Q : wAx and
wi for i ∈ Q. Let r be the corresponding mapping. For each i ∈ Q, let ψi be an
MS sentence that characterizes wi up to isomorphism by the main result of [14].
Similarly, ψAx characterizes wAx. We claim that a relational structure (N,≤) is
isomorphic to J if and only if :

there exist subsets N0, N1,M1, ...,Mm of N such that:

(i) (N,≤, N0, N1) = S(J ′′) for some SBJ-tree J ′′ = (N,≤,U),
(ii) (M1, ...,Mm) is a partition of N ; we let r′ map each w ∈ N to the
unique i such that w ∈ Ni,
(iii) for every i and node u in Mi, the arrangement r′(U) over Q such
that U ∈ U and u = Û is isomorphic to wi,
(iv) the arrangement r′(A) over Q such that A is the axis of J ′′ is iso-
morphic to wAx.

Conditions (ii)-(iv) express that R describes J ′′, and hence that J ′′ is iso-
morphic to J ′, and so, that (N,≤) = fgs(J ′) = J .

By Proposition 2.6, Condition (i) is MS-expressible by ϕ(N0, N1), and the
property U ∈ U ∧ u = Û is also MS-expressible in terms of N0, N1 by θ(u,U, U0,
N1). Conditions (iii) and (iv) are MS-expressible by means of the sentences wAx

and wi suitably adapted to take N0, N1,M1, ...,Mm as arguments. Hence, J is
the unique model of an MS sentence of the form:

∃N0, N1(ϕ(N0, N1) ∧ ∃M1, ...,Mm.ϕ′(N0, N1,M1, ...,Mm))).
(3)=⇒(1) By Definition 3.3, the mapping α that transforms the relational

structure 
t� for t in T∞(F ) into the BJ-tree J = (N,≤) = fgs(val(t)) is an MS-
transduction: an MS formula can identify the nodes of J among the positions of
t and another one can define ≤.

Let J = (N,≤) be an MS-definable BJ-tree. It is, up to isomorphism, the
unique model of an MS sentence β. It follows by a standard argument (called the
Backwards Translation Theorem, Theorem 7.10 in [8]) that the set L(β) of terms
t in T∞(F ) such that α(
t�) |= β is MS-definable and thus, contains a regular
term (a result by Rabin, see [15]). This term denotes J , hence J is regular. ��
(3.11) Corollary: Whether two regular BJ-trees are isomorphic is decidable.

Proof : A regular BJ-tree can be given either by a regular term, a regular scheme
or an MS sentence. The proof of Theorem (3.10) is effective: algorithms can
convert a specification into another one. Two regular BJ-trees can be given, one
by an MS sentence β, the other by a regular term t. They are isomorphic if and
only if α(
t�) |= ϕ (cf. the above proof of (3)=⇒(1)) if and only if t ∈ L(β),
which is decidable. ��
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We have defined regular BJ-trees from regular terms, that have finitary
descriptions. There are other infinite terms having finitary descriptions: the alge-
braic ones and more generally, those of Caucal’s hierarchy [1,3]. Such terms yield
effective notions of BJ-trees.

4 Quasi-trees

Quasi-trees can be seen informally as undirected join-trees. We now define them
independently.

(4.1) Definition: Betweenness.

If T is a tree, x, y ∈ NT , its betweenness relation is the ternary relation BT such
that BT (x, y, z) holds if and only if x, y, z are pairwise distinct and y is on the
unique path between x and z. If R is a rooted tree and T = Und(R) is the tree
obtained from T by forgetting its root and edge directions, then :

BT (x, y, z) ⇐⇒ x, y, z are pairwise distinct and x <R y ≤R x �R z or
z <R y ≤R x �T z.

(4.2) Proposition: The betweenness relation B = BT of a tree T satisfies the
following first-order properties for all u, x, y, z in NT :

A1 : B(x, y, z) ⇒ x �= y �= z �= x.
A2 : B(x, y, z) ⇒ B(z, y, x).
A3 : B(x, y, z) ⇒ ¬B(x, z, y).
A4 : B(x, y, z) ∧ B(y, z, u) ⇒ B(x, y, u) ∧ B(x, z, u).
A5 : B(x, y, z) ∧ B(x, u, y) ⇒ B(x, u, z) ∧ B(u, y, z).
A6 : B(x, y, z) ∧ B(x, u, z) ⇒
y = u ∨ (B(x, u, y) ∧ B(u, y, z)) ∨ (B(x, y, u) ∧ B(y, u, z)).
A7 : x �= y �= z �= x ⇒
B(x, y, z)∨B(x, z, y)∨B(y, x, z)∨(∃u.B(x, u, y)∧B(y, u, z)∧B(x, u, z)).

(4.3) Definition: Quasi-trees.

A quasi-tree is a structure S = (N,B) such that B is a ternary relation on N
that satisfies conditions A1-A7.

In a quasi-tree, the four cases of the conclusion of A7 are exclusive and in the
fourth one, there is at most one u satisfying B(x, u, y)∧B(y, u, z)∧B(x, u, z). A
leaf of (N,B) is a node z such that B(x, z, y) holds for no x, y. Directions and
degrees of nodes can be defined and we get the notion of subcubic quasi-tree.

From a join-tree J = (N,≤) we define a ternary relation BJ on N by:

BJ(x, y, z) :⇐⇒ x, y, z are pairwise distinct and x < y ≤ x � z or z <
y ≤ x � z.
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Conversely, by selecting a suitable line in a subcubic quasi-tree and two nodes
that fix its direction, we can make a quasi-tree into a BJ-tree. This construction
is MS-definable. This indicates how Theorem (3.10) (in particular (2)=⇒(3))
extends to subcubic quasi-trees in Theorem (4.5) below.

(4.4) Proposition: For every join-tree (resp. BJ-tree) J = (N,≤), the structure
(N,BJ ) is a quasi-tree (resp. a subcubic quasi-tree) denoted by qt(J). Each
quasi-tree (resp. subcubic quasi-tree) is of this form.

The algebra of quasi-trees is the algebra of join-trees augmented with the
forgetting operation qt (similar to fgs).

(4.5) Theorem: A subcubic quasi-tree is regular if and only if it is MS-definable.

This algebraic approach and Theorems (3.10) and (4.5) extend to rooted trees, to
ordered rooted trees, to join-trees and to ordered join-trees of finite or countable
degree [6].
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Abstract. We construct a single Lindström quantifier Q such that
FO(Q), the extension of first-order logic with Q has the same expres-
sive power as monadic second-order logic on the class of binary trees
(with distinct left and right successors) and also on unranked trees with
a sibling order. This resolves a conjecture by ten Cate and Segoufin.
The quantifier Q is a variation of a quantifier expressing the Boolean
satisfiability problem.

1 Introduction

Trees as data structures are ubiquitous, serving as a means of representing and
structuring data in almost all fields of computer science. In the last two decades
there has been a significant amount of research devoted to investigating the
power of languages for querying tree-structured data. In this context monadic
second-order logic (MSO) has emerged as a standard against which the expres-
sive power of other languages is compared. On the one hand, satisfiability of
MSO formulas is decidable on trees, and model-checking is tractable. On the
other hand, the language is expressive enough to subsume most practical query
languages for tree-structured data. To be precise, the classes of trees definable
in MSO are exactly the regular languages and this close correspondence between
the logic and tree automata is one of its most attractive features.

In [9], ten Cate and Segoufin consider a logic for querying trees that is inter-
mediate in expressive power between first-order logic (FO) and MSO, that is
FO(MTC), the extension of first-order logic with an operator for defining the
transitive closure of a definable binary relation (here MTC stands for monadic
transitive closure, to distinguish from the general transitive closure operator
which would allow us to define the transitive closure of any definable 2k-ary rela-
tion). They show that the expressive power of this logic corresponds to a natural
extension of the widely studied XML path language XPath, and also charac-
terise it in terms of an automaton model—that of nested tree-walking automata.
Among the results they establish is that the expressive power of FO(MTC) is
strictly weaker than that of MSO on trees (whether finite or infinite, ranked or
unranked).
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FO(MTC) can naturally be seen as an extension of FO with a single gener-
alized quantifier in the sense of Lindström [7]. Such quantifiers are a standard
means in abstract model theory (see [1]) of defining a minimal extension of a
logic adding the ability to define a particular property. Note, in contrast, that
FO(TC)—the extension of first-order logic with the general transitive closure
operator, well studied in descriptive complexity theory (see [5])—does not extend
FO with a single quantifier but with an infinite family of vectorized quantifiers
generated from a single one (as in [3]). In the conclusions of [9], ten Cate and
Segoufin ask the question whether there is any finite set of Lindström quanti-
fiers Q1, . . . , Qn such that the extension of FO with these quantifiers would have
exactly the expressive power of MSO on trees1. In this paper, we answer this
question by constructing a single Lindström quantifier Q such that FO(Q) has
exactly the same expressive power as MSO on finite trees. We first establish
this for binary trees (with distinguished left and right successors) and then, in
Sect. 5 consider the case of (sibling-ordered) unranked trees. The quantifier that
we construct, which we call qSAT, is a version of a Boolean satisfiability quan-
tifier. It is obtained by modifying a representation of satisifiability as a class of
finite relational structures originally given by Lovász and Gács [8]. The precise
definition is given in Sect. 3.

2 Preliminaries

We write N for the natural numbers, and we fix an arbitrary finite alphabet
Σ for the remainder of this paper. We work with finite trees, either binary or
unranked, over Σ. A binary tree t over Σ is a finite set T ⊆ {0, 1}∗ of strings
that is prefix closed and such that for any string w, w0 ∈ T iff w1 ∈ T , along
with a labelling function λ : T → Σ. An unranked tree t over Σ is a finite set
T ⊆ N

∗, which is prefix closed and such that if wj ∈ T for some w ∈ N
∗ and

j ∈ N then wi ∈ T for all i < j, along with a labelling function λ : T → Σ.
In either case, we refer to the elements of T as nodes, to the empty sequence ε
as the root of the tree t and any maximal sequence in the set T as a leaf of t.
A subtree s of a binary tree t = (T, λ) is the substructure induced by a set of
nodes S ⊆ T such that for some x ∈ T and some set of tree nodes W ⊆ {0, 1}∗,
S = {xw | w ∈ W}.

In order to define queries over trees in logic, such as first-order or second-
order logic, we consider two vocabularies of relations—one for binary trees and
one for unranked trees. In the former case, we have two binary relations lsucc
(for left successor) and rsucc (for right successor) which are interpreted in a tree
t by lsucc(x, y) if, and only if, y = x0 and rsucc(x, y) if, and only if, y = x1. In
addition, for each σ ∈ Σ, we have a unary relation (which we also write σ) so
that σ(x) holds just in case λ(x) = σ.

1 As written in [9], the question asks for a set of such quantifiers with expressive power
equivalent to FO(MTC). This is clearly a typographical error and MSO is what is
meant.
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In the case of unranked trees, in addition to the unary relations Σ, we have
two binary relations succ (the parent relation) and ≺ (the sibling order) which
are defined by succ(x, y) just in case y = xz for some z ∈ N and x ≺ y just in
case x = zi and y = zj for some z ∈ N

∗ and some i, j ∈ N with i < j.
The formulas of first-order logic (FO) and monadic second-order logic (MSO)

are defined as usual, starting with atomic formulas using the predicate symbols
Σ ∪ {lsucc, rsucc} (in the case of binary trees) and Σ ∪ {succ,≺} in the case
of unranked trees and closing under Boolean operations and quantification over
elements for FO and over sets of elements for MSO. We always assume that the
equality predicate is available. For a tree t and a sentence φ of any logic, we
write t |= φ to denote that t makes φ true in the usual way. In general, for a
relational signature τ , we write Str(τ) for the collection of finite τ -structures.
For a τ -structure A, we write A for its universe, and if φ is a formula with free
first-order variables, we write φA for the relation defined by the formula φ when
interpreted in A.

We also sometimes write x < y for nodes x and y in a tree t to denote that
y = xz for a non-empty string z, i.e. x is an ancestor of y. Note that this relation
is definable in MSO as it is the transitive closure of succ (or lsucc ∪ rsucc, in
the case of binary trees). This relation is not, in general, definable in FO. Thus,
the absence of the ancestor relation from our vocabulary makes the main result
adjoining a single quantifier to FO to achieve the expressive power of MSO
stronger. We do, however, need the sibling order ≺.

A tree automaton is a tuple A = (Q, s, F, δ) where Q is a finite set of states,
s ∈ Q is the initial state, F ⊆ Q is the set of accepting states and δ ⊆ Q ×
Σ × Q × Q is the transition relation. A run of an automaton A on a binary tree
t = (T, λ) starting with state q is a map ρ : T → Q such that: ρ(ε) = q; and if
x, y, z ∈ T are such that y is the left successor of x and z is the right successor of
x, ρ(x) = q1, ρ(y) = q2, ρ(z) = q3 and λ(x) = σ then (q1, σ, q2, q3) ∈ δ. We say
ρ is an accepting run starting with state q if for all leaves x of t, ρ(x) ∈ F . We
simply say ρ is accepting if it is an accepting run starting from s. We say that A
accepts t if there is some accepting run of A on t. We also use the term partial
run of A to depth i from node x to mean a run on the subtree of t rooted at x
and including all descendants of x at distance at most i. Note that our automata
are top-down in the sense that it is the root that is labelled by the initial state
and the leaves by final states in an accepting run. The bottom-up automaton
model where leaves are labelled by initial states and the root by a final state
yields is known to be equivalent.

It is known since the work Thatcher and Wright [10] and Doner [4] that
the class of tree languages accepted by automata is exactly the same as those
definable by sentences of MSO (see [11] for an exposition). We formally state
one direction of this equivalence for future use.

Theorem 2.1 ([4,10]). For any sentence φ of MSO there is a tree automaton
A such that for any binary tree t, t |= φ if, and only if, A accepts t.

Let τ and τ ′ = {R1, . . . , Rm} be relational signatures, where Ri is a relation
symbol of arity ri. A sequence Ψ = ψ1(x̄1, ȳ), . . . , ψm(x̄m, ȳ) of formulas of
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signature τ , where ψi has free variables among x1, . . . , xri
and ȳ defines an

interpretation Ψ that takes a pair (A, ā) consisting of a τ structure A and
a tuple ā from its universe A interpreting the variables ȳ to a τ ′-structure
Ψ(A, ā) = (A,ψA,ā

1 , . . . , ψA,ā
m ). When ȳ is empty, we say that Ψ is an inter-

pretation without parameters.
The following definition of a generalized quantifier is essentially due to

Lindström [7].

Definition 2.2. Let K be a collection of structures of some fixed signature τ ,
which is closed under isomorphisms, i.e. if A ∈ K and A ∼= B then B ∈ K. With
K we associate the quantifier QK , which can be adjoined to first-order logic to
form an extension FO(QK), which is defined by closing FO under the following
rule for building formulas:

If Ψ = (ψ1, . . . , ψk) is an interpretation from τ to τ ′ then QK x̄Ψ is a formula
of FO(QK) of signature τ whose free variables are the parameters of Ψ .

The semantics of is given by the following rule: for a τ -structure A and a
valuation ā for ȳ,

(A, ā) |= QK x̄Ψ ⇐⇒ Ψ(A, ā) ∈ K.

Where it causes no confusion, we write K both for the quantifier QK and
the class of structures that defines it.

It should be noted that there are definitions of first-order interpretation in
the literature that are more general than what we define. In particular, in our
definition, the universe of the interpreted structure ΨA is always the same as
the universe of A. We do not allow relativization (which restricts the universe
to a definable subset), quotienting (where the universe is obtained by taking
the quotient of A under a definable congruence) or vectorizations (where the
universe of the interpreted structure is a set of tuples from A). One reason
for restricting ourselves in this way is that the simple notion is sufficient for
our purpose. Another is that, while relativization and quotienting are harmless,
MSO definability is not closed under vectorized interpretations. There are other
general notions of interpretation that preserve MSO definability (such as the
MSO transductions of Courcelle (see [2]), but we do not need this generality here.

With our definition, MSO definability is closed under first-order interpre-
tations in the sense that if K is definable by an MSO sentence and Ψ is an
interpretation, then the class {A | ΨA ∈ K} is also MSO-definable. An imme-
diate consequence is the following lemma, which we state for future reference.

Lemma 2.3. If K is definable by an MSO sentence, then every formula of
FO(QK) is equivalent to a formula of MSO.

3 Satisfiability Quantifier

The quantifier we define is based on a representation of the Boolean satisfiability
problem as a class of relational structures. We first consider a classical represen-
tation due to Lovász and Gács [8], who showed that this class of structures is
NP-complete under (vectorized) first-order interpretations.
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Definition 3.1. Let τSAT denote the vocabulary (V,C, P,N) where V and C are
unary relation symbols and P and N are binary relation symbols. We denote by
SAT the class of τSAT-structures A in which:

1. V A and CA partition the universe A;
2. PA, NA ⊆ V A × CA.
3. there is a set S ⊆ V A such that for each c ∈ CA there is a v ∈ V A such that:

either v ∈ S and P (v, c) or v 
∈ S and N(v, c).

The idea is that a structure in SAT represents a propositional formula in CNF.
V is the set of variables and C the set of clauses. P (v, c) holds if the variable v
appears positively in the clause c and N(v, c) holds if v appears negatively in c.
The third condition in the definition ensures that A ∈ SAT only if it represents
a satisfiable formula. It is immediate from the definition that SAT is definable
by a sentence of MSO, since each of the three conditions is easily expressed as
an MSO formula.

While SAT is a natural quantifier, expressing a well-known problem, we
find it convenient to consider a modification of it, which makes our proof
considerably easier. Let τqSAT be the vocabulary (Cl ,Pos,Neg) where Cl is a
binary relation and Pos and Neg are ternary relations. For a τqSAT-structure
A = (A,Cl ,Pos,Neg), write flat(A) for the τSAT-structure whose universe is
A � Cl (i.e. the disjoint union of A and Cl), which interprets the unary rela-
tions V and C by A and Cl respectively, where P is interpreted as the set of
pairs (a, c) such that if c = (a1, a2) ∈ Cl , then Pos(a, a1, a2) holds and similarly
N is interpreted as the set of pairs (a, c) such that if c = (a1, a2) ∈ Cl , then
Neg(a, a1, a2) holds.

Definition 3.2. We define qSAT to be the class of τqSAT-structures A such that
flat(A) ∈ SAT.

In other words, while in the τSAT representation of Boolean formulas, we explicitly
have elements for each variable and clause, in the τqSAT Representation, the
universe consists just of the set of variables and the clauses are coded by pairs of
variables. This limits us to Boolean formulas where the number of clauses is at
most n2 (where n is the number of variables) but this suffices for our purpose.
The reason for considering this more convoluted definition is that in defining an
interpretation of τSAT in a tree t, we are limited to constructing instances where
the number of variables and clauses is at most the number of nodes in the tree.
On the other hand, in interpreting τqSAT, we can effectively construct instances
of quadratic size. This simplifies our argument.

Again, it is quite easy to see that the class of structures qSAT is definable in
MSO. Indeed, the definition is obtained as a conjunction of the wellformedness
condition:

∀x, y, z(Pos(x, y, z) ∨ Neg(x, y, z)) ⇒ Cl(y, z)

with the satisfiability condition:

∃S∀x, y(Cl(x, y) ⇒ ∃s(S(s) ∧ Pos(s, x, y)) ∨ (¬S(s) ∧ Neg(s, x, y))).

Thus, by Lemma 2.3 we immediately have the following lemma.
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Lemma 3.3. Every formula of FO(qSAT) is equivalent to a formula of MSO.

Note that this holds in general, not just on trees.

4 Capturing MSO

In this section, we begin by showing that FO(qSAT) has the same expressive
power as MSO on binary trees. Lemma3.3 established one direction of this equiv-
alence. For the other, we aim to show that for any MSO sentence φ, the class of
binary trees t such that t |= φ is reducible, by a first-order interpretation, to the
class qSAT. The basic idea of the construction is similar to the proof that any
MSO sentence is equivalent, on the class of binary trees, to an existential MSO
sentence with exactly one second-order quantifier (see [11]).

Fix an MSO sentence φ and let A = (Q, q1, F, δ) be a tree automaton accept-
ing the set of trees {t | t |= φ}. Without loss of generality we assume that A is
complete: that is, for any state q and any σ ∈ Σ, there are states s and t with
(q, σ, s, t) ∈ δ. Also, we assume Q = {q1, . . . , qk} with q1 being the initial state.

Let t be a tree and let ρ be a run of A on t. Let Sρ be the set of nodes defined
inductively as follows. The root of t is in Sρ. If x is a node of t with x in Sρ and
ρ(x) = qi then all descendants of x at distance i are in Sρ. No other nodes are
in Sρ.

Now, given a binary tree t = (T, λ) and a set S ⊆ T , we can say that S = Sρ

for some accepting run ρ of A if, and only if, the following conditions are satisfied:

1. The root is in S. The left and right successors of the root are in S.
2. For any node x in S, other than root, there is an ancestor of x at distance

less than k from x that is in S. We call the ancestor of x that is closest to x
and in S the S-predecessor of x.

3. If x is in S and y, the S-predecessor of x, is at distance i from x then all
descendants of y at distance i are in S and no descendant of y at distance
less than i is in S. In this case we say that y is an i-node.

4. For every i-node x in S, if y1, . . . , yn are the descendants of x at distance i
from x then there is a run of A starting in x in state qi and reaching yj in
state qαj

such that for all j ≤ n:
(a) if the subtree of t rooted at yj has depth less than αj then there is an

accepting run of A starting from yj in state qαj
; and

(b) if the subtree rooted at yj has depth at least αj then yj is a αj-node.
Moreover, if y is a leaf of t at distance less than i from x then the run reaches
an accepting state in y.

Note that each of the conditions above can be expressed by a first-order formula
with a unary relation for S. This is because each of the conditions is only about
the local neighbourhood (to distance at most k) of a node x. This shows, in
particular, that the class of trees accepted by A is defined by a formula ∃Sθ
where θ is first-order. Our aim here is slightly different. We want to use this
construction to obtain from a tree t, a propositional formula θt which is satisfiable
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if, and only if, there is an accepting run of A on t. The variables of θt are exactly
the nodes T so any subset S of T determines a truth assignment to the variables
making the variables in S true and all other variables false. Then, each of the
conditions above translates into a set of clauses on the variables T . We now show
that this translation can be achieved by means of a first-order interpretation.

Lemma 4.1. For any tree automaton A, there is a first-order interpretation Θ
such that for any binary tree t, Θt ∈ qSAT if, and only if, A accepts t.

Proof. The instance Θt of qSAT that we construct has as its universe (and
therefore the set of variables), the nodes T of t. The clauses are indexed, as
required by the definition of qSAT, by pairs of variables. The number of clauses is
bounded by c|T | for some constant c (depending on A) and we find it convenient
to index the clauses by pairs (x, y) ∈ T 2 where y is an ancestor of x at distance
at most c. The distance of y from x effectively serves as an integer index. For
any positive integer i, we write y = anci(x) to denote that y is the ancestor of
x at distance i. Note that for fixed i this is expressible as a first-order formula
with free variables x and y. We also fix an injective mapping of tuples of natural
numbers as natural numbers and write, for instance, 〈l,m, n〉 for the number
that codes the triple (l,m, n).

To represent condition 1, for each x ∈ {ε, 0, 1} we have a clause indexed by
(x, x) which is just x (i.e. a single positive occurrence of the variable x).

To represent condition 2 we have, for each node x that is not in {ε, 0, 1}, a
clause indexed by (x, x) that is x → (y1 ∨ · · · yk) where yi = anci(x).

To represent condition 3 for any node x, and any i with 1 ≤ i ≤ k, let
w1, . . . , wl be the descendants of x at distance exactly i from x and z1, . . . , zm

be the descendants of x at distance less than i from x. Note that l,m ≤ 2k.
Then, for each such i, and each j and j′ with 1 ≤ j, j′ ≤ l we have the clause
x ∧ wj → wj′ , indexed by (x, y) for y = anc〈1,i,j,j′〉(x). Also for each j and j′

with 1 ≤ j ≤ l and 1 ≤ j′ ≤ m we have the clause x ∧ wj → ¬zj′ , indexed by
(x, y) for y = anc〈2,i,j,j′〉(x).

To represent condition 4, for each node x and each 1 ≤ i ≤ k, let z be the
lexicographically smallest descendant of x at distance i if there is one and let
w1, . . . , wn enumerate all the descendants of x at distance i. Consider any run
ρ of the automaton A on the subtree rooted at x starting in state qi, and let
ρ(wj) = ql. We write αρ,wj

for the propositional formula that is:

– true if wj has no descendants at distance l and there is a run of A starting
in ql on the subtree rooted at wj which ends in a final state on all leaves; and

– z′, where z′ is a descendant of wj at distance l from wj otherwise.

We now construct the propositional formula:

x ∧ z →
∨

ρ

∧

w

αρ,w (1)

where ρ ranges over all partial runs of A on the subtree rooted at x starting in
state qi, and up to depth i such that for any descendant u of x that is at distance
less than i from x and is a leaf ρ(u) ∈ F ; and w ranges over {w1, . . . , wn}.



Capturing MSO with One Quantifier 149

Let d1, . . . , dr be the clauses when the formula (1) is converted to CNF. Note
that r is bounded by a function of k. Then, we include the clause dl indexed by
the pair (x, y) where y = anc〈i,l〉(x).

Note that in the above, clauses are indexed by pairs (x, y) with y an ancestor
of x at distance at most c, where c is a function of k. The interpretation Θ
takes the tree t to an instance (T,Cl ,Pos,Neg) of qSAT where Cl is the set
of indices defined above. It is easy to see that Cl is definable by a first-order
formula because the distance between x and y is bounded. The only variables
that appear in a clause indexed by (x, y) are at distance at most 2k from x.
Since the number of such nodes is bounded (by a function of k) and a total
order on this set is definable in first-order logic, any relation on these is first-
order definable. Moreover, whether or not a variable is included in the clause
and if so, positively or negatively also depends only on the neighbourhood of x
to a bounded distance. In particular, this means that the relations Pos and Neg
are easily defined by first-order formulas. The construction above really defines
clauses only for nodes x that are far enough away from the root. In particular, if x
is at distance less than c from the root, it may not have enough ancestors to code
the number of clauses required. However, there are only a bounded number of
such nodes and we can deal with them exhaustively inside a first-order formula.

It is easily checked that the instance of qSAT so defined is satisfiable if, and
only if, t is accepted by A.

Theorem 4.2. FO(qSAT) has the same expressive power as MSO on binary
trees.

Proof. Immediate from Lemmas 3.3 and 4.1.

It should be noted that the interpretation constructed in the proof of Lemma4.1
is one without parameters. Thus, the proof also establishes a normal form for the
logic FO(qSAT) on binary trees, in which each formula is of the form qSATΨ for
a first-order interpretation Ψ .

5 Unranked Trees

In this section, we sketch an argument to show that, even on unranked trees, the
expressive power of FO(qSAT) is the same as that of MSO. One direction of this
is immediate by Lemma 3.3. For the other direction, we reduce the question to
that of binary trees through the standard encoding of unranked trees as binary
trees (see, for instance, [6]). Below, we describe the encoding and briefly sketch
the reduction.

We define a partial binary tree t = (T, λ) where T ⊆ {0, 1}∗ is a finite prefix-
closed set of strings and λ : T → Σ is a labelling function. In other words, we do
not require that every node has either 0 or 2 successors—a node may also have
just a left or just a right successor. We treat such trees, in the natural way, as
structures over the signature Σ ∪ {lsucc, rsucc}.
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For an unranked tree t = (T, λ) its binary encoding is the unique partial
binary tree s = (S, μ) for which there is a bijection h : T → S such that for any
x, y ∈ T : if y is the ≺-first successor of x then h(y) is the left successor of h(x);
and if y is the ≺-successor of x then h(y) is the right successor of x.

Now, it is easily seen that there is an MSO interpretation that takes a struc-
ture A that is the binary encoding of an unranked tree t to a structure isomor-
phic to t. Indeed, we can define the x ≺ y as the transitive closure of rsuccA and
succ(x, y) by ∃zlsucc(x, z) ∧ (z = y ∨ z ≺ y). Both of these are MSO definable.
This immediately gives us a translation of MSO formulas on unranked trees
into corresponding formulas on their binary encodings as stated in the following
proposition.

Proposition 5.1. For any MSO formula φ there is an MSO formula ψ such
that an unranked t satisfies φ if, and only if, its binary encoding satisfies ψ.

We next define the completion of a partial binary tree t = (T, λ) as the binary
tree over the alphabet Σ ∪ {⊥} over the set of strings T ′ which is the minimal
set that includes T and also includes x0 iff it includes x1, for any x ∈ {0, 1}∗

and such that the label of any x ∈ T is λ(x), while the label of any x 
∈ T is
⊥. While it is not possible to construct an interpretation (in the sense we have
defined it) from partial binary trees to their completions because the universes
of the structures are different, it is still possible to translate MSO formulas.
More specifically, the standard translation of MSO formulas on binary trees to
automata easily yields, for any MSO sentence φ a tree automaton A such that φ
is satisfied on a partial binary tree t if, and only if, A accepts the completion of t.
It is then an easy exercise to modify the construction in the proof of Lemma4.1
to obtain, from A an interpretation that takes the partial binary tree t to an
instance of qSAT that is satisfiable if, and only if, A accepts the completion of t.

Finally, we note that there is an FO interpretation that takes an unranked
tree t and yields (a structure isomorphic to) the binary encoding of t. This
is obtained by defining lsucc(x, y) by the formula succ(x, y) ∧ ∀z¬z ≺ x and
rsucc(x, y) by x ≺ y ∧ ∀z(y ≺ z ⇒ (z = y ∨ y ≺ z)). This means that for any
FO(qSAT) formula φ there is an FO(qSAT) formula ψ such that ψ is satisfied in
an unranked tree t if, and only if, φ is satisfied in the binary encoding of t. This
completes the cycle of translations and establishes the following.

Theorem 5.2. FO(qSAT) has the same expressive power as MSO on unranked
trees.

Proof. One direction is immediate from Lemma 3.3. In the other direction, if
we have a sentence φ of MSO, this translates to a sentence of MSO interpreted
on the binary encodings of unranked trees. In turn, this can be turned into an
automaton on the completion of the binary encoding, whose acceptance condition
is expressed as a FO(qSAT) sentence on binary encodings. This then translates
into an FO(qSAT) sentence on unranked trees.
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6 Conclusion

We have shown that we can construct a single Lindström quantifier Q such that
adding it to first-order logic yields a logic that is able to express all regular tree
languages (on either binary or unranked trees). There is one sense in which this
is a completeness result. It shows that all regular tree languages can be reduced
to Q by rather simple first-order reductions, without vectorizations—reductions
which MSO is closed under—and at the same time Q is itself definable in MSO.
What prevents us from saying that Q is complete for regular tree languages
under simple first-order reductions is that Q is not itself a tree language. It
might be interesting to find a quantifier that is a tree language that has this
property. In other words, is there a tree language that is MSO-complete under
simple first-order reductions? One may also ask if similar results hold for natural
classes of structures other than trees.

Our quantifier qSAT is a variation of a natural quantifier coding the satisfia-
bility of CNF formulas. As we noted, SAT is perhaps a more natural quantifier
coding this problem. Our reasons for using qSAT instead of SAT were technical:
the number of clauses in the CNF formulas we construct is potentially greater
than (though by no more than a constant factor) the number of nodes in the
tree. Perhaps a more sophisticated construction could circumvent this and show
that even the quantifier SAT has the property we formulated. It should be noted
that qSAT is reducible to SAT by a vectorized first-order reduction, indeed one
of dimension 2. If this could be achieved by a simple reduction instead, it would
indeed establish that FO(SAT) was as expressive as MSO on trees.

Finally, it is interesting to ask if a similar result holds for the full infinite
binary tree. That is, is there a quantifier Q so that FO(Q) has the same expressive
power as MSO. In this case, the expressive power of MSO is strictly greater than
that of weak MSO, where set quantification is restricted to finite sets. It seems
plausible that one could show that at least the expressive power of weak MSO
is captured by a single quantifier.
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8. Lovász, L., Gács, P.: Some remarks on generalized spectra. Zeitschrift für Mathe-

matische Logik und Grundlagen der Mathematik 23, 27–144 (1977)



152 A. Dawar and L. Segoufin

9. Cate, B.T., Segoufin, L.: Transitive closure logic, nested tree walking automata,
and XPath. J. ACM 57(3), 18:1–18:41 (2010)

10. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an appli-
cation to a decision problem of second-order logic. Math. Syst. Theory 2, 57–81
(1968)

11. Thomas, W.: Languages, automata and logic. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, Heidelberg (1997)



Logics for Weighted Timed Pushdown Automata

Manfred Droste and Vitaly Perevoshchikov(B)

Institut für Informatik, Universität Leipzig, 04109 Leipzig, Germany
{droste,perev}@informatik.uni-leipzig.de

Abstract. Weighted dense-timed pushdown automata with a timed
stack were introduced by Abdulla, Atig and Stenman to model the
behavior of real-time recursive systems. Motivated by the decidabil-
ity of the optimal reachability problem for weighted timed pushdown
automata and weighted logic of Droste and Gastin, we introduce a
weighted MSO logic on timed words which is expressively equivalent to
weighted timed pushdown automata. To show the expressive equivalence
result, we prove a decomposition theorem which establishes a connection
between weighted timed pushdown languages and visibly pushdown lan-
guages of Alur and Mudhusudan; then we apply their result about the
logical characterization of visibly pushdown languages.

Keywords: Timed automata · Weighted automata · Monadic second-
order logic · Weighted logic · Formal power series · Pushdown automata ·
Timed stack

1 Introduction

Timed automata introduced by Alur and Dill [3] are a prominent model for
the specification and analysis of real-time systems. Timed pushdown automata
(TPDA) with a stack were studied in [7,10,16] in the context of the verification
of real-time recursive systems. Recently, Abdulla, Atig and Stenman [1] proposed
TPDA with a timed stack which keeps track of the age of its elements. In [2],
they introduced weighted timed pushdown automata (WTPDA) as a model for
quantitative properties of timed recursive systems and showed that the optimal
reachability problem for WTPDA is decidable.

Since the seminal Büchi-Elgot-Trakhtenbrot theorem [9,15,22] about the
expressive equivalence of finite automata and monadic second-order logic, a sig-
nificant field of research investigates logical characterizations of language classes
appearing from practically relevant automata models. The goal of this paper is
to provide a logical characterization for weighted timed pushdown automata,
i.e., to design a weighted logic on timed words which is expressively equivalent
to WTPDA.

On the one hand, logic provides an intuitive way to describe the properties
of systems. On the other hand, logical formulas can be translated into automata
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which may have interesting algorithmic properties. Furthermore, logic provides
good insights into the understanding of the automata behaviors.

Related work. A logical characterization of unweighted TPDA was given in
[14] where a timed matching logic is introduced. As in the logic of Lautemann,
Schwentick and Thérien [18], we handle the stack functionality by means of a
binary matching predicate. As in the logic of Wilke [23], we use relative distance
formulas to handle the functionality of clocks. Moreover, to handle the ages of
stack elements, we lift the binary matchings to the timed setting, i.e., we can
compare the time distance between matched positions with a constant.

On the other side, Droste and Gastin [11] introduced and investigated
weighted MSO logic over semirings; this logic permits to describe quantitative
properties of systems. In [11] it was shown that syntactically restricted weighted
MSO logic is expressively equivalent to weighted automata over semirings (cf.
[12] for surveys). In [13,21] this result was extended to the setting of weighted
timed automata. In [19] a logical characterization of algebraic formal power series
was given.

Contribution of this paper. In this paper, we extend our result for unweighted
TPDA to the setting of semiring-weighted TPDA. We introduce a weighted timed
matching logic (wTML) and study its relation to WTPDA. As in [11], unre-
stricted weighted timed matching logic is more expressive than WTPDA. We
study which formulas lead to unrecognizable weighted timed languages and intro-
duce a reasonable syntactically restricted fragment of wTML which is expres-
sively equivalent to WTPDA.

For the proof of our expressive equivalence result, we use the idea of [13] for
weighted timed automata to separate weights from timed automata. In contrast
to timed automata, TPDA as extensions of pushdown automata are not closed
under intersection. Moreover, the storing weights in a timed stack are closely
connected to the inner components of TPDA. Therefore, we have to modify
the approach of [13]. We introduce a technique which establishes a connection
between weighted timed pushdown automata and visibly pushdown languages of
Alur and Madhusudan [4], a subclass of the classical context-free languages. In
other words, our method permits to simultaneously separate weights and time
from the discrete part of the model.

We show our expressive equivalence result as follows.

– We prove a Nivat-like decomposition theorem for WTPDA (cf. [5,20]) which
may be of independent interest; this theorem establishes a connection between
weighted timed pushdown languages and unweighted untimed visibly push-
down languages of [4] by means of operations like renamings and intersec-
tions with simple weighted timed pushdown languages. This result extends
our decomposition result for unweighted TPDA presented in [14].

– In a similar way, we separate the weighted timed part of wTML from the
boolean part described by MSO logic with matchings over a visibly pushdown
alphabet [4].

– Then we deduce our result from the logical characterization result of [4] for
visibly pushdown languages.
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Since our proof is constructive and the optimal reachability for WTPDA
is decidable [2], we obtain the corresponding decidability result for restricted
wTML.

Outline. For the clarity of presentation and convenience of the reader, we
will concentrate on the simplified model of WTPDA without global clocks. In
Sect. 2 we define WTPDA over timed semirings. In Sect. 3 we introduce our
weighted timed matching logic and state our main result, namely Theorem 3.8.
The proof of Theorem 3.8 will be given in Sect. 6. As a preparation for this proof,
in Sect. 4 we recall some basic definitions about visibly pushdown languages and
in Sect. 5 we prove our Nivat-like decomposition theorem. In Sect. 7 we explain
how global clocks can be added to our main result. Our proof technique can
easily recover this case.

2 Weighted Timed Pushdown Automata

Timed pushdown automata (TPDA) with a timed stack are introduced and inves-
tigated in [1]. These machines are nondeterministic automata equipped with
global clocks (like timed automata [3]) and a stack (like pushdown automata). In
contrast to untimed pushdown automata, in timed pushdown automata we push
together with a letter a local clock which will measure the age of this letter in
the stack. Then, we can pop this letter only if its age satisfies a given constraint.
Weighted timed pushdown automata (WTPDA) of [2] extend TPDA by adding
time-independent costs to the transitions of TPDA (like in the classical weighted
automata [12]) and costs for storing a letter in the stack which depend on the
age of this letter in the stack.

In this section, we introduce an algebraic model for WTPDA which is based
on the classical model of semiring-weighted automata [12]. Moreover, we follow
the idea of Quaas [21] to model time-dependent costs by means of functions
of a real argument. Recall from the introduction that the goal of this paper is
to give a logical characterization of WTPDA. Weighted timed automata with
global clocks and without stack were studied in [13,21] with respect to their
logical characterization. The new feature of WTPDA is the quantitative timed
stack, i.e., the timed stack equipped with time-dependent costs for storing stack
letters. In order to concentrate on the significant details and for the clarity of
presentation, we will omit global clocks in our considerations. However, in Sect. 7
we discuss how they can be added to our definitions and proofs.

An alphabet is a non-empty finite set. Let Σ be a non-empty set (possibly
infinite). A finite word over Σ is a finite sequence a1...an where n ≥ 0 and
a1, ..., an ∈ Σ. If n = 0, then w is empty and we denote it by ε. Otherwise,
we call w non-empty. Let Σ∗ denote the set of all words and Σ+ the set of all
non-empty words over Σ. Let R≥0 be the set of all non-negative real numbers.
A timed word over Σ is a sequence (a1, t1)(a2, t2)...(an, tn) ∈ (Σ × R≥0)∗ such
that t1 ≤ t2 ≤ ... ≤ tn. Let TΣ∗ denote the set of all timed words over Σ
and TΣ+ the set of all non-empty timed words over Σ. Any set L ⊆ TΣ+ of
non-empty timed words is called a timed language. Let I denote the class of all
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intervals of the form [a, b], (a, b], [a, b), (a, b), [a,∞) or (a,∞) where a, b ∈ N.
If Γ is an alphabet, u = (g1, t1)...(gn, tn) ∈ TΓ ∗ and t ∈ R≥0, then let u + t =
(g1, t1 + t)...(gn, tn + t) ∈ TΓ ∗.

A timed semiring is a tuple S = (S,F ,+, ·,0,1) such that (S,+, ·,0,1) is
a semiring and F ⊆ SR≥0 is a collection of functions containing the function
1 ∈ SR≥0 defined for all t ∈ R≥0 by 1(t) = 1.

Example 2.1. (a) The tropical semiring (R≥0 ∪{∞},min,+,∞, 0) together with
the collection of linear functions L = {t �→ c · t | c ∈ R≥0} forms a timed
semiring which we denote by LTrop. The model of [2] can be considered as
WTPDA over LTrop.

(b) The boolean semiring ({0, 1},∨,∧, 0, 1) together with F = {1} form a timed
semiring which we denote by 1Bool. Unweighted TPDA of [1] can be con-
sidered as WTPDA over 1Bool.

(c) It could be also interesting to consider the case where the storing costs in
the timed stack grow exponentially in time (cf., e.g., [8]). We augment the
tropical semiring (R≥0∪{∞},min,+,∞, 0) with the collection of exponential
functions F = {t �→ ec·t | c ∈ R≥0} and obtain a timed semiring which we
denote by ExpTrop.

Let S(Γ ) = {push(γ) | γ ∈ Γ} ∪ {#} ∪ {pop(γ, I) | γ ∈ Γ, I ∈ I} be the set
of stack commands over Γ .

Definition 2.2. Let Σ be an alphabet and S = (S,F ,+, ·,0,1) a timed
semiring. A weighted timed pushdown automaton (WTPDA) over Σ and S
is a tuple A = (L, Γ, L0, E, Lf ,wt) where L is a finite set of locations, Γ is
a finite stack alphabet, L0, Lf ⊆ L are sets of initial resp. final locations,
E ⊆ L × Σ × S(Γ ) × L is a finite set of edges, and wt : E ∪ Γ → S ∪ F is
a weight function with wt(E) ⊆ S and wt(Γ ) ⊆ F .

A stack command push(γ) means that we push the letter γ into the timed
stack with the initial age 0. The stack command # means that we do not perform
any operations with the timed stack. A stack command pop(γ, I) means that we
pop from the stack the letter γ with the age lying in the interval I. The weights
of the stack letters in WTPDA have the following meaning. Whenever we pop
a letter γ with the age τ from the stack, the storing cost wt(γ)(τ) arises.

We will denote an edge e = (�, a, st, �′) ∈ E by �
a,st−−→ �′. We say that a is the

label of e and denote in by label(e). We also let stack(e) = st, the stack command
of e. Let Epush ⊆ E denote the set of all push edges e with stack(e) = push(γ)
for some γ ∈ Γ . Similarly, let E# = {e ∈ E | stack(e) = #} be the set of local
edges and Epop = {e ∈ E | stack(e) = pop(γ, I) for some γ ∈ Γ and I ∈ I} the
set of pop edges. Then, we have E = Epush ∪ E# ∪ Epop.

A configuration c of A is described by the present location and the stack which
is a timed word over Γ . That is, c is a pair 〈�, u〉 where � ∈ L and u ∈ TΓ ∗. We
say that c is initial if � ∈ L0 and u = ε. We say that c is final if � ∈ Lf and
u = ε. Let CA denote the set of all configurations of A, C0

A ⊆ CA the set of all
initial configurations, and Cf

A ⊆ CA the set of all final configurations.
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Consider configurations c = 〈�, u〉 and c′ = 〈�′, u′〉 with u = (γ1, t1)...(γk, tk)
and let e =

(
q

a,st−−→ q′) ∈ E be an edge. We say that c �e c′ is a switch transition
if � = q, �′ = q′, and

– if st = push(γ) for some γ ∈ Γ , then u′ = (γ, 0)u;
– if st = #, then u′ = u;
– if st = pop(γ, I) with γ ∈ Γ and I ∈ I, then k ≥ 1, γ = γ1, t1 ∈ I and

u′ = (γ2, t2)...(γk, tk).

The weight of this switch transition is defined as follows. If st = push(γ) or
st = #, then we let wt(c �e c′) = wt(e). If st = pop(γ, I), then we let
wt(c �e c′) = wt(e) · wt(γ)(t1).

For t ∈ R≥0, we say that c �t c′ is a delay transition if � = �′ and u′ = u+t. For
t ∈ R≥0 and e ∈ E, we write c �t,e c′ if there exists c′′ ∈ CA with c �t c′′ and c′′ �e

c′. Note that, for every c ∈ CA and t ∈ R≥0, there exists at most one c′′ ∈ CA with
c �t c′′. Then, we let wt(c �t,e c′) = wt(c′′ �e c′). A run ρ of A is an alternat-
ing sequence of delay and switch transitions which starts in an initial configura-
tion and ends in a final configuration, formally, ρ = c0 �t1,e1 c1 �t2,e2 ... �tn,en

cn

where n ≥ 1, c0 ∈ C0
A and cn ∈ Cf

A. The label of ρ is the timed
word label(ρ) = (label(e1), t1)(label(e2), t1 + t2)...(label(en),

∑n
i=1 ti) ∈ TΣ+.

The weight of ρ is defined as wt(ρ) =
∏n

i=1 wt(ci−1 �ti,ei
ci).

For each timed word w ∈ TΣ+, let RunA(w) denote the set of all runs ρ of
A such that label(ρ) = w. The behavior of A is the mapping [[A]] : TΣ+ → S
defined for every timed word w ∈ TΣ+ as [[A]](w) =

∑(
wt(ρ) | ρ ∈ RunA(w)

)
.

A mapping L : TΣ+ → S is called a weighted timed language (WTL). We say L
is pushdown recognizable over S if there exists a WTPDA A over Σ and S such
that [[A]] = L.

Remark 2.3. Note that in our model of WTPDA without global clocks the first
time stamp of a timed word is irrelevant for the behavior of a WTPDA. However,
this is not the case if we add global clocks to this model.

Example 2.4. Let Σ = {[, ]} be the set of brackets. Let b = [, b = ] and I ∈
I be an interval. We consider the timed language D ⊆ TΣ+ of timed words
w = (a1, t1)...(an, tn) where a1...an is a sequence of correctly nested brackets
and, for all i < j such that ai = b and aj = b are two matching brackets, the
time distance tj − ti is in the interval I. Consider the weighted timed language
WD : TΣ+ → R≥0 ∪ {∞} such that WD(w) = ∞ for all w /∈ D and, for every
w ∈ D, WD(w) is the minimal time distance between matching brackets in w.
Let LTrop be the timed semiring of Example 2.1 (a). We show that WD is
pushdown recognizable over LTrop. Let id : R≥0 → R≥0 with id(t) = t for all t.
Consider the WTPDA A over Σ and LTrop depicted in Fig. 1 with the stack
alphabet Γ = {γ, δ}, wt(γ) = 1, wt(δ) = id, and wt(e) = 0 for all edges e of A.
Then [[A]] = WD. For instance, let I = [0, 3] and w = (b, 0)(b, 1)(b, 2)(b, 3) ∈ D.
Then there are two runs of A on w: the run ρ

〈1,ε〉�0,push(γ) 〈1,(γ,0)〉�1,push(δ) 〈2,(δ,0)(γ,1)〉�1,pop(δ,I) 〈3,(γ,2)〉�1,pop(γ,I) 〈3,ε〉
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1 2 3

b, push(γ)

b, pop(γ, I)

b, push(δ)

b, push(γ)

b, pop(γ, I)

b, pop(δ, I)

b, push(γ)

b, pop(γ, I)

Fig. 1. The WTPDA A of example 2.4

with wt(ρ) = id(1) = 1 and the run ρ′

〈1,ε〉�0,push(δ) 〈2,(δ,0)〉�1,push(γ) 〈2,(γ,0)(δ,1)〉�1,pop(γ,I) 〈2,(δ,2)〉�1,pop(δ,I) 〈3,ε〉
with wt(ρ′) = id(3) = 3. Here, for simplicity, we write in �t,st a stack command
st instead of an edge e. Then [[A]](w) = min{wt(ρ),wt(ρ′)} = 1 = WD(w).

3 Weighted Timed Matching Logic

The goal of this section is to develop a logical formalism which is expressively
equivalent to WTPDA defined before. Our logic will use binary matchings intro-
duced by Lautemann, Schwentick and Thérien [18] for context-free languages as
well as the approach of Droste and Gastin [11] to weighted logic over semirings.
Moreover, we augment our logic with the possibility to measure the time distance
between matched positions:

– we will be able to check whether this time distance belongs to a given interval
(in order to model the timed stack);

– we will also be able to apply a function from a timed semiring to the time
distance between matched positions (in order to model the storing costs in
the timed stack).

As in [6], in order to describe easily boolean properties, we introduce two
levels of formulas: boolean and weighted. We operate with the boolean formulas
as in the usual logic. On the weighted level, we add weights and extend the
logical operations by computations in a semiring.

Let V1 and V2 be countable pairwise disjoint sets of first-order and second-
order variables. We also fix a matching variable μ /∈ V1∪V2. Let V = V1∪V2∪{μ}.

Let Σ be an alphabet and S = (S,F ,+, ·,0,1) a timed semiring. The set
wTML(Σ,S) of weighted timed matching formulas is the set of all formulas of
the form

⊕
μ.ϕ where ϕ is produced by the grammar

β : := Pa(x) | x ≤ y | x ∈ X | μ(x, y) ∈ I | β ∨ β | ¬β | ∃x.β | ∃X.β

ϕ : := β | s | f(μ − x) | ϕ ⊕ ϕ | ϕ ⊗ ϕ | ⊕
x.ϕ | ⊕

X.ϕ | ⊗
x.ϕ

with a ∈ Σ, s ∈ S, f ∈ F , I ∈ I, x, y ∈ V1 and X ∈ V2. The formulas β are
called boolean-valued (or, simply, boolean) over Σ. Let BOOL(Σ) denote the set
of all boolean formulas over Σ. The formulas of the form μ(x, y) ∈ I are called
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distance matchings. For a formula μ(x, y) ∈ [0,∞) we will simply write μ(x, y).
Using boolean formulas, we define the formulas x < y, x = y, β1 ∧ β2, ∀x.β,
∀X.β, β1 → β2 and β1 ↔ β2 as usual.

The wTML(Σ,S)-formulas are interpreted over timed words over Σ and
assignments of variables. Let w ∈ TΣ+ be a timed word and dom(w) =
{1, ..., |w|}, the domain of w. We say that a binary relation M ⊆ dom(w) ×
dom(w) is a matching on w (cf. [18]) if:

– M is compatible with <, i.e., whenever (i, j) ∈ M , we have i < j;
– each element i ∈ dom(w) belongs to at most one pair in M ;
– M is noncrossing, i.e., whenever (i, j), (u, v) ∈ M with i < u < j, we have

i < v < j.

Let Match(w) denote the set of all matchings on w.
A w-assignment is a mapping σ : V → dom(w) ∪ 2dom(w) ∪ Match(w) such

that σ(V1) ⊆ dom(w), σ(V2) ⊆ 2dom(w) and σ(μ) ∈ Match(w). Let TΣ+
V denote

the set of all pairs (w, σ) where w ∈ TΣ+ and σ is a w-assignment.
Let σ be a w-assignment. For x ∈ V1 and j ∈ dom(w), the update σ[x/j] is the

w-assignment defined by σ[x/j](x) = j and σ[x/j](y) = σ(y) for all y ∈ V \ {x}.
Similarly, for X ∈ V2 and J ⊆ dom(w), we define the update σ[X/J ] and, for
M ∈ Match(w), the update σ[μ/M ].

For a formula β ∈ BOOL(Σ), a timed word w = (a1, t1)...(an, tn) ∈ TΣ+

and a w-assignment σ, we define the satisfaction relation (w, σ) |= β induc-
tively on the structure of β as shown in Table 1. Now let ψ ∈ wTML(Σ,S).
The semantics of ψ is the mapping [[ψ]] : TΣ+ → S defined inductively on the
structure of ψ as shown in Table 2.

Given a formula ψ ∈ wTML(Σ,S), the set Free(ψ) of free variables of ψ
is defined as usual. We say that ψ is a sentence if Free(ψ) = ∅. Clearly, the
semantics of a sentence ψ does not depend on a variable assignment. Then, we
may consider the semantics of ψ as the weighted timed language [[ψ]] : TΣ+ → S.

Remark 3.1. (a) Let 1Bool be the timed semiring of Example 2.1 (b). If in
the definition of wTML(Σ,1Bool) we replace the quantitative formulas
μ(x, y) ∈ I by the qualitative formulas μ(x, y), then the timed part of the
timed words will be irrelevant and we obtain the matching logic of [18] for
context-free languages.

Table 1. The satisfaction relation for boolean formulas
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Table 2. The semantics of weighted timed matching formulas

(b) If we exclude the formulas μ(x, y) ∈ I and f(μ − x) from the definition of ϕ
and β in wTML(Σ,S), then the formulas of the form

⊕
μ.(¬∃x.∃y.μ(x, y)⊗

ϕ) correspond to the weighted MSO logic of Droste and Gastin [11].

Example 3.2. Let WD : TΣ+ → R≥0 be the WTL of Example 2.4. Recall that
b = [ and b = ]. Consider the BOOL(Σ)-formula

β(μ) = ∀x.([Pb(x) → ∃y.μ(x, y)] ∧ [Pb(x) → ∃y.μ(y, x)])

which demands that for every opening bracket there is a matched closing
bracket and vice versa. Then the WTL WD can be described by the following
wTML(Σ,LTrop)-sentence:

ψ =
⊕

μ.([β(μ) ∧ ∀x.∀y.(μ(x, y) → μ(x, y) ∈ I)] ⊗ ⊕
x.(∃y.μ(x, y) ⊗ id(μ − x)))

where id is defined as in Example 2.4. Note that the boolean subformula of ψ
in the square brackets checks whether a timed word belongs to D (cf. Example
2.4). Then, the formula

⊕
x.(∃y.μ(x, y) ⊗ id(μ − x)) computes the minimal time

distance between matching brackets.

Next we show that, as in [11], the logical ⊗- and
⊗

x.-operators of wTML in
general are not stable with respect to recognizability by WTPDA.

Example 3.3. Here we show that the use of a formula f(μ − x) in the scope of a
quantifier

⊗
y with y �= x can lead to unrecognizability by WTPDA.

Let Σ = {a} be a singleton alphabet and LTrop the timed semi-
ring of Example 2.1 (a). Let β(μ) ∈ BOOL(Σ) denote the formula
∀x.∀y.(μ(x, y) ↔ ∀z.(x ≤ z ≤ y)). Consider the wTML(Σ,LTrop)-sentence

ψ =
⊕

μ.(β(μ) ⊗ ⊕
x.

⊗
y.[(x ≤ y) ⊗ id(μ − x)]).

For n ∈ N \ {0, 1}, let wn = (a, 0)n−1(a, n) ∈ TΣ+. Then [[ψ]](wn) = n2.
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Suppose that there exists a WTPDA A over Σ and LTrop with [[A]] =
[[ψ]]. We may assume that A does not contain edges of the infinite weight. Let
M ∈ R≥0 be the maximal value of all m which are either weights of edges of A
or appear in functions t �→ m · t which are the weights of the stack letters. Let
n ∈ N\{0, 1} and ρ ∈ RunA(wn). Then wt(ρ) ≤ 2Mn. Since [[A]](wn) = n2 �= ∞,
we have n2 = [[A]](wn) ≤ 2Mn which is false for big enough n. A contradiction.
Hence the WTL [[ψ]] is not pushdown recognizable over LTrop.

Example 3.4. Here we show that the nested use of quantifiers
⊗

y can lead to
unrecognizability by WTPDA. Consider the wTML(Σ,LTrop)-sentence

ψ′ =
⊕

μ.(β(μ) ⊗ ⊗
x.

⊗
y.[(∃z.z < x) ⊕ ((∀z.x ≤ z) ⊗ id(μ − x))])

where β(μ) is defined as in the previous example. Then [[ψ′]] = [[ψ]] where ψ
is defined as in the previous example. Hence the WTL [[ψ′]] is not pushdown
recognizable over LTrop.

Example 3.5. Here we show that the use of formulas f(μ−x)⊗g(μ−x) with f, g ∈
F can lead to the unrecognizability. Consider the timed semiring ExpTrop of
Example 2.1 (c). Let f1 : t �→ et and f2 : t �→ e2t. Let Σ = {a} be a singleton
alphabet. Consider the wTML(Σ,ExpTrop)-sentence

ψ =
⊕

μ.(β(μ) ⊗ ⊗
x.(f1(μ − x) ⊗ f2(μ − x))

where β(μ) = ∃x.∃y.(x < y ∧ ∀z.(z = x ∨ z = y) ∧ μ(x, y)). For t ∈
R≥0, let wt = (a, 0)(a, t) ∈ TΣ+. Then [[ψ]](wt) = et + e2t. Suppose
that there exists a WTPDA A over Σ and ExpTrop with [[A]] = [[ψ]].
Then, for every t ∈ R≥0, there exist s(t), c(t) ∈ R≥0 with [[A]](wt) =
s(t) + ec(t)·t. Moreover, the sets {s(t) | t ∈ R≥0} and {c(t) | t ∈ R≥0} are
finite. Then for a big enough value t0 ∈ R≥0 and all t ≥ t0 we have
c(t) = ln(et+e2t−s(t))

t . So c(t) has infinitely many values. A contradiction.

Motivated by these examples, we introduce a syntactically restricted fragment
of wTML as follows. As in [11], we restrict the use of the

⊗
x-quantifier to

the almost boolean formulas. In contrast to [11], we have new formulas of the
form f(μ − x) for which we have to take into account the situations described
in Examples 3.3 and 3.4.

For x ∈ V1, the set aBOOL(Σ,S, x) of almost boolean formulas over Σ, S
and x is generated by the grammar

γ : := β | s ⊗ f(μ − x) | γ ⊕ γ | β ⊗ γ

where s ∈ S, f ∈ F and β ∈ BOOL(Σ).

Definition 3.6. Restricted weighted timed matching logic wTMLres(Σ,S) ⊆
wTML(Σ,S) is defined to be the set of all formulas of the form

⊕
μ.ϕ where ϕ

is produced by the grammar

ϕ : := β | s ⊗ f(μ − x) | ϕ ⊕ ϕ | β ⊗ ϕ | ⊕
x.ϕ | ⊕

X.ϕ | ⊗
x.γ

with β ∈ BOOL(Σ,S), s ∈ S, f ∈ F , x ∈ V1, X ∈ V2 and γ ∈
aBOOL(Σ,S, x).
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Remark 3.7. Note that, in the logical fragments aBOOL(Σ,S, x)
and wTMLres(Σ,S), a constant s ∈ S can be expressed by means of the formula
s ⊗ 1(μ − x). Moreover, a formula f(μ − x) can be expressed by means of the
formula 1 ⊗ f(μ − x).

Our main result is the following theorem.

Theorem 3.8. Let Σ be an alphabet, S = (S,F ,+, ·,0,1) a timed semiring
and W : TΣ+ → S a WTL. Then W is pushdown recognizable over S iff W is
wTMLres(Σ,S)-definable.

We will prove this theorem in Sect. 6.

4 Visibly Pushdown Languages

For the rest of the paper, we fix a special stack symbol ⊥.
A pushdown alphabet is a triple Σ̃ = 〈Σpush, Σ#, Σpop〉 with pairwise disjoint

sets Σpush, Σ# and Σpop of push, local and pop letters, respectively. Let Σ =
Σpush ∪Σ# ∪Σpop. A visibly pushdown automaton (VPA) over Σ̃ is a tuple A =
(Q,Γ,Q0, T,Qf ) where Q is a finite set of states, Q0, Qf ⊆ Q are sets of initial
resp. final states, Γ is a stack alphabet with ⊥ /∈ Γ , and T = T push∪T#∪T pop is
a set of transitions where T push ⊆ Q×Σpush ×Γ ×Q is a set of push transitions,
T# ⊆ Q×Σ#×Q is a set of local transitions and T pop ⊆ Q×Σpop×(Γ ∪{⊥})×Q
is a set of pop transitions.

We define the label of a transition τ ∈ T depending on its sort as follows.
If τ = (p, c, γ, p′) ∈ T push ∪ T pop or τ = (p, c, p′) ∈ T#, we let label(τ) = c, so
c ∈ Σpush ∪ Σpop resp. c ∈ Σ#.

A configuration of A is a pair 〈q, u〉 where q ∈ Q and u ∈ Γ ∗. Let τ ∈ T be a
transition. Then, we define the transition relation �τ on configurations of A as
follows. Let c = 〈q, u〉 and c′ = 〈q′, u′〉 be configurations of A.

– If τ = (p, a, γ, p′) ∈ T push, then we put c �τ c′ iff p = q, p′ = q′ and u′ = γu.
– If τ = (p, a, p′) ∈ T#, then we put c �τ c′ iff p = q, p′ = q′ and u′ = u,
– If τ = (p, a, γ, p′) ∈ T pop with γ ∈ Γ ∪ {⊥}, then we put c �τ c′ iff p = q,

p′ = q′ and either γ �= ⊥ and u = γu′, or γ = ⊥ and u′ = u = ε.

We say that c = 〈q, u〉 is an initial configuration if q ∈ Q0 and u = ε. We call c a
final configuration if q ∈ Qf . A run of A is a sequence ρ = c0 �τ1 c1 �τ2 ... �τn cn

where c0, c1, ..., cn are configurations of A such that c0 is initial, cn is final
and τ1, ..., τn ∈ T . Let label(ρ) = label(τ1)... label(τn) ∈ Σ+, the label of ρ. Let
L(A) = {w ∈ Σ+ | there exists a run ρ of A with label(ρ) = w}. We say that a
language L ⊆ Σ+ is a visibly pushdown language over Σ̃ if there exists a VPA
A over Σ with L(A) = L.

Remark 4.1. Note that we do not demand for final configurations that u = ε
and we can read a pop letter even if the stack is empty (using the special stack
symbol ⊥). This permits to consider the situations where some pop letters are
not balanced by push letters and vice versa.
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We say that a VPA A = (Q,Γ,Q0, T,Qf ) is deterministic [4] if |Q0| = 1 and
for every q ∈ Q:

– for every a ∈ Σpush, there is at most one transition of the form (q, a, γ, q′) ∈ T ,
– for every a ∈ Σ#, there is at most one transition of the form (q, a, q′) ∈ T ,

and
– for every a ∈ Σpop and γ ∈ Γ , there is at most one transition of the form

(q, a, γ, q′) ∈ T .

Note that in a deterministic VPA A for every word w ∈ Σ+ there exists at most
one run with label w.

Theorem 4.2. (Alur, Madhusudan [4]). Let Σ̃ be a pushdown alphabet and
A a VPA over Σ̃. Then there exists a deterministic VPA A′ over Σ̃ with L(A′) =
L(A).

We note that the visibly pushdown languages over Σ̃ form a proper subclass of
the context-free languages over Σ, cf. [4] for further properties.

For any word w = a1...an ∈ Σ+, let Mask(w) = b1...bn ∈ {−1, 0, 1}+ such
that, for all 1 ≤ i ≤ n, bi = 1 if ai ∈ Σpush, bi = 0 if ai ∈ Σ#, and bi = −1
otherwise. Let L(Σ̃) ⊆ {−1, 0, 1}∗ be the language which contains ε and all words
b1...bn ∈ {−1, 0, 1}+ such that

∑n
j=1 bj = 0 and

∑i
j=1 bj ≥ 0 for all i ∈ {1, ..., n}.

Here, we interpret 1 as the left parenthesis, −1 as the right parenthesis and 0
as an irrelevant symbol. Then, L(Σ̃) is the set of all sequences with correctly
nested parentheses.

Next, we turn to the logic MSOL(Σ̃) over the pushdown alphabet Σ̃ which
extends the classical MSO logic on finite words by the binary relation which
checks whether a push letter and a pop letter are matching. This logic was shown
in [4] to be equivalent to visibly pushdown automata. The logic MSOL(Σ̃) is
defined by the grammar

ϕ : := Pa(x) | x ≤ y | X(x) | L(x, y) | ϕ ∨ ϕ | ¬ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, x, y ∈ V1 and X ∈ V2. The formulas in MSOL(Σ̃) are
interpreted over a word w = a1...an ∈ Σ+ and a variable assignment
σ : V1 ∪ V2 → dom(w) ∪ 2dom(w). We will write (w, σ) |= L(x, y) iff σ(x) < σ(y),
aσ(x) ∈ Σpush, aσ(y) ∈ Σpop and Mask(aσ(x)+1...aσ(y)−1) ∈ L(Σ̃). For other
formulas, the satisfaction relation is defined as usual. If ϕ is a sentence, then the
satisfaction relation does not depend on a variable assignment and we can simply
write w |= ϕ. For a sentence ϕ ∈ MSOL(Σ̃), let L(ϕ) = {w ∈ Σ+ | w |= ϕ}. We
say that a language L ⊆ Σ+ is MSOL(Σ̃)-definable if there exists a sentence
ϕ ∈ MSOL(Σ̃) such that L(ϕ) = L.

The following result states the expressive equivalence of visibly pushdown
automata and MSOL-logic.

Theorem 4.3. (Alur, Madhusudan [4]). Let Σ̃ = 〈Σpush, Σ#, Σpop〉 be a
pushdown alphabet, Σ = Σpush ∪ Σ# ∪ Σpop, and L ⊆ Σ+ a language. Then, L
is a visibly pushdown language over Σ̃ iff L is MSOL(Σ̃)-definable.
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5 Decomposition of Weighted Timed Pushdown
Automata

In this section we prove a Nivat-like (cf. [5,20]) decomposition theorem for
WTPDA. This result establishes a connection between pushdown recognizable
WTL and visibly pushdown languages of Alur and Madhusudan [4]. We will use
this theorem for the proof of our Theorem 3.8. However, our result could be also
of independent interest.

The key idea of our decomposition result is to consider a pushdown recog-
nizable WTL as a renaming of a pushdown recognizable WTL over an extended
alphabet which encodes the information about weights and a timed stack; on the
level of this extended alphabet we can separate the setting of visibly pushdown
languages from the weighted timed setting. Our separation technique appeals to
the partitioning of R≥0 into finitely many intervals; this finite partition will be
used for the construction of the desired extended alphabet.

A Nivat-like theorem for weighted timed automata without stack was given
in [13] where a connection between recognizable weighted timed languages and
unambiguously recognizable unweighted timed languages was established. This
approach is not suitable for WTPDA since pushdown languages are not closed
under intersection and the weights of the timed stack depend on the inner com-
ponents of unweighted TPDA.

Let Σ be an alphabet and S = (S,F ,+, ·,0,1) a timed semiring.
Let k ∈ N and Ŝ ⊆ S, F̂ ⊆ F be finite non-empty sets. Let

P(k) = {[0, 0], (0, 1), [1, 1], (1, 2), ..., [k, k], (k,∞)} ⊆ 2I , the k-interval partition
of R≥0. Let Δ = {push,#,pop} and Ω be an alphabet. For each δ ∈ Δ, let
Rδ = Ω × P(k) × Ŝ × F̂ × {δ}. For our decomposition result, we will use the
extended alphabet R = Rpush ∪ R# ∪ Rpop and the extended pushdown alphabet
R̃ = 〈Rpush,R#,Rpop〉. Note that R and R̃ depend on the variables k, Ŝ, F̂
and Ω. However, we will not explicitly designate this dependence.

Let T ⊆ TR+ be the timed language defined as follows. Consider the timed
word w = (r1, t1)...(rn, tn) ∈ TR+ with ri = (ωi, Ii, si, fi, δi) ∈ R. Then we let
w ∈ T iff the following hold:

– Mask(r1...rn) ∈ L(R̃);
– for all i, i′ ∈ {1, ..., n} with i < i′, δi = push, δi′ = pop and

Mask(ri+1...ri′−1) ∈ L(R̃), we have ti′ − ti ∈ Ii′ .

Note that in the definition of T there are no restrictions on the components Ŝ
and F̂ and that T is captured by a“simple”TPDA with a single state and a single
stack letter; this TPDA processes the timed stack according to the information
encoded in the additional components P(k) and Δ of the extended alphabet R̃.

Let val(T ) : TR+ → S denote the WTL defined as follows. For all w ∈
TR+ \ T , we let val(T )(w) = 0. For all w = (r1, t1)...(rn, tn) ∈ T with rj =
(ωj , Ij , sj , fj , δj), we let val(T )(w) =

∏n
j=1(sj · φj) where φj = 1 whenever

δj �= pop and φj = fi(tj − ti) otherwise where i < j and Mask(ri...rj) ∈ L(R̃).
We introduce the following operations.



Logics for Weighted Timed Pushdown Automata 165

– Let W : TR+ → S be a WTL and L ⊆ R+ a language. Let (W∩L) : TR+ → S
be the “restriction”of W to L, i.e., for all w = (r1, t1)...(rn, tn) ∈ TR+, we
have: (W ∩ L)(w) = W(w) if r1...rn ∈ L and (W ∩ L)(w) = 0 otherwise.

– Let π : Ω → Σ be a mapping called henceforth a renaming.
For a letter r = (ω, I, s, f, δ), let h(r) = (h(ω), I, s, f, δ). For a word
w = (r1, t1)...(rn, tn) ∈ TR+, let π(w) = (π(r1), t1)...(π(rn), tn) ∈ TΣ+. For
a WTL W : TR+ → S, let π(W) : TΣ+ → S be defined for all w ∈ TΣ+ as
π(W)(w) =

∑(
W(u) | u ∈ TR+ and π(u) = w

)
.

Now we formulate our decomposition theorem.

Theorem 5.1. Let Σ be an alphabet, S = (S,F ,+, ·,0,1) a timed semiring and
W : TΣ+ → S a WTL. Then the following are equivalent.

(a) W is pushdown recognizable over S.
(b) There exist k ∈ N, alphabets Ŝ ⊆ S, F̂ ⊆ F and Ω, a visibly pushdown

language L ⊆ R+ over the pushdown alphabet R̃, and a renaming π : Ω → Σ
such that W = π(val(T ) ∩ L).

First we show that (a) implies (b).

Lemma 5.2. Let A be a WTPDA over Σ and S. Then there exist k ∈ N, finite
non-empty sets Ŝ ⊆ S and F̂ ⊆ F , a visibly pushdown language L ⊆ R+ over the
pushdown alphabet R̃, and a renaming π : Ω → Σ such that [[A]] = π(val(T )∩L).

Proof. Let A = (L, Γ, L0, E, Lf ,wt). If Epop = ∅, then let k = 0. Otherwise,
let k ∈ N be the maximal natural number which appears in E (in the S(Γ )-
component of some edge in Epop). Let Ŝ = wt(E), F̂ = wt(Γ ) and Ω = E.
Consider the visibly pushdown automaton A′ = (L, Γ, L0, T, Lf ) over the push-
down alphabet R̃ where the set T = T push ∪ T# ∪ T pop is defined as follows. We
simulate every edge e =

(
�

a,st−−→ �′) ∈ E with wt(e) = s by (possibly multiple)
transitions in T depending on the sort of e as follows.

– Let e ∈ Epush. Then we let (�, r, γ, �′) ∈ T push where r = (e, [0, 0], s,1,push).
– Let e ∈ E#. Then we let (�, r, �′) ∈ T# where r = (e, [0, 0], s,1,#).
– Let e ∈ Epop and st = (pop, γ, I). Let wt(γ) = f . Then we let (�, r, γ, �′) ∈

T pop for all r = (a, σ, s, f,pop) with σ ∈ P(k) such that σ ⊆ I. Note that we
do not have transitions in T pop whose stack letter is ⊥.

Note that although the emptiness of the stack at the end of run is not required by
visibly pushdown automata, it is checked by intersection with the WTL val(T ).

Let π : Ω → Σ be defined as π(e) = label(e) for all e ∈ Ω. Then
[[A]] = π(val(T ) ∩ L(A′)). This can be shown using the intuition that the WTL
val(T ) ∩ L(A′) checks whether a timed word over the extended alphabet R
encodes a run of A and, if this is the case, computes the weight of this run; then
the renaming π removes the auxiliary components of the extended alphabet and
computes the sum of the weights of all runs over a given timed word. ��

Now we turn to the converse direction of Theorem 5.1.
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Lemma 5.3. Let k ∈ N, Ŝ ⊆ S, F̂ ⊆ F and Ω be alphabets, and L ⊆ R+ a
visibly pushdown language over the pushdown alphabet R̃. Then there exists a
WTPDA A′ over R and S such that [[A′]] = val(T ) ∩ L.

Proof. The main difficulty of the proof is to assign weights to the stack letters;
note that they are encoded in the F̂-component of the extended alphabet R.
We proceed as follows. We take a deterministic VPA for L. We mark the stack
letters of A with a function from F̂ which will be the weight of this compound
stack letter. Whenever we have to push a letter γ into the stack of A, we nonde-
terministically push into the stack of A′ all letters (γ, f) with f ∈ F̂ . Whenever
we pop a letter γ from the stack of A, in A′ we can pop only the pair (γ, f) where
f is the F̂-component of the input Rpop-letter. Note that this construction is
unambiguous, i.e., for every input word w there exists at most one run labeled
by w.

By Theorem 4.2 there exists a deterministic visibly pushdown automaton
A = (L, Γ, L0, T, Lf ) over the pushdown alphabet R̃ such that L(A) = L. Then
we put A′ = (L, Γ × F̂ , L0, E, Lf ,wt) where E = Epush ∪ E# ∪ Epop is defined
as follows.

– For every push transition t = (�, r, γ, �′) ∈ T push with r = (ω, I, s, f,push) we

let e =
(
�

r,(push,(γ,ϕ))−−−−−−−−−→ �′) ∈ Epush for all ϕ ∈ F̂ . Moreover, we put wt(e) = s.
– For every local transition t = (�, r, �′) ∈ T# with r = (ω, I, s, f,#) we let

e =
(
�

r,#−−→ �′) ∈ E#. Moreover, we put wt(e) = s.
– For every pop transition t = (�, r, γ, �′) ∈ T pop with r = (ω, I, s, f,pop) we let

e =
(
�

r,(pop,(γ,f),I)−−−−−−−−−→ �′) ∈ Epop. Moreover, we put wt(e) = s.

For every stack letter (γ, f) ∈ Γ ×F̂ , we let wt(γ, f) = f . Then [[A′]] = val(T )∩L.
��

Lemma 5.4. Let k ∈ N, Ŝ ⊆ S, F̂ ⊆ F and Ω be alphabets, W : TR+ → S be a
WTL which is pushdown recognizable over S, and π : Ω → Σ a renaming. Then
the WTL π(W) is also pushdown recognizable over S.

Proof. Our construction is a slight modification of the standard renaming con-
struction for semiring-weighted automata [12].

Let A = (L, Γ, L0, E, Lf ,wt) be a WTPDA over R and S with [[A]] = W.
We consider the WTPDA A′ = (L, Γ, L0, E

′, Lf ,wt′) over R and S where

E′ and wt′ are defined as follows. For every edge e =
(
�

r,st−−→ �′) ∈ E

with r ∈ R, let π(e) =
(
�

π(r),st−−−−→ �′). Then we let E′ =
⋃{π(e) | e ∈ E},

wt′(e′) =
∑(

wt(e) | e ∈ E and π(e) = e′) for all e′ ∈ E′, and wt′(γ) = wt(γ)
for all γ ∈ Γ . Then [[A′]] = π([[A]]). ��

Now Theorem 5.1 (b) implies (a) is immediate by Lemmas 5.3 and 5.4.
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6 Definability Equals Recognizability

In this section, we give a proof of Theorem 3.8.
First we show that definability by wTMLres(Σ,S)-sentences implies recog-

nizability by WTPDA. We follow a similar approach as in Theorem 6.6 of [13].
First, we transform a wTMLres(Σ,S)-formula ψ into a canonical formula of the
simpler form. Then, using Theorem 4.3, we establish for a canonical formula a
decomposition of the form π(val(T ) ∩ L) as stated in Theorem 5.1. Then, by
Theorem 5.1, the WTL [[ψ]] is pushdown recognizable over S.

For ϕ ∈ wTML(Σ,S) and a finite set V = {X1, ...,Xk} ⊆ V1 ∪V2 of pairwise
distinct variables X1, ...,Xk, let

⊕V.ϕ denote the formula
⊕X1...

⊕Xk.ϕ. In
particular, we let

⊕∅.ϕ = ϕ. We say that a sentence ψ ∈ wTMLres(Σ,S) is
canonical if it is of the form ψ =

⊕
μ.

⊕V.
⊗

x.
⊕l

i=1(βi ⊗ si ⊗ fi(μ − x)) where
V ⊆ V1 ∪ V2 is a finite set, x ∈ V1, l ≥ 1, si ∈ S, fi ∈ F and βi ∈ BOOL(Σ)
such that, for every (w, σ) ∈ TΣ+

V , there exists exactly one i ∈ {1, ..., l} with
(w, σ) |= βi. Let wTMLcan(Σ,S) denote the set of all canonical sentences.
Clearly, wTMLcan(Σ,S) ⊆ wTMLres(Σ,S).

Lemma 6.1. The logical fragments wTMLcan(Σ,S) and wTMLres(Σ,S) are
expressively equivalent.

Proof. Let ψ ∈ wTMLres(Σ,S). We show that there exists a canonical sentence
χ ∈ wTMLcan(Σ,S) with [[χ]] = [[ψ]]. Let ψ =

⊕
μ.ψ′.

We say that a formula ζ is semi-canonical if it is of the form
⊕V.

⊗
x.γ with

γ ∈ aBOOL(Σ,S, x). Note that here we do not quantify over the matching
variable μ. First, we show by induction on the structure of a subformula ξ of ψ′

that there exists a semi-canonical formula ζ(ξ) with Free(ζ(ξ)) = Free(ξ) and
[[ζ(ξ)]] = [[ξ]].

– Let x ∈ V1 and ξ be a maximal aBOOL(Σ,S, x)-subformula of ψ′. Let
y ∈ V1 be a fresh variable. First, assume that x ∈ Free(ξ). Let ξ[x/y] ∈
aBOOL(Σ,S, y) be obtained from ξ by replacing x by y. Then, we let
ζ(ξ) =

⊕∅.
⊗

y.((x �= y) ⊕ (x = y) ⊗ ξ[x/y]).
Now assume that x /∈ Free(ξ). Let min(y) denote the formula ∀z.(y ≤ z).
Then, we let ζ(ξ) =

⊕∅.
⊗

y.((¬min(y)) ⊕ (min(y) ⊗ ξ)).
– Let ξ = ξ1⊕ξ2 be not almost boolean. By simple manipulations with formulas

such as renamings of variables and assignments of concrete values to useless
variables (e.g., V1-variables are assigned to the first position of a word and
V2-variables to the empty set), we may assume that ζ(ξ1) =

⊕V.
⊗

x.γ1 and
ζ(ξ2) =

⊕V.
⊗

x.γ2 with γ1, γ2 ∈ aBOOL(Σ,S, x). Let X ∈ V2 be a fresh
variable. Then, we let ζ(ξ) =

⊕
(V ∪ {X}).

⊗
x.((Ψ1 ⊗ γ1) ⊕ (Ψ2 ⊗ γ2)) where

Ψ1, Ψ2 ∈ BOOL(Σ) determine two distinct concrete values for X, e.g., Ψ1 =
¬∃z.X(z) and Ψ2 = ∀z.X(z).

– Let ξ = β ⊗ ξ′ with β ∈ BOOL(Σ). Let ζ(ξ′) =
⊕V.

⊗
x.γ. We may assume

that the variables from V ∪ {x} do not appear in β. Then we let ζ(ξ) =⊕V.
⊗

x.(β ⊗ γ).
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– Let ξ =
⊕X .ξ′ where X ∈ V1 ∪ V2. Let ζ(ξ′) =

⊕V.
⊗

x.γ. We may assume
that X /∈ V. Then we let ζ(ξ) =

⊕
(V ∪ {X}).

⊗
x.γ.

– Let ξ =
⊗

x.γ with γ ∈ aBOOL(Σ,S, x). Then we let ζ(ξ) =
⊕∅.

⊗
x.γ.

Next we show that every formula γ ∈ aBOOL(Σ,S, x) can be transformed
into a formula of the form π(γ) =

⊕l
i=1

(
βi ⊗ [⊕r

j=1si,j ⊗ fi,j(μ − x)
])

where
l, r ≥ 1, bi ∈ BOOL(Σ), si,j ∈ S, fi,j ∈ F and, for every (w, σ) ∈ TΣ+

V , there
exists exactly one i ∈ {1, ..., l} with (w, σ) |= βi. In other words, we show that
Free(π(γ)) = Free(γ) and [[π(γ)]] = [[γ]]. Again we proceed by induction on the
structure of γ.

– Let γ = β ∈ BOOL(Σ). Then we define the formula π(γ) as
π(γ) = (β ⊗ [1 ⊗ 1(μ − x)]) ⊕ (¬β ⊗ [0 ⊗ 1(μ − x)]).

– Let γ = s⊗f(μ−x). Then we let π(γ) = True⊗ [s⊗f(μ−x)] where True ∈
BOOL(Σ) is a boolean sentence with (w, σ) |= True for all (w, σ) ∈ TΣ+

V ,
e.g., True = ∀x.(x ≤ x).

– Let γ = γ1 ⊕ γ2. Assume that π(γ1) =
⊕l

i=1(βi ⊗ κi) such that κi =
⊕r

j=1[si,j ⊗ fi,j(μ − x)]. We assume also that π(γ2) =
⊕l′

i′=1(β
′
i′ ⊗ κ′

i′) with

κi′ =
⊕r′

j′=1[s
′
i′,j′ ⊗ f ′

i′,j′(μ − x)]. Then we let

π(γ) =
⊕l

i=1

⊕l′

i′=1([βi ∧ β′
i′ ] ⊗ [κi ⊕ κ′

i′ ]).

– Let γ = β ⊗ γ′. Assume that π(γ′) =
⊕l

i=1(βi ⊗ κi) such that κi =
⊕r

j=1[si,j ⊗ fi,j(μ − x)]. Then, we let π(γ) =
⊕l

i=1([βi ∧ β] ⊗ κi) ⊕ (¬β ⊗ κ′)
with κ′ = 0 ⊗ 1(μ − x).

Our final goal is to resolve the sums
⊕r

j=1si,j ⊗ fi,j(μ − x). They can be
resolved using the fact that the formula

⊗
x.(ϕ1⊕ϕ2) is equivalent to the formula⊕

X.
⊗

x.([X(x) ⊗ ϕ1] ⊕ [¬X(x) ⊗ ϕ2]).
By these transformations we obtain a canonical sentence χ ∈ wTMLcan(Σ,S)

with [[χ]] = [[ψ]]. ��
Lemma 6.2. Let ψ ∈ wTMLcan(Σ,S). Then there exist a natural number k,
alphabets Ŝ ⊆ S and F̂ ⊆ F and Ω, a sentence ϕ ∈ MSOL(R̃), and a renaming
π : Ω → Σ such that [[ψ]] = π(val(T ) ∩ L(ϕ)).

Proof. Here we use a similar idea as in the proof of Theorem 6.6 of [13].
Let ψ =

⊕
μ.

⊕V.
⊗

x.
⊕l

i=1(βi ⊗ si ⊗ fi(μ − x)) be a canonical formula.
Assume that V = {X1, ...,Xp} where X1, ...,Xp ∈ V1 ∪ V2 are pairwise distinct
variables. If ψ does not contain any subformula of the form μI(x, y), then we
let k = 0. Otherwise, let k ∈ N be the maximal natural number appearing as
a lower or upper bound of some interval I ∈ I appearing in some subformula
μI(x, y) of ψ. Let Ŝ = {si | 1 ≤ i ≤ l} and F̂ = {fi | 1 ≤ i ≤ l}. Let Ω = Σ ×2V .
Let π : Ω → Σ be the projection to the Σ-component. It remains to construct a
sentence ϕ ∈ MSOL(R̃). For any formula β ∈ BOOL(Σ), let β∗ ∈ MSOL(R̃)
be obtained from β by the following substitutions.
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– If Pa(x) with a ∈ Σ is a subformula of β, then Pa(x) is replaced by the formula∨ (
P(a,κ)(x) | κ ∈ 2V × P(k) × Ŝ × F̂ × Δ

)
.

– If μI(x, y) is a subformula of β with I ∈ I such that either I ⊆ [0, k] or
I = [k,∞) or I = (k,∞), then μI(x, y) is replaced by the formula L(x, y) ∧∨ (

P(ω,J,κ)(y) | ω ∈ Ω, J ∈ P(k) with J ⊆ I, κ ∈ Ŝ × F̂ × {pop}).

ForavariableZ ∈ V andx ∈ V1, letGZ(x) denote anMSOL(R̃)-formulawhich
demands that Z belongs to the 2V -component of the letter at the position x. Using
the standard Büchi encoding technique we construct the formula φ ∈ MSOL(R̃)
which encodes the values of V-variables in the 2V -component of a timed word.
We let φ = ∀x.

( ∧
z∈V∩V1

(Gz(y) ↔ (x = z)) ∧ ∧
Z∈V∩V2

(GZ(x) ↔ (x ∈ Z))
)
. For

s ∈ Ŝ and f ∈ F̂ and x ∈ V1, let Qs,f (x) denote the MSOL(R̃)-formula∨ (
P(κ,s,f,δ)(x) | κ ∈ Ω × P(k), δ ∈ Δ

)
.

In addition, we need a formula to “fix” the P(k)-component of the letters
in Rpush ∪ R#: ζ = ∀x.

[ ∨
(Pr(x) | r ∈ Ω × P(k) × Ŝ × F̂ × {push,#}) →

∨
(P(ω,[0,0],κ)(x) | ω ∈ Ω, κ ∈ Ŝ × F̂ × Δ)

]
. Then the sentence ϕ is defined as

ϕ = ∃X1...∃Xp.

(

φ ∧ ζ ∧ ∀x.

l∨

i=1

(β∗
i ∧ Qsi,fi

(x))
)

.

Note that the MSOL(R̃)-formulas β∗
1 , ..., β∗

l define a partition on the set of pairs
(w, σ) where w ∈ TR+ and σ is a variable assignment. Then, the Ŝ- and F̂-
components of the words satisfying ϕ are uniquely determined by this partition.

Then [[ψ]] = π(val(T ) ∩ L(ϕ)). ��
As a corollary from Lemmas 6.1 and 6.2 and Theorems 4.3 and 5.1 we obtain:

Corollary 6.3. Let ψ ∈ wTMLres(Σ,S) be a sentence. Then the WTL [[ψ]] is
pushdown recognizable over S.

Now we turn to the converse direction of Theorem 3.8.

Lemma 6.4. Let A be a WTPDA over Σ and S. Then there exists a sentence
ψ ∈ wTMLres(Σ,S) with [[ψ]] = [[A]].

Proof. We prove this theorem by a direct translation. Let A = (L, Γ, L0,
E, Lf ,wt). Let (ei)1≤i≤m be an enumeration of E. We associate with every
edge ei a fresh second-order variable Xi which keeps track of positions where
ei is taken along a run of A. Let X = (X1, ...,Xm). Let β(X) ∈ BOOL(Σ)
denote the formula which demands that values of the variables X1, ..., Xm form
a partition of the domain of an input timed word, the successive edges of a run
are connected via the same location, the labels of edges are compatible with the
label of a run, a run starts in L0 and ends in Lf .

Whenever ei ∈ Epush assume that ei =
(
�i

ai,push(γi)−−−−−−−→ �′
i

)
. Whenever ei ∈

Epop assume that ei =
(
�i

ai,pop(γi,Ii)−−−−−−−−→ �′
i

)
. For ei ∈ Epop, let Φi = wt(γi) ∈ F .
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For ei ∈ Epush ∪ E#, let Φi = 1. Consider the BOOL(Σ)-formula

Stack(X,μ) = ∀x.∀y.

(

μ(x, y) →
∨

1≤i,j≤m,

ei∈Epush,
ej∈Epop,

γi=γj

(Xi(x) ∧ Xj(y) ∧ μIj (x, y))
)

∧

∀x.

(

∃y.(μ(x, y) ∨ μ(y, x)) ∨
∨

1≤i≤m,

ei∈E#

Xi(x)
)

which describes the functionality of the timed stack. Finally, we construct a
formula which takes care of the weights:

Weighted(X,μ) =
⊗

x.
⊕m

i=1(Xi(x) ⊗ wt(ei) ⊗ Φi(μ − x)).

We let ψ =
⊕

μ.
⊕

X1...
⊕

Xm.((β(X)∧Stack(X,μ))⊗Weighted(X,μ)). Then
ψ ∈ wTMLres(Σ,S) and [[ψ]] = [[A]]. ��
Proof of Theorem 3.8. Immediate by Corollary 6.3 and Lemma 6.4.

7 Weighted Timed Pushdown Automata
with Global Clocks

Let Σ be an alphabet and S = (S,F ,+, ·,0,1) a timed semiring. In this section,
we augment the model of WTPDA of Sect. 2 with a finite set of global clocks as in
the classical timed automata [3]. Note that this extended model was considered
in [2].

A weighted timed pushdown automaton with global clocks (GWTPDA) over
Σ and S is a tuple A = (L, Γ,C, L0, E, Lf ,wt) where L, Γ, L0, Lf ,wt are defined

as for WTPDA, C is a finite set of global clocks, and every edge e : �
a,st−−→
φ,Λ

�′ of E

is augmented with two additional components: a constraint φ : C → I on global
clocks (i.e., the edge e can be taken only if the value of every global clock c ∈ C
is in the interval φ(c)) and a subset Λ ⊆ C of global clocks to be reset after
taking e. Then, every configuration of A is a triple c = (�, u, ν) where � ∈ L is a
location, u ∈ TΓ ∗ is a timed stack and ν : C → R≥0 is a global clock valuation.
In all other respects, the behavior of A is defined as in Sect. 2.

As it was shown in [23], the performance of a global clock c ∈ C can be

described by means of the so-called relative distance formula
←
d(Dc, x) ∈ I where

Dc ∈ V2, x ∈ V1 and I ∈ I. Here, the variable Dc keeps track of all positions

where the clock c is reset. The relative distance
←
d(Dc, x) measures the time

between the last reset of c before the current position x, i.e., models the current
value of the clock c. If such a second-order variable Dc is allowed to be quanti-
fied only in the existential prefix of a logical formula, then we obtain a logical
fragment which is expressively equivalent to timed automata [23].
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In order to give a logical characterization of GWTPDA, we modify the frag-
ment wTMLres(Σ,S) as follows. On the level of BOOL(Σ) we add relative

distance predicates of the form
←
d(Dc, x) ∈ I and, for such a variable Dc, allow

only the existential quantification
⊕

Dc in the prefix of ϕ (cf. Definition 3.6). So
we obtain logic wTMLres

rd (Σ,S) (where rd stays for “relative distance”).

Theorem 7.1. Let Σ be an alphabet, S = (S,F ,+, ·,0,1) a timed semiring
and W : TΣ+ → S a WTL. Then, W is recognizable by a GWTPDA iff W is
wTMLres

rd (Σ,S)-definable.

The proof of this theorem follows the same lines as the proof of Theorem 3.8
with several changes. The main difference is that we have to reflect the global
clocks in the extended alphabet R and the extended pushdown alphabet R̃. For
every global clock c, we add the component P(k) × {0, 1} where the k-interval
partition P(k) takes care of the clock constraints and the {0, 1}-component indi-
cates whether the clock was reset or not. Then, we correspondingly modify the
definition of the timed language T ⊆ TR+.

Since the proof of Theorem 7.1 is constructive, as a corollary from our The-
orem 7.1 and Theorem 1 of [2], we obtain:

Corollary 7.2. Let LTrop be the timed semiring of Example 2.1 (a). Then,
it is decidable, given an alphabet Σ, a sentence ψ ∈ wTMLres

rd (Σ,S) and a
threshold θ ∈ R≥0, whether there exists a timed word w ∈ TΣ+ with [[ψ]](w) < θ.

If we apply Theorem 7.1 to the timed semiring 1Bool of Example 2.1 (b) and
exclude redundant formulas, then we obtain a logical characterization result for
unweighted TPDA stated in [14].

8 Conclusion

We introduced a weighted logic on timed words which is expressively equivalent
to WTPDA. Since the proof of our expressive equivalence result is constructive,
decidability results for WTPDA can be transferred into corresponding decidabil-
ity results for our new logic.

For the proof of the main result we proved a decomposition theorem for
WTPDA establishing a connection between WTPDA and visibly pushdown
languages. We believe that this result can be helpful for the further study of
WTPDA. In addition, our proof technique is robust against adding new com-
ponents of the model (e.g., global clocks as in Sect. 7) and could be applied in
different contexts.

It would be also interesting to investigate the model of WTPDA with time-
dependent costs for staying in locations (as in the model of weighted timed
automata without stack, cf. [21]) and its logical characterization.

Acknowledgement. Yuri Gurevich’ survey article [17] was a source of inspiration for
the first named author when he got interested in monadic second-order logic. Due to
stimulating friendly contact since 1981, the authors would like to dedicate their paper
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Abstract. Vacuity checking is traditionally performed after model
checking has terminated successfully. It ensures that all the elements of
the specification have played a role in its satisfaction by the system. The
need to check the quality of specifications is even more acute in property-
based design, where the specification is the only input, serving as a basis
to the development of the system. Inherent vacuity adapts the theory of
vacuity in model checking to the setting of property-based design. Essen-
tially, a specification is inherently vacuous if it can be mutated into a
simpler equivalent specification, which is known, in the case of specifica-
tions in linear temporal logic, to coincide with the fact the specification
is satisfied vacuously in all systems.

A recent development in formal methods is an extension of the
Boolean setting to a multi-valued one. In particular, instead of Boolean
automata, which either accept or reject their input, there is a growing
interest in weighted automata, which map an input word to a value from
a semiring over a large domain. A distributive finite lattice is a special
case of a semiring, and lattice automata are used in several methods for
reasoning about multi-valued objects. We study inherent vacuity in the
setting of lattice automata, namely the ability to mutate the value of
a transition in the automaton without changing its language. We define
the concept of inherent vacuity in lattice automata, study the complexity
of deciding different types of vacuity, and relate the setting to the one
known for linear temporal logics.

1 Introduction

In recent years, we see a growing awareness to the importance of assessing the
quality of (formal) specifications. In the context of model checking, the quality
of the specification is assessed by analyzing the effect of applying mutations to
the formulas. If the system satisfies the mutated specification, we know that
some elements of the specification do not play a role in its satisfaction, thus the
specification is satisfied in some vacuous way [5,28]. Vacuity is successfully used
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in order to improve specifications and detect design errors [26] and has been a
subject of extensive research [4,5,10,18,28,31].

Property assurance is the activity of eliciting specifications that faithfully
capture designer intent [7,33]. Obvious quality checks one may perform for a
given specification are non-validity and satisfiability [34]. More involved quality
checks are studied in the PROSYD project [32]. As discussed in [33], checking
vacuity of the specifications in the context of property assurance would be of
great importance. While early work on vacuity was done in the context of model
checking, researchers have also developed the concept of “vacuity without design”
[13], which is formalized for linear temporal logic (LTL) formulas in [17], by
means of inherent vacuity.

Consider a system S and a formula ϕ. We say that a subformula ψ of ϕ does
not affect the satisfaction of ϕ in S if S also satisfies the formula ∀x.ϕ[ψ ← x], in
which ψ is replaced by a universally quantified proposition. Then, a formula ϕ is
vacuously satisfied in S if ϕ has a subformula that does not affect its satisfaction
in S [4]. Now, as defined in [17], the formula ϕ is inherently vacuous if there
exists a subformula ψ of ϕ such that ϕ ≡ ∀x.ϕ[ψ ← x] or, equivalently, if for
every system S, if S |= ϕ, then S satisfies ϕ vacuously.

The framework in [17] studies specifications given by LTL formulas. A recent
development in formal methods is an extension of the Boolean setting to a multi-
valued one. In particular, instead of Boolean automata, which either accept or
reject their input, there is a growing interest in weighted automata, which map
an input word to a value from a semiring over a large domain [15,30]. Focusing
on applications in formal verification, the multi-valued setting arises directly in
quantitative verification [21] and in reasoning about quality of systems [1], and
indirectly in applications like abstraction methods, in which it is useful to allow
the abstract system to have unknown assignments to atomic propositions and
transitions [35], query checking [11], which can be reduced to model checking over
multi-valued systems, and verification of systems from inconsistent viewpoints
[23], in which the value of the atomic propositions is the composition of their
values in the different viewpoints.

As mentioned above, in the multi-valued setting, the automata map words to
a value from a semiring over a large domain. A distributive finite lattice is a spe-
cial case of a semiring. A lattice 〈A,≤〉 is a partially ordered set in which every
two elements a, b ∈ A have a least upper bound (a join b) and a greatest lower
bound (a meet b). Finite lattices are useful in many of the applications of the
multi-valued setting described above. For example (see Fig. 1), in the abstraction
application, researchers use the lattice L3 of three fully ordered values [8], as well
as its generalization to Ln [12]. In query checking, the lattice elements are sets of
formulas, ordered by the inclusion order [9]. When reasoning about inconsistent
viewpoints, each viewpoint is Boolean, and their composition gives rise to prod-
ucts of the Boolean lattice, as in L2,2 [16]. Finally, when specifying prioritized
properties of system, one uses lattices in order to specify the priorities [3].

In a nondeterministic lattice automaton on finite words (LNFW, for
short) [27], each transition is associated with a transition value, which is a
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lattice element. Intuitively, the value indicates the truth of the statement “the
transition exists”. Each state in the LNFW is associated with an initial value
and an acceptance value, indicating the truth of the statements “the state is
initial/accepting”, respectively. The value of a run r of an LNFW A is the meet
of the values of all the components of r: the initial value of the first state, the
transition values of all the transitions taken along r, and the acceptance value of
the last state. The value of a word w is then the join of the values of all the runs
of A on w. Accordingly, an LNFW over an alphabet Σ and lattice L induces
an L-language L : Σ∗ → L. Note that traditional finite automata (NFWs) cor-
respond to LNFWs over the lattice L2. In a deterministic lattice automaton on
finite words (LDFW, for short), exactly one state has an initial value that is not
⊥ (the least lattice element), and for every state q and letter σ, at most one state
q′ is such that the value of the transition from q to q′ with σ is not ⊥. Thus, an
LDFW A has at most one run whose value is not ⊥ on each input word, and
the value of this run is the value of the word in the language of A.

Since being introduced in [27], lattice automata have been used in different
contexts. Fully-ordered lattices are sometimes useful as is (for example, when
modeling priorities [3]), and sometimes thanks to the fact that real values can
often be abstracted to finitely many linearly ordered classes. The power-set lat-
tice models a wide range of partially-ordered values. For example, as mentioned
above, in a setting with inconsistent viewpoints, we have a set of agents, each
with a different viewpoint of the system, and the truth value of an atomic propo-
sition or a formula indicates the set of agents according to whose viewpoint the
atomic proposition or the formula are true. As another example, in [2] the authors
study a model of incomplete information in the multi-valued setting using lat-
tice automata. Researchers have also studied theoretical properties of lattice
automata, like their minimization and approximation [19,20], and a bisimula-
tion relation for them [14].

We study vacuity and inherent vacuity in lattice automata. Essentially, the
goal is to formalize the ability to mutate the value of a transition in the automa-
ton without changing its language. Consider a transition τ in an LNFW. We
say that τ is v-tolerant, for a value v of the lattice, if changing the value of τ to
v does not change the language of A. We say that a transition τ is universally
flexible (∀-flexible, for short) if τ is v-tolerant for every value v in L. Likewise,
τ is existentially flexible (∃-flexible, for short) if τ is v-tolerant for some value v
in L that is different from the value of τ .

Natural decision problems arise from the above definitions. Specifically, the
∀-FLEXIBILITY problem is to decide, given an LNFW and a transition τ in
it, whether τ is ∀-flexible, and dually for the ∃-FLEXIBILITY problem. Solving
the flexibility decision problems, we distinguish between four classes of LNFWs,
induced by the branching structure of the LNFW (that is, whether it is deter-
ministic or non-deterministic), and the lattice with respect to which it is defined
(that is, whether the lattice is fully or partially ordered). Note that our definition
of ∀-flexible is similar to the definition of “does not affect the satisfaction” for
LTL formulas, in the sense that the mutated component is universally quantified.
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In the case of LTL, checking whether a sub formula ψ affect the the satisfac-
tion of a specification ϕ, it is possible to check only the “most challenging”
mutation – one that replaces ψ by true or by false, according to the polarity
of ψ in ϕ [28]. Given a transition τ , in A, deciding whether τ is universally
or existentially flexible can be done by checking all the mutations of the value
of τ . An intermediate question we study is whether it is sufficient to check a
single “most challenging”mutation. We show that both universal and existential
flexibility are NLOGSPACE-complete for LDFWs and PSPACE-complete for
LNFWs, regardless of the type of the lattice. The difference between full-order
LNFWs and partial-order LNFWs is reflected, however, in the time complexity
of the problems.

As done in [17] for LTL formulas, we introduce and compare two definitions of
inherent vacuity for lattice automata. Given two LNFWs A and A′, we say that
the language of A′ is contained in the language of A, denoted L(A′) ≤ L(A), if
for every word w ∈ Σ∗, we have L(A′)(w) ≤ L(A)(w). For two LNFWs A and
A′ such that L(A′) ≤ L(A), we say that a transition τ in A does not affect the
containment of L(A′) in L(A), if for every v ∈ L, the inequality L(A′) ≤ L(A)
holds also when changing the value of τ in A to v. Also, A′ is vacuously contained
in A if there is a transition τ in A that does not affect the containment of L(A′)
in L(A). Now, an LNFW A is inherently vacuous if there exists a ∀-flexible
transition in A, which we show to be equivalent to a definition according to
which A is inherently vacuous if for every LNFW A′, if L(A′) ≤ L(A), then
A′ is vacuously contained in A. Thus, as in the case of LTL formulas, the two
definitions coincide.

Due to the lack of space, some proofs are missing and can be found in a full
version, in the authors’ URLs.

2 Preliminaries

2.1 Lattices

Let 〈A,≤〉 be a partially ordered set, and let P be a subset of A. An element
a ∈ A is an upper bound on P if a ≥ b for all b ∈ P . Dually, a is a lower bound
on P if a ≤ b for all b ∈ P . An element a ∈ A is the least element of P if
a ∈ P and a is a lower bound on P . Dually, a ∈ A is the greatest element of P if
a ∈ P and a is an upper bound on P . A partially ordered set 〈A,≤〉 is a lattice
if for every two elements a, b ∈ A both the least upper bound and the greatest
lower bound of {a, b} exist, in which case they are denoted a ∨ b (a join b) and
a ∧ b (a meet b), respectively. A lattice is fully ordered if every two elements
in it are comparable. Note that w.l.o.g. every fully-ordered lattice corresponds
to the lattice 〈{0, . . . , n},≤〉 for some n. For ease of presentation, from now
on we assume that every fully-ordered lattice is the lattice 〈{0, . . . , n},≤〉 for
some n. We use a < b to indicate that a ≤ b and a �= b. We say that a is
a child of b, denoted a ≺ b, if a < b and there is no c such that a < c < b.
A lattice is complete if for every subset P ⊆ A both the least upper bound
and the greatest lower bound of P exist, in which case they are denoted

∨
P
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and
∧

P , respectively. In particular,
∨

A and
∧

A are denoted � (top) and ⊥
(bottom), respectively. A lattice 〈A,≤〉 is finite if A is finite. Note that every
finite lattice is complete. A lattice 〈A,≤〉 is distributive if for every a, b, c ∈ A,
we have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Consider a lattice L = 〈A,≤〉. We sometimes abuse notation and refer to
L also as a set of elements, and thus talk about elements l ∈ L (rather than
l ∈ A). A join irreducible element l ∈ L is a value, other than ⊥, such that for
all a, b ∈ L, if a ∨ b ≥ l then either a ≥ l or b ≥ l. We denote the set of join
irreducible elements of L by JI(L). By Birkhoff’s representation theorem for
finite distributive lattices, in order to prove that a = b it is sufficient to prove
that for every join irreducible element l, it holds that a ≥ l iff b ≥ l.

Fig. 1. Some lattices.

In Fig. 1 we describe some finite lattices. The elements of the lattice L2 are
the usual truth values 1 (true) and 0 (false) with the order 0 ≤ 1. The lattice
Ln contains the values 0, 1, . . . , n − 1, with the order 0 ≤ 1 ≤, . . . ,≤ n − 1. The
lattice L2,2 is the Cartesian product of two L2 lattices, thus (a, b) ≤ (a′, b′) if
both a ≤ a′ and b ≤ b′. Finally, the lattice 2{a,b,c} is the power set of {a, b, c}
with the set-inclusion order. In this lattice, for example, {a} ∨ {b} = {a, b},
{a} ∧ {b} = ⊥, {a, c} ∨ {b} = �, and {a, c} ∧ {b} = ⊥. Note that the join
irreducible elements of the lattice Ln are all the elements in the lattice except
for ⊥. In the case of the lattice 2{a,b,c}, the join irreducible elements are all the
singletons, that is, JI(L) = {{a}, {b}, {c}}.

We define the graph of L as the undirected graph 〈A,E≺〉 in which E≺(v, v′)
iff v ≺ v′ or v′ ≺ v. The distance between two elements a, b ∈ L, denoted
dist(a, b), is the shortest path from a to b in the graph of L. For example, in
the fully-ordered lattice L, we have dist(i, j) = |i − j|, and in the power-set
lattice, the distance coincides with the Hamming distance, thus dist(X1,X2) =
|(X1 \ X2) ∪ (X2 \ X1)|. When dist(a, b) = 1, we say that a and b are neighbors.
Note that a and b are neighbors iff a ≺ b or b ≺ a. For two elements i and j in a
fully-ordered lattice, we define i+ j as min{�, i+ j} and i− j as max{⊥, i− j}.

For a set X of elements, an L-set over X is a function S : X → L assigning
to each element of X a value in L. It is convenient to think about S(x) as the
truth value of the statement “x is in S”. We say that an L-set S is Boolean if
S(x) ∈ {�,⊥} for all x ∈ X.
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Consider a lattice L and an alphabet Σ. An L-language over Σ is an L-set
over Σ∗. Thus, an L-language L : Σ∗ → L assigns a value in L to each word over
Σ. For two L-languages L1 and L2, we say that L1 is contained in L2, denoted
L1 ≤ L2, if for every word w ∈ Σ∗ it holds that L1(w) ≤ L2(w). The meet of
two languages L1 and L2, denoted L1 ∧L2, is the language that maps each word
w ∈ Σ∗ to the meet of the values of w in L1 and in L2; that is, for all w, we have
that (L1 ∧ L2)(w) = L1(w) ∧ L2(w). The join of L1 and L2, denoted L1 ∨ L2, is
defined dually, thus, for every w, we have (L1 ∨ L2)(w) = L1(w) ∨ L2(w).

Below is a useful extension of Birkhoff’s representation theorem [6] from
equality to inequality.

Proposition 1. Consider a lattice L and two elements a, b ∈ L. If for every
join irreducible element l ∈ L it holds that a ≥ l implies b ≥ l, then b ≥ a.

2.2 Lattice Automata

A nondeterministic lattice automaton on finite words (LNFW, for short) [27] is
a six-tuple A = 〈L, Σ,Q,Q0, δ, F 〉, where L is a finite lattice, Σ is an alphabet,
Q is a finite set of states, Q0 ∈ LQ is an L-set of initial states, δ ∈ LQ×Σ×Q is
an L-set of transitions, and F ∈ LQ is an L-set of accepting states. An LNFW
is a full-order LNFW if L is a fully-ordered lattice. Otherwise, it is called a
partial-order LNFW to emphasize that the lattice is not fully-ordered. We use
|A| to refer to the size of A, that is, |A| = |Q × Σ × Q|.

A run of A on a word w = σ1 · σ2 · · · σn is a sequence r = τ1, . . . , τn of
n successive transitions, where τi ∈ Q × Σ × Q. Let q0, . . . , qn be such that
τi = 〈qi−1, σi, qi〉 for every 1 ≤ i ≤ n. In particular, q0 is the first state of the
run, and qn is the last state of the run. The value of r is val(r) = Q0(q0) ∧∧n

i=1 δ(τi)∧F (qn). Intuitively, Q0(q0) is the value of q0 being initial, δ(τi) is the
value of taking the transition τi, namely, the value of qi being a successor of qi−1

when σi is the input letter, F (qn) is the value of qn being accepting, and the
value of r is the meet of all these values.

We refer to Q0(q0) ∧ ∧n
i=1 δ(τi) as the traversal value of r and refer to F (qn)

as its acceptance value. For a word w, the value of A on w, denoted A(w), is
the join of the values of all the possible runs of A on w. That is, val(A, w) =∨{val(r) : r is a run of A on w}. The L-language of A, denoted L(A), maps
each word w to its value in A. That is, L(A)(w) = val(A, w).

Let A be an LNFW, and δ1, δ2 be L-sets of transitions of A. We say that
δ1 ≤ δ2 if for every transition τ ∈ Q × Σ × Q, it holds that δ1(τ) ≤ δ2(τ).

An LNFW is deterministic (LDFW, for short) if there is exactly one state
q ∈ Q, called the initial state of A, such that Q0(q) �= ⊥, and for every state
q ∈ Q and letter σ ∈ Σ, there is at most one state q′ ∈ Q, called the σ-successor
of q, such that δ(q, σ, q′) �= ⊥. Note that if A is deterministic, then it has at
most one run on w whose value is not ⊥.

Traditional nondeterministic automata over finite words (NFW, for short)
correspond to LNFW over the lattice L2. Indeed, over L2, the value of a run r
is either �, in case the run uses only transitions with value � and its final state
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has value �, or ⊥ otherwise. Also, the value of A on w is � iff the value of some
run on it is �. This reflects the fact that a word w is accepted by an NFW if
some legal run on w is accepting. Similarly, traditional deterministic automata
over finite words (DFW, for short) correspond to LDFW over the lattice L2.

Below is a simple yet useful proposition about the relation between two
LNFWs.

Proposition 2. Let A1 = 〈L, Σ,Q,Q0, δ1, F 〉 and A2 = 〈L, Σ,Q,Q0, δ2, F 〉
be LNFWs such that δ1 ≤ δ2. Then, for every word w ∈ Σ∗, it holds that
L(A1)(w) ≤ L(A2)(w).

3 Vacuity in Lattice Automata

The essence of vacuity is detection of components of the specification that play
no role in its satisfaction. In this section we formalize and study this intuition
in the setting of lattice automata. That is, we formalize and study the influence
that the value of a single transition has or may not have on the language of a
lattice automaton.

We start by defining tolerance and flexibility of transitions, which formalize
and quantify the ability to mutate the value of transitions without changing
the language of the automaton. We first need some definitions regarding runs of
lattice automata.

Consider an LNFW A = 〈L, Σ,Q,Q0, δ, F 〉. We say that a run r on a word
w is a critical run in A if removing it from the set of runs of A on w changes the
value of w in A. Formally, L(A)(w) �= ∨{val(r′) : r′ �= r is a run of A on w}.
Note that for the case of a full-order LNFW, a run r on a word w is critical iff
L(A)(w) = val(r) and there is no run r′ �= r on w such that L(A)(w) = val(r′).

Consider a run r, and let q0 and qn be the first and last states of r,
respectively. For a transition τ taken in r, the value of r without τ , denoted
val−τ (r), is Q0(q0)∧∧

τ ′∈{r\τ} δ(τ ′)∧F (qn). We say that τ is a bottleneck in r if
val(r) �= val−τ (r). That is, removing the effect of τ from the value of r changes
it. Note that since the value of a run r on w is the meet of the values of all
its components (transitions, initial state and accepting state), for the case of a
fully-ordered lattice, the value of a run is actually determined by the minimal
value throughout the run. Thus, in a full-order LNFW, a transition τ is a bot-
tleneck in a run r iff δ(τ) is the minimal value in r, and there is no other value
v throughout the run r such that δ(τ) = v.

For a transition τ in A, we use Aτ←v to denote A with the value δ(τ) being
changed to v. We say that τ is v-tolerant if changing δ(τ) to v does not change
the language of A; that is, if L(A) = L(Aτ←v).

We say that a transition τ is universally flexible with respect to δ (∀-flexible,
for short, when δ is clear from the context) if τ is v-tolerant for every value v in
L. Likewise, τ is existentially flexible with respect to δ (∃-flexible, for short) if τ
is v-tolerant for some value v �= δ(τ) in L.
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Remark 1. Recall that an LNFW over the lattice L2 is a standard NFW. In
this case, we get that a transition τ is ∀-flexible iff τ is ∃-flexible. Consider
an NFW A′ = 〈Σ,Q,Q0, δ, F 〉. For every q, q′ ∈ Q and σ ∈ Σ, the transition
τ = 〈q, σ, q′〉 is flexible if it exists in A′, and removing it does not change the
language of A′, or if it does not exist in A′, and adding it as a transition does
not change the language of A′. Note that a transition in an NFW is flexible iff its
corresponding transition in the matching LNFW over the lattice L2 is ∀-flexible,
or, equivalently, ∃-flexible. ��
Two basic questions we would like to study consider the universal and existential
flexibility of transitions, as formally specified below.

– ∀-FLEXIBILITY: Given an LNFW and a transition τ in it, decide whether τ
is ∀-flexible.

– ∃-FLEXIBILITY: Given an LNFW and a transition τ in it, decide whether τ
is ∃-flexible.

Remark 2. The definitions above refer to a single transition. That is, our study
examines the influence of the value of a single transition on the language of the
automaton. In the full version, we consider also sets of transitions. There, we
define ∀-uniform-flexibility, which indicates that we can mutate the vector of val-
ues of the transitions in the set to any uniform vector of values without changing
the language, and ∀-mixed-flexibility, which indicates that we can mutate the
vector of values to any vector without changing the language of the automa-
ton. We prove equivalence between these two definitions, study also the dual
∃-uniform-flexibility and ∃-mixed-flexibility notions, and study the complexity of
the corresponding decision problems. ��

4 Useful Observations on Tolerance and Flexibility

In this section we provide some useful observations towards the solution of the
flexibility decision problems. We distinguish between four classes of LNFWs,
induced by the branching structure of the LNFW (that is, whether it is deter-
ministic or non-deterministic), and the lattice with respect to which it is defined
(that is, whether the lattice is fully or partially ordered). Note that the four
classes are partially ordered according to their generalization, with the deter-
ministic linear class being a special case of the nondeterministic linear and the
deterministic partially ordered classes. The latter two classes are not ordered,
and are special cases of the most general class, namely the one of nondetermin-
istic and partial-order LNFWs. Accordingly, we are going to present positive
results on the most general class for which they apply, and present negative
results on the most restricted ones. Throughout the section we refer to a lattice
automaton A = 〈L, Σ,Q,Q0, δ, F 〉.

In the context of vacuity in LTL, we say that a subformula ψ of a specifica-
tion ϕ does not affect the satisfaction of ϕ in a system S that satisfies ϕ if S
also satisfies the specification obtained from ϕ by replacing ψ by a universally
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quantified atomic proposition. Thus, the approach taken there is the universal
one – all mutations of ψ should result in a formula that is satisfied in S. It is
shown in [28] that rather than checking ϕ with ψ being replaced by a universally
quantified atomic proposition, it is sufficient to check a single “most challeng-
ing”mutation – one that replaces ψ by true or by false, according to the polarity
of ψ in ϕ. Given a transition τ in A, deciding whether τ is ∀-flexible or ∃-flexible
can be done by checking all the replacements to δ(τ). One of the questions we
would like to answer is whether it is sufficient to change δ(τ) to ⊥, �, or perhaps
to another single value in order to answer the flexibility questions.

We first show that there is no single value v ∈ L such that for every transition
τ in A, the transition τ is ∀-flexible iff τ is v-tolerant. This holds already for
full-order LDFWs.

Example 1. Consider the LDFW A with L = {1, 2, 3}, described in Fig. 2.

Fig. 2. No single value to check.

It is easy to see that L(A)(bb) = 2 and L(A)(aa) = ⊥. The transitions τ1 and
τ2 are not ∀-flexible. Indeed, if we change δ(τ1) to ⊥, we get L(A)(bb) = ⊥, and
if we change δ(τ2) to � we get L(A)(aa) = 2. Assume by way of contradiction
that there is a value v ∈ L that satisfies the requirement in the claim. If v ≥ 2,
then changing δ(τ1) to v does not change the language of A. Thus, we get that
τ1 is not ∀-flexible, but is v-tolerant. Otherwise, v < 2 and changing δ(τ2) to v
does not change the language of A. Thus, we get that τ2 is not ∀-flexible, but
is v-tolerant. Hence, there is no single value that enables us to determine the
∀-flexibility of all the transitions in A. ��
Thus, we can not expect to check flexibility of all the transitions in a lattice
automaton using a single value, in particular the values ⊥ and � do not serve
as a single replacement. In the following sections we check the situation for a
single transition, and we consider universal and existential flexibility in the four
classes of lattice automata.

4.1 Full-Order LDFW

Universal flexibility Recall that a transition τ of A is ∀-flexible if τ is v-tolerant
for every value v in L. Since L is fully ordered, it is tempting to believe that we
can check the tolerance of τ with respect to a single “most challenging” value.
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The transition τ1 in the LDFA in Example 1 demonstrates that �-tolerance
does not imply ∀ flexibility. Indeed, τ1 is �-tolerant but is not ∀-flexible, as
changing δ(τ1) to ⊥ changes L(A)(bb) to ⊥. As we now show, however, a unique
check is sufficient for checking universal flexibility. This is similar to the case of
subformulas in LTL, where a unique (either true or false) mutation is sufficient,
and depends on the polarity of the mutated subformula. Here, the original value
plays the role of the polarity.

Proposition 3. Consider a transition τ in a full-order LDFW A. If δ(τ) �= ⊥,
then τ is ∀-flexible iff τ is ⊥-tolerant. If δ(τ) = ⊥, then τ is ∀-flexible iff τ is
�-tolerant.

Proof. We start with the case δ(τ) �= ⊥. First, if τ is ∀-flexible, then, by defin-
ition, τ is ⊥-tolerant. Now, since A is deterministic, if changing δ(τ) to ⊥ does
not change the language of A, then the value of every run that traverses τ was
⊥ before the change. Since L is fully ordered, this means that every run that
traverses τ had value ⊥ in it, either in a transition or in an initial or an accepting
state. Thus, the value of every run that traverses this transition is ⊥ regardless
what δ(τ) is, or in other words, τ is ∀-flexible.

We continue to the case δ(τ) = ⊥. First, if τ is ∀-flexible, then, by definition,
τ is �-tolerant. Now, if τ is �-tolerant, then we have L(A) = L(Aτ←�). Let
v be a value in L. By Proposition 2, since ⊥ ≤ v ≤ � we have that L(A) ≤
L(Aτ←v) ≤ L(Aτ←�). Thus, we get that L(A) = L(Aτ←v) for every v ∈ L,
namely, τ is ∀-flexible, and we are done.

Existential Flexibility. Recall that a transition τ of A is ∃-flexible if τ is
v-tolerant for some value v �= δ(τ) in L. The transition τ1 in the LDFA in
Example 1 demonstrates that ∃-flexibility does not imply ⊥-tolerance. Indeed,
while changing δ(τ1) to ⊥ changes L(A)(bb) to ⊥, the transition τ1 is �-tolerant.
As in the case of universal flexibility, however, a unique check is sufficient.

Lemma 1. Consider a transition τ in an LDFW A. If τ is a bottleneck in some
run, then it is not ∃-flexible.

Proof. Since A is over a fully ordered lattice, then τ being a bottleneck in some
run implies that δ(τ) is the meet of all the values throughout that run, and there
is no value throughout that run that equals δ(τ). Thus, since A is deterministic,
changing δ(τ) to a lower value decreases the value of some word in the language
of A, and changing δ(τ) to a greater value increases the value of some word in
the language of A. Thus, the transition τ is not ∃-flexible.

Proposition 4. Consider a transition τ in an LDFW A. If δ(τ) �= �, then τ
is ∃-flexible iff τ is �-tolerant. If δ(τ) = �, then τ is ∃-flexible iff τ is (� − 1)-
tolerant.

Proof. We start with the case δ(τ) �= �. First, if τ is �-tolerant, then, by
definition, τ is ∃-flexible. Now, if τ is ∃-flexible, then by Lemma 1 we get that τ
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is not a bottleneck in any run. Thus, we can increase δ(τ) without changing the
language and τ is �-tolerant.

We continue to the case δ(τ) = �. First, if τ is (� − 1)-tolerant, then, by
definition, τ is ∃-flexible. Now, if τ is ∃-flexible, then τ is v-tolerant for some
value v �= � in L. Thus, we have L(Aτ←v) = L(A). Since v ≤ (�−1) ≤ τ , we get
by Proposition 2 that L(Aτ←v) ≤ L(Aτ←(�−1)) ≤ L(A), and so L(Aτ←(�−1)) =
L(A). Namely, the transition τ is (� − 1)-tolerant.

4.2 Full-Order LNFW

In Propositions 3 and 4 we showed that in the case of full-order LDFW, if
δ(τ) �= ⊥ then τ is ∀-flexible iff τ is ⊥-tolerant, and that if δ(τ) �= � then τ is
∃-flexible iff τ is �-tolerant. As we now show in Example 2 below, This does not
hold for LNFWs.

Example 2. with Let L = {1, 2, 3}. Consider the LNFW A1 described in the left
of Fig. 3.

Fig. 3. Propositions 3 and 4 do not hold for partial-order LDFWs.

It is easy to see that L(A1)(a) = L(A1)(ac) = 2. Consider the upper-left
transition τ . If we change δ(τ) to ⊥ we get an equivalent LNFW. However, τ
is not ∀-flexible. Indeed, changing δ(τ) to � changes L(A1)(a) and L(A1)(ac)
to �.

Consider now the LNFW A2 described in the right of the figure. It is easy
to see that L(A2)(aa) = 2. Consider the upper-left transition τ . If we change
δ(τ) to ⊥ we get an equivalent LNFW. However, τ is not �-tolerant. Indeed,
changing δ(τ) to � changes L(A2)(aa) to �. ��
Example 2 is a negative result for the class of full-order LNFWs. In Propositions 5
and 6 we will show a positive result for the more general partial-order LNFW.

4.3 Partial-Order LDFW

In Example 2 we showed that Propositions 3 and 4, which apply to full-order
LDFWs, do not hold for full-order LNFWs. Below we show that they do not hold
for partial-order LDFWs either. Thus, we conclude that Propositions 3 and 4
are tight for full-order LDFWs and do not hold for partial-order LDFWs or for
LNFWs.
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� ⊥ �(σ1, {a}) (σ2, {b})
τ

Fig. 4. Propositions 3 and 4 do not hold for full-order LNFWs.

Example 3. Let L = 2{a,b}. Consider the LDFW A described in Fig. 4.
It is easy to see that L(A)(σ1 · σ2) = ∅. Consider the left transition τ . If

we change δ(τ) to ⊥ we get an equivalent LDFW. However, τ is not ∀-flexible.
Indeed, changing δ(τ) to {a, b} changes L(A)(σ1 · σ2) to {b}. Thus, there exists
a partial-order LDFW with a transition τ in it, such that δ(τ) �= ⊥ and τ is
⊥-tolerance but is not ∀-flexible.

Further observe that τ , which is ⊥-tolerance and hence ∃-flexible, is not
�-tolerant. Indeed, changing δ(τ) to � changes L(A2)(σ1 · σ2) to {b}. Thus,
there exists a partial-order LDFW with a transition τ in it, such that δ(τ) �= �
and τ is ∃-flexible but is not �-tolerant. In particular, ∃-flexibility does not imply
�-tolerance. ��
Example 3 is a negative result for the class of partial-order LDFWs. In
Propositions 5 we will show a positive result for the more general partial-order
LNFW. The last negative result we are going to show concerns existential flex-
ibility and shows that there, checking even both extreme values � and ⊥ may
not be of help. In Example 4 below we formalize this intuition.

Example 4. Consider the LDFW A with L = 2{a,b,c}, described in Fig. 5.

Fig. 5. τ is ∃-flexible, but is neither ⊥-tolerant nor �-tolerant.

It is easy to see that L(A)(σ1 ·σ2) = {b}. Consider the left transition τ . If we
change δ(τ) to {b} we get an equivalent LDFW, thus, τ is ∃-flexible. However,
changing δ(τ) to ⊥ changes L(A)(σ1 · σ2) to ⊥, and changing δ(τ) to � changes
L(A)(σ1 · σ2) to {b, c}, thus, τ is neither ⊥-tolerant nor �-tolerant. ��

4.4 Partial-Order LNFW

Universal Flexibility. As shown in Examples 2 and 3, checking only ⊥-tolerance
or �-tolerance is not sufficient in order to determine ∀-flexibility. As we show,
however, in Proposition 5 below, checking both is sufficient, even in the most
general model.

Proposition 5. A transition τ in an LNFW A is ∀-flexible iff τ is both
⊥-tolerant and �-tolerant.
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Proof. If τ is ∀-flexible, then, by definition, τ is ⊥-tolerant and �-tolerant. Now,
if τ is ⊥-tolerant and �-tolerant, we have L(Aτ←⊥) = L(A) = L(Aτ←�). Let v
be a value in L. By Proposition 2, since ⊥ ≤ v ≤ �, we have that L(Aτ←⊥) ≤
L(Aτ←v) ≤ L(Aτ←�). Since L(Aτ←⊥) = L(Aτ←�), it must be that L(Aτ←⊥) =
L(Aτ←v) = L(Aτ←�). This holds for every v ∈ L, thus, we get that τ is v-
tolerant for every v ∈ L, that is, τ is ∀-flexible, and we are done.

By Proposition 2, since ⊥ ≤ δ(τ) ≤ �, we have L(Aτ←⊥) ≤ L(A) ≤
L(Aτ←�). Hence, the two tolerance checks from Proposition 5 can be performed
in a single language-containment check:

Lemma 2. Consider an LNFW A. A transition τ in A is ∀-flexible iff
L(Aτ←�) ≤ L(Aτ←⊥).

Existential flexibility. Unlike the case of ∀-flexibility, which amounts to tolerance
of the two extreme values, namely �-tolerance and ⊥-tolerance, Example 4 shows
that this is not true for ∃-flexibility, even in LDFW. As we prove below, we can
still avoid checking all possible values and restrict attention to the neighbors of
the original value of the mutated transition.

Lemma 3. Let τ be a transition in an LNFW A. If τ is v′-tolerant for some
v′ ∈ L, then τ is v′′-tolerant for every value v′′ ∈ L such that (δ(τ) ∧ v′) ≤ v′′ ≤
v′, v′ ≤ v′′ ≤ (δ(τ) ∨ v′), (δ(τ) ∧ v′) ≤ v′′ ≤ δ(τ), or δ(τ) ≤ v′′ ≤ (δ(τ) ∨ v′).

Lemma 3 implies that the search for a value with respect to which a transition is
tolerant can consider only the neighbors of the current value. Formally, we have
the following. The proof, which appears in the full version, analyzes all possible
relations between the value of δ(τ) and a value that witnesses its ∃-flexibility.

Proposition 6. Consider an LNFW A and a transition τ in A. The transition
τ is ∃-flexible iff τ is v′-tolerant for some neighbor v′ of δ(τ) in the graph of the
lattice L.

Remark 3. In order to justify the need to check all the neighbors of δ(τ), consider
the LDFW A with L = 2{a,b,c,d}, described in Fig. 6.

Fig. 6. Checking tolerance for neighbors.

Consider the right transition τ ′. If δ(τ ′) = {a, b, d}, then the only value v
for which τ is v-tolerant is {a, b}. If δ(τ ′) = {a, c, d}, then the only value v for
which τ is v-tolerant is {a, c}. If δ(τ ′) = {b, c, d}, then the only value v for which
τ is v-tolerant is {b, c}. If δ(τ ′) = {a, b, c}, then the only value v for which τ is
v-tolerant is {a, b, c, d}. It is easy to see that in each case, the only value that
can give an indication for the ∃-flexibility of τ is a neighbor of δ(τ). Also, note
that every neighbor of δ(τ) is useful in one of the cases. Thus, it is required to
check at least all the neighbors of δ(τ) in order to determine ∃-flexibility. ��
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5 Complexity of the Decision Problems

In this section we use the observations from Sect. 4 in order to find the complexity
of the flexibility decision problems.

We first prove a lower bound for the flexibility problem in DFWs and NFWs.
As discussed in Remark 1, an NFW corresponds to an LNFW over the lattice L2,
and similarly, a DFW corresponds to an LDFW over this lattice. Then, universal
and existential flexibility coincide, and a transition in an NFW is flexible iff the
corresponding transition in the matching LNFW over the lattice L2 is ∀-flexible
and ∃-flexible. Accordingly, the FLEXIBILITY problem for NFW is to decide,
given an NFW and a transition τ in it, whether τ is flexible.

Theorem 1. The FLEXIBILITY problem is NLOGSPACE-hard for DFWs and
is PSPACE-hard for NFWs.

Proof. We start with DFWs and describe a reduction from the non-reachability
problem, proven to be NLOGSPACE-hard in [24,25]. Given a graph G = 〈V,E〉
and two vertices u, v, we construct a DFW A = 〈Σ,Q, q0, δ, F 〉 with a transition
τ such that τ is flexible iff v is not reachable from u. The DFW A is similar to
G, with an additional transition τ from v to a new state. We define A so that
this new transition is flexible iff v is not reachable from u. Intuitively, v is not
reachable from u off τ is not reachable from an initial state, which determines
τ ’s flexibility.

Formally, A = 〈E ∪ {enew}, V ∪ {q}, u, δ, {q}〉. For every edge e ∈ E such
that e = (w,w′), we add to A a transition τ ′ = 〈w, e, w′〉. That is, all the edges
of the graph are transitions in the automaton with different letters. We also add
to A the transition τ = 〈v, enew, q〉 , where enew /∈ E, and q /∈ V . Note that A
is a DFW, as required, and that this reduction is computable using logarithmic
space. In the full version we prove that indeed τ is flexible iff v is not reachable
from u.

For the nondeterministic setting, we show a reduction from the universality
problem for NFWs, namely, the problem of deciding, given an NFW A, whether
L(A) = Σ∗. The reduction is to the flexibility problem for NFWs. Since the
universality problem is PSPACE-hard [29], hardness in PSPACE follows.

Given an NFW A = 〈Σ,Q,Q0, δ, F 〉, we define A′ = 〈Σ′, Q′, Q′
0, δ

′, F ′〉 to
be similar to A, with an additional component that includes, among others, a
transition τ that is going to be flexible iff L(A) = Σ∗. Intuitively, if L(A) = Σ∗,
then the additional component does not contribute to the language of A, and
τ is flexible. If, however, L(A) �= Σ∗, there are words that are accepted only
using the new component, so τ is not flexible. We assume that if there is a word
w /∈ L(A), then w is of length at least 1. This assumption does not affect the
hardness of the universality problem.

Formally, A′ = 〈Σ ∪ {σnew}, Q ∪ {s0, sf}, Q0 ∪ {s0}, δ′, F ∪ {sf}〉. We obtain
A′ from A by adding to A a transition τ = 〈q, σnew, q〉, for every accepting
state q ∈ F . Next, we add to A′ an additional component with two states:
s0 and sf (see Fig. 7). The state s0 is added to the set of initial states, and
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the state sf is added to the set of accepting states. For each σ ∈ Σ, we add
a transition 〈s0, σ, s0〉, and a transition 〈s0, σ, sf 〉. Finally, we add a transition
τ = 〈sf , σnew, sf 〉. Note that the reduction is computable using logarithmic
space. In the full version we prove that indeed τ = 〈sf , σnew, sf 〉 is flexible iff
L(A) = Σ∗.

Fig. 7. The new component added to A′.

Theorem 2. The ∀-FLEXIBILITY problem is NLOGSPACE-complete for
LDFWs and is PSPACE-complete for LNFWs.

Proof. We start with the upper bounds. As shown in Lemma 2, in order to
check whether a transition τ is ∀-flexible, it is sufficient to perform a single
containment check: L(Aτ←�) ≤ L(Aτ←⊥). The language-containment problem
is in NLOGSPACE and PSPACE, for LDFWs and LNFWs, respectively [27],
implying the required upper bounds.

Now, since flexibility in DFWs and NFWs corresponds to universal flexibility
in LDFWs and LNFWs, respectively, the lower bounds follow from Theorem 1.

Theorem 3. The ∃-FLEXIBILITY problem is NLOGSPACE-complete for
LDFWs and is PSPACE-complete for LNFWs.

Proof. For the upper bounds, consider an LNFW A = 〈L, Σ,Q,Q0, δ, F 〉, and
let τ be a transition in A with δ(τ) = v. By Proposition 6, the transition τ is
∃-flexible iff τ is v′-tolerant for some neighbor v′ of v in the graph of the lattice
L; that is, L(A) = L(Aτ←v′). By Proposition 2, for a value v′ ∈ L such that
v′ > v we have L(A) ≤ L(Aτ←v′), and for a value v′ ∈ L such that v′ < v, we
have L(Aτ←v′) ≤ L(A). Hence, it is sufficient to check for every neighbor v′ of v
such that v′ > v, if L(Aτ←v′) ≤ L(A) holds, and for every neighbor v′ of v such
that v′ < v or if L(A) ≤ L(Aτ←v′) holds. We get that τ is ∃-flexible iff there
exists a neighbor of v for which the corresponding inequality holds. The upper
bound now follows from the known NLOGSPACE and PSPACE complexities of
the language-containment problem, for LDFWs and LNFWs, respectively.

Finally, since flexibility in DFWs and NFWs corresponds to existential
flexibility in LDFWs and LNFWs, respectively, the lower bounds follow from
Theorem 1.

By Theorems 2 and 3, the complexity of the flexibility problems coincide
for full-order and partial-order lattice automata. The difference between the
two settings is reflected in the time-complexity analysis of the algorithms we
described. Given an LNFW A over a lattice L, let n = |A|,m = |L|, and k = |JI|.
Precisely, we have the following.
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Theorem 4. The ∀-FLEXIBILITY problem can be decided in time O(n(m+n))
for full-order LDFWs, in time O(kn(m + n)) for partial-order LDFWs, and in
time O(k(nm + 2O(n))) for LNFWs.

Theorem 5. The ∃-FLEXIBILITY problem can be decided in time O(n(m+n))
for full-order LDFWs, in time O(rkn(m+n)) for partial-order LDFWs, in time
O(k(nm + 2O(n))) for full-order LNFWs, and in time O(rk(nm + 2O(n))) for
partial-order LNFWs, where r is the number of the neighbors of δ(τ) in the
graph of L.

Remark 4. In practice, systems and specifications are sometimes underspeci-
fied as the designer intentionally does not care about some values in some
configurations [22]. Our algorithms can be easily changed to handle settings
in which a transition can get the value ∅ (?don?t care?) or get a set of possible
values. In this case, flexibility gets additional significance, as we can assume that
the value of transitions for which the designer did bother to specify a value is
important. For example, if a transition has a value different than ∅, and it turns
out to be ∀-flexible, we can assume that there is an error in the modeling of the
specification, since this transition could have also gotten the value ∅. ��

6 Inherent Vacuity with Analogy to Temporal Logic

In [17], the authors introduce two different definitions of inherent vacuity for
LTL formulas and prove that they coincide. Consider an LTL formula ϕ. We
say that a subformula ψ of ϕ does not affect the satisfaction of ϕ in S if S also
satisfies the formula ∀x.ϕ[ψ ← x]. We refer to the formula ∀x.ϕ[ψ ← x] as the
ψ-strengthening of ϕ. Also, we say that a formula ϕ is vacuously satisfied in S
if ϕ has a subformula that does not affect its satisfaction in S [4].

We can now describe the two different definitions of inherent vacuity for
LTL formulas from [17]. According to the first definition, an LTL formula ϕ
is inherently vacuous (by mutation) if there exists a subformula ψ of ϕ such
that ϕ ≡ ∀x.ϕ[ψ ← x]. That is, ϕ is equivalent to its ψ-strengthening. As
opposed to the first definition, the second one does not restrict attention to
a single subformula. According to the second definition, an LTL formula ϕ is
inherently vacuous (by reference) if for every system S, if S |= ϕ, then S satisfies
ϕ vacuously. In this section we introduce two different definitions of inherent
vacuity for lattice automata, analogous to the definitions in [17], and show that
they coincide as well.

Given two LNFWs A and A′ such that L(A′) ≤ L(A), we say that a transition
τ in A does not affect the containment of L(A′) in L(A), if for every v ∈ L it
holds that L(A′) ≤ L(Aτ←v). Note that this requirement applies to every value
in L. Also, A′ is vacuously contained in A if there is a transition τ in A that
does not affect the containment of L(A′) in L(A).

Definition 1. An LNFW A is inherently vacuous by mutation if there exist a
transition τ in A that is ∀-flexible. We then say that A is inherently vacuous by
mutation with witness τ .
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Definition 2. An LNFW A is inherently vacuous by reference if for every
LNFW A′, if L(A′) ≤ L(A), then A′ is vacuously contained in A.

Theorem 6. An LNFW A is inherently vacuous by mutation iff A is inherently
vacuous by reference.

Proof. For the first direction, assume that A = 〈L, Σ,Q,Q0, δ, F 〉 is inherently
vacuous by mutation. Then, there is a transition τ in A that is ∀-flexible, that
is, for every v ∈ L it holds that L(A) = L(Aτ←v). Accordingly, for every LNFW
A′, if L(A′) ≤ L(A), then for every v ∈ L we have that L(A′) ≤ L(Aτ←v), and
so A′ is vacuously contained in A. Thus, A is inherently vacuous by reference.

For the second direction, assume that A is inherently vacuous by reference,
and assume, by way of contradiction, that A is not inherently vacuous by muta-
tion. Then, there exist no transition τ in A that is ∀-flexible. It is not hard
to prove that then, there is no transition τ in A such that for all LNFWs A′

with L(A′) ≤ L(A), the transition τ does not affect the containment of L(A′) in
L(A). Indeed, since L(A) ≤ L(A), the existence of such a transition would have
implied universal flexibility of τ .

Let k be the number of transitions in A. By the assumption, for every
candidate transition τi, with 1 ≤ i ≤ k, there is an LNFW Ai =
〈L, Σ,Qi, Q

0
i , δi, Fi〉 such that L(Ai) ≤ L(A) but there is a value v ∈

L such that L(Ai) � L(Aτi←v). Without loss of generality, we assume
that the state spaces Qi are pairwise disjoint. Let A′ be the LNFW
obtained by “putting all the LNFWs Ai next to each other”. Formally,
A′ = 〈L, Σ,

⋃{Qi}1≤i≤k,
⋃{Q0

i }1≤i≤k,
⋃{δi}1≤i≤k,

⋃{Fi}1≤i≤k〉. Note that,
naturally, L(A′) =

∨
1≤i≤k L(Ai). Since L(Ai) ≤ L(A) for every 1 ≤ i ≤ k

we get that
∨

1≤i≤k L(Ai) ≤ L(A) and thus L(A′) ≤ L(A). Now, since A is
inherently vacuous by reference, then A′ is vacuously contained in A. Let τi be
a transition that does not affect the containment of L(A′) in L(A). Then, for
every v ∈ L it holds that L(A′) ≤ L(Aτi←v). Since L(Ai) ≤ L(A′), we get that
for every v ∈ L it holds that L(Ai) ≤ L(Aτi←v), and so τi does not affect the
containment of L(Ai) in L(A), and we have reached a contradiction.

Thus, as in the case of LTL formulas, the two definitions of inherent vacuity
coincide.

Remark 5. As discussed in Sect. 1, lattices and lattice automata have practical
applications in formal methods. Some of the applications use the specification
formalism latticed LTL (LLTL, for short), which extends LTL by mapping com-
putations in which atomic propositions have values from a lattice into lattice
values [12]. The translation of LTL into automata [36] has been extended to
a translation of LLTL into latticed automata [27]. When applied to the lattice
automata obtained from LLTL formulas, vacuity in the automata correspond to
vacuity in the formulas. Since changes in subformulas induce changes in transi-
tions from all states of the automaton that are associated with these subformulas,
the relevant type of vacuity is the one discussed in Remark 2, namely when the
value of a set of transitions is mutated. ��
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Abstract. A long time ago, Yuri Gurevich made precise the problem
of whether there is a logic capturing polynomial-time on arbitrary finite
structures, and conjectured that no such logic exists. This conjecture
is still open. Nevertheless, together with Andreas Blass and Saharon
Shelah, he has also proposed what still seems to be the most promising
candidate for a logic for polynomial time, namely Choiceless Polynomial
Time (with counting). We survey some recent results on this logic.

1 Introduction

Is there a logic for Ptime? More than thirty years after this problem has first
been posed by Chandra and Harel (in somewhat different form) in the context of
database theory, and after Yuri Gurevich has reformulated the question in logical
terms, we still do not know the answer. The quest for a logic for Ptime, or for a
proof that no such logic exists, still remains the perhaps most fundamental and
challenging open problem of finite model theory.

Yuri Gurevich has made many important contributions to this problem,
including numerous studies on the expressive power, structure, and complex-
ity of a number of different logics that arise in this context. Let us focus here on
two main achievements.

The precise formulation of what would really constitute a logic for Ptime has
been extremely influential, and is of course an indispensable prerequisite for all
attempts to prove that such a logic cannot exist. Gurevich’s first requirement is
that a logic should have a decidable syntax, that is, a decidable set of sentences.
Each sentence defines a property of finite1 structures, that is, an isomorphism
closed class of structures of the same vocabulary. For the logic to capture polyno-
mial time we want every polynomial-time decidable property of structures to be
definable by some sentence of the logic. This is Gurevich’s second requirement
for a logic capturing Ptime. Conversely, we want every property definable in the
logic to be decidable in polynomial time. However, this is not sufficient to exclude
pathological examples. For example, we could take an (arbitrary, not necessarily
computable) enumeration P0, P1, P2, . . . of all polynomial-time decidable prop-
erties of structures and define a logic whose sentences are the natural numbers

1 Structures are always assumed to be finite in this paper, with the exception of the
herditarily finite expansions introduced in Sect. 2.
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and where sentence i defines the property Pi. What we are still missing is an
effective link between sentences and the properties they define. Therefore, the
third requirement for a logic capturing Ptime is the existence of a “compiler”
that translates a sentence into a polynomial time evaluation algorithm, that is,
an algorithm that computes for each sentence ϕ of the logic a polynomial time
algorithm Aϕ deciding the property Pϕ defined by ϕ.

Despite his conjecture that there is no logic capturing Ptime, Yuri Gure-
vich has, together with Andreas Blass and Saharon Shelah [6], also proposed
Choiceless Polynomial Time, a logical formalism that, arguably, is still the most
promising candidate for a logic that might actually capture Ptime. This paper
is a survey of recent results on Choiceless Polynomial Time.

2 Choiceless Polynomial Time

There are several different presentations of Choiceless Polynomial Time (CPT).
The original intention was to explore a model for efficient computations on
abstract finite structures (and not on presentations of these via finite strings)
which preserve symmetries at every step in the computation. This prohibits the
explicit introduction of an ordering or, equivalently, arbitrary choices between
indistinguishable elements of the input structure (or of the current state). Notice
that such choices appear in many algorithms of fundamental importance, includ-
ing depth-first search, Gaussian elimination, the augmenting-path algorithm for
bipartite matching and many more.

Thus, Blass, Gurevich, and Shelah set out to define a computation model
that avoids symmetry breaking choices, but allows essentially everything else,
including parallelism and “fancy data structures”, as long as all operations can
be carried out in polynomial time. For a precise definition, they proposed a
model based on abstract state machines, which, given a finite input structure,
works on its extension by all hereditarily finite sets over it, which may be seen
as a powerful higher-order data structure.

Inspired by Rossman [27], we give a more “logical” definition of CPT.

2.1 BGS-Logic

We need to review a few set theoretic notions first. For a finite set A, the set
HF(A) of hereditarily finite sets over A is defined as follows: we let H0 := A∪{∅}
and Hi+1 := Hi ∪2Hi for all i ≥ 0 and HF(A) :=

⋃
i≥0 Hi. For every x ∈ HF(A),

we define the rank of x to be the least i such that x ∈ Hi. We call the elements
a ∈ A ⊆ HF(A) the atoms; all other elements of HF(A) are sets. With every
natural number n ∈ N we associate the corresponding van Neumann ordinal n,
inductively by 0 := ∅ and n+1 := n ∪ {n}.

Suppose now that we have a finite structure A with universe A over some
vocabulary τ consisting of relation, function, and constant symbols. We let τHF

be the extension of τ by a binary relation symbol ∈, a binary function sym-
bol Pair, unary function symbols Union, TheUnique, Card, and constant symbols
∅ and Atoms (of course we assume that none of these symbols appears in τ).
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We define the hereditarily finite expansion of A to be the τHF-structure HF(A)
with universe HF(A), all symbols from τ interpreted as in A, with the convention
that functions take all arguments not from A to ∅, and the new symbols in τHF\τ
are interpreted in the natural way: ∈ is the binary “element”-relation, Pair maps
x, y to the set {x, y}, Union maps x to the union of all sets in x, TheUnique maps
singleton sets {x} to their unique element x and all other sets to the empty set,
Card maps a set to its cardinality (represented as a von Neumann ordinal), ∅ is
the empty set, and Atoms is the set A, viewed as an element of HF(A) of rank 1.

The next step towards the definition of CPT is the definition of a more gen-
eral logic called BGS-logic. The syntactic objects of BGS-logic are terms and
formulae. There are three different types of terms, or rather, term constructions:
ordinary terms, comprehension terms, and iteration terms. The ordinary terms
of BGS-logic of vocabulary τ are τHF-terms defined in the usual way. The for-
mulae of BGS-logic are Boolean combinations of atomic formulae of the form
t = u, t ∈ u, and R(t1, . . . , tk) for every k-ary relation symbol R ∈ σ, where
t, u, t1, . . . , tk are terms. Thus all formulae are quantifier-free. (Example 2 below
gives an indication on how quantifiers can be simulated.) Besides the ordinary
terms, BGS-logic has comprehension terms of the form

{t : v ∈ u : ϕ}, (1)

where t, u are terms, v is a variable that is not free in u, and ϕ is a formula.
More suggestively, we may write {t(v) : v ∈ u : ϕ(v)} to indicate that this term
defines the set of all values t(x), where x is an element of the set defined by the
term u that satisfies the formula ϕ. Note that t, u, and v may have other free
variables besides v.

Finally, for every term t with just one free variable we have an iteration
term t∗. More suggestively, we may write t(v)∗, where v is the free variable of
t. Intuitively, the value of the term t∗ is the first fixed point of the sequence
t(∅), t(t(∅), t(t(t(∅))), . . ., if such a fixed point exists, or ∅ if no fixed point exists.

We define the free variables of terms and formulae in the natural way, stip-
ulating that the variable v in a comprehension term of the form (1) and in
an iteration term t(v)∗ be bound. Thus iteration terms t∗ can never have free
variables.

Terms and formulae of vocabulary τ are interpreted in the hereditarily finite
expansion of τ -structures in the natural way. Formally, the denotation of a
term t = t(v1, . . . , vk) of vocabulary τ and with free variables v1, . . . , vk in a
τ -structure A is the function �t�A : HF(A)k → HF(A) that maps (x1, . . . , xk) ∈
HF(A)k to the value of the term if v1, . . . , vk are interpreted by x1, . . . , xk, repec-
tively. If a term t has no free variables, then �t�A is a nullary function, which
we interpret as a constant. Similarly, we define the denotation �ϕ�A of a formula
ϕ = ϕ(v1, . . . , vk) in A to be the set of all (x1, . . . , xk) ∈ HF(A)k satisfying
ϕ. Note that if ϕ is a sentence, that is, a formula without free variables, then
either �ϕ�A = {∅} =: True or �ϕ�A = ∅ =: False. In these and similar nota-
tions, we omit the superscriptA if A is clear from the context. The definition
is straightforward for ordinary terms and formulae. For a comprevension term
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s := {t : v ∈ u : ϕ}, where for simplicity we assume that t and ϕ have the same
free variables v, v1, . . . , vk and u has free variables v1, . . . , vk, we define

�s�(x1, . . . , xk) :=
{
�t�(x, x1, . . . , xk)

∣
∣ x ∈ �u�(x1, . . . , xk)
such that (x, x1, . . . , xk) ∈ �ϕ�},

for all (x1, . . . , xk) ∈ HF(A)k. For an iteration term t∗ we define a sequence
(xi)i≥0 by x0 := ∅ and xi+1 := �t�(xi), and we let

�t∗� :=

{
x� for the least � such that x� = x�+1 if such an � exists,
∅ otherwise.

If there is no � such that x� = x�+1, we say that t∗ diverges in A. We define the
length of the iteration len(t∗,A) of t∗ in A to be the least � such that x� = x�+1,
or ∞ if t∗ diverges.

Remark 1. Instead of defining �t∗� to be the emptyset if t∗ diverges, we could
also leave it undefined and work with a three valued logic. This would be closer
to Blass, Gurevich and Shelah’s original approach, but complicate things unnec-
essarily. For the fragment CPT of BGS-logic that we are mainly interested in,
this makes no difference, because all terms in this fragment will be required to
converge anyway.

The iteration terms play the role of the programs in Rossman’s version of
BGS-logic. It is easy to see that programs can be simulated by iteration terms
and, conversely, iteration terms can be simulated by programs. However, as
opposed to Rossman, we allow iteration terms to appear inside of other terms
and formulae, whereas Rossman does not allow nested programs. But again, for
the fragment CPT this makes no difference.

Example 2 (Triangles in a Graph). Let τ = {E} with one binary relation symbol
E; we view τ -structures as directed, or if E is symmetric undirected, graphs. We
shall construct a BGS-term that defines the set of all triangles (viewed as 3-
element sets) in an undirected graph.

We let ϕ(v1, v3, v3) := E(v1, v2) ∧ E(v2, v3) ∧ E(v3, v1) and

t1(v2, v3) := {Union(Pair(Pair(v1, v1),Pair(v2, v3))) : v1 ∈ Atoms : ϕ(v1, v3, v3)},

t2(v3) := {t1(v2, v3) : v2 ∈ Atoms : v2 = v2},

t3 := {t2(v3) : v3 ∈ Atoms : v3 = v3}.

Then �t3�
G is the set of all triangles of an undirected graph G.

We can now define a formula ψ(v) expressing that v is contained in a triangle:
we simply let ψ(v) := v ∈ Union(t3).

Using ideas similar to those in the example, it is not difficult to express
bounded quantifiers ∃v ∈ t and ∀v ∈ t in BGS-logic. Thus all formulae of
bounded first-order logic (called Δ0-formulae in set theory) over the heredi-
tarily finite sets can be expressed by equivalent BGS-formulae (without using
iteration).
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Example 3 (Power Set). We shall construct a BGS-term that defines the power
set of the set of atoms.

We observe that we can express the union of two sets s and t as

s ∪ t := Union(Pair(s, t)).

We define an auxiliary term

s(w) := {w ∪ Pair(w′, w′) : w′ ∈ Atoms : w′ = w′},

which defines the collection of sets obtained by adding an atom to w, and let

t(v) := Pair(∅, ∅) ∪ Union({s(w) : w ∈ v : w = w}).

Then

i times
︷ ︸︸ ︷
t(t(· · · t(∅) · · · )) defines the set of sets of at most i − 1 atoms. Thus for

every structure A we have �t∗� = 2A.

We can use the previous example to show that BGS-logic can simulate
monadic second-order logic, and by iterating the construction, higher order logic.
Thus the logic is far too powerful to stay within the realm of polynomial time
computations.

2.2 Definition of Choiceless Polynomial Time

Intuitively, Choiceless Polynomial Time (CPT) is the polynomial-time fragment
of BGS-logic. To define CPT we first restrict the length of iterations to be
polynomial in the size of the input. However, this alone is not sufficient, as can
be seen by Example 3. In addition, it is necessary to restrict also the number of
elements that are being used, or active, in any step of the computation.

We inductively define for every term s = s(v1, . . . , vk), every structure A, and
every tuple x = (x1, . . . , xk) ∈ HF(A)k the set act(s,A, x) of active elements as
follows.

– If s = v is a variable then act(s,A, x) = {x}, and if s = c is a constant then
act(s,A) = {�c�}.

– If s = f(t1, . . . , t�) then

act(s,A, x) = {�s�(x)} ∪
�⋃

i=1

act(ti,A, xi),

where xi is the subtuple of x corresponding the free variables of ti.
– If s = {t : v ∈ u : ϕ(v)}, then

act(s,A, x) = {�s�(x)} ∪ act(u,A, x) ∪
⋃

x∈�u�(x)

(
act(t,A, xx) ∪ act(ϕ,A, xx)

)
,

where xx denotes the tuple (x, x1, . . . , xk) and for simplicity we assume that
the free variables of t and ϕ are v, v1, . . . , vk and the free variables of u are
v1, . . . , vk.
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– If s = t∗ we define the sequence (xi)i≥0 as in the definition of �t∗� and let

act(s,A) =
⋃

i≥0

act(t,A, xi).

Note that if s converges then act(s,A) =
⋃len(t∗,A)

i=0 act(t,A, xi), and thus
act(s,A) ∈ HF(A). This is not necessarily the case if t diverges.

For a formula ϕ, we define act(ϕ,A, x) to be the union of the sets act(t,A, xt)
for the terms t that are used to built ϕ.

We are now ready to define Choiceless Polynomial Time (CPT) as the frag-
ment of BGS-logic consisting of all sentences ϕ for which there is a polynomial
p(x) such that for all structures A of order |A| = n we have

| act(ϕ,A)| ≤ p(n).

Observe that this implies that for all iteration terms t∗ appearing in ϕ (also as
subterms of other terms) we have len(t∗,A) ≤ p(n), because all values appearing
in the steps of the iteration are active elements.

Remark 4. Defined this way, CPT is not a logic in the strict sense because it does
not have a decidable syntax. However, it is easy to define a syntactic fragment
that does have a decidable syntax, but still has the same expressive power. The
key idea is to include explicit counters and cardinality tests in iteration terms.
The next example illustrates how this can be done.

Example 5 (Counter). In this example, we show how to modify an iteration term
s∗ in such a way that the iteration is aborted if no fixed-point is reached after n
(= order of the structure) steps.

It is not hard to define a binary term 〈·, ·〉 that combines its two arguments
into an ordered pair and projection terms π1, π2 that map an ordered pair to its
entries. Moreover, the term succ(v) := v ∪ Pair(v) maps a von-Neumann ordinal
n to ist successor n+1. Note that m < n ⇔ m ∈ n for all n,m ∈ N.

Now consider an iteration term s∗. We let

t(v) := 〈0, ∅〉 ∪ {〈succ(π1(w)), s(π2(w))〉 : w ∈ v : π1(w) ∈ Card(Atoms))}.

Then for all structure A of order n := |A| = �Card(Atoms)� we have �t∗� =
{(i, xi) | 0 ≤ i ≤ n}, where the sequences (xi)i≥0 is defined by x0 := ∅ and
xi+1 := �s�(xi). Obsserve that if s∗ converges then xn = s∗ if and only if
xn = xn+1. Let

u := TheUnique
({

π2(w) : w ∈ t∗ : π1(w) = Card(Atoms) ∧ π2(w) = s(π2(w))
})

.

Then �u� = �s∗� if len(s,A) ≤ n and �u� = ∅ otherwise.
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2.3 Defining Properties of Small Substructures

To illustrate the power of CPT, we consider specific structures that we call
padded graphs. The vocabulary τ consist of a unary relation symbol V and
a binary relation symbol E. A padded graph is a τ -structure A where EA ⊆
V A×V A and EA is symmetric and irreflexive. The underlying graph of a padded
graph A is the graph GA with vertex set V A and edge relation EA. In the
following, we always use n to denote the order |A| of a padded graph A and � to
denote the order |V A| of its underlying graph. We usually assume that � � n.

Example 6 (3-Colourability of Padded Graphs). In this example, we consider
padded graphs A where � ≤ log n. Using the construction of Example 3, we
obtain a term t that defines the powerset of V , that is, �t� = 2V A

. The assumption
� ≤ log n guarantees that this works within the polynomial bounds imposed by
CPT. Using this term, we can easily write a CPT-sentence of the form ∃v1 ∈
t ∃v2 ∈ t ∃v3 ∈ t ( · · · ) stating that the underlying graph of A is 3-colourable.

The following example is due to Blass, Gurevich, and Shelah.

Example 7 (Linear Orders). We consider padded graphs where �! ≤ n. Then,
using a similar idea as in Examples 3 and 6, we construct a term t that defines
the set of all linear orders of V . As there are �! linear orders of V , the assumption
�! ≤ n guarantees that we stay within the polynomial bounds imposed by CPT.

Now, exploiting the facts that least fixed-point logic LFP captures polynomial
time on ordered graphs and that CPT is at least as expressive as LFP, it is easy
to show that CPT can express all polnomial time properties of the underlying
graph of the given padded graph.

It is not hard to show that there are polynomial time properties of the under-
lying graph that cannot be expressed in LFP, not even in fixed-point logic with
counting FPC (see Sect. 3), because the padding does not help these logics very
much. This is the easiest way to show that CPT is strictly more expressive
than FPC.

Laubner [25], in his PhD-thesis, slightly strengthened the result of the pre-
vious example and proved the following theorem, which intuitively says that
CPT expresses all polynomial time properties of definable subgraphs of loga-
rithmic size.

Theorem 8. For every property P of graphs that is decidable in polynomial
time there is a CPT-sentence ϕ such that for all padded graphs A with � ≤ log n,
the following are equivalent.

1. A satisfies ϕ.
2. The underlying graph GA has property P .

The crucial step in the proof of this theorem is the implementation of a
combinatorial graph canonization algorithm due to Corneil and Goldberg [11],
running in time 2O(�) on graphs of order �, in CPT.
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2.4 Choiceless Polynomial Time Without Counting

To be a serious candidate for being a logic for polynomial time, CPT has (and
needs) the cardinality operator Card. Blass, Gurevich and Shelah also considered
a variant of CPT without the Card-operator, which we denote by CPT−.

Not surprisingly, CPT− is unable to determine whether a structure has an
even or odd number of elements, but this is much more difficult to prove than
for, say, least fixed-point logic. The proof requires a sophisticated analysis of the
support of hereditarily finite sets used in CPT-computations (see [27]). Never-
theless CPT− is quite a powerful language; for instance it has been in shown in
[14] that CPT− can express (a variant of) the CFI-query that separates fixed-
point logic with counting (FPC) from Ptime and is therefore incomparable with
FPC. An interesting result on CPT− is the zero-one law established by Shelah
(see [5] for details) saying that for every CPT−-definable property P of relational
τ -structures the probability μn(P ) that a random τ -structure of cardinality n
satisfies property P tends either to 0 or 1 as n goes to infinity.

3 Fixed-Point Logic with Counting

The logic of reference, or yardstick, in the search for a logic for Ptime is fixed-
point logic with counting, denoted FPC. This logic was introduced, somewhat
informally, by Immerman [23], a more formal definition, based on two-sorted
structures, inflationary fixed-points, and counting terms was given in [17]. For a
recent survey on FPC, see [12].

Fixed-point logic with counting comes actually rather close to being a logic
for polynomial time. It is strong enough to express most of the fundamental
algorithmic techniques leading to polynomial-time procedures and it captures
Ptime on many interesting classes of finite structures, including trees, planar
graphs, structures of bounded tree width, and actually all classes of graphs
with an excluded minor [20]. Indeed, these classes even admit FPC-definable
canonisation which means that FPC can define, given an input structure, an
isomorphic copy of that structure over a linearly ordered universe. Clearly, if
a class of structures admits FPC-definable canonisations, then FPC captures
Ptime on this class, since by the Immerman-Vardi Theorem (see e.g. [19]) fixed-
point logic can define every polynomial-time query on ordered structures.

Although it has been known for more than twenty years that FPC fails to
capture Ptime in general, by the fundamental CFI-construction due to Cai,
Fürer, and Immerman [10], we still know only relatively few properties of finite
structures that provably separate FPC from Ptime.

Roughly we have, at this time, two main sources for such problems. The
first one includes tractable cases of the isomorphism problem for finite struc-
tures, in particular for graphs. It is, in general still open, whether the general
graph isomorphism problem is solvable in polynomial time, but efficient isomor-
phism tests are known in many special cases, including all classes of graphs of
bounded degree or bounded colour class size. However, the CFI-construction
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shows that FPC cannot define the isomorphism problem even on graphs with
bounded degree and bounded colour class size.

Multipedes. An interesting instance of such a problem is the isomorphism
problem for multipedes. Multipedes2 have been introduced in [7] and studied
also in [21]. Informally, a multipede is a finite two-sorted structure, consisting
of an ordered set of segments, and a set of feet, such that exactly two feet are
attached to each segment. Further there is a collection of hyperedges H of size
3 on the segments, and a corresponding collection of hyperedges P of feet, also
of size 3, called positive triples, such that each positive triple of feet is attached
to a hyperedge H of segments, and out of the eight triples of feet attached to
H, exactly four are positive. Further if P and P ′ are two positive triples of feet
attached to the same hyperedge H, then |P − P ′| is even. Finally, exactly one
of the two feet attached to the first segment carries a shoe.

Blass, Gurevich, and Shelah [7] proved that the isomorphism problem for
multipedes can be solved in polynomial time, but that it is not expressible in
fixed-point logic with counting. They asked the question whether it is definable
in CPT.

Linear Algebra. The second class of hard problems for FPC includes queries
from linear algebra. In general, the definability of central problems of linear
algebra provides an interesting challenge in the study of the expressive power of
logical systems and for the quest for a logic for Ptime. On one side, it has turned
out that a fair amount of linear algebra, in particular for fields of characteristic
zero, is expressible in fixed-point logic with counting, including arithmetic oper-
ations on matrices, singularity of matrices, determinants, characteristic polyno-
mials, and matrix rank over Q (but not over fields of prime characteristic). On
the other side, Atserias, Bulatov and Dawar [3] proved that FPC cannot express
the solvability of linear equation systems over any finite Abelian group, and it
then follows that also a number of other problems from linear algebra are not
definable in FPC either. This motivated the introduction of rank logic, which
extends FPC by operators for the rank of definable matrices over prime fields
Fp, and which permits to express the solvability of linear equation systems over
finite fields [13]. Interestingly, also the CFI-query can be formulated as linear
equation system over F2 and is thus expressible in rank logic. There are differ-
ent variants of rank logic. For the most powerful of them, with a rank operator
where the prime over which the rank is computed is not fixed, but part of the
input, it is still open whether it captures Ptime [18].

4 Structures of Bounded Colour Class Size

Recall a that a preorder of width q is a reflexive, transitive, and total binary
relation � such that the induced equivalence relation a ∼ b := (a � b � a) only
has equivalence classes of size ≤ q. A q-bounded structure is a structure that is
2 Actually, Gurevich and Shelah introduced a number of different variants of multi-

pedes. What we use here are called 3-multipedes with shoes in [7].
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equipped with a pre-order � of width q. The equivalence classes induced by �
are also called colour classes.

It is still open whether Choiceless Polynomial Time captures Ptime on all
classes of finite structures with bounded colour class size. A partial positive
answer was given in [1], for any class of q-bounded structures with Abelian colours,
which means that the automorphism groups of all substructures induced by the
colour classes are commutative.

An important ingredient in the CPT-canonization procedure for such classes
is a choiceless algorithm for solving a special class of linear equation systems.
Clearly linear equation systems over an ordered set of variables can be solved
in fixed-point logic with counting. However, classical solution algorithms for
linear equation systems require choice, and for unordered sets of variables they
cannot be carried out in FPC. An intermediate class are cyclic linear equation
systems (CES) over finite rings Zpk , equipped with a pre-order � on the set
of variables, such that every pair of �-equivalent variables x, y is related by an
equation x + a = y for some constant a. This means that fixing the value of one
variable in a solution of the CES fixes also the values for all other variables in the
same �-class. Cyclic equation systems arise for instance in Cai-Fürer-Immerman
(CFI) constructions. The original CFI-query (over ordered input graphs) can be
formulated as cyclic equation systems over Z2 where the cyclic constraint on
pairs x0, x1 of �-equivalent variables simply has the form x0 +x1 = 1. In Holm’s
PhD-thesis [22] and also in [18] a generalized CFI-construction over rings Zq

has been exhibited which is, for instance, relevant for the study of rank logic.
Again, the isomorphism problem for generalized CFI-structures, which can be
formulated as a CES over Zq, separates Ptime from FPC, but it also gives rise to
a number of further separation results, concerning for instance different variants
of rank logics [18].

Theorem 9. The solvability problem for cyclic linear equation systems can be
defined in Choiceless Polynomial Time.

Any �-class of variables in a CES has a cyclic structure, and we can order
each such class by fixing one variable. However, in Choiceless Polynomial Time
it is not possible to simultaneously fix one variable in each class, since this
would require to take into account also all symmetric choices of which there
may be exponentially many. One can circumvent this problem by means of so-
called hyperterms which avoid this exponential blow-up by identifying equivalent
choices and encoding equivalence classes as hereditarily finite sets over the uni-
verse of variables. Choiceless Polynomial Time is powerful enough to perform
arithmetic operation on hyperterms, and to translate any cyclic linear equation
system into an ordered system of hyperequations. Finally the solvability of such
systems can then be determined in CPT by a variant of Gaussian elimination
for finite rings.

Cyclic linear equation systems are an essential ingredient in the canonization
procedure for q-bounded structures with Abelian colours. For details, we refer
to [1] and the forthcoming PhD thesis of Wied Pakusa.
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Theorem 10. CPT captures Ptime on every class of q-bounded structures with
Abelian colours.

Notice that 2-bounded structures trivially have Abelian colours, since the
automorphism group of every colour class is either trivial or Z2. Hence CPT
capture polynomial-time on 2-bounded structures. Further, since also multipedes
are 2-bounded structures, this resolves the above-mentioned problem posed by
Blass, Gurevich, and Shelah (cf. [7, Question 5.12, p. 1115]).

Corollary 11. The isomorphism problem for multipedes is CPT-definable.

5 Symmetric Circuits

Any property of finite τ -structures can be considered as a sequence of Boolean
functions (fn)n∈N where fn takes as inputs the truth values of the atomic τ -
formulae on a given structure A with universe [n] = {0, . . . , n − 1}, and returns
either 0 or 1, depending on whether or not A satisfies the given property. To
represent really a property of structures of size n, and not of ordered presenta-
tions of these, the function fn must be invariant under any permutation of the
universe [n].

Clearly every property of finite structures that is decidable in polynomial time
is also decidable by a p-uniform sequence (Cn)n∈N of polynomial-size Boolean
circuits that are invariant in the semantic sense just described. More precisely,
every permutation π ∈ Sn of the universe [n] induces a permutation of the input
gates of Cn, and the value computed by the circuit Cn does not change if the
values a of the input gates (representing a structure A with universe [n]) are
changed to πa (representing the structure πA ∼= A). Such circuits, and circuit
families, are called invariant.

On the other side, if we translate a formula from a simple logical language,
say, first-order logic or fixed-point logic, into a sequence of circuits, such that
circuit Cn simulates the evaluation of the formula on input structures with uni-
verse [n], then these circuits are of course invariant, of polynomial size, and in
fact p-uniform in the sense that the circuit Cn is computable in polynomial time
in n. But moreover such circuits satisfy the stronger property that every per-
mutation of the input universe induces in fact an automorphism of the circuit.
Circuits with this property are called symmetric. Obviously, symmetric circuits
are invariant, and it is easy to see that the converse is not true. However, it is a
priori not clear whether polynomial size symmetric circuits (over a given basis)
define a weaker computation model than invariant ones.

For logics with counting, such as FPC, it is natural to consider circuits with
threshold or majority gates. Notice that the extension of the standard Boolean
basis by majority gates does not change the power of polynomial-size circuit
families, but it can make a difference for specific classes of circuits, such as
bounded-depth circuits or symmetric ones. It is a simple observation that every
sentence of FPC is equivalent to a p-uniform sequence of symmetric circuits with
majority gates.
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Can also Choiceless Polynomial Time be translated into such circuits fami-
lies? If this were the case, then one might use methods from circuit complexity
theory to study the power of CPT and understanding its connection with Ptime.
With this question in mind, Anderson and Dawar [2] set out to study the power of
polynomial-size families of symmetric circuits, both over the standard Boolean
basis, and the extension by majority or threshold gates. However, their main
results show that symmetric circuits (of polynomial size) are too weak for CPT.
In fact, in the version with threshold gates, they are equivalent to FPC and thus
cannot define, say, the CFI-query.

Theorem 12. A class of finite structures is decided by a p-uniform sequence
of symmetric threshold circuits if, and only if, it is definable in fixed-point logic
with counting. Similarly, a class of finite structures A is decided by a p-uniform
sequence of Boolean circuits if, and only if, it is definable in least fixed-point
logic over their two-sorted expansions A∗ = A ∪ 〈n,<〉.

This theorem has interesting consequences for the study of Choiceless Poly-
nomial Time. It shows that a translation of CPT programs into equivalent
sequences of symmetric threshold circuits cannot be done in a p-uniform way. To
put it differently, any p-uniform translation from CPT into equivalent sequences
of threshold circuits has to break symmetry in some way.

6 Interpretation Logic

While the common presentations of Choiceless Polynomial Time via the manipu-
lation of hereditarily finite sets, by abstract state machines or terms in BGS-logic
is convenient and powerful for the design of abstract computations on structures,
it makes the analysis of the expressive power of CPT rather difficult. Standard
techniques for the analysis of logical systems as used in finite model theory,
for instance those based on Ehrenfeucht-Fräıssé methods, are not directly avail-
able. In particular, applications of comprehension terms increase the rank of
objects and are difficult to handle by the common logical tools, which are usu-
ally restricted to ‘flat’ objects.

However, as recently shown in [16], one can provide alternative presentations
of CPT (with and without counting) that are based on classical model-theoretic
techniques. In particular, the ‘fancy data structures’ of the hereditarily finite sets
and the manipulation of comprehension terms can be replaced by traditional
first-order interpretations. In this context, counting can then be handled by
Härtig quantifiers which are classical quantifiers for cardinality comparison. Thus
choiceless computations on finite structures can be captured by iterations of
interpretations. A run is a sequence of states, each of which is now a finite
structure of a fixed vocabulary. There is an initial interpretation that produces
the initial state as a structure interpreted in the input structure, and a second
interpretation Istep that always maps the current state to its successor state.
Since interpretations need not be one-dimensional they can increase the size of
the states. Although one application of an interpretation increases the size only
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polynomially, without imposing restrictions, the iterated application through a
polynomial number of steps could produce states of exponential size.

Polynomial-Time Interpretation Logic, denoted PIL, is obtained by imposing
polynomial bounds on the length of such computations and the size of the states.
It turns out that PIL has precisely the same expressive power as Choiceless
Polynomial Time.

Theorem 13. PIL ≡ CPT.

The equivalence survives also in the absence of counting: Polynomial-Time
Interpretation Logic without the Härtig quantifier PIL− is equivalent to CPT−.

Further, the presentation of CPT in terms of first-order interpretations leads
to natural fragments and stratifications of this logic along familiar syntactic
parameters. For instance, one can consider the natural restrictions of PIL to
k-dimensional interpretations, and/or to interpretations where the domain or
equivalence formulae are trivial. It turns out that the iteration of one-dimensional
interpretations is in fact equivalent to the familiar relational iteration appearing
in the partial fixed-point logic PFP, or equivalently, in the database language
while. Thus, without the Härtig quantifier, one-dimensional Polynomial-Time
Interpretation Logic turns out to be equivalent to the polynomial-time restric-
tion of PFP, which by means of a classical result due to Abiteboul and Vianu
implies that one-dimensional PIL− is equivalent to LFP if, and only if, Ptime
= Pspace. On the other hand, it is known (see e.g. [26]) that the polynomial-
time restriction of PFP with counting is actually equivalent to FPC. It follows
that one-dimensional PIL, when evaluated on the expansions of finite structures
by an ordered numerical sort, has precisely the expressive power of FPC. One
can thus view FPC as a one-dimensional fragment of PIL and CPT. This con-
firms the intuition that the additional power of Choiceless Polynomial Time
over FPC comes from the generalization of relational iteration in a fixed arity
(as in fixed-point logics) to iterations of relations of changing arities. Already
two-dimensional interpretations give us this additional flexibility of relational
iteration and, indeed, two-dimensional PIL turns out to be equivalent to full PIL.

Another interesting aspect is the representation of equality by congruence
relations and the passage to quotient structures. One may ask whether these
are really necessary for obtaining the full expressive power of PIL. The answer
is yes.

In the absence of counting, PIL− without congruences is equivalent to a pre-
viously studied extension of the database language while, called whilenew |Ptime
which is known to be strictly weaker than CPT. In the presence of counting,
the situation is even more intriguing. On any class of structures of bounded
colour class size, PIL without congruences can be simulated by CPT-programs
that access only hereditarily finite sets of bounded rank. In particular this holds
for the class of CFI-graphs. Since Dawar, Richerby, and Rossman prove in [14]
that the CFI-query is definable in CPT, but not by programs of bounded rank,
this separates also congruence-free PIL from full PIL. Hence with or without
counting, congruences are really essential for reaching the full power of PIL.
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7 Challenges for Future Research

Of course the main open problem concerning Choiceless Polynomial Time
remains the question whether it captures all of Ptime. But no matter whether
or not this is the case, there are a number of interesting open problems that
seem to be within the reach of current techniques.

7.1 A Characterization Without Explicit Polynomial Bounds

An unsatisfactory point in the definition of both CPT and PIL is the require-
ment for explicit polynomial bounds on the running time, the number of active
elements or the size of the interpreted structures appearing in a run. It would be
desirable to have a characterization of CPT that does not depend on such explicit
bounds, but guarantees polynomial-time evaluation implicitly, by construction,
as in classical logical approaches such as fixed-point logics.

7.2 Polynomial-Time Properties of Small Definable Subgraphs

Recall Theorem 8, intuitively stating that CPT expresses all polynomial time
properties of definable substructures of logarithmic size. It is quite possible that
this theorem can further be strengthened, say, to definable substructures of poly-
logarithmic size.

Is there a function f with f(n) = ω(log n) such that the theorem can be
strengthened to hold for all � ≤ f(n)? Or is this even the case for all f with
polylogarithmic growth rate?

7.3 Isomorphism of CFI-Graphs and Graphs of Bounded Colour
Class Size

We have already mentioned the question of whether isomorphism of graphs of
bounded colour class size is in CPT; this is basically only known for graphs with
Abelian colours (see Sect. 4). The CFI-graphs are usually presented as a special
case. These are graphs of colour class size four (or more general structures of
colour class size two) with Abelian colours, provided that the input graphs are
coloured in a certain way. This is not inherent in the construction, but just a
convenience of the presentation.

It is an open problem whether the isomorphism of uncoloured CFI-graphs
(which is still in polynomial time) is in CPT. Actually, this might be a candidate
for separating CPT from Ptime.

7.4 Constraint Satisfaction Problems

Constraint satisfaction problems (CSPs), defined in terms of their constraint
language, form a rich family of problems in NP that contains many practically
important problems, but is still relatively well behaved and excludes pathological
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examples of problems such as Ladner’s [24] NP-problems that are neither in
Ptime nor NP-complete. Indeed, Feder and Vardi’s [15] well known Dichotomy
Conjecture states that all CSPs are either in Ptime or NP-complete. Bulatov,
Jeavons, and Krokhin [9] made a refined conjecture characterising the CSPs in
Ptime algebraically.

We may ask which CSPs are solvable in CPT. If this class coincides with
the class of CSPs conjectured to be PTIME-solvable by Bulatov, Jeavons, and
Krokhin, this could be seen as evidence that CPT captures polynomial time, or
at least does so on the class of all CSPs.

Atserias, Bulatov, and Dawar [3] characterised the CSPs solvable in FPC as
precisely those with a property called bounded width. It is known that CPT can
solve CSPs of unbounded width; cyclic equation systems are examples. These
equations systems are CSPs that belong to a polynomial time solvable class of
CSPs known as CSPs with Mal’tsev polymorphisms [8]. As a first step towards
the general question, we ask whether all CSPs with Mal’tsev constraints are
solvable in CPT. We remark that an affirmative answer to this question would
imply that isomorphism of graphs of bounded colour class size is in CPT (via a
reduction described in [4]).

7.5 A Notion of Symmetric Circuits for CPT

We mentioned in Sect. 5 the result by Anderson and Dawar that p-uniform sym-
metric circuits are too weak for CFP, and that therefore any p-uniform transla-
tion of CPT into equivalent sequences of threshold circuits has to break symme-
try in some way. It is an interesting challenge to see how, and to come up with a
circuit model capturing CPT. Anderson and Dawar suggest to consider weaker
notions of symmetry, requiring induced automorphisms of the circuit only for
certain subgroups of the symmetric group on the input universe.

7.6 Choiceless Polynomial Time versus Rank Logic

Besides Choiceless Polynomial Time, one may consider rank logic to be the most
prominent candidate for a logic for Ptime. The relationship between these two
logics is, at this point unclear.

Theorem 9 about the solvability of cyclic linear equation systems might pro-
vide a handle to separate the two logics. Indeed, while the solvability of (arbi-
trary) linear equation systems over finite fields can clearly be expressed in rank
logic, we see no way how rank logic would be able to deal with solvability prob-
lems for CES over rings Zpk for k > 1. Indeed we conjecture that the solvability
of CES over Z4 might be problem that is definable in CPT but not in rank logic.
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Abstract. Various problems on integers lead to the class of functions
defined on a ring of numbers (or a subset of such a ring) and verifying a−b
divides f(a)−f(b) for all a, b. We say that such functions are “congruence
preserving”. In previous works, we characterized these classes of functions
for the cases N → Z, Z → Z and Z/nZ → Z/mZ in terms of sums series
of rational polynomials (taking only integral values) and the function
giving the least common multiple of 1, 2, . . . , k. In this paper we relate
the finite and infinite cases via a notion of “lifting”: if π : X → Y is
a surjective morphism and f is a function Y → Y a lifting of f is a
function F : X → X such that π ◦ F = f ◦ π. We prove that the
finite case Z/nZ → Z/nZ can be so lifted to the infinite cases N → N

and Z → Z. We also use such liftings to extend the characterization to
the rings of p-adic and profinite integers, using Mahler representation of
continuous functions on these rings.

1 Introduction

A function f (on N or Z) is said to be congruence preserving if a − b divides
f(a)−f(b). Polynomial functions are obvious examples of congruence preserving
functions. In [2,3] we characterized such functions N → Z and Z → Z (which
we named “functions having the integral difference ratio property”). In [4] we
extended the characterization to functions Z/nZ → Z/mZ with n,m ≥ 1 (for
the suitable notion of congruence preservation).

In the present paper, we prove in Sect. 2 that every congruence preserving
function Z/nZ → Z/mZ (with m dividing n) can be lifted to congruence pre-
serving functions N → N and Z → Z (i.e. it is the modular projection of such a
function). As a corollary (i) we show that such a lift also works replacing N with
Z/qnZ and (ii) we give an alternative proof of a representation (obtained in [4])
of congruence preserving functions Z/nZ → Z/mZ as linear sums of “rational”
polynomials.

Partially supported by TARMAC ANR agreement 12 BS02 007 01.
I. Guessarian—Emeritus at UPMC Université Paris 6.
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In Sect. 3 we consider the rings of p-adic integers (resp. profinite integers)
and prove that congruence preserving functions on these rings are inverse limits
of congruence preserving functions on the Z/pk

Z (resp. on the Z/nZ). Consid-
ering the Mahler representation of continuous functions by series, we prove that
congruence preserving functions correspond to those series for which the linear
coefficient with rank k is divisible by the least common multiple of 1, . . . , k.

2 Switching Between Finite and Infinite

In order to characterize congruence preserving functions on Z/nZ, we first lift
each such function into a congruence preserving function N → N. In a second
step, we use our characterization of congruence preserving functions N → Z to
characterize the congruence preserving functions Z/nZ → Z/nZ.

2.1 Lifting Functions Z/nZ → Z/mZ to N → N and Z → Z

Definition 1. Let X be a subset of a commutative ring (R,+,×). A function
f : X → R is said to be congruence preserving if

∀x, y ∈ X ∃d ∈ R f(x) − f(y) = d(x − y) , i.e. x − y divides f(x) − f(y) .

Definition 2 (Lifting). Let σ : X → N and ρ : Y → M be surjective maps.
A function F : X → Y is said to be a (σ, ρ)-lifting of a function f : N → M
(or simply lifting if σ, ρ are clear from the context) if the following diagram
commutes:

X
F−−−−→ Y

σ
⏐
⏐
�

⏐
⏐
�ρ

N
f−−−−→ M

i.e. ρ ◦ F = f ◦ σ .

We will consider elements of Z/kZ as integers and vice versa via the following
modular projection maps.

Notation 3. 1. Let πk : Z → Z/kZ be the canonical surjective homomorphism
associating to an integer its class in Z/kZ.
2. Let ιk : Z/kZ → N be the injective map associating to an element x ∈ Z/kZ
its representative in {0, . . . , k − 1}.
3. Let πn,m : Z/nZ → Z/mZ be the map πn,m = πm ◦ ιn.
If m ≤ n let ιm,n : Z/mZ → Z/nZ be the injective map ιm,n = πn ◦ ιm.

Lemma 4. If m divides n then πm = πn,m ◦ πn and πn,m is a surjective homo-
morphism.

The next theorem insures that congruence preserving functions Z/nZ → Z/nZ

can be lifted to congruence preserving functions N → N and N → Z.
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Theorem 5 (Lifting Functions Z/nZ → Z/nZ to N → N). Let f : Z/nZ →
Z/nZ with m ≥ 2. The following conditions are equivalent:

(1) f is congruence preserving.
(2) f can be (πn, πn)-lifted to a congruence preserving function F : N → N.
(3) f can be (πn, πn)-lifted to a congruence preserving function F : N → Z.

In view of applications in the context of p-adic and profinite integers, we state
and prove a slightly more general version. As Z/nZ and Z/mZ are different
rings we use an extension of the notion of congruence preservation introduced
in Chen [5] and studied in Bhargava [1]) which we recall below.

Definition 6. A function f : Z/nZ → Z/mZ is congruence preserving if

for all x, y ∈ Z/nZ, πn,m(x − y) divides f(x) − f(y) in Z/mZ . (1)

Theorem 7 (Lifting Functions Z/nZ → Z/mZ to N → N). Let f : Z/nZ →
Z/mZ with m divides n and m ≥ 2. The following conditions are equivalent:

(1) f is congruence preserving.
(2) f can be (πn, πm)-lifted to a congruence preserving function F : N → N.
(3) f can be (πn, πm)-lifted to a congruence preserving function F : N → Z.

Proof. (2) ⇒ (3) is trivial.
(3) ⇒ (1). Assume f lifts to the congruence preserving function F : N → Z, i.e.
f ◦πn = πm ◦F . Since πn ◦ ιn is the identity we get f = im ◦F ◦ ιn. The following
diagrams are thus commutative:

N
F ��

πn
��

Z

πm
��

N
F �� Z

πm
��

Z/nZ
f �� Z/mZ Z/nZ

f ��

ιn

��

Z/mZ

Let x, y ∈ Z/nZ. As F is congruence preserving, ιn(x)−ιn(y) divides F (ιn(x))−
F (ιn(y)), hence F (ιn(x))−F (ιn(y)) = (ιn(x)− ιn(y)) δ. Since πm is a morphism
and πm ◦ ιn = πn,m, we get πm(F (ιn(x))) − πm(F (ιn(x))) = πn,m(x − y)πm(δ).
As F lifts f we have πm(F (ιn(x))) − πm(F (ιn(y))) = f(x) − f(y) whence (1).
(1) ⇒ (2). By induction on t ∈ N we define a sequence of functions ϕt : {0, . . . , t}
→ N for t ∈ N such that ϕt+1 extends ϕt and (*) and (**) below hold.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(*) ϕt is congruence preserving,
(**) πm(ϕt(u)) = f(πn(u)), for all u ∈ {0, . . . , t},

{0, . . . , t} ϕt ��

i.e. the following diagram commutes: πn
��

Z

πm

��
Z/nZ

f �� Z/mZ
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Basis. We choose ϕ0(0) ∈ N such that πm(ϕ0(0)) = f(πn(0)). Properties (*) and
(**) clearly hold for ϕ0.

Induction: From ϕt to ϕt+1. Since the wanted ϕt+1 has to extend ϕt to the
domain {0, . . . , t, t + 1}, we only have to find a convenient value for ϕt+1(t + 1).
By the induction hypothesis, (*) and (**) hold for ϕt; in order for ϕt+1 to
satisfy (*) and (**), we have to find ϕt+1(t + 1) such that t + 1 − i divides
ϕt+1(t+1)−ϕt(i), for i = 0, . . . , t, and πm(ϕt+1(t+1)) = f(πn(t+1)). Rewritten
in terms of congruences, these conditions amount to say that ϕt+1(t + 1) is a
solution of the following system of congruence equations:

�(0) ϕt+1(t + 1) ≡ ϕt(0) (mod t + 1)
...

�(i) ϕt+1(t + 1) ≡ ϕt(i) (mod t + 1 − i)
...

�(t-1) ϕt+1(t + 1) ≡ ϕt(t − 1) (mod 2)
�� ϕt+1(t + 1) ≡ ιm(f(πn(t + 1))) (mod m)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

Recall the Generalized Chinese Remainder Theorem (cf. Sect. 3.3, exercice 9
p. 114, in Rosen’s textbook [12]): a system of congruence equations

∧

i=0,...,t

x ≡ ai (mod ni)

has a solution if and only if ai ≡ aj mod gcd(ni, nj) for all 0 ≤ i < j ≤ t.
Let us show that the conditions of application of the Generalized Chinese

Remainder Theorem are satisfied for system (2).

– Lines �(i) and �(j) of system (2) (with 0 ≤ i < j ≤ t − 1).
Every common divisor to t + 1 − i and t + 1 − j divides their difference j − i
hence gcd(t + 1 − i, t + 1 − j) divides j − i. Since ϕt satisfies (*), j − i divides
ϕt(j) − ϕt(i) and a fortiori gcd(t + 1 − i, t + 1 − j) divides ϕt(j) − ϕt(i).

– Lines �(i) and �� of system (2) (with 0 ≤ i ≤ t − 1).
Let d = gcd(t + 1 − i,m). We have to show that d divides ιm(f(πn(t + 1))) −
ϕt(i). Since f is congruence preserving, πn,m(πn(t+1)−πn(i)) divides f(πn(t+
1)) − f(πn(i)). As m divides n, by Lemma 4, πn,m(πn(t + 1) − πn(i)) =
πm(t+1)−πm(i) = πm(t+1− i) and f(πn(t+1))−f(πn(i)) = kπm(t+1− i)
for some k ∈ Z/mZ. Applying ιm, there exists λ ∈ Z such that

ιm(f(πn(t + 1))) − ιm(f(πn(i))) = ιm(k)ιm(πm(t + 1 − i)) + λm

as ιm(πm(u)) ≡ u (mod m) for every u ∈ Z, there exists μ ∈ Z such that

ιm(f(πn(t + 1))) − ιm(f(πn(i))) = ιm(k)(t + 1 − i) + μm + λm . (3)

Since ϕt satisfies (**), we have πm(ϕt(i))=f(πn(i)) hence
ϕt(i) ≡ ιm(f(πn(i))) (mod m). Thus Eq. (3) can be rewritten

ιm(f(πn(t + 1))) − ϕt(i) = (t + 1 − i)ιm(k) + νm for some ν . (4)
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As d = gcd(t + 1 − i,m) divides m and t + 1 − i, (4) shows that d divides
ιn(f(πn(t + 1))) − ϕt(i) as wanted.

Thus, we can apply the Generalized Chinese Theorem and get the wanted value
of ϕt+1(t + 1), concluding the induction step.
Finally, taking the union of the ϕt’s, t ∈ N, we get a function F : N → N which
is congruence preserving and lifts f . �

Example 8 (Counterexample to Theorem 7). Lemma 4 and Theorem 7 do not
hold if m does not divide n. Consider f : Z/6Z → Z/8Z defined by f(0) = 0,
f(1) = 3, f(2) = 4, f(3) = 1, f(4) = 4, f(5) = 7. Note first that, in Z/8Z, 1, 3
and 5 are invertible, hence f is congruence preserving iff for k ∈ {2, 4}, for all
x ∈ Z/6Z, k divides f(x + k) − f(x) which is easily checked; nevertheless, f has
no congruence preserving lift F : Z → Z. If such a lift F existed, we should have

(1) because F lifts f , π8(F (0))=f(π6(0))=0 and π8(F (8))=f(π6(8))=f(2)=4;
(2) as F is congruence preserving, 8 must divide F (8) − F (0); we already noted

that 8 divides F (0), hence 8 divides F (8) and π8(F (8)) = 0, contradicting
π8(F (8)) = 4.

Note that π6,8 is neither a homomorphism nor surjective and 0 = π8(8) �=
π6,8 ◦ π6(8) = 2. �

We can also lift congruence preserving functions from Z/nZ → Z/mZ to
Z → Z instead of N → N.

Theorem 9 (Lifting Functions Z/nZ → Z/mZ to Z → Z). Let f : Z/nZ →
Z/mZ with m divides n and m ≥ 2. The following conditions are equivalent:

(1) f is congruence preserving.
(2) f can be (πn, πm)-lifted to a congruence preserving function F : Z → Z.

Proof. (2) ⇒ (1). The proof is the same as that of (3) ⇒ (1) in Theorem 7.
(1) ⇒ (2). The argument is a slight modification of that for the same implication
in Theorem 7. We define the lift F : Z → Z of f : Z/nZ → Z/mZ as the union
of a series of functions ϕt, t ∈ N such that

- ϕ2t has domain {−t, . . . , t} and ϕ2t+1 has domain {−t, . . . , t + 1},
- ϕt+1 extends ϕt,
- ϕt is congruence preserving. The induction step is done exactly as in Theorem 7
via a system of congruence equations and an application of the Generalized
Chinese Remainder Theorem. �

2.2 Representation of Congruence Preserving Functions
Z/nZ → Z/mZ

As a first corollary of Theorem 7 we get a new proof of the representations of
congruence preserving functions Z/nZ → Z/mZ as finite linear sums of poly-
nomials with rational coefficients (cf. [4]). Let us recall the so-called binomial
polynomials.
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Definition 10. For k ∈ N, let Pk(x) =
(

x

k

)

=
1
k!

∏�=k−1
�=0 (x − �).

Though Pk has rational coefficients, it maps N into Z. Also, observe that Pk(x)
takes value 0 for all k > x. This implies that for any sequence of integers (ak)k∈N,
the infinite sum

∑
k∈N

ak Pk(x) reduces to a finite sum for any x ∈ N hence
defines a function N → Z.

Definition 11. We denote by lcm(k) the least common multiple of integers
1, . . . , k (with the convention lcm(0) = 1).

Definition 12. To each binomial polynomial Pk, k ∈ N, we associate a function
Pn,m

k : Z/nZ → Z/mZ which sends an element x ∈ Z/nZ to (πm ◦ Pk ◦ ιn)(x) ∈
Z/mZ.

In other words, consider the representative t of x lying in {0, . . . , n−1}, evaluate
Pk(t) in N and then take the class of the result in Z/mZ. Hence, the following
diagram commutes:

N
Pk �� Z

πm
��

Z/nZ
Pn,m

k ��

ιn

��

Z/mZ

Lemma 13. If lcm(k) divides ak in Z, then the function πm(ak)Pn,m
k : Z/nZ →

Z/mZ (represented by akPk) is congruence preserving.

Proof. In [2] we proved that if lcm(k) divides ak then akPk is a congruence
preserving function on N. Let us now show that πm(ak)Pn,m

k : Z/nZ → Z/mZ

is also congruence preserving. Let x, y ∈ Z/nZ: as akPk is congruence pre-
serving, ιn(x) − ιn(y) divides akPk(ιn(x)) − akPk(ιn(y)). As πm is a morphism
πm(ιn(x)) − πm(ιn(y)) divides πm(ak)πm(Pk(ιn(x))) − πm(ak)πm(Pk(ιn(y))) =
πm(ak)Pn,m

k (x) − πm(ak)Pn,m
k (x). As πm ◦ ιn = πn,m we have πm(ιn(x)) −

πm(ιn(y)) = πn,m(x)) − πn,m(y) and we conclude that πm(ak)Pn,m
k is congru-

ence preserving. �
Corollary 14 ([4]). Let 1 ≤ m = pα1

1 · · · pα�

� , pi prime. Suppose m divides
n and let ν(m) = maxi=1,...,� pαi

i . A function f : Z/nZ → Z/mZ is congru-
ence preserving if and only if it is represented by a finite Z-linear sum f =
∑ν(m)−1

k=0 πm(ak)Pn,m
k such that lcm(k) divides ak (in Z) for all k < ν(m).

Moreover, such a representation is unique.

Proof. Assume f : Z/nZ → Z/mZ is congruence preserving. Applying
Theorem 7, lift f to F : N → N which is congruence preserving.

N

F =
∑ν(m)−1

k=0 ak Pk ��

πn
��

Z

πm f ◦ πn = πm ◦ F
��

Z/nZ
f �� Z/mZ
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We proved in [4] that every congruence preserving function F : N → N is of the
form F =

∑∞
k=0 akPk where lcm(k) divides ak for all k. As πm is a morphism

(because m divides n) and F lifts f , we have, for u ∈ Z

f(πn(u)) = πm(F (u)) = πm(
∞∑

k=0

ak Pk(u))

=
∞∑

k=0

πm(ak)πm(Pk(u)) =
k=ν(m)−1∑

k=0

πm(ak)πm(Pk(u)) (5)

The last equality is obtained by noting that for k ≥ ν(m), m divides lcm(k)
hence as ak is a multiple of lcm(k), πm(ak) = 0. From (5) we get f(πn(u)) =
∑k=ν(m)−1

k=0 πm(ak)πm(Pk(u)) = πm(
∑k=ν(m)−1

k=0 ak Pk(u)). This proves that f

is lifted to the rational polynomial function
∑k=ν(m)−1

k=0 ak Pk. Since Pk(k) = 1
for all k ∈ N, and Pk(i) = 0 for k > i, we easily check the unicity of the
representation.

The converse follows from Lemma 13 and the fact that any finite sum of
congruence preserving functions is congruence preserving. �

2.3 Lifting Functions Z/nZ → Z/mZ to Z/rZ → Z/sZ

As a second corollary of Theorem 7 we can lift congruence preserving functions
Z/nZ → Z/nZ to congruence preserving functions Z/qnZ → Z/qnZ.

We state a slightly more general result.

Corollary 15. Assume m,n, s, r ≥ 1, m divides both n and s, and n, s both
divide r. If f : Z/nZ → Z/mZ is congruence preserving then it can be (πr,n, πs,m)-
lifted to g : Z/rZ → Z/sZ which is also congruence preserving.

Proof. As m divides n, using Theorem 7, we lift f to a congruence preserving
F : N → N and set g = πs ◦ F ◦ ιr.

We first show that the rectangular subdiagram around f, g commutes:

N
F ��

πr

���������������

πn

���
��

��
��

��
��

��
��

��
� N

πs

���������������

πm

����
��

��
��

��
��

��
��

��

Z/rZ g
��

ιr

		�������������

πr,n

��

Z/sZ

πs,m

��
Z/nZ

f
�� Z/mZ

πs,m ◦ g = πs,m ◦ (πs ◦ F ◦ ιr)
= (πm ◦ F ) ◦ ιr m divides s yields πm = πs,m ◦ πs (Lemma 4)
= (f ◦ πn) ◦ ιr since F lifts f
= f ◦ πr,n since πn ◦ ιr = πr,n



Arithmetical Congruence Preservation: From Finite to Infinite 217

Thus, πs,m ◦ g = f ◦ πr,n, i.e. g lifts f .
Finally, if x, y ∈ Z/rZ then ιr(x)− ιr(y) divides F (ιr(x))−F (ιr(y)) (by congru-
ence preservation of F ). As πs is a morphism, and πs = πr,s◦πr (because s divides
r), and πr ◦ ιr is the identity on Z/rZ, we deduce that πs(ιr(x)) − πs(ιr(y)) =
(πr,s ◦ πr ◦ ιr)(x) − (πr,s ◦ πr ◦ ιr)(y) = πr,s(x − y) divides πs(F (ιr(x))) −
πs(F (ιr(y)) = g(x) − g(y) (by definition of g). We thus conclude that g is
congruence preserving. �

Remark 16. Let us check that the previous diagram is completely commutative.
The large trapezoid around F, f commutes because F lifts f . The upper trape-
zoid F, g, ιr, πs commutes by definition of g. The upper trapezoid F, g, πr, πs

commutes since g ◦ πr = (πs ◦ F ◦ ιr) ◦ πr = πs ◦ F (as ιr ◦ πr is the identity).
The left and right triangles πn, πr, πr,n and πm, πs, πs,m commute by Lemma 4
as n divides r and m divides s. Finally, the triangle πn, ιr, πr,n commutes by
definition of πr,n (cf. Notation 3).

3 Congruence Preservation on p-adic/profinite Integers

All along this section, p is a prime number; we study congruence preserving
functions on the rings Zp of p-adic integers and Ẑ of profinite integers. Zp is
the projective limit lim←− Z/pn

Z relative to the projections πpn,pm . Usually, Ẑ is
defined as the projective limit lim←− Z/nZ of the finite rings Z/nZ relative to
the projections πn,m, for m dividing n. We here use the following equivalent
definition which allows to get completely similar proofs for Zp and Ẑ.

Ẑ = lim←− Z/n!Z = {x̂ = (xn)∞
n=1 ∈ ∏∞

n=1 Z/n!Z | ∀m < n, xm ≡ xn (mod m!)}

Recall that Zp (resp. Ẑ) contains the ring Z and is a compact topological
ring for the topology given by the ultrametric d such that d(x, y) = 2−n where
n is largest such that pn (resp. n!) divides x − y, i.e. x and y have the same
first n digits in their base p (resp. base factorial) representation. We refer to the
Appendix for some basic definitions, representations and facts that we use about
the compact topological rings Zp and Ẑ.

We first prove that on Zp and Ẑ every congruence preserving function is con-
tinuous (Proposition 18).

3.1 Congruence Preserving Functions Are Continuous

Definition 17. 1. Let μ : N → N be increasing. A function Ψ : Zp → Zp

admits μ as modulus of uniform continuity if and only if d(x, y) ≤ 2−μ(n) implies
d(Ψ(x), Ψ(y)) ≤ 2−n.
2. Φ is 1-Lipschitz if it admits the identity as modulus of uniform continuity.

Since the rings Zp and Ẑ are compact, every continuous function admits a mod-
ulus of uniform continuity. For congruence preserving function, we get a tight
bound on the modulus.
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Proposition 18. Every congruence preserving function Ψ : Zp → Zp is 1-
Lipschitz (hence continuous). Idem with Ẑ in place of Zp.

Proof. If d(x, y) ≤ 2−n then pn divides x−y hence (by congruence preservation)
pn also divides Ψ(x) − Ψ(y) which yields d(Ψ(x), Ψ(y)) ≤ 2−n. �

The converse of Proposition 18 is false: a 1-Lipschitz function is not necessarily
congruence preserving as will be seen in Example 31.

Note the following quite expectable result.

Corollary 19. There are functions Zp → Zp (resp. Ẑ → Ẑ) which are not
continuous hence not congruence preserving.

Proof. As Zp has cardinality 2ℵ0 there are 22
ℵ0 functions Zp → Zp. Since N is

dense in Zp, Zp is a separable space, hence there are at most 2ℵ0 continuous
functions. �

3.2 Congruence Preserving Functions and Inverse Limits

In general an arbitrary continuous function on Zp is not the inverse limit of a
sequence of functions Z/pn

Z → Z/pn
Z’s. However, this is true for congruence

preserving functions. We first recall how any continuous function Ψ : Zp → Zp is
the inverse limit of an inverse system of continuous functions ψn : Z/pμ(n)

Z →
Z/pn

Z, n ∈ N, i.e. the diagram of Fig. 1 commutes for any m ≤ n. For legibility,
we use notations adapted to Zp.

Notation 20. We write π̂n for the canonical surjection Zp → Z/pn
Z mapping a

p-adic integer with representation (ak)k∈N to the integer
∑k=n−1

k=0 ak pk ∈ Z/pn
Z,

and ι̂n for the canonical injection Z/pn
Z → Zp (which maps

∑k=n−1
k=0 ak pk to

(a0, . . . , ak−1, 0, 0, . . .)).

Lemma 4 has an avatar in the profinite framework.

Lemma 21. π̂n ◦ ι̂n is the identity on Z/pn
Z. If m ≤ n then π̂m = πpn,pm ◦ π̂n.

Proposition 22. Consider Ψ : Zp → Zp and a strictly increasing μ : N → N.
Define ψn : Z/pμ(n)

Z → Z/pn
Z as ψn = π̂n ◦ Ψ ◦ ι̂μ(n) for all n ∈ N. Then the

following conditions are equivalent :

(1) Ψ is uniformly continuous and admits μ as a modulus of uniform continuity.
(2) The sequence (ψn)n∈N is an inverse system with Ψ as inverse limit (in other

words, for all 1 ≤ m ≤ n, the diagrams of Fig. 1 commute)
(3) For all n ≥ 1, the upper half (dealing with Ψ and ψn) of the diagram of

Fig. 1 commutes.

Idem with Ẑ in place of Zp.
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Fig. 1. The inverse system (ψn)n∈N and its inverse limit Ψ .

Proof. (1) ⇒ (2). We first show π̂n◦Ψ = ψn◦π̂μ(n). Let u ∈ Zp. Since π̂μ(n)◦ ι̂μ(n)
is the identity on Z/pμ(n)

Z, we have π̂μ(n)(u) = π̂μ(n)(ι̂μ(n)(π̂μ(n)(u))) hence
pμ(n) (considered as an element of Zp) divides the difference u − ι̂μ(n)(π̂μ(n)(u)),
i.e. the distance between these two elements is at most 2−μ(n). As μ is a modulus
of uniform continuity for Ψ , the distance between their images under Ψ is at most
2−n, i.e. pn divides their difference, hence π̂n(Ψ(u)) = π̂n(Ψ(ι̂μ(n)(π̂μ(n)(u)))).
By definition, ψn = π̂n ◦ Ψ ◦ ι̂μ(n). Thus, π̂n(Ψ(u)) = ψn(π̂μ(n)(u)), which proves
that Ψ lifts ψn.
We now show πpn,pm ◦ ψn = ψm ◦ πpμ(n),pμ(m) . Observe that, since n ≥ m and
μ is increasing, pm divides pn and pμ(m) divides pμ(n). We just proved above
equality π̂m ◦ Ψ = ψm ◦ π̂μ(m). Applying three times Lemma 21, we get

π̂m ◦ Ψ ◦ ι̂μ(n) = ψm ◦ π̂μ(m) ◦ ι̂μ(n)
(πpn,pm ◦ π̂n) ◦ Ψ ◦ ι̂μ(n) = ψm ◦ (πpμ(n),pμ(m) ◦ π̂μ(n)) ◦ ι̂μ(n)

πpn,pm ◦ ψn = ψm ◦ πpμ(n),pμ(m) as π̂μ(n) ◦ ι̂μ(n) is the identity.

The last equality means that ψn lifts ψm.
(2) ⇒ (3). Trivial
(3) ⇒ (1). The fact that Ψ lifts ψn shows that two elements of Zp with the same
first μ(n) digits (in the p-adic representation) have images with the same first n
digits. This proves that μ is a modulus of uniform continuity for Ψ . �
For congruence preserving functions Φ : Zp → Zp, the representation of Propo-
sition 22 as an inverse limit gets smoother since then μ(n) = n.

Theorem 23. For a function Φ : Zp → Zp, letting ϕn : Z/pn
Z → Z/pn

Z be
defined as ϕn = π̂n ◦ Φ ◦ ι̂n, the following conditions are equivalent.

(1) Φ is congruence preserving.
(2) All ϕn’s are congruence preserving function and the sequence (ϕn)n≥1 is an

inverse system with Φ as inverse limit (in other words, for all 1 ≤ m ≤ n,
the diagrams of Fig. 2 commute).

A similar equivalence also holds for functions Φ : Ẑ → Ẑ.
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Proof. (1) ⇒ (2). Proposition 18 insures that Φ is 1-Lipschitz. The implication
(1) ⇒ (2) in Proposition 22, applied with the identity as μ, insures that the
sequence (ϕn)n≥1 is an inverse system with Φ as inverse limit. It remains to
show that ϕn is congruence preserving. Since Φ is congruence preserving, if
x, y ∈ Z/pn

Z then ι̂n(x)− ι̂n(y) divides Φ(ι̂n(x))−Φ(ι̂n(y)). Now, the canonical
projection π̂n is a morphism hence π̂n(ι̂n(x))− π̂n(ι̂n(y)) divides π̂n(Φ(ι̂n(x)))−
π̂n(Φ(ι̂n(y))). As π̂n ◦ ι̂n is the identity on Z/pn

Z, x − y divides π̂n(Φ(ι̂n(x))) −
π̂n(Φ(ι̂n(y))) = ϕn(x) − ϕn(y) as wanted.
(2) ⇒ (1). Let x, y ∈ Zp. Since ϕn is congruence preserving π̂n(x)−π̂n(y) divides
ϕn(π̂n(x)) − ϕn(π̂n(y)). Let

Ux,y
n = {u ∈ Z/pn

Z | ϕn(π̂n(x)) − ϕn(π̂n(y)) = (π̂n(x) − π̂n(y))u} .

If m ≤ n and u ∈ Ux,y
n then, applying πpn,pm to the equality defining Ux,y

n , using
the commutative diagrams of Fig. 2 and letting v = πpn,pm(u), we get

ϕn(π̂n(x)) − ϕn(π̂n(y)) =
(
π̂n(x) − π̂n(y)

)
u

πpn,pm(ϕn(π̂n(x)) − πpn,pm(ϕn(π̂n(y)) =
(
πpn,pm(π̂n(x)) − πpn,pm(π̂n(y)

)
v

ϕm(πpn,pm(π̂n(x))) − ϕm(πpn,pm(π̂n(y))) =
(
π̂m(x) − π̂m(y)

)
v

ϕm(π̂m(x)) − ϕm(π̂m(y)) =
(
π̂m(x) − π̂m(y)

)
v

Thus, if u ∈ Ux,y
n then v = πpn,pm(u) ∈ Ux,y

m .
Consider the tree T of finite sequences (u0, . . . , un) such that ui ∈ Ux,y

i and
ui = πpn,pi(un) for all i = 0, . . . , n. Since each Ux,y

n is nonempty, the tree T
is infinite. Since it is at most p-branching, using König’s Lemma, we can pick
an infinite branch (un)n∈N in T . This branch defines an element z ∈ Zp. The
commutative diagrams of Fig. 2 show that the sequences (π̂n(x) − π̂n(y))n∈N

and ϕn(π̂n(x)) − ϕn(π̂n(y)) represent x − y and Φ(x) − Φ(y) in Zp. Equality
ϕm(π̂m(x))−ϕm(π̂m(y)) = (π̂m(x)− π̂m(y)) πpn,pm(u) shows that (going to the
projective limits) Φ(x) − Φ(y) = (x − y) z. This proves that Φ is congruence
preserving. �

Fig. 2. Φ as the inverse limit of the ϕn’s, n ∈ N.
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3.3 Extension of Congruence Preserving Functions N → N

Congruence preserving functions Zp → Zp (resp. Ẑ → Ẑ) are determined by
their restrictions to N since N is dense in Zp (resp. Ẑ). Let us state a (partial)
converse result.

Theorem 24. Every congruence preserving function F : N → Z has a unique
extension to a congruence preserving function Φ : Zp → Zp (resp. Ẑ → Ẑ).

Proof. Let us denote by Ñ and Z̃ the canonical copies of N and Z in Zp and by F̃ :
Ñ → Z̃ the copy of F as a partial function on Zp. As F is congruence preserving so
is F̃ , which is thus also uniformly continuous (as a partial function on Zp). Since
Ñ is dense in Zp, F̃ has a unique uniformly continuous extension Φ : Zp → Zp.
To show that this extension Φ is congruence preserving, observe that Φ, being
uniformly continuous, is the inverse limit of the ϕn = π̂n ◦ Φ ◦ ι̂n. Now, since ι̂n
has range exactly Ñ we see that ϕn = π̂n ◦ F̃ ◦ ι̂n; as F̃ is congruence preserving
so is ϕn. Finally, Theorem 23 insures that Φ is also congruence preserving. �
Polynomials in Zp[X] obviously define congruence preserving functions Zp → Zp.
But non polynomial functions can also be congruence preserving.

Consequence 25. The extensions to Zp and Ẑ of the N → Z functions [2,3]

x �→ �e1/a ax x!� (for a ∈ Z \ {0, 1}) , x �→ if x = 0 then 1 else �e x!�

and the Bessel like function f(n) =
√

e

π
× Γ (1/2)

2 × 4n × n!

∫ ∞

1

e−t/2(t2 − 1)ndt are

congruence preserving.

3.4 Representation of Congruence Preserving Functions Zp → Zp

We now characterize congruence preserving functions via their representation as
infinite linear sums of the Pk’s (suitably extended to Zp). This representation is
a refinement of Mahler’s characterization of continuous functions (Theorem 28).
First recall the notion of valuation.

Definition 26. The p-valuation (resp. the factorial valuation) Val(x) of x ∈ Zp,
or x ∈ Z/pn

Z (resp. x ∈ Ẑ) is the largest s such that ps (resp. s!) divides x or is
+∞ in case x = 0. It is also the length of the initial block of zeros in the p-adic
(resp. factorial) representation of x.

Note that for any polynomial Pk (or more generally any polynomial), the below
diagram commutes for any m ≤ n (recall that P pn,pn

k = πpn ◦ Pk ◦ ιpn , cf.
Definition 12):

Z/pn
Z

P pn,pn

k−−−−−→ Z/pn
Z

πpn,pm

⏐
⏐
�

⏐
⏐
�πpn,pm

Z/pm
Z

P pm,pm

k−−−−−−→ Z/pm
Z

i.e. πpn,pm ◦ P pn,pn

k = P pm,pm

k ◦ πpn,pm .
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This allows to define the interpretation P̂k of Pk in Zp (resp. Ẑ) as an inverse
limit.

Definition 27. P̂k: Zp → Zp is the inverse limit of the inverse system (P pn,pn

k )n≥1.
Otherwise stated, for x ∈ Zp such that x = lim←−n∈N

xn, we have

P̂k(x) = lim←−n∈N
P pn,pn

k (xn) = lim←−n∈N
πpn(Pk(ιpn(xn)))

Thus, the following diagram commutes for all n :

Zp
P̂k−−−−→ Zp

π̂n

⏐
⏐
�

⏐
⏐
�π̂n

Z/pn
Z

P pn,pn

k−−−−−→ Z/pn
Z

ιpn

⏐
⏐
�

⏐
⏐
�ιpn

N
Pk−−−−→ N

Recall Mahler’s characterization of continuous functions on Zp (resp. Ẑ).

Theorem 28 (Mahler, 1956 [9]). 1. A series
∑

k∈N
akP̂k(x), ak ∈ Zp, is

convergent in Zp if and only if limk→∞ ak = 0, i.e. the corresponding sequence
of valuations (Val(ak))k∈N tends to +∞.
2. A function Zp → Zp is represented by a convergent series if and only if it is
continuous. Moreover, such a representation is unique.
Idem with Ẑ.

Theorem 29 refines Mahler’s characterization to congruence preserving functions.

Theorem 29. A function Φ : Zp → Zp represented by a series Φ =
∑

k∈N
akP̂k

is congruence preserving if and only if lcm(k) divides ak for all k.

Note. The condition“lcm(k) divides ak for all k” is stronger than limk→∞ ak = 0.

Proof. Suppose Φ is congruence preserving and let ϕn = π̂n ◦Φ◦ ι̂n. Theorem 23
insures that Φ = lim←−n∈N

ϕn and the ϕn’s are congruence preserving on Z/pn
Z.

Using Corollary 14, we get ϕn =
∑ν(n)−1

k=0 bn
k P pn,pn

k with lcm(k) dividing bn
k for

all k ≤ ν(n)−1. By Proposition 18, Φ is uniformly continuous hence by Mahler’s
Theorem 28, Φ =

∑
k∈N

akP̂k with ak ∈ Zp such that limk→∞ ak = 0. Equation
ϕn = π̂n ◦ Φ ◦ ι̂n then yields

ϕn = π̂n ◦ (
∑

k∈N

akP̂k) ◦ ι̂n =
∑

k∈N

π̂n(ak) π̂n ◦ P̂k ◦ ι̂n =
∑

k∈N

π̂n(ak)P pn,pn

k .

The unicity of the representation of ϕn (cf. Corollary 14) insures that bn
k =

π̂n(ak). Similarly, bm
k = π̂m(ak); as for m ≤ n, π̂m = πpn,pm ◦ π̂n (Lemma 21),
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we obtain bm
k = πpn,pm(bn

k ). Thus, (bn
k )n∈N is an inverse system such that ak =

lim←−n∈N
bn
k . Since ϕn is congruence preserving Corollary 14 insures that lcm(k)

divides bn
k ; applying Lemma 30, we see that for all n, νp(k) ≤ Val(bn

k ). Noting
that Val(ak) = Val(bn

k ), we deduce that νp(k) ≤ Val(ak), hence pνp(k) and thus
also lcm(k) divide ak. In particular, this implies that d(ak, 0) ≤ 2−νp(k) and
limk→∞ ak = 0.

Conversely, if Φ =
∑

k∈N
akP̂k and lcm(k) divides ak for all k then lcm(k)

divides π̂n(ak) for all n, k. Thus, the associated ϕn are congruence preserving
which implies that so is Φ by Theorem 23. �
Lemma 30. Let νp(k) be the largest i such that pi ≤ k < pi+1. In Z/pn

Z,
lcm(k) divides a number x iff νp(k) ≤ Val(x).

Proof. In Z/pn
Z all numbers are invertible except multiples of p. Hence lcm(k)

divides x iff pνp(k) divides x. �
Example 31. Let Φ =

∑
k∈N

ak Pk with ak = pνp(k)−1, with νp(k) as in Lemma
30. Φ is uniformly continuous by Theorem 28. By Lemma 30, lcm(k) does not
divide ak; hence by Theorem 29, Φ is not congruence preserving.

4 Conclusion

We here studied functions having congruence preserving properties. These func-
tions appeared as uniformly continuous functions in a variety of finite groups
(see [10]).

The contribution of the present paper is to characterize congruence preserving
functions on various sets derived from Z such as Z/nZ, (resp. Zp, Ẑ) via polyno-
mials (resp. series) with rational coefficients which share the following common
property: lcm(k) divides the k-th coefficient. Examples of non polynomial (Bessel
like) congruence preserving functions can be found in [3].

Acknowledgments. We thank the anonymous referee for careful reading and valuable
comments.

Appendix

Appendix 1: Basics on p-adic and profinite Integers

Recall some classical equivalent approaches to the topological rings of p-adic
integers and profinite integers, cf. Lenstra [7,8], Lang [6] and Robert [11].

Proposition 32. Let p be prime. The three following approaches lead to iso-
morphic structures, called the topological ring Zp of p-adic integers.

– The ring Zp is the inverse limit of the following inverse system:
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• the family of rings Z/pn
Z for n ∈ N, endowed with the discrete topology,

• the family of surjective morphisms πpn,pm : Z/pn
Z → Z/pm

Z for 0 ≤ n ≥
m.

– The ring Zp is the set of infinite sequences {0, . . . , p − 1}N endowed with the
Cantor topology and addition and multiplication which extend the usual way
to perform addition and multiplication on base p representations of natural
integers.

– The ring Zp is the Cauchy completion of the metric topological ring (N,+,×)
relative to the following ultrametric: d(x, x) = 0 and for x �= y, d(x, y) = 2−n

where n is the p-valuation of |x − y|, i.e. the maximum k such that pk divides
x − y.

Recall the factorial representation of integers.

Lemma 33. Every positive integer n has a unique representation as

n = ckk! + ck−1(k − 1)! + ... + c22! + c11!

where ck �= 0 and 0 ≤ ci ≤ i for all i = 1, ..., k.

Proposition 34. The four following approaches lead to isomorphic structures,
called the topological ring Ẑ of profinite integers.

– The ring Ẑ is the inverse limit of the following inverse system:
• the family of rings Z/kZ for k ≥ 1, endowed with the discrete topology,
• the family of surjective morphisms πn,m : Z/nZ → Z/mZ for m | n.

– The ring Ẑ is the inverse limit of the following inverse system:
• the family of rings Z/k!Z for k ≥ 1, endowed with the discrete topology,
• the family of surjective morphisms π(n+1)!,n! : Z/n!Z → Z/m!Z for n ≥ m.

– The ring Ẑ is the set of infinite sequences
∏

n≥1{0, . . . , n} endowed with the
product topology and addition and multiplication which extend the obvious way
to perform addition and multiplication on factorial representations of natural
integers.

– The ring Ẑ is the Cauchy completion of the metric topological ring (N,+,×)
relative to the following ultrametric: for x �= y ∈ N, d(x, x) = 0 and d(x, y) =
2−n where n is the maximum k such that k! divides x − y.

– The ring Ẑ is the product ring
∏

p prime Zp endowed with the product topology.

Proposition 35. The topological rings Zp and Ẑ are compact and zero dimen-
sional (i.e. they have a basis of closed open sets).

Appendix 2: N and Z in Zp and Ẑ

Proposition 36. Let λ : N → Zp (resp. λ : N → Ẑ) be the function which maps
n ∈ N to the element of Zp (resp. Ẑ) with base p (resp. factorial) representation
obtained by suffixing an infinite tail of zeros to the base p (resp. factorial) rep-
resentation of n.
The function λ is an embedding of the semiring N onto a topologically dense
semiring in the ring Zp (resp. Ẑ).
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Remark 37. In the base p representation, the opposite of an element f ∈ Zp is
the element −f such that, for all m ∈ N,

(−f)(i) =

⎧
⎨

⎩

0 if ∀s ≤ i f(s) = 0 ,
p − f(i) if i is least such that f(i) �= 0 ,
p − 1 − f(i) if ∃s < i f(s) �= 0 .

In particular,
– Integers in N correspond in Zp to infinite base p representations with a tail
of 0’s.
– Integers in Z\N correspond in Zp to infinite base p representations with a tail
of digits p − 1.
Similar results hold for the infinite factorial representation of profinite integers.
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for First Order Logics Augmented with

Lindström Quantifiers

Simi Haber1(B) and Saharon Shelah2,3

1 Bar-Ilan University, 5290002 Ramat-Gan, Israel
habber@gmail.com

2 The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
3 Rutgers, Piscataway, NJ 08854-8019, USA

Dedicated to Yuri Gurevich on the occasion of his 75th birthday.

Abstract. We propose an extension of the Ehrenfeucht-Fräıssé game
able to deal with logics augmented with Lindström quantifiers. We
describe three different games with varying balance between simplicity
and ease of use.

1 Introduction

The Ehrenfeucht-Fräıssé game [7–10] is an important tool in contemporary model
theory, allowing to determine whether two structures are elementarily equivalent
up to some quantifier depth. It is one of the few model theoretic machineries that
survive the transition from general model theory to the finite realm.

There are quite a few known extensions of the Ehrenfeucht-Fräıssé game and
in the following we mention a few (this is far from bring a comprehensive list). In
[12] Immerman describes how to adapt the Ehrenfeucht-Fräıssé game in order to
deal with finite variable logic, first dealt with in Poizat’s article [20]. Infinitary
logic has a precise characterization by a similar game [2,11]. An extension for
fixpoint logic and stratified fixpoint logic was provided by Bosse [3].

Lindström quantifiers were first introduced and studied by Lindström in the
sixties [16–19] and may be seen as precursors to his theorem. There are several
extensions and modifications of the Ehrenfeucht-Fräıssé game for logics aug-
mented with Lindström quantifiers. We give a partial description of the his-
tory of the subject. Perhaps the first treatment of this subject was provided by
Krawczyk and Krynicki, [15], who introduced a game capturing Lωω(Q) equiva-
lence for monotone simple unary quantifier Q. A back-and-forth technique was
given by Caicedo in [5], who considered also fragments of bounded quantifier
degree. Weese, in [21], gave a sufficient condition for equivalence relative to first-
order logic with Lindström quantifiers in the form of a game. This condition is
also necessary in the case of monotone quantifiers.
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Games dealing with the special case of counting quantifiers were also inves-
tigated [4,13].

Probably the most relevant for our work is the work of Kolaitis and
Väänänen, [14]. In their paper the authors describe four similar games, all for
unary Lindström quantifiers. Of the four variants, one game is similar, but not
identical, to the first game we propose here – the definable (k,Q)-Pebble game.
This game captures Lk

∞ω(Q)-equivalence, and also Lk
ωω(Q)-equivalence for finite

models. However, as the authors mention, describing a winning strategy for this
game may be difficult in practice since this requires an analysis of definability
on the structures forming the game-board. Hence the authors go on to describe
two more games: the invariant (k,Q)-Pebble game and the monotone (k,Q)-
Pebble game. While all games are equivalent for monotone quantifiers, this is
not the case in general. This leaves the task of finding a game avoiding defin-
ability requirements but capturing extensions by general Lindström quantifiers
as an open problem.

The main aim of this paper is to present several related extensions of the
Ehrenfeucht-Fräıssé game adapted to logics augmented with Lindström quanti-
fiers. Our main contribution is a description of an Ehrenfeucht-Fräıssé like game
capturing general Lindström quantifiers without forcing the players to chose
definable structures by the game rules.

2 The Game

Notation 1. 1. Let τ denote a vocabulary. We assume τ has no function sym-
bols, but that is purely for the sake of clearer presentation. τ may have
constant symbols.

2. First order logic will be denoted by LFO. In the course of this paper we will
consider extensions of first order logic; therefore the logic under discussion
will change according to our needs. Of course, we always assume closure
under substitution. We shall denote the logic currently under discussion by
L, and we will explicitly redefine L whenever needed.

3. Given a vocabulary τ , we use L(τ) to denote the language with logic L and
vocabulary τ . We will use this notation only when clarity demands, so in fact
we may abuse notation and use L also for the unspecified language under
discussion.

4. For even further transparency, all the examples in this work (in particular, all
cases of pairs of models to be proved equivalent) will be dealing with simple1

graphs. Hence (only in examples) we further assume that τ is the vocabulary
of graphs denoted henceforth by τGra. Explicitly, τGra = {∼} where ∼ is a
binary, anti-reflexive and symmetric relation. For the Lindström quantifiers
given in examples, we may use vocabularies other than τGra.

A few basic graph theoretic notions will be used in the examples and are
defined here (with the standard notation): In the context of graphs we will

1 An undirected graph with no loops and no double edges is called a simple graph.
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refer to the relation ∼ as adjacency. Given a graph G = (V,E) we will denote
the neighborhood of a vertex x in G by NG(x), defined as the set NG(x) =
{y ∈ V | x ∼ y}. The degree of x will be denoted by dG(x) = |NG(x)|. We
may omit the subscript G when it is clear which is the graph under discussion.
We shall denote the graph induced on U by G[U ] = (U, {e ∈ E | e ⊂ U})
where U ⊆ V is a set of vertices. Finally, we will denote the complement
graph of G by G = (V,

(
V
2

) \ E), where
(
V
2

)
is the set of all subsets of V of

size two.
5. Let A1,A2, . . . ,An be classes of models, each closed under isomorphism.

The models in Ai are all τi-structures in some relational vocabulary τi ={
P

ai,1
i,1 , . . . , P

ai,ti
i,ti

}
, where Pi,j is the jth relation in τi and ai,j is the arity

of Pi,j . We assume A0 represents the existential quantifier and is always
defined.

6. For simplicity, we will assume that each τi has an additional relation, P 1
i,0.

This will serve for the formula defining the universe of the model. Formally,
our models may have any set as their domain (perhaps some set used as the
entire universe for the discussion), and the first relation will define a subset
serving as the domain de facto. See also Remark 6 where we mention other
flavors of Lindström quantifiers.

7. We set ai,0 = 1 for every i.
8. For each i, the class Ai corresponds to a Lindström quantifier Qi, binding

ai =
∑ti

j=0 ai,j variables.

Remark 2. The games and the claims associating them with logics remain valid
even with the absence of the existential quantifier. Still, it seems that the main
interesting case is when first order logic is properly extended, and so we focus on
this case.

Example 3. 1. A1 may be the class of commutative groups, in which case τ1
consists of a constant symbol encoding zero2 and a ternary relation encoding
the group operation.

2. Another example may be finite Hamiltonian graphs, in which case the vocab-
ulary is the vocabulary of graphs and the class A1 will be the class of all
finite Hamiltonian graphs.

Notation 4. Given a vector x̄, we denote the number of elements in the vector
by len(x̄).

Definition 5. We define the quantifier Qi corresponding to the class Ai as
follows: Let G be a τ -structure with domain V . For any sequence of formu-
lae ϕ0(x0, ȳ), ϕ1(x̄1, ȳ), . . . , ϕti(x̄ti , ȳ) such that len(x̄j) = ai,j and denoting the
elements of x̄j are by subscript l (i.e., xj,l), we determine the satisfaction
of the sentence Qi x0, x̄1, . . . , x̄ti(ϕ0(x0, b̄), ϕ1(x̄1, b̄), . . . , ϕti(x̄ti , b̄)) according to
the satisfaction of

2 Of course, one may encode zero using the relation.
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G |= Qi x0, x̄1, . . . , x̄ti(ϕ0(x0, b̄), ϕ1(x̄1, b̄), . . . , ϕti(x̄ti , b̄)) ⇐⇒
({x0 ∈ V | G |= ϕ0(x0, b̄)},

{x̄1 ∈ V ai,1 | ∧ai,1
l=1 G |= ϕ0(x1,l, b̄) ∧ G |= ϕ1(x̄1, b̄)}, . . . ,

{x̄ti ∈ V ai,ti | ∧ai,ti

l=1 G |= ϕ0(xti,l, b̄) ∧ G |= ϕti(x̄ti , b̄)}) ∈ Ai,

where b̄ are parameters.

Remark 6. Definition 5 requires ϕ0 to have exactly one free variable, x0 (exclud-
ing ȳ, saved for parameters). However there is no real reason to avoid sets of
vectors of any fixed length from serving as the domain of the model defined in
the quantifier. We will not discuss this here, but the generalization of the pro-
posed games to this case are straightforward. Sometime Lindström quantifiers
are defined over equivalence classes of such vectors. See, e.g., [6]. Again, we will
not discuss this generalization here.

Definition 7. Let ϕ be a formula in L. The quantifier depth of ϕ, denoted
QD(ϕ), is defined as follows:

1. If ϕ is an atomic formula, in our examples this means ϕ is of the form x = y
or x ∼ y, then we define QD(ϕ) = 0.

2. If ϕ = ¬ψ then QD(ϕ) = QD(ψ).
3. If ϕ = ψ1 ∨ ψ2 or ϕ = ψ1 ∧ ψ2, then ϕ = max(QD(ψ1),QD(ψ2)).
4. If 3

ϕ = Qi x0, x̄1, . . . , x̄ti(ψ0(x0, b̄), ψ1(x̄1, b̄), . . . , ψti(x̄ti , b̄)),

then

ϕ = 1 + max(QD(ψ1),QD(ψ2), . . . ,QD(ψti)).

Definition 8. An important role in the following is played by the notion of
k-equivalency:

1. Let τ be a vocabulary and L = L(τ) be a language. Given two τ -structures
G1, G2 (not necessarily with distinct universe sets) and two sequences of ele-
ments x̄1 ∈ G1, x̄2 ∈ G2 of equal length a, we say that (G1, x̄1) and (G2, x̄2)
are k-equivalent with respect to L if for any formula ϕ(x̄) ∈ L of quantifier
depth at most k one has

G1 |= ϕ(x̄1) ⇐⇒ G2 |= ϕ(x̄2).

2. When considering only one model, that is, when we take G = G1 = G2, we
refer to the equivalence classes of this relation in the domain of G simply by
the (a, k,G) -equivalence classes where a is the length of tuples in the equiva-
lence class. As usual, when the parameters are clear enough from the context
we shall simple use “equivalence classes” for (a, k,G)-equivalence classes.

3 Notice that by our definition in 1. item (5) above, Q0 is always the existential
quantifier, and so our definition coincides with the standard definition when relevant.
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Remark 9. Notice that unions of (a, k,G)-equivalence classes are exactly the
definable sets of a-tuples of elements in dm(G) using L-formulas of quantifier
depth at most k.

Example 10. Let L be the first order language of graphs, L = LFO(τGra), and
let G = (V,E) be a graph. If G is simple then the (1, 0, G)-equivalence classes
are V and ∅. If |V | > 1 then the (1, 1, G)-equivalence classes are4 the set of
isolated vertices in G, the set of vertices adjacent to all other vertices and the
set of vertices having at least one neighbor and one non-neighbor (some of which
may be empty of course).

Notation 11. We denote the logic obtained by augmenting the first order logic
with the quantifiers Q1, Q2, . . . , Qn by L = L[Q1, Q2, . . . , Qn].

Example 12. Consider the language L = L[QHam](τGra), where QHam stands
for the “Hamiltonicity quantifier” (corresponding to the class of graphs con-
taining a Hamiltonian cycle — a cycle visiting each vertex precisely once).
Let G be a graph. Then the set of all vertices x for which all of the graphs
G[NG(x)], G[NG(x)], G[NG(x)], G[NG(x)] are Hamiltonian is an example of a
(1, 1, G)-equivalence class with respect to L[QHam]. The set of vertices with
degree exactly two is a union of (1, 1, G)-equivalence classes, as can be seen by5

ϕ(x) = QHamx0, x1, x2(x0 ∼ x, x1 �= x2).

2.1 Description of the First Game

Before describing the game, we need the following definition:

Definition 13. Let τ be a vocabulary, L = L(τ) a language over that vocabulary
(not necessarily first order) and G a structure of vocabulary τ . Additionally, let
M = (S′, R′

1, . . . , R
′
t) be a structure of another vocabulary τ ′. A copy of M in G

is a tuple (S,R1, . . . , Rt) such that

1. S is a subset of dm(G) with the same cardinality as dm(M) = S′ (where
dm(G) is the universe or underlying set of G).

2. R1, . . . , Rt are relations over S, such that each Rj has the same arity as R′
j.

3. (S,R1, . . . , Rt) is isomorphic to (S′, R′
1, . . . , R

′
t).

For our first (and simplest) game we will need a more restrictive notion,
defined below:

Definition 14. In the setting of Definition 13, if in addition to requirements
(1) – (3) of Definition 13 the following holds

4. S is a union of (1, k,G)-equivalence classes, and each relation Rj of arity aj

is a union of (aj , k,G)-equivalence classes,

4 The atomic sentences appearing in ϕ(x) are x = y and x ∼ y.
5 ϕ expresses: “the complete graph Kd(x) is Hamiltonian” which is true when d(x) > 2

and false when d(x) = 2 (we may treat K0 and K1 separately, if needed).
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we say that a copy of M in G is k-induced by L. When k or L can be clearly
determined by the context, we may omit mentioning it.

We are now ready to define the first game.

Definition 15. Consider Lindström quantifiers Q1, Q2, . . . , Qn and define L =
L[Q1, Q2, . . . , Qn](τ) to be a language over some relational vocabulary τ defined
as in definition 5 above. Let G1 and G2 be two τ -structures with domains V1 and
V2 respectively. Let k ≥ 0 an integer and c̄� = (c1� , . . . , c

r
�) ∈ V r

� for � ∈ {1, 2}
two finite sequences. We define the game6 EFL1[G1, G2, c̄1, c̄2 ; k]. There are
two players, named by the (by now) traditional names Duplicator and Spoiler,
as suggested by Spencer. The game board is the models G1 and G2 plus the
sequences c̄� and there are k rounds. Each round is divided into two parts, and
each part consists of two sub-rounds. The game is defined recursively. If k = 0,
then if the mapping ci

1 → ci
2 is a partial isomorphism, then Duplicator wins,

otherwise Spoiler wins.
When k > 0 then first Spoiler plays. He picks one of the models G1

or G2 (denoted henceforth by G�) and a quantifier Qi (or the existential
quantifier7). Next Spoiler picks a model M ∈ Ai, and embeds it into G� in
a manner that preserves (k − 1, G�)-equivalence classes. That is, Spoiler picks
a tuple (S�, R�,1, . . . , R�,ti) that is a copy of M in G which is (k − 1)-induced
by L enriched with r constants having values c̄�. If Spoiler can not find such an
embedding, he loses8. Implicitly Spoiler claims that Duplicator can not find a
matching induced copy of a model from Ai.

Second, Duplicator responds by choosing a model M ′ from Ai (M ′ may not
necessarily be the same as M), and then picking an induced copy of M ′ in G3−�

which we naturally denote by (S3−�, R3−�,1, . . . , R3−�,ti). She is implicitly claim-
ing that her choices match the picks of Spoiler, that is, each R3−�,j (or S3−�,j)
is a union of (ai,j , k − 1, G3−�)-equivalence classes defined by the same formulas
as the formulas defining the (ai,j , k − 1, G�)-equivalence classes of which R�,j is
made. If Duplicator can not complete this part she loses. This ends the first part
of the round.

In the second part of the round Spoiler chooses m ∈ {1, 2} and 0 ≤ j ≤ ti.
He then picks (cr+1

m , . . . , c
r+ai,j
m ) ∈ Rm,j (implicitly challenging Duplicator to do

the same). Finally Duplicator picks (cr+1
3−m, . . . , c

r+ai,j

3−m ) ∈ R3−m,j and they move
on to play

EFL1[G1, G2, (c11, . . . , c
r
1, c

r+1
1 , . . . , c

r+ai,j ,
1 ),

(c12, . . . , c
r
2, c

r+1
2 , . . . , c

r+ai,j ,
2 ); k − 1].

This ends the second part and the round. Since k goes down every round, the
game ends when k = 0, as described above.
6 We will describe a few variants, hence the subscript.
7 In this case, A∃ = P (V ) \ {∅}, so Spoiler may choose any non-empty subset S�

of V�.
8 We will consider only logics stronger than first-order, hence the existential quantifier

is always assumed to be at Spoiler’ disposal and he will never lose in this manner.
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Given the description above, the following should be self-evident:

Lemma 16. Let L = L[Q1, Q2, . . . ](τ) be a language over some vocabulary τ
where Q1, Q2, . . . are Lindström quantifiers, and let G1, G2 be two structures with
vocabulary τ . Then, Duplicator has a winning strategy for EFL1[G1, G2, ∅, ∅ ; k]
if and only if for any sentence ϕ ∈ L of quantifier depth at most k

G1 |= ϕ ⇐⇒ G2 |= ϕ.

2.2 A Game Where Definability is Not Forced

While the claim of Lemma 16 may seem satisfying, in practice it may be hard to
put this lemma into use since it takes finding unions of (a, k − 1, G)-equivalence
classes for granted, being a rule of the game. This might hinder strategy devel-
opment and we would like to describe another game with looser rules, denoted
EFL2.

In this version the players are not bound to choosing unions of (a, k − 1, G)-
equivalence classes when picking a copy of the chosen model (hence we call their
action “picking a copy of M in G�”, omitting the “induced” part). That is, we
omit requirement 4 in Definition 13. It falls to the other player to challenge the
claim that indeed every relation is a union of the relevant equivalence classes.

Definition 17. Our definition of the game EFL2[G1, G2, c̄1, c̄2 ; k] is based on
the definition of EFL1[G1, G2, c̄1, c̄2 ; k]. The setting is the same, but now a round
goes as follows:

Spoiler picks a structure G� ∈ {G1, G2} and a quantifier Qi (or, as before, the
existential quantifier). Next Spoiler picks a model M ∈ Ai and picks a copy of
M in G�. His implicit claim now includes the claim that each of the relations he
chose is a union of (ai,j , k−1, G�)-equivalence classes with respect to L enriched
with r constants having values c̄�.

Duplicator can respond in two different ways — she can “accept the chal-
lenge” (as she did in EFL1), or attack the second part of the claim of Spoiler.
That is, she can do one of the following:

1. Duplicator accepts the challenge. In this case she chooses M ′ ∈ Ai and picks
a copy of M ′ in G3−�. Implicitly she is claiming that her choices match the
choices of Spoiler. That is, the set of vertices S3−� and each of the relations
defined on it are a union of the (ai,j , k − 1, G3−�)-equivalence classes cor-
responding9 to the ones that Spoiler picked. This ends the first part of the
round.

Spoiler may continue in a two different ways.

9 We say that E1, an (a, k, G1)-equivalence class of a-tuples in G1 corresponds to
E2 — a set of a-tuples in G2 if for any x̄1 ∈ E1 and x̄2 ∈ E2 one has

G1 |= ϕ(x̄1) ⇔ G2 |= ϕ(x̄2)

for any ϕ ∈ L of quantifier depth at most k.
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(a) Spoiler rejects the fact that the set S3−� or one of the relations picked by
Duplicator is a union of equivalence classes. In order to settle this, we
recursively use EFL2:

This part of the round begins with Spoiler picking j ∈ {0, . . . , t}, pre-
sumably according to the relation that is not a union of equivalence classes.
Again, we let a = ai,j be the arity of the allegedly invalid relation R3−�,j.
Next, Spoiler picks two a-tuples of elements from the same structure,

(cr+1, . . . , cr+a) ∈ R3−�,j and (c′r+1, . . . , c′r+a) ∈ V a
3−� \ R3−�,j ,

and they move on to play

EFL2[G3−�, G3−�, (c13−�, . . . , c
r
3−�, c

r+1, . . . , cr+a),
(c13−�, . . . , c

r
3−�, c

′r+1, . . . , c′r+a); k − 1].

with exchanged roles (since this time Spoiler claims the two tuples are
actually (a, k − 1, G3−�)-equivalent).

(b) Spoiler rejects the fact that Duplicator’s choice matches his choice (as
he did in EFL1). In this case Spoiler picks a relation Pj ∈ τi and an ai,j-
tuple of elements from S� (or one element if he challenges Duplicator’s
choice of S3−�). Denote the choices of Spoiler by (cr+1

� , . . . , c
r+ai,j

� ) ∈
S�. Duplicator responds by picking another a-tuple (cr+1

3−� , . . . , c
r+ai,j ,
3−� ) ∈

S3−�, and they move on to play

EFL2[G1, G2, (c11, . . . , c
r
1, c

r+1
1 , . . . , c

r+ai,j ,
1 ),

(c12, . . . , c
r
2, c

r+1
2 , . . . , c

r+ai,j ,
2 ); k − 1].

2. Duplicator rejects Spoiler’s claim. In this case Duplicator wants to prove
that S� or one of the relations picked by Spoiler is not a union of equivalence
classes. We continue similarly to case 1.(b):

As before, we begin this move with Duplicator picking j ∈ {0, . . . , t}, pre-
sumably according to the relation that is not a union of equivalence classes.
Again, we let a = ai,j be the arity of the allegedly invalid relation R�,j splitting
an equivalence class. Next, Duplicator picks two a-tuples of elements from the
same structure,

(cr+1, . . . , cr+a) ∈ R�,j and (c′r+1, . . . , c′r+a) ∈ V a
� \ R3−�,j ,

and they move to play

EFL2[G�, G�, (c1� , . . . , c
r
� , c

r+1, . . . , cr+a),
(c1� , . . . , c

r
� , c

′r+1, . . . , c′r+a); k − 1].

this time keeping their original roles.

For any two models G1 and G2, constants c̄1, c̄2 of elements from the domains
of G1 and G2 respectively, and k ∈ N, whoever has a winning strategy for
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EFL1[G1, G2, c̄1, c̄2; k] has a winning strategy for EFL2[G1, G2, c̄1, c̄2; k]. Hence
the parallel of Lemma 16 is true for EFL2 as well.

While we got the benefit of in-game validation of the equivalence classes
integrity claims, EFL2 is not easy to analyze in applications because the game-
board and players’ role change over time. We amend this in the last suggested
version of the game.

2.3 A Game with Fixed Game-Board and Fixed Roles

The last version, denoted EFL3, forks from EFL2 in two places.

Definition 18. We define EFL3 like EFL2 except that:

1. First, assume the game reaches step 2., where Duplicator wants to prove that
Spoiler has chose a relation R�,j splitting an equivalence class. In this case the
first part of the round ends immediately and the second part goes as follows:

Duplicator picks j ∈ {0, . . . , t}, as before. Next, Duplicator chooses two
ai,j-tuples, c̄�,1 from R�,j and c̄�,2 from the complement of R�,j. She then picks
another ai,j-tuple from the universe set of G3−�, denoted c̄3−�. Spoiler than
picks one of c̄�,1 or c̄�,2 and they move on to play EFL3 with c̄3−� concatenated
to the constants of G3−� and Spoiler’s choice concatenated to the constants
of G�, and k − 1 moves. They keep their roles and the game-board remains
G1 and G2.

If Duplicator cannot find a matching tuple in G3−�, she cannot disprove
the integrity claim of Spoiler, but it does not matter as G1 and G2 are not
k-equivalent and she is bound to lose anyway.

Notice that in this case the first part of the round had only Spoiler playing,
and in the second part Duplicator played first.

2. The second (and last) change from EFL2 happens when the game is in step 1a.
In this case Spoiler wants to prove that Duplicator’s choice of at least one
relation R3−�,j is splitting an equivalence relation. As always, here also the
move begins with Spoiler choosing j. Then Spoiler picks a tuple c̄3−� (from
the suspicious equivalence class) in G3−� that is not in R3−�,j and challenges
Duplicator to find a matching tuple c̄� in G3−� that is not in R�,j. They move
on to play EFL3 with these choices and k − 1 moves. Again both roles and
game-board remain as they were. Notice that the game flow in this case is
actually the same as the game flow in 1b.

As before, it is easy to convince oneself that the claim of Lemma 16 is still
valid. We repeat it here:

Lemma 19. Duplicator has a winning strategy for EFL3[G1, G2, ∅, ∅ ; k] if and
only if for any sentence ϕ ∈ L of quantifier depth at most k

G1 |= ϕ ⇐⇒ G2 |= ϕ.
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3 Summary

We have presented three equivalent variants of the celebrated Ehrenfeucht-
Fräıssé game adapted to deal with logics extended by Lindström quantifiers.
We believe EFL3 may be easier to analyse than direct quantifier elimination and
it is our hope that it will find applications.

Acknowledgements. We would like to thanks the anonymous referees whose com-
ments helped significantly in improving the presentation of this paper and in putting
it in the right frame.
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Abstract. We discuss the Feferman-Vaught Theorem in the setting
of abstract model theory for finite structures. We look at sum-like
and product-like binary operations on finite structures and their Han-
kel matrices. We show the connection between Hankel matrices and
the Feferman-Vaught Theorem. The largest logic known to satisfy a
Feferman-Vaught Theorem for product-like operations is CFOL, first
order logic with modular counting quantifiers. For sum-like operations
it is CMSOL, the corresponding monadic second order logic. We discuss
whether there are maximal logics satisfying Feferman-Vaught Theorems
for finite structures.

1 Introduction

1.1 Yuri’s Quest for Logics for Computer Science

The second author (JAM) first met Yuri Gurevich in spring 1976, while being a
Lady Davis fellow at the Hebrew University, on leave from the Free University,
Berlin. Yuri had just recently emigrated to Israel. Yuri was puzzled by the sup-
posed leftist views of JAM, perceiving them as antagonizing. This lead to heated
political discussions. In the following time, JAM spent more visiting periods in
Israel, culminating in the Logic Year of 1980/81 at the Einstein Institute of the
Hebrew University, after which he finally joined the Computer Science Depart-
ment at the Technion in Haifa.

At this time both Yuri and JAM worked on chapters to be published in
[1], Yuri on Monadic Second Order Logic, and JAM on abstract model the-
ory. Abstract model theory deals with meta-mathematical characterizations of
logic. Pioneered by P. Lindström, G. Kreisel and J. Barwise, in [1,2,26,30,31],
First Order Logic and admissible fragments of infinitary logic were characterized.
Inspired by H. Scholz’s problem, [10], R. Fagin initiated similar characterizations
when models are restricted to finite models, connecting finite model theory to
complexity theory.
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At about the same time Yuri and JAM both underwent a transition in
research orientation, slowly refocusing on questions in theoretical Computer
Science. Two papers document their evolving views at the time, [23,37]. Yuri
was vividly interested in [37] and frequent discussions between Yuri and JAM
between 1980 and 1982 shaped both papers. In [37] the use for theoretical com-
puter science of classical model theoretic methods, in particular, the role of the
classical preservation theorems (see below), was explored, see also [34,36]. Yuri
grasped early on that these preservation theorems do not hold when one restricts
First Order Logic to finite models.

Under the influence of JAM’s work in abstract model theory, the foundations
of database theory and logic programming, [5,6,34,36,38,43], and the work of N.
Immerman and M. Vardi, [24,47], Yuri stressed the difference between classical
model theory and finite model theory. In [23], he formulated what he calls the
Fundamental Problem of finite model theory. This problem is, even after 30 years,
still open ([23]): Is there a logic L such that any class Φ of finite structures
is definable in L iff Φ is recognizable in polynomial time. For ordered finite
structures there are several such logics, [21,24,39,41,42,47]. We give a precise
statement of the Fundamental Problem in Sect. 2, Problem 1.

1.2 Preservation Theorems

Let F1,F2 be two syntactically defined fragments of a logic L, and let R be a
binary relation between structures. Preservation theorems are of the form:

Let φ ∈ F1. The following are equivalent:
(i) For all structures A,B with R(A,B), we have that if A satisfies

φ1 ∈ F1, then also B satisfies φ1.
(ii) There is φ2 ∈ F2 which is logically equivalent to φ1.

A typical example is Tarski’s Theorem for first order logic, with F1 all of first
order logic, F2 its universal formulas, and R(A,B) holds if B is a substructure of
A. Many other preservation theorems can be found in [7]. In response to [37,43],
Yuri pointed out in [23] that most of the preservation theorems for first order
logic fail when one restricts models to be finite.

1.3 Reduction Theorems

Let (F2)∗ denote the finite sequences of formulas in F2, and let � be a binary
operation on finite structures. Reduction theorems are of the form:

There is a function p : F1 → (F2)∗ with p(φ) = (ψ1, . . . , ψ2·k(φ)) and a
Boolean function Bφ such that for all structures A = B1�B2 and all
φ ∈ F1, the structure A satisfies φ ∈ F1 iff

B(ψB1
1 , . . . , ψB1

k(φ), ψ
B2
1 , . . . , ψB2

k(φ)) = 1 (1)
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where for 1 ≤ j ≤ k we have ψB1
j = 1 iff B1 |= ψj and ψB2

j = 1 iff B2 |= ψj .
There are also versions for (n)-ary operations �.

The most famous examples of such reduction theorems are the Feferman-
Vaught-type theorems, [12–15,22,40]. A simple case is Monadic Second Order
Logic (MSOL), where F1 = F2 = MSOL and A is the disjoint union � of B1

and B2. Additionally it is required that the quantifier ranks of the formulas in
p(φ) do not exceed the quantifier rank of φ. In [38, Chapter 4] such reduction
theorems are discussed in the context of abstract model theory. However, in [38,
Chapter 4] the quantifier rank has no role.

In contrast to preservation theorems, reduction theorems still hold when
restricted to finite structures.

1.4 Purpose of This Paper

In [40] JAM discussed Feferman-Vaught-type theorems in finite model theory
and their algorithmic uses. In Sect. 7 of that paper, it was asked whether one
can characterize logics over finite structures which satisfy the Feferman-Vaught
Theorem for the disjoint union �. The purpose of this paper is to outline new
directions to attack this problem. The novelty in our approach is in relating the
Feferman-Vaught Theorem to Hankel matrices of sum-like and connection-like
operations on finite structures. Hankel matrices for connection-like operations,
aka connection matrices, have many algorithmic applications, cf. [28,33].

In Sect. 2 we set up the necessary background on Lindström logics, quantifier
rank, translation schemes, and sum-like operations. A Hankel matrix H(Φ,�)
involves a binary operation � on finite σ-structures which results in a τ -structure,
and a class of τ -structures Φ closed under isomorphisms (aka a τ -property). In
Sect. 3 we give the necessary definitions of Hankel matrices and their rank. We
then study τ -properties Φ where H(Φ,�) has finite rank. We show that there
are uncountably many such properties and state that the class of all properties
that have finite rank for every sum-like operation � forms a Lindström logic,
Theorems 5 and 8. In Sect. 4 we define various forms of Feferman-Vaught-type
properties of Lindström logics equipped with a quantifier rank, and discuss their
connection to Hankel matrices. Theorem 16 describes their exact relationship.
A logic has finite S-rank, if all its definable τ -properties have Hankel matrices
of finite rank for every sum-like operation. In Sect. 5 we sketch how to construct
a logic satisfying the Feferman-Vaught Theorem for sum-like operations from a
logic which has finite S-rank. Finally, in Sect. 6, we discuss our conclusions and
state open problems. A full version of this paper is in preparation, [27].

2 Background

2.1 Logics with Quantifier Rank

We assume the reader is familiar with the basic definitions of generalized log-
ics, see [1,11]. We denote by τ finite relational vocabularies, possibly with con-
stant symbols for named elements. τ -structures are always finite unless otherwise
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stated. A finite structure of size n is always assumed to have as its universe the
set [n] = {1, . . . , n}. A class of finite τ -structures Φ closed under τ -isomorphisms
is called a τ -property.

A Lindström Logic L is a triple

〈L(τ),Str(τ), |=L, 〉

where L(τ) is the set of τ -sentences of L, Str(τ) are the finite τ -structures,
|=L is the satisfaction relation. The satisfaction relation is a ternary relation
between τ -structures, assignments and formulas. An assignment for variables
in a τ -structure A is a function which assigns to each variable an element of
the universe of A. We always assume that the logic contains all the atomic
formulas with free variables, and is closed under Boolean operations and first
order quantifications. A logic L0 is a sublogic of a logic L iff L0(τ) ⊆ L(τ) for all
τ and the satisfaction relation of L0 is the satisfaction relation induced by L.

A Gurevich logic L is a Lindström logic where additionally the sets L(τ) are
uniformly computable.

A Lindström logic L with a quantifier rank is a quadruple

〈L(τ),Str(τ), |=L, ρ〉

where additionally ρ is a quantifier rank function. A quantifier rank (q-rank) ρ
is a function ρ : L(τ) → N such that

(i) For atomic formulas φ the q-rank ρ(φ) = 0.
(ii) Boolean operations and translations induced by translation schemes (see

Subsect. 2.2) with formulas of q-rank 0 preserve maximal q-rank.

A quantifier rank ρ is nice if additionally it satisfies the following:

(iii) For finite τ , there are, up to logical equivalence, only finitely many L(τ)-
formulas of fixed q-rank with a fixed set of free variables.

In the presence of (iii) we define Hintikka formulas as maximally consistent L(τ)-
formulas of fixed q-rank. A nice logic L is Lindström logic with a nice quantifier
rank ρ. We note that in a nice logic, the only formulas φ of q-rank ρ(φ) = 0 are
Boolean combinations of atomic formulas.

We denote by FOL, MSOL, SOL, first order, monadic second order, and full
second order logic, respectively. All these logics are nice Gurevich logics with
their natural quantifier rank, and they are sublogics of SOL.

We denote by CFOL, CMSOL, first order and monadic second order logic
augmented by the modular counting quantifiers Dk,mx.φ(x) which say that there
are modulo m, exactly k many elements satisfying φ. In the presence of the quan-
tifier Dk,m there are two definitions of the quantifier rank: ρ1(Dk,mx.φ(x)) =
1+ ρ1(φ) and ρ2(Dk,mx.φ(x)) = m+ ρ2(φ). Given any finite set of variables, for
ρ1 we have, up to logical equivalence, infinitely many formulas φ with ρ1(φ) = 1,
whereas for ρ2 there are only finitely many such formulas. CFOL and CMSOL
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with the quantifier rank ρ2 are nice Gurevich logics. In the sequel we always use
ρ2 as the quantifier rank for CFOL and CMSOL.

FPL, fixed point logic, is also a Gurevich logic and a sublogic of SOL.
However, order invariant FPL is a sublogic of SOL which is not a Lind-
ström logic. The definable τ -properties in order invariant FPL are exactly the
τ -properties recognizable in polynomial time. For FPL and order invariant FPL
see [21,24,39,41,42,47].

Problem 1 (Y. Gurevich, [23]). Is there a Gurevich logic L such that the
L-definable τ -properties are exactly the τ -properties recognizable in polynomial
time.

2.2 Sum-Like and Product-Like Operations on τ -structures

The following definitions are taken from [40]. Let τ, σ be two relational vocab-
ularies with τ = 〈R1, . . . , Rm〉, and denote by r(i) the arity of Ri. A (σ − τ)
translation scheme T is a sequence of L(σ)-formulas (φ; φ1, . . . , φm) where φ has
k free variables, and each φi has k · r(i) free variables. In this paper we do not
allow redefining equality, nor do we allow name changing of constants.

We associate with T two mappings T � : Str(σ) → Str(τ) and T � : L(τ) →
L(σ), the transduction and translation induced by T . The transduction of a σ-
structure A is the τ -structure T �(A) where the vocabulary is interpreted by
the formulas given in the translation scheme. The translation of a τ -formula
is obtained by substituting atomic τ -formulas with their definition through σ-
formulas given by the translation scheme. A translation scheme (induced trans-
duction, induced translation) is scalar if k = 1, otherwise it is k-vectorized. It is
quantifier-free if so are the formulas φ;φ1, . . . , φm.

If τ has no constant symbols, the disjoint union A � B of two τ -structures
A,B is the τ -structure obtained by taking the disjoint union of the universes
and of the corresponding relation interpretations in A and B. On the other
hand, if τ has finitely many constant symbols a1, . . . , ak the disjoint union of
two τ -structures is a τ ′-structure with twice as many constant symbols, τ ′ = τ ∪
{a′

1, . . . , a
′
k}. Connection operations are similar to disjoint unions with constants,

where equally named elements are identified. We call the disjoint union followed
by the pairwise identification of k constant pairs the k-sum, cf. [33].

A binary operation � : Str(σ) × Str(σ) → Str(τ) is sum-like (product-like) if
it is obtained from the disjoint union of σ-structures by applying a quantifier-free
scalar (vectorized) (σ−τ)-transduction. A binary operation � : Str(σ)×Str(σ) →
Str(τ) is connection-like if it is obtained from a connection operation on σ-
structures by applying a quantifier-free scalar (σ − τ)-transduction. If σ = τ , we
say � is an operation on τ -structures.

Connection-like operations are not sum-like according to the definitions in
this paper1. Although connection operations are frequently used in the literature,
cf. [33,40], we do not deal with them in this paper. Most of our results here can

1 They are nevertheless called sum-like in [40].
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be carried over to connection-like operations, but the formalism required to deal
with the identification of constants is tedious and needs more place than available
here.

Proposition 1. Let τ be a fixed finite relational vocabulary.

(i) There are only finitely many sum-like binary operations on τ -structures.
(ii) There is a function α : N → N such that for each k ∈ N there are only α(k)

many k-vectorized product-like binary operations on τ -structures.

2.3 Abstract Lindström Logics

In [31] a syntax-free definition of a logic is given. An abstract Lindström logic
L consists of a family Mod(τ) of τ -properties closed under certain operations
between properties of possibly different vocabularies. One thinks of Mod(τ) as
the family of L-definable τ -properties. We do not need all the details here, the
reader may consult [1,30,31]. The main point we need is that every abstract
Lindström logic L can be given a canonical syntax L(τ) using generalized
quantifiers.

3 Hankel Matrices of τ -properties

3.1 Hankel Matrices

In linear algebra, a Hankel matrix, named after Hermann Hankel, is a real or
complex square matrix with constant skew-diagonals. In automata theory, a
Hankel matrix H(f, ◦) is an infinite matrix where the rows and columns are
labeled with words w over a fixed alphabet Σ, and the entry H(f, ◦)u,v is given
by f(u ◦ v). Here f : Σ� → R is a real-valued word function and ◦ denotes
concatenation. A classical result of G.W. Carlyle and A. Paz [4] in automata
theory characterizes real-valued word functions f recognizable by weighted (aka
multiplicity) automata in algebraic terms.

Hankel matrices for graph parameters (aka connection matrices) were intro-
duced by L. Lovász [32] and used in [18,33] to study real-valued partition func-
tions of graphs. In [18,33] the role of concatenation is played by k-connections
of k-graphs, i.e., graphs with k distinguished vertices v1, . . . , vk.

In this paper we study (0, 1)-matrices which are Hankel matrices of properties
of general relational τ -structures and the role of k-connections is played by more
general binary operations, the sum-like and product-like operations introduced
in [44] and further studied in [40].

Definition 2. Let � : Str(σ) × Str(σ) → Str(τ) be a binary operation on finite
σ-structures returning a τ -structure, and let Φ be a τ -property.

(i) The Boolean Hankel matrix H(Φ,�) is the infinite (0, 1)-matrix where
the rows and columns are labeled by all the finite σ-structures, and
H(Φ,�)A,B = 1 iff A�B ∈ Φ.
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(ii) The rank of H(Φ,�) over Z2 is denoted by r(Φ,�), and is referred to as
the Boolean rank.

(iii) We say that Φ has finite �-rank iff r(Φ,�) is finite.
(iv) Two σ-structures are (Φ,�)-equivalent, A ≡Φ,� B, if for all finite

σ-structures C we have

A�C ∈ Φ iff B�C ∈ Φ (2)

(v) For a σ-structure A, we denote by [A]Φ,� the (Φ,�)-equivalence class of A.
(vi) We say that Φ has finite �-index2 iff there are only finitely many (Φ,�)-

equivalence classes.

Proposition 3. Let Φ be a τ -property.
Φ has finite �-rank iff Φ has finite �-index.

Proof (Sketch of proof). We first note that two σ-structures A,B are in the
same equivalence class of ≡Φ,� iff they have identical rows in H(Φ,�). As the
rank is over Z2, finite rank implies there are only finitely many different rows in
H(Φ,�). The converse is obvious. Q.E.D.

3.2 τ -Properties of Finite �-rank

We next show that there are uncountably many τ -properties of finite �-rank.
We also study the relationship between the �1-rank and �2-rank of τ -properties
for different operations �1 and �2.

We first need a lemma.

Lemma 4. Let A ⊆ N and let MA be the infinite (0, 1)-matrix whose columns
and rows are labeled by the natural numbers N, and (MA)i,j = 1 iff i + j ∈ A.
Then MA has finite rank over Z2 iff A is ultimately periodic.

Theorem 5. Let τgraphs be the vocabulary with one binary edge-relation, and
τ1 be τgraphs augmented by one vertex label. Let CA, CA and PA be the graph
properties defined by CA = {Kn : n ∈ A}, CA = {En : n ∈ A}, and PA = {Pn :
n ∈ A}, where En is the complement graph of the clique Kn of size n, and Pn

is a path graph of size n.

(i) H(CA,�) has finite rank for all A ⊆ N.
(ii) For two graphs G1, G2, let G1 �c G2 be the sum-like operation defined as the

loopless complement graph of G1 � G2.
H(CA,�c) has infinite rank for all A ⊆ N which are not ultimately periodic.
Equivalently, for the τgraphs-property CA, the Hankel matrix H(CA, �) has
infinite rank for all A ⊆ N which are not ultimately periodic.

2 K. Compton and I. Gessel, [8,19], already considered τ -properties of finite �-index
for the disjoint union of τ -structures. In [17] this is called Gessel index. C. Blatter
and E. Specker, in [3,46], consider a substitution operation on pointed τ -structures,
Subst(A, a,B), where the structure B is inserted into A at a point a. Subst(A, a,B)
is sum-like, and the Subst-index is called in [17] Specker index.
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(iii) H(PA,�) has finite rank for all sum-like operations � on τgraphs-structures
and all A ⊆ N.

(iv) For two graphs G1, G2 with one vertex label, i.e. τ1-structures, let G1 �1 G2

be the sum-like operation defined as the graph resulting from G1 � G2 by
adding an edge between the two labeled vertices and then removing the labels.
H(PA,�1) has infinite rank for all A ⊆ N which are not ultimately periodic.

(v) H(CA,�k) has finite rank for all A ⊆ N.

Theorem 5 needs an interpretation: (i) says that there is a specific sum-like
operation � such that there uncountably many classes of τ -structures with finite
�-rank3. (ii) says that if a class has finite �-rank for one sum-like operation,
it does not have to hold for all sum-like operations4. (iii) produces uncountably
many classes of τ -structures which have finite �-rank for all sum-like operations
on τ -structures. (iv) finally shows that such classes can still have infinite �-rank
for sum-like operations which take as inputs σ-structures (labeled paths) and
output a τ -structure (unlabeled paths). This leads us to the following definition:

Definition 6. Let τ be a vocabulary and Φ be a τ -property.

(i) Φ has finite S-rank (P-rank, C-rank) if for every sum-like (product-like,
connection-like) operation � : Str(σ) × Str(σ) → Str(τ) the Boolean rank
of H(Φ,�) is finite.

(ii) A nice logic L has finite S-rank (P-rank, C-rank) iff all its definable proper-
ties have finite S-rank (P-rank, C-rank).

Examples 7.

(i) ([20]): FOL and CFOL have finite S-rank, C-rank and P-rank.
(ii) ([20]): MSOL and CMSOL have finite S-rank and C-rank.
(iii) The examples CA, PA above do not have finite S-rank.

3.3 Proof of Theorem5

Proof. (i) The disjoint union of two graphs is never connected. Therefore all
the entries of H(CA�) are zero, unless we consider the empty graph to be
structure. In this case we have exactly one row and one column representing
CA. In any case, the rank is ≤ 2.

(ii) Consider the submatrix of H(CA,�) consisting of rows and columns labeled
with the edgeless graphs En and use Lemma 4.

(iii) We first observe that
(*) for any sum-like operation � on τgraphs-structures (i.e., graphs),
G and H, if G�H = Pn for n ≥ 3, either G or H must be the empty
graph.

3 A similar construction was first suggested by E. Specker in conversations with the
second author in 2000, cf. [40, Section 7].

4 This observation was suggested by T. Kotek in conversations with the second author
in summer 2014.
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This is due to the fact that τgraphs has no constant symbols. Therefore, a
row or column containing non-zero entries must be labeled by the empty
graph.

(iv) Here we consider (σ, τ)-translation schemes for sum-like operations, with
σ = τgraphs ∪ {a}. Hence (*) from the proof of (iii) is not true anymore
because now Pm+n+1 can be obtained from Pn and Pm with the a being an
end vertex, using �1. So we apply Lemma 4.

(v) Connection operations of two large enough cliques still produce connected
graphs, but never form a clique. Q.E.D.

3.4 Properties of Finite S-rank and Finite P-rank

Let S(τ) and P(τ) denote the collection of all τ -properties of finite S-rank and
finite P-rank respectively, and let S =

⋃
τ S(τ) and P =

⋃
τ P(τ).

Theorem 8. S and P and are abstract Lindström logics which have finite
S-rank and finite P-rank, respectively.

Proof (Sketch of proof:). One first gives S and P a canonical syntax as described
in [31,35]. The proof then is a tedious induction which will be published else-
where.

It is unclear whether the abstract Lindström logic S goes beyond CMSOL.
As of now, we were unable to find a τ -property which has finite S-rank, but is
not definable in CMSOL.

Problem 2.

(i) Is every τ -property with finite S-rank definable in CMSOL(τ)?
(ii) Is every τ -property with finite P-rank definable in CFOL(τ)?

It seems to us that the same can be shown for connection-like operations,
but we have not yet checked the details.

4 Hankel Matrices and the Feferman-Vaught Theorem

4.1 The FV-property

In this section we look at nice Lindström logics with a fixed quantifier rank.
We use it to derive from the classical Feferman-Vaught theorem an abstract
version involving the quantifier rank. This differs from the treatment in
[1, Chapter xviii]. Our purpose is to investigate the connection between Hankel
matrices of finite rank and the Feferman-Vaught Theorem on finite structures
in an abstract setting.

Definition 9. Let L be a nice logic with quantifier rank ρ.

(i) We denote by L(τ)q the set of L(τ)-sentences φ (without free variables)
with ρ(φ) = q.
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(ii) Two τ -structures A,B are Lq equivalent, A ∼q
L B, if for every φ ∈ L(τ)q

we have A |= φ iff B |= φ.
(iii) L has the FV-property for � with respect to ρ if for every φ ∈ L(τ)q there

are k = k(φ) ∈ N, ψ1, . . . , ψk ∈ L(τ)q and Bφ ∈ 22k such that for all
τ -structures A,B we have that

A�B |= φ

iff

Bφ(ψA
1 , . . . ψA

k , ψB
1 , . . . ψB

k ) = 1

where for 1 ≤ j ≤ k we have ψA
j = 1 iff A |= ψj and ψB

j = 1 iff B |= ψj.
(iv) � is L-smooth with respect to ρ if for every two pairs of τ -structures

A1,A2,B1,B2 with A1 ∼q
L A2 and B1 ∼q

L B2 we also have A1�B1 ∼q
L

A2�B2.

If ρ is clear from the context we omit it.

A close inspection of the classical proofs shows that the requirements concerning
the quantifier rank are satisfied in the following cases.

Examples 10.

– ([16]): FOL has the FV-property for all product-like and connection-like oper-
ations �.

– ([25]): CFOL with quantifier rank ρ2 has the FV-property for all product-like
and connection-like operations �.

– ([22,29,45]): MSOL has the FV-property for all sum-like and connection-like
operations �.

– ([9]): CMSOL with quantifier rank ρ2 has the FV-property for all sum-like
and connection-like operations �.

4.2 The FV-property and Finite Rank

Definition 11. Let L be a nice logic.

(i) Let � be a binary operation on τ -structures. L is �-closed if all the equiv-
alence classes of ≡φ,� are definable in L(τ).

(ii) L is S-closed (P-closed, C-closed) if for every sum-like (product-like,
connection-like) binary operation � the logic L is �-closed.

Proposition 12. Let L have the FV-property for �.

(i) � is L-smooth.
(ii) Let Φ be a τ -property definable by a formula φ ∈ L(τ)q. Then each equiva-

lence class [A]Φ,� of ≡Φ,� is definable by a formula ψ(A) ∈ L(τ)q.
(iii) If L has the FV-property for all sum-like (product-like) operations then L

is S-closed (P-closed).
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Proof (Sketch of proof). (i) Follows because for i = 1, 2, the truth value of
Ai�Bi |= φ ∈ L(τ)q depends only on Bφ, the Boolean function associated with
the FV-property.

(ii) Fix a τ -structure A. We want to show that [A]Φ,� is definable by some
formula ψ(A) ∈ L(τ)q.

B ∈ [A]�,Φ iff for all C, A�C ∈ Φ iff B�C ∈ Φ.
We have, using Bφ, that

A ≡Φ,� B

iff for all C,

Bφ(ψA
1 , . . . , ψA

k , ψC
1 , . . . , ψC

k ) = Bφ(ψB
1 , . . . , ψB

k , ψC
1 , . . . , ψC

k ) (3)

iff ∀X1, . . . , Xk ∈ {0, 1},

Bφ(ψA
1 , . . . , ψA

k ,X1, . . . , Xk) = Bφ(ψB
1 , . . . , ψB

k ,X1, . . . , Xk) (4)

where ψA
i , ψB

i and ψC
i are as in Definition 9(iii). Equation (4) can be expressed

by a formula ψ(A) ∈ L(τ)q.
(iii) Follows from (ii). Q.E.D.

By analyzing the proof in [20], one can prove:

Theorem 13. Let L be a nice Lindström logic with quantifier rank ρ and � be a
binary operation on τ -structures. If � is L-smooth with respect to ρ, then every
L-definable τ -property Φ has finite �-rank.

Proof (Sketch of proof). Let Φ be definable by φ with quantifier rank ρ(φ) = q.
Now let φi : i ≤ α ∈ N be an enumeration of maximally consistent L(τ)q-
sentences (aka Hintikka sentences). By our assumption ρ is nice, so this is a
finite set. Furthermore φ is logically equivalent to a disjunction

∨
i∈I φi with

I ⊆ [α], any every τ -structure satisfies exactly one φi.
Now we use the smoothness of �. If A,B are two τ -structures satisfying the
same φi, then their rows (columns) in H(Φ,�) are identical. Hence the rank of
H(Φ,�) is at most α, or α + 1 when empty τ -structures are allowed. Q.E.D.

Combining Theorem 13 with Proposition 12(i) we get:

Corollary 14. Let L be a nice Lindström logic which has the FV-property for
the binary operation �, and let Φ be definable in L. Then r(Φ,�) is finite.

Proposition 15. Let L be a nice logic with quantifier rank ρ and � be a fixed
operation on τ -structure, which is associative. Assume further that for every
φ ∈ L(τ),

(i) The rank of H(φ,�) is finite, and
(ii) All equivalence classes of ≡φ,� are definable with formulas of L with

quantifier rank ≤ qr(φ).

Then L has the FV-property for �.
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We have now shown that L having the FV-property for � implies that � is
L-smooth, and that smoothness implies finite rank, or equivalently, finite index.

In fact we have:

Theorem 16. Let L be a nice S-closed logic and let �1 be a sum-like operation.
Then the following are equivalent:

(i) L has the FV-property for every sum-like operation �.
(ii) �1 is L-smooth.
(iii) For all φ ∈ L(τ) and every sum-like �, the �-rank of φ is finite.
(iv) For all φ ∈ L(τ) and every sum-like �, the index of ≡φ,� is finite.

The same holds if we replace S-closed and sum-like by P-closed and product-like.

Proof. (i) implies (ii) is Proposition 12.
(ii) implies (iii) is Theorem 13.
(iii) is equivalent to (iv) by Proposition 3.
Finally, (iii) implies (i) is Proposition 15. Q.E.D.

5 The S-Closure of a Nice Logic

Let L be a nice logic of finite S-rank with quantifier rank ρ. We define ClS(L)
to be the smallest Lindström logic such that for all sum-like

� : Str(σ) × Str(σ) → Str(τ)

and all ClS(L)-definable τ -properties Φ, all the equivalence classes of ≡Φ,� are
also definable in ClS(L). This gives us a Lindström logic which is S-closed.
However, in order to be a nice logic, we have to extend ρ to ρ′ in such a way
that ensures it is still nice.

We proceed inductively. Recall that there are only finitely many sum-like
operations � for fixed σ and τ . Let 
(σ) =

∑
R∈σ r(R) + 1 where R is a relation

symbol of arity r(R) or a constant symbol of arity 0. Two vocabularies are
similar if they have the same number of symbols of the same arity. The effect of
a sum-like operation only depends on the similarity type of σ and τ . Hence for
fixed 
(σ) and 
(τ), there are only finitely many sum-like operations.

A typical step in the induction is as follows.
Given L and φ ∈ L(τ)ρ(φ) and a sum-like � : Str(σ) × Str(σ) → Str(τ),

there are only finitely many equivalence classes of ≡φ,�. Let Ei = E(φ,�)i with
i ≤ α = α(φ,�) be a list of these equivalence classes.

We form L′ with quantifier rank ρ′ as follows: If Ei is not definable in L(σ)
then we add it to L using a Lindström quantifier with quantifier rank ρ′(Ei) =
ρ(φ) + 
(σ) + 
(τ).

L′ is a Lindström logic. We have to show that ρ′ is nice, i.e., for fixed q and
fixed number of free variables, L′(τ)q is finite up to logical equivalence. This
follows from the fact that we only added finitely many Lindström quantifiers
and that for all φ ∈ L we have that ρ′(φ) = ρ(φ).
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For our induction we start with L0 = L. L1 is obtained by doing the typical
step for each φ ∈ L0 and each sum-like �. ρ1 is the union of all quantifier rank
functions of the previous steps. We still have iterate this process by defining Lj

and ρj and take the limit.
We finally get:

Theorem 17. Let L be nice with quantifier rank ρ and of finite S-rank. Then
ClS(L) with quantifier rank ρ′ is nice and has the FV-property for all sum-like
operations.

The details will be published in [27].

6 Conclusions and Open Problems

At the beginning of this paper we asked whether one can characterize log-
ics over finite structures which satisfy the Feferman-Vaught Theorem for the
disjoint union, or more generally, for sum-like and product-like operations on
τ -structures. The purpose of this paper was to investigate new directions to
attack this problem, specifically by relating the Feferman-Vaught Theorem to
Hankel matrices of finite rank. Theorem16 describes their exact relationship.

We also investigated under which conditions one can construct logics satisfy-
ing the Feferman-Vaught Theorem. Theorem 5 shows that there are uncountably
many τ -properties which have finite rank Hankel matrices for specific sum-like
operations. Theorem8 shows the existence of maximal Lindström logics S and
P where all their definable τ -properties have finite rank for all sum-like, respec-
tively product-like, operations. However, we have no explicit description of these
maximal logics.

Problem 3.

(i) Is every τ -property with finite P-rank (or both finite P-rank and finite C-
rank) definable in CFOL?

(ii) Is every τ -property with finite S-rank (finite C-rank) definable in CMSOL?

In case the answers to the above are negative, we can ask:

Problem 4.

(i) How many τ -properties are there with finite S-rank (P-rank, C-rank)?
(ii) Is there a nice Gurevich logic where all the τ -properties in S are definable?

In [40, Section 7, Conjecture 2] it is conjectured that there are continuum many
nice Gurevich logics with the FV-property for the disjoint union. Adding CA or
PA from Theorem 5 for fixed A ⊆ N as Lindström quantifiers to FOL together
with all the equivalence classes of ≡CA,� or ≡PA,� gives us a nice Lindström
logic. However, the definable τgraph-property that the complement of a graph G
is in CA has infinite �-rank, see Theorem 5(ii).
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Problem 5. How many different nice Gurevich logics with the FV-property for
the disjoint union are there?

A similar analysis for connection-like operations will be developed in [27].

Acknowledgments. We would like to thank T. Kotek for letting us use his example,
and for valuable discussions.
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Abstract. We prove an abstract theorem which shows that under cer-
tain circumstances, a candidate running for political office should be as
explicit as possible in order to improve her impression among the voters.
But this result conflicts with the perceived reality that candidates are
often cagey and reluctant to take stances except when absolutely neces-
sary. Why this hesitation on the part of the candidates? We offer some
explanations.

1 Introduction

In [3] Dean and Parikh considered a political candidate campaigning to be
elected. The candidate’s chances of being elected depend on how various groups
of voters perceive her, and how they perceive her depends on what she has
said. Different groups of voters may have different preferences and a statement
preferred by one group of voters may be disliked by another.

They consider three types of voters: Optimistic (those who are willing to think
the best of the candidate), pessimistic (those who are inclined to expect the worse),
and expected value voters, who average over various possibilities which may come
about if the candidate is elected. They show that if the voters are expected value
voters, then the candidate is best off being as explicit as possible.

While interesting, this result is counter intuitive in that politicians are often
cagey and avoid committing themselves on issues. What explains this?

In this paper, we extend the previous work by Dean and Parikh in two ways.
We use the Fubini theorem to provide a very general, abstract version of their

(best to be explicit) result which applies to the case where we consider a single
candidate who merely wants to improve her status among the voters.

Later we introduce a belief set for the candidate and impose the condition
that she would not make any statements against her honest beliefs. We also
take into account the scenarios where there may be optimistic voters, or where
other problems, like voters staying at home, enter. Such scenarios offer a possible
explanation for the cageyness of some candidates.

2 A General Theorem

This section presumes that the candidate has made some statements in the past
and as a consequence the voters can assume that if she is elected then the state
c© Springer International Publishing Switzerland 2015
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of the world (or nation) will belong to a certain set Z of (possible) states, those
which agree with the statements she has made.1

A voter may have different views about the different states in Z, finding
some good and others not so good. Also, different voters may have different
views about the same state.

If the candidate reveals more of her views on some issues, then the set of
states compatible with her views will shrink. Some voters may be displeased,
finding that their favorite states are no longer compatible with her new stance.
Other voters may be pleased seeing that some states they feared are no longer
in the running.

How should the candidate speak so as to improve her overall position given
these forces pulling in different directions?

Let V denote the set of voters, and Ω the set of the states of the world.2

Both V,Ω are assumed to be compact (i.e., closed and bounded) subsets of some
Euclidean space R

n. Let the satisfaction function s : V × Ω �→ R represent the
extent to which voter v ∈ V likes the state ω ∈ Ω. What is the candidate’s current
average degree of satisfaction among all voters? It is given by the following
(Lebesgue) integral over all voters and all states in Z.

α =

∫
ω∈Z

∫
v∈V

s(v, ω)dvdω

μ(Z)
(1)

Namely the average value of s(v, ω) over all voters v and all states ω in Z. 3 Here∫
v∈V

s(v, ω)dv is the extent to which a particular state ω is liked by the average
voter. Alternately

∫
ω∈Z

s(v, ω)dω is the extent to which a particular voter v likes
the set Z. α is the average over all voters in V and states in Z.

The candidate is now wondering whether she should make a statement A or
its negation ¬A. At the moment we are assuming that she has no restrictions as
to what she can say with popularity being her only concern, so she is free to say
A or its negation. Later on we will consider restrictions on what she can say.
Whatever she says will have the effect of changing the set Z.4

Let X and Y be the two disjoint subsets of Z where X is the set of states
where A is true and Y the set where A is false, i.e., where ¬A is true. Z is X ∪Y .
1 If the statements which she has already made constitute a set T , then Z is the set

of those states ω which satisfy T .
2 Note that we are not making assumptions like single peak preference. The model we

use allows for a candidate who is a social conservative and an economic liberal (e.g.
Carter), or a socially liberal candidate who is hawkish on foreign policy (Johnson).

3 We assume that the measure of the set of voters is normalized to be 1.
4 Note that the set V is fixed but Z depends on what the candidate has said so far

and may say in the future. However, fights between Democrats and Republicans
over “illegal voters” or “voter suppression” are over the precise makeup of the set V .
A candidate may well seek to increase her average satisfaction by seeking to include
in V some members who like her present positions or to exclude those who dislike
these positions.
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Then the average satisfaction on X ∪ Y could be rewritten as

α =

∫
ω∈X∪Y

∫
v∈V

s(v, ω)dvdω

μ(X ∪ Y )
(2)

where μ(X ∪ Y ) is the measure of the set X ∪ Y .
We could rewrite (2) as

α =
βx + βy

μx + μy
(3)

where
βx =

∫
ω∈X

∫
v∈V

s(v, ω)dvdω,
βy =

∫
ω∈Y

∫
v∈V

s(v, ω)dvdω,
μx is the measure of X, and
μy is the measure of Y .

Then either
βx

μx
=

βy

μy
=

βx + βy

μx + μy
, or one of

βx

μx
and

βy

μy
is greater than

βx + βy

μx + μy
.

To see this, note that
βx + βy

μx + μy
= α (4)

Now suppose that
βx

μx
= α1 ≤ α (5)

βy

μy
= α2 < α (6)

Then, βx + βy = α ∗ μx + α ∗ μy by (4), and
βx + βy = α1 ∗ μx + α2 ∗ μy by (5) and (6),
but α1 ≤ α and α2 < α, so we have a contradiction. So at least one of the ratios
is greater than or equal to α, her current level of satisfaction.

Say α1 =
βx

μx
is greater than α. then by uttering the statement A she will

move from α to α1 and benefit overall. Some voters may dislike A but they will
be outweighed by those who like it.

Thus at least one of the statements A and ¬A will either benefit her (raise
her level of satisfaction) or at least leave her level the same. �

Corollary: A candidate is best off being as explicit as she can.

Proof: Consider all possible theories (sets of statements) which she could utter.
And let T be the best theory she could utter. If T is not complete, i.e. leaves
some question A open, then there is an extension of T which includes either A
or its negation and is no worse than T . It follows that among her best theories
there is one which is complete, i.e., as explicit as possible. �
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3 Ambiguity and Pessimism

Pessimistic voters are voters who assume the worst of all the states which are
currently possible. Thus if Z is the current set of possible states of the world then
a pessimistic voter will value Z as v(Z) = min{s(v, ω) : ω ∈ Z}. It is obvious
that being more explicit with pessimistic voters can only help a candidate, for
it might well eliminate states which the voter dislikes and at worst it will leave
things the same way.

What if the voters are a mixture of expected value voters and pessimistic
voters? Then given the choice of saying A and ¬A, at least one of the two,
say A will help her with the expected value voters and can do no harm with
the pessimists. Now it could be that saying ¬A will help her more with the
pessimists than it hurts with the expected value voters, but at least one of A
and ¬A is safe for her to say.

Thus one possible reason for a candidate to be cagey is the presence of a large
number of optimists. Optimistic voters will put v(Z) = max{s(v, ω) : ω ∈ Z}. If
a voter strongly prefers ω and another strongly prefers ω′ and both are optimists
then the candidate may prefer to remain ambiguous between ω and ω′.

A second reason may be that a strong candidate who expects to win may
refrain from committing herself on issues in order to leave freedom of action
open if and when she takes office.

Yet another reason could be that the candidate does not want to say some-
thing contrary to her beliefs even if that would help her with voters.

Later, we consider another reason - stay-at-home voters - to explain why a
candidate may prefer to be cagey.

4 The Logical Formalism of Dean and Parikh

The last section gave an abstract presentation of the scenario without saying
what the states of the world were and where the satisfaction function s came
from. Now we will proceed to be more explicit.

– The candidate’s views are formulated in a propositional language L containing
finitely many atomic propositions At = {P1, ..., Pn}

– Propositional valuations and states are conflated. ω ∈ 2At

– Propositional valuations are defined as follows in order to make the arithmetic
simpler: ω[i] = 1 if ω |= Pi, and ω[i] = −1 if ω �|= Pi

– Voters are characterized by their preference for a set of ideal states. This is
formalized via two functions pv and xv.
• pv(i) = 1 if v would prefer Pi to be true,

pv(i) = 0 if v is neutral about Pi,
pv(i) = -1 if v would prefer Pi to be false.

• xv(i) : At → [0, 1] the weight which voter v assigns to Pi such that∑
xv(i) ≤ 1
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– The utility of a state ω for voter v is defined as

s(v, ω) =
∑

1≤i≤n pv(i) × xv(i) × ω[i]

– We will first consider expected value voters. Their utility for a given (current)
theory T of a candidate is calculated as follows:

utv(T ) =

∑
ω|=T s(v, ω)

|{ω : ω |= T}|
– The value of a statement A for a given theory T is

val(A, T ) = ut(T + A) − ut(T )

where ut(T + A) is the utility when a candidate’s theory T is updated by
statement A.

– In Dean and Parikh, a candidate chooses what to say next by calculating the
best statement for a given theory T (this is what she has said so far) as follows:

best(T,X) = argmaxAval(A, T ) : A ∈ X

where X is the set of formulas from which the candidate chooses what to say.
X could be defined differently depending on the type of the candidate. (i.e.
depending on the restrictions that are imposed on the candidate as to what
she can say.)

5 Extension of the Framework

Dean and Parikh showed that (given expected value voters) it is always to a
candidate’s benefit to say something on a certain issue than to remain silent and
we gave a generalization of their result in Sect. 2. We find that this is not the
case in practical cases. Here is a well known quote from the satirical newspaper
The Onion.

NEW YORK After Sen. Barack Obama’s comments last week about
what he typically eats for dinner were criticized by Sen. Hillary Clinton
as being offensive to both herself and the American voters, the number
of acceptable phrases presidential candidates can now say are officially
down to four. At the beginning of 2007 there were 38 things candi-
dates could mention in public that wouldn’t be considered damaging to
their campaigns, but now they are mostly limited to ‘Thank you all for
coming,’ and ‘God bless America,’ ABC News chief Washington corre-
spondent George Stephanopoulos said on Sunday’s episode of This Week.

The Onion, May 8, 2008

For a more scholarly source consider [5]

Modern U.S. candidates have proven just as willing to use ambiguity as a
campaign strategy. Jimmy Carter and George H.W. Bush were renowned
for taking fuzzy positions at crucial points during their successful runs
for the presidency (Bartels 1988, 101), and Barack Obama captured the
White House in 2008 while remaining vague on key issues.
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5.1 Candidate Beliefs

We extend the framework of Dean and Parikh by considering a belief set B for
the candidate to represent her honest beliefs (this set need not be complete,
allowing the candidate to form her opinions on certain issues later on), and a
theory T to represent the statements she has uttered so far. We will impose
the requirement that the candidate will not make statements that are against
her beliefs. This requires B and T to be consistent with each other, and every
possible statement A for this candidate to be consistent with B ∪ T . We could
call this type of candidate tactically honest. In this case it is easy to see that
sometimes such a candidate might want to remain silent.

Remaining Silent

Example 1. We consider a single candidate c whose belief set Bc and theory Tc

are given below:

Bc = {¬P,Q,¬R}
Tc = {¬R}
There are four assignments satisfying Tc that the voters will take into account.
The assignments are given in the form of 〈pv(P ), pv(Q), pv(R)〉
ω1 = 〈−1,−1,−1〉, ω2 = 〈−1, 1,−1〉, ω3 = 〈1,−1,−1〉, and ω4 = 〈1, 1,−1〉
We will consider two groups of voters v1 and v2 of the same size:

v1’s preferences:

p1(P ) = 1, p1(Q) = 1, p1(R) = −1
x1(P ) = 0.4, x1(Q) = 0.2, x1(R) = 0.2

v2’s preferences:

p2(P ) = 1, p2(Q) = −1, p2(R) = −1
x2(P ) = 0.3, x2(Q) = 0.1, x2(R) = 0.4

What should c say about P?

In this initial situation, v1 has 0.2 points for c and v2 has 0.4 points. v1(Tc) = 0.2
and v2(Tc) = 0.4. c would like to say ¬P since it is in her belief set. However the
popular opinion among the voters is P , so if she were to say ¬P her points would
go down among both groups of voters. v1(Tc+¬P ) = −0.2 and v2(Tc+¬P ) = 0.1.
She also cannot say P as it contradicts her opinions i.e. her belief set. So she
might choose to remain silent in regard to P .

Revealing Partial Truths

Example 2. In Example 1 we showed that remaining silent about P would be a
reasonable option for the candidate if she doesn’t want to lie about her honest
beliefs. Another option is that she could say (P ∨ Q) which allows her not to
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directly contradict her belief set, but also to increase her points at the same time
by revealing only a partial truth. In this case the voters will remove the possible
state ω1 = 〈−1,−1,−1〉 from their calculations, and her points will go up among
both groups of voters. v1(Tc + (P ∨ Q)) = 0.4 and v2(Tc + (P ∨ Q)) = 0.47.

This example shows that a candidate who does not want her statements and
her beliefs to conflict can achieve more by remaining silent on a certain issue
than by voicing her opinion. However she may occasionally achieve even more
by making a vague statement (i.e. by revealing partial truth (and not lying))
than by remaining silent.

Dishonest Candidates. If we allow a candidate to be dishonest (i.e. to make
statements that can contradict her belief set), then we can ignore the candidate’s
belief set altogether. This candidate will choose to be as explicit as possible given
that the voters are expected-value voters as per Dean and Parikh’s result. It is
easily seen that the candidate will then have more leeway against the candidates
who choose to be honest. Moreover, even a candidate who is honest, but has some
leeway is better off by being less explicit at the start of a campaign. For let T1

and T2 be two positions to which she could commit at the start of the campaign.
Assume moreover that T1 ⊂ T2. Then the number of permissible extensions of
T2 is less than the number of permissible extensions of T1. So the best she could
gain by starting only with T1 is higher than the best she could gain by starting
with T2.

One could ask, but if T2 was something she was going to say anyway, then
why not say it at the start of the campaign? The answer is that the function
s(v, ω), the extent to which voter v likes the state ω is not constant and may
vary as time passes. The tastes and preferences of voters do change. So it may
be wiser to wait. But when further changes in s are unlikely then being explicit
can be helpful.

5.2 Stay-At-Home Voters

For another explanation as to why a candidate might want to remain silent, we
will introduce a threshold value t for voters. We will stipulate that a voter’s
utility for a candidate c must be greater than t for that voter to vote for c.

Example 3. Consider a candidate c with the following belief set and theory.

Bc = {P,¬Q,¬R}
Tc = {(P ∨ Q),¬R}

Assume two groups of voters v1 and v2 of the same size with the following
preferences.

v1’s preferences:

p1(P ) = 1, p1(Q) = −1, p1(R) = −1
x1(P ) = 0.4, x1(Q) = 0.1, x1(R) = 0.4
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Table 1. How stating P affects the candidate’s scores

Initial scores Updated scores if c says P

v1 0.5 0.8
v2 0.6 0.4

v2’s preferences:

p2(P ) = −1, p2(Q) = 1, p2(R) = −1
x2(P ) = 0.1, x2(Q) = 0.4, x2(R) = 0.5

If we assume a threshold value of t = 0.5, in this initial situation both groups of
voters would vote for c as shown in the left column of Table 1.

If c wanted to say P , which is in her belief set, the sum of her points would
go up (from 1.1 to 1.2). However in this case v2 becomes a stay-at-home voter
and c is actually hurt by saying P . Considering this, she might want to remain
silent regarding P .

Note that even if the candidate was dishonest and wanted to say ¬P , this
time she would lose v1’s votes as shown in Table 2.

Table 2. How stating not P affects the candidate’s scores

Initial scores Updated scores if c says ¬P

v1 0.5 -0.1
v2 0.6 1

6 Conclusions and Future Work

We have developed a model which explains why a candidate might wish to
become explicit about issues, as well as situations where a candidate may prefer
to remain silent on some issues. Our model differs in significant ways from the
models developed by [1,4,5] in that we are including a semantics for the language
in which candidates speak and raising questions about when they would speak
and when they would remain quiet. See also [2] for a comprehensive discussion
of elections.
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Abstract. Kamp’s theorem established the expressive completeness of
the temporal modalities Until and Since for the First-Order Monadic
Logic of Order (FOMLO) over real and natural time flows. Over natural
time, a single future modality (Until) is sufficient to express all future
FOMLO formulas. These are formulas whose truth value at any moment
is determined by what happens from that moment on. Yet this fails to
extend to real time domains: here no finite basis of future modalities
can express all future FOMLO formulas. Almost future formulas extend
future formulas; they depend just on the very near past, and are inde-
pendent of the rest of the past. For almost future formulas finiteness
is recovered over Dedekind complete time flows. In this paper we show
that there is no temporal logic with finitely many modalities which is
expressively complete for the almost future fragment of FOMLO over all
linear flows.

1 Introduction

Temporal Logic (TL) introduced to Computer Science by Pnueli in [7] is a con-
venient framework for reasoning about “reactive” systems. This made temporal
logics a popular subject in the Computer Science community, enjoying extensive
research in the past 30 yrs. In TL we describe basic system properties by atomic
propositions that hold at some points in time, but not at others. More com-
plex properties are expressed by formulas built from the atoms using Boolean
connectives and Modalities (temporal connectives): A k-place modality M trans-
forms statements ϕ1 . . . ϕk possibly on ‘past’ or ‘future’ points to a statement
M(ϕ1 . . . ϕk) on the ‘present’ point t0. The rule to determine the truth of a
statement M(ϕ1 . . . ϕk) at t0 is called a Truth Table. The choice of particular
modalities with their truth tables yields different temporal logics. A temporal
logic with modalities M1, . . . , Mk is denoted by TL(M1, . . . , Mk).

The simplest example is the one place modality FX saying: “X holds some
time in the future”. Its truth table is formalized by ϕ

F
(t0,X) ≡ (∃t > t0)X(t).

This is a formula of the First-Order Monadic Logic of Order (FOMLO) - a
fundamental formalism in Mathematical Logic where formulas are built using
atomic propositions P (t), atomic relations between elements t1 = t2, t1 < t2,
Boolean connectives and first-order quantifiers ∃t and ∀t. Most modalities used
in the literature are defined by such FOMLO truth tables, and as a result every
c© Springer International Publishing Switzerland 2015
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temporal formula translates directly into an equivalent FOMLO formula. Thus,
the different temporal logics may be considered a convenient way to use frag-
ments of FOMLO. FOMLO can also serve as a yardstick by which to check the
strength of temporal logics: A temporal logic is expressively complete for a frag-
ment L of FOMLO if every formula of L with a single free variable is equivalent
to a temporal formula.

Actually, the notion of expressive completeness is with respect to the type
of the underlying model since the question whether two formulas are equivalent
depends on the domain over which they are evaluated. Any (partially) ordered
set with monadic predicates is a model for TL and FOMLO, but the main,
canonical , linear time intended models are the naturals 〈N, <〉 for discrete time
and the reals 〈R, <〉 for continuous time.

A major result concerning TL is Kamp’s theorem [2,6], which states that
the pair of modalities “X until Y ” and “X since Y ” is expressively complete
for FOMLO over the above two linear time canonical models.

Many temporal formalisms studied in computer science concern only future
formulas - whose truth value at any moment is determined by what happens
from that moment on. For example the formula X until Y says that X will hold
from now (at least) until a point in the future when Y will hold. The truth value
of this formula at a point t0 does not depend on the question whether X(t) or
Y (t) hold at earlier points t < t0.

Over the discrete model 〈N, <〉 Kamp’s theorem holds also for future formulas
of FOMLO : The future fragment of FOMLO has the same expressive power as
TL(Until) [2,4]. The situation is radically different for the continuous time model
〈R, <〉. In [5] it was shown that TL(Until) is not expressively complete for the
future fragment of FOMLO and there is no easy way to remedy it. In fact it was
shown in [5] that there is no temporal logic with a finite set of modalities which
is expressively equivalent to the future fragment of FOMLO over the reals.

It was proved in [2] that all future formulas are expressible over the reals in a
temporal language based on the future modality Until plus the modality K−. The
formula K−(P ) holds at a time point t0 if given any ‘earlier’ t, no matter how
close, we can always come up with a t′ in between (t < t′ < t0) where P holds.
This is of course not a future modality - the formula K−(P ) is past-dependent.
This future-past mixture of Until and K− is somewhat better than the standard
Until - Since basis in the following sense: Although K− is (like Since) a past
modality, it does not depend on much of the past: The formula K−(P ) depends
just on an arbitrarily short ‘near past’, and is actually independent of most of
the past. In this sense we may say that it is an “almost future” formula (see
Sect. 3 for precise definitions).

In [8] it was proved that TL(Until,K−) is expressively equivalent over the reals
(and over all Dedekind complete time domains) to the almost future fragment
of FOMLO.

Kamp’s theorem was generalized by Stavi who introduced two new modalities
Until′ and Since′ and proved that TL(Until,Since,Until′,Since′) and FOMLO have
the same expressive power over all linear time flows [2,4].
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Our main theorem shows that Stavi’s theorem cannot be generalized to
almost future fragments. We show that there is no temporal logic with a finite
set of modalities which is expressively equivalent to the almost future fragment
of FOMLO over all linear time flows.

The rest of the paper is organized as follows: In Sect. 2 we recall the definitions
of the monadic logic, the temporal logics and Kamp’s and Stavi’s theorems. In
Sect. 3 we define “future” and “almost future” fragments of FOMLO and state
expressive completeness results for these fragments. In Sect. 4 we prove that over
the class of all linear orders there is no finite basis for a temporal logic which is
expressively complete for almost future formulas. The ideas and techniques are
similar to those in [5]. We will define a sequence of future formulas ψi such that
given any (finite or infinite) set B of modalities definable in the almost future
fragment of FOMLO by formulas of quantifier depth at most n, there is k such
that ψk is not expressible in TL(B). Thus, in particular, no logic with finitely
many almost future modalities can express all ψi.

2 Preliminaries

We start with the basic definitions of First-Order Monadic Logic of Order
(FOMLO) and Temporal Logic (TL), and some well known results concerning
their expressive power.

Fix a signature (finite or infinite) S of atoms. We use P,Q,R, S . . . to
denote members of S. Syntax and semantics of both logics are defined below
with respect to such a fixed signature.

2.1 First-Order Monadic Logic of Order

Syntax: In the context of FOMLO, the atoms of S are referred to (and used)
as unary predicate symbols. Formulas are built using these symbols, plus two
binary relation symbols, < and =, and a finite set of first-order variables
(denoted by x, y, z, . . . ). Formulas are defined by the grammar:

atomic :: = x < y | x = y | P (x) (where P ∈ S)

ϕ :: = atomic | ¬ϕ1 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃xϕ1 | ∀xϕ1

The notation ϕ(x1, . . . , xn) implies that ϕ is a formula where the xi’s are the
only variables that may occur free; writing ϕ(x1, . . . , xn, P1, . . . , Pk) additionally
implies that the Pi’s are the only predicate symbols that may occur in ϕ. We
will also use the standard abbreviated notation for bounded quantifiers, e.g.:
(∃x)>z(. . . ) denotes ∃x((x > z) ∧ (. . . )), (∀x)≤z(. . . ) denotes ∀x((x ≤ z) →
(. . . )), (∀x)<u

>l (. . . ) denotes ∀x((l < x < u) → (. . . )), etc. Finally, as usual,
True(x) denotes P (x) ∨ ¬P (x) and False(x) denotes P (x) ∧ ¬P (x).

Semantics: Formulas are interpreted over structures. A structure over S is a
triplet M = (T , <, I) where T is a set - the domain of the structure, < is an
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irreflexive partial order relation on T , and I : S → P(T ) is the interpretation
of the structure (where P is the powerset notation). We use the standard notation
M, t1, t2, . . . tn |= ϕ(x1, x2, . . . xn). The semantics is defined in the standard way.
Notice that for formulas with at most one free first-order variable , this
reduces to:

M, t |= ϕ(x).

We will often abuse terminology, and shortly refer to such formulas as monadic
formulas (or to the corresponding syntactical fragment - as FOMLO).

2.2 Propositional Temporal Logics

Syntax: In the context of TL, the atoms of S are used as atomic propositions
(also called propositional atoms). Formulas are built using these atoms, and
a set (finite or infinite) B of modality names, where a non-negative integer
arity is associated with each M ∈ B. The syntax of TL with the basis B over
the signature S, denoted by TL(B), is defined by the grammar:

F :: = P | ¬F1 | F1 ∨ F2 | F1 ∧ F2 | M(F1, F2, . . . , Fn)

where P ∈ S and M ∈ B an n-place modality (that is, with arity n). As usual
True denotes P ∨ ¬P and False denotes P ∧ ¬P .

Semantics: Formulas are interpreted at time-points (or moments) in struc-
tures (elements of the domain). The domain T of M = (T , <, I) is called the
time domain , and (T , <) - the time flow of the structure. The semantics of
each n-place modality M ∈ B is defined by a ‘rule’ specifying how the set of
moments where M(F1, . . . , Fn) holds (in a given structure) is determined by the
n sets of moments where each of the formulas Fi holds. Such a ‘rule’ for M is
formally specified by an operator OM on time flows, where given a time flow
F = (T , <), OM(F) is an operator in (P(T ))n −→ P(T ).

The semantics of TL(B) formulas is then defined inductively: Given a struc-
ture M = (T , <, I) and a moment t ∈ M (read t ∈ M as t ∈ T ), define when a
formula F holds in M at t - notation: M, t |= F - as follows:

– M, t |= P iff t ∈ I(P ), for any propositional atom P .
– M, t |= F ∨ G iff M, t |= F or M, t |= G; similarly (“pointwise”) for ∧, ¬.
– M, t |= M(F1, . . . , Fn) iff t ∈ [OM(T , <)](T1, . . . , Tn) where M ∈ B is an

n-place modality, F1, . . . , Fn are formulas and Ti =def {s ∈ T : M, s |= Fi}.

Truth Tables: Practically most standard modalities studied in the literature
can be specified in FOMLO : A FOMLO formula ϕ(x, P1, . . . , Pn) with a single
free first-order variable x and with n predicate symbols Pi is called an n-place
first-order truth table . Such a truth table ϕ defines an n-ary modality M
(whose semantics is given by an operator OM) iff for any time flow (T , <), for
any T1, . . . , Tn ⊆ T and for any structure M = (T , <, I) where I(Pi) = Ti:

[OM(T , <)](T1, . . . , Tn) = {t ∈ T : M, t |= ϕ(x, P1, . . . , Pn)}
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Example 2.1. Below are truth-table definitions for the well known
“Eventually” and “Globally”, the (binary) strict-Until and strict-Since of
[6] and for K+ and K− of [2]:

– � (“Eventually”) defined by: ϕ
�
(x, P ) =def (∃x′)>xP (x′)

– � (“Globally”) defined by: ϕ
�
(x, P ) =def (∀x′)>xP (x′)

– Until defined by: ϕ
Until

(x,Q, P ) =def (∃x′)>x(Q(x′) ∧ (∀y)<x′
>x P (y))

– Since defined by: ϕ
Since

(x,Q, P ) =def (∃x′)<x(Q(x′) ∧ (∀y)<x
>x′P (y))

– K+ defined by: ϕ
K+

(x, P ) =def (∀x′)>x(∃y)<x′
>x P (y)

– K− defined by: ϕ
K− (x, P ) =def (∀x′)<x(∃y)<x

>x′P (y)

We will use infix notation for the binary modalities Until and Since: P Until Q
denotes Until(Q,P ), meaning “there is some future moment where Q holds,
and P holds all along till then”. The non-strict version Untilns is defined as
P ∧ (P Until Q), requiring that P should hold at the “present moment” as well.

The formula K−(P ) holds at the “present moment” t0 iff given any earlier
t < t0 - no matter how close - there is a moment t′ in between (t < t′ < t0)
where the formula P holds. Notice that K+ and K− are definable in terms of
Until and Since:

K+(P ) ≡ ¬(¬P Until True)

K−(P ) ≡ ¬(¬P Since True)

2.3 Kamp’s and Stavi’s Theorems

We are interested in the relative expressive power of TL (compared to FOMLO)
over the class of linear structures. Major results in this area are with respect to
the subclass of Dedekind complete structures - where the order is Dedekind
complete, that is, where every non empty subset (of the domain) which has an
upper bound has a least upper bound.

Equivalence between temporal and monadic formulas is naturally defined: F ≡
ϕ(x) iff for any M and t ∈ M: M, t |= F ⇔ M, t |= ϕ(x). We will occasionally
write ≡L / ≡DC / ≡C to distinguish equivalence over linear / Dedekind complete /
any class C of structures.

Definability : A temporal modality is definable in FOMLO iff it has a FOMLO
truth table; a temporal formula F is definable in FOMLO over a class C of
structures iff there is a monadic formula ϕ(z) such that F ≡C ϕ(z). In this case
we say that ϕ defines F over C. Similarly, a monadic formula ϕ(z) may be
definable in TL(B) over C.

Expressive Completeness / Equivalence: A temporal language TL(B) (as
well as the basis B) is expressively complete for (a fragment of) FOMLO over a
class C of structures iff all monadic formulas (of that fragment) ϕ(z) are defin-
able over C in TL(B). Similarly, one may speak of expressive completeness of
FOMLO for some temporal language. If we have expressive completeness in both
directions between two languages - they are expressively equivalent .
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As Until and Since are definable in FOMLO, it follows that FOMLO is expres-
sively complete for TL(Until,Since). The fundamental theorem of Kamp shows
that for Dedekind complete structures the opposite direction holds as well:

Theorem 2.2 (Kamp [2,6,9]). TL(Until,Since) is expressively equivalent to
FOMLO over Dedekind complete structures.

This was further generalized by Stavi who introduced two new modalities Until′

and Since′ and proved

Theorem 2.3 (Stavi [2,4]). TL(Until,Since,Until′,Since′) is expressively equiv-
alent to FOMLO over all linear time structures.

The definitions of Stavi’s modalities are not needed for the proofs of our main
result. However, for the sake of completeness, they are described below.

A gap of a linearly ordered set (T,<) is a downward closed non-empty set
C ⊆ T which has an upper bound in (T,<), yet has no least upper bound.
Informally, we can think of a gap as a hole in the Dedekind-incomplete order.

PUntil′Q holds at t if there is a gap C such that:

– t ∈ C, i.e., C is in the future of t,
– P is true on (t,∞) ∩ C, i.e., P holds from t until the gap,
– for every t1 /∈ C there is t2 ∈ (−∞, t1)\C such that ¬P (t2), i.e., in the future

of the gap, P is false arbitrary close to the gap, and
– there is t′ /∈ C such that Q is true on (−∞, t′)\C, i.e., Q is true from the gap

into the future for some uninterrupted stretch of time.

Note that a natural formalization of the above definition of Until′ uses a second-
order quantifier - “there is a gap”; however, Until′ has a first-order truth table [2].

Since′ is the mirror image of Until′.

3 Future and Almost Future Formulas

We use standard interval notations and terminology for subsets of the domain of
a structure M = (T , <, I), e.g.: (t,∞) =def {t′ ∈ T |t′ > t}; similarly we define
(t, t′), [t, t′), (t,∞), [t,∞), etc., where t < t′ are the endpoints of the interval.
The sub-structure of M restricted to an interval is defined naturally. In par-
ticular: M|

>t0
denotes the sub-structure of M restricted to (t0,∞): Its domain

is (t0,∞) and its order relation and interpretation are those of M, restricted to
this interval. M|≥t0

is defined similarly with respect to [t0,∞). Notice that if M
is Dedekind complete then so is any sub-structure of M. If structures M,M′

have domains T , T ′, and if I is an interval of M, with endpoints t1 < t2 in M,
such that I ∪{t1, t2} ⊆ T ∩T ′ and the order relations of both structures coincide
on I ∪ {t1, t2} - we will say that I is a common interval of both structures.
This is defined similarly for intervals with ∞ or −∞ as either endpoint. Two
structures coincide on a common interval iff the interpretations coincide there.
Two structures agree on a formula at a given common time-point (or along a
common interval) iff the formula has the same truth value at that point (or along
that interval) in both structures.
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Definition 3.1 (Future and Almost Future Formulas and Modalities).
A formula (temporal, or monadic with at most one free variable) F is (seman-
tically):

– A future formula iff whenever two linear structures coincide on a common
interval [t,∞) they agree on F at t; equivalently, whenever two linear struc-
tures coincide on a common interval [t,∞) they agree on F all along [t,∞).

– A pure future formula iff whenever two linear structures coincide on a com-
mon interval (t,∞) they agree on F at t; equivalently, whenever two linear
structures coincide on a common interval (t,∞) they agree on F all along
[t,∞).

– An almost future formula iff whenever two linear structures coincide on a
common interval (t,∞) they agree on F all along (t,∞).

Past and pure past formulas are defined similarly. A temporal modality is a
first-order future (almost future) modality iff it is definable in FOMLO by
a future (almost future) truth table.

Looking at their truth tables, it is easy to verify that Until is a (pure) future
modality and Since is a past modality and K− is almost future modality. The pair
{Until,Since} forms an expressively complete (finite) basis in the sense of Kamp’s
theorem. Do we have a finite basis of future modalities which is expressively
complete for all future formulas? Here are some answers:

Theorem 3.2 ([4]). TL(Until) is expressively equivalent to the future fragment
of FOMLO over discrete time flows (naturals, integers, finite).

Theorem 3.3 ([5]). There is no temporal logic with a finite basis which is
expressively equivalent to the future fragment of FOMLO over real time flows.

However, for the almost future fragment there is a finite base over Dedekind
complete time flows.

Theorem 3.4 ([8]). TL(Until,K−) is expressively equivalent to the almost
future fragment of FOMLO over Dedekind complete time flows.

The situation is radically different for the class of all linear flows. Our main
result shows that there is no finite base for the almost future fragment over all
linear flows.

Theorem 3.5 (Main). There is no temporal logic with a finite basis which is
expressively equivalent to the almost future fragment of FOMLO over all linear
time flows.

4 No Finite Base for Almost Future Formulas

Observe that if a temporal logic is expressively equivalent to the almost future
fragment of FOMLO, then all its modalities are almost future and are defin-
able by FOMLO truth tables. The main theorem is a consequence of the next
proposition:
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Proposition 4.1. Assume that B is a set of almost future modalities defin-
able by FOMLO truth tables of quantifier depth at most n. Then, TL(B) is not
expressively complete for the future fragment of FOMLO over all linear time
flows.

Note that Proposition 4.1 is much stronger than Theorem3.5.
First, it allows for a temporal logic to have infinitely many almost future

modalities and only requires that the quantifier depth of their truth table is
bounded. Second, it concludes that such a temporal logic cannot express not
only all almost future formulas, but even all future formulas.

We are going to define a sequence of future formulas ψi such that for any
(finite or infinite) set B of modalities definable in the almost future fragment of
FOMLO by formulas of quantifier depth at most n, there is a k such that ψk is
not expressible in TL(B).

For our proof of Proposition 4.1 we need some rudimentary facts on the ordi-
nal numbers. Not much set theory is needed for our purpose; it suffices to say
that every ordinal is a chain. We use the following ordinals which we define
directly:

– The ordinal ω is the set of natural numbers with its natural order.
– The ordinal ω2 is an ω-sequence of blocks, each isomorphic to ω. We also

declare each point to be bigger than every point in a previous block.
– More generally, ωn+1 is an ω-sequence of blocks, each isomorphic to ωn. Each

point is declared larger than all points in previous blocks.

An alternative definition of the ordered set ωn is the set of n-tuples of natural
numbers ordered lexicographically. The element which corresponds to a tuple
〈mn−1,mn−2, . . . , m0〉 is denoted by ωn−1mn−1 + ωn−2mn−2 + · · · + m0.

An easy induction proves the following useful feature of these ordinals:

Lemma 4.2. Every suffix of the ordinal ωk is isomorphic to ωk.

We are going to define linear orders and chains which are very homogeneous
with respect to almost future formulas:

Define the following linear orders:

(Ak, <) :=
(
(0, 1) ∪ (1, 2)

) × ωk,

where (0, 1) and (1, 2) are subintervals of the reals and for 〈a, α〉, 〈b, β〉 ∈ Ak,
〈a, α〉 < 〈b, β〉 if α < β or α = β and a < b.

Note that (Ak, <) are Dedekind-incomplete. For every β ∈ ωk, the sets C1
β :=

{〈a, α〉 | a < 1 ∧ α ≤ β} and C2
β := {〈a, α〉 | a < 2 ∧ α ≤ β} are bounded and

downward closed, yet none has a least upper bound.
Define a unary predicate P k := (0, 1) × ωk on Ak and define the following

chains inthe signature {<,P}:

Ck := (Ak, <, P k).
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A unary predicate is said to be trivial on a chain in the signature {<,P} if it is
equal to P , ¬P , True or False.

Proposition 4.1 immediately follows from the next two lemmas.

Lemma 4.3. For every k there is a FOMLO future formula ψk such that for
every m > k, ψk is equivalent to True in Cm and ψk is equivalent to False
in Ck.

Lemma 4.4. Assume that B is any (finite or infinite) set of almost future
modalities definable by FOMLO truth tables of quantifier depth at most n, then
there is an infinite subset J ⊆ N such that for every formula ϕ ∈ TL(B), and
all m, i ∈ J one of the following holds:

1. ϕ is equivalent to P (x) in Cm and in Ci.
2. ϕ is equivalent to ¬P (x) in Cm and in Ci.
3. ϕ is equivalent to True in Cm and in Ci.
4. ϕ is equivalent to False in Cm and in Ci.

Proof (of Proposition 4.1). Take two numbers i < m in J . By Lemma 4.3, ψi is
equivalent to False in Ci and is equivalent to True in Cm. Hence, by Lemma 4.4
it is not equivalent to any formula ϕ ∈ TL(B). �

Lemmas 4.3 and 4.4 are proved in the next two subsections. Subsection 4.3 states
a generalization of Proposition 4.1.

4.1 Proof of Lemma 4.3

Let C be a chain, ϕ(x) be a formula, and a < b be elements of C. We say that a, b
are in the same ϕ interval if either all elements in [a, b] satisfy ϕ or none of them
satisfies ϕ. We say that a, b are ϕ-equivalent if they are in the same ϕ-interval.
Clearly, ϕ-equivalence is first-order definable and the ϕ equivalence classes are
subintervals of C. The set of ϕ-equivalence classes are naturally ordered: an
equivalence class I1 precedes a class I2 if all elements of I1 precede all elements
of I2. A ϕ-equivalence class I is (left) limit if for every ϕ-equivalence class I1 < I
there is a ϕ-equivalence class I2 such that I1 < I2 < I. Note that according to
this definition the minimal ϕ-equivalence class is limit.

Define ϕ0(x) := P (x) and ϕi+1(x) :=“x is in a limit ϕi-equivalence class”.
In Cn only the points of the form 〈a, ωn−1mn−1 + ωn−2mn−2 + · · · + ωm1 +

0〉 where a ∈ (0, 1) satisfy ϕ1; only the points of the form 〈a, ωn−1mn−1 +
ωn−2mn−2 + · · ·+ω2m2 +ω0+0〉 where a ∈ (0, 1) satisfy ϕ2 and only the points
of the form 〈a, ωn−1mn−1+ωn−2mn−2+ · · ·+ωlml +ωl−10+ · · ·+ω0+0〉 where
a ∈ (0, 1) satisfy ϕl.

Note that ϕk is not an almost future formula, but if we define ψk(x0) to be
(∃x > x0)ϕk(x) ∧ “x is not ϕk − equivalenttox0”, then ψk is a future formula.
Moreover, if m ≤ k then ψk is unsatisfiable in Cm and if m > k then ψk holds
at all elements in Cm.
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4.2 Proof of Lemma 4.4

We start from the following observation about chains Ck which shows that they
are very homogeneous with respect to almost future formulas. Let a ∈ P k then
there is b < a and an isomorphism from Ck to the subchains of Ck over the
interval (b,∞) which maps 〈1/2, 0, 0, . . . , 0〉 to a. Similarly, if a /∈ P k then there
is b < a and an isomorphism from Ck to the subchains of Ck over the interval
(b,∞) which maps 〈3/2, 0, 0, . . . , 0〉 to a.

This observation and the definition of almost future formulas immediately
imply the following Lemma.

Lemma 4.5. Let ϕ(x) be an almost future formula. The predicate definable by
ϕ in Ck is trivial.

Proof. Let a0 := 〈1/2, 0, 0, . . . , 0〉 and a1 := 〈3/2, 0, 0, . . . , 0〉. The above obser-
vation, invariance of formulas under isomorphisms, and the definition of almost
future formulas imply that for every almost future formula ϕ(x):

if Ck, a0 |= ϕ and Ck, a1 |= ϕ, then ϕ is equivalent to True in Ck.
if Ck, a0 |= ϕ and Ck, a1 |= ¬ϕ, then ϕ is equivalent to P (x) in Ck.
if Ck, a0 |= ¬ϕ and Ck, a1 |= ϕ, then ϕ is equivalent to ¬P (x) in Ck.
if Ck, a0 |= ¬ϕ and Ck, a1 |= ¬ϕ, then ϕ is equivalent to False in Ck. �

We introduce the notation ≡n to say that two models cannot be distinguished
by a first order sentence of quantifier depth n. More precisely, let M and M ′

be two structures of the same signature. We write M ≡n M ′ if and only if
for any sentence ϕ with qd (ϕ) ≤ n we have M |= ϕ iff M ′ |= ϕ. There are
only finitely many semantically different sentences of quantifier depth n in the
signature {<,P} (see e.g., [3]). Therefore, for every n there are finitely many
≡n-classes. Hence, by pigeon-hole principle we have1:

Lemma 4.6. For every n there is an infinite subset J(n) ⊆ N such that Cj ≡n Ci

for every j, i ∈ J(n).

Lemma 4.7. Let ϕ(x) be an almost future FOMLO formula of quantifier depth
at most n. If Cm ≡n+1 Ck then one of the following holds:

1. ϕ is equivalent to P (x) in Cm and in Ck.
2. ϕ is equivalent to ¬P (x) in Cm and in Ck.
3. ϕ is equivalent to True in Cm and in Ck.
4. ϕ is equivalent to False in Cm and in Ck.

If one of the conditions (1)-(4) holds for a formula ϕ, we say that ϕ defines the
same trivial predicate in Cm and in Ck.

Proof. By Lemma 4.5, ϕ defines a trivial predicate in every Cm. Hence, in every
Cm exactly one of the following sentences holds: ∀x

(
P (x) ↔ ϕ(x)

)
, ∀x

(¬P (x) ↔
ϕ(x)

)
, ∀xϕ(x) or ∀x¬ϕ(x). These sentences have quantifier depth n + 1. Since

Cm ≡n+1 Ck we obtain that one of (1)-(4) holds. �
1 A more detailed analysis which relies on Ehrenfeucht-Fräıssé games shows that Ci ≡n

Cn for every i ≥ n.
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Lemma 4.8. Assume that B is a set of almost future modalities definable by
FOMLO truth tables of quantifier depth at most n. If Cm ≡n+1 Ck then for every
formula ϕ ∈ TL(B), one of the following holds:

1. ϕ is equivalent to P (x) in Cm and in Ck.
2. ϕ is equivalent to ¬P (x) in Cm and in Ck.
3. ϕ is equivalent to True in Cm and in Ck.
4. ϕ is equivalent to False in Cm and in Ck.

Proof. We proceed by induction.
For the atomic formulas P , True and False the claim is obvious.
For Boolean combinations the result follows immediately from the induction

assumption.
It remains to deal with the case where ϕ = M(ϕ1, · · · , ϕl) where M is an l

place modality with almost future truth table Ψ(x, P1, · · · , Pl) of quantifier depth
n. By the inductive assumption ϕi defines the same trivial predicate Ti in Cm

and in Ck. Let ψ be obtained from Ψ when Pi are replaced by the corresponding
trivial predicate. Note that (1) ψ defines the same predicate as ϕ in Cm and in
Ck. (2) the quantifier depth of ψ is at most n and it is an almost future formula,
therefore by Lemma 4.7, ψ defines the same trivial predicate in Cm and in Ck.
Finally, (1) and (2) imply that ϕ defines the same trivial predicate in Cm and
in Ck. �

Proof. (of Lemma 4.4). Define J as J(n + 1). By Lemma 4.6 and 4.8 this J
satisfies the conclusion of Lemma 4.4. �

4.3 A Generalization

Proposition 4.1 holds even when modalities are definable in the monadic second-
order logic of order. Monadic second-order logic of order (MLO) extends first-
order monadic logic of order with second-order monadic variables X,Y,Z, . . .
that range over subsets of the domain, and allows quantification over them. It
is much more expressive than FOMLO and plays a fundamental role in Math-
ematics and Computer Science (see Gurevich’s survey [3]). An MLOformula
ϕ(x, P1, . . . , Pn) with a single free first-order variable x and with n predicate
symbols Pi is called an n-place MLOtruth table. Similar to a FOMLO truth
table, such an MLOtruth table ϕ defines an n-ary modality M. The defini-
tion of MLO future and almost future formulas is exactly like the definition
of FOMLO future and almost future formulas (Definition 3.1). Proposition 4.1
can be strengthened as follows:

Proposition 4.9. Assume that B is a set of almost future modalities definable
by MLO truth tables of quantifier depth at most n. Then, TL(B) is not expres-
sively complete for the future fragment of FOMLO.

The proof of Proposition 4.9 is almost identical to the proof of Proposition 4.1.
The only change is replace “≡n” by “≡MLO

n ”, where two structures are ≡MLO
n -

equivalent iff they satisfy the same MLO sentences of the quantifier depth n.
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Abstract. This is a survey of using Minsky machines to study algorith-
mic problems in semigroups, groups and other algebraic systems.

Keywords: Minsky machines · Word problem · Uniform word problem ·
Semigroup · Group · Identity · Variety

1 Introduction

In 1966, Yuri Gurevich [11] proved that the universal theory of finite semigroups
is undecidable. One can interpret that result in several ways. For example, it
means that given a finite number of semigroup relations ui = vi and another
relation u = v, we cannot algorithmically decide if the equality u = v holds
in every finite semigroup satisfying all the relations ui = vi. In that sense the
universal theory of finite semigroups can be called the uniform word problem of
finite semigroups. Note that individually every finite semigroup has, of course,
decidable word problem. Gurevich’s result means that there is no uniform algo-
rithm that works for all finite semigroups. That result turned out to be influential
for two reasons. First, it opened the area of studying the uniform word problem
in several classes of algebras, including semigroups and groups. Second, it was
one of the first applications of Minsky (register) machines in proving undecid-
ability of an algorithmic problem in algebra (the first result was the proof of
undecidability of exponential diophantine equations from [7]). The goal of this
paper is to survey some applications of Minsky machines to various algorithmic
problems in semigroups, groups and other types of algebras. Note that there
is some intersection of this paper with the (250-page) survey paper [18] about
algorithmic problems in varieties. But most results surveyed here are not about
varieties and are more recent than [18].
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2 Turing Machines and Minsky Machines

2.1 Turing Machines

In this paper, we shall consider several types of machines. A machine M in gen-
eral has an alphabet and a set of words in that alphabet called configurations
(by “words” we may also mean “numbers written in binary or unary” or “tuples
of numbers”). It also has a finite set of commands. Each command is a partial
injective transformation of the set of configurations. A machine is called deter-
ministic if the domains of its commands are disjoint. A machine usually has a
distinguished stop configuration, and a set I = I(M) of input configurations.

A computation of M is a finite or infinite sequence of configurations and
commands from P :

w1
θ1−→ w2

θ2−→ . . .
θl−→ wl+1, . . .

such that θi(wi) = wi+1 for every i = 1, . . . , l, . . . .
If the computation is finite and wl+1 is the last configuration, then l is called

the length of the computation. A configuration is called accepted by M if there
exists a computation connecting that configuration with the stop configuration.
The time function TM (n) of M is the minimal function such that every accepted
word of length ≤ n has an accepting computation of length ≤ TM (n).

The machine Sym(M) is made from M by adding the inverses of all com-
mands of M . Two configurations w, w′ are called equivalent, written w ≡M w′, if
there exists a computation of Sym(M) connecting these configurations. Clearly,
≡M is an equivalence relation.

The following general lemma is an easy exercise but it is very useful.

Lemma 1. Suppose that M is deterministic. Then two configurations w,w′ of
M are equivalent if and only if there exist two computations of M connecting
w,w′ with the same configuration w′′ of M .

We say that a set X of natural numbers is enumerated by a machine M if there
exists a recursive encoding μ of natural numbers by input configurations of M
such that a number u belongs to X if and only if μ(u) is accepted by M . The
set X is recognized by M if M enumerates X and, for every input configuration,
every computation starting with that configuration eventually halts (arrives at
a configuration to which no command of M is applicable).

We say that machine M ′ polynomially reduces to a machine M if there exists
a deterministic polynomial time algorithm A checking equivalence of configura-
tions of M ′ which uses an oracle checking equivalence of configurations of M .

We say that M and M ′ are polynomially equivalent if there are polynomial
reductions of M to M ′ and vice versa.

For example, a Turing machine M with K tapes consists of hardware (the
tape alphabet A = �k

i=1Ai, and the state alphabet Q = �K
i=1Qi

1) and program

1 � denotes disjoint union.
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P (the list of commands, defined below). A configuration of a Turing machine
M is a word

α1u1q1v1ω1 α2u2q2v2ω2 . . . αKuKqKvKωK

we included spaces to make the word more readable) where ui, vi are words in
Ai, qi ∈ Qi and αi, ωi are special symbols (not from A ∪ Q). A tape of the
machine is a part of the configuration, it is a subword from αi to ωi.

A command simultaneously replaces subwords aiqibi by words a′
iq

′
ib

′
i where

ai, a
′
i, are either letters from Ai ∪ {αi} or empty, bi, b

′
i are either letters from

Ai ∪ {ωi} or empty. A command cannot insert or erase αi or ωi, so if, say,
ai = αi, then a′

i = αi. Note that with every command θ one can consider the
inverse command θ−1 which undoes what θ does.

For the Turing machine we choose stop states q0i in each Qi. Then a configura-
tion w is accepted if there exists a computation starting with w and ending with
a configuration where all state symbols are q0i and all tapes are empty (which is
the stop configuration for the Turing machine). Also we choose start states q1i
in each Qi. Then an input configuration corresponding to a word u over A1 is a
configuration inp(u) of the form

α1uq11ω1 α2q
1
2ω2 . . . αKq1KωK .

We say that a word u over A1 is accepted by M if the configuration inp(u) is
accepted. The set of all words accepted by M is called the language accepted by M .

2.2 Minsky Machines

The hardware of a K-glass Minsky machine, K ≥ 2, consists of K glasses con-
taining coins. We assume that these glasses are of infinite height. The machine
can add a coin to a glass, and remove a coin from a glass (provided the glass is
not empty). The number of coins in the glass #k is denoted by εk.

In the program of every Minsky machine, the commands are numbered, com-
mand #1 is the start command, command #0 is the stop command. A configu-
ration of a 2-glass Minsky machine is a triple of numbers (i;m,n) where i is the
number of command being executed, m is the number of coins in the first glass,
n is the number of coins in the second glass. The start configurations have the
form (1;m,n) and the stop configurations have the form (0;m,n).

A command #i, i ≥ 1, has one of the following forms:

– Put a coin in the glass #k and go to command #j. We shall encode this
command by

Add(k); j;

– If the glass #k is not empty then take a coin from it and go to command #j.
This command is encoded by

εk > 0 → Sub(k); j;
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– If the glass #k is empty, then go to instruction #j. This command is encoded by

εk = 0 → j;

Note that here j may be equal to 0, but there is no instruction associated
with command #0.

Remark 2. This defines deterministic Minsky machines. We will also need non-
deterministic Minsky machines. Those will have two or more commands with
the same number.

The proof of Part (a) of the following theorem can be found in Minsky [26]
(see also Malcev [24]). The proof of Part (b) can be extracted from the proof in
[24,26].

Theorem 3. Let X be a recursively enumerable set of natural numbers. Then
the following holds:

(a) there exists a 2-glass deterministic Minsky machine M which satisfy the
following property: For every m ∈ N, M begins its work in configuration
(1; 2m, 0) and halts in configuration (0; 0, 0) if and only if m ∈ X, and it
works forever if m 	∈ X.

(b) Every computation of M starting with a configuration c empties each glass
after at most O(|c|) steps.

3 The Three Main Semigroups Simulating
Minsky Machines

There are three basic ways to interpret 2-glass Minsky machines in semigroups.
They correspond to the three ways to put two glasses and the machine head (the
one that counts the commands and puts coins in the glasses) on the line: the
head can be between two glasses, to the left of the glasses and to the right of
the glasses. If we imagine the head to have a short hand used to put the coins in
glasses, then in the last two cases we should be able to permute the two glasses:
if the counter wants to put a coin in, say, glass #2, and glass #1 is between the
head and glass #2, then first the two glasses are permuted.

The three semigroups corresponding to a 2-glass Minsky machine M are
S1(M),

−→
S2(M) and

←−
S2(M). The last two semigroups are anti-isomorphic, so we

only define S1(M) and
−→
S2(M). Each of the three semigroups has zero 0.

Let M be a Minsky machine with 2 glasses and commands ##1, 2, ..., N, 0.
Then both semigroups S1(M) and

−→
S2(M)are generated by the elements q0, q1,

. . . , qN and {ai, Ai, i = 1, 2}. Here ai play the role of coins in glass #i, qi play
the role of numbers of commands (i.e., the states of the head), and Ai play the
role of the bottoms of glasses (these are needed in order to be able to check if a
glass is empty). The set of defining relations of S1(M) and

−→
S2(M) contains the

following relations corresponding to the commands of M .
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Command # i of M, i ≥ 1 Relation of S1(M) Relation of
−→
S2(M)

Add(1); j qi = a1qj qi = qja1

Add(2); j qi = qja2 qi = qja2

ε1 > 0 → Sub(1); j a1qi = qj qia1 = qj

ε2 > 0 → Sub(2); j qia2 = qj qia2 = qj

ε1 = 0 → j A1qi = A1qj qiA1 = qjA1

ε2 = 0 → j qiA2 = qjA2 qiA2 = qiA2

These will be called the Minsky relations. The semigroups S1(M),
−→
S2(M) also

have the following auxiliary relation.

The Auxiliary Relations of S1(M):

– All 2-letter words in the generators of S1(M) that are not subwords of the
words A1a

m
1 qia

n
2A2, m,n ∈ N, i = 1, ..., N , are equal to 0;

– q0 = 0.

The Auxiliary Relations of
−→
S2(M):

– (Glass permuting relations) each letter in {a1, A1} commutes with each letter
in {a2, A2};

– All 2-letterwords in generators of
−→
S2(M) that are not subwords of thewords that

are equal to qia
m
1 A1a

n
2A2 modulo the glass permuting relations are equal to 0;

– q0 = 0.

A configuration (i;m,n) of the Minsky machine M corresponds to the ele-
ment w1(i;m,n) = A1a

m
1 qia

n
2A2 in S1(M) and to the element w2(i;m,n) =

qia
m
1 A1a

n
2A2 in

−→
S2(M).

Remark 4. The auxiliary relations ensure that every word in the generators of
S1(M) (resp. S2(M)) that is not equal to 0 is a subword of a word of the form
w1(i;m,n) (resp. a subword of a word that is equal to one of the words w2(i;m,n)
modulo the glass permuting relations).

Remark 5. Thus the semigroups S1(M),
−→
S2(M),

←−
S2(M) basically consist of the

subwords of the words corresponding to the configurations of M . This is a cru-
cial property of Minsky machines which makes them much better suited for
semigroup simulation than the general Turing machines.

4 Varieties of Semigroups and the Word Problem

The proof of the following statement is straightforward, it is discussed in [18].

Theorem 6 (See [18]). Let M be a Minsky machine. For every two configura-
tions (i;m,n) and (i′;m′, n′) the words ws(i;m,n) and ws(i′,m′, n′), s = 1, 2, 3
are equal in S1(M) (resp.

−→
S2(M) or

←−
S2(M)) if and only if the configurations

are equivalent. In particular, if M has undecidable halting problem, then the
word problem in each of the three semigroups associated with M is undecidable.
Moreover, the equality to 0 is undecidable in these semigroups.
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Of course constructing a finitely presented semigroup with undecidable word
problem (first done by Markov and Post, see [24]) is easy enough using the ordi-
nary Turing machines. The advantage of Minsky machines is that the semigroups
S1(M),

−→
S2(M),

←−
S2(M) are in some sense “small”.

For example while examples corresponding to the ordinary Turing machines
usually contain non-commutative free subsemigroups, and hence do not satisfy
non-trivial identities (laws), it is easy to see that each of the three semigroups
S1(M),

−→
S2(M),

←−
S2(M) satisfies a non-trivial identity. For example, each of them

satisfies x2y2 = y2x2. This follows immediately from Remark 4 and the auxiliary
defining relations of these semigroups. In fact, one can describe all identities
satisfied by these semigroups [29].

In particular, the following theorem holds. Let eij denote the 2 × 2-matrix
unit with (i, j)-entry 1 and all other entries 0. Let

−→
P denote the three element

semigroup {e11, e12, 0},
←−
P denote the three-element semigroup {e11, e21, 0} and

T denote the four element semigroup {e11, e12, e22, 0}. For every semigroup S let
S1 be the semigroup S with an identity element formally adjoined. For example
P 1 is the four element semigroup {1, e11, e12, 0}. Let N be the additive semigroup
of natural numbers. It is well-known and trivial that an identity u = v is true in
N if and only if it is balanced, that is if every letter occurs the same number of
times in u and in v.

Theorem 7 (Sapir, [29]). For every Minsky machine M the variety generated
by S1(M), i.e., the smallest class of semigroups containing S1(M) and given by
identities coincides with the variety M1 generated by the direct product T × N.
The variety generated by

−→
S2(M) coincides with the variety

−→M2 generated by←−
P ×−→

P 1 ×N, and the variety generated by
←−
S2(M) coincides with the variety

←−M2

generated by
←−
P 1 × −→

P × N (thus these varieties do not depend on M).

Moreover Minsky machines and the easy construction above proved to be the
universal tool in dealing with the word problem in semigroups satisfying identi-
ties. In particular, one can completely describe non-periodic varieties containing
finitely presented semigroups with undecidable word problem.

We say that a finitely generated semigroup S is finitely presented inside a
variety V if it is defined by the identities of V plus a finite number of relations.
We shall need the following sequence of Z imin words:

Z1 = x1, ..., Zn+1 = Znxn+1Zn.

This sequence of words plays an important role in combinatorial algebra (see
[18], [33]). We say that a word W is not an isoterm for an identity u = v if for
some substitution φ of words for letters of u, v we have that φ(u) 	= φ(v) but W
contains either φ(u) or φ(v) as a subword. For example, the word ababbab is not
an isoterm for the identity x2 = x3 because the word contains a subword abab
which is equal to φ(x2) under the substitution x → ab, and φ(x2) 	= φ(x3). But
it is an isoterm for the identity x3 = x4 because it does not contain any subword
of the form u3 or u4.
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Theorem 8 (Sapir, [29]). Let V be a variety of semigroups defined by identities
ui = vi in at most n variables and non-periodic (i.e., containing the semigroup N,
or, equivalently, every identity ui = vi is balanced). Then the following conditions
are equivalent.

(1) Every semigroup that is finitely presented inside V has decidable word
problem.

(2) Every semigroup that is finitely presented inside V has decidable elementary
theory.

(3) Every semigroup that is finitely presented inside V is faithfully representable
by matrices over a field.

(4) The variety does not contain varieties M1,
−→M2,

←−M2 and the word Zn+1 is
an isoterm for every identity ui = vi.

As mentioned in [29], Property (4) of Theorem 8 is algorithmically verifiable
given a finite number of identities ui = vi.

5 Gurevich’s Theorem. The Uniform Word Problem
for Finite Semigroups

Let L be a finite conjunction of equalities u = v, where u, v are words in some
alphabet X. Let U, V be two words in X. Then the universal formula L → U = V
is called a quasi-identity. We say that the uniform word problem is solvable in
a class of semigroups V if there exists algorithm that, given a quasi-identity θ,
decides whether θ holds in V. Clearly, the uniform word problem is solvable if V
consists of finitely many finite semigroups. For every variety V of semigroups Vfin

denotes the set of finite semigroups from V. Yu. Gurevich proved [11] that if V
is the variety of all semigroups, then the uniform word problem is not decidable
in Vfin. Generalizing that result, we completely described in [29,30] all finitely
based varieties V such that the uniform word problem is decidable in Vfin.

Theorem 9 (Sapir, [30]). For every finite set of identities Σ in n variables
defining a variety V, the following conditions are equivalent:

(1) The uniform word problem is decidable in Vfin.
(2) The word Zn+1 is not an isoterm for Σ and either V is periodic (i.e., does

not contain N, or, equivalently Σ contains a non-balanced identity), or does
not contain any of the semigroups T ,

−→
P 1 × ←−

P and
−→
P × ←−

P 1.

The proof of Theorem 9 proceeds as follows. (1) → (2). Suppose that the
uniform word problem is decidable in Vfin.

First suppose that V contains one of the varieties M1,
−→M2,

←−M2. In order to
get a contradiction, consider the following modification of semigroups S1(M),−→
S2(M),

←−
S2(M). We add three letters c, c′, e, C to the generating set of each

semigroup. The construction below uses ideas from [11] and is somewhat easier
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than a construction from [29]. The Minsky relations of the semigroups S′
1(M),−→

S
′
2 (M),

←−
S

′
2 (M) are defined as follows.

Command # i of M, i ≥ 1 Relation of S′
1(M) Relation of

−→
S

′
2 (M)

Add(1); j qi = a1qj qi = qja1

Add(2); j qi = qja2 qi = qja2

ε1 = 1 → Sub(1); j A1a1w1 = cA1q1 q1a1A1 = q1A1c
ε1 ≥ 2 → Sub(1); j a1qi = qj qia1 = qj

ε2 > 0 → Sub(2); j qia2 = qj qia2 = qj

ε1 = 0 → j A1qi = A1qj qiA1 = qjA1

ε2 = 0 → j qiA2 = qjA2 qiA2 = qiA2

One can also view this modification as a modification of the machine M : we
add a new counter glass which “counts” how many times during a computation
the first glass becomes empty: every time we remove the only remaining coin
from the first glass, we add a coin in the new glass.

The Auxiliary Relations of S′
1(M) are

– (Counter relations) cc′ = c′c = e, ec = c = ce, ec′ = c′e = c′, that is the
subsemigroup generated by c, c′ is a subgroup isomorphic to the group Z with
identity element e.

– Every 2-letter word in the generators of S′
1(M) which is not a subword of a

word that is equal to a word of the form CckA1a
m
1 qia

n
2A2 modulo the counter

relations is equal to 0.
– CeA1qi = 0 for every i.

The Auxiliary Relations of
−→
S

′
2 (M) are

– (Counter relation) cc′ = c′c = e, ec = c = ce, ec′ = c′e = c′, that is the
subsemigroup generated by c, c′ is a subgroup isomorphic to Z.

– (Glass permuting relations) Every letter from {a1, A1} commutes with every
letter from {a2, A2}, every letter from {a1, a2, A1, A2} commutes with every
letter from {c, c′, e, C}

– Every 2-letter word in the generators of S′
1(M) which is not a subword of a

word that is equal to a word of the form qia
m
1 A1a

n
2A2c

kC modulo the Counter
and Glass permuting relations is equal to 0.

Now it is proved in [29] that S1 = S′
1(M) belongs to the variety M1, and

S2 =
−→
S

′
2 (M) belongs to the variety M2 =

−→M2 generated by
←−
P × −→

P 1 × N.
Let Li, i = 1, 2, be the conjunction of the defining relations of Si. For every
input configuration (1;m,n) of M let W1(1;m,n) be the word CA1a

m
1 q1a

n
2A2

and W2(1;m,n) = q1a
m
1 A1a

n
2A2C. Consider the quasi-identity Li → Wi = 0.

Suppose that a configuration (1; 2m, 0) is accepted by M . Then it is proved in
[30] that there are only finitely many elements in Si that divide the element
Wi(1; 2m, 0) (recall that we say that an element b divides element a if for some
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x1, x2 we have a = x1bx2). Consider the set of all elements of Si that do not
divide Wi = Wi(1; 2m, 0). This set is an ideal Ji of Si, not containing Wi. Con-
sider the Rees quotient Fi = Si/J . It is a finite semigroup and it belongs to Mi

as a quotient of Si. We can assume that Fi is generated by the same generating
set as Si. Therefore Fi satisfies Li. But Wi 	= 0 in Fi because Wi 	∈ J . Thus a
finite semigroup in Mi does not satisfy the quasi-identity

Li → Wi(1; 2m, 0) = 0.

On the other hand, suppose that M works indefinitely long starting with the
configuration (1; 2m, 0). Then by Part (b) of Theorem 3 the word Wi(1; 2m, 0) is
equal in Si to words of the form CcsA1qta

n
2A2 for arbitrary s. Let Ri be a periodic

semigroup satisfying the formula Li for some interpretation of its variables in Ri.
In other words, let Ri be a quotient of Si generated by the same generating set
as Si. Then Ri satisfies the relations of the form Wi(1; 2m, 0) = CcsA1qta

n
2A2

for every s. Since Ri is periodic, cs = c2s for some s. Since the subsemigroup
generated by c, c′ in Si is a group (isomorphic to Z) with identity element e, the
subsemigroup generated by c in Ri is a finite cyclic group, and so cs = e for
some s. But CeA1qt = 0 in S1, and hence in Ri. Therefore we can conclude that
the quasi-identity Li → Wi(1; 2m, 0) = 0 holds in every periodic semigroup.

Since there exists a Minsky machine satisfying the conditions of Theorem 3
for which the language of accepted input configurations is not recursive, there is
no algorithm separating the quasi-identities thatfail in some finite semigroup of
V from the set of quasi-identities that hold in all periodic semigroups. Thus the
uniform word problem in V is undecidable, a contradiction.

Now suppose that Zn+1 is an isoterm for identities from Σ. Then it is proved
in [28] (see also [33]) that there exist a finite alphabet x1, ..., xk and a substitution
φ : xi �→ φ(xi) where φ(xi) is a word in {x1, ..., xk}, such that φs(x1) is an isoterm
for every identity from Σ for every s. In that case, we construct in [30] another
semigroup S(M) simulating arbitrary 2-glass Minsky machine. In that semigroup
the number s of coins in glass #j is simulated not by the power as

j (as in the
constructions above) but by the word φs(x1). As a result the words corresponding
to configurations of M are isoterms of the identities of Σ, and the situation is
similar to the situation with the variety of all semigroups (since the identities
of the variety cannot “mix up” the words corresponding to configurations of
the Minsky machine). Of course replacing as

i by φs(x1) costs us something. For
example, to simulate one command of M , we need several relations of S(M), but
it can be done, see [30]. This proves that in the case when Zn+1 is not an isoterm
for Σ, the uniform word problem in V is also undecidable, which concludes the
proof of implication (1) → (2) in Theorem 9.

(2) → (1). Suppose that the conditions of (2) hold. Then either V is periodic
or it contains N. If it is periodic, then we proved in [31] that the restricted
Burnside property holds in V. This means that for every natural number k ≥
1 there are only finitely many (effectively computable) finite semigroups in V
with at most k generators. To prove that, we were using the celebrated positive
solution of the restricted Burnside problem for groups by Zelmanov [35,36], and
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our results on Burnside problems in semigroup varieties [28]. This property easily
implies solvability of the uniform word problem in Vfin.

If V is not periodic and contains none of the three semigroups listed in Part
(2) of the theorem, then by Theorem 8 every semigroup that is finitely presented
in V is faithfully represented by matrices over a field, hence residually finite [25].
This also implies solvability of the uniform word problem in Vfin. Indeed, in order
to check if a quasi-identity L → W = W ′ holds in Vfin, consider the semigroup E
defined by the relations from L in V. If W 	= W ′ in that semigroup, then W 	= W ′

in some finite quotient E′ of E. Thus E′ does not satisfy L → W = W ′. Hence
L → W = W ′ does not hold in Vfin. On the other hand, if W = W ′ holds in E,
then this equality holds in every homomorphic image of E, hence L → W = W ′

holds in Vfin. Since the word problem is decidable in E by Theorem 8, we can
decide whether or not W = W ′ in E, and hence whether or not L → W = W ′

holds in Vfin.

6 The Uniform Word Problem for Finite Groups

6.1 Slobodskoi’s Theorem

The first simulation of Minsky machines in groups was done by Slobodskoi [34].
This is not as easy as in the case of semigroups. The main problem is that we
cannot simulate a command of a Minsky machine, say,

i : Add(1); j

by a substitution qi = qja1 because then the group would collapse. For example,
if i = j, then we would have qi = qia1 and a1 = 1. Thus the idea is to abandon
the product operation in the group and use some other derived operation, say,
commutator. Thus if ∗ is the new binary operation, we can simulate the command
of a Minsky machine by qi = qj ∗ ai and since ∗ does not necessarily satisfy the
cancellation property, we avoid at least immediate collapse of the group. But
then several new problems occur. For example ∗ will not be associative, and so
we would have to interpret a configuration (i;m,n) of a Minsky machine by a
nested word like (...(qi ∗ a1)...) ∗ a1) ∗ A1).... In this case, it may be difficult to
simulate permutation of glasses. These difficulties and ways to resolve them are
described in details in [18]. Slobodskoi proved

Theorem 10 (Slobodskoi, [34]). The uniform word problem is undecidable
in the class of finite groups.

Several generalizations of Theorem 10 were then proved by Kharlampovich (see
[16,17]); each time Minsky machines were used. Finally in [19], we proved the
following result, again using Minsky machines.

Theorem 11. Let G1 be the set of finite groups G which have a normal series
N1�N2�G such that N1 and N2 are Abelian groups of the same prime exponent
p, and G/N2 is Abelian. Let G2 be the set of finite groups G with normal series
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N1 �N2 �G such that N1 is contained in the center of G, N2/N1 is nilpotent of
class at most 5, and G/N2 is Abelian. Let G = G1 ∩ G2. Then the uniform word
problem is undecidable in any set of finite groups containing G.

6.2 Some Applications of Slobodskoi’s Theorem

Embeddings of Finite Semigroups into Simple Semigroups. A semi-
group with 0 is called 0-simple if it does not have any ideals except 0 and itself
(i.e., every two non-zero elements divide each other). These semigroups play
very important role in the theory of semigroups being the building blocks from
which all other semigroups are constructed. Finite 0-simple semigroups have very
explicit structure (proved by Sushkevich and Rees independently [4]). For every
such semigroup S there exist a (finite) group G and an m × n-matrix P where
every entry is an element of G or 0. The elements of S are 0 and all triples (i, g, j)
where 1 ≤ i ≤ m, 1 ≤ j ≤ n, g ∈ G. The product (i, g, j)(i′, g′, j′) is defined as 0 if
P (i′, j) = 0 and (i, gP (i′, j)g′, j′) if P (i′, j) 	= 0. Since finite 0-simple semigroups
are so easy, it would be natural to guess that the set of their subsemigroups is
also easy. That was proved not to be the case by Kublanovsky (first published
in [12]). For every finite partial group G, that is a finite set with a partial oper-
ation ·, he constructed a finite effectively computable set of 4-nilpotent finite
semigroups Ni(G). This set satisfies the property that G embeds into a group
if and only if one of the Ni(G) embeds into a finite 0-simple semigroup. The
semigroups Ni(G) are constructed as follows. We can assume G contains the
identity element, every element of G has an inverse, and for every a, b, c ∈ G we
have (a · b) · c = a · (b · c) provided each of the products involved in that equality
is defined. Indeed, otherwise G cannot be embeddable into a group. Consider all
(finitely many) partial groups Gi such that

– G ≤ Gi;
– Gi = G · G · G.

Then Ni(G) = N(Gi) is the semigroup defined on the set

({1} × G × {2}) ∪ ({2} × G × {3}) ∪ ({3} × G × {4})
∪({1} × (G · G) × {3}) ∪ ({2} × (G · G) × {4}) ∪ {1} × Gi × {4} ∪ {0}

with the operation (i, u, j)(j, v, k) = (i, u ·v, k) if the right hand side is in Ni(G)\
{0} or 0 otherwise (that construction uses the idea of split systems from my
undergraduate diploma thesis [27]).

It is well known [8] that the problem whether a finite partial group embeds
into a finite group is decidable if and only if the uniform word problem for finite
groups is decidable. Thus Slobodskoi’s Theorem 10 implies

Theorem 12 (Kublanovsky [12]). The set of (4-nipotent) subsemigroups of
finite 0-simple semigroups is not recursive.
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Equations over Finite Semigroups, the Rhodes’ Problem. Let S be a
finite semigroup, X = {x1, ..., xn} be a set of variables. Let ui, vi be words in
S∪X. Then the set of equalities ui = vi is called a system of equations over S. We
say that a system of equations over S is solvable if there exists a finite semigroup
T ≥ S and a map X → T which makes all equalities ui = vi true in T .

For example, solvability of the equation a = x1bx2 (a, b ∈ S) means that b
divides a in a finite semigroup containing S. The problem of eventual solvability
of that equation was known as the Rhodes problem since the 60s. Similar prob-
lems were known to be decidable (Lyapin [22]). Rhodes’ problem was believed
to be decidable also, and some partial results in that direction were proved.
For example, Hall and Putcha [13] proved that the solvability of that equation
over S is decidable provided a and b are regular elements. Nevertheless, using
Slobodskoi’s result and split systems, we proved

Theorem 13 (Kublanovsky, Sapir [20]). (i) There is no algorithm to decide,
given a finite 4-nilpotent semigroup S and two elements a, b in S, whether there
exists a bigger finite semigroup T > S such that a = x1bx2 for some x1, x2 ∈ T .

(ii) There is no algorithm to decide, given a finite 4-nilpotent semigroup S
and two elements a, b in S, whether there exists a bigger finite semigroup T > S
such that a = x1bx2 and b = x′

1ax′
2 for some x1, x

′
1, x2, x

′
2 ∈ T .

Similar problems turned out to be undecidable for finite associative rings as well.

Profinite Groups and the Restricted Burnside Problem for General
Algebras. Recently Theorem 10 found several interesting and unexpected appli-
cations in the theory of profinite groups. In particular, Bridson and Wilton
proved.

Theorem 14 (Bridson, Wilton [2]). There are recursive sequences of finite
presentations for residually finite groups Gn and Γn with explicit monomor-
phisms un : Gn ↪→ Γn such that (1) the profinite completions Ĝn and Γ̂n

are isomorphic if and only if the induced map ûn is an isomorphism; (2) ûn

is an isomorphism if and only if un is surjective; and (3) the set {n ∈ N |
Ĝn is not isomorphic to Γ̂n} is recursively enumerable but not recursive.

They also applied Slobodskoi’s theorem to prove

Theorem 15 (Bridson, Wilton [3]). There is no algorithm which, given a
finite presentation of a group G decides if G has only finitely many finite quo-
tients.

That result, in turn, was used in [33] to prove that there is no algorithm which,
given a finite set of identities of general algebras, decides whether the restricted
Burnside property is true in the variety defined by these identities. More precisely
we proved

Theorem 16 (Sapir, [33]). There is no algorithm to decide, given a finite set
of identities of some type, whether for every n there are only finitely many finite
n-generated algebras satisfying these identities.
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7 Other Algorithmic Applications of Minsky Machines

Historically the first application of Minsky (register) machines was the result
by Davis, Putnam and Robinson [7] of unsolvability exponential diophantine
equations: they associated an exponential diophantine equation D(M) to every
Minsky machine and its configuration (1;m, 0), and then proved that M accepts
the configuration (1;m, 0) if and only if D(M) has an integer solution. This
result turned out to be the first major step in solving Hilbert’s 10th problem.

7.1 Collatz Type Problems

A probably lesser known application of Minsky machines is the John Conway’s
version of Collatz problem [5]. Recall that Collatz problem concerns with the
function κ : N → N that takes every even number n to n/2 and every odd
number n to 3n + 1. The problem is whether for every number n, κs(n) = 1 for
some s. Conway generalised this problem as follows. Let κ be a piece-wise linear
function N → N with finitely many pieces. Can we decide, given n ∈ N, whether
κs(n) = 1 for some s?

Conway [5] showed that the answer is negative even if we assume that the
linear functions are just dilations (i.e., linear functions without the translation
part). A simulation of Minsky machines is in that case not difficult. Let M
be a 2-glass Minsky machine with commands ##1, 2, ..., N, 0. We encode every
configuration (i;m,n) of M by the number pi2m3n where pi is the i + 3’d prime
(that is p0 = 5, p1 = 7, etc.). Commands of M are then encoded as pieces of the
piece-wise dilation function κ:

Command # i of M value of κ(n) condition on n

Add(1); j 2pj

pi
n pi divides n

Add(2); j 3pj

pi
n pi divides n

ε1 > 0 → Sub(1); j pj

2pi
n 2pi divides n

ε2 > 0 → Sub(2); j pj

3pi
3pi divides n

ε1 = 0 → j
pj

pi
n pi divides n but 2 does not divide n

ε2 = 0 → j
pj

pi
n pi divides n but 3 does not divide n

Stop (i = 0) 1
5n n = 5

In all other cases (say, when none of pi divides n), we set κ(n) = n. Then it
is easy to show that for n = 7 · 2m there exists s such that κs(n) = 1 if and only
if the configuration (1;m, 0) is accepted by M , and Conway’s statement follows
from Theorem 3.

7.2 Amalgams of Finite Semigroups

Let D and E be two semigroups generated by sets X and Y respectively. Let
U = X ∩ Y , and the subsemigroups generated by U in D and in E coincide.
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Then we say that D ∪〈U〉 E is an amalgam of the semigroups D and E with
amalamated subsemigroup 〈U〉. The corresponding amalgamated free product is
the semigroup defined by the generating set X ∪Y and all relations of D and E.

It is well known that any amalgam of two finite groups is embeddable into
a group [23]. Moreover the free product with amalgamation of two finite groups
and in general the fundamental group of any graph of finite groups has a free
subgroup of finite index (Karras, Pietrowski, Solitar, [15]) so it is residually
finite. Hence it has solvable word problem and any amalgam of finite groups is
embeddable into a finite group. The situation with semigroup amalgams is quite
different, and there are many papers that tried to clarify the situation (see the
introduction of [32]). In some sense these efforts were finalized by two results
from [32] (very similar proofs of Parts (b), and (c) were obtained independently
and almost simultaneously by Jackson [14]):

Theorem 17 (Sapir, [32]). (a) There exists an amalgam of two finite semi-
groups such that the word problem is undecidable in the corresponding free prod-
uct with amalgamation and the amalgam embeds in the amalgamated free product.

(b) The problem of whether an amalgam of two finite semigroups is embed-
dable into a semigroup is undecidable.

(c) The problem of whether an amalgam of two finite semigroups is embed-
dable into a finite semigroup is undecidable.

The proofs of Parts (b), (c) uses Slobodskoi’s Theorem 10 (and hence, implicitly,
Minsky machines). The proof of Part (a) of Theorem 17 provides a simulation of
a Minsky machine M with N + 1 commands ##1, ...., N, 0 in an amalgamated
product of two finite (even nilpotent) semigroups D(M) and E(M) described as
follows.

First let us describe the generating sets of D(M) and E(M). The intersection
of these generating sets is the set U(M) which consists of 0, q0, q1, ui,j , i =
0, ..., N , j = 1, 2. The generator 0 acts as zero in both D(M) and E(M). The
semigroup D(M) is generated by the union of the set {a, b̄, qi, pi | i = 0, . . . , N}
and the set U ; E(M) is generated by the union of the set {A, b, ā, B} and U .

We shall see that the set U(M) is in fact a subsemigroup with zero product:
the product of every two elements in U(M) is equal to 0. The other relations
of D(M) and E(M) are not as transparent and are much less transparent than
in the cases considered above, so we start with explaining how these relations
simulate the Minsky machine.

The word in the amalgamated free product D(M) ∗U(M) E(M) that corre-
sponds to a configuration (i;m,n) of the machine M is

W (i;m,n) = A(ab)mqi(āb̄)nB.

Thus A,B correspond to the bottoms of the two glasses, (ab)m simulates the
coins in the first glass, (āb̄)n simulates the coins in the second glass.

Suppose that the ith command of M adds a coin in the first glass. Then first
we replace qi by aui,1pi using a relation of D(M). Then using a relation of E(M)
we replace ui,1 by bui,2. As a result the word A(ab)mqi(āb̄)nB transforms into
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A(ab)m+1ui,2pi(āb̄)nB. Finally using a relation of D(M) we replace ui,2pi by qj ,
and we produce the word W (j;m + 1, n) as desired. Other commands of M are
simulated in a similar manner.

Here is the list of Minsky relations of semigroups D(M), E(M):

Command # i of M relation in D(M) relation in E(M)
Add(1); j qi = aui,1pi, ui,1 = bui,2

ui,2pi = qj

Add(2); j qi = piui,1ā ui,1 = ui,2b̄
piui,2 = qj

ε1 > 0 → Sub(1); j qi = ui,1pi bui,1 = ui,2

aui,2pi = qj

ε2 > 0 → Sub(2); j qi = piui,1 ui,1ā = ui,2

piui,2b̄ = qj

ε1 = 0 → j qi = ui,1pi Aui,1 = Au1,2

u1,2pi = qj

ε2 = 0 → j qi = piui,1 ui,1B = ui,2B
piui,2 = qj

We also add to D(M) (resp. E(M)) all relations of the form w = 0 where w is
any word in generators of D(M) (resp. E(M)) which is not a subword of any word
participating in the Minsky relations, or the words Aq1B and Aq0B. For example,
aā = aqi = qiā = 0 in D(M), Ab = AB = 0 in E(M). Thus, in particular, U(M)
is indeed the semigroup with zero product, and both semigroups D(M) and
E(M) are 4-nilpotent and finite.

The proof that the amalgamated product R of D(M) and E(M) simulates
M proceeds as follow. First we prove that if two configurations (i;m,n) and
(i′;m′, n′) of M are equivalent, then the corresponding words W (i;m,n) and
W (i′;m′, n′) are equal in R. Then we notice that the presentation of R is con-
fluent [33]. Hence if two words W,W ′ are equal in R, then there exist two
sequences of applications of relations of R from left to right, one starting at
W , another starting at W ′ which end at the same word W ′′. This implies that if
W (i;m,n) = W (i′;m′, n′) in R, then the configurations (i;m,n) and (i′;m′, n′)
of the Minsky machine M are equivalent.

7.3 Complicated Residually Finite Semigroups

paginationIt is well known that finitely presented residually finite algebras (of
finite signature) are much simpler algorithmically than arbitrary finitely pre-
sented algebras. For example, the word problem in every such algebra is decid-
able (see McKinsey’s algorithm in [25]). Moreover the most “common” residually
finite algebras, say, the linear groups over fields, are algorithmically “tame”: the
word problem in any linear group is decidable in polynomial time and even
log-space [21]. Surprisingly till [19] not much was known about possible com-
plexity of arbitrary finitely presented residually finite algebras, even in the cases
of semigroups and groups.
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Recall that the McKinsey’s algorithm for solving the word problem in a
finitely presented algebra A consists of two competing parts running in parallel.
The first part enumerates all finite homomorphic factors of A and checks if the
images of two elements a, b are different in one of these factors. The second part
enumerates all consequences of the defining relations of A. If a 	= b in A, then
the first part will eventually “win”, if a = b, then the second part “wins”. In
either case we will eventually know whether or not a = b in A.

Thus there are three ways to estimate the complexity of a residually finite
algebra:

(1) The computational complexity of the word problem.
(2) The depth function ρA(n) which is the smallest function N → N such that

given two words u, v 2 of size ≤ n in generators of A, such that u 	= v in A,
there exists a homomorphism from A onto a finite algebra of size at most
ρA(n) which separates u and v.

(3) The Dehn function dA(n) which is the smallest function N → N such that,
given two words u, v of size ≤ n in generators of A, such that u = v in A one
needs at most dA(n) applications of relations of A to deduce the equality
u = v.

Note that the Dehn function and the depth function are two of the most
important asymptotic characterics of an algebra. Both functions are recursive
for every finitely presented residually finite algebra (of finite signature). Gersten
[9,10] asked for a bound of the Dehn function of a finitely presented linear group.
The answer is still not known. The depth function of groups was first studied
by Bou-Rabee [1]. It is known (and easy) that for linear groups, it is at most
polynomial. In fact till [19], no finitely presented group or semigroup with Dehn
function or depth function greater than an exponent was known.

The next result from [19] shows that there are finitely presented residually
finite semigroups and groups with arbitrary high complexity in each of the three
ways to measure the complexity, and also semigroups and groups with word
problem in P but arbitrary large (recursive) Dehn and depth functions.

Theorem 18. Let f : N → N be any recursive function. Then
(i) there is a residually finite finitely presented group that is solvable of class

3 with Dehn function dG such that dG � f . In addition, one can make the group
G such that the time complexity of the word problem in G is at least as large as
any given recursive function or one can make G such that the word problem is
in polynomial time.

(ii) there is a residually finite finitely presented solvable of class 3 group G
with depth function greater than f . In addition, one can make the group G such
that the word problem in G is at least as hard as the membership problem in a

2 By a “word” I understand any term involving operations of A. It is an ordinary word
in the case of semigroups, a word possibly containing inverses of generators in the
case of groups, a non-commutative polynomial in the case of rings, etc. The size of
a word is the number of symbols needed to write it.
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given recursive set of natural numbers Z or one can make G such that the word
problem is in polynomial time.

Here for two functions f, g : N → N we write f � g if for some constants
c1, c2, c3 ≥ 0, we have f(n) ≥ c1g(c2n) − c3 for all n.

To illustrate the proof of Theorem 18, we will present a construction of
complicated residually finite semigroups. In the case of groups, the construction
is based on a similar idea but is technically much more complicated.

We start with a deterministic Turing machine TM that recognizes a recur-
sive set Z of natural numbers. By [6], we can assume that TM is universally
halting. This means that TM has only finite number of computations start-
ing from any given configuration. We modify TM to obtain a Sym-universally
halting machine TM ′. That means that the (non-deterministic) Turing machine
Sym(TM ′) is universally halting. The construction from [24] (used to prove
Theorem 3 above) produces then a Sym-universally halting 3-glass Minsky
machine M3 that recognizes the set Z. One can easily modify the construc-
tion of the semigroup

−→
S2 above to produce a finitely presented semigroup

−→
S3

that simulates the 3-glass Minsky machine M3. As above every word in the
generators of

−→
S3 which is non-zero in

−→
S3 is a subword of a word W3(i;m,n, k)

corresponding to a configuration (i;m,n, k) of M3 modulo the glass permuting
relations. The semigroup

−→
S3 is residually finite. Indeed, take any two words u, v

in the generators of
−→
S3, such that u 	= v in

−→
S3. We can assume that u 	= 0 in

−→
S3.

Then since M3 is Sym-universally halting, there are only finitely many elements
of

−→
S3 that divide u. It is not difficult to prove that if v divides u, then v 	= 0 in−→

S3 and u does not divide v. Thus in that case we can interchange u and v. So
we can assume that v does not divide u in

−→
S3. As above take the ideal J of all

elements in
−→
S3 that do not divide u. Then the Rees quotient

−→
S3/J is finite and

u 	= v in the quotient which proves residual finiteness.
Now the word problem in

−→
S3 polynomially reduces to the configuration equiv-

alence problem for M3. It is at least as hard as the membership problem for Z,
and in fact by carefully choosing TM ′, we can make that problem polynomi-
ally equivalent to the membership problem for Z. Therefore we can make the
complexity of the word problem in

−→
S3 as hard or as easy (i.e., at most polyno-

mial time) as we want. The Dehn function of
−→
S3 is at least as large as the time

function of TM ′ (in fact much larger). Even in the case when Z is in P , we can
construct a Turing machine recognizing Z and with arbitrary large (recursive)
time function. Say, after the machine wants to stop, we make it compute some-
thing really complicated, and only then stop. This way we construct a finitely
presented residually finite semigroup with polynomial time complexity of the
word problem and arbitrary high recursive Dehn function.

To make the depth function high, we add two more glasses to the Minsky
machine M3 and modify the commands to obtain a 5-glass non-deterministic
Minsky machine M5. We modify the commands of M3 as follows. First to every
command of M3, we add the instruction to add a coin to glass #4 provided glass
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#5 is empty. Also assuming M3 had N + 1 commands, for every i = 1, ..., N we
add two commands #i:

i; (Add(4),Add(5)), i. (1)

and

i; (ε4 = 0, ε5 = 0) → 0 (2)

That is executing command i the machine can add as many coins (equal
amounts) to glasses #4,#5 and if both these glasses are empty, then the machine
can stop. It is not difficult to prove, as above, that the semigroup

−→
S5 simulating

M5 is residually finite and its word problem is polynomially equivalent to the
membership problem for Z. Let a4 and a5 be the generators of

−→
S5 simulating

coins in glasses 4 and 5. In order to ensure that the depth function of
−→
S5 is high

we take a word W5 = W5(1; z, 0, 0, 0, 0) of length n, corresponding to the input
configuration such that z 	∈ Z and there exists a very long computation, say of
length L � n of M5 starting at W5 and not using commands (1) (we can always
assume modify the Turing machine TM ′ to make this happen). Note that since
z 	∈ Z, W5 	= 0 in

−→
S5. Suppose that there exists a homomorphism from

−→
S5 to a

finite semigroup E of order l, and, say, with l! < L, which separates W5 from 0.
Then for every element x in E we will have xm = x2m for m = l!. Consider a
very long computation of M5 starting with the configuration (1; z, 0, 0, 0, 0). In
that computation, we must get a configuration δ where the glass #4 contains
m coins and glass #5 is empty. The corresponding word W5(δ) will contain
the subword am

4 A4A5. Applying now relations corresponding to the command
(1), we can change this subword (without touching the rest of the word) to
a2m
4 A4a

m
5 A5 = am

4 A4a
m
5 A5 in E. Applying the relations corresponding to (1)

again (this time from right to left), we obtain a word that is equal to W5 in E
and has subword A3A4A5 (it corresponds to a configuration with empty glasses
##4, 5). Applying now the relations corresponding to (2), and then the relation
q0 = 0, we deduce that W5 = 0 in E, a contradiction. This contradiction shows
that the factorial of the order |E| cannot be smaller than L. Thus the depth
function of

−→
S5 can be as large as we want.

Acknowledgement. I am grateful to the anonymous referees for numerous helpful
comments.
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Abstract. Let α ∈ (0, 1)R be irrational and Gn = Gn,1/nα be the ran-
dom graph with edge probability 1/nα; we know that it satisfies the 0-1
law for first order logic. We deal with the failure of the 0-1 law for stronger
logics: L∞,k,k a large enough natural number and the inductive logic.

Keywords: Finite model theory · Zero-one laws · Random graphs ·
Inductive logic · Infinitary logic on finite structures

Let Gn,p be the random graph with set of nodes [n] = {1, . . . , n}, each edge
of probability p ∈ [0, 1]R, the edges being drawn independently, (see �1 below).
On 0-1 laws (and random graphs) see the book of Spencer [6] or Alon-Spencer
[1], in particular on the behaviour of the random graph Gn,1/nα for α ∈ (0, 1)R
irrational. On finite model theory see Flum-Ebbinghaus [2], e.g. on the logic
L∞,k and on inductive logic, also called LFP logic (i.e. least fix point logic). A
characteristic example of what can be expressed in this logic is “in the graph G
there is a path from the node x to the node y”, this is closed to what we shall
use. We know that Gn,p (i.e. the case the probability p is constant), satisfies the
0-1 law for first order logic (proved independently by Fagin [3] and Glebskii-et-al
[4]). This holds also for many stronger logics like L∞,k and the inductive logic.
If α ∈ (0, 1)R is irrational, the 0-1 law holds for Gn,(1/nα) and first order logic.

The question we address is whether this holds also for stronger logics as
above. Though our real aim is to address the problem for the case of graphs, the
proof seems more transparent when we have two random graph relations (with
appropriate probabilities; we make them directed graphs just for simplicity). So

This work was partially supported by European Research Council grant 338821. Pub-
lication 1061 on Shelah’s list. The author thanks Alice Leonhardt for the beautiful
typing.
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we shall deal with two cases A and B. In Case A, the usual graph, we have to
show that there are (just first order) formulas ϕ�(x, y) for � = 1, 2 with some
special properties, (actually we have also ϕ0(x, y)). For Case B, those formulas
are R�(x, y), � = 1, 2, the two directed graph relations. Note that (for Case B),
the satisfaction of the cases of the R� are decided directly by the drawing and so
are independent, whereas for Case A there are (small) dependencies for different
pairs, so the probability estimates are more complicated.

Recall

�1 a 0-1 context consists of:

(a) a vocabulary τ , here just the one of graphs or double directed graphs,
(b) for each n,Kn is a set of τ -models with set of elements = nods [n],

in our case graphs or double directed graphs,
(c) a distribution μn on Kn, i.e. μn : K → [0, 1]R satisfying Σ{μn(G) : G ∈

Kn} = 1
(d) the random structure is called Gn = Gμn

and we tend to speak on Gμn
or

Gn rather than on the context.

Note that in this work “for every random enough Gn . . . ” is a central notion,
where:

�2 for a given 0-1 context, let “for every random enough Gn we have Gn |= ψ,
i.e. G satisfies ψ” means that the sequence 〈Prob(Gn |= ψ) : n ∈ N〉 converge
to 1; of course, Prob(Gn |= ψ) = Σ{μn(G) : G ∈ Kn and G |= ψ}.

But

�3 Gn,p is the case Kn = graph on [n] and we draw the edges independently,

(a) with probability p when p is constant, e.g. 1
2 , and

(b) with probability p(n) or probability pn when p is a function from N to
[0, 1]R.

In the constant p case, the 0-1 law is strong: it is done by proving elimination of
quantifiers and it works also for stronger logics: L∞,k and so also for inductive
logic Lind. Another worthwhile case is:

�4 Gn,1/nα where α ∈ (0, 1)R; so pn = 1/nα.

Again the edges are drawn independently but the probability depends on n.
The 0-1 law holds if α is irrational, but we have elimination of quantifiers

only up to (Boolean combination of) existential formulas. Do we have 0-1 law
also for those stronger logics? We shall show that not by proving that for some
so called scheme ϕ̄ of interpretation, for any random enough Gn, ϕ̄ interpret
an initial segment of number theory, say up to m(Gn) where m(Gn) is not too
small; e.g. at least log2(log2(n)).
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For the probabilistic argument we use estimates; they are as in the first order
case (see [1], so we do not repeat them).

For the full version see the author website or the mathematical arXive. The
statements for which we need more estimates will probably be further delayed;
those are the ones proving that:

�5 • using nε instead of log2(log2(n)) in the proof for Case 1 so the value of
“Prob(Gn,1/nα) = ψ” may change more quickly,

• we can define “n even” (i.e. Lim(Prob(Gn,1/nα |= ψ iff n is even) exists
and is one; this is done by defining a linear order on Gn,ᾱ.

• we may formalize the quantification on paths, so getting a weak logic
failing the 0-1 law, but its naturality is not so clear.

A somewhat related problem asks whether for some logic the 0-1 law holds for
Gn,p (for constant p ∈ (0, 1)R, e.g. p = 1

2 ) but does not have the elimination of
quantifier, see [5].

We now try to informally describe the proof, naturally concentrating on
case B.

Fix reals α1 < α2 from (0, 1
4 )R, so ᾱ = (α1, α2) letting α(�) = α�;

�6 let the random digraph Gn,ᾱ = ([n], R1, R2) = ([n], RGn,ᾱ

1 , R
Gn,ᾱ

2 ) with
R1, R2 irreflexive relations drawn as follows:

(a) for each a �= b, we draw a truth value for R2(a, b) with probability 1
n1−α2

for yes
(b) for each a �= b, we draw a truth value for R1(a, b) with probability 1

n1+α1

for yes
(c) those drawings are independent.

Now for random enough digraph G = Gn = Gn,ᾱ = ([n], R1, R2) and node
a ∈ G we try to define the set Sk = SG,a,k of nodes of G not from ∪{Sm : m < k}
by induction on k as follows:

For k = 0 let Sk = {a}. Assume S0, . . . , Sk has been chosen, and we shall
choose Sk+1.

�7 For ι = 1, 2 we ask: is there an Rι-edge (a, b) with a ∈ Sk and b not from
∪{Sm : m ≤ k}?

If the answer is no for both ι = 1, 2 we stop and let height(a,G) = k. If the
answer is yes for ι = 1, we let Sk+1 be the set of b such that for some a the pair
(a, b) is as above for ι = 1., If the answer is no for ι = 1 but yes for ι = 2 we
define Sk+1 similarly using ι = 2.

Let the height of G be max{height(a,G) : a ∈ G}. Now we can prove that
for every random enough Gn, for a ∈ Gn or easier- for most a ∈ Gn, for not too
large k we have:
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�8 SGn,a,k is on the one hand not empty and on the other hand with ≤ n2α2

members.
This is proved by drawing the edges not all at once but in k stages. In stage

m ≤ k we already can compute SGn,a,0, . . . SGn,a,m and we have already drawn all
the R1-edges and R2-edges having at least one node in SGn,a,0 ∪· · ·∪SGn,a,m−1;
that is for every such pair (a, b) we draw the truth values of R1(a, b), R2(a, b).
So arriving to m we can draw the edges having a nod in Sm and not dealt with
earlier, and hence can compute Sm+1.

The point is that in the question �7 above, if the answer is yes for ι = 1
then the number of nodes in Sm+1 will be small, essentially smaller than in Sm.
Further, if the answer for ι = 1 the answer is no but for ι = 2 the answer is
yes then necessarily Sm is smaller than say n(α1+α2)/2 but it is known that the
R2-valency of any nod of Gn is near nα2 . So the desired inequality holds.

By a similar argument, if we stop at k then in S0 ∪ · · · ∪ Sk there are many
nodes- e.g. at least near nα2 by a crud argument. As each Sm is not too large
necessarily the height of Gn is large.

The next step is to express in our logic the relation {(a1, b1, a2, b2) : for some
k1, k2 we have b1 ∈ SGn,a1,k1 , b2 ∈ SGn,a2,k2 , k1 ≤ k2}.

By this we can interpret a linear order with height(Gn) members. Again
using the relevant logic this suffice to interpret number theory up to this height.
Working more we can define a linear order with n elements, so can essentially
find a formula “saying” n is even (or odd).

For random graphs we have to work harder: instead of having two relations
we have two formulas; one of the complications is that their satisfaction for the
relevant pairs are not fully independent.
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Abstract. The composition method was developed in the 1970’s and
1980’s by Shelah and Gurevich as a powerful tool in the study of monadic
second-order theories of labelled orderings and trees. In this paper, we use
a variant of the technique for first-order theories of structures (N, <, R)
where R is binary. For the case that R is of “finite valency” (where each
element has only finitely many neighbors in the symmetric closure of
R), we show results on (non-) definability, on decidability, and on the
recursion theoretic complexity of such theories.

1 Introduction

The composition method combines two rather diverse features. It opens a way to
study theories of labelled orderings (and labelled trees) by considering these struc-
tures as sums of substructures, such that from properties of the substrutures and
the way they are concatenated one derives properties of the full structure. This is
a natural, simple, and intuitively appealing view. On the other hand, the techni-
cal details of this attractive idea are somewhat involved, and the landmark papers
of Shelah and Gurevich in the 1970’s and 1980’s ([Sh75,Gu79,Gu82,Gu85,GS79,
GS83,GS85]) that developed the theory are demanding. Thus – at least in theoret-
ical computer science – not many researchers invested the effort to go deeper into
the subject, although it is a key to many decidability results in monadic second-
order logic (MSO-logic), complementing and extending results that had earlier
been shown by a reduction of MSO-logic to finite automata (Büchi [Bü62], Rabin
[Ra69]).

The core idea is best explained for infinite labelled linear orderings, for exam-
ple structures A = (A,<, P ) with infinite A and unary predicate P . One considers
a finite fragment of the MSO-theory of A, in which only sentences of some fixed
quantifier-depth m are taken into account, called “m-theory” of A (sometimes
the quantifier alternation rank is used instead), aiming at the decision whether a
sentence up to quantifier-depth m belongs to this m-theory. One composes this m-
theory from the m-theories of intervals. Invoking a combinatorial argument (e.g.,
Ramsey’s Theorem [Ra29]) it may turn out that such a decomposition can be guar-
anteed which is “homogeneous”: For example, for a structure (N, <, P ), this is a
decomposition into finite segments where – excepting the first – all have the same
m-theory. This can be exploited to infer (non-) definability and decidability results
concerning MSO-logic over the given structure.
c© Springer International Publishing Switzerland 2015
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In the present paper, it is shown how to apply the composition method over
the ordering (N, <) of the natural numbers where the labelling (given by a pred-
icate P ⊆ N) is replaced by a binary relation R. We consider relations that are
of “finite valency”, i.e., where for each a there are only finitely many b such that
R(a, b) or R(b, a). Also we restrict the logical framework to first-order logic FO.
As it turns out, one can then again decompose, for any given quantifier-depth
m, the structure (N, <,R) into a sequence of appropriately defined “segments”
where (excepting the first) all segments have the same m-theory. As a conse-
quence, we obtain results on first-order definability in such structures (N, <,R) –
in particular, that addition and multiplication are not FO-definable – and on
the recursion theoretic complexity of the FO-theory of such structures. Also
examples R are exhibited where the first-order theory of (N, <,R) is decidable,
namely graphs of recursive functions f : N → N where the distance function
f(n + 1) − f(n) is strictly increasing.1

The exposition will not be very formal; for details we refer to [Th80].

2 (N, <, P ) with Monadic P

Let us first recall the composition method for structures (N, <, P ) with monadic
P . We identify this labelled ordering with an infinite 0-1-word α such that α(i) =
1 iff i ∈ P . Finite segments of the structure are then finite words over {0, 1}
(denoted by u, v, w, . . .). We restrict here to first-order logic FO although the
results of the present section can as well be obtained for monadic second-order
logic MSO.

The quantifier-depth of a formula ϕ is the depth of nesting of quantifiers in
ϕ. Two labelled orderings u and v are called m-equivalent (written u ≡m v) if
for all FO-sentences ϕ of quantifier-depth m we have u |= ϕ iff v |= ϕ. It is well-
known that a convenient method to verify ≡m-equivalence is the Ehrenfeucht-
Fräıssé game. We extend the relation also to infinite words. Then, for example,
1 ≡1 1111 . . . but 1 �≡2 1111 . . .; in the latter case, the sentence ∀x∃y x < y
shows the ≡2-inequivalence.

Let us list some basic facts (see. e.g., [EF95]).

Lemma 1.

1. ≡m is an equivalence relation of finite index. (The equivalence classes are
called m-types.)

1 When the present author took his first steps in the study of the composition method,
he met Yuri Gurevich and gained a lot by discussions with him, also by his kind
encouragement. The results mentioned above were then included in the author’s
habilitation thesis [Th80], which however was not published due to the author’s
move to computer science. Now, 35 years later, at Yuri’s 75th birthday, it seems
fitting to come back to this outgrowth of the author’s first contact with Yuri and to
explain these results.
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2. An m-type τ is definable by a sentence ϕτ of quantifier-depth m.
3. Each sentence of quantifier-depth m is equivalent to a disjunction of sentences

ϕτ . (If ϕτ implies ϕ, we say that τ induces ϕ.)

“Composition” refers to the fact that the m-types of two words u, v determine
the m-type of their concatenation uv.

Lemma 2.

1. From the m-types of u and v one can compute the m-type of uv, and from the
m-types of a segment u and an infinite word α one can compute the m-type
of uα.

2. Given a word α = v1v2v3 . . . where all vi have the same m-type τ , the m-type
� of α is computable from τ .

Given the types σ and τ of u, v (or α), respectively, we write σ+τ for the m-type
of uv (or uα), similarly for a word α = v1v2v3 . . . where all vi have m-type τ ,
we write

∑
ω τ for the m-type of α.

Over a model α = (N, <, P ) the m-types induce a finite coloring on pairs
(i, j) of natural numbers; we define the color of (i, j) (for i < j) to be the m-
type of the substructure over the interval [i, j). Invoking Ramsey’s Theorem (for
infinite sets), one obtains an infinite “homogeneous set” H = {h0 < h1 < h2 . . .}
such that all the colors of intervals [hk, hk+1) and even of all intervals [hk, h�)
with � < k coincide.

Thus, taking m-types as colors, for arbitrary α a decomposition of α in the
form uv1v2v3 . . . exists such that all vi share the same m-type τ , and – writing
σ for the m-type of u – the m-type of α is obtained as σ +

∑
ω τ . In this sense,

truth of a sentence ϕ of quantifier-depth m in a model α can be reduced to the
question whether α is decomposable in this way such that σ +

∑
ω τ induces

ϕ. So a sentence ϕ of quantifier-depth m is equivalent to a finite disjunction of
MSO-statements χσ,τ saying that there is a homogeneous set for the colors σ and
τ , taken for all σ, τ such that σ +

∑
ω τ induces ϕ. More precisely, χσ,τ expresses

that a homogeneous set H = {h0 < h1 < h2 . . .} exists where the m-type of the
interval [0, h0) is σ and for all i < j, the m-ype of the interval [hi, hj) is τ .

Our next aim is to derive from this ultimately periodic structure of an infinite
model α a normal form of FO-sentences. Here we follow [Th81]. Assume we have
a coloring C of pairs (i, j) with i < j by colors in a finite set Col, and that this
coloring is additive, i.e. that the colors c1 of (i, j) and c2 of (j, k) determine the
color d of (i, k). (So an example is given by associating with (i, j) the m-type of
the interval [i, j).) As mentioned, the statement that a decomposition according
to Ramsey’s Theorem with the two colors c, d exists is an MSO-formula (here in
the signature with the binary relations x < y and C(x, y) = c for c ∈ Col):

(∗) there is an infinite set H = {h0 < h1 < h2 . . .} such that (0, h0) has
color c and for all i < j, (hi, hj) has color d.

An analysis of Ramsey’s Theorem (see [Th81]) shows that (∗) can be written
as a first-order formula in the mentioned signature:
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Theorem 1. Over (N, <,C) with additive finite coloring C of the number pairs
(i, j) with i < j, the condition (∗) can be expressed by a finite disjunction of
first-order formulas of the form

∀x∃y > x ψ(y) ∧ ∃x∀y > x ψ′(y)

where ψ(y), ψ′(y) are bounded in y, i.e. all quantifiers ∃z,∀z are relativized to
z ≤ y.

This result also holds for MSO-logic, with the same proof strategy. It is then
a logical version of McNaughton’s Theorem on the determinization of Büchi
automata. In that context, one starts with a condition (∗) where the ≡m-
relation is replaced by an automata theoretic equivalence between finite words.
In the logical context, one obtains the remarkable consequence that over ω-words
MSO has the same expressive power as weak MSO (where set quantification is
restricted to finite sets). As stated, Theorem 1 amounts to a first-order version
of McNaughton’s Theorem.

3 (N, <,R) with Binary R of Finite Valency

Now we consider structures (N, <,R) with binary R. Then a problem arises in
the attempt to compose the m-type of an interval [i, k) from the m-types of
subintervals [i, j) and [j, k): There may be elements a ∈ [i, j), b ∈ [j, k) with
R(a, b); this connection is present in the full interval [i, k) but not detectable
from the (m-types of the) two subintervals. Moreover, there may be elements
a < i, b ≥ k with R(a, b); also in this case the “R-link” between a and b is not
visible in the interval [i, j) which lies in between.

On the other hand, one knows from first-order model theory, in particular from
a result of Hanf [Ha65], that a formula of quantifier-depth m can only establish
a connection between a and b via R if they are not too far in terms of their “R-
distance” – more precisely, if b belongs to the 2m-sphere around a (which contains
all elements connected to a via a path of length 2m of edges of the symmetric
closure of R). This motivates to work with long enough segments in a decompo-
sition (for given quantifier-depth m), where we try to ensure that R-connections
between elements a, b can be established by formulas of quantifier-depth m only
if a, b belong to the same or two successive segments of the decomposition. More
concretely, one can try to reach a situation where we use a segment [i, j) with [h, i)
in front and [j, k) afterwards if the 2m-spheres of elements in [i, j) do not extend
below h, say only down to i∗ ≥ h, and that the 2m-spheres of elements in [j,∞) do
not extend below i, say only down to j∗ ≥ i. It will turn out that for relations R of
finite valency, this approach will work. It leads to decompositions where the par-
ticipating segments overlap (namely, rather than [i, j) we shall consider [i∗, j)).
With these overlappings a composition result on appropriately defined m-types
still holds. This will allow us to obtain results in good analogy to the above men-
tioned case of structures (N, <, P ) with monadic P . Since we are dealing with over-
lapping intervals, we refer to intervals [i, j] rather than [i, j).
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Recall that a binary relation R ⊆ M ×M is of finite valency if for any a ∈ M
there are only finitely many b ∈ M such that R(a, b) or R(b, a). Call [a, b] an
R-segment if R(a, b) or R(b, a).

We begin by noting a key property of relations of finite valency when the
underlying ordering is (N, <): For any b there are only finitely many elements
d > b such that d is R-connected to some element ≤ b.

So, given any [a, b], two elements c ≤ a and d ≥ b can be found such that
no R-connection exists between elements < c and > d. We iterate this process
of separation, following the idea of building “spheres” as mentioned above. Our
eventual aim is to work with intervals [a, b] such that R-connections from above
b will only reach elements downward to some element b∗ > a.

Definition 1. Define for each b a sequence b(0) ≥ b(1) ≥ . . . as follows:

– b(0) = b
– b(i+1) = maximal c which is below all R-segments [k, �] intersecting [b(i),∞),

if such c exists, otherwise 0

We call the segment [a, b] m-admissible if b(2m) > a, and we write b∗ for b(2m)
if m is clear.

Let us denote by b̃ the sequence (b(0), . . . , b(2m)). Invoking the remark above we
see that for any k there exist admissible segments [a, b] above k.

We now define generalized m-types of intervals [a, b] in which an element b∗ is
designated as explained above. In order to allow inductive proofs, we define the
m-types for expansions of intervals by additional elements a0, . . . , ar−1 ∈ [a, b].

Definition 2. Let [a, b] be an m-admissible interval in (N, <,R), a0, . . . , ar−1 ∈
[a, b].

– Tm
R [a, b](a0, . . . , ar−1) is the m-type of the restriction of (N, <,R) to [a, b].

– Dm
R [a, b](a0, . . . , ar−1) is the m-type Tm

R [a∗, b](ã, b̃, a0, . . . , ar−1)

So Dm
R [a, b] refers also to elements < a, namely those down to a∗; note that the

parameter a occurs in ã and thus is not lost.

Lemma 3 (Composition Lemma).

1. Given m-admissible segments [a, b] and [b, c] of (N, <,R) with R of finite
valency, Dm

R [a, b] and Dm
R [b, c] determine effectively the type Dm

R [a, c].
2. Given a sequence a0, a1, . . . such that [ai, ai+1] is m-admissible and such that

Dm
R [ai, ai+1] = τ for some m-type τ , Dm

R [a0,∞) is determined effectively
from τ .

Remark 1. In the inductive proof of the Composition Lemma, segment types
Dm

R [a, b](a) with parameters a have to be considered. It is then relevant whether
an element ai occurs below or above the element b∗ ∈ [a, b]. This distinction
is not needed in a situation where a composition of m-admissible segments
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[k0, k1], [k1, k2], [k2, k3] is treated such that no parameters occur in the middle
segment [k1, k2]. For example, if a0 ∈ [k0, k1] and b, c ∈ [k2, k3], then the m-type
Dm

R [k0, k3](a, b, c) is determined as a sum

Dm
R [k0, k1](a) + Dm

R [k1, k2] + Dm
R [k2, k3](b, c).

Now we proceed in analogy to the case of structures (N, <, P ) with unary P .
For any structure (N, <,R) with R of finite valency and for given m we can pick
a sequence {n0, n1, n2, . . .} forming an infinite set N such that each [ni, nj ] is
m-admissible. Over N we obtain an additive coloring and can apply Ramsey’s
Theorem. We get a homogeneous subset H of N , H = {h0 < h1 < h2 . . .},
whence the m-type of (N, <,R) can be obtained as a sum σ +

∑
ω τ where

σ = Dm
R [0, h0] and τ = Dm

R [h0, h1](= Dm
R [hi, hj ] for all i < j). Applying further

Theorem 1, we conclude:

Theorem 2 (Normal Form Theorem). Over a structure (N, <,R) with R of
finite valency, a sentence of quantifier-depth m can (effectively) be written as a
disjunction of sentences

∀x∃y > x ψ(y) ∧ ∃x∀y > x ψ′(y)

where ψ(y), ψ′(y) are bounded in y, with atomic formulas of the form x < y and
Dm

R [x, y] = τ .

4 Applications

Theorem 3. In a structure (N, <,R) with R of finite valency, neither addition
nor multiplication is FO-definable.

We derive this result from the following:

Proposition 1. Let f : N
2 → N be FO-definable in (N, <,R) where R is of

finite valency. Then one of the following two sets is finite:

Xf := {x ∈ N | λyf(x, y) is injective}, Yf := {y ∈ N | λxf(x, y) is injective}
It is clear that this proposition implies the theorem above since X+, Y+,X·, Y·
are all infinite. For example, X+ contains all x such that the function y �→ x+ y
is injective; hence X+ = N.

Proof. Assume f is FO-definable by ϕ(x, y, z) of quantifier-depth m. Consider
the coloring Dm+1

R and a corresponding homogeneous set H = {h0 < h1 < . . .}.
Assume for contradiction that Xf , Yf are both infinite. Then we can pick

a0 ∈ Xf , b0 ∈ Yf in two different H-segments beyond h0, say a0 ∈ [hi+1, hi+2]
and b0 ∈ [hj+1, hj+2] such that, moreover, a0 < b0 and [hi, hi+4]∩ [hj , hj+4] = ∅.
Since Dm+1

R [hi+1, hi+2] = Dm+1
R [hi+2, hh+3], we can choose a′ ∈ [hi+2, hi+3] such

that Dm
R [hi+1, hi+2](a0) = Dm

R [hi+2, hi+3](a′), similarly b′ ∈ [hj+2, hj+3] such
that Dm

R [hj+1, hj+2](b0) = Dm
R [hj+2, hj+3](b′). Since the m-types Dm

R [hk, h�] are
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for all k < � equal to a fixed type τ (in particular, we have τ + τ = τ), we have,
by Remark 1,

Dm
R [hi, hi+4](a0) = Dm

R [hi, hi+4](a′), Dm
R [hj , hj+4](b0) = Dm

R [hj , hj+4](b′);

note that in all cases the segment with a designated element is preceded and
succeeded by a segment of type τ .

Let c0 = f(a0, b0). If c0 �∈ [hi, hi+4], say c0 > hi+4, then we apply Remark 1
and obtain

Dm
R [0, hi] + Dm

R [hi, hi+4](a0) + Dm
R [hi+4,∞)(b0, c0)

= Dm
R [0, hi] + Dm

R [hi, hi+4](a′) + Dm
R [hi+4,∞)(b0, c0)

which implies that the types Tm
R [0,∞)(a0, b0, c0) and Tm

R [0,∞)(a′, b0, c0) coin-
cide. So, by the definition of f using a formula ϕ(x, y, z) of quantifier-depth m,
we see that f(a0, b0) = f(a′, b0), a contradiction to b0 ∈ Yf . If c0 ∈ [hi, hi+1] we
have that c0 �∈ [hj , hj+4] and proceed analogously with the change from b0 to b′.

In a next step we analyze Theorem 2 in terms of quantifier complexity.

Proposition 2. Over (N, <,R) each FO-sentence ϕ is equivalent to a disjunc-
tion of sentences

∀x∃y∀z ϕi(x, y, z) ∧ ∃x∀y∃z ψi(x, y, z)

where the ϕi, ψi are bounded in z.

Proof. We analyze the atomic formulas Dm
R [x, y] = τ in the formula of Theo-

rem 2, in order to reach a sentence in the signature with <,R alone. We can define
Dm

R [x, y] = τ relative to a bound z by a formula Dm
R [x, y] � z = τ bounded in

z. The Dm
R -type of [x, y] may change when referring to submodels over domains

[0, z] for larger and larger z since more and more R-segments may become visi-
ble. However, due to the condition of finite valency, there is a z0 above which no
change occurs and where the type τ = Dm

R [x, y] is reached. This is equivalent to
the requirement that τ occurs for infinitely many z. So we have

Dm
R [x, y] = τ ⇔ ∃z∀z′ > z Dm

R [x, y] � z′ = τ ⇔ ∀z∃z′ > z Dm
R [x, y] � z′ = τ

Hence we can rewrite the formula of the Normal Form Theorem2 in the signature
with <,R, while increasing the alternation of unbounded quantifiers by 1. We
arrive at a Boolean combination of Σ3-sentences.

From this proposition we can conclude a statement on the recursion theoretic
degree of the first-order theory of (N, <,R) when R is of finite valency and
recursive. (We use here and in the sequel basic facts from recursion theory; see,
e.g., [Ro67,Od89]).

Theorem 4. If R ⊆ N
2 is recursive and of finite valency, then the first-order

theory of (N, <,R) belongs to level Σ4 ∩ Π4 of the arithmetical hierarchy.
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Proof. It was shown above that each first-order sentence over (N, <,R), given the
assumptions on R, is equivalent to a Boolean combination of Σ3-sentences. Thus
the first-order theory of (N, <,R) is Turing-reducible to a complete Σ3-set. By
the theorem of Kleene and Post on Turing-reducibility this means membership
in Σ4 ∩ Π4.

If R is not recursive, then one can establish a relativized version of the above
theorem, obtaining that for a relation R of finite valency, the first-order theory
of (N, <,R) is Turing-reducible to R′′′, the third jump of R. This gives another
perspective on non-definability of addition and multiplication (together): If R is
arithmetical, then the FO-theory of (N, <,R) is arithmetical as well and hence
cannot be full first-order arithmetic.

From the results of Sect. 2 we know that for structures (N, <, P ) with unary
P , one obtains analogous results but with the levels of recursion theoretic com-
plexity decreased by 1. Let us show that allowing binary R (of finite valency)
really leads to a higher complexity.

Theorem 5. There is a Π3-complete set that is Turing-reducible to the first-
order theory of (N, <,R) with a suitable recursive relation R of finite valency.

Proof. Consider the following Π3-complete set (where Wn is the n-th recursively
enumerable set in some effective enumeration):

V3 := {m | ∀k∃� > k(� ∈ Wm ∧ W� = ∅)}

So we have m ∈ V3 iff Wm contains infinitely many indices of the empty set.
We build a recursive relation R of finite valency. Let (�i,mi) the i-th pair in an
enumeration of all (�,m) with � ∈ Wm.

We construct R in stages: At stage i

1. include (i, i + mi + 1) in R,
2. include (i, j) in R for all j ≤ i with �j = mi, but only if there is no i′ with

j < i′ < i and (i′, j) already included in R,
3. (i, i) if �i = mj for some j ≤ i.

The relation R is recursive since for deciding R(a, b) it suffices to run the pro-
cedure up to stage max(a, b). Also R is of finite valency since for any a there are
at most three b with R(a, b) or R(b, a). By 1., a pair (i, k) is in R with i < k codes
an element of Wmi

. By 2. and 3., we have a pair (i′, i) in R with i′ ≥ i iff W�i �= ∅.
Hence m ∈ V3 iff there are infinitely many � ∈ Wm such that W� = ∅ iff

(N, <,R) |= ∀y∃x > y (R(x, x + m + 1) ∧ ∀z ¬R(z, x))

However, one can sharpen the bound on the level of the arithmetical hierarchy
where the FO-theory of (N, <,R) occurs when working with special relations R:
Let us call R effectively of finite valency if the finite sets Na = {b | R(a, b)}
and Nb = {a | R(a, b)} are computable from a, b, respectively. It is easy to see
that in this case the preceding theorems now hold in precise analogy to the case
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of unary predicates: The first-order theory of (N, <,R) is Turing-reducible to a
complete Σ2-set, and this bound is optimal.

As a last application we mention (without giving the tedious proof) a decid-
ability result. For a monotone function f : N → N define Δf by Δf (n) =
f(n + 1) − f(n). Call f strongly monotone if Δf is strictly monotone (in the
sense that x < y implies Δf (x) < Δf (y)). Note that in this case f itself is
monotone (and even strictly monotone from the argument 1 onwards). Exam-
ples of strongly monotone functions are the natural enumerations of the set of
squares, the set of powers of 2, the set of factorial numbers, etc. Each strongly
monotone function is injective over the positive natural numbers, hence its graph
is of finite valency. A closer analysis (not given here) of Theorem 2 in this context
shows the following result:

Theorem 6. If f is strongly monotone and recursive, the first-order theory of
(N, <, f) is decidable.

This result is in an interesting contrast to the case of the MSO-theories of struc-
tures (N, <, f). As Robinson showed in [Ro58], the MSO-theory of (N, <, d) is
undecidable when d is the double function with d(n) = 2n. More generally, if we
adjoin a unary function f with f(n) ≥ n which deviates from the identity in the
sense that λn(f(n) − n) is monotone and unbounded, then the MSO-theory of
(N, <, f) is undecidable ([Th75]). So a condition on the growth of unary functions
f has opposite effects in FO-logic and MSO-logic.

For the function fP given by fP(i) = i-th prime, ΔfP
is not strictly monotone.

Indeed, it is open whether the first-order theory of (N, <, fP) is decidable. Note
that the twin-prime hypothesis holds iff the sentence

∀x∃y(x < y ∧ fP(y) + 2 = fP(y + 1))

is true in (N, <, fP) (and where successor is defined in terms of <).

5 Conclusion

We have outlined a way to approach the first-order theory of a structure (N, <,R)
using the idea of composition when R is of finite valency. It turns out that in the
context of first-order logic these structures can be given an “ultimately periodic
shape” when considering their m-types only. So, perhaps surprisingly, relations
of finite valency show here a similarity to unary predicates.

With more technical work, one obtains analogous results when replacing a
single relation R of finite valency by a tuple (R1, . . . , Rn) of such relations. On
the other hand, it is essential to work with an ordering that is of type ω or ω∗.
For example, there is a relation R of finite valency over the ordinal ω2 such that
in the FO-theory of (ω2, <,R) addition and multiplication over the first copy of
ω are definable.

Let us finally mention an open question. As shown in Theorem5, one can
construct recursive relations R of finite valency such that the first-order theory
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of (N, <,R) is undecidable. However, these relations are built for the purpose
and are based on recursion theoretic concepts. Are there “natural” relations R
of finite valency, defined in a way not involving recursion theory, such that the
first-order theory of (N, <,R) is undecidable?

Finally, it should be mentioned that in computer science the study of non-
terminating behavior of systems may lead to ω-words equipped with binary
relations, induced by connections between separated points of time (e.g. the
call and the termination of procedures, or the occurrence of requests and their
acknowledgments). It would be interesting to see whether the present work can
be applied in such settings.
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Abstract. The standard loss functions used in the literature on proba-
bilistic prediction are the log loss function, the Brier loss function, and
the spherical loss function; however, any computable proper loss func-
tion can be used for comparison of prediction algorithms. This note shows
that the log loss function is most selective in that any prediction algo-
rithm that is optimal for a given data sequence (in the sense of the algo-
rithmic theory of randomness) under the log loss function will be optimal
under any computable proper mixable loss function; on the other hand,
there is a data sequence and a prediction algorithm that is optimal for
that sequence under either of the two other standard loss functions but
not under the log loss function.
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1 Introduction

In his work Yuri Gurevich has emphasized practical aspects of algorithmic ran-
domness. In particular, he called for creating a formal framework allowing us to
judge whether observed events can be regarded as random or point to something
dubious going on (see, e.g., the discussion of the lottery organizer’s wife winning
the main prize in [5]). The beautiful classical theory of randomness started by
Andrey Kolmogorov and Per Martin-Löf has to be restricted in order to achieve
this goal and avoid its inherent incomputabilities and asymptotics.

This note tackles another practically-motivated question: what are the best
loss functions for evaluating probabilistic prediction algorithms? Answering this
question, however, requires extending rather than restricting the classical theory
of algorithmic randomness.

In the empirical work on probabilistic prediction in machine learning (see,
e.g., [2]) the most standard loss functions are log loss and Brier loss, and spher-
ical loss is a viable alternative; all these loss functions will be defined later in
this note. It is important to understand which of these three loss functions is
likely to lead to better prediction algorithms. We formalize this question using
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a generalization of the notion of Kolmogorov complexity called predictive com-
plexity (see, e.g., [7]; it is defined in Sect. 3). Our answer is that the log loss
function is likely to lead to better prediction algorithms as it is more selective: if
a prediction algorithm is optimal under the log loss function, it will be optimal
under the Brier and spherical loss functions, but the opposite implications are
not true in general.

As we discuss at the end of Sect. 3, the log loss function corresponds to the
classical theory of randomness. Therefore, our findings confirm once again the
importance of the classical theory and are not surprising at all from the point of
view of that theory. But from the point of view of experimental machine learning,
our recommendation to use the log loss function rather than Brier or spherical
is less trivial.

This note is, of course, not the first to argue that the log loss function is
fundamental. For example, David Dowe has argued for it since at least 2008 ([3],
footnote 175; see [4], Sect. 4.1, for further references). Another paper supporting
the use of the log loss function is Bickel’s [1].

2 Loss Functions

We are interested in the problem of binary probabilistic prediction: the task is
to predict a binary label y ∈ {0, 1} with a number p ∈ [0, 1]; intuitively, p is the
predicted probability that y = 1. The quality of the prediction p is measured
by a loss function λ : [0, 1] × {0, 1} → R ∪ {+∞}. Intuitively, λ(p, y) is the loss
suffered by a prediction algorithm that outputs a prediction p while the actual
label is y; the value +∞ (from now on abbreviated to ∞) is allowed. Following
[10], we will write λy(p) in place of λ(p, y), and so identify λ with the pair of
functions (λ0, λ1) where λ0 : [0, 1] → R∪{+∞} and λ1 : [0, 1] → R∪{+∞}. We
will assume that λ0(0) = λ1(1) = 0, that the function λ0 is increasing, that the
function λ1 is decreasing, and that λy(p) < ∞ unless p ∈ {0, 1}.

A loss function λ is called η-mixable for η∈(0,∞) if the set
{

(u, v) ∈ [0, 1]2 | ∃p ∈ [0, 1] : u ≤ e−ηλ(p,0) and v ≤ e−ηλ(p,1)
}

is convex; we say that λ is mixable if it is η-mixable for some η.
A loss function λ is called proper if, for all p, q ∈ [0, 1],

Ep λ(p, ·) ≤ Ep λ(q, ·), (1)

where Ep f := pf(1) + (1 − p)f(0) for f : {0, 1} → R. It is strictly proper if the
inequality in (1) is strict whenever q �= p.

We will be only interested in computable loss functions (the notion of com-
putability is not defined formally in this note; see, e.g., [7]). We will refer to the
loss functions satisfying the properties listed above as CPM (computable proper
mixable) loss functions.

Besides, we will sometimes make the following smoothness assumptions:
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– λ0 is infinitely differentiable over the interval [0, 1) (the derivatives at 0 being
one-sided);

– λ1 is infinitely differentiable over the interval (0, 1] (the derivatives at 1 being
one-sided);

– for all p ∈ (0, 1), (λ′
0(p), λ′

1(p)) �= 0.

We will refer to the loss functions satisfying all the properties listed above as
CPMS (computable proper mixable smooth) loss functions.

Examples

The most popular loss functions in machine learning are the log loss function

λ1(p) := − ln p, λ0(p) := − ln(1 − p)

and the Brier loss function

λ(p, y) := (y − p)2.

Somewhat less popular is the spherical loss function

λ1(p) := 1 − p
√

p2 + (1 − p)2
, λ0(p) := 1 − 1 − p

√
p2 + (1 − p)2

.

All three loss functions are mixable, as we will see later. They are also com-
putable (obviously), strictly proper (this can be checked by differentiation), and
satisfy the smoothness conditions (obviously). Being computable and strictly
proper, these loss functions can be used to measure the quality of probabilistic
predictions.

Mixability and Propriety

Intuitively, propriety can be regarded as a way of parameterizing loss functions,
and we get it almost for free for mixable loss functions. The essence of a loss
function is its prediction set

{(λ0(p), λ1(p)) | p ∈ [0, 1]} . (2)

When given a prediction set, we can parameterize it by defining (λ0(p), λ1(p)) to
be the point (x, y) of the prediction set at which inf(x,y)(py+(1−p)x) is attained.
This will give us a proper loss function. And if the original loss function satisfies
the smoothness conditions (and so, intuitively, the prediction set does not have
corners), the new loss function will be strictly proper.

3 Repetitive Predictions

Starting from this section we consider the situation, typical in machine learning,
where we repeatedly observe data z1, z2, . . . and each observation zt = (xt, yt) ∈
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Z = X × {0, 1} consists of an object xt ∈ X and its label yt ∈ {0, 1}. Let us
assume, for simplicity, that X is a finite set, say a set of natural numbers.

A prediction algorithm is a computable function F : Z∗ × X → [0, 1]; intu-
itively, given a data sequence σ = (z1, . . . , zT ) and a new object x, F outputs a
prediction F (σ, x) for the label of x. For any data sequence σ = (z1, . . . , zT ) and
loss function λ, we define the cumulative loss that F suffers on σ as

Lossλ
F (σ) :=

T∑

t=1

λ(F (z1, . . . , zt−1, xt), yt)

(where zt = (xt, yt) and ∞ + a is defined to be ∞ for any a ∈ R ∪ {∞}).
Functions Lossλ

F : Z∗ → R that can be defined this way for a given λ are called
loss processes under λ. In other words, L : Z∗ → R is a loss process under λ if
and only if L(�) = 0 (where � is the empty sequence) and

∀σ ∈ Z∗ ∀x ∈ X∃p ∈ [0, 1]∀y ∈ {0, 1} : L(σ, x, y) = L(σ) + λ(p, y). (3)

A function L : Z∗ → R is said to be a superloss process under λ if (3) holds
with ≥ in place of =. If λ is computable and mixable, there exists a smallest, to
within an additive constant, upper semicomputable superloss process:

∃L1 ∀L2 ∃c ∈ R∀σ ∈ Z∗ : L1(σ) ≤ L2(σ) + c,

where L1 and L2 range over upper semicomputable superloss processes under λ.
(For a precise statement and proof, see [7], Theorem 1, Lemma 6, and Corollary 3;
[7] only considers the case of a trivial one-element X, but the extension to the
case of general X is easy.) For each computable mixable λ (including the log,
Brier, and spherical loss functions), fix such a smallest upper semicomputable
superloss process; it will be denoted Kλ, and Kλ(σ) will be called the predictive
complexity of σ ∈ Z∗ under λ. The intuition behind Kλ(σ) is that this is the loss
of the ideal prediction strategy whose computation is allowed to take an infinite
amount of time.

In this note we consider infinite data sequences ζ ∈ Z∞, which are ide-
alizations of long finite data sequences. If ζ = (z1, z2, . . .) ∈ Z∞ and T is a
nonnegative integer, we let ζT to stand for the prefix z1 . . . zT of ζ of length T .

The randomness deficiency of σ ∈ Z∗ with respect to a prediction algorithm
F under a computable mixable loss function λ is defined to be

Dλ
F (σ) := Lossλ

F (σ) − Kλ(σ); (4)

since Lossλ
F is upper semicomputable ([7], Sect. 3.1), the function Dλ

F : Z∗ → R

is bounded below. Notice that the indeterminacy ∞ − ∞ never arises in (4) as
Kλ < ∞. We will sometimes replace the upper index λ in any of the three terms
of (4) by “ln” in the case where λ is the log loss function.

Let us say that ζ ∈ Z∞ is random with respect to F under λ if

sup
T

Dλ
F (ζT ) < ∞.

The intuition is that in this case F is an optimal prediction algorithm for ζ
under λ.
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Log Randomness

In the case where λ is the log loss function and X is a one-element set, the
predictive complexity of a finite data sequence σ (which is now a binary sequence
if we ignore the uninformative objects) is equal, to within an additive constant,
to − ln M(σ), where M is Levin’s a priori semimeasure. (In terms of this note,
a semimeasure can be defined as a process of the form e−L for some superloss
process L under the log loss function; Levin’s a priori semimeasure is a largest, to
within a constant factor, lower semicomputable semimeasure.) The randomness
deficiency Dln

F (σ) of σ with respect to a prediction algorithm F is then, to
within an additive constant, ln(M(σ)/P (σ)), where P is the probability measure
corresponding to F ,

P (y1, . . . , yT ) := p̄1 · · · p̄T , p̄t :=

{
F (y1, . . . , yt−1) if yt = 1
1 − F (y1, . . . , yt−1) if yt = 0

(we continue to ignore the objects, which are not informative). Therefore, Dln
F (σ)

is a version of the classical randomness deficiency of σ, and ζ ∈ {0, 1}∞ is random
with respect to F under the log loss function if and only if ζ is random with
respect to P in the sense of Martin-Löf.

4 A Simple Statement of Fundamentality

In this section, we consider computable proper mixable loss functions.

Theorem 1. Let λ be a CPM loss function. If a data sequence ζ ∈ Z∞ is
random under the log loss function with respect to a prediction algorithm F , it
is random under λ with respect to F .

A special case of this theorem is stated as Proposition 16 in [13].
Let us say that a CPM loss function λ is fundamental if it can be used in

place of the log loss function in Theorem 1. The proof of the theorem will in
fact demonstrate its following quantitative form: for any computable η > 0 and
any computable proper η-mixable λ there exists a constant cλ such that, for any
prediction algorithm F ,

Dln
F ≥ ηDλ

F − cλ. (5)

Let us define the mixability constant ηλ of a loss function λ as the supremum
of η such that λ is η-mixable. It is known that a mixable loss function λ is ηλ-
mixable ([12], Lemmas 10 and 12); therefore, (5) holds for η = ηλ, provided ηλ

is computable.
If X is a one-element set (and so the objects do not play any role and can be

ignored), the notion of randomness under the log loss function coincides with the
standard Martin-Löf randomness, as discussed in the previous section. Theorem 1
shows that other notions of randomness are either equivalent or weaker.

A superprediction is a point in the plane that lies Northeast of the prediction
set (2) (i.e., a point (x, y) ∈ R

2 such that λ0(p) ≤ x and λ1(p) ≤ y for some
p ∈ [0, 1]).
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Proof (of Theorem 1). We will prove (5) for a fixed η ∈ (0,∞) such that η is com-
putable and λ is η-mixable. Let L be a superloss process under λ and F be a pre-
diction algorithm. Fix temporarily (σ, x) ∈ Z∗ ×X and set p := F (σ, x) ∈ [0, 1];
notice that (a, b) := (L(σ, x, 0) − L(σ), L(σ, x, 1) − L(σ)) is a λ-superprediction.
By the definition of η-mixability there exists a parallel translation of the curve
e−ηx + e−ηy = 1 that passes through the point λp := (λ0(p), λ1(p)) and lies
Southeast of the prediction set of λ. Let h be the affine transformation of the
plane mapping that translation onto the curve e−x + e−y = 1; notice that h is
the composition of the scaling (x, y) �→ η(x, y) by η and then parallel translation
moving the point ηλp to the point (− ln(1 − p),− ln p). The λ-superprediction
(a, b) is mapped by h to the ln-superprediction

(ηa + (− ln(1 − p)) − ηλ0(p), ηb + (− ln p) − ηλ1(p)) .

We can see that ηL + LosslnF −η Lossλ
F is a superloss process under ln. It is clear

that this ln-superloss process is upper semicomputable if L is. Therefore, for
some constant cλ,

Kln ≤ ηKλ + LosslnF −η Lossλ
F + cλ,

which is equivalent to (5). �

5 A Criterion of Fundamentality

In this section, we only consider computable proper mixable loss functions that
satisfy, additionally, the smoothness conditions. The main result of this section
is the following elaboration of Theorem 1 for CPMS loss functions.

Theorem 2. A CPMS loss function λ is fundamental if and only if

inf
p

(1 − p)λ′
0(p) > 0. (6)

Equivalently, it is fundamental if and only if

inf
p

(−p)λ′
1(p) > 0. (7)

We can classify CPMS loss functions λ by their degree

deg(λ) := inf
{

k : λ
(k)
0 (0) �= 0 and λ

(k)
1 (1) �= 0

}
,

where (k) stands for the kth derivative and, as usual, inf ∅ := ∞. We will see
later in this section that Theorem 2 can be restated to say that the fundamental
loss functions are exactly those of degree 1. Furthermore, we will see that for a
CPMS loss function λ of degree 1 < k < ∞ there exist a data sequence ζ ∈ Z∞

and a prediction algorithm F such that ζ is random with respect to F under λ
while the randomness deficiency Dln

F (ζT ) of ζT with respect to F under the log
loss function grows almost as fast as T 1−1/k as T → ∞.
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Straightforward calculations show that the log loss function has degree 1 and
the Brier and spherical loss functions have degree 2.

In the proof of Theorem 2 we will need the notion of the signed curvature of
the prediction curve (λ0(p), λ1(p)) at a point p ∈ (0, 1), which can be defined as

kλ(p) :=
λ′
0(p)λ′′

1(p) − λ′
1(p)λ′′

0(p)
(λ′

0(p)2 + λ′
1(p)2)3/2

. (8)

The mixability constant ηλ (i.e., the largest η for which λ is η-mixable) is

ηλ = inf
p

kλ(p)
kln(p)

.

Therefore, λ is mixable if and only if

inf
p

kλ(p)
kln(p)

> 0. (9)

Lemma 1. A CPMS loss function λ is fundamental if and only if

sup
p

kλ(p)
kln(p)

< ∞

(cf. (9)).

The proof the part “if” of Lemma 1 goes along the same lines as the proof of
Theorem 1, and also shows that, if λ and Λ are CPMS loss functions such that

ηλ := inf
p

kλ(p)
kln(p)

> 0 and HΛ := sup
p

kΛ(p)
kln(p)

< ∞

are computable numbers, then there exists cλ,Λ ∈ R such that, for any prediction
algorithm F ,

HΛDΛ
F ≥ ηλDλ

F − cλ,Λ.

We will call HΛ the fundamentality constant of Λ (analogously to ηλ being called
the mixability constant of λ).

Notice that the log loss function (perhaps scaled by multiplying by a positive
constant) is the only loss function for which the mixability and fundamentality
constants coincide, ηln = Hln. Therefore, fundamental CPMS loss functions can
be regarded as log-loss-like.

The part “only if” of Lemma 1 will be proved below, in the proof of
Theorem 2.

The computation of kλ for the three basic loss functions using (8) gives:

– For the log loss function, the result is

kln(p) =
p(1 − p)

(p2 + (1 − p)2)3/2
. (10)
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– For the Brier loss function, the result is

kBrier(p) =
1
2

1
(p2 + (1 − p)2)3/2

.

– For the spherical loss function, the result is

kspher(p) = 1.

We can plug the expression (10) for the signed curvature of the log loss func-
tion into Lemma 1 to obtain a more explicit statement. Because of the propriety
of λ, this statement can be simplified, which gives the following corollary.

Corollary 1. A CPMS loss function λ is fundamental if and only if

sup
p

λ′
0(p)λ′′

1(p) − λ′
1(p)λ′′

0(p)
λ′
0(p)λ′

1(p)(λ′
1(p) − λ′

0(p))
< ∞. (11)

Proof. In view of the expressions (8) and (10), the condition in Lemma 1 can be
written as

sup
p

λ′
0(p)λ′′

1(p) − λ′
1(p)λ′′

0(p)
(λ′

0(p)2 + λ′
1(p)2)3/2

(p2 + (1 − p)2)3/2

p(1 − p)
< ∞.

Therefore, it suffices to check that

(λ′
0(p)2 + λ′

1(p)2)3/2

λ′
0(p)λ′

1(p)(λ′
1(p) − λ′

0(p))
=

(p2 + (1 − p)2)3/2

p(1 − p)
.

The last equality follows from

λ′
1(p)

λ′
0(p)

=
p − 1

p
, (12)

which in turn follows from the propriety of λ. �

It is instructive to compare the criterion (11) with the well-known criterion

inf
p

λ′
0(p)λ′′

1(p) − λ′
1(p)λ′′

0(p)
λ′
0(p)λ′

1(p)(λ′
1(p) − λ′

0(p))
> 0 (13)

for λ being mixable (see, e.g., [6] or [8], Theorem 2; it goes back to [11], Lemma 1).
The criterion (13) can be derived from (9) as in the proof of Corollary 1.

Proof (of Theorem 2). Differentiating (12) we obtain

λ′′
1(p)λ′

0(p) − λ′
1(p)λ′′

0(p)
λ′
0(p)2

= p−2,
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and the fundamentality constant (11) of λ is

sup
p

p−2λ′
0(p)2

λ′
0(p)λ′

1(p)(λ′
1(p) − λ′

0(p))
= sup

p

p−2

λ′
0(p)(λ′

1(p)/λ′
0(p))(λ′

1(p)/λ′
0(p) − 1)

= sup
p

p−2

λ′
0(p)(1 − 1/p)(−1/p)

= sup
p

1
λ′
0(p)(1 − p)

,

where we have used (12). This gives us (6); in combination with (12) we get (7).
Let us now prove the part “only if” of Theorem 2 (partly following the

argument given after Proposition 16 of [13]). According to (6), (7) and (12) are
equivalent. Suppose that

inf
p

(1 − p)λ′
0(p) = 0,

and let us check that λ is not fundamental. By the smoothness assumptions, we
have (1 − p)λ′

0(p) = 0 either for p = 0 or for p = 1. Suppose, for concreteness,
that (1 − p)λ′

0(p) = 0 for p = 0 (if (1 − p)λ′
0(p) = 0 for p = 1, we will have

(−p)λ′
1(p) = 0 for p = 1, and we can apply the same argument as below for

p = 1 in place of p = 0). Let k be such that λ
(k)
0 (0) > 0 but λ

(i)
0 (0) = 0 for all

i < k; we know that k ≥ 2 (the easy case where λ
(i)
0 (0) = 0 for all i should be

considered separately). Consider any data sequence ζ = (x1, y1, x2, y2, . . .) ∈ Z∞

in which all labels are 0: y1 = y2 = · · · = 0. We then have supT Kln(ζT ) < ∞ and
supT Kλ(ζT ) < ∞. Let F be the prediction algorithm that outputs pt := t−1/k−ε

at step t, where ε ∈ (0, 1 − 1/k). Then ζ is random with respect to F under λ
since the loss of this prediction algorithm over the first T steps is

T∑

t=1

λ0(pt) ≤ 2
T∑

t=1

λ
(k)
0 (0)
k!

pk
t + O(1)

(we have used Taylor’s approximation for λ0) and the series
∑

t pk
t is convergent.

On the other hand, the randomness deficiency of ζT with respect to F under the
log loss function grows as

−
T∑

t=1

ln(1 − pt) ∼
T∑

t=1

pt ∼ k

k − 1 − kε
T 1−1/k−ε.

�

Notice that the criterion of mixability (13) can be simplified when we use (12):
it becomes

sup
p

(1 − p)λ′
0(p) < ∞

or, equivalently,
sup

p
(−p)λ′

1(p) < ∞.

The function (1 − p)λ′
0(p) = (−p)λ′

1(p) can be computed as
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– 1 in the case of the log loss function;
– 2p(1 − p) in the case of the Brier loss function;
– p(1 − p)(p2 + (1 − p)2)−3/2 in the case of the spherical loss function.

Therefore, all three loss functions are mixable, but only the log loss function is
fundamental.

It is common in experimental machine learning to truncate allowed proba-
bilistic predictions to the interval [ε, 1 − ε] for a small constant ε > 0 (this boils
down to cutting off the ends of the prediction sets corresponding to the slopes
below ε and above 1 − ε). It is easy to check that in this case all CPMS loss
functions lead to the same notion of randomness.

Corollary 2. CPMS loss functions λ and Λ restricted to p ∈ [ε, 1 − ε], where
ε > 0, lead to the same notion of randomness.

We can make the corollary more precise as follows: for prediction algorithms F
restricted to [ε, 1 − ε], Dλ

F and DΛ
F coincide to within a factor of

max

(

sup
p∈[ε,1−ε]

kλ(p)
kΛ(p)

, sup
p∈[ε,1−ε]

kΛ(p)
kλ(p)

)

and an additive constant.

6 Frequently Asked Questions

This section is more discursive than the previous ones; “frequently” in its title
means “at least once” (but with a reasonable expectation that a typical reader
might well ask similar questions).

What is the role of the requirement of propriety in Theorem 1?

The theorem says that the log loss function leads to the most restrictive notion
of randomness: if a sequence is random with respect to some prediction algo-
rithm under the log loss function, then it is random with respect to the “same”
prediction algorithm under an arbitrary CPM loss function. One should explain,
however, what is meant by the same prediction algorithm, because of the free-
dom in parameterization (say, we can replace each prediction p by p2). The
requirement of propriety imposes a canonical parameterization.

What is the role of the requirement of mixability in Theorem 1?

The requirement of mixability ensures the existence of predictive complexity,
which is used in the definition of predictive randomness.

Mixability is sufficient for the existence of predictive complexity (for computable
loss functions). Is it also necessary?

Yes, it is: see Theorem 1 in [9].
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What is the geometric intuition behind the notions of propriety and mixability?

The intuitions behind the two notions overlap; both involve requirements of
convexity of the “superprediction set” (the area Northeast of the prediction set
(2)). Let us suppose that the loss function λ is continuous in the prediction p, so
that the prediction set is a curve. Propriety then means that the superprediction
set is strictly convex (in particular, the prediction set has no straight segments)
and that the points on the prediction set are indexed in a canonical way (namely,
each such point is indexed by 1/(1 − s) where s < 0 is the slope of the tangent
line to the prediction set at that point: cf. (12)). Mixability means that the
superprediction set is convex in a stronger sense: it stays convex after being
transformed by the mapping (x, y) ∈ [0,∞]2 �→ (e−ηx, e−ηy) for some η > 0.

Why should we consider not only the log loss function (which nicely corresponds
to probability distributions) but also other loss functions? You say “the log loss
function, being most selective, should be preferred to the alternatives such as
Brier or spherical loss”. But this does not explain why these other loss functions
were interesting in the first place.

Loss functions different from the log loss function are widely used in practice;
in particular, the Brier loss function is at least as popular as (and perhaps
even more popular than) the log loss function in machine learning: see, e.g., the
extensive empirical study [2]. An important reason for the popularity of Brier
loss is that the log loss function often leads to infinite average losses on large test
sets for state-of-the-art prediction algorithms, which is considered to be “unfair”,
and some researchers even believe that any reasonable loss function should be
bounded.

7 Conclusion

This note offers an answer to the problem of choosing a loss function for evalu-
ating probabilistic prediction algorithms in experimental machine learning. Our
answer is that the log loss function, being most selective, should be preferred to
the alternatives such as Brier or spherical loss. This answer, however, remains
asymptotic (involving unspecified constants) and raises further questions. To
make it really practical, we need to restrict our generalized theory of algorith-
mic randomness, as Yuri did in a different context.
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