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Abstract. An important problem in multi-label classification is to cap-
ture label patterns or underlying structures that have an impact on
such patterns. One way of learning underlying structures over labels
is to project both instances and labels into the same space where an
instance and its relevant labels tend to have similar representations. In
this paper, we present a novel method to learn a joint space of instances
and labels by leveraging a hierarchy of labels. We also present an effi-
cient method for pretraining vector representations of labels, namely
label embeddings, from large amounts of label co-occurrence patterns
and hierarchical structures of labels. This approach also allows us to
make predictions on labels that have not been seen during training. We
empirically show that the use of pretrained label embeddings allows us
to obtain higher accuracies on unseen labels even when the number of
labels are quite large. Our experimental results also demonstrate qual-
itatively that the proposed method is able to learn regularities among
labels by exploiting a label hierarchy as well as label co-occurrences.

1 Introduction

Multi-label classification is an area of machine learning which aims to learn a
function that maps instances to a label space. In contrast to multiclass classifi-
cation, each instance is assumed to be associated with more than one label. One
of the goals in multi-label classification is to model the underlying structure of
the label space because in many such problems, the occurrences of labels are not
independent of each other.

Recent developments in multi-label classification can be roughly divided into
two bodies of research. One is to build a classifier in favor of statistical dependen-
cies between labels, and the other is devoted to making use of prior information
over the label space. In the former area, many attempts have been made to exploit
label patterns [6,9,24]. As the number of possible configurations of labels grows
exponentially with respect to the number of labels, it is required for multi-label
classifiers to handle many labels efficiently [4] or to reduce the dimensionality of
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a label space by exploiting properties of label structures such as sparsity [17] and
co-occurrence patterns [7]. Label space dimensionality reduction (LSDR) meth-
ods allow to make use of latent information on a label space as well as to reduce
computational cost. Another way of exploiting information on a label space is to
use its underlying structures as a prior. Many methods have been developed to
use hierarchical output structures in machine learning [27]. In particular, several
researchers have looked into utilizing the hierarchical structure of the label space
for improved predictions in multi-label classification [26,30,32].

Although extensive research has been devoted to techniques for utilizing
implicitly or explicitly given label structures, there remain the scalability issues
of previous approaches in terms of both the number of labels and documents
in large feature spaces. Consider a very large collection of scientific documents
covering a wide range of research interests. In an emerging research area, it can
be expected that the number of publications per year grows rapidly. Moreover,
new topics will emerge, so that the set of indexing terms, which has initially
been provided by domain experts or authors to describe publications with few
words for potential readers, will grow as well.

Interestingly, similar problems have been faced recently in a different domain,
namely representation learning [2]. In language modeling, for instance, a word
is traditionally represented by a K-dimensional vector where K is the number
of unique words, typically hundreds of thousands or several millions. Clearly, it
is desirable to reduce this dimensionality to much smaller values d � K. This
can, e.g., be achieved with a simple log-linear model [21], which can efficiently
compute a so-called word embedding, i.e., a lower-dimensional vector represen-
tations for words. Another example for representation learning is a technique
for learning a joint embedding space of instances and labels [31]. This approach
maximizes the similarity between vector representations of instances and rele-
vant labels while projecting them into the same space.

Inspired by the log-linear model and the joint space embedding, we address
large-scale multi-label classification problems, in which both hierarchical label
structures are given a priori as well as label patterns occur in the training data.
The mapping functions in the joint space embedding method can be used to rank
labels for a given instance, so that relevant labels are placed at the top of the
ranking. In other words, the quality of such a ranking depends on the mapping
functions. As mentioned, two types of information on label spaces are expected to
help us to train better joint embedding spaces, so that the performance on unseen
data can be improved. We focus on exploiting such information so as to learn a
mapping function projecting labels into the joint space. The vector representa-
tions of labels by using this function will be referred to as label embeddings. While
label embeddings are usually initialized randomly, it will be beneficial to learn the
joint space embedding method taking label hierarchies into consideration when
label structures are known. To this end, we adopt the above-mentioned log-linear
model which has been successfully used to learn word embeddings.

Learning word embeddings relies fundamentally on the use of the context
information, that is, a fixed number of words surrounding that word in a sentence
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or a document. In order to adapt this idea to learning label embeddings, we
need to define context information in a label space, where, unlike in textual
documents, there is no sequence information which can be used to define the
context of words. We use, instead, pairwise relationships in label hierarchies and
in label co-occurrence patterns.

There are two major contributions of this work: 1) We build efficient multi-
label classifiers which employ label hierarchies so as to predict unseen labels.
2) We provide a novel method to efficiently learn label representations from
hierarchical structures over labels as well as their co-occurrence patterns.

2 Multi-label Classification

In multi-label classification, assuming that we are given a set of training examples
D = {(xn,Yn)}N

n=1, our goal is to learn a classification function f : x → Y which
maps an instance x to a set of relevant labels Y ⊆ {1, 2, · · · , L}. All other labels
Y = {1, 2, · · · , L}\Y are called irrelevant. Often, it is sufficient, or even required,
to obtain a list of labels ordered according to some relevance scoring functions.

In hierarchical multi-label classification (HMLC) labels are explicitly orga-
nized in a tree usually denoting a is-a or composed-of relation. Several
approaches to HMLC have been proposed which replicate this structure with
a hierarchy of classifiers which predict the paths to the correct labels [5,30,32].
Although there is evidence that exploiting the hierarchical structure in this way
has advantages over the flat approach [3,5,30], some authors unexpectedly found
that ignoring the hierarchical structure gives better results. For example, in [32]
it is claimed that if a strong flat classification algorithm is used the lead vanishes.
Similarly, in [30] it was found that learning a single decision tree which predicts
probability distributions at the leaves outperforms a hierarchy of decision trees.
One of the reasons may be that hierarchical relations in the output space are
often not in accordance with the input space, as claimed by [15] and [32]. Our
proposed approach aims at overcoming this problem as it learns an embedding
space where similarities in the input, output and label hierarchies are jointly
respected.

3 Model Description

3.1 Joint Space Embeddings

Weston et al. [31] proposed an efficient online method to learn ranking functions
in a joint space of instances and labels, namely Wsabie. Under the assumption
that instances which have similar representation in a feature space tend to be
associated with similar label sets, we find joint spaces of both instances and labels
where the relevant labels for an instance can be separated from the irrelevant
ones with high probability.

Formally, consider an instance x of dimension D and a set of labels Y associ-
ated with x. Let φ(x) = Wx denote a linear function which projects the original
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feature representations of an instance x to a d-dimensional joint space, where
W ∈ R

d×D is a transformation matrix. Similarly, let U be a d × L matrix that
maps labels into the same joint d-dimensional space. A label i ∈ Y can then
be represented as a d-dimensional vector ui, which is the i-th column vector of
U. We will refer to the matrix U = [u1,u2, · · · ,uL] as label embeddings. The
objective function is given by

L (ΘF ;D) =
N∑

n=1

∑

i∈Yn

∑

j∈Yn

h(ri(xn)) � (xn, yi, yj) (1)

with the pairwise hinge loss function � (xn, yi, yj)=
[
ma − uT

i φ(xn) + uT
j φ(xn)

]
+

where ri(·) denotes the rank of label i for a given instance xn, h(·) is a function
that maps this rank to a real number (to be introduced shortly in more detail),
Yn is the complement of Yn, [x]+ is defined as x if x > 0 and 0 otherwise,
ΘF = {W,U} are model parameters, and ma is a real-valued parameter, namely
the margin. The relevance scores s(x) = [s1(x) , s2(x) , · · · , sL(x)] of labels for a
given instance x can be computed as si(x) = uT

i φ(x) ∈ R. Then, the rank of label
i with respect to an instance x can be determined based on the relevance scores
ri(x) =

∑
j∈Y ,j �=i [ma − si(x) + sj(x)]+ . It is prohibitively expensive to compute

such rankings exactly when L is large. We use instead its approximation to update
parameters ΘF given by ri(x) ≈ ⌊L−|Y|

Ti

⌋
where �·� denotes the floor function and

Ti is the number of trials to sample an index j yielding incorrect ranking against
label i such that ma − si(x) + sj(x) > 0 during stochastic parameter update
steps. Having an approximate rank ri(x), we can obtain a weighted ranking func-
tion h(ri(x)) =

∑ri(x)
k=1

1
k , which is shown to be an effective way of optimizing

precision at the top of rankings.

3.2 Learning with Hierarchical Structures Over Labels

Wsabie is trained in a way that the margin of similarity scores between positive
associations uT

p φ(x) and negative associations uT
nφ(x) is maximized, where up

and un denote the embeddings of relevant and irrelevant labels, respectively,
for an instance x. In practice, this approach works well if label patterns of
test instances appear in training label patterns. If there are few or no training
instances for some labels, the model may fail to make predictions accurately on
test instances associated with those labels. In such cases, a joint space learning
method could benefit from label hierarchies. In this section, we introduce a simple
and efficient joint space learning method by adding a regularization term which
employs label hierarchies, hereafter referred to as WsabieH .

Notations. Consider multi-label problems where label hierarchies exist. Label
graphs are a natural way to represent such hierarchical structures. Because it is
possible for a label to have more than one parent node, we represent a hierarchy
of labels in a directed acyclic graph (DAG). Consider a graph G = {V, E} where
V denotes a set of nodes and E represent a set of connections between nodes. A
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Fig. 1. An illustrative example of our proposed method. A label yi (green circle)
indicates a relevant label for a document (rectangle) while yn (red circle) is one of
the irrelevant labels. In the joint space, we learn representations for the relevant label,
its ancestor ys, and the document to be similar whereas the distance between the
document and the irrelevant label is maximized. Also, the parent label, ys, and its
children are forced to be similar while sibling labels of yi, i.e. yk, are kept away from
each other.

node u ∈ V corresponds to a label. A directed edge from a node u to a node v is
denoted as eu,v, in which case we say that u is a parent of v and v is a child of
u. The set of all parents / children of v is denoted with SP(v) / SC(v). If there
exists a directed path from u to v, u is an ancestor of v and v is a descendant of
u, the set of all ancestors / descendants is denoted as SA / SD(u).

Label structures as regularizers. As an example, let us consider three labels,
“computer science” (CS), “artificial intelligence” (AI), and “software engineering”
(SE). The label CS can be viewed as a parent label of AI and SE. Given a paper
dealing with problems in artificial intelligence and having AI as a label, we wish
to learn a joint embedding model in a way that it is also highly probable to pre-
dict CS as a relevant label. Following our hypothesis in label spaces, even though
we have no paper of software engineering, a label hierarchy allows us to make rea-
sonable predictions on such a label by representing label SE close to label CS in
a vector space. In order to prevent the model from converging to trivial solutions
that representations of all three labels are identical, it is desired that sibling labels
such as AI and SE in the hierarchy are well separated from each other in a joint
embedding space. For an illustration of our method, see Fig. 1.

Formally, we can achieve this by defining a regularization term Ω, which
takes into account the hierarchical label structure

Ω(ΘH) =
N∑

n=1

1
ZA

∑

i∈Yn

∑

s∈SA(i)

− log p(ys|yi,xn)

+
L∑

l=1

∑

q∈SP(l)

∑

k∈SC(q)
k �=l

h(rq(ul))
[
mb − uT

q ul + uT
k ul

]
+

(2)
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where mb is the margin, ZA = |Yn||SA(i)|, and p(ys|yi,xn) denotes the probability
of predicting an ancestor label s of a label i given i and an instance xn for which
i is relevant. More specifically, the probability p(ys|yi,xn) can be defined as

p(ys|yi,xn) =
exp(uT

s û(n)
i )

∑
v∈L exp(uT

v û(n)
i )

, (3)

where û(n)
i = 1

2 (ui + φ(xn)) is the averaged-representation of a label i and the
n-th instance in a joint space. Intuitively, this regularizer forces labels, which
share the same parent label, to have similar vector representations as much as
possible while keeping them separated from each other. Moreover, an instance
x has the potential to make good predictions on some labels even though they
do not appear in the training set only if their descendants are associated with
training instances.

Adding Ω to Eq. 1 results in the objective function of WsabieH

L (ΘH ;D) =
N∑

n=1

∑

i∈Yn

∑

j∈Ȳn

h(ri(xn)) � (xn, yi, yj) + λΩ(ΘH) (4)

where λ is a control parameter of the regularization term. If we set λ = 0, then
the above objective function is equivalent to the objective function of Wsabie in
Eq 1.

3.3 Efficient Gradients Computation

Due to the high computational cost for computing gradients for the softmax
function in Eq. 3, we use hierarchical softmax [22,23] which reduces the gradient
computing cost from O(L) to O(log L). Similar to [21], in order to make use of
the hierarchical softmax, a binary tree is constructed by Huffman coding, which
yields binary codes with variable length to each label according to |SD(·)|. Note
that by definition of the Huffman coding all L labels correspond to leaf nodes
in a binary tree, called the Huffman tree. Instead of computing L outputs, the
hierarchical softmax computes a probability of 	log L
 binary decisions over a
path from the root node of the tree to the leaf node corresponding to a target
label, say, yj in Eq. 3.

More specifically, let C(y) be a codeword of a label y by the Huffman coding,
where each bit can be either 0 or 1, and I(C(y)) be the number of bits in the
codeword for that label. Cl(y) is the l-th bit in y’s codeword. Unlike for softmax,
for computing the hierarchical softmax we use the output label representations
U′ as vector representations for inner nodes in the Huffman tree. The hierarchical
softmax is then given by

p(yj |yi) =
I(C(yj))∏

l=1

σ(�Cl(yj) = 0�u′T
n(l,yj)ui) (5)
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where σ(·) is the logistic function, �·� is 1 if its argument is true and −1 otherwise,
and u′

n(l,yj) is a vector representation for the l-th node in the path from the
root node to the node corresponding to the label yj in the Huffman tree. While
L inner products are required to compute the normalization term in Eq. 3, the
hierarchical softmax needs I(C(·)) computations. Hence, the hierarchical softmax
allows substantial improvements in computing gradients if E [I(C(·))] � L.

3.4 Label Ranking to Binary Predictions

It is often sufficient in practice to just predict a ranking of labels instead of a
bipartition of labels, especially in settings where the learning system is compre-
hended as supportive [8]. On the other hand, there are several ways to convert
ranking results into a bipartition. Basically all of them split the ranking at a cer-
tain position depending on a predetermined or predicted threshold or amount of
relevant labels.

Instead of experimenting with different threshold techniques, we took a prag-
matic stance, and simply assume that there is an oracle which tells us the actual
number of relevant labels for an unseen instance. This allows us to evaluate and
compare the ranking quality of our approaches independently of the performance
of an underlying thresholding technique. The bipartition measures obtained by
this method could be interpreted as a (soft) upper bound for any thresholding
approach.

4 Experimental Setup

Datasets. We benchmark our proposed method on two textual corpora con-
sisting of a large number of documents and with label hierarchies provided.

The RCV1-v2 dataset [19] is a collection of newswire articles. There are 103
labels and they are organized in a tree. Each label belongs to one of four major
categories. The original train/test split in the RCV1-v2 dataset consists of 23,149
training documents and 781,265 test documents. In our experiments, we switched
the training and the test data, and selected the top 20,000 words according to
the document frequency. We chose randomly 10,000 training documents as the
validation set.

The second corpus is the OHSUMED dataset [16] consisting of 348,565 sci-
entific articles from MEDLINE. Each article has multiple index terms known
as Medical Subject Headings (MeSH). In this dataset, the training set contains
articles from year 1987 while articles from 1988 to 1991 belong to the test set.
We map all MeSH terms in the OHSUMED dataset to 2015 MeSH vocabulary1

in which 27,483 MeSH terms are organized in a DAG hierarchy. Originally, the
OHSUMED collection consists of 54,710 training documents and 293,856 test
documents. Having removed all MeSH terms that do not appear in the 2015
MeSH vocabulary, we excluded all documents that have no label from the cor-
pus. To represent documents in a vector space, we selected unigram words that
1 http://www.nlm.nih.gov/pubs/techbull/so14/so14 2015 mesh avail.html

http://www.nlm.nih.gov/pubs/techbull/so14/so14_2015_mesh_avail.html


Predicting Unseen Labels Using Label Hierarchies 109

Table 1. Number of instances (M), Size of vocabulary (D), Number of labels (L),
Average number of labels per instance (C), and the type of label hierarchy (HS).
L subscripted k and u denote the number of known and unseen labels, respectively.

Original datasets Modified datasets
D HS

M L C M Lk Lu C

RCV1-v2 804 414 103 3.24 700 628 82 21 1.43 20 000 Tree
OHSUMED 233 369 27 483 9.07 100 735 9570 17 913 3.87 25 892 DAG

occur more than 5 times in the training set. These pre-processing steps left us
with 36,883 train documents and 196,486 test documents. Then, 10% of the
training documents were randomly set aside for the validation set. Finally, for
both datasets, we applied log tf-idf term-weighting and then normalized docu-
ment vectors to unit length.

Preparation of the datasets in zero-shot settings. We hypothesize that
label hierarchies provide possibilities of learning representations of unseen labels,
thereby improving predictive performance for unseen data. To test our hypoth-
esis, we modified the datasets. For the RCV1-v2 dataset, we removed all labels
corresponding to non-terminals in the label hierarchy from training data and val-
idation data while these non-terminal labels remain intact in the test set. In other
words, we train models with labels corresponding to the leaves in the label hier-
archy, then test them on the modified test set which only contains unseen labels.

Since the train and test examples of the OHSUMED dataset was split by
year, the training data does not cover all labels in the test set. More specifically,
there are 27,483 labels in the label hierarchy (cf. Table 1), of which only 9,570
occur in both training and test sets, which will be referred to as the set of known
labels. Of the 12,568 labels that occur in the test set, 2,998 cannot be found
in the known labels set, and thus form a set of unseen labels together with the
14,915 labels which are only available in the label hierarchy, but not present in
the label patterns. In order to test predictive performance on these unseen labels,
we omitted all labels in the known label set from the test examples. This resulted
in some test examples having an empty set of labels, which were ignored for the
evaluation. Finally, the above preprocessing steps left us 67,391 test examples.

The statistics of the datasets and the modified ones are summarized in
Table 1.

Representing parent-child pairs of MeSH terms in a DAG. As men-
tioned earlier, we use parent-child pairs of MeSH terms in the 2015 MeSH vocab-
ulary as the label hierarchy for the OHSUMED dataset. If we represent parent-
child pairs of labels as a graph, it may contain cycles. Hence, we removed edges
resulting in cycles as follows: 1) Pick a node that has no parent as a starting
node. 2) Run Depth-First Search (DFS) from the starting node in order to detect
edges pointing to nodes visited already, then remove such edges. 3) Repeat the
1 & 2 steps until all nodes having no parents are visited. There are 16 major
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categories in the MeSH vocabulary. In contrast to RCV1-v2, the MeSH terms
are formed in complex structures so that a label can have more than one parent.

Baselines. We compare our algorithm, WsabieH , which uses hierarchical infor-
mation for label embeddings, to Wsabie ignoring label hierarchies and several
other benchmark algorithms. For binary relevance (BR), which decomposes a
multi-label problem into L binary problems, we use LIBLINEAR [12] as a base
learner which is a good compromise between efficiency and effectiveness in multi-
label text document classification.

To address the limitations of BR, specifically, when L is large, dimensionality
reduction method on label spaces, namely Principal Label Space Transformation
(PLST) and Conditional Principal Label Space Transformation (CPLST), have
been proposed [7,29] which try to capture label correlations before learning
per-label classifiers. Instead of directly predicting labels for given instances, the
LSDR approach learns d-output linear predictors in a reduced label space. Then,
the original label space is reconstructed from the outputs of the linear predictors
using the transformation matrix for reducing the label dimensionality. We use
ridge regression as a linear predictor.

Pairwise decomposition has been already successfully applied for multi-label
text classification [14,20]. Here, one classifier is trained for each pair of classes,
i.e., a problem with L different classes is decomposed into L(L−1)

2 subproblems.
At test time, all of the L(L−1)

2 base classifiers make a prediction for one of its two
corresponding classes, which is interpreted as a full vote (0 or 1) for this label.
Adding these up results in a ranking over the labels. To convert the ranking into
a multi-label prediction, we use the calibrated label ranking (CLR) approach.
Though CLR is able to predict cutting points of ranked lists, in this work, in
order to allow a fair comparison, it also relies on an oracle to predict the number
of relevant labels for a given instance (cf Section 3.4). We denote by CLRsvm

the use of CLR in combination with SVMs.

Evaluation measures. There are several measures to evaluate multi-label algo-
rithms and they can be split into two groups; ranking and bipartition measures.
If an algorithm generates a list of labels, which is sorted by relevance scores,
for a given instance, ranking measures need to be considered. The most widely
used ranking measures are rank loss (RL) and average precision (AvgP ). The
rank loss accounts for the ratio of the number of mis-ordered pairs between
relevant and irrelevant labels in a ranked list of labels to all possible pairs,
which defined as RL = 1

|Y||Y|
∑

i,j∈Y×Y [r(i) > r(j)]+ + 1
2 [r(i) = r(j)]+ where

r(·) denotes the position of a label in the ranked list. The average precision quan-
tifies the average precision at each point in the ranking where a relevant label
is placed and is computed as AvgP = 1

|Y|
∑

i∈Y (| {j ∈ Y|r(j) ≤ r(i)} |/r(i)) .

Label-based measures for binary predictions can be also considered. In this
work, we report the micro- and macro-averaged F-score defined as: MiF =
(
∑L

l=1 2tpl)/(
∑L

l=1 2tpl + fpl + fnl) , MaF = 1
L

∑L
l=1 2tpl/(2tpl + fpl + fnl)

where tpl, fpl and fnl are the number of true positives, false positives and
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Table 2. Comparison of WsabieH to baselines on the benchmarks. (Best in bold)

RCV1-v2 OHSUMED
BR PLST CPLST CLRsvm Wsabie WsabieH BR PLST Wsabie WsabieH

AvgP 94.20 92.75 92.76 94.76 94.34 94.39 45.00 26.50 45.72 45.76
RL 0.46 0.78 0.76 0.40 0.44 0.44 4.48 15.06 4.09 3.72

false negatives for label l, respectively. Throughout the paper, we present the
evaluation scores of these measures multiplied by 100.

Training Details. All hyperparameters were empirically chosen based on AvgP
on validation sets. The dimensionality of the joint space d was selected in a
range of {16, 32, 64, 128} for the RCV1-v2 dataset and {128, 256, 512} for the
OHSUMED dataset. The margins ma and mb were chosen ranging from {10−3,
10−2, 10−1, 100, 101, 102}. We used Adagrad [10] to optimize parameters Θ in
Eq. 1 and 4. Let Δi,τ be the gradient of the objective function in Eq. 4 with
respect to a parameter θi ∈ Θ at time τ . Then, the update rule for parameters
indexed i at time τ is given by θ

(τ+1)
i = θ

(τ)
i −η

(τ)
i Δi,t with an adaptive learning

rate per parameter η
(τ)
i = η0

/√∑τ
t=1 Δ2

i,t where η0 ∈ {10−4, 10−3, 10−2, 10−1}
denotes a base learning rate which decrease by a factor of 0.99 per epoch. We
implemented our proposed methods using a lock-free parallel gradient update
scheme [25], namely Hogwild!, in a shared memory system since the number of
parameters involved during updates is sparse even though the whole parameter
space is large. For BR and CLRsvm, LIBLINEAR[12] was used as a base learner
and the regularization parameter C =

{
10−2, 100, 102, 104, 106

}
was chosen by

validation sets.

5 Experimental Results

5.1 Learning All Labels Together

Table 2 compares our proposed algorithm, WsabieH , with the baselines on the
benchmark datasets in terms of two ranking measures. It can be seen that
CLRsvm outperforms the others including WsabieH on the RCV1-v2 dataset,
but the performance gap across all algorithms in our experiments is not large.
Even BR ignoring label relationship works competitively on this dataset. Also,
no difference between Wsabie and WsabieH was observed. This is attributed to
characteristics of the RCV1-v2 dataset that if a label corresponding to one of
the leaf nodes in the label hierarchy is associated with an instance, (almost) all
nodes in a path from the root node to that node are also present, so that the
hierarchical information is implicitly present in the training data.

Let us now turn to the experimental results on the OHSUMED dataset which
are shown on the right-hand side of Table 2. Since the dataset consists of many
labels, as an LSDR approach, we include PLST only in this experiment because
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Table 3. The performance of WsabieH compared to its baseline on the benchmarks
in zero-shot learning settings.

RCV1-v2 OHSUMED
AvgP RL MiF MaF AvgP RL MiF MaF

Wsabie 2.31 62.29 0.00 0.00 0.01 56.37 0.00 0.00
WsabieH 9.47 30.39 0.50 1.64 0.06 39.91 0.00 0.00

CPLST is computationally more expensive than PLST, but no significant dif-
ference was observed. Similarly, due to the computational cost of CLRsvm with
respect to the number of labels, we excluded it from the experiment. It can
be seen that regardless of the choice of the regularization term, the Wsabie
approaches perform better than the other methods. PLST performed poorly
under the settings where the density of labels, i.e., C/L in Table 1, is very low.
Moreover, we projected the original label space L =27,483 into a much smaller
dimension d = 512 using a small amount of training examples. Although the
difference to BR is rather small, the margin is more pronounced that on RCV1.

5.2 Learning to Predict Unseen Labels

Over the last few years, there has been an increasing interest in zero-shot learn-
ing, which aims to learn a function that maps instances to classes or labels that
have not been seen during training. Visual attributes of an image [18] or textual
description of labels [13,28] may serve as additional information for zero-shot
learning algorithms. In contrast, in this work, we focus on how to exploit label
hierarchies and co-occurrence patterns of labels to make predictions on such
unseen labels. The reason is that in many cases it is difficult to get additional
information for some specific labels from external sources. In particular, while
using a semantic space of labels’ textual description is a promising way to learn
vector representations of labels, sometimes it is not straightforward to find suit-
able mappings of specialized labels.

Table 3 shows the results of Wsabie against WsabieH on the modified datasets
which do not contain any known label in the test set (cf. Sec. 4). As can be seen,
WsabieH clearly outperforms Wsabie on both datasets across all measures except
for MiF and MaF on the OHSUMED dataset. Note that the key difference between
WsabieH and Wsabie is the use of hierarchical structures over labels during the
training phase. Since the labels in the test set do not appear during training, Wsa-
bie can basically only make random predictions for the unknown labels. Hence,
the comparison shows that taking only the hierarchical relations into account
already enables a considerable improvement over the baseline. Unfortunately, the
effect is not substantial enough in order to be reflected w.r.t. MiF and MaF on
OHSUMED. Note, however, that a relevant, completely unknown label must be
ranked approximately as one of the top 4 labels out of 17,913 in order to count for
bipartition measures in this particular setting.
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In summary, these results show that the regularization of joint embedding
methods is an effective way of learning representations for unseen labels in a tree-
structured hierarchy of a small number of labels . However, if a label hierarchy
is defined on more complex structures and while a fewer number of training
examples exists per label, it might be difficult for WsabieH to work well on
unseen data.

6 Pretrained Label Embeddings as Good Initial Guess

From the previous experiments, we see that the regularization of WsabieH using
the hierarchical structure of labels allows us to obtain better performance for
unseen labels. The objective function (Eq. 4) penalizes parameters of observable
labels in the training data by the negative log probability of predicting their
ancestors in a hierarchy. If we initialize label spaces parameterized by U at
random, presumably, the regularizer may rather act as noise at a beginning
stage of the training. Especially for OHSUMED, the label hierarchy is complex
and positive documents are very few for some labels.

We address this by exploiting both label hierarchies and co-occurrence pat-
terns between labels in the training data. Apart from feature representations of
a training instance, it is possible to capture underlying structures of the label
space based on the co-occurrence patterns. Hence, we propose a method to learn
label embeddings from hierarchical information and pairwise label relationships.

The basic idea of pretraining label embeddings is to maximize the probabil-
ity of predicting an ancestor given a particular label in a hierarchy as well as
predicting co-occurring labels with it. Given the labels of N training instances
DY = {Y1,Y2, · · · ,YN}, the objective function is to maximize the average log
probability given by

N∑

n=1

[
(1 − α)

ZA

∑

i∈Yn

∑

j∈SA(i)

log p (yj |yi) +
α

ZN

∑

i∈Yn

∑

k∈Yn
k �=i

log p (yk|yi)
]

(6)

where α determines the importance of each term ranging from 0 to 1,
ZA = |Yn||SA(·)| and ZN = |Yn|(|Yn| − 1). The probability of predicting an ances-
tor label j of a label i, i.e., p(yj |yi), can be computed similarly to Eq. 3 by using
softmax and slight modifications. Thus, the log-probability can be defined by

p(yj |yi) =
exp(u′T

j ui)∑
v∈L exp(u′T

v ui)
(7)

where ui is the i-th column vector of U ∈ R
d×L and u′

j is a vector representation
for label j and the j-th column vector of U′ ∈ R

d×L. The softmax function in
Eq. 7 can be viewed as an objective function of a neural network consisting
of a linear activation function in the hidden layer and two weights {U,U′},
where U connects the input layer to the hidden layer while U′ is used to convey
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Fig. 2. Visualization of learned label embeddings by the log-linear model (Eq 6). (left)
using only label co-occurrence patterns α = 1 (middle) using a hierarchy as well as
co-occurrences α = 0.5 (right) using only a hierarchy α = 0.

the hidden activations to the output layer. Here, U and U′ correspond to vector
representations for input labels and output labels, respectively. Like Eq. 3, we use
hierarchical softmax instead of Eq. 7 to speed up pre-training label embeddings.

6.1 Understanding Label Embeddings

We begin by qualitatively demonstrating label embeddings trained on label co-
occurrence patterns from the BioASQ dataset [1], which is one of the largest
datasets for multi-label text classification, and label hierarchies in the 2015
MeSH vocabulary. The BioASQ dataset consists of more than 10 millions of
documents. Note that we only use its label co-occurrence patterns. Its labels are
also defined over the same MeSH vocabulary, so that we can use it for obtain-
ing knowledge about the OHSUMED labels (cf Section 6). We trained the label
embeddings using Eq. 6 by setting the dimensionality of the label embeddings to
d = {128, 256, 512} with different weighting values α = {0, 0.5, 1} for 100 epoch
using SGD with a fixed learning rate of 0.1. If we set d = 128, training took
about 6 hours on a machine with dual Xeon E5-2620 CPUs.

Analysis on learned label representations. Fig. 2 shows vector representa-
tions of labels related to Disorders/Diseases and their therapy in the 2015 MeSH
vocabulary in 2D space.2 It is likely that label pairs that co-occur frequently are
close to each other. Particularly, on the left in Fig. 2, each therapy is close to
a disorder for which the therapy is an effective treatment. If we make use of
hierarchical information as well as co-occurrence label patterns during training,
i.e., α = 0.5 in Eq. 6, more interesting relationships are revealed which are not
observed from the model trained only on co-occurrences (α = 1). We can say that
the learned vector representations has identified Therapy-Disorders/Diseases
relationships (on the middle in Fig. 2). We also present label embeddings trained
using only label hierarchies (α = 0) on the right in Fig. 2.

Analogical reasoning in label spaces. One way to evaluate representation
quality is analogical reasoning as shown in [21]. Upon the above observations (on
2 Projection of 128-dim label embeddings into 2D was done by Principal Component

Analysis.
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Table 4. Analogical reasoning on learned vector representations of MeSH vocabulary

On learned representations using the hierarchy
Analogy questions Most probable answers

Cardiovascular Diseases
: Diet Therapy
≈
Respiration Disorders
: ?

Diet Therapy
Enteral Nutrition

Gastrointestinal Intubation
Total Parenteral Nutrition

Parenteral Nutrition
Respiratory Therapy

Mental Disorders
: Behavior Therapy
≈
PTSD
: ?

Behavior Therapy
Cognitive Therapy

Rational-Emotive Psychotherapy
Brief Psychotherapy

Psychologic Desensitization
Implosive Therapy

On learned representations without using the hierarchy
Analogy questions Most probable answers

Cardiovascular Diseases
: Diet Therapy
≈
Respiration Disorders
: ?

Respiration Disorders
Respiratory Tract Diseases

Respiratory Sounds
Airway Obstruction
Hypoventilation

Croup

Mental Disorders
: Behavior Therapy
≈
PTSD
: ?

Behavior Therapy
Psychologic Desensitization
Internal-External Control

PTSD
Phobic Disorders

Anger

the middle in Fig. 2), we performed analogical reasoning on both the represen-
tations trained with the hierarchy and ones without the hierarchy, specifically,
regarding Therapy-Disorders/Diseases relationships (Table 4). As expected, it
seems like the label representations trained with the hierarchy are clearly advan-
tageous to the ones trained without the hierarchy on analogical reasoning. To
be more specific, consider the first example, where we want to know what kinds
of therapies are effective on “Respiration Disorders” as the relationship between
“Diet Therapy” and “Cardiovascular Diseases”. When we perform such analog-
ical reasoning using learned embeddings with the hierarchy, the most probable
answers to this analogy question are therapies that can be used to treat “Respi-
ration Disorders” including nutritional therapies. Unlike the learned embeddings
with the hierarchy, the label embeddings without the hierarchy perform poorly.
In the bottom-right of Table 4, “Phobic Disorders” can be considered as a type
of anxiety disorders that occur commonly together with “Post-traumatic Stress
Disorders (PTSD)” rather than a treatment of it.

6.2 Results

The results on the modified zero-shot learning datasets in Table 5 show that
we can obtain substantial improvements by the pretrained label embeddings.
Please note that the scores obtained by using random label embeddings on the
left in Table 5 are the same as those of Wsabie and WsabieH in Table 3. In
this experiment, we used very small base learning rates (i.e., η0 = 10−4 chosen
by validation) for updating label embeddings in Eq. 4 after being initialized
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Table 5. Initialization of label embeddings on OHSUMED under zero-shot settings.

random label embeddings pretrained label embeddings
AvgP RL MiF MaF AvgP RL MiF MaF

Wsabie 0.01 56.37 0.00 0.00 1.64 2.82 0.03 0.06
WsabieH 0.06 39.91 0.00 0.00 1.36 5.33 0.08 0.14

Table 6. Evaluation on the full test data of the OHSUMED dataset. Numbers in
parentheses are standard deviation over 5 runs. Subscript P denotes the use of pre-
trained label embeddings.

Wsabie WsaibeH WsabieP WsabieHP

AvgP 45.72 (0.04) 45.76 (0.06) 45.88 (0.09) 45.92 (0.02)
RL 4.09 (0.18) 3.72 (0.11) 3.44 (0.13) 3.11 (0.10)
MiF 46.32 (0.04) 46.34 (0.04) 46.45 (0.07) 46.50 (0.01)
MaF 13.93 (0.03) 13.96 (0.07) 14.19 (0.05) 14.25 (0.02)

by the pretrained ones. This means that our proposed method is trained in
a way that maps a document into the some point of label embeddings while
the label embeddings hardly change. In fact, the pretrained label embeddings
have interesting properties shown in Section 6.1, so that Wsabie starts learning
at good initial parameter spaces. Interestingly, it was observed that some of
the unseen labels are placed at the top of rankings for test instances, so that
relatively higher scores of bipartition measures are obtained even for Wsabie. We
also performed an experiment on the full OHSUMED dataset. The experimental
results are given in Table 6. WsabieHP combining pretrained label embeddings
with hierarchical label structures is able to further improve, outperforming both
extensions by its own across all measures.

7 Conclusions

We have presented a method that learns a joint space of instances and labels taking
hierarchical structures of labels into account. This method is able to learn repre-
sentations of labels, which are not presented during the training phase, by leverag-
ing label hierarchies. We have also proposed a way of pretraining label embeddings
from huge amounts of label patterns and hierarchical structures of labels.

We demonstrated the joint space learning method on two multi-label text cor-
pora that have different types of label hierarchies. The empirical results showed
that our approach can be used to place relevant unseen labels on the top of the
ranked list of labels. In addition to the quantitative evaluation, we also analyzed
label representations qualitatively via a 2D-visualization of label representa-
tions. This analysis showed that using hierarchical structures of labels allows us
to assess vector representations of labels by analogical reasoning. Further studies
should be carried out to make use of such regularities in label embeddings at
testing time.
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