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Preface

We are delighted to introduce the proceedings of the 2015 edition of the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases, or ECML PKDD for short. This conference stems from the former ECML
and PKDD conferences, the two premier European conferences on, respectively,
Machine Learning and Knowledge Discovery in Databases. Originally independent
events, the two conferences were organized jointly for the first time in 2001. The
sinergy between the two led to increasing integration, and eventually the two merged in
2008. Today, ECML PKDD is a world-wide leading scientific event that aims at
exploiting the synergies between Machine Learning and Data Mining, focusing on the
development and application of methods and tools capable of solving real-life
problems.

ECML PKDD 2015 was held in Porto, Portugal, during September 7–11. This was
the third time Porto hosted the major European Machine Learning event. In 1991, Porto
was host to the fifth EWSL, the precursor of ECML. More recently, in 2005, Porto was
host to a very successful ECML PKDD. We were honored that the community chose to
again have ECML PKDD 2015 in Porto, just ten years later. The 2015 ECML PKDD
was co-located with “Intelligent System Applications to Power Systems”, ISAP 2015, a
well-established forum for scientific and technical discussion, aiming at fostering the
widespread application of intelligent tools and techniques to the power system network
and business. Moreover, it was collocated, for the first time, with the Summer School
on “Data Sciences for Big Data.”

ECML PKDD traditionally combines the research-oriented extensive program of the
scientific and journal tracks, which aim at being a forum for high quality, novel
research in Machine Learning and Data Mining, with the more focused programs of the
demo track, dedicated to presenting real systems to the community, the PhD track,
which supports young researchers, and the nectar track, dedicated to bringing relevant
work to the community. The program further includes an industrial track, which brings
together participants from academia, industry, government, and non-governmental
organizations in a venue that highlights practical and real-world studies of machine
learning, knowledge discovery, and data mining. The industrial track of ECML PKDD
2015 has a separate Program Committee and separate proceedings volume. Moreover,
the conference program included a doctoral consortium, three discovery challenges,
and various workshops and tutorials.

The research program included five plenary talks by invited speakers, namely,
Hendrik Blockeel (University of Leuven and Leiden University), Pedro Domingos
(University of Washington), Jure Leskovec (Stanford University), Nataša Milić-Fray-
ling (Microsoft Research), and Dino Pedreschi (Università di Pisa), as well as one ISAP
+ECML PKDD joint plenary talk by Chen-Ching Liu (Washington State University).
Three invited speakers contributed to the industrial track: Andreas Antrup (Zalando and



University of Edinburgh), Wei Fan (Baidu Big Data Lab), and Hang Li (Noah’s Ark
Lab, Huawei Technologies).

Three discovery challenges were announced this year. They focused on “MoRe-
BikeS: Model Reuse with Bike rental Station data,” “On Learning from Taxi GPS
Traces,” and “Activity Detection Based on Non-GPS Mobility Data,” respectively.

Twelve workshops were held, providing an opportunity to discuss current topics in a
small and interactive atmosphere: “MetaSel - Meta-learning and Algorithm Selection,”
“Parallel and Distributed Computing for Knowledge Discovery in Databases,”
“Interactions between Data Mining and Natural Language Processing,” “New Frontiers
in Mining Complex Patterns,” “Mining Ubiquitous and Social Environments,”
“Advanced Analytics and Learning on Temporal Data,” “Learning Models over
Multiple Contexts,” “Linked Data for Knowledge Discovery,” “Sports Analytics,”
“BigTargets: Big Multi-target Prediction,” “DARE: Data Analytics for Renewable
Energy Integration,” and “Machine Learning in Life Sciences.”

Ten tutorials were included in the conference program, providing a comprehensive
introduction to core techniques and areas of interest for the scientific community:
“Similarity and Distance Metric Learning with Applications to Computer Vision,”
“Scalable Learning of Graphical Models,” “Meta-learning and Algorithm Selection,”
“Machine Reading the Web - Beyond Named Entity Recognition and Relation
Extraction,” “VC-Dimension and Rademacher Averages: From Statistical Learning
Theory to Sampling Algorithms,” “Making Sense of (Multi-)Relational Data,” “Col-
laborative Filtering with Binary, Positive-Only Data,” “Predictive Maintenance,”
“Eureka! - How to Build Accurate Predictors for Real-Valued Outputs from Simple
Methods,” and “The Space of Online Learning Problems.”

The main track received 380 paper submissions, of which 89 were accepted. Such a
high volume of scientific work required a tremendous effort by the Area Chairs, Pro-
gram Committee members, and many additional reviewers. We managed to collect
three highly qualified independent reviews per paper and one additional overall input
from one of the Area Chairs. Papers were evaluated on the basis of significance of
contribution, novelty, technical quality, scientific, and technological impact, clarity,
repeatability, and scholarship. The industrial, demo, and nectar tracks were equally
successful, attracting 42, 32, and 29 paper submissions, respectively.

For the third time, the conference used a double submission model: next to the
regular conference tracks, papers submitted to the Springer journals Machine Learning
(MACH) and Data Mining and Knowledge Discovery (DAMI) were considered for
presentation at the conference. These papers were submitted to the ECML PKDD 2015
special issue of the respective journals, and underwent the normal editorial process
of these journals. Those papers accepted for one of these journals were assigned a
presentation slot at the ECML PKDD 2015 conference. A total of 191 original
manuscripts were submitted to the journal track during this year. Some of these papers
are still being refereed. Of the fully refereed papers, 10 were accepted in DAMI and 15
in MACH, together with 4+4 papers from last year’s call, which were also scheduled
for presentation at this conference. Overall, this resulted in a number of 613 submis-
sions (to the scientific track, industrial track and journal track), of which 126 were
selected for presentation at the conference, making an overall acceptance rate of
about 21%.
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Part I and Part II of the proceedings of the ECML PKDD 2015 conference contain
the full papers of the contributions presented in the scientific track, the abstracts of the
scientific plenary talks, and the abstract of the ISAP+ECML PKDD joint plenary talk.
Part III of the proceedings of the ECML PKDD 2015 conference contains the full
papers of the contributions presented in the industrial track, short papers describing the
demonstrations, the nectar papers, and the abstracts of the industrial plenary talks.

The scientific track program results from continuous collaboration between the
scientific tracks and the general chairs. Throughout we had the unfaltering support
of the Local Chairs, Carlos Ferreira, Rita Ribeiro, and João Moreira, who managed this
event in a thoroughly competent and professional way. We thank the Social Media
Chairs, Dunja Mladenić and Márcia Oliveira, for tweeting the new face of
ECML PKDD, and the Publicity Chairs, Ricardo Campos and Carlos Ferreira, for their
excellent work in spreading the news. The beautiful design and quick response time
of the web site is due to the work of our Web Chairs, Sylwia Bugla, Rita Ribeiro, and
João Rodrigues. The beautiful image on all the conference materials is based on the
logo designed by Joana Amaral e João Cravo, inspired by Porto landmarks. It has been
a pleasure to collaborate with the Journal, Industrial, Demo, Nectar, and PhD Track
Chairs. ECML PKDD would not be complete if not for the efforts of the Tutorial
Chairs, Fazel Famili, Mykola Pechenizkiy, and Nikolaj Tatti, the Workshop Chairs,
Stan Matwin, Bernhard Pfahringer, and Luís Torgo, and the Discovery Challenge
Chairs, Michel Ferreira, Hillol Kargupta, Luís Moreira-Matias, and João Moreira. We
thank the Awards Committee Chairs, Pavel Brazdil, Sašo Džerosky, Hiroshi Motoda,
and Michèle Sebag, for their hard work in selecting papers for awards. A special meta
thanks to Pavel: ECML PKDD at Porto is only possible thanks to you. We gratefully
acknowledge the work of the Sponsorship Chairs, Albert Bifet and André Carvalho, for
their key work. Special thanks go to the Proceedings Chairs, Michelangelo Ceci and
Paulo Cortez, for the difficult task of putting these proceedings together. We appreciate
the support of Artur Aiguzhinov, Catarina Félix Oliveira, and Mohammad Nozari
(U. Porto) for helping to check this front matter. We thank the ECML PKDD Steering
Committee for kindly sharing their experience, and particularly the General Steering
Committe Chair, Fosca Giannotti. The quality of ECML PKDD is only possible due to
the tremendous efforts of the Program Committee; our sincere thanks for all the great
work in improving the quality of these proceedings. Throughout, we relied on the
exceptional quality of the Area Chairs. Our most sincere thanks for their support, with a
special thanks to the members who contributed in difficult personal situations, and to
Paulo Azevedo for stepping in when the need was there. Last but not least, we would
like to sincerely thank all the authors who submitted their work to the conference.

July 2015 Annalisa Appice
Pedro Pereira Rodrigues

Vítor Santos Costa
Carlos Soares

João Gama
Alípio Jorge
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Towards Declarative, Domain-Oriented
Data Analysis

Hendrik Blockeel

University of Leuven, Leiden University

Abstract. The need for advanced data analysis now pervades all areas of science,
industry and services. A wide variety of theory and techniques from statistics,
data mining, and machine learning is available. Addressing a concrete question or
problem in a particular application domain requires multiple non-trivial steps:
translating the question to a data analysis problem, selecting a suitable approach
to solve this problem, correctly applying that approach, and correctly interpreting
the results. In this process, specialist knowledge on data analysis needs to be
combined with domain expertise. As data analysis becomes ever more advanced,
this becomes increasingly difficult. In an ideal world, data analysis would be
declarative and domain-oriented: the user should be able to state the question,
rather than describing a solution procedure, and the software should decide how
to provide an answer. The user then no longer needs to be, or hire, a specialist in
data analysis for every step of the knowledge discovery process. This would
make data analysis easier, more efficient, and less error-prone. In this talk, I will
discuss contemporary research that is bringing the state of the art in data analysis
closer to that long-term goal. This includes research on inductive databases,
constraint-based data mining, probabilistic-logical modeling, and declarative
experimentation.

Bio. Hendrik Blockeel is a professor at the Computer Science department of KU
Leuven, Belgium, and part-time associate professor at Leiden University, The Neth-
erlands. His research interests lie mostly in machine learning and data mining. He has
made a variety of research contributions in these fields, including work on decision tree
learning, inductive logic programming, predictive clustering, probabilistic-logical
models, inductive databases, constraint-based data mining, and declarative data anal-
ysis. He is an action editor for Machine Learning and serves on the editorial board of
several other journals. He has chaired or organized multiple conferences, workshops,
and summer schools, including ILP, ECMLPKDD, IDA and ACAI, and he has been
vice-chair, area chair, or senior PC member for ECAI, IJCAI, ICML, KDD, ICDM. He
was a member of the board of the European Coordinating Committee for Artificial
Intelligence from 2004 to 2010, and currently serves as publications chair for the
ECMLPKDD steering committee.



Sum-Product Networks: Deep Models
with Tractable Inference

Pedro Domingos

University of Washington

Abstract. Big data makes it possible in principle to learn very rich probabilistic
models, but inference in them is prohibitively expensive. Since inference is
typically a subroutine of learning, in practice learning such models is very hard.
Sum-product networks (SPNs) are a new model class that squares this circle by
providing maximum flexibility while guaranteeing tractability. In contrast to
Bayesian networks and Markov random fields, SPNs can remain tractable even
in the absence of conditional independence. SPNs are defined recursively: an
SPN is either a univariate distribution, a product of SPNs over disjoint variables,
or a weighted sum of SPNs over the same variables. It’s easy to show that the
partition function, all marginals and all conditional MAP states of an SPN can
be computed in time linear in its size. SPNs have most tractable distributions as
special cases, including hierarchical mixture models, thin junction trees, and
nonrecursive probabilistic context-free grammars. I will present generative and
discriminative algorithms for learning SPN weights, and an algorithm for
learning SPN structure. SPNs have achieved impressive results in a wide variety
of domains, including object recognition, image completion, collaborative fil-
tering, and click prediction. Our algorithms can easily learn SPNs with many
layers of latent variables, making them arguably the most powerful type of deep
learning to date. (Joint work with Rob Gens and Hoifung Poon.)

Bio. Pedro Domingos is Professor of Computer Science and Engineering at the Uni-
versity of Washington. His research interests are in machine learning, artificial intel-
ligence and data science. He received a PhD in Information and Computer Science
from the University of California at Irvine, and is the author or co-author of over 200
technical publications. He is a winner of the SIGKDD Innovation Award, the highest
honor in data science. He is a AAAI Fellow, and has received a Sloan Fellowship, an
NSF CAREER Award, a Fulbright Scholarship, an IBM Faculty Award, and best paper
awards at several leading conferences. He is a member of the editorial board of the
Machine Learning journal, co-founder of the International Machine Learning Society,
and past associate editor of JAIR. He was program co-chair of KDD-2003 and
SRL-2009, and has served on numerous program committees.



Mining Online Networks and Communities

Jure Leskovec

Stanford University

Abstract. The Internet and the Web fundamentally changed how we live our
daily lives as well as broadened the scope of computer science. Today the Web
is a ‘sensor’ that captures the pulse of humanity and allows us to observe
phenomena that were once essentially invisible to us. These phenomena include
the social interactions and collective behavior of hundreds of millions of people,
recorded at unprecedented levels of scale and resolution. Analyzing this data
offers novel algorithmic as well as computational challenges. Moreover, it offers
new insights into the design of information systems in the presence of complex
social feedback effects, as well as a new perspective on fundamental questions in
the social sciences.

Bio. Jure Leskovec is assistant professor of Computer Science at Stanford University.
His research focuses on mining large social and information networks. Problems he
investigates are motivated by large scale data, the Web and on-line media. This
research has won several awards including a Microsoft Research Faculty Fellowship,
the Alfred P. Sloan Fellowship and numerous best paper awards. Leskovec received his
bachelor’s degree in computer science from University of Ljubljana, Slovenia, and his
PhD in in machine learning from the Carnegie Mellon University and postdoctoral
training at Cornell University. You can follow him on Twitter @jure.



Learning to Acquire Knowledge in a Smart
Grid Environment

Chen-Ching Liu

Washington State University

Abstract. In a smart grid, a massive amount of data is collected by millions of
sensors and meters on the transmission, distribution, and customers' facilities.
There is a strong dependence of the smart grid on the information and com-
munications technology for its monitoring and control. As a result, the cyber
systems are also an important source of information. This presentation will be
focused on the opportunities and challenges for machine learning and knowl-
edge discovery in a smart grid environment. The application areas of
(1) anomaly detection for cyber and physical security, and (2) intelligent
remedial control of power grids will be used as examples.

Bio. Chen-Ching Liu is Boeing Distinguished Professor at Washington State Univer-
sity, Pullman, USA. During 1983-2005, he was a Professor of EE at University of
Washington, Seattle. Dr. Liu was Palmer Chair Professor at Iowa State University from
2006 to 2008. From 2008-2011, he served as Acting/Deputy Principal of the College of
Engineering, Mathematical and Physical Sciences at University College Dublin, Ire-
land. Professor Liu received an IEEE Third Millennium Medal in 2000 and the Power
and Energy Society Outstanding Power Engineering Educator Award in 2004. In 2013,
Dr. Liu received a Doctor Honoris Causa from Polytechnic University of Bucharest,
Romania. He is a co-founder of the International Council on Intelligent Systems
Application to Power Systems (ISAPs) and served as the founding president. He
chaired the IEEE Power and Energy Society Technical Committee on Power System
Analysis, Computing and Economics. Dr. Liu served on the U.S. National Academies
Board on Global Science and Technology. Professor Liu is a Fellow of the IEEE. He
was elected a Member of the Washington State Academy of Sciences in 2014.



Untangling the Web’s Invisible Net

Nataša Milić-Frayling

Microsoft Research

Abstract. This presentation will shed light on user tracking and behavioural
targeting on the Web. Through empirical studies of cookie tracking practices,
we will take an alternative view of the display ad business by observing the
network of third party trackers that envelopes the Web. The practice begs a
question of how to resolve a dissonance between the current consumer tracking
practices and the vendors’ desire for consumers’ loyalty and trustful long-term
engagements. It also makes us aware of how computing designs and techniques,
inaccessible to individuals, cause imbalance in the knowledge acquisition and
enablement, disempowering the end-users.

Bio. As a Principal Researcher at Microsoft Research (MSR) in Cambridge, Nataša is
working on the design, prototyping and evaluation of information and communication
systems. She is passionate about innovation in personal and social computing and
promotes a dialogue between IT industry, consumers, and policy makers on the issues
that arise from the adoption and use of technologies. Her current focus is on digital
obsolescence, activity based computing, and privacy respecting systems and applica-
tions. Natasa is actively involved with a wider community of academics and practi-
tioners through public speaking, collaborative projects, and serving on advisory boards
of academic programs and commercial enterprises. She is a Visiting Professor at the
UCL and Queen Mary University of London and a member of the ACM Europe
Council. She serves on the Advisory Boards for the Course in Entrepreneurship at the
University of Cambridge and the Turing Gateway in Mathematics at the Isaac Newton
Institute for Mathematical Sciences (INI).



Towards a Digital Time Machine Fueled by Big
Data and Social Mining

Dino Pedreschi

University of Pisa

Abstract. My seminar discusses the novel questions that big data and social
mining allow to raise and answer, how a new paradigm for scientific explora-
tion, statistics and policy making is emerging, and the major scientific, tech-
nological and societal barriers to be overcome to realize this vision. I will focus
on concrete projects with telecom providers and official statistics bureau in Italy
and France aimed at measuring, quantifying and possibly predicting key
demographic and socio-economic indicators based on nation-wide mobile phone
data: the population of different categories of city users (residents, commuters,
visitors) in urban spaces, the inter-city mobility, the level of well-being and
economic development of geographical units at various scales.

Bio. Dino Pedreschi is a Professor of Computer Science at the University of Pisa, and a
pioneering scientist in mobility data mining, social network mining and
privacy-preserving data mining. He co-leads with Fosca Giannotti the Pisa KDD Lab -
Knowledge Discovery and Data Mining Laboratory, a joint research initiative of the
University of Pisa and the Information Science and Technology Institute of the Italian
National Research Council, one of the earliest research lab centered on data mining. His
research focus is on big data analytics and mining and their impact on society. He is a
founder of the Business Informatics MSc program at Univ. Pisa, a course targeted at the
education of interdisciplinary data scientists. Dino has been a visiting scientist at Bar-
abasi Lab (Center for Complex Network Research) of Northeastern University, Boston
(2009-2010), and earlier at the University of Texas at Austin (1989-90), at CWI
Amsterdam (1993) and at UCLA (1995). In 2009, Dino received a Google Research
Award for his research on privacy-preserving data mining.
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A Bayesian Approach for Comparing Cross-Validated Algorithms
on Multiple Data Sets
Giorgio Corani and Alessio Benavoli
Machine Learning
DOI: 10.1007/s10994-015-5486-z

We present a Bayesian approach for making statistical inference about the accuracy (or
any other score) of two competing algorithms which have been assessed via
cross-validation on multiple data sets. The approach is constituted by two pieces. The
first is a novel correlated Bayesian t-test for the analysis of the cross-validation results
on a single data set which accounts for the correlation due to the overlapping training
sets. The second piece merges the posterior probabilities computed by the Bayesian
correlated t-test on the different data sets to make inference on multiple data sets.
It does so by adopting a Poisson-binomial model. The inferences on multiple data sets
account for the different uncertainty of the cross-validation results on the different data
sets. It is the first test able to achieve this goal. It is generally more powerful than the
signed-rank test if ten runs of cross-validation are performed, as it is anyway generally
recommended.

A Decomposition of the Outlier Detection Problem into a Set
of Supervised Learning Problems
Heiko Paulheim and Robert Meusel
Machine Learning
DOI: 10.1007/s10994-015-5507-y

Outlier detection methods automatically identify instances that deviate from the
majority of the data. In this paper, we propose a novel approach for unsupervised
outlier detection, which re-formulates the outlier detection problem in numerical data as
a set of supervised regression learning problems. For each attribute, we learn a
predictive model which predicts the values of that attribute from the values of all other
attributes, and compute the deviations between the predictions and the actual values.
From those deviations, we derive both a weight for each attribute, and a final outlier
score using those weights. The weights help separating the relevant attributes from the
irrelevant ones, and thus make the approach well suitable for discovering outliers
otherwise masked in high-dimensional data. An empirical evaluation shows that our
approach outperforms existing algorithms, and is particularly robust in datasets with
many irrelevant attributes. Furthermore, we show that if a symbolic machine learning
method is used to solve the individual learning problems, the approach is also capable
of generating concise explanations for the detected outliers.

http://dx.doi.org/10.1007/s10994-015-5486-z
http://dx.doi.org/10.1007/s10994-015-5507-y


Assessing the Impact of a Health Intervention via User-Generated
Internet Content
Vasileios Lampos, Elad Yom-Tov, Richard Pebody, and Ingemar J. Cox
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0427-9

Assessing the effect of a health-oriented intervention by traditional epidemiological
methods is commonly based only on population segments that use healthcare services.
Here we introduce a complementary framework for evaluating the impact of a targeted
intervention, such as a vaccination campaign against an infectious disease, through a
statistical analysis of user-generated content submitted on web platforms. Using
supervised learning, we derive a nonlinear regression model for estimating the
prevalence of a health event in a population from Internet data. This model is applied to
identify control location groups that correlate historically with the areas, where a
specific intervention campaign has taken place. We then determine the impact of the
intervention by inferring a projection of the disease rates that could have emerged in the
absence of a campaign. Our case study focuses on the influenza vaccination program
that was launched in England during the 2013/14 season, and our observations consist
of millions of geo-located search queries to the Bing search engine and posts on
Twitter. The impact estimates derived from the application of the proposed statistical
framework support conventional assessments of the campaign.

Beyond Rankings: Comparing Directed Acyclic Graphs
Eric Malmi, Nikolaj Tatti, Aristides Gionis
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0406-1

Defining appropriate distance measures among rankings is a classic area of study which
has led to many useful applications. In this paper, we propose a more general
abstraction of preference data, namely directed acyclic graphs (DAGs), and introduce a
measure for comparing DAGs, given that a vertex correspondence between the DAGs
is known. We study the properties of this measure and use it to aggregate and cluster a
set of DAGs. We show that these problems are NP-hard and present efficient methods
to obtain solutions with approximation guarantees. In addition to preference data, these
methods turn out to have other interesting applications, such as the analysis of a
collection of information cascades in a network. We test the methods on synthetic and
real-world datasets, showing that the methods can be used to, e.g., find a set of
influential individuals related to a set of topics in a network or to discover meaningful
and occasionally surprising clustering structure.
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Clustering Boolean Tensors
Saskia Metzler and Pauli Miettinen
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0420-3

Graphs - such as friendship networks - that evolve over time are an example of data that
are naturally represented as binary tensors. Similarly to analysing the adjacency matrix
of a graph using a matrix factorization, we can analyse the tensor by factorizing it.
Unfortunately, tensor factorizations are computationally hard problems, and in
particular, are often significantly harder than their matrix counterparts. In case of
Boolean tensor factorizations - where the input tensor and all the factors are required to
be binary and we use Boolean algebra - much of that hardness comes from the
possibility of overlapping components. Yet, in many applications we are perfectly
happy to partition at least one of the modes. For instance, in the aforementioned
timeevolving friendship networks, groups of friends might be overlapping, but the time
points at which the network was captured are always distinct. In this paper we
investigate what consequences this partitioning has on the computational complexity
of the Boolean tensor factorizations and present a new algorithm for the resulting
clustering problem. This algorithm can alternatively be seen as a particularly
regularized clustering algorithm that can handle extremely high-dimensional observa-
tions. We analyse our algorithm with the goal of maximizing the similarity and argue
that this is more meaningful than minimizing the dissimilarity. As a by-product we
obtain a PTAS and an efficient 0.828-approximation algorithm for rank-1 binary
factorizations. Our algorithm for Boolean tensor clustering achieves high scalability,
high similarity, and good generalization to unseen data with both synthetic and
realworld data sets.

Consensus Hashing
Cong Leng and Jian Cheng
Machine Learning
DOI: 10.1007/s10994-015-5496-x

Hashing techniques have been widely used in many machine learning applications
because of their efficiency in both computation and storage. Although a variety of
hashing methods have been proposed, most of them make some implicit assumptions
about the statistical or geometrical structure of data. In fact, few hashing algorithms can
adequately handle all kinds of data with different structures. When considering hybrid
structure datasets, different hashing algorithms might produce different and possibly
inconsistent binary codes. Inspired by the successes of classifier combination and
clustering ensembles, in this paper, we present a novel combination strategy for
multiple hashing results, named Consensus Hashing (CH). By defining the measure of
consensus of two hashing results, we put forward a simple yet effective model to learn
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consensus hash functions which generate binary codes consistent with the existing
ones. Extensive experiments on several large scale benchmarks demonstrate the overall
superiority of the proposed method compared with state-of-the art hashing algorithms.

Convex Relaxations of Penalties for Sparse Correlated Variables
With Bounded Total Variation
Eugene Belilovsky, Andreas Argyriou, Gael Varoquaux, Matthew B. Blaschko
Machine Learning
DOI: 10.1007/s10994-015-5511-2

We study the problem of statistical estimation with a signal known to be sparse,
spatially contiguous, and containing many highly correlated variables. We take
inspiration from the recently introduced k-support norm, which has been successfully
applied to sparse prediction problems with correlated features, but lacks any explicit
structural constraints commonly found in machine learning and image processing. We
address this problem by incorporating a total variation penalty in the k-support
framework. We introduce the (k,s) support total variation norm as the tightest convex
relaxation of the intersection of a set of sparsity and total variation constraints. We
show that this norm leads to an intractable combinatorial graph optimization problem,
which we prove to be NP-hard. We then introduce a tractable relaxation with
approximation guarantees that scale well for grid structured graphs. We devise several
first-order optimization strategies for statistical parameterestimation with the described
penalty. We demonstrate the effectiveness of this penalty on classification in the low
sample regime, classification with M/EEG neuroimaging data, and image recovery with
synthetic and real data background subtracted image recovery tasks. We extensively
analyse the application of our penalty on the complex task of identifying predictive
regions from low-sample high-dimensional fMRI brain data, we show that our method
is particularly useful compared to existing methods in terms of accuracy, interpret-
ability, and stability.

Direct Conditional Probability Density Estimation with Sparse
Feature Selection
Motoki Shiga, Voot Tangkaratt, and Masashi Sugiyama
Machine Learning
DOI: 10.1007/s10994-014-5472-x

Regression is a fundamental problem in statistical data analysis, which aims at
estimating the conditional mean of output given input. However, regression is not
informative enough if the conditional probability density is multi-modal, asymmetric,
and heteroscedastic. To overcome this limitation, various estimators of conditional
densities themselves have been developed, and a kernel-based approach called
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leastsquares conditional density estimation (LS-CDE) was demonstrated to be
promising. However, LS-CDE still suffers from large estimation error if input contains
many irrelevant features. In this paper, we therefore propose an extension of LS-CDE
called sparse additive CDE (SA-CDE), which allows automatic feature selection in
CDE. SACDE applies kernel LS-CDE to each input feature in an additive manner and
penalizes the whole solution by a group-sparse regularizer. We also give a
subgradient-based optimization method for SA-CDE training that scales well to
high-dimensional large data sets. Through experiments with benchmark and humanoid
robot transition datasets, we demonstrate the usefulness of SA-CDE in noisy CDE
problems.

DRESS: Dimensionality Reduction for Efficient Sequence Search
Alexios Kotsifakos, Alexandra Stefan, Vassilis Athitsos, Gautam Das,
and Panagiotis Papapetrou
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0413-2

Similarity search in large sequence databases is a problem ubiquitous in a wide range of
application domains, including searching biological sequences. In this paper we focus
on protein and DNA data, and we propose a novel approximate method method for
speeding up range queries under the edit distance. Our method works in a
filter-and-refine manner, and its key novelty is a query-sensitive mapping that
transforms the original string space to a new string space of reduced dimensionality.
Specifically, it first identifies the most frequent codewords in the query, and then uses
these codewords to convert both the query and the database to a more compact
representation. This is achieved by replacing every occurrence of each codeword with a
new letter and by removing the remaining parts of the strings. Using this new
representation, our method identifies a set of candidate matches that are likely to satisfy
the range query, and finally refines these candidates in the original space. The main
advantage of our method, compared to alternative methods for whole sequence
matching under the edit distance, is that it does not require any training to create the
mapping, and it can handle large query lengths with negligible losses in accuracy. Our
experimental evaluation demonstrates that, for higher range values and large query
sizes, our method produces significantly lower costs and runtimes compared to two
state-of-the-art competitor methods.
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Dynamic Inference of Social Roles in Information Cascade
Sarvenaz Choobdar, Pedro Ribeiro, Srinivasan Parthasarathy,
and Fernando Silva
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0402-5

Nodes in complex networks inherently represent different kinds of functional or
organizational roles. In the dynamic process of an information cascade, users play
different roles in spreading the information: some act as seeds to initiate the process,
some limit the propagation and others are in-between. Understanding the roles of users
is crucial in modeling the cascades. Previous research mainly focuses on modeling
users behavior based upon the dynamic exchange of information with neighbors. We
argue however that the structural patterns in the neighborhood of nodes may already
contain enough information to infer users’ roles, independently from the information
flow in itself. To approach this possibility, we examine how network characteristics of
users affect their actions in the cascade. We also advocate that temporal information is
very important. With this in mind, we propose an unsupervised methodology based on
ensemble clustering to classify users into their social roles in a network, using not only
their current topological positions, but also considering their history over time. Our
experiments on two social networks, Flickr and Digg, show that topological metrics
indeed possess discriminatory power and that different structural patterns correspond to
different parts in the process. We observe that user commitment in the neighborhood
affects considerably the influence score of users. In addition, we discover that the
cohesion of neighborhood is important in the blocking behavior of users. With this we
can construct topological fingerprints that can help us in identifying social roles, based
solely on structural social ties, and independently from nodes activity and how
information flows.

Efficient and Effective Community Search
Nicola Barbieri, Francesco Bonchi, Edoardo Galimberti,
and Francesco Gullo
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0422-1

Community search is the problem of finding a good community for a given set of query
vertices. One of the most studied formulations of community search asks for a
connected subgraph that contains all query vertices and maximizes the minimum
degree. All existing approaches to min-degree-based community search suffer from
limitations concerning efficiency, as they need to visit (large part of) the whole input
graph, as well as accuracy, as they output communities quite large and not really
cohesive. Moreover, some existing methods lack generality: they handle only
single-vertex queries, find communities that are not optimal in terms of minimum
degree, and/or require input parameters. In this work we advance the state of the art on
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community search by proposing a novel method that overcomes all these limitations: it
is in general more efficient and effective—one/two orders of magnitude on average, it
can handle multiple query vertices, it yields optimal communities, and it is
parameter-free. These properties are confirmed by an extensive experimental analysis
performed on various real-world graphs.

Finding the Longest Common Sub-Pattern in Sequences
of Temporal Intervals
Orestis Kostakis and Panagiotis Papapetrou
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0404-3

We study the problem of finding the Longest Common Sub-Pattern (LCSP) shared by
two sequences of temporal intervals. In particular we are interested in finding the LCSP
of the corresponding arrangements. Arrangements of temporal intervals are a powerful
way to encode multiple concurrent labeled events that have a time duration.
Discovering commonalities among such arrangements is useful for a wide range of
scientific fields and applications, as it can be seen by the number and diversity of the
datasets we use in our experiments. In this paper, we define the problem of LCSP and
prove that it is NP-complete by demonstrating a connection between graphs and
arrangements of temporal intervals, which leads to a series of interesting open
problems. In addition, we provide an exact algorithm to solve the LCSP problem, and
also propose and experiment with three polynomial time and space underapproximation
techniques. Finally, we introduce two upper bounds for LCSP and study their
suitability for speeding up 1-NN search. Experiments are performed on seven datasets
taken from a wide range of real application domains, plus two synthetic datasets.

Generalization Bounds for Learning with Linear, Polygonal,
Quadratic and Conic Side Knowledge
Theja Tulabandhula and Cynthia Rudin
Machine Learning
DOI: 10.1007/s10994-014-5478-4

In this paper, we consider a supervised learning setting where side knowledge is
provided about the labels of unlabeled examples. The side knowledge has the effect of
reducing the hypothesis space, leading to tighter generalization bounds, and thus
possibly better generalization. We consider several types of side knowledge, the first
leading to linear and polygonal constraints on the hypothesis space, the second leading
to quadratic constraints, and the last leading to conic constraints. We show how
different types of domain knowledge can lead directly to these kinds of side knowledge.
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We prove bounds on complexity measures of the hypothesis space for quadratic and
conic side knowledge, and show that these bounds are tight in a specific sense for the
quadratic case.

Generalization of Clustering Agreements and Distances
for Overlapping Clusters and Network Communities
Reihaneh Rabbany and Osmar R. Zaiane
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0426-x

A measure of distance between two clusterings has important applications, including
clustering validation and ensemble clustering. Generally, such distance measure
provides navigation through the space of possible clusterings. Mostly used in cluster
validation, a normalized clustering distance, a.k.a. agreement measure, compares a
given clustering result against the ground-truth clustering. The two widely-used
clustering agreement measures are Adjusted Rand Index (ARI) and Normalized Mutual
Information (NMI). In this paper, we present a generalized clustering distance from
which these two measures can be derived. We then use this generalization to construct
new measures specific for comparing (dis)agreement of clusterings in networks, a.k.a.
communities. Further, we discuss the difficulty of extending the current, contingency
based, formulations to overlapping cases, and present an alternative algebraic
formulation for these (dis)agreement measures. Unlike the original measures, the
new co-membership based formulation is easily extendable for different cases,
including overlapping clusters and clusters of inter-related data. These two extensions
are, in particular, important in the context of finding communities in complex networks.

Generalized Twin Gaussian Processes Using Sharma-Mittal
Divergence
Mohamed Elhoseiny and Ahmed Elgammal
Machine Learning
DOI: 10.1007/s10994-015-5497-9

There has been a growing interest in mutual information measures due to its wide range
of applications in Machine Learning and Computer Vision. In this manuscript, we
present a generalized structured regression framework based on Shama-Mittal
divergence, a relative entropy measure, firstly addressed in the Machine Learning
community, in this work. Sharma-Mittal (SM) divergence is a generalized mutual
information measure for the widely used Rényi, Tsallis, Bhattacharyya, and
Kullback-Leibler (KL) relative entropies. Specifically, we study Sharma-Mittal
divergence as a cost function in the context of the Twin Gaussian Processes, which
generalizes over the KL-divergence without computational penalty. We show
interesting properties of Sharma-Mittal TGP (SMTGP) through a theoretical analysis,
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which covers missing insights in the traditional TGP formulation. However, we
generalize this theory based on SM-divergence instead of KL-divergence which is a
special case. Experimentally, we evaluated the proposed SMTGP framework on several
datasets. The results show that SMTGP reaches better predictions than KL-based TGP
(KLTGP), since it offers a bigger class of models through its parameters that we learn
from the data.

Half-Space Mass: A Maximally Robust and Efficient Data
Depth Method
Bo Chen, Kai Ming Ting, Takashi Washio, and Gholamreza Haffari
Machine Learning
DOI: 10.1007/s10994-015-5524-x

Data depth is a statistical method which models data distribution in terms of
centeroutward ranking rather than density or linear ranking. While there are a lot of
academic interests, its applications are hampered by the lack of a method which is both
robust and efficient. This paper introduces Half-Space Mass which is a significantly
improved version of half-space data depth. Half-Space Mass is the only data depth
method which is both robust and efficient, as far as we know. We also reveal four
theoretical properties of Half-Space Mass: (i) its resultant mass distribution is concave
regardless of the underlying density distribution, (ii) its maximum point is unique
which can be considered as median, (iii) the median is maximally robust, and (iv) its
estimation extends to a higher dimensional space in which the convex hull of the
dataset occupies zero volume. We demonstrate the power of Half-Space Mass through
its applications in two tasks. In anomaly detection, being a maximally robust location
estimator leads directly to a robust anomaly detector that yields a better detection
accuracy than halfspace depth; and it runs orders of magnitude faster than L2 depth, an
existing maximally robust location estimator. In clustering, the Half-Space Mass
version of Kmeans overcomes three weaknesses of K-means.

Improving Classification Performance Through Selective Instance
Completion
Amit Dhurandhar and Karthik Sankarnarayanan
Machine Learning
DOI: 10.1007/s10994-015-5500-5

In multiple domains, actively acquiring missing input information at a reasonable cost
in order to improve our understanding of the input-output relationships is of increasing
importance. This problem has gained prominence in healthcare, public policy making,
education, and in the targeted advertising industry which tries to best match people to
products. In this paper we tackle an important variant of this problem: Instance
Completion, where we want to choose the best k incomplete instances to query from a
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much larger universe of N(>>k) incomplete instances so as to learn the most accurate
classifier. We propose a principled framework which motivates a generally applicable
yet efficient meta-technique for choosing k such instances. Since we cannot know a
priori the classifier that will result from the completed dataset, i.e. the final classifier,
our method chooses the k instances based on a derived upper bound on the expectation
of the distance between the next classifier and the final classifier. We additionally
derive a sufficient condition for these two solutions to match. We then empirically
evaluate the performance of our method relative to the state-of-the-art methods on 4
UCI datasets as well as 3 proprietary e-commerce datasets used in previous studies. In
these experiments, we also demonstrate how close we are likely to be to the optimal
solution, by quantifying the extent to which our sufficient condition is satisfied. Lastly,
we show that our method is easily extensible to the setting where we have a non
uniform cost associated with acquiring the missing information.

Incremental Learning of Event Definitions with Inductive Logic
Programming
Nikos Katzouris, Alexander Artikis, and Georgios Paliouras
Machine Learning
DOI: 10.1007/s10994-015-5512-1

Event recognition systems rely on knowledge bases of event definitions to infer
occurrences of events in time. Using a logical framework for representing and
reasoning about events offers direct connections to machine learning, via Inductive
Logic Programming (ILP), thus allowing to avoid the tedious and error-prone task of
manual knowledge construction. However, learning temporal logical formalisms,
which are typically utilized by logic-based event recognition systems is a challenging
task, which most ILP systems cannot fully undertake. In addition, event-based data is
usually massive and collected at different times and under various circumstances.
Ideally, systems that learn from temporal data should be able to operate in an
incremental mode, that is, revise prior constructed knowledge in the face of new
evidence. In this work we present an incremental method for learning and revising
event-based knowledge, in the form of Event Calculus programs. The proposed
algorithmrelies on abductive-inductive learning and comprises a scalable clause
refinement methodology, based on a compressive summarization of clause coverage in
a stream of examples. We present an empirical evaluation of our approach on real and
synthetic data from activity recognition and city transport applications.
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Knowledge Base Completion by Learning Pairwise-Interaction
Differentiated Embeddings
Yu Zhao, Sheng Gao, Patrick Gallinari, and Jun Guo
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0430-1

Knowledge base consisting of triple like (subject entity, predicate relation, object
entity) is a very important database for knowledge management. It is very useful for
humanlike reasoning, query expansion, question answering (Siri) and other related AI
tasks. However, knowledge base often suffers from incompleteness due to a large
volume of increasing knowledge in the real world and a lack of reasoning capability. In
this paper, we propose a Pairwise-interaction Differentiated Embeddings (PIDE) model
to embed entities and relations in the knowledge base to low dimensional vector
representations and then predict the possible truth of additional facts to extend the
knowledge base. In addition, we present a probability-based objective function to
improve the model optimization. Finally, we evaluate the model by considering the
problem of computing how likely the additional triple is true for the task of knowledge
base completion.Experiments on WordNet and Freebase dataset show the excellent
performance of our model and algorithm.

Learning from Evolving Video Streams in a Multi-camera Scenario
Samaneh Khoshrou, Jaime dos Santos Cardoso, and Luís Filipe Teixeira
Machine Learning
DOI: 10.1007/s10994-015-5515-y

Nowadays, video surveillance systems are taking the first steps toward automation, in
order to ease the burden on human resources as well as to avoid human error. As the
underlying data distribution and the number of concepts change over time, the
conventional learning algorithms fail to provide reliable solutions for this setting.
Herein, we formalize a learning concept suitable for multi-camera video surveillance
and propose a learning methodology adapted to that new paradigm. The proposed
framework resorts to the universal background model to robustly learn individual
object models from small samples and to more effectively detect novel classes. The
individual models are incrementally updated in an ensemble based approach, with older
models being progressively forgotten. The framework is designed to detect and label
new concepts automatically. The system is also designed to exploit active learning
strategies, in order to interact wisely with operator, requesting assistance in the most
ambiguous to classify observations. The experimental results obtained both on real and
synthetic data sets verify the usefulness of the proposed approach.
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Learning Relational Dependency Networks in Hybrid Domains
Irma Ravkic, Jan Ramon, and Jesse Davis
Machine Learning
DOI: 10.1007/s10994-015-5483-2

Statistical Relational Learning (SRL) is concerned with developing formalisms for
representing and learning from data that exhibit both uncertainty and complex,
relational structure. Most of the work in SRL has focused on modeling and learning
from data that only contain discrete variables. As many important problems are
characterized by the presence of both continuous and discrete variables, there has been
a growing interest in developing hybrid SRL formalisms. Most of these formalisms
focus on reasoning and representational issues and, in some cases, parameter learning.
What has received little attention is learning the structure of a hybrid SRL model from
data. In this paper, we fill that gap and make the following contributions. First, we
propose Hybrid Relational Dependency Networks (HRDNs), an extension to Relational
Dependency Networks that are able to model continuous variables. Second, we propose
an algorithm for learning both the structure and parameters of an HRDN from data.
Third, we provide an empirical evaluation that demonstrates that explicitly modeling
continuous variables results in more accurate learned models than discretizing them
prior to learning.

MassExodus: Modeling Evolving Networks in Harsh Environments
Saket Navlakha, Christos Faloutsos, and Ziv Bar-Joseph
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-014-0399-1

Defining appropriate distance measures among rankings is a classic area of study which
has led to many useful applications. In this paper, we propose a more general
abstraction of preference data, namely directed acyclic graphs (DAGs), and introduce a
measure for comparing DAGs, given that a vertex correspondence between the DAGs
is known. We study the properties of this measure and use it to aggregate and cluster a
set of DAGs. We show that these problems are NP-hard and present efficient methods
to obtain solutions with approximation guarantees. In addition to preference data, these
methods turn out to have other interesting applications, such as the analysis of a
collection of information cascades in a network. We test the methods on synthetic and
real-world datasets, showing that the methods can be used to, e.g., find a set of
influential individuals related to a set of topics in a network or to discover meaningful
and occasionally surprising clustering structure.
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Minimum Message Length Estimation of Mixtures of Multivariate
Gaussian and von Mises-Fisher Distribution
Parthan Kasarapu and Lloyd Allison
Machine Learning
DOI: 10.1007/s10994-015-5493-0

Mixture modelling involves explaining some observed evidence using a combination of
probability distributions. The crux of the problem is the inference of an optimal number
of mixture components and their corresponding parameters. This paper discusses
unsupervised learning of mixture models using the Bayesian MinimumMessage Length
(MML) criterion. To demonstrate the effectiveness of search and inference of mixture
parameters using the proposed approach, we select two key probability distributions,
each handling fundamentally different types of data: the multivariate Gaussian
distribution to address mixture modelling of data distributed in Euclidean space, and
the multivariate von Mises-Fisher (vMF) distribution to address mixture modelling of
directional data distributed on a unit hypersphere. The key contributions of this paper, in
addition to the general search and inference methodology, include the derivation of
MML expressions for encoding the data using multivariate Gaussian and von
Mises-Fisher distributions, and the analytical derivation of the MML estimates of the
parameters of the two distributions. Our approach is tested on simulated and real world
data sets. For instance, we infer vMF mixtures that concisely explain experimentally
determined three dimensional protein conformations, providing an effective null model
description of protein structures that is central to many inference problems in structural
bioinformatics. The experimental results demonstrate that the performance of our
proposed search and inference method along with the encoding schemes improve on the
state of the art mixture modelling techniques.

Mining Outlying Aspects on Numeric Data
Lei Duan, Guanting Tang, Jian Pei, James Bailey,
Akiko Campbell, and Changjie Tang
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-014-0398-2

When we are investigating an object in a data set, which itself may or may not be an
outlier, can we identify unusual (i.e., outlying) aspects of the object? In this paper, we
identify the novel problem of mining outlying aspects on numeric data. Given a query
object o in a multidimensional numeric data set O, in which subspace is o most
outlying? Technically, we use the rank of the probability density of an object in a
subspace to measure the outlyingness of the object in the subspace. A minimal
subspace where the query object is ranked the best is an outlying aspect. Computing the
outlying aspects of a query object is far from trivial. A naїve method has to calculate
the probability densities of all objects and rank them in every subspace, which is very
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costly when the dimensionality is high. We systematically develop a heuristic method
that is capable of searching data sets with tens of dimensions efficiently. Our empirical
study using both real data and synthetic data demonstrates that our method is effective
and efficient.

Multiscale Event Detection in Social Media
Xiaowen Dong, Dimitrios Mavroeidis, Francesco Calabrese,
Pascal Frossard
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0421-2

Event detection has been one of the most important research topics in social media
analysis. Most of the traditional approaches detect events based on fixed temporal and
spatial resolutions, while in reality events of different scales usually occur simulta-
neously, namely, they span different intervals in time and space. In this paper, we
propose a novel approach towards multiscale event detection using social media data,
which takes into account different temporal and spatial scales of events in the data.
Specifically, we explore the properties of the wavelet transform, which is a
welldeveloped multiscale transform in signal processing, to enable automatic handling
of the interaction between temporal and spatial scales. We then propose a novel
algorithm to compute a data similarity graph at appropriate scales and detect events of
different scales simultaneously by a single graph-based clustering process. Further-
more, we present spatiotemporal statistical analysis of the noisy information present in
the data stream, which allows us to define a novel term-filtering procedure for the
proposed event detection algorithm and helps us study its behavior using simulated
noisy data. Experimental results on both synthetically generated data and real world
data collected from Twitter demonstrate the meaningfulness and effectiveness of the
proposed approach. Our framework further extends to numerous application domains
that involve multiscale and multiresolution data analysis.

Optimised Probabilistic Active Learning (OPAL) for Fast,
Non-Myopic, Cost-Sensitive Active Classification
Georg Krempl, Daniel Kottke, and Vincent Lemaire
Machine Learning
DOI: 10.1007/s10994-015-5504-1

In contrast to ever increasing volumes of automatically generated data, human
annotation capacities remain limited. Thus, fast active learning approaches that allow
the efficient allocation of annotation efforts gain in importance. Furthermore,
cost-sensitive applications such as fraud detection pose the additional challenge of
differing misclassification costs between classes. Unfortunately, the few existing
cost-sensitive active learning approaches rely on time-consuming steps, such as
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performing self labelling or tedious evaluations over samples. We propose a fast,
non-myopic, and cost-sensitive probabilistic active learning approach for binary
classification. Our approach computes the expected reduction in misclassification loss in
a labelling candidate's neighbourhood. We derive and use a closed-form solution for this
expectation, which considers the possible values of the true posterior of the positive
class at the candidate’s position, its possible label realisations, and the given labelling
budget. The resulting myopic algorithm runs in the same linear asymptotic time as
uncertainty sampling, while its non-myopic counterpart requires an additional factor of
O(m log m) in the budget size. The experimental evaluation on several synthetic and
real-world data sets shows competitive or better classification performance and runtime,
compared to several uncertainty sampling- and error-reduction-based active learning
strategies, both in cost-sensitive and cost-insensitive settings.

Poisson Dependency Networks - Gradient Boosted Models
for Multivariate Count Data
Fabian Hadiji, Alejandro Molina, Sriraam Natarajan, and Kristian Kersting
Machine Learning
DOI: 10.1007/s10994-015-5506-z

Although count data are increasingly ubiquitous, surprisingly little work has employed
probabilistic graphical models for modeling count data. Indeed the univariate case has
been well studied, however, in many situations counts influence each other and should
not be considered independently. Standard graphical models such as multinomial or
Gaussian ones are also often ill-suited, too, since they disregard either the infinite range
over the natural numbers or the potentially asymmetric shape of the distribution of
count variables. Existing classes of Poisson graphical models can only model negative
conditional dependencies or neglect the prediction of counts or do not scale well. To
ease the modeling of multivariate count data, we therefore introduce a novel family of
Poisson graphical models, called Poisson Dependency Networks (PDNs). A PDN
consists of a set of local conditional Poisson distributions, each representing the
probability of a single count variable given the others, that naturally facilities a simple
Gibbs sampling inference. In contrast to existing Poisson graphical models, PDNs are
non-parametric and trained using functional gradient ascent, i.e., boosting. The
particularly simple form of the Poisson distribution allows us to develop the first
multiplicative boosting approach: starting from an initial constant value, alternatively a
log-linear Poisson model, or a Poisson regression tree, a PDN is represented as
products of regression models grown in a stage-wise optimization. We demonstrate on
several real world datasets that PDNs can model positive and negative dependencies
and scale well while often outperforming state-of-the-art, in particular when using
multiplicative updates.
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Policy Gradient in Lipschitz Markov Decision Processes
Matteo Pirotta, Marcello Restelli, and Luca Bascetta
Machine Learning
DOI: 10.1007/s10994-015-5484-1

This paper is about the exploitation of Lipschitz continuity properties for Markov
Decision Processes (MDPs) to safely speed up policy-gradient algorithms.Starting from
assumptions about the Lipschitz continuity of the state-transition model, the reward
function, and the policies considered in the learning process, we show that both the
expected return of a policy and its gradient are Lipschitz continuous w.r.t. policy
parameters.By leveraging such properties, we define policy-parameter updates that
guarantee a performance improvement at each iteration. The proposed methods are
empirically evaluated and compared to other related approaches using different
configurations of three popular control scenarios: the linear quadratic regulator, the
mass-spring-damper system and the ship-steering control.

Probabilistic Clustering of Time-Evolving Distance Data
Julia Vogt, Marius Kloft, Stefan Stark, Sudhir S. Raman,
Sandhya Prabhakaran, Volker Roth, and Gunnar Rätsch
Machine Learning
DOI: 10.1007/s10994-015-5516-x

We present a novel probabilistic clustering model for objects that are represented via
pairwise distances and observed at different time points. The proposed method utilizes
the information given by adjacent time points to find the underlying cluster structure
and obtain a smooth cluster evolution. This approach allows the number of objects and
clusters to differ at every time point, and no identification on the identities of the
objects is needed. Further, the model does not require the number of clusters being
specified in advance – they are instead determined automatically using a Dirichlet
process prior. We validate our model on synthetic data showing that the proposed
method is more accurate than state-of-the-art clustering methods. Finally, we use our
dynamic clustering model to analyze and illustrate the evolution of brain cancer
patients over time.

Ranking Episodes Using a Partition Model
Nikolaj Tatti
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0419-9

One of the biggest setbacks in traditional frequent pattern mining is that overwhelm-
ingly many of the discovered patterns are redundant. A prototypical example of such
redundancy is a freerider pattern where the pattern contains a true pattern and some
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additional noise events. A technique for filtering freerider patterns that has proved to be
efficient in ranking itemsets is to use a partition model where a pattern is divided into
two subpatterns and the observed support is compared to the expected support under
the assumption that these two subpatterns occur independently. In this paper we
develop a partition model for episodes, patterns discovered from sequential data. An
episode is essentially a set of events, with possible restrictions on the order of events.
Unlike with itemset mining, computing the expected support of an episode requires
surprisingly sophisticated methods. In order to construct the model, we partition the
episode into two subepisodes. We then model how likely the events in each subepisode
occur close to each other. If this probability is high—which is often the case if the
subepisode has a high support—then we can expect that when one event from a
subepisode occurs, then the remaining events occur also close by. This approach
increases the expected support of the episode, and if this increase explains the observed
support, then we can deem the episode uninteresting. We demonstrate in our
experiments that using the partition model can effectively and efficiently reduce the
redundancy in episodes.

Regularized Feature Selection in Reinforcement Learning
Dean Stephen Wookey and George Dimitri Konidaris
Machine Learning
DOI: 10.1007/s10994-015-5518-8

We introduce feature regularization during feature selection for value function
approximation. Feature regularization introduces a prior into the selection process,
improving function approximation accuracy and reducing overfitting. We show that the
smoothness prior is effective in the incremental feature selection setting and present
closed-form smoothness regularizers for the Fourier and RBF bases. We present two
methods for feature regularization which extend the temporal difference orthogonal
matching pursuit (OMP-TD) algorithm and demonstrate the effectiveness of the
smoothness prior; smooth Tikhonov OMP-TD and smoothness scaled OMP-TD. We
compare these methods against OMP-TD, regularized OMP-TD and least squares TD
with random projections, across six benchmark domains using two different types of
basis functions.

Soft-max Boosting
Matthieu Geist
Machine Learning
DOI: 10.1007/s10994-015-5491-2

The standard multi-class classification risk, based on the binary loss, is rarely directly
minimized. This is due to (i) the lack of convexity and (ii) the lack of smoothness (and
even continuity). The classic approach consists in minimizing instead a convex
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surrogate. In this paper, we propose to replace the usually considered deterministic
decision rule by a stochastic one, which allows obtaining a smooth risk (generalizing
the expected binary loss, and more generally the cost-sensitive loss). Practically, this
(empirical) risk is minimized by performing a gradient descent in the function space
linearly spanned by a base learner (a.k.a. boosting). We provide a convergence analysis
of the resulting algorithm and experiment it on a bunch of synthetic and real world data
sets (with noiseless and noisy domains, compared to convex and non convex boosters).

Tractome: A Visual Data Mining Tool for Brain Connectivity
Analysis
Diana Porro-Munoz, Emanuele Olivetti, Nusrat Sharmin,
Thien Bao Nguyen, Eleftherios Garyfallidis, and Paolo Avesani
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0408-z

Diffusion magnetic resonance imaging data allows reconstructing the neural pathways
of the white matter of the brain as a set of 3D polylines. This kind of data sets provides
a means of study of the anatomical structures within the white matter, in order to detect
neurologic diseases and understand the anatomical connectivity of the brain. To the
best of our knowledge, there is still not an effective or satisfactory method for
automatic processing of these data. Therefore, a manually guided visual exploration of
experts is crucial for the purpose. However, because of the large size of these data sets,
visual exploration and analysis has also become intractable. In order to make use of the
advantages of both manual and automatic analysis, we have developed a new visual
data mining tool for the analysis of human brain anatomical connectivity. With such
tool, humans and automatic algorithms capabilities are integrated in an interactive data
exploration and analysis process. A very important aspect to take into account when
designing this tool, was to provide the user with comfortable interaction. For this
purpose, we tackle the scalability issue in the different stages of the system, including
the automatic algorithm and the visualization and interaction techniques that are used.
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Abstract. A conventional textbook prescription for building good pre-
dictive models is to split the data into three parts: training set (for
model fitting), validation set (for model selection), and test set (for final
model assessment). Predictive models can potentially evolve over time
as developers improve their performance either by acquiring new data
or improving the existing model. The main contribution of this paper
is to discuss problems encountered and propose workflows to manage
the allocation of newly acquired data into different sets in such dynamic
model building and updating scenarios. Specifically we propose three
different workflows (parallel dump, serial waterfall, and hybrid) for allo-
cating new data into the existing training, validation, and test splits.
Particular emphasis is laid on avoiding the bias due to the repeated use
of the existing validation or the test set.

Keywords: Data splits · Model assessment · Predictive models

1 Introduction

A common data mining task is to build a good predictive model which generalizes
well on future unseen data. Based on the annotated data collected so far the goal
for a machine learning practitioner is to search for the best predictive model
(known as supervised learning) and at the same time have a reasonably good
estimate of the performance (or risk) of the model on future unseen data. It is well
known that the performance of the model on the data used to learn the model
(training set) is an overly optimistic estimate of the performance on unseen data.
For this reason it is a common practice to sequester a portion of the data to assess
the model performance and never use it during the actual model building process.
When we are in a data rich situation a conventional textbook prescription (for
example refer to Chapter 7 in [6]) is to split the data into three parts: training
set, validation set, and test set (See Figure 1). The training set is used for
model fitting, that is, estimate the parameters of the model. The validation set
is used for model selection, that is, we use the performance of the model on
the validation set to select among various competing models (e.g. should we
use a linear classifier like logistic regression or a non-linear neural network) or
to choose the hyperparameters of the model (e.g. choosing the regularization
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 3–19, 2015.
DOI: 10.1007/978-3-319-23528-8 1
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Training 50%  Validation 25% Test 25%  

model fitting model selection model assessment

Fig. 1. Data splits for model fitting, selection, and assessment. The training split is used
to estimate the model parameters. The validation split is used to estimate prediction
error for model selection. The test split is used to estimate the performance of the final
chosen model.

parameter for logistic regression or the number of nodes in the hidden layer for
a neural network). The test set is then used for final model assessment, that is,
to estimate the performance of the estimated model.

However in practice searching for the best predictive model is often an itera-
tive and continuous process. A major bottleneck typically encountered in many
learning tasks is to collect the data and annotate them. Due to various con-
straints (either time or financial) very often the best model based on the data
available so far is deployed in practice. At the same time the data collection and
annotation process will continue so that the model can be improved at a later
stage. Once we have reasonably enough data we refit the model to the new data
to make it more accurate and then release this new model. Sometimes after the
model has been deployed in practice we find that the model does not perform
well on a new kind of data which we do not have in our current training set. So
we redirect our efforts into collecting more data on which our model fails. The
main contribution of this paper is to discuss problems encountered and propose
various workflows to manage the allocation of newly acquired data into different
sets in such dynamic model building/updating scenarios.

With the advent of increased computing power it is very easy to come up
with a model that performs best on the validation set by searching over an
extremely large range of diverse models. This procedure can lead to non-trivial
bias (or over-fitting to the validation set) in the estimated model parameters. It
is very likely that we found the best model on the validation set by chance. The
same applies to the testing set. One way to think of this is that every time we
use the test set to estimate the performance the dataset becomes less fresh and
can increase the risk of over-fitting. The proposed data allocation workflows are
designed with a particular emphasis on avoiding this bias.

2 Data Splits for Model Fitting, Selection,
and Assessment

A typical supervised learning scenario consists of an annotated data set T =
{(xi, yi)}n

i=1 containing n instances, where xi ∈ X is an instance (typically a
d-dimensional feature vector) and yi ∈ Y is the corresponding known label. The
task is to learn a function f : X → Y which performs well on an independent test
data and also have a reasonably good estimate of the performance (also known
as the test error of the model). Let ̂f(x) be the prediction model/function that
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has been learnt/estimated using the training data T . Let L(y, ̂f(x)) be the loss
function 1 for measuring errors between the target response y and the prediction
from the learnt model ̂f(x). The (conditional) test error, also referred to as
generalization error, is the prediction error over an independent test sample,
that is, ErrT = E(x,y)[L(y, ̂f(x))|T ], where (x, y) are drawn randomly from their
joint distribution. Since the training set T is fixed, and test error refers to the
error obtained with this specific training set. Assessment of this test error is very
important in practice since it gives us a measure of the quality of the ultimately
chosen model (referred to as model assessment) and also guides the choice of
learning method or model (also known as model selection). Typically our model
will also have tuning parameters (for example the regularization parameter in
lasso or the number of trees in random forest) and we write our predictions as
̂fθ(x). The tuning parameter θ varies the complexity of our model, and we wish
to find the value of θ that minimizes the test error. The training error is the
average loss over the entire training sample, that is, err = 1

n

∑n
i=1 L(yi, ̂fθ(xi)).

Unfortunately training error is not a good estimate of the test error. A learning
method typically adapts to the training data, and hence the training error will
be an overly optimistic estimate of the test error. Training error consistently
decreases with model complexity, typically dropping to zero if we increase the
model complexity large enough. However, a model with zero training error is
overfit to the training data and will typically generalize poorly.

If we are in a data-rich situation, the best approach to estimate the test error
is to randomly divide the dataset into three parts [2,4,6]: a training split T , a
validation split V, and a test split U . While it is difficult to give a general rule on
the split proportions a typical split suggested in [6] is to use 50% for training, and
25% each for validation and testing (see Figure 1). The training split T is used to
fit the model (i.e. estimate the parameters of the model for a fixed set of tuning
parameters). The validation split V is used to estimate prediction error for model
selection. We use the performance on the validation split to select among various
competing models or to choose the tuning parameters of the model. The test split
U is used to estimate the performance of the final chosen model. Ideally, the test
set should be sequestered and be brought out only at the end of the data analysis.

In this paper we specifically assume that we are in a data-rich situation, that
is we have a reasonably large amount of data. In data poor situations where we
do not have the luxury of reserving a separate test set, it does not seem possible
to estimate conditional error effectively, given only the information in the same
training set. A related quantity sometimes used in data poor situations is the
expected test error Err = E[ErrT ]. While the estimation of the conditional test
error ErrT will be our goal the expected test Err is more amenable to statistical
analysis, and most methods like cross-validation [15] and bootstrap [3] effectively
estimate the expected error [6].

1 Typical loss functions include the 0-1 loss (L(y, ̂f(x)) = I(y �= ̂f(x)),where I is
the indicator function) or the log-likelihood loss for classification and the squared

error (L(y, ̂f(x)) = (y − ̂f(x))2) or the absolute error (L(y, ̂f(x)) = |y − ̂f(x)|) for
regression problems.
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3 Issues with Evolving Models

Arrival of New Data After Model Deployment. Having done model selec-
tion using the validation split the parameters of the model are estimated using
the training split and the performance on unseen data is assessed using the test
split. If this performance is reasonable enough the model is finally deployed in
practice. This scenario has implicitly assumed that we start the data analysis
after all the data is collected. However in practice data collection and annotation
is a continuous ongoing process, often in a non-iid fashion. After the final model
is frozen and deployed in practice after a few months let us say we have more
annotated data. Now the question that arises is how do we use this data. Should
we dump all this data into the training split to improve the model performance?
Or should we dump this into the test split so that we have a better estimate of
the model performance?

Model Driven Data Collection. Very often it so happens that once the model
is deployed in practice we discover that the model performs poorly on a certain
class of data. The most likely cause of this is that we did not have enough data
of that particular kind in our dataset. This drives the collection of specific kind
of data on which our model performs poorly. Having collected the data similar
questions arise. What options should we pursue for allocating the new data to
different splits ?

Test Set Reuse. When developing predictive models in many domains (and
especially in medical domains) it is a common practice to completely sequester
the test set from the data mining practitioners. Once the model has been finalized
a review board (such as the Food and drug administration) evaluates the model
and then gives a final decision as to whether the model passed the test or not.
The feedback could be binary(pass/fail) or more detailed like the error or the
kind of mistakes made. If the model failed the test then they have to go back and
build a better model and test it again. With the advent of increased computing
power it is very easy to come up with a model that performs best on the test set
by searching over an extremely large range of diverse models. In such a scenario
multiple reuse of the test set can often lead to overfitting on the test set. The
ideal solution is to completely replace the test set, but having a new test set every
time can be expensive given that the data mining practitioners keep churning out
new models extremely fast. Another approach to avoid this is that the test set
has to be kept fresh by supplementing it with new data every time a developer
requests it for testing. At the same time the practitioners would like to learn
from the mistakes in the test set. This can be achieved by releasing some part
of the test set to the practitioners to improve the model.

These issues arise across different domains. In natural language processing
tasks textual resources are acquired one at a time and annotated. The resource
acquisition is often guided by various non-technical constraints and often arrives
in a non-iid fashion. In the medical domain a common task is to build a predictive
model to predict whether a suspicious region on a medical image is malignant or
benign. In order to train such a classifier, a set of medical images is collected from
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hospitals. These scans are then read by expert radiologists who mark the suspi-
cious locations. Ideally we would like our model to handle all possible variations—
different scanners, acquisition protocols, hospitals, and patients. Collecting such
data is a time consuming process. Typically we can have contracts with different
hospitals to collect and process data. Each hospital has a specific kind of scanners,
acquisition protocols, and patient demographics. While most learning methods
assume that data is randomly sampled from the population in reality due to var-
ious constraints data does not arrive in a random fashion. Based on the contracts
at the end of a year we have data from say around five hospitals and the data from
the another hospital may arrive a year later. Based on the data from five hospitals
we can deploy a model and later update the model when we acquire the data from
the other hospital.

These kind of issues also arise in data mining competitions which tradition-
ally operate in a similar setup. Kaggle [1], for example, is a platform for data
prediction competitions that allows organizations to post their data and have
it scrutinized by thousands of data scientists. The training set along with the
labels is released to the public to develop the predictive model. Another set for
which the labels have been withheld is used to track the performance of the com-
petitors on a public leader board. Very often is happens that the competitors
try to overfit the model on this leader board set. For this reason only a part of
this set is used for the leader board and the remaining data is used to decide the
final rankings. An important feature of our proposed workflows is that there is
a movement of data across different sets at regular intervals and this can help
avoid the competitors trying to overfit their models to the leader board.

4 Data Splits for Evolving Models

Based on the data collected so far let us assume we start with a 50% training-
25% validation-25% test split as described earlier. In this paper we propose a
workflow to allocate newly acquired data into the existing splits. Any workflow
to split new data should balance the following desired objectives:

1. Exploit large portion for training quickly. We want to exploit as much
of the new data as quickly as possible for training our final predictive model.
For most models, the larger the dataset the more accurate are the estimated
parameters.

2. Reserve sufficient amount for testing. However, at the same time we
want to reserve a sufficient amount of the data (in the validation and testing
set) for getting an unbiased estimate of the performance of the learnt model.
It is very likely that the new data is a different kind of data not existing in
the current splits and hence we want to have a sufficient representation of
the new data in all the three splits.

3. Keep the test set fresh. We want to keep the testing/validation sets fresh
to avoid the bias due to the reuse of the test set.

4. Learn from your mistakes. At the same time we do not want to com-
pletely sequester the test set and make sure that data mining practitioners
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Training 
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(a) Parallel dump workflow

Training 
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δ1

(b) Serial waterfall workflow

Fig. 2. (a) Parallel dump workflow The new data is split into three parts (according to
the ratio β : γ : 1− (β +γ)) and directly dumped into the existing training, validation,
and test splits. (b) Serial waterfall workflow A δ3 fraction of the validation set moves
to the training set, a δ2 part of the test set moves to the validation set, and a δ1 fraction
of the new data is allocated to the test set.

learn from our mistakes in the test set. This is especially useful in scenarios
where then the data mining practitioners have to go back to their drawing
boards and re-design their model because it failed on a sequestered test set.

In the next section we describe two workflows: the parallel dump (§ 4.1) and the
serial waterfall (§ 4.2) each of which can address some of these objectives. In
§ 4.3 we describe the proposed hybrid workflow which can balance all the four
objectives described above.

4.1 Parallel Dump Workflow

The most obvious method is to split the new data into three parts and directly
dump each part into the existing test, validation, and training splits as shown
in Figure 2(a). One could use a 50% training-25% validation-25% test split as
earlier or any desired ratio β : γ : 1−(β+γ). The main advantage of this method
is that we have immediate access to the new data in the training set and the
model can be improved quickly. Also a sufficient portion of the new data goes
into the validation and the test set immediately. However once the new data is
allocated we end up using the validation and test splits again one more time
(the split is now no longer as fresh as the first time) thus leading to the model
selection bias. In this workflow the splits are static and there is no movement
across the splits. As a result we do not have a chance to learn from mistakes in
the validation and testing set. Generally it may not be to our advantage to let
the test split to keep growing without learning from the errors the model makes
on the test set. So it makes sense to move some part of the data from the test
set to either the training or validation set.
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(a) Hybrid workflow

New parallel New serial 

New

1− α α

Training 

Validation 

Test 

(b) Hybrid continuum workflow

Fig. 3. (a) The hybrid workflow There is a movement of data among different sets in
the serial mode and at the same time there is an immediate fresh influx of data from
the parallel mode. (b) The continuum workflow In this setting instead of having 3 sets
(training, testing, unseen) we will in theory have a continuum of sets (with samples
trickling to the lower levels), with the lowest one for training and the top most one to
give the most unbiased estimate of performance.

4.2 Serial Waterfall Workflow

In this workflow data keeps trickling from one level to the other as illustrated
in Figure 2(b). Once new data arrives, a δ3 fraction of the validation set moves
to the training set, a δ2 part of the test set moves to the validation set, and a
δ1 fraction of the new data is allocated to the test set. The training set always
keeps getting bigger and once a data moves to the training set it stays there
forever. This mode has the following advantages: (1) the test and validation sets
are always kept fresh. This avoids over fitting due to extensive model search
since the validation and test sets are always refreshed. (2) Since part of the data
from the validation and the test set eventually moves to the training we have a
chance to learn from the mistakes. The disadvantage of this serial workflow is
that the new data takes some time to move to the training set, depending on
how often we refresh the existing sets. This restricts us from exploiting the new
data as quickly as possible as it takes some time for the data to trickle to the
training set.

4.3 Hybrid Workflow

Our proposed workflow as illustrated in Figure 3(a) is a combination of the above
two modes of dataflow. It combines the advantages of both these modes. The
key feature of the proposed workflow is that there is a movement of data among
different sets in the serial mode and at the same time there is an immediate
fresh influx of data from the parallel mode. We split the new data randomly
into two sets according to the ratio 1 − α : α. One split is used for the Serial
Waterfall mode and the other split is used for the Parallel Dump mode. A value
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Fig. 4. The ratio M/N = 1/(k
√

N + 1) as a function of N for two different k.

of α = 0.5 seems to be a reasonable choice 2. The value of α can be increased if
a more dominant parallel workflow is desired. Note that α = 0 corresponds to
the serial workflow and α = 1 corresponding to the parallel workflow. The value
of parameter α is more of design choice and can be chosen based on the domain
and various constraints.

In principle the proposed workflow can be extended to more than 3 levels
(see Figure 3(b)). In this setting instead of having 3 sets (training, validation,
test) we will in theory have a continuum of sets (with samples trickling to the
lower levels), with the lowest one to be used for training and the top most one to
give the most unbiased estimate of performance of the model. Presumably levels
could be: training/tweaking data, cross validation data, hold out testing data,
up to highly unbiased very fresh test data. Lower levels would obviously be used
more often than higher ones, and testing on higher levels would presumably only
happen when tests on lower levels were successful.

5 Bias Due to Test Set Reuse

A key idea in the serial mode is to move data from one level to another to avoid
bias due to multiple reuse. We derive a simple rule to decide how much of the
new data has to be moved to the test set to avoid the bias due to reuse of the
test set multiple times. The same can be used to move data from the test set
to the validation set to keep the validation set fresh. This analysis is based on
ideas in [14]. Our goal is not to get a exact expression but to get the nature of
dependence on the set size. We will consider a scenario where we have a test set
of N examples. At each reuse we supplement the test set with M new examples

2 The parameter α decides the proportion of the incoming data that will go into the
train and the test splits. Without any prior knowledge or assumption, the reasonable
value of α is a constant fixed at 0.5. But α can be further made to vary every time
a new batch of data arrives. For example consider a batch scenario where for every
incoming batch of data we can compute the similarity of the current batch with the
previously seen batches (for example using the Kullback-Leilbler (KL) divergence).
The parameter α can then be made to vary based on the estimated KL divergence.
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Fig. 5. Workflow simulation setup (a) A two-dimensional binary classification simula-
tion setup with data sampled from four Gaussians. (b) The decision boundary obtained
by a neural network at the start of the workflow simulation. At each time step we add
50 new examples into the data pool, allocate the new data according to different work-
flows (either the parallel dump, serial waterfall, or the hybrid workflow) and repeat the
model building process. (c) The final decision boundary obtained when all the data
has been acquired.

and remove M of the oldest examples. Specifically we will prove the following
result (see the appendix for the proof):

After each reuse if we supplement the test set (consisting of N samples) with
M > N/(k

√
N + 1) new samples for some small constant k then the bias due to

test set reuse can be safely ignored.
Figure 4 plots the ratio M/N as a function of N for two values of k. We need

to replace a smaller fraction of the data when N is large. Small datasets lead to
a larger bias after each use and hence need to be substantially supplemented.

6 Illustration on Synthetic Data

We first illustrate the advantages and the disadvantages of the three differ-
ent workflows on a two-dimensional binary classification problem shown in
Figure 5(a) with data sampled from a mixture of four Gaussians. The positive
class consists of 1000 examples from two Gaussians centered at [-1,1] and [1,-1].
The negative class consists of 1000 examples from a mixture of two Gaussians
centered at [1,1] and [-1,-1] respectively. We use a multi-layer neural network
with one hidden layer and trained via back propagation. The number of units
in the hidden layer is considered as the tuning parameter and selected using the
validation split. In order to see the effect of having a non-representative set of
data during typical model building scenarios, we consider a scenario where at
the beginning of the model building process we have collected data only from
two Gaussians (positive class centered at [-1,1] and negative class centered at
[-1,-1]) as shown in Figure 5(b). Based on the data collected so far we will use
the validation split to tune the number of hidden units in the neural network,
the training split to train the neural network via back propagation, and the test
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split to compute the misclassification error of the final trained model. Figure 5(b)
shows the decision boundary obtained for the trained neural network using such
splits at the start of the model building process. At each time step we add 50
new examples into the data pool, allocate the new data according to different
workflows (either the parallel dump, the serial waterfall, or the hybrid work-
flow) and repeat the model building process. The new data does not arrive in a
random fashion. We first sample data from the Gaussian centered at [1,1] and
then the data from the remaining Gaussian centered at [1,-1]. While this may
not be a fully realistic scenario it helps us to illustrate the different workflows.
One way to think of this is to visualize that each Gaussian represents data from
different hospital/scanner and the data collection may not be designed such that
data arrives in a random fashion. Figure 5(c) shows the final decision boundary
obtained when all the data has been acquired. Once we have all the data all
different workflows reach the same performance. Here we are interested in the
model performance and our estimate of it at different stages as new data arrives.

Actual Performance of The Model. Figure 6 plots the misclassification
error at each time point (until all the data has been used) for the parallel dump
(with parameters β = 0.5 and γ = 0.3 ), the serial waterfall (with δ parameters
automatically chosen), and the hybrid workflow (with α = 0.1). The error is
computed on the entire dataset 3. If we had the entire dataset the final model
should have an error of around 0.15. It can be seen that the parallel dump
workflow exploits the new data quickly and reaches this performance in around
20 time steps. The serial waterfall moves the data to the training set slowly and
achieves the same performance in around 40 time steps. The hybrid workflow
can be considered as a compromise between these two workflows and exploits all
the new data in around 25 time steps. The sharp drops in the curve occur when
the decision boundary changes abruptly because we have now started collecting
data from a new cluster.

Estimate of The Performance of The Model. We want to exploit as much
of the new data as quickly as possible for training our final predictive model.
However at the same time we want to keep the test set fresh in order to get
the most unbiased estimate of the performance of the final model. Note that
Figure 6 plotted the test error assuming that some oracle gave us the actual
data distribution. However in practice we do not have access to this distribution
and should use the existing data collected so far (more precisely the test split)
to also get a reasonably good estimate of the test error. Figure 7(a), (b), and (c)
compares the training error, test error, and the actual error for three different
workflows. The results are averaged over 100 repetitions and the standard devi-
ation is also shown. While the test error for all the three workflows approaches
the true error when all the data has been collected we want to track how the
test error changes during any stage of the model building process. While the

3 We have shown how to select the delta parameter automatically in the serial waterfall
model. The other parameters are more of design choice and have to be chosen based
on the various constraints (time, financial, etc.).
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Fig. 6. Comparison of workflows The error (computed on the entire dataset) at each
time point (until all the data has been used) for the parallel dump (with parameters
β = 0.5 and γ = 0.3 ), the serial waterfall (with δ automatically chosen), and the
hybrid workflow (with α = 0.1).

parallel dump workflow (see Figure 7(a)) gave us a predictive model quickly the
test error is highly optimistic (and close to the training error) and is close to the
true error only at the end when we have access to all the data. The test error for
serial waterfall workflow (see Figure 7(b)) does not track the training error and is
better reflection of the risk of the model than the parallel dump workflow. These
variations in the test error can be explained because the composition of the test
set is continuously changed at each time step and it takes some time for the new
data to finally reach the training set. However the serial waterfall workflow can
be overly pessimistic and the proposed hybrid workflow (see Figure 7(c)) can be
a good compromise between the two—it can give a good model reasonably fast
and at the same time produce a reasonably good estimate of the performance
of the model. By varying the parameter α one can obtain a desired compromise
between the serial and the parallel workflow. Figure 7(d) compares the hybrid
workflow for two different values of the split parameters α = 0.1 and α = 0.5
with α = 0 corresponding to the serial workflow and α = 1 corresponding to the
parallel workflow. The value of parameter α is more of design choice and can be
chosen based on the domain and various constraints.

7 Case Study: Paraphrase Detection

We demonstrate the tradeoffs of the different workflows on a natural language
processing task of paraphrase detection [8]. Given a pair of sentences, for exam-
ple, Video game violence is not related to serious aggressive behavior in real
life. and Violence in video games is not causally linked with aggressive tenden-
cies., we would like to learn a model which predicts whether the two sentences
are semantically equivalent (paraphrases) or not. We take a supervised learning
approach to this problem by first manually collecting a labeled data, extracting
features from the sentences, and then training a binary classifier. Given a pair
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(a) Parallel—Optimistic test error
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(b) Serial—Pessimistic test error
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(c) Hybrid workflow
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Fig. 7. The estimated training error, test error, and the actual error (oracle) for (a)
the parallel dump, (b) the serial waterfall and (c) the hybrid workflow. (d) The effect
of varying the split parameter α.

of sentences one can construct various features which quantify the dissimilarity
between two sentences. One of the most import set of features are the based
on machine translation (MT) metrics. For example the BLEU score [11] (which
measures n-gram overlap) which is an widely used evaluation metric for MT
systems is an important feature for paraphrase detection. In our system we used
a total of 14 such features and then trained a binary decision tree using the
labeled data to train the classifier.

To collect the labeled data we show a pair of sentences to three in-house
annotators and ask them to label them as either semantically equivalent or not.
The sentences were taken from wikipedia articles corresponding to a specified
topic. Due to the overall project design the labeling proceeded one topic at a
time. We currently have a labeled data of 715 sentence pairs from a total of 6
topics (56, 76, 88, 108, 140, 247 sentence for each of the six topics) of which 112
were annotated as semantically equivalent by a majority of the annotators. We
analyse a situation where the data arrives one topic at a time. The new data
is allocated into train, validation, and test splits according the parallel dump,
serial waterfall, and the hybrid workflow. At each round a binary decision tree
is trained using the train split, the decision tree parameters are chosen using the
validation split, and the model performance is assessed using the test split.
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(a) Parallel (b) Serial (c) Hybrid (α = 0.5)

Fig. 8. Paraphrase detection (see § 7) (a) The misclassification error at each round
(until all data has been used) on the oracle, train and test split for (a) the parallel
dump (with parameters β = 0.6 and γ = 0.2 ), (b) the serial waterfall (with δ1 = 0.5,
δ2 = 0.3, and δ3 = 0.2), and (b) the hybrid workflow (with α = 0.5). The oracle is a
surrogate for the true model performance which is evaluated on 30 % of entire original
data.

Figure 8 shows the misclassification error on the train and the test splits as a
function of the number of rounds, here each round refers to a point in time when
we acquire a new labeled data and data reallocation/movement happens. The
results are averaged over 50 replications, where for each replication the order of
the topics is randomly permuted. We would like to see how close is the model
performance assessed using the test split to the true model performance on the
entire data (which we call the oracle). Since we do not have access to the true
data distribution we sequester 30 % of original data (which includes data from
all topics) and use this as a surrogate for the true performance. The following
observations can be made (see Figure 8): (1) The test error for all the three
workflows approaches the true oracle error at steady state when a large amount
of data has been collected. (2) However in the early stages the performance of
the model on the test split as assessed by the parallel workflow (Figure 8(a))
is relatively optimistic while that of the serial workflow(Figure 8(b)) is highly
pessimistic. (3) The proposed hybrid workflow (see Figure 8(d)) estimates the
test error much closer to the oracle error.

8 Related Work

There is not much related work in this area in the machine learning literature.
Most earlier research has focussed on settings with either unlimited data or finite
fixed data, while this paper proposes data flow strategies for finite but growing
datasets. The bias due to repeated use of the test set has been pointed out in
a few papers in the cross-validation setting [10,13]. However main focus of this
paper is on data rich situations where we estimate the prediction capability of
a classifier on a independent test data set (called the conditional test error). In
data poor situations techniques like cross-validation [7] and bootstrapping [3]
are widely used as a surrogate to this, but they can only estimate the expected
test error (averaged over multiple training sets).



16 V.C. Raykar and A. Saha

There is a rich literature in the area of learning under concept drift [5] and
dataset shifts [12]. Concept drift primarily refers to an online supervised learn-
ing scenario when the relation between the input data and the target variable
changes over time. Dataset shift is a common problem in predictive modeling that
occurs when the joint distribution of inputs and outputs differs between training
and test stages. Covariate shift, a particular case of dataset shift, occurs when
only the input distribution changes. The other kinds of concept-drifts are prior
probability shift where the distribution over true label y changes, sample selection
bias where the data distributions varies over time because of an unknown sample
rejection bias and source component shift where the datastream can be thought
to be originating from different unknown sources at different time points.

Various strategies have been proposed to correct for these shifts in test dis-
tribution [5,12]. In general the field of concept drift seeks to develop shift-aware
models that can capture these specific types of variations or a combination of
the different modes of variations or do model selection to assess whether dataset
shift is an issue in particular circumstances [9]. In our current work the focus is
to investigate into different kinds of dynamic workflows for assigning data into
train, test and validation splits to reduce the effect of bias in the scenario of a
time-shifting dataset. In our setting the drift arises as a consequence of that data
arriving in an non-iid fashion. Hence this body of work mainly deals with the
source component shift of the datasets where for example in the medical domain
where a classifier is built from the training data obtained from various hospitals,
each hospital may have a different machine with different bias, each producing
different ranges of values for the covariate x and possibly even the true label y.

We are mainly concerned with allocating the new data to the existing splits
and not with modifying any particular learning method to account for the shifts.
One of our motivations was not to make the allocation strategies model or data
distribution specific. We wanted to come up with strategies that can be used
with any model or data distribution. The main contribution of our work is to
propose these strategies and empirically analyze them. These kind of strategies
have not been discussed in the concept drift literature.

9 Conclusions

We analysed three workflows for allocating new data into the existing training,
validation, and test splits. The parallel dump workflow splits the data into three
parts and directly dumps them into the existing splits. While it can exploit the
new data quickly to build a good model the estimate of the model performance
is optimistic especially when the new data does not arrive in a random fashion.
The serial waterfall workflow which trickles the data from one level to another
avoids this problem by keeping the test set fresh and prevents the bias due to
multiple reuse of the test set. However it takes a long time for the new data to
reach the training split. The proposed hybrid workflow which balances both the
workflows seems to be a good compromise—it can give a good model reasonably
fast and at the same time produce a reasonably good estimate of the model
performance.
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A Appendix: Bias Due to Test Set Reuse

We will consider a scenario where we have a test set of N examples. At each
reuse we supplement the test set with M new examples and remove M of the
oldest examples. In this appendix we prove the following result:

After each reuse if we supplement the test set (consisting of N samples) with
M > N/(k

√
N + 1) new samples for some small constant k then the bias due to

test set reuse can be safely ignored.

Maximum Bias Due to Test Set Reuse: Let Ej be the estimated error of
the model ̂fj on a test set consisting of N samples after the test set having been
reused j times, i.e.,

Ej =
1
N

N
∑

i=1

L(yi, ŷij) =
1
N

N
∑

i=1

L(yi, ̂fj(xi)), (1)

where yi is the true response, ŷij = ̂fj(xi) is the response predicted by the learnt
model after the test set has been reused j times, and L is the loss function used
to measure the error. If the test set is used multiple times the final model will
overfit to the testing set. In other words the performance of the model on the
test set will be biased and will not reflect the true performance of the model.

Let Biasmax(Ej) be the maximum possible bias in the estimate of the error
Ej caused due to multiple reuse of the test set. The first time the test set is
used the bias is zero, i.e., Biasmax(E1) = 0. Every subsequent use increases the
bias. The worst case scenario (the perhaps the easiest for the developer) is when
the developer directly observes the predictions ŷij and learns a model on these
predictions to match the desired response yj for all examples in the test set. Since
we have N examples in the test set by reusing the test set N + 1 times one can
actually drive the error EN+1 = 0 since we will have N unknowns to estimate
(y1, . . . , yN ) and N new tests. Hence Biasmax(EN+1) = E1. We will further
assume that at each test we lose one degree of freedom and hence approximate

Biasmax(Ej) =
j − 1
N

E1, j = 1, . . . , N. (2)

Supplement the Test Set to Avoid the Bias: In order to avoid this bias our
strategy is to supplement the test set with M new examples and move the oldest
M examples to the lower validation set. We do this every time we reuse the test
set. If we keep doing this then in the long run we will have a set of N examples
which has been reused N/M times. Hence if we supplement the test set with M
examples at each reuse the bias in the test set at steady state will be

Biasmax(E∞) =
N − M

NM
E1, (3)

where E∞ is the error in this steady state scenario.
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How Much to Supplement?: If we require that for some small constant k,
|Biasmax(E∞)| < sd(E∞)k then the bias can be safely ignored,where sd(E∞) is the
standard deviation of the error estimate. For analytical tractability we will assume
a squared loss error function, i.e., L(y, ŷ) = (y − ŷ)2. Hence at steady state

E∞ =
1
N

N
∑

i=1

(yi − ŷi∞)2. (4)

Since we have a sum of squares we assume E∞ ∼ Γ (N,σ2/N), a gamma distri-
bution with N degrees of freedom and σ2 = Var(yi − ŷi∞). Hence

sd(E∞) = σ2/
√

N. (5)

We also approximate E1 by its expected value E1 ≈ E[E1] = σ2.
Hence |Biasmax(E∞)| < sd(E∞)k implies N−M

NM σ2 < σ2
√

N
k that is M >

N
k
√

N+1
. Hence after each reuse if we supplement the test set (consisting of N

samples) with M > N/(k
√

N + 1) new samples for some small constant k then
the bias due to test set reuse can be safely ignored. Note that M has approxi-
mately

√
N dependency.
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Abstract. The modus operandi for machine learning is to represent data
as feature vectors and then proceed with training algorithms that seek
to optimally partition the feature space S ⊂ R

n into labeled regions.
This holds true even when the original data are functional in nature, i.e.
curves or surfaces that are inherently varying over a continuum such as
time or space. Functional data are often reduced to summary statistics,
locally-sensitive characteristics, and global signatures with the objective
of building comprehensive feature vectors that uniquely characterize each
function. The present work directly addresses representational issues of
functional data for supervised learning. We propose a novel classifica-
tion by discriminative interpolation (CDI) framework wherein functional
data in the same class are adaptively reconstructed to be more similar
to each other, while simultaneously repelling nearest neighbor functional
data in other classes. Akin to other recent nearest-neighbor metric learn-
ing paradigms like stochastic k -neighborhood selection and large margin
nearest neighbors, our technique uses class-specific representations which
gerrymander similar functional data in an appropriate parameter space.
Experimental validation on several time series datasets establish the pro-
posed discriminative interpolation framework as competitive or better in
comparison to recent state-of-the-art techniques which continue to rely
on the standard feature vector representation.

Keywords: Functional data classification · Wavelets · Discriminative
Interpolation

1 Introduction

The choice of data representation is foundational to all supervised and unsuper-
vised analysis. The de facto standard in machine learning is to use feature repre-
sentations that treat data as n-dimensional vectors in Euclidean space and then
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proceed with multivariate analysis in R
n. This approach is uniformly adopted

even for sensor-acquired data which naturally come in functional form—most
sensor measurements are identifiable with real-valued functions collected over a
discretized continuum like time or space. Familiar examples include time series
data, digital images, video, LiDAR, weather, and multi-/hyperspectral volumes.
The present work proposes a framework where we directly leverage functional
representations to develop a k-nearest neighbor (kNN) supervised learner capa-
ble of discriminatively interpolating functions in the same class to appear more
similar to each other than functions from other classes—we refer to this through-
out as Classification by Discriminative Interpolation (CDI).

Over the last 25 years, the attention to statistical techniques with functional
representations has resulted in the subfield commonly referred to as Functional
Data Analysis (FDA) [20]. In FDA, the above mentioned data modalities are rep-
resented by their functional form: f : Rp → R

q. To perform data analysis, one
relies on the machinery of a Hilbert space structure endowed with a collection
of functions. On a Hilbert space H, many useful tools like bases, inner products,
addition, and scalar multiplication allow us to mimic multivariate analysis on R

n.
However, since function spaces are in general infinite dimensional, special care
must be taken to ensure theoretical concerns like convergence and set measures
are defined properly. To bypass these additional concerns, some have resorted to
treating real-valued functions of a real variable f : R → R, sampled at m discrete
points, f = {f(ti)}m

i=1, as a vector f ∈ R
m and subsequently apply standard mul-

tivariate techniques. Clearly, this is not a principled approach and unnecessarily
strips the function properties from the data. The predominant method, when
working with functional data, is to move to a feature representation where fil-
ters, summary statistics, and signatures are all derived from the input functions
and then analysis proceeds per the norm. To avoid this route, several existing
FDA works have revisited popular machine learning algorithms and reformu-
lated them rigorously to handle functional data [9,12,21,22]—showing both the-
oretical and practical value in retaining the function properties. Here we also
demonstrate how utilizing the well-known and simple interpolation property of
functions can lead to a novel classification framework. Intuitively, given A classes
and labeled exemplar functions

{

f j , yj
}

, where labels yj = {1, . . . , A} are avail-
able during training, we expand each f j in an appropriate basis representation
to yield a faithful reconstruction of the original curve. (Note: we use function
and curve synonymously throughout the exposition.) In a supervised framework,
we then allow the interpolants to morph the functions such that they resemble
others from the same class, and incorporate a counter-force to repel similarities
to other classes. The use of basis interpolants critically depends on the func-
tional nature of the data and cannot be replicated efficiently in a feature vector
representation where no underlying continuum is present. Though admittedly,
this would become more cumbersome if for a function with domain dimension
p and co-domain dimension q both were high dimensional, but for most prac-
tical datasets we have p ≤ 4. In the current work, we detail the theory and
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Fig. 1. Three-class classification by discriminative interpolation (CDI). (a) Original
training functions from three different classes, showing 30 curves each. (b) Post training
via the proposed CDI method, functions in each class morphed to resemble k-nearest
neighbors [same 30 curves per class as in (a)].

algorithms for real-valued functions over the real line expanded in wavelet bases
with extensions to higher dimensions following in a straightforward manner.

The motivation for a competing push-pull framework is built on several recent
successful efforts in metric learning [23,24,26,29] where Mahalanobis-style met-
rics are learned by incorporating optimization terms that promote purity of local
neighborhoods. The metric is learned using a kNN approach that is locally sen-
sitive to the the k neighbors around each exemplar and optimized such that
the metric moves data with the same class labels closer in proximity (pulling
in good neighbors) and neighbors with differing labels from the exemplar are
moved out of the neighborhood (pushing away bad neighbors). As these are
kNN approaches, they can inherently handle nonlinear classification tasks and
have been proven to work well in many situations [16] due to their ability to con-
textualize learning through the use of neighborhoods. In these previous efforts,
the metric learning framework is well-suited for feature vectors in R

n. In our
current situation of working with functional data, we propose an analogue that
allows the warping of the function data to visually resemble others in the same
class (within a k-neighborhood) and penalize similarity to bad neighbors from
other classes. We call this gerrymandered morphing of functions based on local
neighborhood label characteristics discriminative interpolation. Figure 1 illus-
trates this neighborhood-based, supervised deforming on a three-class problem.
In Fig. 1(a), we see the original training curves from three classes, colored
magenta, green, and blue; each class has been sub-sampled to 30 curves for
display purposes. Notice the high variability among the classes which can lead
to misclassifications. Fig. 1(b) shows the effects of CDI post training. Now the
curves in each class more closely resemble each other, and ultimately, this leads
to better classification of test curves.

Learning and generalization properties have yet to be worked out for the CDI
framework. Here, we make a few qualitative comments to aid better understanding
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of the formulation. Clearly, we can overfit during the training stage by forcing
the basis representation of all functions belonging to the same class to be iden-
tical. During the testing stage, in this overfitting regime, training is irrelevant
and the method devolves into a nearest neighbor strategy (using function dis-
tances). Likewise, we can underfit during the training stage by forcing the basis
representation of each function to be without error (or residual). During testing,
in this underfitting regime, the basis representation coefficients are likely to be
far (in terms of a suitable distance measure on the coefficients) from members in
each class since no effort was made during training to conform to any class. We
think a happy medium exists where the basis coefficients for each training stage
function strike a reasonable compromise between overfitting and underfitting—
or in other words, try to reconstruct the original function to some extent while
simultaneously attempting to draw closer to nearest neighbors in each class. Sim-
ilarly, during testing, the classifier fits testing stage function coefficients while
attempting to place the function pattern close to nearest neighbors in each class
with the eventual class label assigned to that class with the smallest compro-
mise value. From an overall perspective, CDI marries function reconstruction
with neighborhood gerrymandering (with the latter concept explained above).

To the best of our knowledge, this is the first effort to develop a FDA app-
roach that leverages function properties to achieve kNN-margin-based learning
in a fully multi-class framework. Below, we begin by briefly covering the req-
uisite background on function spaces and wavelets (Section 2). Related works
are detailed in Section 3. This is followed by the derivation of the proposed
CDI framework in Section 4. Section 5 demonstrates extensive experimental
validations on several functional datasets and shows our method to be compet-
itive with other functional and feature-vector based algorithms—in many cases,
demonstrating the highest performance measures to date. The article concludes
with Section 6 where recommendations and future extensions are discussed.

2 Function Representations and Wavelets

Most FDA techniques are developed under the assumption that the given set of
labeled functional data can be suitably approximated by and represented in an
infinite dimensional Hilbert space H. Ubiquitous examples of H include the space
of square-integrable functions L2([a, b] ⊂ R) and square-summable series l2(Z).
This premise allows us to transition the analysis from the functions themselves
to the coefficients of their basis expansion. Moving to a basis expansion also
allows us to seamlessly handle irregularly sampled functions, missing data, and
interpolate functions (the most important property for our approach). We now
provide a brief exposition of working in the setting of H. The reader is referred
to many suitable functional analysis references [17] for further details.

The infinite dimensional representation of f ∈ H comes from the fact that
there are a countably infinite number of basis vectors required to produce an
exact representation of f , i.e.
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f(t) =
∞
∑

l=1

αlφl(t) (1)

where φ is one of infinitely possible bases for H. Familiar examples of φ include
the Fourier basis, appropriate polynomials, and in the more contemporary
setting—wavelets. In computational applications, we cannot consider infinite
expansions and must settle for a projection into a finite d-dimensional subspace
P. Given a discretely sampled function f = {f(ti)}1≤i≤m, the coefficients for
this projection are given by minimizing the quadratic objective function

min
{αl}

m
∑

i=1

(

f(ti) −
d

∑

l=1

αlφl(ti)

)2

or in matrix form
min

α
‖f − φα‖2, (2)

where φ is an m × d matrix with entries φi,l = φl(ti) and α is an d × 1 column
vector of the coefficients. Estimation is computationally efficient with complexity
O(md2) [20]. For an orthonormal basis set, this is readily obtainable via the
inner product of the space αl = 〈f, φi〉. Once the function is represented in
the subspace, we can shift our analysis from working directly with the function
to instead working with the coefficients. Relevant results utilized later in our
optimization framework include

〈fh, f j〉 =
(

αh
)T

Φαj , (3)

where the d × d matrix Φ is defined by Φr,s = 〈φr, φs〉 (not dependent on fh

and f j), and
‖fh − f j‖22 =

(

αh − αj
)T

Φ
(

αh − αj
)

. (4)

For orthonormal basis expansions, such as many useful wavelet families, eq. (4)
reduces to ‖αh − αj‖22.

Though many different bases exist for H = L2([a, b]), wavelet expansions are
now widely accepted as the most flexible in providing compact representations
and faithful reconstructions. Functions f ∈ L2([a, b]) can be represented as a
linear combination of wavelet bases [7]

f(t) =
∑

k

αj0,kφj0,k(t) +
∞
∑

j≥j0,k

βj,kψj,k(t) (5)

where t ∈ R, φ(x) and ψ(x) are the scaling (a.k.a. father) and wavelet (a.k.a.
mother) basis functions respectively, and αj0,k and βj,k are scaling and wavelet
basis function coefficients; the j-index represents the current resolution level
and the k-index the integer translation value. (The translation range of k can be
computed from the span of the data and basis function support size at the differ-
ent resolution levels. Also, when there is no need to distinguish between scaling
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or wavelet coefficients, we simply let c =
[

α,β
]T .) The linear combination in

eq. (5) is known as a multiresolution expansion. The key idea behind multires-
olution theory is the existence of a sequence of nested subspaces Vj j ∈ Z such
that

· · · V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · · (6)

and which satisfy the properties
⋂

Vj = {0} and
⋃

Vj = L2 (completeness). The
resolution increases as j → ∞ and decreases as j → −∞ (some references show
this order reversed due to the fact they invert the scale [7]). At any particular
level j + 1, we have the following relationship

Vj

⊕

Wj = Vj+1 (7)

where Wj is a space orthogonal to Vj , i.e. Vj

⋂

Wj = {0}. The father wavelet
φ(x) and its integer translations form a basis for V0. The mother wavelet ψ(x)
and its integer translates span W0. These spaces decompose the function into its
smooth and detail parts; this is akin to viewing the function at different scales
and at each scale having a low pass and high pass version of the function. The
primary usefulness of a full multiresolution expansion given by eq. (5) is the
ability to threshold the wavelet coefficients and obtain a sparse representation of
the signal. If sparse representations are not required, functions can be expanded
using strictly scaling functions φ. Our CDI technique adopts this approach and
selects an appropriate resolution level j0 based on empirical cross-validation on
the training data. Given a set of functional data, coefficients for each of the
functions can be computed using eq. (2). Once the coefficients are estimated,
as previously discussed, all subsequent analysis can be transitioned to working
directly with the coefficients. There are also a number wavelet families from
which we can select φ. With our desire to work with orthonormal bases, we
limit ourselves to the compactly supported families of Daubechies, Symlets, and
Coiflets [7].

3 Related Work

Several authors have previously realized the importance of taking the functional
aspect of the data into account. These include representing the data in a different
basis such as B-Splines [1], Fourier [6] and wavelets [3,4] or utilizing the contin-
uous aspects [2] and differentiability of the functional data [18]. Abraham et al.
[1] fit the data using B-Splines and then use the K-means algorithm to cluster
the data. Biau et al. [6] reduce the infinite dimension of the space of functions
to the first d dimensional coefficients of a Fourier series expansion of each func-
tion and then they apply a k-nearest neighborhood for classification. Antoniadis
et al. [3] use the wavelet transform to detect clusters in high dimensional func-
tional data. They present two different measures, a similarity and a dissimilarity,
that are then used to apply the k-centroid clustering algorithm. The similarity
measure is based on the distribution of energy across scales generating a number
of features and the dissimilarity measure are based on wavelet-coherence tools.
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In [4], Berlinet et al. expand the observations on a wavelet basis and then apply
a classification rule on the non-zero coefficients that is not restricted to the
k-nearest neighbors. Alonso et al. [2] introduce a classification technique that
uses a weighted distance that utilizes the first, second and third derivative of the
functional data. López-Pintado and Romo [18] propose two depth-based classifi-
cation techniques that take into account the continuous aspect of the functional
data. Though these previous attempts have demonstrated the utility of basis
expansions and other machine learning techniques on functional data, none of
them formulate a neighborhood, margin-based learning technique as proposed
by our current CDI framework.

In the literature, many attempts have been made to find the best neigh-
borhood and/or define a good metric to get better classification results
[10,19,24,26,29]. Large Margin Nearest Neighbor (LMNN) [8,26] is a locally
adaptive metric classification method that uses margin maximization to esti-
mate a local flexible metric. The main intuition of LMNN is to learn a metric
such that at least k of its closest neighbors are from the same class. It pre-defines
k neighbors and identifies them as target neighbors or impostors—the same class
or different class neighbors respectively. It aims at readjusting the margin around
the data such that the impostors are outside that margin and the k data points
inside the margin are of the same class. Prekopcsk and Lemire [19] classify times
series data by learning a Mahalanobis distance by taking the pseudoinverse of the
covariance matrix, limiting the Mahalanobis matrix to a diagonal matrix or by
applying covariance shrinkage. They claim that these metric learning techniques
are comparable or even better than LMNN and Dynamic Time Warping (DTW)
[5] when one nearest neighbor is used to classify functional data. We show in the
experiments in Section 5 that our CDI method performs better. In [24], Trivedi
et al. introduce a metric learning algorithm by selecting the neighborhood based
on a gerrymandering concept; redefining the margins such that the majority of
the nearest neighbors are of the same class. Unlike many other algorithms, in
[24], the choice of neighbors is a latent variable which is learned at the same time
as it is learning the optimal metric—the metric that gives the best classification
accuracy. These neighborhood-based approaches are pioneering approaches that
inherently incorporate context (via the neighbor relationships) while remaining
competitive with more established techniques like SVMs [25] or deep learning
[13]. Building on their successes, we adapt a similar concept of redefining the class
margins through pushing away impostors and pulling target neighbors closer.

4 Classification by Discriminative Interpolation

In this section, we introduce the CDI method for classifying functional data.
Before embarking on the detailed development of the formulation, we first pro-
vide an overall sketch.

In the training stage, the principal task of discriminative interpolation is
to learn a basis representation of all training set functions while simultaneously
pulling each function representation toward a set of nearest neighbors in the same
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class and pushing each function representation away from nearest neighbors in
the other classes. This can be abstractly characterized as

ECDI(ci) =
∑

i

⎡

⎣Drep(f i,φci) + λ
∑

j∈N (i)

Dpull(ci, cj) − μ
∑

k∈M(i)

Dpush(ci, ck)

⎤

⎦ (8)

where Drep is the representation error between the actual data (training set
function sample) and its basis representation, Dpull is the distance between the
coefficients of the basis representation in the same class and Dpush the distance
between coefficients in different classes (with the latter two distances often cho-
sen to be the same). The parameters λ and μ weigh the pull and push terms
respectively. N (i) and M(i) are the sets of nearest neighbors in the same class
and different classes respectively.

Upon completion of training, the functions belonging to each class have been
discriminatively interpolated such that they are more similar to their neighbors
in the same class. This contextualized representation is reflected by the coeffi-
cients of the wavelet basis for each of the curves. We now turn our attention to
classifying incoming test curves. Our labeling strategy focuses on selecting the
class that is able to best represent the test curve under the pulling influence of
its nearest neighbors in the same class. In the testing stage, the principal task
of discriminative interpolation is to learn a basis representation for just the test
set function while simultaneously pulling the function representation toward a
set of nearest neighbors in the chosen class. This procedure is repeated for all
classes with class assignment performed by picking that class which has the low-
est compromise between the basis representation and pull distances. This can
be abstractly characterized as

â = arg min
a

min
c

Drep(f ,φc) + λ
∑

k∈K(a)

Dpull(c, ck
(a)) (9)

where K(a) is the set of nearest neighbors in class a of the incoming test pattern’s
coefficient vector c. Note the absence of the push mechanism during testing.
Further, note that we have to solve an optimization problem during the testing
stage since the basis representation of each function is a priori unknown (for
both training and testing).

4.1 Training Formulation

Given labeled functional data {(f i, yi)}N
i=1 where f i ∈ H and yi = {1, . . . , A} are

the labels, A is the number of classes. We can express f i as a series expansion

f i =
∞
∑

l=1

ci
lφl (10)

where {φd}∞
d=1 form a complete, orthonormal system of H. As mentioned in

Section 2, we approximate the discretized data f i = {f i(tj)}1≤j≤m in a d-
dimensional space. Let ci = [ci

1, c
i
2, · · · , ci

d]
T be the d × 1 vector of coefficients
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associated with the approximation f̂ i of f i and let φ = [φ1, φ2, · · · , φd] be the
m × d matrix of the orthonormal basis. Then the approximation to eq. 10 can
be written in matrix form as

f̂ i = φci. (11)

Getting the best approximation to f i requires minimizing eq. 2, but in CDI
we want to find a weighted approximation f̂ i such that the function resembles
more the functions in its class; i.e. we seek to minimize

∑

j s.t. yi=yj

Mij‖f̂ i − f̂ j‖2 (12)

while reducing the resemblance to functions in other classes; i.e. we seek to
maximize

∑

j s.t. yi �=yj

M ′
ij‖f̂ i − f̂ j‖2 (13)

where Mij and M ′
ij are some weight functions—our implementation of the

adapted push-pull concept. Combining the three objective function terms, we
attempt to get the best approximation by pulling similarly labeled data together
while pushing different labeled data away. This yields the following objective
function and optimization problem:

min
f̂ ,M,M ′

E = min
f̂ ,M,M ′

N
∑

i=1

‖f i− f̂ i‖2+λ
∑

i,j s.t. yi=yj

Mij‖f̂ i− f̂ j‖2−μ
∑

i,j s.t. yi �=yj

M ′
ij‖f̂ i− f̂ j‖2 (14)

where Mij ∈ (0, 1) and
∑

j Mij = 1 is the nearest neighbor constraint for yi = yj

where j 
= i, similarly, M ′
ij ∈ (0, 1) and

∑

j M ′
ij = 1 is the nearest neighbor

constraint for yi 
= yj where j 
= i. From Section 2, we showed that given an
orthonormal basis, ‖f̂ i − f̂ j‖2 = ‖ci − cj‖2, eq. 14 can be expressed in terms of
the coefficients as

min
c,M,M ′

E = min
c,M,M ′

N
∑

i=1

‖f i − φci‖2 + λ
∑

i,j s.t. yi=yj

Mij‖ci − cj‖2 − μ
∑

i,j s.t. yi �=yj

M ′
ij‖ci − cj‖2.

(15)
As we saw in Section 3, there are many different ways to set the nearest

neighbor. The simplest case is to find only one nearest neighbor from the same
class and one from the different classes. Here, we set Mij ∈ {0, 1} and likewise
for M ′

ij , which helps us obtain an analytic update for ci (while keeping M, M ′

fixed). An extension to this approach would be to find the k-nearest neighbors
allowing k > 1. A third alternative would be to have graded membership of
neighbors with a free parameter deciding the degree of membership. We adopt
this strategy—widely prevalent in the literature [27]—as a softmax winner-take-
all. In this approach, the Mij and M ′

ij are “integrated out” to yield
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Algorithm 1. Functional Classification by Discriminative Interpolation (CDI)

Training

Input: ftrain ∈ R
N×m, ytrain ∈ R

N , λ (CV*), μ (CV), k, kp, η (stepsize)
Output: ci(optimal interpolation)
1. For i ← 1 to N
2. Repeat
3. Find N (i) and M(i) using kNN
4. Compute Mij ∀ i, j pairs (eq. 18)
5. Compute ∇Ei

interp = ∂E
∂ci

(eq. 17)

6. ci ← ci − η∇Ei

interp
8. Until convergence
7. End For
*Obtained via cross validation (CV).

Testing

Input: ftest ∈ R
L×m, ci(from training), λ (CV), μ (CV), k, η′ (stepsize)

Output: ŷ (labels for all testing data)
1. For l ← 1 to L
2. For a ← 1 to A
3. Repeat
4. Find N (a) for c̃lusing kNN
5. Compute Ma

i ∀ i neighborhood (22)
6. Compute ∇El

a = ∂Ea

∂ĉl
(eq. 19)

7. c̃l ← c̃l − η′∇El
a

8. Until convergence
9. compute El

a (eq. 21)
10. End For
11. ỹl ← {a| min El

a ∀a}
12. End For

min
c

N
∑

i=1

‖f i−φci‖2− λ

β

∑

i

log
∑

j s.t. yi=yj

e−β‖ci−cj‖2
+

μ

β

∑

i

log
∑

r s.t. yi �=yr

e−β‖ci−cr‖2

(16)

where β is a free parameter deciding the degree of membership. This will allow
curves to have a weighted vote in the CDI of f i (for example).

An update equation for the objective in eq. 16 can be found by taking the
gradient with respect to ci, which yields

∂E

∂ci
= −2

⎛

⎝φT f i − φT φci − λ
∑

j s.t. yi=yj

Mij(ci − cj) + λ
∑

k s.t. yk=yi

Mki(ck − ci) · · ·

+μ
∑

r s.t. yi �=yr

Mir(ci − cr) − μ
∑

s s.t. ys �=yi

Msi(cs − ci)

⎞

⎠ (17)
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where

Mij =
exp

(

−β‖ci − cj‖2
)

∑

t, s.t. yi=yt

exp (−β‖ci − ct‖2) . (18)

The computational complexity of this approach can be prohibitive. Since the
gradient w.r.t. the coefficients involves a graded membership to all the datasets,
the worst case complexity is O(Nd). In order to reduce this complexity, we use an
approximation to eq. 17 via an expectation-maximization (EM) style heuristic.
We first find the nearest neighbor sets, N (i) (same class) and M(i) (different
classes), compute the softmax in eq. 18 using these nearest neighbor sets and then
use gradient descent to find the coefficients. Details of the procedure are found
in Algorithm 1. Future work will focus on developing efficient and convergent
optimization strategies that leverage these nearest neighbor sets.

4.2 Testing Formulation

We have estimated a set of coefficients which in turn give us the best approximation
to the training curves in a discriminative setting. We now turn to the testing stage.
In contrast to the feature vector-based classifiers, this stage is not straightforward.
When a test function appears, we don’t know its wavelet coefficients. In order to
determine the best set of coefficients for each test function, we minimize an objec-
tive function which is very similar to the training stage objective function. To test
membership in each class, we minimize the sum of the wavelet reconstruction error
and a suitable distance between the unknown coefficients and its nearest neigh-
bors in the chosen class. The test function is assigned to the class that yields the
minimum value of the objective function. This overall testing procedure is
formalized as

arg min
a

(

min
c̃

Ea(c̃)
)

= arg min
a

⎛

⎝min
c̃

‖f̃ − φc̃‖2 + λ
∑

i s.t. yi=a

Ma
i ‖c̃ − ci‖2

⎞

⎠ (19)

where f̃ is the test set function and c̃ is its vector of reconstruction coefficients.
Ma

i is the nearest neighbor in the set of class a patterns. As before, the mem-
bership can be “integrated out” to get

Ea(c̃) = ‖f̃ − φc̃‖2 − λ

β
log

∑

i s.t. yi=a

exp
{

−β‖c̃ − ci‖2
}

. (20)

This objective function can be minimized using methods similar to those used
during training. The testing stage algorithm comprises the following steps.

1. Solve Γ (a) = minc̃ Ea(c̃) for every class a using the objective function gra-
dient

∂Ea

∂c̃
= −2φT f̃ + 2φT φc̃ + λ

∑

i s.t. yi=a

Ma
i

(

2c̃ − 2ci
)

(21)
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where

Ma
i =

exp
{

−β‖c̃ − ci‖2
}

∑

j∈N (a) exp {−β‖c̃ − cj‖2} . (22)

2. Assign the label ỹ to f̃ by finding the class with the smallest value of Γ (a),
namely arg mina(Γ (a)).

5 Experiments

In this section, we discuss the performance of the CDI algorithm using publicly
available functional datasets, also known as time series datasets from the “UCR
Time Series Data Mining Archive” [15]. The multi-class datasets are divided into
training and testing sets with detailed information such as the number of classes,
number of curves in each of the testing sets and training sets and the length
of the curves shown in Table 1. The datasets that we have chosen to run the
experiments on range from 2 class datasets—the Gun Point dataset, and up to
37 classes—the ADIAC dataset. Learning is also exercised under a considerable
mix of balanced and unbalanced classes, and minimal training versus testing
exemplars, all designed to rigorously validate the generalization capabilities of
our approach.

For comparison against competing techniques, we selected four other leading
methods based on reported results on the selected datasets. Three out of the
four algorithms are classification techniques based on support vector machines
(SVM) with extensions to Dynamic Time Warping (DTW). DTW has shown
to be a very promising similarity measurement for functional data, supporting
warping of functions to determine closeness. Gudmundsson et al. [11] demon-
strate the feasibility of the DTW approach to get a positive semi-definite kernel
for classification with SVM. The approach in Zhang et al. [28] is one of many that
use a vectorized method to classify functional data instead of using functional
properties of the dataset. They develop several kernels for SVM known as elas-
tic kernels—Gaussian elastic metric kernel (GEMK) to be exact and introduce
several extensions to GEMK with different measurements. In [14], another SVM

Table 1. Functional Datasets. Datasets contain a good mix of multiple classes, class
imbalances, and varying number of training versus testing curves.

Dataset
Number of

Classes
Size of

Training Set
Size of

Testing Set
Length

Synthetic Control 6 300 300 60
Gun Point 2 50 150 150
ADIAC 37 390 391 176

Swedish Leaf 15 500 625 128
ECG200 2 100 100 96

Yoga 2 300 3000 426
Coffee 2 28 28 286

Olive Oil 4 30 30 570
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Table 2. Experimental parameters. Free parameter settings via cross-validation for
each of the datasets. | · | represents set cardinality.

Dataset λ μ |N | |M|
Synthetic Control 2 0.01 10 5

Gun Point 0.1 0.001 7 2
ADIAC 0.8 0.012 5 5

Swedish Leaf 0.1 0.009 7 2
ECG200 0.9 0.01 3 3

Yoga 0.08 0.002 2 2
Coffee 0.1 0.005 1 1

Olive Oil 0.1 0.005 1 1

classification technique with a DTW kernel is employed but this time a weight is
added to the kernel to provide more flexibility and robustness to the kernel func-
tion. Prekopcsák et al. [19] do not utilize the functional properties of the data.
Instead they learn a Mahalanobis metric followed by standard nearest neighbors.
For brevity, we have assigned the following abbreviations to these techniques:
SD [11], SG [28], SW [14], and MD [19]. In addition to these published works,
we also evaluated a standard kNN approach directly on the wavelet coefficients
obtained from eq. 2, i.e. direct representation of functions in a wavelet basis
without neighborhood gerrymandering. This was done so that we can compre-
hensively evaluate if the neighborhood adaptation aspect of CDI truly impacted
generalization (with this approach abbreviated as kNN).

A k-fold cross-validation is performed on the training datasets to find the
optimal values for each of our free parameters (λ and μ being the most promi-
nent). Since the datasets were first standardized (mean subtraction, followed by
standard deviation normalization), the free parameters λ and μ became more
uniform across all the datasets. λ ranges from (0.05, 2.0) while μ ranges from
(10−3, 0.01). Table 2 has detailed information on the optimal parameters found
for each of the datasets. In all our experiments, β is set to 1 and Daubechies 4
(DB4) at j0 = 0 was used as the wavelets basis (i.e. only scaling functions used).
We presently do not investigate the effects of β on the classification accuracy
as we perform well with it set at unity. The comprehensive results are given in
Table 3, with the error percentage being calculated per the usual:

Error = 100
# of misclassified curves
Total Number of Curves

. (23)

The experiments show very promising results for the proposed CDI method
in comparison with the other algorithms, with our error rates as good or better in
most datasets. CDI performs best on the ADIAC dataset compared to the other
techniques, with an order of magnitude improvement over the current state-of-
the-art. This is a particularly difficult dataset having 37 classes where the class
sizes are very small, only ranging from 4 to 13 curves. Figure 2(a) illustrates all
original curves from the 37 classes which are very similar to each other. Hav-
ing many classes with only a few training samples in each presents a significant
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(a) Original ADIAC
Curves

(b) Discriminatively Interpolated
ADIAC Curves

Fig. 2. ADIAC dataset 37 classes - 300 Curves. The proposed CDI method is an order
of magnitude better than the best reported competitor. Original curves in (a) are
uniquely colored by class. The curves in (b) are more similar to their respective classes
and are smoothed by the neighborhood regularization—unique properties of the CDI.

Table 3. Classification Errors. The proposed CDI method achieves state-of-the-art per-
formance on half of the datasets, and is competitive in almost all others. The ECG200
exception, with kNN outperforming everyone, is discussed in text.

Dataset SD [11] SG [28] SW [14] MD [19] kNN CDI

Synthetic Control 0.67 (2) 0.7 (4) 0.67 (2) 1 (5) 9.67 (6) 0.33 (1)
Gun Point 4.67 (3) 0 (1) 2 (2) 5 (4) 9 (6) 6 (5)
ADIAC 32.48 (5) 24(3) 24.8 (4) 23 (2) 38.87 (6) 3.84 (1)

Swedish Leaf 14.72 (3) 5.3 (1) 22.5 (6) 15 (4) 16.97 (5) 8.8 (2)
ECG200 16 (6) 7 (2) 14 (5) 8 (3) 0 (1) 8 (3)

Yoga 16.37 (5) 11 (2) 18 (6) 16 (4) 10 (1) 15 (3)
Coffee 10.71 (4) 0 (1) 23 (5) - 8.67 (3) 0 (1)

Olive Oil 13.33 (4) 10 (1) 17.3 (5) 13 (3) 20.96 (6) 10 (1)

classification challenge and correlates with why the competing techniques have a
high classification error. In Figure 2(b), we show how CDI brings curves within
the same class together making them more “pure” (such as the orange curves)
while also managing to separate classes from each other. Regularized, discrimi-
native learning also has the added benefit of smoothing the functions. The com-
peting SVM-based approaches suffer in accuracy due to the heavily unbalanced
classes. In some datasets (e.g. Swedish Leaf or Yoga) where we are not the leader,
we are competitive with the others. Comparison with the standard kNN resulted
in valuable insights. CDI fared better in 6 out of the 8 datasets, solidifying the
utility of our push-pull neighborhood adaptation (encoded by the learned μ and
λ), clearly showing CDI is going beyond vanilla kNN on the coefficient vectors.
However, it is interesting that in two of the datasets that kNN beat not only
CDI but all other competitors. For example, kNN obtained a perfect score on
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ECG200. The previously published works never reported a simple kNN score on
this dataset, but as it can occur, a simple method can often beat more advanced
methods on particular datasets. Further investigation into this dataset showed
that the test curves contained variability versus the training, which may have
contributed to the errors. Our error is on par with all other competing methods.

6 Conclusion

The large margin k-nearest neighbor functional data classification framework
proposed in this work leverages class-specific neighborhood relationships to dis-
criminatively interpolate functions in a manner that morphs curves from the
same class to become more similar in their appearance, while simultaneously
pushing away neighbors from competing classes. Even when the data naturally
occur as functions, the norm in machine learning is to move to a feature vector
representation, where the burden of achieving better performance is transferred
from the representation to the selection of discriminating features. Here, we have
demonstrated that such a move can be replaced by a more principled approach
that takes advantage of the functional nature of data.

Our CDI objective uses a wavelet expansion to produce faithful approxima-
tions of the original dataset and concurrently incorporates localized push-pull
terms that promote neighborhood class purity. The detailed training optimiza-
tion strategy uses a familiar iterative, alternating descent algorithm whereby
first the coefficients of the basis expansions are adapted in the context of their
labeled, softmax-weighted neighbors, and then, the curves’ k-neighborhoods are
updated. Test functional data are classified by the cost to represent them in each
of the morphed training classes, with a minimal cost correct classification reflect-
ing both wavelet basis reconstruction accuracy and nearest-neighbor influence.
We have extensively validated this simple, yet effective, technique on several
datasets, achieving competitive or state-of-the-art performance on most of them.
In the present work, we have taken advantage of the interpolation characteristic
of functions. In the future, we intend to investigate other functional properties
such as derivatives, hybrid functional-feature representations, and extensions to
higher dimensional functions such as images. We also anticipate improvements
to our optimization strategy which was not the focus of the present work.
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Abstract. Many modern multiclass and multilabel problems are char-
acterized by increasingly large output spaces. For these problems, label
embeddings have been shown to be a useful primitive that can improve
computational and statistical efficiency. In this work we utilize a cor-
respondence between rank constrained estimation and low dimensional
label embeddings that uncovers a fast label embedding algorithm which
works in both the multiclass and multilabel settings. The result is a
randomized algorithm whose running time is exponentially faster than
naive algorithms. We demonstrate our techniques on two large-scale pub-
lic datasets, from the Large Scale Hierarchical Text Challenge and the
Open Directory Project, where we obtain state of the art results.

1 Introduction

Recent years have witnessed the emergence of many multiclass and multilabel
datasets with increasing number of possible labels, such as ImageNet [12] and the
Large Scale Hierarchical Text Classification (LSHTC) datasets [25]. One could
argue that all problems of vision and language in the wild have extremely large
output spaces.

When the number of possible outputs is modest, multiclass and multilabel
problems can be dealt with directly (via a max or softmax layer) or with a
reduction to binary classification. However, when the output space is large, these
strategies are too generic and do not fully exploit some of the common properties
that these problems exhibit. For example, often the alternatives in the output
space have varying degrees of similarity between them so that typical examples
from similar classes tend to be closer1 to each other than from dissimilar classes.
More concretely, classifying an image of a Labrador retriever as a golden retriever
is a more benign mistake than classifying it as a rowboat.

Shouldn’t these problems then be studied as structured prediction problems,
where an algorithm can take advantage of the structure? That would be the case
if for every problem there was an unequivocal structure (e.g. a hierarchy) that
everyone agreed on and that structure was designed with the goal of being ben-
eficial to a classifier. When this is not the case, we can instead let the algorithm
uncover a structure that matches its own capabilities.
1 Or more confusable, by machines and humans alike.

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 37–51, 2015.
DOI: 10.1007/978-3-319-23528-8 3
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In this paper we use label embeddings as the underlying structure that can
help us tackle problems with large output spaces, also known as extreme classifi-
cation problems. Label embeddings can offer improved computational efficiency
because the embedding dimension is much smaller than the dimension of the out-
put space. If designed carefully and applied judiciously, embeddings can also offer
statistical efficiency because the number of parameters can be greatly reduced
without increasing, or even reducing, generalization error.

1.1 Contributions

We motivate a particular label embedding defined by the low-rank approximation
of a particular matrix, based upon a correspondence between label embedding
and the optimal rank-constrained least squares estimator. Assuming realizability
and infinite data, the matrix being decomposed is the expected outer product
of the conditional label probabilities. In particular, this indicates two labels are
similar when their conditional probabilities are linearly dependent across the
dataset. This unifies prior work utilizing the confusion matrix for multiclass [5]
and the empirical label covariance for multilabel [41].

We apply techniques from randomized linear algebra [19] to develop an effi-
cient and scalable algorithm for constructing the embeddings, essentially via a
novel randomized algorithm for rank-constrained squared loss regression. Intu-
itively, this technique implicitly decomposes the prediction matrix of a model
which would be prohibitively expensive to form explicitly. The first step of our
algorithm resembles compressed sensing approaches to extreme classification
that use random matrices [21]. However our subsequent steps tune the embed-
dings to the data at hand, providing the opportunity for empirical superiority.

2 Algorithm Derivation

2.1 Notation

We denote vectors by lowercase letters x, y etc. and matrices by uppercase letters
W , Z etc. The input dimension is denoted by d, the output dimension by c and
the embedding dimension by k. For multiclass problems y is a one hot (row)
vector (i.e. a vertex of the c − 1 unit simplex) while for multilabel problems y is
a binary vector (i.e. a vertex of the unit c-cube). For an m×n matrix X ∈ R

m×n

we use ||X||F for its Frobenius norm, X† for the pseudoinverse, ΠX,L for the
projection onto the left singular subspace of X, and X1:k for the matrix resulting
by taking the first k columns of X. We use X∗ to denote a matrix obtained by
solving an optimization problem over matrix parameter X. The expectation of
a random variable v is denoted by E[v].

2.2 Background

In this section we offer an informal discussion of randomized algorithms for
approximating the principal components analysis of a data matrix X ∈ R

n×d
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Algorithm 1. Randomized PCA

1: function RPCA(k, X ∈ R
n×d)

2: (p, q) ← (20, 1) � These hyperparameters rarely need adjustment.
3: Q ← randn(d, k + p)
4: for i ∈ {1, . . . , q} do � Randomized range finder for X�X
5: Ψ ← X�XQ � Ψ can be computed in one pass over the data
6: Q ← orthogonalize(Ψ) � orth complexity O(dk2) is independent of n
7: end for � NB: total of (q + 1) data passes, including next line
8: F ← (XQ)�(XQ) � F ∈ R

(k+p)×(k+p) is “small’
9: (V̂ , Σ2) ← eig(F, k) � Exact optimization on small matrix

10: V ← QV̂ � Back out the solution
11: return (V, Σ)
12: end function

with n examples and d features. For a very thorough and more formal discussion
see [19].

Algorithm 1 shows a recipe for performing randomized PCA. In both theory
and practice, the algorithm is insensitive to the parameters p and q as long as
they are large enough (in our experiments we use p = 20 and q = 1). We start
with a set of k+p random vectors and use them to probe the range of X�X. Since
principal eigenvectors can be thought as “frequent directions” [28], the range of
Ψ will tend to be more aligned with the space spanned by the top eigenvectors
of X�X. We compute an orthogonal basis for the range of Ψ and repeat the
process q times. This can also be thought as orthogonal (aka subspace) iteration
for finding eigenvectors with the caveat that we early stop (i.e., q is small). Once
we are done and we have a good approximation for the principal subspace of
X�X, we optimize fully over that subspace and back out the solution. The last
few steps are cheap because we are only working with a (k + p) × (k + p) matrix
and the largest bottleneck is either the computation of Ψ in a single machine
setting or the orthogonalization step if parallelization is employed. An important
observation we use below is that X or X�X need not be available explicitly; to
run the algorithm we only need to be able to compute the result of multiplying
with X�X.

2.3 Rank-Constrained Estimation and Embedding

We begin with a setting superficially unrelated to label embedding. Suppose we
seek an optimal squared loss predictor of a high-cardinality target vector y ∈ R

c

which is linear in a high dimensional feature vector x ∈ R
d. Due to sample

complexity concerns, we impose a low-rank constraint on the weight matrix. In
matrix form,

W ∗ = arg min
W∈Rd×c| rank(W )≤k

‖Y − XW‖2F , (1)

where Y ∈ R
n×c and X ∈ R

n×d are the target and design matrices respectively.
This is a special case of a more general problem studied by [14]; specializing
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Algorithm 2. Rembrandt: Response EMBedding via RANDomized
Techniques

1: function Rembrandt(k, X ∈ R
n×d, Y ∈ R

n×c)
2: (p, q) ← (20, 1) � These hyperparameters rarely need adjustment.
3: Q ← randn(c, k + p)
4: for i ∈ {1, . . . , q} do � Randomized range finder for Y �ΠX,LY
5: Z ← arg min ‖Y Q − XZ‖2

F

6: Q ← orthogonalize(Y �XZ)
7: end for � NB: total of (q + 1) data passes, including next line
8: F ← (Y �XQ)�(Y �XQ) � F ∈ R

(k+p)×(k+p) is “small”
9: (V, Σ2) ← eig(F, k)

10: V ← QV � V ∈ R
c×k is the embedding

11: return (V, Σ)
12: end function

their result yields the solution W ∗ = X†(ΠX,LY )k, where ΠX,L projects onto
the left singular subspace of X, and (·)k denotes optimal Frobenius norm rank-k
approximation, which can be computed2 via SVD. The expression for W ∗ can
be written in terms of the SVD ΠX,LY = UΣV �, which, after simple algebra,
yields W ∗ =

(

X†(Y V1:k)
)

V �
1:k. This is equivalent to the following procedure:

1. Y V1:k: Project Y down to k dimensions using the top right singular vectors
of ΠX,LY .

2. X†(Y V1:k) Least squares fit the projected labels using X and predict them.
3.

(

X†(Y V1:k)
)

V �
1:k: Map predictions to the original output space, using the

transpose of the top right singular vectors of ΠX,LY .

This motivates the use of the right singular vectors of ΠX,LY as a label embed-
ding. The ΠX,LY term can be demystified: it corresponds to the predictions of
the optimal unconstrained model,

Z∗ = arg min
Z∈Rd×c

‖Y − XZ‖2F ,

ΠX,LY = XZ∗ def= Ŷ .

The right singular vectors V of ΠX,LY are therefore the eigenvectors of Ŷ �Ŷ ,
i.e., the matrix formed by the sum of outer products of the optimal unconstrained
model’s predictions on each example. Note that actually computing and materi-
alizing Z∗ ∈ R

d×c would be expensive; a key aspect of the randomized algorithm
is that we get the same result while avoiding this intermediate. In particular we
can find the product of ΠX,LY with another matrix Q ∈ R

c×k via

Z∗Q = arg min
Z∈Rd×k

‖Y Q − XZ‖2F ,

ΠX,LY Q = XZ∗Q. (2)

2 if X = UXΣXV �
X is the SVD of X, then ΠX,L = UXU�

X .
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Because squared loss is a proper scoring rule it is minimized at the conditional
mean. In the limit of infinite training data (n → ∞) and sufficient model flexi-
bility (so that ŷ = E[y|x]) we have that

1
n

Ŷ �Ŷ
a.s.−→ E[E[y|x]�E[y|x]] (3)

by the strong law of large numbers. An embedding based upon the eigendecom-
position of E[E[y|x]�E[y|x]] is not practically actionable, but does provide valu-
able insights. For example, the principal label space transformation of [41] is an
eigendecomposition of the empirical label covariance Y �Y . This is a plausible
approximation to E[E[y|x]�E[y|x]] in the multilabel case. However, for multi-
class (or multilabel where most examples have at most one nonzero component),
the low-rank constraint alone cannot produce good generalization if the input
representation is sufficiently flexible; the eigendecomposition of the prediction
covariance will merely select a basis for the k most frequent labels due to the
absence of empirical cooccurence statistics. Under these conditions we must fur-
ther regularize (i.e., tradeoff variance for bias) beyond the low-rank constraint,
so that Ŷ better approximates E[Y |X] rather than the observed Y . Our proce-
dure admits tuning the bias-variance tradeoff via choice of model (features) used
in line 5 of Algorithm 2.

2.4 Rembrandt

Our proposal is Rembrandt, described in Algorithm 2. In the previous section, we
motivated the use of the top right singular space of ΠX,LY as a label embedding,
or equivalently, the top principal components of Y �ΠX,LY (leveraging the fact
that the projection is idempotent). Using randomized techniques, we can decom-
pose this matrix without explicitly forming it, because we can compute the product
of ΠX,LY with another matrix Q via equation 2. Algorithm 2 is a specialization
of randomized PCA to this particular form of the matrix multiplication operator.
Starting from a random label embedding which satisfies the conditions for random-
ized PCA (e.g., a Gaussian random matrix), the algorithm first fits the embedding,
outer products the embedding with the labels, orthogonalizes and repeats for some
number of iterations. Then a final exact eigendecomposition is used to remove the
additional dimensions of the embedding that were added to improve convergence.
Note that the optimization of 2 is over Rd×(k+p), not Rd×c, although the result is
equivalent; this is the main computational advantage of our technique.

The connection to compressed sensing approaches to extreme classification
is now clear, as the random sensing matrix corresponds to the starting point of
the iterations in Algorithm 2. In other words, compressed sensing corresponds
to Algorithm 2 with q = 0 and p = 0, which results in a whitened random
projection of the labels as the embedding. Additional iterations (q > 0) and
oversampling (p > 0) improve the approximation of the top eigenspace, hence
the potential for improved performance. However when the model is sufficiently
flexible, an embedding matrix which ignores the training data might be superior
to one which overfits the training data.
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Equation (2) is inexpensive to compute. The matrix vector product Y Q is a
sparse matrix-vector product so complexity O(nsk) depends only on the average
(label) sparsity per example s and the embedding dimension k, and is indepen-
dent of the number of classes c. The fit is done in the embedding space and
therefore is independent of the number of classes c, and the outer product with
the predicted embedding is again a sparse product with complexity O(nsk).
The orthogonalization step is O(ck2), but this is amortized over the data set
and essentially irrelevant as long as n > c. While random projection theory sug-
gests k should grow logarithmically with c, this is only a mild dependence on
the number of classes.

3 Related Work

Low-dimensional dense embeddings of sparse high-cardinality output spaces have
been leveraged extensively in the literature, due to their beneficial impact on
multiple algorithmic desiderata. As this work emphasizes, there are potential
statistical (i.e., regularization) benefits to label embeddings, corresponding to
the rich literature of low-rank regression regularization [22]. Another common
motivation is to mitigate space or time complexity at training or inference time.
Finally, embeddings can be part of a strategy for zero-shot learning [34], i.e.,
designing a classifier which is extensible in the output space.

[21], motivated by advances in compressed sensing, utilized a random embed-
ding of the labels along with greedy sparse decoding strategy. For the multilabel
case, [41] construct a low-dimensional embedding using principal components
on the empirical label covariance, which they utilize along with a greedy sparse
decoding strategy. For multivariate regression, [7] use the principal components
of the empirical label covariance to define a shrinkage estimator which exploits
correlations between the labels to improve accuracy. In these works, the motiva-
tion for embeddings was primarily statistical benefit. Conversely, [44] motivate
their ranking-loss optimized embeddings solely by computational considerations
of inference time and space complexity.

Multiple authors leverage side information about the classes, such as a taxon-
omy or graph, in order to learn a label representation which is felicitous for clas-
sification, e.g. when composed with online learning [11]; Bayesian learning [10];
support vector machines [6]; and decision tree ensembles [38]. Our embedding
approach neither requires nor exploits such side information, and is therefore
applicable to different scenarios, but is potentially suboptimal when side infor-
mation is present. However, our embeddings can be complementary to such tech-
niques when side information is not present, as some approaches condense side
information into a similarity matrix between classes, e.g., the sub-linear inference
approach of [9] and the large margin approach of [43]. Our embeddings provide a
low-rank similarity matrix between classes in factored form, i.e., represented in
O(kc) rather than O(c2) space, which can be composed with these techniques.
Analogously, [5] utilize a surrogate classifier rather than side information to
define a similarity matrix between classes; our procedure can efficiently produce
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a similarity matrix which can ease the computational burden of this portion of
their procedure.

Another intriguing use of side information about the classes is to enable zero-
shot learning. To this end, several authors have exploited the textual nature
of classes in image annotation to learn an embedding over the classes which
generalizes to novel classes, e.g., [15] and [39]. Our embedding technique does
not address this problem.

[18] focus nearly exclusively on the statistical benefit of incorporating label
structure by overcoming the space and time complexity of large-scale one-
against-all classification via distributed training and inference. Specifically, they
utilize side information about the classes to regularize a set of one-against-all
classifiers towards each other. This leads to state-of-the-art predictive perfor-
mance, but the resulting model has high space complexity, e.g., terabytes of
parameters for the LSHTC [24] dataset we utilize in section 4.3. This neces-
sitates distributed learning and distributed inference, the latter being a more
serious objection in practice. In contrast, our embedding technique mitigates
space complexity and avoids model parallelism.

Our objective in equation (1) is highly related to that of partial least
squares [16], as Algorithm 2 corresponds to a randomized algorithm for PLS
if the features have been whitened.3 Unsurprisingly, supervised dimensionality
reduction techniques such as PLS can be much better than unsupervised dimen-
sionality reduction techniques such as PCA regression in the discriminative set-
ting if the features vary in ways irrelevant to the classification task [2].

Two other classical procedures for supervised dimensionality reduction are
Fisher Linear Discriminant [37] and Canonical Correlation Analysis [20]. For
multiclass problems these two techniques yield the same result [2,3], although for
multilabel problems they are distinct. Indeed, extension of FLD to the multilabel
case is a relatively recent development [42] whose straightforward implementa-
tion does not appear to be computationally viable for large number of classes.
CCA and PLS are highly related, as CCA maximizes latent correlation and PLS
maximizes latent covariance [2]. Furthermore, CCA produces equivalent results
to PLS if the features are whitened [40]. Therefore, there is no obvious statistical
reason to prefer CCA to our proposal in this context.

Regarding computational considerations, scalable CCA algorithms are avail-
able [30,32], but it remains open how to specialize them to this context to lever-
age the equivalent of equation (2); whereas, if CCA is desired, Algorithm 2 can
be utilized in conjunction with whitening pre-processing.

Text is one the common input domains over which large-scale multiclass and
multilabel problems are defined. There has been substantial recent work on text
embeddings, e.g., word2vec [31], which (empirically) provide analogous statistical
and computational benefits despite being unsupervised. The text embedding
technique of [27] is a particularly interesting comparison because it is a variant
of Hellinger PCA which leverages sequential information. This suggests that
unsupervised dimensionality reduction approaches can work well when additional

3 More precisely, if the feature covariance is a rotation.
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Algorithm 3. Stagewise classification algorithm utilized for experiments. Loss
is either log loss (multiclass) or independent log loss per class (multilabel).

1: function DecoderTrain(k, X ∈ R
n×d, Y ∈ R

n×c, φ)
2: (R, ∼) ← Rembrandt(k, X, Y ) � or other comparison embedding
3: W ∗ ← arg minW ‖Y R − XW‖2

F

4: Ŷ ← φ(XW ∗) � φ is an optional random feature map
5: Q∗ ← arg minQ loss(Y, Ŷ Q) � early-stopped, see text
6: return (W ∗, Q∗)
7: end function

structure of the input domain is incorporated, in this case by modeling word
burstiness with the square root nonlinearity [23] and word order via decomposing
neighborhood statistics. Nonetheless [27] note that when maximum statistical
performance is desired, the embeddings must be fine-tuned to the particular
task, i.e., supervised dimensionality reduction is required.

Another plausible regularization technique which mitigates inference space
and time complexity is L1 regularization [29]. One reason to prefer low-rank
regularization to L1 regularization is if the prediction covariance of equation (3)
is well-modeled by a low-rank matrix.

4 Experiments

The goal of these experiments is to demonstrate the computational viability and
statistical benefits of the embedding algorithm, not to advocate for a particular
classification algorithm per se. We utilize classification tasks for demonstration,
and utilize our embedding strategy as part of algorithm 3, but focus our attention
on the impact of the embedding on the result.

Table 1. Data sets used for experimentation and times to compute an embedding.

Dataset Type Modality Examples Features Classes Rembrandt
k Time (sec)

ALOI Multiclass Vision 108K 128 1000 50 4
ODP Multiclass Text ∼ 1.5M ∼ 0.5M ∼ 100K 300 6,530

LSHTC Multilabel Text ∼ 2.4M ∼ 1.6M ∼ 325K 500 8,006

In table 1 we present some statistics about the datasets we use in this section
as well as times required to compute an embedding for the dataset. Unless other-
wise indicated, all timings presented in the experiments section are for a Matlab
implementation running on a standard desktop, which has dual 3.2Ghz Xeon
E5-1650 CPU and 48Gb of RAM.
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4.1 ALOI

ALOI is a color image collection of one-thousand small objects recorded for sci-
entific purposes [17]. The number of classes in this data set does not qualify as
extreme by current standards, but we begin with it as it will facilitate compar-
ison with techniques which in our other experiments are intractable on a single
machine. For these experiments we will consider test classification accuracy uti-
lizing the same train-test split and features from [8]. Specifically there is a fixed
train-test split of 90:10 for all experiments and the representation is linear in
128 raw pixel values.

Algorithm 2 produces an embedding matrix whose transpose is a squared-
loss optimal decoder. In practice, optimizing the decode matrix for logistic loss
as described in Algorithm 3 gives much better results. This is by far the most
computationally demanding step in this experiment, e.g., it takes 4 seconds to
compute the embedding but 300 seconds to perform the logistic regression. For-
tunately the number of features (i.e., embedding dimensionality) for this logistic
regression is modest so the second order techniques of [1] are applicable (in
particular, their Algorithm 1 with a simple modification to include accelera-
tion [4,33]). We determine the number of fit iterations for the logistic regression
by extracting a hold-out set from the training set and monitoring held-out loss.
We do not use a random feature map, i.e., φ in line 4 of Algorithm 3 is the
identity function.

Table 2. ALOI results. k = 50 for all embedding strategies.

Method RE + LR PCA + LR CS + LR LR OAA LT

Test Error 9.7% 9.7% 10.8% 10.8% 11.5% 16.5%

We compare to several different strategies in table 2. OAA is the one-against-
all reduction of multiclass to binary. LR is a standard logistic regression, i.e.,
learning directly from the original features. Both of these options are intractable
on a single machine for our other data sets. We also compare against Lomtree
(LT), which has training and test time complexity logarithmic in the number of
classes [8]. Both OAA and LT are provided by the Vowpal Wabbit [26] machine
learning tool.

The remaining techniques are variants of Algorithm 3 using different embed-
ding strategies. PCA + LR refers to logistic regression after first projecting
the features onto their top principal components. CS + LR refers to logistic
regression on a label embedding which is a random Gaussian matrix suitable
for compressed sensing. Finally RE + LR is Rembrandt composed with logistic
regression. These techniques were all implemented in Matlab.

Interestingly, OAA underperforms the full logistic regression. Rembrandt
combined with logistic regression outperforms logistic regression, suggesting a
beneficial effect from low-rank regularization. Compressed sensing is able to
match the performance of the full logistic regression while being computationally
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(a) Performance of logistic regres-
sion on ALOI when combined
with either a feature embedding
(PCA) or label embedding (RE).
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(b) The empirical label covariance
spectrum for LSHTC.

more tractable, but underperforms Rembrandt. Lomtree has the worst predic-
tion performance but the lowest computational overhead when the number of
classes is large.

At k = 50, there is no difference in quality between using the Rembrandt
(label) embedding and the PCA (feature) embedding. This is not surprising
considering the effective rank of the covariance matrix of ALOI is 70. For small
embedding dimensionalities, however, PCA underperforms Rembrandt as indi-
cated in Figure 1a. For larger numbers of output classes, where the embedding
dimension will be a small fraction of the number of classes by computational
necessity, we anticipate PCA regression will not be competitive.

Note that, in addition to better statistical performance, all of the “embed-
ding + LR” approaches have lower space complexity O(k(c + d)) than direct
logistic regression O(cd). For ALOI the savings are modest (255600 bytes vs.
516000 bytes) because the input dimensionality is only d = 128, but for larger
problems the space savings are necessary for feasible implementation on a single
commodity computer. Inference time on ALOI is identical for embedding and
direct approaches in practice (both achieving ≈ 170k examples/sec).

4.2 ODP

The Open Directory Project [13] is a public human-edited directory of the web
which was processed by [6] into a multiclass data set. For these experiments we
will consider test classification error utilizing the same train-test split, features,
and labels from [8]. Specifically there is a fixed train-test split of 2:1 for all
experiments, the representation of document is a bag of words, and the unique
class assignment for each document is the most specific category associated with
the document.
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Table 3. ODP results. k = 300 for all embedding strategies.

Method RE + LR CS + LR PCA + LR LT

Test Error 83.15% 85.14% 90.37% 93.46%

The procedures are the same as in the previous experiment, except that we
do not compare to OAA or full logistic regression due to intractability on a single
machine.

The combination of Rembrandt and logistic regression result is, to the best of
our knowledge, the best published result on this dataset. PCA logistic regression
has a performance gap compared to Rembrandt and logistic regression. The poor
performance of PCA logistic regression is doubly unsurprising, both for general
reasons previously discussed, and due to the fact that covariance matrices of text
data typically have a long plateau of weak spectral decay. In other words, for
text problems projection dimensions quickly become nearly equivalent in terms
of input reconstruction error, and common words and word combinations are
not discriminative. In contrast, Rembrandt leverages the spectral properties of
the prediction covariance of equation (3), rather than the spectral properties of
the input features.

Finally, we remark the following: although inference (i.e., finding the maxi-
mum output) is linear in the number of classes, the constant factors are favorable
due to modern vectorized processors, and therefore proceeds at ≈ 1700 exam-
ples/sec for the embedding based approaches.

4.3 LSHTC

The Large Scale Hierarchical Text Classification Challenge (version 4) was a
public competition involving multilabel classification of documents into approxi-
mately 300,000 categories [24]. The training and test files are available from the
Kaggle platform. The features are bag of words representations of each document.

Table 4. Embedding quality for LSHTC. k = 100 for all embedding strategies.

Method Most fraternal CS PLST Rembrandt

Sibling Fraction 0.32% 3.08% 19.65% 23.61%

Embedding Quality Assessment. A representation of a DAG hierarchy asso-
ciated with the classes is also available. We used this to assess the quality of
various embedding strategies independent of classification performance. In par-
ticular, we computed the fraction of class embeddings whose nearest neighbor
was also a sibling in the DAG, as shown in Table 4. “Most fraternal” refers
to an embedding which arranges for every category’s nearest neighbor in the
embedding to be the node in the DAG with the most siblings, i.e., the constant



48 P. Mineiro and N. Karampatziakis

Table 5. LSHTC results.

Method RE (k = 800) + ILR RE (k = 500) + ILR FastXML LPSR-NB

Precision-at-1 53.39% 52.84% 49.78% 27.91%

predictor baseline for this task. PLST [41] has performance close to Rembrandt
according to this metric, so the 3.2 average nonzero classes per example is appar-
ently enough for the approximation underlying PLST to be reasonable.

Empirical Label Covariance Spectrum. Our embedding approach is based
upon a low-rank assumption for the (unobservable) prediction covariance of
equation (3). Because LSHTC is a multi-label dataset, we can use the empirical
label covariance as a proxy to investigate the spectral properties of the predic-
tion covariance and test our assumption. We used Algorithm 1 (i.e., two pass
randomized PCA) to estimate the spectrum of the empirical label covariance,
shown in Figure 1b. The spectrum decays modestly and suggests that an embed-
ding dimension of k ≈ 1000 or more might be necessary for good classification
performance.

Classification Performance. We built an end-to-end classifier using an
approximate kernelized variant of Algorithm 3, where we processed the embed-
dings with Random Fourier Features [36], i.e., in line 4 of Algorithm 3 we use a
random cosine feature map for φ. We found Cauchy distributed random vectors,
corresponding to the Laplacian kernel, gave good results. We used 4,000 random
features and tuned the kernel bandwidth via cross-validation on the training set.

The LSHTC competition metric is macro-averaged F1, which emphasizes
performance on rare classes. However, we are using a multilabel classification
algorithm which maximizes accuracy of predictions without regard to the impor-
tance of rare classes. Therefore we compare with published results of [35], who
report example-averaged precision-at-k on the label ordering induced for each
example. To facilitate comparison we do a 75:25 train-test split of the public
training set, which is the same proportions as in their experiments (albeit a
different split).

Based upon the previous spectral analysis, we anticipate a large embedding
dimension is required for best results. With our current implementation, up
to the limit of available memory in our desktop machine (k = 800) we found
increasing embedding dimensionality improved performance.

“RE (k = . . .) + ILR” corresponds for Rembrandt coupled with independent
(kernel) logistic regression, i.e., Algorithm 3. LPSR-NB is the Label Partitioning
by Sub-linear Ranking algorithm of [45] composed with a Naive Bayes base
learner, as reported in [35], where they also introduce and report precision for
the multilabel tree learning algorithm FastXML. Inference for our best model
proceeds at ≈ 60 examples/sec, substantially slower than for ODP, due to the
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larger output space, larger embedding dimensionality, and the use of random
Fourier features.

5 Discussion

In this paper we identify a correspondence between rank constrained regression
and label embedding, and we exploit that correspondence along with randomized
matrix decomposition techniques to develop a fast label embedding algorithm.

To facilitate analysis and implementation, we focused on linear prediction,
which is equivalent to a simple neural network architecture with a single linear
hidden layer bottleneck. Because linear predictors perform well for text classi-
fication, we obtained excellent experimental results, but more sophistication is
required for tasks where deep architectures are state-of-the-art. Although the
analysis presented herein would not strictly be applicable, it is plausible that
replacing line 5 in Algorithm 2 with an optimization over a deep architecture
could yield good embeddings. This would be computationally beneficial as reduc-
ing the number of outputs (i.e., predicting embeddings rather than labels) would
mitigate space constraints for GPU training.

Our technique leverages the (putative) low-rank structure of the prediction
covariance of equation (3). For some problems a low-rank plus sparse assumption
might be more appropriate. In such cases combining our technique with L1
regularization, e.g., on a classification residual or on separately regularized direct
connections from the original inputs, might yield superior results.

Acknowledgments. We thank John Langford for providing the ALOI and ODP data
sets.
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Abstract. Representation learning is currently a very hot topic in mod-
ern machine learning, mostly due to the great success of the deep learning
methods. In particular low-dimensional representation which discrimi-
nates classes can not only enhance the classification procedure, but also
make it faster, while contrary to the high-dimensional embeddings can
be efficiently used for visual based exploratory data analysis.

In this paper we propose Maximum Entropy Linear Manifold
(MELM), a multidimensional generalization of Multithreshold Entropy
Linear Classifier model which is able to find a low-dimensional linear
data projection maximizing discriminativeness of projected classes. As a
result we obtain a linear embedding which can be used for classification,
class aware dimensionality reduction and data visualization. MELM pro-
vides highly discriminative 2D projections of the data which can be used
as a method for constructing robust classifiers.

We provide both empirical evaluation as well as some interesting
theoretical properties of our objective function such us scale and affine
transformation invariance, connections with PCA and bounding of the
expected balanced accuracy error.

Keywords: Dense representation learning · Data visualization ·
Entropy · Supervised dimensionality reduction

1 Introduction

Correct representation of the data, consistent with the problem and used classi-
fication method, is crucial for the efficiency of the machine learning models. In
practice it is a very hard task to find suitable embedding of many real-life objects
in R

d space used by most of the algorithms. In particular for natural language
processing [12], cheminformatics or even image recognition tasks it is still an
open problem. As a result there is a growing interest in methods of represen-
tation learning [8], suited for finding better embedding of our data, which may
be further used for classification, clustering or other analysis purposes. Recent

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 52–67, 2015.
DOI: 10.1007/978-3-319-23528-8 4



MELM for Learning Discriminative Low-Dimensional Representation 53

years brought many success stories, such as dictionary learning [13] or deep learn-
ing [9]. Many of them look for a sparse [7], highly dimensional embedding which
simplify linear separation at a cost of making visual analysis nontrivial. A dual
approach is to look for low-dimensional linear embedding, which has advantage
of easy visualiation, interpretation and manipulation at a cost of much weaker
(in terms of models complexity) space of transformations.

In this work we focus on the scenario where we are given labeled dataset in
R

d and we are looking for such low-dimensional linear embedding which allows
to easily distinguish each of the classes. In other words we are looking for a
highly discriminative, low-dimensional representation of the given data.

Fig. 1. Visualizatoin of sonar
dataset using Maximum Entropy
Linear Manifold with k = 2.

Our basic idea follows from the observa-
tion [15] that the density estimation is credi-
ble only in the low-dimensional spaces. Con-
sequently, we first project the data onto an
arbitrary k-dimensional affine submanifold V
(where k is fixed), and search for the V for
which the estimated densities of the projected
classes are orthogonal to each other, where
the Cauchy-Schwarz Divergence is applied as
a measure of discriminativeness of the projec-
tion, see Fig. 1 for an example of such projec-
tion preserving classes’ separation. The work
presented in this paper is a natural exten-
sion of our earlier results [6], where we con-
sidered the one-dimensional case. However, we
would like to emphasize that the used app-
roach needed a nontrivial modification. In the
one-dimensional case we could identify sub-
spaces with elements of the unit sphere in a natural way. For higher dimensional
subspaces such an identification is no longer possible.

To the authors best knowledge the presented idea is novel, and has not been
earlier considered as a method of classification and data visualization. As one
of its benefits is the fact that it does not depend on affine rescaling of the
data, which is a rare feature of the common classification tools. What is also
interesting, we show that as its simple limiting one-class case we obtain the
classical PCA projection. Moreover, from the theoretical standpoint the Cauchy-
Schwarz Divergence factor can be decomposed into the fitting term, bounding the
expected balanced misclassification error, and regularizing term, simplifying the
resulting model. We compute its value and derivative so one can use first-order
optimization to find a solution even though the true optimization should be per-
formed on a Steifel manifold. Empirical tests show that such a method not only
in some cases improves the classification score over learning from raw data but,
more importantly, consistently finds highly discriminative representation which
can be easily visualized. In particular, we show that resulting projections’ dis-
criminativeness is much higher than many popular linear methods, even recently
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proposed GEM model [11]. For the sake of completness we also include the full
source code of proposed method in the supplementary material.

2 General Idea

In order to visualize dataset in R
d we need to project it onto R

k for very small
k (typically 2 or 3). One can use either linear transformation or some complex
embedding, however choosing the second option in general leads to hard inter-
pretability of the results. Linear projections have a tempting characteristics of
being both easy to understand (from both theoretical perspective and practical
implications of the obtained results) as well as they are highly robust in further
application of this transformation.

...

small Dcs

high Dcs

Fig. 2. Visualization of the MELM idea. For given dataset X−,X+ we search through
various linear projections V and analyze how divergent are their density estimations
in order to select the most discriminative.

In this work we focus on such class of projections so in practise we are
looking for some matrix V ∈ R

d×k, such that for a given dataset X ∈ R
d×N

projection VT X preserves as much of the important information about X as
possible (sometimes additionally under additional constraints). The choice of
the definition of information measure IM together with the set of constraints ϕi

defines a particular reduction method.

maximize
V∈Rd×k

IM(VT X;X,Y)

subject to ϕi(V), i = 1, . . . , m.

There are many transformations which can achieve such results. For example,
the well known Principal Component Analysis defines important information as
data scattering so it looks for V which preserves as much of the X variance as
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possible and requires V to be orthogonal. In information bottleneck method one
defines this measure as amount of mutual information between X and some addi-
tional Y (such as set of labels) which has to be preserved. Similar approaches
are adapted in recently proposed Generalized Eigenvectors for Discriminative
Features (GEM) where one tries to preserve the signal to noise ratio between
samples from different classes. In case of Maximum Entropy Linear Manifold
(MELM), introduced in this paper, important information is defined as the dis-
criminativness of the samples from different classes with orthonormal V. In other
words we work with labeled samples (in general, binary labeled) and wish to pre-
serve the ability to distinguish one class (X−) from another (X+). In more formal
terms, our optimization problem is to

maximize
V∈Rd×k

Dcs(�VT X−�, �VT X+�)

subject to VT V = I,

where Dcs(·, ·) denotes the Cauchy-Schwarz Divergence, the measure of how
divergent are given probability distributions; �·� denotes some density estimator
which, given samples, returns a probability distribution. The general idea is also
visualized on Fig. 2.

3 Theory

We first discuss the one class case which has mainly introductory character as
it shows the simplified version of our main idea.

Suppose that we have unlabeled data X ⊂ R
d and that we want to reduce

the dimension of the data (for example to visualize it, reduce outliers, etc.) to
k < d. One of the possible approaches is to use information theory and search
for such k-dimensional subspace V ⊂ R

d for which the orthogonal projection of
X onto V preserves as much information about X as possible.

One can clearly choose various measures of information. In our case, due
to computational simplicity, we have decided to use Renyi’s quadratic entropy,
which for the density f on R

k is given by

H2(f) = − log
∫

Rk

f2(x)dx.

One can equivalently use information potential [14], which is given as the L2

norm of the density ip(f) =
∫

Rk f2(x)dx. We need an easy observation that one
can compute the Renyi’s quadratic entropy for the normal density N (m,Σ) in
R

k [4]:
H2(N (m,Σ)) = k

2 log(4π) + 1
2 log(det Σ). (1)

However, in order to compute the Renyi’s quadratic entropy of the discrete data
we first need to apply some density estimation technique. By joining all the above
mentioned steps together we are able to pose the basic optimization problem we
are interested in.
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Optimization problem 1. Suppose that we are given data X, and k which
denotes the dimension reduction. Find the orthonormal base V of the k-
dimensional subspace1 V for which the value of H2(�VT X�) is maximal, where
�·� denotes a given fixed method of density estimation.

If we have data X with mean m and covariance Σ in R
d and k orthonormal

vectors V = [V1, . . . ,Vk] then the we can ask what will be the mean and covari-
ance of the orthogonal projection of X onto the space spanned by V. It is easy
to show that it is given by VT m and VT ΣV. In other words, if we consider data
in the base given by orthonormal extension of V to the whole R

d, the covariance
of the projected data corresponds to the left upper k × k block submatrix of the
original covariance.

We are going to show that if we apply the simplest density estimation of the
underlying density for projected data given by the maximal likelihood estimator
over the family of normal densities2 then our optimization problem is equivalent
to taking first k elements of the base given by PCA.

Theorem 1. Let X ⊂ R
d be a given dataset with mean m and covariance Σ

and let �·�N denote the density estimation which returns the maximum likelihood
estimator over Gaussian densities. Then

max{H2(�VT X�N ) : V ∈ R
d×k,VT V = I}

is realized for the first k orthonormal vectors given by the PCA and

min{H2(�VT X�N ) : V ∈ R
d×k,VT V = I}

is realized for the last k orthonormal vectors defined by the PCA.

Proof. By the comments before and (1) we have

H2(�VT X�N ) = k
2 log(4π) + 1

2 log(det(VT ΣV)).

In other words we search for these V for which the value of det(VT ΣV) is
maximized. Now by Cauchy interlacing theory [2] eigenvalues of VT ΣV (ordered
decreasingly) are bounded above by the eigenvalues of Σ. Consequently, the
maximum is obtained in the case when V denotes the orthonormal eigenvectors
of Σ corresponding to the biggest eigenvalues of Σ. However, this is exactly the
first k elements of the orthonormal base constructed by the PCA. Proof of the
second part is fully analogous.

As a result we obtain some general intuition that maximization of the Renyi’s
quadratic entropy leads to the selection of highly spread data, while its mini-
mization selects projection where image is very condensed.

1 We identify those vectors with a linear space spanned over them.
2 That is for A ⊂ V we put �A�N = N (mA, covA) : V → R+.
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Let us now proceed to the binary labeled data. Recall that Dcs can be equiva-
lently expressed in terms of Renyi’s quadratic entropy (H2) and Renyi’s quadratic
cross entropy (H×

2 ):

Dcs(V) = log
∫

�VT X+�2 + log
∫

�VT X−�2 − 2 log
∫

�VT X+��VT X−�

= −H2(�VT X−�) − H2(�VT X+�) + 2H×
2 (�VT X+�, �VT X−�).

Let us recall that our optimization aim is to find a sequence V consisting of k
orthonormal vectors for which Dcs(V) is maximized.

Observation 1. Assume that the density estimator �·� does not change under
the affine change of the coordinate system3. One can show, by an easy modifica-
tion of the theorem by Czarnecki and Tabor [6, Theorem4.1], that the maximum
of Dcs(·) is independent of the affine change of data. Namely, for an arbitrary
affine invertible map M we have:

max{Dcs(V;X+,X−) : V orthonormal}
= max{Dcs(V;X+,X−) : V linearly independent}
= max{Dcs(V;MX+,MX−) : V orthonormal}.

The above feature, although typical in the density estimation, is rather
uncommon in modern classification tools.

Similarly to the one-dimensional case, when V ∈ R
d, we can decompose the

objective function into fitting and regularizing terms:

Dcs(V) = 2H×
2 (�VT X+�, �VT X−�)

︸ ︷︷ ︸

fitting term

− (H2(�VT X−�) + H2(�VT X+�))
︸ ︷︷ ︸

regularizing term

.

Regularizing term has a slightly different meaning than in most of the machine
learning models. Here it controls number of disjoint regions which appear after
performing density based classification in the projected space. For one dimen-
sional case it is a number of thresholds in the multithreshold linear classifier,
for k = 2 it is the number of disjoint curves defining decision boundary, and so
on. Renyi’s quadratic entropy is minimized when each class is as condensed as
possible (as we show in Theorem 1), intuitively resulting in a small number of
disjoint regions.

It is worth noting that, despite similarities, it is not the common classification
objective which can be written as an additive loss function and a regularization
term

L(V) =
N

∑

i=1

�(VT xi, yi, xi) + Ω(V),

as the error depends on the relations between each pair of points instead of
each point independently. One can easily prove that there are no �,Ω for which
3 This happens in particular for the kernel density estimation we apply in the paper.
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Dcs(v) = L(V; �,Ω). Such choice of the objective function might lead to the lack
of connections with optimization of any reasonable accuracy related metric, as
those are based on the point-wise loss functions. However it appears that Dcs

bounds the expected balanced accuracy4 similarly to how hinge loss bounds 0/1
loss. This can be formalized in the following way.

Theorem 2. Negative log-likelihood of balanced misclassification in k-
dimensional linear projection of any non-separable densities f± onto V is
bounded by half of the Renyi’s quadratic cross entropy of these projections.

Proof. Likelihood of balanced misclassification over a k-dimensional hypercube
after projection through V equals

∫

[0,1]k
min{(VT f+)(x), (VT f−)(x)}dx.

Using analogous reasoning to the one presented by Czarnecki [5], using
Cauchy and other basic inequalities, one can show that

− log
∫

[0,1]k
min{(VT f+)(x), (VT f−)(x)}dx ≥ 1

2H×
2 (VT f+,VT f−).

��

As a result we might expect that maximizing of the Dcs leads to the selection
of the projection which on one hand maximizes the balanced accuracy over the
training set (minimizes empirical error) and on the other fights with overfitting
by minimizing the number of disjoint classification regions (minimizes model
complexity).

4 Closed form Solution for Objective and its Gradient

Let us now investigate more practical aspects of proposed approach. We show the
exact formulas of both Dcs and its gradient as functions of finite, labeled samples
(binary datasets) so one can easily plug it in to any first-order optimization
software.

Let X+,X− be fixed subsets of Rd. Let V denote the k-dimensional subspace
generated by V = [V1, . . . ,Vk] ∈ R

d×k (we consider only the case when the
sequence V is linearly independent). We project sets X± orthogonally on V,
and compute the Cauchy-Schwarz Divergence of the kernel density estimations
(using Silverman’s rule) of the resulting projections:

G−1(V)�VT X+� and G−1(V)�VT X−�,

where G(V) = VT V denotes the grassmanian. We search for such V for which
the Cauchy-Schwarz Divergence is maximal. Recall that the scalar product in
the space of matrices is given by 〈V1,V2〉 = tr(VT

1 V2).

4 Accuracy without class priors BAC(TP, FP, TN, FN) = 1
2

(
TP

TP+FN
+ TN

TN+FP

)
.
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There are basically two possible approaches one can apply: either search for
the solution in the set of orthonormal V which generate V, or allow all V with a
penalty function. The first method is possible5, but does not allow use of most
of the existing numerical libraries as the space we work in is highly nonlinear.
This is the reason why we use the second approach which we describe below.

Since, as we have observed in the previous section, the result does not depend
on the affine transformation of data, we can restrict to the analogous formula
for the sets

VT X+ and VT X−,

where V consists of linearly independent vectors. Consequently, we need to com-
pute the gradient of the function

Dcs(V) = Dcs(�VT X+�, �VT X−�)

= log
∫

�VT X+�2 + log
∫

�VT X−�2 − 2 log
∫

�VT X+��VT X−�,

where we consider the space consisting only of linearly independent vectors. Since
as the base of the space V we can always take orthonormal vectors, the maximum
is realized for orthonormal sequence, and therefore we can add a penalty term for
being non-orthonormal sequence, which helps avoiding numerical instabilities:

Dcs(V) − ‖VT V − I‖2,

where as we recall the sequence V is orthonormal iff VT V = I. We denote above
augmented Dcs by the maximum entropy linear manifold objective function

MELM(V) = Dcs(V) − ‖VT V − I‖2. (2)

Besides MELM(·) value we need the formula for its gradient ∇MELM(·). For
the second term we obviously have

∇‖VT V − I‖2 = 4VVT V − 4V.

We consider the first term. Let us first provide the formula for the computa-
tion of the product of kernel density estimations of two sets.

Assume that we are given set A ⊂ V (in our case A will be the projection of
X± onto V ), where V is k-dimensional. Then the formula for the kernel density
estimation with Gaussian kernel, is given by [15]:

�A� =
1

|A|
∑

a∈A

N (a,ΣA),

where ΣA = (hγ
A)2covA and (for γ being a scaling hyperparameter [6]) hγ

A =
γ( 4

k+2 )1/(k+4)|A|−1/(k+4).

5 And has advantage of having smaller number of parameters.
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Now we need the formula for
∫

�A��B�, which is calculated [6] with the use of
∫

N (a,ΣA)N (b,ΣB) = N (a − b,ΣA + ΣB)(0).

Then we get
∫

�A��B� =
1

|A||B|
∑

w∈A−B

N (w,ΣA + ΣB)(0)

=
1

(2π)k/2 det1/2(ΣAB)|A||B|
∑

w∈A−B

exp(− 1
2‖w‖2ΣAB

),

where A − B = {a − b : a ∈ A, b ∈ B} and ΣAB is defined by

ΣAB = (hγ
A)2covA + (hγ

B)2covB

= γ2( 4
k+2 )2/(k+4)(|A|−2/(k+4)covA + |B|−2/(k+4)covB).

For a sequence V = [V1, . . . ,Vk] ∈ R
d×k of linearly independent vectors we put

ΣAB(V) = VT ΣABV and SAB(V) = ΣAB(V)−1.

Observe that ΣAB(V) and SAB(V) are square symmetric matrices which repre-
sent the properties of the projection of the data onto the space spanned over V.
We put

φAB(V) =
1

(2π)k/2 det1/2(ΣAB(V))|A||B|
,

thus
∇φAB(V) = −φAB(V) · ΣAB · V · SAB(V).

Consequently to compute the final formula, we need the gradient of the function
V → det(ΣAB(V)), which as one can easily verify, is given by the formula

∇ det(ΣAB(V)) = 2det(VT ΣABV) · ΣABV(VT ΣABV)−1. (3)

One can also easily check that for

ψw
AB(V) = exp(− 1

2‖VT w‖2ΣAB(V)),

where w arbitrarily fixed, we get

∇ψw
AB(V) = −ψw

AB(V) · (wwT VSAB(V) − ΣABVSAB(V)VT wwT VSAB(V)).

To present the final form for the gradient of Dcs(V) we need the gradient of
the cross information potential

ip×
AB(V) = φAB(V)

∑

w∈A−B

ψw
AB(V),

∇ip×
AB(V) = φAB(V)

∑

w∈A−B

∇ψw
AB(V) +

(

∑

w∈A−B

ψw
AB(V)

)

· ∇φAB(V).



MELM for Learning Discriminative Low-Dimensional Representation 61

Since

Dcs(V) = log(ip×
X+X+

(V)) + log(ip×
X−X−(V)) − 2 log(ip×

X+X−(V)),

we finally get

∇Dcs(V) = 1
ip×

X+X+
(V)

∇ip×
X+X+

(V) + 1
ip×

X−X− (V)
∇ip×

X−X−(V)

− 2 1
ip×

X+X− (V)
∇ip×

X+X−(V).

Given
MELM(V) = Dcs(V) − ‖VT V − I‖2,

∇MELM(V) = ∇Dcs(V) − (4VVT V − 4V),

one can run any first-order optimization method to find vectors V spanning k-
dimensional subspace V representing low-dimensional, discriminative manifold
of the input space.

As one can notice from the above equations, the computational complexity of
both function evaluation and its gradient are quadratic in terms of training set
size. For big datasets this can a serious bottleneck. One of the possible solutions
is to use approximation schemes for the computation of the Cauchy-Schwarz
diviergence, which are known to significantly reduce the computational time
without sacrificing the accuracy [10]. One other option is to use analogous of
stochastic gradient descent where we define function value on a random sample
of O(

√
N) points (resampled in each iteration) from each class, leading to linear

complexity and given that training set is big enough, one can get theoretical
guarantees on the quality of approximation [15]. Finally, it is possible to first
build a Gaussian Mixture Model (GMM) of each class distribution [17] and per-
form optimization on such density estimator. Computational complexity would
be reduced to constant time per-iteration (due to fixing number of components
during clustering) trading speed for accuracy.

5 Experiments

We use ten binary classification datasets from UCI repository [1] and libSVM
repository [3], which are briefly summarized in Table 1. These are moderate size
problems.

Code was written in Python with the use of scikit-learn, numpy and scipy.
Besides MELM we use 8 other linear dimensionality reduction techniques,
namely: Principal Component Analysis (PCA), class PCA (cPCA6), two ellip-
soid PCA (2ePCA7), per class PCA (pPCA8), Independent Component Anal-
ysis (ICA), Factor Analysis (FA), Nonnegative Matrix Factorization (NMF9),
6 cPCA uses sum of each classes covariances, weighted by classes sizes, instead of

whole data covariance.
7 2ePCA is cPCA without weights, so it is a balanced counterpart.
8 pPCA uses as Vi the first principal component of ith class.
9 In order to use NMF we first transform dataset so it does not contain negative values.
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Disriminative Learning using Generalized Eigenvectors (GEM [11]). PCA, ICA,
NMF and FA are implemented in scikit-learn, cPCA, pPCA and 2ePCA were
coded by authors and for GEM we use publically available code10. Implementa-
tion of MELM as a model compatible with scikit-learn classifiers and transform-
ers is available both in supplementary materials and online11.

Table 1. Summary of used datasets. N denote number of points, d dimensionality, |Xl|
number of samples with l label, m̄ mean density (number of nonzero elements) and dtl
denotes number of dimensions which we have to include during PCA to keep t of label
l variance.

dataset N d |X−| |X+| m̂ d.95 d.95− d.95+

australian 690 14 383 307 0.80 1 2 1
breast-cancer 683 10 444 239 1.00 1 1 1
diabetes 768 8 268 500 0.88 2 2 3
fourclass 862 2 555 307 1.00 2 2 2
german.numer 1000 24 700 300 0.75 3 3 3
heart 270 13 150 120 0.75 3 3 3
ionosphere 351 34 126 225 0.88 24 26 7
liver-disorders 345 6 145 200 1.00 3 3 3
sonar 208 60 111 97 1.00 28 24 24
splice 1000 60 483 517 1.00 55 52 54

In order to estimate how hard to optimize is the MELM objective function we
plot in Fig. 3 histograms of Dcs values obtained during 500 random starts for each
of the dataset. First, one can easily notice that Dcs have multiple local extrema
(see for example heart or liver-disorders histograms). It also appears that in
some of the considered datasets it is not easy to obtain maximum by the use
of completely random starting point (see ionosphere and australian datasets),
which suggests that one should probably use some more advanced initialization
techniques.

To further investigate how hard it is to find a good solution when selecting
maximum of Dcs we estimate the expected value of Dcs after s random starts
from matrices V (1), . . . , V (s)

E[ max
V=V(1),...,V(s)

Dcs(L-BFGS(MELM|V))].

As one can see on Fig. 4 for 8 out of 10 considered datasets one can expect to
find the maximum (with 5% error) after just 16 random starts. Obviously this
cannot be used as a general heuristics as it is heavily dependent on the dataset
size, dimensionality as well as its discriminativness. However, this experiment
10 forked at http://gist.github.com/lejlot/3ab46c7a249d4f375536
11 http://github.com/gmum/melm

http://gist.github.com/lejlot/3ab46c7a249d4f375536
http://github.com/gmum/melm


MELM for Learning Discriminative Low-Dimensional Representation 63

Fig. 3. Histograms of Dcs values obtained for each dataset during 500 random starts
using L-BFGS.

Fig. 4. Expected value of Cauchy-Schwarz Divergence after MELM optimization for
s random starts using L-BFGS algorithm (on the left) and its ratio to the maximum
obtainable Cauchy-Schwarz Divergence (on the right). Dotted black line shows 16 starts
threshold.

shows that for moderate size problems (hundreds to thousands samples with
dozens of dimensions) MELM can be relatively easily optimized even though it
is a rather complex function with possibly many local maxima.

It is worth noting that truly complex optimization problem is only given by
ionosphere dataset. One can refer to Table 1 to see that this is a very specific
problem where positive class is located in a very low-dimensional linear manifold
(approximately 7 dimensional) while the negative class is scattered over nearly
4 times more dimensions.

We check how well MELM behaves when used in a classification pipeline.
There are two main reasons for such approach, first if the discriminative manifold
is low-dimensional, searching for it may boost the classification accuracy. Second,
even if it decreases classification score as compared to non-linear methods applied
directly in the input space, the resulting model will be much simpler and more
robust. For comparison consider training a RBF SVM in R

60 using 1000 data
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points. It is a common situation when SVM selects large part of the dataset as
the support vectors [16], [18], meaning that the classification of the new point
requires roughly 500 · 60 = 30000 operations. In the same time if we first embed
space in a plane and fit RBF SVM there we will build a model with much less
support vectors (as the 2D decision boundary generally is not as complex as
60-dimensional one), lets say 100 and consequently we will need 60 ·2+2 ·100 =
120 + 200 = 320 operations, two orders of magnitude faster. Whole pipeline is
composed of:

1. Splitting dataset into training X−,X+ and testing X̂−, X̂+.
2. Finding plane embeding matrix V ∈ R

d×2 using tested method.
3. Training a classifier cl on VT X−,VT X+.
4. Testing cl on VT X̂−,VT X̂+.

Table 2 summarizes BAC scores obtained by each method on each of the
considered datasets in 5-fold cross validation. For the classifier module we used
SVM RBF, KNN and KDE-based density classification. Each of them was fitted
using internal cross-validation to find the best parameters. GEM and MELM γ
hyperperameters were also fitted. Reported results come from the best classifier.

Table 2. Comparison of 2-dimensional reduction followed by the classifier. I stands for
Identity, meaning that we simply trained classifiers directly on the raw data, without
any dimensionality reduction. Bold values indicate the best score obtained across all
dimensionality reduction pipelines. If the classifier trained on raw data is better than
any of the reduced models than its score is also bolded.

MELM FA ICA GEM NMF 2ePCA cPCA PCA pPCA I

australian 0.866 0.847 0.829 0.791 0.817 0.764 0.756 0.825 0.769 0.860
breast-cancer 0.976 0.973 0.976 0.930 0.976 0.966 0.967 0.976 0.961 0.966
diabetes 0.744 0.682 0.705 0.637 0.704 0.689 0.695 0.705 0.646 0.728
fourclass 1.0 0.720 1.0 1.0 0.999 1.0 1.0 1.0 1.0 1.0
german.numer 0.705 0.588 0.648 0.653 0.63 0.588 0.602 0.650 0.619 0.728
heart 0.831 0.792 0.818 0.675 0.811 0.793 0.782 0.817 0.787 0.837
ionosphere 0.892 0.794 0.757 0.763 0.799 0.783 0.780 0.757 0.826 0.944
liver-disorders 0.710 0.546 0.545 0.681 0.553 0.531 0.548 0.531 0.557 0.705
sonar 0.766 0.558 0.600 0.889 0.657 0.593 0.575 0.600 0.676 0.862
splice 0.862 0.718 0.697 0.799 0.691 0.686 0.686 0.697 0.694 0.887

In four datasets, MELM based embeding led to the construction of better
classifier than both other dimensionality reduction techniques as well as training
models on raw data. This suggests that for these datasets the discriminative
manifold is truly at most 2-dimensional. At the same time in nearly all (besides
sonar) datasets the pipeline consisting of MELM yielded significantly better
classification results than any other embeding considered.
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Fig. 5. Comparison of heart dataset 2D
projections by analyzed methods. Visual-
ization uses kernel density estimation.

One of the main applications of
MELM is to visualize the dataset
through linear projection in such a
way that classes do not overlap.
One can see comparisons of heart
dataset projections using all consid-
ered approaches in Fig. 5. As one
can notice our method finds plane
projection where classes are nearly
perfectly discriminated. Interestingly,
this separation is only obtainable in
two dimensions, as neither marginal
distributions nor any other one-
dimensional projection can construct
such separation.

While visual inspection is cru-
cial for such tasks, to truly compare
competetive methods we need some
metric to measure quality of the
visualization. In order to do so,
we propose to assign a visual sep-
arability score as the mean BAC
score over three considered classifiers
(SVM RBF, KNN, KDE) trained and
tested in 5-fold cross validation of
the projected data. The only dif-
ference between this test and the
previous one is that we use whole
data to find a projection (so each
projection technique uses all dat-
apoints) and only further visual-
ization testing is performed using
train-test splits. This way we can cap-
ture ”how easy to discriminate are
points in this projection” rather than
”how useful for data discrimination
is using the projection”. Experiments
are repeated using various random
subsets of samples and mean results
are reported.

During these experiments MELM
achieved essentially better scores than any other tested method (see Table 3).
Solutions were about 10% better under our metric and this difference is consis-
tent over all considered datasets. In other words MELM finds two-dimensional
representations of our data using just linear projection where classes overlap to a
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Table 3. Comparison of 2-dimensional projections discriminativeness.

MELM FA ICA GEM NMF 2ePCA cPCA PCA pPCA

australian 0.888 0.856 0.845 0.792 0.838 0.782 0.781 0.845 0.792
breast-cancer 0.985 0.979 0.979 0.942 0.979 0.967 0.969 0.978 0.965
diabetes 0.806 0.732 0.737 0.691 0.737 0.734 0.733 0.734 0.697
fourclass 0.988 0.665 0.988 0.988 0.988 0.988 0.988 0.988 0.988
german.numer 0.819 0.640 0.687 0.686 0.672 0.665 0.657 0.686 0.692
heart 0.918 0.822 0.834 0.751 0.839 0.787 0.783 0.833 0.799
ionosphere 0.990 0.810 0.798 0.763 0.849 0.804 0.814 0.798 0.863
liver-disorders 0.763 0.682 0.659 0.707 0.698 0.691 0.676 0.688 0.715
sonar 0.996 0.714 0.717 0.892 0.729 0.702 0.709 0.717 0.735
splice 0.927 0.738 0.724 0.829 0.716 0.717 0.718 0.723 0.742

significantly smaller degree than using PCA, cPCA, 2ePCA, pPCA, ICA, NMF,
FA or GEM. It is also worth noting that Factor Analysis, as the only method
which does not require orthogonality of resulting projection vectors did a really
bad job while working with fourclass data even though these samples are just
two-dimensional.

As stated before, MELM is best suited for low-dimensional embedings and
one of its main applications is supervised data visualization. However in gen-
eral one can be interested in higher dimensional subspaces. During preliminary
studies we tested model behavor up to k = 5 and results were similar to the one
reported in this paper (when compared to the same methods, with analogous
k). It is worth noting that methods like PCA also use a density estimator - one
big Gaussian fitted through maximum likelihood estimation. Consequently even
though from theoretical point of view MELM should not be used for k > 5 (due
to the curse of dimensionality [15], it works fine as long as one uses good density
estimator (such as a well fitted GMM [17]).

6 Conclusions

In this paper we construct Maximum Entropy Linear Manifold (MELM), a
method of learning discriminative low-dimensional representation which can
be used for both classification purposes as well as a visualization preserving
classes separation. Proposed model has important theoretical properties includ-
ing affine transformations invariance, connections with PCA as well as bounding
the expected balanced misclassification error. During evaluation we show that
for moderate size problems MELM can be efficiently optimized using simple
first-order optimization techniques. Obtained results confirm that such an app-
roach leads to highly discriminative transformation, better than obtained by 8
compared solutions.

Acknowledgments. The work has been partially financed by National Science Centre
Poland grant no. 2014/13/B/ST6/01792.
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Novel Decompositions of Proper Scoring Rules
for Classification: Score Adjustment

as Precursor to Calibration
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Abstract. There are several reasons to evaluate a multi-class classi-
fier on other measures than just error rate. Perhaps most importantly,
there can be uncertainty about the exact context of classifier deployment,
requiring the classifier to perform well with respect to a variety of con-
texts. This is commonly achieved by creating a scoring classifier which
outputs posterior class probability estimates. Proper scoring rules are
loss evaluation measures of scoring classifiers which are minimised at the
true posterior probabilities. The well-known decomposition of the proper
scoring rules into calibration loss and refinement loss has facilitated the
development of methods to reduce these losses, thus leading to better
classifiers. We propose multiple novel decompositions including one with
four terms: adjustment loss, post-adjustment calibration loss, grouping
loss and irreducible loss. The separation of adjustment loss from calibra-
tion loss requires extra assumptions which we prove to be satisfied for
the most frequently used proper scoring rules: Brier score and log-loss.
We propose algorithms to perform adjustment as a simpler alternative
to calibration.

1 Introduction

Classifier evaluation is crucial for building better classifiers. Selecting the best
from a pool of models requires evaluation of models on either hold-out data or
through cross-validation with respect to some evaluation measure. An obvious
choice is the same evaluation measure which is later going to be relevant in the
model deployment context.

However, there are situations where the deployment measure is not neces-
sarily the best choice, as in model construction by optimisation. Optimisation
searches through the model space to find ways to improve an existing model
according to some evaluation measure. If this evaluation measure is simply the
error rate, then the model fitness space becomes discrete in the sense that there
are improvements only if some previously wrongly classified instance crosses the
decision boundary. In this case, surrogate losses such as quadratic loss, hinge
loss or log-loss enable SVMs, logistic regression or boosting to converge towards
better models.

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 68–85, 2015.
DOI: 10.1007/978-3-319-23528-8 5
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The second situation where the choice of evaluation measure is non-trivial is
when the exact context of model deployment is unknown during model training.
For instance, the misclassification costs or deployment class distribution might be
unknown. In such cases a scoring classifier is more versatile than a crisp classifier,
because once the deployment context becomes known, the best decision can be
made using ROC analysis by finding the optimal score threshold. Particularly
useful are scoring classifiers which estimate class probabilities, because these are
easiest to adapt to different contexts.

Proper scoring rules are loss measures which give the lowest losses to the ideal
model outputting the true class posterior probabilities. Therefore, using a proper
scoring rule as model evaluation measure helps to develop models which are good
class probability estimators, and hence easy to adapt to different contexts. The
best known proper scoring rules are log-loss and Brier score, both of which we are
concentrating on in this paper. These two are also frequently used as surrogate
losses for optimisation.

In practice it can be hard to decide which proper scoring rule to use. Accord-
ing to one view this choice could be based on the assumptions about the prob-
ability distribution over possible deployment contexts. For example, [6] shows
that the Brier score can be derived from a particular additive cost model.

Once the loss measure is fixed, the best model has to be found with respect
to that measure. The decomposition of expected loss corresponding to any proper
scoring rule into calibration loss and refinement loss has facilitated the develop-
ment of calibration methods (i.e. calibration loss reduction methods) which have
been shown to be beneficial for classification performance [2]. Another decompo-
sition1 splits refinement loss into uncertainty minus resolution [5,9]. Interestingly,
none of the decompositions relates to the loss of the optimal model. This inspires
our first novel decomposition of any proper scoring rule loss into epistemic loss
and irreducible (aleatoric2) loss. Irreducible loss is the loss of the optimal model
which outputs the true posterior class probability given the instance.

For our second decomposition we introduce a novel adjustment loss, which is
extra loss due to the difference between the average of estimated scores and the
class distribution. For both Brier score and log-loss we propose a corresponding
adjustment procedure, which reduces this loss to zero, and hence decreases the
overall loss. This procedure uses only the output scores and class distribution and
not the feature values. Therefore, it can easily be used in any context, whereas a
calibration procedure needs to make extra assumptions about the shape of the
calibration map.3

Finally, we propose a four-way decomposition by combining the decomposi-
tions relating to the notions of optimality, calibration and adjustment. The sep-
aration of adjustment loss from calibration loss is specific to the proper scoring

1 Note that the commonly used bias-variance decompositions apply to the loss of a
learning algorithm, whereas we are studying the loss of a particular model.

2 Our terminology here relates to epistemic and aleatoric uncertainty [10].
3 In some literature a classifier has been called calibrated when it is actually only
adjusted, a confusion that we hope to help remove by giving a name for the latter.
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rule (i.e. it relies on the existence of an adjustment procedure) whereas the
remainder of the decomposition applies to any proper scoring rule. The decom-
position has the following terms: adjustment loss (AL), post-adjustment calibra-
tion loss (PCL), grouping loss (GL) and irreducible loss (IL). Grouping loss is
the divergence of calibrated probabilities from the true posterior probabilities
and intuitively measures the loss due to the model assigning the same score to
(i.e. grouping together) instances which have different posterior class probabilities
(cf. refinement loss is the loss due to the same scores being assigned to instances
from different classes). Grouping loss has earlier been introduced in [7] where it
facilitated the improvement of probability estimation and classification using reli-
ability maps, which quantify conditional grouping loss given the model output
score. Our proposed decompositions aim to provide deeper insight into the causes
behind losses and facilitate development of better classification methods.

The structure of the paper is as follows: Section 2 defines proper scoring
rules and introduces notation. Section 3 provides two decompositions using ideal
scores and calibrated scores, respectively. Section 4 introduces the notion of
adjustment and a decomposition using adjusted scores. Section 5 provides two
theorems from which all decompositions follow, and provides terminology for
the obtained decomposed losses. Section 6 describes two proposed algorithms
and the results of convergence experiments. Section 7 discusses related work and
Section 8 concludes.

2 Proper Scoring Rules

2.1 Scoring Rules

Consider the task of multi-class classification with k classes. We represent the
true class of an instance as a vector y = (y1, . . . , yk) where yj = 1 if the true class
is j, and yj = 0 otherwise. Let p = (p1, . . . , pk) be an estimated class probability
vector for an instance, i.e. pj ≥ 0, j = 1, . . . , k and

∑k
j=1 pj = 1. A scoring rule

φ(p, y) is a non-negative measure measuring the goodness of match between the
estimated probability vector p and the true class y.

Two well known scoring rules are log-loss φLL (also known as ignorance score)
and Brier score φBS (also known as squared loss or quadratic score), defined as
follows:

φLL(p, y) := − log py log-loss,

φBS(p, y) :=
k

∑

i=1

(pi − yi)2 Brier score4,

where by a slight abuse of notation py denotes pj for j such that yj = 1. Both
these rules are proper in the sense defined in the following subsection. Note
that the scoring rules apply for a single instance, application to a dataset is by
averaging across all instances.
4 This Brier score definition agrees with the original definition by Brier [3]. Since it

ranges between 0 and 2, sometimes half of this quantity is also referred to as Brier
score.
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2.2 Divergence, Entropy and Properness

Suppose now that the true class y is being sampled from a distribution q over
classes (i.e. q is a probability vector). We denote by s(p, q) the expected score
with rule φ on probability vector p with respect to the class label drawn according
to q:

s(p, q) := EY ∼qφ(p, Y ) =
k

∑

j=1

φ(p, ej)qj ,

where ej denotes a vector of length k with 1 at position j and 0 everywhere else.
We define divergence d(p, q) of p from q and entropy e(q) of q as follows:

d(p, q) := s(p, q) − s(q, q) , e(q) := s(q, q) .

A scoring rule φ is called proper if the respective divergence is always non-
negative, and strictly proper if additionally d(p, q) = 0 implies p = q. It is easy
to show that both log-loss and Brier score are strictly proper scoring rules.

For the scoring rules φLL and φBS the respective divergence and entropy
measures can easily be shown to be the following:

dLL(p, q) =
∑k

j=1 qj log qj
pj

KL-divergence;

eLL(q) = −
∑k

j=1 qj log qj information entropy;

dBS(p, q) =
∑k

j=1(pj − qj)2 mean squared difference;

eBS(q) =
∑k

j=1 qj(1 − qj) Gini index.

In the particular case where q is equal to the true class label y, divergence is
equal to the proper scoring rule itself, i.e. d(p, y) = φ(p, y). In the following we
refer to proper scoring rules as d(p, y) because this makes the decompositions
more intuitive.

2.3 Expected Loss and Empirical Loss

Proper scoring rules define the loss of a class probability estimator on a single
instance. In practice, we are interested in the performance of the model on test
data. Once the test data are fixed and known, the proper scoring rules provide
the performance measure as the average of instance-wise losses across the test
data. We refer to this as empirical loss. If the test data are drawn randomly from
a (potentially infinite) labelled instance space, then the performance measure can
be defined as the expected loss on a randomly drawn labelled instance. We refer
to this as expected loss.

Empirical loss can be thought of as a special case of expected loss with uni-
form distribution over the test instances and zero probability elsewhere. Indeed,
suppose that the generative model is uniformly randomly picking and outputting
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one of the test instances. The empirical loss on the (original) test data and the
expected loss with this generative model are then equal. Therefore, all decom-
positions that we derive for the expected loss naturally apply to the empirical
loss as well, assuming that test data represent the whole population.

Next we introduce our notation in terms of random variables. Let X be a
random variable (a vector) representing the attributes of a randomly picked
instance, and Y = (Y1, . . . , Yk) be a random vector specifying the class of that
instance, where Yj = 1 if X is of class j, and Yj = 0 otherwise, for j = 1, 2, . . . , k.
Let now f be a fixed scoring classifier (or class probability estimator), then we
denote by S = (S1, S2, . . . , Sk) = f(X) the score vector output by the classifier
on instance X. Note that S is now a random vector, as it depends on the random
variable X. The expected loss of S with respect to Y under the proper scoring
rule d is E[d(S, Y )].

Example 1. Consider a binary (k = 2) classification test set of 8 instances with
2 features, as shown in column X(i) of Table 1. Suppose the instances with
indices 1,2,3,5,6 are positives (class 1) and the rest are negatives (class 2). This
information is represented in column Y

(i)
1 , where 1 means ‘class 1’ and 0 means

‘not class 1’.
Suppose we have two models predicting both 0.9 as the probability of class

1 for the first 4 instances, but differ in probability estimates for the remain-
ing 4 instances with 0.3 predicted by the first and 0.4 by the second model.
This information is represented in the columns labelled S

(i)
1 for both models.

Table 1. Example dataset with 2 classes, with information shown for class 1 only.
The score for class 1 is S1 = 0.3X1 by Model 1 and S1 = 0.25X1 + 0.15 by Model 2,
whereas the optimal model is Q1 = 0.5X2 (or any other model which outputs 1 for first
two instances and 0.5 for the rest). Columns A+,1, A∗,1 and C1 represent additively
adjusted, multiplicatively adjusted, and calibrated scores, respectively. The average of
each column is presented (mean), as well as log-loss (LL) and Brier score (BS) with
respect to the true labels (Y1 = 1 stands for class 1).

Task Model 1 Model 2

i X(i) Y
(i)
1 Q

(i)
1 S

(i)
1 A

(i)
+,1 A

(i)
∗,1 C

(i)
1 S

(i)
1 A

(i)
+,1 A

(i)
∗,1 C

(i)
1

1 (3,2) 1 1.0 0.9 0.925 0.914 0.75 0.9 0.875 0.886 0.75
2 (3,2) 1 1.0 0.9 0.925 0.914 0.75 0.9 0.875 0.886 0.75
3 (3,1) 1 0.5 0.9 0.925 0.914 0.75 0.9 0.875 0.886 0.75
4 (3,1) 0 0.5 0.9 0.925 0.914 0.75 0.9 0.875 0.886 0.75
5 (1,1) 1 0.5 0.3 0.325 0.336 0.50 0.4 0.375 0.364 0.50
6 (1,1) 1 0.5 0.3 0.325 0.336 0.50 0.4 0.375 0.364 0.50
7 (1,1) 0 0.5 0.3 0.325 0.336 0.50 0.4 0.375 0.364 0.50
8 (1,1) 0 0.5 0.3 0.325 0.336 0.50 0.4 0.375 0.364 0.50

mean: 0.625 0.625 0.6 0.625 0.625 0.625 0.65 0.625 0.625 0.625

LL: 0 0.520 0.717 0.732 0.715 0.628 0.684 0.673 0.683 0.628
BS: 0 0.375 0.5 0.499 0.491 0.438 0.47 0.469 0.474 0.438
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The second model is better according to both log-loss (0.684 < 0.717) and Brier
score (0.47 < 0.5). These can equivalently be considered either as empirical losses
(as they are averages over 8 instances) or as expected losses (if the generative
model picks one of the 8 instances uniformly randomly). The meaning of the
remaining columns in Table 1 will become clear in the following sections.

3 Decompositions with Ideal Scores and Calibrated
Scores

In this paper, all decompositions of proper scoring rules are built on procedures
to map the estimated scores to new scores such that the loss is guaranteed to
decrease. We start from an idealistic procedure requiring an optimal model and
move towards realistic procedures.

3.1 Ideal Scores Q and the Decomposition L = EL + IL

Our first novel decomposition is determined by a procedure which changes the
estimated scores into true posterior class probabilities (which is clearly impos-
sible to do in practice). We denote the true posterior probability vector by
Q = (Q1, Q2, . . . , Qk) where Qj := E[Yj |X]. Variable Qj can be interpreted
as the true proportion of class j among the instances with feature values X, and
hence it is independent of the model. For our running example in Table 1 the
true posterior probabilities for class 1 are given in column Q

(i)
1 .

Our decomposition states that the expected loss corresponding to any proper
scoring rule is the sum of expected divergence of S from Q and the expected
divergence of Q from Y :

E[d(S, Y )] = E[d(S,Q)] + E[d(Q,Y )] .

This can be proved as a direct corollary of Theorem 2 in Section 5. As all these
expected divergences are non-negative (due to properness of the scoring rule)
and Q is the same regardless of the scoring model S, it immediately follows that
S := Q is the optimal model with respect to any proper scoring rule (it is a
model because it is a function of X). This justifies the following terminology:

– Epistemic Loss EL = E[d(S,Q)] is the extra loss due to the model not
being optimal, and equals zero if and only if the model is optimal. The term
relates to epistemic uncertainty (as opposed to aleatoric uncertainty) [10]
and is due to our mistreatment of the evidence X with respect to the ideal
model.

– Irreducible Loss IL = E[d(Q,Y )] is the loss due to inherent uncertainty
in the classification task, the loss which is the same for all models. This type
of uncertainty is called aleatoric [10] so the loss could also be called aleatoric
loss. It is the loss of the optimal model and equals zero only if the attributes
of the instance X provide enough information to uniquely determine the
right label Y (with probability 1).
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For our running example the epistemic log-loss ELLL for the two models is 0.198
and 0.164 (not shown in Table 1) and the (model-independent) irreducible log-
loss is ILLL = 0.520, which (as expected) sum up to the total expected log-loss of
0.717 and 0.684, respectively (with the rounding effect in the last digit of 0.717).
For Brier score the decomposition for the two models is 0.5 = 0.125 + 0.375 and
0.47 = 0.095 + 0.375, respectively.

3.2 Calibrated Scores C and the Decomposition L = CL + RL

The second, well-known decomposition [5] is determined by a procedure which
changes the estimated scores into calibrated probabilities. We denote the cali-
brated probability vector by C = (C1, C2, . . . , Ck) where Cj := E[Yj |S]. Variable
Cj can be interpreted as the true proportion of class j among the instances for
which the model has output the same estimate S, and hence calibration is model-
dependent. For our running example in Table 1 the calibrated probabilities of
class 1 for the two models are given in columns C

(i)
1 . Note that the columns for

the two models are identical. This is only because for any two instances in our
example, the first model gives them the same estimate if and only if the second
model does so.

The standard calibration-refinement decomposition [4] states5 that the
expected loss according to any proper scoring rule is the sum of expected diver-
gence of S from C and the expected divergence of C from Y :

E[d(S, Y )] = E[d(S,C)] + E[d(C, Y )] .

This is another direct corollary of Theorem 2 in Section 5. The standard termi-
nology is as follows:

– Calibration Loss CL = E[d(S,C)] is the loss due to the difference between
the model output score S and the proportion of positives among instances
with the same output (calibrated score).

– RefinementLossRL = E[d(C, Y )] is the loss due to the presence of instances
from multiple classes among the instances with the same estimate S.

For our running example the calibration loss for Brier score CLBS for the two
models is 0.062 and 0.033 (not shown in Table 1) and the refinement loss is for
both equal to RLBS = 0.438, which sum up to the total expected Brier scores
of 0.5 and 0.47, respectively (with the rounding effect in the last digit, we omit
this comment in the following cases). For log-loss the decomposition for the two
models is 0.717 = 0.090 + 0.628 and 0.684 = 0.056 + 0.628, respectively.

In practice, calibration has proved to be an efficient way of decreasing proper
scoring rule loss [2]. Calibrating a model means learning a calibration mapping
from the model output scores to the respective calibrated probability scores.
Calibration is simple to perform if the model has only a few possible output

5 Actually, in [4] the calibration-refinement decomposition is stated as E[s(S, Y )] =
E[d(S, C)] +E[e(C)] but this can easily be shown to be equivalent to our statement.
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scores, each covered by many training examples. Then the empirical class dis-
tribution among training instances with the same output scores can be used as
calibrated score vector. However, in general, there might be a single or even no
training instances with the same score vector as the model outputs on a test
instance. Then the calibration procedure needs to make additional assumptions
(inductive bias) about the shape of the calibration map, such as monotonicity
and smoothness.

Regardless of the method, calibration is almost never perfect. Even if per-
fectly calibrated on the training data, the model can suffer some calibration
loss on test data. In the next section we propose an adjustment procedure as a
precursor of calibration. Adjustment does not make any additional assumptions
and is guaranteed to decrease loss if the test class distribution is known exactly.

4 Adjusted Scores A and the Decomposition
L = AL + PL

Ideal scores cannot be obtained in practice, and calibrated scores are hard to
obtain, requiring extra assumptions about the shape of the calibration map.
Here we propose two procedures which take as input the estimated scores and
output adjusted scores such that the mean matches with the given target class
distribution. As opposed to calibration, no labels are required for learning how to
adjust, only the scores and target class distribution are needed. We prove that
additive adjustment is guaranteed to decrease Brier score, and multiplicative
adjustment is guaranteed to decrease log-loss. In both cases we can decompose
the expected loss in a novel way.

4.1 Adjustment

Suppose we are given the class distribution of the test data, represented as a
vector π of length k, with non-negative entries and adding up to 1. It turns out
that if the average of the model output scores on the test data does not match
with the given distribution then for both log-loss and Brier score it is possible
to adjust the scores with guaranteed reduction of loss. First we define what we
mean by adjusted scores.

Definition 1. Let π be a class distribution with k classes and A be a random
real-valued vector of length k. If E[Aj ] = πj for j = 1, . . . , k, then we say that A
is adjusted to the class distribution π.

If the scores are not adjusted, then they can be adjusted using one of the
two following procedures.

Additive (score) adjustment is a procedure applying the following func-
tion α+:

α+(s) = (s1 + b1, . . . , sk + bk) ∀s ∈ R
k ,
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where bj = πj−E[Sj ], for j = 1, . . . , k. Hence, the function is different depending
on what the model output scores and class distribution are. It is easy to prove
that the scores α+(S) are adjusted: E[Sj +bj ] = E[Sj ]+bj = E[Sj ]+πj −E[Sj ] =
πj , for j = 1, . . . , k.

Multiplicative (score) adjustment is a procedure applying the function α∗:

α∗(s) =

(

w1s1
∑k

j=1 wjsj
, . . . ,

wksk
∑k

j=1 wjsj

)

∀s ∈ R
k ,

where wj are suitably chosen non-negative weights such that α∗(S) is adjusted
to π. It is not obvious that such weights exist because of the required renormal-
isation, but the following theorem gives this guarantee.

Theorem 1 (Existence of weights for multiplicative adjustment). Let
π be a class distribution with k ≥ 2 classes and S be a random positive real
vector of length k. Then there exist non-negative weights w1, . . . , wk such that

E

[

wiSi∑k
j=1 wjSj

]

= πi for i = 1, . . . , k.

Proof. All the proofs are in the Appendix and the extended proofs are available
at http://www.cs.bris.ac.uk/∼flach/Kull Flach ECMLPKDD2015 Supplementary.pdf.

For our running example in Table 1 the additively adjusted and multiplica-
tively adjusted scores for class 1 are shown in columns A

(i)
+,1 and A

(i)
∗,1, respec-

tively. The shift b for additive adjustment was (+0.025,−0.025) for Model 1 and
(−0.025,+0.025) for Model 2. The weights w for multiplicative adjustment were
(1.18, 1) for Model 1 and (1, 1.16) for Model 2. For example, for Model 1 the
scores (0.9, 0.1) (of first four instances) become (1.062, 0.1) after weighting and
(0.914, 0.086) after renormalising (dividing by 1.062+0.1 = 1.162). The average
score for class 1 becomes 0.625 for both additive and multiplicative adjustment
and both models, confirming the correctness of these procedures.

4.2 The Right Adjustment Procedure Guarantees Decreased Loss

The existence of multiple adjustment procedures raises a question of which one
to use. As seen from the losses after adjustment in Table 1, multiplicative adjust-
ment achieves a lower loss for Model 1 and additive adjustment achieves a lower
loss for Model 2, for both log-loss and Brier score. This shows that neither pro-
cedure is better than the other across all models.

Further inspection of Table 1 shows that for Model 1 the log-loss increased
after additive adjustment and for Model 2 the Brier score increased after multi-
plicative adjustment. Interestingly, we can guarantee decreased loss if the right
adjustment procedure is used: multiplicative adjustment always decreases log-
loss, and additive adjustment always decreases Brier score. Of course, the excep-
tion is when the scores are already adjusted, in which case there is no change in

http://www.cs.bris.ac.uk/~flach/Kull_Flach_ECMLPKDD2015_Supplementary.pdf
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the loss. The guarantee is due to the following novel loss-specific decompositions
(and non-negativity of divergence):

E[dBS(S, Y )] = E[dBS(S,A+)] + E[dBS(A+, Y )] ,

E[dLL(S, Y )] = E[dLL(S,A∗)] + E[dLL(A∗, Y )] ,

where A+ = α+(S) and A∗ = α∗(S) are obtained from the scores S using addi-
tive and multiplicative adjustment, respectively. Note that the additive adjust-
ment procedure can produce values out of the range [0, 1] but Brier score is
defined for these as well. The decompositions follow from Theorem 4 in Section 5,
which provides a unified decomposition:

E[d(S, Y )] = E[d(S,A)] + E[d(A, Y )]

under an extra assumption which links the adjustment method and the loss
measure. Due to this unification we propose the following terminology for the
losses:

– Adjustment Loss AL = E[d(S,A)] is the loss due to the difference between
the mean model output E[S] and the overall class distribution π := E[Y ].
This loss is zero if the scores are adjusted.

– Post-adjustment Loss PL = E[d(A, Y )] is the loss after adjusting the
model output with the method corresponding to the loss measure.

For our running example the adjustment log-loss ALLL for the two models is
0.0021 and 0.0019 (not shown in Table 1) and the respective post-adjustment
losses PLLL are 0.7154 and 0.6822, which sum up to the total expected log-loss
of 0.7175 and 0.6841, respectively. For Brier score the decomposition for the two
models is 0.5 = 0.00125 + 0.49875 and 0.47 = 0.00125 + 0.46875, respectively.

In practice, the class distribution is usually not given, and has to be estimated
from training data. Therefore, if the difference between the average output scores
and class distribution is small (i.e. adjustment loss is small), then the benefit of
adjustment might be subsumed by class distribution estimation errors. Experi-
ments about this remain as future work.

So far we have given three different two-term decompositions of expected
loss: epistemic loss plus irreducible loss, calibration loss plus refinement loss,
and adjustment loss plus post-adjustment loss. In the following section we show
that these can all be obtained from a single four-term decomposition, and provide
more terminology and intuition.

5 Decomposition Theorems and Terminology

In the previous sections we had the following decompositions of expected loss
using a proper scoring rule (with extra assumptions for the last decomposition):

E[d(S, Y )] =E[d(S, Q)]+E[d(Q, Y )] = E[d(S, C)]+E[d(C, Y )] = E[d(S, A)]+E[d(A, Y )]
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All these decompositions follow a pattern E[d(S, Y )] = E[d(S, V )] + E[d(V, Y )]
for some random variable V . In this section we generalise further, and introduce
decompositions E[d(V1, V3)] = E[d(V1, V2)] + E[d(V2, V3)] for some random vari-
ables V1, V2, V3. The random variables will always be from the list S,A,C,Q, Y ,
and always in the same order. Actually, we will prove that the decomposition
holds for any subset of 3 variables out of these 5, as long as the ordering is pre-
served. For decompositions involving adjusted scores A there is an extra assump-
tion required, this is introduced in Section 5.2. First we provide decompositions
without A.

5.1 Decompositions with S,C,Q, Y

Theorem 2. Let (X,Y ) be random variables representing features and labels
for a k-class classification task, f be a scoring classifier, and d be the divergence
function of a strictly proper scoring rule. Denote S = f(X), Cj = E[Yj |S],
and Qj = E[Yj |X] for j = 1, . . . , k. Then for any subsequence V1, V2, V3 of the
random variables S,C,Q, Y the following holds:

E[d(V1, V3)] = E[d(V1, V2)] + E[d(V2, V3)] .

This theorem proves the decompositions of Section 3 but adds two more:

E[d(S,Q)] = E[d(S,C)] + E[d(C,Q)] , EL = CL + GL ;
E[d(C, Y )] = E[d(C,Q)] + E[d(Q,Y )] , RL = GL + IL .

These decompositions introduce the following new quantity:

– Grouping Loss GL = E[d(C,Q)] is the loss due to many instances being
grouped under the same estimate S while having different true posterior
probabilities Q.

The above decompositions together imply the following three-termdecomposition:

E[d(S, Y )] = E[d(S,C)] + E[d(C,Q)] + E[d(Q,Y )] , L = CL + GL + IL .

5.2 Decompositions with S,A,C,Q, Y and Terminology

As discussed in Section 4, the decomposition of expected loss into adjustment
loss and post-adjustment loss requires a link between the adjustment procedure
and loss measure. The following definition presents the required link formally.

Definition 2. Let (X,Y ) be random variables representing features and labels
for a k-class classification task, f be a scoring classifier, and φ be a strictly
proper scoring rule. Denote S = f(X). Let α = (α1, . . . , αk) be a vector function
with αj : R → R and let us denote A = (A1, . . . , Ak) with Aj = αj(S). We
say that α provides coherent adjustment of S for proper scoring rule d if A is
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adjusted to the class distribution E[Y ] and the following quantity is a constant
(not a random variable), depending on i, j only:

φ(A, ei) − φ(A, ej) − φ(S, ei) + φ(S, ej) = consti,j (1)

where em is a vector of length k with 1 at position m and 0 everywhere else.

Intuitively, (1) requires α to apply in some sense the same adjustment to
different scores, with respect to the scoring rule. In Appendix we prove the
following theorem:

Theorem 3. Additive adjustment is coherent with Brier score and multiplicative
adjustment is coherent with log-loss.

Now we are ready to present our most general decomposition theorem:

Theorem 4. Let (X,Y ) be random variables representing features and labels
for a k-class classification task, f be a scoring classifier, and d be the divergence
function of a strictly proper scoring rule. Denote S = f(X), Cj = E[Yj |S],
and Qj = E[Yj |X] for j = 1, . . . , k. Let A = α(S) where α provides coherent
adjustment of S for proper scoring rule d. Then for any subsequence V1, V2, V3

of the random variables S,A,C,Q, Y the following holds:

E[d(V1, V3)] = E[d(V1, V2)] + E[d(V2, V3)] .

Note that coherent adjustment might not exist for all proper scoring rules:
then the decompositions involving A do not work, falling back to Theorem 2.
Theorem 4 proves the decompositions in Section 4 and also provides the following
decompositions:

E[d(S,C)] = E[d(S,A)] + E[d(A,C)] , CL = AL + PCL ;
E[d(S,Q)] = E[d(S,A)] + E[d(A,Q)] , EL = AL + PEL ;
E[d(A,Q)] = E[d(A,C)] + E[d(C,Q)] , PEL = PCL + GL ;
E[d(A, Y )] = E[d(A,Q)] + E[d(Q,Y )] , PL = PEL + IL ,

which introduce new quantities PCL and PEL.

– Post-adjustment Calibration Loss PCL = E[d(A,C)] is the loss due to
the remaining calibration loss after perfect adjustment.

– Post-adjustment Epistemic Loss PEL = E[d(A,Q)] is the loss due to
the remaining epistemic loss after perfect adjustment.

Now we have introduced all pairwise divergences between two variables from the
ordered list S,A,C,Q, Y . Table 2 summarises our proposed terminology.

A direct corollary from Theorem 4 is that if we choose 4 or 5 out of 5 variables
from S,A,C,Q, Y , then we get a 3- or 4-term decomposition, respectively. In
particular, the full 4-term decomposition involving all 5 variables is as follows:

E[d(S, Y )]=E[d(S, A)]+E[d(A, C)]+E[d(C, Q)]+E[d(Q, Y )] , L=AL+PCL+GL+IL .
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Table 2. Proposed terminology

Definition Visual Name Description

L E[d(S, Y )] S...Y Loss total expected loss
AL E[d(S, A)] SA... Adjustment Loss loss due to lack of adjustment
PCL E[d(A, C)] .AC.. Post-adjustment Calibration Loss calibration loss after adjustment
GL E[d(C, Q)] ..CQ. Grouping Loss loss due to grouping
IL E[d(Q, Y )] ...QY Irreducible Loss loss of the optimal model
CL E[d(S, C)] S.C.. Calibration Loss loss due to lack of calibration
PEL E[d(A, Q)] .A.Q. Post-adjustment Epistemic Loss epistemic loss after adjustment
RL E[d(C, Y )] ..C.Y Refinement Loss loss after calibration
EL E[d(S, Q)] S..Q. Epistemic Loss loss due to non-optimal model
PL E[d(A, Y )] .A..Y Post-adjustment Loss loss after adjustment

Table 3. The decomposed losses (left) and their values for model 1 of the running
example using log-loss (middle) and Brier score (right).

S A C Q Y

S 0 AL CL EL L
A 0 PCL PEL PL

C 0 GL RL
Q 0 IL

Y 0

LL S A∗ C Q Y

S 0 0.002 0.090 0.198 0.717
A∗ 0 0.088 0.196 0.715

C 0 0.108 0.628
Q 0 0.520

Y 0

BS S A+ C Q Y

S 0 0.001 0.062 0.125 0.5
A+ 0 0.061 0.124 0.499

C 0 0.062 0.438
Q 0 0.375

Y 0

Table 3 provides numerical values for all 10 losses of Table 2 for Model 1 in our
running example data (Table 1). The 4-term decomposition proves that the num-
bers right above the main diagonal (AL, PCL, GL, IL) add up to the total loss
at the top right corner (L). All other decompositions can be checked numerically
from the table (taking into account the accumulating rounding errors).

6 Algorithms and Experiments

We have proposed two new procedures in the paper: additive and multiplicative
adjustment. Here we provide algorithms to perform these procedures. Both pro-
cedures first require estimation of the parameter vectors: b for additive and w for
multiplicative adjustment. If the test instances are all given together in batch,
then the scores of the model on test data can be used to estimate these parameter
vectors. Otherwise, these need to be estimated on training (or validation) data.

Additive adjustment is algorithmically very easy. Parameter bj is the differ-
ence of proportion πj of class j and the mean E[Sj ], calculated as the average
output score for class j over all instances. This is exact if test data are given
in batch and πj is the true proportion, and it is approximate if πj is estimated
from training data. Finally, adjusted scores can be calculated by adding b to the
model output scores, for each test instance.
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Table 4. Average number of rounds to convergence of multiplicative adjustment across
10000 synthetic tasks with k classes and n instances. The number in parentheses shows
the count of failures to converge out of 10000.

k = 2 k = 3 k = 4 k = 5 k = 10 k = 20 k = 30 k = 50

n = 10 1.00 (21) 3.66 (9) 3.95 (3) 3.97 (3) 3.88 (3) 3.66 (4) 3.49 (23) 3.25 (99)
n = 100 1.00 (4) 3.64 (2) 3.95 (2) 3.97 (0) 3.86 (1) 3.63 (0) 3.44 (2) 3.22 (48)
n = 1000 1.00 (6) 3.64 (0) 3.95 (1) 3.96 (0) 3.85 (0) 3.62 (0) 3.44 (4) 3.22 (43)

For multiplicative adjustment the hard part is to obtain the parameter
(weight) vector w, whereas applying adjustment using the weights is straight-
forward. The weight vector w can be obtained by the coordinate descent opti-
misation algorithm where for coordinate j the task is to minimise the difference
between E[wjsj/

∑k
i=1 wisi] and πj , by changing only wj . The minimisation in

one coordinate can be done by binary search, since the expected value is mono-
tonically increasing with respect to wj . It is clear that if coordinate descent
algorithm converges, then the obtained w is the right one. However, the algo-
rithm can fail to converge.

We have performed experiments with synthetic tasks with k =
2, 3, 4, 5, 10, 20, 50 classes and n = 10, 100, 1000 instances to check convergence.
Each task is a pair of a n × k model score matrix and class distribution vector
of length k, all filled with uniformly random entries between 0 and 1, and each
row is normalised to add up to 1. Table 4 reports the number of cycles through
the coordinates to convergence, averaged over 10000 tasks for each k, n pair. As
expected, the results have almost no dependence on the number of instances.
The maximal number of rounds to convergence was 6. However, on average in
10 out of 10000 times there was no convergence. Further improvement of this
result remains as future work.

7 Related Work

Proper scoring rules have a long history of research, with Brier score introduced
in 1950 in the context of weather forecasting [3], and the general presentation of
proper scoring rules soon after, see e.g. [11]. The decomposition of Brier score
into calibration and refinement loss (which were back then called reliability and
resolution) was introduced by Murphy [8] and was generalised for proper scoring
rules by DeGroot and Fienberg [5]. The decompositions with three terms were
introduced by Murphy [9] with uncertainty, reliability and resolution (Murphy
reused the same name for a different quantity), later generalised to all proper
scoring rules as well [4]. In our notation these can be stated as E[d(S, Y )] =
REL + UNC − RES = E[d(S,C)] + E[d(π, Y )] − E[d(π,C)]. This can easily be
proved by taking into account that the last term can be viewed as calibration
loss for constant estimator π but segmented in the same way as S.

In machine learning proper scoring rules are often treated as surrogate loss
functions, which are used instead of the 0-1 loss to facilitate optimisation [1]. An
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important question in practice is which proper scoring rule to use. One possible
viewpoint is to assume a particular distribution over anticipated deployment
contexts and derive the expected loss from that assumption. Hernández-Orallo
et al. have shown that the Brier score can be derived from a particular additive
cost model [6].

8 Conclusions

This paper proposes novel decompositions of proper scoring rules. All presented
decompositions are sums of expected divergences between original scores S,
adjusted scores A, calibrated scores C, true posterior probabilities Q and true
labels Y . Each such divergence stands for one part of the total expected loss.
Calibration and refinement loss are known losses of this form, the paper pro-
poses names for the other 7 losses and provides underlying intuition. In par-
ticular, we have introduced adjustment loss, which arises from the difference
between mean estimated scores and true class distribution. While it is a part
of calibration loss, it is easier to eliminate or decrease than calibration loss.
We have proposed first algorithms for additive and multiplicative adjustment,
which we prove to be coherent with (decomposing) Brier score and log-loss,
respectively. More algorithm development is needed for multiplicative adjust-
ment, as the current algorithm can sometimes fail to converge. An open question
is whether there are other, potentially better coherent adjustment procedures for
these losses. We hope that the proposed decompositions provide deeper insight
into the causes behind losses and facilitate development of better classification
methods, as knowledge about calibration loss has already delivered several cali-
bration methods, see e.g. [2].
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Appendix: Proofs of the Theorems

Here we prove the theorems presented in the paper, extended proofs are available
at http://www.cs.bris.ac.uk/∼flach/Kull Flach ECMLPKDD2015 Supplementary.pdf.

Proof of Theorem 1: If there are any zeros in the vector π, then we can set
the respective positions in the weight vector also to zero and solve the problem
with the remaining classes. Therefore, from now on we assume that all entries
in π are positive.

Let W denote the set of all non-negative (weight) vectors of length k
with at least one non-zero component. We introduce functions ti :W→R with
ti(w)=E[wiSi/

∑k
j=1 wjSj ]. Then we need to find w∗ such that ti(w∗) = πi for

i = 1, . . . , k. For this we prove the existence of increasingly better functions
h0, h1, . . . , hk−1 : W → W such that for m = 0, . . . , k − 1 the function hm sat-
isfies ti(hm(w)) = πi for i = 1, . . . , m for any w. Then w∗ = hk−1(w) is the
desired solution, where w ∈ W is any weight vector, such as the vector of all
ones. Indeed, it satisfies ti(w∗) = πi for i = 1, . . . , k − 1 and hence for i = k.

We choose h0 to be the identity function and prove the existence of other
functions hm by induction. Let hm for m < k − 1 be such that for any w the
vector hm(w) does not differ from w in positions m+1, . . . , k and ti(hm(w)) = πi

for i = 1, . . . , m. For a fixed w it is now sufficient to prove the existence of w′

such that it does not differ from w in positions m + 2, . . . , k and ti(w′) = πi for
i = 1, . . . , m+1. We search for such w′ among the vectors hm(w[m+1 : x]) with
x ∈ [0,∞) where w[m + 1 : x] denotes the vector w with the element at position
m + 1 changed into x. The chosen form of w′ guarantees that it does not differ
from w in positions m+2, . . . , k and ti(w′) = πi for i = 1, . . . , m. It only remains
to choose x such that tm+1(w′) = πm+1. For this we note that for x = 0 we have
tm+1(hm(w[m + 1 : 0])) = 0 because the weight at position m + 1 is zero. In the

http://www.cs.bris.ac.uk/~flach/Kull_Flach_ECMLPKDD2015_Supplementary.pdf
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limit process x → ∞ we have tm+1(hm(w[m+1 : x])) → 1−
∑m

i=1 πi because the
weight x at position m + 1 will dominate over weights at m + 2, . . . , k, whereas
the weights at 1, . . . , m ensure that ti(hm(w[m + 1 : x])) = πi for i = 1, . . . , m.
Since 0 < πm+1 < 1−

∑m
i=1 πi then according to the intermediate value theorem

there exists x such that tm+1(hm(w[m+1 : x])) = πm+1. By this we have proved
the existence of a suitable function hm+1, proving the step of induction, which
concludes the proof. ��

Lemma 1. Let V1, V2, V3,W be real-valued random vectors with length k where
V2,j = E[V3,j |W ] for j = 1, . . . , k, and V1 is functionally dependent on W .
If d is divergence of a proper scoring rule, then E[d(V1, V3)] = E[d(V1, V2)] +
E[d(V2, V3)].

Proof. Due to the law of total expectation it is enough to prove that
E[d(V1, V3)|W ] = E[d(V1, V2)|W ] + E[d(V2, V3)|W ]. After expressing each d as
a difference of two s terms, all obtained terms are sums over j = 1, . . . , k and it
is enough to prove that for each j the equality holds. Also, as we are conditioning
on W , all terms that do not involve V3 are constants with respect to conditional
expectation. Therefore, we need to prove that φ(V1, ej)E[V3,j |W ]−E[s(V3, V3)|W ]
equals φ(V1, ej)V2,j − φ(V2, ej)V2,j + φ(V2, ej)E[V3,j |W ] − E[s(V3, V3)|W ]. This
holds due to E[V3,j |W ] = V2,j . ��

Proof of Theorem 2: We consider the following two possibilities:
1. V2 = C. Let us take W = S in Lemma 1. Then V1 = S and it is functionally

dependent on itself, W . Also, V2,j = E[V3,j |W ] regardless of whether V3 = Y or
V3 = Q because Cj = E[Yj |S] = E[E[Yj |X,S]|S] = E[Qj |S], where the second
equality is due to the law of iterated expectations. The result now follows from
Lemma 1.

2. V2 = Q. Then V3 = Y and the result follows from Lemma 1 with W = X
because V2,j = Qj = E[Yj |X] = E[V3,j |W ] and both candidates S and C for V1

are functionally dependent on W = X. ��
Proof of Theorem 3: In Section 4 we proved that both methods provide
adjusted scores, so we only need to prove Eq.(1). For log-loss we need to prove
that − log Ai +log Aj +log Si− log Sj is a constant. For this it is enough to show
that (Aj/Ai)/(Sj/Si) is constant. According to the definition of multiplicative
adjustment this quantity equals ((wjSj)/(wiSi))/(Sj/Si) = wj/wi which is a
constant, proving that multiplicative adjustment is coherent with log-loss. For
Brier score we need to prove that

k∑
m=1

(Am − δmi)
2 −

k∑
m=1

(Am − δmj)
2 −

k∑
m=1

(Sm − δmi)
2 +

k∑
m=1

(Sm − δmj)
2 = constij ,

where δmi is 1 if m = i and 0 otherwise. For m /∈ {i, j} the respective terms
in the first and second sums and in the third and fourth sums are equal and
therefore cancel each other. For m = i the respective terms together give
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(Ai − 1)2 − A2
i − (Si − 1)2 + S2

i , for additive adjustment this equals to the con-
stant −2bi due to Ai = Si + bi. A similar argument holds for m = j and as a
result we have proved that the requirement (1) holds and additive adjustment
is coherent with Brier score. ��
Proof of Theorem 4: If none of V1, V2, V3 is A, then the result follows from
Theorem 2. If V1 = A, then the result follows from Theorem 2 with fNEW = α◦f
because then SNEW = A, CNEW = C, QNEW = Q. It remains to prove the
result for the case where V1 = S and V2 = A. Denote βj = φ(A, e1) − φ(A, ej) −
φ(S, e1) + φ(S, ej) for j = 1, . . . , k, then βj are all constants. Now it is enough
to prove that the following quantity is zero:

E[d(S, V3)] − E[d(S, A)] − E[d(A, V3)] =

=E

[ k∑
j=1

(
φ(S, ej)V3,j − φ(S, ej)Aj + φ(A, ej)Aj − φ(A, ej)V3,j

)
− s(V3, V3) + s(V3, V3)

]

=E
[ k∑
j=1

(
φ(S, ej)−φ(A, ej)

)(
V3,j −Aj

)]
=E
[ k∑
j=1

(
βj + φ(S, e1)−φ(A, e1)

)(
V3,j −Aj

)]

=
k∑

j=1

βj

(
E[V3,j ] − E[Aj ]

)
+ E

[(
φ(S, e1) − φ(A, e1)

)( k∑
j=1

V3,j −
k∑

j=1

Aj

)]
.

The first term is equal to zero regardless of whether V3 is Y or Q or C since
E[Aj ] = E[Yj ] = E[Qj ] = E[Cj ]. The second term is equal to zero because both
V3,j and Aj for j = 1, . . . , k add up to 1. ��
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Abstract. We consider online learning of Bayesian network classifiers
(BNCs) with reduced-precision parameters, i.e. the conditional-prob-
ability tables parameterizing the BNCs are represented by low bit-width
fixed-point numbers. In contrast to previous work, we analyze the learn-
ing of these parameters using reduced-precision arithmetic only which
is important for computationally constrained platforms, e.g. embedded-
and ambient-systems, as well as power-aware systems. This requires spe-
cialized algorithms since naive implementations of the projection for
ensuring the sum-to-one constraint of the parameters in gradient-based
learning are not sufficiently accurate. In particular, we present gener-
ative and discriminative learning algorithms for BNCs relying only on
reduced-precision arithmetic. For several standard benchmark datasets,
these algorithms achieve classification-rate performance close to that of
BNCs with parameters learned by conventional algorithms using double-
precision floating-point arithmetic. Our results facilitate the utilization
of BNCs in the foresaid systems.

Keywords: Bayesian network classifiers · Reduced-precision · Resource-
constrained computation · Generative/discriminative learning

1 Introduction

Most commonly Bayesian network classifiers (BNCs) are implemented on nowa-
days desktop computers, where double-precision floating-point numbers are used
for parameter representation and arithmetic operations. In these BNCs, inference
and classification is typically performed using the same precision for parameters
and operations, and the executed computations are considered as exact. However,
there is a need for BNCs working with limited computational resources. Such
resource-constrained BNCs are important in domains such as ambient comput-
ing, on-satellite computations1 or acoustic environment classification in hearing
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1 Computational capabilities on satellites are still severely limited due to power con-
straints and restricted availability of hardware satisfying the demanding require-
ments with respect to radiation tolerance.
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aids, machine learning for prosthetic control, e.g. a brain implant to control
hand movements, amongst others. In all these applications, a trade-off between
accuracy and required computational resources is essential.

In this paper, we investigate BNCs with limited computational demands by
considering BNCs with reduced-precision parameters, i.e. fixed-point parameters
with limited precision.2 Using reduced-precision parameters is advantageous in
many ways, e.g. power consumption compared to full-precision implementations
can be reduced [20] and reduced-precision parameters enable one to implement
many BNCs in parallel on field programmable gate arrays (FPGAs), i.e. the cir-
cuit area requirements on the FPGA correlate with the parameter precision [9].
Our investigations are similar to those performed in digital signal-processing,
where reduced-precision implementations for digital signal processors are of great
importance [10]. Note that there is also increased interest in implementing other
machine learning models, e.g. neural networks, using reduced-precision parame-
ters/computations to achieve faster training and to facilitate the implementation
of larger models [2,18].

We are especially interested in learning the reduced-precision parameters using
as little computational resources as possible. To decide on how to perform this
learning, several questions should be answered. Should reduced-precision parame-
ters be learned in a pre-computation step in which we can exploit the full computa-
tional power of nowadays computers? Or is it necessary to learn/adopt parameters
using reduced-precision arithmetic only? The answers to these questions depend
on the application of interest and identify several learning scenarios that are sum-
marized in Figure 1. In the following, we discuss these scenarios briefly:

(a) Training and testing using full-precision arithmetic. This corresponds
to what machine learners typically do, i.e. all computations are performed
using full-precision arithmetic.

(b) Training using reduced-precision and testing using full-precision
arithmetic. A rash thought rejects this option. But it might be interesting
in the vicinity of big-data where the amount of data is so huge that it can
only be processed in a compressed form, i.e. in reduced-precision.

(c) Training using full-precision and testing using reduced-precision
arithmetic. This describes an application scenario where BNCs with pre-
computed parameters can be used, e.g. hearing-aids for auditory scene clas-
sification. This scenario enables one to exploit large computational resources
for parameter learning, while limiting computational demands at test time.
Recent work considered this for BNCs [22].

(d) Training and testing using reduced-precision arithmetic. This is
the scenario considered within this paper. It opens the door to many inter-
esting applications, e.g. continuous parameter adaptation in hearing-aids
using reduced-precision computations only. Another example could be a

2 We are interested in fixed-point arithmetic and not in floating-point arithmetic,
because typically the implementation of fixed-point processing units requires less
resources than the implementation of floating-point processing units.
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Fig. 1. Combinations of training/testing using full-precision/reduced-precision arith-
metic.

satellite-based system for remote sensing that tunes its parameter according
to changing atmospheric conditions.

We start our investigation of parameter learning using reduced-precision com-
putations by analyzing the effect of approximate computations on online param-
eter learning. This leads to the observation that the approximate projections
needed in the used projected gradient ascent/descent algorithms to ensure the
sum-to-one normalization constraints of the parameters can severely affect the
learning process. We circumvent the need for these projections by proposing spe-
cial purpose learning algorithms for generative maximum likelihood (ML) and
discriminative maximum margin (MM) parameters.

This paper is structured as follows: In Section 2 we consider related work,
followed by an introduction of the used notation and some background on param-
eter learning in Bayesian networks (BNs) in Section 3. We derive our proposed
algorithms in Section 4 and test them in experiments in Section 5. In Section 6
we conclude the paper.

2 Related Work

For undirected graphical models, approximate inference and learning using inte-
ger parameters has been proposed [16]. While undirected graphical models are
more amenable to integer approximations mainly due to the absence of sum-to-
one constraints, there are domains where probability distributions represented
by directed graphical models are desirable, e.g. in expert systems in the medical
domain.
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Directly related work can be summarized as follows:

– The feasibility of BNCs with reduced-precision floating-point parameters has
been empirically investigated in [14,24]. These papers analyzed (i) the effect
of precision-reduction of the parameters on the classification performance of
BNCs, and (ii) how BNCs with reduced-precision parameters can be imple-
mented using integer computations only.

– The above mentioned experimental studies where extended by a thor-
ough theoretical analysis of using fixed-point parameters in BNCs [23].
The authors used fixed-point numbers for the following two reasons: First,
because fixed-point parameters can even be used on computing platforms
without floating-point processing capabilities. Second, because summation
of fixed-point numbers is exact (neglecting the possibility of overflows), while
summation of floating-point numbers is in general not exact.
In particular, theoretical bounds on the classification performance when
using reduced-precision fixed-point parameters have been analyzed in [21,
23]. The authors derived worst-case and probabilistic bounds on the classi-
fication rate (CR) for different bit-widths. Furthermore, they compared the
classification performance and the robustness of BNCs with generatively and
discriminatively optimized parameters, i.e. parameters optimized for high
data likelihood and parameters optimized for classification, with respect to
parameter quantization.

– In [22], learning of reduced-precision parameters using full-precision compu-
tations was addressed while the work mentioned above considers only round-
ing of double-precision parameters. An algorithm for the computation of MM
reduced-precision parameters was presented and its efficiency was demon-
strated. The resulting parameters had superior classification performance
compared to parameters obtained by simple rounding of double-precision
parameters, particularly for very low numbers of bits.

3 Background and Notation

Probabilistic Classification. Probabilistic classifiers are embedded in the frame-
work of probability theory. One assumes a random variable (RV) C denoting
the class and RVs X1, . . . , XL representing the attributes/features of the clas-
sifier. Each Xi can take one value in the set val(Xi). Similarly, C can assume
values in val(C), i.e. val(C) is the set of classes. We denote the random vec-
tor consisting of X1, . . . , XL as X = (X1, . . . , XL). Instantiations of RVs are
denoted using lower case letters, i.e. x is an instantiation of X and c an instan-
tiation of C, respectively. The RVs C,X1, . . . , XL are assumed to be jointly
distributed according to the distribution P∗(C,X). In typical settings, P∗(C,X)
is unknown, but a number of samples drawn iid from P∗(C,X) is at hand,
i.e. a training set D = ((c(n),x(n)) | 1 ≤ n ≤ N), where c(n) denotes the
instantiation of the RV C and x(n) the instantiation of X in the nth train-
ing sample. The aim is to induce good classifiers provided the training set, i.e.
classifiers with low generalization error. Any probability distribution P(C,X)
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naturally induces a classifier hP(C,X) according to hP(C,X) : val(X) → val(C),
x �→ arg maxc′∈val(C) P(c′|x). In this way, each instantiation x of X is classified
by the maximum a-posteriori (MAP) estimate of C given x under P(C,X). Note
that arg maxc′∈val(C) P(c′|x) = arg maxc′∈val(C) P(c′,x).

Bayesian Networks and Bayesian Network Classifiers. We consider probability
distributions represented by BNs [7,11]. A BN B = (G,PG) consists of a directed
acyclic graph (DAG) G = (Z,E) and a collection of conditional probability dis-
tributions PG = (P(X0|Pa(X0)), . . . ,P(XL|Pa(XL))), where the terms Pa(Xi)
denote the set of parents of Xi in G. The nodes Z = (X0, . . . , XL) correspond
to RVs and the edges E encode conditional independencies among these RVs.
Throughout this paper, we often denote X0 as C, i.e. X0 represents the class.
Then, a BN defines the joint distribution

PB(C,X1, . . . , XL) = P(C|Pa(C))
L

∏

i=1

P(Xi|Pa(Xi)). (1)

According to the joint distribution, a BN B induces the classifier hB = hPB(C,X).
In this paper, we assume discrete valued RVs only. Then, a general rep-

resentation of PG is a collection of conditional probability tables (CPTs), i.e.
PG = (θ0, . . . ,θL), with θi = (θi

j|h|j ∈ val(Xi),h ∈ val(Pa(Xi))), where
θi

j|h = P(Xi = j|Pa(Xi) = h). The BN distribution can then be written as

PB(C = c,X = x) =
L

∏

i=0

∏

j∈val(Xi)

∏

h∈val(Pa(Xi))

θi
j|h

νi
j|h , (2)

where νi
j|h = 1([c,x](Xi)=j and [c,x](Pa(Xi))=h).3 We typically represent the BN

parameters in the logarithmic domain, i.e. wi
j|h = log θi

j|h, wi = (wi
j|h|j ∈

val(Xi),h ∈ val(Pa(Xi))), and w = (w0, . . . ,wL). In general, we will interpret
w as a vector, whose elements are addressed as wi

j|h. We define a vector-valued
function φ(c,x) of the same length as w, collecting νi

j|h, analog to the entries
wi

j|h in w. In that way, we can express the logarithm of (2) as

log PB(C = c,X = x) = φ(c,x)T w. (3)

Consequently, classification, can be performed by simply adding the log-
probabilities corresponding to an instantiation [c,x] for all c ∈ val(C).4

Fixed-Point Numbers. Fixed-point numbers are essentially integers scaled by a
constant factor, i.e. the fractional part has a fixed number of digits. We char-
acterize fixed-point numbers by the number of integer bits bi and the number
3 Note that [c,x] denotes the joint instantiation of C and X and [c,x](A) corresponds

to the subset of values of [c,x] indexed by A ⊆ {X0, . . . , XL}.
4 In general graphs, potentially with latent variables, the needed inference can be

performed using max-sum message passing [7,13].
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of fractional bits bf . The addition of two fixed-point numbers can be easily and
accurately performed, while the multiplication of two fixed-point numbers often
leads to overflows and requires truncation to achieve results in the same format.

Learning Bayesian Network Classifiers

BNs for classification can be optimized in two ways: firstly, one can select the
graph structure G (structure learning), and secondly, one can learn the condi-
tional probability distributions PG (parameter learning). In this paper, we con-
sider fixed structures of the BNCs, namely naive Bayes (NB) and tree augmented
network (TAN) structures [4], i.e. 1-tree among the attributes. The NB structure
implies conditional independence of the features, given the class. Obviously, this
conditional independence assumption is often violated in practice. TAN struc-
tures relax these strong independence assumptions, enabling better classification
performance.5

Parameter Learning. The conditional probability densities (CPDs) PG of
BNs can be optimized either generatively or discriminatively. Two standard
approaches for optimizing PG are:

– Generative Maximum Likelihood Parameters. In generative param-
eter learning one aims at identifying parameters modeling the generative
process that results in the data of the training set, i.e. generative param-
eters are based on the idea of approximating P∗(C,X) by a distribution
PB(C,X). An example of this paradigm is maximum likelihood (ML) learn-
ing. Its objective is maximization of the likelihood of the training data given
the parameters, i.e.

PML
G = arg max

PG

N
∏

n=1

PB(c(n),x(n)). (4)

Note that the above optimization problem implicitly includes sum-to-one
constraints because the learned parameters in PML

G must represent normal-
ized probabilities. Maximum likelihood parameters minimize the Kullback-
Leibler (KL)-divergence between PB(C,X) and P∗(C,X) [7].

– Discriminative Maximum Margin Parameters [5,12,15]. In discrim-
inative learning one aims at identifying parameters leading to good classi-
fication performance on new samples from P∗(C,X). This type of learning
is for example advantageous in cases where the assumed model distribution
PB(C,X) cannot approximate P∗(C,X) well, for example because of a too
limited BN structure [17].
Discriminative MM parameters PMM

G are found as

PMM
G = arg max

PG

N
∏

n=1

min
(

γ, dB(c(n),x(n))
)

, (5)

5 Note that the parameter learning approach can be applied to more complex struc-
tures, e.g. k-trees among the attributes.
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where dB(c(n),x(n)) is the margin of the nth sample given as

dB(c(n),x(n)) =
PB(c(n),x(n))

maxc �=c(n) PB(c,x(n))
, (6)

and where the hinge loss function is denoted as min(γ, dB(c(n),x(n))). The
parameter γ > 1 controls the margin. In this way, the margin measures the
ratio of the likelihood of the nth sample belonging to the correct class c(n)

to the likelihood of belonging to the most likely competing class. The nth

sample is correctly classified iff dB(c(n),x(n)) > 1 and vice versa.

4 Algorithms for Online Learning of Reduced-Precision
Parameters

We start by considering learning ML parameters in Section 4.1 and then move on
to learning MM parameters in Section 4.2. We claim that learning using reduced-
precision arithmetic is most useful in online settings, i.e. parameters are updated
on a per-sample basis. This online learning scenario captures the important case
in which initially pre-computed parameters are used and these parameters are
updated online as new samples become available, e.g. adaptation of a hearing-aid
to a new acoustic environment. In this setting, learning using reduced-precision
computations requires specialized algorithms, i.e. gradient-descent (or gradient-
ascent) procedures using reduced-precision arithmetic do not perform well. The
reason is that the necessary exact projections of the parameters onto the sum-
to-one constraints cannot be accurately performed. Another issue is the limited
resolution of the learning rate. However, we find this issue less important as the
inexact projections.

4.1 Learning Maximum Likelihood Parameters

We consider an online algorithm for learning ML parameters. The ML objec-
tive (4) for the offline scenario can be equivalently written as

wML = arg max
w

N
∑

n=1

φ(c(n),x(n))Tw s.t.
∑

j

exp(wi
j|h) = 1,∀i, j,h, (7)

where optimisation is performed over the log-parameters w. In an online sce-
nario, not all samples are available for learning at once but are available one at
a time; the parameters wML,t at time-step t are updated according to the gradi-
ent of a single sample (c,x) (or, alternatively, a batch of samples) and projected
such that they satisfy the sum-to-one constraints, i.e.

wML,t+1 = Π
[

wML,t + η
(

∇wφ(c,x)Tw
)

(wML,t)
]

(8)

= Π
[

wML,t + ηφ(c,x)
]

, (9)
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where η is the learning rate, ∇w(f)(a) denotes the gradient of f with respect
to w at a, and Π[w] denotes the �2-norm projection of the parameter vector
w onto the set of normalized parameter vectors. Note that the gradient has a
simple form: it consists only of zeros and ones, where the ones are indicators of
active entries in the CPTs of sample (c,x). Furthermore, assuming normalized
parameters at time-step t, the direction of the gradient is always such that the
parameters wML,t+1 are super-normalized. Consequently, after (exact) projec-
tion the parameters satisfy the sum-to-one constraints.

We continue by analyzing the effect of using reduced-precision arithmetic on
the online learning algorithm. Therefore, we performed the following experiment:
Assume that the projection can only be approximately performed. We simulate
the approximate projection by performing an exact projection and subsequently
adding quantization noise (this is similar to reduced-precision analysis in signal
processing [10]). We sample the noise from a Gaussian distribution with zero
mean and with variance σ2 = q2/12, where q = 2−bf . For the satimage dataset
from the UCI repository [1] we construct BNCs with TAN structure. As initial
parameters we use rounded ML parameters computed from one tenth of the
training data. Then, we present the classifier further samples in an online manner
and update the parameters according to (9). During learning, we set the learning
rate η to η = η0/

√
1 + t, where η0 is some constant (η0 is tuned by hand such that

the test set performance is maximized). The resulting classification performance
is shown in Figures 2a and 2b for the exact and the approximate projection,
respectively. One can observe, that the algorithm does not properly learn using
the approximate projection. Thus, it seems crucial to perform the projections
rather accurately. To circumvent the need for accurate projections, we propose
a method that avoids computing a projection at all in the following.

Consider again the offline parameter learning case. ML parameters can be
computed in closed-form by computing relative frequencies, i.e.

θi
j|h =

mi
j|h

mi
h

, (10)

where

mi
j|h =

N
∑

n=1

φ(c(n),x(n))i
j|h, and mi

h =
∑

j

mi
j|h. (11)

This can be easily extended to online learning. Assume that the counts mi,t
j|h at

time t are given and that a sample (ct,xt) is presented to the learning algorithm.
Then, the counts are updated according to

mi,t+1
j|h = mi,t

j|h + φ(ct,xt)i
j|h. (12)
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Fig. 2. Classification performance of BNCs with TAN structure for satimage data in an
online learning scenario; (a) Online ML parameter learning with exact projection after
each parameter update, (b) online ML parameter learning with approximate projection
after each parameter update (see text for details), (c) proposed algorithm for online
ML parameter learning.

Exploiting these counts, the logarithm of the ML parameters θi,t
j|h at time t can

be computed as

wi,t
j|h = log

(

mi,t
j|h

mi,t
h

)

, (13)

where similarly to before mi,t
h =

∑

j mi,t
j|h. A straightforward approximation

of (13) is to (approximately) compute the counts mi,t
j|h and mi,t

h , respectively,

and to use a lookup table to determine wi,t
j|h. The lookup table can be indexed in

terms of mi,t
j|h and mi,t

h and stores values for wi,t
j|h in the desired reduced-precision

format. To limit the maximum size of the lookup table and the bit-width required
for the counters for mi,t

j|h and mi,t
h , we assume some maximum integer number

M . We pre-compute the lookup table L such that
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L(i, j) =
[

log2(i/j)
q

]

R

· q, (14)

where [·]R denotes rounding to the closest the integer, q is the quantization
interval of the desired fixed-point representation, log2(·) denotes the base-2 log-
arithm, and where i and j are in the range 0, . . . , M − 1. Given sample (ct,xt),
the counts mi,t+1

j|h and mi,t+1
h are computed according to Algorithm 1 from the

counts mi,t
j|h and mi,t

h . To guarantee that the counts stay in range, the algorithm
identifies counters that reach their maximum value, and halfs these counters as
well as all other counters corresponding to the same CPTs. This division by 2
can be implemented as a bitwise shift operation.

Algorithm 1. Reduced-precision ML online learning
Require: Old counts mi,t

j|h; sample (ct,xt)

mi,t+1
j|h ← mi,t

j|h + φ(ct,xt)ij|h ∀i, j,h � update counts
for i, j,h do

if mi,t+1
j|h = M then � maximum value of counter reached?

mi,t+1
j|h ← �mi,t+1

j|h /2� ∀j � half counters of considered CPT (round down)
end if

end for
return mi,t+1

j|h

Initially, we set all counts to zero, i.e. mi,0
j|h = 0, respectively. For the cumu-

lative counts, i.e. mi,t
h in (13), we did not limit the number of bits (for real

implementations the necessary number of bits for this counter can be computed
from the bit-width of the individual counters that are summed up and the graph
structure of the considered BNC). Logarithmic parameters wi,t

j|h are computed
using the lookup table described above and using Algorithm 2. The classifica-
tion performance during online learning is shown in Figure 2c. We can observe,
that the algorithm behaves pleasant and the limited range of the used counters
does not seem to affect classification performance (compared to the classification
performance using rounded ML parameters computed using full-precision com-
putations and all training samples). Further experimental results can be found
in Section 5.

4.2 Learning Maximum Margin Parameters

In this section, we consider a variant of the MM objective proposed in [12] that
balances the MM objective (5) against the ML objective (4), i.e. the objective
is to maximize
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Algorithm 2. Computation of logarithmic probabilities from lookup table
Require: Counts mi,t

j|h and mi,t
h ; lookup table L of size M × M

div ← 0
while mi,t

h ≥ M do � ensure that index into lookup table is in range
mi,t

h ← �mi,t
h /2� � half and round down

div ← div + 1
end while
wi,t

j|h ← L(mi,t
j,h, mi,t

h ) ∀j � get log-probability from lookup table

while div > 0 and ∀j : wi,t
j|h > (−2bi + 2bf ) + 1 do � revise index correction

wi,t
j|h ← wi,t

j|h − 1 ∀j
div ← div − 1

end while
return wi,t

j|h

log

[

N
∏

n=1

PB(c(n),x(n))

]

︸ ︷︷ ︸

ML

+λ log

[

N
∏

n=1

min

(

γ,
PB(c(n),x(n))

maxc �=c(n) PB(c,x(n))

)]

︸ ︷︷ ︸

MM

. (15)

In this way, generative properties, e.g. the ability to marginalize over missing
features, are combined with good discriminative performance. This variant of
the MM objective can be easily written in the form

wMM = arg max
w

[ N
∑

n=1

φ(c(n),x(n))Tw+ (16)

λ

N
∑

n=1

min
(

γ, min
c �=c(n)

[

(φ(c(n),x(n)) − φ(c,x(n)))Tw
]

)

and, for simplicity, we will refer to this modified objective as the MM objective.
Note that there are implicit sum-to-one constraints in problem (16), i.e. any
feasible solution w must satisfy

∑

j exp(wi
j|h) = 1 for all i, j,h. In the online

learning case, given sample (c,x), the parameters wMM,t+1 at time t + 1 are
computed from the parameters wMM,t at time t as

wMM,t+1 = Π
[

wMM,t + ηφ(c,x) + ηλg(c,x)
]

, (17)

where

g(c,x) =

⎧

⎨

⎩

0 min
c′ �=c

[

(φ(c,x) − φ(c′,x))Tw
]

≥ γ,

φ(c,x) − φ(c′,x) o.w., c′ = arg minc′
[

(φ(c,x) − φ(c′,x))Tw
]

(18)

and where similar as before Π[w] denotes the projection.



Parameter Learning of Bayesian Network Classifiers 97

For learning MM parameters, a similar observation with respect to the accu-
racy of the projection can be made as for ML parameters. But we cannot
proceed exactly as in the case of learning ML parameters because we cannot
compute MM parameters in closed-form. As in the ML parameter learning case,
the gradient for the parameter update has a rather simple form, but the projec-
tion to satisfy the sum-to-one constraints is difficult to compute. Therefore, for
online MM parameter learning, we propose Algorithm 3 that is similar to Algo-
rithm 1 in Section 4.1, i.e. we avoid to compute the projection explicitly. From
the counts computed by the algorithm, log-probabilities can be computed using
Algorithm 2. Note that the proposed algorithm does not exactly optimize (16)
but a, not explicitly defined, surrogate. The idea behind the algorithm is (1) to
optimize the likelihood term in (16) as in the algorithm for ML parameter learn-
ing, and (2) to optimize the margin term by increasing the likelihood for the
correct class and simultaneously decreasing the likelihood for the strongest com-
petitor class. Note that the idea of optimizing the margin term as explained
above is similar in spirit to that of discriminative frequency estimates [19]. How-
ever, discriminative frequency estimates do not optimize a margin term but a
term more closely related to the class-conditional likelihood.

5 Experiments

5.1 Datasets

In our experiments, we considered the following datasets.
1. UCI data [1]. This is in fact a large collection of datasets, with small

to medium number of samples. Features are discretized as needed using the
algorithm proposed in [3]. If not stated otherwise, in case of the datasets chess,
letter, mofn-3-7-10, segment, shuttle-small, waveform-21, abalone, adult, car,
mushroom, nursery, and spambase, a test set was used to estimate the accuracy
of the classifiers. For all other datasets, classification accuracy was estimated
by 5-fold cross-validation. Information on the number of samples, classes and
features for each dataset can be found in [1].

2. USPS data [6]. This data set contains 11000 handwritten digit images
from zip codes of mail envelopes. The data set is split into 8000 images for
training and 3000 for testing. Each digit is represented as a 16 × 16 greyscale
image. These greyscale values are discriminatively quantized [3] and each pixel
is considered as feature.

3. MNIST Data [8]. This dataset contains 70000 samples of handwritten
digits. In the standard setting, 60000 samples are used for training and 10000
for testing. The digits represented by grey-level images were down-sampled by a
factor of two resulting in a resolution of 16 × 16 pixels, i.e. 196 features.

5.2 Results

We performed experiments using M = 1024, i.e. we used counters with 10 bits
(bi + bf = 10). The splitting of the available bits into integer bits and frac-
tional bits was set using 10-fold cross-validation. Experimental results for BNCs
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Algorithm 3. Reduced-precision MM online learning
Require: Old counts mi,t

j|h; sample (ct,xt); hyper-parameters γ, λ ∈ N+ for MM for-
mulation
mi,t+1

j|h ← mi,t
j|h + φ(ct,xt)ij|h ∀i, j,h � update counts (likelihood term)

for i, j,h do � ensure that parameters stay in range
if mi,t+1

j|h = M then

mi,t+1
j|h ← �mi,t+1

j|h /2� ∀j
end if

end for
c′ ← strongest competitor of class c for features x

if
[

(φ(ct,x(n)) − φ(c′,x(n)))Tw < γ
]

then

mi,t+1
j|h ← mi,t

j|h ∀i, j,h
for k = 1, . . . , λ do � Add-up gradient in λ steps

mi,t+1
j|h ← mi,t+1

j|h + φ(ct,xt)ij|h ∀i, j,h � update counts (margin term)

mi,t+1
j|h ← mi,t+1

j|h − φ(c′,xt)ij|h ∀i, j,h � update counts (margin term)
for i, j,h do � ensure that parameters stay in range

if mi,t+1
j|h = 0 then

mi,t+1
j|h ← mi,t+1

j|h + 1 ∀j
end if
if mi,t+1

j|h = M then

mi,t+1
j|h ← �mi,t+1

j|h /2� ∀j
end if

end for
end for

end if
return mi,t+1

j|h

with NB and TAN structures are shown in Table 1 for the datasets described
above. All samples from the training set were presented to the proposed algo-
rithm twenty times in random order. The absolute reduction in classification
rate (CR) compared to the exact CR, i.e. using BNCs with the optimal double-
precision parameters, for the considered datasets is, with few exceptions, rela-
tively small. Thus the proposed reduced-precision computation scheme seems to
be sufficiently accurate to yield good classification performance while employ-
ing only range-limited counters and a lookup table of size M × M . Clearly, the
performance of the proposed method can be improved by using larger and more
accurate lookup tables and counters with larger bit-width.

For discriminative parameter learning, we set the hyper-parameters λ ∈
{0, 1, 2, 4, 8, 16} and γ ∈ {0.25, 0.5, 1, 2, 4, 8.} using 10-fold cross-validation. For
this setup, we observed the classification performance summarized in Table 1.
While the results are not as good as those of the exact MM solution, in terms of the
absolute reduction in CR, we can clearly observe an improvement in classification
performanceusing theproposedMMparameter learningmethodover theproposed
MLparameter learningmethod formanydatasets.Theperformance ofBNCsusing
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Table 1. Classification performance. CRs using ML/MM parameters accord-
ing to (10)/(16) in double-precision are denoted as ML exact/MM exact.
CRs using reduced-precision ML/MM parameters computed according to Algo-
rithm 1/Algorithm 3 using only reduced-precision arithmetic are denoted as ML
prop./MM prop.; ML abs./MM abs. denote the absolute reduction in CR for double-
precision ML/MM parameters to reduced-precision ML/MM parameters.

ML – CR [%] MM – CR [%]

Dataset Structure exact prop. abs. exact prop. abs.

USPS NB 86.89 86.34 0.55 93.91 93.17 0.74
TAN 91.39 90.05 1.34 93.01 93.50 −0.49

MNIST NB 82.88 80.61 2.26 93.11 93.00 0.11
TAN 90.49 87.92 2.57 93.49 93.83 −0.34

australian NB 85.92 85.48 0.44 87.24 85.63 1.61
TAN 81.97 84.46 −2.49 84.76 83.58 1.18

breast NB 97.63 97.48 0.15 97.04 97.63 −0.59
TAN 95.85 96.15 −0.30 96.00 94.52 1.48

chess NB 87.45 86.20 1.25 97.68 94.32 3.36
TAN 92.19 92.13 0.06 97.99 96.27 1.73

cleve NB 82.87 83.55 −0.68 82.53 80.84 1.69
TAN 79.09 80.47 −1.37 80.79 75.69 5.10

corral NB 89.16 89.22 −0.07 93.36 93.36 0.00
TAN 97.53 94.96 2.57 100.00 99.20 0.80

crx NB 86.84 86.22 0.62 86.06 86.68 −0.62
TAN 83.73 84.04 −0.31 84.20 83.58 0.62

diabetes NB 73.96 72.65 1.31 74.87 75.01 −0.14
TAN 73.83 73.44 0.39 74.35 71.73 2.62

flare NB 77.16 75.81 1.34 83.11 83.97 −0.86
TAN 83.59 79.46 4.13 83.30 83.20 0.10

german NB 74.50 72.90 1.60 75.30 73.80 1.50
TAN 72.60 71.80 0.80 72.60 72.10 0.50

glass NB 71.16 71.66 −0.50 70.61 71.08 −0.47
TAN 71.11 69.58 1.53 72.61 69.55 3.05

heart NB 81.85 82.96 −1.11 83.33 84.44 −1.11
TAN 81.48 81.11 0.37 81.48 81.48 0.00

hepatitis NB 89.83 89.83 0.00 92.33 88.67 3.67
TAN 84.83 87.33 −2.50 86.17 88.58 −2.42

letter NB 74.95 74.41 0.54 85.79 81.50 4.30
TAN 86.26 85.93 0.33 88.57 88.43 0.14

lymphography NB 84.23 85.71 −1.48 82.80 87.31 −4.51
TAN 82.20 82.86 −0.66 76.92 80.66 −3.74

nursery NB 89.97 89.63 0.35 93.03 93.05 −0.02
TAN 92.87 92.87 0.00 98.68 98.12 0.56

satimage NB 81.56 82.02 −0.45 88.41 86.96 1.45
TAN 85.85 86.40 −0.55 86.98 87.44 −0.47

segment NB 92.68 91.90 0.78 95.37 93.85 1.52
TAN 94.85 94.89 −0.04 95.76 95.63 0.13

shuttle NB 99.66 99.10 0.56 99.95 99.86 0.09
TAN 99.88 99.71 0.17 99.93 99.87 0.06

soybean-large NB 93.35 92.80 0.56 91.50 92.05 −0.55
TAN 91.14 89.12 2.02 91.87 92.61 −0.74

spambase NB 90.03 89.88 0.15 94.08 93.19 0.89
TAN 92.97 92.79 0.17 94.03 93.73 0.31

vehicle NB 61.57 61.93 −0.36 67.95 69.16 −1.21
TAN 71.09 68.91 2.18 69.88 69.16 0.72

vote NB 90.16 90.63 −0.47 94.61 94.61 0.00
TAN 94.61 94.60 0.01 95.31 94.60 0.71

waveform-21 NB 81.14 81.18 −0.04 85.14 84.16 0.98
TAN 82.52 82.20 0.32 83.48 83.94 −0.46
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the optimal double-precision parameters is in many cases not significantly better.
Note that the hyper-parameters used for determining double-precision parameters
are different than those used for determining reduced-precision parameters, i.e. a
larger range of values is used (details are provided in [12]). The larger range of val-
ues cannot be used in case of reduced-precision parameters because of the limited
parameter resolution.

6 Discussions

We proposed online algorithms for learning BNCs with reduced-precision fixed-
point parameters using reduced-precision computations only. This facilitates the
utilization of BNCs in computationally constrained platforms, e.g. embedded-
and ambient-systems, as well as power-aware systems. The algorithms differ
from naive implementations of conventional algorithms by avoiding error-prone
parameter projections commonly used in gradient ascent/descent algorithms. In
experiments, we demonstrated that our algorithms yield parameters that achieve
classification performances close to that of optimal double-precision parameters
for many of the investigated datasets.

Our algorithms have similarities with a very simple method for learn-
ing discriminative parameters of BNCs known as discriminative frequency
estimates [19]. According to this method, parameters are estimated using a
perceptron-like algorithm, where parameters are updated by the prediction loss,
i.e. the difference of the class posterior of the correct class (which is assumed to
be 1 for the data in the training set) and the class posterior according to the
model using the current parameters.
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Abstract. An important problem in multi-label classification is to cap-
ture label patterns or underlying structures that have an impact on
such patterns. One way of learning underlying structures over labels
is to project both instances and labels into the same space where an
instance and its relevant labels tend to have similar representations. In
this paper, we present a novel method to learn a joint space of instances
and labels by leveraging a hierarchy of labels. We also present an effi-
cient method for pretraining vector representations of labels, namely
label embeddings, from large amounts of label co-occurrence patterns
and hierarchical structures of labels. This approach also allows us to
make predictions on labels that have not been seen during training. We
empirically show that the use of pretrained label embeddings allows us
to obtain higher accuracies on unseen labels even when the number of
labels are quite large. Our experimental results also demonstrate qual-
itatively that the proposed method is able to learn regularities among
labels by exploiting a label hierarchy as well as label co-occurrences.

1 Introduction

Multi-label classification is an area of machine learning which aims to learn a
function that maps instances to a label space. In contrast to multiclass classifi-
cation, each instance is assumed to be associated with more than one label. One
of the goals in multi-label classification is to model the underlying structure of
the label space because in many such problems, the occurrences of labels are not
independent of each other.

Recent developments in multi-label classification can be roughly divided into
two bodies of research. One is to build a classifier in favor of statistical dependen-
cies between labels, and the other is devoted to making use of prior information
over the label space. In the former area, many attempts have been made to exploit
label patterns [6,9,24]. As the number of possible configurations of labels grows
exponentially with respect to the number of labels, it is required for multi-label
classifiers to handle many labels efficiently [4] or to reduce the dimensionality of
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a label space by exploiting properties of label structures such as sparsity [17] and
co-occurrence patterns [7]. Label space dimensionality reduction (LSDR) meth-
ods allow to make use of latent information on a label space as well as to reduce
computational cost. Another way of exploiting information on a label space is to
use its underlying structures as a prior. Many methods have been developed to
use hierarchical output structures in machine learning [27]. In particular, several
researchers have looked into utilizing the hierarchical structure of the label space
for improved predictions in multi-label classification [26,30,32].

Although extensive research has been devoted to techniques for utilizing
implicitly or explicitly given label structures, there remain the scalability issues
of previous approaches in terms of both the number of labels and documents
in large feature spaces. Consider a very large collection of scientific documents
covering a wide range of research interests. In an emerging research area, it can
be expected that the number of publications per year grows rapidly. Moreover,
new topics will emerge, so that the set of indexing terms, which has initially
been provided by domain experts or authors to describe publications with few
words for potential readers, will grow as well.

Interestingly, similar problems have been faced recently in a different domain,
namely representation learning [2]. In language modeling, for instance, a word
is traditionally represented by a K-dimensional vector where K is the number
of unique words, typically hundreds of thousands or several millions. Clearly, it
is desirable to reduce this dimensionality to much smaller values d � K. This
can, e.g., be achieved with a simple log-linear model [21], which can efficiently
compute a so-called word embedding, i.e., a lower-dimensional vector represen-
tations for words. Another example for representation learning is a technique
for learning a joint embedding space of instances and labels [31]. This approach
maximizes the similarity between vector representations of instances and rele-
vant labels while projecting them into the same space.

Inspired by the log-linear model and the joint space embedding, we address
large-scale multi-label classification problems, in which both hierarchical label
structures are given a priori as well as label patterns occur in the training data.
The mapping functions in the joint space embedding method can be used to rank
labels for a given instance, so that relevant labels are placed at the top of the
ranking. In other words, the quality of such a ranking depends on the mapping
functions. As mentioned, two types of information on label spaces are expected to
help us to train better joint embedding spaces, so that the performance on unseen
data can be improved. We focus on exploiting such information so as to learn a
mapping function projecting labels into the joint space. The vector representa-
tions of labels by using this function will be referred to as label embeddings. While
label embeddings are usually initialized randomly, it will be beneficial to learn the
joint space embedding method taking label hierarchies into consideration when
label structures are known. To this end, we adopt the above-mentioned log-linear
model which has been successfully used to learn word embeddings.

Learning word embeddings relies fundamentally on the use of the context
information, that is, a fixed number of words surrounding that word in a sentence
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or a document. In order to adapt this idea to learning label embeddings, we
need to define context information in a label space, where, unlike in textual
documents, there is no sequence information which can be used to define the
context of words. We use, instead, pairwise relationships in label hierarchies and
in label co-occurrence patterns.

There are two major contributions of this work: 1) We build efficient multi-
label classifiers which employ label hierarchies so as to predict unseen labels.
2) We provide a novel method to efficiently learn label representations from
hierarchical structures over labels as well as their co-occurrence patterns.

2 Multi-label Classification

In multi-label classification, assuming that we are given a set of training examples
D = {(xn,Yn)}N

n=1, our goal is to learn a classification function f : x → Y which
maps an instance x to a set of relevant labels Y ⊆ {1, 2, · · · , L}. All other labels
Y = {1, 2, · · · , L}\Y are called irrelevant. Often, it is sufficient, or even required,
to obtain a list of labels ordered according to some relevance scoring functions.

In hierarchical multi-label classification (HMLC) labels are explicitly orga-
nized in a tree usually denoting a is-a or composed-of relation. Several
approaches to HMLC have been proposed which replicate this structure with
a hierarchy of classifiers which predict the paths to the correct labels [5,30,32].
Although there is evidence that exploiting the hierarchical structure in this way
has advantages over the flat approach [3,5,30], some authors unexpectedly found
that ignoring the hierarchical structure gives better results. For example, in [32]
it is claimed that if a strong flat classification algorithm is used the lead vanishes.
Similarly, in [30] it was found that learning a single decision tree which predicts
probability distributions at the leaves outperforms a hierarchy of decision trees.
One of the reasons may be that hierarchical relations in the output space are
often not in accordance with the input space, as claimed by [15] and [32]. Our
proposed approach aims at overcoming this problem as it learns an embedding
space where similarities in the input, output and label hierarchies are jointly
respected.

3 Model Description

3.1 Joint Space Embeddings

Weston et al. [31] proposed an efficient online method to learn ranking functions
in a joint space of instances and labels, namely Wsabie. Under the assumption
that instances which have similar representation in a feature space tend to be
associated with similar label sets, we find joint spaces of both instances and labels
where the relevant labels for an instance can be separated from the irrelevant
ones with high probability.

Formally, consider an instance x of dimension D and a set of labels Y associ-
ated with x. Let φ(x) = Wx denote a linear function which projects the original
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feature representations of an instance x to a d-dimensional joint space, where
W ∈ R

d×D is a transformation matrix. Similarly, let U be a d × L matrix that
maps labels into the same joint d-dimensional space. A label i ∈ Y can then
be represented as a d-dimensional vector ui, which is the i-th column vector of
U. We will refer to the matrix U = [u1,u2, · · · ,uL] as label embeddings. The
objective function is given by

L (ΘF ;D) =
N

∑

n=1

∑

i∈Yn

∑

j∈Yn

h(ri(xn)) � (xn, yi, yj) (1)

with the pairwise hinge loss function � (xn, yi, yj)=
[

ma − uT
i φ(xn) + uT

j φ(xn)
]

+

where ri(·) denotes the rank of label i for a given instance xn, h(·) is a function
that maps this rank to a real number (to be introduced shortly in more detail),
Yn is the complement of Yn, [x]+ is defined as x if x > 0 and 0 otherwise,
ΘF = {W,U} are model parameters, and ma is a real-valued parameter, namely
the margin. The relevance scores s(x) = [s1(x) , s2(x) , · · · , sL(x)] of labels for a
given instance x can be computed as si(x) = uT

i φ(x) ∈ R. Then, the rank of label
i with respect to an instance x can be determined based on the relevance scores
ri(x) =

∑

j∈Y ,j �=i [ma − si(x) + sj(x)]+ . It is prohibitively expensive to compute
such rankings exactly when L is large. We use instead its approximation to update
parameters ΘF given by ri(x) ≈

⌊L−|Y|
Ti

⌋

where �·� denotes the floor function and
Ti is the number of trials to sample an index j yielding incorrect ranking against
label i such that ma − si(x) + sj(x) > 0 during stochastic parameter update
steps. Having an approximate rank ri(x), we can obtain a weighted ranking func-
tion h(ri(x)) =

∑ri(x)
k=1

1
k , which is shown to be an effective way of optimizing

precision at the top of rankings.

3.2 Learning with Hierarchical Structures Over Labels

Wsabie is trained in a way that the margin of similarity scores between positive
associations uT

p φ(x) and negative associations uT
nφ(x) is maximized, where up

and un denote the embeddings of relevant and irrelevant labels, respectively,
for an instance x. In practice, this approach works well if label patterns of
test instances appear in training label patterns. If there are few or no training
instances for some labels, the model may fail to make predictions accurately on
test instances associated with those labels. In such cases, a joint space learning
method could benefit from label hierarchies. In this section, we introduce a simple
and efficient joint space learning method by adding a regularization term which
employs label hierarchies, hereafter referred to as WsabieH .

Notations. Consider multi-label problems where label hierarchies exist. Label
graphs are a natural way to represent such hierarchical structures. Because it is
possible for a label to have more than one parent node, we represent a hierarchy
of labels in a directed acyclic graph (DAG). Consider a graph G = {V, E} where
V denotes a set of nodes and E represent a set of connections between nodes. A
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Fig. 1. An illustrative example of our proposed method. A label yi (green circle)
indicates a relevant label for a document (rectangle) while yn (red circle) is one of
the irrelevant labels. In the joint space, we learn representations for the relevant label,
its ancestor ys, and the document to be similar whereas the distance between the
document and the irrelevant label is maximized. Also, the parent label, ys, and its
children are forced to be similar while sibling labels of yi, i.e. yk, are kept away from
each other.

node u ∈ V corresponds to a label. A directed edge from a node u to a node v is
denoted as eu,v, in which case we say that u is a parent of v and v is a child of
u. The set of all parents / children of v is denoted with SP(v) / SC(v). If there
exists a directed path from u to v, u is an ancestor of v and v is a descendant of
u, the set of all ancestors / descendants is denoted as SA / SD(u).

Label structures as regularizers. As an example, let us consider three labels,
“computer science” (CS), “artificial intelligence” (AI), and “software engineering”
(SE). The label CS can be viewed as a parent label of AI and SE. Given a paper
dealing with problems in artificial intelligence and having AI as a label, we wish
to learn a joint embedding model in a way that it is also highly probable to pre-
dict CS as a relevant label. Following our hypothesis in label spaces, even though
we have no paper of software engineering, a label hierarchy allows us to make rea-
sonable predictions on such a label by representing label SE close to label CS in
a vector space. In order to prevent the model from converging to trivial solutions
that representations of all three labels are identical, it is desired that sibling labels
such as AI and SE in the hierarchy are well separated from each other in a joint
embedding space. For an illustration of our method, see Fig. 1.

Formally, we can achieve this by defining a regularization term Ω, which
takes into account the hierarchical label structure

Ω(ΘH) =
N

∑

n=1

1
ZA

∑

i∈Yn

∑

s∈SA(i)

− log p(ys|yi,xn)

+
L

∑

l=1

∑

q∈SP(l)

∑

k∈SC(q)
k �=l

h(rq(ul))
[

mb − uT
q ul + uT

k ul

]

+
(2)
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where mb is the margin, ZA = |Yn||SA(i)|, and p(ys|yi,xn) denotes the probability
of predicting an ancestor label s of a label i given i and an instance xn for which
i is relevant. More specifically, the probability p(ys|yi,xn) can be defined as

p(ys|yi,xn) =
exp(uT

s û(n)
i )

∑

v∈L exp(uT
v û(n)

i )
, (3)

where û(n)
i = 1

2 (ui + φ(xn)) is the averaged-representation of a label i and the
n-th instance in a joint space. Intuitively, this regularizer forces labels, which
share the same parent label, to have similar vector representations as much as
possible while keeping them separated from each other. Moreover, an instance
x has the potential to make good predictions on some labels even though they
do not appear in the training set only if their descendants are associated with
training instances.

Adding Ω to Eq. 1 results in the objective function of WsabieH

L (ΘH ;D) =
N

∑

n=1

∑

i∈Yn

∑

j∈Ȳn

h(ri(xn)) � (xn, yi, yj) + λΩ(ΘH) (4)

where λ is a control parameter of the regularization term. If we set λ = 0, then
the above objective function is equivalent to the objective function of Wsabie in
Eq 1.

3.3 Efficient Gradients Computation

Due to the high computational cost for computing gradients for the softmax
function in Eq. 3, we use hierarchical softmax [22,23] which reduces the gradient
computing cost from O(L) to O(log L). Similar to [21], in order to make use of
the hierarchical softmax, a binary tree is constructed by Huffman coding, which
yields binary codes with variable length to each label according to |SD(·)|. Note
that by definition of the Huffman coding all L labels correspond to leaf nodes
in a binary tree, called the Huffman tree. Instead of computing L outputs, the
hierarchical softmax computes a probability of 	log L
 binary decisions over a
path from the root node of the tree to the leaf node corresponding to a target
label, say, yj in Eq. 3.

More specifically, let C(y) be a codeword of a label y by the Huffman coding,
where each bit can be either 0 or 1, and I(C(y)) be the number of bits in the
codeword for that label. Cl(y) is the l-th bit in y’s codeword. Unlike for softmax,
for computing the hierarchical softmax we use the output label representations
U′ as vector representations for inner nodes in the Huffman tree. The hierarchical
softmax is then given by

p(yj |yi) =
I(C(yj))

∏

l=1

σ(�Cl(yj) = 0�u′T
n(l,yj)ui) (5)
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where σ(·) is the logistic function, �·� is 1 if its argument is true and −1 otherwise,
and u′

n(l,yj) is a vector representation for the l-th node in the path from the
root node to the node corresponding to the label yj in the Huffman tree. While
L inner products are required to compute the normalization term in Eq. 3, the
hierarchical softmax needs I(C(·)) computations. Hence, the hierarchical softmax
allows substantial improvements in computing gradients if E [I(C(·))] � L.

3.4 Label Ranking to Binary Predictions

It is often sufficient in practice to just predict a ranking of labels instead of a
bipartition of labels, especially in settings where the learning system is compre-
hended as supportive [8]. On the other hand, there are several ways to convert
ranking results into a bipartition. Basically all of them split the ranking at a cer-
tain position depending on a predetermined or predicted threshold or amount of
relevant labels.

Instead of experimenting with different threshold techniques, we took a prag-
matic stance, and simply assume that there is an oracle which tells us the actual
number of relevant labels for an unseen instance. This allows us to evaluate and
compare the ranking quality of our approaches independently of the performance
of an underlying thresholding technique. The bipartition measures obtained by
this method could be interpreted as a (soft) upper bound for any thresholding
approach.

4 Experimental Setup

Datasets. We benchmark our proposed method on two textual corpora con-
sisting of a large number of documents and with label hierarchies provided.

The RCV1-v2 dataset [19] is a collection of newswire articles. There are 103
labels and they are organized in a tree. Each label belongs to one of four major
categories. The original train/test split in the RCV1-v2 dataset consists of 23,149
training documents and 781,265 test documents. In our experiments, we switched
the training and the test data, and selected the top 20,000 words according to
the document frequency. We chose randomly 10,000 training documents as the
validation set.

The second corpus is the OHSUMED dataset [16] consisting of 348,565 sci-
entific articles from MEDLINE. Each article has multiple index terms known
as Medical Subject Headings (MeSH). In this dataset, the training set contains
articles from year 1987 while articles from 1988 to 1991 belong to the test set.
We map all MeSH terms in the OHSUMED dataset to 2015 MeSH vocabulary1

in which 27,483 MeSH terms are organized in a DAG hierarchy. Originally, the
OHSUMED collection consists of 54,710 training documents and 293,856 test
documents. Having removed all MeSH terms that do not appear in the 2015
MeSH vocabulary, we excluded all documents that have no label from the cor-
pus. To represent documents in a vector space, we selected unigram words that
1 http://www.nlm.nih.gov/pubs/techbull/so14/so14 2015 mesh avail.html

http://www.nlm.nih.gov/pubs/techbull/so14/so14_2015_mesh_avail.html
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Table 1. Number of instances (M), Size of vocabulary (D), Number of labels (L),
Average number of labels per instance (C), and the type of label hierarchy (HS).
L subscripted k and u denote the number of known and unseen labels, respectively.

Original datasets Modified datasets
D HS

M L C M Lk Lu C

RCV1-v2 804 414 103 3.24 700 628 82 21 1.43 20 000 Tree
OHSUMED 233 369 27 483 9.07 100 735 9570 17 913 3.87 25 892 DAG

occur more than 5 times in the training set. These pre-processing steps left us
with 36,883 train documents and 196,486 test documents. Then, 10% of the
training documents were randomly set aside for the validation set. Finally, for
both datasets, we applied log tf-idf term-weighting and then normalized docu-
ment vectors to unit length.

Preparation of the datasets in zero-shot settings. We hypothesize that
label hierarchies provide possibilities of learning representations of unseen labels,
thereby improving predictive performance for unseen data. To test our hypoth-
esis, we modified the datasets. For the RCV1-v2 dataset, we removed all labels
corresponding to non-terminals in the label hierarchy from training data and val-
idation data while these non-terminal labels remain intact in the test set. In other
words, we train models with labels corresponding to the leaves in the label hier-
archy, then test them on the modified test set which only contains unseen labels.

Since the train and test examples of the OHSUMED dataset was split by
year, the training data does not cover all labels in the test set. More specifically,
there are 27,483 labels in the label hierarchy (cf. Table 1), of which only 9,570
occur in both training and test sets, which will be referred to as the set of known
labels. Of the 12,568 labels that occur in the test set, 2,998 cannot be found
in the known labels set, and thus form a set of unseen labels together with the
14,915 labels which are only available in the label hierarchy, but not present in
the label patterns. In order to test predictive performance on these unseen labels,
we omitted all labels in the known label set from the test examples. This resulted
in some test examples having an empty set of labels, which were ignored for the
evaluation. Finally, the above preprocessing steps left us 67,391 test examples.

The statistics of the datasets and the modified ones are summarized in
Table 1.

Representing parent-child pairs of MeSH terms in a DAG. As men-
tioned earlier, we use parent-child pairs of MeSH terms in the 2015 MeSH vocab-
ulary as the label hierarchy for the OHSUMED dataset. If we represent parent-
child pairs of labels as a graph, it may contain cycles. Hence, we removed edges
resulting in cycles as follows: 1) Pick a node that has no parent as a starting
node. 2) Run Depth-First Search (DFS) from the starting node in order to detect
edges pointing to nodes visited already, then remove such edges. 3) Repeat the
1 & 2 steps until all nodes having no parents are visited. There are 16 major
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categories in the MeSH vocabulary. In contrast to RCV1-v2, the MeSH terms
are formed in complex structures so that a label can have more than one parent.

Baselines. We compare our algorithm, WsabieH , which uses hierarchical infor-
mation for label embeddings, to Wsabie ignoring label hierarchies and several
other benchmark algorithms. For binary relevance (BR), which decomposes a
multi-label problem into L binary problems, we use LIBLINEAR [12] as a base
learner which is a good compromise between efficiency and effectiveness in multi-
label text document classification.

To address the limitations of BR, specifically, when L is large, dimensionality
reduction method on label spaces, namely Principal Label Space Transformation
(PLST) and Conditional Principal Label Space Transformation (CPLST), have
been proposed [7,29] which try to capture label correlations before learning
per-label classifiers. Instead of directly predicting labels for given instances, the
LSDR approach learns d-output linear predictors in a reduced label space. Then,
the original label space is reconstructed from the outputs of the linear predictors
using the transformation matrix for reducing the label dimensionality. We use
ridge regression as a linear predictor.

Pairwise decomposition has been already successfully applied for multi-label
text classification [14,20]. Here, one classifier is trained for each pair of classes,
i.e., a problem with L different classes is decomposed into L(L−1)

2 subproblems.
At test time, all of the L(L−1)

2 base classifiers make a prediction for one of its two
corresponding classes, which is interpreted as a full vote (0 or 1) for this label.
Adding these up results in a ranking over the labels. To convert the ranking into
a multi-label prediction, we use the calibrated label ranking (CLR) approach.
Though CLR is able to predict cutting points of ranked lists, in this work, in
order to allow a fair comparison, it also relies on an oracle to predict the number
of relevant labels for a given instance (cf Section 3.4). We denote by CLRsvm

the use of CLR in combination with SVMs.

Evaluation measures. There are several measures to evaluate multi-label algo-
rithms and they can be split into two groups; ranking and bipartition measures.
If an algorithm generates a list of labels, which is sorted by relevance scores,
for a given instance, ranking measures need to be considered. The most widely
used ranking measures are rank loss (RL) and average precision (AvgP ). The
rank loss accounts for the ratio of the number of mis-ordered pairs between
relevant and irrelevant labels in a ranked list of labels to all possible pairs,
which defined as RL = 1

|Y||Y|
∑

i,j∈Y×Y [r(i) > r(j)]+ + 1
2 [r(i) = r(j)]+ where

r(·) denotes the position of a label in the ranked list. The average precision quan-
tifies the average precision at each point in the ranking where a relevant label
is placed and is computed as AvgP = 1

|Y|
∑

i∈Y (| {j ∈ Y|r(j) ≤ r(i)} |/r(i)) .

Label-based measures for binary predictions can be also considered. In this
work, we report the micro- and macro-averaged F-score defined as: MiF =
(
∑L

l=1 2tpl)/(
∑L

l=1 2tpl + fpl + fnl) , MaF = 1
L

∑L
l=1 2tpl/(2tpl + fpl + fnl)

where tpl, fpl and fnl are the number of true positives, false positives and
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Table 2. Comparison of WsabieH to baselines on the benchmarks. (Best in bold)

RCV1-v2 OHSUMED
BR PLST CPLST CLRsvm Wsabie WsabieH BR PLST Wsabie WsabieH

AvgP 94.20 92.75 92.76 94.76 94.34 94.39 45.00 26.50 45.72 45.76
RL 0.46 0.78 0.76 0.40 0.44 0.44 4.48 15.06 4.09 3.72

false negatives for label l, respectively. Throughout the paper, we present the
evaluation scores of these measures multiplied by 100.

Training Details. All hyperparameters were empirically chosen based on AvgP
on validation sets. The dimensionality of the joint space d was selected in a
range of {16, 32, 64, 128} for the RCV1-v2 dataset and {128, 256, 512} for the
OHSUMED dataset. The margins ma and mb were chosen ranging from {10−3,
10−2, 10−1, 100, 101, 102}. We used Adagrad [10] to optimize parameters Θ in
Eq. 1 and 4. Let Δi,τ be the gradient of the objective function in Eq. 4 with
respect to a parameter θi ∈ Θ at time τ . Then, the update rule for parameters
indexed i at time τ is given by θ

(τ+1)
i = θ

(τ)
i −η

(τ)
i Δi,t with an adaptive learning

rate per parameter η
(τ)
i = η0

/

√

∑τ
t=1 Δ2

i,t where η0 ∈ {10−4, 10−3, 10−2, 10−1}
denotes a base learning rate which decrease by a factor of 0.99 per epoch. We
implemented our proposed methods using a lock-free parallel gradient update
scheme [25], namely Hogwild!, in a shared memory system since the number of
parameters involved during updates is sparse even though the whole parameter
space is large. For BR and CLRsvm, LIBLINEAR[12] was used as a base learner
and the regularization parameter C =

{

10−2, 100, 102, 104, 106
}

was chosen by
validation sets.

5 Experimental Results

5.1 Learning All Labels Together

Table 2 compares our proposed algorithm, WsabieH , with the baselines on the
benchmark datasets in terms of two ranking measures. It can be seen that
CLRsvm outperforms the others including WsabieH on the RCV1-v2 dataset,
but the performance gap across all algorithms in our experiments is not large.
Even BR ignoring label relationship works competitively on this dataset. Also,
no difference between Wsabie and WsabieH was observed. This is attributed to
characteristics of the RCV1-v2 dataset that if a label corresponding to one of
the leaf nodes in the label hierarchy is associated with an instance, (almost) all
nodes in a path from the root node to that node are also present, so that the
hierarchical information is implicitly present in the training data.

Let us now turn to the experimental results on the OHSUMED dataset which
are shown on the right-hand side of Table 2. Since the dataset consists of many
labels, as an LSDR approach, we include PLST only in this experiment because
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Table 3. The performance of WsabieH compared to its baseline on the benchmarks
in zero-shot learning settings.

RCV1-v2 OHSUMED
AvgP RL MiF MaF AvgP RL MiF MaF

Wsabie 2.31 62.29 0.00 0.00 0.01 56.37 0.00 0.00
WsabieH 9.47 30.39 0.50 1.64 0.06 39.91 0.00 0.00

CPLST is computationally more expensive than PLST, but no significant dif-
ference was observed. Similarly, due to the computational cost of CLRsvm with
respect to the number of labels, we excluded it from the experiment. It can
be seen that regardless of the choice of the regularization term, the Wsabie
approaches perform better than the other methods. PLST performed poorly
under the settings where the density of labels, i.e., C/L in Table 1, is very low.
Moreover, we projected the original label space L =27,483 into a much smaller
dimension d = 512 using a small amount of training examples. Although the
difference to BR is rather small, the margin is more pronounced that on RCV1.

5.2 Learning to Predict Unseen Labels

Over the last few years, there has been an increasing interest in zero-shot learn-
ing, which aims to learn a function that maps instances to classes or labels that
have not been seen during training. Visual attributes of an image [18] or textual
description of labels [13,28] may serve as additional information for zero-shot
learning algorithms. In contrast, in this work, we focus on how to exploit label
hierarchies and co-occurrence patterns of labels to make predictions on such
unseen labels. The reason is that in many cases it is difficult to get additional
information for some specific labels from external sources. In particular, while
using a semantic space of labels’ textual description is a promising way to learn
vector representations of labels, sometimes it is not straightforward to find suit-
able mappings of specialized labels.

Table 3 shows the results of Wsabie against WsabieH on the modified datasets
which do not contain any known label in the test set (cf. Sec. 4). As can be seen,
WsabieH clearly outperforms Wsabie on both datasets across all measures except
for MiF and MaF on the OHSUMED dataset. Note that the key difference between
WsabieH and Wsabie is the use of hierarchical structures over labels during the
training phase. Since the labels in the test set do not appear during training,Wsa-
bie can basically only make random predictions for the unknown labels. Hence,
the comparison shows that taking only the hierarchical relations into account
already enables a considerable improvement over the baseline. Unfortunately, the
effect is not substantial enough in order to be reflected w.r.t. MiF and MaF on
OHSUMED. Note, however, that a relevant, completely unknown label must be
ranked approximately as one of the top 4 labels out of 17,913 in order to count for
bipartition measures in this particular setting.
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In summary, these results show that the regularization of joint embedding
methods is an effective way of learning representations for unseen labels in a tree-
structured hierarchy of a small number of labels . However, if a label hierarchy
is defined on more complex structures and while a fewer number of training
examples exists per label, it might be difficult for WsabieH to work well on
unseen data.

6 Pretrained Label Embeddings as Good Initial Guess

From the previous experiments, we see that the regularization of WsabieH using
the hierarchical structure of labels allows us to obtain better performance for
unseen labels. The objective function (Eq. 4) penalizes parameters of observable
labels in the training data by the negative log probability of predicting their
ancestors in a hierarchy. If we initialize label spaces parameterized by U at
random, presumably, the regularizer may rather act as noise at a beginning
stage of the training. Especially for OHSUMED, the label hierarchy is complex
and positive documents are very few for some labels.

We address this by exploiting both label hierarchies and co-occurrence pat-
terns between labels in the training data. Apart from feature representations of
a training instance, it is possible to capture underlying structures of the label
space based on the co-occurrence patterns. Hence, we propose a method to learn
label embeddings from hierarchical information and pairwise label relationships.

The basic idea of pretraining label embeddings is to maximize the probabil-
ity of predicting an ancestor given a particular label in a hierarchy as well as
predicting co-occurring labels with it. Given the labels of N training instances
DY = {Y1,Y2, · · · ,YN}, the objective function is to maximize the average log
probability given by

N
∑

n=1

[

(1 − α)
ZA

∑

i∈Yn

∑

j∈SA(i)

log p (yj |yi) +
α

ZN

∑

i∈Yn

∑

k∈Yn
k �=i

log p (yk|yi)
]

(6)

where α determines the importance of each term ranging from 0 to 1,
ZA = |Yn||SA(·)| and ZN = |Yn|(|Yn| − 1). The probability of predicting an ances-
tor label j of a label i, i.e., p(yj |yi), can be computed similarly to Eq. 3 by using
softmax and slight modifications. Thus, the log-probability can be defined by

p(yj |yi) =
exp(u′T

j ui)
∑

v∈L exp(u′T
v ui)

(7)

where ui is the i-th column vector of U ∈ R
d×L and u′

j is a vector representation
for label j and the j-th column vector of U′ ∈ R

d×L. The softmax function in
Eq. 7 can be viewed as an objective function of a neural network consisting
of a linear activation function in the hidden layer and two weights {U,U′},
where U connects the input layer to the hidden layer while U′ is used to convey
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Fig. 2. Visualization of learned label embeddings by the log-linear model (Eq 6). (left)
using only label co-occurrence patterns α = 1 (middle) using a hierarchy as well as
co-occurrences α = 0.5 (right) using only a hierarchy α = 0.

the hidden activations to the output layer. Here, U and U′ correspond to vector
representations for input labels and output labels, respectively. Like Eq. 3, we use
hierarchical softmax instead of Eq. 7 to speed up pre-training label embeddings.

6.1 Understanding Label Embeddings

We begin by qualitatively demonstrating label embeddings trained on label co-
occurrence patterns from the BioASQ dataset [1], which is one of the largest
datasets for multi-label text classification, and label hierarchies in the 2015
MeSH vocabulary. The BioASQ dataset consists of more than 10 millions of
documents. Note that we only use its label co-occurrence patterns. Its labels are
also defined over the same MeSH vocabulary, so that we can use it for obtain-
ing knowledge about the OHSUMED labels (cf Section 6). We trained the label
embeddings using Eq. 6 by setting the dimensionality of the label embeddings to
d = {128, 256, 512} with different weighting values α = {0, 0.5, 1} for 100 epoch
using SGD with a fixed learning rate of 0.1. If we set d = 128, training took
about 6 hours on a machine with dual Xeon E5-2620 CPUs.

Analysis on learned label representations. Fig. 2 shows vector representa-
tions of labels related to Disorders/Diseases and their therapy in the 2015 MeSH
vocabulary in 2D space.2 It is likely that label pairs that co-occur frequently are
close to each other. Particularly, on the left in Fig. 2, each therapy is close to
a disorder for which the therapy is an effective treatment. If we make use of
hierarchical information as well as co-occurrence label patterns during training,
i.e., α = 0.5 in Eq. 6, more interesting relationships are revealed which are not
observed from the model trained only on co-occurrences (α = 1). We can say that
the learned vector representations has identified Therapy-Disorders/Diseases
relationships (on the middle in Fig. 2). We also present label embeddings trained
using only label hierarchies (α = 0) on the right in Fig. 2.

Analogical reasoning in label spaces. One way to evaluate representation
quality is analogical reasoning as shown in [21]. Upon the above observations (on
2 Projection of 128-dim label embeddings into 2D was done by Principal Component

Analysis.
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Table 4. Analogical reasoning on learned vector representations of MeSH vocabulary

On learned representations using the hierarchy
Analogy questions Most probable answers

Cardiovascular Diseases
: Diet Therapy
≈
Respiration Disorders
: ?

Diet Therapy
Enteral Nutrition

Gastrointestinal Intubation
Total Parenteral Nutrition

Parenteral Nutrition
Respiratory Therapy

Mental Disorders
: Behavior Therapy
≈
PTSD
: ?

Behavior Therapy
Cognitive Therapy

Rational-Emotive Psychotherapy
Brief Psychotherapy

Psychologic Desensitization
Implosive Therapy

On learned representations without using the hierarchy
Analogy questions Most probable answers

Cardiovascular Diseases
: Diet Therapy
≈
Respiration Disorders
: ?

Respiration Disorders
Respiratory Tract Diseases

Respiratory Sounds
Airway Obstruction
Hypoventilation

Croup

Mental Disorders
: Behavior Therapy
≈
PTSD
: ?

Behavior Therapy
Psychologic Desensitization
Internal-External Control

PTSD
Phobic Disorders

Anger

the middle in Fig. 2), we performed analogical reasoning on both the represen-
tations trained with the hierarchy and ones without the hierarchy, specifically,
regarding Therapy-Disorders/Diseases relationships (Table 4). As expected, it
seems like the label representations trained with the hierarchy are clearly advan-
tageous to the ones trained without the hierarchy on analogical reasoning. To
be more specific, consider the first example, where we want to know what kinds
of therapies are effective on “Respiration Disorders” as the relationship between
“Diet Therapy” and “Cardiovascular Diseases”. When we perform such analog-
ical reasoning using learned embeddings with the hierarchy, the most probable
answers to this analogy question are therapies that can be used to treat “Respi-
ration Disorders” including nutritional therapies. Unlike the learned embeddings
with the hierarchy, the label embeddings without the hierarchy perform poorly.
In the bottom-right of Table 4, “Phobic Disorders” can be considered as a type
of anxiety disorders that occur commonly together with “Post-traumatic Stress
Disorders (PTSD)” rather than a treatment of it.

6.2 Results

The results on the modified zero-shot learning datasets in Table 5 show that
we can obtain substantial improvements by the pretrained label embeddings.
Please note that the scores obtained by using random label embeddings on the
left in Table 5 are the same as those of Wsabie and WsabieH in Table 3. In
this experiment, we used very small base learning rates (i.e., η0 = 10−4 chosen
by validation) for updating label embeddings in Eq. 4 after being initialized
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Table 5. Initialization of label embeddings on OHSUMED under zero-shot settings.

random label embeddings pretrained label embeddings
AvgP RL MiF MaF AvgP RL MiF MaF

Wsabie 0.01 56.37 0.00 0.00 1.64 2.82 0.03 0.06
WsabieH 0.06 39.91 0.00 0.00 1.36 5.33 0.08 0.14

Table 6. Evaluation on the full test data of the OHSUMED dataset. Numbers in
parentheses are standard deviation over 5 runs. Subscript P denotes the use of pre-
trained label embeddings.

Wsabie WsaibeH WsabieP WsabieHP

AvgP 45.72 (0.04) 45.76 (0.06) 45.88 (0.09) 45.92 (0.02)
RL 4.09 (0.18) 3.72 (0.11) 3.44 (0.13) 3.11 (0.10)
MiF 46.32 (0.04) 46.34 (0.04) 46.45 (0.07) 46.50 (0.01)
MaF 13.93 (0.03) 13.96 (0.07) 14.19 (0.05) 14.25 (0.02)

by the pretrained ones. This means that our proposed method is trained in
a way that maps a document into the some point of label embeddings while
the label embeddings hardly change. In fact, the pretrained label embeddings
have interesting properties shown in Section 6.1, so that Wsabie starts learning
at good initial parameter spaces. Interestingly, it was observed that some of
the unseen labels are placed at the top of rankings for test instances, so that
relatively higher scores of bipartition measures are obtained even for Wsabie. We
also performed an experiment on the full OHSUMED dataset. The experimental
results are given in Table 6. WsabieHP combining pretrained label embeddings
with hierarchical label structures is able to further improve, outperforming both
extensions by its own across all measures.

7 Conclusions

We have presented a method that learns a joint space of instances and labels taking
hierarchical structures of labels into account. This method is able to learn repre-
sentations of labels, which are not presented during the training phase, by leverag-
ing label hierarchies. We have also proposed a way of pretraining label embeddings
from huge amounts of label patterns and hierarchical structures of labels.

We demonstrated the joint space learning method on two multi-label text cor-
pora that have different types of label hierarchies. The empirical results showed
that our approach can be used to place relevant unseen labels on the top of the
ranked list of labels. In addition to the quantitative evaluation, we also analyzed
label representations qualitatively via a 2D-visualization of label representa-
tions. This analysis showed that using hierarchical structures of labels allows us
to assess vector representations of labels by analogical reasoning. Further studies
should be carried out to make use of such regularities in label embeddings at
testing time.
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Abstract. Many applications that use empirically estimated functions
face a curse of dimensionality, because integrals over most function
classes must be approximated by sampling. This paper introduces a novel
regression-algorithm that learns linear factored functions (LFF). This
class of functions has structural properties that allow to analytically solve
certain integrals and to calculate point-wise products. Applications like
belief propagation and reinforcement learning can exploit these properties
to break the curse and speed up computation. We derive a regularized
greedy optimization scheme, that learns factored basis functions during
training. The novel regression algorithm performs competitively to Gaus-
sian processes on benchmark tasks, and the learned LFF functions are
with 4-9 factored basis functions on average very compact.

Keywords: Regression · Factored functions · Curse of dimensionality

1 Introduction

This paper introduces a novel regression-algorithm, which performs competitive
to Gaussian processes, but yields linear factored functions (LFF). These have
outstanding properties like analytical point-wise products and marginalization.

Regression is a well known problem, which can be solved by many non-linear
architectures like kernel methods (Shawe-Taylor and Cristianini 2004) or neural
networks (Haykin 1998). While these perform well, the estimated functions often
suffer a curse of dimensionality in later applications. For example, computing an
integral over a neural network or kernel function requires to sample the entire
input space. Applications like belief propagation (Pearl 1988) and reinforcement
learning (Kaelbling et al. 1996), on the other hand, face large input spaces and
require therefore efficient computations. We propose LFF for this purpose and
showcase its properties in comparison to kernel functions.

1.1 Kernel Regression

In the last 20 years, kernel methods like support vector machines (SVM,
Boser et al. 1992; Vapnik 1995) have become a de facto standard in various practi-
cal applications. This is mainly due to a sparse representation of the learned clas-
sifiers with so called support vectors (SV). The most popular kernel method for
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 119–134, 2015.
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regression, Gaussian processes (GP, see Bishop 2006; Rasmussen and Williams
2006), on the other hand, requires as many SV as training samples. Sparse ver-
sions of GP aim thus for a small subset of SV. Some select this set based on
constraints similar to SVM (Tipping 2001; Vapnik 1995), while others try to
conserve the spanned linear function space (sparse GP, Csató and Opper 2002;
Rasmussen and Williams 2006). There exist also attempts to construct new SV by
averaging similar training samples (e.g. Wang et al. 2012).

Well chosen SV for regression are usually not sparsely concentrated on a deci-
sion boundary as they are for SVM. In fact, many practical applications report
that they are distributed uniformly in the input space (e.g. in Böhmer et al.
2013). Regression tasks restricted to a small region of the input space may tol-
erate this, but some applications require predictions everywhere. For example,
the value function in reinforcement learning must be generalized to each state.
The number of SV required to represent this function equally well in each state
grows exponentially in the number of input-space dimensions, leading to Bell-
man’s famous curse of dimensionality (Bellman 1957).

Kernel methods derive their effectiveness from linear optimization in a non-
linear Hilbert space of functions. Kernel-functions parameterized by SV are the
non-linear basis functions in this space. Due to the functional form of the kernel,
this can be a very ineffective way to select basis functions. Even in relatively
small input spaces, it often takes hundreds or thousands SV to approximate a
function sufficiently. To alleviate the problem, one can construct complex kernels
out of simple prototypes (see a recent review in Gönen and Alpaydın 2011).

1.2 Factored Basis Functions

Diverging from all above arguments, this article proposes a more radical app-
roach: to construct the non-linear basis functions directly during training, with-
out the detour over kernel functions and support vectors. This poses two main
challenges: to select a suitable functions space and to regularize the optimization
properly. The former is critical, as a small set of basis functions must be able to
approximate any target function, but should also be easy to compute in practice.

We propose factored functions ψi =
∏

k ψk
i ∈ F as basis functions for

regression, and call the linear combination of m of those bases a linear fac-
tored function f ∈ Fm (LFF, Section 3). For example, generalized linear mod-
els (Nelder and Wedderburn 1972) and multivariate adaptive regression splines
(MARS, Friedman 1991) are both LFF. Computation remains feasible by using
hinge functions ψk

i (xk) = max(0, xk − c) and restricting the scope of each fac-
tored function ψi. In contrast, we assume the general case without restrictions
to functions or scope.

Due to their structure, LFF can solve certain integrals analytically and allow
very efficient computation of point-wise products and marginalization. We show
that our LFF are universal function approximators and derive an appropriate
regularization term. This regularization promotes smoothness, but also retains
a high degree of variability in densely sampled regions by linking smoothness to
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uncertainty about the sampling distribution. Finally, we derive a novel regression
algorithm for LFF based on a greedy optimization scheme.

Functions learned by this algorithm (Algorithm 1, see pages 125 and 133) are
very compact (between 3 and 12 bases on standard benchmarks) and perform
competitive with Gaussian processes (Section 4). The paper finishes with a dis-
cussion of the computational possibilities of LFF in potential areas of application
and possible extensions to sparse regression with LFF (Section 5).

2 Regression

Let {xt ∈ X}n
t=1 be a set of n input samples, i.i.d. drawn from an input

set X ⊂ IRd. Each so called “training sample” is labeled with a real number
{yt ∈ IR}n

t=1. Regression aims to find a function f : X → IR, that predicts the
labels to all (previously unseen) test samples as well as possible. Labels may be
afflicted by noise and f must thus approximate the mean label of each sample,
i.e., the function μ : X → IR. It is important to notice that conceptually the noise
is introduced by two (non observable) sources: noisy labels yt and noisy samples
xt. The latter will play an important role for regularization. We define the con-
ditional distribution χ of observable samples x ∈ X given the non-observable
“true” samples z ∈ X , which are drawn by a distribution ξ. In the limit of
infinite samples, the least squares cost-function C[f |χ, μ] can thus be written as

lim
n→∞

inf
f

1
n

n
∑

t=1

(

f(xt) − yt

)2

= inf
f

∫∫

ξ(dz)χ(dx|z)
(

f(x) − μ(z)
)2

. (1)

The cost function C can never be computed exactly, but approximated using the
training samples1 and assumptions about the unknown noise distribution χ.

3 Linear Factored Functions

Any non-linear function can be expressed as a linear function f(x) = a�ψ(x),
∀x ∈ X , with m non-linear basis functions ψi : X → IR, ∀i ∈ {1 . . . , m}. In this
section we will define linear factored functions (LFF), that have factored basis
functions ψi(x) := ψ1

i (x1) · . . . · ψd
i (xd) ∈ F , a regularization method for this

function class and an algorithm for regression with LFF.

3.1 Function Class

We define the class of linear factored functions f ∈ Fm as a linear combination
(with linear parameters a ∈ IRm) of m factored basis functions ψi : X → IR

1 The distribution ξ of “true” samples z can not be observed. We approximate in
the following ξ with the training-sample distribution. This may be justified if the
sample-noise χ is comparatively small. Although not strictly rigorous, the presented
formalism helps to put the regularization derived in Proposition 2 into perspective.
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(with parameters {Bk ∈ IRmk×m}d
k=1):

f(x) := a�ψ(x) := a�
[ d
∏

k=1

ψk(xk)
]

:=
m
∑

i=1

ai

d
∏

k=1

mk
∑

j=1

Bk
ji φk

j (xk) . (2)

LFF are formally defined in Appendix A. In short, a basis function ψi is the
point-wise product of one-dimensional functions ψk

i in each input dimension k.
These are themselves constructed as linear functions of a corresponding one-
dimensional base {φk

j }mk
j=1 over that dimension and ideally can approximate

arbitrary functions2. Although each factored function ψi is very restricted, a
linear combination of them can be very powerful:

Corollary 1. Let Xk be a bounded continuous set and φk
j the j’th Fourier base

over Xk. In the limit of mk → ∞,∀k ∈ {1, . . . , d}, holds F∞ = L2(X , ϑ).

Strictly this holds in the limit of infinitely many basis functions ψi, but we will
show empirically that there exist close approximations with a small number m
of factored functions. One can make similar statements for other bases {φk

j }∞
j=1.

For example, for Gaussian kernels one can show that the space F∞ is in the
limit equivalent to the corresponding reproducing kernel Hilbert space H.

LFF offer some structural advantages over other universal function approxi-
mation classes like neural networks or reproducing kernel Hilbert spaces. Firstly,
the inner product of two LFF in L2(X , ϑ) can be computed as products of
one-dimensional integrals. For some bases3, these integrals can be calculated
analytically without any sampling. This could in principle break the curse of
dimensionality for algorithms that have to approximate these inner products
numerically. For example, input variables can be marginalized (integrated) out
analytically (Equation 9 on Page 130). Secondly, the point-wise product of two
LFF is a LFF as well4 (Equation 10 on Page 131). See Appendix A for details.
These properties are very useful, for example in belief propagation (Pearl 1988)
and factored reinforcement learning (Böhmer and Obermayer 2013).

3.2 Constraints

LFF have some degrees of freedom that can impede optimization. For example,
the norm of ψi ∈ F does not influence function f ∈ Fm, as the corresponding
linear coefficients ai can be scaled accordingly. We can therefore introduce the
constraints ‖ψi‖ϑ = 1,∀i, without restriction to the function class. The factor-
ization of inner products (see Appendix A on Page 130) allows us furthermore
to rewrite the constraints as ‖ψi‖ϑ =

∏

k ‖ψk
i ‖ϑk = 1. This holds as long as

the product is one, which exposes another unnecessary degree of freedom. To

2 Examples are Fourier bases, Gaussian kernels or hinge-functions as in MARS.
3 E.g. Fourier bases for continuous, and Kronecker-delta bases for discrete variables.
4 One can use the trigonometric product-to-sum identities for Fourier bases or the Kro-

necker delta for discrete bases to construct LFF from a point-wise product without
changing the underlying basis {{φk

i }mk
i=1}d

k=1.
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finally make the solution unique (up to permutation), we define the constraints
as ‖ψk

i ‖ϑk = 1,∀k,∀i. Minimizing some C[f ] w.r.t. f ∈ Fm is thus equivalent to

inf
f∈Fm

C[f ] s.t. ‖ψk
i ‖ϑk = 1 , ∀k ∈ {1, . . . , d} , ∀i ∈ {1, . . . , m} . (3)

The cost function C[f |χ, μ] of Equation 1 with the constraints in Equation 3
is equivalent to ordinary least squares (OLS) w.r.t. linear parameters a ∈ IRm.
However, the optimization problem is not convex w.r.t. the parameter space
{Bk ∈ IRmk×m}d

k=1, due to the nonlinearity of products.
Instead of tackling the global optimization problem induced by Equation 3,

we propose a greedy approximation algorithm. Here we optimize at iteration ı̂
one linear basis function ψı̂ =: g =:

∏

k gk ∈ F , with gk(xk) =: bk�φk(xk), at a
time, to fit the residual μ−f between the true mean label function μ ∈ L2(X , ϑ)
and the current regression estimate f ∈ F ı̂−1, based on all ı̂ − 1 previously
constructed factored basis functions {ψi}ı̂−1

i=1:

inf
g∈F

C[f + g|χ, μ] s.t. ‖gk‖ϑk = 1 , ∀k ∈ {1, . . . , d} . (4)

3.3 Regularization

Regression with any powerful function class requires regularization to avoid over-
fitting. Examples are weight decay for neural networks (Haykin 1998) or param-
eterized priors for Gaussian processes. It is, however, not immediately obvious
how to regularize the parameters of a LFF and we will derive a regularization
term from a Taylor approximation of the cost function in Equation 1.

Fig. 1. We interpret the
Radon-Nikodym derivative
dϑ
dξ

as uncertainty measure
for our knowledge of X . Reg-
ularization enforces smooth-
ness in uncertain regions.

We aim to enforce smooth functions, espe-
cially in those regions our knowledge is limited
due to a lack of training samples. This uncertainty
can be expressed as the Radon-Nikodym deriva-
tive5 ϑ

ξ : X → [0,∞) of our factored measure ϑ
(see Appendix A) w.r.t. the sampling distribution
ξ. Figure 1 demonstrates at the example of a uni-
form distribution ϑ how ϑ

ξ reflects our empirical
knowledge of the input space X .

We use this uncertainty to modulate the sam-
ple noise distribution χ in Equation 1. This means
that frequently sampled regions of X shall yield
low, while scarcely sampled regions shall yield
high variance. Formally, we assume χ(dx|z) to
be a Gaussian probability measure over X with
mean z and a covariance matrix Σ ∈ IRd×d, scaled
by the local uncertainty in z (modeled as ϑ

ξ (z)):

5 Technically we have to assume that ϑ is absolutely continuous in respect to ξ. For
“well-behaving” distributions ϑ, like the uniform or Gaussian distributions we discuss
in Appendix A, this is equivalent to the assumption that in the limit of infinite
samples, each sample z ∈ X will eventually be drawn by ξ.
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∫ χ(dx|z)(x − z) = 0 , ∫ χ(dx|z)(x − z)(x − z)� = ϑ
ξ
(z) · Σ , ∀z ∈ X . (5)

In the following we assume without loss of generality6 the matrix Σ to be diag-
onal, with the diagonal elements called σ2

k := Σkk.

Proposition 2. Under the assumptions of Equation 5 and a diagonal covari-
ance matrix Σ, the first order Taylor approximation of the cost C in Equation 4
is

C̃[g] := ‖g − (μ − f)‖2ξ
︸ ︷︷ ︸

sample-noise free cost

+
d

∑

k=1

σ2
k ‖ ∂

∂xk
g + ∂

∂xk
f‖2ϑ

︸ ︷︷ ︸

smoothness in dimension k

. (6)

Proof: see Appendix C on Page 132. �
Note that the approximated cost C̃[g] consists of the sample-noise free cost

(measured w.r.t. training distribution ξ) and d regularization terms. Each term
prefers functions that are smooth7 in one input dimension. This enforces smooth-
ness everywhere, but allows exceptions where enough data is available. To avoid
a cluttered notation, in the following we will use the symbol ∇kf := ∂

∂xk
f .

3.4 Optimization

Another advantage of cost function C̃[g] is that one can optimize one factor
function gk of g(x) = g1(x1)·. . .·gd(xd) ∈ F at a time, instead of time consuming
gradient descend over the entire parameter space of g. To be more precise:

Proposition 3. If all but one factor function gk are considered constant, Equa-
tion 6 has an analytical solution. If {φk

j }mk
j=1 is a Fourier base, σ2

k > 0 and ϑ 	 ξ,
then the solution is also unique.

Proof: see Appendix C on Page 133. �
One can give similar guarantees for other bases, e.g. Gaussian kernels. Note
that Proposition 3 does not state that the optimization problem has a unique
solution in F . Formal convergence statements are not trivial and empirically the
parameters of g do not converge, but evolve around orbits of equal cost instead.
However, since the optimization of any gk cannot increase the cost, any sequence
of improvements will converge to (and stay in) a local minimum. This implies a
nested optimization approach, that is formulated in Algorithm 1 on Page 133:

– An inner loop that optimizes one factored basis function g(x) = g1(x1) · . . . ·
gd(xd) by selecting an input dimension k in each iteration and solve Equation
6 for the corresponding gk. A detailed derivation of the optimization steps of

6 Non-diagonal covariance matrices Σ can be cast in this framework by projecting the
input samples into the eigenspace of Σ (thus diagonalizing the input) and use the
corresponding eigenvalues λk instead of the regularization parameters σ2

k’s.
7 Each regularization term is measured w.r.t. the factored distribution ϑ. We also

tested the algorithm without consideration of “uncertainty” ϑ
ξ
, i.e., by measuring

each term w.r.t. ξ. As a result, regions outside the hypercube containing the training
set were no longer regularized and predicted arbitrary (often extreme) values.
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Algorithm 1. (abstract) – a detailed version can be found on Page 133
while new factored basis function can improve solution do

initialize new basis function g as constant function
while optimization improves cost in Equation 6 do

for random input dimension k do
calculate optimal solution for gk without changing gl, ∀l �= k

end for
end while // new basis function g has converged
add g to set of factored basis functions and solve OLS

end while // regression has converged

the inner loop is given in Appendix B on Page 131. The choice of k influences
the solution in a non-trivial way and further research is needed to build up
a rationale for any meaningful decision. For the purpose of this paper, we
assume k to be chosen randomly by permuting the order of updates.
The computational complexity of the inner loop is O(m2

kn+d2mkm). Memory
complexity is O(d mkm), or O(d mkn) with the optional cache speedup of
Algorithm 1. The loop is repeated for random k until the cost-improvements
of all dimensions k fall below some small ε.

– After convergence of the inner loop in (outer) iteration ı̂, the new basis
function is ψı̂ := g. As the basis has changed, the linear parameters a ∈ IRı̂

have to be readjusted by solving the ordinary least squares problem

a = (ΨΨ�)−1Ψy , with Ψit := ψi(xt) , ∀i ∈ {1, . . . , ı̂} , ∀t ∈ {1, . . . , n} .

We propose to stop the approximation when the newly found basis function
ψı̂ is no longer linearly independent of the current basis {ψi}ı̂−1

i=1. This can
for example be tested by comparing the determinant det( 1

nΨΨ�) < ε, for
some very small ε.

4 Empirical Evaluation

In this section we will evaluate the novel LFF regression Algorithm 1, printed in
detail on Page 133. We will analyze its properties on low dimensional toy-data,
and compare its performance with sparse and traditional Gaussian processes
(GP, see Bishop 2006; Rasmussen and Williams 2006).

4.1 Demonstration

To showcase the novel Algorithm 1, we tested it on an artificial two-dimensional
regression toy-data set. The n = 1000 training samples were drawn from a noisy
spiral and labeled with a sinus. The variance of the Gaussian sample-noise grew
with the spiral as well:

xt = 6 t
n

[

cos
(

6 t
nπ

)

sin
(

6 t
nπ

)

]

+ N
(

0, t2

4n2 I
)

, yt = sin
(

4 t
nπ

)

, ∀t ∈ {1, . . . , n} . (7)
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Fig. 2. Two LFF functions learned from the same 1000 training samples (white circles).
The color inside a circle represents the training label. Outside the circles, the color
represents the prediction of the LFF function. The differences between both functions
are rooted in the randomized order in which the factor functions gk are updated.
However, the similarity of the sampled region indicates that poor initial choices can be
compensated by subsequently constructed basis functions.

Figure 2 shows one training set plotted over two learned8 functions f ∈ Fm with
m = 21 and m = 24 factored basis functions, respectively. Regularization con-
stants were in both cases σ2

k = 0.0005,∀k. The differences between the functions
stem from the randomized order in which the factor functions gk are updated.
Note that the sampled regions have similar predictions. Regions with strong
differences, for example the upper right corner, are never seen during training.

In all our experiments, Algorithm 1 always converged. Runtime was mainly
influenced by the input dimensionality (O(d2)), the number of training sam-
ples (O(n)) and the eventual number of basis functions (O(m)). The latter was
strongly correlated with approximation quality, i.e., bad approximations con-
verged fast. Cross-validation was therefore able to find good parameters effi-
ciently and the resulting LFF were always very similar near the training data.

4.2 Evaluation

We compared the regression performance of LFF and GP with cross-validation
on five regression benchmarks from the UCI Manchine Learning Repository9:

– The concrete compressive strength data set (concrete, Yeh 1998) consists
of n = 1030 samples with d = 8 dimensions describing various concrete

8 Here (and in the rest of the paper), each variable was encoded with 50 Fourier cosine
bases. We tested other sizes as well. Few cosine bases result effectively in a low-pass
filtered function, whereas every experiment with more than 20 or 30 bases behaved
very similar. We tested up to mk = 1000 bases and did not experience over-fitting.

9 https://archive.ics.uci.edu/ml/index.html

https://archive.ics.uci.edu/ml/index.html
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Fig. 3. Mean and standard deviation within a 10-fold cross-validation of a) the toy
data set with additional independent noise input dimensions and b) all tested UCI
benchmark data sets. The stars mark significantly different distribution of RMSE over
all folds in both a paired-sample t-test and a Wilcoxon signed rank test. Significance
levels are: one star p < 0.05, two stars p < 0.005.

mixture-components. The target variable is the real-valued compression
strength of the mixture after it hardened.

– The combined cycle power plant data set (ccpp, Tüfekci 2014) consists of
n = 9568 samples with d = 4 dimensions describing 6 years worth of mea-
surements from a combined gas and steam turbine. The real-valued target
variable is the energy output of the system.

– The wine quality data set (Cortez et al. 2009) consists of two subsets with
d = 11 dimensions each, which describe physical attributes of various white
and red wines: the set contains n = 4898 samples of white wine and n = 1599
samples of red wine. The target variable is the estimated wine quality on a
discrete scale from 0 to 10.

– The yacht hydrodynamics data set (yacht, Gerritsma et al. 1981) consists
of n = 308 samples with d = 6 dimensions describing parameters of the
Delft yacht hull ship-series. The real-valued target variable is the residuary
resistance measured in full-scale experiments.

To demonstrate the advantage of factored basis functions, we also used the 2d-
spiral toy-data set of the previous section with a varying number of additional
input dimensions. Additional values were drawn i.i.d. from a Gaussian distribu-
tion and are thus independent of the target labels. As the input space X grows,
kernel methods will increasingly face the curse of dimensionality during training.

Every data-dimension (except the labels) have been translated and scaled
to zero mean and unit-variance before training. Hyper-parameters were chosen
w.r.t. the mean of a 10-fold cross-validation. LFF-regression was tested for the
uniform noise-parameters σ2

k ∈ {10−10, 10−9.75, 10−9.5, . . . , 1010},∀k, i.e. for 81
different hyper-parameters. GP were tested with Gaussian kernels κ(x,y) =
exp(− 1

2σ̄2 ‖x − y‖22) using kernel parameters σ̄ ∈ {10−1, 10−3/4, 10−1/2, . . . , 3}
and prior-parameters β ∈ {10−2, 10−1, . . . , 1010} (Bishop 2006, see for the
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Table 1. 10-fold cross-validation RMSE for benchmark data sets with d dimensions
and n samples, resulting in m basis functions. The cross-validation took h hours.

DATA SET d n #SV RMSE LFF RMSE GP m LFF h LFF h GP

Concrete 8 1030 927 4.429 ± 0.69 5.196 ± 0.64 4.2 ± 0.8 3.00 0.05
CCPP 4 9568 2000 3.957 ± 0.17 3.888 ± 0.17 8.8 ± 2.0 1.96 1.14
White Wine 11 4898 2000 0.707 ± 0.02 0.708 ± 0.03 4.2 ± 0.4 4.21 0.69
Red Wine 11 1599 1440 0.632 ± 0.03 0.625 ± 0.03 4.7 ± 0.7 3.25 0.13
Yacht 6 308 278 0.446 ± 0.23 0.383 ± 0.11 4.2 ± 0.6 0.43 0.005

definition), i.e. for 221 different hyper-parameter combinations. The number of
support vectors in standard GP equals the number of training samples. As this is
not feasible for larger data sets, we used the MP-MAH algorithm (Böhmer et al.
2012) to select a uniformly distributed subset of 2000 training samples for sparse
GP (Rasmussen and Williams 2006).

Figure 3a demonstrates the advantage of factored basis functions over kernel
methods during training. The plot shows the root mean squared errors10 (RMSE)
of the two dimensional spiral toy-data set with an increasing number of indepen-
dent noise dimensions. GP solves the initial task better, but clearly succumbs to
the curse of dimensionality, as the size of the input space X grows. LFF, on the
other hand, significantly overtake GP from 3 noise dimensions on, as the factored
basis functions appear to be less affected by the curse. Another difference to GP
is that decreasing performance automatically yields less factored basis functions
(from 19.9 ± 2.18 with 0, to 6.3 ± 0.48 bases with 8 noise dimensions).

Figure 3b and Table 1 show that our LFF algorithm performs on all evaluated
real-world benchmark data sets comparable to (sparse) GP. RMSE distributions
over all folds were statistically indistinguishable, except for an advantage of LFF
regression in the concrete compressive strength data set (p < 0.01 in a t-test and
p < 0.02 in a signed rank test). As each basis function requries many iterations
to converge, LFF regression runs considerably longer than standard approaches.
However, LFF require between 3 and 12 factored basis functions to achieve the
same performance as GP with 278-2000 kernel basis functions.

5 Discussion

We presented a novel algorithm for regression, which constructs factored basis
functions during training. As linear factored functions (LFF) can in principle
approximate any function in L2(X , ϑ), a regularization is necessary to avoid
over-fitting. Here we rely on a regularization scheme that has been motivated by
a Taylor approximation of the least-squares cost function with (an approximation
of) virtual sample-noise. RMSE performance appears comparable to Gaussian

10 RMSE are not a common performance metric for GP, which represent a distribution
of solutions. However, RMSE reflect the objective of regression and are well suited
to compare our algorithm with the mean of a GP.



Regression with Linear Factored Functions 129

processes on real-world benchmark data sets, but the factored representation is
considerably more compact and seems to be less affected by distractors.

At the moment, LFF optimization faces two challenges. (i) The optimized
cost function is not convex, but the local minimum of the solution may be
controlled by selecting the next factor function to optimize. For example, MARS
successively adds factor functions. Generalizing this will require further research,
but may also allow some performance guarantees. (ii) The large number of inner-
loop iterations make the algorithm slow. This problem should be mostly solved
by addressing (i), but finding a trade-off between approximation quality and
runtime may also provide a less compact shortcut with similar performance.

Preliminary experiments also demonstrated the viability of LFF in a sparse
regression approach. Sparsity refers here to a limited number of input-dimensions
that affect the prediction, which can be implemented by adjusting the sample-
noise parameters σ2

k during training for each variable Xk individually. This is of
particular interest, as factored functions are ideally suited to represent sparse
functions and are in principle unaffected by the curse of dimensionality in func-
tion representation. Our approach modified the cost function to enforce LFF
functions that were constant in all noise-dimensions. We did not include our
results in this paper, as choosing the first updated factor functions gk poorly
resulted in basis functions that rather fitted noise than predicted labels. When
we enforce sparseness, this initial mistake can afterwards no longer be rectified
by other basis functions, in difference to the presented Algorithm 1. However, if
this can be controlled by a sensible order in the updates, the resulting algorithm
should be much faster and more robust than the presented version.

There are many application areas that may exploit the structural advan-
tages of LLF. In reinforcement learning (Kaelbling et al. 1996), one can exploit
the factorizing inner products to break the curse of dimensionality of the state
space (Böhmer and Obermayer 2013). Factored transition models also need
to be learned from experience, which is essentially a sparse regression task.
Another possible field of application are junction trees (for Bayesian inference,
see e.g. Bishop 2006) over continuous variables, where sparse regression may
estimate the conditional probabilities. In each node one must also marginalize
out variables, or calculate the point-wise product over multiple functions. Both
operations can be performed analytically with LFF, the latter at the expense of
more basis functions in the resulting LFF. However, one can use our framework
to compress these functions after multiplication. This would allow junction-tree
inference over mixed continuous and discrete variables.

In summary, we believe our approach to approximate functions by construct-
ing non-linear factored basis functions (LFF) to be very promising. The pre-
sented algorithm performs comparable with Gaussian processes, but appears
less sensitive to large input spaces than kernel methods. We also discussed some
potential extensions for sparse regression that should improve upon that, in par-
ticular on runtime, and gave some fields of application that would benefit greatly
from the algebraic structure of LFF.
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Appendix A LFF Definition and Properties

Let Xk denote the subset of IR associated with the k’th variable of input space
X ⊂ IRd, such that X := X1 × . . . × Xd. To avoid the curse of dimension-
ality in this space, one can integrate w.r.t. a factored probability measure ϑ,
i.e. ϑ(dx) =

∏d
k=1 ϑk(dxk),

∫

ϑk(dxk) = 1,∀k. For example, ϑk could be uni-
form or Gaussian distributions over Xk and the resulting ϑ would be a uniform
or Gaussian distribution over the input space X .

A function g : X → IR is called a factored function if it can be written
as a product of one-dimensional factor functions gk : Xk → IR, i.e. g(x) =
∏d

k=1 gk(xk). We only consider factored functions g that are twice integrable
w.r.t. measure ϑ, i.e. g ∈ L2(X , ϑ). Note that not all functions f ∈ L2(X , ϑ)
are factored, though. Due to Fubini’s theorem the d-dimensional inner product
between two factored functions g, g′ ∈ L2(X , ϑ) can be written as the product
of d one-dimensional inner products:

〈g, g′〉ϑ =
∫

ϑ(dx) g(x) g′(x) =
∫

d
∏

k=1

ϑk(dxk) gk(dxk) g′k(dxk) =
d
∏

k=1

〈gk, g′k〉ϑk .

This trick can be used to solve the integrals at the heart of many least-squares
algorithms. Our aim is to learn factored basis functions ψi. To this end, let
{φk

j : Xk → IR}mk
j=1 be a well-chosen11 (i.e. universal) basis on Xk, with the

space of linear combinations denoted by Lk
φ := {b�φk|b ∈ IRmk}. One can thus

approximate factor functions of ψi in Lk
φ, i.e., as linear functions

ψk
i (xk) :=

mk
∑

j=1

Bk
ji φk

j (xk) ∈ Lk
φ , Bk ∈ IRmk×m . (8)

Let F be the space of all factored basis functions ψi defined by the factor func-
tions ψk

i above, and Fm be the space of all linear combinations of those m
factored basis functions (Equation 2).

Marginalization of LFF can be performed analytically with Fourier bases φk
j

and uniform distribution ϑ (many other bases can be analytically solved as well):

∫

ϑl(dxl) f(x) =
m

∑

i=1

(

ai

ml
∑

j=1

Bl
ji 〈φl

j , 1〉ϑl

︸ ︷︷ ︸

mean of φl
j

)[ d
∏

k �=l

ψk
i

]

Fourier=
m

∑

i=1

aiB
l
1i

︸ ︷︷ ︸

new ai

[ d
∏

k �=l

ψk
i

]

.(9)

11 Examples for continuous variables Xk are Fourier cosine bases φk
j (xk) ∼ cos

(

(j −
1) π xk

)

, and Gaussian bases φk
j (xk) = exp

(

1
2σ2 (xk − skj)

2
)

. Discrete variables may

be represented with Kronecker-delta bases φk
j (xk = i) = δij .
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Using the trigonometric product-to-sum identity cos(x) ·cos(y) = 1
2

(

cos(x−y)+
cos(x + y)

)

, one can also compute the point-wise product between two LFF f
and f̄ with cosine-Fourier base (solutions to other Fourier bases are less elegant):

f̃(x) := f(x) · f̄(x)

Fourier
=

mm̄
∑

i,j=1

ai āj
︸︷︷︸

new ãt

d
∏

k=1

2mk
∑

l=1

(

new B̃k
lt

︷ ︸︸ ︷

1
2

l−1
∑

q=1

Bk
qi B̄k

(l−q)j + 1
2

mk
∑

q=l+1

Bk
qi B̄k

(q−l)j

)

φk
l (xk) , (10)

where t := (i − 1) m̄ + j, and Bk
ji := 0,∀j > mk, for both f and f̄ . Note that

this increases the number of basis functions m̃ = mm̄, and the number of bases
m̃k = 2mk for each respective input dimension. The latter can be counteracted
by low-pass filtering, i.e., by setting B̃k

ji := 0,∀j > mk.

Appendix B Inner Loop Derivation

Here we will optimize the problem in Equation 6 for one variable Xk at a time,
by describing the update step gk ← g′k. This is repeated with randomly chosen
variables k, until convergence of the cost C̃[g], that is, until all possible updates
decrease the cost less than some small ε.

Let in the following Ck := 〈φk,φk�〉ϑk and Ċk := 〈∇kφk,∇kφk�〉ϑk denote
covariance matrices, and Rk

l := ∂
∂bk 〈∇lg,∇lf〉ϑ denote the derivative of one reg-

ularization term. Note that for some choices of bases {φk
j }mk

j=1, one can compute
the covariance matrices analytically before the main algorithm starts, e.g. Fourier
cosine bases have Ck

ij = δij and Ċk
ij = (i − 1)2 π2 δij .

The approximated cost function in Equation 6 is

C̃[g] = ‖g‖2ξ−2〈g, μ−f〉ξ+‖μ−f‖2ξ+
d

∑

k=1

σ2
k

(

‖∇kg‖2ϑ+2〈∇kg,∇kf〉ϑ+‖∇kf‖2ϑ
)

.

The non-zero gradients of all inner products of this equation w.r.t. parameter
vector bk ∈ IRmk are

∂
∂bk 〈g, g〉ξ = 2 〈φk ·

∏

l �=k

gl,
∏

l �=k

gl · φk�〉ξb
k ,

∂
∂bk 〈g, μ − f〉ξ = 〈φk ·

∏

l �=k

gl, μ − f〉ξ ,

∂
∂bk 〈∇lg,∇lg〉ϑ = ∂

∂bk 〈∇lg
l,∇lg

l〉ϑl

∏

s �=l

1
︷ ︸︸ ︷

〈gs, gs〉ϑs = 2 δkl Ċkbk ,

Rk
l := ∂

∂bk 〈∇lg,∇lf〉ϑ =

⎧

⎪

⎨

⎪

⎩

ĊkBk
[

a ·
∏

s �=k

Bs�Csbs
]

, if k = l

CkBk
[

a · Bl�Ċlbl ·
∏

s �=k �=l

Bs�Csbs
]

, if k = l
.

Setting this to zero yields the unconstrained solution gk
uc,

bk
uc =

(

regularized covariance matrix C̄k

︷ ︸︸ ︷

〈φk ·
∏

l �=k

gl,
∏

l �=k

gl · φk�〉ξ + σ2
kĊ

k
)−1(

〈φk ·
∏

l �=k

gl, μ−f〉ξ−
d

∑

l=1

Rk
l σ2

l

)

. (11)
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However, these parameters do not satisfy to the constraint ‖g′k‖ϑk
!= 1, and

have to be normalized:

b′k :=
bk

uc

‖gk
uc‖ϑk

=
bk

uc
√

bk�
uc Ckbk

uc

. (12)

The inner loop finishes when for all k the improvement12 from gk to g′k drops
below some very small threshold ε, i.e. C̃[g] − C̃[g′] < ε. Using g′l = gl,∀l = k,
one can calculate the left hand side:

C̃[g] − C̃[g′] = ‖g‖2ξ − ‖g′‖2ξ − 2〈g − g′, μ − f〉ξ

+
d

∑

l=1

σ2
l

[

‖∇lg‖2ϑ
︸ ︷︷ ︸

bl�Ċlbl

− ‖∇lg
′‖2ϑ

︸ ︷︷ ︸

b′l�Ċlb′l

−2 〈∇lg − ∇lg
′,∇lf〉ϑ

︸ ︷︷ ︸

(bk−b′k)�Rk
l

]

(13)

= 2〈g − g′, μ − f〉ξ + bk�C̄kbk� − b′k�C̄kb′k� − 2(bk − b′k)�
( d
∑

l=1

Rk
l σ2

l

)

.

Appendix C Proofs of the Propositions

Proof of Proposition 2: The 1st order Taylor approximation of any g, f ∈
L2(X , ξχ) around z ∈ X is f(x) = f(z + x − z) ≈ f(z) + (x − z)�∇f(z).
For the Hilbert space L2(X , ξχ) we can thus approximate:

〈g, f〉ξχ =

∫

ξ(dz)

∫

χ(dx|z) g(x) f(x)

≈
∫

ξ(dz)
(

g(z) f(z) ∫
1

︷ ︸︸ ︷

ξ(dx|z)+g(z) ∫
0 due to (eq.5)

︷ ︸︸ ︷

χ(dx|z) (x − z)�∇f(z)

+ ∫ χ(dx|z) (x − z)
︸ ︷︷ ︸

0 due to (eq.5)

�∇g(z) f(z) + ∇g(z)� ∫ χ(dx|z) (x − z)(x − z)�
︸ ︷︷ ︸

ϑ
ξ
(z)·Σ due to (eq.5)

∇f(z)
)

= 〈g, f〉ξ +
d
∑

k=1
σ2

k 〈∇kg, ∇kf〉ϑ .

Using this twice and the zero mean assumption (Eq. 5), we can derive:

inf
g∈F

C[f + g|χ, μ] ≡ inf
g∈F

∫∫

ξ(dz) χ(dx|z)
(

g2(x) − 2 g(x)
(

μ(z) − f(x)
)

)

= inf
g∈F

〈g, g〉ξχ + 2〈g, f〉ξχ − 2

∫

ξ(dz) μ(z)

∫

χ(dx|z) g(x)

≈ inf
g∈F

〈g, g〉ξ − 2〈g, μ − f〉ξ +
d
∑

k=1

σ2
k

(

〈∇kg, ∇kg〉ϑ + 2〈∇kg, ∇kf〉ϑ

)

≡ inf
g∈F

‖g − (μ − f)‖2
ξ +

d
∑

k=1

σ2
k‖∇kg + ∇kf‖2

ϑ = C̃[g] .

�
12 Anything simpler does not converge, as the parameter vectors often evolve along

chaotic orbits in IRmk .
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Proof of Proposition 3: The analytical solution to the optimization problem in
Equation 6 is derived in Appendix B and has a unique solution if the matrix
C̄k, defined in Equation 11, is of full rank:

C̄k := 〈φk ·
∏

l �=k

gl,
∏

l �=k

gl · φk�〉ξ + σ2
kĊ

k .

For Fourier bases the matrix Ċk is diagonal, with Ċk
11 being the only zero entry.

C̄k is therfore full rank if σ2
k > 0 and C̄k

11 > 0. Because ϑ is absolutely continuous
w.r.t. ξ, the constraint ‖gl‖ϑ = 1,∀l, implies that there exist no gl that is
zero on all training samples. As the first Fourier base is a constant,
〈φk

1 ·
∏

l �=k gl,
∏

l �=k gl · φk
1〉ξ > 0 and the matrix C̄k is therefore of full rank. �

Algorithm 1. (detailed) – LFF-Regression
Input: X ∈ IRd×n, y ∈ IRn , σ2 ∈ IRd ε, ε ∈ IR

Ck := 〈φk, φk〉
ϑk , Ċk := 〈∇φk, ∇φk〉

ϑk , ∀k // analytical covariance matrices

Φk
jt := φk

j (Xkt) , ∀k , ∀j , ∀t // optional cache of sample-expansion

f := 0 ∈ IRn; a := ∅ ; Bk := ∅ , ∀k ; Ψ := ∞ // initialize empty f ∈ F0

while det
(

1
n ΨΨ�

)

> ε do

bk := 1k ∈ IRmk , ∀k ; gk := 1 ∈ IRn , ∀k // initialize all gk as constant

h := ∞ ∈ IRd // initialize estimated improvement

while max(h) > ε do

for k in randperm(1, . . . , d) do

Rk := ĊkBk [a ·
∏

s �=k

Bs�Csbs] // Rk = ∂

∂bk 〈∇kg, ∇kf〉ϑ

Rl := CkBk [a · Bl�Ċlbl ·
∏

s �=k �=l

Bs�Csbs] , ∀l �= k // Rl = ∂

∂bk 〈∇lg, ∇lf〉ϑ

C̄ := Φk
[

Φk� ·
∏

l �=k

(gl)2 1�
]

+ σ2
k Ċk // regularized cov. matrix (eq. 11)

b′ := C̄−1
(

Φk
[

(y − f) ·
∏

l �=k

gl
]

− Rσ2
)

// unconstrained gk
uc (eq. 11)

b′ := b′ /
√

b′�Ckb′ // enforce constraints (eq. 12)

hk := 2
n (bk − b′)�

(

Φk
[

(y − f) ·
∏

l �=k

gl
])

// approximate 2〈g − g′, μ − f〉ξ

hk := hk + bkC̄bk − b′C̄b′ − 2(bk − b′)�Rσ2 // cost improvement (eq. 13)

bk := b′ ; gk := Φk�bk // update factor function gk

end for // end function gk update

end while // end inner loop: cost function converged and thus g optimized

Bk := [Bk, bk] , ∀k ; Ψ :=
[ d

∏

k=1
Bk�Φk

]

// adding g to the bases functions of f

a :=
(

ΨΨ�)−1Ψy ; f := Ψ�a // project μ onto new bases

end while // end outer loop: new g no longer linear independent, thus f ≈ μ

Output: a ∈ IRm, {Bk ∈ IRmk×m}d
k=1 // return parameters of f ∈ Fm
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Abstract. This paper discusses the effect of hubness in zero-shot learn-
ing, when ridge regression is used to find a mapping between the exam-
ple space to the label space. Contrary to the existing approach, which
attempts to find a mapping from the example space to the label space,
we show that mapping labels into the example space is desirable to sup-
press the emergence of hubs in the subsequent nearest neighbor search
step. Assuming a simple data model, we prove that the proposed app-
roach indeed reduces hubness. This was verified empirically on the tasks
of bilingual lexicon extraction and image labeling: hubness was reduced
with both of these tasks and the accuracy was improved accordingly.

1 Introduction

1.1 Background

In recent years, zero-shot learning (ZSL) [10,14,15,22] has been an active
research topic in machine learning, computer vision, and natural language
processing. Many practical applications can be formulated as a ZSL task:
drug discovery [15], bilingual lexicon extraction [7,8,20], and image labeling
[2,11,21,22,25], to name a few. Cross-lingual information retrieval [28] can also
be viewed as a ZSL task.

ZSL can be regarded as a type of (multi-class) classification problem, in the
sense that the classifier is given a set of known example-class label pairs (train-
ing set), with the goal to predict the unknown labels of new examples (test set).
However, ZSL differs from the standard classification in that the labels for the
test examples are not present in the training set. In standard settings, the classi-
fier chooses, for each test example, a label among those observed in the training
set, but this is not the case in ZSL. Moreover, the number of class labels can be
huge in ZSL; indeed, in bilingual lexicon extraction, labels correspond to possible
translation words, which can range over entire vocabulary of the target language.

Obviously, such a task would be intractable without further assumptions.
Labels are thus assumed to be embedded in a metric space (label space), and their
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 135–151, 2015.
DOI: 10.1007/978-3-319-23528-8 9
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distance (or similarity) can be measured in this space1. Such a label space can be
built with the help of background knowledge or external resources; in image label-
ing tasks, for example, labels correspond to annotation keywords, which can be
readily represented as vectors in a Euclidean space, either by using corpus statis-
tics in a standard way, or by using the more recent techniques for learning word
representations, such as the continuous bag-of-words or skip-gram models [19].

After a label space is established, one natural approach would be to use a
regression technique on the training set to obtain a mapping function from the
example space to the label space. This function could then be used for mapping
unlabeled examples into the label space, where nearest neighbor search is carried
out to find the label closest to the mapped example. Finally, this label would be
output as the prediction for the example.

To find the mapping function, some researchers use the standard linear ridge
regression [7,8,20,22], whereas others use neural networks [11,21,25].

In the machine learning community, meanwhile, the hubness phenomenon
[23] is attracting attention as a new type of the “curse of dimensionality.” This
phenomenon is concerned with nearest neighbor methods in high-dimensional
space, and states that a small number of objects in the dataset, or hubs, may
occur as the nearest neighbor of many objects. The emergence of these hubs
will diminish the utility of nearest neighbor search, because the list of nearest
neighbors often contain the same hub objects regardless of the query object for
which the list is computed.

1.2 Research Objective and Contributions

In this paper, we show the interaction between the regression step in ZSL and
the subsequent nearest neighbor step has a non-negligible effect on the prediction
accuracy.

In ZSL, examples and labels are represented as vectors in high-dimensional
space, of which the dimensionality is typically a few hundred. As demonstrated
by Dinu and Baroni [8] (see also Sect. 6), when ZSL is formulated as a prob-
lem of ridge regression from examples to labels, “hub” labels emerge, which are
simultaneously the nearest neighbors of many mapped examples. This has the con-
sequence of incurring bias in the prediction, as these labels are output as the pre-
dicted labels for these examples. The presence of hubs are not necessarily disad-
vantageous in standard classification settings; there may be “good” hubs as well
as “bad” hubs [23]. However, in typical ZSL tasks in which the label set is fine-
grained and huge, hubs are nearly always harmful to the prediction accuracy.

Therefore, the objective of this study is to investigate ways to suppress hubs,
and to improve the ZSL accuracy. Our contributions are as follows.

1. We analyze the mechanism behind the emergence of hubs in ZSL, both with
ridge regression and ordinary least squares. It is established that hubness
occurs in ZSL not only because of high-dimensional space, but also because

1 Throughout the paper, we assume both the example and label spaces are Euclidean.
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ridge regression has conventionally been used in ZSL in a way that promotes
hubness. To be precise, the distributions of the mapped examples and the
labels are different such that hubs are likely to emerge.

2. Drawing on the above analysis, we propose using ridge regression to map
labels into the space of examples. This approach is contrary to that followed
in existing work on ZSL, in which examples are mapped into label space.
Our proposal is therefore to reverse the mapping direction.
As shown in Sect. 6, our proposed approach outperformed the existing app-
roach in an empirical evaluation using both synthetic and real data.

3. In terms of contributions to the research on hubness, this paper is the first
to provide in-depth analysis of the situation in which the query and data
follow different distributions, and to show that the variance of data matters
to hubness. In particular, in Sect. 3, we provide a proposition in which the
degree of bias present in the data, which causes hub formation, is expressed
as a function of the data variance. In Sect 4, this proposition serves as the
main tool for analyzing hubness in ZSL.

2 Zero-Shot Learning as a Regression Problem

Let X be a set of examples, and Y be a set of class labels. In ZSL, not only
examples but also labels are assumed to be vectors. For this reason, examples are
sometimes referred to as source objects, and labels as target objects. In the sub-
sequent sections of this paper, we mostly follow this terminology when referring
to the members of X and Y .

Let X ⊂ R
c and Y ⊂ R

d. These spaces, Rc and R
d, are called source space

and target space, respectively. Although X can be the entire space R
c, Y is

usually a finite set of points in R
d, even though its size may be enormous in

some problems.
Let Xtrain = {xi | i = 1, . . . , n} be the training examples (training source

objects), and Ytrain = {yi | i = 1, . . . , n} be their labels (training target objects);
i.e., the class label of example xi is yi, for each i = 1, . . . , n. In a standard
classification setting, the labels in the training set are equal to the entire set of
labels; i.e., Ytrain = Y . In contrast, this assumption is not made in ZSL, and
Ytrain is a strict subset of Y . Moreover, it is assumed that the true class labels
of test examples do not belong to Ytrain; i.e., they belong to Y \Ytrain.

In such a situation, it is difficult to find a function f that maps x ∈ X
directly to a label in Y . Therefore, a popular (and also natural) approach is to
learn a projection m : Rc → R

d, which can be done with a regression technique.
With a projection function m at hand, the label of a new source object x ∈ R

c

is predicted to be the one closest to the mapped point m(x) in the target space.
The prediction function f is thus given by

f(x) = arg min
y∈Y

‖m(x) − y‖.

After a source object x is projected to m(x), the task is reduced to that of
nearest neighbor search in the target space.
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3 Hubness Phenomenon and the Variance of Data

The utility of nearest neighbor search would be significantly reduced if the same
objects were to appear consistently as the search result, irrespective of the query.
Radovanović et al. [23] showed that such objects, termed hubs, indeed occur in
high-dimensional space. Although this phenomenon may seem counter-intuitive,
hubness is observed in a variety of real datasets and distance/similarity measures
used in combination [23,24,26].

The aim of this study is to analyze the hubness phenomenon in ZSL, which
involves nearest neighbor search in high-dimensional space as the last step. How-
ever, as a tool for analyzing ZSL, the existing theory on hubness [23] is inade-
quate, as it was mainly developed for comparing the emergence of hubness in
spaces of different dimensionalities.

In the analysis of ZSL in Sect. 4.2, we aim to compare two distributions in the
same space, but which differ in terms of variance. To this end, we first present a
proposition below, which is similar in spirit to the main theorem of Radovanović
et al. [23, Theorem 1], but which distinguishes the query and data distributions,
and also expresses the expected difference between the squared distances from
queries to database objects in terms of their variance.

The proposition is concerned with nearest neighbor search, in which x is a
query, and y1 and y2 are two objects in a dataset. In the context of ZSL as
formulated in Sect. 2, x represents the image of a source object in the target
space (through the learned regression function m), and y1 and y2 are target
objects (labels) lying at different distances from the origin. We are interested in
which of y1 and y2 are more likely to be closer to x, when x is sampled from a
distribution X with zero mean.

Let E[·] and Var[·] denote the expectation and variance, respectively, and
let N (μ,Σ) be a multivariate normal distribution with mean μ and covariance
matrix Σ.

Proposition 1. Let y = [y1, . . . , yd]T be a d-dimensional random vector, with
components yi (i = 1, . . . , d) sampled i.i.d. from a normal distribution with zero
mean and variance s2; i.e., y ∼ Y, where Y = N (0, s2I). Further let σ =
√

VarY [‖y‖2] be the standard deviation of the squared norm ‖y‖2.
Consider two fixed samples y1 and y2 of random vector y, such that the

squared norms of y1 and y2 are γσ apart. In other words,

‖y2‖2 − ‖y1‖2 = γσ.

Let x be a point sampled from a distribution X with zero mean. Then, the expected
difference Δ between the squared distances from y1 and y2 to x, i.e.,

Δ = EX
[

‖x − y2‖2
]

− EX
[

‖x − y1‖2
]

(1)

is given by
Δ =

√
2γd1/2s2. (2)
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Proof. For i = 1, 2, the distance between a point x and yi is given by

‖x − yi‖2 = ‖x‖2 + ‖yi‖2 − 2xTyi,

and its expected value is

EX
[

‖x − yi‖2
]

= EX
[

‖x‖2
]

+ ‖yi‖2 − 2EX [x]T yi = EX
[

‖x‖2
]

+ ‖yi‖2,

since EX [x] = 0 by assumption. Substituting this equality in (1) yields

Δ =

EX [‖x−y2‖2]
︷ ︸︸ ︷

(

EX
[

‖x‖2
]

+ ‖y2‖2
)

−

EX [‖x−y1‖2]
︷ ︸︸ ︷

(

EX [‖x‖2] + ‖y1‖2
)

= ‖y2‖2 − ‖y1‖2 = γσ. (3)

Now, it is well known that if a d-dimensional random vector z follows the
multivariate standard normal distribution N (0, I), then its squared norm ‖z‖2
follows the chi-squared distribution with d degrees of freedom, and its variance
is 2d. Since y = sz, the variance σ2 of the squared norm ‖y‖2 is

σ2 = VarY
[

‖y‖2
]

= VarZ
[

s2‖z‖2
]

= s4 VarZ
[

‖z‖2
]

= 2ds4. (4)

From (3) and (4), we obtain Δ = γs2
√

2d. �	

Note that in Proposition 1, the standard deviation σ is used as a yardstick of
measurement to allow for comparison of “similarly” located object pairs across
different distributions; two object pairs in different distributions are regarded as
similar if objects in each pair are γσ apart as measured by the σ for the respective
distributions, but has an equal factor γ. This technique is due to Radovanović
et al. [23].

Now, Δ represents the expected difference between the squared distances
from x to y1 and y2. Equation (2) shows that Δ increases with γ, the factor
quantifying the amount of difference ‖y2‖2 − ‖y1‖2. This suggests that a query
object sampled from X is more likely to be closer to object y1 than to y2, if
‖y1‖2 < ‖y2‖2; i.e., y1 is closer to the origin than y2 is. Because this holds for
any pair of objects y1 and y2 in the dataset, we can conclude that the objects
closest to the origin in the dataset tend to be hubs.

Equation (2) also states the relationship between Δ and the component
variance s2 of distribution Y, by which the following is implied: For a fixed
query distribution X , if we have two distributions for y, Y1 = N (0, s21I) and
Y2 = N (0, s22I) with s21 < s22, it is preferable to choose Y1, i.e., the distribution
with a smaller s2, when attempting to reduce hubness. Indeed, assuming the
independence of X and Y, we can show that the influence of Δ relative to the
expected squared distance from x to y (which is also subject to whether y ∼ Y1

or Y2), is weaker for Y1 than for Y2, i.e.,

Δ(γ, d, s1)
EXY1 [‖x − y‖2] <

Δ(γ, d, s2)
EXY2 [‖x − y‖2] ,

where we wrote Δ explicitly as a function of γ, d, and s.
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4 Hubness in Regression-Based Zero-Shot Learning

In this section, we analyze the emergence of hubs in the nearest neighbor step
of ZSL. Through the analysis, it is shown that hubs are promoted by the use of
ridge regression in the existing formulation of ZSL, i.e., mapping source objects
(examples) into the target (label) space.

As a solution, we propose using ridge regression in a direction opposite to
that in existing work. That is, we project target objects in the space of source
objects, and carry out nearest neighbor search in the source space. Our argument
for this approach consists of three steps.

1. We first show in Sect. 4.1 that, with ridge regression (and ordinary least
squares as well), mapped observation data tend to lie closer to the origin
than the target responses do. Because the existing work formulates ZSL as
a regression problem that projects source objects into the target space, this
means that the norm of the projected source objects tends to be smaller
than that of target objects.

2. By combining the above result with the discussion of Sect. 3, we then argue
that placing source objects closer to the origin is not ideal from the perspec-
tive of reducing hubness. On the contrary, placing target objects closer to the
origin, as attained with the proposed approach, is more desirable (Sect. 4.2).

3. In Sect. 4.3, we present a simple additional argument against placing source
objects closer to the origin; if the data is unimodal, such a configuration
increases the possibility of another target object falling closer to the source
object. This argument diverges from the discussion on hubness, but again
justifies the proposed approach.

4.1 Shrinkage of Projected Objects

We first prove that ridge regression tends to map observation data closer to the
origin of the space. This tendency may be easily observed in ridge regression, for
which the penalty term shrinks the estimated coefficients towards zero. However,
the above tendency is also inherent in ordinary least squares.

Let ‖ · ‖F and ‖ · ‖2 respectively denote the Frobenius norm and the 2-norm
of matrices.

Proposition 2. Let M ∈ R
d×c be the solution for ridge regression with an

observation matrix A ∈ R
c×n and a response matrix B ∈ R

d×n; i.e.,

M = arg min
M

(

‖MA − B‖2F + λ‖M‖F
)

. (5)

where λ ≥ 0 is a hyperparameter. Then, we have ‖MA‖2 ≤ ‖B‖2.

Proof (Sketch). It is well known that M = BAT
(

AAT + λI
)−1. Thus we have

‖MA‖2 = ‖BAT
(

AAT + λI
)−1

A‖2 ≤ ‖B‖2 ‖AT
(

AAT + λI
)−1

A‖2. (6)
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Let σ be the largest singular value of A. It can be shown that

‖AT
(

AAT + λI
)−1

A‖2 =
σ2

σ2 + λ
≤ 1.

Substituting this inequality in (6) establishes the proposition. �	

Recall that if the data is centered, the matrix 2-norm can be interpreted as
an indicator of the variance of data along its principal axis. Proposition 2 thus
indicates that the variance along the principal axis of the mapped observations
MA tends to be smaller than that of responses B.

Furthermore, this tendency even persists in the ordinary least squares with
no penalty term (i.e., λ = 0), since ‖MA‖2 ≤ ‖B‖2 still holds in this case; note
that AT

(

AAT
)−1

A is an orthogonal projection and its 2-norm is 1, but the
inequality in (6) holds regardless. This tendency therefore cannot be completely
eliminated by simply decreasing the ridge parameter λ towards zero.

In existing work on ZSL, A represents the (training) source objects X =
[x1 · · ·xn] ∈ R

c×n, to be mapped into the space of target objects (by projection
matrix M); and B is the matrix of labels for the training objects, i.e., B =
Y = [y1 · · ·yn] ∈ R

d×n. Although Proposition 2 is thus only concerned with the
training set, it suggests that the source objects at the time of testing, which are
not in X, are also likely to be mapped closer to the origin of the target space
than many of the target objects in Y.

4.2 Influence of Shrinkage on Nearest Neighbor Search

We learned in Sect. 4.1 that ridge regression (and ordinary least squares) shrink
the mapped observation data towards the origin of the space, relative to the
response. Thus, in existing work on ZSL in which source objects X are projected
to the space of target objects Y , the norm of the mapped source objects is likely
to be smaller than that of the target objects.

The proposed approach, which was described in the beginning of Sect. 4,
follows the opposite direction: target objects Y are projected to the space of
source objects X. Thus, in this case, the norm of the mapped target objects is
expected to be smaller than that of the source objects.

The question now is which of these configurations is preferable for the sub-
sequent nearest neighbor step, and we provide an answer under the following
assumptions: (i) The source space and the target space are of equal dimensions;
(ii) the source and target objects are isotropically normally distributed and inde-
pendent; and (iii) the projected data is also isotropically normally distributed,
except that the variance has shrunk.

Let D1 = N (0, s21I) and D2 = N (0, s22I) be two multivariate normal distri-
butions, with s21 < s22. We compare two configurations of source object x and
target objects y: (a) the one in which x ∼ D1 and y ∼ D2, and (b) the one in
which x′ ∼ D2 and y′ ∼ D1 on the other hand; here, the primes in (b) were
added to distinguish variables in two configurations.
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Configuration (a): (x,y) Configuration (b): (x′,y′)(x,y) and (x′′,y′′)

Fig. 1. Schematic illustration for Sect. 4.2 in two-dimensional space. The left and the
right panels depict configurations (a) and (b), respectively, with the center panel show-
ing both configuration (a) and the scaled version of configuration (b) in the same space.
A circle represents a distribution, with its radius indicating the standard deviation. The
radius of the circles for y (on the left panel) and x′ (right panel) is s1, whereas that of
the circles for x (left panel) and y′ (right panel) is s2, with s1 < s2. Circles x′′ and y′′

are the scaled versions of x′ and y′ such that the standard deviation (radius) of x′′ is
equal to x, which makes the standard deviation of y′′ equal to s3 = s21/s2.

These two configurations are intended to model situations in (a) existing
work and (b) our proposal. In configuration (a), x is shorter in expectation
than y, and therefore this approximates the situation that arises from existing
work. Configuration (b) represents the opposite situation, and corresponds to our
proposal in which y is the projected vector and thus is shorter in expectation
than x.

Now, we aim to verify whether the two configurations differ in terms of the
likeliness of hubs emerging, using Proposition 1. First, we scale the entire space
of configuration (b) by (s1/s2), or equivalently, we consider transformation of
the variables by x′′ = (s1/s2)x′ and y′′ = (s1/s2)y′. Note that because the two
variables are scaled equally, this change of variables preserves the nearest neigh-
bor relations among the samples. See Fig. 1 for an illustration of the relationship
among x, y, x′, y′, x′′, and y′′.

Let {x′
i} and {y′

i} be the components of x′ and y′, respectively, and let {x′′
i }

and {y′′
i } be those for x′′ and y′′. Then we have

Var[x′′
i ] = Var

[

s1
s2

x′
i

]

=
(

s1
s2

)2

Var[x′
i] = s21,

Var[y′′
i ] = Var

[

s1
s2

y′
i

]

=
(

s1
s2

)2

Var[y′
i] =

s41
s22

.

Thus, x′′ follows N (0, s21I), and y′′ follows N (0, (s41/s22)I). Since both x in config-
uration (a) and x′′ above follow the same distribution, it now becomes possible
to compare the properties of y and y′′ in light of the discussion at the end of
Sect. 3: In order to reduce hubness, the distribution with a smaller variance is
preferred to the one with a larger variance, for a fixed distribution of source x
(or equivalently, x′′).
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It follows that y′′ is preferable to y, because the former has a smaller variance.
As mentioned above, the nearest neighbor relation between the scaled variables,
y′′ against x′′ (or equivalently x), is identical to y′ against x′ in configuration (b).
Therefore, we conclude that configuration (b) is preferable to configuration (a),
in the sense that the former is more likely to suppress hubs.

Finally, recall that the preferred configuration (b) models the situation of
our proposed approach, which is to map target objects in the space of source
objects.

4.3 Additional Argument for Placing Target Objects Closer to the
Origin

By assuming a unimodal data distribution of which the probability density func-
tion (pdf) p(z) is decreasing in ‖z‖, we are able to present the following proposi-
tion which also advocates placing the source objects outside the target objects,
and not the other way around.

Proposition 3 is concerned with the placement of a source object x at a fixed
distance r from its target object y, for which we have two alternatives x1 and
x2, located at different distances from the origin of the space.

Proposition 3. Consider a finite set Y of objects (i.e., points) in a Euclidean
space, sampled i.i.d. from a distribution whose pdf p(z) is a decreasing function
of ‖z‖. Let y ∈ Y be an object in the set, and let r > 0. Further let x1 and x2

be two objects at a distance r apart from y. If ‖x1‖ < ‖x2‖, then the probability
that y is the closest object in Y to x2 is greater than that of x1.

Proof (Sketch). For i = 1, 2, if another object in Y appears within distance r
of xi, then y is not the nearest neighbor of xi. Thus, we aim to prove that this
probability for x2 is smaller than that for x1. Since objects in Y are sampled
i.i.d, it suffices to prove

∫

z∈V2

dp(z) ≤
∫

z∈V1

dp(z), (7)

where Vi (i = 1, 2) denote the balls centered at xi with radius r. However,
(7) obviously holds because the balls V1 and V2 have the same radii, p(z) is a
decreasing function of ‖z‖, and ‖x1‖ ≤ ‖x2‖. See Figure 2 for an illustration
with a bivariate standard normal distribution in two-dimensional space. �	

In the context of existing work on ZSL, which uses ridge regression to map
source objects in the space of target objects, x can be regarded as a mapped
source object, and y as its target object. Proposition 3 implies that if we want
to make a source object x the nearest neighbor of a target object y, it should
rather be placed farther than y from the origin, but this idea is not present in the
objective function (5) for ridge regression; the first term of the objective allocates
the same amount of penalty for x1 and x2, as they are equally distant from the
target y. On the contrary, the ridge regression actually promotes placement of
the mapped source object x closer to the origin, as stated in Proposition 2.
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x

0

1

x2y

Fig. 2. Illustration of the situation considered in Proposition 3. Here, it is assumed
that ‖x1‖ < ‖x2‖ and ‖y − x1‖ = ‖y − x2‖. The intensity of the background shading
represents the values of the pdf of a bivariate standard normal distribution, from which
y and other objects (not depicted in the figure) in set Y are sampled. The probability
mass inside the circle centered at x1 is greater than that centered at x2, as the intensity
of the shading inside the two circles shows.

4.4 Summary of the Proposed Approach

Drawing on the analysis presented in Sections 4.1–4.3, we propose performing
regression that maps target objects in the space of source objects, and carry
out nearest neighbor search in the source space. This opposes the approach
followed in existing work on regression-based ZSL [7,8,16,20,22], which maps
source objects into the space of target objects.

In the proposed approach, matrix B in Proposition 2 represents the source
objects X, and A represents the target objects Y. Therefore, ‖MA‖2 ≤ ‖B‖2
means ‖MY‖2 ≤ ‖X‖2, i.e., the mapped target objects tend to be placed closer
than the corresponding source objects to the origin.

Admittedly, the above argument for our proposal relies on strong assumptions
on data distributions (such as normality), which do not apply to real data.
However, the effectiveness of our proposal is verified empirically in Sect. 6 by
using real data.

5 Related Work

The first use of ridge regression in ZSL can be found in the work of Palatucci
et al. [22]. Ridge regression has since been one of the standard approaches to
ZSL, especially for natural language processing tasks: phrase generation [7] and
bilingual lexicon extraction [7,8,20]. More recently, neural networks have been
used for learning non-linear mapping [11,25]. All of the regression-based methods
listed above, including those based on neural networks, map source objects into
the target space.

ZSL can also be formulated as a problem of canonical correlation analysis
(CCA). Hardoon et. al. [12] used CCA and kernelized CCA for image labeling.
Lazaridou et. al. [16] compared ridge regression, CCA, singular value decompo-
sition, and neural networks in image labeling. In our experiments (Sect. 6), we
use CCA as one of the baseline methods for comparison.

Dinu and Baroni [8] reported the hubness phenomenon in ZSL. They pro-
posed two reweighting techniques to reduce hubness in ZSL, which are applicable
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to cosine similarity. Tomašev et al. [27] proposed hubness-based instance weight-
ing schemes for CCA. These schemes were applied to classification problems in
which multiple instances (vectors) in the target space have the same class label.
This setting is different from the one assumed in this paper (see Sect. 2), i.e.,
we assume that a class label is represented by a single target vector.2

Structured output learning [4] addresses a problem setting similar to ZSL,
except that the target objects typically have complex structure, and thus the
cost of embedding objects in a vector space is prohibitive. Kernel dependency
estimation [29] is an approach that uses kernel PCA and regression to avoid this
issue. In this context, nearest neighbor search in the target space reduces to the
pre-image problem [18] in the implicit space induced by kernels.

6 Experiments

We evaluated the proposed approach with both synthetic and real datasets. In
particular, it was applied to two real ZSL tasks: bilingual lexicon extraction and
image labeling.

The main objective of the following experiments is to verify whether our
proposed approach is capable of suppressing hub formation and outperforming
the existing approach, as claimed in Sect. 4.

6.1 Experimental Setups

Compared Methods. The following methods were compared.

– RidgeX→Y: Linear ridge regression mapping source objects X into the space
of target objects Y . This is how ridge regression was used in the existing
work on ZSL [7,8,16,20,22].

– RidgeY→X: Linear ridge regression mapping target objects Y into the source
space. This is the proposed approach (Sect. 4.4).

– CCA: Canonical correlation analysis (CCA) for ZSL [12]. We used the code
available from http://www.davidroihardoon.com/Professional/Code.html.

We calibrated the hyperparameters, i.e., the regularization parameter in ridge
regression and the dimensionality of common feature space in CCA, by cross
validation on the training set.

After ridge regression or CCA is applied, both X and Y (or their images)
are located in the same space, wherein we find the closest target object for a
given source object as measured by the Euclidean distance. In addition to the
Euclidean distance, we also tested the non-iterative contextual dissimilarity mea-
sure (NICDM) [13] in combination with RidgeX→Y and CCA. NICDM adjusts
the Euclidean distance to make the neighborhood relations more symmetrical,
and is known to effectively reduce hubness in non-ZSL context [24].

All data were centered before application of regression and CCA, as usual
with these methods.
2 Perhaps because of this difference, the method in [27] did not perform well in our

experiment, and we do not report its result in Sect. 6.

http://www.davidroihardoon.com/Professional/Code.html
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Evaluation Criteria. The compared methods were evaluated in two respects:
(i) the correctness of their prediction, and (ii) the degree of hubness in nearest
neighbor search.

Measures of Prediction Correctness. In all our experiments, ZSL was formulated
as a ranking task; given a source object, all the target objects were ranked by
their likelihood for the source object. As the main evaluation criterion, we used
the mean average precision (MAP) [17], which is one of the standard performance
metrics for ranking methods. Note that the synthetic and the image labeling
experiments are the single-label problems for which MAP is equal to the mean
reciprocal rank [17]. We also report the top-k accuracy3 (Acck) for k = 1 and
10, which is the percentage of source objects for which the correct target objects
are present in their k nearest neighbors.

Measure of Hubness. To measure the degree of hubness, we used the skewness
of the (empirical) Nk distribution, following the approach in the literature [23,
24,26,27]. The Nk distribution is the distribution of the number Nk(i) of times
each target object i is found in the top k of the ranking for source objects, and
its skewness is defined as follows:

(Nk skewness) =
∑�

i=1 (Nk(i) − E [Nk])3 /�

Var [Nk]
3
2

where � is the total number of test objects in Y , Nk(i) is the number of times the
ith target object is in the top-k closest target objects of the source objects. A
large Nk skewness value indicates the existence of target objects that frequently
appear in the k-nearest neighbor lists of source objects; i.e., the emergence of
hubs.

6.2 Task Descriptions and Datasets

We tested our method on the following ZSL tasks.

Synthetic Task. To simulate a ZSL task, we need to generate object pairs
across two spaces in a way that the configuration of objects is to some extent
preserved across the spaces, but is not exactly identical. To this end, we first
generated 3000-dimensional (column) vectors zi ∈ R

3000 for i = 1, . . . , 10000,
whose coordinates were generated from an i.i.d. univariate standard normal dis-
tribution. Vectors zi were treated as latent variables, in the sense that they were
not directly observable, but only their images xi and yi in two different features
spaces were. These images were obtained via different random projections, i.e.,

3 In image labeling (only), we report the top-1 accuracy (Acc1) macro-averaged over
classes, to allow direct comparison with published results. Note also that Acck with
a larger k would not be an informative metric for the image labeling task, which
only has 10 test labels.
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xi = RXzi and yi = RY zi, where RX ,RY ∈ R
300×3000 are random matrices

whose elements were sampled from the uniform distribution over [−1, 1]. Because
random projections preserve the length and the angle of vectors in the original
space with high probability [5,6], the configuration of the projected objects is
expected to be similar (but different) across the two spaces.

Finally, we randomly divided object pairs {(xi,yi)}10000i=1 into the training set
(8000 pairs) and the test set (remaining 2000 pairs).

Bilingual Lexicon Extraction. Our first real ZSL task is bilingual lexicon
extraction [7,8,20], formulated as a ranking task: Given a word in the source
language, the goal is to rank its gold translation (the one listed in an existing
bilingual lexicon as the translation of the source word) higher than other non-
translation candidate words.

In this experiment, we evaluated the performance in the tasks of finding
the English translations of words in the following source languages: Czech (cs),
German (de), French (fr), Russian (ru), Japanese (ja), and Hindi (hi). Thus,
in our setting, each of these six languages was used as X alternately, whereas
English was the target language Y throughout.4

Following related work [7,8,20], we trained a CBOW model [19] on the pre-
processed Wikipedia corpus distributed by the Polyglot project5 (see [3] for cor-
pus statistics), using the word2vec6 tool. The window size parameter of word2vec
was set to 10, with the dimensionality of feature vectors set to 500.

To learn the projection function and measure the accuracy in the test set,
we used the bilingual dictionaries7 of Ács et al. [1] as the gold translation pairs.
These gold pairs were randomly split into the training set (80% of the whole
pairs) and the test set (20%). We repeated experiments on four different random
splits, for which we report the average performance.

Image Labeling. The second real task is image labeling, i.e., the task of finding
a suitable word label for a given image. Thus, source objects X are the images
and target objects Y are the word labels.

We used the Animal with Attributes (AwA) dataset8, which consists of 30,475
images of 50 animal classes. For image representation, we used the DeCAF fea-
tures [9], which are the 4096-dimensional vectors constructed with convolutional
neural networks (CNNs). DeCAF is also available from the AwA website. To save
computational cost, we used random projection to reduce the dimensionality of
DeCAF features to 500.

As with the bilingual lexicon extraction experiment, label features (word
representations) were constructed with word2vec, but this time they were trained

4 We also conducted experiments with English as X and other languages as Y . The
results are not presented here due to lack of space, but the same trend was observed.

5 https://sites.google.com/site/rmyeid/projects/polyglot
6 https://code.google.com/p/word2vec/
7 http://hlt.sztaki.hu/resources/dict/bylangpair/wiktionary 2013july/
8 http://attributes.kyb.tuebingen.mpg.de/

https://sites.google.com/site/rmyeid/projects/polyglot
https://code.google.com/p/word2vec/
http://hlt.sztaki.hu/resources/dict/bylangpair/wiktionary_2013july/
http://attributes.kyb.tuebingen.mpg.de/
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Table 1. Experimental results: MAP is the mean average precision. Acck is the accu-
racy of the k-nearest neighbor list. Nk is the skewness of the Nk distribution. A high Nk

skewness indicates the emergence of hubs (smaller is better). The bold figure indicates
the best performer in each evaluation criteria.

method MAP Acc1 Acc10 N1 N10

RidgeX→Y 21.5 13.8 36.3 24.19 12.75
RidgeX→Y + NICDM 58.2 47.6 78.4 13.71 7.94
RidgeY→X (proposed) 91.7 87.6 98.3 0.46 1.18
CCA 78.9 71.6 91.7 12.0 7.56
CCA + NICDM 87.6 82.3 96.5 0.96 2.58

(a) Synthetic data.

method cs de fr ru ja hi

RidgeX→Y 1.7 1.0 0.7 0.5 0.9 5.3
RidgeX→Y + NICDM 11.3 7.1 5.9 3.8 10.2 21.4
RidgeY→X (proposed) 40.8 30.3 46.5 31.1 42.0 40.6
CCA 24.0 18.1 33.7 21.2 27.3 11.8
CCA + NICDM 30.1 23.4 39.7 26.7 35.3 19.3

(b) MAP on bilingual lexicon extraction.

cs de fr ru ja hi

method Acc1 Acc10 Acc1 Acc10 Acc1 Acc10 Acc1 Acc10 Acc1 Acc10 Acc1 Acc10

RidgeX→Y 0.7 2.8 0.4 1.6 0.3 1.2 0.2 0.8 0.2 1.3 2.9 8.2
RidgeX→Y + NICDM 7.2 17.9 4.3 11.4 3.5 9.8 2.1 6.3 6.1 16.8 14.4 32.6
RidgeY→X (proposed) 31.5 54.5 21.6 43.0 36.6 58.6 21.9 43.6 31.9 56.3 31.1 55.4
CCA 17.9 32.7 12.9 25.2 27.0 41.7 15.2 28.8 20.2 37.3 7.4 18.9
CCA + NICDM 21.9 42.3 16.1 33.9 31.1 50.1 18.7 37.0 25.9 48.8 12.4 30.7

(c) Acck on bilingual lexicon extraction.

cs de fr ru ja hi

method N1 N10 N1 N10 N1 N10 N1 N10 N1 N10 N1 N10

RidgeX→Y 50.29 23.84 43.00 24.37 67.79 35.83 95.05 35.36 62.12 22.78 23.75 10.84
RidgeX→Y + NICDM 41.56 20.38 39.32 20.82 57.18 25.97 89.08 30.70 57.57 21.62 20.33 9.21
RidgeY→X (proposed) 11.91 10.74 12.49 11.94 2.56 2.77 4.28 4.18 5.15 6.76 10.45 6.14
CCA 28.00 18.67 36.66 18.98 30.18 15.95 51.92 21.60 37.73 18.27 22.31 8.95
CCA + NICDM 25.00 17.13 32.94 17.65 25.20 14.65 42.61 20.72 34.66 13.16 22.00 8.46

(d) Nk skewness on bilingual lexicon extraction.

method MAP Acc1 N1

RidgeX→Y 46.0 22.6 2.61
RidgeX→Y + NICDM 54.2 34.5 2.17
RidgeY→X (proposed) 62.5 41.3 0.08
CCA 26.1 9.2 2.00
CCA + NICDM 26.9 9.3 2.42

(e) Image labeling.

on the English version of Wikipedia (as of March 4, 2015) to cover all AwA labels.
Except for the corpus, we used the same word2vec parameters as with bilingual
lexicon extraction.
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We respected the standard zero-shot setup on AwA provided with the
dataset; i.e., the training set contained 40 labels, and test set contained the
other 10 labels.

6.3 Experimental Results

Table 1 shows the experimental results. The trends are fairly clear: The proposed
approach, RidgeY→X, outperformed other methods in both MAP and Acck, over
all tasks. RidgeX→Y and CCA combined with NICDM performed better than
those with Euclidean distances, although they still lagged behind the proposed
method RidgeY→X even with NICDM.

The Nk skewness achieved by RidgeY→X was lower (i.e., better) than that of
compared methods, meaning that it effectively suppressed the emergence of hub
labels. In contrast, RidgeX→Y produced a high skewness which was in line with
its poor prediction accuracy. These results support the expectation we expressed
in the discussion in Sect. 4.

The results presented in the tables show that the degree of hubness (Nk)
for all tested methods inversely correlates with the correctness of the output
rankings, which strongly suggests that hubness is one major factor affecting the
prediction accuracy.

For the AwA image dataset, Akata et. al. [2, the fourth row (CNN) and
second column (ϕw) of Table 2] reported a 39.7% Acc1 score, using image
representations trained with CNNs, and 100-dimensional word representations
trained with word2vec. For comparison, our proposed approach, RidgeY→X, was
evaluated in a similar setting: We used the DeCAF features (which were also
trained with CNNs) without random projection as the image representation,
and 100-dimensional word2vec word vectors. In this setup, RidgeY→X achieved
a 40.0% Acc1 score. Although the experimental setups are not exactly identical
and thus the results are not directly comparable, this suggests that even linear
ridge regression can potentially perform as well as more recent methods, such as
Akata et al.’s, simply by exchanging the observation and response variables.

7 Conclusion

This paper has presented our formulation of ZSL as a regression problem of find-
ing a mapping from the target space to the source space, which opposes the way
in which regression has been applied to ZSL to date. Assuming a simple model in
which data follows a multivariate normal distribution, we provided an explana-
tion as to why the proposed direction is preferable, in terms of the emergence of
hubs in the subsequent nearest neighbor search step. The experimental results
showed that the proposed approach outperforms the existing regression-based
and CCA-based approaches to ZSL.

Future research topics include: (i) extending the analysis of Sect. 4 to cover
multi-modal data distributions, or other similarity/distance measures such as
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cosine; (ii) investigating the influence of mapping directions in other regression-
based ZSL methods, including neural networks; and (iii) investigating the emer-
gence of hubs in CCA.
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Abstract. Learning problems in which an adversary can perturb
instances at application time can be modeled as games with data-
dependent cost functions. In an equilibrium point, the learner’s model
parameters are the optimal reaction to the data generator’s perturba-
tion, and vice versa. Finding an equilibrium point requires the solution
of a difficult optimization problem for which both, the learner’s model
parameters and the possible perturbations are free parameters. We study
a perturbation model and derive optimization procedures that use a sin-
gle iteration of batch-parallel gradient descent and a subsequent aggrega-
tion step, thus allowing for parallelization with minimal synchronization
overhead.

1 Introduction

In many security-related applications, the assumption that training data and
data at application time are identically distributed is routinely violated. For
instance, new malware is designed to bypass detection methods which their
designers believe virus and malware scanners to employ, and email spamming
tools allow their users to develop templates of randomized messages that pro-
duce a low spam score with current filters. In these examples, the party that
creates the predictive model and the data-generating party factor the possible
actions of their opponent into their decisions. This interaction can be modeled
as a prediction game in which one player controls the predictive model whereas
another exercises some control over the process of data generation.

Robust learning methods have been derived under the zero-sum assumption
that the loss of one player is the gain of the other, for several types of adversar-
ial feature transformations [7,8,11–13,17,23,24]. Settings in which both players
have individual cost functions—a fraudster’s profit is not the negative of an email
service provider’s goal of achieving a high spam recognition rate at close-to-zero
false positives—cannot adequately be modeled as zero-sum games.

When the learner has to act first and model parameters are disclosed to the
data generator, this non-zero-sum interaction can be modeled as a Stackelberg
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competition [4,15]. A Stackelberg competition always has an optimal solution,
but generally a difficult bi-level optimization problem has to be solved to find it
[4]. For simultaneously acting players, one may resort to the concept of a Nash
equilibrium. An equilibrium is a pair of a predictive model and a transformation
of the input distribution. In an equilibrium point, the learner’s model parameters
are the optimal reaction to the data generator’s perturbation function, and vice
versa. If a game has a unique Nash equilibrium and is played by rational players
that aim at minimizing their costs, it may be reasonable for each player to
assume that the opponent will play according to the Nash equilibrium strategy
as well. If, however, multiple equilibria exist and the players choose their strategy
according to distinct ones, then the resulting combination may be arbitrarily
disadvantageous for either player. For certain cost functions, the prediction game
has been shown to have a unique Nash equilibrium [3].

Finding the equilibrium point of a prediction game requires the solution of
a difficult optimization problem: in each iteration of an outer gradient-descent,
nested optimization problems have to be solved. This process is two orders of
magnitude more expensive than iid learning [3]—even more so, if the learner is
uncertain about the adversary’s cost function [14].

Gradient descent algorithms can be parallelized by distributing the data in
batches across multiple worker nodes. Casting gradient descent into the MapRe-
duce programming model [6] offers an almost unlimited potential speed-up,
because synchronization is limited to a final reduce step, and, unlike multicore
or GPU parallelism, MapReduce is not constrained by the limited number of
cores that can be fitted into a single unit of computing hardware. In order to
conduct gradient descent within the MapReduce model, parallel nodes have to
perform gradient descent on subsets of the data. Only in the final step, the local
parameter vectors are aggregated [18,26]. This procedure has known convergence
bounds [26].

Work on HaLoop [5] and ScalOps [25] aims at allowing for more flexible algo-
rithm design that may include aggregation steps during the parallel optimiza-
tion process [19]; this, however comes at the cost at higher communication costs
which limit the gain of increased parallelization. This paper therefore focuses on
rephrasing the search for an equilibrium point of a prediction game within the
MapReduce model.

The known analysis and algorithm for finding the equilibrial prediction model
[3] are based on a model of the adversarial data transformation that allows the
perturbation of each instance to potentially depend on other instances. It is
therefore unsuitable for parallelization: When the perturbation of an instance
may depend on different instances, a node that does not have access to all inter-
dependent instances cannot anticipate the outcome of the adversary’s action.
Therefore, we derive a model of adversarial manipulations of the input distribu-
tion that is based on the manipulation of individual feature vectors.

The rest of this paper is organized as follows. Section 2 lays out the problem
setting and introduces an adversarial data generation model. In Section 3 we
study conditions under which a unique equilibrium point exists under this data
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generation model. We derive a method for finding the unique equilibrium point
in a way that can be parallelized in Section 4. Section 5 presents empirical result
and Section 6 concludes.

2 Problem Setting and Data Transformation Model

We study static prediction games between two players: The learner and its
adversary, the data generator. For example, in email spam filtering, the learner
may be an email service provider whereas the data generator is an amalgamated
model of all legitimate and abusive email senders.

At training time, the data generator produces a matrix X of training
instances x1, . . . ,xn and a corresponding vector y of class labels yi ∈ Y. These
object-class pairs are drawn according to a training distribution with density
function p(x, y).

The task of the learner is to select the parameters w ∈ W ⊂ R
m of a

linear model fw(x) = wTx. Simultaneously, the data generator can choose a
parameterized transformation gA : R

m → R
m, with A ∈ A that perturbs

instances; regularizer ρgΩg(A) quantifies transformation costs which the data
generator incurs. For instance, a spammer may obfuscate text messages and
remove conspicuous URLs at the cost of reducing the response rate. At test
time, instances are drawn according to p(x, y) and perturbed by gA; this defines
the test distribution.

The learner’s theoretical costs at application time are given by Equation 1;
the data generator’s theoretical costs by Equation 2.

θf (w,A) =
∑

y∈Y

∫

�f (fw(gA(x)), y)p(x, y)dx (1)

θg(w,A) =
∑

y∈Y

∫

�g(fw(gA(x)), y)p(x, y)dx + ρgΩg(A) (2)

The theoretical costs of both players depend on the unknown test distribu-
tion; we will therefore resort to regularized, empirical costs based on the training
sample. The empirical costs incurred by the predictive model fw and transfor-
mation gA are

θ̂f (w,A) =
1
n

n
∑

i=1

�f (wTgA(x), yi) + ρfΩf (w)

θ̂g(w,A) =
1
n

n
∑

i=1

�g(wTgA(x), yi) + ρgΩg (A) .

We employ a linear, parameterized data transformation model of the form
gA(x) = x + Ax, where A ∈ R

m×m is the transformation matrix chosen by
the adversary. Under this model, the perturbation vector that is added to each
instance x is a linear function of x. For A = 0, instances remain unperturbed.
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This model subsumes many relevant data-manipulation operations. For instance,
features are scaled by nonzero values at the diagonal elements of A; features i
are deleted by aii = −1. Feature i is replaced by feature j (e.g., Viagra →
V1agra) by a matrix that has entries aii = −1 and aji = 1, and is 0 everywhere
else.

We will write the transformation matrix as vector of m-dimensional row
vectors A = [a1, . . . ,am]T or as an m2-dimensional vector a =

[

aT1 , . . . ,aTm
]T

whenever this will simplify the notation.
Under this data transformation model, standard �2 regularization for the

data generator [3] would amount to

‖(xi + Axi) − xi‖2 =
1
n

n
∑

i=1

‖Axi‖2

which is not strongly convex in A for every data matrix X. Hence, this regular-
izer can have multiple optima, which should be avoided. Therefore, we use the
Frobenius norm of A as regularizer for the data generator; we use standard �2
regularization for the learner:

Ωf (w) = ‖w‖2 , (3)

Ωg(A) =
1
2

‖A‖2F =
1
2

‖a‖2 . (4)

3 Analysis of Equilibrium Points

Note that both θ̂f and θ̂g depend on both players’ actions. Neither player can
minimize their costs without considering their adversary’s options. This moti-
vates the concept of an equilibrium point. Assume that the learner considers
using model parameters w1. The learner can now determine a possible reaction
A1 of the data generator that would minimize θ̂g for the given w1. In turn,
the learner can determine model parameters w2 that would minimize θ̂f for
this transformation A1, continue to determine reaction A2, and so on. It his
sequence of reactions reaches a fixed point—a point (w∗,A∗) that is the best
possible reaction to itself—then this point is a Nash equilibrium and satisfies

w∗ = arg min
w

θ̂f (w,A∗), (5)

A∗ = arg min
A

θ̂f (w∗,A). (6)

In this section, we analyze the prediction game between learner and data gen-
erator that we have introduced in the previous section. We will derive conditions
under which equilibrium points exist, and conditions under which an equilibrium
point is unique.

Known results on the existence of equilibrium points for prediction games [3]
do not apply to the data transformation model derived in Section 2: Equation 4
regularizes A because regularization of ||X−gA(X)|| would not be convex in A,
and therefore Assumption 3 of [3] is not met.
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3.1 Existence of Equilibrium Points

We will now study under which conditions the prediction game between learner
and data generator with the data transformation introduced above has at least
one equilibrium point. We start by formulating conditions on action spaces and
loss functions in the following assumption.

Assumption 1. The players’ action sets W and A and loss functions �f and
�g satisfy the following properties.

1. Action spaces W ⊆ R
m and A ⊆ R

m × . . . × R
m are non-empty, compact

and convex,
2. The loss functions �f (z, y) and �g(z, y) are convex and continuous in z for

every y ∈ Y

Theorem 1. Under Assumption 1 the game has at least one equilibrium point.

Proof. By Assumption 1 the loss functions �f (zi, yi) and �g(zi, yi) are continuous
and convex in zi for any yi ∈ Y. Note that zi = wTxi +wTAxi is linear in w ∈
R

m and linear in A ∈ R
m2

for any (xi,yi) ∈ X × Y. Hence, for both ν ∈ {f, g},
the sum of loss terms

∑n
i=1 �ν(zi, yi) is jointly continuous in (w,A) ∈ R

m×(m+1)

and convex in both w ∈ R
m and A ∈ R

m×m. Both regularizers Ωf and Ωg are
jointly continuous in (w,A) ∈ R

m×(m+1). Additionally Ωf is strictly convex in
w ∈ R

m and Ωg is strictly convex in A ∈ R
m×m.

Hence, both empirical cost functions θ̂f and θ̂g are jointly continuous in
(w,A) ∈ R

m×(m+1). Additionally θ̂f is strictly convex in w ∈ R
m and θ̂g is

strictly convex in A ∈ R
m×m. Therefore by Theorem 4.3. in [2]—together with

the fact that both action spaces are non-empty, compact and convex—at least
one equilibrium point exists.

3.2 Uniqueness of Equilibrium Points

In this section, we will derive conditions for uniqueness of equilibrium points.
The significance of this result is that an action that is part of an equilibrium
point minimizes the costs for either player only if the opponent chooses the
same equilibrium point. Otherwise, either player’s costs may be arbitrarily high.
If multiple equilibria exist, the players cannot determine which action even a
perfectly rational opponent will take. We will make use of a theorem of Rosen
[22] which states that a unique equilibrium point exists if the Jacobian of the
combined loss

rwθf (w,A) + rAθg(w,A)

is positive definite for any fixed rw > 0, rA > 0. To prove this condition, we
formulate two lemmas. Lemma 1 and Lemma 2 derive two different forms of
matrices that are always positive (semi-)definite. In the following, the symbol ⊗
denotes the Kronecker-product.
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Lemma 1. For any A ∈ R
m×m and w ∈ R

m and any positive semi-definite
matrix X ∈ R

m×m, the matrix

M1 :=
[

AXAT wT ⊗ (AX)
w ⊗

(

XAT
) (

wwT
)

⊗ X

]

∈ R
(m2+m)×(m2+m)

is positive semi-definite.

Proof. Note that we can rewrite this matrix as a product of three matrices:
[

A
w ⊗ Im

]

X
[

AT wT ⊗ Im

]T

where Im denotes the m × m unit matrix. By Assumption 1 the matrix X is
positive semi-definite and therefore the product vT

1Xv1 ≥ 0 is non-negative for
all vectors v1 ∈ R

m. By using the substitution v1 =
[

AT wT ⊗ Im

]

v2, the
product

vT
2

[

A
w ⊗ Im

]

X
[

AT wT ⊗ Im

]T
v2 = vT

1Xv1 ≥ 0

is non-negative. Hence, the matrix M1 is positive semi-definite, which completes
the proof.

Lemma 2. For any x ∈ R
m and any a, b ∈ R

+ the matrix

M2 :=
[

aIm Im ⊗ xT

Im ⊗ x bIm2

]

∈ R
(m2+m)×(m2+m)

is positive definite, if and only if a · b > xTx.

Proof. The matrix is a symmetric square matrix. Hence it is positive defi-
nite if and only if all eigenvalues λi > 0 for all i ∈ {0, . . . , m2 + m}. Let
(

wT,vT
1 , . . . ,vT

m

)T be an arbitrary eigenvector with eigenvalue λ and let us define

V =

⎡

⎢

⎣

vT
1
...

vT
m

⎤

⎥

⎦ .

Then—by using the definition of eigenvectors—the following equations hold:

(λ − a)w = Vx (7)

(λ − b)V = wxT. (8)

By combining Equation 7 and Equation 8 the following equation

(λ − a)(λ − b)w = xTxw (9)
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holds for every eigenvector
(

wT,vT
1 , . . . ,vT

m

)T with corresponding eigen-
value λ.

Firstly, assume that w = 0 holds. Due to the definition of an eigenvector, the
matrix V 	= 0 is non-zero. By Equation 8, the corresponding eigenvalue would
be λ = b, and hence the corresponding eigenvalue would be positive.

Now assume that w 	= 0 holds. Then, by using Equation 9 it turns out that
(λ − a)(λ − b) = xTx. Solving this Equation for λ results in the following two
solutions:

λ1,2 =
a + b

2
±

√

(a − b)2

4
+ xTx.

Therefore, matrix M2 is positive semi-definite if and only if

a + b

2
≥

√

(a − b)2

4
+ xTx (10)

holds, which is equivalent to the inequality

(a + b)2

4
≥ (a − b)2

4
+ xTx.

Hence, the smallest eigenvalue is non-negative if and only if a ·b > xTx which
completes the proof.

We can now formulate Assumptions under which a unique equilibrium point
exists.

Assumption 2. For a given data matrix X ∈ R
m×n and labels y ∈ Yn, the

players’ action sets W and A, loss functions �f and �g, and regularization param-
eters ρf , ρg satisfy the following properties.

1. the second derivatives of the loss functions are equal for all y ∈ Y and z ∈ R

�′′
f (z, y) = �′′

g (z, y).

2a. The regularization parameters satisfy

ρfρg > sup
(w,A)∈W×A

x̄T
(w,A,X,y)x̄(w,A,X,y),

where x̄ is the (derivate-) weighted average over all instances

x̄(w,A,X,y) =
1
n

n
∑

i=1

[

1
2

(

�′
f (wTφA(xi), yi) + �′

g(w
TφA(xi), yi)

)

xi

]

.

2b. (Sufficient condition for 2a) the regularization parameters satisfy

ρfρg > sup
(w,A)∈W×A

max
i∈{1,...,n}

τ2
i (w,A) · xT

i xi,

where τi(w,A) is specified by

τi(w,A) =
1
2

(

�′
pL(wTφA(xi), yi) + �′

g(w
TφA(xi), yi)

)

.
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Theorem 2. Under Assumptions 1 and 2, the prediction game between learner
and data generator has exactly one equilibrium point.

The conditions of Assumption 1 impose technical, rather common requirements
on the cost functions that can be met in practice. The first condition of Assump-
tion 2 requires the loss function of learner and data generator to have identi-
cal curvatures. This can be met, for instance, if both player use a logistic loss
function [3]. The second condition imposes a joint bound on the regularization
coefficients. Intuitively, if the data generator is allowed to perturb instances
strongly, then a unique equilibrium exists only if the learner’s cost function has
a sufficiently large regularization term.

Proof. By Assumption 1 the game has at least one equilibrium point. We now
turn towards the uniqueness of the equilibrium point. Therefore—by following
the theorems in [10,22]—we show that the pseudo-Jacobian

Jrw,rA
(w,A) =

[

rwIm 0
0 rAIm2

]

⎡

⎢

⎢

⎢

⎣

∇2
w,wθ̂f ∇2

w,a1
θ̂g · · · ∇2

w,am
θ̂f

∇2
a1,wθ̂g ∇2

a1,a1
θ̂g · · · ∇2

a1,am
θ̂g

...
...

. . .
...

∇2
am,wθ̂g ∇2

am,a1
θ̂g · · · ∇2

am,am
θ̂g

⎤

⎥

⎥

⎥

⎦

is positive definite at every point (w,A) ∈ W ×A for some fixed rw, rA > 0. We
set rw = rA = 1. Therefore the pseudo-Jacobian (first and second derivations
can be found in the Appendix) is given as

Jr(w,A) =

[

(Im + A)XΓfXT (Im + A)T wT ⊗
[

(Im + A)XΓfXT
]

w ⊗
[

XΓgXT (Im + A)T
]

[

wwT
]

⊗
[

XΓgXT
]

]

+
[

ρfIm Im ⊗ [Xγf ]T

Im ⊗ [Xγg] ρgIm2

]

. (11)

Following Assumption 2(1) the matrices Γf = Γg are equal. Additionally,
according to Assumption 1(2) the loss functions are convex and, therefore, the
matrices Γf and Γg are positive semi-definite. Hence, the matrices XΓfXT and
XΓgXT are equal and positive semi-definite. Following Lemma 1 the first sum-
mand in Equation 11 is positive semi-definite.

The second summand is positive definite if and only if the square matrix
[

ρfIm Im ⊗
[

1
2Xγf + 1

2Xγg

]T

Im ⊗
[

1
2Xγf + 1

2Xγg

]

ρgIm2

]

is positive definite. According to Lemma 2 this square matrix is positive
definite if and only if

ρfρg >

[

1
2
Xγf +

1
2
Xγg

]T [

1
2
Xγf +

1
2
Xγg

]

.
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Note that the relation

1
2
Xγf +

1
2
Xγg

=
1
n

n
∑

i=1

[

1
2

(

�′
f (wTxi + wTAxi, yi) + �′

g(w
Txi + wTAxi, yi)

)

xi

]

(12)

holds. Hence, according to Assumption 2(2a) the second summand in Equa-
tion 11 and therefore the pseudo-Jacobian Jrw,rA

(w,A) is positive definite at
every point (w,A) ∈ W × A, which completes the proof.

4 Finding the Unique Equilibrium Point Efficiently

In the previous section, we derived conditions for the existence of unique equi-
librium points. In this section, we will discuss algorithms that find this unique
solution and can be phrased as a single iteration of a parallel map step and a
reduce step that aggregates the results.

4.1 Inexact Line Search

Equilibrium points can be located by inexact line search [3,16]. In each iteration,
the procedure computes the response w̄ of the learner that minimizes θ̂f given the
previous transformation A, and response Ā of the data generator that minimizes
θ̂g given the previous prediction model w in nested optimization problems using
L-BFGS [3]. The descent directions are then given by:

df = w̄ − w,

dg = Ā − A.

Inexact line search tries increasingly large values of the step size t and perform an
update by adding tdf to the learner’s prediction model w and by adding tdg to
the data generator’s transformation matrix A. This procedure converges to the
unique Nash equilibrium—von Heusinger and Kanzow discuss its convergence
properties [16].

4.2 Arrow-Hurwicz-Uzawa Method

Inexact line search is computationally expensive because it solves nested
optimization problems in each iteration. In this section, we derive an alterna-
tive approach without nested optimization problems; it is based on the Arrow-
Hurwicz-Uzawa saddle-point method. Equations 5 and 6 define equilibrium
points. We start our derivation introducing the Nikaido-Isoda function [21]:

θ̂([w1,A1] , [w2,A2])

=
[

θ̂f (w1,A1) − θ̂f (w2,A1)
]

+
[

θ̂g(w1,A1) − θ̂g(w1,A2)
]

. (13)
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This function quantifies the cost savings that the learner could achieve by
unilaterally changing the model from w1 to w2 plus the cost savings that the
data generator could achieve by unilaterally changing the transformation from
A1 to A2. Nikaido-Isoda function θ̂ is concave in (w2,A2) because θ̂f and θ̂g

are convex, and the cost functions for (w2,A2) enter the function as negatives.
For convex-concave Nikaido-Isoda functions, parameters [w∗,A∗] are an equi-

librium point if and only if the Nikaido-Isoda function has a saddle point at
([w∗,A∗], [w∗,A∗]) [9]. The intuition behind this result is the following. An equi-
librium point (w∗,A∗) satisfies Equations 5 and 6 by definition. By Equation 13,
θ̂([w∗,A∗], [w∗,A∗]) = 0. Equations 5 and 6 imply that θ̂([w,A], [w∗,A∗]) is
positive and θ̂([w∗,A∗], [w,A]) is negative for [w,A] 	= [w∗,A∗]. When θ̂ is
convex in [w1,A1] and concave in [w2,A2], this means that (w∗,A∗) is an equi-
librium point if and only if θ̂ has a saddle point at position [w∗,A∗], [w∗,A∗].

Saddle points of convex-concave functions can be located with the Arrow-
Hurwicz-Uzawa method [1]. We implement the method as an iterative procedure
with a constant stepsize t [20]. In each iteration j, the method computes the
gradient of θ̂ with respect to w1, w2, A1 and A2, and performs a descent by
updating previous estimates:

(w1,A1)
(j+1) = (w1,A1)

(j) − t∇(w1,A1)θ̂([w1,A1]
(j)

, [w2,A2]
(j))

(w2,A2)
(j+1) = (w2,A2)

(j) + t∇(w2,A2)θ̂([w1,A1]
(j)

, [w2,A2]
(j)).

The final estimator of the equilibrium point after T iterations is the average
of all iterates: (ŵ∗, Â∗) =

∑T
j=1(w1,A1)(j). For any convex-concave θ̂, this

method converges towards a saddle-point.

4.3 Parallelized Methods

Both the inexact line search method sketched in Section 4.1 and the Arrow-
Hurwicz-Uzawa method derived in Section 4.2 can be implemented in a batch-
parallel manner. To this end, the data is randomly partitioned into k batches
(Xi,yi), where i = 1, . . . , k. In practice, rather than splitting the data into k dis-
joint partitions, it is advisable to split the data into a larger number of portions
but have some overlap between the portions. In the map step, k parallel nodes
perform gradient descent on their respective batch of training examples; in the
final reduce step, the k parameter vectors are averaged [26]. The execution time
of averaging k parameter vectors wi ∈ R

m is vanishingly small in comparison to
the execution time of the parallel gradient descent.

When w1, . . . ,wk are equilibrium points of the games given by the respective
partitions of the sample, then the averaged vector w = 1

k

∑k
j=1 wj still cannot

be guaranteed to be an equilibrium point of the game given by the entire sample.
In fact, in the experimental study we will find example cases where this is not
the case.
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Fig. 1. Relative error (with respect to logistic regression, LR) of classification models
evaluated into future (left). Value of Nikaido-Isoda function over time for three differ-
ent optimization algorithms (center) and parallelized models (right). Error bars show
standard errors.

5 Experimental Results

The goal of this section is to explore the robustness and scalability of sequential
and parallelized methods that locate equilibrium points. We use a data set of
290,262 emails collected by an email service provider [3]. Each instance contains
the term frequency of 226,342 terms. We compute a PCA of the emails and
use the first 250 principal components as feature representation for most exper-
iments. The data set is sorted chronologically. Emails that have been received
over the final 12 months of the data collection period are held out for evaluation.
Emails received in the month before that are used for tuning of the regularization
parameters. Training emails are drawn from the remaining set of older emails.

5.1 Reference Methods

We use the logistic loss for all methods and for both learner and data generator.
This makes logistic regression (LR) our natural iid baseline learning method. In
the first experiment, we compare the transformation model derived in Section 2
(NashParam) that uses a parameterized function of individual instances to the
global transformation model [3] that allows arbitrary dependencies between per-
turbations of multiple instances (NashGlobal). Additionally, we use the following
simple game-theoretic reference method (BestResp): The data generator chooses
the perturbation that is the best response to the standard logistic regression, and
the learner chooses the model parameters that are the best response to this per-
turbation. That is, BestResp chooses parameters w∗ according to:

1. w′ = arg minw θ̂f (w,0m×m)
2. A′ = arg minA θ̂g(w′,A)
3. w∗ = arg minw θ̂f (w,A).

5.2 Performance of the Parameterized Transformation Model

We compare a standard logistic regression approach (LR), game-theoretic heuris-
tic BestResp, an equilibrium point with global transformation model (Nash-
Global), and the equilibrium point with the parameterized transformation model
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(NashParam). In each iteration, we sample 2500 training instances from the
training portion of the data. We tune the free parameters—the regularization
parameters of the learner and the data-generator—on the younger tuning portion
of the data. All models are then evaluated over the final 12 evaluation months.
We repeat this procedure 10 times and average the resulting error rates. For
all following experiments, we keep all regularization parameters fixed, using the
values that the parameters have been tuned to here.

Figure 1 (left) show the average relative error of all models with respect to
logistic regression (LR); error bars show the standard error. Both NashGlobal
and NashParam achieve significant improvements over LR. The parameterized
transformation model NashParam reduces the error rate over NashGlobal by up
to eight percent. The heuristic BestResp does not perform better than LR.

5.3 Optimization Algorithms

This section compares the convergence rates of the inexact line search (ILS )
and Arrow-Hurwicz-Uzawa (AHU ) approaches to finding equilibrium points,
discussed in Sections 4.1 and 4.2, respectively.

In each repetition of the experiment, we sample 10,000 instances from the
training portion of the data. Here, we use the 500 first principal components
as feature representation. In each iteration of the optimization procedures, we
measure he Nikaido-Isoda function of the current pair of parameters and the
best possible reactions to these parameters—this function reaches zero at an
equilibrium point. Figure 1 (center) shows that the ILS procedure converges
very quickly. By contrast, AHU requires several orders of magnitude more time
before the Nikaido-Isoda function drops noticably (not visible in the diagram);
we have not been able to observe convergence. Increasing the regularization
parameters by a factor of 100—which should make the optimization criterion
more convex—did not change these findings. We therefore excluded AHU from
further investigation.

5.4 Parallelized Models

In this section, we study parallel batch gradient descent, as discussed in
Section 4.3, based on ILS. In each repetition, we sample 3200 instances from the
training portion; we average 10 trials. The baseline model LR-1-Sgl is trained on
all training data. Each of 8 nodes then processes a batch of data and returns a
model LR-8-Sgl ; these parameter vectors are averaged into LR-8-Avg. Likewise,
ILS-1-Sgl is trained on all training data. Each node returns a model ILS-8-Sgl ;
these models are averaged into ILS-8-Avg.

For logistic regression, Figures 2 (left diagram, each node processes 1
8 of the

data), 3 (left, each node processes 1
4 of the data), and 4 (left, each node processes

1√
8

of the data), the averaged models LR-8-Avg consistently outperform the
individual models LR-8-Sgl. Model LR-1-Sgl that has been trained sequentially
on all available data outperforms the averaged models—this is consistent with
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earlier results on parallel stochastic gradient descent [18,26]. The same is true
for the equilibrium models found by ILS : Figures 2 (center, 1

8 of the data per
node), 3 (center, 1

8 of the data per node), and 4 (center, 1√
8

of the data per
node) show that the averaged models ILS-8-Avg outperform the parallel models
ILS-8-Sgl. The sequentially trained model ILS-1-Sgl outperforms the averaged
models.
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Figures 2 (right, 1
4 of the data), and 3 (right, 1

8 of the data), and 4 (right, 1√
8

of the data) show the error rate of ILS-8-Avg relative to the error rate of LR-8-
Avg, in analogy to Figure 1 (left). While in Figure Figure 1 (left) the equilibrium
points have outperformed LR, the averaged model ILS-8-Avg tends to have a
similar error rate as LR-8-Avg. The averaged equilibrium parameters—while still
outperforming the equilibrium parameters trained on parallel batches—are no
longer more accurate than the averaged logistic regression models.

We investigate further why this is the case. Figure 1 (right) shows the value
of the Nikaido-Isoda function at the end of the batch optimization process for a
single model trained on 1

k of the data (ILS-Sgl), and the corresponding Nikaido-
Isoda function value for the average of k models trained on 1

k of the data each
(ILS-Avg). Surprisingly, the averaged parameter vectors have a higher function
value which means that they are further away from being equilibrium points
than the individual models.

We can conclude that for this application (a) equilibrium points tend to be
more accurate than standard logistic regression models; (b) averaging parameter
vectors that have been trained on different batches of the data always leads to
more accurate models; but (c) averaging equilibrium points tends to lead to
model parameters that are no longer equilibrium points, and are therefore not
generally more accurate than standard logistic regression models.

6 Conclusion

We have derived a model of adversarial learning in which the data generator
gets to choose a parametric perturbation function gA(x) = x + Ax which is
used to transform observations at application time. We have shown that the
game between learner and data generator has at least one equilibrium point
for convex and continuous loss functions. We have shown that the equilibrium
point is unique if the loss function of learner and data generator have identical
curvatures (as can be achieved with logistic loss functions) and the relationship
between the regularization coefficients of learner and data generator are balanced
as required by Assumption 2. Empirically, we observe that for the application
of email spam filtering, equilibrium points under the derived data generation
model maintain a higher accuracy over an evaluation period of 12 months after
training than iid learning and reference methods.

The MapReduce programming model offers an unrivaled speed-up potential
because it requires all synchronization to be limited to a final aggregation step.
We derived batch-parallel stochastic gradient methods that identify a unique
equilibrium point and can be implemented using the MapReduce model. Prior
work on parallel stochastic gradient descent has established that the aggregate of
models that have been trained in parallel on subsets of the data are more accu-
rate than the individual, aggregated models, and that the aggregate converges
toward to performance of a single model that has been trained sequentially on all
the data [18,26]. We observe that this is also true for the aggregates of equilib-
rium points that have been located in parallel on batches of the data. However,
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it turns out that aggregates of equilibrium points are not equilibrium points
themselves; the Nikaido-Isoda function increases its value during the aggrega-
tion step. Therefore, aggregated logistic regression models are about as accurate
as aggregated equilibrium points. From a practical point of view, this implies
that searching for equilibrium points is advisable for adversarial applications as
long as training data, and not computation time, is the limiting factor. As the
sample size increases, the computation time needed to locate equilibrium points
on a single node becomes the limiting factor. For intermediate sample sizes, it
may still be possible (and advisable) to train a model on a single node using iid
learning. For even larger sample sizes, this becomes impossible. At this point,
aggregated batch-parallel gradient descent outperforms sequential optimization
using a subset of the data. At this point, however, aggregated equilibrium points
offer no advantage over aggregated models trained under the iid assumption.
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Abstract. We introduce both joint training of neural higher-order
linear-chain conditional random fields (NHO-LC-CRFs) and a new struc-
tured regularizer for sequence modelling. We show that this regularizer
can be derived as lower bound from a mixture of models sharing parts,
e.g. neural sub-networks, and relate it to ensemble learning. Further-
more, it can be expressed explicitly as regularization term in the training
objective.

We exemplify its effectiveness by exploring the introduced NHO-LC-
CRFs for sequence labeling. Higher-order LC-CRFs with linear factors
are well-established for that task, but they lack the ability to model
non-linear dependencies. These non-linear dependencies, however, can
be efficiently modeled by neural higher-order input-dependent factors.
Experimental results for phoneme classification with NHO-LC-CRFs
confirm this fact and we achieve state-of-the-art phoneme error rate of
16.7% on TIMIT using the new structured regularizer.

Keywords: Structured regularization · Ensemble learning · Additive
mixture of experts · Neural higher-order conditional random field

1 Introduction

Overfitting is a common and challenging problem in machine learning. It occurs
when a learning algorithm overspecializes to training samples, i.e. irrelevant or
noisy information for prediction is learned or even memorized. Consequently,
the learning algorithm does not generalize to unseen data samples. This results
in large test error, while obtaining small training error. A common assumption
is that complex models are prone to overfitting, while simple models have lim-
ited predictive expressiveness. Therefore a trade-off between model complexity
and predictive expressiveness needs to be found. Usually, a penalty term for
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the model complexity is added to the training objective. This penalty term is
called regularization. Many regularization techniques have been proposed, e.g. in
parameterized model priors on individual weights or priors on groups of weights
like the l1-norm and l2-norm are commonly used.

Recently, dropout [12] and dropconnect [33] have been proposed as regulariza-
tion techniques for neural networks. During dropout training, input and hidden
units are randomly canceled. The cancellation of input units can be interpreted
as a special form of input noising and, therefore, as a special type of data aug-
mentation [18,32]. During dropconnect training, the connections between the
neurons are dropped [33]. Dropout and dropconnect can be interpreted as mix-
tures of neural networks with different structures. In this sense, dropout and
dropconnect have been interpreted as ensemble learning techniques. In ensemble
learning, many different classifiers are trained independently to make the same
predictions, i.e. ensembles of different base classifiers. For testing, the predic-
tions of the different classifiers are combined. In the dropout and dropconnect
approaches, the mixture of models is trained and utilized for testing. Recently,
pseudo-ensemble learning [1] has been suggested as a generalization of dropout
and dropconnect. In pseudo-ensemble learning, a mixture of child models gener-
ated by perturbing a parent model is considered.

We propose a generalization of pseudo-ensemble learning. We introduce a
mixture of models which share parts, e.g. neural sub-networks, called shared-
ensemble learning. The difference is that in shared-ensemble learning, there is no
parent model from which we generate child models. The models in the shared-
ensemble can be different, but share parts. This is in contrast to traditional
ensembles which typically do no share parts. Based on shared-ensembles, we
derive a new regularizer as lower bound of the conditional likelihood of the
mixture of models. Furthermore, this regularizer can be expressed explicitly as
regularization term in the training objective. In this paper, we apply shared-
ensemble learning to linear-chain conditional random fields (LC-CRFs) [13] in
a sequence labeling task, derive a structured regularizer and demonstrate its
advantage in experiments. LC-CRFs are established models for sequence label-
ing [7,35], i.e. we assign some given input sequence x, e.g. a time series, to an
output label sequence y.

First-order LC-CRFs typically consist of transition factors, modeling the
relationship between two consecutive output labels, and local factors, mod-
eling the relationship between input observations (usually a sliding window
over input frames) and one output label. But CRFs are not limited to
such types of factors: Higher-order LC-CRFs (HO-LC-CRFs) allow for arbi-
trary input-independent (such factors depend on the output labels only) [35]
and input-dependent (such factors depend on both the input and output vari-
ables) higher-order factors [16,23]. That means both types of factors can include
more than two output labels. Clearly, the Markov order of the largest factor (on
the output side) dictates the order of LC-CRFs.

It is common practice to represent the higher-order factors by linear func-
tions which can reduce the model’s expressiveness. To overcome this limitation,
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a widely used approach is to represent non-linear dependencies by parametrized
models and to learn these models from data. Mainly kernel methods [14] and
neural models [15,19,20,22,24] have been suggested to parametrize first-order
factors in LC-CRFs, i.e. mapping several input frames to one output label. In
summary, most work in the past focused either on (a) higher-order factors repre-
sented by simple linear models, or (b) first-order input-dependent factors repre-
sented by neural networks. In this work, we explore joint-training of neural and
higher-order input-dependent factors in LC-CRFs.

Unfortunately, higher-order CRFs significantly increase the model complex-
ity and, therefore, are prone to overfitting. To avoid overfitting, the amount of
training data has to be sufficiently large or, alternatively, regularizers can be uti-
lized. In this work, we apply the structured regularizer derived from the shared-
ensemble framework to higher-order CRFs and demonstrate its effectiveness.

Our main contributions are:

1. We propose shared-ensemble learning as a generalization of pseudo-ensemble
learning, i.e. a mixture of models which share parts, e.g. neural sub-networks.

2. From this framework we derive a new regularizer for higher-order sequence
models. By lower-bounding the conditional likelihood of the mixture of mod-
els, we can explicitly express the regularization term in the training objective.

3. Furthermore, we introduce joint-training of neural higher-order input-
dependent factors in LC-CRFs depending on both sub-sequences of the input
and the output labels. These factors are represented by individual multi-layer
perceptron (MLP) networks.

4. We present experimental results for phoneme classification. NHO-LC-CRFs
with the proposed regularizer achieve state-of-the-art performance of 16.7%
phone error rate on the TIMIT phoneme classification task.

The remainder of this paper is structured as follows: In Section 2 we briefly
review related work. In Section 3 we introduce the NHO-LC-CRF model.
Section 4 provides details on the structured regularizer. In Section 5 we evaluate
our model on the TIMIT phoneme classification task. Section 6 concludes the
paper.

2 Related Work

Dropout applied to the input has been formalized for some linear and log-linear
models [18,32]. Assuming a distribution of the dropout noise, an analytical form
of the dropout technique has been presented. The training objective has been
formulated as the expectation of the loss function under this distribution. Fur-
thermore, this objective has been reformulated as the original objective and an
additive explicit regularization.

As mentioned before, HO-LC-CRFs have been applied to sequence label-
ing in tagging tasks, in handwriting recognition [23,35] and large-scale machine
translation [16]. In these works, higher-order factors have not been modeled
by neural networks which is the gap we fill. However, first-order factors have
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been already modeled by several types of neural networks. Conditional neural
fields (CNFs) [20] and multi-layer CRFs [22], propose a direct method to opti-
mize MLP networks and LC-CRFs under the conditional likelihood criterion
based on error back-propagation. Another approach is to pre-train an unsu-
pervised representation with a deep belief network, transform it into an MLP
network and finally fine-tune the network in conjunction with the LC-CRF [5].
Hidden-unit conditional random fields (HU-CRFs) [19] replace local factors by
discriminative RBMs (DRBMs) [15], CNN triangular CRFs [34] by convolutional
neural networks (CNNs) and context-specific deep CRFs [24] by sum-product
networks [6,21] which can be interpreted as discriminative deep Gaussian mix-
ture models generalizing discriminative Gaussian mixture models to multiple
layers of hidden variables.

In more detail, we contrast our work from [5]: First, although formulated
quite general that work focused on neural first-order factors in contrast to neu-
ral higher-order factors in our work. Second, they used one shared neural network
for all factors in contrast to individual neural networks as in our case. Third, that
work utilized unsupervised pre-training as initialization of their MLP network.
We jointly train the NHO-LC-CRF and we improved the classification perfor-
mance using the new structured regularizer. This work is an extension of [25]
which focused on discriminative pre-training of neural higher-order factors to
produce rich non-linear features. A linear higher-order LC-CRFs is subsequently
trained on these features. In contrast, here we train jointly the NHO-LC-CRF.
Furthermore, we introduce the new structured regularizer and show its relation
to mixture models and ensemble learning.

Finally, in computer vision higher-order factors in Markov random fields [26]
and conditional random fields [9,17,30] are much more common than in sequence
labeling. Most of that work focus on higher-order factors represented by products
of experts [11]. Typically, approximate inference such as belief propagation or a
sampling method is utilized.

3 Higher-Order Conditional Random Fields

We consider HO-LC-CRFs for sequence labeling. The HO-LC-CRF defines a
conditional distribution

pCRF (y|x) =
1

Z(x)

T
∏

t=1

N
∏

n=1

Φt(yt−n+1:t;x), (1)

for an output sequence y of length T given an input sequence x of length T
where Φt(yt−n+1:t;x) are non-negative factors that can depend on the label
sub-sequence yt−n+1:t and the whole input sequence x, and where Z(x) is an
input-dependent normalization computed as

Z(x) =
∑

y

T
∏

t=1

N
∏

n=1

Φt(yt−n+1:t;x). (2)
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Fig. 1. Factor graph of LC-CRFs using (a) input-dependent uni-gram features f1-1

and bi-gram transition features f2 (typical) and (b) additionally 3-gram features f3 as
well as input-dependent features f2-2 and f3-3.

An (N − 1)th-order CRF models label sub-sequences of maximal span N in the
corresponding factors. The factors Φt(yt−n+1:t;x) are assumed to be given in
log-linear form, i.e.

Φt(yt−n+1:t;x) = exp

(

∑

k

wt,n
k fk(yt−n+1:t; t,x)

)

, (3)

where fk(yt−n+1:t; t,x) are arbitrary vector-valued and (possibly) position-
dependent feature functions and wt,n

k are the weights. These functions can be
any functions ranging from simple indicator functions, linear functions, up to
functions computed using neural networks as we have in this work. We distin-
guish the following types of feature functions:

– n-Gram Input-Independent Features. These features are observation-
independent, i.e. fk(yt−n+1:t; t,x) = fn(yt−n+1:t). Each entry of the vec-
tors corresponds to the indicator function of a certain label sub-sequence
ai, i.e. fn(yt−n+1:t) = [1(yt−n+1:t = a1),1(yt−n+1:t = a2), . . .]T . Typically
a1,a2, . . . enumerate all possible label sub-sequences of length n. These tran-
sition functions are denoted as fn in Figure 1.
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– m-n-Gram Input-Dependent MLP Features. These features general-
ize local factors to longer label sub-sequences. In this way, these feature
functions can depend on the label sub-sequence yt−n+1:t and an input sub-
sequence of x, i.e. fm−n(yt−n+1:t; t,x) = [1(yt−n+1:t = a1)gm(x, t), . . .]T

where gm(x, t) is an arbitrary function. This function maps an input sub-
sequence into a new feature space. In this work, we choose to use MLP
networks for this function being able to model complex interactions among
the variables. More specific, the hidden activations of the last layer hm(x, t)
of the MLP network are used, i.e. gm(x, t) = hm(x, t). We call these features
m-n-gram MLP features. They are denoted as fm-n in Figure 1, assuming
that they only depend on input-output sub-sequences. Although possible,
we do not consider the full input sequence x to counteract overfitting, but
only use a symmetric and centered contextual window of length m around
position t or time interval t − n + 1 : t. Exemplary, in case of two labels and
four input sub-sequences we include the inputs from time interval t−2 : t+1.
An important extension to prior work [5] is that the m-n-gram MLP fea-
tures are modeled by individual networks to represent different non-linear
interdependences between input and output sub-sequences.

Figure 1 show two LC-CRFs as factor graph. A typical LC-CRF as shown in
the top of the Figure 1 consists of input-dependent uni-gram features f1−1 and
input-independent bi-gram features f2. In this work, we consider a rarely used
extension using higher-order input-dependent m-n-gram features, for example
f3−3, shown in the bottom of Figure 1.

The benefit of input-dependent higher-order factors for phoneme classifica-
tion is substantiated by the fact that the spectral properties of phonemes are
strongly influenced by neighboring phonemes. This is illustrated in Figure 2. In
conventional speech recognition systems, this well-known fact is tackled by intro-
ducing meta-labels in form of tri-phone models [10]. Input-dependent higher-
order factors in HO-LC-CRF support this by mapping an input sub-sequence
to an output sub-sequence, i.e. several output labels, without introducing meta-
labels. Further in HO-LC-CRF, we are able to model arbitrary mappings from
input sub-sequences of length m to output sub-sequences of length n, i.e we can
also model mono-phones, bi-phones and tri-phones within the same model.

3.1 Parameter Learning

Parameters w = {wt,n
k | ∀k, t, n} are optimized to maximize the conditional

log-likelihood of the training-data, i.e.

F(w) =
J

∑

j=1

log p(y(j)|x(j)), (4)

where ((x(1),y(1)), . . . , (x(J),y(J))) is a collection of J input-output sequence
pairs drawn i.i.d. from some unknown data distribution. The partial derivatives
of (4) with respect to the weights wt,n

k can be computed as described in [23,35].
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Fig. 2. Three realizations of word-final /t/ in spontaneous Dutch. Left panel: Realization
of /rt/ in gestudeerd ’studied’. Middle panel: Realization of in leeftijd mag ‘age
is allowed’. Right panel: Realization of in want volgens ‘because according’ [28].

The weights are shared over time wt,n
k = wn

k as we use time-homogeneous fea-
tures. To perform parameter learning using gradient ascent all marginal posteri-
ors of the form p(yt−n+1:t|t,x(j)) are required. These marginals can be efficiently
computed using the forward-backward algorithm [23,35]. The algorithm can be
easily extended to CRFs of order (N − 1) > 2. However, for simplicity and as
we are targeting GPU platforms, we choose another approach. As we describe
in more detail in Section 3.2, we compute the conditional log-likelihood by com-
puting just the forward recursion. Then we utilize back-propagation [27] as com-
mon in typical neural networks to compute their gradients. The conditional
likelihood, the forward recursion and the corresponding gradients are computed
using Theano [2], a mathematical expression compiler for GPUs and automatic
differentiation toolbox.

3.2 Forward Algorithm for 2nd-Order CRFs

The main ingredient needed for applying the back-propagation algorithm is the
forward recursion and the computation of the normalization constant. For a
given input-output sequence pair (x,y), the forward recursion is given in terms
of quantities αt(yt−1:t) that are updated according to

αt(yt−1:t) = Φt(yt;x)Φt(yt−1:t;x)
∑

yt−2

Φt(yt−2:t;x)αt−1(yt−2:t−1). (5)

The recursion is initialized as

α2(y1:2) = Φ2(y2;x)Φ1(y1:2;x)Φ1(y1;x). (6)

Finally, the normalization constant can be computed as

Z(x) =
∑

yT−1:T

αT (yT−1:T ). (7)
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The most probable label sequence can be found by the Viterbi algorithm gener-
alized to HO-LC-CRFs: The summation in the forward recursion is exchanged
by the maximum operation, i.e. quantities α̂t(yt−1:t) are computed as

α̂t(yt−1:t) =Φt(yt;x)Φt(yt−1:t;x)max
yt−2

Φt(yt−2:t;x)α̂t−1(yt−2:t−1). (8)

At the end of the recursion, we identify the most probable state at the last
position and apply back-tracking. For details and for time complexities we refer
to [23,35].

4 Structured Regularizer

As mentioned in the introduction, NHO-LC-CRFs have high predictive expres-
siveness but are prone to overfitting. To fully exploit the potential of these mod-
els, special regularization techniques must be applied. Therefore, on top of the
NHO-LC-CRF, we add a new structured regularizer. In the following, we derive
this regularizer in a quite general form based on additive mixture of experts [3].
Our derivation is based on a single training sample (x,y), the generalization to
multiple samples is straightforward.

A mixture of models, i.e. additive mixture of experts, is defined as

log p(y|x) = log
∑

M∈M
p(y,M |x), (9)

where M is the set of models. We assume that the models in M have K
shared parts S1, . . . , SK , e.g. neural sub-networks. We consider the special case
M = {MS1,...,SK

,MS1 , . . . , MSK
}, where MS1,...,SK

is the combination model
which contains all shared parts and MSi

are sub-models containing the cor-
responding parts Si. The intuition behind this model choice is the following:
Shared parts in the combination model should not rely on the predictions of the
other parts. Therefore, the sub-models should produce good predictions by itself.
This approach improves robustness by counteracting co-adaptation comparable
to dropout training in neural networks.

Expanding Equation 9 yields

log p(y|x) = log
(

p(y,MS1,...,SK
|x) +

∑

MS∈MS

p(y,MS |x)
)

, (10)

where the first term in the logarithm is the conditional joint probability of y
and the combination model MS1,...,SK

and the sum is over the conditional joint
probabilities of y and the sub-models in MS = {MS1 , . . . , MSK

}. By the chain-
rule p(y,M |x) = p(y|x,M) p(M |x) and Jensen’s inequality, we obtain a lower
bound to the log-likelihood as

log
∑

M∈M
p(y|x,M) p(M |x) ≥

∑

M∈M
p(M |x) log p(y|x,M), (11)
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where
∑

M∈M p(M |x) = 1. By lower-bounding the log-likelihood we reformu-
lated the additive mixture of experts as a product of experts, i.e. summation in
log-space. By assuming that the model prior satisfies p(M |x) = p(M), i.e. the
prior is independent of the sample x, we obtain

∑

M∈M p(M) log p(y|x,M).
To this end, we can rewrite our lower bound as

p(MS1,...,SK
) log p(y|x,MS1,...,SK

) +
∑

MS∈MS

p(MS) log p(y|x,MS). (12)

We apply this result to our sequence labeling model introduced in Section 3.
We utilize the MLP networks for the different sub-sequences as sub-models MS

and the NHO-LC-CRF as the combination model MS1,...,SK
. Assuming a prior

probability of λ for the combination model, i.e. p(MS1,...,SK
) = λ, and a uniform

model prior p(MS) = (1 − λ)/|MS | for the label sub-sequence models, the final
training objective over sequences including the structured regularizer is

F(w) =
J

∑

j=1

(

λ log pCRF (y(j)|x(j)) + (1 − λ)
1

|MS |
∑

n

log Rn(y(j)|x(j))
)

, (13)

where (x(j),y(j)) is the jth training sample. The regularizers Rn(y|x) for the
corresponding label sub-sequences are defined as

log Rn(y|x) =
∑

t=n:T

log pMLP(yt−n+1:t|t,m,x), (14)

where the conditional probabilities of the corresponding label sub-sequences are

pMLP(yt−n+1:t|t,m,x) =
exp

(

wT
n f

m−n(yt−n+1:t; t,x)
)

ZMLP
n (x)

(15)

and the normalization constants of the MLP networks are

ZMLP
n (x) =

∑

yt−n+1:t

exp
(

wT
n f

m−n(yt−n+1:t; t,x)
)

. (16)

This means the sub-models are MLP networks sharing the MLP features fm−n

with the NHO-LC-CRF, the combination model. The trade-off parameter λ bal-
ances the importance of the sequence model against the other sub-models.

For testing we drop the regularizer and find the most probable sequence by
utilizing the Viterbi algorithm for NHO-LC-CRFs as describled in Section 3.2.

5 Experiments

We evaluated the performance of the proposed models on the TIMIT phoneme
classification task. We compared isolated phone classification (without label
context information) with MLP networks to phone labeling with neural HO-
LC-CRFs. This comparison substantiates the effectiveness of joint-training of
neural higher-order factors. Furthermore, we show performance improvements
using our introduced structured regularizer during joint-training.
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5.1 TIMIT Data Set

The TIMIT data set [36] contains recordings of 5.4 hours of English speech from
8 major dialect regions of the United States. The recordings were manually seg-
mented at phone level. We use this segmentation for phone classification. Note
that phone classification should not be confused with phone recognition [10]
where no segmentation is provided. We collapsed the original 61 phones into
39 phones. All frames of Mel-frequency cepstral coefficients (MFCC), delta and
double-delta coefficients of a phonetic segment are mapped into one feature vec-
tor. Details are presented in [8]. The task is, given an utterance and a corre-
sponding segmentation, to infer the phoneme within every segment. The data set
consists of a training set, a development set (dev) and a test set (test), contain-
ing 140.173, 50.735 and 7.211 phonetic segments, respectively. The development
set is used for parameter tuning.

5.2 Experimental Setup

In all experiments, input features were normalized to zero mean and unit vari-
ance. Optimization of our models was in all cases performed using stochastic
gradient ascent using a batch-size of one sample. An �2-norm regularizer on the
model weights was used. We utilized early stopping determined on the devel-
opment data set. We trained for up to 500 epochs. However, in most cases
less iterations have been required. The proposed model was entirely trained on
NVIDIA GPUs using Theano [2], a mathematical expression compiler for GPUs
and automatic differentiation toolbox. The classification performance is mea-
sured by phone error rate (PER), i.e. Hamming distance between the reference
and predicted label sequence for all test samples.

5.3 Labeling Results Using Only MLP Networks

In the first experiment, we trained MLP networks with a single hidden layer to
predict the phone label of each segment. We tuned the number of hidden units
H ∈ {100, 150, 200, 300, 400, 500} and their activation functions, i.e. rectifier and
tanh. Furthermore, we analyzed the effect of the number of input segments, i.e.
we used the current segment and three or five surrounding segments centered at
the current position index as input. Results in Table 1 (only a sub-set is reported)
show that more hidden units result in better performance. For tanh activations,
the best performance of 21.0% is achieved with m = 3 input segments and using
H = 500 hidden units. More input segments reduced the performance. In pre-
liminary experiments, we found that more than one hidden layer decreased the
performance. Therefore, we used in the following experiments tanh activations
and one hidden layer.

5.4 Labeling Results Using LC-CRFs with Linear or Neural
Higher-Order Factors

Experiments with linear HO-LC-CRFs as shown in Table 2 reveal that classifi-
cation performance degrades with linear 3-3 gram factor. The best performance
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Table 1. Isolated Phone Classification using MLP networks (n = 1) with different
number of hidden units H and lengths of the contextual input window m. The classi-
fication performance is measured by phone error rate (PER).

rectifier tanh

H m dev test dev test

100 1 23.2 23.7 23.3 24.1
100 3 22.0 23.4 22.3 22.9
100 5 22.6 22.9 23.8 24.4

150 1 22.6 23.0 22.6 23.0
150 3 21.4 22.2 21.8 22.3
150 5 22.4 22.9 23.2 23.9

rectifier tanh

H m dev test dev test

200 1 22.5 23.2 22.4 22.6
200 3 21.3 21.8 21.4 22.6
200 5 22.3 22.7 22.7 22.9

500 1 22.1 22.6 22.1 22.9
500 3 20.9 22.1 20.6 21.0
500 5 22.3 22.7 21.9 22.7

Table 2. Linear higher-order CRFs. All results with m = 1 and n = 1 already include
input-independent 2-gram factors.

m=n 1 + 2 + 3

dev 25.8 20.4 20.7
test 25.9 20.5 21.6

of 20.5% is achieved with factors up to order n = m = 2. The plus sign indicates
additional higher-order factors on top to the ones from previous columns in the
table, i.e. the model of column +2 includes the linear factors {f1, f1−1, f2, f2−2}.

In the next set of experiments, we consider LC-CRFs with neural input-
dependent higher-order factors and we will show their effectiveness in contrast
to their linear counterparts in Table 2. In Table 3, we explore the combination
of higher-order factors up to the order n = m = 3 as described in Section 3. By
including more higher-order factors in the first column of Table 3, the classifica-
tion performance improves for the baseline using only l2 regularization only. For
the baseline, we tuned the learning rate 0.01, 0.001, 0.0001 and l2 regularizer
trade-off-parameter 0.1, 0.01, 0.001, 0.0001 and report the best observed perfor-
mance. The best result of 17.7% is achieved with 150 hidden units and factors
up to order n = m = 3 which is significantly better than the best performance
of 20.5% with linear factors.

Furthermore, we tested our new structured regularizer with factors up to
order n = m = 3 for various trade-off parameters λ ∈ {0.01, 0.3, 0.6} as
shown in Table 3. We used fixed a learning rate of 0.001 and l2 regularizer
of 0.001. We achieved the best performance of 16.8% with factors up to order
m = n = 3 and a trade-off parameter of 0.3. We further tuned the trade-off
parameter λ ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.95, 1.0} for different number of
hidden units H ∈ {100, 150, 200}. This is shown in the Figure 3. For different net-
work sizes, we observe a clear optimum with respect to the trade-off parameter
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Table 3. Neural higher-order LC-CRF without and with our structured regularizer.
The order m = n of the higher order factors is examined. Furthermore, the effectiveness
of the new structured regularizer is demonstrated for factors up to order m = n = 3.
All results with m = 1 and n = 1 already include input-independent 2-gram factors.
In all experiments, the number of hidden units is H = 150 and one hidden layer.

no reg. λ = 0.6 λ = 0.3 λ = 0.01

m = n dev test dev test dev test dev test

1 21.2 21.5 21.7 22.4 21.7 21.9 25.7 26.4
+ 2 17.6 18.3 17.9 18.3 17.5 18.0 19.8 20.4
+ 3 17.9 17.7 16.9 17.5 16.6 16.8 18.5 19.2

λ and a margin to the baseline results without the regularizer, i.e. λ = 1.0,
which we indicated by a dotted line in Figure 3. By this additional tuning, we
improved the result further and achieved the best overall performance of 16.7%
with factors up to order m = n = 3 and a trade-off parameter of 0.1.

Fig. 3. Performance using the structured regularizer for various trade-off parameters
λ. The number of hidden units H ∈ {100, 150, 200} in the neural higher-order fac-
tors varies in the different plots. Baseline results without the regularizer λ = 1.0 are
indicated by a dotted line.
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Fig. 4. Test performance for (left) various training set sample sizes with and with-
out our structured regularizer and (right) its zoomed presentation to illustrate the
effectiveness for small training set sample sizes.

In additional experiments, we explored the performance for varying numbers
of training samples Ntrain. We fixed the number of hidden units H = 150, trade-
off parameter λ = 0.3, learning rate of 0.001 and l2 regularizer of 0.001. Figure 4
shows the effectiveness of our structured regularizer for small and full training
sample set, i.e. we are able to outperform the same model without the structured
regularizer by a large margin over the range of used training samples. For small
sample sizes, the margin between the baseline performance results and the one
with the structured regularizer decreased slightly.

Finally, we compare our best result to other state-of-the-art methods based
on MFCC features as shown in Table 4. Using the code of [20] we tested CNFs

Table 4. Summary of labeling results. Results marked by (†) are from [31], by (††)
are from [29], by (†††) are from [8], by (††††) are from [24], and by (*) are from [4].
Performance measure: Phone error rate (PER) in percent.

Model PER [%]

GMMs ML†† 25.9

HCRFs† 21.5

Large-Margin GMM†† 21.1

Heterogeneous Measurements††† 21.0
CNF 20.67
Linear HO-LC-CRF 20.5

GMM+LC-CRF (1st order)†††† 22.10

CS-DCRF+MEMM (8th order)†††† 22.15

CS-DCRF+LC-CRF (1st order)†††† 19.95

Hierarchical Large-Margin GMMs* 16.7

NHO-LC-CRF 17.7
+ structured regularizer 16.7
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with 50, 100 and 200 hidden units as well as one and three input segments. We
achieved the best result with 100 hidden units and one segment as input. Fur-
thermore, hierarchical large-margin GMMs achieve a performance of 16.7% and
outperform most other referenced methods but exploit human-knowledge and
committee techniques. However, our best model, the HO-LC-CRF augmented
by m-n-gram MLP factors using our new structured regularizer achieves a per-
formance of 16.7% without human-knowledge and is outperforming most of the
state-of-the-art methods.

6 Conclusion

We considered NHO-LC-CRFs for sequence labeling. While these models have
high predictive expressiveness, they are prone to overfitting due to their high
model complexity. To avoid overfitting, we applied a novel structured regular-
izer derived from the proposed shared-ensemble framework. We show that this
regularizer can be derived as lower bound from a mixture of models sharing
parts of each other, e.g. neural sub-networks. We demonstrated the effectiveness
of this structured regularizer in phoneme classification experiments. Further-
more, we experimentally confirmed the importance of non-linear representations
in form of neural higher-order factors in LC-CRFs in contrast to linear ones.
In TIMIT phoneme classification, we achieved state-of-the-art phoneme error
rate of 16.7% using the NHO-LC-CRFs equipped with our proposed structured
regularizer. Future work includes testing of different types of neural networks.
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Abstract. Discriminative models for classification assume that training
and deployment data are drawn from the same distribution. The perfor-
mance of these models can vary significantly when they are learned and
deployed in different contexts with different data distributions. In the lit-
erature, this phenomenon is called dataset shift. In this paper, we address
several important issues in the dataset shift problem. First, how can we
automatically detect that there is a significant difference between train-
ing and deployment data to take action or adjust the model appropri-
ately? Secondly, different shifts can occur in real applications (e.g., linear
and non-linear), which require the use of diverse solutions. Thirdly, how
should we combine the original model of the training data with other
models to achieve better performance? This work offers two main contri-
butions towards these issues. We propose a Versatile Model that is rich
enough to handle different kinds of shift without making strong assump-
tions such as linearity, and furthermore does not require labelled data to
identify the data shift at deployment. Empirical results on both synthetic
shift and real datasets shift show strong performance gains by achieved
the proposed model.

Keywords: Versatile model · Decision Trees · Dataset shift ·
Percentile · Kolmogorov-Smirnov test

1 Introduction

Supervised machine learning is typically concerned with learning a model using
training data and applying this model to new test data. An implicit assumption
made for successfully deploying a model is that both training and test data
follow the same distribution. However, the distribution of the attributes can
change, especially when the training data is gathered in one context, but the
model is deployed in a different context (e.g., the training data is collected in
one country but the predictions are required for another country). The presence
of such dataset shifts can harm the performance of a learned model. Different
c© Springer International Publishing Switzerland 2015
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kinds of dataset shift have been investigated in the literature [10]. In this work we
focus on shifts in continuous attributes caused by hidden transformations from
context to another. For instance, a diagnostic test may have different resolutions
when produced by different laboratories, or the average temperature may change
from city to city. In such cases, the distribution of one or more of the covariates
in X changes. This problem is referred as a covariate observation shift [7].

We address this problem in two steps. In the first step, we build Decision Trees
(DTs) using percentiles for each attribute to deal with covariate observation
shifts. In this proposal, if a certain percentage of training data reaches a child
node after applying a decision test, the decision thresholds in deployment are
redefined in order to preserve the same percentage (60%) of deployment instances
in that node. In the original learned DT, the learned threshold in a decision node
corresponds to the 60th percentile of the training data. The updated threshold
in deployment will be the 60th percentile of the deployment data.

The percentile approach assumes that the shift is caused by a monotonic
function preserving the ordering of attribute values but ignoring the scale. For
some shifts it may be more appropriate to assume a transformation from one
linear scale to another. We therefore develop a more general and versatile DT
that can choose between different strategies (percentiles, linear shifts or no shift)
to update the DT thresholds for each deployment context, according to the shifts
observed in the data.

The rest of the paper is organised as follows. Section 2 presents the dataset
shift problem and the existing approaches addressing it. In Section 3 we introduce
the use of percentiles and the versatile model proposed in our work. Section 4
presents the experiments performed to evaluate the versatile model on both
synthetic and non-synthetic dataset shifts, and Section 5 concludes the paper.

2 Dataset Shift

We start by making a distinction between the training and deployment contexts.
In the training context, a set of labelled instances is available for learning a
model. The deployment context is where the learned model is actually used
for predictions. These contexts are often different in some non-trivial way. For
instance, a model may be built using training data collected in a certain period of
time and in a particular country, and deployed to data in a future time and/or in
a different country. A model built in a training context may fail in a deployment
context due to different reasons: in the current paper we focus on performance
degradation caused by dataset shifts across contexts.

A simple solution to deal with shifts would be to train a new classifier for
each new deployment context. However, if there are not enough available labelled
instances in the new context, training a new model specific for that context
is then unfeasible as the model would not sufficiently generalise. Alternative
solutions have to be applied to reuse or adapt existing models, which will depend
on the kind of shift observed.
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Shifts can occur in the input attributes, in the output or both. Dataset shift
happens when training and deployment joint distributions are different [10], i.e.:

Ptr(Y,X) �= Pdep(Y,X) (1)

A shift can occur in the output, i.e., Ptr(Y ) �= Pdep(Y ), while the condi-
tional probability distribution remains the same Ptr(X|Y ) = Pdep(X|Y ). This
is referred in the literature as the prior probability shift and can be addressed
in different ways (e.g., [5]).

In our work we are mainly concerned with situations where the marginal dis-
tribution of a covariate changes across contexts, i.e.: Ptr(X) �= Pdep(X). Given
a change in the marginal distribution, we can further define two different kinds
of shifts depending on whether the conditional distribution of the target also
changes between training and deployment. In the first case, the marginal distri-
bution of X changes, while the conditional probability of the target Y given X
remains the same:

Ptr(X) �= Pdep(X)
Ptr(Y |X) = Pdep(Y |X) (2)

For instance, the smoking habits of a population may change over time due to
public initiatives but the probability of lung cancer given smoking is expected
to remain the same [12]. In the same problem, a labelled training set may be
collected biased to patients with bad smoking habits. Again, the marginal dis-
tribution in deployment may be different from training while the conditional
probability is the same. The above shift is referred in the literature by different
terms such as simple covariate shift [12] or sample selection bias [15]. A com-
mon solution to deal with simple covariate shifts is to modify the training data
distribution by considering the deployment data distribution. A new model can
then be learned using the shift-corrected training data distribution. This strat-
egy is adopted by different authors using importance sampling which corrects
the training distribution using instance weights proportional to Pdep(X)/Ptr(X).
Examples of such solutions include Integrated Optimisation Problem IOP [3],
Kernel Mean Matching [6], Importance Weighted Cross Validation IWCV [14]
and others.

In this paper we focus on the second kind of shift in which both the marginal
and the conditional distributions can change across contexts, i.e.:

Ptr(X) �= Pdep(X)
Ptr(Y |X) �= Pdep(Y |X) (3)

This is a more difficult situation that can be hard to solve and requires additional
assumptions. A suitable assumption in many situations is that there is a hidden
transformation of the covariates Φ(X) for which the conditional probability is
unchanged across contexts, i.e.:

Ptr(X) �= Pdep(X)
Ptr(Y |X) = Pdep(Y |Φ(X)) (4)
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This is defined in [7] as a covariate observation shift. For instance, in prostate
cancer detection, shifts can be observed in data from different laboratories due
to differences in their equipments and resolution of diagnostic tests [9]. A map-
ping between attributes can be performed to correct the existing differences in
data [9]. As another example [7], suppose that in an image recognition problem,
pictures are taken by a camera with two different colour adjustments settings,
thus representing two different contexts. This can result in a shift in the covari-
ates. The conditional probability, however, may be the same given an invariant
hidden raw camera representation. Finally, a sensor used to detect an event may
degrade over time. Such degradation can be seen as a transformation function
in the sensor outputs that causes a covariate observation shift.

Previous authors dealt with covariate observation shifts by finding a trans-
formation function Φ to correct the deployment data [1]. Once transformed or
‘unshifted’ using Φ, the deployment data is given as input to the model learned
in the training context. Finding a linear transformation is a natural choice in
this approach. In [1], for instance, the authors adopted Stochastic Hill Climbing
to find the best linear transformation to apply in the given deployment data.
In that work, labelled deployment instances are required in order to evaluate
the suitability of a candidate linear map. The parameters of the linear transfor-
mation are then optimised to maximise the accuracy obtained by the learned
model on the labelled deployment instances (once transformed). A similar idea
was proposed in [9], using genetic programming techniques to find more com-
plex transformation functions (both linear and non-linear). As [1], it requires
that labelled instances are available in the deployment data to evaluate the ade-
quacy of the transformation functions.

In summary, we emphasise that it can be difficult to recognise or distinguish
between the different kinds of shifts that may occur in a dataset. It can be simple
in some cases to identify a shift in the covariates, relying on a sufficient number
of unlabelled instances in the deployment context. On the other hand, verifying
a shift in the conditional probabilities P (Y |X) is not possible if there are only
unlabelled instances in deployment or may be unreliable if the number of labelled
instances in deployment is low. Additionally, suppose that we have evidence that
a change is caused by a transformation in a covariate. Trying to detect a linear
transformation to apply in the deployment data may be counter-productive if
the true transformation is non-linear instead. Finally, applying a shift-aware
method in a deployment context that did not actually change compared to the
training context may be detrimental as well. These considerations motivated our
proposal of a more sophisticated approach that can adapt to different kinds of
dataset shifts under different assumptions.

3 Versatile Decision Trees

In this work, we propose different strategies to build Decision Trees (DTs) in the
presence of covariate observation shifts. We make two main contributions. First,
we propose a novel approach to build DTs based on percentiles (see Sections 3.1
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Fig. 1. Two types of models; on the left is the model using a fixed threshold while on
the right is the model using percentiles. For each deployment context, the decision tree
is deployed in such a way that the deployment instances are split to the leaves in the
same percentile amounts of 63% and 37%.

and 3.2). The basic idea is to learn a conventional DT and then to replace the
internal decision thresholds by percentiles, which can deal with monotonic shifts.
Secondly, we propose a more general Versatile Model (VM) that deploys differ-
ent strategies (including the percentiles) to update the DT thresholds for each
deployment context, according to the shifts observed in the data (see Section 3.3).
The shifts are identified by applying a non-parametric statistical test.

3.1 Constructing Splits Using Percentiles

We consider an example using the diabetes dataset from the UCI repository,
which has 8 input attributes and 768 instances. Suppose we train a decision
stump and the discriminative attribute is the Plasma glucose concentration
attribute, which is a numerical attribute. Suppose the decision threshold is 127.5,
meaning that any patient with plasma concentration above 127.5 will be clas-
sified as diabetic, otherwise classified as non-diabetic as seen in Figure 1 (left).
If there is no shift in the attribute from training to deployment, the decision
node can be directly applied, i.e., the threshold 127.5 is maintained to split data
in deployment. However, if the attribute is shifted in deployment, the original
threshold may not work well.

In the current work, we propose to adopt the percentiles1 of continuous
attributes to update the decision thresholds for each deployment context. Back
to the example, instead of interpreting the data split in an absolute sense, we
will interpret it in terms of ranks: 37% of the training examples with the highest
values of Plasma reach the right child, while 63% of the training examples with
the lowest values of Plasma in turn reach the left child (see the right side of
Figure 1). We can say that the data was split at the 63th percentile in training.
Given a batch set of instances in deployment to classify, the DT can apply the
same split rule: the 37% of the examples in deployment with the highest val-
ues of Plasma are associated to the right child, while 63% of the examples with
the lowest values of Plasma in deployment are associated to the left child. The
decision threshold in deployment is updated in such a way that the percentage

1 Percentile is the value below which a given percentage of observations in a group is
observed.
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of instances split to each child is maintained. In this proposal, it is assumed
that the shift is caused by a monotonic transformation Φ. Such functions when
applied to an input attribute preserve the order of its original values. Different
from the previous work [1] the transformation function in the versatile DT is not
explicitly estimated, but it is implicitly treated by deploying the percentiles.

Formally, let L = {c1, . . . , cL} be the set of class labels in a problem. Let thtr

be the threshold value applied on a numerical attribute X in a decision node.
In the previous example thtr = 127.5 for the Plasma attribute. Let ncl

left be the
number of training instances belonging to class cl that are associated to the left
child node after applying the decision test, i.e., for which X ≤ thtr. The total
number of instances nleft associated to this node is:

nleft =
∑

cl∈L
ncl

left (5)

Let Rtr(thtr) = 100 ∗ nleft/n be the percentage of training instances in the
left node, where n is the total number of training instances. Then, thtr is the
percentile associated to Rtr(thtr) for the attribute X. In the above example:
Rth(127.5) = 63% and thtr is the 63th percentile of Plasma in the training data.
Then the threshold adopted in deployment is defined as:

thdep = R−1
dep(Rtr(thtr)) (6)

In the above equation, the threshold thdep is the attribute value in deployment
that, once adopted to split the deployment data, maintains the percentage of
instances in each child node: Rdep(thdep) = Rtr(thtr).

Fig. 2. Example of DT with percentiles when a shift is identified in the class distri-
bution. Part (a) illustrates the percentiles of each leaf for the training context, with
prior probability equal to 0.5. Part (b) illustrates the correction of the percentiles for
a new deployment context where the prior probability is 0.6. The correction of per-
formed using the ratios of 0.6/0.5 and 0.4/0.5 respectively for the positive and negative
instances (left side - (b)). Corrected number of instances expected at each leaf resulted
in new estimated percentiles (right side - (b))

.
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3.2 Adapting for Output Shifts

The percentile rule can be adapted to additionally deal with shifts in the class
distribution across contexts. Figure 2 illustrates a situation where the prior prob-
ability of the positive class was 0.5 in training and then shifted to 0.6 in deploy-
ment. In Figure 2(a) we observe a certain number of positives and negatives
internally in each child node, which is used to derive the percentiles. If a shift is
expected in the target, the percentage of instances expected in deployment for
each child node may change as well. For instance, a higher percentage of instances
may be observed in the right node in deployment because the probability of pos-
itives has increased and the proportion of positives related to negatives in this
node is high. In our work, we estimate the percentage of instances in each child
node according to the class ratios between training and deployment.

Let P cl
tr and P cl

dep be the probability of class cl, respectively in training and
deployment. P cl

dep can be estimated using available labelled data in deployment
or just provided as input. There is a prior shift related to this class label when
P cl

tr �= P cl
dep. For each instance belonging to cl observed in training we expect

to observed P cl
dep/P cl

tr instances of cl in deployment. The number of instances
associated to the left child node in deployment is then estimated by the following
equation:

n̂left =
∑

cl∈L
ncl

left

P cl
dep

P cl
tr

(7)

The percentile is then computed using the corresponding percentage:
Rtr(thtr) = 100 ∗ n̂left/n. In Figure 2(b), the class ratios of 0.6/0.5 and 0.4/0.5
are respectively adopted to correct the number of positive and negative instances
in each node. In the left node, for instance, the expected number of positive and
negative instances is respectively 48 and 64, resulting in 112 instances. The per-
centage to be adopted in deployment is now 56%, instead of 60% if no correction
is performed. The 56th percentile in the deployment data is then adopted as the
decision threshold.

3.3 Versatile Model for Decision Trees

By adopting percentiles in the DT, we are assuming a monotonic transformation
Φ across contexts. In this sense, our work is more general compared to the
previous work [1] that assumes a linear transformation. Monotonic shifts can
not only cover the linear case but also a broad range of non-linear monotonic
transformations (e.g., piecewise linear transformations). Even the case where
there is no shift can be seen as a monotonic transformation when Φ is the identity
function. Despite this generality, the use of percentiles has limitations too. First,
percentile estimates (either in training or deployment) can be inaccurate when
there is few or sparse data for estimation. Also, it may be worth trying alternative
methods if the assumptions made by these methods about the context shifts are
actually met. For instance, if we expect the shift to be linear we might be better
off fitting an explicit linear transformation between training and deployment.
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Algorithm 1. Versatile Model Threshold Selection Algorithm
Input: training attribute vector Xtr = (x1, . . . , xn) with n the number of training
instances (i.e., a column of the data matrix),; deployment attribute vector Xdep =
(x′

1, . . . , x
′
m); decision threshold in training thtr for attribute Xtr.

Output: deployment decision threshold thdep.
/* Test for no shift. Null hypothesis H0 : F (Xtr) = F (Xdep) */
pvalue=Kolmogorov-Smirnov(Xtr,Xdep)
if pvalue <0.05 then

/* Reject H0, Xdep is shifted. Try a linear transformation */
(Xu

dep, α, β)= Linear Transformation(Xtr,Xdep)
/* Test corrected shift. Null hypothesis H0 : F (Xtr) = F (Xu

dep) * /
pvalue=Kolmogorov-Smirnov(Xtr,X

u
dep)

if pvalue <0.05 then
/* Reject H0, Xu

dep is still shifted. Use the percentile. */
thdep = R−1

dep(Rtr(thtr))
else

/* Accept H0, Xu
dep is not shifted. Use the linearly corrected threshold */

thdep = α · thtr + β
end if

else
/* Accept H0, Xdep is not shifted. Use training threshold. */
thdep = thtr

end if
Return thdep

In this section, we propose a versatile decision tree model that employs differ-
ent strategies to choose the decision threshold according to the shift observed in
deployment. Algorithm 1 presents the proposed versatile model, which receives as
input the original threshold applied on an attribute, the training and the deploy-
ment data of that attribute and returns the appropriate threshold to adopt in
deployment. This versatile model (VM) can be described in three steps:

1. Initially a statistical test is applied to verify whether the distribution of the
attribute differs between training and deployment. In this step, we aim to
avoid dealing with shifts when they do not really exist, which could lead to
overfitting. In our implementation, the non-parametric Kolgomorov-Smirnoff
(KS) test was adopted2. If there is no shift in the attribute, the versatile DT
is applied using the original thresholds learned in the training context, i.e.
thdep = thtr.

2. If a shift is detected by the previous test, a linear transformation is fitted and
applied to the attribute in deployment, aiming to correct a potential linear
shift. In our implementation, α and β parameters were estimated based on

2 We employed the KS test on the values of the attribute: training Xtr and deployment
Xdep. The KS test tests the null hypothesis that the empirical cumulative distribution
functions of Xtr and Xdep are identical against the alternative hypothesis that the
two distributions are different.
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Algorithm 2. Linear Transformation
Input: training attribute vector Xtr = (x1, . . . , xn); deployment attribute vector Xdep =
(x′

1, . . . , x′
m).

Output: ‘Unshifted’ deployment attribute vector Xu
dep and corresponding parameters α, β.

/* Estimate the mean and standard deviation of X in training and deployment */

μtr = 1
n

∑n
i=1 xi , σtr =

√
1
n

∑n
i=1(xi − μtr)2

μdep = 1
m

∑m
i=1 x′

i, σdep =
√

1
m

∑m
i=1(x

′
i − μdep)2

/* Estimate α and β considering that: σdep = ασtr and μdep = αμtr + β */
α = σdep

σtr
β = μdep − α · μtr

/* Produce unshifted deployment data Xu
dep according to α and β */

Xu
dep = ∅

for i = 1 to m do
xu

i = (x′
i−β)

α
Xu

dep = Xu
dep ∪ xu

i
end for
Return Xu

dep, α, β

the change in mean and standard deviation of the attribute in training and
deployment (see Algorithm 2). We then apply the KS test again to compare
the distribution of the transformed attribute in deployment and the attribute
in the training data. If no shift is observed now, we assume that the linear
transformation applied was adequate. The versatile DT is then deployed with
a threshold thdep = α · thtr + β.

3. Finally, if the second test indicates that there is still a shift in the attribute
(i.e., the shift was not corrected using the linear transformation), then the
percentiles are deployed, assuming a non-linear monotonic shift. In this case
the adopted threshold is: thdep = R−1

dep(Rtr(thtr)).

4 Experimental Results

The VM combines 3 strategies for defining the DT thresholds in deployment:
original thresholds, linear transformations, and monotonic transformations using
percentiles. In the experiments, each strategy was individually compared to the
VM, respectively named as Original Model (OM), (α, β) and Perc. Additionally,
(α, β) and the Percentile methods were combined with the KS test, referred in
the experiments as KS+(α, β) and KS+Perc, respectively. In the former, linear
transformation is applied to all shifted attributes, whereas, in the latter, Per-
centiles are utilised. In both approaches, the original model was applied if there
is no shift detected by the KS test.

The first set of experiment applies synthetic shifts to UCI datasets to analyse
the performance of the shift detection approach adopted by the VM. We inject
two types of shifts into the deployment data to test the VM: a non-linear mono-
tonic transformation and linear shifts with different degrees (see Sections 4.1
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Table 1. Values used in the experiments for ϕ and γ in order to generate the synthetic
linear shifts.

ϕ γ Effect

0 0 unshifted data (original)
0 1 μdep shifted to right
0 -1 μdep shifted to left
1 0 stretch data
-1 0 compress data
1 1 μdep shifted to right and stretch the data
1 -1 μdep shifted to left and stretch the data
-1 1 μdep shifted to right and compress the data
-1 -1 μdep shifted to left and compress the data

and 4.2). In Section 4.3 we report on experiments with actual context changes
occurring in real-world datasets.

4.1 Generating Synthetic Shifts

In these experiments, linear transformations were applied to numerical attributes
in order to simulate shifts between two contexts. Two parameters, α and β,
were adopted in each simulation to perform the linear transformation Xdep =
α · Xtr + β. Let μtr and σtr be the mean and standard deviation of attribute
X in training. When X is shifted using the parameters α and β, the mean and
standard deviation of the transformed variable become

μdep = α · μtr + β

σdep = α · σtr

It is useful to re-parametrise α and β as follows.

α = 2ϕ

β = (1 − 2ϕ) · μtr + γ · σtr

If ϕ is negative the attribute values are compressed across contexts, and if ϕ is
positive the values are stretched. The mean is shifted by γ times the standard
deviation in training: μdep = μtr + γ · σtr. Table 1 shows the values used in the
experiments for ϕ and γ.

To create non-linear monotonic shifts we use the following transformation:

Xdep = σtr ·
(

Xtr − μtr

σtr

)3

+ μtr (8)

We use a cubic rather than a square transformation to ensure monotonicity. In
order to preserve the mean and standard deviation of the data we first convert
the attribute values to z-scores, apply the cubic transformation and then restore
the mean and standard deviation.
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4.2 Results of the Synthetic Shifts

We selected 10 datasets from UCI [8] and KEEL [2] with all numerical (real-
valued as well as integer-valued) attributes. Each dataset was randomly parti-
tioned into 5 folds. Using 4 folds for training and the 5th fold for deployment,
after shifting according to each set of parameters in Table 1. The same shift
is applied to all attributes in each dataset. Results are averaged over 5 cross-
validation runs for each dataset. Table 2 reports the average accuracy of 5 dif-
ferent runs for all used methods in 4 cases: unshifted, linear shift, non-linear
and mixture shift data. Performance of these methods applied to linear shifts
is the average of 8 degrees of linear shift as reported in Table 1. We conducted
the Friedman test based on the average ranks for all datasets in order to verify
whether the differences between algorithms are statistically significant [4]. At
significance level 0.05 the Friedman test gives significance for all experiments
except the non-linear shifts, so we show critical difference diagrams based on
the Nemenyi post-hoc test for the former in Figure 3. We proceed to discuss the
results of each experiment.

Unshifted Data. Unsurprisingly, the original model is the best when there is no
shift from training to deployment, but the CD diagram demonstrates that the
Versatile Model is not significantly worse. Percentiles don’t work well in this
case, confirming the need for a multi-strategy approach.

Linear Shifts. Estimating a linear shift is the right thing to do here so it is
not surprising that 〈α, β〉 performs strongest, with KS+〈α, β〉 trailing slightly
behind as the KS test may sometimes fail to detect the shift. The original model is
significantly outperformed by all context-sensitive models except the percentiles.
The Versatile Model is a good representative of the context-sensitive models.

Non-Linear Shift. Here the Versatile Model outperforms all other methods in
terms of the average ranks, but not significantly. Notice that, while the original
model performs worst, there are 2 datasets where the original model performs
best: in these datasets many attribute values are in the range [−1, 1] where the
cubic transformation has less effect.

Mixture Shift. The aim of this experiment was to test how well the Versatile
Model deals with a mixture of different shifts: one-third of the attributes was
shifted linearly, one-third non-linearly, and one-third remained unchanged. The
results demonstrate that the Versatile Model derives a clear advantage from the
ability of being able to distinguish between these different kinds of shift and
adapt its strategy.

4.3 Results on Non-synthetic Shifts

The aim of this experiment is to evaluate the Versatile Model on real dataset
shift and compared it the with state-of-art covariate shift solvers Integrated
Optimisation Problem (IOP) [3] and Kernel Mean Matching (KMM) [6]. IOP
and KMM algorithms were retrieved from [11] and run using default parameters.
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Fig. 3. Critical Difference diagrams using pairwise comparisons for those experiments
where the Friedman test gives significance at 0.05.

Diabetes. Our first benchmark is a dataset of 4 different ethnic groups of diabetes
patients [13]. The original dataset consists of 47 attributes and 101 766 instances.
Each instance corresponds to a unique patient diagnosed with diabetes. The
features describe the diabetic encounters such as diagnoses, medications, and
number of visits in the year preceding the encounter. We rank features using
information gain ratio then we select the best 8 numerical features. The classi-
fication task is whether the patient was re-admitted to the hospital. The values
of the readmission attribute are two: “yes” or “no”. In the original dataset, the
classes are: readmitted within 30 days “< 30”, readmitted after 30 days “> 30”
or no.

In our experiment, we split the dataset in 4 subsets according to the “ethnic
group” the patient belongs to. There are 4 different groups: Caucasian, African
American, Asian, and Hispanic. We evaluate the performance of models trained
on ethnic group X and deployed on ethnic group Y, denoted by X-Y. Table 3
shows the performance of the Versatile Model against the original model, IOP
and KMM. We also report the number of shifted attributes according to the KS
test. The Versatile Model wins most often, followed by the original model.

Heart. Our next benchmark is the heart disease dataset. We split it into two
subsets according to gender: male and female. In this dataset there are 5 con-
tinuous attributes, 3 of them are indicated as shifted between gender according
to KS test, which are age, heart rate and serum cholesterol. Table 4 shows the
performance of versatile method against the original model, IOP and KMM. In
both contexts the VM has the best accuracy among all three methods including
the original model.

Bike Sharing. This dataset [8] contains the hourly and daily count of rental bikes
between years 2011 and 2012 in addition to weather information. It contains 4
continuous attributes: actual and apparent temperature in Celsius, humidity and
wind speed. The classification task is whether there is a demand in this period of
time or not. In order to evaluate the shift effects, we split the dataset as proposed
in [1] to obtain the 4 seasons datasets. According to KS, all these 4 attributes are
detected as shifted except in 3 cases. First, between Summer-Spring, wind speed
is not shifted. Second, in both Summer-Autumn and Autumn-Winter, humidity
is not shifted. The performance of Versatile Model and others are shown in
Table 5. Again we note the solid performance of the Versatile Model.
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Table 2. Cross-validated classification accuracy for both unshifted, linear shift, non-
linear shift and mixture shift. The numbers between brackets are ranks. VM is the
Versatile Model, OM is the original model, 〈α, β〉 corresponds to a linear shift, Perc
corresponds to a percentile shift, and KS+. . . indicates that the Kolmogorov-Smirnov
test is used for detecting the shift.

VM OM 〈α, β〉 KS+〈α, β〉 Perc KS+Perc
unshifted data

Phoneme 0.851(3) 0.856(1) 0.846(5) 0.854(2) 0.819(6) 0.850(4)
Bupa 0.631(3) 0.632(1.5) 0.619(5) 0.632(1.5) 0.578(6) 0.625(4)
Appendicitis 0.846(5.5) 0.849(4) 0.853(1) 0.846(5.5) 0.851(2.5) 0.851(2.5)
Pima 0.728(1.5) 0.725(4) 0.728(1.5) 0.727(3) 0.711(6) 0.721(5)
Breast-w 0.947(3) 0.947(3) 0.947(3) 0.947(3) 0.820(6) 0.947(3)
Magic 0.821(4) 0.834(1) 0.830(3) 0.833(2) 0.773(6) 0.814(5)
Threenorm 0.674(2.5) 0.682(1) 0.673(4) 0.674(2.5) 0.635(6) 0.671(5)
Ringnorm 0.735(2.5) 0.731(4.5) 0.744(1) 0.735(2.5) 0.678(6) 0.731(4.5)
Ionosphere 0.893(2.5) 0.894(1) 0.851(4) 0.893(2.5) 0.825(5.5) 0.825(5.5)
Sonar 0.752(2.5) 0.754(1) 0.739(5) 0.752(2.5) 0.716(6) 0.746(4)
Average 0.787(3) 0.790(2.2) 0.783(3.25) 0.789(2.7) 0.740(5.6) 0.778(4.25)

linear shift
Phoneme 0.825(3) 0.660(6) 0.846(1.5) 0.846(1.5) 0.819(4.5) 0.819(4.5)
Bupa 0.601(3) 0.558(6) 0.619(1.5) 0.619(1.5) 0.578(4.5) 0.578(4.5)
Appendicitis 0.844(4.5) 0.776(6) 0.853(1) 0.844(4.5) 0.851(2) 0.846(3)
Pima 0.726(3) 0.624(6) 0.728(1.5) 0.728(1.5) 0.711(4.5) 0.711(4.5)
Breast-w 0.820(4) 0.782(6) 0.947(1.5) 0.947(1.5) 0.820(4) 0.820(4)
Magic 0.761(5) 0.579(6) 0.830(1.5) 0.830(1.5) 0.773(3.5) 0.773(3.5)
Threenorm 0.672(2.5) 0.606(6) 0.673(1) 0.672(2.5) 0.635(4.5) 0.635(4.5)
Ringnorm 0.744(1.5) 0.608(6) 0.744(1.5) 0.743(3) 0.678(4.5) 0.678(4.5)
Ionosphere 0.810(5) 0.694(6) 0.851(1.5) 0.851(1.5) 0.825(3.5) 0.825(3.5)
Sonar 0.739(2) 0.624(6) 0.739(2) 0.739(2) 0.716(4.5) 0.716(4.5)
Average 0.754(3.35) 0.651(6) 0.783(1.45) 0.781(2.1) 0.740(4) 0.740(4.1)

non-linear shift
Phoneme 0.819(2) 0.746(4) 0.720(5.5) 0.720(5.5) 0.819(2) 0.819(2)
Bupa 0.594(1) 0.506(6) 0.571(4.5) 0.571(4.5) 0.578(2.5) 0.578(2.5)
Appendicitis 0.847(4.5) 0.240(6) 0.849(3) 0.847(4.5) 0.851(1.5) 0.851(1.5)
Pima 0.715(3) 0.478(6) 0.728(1.5) 0.728(1.5) 0.711(4.5) 0.711(4.5)
Breast-w 0.820(4) 0.464(6) 0.916(1.5) 0.916(1.5) 0.820(4) 0.820(4)
Magic 0.761(3) 0.398(6) 0.744(4.5) 0.744(4.5) 0.773(1.5) 0.773(1.5)
Threenorm 0.651(2.5) 0.671(1) 0.607(6) 0.635(4.5) 0.635(4.5) 0.651(2.5)
Ringnorm 0.698(2.5) 0.731(1) 0.667(6) 0.680(4) 0.678(5) 0.698(2.5)
Ionosphere 0.825(2) 0.820(4) 0.781(5.5) 0.781(5.5) 0.825(2) 0.825(2)
Sonar 0.744(2) 0.478(6) 0.744(2) 0.744(2) 0.716(4.5) 0.716(4.5)
Average 0.747(2.65) 0.553(4.6) 0.732(4) 0.736(3.8) 0.740(3.2) 0.744(2.75)

mixture shift (unshifted, linear shift, non-linear)
Phoneme 0.828(1) 0.749(6) 0.787(5) 0.789(4) 0.819(3) 0.823(2)
Bupa 0.605(1) 0.551(6) 0.595(2) 0.594(3) 0.578(5) 0.592(4)
Appendicitis 0.843(4.5) 0.718(6) 0.847(2.5) 0.843(4.5) 0.851(1) 0.847(2.5)
Pima 0.710(5) 0.512(6) 0.727(1) 0.724(2) 0.711(4) 0.712(3)
Breast-w 0.935(3.5) 0.797(6) 0.947(1.5) 0.947(1.5) 0.819(5) 0.935(3.5)
Magic 0.805(1.5) 0.510(6) 0.802(3) 0.805(1.5) 0.773(5) 0.785(4)
Threenorm 0.672(1) 0.647(4) 0.635(5.5) 0.653(2) 0.635(5.5) 0.649(3)
Ringnorm 0.739(1) 0.674(6) 0.728(2.5) 0.720(4) 0.678(5) 0.728(2.5)
Ionosphere 0.843(3.5) 0.792(6) 0.843(3.5) 0.865(1) 0.825(5) 0.848(2)
Sonar 0.740(1) 0.631(6) 0.737(3) 0.738(2) 0.716(4) 0.712(5)
Average 0.772(2.3) 0.658(5.8) 0.764(2.95) 0.767(2.55) 0.740(4.25) 0.763(3.15)

AutoMPG. AutoMPG dataset [8] concerns the consumption in miles per gal-
lon of vehicle from 3 different regions: USA, Europe and Japan. It contains
4 numerical attributes: displacement, horsepower, weight and acceleration. All
these input attributes have been detected as shifted between regions using KS
test. This dataset has been binarised according to the mean value of the target.
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Table 3. Classification accuracy for Diabetes dataset. Symbols denote ethnic groups as
follows: African-American (AA), Asian (A), Caucasian (C), Hispanic (H). X-Y denotes
trained on X, deployed on Y.

A-AA A-C A-H AA-A AA-C AA-H C-A C-AA C-H H-A H-AA H-C
# shifted 6 5 4 6 5 4 5 5 4 4 4 4

VM 0.569 0.529 0.576 0.653 0.530 0.590 0.645 0.546 0.588 0.624 0.565 0.564
OM 0.574 0.538 0.554 0.642 0.526 0.587 0.641 0.566 0.595 0.642 0.562 0.563
IOP 0.526 0.499 0.547 0.500 0.494 0.463 0.520 0.488 0.469 0.519 0.509 0.452
KMM 0.467 0.499 0.419 0.352 0.530 0.474 0.647 0.557 0.580 0.400 0.442 0.507

Table 4. Classification accuracy for Heart dataset, with contexts by gender (F: Female,
M: Male).

M-F F-M
# shifted 3 3

VM 0.735 0.568
OM 0.712 0.557
IOP 0.703 0.500
KMM 0.724 0.540

Table 5. Classification accuracy for Bike Sharing dataset, with contexts by season
(Sp: Spring, S: Summer, A: Autumn, W: Winter).

Sp-S Sp-A Sp-W S-Sp S-A S-W A-Sp A-S A-W W-Sp W-S W-A
# shifted 3 4 4 3 3 4 4 3 3 4 4 3

VM 0.641 0.558 0.601 0.519 0.579 0.601 0.602 0.543 0.556 0.646 0.565 0.526
OM 0.538 0.468 0.544 0.607 0.547 0.612 0.574 0.521 0.528 0.718 0.657 0.558
IOP 0.489 0.468 0.533 0.635 0.510 0.657 0.585 0.534 0.522 0.658 0.630 0.510
KMM 0.559 0.468 0.522 0.635 0.521 0.651 0.585 0.521 0.589 0.690 0.521 0.521

Table 6. Classification accuracy for AutoMPG dataset, with contexts by origin (U:
USA, E: Europe, J:Japan).

U-E U-J E-U E-J J-U J-E
# shifted 4 4 4 3 4 3

VM 0.676 0.759 0.873 0.772 0.780 0.647
OM 0.544 0.607 0.670 0.746 0.747 0.691
IOP 0.558 0.493 0.400 0.417 0.600 0.441
KMM 0.558 0.582 0.600 0.582 0.400 0.485

We split the dataset as proposed in [1] to obtain the 3 regions datasets. The
performance of Versatile Model and others are shown in Table 6. The VM out-
performs all three methods and has only one loss against the original model.

Finally, we report the result of a Friedman test and post-hoc analysis on all
non-synthetic shifts. Figure 4 demonstrates that the Versatile Model outperforms
all others, significantly so except for the original model.
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Fig. 4. Critical Difference diagram using pairwise comparisons for non synthetic shift.
Average ranks as follows: VM=1.671, OM=2.140, KMM=2.875 and IOP= 3.312. The
Friedman test gives significance at 0.05.

5 Conclusion

We proposed a model for adapting to covariate observation shift using unlabelled
deployment data. The proposed model is called the Versatile Model and is a
Decision Tree model with enhanced splits. The main idea of the VM is that
it captures more information about the context during the training process in
order to be able to adapt this model for deployment contexts. The VM trains a
classifier over the available data and then adapts some of its decisions according
to the (usually unlabelled) deployment data. We use a non-parametric test to
choose among different strategies to update the decision thresholds in a DT.
The VM does not make any strong assumptions such as linear transformation
between contexts. Furthermore, it does not need any tuning parameters to adjust
the model. Finally, empirical results on both synthetic shift and real dataset shift
show strong performance gains by achieved the proposed methods.

This work opens up many avenues for future work. One direction is to adapt
the VM to other predictive problems, such as regression. Another direction is to
assume that the deployment data is partially labelled and utilise this knowledge
in the VM.
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4. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (2006)

5. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the Seven-
teenth International Joint Conference on Artificial Intelligence, pp. 973–978 (2001)

6. Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.:
Covariate shift by kernel mean matching. In: Quińonero-Candela, J., Masashi
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Abstract. A well-known rule of thumb in unbalanced classification rec-
ommends the rebalancing (typically by resampling) of the classes before
proceeding with the learning of the classifier. Though this seems to work
for the majority of cases, no detailed analysis exists about the impact of
undersampling on the accuracy of the final classifier. This paper aims to
fill this gap by proposing an integrated analysis of the two elements which
have the largest impact on the effectiveness of an undersampling strat-
egy: the increase of the variance due to the reduction of the number of
samples and the warping of the posterior distribution due to the change
of priori probabilities. In particular we will propose a theoretical anal-
ysis specifying under which conditions undersampling is recommended
and expected to be effective. It emerges that the impact of undersam-
pling depends on the number of samples, the variance of the classifier,
the degree of imbalance and more specifically on the value of the poste-
rior probability. This makes difficult to predict the average effectiveness
of an undersampling strategy since its benefits depend on the distribu-
tion of the testing points. Results from several synthetic and real-world
unbalanced datasets support and validate our findings.

Keywords: Undersampling · Ranking · Class overlap · Unbalanced
classification

1 Introduction

In several binary classification problems, the two classes are not equally repre-
sented in the dataset. For example, in fraud detection, fraudulent transactions
are normally outnumbered by genuine ones [5]. When one class is underrep-
resented in a dataset, the data is said to be unbalanced. In such problems,
typically, the minority class is the class of interest. Having few instances of one
class means that the learning algorithm is often unable to generalize the behav-
ior of the minority class well, hence the algorithm performs poorly in terms of
predictive accuracy [14].

When the data is unbalanced, standard machine learning algorithms that
maximise overall accuracy tend to classify all observations as majority class
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 200–215, 2015.
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instances. This translates into poor accuracy on the minority class (low recall),
which is typically the class of interest. Degradation of classification performance
is not only related to a small number of examples in the minority class in com-
parison to the number of examples in the majority classes (expressed by the
class imbalance ratio), but also to the minority class decomposition into small
sub-parts [19] (also known in the literature as small disjuncts [15]) and to the
overlap between the two classes [16] [3] [11] [10]. In these studies it emerges that
performance degradation is strongly caused by the presence of both unbalanced
class distributions and a high degree of class overlap. Additionally, in unbalanced
classification tasks, the performance of a classifier is also affected by the presence
of noisy examples [20] [2].

One possible way to deal with this issue is to adjust the algorithms them-
selves [14] [23] [7]. Here we will consider instead a data-level strategy known as
undersampling [13]. Undersampling consists in down-sizing the majority class by
removing observations at random until the dataset is balanced. In an unbalanced
problem, it is often realistic to assume that many observations of the majority
class are redundant and that by removing some of them at random the data
distribution will not change significantly. However the risk of removing relevant
observations from the dataset is still present, since the removal is performed
in an unsupervised manner. In practice, sampling methods are often used to
balance datasets with skewed class distributions because several classifiers have
empirically shown better performance when trained on balanced dataset [22] [9].
However, these studies do not imply that classifiers cannot learn from unbal-
anced datasets. For instance, other studies have also shown that some classifiers
do not improve their performances when the training dataset is balanced using
sampling techniques [4] [14]. As a result, the only way to know if sampling
helps the learning process is to run some simulations. Despite the popularity of
undersampling, we have to remark that there is not yet a theoretical framework
explaining how it can affect the accuracy of the learning process.

In this paper we aim to analyse the role of the two side-effects of undersam-
pling on the final accuracy. The first side-effect is that, by removing majority
class instances, we perturb the a priori probability of the training set and we
induce a warping in the posterior distribution [8,18]. The second is that the
number of samples available for training is reduced with an evident consequence
in terms of accuracy of the resulting classifier. We study the interaction between
these two effects of undersampling and we analyse their impact on the final rank-
ing of posterior probabilities. In particular we show under which conditions an
under sampling strategy is recommended and expected to be effective in terms
of final classification accuracy.

2 The Warping Effect of Undersampling
on the Posterior Probability

Let us consider a binary classification task f : Rn → {0, 1}, where X ∈ Rn is the
input and Y ∈ {0, 1} the output domain. In the following we will also use the
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Fig. 1. Undersampling: remove majority class observations until we have the same
number of instances in the two classes.

label negative (resp. positive) to denote the label 0 (resp. 1). Suppose that the
training set (X ,Y) of size N is unbalanced (i.e. the number N+ of positive cases
is small compared to the number N− of negative ones) and that rebalancing is
performed by undersampling. Let (X,Y ) ⊂ (X ,Y) be the balanced sample of
(X ,Y) which contains a subset of the negatives in (X ,Y).

Let us introduce a random binary selection variable s associated to each
sample in (X ,Y), which takes the value 1 if the point is in (X,Y ) and 0 otherwise.
We now derive how the posterior probability of a model learned on a balanced
subset relates to the one learned on the original unbalanced dataset, on the basis
of the reasoning presented in [17]. Let us assume that the selection variable s is
independent of the input x given the class y (class-dependent selection):

p(s|y, x) = p(s|y) (1)

where p(s = 1|y, x) is the probability that a point (x, y) is included in the bal-
anced training sample. Note that the undersampling mechanism has no impact
on the class-conditional distribution but that it perturbs the prior probability
(i.e. p(y|s = 1) �= p(y)).

Let the sign + denote y = 1 and − denote y = 0, e.g. p(+, x) = p(y = 1, x)
and p(−, x) = p(y = 0, x). From Bayes’ rule we can write:

p(+|x, s = 1) =
p(s = 1|+, x)p(+|x)

p(s = 1|+, x)p(+|x) + p(s = 1|−, x)p(−|x)
(2)

Using condition (1) in (2) we obtain:

p(+|x, s = 1) =
p(s = 1|+)p(+|x)

p(s = 1|+)p(+|x) + p(s = 1|−)p(−|x)
(3)

Since undersampling corresponds to set

p(s = 1|+) = 1 (4)

we obtain
p(+)
p(−)

≤ p(s = 1|−) < 1 (5)
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Fig. 2. p and ps at different β. When β is low, undersampling is strong, which means
it is removing a lot of negatives, while for high values the removal is less strong. Low
values of β leads to a more balanced problem.

Note that if we set p(s = 1|−) = p(+)
p(−) , we obtain a balanced dataset where

the number of positive and negative instances is the same. At the same time, if
we set p(s = 1|−) = 1, no negative instances are removed and no undersampling
takes place. Using (4), we can rewrite (3) as

ps = p(+|x, s = 1) =
p(+|x)

p(+|x) + p(s = 1|−)p(−|x)
=

p

p + β(1 − p)
(6)

where β = p(s = 1|−) is the probability of selecting a negative instance with
undersampling, p = p(+|x) is the true posterior probability of class + in the
original dataset, and ps = p(+|x, s = 1) is the true posterior probability of class
+ after sampling. Equation (6) quantifies the amount of warping of the posterior
probability due to undersampling. From it, we can derive p as a function of ps:

p =
βps

βps − ps + 1
(7)

The relation between p and ps (parametric in β) is illustrated in Figure 2.
The top curve of Figure 2 refers to the complete balancing which corresponds to
β = p(+)

p(−) ≈ N+

N− , assuming that N+

N− provides an accurate estimation of the ratio
of the prior probabilities.

Figure 3 illustrates the warping effect for two univariate (n = 1) classification
tasks. In both tasks the two classes are normally distributed (X− ∼ N(0, σ) and
X+ ∼ N(μ, σ)), σ = 3 and p(+) = 0.1 but the degree of separability is different
(on the left large overlap for μ = 3 and on the right small overlap for μ = 15).
It is easy to remark that the warping effect is larger in the low separable case.

As a final remark, consider that when β = N+

N− , the warping due to under-
sampling maps two close and low values of p into two values ps with a larger
distance. The opposite occurs for high values of p. In Section 3 we will show how
this has an impact on the ranking returned by estimations of p and ps.
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Fig. 3. Posterior probability as a function of β for two univariate binary classification
tasks with norm class conditional densities X− ∼ N(0, σ) and X+ ∼ N(μ, σ) (on the
left μ = 3 and on the right μ = 15, in both examples σ = 3). Note that p corresponds
to β = 1 and ps to β < 1.eps

3 The Interaction Between Warping and Variance of the
Estimator

The previous section discussed the first consequence of under sampling, i.e. the
transformation of the original conditional distribution p into a warped condi-
tional distribution ps according to equation (6). The second consequence of
undersampling is the reduction of the training set size which inevitably leads
to an increase of the variance of the classifier. This section discusses how these
two effects interact and their impact on the final accuracy of the classifier, by
focusing in particular on the accuracy of the ranking of the minority class (typ-
ically the class of interest).

Undersampling transforms the original classification task (i.e. estimating the
conditional distribution p) into a new classification task (i.e. estimating the con-
ditional distribution ps). In what follows we aim to assess whether and when
under sampling has a beneficial effect by changing the target of the estimation
problem.

Let us denote by p̂ (resp. p̂s) the estimation of the conditional probability p
(resp. ps). Assume we have two distinct test points having probabilities p1 < p2
where Δp = p2−p1 with Δp > 0. A correct classification aiming to rank the most
probable positive samples should rank p2 before p1, since the second test sample
has an higher probability of belonging to the positive class. Unfortunately the
values p1 and p2 are not known and the ranking should rely on the estimated
values p̂1 and p̂2. For the sake of simplicity we will assume here that the estimator
of the conditional probability has the same bias and variance in the two test
points. This implies p̂1 = p1 + ε1 and p̂2 = p2 + ε2, where ε1 and ε2 are two
realizations of the random variable ε ∼ N(b, ν) where b and ν are the bias and
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the variance of the estimator of p. Note that the estimation errors ε1 and ε2 may
induce a wrong ranking if p̂1 > p̂2.

What happens if instead of estimating p we decide to estimate ps, as in
undersampling? Note that because of the monotone transformation (6), p1 <
p2 ⇒ ps,1 < ps,2. Is the ranking based on the estimations of ps,1 and ps,2 more
accurate than the one based on the estimations of p1 and p2?

In order to answer this question let us suppose that also the estimator of
ps is biased but that its variance is larger given the smaller number of samples.
Then p̂s,1 = ps,1 + η1 and p̂s,2 = ps,2 + η2, where η ∼ N(bs, νs), νs > ν and
Δps = ps,2 − ps,1.

Let us now compute the derivative of ps w.r.t. p. From (6) we have:

dps

dp
=

β

(p + β(1 − p))2
(8)

corresponding to a concave function. Let λ be the value of p for which dps

dp = 1:

λ =
√

β − β

1 − β

It follows that
β ≤ dps

dp
≤ 1

β
(9)

and
1 <

dps

dp
<

1
β

, when 0 < p < λ

while
β <

dps

dp
< 1 when λ < p < 1.

In particular for p = 0 we have dps = 1
β dp while for p = 1 it holds dps = βdp.

Let us now suppose that the quantity Δp is small enough to have an accurate
approximation Δps

Δp ≈ dps

dp . We can define the probability of obtaining a wrong
ranking of p̂1 and p̂2 as:

P (p̂2 < p̂1) = P (p2 + ε2 < p1 + ε1)
= P (ε2 − ε1 < p1 − p2) = P (ε1 − ε2 > Δp)

where ε2 − ε1 ∼ N(0, 2ν). By making an hypothesis of normality we have

P (ε1 − ε2 > Δp) = 1 − Φ

(

Δp√
2ν

)

(10)

where Φ is the cumulative distribution function of the standard normal distri-
bution. Similarly, the probability of a ranking error with undersampling is:

P (p̂s,2 < p̂s,1) = P (η1 − η2 > Δps)
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and

P (η1 − η2 > Δps) = 1 − Φ

(

Δps√
2νs

)

(11)

We can now say that a classifier learned after undersampling has better
ranking w.r.t. a classifier learned with unbalanced distribution when

P (ε1 − ε2 > Δp) > P (η1 − η2 > Δps) (12)

or equivalently from (10) and (11) when

1 − Φ

(

Δp√
2ν

)

> 1 − Φ

(

Δps√
2νs

)

⇔ Φ

(

Δp√
2ν

)

< Φ

(

Δps√
2νs

)

which boils down to

Δp√
2ν

<
Δps√
2νs

⇔ Δps

Δp
>

√

νs

ν
> 1 (13)

since Φ is monotone non decreasing and we can assume that νs > ν.
Then it follows that undersampling is useful in terms of more accurate rank-

ing when
β

(p + β(1 − p))2
>

√

νs

ν
(14)

The value of this inequality depends on several terms: the rate of under-
sampling β, the ratio of the variances of the two classifiers and the posteriori
probability p of the testing point. Also the nonlinearity of the first left-hand
term suggests a complex interaction between the involved terms. For instance if
we plot the left-hand term of (14) as a function of the posteriori probability p
(Figure 4(a)) and of the value β (Figure 4(b)), it appears that most favorable
configurations for undersampling occur for the lowest values of the posteriori
probability (e.g. non separable or badly separable configurations) and interme-
diate β (neither too unbalanced nor too balanced). However if we modify β, this
has an impact on the size of the training set and consequently on the right-hand
term (i.e. variance ratio) too. Also, though the β term can be controlled by the
designer, the other two terms vary over the input space. This means that the
condition (14) does not necessarily hold for all the test points.

In order to illustrate the complexity of the interaction, let us consider two
univariate (n = 1) classification tasks where the minority class is normally dis-
tributed around zero and the majority class is distributed as a mixture of two
gaussians. Figure 5 and 6 show the non separable and separable case, respec-
tively: on the left side we plot the class conditional distributions (thin lines) and
the posterior distribution of the minority class (thicker line), while on the right
side we show the left and the right term of the inequality (14) (solid: left-hand
term, dotted: right-hand term). What emerges form the figures is that the least
separable regions (i.e. the regions where the posteriori of the minority class is
low) are also the regions where undersampling helps more. However, the impact
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(a) (b)

Fig. 4. Left: dps
dp

as a function of p. Right: dps
dp

as a function of β
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(a) Class conditional distributions (thin
lines) and the posterior distribution of the
minority class (thicker line).

(b)
dps.eps

dp
(solid lines),

√
νs
ν

(dotted
lines).

Fig. 5. Non separable case. On the right we plot both terms of inequality 14 (solid:
left-hand, dotted: right-hand term) for β = 0.1 and β = 0.4

of undersampling on the overall accuracy is difficult to be predicted since the
regions where undersampling is beneficial change with the characteristics of the
classification task and the rate β of undersampling.

4 Experimental Validation

In this section we assess the validity of the condition (14) by performing a number
of tests on synthetic and real datasets.

4.1 Synthetic Datasets

We simulate two unbalanced tasks (5% and 25% of positive samples) with over-
lapping classes and generate a testing set and several training sets from the same
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(a) Class conditional distributions (thin
lines) and the posterior distribution of the
minority class (thicker line).

(b)
dps.eps

dp
(solid lines),

√
νs
ν

(dotted
lines).

Fig. 6. Separable case. On the right we plot both terms of inequality 14 (solid: left-
hand, dotted: right-hand term) for β = 0.1 and β = 0.4

distribution. Figures 7(a) and Figure 9(a) show the distributions of the testing
sets for the two tasks.

In order to compute the variance of p̂ and p̂s in each test point, we generate
1000 times a training set (N = 1000) and we estimate the conditional probability
on the basis of sample mean and covariance.

In Figure 7(b) (first task) we plot
√

νs

ν (dotted line) and three percentiles
(0.25, 0.5, 0.75) of dps

dp vs. the rate of undersampling β. It appears that for at
least 75% of the testing points, the term dps

dp is higher than
√

νs

ν . In Figure 8(a)
the points surrounded with a triangle are those one for which dps

dp >
√

νs

ν hold
when β = 0.053 (balanced dataset). For such samples we expect that ranking
returned by undersampling (i.e. based on p̂s ) is better than the one based on the
original data (i.e. based on p̂). The plot shows that undersampling is beneficial
in the region where the majority class is situated, which is also the area where
we expect to have low values of p. Figure 8(b) shows also that this region moves
towards the minority class when we do undersampling with β = 0.323 (90%
negatives, 10% positives after undersampling).

In order to measure the quality of the rankings based on p̂s and p̂ we compute
the Kendall rank correlation of the two estimates with p, which is the true pos-
terior probability of the testing set that defines the correct ordering. In Table 1
we show the ranking correlations of p̂s (and p̂) with p for the samples where
the condition (14) (first five rows) holds and where it does not (last five rows).
The results indicate that points for which condition (14) is satisfied have indeed
better ranking with p̂s than p̂.

We repeated the experiments for the second task having a larger proportion
of positives (25%) (dataset 2 in Figure 9(a)). From the Figure 9(b), plotting dps

dp
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(a) Synthetic dataset 1 (b)
√

νs
ν

and dps
dp

for different
β

Fig. 7. Left: distribution of the testing set where the positive samples account for 5%
of the total. Right: plot of dps

dp
percentiles (25th, 50th and 75th) and of

√
νs
ν

(black
dashed).

(a) Undersampling with β = 0.053 (b) Undersampling with β = 0.323

Fig. 8. Regions where undersampling should work. Triangles indicate the testing sam-
ples where the condition (14) holds for the dataset in Figure 7.

and
√

νs

ν as a function of β, it appears that only the first two percentiles are over
√

νs

ν . This means that less points of the testing set satisfy the condition (14).
This is confirmed from the results in Table 2 where it appears that the benefit
due to undersampling is less significant than for the first task.
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Table 1. Classification task in Figure 7: Ranking correlation between the posterior
probability p̂ (p̂s) and p for different values of β. The value K (Ks) denotes the Kendall
rank correlation without (with) undersampling. The first (last) five lines refer to sam-
ples for which the condition (14) is (not) satisfied.

β K Ks Ks − K %points satisfying (14)

0.053 0.298 0.749 0.451 0.888
0.076 0.303 0.682 0.379 0.897
0.112 0.315 0.619 0.304 0.912
0.176 0.323 0.555 0.232 0.921
0.323 0.341 0.467 0.126 0.937

0.053 0.749 0.776 0.027 0.888
0.076 0.755 0.773 0.018 0.897
0.112 0.762 0.764 0.001 0.912
0.176 0.767 0.761 -0.007 0.921
0.323 0.768 0.748 -0.020 0.937

(a) Synthetic dataset 2 (b)
√

νs
ν

and dps
dp

for different β

Fig. 9. Left: distribution of the testing set where the positive samples account for 25%
of the total. Right: plot of dps

dp
percentiles (25th, 50th and 75th) and of

√
νs
ν

(black
dashed).

4.2 Real Datasets

In this section we assess the validity of the condition (14) on a number of real
unbalanced binary classification tasks obtained by transforming some datasets
from the UCI repository [1] (Table 3)1.

1 Transformed datasets are available at http://www.ulb.ac.be/di/map/adalpozz/
imbalanced-datasets.zip

http://www.ulb.ac.be/di/map/adalpozz/imbalanced-datasets.zip
http://www.ulb.ac.be/di/map/adalpozz/imbalanced-datasets.zip
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Table 2. Classification task in Figure 9: Ranking correlation between the posterior
probability p̂ (p̂s) and p for different values of β. The value K (Ks) denotes the Kendall
rank correlation without (with) undersampling. The first (last) five lines refer to sam-
ples for which the condition (14) is (not) satisfied.

β K Ks Ks − K % points statisfying (14)

0.333 0.586 0.789 0.202 0.664
0.407 0.588 0.761 0.172 0.666
0.500 0.605 0.738 0.133 0.681
0.619 0.628 0.715 0.087 0.703
0.778 0.653 0.693 0.040 0.73

0.333 0.900 0.869 -0.030 0.664
0.407 0.899 0.875 -0.024 0.666
0.500 0.894 0.874 -0.020 0.681
0.619 0.885 0.869 -0.016 0.703
0.778 0.870 0.856 -0.014 0.73

Given the unavailability of the conditional posterior probability function, we
first approximate p by fitting a Random Forest over the entire dataset in order
to compute the left-hand term of (14). Then we use a boostrap procedure to
estimate p̂ and apply undersampling to the original dataset to estimate p̂s. We
repeat bootstrap and undersampling 100 times to compute the right hand term
√

νs

ν . This allows us to define the subsets of points for which the condition (14)
holds.

Table 3. Selected datasets from the UCI repository [1]

Datasets N N+ N− N+/N

ecoli 336 35 301 0.10
glass 214 17 197 0.08
letter-a 20000 789 19211 0.04
letter-vowel 20000 3878 16122 0.19
ism 11180 260 10920 0.02
letter 20000 789 19211 0.04
oil 937 41 896 0.04
page 5473 560 4913 0.10
pendigits 10992 1142 9850 0.10
PhosS 11411 613 10798 0.05
satimage 6430 625 5805 0.10
segment 2310 330 1980 0.14
boundary 3505 123 3382 0.04
estate 5322 636 4686 0.12
cam 18916 942 17974 0.05
compustat 13657 520 13137 0.04
covtype 38500 2747 35753 0.07

Figure 10 reports the difference between Kendall rank correlation of p̂s and
p̂, averaged over different levels of undersampling (proportions of majority vs.
minority: 90/10, 80/20, 60/40, 50/50). Higher difference means that p̂s returns
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a better ordering than p̂ (assuming that the ranking provided by p is correct).
The plot distinguishes between samples for which condition (14) is satisfied and
not. In general we see that points with a positive difference corresponds to those
having the condition satisfied and the opposite for negative differences. These
results seem to confirm the experiments with synthetic data, where a better
ordering is given by p̂s when the condition (14) holds.

Fig. 10. Difference between the Kendall rank correlation of p̂s and p̂ with p, namely Ks

and K, for points having the conditions (14) satisfied and not. Ks and K are calculated
as the mean of the correlations over all βs.

In Figure 11 we show the ratio of samples in each dataset satisfying con-
dition 14 averaged over all the (β)s. The proportion of points in which under-
sampling is useful changes heavily with the dataset considered. For example, in
the datasets vehicle, yeast, german and pima, underdamping returns a better
ordering for more than 80% of the samples, while the proportion drops to less
than 50% in the page dataset.

This seems to confirm our intuition that the right amount of undersampling
depends on the classification task (e.g. degree of non separability), the learning
algorithm and the targeted test set. It follows that there is no reason to believe
that undersampling until the two classes are perfectly balanced is the default
strategy to adopt.

It is also worthy to remark that the check of the condition (14) is not easy
to be done, since it involves the estimation of

√

νs

ν (ratio of the the variance
of the classifier before and after undersampling) and of dps

dp , which demands the
knowledge of the true posterior probability p. In practice since p is unknown
in real datasets, we can only rely on a data driven approximation of dps

dp .
Also the estimation of

√

νs

ν is an hard statistical problem, as known in the
statistical literature on ratio estimation [12].
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Fig. 11. Ratio between the number of sample satisfying condition (14) and all the
instances available in each dataset averaged over all the βs.

5 Conclusion

Undersampling has become the de facto strategy to deal with skewed distribu-
tions, but, though easy to be justified, it conceals two major effects: i) it increases
the variance of the classifier and ii) it produces warped posterior probabilities.
The first effect is typically addressed by the use of averaging strategies (e.g.
UnderBagging [21]) to reduce the variability while the second requires the cali-
bration of the probability to the new priors of the testing set [18]. Despite the
popularity of undersampling for unbalanced classification tasks, it is not clear
how these two effects interact and when undersampling leads to better accuracy
in the classification task.

In this paper, we aimed to analyse the interaction between undersampling
and the ranking error of the posterior probability. We derive the condition (14)
under which undersampling can improve the ranking and we show that when it is
satisfied, the posterior probability obtained after sampling returns a more accu-
rate ordering of testing instances. To validate our claim we used first synthetic
and then real datasets, and in both cases we registered a better ranking with
undersampling when condition (14) was met. It is important to remark how this
condition shows that the beneficial impact of undersampling is strongly depen-
dent on the nature of the classification task (degree of unbalancedness and non
separability), on the variance of the classifier and as a consequence is extremely
dependent on the specific test point. We think that this result sheds light on the
reason why several discordant results have been obtained in the literature about
the effectiveness of undersampling in unbalanced tasks.

However, the practical use of this condition is not straightforward since it
requires the knowledge of the posteriori probability and of the ratio of variances
before and after undersampling. It follows that this result should be used mainly
as a warning against a naive use of undersampling in unbalanced tasks and
should suggest instead the adoption of specific adaptive selection techniques (e.g.
racing [6]) to perform a case-by-case use (and calibration) of undersampling.
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Abstract. We consider the problem of clustering a given dataset into k
clusters subject to an additional set of constraints on relative distance
comparisons between the data items. The additional constraints are
meant to reflect side-information that is not expressed in the feature vec-
tors, directly. Relative comparisons can express structures at finer level
of detail than must-link (ML) and cannot-link (CL) constraints that are
commonly used for semi-supervised clustering. Relative comparisons are
particularly useful in settings where giving an ML or a CL constraint is
difficult because the granularity of the true clustering is unknown.

Our main contribution is an efficient algorithm for learning a kernel
matrix using the log determinant divergence (a variant of the Bregman
divergence) subject to a set of relative distance constraints. Given the
learned kernel matrix, a clustering can be obtained by any suitable algo-
rithm, such as kernel k-means. We show empirically that kernels found by
our algorithm yield clusterings of higher quality than existing approaches
that either use ML/CL constraints or a different means to implement the
supervision using relative comparisons.

1 Introduction

Clustering is the task of partitioning a set of data items into groups, or clusters.
However, the desired grouping of the data may not be sufficiently expressed
by the features that are used to describe the data items. For instance, when
clustering images it may be necessary to make use of semantic information about
the image contents in addition to some standard image features. Semi-supervised
clustering is a principled framework for combining such external information with
features. This information is usually given as labels about the pair-wise distances
between a few data items. Such labels may be provided by the data analyst, and
reflect properties of the data that are hard to express as an easily computable
function over the data features.

There are two commonly used ways to formalize such side information. The
first are must-link (ML) and cannot-link (CL) constraints. An ML (CL) con-
straint between data items i and j suggests that the two items are similar (dis-
similar), and should thus be assigned to the same cluster (different clusters).
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 219–234, 2015.
DOI: 10.1007/978-3-319-23528-8 14
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The second way to express pair-wise similarities are relative distance compar-
isons. These are statements that specify how the distances between some data
items relate to each other. The most common relative distance comparison task
asks the data analyst to specify which of the items i and j is closer to a third
item k. Note that unlike the ML/CL constraints, the relative comparisons do
not as such say anything about the clustering structure.

Given a number of similarity constraints, an efficient technique to implement
semi-supervised clustering is metric learning. The objective of metric learning
is to find a new distance function between the data items that takes both the
supplied features as well as the additional distance constraints into account.
Metric learning can be based on either ML/CL constraints or relative distance
comparisons. Both approaches have been studied extensively in literature, and
a lot is known about the problem.

The method we discuss in this paper is a combination of metric-learning and
relative distance comparisons. We deviate from existing literature by eliciting
every constraint with the question

“Which one of the items i, j, and k is the least similar to the other two?”

The labeler should thus select one of the items as an outlier. Notably, we also
allow the labeler to leave the answer as unspecified. The main practical novelty
of this approach is in the capability to gain information also from comparisons
where the labeler has not been able to give a concrete solution. Some sets of three
items can be all very similar (or dissimilar) to each other, so that picking one
item as an obvious outlier is difficult. In those cases that the labeler gives a
“don’t know” answer, it is beneficial to use this answer in the metric-learning
process as it provides a valuable cue, namely, that the three displayed data items
are roughly equidistant.

We cast the metric-learning problem as a kernel-learning problem. The
learned kernel can be used to easily compute distances between data items,
even between data items that did not participate in the metric-learning training
phase, and only their feature vectors are available. The use of relative com-
parisons, instead of hard ML/CL constraints, leads to learning a more accurate
metric that captures relations between data items at different scales. The learned
metric can be used for multi-level clustering, as well as other data-analysis tasks.

On the technical side, we start with an initial kernel K0, computed using only
the feature vectors of the data items. We then formulate the kernel-learning task
as an optimization problem: the goal is to find the kernel matrix K that is the
closest to K0 and satisfies the constraints induced by the relative-comparison
labellings. To solve this optimization task we use known efficient techniques,
which we adapt for the case of relative comparisons.

More concretely, we make the following contributions:

1. We design a kernel-learning method that can also use unspecified relative
distance comparisons. This is done by extending the method of Anand et
al. [1], which works with ML and CL constraints.
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2. We perform an extensive experimental validation of our approach and show
that the proposed labeling is indeed more flexible, and it can lead to a
substantial improvement in the clustering accuracy.

The rest of this paper is organized as follows. We start by reviewing the
related literature in Section 2. In Section 3 we introduce our setting and formally
define our problem, and in Section 4 we present our solution. In Section 5 we
discuss our empirical evaluation, and Section 6 is a short conclusion.

2 Related Work

The idea of semi-supervised clustering was initially introduced by Wagstaff and
Cardie [2], and since then a large number of different problem variants and
methods have been proposed, the first ones being COP-Kmeans [3] and CCL [4].
Some of the later methods handle the constraints in a probabilistic framework.
For instance, the ML and CL constraints can be imposed in the form of a Markov
random field prior over the data items [5–7]. Alternatively, Lu [8] generalizes the
standard Gaussian process to include the preferences imposed by the ML and CL
constraints. Recently, Pei et al. [9] propose a discriminative clustering model that
uses relative comparisons and, like our method, can also make use of unspecified
comparisons.

The semi-supervising clustering setting has also been studied in the con-
text of spectral clustering, and many spectral clustering algorithms have been
extended to incorporate pairwise constraints [10,11]. More generally, these meth-
ods employ techniques for semi-supervised graph partitioning and kernel k-means
algorithms [12]. For instance, Kulis et al. [13] present a unified framework for
semi-supervised vector and graph clustering using spectral clustering and kernel
learning.

As stated in the Introduction, our work is based on metric learning. Most of
the metric-learning literature, starting by the work of Xing et al. [14], aims at
finding a Mahalanobis matrix subject to either ML/CL or relative distance con-
straints. Xing et al. [14] use ML/CL constraints, while Schultz and Joachims [15]
present a similar approach to handle relative comparisons. Metric learning often
requires solving a semidefinite optimization problem. This becomes easier if Breg-
man divergences, in particular the log det divergence, is used to formulate the
optimization problem. Such an approach was first used for metric learning by
Davis et al. [16] with ML/CL constraints, and subsequently by Liu et al. [17]
likewise with ML/CL, as well as by Liu et al. [18] with relative comparisons.
Our algorithm also uses the log det divergence, and we extend the technique of
Davis et al. [16] to handle relative comparisons.

The metric-learning approaches can also be more directly combined with a
clustering algorithm. The MPCK-Means algorithm by Bilenko et al. [19] is one of
the first to combine metric learning with semi-supervised clustering and ML/CL
constraints. Xiang et al. [20] use metric learning, as well, to implement ML/CL
constraints in a clustering and classification framework, while Kumar et al. [21]
follow a similar approach using relative comparisons. Recently, Anand et al. [1]
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use a kernel-transformation approach to adopt the mean-shift algorithm [22] to
incorporate ML and CL constraints. This algorithm, called semi-supervised ker-
nel mean shift clustering (SKMS), starts with an initial kernel matrix of the data
points and generates a transformed matrix by minimizing the log det divergence
using an approach based on the work by Kulis et al. [23]. Our paper is largely
inspired by the SKMS algorithm. Our main contribution is to extend the SKMS
algorithm so that it handles relative distance comparisons.

3 Kernel Learning with Relative Distances

In this section we introduce the notation used throughout the paper and formally
define the problem we address.

3.1 Basic Definitions

Let D = {1, . . . , n} denote a set of data items. These are the data we want to
cluster. Let X = {xi}n

i=1, with xi ∈ R
d, denote a set of vectors in a d dimensional

Euclidean space; one vector for every item in D. The vector set X is the feature
representation of the items in D. We are also given the set C of relative distance
comparisons between data items in D. These distance comparisons are given in
terms of some unknown distance function δ : D × D → R. We assume that δ
reflects certain domain knowledge, which is difficult to quantify precisely, and
cannot be computed using only the features in X . Thus, the set of distance
comparisons C augments our knowledge about the data items in D, in addition
to the feature vectors in X . The comparisons in C are given by human evaluators,
or they may come from some other source. We assume that this information is
not directly captured by the features.

Given X and C, our objective is to find a kernel matrix K that captures
more accurately the distance between data items. Such a kernel matrix can be
used for a number of different purposes. In this paper, we focus on using the
kernel matrix for clustering the data in D. The kernel matrix K is computed by
considering both the similarities between the points in X as well as the user-
supplied constraints induced by the comparisons in C.

In a nutshell, we compute the kernel matrix K by first computing an initial
kernel matrix K0 using only the vectors in X . The matrix K0 is computed by
applying a Gaussian kernel on the vectors in X . We then solve an optimization
problem in order to find the kernel matrix K that is the closest to K0 and
satisfies the constraints in C.

3.2 Relative Distance Constraints

The constraints in C express information about distances between items in D in
terms of the distance function δ. However, we do not need to know the absolute
distances between any two items i, j ∈ D. Instead we consider constraints that
express information of the type δ(i, j) < δ(i, k) for some i, j, k ∈ D.
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In particular, every constraint Ci ∈ C is a statement about the relative dis-
tances between three items in D. We consider two types of constraints, i.e., C
can be partitioned into two sets Cneq and Ceq. The set Cneq contains constraints
where one of the three items has been singled out as an “outlier.” That is, the
distance of the outlying item to the two others is clearly larger than the distance
between the two other items. The set Ceq contains constraints where no item
appears to be an obvious outlier. The distances between all three items are then
assumed to be approximately the same.

More formally, we define Cneq to be a set of tuples of the form (i, j | k),
where every tuple is interpreted as “item k is an outlier among the three items
i, j and k.” We assume that the item k is an outlier if its distance from i and j is
at least γ times larger than the distance δ(i, j), for some γ > 1. This is because
we assume small differences in the distances to be indistinguishable by the eval-
uators, and only such cases end up in Cneq where there is no ambiguity between
the distances. As a result each triple (i, j | k) in Cneq implies the following two
inequalities

(i ← j | k) : γδ(i, j) ≤ δ(i, k) and (1)
(j ← i | k) : γδ(j, i) ≤ δ(j, k), (2)

where γ is a parameter that must be set in advance.
Likewise, we define Ceq to be a set of tuples of the form (i, j, k) that translates

to “the distances between items i, j and k are equal.” In terms of the distance
function δ, each triple (i, j, k) in Ceq implies

δ(i, j) = δ(j, k) = δ(i, k). (3)

3.3 Extension to a Kernel Space

As mentioned above, the first step of our approach is forming the initial kernel
K0 using the feature vectors X . We do this using a standard Gaussian kernel.
Details are provided in Section 4.2.

Next we show how the constraints implied by the distance comparison
sets Cneq and Ceq extend to a kernel space, obtained by a mapping Φ : D → R

m.
As usual, we assume that an inner product Φ(i)�Φ(j) between items i and j in D
can be expressed by a symmetric kernel matrix K, that is, Kij = Φ(i)�Φ(j).
Moreover, we assume that the kernel K (and the mapping Φ) is connected to
the unknown distance function δ via the equation

δ(i, j) = ‖Φ(i) − Φ(j)‖2 = Kii − 2Kij + Kjj . (4)

In other words, we explicitly assume that the distance function δ is in fact the
Euclidean distance in some unknown vector space. This is equivalent to assume
that the evaluators base their distance-comparison decisions on some implicit
features, even if they might not be able to quantify these explicitly.
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Next, we discuss the constraint inequalities (Equations (1), (2), and (3))
in the kernel space. Let ei denote the vector of all zeros with the value 1 at
position i. Equation (4) above can be expressed in matrix form as follows:

Kii − 2Kij + Kjj = (ei − ej)�K(ei − ej) = tr(K(ei − ej)(ei − ej)�), (5)

where tr(A) denotes the trace of the matrix A and we use the fact that K = K�.
Using the previous equation we can write Equation (1) as

γ tr
(

K(ei − ej)(ei − ej)�)

− tr
(

K(ei − ek)(ei − ek)�)

≤ 0

tr
(

Kγ(ei − ej)(ei − ej)� − K(ei − ek)(ei − ek)�)

≤ 0

tr
(

K(γ(ei − ej)(ei − ej)� − (ei − ek)(ei − ek)�)
)

≤ 0

tr
(

KC(i←j|k)
)

≤ 0,

where C(i←j|k) = γ(ei −ej)(ei −ej)� − (ei −ek)(ei −ek)� is a matrix that rep-
resents the corresponding constraint. The constraint matrix C(j←i|k) for Equa-
tion (2) can be formed in exactly the same manner. Note that unless we set
γ > 1, the Equations (1) and (2) can be satisfied trivially for a small difference
between the longer and the shorter distance and thus, the constraint becomes
inactive. Setting γ > 1 helps avoiding such solutions.

We use a similar technique to represent the constraints in the set Ceq. Recall
that the constraint (i, j, k) ∈ Ceq implies that i, j, and k are equidistant. This
yields three equations on the pairwise distances between the items: (i ↔ j, k) :
δ(i, j) = δ(i, k), (j ↔ i, k) : δ(j, i) = δ(j, k), and (k ↔ i, j) : δ(k, i) = δ(k, j).
Reasoning as above, we let C(i↔j,k) = (ei − ej)(ei − ej)� − (ei − ek)(ei − ek)�,
and can thus write the first equation for the constraint (i, j, k) ∈ Ceq as

tr(KC(i↔j,k)) = 0. (6)

The two other equations are defined in a similar manner.

3.4 Log Determinant Divergence for Kernel Learning

Recall that our objective is to find the kernel matrix K that is close to the
initial kernel K0. Assume that K and K0 are both positive semidefinite matrices.
We will use the so-called log determinant divergence to compute the similarity
between K0 and K. This is a variant of the Bregman divergence [24].

The Bregman divergence between two matrices K and K0 is defined as

Dφ(K,K0) = φ(K) − φ(K0) − tr(∇φ(K0)�(K − K0)), (7)

where φ is a strictly-convex real-valued function, and ∇φ(K0) denotes the gra-
dient evaluated at K0. Many well-known distance measures are special cases of
the Bregman divergence. These can be instantiated by selecting the function φ
appropriately. For instance, φ(K) =

∑

ij K2
ij gives the squared Frobenius norm

Dφ(K,K0) = ‖K − K0‖2F .
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For our application in kernel learning, we are interested in one particular
case; setting φ(K) = − log det(K). This yields the so-called log determinant (log
det) matrix divergence:

Dld(K,K0) = tr(KK−1
0 ) − log det(KK−1

0 ) − n, (8)

The log det divergence has many interesting properties, which make it ideal for
kernel learning. As a general result of Bregman divergences, log det divergence
is convex with respect to the first argument. Moreover, it can be evaluated using
the eigenvalues and eigenvectors of the matrices K and K0. This property can
be used to extend log det divergence to handle rank-deficient matrices [23], and
we will make use of this in our algorithm described in Section 4.

3.5 Problem Definition

We now have the necessary ingredients to formulate our semi-supervised kernel
learning problem. Given the set of constraints C = Cneq ∪ Ceq, the parameter γ,
and the initial kernel matrix K0, we aim to find a new kernel matrix K, which
is as close as possible to K0 while satisfying the constraints in C. This objective
can be formulated as the following constrained minimization problem:

minimize
K

Dld(K,K0)

subject to

tr
(

KC(i←j|k)
)

≤ 0, tr
(

KC(j←i|k)
)

≤ 0, ∀(i, j | k) ∈ Cneq

tr(KC(i↔j,k)) = 0, tr(KC(j↔i,k)) = 0, tr(KC(k↔i,j)) = 0, ∀(i, j, k) ∈ Ceq

K � 0,
(9)

where K � 0 constrains K to be a positive semidefinite matrix.

4 Semi-supervised Kernel Learning

We now focus on the optimization problem defined above, Problem (9). It can
be shown that in order to have a finite value for the log det divergence, the rank
of the matrices must remain equal [23]. This property along with the fact that
the domain of the log det divergence is the positive-semidefinite matrices, allow
us to perform the optimization without explicitly restraining the solution to the
positive-semidefinite cone nor checking for the rank of the solution. This is in
contrast with performing the optimization using, say, the Frobenius norm, where
the projection to the positive semidefinite cone must be explicitly imposed.

4.1 Bregman Projections for Constrained Optimization

In solving the optimization Problem (9), the aim is to minimize the divergence
while satisfying the set of constraints imposed by C = Cneq ∪Ceq. In other words,
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we seek for a kernel matrix K by projecting the initial kernel matrix K0 onto the
convex set obtained from the intersection of the set of constraints. The optimiza-
tion Problem (9) can be solved using the method of Bregman projections [23–25].
The idea is to consider one unsatisfied constraint at a time and project the matrix
so that the constraint gets satisfied. Note that the projections are not orthogonal
and thus, a previously satisfied constraint might become unsatisfied. However,
as stated before, the objective function in Problem (9) is convex and the method
is guaranteed to converge to the global minimum if all the constraints are met
infinitely often (randomly or following a more structured procedure).

Let us consider the update rule for an unsatisfied constraint from Cneq. The
procedure for dealing with constraints from Ceq is similar. We first consider the
case of full-rank symmetric positive semidefinite matrices. Let Kt be the value
of the kernel matrix at step t. For an unsatisfied inequality constraint C, the
optimization problem becomes1

Kt+1 = arg min
K

Dld(K,Kt),

subject to 〈K,C〉 = tr(KC) ≤ 0.
(10)

Using a Lagrange multiplier α ≥ 0, we can write

Kt+1 = arg min
K

Dld(K,Kt) + α tr(KC). (11)

Following standard derivations for computing gradient updates for Bregman pro-
jection [25], the solution of Equation (11) can be written as

Kt+1 = (K−1
t + αC)−1. (12)

Substituting Equation (12) into (10) gives

tr((K−1
t + αC)−1C) = 0. (13)

Equation (13) does not have a closed form solution for α, in general. However, we
exploit the fact that both types of our constraints, the matrix C has rank 2, i.e.,
rank(C) = 2. Let Kt = GG� and W = G� CG and therefore rank(W) = 2,
with eigenvalues η2 ≤ 0 ≤ η1 and |η2| ≤ |η1|. Solving Equation (13) for α gives

η1
1 + αη1

+
η2

1 + αη2
= 0, (14)

and
α∗ = −1

2
η1 + η2
η1η2

≥ 0. (15)

Substituting Equation (15) into (12), gives the following update equation for the
kernel matrix

Kt+1 = (K−1
t + α∗C)−1 . (16)

1 We skip the subscript for notational simplicity.
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Let C = UV� where U,V are n×2 matrices of rank 2. Using Sherman-Morrison-
Woodbury formula, we can write (16) as

Kt+1 = Kt − Kt α∗U (I + α∗V� Kt U)−1 V� Kt

= Kt − �Kt

(17)

in which, �Kt is the correction term on the current kernel matrix Kt. Calcu-
lation of the update rule (17) is simpler since it only involves inverse of a 2 × 2
matrix, rather than the n × n matrix in (16).

For a rank-deficient kernel matrix K0 with rank(K0) = r, we employ the
results of Kulis et al. [23], which state that for any column-orthogonal matrix Q
with range(K0) ⊆ range(Q) (e.g., obtained by singular value decomposition of
K0), we first apply the transformation

M → M̂ = Q� MQ,

on all the matrices, and after finding the kernel matrix K̂ satisfying all the
transformed constraints, we can obtain the final kernel matrix using the inverse
transformation

K = QK̂Q�.

Note that since log det preserves the matrix rank, the mapping is one-to-one
and invertible.

As the final remark, the kernel matrix learned by minimizing the log det
divergence subject to the set of constraints Cneq ∪ Ceq can be also extended to
handle out of sample data points, i.e., data points that were not present when
learning the kernel matrix. The inner product between a pair of out of sample
data points x,y ∈ R

d in the transformed kernel space can written as

k(x,y) = k0(x,y) + kx
�(K†

0 (K − K0)K
†
0)ky (18)

where, k0(x,y) and the vectors kx = [k0(x,x1), . . . , k0(x,xn)]� and ky =
[k0(y,x1), . . . , k0(y,xn)]� are formed using the initial kernel function.

4.2 Semi-supervised Kernel Learning with Relative Comparisons

In this section, we summarize the proposed approach, which we name SKLR, for
Semi-supervised Kernel-Learning with Relative comparisons. The pseudo-code
of the SKLR method is shown in Algorithm 1. As already discussed, the main
ingredients of the method are the following.

Selecting the Bandwidth Parameter. We consider an adaptive approach to
select the bandwidth parameter of the Gaussian kernel function. First, we set σi

equal to the distance between point xi and its 	-th nearest neighbor. Next, we
set the kernel between xi and xj to

k0(xi,xj) = exp

(

−‖xi − xj‖2
σ2

ij

)

, (19)
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Algorithm 1. (SKLR) Semi-supervised kernel learning with relative comparisons
Input: initial n × n kernel matrix K0, set of relative comparisons Cneq and Ceq,
constant distance factor γ
Output: kernel matrix K

• Find low-rank representation:

– Compute the n × n low-rank kernel matrix K̂0 such that rank(K̂0) = r ≤ n

using incomplete Cholesky decomposition such that ‖K̂0‖F
‖K0‖F

≥ 0.99

– Find n × r column orthogonal matrix Q such that range(K0) ⊆ range(Q)

– Apply the transformation M̂ ← Q� MQ on all matrices

• Initialize the kernel matrix

– Set K̂ ← K̂0

• Repeat

(1) Select an unsatisfied constraint Ĉ ∈ Cneq ∪ Ceq

(2) Apply Bregman projection (17)

Until all the constraints are satisfied

• Return K ← QK̂Q�

where, σ2
ij = σiσj . This process ensures a large bandwidth for sparse regions and

a small bandwidth for dense regions.

Semi-Supervised Kernel Learning with Relative Comparisons. After
finding the low-rank approximation of the initial kernel matrix K0 and trans-
forming all the matrices by a proper matrix Q, as discussed in Section 4.1, the
algorithm proceeds by randomly considering one unsatisfied constrained at a
time and performing the Bregman projections (17) until all the constraints are
satisfied.

Clustering Method. After obtaining the kernel matrix K satisfying the set of
all relative and undetermined constraints, we can obtain the final clustering of
the points by applying any standard kernelized clustering method. In this paper,
we consider the kernel k-means because of its simplicity and good performance.
Generalization of the method to other clustering techniques such as kernel mean-
shift is straightforward.

5 Experimental Results

In this section, we evaluate the performance of the proposed kernel-learning
method, SKLR. As the under-the-hood clustering method required by SKLR, we
use the standard kernel k-means with Gaussian kernel and without any super-
vision (Equation (19) and 	 = 100). We compare SKLR to three different semi-
supervised metric-learning algorithms, namely, ITML [16], SKkm [1] (a variant
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of SKMS with kernel k-means in the final stage), and LSML [18]. We select the
SKkm variant as Anand et al. [1] have shown that SKkm tends to produce more
accurate results than other semi-supervised clustering methods. Two of the base-
lines, ITML and SKkm, are based on pairwise ML/CL constraints, while LSML
uses relative comparisons. For ITML and LSML we apply k-means on the trans-
formed feature vectors to find the final clustering, while for SKkm and SKLR we
apply kernel k-means on the transformed kernel matrices.

To assess the quality of the resulting clusterings, we use the Adjusted Rand
(AR) index [26]. Each experiment is repeated 20 times and the average over all
executions is reported. For the parameter γ required by SKLR we use γ = 2. Our
implementation of SKLR is in MATLAB and the code is publicly available.2 For
the other three methods we use publicly available implementations.345

Finally, we note that in this paper we do not report running-time results,
but all tested methods have comparable running times. In particular, the com-
putational overhead of our method can be limited by leveraging the fact that
the algorithm has to perform rank-2 matrix updates.

5.1 Datasets

We conduct the experiments on three different real-world datasets.
Vehicle:6 The dataset contains 846 instances from 4 different classes and is
available on the LIBSVM repository.
MIT Scene:7 The dataset contains 2688 outdoor images, each sized 256 ×
256, from 8 different categories: 4 natural and 4 man-made. We use the GIST
descriptors [27] as the feature vectors.
USPS Digits:8 The dataset contains 16 × 16 grayscale images of handwritten
digits. It contains 1100 instances from each class. The columns of each images
are concatenated to form a 256 dimensional feature vector.

5.2 Relative Constraints vs. Pairwise Constraints

We first demonstrate the performance of the different methods using relative and
pairwise constraints. For each dataset, we consider two different experiments:
(i) binary in which each dataset is clustered into two groups, based on some
predefined criterion, and (ii) multi-class where for each dataset the clustering
is performed with number of clusters being equal to number of classes. In the
binary experiment, we aim to find a crude partitioning of the data, while in the
multi-class experiment we seek a clustering at a finer granularity.
2 https://github.com/eamid/sklr
3 http://www.cs.utexas.edu/∼pjain/itml
4 https://github.com/all-umass/metric learn
5 https://www.iiitd.edu.in/∼anands/files/code/skms.zip
6 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
7 http://people.csail.mit.edu/torralba/code/spatialenvelope/
8 http://cs.nyu.edu/∼roweis/data.html

https://github.com/eamid/sklr
http://www.cs.utexas.edu/~pjain/itml
https://github.com/all-umass/metric_learn
https://www.iiitd.edu.in/~anands/files/code/skms.zip
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://cs.nyu.edu/~roweis/data.html
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The 2-class partitionings of our datasets required for the binary experiment
are defined as follows: For the vehicle dataset, we consider class 4 as one group
and the rest of the classes as the second group (an arbitrary choice). For the
MIT Scene dataset, we perform a partitioning of the data into natural vs.
man-made scenes. Finally, for the USPS Digits, we divide the data instances
into even vs. odd digits.

To generate the pairwise constraints for each dataset, we vary the number of
labeled instances from each class (from 5 to 19 with step-size of 2) and form all
possible ML constraints. We then consider the same number of CL constraints.
Note that for the binary case, we only have two classes for each dataset. To
compare with the methods that use relative comparisons, we consider an equal
number of relative comparisons and generate them by sampling two random
points from the same class and one point (outlier) from one of the other classes.
Note that for the relative comparisons, there is no need to restrict the points to
the labeled samples, as the comparisons are made in a relative manner.

Finally, in these experiments, we consider a subsample of both MIT Scene
and USPS Digits datasets by randomly selecting 100 data points from each
class, yielding 800 and 1000 data points, respectively.

The results for the binary and multi-class experiments are shown in Fig-
ures 1(a) and 1(b), respectively. We see that all methods perform equally with
no constraints. As constraints or relative comparisons are introduced the accu-
racy of all methods improves very rapidly. The only surprising behavior is the
one of ITML in the multi-class setting, whose accuracy drops as the number of
constraints increases. From the figures we see that SKLR outperforms all com-
peting methods by a large margin, for all three datasets and in both settings.

5.3 Multi-resolution Analysis

As discussed earlier, one of the main advantages of kernel learning with relative
comparisons is the feasibility of multi-resolution clustering using a single kernel
matrix. To validate this claim, we repeat the binary and multi-class experiments
described above. However, this time, we mix the binary and multi-class con-
straints and use the same set of constraints in both experimental conditions. We
evaluate the results by performing binary and multi-class clustering, as before.

Figures 1(c) and 1(d) illustrate the performance of different algorithms using
the mixed set of constraints. Again, SKLR produces more accurate clusterings,
especially in the multi-class setting. In fact, two of the methods, SKkm and ITML,
perform worse than the kernel k-means baseline in the multi-class setting. On
the other hand all methods outperform the baseline in the binary setting. The
reason is that most of the constraints in the multi-class setting are also relevant
to the binary setting, but not the other way around.

Figure 2 shows a visualization of the USPS Digits dataset using the SNE
method [28] in the original space, and the spaces induced by SKkm and SKLR. We
see that SKLR provides an excellent separation of the clusters that correspond to
even/odd digits as well as the sub-clusters that correspond to individual digits.
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Fig. 1. Clustering accuracy measured with Adjusted Rand index (AR). Rows corre-
spond to different datasets: (1) Vehicle; (2) MIT Scene; (3) USPS Digits. Columns
correspond to different experimental settings: (a) binary with separate constraints;
(b) multi-class with separate constraints; (c) binary with mixed constraints; (d) multi-
class with mixed constraints.

5.4 Generalization Performance

We now evaluate the generalization performance of the different methods to
out-of-sample data on the MIT Scene and USPS Digits datasets (recall that
we do not subsample the Vehicles dataset). For the baseline kernel k-means
algorithm, we run the algorithm on the whole datasets. For ITML and LSML, we
apply the learned transformation matrix on the new out-of-sample data points.
For SKkm and SKLR, we use Equation (18) to find the transformed kernel matrix
of the whole datasets. The results of this experiment are shown in Figure 3. As
can be seen from the figure, also in this case, when generalizing to out-of-sample
data, SKLR produces significantly more accurate clusterings.

5.5 Effect of Equality Constraints

To evaluate the effect of equality constraints on the clustering, we consider a
multi-class clustering scheme. For all datasets, we first generate a fixed number
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USPS Digits - Original Space

(a)

USPS Digits - SKkm

(b)

USPS Digits - Transformed Space

(c)

Fig. 2. Visualization of the USPS Digits using SNE: (a) original space; (b) space
obtained by SKkm; (c) space obtained by our method, SKLR.
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Fig. 3. Clustering accuracy on out-of-sample data (generalization performance). Rows
correspond to different datasets: (1) MIT Scene; (2) USPS Digits. Columns corre-
spond to different experimental settings: (a) binary with separate constraints; (b) multi-
class with separate constraints; (c) binary with mixed constraints; (d) multi-class with
mixed constraints.

of relative comparisons (360, 720, and 900 relative comparisons for Vehicle,
MIT Scene, and USPS Digits, respectively) and then we add some addi-
tional equality constraints (up to 200). The equality constraints are generated
by randomly selecting three data points, all from the same class, or each from
a different class. The results are shown in Figure 4. As can be seen, considering
the equality constraint also improves the performance, especially on the MIT
Scene and USPS Digits datasets. Note that none of the other methods can
handle these type of constraints.



Semi-supervised Clustering with Relative Distance Comparisons 233

Number of equality constraints
0 50 100 150 200

A
R

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44
Vehicle

Number of equality constraints
0 50 100 150 200

A
R

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88
MIT Scene

Number of equality constraints
0 50 100 150 200

A
R

0.86

0.88

0.9

0.92

0.94

0.96

0.98
USPS Digits

Fig. 4. Effect of equality constraints on the three datasets.

6 Conclusion

We have devised a semi-supervised kernel-learning algorithm that can incorpo-
rate various types of relative distance constraints, and used the resulting kernels
for clustering. Our experiments show that our method outperforms by a large
margin other competing methods, which either use ML/CL constraints or use
relative constraints but different metric-learning approaches. Our method is com-
patible with existing kernel-learning techniques [1] in the sense that if ML and
CL constraints are available, they can be used together with relative compar-
isons. We have also proposed to interpret an “unsolved” distance comparison so
that the interpoint distances are roughly equal. Our experiments suggest that
incorporating such equality constraints to the kernel learning task can be advan-
tageous, especially in settings where it is costly to collect constraints.

For future work we would like to extend our method to incorporate more
robust clustering methods such as spectral clustering and mean-shift. Addition-
ally, the soft formulation of the relative constraints for handling possibly incon-
sistent constraints is straightforward, however, we leave it for future study.
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Abstract. Clustering can be improved with pairwise constraints that
specify similarities between pairs of instances. However, randomly select-
ing constraints could lead to the waste of labeling effort, or even degrade
the clustering performance. Consequently, how to actively select effec-
tive pairwise constraints to improve clustering becomes an important
problem, which is the focus of this paper. In this work, we introduce a
Bayesian clustering model that learns from pairwise constraints. With
this model, we present an active learning framework that iteratively
selects the most informative pair of instances to query an oracle, and
updates the model posterior based on the obtained pairwise constraints.
We introduce two information-theoretic criteria for selecting informa-
tive pairs. One selects the pair with the most uncertainty, and the other
chooses the pair that maximizes the marginal information gain about the
clustering. Experiments on benchmark datasets demonstrate the effec-
tiveness of the proposed method over state-of-the-art.

1 Introduction

Constraint-based clustering aims to improve clustering using user-provided pair-
wise constraints regarding similarities between pairs of instances. In particular,
a must-link constraint states that a pair of instances belong to the same cluster,
and a cannot-link constraint implies that two instances are in different clusters.
Existing work has shown that such constraints can be effective at improving
clustering in many cases [2,4,8,16,19,20,22,24,28]. However, most prior work
focus on “passive” learning from constraints, i.e., instance pairs are randomly
selected to be labeled by a user. Constraints acquired in this random manner
may be redundant and lead to the waste of labeling effort, which is typically
limited in real applications. Moreover, when the constraints are not properly
selected, they may even be harmful to the clustering performance as has been
revealed by Davidson et al. [7]. In this paper, we study the important problem
of actively selecting effective pairwise constraints for clustering.

Existing work on active learning of pairwise constraints for clustering has
mostly focused on neighbourhood-based methods [3,12,14,17,25]. Such meth-
ods maintain a neighbourhood structure of the data based on the existing con-
straints, which represents a partial clustering solution, and they query pairwise
constraints to expand such neighborhoods. Other methods that do not rely on

An erratum to this chapter is available at DOI: 10.1007/978-3-319-23528-8 44
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such structure consider various criteria for measuring the utility of instance pairs.
For example, Xu et al. [26] propose to select constraints by examining the spec-
tral eigenvectors of the similarity matrix, and identify data points that are at
or close to cluster boundaries. Vu et al. [21] introduce a method that chooses
instance pairs involving points on the sparse regions of a k-nearest neighbours
graph. As mentioned by Xiong et al. [25], many existing methods often select
a batch of pairwise constraints before performing clustering, and they are not
designed for iteratively improving clustering by querying new pairs.

In this work, we study Bayesian active clustering with pairwise constraints
in an iterative fashion. In particular, we introduce a Bayesian clustering model
to find the clustering posterior given a set of pairwise constraints. At every
iteration, our task is: a) to select the most informative pair toward improving
current clustering, and b) to update the clustering posterior after the query is
answered by an oracle/a user. Our goal is to achieve the best possible clustering
performance with minimum number of queries.

In our Bayesian clustering model, we use a discriminative logistic model to
capture the conditional probability of the cluster assignments given the instances.
The likelihood of observed pairwise constraints is computed by marginalizing
over all possible cluster assignments using message passing. We adopt a special
data-dependent prior that encourages large cluster separations. At every iter-
ation, the clustering posterior is represented by a set of samples (“particles”).
After obtaining a new constraint, the posterior is effectively updated with a
sequential Markov Chain Monte Carlo (MCMC) method (“particle filter”).

We present two information-theoretic criteria for selecting instance pairs to
query at each iteration: a) Uncertain, which chooses the most uncertain pair
based on current posterior, and b) Info, which selects the pair that maximizes
the information gain regarding current clustering. With the clustering posterior
maintained at every iteration, both objectives can be efficiently calculated.

We evaluate our method on benchmark datasets, and the results demonstrate
that our Bayesian clustering model is very effective at learning from a small
number of pairwise constraints, and our active clustering model outperforms
state-of-the-art active clustering methods.

2 Problem Statement

The goal of clustering is to find the underlying cluster structure in a dataset
X = [x1, · · · , xN ] with xi ∈ R

d where d is the feature dimension. The unknown
cluster label vector Y = [y1, · · · , yN ], with yi ∈ {1, · · · ,K} being the cluster
label for xi, denotes the ideal clustering of the dataset, where K is the number of
clusters. In the studied active clustering, we could acquire some weak supervision,
i.e., pairwise constraints, by requesting an oracle to specify whether two instances
(xa, xb) ∈ X × X belong to the same cluster. We represent the response of the
oracle as a pair label za,b ∈ {+1,−1}, with za,b = +1 representing that instance
xa and xb are in the same cluster (a must-link constraint), and za,b = −1 meaning
that they are in different clusters (a cannot-link constraint). We assume the cost
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is uniform for different queries, and the goal of active clustering is to achieve the
best possible clustering with the least number of queries.

In this work, we consider sequential active clustering. In each iteration, we
select one instance pair to query the oracle. After getting the answer of the query,
we update the clustering model to integrate the supervision. With the updated
model, we then choose the best possible pair for the next query. So the task of
active clustering is an iterative process of posing queries and incorporating new
information to clustering.

An active clustering model generally has two key components: the clustering
component and the pair selection component. In every iteration, the task of the
clustering component is to identify the cluster structure of the data given the
existing constraints. The task of the pair selection component is to score each
candidate pair and choose the most informative pair to improve the clustering.

3 Bayesian Active Clustering

3.1 The Bayesian Clustering Model

In our model, we assume that the instance cluster labels yi’s are independent
given instance xi and the model parameter W . Each pair label za,b only depends
on the cluster labels ya and yb of the involved instances (xa, xb). The proposed
Bayesian clustering model consists of three elements: 1) the instance cluster
assignment model defined by P (Y |W,X), with parameter W ; 2) the conditional
distribution of the pair labels given the cluster labels P (Z|Y ), where Z contains
all pair labels in the constraints; and 3) the data-dependent prior P (W |X, θ)
with parameter θ. The joint distribution of the clustering model is factorized as

P (Z, Y,W |X, θ) = P (Z|Y )P (Y |W,X)P (W |X, θ) . (1)

We use the following discriminative logistic model as the clustering assign-
ment model P (Y |W,X):

P (yi = k|W,xi) =
exp(W�

·,kxi)
∑K

k′=1 exp(W�
·,k′xi)

, ∀1 ≤ k ≤ K, 1 ≤ i ≤ N , (2)

where W is a d × K matrix, d is the feature dimension, and K is the number of
clusters.

Here we use a special prior for W , which combines the Gaussian prior with a
data-dependent term that encourages large cluster separations of the data. The
logarithmic form of the prior distribution is

log P (W |X, θ) = −λ

2
‖W‖2F − τ

N

N
∑

i=1

H(yi|W,xi) + constant , (3)

where the prior parameter θ = [λ, τ ]. The first term is the weighted Frobenius
norm of W . This term corresponds to the Gaussian prior with zero mean and
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diagonal covariance matrix with λ as the diagonal elements, and it controls the
model complexity. The second term is the average negative entropy of the cluster
assignment variable Y . We use this term to encourage large separations among
clusters, as similarly utilized by [11] for semi-supervised classification problems.
The constant term normalizes the probability. Although it is unknown, inference
can be carried out by sampling from the unnormalized distribution (e.g., using
slice sampling [18]). We will discuss more details in Sec. 3.3.

With our model assumption, the conditional probability P (Z|Y ) is fully fac-
torized based on the pairwise constraints. For a single pair (xa, xb), we define
the probability of za,b given cluster labels ya and yb as

P (za,b = +1|ya, yb) =
{

ε if ya �= yb

1 − ε if ya = yb
,

P (za,b = −1|ya, yb) = 1 − P (za,b = +1|ya, yb) ,

(4)

where ε is a small number to accommodate the (possible) labeling error. In the
case where no labeling error exists, ε allows for “soft constraints”, meaning that
the model can make small errors on some pair labels and achieve large cluster
separations.

Marginalization of Cluster Labels. In the learning procedure described
later, we will need to marginalize some or all cluster labels, for example, in the
case of computing the likelihood of the observed pair labels:

P (Z|W,X) =
∑

Y

P (Z, Y |W,X) =
∑

Yα(Z)

P (Z|Yα(Z))P (Yα(Z)|W,Xα(Z)) , (5)

where α(Z) denotes the set of indices for all instances involved in Z.
The marginalization can be solved by performing sum-product message pass-

ing [15] on a factor graph defined by all the constraints. Specifically, the set of all
instances indexed by α(Z) defines the nodes of the graph, and P (Yα(Z)|W,Xα(Z))
defines the node potentials. Each queried pair (xa, xb) creates an edge, and the
edge potential is defined by P (za,b|ya, yb). In this work, we require that the
graph formed by the constraints does not contain cycles, and message passing is
performed on a tree (or a forest, which is a collection of trees). Since inference
on trees are exact, the marginalization is computed exactly. Moreover, due to
the simple form of the edge potential (which is a simple modification to the
identity matrix as can be seen from (4)), the message passing can be performed
very efficiently. In fact, each message propagation only requires O(K) complexity
instead of O(K2) as in the general case. Overall the message passing only takes
O(K|Z|), even faster than calculating the node potentials P (Yα(Z)|W,Xα(Z)),
which takes O(dK|Z|).

3.2 Active Query Selection

Now we describe our approach for actively selecting informative pairs at every
iteration. Suppose our query budget is T . In each iteration t, 1 ≤ t ≤ T , we need
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to select a pair (xt
a, xt

b) from a pool of unlabeled pairs U t, and acquire the label
zt
a,b from the oracle. We let U1 ⊆ X × X be the initial pool of unlabeled pairs.

Then U t = U t−1\(xt−1
a , xt−1

b ) for 1 ≤ t ≤ T . Below we use Zt = [z1a,b, · · · , zt
a,b]

to denote all the pair labels obtained up to the t-th iteration.

Selection Criteria. We use two entropy-based criteria to select the best pair
at each iteration. The first criterion, which we call Uncertain, is to select the
pair whose label is the most uncertain. That is, at the t iteration, we choose
the pair (xt

a, xt
b) that has the largest marginal entropy of zt

a,b (over the posterior
distribution of W ):

(xt
a, xt

b) = arg max
(xa,xb)∈Ut

H(za,b|Zt−1,X, θ) . (6)

Similar objective has been considered in prior work on distance metric learning
[27] or document clustering [14], where the authors propose different approaches
to compute/approximate the entropy objective.

The second criterion is a greedy objective adopted from active learning for
classification [6,10,13], which we call Info. The idea is to select the query (xt

a, xt
b)

that maximizes the marginal information gain about the model W :

(xt
a, xt

b) = arg max
(xa,xb)∈Ut

I(za,b,W |Zt−1,X, θ)

= arg max
(xa,xb)∈Ut

H(za,b|Zt−1,X, θ) − H(za,b|W,Zt−1,X, θ) . (7)

Note that here W is a random variable. The Info objective is equivalent to
maximizing the entropy reduction about W , as can be proved by the chain rule
of conditional entropy.

Interestingly, the first entropy term in the Info objective (7) is the same
with the Uncertain objective (6). The additional term to Info is the conditional
entropy of the pair label za,b given W , i.e., the second term in (7). Comparing
the two objectives, we see that W is marginalized in the Uncertain objective
and the selected query aims to reduce the maximum uncertainty of the pair
label. In contrast, the goal of Info is to decrease the model uncertainty. There
is subtle difference between these two types of uncertainties. The additional
conditional entropy term in Info suggests that it prefers instance pairs whose
labels are certain once W is known, yet whose overall uncertainty is high when
marginalizing over W . In such sense, Info pays more attention to the uncertainty
of the model W .

Each of the above selection objectives ranks the candidate pairs from the
highest to the lowest. To select a pair to query, we go through the ranking and
choose the one that does not create a cycle to the existing graph as described
in Sec. 3.1. Since inference on trees are not only exact but also fast, enforcing
such acyclic graph structure allows us to compute the selection objectives more
effectively and accurately, and select more informative pairs to query.
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Computing the Selection Objectives. Now we describe how to compute the
two objective values for a candidate instance pair. The two objectives require
computing the marginal entropy H(za,b|Zt,X, θ), and the conditional entropy
H(za,b|W,Zt,X, θ), for 1 ≤ t ≤ T . By definition, the marginal entropy is

H(za,b|Zt,X, θ) = −
∑

za,b

P (za,b|Zt,X, θ) log P (za,b|Zt,X, θ) , (8)

where the probability

P (za,b|Zt,X, θ) =
∫

P (Ŵ |Zt,X, θ)P (za,b|Zt, Ŵ ,X)dŴ . (9)

The conditional probability is computed as

P (za,b|Zt, Ŵ ,X) =
P (za,b ∪ Zt|Ŵ ,X)

P (Zt|Ŵ ,X)
, (10)

where calculating both the numerator and the denominator are the same infer-
ence problem as (5) and can be solved similarly using message passing. In fact,
message propagations for the two calculations are shared except for that a new
edge regarding za,b is introduced to the graph for P (za,b ∪ Zt|Ŵ ,X). So we can
calculate the two values by performing message passing algorithm only once on
the graph of P (za,b∪Zt|Ŵ ,X), and record P (Zt|Ŵ ,X) in the intermediate step.

By definition, the conditional entropy is

H(za,b|W,Zt,X, θ) =
∫

P (Ŵ |Zt,X, θ)H(za,b|Zt, Ŵ ,X)dŴ , (11)

where H(za,b|Ŵ , Zt,X) is also easy to compute once we know P (za,b|Zt, Ŵ ,X),
which has been done in (10).

Now the only obstacle in calculating the two entropies is to take the expecta-
tions over the posterior distribution P (W |Zt,X, θ) in (9) and (11). Here we
use sampling to approximate such expectations. We first sample W ’s from
P (W |Zt,X, θ) and then approximate the expectations with the sample means.
Directly sampling from the posterior at every iteration is doable but very ineffi-
cient. Below we describe a sequential MCMC sampling method (“particle filter”)
that effectively updates the samples of the posterior.

3.3 The Sequential MCMC Sampling of W

The main idea of the sequential MCMC method is to avoid sampling with ran-
dom starts at every iteration by utilizing the particles obtained from the previous
iteration.1 Specifically, to obtain particles from distribution P (W |Zt,X, θ), the
sequential MCMC method first resamples from the particles previously sampled
1 Here we follow the convention of the particle filter field and call samples of W as

“particles”.
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from P (W |Zt−1,X, θ), and then performs just a few MCMC steps with these
particles to prevent degeneration [9].

Here we maintain S particles in each iteration. We denote W t
s , 1 ≤ s ≤ S,

as the s-th particle in the t-th iteration. For initialization, we sample particles
{W 0

1 , · · · ,W 0
S} from the prior distribution P (W |X, θ) defined in (3) using slice

sampling [18] 2, an MCMC method that can uniformly draw samples from an
unnormalized density function. Since slice sampling does not require the target
distribution to be normalized, the unknown constant in the prior (3) can be
neglected here.

At iteration t, 1 ≤ t ≤ T , after a new pair label zt
a,b is observed, we per-

form the following two steps to update the particles and get samples from
P (W |Zt,X, θ).

(1) Resample. The first step is to resample from the particles {W t−1
1 , · · · ,W t−1

S }
obtained from the previous iteration for P (W |Zt−1,X, θ). We observe that

P (W |Zt,X, θ) = P (W |zt
a,b, Zt−1,X, θ)

∝ P (zt
a,b|Zt−1,W,X)P (W |Zt−1,X, θ) .

So each particle W t−1
s is weighted by P (zt

a,b|Zt−1,W
t−1
s ,X), which can be cal-

culated the same as (10).

(2) Move. In the second step, we start with each resampled particles, and per-
form several slice sampling steps for the posterior

P (W |Zt,X, θ) ∝ P (Zt|W,X)P (W |X, θ) . (12)

Again P (Zt|W,X) is calculated by message passing as (5), and the unknown
normalizing constant in P (W |X, θ) can be ignored, since slice sampling does not
require the normalization constant.

The resample-move method avoids degeneration in the sequence of slice
sampling steps. After these two steps, we have updated the particles for
P (W |Zt,X, θ). Such particles are used to approximate the selection objectives
as described in Sec. 3.2, allowing us to select the next informative pair to query.

Note that the distribution P (W |Zt,X, θ) is invariant to label switching, that
is, permuting column vectors of W = [W·,1, · · · ,W·,K ] will not change the prob-
ability P (W |Zt,X, θ). This is because we can not provide any prior of W with
label order, nor does the obtained constraints provide any information about the
label order. One concern is whether the label switching problem would reduce
sampling efficiency and affect the pair selection, since P (W |Zt,X, θ) has mul-
tiple modes corresponding to different label permutations. Actually it does not
cause an issue to the approximation of integrations in (9) and (11), since the
term P (za,b|Zt,W,X, θ) is also invariant to label permutations. However, the
label switching problem does cause difficulty in getting the Bayesian prediction
of clusters labels from distribution P (Y |Zt,X, θ), so we will employ the MAP
solution Wmap and predict cluster labels with P (Y |Zt,Wmap,X, θ). We describe
this in the following section.
2 Here we use the implementation slicesample provided in the MATLAB toolbox.
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3.4 Find the MAP Solution

Given a set of constraints with pair labels Z, we first find the MAP estimation
Wmap by maximizing the posterior P (W |Z,X, θ), or equivalently maximizing
the joint distribution P (W,Z|X, θ) (in the logarithmic form):

max
W

L = log P (W,Z|X, θ) = log P (Z|W,X) + log P (W |X, θ) . (13)

The maximization can be solved by off-the-shelf gradient-based optimization
approaches. Here we use the quasi-newton method provided in the MATLAB
toolbox. The gradient of the objective L with respect to W is

∂L

∂W
=

∑

i∈α(Z)

xi(qi − pi)� − λW − τ

N

N
∑

i=1

xi

K
∑

k=1

pik log pik(1k − pi)� ,

where pi = [pi1, · · · , piK ]� with pik = P (yi = k|W,xi), qi = [qi1, · · · , qiK ]� with
qik = P (yi = k|Z,W, xi), and 1k is a K dimensional vector that contains 1 on
the k-th dimension and 0 elsewhere. Here α(Z) again indexes all the instances
involved in the constraints.

With the Wmap solution to (13), we then find the MAP solution of the cluster
labels Y from P (Y |Z,Wmap,X). This is done in two cases. For the instances that
are not involved in the constraints, the MAP of Y is simply the most possible
assignment of P (Y |Wmap,X). For the instances involved in the constraints, we
need to find

max
Yα(Z)

P (Yα(Z)|Z,Wmap,Xα(Z)) ∝ P (Z|Yα(Z))P (Yα(Z)|Wmap,Xα(Z)) .

The inference can be done by performing max-product algorithm on the same
graph as defined for (5), only replacing the “summation” with the “max” oper-
ator at every message propagation.

In real applications, we only need to find the MAP solution of Y after the
last iteration. In our experiments, we search for the solution at every iteration
to show the performance of our method if we stop learning at any iteration. Our
overall algorithm is summarized in Algorithm 1.

Note that an alternative of finding the clustering solution is to find the MAP
of W and Y at the same time. However, we think our MAP estimation of W
which marginalizes Y is more stable, and our calculation method is much simpler
compared with the alternative.

4 Experiments

In this section, we empirically examine the effectiveness of the proposed method.
In particular, we aim to answer the following questions:

– Is the proposed Bayesian clustering model effective at finding good clustering
solutions with a small number of pairwise constraints?

– Is the proposed active clustering method more effective than state-of-the-art
active clustering approaches?
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Algorithm 1. Bayesian Active Clustering
Input: data X, number of clusters K, access to the oracle, initial pool U1, query
budget T , prior parameter θ, number of samples S
Output: a clustering solution of the data

Initialize particles by sampling {W 0
1 , · · · , W 0

S} from prior P (W |X, θ)
for t = 1 to T do

1. Select a pair to query:
Use particles {W t−1

1 , · · · ,W t−1
S } to compute the selection objective (6) or (7)

Choose the best pair (xt
a, xt

b) from U t and acquire zt
a,b from the oracle

2. Update posterior:
Resample S particles with weight P (zt

a,b|Zt−1, W
t−1
s , X) for W t−1

s

Perform a few MCMC steps on all particles with distribution P (W |Zt, X, θ)
3. Update the pool: U t+1 ← U t\(xt

a, xt
b)

end for
Find the MAP solution Wmap = arg max

W
log P (W |ZT , X, θ)

Find the clustering solution Ymap = arg max
Y

log P (Y |ZT , Wmap, X)

Table 1. Summary of Dataset Information

Dataset #Inst #Dim #Class #Query

Fertility 100 9 2 60
Parkinsons 195 22 2 60
Crabs 200 5 2 60
Sonar 208 60 2 100
Balance 625 4 3 100
Transfusion 748 4 2 100
Letters-IJ 1502 16 2 100
Digits-389 3165 16 3 100

4.1 Dataset and Setup

We use 8 benchmark UCI datasets to evaluate our method. Table 1 provides a
summary of the dataset information. For each dataset, we normalize all features
to have zero mean and unit standard deviation.

We form the pool of unlabeled pairs using all instances in the dataset, and
set the query budget to 60 for smaller datasets and to 100 for datasets with large
feature dimension (e.g, Sonar) or larger dataset size. When a pair of instances is
queried, the label is returned based on the ground-truth instance class/cluster
labels. We evaluate the clustering results of all methods using pairwise F-Measure
[5], which evaluates the harmonic mean of the precision and recall regarding
prediction of instance pairwise relations. We repeat all experiments 30 times
and average the results.

For the proposed Bayesian clustering model, we found that its performance is
not sensitive to the values of the prior parameter τ or the ε used in the pair label
distribution (4). Here we set τ = 1 and ε = 0.05, where the nonzero value of ε
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Fig. 1. Pairwise F-Measure clustering results with increasing number of randomly
selected queries. Results are averaged over 30 runs. Error bars are shown as mean
and 95% confidence interval.
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allows for “soft constraints”. For the parameter λ, which controls the covariance
of the Gaussian prior, we experimented with λ ∈ {1, 10, 100} and found that
λ = 10 is uniformly good with all datasets, which we fix as the default value. For
each dataset, we maintain S = 2dK samples of the posterior at every iteration.

4.2 Effectiveness of the Proposed Clustering Model

To demonstrate the effectiveness of the proposed Bayesian clustering (BC)
model, we compare with two well-known methods that learn from pairwise
constraints: MPCKmeans [5], and ITML [8]3. In this set of experiment, we
use randomly selected pairwise constraints to evaluate all methods. For our
method, we incrementally select random pairs that do not introduce a cycle
to the graph formed by existing pairs. To ensure a fair comparison, we evalu-
ate ITML and MPCKmeans with randomly selected pairs with and without the
acyclic graph restriction. Thus, all methods in competition are: BC+tree, ITML,
ITML+tree, MPCKmeans, MPCKmeans+tree, where BC+tree, ITML+tree, and
MPCKmeans+tree use randomly selected constraints that form a tree graph (or
a forest), and ITML and MPCKmeans allow for cycles in the graph.

Figure 1 shows the performance of all methods with increasing number of con-
straints. We see that our method BC+tree outperforms the baselines on most
datasets regardless of whether they use constraints with or without the acyclic
graph restriction. This demonstrates the effectiveness of our Bayesian clustering
model. We also notice that on most datasets we can hardly tell the difference
between ITML and ITML+tree, or MPCKmeans and MPCKmeans+tree, sug-
gesting that enforcing the acyclic structure in the constraints do not hurt the
performance of ITML or MPCKmeans. Interestingly, such enforcement can in
some cases produce better performance (e.g, on the Sonar dataset). We sus-
pect this is because constraints forming cycles may have larger incoherence than
those does not.4 Davidson et al. [7] have shown that constraint sets with large
incoherence can potentially degrade the clustering performance.

4.3 Effectiveness of the Overall Active Clustering Model

In this section, we compare our overall active clustering model with existing
methods. Our baselines include two recent work on active learning with pair-
wise constraints: MinMax [17], and NPU [25]. Both methods provide an active
pair selection approach and require a clustering method to learn form the con-
straints. Here we supply them with MPCKmeans and ITML.5 So all methods in
competition are
3 ITML is a distance metric learning method, and we find the clustering solution by

applying Kmeans clustering with the learned metric.
4 The concept of incoherence is formally defined at [7]. Generally, a set of overlapping

constraints tends to have higher incoherence than a set of disjoint constraints.
5 Note that due to our Bayesian clustering model requires the set of constraints to form

an acyclic graph, it can not be combined with MinMax or NPU, as they generally
select constraints that form cycles due to their neighbourhood-based approach.
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Fig. 2. Pairwise F-Measure clustering results of different active clustering methods
with increasing number of queries. Results are averaged over 30 runs. Error bars are
shown as mean and 95% confidence interval.
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– Info+BC: The proposed active clustering model with the Info criterion (7).
– Uncertain+BC: The proposed active clustering model with the Uncertain

criterion (6).
– NPU+ITML: The NPU active selection strategy combined with ITML.
– NPU+MPCKmeans: The NPU method with MPCKmeans.
– MinMax+ITML: The MinMax active learning method combined with ITML.
– MinMax+MPCKmeans: The MinMax approach combined with MPCK-
means.

Figure 2 reports the performance of all active clustering methods with
increasing number of queries. We see that both Info+BC and Uncertain+BC
improve the clustering very quickly as more constraints are obtained, and they
outperform all baselines on most datasets. Moreover, Info+BC seems to be more
effective than Uncertain+BC in most cases. We hypothesize this is because Info
reduces the uncertainty of the model, which might be more appropriate for
improving the MAP solution of clustering than decreasing the maximum uncer-
tainty of the pair labels as Uncertain does.

To avoid crowding Fig. 2, we did not present the passive learning results of
our method BC+tree as a baseline in the same figure. The comparison between
active learning and passive learning for our method can be done by comparing
Uncertain+BC and Info+BC in Fig. 2 with BC+tree in Fig. 1. We see that both
our active learning approaches produce better performance than passive learning
on most datasets, demonstrating the effectiveness of our pair selection strategies.

We also notice that the performance of NPU or MinMax highly depends on
the clustering method in use. With different clustering methods, their behav-
iors are very different. In practice, it can be difficult to decide which clustering
algorithm should be used in combination with the active selection strategies to
ensure good clustering performance. In contrast, our method unifies the cluster-
ing and active pair selection model, and the constraints are selected to explicitly
reduce the clustering uncertainty and improve the clustering performance.

4.4 Analysis of the Acyclic Graph Restriction

Our method requires the graph formed by the constraints to be a tree (or a
forest). Here we show that this restriction will not prevent us from selecting
informative pairs. We examine the number of pairs that has been dropped at
every iteration in order to find the best pair that does not create a cycle. Table
2 reports the results for the two selection criteria with varied number of queries.
We see that for both criteria the number of dropped pairs is very small. For
Uncertain, there is barely any pair that has been dropped on most datasets, and
we see slightly more pairs dropped for the Info criteria. Overall, for only less
than (often significantly less than) 10% of the number of queries, we encounter
the need of dropping a pair. The only exception is the Fertility dataset, which
is very small in size, making it difficult to avoid cycles with a large number of
queries. But from the results in Sec. 4.3, we can see that the active clustering
performance was still much better than the competing methods.
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Table 2. Number of dropped pairs (Info/Uncertain) at different iterations to find the
best pair that does not a create cycle. Results are averaged over 30 runs.

Dataset
Query Iteration

10 20 30 40 50 60

Fertility 0.4/0.0 0.6/0.1 0.9/0.1 2.7/1.9 4.2/14.3 10.8/32.0
Parkinsons 0.1/0.0 0.0/0.0 0.5/0.0 0.8/0.3 0.9/0.6 1.7/1.7
Crabs 0.6/0.0 0.2/0.0 0.0/0.0 0.1/0.3 0.2/0.6 0.4/1.5
Sonar 0.7/0.0 0.2/0.0 0.4/0.1 0.5/0.2 0.5/0.2 0.6/0.2
Balance 0.0/0.0 0.3/0.0 1.7/0.0 2.6/0.0 3.3/0.1 2.9/0.0
Transfusion 0.3/0.0 1.3/0.0 2.4/0.0 2.3/0.0 4.6/0.0 4.9/0.1
Letters-IJ 0.0/0.0 0.2/0.0 0.3/0.0 0.2/0.0 0.5/0.0 0.7/0.0
Digits-389 0.0/0.0 0.0/0.0 0.1/0.0 0.1/0.0 0.0/0.0 0.3/0.0

In addition, during our experiments, we found that for both criteria the
difference between the maximum objective value and objective of the finally
selected pair is often negligible. So in the case where some high-ranking pairs
are dropped due to the acyclic graph structure restriction, the selected pair is
still very informative. Overall, this enforcement does not present any significant
negative impact on the final clustering results. It is interesting to note that, the
results in Sec. 4.2 suggest that such graph structure restriction can in some cases
improve the clustering performance.

5 Related Work

Prior work on active clustering for pairwise constraints has mostly focused on the
neighbourhood-based method, where a neighbourhood skeleton is constructed to
partially represent the underlying clusters, and constraints are queried to expand
such neighbourhoods. Basu et al. [3] first proposed a two-phase method, Explore
and Consolidate. The Explore phase incrementally builds K disjoint neighbor-
hoods by querying instance pairwise relations, and the Consolidate phase iter-
atively queries random points outside the neighborhoods against the existing
neighborhoods, until a must-link constraint is found. Mallapragada et al. [17]
proposed an improved version, which modifies the Consolidate stage to query
the most uncertain points using an MinMax objective. As mentioned by Xiong
et al. [25], these methods often select a batch of constraints before perform-
ing clustering, and they are not designed for iteratively improving clustering by
querying new constraints, as considered in this work.

Wang and Davidson [23], Huang et al. [14] and Xiong et. al. [25] studied
active clustering in an iterative manner. Wang and Davidson introduced an
active spectral clustering method that iteratively select the pair that maximized
the expected error reduction of current model. This method is however restricted
to the two-cluster problems. Huang et al. proposed an active document clustering
method that iteratively finds probabilistic clustering solution using a language
model and they selected the most uncertain pair to query. But this method is



Bayesian Active Clustering with Pairwise Constraints 249

limited to the task of document clustering. Xiong et. al. considered a similar
iterative framework to Huang et al., and they queried the most uncertain data
point against existing neighbourhoods, as apposed to the most uncertain pair
in [14]. Xiong et al. only provide a query selection strategy and require a clus-
tering method to learn from the constraints. In contrast, our method is a unified
clustering and active pair selection model.

Finally, there are other methods that use various criteria to select pairwise
constraints. Xu et al. [26] proposed to select constraints by examining the spec-
tral eigenvectors of the similarity matrix in the two-cluster scenario. Vu et al.
[21] proposed to select constraints involving points on the sparse regions of a
k-nearest neighbours graph. The work [1,12] used ensemble approaches to select
constraints. The scenarios considered in these methods are less similar to what
has been studied in this paper.

6 Conclusion

In this work, we studied the problem of active clustering, where the goal is to
iteratively improve clustering by querying informative pairwise constraints. We
introduced a Bayesian clustering method that adopted a logistic clustering model
and a data-dependent prior which controls model complexity and encourages
large separations among clusters. Instead of directly computing the posterior of
the clustering model at every iteration, our approach maintains a set of sam-
ples from the posterior. We presented a sequential MCMC method to efficiently
update the posterior samples after obtaining a new pairwise constraint. We intro-
duced two information-theoretic criteria to select the most informative pairs to
query at every iteration. Experimental results demonstrated the effectiveness of
the proposed Bayesian active clustering method over existing approaches.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grant No. IIS-1055113. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author(s) and do
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Abstract. A distance measure between objects is a key requirement for
many data mining tasks like clustering, classification or outlier detec-
tion. However, for objects characterized by categorical attributes, defin-
ing meaningful distance measures is a challenging task since the values
within such attributes have no inherent order, especially without addi-
tional domain knowledge. In this paper, we propose an unsupervised
distance measure for objects with categorical attributes based on the
idea that categorical attribute values are similar if they appear with
similar value distributions on correlated context attributes. Thus, the
distance measure is automatically derived from the given data set. We
compare our new distance measure to existing categorical distance mea-
sures and evaluate on different data sets from the UCI machine-learning
repository. The experiments show that our distance measure is recom-
mendable, since it achieves similar or better results in a more robust way
than previous approaches.

Keywords: Categorical data · Distance measure · Heterogeneous data ·
Unsupervised learning

1 Introduction

Distance calculation between objects is a key requirement for many data mining
tasks like clustering, classification or outlier detection [13]. Objects are described
by a set of attributes. For continuous attributes, the distance calculation is
well understood and mostly the Minkowski distance is used [2]. For categori-
cal attributes, defining meaningful distance measures is more challenging since
the values within such attributes have no inherent order [4]. The absence of
additional domain knowledge further complicates this task.

However, several methods exist to address this issue. Some are based on sim-
ple approaches like checking for equality and inequality of categorical values, or
create a new binary attribute for each categorical value [2]. An obvious draw-
back of these two approaches is that they cannot reflect the degree of similarity
c© Springer International Publishing Switzerland 2015
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or dissimilarity between two distinct categorical values. Yet, more sophisticated
methods incorporate statistical information about the data [6–8].

In this paper, we take the latter approach. In contrast to previous work,
we take into account the quality of information that can be extracted from the
data, in form of correlation between attributes. The resulting distance measure is
called ConDist (Context based Categorical Distance Measure): We first derive a
distance measure for each attribute separately. To this end, we take advantage of
the fact that categorical attributes are often correlated, as shown in an empirical
study [8], or by the fact that entire research fields exist which detect and elimi-
nate such correlations, e.g. feature selection or dimensionality reduction. In order
to calculate the distances for the values within a target attribute, we first identify
the correlated context attributes. The distance measure on target attributes is
then based on the idea that attribute values are similar if they appear with simi-
lar value distributions on their corresponding set of correlated context attributes.
Finally, we combine these distance measures on separate attributes to calculate
the distance of objects, again taking into account correlation information. We
argue that incorporating the correlation of context attributes and the target
attribute itself are important in order to maximize the relevant distance infor-
mation extracted from the data and mitigate the possibly incorrect influence of
uncorrelated attributes.

Table 1 shows a sample data set. Let us assume, we want to calculate the
distance between the different values of attribute height, i.e., height is our tar-
get attribute. As mentioned above, our distance measure calculates its distance
based on the value distributions of other attributes. For the attributes weight
and haircolor these distributions (P (X|H = small), P (X|H = medium) and
P (X|H = tall)) are shown in Figure 1. In the case of weight the distributions are
different. Thus, they will add information to our distance calculations. However,
the distributions for haircolor are the same for all values of the target attribute.
Thus, they will not contribute information to our distance measure. At the same
time, we can see that weight is correlated to height, since higher weight implies
greater height with a high probability. For haircolor on the other hand, there
is no correlation, since haircolor does not imply height. Since we also take this
correlation information into account, we exclude uncorrelated attributes from
the distance measure. Therefore, context attribute haircolor will not be taken
into account when calculating distances between the values of height.

Overall, we propose an unsupervised distance measure for objects described
by categorical attributes. Our new distance measure ConDist calculates dis-
tances by identifying and utilizing relevant statistical relationships from the
given data set in form of correlations between attributes. This way, ConDist
tries to compensate for the lack of inherent orders within categorical attribute
domains.

The rest of the paper is organized as follows: Related work on categorical
distance measures is discussed in Section 2. Section 3 describes the proposed
distance measure ConDist in detail. Section 4 gives an experimental evaluation
and the results are discussed in Section 5. The last section summarizes the paper.



ConDist: A Context-Driven Categorical Distance Measure 253

Table 1. Example data set which describes nine people with three categorical
attributes. The attributes height and weight have natural orders. Whereas the attribute
haircolor has no natural order. Height and weight are correlated to each other while
the attribute haircolor is uncorrelated to the other two attributes. ConDist uses such
correlations between attributes to extract relevant information for distance calculation.

# height weight haircolor

1 small low blond
2 small low brown
3 small middle black
4 medium low black
5 medium middle brown
6 medium high blond
7 tall middle blond
8 tall high brown
9 tall high black

Fig. 1. This figure shows the conditional probability distributions (CPDs) of context
attributes weight and haircolor, given the different values of the target attribute height
based on Table 1. W stands for weight, C for haircolor and H for height. ConDist uses
the differences between CPDs of context attributes to calculate the distance of target
attribute values. Thus, weight can be used to calculate a meaningful distance between
the values of height, while haircolor will yield the same distance for all three target
attribute values.

2 Related Work

This section reviews related work on categorical distance measures. Distance
measures can be divided into supervised and unsupervised. In the supervised
setting, the class membership of the objects is provided and this information is
exploited by the distance measures. In the unsupervised setting, distance mea-
sures are based exclusively on assumptions and statistics of the data. Since the
proposed distance measure is unsupervised, the following review considers only
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unsupervised categorical distance measures. We categorize them into distance
calculation (I) without considering context attributes, (II) considering all context
attributes, (III) considering a subset of context attributes and (IV) based on
entire objects instead of individual attributes.

Boriah et al. [4] give a comprehensive overview of distances measures from
category (I). In contrast to ConDist, these distance measures ignore available
information that could be extracted from context attributes. For example, the
distance measure Eskin only uses the cardinality of the target attribute domain
to calculate distances. [4] evaluated these distance measures for outlier detection
and observed that no specific distance measure dominates all others.

Category (II) includes distance measures that employ all context attributes
without distinguishing between correlated and uncorrelated. Li and Ho [8] com-
pute the distance between two categorical values as the sum of dissimilarities
between the context attributes’ conditional probability distribution (CPD) when
the target attribute takes these two values. However, they do not recommend
their distance measure for data sets with highly independent attributes. Similary,
[1] calculates the distance between two values using the co-occurrence probabil-
ities of these two values and the values of the context attributes.

Category (III) selects a subset of context attributes for each target attribute.
DILCA [6] is a representative of this category and uses Symmetric Uncer-
tainty (SU) [15] for selecting context attributes. SU calculates the correlation
between two attributes. In contrast to our work, all selected context attributes
are weighted equally for the distance calculation. Consequently, the potentially
differing suitability of the selected context attributes is not reflected in the dis-
tance calculation process.

Category (IV) aims to compute distances between entire objects instead of
distances between different values within an attribute. Consequently, the dis-
tance between different values within an attribute varies in dependence of the
whole objects. Recently, Jia and Cheung [7] proposed such a distance measure
for cluster analysis. Their basic assumption is that two categorical values with
high frequencies should have a higher distance than two categorical values with
low frequencies. Therefore, they select and weigh a set of correlated context
attributes for each target attribute using the normalized mutual information [3].
Jia and Cheung [7] compared their distance measure with the Hamming Distance
on four data sets. They conclude that their distance measure performs better
than the Hamming Distance on the evaluated data sets.

The proposed distance measure ConDist neither ignores context attributes
(category I) nor simply includes all context attributes (category II). Instead, it
follows the approach of the third category but extends the subset selection with a
weighting scheme for context attributes. Furthermore, the target attribute itself
is included in the distance computation. In contrast to the fourth category, two
particular values within an attribute have always the same distance, independent
of the corresponding objects. This allows ConDist to calculate a distance matrix
for each attribute.
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3 The Distance Measure ConDist

This section introduces ConDist, a new distance measure. Section 3.1 presents
the underlying ideas and the core formula. Since ConDist first calculates
the distance between single attributes before combining them, it requires
adjusted distance functions for each attribute. In Section 3.2, we explain how
these attribute distance functions are derived. When combining attribute-wise
distances, ConDist uses a specific weighting scheme which is explained in
Section 3.3. Both, the attribute distance functions as well as the weighting
scheme use a set of correlated context attributes. Section 3.4 defines how this set
is derived and how an impact factor is calculated which accounts for the vary-
ing amount of information dependent on different correlation values. Finally, we
address the issue of how ConDist can be applied to objects characterized by
continuous and categorical attributes in Section 3.5.

3.1 Definition of ConDist

This section provides the core formula of ConDist, calculating the distance
between two objects characterized by attributes.

Let A and B be two objects in the data set D and let each object be charac-
terized by n attributes. Furthermore, let the value of attribute X for object A be
denoted by AX . ConDist follows a two-step process: First, it calculates the dis-
tance between each of the attributes of the objects A and B and then it combines
them using attribute specific weights. Formally, ConDist defines the distance for
two objects A and B as the weighted sum over all attribute distances:

ConDist(A,B) =
∑

X

wX · dX(A,B), (1)

where wX denotes the weighting factor assigned to attribute X (defined in
Section 3.3) and dX(A,B) denotes the distance of the values AX and BX of
attribute X in the objects A and B (defined in Section 3.2).

The distance function dX on the values of each attribute X needs to be
calculated beforehand and is based on the idea that attribute values with sim-
ilar distributions of values in a set of correlated context attributes are simi-
lar. The weighting factor wX accounts for differences in the number of context
attributes and the degree of their correlation with the target attribute X. Both,
the attribute distance functions dX as well as the weighting factors wX incor-
porate correlation information in order to maximize the relevant information
that can be extracted from the data set and mitigate the possibly incorrect
influence of uncorrelated attributes. For an example on differently correlated
attributes and their influence on distribution based distance measures, please
refer to Section 1 as well as Table 1 and Figure 1.

3.2 Attribute Distance dX

As mentioned in Section 3.1, the distance dX of values of a single attribute X is
based on the idea that attribute values x ∈ dom(X) are similar if they appear
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with similar distributions of values in a set of correlated context attributes.
Thus, when comparing two objects A and B in attribute X, we first calculate
the Euclidean distance between the two conditional probability distributions
P (Y |X = AX) and P (Y |X = BX) for each attribute Y ∈ contextX from the set
of correlated context attributes contextX of the target attribute X. Then, we
weight them using an individual impact factor impactX(Y ) (Section 3.4) and add
up these distances for all attributes Y ∈ contextX . The impact factor accounts
for the fact that the amount of information about the target attribute X in a
context attribute Y decreases with both increasing and decreasing correlation
cor(X|Y ) as explained in Section 3.4. The resulting formula is:

d̂X(A,B) =
∑

Y ∈contextX

impactX(Y )

√

√

√

√

∑

y∈dom(Y )

(

p(y|AX) − p(y|BX)
)2

, (2)

where dom(Y ) is the domain of attribute Y , p(y|AX) = p(y|X = AX) denotes
the probability that value y of context attribute Y is observed under the condi-
tion that value AX of attribute X is observed in the data set D.

As mentioned above, the attribute distance dX relies on a set of correlated
context attributes contextX as defined in Section 3.4. Because every attribute
is correlated to itself, the target attribute is also added to the set of context
attributes. The motivation for including the target attribute is two-fold: First, it
ensures that the list of context attributes is not empty even if all attributes are
independent. Second, the distance between two distinct values is always larger
than 0. Thus, if no correlated context attributes can be identified, ConDist cal-
culates the maximum distance for each distinct value-pair in target attribute X.
In this case, ConDist reduces to the distance measure Overlap and distinguishes
only between equality and inequality of categorical values.

It should be noted that ConDist normalizes the attribute distance by the
maximum distance value dX,max between any two values x, u ∈ dom(X) of
attribute X:

dX(A,B) =
d̂X(A,B)
dX,max

(3)

The proof that ConDist is a distance measure closely follows the proof of
the Euclidean metric and exploits the fact that a linear combination of distance
measures is also a distance measure. For brevity reasons, we omit the proof.

3.3 Attribute Weighting Function wX

ConDist compares objects based on the distances between each of the attribute
values associated with the objects it compares (see Equation (1)). Each of these
attributes is weighted differently by an individual weighting factor wX . This
section explains why these weights wX are necessary and how they are calculated.

The weight wX is especially necessary for data sets in which some attributes
depend on each other, while others do not: refer back to the example in Table 1.



ConDist: A Context-Driven Categorical Distance Measure 257

For attribute haircolor, no correlated context attribute can be identified. Con-
sequently, only the attribute haircolor itself is used for distance calculation and
no additional information can be extracted from context attributes. Therefore,
the normalized results of Equation (2) always results in the maximum distance
1 for any pair of non-identical values. In contrast, the attribute weight is a
correlated context attribute for attribute height, and vice versa. Consequently,
ConDist is able to calculate more meaningful distances for both attributes and
these attributes should be weighted higher than haircolor.

However, average distances in attribute haircolor are larger than in attributes
weight and height. Consequently, distinct values in attribute haircolor have
implicitly larger relative weight than distinct values in attributes height and
weight.

To solve this issue, the weighting factor wX assigns a weight to each attribute
X based on (I) the amount of identified context attributes and (II) their impact
on the target attribute X:

wX = 1 +

∑

Y ∈contextX

impactX(Y )

n · c
, (4)

where contextX and impactX(Y ) are defined as in section 3.4, n is the number
of attributes in the data set D and c denotes a normalization factor defined as
the maximum of the impact function (see Section 3.4) which is independent of
the attributes X and Y and amounts to 8

27 .

3.4 Correlation, Context and Impact

The attribute distance measures dX (Section 3.2) and the weighting scheme wX

(Section 3.3) use the notion of correlation on categorical distance measures as
well as a correlation related impact factor. Both are defined here.

Correlation cor(X|Y ). A measure of correlation is required to determine an
appropriate set of context attributes. For this purpose, we build a correlation
measure on the basis of the Information Gain (IG) which is widely used in
information theory [9]. The IG is calculated as follows:

IG(X|Y ) = H(X) − H(X|Y ), (5)

where H(X) is the entropy of an attribute X, and H(X|Y ) is the condi-
tional entropy of attribute X given attribute Y . According to this measure,
the attribute X is more correlated with attribute Y than attribute W if
IG(X|Y ) > IG(X|W ). The information gain IG(X|Y ) is always less than or
equal to the entropy H(X). Based on this observation, the function cor(X|Y ) is
defined as:

cor(X|Y ) =
IG(X|Y )

H(X)
(6)
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and describes a correlation measure which is normalized to the interval [0, 1].
The quality of possible conclusions from the given attribute Y to the target
attribute X can differ from the quality of conclusions from given attribute X
to target attribute Y . This aspect is considered in the asymmetric correlation
function cor(X|Y ) and allows us to always extract the maximum amount of
useful information for each target attribute X.

Context contextX . For both, the attribute distance dX (Section 3.2) in
ConDist as well as for the weighting scheme wX (Section 3.3), the notion of a set
of correlated context attributes contextX is used. This set is defined using the
previously defined correlation function cor(X|Y ) and a user-defined threshold θ.
That is, context attributes Y are included in contextX only if their correlation
with target attribute X is equal to or exceeds the threshold θ:

contextX = {Y | cor(X|Y ) ≥ θ} (7)

Impact impactX(Y ). Again, for both, the attribute distance dX (Section
3.2) as well as for the weighting scheme wX (Section 3.3), a so called impact
factor impactX(Y ) is used. This factor accounts for the fact that the amount
of information about the target attribute X in a context attribute Y decreases
with both increasing and decreasing correlation cor(X|Y ).

A high correlation value means that a value of a context attribute Y ∈
contextX implies the value of a target attribute X with a high probability.
For example, when we know that someone is heavy, it is more likely that this
person is tall than small (see Table 1). Thus, in the extreme case of perfectly
correlated attributes, the conditional probability distributions P (Y |X = AX)
and P (Y |X = BX), for AX �= BX do not overlap. This means that using the
Euclidean distance to calculate the similarity of those two CPDs (as in For-
mula (2)) limits the distance information gained from the context attribute
to values of 0 (for AX = BX) and 1 (for AX �= BX) after normalization in
Formula (3).

A low correlation value means that a value of a context attribute Y ∈
contextX implies little to no preference for a particular value of a target
attribute X. This means that the similarity between the conditional probability
distributions P (Y |X = AX) and P (Y |X = BX) may be random, thus, possibly
conveying incorrect distance information.

Consequently, non-correlated attributes are excluded to avoid introducing
incorrect information. In contrast, perfectly correlated attributes are still used,
because they contribute at least no incorrect information. However, since they
deliver exclusively high distances for distinct values, their impacts should be
reduced. Otherwise, the distances calculated by the other context attributes
would be blurred.

Therefore, we choose a weighting function that (I) increases fast at the onset
of correlation between attributes, (II) increases more slowly with existing, but
partial correlation, and (III) decreases at nearly perfect correlation. In particular,
we propose the impact function as depicted in Figure 2 and defined as:
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impactX(Y ) = cor(X|Y )
(

1 − 0.5 · cor(X|Y )
)2

. (8)

In general, this impact function can be replaced by other functions respecting
the three properties introduced above.

Fig. 2. Graph of the impact function impactX(Y ) as defined in (8).

3.5 Heterogeneous Data Sets

Many real-world data sets contain both continuous and categorical attributes.
To apply ConDist to such data sets, two situations have to be distinguished:
either the target attribute is continuous or the context attribute is continuous.

If the target attribute is continuous, no context attributes are necessary.
The Minkowski distance can be used, but should be normalized to the inter-
val [0, 1]. Since meaningful distances can be calculated for continuous attributes,
the attribute weight wX (see Section 3.3) should be maximized. If the context
attribute is continuous, the continuous value range should be discretized. We pro-
pose to use the discretization algorithm TUBE [11], because it does not require
any parameters. Other discretization algorithms can be used as well.

4 Experiments

This section presents an experimental evaluation of ConDist in the context of
classification and clustering. We compared ConDist with DILCA [6], JiaChe-
ung [7], Quang [8] and several distance measures presented in [4], namely Eskin,
Gambaryan, Occurrence Frequency (OF) and Overlap. For DILCA, we used the
non-parametric approach DILCARR as described in [6] and for JiaCheung we
set the threshold parameter β to 0.1 as recommended by the authors [7].
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Table 2. Characteristics of the data sets. The column Correlation contains the average
correlation between each pair of attributes in the data set, calculated by the function
cor(X|Y ), see Equation (6). The value ranges from 0 if no correlation exists to 1 if all
attributes are perfectly correlated. The data sets are separated in three subsets from
highly correlated to uncorrelated based on their average correlation.

Data Sets Instances Attributes Classes Correlation

Teaching Assistant Evaluation 151 5 3 0.336
Soybean Large 307 35 19 0.263
Breast Cancer Winconsin 699 10 2 0.216
Mushroom-Extended 8416 22 2 0.162
Mushroom 8124 22 2 0.161
Dermatology 366 34 6 0.098
Lymphography 148 18 4 0.070
Soybean Small 47 35 19 0.070
Breast Cancer 286 9 2 0.054

Audiology-Standard 226 69 24 0.044
Hayes-Roth 160 4 3 0.045
Post-Operative Patient 90 8 3 0.031
TicTacToe 958 9 2 0.012

Monks 432 6 2 0.000
Balance-Scale 625 4 3 0.000
Car 1728 6 4 0.000
Nursey 12960 8 5 0.000

4.1 Evaluation Methodology

Classification. A k-Nearest-Neighbour classifier is used to compare ConDist
with existing categorical distance measures in the context of classification. For
simplification, we fix k = 7 in all tests. We evaluate by 10-fold-cross validation
and use the classification accuracy as evaluation measure. To reduce confounding
effects of the generated subsets, the 10-fold cross-validation is repeated 100 times
with different subsets for each data set. We finally compare the averages of the
classification accuracies over all executions.

Clustering. The hierarchical WARD algorithm [14] is used to evaluate the per-
formance of ConDist in the context of clustering. ConDist and its competitors
are used to calculate the initial distance matrix as input for WARD. For sim-
plification, the clustering process is terminated when the number of clusters is
equal to the number of classes in the data sets. Performance is measured by Nor-
malized Mutual Information (NMI) [12] which ranges from 0 for poor clustering
to 1 for perfect clustering with respect to the predefined classes.

Data Sets. For the evaluation of ConDist the multivariate categorical data sets
for classification from the UCI machine learning repository [10] are chosen. We
exclude data sets with less than 25 objects (e.g., Balloons) or mainly binary
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Table 3. Classification accuracies for various thresholds θ in ConDist. Each column
contains the results in percent for particular thresholds θ.

Threshold θ
Data Set 0.00 0.01 0.02 0.03 0.05 0.10 0.20 0.50 1.00

Soybean Large 91.74 91.74 91.79 91.80 91.82 89.75 89.36 89.63 91.30
Lymphography 83.36 83.36 83.30 83.24 83.01 81.99 82.01 81.24 81.26
Hayes-Roth 68.11 68.36 68.51 68.60 69.21 64.47 64.47 64.47 64.47
TicTacToe 99.99 99.99 99.99 99.98 94.74 94.74 94.74 94.74 94.74
Balance-Scale 77.35 78.66 78.66 78.66 78.66 78.66 78.66 78.66 78.66
Car 88.98 90.56 90.56 90.56 90.56 90.56 90.56 90.56 90.56

Average 84.92 85.45 85.47 85.47 84.67 83.36 83.30 83.22 83.50

attributes (e.g., Chess). Furthermore, we include some multivariate mixed data
sets for classification from the UCI machine learning repository which mainly
consist of categorical attributes and some integer attributes with a small set of
distinct values (e.g. an integer attribute that contains the number of students
in a course): Teaching Assistant Evaluation, Breast Cancer Winconsin, Derma-
tology and Post-Operative Patient. Since not all competitors have an explicit
way to process integer attributes, we treated all integer attributes as categor-
ical. The final set of data sets is given in Table 2. The data sets are divided
in three subgroups: highly-correlated (Correlation ≥ 0.05), weakly-correlated
(Correlation > 0) and uncorrelated (Correlation = 0).

4.2 Experiment 1 – Context Attribute Selection

Experiment 1 analyzes the effects of varying threshold θ (see Section 3.4) in
ConDist ’s context attribute selection. The threshold θ defines the minimum value
of the function cor(X|Y ) that a candidate attribute Y has to reach in order to be
selected as context attribute for the target attribute X. The higher the threshold
θ, the fewer context attributes are used. In the extreme case of θ = 0, all context
attributes are used for distance calculation. In the other extreme case θ = 1, only
the target attribute itself is used. For this experiment, a representative subset of
two highly-correlated (Soybean Large and Lymphography), two weakly-correlated
(Hayes-Roth and TicTacToe) and two uncorrelated (Balance-Scale and Car)
data sets are used. The results can be seen in Table 3.

The average classification accuracy (I) increases with low thresholds θ, (II)
reaches a peak at θ = 0.02 and θ = 0.03, (III) decreases slowly with medium
high thresholds, (IV) reaches the minimum at θ = 0.5 and (V) slowly increases
with high thresholds again. For nearly all data sets, the classification accuracy
stabilizes with increasing thresholds. The lower the attribute correlation within
the data set, the faster this effect is reached. For uncorrelated data sets like Car
and Balance-Scale, it can already be observed with thresholds greater than or
equal to θ = 0.01. Due to the peak at θ = 0.02, this value is used for the further
experiments in this paper.
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Table 4. Comparison of categorical distance measures in the context of classification.
Each column contains the classification accuracies in percent for a particular distance
measure. The data sets are separated in three subsets from highly correlated to uncor-
related based on their average correlation.

Data Set Con
Dist

DIL
CA

Eski
n

Jia
Che

un
g

Gam
ba

rya
n

OF Over
lap

Qua
ng

Teaching Assistant. E. 49.85 50.68 48.79 49.54 49.44 39.16 45.84 44.48
Soybean Large 91.79 91.48 89.83 89.45 87.18 89.61 91.30 92.01
Breast Cancer W. 96.13 95.55 95.67 95.08 92.84 72.47 95.25 96.28
Dermatology 96.76 97.97 94.91 97.39 91.69 61.12 95.90 96.64
Lymphography 83.30 82.09 79.17 83.95 80.72 72.77 81.26 81.53
Breast Cancer 73.85 72.94 73.18 74.30 74.55 68.32 74.06 70.45

Audiology Standard 66.44 64.80 63.24 60.95 66.16 51.87 61.27 55.56
Hayes-Roth 68.50 67.59 46.71 68.27 60.84 58.71 61.74 71.19
Post-Operative Patient 69.62 68.22 68.36 67.28 69.69 69.44 68.59 68.69
TicTacToe 99.99 90.65 94.74 99.93 98.25 76.80 94.74 99.65

Car 90.56 90.25 90.03 90.01 90.25 87.83 90.56 88.25
Nursey 94.94 92.61 93.29 93.32 93.24 94.65 94.94 94.72
Monks 94.50 90.76 87.29 87.34 86.61 98.67 94.50 96.66
Balance-Scale 78.66 78.43 78.66 78.65 77.13 78.54 78.66 77.51

Average 82.49 81.00 78.85 81.10 79.90 72.85 80.62 80.97

4.3 Experiment 2 – Comparison in the Context of Classification

Experiment 2 compares ConDist with several categorical distance measures in
the context of classification. All data sets from Table 2 are used. The results
are given in Table 4, except for the data sets Mushroom-Extended, Mushroom
and Soybean Small. These data sets are omitted in the table since all distance
measures reach 100 percent classification accuracy. Consequently, these data sets
would only blur the differences between the categorical distance measures.

ConDist achieves the highest average classification accuracy of all distance
measures. In the case of highly- and weakly-correlated data sets, context based
categorical distance measures (ConDist, DILCA, JiaCheung and Quang) achieve
mostly better results than other distance measures. In the case of uncorre-
lated data, previous context based categorical distance measures are inferior
to ConDist and non-context based categorical distance measures.

Statistical Significance Test. In this test, we want to evaluate if the differ-
ences in Table 4 are statistically significant. Dems̆ar [5] deals with the statistical
comparison of classifiers over multiple data sets. They recommend the Wilcoxon
Signed-Ranks Test for the comparison of two classifiers and the Friedman-Test
for the comparison of multiple classifiers. Therefore, we use the Friedman-Test to
compare all distance measures and the Wilcoxon Signed-Ranks Test for post-hoc
tests. The Friedman-Test is significant for p < 0.001; thus we can reject the null
hypothesis that all distance measures are equivalent. Consequently, we applied
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Table 5. Results of the Wilcoxon Signed-Ranks Test comparing the classification
accuracies of ConDist with each other distance measure. The first row contains the
calculated p-value, the second row contains the result of the Wilcoxon Signed-Ranks
Test: yes, if ConDist performs statistically different, no otherwise.

DILCA Eskin JiaCheung Gambaryan OF Overlap Quang

p-value 0.016 0.002 0.045 0.002 0.002 0.008 0.096
significant yes yes yes yes yes yes no

the Wilcoxon Signed-Ranks Test with α = 0.05 on the classification accuracies
of Table 4. Table 5 shows that there is a significant difference between ConDist
and the distance measures Eskin, JiaCheung, Gambaryan, OF and Overlap.
However, the test fails for ConDist and Quang.

4.4 Experiment 3 – Comparison in the Context of Clustering

Experiment 3 compares ConDist with several categorical distance measures in
the context of clustering. All data sets from Table 4 are used. The results are
given in Table 6.

For some data sets (Teaching Assistang Evaluation, Lymphography, Breast
Cancer, Hayes-Roth, Post-Operative Patient, TicTacToe, Monks, Balance-Scale,
Nursey and Car) the clustering fails to reconstruct the predefined classes. For
the remaining data sets, no distance measure dominates. However, most distance
measures perform poorly on single data sets, whereas ConDist achieves more
stable results.

Statistical Significance Test. In analogy to Section 4.3, we first apply the
Friedman-Test on the results shown in Table 6. Here, the null hypothesis that
all distance measures are equivalent cannot be rejected. Nevertheless, we applied
the Wilcoxon Signed-Ranks Test (α = 0.05) between ConDist and the other
distance measures. Except for Eskin and Quang, the results of the Wilcoxon
Signed-Ranks Test show no statistically significant differences.

5 Discussion

5.1 Experiment 1 – Context Attribute Selection

Table 3 shows that many useful context attributes are discarded if threshold θ is
too high. This is especially the case for weakly correlated data sets, e.g. Hayes-
Roth and TicTacToe. For Hayes-Roth, the decrease of classification accuracy is
observed for θ > 0.05, and for TicTacToe the decrease of classification accuracy
is already observed for θ > 0.02. In contrast to this, if the threshold θ is too
low, independent context attributes are added which may contribute noise to
the distance calculation. This is especially the case for uncorrelated data sets,
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Table 6. Comparison of categorical distance measures in the context of clustering.
Each column contains the NMI of the clustering results found by the WARD algorithm
where the initial distance matrix is calculated with the particular distance measure.
NMI assigns low values to poor clusterings and high values to good clusterings with
respect to the predefined classes. The data sets are also separated in three subsets
based on their average correlation.

Data Set Con
Dist

DIL
CA

Eski
n

Jia
Che

un
g

Gam
ba

rya
n

OF Over
lap

Qua
ng

Teaching Assistant Eva. .078 .085 .085 .085 .085 .060 .044 .042
Soybean Large .803 .785 .758 .735 .772 .805 .793 .778
Breast Cancer Winconsin .785 .557 .749 .656 .601 .217 .621 .798
Mushroom Extended .597 .597 .317 .223 .597 .597 .597 .245
Mushroom .594 .594 .312 .594 .594 .312 .594 .241
Dermatology .855 .946 .832 .879 .863 .292 .847 .859
Lymphography .209 .303 .165 .207 .163 .243 .226 .320
Soybean Small .687 .690 .687 .701 .692 .690 .689 .692
Breast Cancer .063 .068 .031 .074 .001 .002 .100 .001

Audiology-Standard .661 .612 .623 .679 .620 .439 .568 .582
Hayes-Roth .017 .027 .004 .012 .007 .166 .006 .029
Post-Operative Patient .043 .017 .018 .025 .017 .032 .019 .033
TicTacToe .087 .003 .003 .082 .085 .001 .033 .039

Monks .001 .000 .000 .000 .000 .081 .001 .003
Balance-Scale .083 .036 .064 .067 .064 .064 .083 .036
Car .062 .036 .150 .150 .150 .062 .062 .036
Nursey .048 .006 .037 .037 .037 .098 .048 .006

Average .334 .315 .284 .306 .315 .245 .314 .279

e.g. for θ = 0 in Balance-Scale and Car. However, ConDist’s impact function
impactX(Y ) accounts for this effect in highly-correlated data sets.

Consequently, the concrete value of the threshold θ is not too crucial as long
as two conditions are fulfilled: (I) θ must be large enough to ensure that context
attributes are purged whose correlations are caused by too small data sets and
(II) θ must be small enough to ensure that context attributes with significant cor-
relations are retained. Therefore, we recommend θ = 0.02 for ConDist, because
the experiments show that this threshold achieves the best overall results.

5.2 Experiment 2 – Comparison in the Context of Classification

For highly correlated data sets, distance measures using context attributes out-
perform other distance measures. However, for those data sets no best distance
measures can be identified among the context based distance measures.

For uncorrelated data sets, previous context-based distance measures
(DILCA, Quang and JiaCheung) achieved inferior results in comparison to
ConDist and non-context based distance measures. This is because, e.g., DILCA
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and Quang use only context attributes for the distance calculation which results
in random distances if all context attributes are uncorrelated.

In contrast, ConDist achieved acceptable results because not only correlated
context attributes, but also the target attributes are considered. This effect is
also illustrated by the comparison between ConDist and Overlap. ConDist is
equal to Overlap if no correlated context attributes can be identified, see uncor-
related data sets (Monks, Balance-Scale, Nursey and Car) in Table 4. However,
for weakly- and highly-correlated data sets, ConDist’s consideration of context
attributes turns into an advantage, leading to better results than Overlap. The
improvement of ConDist can be statistically confirmed by the Wilcoxon Signed-
Ranks Test (see Table 5).

5.3 Experiment 3 – Comparison in the Context of Clustering

Table 6 shows that the majority of the different distance measures reach, by and
large, similar outcomes for individual data sets. This is because the clustering
algorithm and its ability to reconstruct the given classes have much higher impact
on the results than the distance measure used to calculate the initial distance
matrix. However, it can be seen that the performance of single distance measures
strongly decreases for individual data sets. For example, JiaCheung which often
achieves good results, performs very poorly in the Mushroom data set. Similar
observations can be made for OF, Eskin, Quang and DILCA, mainly in the data
sets Breast Cancer Winconsin, Mushroom, Mushroom Extended, Dermatology
and Audiology-Standard. In contrast, ConDist is almost always among the best
results and shows the most stable results for the different data sets.

The Friedman-Test fails for Experiment 3 and the Wilcoxon Signed-Ranks
Test shows also no statistically significant differences in the performance of
ConDist and the compared distance measures, except for Eskin and Quang.
However, the results of Experiment 3 lead to the assumption that ConDist may
be a more robust distance measure than its competitors.

6 Summary

Categorical distance calculation is a key requirement for many data mining tasks.
In this paper, we proposed ConDist, an unsupervised categorical distance mea-
sure based on the correlation between the target attribute and context attributes.
With this approach, we aim to compensate for the lack of inherent orders within
categorical attributes by extracting statistical relationships from the data set.

Our experiments show that ConDist is a generally usable categorical distance
measure. In the case of correlated data sets, ConDist is comparable to existing
context based categorical distance measures and superior to non-context based
categorical distance measures. In the case of weakly and uncorrelated data sets,
ConDist is comparable to non-context based categorical distance measures and
superior to context based categorical distance measures. The overall improve-
ment of ConDist can be statistically confirmed in the context of classification. In
the context of clustering, this improvement could not be statistically confirmed.
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In the future, we want to extend the proposed distance measure so that it
can automatically infer the parameter θ from the data sets. Additionally, we
want to transform categorical attributes to continuous attributes with aid of the
proposed distance measure.
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Abstract. Online reviews are an important source for consumers to
evaluate products/services on the Internet (e.g. Amazon, Yelp, etc.).
However, more and more fraudulent reviewers write fake reviews to mis-
lead users. To maximize their impact and share effort, many spam attacks
are organized as campaigns, by a group of spammers. In this paper, we
propose a new two-step method to discover spammer groups and their
targeted products. First, we introduce NFS (Network Footprint Score),
a new measure that quantifies the likelihood of products being spam
campaign targets. Second, we carefully devise GroupStrainer to cluster
spammers on a 2-hop subgraph induced by top ranking products. We
demonstrate the efficiency and effectiveness of our approach on both syn-
thetic and real-world datasets from two different domains with millions
of products and reviewers. Moreover, we discover interesting strategies
that spammers employ through case studies of our detected groups.

Keywords: Opinion spam · Spammer groups · Spam detection · Graph
anomaly detection · Efficient hierarchical clustering · Network footprints

1 Introduction

Online reviews of products and services are an increasingly important source of
information for consumers. They are valuable since, unlike advertisements, they
reflect the testimonials of other, “real” consumers. While many positive reviews
can increase the revenue of a business, negative reviews can cause substantial
loss. As a result of such financial incentives, opinion spam has become a critical
issue [17], where fraudulent reviewers fabricate spam reviews to unjustly promote
or demote (e.g., under competition) certain products and businesses.

Opinion spam is surprisingly prevalent; one-third of consumer reviews on the
Internet1, and more than 20% of reviews on Yelp2 are estimated to be fake.
Despite being widespread, opinion spam remains a mostly open and challenging
problem for at least two main reasons; (1) humans are incapable of distinguishing
fake reviews based on text [25], which renders manual labeling extremely difficult
1 http://www.nytimes.com/2012/08/26/business/book-reviewers-for-hire-meet-a-

demand-for-online-raves.html
2 http://www.businessinsider.com/20-percent-of-yelp-reviews-fake-2013-9
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and hence supervised methods inapplicable, and (2) fraudulent reviewers are
often professionals, paid by businesses to write detailed and genuine-looking
reviews.

Since the seminal work by Jindal and Liu [17], opinion spam has been the
focus of research for the last 7-8 years (Section 5). Most existing work aim
to detect individual spam reviews [12,17,20,21,25,26] or spammers [1,11,13,
18,22,26]. However, fraud/spam is often a collective act, where the involved
individuals cooperate in groups to execute spam campaigns. This way, they can
increase total impact (i.e., dominate the sentiments towards target products via
flooding deceptive opinions), split total effort, and camouflage (i.e., hide their
suspicious behaviors by balancing workload so that no single individual stands
out). Surprisingly, however, only a few efforts aim to detect group-level opinion
spam [23,27,28]. Moreover, most existing work employ supervised techniques
[12,17,20,25] and/or utilize side information, such as behavioral [17,22,23,27,28]
or linguistic [12,25] clues of spammers. The former is inadmissible, due to the
difficulty in obtaining ground truth labels. The latter, on the other hand, is not
adversarially robust; the spammers can fine-tune their language (e.g., usage of
superlatives, self-references, etc.) and behavior (e.g., login times, IPs, etc.) to
mimic genuine users as closely as possible and evade detection.

In this work, we propose a new unsupervised and scalable approach for detect-
ing opinion spammer groups solely based on their network footprints. At its
heart, our method consists of two key components:

– NFS (Network Footprint Score). We introduce a new graph-based mea-
sure that quantifies the statistical distortions caused by spamming activi-
ties in well-understood network characteristics. NFS is fast to compute and
more robust to evasion than linguistic and behavioral measures, provided
that spammers have only a partial view of the review network (Section 2).

– GroupStrainer. We devise a fast method to group spammers on a care-
fully induced subnetwork of highly suspicious products and reviewers. Group-
Strainer employs a hierarchical clustering algorithm that leverages similarity-
sensitive hashing to speed up the merging steps. The output is a set of spam-
mer groups and their nested hierarchy, which facilitates sensemaking of their
organizational structure, as well as verification by end analysts (Section 3).

In the experiments, we compare our method to various graph anomaly detec-
tion methods on synthetic datasets and study its performance on two large real-
world datasets (Amazon and iTunes). Our results show that we effectively spot
spammer groups with high accuracy, which is superior to existing methods.

2 Measuring Network Footprints

A perfect form of an opinion spam campaign would certainly reflect a near-replica
of the characteristics that genuine reviewers exhibit on online review sites. Those
characteristics include linguistic, behavioral, and relational (network-level) pat-
terns. One can argue that language and behavior patterns are relatively easier to
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mimic by the spammers as compared to network-based patterns. For example,
spammers could adjust their usage of certain language constructs (e.g., superla-
tives, self-references, etc.) that have been found to be associated with deception
[25], so as to evade classifiers [8].

On the other hand, spoofing network-level characteristics in general is adver-
sarially harder for various reasons. First, spammers (adversaries) often do not
have a complete view of the entire review network, due to its sheer scale and
access properties. Moreover, the reviewers that belong to a spam campaign have
to act as a group, which would create different dynamics in the review network
than the independent actions of genuine reviewers. Finally, spammers do not
replicate “unimportant” structures in the network due to limited budget.

Therefore, in this work we focus on the network-level characteristics of
opinion spammers in the user–product bipartite review network. We develop a
network-based method that is able to distinguish the network footprints of spam-
mer groups from those of individual genuine users. In particular, we propose a
new measure called the NFS (for Network Footprint Score), that quantifies the
extent to which statistical network characteristics of reviewers are distorted by
spamming activities.

To design our NFS measure, we leverage two key observations associated
with real-world networks:

1. Neighbor Diversity: The neighbors of a node in a real network are
expected to consist of nodes with varying behavior and levels of activity. As
such, the neighbors should not be overly dependent on one another; rather,
they should be spread across sources of varying quality or importance. For
example, in social networks a person has friends with varying levels of “pop-
ularity”.

2. Self-Similarity: Real-world networks are self-similar [4,5]; that is, portions
of the network often have properties similar to the entire network. In partic-
ular, the importances of the neighbors of a node follow a skewed, power-law-
like distribution, just as the case for all of the nodes in the entire network.

In a nutshell, while the former observation implies (i) local diversity of node
importances in the neighborhood of a node, the latter implies (ii) distributional
similarity between node importances at local (i.e., neighborhood) and global
level (i.e., at large). Importance of nodes in a network can be captured by their
centrality. There exist a long list of work on developing various measures for
node centralities [10]. In this work, we consider two different measures; degree
and Pagerank centrality, which respectively use local and global information to
quantify node importances.3

In the following, we describe how we utilize each of the above insights to
measure the network footprints of spammer groups in review networks. More
precisely, a review network is a bipartite graph G that consists of n reviewer
nodes connected to m product nodes through review relations.

3 We compute these measures based on the reviewer–product bipartite review network.
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2.1 Neighbor Diversity of Nodes

We can translate Observation 1 above to the domain of review networks as
follows. An honest set of reviewers for a product arises by independent actions of
individuals with varying behavior and levels of activity. As a result, the centrality
of the reviewers of a product is expected to vary to a large extent. In analogy to
social networks where a person has friends with varying level of “popularity”, a
product would have reviewers with varying level of network centrality.

In other words, a set of reviewers all with centrality (degree or Pagerank)
values falling into a narrow interval is suspicious. Such a large set of highly
similar reviewers (i.e., “clones”) raises the suspicion that they have emerged
through certain means of a cooperation, e.g., under a spam campaign.

To quantify the diversity of neighbor centralities of a given product, we first
split the centrality values of its reviewers into buckets to create a non-parametric
estimation of their density through a histogram. We then compute the skewness
of the histogram through entropy. More specifically, given the (degree of Pager-
ank) centralities {c

(i)
1 , . . . , c

(i)
deg(i)} of the reviewers of a product i with degree

deg(i), we create a list of buckets k = {0, 1, . . .}. We let the bucket boundary
values grow exponentially as a · bk, as both degree and Pagerank values of nodes
in real-world networks have been observed to follow skewed distributions [6,9].

For degree centrality we use a = 3 and b = 3 such that the bucket boundaries
are {1, 3, 9, 27, . . .} and place each reviewer j with degree c

(i)
j to bucket k with

a · bk−1 ≤ c
(i)
j < a · bk. On the other hand, we use a = 0.3 and b = 0.3 for

Pagerank where bucket boundaries become {1, 0.3, 0.09, 0.027, . . .} as it takes
values in [0, 1], and place each reviewer j with Pagerank c

(i)
j to bucket k with

a · bk−1 ≥ c
(i)
j > a · bk. The choice of a and b has little effect on our results as

long as we use a logarithmic binning [24] so as to capture the skewness of data.
Given the placement of reviewers into K buckets by their centrality, we next

count the reviewers in each bucket and normalize the counts by the total count
deg(i) to obtain a discrete probability distribution P (i) with values [p(i)1 , . . . , p

(i)
K ].

We then compute the Shannon entropy of P (i) as Hc(i) = −
∑K

k=1 p
(i)
k log p

(i)
k for

centrality c. As such, a product i receives two neighbor-diversity scores, Hdeg(i)
and Hpr(i), for degree and Pagerank respectively. The lower these scores are,
the more likely the product is the target of a spam campaign and hence the
more suspicious are the reviewers of the product as they appear near-replicas of
one another in the network—cooperating around the same goal, leaving similar
network footprints.

2.2 Self-Similarity in Real-World Graphs

Similarly, we can leverage Observation 2 to measure the distributional distortions
caused by spam activities. Specifically, self-similarity implies that the centrality
of reviewers for a particular product should follow a similar distribution as to the
centrality of all reviewers in the network. Note that while Observation 1 enforces
the neighbor centralities to be diverse, Observation 2 requires them to also closely
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follow global distributional patterns. It is well-known that degree and Pagerank
distributions of nodes in real-world graphs follow power-law-like distributions
[6,9]. As such, a diverse but e.g., Gaussian-distributed set of neighbor centralities
would still raise a red flag in terms of self-similarity, while considered normal in
terms of neighbor diversity.

Therefore, we define a second type of score for each product i as the KL-
divergence between the histogram density of the centralities of its reviewers
P (i) = [p(i)1 , . . . , p

(i)
K ] and that of all reviewers in the network denoted by Q;

KLc(P (i)‖Q) =
∑

k p
(i)
k log p

(i)
k

qk
. We compute Q in the same way we computed

P ’s as before, where this time we split into buckets the centrality values of all
the reviewers in the network.4 As a result, a product i receives two scores for
divergence from self-similarity, KLdeg(i) and KLpr(i), for degree and Pagerank
respectively. The larger these scores are, the more likely the product is the target
of a spam campaign.

2.3 NFS Measure

To quantify the extent to which a product is under attack by a spam campaign,
we combine the scores derived from the network footprints into a final score.
Overall, we have four suspiciousness scores for a product, two based on neighbor-
diversity; Hdeg and Hpr, and two based on self-similarity; KLdeg and KLpr.
These capture different semantics; a product is likely a target the lower the
H and the higher the KL scores. Moreover, they are not normalized within a
standard range.

To unify the scores into a single score with a standard scale, we leverage
the cumulative distribution function (CDF). In particular, let us denote by H =
{H(1),H(2), . . .} the list of entropy scores (based on degree or Pagerank) we
computed for a set of products. To quantify the extremity of a particular H(i),
we use the empirical CDF over H and estimate the probability that the set
contains a value as low as H(i) as

f(H(i)) = P (H ≤ H(i)) ,

which is equal to the fraction of scores in H that are less than or equal to H(i).
On the other hand, for KL scores, we estimate the probability that the set
KL = {KL(1),KL(2), . . .} contains a value as high as KL(i) by

f(KL(i)) = 1 − P (KL ≤ KL(i)) .

As such, f(·) takes low values for low H(i) values and high KL(i) values.
Finally, we combine the f values to compute the NFS of a product i as given in
Equ. (1), such that NFS(i) ∈ [0, 1] where high values are suspicious.

NFS(i) = 1 −
√

f(Hdeg(i))2 + f(Hpr(i))2 + f(KLdeg(i))2 + f(KLpr(i))2

4
(1)

4 We use Laplace smoothing for empty buckets.
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Algorithm 1. ComputeNFS

1 Input: Reviewer–Product graph G = (V, E), degree threshold η
2 Output: Network Footprint Score (NFS) of products with degree ≥ η
3 Compute centrality c of each reviewer in G, c = {degree, Pagerank}
4 Create a list of buckets k = {0, 1, . . .}
5 foreach reviewer j in G, 1 ≤ j ≤ n do //Compute global histogram Q
6 if c =degree then

7 place j to bucketk with a · bk−1 ≤ c
(i)
j < a · bk, (a = 3, b = 3)

8 else place j to bucketk with a · bk−1 ≥ c
(i)
j > a · bk, (a = .3, b = .3)

9 forall the non-empty buckets k = {0, 1, . . .} do
10 qk = |bucketk|/n

11 foreach product i with deg(i) ≥ η do
12 Create a list of buckets k = {0, 1, . . .}
13 foreach neighbor (reviewer) j of product i do
14 if c =degree then

15 place j to bucketk with a · bk−1 ≤ c
(i)
j < a · bk, (a = 3, b = 3)

16 else place j to bucketk with a · bk−1 ≥ c
(i)
j > a · bk, (a = .3, b = .3)

17 forall the non-empty buckets k = {0, 1, . . .} do //local histogram P (i)

18 p
(i)
k = |bucketk|/deg(i)

19 Compute entropy Hc(i) based on p
(i)
k ’s

20 K′ = number of uncommon buckets where qk �= 0 and p
(i)
k = 0

21 forall the buckets k where qk �= 0 do //local smoothed histogram P (i)

22 if p
(i)
k = 0 then p

(i)
k = 1/(deg(i) + K′) //Laplace smoothing

23 else p
(i)
k = (p

(i)
k · deg(i))/(deg(i) + K′) //Re-normalize

24 Compute divergence KLc(P
(i)‖Q) based on p

(i)
k ’s and qk’s

25 Compute NFS of i by Equ. (1) based on Hc(i) and KLc(P
(i)‖Q)

The complete list of steps to compute NFS is given in Algorithm 1. Note
that we utilize centrality density distributions Pdeg and Ppr over neighbors to
compute the NFS of a product. These distributions are meaningful only when a
product has a large number of review(er)s, since only a few data points cannot
constitute a reliable distribution (in this work products with less than 20 reviews
are ignored, i.e., we set η = 20). This, however, is not a severe limitation of
our approach. The reason is that spam campaigns often involve reasonably large
number of reviewers in order to (1) increase the total impact on a target product
and (2) share the overall effort. Small spam campaigns are of little spamming
power and can be overlooked without much risk.

3 Detecting Spammer Groups

We compute the NFS for the products, as a measure of their abnormality of
being targeted by suspiciously similar reviewers. Such groups of highly similar
reviewers potentially work together under the same spam campaigns. Our end
goal is to identify all such spammer groups.
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To achieve this goal, we construct a subnetwork consisting of the top products
with the highest NFS values5 denoted as P1, all the reviewers of these products R,
and all the products that these reviewers reviewed P2 ⊇ P1. In other words, the
subnetwork is the induced subgraph of our original graph G on the nodes within 2-
hops away from the top products in P1, i.e. G[P2∪R]. We represent this subgraph
with a p × u adjacency matrix A, where |P2| = p and |R| = u.

An example of A can be seen in Figure 3 (top). This matrix contains highly
similar users, i.e., columns, since the subgraph is biased toward products with
high NFS values. However, it is clear that the reviewer groups are not immedi-
ately evident from the figure. To fully automate the group identification process,
we propose a fast algorithm called GroupStrainer that finds clusters of highly
similar columns of A, which carefully re-organizes/shuffles the columns to better
reveal the reviewer groups. The output of GroupStrainer on the example matrix
can be seen in Figure 3 (bottom), and will be discussed further in Section 4.

Note that the goal here is not to cluster all the columns of A (notice the
last several in Figure 3 (bottom) that do not belong to any group), but to chip
off groups where columns within each group are strongly similar. Moreover, we
ideally do not want to pre-specify the number of groups a priori, which is a chal-
lenging parameter to set. To achieve both of these goals, GroupStrainer adopts
an agglomerative hierarchical clustering scheme, where columns are iteratively
merged to form larger groups. Such a scheme also reveals the nested, hierarchical
structure of the groups that provides further insights to the end analyst.

A naive agglomerative clustering has O(u3) complexity, where in each step
similarities of all-pairs are compared. Moreover, clusters are merged two at a time
in each step. In our approach, we leverage Locality-Sensitive Hashing (LSH) [15]
to speed up the process of finding similar set of clusters. Provided a set of similar
clusters, we can then merge two or more clusters at a time which speeds up the
hierarchy construction.

In a nutshell, LSH is a randomized algorithm for similarity search, which
ensures similar points are hashed to the same hash bucket with high probability,
while non-similar points are rarely hashed to the same bucket. As a result, it
quickens the similarity search by narrowing down the search to points that are
hashed only to the same buckets. In order to systematically reduce the proba-
bility of highly similar points hashing to different buckets, it employs multiple
hash functions. At its heart, LSH generates signatures for each data point, where
it ensures that the similarity between the original points is proportional to the
probability of their signatures to be equal. As a consequence, the more similar
two points are, the more likely their signatures match, and the more probable
that they hash to the same bucket (hence locality-, or similarity-sensitive hash-
ing). LSH uses different, suitable signature generation functions with respect to

5 Rather than an arbitrary top k, we adopt the mixture-modeling approach in [14],
where NFS values are modeled as drawn from two distributions; Gaussian for normal
values and exponential for outliers. Model parameters and assignment of points to
distributions are learned by the EM algorithm. Top products are then the ones whose
NFS values belong to the exponential distribution.
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Algorithm 2. GroupStrainer
1 Input: p × u adjacency matrix A of 2-hop network of top products with highest
NFS values, similarity lower bound sL (default 0.5)

2 Output: User groups Uout and their hierarchical structure
3 Create a list of similarity thresholds S = {0.95, 0.90, . . . , sL}
4 Set k1 = u, U1 := {1, 2, . . . , u} → {1, 2, . . . , u} // init reviewer groups
5 for T = 1 to |S| do
6 Estimate LSH parameters r and b for threshold S(T )
7 //Step 1. Generate signatures

8 Init signature matrix M [i][j] ∈ R
rb×kT

9 if T = 1 then // use Jaccard similarity, generate min-hash signatures
10 for i = 1 to rb do
11 πi ← generate random permutation (1 . . . p)

12 for j = 1 to kT do M [i][j] ← minv∈Njπi(v)

13 else // use cosine similarity, generate random-projection signatures
14 for i = 1 to rb do
15 ri ← pick a random hyperplane ∈ R

p×1

16 for j = 1 to kT do M [i][j] ← sign(rsum(A(:, UT=j)/|UT=j|) · ri)

17 //Step 2. Generate hash tables
18 for h = 1 to b do
19 for j = 1 to kT do hash(M [(h − 1) · r + 1:h · r][j])

20 //Step 3. Merge clusters from hash tables
21 Build candidate groups g’s: union of clusters that hash to at least one same

bucket in all hash tables, i.e. {ci, cj} ∈ g if hashh(ci) = hashh(cj) for ∃h
22 foreach candidate group g do
23 foreach ci, cj ∈ g, i �= j do
24 if sim(vi,vj) ≥ S(T ) then //merge
25 g = g\{ci, cj} ∪ {ci ∪ cj}
26 kT = kT − 1, UT (ci) = UT (cj) = min(UT (ci), U

T (cj))

27 kT+1 = kT , UT+1 = UT

28 return Uout = U |S|+1, evolving groups {U1, . . . , U |S|} to build nested hierarchy

different similarity functions. In this paper, we use two: min-hashing for Jaccard
similarity and random-projection for cosine similarity.

The details of our GroupStrainer is given in Algorithm 2, which consists of
three main steps: (1) generate LSH signatures (Lines 7-16), (2) generate hash
tables (17-19), and (3) merge clusters using hash buckets (20-24).

In the first iteration of step (1), i.e. T = 1, the clusters consist of individual,
binary columns of A, represented by vj’s, 1 ≤ j ≤ u. As the similarity measure,
we use Jaccard similarity which is high for those columns (i.e., reviewers) with
many exclusive common neighbors (i.e., products). Min-hashing is designed to
capture the Jaccard similarity between binary vectors; that is, it can be shown
that the probability that the min-hash values (signatures) of two binary vectors
agree is equal to their Jaccard similarity (Lines 9-12). For T > 1, the clusters
consist of multiple columns. This time, we represent each cluster j by a length-p
real-valued vector vj in which the entries denote the density of each row, i.e.,
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vj = rsum(A(:, UT = j)/|UT = j|, where UT is the mapping of columns to
clusters at iteration T , UT = j depicts the indices of columns that belong to
cluster j, rsum is the row-sum of entries in the induced adjacency matrix, and
|UT = j| is the size of cluster j. Then, we use the cosine similarity between vi and
vj as the similarity measure of two clusters i and j. In LSH, random-projection
based signature generation captures cosine similarity; that is, it can be shown
that the probability that the random-projection values of two real-valued vectors
agree is proportional to their cosine similarity [19] (Lines 13-16).

In step (2), LSH performs multiple hash operations on different subset of
signatures to increase the probability that two highly similar items hash to the
same bucket in at least one hash table (Lines 18-19).

Step (3) involves the main merging operations. First we construct the groups
of candidate clusters to be merged, where all the clusters that hash to the same
hash bucket in at least one hash table are put into the same group g (Line 21).
These are called candidate clusters as LSH is a probabilistic algorithm, and
can yield false positives. Therefore, rather than merging all the clusters in each
group directly, we verify whether their similarity is above the desired thresh-
old (Line 24), before committing the merge (Lines 25-26). Note that at this
merge step, more than two clusters can be merged. With respect to complexity
GroupStrainer is only sub-quadratic; it performs pairwise similarity computation
among clusters only within groups (Line 23), rather than among all the clusters.
The number of clusters within each group at a given iteration is often much
smaller than the total. This contributes to a significant reduction in running
time, while enabling us to focus on merging highly similar clusters.

Finally, we describe the process of constructing a nested hierarchy of clus-
ters. A specific iteration finds groups of clusters with similarity above a desired
threshold. At the beginning (T = 1), we set a large/conservative threshold of
0.95 such that only extremely similar columns are grouped. As T increases, we
gradually lower the similarity threshold so as to allow the hierarchy to grow.
Here, the user can specify a lower bound sL for the threshold (default 0.5), so
as to prevent clusters with similarity below the bound to be merged. Depending
on sL, our hierarchy may contain a single or multiple tree(s), as well as singleton
columns that do not belong to any cluster. We treat all non-singleton trees as
candidates of spammer groups, and inspect them in size order. Other ranking
measures can also be used to prioritize inspection.

4 Evaluation

We first evaluate the performance of our method on synthetic datasets, as com-
pared to several existing methods. Our method consists of two steps: NFS com-
putation and GroupStrainer. The former tries to capture the targeted products,
and the latter focuses on detecting spammer groups through their collusion on
the target products. As such, we design separate data generators for each step
to best simulate these scenarios. In addition, we apply our method on two real-
world review datasets and show through detailed case analyses that it detects
many suspicious user groups. A summary of the datasets is given in Table 1.
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Table 1. Summary of synthetic and real-world datasets used in this work.

Synthetic Data Real-world Data
Chung-Lu1 Chung-Lu2 RTG1 RTG2 iTunes Amazon

# of users 532,742 2,133,399 604,520 876,627 966,808 2,146,074
# of products 157,768 665,381 604,805 876,950 15,093 1,230,916

# of edges 1,299,059 5,191,053 3,097,342 4,644,572 1,132,329 5,838,061

4.1 Performance of NFS on Synthetic Data

Synthetic Data Generation. We use two models to create synthetic graphs:
Chung-Lu [7] and the RTG [2]. Chung-Lu creates random graphs with a given
degree sequence. We draw the degrees of reviewers and products from a power-
law distribution with exponent 2.9 and 2.1, respectively, as observed in the real
world [1,6,9]. RTG model also creates realistic bipartite graphs that not only
follow power-law degree distribution but also contain communities, which are
common in real-world graphs. We create two graphs with different sizes using
each model (Table 1). Next, we follow the injection process in [16] to simu-
late and inject spammer groups into our graphs. Specifically, we add 3 spammer
groups with 1000, 2000 and 4000 users respectively. Each spammer group targets
a set of designated products (100, 200 and 400 in size). Each injected spammer
writes 20 reviews to their target products, with σ percent camouflage written to
untargeted ones. There exist two strategies to camouflage: writing reviews (1) to
top 100 most popular (highest degree) products; and (2) to random untargeted
products. This way, we create four injection configurations; σ=10% or 30% cam-
ouflage on popular products, and σ=10% or 30% on random ones, where larger
σ and random camouflage are relatively harder to detect.

Compared Methods. NFS measures the suspiciousness of products. In order
to rank the users, we utilize the FraudEagle method [1]. FraudEagle computes
scores for users and products by propagating unbiased beliefs in the review net-
work. We assign NFS values of products as their initial beliefs (i.e., priors). Thus
users who targeted many products with large NFS values gain high score at con-
vergence. In our setting, review ratings (often from 1 to 5) are not utilized. Thus
we ignore the edge signs in FraudEagle to make these methods comparable.6

In addition to (1) FraudEagle [1], we also compare to (2) CatchSync [16],
designed to spot synchronized behavior among users and (3) Oddball [3], for
detecting users whose neighbors are in near-clique or star shapes. Oddball
requires unipartite graphs, thus we use the projected review network on users,
where two users with at least 5 common neighbors (products) are connected.

Performance Results. In Section 2, we introduced two key observations that we
use to design NFS: neighbor diversity and self-similarity. In Fig. 1, we show the
entropy Hdeg vs. KL-divergence KLdeg of products on the Chung-Lu1 graph as

6 Accordinly, we use a single edge compatibility table (i.e., [0.9 0.1; 0.1 0.9]) for
FraudEagle [1].
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Table 2. AUC of Precision-Recall curve on synthetic datasets. Two values in each
entry: (former) performance on high degree users (threshold at 20) and performance
on all users. (HDP: number of high degree products (≥ 20); FE: FraudEagle.)

Dataset Camouf. HDP Oddball[3] CatchSync[16] FE[1] NFS+FE

Chung-
Lu1

10% Pop. 6170 0.990/0.937 1.000/0.009 0.570/0.569 1.000/1.000
30% Pop. 6172 0.997/0.973 1.000/0.008 0.570/0.570 1.000/1.000
10% Rand. 6205 0.982/0.886 1.000/0.007 0.552/0.552 1.000/1.000
30% Rand. 6266 0.881/0.386 0.957/0.007 0.532/0.526 1.000/1.000

Chung-
Lu2

10% Pop. 25306 0.977/0.943 1.000/0.002 0.294/0.294 1.000/1.000
30% Pop. 25302 0.995/0.988 1.000/0.002 0.294/0.294 1.000/1.000
10% Rand. 25330 0.955/0.887 1.000/0.002 0.280/0.279 1.000/1.000
30% Rand. 25392 0.711/0.374 0.982/0.002 0.261/0.256 1.000/0.977

RTG1

10% Pop. 17771 0.945/0.852 1.000/0.008 0.176/0.176 1.000/1.000
30% Pop. 17766 0.929/0.842 0.997/0.007 0.176/0.176 1.000/1.000
10% Rand. 17780 0.918/0.803 0.995/0.007 0.168/0.168 1.000/1.000
30% Rand. 17843 0.637/0.367 0.878/0.007 0.163/0.158 0.952/0.950

RTG2

10% Pop. 25658 0.906/0.778 1.000/0.005 0.129/0.129 1.000/1.000
30% Pop. 25658 0.879/0.746 1.000/0.005 0.129/0.129 1.000/1.000
10% Rand. 25678 0.877/0.741 0.987/0.005 0.123/0.123 1.000/1.000
30% Rand. 25716 0.577/0.331 0.778/0.005 0.119/0.115 0.952/0.951

an example. We can see that the products targeted by a group of spammers
reside in the bottom-right part of the figure.

Fig. 1. Degree entropy Hdeg vs. KL-divergence KLdeg of
products (dots) in Chung-Lu1 (σ=10% pop. camouflage).
Bottom-right depicts suspicious products with neighbors hav-
ing abnormally similar degrees, whereas upper-left are clus-
tered with normal products whose neighbors have diverse
degree distributions that obeys the overall trend.

Table 2 presents
the performance re-
sults (AUC of preci-
sion recall curve)
of different meth-
ods. Each method
is tested on high-
degree users as well
as all the users.
Note that for all
methods, users with
high degrees are eas-
ier to rank as they
exhibit more infor-
mation for analy-
sis. However, when
all users are con-
sidered, the rank-
ings become con-
taminated with low
degree users bubbling up high in the ranking due to errors in scoring, and the
performance of the methods drop relatively. This problem is especially evident
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Table 3. Group discovery performance of GroupStrainer for varying ε (camouflage)
and SCI (collusion) for spammers. We report NMI/hierarchy similarity threshold.

Dataset SCI = 1.0 SCI = 0.9 SCI = 0.8 SCI = 0.7 SCI = 0.6 SCI = 0.5 SCI = 0.4

ε = 0 1.000/0.95 1.000/0.70 1.000/0.65 1.000/0.65 0.997/0.65 1.000/0.60 0.948/0.55
ε = 0.2 0.994/0.65 0.997/0.55 1.000/0.60 0.995/0.60 0.998/0.55 0.990/0.60 0.980/0.50
ε = 0.4 0.993/0.50 1.000/0.55 0.993/0.55 0.998/0.55 0.994/0.55 0.988/0.55 0.980/0.50
ε = 0.6 0.989/0.55 0.998/0.50 0.991/0.50 0.991/0.55 0.996/0.50 0.995/0.50 0.984/0.45
ε = 0.8 0.984/0.50 0.987/0.50 0.989/0.50 0.993/0.50 0.977/0.45 0.991/0.50 0.976/0.45

for CatchSync. In contrast, our approach outperforms others and achieves near-
perfect accuracy on all settings (ranking the spammers on top). These results
demonstrate the effectiveness and robustness of NFS.

4.2 Performance of GroupStrainer on Synthetic Data

Spammer Group Generation. As GroupStrainer operates on a carefully induced
subgraph, we inject 20 spammer groups into a subgraph with 800 users and
200 products. Spammers are assigned to groups (of sizes between 10 to 40) at
random without replacement (each spammer belongs to only one group), while
the targeted products (of sizes between 2 and 12) are randomly chosen with
replacement (products can be attacked several times).

From real-world datasets, we observed varying degree of collusion among
spammers; in some groups they write reviews to all the targeted products, while
in other groups they are organized into sub-groups to target different subsets of
products. To the best of our knowledge, the underlying motivation is to alleviate
their suspiciousness and reduce their workload at the same time. To capture this
behavior, we use a Spammer Collusion Index (SCI) for each spammer group g

defined as SCI(g) =
∑

gi,gj⊂g,i �=j
|t(gi)∩t(gj)|
|t(gi)∪t(gj)|/

(

n
2

)

, where gi, gj are subgroups in
g, t(gi) denotes the set of products gi targets, and n is the number of subgroups
in g. As such, SCI is the average Jaccard similarity of subgroups’ target sets. We
divide groups with more than 5 targets randomly into two subgroups to simulate
collusion behavior. In addition, all spammers have ε probability to randomly
write reviews to untargeted products (i.e., camouflage).

Table 3 shows the group detection performance of GroupStrainer on datasets
simulated with varying levels of camouflage (i.e., ε) and collusion (i.e., SCI)
among the spammers. We report NMI ∈ [0, 1] (Normalized Mutual Information)
that measures the clustering quality of GroupStrainer w.r.t. ground truth, as
well as the corresponding level (i.e., similarity threshold) of the hierarchy that
maps to the original groups. We find that GroupStrainer recovers the (sub)group
hierarchy among spammers effectively, with high accuracy even for large ε.

4.3 Results on Real-World Data

Having validated the effectiveness of NFS and GroupStrainer through syn-
thetic results, we next employ our method on two real-world review datasets;
iTunes app-store reviews, and Amazon product reviews.
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Table 4. Summary statistics of detected groups in iTunes and Amazon. #P (#U):
number of products (users), t: time stamps, �: ratings, s: scattered (distribution), c:
concentrated (distribution), Dup: number of duplicate reviews/total count.

iTunes Amazon

ID #P #U t, � Dup Developer #P #U t, � Dup Category, Author

1 5 31 s, c 51/154 all same 10 20 c, c 90/138 Books, all same
2 8 38 c, s 29/202 2 same 4 12 s, c 32/47 Books, all same
3 4 61 s, c 34/144 all inaccessible 7 9 c, c 44/60 Books, all same
4 4 17 c, s 0/68 1 inaccessible 7 19 s, c 5/88 Books, all same
5 5 102 c, s 8/326 different 23 42 c, c 2/468 Music, all same
6 6 50 s, c 4/173 all same 8 17 s, c 9/73 Books, 4/8 same
7 2 56 c, c 12/112 different 6 18 s, c 4/94 Movies&TV, all same
8 4 42 c, c 8/112 2 same
9 6 67 s, c 0/137 all same

Fig. 2 illustrates the scatter plot of Hdeg vs. KLdeg for products in iTunes,
where outliers with large NFS values are circled (Hpr vs. KLpr looks similar).
The adjacency matrix A of the 2-hop induced subnetwork on the outlier products
is shown in Fig. 3 (top). While the groups are not directly evident here, the
GroupStrainer output clearly reveals various colluding user groups as shown in
Fig. 3 (bottom). Statistics and properties of the groups are listed in Table 4.

Fig. 2. Degree entropy Hdeg vs. KL-divergence KLdeg of prod-
ucts (dots) in iTunes. Top-left: distribution of NFS scores;
circled points: outlier products by NFS.

We note that
group#1 is the same
31 users spamming
5 products of the
same developer with
all-5� reviews, as
was previously found
in [1]. Our method
finds other suspi-
cious user groups;
e.g., group#2 con-
sists of 8 products,
each receiving all
their reviews on the
same day from a
subset of 38 users.
Interestingly, while
the time-stamp is the same (concentrated), the ratings are a bit diversified (not
all 5�s but 3&4�s as well)—potentially for camouflage. This behavior is observed
among other groups; while some groups concentrate on both time and ratings
(c,c), e.g., all 5� in one day, most groups aim to diversify in one of the aspect.
We also note the duplicate reviews across reviewers in the same group.

Similar results are obtained on Amazon, as shown in Fig. 4. We also provide
the summary statistics and characteristics of the 7 colluding groups in Table 4.
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Group:  (1) (2) (3) (4) (5) (6) (7) (8) (9)

Fig. 3. (top) 2-hop induced network of top-ranking products by NFS in iTunes, (bot-
tom) output of GroupStrainer with 9 discovered colluding user groups.

Fig. 4. Output of GroupStrainer on Amazon, with 7 discovered colluding user groups.

We find that the majority of the targeted products in our groups belong to the
Books category. This is not a freak occurrence, as the media has reported that
the authors of books get involved in opinion spam to gain popularity (see URL
in footnote1 on pg. 1). For example, group#1 consists of 20 users spamming
10 books. 19/20 users write their reviews on the exact same day. 15/20 has
duplicate reviews across products, in total 90/138 reviews have at least one
copy. Our dataset listed the same author for 9/10 books. Manual inspection of
the authors revealed that the 10th book also belonged to the same author but
was mis-indexed by Amazon.

5 Related Work

Opinion spam is one of the new forms of Web-based spam, emerging as a result
of review-based sites (TripAdvisor, Yelp, etc.) gaining popularity. We organize
related work into two: (i) spotting individual spam reviewers or fake reviews,
and (ii) detecting group spammers.

Detecting Individual Spam Reviews and Reviewers. To identify individual fake
reviews, supervised models have been trained based on text and behavioral fea-
tures [17] or linguistic patterns [12,25]. Another approach [20] employs the semi-
supervised co-training method by using review text and reviewer features as two
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separate views. Relational models have also been explored [21], which correlate
reviews written by the same users and from the same IPs. Similarly, behav-
ioral methods have been developed to identify individual spam reviewers [13,22].
Other approaches use association based rule mining of rating patterns [18], or
temporal analysis [11]. There also exist network-based methods that spot both
suspicious reviewers and reviews [1,26]. Those infer a suspiciousness score for
each node/edge in the user-product or user-review-product network.

Detecting Group Spam. There exist only a few efforts that focus on group-level
opinion spam detection [23,27,28]. This is counter-intuitive, since spam/fraud
is often an organized act in which the involved individuals cooperate to reduce
effort and response time, increase total impact, and camouflage so that no sin-
gle individual stands out. All related work in this category define group-level
or pairwise spam indicators to score reviewer groups by suspiciousness. Their
indicators are several behavioral and linguistic features. In contrast, our work
solely uses network footprints without relying on side information (e.g., language,
time-stamps, etc.) that can be fine-tuned by spammers.

6 Conclusion

We proposed an unsupervised and scalable approach for spotting spammer
groups in online review sites solely based on their network footprints. Our
method consists of two main components: (1) NFS; a new measure that quan-
tifies the statistical distortions of well-studied properties in the review network,
and (2) GroupStrainer; a hierarchical clustering method that chips off colluding
groups from a subnetwork induced on target products with high NFS values.
We validated the effectiveness of our method on both synthetic and real-world
datasets, where we detected various groups of users with suspicious colluding
behavior.
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Abstract. Developing models to discover, analyze, and predict clus-
ters within networked entities is an area of active and diverse research.
However, many of the existing approaches do not take into considera-
tion pertinent auxiliary information. This paper introduces Joint Gamma
Process Poisson Factorization (J-GPPF) to jointly model network and
side-information. J-GPPF naturally fits sparse networks, accommodates
separately-clustered side information in a principled way, and effectively
addresses the computational challenges of analyzing large networks. Eval-
uated with hold-out link prediction performance on sparse networks
(both synthetic and real-world) with side information, J-GPPF is shown
to clearly outperform algorithms that only model the network adjacency
matrix.

Keywords: Network modeling · Poisson factorization · Gamma process

1 Introduction

Social networks and other relational datasets often involve a large number of
nodes N with sparse connections between them. If the relationship is symmetric,
it can be represented compactly using a binary symmetric adjacency matrix
B ∈ {0, 1}N×N , where bij = bji = 1 if and only if nodes i and j are linked.
Often, the nodes in such datasets are also associated with “side information,”
such as documents read or written, movies rated, or messages sent by these nodes.
Integer-valued side information are commonly observed and can be naturally
represented by a count matrix Y ∈ Z

D×V , where Z = {0, 1, . . .}. For example, B
may represent a coauthor network and Y may correspond to a document-by-word
count matrix representing the documents written by all these authors. In another
example, B may represent a user-by-user social network and Y may represent a
user-by-item rating matrix that adds nuance and support to the network data.
Incorporating such side information can result in better community identification
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and superior link prediction performance as compared to modeling only the
network adjacency matrix B, especially for sparse networks.

Many of the popular network models [2,13,18,25,28] are demonstrated to
work well for small size networks. However, small networks are often dense, while
larger real-world networks tend to be much sparser and hence challenge existing
modeling approaches. Incorporating auxiliary information associated with the
nodes has the potential to address such challenges, as it may help better identify
latent communities and predict missing links. A model that takes advantage
of such side information has the potential to outperform network-only models.
However, the side information may not necessarily suggest the same community
structure as the existing links. Thus a network latent factor model that allows
separate factors for side information and network interactions, but at the same
time is equipped with a mechanism to capture dependencies between the two
types of factors, is desirable.

This paper proposes Joint Gamma Process Poisson Factorization (J-GPPF)
to jointly factorize B and Y in a nonparametric Bayesian manner. The paper
makes the following contributions: 1) we present a fast and effective model that
uses side information to help discover latent network structures, 2) we perform
nonparametric Bayesian modeling for discovering latent structures in both B and
Y, and 3) our model scales with the number of non-zero entries in the network
SB as O (SBKB), where KB is the number of network groups inferred from the
data.

The remainder of the paper is organized as follows. We present background
material and related work in Section 2. J-GPPF and its inference algorithm are
explained in Section 3. Experimental results are reported in Section 4, followed
by conclusions in Section 5.

2 Background and Related Work

This section presents the related literature and the background materials that
are useful for understanding the framework described in Section 3.

2.1 Negative Binomial Distribution

The negative binomial (NB) distribution m ∼ NB(r, p), with probability mass
function (PMF) Pr(M = m) = Γ (m+r)

m!Γ (r) pm(1 − p)r for m ∈ Z, can be augmented
into a gamma-Poisson construction as m ∼ Pois(λ), λ ∼ Gamma(r, p/(1 − p)),
where the gamma distribution is parameterized by its shape r and scale p/(1−p).
It can also be augmented under a compound Poisson representation as m =
∑l

t=1 ut, ut
iid∼ Log(p), l ∼ Pois(−rln(1−p)), where u ∼ Log(p) is the logarithmic

distribution [17]. Consequently, we have the following Lemma.

Lemma 1 ([41]). If m ∼ NB(r, p) is represented under its compound Poisson
representation, then the conditional posterior of l given m and r has PMF:
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Pr(l = j|m, r) =
Γ (r)

Γ (m + r)
|s(m, j)|rj , j = 0, 1, · · · ,m, (1)

where |s(m, j)| are unsigned Stirling numbers of the first kind. We denote
this conditional posterior as (l|m, r) ∼ CRT(m, r), a Chinese restaurant table
(CRT) count random variable, which can be generated via l =

∑m
n=1 zn, zn ∼

Bernoulli(r/(n − 1 + r)).

Lemma 2. Let X =
∑K

k=1 xk, xk ∼ Pois(ζk) ∀k, and ζ =
∑K

k=1 ζk. If
(y1, · · · , yK |X) ∼ Mult(X, ζ1/ζ, · · · , ζK/ζ) and X ∼ Pois(ζ), then the follow-
ing holds:

P (X,x1, · · · , xK) = P (X, y1, · · · , yK). (2)

Lemma 3. If xi ∼ Pois(miλ), λ ∼ Gamma(r, 1/c), then x =
∑

i xi ∼ NB(r, p),
where p = (

∑

i mi)/(c +
∑

i mi).

Lemma 4. If xi ∼ Pois(miλ), λ ∼ Gamma(r, 1/c), then

(λ|{xi}, r, c) ∼ Gamma

(

r +
∑

i

xi, 1/(c +
∑

i

mi)

)

. (3)

Lemma 5. If ri ∼ Gamma(ai, 1/b) ∀i, b ∼ Gamma(c, 1/d), then we have:

(b|{ri, ai}, c, d) ∼ Gamma

(

∑

i

ai + c, 1/(
∑

i

ri + d)

)

. (4)

The proofs of Lemmas 3, 4 and 5 follow from the definitions of Gamma,
Poisson and Negative Binomial distributions.

Lemma 6. If xi ∼ Pois(mir2), r2 ∼ Gamma(r1, 1/d), r1 ∼ Gamma(a, 1/b),
then (r1|−) ∼ Gamma(a+ �, 1/(b− log(1−p))) where (�|x, r1) ∼ CRT(

∑

i xi, r1)
and p =

∑

i mi/(d +
∑

i mi). The proof and illustration can be found in
Section 3.3 of [1].

2.2 Gamma Process

The Gamma Process [12,36] G ∼ ΓP(c,H) is a completely random measure
defined on the product space R+ × Ω, with concentration parameter c and a
finite and continuous base measure H over a complete separable metric space
Ω, such that G(Ai) ∼ Gamma(H(Ai), 1/c) are independent gamma random
variables for disjoint partition {Ai}i of Ω. The Lévy measure of the Gamma
Process can be expressed as ν(drdω) = r−1e−crdrH(dω). Since the Poisson
intensity ν+ = ν(R+ × Ω) = ∞ and the value of

∫

R+×Ω
rν(drdω) is finite, a

draw from the Gamma Process consists of countably infinite atoms, which can
be expressed as follows:

G =
∞
∑

k=1

rkδωk
, (rk, ωk) iid∼ π(drdω), π(drdω)ν+ ≡ ν(drdω). (5)
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A gamma process based model has an inherent shrinkage mechanism, as in the
prior the number of atoms with weights greater than τ ∈ R+ follows a Pois-
son distribution with parameter H(Ω)

∫ ∞
τ

r−1exp(−cr)dr, the value of which
decreases as τ increases.

2.3 Network Modeling, Topic Modeling and Count Matrix
Factorization

The Infinite Relational Model (IRM [18]) allows for multiple types of relations
between entities in a network and an infinite number of clusters, but restricts
these entities to belong to only one cluster. The Mixed Membership Stochas-
tic Blockmodel (MMSB [2]) assumes that each node in the network can exhibit
a mixture of communities. Though the MMSB has been applied successfully
to discover complex network structure in a variety of applications, the compu-
tational complexity of the underlying inference mechanism is in the order of
N2, which limits its use to small networks. Computation complexity is also a
problem with many other existing latent variable network models, such as the
latent feature relational model [25] and its max margin version [44], and the infi-
nite latent attribute model [28]. The Assortative Mixed-Membership Stochastic
Blockmodel (a-MMSB [13]) bypasses the quadratic complexity of the MMSB by
making certain assumptions about the network structure that might not be true
in general. The hierarchical Dirichlet process relational model [19] allows mixed
membership with an unbounded number of latent communities; however, it is
built on the a-MMSB whose assumptions could be restrictive.

Some of the existing approaches handle sparsity in real-world networks by
using some auxiliary information [21,24,39]. For example, in a protein-protein
interaction network, the features describing the biological properties of each pro-
tein can be used [24]. In an extremely sparse social network, information about
each user’s profile can be used to better recommend friends [21]. Recommender
system and text mining researchers, in contrast, tend to take an orthogonal app-
roach. In recommender systems [10,22], Y may represent a user-by-item rating
matrix and the objective in this setting is to predict the missing entries in Y, and
the social network matrix B plays a secondary role in providing auxiliary infor-
mation to facilitate this task [22]. Similarly, in the text mining community, many
existing models [3,23,26,35] use the network information or other forms of side
information to improve the discovery of “topics” from the document-by-word
matrix Y. The matrix B can represent, for example, the interaction network of
authors participating in writing the documents. The Relational Topic Model [11]
discovers links between documents based on their topic distributions, obtained
through unsupervised exploration. The Author-Topic framework (AT [30]) and
the Author-Recipient-Topic model (ART [23]) jointly model documents along
with the authors of the documents. Block-LDA [3], on the other hand, provides
a generative model for the links between authors and recipients in addition to
documents. The Group-Topic model [34] addresses the task of modeling events
pertaining to pairs of entities with textual attributes that annotate the event.
J-GPPF differs from these existing approaches in mathematical formulation,
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including more effective modeling of both sparsity and the dependence between
network interactions and side information.

A large number of discrete latent variable models for count matrix factoriza-
tion can be united under Poisson factor analysis (PFA) [43], which factorizes a
count matrix Y ∈ Z

D×V under the Poisson likelihood as Y ∼ Pois(ΦΘ), where
Φ ∈ R

D×K
+ is the factor loading matrix or dictionary, Θ ∈ R

K×V
+ is the factor

score matrix. A wide variety of algorithms, although constructed with different
motivations and for distinct problems, can all be viewed as PFA with different
prior distributions imposed on Φ and Θ. For example, non-negative matrix fac-
torization [9,20], with the objective to minimize the Kullback-Leibler divergence
between N and its factorization ΦΘ, is essentially PFA solved with maximum
likelihood estimation. LDA [6] is equivalent to PFA, in terms of both block Gibbs
sampling and variational inference, if Dirichlet distribution priors are imposed on
both φk ∈ R

D
+ , the columns of Φ, and θk ∈ R

V
+, the columns of Θ. The gamma-

Poisson model [8,32] is PFA with gamma priors on Φ and Θ. A family of negative
binomial (NB) processes, such as the beta-NB [7,43] and gamma-NB processes
[41,42], impose different gamma priors on {θvk}, the marginalization of which
leads to differently parameterized NB distributions to explain the latent counts.
Both the beta-NB and gamma-NB process PFAs are nonparametric Bayesian
models that allow K to grow without limits [16].

J-GPPF models both Y and B using Poisson factorization. As discussed
in [1], Poisson factorization has several practical advantages over other factor-
ization methods that use Gaussian assumptions (e.g. in [22]). First, zero-valued
observations could be efficiently processed during inference, so the model can
readily accommodate large, sparse datasets. Second, Poisson factorization is a
natural representation of count data. Additionally, the model allows mixed mem-
bership across an unbounded number of latent communities using the gamma
Process as a prior. The authors in [4] also use Poisson factorization to model
a binary interaction matrix. However, this is a parametric model and a KL-
divergence based objective is optimized w.r.t. the latent factors without using
any prior information. To model the binary observations of the network matrix
B, J-GPPF additionally uses a novel Poisson-Bernoulli (PoBe) link, discussed in
detail in Section 3, that transforms the count values from the Poisson factoriza-
tion to binary values. Similar transformation has also been used in the BigCLAM
model [37] which builds on the works of [4]. This model was later extended to
include non-network information in the form of binary attributes [38]. Neither
BigCLAM nor its extension allows non-parametric modeling or imposing prior
structure on the latent factors, thereby limiting the flexibility of the models and
making the obtained solutions more sensitive to initialization. The collaborative
topic Poisson factorization (CTPF) framework proposed in [15] solves a different
problem where the objective is to recommend articles to users of similar interest.
CTPF is a parametric model and variational approximation is adopted to solve
the inference.



288 A. Acharya et al.

3 Joint Gamma Process Poisson Factorization (J-GPPF)

Let there be a network of N users encoded in an N × N binary matrix B.
The users in the network participate in writing D documents summarized in a
D × V count matrix Y , where V is the size of the vocabulary. Additionally, a
binary matrix Z of dimension D × N can also be maintained, where the unity
entries in each column indicate the set of documents in which the correspond-
ing user contributes. In applications where B represents a user-by-user social
network and Y represents a user-by-item rating matrix, Z turns out to be an
N -dimensional identity matrix. However, in the following model description we
consider the more general document-author framework. Also, to make the nota-
tions more explicit, the variables associated with the side information have Y
as a subscript (e.g., GY ) and those associated with the network make similar
use of the subscript B (e.g., GB). Also, if Y represents a matrix of dimension
D × V , then y.w represents the sum over all the rows for the entries in the wth

column, and yd. represents the sum over all the columns for the entries in the
dth row.

Before providing an explicit description of the model, we introduce two sep-
arate Gamma Processes. The first one models the latent factors in the net-
work and also contributes to generate the count matrix. A draw from this
Gamma Process GB ∼ ΓP(cB,HB) is expressed as: GB =

∑∞
kB=1 ρkB

δφkB
,

where φkB
∈ ΩB is an atom drawn from an N -dimensional base distribution

as φkB
∼

∏N
n=1 Gamma(aB, 1/σn), ρkB

= GB(φkB
) is the associated weight,

and HB is the corresponding base measure. The second Gamma Process mod-
els the latent groups of side information. A draw from this gamma process
GY ∼ ΓP(cY ,HY ) is expressed as: GY =

∑∞
kY =1 rkY

δβkY
, where βkY

∈ ΩY

is an atom drawn from a V -dimensional base distribution as βkY
∼ Dir(ξY ),

rkY
= GY (βkY

) is the associated weight, and HY is the corresponding base
measure. Also, γB = HB(ΩB) is defined as the mass parameter corresponding
to the base measure HB and γY = HY (ΩY ) is defined as the mass parameter
corresponding to the base measure HY . In the following paragraphs, we explain
how these Gamma processes, with the atoms and their associated weights, are
used for modeling both B and Y .

The (n,m)th entry in the matrix B is assumed to be derived from a latent
count as:

bnm = I{xnm≥1}, xnm ∼ Pois (λnm) , λnm =
∑

kB

λnmkB
, (6)

where λnmkB
= ρkB

φnkB
φmkB

. This is called as the Poisson-Bernoulli
(PoBe) link in [1,40]. The distribution of bnm given λnm is named as the
Poisson-Bernoulli distribution, with the PMF: f(bnm|λnm) = e−λnm(1−bnm)(1 −
e−λnm)bnm . One may consider λnmkB

as the strength of mutual latent commu-
nity membership between nodes n and m in the network for latent community
kB, and λnm as the interaction strength aggregating all possible community
membership. Using Lemma 2, one may augment the above representation as
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xnm =
∑

kB
xnmkB

, xnmkB
∼ Pois (λnmkB

). Thus each interaction pattern con-
tributes a count and the total latent count aggregates the countably infinite
interaction patters.

Unlike the usual approach that links the binary observations to latent Gaus-
sian random variables with a logistic or probit function, the above approach links
the binary observations to Poisson random variables. Thus, this approach trans-
forms the problem of modeling binary network interaction into a count modeling
problem, providing several potential advantages. First, it is more interpretable
because ρkB

and φkB
are non-negative and the aggregation of different interac-

tion patterns increases the probability of establishing a link between two nodes.
Second, the computational benefit is significant since the computational com-
plexity is approximately linear in the number of non-zeros SB in the observed
binary adjacency matrix B. This benefit is especially pertinent in many real-
word datasets where SB is significantly smaller than N2.

To model the matrix Y , its (d,w)th entry ydw is generated as:

ydw ∼ Pois(ζdw), ζdw =

(

∑

kY

ζY dwkY
+

∑

kB

ζBdwkB

)

,

ζY dwkY
= rkY

θdkY
βwkY

, ζBdwkB
= ερkB

(

∑

n

ZndφnkB

)

ψwkB
,

where Znd ∈ {0, 1} and Znd = 1 if and only if author n is one of the authors of
paper d. One can consider ζdw as the affinity of document d for word w, This
affinity is influenced by two different components, one of which comes from the
network modeling. Without the contribution from network modeling, the joint
model reduces to a gamma process Poisson matrix factorization model, in which

the matrix Y is factorized in such a way that ydw ∼ Pois

(

∑

kY

rkY
θdkY

βwkY

)

.

Here, Θ ∈ R
D×∞
+ is the factor score matrix, β ∈ R

V ×∞
+ is the factor loading

matrix (or dicticonary) and rkY
signifies the weight of the kth

Y factor. The number
of latent factors, possibly smaller than both D and V , would be inferred from
the data.

In the proposed joint model, Y is also determined by the users participating
in writing the dth document. We assume that the distribution over word counts
for a document is a function of both its topic distribution as well as the charac-
teristics of the users associated with it. In the author-document framework, the
authors employ different writing styles and have expertise in different domains.
For example, an author from machine learning and statistics would use words like
“probability”, “classifiers”, “patterns”, “prediction” more often than an author
with an economics background. Frameworks such as author-topic model [23,30]
were motivated by a related concept. In the user-rating framework, the entries
in Y are also believed to be influenced by the interaction network of the users.
Such influence of the authors is modeled by the interaction of the authors in the
latent communities via the latent factors φ ∈ R

N×∞
+ and ψ ∈ R

V ×∞
+ , which
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encodes the writing style of the authors belonging to different latent communi-
ties. Since an infinite number of network communities is maintained, each entry
ydw is assumed to come from an infinite dimensional interaction. ρkB

signifies the
interaction strength corresponding to the kth

B network community. The contri-
butions of the interaction from all the authors participating in a given document
are accumulated to produce the total contribution from the networks in gener-
ating ydw. Since B and Y might have different levels of sparsity and the range
of integers in Y can be quite large, a parameter ε is required to balance the
contribution of the network communities in dictating the structure of Y. A low
value of ε forces disjoint modeling of B and Y, while a higher value implies
joint modeling of B and Y where information can flow both ways, from network
discovery to topic discovery and vice-versa. We present a thorough discussion of
the effect of ε in Section 4.1. To complete the generative process, we put Gamma
priors over σn, ςd, cB, cY and ε as:

cB ∼ Gamma(gB, 1/hB), cY ∼ Gamma(gY , 1/hY ), ε ∼ Gamma(g0, 1/f0). (7)
σn ∼ Gamma(αB, 1/εB), ςd ∼ Gamma(αY , 1/εY ). (8)

3.1 Inference via Gibbs Sampling

Though J-GPPF supports countably infinite number of latent communities for
network modeling and infinite number of latent factors for topic modeling, in
practice it is impossible to instantiate all of them. Instead of marginalizing out
the underlying stochastic process [5,27] or using slice sampling [33] for non-
parametric modeling, for simplicity, we consider a finite approximation of the
infinite model by truncating the number of graph communities and the latent
topics to KB and KY respectively, by letting ρkB

∼ Gamma(γB/KB, 1/cB) and
rkY

∼ Gamma(γY /KY , 1/cY ). Such approximation approaches the original infi-
nite model as both KB and KY approach infinity. With such finite approxima-
tion, the generative process of J-GPPF is summarized in Table 1. For notational
convenience, we represent the set of documents the nth author contributes to as
Zn and the set of authors contributing to the dth document as Zd.

Sampling of (xnmkB
)KB

kB=1 : We first sample the network links according to the
following:

(xnm|−) ∼ bnmPois+

(

KB
∑

kB=1

λnmkB

)

. (9)

Sampling from a truncated Poisson distribution is described in detail in [40].
Since, one can augment xnm ∼ Pois

(

∑KB

kB=1 λnmkB

)

as xnm =
∑KB

kB=1 xnmkB
,

where xnmkB
∼ Pois (λnmkB

), equivalently, one obtains the following:

(

(xnmkB
)KB

kB=1 |−
)

∼ Mult

⎛

⎝xnm,

(

λnmkB
/

KB
∑

kB=1

λnmkB

)KB

kB=1

⎞

⎠ . (10)
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Table 1. Generative Process of J-GPPF

bnm = I{xnm≥1}, xnm ∼ Pois

(

∑

kB

ρkB
φnkB

φmkB

)

,

ydw ∼ Pois

(

∑

kY

rkY
θdkY

βwkY
+ ε

∑

kB

ρkB

(

∑

n

ZndφnkB

)

ψwkB

)

,

φkB
∼

∏N
n=1 Gamma(aB, 1/σn), ψkB

∼ Dir(ξB),
θkY

∼
∏D

d=1 Gamma(aY , 1/ςd), βkY
∼ Dir(ξY ), ε ∼ Gamma(f0, 1/g0),

σn ∼ Gamma(αB, 1/εB), ρkB
∼ Gamma(γB/KB, 1/cB),

γB ∼ Gamma(eB, 1/fB), cB ∼ Gamma(gB, 1/hB),
ςd ∼ Gamma(αY , 1/εY ), rkY

∼ Gamma(γY /KY , 1/cY ),
γY ∼ Gamma(eY , 1/fY ), cY ∼ Gamma(gY , 1/hY ).

Sampling of (ydwk)k : Since, one can augment ydw ∼ Pois(ζdw) as ydw =
KY
∑

kY =1

ydwkY
+

∑

n∈Zd

KB
∑

kB=1

ydnwkB
, ydwkY

∼ Pois(ζdwkY
), ydnwkB

∼ Pois(ζdnwkB
),

again following Lemma 2, we have:
(

(ydwkY
)KY

kY =1 , (ydnwkB
)KB

kB=1,n∈Zd
|−

)

∼ Mult
(

ydw,
{ζdwkY

}kY
,{ζdnwkB

}n∈Zd,kB∑
kY

ζdwkY
+
∑

n∈Zd

∑
kB

ζdnwkB

)

.(11)

Sampling of φnkB
, ρkB

, θdkY
, rkY

and ε : Sampling of these parameters follow
from Lemma 4 and are given as follows:

(φnkB
|−) ∼ Gamma

(

aB + xn·kB
+ y.n.kB

,
1

σn + ρkB
(φ−n

kB
+ ε|Zn|)

)

, (12)

(ρkB
|−) ∼ Gamma

(

γB

KB
+ x··kB

+ y···kB
, 1

cB+
∑

n φnkB
φ−n
kB

+ε
∑

n |Zn|φnkB

)

, (13)

(θdkY
|−) ∼ Gamma

(

aY + yd·kY
, 1

ςd+rkY

)

, (rkY
|−) ∼ Gamma

(

γY

KY
+ y··kY

, 1
cY +θ.kY

)

, (14)

(ε|−) ∼ Gamma

(

f0 +
KB
∑

k=1

y···k,
1

g0 + q0

)

, q0 =
KB
∑

k=1

ρkB

N
∑

n=1

|Zn|φnkB
. (15)

The sampling of parameters φnkB
and ρkB

exhibits how information from the
count matrixY influences the discovery of the latent network structure. The latent
counts from Y impact the shape parameters for both the posterior gamma distri-
bution of φnkB

and ρkB
, while Z influences the corresponding scale parameters.

Sampling of ψkB
: Since ydnwkB

∼ Pois(ερkB
φnkB

ψwkB
), using Lemma 2 we

have: (y..wkB
)V
w=1 ∼ Mult(y...kB ,(ψwkB

)Vw=1
). Since the Dirichlet distribution is

conjugate to the multinomial, the posterior of ψkB
also becomes a Dirichlet

distribution and can be sampled as:

(ψkB
|−) ∼ Dir (ξB1 + y..1kB

, · · · , ξBV + y..V kB
) . (16)
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Sampling of βkY
: Since ydwkY

∼ Pois(rkY
θdkY

βwkY
), again using Lemma 2,

we have:
(y.wkY

)V
w=1 ∼ Mult

(

y..kY
, (βwkY

)V
w=1

)

.

Using conjugacy, the posterior of βkY
can be sampled as:

(βkY
|−) ∼ Dir (ξY 1 + y.1kY

, · · · , ξY V + y.V +kY
) . (17)

Sampling of σn, ςd, cB and cY : Sampling of these parameters follow from
Lemma 5 and are given as:

(σn|−) ∼ Gamma
(

αB + KBaB, 1
εB+φn.

)

, (ςd|−) ∼ Gamma
(

αY + KY aY , 1
εY +θd.

)

, (18)

(cB|−) ∼ Gamma
(

gB + γB, 1
hB+

∑
kB

ρkB

)

, (cY |−) ∼ Gamma
(

gY + γY , 1
hY +

∑
kY

rkY

)

. (19)

Sampling of γB : Using Lemma 2, one can show that x..kB
∼ Pois(ρkB

).
Integrating ρkB

and using Lemma 4, one can have x..kB
∼ NB(γB, pB), where

pB = 1/(cB+1). Similarly, y..kB
∼ Pois(ρkB

) and after integrating ρkB
and using

Lemma 4, we have y..kB
∼ NB(γB, pB). We now augment lkB

∼ CRT(x..kB
+

y..kB
, γB) and then following Lemma 6 sample

(γB|−) ∼ Gamma
(

eB +
∑

kB
lkB

, 1
fB−qB

)

, qB =
∑

kB

qkB

KB
, qkB

= log
(

cB
cB+

∑
n φnkB

φ−n
kB

)

. (20)

Sampling of γY : Using Lemma 2, one can show that y..(KB+kY ) ∼
Pois(rkY

) and after integrating rkY
and using Lemma 4, we have y..(KB+kY ) ∼

NB(γY , pY ), where pY = 1/(cY + 1). We now augment mkY
∼

CRT(y..(KB+kY ), γY ) and then following Lemma 6 sample

(γY |−) ∼ Gamma
(

eY +
∑

kY
mkY

, 1
fY −qY

)

, qY =
∑

kY

qkY

KY
, qkY

= log
(

cY
cY +θ.kY

)

. (21)

Table 2. Generative Process of N-GPPF

bnm = I{xnm≥1}, xnm ∼ Pois

( ∞
∑

kB=1

λnmkB

)

, rkB
∼ Gamma(γB/KB, 1/cB),

φkB
∼

∏N
n=1 Gamma(aB, 1/σn), σn ∼ Gamma(αB, 1/εB),

γB ∼ Gamma(eB, 1/fB), cB ∼ Gamma(gB, 1/hB),

3.2 Special Cases: Network Only GPPF (N-GPPF) and Corpus
Only GPPF (C-GPPF)

A special case of J-GPPF appears when only the binary matrix B is mod-
eled without the auxiliary matrix Y . The generative model of N-GPPF is given
in Table 2. The update equations of variables corresponding to N-GPPF can
be obtained with Z = 0 in the corresponding equations. As mentioned in
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Table 3. Generative Process of C-GPPF

ydw ∼ Pois

( ∞
∑

kY =1

rkY
θdkY

βwkY

)

,

θkY
∼

∏D
d=1 Gamma(aY , 1/ςd), βkY

∼ Dir(ξY ),
ςd ∼ Gamma(ηY , 1/ξY ), rkY

∼ Gamma(γY /KY , 1/cY ),
γY Y

∼ Gamma(eY , 1/fY ), cY ∼ Gamma(gY , 1/hY ).

Section 2.3, N-GPPF can be considered as the gamma process infinite edge par-
tition model (EPM) proposed in [40], which is shown to well model assortative
networks but not necessarily disassortative ones. Using the techniques developed
in [40] to capture community-community interactions, it is relatively straightfor-
ward to extend J-GPPF to model disassortative networks Another special case
of J-GPPF appears when only the count matrix Y is modeled without using the
contribution from the network matrix B. The generative model of C-GPPF is
given in Table 3.

3.3 Computation Complexity

The Gibbs sampling updates of J-GPPF can be calculated in O(KBSB +(KB +
KY )SY + NKB + DKY + V (KB + KY )) time, where SB is the number of
non-zero entries in B and SY is the number of non-zero entries in Y . It is
obvious that for large matrices the computation is primarily of the order of
KBSB + (KB + KY )SY . Such complexity is a huge saving when compared
to other methods like MMSB [2], that only models B and incurs computation
cost of O(N2KB); and standard matrix factorization approaches [31] that work
with the matrix Y and incur O(DV KY ) computation cost. Interestingly, the
inference in [14] incurs cost O(K2

Y D + KY V + KY SY ) with KY signifying
the termination point of stick breaking construction in their model. C-GPPF
incurs computation cost O(DKY + KY SY + V KY ), an apparent improvement
over that of [14]. However, one needs to keep in mind that [14] use variational
approximation for which the updates are available in closed form solution. Our
method does not use any approximation to joint distribution but uses Gibbs
sampling, the computation cost of which should also be taken into account. In

(a) (b) (c)

Fig. 1. (a) Time to generate a million of samples, (b) B with held-out data, (c) Y
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Fig. 1(a), we show the computation time for generating one million samples
from Gamma, Dirichlet (of dimension 50), multinomial (of dimension 50) and
truncated Poisson distributions using the samplers available from GNU Scientific
Library (GSL) on an Intel 2127U machine with 2 GB of RAM and 1.90 GHz of
processor base frequency. To highlight the average complexity of sampling from
Dirichlet and multinomial distributions, we further display another plot where
the computation time is divided by 50 for these samplers only. One can see that
to draw one million samples, our implementation of the sampler for truncated
Poisson distribution takes the longest, though the difference from the Gamma
sampler in GSL is not that significant.

4 Experimental Results

4.1 Experiments with Synthetic Data

We generate a synthetic network of size 60 × 60 (B) and a count data matrix
of size 60 × 45 (Y). Each user in the network writes exactly one document and
a user and the corresponding document are indexed by the same row-index in
B and Y respectively. To evaluate the quality of reconstruction in presence of
side-information and less of network structure, we hold-out 50% of links and
equal number of non-links from B. This is shown in Fig. 1(b) where the links
are presented by brown, the non-links by green and the held-out data by deep
blue. Clearly, the network consists of two groups. Y ∈ {0, 5}60×45, shown in
Fig. 1(c), is also assumed to consist of the same structure as B where the zeros
are presented by deep blue and the non-zeros are represented by brown. The
performance of N-GPPF is displayed in Fig. 2(a). Evidently, there is not much
structure visible in the discovered partition of B from N-GPPF and that is
reflected in the poor value of AUC in Fig. 3(a). The parameter ε, when fixed at a
given value, plays an important role in determining the quality of reconstruction
for J-GPPF. As ε → 0, J-GPPF approaches the performance of N-GPPF on
B and we observe as poor a quality of reconstruction as in Fig. 2(a). When ε
is increased and set to 1.0, J-GPPF departs from N-GPPF and performs much
better in terms of both structure recovery and prediction on held-out data as
shown in Fig. 2(e) and Fig. 3(b). With ε = 10.0, perfect reconstruction and
prediction are recorded as shown in Fig. 2(i) and Fig. 3(c) respectively. In this
synthetic example, Y is purposefully designed to reinforce the structure of B
when most of its links and non-links are held-out. However, in real applications,
Y might not contain as much of information and the Gibbs sampler needs to
find a suitable value of ε that can carefully glean information from Y.

There are few more interesting observations from the experiment with syn-
thetic data that characterize the behavior of the model and match our intuitions.
In our experiment with synthetic data KB = KY = 20 is used. Fig. 2(b) demon-
strates the assignment of the users in the network communities and Fig. 2(d)
illustrates the assignment of the documents to the combined space of network
communities and the topics (with the network communities appearing before the
topics in the plot). For ε = 0.001, we observe disjoint modeling of B and Y, with
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2. Performance of J-GPPF: ε = 10−3 (top row), ε = 1 (middle row), ε = 10
(bottom row)

two latent factors modeling Y and multiple latent factors modeling B without
any clear assignment. As we increase ε, we start observing joint modeling of B
and Y. For ε = 1.0, as Fig. 2(h) reveals, two of the network latent factors and
two of the factors for count data together model Y, the contribution from the
network factors being expectedly small. Fig. 2(f) shows how two of the exact
same latent factors model B as well. Fig. 2(j) and Fig. 2(l) show how two of
the latent factors corresponding to B dictate the modeling of both B and Y
when ε = 10.0. This implies that the discovery of latent groups in B is dictated
mostly by the information contained in Y. In all these cases, however, we observe
perfect reconstruction of Y as shown in Fig. 2(c), Fig. 2(g) and Fig. 2(k).

4.2 Experiments with Real World Data

To evaluate the performance of J-GPPF, we consider N-GPPF, the infinite rela-
tional model (IRM) of [18] and the Mixed Membership Stochastic Block Model
(MMSB) [2] as the baseline algorithms.

NIPS Authorship Network. This dataset contains the papers and authors
from NIPS 1988 to 2003. We took the 234 authors who published with the most
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(a) (b)

(c)
Fig. 3. (a) AUC with ε = 0.001, (b) AUC with ε = 1.0, (c) AUC with ε = 10.0

other people and looked at their co-authors. After pre-processing and removing
words that appear less than 50 times, the number of users in the graph is 225 and
the total number of unique words is 1354. The total number of documents is 1165.

GoodReads Data. Using the Goodreads API, we collected a base set of users
with recent activity on the website. The friends and friends of friends of these
users were collected. Up to 200 reviews were saved per user, each consisting of
a book ID and a rating from 0 to 5. A similar dataset was used in [10]. After
pre-processing and removing words that appear less than 10 times, the number
of users in the graph is 84 and the total number of unique words is 189.

Twitter Data. The Twitter dataset is a set of geo-tagged tweets collected by
the authors in [29]. We extracted a subset of users located in San Francisco for our
analysis. We created a graph within the subset by collecting follower information
from the Twitter API. The side information consists of tweets aggregated by
user, with one document per user. After pre-processing and removing words
that appear less than 25 times, the number of users in the graph is 670 and the
total number of unique words is 538.

Experimental Setup and Results. In all the experiments, we initialized ε
to 2 and let the sampler decide what value works best for joint modeling. We
used KB = KY = 50 and initialized all the hyper-parameters to 1. For each
dataset, we ran 20 different experiments and display the mean AUC and one
standard error. Fig. 4 and 5 demonstrate the performances of the models in
predicting the held-out data. J-GPPF clearly has advantage over other network-
only models when the network is sparse enough and the auxiliary information is
sufficiently strong. However, all methods fail when the sparsity increases beyond
a certain point. The performance of J-GPPF also drops below the performances
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(a) (b)
Fig. 4. (a) NIPS Data, (b) GoodReads Data

Fig. 5. Twitter Data

of network-only models in highly sparse networks, as the sampler faces additional
difficulty in extracting information from both the network and the count matrix.

5 Conclusion

We propose J-GPPF that jointly factorizes the network adjacency matrix and
the associated side information that can represented as a count matrix. The
model has the advantage of representing true sparsity in adjacency matrix, in
latent group membership, and in the side information. We derived an efficient
MCMC inference method, and compared our approach to several popular net-
work algorithms that model the network adjacency matrix. Experimental results
confirm the efficiency of the proposed approach in utilizing side information to
improve the performance of network models.
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Abstract. We are interested in the following questions. Given a finite
data set S, with neither labels nor side information, and an unsuper-
vised learning algorithm A, can the generalization of A be assessed on
S? Similarly, given two unsupervised learning algorithms, A1 and A2,
for the same learning task, can one assess whether one will generalize
“better” on future data drawn from the same source as S? In this paper,
we develop a general approach to answering these questions in a reliable
and efficient manner using mild assumptions on A. We first propose a
concrete generalization criterion for unsupervised learning that is anal-
ogous to prediction error in supervised learning. Then, we develop a
computationally efficient procedure that realizes the generalization cri-
terion on finite data sets, and propose and extension for comparing the
generalization of two algorithms on the same data set. We validate the
overall framework on algorithms for clustering and dimensionality reduc-
tion (linear and nonlinear).

1 Introduction

The goal of unsupervised learning is to autonomously capture and model latent
relations among the variables of a data set. Such latent relations are usually
in the form of regularities and statistical dependencies known as the underly-
ing structure of the data distribution. Unlike supervised learning, there are no
desired target answers to guide and correct the learning process. However, simi-
lar to supervised learning, unsupervised learning algorithms generate estimates
that are functions of sample data drawn from an unknown distribution P. As
such, it is natural to ask questions related to the generalization capability of
these estimates, as well as questions on the choice of these estimates (model
selection) [11].

In supervised learning, questions of generalization have been scrutinized,
equally, in theory and in practice; see for instance [5,6,8,9,14,15,17,20,22,24]. In
unsupervised learning, however, few efforts have acknowledged and addressed the
problem in general. For instance, [11] approximates the expected loss of finite
parametric models such as principle component analysis (PCA) and k-Means
clustering based on asymptotic analysis and central limit results.

One possible reason for the scarcity of such efforts is the subjective nature of
unsupervised learning, the diversity of tasks covered (such as clustering, density

c© Springer International Publishing Switzerland 2015
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estimation, dimensionality reduction, feature learning, etc.), and the lack of a
unified framework that incorporates a significant subset of these tasks. Another
reason is that the principles underlying supervised learning are often distinct
from those underlying unsupervised learning. In supervised learning, the final
result of a learning algorithm is a function f∗ that minimizes the expected loss
(possibly plus a regularizer) under the unknown true distribution P, which can
be applied to new points not included during training. Since P is unknown, the
learning algorithm selects f∗ that minimizes an empirical average of the loss as a
surrogate for the expected loss. Therefore, since the loss measures the difference
between the estimated and expected outputs, its average provides an indicator
of generalization error. The validity of this mechanism, however, rests on (i) the
existence of target outputs, and (ii) consistency of the empirical average of the
loss [22].

In unsupervised learning, the characterization is different. First, the target
output is not available. Second, an unsupervised learning algorithm A produces
an output that is a re-representation of the input; hence loss functions in this
setting usually assess a reconstruction error between the output and input [25].
Third, there are various unsupervised learning algorithms that do not minimize
a reconstruction error yet still produce an output that is a re-representation of
the input: see for example the recent literature on moments-based methods for
latent variable models and finite automata [1,2,12,21].

These observations motivate us to deal with unsupervised learning algorithms
in an abstract form. In particular, we consider an unsupervised learning algo-
rithm A as an abstract function – a black box – that maps an input x to an
output y. The advantage of this view is that (i) it is independent of the learn-
ing task, and (ii) it provides a simple unified view for these algorithms without
being overly dependent on internal details.

Based on this perspective, we propose a general definition for generalization
of an unsupervised learning algorithm on a data set S. The framework is based
on a general loss function � that measures the reconstruction error between the
input and output of A, which is not necessarily the loss minimized by A (if any).
To study the generalization of A under the black box assumption and an external
loss �, we will assume that A satisfies a certain notion of algorithmic stability
under some mild assumptions on �. Given this notion of stability, we derive a
finite useful upper bound on A’s expected loss, which naturally lends itself to
a generalization criterion for unsupervised learning. As a second contribution,
we develop an efficient procedure to realize this generalization criterion on finite
data sets, which can be extended to comparing the generalization of two dif-
ferent unsupervised learning algorithms on a common data source. Finally, we
apply this generalization analysis framework and evaluation procedure to two
unsupervised learning problems; clustering and dimensionality reduction.
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1.1 Preliminaries and Setup

Let X ⊆ R
d and Y ⊆ R

k be the input and output spaces, respectively.1 Let
S ∈ X n be a training set of size n drawn IID from an unknown distribution
Px defined on a measurable space (X , Σ) with domain X and σ-algebra Σ. We
denote this as S ∼ Px where S = {xi}n

i=1. For each xi ∈ S there is a corre-
sponding output yi, 1 ≤ i ≤ n, with appropriate dimension k. For convenience,
S can be represented as a matrix Xn×d, while the output can also be represented
as a matrix Yn×k.

An unsupervised learning algorithm A is a mapping from X n to the class
of functions F s.t. for f ∈ F , f : X → Y. Thus, A takes as input S, selects a
particular f∗ from F , and estimates an n × k output matrix ̂Y ≡ AS(X), or
ŷ ≡ AS(x),2 where AS denotes the output of A (i.e. f∗ ∈ F) after training on
S. The algorithm A could also have certain parameters, denoted θA, that the
user can tune to optimize its performance. We assume that A and its output
functions in F are all measurable maps.

2 A General Learning Framework

The problem of unsupervised learning is that of selecting a function f∗ ∈ F
that transforms input x into an output ŷ ≡ AS(x) in some desired way. Here we
assume that A is a black box that takes S and produces a map f∗ from x to ŷ.
Since we are ignoring A’s internal details, assessing its generalization requires us
to consider an additive external loss function � : X × Y → R

+ that measures
the reconstruction error between x and ŷ. Thus, the expected loss for AS with
respect to � is defined as:

R(AS) ≡ E [�(x,AS(x)] =
∫

�(x,AS(x))dPx. (1)

Unfortunately R(AS) cannot be computed since Px is unknown, and thus it has
to be estimated from S ∈ X n. A simple estimator for R(AS) is the empirical
estimate:

̂REMP(AS) =
1
n

n
∑

i=1

�(xi,AS(xi)). (2)

To obtain a practical assessment of the generalization of A, we need to derive
an upper bound for the quantity ̂REMP(AS) − R(AS). Given the generality of
1 Notation: Lower case letters x, m, i denote scalars and indices. Upper case letters

X, Y denote random variables. Bold lower case letters x,y denote vectors. Bold
upper case letters A,B are matrices. Distributions P,G will be written in script.
Calligraphic letters X , Y denote sets.

2 For example, in k-Means clustering, the elements of ̂Y could be the corresponding
cluster centers assigned to each xi from a set of k such centers. In nonlinear dimen-
sionality reduction, the output could be the n × n low rank matrix ̂Y. In density
estimation using a mixture model, A could output the n × 1 matrix Y with the
density value of each xi.



Generalization in Unsupervised Learning 303

this setting, one needs to resort to worst case bounds. However, this cannot be
done without introducing additional assumptions about the behaviour of A. For
example, if one assumes that A chooses its output from a class of functions F
such that the class of loss random variables Λ : X × Y → R+ induced by F , i.e.
Λ = � ◦F , is uniformly upper bounded by c < ∞ and VCdim(Λ) = h < ∞, then
with probability at least 1 − η there is a uniform concentration of ̂REMP(AS)
around R(AS):

R(AS) ≤ ̂REMP(AS) +
τc

2

⎛

⎝1 +

√

1 +
4 ̂REMP(AS)

τc

⎞

⎠ , (3)

where τ = 4n−1 [h(ln 2n/h + 1) − ln η] [22,23]. Rademacher or Gaussian com-
plexities can also be used to obtain similar concentration inequalities [3]. The
caveat is that such an analysis is worst case and the resulting bounds, such
as (3), are too loose to be useful in practice. This suggests that we need to
make stronger assumptions on A to achieve more useful bounds on the quantity
̂REMP(AS) − R(AS).

2.1 Generalization and Stability

To achieve a more practical criterion and assessment procedure, we need to
introduce some form of additional assumptions on A without sacrificing too much
generality. To this end, we investigate an assumption that A satisfies a particular
notion of algorithmic stability that allows us to derive a more useful and a tighter
upper bound on ̂REMP(AS)−R(AS). Algorithmic stability has been successfully
applied in learning theory to derive generalization bounds for supervised learning
algorithms, but has yet to be formally applied to unsupervised learning. Among
the different notions of stability, the uniform stability of [5] is considered to
be the strongest since it implies other notions of stability such as: hypothesis
stability, error stability, point–wise hypothesis stability, everywhere stability,
CVLOO stability, etc. [8,14,16,17,20].

To define uniform stability for A in the unsupervised learning context, we
require the following definitions. For any S ∈ X n, we define ∀i, 1 ≤ i ≤ n,
the modified training set S\i by removing from S the i-th element: S\i =
{x1, . . . ,xi−1,xi+1, . . . ,xn}. We assume that A is symmetric with respect to
S; i.e. it does not depend on the elements’ order in S. Further, we require that
the external loss � be “well behaved” with respect to slight changes in S; i.e.
if ε = �(x,AS(x)), ε′ = �(x,AS′(x)), and S ′ is slightly different from S such
that AS(x) ≈ AS′(x), then the difference between ε and ε′ should be small. The
notion of “well behaved” is formally imposed by requiring that � is Lipschitz
continuous, and that A is uniformly β–stable with respect to �. This uniform
β–stability is defined as follows:

Definition 1 (Uniform β–Stability). An algorithm A is uniformly β–stable
with respect to the loss function � if for any x ∈ X , the following holds:

∀ S ∈ X n, max
i=1,...,n

|�(x,AS(x)) − �(x,AS\i(x))| ≤ β.
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Note that β is a function of n and we assume that stability is non-increasing as
a function of n. Hence, in the following, β can be denoted by βn.

Definition 2 (Stable Algorithm). Algorithm A is stable if βn ∝ 1
n .

3

The analogy between our definition of uniform β–stability and the uniform
β–stability in supervised learning can be explained as follows. The uniform
β–stability in [5] is in terms of �(AS , z) and �(AS\i , z), where z = (x, y), x is
the input vector, and y is its expected output (or true label). Note that �(AS , z)
can be written as �(fS(x), y), where fS is the hypothesis learned by A using
the training set S. Similarly, �(AS\i , z) can be written as �(fS\i(x), y). Observe
that the difference between �(fS(x), y) and �(fS\i(x), y) is in the hypotheses fS
and fS\i . Note also that in supervised learning, the loss � measures the discrep-
ancy between the expected output y and the estimated output ŷ = fS(x). In
our unsupervised learning setting, the expected output is not available, and the
loss � measures the reconstruction error between x and ŷ ≡ AS(x). Hence, we
replace �(AS , z) by �(x,AS(x)), and �(AS\i , z) by �(x,AS\i(x)) to finally obtain
Definition 1.

Note that the uniform β–stability of A with respect to � is complimentary
to the continuous Lipschitz condition on �. If A is uniformly β–stable, then a
slight change in the input will result in a slight change in the output, resulting
in a change in the loss bounded by β. The following corollary upper bounds the
quantity ̂REMP(AS) − R(AS) using the uniform β–stability of A.

Corollary 1. Let A be a uniformly β–stable algorithm with respect to �, ∀ x ∈
X , and ∀ S ∈ X n. Then, for any n ≥ 1, and any δ ∈ (0, 1), the following bounds
hold (separately) with probability at least 1 − δ over any S ∼ Px:

(i) R(AS) ≤ ̂REMP(AS) + 2β + (4nβ + c)

√

log(1/δ)
2n

, (4)

(ii) R(AS) ≤ ̂RLOO(AS) + β + (4nβ + c)

√

log(1/δ)
2n

, where (5)

̂RLOO(AS) = 1
n

∑n
i=1 �(xi,AS\i(xi)), is the leave-one-out (LOO) error estimate.

Discussion. The generalization bounds in (4) and (5) directly follow from
Theorem 12 in [5] for the regression case. The reason we consider A under the
regression framework is due to our characterization of unsupervised learning
algorithms in which we consider the output ŷ ∈ R

k is a re-representation of
the input x ∈ R

d. This, in turn, defined the form of the external loss � as � :
X ×Y → R

+. This characterization is very similar to the multivariate regression
setting, and hence our reliance on Theorem 12 in [5]. Note that if β ∝ 1

n , then
the bounds in (4) and (5) will be tight.

Corollary 1 is interesting in our context for a few reasons. First, it defines
a generalization criterion for unsupervised learning algorithms in general: if A

3 βn ∝ 1
n

=⇒ βn = κ
n
, for some constant κ > 0.
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is uniformly β–stable with respect to � on S, then the bounds in (4) and (5)
hold with high probability. Note that the bound in (4) is tighter than the one
in (3). Second, the bounds for ̂REMP and ̂RLOO are very similar. Various works
have reported that ̂REMP is an optimistically biased estimate for R, while ̂RLOO

is almost an unbiased estimate [5,8,14].4 Therefore, an advantage of uniform
β–stability is that this discrepancy is mitigated. This also shows that stability
based bounds are more suitable for studying algorithms whose empirical error
remains close to the LOO error.

Second, this result also shows that to be uniformly stable, a learning algo-
rithm needs to significantly depart from the empirical risk minimization prin-
ciple that emphasizes the minimization of ̂REMP. That is, a stable algorithm A
might exhibit a larger error during training but this would be compensated by
a decrease in complexity of the learned function. This characteristic is exactly
what defines the effects of regularization. Therefore, the choice for uniform sta-
bility allows one to consider a large class of unsupervised learning algorithms,
including those formulated as regularized minimization of an internal loss.

3 Empirical Generalization Analysis

Although the previous section defines a general criterion for generalization in
unsupervised learning, in practice this criterion requires assessing the uniform
stability of A on a finite data set S. The quantity of interest in the uniform sta-
bility criterion is |�(x,AS(x)) − �(x,AS\i(x))|, which is the amount of change in
the loss with respect to the exclusion of one data point xi from S. Taking expec-
tations with respect to Px and replacing the expected loss with the empirical
estimator, we have that:

∀ S ∈ X n max
i=1,...,n

| ̂REMP(AS) − ̂REMP(AS\i)| ≤ βn. (6)

This states that for a uniformly βn–stable algorithm with respect to � on S, the
change in the empirical loss due to the exclusion of one sample from S is at most
βn. In the finite sample setting, this will be:

max
i=1,...,n

∣

∣

∣

∣

∣

∣

∣

1
n

n
∑

j=1

�(xj ,AS(xj)) − 1
n − 1

n
∑

j=1
j �=i

�(xj ,AS\i(xj))

∣

∣

∣

∣

∣

∣

∣

≤ βn. (7)

Inequality (7) contains an unknown parameter βn which cannot be upper
bounded without any further knowledge on A. In fact, given the black box
assumption on A and the absence of information on Px, we cannot obtain a
uniform upper bound on βn. This suggests that βn needs to be estimated from

4 The LOO error estimate over n samples, ̂RLOOn , is an unbiased estimate for
̂RLOOn−1 . Since in most interesting cases ̂RLOOn converges with probability one, the

difference between ̂RLOOn and ̂RLOOn−1 becomes negligible for large n [7, Ch. 24].
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Algorithm 1. Generalization Analysis for Algorithm A.

1: Require: Algorithm A and its input parameters θA, data set S, loss function �,
number of subsamples m, and the sizes of subsamples, nt s.t. n1 < n2 < n3 < · · · <
nτ .

2: for t = 1 to τ do
3: for j = 1 to m do
4: Xj ← draw nt samples uniformly from S
5: ̂Yj ← AS(Xj ; θA)
6: Φ ← hold out one random samples from Xj

7: X′
j ← Xj \ Φ

8: ̂Y′
j ← AS\i(X′

j ; θA)

9: Rj ← 1
n1

�(Xj , ̂Yj)

10: R′
j ← 1

n1−1
�(X′

j , ̂Y′
j)

11: Bj = |Rj − R′
j |

12: end for
13: ̂βnt = median{B1, . . . , Bj , . . . , Bm}
14: end for
15: Return: B = {̂βn1 , . . . , ̂βnt , . . . , ̂βnτ }

the data set S. Also, recall from Definitions 1 and 2 that if βn ∝ 1/n, then the
generalization bounds in (4) and (5) will hold with high probability. These two
requirements raise the need for two procedures; one to estimate βn at increasing
values of n, and another one to model the relation between the estimated βn’s
and the values of n. However, to consider these two procedures for assessing
A’s generalization, we need to introduce a further mild assumption on A. In
particular, we need to assume that A does not change its learning mechanism
as the sample size is increasing from n to n + 1 for any n ≥ 1. Note that if
A changes its learning mechanism based on the sample size, then A can have
inconsistent trends of βn with respect to n which makes it unfeasible to obtain
consistent confidence bounds for ̂REMP(AS)−R(AS). Therefore, we believe that
our assumption is an intuitive one, and is naturally satisfied by most learning
algorithms.

3.1 Estimating βn From a Finite Data Set

Inequality (7) might suggest a simple procedure for estimating βn: (i) Compute
̂Y = AS(X). (ii) Set X′ = X, hold out sample xi from X′, and compute ̂Y′ =
AS\i(X′), and set Bi = |n−1�(X, ̂Y)− (n− 1)−1�(X′, ̂Y′)|. (iii) Repeat step (ii)
n times to obtain {B1 . . . , Bn}, and then set set ̂βn = max{B1 . . . , Bn}. The
problem with this procedure is three–fold. First, note that in the finite sample
setting, Inequality (7) cannot be evaluated for ∀S ∈ X n as required in Inequality
(6). Note also that the sample maximum is a noisy estimate, and hence is not
reliable. Second, the LOO estimate suggested above is computationally expensive
since it requires invoking A for n times. Third, using all X to learn ̂Y will not
reflect A’s sensitivity to the randomness in the data. If A easily gets stuck in
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local minima, or A has tendency to overfit the data, learning using all X will
obscure such traits.

Our proposed procedure for estimating βn, depicted in Algorithm 1, addresses
the above issues in the following ways. First it is based on repeated random sub-
sampling (with replacement) from the original data set S, similar in spirit to
bootstrapping [10]. Second, for each subsample of size nt, the procedure obtains
an estimate for the empirical loss before and after holding out one random sam-
ple. After repeating this subsampling process m times, m � n, the procedure
obtains one estimate for βn, denoted by ̂βnt

, for sample size nt. Note that ̂βnt

is the median of Bj ’s to increase the robustness of the estimate. This process is
repeated τ times and the final output of Algorithm 1 is the set of ̂βnt

’s for the
increasing values of nt.

The proposed procedure is computationally intensive, yet it is efficient, scal-
able, and provides control over the accuracy of the estimates. First, note that the
proposed procedure is not affected by the fact that A is an unsupervised learning
algorithm. If A is a supervised learning algorithm, then assessing its generaliza-
tion through uniform β–stability results will still require 2τm calls for A, as it is
the case for the unsupervised setting discussed here. Thus, the procedure does
not impose a computational overhead given the absence of the expected output,
and the black box assumption on A. Second, considering scalability for large
data sets, the procedure can be fully parallelized on multiple core architectures
and computing clusters [13]. Note that in each iteration j the processing steps
for each subsample are independent from all other iterations, and hence all m
subsamples can be processed in an embarrassingly parallel manner. Note also
that in each iteration, AS(Xj) and AS\i(X′

j) can also be executed in parallel.
Parameters m and size of the subsamples, n1, n2, . . . ,nτ , control the tradeoff

between computational efficiency and estimation accuracy. These parameters are
user–specified and they depend on the data and problem in hand, its size n, A’s
complexity, and the available computational resources. Parameter m needs to be
sufficient to reduce the variance in {R1, . . . , Rm} and {R′

1, . . . , R
′
m}. However,

increasing m beyond a certain value will not increase the accuracy of the esti-
mated empirical loss. Reducing the variance in {R1, . . . , Rm} and {R′

1, . . . , R
′
m},

in turn, encourages reducing the variance in {B1, . . . , Bm}. Note that for any
random variable Z with mean μ, median ν, and variance σ2, then |μ − ν| ≤ σ
with probability one. Therefore, in practice, increasing m encourages reducing
the variance in Bj ’s thereby reducing the difference |̂βnt

−E(Bj)|. Observe that
the operator maxi=1,...,nt

defined ∀S ∈ X nt in (6) is now replaced with the
estimate ̂βnt

.

3.2 The Trend of ̂βn and The Stability Line

The output of Algorithm 1 is the set B of estimated ̂βnt
’s for the increasing

values of nt. In order to assess the stability of A, we need to observe whether
̂βnt

= κ
nt

, for some constant κ > 0. As an example, Figure 1 shows the trend

of ̂βn for k–Means clustering and principal component analysis (PCA) on two
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Fig. 1. Left: Two synthetic data sets, (a) two normally distributed clouds of points
with equal variance and equal priors, and (d) two moons data points with equal priors.

Middle: The estimated ̂βn (blue circles) from Algorithm 1 for k–Means clustering on
the two synthetic data sets. The fitted stability lines are shown in magenta. The slope
of the stability lines is indicated by w. Right: The estimated ̂βn and stability lines for
PCA on the two synthetic data sets. The dispersion of ̂βn’s around the stability line
is reflected in the norm of the residuals for the stability line (not displayed). Note the
difference in the dispersion of points around the stability line for k–Means and PCA.
Note also that the more structure in the two moons data set is reflected in a smaller w

(compared to w for the tow Gaussians) for both algorithms.

synthetic toy data sets. The blue circles in the middle and right figures are the
estimated ̂βn from Algorithm 1.5 Observe that ̂βn is decreasing as n is increasing.

To formally detect and quantify this decrease, a line is fitted to the estimated
̂βn (shown in magenta); i.e. β(nt) = wnt+ζ, where w is the slope of the line, and
ζ is the intercept. We call this line, the Stability Line. The slope of the stability
line indicates its steepness which is an esimtate for the decreasing rate of βn. For
stable algorithms, w < 0, and |w| indicates the stability degree of the algorithm.
Note that w = tan θ, where θ is the angle between the stability line and the
5 In these experiments, m = 100, and n1, n2, . . . , nτ were set to

0.5n, 0.51n, . . . , 0.99n, n. The loss � for k–Means is the sum of L1 distances
between each point and its nearest centre, and for PCA, � = tr(C), where C is the
data’s sample covariance matrix.
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abscissa, and −π
2 < θ < π

2 . For 0 ≤ θ < π
2 , A is not stable. For −π

2 < θ < 0, if θ
is approaching 0, then A is a less stable algorithm, while if θ is approaching −π

2 ,
then A is a more stable algorithm. Observe that in this setting, β is a function
of n and w, and hence it can be denoted by β(n,w). Plugging β(n,w) in the
inequalities of Corollary 1, we get that:

(i) R(AS) ≤ ̂REMP(AS) + 2(wn + ζ) + [4n(wn + ζ) + c]

√

log(1/δ)
2n

, (8)

(ii) R(AS) ≤ ̂RLOO(AS) + (wn + ζ) + [4n(wn + ζ) + c]

√

log(1/δ)
2n

. (9)

That is, the steeper is the stability line (w < 0), the more tight is the confidence
bound. Figure 2 shows other examples for stability lines on the synthetic data
sets (Gaussians and Moons) using Laplacian eigenmaps (LEM) [4], and Local
Linear Embedding (LLE) [19]. The generalization assessment is based on the
Laplacian matrix L for LEM, and the weighted affinity matrix W for LLE. In
particular, the loss for LEM is � = tr(LL�), while for LLE, � = tr(WW�).

3.3 Comparing Two Algorithms: A1 vs. A2

The previous generalization assessment procedure only considered one algorithm.
Here we propose an extension for the above procedure to compare the general-
ization of two unsupervised learning algorithms, A1 and A2, under the same loss
�, on a given data source. More specifically, the comparative setting addresses
the following questions: if A1 is stable with respect to � on S (according to Def-
inition 2), and if A2 is stable with respect to � on S (according to Definition 2),
which algorithm has better generalization on S? The following definition gives
a formal answer to these questions.

Definition 3 (Comparing A1 vs. A2 ). Let A1 be a stable algorithm with
respect to � on S with slope w1 < 0 for its stability line. Let A2 be a stable
algorithm with respect to � on S with slope w2 < 0 for its stability line. We say
that:

1. A1 is similar to A2, denoted A1 = A2, if w1 ≈ w2.6

2. A1 is better than A2, denoted by A1 � A2, if w1 < w2.
3. A1 is worse than A2, denoted A1 ≺ A2, if w1 > w2.

To develop a formal procedure for such an assessment we proceed by letting
Algorithm 1 invoke the two algorithms A1 and A2 on the same subsamples
{X1, . . . ,Xm} and {X′

1, . . . ,X
′
m}. The final output of Algorithm 1 will be two

sets B1 = {̂β1
n1

, . . . , ̂β1
nτ

}, and B2 = {̂β2
n1

, . . . , ̂β2
nτ

}. The analysis then proceeds
by fitting the stability line for each algorithm, plotting the curves shown in
Figures 1 and 2, and then comparing the slopes of both algorithms. Formal

6 This is done using hypothesis testing for the equality of slopes – See Appendix for
details.
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Fig. 2. First Column: Generalization assessment for LEM on two Gaussians (a,c) and
two moons (e,g), with different number of nearest neighbours (nn) for constructing the
data’s neighbourhood graph. Compare the slopes (w) for the stability lines and the
dispersion of points around it, and note the sensitivity of LEM to the number of nn.
The same follows for the two moons case (e,g). Note also the difference in the stability

lines (slope, and dispersion of estimated ̂βn’s) for LEM and PCA on the same data
sets. Second Column: Generalization assessment for LLE on two Gaussians (b,d)
and two moons (f,h) data sets, with different number of nn.
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Fig. 3. Generalization assessment for k–Means clustering using stability analysis on
four real data sets: (a) Faces AR, (b) Faces CMUPIE, (c) Coil20, and (d) UCI MFeat.

comparison for the slopes w1 and w2 is done using hypothesis testing for the
equality of slopes:

H0 : w1 = w2 vs. H1 : w1 �= w2.

If H0 is rejected at a significance level α (usually 0.05 or 0.01), then deciding
which algorithm has better generalization can be done using rules 2 and 3 in the
above definition. If H0 cannot be rejected at the desired significance level, then
both algorithms have a similar generalization capability. Further insight can be
gained through the norm of the residuals, and the spread of the estimated ̂βn’s
around the stability line.

4 Empirical Validation on Real Data Sets

We have conducted some initial validation tests for the proposed generaliza-
tion assessment framework. In these experiments, we considered two different
unsupervised learning problems: clustering and dimensionality reduction (lin-
ear and nonlinear). In particular, we considered the following algorithms: k–
Means for clustering, PCA for linear dimensionality reduction, and LEM and
LLE for nonlinear dimensionality reduction (NLDR). The four algorithms were
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run on four data sets from different domains: (i) two faces data sets, AR and
CMUPIE with (samples × features) 3236 × 2900, and 2509 × 2900, respectively.
(ii) two image features data sets, Coil20 and Multiple Features (MFeat) with
(samples × features) 1440 × 1024, and 2000 × 649, respectively, from the UCI
Repository for Machine Learning [18].7 In all these experiments, the number
of bootstraps m was set to 100, and the values for n1, n2, . . . , nτ were set to
0.5n, 0.51n, 0.52n, . . . , 0.99n, n, where n is the original size of the data set.

To apply the proposed generalization assessment, an external loss � needs
to be defined for each problem. k–Means minimizes the sum of L2 distances
between each point and its nearest cluster centre. Thus, a suitable loss can be
the sum of L1 distances. Note that the number of clusters k is assumed to be
known. Note also that in this setting, for each iteration j in Algorithm 1, the
initial k centres are randomly chosen and they remain unchanged after holding
out the random sample. That is, k–Means starts from the same initial centres
before and after holding out one sample.

For PCA, LEM and LLE, the loss functions are chosen as follows: � = tr(C)
for PCA, � = tr(LL�) for LEM, and � = tr(WW�) for LLE, where C is the
data’s sample covariance matrix, L is the Laplacian matrix defined by LEM,
and W is the weighted affinity matrix defined by LLE. The number of nearest
neighbours for constructing the neighbourhood graph for LEM and LLE was
fixed to 30 to ensure that the neighbourhood graph is connected. Note that we
did not perform any model selection for the number of nearest neighbours to
simplify the experiments and the demonstrations.

4.1 Generalization Assessment of k–Means Clustering

Figure 3 shows the stability lines for k–Means clustering on the four real data
sets used in our experiments. For both faces data sets, AR and CMUPIE, the
stability lines have similar slopes despite the different sample size. However,
the dispersion of points around the stability line is bigger for CMUPIE than
it is for AR. Hypothesis testing for the equality of slopes (at significance level
α = 0.05) did not reject H0 (p–value = 0.92). For Coil20 and UCI Mfeat, the
slopes of stability lines differ by one order of magnitude (despite the different
sample size). Indeed, the hypothesis test in this case rejected H0 with a very
small p–value. Note that the estimated ̂βn’s for the four data sets do not show
a clear trend as is the case for the two Gaussians and the two moons data sets
in Figure 1. This behaviour is expected from k–Means on real high dimensional
data sets, and is in agreement with what is known about its sensitivity to the
initial centres and its convergence to local minima. For a better comparison,
observe the stability lines for PCA on the same data sets in Figures 4 and 5.

7 The AR and CMUPIE face data sets were obtained from http://www.face-rec.org/
databases/.

http://www.face-rec.org/databases/
http://www.face-rec.org/databases/


Generalization in Unsupervised Learning 313

Fig. 4. Generalization assessment for PCA, LEM and LLE using stability analysis on
two faces data sets: AR (a,b,c), and CMUPIE (d,e,f).

4.2 Generalization Assessment of PCA, LEM, and LLE

Figures 4 and 5 show the stability lines for the three dimensionality reduc-
tion algorithms; PCA, LEM and LLE, on the four real data sets used in our
experiments. Note that the magnitude of w for these experiments should not
be surprising given the scale of n and ̂βnt

. It can be seen that PCA shows a
better trend of the estimated ̂βn’s than LEM and LLE (for our choice of fixed
neighbourhood size). This trend shows that PCA has better stability (and hence
better generalization) than LEM and LLE on these data sets. Note that in this
setting, the slope for PCA stability line cannot be compared to that of LEM
(nor LLE) since the loss functions are different. However, we can compare the
slopes for each algorithm stability lines (separately) on the face data sets and
on the features data sets.

Hypothesis testing (α = 0.05) for PCA stability lines on AR and CMUPIE
rejects H0 in favour of H1 with a p–value = 0.0124. For Coil20 and UCI Mfeat,
the test did not reject H0 and the p–value = 0.9. For LEM, the test did not
reject H0 for the slopes of AR and CMUPIE, while it did reject H0 in favour of
H1 for Coil20 and UCI MFeat. A similar behaviour was observed for LLE.

In these experiments and the previous ones on k–Means clustering, note that
no comparison of two algorithms were carried on the same data set. In these
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Fig. 5. Generalization assessment for PCA, LEM and LLE using stability analysis on
Coil20 (a,b,c), and UCI MFeat (d,e,f).

illustrative examples, the generalization of one algorithm was assessed on two
different data sets, following the examples on the synthetic data sets in Figures 1.
Note that this scenario is different from the one described in § 3.3. In the above
experiments, the trend of ̂βnt

, the stability line, the slope w, and the scatter
of points around the stability line, provided a quantitative and a qualitative
evaluation for the generalization capability of k–Means and PCA. However, our
experience suggests that when analyzing the generalization of one algorithm on
two different data sets, hypothesis testing can give more accurate insight if the
sample sizes nt are equal for both data sets since βn is known to decrease as
κ/n, and κ > 0.

5 Concluding Remarks

In this paper we proposed a general criterion for generalization in unsupervised
learning that is analogous to the prediction error in supervised learning. We
also proposed a computationally intensive, yet efficient procedure to realize this
criterion on finite data sets, and extended it for comparing two different algo-
rithms on a common data source. Our preliminary experiments showed that,
for algorithms from three different unsupervised learning problems, the pro-
posed framework provided a unified mechanism and a unified interface to assess
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their generalization capability. This type of analysis suggests further rigorous
assessment of these algorithms, and is encouraging to conduct similar analysis
for other unsupervised learning problems such as density estimation, subspace
clustering, feature learning, and layer wise analysis of deep architectures. Fur-
ther, our framework can be extended to answer model selection questions for
unsupervised learning, or it can be complimentary to exiting methods for model
selection.

Acknowledgments. We would like to thank our Reviewers for their helpful comments
and suggestions, the Alberta Innovates Centre for Machine Learning and NSERC for
their support, and Frank Ferrie for additional computational support at McGill’s Centre
for Intelligent Machines.

Appendix

Hypothesis testing for the equality of slopes w1 and w2 for two regression lines
Y1 = w1X1 + ζ1 and Y2 = w2X2 + ζ2, respectively, proceeds as follows. Let
S1 = {(xi

1, y
i
1)}n1

i=1 and S2 = {(xj
2, y

j
2)}n2

j=1, be the two data sets to be used for
estimating the lines defined by w1 and w2, respectively. Let {ŷ1

1 , . . . , ŷ
n1
1 } and

{ŷ1
2 , . . . , ŷ

n2
2 } be the estimated predictions from each regression line. The null

and alternative hypotheses of the test are:

H0 : w1 = w2 vs. H1 : w1 �= w2.

That is, H0 : w1 − w2 = 0. If H0 is true, then w1 − w2 ∼ G (0, sw1w2), where
sw1w2 is the pooled error variance. Using a t test, we construct the statistic t:

t =
w1 − w2

sw1w2

∼ Tr ,

where Tr is the Student’s t distribution with r degrees of freedom, and r =
n1 + n2 − 4. The pooled error variance is defined as:

sw1w2 =
√

s2w1
+ s2w2

,

where

s2wk
=

ek

σ2
k(nk − 1)

,

ek =
∑nk

i=1(y
i
k − ŷi

k)2/(nk −2), and σ2
k = Var(Xk), which can be replaced by the

sample variance. For significance level α, we compute the probability of observing
the statistic t from Tr given that H0 is true; this is the P value of the test. If
P > α, then H0 cannot be rejected. Otherwise, reject H0 in favour of H1.
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Abstract. With the advance of technology, data are often with mul-
tiple modalities or coming from multiple sources. Multi-view clustering
provides a natural way for generating clusters from such data. Although
multi-view clustering has been successfully applied in many applications,
most of the previous methods assumed the completeness of each view
(i.e., each instance appears in all views). However, in real-world appli-
cations, it is often the case that a number of views are available for
learning but none of them is complete. The incompleteness of all the
views and the number of available views make it difficult to integrate all
the incomplete views and get a better clustering solution. In this paper,
we propose MIC (Multi-Incomplete-view Clustering), an algorithm based
on weighted nonnegative matrix factorization with L2,1 regularization.
The proposed MIC works by learning the latent feature matrices for
all the views and generating a consensus matrix so that the difference
between each view and the consensus is minimized. MIC has several
advantages comparing with other existing methods. First, MIC incorpo-
rates weighted nonnegative matrix factorization, which handles the miss-
ing instances in each incomplete view. Second, MIC uses a co-regularized
approach, which pushes the learned latent feature matrices of all the
views towards a common consensus. By regularizing the disagreement
between the latent feature matrices and the consensus, MIC can be easily
extended to more than two incomplete views. Third, MIC incorporates
L2,1 regularization into the weighted nonnegative matrix factorization,
which makes it robust to noises and outliers. Forth, an iterative optimiza-
tion framework is used in MIC, which is scalable and proved to converge.
Experiments on real datasets demonstrate the advantages of MIC.

1 Introduction

With the advance of technology, real data are often with multiple modalities or
coming from multiple sources. Such data is called multi-view data. Different views
may emphasize different aspects of the data. Integrating multiple views may help
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 318–334, 2015.
DOI: 10.1007/978-3-319-23528-8 20
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improve the clustering performance. For example, one news story may be reported
by different news sources, user group can be formed based on users’ profiles, user’s
online social connections, users’ transaction history or users’ credit score in online
shopping recommendation system, one patient can be diagnosed with a certain dis-
ease based on different measures, including clinical, imaging, immunologic, sero-
logical and cognitive measures. Different from traditional data with a single view,
these multi-view data commonly have the following properties:

1. Each view can have its own feature sets, and each view may emphasize dif-
ferent aspects. Different views share some consistency and complementary
properties. For example, in online shopping recommendation system, user’s
credit score has numerical features while users’ online social connections
provide graph relational features. The credit score emphasizes the credit-
worthiness of the user, while the social connection emphasizes the social life
of the user.

2. Each view may suffer from incompleteness. Due to the nature of the data
or the cost of data collection, each available view may suffer from incom-
pleteness of information. For example, not all the news stories are covered
by all the news sources, i.e., each news source (view) cannot cover all the
news stories. Thus, all the views are incomplete.

3. There may be an arbitrary number of sources. In some applications, the
number of available views may be small, while in other applications, it may
be quite large.

The above properties raise two fundamental challenges for clustering multi-
view data:

1. How to combine various number of views to get better clustering solutions by
exploring the consistency and complementary properties of different views.

2. How to deal with the incompleteness of the views, i.e., how to effectively and
efficiently get better clustering solutions even all of the views are incomplete.

Multi-view clustering [1,7] provides a natural way for generating clusters from
such data. A number of approaches have been proposed for multi-view clustering.
Existing multi-view clustering algorithms can be classified into two categories
according to [28], distributed approaches and centralized approaches. Distributed
approaches, such as [4,15,28] first cluster each view independently from the oth-
ers, using an appropriate single-view algorithm, and then combine the individual
clusterings to produce a final clustering result. Centralized approaches, such as
[1,5,24,38] make use of multiple representations simultaneously to mine hid-
den patterns from the data. In this paper, we mainly focus on the centralized
approaches.

Most of the previous studies on multi-view clustering focus on the first chal-
lenge. They are all based on the assumption that all of the views are complete,
i.e., each instance appears in all views. Few of them addresses how to deal with
the second challenge. Recently, there are several methods working on the incom-
pleteness of the views [26,32,34]. They either require the completeness of at
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least one base view or cannot be easily extended to more than two incomplete
views. However, in real-world applications, it is often the case that more than
two views are available for learning and none of them is complete. For exam-
ple, in document clustering, we can have documents translated into different
languages representing multiple views. However, we may not get all the doc-
uments translated into each language. Another example is medical diagnosis.
Although multiple measurements from a series of medical examinations may be
available for a patient, it is not realistic to have each patient complete all the
potential examinations, which may result in the incompleteness of all the views.
The incompleteness of all the views and the number of available views make it
difficult to directly integrate all the incomplete views and get a better clustering
solution.

In this paper, we propose MIC (Multi-Incomplete-view Clustering) to han-
dle the situation of multiple incomplete views by integrating the joint weighted
nonnegative matrix factorization and L2,1 regularization. Weighted nonnegative
matrix factorization [20] is a weighted version of nonnegative matrix factorization
[25], and has been successfully used in document clustering [35] and recommen-
dation system [16]. L2,1 norm of a matrix was first introduced in [9] as rotational
invariant L1 norm. Because of its robustness to noise and outliers, L2,1 has been
widely used in many areas [11,13,18,21]. By integrating weighted nonnegative
matrix factorization and L2,1 norm, MIC tries to learn a latent subspace where
the features of the same instance from different views will be co-regularized to a
common consensus, while increasing the robustness of the learned latent feature
matrices. The proposed MIC method has several advantages comparing with
other state-of-art methods:

1. MIC incorporates weighted nonnegative matrix factorization, which will han-
dle the missing instances in each incomplete view. A weight matrix for each
incomplete view is introduced to give the missing instances lower weights
than the presented instances in each view.

2. By using a co-regularized approach, MIC pushes the learned latent feature
matrices to a common consensus. Because MIC only regularizes the difference
between the learned latent feature for each view and the consensus, MIC can
be easily extended to more than two incomplete views.

3. MIC incorporates L2,1 norm into the weighted nonnegative matrix factoriza-
tion. L2,1 regularization added to the objective function will keep the learned
latent feature matrices more robust to noises and outliers, which is naturally
perfect for the situation of multiple incomplete views.

4. An iterative optimization framework is used in MIC, which is scalable and
proved to converge.

The rest of this paper is organized as follows. In the next section, nota-
tions and problem formulation are given. The proposed MIC algorithm is then
presented in Section 3. Extensive experimental results and analysis are shown
in Section 4. Related work is given in Section 5 followed by conclusion in
Section 6.
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Table 1. Summary of the Notations

Notation Description

N Total number of instances.

nv Total number of views.

X(i) Data matrix for the i-th view.

di Dimension of features in the i-th view.

M The indicator matrix, where Mi,j = 1 indicates j-th instance appears in i-th view.

W(i) The diagonal instance weight matrix for the i-th view.

U(i) The latent feature matrix for the i-th view.

V(i) The basis matrix for the i-th view.

U∗ The common consensus, latent feature matrix across all the views.

αi Trade-off parameter between reconstruction error and view disagreement for view i.

βi Trade-off parameter between reconstruction error and robustness for view i.

2 Problem Formulation and Backgrounds

In this section, we will briefly describe the problem formulation. Then the back-
ground knowledge on weighted nonnegative matrix factorization will be intro-
duced.

2.1 Problem Formulation

Before we describe the formulation of the problem, we summarize some notations
used in this paper in Table 1. Assume we are given a dataset with N instances
and nv views {X(i), i = 1, 2, ..., nv}, where X(i) ∈ R

N×di represents the dataset
in view i. We define an indicator matrix M ∈ R

nv×N by,

Mi,j =

{

1 if j-th instance is in the i-th view.
0 otherwise.

where each row of M represent the instance presence for one view. Most of
the previous methods on multi-view clustering assume the completeness of all
the views. Every view contains all the instances, i.e., M is an all one matrix,
∑N

j=1 Mi,j = N, i = 1, 2, ..., nv. However, in most real-world situations, one
instance may only appear in some of the views, which may result in the incom-
pleteness of all the views. For each view, the data matrix X(i) will have a number
of rows missing, i.e.,

∑N
j=1 Mi,j < N, i = 1, 2, ..., nv.

Our goal is to cluster all the N instances into K clusters by integrating all
the nv incomplete views.

2.2 Weighted Nonnegative Matrix Factorization

Let X ∈ R
N×M
+ denote the nonnegative data matrix where each row represents

an instance and each column represents one attribute. Weighted nonnegative
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matrix factorization [20] aims to factorize the data matrix X into two nonnega-
tive matrices, while giving different weights to the reconstruction errors of differ-
ent entries. We denote the two nonnegative matrices factors as U ∈ R

N×K
+ and

V ∈ R
M×K
+ . Here K is the desired reduced dimension. To facilitate discussions,

we call U the latent feature matrix and V the basis matrix. The objective func-
tion for general weighted nonnegative matrix factorization can be formulated as
below:

min
U,V

‖W ∗ (X − UVT )‖2F , s.t. U ≥ 0,V ≥ 0, (1)

where ‖.‖F is the Frobenius norm, W ∈ R
N×M is the weight matrix, ∗ is element-

wise production and U ≥ 0,V ≥ 0 represent the constraints that all the matrix
elements are nonnegative.

3 Multi-Incomplete-View Clustering

In this section, we present the Multi-Incomplete-view Clustering (MIC) frame-
work. We model the multi-incomplete-view clustering as a joint weighted non-
negative matrix factorization problem with L2,1 regularization. The proposed
MIC learns the latent feature matrices for each view and pushes them towards
a consensus matrix. Thus, the consensus matrix can be viewed as the shared
latent feature matrix across all the views. In the following, we will first describe
the construction of the objective function for the proposed method and derive
the solution to the optimization problem. Then the whole MIC framework is
presented.

3.1 Objective Function of MIC

Given nv views {X(i) ∈ R
N×di , i = 1, 2, ..., nv}, where each of the views suf-

fers from incompleteness, i.e.,
∑N

j=1 Mi,j < N . With more than two incomplete
views, we cannot directly apply the existing methods to the incomplete data.
One simple solution is to fill the missing instances with average features first, and
then apply the existing multi-view clustering methods. However, this approach
depends on the quality of the filled instances. For small missing percentages, the
quality of the information contained in the filled average features may be good.
However, when the number of missing instance increase, the quality of informa-
tion contained in the filling average features may be bad or even misleading.
Thus, simply filling the missing instance will not solve this problem.

Borrowing the similar idea from weighted NMF, we introduce a diagonal
weight matrix W(i) ∈ R

N×N for each incomplete views i by

W(i)
j,j =

{

1 if i-th view contains j-th instance, i.e., Mj,i = 1.

wi otherwise.
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Note that W(i)
j,j indicates the weight of the j-th instance from view i, and wi is

the weight of the filled average feature instances for view i. In our experiment,
wi is defined as the percentage of the available instances for view i:

wi =

∑N
j=1 Mj,i

N
.

It can be seen, W(i) gives lower weights to the missing instances than the pre-
sented instances in the i-th view. For different views with different incomplete
rates, the weights for missing instances are also different. The diagonal weight
matrices give higher weights to the missing instances from views with lower
incomplete rate.

A simple objective function to combine multiple incomplete views can be:

min
{U(i)},{V(i)}

O =

nv∑
i=1

(‖W(i)(X(i) − U(i)V(i)T )‖2
F s.t. U(i) ≥ 0, V(i) ≥ 0, i = 1, 2, ..., nv,

(2)

where U(i) and V(i) are the latent feature matrix and basis matrix for the i-th
view.

However, Eq. (2) only decomposes the different views independently without
taking advantages of the relationship between the views. In order to make use
of the relation between different views, we push the latent feature matrices for
different views towards a common consensus by adding additional term R to
Eq. (2) to minimize the disagreement between different views and the common
consensus.

min
{U(i)},{V(i)},U∗

nv∑
i=1

(
‖W(i)(X(i) − U(i)V(i)T )‖2

F + αiR(U(i),U∗)
)

s.t. U∗ ≥ 0,U(i) ≥ 0,V(i) ≥ 0, i = 1, 2, ..., nv,

(3)

where U∗ ∈ R
N∗K is the consensus latent feature matrix across all the views,

and αi is the trade-off parameter between reconstruction error and disagreement
between view i and the consensus. In this paper we define R as the square of
Frobenius norm of the weighted difference between the latent feature matrices:

R(U(i),U∗) = ‖W(i)(U(i) − U∗)‖2F .

Additionally, considering the nature of incomplete views, we added L2,1 reg-
ularization into Eq. 3, which is robust to noises and outliers and widely used in
many applications [10,17,37].

Formally, the objective function of MIC is as follows:

min
{U(i)},{V(i)},U∗

O =

nv∑
i=1

(‖W(i)(X(i) − U(i)V(i)T )‖2
F + αi‖W(i)(U(i) − U∗)‖2

F + βi‖U(i)‖2,1)

s.t. U(i) ≥ 0, V(i) ≥ 0, U∗ ≥ 0, i = 1, 2, ..., nv.

(4)
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where βi is the trade-off between robustness and accuracy of reconstruction for
the i-th view, ‖ · ‖2,1 is the L2,1 norm and defined as:

‖U‖2,1 =
N

∑

i=1

(

K
∑

k=1

|Ui,k|2
)1/2

3.2 Optimization

In the following, we give the solution to Eq. 4. For the sake of convenience, we will
see both αi and βi as positive in the derivation, and denote W̃(i) = W(i)TW(i).
As we see, minimizing Eq. 4 is with respect to {U(i)}, {V(i)} and U∗, and we
cannot give a closed-form solution. We propose an alternating scheme to optimize
the objective function. Specifically, the following two steps are repeated until
convergence: (1) fixing {U(i)} and {V(i)}, minimize O over U∗, (2) fixing U∗,
minimize O over {U(i)} and {V(i)}.

Fixing {U(i)} and {V(i)}, minimize O over U∗. With {U(i)} and {V(i)}
fixed, we need to minimize the following objective function:

J (U∗) =
nv
∑

i=1

αi‖W(i)(U(i) − U∗)‖2F s.t. U∗ ≥ 0 (5)

We take the derivative of the objective function J in Eq. 5 over U∗ and set it
to 0:

∂J
∂U∗ =

nv
∑

i=1

2αiW̃(i)U∗ − 2αiW̃(i)U(i) = 0 (6)

Since W̃(i) is a positive diagonal matrix and αi is a positive constant,
∑nv

i=1 αiW̃(i) is invertible. Solving Eq. 6, we have an exact solution for U∗:

U∗ =

(

nv
∑

i=1

αiW̃(i)

)−1 (

nv
∑

i=1

αiW̃(i)U(i)

)

≥ 0 (7)

Fixing U∗, minimize O over {U(i)} and {V(i)}. With U∗ fixed, the com-
putation of U(i) and V(i) does not depend on U(i′) or V(i′), i′ �= i. Thus for each
view i, we need to minimize the following objective function:

min
U(i),V(i)

‖W(i)(X(i) − U(i)V(i)T )‖2
F + αi‖W(i)(U(i) − U∗)‖2

F + βi‖U(i)‖2,1

s.t. U(i) ≥ 0,V(i) ≥ 0

(8)

We will iteratively update U(i) and V(i) using the following multiplicative updat-
ing rules. We repeat the two steps iteratively until the objective function in Eq. 8
converges.
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(1) Fixing U∗ and V(i), minimize O over U(i). For each U(i), we need to
minimize the following objective function:

J (U(i)) = ‖W(i)(X(i) − U(i)V(i)T )‖2
F + αi‖W(i)(U(i) − U∗)‖2

F + βi‖U(i)‖2,1

s.t. U(i) ≥ 0
(9)

The derivative of J (U(i)) with respect to U(i) is

∂J
∂U(i)

= − 2W̃(i)X(i)V(i) + 2W̃(i)U(i)V(i)TV(i) + 2αiW̃(i)U(i) − 2αiW̃(i)U∗ + βiD(i)U(i)

(10)

Here D(i) is a diagonal matrix with the j-th diagonal element given by

D(i)
j,j =

1

‖U(i)
j,: ‖2

, (11)

where U(i)
j,: is the j-th row of matrix U(i), and ‖ · ‖2 is the L2 norm.

Using the Karush-Kuhn-Tucker (KKT) complementary condition [3] for the
nonnegativity of U(i), we get

(−2W̃(i)X(i)V(i) + 2W̃(i)U(i)V(i)TV(i) + 2αiW̃
(i)U(i) − 2αiW̃

(i)U∗ + βiD
(i)U(i))j,kU

(i)
j,k = 0

(12)

Based on this equation, we can derive the updating rule for U(i):

U
(i)
j,k ← U

(i)
j,k

√√√√√√

(
W̃(i)X(i)V(i) + αiW̃(i)U∗

)
j,k(

U(i)V(i)TV(i) + αiW̃(i)U(i) + 0.5βiD(i)U(i)
)
j,k

(13)

(2) Fixing U(i) and U∗, minimize O over V(i). For each V(i),we need to
minimize the following objective function:

J (V(i)) = ‖W(i)(X(i) − U(i)V(i)T )‖2F s.t. V(i) ≥ 0 (14)

The derivative of J (V(i)) with respect to V(i) is

∂L
∂V(i)

=2V(i)U(i)TW̃(i)U(i) − 2X(i)TW̃(i)U(i) (15)

Using the KKT complementary condition for the nonnegativity of V(i), we get

(V(i)U(i)TW̃(i)U(i) − X(i)TW̃(i)U(i))j,kV
(i)
j,k = 0 (16)

Based on this equation, we can derive the updating rule for V(i):

V(i)
j,k ← V(i)

j,k

√

√

√

√

(X(i)TW̃(i)U(i))j,k
(V(i)U(i)TW̃(i)U(i))j,k

(17)
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Algorithm 1. Multi-Incomplete-view Clustering (MIC)

Input: Nonnegative data matrices for incomplete views {X(1),X(2), ...,X(nv)}, indi-
cator matrix M, parameters {α1, α2, ..., αnv , β1, β2, ..., βnv}, number of clusters K.

Output: Basis matrices {V(1),V(2), ...,V(nv)}, latent feature matrices
{U(1),U(2), ...,U(nv)}, consensus matrix U∗ and clustering results.

1: Fill the missing instances in each incomplete view with average feature values.
2: Normalize each view X(i) such that ‖X(i)‖1 = 1.
3: Initialize U(i) and V(i) for 1 ≤ i ≤ nv.
4: repeat
5: Fixing U(i)s and V(i)s, update U∗ by Eq. 7.
6: for i = 1 to nv do
7: repeat
8: Fixing U∗ and V(i), update U(i) by Eq. 13.
9: Fixing U(i) and U∗, update V(i) by Eq. 17.

10: Normalize V(i) and U(i) by Eq. 18.
11: until Eq. 8 converges.
12: end for
13: until Eq. 4 converges.
14: Apply k-means on U∗ to get the clustering result.

It is worth noting that to prevent V(i) from having arbitrarily large values
(which may lead to arbitrarily small values of U(i)), it is common to put a
constraint on each basis matrix V(i) [14], s.t. ‖V(i)

:,k‖1 = 1, ∀ 1 ≤ k ≤ K.
However, the updated V(i) may not satisfy the constraint. We need to normalize
V(i) and change U(i) to make the constraint satisfied and keep the accuracy of
the approximation X(i) ≈ U(i)V(i)T :

V(i) ← V(i)Q(i)−1,U(i) ← U(i)Q(i) (18)

Here, Q(i) is a diagonal matrix with the k-th diagonal element given by Q(i)
k,k =

∑di

j V(i)
j,k.

The whole procedure is summarized in Algorithm 1. We will first fill the
missing instances with average feature values in each incomplete view. Then we
normalize the data and initialize the latent feature matrices and basis matrices.
We apply the iterative alternating optimization procedure until the objective
function converges. k-means is then applied to the learned consensus latent fea-
ture matrix to get the clustering solution.

4 Experiments and Results

4.1 Comparison Methods

We compare the proposed MIC method with several state-of-art methods. The
details of comparison methods are as follows:
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– MIC: MIC is the clustering framework proposed in this paper, which applies
weighted joint nonnegative matrix with L2,1 regularization. If not stated, the
co-regularization parameter set {αi} and the robust parameter set {βi} are
all set to 0.01 for all the views throughout the experiment.

– Concat: Feature concatenation is one straightforward way to integrate all
the views. We first fill the missing instances with the average features for each
view. Then we concatenate the features of all the views, and run k-means
directly on this concatenated view representation.

– MultiNMF: MultiNMF [27] is one of the most recent multi-view clustering
methods based on joint nonnegative matrix factorization. MultiNMF added
constraints to original nonnegative matrix factorization that pushes cluster-
ing solution of each view towards a common consensus.

– ConvexSub: The subspace-based multi-view clustering method developed
by [17]. In the experiments, we set β = 1 for all the views. We run the
ConvexSub method using a range of γ values as in the original paper, and
present the best results obtained.

– PVC: Partial multi-view clustering [26] is one of the state-of-art multi-
view clustering methods, which deals with incomplete views. PVC works by
establishing a latent subspace where the instances corresponding to the same
example in different views are close to each other. In our experiment, we set
the parameter λ to 0.01 as in the original paper.

– CGC: CGC [6] is the most recent work that deals with many-to-many
instance relationship, which can be used in the situation of incomplete views.
In order to run the CGC algorithm, for every pair of incomplete views, we
generate the mapping between the instances that appears in both views. In
the experiment, the parameter λ is set to 1 as in the original paper.

It is worth to note that MultiNMF and ConvexSub are two recent methods for
multi-view clustering. Both of them assumes the completeness of all the available
views. PVC is among the first works that does not assume the completeness of
any view. However, PVC can only works with two incomplete views. For the
sake of comparison, all the views are considered with equivalent importance
in the evaluation of all the multi-view algorithms. The results evaluated by two
metrics, the normalized mutual information (NMI) and the accuracy (AC). Since
we use k-means to get the clustering solution at the end of the algorithm, we
run k-means 20 times and report the average performance.

4.2 Dataset

In this paper, three different real-world datasets are used to evaluate the pro-
posed method MIC. Among the three datasets, the first one is handwritten digit
data, the second one is text data, while the last one is flower image data. The
important statistics of them are summarized in Table 2.

– Handwritten Dutch Digit Recognition (Digit): This data contains
2000 handwritten numerals (“0”-“9”) extracted from a collection of Dutch
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Table 2. Statics of the data

Data size # views # clusters

Digit 2000 5 10

3Sources 416 3 6

Flowers 1360 3 17

Table 3. Incomplete rates for 3Sources
Data V1 V2 V3 size

BBC-Reuters 13.51% 27.76% - 407

BBC-Guardian 12.87% 25.25% - 404

Reuters-Guardian 23.44% 21.35% - 384

3Sources 15.38% 29.33% 27.40% 416

utility maps [12]. The following feature spaces (views) with different vector-
based features are available for the numbers: (1) 76 Fourier coefficients of the
character shapes, (2) 216 profile correlations, (3) 64 Karhunen-Love coeffi-
cients, (4) 240 pixel averages in 2 × 3 windows, (5) 47 Zernike moments. All
these features are conventional vector-based features but in different feature
spaces.

– 3-Source Text data (3Sources)1 It is collected from three online news
sources: BBC, Reuters, and The Guardian, where each news source can be
seen as one view for the news stories. In total there are 948 news articles
covering 416 distinct news stories from the period February to April 2009.
Of these distinct stories, 169 were reported in all three sources, 194 in two
sources, and 53 appeared in a single news source. Each story was manually
annotated with one of the six topical labels: business, entertainment, health,
politics, sport, technology.

– Oxford Flowers Data (Flowers): The Oxford Flower Dataset is composed
of 17 flower categories, with 80 images for each category [30]. Each image is
described by different visual features using color, shape, and texture. In this
paper, we use the χ2 distance matrices for different flower features (color,
shape, texture) as three different views.

Both Digit and Flowers data are complete. We randomly delete instances from
each view to make the views incomplete. To simplify the situation, we delete
the same number of instances for all the views, and run the experiment under
different incomplete percentages from 0% (all the views are complete) to 50% (all
the views have 50% instances missing). It is also worth to note that 3Sources is
naturally incomplete. Also since PVC can only with with two incomplete views,
in order to compare PVC with other methods, we take any two of the three
incomplete views and run experiments on them. We also report the results on
all the three incomplete views. The statistics of 3Sources data are summarized
in Table 3.

4.3 Results

The results for Digit data and Flower data are shown in Figs. 1-4. We report
the results for various incomplete rates (from 0% to 50% with 10% as interval).
Table 4 contains the results for 3Sources data.

1 http://mlg.ucd.ie/datasets/3sources.html

http://mlg.ucd.ie/datasets/3sources.html
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From Figs. 1 and 2 for Digit data, we can see that the proposed MIC method
outperforms all the other methods in all the scenarios, especially for relatively
large incomplete rates (about 12% higher than other methods in NMI and about
20% higher in AC for incomplete rates 30% and 40% ). It is worth to note
that when the incomplete rate is 0, CGC is the second best method in both
NMI and AC, which is very close to MIC. However, as the incomplete rate
increases, the performance of CGC drops quickly. One of the possible reasons
is that CGC works on the similarity matrices/kernels, as the incomplete rate
increases, estimated similarity/kernel matrices are not accurate. Also, as the
incomplete rate increases, fewer instance mappings between views are available.
Combining these two factors, the performance of CGC drops for incomplete
views. We can also observe that for incomplete views (incomplete rate > 0),
multiNMF gives the second best performance (still at lease 5% lower in NMI
and at lease 8% lower in AC).

In Table 4, we can also observe that the proposed method outperforms all
the other methods in both NMI and AC. MultiNMF and ConvexSub perform
the best among the compared techniques.

From Figs. 3 and 4 for Flowers data, we can observe that in most of the
cases, MIC outperforms all the other methods. It is worth to note that when
all the views are complete, the performances of ConvexSub and MultiNMF are
almost the same as MIC. As the incomplete rate increases, MIC starts to show
the advantages over other methods. However, when the incomplete rate is too
large (e.g., 50%), the performance of MIC is almost the same as ConvexSub and
MultiNMF.

4.4 Parameter Study

There are two sets of parameters in the proposed methods: {αi}, trade-off param-
eter between reconstruction error and view disagreement and {βi}, trade-off
parameter between the reconstruction error and robustness. Here we explore the
effects of the view disagreement trade-off parameter and the robust trade-off
parameter to clustering performance. We first fix {βi} to 0.01, run MIC with
various {αi} values (from 10−7 to 100). Then fix {αi} to 0.01, run MIC with
various {βi} values (from 10−7 to 100). Due to the limit of space, we only report
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Table 4. Results on 3Sources Text Data

Methods
BBC-Reuters BBC-Guardian Reuters-Guardian Three-Source
NMI AC NMI AC NMI AC NMI AC

Concat 0.2591 0.3465 0.2526 0.3599 0.2474 0.3633 0.2757 0.3429

ConvexSub 0.3309 0.3913 0.3576 0.4584 0.3450 0.4370 0.3653 0.4504

PVC 0.2931 0.4252 0.2412 0.4334 0.2488 0.4145 – –

CGC 0.2336 0.4167 0.2470 0.3857 0.2682 0.4530 0.2875 0.4279

MultiNMF 0.3687 0.4517 0.3647 0.4693 0.3487 0.4281 0.4131 0.4756

MIC 0.3814 0.4912 0.3813 0.4988 0.3800 0.4612 0.4512 0.5631
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the results on 3Souces data with all the three views in Fig. 5. From Fig. 5, we
can find that MIC achieves stably good performance when αi is around 10−2

and βi is from 10−5 to 10−1.

4.5 Convergence Study

The three updates rules for U∗, {V(i)} and {U(i)} are iterative. In the supple-
mental material, we prove that each update will decrease the value objective
function and the whole process will converge to a local minima solution. Fig. 6
shows the convergence curve together with its performance for Digit data with
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10% incomplete rate and 3Sources data using all the three views. The blue solid
line shows the value of the objective function and the red dashed line indicates
the accuracy of the method. As can be seen, for Digit data, the algorithm will
converge after 30 iterations. For 3Sources data, after less than 10 iterations, the
algorithm will converge.

5 Related Work

There are two areas of related works upon which the proposed model is built.
Multi-view learning [2,22,29], is proposed to learn from instances which have
multiple representations in different feature spaces. Specifically, Multi-view clus-
tering [1,28] is most related to our work. For example, [1] developed and studied
partitioning and agglomerative, hierarchical multi-view clustering algorithms for
text data. [23,24] are among the first works proposed to solve the multi-view
clustering problem via spectral projection. Linked Matrix Factorization [33] is
proposed to explore clustering of a set of entities given multiple graphs. Recently,
[34] proposed a kernel based approach which allows clustering algorithms to be
applicable when there exists at least one complete view with no missing data.
As far as we know, [26,32] are the only two works that do not require the com-
pleteness of any view. However, both of the methods can only work with two
incomplete views.

Nonnegative matrix factorization [25] is the second area that is related to our
work. NMF has been successfully used in unsupervised learning [31,36]. Different
variations were proposed in the last decade. For example, [8] posed a three factor
NMF and added orthogonal constrains for rigorous clustering interpretation. [19]
introduced sparsity constraints on the latent feature matrix, which will give more
sparse latent representations. [20] proposed a weighted version of NMF, which
gives different weights to different entries in the data. Recently, [6,27] propsed to
use NMF to clustering data from multiple views/sources. However, they cannot
deal with multiple incomplete views. The proposed MIC, which uses weighted
joint NMF to handle the incompleteness of the views and maintain the robustness
by introducing the L2,1 regularization.
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6 Conclusion

In this paper, we study the problem of clustering on data with multiple incom-
plete views, where each view suffers from incompleteness of instances. Based on
weighted NMF, the proposed MIC method learns the latent feature matrices
for all the incomplete views and pushes them towards a common consensus. To
achieve the goal, we use a joint weighted NMF algorithm to learn not only the
latent feature matrix for each view but also minimize the disagreement between
the latent feature matrices and the consensus matrix. By giving missing instances
from each view lower weights, MIC minimizes the negative influences from the
missing instances. It also maintains the robustness to noises and outliers by
introducing the L2,1 regularization. Extensive experiments conducted on three
datasets demonstrate the effectiveness of the proposed MIC method on data
with multiple incomplete views comparing with other state-of-art methods.
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24. Kumar, A., Rai, P., Daumé III, H.: Co-regularized multi-view spectral clustering.

In: NIPS, pp. 1413–1421 (2011)
25. Lee, D., Seung, S.: Learning the Parts of Objects by Nonnegative Matrix Factor-

ization. Nature 401, 788–791 (1999)
26. Li, S., Jiang, Y., Zhou, Z.: Partial multi-view clustering. In: AAAI, pp. 1968–1974

(2014)
27. Liu, J., Wang, C., Gao, J., Han, J.: Multi-view clustering via joint nonnegative

matrix factorization. In: SDM (2013)
28. Long, B., Philip, S.Y., (Mark) Zhang, Z.: A general model for multiple view unsu-

pervised learning. In: SDM, pp. 822–833. SIAM (2008)
29. Nigam, K., Ghani, R.: Analyzing the effectiveness and applicability of co-training.

In CIKM, pp. 86–93. ACM, New York (2000)
30. Nilsback, M.-E., Zisserman, A.: A visual vocabulary for flower classification. In:

CVPR, vol. 2, pp. 1447–1454 (2006)
31. Shahnaz, F., Berry, M., Pauca, V.P., Plemmons, R.: Document Clustering Using

Nonnegative Matrix Factorization. Information Processing & Management 42(2),
373–386 (2006)

32. Shao, W., Shi, X., Yu, P.: Clustering on multiple incomplete datasets via collective
kernel learning. In: ICDM (2013)

33. Tang, W., Lu, Z., Dhillon, I.S.: Clustering with multiple graphs. In: ICDM, Miami,
Florida, USA, pp. 1016–1021, December 2009
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Abstract. We are working with a company on a hard industrial opti-
misation problem: a version of the well-known Cutting Stock Problem in
which a paper mill must cut rolls of paper following certain cutting pat-
terns to meet customer demands. In our problem each roll to be cut may
have a different size, the cutting patterns are semi-automated so that we
have only indirect control over them via a list of continuous parameters
called a request, and there are multiple mills each able to use only one
request. We solve the problem using a combination of machine learning
and optimisation techniques. First we approximate the distribution of
cutting patterns via Monte Carlo simulation. Secondly we cover the dis-
tribution by applying a k-medoids algorithm. Thirdly we use the results
to build an ILP model which is then solved.

1 Introduction

The Cutting Stock Problem (CSP) [1] is a well-known NP-complete optimization
problem in Operations Research. It arises from many applications in industry
and a standard application is a paper mill. The mill produces rolls of paper of
a fixed width, but its customers require rolls of a lesser width. The problem is
to decide how many original rolls to make, and how to cut them, in order to
meet customer demands. Typically, the objective is to minimise waste, which
is leftover rolls or pieces of rolls. The problem can be modelled and solved by
Integer Linear Programming (ILP), and for large instances column generation
can be used.

We are working with a company on an industrial project and have encoun-
tered a hard optimisation problem. The application is commercially sensitive so
we cannot divulge details, but the problem can be considered as a variant of the
CSP. (We shall refer to “rolls” and “paper mills” but in fact the problem origi-
nates from another industry.) In this CSP variant, the choice of cutting pattern
is semi-automated so the user has only partial control over it via a “request”. A
request is a vector of continuous variables so there are infinitely many possibil-
ities, and their effect on the choice is complex. There are multiple paper mills,
and each can use only one request. The rolls made by the mills are of different
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 335–347, 2015.
DOI: 10.1007/978-3-319-23528-8 21
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sizes even before they are cut. For each mill, either all or none of its rolls are cut.
There are also demands to be met and costs to be minimised. For this paper the
interest is in the application of machine learning techniques (multivariate dis-
tribution approximation and cluster analysis) to reduce this infinite nonlinear
problem to a finite linear problem that can be solved by standard optimisation
methods.

This paper is structured as follows. First, in Section 2 the cutting stock
problem is described. Second, in Section 3, we define the framework associated
with the extra difficult cutting stock problem treated in this paper. We also
propose an Integer Linear Program for this problem in Section 4, and give a
brief overview of an alternative metaheuristic approach. The machine learning
approach presented for the problem is described in Section 5. The approaches
are evaluated with a real-life application in Section 6. Finally, the conclusions
are commented in Section 7.

2 Cutting Stock Problems

The cutting stock problem is a well-known optimisation problem that is often
modelled as an ILP:

minimise
n

∑

i=1

cixi

s.t.
n

∑

i=1

aijxi ≥ dj ∀j ∈ M,∀xi ∈ N (1)

where M is the set of roll types and dj is the demand for type j. There are n
cutting patterns and x is a vector of decision variables which state how many
times each pattern is used. The number of rolls of type j generated by pattern i
is aij . The objective function is to minimize the total cost, where ci is the cost
associated with pattern i. The costs depend on the specifications of the problem.
For instance, for some problems, such as the model described above, the costs
are associated with the patterns used (e.g. some cutting machines incur certain
cost), while for other problems the costs are associated with the amount of left-
over material (typically called waste if it can not be sold in future orders), etc.
For a literature review of cutting stock problems we recommend [2].

Variants of the CSP have been studied. The above problem is one-dimensional
but two or three dimensions might be necessary [3]. The problem might be multi-
stage, involving further processing after cutting [4], or might be combined with
other problems, e.g. [5]. Additional constraints might be imposed because of user
requirements. Widths might be continuous though restricted to certain ranges
of values.

3 Problem Formalization

As mentioned above, our CSP problem has several extra difficulties from the
standard CSP which makes it hard to model and solve. Instead of rolls of a fixed
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original size which we can generate at will, we have a fixed number r = 1 . . . R of
rolls (possibly several hundred) each with its own dimensions σr ∈ S; the details
of S are confidential and unimportant here, but it involves continuous values. The
cutting patterns are vectors p ∈ N

m of m integer variables, describing how many
rolls of each of the m widths is cut from the original roll. However, we cannot
directly choose the cutting pattern because the choice is semi-automated. We
have only limited control over it via a request v which is a vector of n continuous
variables (m and n might be different but are typically less than 20). Each vi is
restricted to the interval [0, 1] and each vector is of length 1:

n
∑

i=1

v2
i = 1

A request v and a roll r are passed to an algorithm A which uses v and
σr to select a cutting pattern p. Considering the algorithm as a function
A : [0, 1]n × S → N

m, experiments reveal it to be quite a complex (nonlin-
ear and discrete) function. We make no assumptions about the form of A (which
is also confidential) and treat it as a black box. Unlike the standard CSP we have
several paper mills j = 1 . . . J (J might be as large as several hundred) each with
its own set of R rolls (R might be different for each mill but we ignore this to
simplify the description). For each mill, either all its rolls are cut into smaller
rolls using the same request, or none of them are. Thus the rolls are partitioned
into sets, each of which is treated as a unit and cut using the same request,
though not necessarily the same cutting pattern. Finally, each mill’s set of rolls
has an intrinsic value Vj and we would like to satisfy demands using low-value
rolls (in order to save the most valuable resources for future demands).

In summary, our problem is as follows. Given customer demand d ∈ N
m for

the m different roll sizes, we must select a subset of the mills with minimum total
value, and a request vj for each mill j, so that demand is met. This is an infinite
nonlinear optimisation problem which we call the Continuous Semi-Automated
Weighted Cutting Stock Problem (CSAWCSP):

minimize
∑

j

Vjbj

s.t.
J

∑

j=1

R
∑

r=1

bjA(vj , σr) ≥ d (2)

bj ∈ {0, 1} ∀j (3)
vj ∈ [0, 1]n ∀j (4)

where bj is a binary variable that is set to one iff mill j’s rolls are cut.
This problem is very hard to solve because there are infinite number of possi-

ble requests vj , and because A is not a simple function. A metaheuristic approach
is possible, searching in the space of bj and vj variable assignments with

∑

j Vjbj
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as the objective function and penalizing constraint violations, but in experiments
this gave poor results. Instead we would like to transform the problem to make
it solvable (at least approximately) by a standard method such as ILP.

Another possibility is to combine a metaheuristic approach with the ILP.
First, the metaheuristic algorithm searches in the space of vj for each j roll with
the objective function of maximizing the similarity of the percentages of products
of the pattern analyzed (A(vj , σr)) with respect to the percentages of demanded
products (d). When the stopping criterion of the metahuristic has been reached
(e.g. cut-off time), the best pattern found for each roll is provided to the ILP
model. For implementing such approach, we used the metaheuristic introduced in
[6], which is a Simulated Annealing Like Algorithm (SALA) called the Threshold
Accepting Algorithm (TA) [7]. This metaheuristic algorithm iteratively generates
new requests that are mapped by the non-linear function A into patterns. The
objective function is to maximize the similarity of the percentages of product
types obtained by a pattern with respect the percentages demanded. The results
obtained with such technique were very poor: the ILP models of most of the
instances evaluated in Section 6 did not have solutions (because the sum of
all the unique patterns associated to each roll j did not satisfy the demand of
at least one type of product); and for those few instances with solutions, their
quality was far below that of the solutions found with our technique.

4 ILP Model for the CSAWCSP

To make the problem amenable to an ILP approach we reduce the infinite set of
possible requests vj to a representative finite set of requests ujk (k = 1 . . . K)
for each mill j (we assume the same K for each mill to simplify the notation).
We then precompute the total number of each roll size obtained for request k
and mill j over all its rolls, storing the results in vectors of integer constants
cjk =

∑R
r=1 A(ujk, σr) (∀j, k). This eliminates the complexity of A and the

infinite choice of requests, and we can now model the CSAWCSP as an ILP:

minimize
∑

j

Vjbj

s.t.
K

∑

k=1

xjk = bj ∀j (5)

J
∑

j=1

K
∑

k=1

cjkxjk ≥ d (6)

bj , xjk ∈ {0, 1} ∀j, k (7)

where bj = 1 indicates that all mill j’s rolls are cut, and xjk = 1 indicates that
they are cut using request k. If mill j is not selected then bj = 0 which forces
xjk = 0 for k = 1 . . . K.
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This ILP can be solved by standard optimisation software. But to make this
approach practical we must first select a finite set of requests ujk that adequately
covers all possible requests. More precisely, the possible sets of cut rolls cjk must
be adequately covered. This requires the generation of a finite set of vectors that
approximately cover an unknown multivariate probability distribution.

5 Machine Learning Approach for the CSAWCSP

In this section we explain our approach to the problem of covering the unknown
multivariate distribution in the CSAWCSP. An illustration of our approach is
shown in Figure 1.

In scatter plot (a) the circle represents the hypersphere of possible requests
v, with a small random number of them selected shown as dots. Plot (b) shows
the result of applying algorithm A to a mill’s rolls using the different v, to obtain
a small set of c vectors. The space of c vectors might have a very different shape
to that of the v, as shown. As a consequence, a small random set of v might
correspond to a very non-random small set of c vectors, showing the inadequacy
of merely sampling a few requests.

Instead we sample a large number of v as shown in plot (c), with their corre-
sponding c shown in plot (d): this represents the use of Monte Carlo simulation
to approximate the distribution of the c. We then select a small number of c
via a k-medoids algorithm to approximately cover the estimated distribution,
highlighted in plot (f). Finally we use a record of which v corresponds to which
c to derive the non-random set of v highlighted in plot (e). Next we describe
these phases of our approach in more detail.

5.1 Distribution Learning

Given a number of samples drawn from a distribution, the goal of distribution
learning is to find the distribution from which the samples have been drawn
with a high degree of certainty. Let Dn be a particular distribution class, and let
D ∈ Dn be a distribution which has a support S, i.e. S is the range over which
D is defined. To represent the probability distribution D over S, let GD be a
generator for D [10]. GD is called a generator because, given a random input
y, GD simulates sampling from the distribution D and outputs an observation
GD[y] ∈ S.

Given independent random samples from D, as well as confidence and approx-
imation parameters δ and ε respectively, the goal of any learning algorithm is to
output an approximate distribution D′ with a probability δ in polynomial time.
The distance between this approximate distribution and the original distribution
is d(D,D′), and can be measured in several ways. These include the Kolmogorov
distance (from the Kolmogorov-Smirnoff test) [11], the Total Variation distance
[12], and the Kullback-Leibler divergence [13]. When d(D,D′) ≤ ε, GD is called
an ε-good generator.



340 S.D. Prestwich et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Illustration of our approach
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For our problem it is necessary to understand the relationship between the
requests v and the corresponding vectors c which state how many of each roll is
produced. Once this is known, given a set of demands for each of the different
rolls, the requests required to produce the best cutting patterns for each roll
can be determined. As the algorithm A is complex it is necessary to learn its
distribution. A acts as the generator GD.

We approximated the distribution of A’s output using Monte Carlo sampling,
by generating a large number of random request vectors v and obtaining corre-
sponding vectors c. To avoid bias we generated v by uniform sampling from a
vector space, as opposed to simply randomising each component of v.

5.2 Generating Uniformly Distributed Random Vectors

To generate a random vector Y that is uniformly distributed over an irregular
n-dimensional region G, an acceptance-rejection method may be used [14].

For a regular region W , where W may be multidimensional in nature, we
first of all generate a random vector X, which is uniformly distributed in W . If
X ∈ G, we accept Y = X as the random vector uniformly distributed over G.
Otherwise, we reject X, and generate a new random vector. In the case when G
is an n-dimensional unit ball, i.e.

G =

{

x :
∑

i

x2
i ≤ 1

}

(8)

we generate a uniformly distributed random vector X = (X1,X2, . . . , Xn)T ,
and we accept X if it falls inside the n-ball. If it does not then X is rejected,
otherwise it is projected onto the hypersphere. The algorithm used for this is
taken from [9] and is described below.

Algorithm 1. Random Vector Generation
1. Generate n random variables U1, . . . , Un as iid variables from U(0, 1).
2. Set X1 = 1 − 2U1, . . . , Xn = 1 − 2Un and R =

∑n
i=1 X

2
i

3. If R ≤ 1, accept X = (X1, . . . , Xn)T as the desired vector; otherwise go to Step 1.

Using Algorithm 1, we generated a large number of request vectors v which
were then passed to A, together with σr (∀r ∈ R). A then returned the same
number of cutting pattern vectors c. For our problem this large number of pat-
terns must be reduced to a smaller number. To do this, we used another well-
known machine learning technique called k-medoids clustering.

5.3 k-Medoids Clustering

The k-medoids algorithm is a clustering algorithm used for partitioning a data
set X into K homogeneous groups or clusters, i.e. C = {C1, C2, ..., CK} [15].
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Unlike the k-means algorithm, partitioning is done around medoids (or exem-
plars) rather than centroids. This is vital for our problem because we require
a small set of c that are each generated from some known v. A medoid mk is
a data point in a cluster Ck which is most similar to all other points in that
cluster.

A k-medoids algorithm seeks to minimize the function

K
∑

k=1

∑

i∈Ck

d (xi,mk) (9)

where d (xi,mk) is a distance metric measuring the dissimilarity between data
entity xi and the medoid mk of the cluster [15]. Commonly used distance metrics
are the Manhattan distance or Euclidean distance [16] and we use the latter.
The most common algorithm for k-medoid clustering is the Partitioning Around
Medoids (PAM) algorithm [15], presented at a high level in Algorithm 2.

Algorithm 2. Partitioning Around Medoids (PAM)
1. Select k out of n data entities as initial medoids m1,m2, ...mk.
2. Assign each data entity xi ∈ X to cluster Ck of the closest medoid mk as determined

by d (xi,mk).
3. For each medoid mk, select a non-medoid yi and swap yi for mk.
4. Calculate the distance d (xi,mk)
5. Select the configuration with the lowest value of d (xi,mk).
6. Repeat steps 2 to 5 until the lowest possible value of d (xi,mk) has been found

with final medoids m′
1,m

′
2, ...m

′
k.

For very large datasets the CLARA algorithm, which is a combination of
PAM and random sampling, is commonly used [17,18]. The speedup by CLARA
over PAM is achieved by analysing data subsets of fixed size, which has the
effect of making both computational and storage complexity linear, as opposed
to quadratic [17,19]. The steps for CLARA are outlined in Algorithm 3 below.

Once the large set of cutting patterns c has been reduced to a much smaller
representative set c′, we can now solve an approximation to the hard cutting
stock problem using ILP.

6 Emprirical Study

For empirically studying our approach, we have compared the solutions obtained
by our approach for a certain range of k medoids with respect the lower optimal-
ity bounds (explained below) of several instances. For such purpose we used real
data from our industrial partner. The total volume of the raw material analyzed
is 1191.3m3 for 8 mills (J = 8) with each mill’s rolls partitioned into a maximum
of 4 different types of products. We generated and solved 20 instances of ran-
dom demands in a 2.3 GHz Intel Core i7 processor. Monte Carlo simulation and
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Algorithm 3. Clustering LARge Applications (CLARA)
1. Randomly choose a number p of sub-datasets of fixed size from the large dataset

X.
2. Partition each sub-dataset into k clusters using the PAM algorithm, getting a set

M = {m1,m2, ...,mk} of k medoids.
3. Associate each data entity xi of the original large dataset to its nearest medoid

mk.
4. Calculate the mean of the dissimilarities of the observations to their closest medoid

using:

MeanDistance(M,X) =

∑n
i=1 d (xi, rep (M,xi))

|X| (10)

where:
d(xi, xj) is the dissimilarity between two data points xi and xj ,
rep(M,xi) returns the closest medoid mk to xi from the set M , and
|X| is the number of items in X.

5. Repeat steps 1 to 4 q times, selecting the set of medoids M ′ = {m′
1,m

′
2, ...m

′
k}

with the minimum MeanDistance(M,X).

clustering were done in Java and R (using the CLARA algorithm) respectively
on a 3.0 GHz Intel Xeon Processor with 8 GB of RAM. For solving the integer
linear programming model, we used the CPLEX 12.6 solver with a time cut-off
of 1 hour.

To approximate the unknown multivariate distribution, we generated 10, 000
random request vectors for each mill. Then, we obtained the same number of
corresponding cutting patterns by applying the algorithm A (see Section 3). For
8 mills, this process resulted in total of 80, 000 cutting patterns. The total time
required for generating all the cutting patterns was 2 hours and 30 minutes. Note
that, in time-sensitive applications, a lower number of random cutting patterns
could be generated to reduce this overhead. Next we applied k-medoids clustering
to cover the distribution.

For evaluating the effect of the number of medoids used to cover the dis-
tribution, we varied k from 25 to 200 in steps of 25 units. The time taken to
generate the clusters can be found in Table 1. In addition, Figure 2 shows the
total clustering times (for all the mills). Note that the clustering times increase
exponentially from 40.54 seconds for k = 25, to 2, 651.08 seconds (∼ 44 min-
utes) for k = 200. Thus for real-life problems it is very important to make an
appropriate selection of the parameter k (especially in on-line applications).

Once all the medoids were obtained we used them as input parameters for the
ILP model (see Section 4). Then we solved the 20 instances of random demands.
Furthermore, we also applied a relaxed ILP model with the objective of calculat-
ing the lower bound of optimality of the instances analyzed. In this variation, we
consider feasible any linear combination of cutting patterns. However, it might
occur that the combination selected is not feasible for the real life problem. For
this reason, this measurement is a lower bound of optimality, since in the lat-
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Table 1. Clustering times.

Time (sec)

Mill k = 25 k = 50 k = 75 k = 100 k = 125 k = 150 k = 175 k = 200

0 5.13 14.47 31.40 56.80 107.00 158.85 229.90 310.47
1 4.94 15.68 35.66 59.88 95.85 156.30 234.19 313.49
2 4.99 14.62 27.59 56.59 94.38 154.96 235.22 313.99
3 5.06 17.59 36.63 62.06 102.29 167.75 266.71 356.86
4 5.17 16.04 33.82 60.64 99.78 164.89 240.40 331.72
5 5.43 16.83 33.04 63.48 95.85 171.37 255.47 351.97
6 4.99 15.77 33.21 61.18 98.10 163.63 241.04 327.87
7 4.83 16.27 34.37 67.03 95.04 168.46 251.94 344.71

Total Time 40.54 127.27 265.72 487.66 788.29 1306.23 1954.87 2651.08

Fig. 2. Total clustering times.

ter case, the optimal solution is greater than this bound. The lower optimality
bound is very useful since it allows us to stop the search for a better solution
once we have reached such bound (since it can be ensured that this is the optimal
solution). For this reason, we incorporated such lower optimality bound in the
model solved by CPLEX.

Figure 3 shows the percentage difference between the solutions obtained with
our approach and the lower optimality bound. It can be observed that as k
increases, the percentage difference decreases, following an exponential inverse
function. This suggest that increasing the medoids is more effective when the
original medoids are fewer. Furthermore, it can be observed that there is a “sat-
uration” point in which it is not possible to further improve the quality of the
solutions. For this instance, the saturation point is located approximately at
k = 125 since higher values of k provide almost the same results. For this rea-
son, for these instances, the best option is to select k = 125, since it is not
worth it to spend more time computing higher k values. Note that for this case,
the difference in percentage with the lower optimality bound is ∼ 0.4%, which
indicates that we succeeded in finding optimal and close-optimal solutions.
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We also would like to comment how these percentages differences are trans-
lated into economical earnings. On average, for these instance, the raw material
that was required to satisfy the demands when using k = 25 was almost AC 800
more expensive than when using k = 125. Needless to mention, the benefits in
the real life application that will involve to use the approach presented in this
paper with a great enough value of k.

Fig. 3. Percentage Optimality Difference

In Table 2 and Figure 4 we show the mean times for solving the 20 instances
for the interval of values of k selected. Note that these times also increase in a
non-linear fashion, from a solution time of 1.506 seconds for k = 25 to 407.475
seconds (∼ 7 minutes) for k = 200. We would like to point out that there is a
correlation with the saturation point in the optimality with respect the satura-
tion point in the computation times for solving the ILP model. Note that for
higher values of k = 125, the increment of computation time is little appreciable.

Table 2. Mean ILP solution times.

k Average Time (sec)

25 1.506
50 188.454
75 369.16
100 240.120
125 410.091
150 398.914
175 411.180
200 407.475
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Fig. 4. Mean ILP solution times (logarithmic scale of base 10).

7 Conclusions and Future Work

In this paper, we combined two well-known machine learning techniques to solve
a hard optimisation problem. This problem, which we called the CSAWCSP,
arose from a real-world application and is a more complicated variant of the tra-
ditional CSP. We used Monte Carlo simulation to approximate an unknown mul-
tivariate distribution. We generated a large number of random request vectors,
which were then provided to an algorithm in order to generate a corresponding
number of cutting patterns. Subsequently, we applied k-medoids clustering to
cover the distribution.

To study the effect of the number of medoids on the solution, we increased
k steadily, and observed that there is a particular value of k (saturation point)
above which, no improvements to the solution could be made. In this way, we
succeeded in finding optimal and close-optimal solutions for the type of cut-
ting stock problem analyzed in this paper. Regarding the computation time,
we observed that linear increases in the value of k led to exponential increases
in clustering time, and that for values above the k saturation point, the ILP
solution times were relatively constant.

In the future, we aim to improve the sampling approach in order to reduce the
number of request vectors needed to be generated. Furthermore, we intend to use
an adaptive clustering, which might be more effective in reducing the clustering
time. By applying these two new improvements, we expect to reduce computation
times. This will be especially beneficial for on-line real-life applications.
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Abstract. The importance of Markov blanket discovery algorithms is
twofold: as the main building block in constraint-based structure learn-
ing of Bayesian network algorithms and as a technique to derive the
optimal set of features in filter feature selection approaches. Equally,
learning from partially labelled data is a crucial and demanding area of
machine learning, and extending techniques from fully to partially super-
vised scenarios is a challenging problem. While there are many different
algorithms to derive the Markov blanket of fully supervised nodes, the
partially-labelled problem is far more challenging, and there is a lack of
principled approaches in the literature. Our work derives a generaliza-
tion of the conditional tests of independence for partially labelled binary
target variables, which can handle the two main partially labelled scenar-
ios: positive-unlabelled and semi-supervised. The result is a significantly
deeper understanding of how to control false negative errors in Markov
Blanket discovery procedures and how unlabelled data can help.

Keywords: Markov blanket discovery · Partially labelled · Positive
unlabelled · Semi supervised · Mutual information

1 Introduction

Markov Blanket (MB) is an important concept that links two of the main activ-
ities of machine learning: dimensionality reduction and learning. Using Pellet
& Elisseef’s [15] wording “Feature selection and causal structure learning are
related by a common concept: the Markov blanket.”

Koller & Sahami [10] showed that the MB of a target variable is the optimal
set of features for prediction. In this context discovering MB can be useful for
eliminating irrelevant features or features that are redundant in the context
of others, and as a result plays a fundamental role in filter feature selection.
Furthermore, Markov blankets are important in learning Bayesian networks [14],
and can also play an important role in causal structure learning [15].

In most real world applications, it is easier and cheaper to collect unlabelled
examples than labelled ones, so transferring techniques from fully to partial-
labelled datasets is a key challenge. Our work shows how we can recover the
MB around partially labelled targets. Since the main building block of the MB

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 351–366, 2015.
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discovery algorithms is the conditional test of independence, we will present a
method to apply this test despite the partial labelling and how we can use the
unlabelled examples in an informative way.

Section 4 explores the scenario of positive-unlabelled data. This is a special
case of partially-labelling, where we have few labelled examples only from the
positive class and a vast amount of unlabelled examples. Section 5 extends our
work to semi-supervised data, where the labelled set contains examples from both
classes. Finally, Section 6 presents a semi-supervised scenario that can occur in
real world, the class prior change scenario, and shows how our approach performs
better than the state of the art 1.

Before the formal presentation of the background material (Sections 2 and
3) we will motivate our work with a toy Bayesian network presented in Figure
1. The MB of the target variable Y is the feature set that contains the parents
(X4 and X5), children (X9 and X10) and spouses (X7 and X8, which are other
parents of a child of Y ) of the target. There exist many techniques to derive
MB by using fully-supervised datasets, Figure 1a. But our work will focus on
partially labelled scenarios where we have the values of Y only for a small subset
of examples, Figure 1b, while all the other variables are completely observed.
We will suggest ways to derive the MB by controlling the two possible errors in
the discovery procedure:
Falsely adding variables to the predicted Markov blanket: for example

assuming that the variable X11 belongs to MB.
Falsely not adding variables to the predicted Markov blanket: for

example assuming the variable X4 does not belong to MB.

2 Background: Markov Blanket

In this section we will introduce the notation and the background material on
Markov blanket discovery algorithms. Assuming that we have a binary classifi-
cation dataset D = {(xi, yi)|i = 1, ..., N}, where the target variable Y takes the
value y+ when the example is positive, and y− when the example is negative.
The feature vector x = [x1...xd] is a realization of the d-dimensional joint ran-
dom variable X = X1...Xd. With a slight abuse of notation, in the rest of our
work, we interchange the symbol for a set of variables and for their joint random
variable. Following Pearl [14] we have the following definitions.

Definition 1 (Markov blanket — Markov boundary).
The Markov blanket of the target Y is a set of features XMB with the property
Y ⊥⊥ Z|XMB for every Z ⊆ X\XMB. A set is called Markov boundary if it is a
minimal Markov blanket, i.e. non of its subsets is a Markov blanket.

In probabilistic graphical models terminology, the target variable Y becomes
conditionally independent from the rest of the graph X\XMB given its Markov
blanket XMB.
1 Matlab code and the supplementary material with all the proofs are available in

www.cs.man.ac.uk/∼gbrown/partiallylabelled/.

www.cs.man.ac.uk/~gbrown/partiallylabelled/
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X

(a) MB in fully supervised target

X0 X0 X0 X1 X0 X2 X0

X3 X0 X4 X0 X5 X0 X6

X0 X7 X0 1Y1 X0 X8 X0

X0 X0 X9 X0 X10 X0 X0

X0 X0 X0 X11 X0 X0 X0

X0

(b) MB in partially labelled target

Fig. 1. Toy Markov blanket example where: white nodes represent the target variable,
black ones the features that belong to the MB of the target and grey ones the features
that do not belong to the MB. In 1a we know the value of the target over all examples,
while in 1b the target is partially observed (dashed circle) meaning that we know its
value only in a small subset of the examples.

Learning the Markov blanket for each variable of the dataset, or in other
words inferring the local structure, can naturally lead to causal structure learning
[15]. Apart from playing a huge role in structure learning of a Bayesian network,
Markov blanket is also related to another important machine learning activity:
feature selection.

Koller & Sahami [10] published the first work about the optimality of Markov
blanket in the context of feature selection. Recently, Brown et al. [5] introduced a
unifying probabilistic framework and showed that many heuristically suggested
feature selection criteria, including Markov blanket discovery algorithms, can
be seen as iterative maximizers of a clearly specified objective function: the
conditional likelihood of the training examples.

2.1 Markov Blanket Discovery Algorithms

Margaritis & Thrun [12] introduced the first theoretically sound algorithm for
Markov blanket discovery, the Grow-Shrink (GS) algorithm. This algorithm con-
sists of two-stages: growing where we add features to the Candidate Markov
Blanket (CMB) set until the point that the remaining features are independent
with the target given the candidate blanket, and shrinkage, where we remove
potential false positives from the CMB. Tsamardinos & Aliferis [21] suggested
an improved version to this approach, the Incremental Association Markov Blan-
ket (IAMB), which can be seen in Algorithm 1. Many measures of association
have been used to decide which feature will be added in the candidate blanket
during the growing phase (Alg. 1 - Line 4), with the main being the conditional
mutual information [17]. But, Yaramakala & Margaritis [23] suggested the use
of the significance of the conditional test of independence, which is more appro-
priate in statistical terms than the raw conditional mutual information value.
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Algorithm 1. Incremental Association Markov Blanket (IAMB)
Input : Target Y , Features X = X1...Xd, Significance level α
Output: Markov Blanket: XCMB

1 Phase I: forward — growing
2 XCMB = ∅
3 while XCMB has changed do
4 Find X ∈ X\XCMB most strongly related with Y given XCMB

5 if X⊥⊥Y |XCMB using significance level α then
6 Add X to XCMB

7 end

8 end
9 Phase II: backward — shrinkage

10 foreach X ∈ XCMB do
11 if X ⊥⊥ Y |XCMB\X using significance level α then
12 Remove X from XCMB

13 end

14 end

Finally, there is another class of algorithms that try to control the size of con-
ditioning test in a two-phase procedure: firstly identify parent-children, then
identify spouses. The most representative algorithms are the HITON [2] and
the Max-Min Markov Blanket (MMMB) [22]. All of these algorithms assume
faithfulness of the data distribution. As we already saw, in all Markov blanket
discovery algorithms, the conditional test of independence (Alg. 1 - Line 5 and
11) plays a crucial role, and this is the focus of the next paragraph.

2.2 Testing Conditional Independence in Categorical Data

IAMB needs to test the conditional independence of X and Y given a subset of
features Z, where in Line 5 Z = XCMB while in Line 11 Z = XCMB\X. In fully
observed categorical data we can use the G-test, a generalised likelihood ratio
test, where the test statistic can be calculated from sample data counts arranged
in a contingency table [1].

G-statistic: We denote by Ox,y,z the observed count of the number of times
the random variable X takes on the value x from its alphabet X , Y takes on y ∈
Y and Z takes on z ∈ Z, where z is a vector of values when we condition on more
than one variable. Furthermore denote by Ox,.,z, O.,y,z and O.,.,z the marginal
counts. The estimated expected frequency of (x, y, z), assuming X,Y are condi-
tional independent given Z , is given by Ex,y,z = Ox,.,zO.,y,z

O.,.,z
= p̂(x|z)p̂(y|z)O.,.,z.

To calculate the G-statistic we use the following formula:

̂G-statistic = 2
∑

x,y,z

Ox,y,z ln
Ox,y,z

Ex,y,z
= 2

∑

x,y,z

Ox,y,z ln
O.,.,zOx,y,z

Ox,.,zO.,y,z
= (1)

= 2N
∑

x,y,z

p̂(x, y, z) ln
p̂(x, y|z)

p̂(x|z)p̂(y|z)
= 2N ̂I(X;Y |Z), (2)



Markov Blanket Discovery in Positive-Unlabelled and Semi-supervised Data 355

where ̂I(X;Y |Z) is the maximum likelihood estimator of the conditional mutual
information between X and Y given Z [8].

Hypothesis Testing Procedure: Under the null hypothesis that X and Y are
statistically independent given Z, the G-statistic is known to be asymptotically
χ2-distributed, with ν = (|X | − 1)(|Y| − 1)|Z| degrees of freedom [1]. Know-
ing that and using (2) we can calculate the p̂XY |Z value as 1 − F ( ̂G), where F

is the CDF of the χ2-distribution and ̂G the observed value of the G-statistic.
The p-value represents the probability of obtaining a test statistic equal or more
extreme than the observed one, given that the null hypothesis holds. After cal-
culating this value, we check to see whether it exceeds a significance level α. If
pXY |Z ≤ α, we reject the null hypothesis, otherwise we fail to reject it. This is
the procedure that we follow to take the decision in Lines 5 and 11 of the IAMB
algorithm 1. Furthermore, to choose the most strongly related feature in Line 4,
we evaluate the p-values and choose the feature with the smaller one.

Different Types of Error: Following this testing procedure, two possible types
of error can occur. The significance level α defines the probability of Type I
error or False Positive rate, that the test will reject the null hypothesis when
the null hypothesis is in fact true. While the probability of Type II error or False
Negative rate, which is denoted by β, is the probability that the test will fail to
reject the null hypothesis when the alternative hypothesis is true and there is
an actual effect in our data. Type II error is closely related with the concept of
statistical power of a test, which is the probability that the test will reject the
null hypothesis when the alternative hypothesis is true, i.e. power = 1 − β.

Power Analysis: With such a test, it is common to perform an a-priori power
analysis [7], where we would take a given sample size N, a required significance
level α, an effect size ω, and would then compute the power of the statistical test
to detect the given effect size. In order to do this we need a test statistic with
a known distribution under the alternative hypothesis. Under the alternative
hypothesis (i.e. when X and Y are dependent given Z), the G-statistic has a
large-sample non-central χ2 distribution [1, Section16.3.5]. The non-centrality
parameter (λ) of this distribution has the same form as the G-statistic, but
with sample values replaced by population values, λ = 2NI(X;Y |Z). The effect
size of the G-test can be naturally expressed as a function of the conditional
mutual information, since according to Cohen [7] the effect size (ω) is the square
root of the non-centrality parameter divided by the sample, thus we have ω =
√

2I(X;Y |Z).

Sample Size Determination: One important usage of a-priori power analy-
sis is sample size determination. In this prospective procedure we specify the
probability of Type I error (e.g. α = 0.05), the desired probability of Type II
error (e.g. β = 0.01 or power = 0.99) and the desired effect size that we want to
observe, and we can determine the minimum number of examples (N) that we
need to detect that effect.
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2.3 Suggested Approach for Semi-supervised MB Discovery

To the best of our knowledge, there is only one algorithm to derive the MB
of semi-supervised targets: BASSUM (BAyesian Semi-SUpervised Method) [6].
BASSUM follows the HITON approach, finding firstly the parent-child nodes
and then the spouses, and tries to take into account both labelled and unla-
belled data. BASSUM makes the “traditional semi-supervised” assumption that
the labelled set is an unbiased sample of the overall population, and it uses the
unlabelled examples in order to improve the reliability of the conditional inde-
pendence tests. For example to estimate the G-statistic, in equation (1), it uses
both labelled and unlabelled data for the observed counts O.,.,z and Ox,.,z. This
technique is known in statistics as available case analysis or pairwise deletion,
and is affected by the ambiguity over the definition of the overall sample size,
which is crucial for deriving standard errors and the sampling distributions (the
reader can find more details on this issue in Allison [3, page8]). This can lead to
unpredictable results, for example there are no guarantees that the G-statistic
will follow χ2 distribution after this substitution. Another weakness of BAS-
SUM is that it cannot be applied in partially labelled environments where we
have the restriction that the labelled examples come only from one class, such as
the positive-unlabelled data. In order to explore the Markov blanket of this type
of data we should explore how to test conditional independence in this scenario
and this is the focus of Section 4. Before that, we will formally introduce the
partially-labelled data in the following section.

3 Background: Partially-Labelled Data

In this section we will give the background for the two partially-labelled problems
on which we will focus: positive-unlabelled and semi-supervised.

3.1 Positive-Unlabelled Data

Positive-Unlabelled (PU) data refers to situations where we have a small number
of labelled examples from the positive class, and a large number of entirely unla-
belled examples, which could be either positive or negative. For reasoning over
PU data we will follow the formal framework of Elkan & Noto [9]. Assume that
a dataset D is drawn i.i.d. from the joint distribution p(X, Y, SP ), where X and
Y are random variables describing the feature set and the target variable, while
SP is a further random variable with possible values ‘s+P ’ and ‘s−

P ’, indicating
if the positive example is labelled (s+P ) or not (s−

P ). We sample a total number
of N examples out of which NS+

P
are labelled as positives. Thus p(x|s+P ) is the

probability of X taking the value x from its alphabet X conditioned on the
labelled set. In this context, Elkan & Noto formalise the selected completely at
random assumption, stating that the examples for the labelled set are selected
completely at random from all the positive examples:

p(s+P |x, y+) = p(s+P |y+) ∀ x ∈ X . (3)
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Building upon this assumption, Sechidis et al. [19] proved that we can test
independence between a feature X and the unobservable variable Y, by simply
testing the independence between X and the observable variable SP , which can
be seen as a surrogate version of Y. While this assumption is sufficient for testing
independence and guarantees the same probability of false positives, it leads to
a less powerful test, and the probability of committing a false negative error is
increased by a factor which can be calculated using prior knowledge over p(y+).
With our current work we extend this approach to test conditional independence.

3.2 Semi-supervised Data

Semi-Supervised (SS) data refer to situations where we have a small number of
labelled examples from both classes and a large number of unlabelled examples.
For reasoning over semi-supervised data we will follow the formal framework of
Smith & Elkan [20]. Assuming that the dataset is drawn i.i.d. from the joint
distribution p(X, Y, S), where S describes whether an example is labelled (s+)
or not (s−). We sample a total number of N examples out of which NS+ are
labelled as positive or negative. Smith & Elkan [20] presented the “traditional
semi-supervised” scenario, where the labels are missing completely at random
(MCAR), so the labelled set is an unbiased sample of the population. But apart
from this traditional scenario, there are many alternative scenarios that can lead
to semi-supervised data [20]. In our work, we will focus on the scenario where
labelling an example is conditionally independent of the features given the class:

p(s+|x, y) = p(s+|y) ∀ x ∈ X , y ∈ Y. (4)

This assumption can be seen as a straightforward extension of the selected com-
pletely at random assumption in the semi-supervised scenario, and it is fol-
lowed in numerous semi-supervised works [11,16,18]. A practical application
where we can use this assumption is in class-prior-change scenario [16], which
occurs when the class balance in the labelled set does not reflect the popula-
tion class balance. This sampling bias is created because the labels are missing
not at random (MNAR), and the missingness mechanism depends directly on
the class. The “traditional semi-supervised” assumption is as a restricted ver-
sion of the assumption described in equation (4), when we furthermore assume
p(s+|y) = p(s+) ∀ y ∈ Y.

4 Markov Blanket Discovery in Positive-Unlabelled Data

In this section we present a novel methodology for testing conditional indepen-
dence in PU data. We will then see how we can use this methodology to derive
Markov blanket despite the labelling restriction.

4.1 Testing Conditional Independence in PU Data

With the following theorem we prove that a valid approach to test conditional
independence is to assume all unlabelled examples to be negative and as a result
use the surrogate variable SP instead of the unobservable Y.
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Theorem 1 (Testing conditional independence in PU data).
In the positive unlabelled scenario, under the selected completely at random
assumption, a variable X is independent of the class label Y given a subset
of features Z if and only if X is independent of SP given Z, so it holds:

X ⊥⊥ Y |Z ⇔ X ⊥⊥ SP |Z.

The proof of the theorem is available in the supplementary material. Now we
will verify the consequences of this theorem in the context of Markov blanket
discovery. We use four widely used networks; Appendix A contains all details on
data generation and on the experimental protocol. For these networks we know
the true Markov blankets and we compare them with the discovered blankets
through the IAMB algorithm. As we observe from Figure 2 using SP instead of
Y in the IAMB algorithm does not result to a statistical significant difference
in the false positive rate, or in Markov blanket terminology the blankets derived
from these two approaches are similar in terms of the variables that were falsely
added to the blanket.
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(a) N = 2000, p(s+P ) = 0.05
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(b) N = 5000, p(s+P ) = 0.05

Fig. 2. Verification of Theorem 1. This illustrates the average number of variables
falsely added in MB and the 95% confidence intervals over 10 trials when we use
IAMB with Y and SP . 2a for total sample size N = 2000 out of which we label only
100 positive examples and 2b for total sample size N = 5000 out of which we label
only 250 positives.

But, while Theorem 1 tells us that the probability of committing an error is
the same for the two tests G(X;Y |Z) and G(X;SP |Z) when X ⊥⊥ Y |Z, it does
not say anything about the performance of these tests when the variables are
conditionally dependent. In this case, we should compare the power of the tests,
and in order to do so we should explore the non-centrality parameters of the two
conditional G-tests of independence.

Theorem 2 (Power of PU conditional test of independence).
In the positive unlabelled scenario, under the selected completely at random
assumption, when a variable X is dependent on the class label Y given a subset
of features Z, X⊥⊥Y |Z, we have: I(X;Y |Z) > I(X;SP |Z).
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While with the following theorem we will quantify the amount of power that we
are loosing with the naive assumption of all unlabelled examples being negative.

Theorem 3 (Correction factor for PU test).
The non-centrality parameter of the conditional G-test between X and SP given
a subset of features Z takes the form:

λG(X;SP |Z) = κPλG(X;Y |Z) = κP 2NI(X;Y |Z),

where κP = 1−p(y+)
p(y+)

p(s+P )

1−p(s+P )
= 1−p(y+)

p(y+)

N
S
+
P

N−N
S
+
P

.

The proofs of the last two theorems are also available in the supplementary
material. So, by using prior knowledge over the p(y+) we can use the naive test
for sample size determination, and decide the amount of data that we need in
order to have similar performance with the unobservable fully supervised test.
Now we will illustrate the last theorems again in the context of MB discovery.
A direct consequence of Theorem 2 is that using SP instead of Y results in a
higher number of false negative errors. In the MB discovery context this will
result in a larger number of variables falsely not added to the predicted blanket,
since we assumed that the variables were independent when in fact they were
dependent. In order to verify experimentally this conclusion we will compare
again the discovered blankets by using SP instead of Y. As we see in Figure
3, the number of variables that were falsely not added is higher when we are
using SP . This Figure also verifies Theorem 3, where we see that the number of
variables falsely removed when using the naive test G(X;SP |Z) with increased
sample size N/κP is the same as when using the unobservable test G(X;Y |Z)
with N data.

(a) N = 2000, p(s+P ) = 0.05 (b) N = 5000, p(s+P ) = 0.05

Fig. 3. Verification of Theorems 2 and 3. This illustrates the average number of vari-
ables falsely not added to the MB and the 95% confidence intervals over 10 trials when
we use IAMB with Y and SP . 3a for total sample size N = 2000 and 3b for total sample
size N = 5000. In all the scenarios we label 5% of the total examples as positives.
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4.2 Evaluation of Markov Blanket Discovery in PU Data

For an overall evaluation of the derived blankets using SP instead of Y we will use
the F -measure, which is the harmonic mean of precision and recall, against the
ground truth [17]. In Figure 4, we observe that the assumption of all unlabelled
examples to be negative gives worse results than the fully-supervised scenario,
and that the difference between the two approaches gets smaller as we increase
sample size. Furthermore, using the correction factor κP to increase the sample
size of the naive approach makes the two techniques perform similar.

(a) N = 2000, p(s+P ) = 0.05 (b) N = 5000, p(s+P ) = 0.05

Fig. 4. Comparing the performance in terms of F -measure when we use IAMB with
Y and SP . 4a for total sample size N = 2000 and 4b for total sample size N = 5000.
In all the scenarios we label 5% of the total examples as positives.

5 Markov Blanket Discovery in Semi-supervised Data

In this section we will present two informative ways, in terms of power, to test
conditional independence in semi-supervised data. Then we will suggest an algo-
rithm for Markov blanket discovery where we will incorporate prior knowledge
to choose the optimal way for testing conditional independence.

5.1 Testing Conditional Independence in Semi-supervised Data

We will introduce two variables in the semi-supervised scenario, which can be
seen as noisy versions of the unobservable random variable Y. The first one is
SP , which we already used in the PU scenario, and is a binary random variable
that takes the value s+P when a positive example is labelled, and s−

P in any other
case. The second variable is SN , which is also a binary random variable that
takes the value s+N when a negative example is labelled and s−

N otherwise. Using
these two variables, the selected completely at random assumptions described in
equation (4) can be written as:

p(s+P |x, y+) = p(s+P |y+) and p(s+N |x, y−) = p(s+N |y−) ∀ x ∈ X .
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So, using SP instead of Y is equivalent to making the assumption that all unla-
belled examples are negative, as we did in the positive-unlabelled scenario, while
using SN instead of Y is equivalent to assuming all unlabelled examples being
positive. In this section we will prove the versions of the three theorems we
presented earlier for both variables SP and SN in the semi-supervised scenario.

Firstly we will show that testing conditional independence by assuming the
unlabelled examples to be either positive or negative is a valid approach.

Theorem 4 (Testing conditional independence in SS data).
In the semi-supervised scenario, under the selected completely at random assump-
tion, a variable X is independent of the class label Y given a subset of features
Z if and only if X is independent of SP given Z and the same result holds for
SN : X ⊥⊥ Y |Z ⇔ X ⊥⊥ SP |Z and X ⊥⊥ Y |Z ⇔ X ⊥⊥ SN |Z.

Proof. Since the selected completely at random assumption holds for both
classes, this theorem is a direct consequence of Theorem 1.

The consequence of this assumption is that the derived conditional tests of inde-
pendence are less powerful that the unobservable fully supervised test, as we
prove with the following theorem.

Theorem 5 (Power of the SS conditional tests of independence).
In the semi-supervised scenario, under the selected completely at random assump-
tion, when a variable X is dependent of the class label Y given a subset of features
Z, X⊥⊥Y |Z, we have: I(X;Y |Z) > I(X;SP |Z) and I(X;Y |Z) > I(X;SN |Z).

Proof. Since the selected completely at random assumption holds for both
classes, this theorem is a direct consequence of Theorem 2.

Finally, with the following theorem we can quantify the amount of power that
we are loosing by assuming that the unlabelled examples are negative (i.e. using
SP ) or positive (i.e. using SN ).

Theorem 6 (Correction factors for SS tests).
The non-centrality parameter of the conditional G-test can take the form:

λG(X;SP |Z) = κPλG(X;Y |Z) = κP 2NI(X;Y |Z) and

λG(X;SN |Z) = κNλG(X;Y |Z) = κN2NI(X;Y |Z),

where κP = 1−p(y+)
p(y+)

p(s+P )

1−p(s+P )
and κN = p(y+)

1−p(y+)

p(s+N )

1−p(s+N )
.

Proof. Since the selected completely at random assumption holds for both
classes, this theorem is a direct consequence of Theorem 3.
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5.2 Incorporating Prior Knowledge on Markov Blanket Discovery

Since using SP or SN are both valid approaches it is preferable to use the most
powerful test. In order to do so, we can use some “soft” prior knowledge over
the probability p(y+)2. We call it “soft” because there is no need to know the
exact value, but we only need to know if it is greater or smaller than a quantity
calculated from the observed dataset. The following corollary gives more details.

Corollary 1 (Incorporating prior knowledge).
In order to have the smallest number of falsely missing variables from the Markov
Blanket we should use SP instead of SN , when the following inequality holds

κP > κN ⇔ p(y+) <
1

1 +
√

(1−p(s+P ))p(s+N )

p(s+P )(1−p(s+N ))

.

When the opposing inequality holds the most powerful choice is SN . When equal-
ity holds, both approaches are equivalent.

We can estimate p(s+P ) and p(s+N ) from the observed data, and, using
some prior knowledge over p(y+), we can decide the most powerful option. In
Figure 5 we compare in terms of F -measure the derived Markov blankets when
we use the most powerful and the least powerful choice. As we observe by incor-
porating prior knowledge as Corollary 1 describes, choosing to test with the most
powerful option, results in remarkably better performance than with the least
powerful option.
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Fig. 5. Comparing the performance in terms of F -measure when we use the unob-
servable variable Y and the most and least powerful choice between SP and SN . 5a
for sample size N = 2000 out of which we label only 100 positive and 100 negative
examples and 5b for sample size N = 5000 out of which we label only 250 positive and
250 negative examples.

2 When the labelling depends directly in the class, eq. (4), we cannot have an unbiased
estimator for this probability without further assumptions, more details in [16].
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6 Exploring our Framework Under Class Prior Change
— When and how the Unlabelled Data Help

In this section, we will present how our approach performs in a real world prob-
lem where the class balance in the labelled set does not reflect the balance over
the overall population; such situation is known as class-prior-change [16]. We
compare our framework with the following two approaches: ignoring the unla-
belled examples, a procedure known in statistic as listwise deletion [3], or using
the unlabelled data to have more reliable estimates for the marginal counts of
the features, a procedure known in statistics as available case analysis or pair-
wise deletion [3]. The latter is followed in BASSUM [6]; Section 2.3 gives more
details about this approach and its limitations.

Firstly, let’s assume that the semi-supervised data are generated under the
“traditional semi-supervised” scenario, where the labelled set is an unbiased
sample from the overall population. As a result, the class-ratio in the labelled
set is the same to the population class-ratio. In mathematical notation it holds
p(y+|s+)
p(y−|s+) = p(y+)

p(y−) , where the lhs is the class-ratio in the labelled set and in rhs the
population class-ratio. As we observe in Figure 6, choosing the most powerful
option between SP and SN performs similarly with ignoring completely the
unlabelled examples. As it was expected, using the semi-supervised data with
pairwise deletion has unpredictable performance and often performs much worse
than using only the labelled examples.
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Fig. 6. Traditional semi-supervised scenario. Comparing the performance in terms of
F -measure when we have the same class-ratio in the labelled-set as in the overall
population. 6a for sample size N = 2000 out of which we label only 200 examples and
6b N = 5000 out of which we label only 250 examples.

Now, let’s assume we have semi-supervised data under the class-prior-change
scenario (for more details see Section 3.2). In our simulation we sample the
labelled data in order to have a class ratio in the labelled set inverse than the
population ratio. In mathematical notation it holds p(y+|s+)

p(y−|s+) =
(

p(y+)
p(y−)

)−1

, where
the lhs is the class-ratio in the labelled set and in rhs the inverse of the population
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class-ratio. As we observe in Figure 7, choosing the most powerful option between
SP and SN performs statistically better than ignoring the unlabelled examples.
Our approach performs better on average than the pairwise deletion, while the
latter one performs comparably to the listwise deletion in many settings.
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Fig. 7. Class prior change semi-supervised scenario. Comparing the performance in
terms of F -measure when we have inverse class-ratio in the labelled-set than in the
overall population. 7a for sample size N = 2000 out of which we label only 200 examples
and 7b N = 5000 out of which we label only 250 examples.

Furthermore, our approach can be applied in scenarios where we have labelled
examples only from one class, which cannot be handled with the other two
approaches. Also, with our approach, we can control the power of our tests, which
is not the case in pairwise deletion procedure. To sum up, in class-prior-change
scenarios we can use Corollary 1 and some “soft” prior knowledge over p(y+)
in order to decide which of the following two assumptions is better: to assume
all unlabelled examples are negative (i.e. use SP ) or to assume all unlabelled
examples are positive (i.e. use SN ).

7 Conclusions and Future Work

With our work we derive a generalization of conditional tests of independence for
partially labelled data and we present a framework on how we can use unlabelled
data for discovering Markov blankets around partially labelled target nodes.

In positive-unlabelled data, we proved that assuming all unlabelled examples
are negative is sufficient for testing conditional independence but it will increase
the number of the variables that are falsely missing from the predicted blanket.
Furthermore, with a correction factor, we quantified the amount of power we
are losing by this assumption, and we present how we can take this into account
for adjusting the sample size in order to perform the same as in fully-supervised
scenarios.

Then, we extended our methodology to semi-supervised data, where we can
make two valid assumptions over the unlabelled examples: assume them either
positive or negative. We explored the consequences of these two assumptions
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again in terms of possible errors in Markov blanket discovery procedures, and
we suggested a way to use some “soft” prior knowledge to take the optimal
decision. Finally, we presented a practical semi-supervised scenario in which the
usage of unlabelled examples under our framework proved to be more beneficial
compared to other suggested approaches.

A future research direction could be to explore how we can use our method-
ology for structure learning of Bayesian networks. Since our techniques are infor-
mative in terms of power, they can be used in structure learning approaches that
have control over the false negative rate to prevent over constraint structures; for
example, our framework generalises the work presented by Bacciu et al. [4] for
partially-labelled data. Furthermore, our work for structure learning in partially
labelled data can be used in combination with recently suggested methods for
parameter learning from incomplete data by Mohan et al. [13].

Table 1. A summary of the networks used in the experimental studies

Network
Number of Total number Average MB size Average prior prob.

target nodes of nodes of target nodes p(y+) of target nodes

alarm 5 37 5.6 0.21
insurance 10 27 6.2 0.32

barley 10 48 5.6 0.31
hailfinder 20 56 4.9 0.31

A Generation of Network Data and Experimental
Protocol

The networks used are standard benchmarks for Markov blanket discovery taken
from the Bayesian network repository3. For target variables we used nodes that
have at least one child, one parent and one spouse in their Markov blanket.
Furthermore we chose as positive examples (y+) those examples with class value
1, while the rest of the examples formed the negative set. We also focused in
nodes that had prior probability p(y+) between 0.15 and 0.50, which is an area
of interest for PU data. For the supervised scenarios (i.e. when we used the
variable Y ) we perform 10 trials of size N = 2000 and 5000. For each trial we
sample 30 different partially labelled datasets, and the outcome was the most
frequently derived Markov blanket. For all experiments we fixed the significance
of the tests to be α = 0.10. Table 1 presents the summary of the Networks used
in the current work.
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Abstract. Many real-world datasets are represented by multiple fea-
tures or modalities which often provide compatible and complementary
information to each other. In order to obtain a good data representa-
tion that synthesizes multiple features, researchers have proposed differ-
ent multi-view subspace learning algorithms. Although label information
has been exploited for guiding multi-view subspace learning, previous
approaches either fail to directly capture the semantic relations between
labeled items or unrealistically make Gaussian assumption about data
distribution. In this paper, we propose a new multi-view nonnegative sub-
space learning algorithm called Multi-view Semantic Learning (MvSL).
MvSL tries to capture the semantic structure of multi-view data by a
novel graph embedding framework. The key idea is to let neighboring
intra-class items be near each other while keep nearest inter-class items
away from each other in the learned common subspace across multiple
views. This nonparametric scheme can better model non-Gaussian data.
To assess nearest neighbors in the multi-view context, we develop a mul-
tiple kernel learning method for obtaining an optimal kernel combination
from multiple features. In addition, we encourage each latent dimension
to be associated with a subset of views via sparseness constraints. In
this way, MvSL is able to capture flexible conceptual patterns hidden in
multi-view features. Experiments on two real-world datasets demonstrate
the effectiveness of the proposed algorithm.

Keywords: Multi-view learning · Nonnegative matrix factorization ·
Graph embedding · Multiple kernel lerning · Structured sparsity

1 Introduction

In many real-world data analytic problems, instances are often described with
multiple modalities or views. It becomes natural to integrate multi-view repre-
sentations to obtain better performance than relying on a single view. A good

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 367–382, 2015.
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integration of multi-view features can lead to a more comprehensive descrip-
tion of the data items, which could improve performance of many related
applications.

An emerging area of multi-view learning is multi-view latent subspace learn-
ing, which aims to obtain a compact latent representation by taking advantage
of inherent structure and relation across multiple views. A pioneering technique
in this area is Canonical Correlation Analysis (CCA) [7], which tries to learn
the projections of two views so that the correlation between them is maximized.
Recently, a lot of methods have been applied to multi-view subspace learning,
such as matrix factorization [9], [4], [11], [18], graphical models [3] and spectral
embedding [22].

Matrix factorization techniques have received more and more attention as
fundamental tools for multi-view latent subspace learning. Since a useful repre-
sentation acquired by matrix factorization typically makes latent structure in the
data explicit (through the basis vectors), and usually reduces the dimensionality
of input views, so that further analysis can be effectively and efficiently carried
out. Nonnegative Matrix Factorization (NMF) [13] is an attractive matrix fac-
torization method due to its theoretical interpretation and desired performance.
NMF aims to find two nonnegative matrices (a basis matrix and an encoding
matrix) whose product provides a good approximation to the original matrix.
NMF tries to formulate a feasible model for learning object parts, which is closely
relevant to human perception mechanism. Recently, variants of NMF have been
proposed for multi-view learning [11], [18], [10].

Labeled data has been incorporated to improve NMF’s performance in both
the single view case [16], [21] and the multi-view case [10]. However, there is still
lack of effective methods for learning a common nonnegative latent subspace
which captures the semantic structure of multi-view data through label informa-
tion. Previously, there are mainly two ways to incorporate label information into
the NMF framework. The first one is to reconstruct the label indicator matrix
through multiplying the encoding matrix by a weight matrix [10], [17],[16]. These
methods intrinsically impose indirect affinity constraints on encodings of labeled
items. Nevertheless, such indirect constraints could be insufficient for capturing
the semantic relationships between labeled items. The second one is to regular-
ize the encodings of labeled items by fisher-style discriminative constraints [21],
[25]. Although methods of this kind directly penalize distances among labeled
items in the latent subspace, they assume the data of each class follows a Gaus-
sian distribution. However, in reality this assumption is too restricted since data
often exhibit complex non-Gaussian distribution [2], [24].

In this paper, we propose a novel semi-supervised multi-view representation
(i.e. latent subspace) learning algorithm, namely, Multi-view Semantic Learn-
ing (MvSL), to better capture the semantic structure of multi-view data. MvSL
jointly factorizes data matrices of different views, and each view is factorized
into a basis matrix and an encoding matrix where the encoding matrix is the low
dimensional optimal consensus representation shared by multiple views. We reg-
ularize the encoding matrix by developing a novel graph embedding framework:
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we construct (1) an affinity graph which characterizes the intra-class compact-
ness and connects each data point with its neighboring points of the same class;
(2) a discrimination graph which connects the marginal points and characterizes
the inter-class separability in the learned subspace. This nonparametric scheme
can better capture the complex non-Gaussian distribution of real-world data
[24]. A sub-challenge is how to identify nearest neighbors in the multi-view con-
text. To this end, we develop a new multiple kernel learning algorithm to find
the optimal kernel combination for multi-view features. The algorithm tries to
optimally preserves the semantic relations among labeled items, so that we can
assess within-class variance and between-class similarity effectively. Moreover,
we impose a L1,2 norm regularizer on the basis matrix to encourage some basis
vectors to be zero-valued [9]. In this way, each latent dimension has the flexibility
to be associated with a subset of views, thus enhancing the expressive power of
the model. To solve MvSL, we develop a block coordinate descent [15] optimiza-
tion algorithm. For empirical evaluation, two real-world multi-view datasets are
employed. The encouraging results of MvSL are achieved in comparison with the
state-of-the-art algorithms.

2 Related Work

In this section, we present a brief review of related work about NMF-based
subspace learning. Firstly, we describe the notations used throughout the paper.

2.1 Common Notations

In this paper, vectors and matrices are denoted by lowercase boldface letters
and uppercase boldface letters respectively. For matrix M, we denote its (i, j)-
th element by Mij . The i-th element of a vector b is denoted by bi. Given a set
of N items, we use matrix X ∈ R

M×N
+ to denote the nonnegative data matrix

where the i-th column vector is the feature vector for the i-th item. In the multi-
view setting, we have H views and the data matrix of the v-th view is denoted
by X(v) ∈ R

Mv×N
+ , where Mv is the dimensionality of the v-th view. Throughout

this paper, ‖M‖F denotes the Frobenius norm of matrix M.

2.2 NMF-Based Latent Subspace Learning

NMF is an effective subspace learning method to capture the underlying struc-
ture of the data in the parts-based low dimensional representation space, which
accords with the cognitive process of human brain from the psychological and
physiological studies [13].

Given an input nonnegative data matrix X ∈ R
M×N
+ where each column

represents a data point and each row represents a feature. NMF aims to find
two nonnegative matrices U ∈ R

M×K
+ and V ∈ R

K×N
+ whose product can well

approximate the original data matrix:

X ≈ UV.
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K < min(M,N) denotes the desired reduced dimensionality, and to facilitate
discussion, we call U the basis matrix and V the coefficient matrix.

It is known that the objective function above is not convex in U and V
together, so it is unrealistic to expect an algorithm to find the global minimum.
Lee and Seung [13] presented multiplicative update rules to find the locally
optimal solution as follows:

U t+1
ik =U t

ik

(X(Vt)T )ik

(UtVt(Vt)T )ik

V t+1
kj =V t

kj

((Ut+1)TX)kj

((Ut+1)TUt+1Vt)kj
.

In recent years, many variants of the basic NMF model have been proposed.
We just list a few which are related to our work. One direction related to our
work is coupling label information to NMF [21], [25]. These works added dis-
criminative constraints into NMF via regularizing the encoding matrix V by
fisher-style discriminative constraints. Nevertheless, fisher discriminative analy-
sis assumes data of each class is approximately Gaussian distributed, a property
that cannot always be satisfied in real-world applications. Our method adopts a
nonparametric regularization scheme (i.e. regularization in neighborhoods) and
consequently can better model real-life data. Another related direction of NMF
is sparse NMF [8]. Sparseness constraints not only encourage local and compact
representations, but also improve the stability of the decomposition. Most pre-
vious works on sparse NMF employed L1 norm or ratio between L1 norm and
L2 norm to achieve sparsity on U and V. However, the story for our problem
is different since we have multiple views and the goal is to allow each latent
dimension to be associated with a subset of views. Therefore, L1,2 norm [9] is
used to achieve this goal.

There are also some extensions of NMF for multi-view data, e.g. clustering
[18], image annotation [11], graph regularized multi-view NMF [6] and semi-
supervised learning [10],[17]. Although [10] and [17] also exploited label infor-
mation, they incorporated label information as a factorization constraint on V,
i.e. reconstructing the label indicator matrix through multiplying V by a weight
matrix. Hence, those methods intrinsically imposed indirect affinity constraints
on encodings of labeled items in the latent subspace. On the contrary, our method
directly captures the semantic relationships between items in the latent subspace
through the proposed graph embedding framework. We will compare MvSL with
[10] in experiments.

3 Multi-view Semantic Learning

In this section, we present the proposed Multi-view Semantic Learning (MvSL)
algorithm for latent representation learning from multi-view data.
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3.1 Matrix Factorization with Multi-view Data

The consensus principle is the fundamental principle in multi-view learning
[23]. At first, MvSL jointly factorizes {X(v)}H

v=1 with different basis matrices
{U(v)}H

v=1 and the consensus encoding matrix V [9], [18], [11]:

min
{U(v)}H

v=1,V

1
2

H
∑

v=1

‖X(v) − U(v)V‖2F

s.t. U
(v)
ik ≥ 0, Vkj ≥ 0, ∀i, j, k, v.

(1)

However, the standard unsupervised NMF fails to discover the semantic structure
in the data. In the next, we introduce our graph embedding framework for multi-
view semantic learning.

3.2 Graph Embedding for Multi-view Semantic Learning

Let Vl ∈ R
K×N l

, the first N l columns of V, be the latent representation of
the first N l labeled items and Vu ∈ R

K×Nu

be the latent representation of the
remaining Nu unlabeled items (i.e.V = [Vl Vu]). Inspired by [24], we propose a
graph embedding framework for capturing the semantic structure of multi-view
data. We define an affinity graph Ga and a discrimination graph Gp. The affinity
graph Ga = {Vl,Wa} is an undirected weighted graph with labeled item set Vl

as its vertex set, and similarity matrix Wa ∈ R
N l×N l

which characterizes the
intra-class local similarity structure. The discrimination graph Gp = {Vl,Wp}
characterizes inter-class separability and penalizes the similarity between the
most similar inter-class item pairs in the learned subspace. Let vl

i be the i-th
column of Vl. The graph-preserving criteria are given as follows:

min
Vl

1
2

N l
∑

i=1

N l
∑

j=1

W a
ij‖vl

i − vl
j‖22 = min

Vl

1
2
tr

[

VlLa
(

Vl
)T

]

, (2)

max
Vl

1
2

N l
∑

i=1

N l
∑

j=1

W p
ij‖vl

i − vl
j‖22 = max

Vl

1
2
tr

[

VlLp
(

Vl
)T

]

, (3)

where tr(·) denotes the trace of a matrix, and La = Da−Wa is the graph Lapla-
cian matrix for Ga with the (i, i)-th elements of the diagonal matrix Da equals
∑N l

j=1 W a
ij (Lp is for Gp). Generally speaking, Eq. (2) means items belonging to

the same class should be near each other in the learned latent subspace, while
Eq. (3) tries to keep items from different classes as distant as possible. However,
only with the nonnegative constraints Eq. (3) would diverge. Note that there is
an arbitrary scaling factor in solutions to problem (1): for any invertible K × K
matrix Q, we have U(v)V = (U(v)Q)(Q−1V). Hence, without loss of generality,
we add the constraints {Vkj ≤ 1,∀k, j} to put an upper bound on (3).
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The similarity matrices Wa and Wp are defined as follows

W a
ij =

{

1, if i ∈ Nka
(j) or j ∈ Nka

(i)
0, otherwise , (4)

where Nka
(i) indicates the index set of the ka nearest neighbors of item i in the

same class,

W p
ij =

{

1, if i ∈ Nkp
(j) or j ∈ Nkp

(i)
0, otherwise , (5)

where Nkp
(i) indicates the index set of the kp nearest neighbors of item i in the

distinct classes. We can see from the definitions of Wa and Wp that Ga and
Gp intrinsically preserve item semantic relations in local neighborhoods. This
nonparametric scheme can better handle real-life datasets which often exhibit
non-Gaussian distribution.

The remaining question is how to estimate nearest neighbors, which is a
routine function for constructing Ga and Gp. However, since real-life datasets
could be diverse and noisy, a single feature may not be sufficient to characterize
the affinity relations among items. Hence, we propose to use multiple features
for assessing the similarity between data items. In particular, we develop a novel
Multiple Kernel Learning (MKL) [20],[5] method for this task.

3.2.1 Multiple Kernel Learning
A kernel function measures the similarity between items in terms of one view.
We use Kv(i, j) to denote the kernel value between items i and j in terms of view
v. To make all kernel functions comparable, we normalize each kernel function
into [0, 1] as follows:

Kv(i, j) ← Kv(i, j)
√

Kv(i, i)Kv(j, j)
. (6)

To obtain a comprehensive kernel function, we linearly combine multiple kernels
as follow:

K(i, j,ηηη) =
H

∑

v=1

ηvKv(i, j),
H

∑

v=1

ηv = 1, ηv ≥ 0, (7)

where ηηη = [η1, ..., ηH ]T is the weight vector to be learned. This combined kernel
function can lead to better estimation of similarity among items than any single
kernel. For example, only relying on color information could not handel images of
concept “zebra” well since the background may change arbitrarily, while adding
texture information can better characterize zebra images.

Then we need to design the criterion for learning ηηη. Since our goal is to
model the semantic relations among items, the learned kernel function should
be accommodated to the semantic structure among classes. We define an ideal
kernel to encode the semantic structure:

Kideal(i, j) =
{

1, if yi = yj

0, otherwise , (8)
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where yi denotes the label of item i. For each pair of items, we require its
combined kernel function value to conform to the corresponding ideal kernel
value. This leads to the following least square loss

l(i, j,ηηη) = (K(i, j,ηηη) − Kideal(i, j))2 (9)

Summing l(i, j,ηηη) over all pairs of labeled items, we could get the optimization
objective. However, in reality we would get imbalanced classes: the numbers of
labeled items for different classes can be quite different. The item pairs con-
tributed by classes with much larger number of items will dominate the overall
loss. In order to tackle this issue, we normalize the contribution of each pair of
classes (including same-class pairs) by its number of item pairs. This is equivalent
to multiplying each l(i, j,ηηη) by a weight tij which is defined as follows

tij =

{

1
n2
i
, if yi = yj

1
2ninj

, otherwise
, (10)

where ni denotes the number of items belonging to the class with label yi.
Therefore, the overall loss becomes

∑

i,j tij l(i, j,ηηη). To prevent overfitting, a L2

regularization term is added for ηηη. The final optimization problem is formulated
as

min
ηηη

N l
∑

i,j=1

tij l(i, j,ηηη) + λ‖ηηη‖22

s.t.

H
∑

v=1

ηv = 1, ηv ≥ 0

(11)

where λ is a regularization tradeoff parameter. The optimization problem of (11)
is a classical quadratic programming problem which can be solved efficiently
using any convex programming software. When ηηη is obtained, we could assess
the similarity relationship between labeled items in terms of multi-view features
according to (7). Then, according to Eqs. (4) and (5) we can construct the affinity
matrix Wa and discriminative matrix Wp, respectively.

3.3 Sparseness Constraint

Since similarities among data items belonging to the same class share the same
sparsity pattern, a structured sparseness regularizer is added to objective func-
tion to encourage some basis column vectors in U(v) to become to 0. This makes
view v independent of the latent dimensions which correspond to these zeros-
valued basis vectors. By employing L1,q norm regularization, the latent factors
obtained by NMF can be improved with an additional property of shared spar-
sity. In this work, we choose q = 2. L1,2 norm of matrix U is defined as:

‖U‖1,2 =
K

∑

k=1

‖uk‖2, (12)
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3.4 Objective Function of MvSL

By synthesizing the above objectives, the optimization problem of MvSL is for-
mulated as:

min
{U(v)}H

v=1,V

1
2

H
∑

v=1

‖X(v) − U(v)V‖2F + α
H

∑

v=1

‖U(v)‖1,2

+
β

2
{

tr
[

VlLa(Vl)T
]

− tr
[

VlLp(Vl)T
]}

s.t. U
(v)
ik ≥ 0, 1 ≥ Vkj ≥ 0, ∀i, j, k, v.

(13)

4 Optimization

The joint optimization function in (13) is not convex over all variables
U(1), ...,U(H) and V simultaneously. Thus, we propose a block coordinate
descent method [15] which optimizes one block of variables while keeping the
other block fixed. The procedure is depicted in Algorithm 1. For the ease of
representation, we define

O{(U(1), ...,U(H),V)} =
1
2

H
∑

v=1

‖X(v) − U(v)V‖2F + α

H
∑

v=1

‖U(v)‖1,2

+
β

2
{

tr
[

VlLa(Vl)T
]

− tr
[

VlLp(Vl)T
]}

(14)

4.1 Optimizing {U(v)}H
v=1

When V is fixed, U(1), ...,U(H) are independent with one another. Since the
optimization method is the same, here we just focus on an arbitrary view and
use X and U to denote respectively the data matrix and the basis matrix for
the view. The optimization problem involving U can be written as

min
U

φ(U) :=
1
2
‖X − UV‖2F + α‖U‖1,2

s.t. Uik ≥ 0, ∀i, k.
(15)

Two terms of φ(U) are convex functions. The first term of φ(U) is differentiable,
and its gradient is Lipschitz continuous. Hence, an efficient convex optimization
method can be adopted. [12] presented a variant of Nesterov’s first order method,
suitable for solving (15). In this paper, we take the optimization method of [12]
to update U. Due to the limitation of space, details can be found in [12].
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4.2 Optimizing V

When {U(v)}H
v=1 are fixed, the subproblem for V can be written as

min
V

ψ(V) :=
(

1
2

H
∑

v=1

‖X(v) − U(v)V‖2F

+
β

2
{

tr
[

VlLa(Vl)T
]

− tr
[

VlLp(Vl)T
]}

)

s.t. 1 ≥ Vkj ≥ 0, ∀j, k.

(16)

This is a bounded nonnegative quadratic programming problem for V. Sha et al.
[19] proposed a general multiplicative optimization scheme for this kind of prob-
lems. Inspired by their method, we develop a multiplicative update algorithm
for optimizing V.

Firstly, recall that X(v) = [X(v),l X(v),u] and V = [Vl Vu]. We can transform
the first term of ψ(V):

1
2

H
∑

v=1

‖X(v) − U(v)V‖2F

=
1
2

H
∑

v=1

(

tr[(Vl)T (U(v))TU(v)Vl] − 2tr[(Vl)T (U(v))TX(v),l]

+ tr[(Vu)T (U(v))TU(v)Vu] − 2tr[(Vu)T (U(v))TX(v),u]
)

+ const.

For convenience, let P =
∑H

v=1(U
(v))TU(v) and Ql =

∑H
v=1(U

(v))TX(v),l.
Qu is defined similarly for the unlabeled part. Eq. (16) can be transformed into

min
V

1
2
tr[(Vl)TPVl] − tr[(Vl)TQl] +

1
2
tr[(Vu)TPVu] − tr[(Vu)TQu]

+
β

2
{

tr
[

VlLa(Vl)T
]

− tr
[

VlLp(Vl)T
]}

s.t. 1 ≥ Vkj ≥ 0, ∀j, k.

(17)

Since Vl and Vu are independent, we analyze them separately. The objective
terms involving Vl can be summarized as

Ol(Vl) =
1
2
tr[(Vl)TPVl] − tr[(Vl)TQl]

+
β

2
{

tr
[

VlLa(Vl)T
]

− tr
[

VlLp(Vl)T
]}

(18)

The second term is linear term for Vl. We only need to focus on the quadratic
terms which can be rewritten as follows
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1
2
tr[(Vl)TPVl] =

1
2

N l
∑

j=1

(vl
j)

TPvl
j , (19)

β

2
{

tr
[

VlLa(Vl)T
]

− tr
[

VlLp(Vl)T
]}

=
β

2

K
∑

k=1

{

(v̄l
k)T (Da + Wp)v̄l

k − (v̄l
k)T (Dp + Wa)v̄l

k

}

, (20)

where vl
j and v̄l

k represent the j-th column vector and k-th row vector of Vl,
respectively. Each summand in Eq. (19) and (20) is a quadratic function of a
vector variable. Therefore, we can provide upper bounds for these summands:

(vl
j)

TPvl
j ≤

K
∑

k=1

(Pvl,t
j )k

V l,t
kj

(V l
kj)

2,

(v̄l
k)T (Da + Wp)v̄l

k ≤
N l
∑

j=1

((Da + Wp)v̄l,t
k )j

V l,t
kj

(V l
kj)

2,

−(v̄l
k)T (Dp + Wa)v̄l

k ≤ −
∑

i,j

(Dp + Wa)ijV
l,t
ki V l,t

kj

(

1 + log
V l

kiV
l
kj

V l,t
ki V l,t

kj

)

,

where we use Vl,t to denote the value of Vl in the t-th iteration of the update
algorithm and vl,t

j , v̄l,t
k are its j-th column vector and k-th row vector, respec-

tively. Note that V l
kj can be viewed both as the k-th element of vl

j and as the
j-th element of v̄l

k. The proofs of these bounds follow directly from Lemmas
1 and 2 in [19]. Aggregating the bounds for all the summands, we obtain the
auxiliary function for Ol(Vl)

Gl(Vl,t;Vl)

=
1
2

N l
∑

j=1

K
∑

k=1

(Pvl,t
j )k + β((Da + Wp)v̄l,t

k )j

V l,t
kj

(V l
kj)

2

− β

2

K
∑

k=1

∑

i,j

(Dp + Wa)ijV
l,t
ki V l,t

kj

(

1 + log
V l

kiV
l
kj

V l,t
ki V l,t

kj

)

−
N l
∑

j=1

K
∑

k=1

Ql
kjV

l
kj .

(21)

The estimate of Vl in the (t + 1)-th iteration is then computed as

Vl,t+1 = arg min
Vl

Gl(Vl,t;Vl). (22)
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Differentiating Gl(Vl,t;Vl) with respect to each V l
kj , we have

∂Gl(Vl,t;Vl)
∂V l

kj

=
(Pvl,t

j )k + β((Da + Wp)v̄l,t
k )j

V l,t
kj

V l
kj − β((Dp + Wa)v̄l,t

k )j

V l
kj

V l,t
kj − Ql

kj

Setting ∂Gl(Vl,t;Vl)/∂V l
kj = 0, we get the update rule for Vl

V l,t+1
kj = min

⎧

⎨

⎩

1, V l,t
kj

−Bkj +
√

B2
kj + 4AkjCkj

2Akj

⎫

⎬

⎭

, (23)

Akj =(Pvl,t
j )k + β((Da + Wp)v̄l,t

k )j ,

Bkj = − Ql
kj , Ckj = β((Dp + Wa)v̄l,t

k )j .

Here vl
j and v̄l

k denote the j-th column vector and the k-th row vector
of Vl, respectively. It is easy to verify that Ol(Vl,t+1) ≤ Gl(Vl,t;Vl,t+1) ≤
Gl(Vl,t;Vl,t) = Ol(Vl,t). Therefore, the update rule for Vl monotonically
decreases Eq. 13. The case for Vu is simpler since we do not have the graph
embedding terms:

Ou(Vu) =
1
2
tr[(Vu)TPVu] − tr[(Vu)TQu] (24)

Similarly, the auxiliary function for Ou(Vu) can be derived

Gu(Vu,t;Vu) =
1
2

Nu
∑

j=1

K
∑

k=1

(Pvu,t
j )k

V u,t
kj

(V u
kj)

2 −
Nu
∑

j=1

K
∑

k=1

Qu
kjV

u
kj (25)

and the update rule can be obtained by setting the partial derivatives to 0:

V u,t+1
kj = min

{

1, V u,t
kj

Qu
kj − |Qu

kj |
2(Pvu,t

j )k

}

(26)

5 Experiment

In this section, we conduct the experiments on two real-world data sets to vali-
date the effectiveness of the proposed algorithm MvSL.
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Algorithm 1. Optimization of MvSL
Data: {X(v)}H

v=1, α, β
Result: {U(v)}H

v=1,V
1 begin

2 Randomly initialize U
(v)
ik ≥ 0, 1 ≥ Vkj ≥ 0, ∀i, j, k, v

3 repeat

4 Fix V, update U(1), ...,U(H) as in [12]

5 Fix U(1), ...,U(H), update Vl as in (23) and update Vu as in (26) ;

6 until convergence or max no. iterations reached

7 end

Table 1. Statistics of the datasets.

Dataset Size # of categories Dimensionality of views

Reuters 1800 6 21, 531/15, 506/11, 547

MM2.0 5000 25 64/144/75/128

5.1 Data Set

We use two real-world datasets to evaluate the proposed factorization method.
The first dataset was constructed from the Reuters Multilingual collection [1].
This test collection contains totally 111,740 Reuters news documents written
in five different languages. Documents for each language can be divided into a
common set of six categories. Each document was translated into the other four
languages and represented as TF-IDF vectors. We took documents written in
English as the first view and their Italian and Spanish translations as the second
and third views. We randomly sampled 1800 English documents, with 300 for
each category. The second dataset came from Microsoft Research Asia Internet
Multimedia Dataset 2.0 (MSRA-MM 2.0) [14]. MSRA-MM 2.0 consists of about
1 million images which were respective search results for 1165 popular query
concepts in Microsoft Live Search. Each concept has approximately 500-1000
images. For each image, its relevance to the corresponding concept was manually
labeled with three levels: very relevant, relevant and irrelevant. 7 different low
level features were extracted for each image. To form the experimental dataset,
we selected 25 query concepts from the Animal, Object and Scene branches, and
then randomly sampled 200 images from each concept while discarding irrelevant
ones. We took 4 features in MSRA-MM 2.0 as 4 different views: 64D HSV color
histogram, 144D color correlogram, 75D edge distribution histogram and 128D
wavelet texture. Hereafter, we refer to the two datasets as Reuters and MM2.0,
respectively. The statistics of these datasets are summarized in Table 1.

5.2 Baselines

To validate the performance of our method, we compare the proposed MvSL
with the following baselines:
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• NMF [13].
• Feature concatenation (ConcatNMF): This method concatenates feature

vectors of different views to form a united representation and then applies
NMF.

• Multi-view NMF (MultiNMF): MultiNMF [18] is an unsupervised multi-
view NMF algorithm.

• Semi-supervised Unified Latent Factor method (SULF): SULF [10] is a semi-
supervised multi-view nonnegative factorization method which models par-
tial label information as a factorization constraint on Vl.

• Graph regularized NMF (GNMF): GNMF [2] is a manifold regularized ver-
sion of NMF. We extended it to the multi-view case and replaced the affinity
graph for approximating data manifolds with the within-class affinity graph
defined in Eq. (4) to make it a semi-supervised method on multi-view data.

5.3 Evaluation Metric

Accuracy (ACC) is a typical evaluation metric of classification. Let Nu denote
the total number of test images to be labeled, the Nr is the number of images
that are assigned the right categories or tags by the proposed algorithms accord-
ing to the ground truth, the ACC is defined as ACC=Nr/Nu.

Table 2. Classification performance of different factorization methods on the Reuters
dataset (accuracy±std dev,%).

Labeled
Percentage

NMF-b ConcatNMF MultiNMF SULF GNMF MvSL

10 61.55±1.08 63.04±1.67 63.69±1.52 67.93±1.92 68.93±1.77 70.56±1.21

20 65.71±1.37 66.09±1.08 67.42±1.97 68.40±1.64 70.59±1.65 72.67±1.02

30 67.30±0.27 68.40±1.91 69.16±1.52 70.05±1.48 71.80±1.24 74.78±1.34

40 68.41±1.96 69.81±1.96 70.28±1.83 71.86±1.38 72.23±1.54 75.87±1.26

50 70.44±1.72 70.75±2.03 71.81±1.47 72.78±1.44 73.78±1.75 77.33±0.79

Table 3. Classification performance of different factorization methods on the MM2.0
dataset (accuracy±std dev, %).

Labeled
Percentage

NMF-b ConcatNMF MultiNMF SULF GNMF MvSL

10 24.56±0.98 27.41±0.83 26.26±0.95 27.47±1.03 28.03±1.17 30.92±0.44

20 25.37±0.85 31.24±0.93 30.39±1.12 30.94±1.25 31.55±1.14 33.83±1.52

30 26.09±0.71 32.47±0.80 31.85±0.87 33.13±0.87 34.15±0.51 35.80±0.68

40 28.03±0.46 34.25±0.71 33.48±0.65 34.94±0.65 35.26±0.97 37.12±0.73

50 28.06±0.28 35.08±0.48 34.33±0.56 36.32±0.56 36.61±0.57 38.16±0.65

5.4 Experiment Results

Table 2 and Table 3 show the classification performance of different factoriza-
tion methods on MM2.0 and Reuters, respectively. We varied the percentage
of training items from 10% to 50%. The observations are revealed as follows.
Firstly, Semi-supervised algorithms are superior to unsupervised algorithms in
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general, which indicated that exploiting label information could lead to latent
spaces with better discriminative structures. Secondly, from comparison between
multi-view algorithms and single-view algorithm (NMF), it is easy to see that
multi-view algorithms are more preferable for multi-view data. This is in accord
with the results of previous multi-view learning work. Thirdly, MvSL and GNMF
show superior performance over SULF. SULF models partial label information
as a factorization constraint on Vl, which can be viewed as indirect affinity con-
straints on encoding of within-class items. On the contrary, the graph embedding
terms in MvSL and GNMF impose direct affinity constraints on item encodings
and therefore could lead to more explicit semantic structures in the learned
latent spaces. Finally, MvSL outperformed the baseline methods under all cases.
The reason should be that MvSL not only directly exploits label information
via a graph embedding framework, but also adds regularization by L1,2-norm on
U(v) successfully promotes that sparsity pattern is shared among data items or
features within classes. These properties could help to learn a clearer semantic
latent space.

5.5 Parameter Sensitive Analysis

There are two essential parameters in new methods. β measures the importance
of the semi-supervised part of MvSL (i.e. the graph embedding regularization
terms), while α controls the degree of sparsity of the basis matrices. We inves-
tigate their influence on MvSL’s performance by varying one while fixing the
other one.

The classification results are shown in Figure 1 for MM2.0 and Reuters. We
found the general behavior of the two parameters was the same: when increas-
ing the parameter from 0, the performance curves first went up and then went
down. This indicates that when assigned moderate weights, the sparseness and
semi-supervised constraints indeed helped learn a better latent subspace. Based
observations , we set α = 10, β = 0.02 for experiments.
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Fig. 1. Influence of different parameter settings on the performance of MvSL: (a) vary-
ing α while setting β = 0.02 , (b) varying β while setting α = 10
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6 Conclusion

We have proposed Multi-view semantic learning (MvSL), a novel nonnegative
latent representation learning algorithm for representation learning multi-view
data. MvSL tries to learn a semantic latent subspace of items by exploiting both
multiple views of items and partial label information. The partial label infor-
mation was used to construct a graph embedding framework, which encouraged
items of the same category to be near with each other and kept items belonging
to different categories as distant as possible in the latent subspace. What’s more,
kernel alignment effectively estimated the items pair similarity among multi-view
data, which further extended graph embedding framework. Another novel prop-
erty of MvSL was that it allowed each latent dimension to be associated with a
subset of views by imposing L1,2-norm on each basis U(v). Therefore, MvSL is
able to learn flexible latent factor sharing structures which could lead to more
meaningful semantic latent subspaces. An efficient multiplicative-based iterative
algorithm is developed to solve the proposed optimization problem. The classi-
fication experimental results on two real-world data sets have demonstrated the
effectiveness of our method.

Graph embedding is a general framework and different definitions of the
within class affinity graph Ga and the discriminative graph Gp can be employed.
How to propose more suitable similarity criteria with multi-view data is an
interesting direction for further study.
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Abstract. Unsupervised feature selection has been attracting research
attention in the communities of machine learning and data mining for
decades. In this paper, we propose an unsupervised feature selection
method seeking a feature coefficient matrix to select the most distinctive
features. Specifically, our proposed algorithm integrates the Maximum
Margin Criterion with a sparsity-based model into a joint framework,
where the class margin and feature correlation are taken into account at
the same time. To maximize the total data separability while preserving
minimized within-class scatter simultaneously, we propose to embed K-
means into the framework generating pseudo class label information in a
scenario of unsupervised feature selection. Meanwhile, a sparsity-based
model, �2,p-norm, is imposed to the regularization term to effectively
discover the sparse structures of the feature coefficient matrix. In this
way, noisy and irrelevant features are removed by ruling out those fea-
tures whose corresponding coefficients are zeros. To alleviate the local
optimum problem that is caused by random initializations of K-means,
a convergence guaranteed algorithm with an updating strategy for the
clustering indicator matrix, is proposed to iteratively chase the opti-
mal solution. Performance evaluation is extensively conducted over six
benchmark data sets. From our comprehensive experimental results, it
is demonstrated that our method has superior performance against all
other compared approaches.

Keywords: Unsupervised feature selection · Maximum margin crite-
rion · Sparse structure learning · Embedded K-means clustering

1 Introduction

Over the past few years, data are more than often represented by high-
dimensional features in a number of research fields, e.g. data mining, computer
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 383–398, 2015.
DOI: 10.1007/978-3-319-23528-8 24



384 S. Wang et al.

vision, etc. With the inventions of such many sophisticated data representations,
a problem has been never a lack of research attention: How to select the most dis-
tinctive features from high-dimensional data for subsequent learning tasks, e.g.
classification? To answer this question, we take two points into account. First,
the number of selected features should be smaller than the one of all features.
Due to a lower dimensional representation, the subsequent learning tasks with
no doubt can gain benefit in terms of efficiency [31]. Second, the selected fea-
tures should have more discriminant power than the original all features. Many
previous works have proven that removing those noisy and irrelevant features
can improve discriminant power in most cases. In light of advantages of feature
selection, different new algorithms have been flourished with various types of
applications recently [29,32,33].

According to the types of supervision, feature selection can be generally
divided into three categories, i.e. supervised, semi-supervised, and unsupervised
feature selection algorithms. Representative supervised feature selection algo-
rithms include Fisher score [6], Relief[11] and its extension, ReliefF [12], infor-
mation gain [20], etc [25]. Label information of training data points is utilized to
guide the supervised feature selection methods to seek distinctive subsets of fea-
tures with different search strategies, i.e. complete search, heuristic search, and
non-deterministic search. In the real world, class information is quite limited,
resulting in the development of semi-supervised feature selection methods [3,4],
in which both labeled and unlabeled data are utilized.

In unsupervised scenarios, feature selection is more challenging, since there is
no class information to use for selecting features. In the literature, unsupervised
feature selection can be roughly categorized into three groups, i.e. filter, wrap-
per, and embedded methods. Filter-based unsupervised feature selection methods
rank features according to some intrinsic properties of data. Then those features
with higher scores are selected for the further learning tasks. The selection is
independent to the consequent process. For example, He et al. [8] assume that
data from the same class are often close to each other and use the locality pre-
serving power of data, also termed as Laplacian Score, to evaluate importance
degrees of features. In [30], a unified framework has been proposed for both
supervised and unsupervised feature selection schemes using a spectral graph.
Tabakhi et al. [23] have proposed an unsupervised feature selection method to
select the optimal feature subset in an iterative algorithm, which is based on
ant colony optimization. Wrapper-based methods as a more sophisticated way
wrap learning algorithms to yield learned results that will be used to select dis-
tinctive subsets of features. In [15], for instance, the authors have developed a
model that selects relevant features using two backward stepwise selection algo-
rithms without prior knowledges of features. Normally, wrapper-based methods
have better performance than filter-based methods, since they use learning algo-
rithms. Unfortunately, the disadvantage is that the computation of wrapper
methods is more expensive. Embedded methods are seeking a trade-off between
them by integrating feature selection and clustering together into a joint frame-
work. Because clustering algorithms can provide pseudo labels that can reflect
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the intrinsic information of data, some works [1,14,26] incorporate different clus-
tering algorithms in objective functions to select features.

Most of the existing unsupervised feature selection methods [8,9,14,19,24,30]
rely on a graph, e.g. graph Laplacian, to reflect intrinsic relationships among
data, labeled and unlabeled. When the number of data is extremely large, the
computational burden of constructing a graph Laplacian is significantly heavy.
Meanwhile, some traditional feature selection algorithms [6,8] neglect correla-
tions among features. The distinctive features are individually selected according
to the importance of each feature rather than taking correlations among fea-
tures into account. Recently, exploiting feature correlations has attracted much
research attention [5,17,18,27,28]. It has proven that discovering feature corre-
lation is beneficial to feature selection.

In this paper, we propose a graph-free method to select features by combining
Maximum Margin Criterion with feature correlation mining into a joint frame-
work. Specifically, the method, on one hand, aims to learn a feature coefficient
matrix that linearly combines features to maximize the class margins. With the
increase of the separability of the entire transformed data by maximizing the
total scatter, the proposed method also expects distances between data points
within the same class to be minimized after the linear transformation by the
coefficient matrix. Since there is no class information can be borrowed from, K-
means clustering is jointly embedded in the framework to provide pseudo labels.
Inspired by recent feature selection works using sparsity-based model on the
regularization term [4], on the other hand, the proposed algorithm learns sparse
structural information of the coefficient matrix, with the goal of reducing noisy
and irrelevant features by removing those features whose coefficients are zeros.
The main contributions of this paper can be summarized as follows:

– The proposed method makes efforts to maximize class margins in a frame-
work, where simultaneously considers the separability of the transformed
data and distances between the transformed data within the same class.
Besides, a sparsity-based regularization model is jointly applied on the fea-
ture coefficient matrix to analyze correlations among features in an iterative
algorithm;

– K-means clustering is embedded into the framework generating cluster
labels, which can be used as pseudo labels. Both maximizing class mar-
gins and learning sparse structures can benefit from generated pseudo labels
during each iteration;

– Because the performance of K-means is dominated by the initialization, we
propose a strategy to avoid our algorithm rapidly converge to a local opti-
mum, which is largely ignored by most of existing approaches using K-means
clustering. Theoretical proof of convergence is also provided.

– We have conducted extensive experiments over six benchmark datasets. The
experimental results show that our method has better performance than all
the compared unsupervised algorithms.

The rest of this paper is organized as follows: Notations and definitions that
are used throughout the entire paper will be given in section 2. Our method will
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be elaborated in section 3, followed by proposing its optimization with an algo-
rithm to guarantee the convergence property in section 4. In section 5, extensive
experimental results are reported with related analysis. Lastly, the conclusion of
this paper will be given in section 6.

2 Notations and Definitions

To give a better understanding of the proposed method, notations and definitions
which are used throughout this paper are summarized in this section. Matrices
and vectors are written as boldface uppercase letters and boldface lowercase
letters, respectively. Given a data set denoted as X = [x1, . . . ,xn] ∈ R

d×n,
where n is the number of training data and d is the feature dimension. The mean
of data is denoted as x̄. The feature coefficient matrix, W ∈ R

d×d′
, linearly

combines data features as W TX, d′ is the feature dimension after the linear
transformation. Given a cluster centroid matrix for the transformed data, G =
[g1, . . . , gc] ∈ R

d′×c, its cluster indicator of transformed xi is represented as
ui = [ui1, . . . , uic]. c is the number of centroids. If transformed xi belongs to
the j-th cluster, uij = 1, j = 1, . . . , c. Otherwise, uij = 0. Correspondingly, the
cluster indicator matrix is U = [uT

1 , . . . ,uT
n ]T ∈ R

n×c.
For an arbitrary matrix M ∈ R

r×l, its �2,p-norm is defined as:

‖M‖2,p =

⎡

⎢

⎣

r
∑

i=1

⎛

⎝

l
∑

j=1

M2
ij

⎞

⎠

p
2
⎤

⎥

⎦

1
p

(1)

The i-th row of M is represented by M i. The between-class, within-class and
total scatter matrices of data are respectively defined as:

Sb =
c

∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T ,

Sw =
c

∑

i=1

ni
∑

j=1

(xj − x̄i)(xj − x̄i)T ,

St =
n

∑

i=1

(xi − x̄)(xi − x̄)T

(2)

where ni is the number of data for the c-th class. St = Sw +Sb. Other notations
and definitions will be explained when they are in use.

3 Proposed Method

We now introduce our proposed method for unsupervised feature selection. To
exploit distinctive features, an intuitive way is to find a linear transformation
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matrix which can project the data into a new space where the original data are
more separable. PCA is the most popular approach to analyze the separability
of features. PCA aims to seek directions on which transformed data have max
variances. In other words, PCA is to maximize the separability of linearly trans-

formed data by maximizing the covariance: max
W

n
∑

i=1

(W T (xi−x̄))T (W T (xi−x̄)).

Without losing the generality, we assume the data has zero mean, i.e. x̄ = 0.
Recall the definition of total scatter of data, PCA is equivalent to maximize the
total scatter of data. However, if only total scatter is considered as a separa-
bility measure, the within-class scatter might be also geometrically maximized
with the maximization of the total scatter. This is not helpful to distinctive
feature discovery. The representative model, LDA, solves this problem by max-
imizing Fisher criterion: max

W

WTSbW
W TSwW

. However, LDA and its variants require

class information to construct between-class and within-class scatter matrices
[2], which is not suitable for unsupervised feature selection. Before we give the
objective that can solve the aforementioned problem, we first look at a supervised
feature selection framework:

max
W

n
∑

i=1

(W Txi)
T (W Txi) − α

c
∑

i=1

ni
∑

j=1

(W T (xj − x̄i))
T (W T (xj − x̄i)) − βΩ(W )

s.t. W TW = I,

(3)
where α and β are regularization parameters. In this framework, the first term is
to maximize the total scatter, while the second term is to minimize the within-
class scatter. The third part is a sparsity-based regularization term which con-
trols the sparsity of W . This model is quite similar with the classical LDA-based
methods. Due to there is no class information in the unsupervised scenario, we
need virtual labels to minimize the distances between data within the same class
while maximize the total separability at the same time. To achieve this goal, we
apply K-means clustering in our framework to replace the ground truth by gen-
erating cluster indicators of data. Given c centroids G = [g1, . . . , gc] ∈ R

d′×c,
the objective function of the traditional K-means algorithm aims to minimize
the following function:

c
∑

i=1

∑

yj∈Yi

(yj − gi)T (yj − gi)

=
n

∑

i=1

(yi − GuT
i )T (yi − GuT

i ),

(4)

where yi = W Txi. Note that K-means is used to assign cluster labels, which
are used as pseudo labels, to minimize the within-class scatter after the linear
transformation by W . Then, we can substitute (4) into (3):
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max
W

n
∑

i=1

(W Txi)T (W Txi) − α

n
∑

i=1

(W Txi − GuT
i )T (W Txi − GuT

i ) − βΩ(W )

s.t. W TW = I,
(5)

As mentioned above, the sparsity-based regularization term has been widely
used to find out correlated structures among features. The motivation behind
this is to exploit sparse structures of the feature coefficient matrix. By imposing
the sparse constraint, some of the rows of the feature coefficient matrix shrink
to zeros. Those features corresponding to non-zero coefficients are selected as
the distinctive subset of features. In this way, noisy and redundant features
can be removed. This sparsity-based regularization has been applied in various
problems. Inspired by the “shrinking to zero” idea, we utilize a sparsity model
to uncover the common structures shared by features. To achieve that goal, we
propose to minimize the �2,p-norm of the coefficient matrix, ‖W ‖2,p, (0 < p <
2). From the definition of ‖W ‖2,p in (1), outliers or negative impact of the
irrelevant wi’s are suppressed by minimizing the �2,p-norm. Note that p is a
parameter that controls the degree of correlated structures among features. The
lower p is, the more shared structures among are expected to exploit. After a
number of optimization steps, the optimal feature coefficient matrix, W , can be
obtained. Thus, we impose the �2,p-norm on the regularization term and re-write
the objective function in a matrix representation as follows:

max
W ,G,U

Tr(W TStW ) − α‖W TX − GUT ‖2F − β‖W ‖2,p

s.t. W TW = I,
(6)

where U is an indicator matrix. Tr(·) is trace operator, while ‖ · ‖2F is the
Frobenius norm of a matrix. Our proposed method integrates the Maximum
Margin Criterion and sparse regularization into a joint framework. Embedding
K-means into the framework not only minimizes the distances between within-
class data while maximizing total data separability, but also provides cluster
labels. The cluster centroids generated by K-means can further guide the sparse
structure learning on the feature coefficient matrix in each iterative step of our
solution, which will be explained in the next section. We name this method for
the unsupervised feature analysis with class margin optimization as UFCM.

4 Optimization

In this section, we present our solution to the objective function in (6). Since the
�2,p-norm is used to exploit sparse structures, the objective function cannot be
solved in a closed form. Meanwhile, the objective function is not jointly convex
with respect to three variables, i.e. W,G,U . Thus, we propose to solve the
problem as follows.

We define a diagonal matrix D whose diagonal entries are defined as:

Dii =
1

2
p‖wi‖2−p

2

. (7)
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The objective function in (6) is equivalent to:

max
W ,G,U

Tr(W TStW ) − α‖W TX − GUT ‖2F − βTr(W TDW )

s.t. W TW = I
(8)

We propose to optimize the objective function in two steps in each iteration as
follows:

(1) Fix W,G and optimize U :
When W is fixed, the first and third terms can be viewed as constants. While

the second term can be viewed as the objective function of K-means, assigning
cluster labels to each data. Also, the cluster centroid matrix G = [g1, . . . , gc] is
also fixed, the optimal U is:

Uij =

{

1, j = argmin
k

‖W Txi − gk‖2F ,

0, Otherwise.
(9)

This is equivalent to perform K-means on the transformed data, W TX, which
means the solution is unique.

(2) Fix U and optimize W,G:
After fixing the indicator matrix, U , we set the derivative of Equation (8)

with respect to G equal to 0:

−α
∂Tr(W TX − GUT )T (W TX − GUT )

∂G
= 0

⇒ −2αW TXU + 2αGUTU = 0

⇒ G = W TXU(UTU)−1

(10)

Substituting Equation (10) into Equation (8), we have:

Tr(W TStW ) − α‖W TX − W TXU(UTU)−1UT ‖2F − βTr(W TDW )

= αTr
(

(W TXU(UTU)−1UT − W TX)(W TX − W TXU(UTU)−1UT )T
)

+Tr(W TStW ) − βTr(W TDW )

= αTr
(

W TXU(UTU)−1UTXTW − W TXXTW
)

+Tr(W TStW ) − βTr(W TDW )

= Tr[W T (St + αXU(UTU)−1UTXT − αXXT − βD)W ]
(11)

Thus, the objective function becomes:

max
W

Tr[W T (St + αXU(UTU)−1UTXT − αXXT − βD)W ]

s.t. W TW = I
(12)

The objective function can be then solved by performing eigen-decomposition of
the following formula:

St + αXU(UTU)−1UTXT − αXXT − βD (13)
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Algorithm 1. Unsupervised Feature Analysis with Class Margin Optimization.
Input: Data matrix X = [x1, . . . ,xn] ∈ R

d×n and parameters α and β.
Output: Feature coefficient matrix W and cluster indicator matrix U .
1: Initialize W by PCA on X;
2: Initialize U by K-means on W TX;
3: repeat
4: Compute D according to (7);
5: Update U according to (14);
6: Update W by eigen-decomposition of (13);
7: Update G according to (10);
8: until Convergence

The optimal W can be determined by choosing d′ eigenvectors corresponding
to d′ largest eigenvalues, d′ ≤ d. Our proposed method can be solved by above
steps in an iterative algorithm. Each step can obtain the corresponding optimum.
As the cluster indicator matrix U is initialized by K-means, the performance
of our algorithm is determined by the initialization of K-means. To alleviate
the local optimum problem, an update strategy for U is demanded. Generally
speaking, we randomly initialize U a number of times and make comparisons
according to the second term in Equation (6). Then we choose how to update the
indicator matrix. Specifically, the optimal U∗

i and W ∗
i has been derived in the

i-th iteration. In the (i + 1)-th iteration, we first randomly initialize U r times
(r = 10 in our experiment) and combine the derived U∗

i in the i-th iteration as an
updating candidate set: Ũi+1 = [U0

i+1,U
1
i+1, . . . ,U

r
i+1], U

0
i+1 = U∗

i . According
to ‖W TX − GUT ‖2F , the candidate, which yields the smallest value, is chosen
to update U∗

i+1:

U∗
i+1 = Ũ j

i+1, j = argmin
j

‖W TX − G(Ũ j
i+1)

T ‖2F (14)

where j is the index of candidate set, j = 0, 1, . . . , r. In this way, we com-
pare the derived cluster indicator matrix with r randomly initialized counter-
parts to alleviate the local optimum problem. We summarize the solution in
Algorithm 1 which outputs the learned feature coefficient matrix W to select
distinctive features.

From Algorithm 1, it can be seen that the most computational operation
is the eigen-decomposition in Equation (13). The computational complexity is
O(d3). If the dimensionality of the data, d, is very high, dimensionality reduction
is desirable. To analyze the convergence of our proposed method, the following
proposition and its proof are given.

Proposition 1. Algorithm 1 monotonically increases the objective function in
Equation (6) until convergence.

Proof. Assuming that, in the i-th iteration, the transformation matrix W and
cluster centroid matrix G have been derived as Wi and Gi. In the (i + 1)-th
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iteration step, we use Wi and Gi to update Ui+1 according to the updating
strategy in (14). We can have the following inequality:

Tr(W T
i StWi) − α‖W T

i X − GiU
T
i ‖2F − β‖Wi‖2,p

≤Tr(W T
i StWi) − α‖W T

i X − GiU
T
i+1‖2F − β‖Wi‖2,p

(15)

Similarly, when Ui+1 is fixed to optimize W and G in the (i + 1)-th iteration,
the following inequality can be obtained according to Equation (12):

Tr(W T
i StWi) − α‖W T

i X − GiU
T
i+1‖2F − β‖Wi‖2,p

≤Tr(W T
i+1StWi+1) − α‖W T

i+1X − Gi+1U
T
i+1‖2F − β‖Wi+1‖2,p

(16)

After combining Equation (15) and (16) together, it indicates that the proposed
algorithm will monotonically increase the objective function in each iteration.
It is worth noting that the algorithm is alleviating the local optimum problem
raised by random initializations of K-means, rather than completely solving it.
However, our algorithm can avoid to rapidly converge to a local optimum and
may converge to the global optimal solution.

5 Experiments

In this section, experimental results will be presented together with related
analysis. We compare our method with seven approaches over six benchmark
datasets. Besides, we also conduct experiments to evaluate performance varia-
tions in different aspects. They are including the impact of different selected
feature numbers, the validation of feature correlation analysis, and parameter
sensitivity analysis. Lastly, the convergence demonstration is shown.

5.1 Experiment Setup

In the experiments, we have compared our method with seven approaches as
follows:

– All Features: All original variables are preserved as the baseline in the
experiments.

– Max Variance: Features are ranked according to the variance magnitude of
each feature in a descending order. The highest ranked features are selected.

– Spectral Feature Selection (SPEC) [30]: This method employs a unified
framework to select features one by one based on spectral graph theory.

– Multi-Cluster Feature Selection (MCFS) [1]: This unsupervised app-
roach selects those features who make the multi-cluster structure of the data
preserved best. Features are selected using spectral regression with the �1-
norm regularization.

– Robust Unsupervised Feature Selection (RUFS) [19]: RUFS jointly
performs robust label learning and robust feature learning. To achieve this,
robust orthogonal nonnegative matrix factorization is applied to learn labels
while the �2,1-norm minimization is simultaneously utilized to learn the fea-
tures.
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– Nonnegative Discriminative Feature Selection (NDFS) [14]: NDFS
exploits local discriminative information and feature correlations simultane-
ously. Besides, the manifold structure information is also considered jointly.

– Laplacian Score (LapScore) [8]: This method learns and selects distinc-
tive features by evaluating their powers of locality preserving, which is also
called Laplacian Score.

All the parameters (if any) are tuned in the range of {10−3, 10−1, 101, 103}
for each algorithm mentioned above and the best results are reported. The size
of the neighborhood is set to 5 for any algorithm based on spectral clustering.
The number of random initializations required in the update strategy in (14), is
set at 10 in the experiment. To measure the performance, two metrics have been
used: Clustering Accuracy (ACC) and Normalized Mutual Information (NMI).

For a data point xi, its ground truth label is denoted as pi and its clustering
label that is produced from a clustering algorithm, is represented as qi. Then,
ACC metric over a data set with n data points is defined as follows:

ACC =
∑n

i=1 δ(pi,map(qi))
n

, (17)

where δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise. map(x) is the best mapping
function which permutes clustering labels to match the ground truth labels using
the Kuhn-Munkres algorithm. A larger ACC means better performance.

According to the definition in [22], NMI is defined as:

NMI =

∑c
l=1

∑c
h=1 tl,hlog(n×tl,h

tl t̃h
)

√

(
∑c

l=1 tllog
tl
n )(

∑c
h=1 t̃hlog t̃h

n )
, (18)

where tl is the number of data points in the l-th cluster, 1 ≤ l ≤ c, which is
generated by a clustering algorithm. While t̃h denotes the number of data points
in the h-th ground truth cluster. tl,h is the number of data points which are
in the intersection of the l-th and h-th clusters. Similarly, a larger NMI means
better performance.

The performance evaluations are performed over six benchmark datasets as
follows:

– COIL20 [16]: It contains 1,440 gray-scale images of 20 objects (72 images
per object) under various poses. The objects are rotated through 360 degrees
and taken at the interval of 5 degrees.

– MNIST [13]: It is a large-scale dataset of handwritten digits, which has
been widely used as a test bed in data mining. The dataset contains 60,000
training images and 10,000 testing images. In this paper, we use its subclass
version, MNIST-S, in which one handwritten digit image per ten images, for
each class, is randomly sampled from the MNIST database. There are 6,996
handwritten images with a resolution of 28×28.

– ORL [21]: This data set which is used as a benchmark for face recognition,
consists of 40 different subjects with 10 images each. We also resize each
image to 32 × 32.
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Table 1. Summary of data sets.

COIL20 MNIST ORL UMIST USPS YaleB

Number of data 1,440 6,996 400 564 9,298 2,414

Number of classes 20 10 40 20 10 38

Feature dimensions 1,024 784 1,024 644 256 1,024

– UMIST: UMIST, which is also known as the Sheffield Face Database, con-
sists of 564 images of 20 individuals. Each individual is shown in a variety
of poses from profile to frontal views.

– USPS [10]: This dataset collects 9,298 images of handwritten digits (0-9)
from envelops by the U.S. Postal Service. All images have been normalized
to the same size of 16 × 16 pixels in gray scale.

– YaleB [7]: It consists of 2,414 frontal face images of 38 subjects. Differ-
ent lighting conditions have been considered in this dataset. All images are
reshaped into 32 × 32 pixels.

The pixel value in data is used as the feature. Details of data sets that are used
in this paper are summarized in Table 1.

5.2 Experimental Results

To compare the performance of our proposed algorithm with others, we repeat-
edly perform the test five times and report the average performance results (ACC
and NMI ) with standard deviations in Tables 2 and 3. It is observed that our
proposed method consistently achieves better performance than all other com-
pared approaches across all the data sets. Besides, it is worth noting that our
method is superior to those state-of-the-art counterparts that rely on a graph
Laplacian (SPEC, RUFS, NDFS, LapScore).

We study how the number of selected features can affect the performance by
conducting an experiment whose results are shown in Figure 1. From the figure,
performance variations with respect to the number of selected features using the
proposed algorithm over three data sets, including COIL20, MNIST, and USPS,
have been illustrated. We only adopt ACC as the metric. Some observations
can be obtained: 1) When the number of selected features is small, e.g. 500 on
each data set, the accuracy value is relatively small. 2) With the increase of
selected features, performance can peak at a certain point. For example, the
performance of our algorithm peaks at 0.7475 on COIL20 when the number of
selected features increases to 800. Similarly, 0.6392 (800 selected features) and

Table 2. Performance comparison (ACC±STD).

COIL20 MNIST ORL UMIST USPS YaleB
AllFea 0.7051 ± 0.0294 0.6009 ± 0.0063 0.6675 ± 0.0112 0.4800 ± 0.0115 0.7139 ± 0.0272 0.1261 ± 0.0025
MaxVar 0.7124 ± 0.0191 0.6239 ± 0.0100 0.6965 ± 0.0121 0.4984 ± 0.0141 0.7165 ± 0.0186 0.1291 ± 0.0042
SPEC 0.7105 ± 0.0116 0.6254 ± 0.0024 0.6645 ± 0.0065 0.4824 ± 0.0077 0.7037 ± 0.0315 0.1307 ± 0.0049
MCFS 0.7355 ± 0.0050 0.6299 ± 0.0037 0.7055 ± 0.0048 0.5239 ± 0.0038 0.7634 ± 0.0138 0.1355 ± 0.0043
RUFS 0.7365 ± 0.0024 0.6294 ± 0.0028 0.6920 ± 0.0033 0.5110 ± 0.0091 0.7659 ± 0.0076 0.1795 ± 0.0032
NDFS 0.7368 ± 0.0074 0.6291 ± 0.0016 0.7050 ± 0.0031 0.5243 ± 0.0028 0.7630 ± 0.0124 0.1315 ± 0.0034
LapScore 0.7126 ± 0.0249 0.6214 ± 0.0054 0.7100 ± 0.0117 0.5092 ± 0.0062 0.7089 ± 0.0324 0.1255 ± 0.0025
Ours 0.7475±0.0076 0.6392 ± 0.0056 0.7210 ± 0.0052 0.5343 ± 0.0062 0.7813 ± 0.007 0.1886 ± 0.0043
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Table 3. Performance comparison (NMI±STD).

COIL20 MNIST ORL UMIST USPS YaleB
AllFea 0.7884 ± 0.0157 0.5162 ± 0.0027 0.8265 ± 0.0129 0.6715 ± 0.0069 0.6305 ± 0.0029 0.1968 ± 0.0017
MaxVar 0.7932 ± 0.0071 0.5314 ± 0.0063 0.8424 ± 0.0085 0.6825 ± 0.0063 0.6361 ± 0.0021 0.2123 ± 0.0040
SPEC 0.7866 ± 0.0061 0.5367 ± 0.0035 0.8232 ± 0.0021 0.6753 ± 0.0114 0.6215 ± 0.0073 0.2071 ± 0.0027
MCFS 0.8066 ± 0.0025 0.5367 ± 0.0003 0.8460 ± 0.0025 0.7005 ± 0.0053 0.6419 ± 0.0015 0.2024 ± 0.0033
RUFS 0.8045 ± 0.0025 0.5374 ± 0.0021 0.8430 ± 0.0044 0.6898 ± 0.0035 0.6468 ± 0.0027 0.2845 ± 0.0040
NDFS 0.8062 ± 0.0058 0.5376 ± 0.0004 0.8458 ± 0.0026 0.6981 ± 0.0054 0.6452 ± 0.0054 0.2048 ± 0.0041
LapScore 0.7920 ± 0.0101 0.5308 ± 0.0065 0.8421 ± 0.0006 0.6924 ± 0.0027 0.6291 ± 0.0047 0.1945 ± 0.0018
Ours 0.8119 ± 0.0035 0.5422 ± 0.0018 0.8518 ± 0.0027 0.7112 ± 0.0033 0.6535 ± 0.0022 0.2959 ± 0.0043
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Fig. 1. Performance variation results with respect to the number of selected features
using the proposed algorithm over three data sets, COIL20, MNIST, and USPS.

β
0 10-3 10-2 10-1 1 101 102 103

A
cc

ur
ac

y

0.695

0.7

0.705

0.71

0.715

0.72

0.725

0.73

0.735
Coil20

(a) COIL20

β
0 10-3 10-2 10-1 1 101 102 103

A
cc

ur
ac

y

0.6

0.605

0.61

0.615

0.62

0.625

0.63

0.635

MNIST

(b) MNIST

β
0 10-3 10-2 10-1 1 101 102 103

A
cc

ur
ac

y

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77
USPS

(c) USPS

Fig. 2. Performance variation results with respect to different values of regularization
parameter, βs, over three data sets, COIL20, MNIST, and USPS.

0.7813 (600 selected features) are observed on MNIST and USPS, respectively.
3) When all features are in use, the performance is worse than the best. Similar
trends can be also observed on the other data sets. It is concluded that our
algorithm can select distinctive features.

To demonstrate exploiting feature correlation is beneficial to the perfor-
mance, we conduct an experiment in which parameters α and p are both fixed
at 1. β varies in a range of [0, 10−3, 10−2, 10−1, 1, 101, 102, 103]. The performance
variation results with respect to different βs are plotted in Figure 2. The exper-
iment is conducted over three data sets, i.e. COIL20, MNIST, and USPS. From
the results, we can observe that the performance is relatively low, when there is
no correlation exploiting in the framework, i.e. β = 0. The performance always
peaks at a certain point when a proper degree of sparsity is imposed to the
regularization term. For example, the performance is only 0.6993 when β = 0
on COIL20. The performance increases to 0.7285 when β = 101. Similar obser-
vations are also obtained on the other data sets. We can conclude that sparse
structure learning on feature coefficient matrix contributes to the performance
of our unsupervised feature selection method.



Unsupervised Feature Analysis with Class Margin Optimization 395

1.5

p

1.0

0.5

Coil20

1000

10

α

1e-1

1e-3

0.62

0.64

0.72

0.7

0.68

0.66

A
cc

ur
ac

y

1.5

p

1.0

0.5

MNIST

1000

10

α

1e-1

1e-3

0.54

0.56

0.58

0.62

0.6

A
cc

ur
ac

y

1.5

p

1.0

0.5

Orl

1000

10

α

1e-1

1e-3

0.58

0.6

0.68

0.66

0.64

0.62A
cc

ur
ac

y

1.5

p

1.0

0.5

UMIST

1000

10

α

1e-1

1e-3

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

A
cc

ur
ac

y

1.5

p

1.0

0.5

USPS

1000

10

α

1e-1

1e-3

0.62

0.74

0.72

0.7

0.68

0.66

0.64

A
cc

ur
ac

y

1.5

p

1.0

0.5

YaleB

1000

10

α

1e-1

1e-3

0.15

0.155

0.16

0.17

0.165

A
cc

ur
ac

y

Fig. 3. Performance variation results under different combinations of αs and ps. β is
fixed at 10−1.
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Fig. 4. Performance variation results under different combinations of βs and ps. α is
fixed at 10−1.

5.3 Studies on Parameter Sensitivity and Convergence

There are threeparameters in our algorithms,whicharedenotedasα,β andp in (6).
α and β are two regularization parameters while p controls the degree of sparsity.
To investigate the sensitivity of the parameters, we conduct an experiment to study
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Fig. 5. Objective function values of our proposed objective function in (6) over three
data sets, COIL20, MNIST, and USPS.

how they exert influences on performance. Firstly, we fix β = 10−1 and derive the
performance variations under different combinations of αs and ps in Figure 3. Sec-
ondly,α is fixed at 10−1. The performance variation resultswith respect to different
βsandpsareshowninFigure4.Bothαandβ vary inarangeof [10−3, 10−1, 101, 101].
While p changes in [0.5, 1.0, 1.5]. We only take ACC as the metric.

To validate that our algorithm will monotonically increase the objective func-
tion value in (6), we conduct an experiment to demonstrate this fact. In this
experiment, all parameters (α, β, and p) in (6) are fixed at 1. The objective
function values and corresponding iteration numbers are drawn in Figure 5.
We take COIL20, MNIST, and USPS as examples. Similar observations can be
also obtained on the other data sets. From the figure, it can be seen that our
algorithm converges to the optimum, usually within eight iteration steps, over
three data sets. We can then conclude that the proposed method is efficient and
effective.

6 Conclusion

In this paper, an unsupervised feature selection approach has been proposed by
using the Maximum Margin Criterion and the sparsity-based model. More specif-
ically, the proposed method seeks to maximize the total scatter on one hand. On
the other hand, the within-class scatter is simultaneously considered to minimize.
Since there is no label information in an unsupervised scenario, K-means clus-
tering is embedded into the framework jointly. Advantages can be summarized
as twofold: First, pseudo labels generated by K-means clustering is beneficial
to maximizing class margins in each iteration step. Second, pseudo labels can
guide the sparsity-based model to exploit sparse structures of the feature coef-
ficient matrix. Noisy and uncorrelated features can be therefore removed. Since
the objective function is non-convex for all variables, we have proposed an algo-
rithm with a guaranteed convergence property. To avoid to rapidly converge to a
local optimum which is caused by K-means, we applied an updating strategy to
alleviate the problem. In this way, our proposed method might converge to the
global optimum. Extensive experimental results have shown that our method has
superior performance against all other compared approaches over six benchmark
data sets.
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Abstract. The long-term analysis of opinionated streams requires algo-
rithms that predict the polarity of opinionated documents, while adapt-
ing to different forms of concept drift: the class distribution may change
but also the vocabulary used by the document authors may change.
One of the key properties of a stream classifier is adaptation to concept
drifts and shifts; this is typically achieved through ageing of the data.
Surprisingly, for one of the most popular classifiers, Multinomial Naive
Bayes (MNB), no ageing has been considered thus far. MNB is particu-
larly appropriate for opinionated streams, because it allows the seamless
adjustment of word probabilities, as new words appear for the first time.
However, to adapt properly to drift, MNB must also be extended to take
the age of documents and words into account.

In this study, we incorporate ageing into the learning process of MNB,
by introducing the notion of fading for words, on the basis of the recency
of the documents containing them. We propose two fading versions, grad-
ual fading and aggressive fading, of which the latter discards old data at
a faster pace. Our experiments with Twitter data show that the ageing
based MNBs outperform the standard accumulative MNB approach and
manage to recover very fast in times of change. We experiment with dif-
ferent data granularities in the stream and different data ageing degrees
and we show how they “work together” towards adaptation to change.

1 Introduction

Nowadays, we experience an increasing interest on word-of-mouth communica-
tion in social media, including opinion sharing [16]. A vast amount of voluntary
and bona fide feedback accumulates, referring to products, persons, events etc.
Opinionated information is valuable for consumers, who benefit from the experi-
ences of other consumers, in order to make better buying decisions [13], but also
for vendors, who can get insights on what customers like and dislike [18]. The
extraction of such insights requires a proper analysis of the opinionated data.

In this work, we address the issue of polarity learning over opinionated
streams. The accumulating opinionated documents are subject to different forms
of drift: the subjects discussed change, the attitude of people towards specific
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 401–416, 2015.
DOI: 10.1007/978-3-319-23528-8 25
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products, events or other forms of entities change, the vocabulary changes. As a
matter of fact, the impact of the vocabulary is less investigated. It is well-known
that the polarity of some words depends on the context they are used in; this
subject is investigated e.g. in the context of recurring concepts [8]. However, the
impact of the vocabulary in an opinionated stream is much more broad: an opin-
ionated word can appear in more contexts than we can (or want to) trace, since
some contexts are rare or do not recur. More importantly, new words emerge and
some words are used less. This implies that the polarity learner should be able to
cope with an evolving feature space. To deal with concept drift in the opinion-
ated data and their feature space, we propose a fading Multinomial Naive Bayes
polarity learner. We extend the Multinomial Naive Bayes (MNB) with an ageing
function that gradually forgets (fades away) old data and outdated words.

Multinomial Naive Bayes (MNB) classifiers comprise one of the most well-
known classifiers and are widely used also for sentiment analysis although most
of the approaches cover the non-stream case [17]. For opinionated streams, MNB
has a cardinal advantage: it allows the seamless adaptation of the vocabulary,
by simply requiring the computation of the class probabilities for each word. No
other stream classification algorithm can respond so intuitively to an evolving
feature space. Surprisingly, so far, MNB is used in opinionated streams mostly
without forgetting past data and without extending to a new vocabulary 1.
This is problematic, because the model may overfit to old data and, fore-mostly,
to an outdated vocabulary. In this study, we propose two different forgetting
mechanisms that differ on how drastically they forget over time.

The rest of the paper is organized as follows: Related work is discussed in
Section 2. The basic concepts and motivation are presented in Section 3. The
ageing-based MNBs are introduced in Section 4. Experimental results are shown
in Section 5. Conclusions and open issues are discussed in Section 6.

2 Related Work

Stream mining algorithms typically assume that the most recent data are the
most informative, and thus employ different strategies to downgrade old, obsolete
data. In a recent survey [6], Gama et al. discuss two forgetting mechanisms: (i)
abrupt forgetting where only recent instances, within a sliding window, contribute
to the model, and (ii) gradual forgetting where all instances contribute to the
model but with a weight that is regulated by their age. In the context of our
study, the forgetting strategy also affects the vocabulary – the feature space. In
particular, if a set of documents is deleted (abrupt forgetting), all words that
are in them but in none of the more recent documents are also removed from the
feature space. This may harm the classifier, because such words may re-appear
soon after their removal. Therefore, we opt for gradual forgetting.

Another approach for selecting features/ words for polarity classification in
a dynamic environment is presented in [11]. In this approach, selection does not

1 An exception is our own prior work [24,25].
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rely on the age of the words but rather on their usefulness, defined as their contri-
bution to the classification task. Usefulness is used in [11] as a selection criterion,
when the data volume is high, but is also appropriate for streams with recur-
ring concepts. Concept recurrence is studied e.g. in [8] (where meta-classifiers
are trained on data referring to a given concept), and in [12] (where a concept
is represented by a data bucket, and recurrence refers to similar buckets). Such
methods can be beneficial for opinion stream classification, if all encountered
opinionated words can be linked to a reasonably small number of concepts that
do recur. In our study, we do not pose this requirement; word polarity can be
assessed in our MNB model, without linking the words to concepts.

Multinomial Naive Bayes (MNB) [14] is a popular classifier due to its sim-
plicity and good performance, despite its assumption on the class-conditional
independence of the words [5,22]. Its simplicity and easy online maintenance
constitutes it particularly appealing for data streams. As pointed out in Section
1, MNB is particularly appropriate for adaptation to an evolving vocabulary. In
[24,25], we present functions that recompute the class probabilities of each word.
In this study, we use different functions, as explained in the last paragraph of
this section.

Bermingham et al. [2] compared the performance of Support Vector
Machines (SVM) and MNB classifiers on microblog data and reviews (not
streams) and showed that MNB performs well on short-length, opinion-rich
microblog messages (rather than on long texts). In [10], popular classifica-
tion algorithms were studied such as MNBs, Random Forest, Bayesian Logistic
Regression and SVMs using sequential minimal optimization for the classifica-
tion in Twitter streams while building classifiers at different samples. Across the
tested classifiers, MNBs showed the best performance for all applied data sets.

In [3], MNB has been compared to Stochastic Gradient Descend (SGD) and
Hoeffding Trees for polarity classification on streams. Their MNB approach is
incremental, i.e., it accumulates information on class appearances and word-in-
class appearances over the stream, however, it did not forget anything. Their
experiments showed that MNB had the largest difficulty in dealing with drifts in
the stream population, although its performance in times of stability was very
good. Regarding runtime, MNB was the fastest model due to its simplicity in
predictions but also due to the easy incorporation of new instances in the model.
The poor performance of MNB in times of change was also observed in [21], and
triggered our ageing-based MNB approach.

Closest to our approach is our earlier work [24]. There, MNB is in the core of
a polarity learner that uses two adaptation techniques: i) a forward adaptation
technique that selects “useful” instances from the stream for model update and
ii) a backward adaptation technique that downgrades the importance of old
words from the model based on their age. There are two differences between
that earlier method (and our methods that build upon it, e.g. [25]) and the
work proposed here. First, the method in [24] is semi-supervised: after receiving
an initial seed of labeled documents, it relies solely on the labels it derives
from the learner. Backward adaptation is not performing well in that scenario,
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presumably because the importance of the words in the initial seed of documents
diminishes over time. Furthermore, in [24], the ageing of the word-class counts
is based directly upon the age of the original documents containing the words.
The word-class counts are weighted locally, i.e., within the documents containing
the words, and the final word-class counts are aggregations of these local scores.
In our current work, we do not monitor the age of the documents. Rather, we
use the words as first class objects, which age with time. Therefore the ageing
of a word depends solely on the last time the word has been observed in some
document from the stream.

3 Basic Concepts

We observe a stream S of opinionated documents arriving at distinct timepoints
t0, . . ., ti, . . .; at each ti a batch of documents might arrive. The definition of
the batch depends on the application per se: i) one can define the batch at the
instance level, i.e., a fixed number of instances is received at each timepoint or ii)
at the temporal level, i.e., the batch consists of the instances arriving within each
time period, e.g. on a daily basis if day is the considered temporal granularity.
A document d ∈ S is represented by the bag-of-words model and for each word
wi ∈ d its frequency fd

i is also stored.
Our goal is to build a polarity classifier for the prediction of the polarity of

new arriving documents. As it is typical in streams, the underlying population
might undergo changes over time, referred in the literature as concept drift. The
changes are caused by two reasons: i) change in the sentiment of existing words
(for example, words have different sentiment for different contexts, e.g. the word
“heavy” is negative for a camera, but positive for a solid wood piece of furniture);
ii) new words might appear over time and old words might become obsolete (for
example, new topics emerge all the time in the news and some topics are not
mentioned anymore). The drift in the population might be gradual or drastic; the
later is referred also as concept shift in the literature. A stream classifier should
be able to adapt to drift while maintaining a good predictive power. Except for
the quality of predictions, another important factor for a stream classifier is fast
adaptation to the underlying evolving stream population.

3.1 Basic Model: Multinomial Naive Bayes

According to the underpinnings of the Multinomial Naive Bayes (MNB) [14],
the probability of a document d belonging to a class c is given by:

P (c|d) = P (c)
|d|
∏

i=1

P (wi|c)fd
i (1)

where P (c) is the prior probability of class c, P (wi|c) is the conditional proba-
bility that word wi belongs to class c and fd

i is the number of occurrences of wi

in document d. These probabilities are typically estimated based on a dataset
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D with class labels (training set); we indicate the estimates from now on by a
“hat” as in P̂ .

The class prior P (c) is easily estimated as the fraction of the set of training
documents belonging to class c, i.e.,:

P̂ (c) =
Nc

|D| (2)

where Nc is the number of documents in D belonging to class c and |D| is the
total number of documents in D.

The conditional probability P (wi|c) is estimated by the relative frequency of
the word wi ∈ V in documents of class c:

P̂ (wi|c) =
Nic

∑|V |
j=1 Njc

(3)

where Nic is the number of occurrences of word wi in documents with label c
in D, V is the vocabulary over the training set D. For words that are unknown
during prediction, i.e., not in V , we apply the Laplace correction and initialize
their probability to 1/|V |.

From the above formulas, it is clear that the quantities we need in order to
estimate the class prior P̂ (c) and the class conditional word estimates P̂ (wi|c)
are the class prior counts Nc and the word-class counts Nic, where wi ∈ V, c ∈ C
are all computed from the training set D. The conventional, static MNB uses
the whole training set D at once to compute these counts.

The typical extension for data streams [3], updates the counts based on new
instances from the stream. Let d be a new incoming document from the stream
S with class label c. Updating the MNB model means actually updating the
class and word-class counts based on the incoming document. In particular, the
number of documents belonging to class c is increased, i.e.,: Nc+ = 1. Similarly,
the class-word counts for each word wi ∈ d are updated, i.e., Nic+ = fd

i , where
fd

i is the frequency of wi in d. For existing words in the model, this implies
just an update of their counts. For so-far unknown words, this implies that
a new entry is created for them in the model. These accumulative counts are
used during polarity prediction in Equations 2 and 3. We refer to this model as
accumulativeMNB.

From the above description it is clear that the typical MNB stream model
exhibits a very long memory as nothing is forgotten with time, and therefore it
cannot respond fast to changes. Next, we present our extensions to MNB: we
weight documents and words on their age, ensuring that the model forgets and
responds faster to change.

4 Ageing-Based Multinomial Naive Bayes

The reason for the poor performance of an MNB model in times of change is its
accumulative nature. As already mentioned, once entering the model nothing is
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forgotten, neither words nor class prior information. To make MNBs adaptable
to change, we introduce the notion of time (Section 4.1) and we show how such
a “temporal” model can be used for polarity learning in a stream environment
(Sections 4.2, 4.3).

4.1 Ageing-Based MNB Model

In the typical, accumulative MNB classifier there is no notion of time, rather all
words are considered equally important independently of their arrival times. We
couple the MNB with an ageing mechanism that allows for a differentiation of
the words based on their last observation time in the stream.

Ageing is one of the core mechanism in data streams for dealing with concept
drifts and shifts in the underlying population. Several ageing mechanisms have
been proposed [7] including the landmark window model, the sliding window
model and the damped window model. We opt for the damped window model,
as already explained, as it comprises a natural choice for temporal applications
and data streams [1,4,15]. According to the damped window model, the data are
subject to ageing based on an ageing function so that recent data are considered
more important than older ones. One of the most commonly used ageing func-
tions is the exponential fading function that exponentially decays the weights of
data instances with time.

Definition 1 (Ageing function). Let d be a document arriving from the
stream S at timepoint td. The weight of d at the current timepoint t ≥ td is
given by: age(d, t) = e−λ·(t−td) where λ > 0 is the decay rate.

The weight of the document d decays over time based on the time period elapsing
from the arrival of d and the decay factor λ. The higher the value of λ, the lower
the impact of historical data comparing to recent data. The ageing factor λ is
critical for the ageing process as it determines what is the contribution of old
data to the model and how fast old data is forgotten. Another way of thinking
of λ is by considering that 1

λ is the period for an instance to loose half of its
original weight. For example, if λ = 0.5 and timestamps correspond to days, this
means that 1

0.5 = 2 days after its observation an instance will loose 50% of its
weight. For λ = 0 there is no ageing and therefore the classifier is equivalent to
the accumulative MNB (cf. Section 3.1).

The timestamp of the document from the stream is “transferred” to its com-
ponent words and finally, to the MNB model. In particular, each word-class pair
(w, c) entry in the model is associated with

– the last observation time, tlo, which represents the last time that the word
w has been observed in the stream in a document of class c.

The tlo entry indicates how recent is the last observation of word w in class c.
Similarly, each class entry in the model is associated with a last observation

timestamp indicating the last time that the class was observed in the stream.
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Based on the above, the ageing-based MNB model consists of the temporally
annotated class prior counts (Nc, t

c
lo) and class conditional word counts (Nic, t

ic
lo).

Hereafter, we focus on how such a temporal model can be used for predic-
tion while being maintained online. We distinguish between a normal fading
MNB approach (Section 4.2) and an aggressive/drastic fading MNB approach
(Section 4.3).

4.2 Ageing-Based MNB Classification

In order to predict the class label of a new document d arriving from the stream
S at timepoint t, we employ the ageing-based version of MNB: in particular, the
temporal information associated with the class prior counts and the class condi-
tional word counts is incorporated in the class prior estimation P̂ (c) and in the
class conditional word probability estimation P̂ (wi|c), i.e., in Equations 2 and 3,
respectively.

The updated temporal class prior for class c ∈ C at timepoint t is given by :

P̂ t(c) =
N t

c ∗ e−λ·(t−tclo)

|St| (4)

where N t
c is the number of documents in the stream up to timepoint t belonging

to class c and |St| is the total number of document in the stream thus far, which
can be easily derived from the class counts as |St| =

∑

c′∈C

N t
c′ . Note that the class

counts, Nc, are maintained online over the stream as described below. The tclo is
the last observation of class c in the stream and (t − tclo) describes the temporal
gap from the last appearance of the class label c in the stream to timepoint t.

The updated temporal class conditional word probability for a word wi ∈ d
at t is given by:

P̂ t(wi|c) =
N t

ic ∗ e−λ·(t−t
(wi,c)
lo )

|V t|
∑

j=1

N t
jc ∗ e−λ·(t−t

(wj,c)
lo )

(5)

where N t
ic is the number of appearances of word wi in class c in the stream up

to timepoint t and V t is the vocabulary (i.e., distinct words) accumulated from
the stream up to timepoint t. It is stressed that the vocabulary changes over
time as new words may arrive from the stream.

The word conditional class counts, Nic, are also maintained online over the
stream as described hereafter.

Online Model Maintenance. The update of the MNB model consists of
updating the class count and word-class count entries and their temporal coun-
terparts. If d with timestamp t is a new document to be included in the MNB
model and c is its class label, then the corresponding class count is increased by
one, i.e., Nc+ = 1 and for each word wi ∈ d, the class conditional word counts
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Nic are increased based on the frequency of wi in d, i.e., Nic+ = fd
wi

. The
temporal counterpart of Nc is updated w.r.t. arrival time t of d, i.e., tclo = t.

Similarly the temporal counterparts of any word class combination count Nic

in d will be updated, i.e., ticlo = t. We refer to this method as fadingMNB here-
after.

4.3 Aggressive Fading MNB Alternative

The fadingMNB approach presented in the previous subsection, accumulates
evidence about class appearances and word-class appearances in the stream up
to the current time and applies the ageing function upon these accumulated
counts. The bigger the gap between the last observation of a word in a class
and the current timepoint, the more the weight of this word in the specific class
would be decayed. However, as soon as we observe the word-class combination
again in the stream, the total count is revived. This is because the counts are
accumulative and the ageing function is applied a posteriori.

An alternative approach to make the exponential fading even more rapid and
adapt more quickly to changes is to store in the model the aged-counts instead
of the accumulated ones. That is, the ageing is applied over the faded counts.
Obviously, such an approach implies a more drastic ageing of the data compared
to fadingMNB. The decay is not exponential anymore and it depends also on
how often a word is observed in the stream. In particular, words that appear
constantly in the stream, i.e., at each time point, will not be affected (as with
the fadingMNB approach) but if some period intervenes between consecutive
appearances of a word, the word will be “penalized” for this gap. We refer to
this method as aggressiveFadingMNB.

5 Experiments

In our experiments, we compare the original MNB stream model (accumula-
tiveMNB), to our fading MNB model (fadingMNB) and to the aggressive fading
MNB model (aggressiveFadingMNB). In Section 5.1, we present the Twitter
dataset we use for the evaluation, and in Section 5.2 we present the evalua-
tion measures. We present the results on classfication quality in Section 5.3. In
Section 5.4, we discuss the role of the fading factor λ. We have run these experi-
ments on different time granularities: hour, day and week. Due to lack of space,
we report only on the hourly-aggregated stream in Sections 5.3 and 5.4. Then,
in Section 5.5, we discuss the role of the stream granularity on the quality of the
different models and how it is connected to the fading factor λ.

5.1 Data and Concept Changes

We use the TwitterSentiment dataset [19], introduced in [9]. The dataset was
collected by querying the Twitter API for messages between April 6, 2009 and
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June 25, 2009. The query terms belong to different categories, such as com-
panies (e.g. query terms “aig”, “at&t”), products (e.g. query terms “kindle2”,
“visa card”), persons (e.g. “warren buffet”, “obama”), events (e.g. “indian elec-
tion”, “world cup”). Evidently, the stream is very heterogeneous. It has not been
labeled manually. Rather, the authors of [9] derived the labels with a Maximum
Entropy classifier that was trained on emoticons.

We preprocessed the dataset as in our previous work [21], including following
steps: (i) dealing with data negation (e.g. replacing “not good” with “not good”,
“not pretty” with “ugly” etc.), (ii) dealing with colloquial language (e.g. conver-
ing “luv” to “love” and “youuuuuuuuu” to “you”), (iii) elimination of superfluous
words (e.g. Twitter signs like or #), stopwords (e.g. “the”, “and”), special char-
acters and numbers, (iv) stemming (e.g. “fishing”, “fisher” were mapped to their
root word “fish”). A detailed description of the preprocessing steps is in [20].

The final stream consists of 1,600,000 opinionated tweets, 50% of which are
positive and 50% negative (two classes). The class distribution changes over
time.

How to choose the temporal granularity of such a stream? On Figure 1, we
show the tweets at different levels of temporal granularity: weeks (left), days
(center), hours (right). The weekly-aggregated stream (Figure 1, left) consists
of #12 distinct weeks (the x-axis shows the week of the year). Both classes
are present up to week 25, but after that only instances of the negative class
appear. In the middle of the figure, we see the same data aggregated at day
level: there are #49 days (the horizontal axis denotes the day of the year). Up
to day 168, we see positive and negative documents; the positive class (green)
is overrepresented. But towards the end of the stream the class distribution
changes and the positive class disappears. We see a similar behavior in the
hourly-aggregated stream (Figure 1, right), where the x-axis depicts the hour
(of the year). On Figure 1, we see that independently of the aggregation level,
the amount of data received at each timepoint varies: there are high-traffic time
points, like day 157 or week 23 and low-traffic ones, like day 96 or week 15. Also,
there are “gaps” in the monitoring period. For example, in the daily-aggregated
stream there are several 1-day gaps like day 132 but also “bigger gaps” like 10
days of missing observations between day 97 and day 107.

Fig. 1. Class distribution in the stream at different temporal granularities: weekly
(left), daily (center), hourly (right).
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The time granularity affects the ageing mechanism, since all documents asso-
ciated with the same time unit (e.g. day) have the same age/weight. In the
following, we experiment with all three levels of granularity.

5.2 Evaluation Methods and Evaluation Measures

The two most popular methods for evaluating classification algorithms are hold-
out evaluation and prequential evaluation. Their fundamental difference is in
the order in which they perform training and testing and the ordering of the
dataset [7]. In hold-out evaluation, the current model is evaluated over a sin-
gle independent hold-out test set. The hold-out set is the same over the whole
course of the stream. For our experiments, the hold-out set consists of 30% of
all instances randomly selected from the stream. In prequential evaluation, each
instance from the stream is first used for testing and then for training the model.
This way, the model is updated continuously based on new instances.

To evaluate the quality of the different classifiers, we employed accuracy
and kappa [23] over an evaluation window, evalW . Accuracy is the percentage
of correct classifications in w. Bifet et al. [3] use the kappa statistic defined
as k = p0−pc

1−pc
, where p0 is the accuracy of the studied classifier and pc is the

accuracy of the chance classifier. Kappa lies between -1 and 1.

5.3 Classifier Performance

Accuracy and Kappa in Prequential Evaluation. We compare the performance
of our fadingMNB and aggressiveFadingMNB to the original accumulativeMNB
algorithm in the hourly-aggregated stream, using prequential evaluation. As
criteria for classification performance, we use accuracy (Figure 2) and kappa
(Figure 3). In both figures, we see that classification performance has two phases,
before and after the arrival of instance 1,341,000; around that time, there has
been a drastic change in the class distribution, cf. Figure 1. We discuss these
two phases, i.e., the left, respectively right part of the figures, separately.

Fig. 2. Prequential evaluation on accu-
racy in the hourly-aggregated stream –
fading factor λ = 0.1, evaluation window
evalW = 1000

Fig. 3. Prequential evaluation on kappa
in the hourly-aggregated stream – same
parameters as in Figure 2, i.e., λ = 0.1,
evalW = 1000
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The left part of the accuracy plots on Figure 2 shows that accumula-
tiveMNB has the best accuracy, followed closely by fadingMNB, while aggres-
siveFadingMNB has slightly inferior performance. In the left part of the plots
on kappa (Figure 3), the relative performance is the same, but the performance
inferiority of accumulativeMNB is more apparent.

In the right part of the accuracy plots on Figure 2, i.e., after the dras-
tic change in the class distribution, we see that accumulativeMNB experiences
a slight performance drop, while the accuracy of our two algorithms ascends
rapidly to 100% (the two curves coincide). The intuitive explanation for the
inferior performance of accumulativeMNB is that it remembers all past data, so
it cannot adapt to the disappearance of the positive class. The proposed fad-
ingMNB and aggressiveFadingMNB, on the contrary, manage to recover after
the change.

The right part of the plots on kappa (Figure 3) gives a different picture:
the performance of all three algorithms drops to zero after the concept shift (the
three curves coincide). This is owed to the nature of kappa: it juxtaposes the
performance of the classifier to that of a random classifier; as soon as there is
only one class in the data (here: the negative one), no classifier can be better
than the random classifier. Since the accuracy plots and the kappa plots show
the same trends before the drastic concept change, and since the accuracy plots
reflect the behavior of the classifiers after the change much better than kappa
does, we concentrate on accuracy as evaluation measure hereafter.

Accuracy in Hold-Out Evaluation. Under prequential evaluation, each labeled
document is used first for testing and, then, immediately for learning. In a more
realistic setting, we would expect that the “expert” is not available all the time
to deliver fresh labels for each incoming document from the stream. We are
therefore interested to study the performance of the algorithms when less labeled
data can be exploited. In this experiment, we train the algorithms in a random
sample of 70% of the data and test them in the remaining 30%. The results are
on Figure 4.

As pointed out in Figure 4, this hold-out evaluation was done after learning
on 70% of the complete stream. Thus, the concept drift is incorporated into the
learned model and the performance is stable. This allows us to highlight the
influence of the hold-out data on the vocabulary. In particular, since the test
instances constitute 30% of the dataset, some words belonging to them may be
absent from the vocabulary used for training, or be so rare in the training sample
that the class probabilities have not been well estimated. This effect cannot be
traced under prequential evaluation, because all instances are gradually incorpo-
rated into the model. With our variant of a hold-out evaluation, we can observe
on Figure 4 how the absence of a part of the vocabulary affects performance.

Figure 4 shows that aggressiveFadingMNB performs very poorly. This is
expected, because this algorithm forgets instances too fast and thus cannot main-
tain good estimates of the polarity probabilities of the words. More remarkable
is the performance difference between fadingMNB and accumulativeMNB : the
gradual fading of some instances leads to a better model! An explanation may
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Fig. 4. Hold-out evaluation on accuracy in the hourly-aggregated stream – same
parameters as in Figure 2, i.e., λ = 0.1, evalW = 1000; 30% of the data are used
for testing the stream, after learning on the complete training sample (70% of the
data).

be that accumulativeMNB experiences an overfitting on the large vocabulary
of all training instances, while fadingMNB forgets some training data and thus
uses a “smaller vocabulary” that is still adequate to predict the labels of the test
instances. We intend to investigate this further by studying the contents of the
vocabularies used by the learning algorithms.

5.4 Impact of the Fading Factor λ on the New Algorithms

On Figure 2, we have seen that both fadingMNB and aggressiveFadingMNB
adapted immediately to the drastic change in the class distribution. In this
experiment, we investigate how the fading factor λ affects the accuracy of the
classifiers. First, we compare the performance of the two algorithms for a very
small value of λ, cf. Figure 5.

Figure 5 shows that aggressiveFadingMNB manages to adapt to changes,
while fadingMNB does not. Since small λ values increase the impact of the old
data, i.e., enforce a long memory, the performance of fadingMNB deteriorates,
as is the case for accumulativeMNB. In contrast, aggressiveFadingMNB needs
such a small λ to remember some data in the first place.

As an extreme case, λ = 0 implies that no forgetting takes place and therefore
corresponds to accumulativeMNB. A high value of λ implies that aggressiveFad-
ingMNB forgets all data; a very low value of λ causes fadingMNB to remember
a lot and therefore it degenerates to accumulativeMNB. To visualize these “con-
nections” and to better understand the effect of the fading factor λ on each
method, we experiment with different values of λ over the hourly-aggregated
stream, cf. Figure 6.

Figure 6 depicts a constant performance of accumulativeMNB as it does not
depend on λ. The fadingMNB and the aggressiveFadingMNB have a complemen-
tary performance. For small values of λ, aggressiveFadingMNB performs best; as
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Fig. 5. Prequential evaluation on accu-
racy in the hourly-aggregated stream –
same evalW = 1000 as in Figure 2, but
λ = 0.000003.

Fig. 6. Effect of fading factor λ on accu-
racy in the hourly-aggregated stream;
prequential evaluation, evaluation win-
dow evalW = 1000.

the λ increases, its performance drops. This is expected since low values imply
that the classifier gradually forgets in a moderate pace, whereas high values
mean that the past is forgotten very fast. The performance of fadingMNB is the
opposite, for very small values of λ there is no actual ageing and therefore the
performance is low (and similar to accumulativeMNB); whereas as λ increases,
fadingMNB exploits the ageing of the old data, so its performance improves.

5.5 The Effect of Temporal Granularity and How to Set λ

The temporal granularity of the streams (e.g. hourly, daily, weekly, etc.) and the
fading factor λ clearly affect each other. To illustrate this, for a decay degree of
λ = 0.1, the weight of a instance is halved every 1

0.1 = 10 hours, days, weeks for
hourly, daily, weekly temporal aggregation of the stream, respectively. The 10
weeks rate might be too low for some fast changing applications, whereas the
10 hours rate might be too high for other applications. Therefore, the choice of
the decay factor λ should be done in conjunction with the temporal granularity
of the stream. In the subfigures of Figure 7, we show the performance of the
ageing-based classifiers for the different temporal-aggregations versions of the
stream and different values of λ.

On the left part of Figure 7, we show the accuracy for λ = 0.1. This value
means that an instance loses half of its weight after 10 hours, 10 days, 10 weeks
for the hourly, daily, weekly aggregated stream respectively. We can see that
hourly aggregation deals best with the change in the distributions as it performs
best after the distribution changes; closely followed by aggressive fading in a daily
aggregation. The worst performance occurs when using weekly aggregation and
the fadingMNB, which indicates that forgetting every 10 weeks is not appropriate
in this case; a more frequent forgetting of the data is more appropriate.

We increase the forgetting rate to λ = 0.2 (mid part of Figure 7), i.e., an
instance loses half its weight after 5 hours, 5 days, 5 weeks for the hourly, daily,
weekly aggregated stream respectively. The results are close to what we observed
before; the hourly aggregation has the best performance for this dataset.
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Fig. 7. Prequential accuracy of fadingMNB, aggressiveFadingMNB in comparison to
accumulativeMNB (horizontal line) for different levels of granularity in the stream
(using evalW = 1000): λ = 0.1 (left), λ = 0.2 (middle), λ = 1.0 (right)

The results for a much larger λ, λ = 1.0, are shown in the right part of
Figure 7. A λ = 1.0 means that an instance loses half its weight after 1 hour, 1
day, 1 week for the hourly, daily, weekly aggregated stream respectively. The
aggressiveFadingMNB performs worse when there is no drift in the stream,
because the classifier forgets too fast. This fast forgetting though allows the
classifier to adapt fast in times of change, i.e., when drift occurs after instance
1,341,000. Among the different streams, in times of stability in the stream, the
aggressive fading classifier in the hourly aggregated stream shows the worst per-
formance, followed closely by the daily and then the weekly aggregated streams.
In times of change however, the behavior is the opposite with the hourly aggre-
gated stream showing the best adaptation rate, because of no memory. Regard-
ing fadingMNB, daily and weekly aggregation show best performance in times of
stability followed by the hourly aggregated stream. In times of drift on the other
hand, the hourly aggregation adapts the fastest, followed by daily and weekly
aggregation streams.

To summarize, the value of λ affects the performance of the classifier over
the whole course of the stream. In times of drifts in the stream, a larger λ is
preferable as it allows for fast adaptation to the new concepts appearing in the
stream. In times of stability though, a smaller λ is preferable as it allows the
classifier to exploit already learned concepts in the stream. The selection of λ
“works” in collaboration with the stream granularity. Obviously, at a very high
granularity (such as a time unit of one hour), lambda can be higher than at a
lower granularity (such as a time unit of one week).

6 Conclusions and Outlook

Learning a stream classifier is a challenging task due to the changes in the stream
population (at both instance and feature levels) and the necessity for classifier
adaptation to change. Adapting to change means that the model should be
updated online; this update might mean that existing parts of the model are
updated based on new observations, new model parts are added and old model
parts are forgotten.

In this work we couple a very popular classifier, Multinomial Naive Bayes,
with adaptation-to-change mechanisms. In particular, we introduce the notion of
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ageing in MNBs and we derive a gradually fading MNB approach (fadingMNB)
and an aggressive fading MNB approach (aggressiveFadingMNB). We compare
our methods to the traditional stream MNB approach (accumulativeMNB) and
we show its superior performance in an evolving stream of tweets. Our ageing-
based approaches recover fast after changes in the stream population, while main-
taining a good performance in times of stability, i.e., when no drastic changes
are observed. We also show how the fading factor, that regulates the ageing of
old data, affects the results and its “connection” to the temporal granularity of
the stream.

Our ongoing work involves experimenting with different streams from diverse
domains and tuning the fading factor λ online based on the stream, instead of
having a constant fading factor over time. As we observed in the current exper-
iments, fast forgetting is important for times of change but in times of stability
forgetting should be slower. Another direction of future work encompasses book-
keeping of the model at regular time intervals. In particular, one can maintain
a more compact model by removing words that do not contribute much in the
classification decision due to ageing, or whose observations in the stream are
lower than the expected observations based on their age.
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Abstract. Current methods in data streams that detect concept drifts
in the underlying distribution of data look at the distribution difference
using statistical measures based on mean and variance. Existing meth-
ods are unable to proactively approximate the probability of a concept
drift occurring and predict future drift points. We extend the current
drift detection design by proposing the use of historical drift trends to
estimate the probability of expecting a drift at different points across the
stream, which we term the expected drift probability. We offer empirical
evidence that applying our expected drift probability with the state-of-
the-art drift detector, ADWIN, we can improve the detection perfor-
mance of ADWIN by significantly reducing the false positive rate. To
the best of our knowledge, this is the first work that investigates this
idea. We also show that our overall concept can be easily incorporated
back onto incremental classifiers such as VFDT and demonstrate that
the performance of the classifier is further improved.

Keywords: Data stream · Drift detection · Stream volatility

1 Introduction

Mining data that change over time from fast changing data streams has become a
core research problem. Drift detection discovers important distribution changes
from labeled classification streams and many drift detectors have been pro-
posed [1,5,8,10]. A drift is signaled when the monitored classification error devi-
ates from its usual value past a certain detection threshold, calculated from a
statistical upper bound [6] or a significance technique [9]. The current drift detec-
tors monitor only some form of mean and variance of the classification errors
and these errors are used as the only basis for signaling drifts. Currently the
detectors do not consider any previous trends in data or drift behaviors. Our
proposal incorporates previous drift trends to extend and improve the current
drift detection process.

In practice there are many scenarios such as traffic prediction where incorpo-
rating previous data trends can improve the accuracy of the prediction process.
For example, consider a user using Google Map at home to obtain a fastest route
to a specific location. The fastest route given by the system will be based on
c© Springer International Publishing Switzerland 2015
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how congested the roads are at the current time (prior to leaving home) but is
unable to adapt to situations like upcoming peak hour traffic. The user could be
directed to take the main road that is not congested at the time of look up, but
may later become congested due to peak hour traffic when the user is en route.
In this example, combining data such as traffic trends throughout the day can
help arrive at a better prediction. Similarly, using historical drift trends, we can
derive more knowledge from the stream and when this knowledge is used in the
drift detection process, it can improve the accuracy of the predictions.

Fig. 1. Comparison of current drift detection process v.s. Our proposed design

The main contribution of this paper is the concept of using historical drift
trends to estimate the probability of expecting a drift at each point in the stream,
which we term the expected drift probability. We propose two approaches to
derive this probability: Predictive approach and Online approach. Figure 1 illus-
trates the comparison of the current drift detection process against our overall
proposed design. The Predictive approach uses Stream Volatility [7] to derive
a prediction of where the next drift point is likely to occur. Stream Volatility
describes the rate of changes in a stream and using the mean of the rate of the
changes, we can make a prediction of where the next drift point is. This predic-
tion from Stream Volatility then indicates periods of time where a drift is less
likely to be discovered (e.g. if the next drift point is predicted to be 100 steps
later, then we can assume that drifts are less likely to occur during steps farther
away from the prediction). At these times, the Predictive approach will have a
low expected drift probability. The predictive approach is suited for applications
where the data have some form of cyclic behavior (i.e. occurs daily, weekly, etc.)
such as the monitoring of oceanic tides, or daily temperature readings for agricul-
tural structures. The Online approach estimates the expected drift probability
by first training a model using previous non-drifting data instances. This model
represents the state of the stream when drift is not occurring. We then compare
how similar the current state of the stream is against the trained model. If the
current state matches the model (i.e. current state is similar to previous non-
drifting states), then we assume that drift is less likely to occur at this current
point and derive a low expected drift probability. The Online approach is better
suited for fast changing, less predictive applications such as stock market data.
We apply the estimated expected drift probability in the state-of-the-art detec-
tor ADWIN [1] by adjusting the detection threshold (i.e. the statistical upper
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bound). When the expected drift probability is low, the detection threshold is
adapted and increased to accommodate the estimation. Through experimenta-
tion, we offer evidence that using our two new approaches with ADWIN, we
achieve a significantly fewer number of false positives.

The paper is structured as follows: in Section 2 we discuss the relevant
research. Section 3 details the formal problem definition and preliminaries. In
Section 4 our method is presented and we also discuss several key elements and
contributions. Section 5 presents our extensive experimental evaluations, and
Section 6 concludes the paper.

2 Related Work

Drift Detection: One way of describing a drift is a statistically significant shift
in the distribution of a sample of data which initially represents a single homo-
geneous distribution to a different data distribution. Gama et al. [4] present a
comprehensive survey on drift detection methods and points out that techniques
generally fall into four categories: sequential analysis, statistical process control
(SPC), monitoring two distributions, and contextual.

The Cumulative Sum [9] and the Page-Hinkley Test [9] are sequential analysis
based techniques. They are both memoryless but their accuracy heavily depends
on the required parameters, which can be difficult to set. Gama et al. [5] adapted
the SPC approach and proposed the Drift Detection Method (DDM), which
works best on data streams with sudden drift. DDM monitors the error rate
and the variance of the classifying model of the stream.When no changes are
detected, DDM works like a lossless learner constantly enlarging the number of
stored examples, which can lead to memory problems.

More recently Bifet et al. [1] proposed ADaptive WINdowing (ADWIN) based
on monitoring distributions of two subwindows. ADWIN is based on the use
of the Hoeffding bound to detect concept change. The ADWIN algorithm was
shown to outperform the SPC approach and provides rigorous guarantees on false
positive and false negative rates. ADWIN maintains a window (W ) of instances
at a given time and compares the mean difference of any two subwindows (W0

of older instances and W1 of recent instances) from W . If the mean difference is
statistically significant, then ADWIN removes all instances of W0 considered to
represent the old concept and only carries W1 forward to the next test. ADWIN
used a variation of exponential histograms and a memory parameter, to limit
the number of hypothesis tests.

Stream Volatility and Volatility Shift: Stream Volatility is a concept intro-
duced in [7], which describes the rate of changes in a stream. A high volatility
represents a frequent change in data distribution and a low volatility represents
an infrequent change in data distribution. Stream Volatility describes the rela-
tionship of proximity between consecutive drift points in the data stream. A
Volatility Shift is when stream volatility changes (e.g. from high volatility to low
volatility, or vice versa). Stream volatility is a next level knowledge of detected
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changes in data distribution. In the context of this paper, we employ the idea of
stream volatility to help derive a prediction of when the next change point will
occur in the Predictive approach.

In [7] the authors describe volatility detection as the discovery of a shift in
stream volatility. A volatility detector was developed with a particular focus
on finding the shift in stream volatility using a relative variance measure. The
proposed volatility detector consists of two components: a buffer and a reservoir.
The buffer is used to store recent data and the reservoir is used to store an
overall representative sample of the stream. A volatility shift is observed when
the variance between the buffer and the reservoir is past a significance threshold.

3 Preliminaries

Let us frame the problem of drift detection and analysis more formally. Let
S1 = (x1, x2, ..., xm) and S2 = (xm+1, ..., xn) with 0 < m < n represent two
samples of instances from a stream with population means μ1 and μ2 respec-
tively. The drift detection problem can be expressed as testing the null hypoth-
esis H0 that μ1 = μ2, i.e. the two samples are drawn from the same distribution
against the alternate hypothesis H1 that they are drawn from different distri-
butions with μ1 �= μ2. In practice the underlying data distribution is unknown
and a test statistic based on sample means is constructed by the drift detector.
If the null hypothesis is accepted incorrectly when a change has occurred then
a false negative has occurred. On the other hand if the drift detector accepts
H1 when no change has occurred in the data distribution then a false posi-
tive has occurred. Since the population mean of the underlying distribution is
unknown, sample means need to be used to perform the above hypothesis tests.
The hypothesis tests can be restated as the following. We accept hypothesis H1

whenever Pr(|μ̂1 − μ̂2|) ≥ ε) ≤ δ, where the parameter δ ∈ (0, 1) and controls
the maximum allowable false positive rate, while ε is the test statistic used to
model the difference between the sample means and is a function of δ.

4 Our Concept and Design

We present how to use historical drift trend to estimate the probability of
expecting a drift at every point in the stream using our Predictive approach
in Section 4.1 and Online approach in Section 4.2. In Section 4.3 we describe
how the expected drift probability is applied onto drift detector ADWIN.

4.1 Predictive Approach

The Predictive approach is based on Stream Volatility. Recall that Stream
Volatility describes the rate of changes in the stream. The mean volatility value
is the average interval between drift points, denoted μvolatility, and is derived
from the history of drift points in the stream. For example, a stream with drift
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points at times t = 50, t = 100, and t = 150 will have a mean volatility value
of 50. The μvolatility is then used to provide an estimate of a relative position of
where the next drift point, denoted tdrift.next, is likely to occur. In other words,
tdrift.next = tdrift.previous + μvolatility, where tdrift.previous is the location of the
previous signaled drift point and tdrift.previous < tdrift.next.

The expected drift probability at points tx in the stream is denoted as φtx
.

We use the tdrift.next prediction to derive φtx
at each time point tx in the stream

between the previous drift and the next predicted drift point, tdrift.previous <
tx < tdrift.next. When tx is distant from tdrift.next, the probability φtx

is smaller
and as tx progresses closer to tdrift.next, φtx

is progressively increased.
We propose two variations of deriving φtx

based on next drift prediction: one
based on the sine function and the other based on sigmoid function. Intuitively
the sine function will assume that the midpoint of previous drift and next drift is
the least likely point to observe a drift whereas the sigmoid function will assume
that immediately after a drift, the probability of observing a drift is low until
the stream approaches the next drift prediction.

The calculation of φtx
using the sine and the sigmoid functions at a point tx

where tdrift.previous < tx < tdrift.next are defined as:

φsin
tx

= 1 − sin (π · tr) and φsigmoid
tx

= 1 − 1 − tr
0.01 + |1 − tr|

where tr = (tx − tdrift.previous)/(tdrift.next − tdrift.previous)
The Predictive approach is applicable when the volatility of the stream is

relatively stable. When the volatility of the stream is unstable and highly vari-
able, the Predictive approach will be less reliable at predicting where the next
drift point is likely to occur. When this situation arises, the Online approach
(described in Section 4.2) should be used.

4.2 Online Adaptation Approach

The Online approach estimates the expected drift probability by first training a
model using previous non-drifting data. This model represents the state of the
stream when drift is not occurring. We then compare how similar the current
state of the stream is against the trained model. If the current state matches
the model (i.e. current state is similar to previous non-drifting states), then we
assume that drift is less likely to occur at this current point and derive a low
expected drift probability. Unlike the Predictive approach, which predicts where
a drift point might occur, the Online approach approximates the unlikelihood
of a drift occurring by comparing the current state of the stream against the
trained model representing non-drifting states.

The Online approach uses a sliding block B of size b that keeps the most
recent value of binary inputs. The mean of the binary contents in the block
at time tx is given as μBtx

where the block B contains samples with values
vx−b, · · · , vx of the transactions tx−b, · · · , tx. The simple moving average of the
previous n inputs is also maintained where: (vx−b−n + · · · + vx−b)/n. The state
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of the stream at any given time tx is represented using the Running Magnitude
Difference, denoted as γ, and given by: γtx

= μBtx
− MovingAverage.

We collect a set of γ values γ1, γ2, · · · , γx using previous non-drifting data
to build a Gaussian training model. The Gaussian model will have the mean μγ

and the variance σγ of the training set of γ values. The set of γ values reflect
the stability of the mean of the binary inputs. A stream in its non-drifting states
will have a set of γ values that tend to a mean of 0.

To calculate the expected drift probability in the running stream at a point
tx, the estimation φtx

is derived by comparing the Running Magnitude Difference
γtx

against the trained Gaussian model with α as the threshold, the probability
calculation is given as:

φonline
tx

= 1 if f(γtx
, μγ , σγ) ≤ α

and
φonline

tx
= 0 if f(γtx

, μγ , σγ) > α

where

f(γtx
, μγ , σγ) =

1√
2π

e
− (γtx−μγ )2

2σγ2

For example, using previous non-drifting data we build a Gaussian model with
μγ = 0.0 and σγ = 0.05, if α = 0.1 and we observe that the current state γtx

=
0.1, then the expected drift probability is 1 because f(0.1, 0, 0.05) = 0.054 ≤ α.

In a stream environment, the i.i.d. property of incoming random variables
in the stream is generally assumed. Although at first glance it may appear that
a trained Gaussian model is not suitable to be used in this setting, the central
limit theorem provides justification. In drift detection a drift primarily refers to
the real concept drift, which is a change in the posterior distributions of data
p(y|X), where X is the set of attributes and y is the target class label. When the
distribution of X changes, the class y might also change affecting the predictive
power of the classifier and signals a a drift. Since the Gaussian model is trained
using non-drifting data, we assume that the collected γ value originates from
the same underlying distribution and remains stable in the non-drifting set of
data. Although the underlying distribution of the set of γ values is unknown,
the Central Limit Theorem justifies that the mean of a sufficiently large num-
ber of random samples will be approximately normally distributed regardless
of the underlying distribution. Thus, we can effectively approximate the set of
γ values with a Gaussian model. To confirm that the Central Limit Theorem
is valid in our scenario, we have generated sets of non-drifting supervised two
class labeled streams using the rotating hyperplane generator with the set of
numeric attributes X generated from different source distributions such as uni-
form, binomial, exponential, and Poisson. The sets of data are then run through
a Hoeffding Tree Classifier to obtain the binary classification error inputs and
the set of γ values are gathered using the Online approach. We plot each set of
the γ values and demonstrate that the distribution indeed tends to Gaussian as
justified by the Central Limit Theorem in Figure 2.



Drift Detection Using Stream Volatility 423

Fig. 2. Demonstration of Central Limit Theorem

4.3 Application onto ADWIN

In Sections 4.1 and 4.2 we have described two approaches at calculating the
expected drift probability φ and in this section we show how to apply the dis-
covered φ in the detection process of ADWIN.

ADWIN relies on using the Hoeffding bound with Bonferroni correction [1]
as the detection threshold. The Hoeffding bound provides guarantee that a drift
is signalled with probability at most δ (a user defined parameter): Pr(|μW0 −
μW1 | ≥ ε) ≤ δ where μW0 is the sample mean of the reference window of data,
W0, and μW1 is the sample mean of the current window of data, W1. The ε value
is a function of δ parameter and is the test statistic used to model the difference
between the sample mean of the two windows. Essentially when the difference in
sample means between the two windows is greater than the test statistic ε, a drift
will be signaled. ε is given by the Hoeffding bound with Bonferroni correction
as:

εhoeffding =

√

2
m

· σ2
W · ln

2
δ′ +

2
3m

ln
2
δ′

where m = 1
1/|W0|+1/|W1| , δ′ = δ

|W0|+|W1| .
We incorporate φ, expected drift probability, onto ADWIN and propose an

Adaptive bound which adjusts the detection threshold of ADWIN in reaction to
the probability of seeing a drift at different time tx across the stream. When φ
is low, the Adaptive bound (detection threshold) is increased to accommodate
the estimation that drift is less likely to occur.

The ε of the Adaptive bound is derived as follows:

εadaptive = (1 + β · (1 − φ))

√

2
m

· σ2
W · ln

2
δ′ +

2
3m

ln
2
δ′

where β is a tension parameter that controls the maximum allowable adjustment,
usually set below 0.5. A comparison of the Adaptive bound using the Predic-
tive approach versus the original Hoeffding bound with Bonferroni correction is
shown in Figure 3. In such cases, we can see that by using the Adaptive bound
derived from the Predictive approach, we reduce the number of false positives
that would have otherwise been signaled by Hoeffding bound.

The Adaptive bound is based on adjusting the Hoeffding bound and main-
tains similar statistical guarantees as the original Hoeffding bound. We know
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Fig. 3. Demonstration of Adaptive bound vs. Hoeffding bound

that the Hoeffding bound provides guarantee that a drift is signaled with prob-
ability at most δ:

Pr(|μW0 − μW1 | ≥ ε) ≤ δ

and since
εadaptive ≥ εhoeffding

therefore,

Pr(|μW0 − μW1 | ≥ εadaptive) ≤ Pr(|μW0 − μW1 | ≥ εhoeffding) ≤ δ

As a result, we know that the Adaptive bound is at least as confident as the
Hoeffding bound and offer the same guarantees as the Hoeffding bound given δ.

The Predictive approach should be used when the input stream allows for an
accurate prediction of where the next drift point is likely to occur. A good pre-
diction of next drift point will show major performance increases. The Predictive
approach has tolerance to incorrect next drift predictions to a certain margin of
error. However, when the stream is too volatile and fast changing to the extent
where using volatility to predict the next drift point is unreasonable, the Online
approach should be used. The benefits of using the Online approach is that the
performance of the approach is not affected irrespective of whether the stream
is volatile or not. The Online approach is also better suited for scenarios where
a good representative non-drifting training data can be provided.

When using the Predictive approach to estimate φ in the Adaptive bound,
we note that an extra warning level mechanism should be added. The Predic-
tive approach uses the mean volatility value, the average number of transactions
between each consecutive drift points in the past, to derive where the next drift
point is likely to occur. The mean volatility value is calculated based on previous
detection results of the drift detector. The Adaptive bound with the Predictive
approach works by increasing the detection threshold at points before the predic-
tion. In cases where the true drift point arrives before the prediction, the drift
detector will experience a higher detection delay due to the higher detection
threshold of the Adaptive bound. This may affect future predictions based on
the mean volatility value. Therefore, we note the addition of the warning level,
which is when the Hoeffding bound is passed but not the Adaptive bound. A real
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drift will pass the Hoeffding bound, then pass the Adaptive bound, while a false
positive might pass Hoeffding bound but not the Adaptive bound. When a drift
is signaled by the Adaptive bound, the mean volatility value is updated using
the drift point found when Hoeffding bound was first passed. The addition of
the Hoeffding as the warning level resolves the issue that drift points found by
the Adaptive bound might influence future volatility predictions.

The β value is a tension parameter used to control the degree at which the
statistical bound is adjusted based on drift expectation probability estimation φ.
Setting a higher β value will increase the magnitude of adjustment of the bound.
One sensible way to set the β parameter is to base its value on the confidence of
the φ estimation. If the user is confident in the φ estimation, then setting a high
β value (e.g. 0.5) will significantly reduce the number of false positives while still
detecting all the real drifts. If the user is less confident in the φ estimation, then
β can be set low (e.g. 0.1) to make sure drifts of significant value are picked up.
An approach for determining the β value is: β = Pr(a) − Pr(e)/2 · (1 − Pr(e))
where Pr(a) is the confidence of the φ estimation and Pr(e) is the confidence
of estimation by chance. In most instances Pr(e) should be set at 0.6 as any
estimation with confidence lower than 0.6 we can consider as a poor estimation.
In practice by setting β at 0.1 reduces the number of false positives found by
50-70% when incorporating our design into ADWIN while maintaining similar
true positive rates and detection delay compared to without using our design.

5 Experimental Evaluation

In this section we present the experimental evaluation of applying our expected
drift probability φ onto ADWIN with the Adaptive bound. We test with both
the Predictive approach and the Online approach. Our algorithms are coded in
Java and all of the experiments are run on an Intel Core i5-2400 CPU @ 3.10
GHz with 8GB of RAM running Windows 7.

We evaluate with different sets of standard experiments in drift detection:
false positive test, true positive test, and false negative test using various β
(tension parameter) values from 0.1 to 0.5. The detection delay is also a major
indicator of performance therefore reported and compared in the experiments.
Our proposed algorithms have a run-time of < 2ms. Further supplementary
materials and codes can be found online

5.1 False Positive Test

In this test we compare the false positives found between using only ADWIN
detector against using our Predictive and Online approaches on top of ADWIN.
For this test we replicate the standard false positive test used in [1]. A stream of
100,000 bits with no drifts generated from a Bernoulli distribution with μ = 0.2
is used. We vary the δ parameter and the β tension parameter and run 100
iterations for all experiments. The Online approach is run with a 10-fold cross
validation. We use α = 0.1 for the Online approach.
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Table 1. False Positive Rate Comparison

Predictive Approach - Sine Function

Adaptive Bound
δ Hoeffding β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5

0.05 0.0014 0.0006 0.0003 0.0002 0.0001 0.0001
0.1 0.0031 0.0015 0.0008 0.0005 0.0003 0.0002
0.3 0.0129 0.0072 0.0042 0.0027 0.0019 0.0015

Predictive Approach - Sigmoid Function

Adaptive Bound
δ Hoeffding β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5

0.05 0.0014 0.0004 0.0002 0.0001 0.0001 0.0001
0.1 0.0031 0.0011 0.0004 0.0003 0.0002 0.0002
0.3 0.0129 0.0057 0.0030 0.0018 0.0015 0.0014

Online Approach

δ Hoeffding β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5

0.05 0.0014 0.0006 0.0005 0.0005 0.0005 0.0005
0.1 0.0031 0.0014 0.0012 0.0011 0.0011 0.0011
0.3 0.0129 0.0073 0.0063 0.0059 0.0058 0.0058

The results are shown in Table 1 and we observe that both the sine function
and sigmoid function with the Predictive approach are effective at reducing the
number of false positives in the stream. In the best case scenario the number
of false positive was reduced by 93%. Even with a small β value of 0.1, we still
observe an approximately 50-70% reduction in the number of false positives. For
the Online approach we observe around a 65% reduction.

5.2 True Positive Test

In the true positive test we test the accuracy of the three different setting at
detecting true drift points. In addition, we look at the detection delay associated
with the detection of the true positives. For this test we replicate the true positive
test used in [1]. Each stream consists of 1 drift at different points of volatility
with varying magnitudes of drift and drift is induced with different slope values
over a period of 2000 steps. For each set of parameter values, the experiments
are run over 100 iterations using ADWIN as the drift detector with δ = 0.05.
The Online approach was run with a 10-fold cross validation.

We observed that for all slopes, the true positive rate for using all differ-
ent settings (ADWIN only, Predictive Sine, and Predictive Sigmoid, Online) is
100%. There was no notable difference between using ADWIN only, Predictive
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Table 2. True Positive Test: Detection Delay

Predictive Approach - Sigmoid Function

Slope Hoeffding
Adaptive Bound

β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5

0.0001 882±(181) 882±(181) 880±(181) 874±(191) 874±(191) 874±(191)
0.0002 571±(113) 569±(112) 564±(114) 562±(119) 562±(119) 562±(119)
0.0003 441±(83) 440±(82) 438±(82) 436±(86) 436±(86) 436±(86)
0.0004 377±(71) 375±(68) 373±(69) 371±(72) 371±(72) 371±(72)

Online Approach

Slope Hoeffding β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5

0.0001 882±(181) 941±(180) 975±(187) 1001±(200) 1015±(211) 1033±(220)
0.0002 571±(113) 597±(116) 611±(123) 620±(130) 629±(136) 632±(140)
0.0003 441±(83) 460±(90) 469±(94) 472±(96) 475±(100) 476±(101)
0.0004 377±(71) 389±(73) 394±(74) 398±(79) 398±(79) 399±(80)

approach, and Online approach in terms of accuracy. The results for the associ-
ated detection delay on gradual drift stream are shown in Table 2. We note that
the Sine and Sigmoid functions yielded similar results and we only present one
of them here. We see that the detection delays remain stable between ADWIN
only and the Predictive approach as this test assumes an accurate next drift pre-
diction from volatility and does not have any significant variations. The Online
approach observed a slightly higher delay due to the nature of the approach
(within one standard deviation of Hoeffding bound delay). There is an increase
in delay when β was varied only in the Online approach.

5.3 False Negative Test

The false negative test experiments if predictions are correct. Hence, the exper-
iments are carried out on the Predictive approach and not the Online approach.

For this experiment we generate streams with 100,000 bits containing exactly
one drift at a pre-specified location before the presumed drift location (100,000).
We experiment with 3 locations at steps 25,000 (the 1/4 point), 50,000 (the 1/2
point), and 75,000 (the 3/4 point). The streams are generated with different drift
slopes modelling both gradual and abrupt drift types. We feed the Predictive
approach a drift prediction at 100,000. We use ADWIN with δ = 0.05.

In Table 3 we show the detection delay results for varying β and drift
types/slopes when the drift is located at the 1/4 point. We observe from the
table that as we increase the drift slope, the delay decreases. This is because
a drift of a larger magnitude is easier to detect and thus found faster. As we
increase β we can see a positive correlation with delay. This is an apparent
tradeoff with adapting to a tougher bound. In most cases the increase in delay
associated with an unpredicted drift is still acceptable taking into account the
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Table 3. Delay Comparison: 1/4 drift point

Sine Function

Adaptive Bound
Slope Hoeffding β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5

0.4 107±(37) 116±(39) 129±(42) 139±(43) 154±(47) 167±(51)
0.6 52±(12) 54±(11) 57±(11) 61±(12) 64±(14) 67±(15)
0.8 27±(10) 28±(11) 32±(14) 39±(16) 44±(15) 50±(12)

0.0001 869±(203) 923±(193) 972±(195) 1026±(200) 1090±(202) 1151±(211)
0.0002 556±(121) 593±(117) 634±(106) 664±(109) 692±(116) 727±(105)
0.0003 434±(89) 463±(91) 488±(84) 514±(83) 531±(80) 557±(75)
0.0004 367±(71) 384±(76) 403±(73) 420±(70) 439±(71) 457±(69)

Sigmoid Function

Adaptive Bound
Slope Hoeffding β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5

0.4 108±(37) 121±(40) 136±(42) 156±(46) 176±(51) 196±(56)
0.6 52±(12) 54±(12) 57±(11) 61±(12) 64±(14) 67±(15)
0.8 27±(10) 28±(11) 32±(14) 39±(16) 44±(15) 50±(12)

0.0001 869±(203) 937±(200) 1013±(198) 1091±(201) 1177±(216) 1259±(221)
0.0002 556±(121) 605±(110) 657±(110) 695±(115) 738±(103) 776±(102)
0.0003 434±(89) 474±(87) 508±(87) 535±(78) 567±(76) 593±(76)
0.0004 367±(71) 390±(75) 415±(71) 442±(70) 471±(65) 492±(61)

Table 4. Delay Comparison: Varying drift point

Gradual Drift 0.0001

Sine Sigmoid
β 1/4 point 1/2 point 3/4 point 1/4 point 1/2 point 3/4 point

Hoeffding 869±(203) 885±(183) 872±(183) 869±(203) 885±(183) 872±(183)
0.1 923±(192) 956±(187) 930±(178) 937±(200) 955±(185) 948±(176)
0.2 972±(195) 1026±(197) 982±(173) 1013±(198) 1022±(195) 1020±(183)
0.3 1026±(200) 1095±(203) 1029±(182) 1091±(201) 1091±(202) 1096±(197)
0.4 1090±(202) 1182±(212) 1087±(192) 1177±(216) 1176±(207) 1167±(204)
0.5 1151±(211) 1253±(217) 1133±(198) 1259±(221) 1243±(215) 1245±(214)

magnitude of false positive reductions and the assumption that unexpected drifts
should be less likely to occur when volatility predictions are relatively accurate.

Table 4 compares the delay when the drift is thrown at different points during
the stream. It can be seen that the sine function does have a slightly higher delay
when the drift is at the 1/2 point. This can be traced back to the sine function
where the mid-point is the peak of the offset. In general the variations are within
reasonable variation and the differences are not significant.
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5.4 Real-World Data: Power Supply Dataset

This dataset is obtained from the Stream Data Mining Repository1. It contains
the hourly power supply from an Italian electricity company from two sources.
The measurements from the sources form the attributes of the data and the class
label is the hour of the day from which the measurement is taken. The drifts in
this dataset are primarily the differences in power usage between different seasons
where the hours of daylight vary. We note that because real-world datasets do
not have ground truths for drift points, we are unable to report true positive
rates, false positive rates, and detection delay. The main objective is to compare
the behavior of ADWIN only versus our designs on real-world data and show
that they do find drifts at similar locations.

Fig. 4. Power Supply Dataset (drift points are shown with red dots)

Figure 4 shows the comparison using the drifts found between ADWIN Only
and our Predictive and Online approaches. We observe that the drift points are
fired at similar locations to the ADWIN only approach.

5.5 Case Study: Incremental Classifier

In this study we apply our design into incremental classifiers in data streams.
We experiment with both synthetically generated data and real-world datasets.
First, we generate synthetic data with the commonly used SEA concepts gener-
ator introduced in [11]. Second, we use Forest Covertype and Airlines real-world
datasets from MOA website2. Note that the ground truth for drifts is not avail-
able for the real-world datasets. In all of the experiments we run VFDT [3], an

1 http://www.cse.fau.edu/∼xqzhu/stream.html
2 moa.cms.waikato.ac.nz/datasets/

http://www.cse.fau.edu/~xqzhu/stream.html
moa.cms.waikato.ac.nz/datasets/
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incremental tree classifier, and compare the prediction accuracy and learning
time of the tree using three settings: VFDT without drift detection, VFDT with
ADWIN, and VFDT with our approaches and Adaptive bound. In the no drift
detection setting, the tree learns throughout the entire stream. In the other set-
tings, the tree is rebuilt using the next n instances when a drift is detected. For
SEA data n = 10000 and for real-world n = 300. We used a smaller n for the
real-world datasets because they contain fewer instances and more drift points.

The synthetic data stream is generated from MOA [2] using the SEA concepts
with 3 drifts evenly distributed at 250k, 500k, and 750k in a 1M stream. Each
section of the stream is generated from one of the four SEA concept functions.
We use δ = 0.05 for ADWIN, Sine function for Predictive approach and β = 0.5
for both approaches and α = 0.1 for Online approach. Each setting is run over
30 iterations and the observed results are shown in Table 5.

The results show that by using ADWIN only, the overall accuracy of the
classifier is improved. There is also a reduction in the learning time because only
parts of the stream are used for learning the classifier as opposed to no drift
detection where the full stream is used. Using our Predictive approach and the
Online approach showed a further reduction in learning time and an improvement
in accuracy. An important observation is the reduction in the number of drifts
detected in the stream and an example of drift points is shown in Table 6. We
discovered that using Predictive and Online approaches found less false positives.

Table 5. Incremental Classifier Performance Comparisons

SEA Concept Generator (3 actual drifts)

Setting Learning Time (ms) Accuracy Drifts Detected

No Drift Detection 2763.67±(347.34) 85.71±(0.06)% -
ADWIN Only 279.07±(65.06) 87.36±(0.15)% 13.67±(3.66)
Predictive Approach 178.63±(41.06) 87.44±(0.22)% 8.67±(1.72)
Online Approach 161.10±(38.93) 87.49±(0.22)% 6.60±(1.56)

Real-World Dataset: Forest Covertype

Setting Learning Time (ms) Accuracy Drifts Detected

No Drift Detection 44918.47±(149.44) 83.13% -
ADWIN Only 45474.57±(226.40) 89.37% 1719
Predictive Approach 45710.87±(226.40) 89.30% 1701
Online Approach 45143.07±(212.40) 89.09% 1602

Real-World Dataset: Airlines

Setting Learning Time (ms) Accuracy Drifts Detected

No Drift Detection 2051.87±(141.42) 67.44% -
ADWIN Only 1654.37±(134.79) 75.96% 396
Predictive Approach 1602.07±(120.24) 75.80% 352
Online Approach 1637.27±(124.16) 75.79% 320
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Table 6. SEA Dataset Drift Point Comparison

SEA Sample: induced drifts at 250k, 500k, and 750k (false positives colored)

ADWIN 19167 102463 106367 250399 407807 413535 432415 483519 489407 500223 739423 750143
Predict. 19167 102463 106399 250367 500255 750239
Online 19167 251327 500255 750143

The reduction in the number of drifts detected means that the user does not
need to react to unnecessary drift signals. In the real-world dataset experiments,
we generally observe a similar trend to the synthetic experiments. Overall the
classifier’s accuracy is improved when our approaches are applied. Using ADWIN
only yields the highest accuracy, however, it is only marginally higher than our
approaches while using our approaches the number of drifts detected is reduced.
With real-world datasets, we unfortunately do not have the ground truths and
cannot produce variance in the accuracy and number of drifts detected, but
the eliminated drifts using our approaches did not have apparent effects on the
accuracy of the classifier and thus are more likely to be false positives or less
significant drifts. Although the accuracy results are not statistically worse or
better, we observe a reduction in the number of drifts detected. In scenarios
where drift signals incur high costs of action, having a lower number of detected
drifts while maintaining similar accuracy is in general more favorable.

6 Conclusion and Future Work

We have described a novel concept of estimating the probability of expecting a
drift at each point in the stream based on historical drift trends such as Stream
Volatility. To the best of our knowledge this work is the first that investigate
this idea. We proposed two approaches to derive the expected drift probability:
Predictive approach and Online approach. The Predictive approach uses Stream
Volatility [7] to derive a prediction of where the next drift point is likely to occur
and based on that prediction the expected drift probability is determined using
the proximity of the points to the next drift prediction. The Online approach
estimates the expected drift probability by first training a model using previous
non-drifting data instances and compare the current state of the stream against
the trained model. If the current state matches the model then we assume that
drift is less likely to occur at this current point and derive a low expected drift
probability. We incorporate the derived expected drift probability in the state-
of-the-art detector ADWIN by adjusting the statistical upper bound. When the
expected drift probability is low, the bound is increased to accommodate the
estimation. Through experimentation, we offer evidence that using our design in
ADWIN, we can achieve significantly fewer number of false positives.

Our future work includes applying the Adaptive bound onto other drift detec-
tion techniques that utilize similar statistical upper bounds such as SEED [7].
We also want to look at using other stream characteristics such as the types of
drifts (e.g. gradual and abrupt) to derive the expected drift probability.
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2 Département MMIP Et INRA UMR-518, AgroParisTech, 16, Rue Claude Bernard,

75231 Paris Cedex 5, France
antoine.cornuejols@agroparistech.fr

http://www.agroparistech.fr/mia/equipes:membres:page:antoine

Abstract. Classification of time series as early as possible is a valuable
goal. Indeed, in many application domains, the earliest the decision, the
more rewarding it can be. Yet, often, gathering more information allows
one to get a better decision. The optimization of this time vs. accuracy
tradeoff must generally be solved online and is a complex problem.

This paper presents a formal criterion that expresses this trade-off in
all generality together with a generic sequential meta algorithm to solve
it. This meta algorithm is interesting in two ways. First, it pinpoints
where choices can (have to) be made to obtain a computable algorithm.
As a result a wealth of algorithmic solutions can be found. Second, it
seeks online the earliest time in the future where a minimization of the
criterion can be expected. It thus goes beyond the classical approaches
that myopically decide at each time step whether to make a decision or
to postpone the call one more time step.

After this general setting has been expounded, we study one simple
declination of the meta-algorithm, and we show the results obtained on
synthetic and real time series data sets chosen for their ability to test
the robustness and properties of the technique. The general approach
is vindicated by the experimental results, which allows us to point to
promising perspectives.

Keywords: Early classification of time series · Sequential decision
making

1 Introduction

In many applications, it is natural to acquire the description of an object
incrementally, with new measurements arriving sequentially. This is the case
in medicine, when a patient undergoes successive examinations until it is deter-
mined that enough evidence has been acquired to decide with sufficient certainty
the disease he/she is suffering from. Sometimes, the measurements are not con-
trolled and just arrive over time, as when the behavior of a consumer on a web
site is monitored on-line in order to predict what add to put on his/her screen.
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 433–447, 2015.
DOI: 10.1007/978-3-319-23528-8 27



434 A. Dachraoui et al.

In these situations, one is interested in making a prediction as soon as possi-
ble, either because each measurement is costly or because it is critical to act as
early as possible in order to yield higher returns. However, this generally induces
a tradeoff as less measurements commonly entail more prediction errors that can
be expensive. The question is therefore how to decide on-line that now is the
optimal time to make a prediction.

The problem of deciding when enough information has been gathered to make
a reliable decision has historically been studied under the name of sequential
decision making or Optimal statistical decisions [1,2]. One foremost technique
being Wald’s Sequential Probability Ratio Test [3] which applies to two-classes
classification problems and uses the likelihood ratio:

Rt =
P (〈xi

1, . . . , x
i
t〉 | y = −1)

P (〈xi
1, . . . , x

i
t〉 | y = +1)

where 〈xi
1, . . . , x

i
t〉 is the sequence of t measurements so far that must be classified

to either class −1 or class +1. As the number of measurements t increases, this
ratio is compared to two thresholds set according to the required error of the
first kind α (false positive error) and error of the second kind β (false negative
error). The main difficulty lies in the estimation of the conditional probabilities
P (〈xi

1, . . . , x
i
t〉 | y). (See also [4], a modern implantation of this idea).

A prominent limitation of this general approach is that the cost of delaying
the decision is not taken into account. More recent techniques include the two
components of the cost of early classification problems: the cost associated with
the quality of the prediction and the cost of the delay before a prediction is made
about the incoming sequence. However, most of them compute an optimal deci-
sion time from the learning set, which is then applied to any incoming example
whatever their characteristics are. The decision is therefore not adaptive since
the delay before making a prediction is independent on the input sequence.

The originality of the method presented here is threefold. First, the prob-
lem of early classification of time series is formalized as a sequential decision
problem involving the two costs: quality and delay of the prediction. Second, the
method is adaptive, in that the properties of the incoming sequence are taken
into account to decide what is the optimal time to make a prediction. And third,
in contrast to the usual sequential decision making techniques, the algorithm
presented is not myopic. At each time step, it computes what is the optimal
expected time for a decision in the future, and it is only if this expected time
is the current time that a decision is made. A myopic procedure would only
look at the current situation and decide whether it is time to stop asking for
more data and make a decision or not. It would never try to estimate in advance
the best time to make the prediction. The capacity of conjecturing when in the
future an optimal prediction should be made with regard to the quality and
delay of the prediction is however important and offers valuable opportunities
compared to myopic sequential decisions. Indeed, when the prediction is about
the breakdown of an equipment or about the possible failure of an organ in a
patient, this forecast capacity allows one to make preparations for thwarting as
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best as possible the breakdown or failure, rather than reacting in haste at the
last moment.

The paper is organized as follows. We first review some related work in
Section (2). The formal statement of the early classification problem (Section
(3)) leads to a generic sequential decision making meta algorithm. Our early
decision making proposed approach and its optimal decision rule are formalized
in Section (4). In Section (5), we propose one simple implementation of this meta
algorithm to illustrate our approach. Experiments and results on synthetic data
as well as on real data are presented and discussed in Section (6). The conclusion,
in Section (7), underlines the promising features of the approach presented and
discusses future works.

2 A Generic Framework and Positions of Related Works

In the following, we will assume that we have a set S of m training sequences
with each training sequence being a couple (xi

T , yi) ∈ R
T × Y, meaning that

it is composed of T real valued measurements 〈xi
1, . . . , x

i
T 〉, and an associated

label yi ∈ Y, where Y is a finite set of classes. The question is to choose
the earliest time t∗ at which a new incoming and still incomplete sequence
xt∗ = 〈x1, x2, . . . , xt∗〉 can be optimally labeled. Algorithm (1) provides a generic
description of early classification methods.

Algorithm 1. Framework of early classification methods
Input:

– xt ∈ R
t, t ∈ {1, . . . , T}, an incoming time series;

– {ht}t∈{1...,T} : R
t −→ Y, a set of predictive functions ht learned from the

training set;
– xt ∈ R, a new incoming real measurement;
– T rigger : R

t × ht −→ B, t ∈ {1, . . . , T} , B ∈ {true, false}, a boolean decision
function that decides whether it is time or not to output the prediction ht(xt)
on the class of xt;

1: xt ←− ∅

2: t ←− 0
3: while (¬T rigger(xt, ht)) do /* wait for an additional measurement

4: xt ←− Concat(xt, xt) /* a new measurement is added at the end of xt

5: t ←− t + 1
6: if (T rigger(xt, ht) || t = T ) then
7: ŷ ←− ht(xt) /* predict the class of xt and exit the loop

8: end if
9: end while

In the framework outlined above, we suppose that the training set S has been
used in order to learn a series of hypotheses ht(t ∈ {1, . . . , T}), each hypothesis
ht being able to classify examples of length t: xt = 〈x1, x2, . . . , xt〉.
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Then, the various existing methods for early classification of time series can
be categorized according to the T rigger function which decides when to stop
measuring additional information and output a prediction ht(xt) for the class
of xt.

Several papers that are openly motivated by the problem of early classifi-
cation turn out indeed to be concerned with the problem of classifying from
incomplete sequences rather than with the problem of optimizing a tradeoff
between the precision of the prediction and the time it is performed. (see for
instance [5] where clever classification schemes are presented, but no explicit
cost for delaying the decision is taken into account). Therefore there is stricto
sensu no T rigger function used in these algorithms.

In [6], the T rigger function relies on an estimate of the earliest time at which
the prediction ht(xt) should be equal to the one that would be made if the com-
plete example xT was known: hT (xT ). The so-called minimum prediction length
(MPL) is introduced, and is estimated using a one nearest neighbor classifier.

In a related work [7,8], the T rigger function is based on a very similar idea.
It outputs true when the probability that the assigned label ht(xt) will match
the one that would be assigned using the complete time series hT (xT ) exceeds
some given threshold. To do so, the authors developed a quadratic discriminant
analysis that estimates a reliability bound on the classifier’s prediction at each
time step.

In [9], the T rigger function outputs true if the classification function ht has
a sufficient confidence in its prediction. In order to estimate this confidence level,
the authors use an ensemble method whereby the level of agreement is translated
into a confidence level.

In [10], an early classification approach relying on uncertainty estimations
is presented. It extends the early distinctive shapelet classification (EDGC) [11]
method to provide an uncertainty estimation for each class at each time step.
Thus, an incoming time series is labeled at each time step with the class that
has the minimum uncertainty at that time. The prediction is triggered once a
user-specified uncertainty threshold is met.

It is remarkable that even if the earliness of the decision is mentioned as a
motivation in these papers, the decision procedures themselves do not take it
explicitly into account. They instead evaluate the confidence or reliability of the
current prediction(s) in order to decide if the time is ripe for prediction, or if it
seems better to wait one more time step. In addition, the procedures are myopic
in that they do not look further than the current time to decide if it a prediction
should be made.

In this paper, we present a method that explicitly balance the expected gain
in the precision of the decision at all future time steps with the cost of delaying
the decision. In that way, the optimizing criterion is explicitly a function of both
aspects of the early decision problem, and, furthermore, it allows one to estimate,
and update if necessary, the future optimal time step for the decision.
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3 A Formal Analysis and a Näıve Approach

The question is to learn a decision procedure in order to determine the earliest
time t∗ at which a new incoming sequence xt∗ = 〈x1, x2, . . . , xt∗〉 can be opti-
mally labeled. To do so we associate a cost with the prediction quality of the
decision procedure and a cost with the time step when the prediction is finally
made:

– We assume that a misclassification cost function Ct(ŷ|y) : Y × Y −→ R is
given, providing the cost at time t of predicting ŷ when the true class is y.

– Each time step t is associated with a real valued time cost function C(t)
which is non decreasing over time, which means that it is always more
costly to wait for making a prediction. Note that, in contrast to most other
approaches, this function can be different from a linear one, reflecting the
peculiarities of the domain. For instance, if the task is to decide if an elec-
trical power plant must be started or not, the waiting cost rises sharply as
the last possible time approaches.

We can now define a cost function f associated with the decision problem.

f(xt) =
∑

y∈Y
P (y|xt)

∑

ŷ∈Y
P (ŷ|y,xt)Ct(ŷ|y) + C(t) (1)

This equation corresponds to the expectation of the cost of misclassification
after t measurements have been made, added to the cost of having delaying
the decision until time t. The optimal time t∗ for the decision problem is then
defined as :

t∗ = ArgMin
t∈{1,...,T}

f(xt) (2)

However, this formulation of the decision problem requires that one be able
to compute the conditional probabilities P (y|xt) and P (ŷ|y,xt). The first one
is unknown, otherwise there would be no learning problem in the first place.
The second one is associated with a given classifier, and is equally difficult to
estimate.

Short of being able to estimate these terms, one can fall back on the expec-
tation of the cost for any sequence (hence the function now denoted f(t)):

f(t) =
∑

y∈Y
P (y)

∑

ŷ∈Y
P (ŷ|y)Ct(ŷ|y) + C(t) (3)

From the training set S, it is indeed easy to compute the a priori probabilities
P (y) and the conditional probabilities P (ŷ|y) which are nothing else that the
confusion matrix associated with the considered classifier. One gets then the
optimal time for prediction as:

t∗ = ArgMin
t∈{1,...,T}

f(t)
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This can be computed before any new incoming sequence, and, indeed, t∗ is
independent on the input sequence. Of course, this is intuitively unsatisfactory
as one could feel, regarding a new sequence, very confident (resp. not confident)
in his/her prediction way before (resp. after) the prescribed time t∗. If such is
the case, it seems foolish to make the prediction exactly at time t∗. This is why
we propose an adaptive approach.

4 The Proposed Approach

The goal is to estimate the conditional probability P (ŷ|y,xt) in Equation (1)
by taking into account the incoming time series xt in order to determine the
optimal time t∗. There are several possibilities for this.

In this paper, the idea is to identify a set C of K clusters ck (k ∈ {1, . . . , K})
of complete sequences using a training set so that, later, an (incomplete) input
sequence xt = 〈x1, . . . , xt〉 can have a membership probability assigned to each of
these clusters: P (ck | xt), and therefore will be recognized as more or less close
to each of the prototype sequences corresponding to the clusters. A complete
explanation is given below in Section 5.

The set C of clusters should obey two constraints as well as possible.

1. Different clusters should correspond to different confusion matrices. Other-
wise, Equation (1) will not be able to discriminate the cost between clusters.

2. Clusters should contain similar time series, and be dissimilar to other clus-
ters, so that an incoming sequence will generally be assigned markedly to
one of the clusters.

For each time step t ∈ [1, . . . , T ], a classifier ht is trained using a learning set
S ′. One can then estimate the associated confusion matrix for each cluster and
classifier ht: ck: Pt(ŷ|y, ck) over a distinct learning set S”.

When a new input sequence xt of length t is considered, it is compared to
each cluster ck (of complete time series) and is given a probability membership
Pt(ŷ|y, ck) for each of them (as detailed in Section (5)). In a way, this compares
the input sequence to all families of its possible continuations.

Given that, at time t, T − t measurements are still missing on the incoming
sequence, it is possible to compute the expected cost of classifying xt at each
future time step τ ∈ {0, . . . , T − t}:

fτ (xt) =
∑

ck∈C
P (ck|xt)

∑

y∈Y

∑

ŷ∈Y
Pt+τ (ŷ|y, ck)C(ŷ|y) + C(t + τ) (4)

Perhaps not apparent at first, this equation expresses two remarkable properties.
First, it is computable, which was not the case of Equation (1). Indeed, each

of the terms P (ck|xt) and Pt+τ (ŷ|y, ck) can now be estimated through frequencies
observed in the training data (see Figure (1)). Second, the cost depends on the
incoming sequence because of the use of the probability memberships P (ck|xt).
It is therefore not computed beforehand, once for all.
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Fig. 1. An incoming (incomplete) sequence is compared to each cluster ck obtained
from the training set of complete time series. The confusion matrices for each time
step t and each cluster ck are computed as explained in the text.

Fig. 2. The first curve represents an incoming time series xt. The second curve rep-
resents the expected cost fτ (xt) given xt, ∀τ ∈ {0, . . . , T − t}. It shows the balance
between the gain in the expected precision of the prediction and the cost of waiting
before deciding. The minimum of this tradeoff is expected to occur at time τ�. New
measurements can modify the curve of the expected cost and the estimated τ�.

In addition, the fact that the expected cost fτ (xt) can be computed for each
of the remaining τ time steps allows one to forecast what should be the optimal
horizon τ� for the classification of the input sequence (see Figure (2)):

τ∗ = ArgMin
τ∈{0,...,T−t}

fτ (xt) (5)
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Of course, these costs, and the expected optimal horizon τ�, can be re-
evaluated when a new measurement is made on the incoming sequence. At any
time step t, if the optimal horizon τ� = 0, then the sequential decision process
stops and a prediction is made about the class of the input sequence xt using
the classifier hk

t :

ŷ = hk
t (xt), where k = ArgMax

k∈{1,...,K}
P (ck|xt)

Returning to the general framework outlined for the early classification prob-
lem in Section (3), the proposed function that triggers a prediction for the incom-
ing sequence is given in Algorithm (2):

Algorithm 2. Proposed T rigger(xt, ht) function.
Input: xt, t ∈ {1, . . . , T}, an incoming time series;
1: T rigger ←− false
2: for all τ ∈ {0, . . . , T − t} do
3: compute fτ (xt) /* see Equation (4)*/

4: end for
5: τ∗ = ArgMin

τ∈{0,...,T−t}
fτ (xt)

6: if (τ∗ = 0) then
7: T rigger ←− true
8: end if

5 Implementation

Section (3) has outlined the general framework for the early classification prob-
lem while Section (4) has presented our proposed approach where the problem is
cast as a sequential decision problem with three properties: (i) both the quality of
the prediction and the delay before prediction are taken into account in the total
criterion to be optimized, (ii) the criterion is adaptive in that it depends upon
the incoming sequence xt, and (iii) the proposed solution leads to a non myopic
scheme where the system forecasts the expected optimal horizon τ∗ instead of
just deciding that now is, or is not, the time to make a prediction.

In order to implement the proposed approach, choices have to be made about:

1. The type of classifiers used. For each time step t ∈ {1, . . . , T}, the input
dimension of the classifier is t.

2. The clustering method, which includes the technique (e.g. k-means), the dis-
tance used (e.g. the euclidean distance, the time warping distance, ...), and
the number of clusters that are looked for.

3. The method for computing the membership probabilities P (ck|xt).
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In this paper, we have chosen to use simple, direct, techniques to implement
each of the choices above, so as to clearly single out the properties of the approach
through “baseline results”. Better results can certainly be obtained with more
sophisticated techniques.

Accordingly, (1) for the classifiers, we have used Näıve Bayes classifiers and
Multi-layer Perceptrons with one hidden layer of �t + 2/2� neurons. In Section
(6), we only show results obtained using the Multi-Layer Perceptron since both
classifiers give similar results. (2) The clustering over complete time series is
performed using k-means with euclidean distance. The number Ky of clusters
for each of the target classes y = −1 and y = +1 corresponds to the maximum
silhouettes factor [12]. (3) The membership probabilities P (ck|xt) are computed
using the following equation:

P (ck|xt) =
sk

∑K
i si

, where sk =
1

1 + exp−λΔk
(6)

The constant λ used in the sigmoid function sk is empirically learned from
the training set, while Δk = D − dk is the difference between the average
of the distances between xt and all the clusters, and the distance between xt

and the cluster ck. The distance between an incomplete incoming time series
x′

t = 〈x1, . . . , xt〉 and a complete one x”T = 〈x1, . . . , xT 〉 is done here using the
Euclidian distance between the first t components of the two series.

6 Experiments

Our experiments aimed at checking the validity of the proposed method and at
exploring its capacities for various conditions. To this end, we devised controlled
experiments with artificial data sets for which we could vary the control param-
eters: difference between the two target classes, noise level, number of different
time series shapes in each class and the cost of waiting before decision C(t).
We also applied the method to the real data set TwoLeadECG from UCR Time
Series Classification/Clustering repository [13].

6.1 Controlled Experiments

We devised our experiments so that there should be a gain, that we can control, in
the prediction accuracy if more measurements are made (increasing t). We have
also devised the target classes so that they are composed of several families of
time sequences, with, possibly, families that share a strong resemblance between
different target classes.

In the reported experiments, the time series in the training set and the testing
set are generated according to the following equations:

xt = a sin(ωi t + phase) + b t + ε(t) (7)

The constant b is used to set a general trend, for instance either ascending
(b > 0) or descending (b < 0), while the first term a sin(ωi t + phase) provides
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Fig. 3. Subgroups of sequences generated for classes y = +1 and y = −1, when the
trend parameter b = −0.08 or b = +0.08, and the noise level ε(t) = 0.5.

a shape for this particular family of time series. The last term is a noise factor
that makes the overall prediction task more or less difficult.

For instance, Figure (3) shows a set of time series (one for each shape) where:

– b = −0.08 or b = +0.08
– a = 5 and phase = 0
– ω1 = 10 or ω2 = 10.3 (here, there are 2 groups of time sequences per class)
– ε(t) is a gaussian term of mean = 0 and standard deviation = 0.5
– T = 50

In this particular setting, it is apparent that it is easy to mix up the two
classes y = −1 and y = +1 until intermediate values of t. However, the wait-
ing cost C(t) may force the system to make a decision before there is enough
measurements to make a reasonably sure guess on the class y.

In our experiments, the training set S contained 2,500 examples, and the
testing set T contained 1000 examples, equally divided into the two classes
y = −1 and y = +1. (Nota: In case of imbalanced classes, it is easy to compensate
this by modifying the misclassification cost function Ct(ŷ|y)). Each class was
made of several subgroups: K−1 ones for class −1 and K+1 ones for class +1.
The misclassification costs were set as: C(ŷ|y) = 1, ∀ ŷ, y , and the time cost
function C(t) = d × t, where d ∈ {0.01, 0.05, 0.1}.

We varied:

– The level of distinction between the classes controlled by b
– The number of subgroups in each class and their shape (given by the term

a sin(ωi t + phase))
– The noise level ε(t)
– The cost of waiting before decision C(t)

The results for various combinations of these parameters are shown in Table
(1) as obtained on the time series of the testing set. It reports τ�, the average of
computed optimal times of decision and its associated standard deviation σ(τ�).
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Table 1. Experimental results in function of the waiting cost C(t) = {0.01, 0.05, 0.1}×
t, the noise level ε(t) and the trend parameter b.

±b 0.02 0.05 0.07
C(t)

ε(t) τ� σ(τ�) AUC τ� σ(τ�) AUC τ� σ(τ�) AUC

0.01

0.2 9.0 2.40 0.99 9.0 2.40 0.99 10.0 0.0 1.00
0.5 13.0 4.40 0.98 13.0 4.40 0.98 15.0 0.18 1.00
1.5 24.0 10.02 0.98 32.0 2.56 1.00 30.0 12.79 0.99
5.0 26.0 7.78 0.84 30.0 18.91 0.87 30.0 19.14 0.88
10.0 38.0 18.89 0.70 48.0 1.79 0.74 46.0 5.27 0.75
15.0 23.0 15.88 0.61 32.0 13.88 0.64 29.0 17.80 0.62
20.0 7.0 8.99 0.52 11.0 11.38 0.55 4.0 1.22 0.52

0.05

0.2 8.0 2.00 0.98 8.0 2.00 0.98 9.0 0.0 1.00
0.5 10.0 2.80 0.96 8.0 4.0 0.98 14.0 0.41 0.99
1.5 5.0 0.40 0.68 20.0 0.42 0.95 14.0 4.80 0.88
5.0 8.0 3.87 0.68 6.0 1.36 0.64 5.0 0.50 0.65
10.0 4.0 0.29 0.56 4.0 0.25 0.56 4.0 0.34 0.57
15.0 4.0 0.0 0.54 4.0 0.25 0.56 4.0 0.0 0.55
20.0 4.0 0.0 0.52 4.0 0.0 0.52 4.0 0.0 0.52

0.10

0.2 6.0 0.80 0.95 7.0 1.60 0.94 8.0 0.40 0.96
0.5 6.0 0.80 0.84 9.0 2.40 0.93 10.0 0.0 0.95
1.5 4.0 0.0 0.67 5.0 0.43 0.68 6.0 0.80 0.74
5.0 4.0 0.07 0.64 4.0 0.05 0.64 4.0 0.11 0.64
10.0 4.0 0.0 0.56 48.0 1.79 0.74 4.0 0.22 0.56
15.0 4.0 0.0 0.55 4.0 0.0 0.55 4.0 0.0 0.55
20.0 4.0 0.0 0.52 11.0 11.38 0.55 4.0 0.0 0.52

Additionally, the Area Under the ROC Curve AUC evaluates the quality of the
prediction at the optimal decision time τ� computed by the system.

Globally, one can see that when the noise level is low (ε ≤ 1.5) and the
waiting cost is low too (C(t) = ct × t, with ct ≤ 0.05), the system is able to reach
a high level of performance by waiting increasingly as the noise level augments.
When the waiting cost is high (C(t) = 0.1 × t), on the other hand, the system
takes a decision earlier at the cost of a somewhat lower prediction performance.
Indeed, with rising levels of noise, the system decides that it is not worth waiting
and makes a prediction early on, often at the earliest possible moment, which
was set to 4 in our experiments1.

More specifically:

– Impact of the noise level ε(t): As expected, up to a certain value, rising
levels of noise ε(t) entails increasing delays before a decision is decided upon
by the system. Then, a decrease of τ� is observed, which corresponds to the

1 Below 4 measurements, the classifiers are not effective.
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fact that there is no gain to be expected by waiting further. Accordingly, the
performance, as measured with the AUC, decreases as well when ε(t) rises.

– Impact of the waiting cost C(t): The role of the waiting cost C(t) appears
clearly. When C(t) is very low, the algorithm tends to wait longer before
making a decision, often waiting the last possible time. On the other hand,
with rising C(t), the optimal decision time τ� decreases sharply, converging
to the minimal possible value of 4.

– Impact of the trend parameter b: While the value of b, which controls
the level of distinction of the classes y = +1 and y = −1, is not striking
on the average time of decision τ�, one can notice however the decrease of
the standard deviation when b increases from b = 0.02 to b = 0.05. At the
same time, the AUC increases as well. For small values of the noise level, the
decrease of the standard deviation is further observed when b = 0.07.

– Impact of the number of subgroups in each class: In order to measure
the effect of the complexity of each class on the decision problem, we changed
the number of shapes in each class as well. This is easily done in our setting by
using sets of different values of the parameters in Equation (7). For instance,
Table (2) reports the results obtained when the number of subgroups of class
y = −1 was set to K−1 = 3 while it was set to K+1 = 5 for class y = +1.
When the waiting cost is very low (C(t) = 0.01), the number of subgroups
in each class, and hence the complexity of the classes, does not influence
the results. However, when the waiting cost increases (C(t) = 0.05 × t), the
decision task becomes harder, and the decision time increases while the AUC
decreases.

The above results, in Table (1) and Table (2), aggregate the measures on
the whole testing set. It is interesting to look as well at individual behaviors.
For instance, Figure (4) shows the expected costs fτ (x1

t ) and fτ (x2
t ) for two

different incoming sequences x1
t and x2

t , for each of the potentially remaining τ
time steps. First, one can notice the overall shape of the cost function fτ (xt) with
a decrease followed by a rise. Second, the dependence on the incoming sequence
appears clearly, with different optimal times t�. This confirms that the algorithm
takes into account the peculiarities of the incoming sequence.

6.2 Experiments on a Real Data Set

In order to test the ability of the method to solve real problems, we have realized
experiments using the real data set TwoLeadECG from the UCR repository.
This data set contains 1162 ECG signals all together, that we randomly and
disjointedly re-sampled and split into a training set of 70% of examples and the
remainder for the test set. Each signal is composed of 81 data point representing
the electrical activity of the heart from two different leads. The goal is to detect
an abnormal activity in the heart. Our experiments show that it is indeed possible
to make an informed decision before all measurements are made.
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Table 2. Experimental results in function of the noise level ε(t), the trend parameter
b, and the number of subgroups k+1 and k−1 in each class. The waiting cost C(t) is
fixed to 0.01.

±b 0.02 0.05 0.07
(K−1, K+1)

ε(t) τ� σ(τ�) AUC τ� σ(τ�) AUC τ� σ(τ�) AUC

(3,2)

0.2 9.0 2.40 0.99 9.0 2.40 0.99 10.0 0.0 1.00
0.5 13.0 4.40 0.98 13.0 4.40 0.98 15.0 0.18 1.00
1.5 24.0 10.02 0.98 32.0 2.56 1.00 30.0 12.79 1.00
5.0 26.0 7.78 0.84 30.0 18.90 0.87 30.0 19.14 0.88
10.0 38.0 18.89 0.70 48.0 1.79 0.74 46.0 5.27 0.75
15.0 23.0 15.88 0.61 32.0 13.88 0.64 29.0 17.80 0.62
20.0 7.0 8.99 0.52 11.0 11.38 0.55 4.0 1.22 0.52

(3,5)

0.2 7.0 2.47 0.86 7.0 2.15 0.89 7.0 3.00 0.85
0.5 11.0 5.10 0.87 10.0 4.87 0.88 14.0 7.07 0.91
1.5 20.0 12.69 0.85 18.0 11.80 0.87 26.0 16.33 0.89
5.0 44.0 4.75 0.83 46.0 2.81 0.87 38.0 11.49 0.81
10.0 42.0 6.34 0.67 39.0 7.59 0.68 25.0 8.57 0.61
15.0 28.0 5.99 0.58 32.0 6.51 0.59 19.0 10.12 0.58
20.0 17.0 11.72 0.50 13.0 10.72 0.56 17.0 5.93 0.55

Fig. 4. For two different incoming sequences (top figure), the expected costs (bottom
figure) are different. The minima have different values and occur at different instants.
These differences confirm that deciding to make a prediction depends on the incoming
sequence. (Here, b = 0.05, C(t) = 0.01 × t and ε = 1.5).
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Table 3. Experimental results on real data in function of the waiting cost C(t).

C(t) 0.01 0.05 0.1

τ� 22.0 24.0 10.0
σ(τ�) 6.1214 15.7063 9.7506
AUC 0.9895 0.9918 0.9061

Since the costs involving quality and delay of decision are not provided with
this data set, we arbitrarily set these costs to C(ŷ|y) = 1, ∀ ŷ, y , and C(t) = d×t,
where d ∈ {0.01, 0.05, 0.1}. The question here is whether the method is able to
make reliable prediction early and provide reasonable results.

Table (3) reports the average of optimal times of decision τ� of test time
series, its associated standard deviation σ(τ�), and the performance of the pre-
diction AUC. It is remarkable that a very good performance, as measured by the
AUC, can be obtained from a limited set of measurements: E.g. 22 out of 81 if
C(t) = 0.01, 24 out of 81 if C(t) = 0.05, and 10 out of 81 if C(t) = 0.1.

We therefore see that the baseline solution proposed here is able to (1) adapt
to each incoming sequence and (2) to predict an estimated optimal time of
prediction that yields very good prediction performances while controlling the
cost of delay.

7 Conclusion and Future Works

The problem of online decision making has been known for decades, but numer-
ous new applications in medicine, electric grid management, automatic trans-
portation, and so on, give a new impetus to research works in this area. In this
paper, we have formalized a generic framework for early classification methods
that underlines two critical parts: (i) the optimization criterion that governs the
T rigger boolean function, and (ii) the manner by which the current information
about the incoming time sequence is taken into account.

Within this framework, we have proposed an optimization criterion that bal-
ances the expected gain in the classification cost in the future with the cost of
delaying the decision. One important property of this criterion is that it can be
computed at each time step for all future instants. This prediction of the future
gains is updated given the current observation and is therefore never certain,
but this yields a non myopic sequential decision process.

In this paper, we have sought to determine the baseline properties of our
proposed framework. Thus, we have used simple techniques as: (i) clustering of
time series in order to compare the incoming time sequence to known shapes
from the training set, (ii) a simple formula to estimate the membership proba-
bility P (ck|xt), and (iii) not optimized classifiers, here: näıve Bayes or a simple
implementation of Multi-Layer Perceptrons.

In this baseline setting, it is a remarkable feat that the experiments exhibit
a remarkable fit with desirable properties for an early decision classification
algorithm, as stated in Section 6. The system indeed controls the decision time
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so as to ensure a high level of prediction performance as best as possible given
the level of difficulty of the task and the cost of delaying the decision. It is also
adaptive by taking into account the peculiarities of the incoming time sequence.

While we have obtained quite satisfying and promising results in the exper-
iments carried out on controlled data and on a real data set, one direction for
future work is to boost up this baseline implementation. In particular, we have
ideas about how to use training sequences in order to predict the future decision
cost of an incoming time sequence without using a clustering approach. Besides,
dedicated methods for classifying time sequences should be used rather than
näıve Bayes or simple MLP.

Still, even as it is, the method presented here should prove a useful tool for
many early classification tasks.
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Abstract. We develop an online learning algorithm for bandits on a
graph with side information where there is an underlying Ising distri-
bution over the vertices at low temperatures. We are motivated from
practical settings where the graph state in a social or a computer hosts
network (potentially) changes at every trial; intrinsically partitioning the
graph thus requiring the learning algorithm to play the bandit from the
current partition. Our algorithm essentially functions as a two stage pro-
cess. In the first stage it uses “minimum-cut ” as the regularity measure
to compute the state of the network by using the side label received
and acting as a graph classifier. The classifier internally uses a poly-
nomial time linear programming relaxation technique that incorporates
the known information to predict the unknown states. The second stage
ensures that the bandits are sampled from the appropriate partition of
the graph with the potential for exploring the other part. We achieve
this by running the adversarial multi armed bandit for the edges in
the current partition while exploring the “cut” edges. We empirically
evaluate the strength of our approach through synthetic and real world
datasets. We also indicate the potential for a linear time exact algorithm
for calculating the max-flow as an alternative to the linear programming
relaxation, besides promising bounded mistakes/regret in the number of
times the “cut” changes.

1 Introduction

Many domains encounter a problem in collection of annotated training data due
to the difficulty and costs in requiring efforts of human annotators, while the
abundant unlabelled data come for free. What makes the problem more chal-
lenging is the data might often exhibit complex interactions that violate the inde-
pendent and identically distributed assumption of the data generation process.
In such domains, it is imperative that learning techniques can learn from unla-
belled data and the rich interactions based structure of the data. Learning from
unlabelled and a few labelled data falls under the purview of semi-supervised
learning. Coupling it with an encoding of the data interdependencies as a graph,
results in an attractive problem of learning on graphs.

Often, interesting applications are tied to such problems with rich underly-
ing structure. For example, consider the system of online advertising; serving
advertisements on web pages in an incremental fashion. The web pages can be
represented as vertices in the graph with the links as edges. At given time t,
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 448–463, 2015.
DOI: 10.1007/978-3-319-23528-8 28
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the system receives a request to serve an advertisement on a randomly selected
web-page. Moreover, at the same time, the system receives a side information
about the state of the web-page: for simplicity we assume the side information
to be a rating of 0 or 1. As a consequence, the advertisement pool change with
the change in the state of the graph or the ratings, given the already known
states and the current advert should be served from the appropriate pool. Once
the chosen advertisement is served, the feedback is received and incorporated in
serving the next request.

At a deeper level of understanding, the side information can be interpreted
as the label of the vertex. There are few available labels at the start; the rest
are only incrementally revealed. When a vertex is queried (request for an ad
placement made), an action needs to be picked (an advertisement needs to be
served) from a set of actions. The algorithm should be able to internally predict
what the state of the queried vertex is (how the state of the graph changes) and
then select the appropriate action from the action pool that (potentially)changes
with the predicted label of the queried vertex.

In this paper, we attempt to tackle this problem by exploiting the knowledge
of the non-independence graphical structure of the data in an online setting. We
do so by associating a complexity with the labelling. We call this complexity
“cut” or “energy” of the labelling on a Markov random field with discrete states
(Ising model). The goal of our graph labelling procedure is to minimize the
energy while being consistent with the information seen so far when predicting
the intrinsic state of the queried vertex at every round. This prediction directs
the overall goal towards minimizing the regret of our sequential action selection
(bandit) algorithm within the online graph labelling that occurs over the entire
sequence.

Related Work. Broadly speaking, there are two central themes that run
through our work unified under the common framework of online learning,
namely, action selection using bandit feedback and semi-supervised graph
labelling. The closest related work that addresses the intersection of these two
themes is the work by Claudio et al. [10]. They use bandit feedback to address
a multi-class ranking problem. The algorithm outputs a partially ordered sub-
set of classes and receives only bandit feedback (partial information) among the
selected classes it observes without any supervised ranking feedback. In contrast,
we play the bandit game of sequential action selection, using side information
as the class label of the current context. Our feedback for the action selected is
still partial (only loss for the selected action is observed). Further, our bandits
have a structure associated with the Ising model distribution over the vertices at
low temperature. The work of Amin et al.[2], addresses the graphical models for
bandit problems to demonstrate the rich interactions between the two worlds in
the similar lines of what we try to achieve. Bearing a strong resemblance to our
work, they address the similar context-action space. However, in their setting,
there is a strong coupling between the context-action space; the algorithm needs
to fulfil the entire joint assignment before receiving any feedback. In contrast,
our concept-action space is decoupled, labels are revealed gradually determining
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the current active concept for the learner to choose the action and receive the
feedback instantaneously. In their problem formulation under the Ising graph
setting, the algorithm tries to pick the action (the label of the concept) that is
NP hard. In contrast, we focus on the low temperature setting, where our actions
lie on the edges, and are not the labels of the vertices. The computation of the
marginal at the vertices is guided by the labels seen so far and the minimal cut.
We approximate the labelling of the entire graph rather than predicting the spin
configuration of a single vertex using the “cut” as the regularizer that dominates
the action selection. The contextual bandits work on online clustering of ban-
dits [9], deals with finding groups or clusters of bandits in the graphs. They have
a stochastic assumption of a linear function for reward generation. Similarity
is revealed by the parameter vector that is inferred over time. In contrast, we
use the similarity over edges to determine the “cut” which in-turns guides the
action selection process in adversarial settings. There work extends to running
a contextual bandit for every node, whereas ours is a single bandit algorithm,
where the context information is captured in the “cut”. The work of Castro et
al. [7] of edge bandits is similar in the sense that the bandits lie on the edges.
However, instead of direct rewards of action selection, rewards are a difference
in the values of the vertices. Further, this is the stochastic setting instead of
the adversarial one. In Spectral bandits [18], the actions are the nodes, while
there is a smooth Laplacian graph function for the rewards. We discuss later the
limitations of Laplacian based methods for graph labelling. Further, they do not
consider the Ising model that we study. The seminal work of semi supervised
graph labelling prediction can be found in [6], where minimum label-separating
cut is used for prediction. Laplacian based methods that results neighbouring
nodes connected by an edge to share similar values are widely studied in the
semi-supervised and manifold learning problems [5,11,12,19,20]. Typically, this
information is captured by the semi-norm induced by the Laplacian of the graph.
Essentially, the smoothness of the labelling is ensured by the “cut”. The “cut”
is the number of edges with disagreeing labels. Then, the norm induced by the
Laplacian can be considered as the regularizer. However, there are limitations in
these methods with increasing unlabelled data [1,16]. Here, we also use “cut” as
the regularization measure over an Ising model distribution of the values over the
vertices of the graph at low temperatures. We simultaneously find the partition
using the “min-cut” and then sample the actions from the relevant partition.

2 Background and Preliminaries

2.1 Semi-supervised Graph Classifier Complexity

The standard approach in semi supervised learning is to construct the graph
from the unlabelled and labelled data such that each datum is denoted as a
vertex. Traditionally, the norm induced by the graph Laplacian is used to predict
the labelling. Typically, either the norm induced by the Laplacian is directly
minimized/interpolated with respect to constraints or is used as a regulariser.
Both methods help build classifiers on graphs in order to learn sparse labels in
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R
n by incorporating a measure of complexity also called “cut” or energy. For a

graph G = (V,E), where the set of vertices V = {v1, . . . , vn} are connected by
edges in E. Let a weight of Aij be associated with every edge (i, j) ∈ E, such
that A is the n × n symmetric adjacency matrix, then the Laplacian L of the
graph is given by L = D − A, where D is the degree matrix with its diagonal
values given by Dii =

∑

j Aij . We re-state Definition 1 from [14] that relates
the quadratic form of the Laplacian with the complexity of the “cut-size” for
completeness.

Definition 1 ([14]). If the labelling of the graph G is given by u ∈ R
n, the “cut

size” of u is given by

ψG (u) =
1
4
uTLu =

1
4

∑

(i,j)∈E

Aij(ui − uj)2 . (1)

When u ∈ {0, 1}n, the “cut” is on the edge (i, j) where ui �= uj, then ψG (u) is
the number of “cut” edges.

The smoothness functional of uTLu is generalized in the work of semi-norm
interpolation [13] where the Laplacian p−seminorm is defined on u ∈ R

n as:

||u||G,p � ψG (u) =

⎛

⎝

∑

(i,j)∈E

Aij |ui − uj |p
⎞

⎠

1
p

. (2)

When p = 2, this is equivalent to the harmonic energy minimization technique
in [20]. Alternatively, this technique is also called the Laplacian interpolated
regularization [4]. In [14], the online version of the p = 2 case is studied in the
context of the already available labels. If G is a partially labelled graph as in our
problem, such that |V | = N , and the partial labels l ≤ N , with the labels given
by yl ∈ {1,−1}l on the l vertices, then the minimum semi-norm interpolation
gives the labelling:

y = argmin{uTLu : u ∈ R
n, ur = yr, r = 1, . . . , l} .

The prediction is made by using ŷi = sgn(yi) [13]. The rationale behind mini-
mizing the cut enables the neighbouring vertices to have similarly valued labels.
With p → 1, the prediction problem is reduced to predicting using the label
consistent minimum cut.

2.2 Ising Model at Low Temperature

As discussed above, the labelling of the whole graph is obtained by optimizing the
objective function constrained on the given labels. From label propagation [20],
we saw when p = 2, the harmonic energy function E(u) minimized in (1) is
quadratic in nature. The technique in (1), chooses the label as a function u :
V → R and a probability distribution on the function u given by a Gaussian
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field P (u) = exp−βE(u)

Z , where Z is the partition function and β in the inverse
temperature or the uncertainty in the model. There are multiple limitations
of the quadratic energy minimization technique. This model is not applicable
for p → 1 in the limit. Not only is the computation slow, the mistake bounds
obtained are not the best. Further, in our problem, we relax the values of the
labels such that u : V → [0, 1]. With p → 1, the energy function is equivalent
to the the one that finds the minimum cut. Further, when p → 1 using (2)
results in the minimization of a non-strongly convex function per trial that is
not differentiable. Also, interesting is that the Laplacian based methods are
limited with the abundance of unlabelled data [16]. Hence, we are interested in
the Markov random field applicable here with discrete states also known as the
Ising model. At low temperatures, the Ising probability distribution over the
labellings of a graph G is defined by:

PG
T (u) ∝ exp

(

− 1
T

ψG (u)
)

. (3)

where T is the temperature, u is the labelling over the vertices of G and ψG (u)
is the complexity of the labelling or the “cut-size”. The probabilistic Ising model
encodes the uncertainty about the labels of the vertices and at low temperatures
favours labellings that minimise the number of edges whose vertices have different
labels as shown in (2) with p = 1. If the vertex labels pairs seen so far is given
by Zt of vertex label pairs (j1, y1) , . . . , (jt, yt) such that (j, y) ∈ V (G) × {0, 1},
then the marginal probability of the label of the vertex v being y conditioned
on Zt is given by: PG

T (uv = y|Zt) = PG
T (uv = y|uj1 = y1, . . . , ujt

= yt). At low
temperatures and in the limit of zero temperature T → 0, the marginal favours
the labelling that is consistent with the labelling seen so far and the minimum
cut. Such label conditioning or label consistency in the context of graph labelling
has been extensively studied [11,12,15]. In this paper, we are only interested in
the low temperature setting of the Ising model as the environment in which the
player functions. However, at low temperatures, the minimum cut is still not
unique.

2.3 Multi-Armed Bandit Problem (MAB)

As with any sequential prediction game, the MAB is played between the learner
and the environment and proceeds in a series of rounds t = 1, . . . , n. At every
time instance t, the forecaster chooses an action It from the set of actions or
arms at ∈ A, where A is the action set with K actions. When sampling an arm,
the learner suffers a loss lt that the adversary chooses in a randomized way. The
forecaster receives the loss for the selected action only in the bandit setting.
The objective of the forecaster is to minimize the regret given by the difference
between the incurred cumulative loss on the sequence played and the optimal
cumulative loss with respect to the best possible action in hindsight. The decision
making process depends on the history of actions sampled and losses received
up until time t − 1. The notion of regret is expressed as expected (average)
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regret and pseudo regret, where pseudo regret is the weaker notion because of
the comparison with the optimal action in expectation. For the adversarial case,
it is given by:

Rn = E

n
∑

t=1

lIt,t − min
i=1,...,K

E

n
∑

t=1

li,t . (4)

The expectation is with respect to the forecaster’s internal randomization and
possibly the adversary’s randomization. In this work, we consider the adversarial
bandit setting with side information (information at queried vertex). Note that
unlike in the standard MAB problems where there is no structure defined over
the actions, in our setup of the problem, we not only have a structure over the
action set but also potentially utilize the associated structural side information
that makes the problem more realistic. One more deviation from the standard
MAB framework is that at every round, the adversary randomly selects a ver-
tex as the current concept; the value of the concept queried is unknown until
after the trial and action selection. Further, our adversary is restricted in that
the complexity or “cut-size” of the model of the environment that we have cho-
sen cannot increase across trials. The intuition being, the number of times the
learner makes a mistake (predicts the queried state wrong) or does not choose
the optimal action, is bounded by the number of times the “cut” changes for the
minimum.

2.4 Formulation

We consider an undirected graph G = (V (G), E(G)) where the elements of E
are called edges that form an unordered pair between the unique elements of V
that are called vertices. We assume an unit weight on every edge. The number of
vertices in the graph are denoted by N . The vertices of the graph are associated
with partially unknown concept values or labels si that are gradually revealed,
while the bandits lie on the edges in E(G) to form the action set A with cardi-
nality |K|. We assume a κ connected graph, the maximum value of κ such that
each vertex has at least κ neighbours. Vertices i and j are neighbours if there
is an edge/action connecting them. Note, the number of rounds n ≤ |K|. In our
case, n is equal to number of vertices queried by the environment with unknown
labels. A vertex is randomly selected by the environment at every round t, in our
case, the queried vertex is given by xi where i ∈ NN . In our example, the queried
vertex could represent the request to place an advert on the product website the
user currently visits . More specifically, the connections in our graph, not only
capture the explicit connections between vertices given by locality, but our ban-
dits or edges also capture the implicit connections between the values of vertices
that are possibly differently labelled. In our case, the labels are relaxed such that
the label for the i-th vertex is denoted by si = {−1, 1}.

At the start we are given the labels of a small subset of observed vertices,
s o ∈ So ⊂ V (G). The labels of the unlabelled vertices su ∈ Su ⊂ V (G)\L, with

S = So ∪ Su is revealed one at a time sequentially as at the end of each round
as side information. We assume that there are at least two vertices labelled at
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the start, one in each category. The learning algorithm plays the online bandit
game where the adversary at each trial reveals the loss of the selected action
and the label of a randomly selected vertex. The goal of the learner is to be
able to predict the label of the randomly selected vertex and then sample the
appropriate action given the prediction.

3 Maximum Flow Computation

Given a partially labelled graph, the Ising model associates a probability with
every labelling that is a consistent completion of the partial labellings. Now,
if “cut” of a labelling defines the “energy” of the labelling, then the low −
temperature Ising is a simplified landscape made up of all such minimum cut
(energy) labellings. In a way, the Ising model induces an “energy landscape” over
labellings via the “cut.” For a n-vertex graph, the energy levels sit inside the
n-dimensional hypercube. One can minimize the energy while being consistent
with the observations seen so far to achieve the desired goal.

As a first step in the learning process, the learner has to detect the underly-
ing hidden partition in the graph, given the available labels with respect to the
currently queried vertex. It can do so by using efficient graph partitioning meth-
ods. However, given the partial labelling, the partition detected should respect
or be consistent with the labels seen so far. One way to address this is using
optimization methods that satisfies the label consistency through constraints.
Alternatively, there are very efficient linear time exact methods that can solve
this in practise. One such method is “Ford- Fulkerson”[8] algorithm. If one can
characterize the labelled vertices in such a way to designate a single source, single
sink network, running “Ford Fulkerson”[8] in an online fashion for every round
using the side information can be used to efficiently detect the partition. Here,
we choose to use a simplified linear programming relaxation to the classic Linear
Programming (LP) maximal flow problem (5). Although, the LP formulation we
use, can be solved in polynomial time, there is nothing restricting us in using
the linear time modified “Ford-Fulkerson” algorithm to achieve the same goal.
The objective here is to enable the learner for better predictions and hence lower
its regret quicker by detecting the partition early, rather than to illustrate the
computational efficiency of the method.

It is known by Menger’s theorem of linear programming duality, that maxi-
mum flow and the minimum cut are related given a source and a target vertex.
Let us introduce the maximum flow or label consistent minimum cut in the graph
using the following notation c∗ = min{S ∈ {−1, 1}N : ψG(S|H)} consistent with
the trial sequence H seen so far.

E(S) = arg min
S∈{−1,1}N

∑

(i,j)∈E(G)

|si − sj | ≤ c∗ . (5)

In general. linear programming relaxations are much easier to analyse. Interested
readers are referred to the article [17], where LP relaxations are discussed. We
use a linear programming relaxation of the above objective as shown in Fig.1
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that has auxiliary variables introduced such that there is one variable for every
vertex v and one variable for every edge fij . Since, we have an undirected graph,
we assume a directed edge in each direction, for every undirected edge. Hence
we have two flow variables per edge in the graph. Essentially, the free variables
in the optimization are the unlabelled vertices sui , suj and the flows across every
direction fij . The total flow across all the edges will be our maximum flow for
this low temperature Ising model. The formulation in Fig.1 below is what the
learner follows to find the minimum cut ψG . The output from the computation
is a directed graph with the value of flow at every edge and the labelling of
the vertices consistent with the labels seen so far; w(i,j) is the cost variable
of the LP. The sum of the flows is the maximum flow in the Ising model at
low temperatures. We fix one of the labelled vertices as a source, and one as
target, each with different labels. We assume a unit capacity on every edge.
The constraints in Fig. 1 ensure the capacity constraint f(ij) and conservation
constraint si−sjare adhered to i.e. the flow in any vertex v other than the source
and target, is equal to flow out from v. The largest amount of flow that can pass
through any edge is at most 1, as we have unit capacity on every edge. We know
that the cost of the maximum flow is equal to the capacity of the minimum
cut. The minimum cut obtained as a solution to the optimization problem is an
integer.

3.1 Playing Ising Bandits

Figure 2 describes the main algorithm for Ising bandits. It is important to note
that ComputeMaxFlow can only guide the player towards the active partition with
respect to the current context (queried vertex) by detecting the partition early
on. P is a subgraph of G, P ⊆ G iff V (P) ⊆ V (G) and E(P) = {(i, j) : i, j ∈
V (P), (i, j) ∈ E(G)}. SelectPartition samples the Ising bandits from the best
partition with respect to the active concept if the minimum cut changes from
previous round. E(R), E(J ) are the partitions of the action set at trial t. Since
S′ provides the labelling, it is easy to see which bandits fall in which partition
with respect to xt . The probability distribution rt over E(R) , and jt over E(J )
sum to pt. Note that if the cut remains the same, player keeps playing the same
partition until the cut changes. This has an important implication. Since we
assume that the adversary cannot increase the cut at any trial, the cut can only
decrease or stay the same. For the rounds it stays the same, the regret that the
player suffers is well bounded by the number of times the cut changes. In the
best case, the algorithm behaves as a typical Multi-armed bandit (MAB) and in
the worst case when the partition changes at every round, the algorithm plays
the modified Ising Bandits. The algorithm parameter η is the standard MAB

value η =
√

log |K|
3n .

4 Experiments

In our experiments, we compare three competitor algorithms with our algorithm
IsingBandits. The three are LabProp [19,20], Exp3 [3] and Exp4[3]. Exp3 and
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ComputeMaxFlow( target vertex: s� ; source vertex: s�; trial sequence:
H = (xk, sk)t

k=1; graph: G )

minimize
∑

(i,j)∈E(G)

w(i, j)f(i, j)

subject to:

f(i,j) ≥ 0 (6)
si − sj ≤ f(ij) (7)

si ≥ −1 (8)
si ≤ 1

Return: min-cut: c∗; flows: f ; consistent partition: S
′

Fig. 1. Computing the Max-flow

Parameters: Graph: G; η ∈ R+

Input: Trial Sequence: H = 〈(x1, −1), (x2, 1), (x3, s3), . . . , (xt, st)〉
Initialization: p1 is the initial distribution over A such that, p1 = ( 1

|K| ,
1

|K| , . . . ,
1

|K| ),

Initial cut-size c = ∞; active partition distribution r1 = p1

for t = 1, . . . , n do

Receive: xt ∈ NN

(c∗, f,S
′
) = ComputeMaxFlow(s�, s�, H, G)

if (c �= c∗) then % if cut has changed

(E(R), E(J ), rt, jt) = SelectPartition(xt, pt, S
′
, A)

Assign: qt be the distribution over Ising bandits w.r.t xt, such that,
∑|E(R)|

i=1 qi,t = rt. For any t, pt = rt ∪ jt

Play: It from qt

Receive: Loss zt; side information st

Compute: Estimated loss z̃i,t = zi,t

qi,t
1It=i

Cumulative estimated loss: Z̃i,t = Z̃i,t + ˜zi,t

Update: qi,t+1 = qi,t exp(ηZ̃i,t)
∑|E(R)|

j=1 exp (ηZ̃j,t)

end

Fig. 2. Ising Bandits Algorithm
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Exp4 are from the same family of algorithms for bandits in the adversarial set-
ting. Exp4 is the contextual bandit setting, the close competitor to Ising from
the contextual perspective. The experts or contexts in Exp4 for our problem
setting are a number of possible labellings. Note that the number of experts
selected for prediction have a bearing on the performance of the algorithm. In
our experiments, we fixed the number of experts to 10. In reality, even at low
temperatures for the model we consider, the set of all possible labellings is expo-
nential in size. LabProp [19,20] is the implementation where the state-of-the-art
graph Laplacian based labelling procedure is used to optimize the labelling con-
sistent with the labels seen so far. For all of the above algorithms, we use our
own implementation in MATLAB. Since online experiments are extremely time
consuming while processing one data point at a time, we have averaged each set
of experiments over five trials but for ISOLET, where we average over ten trials.
The datasets that we use are the standardized UCI datasets namely the USPS
and the ISOLET datasets. All datasets are nearly balanced in our experiments to
demonstrate the fairness of the class distribution and for avoiding any majority
vote cases where the class with the majority vote wins.

4.1 Dataset Description

The summary of datasets used is captured in Table 1. The USPS handwritten
digits is an optical character recognition dataset comprising 16x16 grayscale
images of “0” through “9” obtained from scanning handwritten digits. The pre-
processed dataset has each image with 256 real valued features without missing
values scaled to [-1,1]. We randomly sample the examples for the graph from the
7291 original training points. Each vertex in the graph thus sampled is a digit.
We perform several binary graph generation of sampling one digit vs. the other
digit to form our underlying graph with edges or connections between the two
digits forming our action set.

We use a noisy perceptual dataset for spoken letter recognition called ISOLET
consisting of 7797 instances with 617 real valued features. A total of 150 subjects
spoke each letter of the English alphabets twice resulting in 52 training examples
from each speaker. The total of 150 speakers are split into 30 speakers each into
files named as Isolet 1 through to Isolet 5. For the purpose of our experiments
here, we build the graph from Isolet 1 comprising 1560 examples from 30 speaker
with each letter being spoken twice. Again, we are only interested in binary
classified graphs here where we sample the first 13 spoken letters and the last 13
spoken letters as two separate underlying concepts in our graph, the connections
between which form our action set.

Fig. 3. Squares image.
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Table 1. Datasets used in this paper.

Data set #Instances #Features #Classes

USPS 7291 256 10
Isolet 7797 617 26

4.2 Synthetic Dataset

Our synthetic data uses a 2D grid like topology. Figure 3 shows the image used
to construct the graph in our experiments. Our interest in using the image for
our simulation experiment stems from the natural occurring graph structure in
such 2D grids. The image style of Squares is chosen based on our interest in
smooth and wide regions of similar labels interspersed with dissimilar labelled
boundary regions. We use a square image that is constructed using a set of
pixels, each with an intensity of 0 or 1. The 0 and 1 intensities are balanced
across the pixels i.e. there are equal number of pixels with 0 and 1 intensities.
Each pixel in the image corresponds to a vertex in the graph and the intensities
correspond to the label or class of the vertex. Here, our graph has 3600 vertices.
The neighbourhood system in the graph comprises of edges connecting pairs of
neighbouring similar pixels. The connectivity is typically guided by if the pixels
are of comparable intensities, if the pixels are structurally close to each other or
both. Here, we are only interested in the physical pixel locations that are used to
determine connectivity i.e. pixels closer to each other on the grid are connected.
The connections eventually form our bandits action set. In this paper, we are only
interested in undirected and unweighted graphs. Our grid graph thus generated
have a weight of 1 on every edge and there is an edge in either direction. Further,
we investigate the type of neighbourhood system, called torus. In the torus grid,
each pixel has four neighbours; achieved by connecting the top with the bottom
edge pixels and the left with the right edge pixels. Our graph is the same across
trials. We randomly sample the available labelled vertices from the graph such
that there are equal number of labels from each concept class.

4.3 Graph Generation from Datasets

We design our experiments to test the action selection algorithm under a num-
ber of different criteria of graph creation: balanced labels, varying degree of
connectedness, varying sizes of initial labels and noise. The parameters that are
varied across the experiments are graph size indicated by N , labels available as
L, connectivity K, noise levels nse.

In the set of experiments with ISOLET, we chose to build the graph from
the first 30 speakers in Isolet1 that forms a graph of 1560 vertices of 52 spoken
letters (each letter spoken twice) by 30 speakers. The concept classes that are
sampled are the first 13 letters of English alphabets as one concept vs. the next
13 letters as the other concept. We build a 3 nearest neighbour graph from the
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Euclidean distance matrix constructed using the pairwise distances between the
examples (spoken letters). In order to ensure that the graph is connected for
such low connectivity, we sample a MST for each graph and always maintain
the MST edges in the graph. The MST uses the Euclidean distances as weights.
The same underlying graph is used across trials. The edges or connections form
the bandits. The available side information is sampled randomly such that the
two classes are balanced over the entire graph size.

In the USPS experiments, we randomly sample a different graph for each
trial. While sampling the vertices of the graph, we ensure to select vertices
equally from each concept class. We use a variety of concept classes 1 vs. 2, 2
vs. 3 and 4 vs. 7. We use the pairwise Euclidean distance as the weights for
the MST construction. All the sampled graphs maintain the MST edges. In
all the experiments on the datasets, the unweighted minimum spanning tree
(MST) and “K = 3”-NN graph had their edge sets’ “unioned” to create the
resultant graph. The motivating reason being that most empirical experiments
had shown competitive performance of algorithms at K = 3, while the MST
guaranteed connectivity in the graph. Besides, MST based graphs are sparse in
general, enabling computational efficient completion of the experiments. All the
experiments were carried out in a quad-core processor notebooks (@2.30 GHz
each) with 8GB RAM and 16 GB RAM.

4.4 Evaluation Criteria

We measure the performance of the algorithms by means of the instantaneous
regret or per-round regret of the learning algorithm as compared with the optimal
algorithm (lower the better). The instantaneous regret should sub-linearly reduce
to zero. The instantaneous regret of the algorithm is measured against time. In
our case, time indicates each unlabelled vertex queried in an iterative fashion
by the environment, until all unlabelled vertices had been queried. Ideally, the
more vertices has been queried and more side information obtained, the lower
should be the instantaneous regret of the algorithms. In all the experiments, the
hidden concept class distribution in the underlying graph is balanced.

4.5 Results

In the synthetic dataset of concentric squares experiment in Fig. 4, Ising always
outperforms Exp3, Exp4 and LabProp. LabProp and Ising are very competitive
over uninformed competitors of Exp3, Exp4. Exp3, Exp4 do not use the avail-
able side information to sample their action. Note, the overlapping squares cre-
ate a difficult dataset where closely connected clusters of similar labels white
with intensity 1 are surrounded by clusters of opposite labels black with
intensity 0 around its boundary. Although, LabProp is good at exploiting
connectivity, here we see that Ising captures the opposing boundary side infor-
mation better than LabProp.
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Fig. 4. Results on torus graph generated from Squares image with equal number of
neighbours K = 4, N = 3600, L = 250.

Our dataset experiments begin with the USPS 2 Vs.3 experiment with con-
nectivity K = 3, available labels L = 8, and number of data points N = 1000.
In Fig. 5 below, algorithms Ising and LabProp are very competitive when side
information about more than half of the dataset is obtained. When the side
information is very limited at the beginning of the game, LabProp outperforms
Ising.

Fig. 5. USPS 2 Vs.3 with K = 3, N = 1000, L = 8

In Fig. 6 below, we test the behaviour of the algorithms with varying degree of
connectivity. We vary the parameter K over a range to check how well the cluster
size affects the performance. It is known from labelling over graph literature that
with increasing K the behaviour deteriorates. Here, we see Ising outperforms
LabProp for lower values of K, while LabProp wins for higher K.
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(a) K=3 (b) K=5 (c) K=7

Fig. 6. USPS 4 Vs.7, with varying connectivity K = 3,K = 5,K = 7 on randomly
sampled graphs with N = 1000, L = 8. The color coding is uniform over all the graphs
and as indicated in (c) above.

In our experiments over the dataset ISOLET, we sample the graph from
ISOLET 1. In Fig. 7, we observe that with K = 3 and L = 128, Ising out-
performs LabProp throughout. The overall regret achieved in ISOLET is higher
than the regret achieved in USPS as ISOLET is a noisy dataset.

Fig. 7. Experiments on ISOLET with K = 3, N = 1560, L = 128

The following set of experiments in Fig. 8 and Fig. 9 test the robustness of
our methods in presence of balanced noise. Our noise parameter nse is varied
over the percentage range s = 10, 20, 30, 40. When noise is say x percent, we
randomly eliminate the actions/edges in the graph (from existing connections)
for which the noise is less than x percent, and add a balanced equal number of
new actions (connections) to the graph. We see that the performance of Ising
is the most robust across various noise levels. LabProp suffers with noise as it is
heavily dependant on connectivity, and under performs in contrast to Exp4 and
Exp3. On the contrary, Ising uses the connectivity for side information, with its
action selection unaffected with the introduction of noise. When the noise level
increases, the performance of all the algorithms decrease uniformly.
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(a) nse = 10 (b) nse = 20

Fig. 8. USPS 1 vs. 2 Robustness Experiments with noise levels 10% and 20%

(a) nse = 30 (b) nse = 40

Fig. 9. USPS 1 vs. 2 Robustness Experiments with noise levels 30% and 40%

5 Conclusion

There are real life scenarios where a core minimal subset of connections in a net-
work is responsible for partitioning the graph. Such a core group could be a focus
of targeted advertising or content-recommendation as that can have maximum
influence on the network with a potential to go viral. Typically, there is a lot
of available information in such settings that is potentially usable for detecting
the changing partitioning set. We address such advertising and content recom-
mendation challenges by casting the problem as an online Ising graph model of
bandits with side information. We use the notion of cut-size as a regularity mea-
sure in the model to identify the partition and play the bandits game. The best
case behaviour of the algorithm when there is a single partition is equivalent to
the standard adversarial MAB. We show a polynomial algorithm where the label
consistent “cut-size” can guide the sampling procedure. Further, we motivate a
linear time exact algorithm for computing the max flow that also respects the
label consistency. An interesting effect of the algorithm is that as long as the
cut-size does not change, the learner keeps playing the same partition on the
active action set (size smaller than the actual action set). The regret is then
bounded by the number of times the cut changes during the entire game. This
can be proven analytically, which we will like to pursue as future work.
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Abstract. We consider a variant of the Multi-Armed Bandit problem
which involves a large pool of a priori identical arms (or items). Each
arm is associated with a deterministic value, which is sampled from a
probability distribution with unknown maximal value, and is revealed
once that arm is chosen. At each time instant the agent may choose a
new arm (with unknown value), or a previously-chosen arm whose value
is already revealed. The goal is to minimize the cumulative regret relative
to the best arm in the pool. Previous work has established a lower bound
on the regret for this model, depending on the functional form of the tail
of the sample distribution, as well as algorithms that attain this bound
up to logarithmic terms. Here, we present a more refined algorithm that
attains the same order as the lower bound. We further consider several
variants of the basic model, involving an anytime algorithm and the case
of non-retainable arms. Numerical experiments demonstrate the superior
performance of the suggested algorithms.

Keywords: Many-armed bandits · Regret minimization

1 Introduction

We consider a statistical learning problem in which the learning agent faces a
large pool of possible items, or arms, each associated with a numerical value
which is unknown a priori. At each time step the agent chooses an arm, whose
exact value is then revealed and considered as the agent’s reward at this time
step. The goal of the learning agent is to maximize the cumulative reward,
or, more specifically, to minimize the cumulative n-step regret (relative to the
largest value available in the pool). At every time step, the agent should decide
between sampling a new arm (with unknown value) from the pool, or sampling
a previously sampled arm with a known value. Clearly, this decision represents
the exploration vs. exploitation trade-off in the classic multi-armed bandit model.
Our model assumes that the number of available arms in the pool is unlimited,
and that the value of each newly observed arm is an independent sample from
a common probability distribution. We study two variants of the basic model:
the retainable arms case, in which the learning agent can return to any of the
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previously sampled arms (with known value), and the case of non-retainable
arms, where previously sampled arms are lost if not immediately reused.

This model falls within the so-call infinitely-many armed framework, stud-
ied in [3,4,6,7,10,11]. In most of these works, which are further elaborated on
below, the observed rewards are stochastic and the arms are retainable. Here,
we continue the work in [7] that assumes that the potential reward of each arm
is fixed and precisely observed once that arm is chosen. This simpler framework
allows to obtain sharper bounds which focus on the basic issue of the sample
size required to estimate the maximal value in the pool. At the same time, the
assumption that the reward is deterministic may be relevant in various appli-
cations, such as parts inspection, worker selection, and communication channel
selection. For this model, a lower bound on the regret and fixed time horizon
algorithms that attain this lower bound up to logarithmic terms were presented
in [7]. In the present paper, we propose algorithms that attain the same order
as the lower bound (with no additional logarithmic terms) under a fairly general
assumption on the tail of the probability distribution of the value. We further
demonstrate that these bounds may not be achieved without this assumption.
Furthermore, for the case where the time horizon is not specified, we provide an
anytime algorithm that also attains the lower bound under similar conditions.

As mentioned above, several papers have studied a similar model with
stochastic rewards. A lower bound on the regret was first provided in [3], for
the case of Bernoulli arms, with the arm values (namely the expected rewards)
distributed uniformly on the interval [0, 1]. For a known value distribution, algo-
rithms that attain the same regret order as that lower bound are provided in
[3,6,10], and an algorithm which attains that bound exactly under certain condi-
tions is provided in [4]. In [11], the model was analyzed under weaker conditions
that involve the form of the tail of the value distribution which is assumed known;
however, significantly, the maximal value need not be known a priori. A lower
bound and algorithms that achieve it up to logarithmic terms were developed
for this case. The assumptions in the present paper are milder, in the sense that
the tail distribution is not restricted in its form and only an upper bound on
this tail is assumed rather than exact match. Our work also addresses the case
of non-retainable arms, which has not been considered in the above-mentioned
papers.

In a broader perspective, the present model may be compared to the
continuum-armed bandit problem studied in [1,5,9]. In this model the arms
are chosen from a continuous set, and the arm values satisfy some continuity
properties over this set. In the model discussed here, we do not assume any
regularity conditions across arms. The non-retainable arms version of our model
is reminiscent of the classical secretary problem, see for example [8] and [2] for
extensive surveys. In the secretary problem, the learning agent interviews job
candidates sequentially, and wishes to maximize the probability of hiring the
best candidate in the group. Our model considers the cumulative reward (or
regret) as the performance measure.
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The paper proceeds as follows. In the next section we present our model and
the associated lower bound developed in [7]. Section 3 presents our algorithms
and regret bounds for the basic model (with known time horizon and retainable
arms). The extensions to anytime algorithms and the case of non-retainable
arms are presented in Section 4. Some numerical experiments which compare
the performance of the proposed algorithms to previous ones are described in
Section 5, followed by concluding remarks.

2 Model Formulation and Lower Bound

We consider an infinite pool of arms, with values that are drawn independently
from a common (but unknown) probability distribution with a cumulative dis-
tribution function F (μ), μ ∈ R. Let μ∗ denote the supremal value, namely, the
maximal value in the support of the measure defined by F (μ). As mentioned,
once an arm is sampled its value is revealed, and at each time step t = 1, ..., n,
a new or a previously sampled arm may be chosen. Our performance measure is
the following cumulative regret.

Definition 1. The regret at time step n is defined as:

regret(n) = E

[

n
∑

t=1

(μ∗ − r(t))

]

, (1)

where r(t) is the reward obtained at time t, namely, the value of the arm chosen
at time t.

The following notations will be used in this paper:

– µ is a generic random variable with distribution function F .
– For 0 ≤ ε ≤ 1, let

D0(ε) = inf
D≥0

{P (µ ≥ μ∗ − D) ≥ ε} ,

Note that P (µ ≥ μ∗ − D0(ε)) ≥ ε, with equality if μ∗ −D0(ε) is a continuity
point of F . We refer to D0(ε) as the tail function of F .

– Let ε∗
0(n) be defined as1

ε∗
0(n) = sup

{

ε ∈ [0, 1] : nD0(ε) ≤ 1
ε

}

. (2)

Note that nD0(ε1) ≤ 1
ε∗
0(n)

for ε1 ≤ ε∗
0(n), and nD0(ε2) ≥ 1

ε∗
0(n)

for ε2 >

ε∗
0(n).

For example, when µ is uniform on [a, b], then D0(ε) = ε
b−a , and ε∗

0(n) =
√

b−a
n .

1 If the support of µ is a single interval, then D0(ε) is continuous. In that case,
definition (2) reduced to the equation nD0(ε) = 1

ε
which, by monotonicity, has a

unique solution for n large enough.
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– Furthermore, let D(ε) denote a given upper bound on the tail function D0(ε),
and let ε∗(n) be defined similarly to ε∗

0(n) with D0(ε) replaced by D(ε),
namely,

ε∗(n) = sup
{

ε ∈ [0, 1] : nD(ε) ≤ 1
ε

}

. (3)

Note that ε∗(n) ≤ ε∗
0(n). Since D0(ε) is a non-decreasing function, we assume,

without loss of generality, that D(ε) is also a non-decreasing function.

In the following sections, we shall assume that the upper bound D(ε) on the tail
function D0(ε) is known to the learning agent, and that it satisfies the following
growth property.

Assumption 1
D(ε) ≤ MD(ε0)αε/ε0

for every 0 < ε0 ≤ ε ≤ 1 and constants M > 1 and 1 ≤ α < e.

A general class of distributions that satisfies Assumption 1 is given in the
following example, which will further serves us throughout the paper.

Example 1. Suppose that P (µ ≥ μ∗ − ε) = Θ
(

εβ
)

for ε > 0 small enough, where
β > 0. This is the case considered in [11]. Then D0(ε) = Θ

(

ε1/β
)

, and for D(ε) =
Aε1/β , where β > 0 and A > 0, it can be obtained that D(ε) ≤ MD(ε0)αε/ε0 ,
where 1 < α < e, M = λ1/β

αλ and λ = 1
β ln(α) . Hence, in this case Assumption 1

holds. Note that β = 1 corresponds to a uniform probability distribution which
is the case considered in [3] and [4] for μ∗ = 1.

Remark 1. Assumption 1 can be extended to any upper bound α on the value
of α (instead of e). In that case, a proper modification to the algorithms below
leads to upper bounds that are larger by a constant multiplicative factor of ln(α).
However, as the assumption above covers most cases of interest, for simplicity
of presentation, we will not go further into this extension. We note that the
algorithms presented here do not use the values of α and M .

For the case in which the tail function D0(ε) itself is known to the learning
agent, the following lower bound on the expected regret was established in [7].

Theorem 1. The n-step regret is lower bounded by

regret(n) ≥ (1 − δn)
μ∗ − E[μ]

16
1

ε∗
0(n)

, (4)

where ε∗
0(n) satisfies (2), and δn = 1 − 2 exp

(

− (μ∗−E[μ])2

8ε∗
0(n)

)

.

Note that when ε∗
0(n) → 0 as n → ∞, δn → 0 as n → ∞, so that its effect

becomes negligible. Furthermore, this lower bound coincides with the lower
bounds presented in [3] and in [11] in the more specific models studied in those
papers.

In the following corollary we present a lower bound on the regret for the case
in which only a bound on the tail function D0(ε) is known.
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Corollary 1. Let D(ε) be an upper bound on the tail function D0(ε) such that

D(ε)
D0(ε)

≤ L < ∞, ∀ 0 ≤ ε ≤ 1.

Then, the n-step regret is lower bounded by

regret(n) ≥ (1 − δn)
μ∗ − E[μ]

16L

1
ε∗(n)

, (5)

where ε∗(n) satisfies (3) and δn is as defined in Theorem 1.

Proof: Let

ε∗
L(n) = sup

{

ε ∈ [0, 1] : n
D(ε)

L
≤ 1

ε

}

. (6)

Then, for every 0 ≤ ε1 ≤ 1 such that ε∗
L(n) < ε1, by (6) and the assumed

condition of the Corollary, it follows that 1
ε1

< nD(ε1)
L ≤ nD0(ε1). Therefore, by

Equation (2), ε∗
0(n) < ε1. Thus,

ε∗
0(n) ≤ ε∗

L(n). (7)

Now, we need to compare ε∗
L(n) to ε∗(n). Let Lε∗(n) < ε2. Since the tail function

is non-decreasing, it follows that L
ε2

< nD( ε2
L ) ≤ nD(ε2), so that 1

ε2
< nD(ε2)

L .
Hence, ε∗

L(n) < ε2, and
ε∗
L(n) ≤ Lε∗(n). (8)

Equations (7) and (8) imply that ε∗
0(n) ≤ Lε∗(n), or 1

Lε∗(n) ≤ 1
ε∗
0(n)

. By substi-
tuting in Equation (4), the Corollary is obtained.

3 Optimal Sample Size

Here we discuss our most basic model, namely, the retainable arms model for a
known time horizon. We present an algorithm that under Assumption 1 achieves
a regret of the same order as the lower bound presented in Equation (5). We
also present an example for which Assumption 1 does not hold, and show that
for this example the lower bound on the regret is larger by a logarithmic factor
than the lower bound presented in Equation (4).

The presented algorithm is simple and is based on initially sampling a certain
number of new arms, followed by constantly choosing the single best arm found
in the initial phase.

The following theorem provides an upper bound on the regret incurred by
Algorithm 1.

Theorem 2. Under Assumption 1, for every n > 1, the regret of Algorithm 1
is upper bounded by

regret(n) ≤
(

1 + Me
α

e − α

)

1
ε∗(n)

+ 1, (9)

where ε∗(n) is defined in Equation (3), and M and α are as defined in Assump-
tion 1.
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Algorithm 1. The Optimal Sampling Algorithm for Retainable Arms – OSR
Algorithm
1: Input: D(ε), an upper bound on the tail function and time horizon n > 1.
2: Compute ε∗(n) as defined in (3).
3: Sample N = � 1

ε∗(n)
� + 1 arms and keep the best one.

4: Continue by pulling the saved best arm up to the last stage n.

The upper bound obtained in the above Theorem is of the same order as the
lower bound in Equation (5). Note that the values of M and α in Assumption 1
are not used in the algorithm, but only appear in the regret bound.

Example 1 (continued). For β = 1 (µ is uniform on [a, b]), Assumption 1 holds
for any α ∈ [1, e], with M = λ1/β

αλ , where λ = 1
β ln(α) and 1

ε∗(n) =
√

n√
b−a

. Therefore,

for β = 1, with the optimize choice of α = 1.47, we obtain regret(n) < 4.1
√

n√
b−a

+1.

Proof of Theorem 2: For N ≥ 1, we denote by VN (1) the value of the best
arm found by sampling N different arms. Clearly,

regret(n) ≤ N + (n − N)Δ(N) , (10)

where Δ(N) = E[μ∗ − VN (1)]. Then, for N = � 1
ε∗(n)	 + 1, since D(0) = 0 we

obtain
Δ(N) ≤ ΔN,ε, (11)

where

ΔN,ε =
N

∑

i=1

D(iε)P (D(iε) ≥ μ∗ − VN (1) > D((i − 1)ε)) .

Note that if Nε > 1 we take D(Nε) = D(1). So, Assumption 1 still holds. Also,
for any 0 ≤ ε ≤ 1,

P (μ∗ − VN (1) > D(ε)) ≤ (1 − ε)N .

Therefore,

ΔN,ε ≤
N

∑

i=1

D(iε)P (μ∗ − VN (1) > D((i − 1)ε))

≤
N

∑

i=1

D(iε)(1 − (i − 1)ε)N � Δ
N,ε

.

(12)

Observe that (1 − ε)
1
ε ≤ e−1 for ε ∈ (0, 1]. Then, for ε = ε∗(n), since N ≥ 1

ε∗(n)

it follows that (1 − (i − 1)ε∗(n))N ≤ e1−i. Hence,

Δ
N,ε∗(n)

=
N

∑

i=1

D(iε∗(n))(1 − (i − 1)ε∗(n))N

≤
N

∑

i=1

D(iε∗(n))e1−i � Δ
N,ε∗(n)
0 .

(13)
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Now, by Assumption 1,

Δ
N,ε∗(n)
0 ≤

N
∑

i=1

MD(ε∗(n))αie1−i < Me
α

e − α
D(ε∗(n)). (14)

Therefore, by (10),

regret(n) ≤ � 1
ε∗(n)

	 + 1 + nMe
α

e − α
D(ε∗(n)) ≤ (1 + Me

α

e − α
)

1
ε∗(n)

+ 1 .

Hence, the upper bound on (9) is obtained.

�

For the case that Assumption 1 does not hold, we provide an example for
which the regret is larger than the lower bound presented in Equation (4) by a
logarithmic term.

Example 2. Suppose that P (µ ≥ μ∗ − ε) = − 1
ln(ε) . Then D0(ε) = e− 1

ε , and it
follows that 1

ln(n) ≤ ε∗
0(n) ≤ 2

ln(n) .
Take ε0 = 1

2ε. Then, for any α > 1 and M > 0, for ε small enough we obtain
D(ε)
D(ε0)

= e1/ε0−1/ε = e1/ε > Mα2 = Mαε/ε0 . Hence, Assumption 1 does not hold.

Lemma 1. For the case considered in Example 2, the best regret which can be
achieved is larger by multiplicative a logarithmic factor (ln(n)) than the lower
bound presented in Equation (4).

Proof: Let N stand for the number of sampled arms, then, one can find that

regret(n) = NE[µ] + (n − N)Δ(N), (15)

where Δ(N) = E[μ∗ −VN (1)]. To bound the second term of Equation (15), note
that, for any N ≤ � 1

ε 	,

Δ(N) ≥
N

∑

i=1

D0(iε)P (D0((i + 1)ε) ≥ μ∗ − VN (1) > D0((i)ε))

=
N

∑

i=1

D0(iε)(ΔN,ε(i) − ΔN,ε(i + 1)) � Δ̃(N),

where
ΔN,ε(i) = P (μ∗ − VN (1) > D0(iε)) .

By the fact that D0(ε) is continuous, it follows that

ΔN,ε(i) = P (μ∗ − VN (1) > D0(iε)) = (1 − iε)N ,

and

ΔN,ε(i + 1) = P (μ∗ − VN (1) > D0((i + 1)ε)) = (1 − (i + 1)ε)N .
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Noting that e−1 ≥ (1 − ε)
1
ε ≥ exp

(

−1 − ε
1−ε

)

for ε ∈ (0, 1], we obtain for the

choice of ε = 1
N that

ΔN, 1
N (i) − ΔN, 1

N (i + 1) ≥ e−iβi
N ,

where βi
N = e

−i
N−1 − e−1.

Now, since D0(iε) = D0(ε)e
i−1
iε , again for the choice of ε = 1

N , it follows that

Δ̃(N) ≥
N

∑

i=1

D0(
1
N

)eN− N
i e−iβi

N ≥ �
√

N	D0(
1
N

)eN−2
√

Nβ
√

N
N .

Therefore, since D0( 1
N ) = e− 1

N , for N ≥ 3 we obtain that

regret(n) = NE[µ] + (n − N)�
√

N	e−2
√

Nβ
√

N
N ,

For N < 3, noting that Δ(N) is a non-increasing function of N , we have
Δ(1),Δ(2) ≥ Δ(3), hence

regret(n) = NE[µ] + (n − 2)�
√

3	e−2
√
3β

√
3

3 .

By optimizing over N , it can be found that

regret(n) ≥ A ln2(n)

where A = E[µ]
5 . But, since ε∗

0(n) ≤ 2
ln(n) , the order of the regret is larger by a

logarithmic factor than the lower bound on the regret of Equation (4).

�

4 Extensions

In this section we discuss two extensions of the basic model, the first is the case
in which the time horizon is not specified, leading to an anytime algorithm, and
the second is the non-reatainable arms model.

4.1 Anytime Algorithm

Consider again the retainable arms model, but assuming now that the time
horizon is unspecified. Under Assumption 1 and a mild condition on the tail of
the value probability distribution, the proposed algorithm achieves a regret of
the same order as the lower bound of Equation (5).

The presented algorithm is a natural extension of Algorithm 1. Here, instead
of sampling a certain number of arms at the first phase (as a function of the
time horizon) and then sampling the best one among them at the second phase,
the algorithm insures that at every time step, the number of sampled arms is
larger than a threshold which is a function of time. Since the number of sampled
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Algorithm 2. The Anytime Optimal Sampling Algorithm for Retainable Arms
– AT-OSR Algorithm
1: Input: D(ε), an upper bound on the tail function.
2: Initialization: m = 0 the number of sampled arms.
3: Compute ε∗(t) as defined in (3).
4: if m < � 1

ε∗(t)
� + 1 then

5: Sample a new arm, update t = t + 1 and return to step 3.
6: else
7: Pull the best arm so far, update t = t + 1 and return to step 3.
8: end if

arms is increasing gradually, the upper bound on the regret obtained here is
worse than that obtained in the case of known time horizon. However, we show
in Corollary 2 that it is of the same order, under an additional condition.

We note that applying the standard doubling trick to Algorithm 1 does not
serve our purpose here, as it would add a logarithmic factor to the regret bound.

In the following Theorem we provide an upper bound on the regret achieved
by the proposed Algorithm.

Theorem 3. Under Assumption 1, for every n > 1, the regret of Algorithm 2
is upper bounded by

regret(n) ≤ Me
α

e − α

n
∑

t=2

1
tε∗(t)

+
1

ε∗(n)
+ 2 , (16)

where ε∗(n) is defined in (3), and M and α are as defined in Assumption 1.

As 1
ε∗(n) ≥ 1

ε∗(t) for t ≤ n, it is obtained that in the worst case, the bound in
Equation (16) is larger than the lower bound in Equation (5) by a logarithmic
term. However, as shown in the following corollary, under reasonable conditions
on the tail function D(ε), the bound in Equation (16) is of the same order as
the lower bound in Equation (5).

Corollary 2. If B1t
γ ≤ D(ε) ≤ B2t

γ for some constants 0 < B1 ≤ B2 and
0 < γ, then

regret(n) ≤
(

2Me
α

e − α

(

B2

B1

) 1
1+γ

(1 + γ) f(n) + 1

)

1
ε∗(n)

+ 2 (17)

where f(n) =
(

n+1
n

) 1
1+γ ; note that f(n) → 1 asymptotically.

Example 1 (continued). When D(ε) = Θ
(

ε1/β
)

, it follows that 1
ε∗(t) =

Θ
(

n
β

1+β

)

. Therefore, the condition of Corollary 2 holds.
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Proof of Corollary 2: Under the assumed condition B′
1t

γ′ ≤ 1
ε∗(t) ≤ B′

2t
γ′

,

where B′
1 = B

1
1+γ

1 , B′
2 = B

1
1+γ

2 and γ′ = 1
1+γ . Therefore,

n
∑

t=2

1
tε∗(t)

≤
∫ n+1

t=2

1
(t − 1)ε∗(t)

≤
∫ n+1

t=2

2
tε∗(t)

≤ 2B′
2

γ′ (n+1)γ′≤2B′
2f(n)

B′
1γ

′
1

ε∗(n)
.

Therefore, by Equation (16), Equation (17) is obtained.

�

Proof of Theorem 3: Recall the notation VN (1) for the value of the best arm
found by sampling N different arms. We bound the regret by

regret(n) ≤ E

[

1 +
n

∑

t=2

I (Et) + (μ∗ − Vt(1)) I
(

Et

)

]

,

where Et =
{

mt < � 1
ε∗(t)	 + 1

}

, and I(·) is the indicator function.

Since � 1
ε∗(t)	 + 1 is a monotone increasing function it follows that

1 +
n

∑

t=2

I (Et) ≤ � 1
ε∗(n)

	 + 2 .

Recall that Δ(t) = E[μ∗ − Vt(1)], then, since Vt(1) is non-decreasing, by Equa-
tions (11)-(14), we obtain that

E

[

n
∑

t=2

(μ∗ − Vt(1)) I
(

Et

)

]

≤
n

∑

t=2

Δ

(

� 1
ε∗(t)

	 + 1
)

≤
n

∑

t=2

Me
α

e − α
D(ε∗(t)) .

Also, by Equation (3),
n

∑

t=2

D(ε∗(t)) ≤
n

∑

t=2

1
tε∗(t)

.

Combining the above yields the bound in Equation (16). 
�

4.2 Non-retainable Arms

Here the learning agent is not allowed to reuse a previously sampled arm, unless
this arm was sampled in the last time step. So, Algorithm 1 cannot be applied to
this model. However, the values of previously chosen arms can provide a useful
information for the agent. In this section we present an algorithm that achieves a
regret that is larger by a sublogarithmic term than the lower bound in Equation
(5). The following additional assumption will be required here.

Assumption 2

D(ε) ≤ C

(

ε

ε0

)τ

D(ε0)

for every 0 < ε0 ≤ ε ≤ 1 and constants C > 0 and τ > 0.
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Algorithm 3. The Optimal Sampling Algorithm for Non-Retainable Arms –
OSN Algorithm
1: Input: An upper bound D(ε) on the tail function, time horizon n > 1, and τ under

which Assumption 2 holds.
2: Compute ε∗(n) as defined in (3).

3: Sample N = �ln− 1
1+τ (n) 1

ε∗(n)
� + 1 arms and keep the value of the best one.

4: Continue by pulling until observing a value equal or greater than the saved best
value. Then, continue by pulling this arm up to the last stage n.

Assumption 2 holds, in particular, in Example 1 for τ = 1
β .

The proposed algorithm is based on sampling a certain number of arms, such
that the value of the best one among them is on one hand large enough, and
on the other hand the probability of finding another arm with a larger value
is also high enough. Thus, after sampling that number of arms, the algorithm
continues by pulling new arms until it finds one with a larger (or equal) value
than all previously sampled arms.

In the following theorem, we provide an upper bound on the regret achieved
by the presented algorithm.

Theorem 4. Under Assumptions 1 and 2, for every n > 1, the regret of Algo-
rithm 3 is upper bounded by

regret(n) ≤
(

1 + ln
τ

1+τ (n)
(

CMe
α

e − α
+

2
ln(2)

))

1
ε∗(n)

+
2 ln

τ
1+τ (n)

ln(2)
+1 (18)

where ε∗(n) is defined in Equation (3), M and α are as defined in Assumption
1 and C and τ are as defined in Assumption 2.

Proof: For N ≥ 1, recall that VN (1) stands for the value of the best arm
found by sampling N different arms and that Δ(N) = E[μ∗ − VN (1)]. Clearly,

regret(n) ≤ N + (n − N)Δ(N) + E[Y (VN (1))] , (19)

where the random variable Y (V ) is the number of arms sampled until an arm
with a value larger or equal to V is sampled. The second term in Equation (19)
can be bounded similarly to the second term in Equation (10). Namely, since
N ≥ ln− 1

1+τ (n) 1
ε∗(n) ,

Δ
N,ln

1
1+τ (n)ε∗(n) ≤ Δ

N,ln
1

1+τ (n)ε∗(n)
0 ,

and then, by Assumption 2,

Δ
N,ln

1
1+τ (n)ε∗(n)

0 ≤
N

∑

i=1

MD(ln
1

1+τ (n)ε∗(n))αie1−i < C ln
τ

1+τ (n)Me
α

e − α
D(ε∗(n)).
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Thus, as shown in the proof of Theorem 2,

(n − N)Δ(N) < nC ln
τ

1+τ (n)Me
α

e − α
D(ε∗(n)) ≤ C ln

τ
1+τ (n)Me

α

e − α

1
ε∗(n)

.

(20)
For bounding the third term, let

ε̂γ = sup{ε ∈ [0, 1]|D(ε) ≤ γ} ,

and note that
P (µ ≥ μ∗ − γ) = ε̂γ . (21)

Now, let us define:

ε1 = ε̂γ1 , γ1 = D(
1
n

) ,

as well as the following sequence:

εi+1 = ε̂γi+1 , for γi+1 = D(2εi), ∀i ≥ 1 .

Let M be such that εM is the first element in the sequence which is larger or
equal to one, and set εM = 1. Then, since D(εi+1) = D(2εi) = γi+1 ∀i ≥ 1, and
E[Y (V )] is non-decreasing in V , we obtain that

E [Y (VN (1))] = E [E [Y (VN (1))] |VN (1)]

≤
M
∑

i=1

E [Y (μ∗ − γi)] P (μ∗ − γi ≥ VN (1) > μ∗ − γi+1)

≤
M
∑

i=1

E [Y (μ∗ − γi)] P (VN (1) > μ∗ − γi+1) � ΦN .

(22)

Then, by the expected value of a Geometric distribution, Equation (21), and the
fact that γi = D(εi), we obtain that

E [Y (μ∗ − γi)] =
1
εi

.

Also, since γi+1 = D(2εi), it follows that

P (VN (1) > μ∗ − γi+1) ≤ 2Nεi .

So, since M ≤ ln(n)
ln(2) , we have

ΦN ≤
M
∑

i=1

2N ≤ 2N
ln(n)
ln(2)

≤ 2 ln
τ

1+τ (n)
ln(2)

(

1
ε∗(n)

+ 1
)

. (23)

By combining Equations (19), (20), (22) and (23) the claimed bound in Equa-
tion (18) is obtained.


�
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We note that a combined model which considers the anytime problem for the
non-retainable arms case can be analyzed by similar methods. However, we do
not consider this variant here.

5 Experiments

We next investigate numerically the algorithms presented in this paper, and
compare them to the relevant algorithms from [7,11]. We remind that the present
deterministic model was only studied in [7], while the model considered in [11]
is similar in its assumptions to the presented one in that only the form of the
tail function (rather the exact value distribution) is assumed known. Since the
algorithms in [11] are analyzed only for the case of Example 1 (i.e. D(ε) =
Θ

(

εβ
)

), we adhere to this model with several values of β for our experiments.
The maximal value is taken μ∗ = 0.99, but is not known to the learning agent.
In addition to that, since the algorithms presented in [11] were planned for the
stochastic model, they apply the UCB-V policy on the sampled set of arms.
Here, we eliminate this stage which is evidently redundant for the deterministic
model considered here.

5.1 Retainable Arms

For the case of retainable arms and a known time horizon, we compare Algo-
rithm 1 with the KT&RA Algorithm presented in [7] and the UCB-F Algorithm
presented in [11]. Since in [11], just an order of the number of arms needed to be
sampled is specified (and not exact number), we consider two variations of the
UCB-F Algorithm, one with a multiplicative factor of 10, and the other with a
multiplicative factor of 0.2.

Table 1. Average regret for the retainable arms model for the known time horizon
case.

Time Horizon

β = 0.9 β = 1 β = 1.1

Algorithm 4 × 104 7 × 104 10 × 104 4 × 104 7 × 104 10 × 104 4 × 104 7 × 104 10 × 104

UCB-F-10 574 740 870 1022 1350 1612 1376 1847 2227

UCB-F-0.2 1043 1410 1778 1043 1410 1778 1129 1445 1764

KT&RA 423 578 705 568 787 970 738 1035 1276

Algorithm 1 242 307 360 287 388 460 381 515 626

In Figure 1, we present the average regret of 200 runs vs. the time horizon
for β = 0.9, β = 1 and β = 1.1. The empirical standard deviation is smaller
than 5% in all of our results. As shown in Figure 1 and detailed in Table 1, the
performance of Algorithm 1 is significantly better than the other algorithms.
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Fig. 1. Average regret (y-axis) vs. the time horizon (x-axis) for β = 0.9, β = 1 and
β = 1.1.

5.2 Anytime Algorithm

For the retainable arms model and unspecified time horizon, we compare Algo-
rithm 2 with the UCB-AIR Algorithm presented in [11]. Since, these algorithms
are identical for β ≥ 1, we run this experiment for β = 0.7, β = 0.8 and β = 0.9.
In Figure 2 we present the average regret of 200 runs vs. the time. It is shown
in Figure 2 and detailed in Table 2 that the average regret of Algorithm 2 is
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Fig. 2. Average regret (y-axis) vs. time (x-axis) for β = 0.7, β = 0.8 and β = 0.9.
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Table 2. Average regret for the retainable arms model for the unknown time horizon
case.

Time Horizon

β = 0.7 β = 0.8 β = 0.9

Algorithm 4 × 104 7 × 104 10 × 104 4 × 104 7 × 104 10 × 104 4 × 104 7 × 104 10 × 104

UCB-AIR 414 667 808 440 589 710 486 646 771

Algorithm 2 264 341 402 305 389 414 542 642 1764
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Fig. 3. Average regret (y-axis) vs. the time horizon (x-axis) for β = 0.9, β = 1 and
β = 1.1.

smaller and increasing slower than that of the UCB-AIR Algorithm. Here the
empirical standard deviation is smaller than 7% in all of our results.

Table 3. Average regret for the non-retainable arms model.

Time Horizon

β = 0.7 β = 0.8 β = 0.9

Algorithm 4 × 104 7 × 104 10 × 104 4 × 104 7 × 104 10 × 104 4 × 104 7 × 104 10 × 104

KT&NA 12800 16460 19760 13670 18800 22760 18850 24950 30170

Algorithm 3 418 741 983 509 646 791 674 1048 1277

5.3 Non-Retainable Arms

In the case of non-retainable arms and a fixed time horizon, we compare Algo-
rithm 3 with the KT&NA Algorithm presented in [7]. As in the previous case,
we present in Figure 3 the average regret of 200 runs vs. the time horizon for
β = 0.9, β = 1 and β = 1.1. Here, the empirical standard deviation is smaller
than 10% in all of our results. As shown in Figure 3 and detailed in Table 3,
Algorithm 3 outperforms the KT&NA Algorithm.
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6 Conclusion and Discussion

In this work we provided algorithms with tight bounds on the cumulative regret
for the infinitely-many armed problem with deterministic rewards. Our central
assumption is that the tail function D0(ε) is known, to within multiplicative
constant. The basic algorithm was extended to the any-time case and to the
model with non retainable arms.

A major challenge for future work is further relaxation of the requirement of
a known upper bound on the tail function D0(ε). Initial steps in this direction
were presented in [7].
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Abstract. Energy-based models are popular in machine learning due
to the elegance of their formulation and their relationship to statistical
physics. Among these, the Restricted Boltzmann Machine (RBM), and
its staple training algorithm contrastive divergence (CD), have been the
prototype for some recent advancements in the unsupervised training
of deep neural networks. However, CD has limited theoretical motiva-
tion, and can in some cases produce undesirable behaviour. Here, we
investigate the performance of Minimum Probability Flow (MPF) learn-
ing for training RBMs. Unlike CD, with its focus on approximating
an intractable partition function via Gibbs sampling, MPF proposes
a tractable, consistent, objective function defined in terms of a Tay-
lor expansion of the KL divergence with respect to sampling dynamics.
Here we propose a more general form for the sampling dynamics in MPF,
and explore the consequences of different choices for these dynamics for
training RBMs. Experimental results show MPF outperforming CD for
various RBM configurations.

1 Introduction

A common problem in machine learning is to estimate the parameters of a high-
dimensional probabilistic model using gradient descent on the model’s negative
log likelihood. For exponential models where p(x) is proportional to the expo-
nential of a negative potential function F (x), the gradient of the data negative
log-likelihood takes the form

∇θ =
1

|D|

(

∑

x∈D

∂F (x)
∂θ

−
∑

x

p(x)
∂F (x)

∂θ

)

(1)

where the sum in the first term is over the dataset, D, and the sum in the
second term is over the entire domain of x. The first term has the effect of
pushing the parameters in a direction that decreases the energy surface of the
model at the training data points, while the second term increases the energy of
all possible states. Since the second term is intractable for all but trivial models,
we cannot, in practice, accommodate for every state of x, but rather resort to

c© Springer International Publishing Switzerland 2015
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sampling. We call states in the sum in the first term positive particles and those
in the second term negative particles, in accordance with their effect on the
likelihood (opposite their effect on the energy). Thus, the intractability of the
second term becomes a problem of negative particle selection (NPS).

The most famous approach to NPS is Contrastive Divergence (CD) [4], which
is the centre-piece of unsupervised neural network learning in energy-based mod-
els. “CD-k” proposes to sample the negative particles by applying a Markov
chain Monte Carlo (MCMC) transition operator k times to each data state.
This is in contrast to taking an unbiased sample from the distribution by apply-
ing the MCMC operator a large number of times until the distribution reaches
equilibrium, which is often prohibitive for practical applications. Much research
has attempted to better understand this approach and the reasoning behind its
success or failure [6,12], leading to many variations being proposed from the
perspective of improving the MCMC chain. Here, we take a more general app-
roach to the problem of NPS, in particular, through the lens of the Minimum
Probability Flow (MPF) algorithm [11].

MPF works by introducing a continuous dynamical system over the model’s
distribution, such that the equilibrium state of the dynamical system is the dis-
tribution used to model the data. The objective of learning is to minimize the
flow of probability from data states to non-data states after infinitesimal evolu-
tion under the model’s dynamics. Intuitively, the less a data vector evolves under
the dynamics, the closer it is to an equilibrium point; or from our perspective,
the closer the equilibrium distribution is to the data. In MPF, NPS is replaced
by a more explicit notion of connectivity between states. Connected states are
ones between which probability can flow under the dynamical system. Thus,
rather than attempting to approximate an intractable function (as in CD-k), we
run a simple optimization over an explicit, continuous dynamics, and actually
never have to run the dynamics themselves.

Interestingly, MPF and CD-k have gradients with remarkably similar form.
In fact, the CD-k gradients can be seen as a special case of the MPF gradients
- that is, MPF provides a generalized form which reduces to CD-k under a
special dynamics. Moreover, MPF provides a consistent estimator for the model
parameters, while CD-k as typically formalized is an update heuristic, that can
sometimes do bizarre things like go in circles in parameter space [6]. Thus, in one
aspect, MPF solves the problem of contrastive divergence by re-conceptualizing
it as probability flow under an explicit dynamics, rather than the convenient but
biased sampling of an intractable function. The challenge thus becomes one of
how to design the dynamical system.

This paper makes the following contributions. First, we provide an expla-
nation of MPF that begins from the familiar territory of CD-k, rather than
the less familiar grounds of the master equation. While familiar to physicists,
the master equation is an apparent obscurity in machine learning, due most
likely to its general intractability. Part of the attractiveness of MPF is the way
it circumvents that intractability. Second, we derive a generalized form for the
MPF transition matrix, which defines the dynamical system. Third, we provide



An Empirical Investigation of Minimum Probability Flow Learning 485

a Theano [1] based implementation of MPF and a number of variants of MPF
that run efficiently on GPUs1. Finally, we compare and contrast variants of MPF
with those of CD-k, and experimentally demonstrate that variants of MPF out-
perform CD-k for Restricted Boltzmann Machines trained on MNIST and on
Caltech-101.

2 Restricted Boltzmann Machines

While the learning methods we discuss apply to undirected probabilistic graph-
ical models in general, we will use the Restricted Boltzmann Machine (RBM)
as a canonical example. An RBM is an undirected bipartite graph with visible
(observed) variables v ∈ {0, 1}D and hidden (latent) variables h ∈ {0, 1}H [9].
The RBM is an energy-based model where the energy of state v,h is given by

E(v,h; θ) = −
∑

i

∑

j

Wijvihj −
∑

i

bivi −
∑

j

cjhj (2)

where θ = {W,b, c} are the parameters of the model. The marginalized proba-
bility over visible variables is formulated from the Boltzmann distribution,

p(v; θ) =
p∗(v; θ)
Z(θ)

=
1

Z(θ)

∑

h

exp

(

−1
τ

E(v,h; θ)

)

(3)

such that Z(θ) =
∑

v,h exp
(−1

τ E(v,h; θ)
)

is a normalizing constant and τ is the
thermodynamic temperature. We can marginalize over the binary hidden states
in Equation 2 and re-express in terms of a new energy F (v),

F (v; θ) = − log
∑

h

exp
(

−1
τ

E(v,h)
)

(4)

=
1
τ

D
∑

i

vibi − 1
τ

H
∑

j=1

log

(

1 + exp
(

cj +
D

∑

i

viWi,j

)

)

(5)

p(v; θ) =
exp

(

− F (v; θ)
)

Z(θ)
(6)

Following physics, this form of the energy is better known as a free energy,
as it expresses the difference between the average energy and the entropy of a
distribution, in this case, that of p(h|v). Defining the distribution in terms of
free energy as p(v; θ) is convenient since it naturally copes with the presence of
latent variables.

1 https://github.com/jiwoongim/minimum probability flow learning

https://github.com/jiwoongim/minimum_probability_flow_learning
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The key characteristic of an RBM is the simplicity of inference due to con-
ditional independence between visible and hidden states:

p(h|v) =
∏

j

p(hj |v), p(hj = 1|v) = σ(
∑

i

Wijvi + cj)

p(v|h) =
∏

i

p(vi|h), p(vi = 1|h) = σ(
∑

j

Wijhj + bi)

where σ(z) = 1/(1 + exp (−z)).
This leads naturally to a block Gibbs sampling dynamics, used universally

for sampling from RBMs. Hence, in an RBM trained by CD-k, the connectivity
(NPS) is determined with probability given by k sequential block Gibbs sampling
transitions.

We can formalize this by writing the learning updates for CD-k as follows

ΔθCD−k ∝ −
∑

j∈D

∑

i�∈D

(∂Fj(θ)
∂θ

− ∂Fi(θ)
∂θ

)

Tij (7)

where Tij is the probability of transitioning from state j to state i in k steps
of block Gibbs sampling. We can in principle replace Tij by any other transition
operator, so long as it preserves the equilibrium distribution. Indeed, this is what
alternative methods, like Persistent CD [13], achieve.

3 Minimum Probability Flow

The key intuition behind MPF is that NPS can be reformulated in a firm theoret-
ical context by treating the model distribution as the end point of some explicit
continuous dynamics, and seeking to minimize the flow of probability away from
the data under those dynamics. In this context then, NPS is no longer a sampling
procedure employed to approximate an intractable function, but arises naturally
out of the probability flow from data states to non-data states. That is, MPF
provides a theoretical environment for the formal treatment of Tij that offers
a much more general perspective of that operator than CD-k can. In the same
vein, it better formalizes the notion of minimizing divergence between positive
and negative particles.

3.1 Dynamics of the Model

The primary mathematical apparatus for MPF is a continuous time Markov
chain known as the master equation,

ṗi =
∑

j �=i

[Γijp
(t)
j − Γjip

(t)
i ] (8)

where j are the data states and i are the non-data states and Γij is the
probability flow rate from state j to state i. Note that each state is a full vector
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of variables, and we are theoretically enumerating all states. ṗi is the rate of
change of the probability of state i, that is, the difference between the probability
flowing out of any state j into state i and the probability flowing out of state i
to any other state j at time t. We can re-express ṗi in a simple matrix form as

ṗ = Γp (9)

by setting Γii = −
∑

i�=j Γjip
(t)
i . We note that if the transition matrix Γ is

ergodic, then the model has a unique stationary distribution.
This is a common model for exploring statistical mechanical systems, but it

is unwieldy in practice for two reasons, namely, the continuous time dynamics,
and exponential size of the state space. For our purposes, we will actually find
the former an advantage, and the latter irrelevant.

The objective of MPF is to minimize the KL divergence between the data
distribution and the distribution after evolving an infinitesimal amount of time
under the dynamics:

θMPF = argminθJ(θ), J(θ) = DKL(p(0)||p(ε)(θ))

Approximating J(θ) up to a first order Taylor expansion with respect to
time t, our objective function reduces to

J(θ) =
ε

|D|
∑

j∈D

∑

i�∈D
Γij (10)

and θ can be optimized by gradient descent on J(θ). Since Γij captures
probability flow from state j to state i, this objective function has the quite
elegant interpretation of minimizing the probability flow from data states to
non-data states [11].

3.2 Form of the Transition Matrix

MPF does not propose to actually simulate these dynamics. There is, in fact,
no need to, as the problem formulation reduces to a rather simple optimization
problem with no intractable component. However, we must provide a means
for computing the matrix coefficients Γij . Since our target distribution is the
distribution defined by the RBM, we require Γ to be a function of the energy,
or more particularly, the parameters of the energy function.

A sufficient (but not necessary) means to guarantee that the distribution
p∞ (θ) is a fixed point of the dynamics is to choose Γ to satisfy detailed balance,
that is

Γjip
(∞)
i (θ) = Γijp

(∞)
j (θ). (11)

The following theorem provides a general form for the transition matrix such
that the equilibrium distribution is that of the RBM:
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Theorem 1. 1 Suppose p
(∞)
j is the probability of state j and p

(∞)
i is the proba-

bility of state i. Let the transition matrix be

Γij = gij exp
(

o(Fi − Fj) + 1
2

(Fj − Fi)
)

(12)

such that o(·) is any odd function, where gij is the symmetric connectivity
between the states i and j. Then this transition matrix satisfies detailed balance
in Equation 11.

The proof is provided in Appendix A.1. The transition matrix proposed by [11]
is thus the simplest case of Theorem 1, found by setting o(·) = 0 and gij = gji:

Γij = gij exp
(1

2
(Fj(θ) − Fi(θ)

)

. (13)

Given a form for the transition matrix, we can now evaluate the gradient of
J(θ)

∂J(θ)
∂θ

=
ε

|D|
∑

j∈D

∑

i�∈D

(∂Fj(θ)
∂θ

− ∂Fi(θ)
∂θ

)

Tij

Tij = gij exp
(1

2
(

Fj(θ) − Fi(θ)
)

)

and observe the similarity to the formulation given for the RBM trained by CD-k
(Equation 7). Unlike with CD-k, however, this expression was derived through
an explicit dynamics and well-formalized minimization objective.

4 Probability Flow Rates Γ

At first glance, MPF might appear doomed, due to the size of Γ , namely 2D×2D,
and the problem of enumerating all of the states. However, the objective function
in Equation 10 summing over the Γij ’s only considers transitions between data
states j (limited in size by our data set) and non-data states i (limited by
the sparseness of our design). By specifying Γ to be sparse, the intractability
disappears, and complexity is dominated by the size of the dataset.

Using traditional methods, an RBM can be trained in two ways, either with
sampled negative particles, like in CD-k or PCD (also known as stochastic max-
imum likelihood) [4,13], or via an inductive principle, with fixed sets of “fan-
tasy cases”, like in general score matching, ratio matching, or pseudo-likelihood
[3,5,7]. In a similar manner, we can define Γ by specifying the connectivity
function gij either as a distribution from which to sample or as fixed and deter-
ministic.

In this section, we examine various kinds of connectivity functions and their
consequences on the probability flow dynamics.



An Empirical Investigation of Minimum Probability Flow Learning 489

4.1 1-bit Flip Connections

It can be shown that score matching is a special case of MPF in continuous state
spaces, where the connectivity function is set to connect all states within a small
Euclidean distance r in the limit of r → 0 [11]. For simplicity, in the case of a
discrete state space (Bernoulli RBM), we can fix the Hamming distance to one
instead, and consider that data states are connected to all other states 1-bit flip
away:

gij =

{

1, if state i, j differs by single bit flip
0, otherwise

(14)

1-bit flip connectivity gives us a sparse Γ with 2DD non-zero terms (rather than
a full 22D), and may be seen as NPS where the only negative particles are those
which are 1-bit flip away from data states. Therefore, we only ever evaluate
|D|D terms from this matrix, making the formulation tractable. This was the
only connectivity function pursued in [11] and is a natural starting point for the
approach.

Algorithm 1. Minimum probability flow learning with single bit-flip connec-
tivity. Note we leave out all gij since here we are explicit about only connecting
states of Hamming distance 1.

– Initialize the parameters θ
– for each training example d ∈ D do

1. Compute the list of states, L, with Hamming distance 1 from d
2. Compute the probability flow Γid = exp ( 1

2
(Fd(θ) − Fi(θ)) for each i ∈ L

3. The cost function for d is
∑

i∈L Γid

4. Compute the gradient of the cost function, ∂J(θ)
∂θ

=
∑

i∈L

(
∂Fd(θ)

∂θ
− ∂Fi(θ)

∂θ

)
Γid

5. Update parameters via gradient descent with θ ← θ − λ∇J(θ)
end for

4.2 Factorized Minimum Probability Flow

Previously, we considered connectivity gij as a binary indicator function of both
states i and j. Instead, we may wish to use a probability distribution, such
that gij is the probability that state j is connected to state i (i.e.

∑

i gij =
1). Following [10], we simplify this approach by letting gij = gi, yielding an
independence chain [14]. This means the probability of being connected to state
i is independent of j, giving us an alternative way of constructing a transition
matrix such that the objective function can be factorized:

J(θ) =
1

|D|
∑

j∈D

∑

i�∈D
gi

(

gj

gi

) 1
2

exp
(

1
2
(

Fj(x; θ) − Fi(x; θ)
)

)

(15)
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=

(
1

|D|
∑
j∈D

exp

(
1

2

(
Fj(x; θ) + log gj

)))
⎛
⎝∑

i�∈D
gi exp

(
1

2

(− Fi(x; θ) + log gi

))
⎞
⎠

(16)

where
(

gj

gi

) 1
2

is a scaling term required to counterbalance the difference between
gi and gj . The independence in the connectivity function allows us to factor
all the j terms in 15 out of the inner sum, leaving us with a product of sums,
something we could not achieve with 1-bit flip connectivity since the connection
to state i depends on it being a neighbor of state j. Note that, intuitively,
learning is facilitated by connecting data states to states that are probable under
the model (i.e. to contrast the divergence). Therefore, we can use p(v; θ) to
approximate gi. In practice, for each iteration n of learning, we need the gi and
gj terms to act as constants with respect to updating θ, and thus we sample
them from p(v; θn−1). We can then rewrite the objective function as J(θ) =
JD(θ)JS(θ)

JD(θ) =

(

1
|D|

∑

x∈D
exp

[

1
2
(

F (x; θ) − F (x; θn−1)
)

]

)

(17)

JS(θ) =

(

1
|S|

∑

x′∈S
exp

[

1
2
(

− F (x′; θ) + F (x′; θn−1)
)

]

)

(18)

where S is the sampled set from p(v; θn−1), and the normalization terms in log gj

and log gi cancel out. Note we use the θn−1 notation to refer to the parameters
at the previous iteration, and simply θ for the current iteration.

4.3 Persistent Minimum Probability Flow

There are several ways of sampling “fantasy particles” from p(v; θn−1). Notice
that taking the data distribution with respect to θn−1 is necessary for stable
learning.

Previously, persistent contrastive divergence (PCD) was developed to
improve CD-k learning [13]. Similarly, persistence can be applied to sampling
in MPF connectivity functions. For each update, we pick a new sample based
on a MCMC sampler which starts from previous samples. Then we update θn,
which satisfies J(θn) ≤ J(θn−1) [10]. The pseudo-code for persistent MPF is the
same as Factored MPF except for drawing new samples, which is indicated by
square brackets in Algorithm 2.

As we will show, using persistence in MPF is important for achieving faster
convergence in learning. While the theoretical formulation of MPF guarantees
eventual convergence, the focus on minimizing the initial probability flow will
have little effect if the sampler mixes too slowly.
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Algorithm 2. Factored [Persistent] MPF learning with probabilistic connectiv-
ity.

– for each epoch n do
1. Draw a new sample Sn based on S0

[
Sn−1

]
using an MCMC sampler.

2. Compute JS(θ)
3. for each training example d ∈ D do

(a) Compute Jd(θ). The cost function for d is J(θ) = Jd(θ)JS(θ)
(b) Compute the gradient of the cost function,

∂J(θ)
∂θ

= JS(θ)Jd(θ) ∂Fd(θ)
∂θ

+ 1
|S|Jd

∑
x′∈S

(
∂F (x′)

∂θ
exp
[
1
2

(
F (x′; θ) − F (x′; θn−1)

)] )

(c) Update parameters via gradient descent with θ ← θ − λ∇J(θ)
end for

5 Experiments

We conducted the first empirical study of MPF under different types of connec-
tivity as discussed in Section 4. We compared our results to CD-k with vary-
ing values for K. We analyzed the MPF variants based on training RBMs and
assessed them quantitatively and qualitatively by comparing the log-likelihoods
of the test data and samples generated from model. For the experiments, we
denote the 1-bit flip, factorized, and persistent methods as MPF-1flip, FMPF,
and PMPF, respectively. The goals of these experiments are to
1. Compare among MPF algorithms under different connectivities; and
2. Compare between MPF and CD-k.

In our experiments, we considered the MNIST and CalTech Silhouette
datasets. MNIST consists of 60,000 training and 10,000 test images of size 28
× 28 pixels containing handwritten digits from the classes 0 to 9. The pixels in
MNIST are binarized based on thresholding. From the 60,000 training examples,
we set aside 10,000 as validation examples to tune the hyperparameters in our
models. The CalTech Silhouette dataset contains the outlines of objects from the
CalTech101 dataset, which are centred and scaled on a 28 × 28 image plane and
rendered as filled black regions on a white background creating a silhouette of
each object. The training set consists of 4,100 examples, with at least 20 and at
most 100 examples in each category. The remaining instances were split evenly
between validation and testing2. Hyperparameters such as learning rate, number
of epochs, and batch size were selected from discrete ranges and chosen based on
a held-out validation set. The learning rate for FMPF and PMPF were chosen
from the range [0.001, 0.00001] and the learning rate for 1-bit flip was chosen
from the range [0.2, 0.001].

2 More details on pre-processing the CalTech Silhouettes can be found in http://
people.cs.umass.edu/∼marlin/data.shtml

http://people.cs.umass.edu/~marlin/data.shtml
http://people.cs.umass.edu/~marlin/data.shtml
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Table 1. Experimental results on MNIST using 11 RBMs with 20 hidden units each.
The average training and test log-probabilities over 10 repeated runs with random
parameter initializations are reported.

Method Average log Test Average log Train Time(s) Batchsize
CD1 -145.63 ± 1.30 -146.62 ± 1.72 831 100
PCD -136.10 ± 1.21 -137.13 ± 1.21 2620 300
MPF-1flip -141.13 ± 2.01 -143.02 ± 3.96 2931 75
CD10 -135.40 ± 1.21 -136.46 ± 1.18 17329 100
FMPF10 -136.37 ± 0.17 -137.35 ± 0.19 12533 60
PMPF10 -141.36 ± 0.35 -142.73 ± 0.35 11445 25
FPMPF10 -134.04 ± 0.12 -135.25 ± 0.11 22201 25
CD15 -134.13 ± 0.82 -135.20 ± 0.84 26723 100
FMPF15 -135.89 ± 0.19 -136.93 ± 0.18 18951 60
PMPF15 -138.53 ± 0.23 -139.71 ± 0.23 13441 25
FPMPF15 -133.90 ± 0.14 -135.13 ± 0.14 27302 25
CD25 -133.02 ± 0.08 -134.15 ± 0.08 46711 100
FMPF25 -134.50 ± 0.08 -135.63 ± 0.07 25588 60
PMPF25 -135.95 ± 0.13 -137.29 ± 0.13 23115 25
FPMPF25 -132.74 ± 0.13 -133.50 ± 0.11 50117 25

Fig. 1. Samples generated from the training set. Samples in each panel are generated
by RBMs trained under different paradigms as noted above each image.

5.1 MNIST - Exact Log Likelihood

In our first experiment, we trained eleven RBMs on the MNIST digits. All RBMs
consisted of 20 hidden units and 784 (28×28) visible units. Due to the small num-
ber of hidden variables, we calculated the exact value of the partition function
by explicitly summing over all visible configurations. Five RBMs were learned
by PCD1, CD1, CD10, CD15, and CD25. Seven RBMs were learned by 1 bit
flip, FMPF, and FPMPF3. Block Gibbs sampling is required for FMPF-k and
FPMPF-k similar to CD-k training, where the number of steps is given by k.

The average log test likelihood values of RBMs with 20 hidden units are
presented in Table 1. This table gives a sense of the performance under dif-
ferent types of MPF dynamics when the partition function can be calculated
exactly. We observed that PMPF consistently achieved a higher log-likelihood
than FMPF. MPF with 1 bit flip was very fast but gave poor performance

3 FPMPF is the composition of the FMPF and PMPF connectivities.
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Table 2. Experimental results on MNIST using 11 RBMs with 200 hidden units each.
The average estimated training and test log-probabilities over 10 repeated runs with
random parameter initializations are reported. Likelihood estimates are made with
CSL [2] and AIS [8].

CSL AIS
Method Avg. log Test Avg. log Train Avg. log Test Avg. log Train Time(s) Batchsize

CD1 -138.63 ± 0.48 -138.70 ± 0.45 -98.75 ± 0.66 -98.61 ± 0.66 1258 100
PCD1 -114.14 ± 0.26 -114.13 ± 0.28 -88.82 ± 0.53 -89.92 ± 0.54 2614 100
MPF-1flip -179.73 ± 0.085 -179.60 ± 0.07 -141.95 ± 0.23 -142.38 ± 0.74 4575 75
CD10 -117.74 ± 0.14 -117.76 ± 0.13 -91.94 ± 0.42 -92.46 ± 0.38 24948 100
FMPF10 -115.11 ± 0.09 -115.10 ± 0.07 -91.21 ± 0.17 -91.39 ± 0.16 24849 25
PMPF10 -114.00 ± 0.08 -113.98 ± 0.09 -89.26 ± 0.13 -89.37 ± 0.13 24179 25
FPMPF10 -112.45 ± 0.03 -112.45 ± 0.03 -83.83 ± 0.23 -83.26 ± 0.23 24354 25
CD15 -115.96 ± 0.12 -115.21 ± 0.12 -91.32 ± 0.24 -91.87 ± 0.21 39003 100
FMPF15 -114.05 ± 0.05 -114.06 ± 0.05 -90.72 ± 0.18 -90.93 ± 0.20 26059 25
PMPF15 -114.02 ± 0.11 -114.03 ± 0.09 -89.25 ± 0.17 -89.85 ± 0.19 26272 25
FPMPF15 -112.58 ± 0.03 -112.60 ± 0.02 -83.27 ± 0.15 -83.84 ± 0.13 26900 25
CD25 -114.50 ± 0.10 -114.51 ± 0.10 -91.36 ± 0.26 -91.04 ± 0.25 55688 100
FMPF25 -113.07 ± 0.06 -113.07 ± 0.07 -90.43 ± 0.28 -90.63 ± 0.27 40047 25
PMPF25 -113.70 ± 0.04 -113.69 ± 0.04 -89.21 ± 0.14 -89.79 ± 0.13 52638 25
FPMPF25 -112.38 ± 0.02 -112.42 ± 0.02 -83.25 ± 0.27 -83.81 ± 0.28 53379 25

compared to FMPF and PMPF. We also observed that MPF-1flip outperformed
CD1. FMPF and PMPF always performed slightly worse than CD-k training
with the same number of Gibbs steps. However, FPMPF always outperformed
CD-k. The advantage of FPMPF in this case may reflect the increased effective
number of entries in the transition matrix.

One advantage of FMPF is that it converges much quicker than CD-k or
PMPF. This is because we used twice many samples as PMPF as mentioned in
Section 4.3. Figure 1 shows initial data and the generated samples after running
100 Gibbs steps from each RBM. PMPF produces samples that are visually more
appealing than the other methods.

5.2 MNIST - Estimating Log Likelihood

In our second set of experiments, we trained RBMs with 200 hidden units. We
trained them exactly as described in Section 5.1. These RBMs are able to gen-
erate much higher-quality samples from the data distribution, however, the par-
tition function can no longer be computed exactly.

In order to evaluate the model quantitatively, we estimated the test log-
likelihood using the Conservative Sampling-based Likelihood estimator (CSL)
[2] and annealed importance sampling (AIS) [8]. Given well-defined conditional
probabilities P (v|h) of a model and a set of latent variable samples S collected
from a Markov chain, CSL computes

log f̂(v) = log meanh∈SP (v|h). (19)

The advantage of CSL is that sampling latent variables h instead of v has the
effect of reducing the variance of the estimator. Also, in contrast to annealed
importance sampling (AIS) [8], which tends to overestimate, CSL is much more
conservative in its estimates. However, most of the time, CSL is far off from the
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Fig. 2. Samples generated from the training set. Samples in each panel are generated
by RBMs trained under different paradigms as noted above each image.

true estimator, so we bound our negative log-likelihood estimate from above and
below using both AIS and CSL.

Table 2 demonstrates the test log-likelihood of various RBMs with 200 hid-
den units. The ranking of the different training paradigms with respect to per-
formance was similar to what we observed in Section 5.1 with PMPF emerging
as the winner. However, contrary to the first experiment, we observed that MPF
with 1 bit flip did not perform well. Moreover, FMPF and PMPF both tended to
give higher test log-likelihoods than CD-k training. Smaller batch sizes worked
better with MPF when the number of hiddens was increased. Once again, we
observed smaller variances compared to CD-k with both forms of MPF, espe-
cially with FMPF. We noted that FMPF and PMPF always have smaller vari-
ance compared to CD-k. This implies that FMPF and PMPF are less sensitive to
random weight initialization. Figure 2 shows initial data and generated samples
after running 100 Gibbs steps for each RBM. PMPF clearly produces samples
that look more like digits.

5.3 Caltech 101 Silhouettes - Estimating Log Likelihood

Finally, we evaluated the same set of RBMs on the Caltech-101 Silhouettes
dataset. Compared to MNIST, this dataset contains much more diverse struc-
tures with richer correlation among the pixels. It has 10 times more categories,
contains less training data per category, and each object covers more of the
image. For these reasons, we use 500 hidden units per RBM. The estimated
average log-likelihood of train and test data is presented in Table 3.

The results for Caltech 101 Silhouettes are consistent with MNIST. In every
case, we observed a larger margin between PMPF and CD-k when the number
of sampling steps was smaller. In addition, the single bit flip technique was
not particularly successful, especially as the number of latent variables grew.
We speculate that the reason for this might have to do with the slow rate of
convergence for the dynamic system. Moreover, PMPF works better than FMPF
for similar reasons. By having persistent samples as the learning progresses, the
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Table 3. Experimental results on Caltech-101 Silhouettes using 11 RBMs with 500
hidden units each. The average estimated training and test log-probabilities over 10
repeated runs with random parameter initializations are reported. Likelihood estimates
are made with CSL [2] and AIS [8].

CSL AIS
Method Avg. log Test Avg. log Train Avg. log Test Avg. log Train Time(s) Batchsize

CD1 -251.30 ± 1.80 -252.04 ± 1.56 -141.87 ± 8.80 -142.88 ± 8.85 300 100
PCD1 -199.89 ± 1.53 -199.95 ± 1.31 -124.56 ± 0.24 -116.56 ± 2.40 784 100
MPF-1flip -281.55 ± 1.68 -283.03 ± 0.60 -164.96 ± 0.23 -170.92 ± 0.20 505 100
CD10 -207.77 ± 0.92 -207.16 ± 1.18 -128.17 ± 0.20 -120.65 ± 0.19 4223 100
FMPF10 -211.30 ± 0.84 -211.39 ± 0.90 -135.59 ± 0.16 -135.57 ± 0.18 2698 20
PMPF10 -203.13 ± 0.12 -203.14 ± 0.10 -128.85 ± 0.15 -123.06 ± 0.15 7610 20
FPMPF10 -200.36 ± 0.16 -200.16 ± 0.16 -123.35 ± 0.16 -108.81 ± 0.15 11973 20
CD15 -205.12 ± 0.87 -204.87 ± 1.13 -125.08 ± 0.24 -117.09 ± 0.21 6611 100
FMPF15 -210.66 ± 0.24 -210.19 ± 0.30 -130.28 ± 0.14 -128.57 ± 0.15 3297 20
PMPF15 -201.47 ± 0.13 -201.67 ± 0.10 -127.09 ± 0.10 -121 ± 0.12 9603 20
FPMPF15 -198.59 ± 0.17 -198.66 ± 0.17 -122.33 ± 0.13 -107.88 ± 0.14 18170 20
CD25 -201.56 ± 0.11 -201.50 ± 0.13 -124.80 ± 0.20 -117.51 ± 0.23 13745 100
FMPF25 -206.93 ± 0.13 -206.86 ± 0.11 -129.96 ± 0.07 -127.15 ± 0.07 10542 10
PMPF25 -199.53 ± 0.11 -199.51 ± 0.12 -127.81 ± 020 -122.23 ± 0.17 18550 10
FPMPF25 -198.39 ± 0.0.16 -198.39 ± 0.17 -122.75 ± 0.13 -108.32 ± 0.12 23998 10

Fig. 3. Random samples generated by RBMs with different training procedures.

dynamics always begin closer to equilibrium, and hence converge more quickly.
Figure 3 shows initial data and generated samples after running 100 Gibbs steps
for each RBM on Caltech28 dataset.

6 Conclusion

MPF is an unsupervised learning algorithm that can be employed off-the-shelf
to any energy-based model. It has a number of favourable properties but has not
seen application proportional to its potential. In this paper, we first expounded
on MPF and its connections to CD-k training, which allowed us to gain a bet-
ter understanding and perspective to CD-k. We proved a general form for the
transition matrix such that the equilibrium distribution converges to that of an
RBM. This may lead to future extensions of MPF based on the choice of o(·) in
Equation 12.
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One of the merits of MPF is that the choice of designing a dynamic system
by defining a connectivity function is left open as long as it satisfies the fixed
point equation. Additionally, it should scale similarly to CD-k and its variants
when increasing the number of visible and hidden units. We thoroughly explored
three different connectivity structures, noting that connectivity can be designed
inductively or by sampling. Finally, we showed empirically that MPF, and in
particular, PMPF, outperforms CD-k for training generative models. Until now,
RBM training was dominated by methods based on CD-k including PCD; how-
ever, our results indicate that MPF is a practical and effective alternative.
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A Minimum Probability Flow

A.1 Dynamics of The Model

Theorem 2. 1 Suppose p
(∞)
j is the probability of state j and p

(∞)
i is the proba-

bility of state i. Let the transition matrix be

Γij = gij exp
(

o(Fi − Fj) + 1
2

(Fj − Fi)
)

(20)

such that o(·) is any odd function, where gij is the symmetric connectivity
between the states i and j. Then this transition matrix satisfies detailed balance
in Equation 11.

Proof. By cancelling out the partition function, the detailed balance Equation
11 can be formulated as

Γji exp (−Fi) = Γij exp (−Fj) (21)

where Fi = F (v = i; θ). By substituting the transition matrix defined in Equa-
tion 12, we arrive at the following expression after some straightforward manip-
ulation:

Γji exp (−Fi)/Γij exp (−Fj)) = 1

exp
(

o(Fi − Fj) + 1
2

(Fj − Fi) − Fi

)

/ exp
(

o(Fj − Fi) + 1
2

(Fi − Fj) − Fj

)

= 1

exp
(

o(Fi − Fj) + 1
2

(Fj − Fi) − Fi − o(Fj − Fi) + 1
2

(Fi − Fj) + Fj

)

= 1

o(Fi − Fj) + 1
2

(Fj − Fi) − Fi − o(Fj − Fi) + 1
2

(Fi − Fj) + Fj = 0

(Fi − Fj)
(

o(Fi − Fj) + 1
2

+
o(Fj − Fi) + 1

2
− 1

)

= 0

(Fi − Fj)
(

o(Fi − Fj)
2

+
o(Fj − Fi)

2

)

= 0

Notice that since o(·) is an odd function, this makes the term
( o(Fi−Fj)

2 +
o(Fj−Fi)

2

)

= 0. Therefore, the detailed balance criterion is satisfied.



Difference Target Propagation

Dong-Hyun Lee1(B), Saizheng Zhang1, Asja Fischer1, and Yoshua Bengio1,2
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Abstract. Back-propagation has been the workhorse of recent successes
of deep learning but it relies on infinitesimal effects (partial derivatives)
in order to perform credit assignment. This could become a serious issue
as one considers deeper and more non-linear functions, e.g., consider
the extreme case of non-linearity where the relation between parameters
and cost is actually discrete. Inspired by the biological implausibility of
back-propagation, a few approaches have been proposed in the past that
could play a similar credit assignment role. In this spirit, we explore
a novel approach to credit assignment in deep networks that we call
target propagation. The main idea is to compute targets rather than
gradients, at each layer. Like gradients, they are propagated backwards.
In a way that is related but different from previously proposed proxies
for back-propagation which rely on a backwards network with symmetric
weights, target propagation relies on auto-encoders at each layer. Unlike
back-propagation, it can be applied even when units exchange stochastic
bits rather than real numbers. We show that a linear correction for the
imperfectness of the auto-encoders, called difference target propagation,
is very effective to make target propagation actually work, leading to
results comparable to back-propagation for deep networks with discrete
and continuous units and denoising auto-encoders and achieving state of
the art for stochastic networks.

1 Introduction

Recently, deep neural networks have achieved great success in hard AI tasks
[2,12,14,19], mostly relying on back-propagation as the main way of performing
credit assignment over the different sets of parameters associated with each layer
of a deep net. Back-propagation exploits the chain rule of derivatives in order
to convert a loss gradient on the activations over layer l (or time t, for recurrent
nets) into a loss gradient on the activations over layer l − 1 (respectively, time
t − 1). However, as we consider deeper networks– e.g., consider the recent best
ImageNet competition entrants [20] with 19 or 22 layers – longer-term dependen-
cies, or stronger non-linearities, the composition of many non-linear operations
becomes more strongly non-linear. To make this concrete, consider the compo-
sition of many hyperbolic tangent units. In general, this means that derivatives
obtained by back-propagation are becoming either very small (most of the time)
or very large (in a few places). In the extreme (very deep computations), one
would get discrete functions, whose derivatives are 0 almost everywhere, and
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 498–515, 2015.
DOI: 10.1007/978-3-319-23528-8 31
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infinite where the function changes discretely. Clearly, back-propagation would
fail in that regime. In addition, from the point of view of low-energy hardware
implementation, the ability to train deep networks whose units only communi-
cate via bits would also be interesting.

This limitation of back-propagation to working with precise derivatives and
smooth networks is the main machine learning motivation for this paper’s
exploration into an alternative principle for credit assignment in deep net-
works. Another motivation arises from the lack of biological plausibility of back-
propagation, for the following reasons: (1) the back-propagation computation is
purely linear, whereas biological neurons interleave linear and non-linear oper-
ations, (2) if the feedback paths were used to propagate credit assignment by
back-propagation, they would need precise knowledge of the derivatives of the
non-linearities at the operating point used in the corresponding feedforward com-
putation, (3) similarly, these feedback paths would have to use exact symmetric
weights (with the same connectivity, transposed) of the feedforward connections,
(4) real neurons communicate by (possibly stochastic) binary values (spikes), (5)
the computation would have to be precisely clocked to alternate between feed-
forward and back-propagation phases, and (6) it is not clear where the output
targets would come from.

The main idea of target propagation is to associate with each feedforward unit’s
activation value a target value rather than a loss gradient. The target value is meant
to be close to the activation value while being likely to have provided a smaller loss
(if that value had been obtained in the feedforward phase). In the limit where the
target is very close to the feedforward value, target propagation should behave like
back-propagation. This link was nicely made in [16,17], which introduced the idea
of target propagation and connected it to back-propagation via a Lagrange multi-
pliers formulation (where the constraints require the output of one layer to equal
the input of the next layer). A similar idea was recently proposed where the con-
straints are relaxed into penalties, yielding a different (iterative) way to optimize
deep networks [9]. Once a good target is computed, a layer-local training criterion
can be defined to update each layer separately, e.g., via the delta-rule (gradient
descent update with respect to the cross-entropy loss).

By its nature, target propagation can in principle handle stronger (and even
discrete) non-linearities, and it deals with biological plausibility issues (1), (2),
(3) and (4) described above. Extensions of the precise scheme proposed here
could handle (5) and (6) as well, but this is left for future work.

In this paper, we describe how the general idea of target propagation by
using auto-encoders to assign targets to each layer (as introduced in an earlier
technical report [4]) can be employed for supervised training of deep neural
networks (section 2.1 and 2.2). We continue by introducing a linear correction
for the imperfectness of the auto-encoders (2.3) leading to robust training in
practice. Furthermore, we show how the same principles can be applied to replace
back-propagation in the training of auto-encoders (section 2.4). In section 3 we
provide several experimental results on rather deep neural networks as well as
discrete and stochastic networks and auto-encoders. The results show that the
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proposed form of target propagation is comparable to back-propagation with
RMSprop [22] - a very popular setting to train deep networks nowadays- and
achieves state of the art for training stochastic neural nets on MNIST.

2 Target Propagation

Although many variants of the general principle of target propagation can be
devised, this paper focuses on a specific approach, which is based on the ideas
presented in an earlier technical report [4] and is described in the following.

2.1 Formulating Targets

Let us consider an ordinary (supervised) deep network learning process, where
the training data is drawn from an unknown data distribution p(x,y). The net-
work structure is defined by

hi = fi(hi−1) = si(Wihi−1), i = 1, . . . , M (1)

where hi is the state of the i-th hidden layer (where hM corresponds to the
output of the network and h0 = x) and fi is the i-th layer feed-forward mapping,
defined by a non-linear activation function si (e.g. the hyperbolic tangents or
the sigmoid function) and the weights Wi of the i-th layer. Here, for simplicity
of notation, the bias term of the i-th layer is included in Wi. We refer to the
subset of network parameters defining the mapping between the i-th and the
j-th layer (0 ≤ i < j ≤ M) as θi,j

W = {Wk, k = i + 1, . . . , j}. Using this notion,
we can write hj as a function of hi depending on parameters θi,j

W , that is we can
write hj = hj(hi; θ

i,j
W ).

Given a sample (x,y), let L(hM (x; θ0,M
W ),y) be an arbitrary global loss func-

tion measuring the appropriateness of the network output hM (x; θ0,M
W ) for the

target y, e.g. the MSE or cross-entropy for binomial random variables. Then,
the training objective corresponds to adapting the network parameters θ0,M

W so
as to minimize the expected global loss Ep{L(hM (x; θ0,M

W ),y)} under the data
distribution p(x,y). For i = 1, . . . , M − 1 we can write

L(hM (x; θ0,M
W ),y) = L(hM (hi(x; θ0,i

W ); θi,M
W ),y) (2)

to emphasize the dependency of the loss on the state of the i-th layer.
Training a network with back-propagation corresponds to propagating error

signals through the network to calculate the derivatives of the global loss with
respect to the parameters of each layer. Thus, the error signals indicate how
the parameters of the network should be updated to decrease the expected loss.
However, in very deep networks with strong non-linearities, error propagation
could become useless in lower layers due to exploding or vanishing gradients, as
explained above.
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To avoid this problem, the basic idea of target propagation is to assign to
each hi(x; θ0,i

W ) a nearby value ĥi which (hopefully) leads to a lower global loss,
that is which has the objective to fulfill

L(hM (ĥi; θ
i,M
W ),y) < L(hM (hi(x; θ0,i

W ); θi,M
W ),y) . (3)

Such a ĥi is called a target for the i-th layer.
Given a target ĥi we now would like to change the network parameters to

make hi move a small step towards ĥi, since – if the path leading from hi to ĥi

is smooth enough – we would expect to yield a decrease of the global loss. To
obtain an update direction for Wi based on ĥi we can define a layer-local target
loss Li, for example by using the MSE

Li(ĥi,hi) = ||ĥi − hi(x; θ0,i
W )||22 . (4)

Then, Wi can be updated locally within its layer via stochastic gradient descent,
where ĥi is considered as a constant with respect to Wi. That is

W
(t+1)
i = W

(t)
i − ηfi

∂Li(ĥi,hi)
∂Wi

= W
(t)
i − ηfi

∂Li(ĥi,hi)
∂hi

∂hi(x; θ0,i
W )

∂Wi
, (5)

where ηfi
is a layer-specific learning rate.

Note, that in this context, derivatives can be used without difficulty, because
they correspond to computations performed inside a single layer. Whereas, the
problems with the severe non-linearities observed for back-propagation arise
when the chain rule is applied through many layers. This motivates target prop-
agation methods to serve as alternative credit assignment in the context of a
composition of many non-linearities.

However, it is not directly clear how to compute a target that guarantees a
decrease of the global loss (that is how to compute a ĥi for which equation (3)
holds) or that at least leads to a decrease of the local loss Li of the next layer,
that is

Li+1(ĥi+1, fi+1(ĥi)) < Li+1(ĥi+1, fi+1(hi)) . (6)

Proposing and validating answers to this question is the subject of the rest of
this paper.

2.2 How to Assign a Proper Target to Each Layer

Clearly, in a supervised learning setting, the top layer target should be directly
driven from the gradient of the global loss

ĥM = hM − η̂
∂L(hM ,y)

∂hM
, (7)

where η̂ is usually a small step size. Note, that if we use the MSE as global loss
and η̂ = 0.5 we get ĥM = y.
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But how can we define targets for the intermediate layers? In the previous
technical report [4], it was suggested to take advantage of an “approximate
inverse”. To formalize this idea, suppose that for each fi we have a function gi

such that
fi(gi(hi)) ≈ hi or gi(fi(hi−1)) ≈ hi−1 . (8)

Then, choosing
ĥi−1 = gi(ĥi) (9)

would have the consequence that (under some smoothness assumptions on f and
g) minimizing the distance between hi−1 and ĥi−1 should also minimize the loss
Li of the i-th layer. This idea is illustrated in the left of Figure 1. Indeed, if
the feed-back mappings were the perfect inverses of the feed-forward mappings
(gi = f−1

i ), one gets

Li(ĥi, fi(ĥi−1)) = Li(ĥi, fi(gi(ĥi))) = Li(ĥi, ĥi) = 0 . (10)

But choosing g to be the perfect inverse of f may need heavy computation and
instability, since there is no guarantee that f−1

i applied to a target would yield
a value that is in the domain of fi−1. An alternative approach is to learn an
approximate inverse gi, making the fi / gi pair look like an auto-encoder. This
suggests parametrizing gi as follows:

gi(hi) = s̄i(Vihi), i = 1, ...,M (11)

where s̄i is a non-linearity associated with the decoder and Vi the matrix of
feed-back weights of the i-th layer. With such a parametrization, it is unlikely
that the auto-encoder will achieve zero reconstruction error. The decoder could
be trained via an additional auto-encoder-like loss at each layer

Linv
i = ||gi(fi(hi−1)) − hi−1||22 . (12)

Changing Vi based on this loss, makes g closer to f−1
i . By doing so, it also makes

fi(ĥi−1) = fi(gi(ĥi)) closer to ĥi, and is thus also contributing to the decrease
of Li(ĥi, fi(ĥi−1)). But we do not want to estimate an inverse mapping only for
the concrete values we see in training but for a region around the these values
to facilitate the computation of gi(ĥi) for ĥi which have never been seen before.
For this reason, the loss is modified by noise injection

Linv
i = ||gi(fi(hi−1 + ε)) − (hi−1 + ε)||22, ε ∼ N(0, σ) , (13)

which makes fi and gi approximate inverses not just at hi−1 but also in its
neighborhood.
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Fig. 1. (left) How to compute a target in the lower layer via difference target prop-
agation. fi(ĥi−1) should be closer to ĥi than fi(hi−1). (right) Diagram of the back-
propagation-free auto-encoder via difference target propagation.

As mentioned above, a required property of target propagation is that the
layer-wise parameter updates, each improving a layer-wise loss, also lead to an
improvement of the global loss. The following theorem shows that, for the case
that gi is a perfect inverse of fi and fi having a certain structure, the update
direction of target propagation does not deviate more then 90 degrees from
the gradient direction (estimated by back-propagation), which always leads to a
decrease of the global loss.

Theorem 1.1 Assume that gi = f−1
i , i = 1, ...,M , and fi satisfies hi =

fi(hi−1) = Wisi(hi−1)2 where si can be any differentiable monotonically increas-
ing element-wise function. Let δW tp

i and δW bp
i be the target propagation update

and the back-propagation update in i-th layer, respectively. If η̂ in Equation (7)
is sufficiently small, then the angle α between δW tp

i and δW bp
i is bounded by

0 <
1 + Δ1(η̂)

λmax

λmin
+ Δ2(η̂)

≤ cos(α) ≤ 1 (14)

Here λmax and λmin are the largest and smallest singular values of
(JfM

. . . Jfi+1)
T , where Jfk

is the Jacobian matrix of fk and Δ1(η̂) and Δ2(η̂)
are close to 0 if η̂ is sufficiently small.

2.3 Difference Target Propagation

From our experience, the imperfection of the inverse function leads to severe opti-
mization problems when assigning targets based on equation (9). This brought
1 The proof can be found in the appendix.
2 This is another way to obtain a non-linear deep network structure.
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Algorithm 1. Training deep neural networks via difference target propagation
Compute unit values for all layers:
for i = 1 to M do

hi ← fi(hi−1)
end for
Making the first target: ĥM−1 ← hM−1 − η̂ ∂L

∂hM−1
, (L is the global loss)

Compute targets for lower layers:
for i = M − 1 to 2 do

ĥi−1 ← hi−1 − gi(hi) + gi(ĥi)
end for
Training feedback (inverse) mapping:
for i = M − 1 to 2 do

Update parameters for gi using SGD with following a layer-local loss Linv
i

Linv
i = ||gi(fi(hi−1 + ε)) − (hi−1 + ε)||22, ε ∼ N(0, σ)

end for
Training feedforward mapping:
for i = 1 to M do

Update parameters for fi using SGD with following a layer-local loss Li

Li = ||fi(hi−1) − ĥi||22 if i < M , Li = L (the global loss) if i = M .
end for

us to propose the following linearly corrected formula for target propagation
which we refer to as “difference target propagation”

ĥi−1 = hi−1 + gi(ĥi) − gi(hi) . (15)

Note, that if gi is the inverse of fi, difference target propagation becomes equiv-
alent to vanilla target propagation as defined in equation (9). The resulting
complete training procedure for optimization by difference target propagation is
given in Algorithm 1.

In the following, we explain why this linear corrected formula stabilizes the
optimization process. In order to achieve stable optimization by target propaga-
tion, hi−1 should approach ĥi−1 as hi approaches ĥi. Otherwise, the parameters
in lower layers continue to be updated even when an optimum of the global loss
is reached already by the upper layers, which then could lead the global loss to
increase again. Thus, the condition

hi = ĥi ⇒ hi−1 = ĥi−1 (16)

greatly improves the stability of the optimization. This holds for vanilla target
propagation if gi = f−1

i , because

hi−1 = f−1
i (hi) = gi(ĥi) = ĥi−1 . (17)
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Although the condition is not guaranteed to hold for vanilla target propagation
if gi �= f−1

i , for difference target propagation it holds by construction, since

ĥi−1 − hi−1 = gi(ĥi) − gi(hi) . (18)

Furthermore, under weak conditions on f and g and if the difference between
hi and ĥi is small, we can show for difference target propagation that if the input
of the i-th layer becomes ĥi−1 (i.e. the i−1-th layer reaches its target) the output
of the i-th layer also gets closer to ĥi. This means that the requirement on targets
specified by equation (6) is met for difference target propagation, as shown in
the following theorem

Theorem 2. 3 Let the target for layer i − 1 be given by Equation (15), i.e.
ĥi−1 = hi−1 + gi(ĥi) − gi(hi). If ĥi − hi is sufficiently small, fi and gi are
differentiable, and the corresponding Jacobian matrices Jfi

and Jgi
satisfy that

the largest eigenvalue of (I − Jfi
Jgi

)T (I − Jfi
Jgi

) is less than 1, then we have

||ĥi − fi(ĥi−1)||22 < ||ĥi − hi||22 . (19)

The third condition in the above theorem is easily satisfied in practice, because gi

is learned to be the inverse of fi and makes gi ◦ fi close to the identity mapping,
so that (I − Jfi

Jgi
) becomes close to the zero matrix which means that the

largest eigenvalue of (I − Jfi
Jgi

)T (I − Jfi
Jgi

) is also close to 0.

2.4 Training an Auto-Encoder with Difference Target Propagation

Auto-encoders are interesting for learning representations and serve as building
blocks for deep neural networks [10]. In addition, as we have seen, training auto-
encoders is part of the target propagation approach presented here, where they
model the feedback paths used to propagate the targets.

In the following, we show how a regularized auto-encoder can be trained using
difference target propagation instead of back-propagation. Like in the work on
denoising auto-encoders [23] and generative stochastic networks [6], we consider
the denoising auto-encoder as a stochastic network with noise injected in input
and hidden units, trained to minimize a reconstruction loss. This is, the hidden
units are given by the encoder as

h = f(x) = sig(Wx + b) , (20)

where sig is the element-wise sigmoid function, W the weight matrix and b the
bias vector of the input units. The reconstruction is given by the decoder

z = g(h) = sig(WT (h + ε) + c), ε ∼ N(0, σ) , (21)

3 The proof can be found in the appendix.
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with c being the bias vector of the hidden units. And the reconstruction loss is

L = ||z − x||22 + ||f(x + ε) − h||22, ε ∼ N(0, σ) , (22)

where a regularization term can be added to obtain a contractive mapping. In
order to train this network without back-propagation (that is, without using
the chain rule), we can use difference target propagation as follows (see Figure
1 (right) for an illustration): at first, the target of z is just x, so we can train
the reconstruction mapping g based on the loss Lg = ||g(h) − x||22 in which h
is considered as a constant. Then, we compute the target ĥ of the hidden units
following difference target propagation where we make use of the fact that f is
an approximate inverse of g. That is,

ĥ = h + f(ẑ) − f(z) = 2h − f(z) , (23)

where the last equality follows from f(ẑ) = f(x) = h. As a target loss for the
hidden layer, we can use Lf = ||f(x + ε) − ĥ||22, where ĥ is considered as a
constant and which can be also augmented by a regularization term to yield a
contractive mapping.

3 Experiments

In a set of experiments we investigated target propagation for training deep
feedforward deterministic neural networks, networks with discrete transmissions
between units, stochastic neural networks, and auto-encoders.

For training supervised neural networks, we chose the target of the top hidden
layer (number M −1) such that it also depends directly on the global loss instead
of an inverse mapping. That is, we set ĥM−1 = hM−1 − η̃ ∂L(hM ,y)

∂hM−1
, where L is

the global loss (here the multiclass cross entropy). This may be helpful when the
number of units in the output layer is much smaller than the number of units in
the top hidden layer, which would make the inverse mapping difficult to learn,
but future work should validate that.

For discrete stochastic networks in which some form of noise (here Gaussian)
is injected, we used a decaying noise level for learning the inverse mapping, in
order to stabilize learning, i.e. the standard deviation of the Gaussian is set to
σ(e) = σ0/(1 + e/e0) where σ0 is the initial value, e is the epoch number and e0
is the half-life of this decay. This seems to help to fine-tune the feedback weights
at the end of training.

In all experiments, the weights were initialized with orthogonal random
matrices and the bias parameters were initially set to zero. All experiments
were repeated 10 times with different random initializations. We put the code of
these experiments online (https://github.com/donghyunlee/dtp).

https://github.com/donghyunlee/dtp
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3.1 Deterministic Feedforward Deep Networks

As a primary objective, we investigated training of ordinary deep supervised
networks with continuous and deterministic units on the MNIST dataset. We
used a held-out validation set of 10000 samples for choosing hyper-parameters.
We trained networks with 7 hidden layers each consisting of 240 units (using the
hyperbolic tangent as activation function) with difference target propagation
and back-propagation.

Training was based on RMSprop [22] where hyper-parameters for the best
validation error were found using random search [7]. RMSprop is an adaptive
learning rate algorithm known to lead to good results for back-propagation. Fur-
thermore, it is suitable for updating the parameters of each layer based on the
layer-wise targets obtained by target propagation. Our experiments suggested
that when using a hand-selected learning rate per layer rather than the auto-
matically set one (by RMSprop), the selected learning rates were different for
each layer, which is why we decided to use an adaptive method like RMSprop.

Fig. 2. Mean training cost (left) and train/test classification error (right) with target
propagation and back-propagation using continuous deep networks (tanh) on MNIST.
Error bars indicate the standard deviation over 10 independent runs with the same
optimized hyper-parameters and different initial weights.

The results are shown in Figure 2. We obtained a test error of 1.94% with
target propagation and 1.86% with back propagation. The final negative log-
likelihood on the training set was 4.584 × 10−5 with target propagation and
1.797 × 10−5 with back propagation. We also trained the same network with
rectifier linear units and got a test error of 3.15% whereas 1.62% was obtained
with back-propagation. It is well known that this nonlinearity is advantageous
for back-propagation [11], while it seemed to be less appropriate for this imple-
mentation of target propagation.
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In a second experiment we investigated training on CIFAR-10. The exper-
imental setting was the same as for MNIST (using the hyperbolic tangent as
activation function) except that the network architecture was 3072-1000-1000-
1000-10. We did not use any preprocessing, except for scaling the input values
to lay in [0,1], and we tuned the hyper-parameters of RMSprop using a held-
out validation set of 1000 samples. We obtained mean test accuracies of 50.71%
and 53.72% for target propagation and back-propagation, respectively. It was
reported in [15], that a network with 1 hidden layer of 1000 units achieved
49.78% accuracy with back-propagation, and increasing the number of units to
10000 led to 51.53% accuracy. As the current state-of-the-art performance on the
permutation invariant CIFAR-10 recognition task, [13] reported 64.1% but when
using PCA without whitening as preprocessing and zero-biased auto-encoders for
unsupervised pre-training.

3.2 Networks with Discretized Transmission Between Units

To explore target propagation for an extremely non-linear neural network, we
investigated training of discrete networks on the MNIST dataset. The network
architecture was 784-500-500-10, where only the 1st hidden layer was discretized.
Inspired by biological considerations and the objective of reducing the commu-
nication cost between neurons, instead of just using the step activation function,
we used ordinary neural net layers but with signals being discretized when trans-
ported between the first and second layer. The network structure is depicted in
the right plot of Figure 3 and the activations of the hidden layers are given by

h1 = f1(x) = tanh(W1x) and h2 = f2(h1) = tanh(W2sign(h1)) (24)

where sign(x) = 1 if x > 0, and sign(x) = 0 if x ≤ 0. The network output is
given by

p(y|x) = f3(h2) = softmax(W3h2) . (25)

The inverse mapping of the second layer and the associated loss are given by

g2(h2) = tanh(V2sign(h2)) , (26)

Linv
2 = ||g2(f2(h1 + ε)) − (h1 + ε)||22, ε ∼ N(0, σ) . (27)

If the feed-forward mapping is discrete, back-propagated gradients become 0 and
useless when they cross the discretization step. So we compare target propagation
to two baselines. As a first baseline, we train the network with back-propagation
and the straight-through estimator [5], which is biased but was found to work
well, and simply ignores the derivative of the step function (which is 0 or infinite)
in the back-propagation phase. As a second baseline, we train only the upper
layers by back-propagation, while not changing the weight W1 which are affected
by the discretization, i.e., the lower layers do not learn.
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The results on the training and test sets are shown in Figure 3. The training
error for the first baseline (straight-through estimator) does not converge to zero
(which can be explained by the biased gradient) but generalization performance
is fairly good. The second baseline (fixed lower layer) surprisingly reached zero
training error, but did not perform well on the test set. This can be explained
by the fact that it cannot learn any meaningful representation at the first layer.
Target propagation however did not suffer from this drawback and can be used
to train discrete networks directly (training signals can pass the discrete region
successfully). Though the training convergence was slower, the training error
did approach zero. In addition, difference target propagation also achieved good
results on the test set.

Fig. 3. Mean training cost (top left), mean training error (top right) and mean test
error (bottom left) while training discrete networks with difference target propaga-
tion and the two baseline versions of back-propagation. Error bars indicate standard
deviations over 10 independent runs with the same hyper-parameters and different
initial weights. Diagram of the discrete network (bottom right). The output of h1 is
discretized because signals must be communicated from h1 to h2 through a long cable,
so binary representations are preferred in order to conserve energy. With target prop-
agation, training signals are also discretized through this cable (since feedback paths
are computed by bona-fide neurons).
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3.3 Stochastic Networks

Another interesting model class which vanilla back-propagation cannot deal with
are stochastic networks with discrete units. Recently, stochastic networks have
attracted attention [3,5,21] because they are able to learn a multi-modal con-
ditional distribution P (Y |X), which is important for structured output predic-
tions. Training networks of stochastic binary units is also biologically motivated,
since they resemble networks of spiking neurons. Here, we investigate whether
one can train networks of stochastic binary units on MNIST for classification
using target propagation. Following [18], the network architecture was 784-200-
200-10 and the hidden units were stochastic binary units with the probability of
turning on given by a sigmoid activation

hp
i = P (Hi = 1|hi−1) = sig(Wihi−1), hi ∼ P (Hi|hi−1) , (28)

that is, hi is one with probability hp
i .

As a baseline, we considered training based on the straight-through biased
gradient estimator [5] in which the derivative through the discrete sampling step
is ignored (this method showed the best performance in [18].) That is

δhp
i−1 = δhp

i

∂hp
i

∂hp
i−1

≈ sig′(Wihi−1)WT
i δhp

i . (29)

With difference target propagation the stochastic network can be trained
directly, setting the targets to

ĥp
2 = hp

2 − η
∂L

∂h2
and ĥp

1 = hp
1 + g2(ĥ

p
2) − g2(h

p
2) (30)

where gi(h
p
i ) = tanh(Vih

p
i ) is trained by the loss

Linv
i = ||gi(fi(hi−1 + ε)) − (hi−1 + ε)||22, ε ∼ N(0, σ) , (31)

and layer-local target losses are defined as Li = ||ĥp
i − hp

i ||22.
For evaluation, we averaged the output probabilities for a given input over

100 samples, and classified the example accordingly, following [18]. Results are
given in Table 1. We obtained a test error of 1.71% using the baseline method
and 1.54% using target propagation, which is – to our knowledge – the best
result for stochastic nets on MNIST reported so far. This suggests that target
propagation is highly promising for training networks of binary stochastic units.
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Table 1. Mean test Error on MNIST for stochastoc networks. The first row shows the
results of our experiments averaged over 10 trials. The second row shows the results
reported in [18]. M corresponds to the number of samples used for computing output
probabilities. We used M=1 during training and M=100 for the test set.

Method Test Error(%)

Difference Target-Propagation, M=1 1.54%

Straight-through gradient estimator [5] + backprop, M=1
as reported in Raiko et al. [18] 1.71%

as reported in Tang and Salakhutdinov [21], M=20 3.99%

as reported in Raiko et al. [18], M=20 1.63%

Fig. 4. Filters learned by the back-propagation-free auto-encoder. Each filter corre-
sponds to the hidden weights of one of 100 randomly chosen hidden units. We obtain
stroke filters, similar to those usually obtained by regularized auto-encoders.

3.4 Auto-Encoder

We trained a denoising auto-encoder with 1000 hidden units with difference tar-
get propagation as described in Section 2.4 on MNIST. As shown in Figure 4
stroke-like filters can be obtained by target propagation. After supervised fine-
tuning (using back-propagation), we got a test error of 1.35%. Thus, by training
an auto-encoder with target propagation one can learn a good initial representa-
tion, which is as good as the one obtained by regularized auto-encoders trained
by back-propagation on the reconstruction error.
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4 Conclusion

We introduced a novel optimization method for neural networks, called target
propagation, which was designed to overcome drawbacks of back-propagation
and is biologically more plausible. Target propagation replaces training signals
based on partial derivatives by targets which are propagated based on an auto-
encoding feedback loop. Difference target propagation is a linear correction for
this imperfect inverse mapping which is effective to make target propagation
actually work. Our experiments show that target propagation performs compara-
ble to back-propagation on ordinary deep networks and denoising auto-encoders.
Moreover, target propagation can be directly used on networks with discretized
transmission between units and reaches state of the art performance for stochas-
tic neural networks on MNIST.
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Paris VI (1987)

18. Raiko, T., Berglund, M., Alain, G., Dinh, L.: Techniques for learning binary
stochastic feedforward neural networks. In: NIPS Deep Learning Workshop 2014
(2014)

19. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. Tech. rep. (2014). arXiv:1409.3215

20. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. Tech. rep. (2014).
arXiv:1409.4842

21. Tang, Y., Salakhutdinov, R.: A new learning algorithm for stochastic feedforward
neural nets. In: ICML 2013 Workshop on Challenges in Representation Learning
(2013)

22. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learn-
ing 4 (2012)

23. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denois-
ing autoencoders: Learning useful representations in a deep network with a local
denoising criterion. J. Machine Learning Res. 11 (2010)

Appendix

A Proof of Theorem 1

Proof. Given a training example (x,y) the back-propagation update is given by

δW bp
i = −∂L(x,y; θ0,M

W )
∂Wi

= −JT
fi+1

. . . JT
fM

∂L

∂hM
(si(hi−1))T ,

where Jfk
= ∂hk

∂hk−1
= Wi ·S′

i(hk−1), k = i+1, . . . , M . Here S′
i(hk−1) is a diagonal

matrix with each diagonal element being element-wise derivatives and Jfk
is

http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.4842
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the Jacobian of fk(hk−1). In target propagation the target for hM is given by
ĥM = hM − η̂ ∂L

∂hM
. If all hk’s are allocated in smooth areas and η̂ is sufficiently

small, we can apply a Taylor expansion to get

ĥi = gi+1(. . . gM (ĥM ) . . . ) = gi+1(. . . gM (hM ) . . . )− η̂Jgi+1 . . . JgM

∂L

∂hM
+o(η̂) ,

where o(η̂) is the remainder satisfying limη̂→0 o(η̂)/η̂ = 0. Now, for δW tp
i we

have

δW tp
i = −∂||hi(hi−1;Wi) − ĥi||22

∂Wi

= −(hi − (hi − η̂J−1
fi+1

. . . J−1
fM

∂L

∂hM
+ o(η̂)))(si(hi−1))T

= −η̂J−1
fi+1

. . . J−1
fM

∂L

∂hM
(si(hi−1))T + o(η̂)(si(hi−1))T .

We write ∂L
∂hM

as l , si(hi−1) as v and JfM
. . . Jfi+1 as J for short. Then the

inner production of vector forms of δW bp
i and δW tp

i is

〈vec(δW bp
i ), vec(δW tp

i )〉 = tr((JT lvT )T (η̂J−1lvT + o(η̂)vT ))

= η̂tr(vlT JJ−1lvT ) − tr(vlT Jo(η̂)vT ) = η̂||v||22||l||22 − 〈JT l,o(η̂)〉||v||22 .

For ||vec(δW bp
i )||2 and ||vec(δW tp

i )||2 we have

||vec(δW bp
i )||2 =

√

tr((−JT lvT )T (−JT lvT )) = ||v||2||JT l||2 ≤ ||v||2||JT ||2||l||2

and similarly

||vec(δW tp
i )||2 ≤ η̂||v||2||J−1||2||l||2 + ||o(η̂)||2||v||2 ,

where ||JT ||2 and ||J−1||2 are matrix Euclidean norms, i.e. the largest sin-
gular value of (JfM

. . . Jfi+1)
T , λmax, and the largest singular value of

(JfM
. . . Jfi+1)

−1, 1
λmin

(λmin is the smallest singular value of (JfM
. . . Jfi+1)

T ,
because fk is invertable, so all the smallest singular values of Jacobians are larger
than 0). Finally, if η̂ is sufficiently small, the angle α between vec(δW bp

i ) and
vec(δW tp

i ) satisfies:

cos(α) =
〈vec(δW bp

i ), vec(δW tp
i )〉

||vec(δW bp
i )||2 · ||vec(δW tp

i )||2

≥ η̂||v||22||l||22 − 〈JT l,o(η̂)〉||v||22
(||v||2λmax||l||2)(η̂||v||2( 1

λmin
)||l||2 + ||o(η̂)||2||v||2)

=
1 + −〈JT l,o(η̂)〉

η̂||l||22
λmax

λmin
+ λmax||o(η̂)||2

η̂||l||2

=
1 + Δ1(η̂)

λmax

λmin
+ Δ2(η̂)

where the last expression is positive if η̂ is sufficiently small and cos(α) ≤ 1 is
trivial.
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B Proof of Theorem 2

Proof. Let e = ĥi − hi. Applying Taylor’s theorem twice, we get

ĥi−fi(ĥi−1) = ĥi−fi(hi−1+gi(ĥi)−gi(hi))= ĥi − fi(hi−1 + Jgi
e + o(||e||2))

= ĥi − fi(hi−1) − Jfi
(Jgi

e + o(||e||2)) − o(||Jgi
e + o(||e||2)||2)

= ĥi − hi − Jfi
Jgi

e − o(||e||2) = (I − Jfi
Jgi

)e − o(||e||2)

where the vector o(||e||2) represents the remainder satisfying
lime→0 o(||e||2)/||e||2 = 0. Then for ||ĥi − fi(ĥi−1)||22 we have

||ĥi − fi(ĥi−1)||22 = ((I − Jfi
Jgi

)e − o(||e||2))T ((I − Jfi
Jgi

)e − o(||e||2))
= eT (I − Jfi

Jgi
)T (I − Jfi

Jgi
)e − o(||e||2)T (I − Jfi

Jgi
)e

−eT (I − Jfi
Jgi

)T o(||e||2) + o(||e||2)T o(||e||2))
= eT (I − Jfi

Jgi
)T (I − Jfi

Jgi
)e + o(||e||22)

≤ λ||e||22 + |o(||e||22)| (A-1)

where o(||e||22) is the scalar value resulting from all terms depending on o(||e||2)
and λ is the largest eigenvalue of (I − Jfi

Jgi
)T (I − Jfi

Jgi
). If e is sufficiently

small to guarantee |o(||e||22)| < (1 − λ)||e||22, then the left of Equation (A-1) is
less than ||e||22 which is just ||ĥi − hi||22.
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Abstract. A hybrid architecture is presented capable of online learning
from both labeled and unlabeled samples. It combines both generative and
discriminative objectives to derive a new variant of the Deep Belief Net-
work, i.e., the Stacked Boltzmann Experts Network model. The model’s
training algorithm is built on principles developed from hybrid discrimi-
native Boltzmann machines and composes deep architectures in a greedy
fashion. It makes use of its inherent “layer-wise ensemble” nature to per-
form useful classification work. We (1) compare this architecture against
a hybrid denoising autoencoder version of itself as well as several other
models and (2) investigate training in the context of an incremental learn-
ing procedure. The best-performing hybrid model, the Stacked Boltzmann
Experts Network, consistently outperforms all others.

Keywords: Restricted Boltzmann machines · Denoising autoencoders ·
Semi-supervised learning · Incremental learning · Hybrid architectures

1 Introduction

When it comes to collecting information from unstructured data sources, the
challenge is clear for any information harvesting agent: to recognize what is
relevant and to categorize what has been found. For applications such as web
crawling, models such as the competitive Support Vector Machine are often
trained on labeled datasets [6]. However, as the target distribution (such as
that of information content from the web) evolves, these models quickly become
outdated and require re-training on new datasets. Simply put, while unlabeled
data is plentiful, labeled data is not [28]. While incremental approaches such as
co-training [15] have been employed to face this challenge, they require careful,
time-consuming feature-engineering (to construct multiple views of the data).

To minimize the human effort in gathering data and facilitate scalable learn-
ing, a model capable of generalization with only a few labeled examples and vast
quantities of easily-acquired unlabeled data is highly desirable. Furthermore, to
avoid feature engineering, this model should exploit the representational power
afforded by deeper architectures, which have seen success in domains such as com-
puter vision and speech recognition. Such a multi-level model could learn feature
abstractions, arguably capturing higher-order feature relationships in an efficient
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 516–532, 2015.
DOI: 10.1007/978-3-319-23528-8 32
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manner. In pursuit of this goal, our contribution is the development of a novel
hybrid Boltzmann-based architecture and its hybrid denoising autoencoder vari-
ant as well as their incremental, semi-supervised learning algorithms and predic-
tionmechanisms.The learning processmakes use of compound learning objectives,
balancing, in a parametric fashion, the dual goals of generative and discrimina-
tive modeling of data. We further experiment with relaxing our approach’s strict
bottom-up scheme to better handle the online data-stream setting.

The rest of this paper is organized in the following manner. First, we review
relevant previous work applying deep models to categorization problems in
Section 2. Following this, in Section 3, we describe the algorithmic mechanics of
our two incremental, semi-supervised deep architectures. Experimental results
of using these deep architectures in a variety of data contexts are presented in
Section 4. We sum up our work in Section 5 and consider model limitations and
potential algorithmic improvements.

2 Related Work

Our algorithms fall in the realm of representation-learning, designed to learn,
“...transformations of the data that make it easier to extract useful informa-
tion when building classifiers or other predictors” [2]. Shallow learning methods,
which require extensive prior human knowledge and large, labeled datasets, have
been argued to be limited in terms of learning functions that violate restrictive
assumptions such as smoothness and locality [4]. Moreover, architectures with
a single unobserved layer require an exponentially increasing number of units
to accurately learn complex distributions that deeper architectures, composed
of multiple layers of non-linearity, potentially can. Deeper models “exploit the
unknown structure” of the input data distribution to generate high-level features
that are invariant to most variations in the training examples and yet preserve
as much information regarding the input as possible [1].

In both large-scale, image-based [18,39] and language-based problems
[14,24,26,31], deep architectures have outperformed popular shallow models.
However, these models operate in a multi-stage learning process, where a gener-
ative architecture is greedily pre-trained and then used to initialize parameters
of a second architecture that is discriminatively fine-tuned. To help deep models
deal with potentially uncooperative input distributions or encourage learning of
discriminative information earlier in the learning process, some approaches have
leveraged auxiliary models in various ways [3,22,41]. A few methods have been
proposed for adapting deep architecture construction to incremental learning
settings [5,42]. Furthermore, an interesting approach combined the simple idea
of pseudo-labeling with training deep neural architectures composed of rectified
linear activation functions [13], a recent advancement [23].

While fundamentally different compared to purely generative or discrimina-
tive ones [21], we hypothesize that deep hybrid models that balance multiple
objectives similar to the shallow one in [19] can make good, semi-supervised
incremental models for classification. Motivated by this hypothesis, we design
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two model candidates, building on principles and successes of previous work: the
Stacked Boltzmann Expert Network (SBEN) and the Hybrid Stacked Denoising
Autoencoders model (HSDA). Furthermore, we introduce the idea of layer-wise
ensembling, a simple prediction scheme we shall describe in Section 3.3 to utilize
layer-wise information learnt by these models.

3 Deep Hybrid Architectures

In this section, we describe the implementations of our deep hybrid architectures.

3.1 The Stacked Boltzmann Experts Network (SBEN)

Our proposed variant of the Deep Belief Network (DBN), the Stacked Boltz-
mann Experts Network, follows an approach to construction and training similar
to the DBN itself. The key is to, in an efficient, greedy manner, learn a stack
of building-block models, and, as a layer is modified, freeze the parameters of
lower layers. In practice, this is done by propagating data samples up to the
layer targeted for layer-wise training and using the resultant latent representa-
tions as observations for constructing a higher level model. In contrast to the
DBN, which stacks restricted Boltzmann machines (RBM’s) and is often used to
initialize a deep multi-layer perceptron (MLP), the SBEN model is constructed
by composing hybrid restricted Boltzmann machines and is directly applied to
the discriminative task and potentially fine-tuned directly1.

The hybrid restricted Boltzmann machine (HRBM) [19,20,34], originally
referred to as the ClassRBM, formalized the RBM extended to handle classi-
fication tasks directly. The model has been studied and used in a wide variety
of applications [8,12,25,38] including the top of a DBN [36], most of which
focus on the directly supervised facet of the model. With defined parameters2

Θ = (W,U,b, c,d), the HRBM is designed to model the joint distribution of
a binary pattern vector x = (x1, · · · , xD) and its corresponding target variable
y ∈ {1, · · · , C} utilizing a set of latent variables h = (h1, · · · , hH). The HRBM
assigns a probability to the triplet (y,x,h) using:

p(y,x,h) =
e−E(y,x,h)

Z
, with, p(y,x) =

1
Z

∑

h

e−E(y,x,h) (1)

where Z =
∑

(y,x,h) e−E(y,x,h) is the partition function meant to ensure that the
value assignment is a valid probability distribution.Noting that theey = (1i=y)C

i=1

is the one-hot vector encoding of y, the model’s energy function may be defined as

E(y,x,h) = −hTWx − bTx − cTh − dTey − hTUey. (2)

1 We have developed an algorithm to fine-tune the SBEN jointly, but leave usage and
evaluation of this for future work.

2 W is the input-to-hidden weight matrix, U the hidden-to-class weight matrix, b the
visible bias vector, c the hidden unit bias vector, and d the class unit bias vector.
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It is often not possible to compute p(y,x,h) or the marginal p(y,x) due to the
intractable partition function. However, we may leverage block Gibbs sampling to
draw samples of the HRBM’s latent variable layer given the current state of the
visible layer (composed of x and ey) and vice versa, owing to the graphical model’s
bipartite structure (i.e., no intra-layer connections). This yields implementable
equations for conditioning on various layers of the model as follows:

p(h|y,x) =
∏

j

p(hj |y,x), with p(hj = 1|y,x) = σ(cj + Ujy +
∑

i

Wjixi) (3)

p(x|h) =
∏

i

p(xi|h), with p(xi = 1|h) = σ(bi +
∑

j

Wjihj) (4)

p(y|h) =
edy+

∑
j Ujyhj

∑

y� edy�+
∑

j Ujy�hj
(5)

σ(v) = 1/(1 + e−v). Furthermore, to perform classification directly using the
HRBM, one uses the model’s free energy function F (y,x) to compute the con-
ditional

p(y|x) =
e−F (y,x)

∑

y�∈{1,··· ,C} e−F (y�,x)
(6)

where −F (y,x) = (dy +
∑

j log(1 + exp (cj + Ujy +
∑

Wjixi))).
The hybrid model is trained leveraging a supervised, compound objective loss

function that balances a discriminative objective Ldisc and generative objective
Lgen, defined as follows:

Ldisc(Dtrain) = −
|Dtrain|

∑

t=1

log p(y|xt)

(7)

Lgen(Dtrain) = −
|Dtrain|

∑

t=1

log p(yt,xt)

(8)
where Dtrain = {(yt,xt)}, the labeled training dataset. The gradient for Ldisc

may be computed directly, following the general form

∂ log p(yt|x)
∂θ

= −Eh|yt,xt

[

∂

∂θ
(E(yt,xt,h))

]

+ Ey,h|,x

[

∂

∂θ
(E(y,x,h))

]

(9)

implemented via direct formulation (see [20] for details) or a form ofDropping, such
as Drop-Out or Drop-Connect [37]. The generative gradient follows the form

∂ log p(yt,x)
∂θ

= −Eh|yt,xt

[

∂

∂θ
(E(yt,xt,h))

]

+ Ey,x,h

[

∂

∂θ
(E(y,x,h))

]

(10)
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Algorithm 1. Contrastive Divergence: Single update for HRBM generative
objective.

Input: training sample (yt,xt), HRBM current model parameters Θ
// Note that “a ← b” indicates assignment and “a ∼ b” indicates a is sampled from
b
function computeGenerativeGradient(yt,xt, Θ)

if yt = ∅ then
yt ∼ p(y|x) � Obtain a pseudo-label for the unlabeled sample.

// Conduct Positive Phase

y0 ← yt, x
0 ← xt, ĥ

0 ← σ(c + Wx0 + Uey0)
// Conduct Negative Phase
h0 ∼ p(h|y0,x0), y1 ∼ p(y|h0), x1 ∼ p(x|h0)

ĥ1 ← σ(c + Wx1 + Uey1)
// Compute Gradient Update
for θ ∈ Θ do

� ← ∂
∂θ

E(y0,x0, ĥ
0
) − ∂

∂θ
E(y1,x1, ĥ

1
)

return �

and, although intractable for any (yt,xt), is approximated via contrastive diver-
gence [17], where the intractable second expectation is replaced by a point esti-
mate using one Gibbs sampling step (after initializing the Markov Chain at the
training sample).

In the semi-supervised context, where Dtrain is small but a large, unlabeled
dataset Dunlab is available, the HRBM can be further extended to train with
an unsupervised objective Lunsup, where negative log-likelihood is optimized
according to

Lunsup(Dunlab) = −
|Dunlab|

∑

t=1

log p(xt). (11)

The gradient for Lunsup can be simply computed using the same contrastive diver-
gence update for Lgen but incorporating an extra step at the beginning by sam-
pling from the model’s current estimate of p(y|u) for an unlabeled sample u. This
form of the generative update could be viewed as a form of self-training or Entropy
Regularization [23]. The pseudo-code for the online procedure for computing the
generative gradient (either labeled or unlabeled example) for a single HRBM is
shown in Algorithm 1.

To train a fully semi-supervised HRBM, one composes the appropriate multi-
objective function using a simple weighted summation:

Lsemi(Dtrain,Dunlab) = γLdisc(Dtrain)+αLgen(Dtrain)+βLunsup(Dunlab) (12)

where α and β are coefficient handles designed to explicitly control the effects
that the generative gradients have on the HRBM’s learning procedure. We intro-
duced the additional coefficient γ as a means to also directly control the effect of
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Fig. 1. Architecture of the SBEN model. The flow of data through the system is indi-
cated by the numbered arrows. Given a sample x, the dash-dotted arrow indicates
obtaining an estimated label by using the current layer’s conditional via Equation 6
(i.e., Step # 1 dash-dotted red arrow). The latent representation is computed using
this proxy label and the data vector via Equation 3 (i.e.,Step # 2, dashed green arrow).
This procedure is repeated recursively, replacing x with hn.

the discriminative gradient in model training. Setting γ = 0 leads to construct-
ing a purely generative model of Dtrain and Dunsup, and further setting β = 0
leads to purely supervised generative modeling of labeled dataset Dtrain. If the
target task is classification, then γ may be set to any value in (0, 1] (for simplic-
ity, we chose γ = 1, although future work shall investigate building models with
values of this coefficient that shift the balance to models that favor generative
features a bit more). These free parameters, though making model selection a
bit more challenging, offer an explicit means of controlling the extent to which
the final parameters discovered are influenced by generative learning [20], much
in contrast to simple generative pre-training of neural architectures.

As mentioned before, to compose ourN -layer SBEN (orN -SBEN), one follows
the same greedy, layer-wise procedure of a DBN. However, unlike DBN’s, where
stacking RBM’s warrants only a direct feedforward operation (since RBM’s con-
tain only a single set of inputs), modifications must be made to account for the
architectural design of the HRBM graphical model. In order to unify the SBEN
architecture while respecting HRBM building block design, one must combine
Equations 3 and 6 to properly compute intermediate data representations dur-
ing training and prediction. This gives rise to the architecture as depicted in Fig. 1
and its corresponding learning procedure in Algorithm 2, where the representation
for the layer above cannot be computed without first obtaining an estimate of the
current layer’s p(y|x). 3 Each HRBM layer of the SBEN is greedily trained using

3 One may sample from this prediction vector as one would for hidden activations, how-
ever, we found that simply using this mean in forward propagation step yielded best
results.
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Algorithm 2. Greedy, layer-wise construction of an N -SBEN, where N is the
desired number of layers of latent variables.

Input: Dtrain, Dunlab, learning rate λ and hyper-parameters γ, α, β, numSteps, and
initial model parameters Θ = {Θ1, Θ2, ..., ΘN}
function constructModel(Dtrain, Dunlab, λ, γ, α, β, numSteps, Θ)

Dn
train ← Dtrain, Dn

unlab ← Dunlab � Initialize subsets to low-level
representations

for Θn ∈ Θ do
t ← 0
while t ≤ numSteps do

(yt,xt) ∼ Dn
train � Draw sample from Dn

train without replacement
(ut) ∼ Dn

unlab � Draw sample from Dn
unlab without replacement

(�disc, �gen, �unsup) ← updateLayer(yt,xt,ut, Θn)
Θn ← Θn + λ(−γ �disc +α �gen +β�unsup), t ← t + 1

Dh
train ← ∅, Dh

unlab ← ∅
for (yt,xt) ∈ Dn

train do � Compute latent representation dataset for Dn
train

Dh
train ← computeLatentRepresentation(yt,xt, Θn)

for (∅,ut) ∈ Dn
unlab do � Compute latent representation dataset for Dn

unlab

Dh
unlab ← computeLatentRepresentation(∅,ut, Θn)

Dn
train ← Dh

train, Dn
unlab ← Dh

unlab

function updateLayer(yt,xt,ut, Θn)
�disc ← computeDisciminativeGradient(yt,xt, Θn) � See [20] for details
�gen ← computeGenerativeGradient(yt,xt, Θn) � See Algorithm 1
�unsup ← computeGenerativeGradient(∅,ut, Θn) � See Algorithm 1
return (�disc, �gen, �unsup)

function computeLatentRepresentation(yt,xt, Θn)
yh

t ← p(yt|xt, Θn) � Equation 6 under the layerwise model
ht ∼ p(h|yh

t ,xt, Θn) � Equation 3 under the layerwise model
return (yt,ht)

the frozen latent representations of the one below, generated by using lower level
expert’s inputs and predictions.

The generative objectives (for both unlabeled and labeled samples) of our
model can be viewed as a form of data-dependent regularization acting on the
discriminative learning gradient of each layer. One key advantage of SBEN train-
ing is that each layer’s discriminative progress may be tracked directly, since each
layer-wise expert is capable of direct classification using Equation 6 to compute
the conditional p(y|hbelow). Note that setting the number of hidden layers equal
to 1 recovers the original HRBM architecture (a 1 -SEBN). One may notice some
similarity with the partially supervised, layer-wise procedure of [3] where a sim-
ple softmax classifier was loosely coupled with each RBM of a DBN. However,
this only served as a temporary mechanism for pre-training whereas the SBEN
leverages the more unified framework of the HRBM during and after training.
Note that inputs to the SBEN, like the DBN, can be trivially extended [29,40].
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A useful property of the SBEN model is that it also contains a generative
model “facet” due to its hybrid nature. One could treat this facet as a directed,
top-down generative network and generate fantasy samples for specific, clamped
class units. In addition, one could generate class-specific probabilistic scores for
input features by adapting the procedure in [37] and, since each layer contains
class units, potentially uncover the SBEN hierarchy extracted from the data.

3.2 Hybrid Stacked Denoising Auto-Encoders (HSDA)

The auto-encoder variant of the SBEN is the Hybrid Stacked Denoising Autoen-
coders model. Instead of building a direct model of the joint distribution of
(yt,xt) as in the HRBM, the hybrid denoising autoencoder (hDA) building
block, with parameters Θ = (W,W′,U,b,b′,d), may be viewed as a fusion
of a generative model of p(x), or an encoder-decoder reconstruction model, with
a conditional model of p(y|x), or a single-layer MLP. The reconstruction model
learns a corrupted version of the feature vector xt, which is created via stochas-
tic mapping x̂t ∼ qD(x̂t|x), where qD is a function that stochastically corrupts
an input vector (i.e., randomly masking entries by setting them to zero under a
given probability). The reconstruction model is defined as

h = fθ(x̂) = σ(Wx̂ + b) (13) z = gθ(h) = σ(W′h + b′) (14)

where parameters W and W′ may be “tied” by setting W′ = WT . The encoder
deterministically maps an input to a latent representation h (Equation 13) and
the decoder maps this h back to a reconstruction z (Equation 14). The coupled
neural network is tasked with mapping input x to y while sharing its latent layer
h with the encoder-decoder pair. To compute the conditional p(y|x), one uses
Equation 13 followed by Equation 5 of the HRBM. While the discriminative
objective of an hDA is defined similarly to the HRBM (Equation 7), where
gradients of the log loss are computed directly (as in an MLP), the generative
objective Lgen proceeds a bit differently:

Lgen(Dtrain) = −
|Dtrain|

∑

t=1

xt log zt + (1 − xt) log(1 − zt) (15)

This is the cross-entropy of two independent multivariate Bernoulli distributions,
or cross-entropy loss. Unlike the HRBM, training an hDA under this generative
objective is notably simpler since it uses back-propagation combined with the
loss as defined in Equaton 15. A full hDA is trained using the weighted, tri-
objective framework described in Section 3.1, Lsemi (Equation 12), where its
unlabeled objective Lunsup uses the same cross-entropy function as Lgen but
operates on samples drawn from Dunlab. The semi-supervised hDA differs from
the HRBM complement in not only gradient calculation but also in that its
unsupervised components do not require a corresponding sample of the model’s
estimate of p(yt|ut) for an unlabeled sample ut. This is advantageous since gen-
erative gradients are computed independently of the existence of a label, saving
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computational time and avoiding one drawback of self-training schemes: Rein-
forcement of incorrect predictions through model-generated pseudo-labels.

In the same greedy, layer-wise fashion as the SBEN, the N -layer HSDA
(N -HSDA) may be composed by stacking hDA’s. By replacing the procedure
for generative gradients (Algorithm 1) and the discriminative gradient with the
appropriate autoencoder cross-entropy back-propagation alternatives and sub-
stituting Equations 6 and 3 with Equation 13 (for computing hidden activities
in COMPUTELATENTREPRESENTATION of Algorithm 2), one may build
an HSDA using Algorithm 2. The most useful property of the HSDA is that
required computation for training and prediction may be reduced since dimen-
sionality of each latent representation in auto-encoder architectures can be grad-
ually decreased for upper levels of the network.

One may notice that the architectures of [42] and [30] may be recovered from
our framework by manipulating the coefficients γ, α, and β in the Lsemi objective
function for the HSDA. Both these studies made use of dual-gradient models,
which either focused on a hybrid objective that balanced a discriminative and
weighted generative objective on a single sample (where the objective collapsed
into a single generative objective when no label was available) [42] or where
a generative objective was used as the primary objective and combined with
a weighted discriminative objective [30]. Since our HSDA architecture can be
viewed as a more general formulation of these original models, it is also amenable
to their own particular extensions (such as feature growth/pruning, alternative
input units for handling different types of data, etc.).

3.3 Ensembling of Layer-Wise Experts

Both the SBEN and the HSDA models, in addition to unique strengths, possess
the interesting property where each layer, or expert, of the model is capable of
classification given the appropriate latent representation of the data. This implies
that the model is ensemble-like in its very nature but differs from standard
ensemble methods where many smaller models are horizontally aggregated using
well-established schemes such as boosting [33] or majority voting. Traditional
feedforward models simply propagate data through the final network to obtain
an output prediction from its penultimate layer for a given xt. In contrast, these
hybrid models are capable of a producing a label yn

t at each level n for xt,
resulting from their layer-wise multi-objective training.

To vertically aggregate layer-wise expert outputs, we experimented with a
variety of schemes in development, but found that computing a simple mean
predictor, p(y|x)ensemble worked best, defined as:

p(y|x)ensemble =
1
N

N
∑

n=1

p(y|x)n (16)

This ensembling scheme allows for all components of the hybrid model to play a
role in classification of unseen samples, perhaps leveraging acquired discrimina-
tive “knowledge” at their respective level of abstraction in the model hierarchy to



Online Semi-supervised Deep Hybrid Architectures 525

ultimately improve final predictive performance. This scheme exploits our model’s
inherent layer-wise discriminative ability, which stands as an alternative to cou-
pling helper classifiers as in [3] or the “companion objectives” of [22] to solve poten-
tial exploding gradients in deep convolution networks for object detection.

4 Experimental Results

We present experimental results on several classification problems in both optical
character recognition and document categorization.

Character Recognition. Two experiments were conducted. The first experiment
uses the Stanford OCR dataset, which contains 52,152 16 × 8 binary pixel images
labeled as 1 of 26 letters of the English alphabet. Training (∼ 2% of source), valida-
tion (∼ 1.9%), unlabeled (∼ 19.2%), and test sets (∼ 77%) are created via a seeded
randomsamplingwithout replacement procedure that ensured examples fromeach
class appeared in roughly equal quantities in training and validation subsets. The
second experiment makes use of a (seeded) stochastic process we implemented that
generates 28×28 pixel CAPTCHA images of single characters based on the CAGE
model4, where one of 26 English characters may be generated (26 classes), of either
lower or upper-case form in a variety of fonts as well as orientations and scales. We
make use of this process in two ways: 1) create a finite dataset of 16,000 samples
with (∼ 3.125% in training, ∼ 3.125% in validation, ∼ 31.125% in unlabeled, and
∼ 62.25% in test) and perform an experiment similar to the OCR dataset, and 2)
use the process as a controllable data-stream, which allows for compact storage of
a complex distribution of image samples. The only pre-processing applied to the
CAPTCHA samples was pixel binarization.

Text Categorization. We make use of a pre-processed WEBKB text collection (i.e.,
font formatting, stop words removed, terms stemmed, and words with length less
than 3 removed) [7], which contains pages from a variety of universities (Cornell,
Texas, Washington, and Wisconsin and miscellaneous pages from others). The 4-
class classification problem as defined by this dataset will be to determine if a web-
page can be identified as one belonging to a Student, Faculty, Course, or a Project.
The dataset was already pre-partitioned into a training set (2,803 samples) and a
test set (1,396 web pages), so using the same sampling scheme as the OCR data, we
built from the training split a smaller training (∼ 20.2%) and validation (∼ 14.2%)
subset, and put the rest into the unlabeled set (∼ 62.5%), discarding 87 document
vectors that contained less than 2 active features. The test set contained 1,344 sam-
ples, after discarding 52 samples with less than 2 active features. We simplified the
low-level feature representation by using the top 2000words in the corpus andbina-
rizing the document term vectors.

Models. We compare the HSDA and SBEN models to the non-linear, shallow
HRBM (which, as described in Section 3.1, is a 1 -SBEN). For a simpler clas-
sifier, we implemented an incremental version of Maximum Entropy (which, as

4 https://akiraly.github.io/cage/index.html

https://akiraly.github.io/cage/index.html
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explained in [32], is equivalent to a softmax classifier), or MaxEnt. Furthermore,
we implemented the Pegasos SVM algorithm (SVM ) [35] and extended it to fol-
low a proper multi-class scheme [9]. This is the online formulation of the Support
Vector Machine, trained via sub-gradient descent on the primal objective followed
by a projection step (note that for simplicity we built the linear-kernel version of
the model, which is quite fast). Evaluating the Pegasos SVM algorithm in the fol-
lowing experiments allows us to compare our deep semi-supervised models against
the incremental version of a strong linear-kernel classifier. To provide some con-
text with previously established deep architectures also learnable in a 1-phase fash-
ion like our own, we present results for a simple sparse Rectifier Network, or Rect.
[13]. 5 Note that we extended all shallow classifiers and the Rectifier Network to
leverage self-training so that they may also learn from unlabeled examples. To do
so, we implemented a scheme similar to that of [23] and used a classifier’s esti-
mate of p(y|u) for an unlabeled sample. However, a 1-hot proxy encoding using the
argmax of model’s predictor was only created for such a sample if max[p(y|u)] > p̄.
We found that by explicitly controlling pseudo-labeling through p̄ we could more
directly improve model performance.

Model Selection. Model selection was conducted using a parallelized multi-
setting scheme, where a configuration file for each model was specified, describing
a set of hyper-parameter combinations to explore (this is akin to a course-grained
grid search, where points of model evaluation are set manually a priori). For the
HSDA, SBEN, HRBM, and Rect we varied model architectures, exploring under-
complete, complete, and over-complete versions, as well as the learning rate, α,
and β coefficients (holding γ fixed at 1.0). If a model was trained using its
stochastic form (i.e., HRBM, SBEN, or HSDA), to ensure reproducible model
behavior, we ran it in feedforward mean-field, where no sampling steps were
taken when data vectors were propagated through a network model when col-
lecting layer-wise predictions (we also found that this yielded lowest generaliza-
tion error). For the SVM, we tuned its slack variable λ. The rectifier network’s
training also involved using a L2 regularization penalty (0.002), initialization
of hidden biases to small positive values (|N(0, 0.25)|) [13], and the use of the
improved leaky rectifier unit [27].

For all finite dataset experiments, model performance is reported on the test set
using the model with lowest validation-set error found during the training step.6

Generalization performance was evaluated by calculating classification error,

5 Model implementations were computationally verified for correctness when applicable.
Since discriminative objectives entailed using an automatic differentiation framework,
we checked gradient validity via finite difference approximation.

6 For the SVM, λ was varied in the interval [0.0001, 0.5] while the learning rate for
all other models was varied in [0.0001, 0.1]. For HRBM, SBEN, & HSDA, β was
explored in the interval [0.05, 0.1], and for HRBM, SBEN, & HSDA, α was explored in
[0.075, 1.025]. The threshold p̄ was varied in [0.0, 1.0] and the number of latent layers N
for deeper architectures was explored in [2, 5] where we delineate the optimal number
with the prefix “N -”.
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Table 1. Character identification results on the CAPTCHA simulated dataset. Clas-
sification results are reported as 10-trial averages with single standard deviation from
the mean.

Error Precision Recall F1-Score

MaxEnt 0.475 ± 0.010 0.535 ± 0.011 0.524 ± 0.010 0.522 ± 0.010
SVM 0.461 ± 0.011 0.564 ± 0.010 0.537 ± 0.011 0.526 ± 0.011
2-Rect [13,23] 0.365 ± 0.011 0.651 ± 0.011 0.634 ± 0.011 0.627 ± 0.013
HRBM [20] 0.368 ± 0.009 0.643 ± 0.010 0.631 ± 0.009 0.629 ± 0.009
5-SBEN 0.324 ± 0.008 0.681 ± 0.009 0.675 ± 0.008 0.671 ± 0.009
5-HSDA 0.359 ± 0.011 0.650 ± 0.011 0.640± 0.011 0.633 ± 0.011

Table 2. Character identification results on the Stanford OCR dataset. Classification
results are reported as 10-trial averages with single standard deviation from the mean.

Error Precision Recall F1-Score

MaxEnt 0.425 ± 0.009 0.508 ± 0.006 0.563 ± 0.005 0.512 ± 0.006
SVM 0.428 ± 0.008 0.504 ± 0.004 0.582 ± 0.011 0.510 ± 0.007
3-Rect [13,23] 0.387 ± 0.009 0.549 ± 0.009 0.592 ± 0.014 0.548 ± 0.011
HRBM [20] 0.399 ± 0.019 0.565 ± 0.009 0.606 ± 0.016 0.552 ± 0.014
3-SBEN 0.333 ± 0.009 0.602 ± 0.009 0.668 ± 0.009 0.610 ± 0.012
3-HSDA 0.399 ± 0.012 0.546 ± 0.007 0.601 ± 0.012 0.537 ± 0.009

Table 3. Text categorization results on the WEBKB dataset.

Error Precision Recall F1-Score Error Precision Recall F1-Score

MaxEnt 0.510 0.386 0.387 0.384 3-SBEN 0.210 0.788 0.770 0.769
SVM 0.524 0.404 0.378 0.387 3-HSDA 0.219 0.757 0.780 0.765

precision, recall, and F-Measure, where F-Measure was chosen to be the harmonic
mean of precision and recall, F1 = 2(precision · recall)/(precision + recall).

Since the creation of training, validation, and unlabeled subsets was con-
trolled through a seeded random sampling without replacement process, the
procedure described above composes a single trial. For the Standford OCR and
CAPTCHA datasets, the results we report are 10-trial averages with a single
standard deviation from the mean, where each trial used a unique seed value.

4.1 Finite Dataset Learning Performance

On all of the datasets we experimented with, in the case when all samples
are available a priori, ranging from vision-based tasks to text classification,
we observe that hybrid incremental architectures have, in general, lower error
as compared to non-hybrid ones. In the CAPTCHA experiment (Table 1), we
observed that both the SBEN and HSDA models reduced prediction error over
the SVM by nearly 30% and 22% respectively. Furthermore, both models con-
sistently improved over the error the HRBM, with the SBEN model reducing
error by ∼ 12%. In the OCR dataset (Table 2), we see the SBEN improving over
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Fig. 2. Online error (y-axis) of 3-SBEN, 3-HSDA, & HRBM (or 1 - SBEN) evaluated
every 100 time steps (x-axis). Each curve reported is a 4-trial mean of the lowest
validation error model.

the HRBM by more than 16% and the SVM by more than 22%. In this case,
the HSDA only marginally improves over the SVM model (∼ 6%) and equal to
that of an HRBM, the poor performance we attribute to a coarse search through
a meta-parameter space window as opposed to an exhaustive grid search. For
WEBKB problem, over the MaxEnt model (which slightly outperformed the
SVM itself), we see a ∼ 57% improvement in error for the HSDA and ∼ 58% for
the SBEN (Table 3). Note that the rectifier network is competitive, however, in
both image-based experiments, the SBEN model outperforms it by more than
11% on CAPTCHA and nearly 14% on OCR.

4.2 Incremental Learning Performance

In the online learning setting, samples from Dunlab may not be available at once
and instead available at a given rate in a stream for a single time instant (we
chose to experiment with one example presented at a given iteration and only
constant access to a |Dtrain| = 500). In order to train a deep architecture in
this setting, while still exploiting the efficiency of a greedy, layer-wise approach,
one may remove the “freezing” step of Algorithm 2 and train all layers dis-
jointly in an incremental fashion as opposed to a purely bottom-up approach.
Using the same sub-routines as depicted in Algorithm 2, this procedure may
be implemented as shown in Algorithm 3, effectively using a single bottom-up
pass to modify model parameters. This approach adapts the training of hybrid
architectures, such as the SBEN and HSDA, to the online learning setting.

As evidenced by Fig. 2, it is possible to train the layer-wise experts of a multi-
level hybrid architecture simultaneously and still obtain a gain in generalization
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Algorithm 3. Online variant of layer-wise construction of a deep hybrid archi-
tecture.

Input: (yt,xt) ∈ Dtrain, (ut) ∈ Dunlab, learning rate λ, hyper-parameters γ, α, β,
& model parameters Θ = {Θ1, Θ2, ..., ΘN}
function constructModel(yt,xt,ut, λ, γ, α, β, Θ)

xh
t ← xt, u

h
t ← ut � Initialize samples to low-level representations

for Θn ∈ Θ do
(�disc, �gen, �unsup) ← updateLayer(yt,x

h
t ,uh

t , Θn)
Θn ← Θn + λ(−γ �disc +α �gen +β�unsup), t ← t + 1
// Compute latent representation of data samples
(yt,x

h
t ) ← computeLatentRepresentation(yt,x

h
t , Θn)

(∅,uh
t ) ← computeLatentRepresentation(∅,uh

t , Θn)

performance over a non-linear, shallow model such as the HRBM. The HRBM
settles at an online error of 0.356 whereas the 5-HSDA reaches an error of 0.327
and the 5-SBEN an error of 0.319 in a 10,000 iteration sweep. Online error was
evaluated by computing classification error on the next 1,000 unseen samples
generated by the CAPTCHA process.

While the simultaneous greedy training used in this experiment allows for
construction of a deep hybrid model in unity when faced with a data stream, we
note that instability may occur in the form of “shifting representations”. This
is where an upper level model is dynamically trained on a latent representation
of a lower-level model that has not yet settled since it has not yet seen enough
samples from the data distribution.

5 Conclusions

We developed two hybrid models, the SBEN and the HSDA, and their training
algorithms in the context of incremental, semi-supervised learning. They com-
bine efficient greedy, layer-wise construction of deeper architectures with a multi-
objective learning approach. We balance the goal of learning a generative model
of the data with extracting discriminative regularity to perform useful classifi-
cation. More importantly, the framework we describe facilitates more explicit
control over the multiple objectives involved. Additionally, we presented a ver-
tical aggregation scheme, layer-wise ensembling, for generating predictions that
exploit discriminative knowledge acquired at all levels of abstraction defined by
the architecture’s hierarchical form. Our framework allows for explicit control
over generative and discriminative objectives as well as a natural scheme for
tracking layer-wise learning.

Models were evaluated in two problem settings: optical character recognition
and text categorization. We compared results against shallow models and found
that our hybrid architectures outperform the others in all datasets investigated.We
found that the SBEN performed the best, improving classification error by as much
58% (compared to Maximum Entropy on WEBKB). Furthermore, we found that
improvement in performance holds when hybrid learning is adapted to an online
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setting (relaxing the purely bottom-up framework in Section 3.1). We observe that
we are able to improve error while significantly minimizing the number of required
labeled samples (as low as 2% of total available data in some cases).

The hybrid deep architectures presented in this paper are not without potential
limitations. First, there is the danger of “shifting representations” if using Algo-
rithm 3 for online learning. To combat this, samples could be pooled into mini-
batchmatrices before computing gradients andminimize someof the noise of online
error-surface descent. Alternatively, all layer-wise experts could be extended tem-
porally to Conditional RBM-like structures, potentially improving performance as
in [43]. Second, additional free parameterswere introduced that require tuning, cre-
ating a more challenging model selection process for the human user. This may be
alleviated with a parallelized, automated approach, however, a model that adapts
its objectiveweights during the learning processwould be better, altering its hyper-
parameters in response to error progress on data subsets. Our frameworks may
be augmented with automatic latent unit growth for both auto-encoder [42] and
Boltzmann-like variants [10] or perhaps improved by “tying” all layer-wise expert
outputs together in a scheme like that in [11].

The models presented in this paper offer promise in the goal of incremen-
tally building powerful models that reduce expensive labeling and feature engi-
neering effort. They represent a step towards ever-improving models that adapt
to “in-the-wild” samples, capable of more fully embracing the “...unreasonable
effectiveness of data” [16].
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Abstract. Auto-encoders are perhaps the best-known non-probabilistic
methods for representation learning. They are conceptually simple and
easy to train. Recent theoretical work has shed light on their ability to
capture manifold structure, and drawn connections to density model-
ing. This has motivated researchers to seek ways of auto-encoder scor-
ing, which has furthered their use in classification. Gated auto-encoders
(GAEs) are an interesting and flexible extension of auto-encoders which
can learn transformations among different images or pixel covariances
within images. However, they have been much less studied, theoretically
or empirically. In this work, we apply a dynamical systems view to GAEs,
deriving a scoring function, and drawing connections to Restricted Boltz-
mann Machines. On a set of deep learning benchmarks, we also demon-
strate their effectiveness for single and multi-label classification.

1 Introduction

Representation learning algorithms are machine learning algorithms which
involve the learning of features or explanatory factors. Deep learning techniques,
which employ several layers of representation learning, have achieved much
recent success in machine learning benchmarks and competitions, however, most
of these successes have been achieved with purely supervised learning methods
and have relied on large amounts of labeled data [10,22]. Though progress has
been slower, it is likely that unsupervised learning will be important to future
advances in deep learning [1].

The most successful and well-known example of non-probabilistic unsuper-
vised learning is the auto-encoder. Conceptually simple and easy to train via
backpropagation, various regularized variants of the model have recently been
proposed [20,21,25] as well as theoretical insights into their operation [6,24].

In practice, the latent representation learned by auto-encoders has typically
been used to solve a secondary problem, often classification. The most common
setup is to train a single auto-encoder on data from all classes and then a classifier
is tasked to discriminate among classes. However, this contrasts with the way
probabilistic models have typically been used in the past: in that literature, it is
more common to train one model per class and use Bayes’ rule for classification.
There are two challenges to classifying using per-class auto-encoders. First, up
until very recently, it was not known how to obtain the score of data under
c© Springer International Publishing Switzerland 2015
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an auto-encoder, meaning how much the model “likes” an input. Second, auto-
encoders are non-probabilistic, so even if they can be scored, the scores do not
integrate to 1 and therefore the per-class models need to be calibrated.

Kamyshanska and Memisevic have recently shown how scores can be com-
puted from an auto-encoder by interpreting it as a dynamical system [7].
Although the scores do not integrate to 1, they show how one can combine
the unnormalized scores into a generative classifier by learning class-specific
normalizing constants from labeled data.

In this paper we turn our interest towards a variant of auto-encoders which
are capable of learning higher-order features from data [15]. The main idea is to
learn relations between pixel intensities rather than the pixel intensities them-
selves by structuring the model as a tri-partite graph which connects hidden
units to pairs of images. If the images are different, the hidden units learn how
the images transform. If the images are the same, the hidden units encode within-
image pixel covariances. Learning such higher-order features can yield improved
results on recognition and generative tasks.

We adopt a dynamical systems view of gated auto-encoders, demonstrating
that they can be scored similarly to the classical auto-encoder. We adopt the
framework of [7] both conceptually and formally in developing a theory which
yields insights into the operation of gated auto-encoders. In addition to the
theory, we show in our experiments that a classification model based on gated
auto-encoder scoring can outperform a number of other representation learning
architectures, including classical auto-encoder scoring. We also demonstrate that
scoring can be useful for the structured output task of multi-label classification.

2 Gated Auto-Encoders

In this section, we review the gated auto-encoder (GAE). Due to space con-
straints, we will not review the classical auto-encoder. Instead, we direct the
reader to the reviews in [8,15] with which we share notation. Similar to the clas-
sical auto-encoder, the GAE consists of an encoder h(·) and decoder r(·). While
the standard auto-encoder processes a datapoint x, the GAE processes input-
output pairs (x,y). The GAE is usually trained to reconstruct y given x, though
it can also be trained symmetrically, that is, to reconstruct both y from x and
x from y. Intuitively, the GAE learns relations between the inputs, rather than
representations of the inputs themselves1. If x �= y, for example, they represent
sequential frames of a video, intuitively, the mapping units h learn transforma-
tions. In the case that x = y (i.e. the input is copied), the mapping units learn
pixel covariances.

In the simplest form of the GAE, the M hidden (mapping) units are given
by a basis expansion of x and y. However, this leads to a parameterization
that it is at least quadratic in the number of inputs and thus, prohibitively
large. Therefore, in practice, x, y, and h are projected onto matrices or (“latent
1 Relational features can be mixed with standard features by simply adding connec-

tions that are not gated.
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factors”), WX , WY , and WH , respectively. The number of factors, F , must be
the same for X, Y , and H. Thus, the model is completely parameterized by
θ = {WX ,WY ,WH} such that WX and WY are F × D matrices (assuming
both x and y are D-dimensional) and WH is an M × F matrix. The encoder
function is defined by

h(x,y) = σ(WH((WXx) � (WY y))) (1)

where � is element-wise multiplication and σ(·) is an activation function. The
decoder function is defined by

r(y|x, h) = (WY )T ((WXx) � (WH)T h(x,y)). (2)

r(x|y, h) = (WX)T ((WY y) � (WH)T h(x,y)), (3)

Note that the parameters are usually shared between the encoder and decoder.
The choice of whether to apply a nonlinearity to the output, and the specific
form of objective function will depend on the nature of the inputs, for example,
binary, categorical, or real-valued. Here, we have assumed real-valued inputs for
simplicity of presentation, therefore, Eqs. 2 and 3 are bi-linear functions of h
and we use a squared-error objective:

J =
1
2
‖r(y|x) − y‖2. (4)

We can also constrain the GAE to be a symmetric model by training it to
reconstruct both x given y and y given x [15]:

J =
1
2
‖r(y|x) − y‖2 +

1
2
‖r(x|y) − x‖2. (5)

The symmetric objective can be thought of as the non-probabilistic analogue
of modeling a joint distribution over x and y as opposed to a conditional [15].

3 Gated Auto-Encoder Scoring

In [7], the authors showed that data could be scored under an auto-encoder
by interpreting the model as a dynamical system. In contrast to the probabilis-
tic views based on score matching [6,21,24] and regularization, the dynamical
systems approach permits scoring under models with either linear (real-valued
data) or sigmoid (binary data) outputs, as well as arbitrary hidden unit activa-
tion functions. The method is also agnostic to the learning procedure used to
train the model, meaning that it is suitable for the various types of regularized
auto-encoders which have been proposed recently. In this section, we demon-
strate how the dynamical systems view can be extended to the GAE.
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3.1 Vector Field Representation

Similar to [7], we will view the GAE as a dynamical system with the vector field
defined by

F (y|x) = r(y|x) − y.

The vector field represents the local transformation that y|x undergoes as a
result of applying the reconstruction function r(y|x). Repeatedly applying the
reconstruction function to an input y|x → r(y|x) → r(r(y|x)|x) → · · · →
r(r · · · r(y|x)|x) yields a trajectory whose dynamics, from a physics perspective,
can be viewed as a force field. At any point, the potential force acting on a point
is the gradient of some potential energy (negative goodness) at that point. In
this light, the GAE reconstruction may be viewed as pushing pairs of inputs x,y
in the direction of lower energy.

Our goal is to derive the energy function, which we call a scoring function,
and which measures how much a GAE “likes” a given pair of inputs (x,y) up to
normalizing constant. In order to find an expression for the potential energy, the
vector field must be able to be written as the derivative of a scalar field [7]. To
check this, we can submit to Poincaré’s integrability criterion: For some open,
simple connected set U , a continuously differentiable function F : U → �m

defines a gradient field if and only if

∂Fi(y)
∂yj

=
∂Fj(y)

∂yi
, ∀i, j = 1 · · · n.

The vector field defined by the GAE indeed satisfies Poincaré’s integrability cri-
terion; therefore it can be written as the derivative of a scalar field. A derivation
is given in the Supplementary Material, Section 1.1. This also applies to the
GAE with a symmetric objective function (Eq. 5) by setting the input as ξ|γ
such that ξ = [y;x] and γ = [x;y] and following the exact same procedure.

3.2 Scoring the GAE

As mentioned in Section 3.1, our goal is to find an energy surface, so that we
can express the energy for a specific pair (x,y). From the previous section, we
showed that Poincaré’s criterion is satisfied and this implies that we can write
the vector field as the derivative of a scalar field. Moreover, it illustrates that
this vector field is a conservative field and this means that the vector field is a
gradient of some scalar function, which in this case is the energy function of a
GAE:

r(y|x) − y = ∇E.

Hence, by integrating out the trajectory of the GAE (x,y), we can measure the
energy along a path. Moreover, the line integral of a conservative vector field
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is path independent, which allows us to take the anti-derivative of the scalar
function:

E(y|x) =
∫

(r(y|x) − y)dy =
∫

WY
((

WXx) � WHh(u
))

dy −
∫

ydy

=WY

(

(

WXx
)

� WH

∫

h (u) dy
)

−
∫

ydy, (6)

where u is an auxiliary variable such that u = WH((WY y) � (WXx)) and
du
dy = WH(WY � (WXx⊗ 1D)), and ⊗ is the Kronecker product. Moreover, the
decoder can be re-formulated as

r(y|x) = (WY )T (WXx � (WH)T h(y,x))

=
(

(WY )T � (WXx ⊗ 1D)
)

(WH)T h(y,x).

Re-writing Eq. 6 in terms of the auxiliary variable u, we get

E(y|x) =
(

(WY )T � (WY x ⊗ 1D)
)

(WH)T (7)
∫

h(u)
(

WH
(

WY � (WXx ⊗ 1D)
))−1

du −
∫

ydy

=
∫

h(u)du − 1
2
y2 + const. (8)

A more detailed derivation from Eq. 6 to Eq. 8 is provided in the Supplementary
Material, Section 1.2. Identical to [7], if h(u) is an element-wise activation func-
tion and we know its anti-derivative, then it is very simple to compute E(x,y).

4 Relationship to Restricted Boltzmann Machines

In this section, we relate GAEs through the scoring function to other types of
Restricted Boltzmann Machines, such as the Factored Gated Conditional RBM
[23] and the Mean-covariance RBM [19].

4.1 Gated Auto-Encoder and Factored Gated Conditional
Restricted Boltzmann Machines

Kamyshanska and Memisevic showed that several hidden activation functions
defined gradient fields, including sigmoid, softmax, tanh, linear, rectified linear
function (ReLU), modulus, and squaring. These activation functions are appli-
cable to GAEs as well.

In the case of the sigmoid activation function, σ = h(u) = 1
1+exp (−u) , our

energy function becomes

Eσ =2
∫

(1 + exp−(u))−1du − 1
2
(x2 + y2) + const,

=2
∑

k

log (1 + exp (WH
k· (W

Xx � WXy))) − 1
2
(x2 + y2) + const.
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Note that if we consider the conditional GAE we reconstruct x given y only, this
yields

Eσ(y|x) =
∑

k

log (1 + exp (WH(WY
k·y � WX

k· x))) − y2

2
+ const. (9)

This expression is identical, up to a constant, to the free energy in a Factored Gated
Conditional Restricted Boltzmann Machine (FCRBM) with Gaussian visible units
and Bernoulli hidden units. We have ignored biases for simplicity. A derivation
including biases is provided in the Supplementary Material, Section 2.1.

4.2 Mean-Covariance Auto-Encoder and Mean-Covariance
Restricted Boltzmann Machines

The Covariance auto-encoder (cAE) was introduced in [15]. It is a specific form of
symmetrically trained auto-encoder with identical inputs: x = y, and tied input
weights: WX = WY . It maintains a set of relational mapping units to model
covariance between pixels. One can introduce a separate set of mapping units
connected pairwise to only one of the inputs which model the mean intensity. In
this case, the model becomes a Mean-covariance auto-encoder (mcAE).

Theorem 1. Consider a cAE with encoder and decoder:

h(x) = h(WH((WXx)2) + b)

r(x|h) = (WX)T (WXx � (WH)T h(x)) + a,

where θ = {WX ,WH ,a,b} are the parameters of the model, and h(z) =
1

1+exp (−z) is a sigmoid. Moreover, consider a Covariance RBM [19] with
Gaussian-distributed visibles and Bernoulli-distributed hiddens, with an energy
function defined by

Ec(x,h) =
(a − x)2

σ2
−

∑

f

Ph(Cx)2 − bh.

Then the energy function of the cAE with dynamics r(x|y) − x is equivalent to
the free energy of Covariance RBM up to a constant:

E(x,x) =
∑

k

log
(

1 + exp
(

WH(WXx)2 + b
))

− x2

2
+ const. (10)

The proof is given in the Supplementary Material, Section 2.2. We can extend
this analysis to the mcAE by using the above theorem and the results from [7].

Corollary 1. The energy function of a mcAE and the free energy of a Mean-
covariance RBM (mcRBM) with Gaussian-distributed visibles and Bernoulli-
distributed hiddens are equivalent up to a constant. The energy of the mcAE is:

E =
∑

k

log
(

1+ exp
(

−WH(WXx)2 − b
))

+
∑

k

log (1+ exp(Wx+c))−x2+const

(11)



Scoring and Classifying with Gated Auto-Encoders 539

where θm = {W, c} parameterizes the mean mapping units and θc = {WX ,WH ,
a,b} parameterizes the covariance mapping units.

Proof. The proof is very simple. Let Emc = Em + Ec, where Em is the energy
of the mean auto-encoder, Ec is the energy of the covariance auto-encoder, and
Emc is the energy of the mcAE. We know from Theorem 1 that Ec is equivalent
to the free energy of a covariance RBM, and the results from [7] show that that
Em is equivalent to the free energy of mean (classical) RBM. As shown in [19],
the free energy of a mcRBM is equal to summing the free energies of a mean
RBM and a covariance RBM.

5 Classification with Gated Auto-Encoders

Kamyshanska and Memisevic demonstrated that one application of the ability
to assign energy or scores to auto-encoders was in constructing a classifier from
class-specific auto-encoders. In this section, we explore two different paradigms
for classification. Similar to that work, we consider the usual multi-class problem
by first training class-specific auto-encoders, and using their energy functions
as confidence scores. We also consider the more challenging structured output
problem, specifically, the case of multi-label prediction where a data point may
have more than one associated label, and there may be correlations among the
labels.

5.1 Classification Using Class-Specific Gated Auto-Encoders

One approach to classification is to take several class-specific models and assem-
ble them into a classifier. The best-known example of this approach is to fit
several directed graphical models and use Bayes’ rule to combine them. The
process is simple because the models are normalized, or calibrated. While it is
possible to apply a similar technique to undirected or non-normalized models
such as auto-encoders, one must take care to calibrate them.

The approach proposed in [7] is to train K class-specific auto-encoders, each
of which assigns a non-normalized energy to the data Ei (x) , i = 1 . . . , K, and
then define the conditional distribution over classes zi as

P (zi|x) =
exp (Ei (x) + Bi)

∑

j exp (Ej (x) + Bj)
, (12)

where Bi is a learned bias for class i. The bias terms take the role of calibrating
the unnormalized energies. Note that we can similarly combine the energies from
a symmetric gated auto-encoder where x = y (i.e. a covariance auto-encoder)
and apply Eq. 12. If, for each class, we train both a covariance auto-encoder and
a classical auto-encoder (i.e. a “mean” auto-encoder) then we can combine both
sets of unnormalized energies as follows

PmcAE(zi|x) =
exp(EM

i (x) + EC
i (x) + Bi)

∑

j exp(EM
j (x) + EC

j (x) + Bj)
, (13)



540 D.J. Im and G.W. Taylor

where EM
i (x) is the energy which comes from the “mean” (standard) auto-

encoder trained on class i and EC
i (x) the energy which comes from the “covari-

ance” (gated) auto-encoder trained on class i. We call the classifiers in Eq. 12
and Eq. 13 “Covariance Auto-encoder Scoring” (cAES) and “Mean-Covariance
Auto-encoder Scoring” (mcAES), respectively.

The training procedure is summarized as follows:

1. Train a (mean)-covariance auto-encoder individually for each class. Both
the mean and covariance auto-encoder have tied weights in the encoder
and decoder. The covariance auto-encoder is a gated auto-encoder with tied
inputs.

2. Learn the Bi calibration terms using maximum likelihood, and backpropa-
gate to the GAE parameters.

Experimental Results. We followed the same experimental setup as [16] where
we used a standard set of “Deep Learning Benchmarks” [11]. We used mini-batch
stochastic gradient descent to optimize parameters during training. The hyper-
parameters: number of hiddens, number of factors, corruption level, learning
rate, weight-decay, momentum rate, and batch sizes were chosen based on a
held-out validation set. Corruption levels and weight-decay were selected from
{0, 0.1, 0.2, 0.3, 0.4, 0.5}, and number of hidden and factors were selected from
100,300,500. We selected the learning rate and weight-decay from the range
(0.001, 0.0001).

Classification error results are shown in Table 1. First, the error rates of
auto-encoder scoring variant methods illustrate that across all datasets AES
outperforms cAES and mcAES outperforms both AES and cAES. AE models
pixel means and cAE models pixel covariance, while mcAE models both mean
and covariance, making it naturally more expressive. We observe that cAES and
mcAES achieve lower error rates by a large margin on rotated MNIST with
backgrounds (final row). On the other hand, both cAES and mcAES perform
poorly on MNIST with random white noise background (second row from bot-
tom). We believe this phenomenon is due to the inability to model covariance in
this dataset. In MNIST with random white noise the pixels are typically uncor-
related, where in rotated MNIST with backgrounds the correlations are present
and consistent.

5.2 Multi-label Classification via Optimization in Label Space

The dominant application of deep learning approaches to vision has been the
assignment of images to discrete classes (e.g. object recognition). Many applica-
tions, however, involve “structured outputs” where the output variable is high-
dimensional and has a complex, multi-modal joint distribution. Structured out-
put prediction may include tasks such as multi-label classification where there
are regularities to be learned in the output, and segmentation, where the output
is as high-dimensional as the input. A key challenge to such approaches lies in
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Table 1. Classification error rates on the Deep Learning Benchmark dataset. SAA3

stands for three-layer Stacked Auto-encoder. SVM and RBM results are from [24],
DEEP and GSM are results from [15], and AES is from [7].

DATA SVM RBM DEEP GSM AES cAES mcAES
RBF SAA3

RECT 2.15 4.71 2.14 0.56 0.84 0.61 0.54
RECTIMG 24.04 23.69 24.05 22.51 21.45 22.85 21.41
CONVEX 19.13 19.92 18.41 17.08 21.52 21.6 20.63
MNISTSMALL 3.03 3.94 3.46 3.70 2.61 3.65 3.65
MNISTROT 11.11 14.69 10.30 11.75 11.25 16.5 13.42
MNISTRAND 14.58 9.80 11.28 10.48 9.70 18.65 16.73
MNISTROTIM 55.18 52.21 51.93 55.16 47.14 39.98 35.52

developing models that are able to capture complex, high level structure like
shape, while still remaining tractable.

Though our proposed work is based on a deterministic model, we have shown
that the energy, or scoring function of the GAE is equivalent, up to a constant, to
that of a conditional RBM, a model that has already seen some use in structured
prediction problems [12,18].

GAE scoring can be applied to structured output problems as a type of
“post-classification” [17]. The idea is to let a naiv̈e, non-structured classifier
make an initial prediction of the outputs in a fast, feed-forward manner, and
then allow a second model (in our case, a GAE) clean up the outputs of the first
model. Since GAEs can model the relationship between input x and structured
output y, we can initialize the output with the output of the naiv̈e model, and
then optimize its energy function with respect to the outputs. Input x is held
constant throughout the optimization.

Li et al recently proposed Compositional High Order Pattern Potentials,
a hybrid of Conditional Random Fields (CRF) and Restricted Boltzmann
Machines. The RBM provides a global shape information prior to the locally-
connected CRF. Adopting the idea of learning structured relationships between
outputs, we propose an alternate approach which the inputs of the GAE are
not (x,y) but (y,y). In other words, the post-classification model is a covari-
ance auto-encoder. The intuition behind the first approach is to use a GAE to
learn the relationship between the input x and the output y, whereas the second
method aims to learn the correlations between the outputs y.

We denote our two proposed methods GAEXY and GAEY 2 . GAEXY corre-
sponds to a GAE, trained conditionally, whose mapping units directly model the
relationship between input and output and GAEY 2 corresponds to a GAE which
models correlations between output dimensions. GAEXY defines E (y|x), while
GAEY 2 defines E (y|y) = E(y). They differ only in terms of the data vectors
that they consume. The training and test procedures are detailed in Algorithm 1.
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Algorithm 1 . Structured Output Prediction with GAE scoring

1: procedure Multi-label Classification(D = {(xi,yi) ∈ Xtrain × Ytrain} )
2: Train a Multi-layer Perceptron (MLP) to learn an input-output mapping f(·):

argmin
θ1

l(x,y; θ1) =
∑

i

loss1 ((f (xi; θ1) − yi) (14)

where loss1 is an appropriate loss function for the MLP.2

3: Train a Gated Auto-encoder with inputs (xi,yi); For the case of GAEY 2 , set
xi = yi.

argmin
θ2

l(x,y; θ2) =
∑

i

loss2 (r(yi|xi, θ2) − yi) (15)

where loss2 is an appropriate reconstructive loss for the auto-encoder.
4: for each test data point xi ∈ Xtest do
5: Initialize the output using the MLP.

y0 = f (xtest) (16)

6: while ‖E(yt+1|x) − E(yt|x)‖ > ε or ≤ max. iter. do
7: Compute �ytE
8: Update yt+1 = yt − λ�ytE
9: where ε is the tolerance rate with respect to the convergence of the

optimization.

Experimental Results. We consider multi-label classification, where the prob-
lem is to classify instances which can take on more than one label at a time. We
followed the same experimental set up as [18]. Four multi-labeled datasets were
considered: Yeast [5] consists of biological attributes, Scene [2] is image-based,
and MTurk [13] and MajMin [14] are targeted towards tagging music. Yeast con-
sists of 103 biological attributes and has 14 possible labels, Scene consists of 294
image pixels with 6 possible labels, and MTurk and MajMin each consist of 389
audio features extracted from music and have 92 and 96 possible tags, respec-
tively. Figure 1 visualizes the covariance matrix for the label dimensions in each
dataset. We can see from this that there are correlations present in the labels
which suggests that a structured approach may improve on a non-structured
predictor.

We compared our proposed approaches to logistic regression, a standard
MLP, and the two structured CRBM training algorithms presented in [18]. To
permit a fair comparison, we followed the same procedure for training and report-
ing errors as in that paper, where we cross validated over 10 folds and training,
validation, test examples are randomly separated into 80%, 10%, and 10% in
each fold. The error rate was measured by averaging the errors on each label
dimension.

2 In our experiments, we used the cross-entropy loss function for loss1 and loss2.
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Fig. 1. Covariance matrices for the multi-label datasets: Yeast, Scene, MTurk, and
MajMin.

Table 2. Error rate on multi-label datasets. As in previous work, we report the mean
across 10 repeated runs with different random weight initializations.

Method Yeast Scene MTurk MajMin

LogReg 20.16 10.11 8.10 4.34
HashCRBM∗ 20.02 8.80 7.24 4.24
MLP 19.79 8.99 7.13 4.23
GAESXY 19.27 6.83 6.59 3.96
GAESY 2 19.58 6.81 6.59 4.29

The performance on four multi-label datasets is shown in Table 2. We
observed that adding a small amount of Gaussian noise to the input y improved
the performance for GAEXY . However, adding noise to the input x did not have
as much of an effect. We suspect that adding noise makes the GAE more robust
to the input provided by the MLP. Interestingly, we found that the performance
of GAEY 2 was negatively affected by adding noise. Both of our proposed meth-
ods, GAESXY and GAESY 2 generally outperformed the other methods except
for GAESY 2 on the MajMin dataset. At least for these datasets, there is no
clear winner between the two. GAESXY achieved lower error than GAESY 2 for
Yeast and MajMin, and the same error rate on the MTurk dataset. However,
GAESY 2 outperforms GAESXY on the Scene dataset. Overall, the results show
that GAE scoring may be a promising means of post-classification in structured
output prediction.

6 Conclusion

There have been many theoretical and empirical studies on auto-encoders
[6,7,20,21,24,25], however, the theoretical study of gated auto-encoders is lim-
ited apart from [4,15]. The GAE has several intriguing properties that a classical
auto-encoder does not, based on its ability to model relations among pixel inten-
sities rather than just the intensities themselves. This opens up a broader set of
applications. In this paper, we derive some theoretical results for the GAE that
enable us to gain more insight and understanding of its operation.

We cast the GAE as a dynamical system driven by a vector field in order to
analyze the model. In the first part of the paper, by following the same procedure
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as [7], we showed that the GAE could be scored according to an energy function.
From this perspective, we demonstrated the equivalency of the GAE energy to
the free energy of a FCRBM with Gaussian visible units, Bernoulli hidden units,
and sigmoid hidden activations. In the same manner, we also showed that the
covariance auto-encoder can be formulated in a way such that its energy function
is the same as the free energy of a covariance RBM, and this naturally led to
a connection between the mean-covariance auto-encoder and mean-covariance
RBM. One interesting observation is that Gaussian-Bernoulli RBMs have been
reported to be difficult to train [3,9], and the success of training RBMs is highly
dependent on the training setup [26]. Auto-encoders are an attractive alternative,
even when an energy function is required.

Structured output prediction is a natural next step for representation learn-
ing. The main advantage of our approach compared to other popular approaches
such as Markov Random Fields, is that inference is extremely fast, using a
gradient-based optimization of the auto-encoder scoring function. In the future,
we plan on tackling more challenging structured output prediction problems.
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Abstract. In this paper we introduce sign constrained rectifier networks
(SCRN), demonstrate their universal classification power and illustrate
their applications to pattern decompositions. We prove that the proposed
two-hidden-layer SCRN, with sign constraints on the weights of the output
layer and on those of the top hidden layer, are capable of separating any two
disjoint pattern sets. Furthermore, a two-hidden-layer SCRN of a pair of
disjoint pattern sets can be used to decompose one of the pattern sets into
several subsets so that each subset is convexly separable from the entire
other pattern set; and a single-hidden-layer SCRN of a pair of convexly
separable pattern sets can be used to decompose one of the pattern sets
into several subsets so that each subset is linearly separable from the entire
other pattern set. SCRN can thus be used to learn the pattern structures
from the decomposed subsets of patterns and to analyse the discriminant
factors of different patterns from the linear classifiers of the linearly sep-
arable subsets in the decompositions. With such pattern decompositions
exhibiting convex separability or linear separability, users can also analyse
the complexity of the classification problem, remove the outliers and the
non-crucial points to improve the training of the traditional unconstrained
rectifier networks in terms of both performance and efficiency.

Keywords: Rectifier neural network · Pattern decomposition

1 Introduction

Deep rectifier networks have achieved great success in object recognition
[4,8,10,18], face verification [14,15], speech recognition ([3,6,12] and handwrit-
ten digit recognition [2]. However, the lack of understanding of the roles of the
hidden layers makes the deep learning network difficult to interpret for tasks
of discriminant factor analysis and pattern structure analysis. Towards a clear
understanding of the success of the deep rectifier networks, a recent work [1] pro-
vides a constructive proof for the universal classification power of two-hidden-
layer rectifier networks. For binary classification, the proof uses the first hidden
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 546–559, 2015.
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layer to make the pattern sets convexly separable. The second hidden layer is
then used to achieve linear separability, and finally a linear classifier is used to
separate the patterns. Although this strategy can be used in constructive proofs,
it cannot be used to analyse the learnt rectifier network since it might not be
verified in the empirical learning from data. Fortunately, this paper will show
that such a strategy can be verified if additional sign constraints are imposed on
the weights of the output layer and on those of the top hidden layer. A funda-
mental result of this paper is that a pair of pattern sets can be separated by a
single-hidden-layer rectifier network with non-negative output layer weights and
non-positive bias if and only if one of the pattern sets is disjoint to the convex
hull of the other. With this fundamental result, this paper introduces sign con-
strained rectifier networks (SCRN) and proves that the two-hidden-layer SCRNs
are capable of separating any two disjoint pattern sets. SCRN can automatically
learn a rectifier network classifier which achieves convex separability and lin-
ear separability in the first and second hidden layers respectively. For any pair
of disjoint pattern sets, a two-hidden-layer SCRN can be used to decompose
one of the pattern sets into several subsets each convexly separable from the
entire other pattern set; and for any pair of convexly separable pattern sets, a
single-hidden-layer SCRN can be used to decompose one of the pattern sets into
several subsets each linearly separable from the entire other pattern set. SCRN
thus can be used to analyse the pattern structures and the discriminant factors
of different patterns.

Compared to traditional unconstrained rectifier networks, SCRN is more
interpretable and convenient for tasks of discriminant factor analysis and pat-
tern structure analysis. It can help in initializations or refining of the traditional
rectifier networks. The outliers and the non-crucial points of the decomposed sub-
sets can be identified. Classification accuracy can thus be improved by training
after removal of outliers, while training efficiency can be improved by removing
the non-crucial training patterns, especially when the original training size is
large.

Notations: Throughout the paper, we use capital letters to denote matrices, lower
case letters for scalar terms, and bold lower letters for vectors. For instance, we
use wi to denote the ith column of a matrix W , and use bi to denote the ith

element of a vector b. For any integer m, we use [m] to denote the integer set
from 1 to m, i.e., [m] � {1, 2, · · · ,m}. We use I to denote the identity matrix
with proper dimensions, 0 a vector with all elements being 0, and 1 a vector
with all elements being 1. W � 0 and b � 0 denote that all elements of W and
b are non-negative while W � 0 and b � 0 denote that all elements of W and
b are non-positive. Given a finite number of points xi (i ∈ [m]) in R

n, a convex
combination x of these points is a linear combination of these points, in which all
coefficients are non-negative and sum to 1. The convex hull of a set X , denoted
by CH(X ), is a set of all convex combinations of the points in X .

The rest of this paper is organised as follows. In Section 2, the categories of
separable pattern sets are described with a brief review on the disjoint convex hull
decomposition models of patterns [1]. In Section 3, we address the formulation
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of binary classifiers with rectifier networks and introduce the sign-constrained
single-hidden-layer and two-hidden-layer binary classifiers. Section 4 presents
the fundamental result of this paper, that is, a pair of pattern sets can be sep-
arated by a sign-constrained single-hidden-layer classifier if and only if they are
convexly separable. Section 5 addresses two-hidden-layer sign-constrained recti-
fier networks, their universal classification power and their capacity for pattern
decompositions. In Section 6, we conclude the paper with a discussion on related
works and future research directions.

2 The Categories of Separable Pattern Sets

In [1], a disjoint convex hull model of pattern sets is introduced for theoretical
analysis of rectifier networks. We will use this model to address the universal
classification power of the proposed sign-constrained rectifier networks. This
section gives a brief review on this model and describes the categories of separable
pattern sets.

Let X1 and X2 be two finite pattern sets in R
n. Each of them can be modelled

by a union of several subsets under the condition that the convex hulls of every
two subsets from distinct classes are disjoint. A decomposition of X1 and X2 ,
namely, Xk =

⋃Lk

i=1 X i
k where k = 1, 2 and Lk are the numbers of subsets, is

called a disjoint convex hull decomposition if the unions of the convex hulls of
X i

k, denoted by X̂k �
⋃Lk

i=1 CH(X i
k), are still disjoint, i.e.,

X̂1 ∩ X̂2 = ∅, (1)

or equivalently, for all i ∈ [L1], j ∈ [L2],

CH(X i
1) ∩ CH(X j

2 ) = ∅. (2)

A pair of pattern sets, namely X1 and X2, are called linearly separable if
there exists w and b such that

wTx + b > 0, ∀ x ∈ X1

wTx + b < 0, ∀ x ∈ X2.
(3)

It is known that two pattern sets are linearly separable if and only if their
convex hulls are disjoint, i.e., CH(X1) ∩ CH(X2) = ∅. The disjoint convex hull
decomposition of two pattern sets decomposes each pattern set into several sub-
sets so that every pair of subsets from distinct classes are linearly separable.

For finite pattern sets Xk, k = 1, 2, a trivial disjoint convex hull decomposi-
tion is to select each point as a subset. Hence, any disjoint pattern sets have at
least one disjoint convex hull decomposition. According to the minimal numbers
of subsets in their disjoint convex hull decompositions, a pair of pattern sets can
be categorized into the following three categories:

1) Linearly Separable Pattern Sets: The two pattern sets are linearly separable
if they have a disjoint decomposition convex model with L1 = L2 = 1, i.e.,
CH(X1) ∩ CH(X2) = ∅;
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Fig. 1. Illustration of the categories of pattern sets (Left: linear separable; Middle:
convexly separable; Right: convexly inseparable). Best viewed in color.

2) Convexly Separable Pattern Sets: The two pattern sets have a disjoint decom-
position convex hull model with min(L1, L2) = 1, i.e., CH(X1) ∩ X2 = ∅ or
CH(X2) ∩ X1 = ∅. These pattern sets are referred to as convexly separable
because there exists a convex region which can separate one class from the
other;

3) Disjoint but Convexly Inseparable Pattern Sets: X1 and X2 have no common
points, X1 ∩X2 = ∅, and all their disjoint convex hull decompositions satisfy
min(L1, L2) > 1.

Figure 1 demonstrates the three categories of pattern sets. There exists a
hyperplane to separate the linearly separable patterns, and the discriminant fac-
tor can be characterized by the geometrically interpretable linear classifiers (i.e.,
the separating hyperplanes). However, patterns are rarely linearly separable in
practice, and nonlinear classifiers are required to separate the patterns. Existing
nonlinear classification methods such as kernel methods [13] and deep rectifier
network methods [4,8,10,18] are not geometrically interpretable due to the non-
linear transformations induced by kernels or hidden layers. In this paper, we
investigate the methods to decompose the convexly inseparable pattern sets into
convexly separable pattern subsets, and the methods to decompose the convexly
separable pattern sets into linearly separable subsets, so that pattern structures
and discriminant factors can be analysed through the decomposed pattern sub-
sets by linear classifiers.

3 Binary Classification with Rectifier Networks

With rectifier activation max(0, x), a single-hidden-layer binary classifier can be
described as

f(x) � aT max(0,WTx + b) + β (4)

where W ∈ R
n×m, b ∈ R

m, a ∈ R
m, β is a real number, m is the number of

hidden nodes and n is the dimension of the inputs.
For pattern sets X+ and X− labelled positive and negative respectively, a

single-hidden-layer binary classifier f(x), as defined in (4), is called a single
hidden layer separator of X+ and X− if it satisfies

f(x) > 0, ∀ x ∈ X+

f(x) < 0, ∀ x ∈ X−.
(5)
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Fig. 2. Illustration of a single-hidden-layer SCRN for convexly separable pattern sets
(Left: patterns in the input space; Middle: outputs of the hidden layer with two hidden
nodes, and the linear separating boundary; Right: the nonlinear separating boundary
in the input space). Best viewed in color.

If it further satisfies a � 0, β ≤ 0, we call it a sign-constrained single-hidden-layer
separator of X+ and X−.

Similarly, a two-hidden-layer binary classifier, with n dimensional input, l
bottom hidden nodes, m top hidden nodes and a single output, can be described
by

f{G(x)} = aT max(0,WT G(x) + b) + β
G(x) = max(0, V Tx + c) (6)

where β is a scalar number, a ∈ R
m,b ∈ R

m, c ∈ R
l,W ∈ R

l×m and V ∈ R
n×l.

We say that a two-hidden-layer binary classifier f{G(x)}, as defined in (6),
is a two-hidden-layer separator of X+ and X− if it satisfies

f{G(x)} > 0, ∀ x ∈ X+

f{G(x)} < 0, ∀ x ∈ X−.
(7)

If it further satisfies a � 0, β ≤ 0 and W � 0,b � 0, we call it a sign-constrained
two-hidden-layer separator of X+ and X−.

Remarks: For sign-constrained single-hidden-layer and two-hidden-layer binary
classifiers, due to the non-negativeness of a, β must be non-positive if f(x) is a
separator of a pair of pattern sets. If β < 0, one can always scale it to be −1
and scale a accordingly so that the sign of f(x) remains unchanged, and thus β
can be constrained to be in {0,−1} without loss of generality.

4 Single-Hidden-Layer Sign Constrained Rectifier
Networks

This section investigates the relationship between convex separability of pattern
sets and the sign constraints of single-hidden-layer classifiers. Figure 2 is pro-
vided to help understand the ideas of the proofs and the separating boundaries
obtained by a single-hidden-layer SCRN.

Lemma 1. Let X+,X− be a pair of finite pattern sets in R
n and be labelled

positive and negative respectively. Then X+,X− can be separated by a sign-
constrained single-hidden-layer classifier, as defined in (4) and satisfying β ≤ 0
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and a � 0, if and only if the convex hull of X− is disjoint to X+, i.e.,
X+ ∩ CH(X−) = ∅.

Proof: (Sufficiency). Suppose CH(X−) ∩ X+ = ∅. Let n+ be the number of
training patterns in X+ and x+

i be the ith member of X+. Since x+
i 	∈ CH(X−)

for any i ∈ [n+], there exists wi, bi, i ∈ [n+] such that

wT
i x

+
i + bi > 0

wT
i x + bi < 0, ∀ x ∈ X−.

(8)

Denote
W = [w1,w2, · · · ,wn+ ]
b = [b1, b2, · · · , bn+ ]T

z = max(0,WTx + b).
(9)

Then we have

Z− � {z = max(0,WTx + b) : x ∈ X−}
= {0}

Z+ � {z = max(0,WTx + b) : x ∈ X+}
⊂ {z : 1T z > γmin, zi ≥ 0,∀ i ∈ [n+]; zj > 0,∃ j ∈ [n+]}

(10)

where
γmin � min

x∈X+
1T max(0,WTx + b)

> 0.
(11)

The middle subfigure of Fig 2 provides an example of Z+ (in red color) and
Z− (in green color), the transformed pattern sets of a convexly separable pattern
sets as shown in the left subfigure of Figure 2.

For a single-hidden-layer binary classifier f(x), as described in (4), if we
choose β = −1 and a = 2

γmin
1 � 0, then

f(x) =
2

γmin
1T max(0,WTx + b) − 1

satisfies
f(x) ≥ 1 > 0, ∀ x ∈ X+,
f(x) = −1 < 0, ∀ x ∈ X−

(12)

which imply that X+ and X− can be separated by a sign-constrained single-
hidden-layer binary classifier.

(Necessity). Suppose that X+,X− can be separated by a sign-constrained
single-hidden-layer binary classifier, that is, there exist a � 0, β ≤ 0, and W,b,
such that f(x), as defined in (4), satisfies (5). Next, we will prove the convexity
of the set {x : f(x) < 0} and show that f(x) < 0 holds for all x in the convex
hull of X−.

Let z0, z1 be two arbitrary real numbers and let zλ = λz1 +(1−λ)z0 be their
linear combination. Since

max(0, zλ) ≤ λ max(0, z1) + (1 − λ)max(0, z0), ∀ λ ∈ [0, 1], (13)
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we have

aT max(0, zλ) ≤ λaT max(0, z0) + (1 − λ)aT max(0, z1),∀ λ ∈ [0, 1] (14)

for any a � 0 and z0, z1 with same dimensions, where zλ � λz1 + (1 − λ)z0.
In particular, let zλ = WTxλ + b with xλ = λx1 + (1 − λ)x0. Then we have

f(xλ) = aT max(0, zλ) + β
≤ λ

[

aT max(0, z0) + β
]

+ (1 − λ)
[

aT max(0, z1) + β
]

= λf(x0) + (1 − λ)f(x1),∀ λ ∈ [0, 1]
(15)

and therefore
f(xλ) < 0, ∀ λ ∈ [0, 1] (16)

if and only if
f(xλ) < 0, ∀ λ = 0, 1. (17)

Hence {x : f(x) < 0} is a convex set, and thus

f(x) < 0,∀ x ∈ CH(X−) (18)

follows from f(x) < 0,∀ x ∈ X−. Note that f(x) > 0 for all x ∈ X+ (from (5)).
So X+ and CH(X−) are separable and thus CH(X−) ∩ X+ = ∅, which completes
the proof.

�

The following Lemma shows the capacity of sign-constrained single-hidden-
layer classifiers in decomposing the positive pattern set into several subsets so
that each subset is linearly separable from the negative pattern set.

Lemma 2. Let X+ and X− be two convexly separable pattern sets with X+ ∩
CH(X−) = ∅, and let f(x), as defined in (4) with m hidden nodes and satisfying
a � 0, β ≤ 0, be one of their sign-constrained single-hidden-layer separators.
Define

fI(x) �
(

∑

i∈I
ai(wT

i x + bi)

)

+ β (19)

and
X I

+ � {x : fI(x) > 0,x ∈ X+} . (20)

for any subset I ⊂ [m]. Then we have

X+ =
⋃

I⊂[m]

X I
+ (21)

and
CH

(

X I
+

)

∩ CH(X−) = ∅, (22)

i.e, X I
+ and X− are linearly separable, and furthermore, fI(x) is their linear

separator satisfying
fI(x) > 0, ∀ x ∈ X I

+

fI(x) < 0, ∀ x ∈ X−.
(23)
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Before proving this Lemma, we give an example about the subsets of [m] and
explain the decomposed subsets of the positive pattern set with Fig 2. When
m = 2, [m] has three subsets: I1 = {1}, I2 = {2} and I3 = {1, 2}. In the
example of Fig 2, two hidden nodes are used and the positive pattern set (in
red color) can be decomposed into three subsets, each associated with one of
the three (extended) lines of the separating boundary in the right subfigure of
Fig 2, and the middle line of the boundary is associated with I3. Note that
the decomposed subsets have overlaps. The number of the subsets is determined
by the number of hidden nodes. For compact decompositions and meaningful
discriminate factor analysis, small numbers of hidden nodes are preferable. The
significance of this Lemma is in the discovery that single-hidden-layer SCRN can
decompose the convexly separable pattern sets into linearly separable subsets so
that the discriminate factors of convexly separable patterns can be analysed
through the linear classifies between one pattern set (labelled negative) and the
subsets of the other pattern set (labelled positive).

Proof: From a � 0, it follows that

fI(x) ≤ f(x), ∀ I ⊂ [m],x ∈ R
n (24)

and consequently
fI(x) < 0, ∀ I ⊂ [m],x ∈ X−. (25)

Then (23) follows straightforward from the above inequality and the definition
of X I

+. Note that fI(x) is a linear classifier satisfying (23), fI(x) is a linear
separator of X I

+ and X−, and (22) holds consequently.
To complete the proof, it remains to prove (21). Let x ∈ X+ be any pattern

with positive label and let I ⊂ [m] be the index set so that wT
i x+ bi > 0 for all

i ∈ I and wT
i x + bi ≤ 0 for all i 	∈ I. Then fI(x) = f(x) > 0 and thus x ∈ X I

+.
This proves that any element in X+ is in X I

+ for some I ⊂ [m]. Hence (21) is true
and the proof is completed. �

5 Two-Hidden-Layer Sign Constrained Rectifier
Networks

This section investigates the universal classification power of sign-constrained
two-hidden-layer binary classifiers and their capacity to decompose one pattern
set into smaller subsets so that each subset is convexly separable from the other
pattern set. Figure 3 is provided to help understand the universal classification
power of SCRN by achieving convex separability through the first hidden layer
and then achieving the linear separability in the second hidden layer. In this
example, three hidden nodes are used in the first hidden layer to achieve convex
separability (i.e., the set of the red points and the convex hull of the green points
are disjoint) and two hidden nodes are used in the second hidden layer to achieve
linear separability.
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Fig. 3. Illustration of a two-hidden-layer SCRN (Left: patterns in the input space;
Middle: outputs of the first hidden layer with three hidden nodes; Right: outputs of
the second hidden layer with two hidden nodes). Best viewed in color.

Theorem 3. For any two disjoint pattern sets, namely X+ and X−, in R
n, there

exists a sign-constrained two-hidden-layer binary classifier f{G(x)}, as defined
in (6) and satisfying a � 0, β ≤ 0,W � 0,b � 0, such that f{G(x)} > 0 for all
x ∈ X+ and f{G(x)} < 0 for all x ∈ X−.

Proof: Let

X+ =
L1
⋃

i=1

X i
+,X− =

L2
⋃

j=1

X j
− (26)

be the disjoint convex hull decomposition of X+ and X−. Then we have

CH(X i
+) ∩ CH(X j

−) 	= ∅, ∀ i ∈ [L1], j ∈ [L2] (27)

which implies that
X− ∩ CH(X i

+) 	= ∅, ∀ i ∈ [L1]. (28)

Apply Lemma 1 on the pair of pattern sets, X− and X i
+ (corresponding to

the positive pattern set and the negative pattern set respectively), for each i
separately, there exists a sign-constrained single-hidden-layer separator between
X− and X i

+. More precisely, there exist wi � 0, bi ≤ 0, V, c such that

gi(x) > 0, ∀x ∈ X−
gi(x) < 0, ∀x ∈ X i

+
(29)

where
gi(x) � wT

i max(0, V Tx + c) + bi. (30)

Note that X− is treated as the pattern set with positive labels when applying
Lemma 1, and X i

+ is treated as the pattern set with negative labels correspond-
ingly.

Let W = [w1,w2, · · · ,wL1 ],b = [b1, b2, · · · , bL1 ]
T and consider the transfor-

mation
z = G(x) � max(0,−WT max(0, V Tx + c) − b) (31)

where −W and −b, instead of W and b, are used in the above transformation
so that the responses of the negative patterns in X− are 0.
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Denote

Z− � {z : z = G(x),x ∈ X−}
= {0}

Z+ � {z : z = G(x),x ∈ X+}
⊂ {z : 1T z > γmin, zi ≥ 0,∀i ∈ [L1]; zj > 0, ∃ j ∈ [L1]}.

(32)

where
γmin � min

x∈X+
1T max(0,−WT G(x) − b)

> 0.
(33)

Let a = 2
γmin

1 � 0, β = −1 and f(z) � aT z + β. Then f(z) ≥ 1 > 0 for
z ∈ Z+ and f(z) = −1 < 0 for z ∈ Z−, or equivalently

f{G(x)} � aT max(0,−WT G(x) − b) + β (34)

satisfies f{G(x)} > 0 for x ∈ X+ and f{G(x)} < 0 for x ∈ X−. Note that
−W � 0,−b � 0,a � 0, β ≤ 0, f{G(x)} is a sign-constrained two-hidden-layer
binary classifier, and the proof is completed.

�

Next, we investigate the applications of the proposed two-hidden-layer SCRN
to decompose one pattern set (labelled positive) into several subsets so that each
subset is convexly separable from the other pattern set.

Theorem 4. Let X+,X− be two disjoint pattern sets and let f{G(x)}, as defined
in (6) and satisfying a � 0, β ≤ 0,W � 0,b � 0, be one of their sign-constrained
two-hidden-layer binary separators with m top hidden nodes and satisfying (7).
Define

fI{G(x)} �
(

∑

i∈I
ai[wT

i G(x) + bi]

)

+ β

X I
+ � {x : fI{G(x)} > 0,x ∈ X+}

(35)

for any subset I in [m]. Then we have

X+ =
⋃

I⊂[m]

X I
+ (36)

and
CH

(

X I
+

)

∩ X− = ∅, (37)

i.e, X I
+ and X− are convexly separable, and furthermore, fI{G(x)} is their

single-hidden-layer separator satisfying

fI{G(x)} > 0, ∀ x ∈ X I
+

fI{G(x)} < 0, ∀ x ∈ X−.
(38)
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Proof: Note that ai ≥ 0, we have

fI{G(x)} ≤ f{G(x)}, ∀ x ∈ R
n (39)

and therefore
fI{G(x)} < 0, ∀ x ∈ X− (40)

which implies (38), together with the definition of X I
+ in (35). Hence, fI{G(x)}

is a single-hidden-layer separator of X− and X I
+. Next, we show that −fI{G(x)}

can be described as a sign-constrained single-hidden-layer separator of X− and
X I

+ if they are labelled positive and negative respectively.
Let

gI(x) � −fI{G(x)}
= âT G(x) + β̂I
= âT max(0, V Tx + c) + β̂I

(41)

where
â = −

∑

i∈I
aiwi � 0

β̂ = −
∑

i∈I
aibi − β.

(42)

Then, from (38), it follows that

gI(x) > 0 , ∀ x ∈ X−
gI(x) < 0 , ∀ x ∈ X I

+.
(43)

Note that â � 0. If X I
+ is not empty, β̂I must be non-positive, and gI(x) is

thus a sign-constrained single-hidden-layer separator of X− and X I
+. Then by

Lemma 1, we have (37). Note that X− corresponds to the positive set while X I
+

corresponds to the negative set when applying Lemma 1, with gI being one of
their sign-constrained single-hidden-layer classifiers.

Now it remains to prove (36). It suffices to prove that, for any x ∈ X+, there
exists I ⊂ [m] such that x ∈ X I

+. Let x be a member in X+ and let I ⊂ [m], I 	= ∅
be the index set such that wT

i G(x)+bi > 0 for all i ∈ I and wT
i G(x)+bi ≤ 0 for

all i 	∈ I. Then fI{G(x)} = f{G(x)} > 0 and thus x is in X I
+. �

Theorem 4 states that the positive pattern set can be decomposed into several
subsets by a two-hidden-layer SCRN, namely

X+ =
t

⋃

i=1

X i
+

so that each X i
+ is convexly separable from X−. Then by labelling X− as positive

and X i
+ as negative, and from Lemma 2, X− can be decomposed into a number,

namely ti, of subsets by a single-hidden-layer SCRN, namely,

X− =
ti
⋃

j=1

X j
−,
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so that X i
+ and X j

− are linearly separable. Hence, one can investigate the discrim-
inant factors of the two patterns by using the linear classifiers of these subsets
of the patterns. With the decomposed subsets, one can investigate the pattern
structures. The numbers of the subsets are determined by the numbers of hidden
nodes in the top hidden layers of the two-hidden-layer SCRNs and the numbers
of the hidden nodes of the single-hidden-layer SCRNs. To find compact pattern
structures and meaningful discriminant factors, small number of hidden nodes
is preferable. Since the convex hulls of the subsets can be represented by the
convex hull of a small set of boundary points, and the interior points are not
crucial for training rectifier networks (similar to the training points other than
support vectors in support vector machine (SVM) training [13,16]), one can use
the proposed SCRN to find these non-crucial training patterns, and by removing
them to speed up the training of the unconstrained rectifier networks. One can
also use SVMs to separate the decomposed subsets of the patterns and identify
the outliers, and by removing them to improve classification accuracy.

For multiple classes of pattern sets, multiple times of SCRN training and
analysis are required, each time labelling one class positive and all the other
classes negative.

6 Discussion

In this paper, we have shown that, with sign constraints on the weights of the
output layer and on those of the top hidden layer, two-hidden-layer SCRNs are
capable of separating any two finite training patterns as well as decomposing one
of them into several subsets so that each subset is convexly separable from the
other pattern set; and single-hidden-layer SCRNs are capable of separating any
pair of convexly separable pattern sets as well as decomposing one of them into
several subsets so that each subset is linearly separable from the other pattern
set.

The proposed SCRN not only enables pattern and feature analysis for knowl-
edge discovery but also provides insights on how to improve the efficiency
and accuracy of training the rectifier network classifiers. Potential applications
include: 1) Feature analysis such as in health and production management of
precision livestock farming[17], where one needs to identify the key features asso-
ciated with diseases (e.g. hock burn of broiler chickens) on commercial farms,
using routinely collected farm management data [5]. 2). User-supervised neural
network training. Since each decomposed subset of the pattern sets via the pro-
posed SCRN is convexly separable from the other pattern set, one can visualize
the clusters of each pattern set, identify the outliers, and check the separating
boundaries. By removing the outliers and adjusting the boundaries, users could
manage to improve the training and/or validation performance. By removing the
non-crucial points (i.e., interior points) of the convex hull of each decomposed
subset, users could speed up the training especially for big size training data.

Related Works: This work on the universal classification power of the proposed
SCRN is related to [7,9,11], which address the universal approximation power
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of deep neural networks for functions or for probability distributions. This work
is also closely related to [1], which proves that any multiple pattern sets can
be transformed to be linearly separable by two hidden layers, with additional
distance preserving properties. In this paper, we prove that any two disjoint
pattern sets can be separated by a two-hidden-layer rectifier network with addi-
tional sign constraints on the weights of the output layer and on those of the top
hidden layer. The significance of SCRN lies in the fact that, through two hidden
layers, it can decompose one of any pair of pattern sets into several subsets so
that each subset is convexly separable from the entire other pattern set; and
through a single hidden layer, it can decompose one of the convexly separable
pair of pattern sets into several subsets so that each subset is linearly separable
from the entire other pattern set. This decomposition can be used to analyse
pattern sets and identify the discriminative features for different patterns. Our
effort to make the deep rectifier network interpretable is related to [18], which
manages to visualize and understand the learnt convolutional neural network
features. The visualization technique developed in [18] has been shown useful to
improve classification accuracy as evidenced by the state-of-the-art performance
in object classification.

Limitations and Future Works: This paper focuses on the theoretical devel-
opment of interpretable rectifier networks aiming to understand the learnt hid-
den layers and pattern structures. Future works are required to develop learning
algorithms for SCRN and demonstrate their applications to image classification
on popular databases.

Acknowledgements. This work was supported by the ARC grants DP150100294,
DP150104251, DE120102960 and a UWA FECM grant.
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Abstract. Trading in information markets, such as machine learning
markets, has been shown to be an effective approach for aggregating the
beliefs of different agents. In a machine learning context, aggregation
commonly uses forms of linear opinion pools, or logarithmic (log) opin-
ion pools. It is interesting to relate information market aggregation to
the machine learning setting.

In this paper we introduce a spectrum of compositional methods,
Rényi divergence aggregators, that interpolate between log opinion pools
and linear opinion pools. We show that these compositional methods are
maximum entropy distributions for aggregating information from agents
subject to individual biases, with the Rényi divergence parameter depen-
dent on the bias. In the limit of no bias this reduces to the optimal limit of
log opinion pools. We demonstrate this relationship practically on both
simulated and real datasets.

We then return to information markets and show that Rényi diver-
gence aggregators are directly implemented by machine learning markets
with isoelastic utilities, and so can result from autonomous self interested
decision making by individuals contributing different predictors. The risk
averseness of the isoelastic utility directly relates to the Rényi divergence
parameter, and hence encodes how much an agent believes (s)he may be
subject to an individual bias that could affect the trading outcome: if an
agent believes (s)he might be acting on significantly biased information,
a more risk averse isoelastic utility is warranted.

Keywords: Probabilistic model aggregation · Rényi divergence ·
Machine learning markets

1 Introduction

Aggregation of predictions from different agents or algorithms is becoming
increasingly necessary in distributed, large scale or crowdsourced systems. Much
previous focus is on aggregation of classifiers or point predictions. However,
aggregation of probabilistic predictions is also of particular importance, espe-
cially where quantification of risk matters, generative models are required or
c© Springer International Publishing Switzerland 2015
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where probabilistic information is critical for downstream analyses. In this paper
we focus on aggregation of probability distributions (including conditional dis-
tributions).

The problem of probabilistic aggregation in machine learning can be cast as
choosing a single aggregate distribution given no (or little) direct data, but given
instead the beliefs of a number of independent agents. We have no control over
what these agents do, other than that we know they do have direct access to
data and we expect them to have obtained their beliefs using that data. The data
the agents observe is generated from a scenario that is the same as or similar to
the target scenario we care about. We wish to choose an aggregate distribution
that has high log probability under data drawn from that target scenario.

One recent approach for aggregating probabilistic machine learning predic-
tions uses information markets [18,27,28] as an aggregation mechanism via the
market price. In a machine learning market, agents make utility maximizing
decisions regarding trades in securities. These securities are tied to the random
variables of the machine learning problem. For example they could be Arrow-
Debreu securities defined on each possible predicted outcome. Given the trading
desires of each agent, the equilibrium price in the market then defines a distri-
bution that is an aggregation of the beliefs of different agents. Machine learning
markets combine an incentivization mechanism (to ensure agents’ actions reflect
their beliefs Pi) and a aggregation mechanism (via the trading process).

Understanding the relationship between individual actions and the aggregate
market price is an interesting open question for information markets. In addition,
finding efficient methods of arriving at market equilibria is key to their practical
success.

The main novel contributions of this paper are

– Introducing the class of Rényi divergence based aggregators which interpo-
late between linear opinion pools and log opinion pools, and showing that
they are the maximum entropy estimators for aggregation of beliefs poten-
tially subject to bias. We also demonstrate this relationship practically via
simulated and real problems.

– Directly relating Rényi divergence aggregators to machine learning markets
with different isoelastic utilities, and showing that the risk averseness of the
isoelastic utility relates to the Rényi divergence parameter that is used to
control the assumed bias.

2 Background

Aggregation methods have been studied for some time, and have been discussed
in a number of contexts. Aggregation methods differ from ensemble approaches
(see e.g. [9]), as the latter also involves some control over the form of the individ-
uals within the ensemble: with aggregation, the focus is entirely on the method
of combination - there is no control over the individual agent beliefs. In addition,
most aggregation methods focus on aggregating hard predictions (classifications,
mean predictive values etc.) [4,10]. Some, but not all of those are suitable for
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aggregation of probabilistic predictions [7,20], where full predictive distributions
are given. This issue has received significant attention in the context of aggregat-
ing Bayesian or probabilistic beliefs [8,19,21,27,29]. Full predictive distributions
are generally useful for a Bayesian analysis (where the expected loss function is
computed from the posterior predictive distribution), in situations where full
risk computations must be done, or simply to get the most information from
the individual algorithms. Wolpert [30] describes a general framework for aggre-
gation, where an aggregator is trained using the individual predictions on a
held out validation set as inputs, and the true validation targets as outputs.
This requires specification of the aggregation function. The work in this paper
fits within this framework, with Rényi mixtures as the aggregator. In crowd-
sourcing settings, issues of reliability in different contexts come into play. Log
opinion pools have been generalized to weighted log opinion pools using Bayesian
approaches with an event-specific prior [17]. This emphasises that expert models
can work with aggregators at many different levels, from individual data points
to whole datasets within a corpus.

Recently, prediction markets, and methods derived from securities market
settings [3,5,7,18,21,27,28], have provided a particular foundation for belief
aggregation. That securities markets can perform belief aggregation was first
discussed by Rubinstein [23–25]. Belief aggregation of this form is of impor-
tance in crowdsourcing settings, or settings combining information from differ-
ent autonomous agents. In such settings, the beliefs of different agents can be
subject to various biases.

One other area that aggregation has shown importance is in machine learning
competitions, including the Netflix Challenge [14], the PASCAL Visual Object
Classes challenge [11]), and many challenges set in the Kaggle challenge environ-
ment [13]. Many workshops (e.g. KDD) also run a variety of machine learning
challenges. One of the most consistent take-home messages from all the chal-
lenges is that aggregation of individual entries provides a performance benefit.
The final winning Netflix submission was itself a large scale aggregation of 107
different methods [22].

3 Problem Statement

We will postpone the discussion of information markets and start by introducing
Rényi divergence aggregators and their properties, as Rényi divergence aggrega-
tors are new to this paper. We will show that Rényi divergence aggregators are
intimately related to the issue of bias in individual agent beliefs.

The problem setting is as follows. We have a prediction problem to solve, in
common with a number of agents. These agents have learnt probabilistic pre-
dictors on each of their own training datasets, using their own machine learning
algorithms, and provide the predictions for the test scenario. We wish to combine
the agents’ predictions to make the best prediction we can for our setting. We
don’t have access to the training data the agents see, but are potentially given
the held out performance of each agent on their training data, and we may have
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access to their predictions for a small validation set of our own data which we
know relates to our domain of interest (the distribution of which we denote by
PG). We consider the case where it may be possible that the data individual
agents see are different in distribution (i.e. biased) with respect to our domain
of interest.

Our objective is to minimize the negative log likelihood for a model P for
future data generated from an unknown data generating distribution PG. This
can be written as desiring arg minP KL(PG||P ), where KL denotes the KL-
Divergence. However in an aggregation scenario, we do not have direct access
to data that can be used to choose a model P by a machine learning method.
Instead we have access to beliefs Pi from i = 1, 2, . . . , NA other agents, which do
have direct access to some data, and we must use those agent beliefs Pi to form
our own belief P .

We have no control over the agents’ beliefs Pi, but we can expect that the
agents have learnt Pi using some learning algorithm with respect to data drawn
from individual data distributions PG

i . Hence agents will choose Pi with low
KL(Pi||PG

i ) with respect to their individual data, drawn from PG
i . For example

agents can choose their own posterior distributions Pi with respect to the data
they observe.

We also assume that each PG
i is ‘close’ to the distribution PG we care about.

Where we need to be specific, we use the measure KL(PG
i ||PG) as the measure

of closeness, which is appropriate if PG
i is obtained by sample selection bias [26]

from PG. In this case KL(PG
i ||PG) gives a standardized expected log acceptance

ratio, which is a measure of how the acceptance rate varies across the data
distribution. Lower KL divergence means lower variation in acceptance ratio
and Pi is closer to P . The simplest case is to assume KL(PG

i ||PG) = 0 ∀i, which
implies an unbiased data sample.

4 Weighted Divergence Aggregation

Weighted divergence-based aggregation was proposed in [12]. The idea was, given
individual distributions Pi, to choose an aggregate distribution P given by

P = arg min
Q

∑

i

wiD(Pi, Q), (1)

where wi is a weight and D(Pi, Q) represents a choice of divergence between Pi

and Q, where D(A,B) ≥ 0, with equality iff A = B. This framework general-
izes several popular opinion pooling methods, e.g., linear opinion pooling when
D(Pi, Q) = KL(Pi||Q), and log opinion pooling when D(Pi, Q) = KL(Q||Pi).
Concretely, a linear opinion pool is given by P (y|·) =

∑NA

j=1 wjPj(y|·), where
wj ≥ 0 ∀j and

∑NA

j=1 wj = 1. The weight vector w can be chosen using max-
imum entropy arguments if we know the test performance of the individual
models. Alternatively, wi can be optimized by maximizing the log likelihood of a
validation set with simplex constraints, or via an expectation maximization pro-
cedure. By convexity, the solution of both optimization approaches is equivalent.
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By contrast, a logarithmic opinion pool is given by P (y|·) = 1
Z(w)

∏NA

j=1 P (y|·)wj

where wj ≥ 0 ∀j, where we use the P (y|·) notation to reflect that this applies to
both conditional and unconditional distributions. The logarithmic opinion pool
is more problematic to work with due to the required computation of the nor-
malization constant, which is linear in the number of states. Again the value
of w can be obtained using a maximum-entropy or a gradient-based optimizer.
Others (see e.g. [16]) have used various approximate schemes for log opinion
pools when the state space is a product space.

Weighted Divergence aggregation is very general but we need to choose a
particular form of divergence. In this paper we analyse the family of Rényi
divergences for weighted divergence aggregation. This choice is motivated by
two facts:

– Rényi divergence aggregators satisfy maximum entropy arguments for the
aggregator class under highly relevant assumptions about the biases of indi-
vidual agents.

– Rényi divergence aggregators are implemented by machine learning markets,
and hence can result from autonomous self interested decision making by the
individuals contributing different predictors without centralized imposition.
Hence this approach can incentivize agents to provide their best information
for aggregation.

In much of the analysis that follows we will drop the conditioning (i.e. write
P (y) rather than P (y|x)) for the sake of clarity, but without loss of generality
as all results follow through in the conditional setting.

4.1 Weighted Rényi Divergence Aggregation

Here we introduce the family of weighted Rényi divergence methods.

Definition 1 (Rényi Divergence). Let y be a random variable taking values
y = 1, 2, . . . ,K. The Rényi divergence of order γ (γ > 0) from a distribution P
to a distribution Q is defined as

DR
γ [P ||Q] =

1
γ − 1

log

(

K
∑

y=1

P (y)γQ(y)1−γ

)

. (2)

The Rényi divergence has two relevant special cases: limγ→1(1/γ)DR
γ (P ||Q) =

KL(P ||Q), and limγ→0(1/γ)DR
γ (P ||Q) = KL(Q||P ) (which can be seen via

L’hôpital’s rule). We assume the value for the Rényi divergence for γ = 1 is
defined by KL(P ||Q) via analytical continuation.

Definition 2 (Weighted Rényi Divergence Aggregation). The weighted
Rényi divergence aggregation is a weighted divergence aggregation given by (1),
where each divergence D(Pi, Q) = γ−1

i DR
γi

[Pi||Q].

Note that each component i in (1) can have a Rényi divergence with an indi-
vidualized parameter γi. Sometimes we will assume that all divergences are the
same, and refer to a single γ = γi ∀i used by all the components.
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Properties. The following propositions outline some properties of weighted
Rényi divergence aggregation.

Proposition 1. Weighted Rényi divergence aggregation satisfies the implicit
equation for P (y) of

P (y) =
1
Z

∑

i

wiγ
−1
i

Pi(y)γiP (y)1−γi

∑

y′ Pi(y′)γiP (y′)1−γi
(3)

where wi are given non-negative weights, and Z = Z({γi}) =
∑

i wiγ
−1
i is a

normalisation constant, and {γi} is the set of Rényi divergence parameters.

Proof. Outline: Use D(Pi, Q) = γ−1
i DR

γi
[Pi||Q] from (2) in Equation (1), and

build the Lagrangian incorporating the constraint
∑

y Q(y) = 1 with Lagrange
multiplier Z. Use calculus of variations w.r.t. Q(y) to get K equations

∑

i

wiγ
−1
i

Pi(y)γiP (y)−γi

∑K
y′=1 Pi(y′)γiP (y′)1−γi

− Z = 0 (4)

for the optimum values of P (y). Multiply each equation with P (y) and find
Z =

∑

j wjγ
−1
j by summing over all equations. Rearrange to obtain the result.

Proposition 2. Weighted Rényi divergence aggregation interpolates between
linear opinion pooling (γ → 1) and log opinion pooling (γ → 0).

Proof. Outline: Set γi = 1 in (3) to obtain a standard linear opinion pool.
For log opinion pool, set γi = γ, and take γ → 0. Note (3) can be written
Z =

∑

i wiγ
−1
i

∂
∂QDR

γi
[Pi||Q]. Using L’Hôpital’s rule on each element in the sum

and switching the order of differentiation (∂/∂γi)(∂/∂Q) = (∂/∂Q)(∂/∂γi) gives
the result.

In the next section we show that Rényi divergence aggregation provides the
maximum entropy distribution for combining together agent distributions where
the belief of each agent is subject to a particular form of bias. Two consequences
that are worth alerting the reader to ahead of that analysis are:

1. If all agents form beliefs on data drawn from the same (unbiased) distribution
then the maximum entropy distribution is of the form of a log opinion pool.

2. If all agents form beliefs on unrelated data then the maximum entropy dis-
tribution is of the form of a linear opinion pool.

5 Maximum Entropy Arguments

Consider the problem of choosing an aggregator distribution P to model an
unknown target distribution PG given a number of individual distributions Pi.
These individual distributions are assumed to be learnt from data by a number
of individual agents. We will assume the individual agents did not (necessarily)
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have access to data drawn from PG, but instead the data seen by the individual
agents was biased, and instead sampled from distribution PG

i . In aggregating
the agent beliefs, we neither know the target distribution PG, nor any of the
individual bias distributions PG

i , but model them with P and Qi respectively.
As far as the individual agents are concerned they train and evaluate their

methods on their individual data, unconcerned that their domains were biased
with respect to the domain we care about. We can think of this scenario as
convergent dataset shift [26], where there is a shift from the individual train-
ing to a common test scenario. The result is that we are given information
regarding the test log likelihood performance for each Pi in their own domains:
∑

y PG(y) log Pi(y) = ai.
The individual agent data is biased, not unrelated, and so we make the

assumption that the individual distributions PG
i are related to P in some way. We

assume that KL(PG
i ||PG) is subject to some bound (and call this the nearness

constraint). As mentioned in the Problem Statement this is a constraint on the
standardized expected log acceptance ratio, under an assumption that PG

i is
derived from PG via a sample selection bias.

Given this scenario, a reasonable ambition is to find maximum entropy dis-
tributions Qi to model PG

i that capture the performance of the individual dis-
tributions Pi, while at the same time being related via an unknown distribution
P . As we know the test performance, we write this as the constraints:

∑

y

Qi(y) log Pi(y) = ai, (5)

The nearness constraints1 for Qi are written as

KL(Qi||P ) ≤ Ai (6)

⇒
∑

y

Qi(y) log
Qi(y)
P (y)

≤ Ai for some P . (7)

encoding that our model Qi for PG
i must be near to the model P for PG. That

is the KL divergence between the two distributions must be bounded by some
value Ai.

Given these constraints, the maximum entropy (minimum negative entropy)
Lagrangian optimisation can be written as arg min{Qi},P L({Qi}, P ), where

L({Qi}, P ) =
∑

i

∑

y

Qi(y) log Qi(y) +
∑

i

bi(1 −
∑

y

Qi(y))

−
∑

i

λi

([

∑

y

Qi(y) log Pi(y)

]

− ai

)

+ c(1 −
∑

y

P (y))

+
∑

i

ρi

([

∑

y

Qi(y) log
Qi(y)
P (y)

]

− Ai + si

)

(8)

1 We could work with a nearness penalty of the same form rather than a nearness
constraint. The resulting maximum entropy solution would be of the same form.
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where si are slack variables si ≥ 0, and ρi, λi, bi and c are Lagrange multipliers.
This minimisation chooses maximum entropy Qi, while ensuring there is a dis-
tribution P for which the nearness constraints are met. The final two terms of
(8) are normalisation constraints for Qi and P .

Taking derivatives with respect to Qi(y) and setting to zero gives

Qi(y) =
1
Zi

P (y)
ρi

1+ρi Pi(y)
λi

1+ρi (9)

where Zi is a normalisation constant.
Given these Qi, we can find also find an optimal, best fitting P . Taking

derivatives of the Lagrangian with respect to P (y) and setting to zero gives

P (y) =
∑

i

ρi
∑

i′ ρi′
Qi(y) =

∑

i

wi
(Pi(y)λi)γiP (y)1−γi

Zi
(10)

where wi = ρi/
∑′

i ρi′ , and γi = 1/(1 + ρi), and Zi =
∑

y′(Pi(y′)λi)γiP (y′)1−γi .
Comparing this with (3) we see that this form of maximum entropy distribution
is equivalent to the Rényi divergence aggregator of annealed forms of Pi. The
maximum entropy parameters of the aggregator could be obtained by solving
for the constraints or estimated using test data from P (y). Empirically we find
that, if all the Pi are trained on the same data, or on data subject to sample-
selection bias (rather than say an annealed form of the required distribution),
then λi ≈ 1.

Note that the parameter ρi controls the level of penalty there is for a mis-
match between the biased distributions Qi and the distribution P . If all the
ρi are zero for all i then this penalty is removed and the Qi can bear little
resemblance to the P and hence to one another. In this setting (10) becomes
a standard mixture and the aggregator is a linear opinion pool. If however ρi

tends to a large value for all i, then the distributions Qi are required to be much
more similar. In this setting (10) becomes like a log opinion pool.

Interim Summary. We have shown that the Rényi divergence aggregator is not
an arbitary choice of aggregating distribution. Rather it is the maximum entropy
aggregating distribution when the individual agent distributions are expected to
be biased using a sample selection mechanism.

6 Implementation

Renyi divergence aggregators can be implemented with direct optimization,
stochastic gradient methods, or using a variational optimization for the sum of
weighted divergences, which is described here. The weighted Rényi Divergence
objective given by Definition 2 can be lower bounded using

∑

i

wiD(Pi, Q) ≥
∑

i,y

wiγi

γi − 1
Qi(y) log

[Pi(y)γiQ(y)1−γi ]
Qi(y)

(11)
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where we have introduced variational distributions Qi, and used Jensen’s
inequality. Note equality is obtained in (11) for Qi(y) ∝ Pi(y)γiQ(y)1−γi . Opti-
mizing for Q gives P (y) = Qopt(y) =

∑

i w∗
i Qi(y) with w∗

i = wiγ
−1
i /

∑

i wiγ
−1
i .

This leads to an iterative variational algorithm that is guaranteed (using the
same arguments as EM, and using the convexity of to optimize (11): iteratively
set Qi(y) ∝ Pi(y)γiQ(y)1−γi , and then set Q(y) ∝

∑

i w∗
i Qi(y). The optimiza-

tion of the parameters w∗
i also naturally fits within this framework. Q(y) is a

simple mixture of Qi(y). Hence given Qi(y), the optimal w∗
i are given by the

optimal mixture model parameters. These can be determined using a standard
inner Expectation Maximization loop. In practice, we get faster convergence
if we use a single loop. First set Qi(y) ∝ Pi(y)γiQ(y)1−γi . Second compute
qin = w∗

i Qi(yn)/
∑

i w∗
i Qi(yn). Third set w∗

i =
∑

n qin/
∑

in qin. Finally set
Q(y) ∝

∑

i w∗
i γiQi(y). This is repeated until convergence. All constants of pro-

portionality are given by normalisation constraints. Note that where computing
the optimal Q may be computationally prohibitive, this process also gives rise
to an approximate divergence minimization approach, where Qi is constrained
to a tractable family while the optimizations for Qi are performed.

7 Experiments

To test the practical validity of the maximum entropy arguments, the following
three tasks were implemented.

Task 1: Aggregation on Simulated Sata. We aim to test the variation of the
aggregator performance as the bias of the agent datasets is gradually changed.
This requires that the data does not dramatically change across tests of different
biases. We tested this process using a number of bias generation procedures, all
with the same implication in terms of results.

The details of the data generation and testing is given in Algorithm 1.
We used NA = 10, K = 64, NV a = 100, P ∗ was a discretized N(32, 64/7),
fi(y) U([0, 1]) to generate the artificial data that gave the results displayed here.
Equivalent results were found for all (non-trivial) parameter choices we tried, as
well as using completely different data generation procedures generating biased
agent data.

Task 2: Aggregation on Chords from Bach Chorales. This task aims
to accurately predict distributions of chords from Bach chorales [2]. The Bach
chorales data was split equally and randomly into training and test distributions.
Then training data from half of the chorales was chosen to be shared across
all the agents. After that each agent received additional training data from a
random half of the remaining chorales. Each agent was trained using a mixture
of Bernoulli’s with a randomized number of mixture components between 5 and
100, and a random regularisation parameter between 0 and 1. 10 agents were
used and after all 10 agents were fully trained, the Rényi mixture weights were
optimized using the whole training dataset. Performance results were computed
on the held out test data.
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Algorithm 1. Generate test data for agents with different biases, and test
aggregation methods.

Select a target discrete distribution P ∗(.) over K values. Choose NA, the number of
agents.
Sample IID a small number NV a of values from the target distribution to get a
validation set DV a

Sample IID a large number N of values {yn; n = 1, 2, 3, . . . , N} from the target
distribution to get the base set D from which agent data is generated.
Sample bias probabilities fi(y) for each agent to be used as a rejection sampler.
for annealing parameter β = 0 TO 4 do

for each agent i do
Anneal fi to get f∗

k (y) = fk(y)β ./ maxy fi(y)β .
For each data point yi, reject it with probability (1 − f∗

k (yi)).
Collect the first 10000 unrejected points, and set Pi to be the resulting empirical
distribution.
This defines the distribution Pi for agent i given the value of β.

end for
Find aggregate P (.) for different aggregators given agent distributions Pi and an
additional P0 corresponding to just the uniform distribution, using the validation
dataset DV a for any parameter estimation.
Evaluate the performance of each aggregator using the KL Divergence between
the target distribution P ∗(.) and the aggregate distribution P (.): KL(P ∗||P ).

end for

Algorithm 2. Competition Data Preparation
Load image data. Discretize to 64 gray scales. Put in INT8 format. Define stopping
criterion ε
for j=1 to 140000 do

Pick random image and random pixel at least 40 pixels away from edge of image
and find 35 × 30 patch including that pixel at the bottom-middle of the patch.
Record x(j) =vectorisation of all pixels in patch ‘before’ that pixel in patch in
raster-scan terms, y(j) =grayscale value at chosen pixel,i(j) =image number

end for
Produce three Matlab datasets. Set 1: x and y and i values in one .mat for 100000
training records. Set 2: x and i values in one .mat file for 40000 test records. Set 3:
y values for the corresponding test cases, not publicly available.

Task 3: Aggregation on Kaggle Competition. To analyze the use of combi-
nation methods in a realistic competition setting, we need data from an appropri-
ate competitive setup. For this purpose we designed and ran the Kaggle-in-Class
competition. The competition consisted of a critical problem in low-level image
analysis: the image coding problem, which is fundamental in image compression,
infilling, super-resolution and denoising. We used data consisting of images from
van Hateren’s Natural Image Dataset2 [15]. The data was preprocessed using
Algorithm 2 to put it in a form suitable for a Kaggle competition, and ensure

2 http://bethgelab.org/datasets/vanhateren/

http://bethgelab.org/datasets/vanhateren/
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the data sizes were sufficient for use on student machines, and that submis-
sion files were suitable for uploading (this is the reason for the 6 bit grayscale
representation).

The problem was to provide a probabilistic prediction on the next pixel y
given information from previous pixels in a raster scan. The competitor’s per-
formance was measured by the perplexity on a public set at submission time,
but the final ranked ordering was on a private test set. We chose as agent dis-
tributions the 269 submissions that had perplexity greater than that given by
a uniform distribution and analysed the performance of a number of aggrega-
tion methods for the competition: weighted Rényi divergence aggregators, sim-
ple averaging of the top submissions (with an optimized choice of number),
and a form of heuristic Bayesian model averaging, via an annealed likelihoood:
P (y|·) ∝

∑

j Pj(y|·) (P (j|Dtr))
α, where α is an aggregation parameter choice.

The weighted Rényi divergence aggregators were optimized using stochastic gra-
dient methods, until the change between epochs became negligible. The valida-
tion set (20, 000 pixels) is used for learning the aggregation parameters. The test
set (also 20, 000 pixels) is only used for the test results.

Results. For Task 1, Figure 1(a) shows the test performance on different biases
for different values of log(γi) in (10), where all γi are taken to be identical
and equal to γ. Figure 1(b) shows how the optimal value of γ changes, as the
bias parameter β changes. Parameter optimization was done using a conjugate
gradient method. The cost of optimization for Rényi mixtures is comparable
to that of log opinion pools. For Task 2, Figure 2(a) shows the performance
on the Bach chorales with 10 agents, with the implementation described in the
Implementation section. Again in this real data setting, the Rényi mixtures show
improved performance.

The two demonstrations show that when agents received a biased subsample
of the overall data then Rényi-mixtures perform best as an aggregation method,
in that they give the lowest KL divergence. As the bias increases, so the optimal
value of γ increases. In the limit that the agents see almost the same data from
the target distribution, Rényi-mixtures with small γ perform the best, and are
indistinguishable from the γ = 0 limit. Rényi mixtures are equivalent to log
opinion pools for γ → 0.

For Task 3, all agents see unbiased data and so we would expect log opin-
ion pools to be optimal. The perplexity values as a function of η = 1/γ for all
the methods tested on the test set can be seen in Figure 2(b). The parameter-
based pooling methods perform better than simple averages and all forms of
heuristic model averaging as these are inflexible methods. There is a significant
performance benefit of using logarithmic opinion pooling over linear pooling,
and weighted Rényi divergence aggregators interpolate between the two opin-
ion pooling methods. This figure empirically supports the maximum entropy
arguments.
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Fig. 1. (a) Task 1: Plot of the KL divergence against log γ for one dataset with β = 0
(lower lines, blue) through to β = 4 (upper lines, red) in steps of 0.5. Note that,
unsurprisingly, more bias reduces performance. However the optimal value of γ (lowest
KL), changes as β changes. for low values of β the performance of γ = 0 (log opinion
pools) is barely distinguishable from other low γ values. Note that using a log opinion
pool (low γ) when there is bias produces a significant hit on performance. (b) Task
1: Plot of the optimal γ (defining the form of Rényi mixture) for different values of β
(determining the bias in the generated datasets for each agent). The red (upper) line is
the mean, the blue line the median and the upper and lower bars indicate the 75th and
25th percentiles, all over 100 different datasets. For β = 0 (no bias) we have optimal
aggregation with lower γ values, approximately corresponding to a log opinion pool.
As β increases, the optimal γ gets larger, covering the full range of Rényi Mixtures.
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Fig. 2. (a) Task 2: test log probability results (relative to the log probability for a
mixture) for the Bach chorales data for different values of γ, indicating the benefit
of Rényi mixtures over linear (γ = 1) and log (γ = 0) opinion pools. Error bars are
standard errors over 10 different allocations of chorales to agents prior to training. (b)
Task 3: perplexity on the test set of all the compared aggregation methods against
η = 1/γ. For each method, the best performance is plotted. Log opinion pools perform
best as suggested by the maximum entropy arguments, and is statistically significantly
better than the linear opinion pool(p = 8.0 × 10−7). All methods perform better than
the best individual competition entry (2.963).
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8 Machine Learning Markets and Rényi Divergence
Aggregation

Machine learning markets with isoelastic utilities [28] are an information market
based aggregation method. Independent agents with different beliefs trade in a
securities market. The equilibrium prices of the goods in that securities mar-
ket can then be taken as an aggregate probability distribution, aggregating the
individual agent beliefs. Following the notation and formalism in Storkey [28],
agents indexed by i with belief Pi(y), wealth Wi and utility function Ui(.) trade in
Arrow-Debreu securities derived from each possible outcome of an event. Given
the agents maximize expected utility, the market equilibrium price of the secu-
rities c(y) is used as an aggregate model P (y) = c(y) of the agent beliefs. When
each agent’s utility is an isoelastic utility of the form Ui(W ) = W 1−ηi/(1 − ηi)
with a risk-averseness parameter ηi, the market equilibrium P (y) is implicitly
given by

P (y) =
∑

i

Wi
∑

l Wl

Pi(y)γiP (y)1−γi

∑

y′ Pi(y′)γiP (y′)1−γi
(12)

with γi = η−1
i (generalising (10) in [28]). This shows the isoelastic market aggre-

gator linearly mixes together components that are implicitly a weighted product
of the agent belief and the final solution. Simple comparison of this market equi-
librium with the Rényi Divergence aggregator (3) shows that the market solution
and the Rényi divergence aggregator are of exactly the same form.

We conclude that a machine learning market implicitly computes a Rényi
divergence aggregation via the actions of individual agents. The process of
obtaining the market equilibrium is a process for building the Rényi Diver-
gence aggregator, and hence machine learning markets provide a method of
implementation of weighted Rényi divergence aggregators. The benefit of mar-
ket mechanisms for machine learning is that they are incentivized. There is no
assumption that the individual agents behave cooperatively, or that there is an
overall controller who determines agents’ actions. Simply, if agents choose to
maximize their utility (under myopic assumptions) then the result is weighted
Rényi Divergence aggregation.

In general, equilibrium prices are not necessarily straightforward to compute,
but the algorithm in the implementation section provides one such method. As
this iterates computing an interim P (corresponding to a market price) and an
interim Qi corresponding to agent positions given that price, the mechanism
in this paper can lead to a form of tâtonnement algorithm with a guaranteed
market equilibrium – see e.g. [6].

The direct relationship between the risk averseness parameter for the isoelas-
tic utilities and the bias controlling parameter of the Rényi mixtures (γi = η−1

i )
provides an interpretation of the isoelastic utility parameter: if agents know
they are reasoning with respect to a biased belief, then an isoelastic utility is
warranted, with a choice of risk averseness that is dependent on the bias.

In [28] the authors show, on a basket of UCI datasets, that market aggre-
gation with agents having isoelastic utilities performs better than simple linear
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opinion pools (markets with log utilities) and products (markets with exponential
utilities) when the data agents see is biased. As such markets implement Rényi
mixtures, this provides additional evidence that Rényi mixtures are appropriate
when combining biased predictors.

9 Discussion

When agents are training and optimising on different datasets than one another,
log opinion pooling is no longer a maximum entropy aggregator. Instead, under
certain assumptions, the weighted Rényi divergence aggregator is the maximum
entropy solution, and tests confirm this practically. The weighted Rényi diver-
gence aggregator can be implemented using isoelastic machine learning markets.

Though there is some power in providing aggregated prediction mechanisms
as part of competition environments, there is the additional question of the
competition mechanism itself. With the possibility of using the market-based
aggregation mechanisms, it would be possible to run competitions as prediction
market or collaborative scenarios [1], instead of as winner takes all competitions.
This alternative changes the social dynamics of the system and the player incen-
tives, and so it is an open problem as to the benefits of this. We recognize the
importance of such an analysis as an interesting direction for future work.
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Abstract. We often encounter situations in supervised learning where
there exist possibly groups that consist of more than two parameters.
For example, we might work on parameters that correspond to words
expressing the same meaning, music pieces in the same genre, and books
released in the same year. Based on such auxiliary information, we could
suppose that parameters in a group have similar roles in a problem and
similar values. In this paper, we propose the Higher Order Fused (HOF)
regularization that can incorporate smoothness among parameters with
group structures as prior knowledge in supervised learning. We define
the HOF penalty as the Lovász extension of a submodular higher-order
potential function, which encourages parameters in a group to take simi-
lar estimated values when used as a regularizer. Moreover, we develop an
efficient network flow algorithm for calculating the proximity operator
for the regularized problem. We investigate the empirical performance of
the proposed algorithm by using synthetic and real-world data.

1 Introduction

Various regularizers for supervised learning have been proposed, aiming at pre-
venting a model from overfitting and at making estimated parameters more
interpretable [1,3,16,30,31]. Least absolute shrinkage and selection opera-
tor (Lasso) [30] is one of the most well-known regularizers that employs the
�1 norm over a parameter vector as a penalty. This penalty enables a sparse esti-
mation of parameters that is robust to noise in situations with high-dimensional
data. However, Lasso does not explicitly consider relationships among param-
eters. Recently, structured regularizers have been proposed to incorporate aux-
iliary information about structures in parameters [3]. For example, the Fused
Lasso proposed in [31] can incorporate the smoothness encoded with a similar-
ity graph defined over the parameters into its penalty.

While such a graph representation is useful to incorporate information about
pairwise interactions of variables (i.e. the second-order information), we often
encounter situations where there exist possibly overlapping groups that consist
of more than two parameters. For example, we might work on parameters that
c© Springer International Publishing Switzerland 2015
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correspond to words expressing the same meaning, music pieces in the same
genre, and books released in the same year. Based on such auxiliary informa-
tion, we naturally suppose that a group of parameters would provide similar
functionality in a supervised learning problem and thus take similar values.

In this paper, we propose Higher Order Fused (HOF) regularization that
allows us to employ such prior knowledge about the similarity on groups of
parameters as a regularizer. We define the HOF penalty as the Lovász extension
of a submodular higher-order potential function, which encourages parameters in
a group to take similar estimated values when used as a regularizer. Our penalty
has effects not only on such variations of estimated values in a group but also
on supports over the groups. That is, it could detect whether a group is effective
for a problem, and utilize only effective ones by solving the regularized estima-
tion. Moreover, our penalty is robust to noise of the group structure because it
encourages an effective part of parameters within the group to have the same
value and allows the rest of the parameters to have different estimated values.

The HOF penalty is defined as a non-smooth convex function. Therefore, a
forward-backward splitting algorithm [7] can be applied to solve the regularized
problem with the HOF penalty, where the calculation of a proximity operator [22]
is a key for the efficiency. Although it is not straightforward to develop an efficient
way of solving the proximity operator for the HOF penalty due to its inseparable
form of the HOF penalty, we develop an efficient network flow algorithm based
on [14] for calculating the proximity operator.

Note that Group Lasso (GL) [34] is also known as a class of regularizers to
use explicitly a group structure of parameters. However, while our HOF penalty
encourages the smoothness over parameters in a group, GL imposes parameters
to be sparse in a group-wise manner.

In this paper, we conduct experiments on regression with both synthetic and
real-world data. In the experiments with the synthetic data, we investigate the
comparative performance of our method on two settings of overlapping and non-
overlapping groups. In the experiments with the real-world data, We first test
the predictive performances about the average rating of each item (such as movie
and book) from a set of users who watched or read items, given user demographic
groups. And then, we confirm the predictive performance on a rating value from
a review text given semantic and positive-negative word groups.

The rest of this paper is organized as below. In Section 2, we introduce
regularized supervised learning and the forward-backward splitting algorithm.
In Section 3, we propose Higher Order Fused regularizer. In Section 4, we derive
a efficient flow algorithm for solving the proximity operator of HOF. In Section
5, we review related work of our method. In Section 6, we conduct experiments
to compare our methods and existing regularizers. We conclude this paper and
discuss future work in Section 6.

2 Regularized Supervised Learning

We denote the number of observations as N and the number of variables as
M . An observed sample is denoted as {yn,xn} where yn ∈ Y is a target value
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Algorithm 1. Forward-backward splitting algorithm with Nesterov’s accelera-
tion

Initialize β0 ∈ R
d, set ζ0 = β0 and η0 = 1.

for t = 0, 1, · · · do
β̂t = ζt − L−1∇l(ζt).
βt+1 = proxL−1Ω β̂t.
ηt+1 = (1 +

√

4η2
t + 1)/2.

λt = 1 + (ηt − 1)/ηt+1.
ζt+1 = βt + λt(βt+1 − βt).

end for

and xn = (x1, x2, · · · , xM ) ∈ R
M is an explanatory variable vector. We denote

a parameter vector as β = (β1, β2, · · · , βd) ∈ R
d where d is the total number

of parameters. An object function of regularized supervised learning problem
is: L(β) = 1

N

∑N
n=1 l(β; yn,xn) + γΩ(β), where l(β; yn,xn) : R

d → R is an
empirical risk, Ω(β) : Rd → R is a regularizer, and γ is a hyper parameter of the
regularizer. A problem of supervised learning attains a solution: arg minβ L(β).
This formulation includes well-known regularized supervised learning problems
such as Lasso, logistic regression [17], elastic net [36], and SVM [28].

When l is a differentiable convex function where its gradient ∇l is L-Lipschitz
continuous , i.e.,

(

∀(β, β̂) ∈ R
d × R

d
)

‖∇l(β) − ∇l(β̂)‖22 ≤ L‖β − β̂‖22, (1)

where L ∈ (0,+∞). And Ω is a lower semicontinuous function whose proximity
operator is provided, a minimization problem of L can be solved by employing
the forward-backward splitting algorithm[6,7]. Its solutions are characterized by
the fixed point equation.

β = proxγΩ

(

β − γ∇l(β)
)

, (2)

where proxγΩ : Rd → R
d is a proximity operator [6,22] for Ω and γ ∈ (0,+∞).

The proximity operator utilizes the Moreau envelope [22] of the regularizer γΩ :
R

d → R : β̂ → minβ Ω(β) + 1/2γ‖β − β̂‖22, whose gradient is 1/γ-Lipschitz
continuous [5]. The forward-backward splitting algorithm is also known to the
proximal gradient method. The convergence of the forward-backward splitting
algorithm can achieve O(1/t2) rate by utilizing Nesterov’s acceleration [25,26]
(the same idea is also proposed in FISTA [4]), where t is the number of iteration
counts, see Algorithm 1.

3 Higher Order Fused Regularizer

In this section, we define Higher Order Fused (HOF) regularizer through the
Lovász extension of the higher order potential function, called the robust Pn

potential function, and discuss the sparsity property in supervised learning with
the HOF penalty.
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3.1 Review of Submodular Functions and Robust P n Potential

Let V = {1, 2, . . . , d}. A set function f : 2V → R is called submodular if it
satisfies:

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ), (3)

for any S, T ⊆ V [8]. A submodular function is known to be a counterpart of
a convex function, which is described through a continuous relaxation of a set
function called the Lovász extension. The Lovász extension f̂ : RV → R of a set
function f is defined as:

f̂(β) =
d

∑

i=1

βji (f({j1, . . . , ji) − f({j1, . . . , ji−1)) , (4)

where j1, j2, . . . , jd ∈ V are the distinct indices corresponding to a permutation
that arranges the entries of β in non increasing order, i.e., βj1 ≥ βj2 ≥ · · · ≥ βjd .
It is known that a set function f is submodular if and only if its Lovász extension
f̂ is convex [21]. For a submodular function f with f(∅) = 0, the base polyhedron
is defined as:

B(f) = {x ∈ R
V | x(S) ≤ f(S) (∀S ⊆ V ),x(V ) = f(V )}. (5)

Many problems in computer vision are formulated as the energy minimization
problem, where a graph-cut function is often used as the energy for incorporat-
ing the smoothness in an image. A graph-cut function is known to be almost
equivalent to a second order submodular function [13] (i.e., it represents a rela-
tionship between two nodes). Meanwhile, recently several higher order potentials
have been considered for taking into account the smoothness among more than
two. For example, Kohli et al.[18] propose the robust Pn model, which can be
minimized efficiently with a network flow algorithm. Let us denote a group of
indices as g ⊂ V and a set of groups as G = {g1, g2, · · · , gK}, where K is the
number of groups. We denote hyper parameters that are weights of parameters
in the k-th group as:

ck
0 , c

k
1 ∈ R

d
≥0, ck

0,i =

{

ck
0,i if i ∈ gk,

0 otherwise
, ck

1,i =

{

ck
1,i if i ∈ gk,

0 otherwise
, (i ∈ V ). (6)

The potential can be represented in the form of a set function as:

fho(S) =
K

∑

k=1

min
(

θk
0 + ck

0(V \ S), θk
1 + ck

1(S), θk
max

)

, (7)

where θk
0 , θk

1 and θk
max ∈ R≥0 are hyper parameters for controlling consistency of

estimated parameters in the k-th group that satisfy θk
max ≥ θk

0 , θk
max ≥ θk

1 and,
for all S ⊂ V , (θk

0 + ck
0(V \ S) ≥ θk

max) ∨ (θk
1 + ck

1(S) ≥ θk
max) = 1.
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3.2 Definition of HOF Penalty

As mentioned in [2,32], Generalized Fused Lasso (GFL) can be obtained as
the Lovász extension of a graph-cut function. This penalty, used in supervised
learning, prefers parameters that take similar values if a pair of them are adjacent
on a given graph, which is a similar structured property to a graph-cut function
as an energy function. Now, based on an analogy with this relationship between
GFL and a graph-cut function, we define our HOF penalty, which encourages
parameters in a groups to take similar values, using the structural property of
the higher order potential Eq. (7).

Suppose that a set of groups is given as described in the previous section.
Then, we define the HOF penalty as the Lovász extension of the higher order
potential Eq. (7), which is described as:

Ωho(β) =
K

∑

k=1

⎛

⎝

∑

i∈{j1,...,js−1}
(βi − βjs)c

k
1,i + βjs(θ

k
max − θk

1 )

+βjt(θ
k
0 − θk

max) +
∑

i∈{jt+1,··· ,jd}
(βjt − βi)ck

0,i

⎞

⎠ ,

(8)

where ck
0 , c

k
1 , θ

k
0 , θk

1 , θk
max correspond to the ones in Eq. (7) and,

jk
s = min

{

j′ | θk
1 +

∑

i∈{j1,··· ,j′} ck
1,i ≥ θk

max

}

,

jk
t = min

{

j′ | θk
0 +

∑

i∈{j′,··· ,jd} ck
0,i < θk

max

}

. (9)

The first term in Eq. (8) enforces parameters larger than βjs to have the same
value of βjs . The second and third terms can be rewritten as θk

max(βjs − βjt) −
βjsθ

k
1 + βjtθ

k
0 . θk

max(βjs − βjt) enforces all of parameters between βjs and βjt

to have the same value because parameters are sorted by the decreasing order
and βjs = βjt can be satisfied if and only if all parameters between βjs and βjt

have the same estimated value (see an example of parameters between s and t in
Figure 1(b)). −βjsθ

k
1 + βjtθ

k
0 encourages βjs and βjt to have larger and smaller

estimated values, respectively. The fourth term enforces parameters smaller than
βjt to have the same value of βjt . The HOF penalty is robust to noise of the
group structure because it allows parameters outside of (βjs , · · · , βjt) to have
different estimated values and then it utilizes only an effective part of the group
and discard the others.

Proposition 1. Ωho(β) is the Lovász extension of the higher order poten-
tial Eq. (7).

Proof. We denote Ui = {j1, . . . , ji} and fk
ho(Ui) = min

(

θk
0 + ck

0(V \ S), θk
1 + ck

1(S), θk
max

)

, then,

fk
ho(Ui) =

⎧

⎪

⎨

⎪

⎩

θk
1 + ck

1(Ui) (1 ≤ i < s)
θk
max (s ≤ i < t)

θk
0 + ck

0(V \ Ui) (t ≤ i ≤ d)
, (10)
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and hence,

βji

(

fk
ho(Ui) − fk

ho(Ui−1)
)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

βjic
k
1({ji}) (1 ≤ i < s)

βjs

(

θk
max − (θk

1 + ck
1(Us−1))

)

(i = s)
0 (s < i < t)
βjt

(

θk
0 + ck

0(V \ Ut) − θk
max

)

(i = t)
−βjic

k
0({ji}) (t < i ≤ d)

, (11)

where ck
1(Ui) =

∑

i∈{j1,··· ,ji} ck
1,i and ck

0(V \ Ui) =
∑

i∈{ji+1,··· ,jd} ck
0,i. As a

result, we have Ωho(β) by summing all of these from the definition of the Lovász
extension Eq. (4).

Although the penalty Ωho(β) includes many hyper parameters (such as ck
0 , c

k
1 ,

θk
0 , θk

1 and θk
max), it would be convenient to use the same value for θk

0 , θk
0 , θk

max

for different g ∈ G and constant values for non-zero elements in ck
0 and ck

1 ,
respectively, in practice. We show an example of Eq. (10) in Figure 1(a), and
parameters that minimizes the potential in Figure 1(b). As described in [1],
the Lovász extension of a submodular function with f(∅) = f(V ) = 0 has the
sparsity effects not only on the support of β but also on all sup-level set {β ≥ α}
(α ∈ R).1 A necessary condition for S ⊆ V to be inseparable for the function
g : A → fho(S ∪A)− fho(S) is that S is a set included in some unique group gk.
Thus, Ωho as a regularizer has an effect to encourage the values of parameters
in a group to be close.

4 Optimization

4.1 Proximity Operator via Minimum-Norm-Point Problem

From the definition, the HOF penalty belongs to the class of the lower semicon-
tinuous convex function but is non-smooth. To attain a solution of the penalty,
we define the proximity operator as:

proxγΩho
β̂ = arg min

β∈Rd

Ωho(β) +
1
2γ

‖β̂ − β‖22, (12)

and we denote a solution of the proximity operator proxγΩho
β̂ as β∗. By plugging

Ωho(β) = maxs∈B(fho) βTs [11] into Eq. (12), the proximity operator can be
shown as the following minimization problem on a base polyhedron [32].

min
β∈Rd

Ωho(β) +
1
2γ

‖β̂ − β‖22 = min
β

max
s∈B(fho)

βTs +
1
2γ

‖β̂ − β‖22

= max
s∈B(fho)

−1
2
‖s − γ−1β̂‖22+

1
2γ

‖β̂‖22
(

∵ arg minβ βTs+ 1
2γ ‖β̂−β‖22=β−γs

)

↔ min
s∈B(fho)

‖s − γ−1β̂‖22. (13)

1 The higher order potential fho(S) can be always transformed by excluding the con-
stant terms θ0 and θ1 and by accordingly normalizing c0 and c1 respectively.
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1 s t d
i

0
θ1 = θ0

5

θmax

10
θ1 + c1(Ui)
θmax

θ0c0(V \Ui)

(a) values of the set functions

1 s t d
i

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

β
j i

βjs

βjt

βji

(b) parameters sorted by the decreasing
order

Fig. 1. (a) An example of fho where K = 1, c1,i = c0,i = 1 (i ∈ V ), θ1 = θ0 = 1,
and θmax = 8. The horizontal and vertical axes correspond to the index of parameters
and values of set functions, respectively. Red, Green, and Blue lines correspond to each
lines in Eq. (10), respectively. (b) Parameters β sorted by the decreasing order. The
horizontal and vertical axes correspond to the sorted index and values of parameters,
respectively.

Let t = s − γ−1β̂ and, with the basic property of the base polyhedron of a
submodular function, the proximity operator goes equal to a minimal point
problem,

min
s∈B(g)

‖s − γ−1β̂‖22 = min
t∈B(fho−γ−1β̂)

‖t‖22. (14)

From the derivation, it follows that β∗ = −γt∗ where t∗ is the solution of
Eq. (14).

In general, the problem in Eq. (14) can be solved with submodular min-
imization algorithms including Minimum-Norm-Point (MNP) algorithm pro-
posed by [12]. However, the time complexity of the fastest algorithm among
existing submodular minimization algorithms is O(d5EO + d6), where EO is a
cost for evaluating the function. Therefore, those algorithm are infeasible when
the size of parameters d is large.

4.2 Network Flow Algorithm

We utilize a parametric property of MNP problem to solve the problem in
Eq. (14). With this property, we can apply a parametric flow algorithm that
attains the exact solution of the problem more efficiently than existing submod-
ular minimization algorithms.

The set function h(S) = fho(S) − β̂(S) in Eq. (14) is submodular because
the sum of a submodular and modular functions are submodular [11]. There-
fore, Eq. (14) is a special case of a minimization problem of a separable convex
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function under submodular constraints [23] that can be solved via paramet-
ric optimization. We denote a parameter α ∈ R≥0 and define a set function
hα(S) = h(S) − α1(S), (∀S ⊂ V ), where 1(S) =

∑

i∈S 1. When h is non-
decreasing submodular function, there exists a set of r + 1 (≤ d) subsets: S∗ =
{S0 ⊂ S1 ⊂ · · · ⊂ Sr}, where Sj ⊂ V , S0 =, and Sr = V , respectively. And there
are r + 1 subintervals Qr of α: Q0 = [0, α0), Q1 = [α1, α2), · · · , Qr = [αr,∞),
such that, for each j ∈ {0, 1, · · · , r}, Sj is the unique maximal minimizer of
hα(S),∀α ∈ Qj [23]. The optimal minimizer of Eq. (14) t∗ = (t∗1, t

∗
2, · · · , t∗d) is

then determined as:

t∗i =
fho(Sj+1) − fho(Sj)

1(Sj+1 \ Sj)
, ∀i ∈ (Sj+1 \ Sj), j = (1, · · · , r). (15)

We introduce two lemmas from [24] to ensure that h is a non-decreasing
submodular function.

Lemma 1. For any η ∈ R and a submodular function h, t∗ is an optimal
solution to mint∈B(h) ‖t‖22 if and only if t∗ − η1 is an optimal solution to
mint∈B(h)+η1 ‖t‖22.

Lemma 2. Set η = maxi=1,··· ,d{0, h(V \ {i}) − h(V )}, then h + η1 is a non-
decreasing submodular function.

With Lemma 2, we solve

min
S⊂V

fho(S) − β̂(S) + (η − α)1(S), (16)

and then apply Lemma 1 to obtain a solution of the original problem. Because
Eq. (16) is a specific form of a min cut problem, we can be solved the problem
efficiently.

Theorem 1. Problem in Eq. (16) is equivalent to a minimum s/t-cut problem
defined as in Figure. 2.

Proof. The cost function in Eq. (16) is a sum of a modular and submodular
functions, because the higher order potential can be transformed as a second
order submodular function. Therefore, this cost function is a F2 energy func-
tion [19] that is known to be “graph-representative”. In Figure. 2, the groups
of parameters are represented with hyper nodes uk

1 , u
k
0 that correspond to each

group, and capacities of edges between hyper nodes and ordinal nodes vi ∈ V .
These structures are not employed in [32]. Edges between source and sink nodes
correspond to input parameters like [32]. We can attain a solution of s/t min
cut problem via graph cut algorithms. We employ an efficient parametric flow
algorithm provided by [14] that run in O(d|E| log(d2/|E|)) as the worst case,
where |E| is the number of edges of the graph in Figure 2.



Higher Order Fused Regularization for Supervised Learning 585

...
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u1
s u2

s uK
sUs

Ut

V

v1

v2

... uK
tu2

tu1
t

βi − (γ − α)

(if βi < γ − α)

βi − (γ − α)

(if βi > γ − α)

vi

v3

v4

v5 v6

v7

· · ·
vd

ck1,i

ck0,i

θkmax − θk1

θkmax − θk0

Fig. 2. A minimum s/t-cut problem of Problem 16. Given a graph G = (V, E) for the
HOF penalty, capacities of edges are defined as: c(s, uk

1) = θmax − θ1, c(uk
1 , vi) = ck

1,i,
c(vi, u

k
0) = ck

0,i, c(uk
0 , t) = θk

max − θk
0 , c(s, vi) = zi − (γ − α) if zi > γ − α, and

c(vi, t) = (γ − α) − zi if zi < γ − α. Nodes uk
1 and uk

0 , k = (1, · · · , K) are hyper nodes
that correspond to the groups. And s, t, and vi are source-node, sink-node, and nodes
of parameters, respectively.

5 Related Work

Lasso [30] is one of the most well-known sparsity-inducing reguralizers, which
employs a sumof �1 normof parameters as a penalty:ΩLasso(β) =

∑d
i=1 ‖βi‖1. The

penalty is often minimized by the soft-thresholding that is a proximity operator of
�1 norm. Fused Lasso (FL) is a one of the structured regularizers proposed by [31]
to utilize similarities of parameters. FL is also known as the total variation [27] in
the field of optimization. Generalized Fused Lasso (GFL) is an extension of FL to
adopt a graph structure into the structured norm. We denote a similarity between
parameters i and j as wi,j ∈ R≥0. Let us denote a set of edges among parameters,
whose similarities are not equal to zero as E = {(i, j)|wi,j �= 0}. GFL imposes a
fused penalty as: ΩGFL(β) =

∑

(i,j)∈E wi,j‖βi−βj‖1. Because the penalty of GFL
is not separable, efficient minimization for this penalty is a challenging problem.
A flow algorithm for GFL was proposed by [32] that showed significant improve-
ment on a computational time of proximity operator from existing algorithm. The
computational time was reduced by transforming the minimization problem into
a separable problem under a submodular constraint [23].

Group Lasso was proposed by [34] to impose a group sparsity as a �1/�2 norm
on grouped parameters. The Group Lasso imposes a group-wise sparsity penalty
as: ΩGL(β) =

∑K
k=1 ‖β(gk)‖22. The penalty works as a group-wise Lasso that

selects feature groups effective to a problem. Group Lasso has been extended
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to groups having overlaps, and efficient calculations of the proximity operator
were proposed in [15,33,35]. [9] proposed the Sparse Group Lasso (SGL) which
combines both the �1 norm and �1/�2 norm imposed it as a regularizer. Group
Lasso was extended to groups having overlap by [35].

6 Experiments

In this section, we compared our proposed method with existing methods on lin-
ear regression problems2 using both synthetic and real-world data. We employed
the ordinary least squares (OLS), Lasso3, Sparse Group Lasso (SGL) [20],
and Generalized Fused Lasso (GFL) as comparison methods. We added the
�1 penalty of Lasso to GFL and our proposed method by utilizing a property:
proxΩLasso+Ω = proxΩLasso

◦proxΩ [10]. With GFL, we encoded groups of param-
eters by constructing cliques that connect edges between whole pairs of param-
eters in the group.

6.1 Synthetic Data

We conducted regression experiments with arfically synthesized data. We
employed two settings in which parameters had different group structures. In
the first setting, parameters had five non-overlapping groups. In the second set-
ting, groups were overlapped.

With the first non-overlapping groups setting, we set the true parameters
of features within the group to the same value. With the second overlapping
groups setting, we set the true parameters of features having no overlap to
the same value, and those of features belonging to two groups to a value of
either of the two groups. The explanatory variables xn,i were randomly generated
with the Gaussian distribution with mean 0 and variance 1. Then, we obtained
target values y from the Gaussian distribution where its mean and variance are
∑d

i=1 βixn,i and 5, respectively. The size of the feature dimension D was 100
and the number of observed data points N was 30, 50, 70, 100, and 150. Hyper
parameters were selected by 10-fold cross validation. The hyper parameters of
regularizers γ were selected from {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}. θk

max was
selected from 0.01, 0.1, and 1.0. ck

0,i and ck
1,i were set to have the same value

that was selected from 1.0 and 10.0. θk
0 and θk

1 were set to 0. We employed the
following Root Mean Squared Error (RMSE) on the test data to evaluate the

performances:
√

1
N

∑N
n=1 ‖yn − ŷn‖22.

The results are summarized in Table 1. In the first setting with non-
overlapping groups, our proposed method and GFL showed superior perfor-
mances than SGL, Lasso, and OLS. Errors of our proposed method and GFL
were almost similar. The SGL and Lasso fell in low performances since these

2 Where the number of variables and features are equal (m = d).
3 We used matlab built-in codes of OLS and Lasso.
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Table 1. Average RMSE and their standard deviations with synthetic data. Hyper
parameters were selected from 10-fold cross validation. Values in bold typeface are
statistically better (p < 0.01) than those in normal typeface as indicated by a paired
t-test.

(a) non-overlapping groups

N Proposed SGL GFL Lasso OLS

30 0.58 ± 0.32 174.40 ± 75.60 0.48 ± 0.29 189.90 ± 74.50 208.80 ± 119.00
50 0.56 ± 0.14 119.70 ± 40.80 0.57 ± 0.14 115.30 ± 54.10 260.40 ± 68.80
70 0.40 ± 0.19 128.10 ± 39.90 0.40 ± 0.19 125.00 ± 48.10 313.20 ± 42.40

100 0.47 ± 0.13 120.40 ± 42.00 0.47 ± 0.13 112.80 ± 45.60 177.10 ± 68.90
150 0.51 ± 0.08 106.80 ± 22.00 0.51 ± 0.08 79.40 ± 20.90 1.08 ± 0.13

(b) overlapping groups

N Proposed SGL GFL Lasso OLS

30 84.40 ± 76.40 156.20 ± 64.20 173.50 ± 67.30 162.10 ± 97.10 187.70 ± 108.30
50 40.90 ± 11.30 108.60 ± 43.80 103.20 ± 27.10 122.80 ± 57.70 246.40 ± 70.50
70 9.95 ± 9.22 119.40 ± 36.20 138.40 ± 54.10 138.80 ± 44.20 317.80 ± 36.60

100 3.19 ± 6.15 115.70 ± 38.20 149.20 ± 28.90 101.50 ± 37.70 208.50 ± 76.30
150 0.53 ± 0.06 104.50 ± 15.50 135.30 ± 21.00 12.30 ± 4.93 1.08 ± 0.13

methods had no ability to fuse parameters. In the second setting with over-
lapping groups, our proposed method showed superior performance than SGL,
GFL, Lasso, and OLS. When N < D, existing methods suffered from overfitting;
however, our proposed method showed small errors even if N = 30. GFL showed
low performance in this setting because the graph cannot represents groups.

Examples of estimated parameters on an experiment (N = 30) are shown in
Figures 3 and 4. In this situation (N < D), the number of observation was less
than the number of features; therefore, the problems of parameter estimation
became undetermined system problems. From Figure 3, we confirmed that our
proposed method and GFL successfully recovered the true parameters by utiliz-
ing the group structure. From Figure 4, we confirmed that our proposed methods
were able to recover true parameters with overlapping groups. This is because
our proposed method can represent overlapping groups appropriately. GFL fell
into an imperfect result because it employed the pairwise representation that
cannot describe groups.

6.2 Real-World Data

We conducted two settings of experiments with real-world data sets. With the first
setting, we predicted the average rating of each item (movie or book) from a set of
users who watched or read items. We used publicly available real-world data pro-
vided by MovieLens100k, EachMovie, and Book-Crossing4. We utilized a group
structure of users, for example; age, gender, occupation and country as auxiliary

4 http://grouplens.org

http://grouplens.org
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Fig. 3. Estimated parameters from synthetic data with five non-overlapping groups.
Circles and Blue lines correspond to estimated and true parameter values, respectively.
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Fig. 4. Estimated parameters from synthetic data with five overlapping groups. Circles
and Blue lines correspond to estimated and true parameter values, respectively.

information. The MovieLens100k data contained movie rating records with three
types groups including ages, genders and occupations. The EachMovie data con-
sisted of movie rating records with two types groups including ages and genders.
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Table 2. Summaries of real-world data. Nall, D and G correspond to a total number
of observations, a dimension of features, and a total number of groups, respectively.

Nall D K types of groups

MovieLens100k 1, 620 942 31 8 age, 2 gender, 21 occupation
EachMovie 1, 623 1, 000 21 11 age, 2 gender
Book-Crossing 1, 835 1, 275 41 12 age , 29 country

We used the 1, 000 most frequently watching users. The Book-Crossing data was
made up of book rating records with two types of groups including ages and coun-
tries. We eliminated users and books whose total reading counts were less than 30
from the Book-Crossing data. Summaries of real-world data are shown in Table 2.
To check the performance of each method, we changed the number of training data
N . ck

0,i and ck
1,i were set to have the same value that was 1.0 if the i-th item belonged

to the k-th group or 0.0 otherwise. In each experiment, other hyper parameters
were selected by 10-fold cross validation in the same manner as previous experi-
ments.

The results are summarized in Table 3. With the MovieLens100k data, our
proposed method showed the best performance on whole settings of N because
it was able to utilize groups as auxiliary information for parameter estimations.
When N = 1600, SGL and GFL also showed competitive performance. With
the EachMovie and Book-Crossing data, we confirmed that our proposed model
showed the best performance. SGL and Lasso showed competitive performance
on some settings of N . With the EachMovie and Book-Crossing data sets, esti-
mated parameters were almost sparse therefore SGL and Lasso showed compet-
itive performance.

Next, we conducted another type of an experiment employing the Yelp data5.
The task of this experiment was to predict a rating value from a review text.
We randomly extracted reviews and used the 1, 000 most frequently occurred
words, where stop words were eliminated by using a list6. We employed two
types of groups of words. We attained 50 semantic groups of words by applying
k-means to semantic vectors of words. The semantic vectors were learned form
the GoogleNews data by word2vec7. We also utilized a positive-negative word
dictionary8 to construct two positive and negative groups of words [29]. Other
settings were set to be the same as the MovieLens100k data.

The results are shown in Table 4. We confirmed that our proposed method
showed significant improvements over other existing methods with the Yelp data.
GFL also showed competitive performance when the number of training data
N = 1, 000. The semantic groups constructed by k-means have no overlap and
overlap was only appeared between semantic and positive-negative groups. When

5 http://www.yelp.com/dataset challenge
6 https://code.google.com/p/stop-words
7 https://code.google.com/p/word2vec/
8 http://www.lr.pi.titech.ac.jp/∼takamura/pndic en.html

http://www.yelp.com/dataset_challenge
https://code.google.com/p/stop-words
https://code.google.com/p/word2vec/
http://www.lr.pi.titech.ac.jp/~{}takamura/pndic_en.html
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Table 3. Average RMSE and their standard deviations with real-world data sets.
Hyper Parameters were selected from 10-fold cross validation. Values in bold typeface
are statistically better (p < 0.01) than those in normal typeface as indicated by a
paired t-test.

(a) MovieLens100k

N Proposed SGL GFL Lasso OLS

200 0.30 ± 0.02 0.32 ± 0.02 0.33 ± 0.02 1.11 ± 0.71 3.81 ± 1.97
400 0.28 ± 0.02 0.32 ± 0.02 0.33 ± 0.02 0.82 ± 0.31 2718.00 ± 6575.00
800 0.27 ± 0.02 0.31 ± 0.02 0.33 ± 0.02 0.54 ± 0.21 134144.00 ± 370452.00

1200 0.27 ± 0.03 0.32 ± 0.03 0.33 ± 0.03 0.48 ± 0.31 4.19 ± 2.97
1600 0.27 ± 0.07 0.30 ± 0.09 0.31 ± 0.09 0.44 ± 0.45 1.01 ± 0.81

(b) EachMovie

N Proposed SGL GFL Lasso OLS

200 0.86 ± 0.03 0.86 ± 0.02 0.92 ± 0.02 1.24 ± 0.15 2.15 ± 1.17
400 0.83 ± 0.03 0.85 ± 0.02 0.90 ± 0.03 1.17 ± 0.09 3.20 ± 1.66
800 0.81 ± 0.03 0.84 ± 0.02 0.89 ± 0.03 1.09 ± 0.06 14.30 ± 14.70

1200 0.80 ± 0.05 0.84 ± 0.05 0.88 ± 0.05 1.06 ± 0.07 2479.00 ± 9684.00
1500 0.79 ± 0.09 0.83 ± 0.07 0.87 ± 0.09 1.01 ± 0.12 29.90 ± 29.60

(c) Book-Crossing

N Proposed SGL GFL Lasso OLS

200 0.71 ± 0.02 0.73 ± 0.02 0.82 ± 0.02 0.92 ± 0.14 3.98 ± 0.83
400 0.70 ± 0.02 0.72 ± 0.02 0.82 ± 0.02 0.79 ± 0.03 66.60 ± 109.20
800 0.68 ± 0.02 0.70 ± 0.02 0.81 ± 0.02 0.71 ± 0.02 34.00 ± 27.70

1200 0.67 ± 0.04 0.71 ± 0.04 0.82 ± 0.04 0.70 ± 0.03 551.00 ± 1532.00
1700 0.64 ± 0.07 0.68 ± 0.07 0.78 ± 0.08 0.66 ± 0.06 1.18 ± 0.12

N is small, words having overlap scarcely appeared in review texts. Therefore,
GFL showed competitive performance.

We show estimated parameters of four semantic groups in Figure 5. Colors
of words corresponded to a sign of an estimated parameter value. Blue corre-
sponds to the plus (positive) value and red corresponds to minus (negative) value.
The size of words indicates absolute values of an estimated parameter value.
As we have explained in Section 3.2, to make our proposed method robust, our
proposed method is designed to allow inconsistency of estimated values within
a group. This effect was confirmed by those illustrations. In the top two figures,
parameters of words attained almost the same values. On the other hand, in the
bottom two figures, parameters of words attained different estimated signs and
absolute values. We supposed that the first two semantic groups of words were
fitted for this regression problem. Therefore, consistency of estimated values was
high. Whereas, the second two semantic groups of words were not fitted, and
then resulted in low consistency of estimated values. Those results indicated
that our proposed method was able to detect effective groups of words from
given overlapping groups with Yelp data.
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Table 4. Linear regression problems with Yelp data (D = 1, 000) and G = 52 (50
semantic groups and two positive and negative groups). Means and standard deviations
of the loss on the test data are shown. Parameters were selected from 10-fold cross
validation. Bold font corresponds to significant difference of t-test (p < 0.01).

N Proposed SGL GFL Lasso OLS

1000 1.23 ± 0.02 3.31 ± 0.20 1.24 ± 0.01 1.62 ± 0.11 135.60 ± 211.00
2000 1.20 ± 0.02 1.58 ± 0.05 1.23 ± 0.01 1.27 ± 0.02 1.61 ± 0.06
3000 1.13 ± 0.02 1.34 ± 0.07 1.22 ± 0.01 1.18 ± 0.03 1.35 ± 0.07
5000 1.10 ± 0.02 1.18 ± 0.03 1.22 ± 0.01 1.12 ± 0.02 1.18 ± 0.03

(a) Positive group. (b) Negative group. (c) Positive domi-
nant group.

(d) Negative domi-
nant group.

Fig. 5. Estimated parameters of four semantic groups of words. Blue and Red cor-
respond to plus and minus of estimated parameters, respectively. The size of words
correspond to the absolute values of estimated parameters.

7 Conclusion

We proposed a structured regularizer named Higher Order Fused (HOF) reg-
ularization in this paper. HOF regularizer exploits groups of parameters as a
penalty in regularized supervised learning. We defined the HOF penalty as a
Lovaśtz extension of a robust higher order potential named the robust Pn poten-
tial. Because the penalty is non-smooth and non-separable convex function, we
provided the proximity operator of the HOF penalty. We also derived a flow algo-
rithm to calculate the proximity operator efficiently, by showing that the robust
Pn potential is graph-representative. We examined experiments of linear regres-
sion problems with both synthetic and real-world data and confirmed that our
proposed method showed significantly higher performance than existing struc-
tured regularizers. We also showed that our proposed method can incorporate
groups properly by utilizing the robust higher-order representation.

We provided the proximity operator of the HOF penalty but only adopted it
to linear regression problems in this paper. We can apply the HOF penalty to
other supervised or unsupervised learning problems including classification and
learning to rank, and also to other applicational fields including signal processing
and relational data analysis.
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Abstract. The importance of metrics in machine learning has attracted
a growing interest for distance and similarity learning. We study here
this problem in the situation where few labeled data (and potentially
few unlabeled data as well) is available, a situation that arises in several
practical contexts. We also provide a complete theoretical analysis of the
proposed approach. It is indeed worth noting that the metric learning
research field lacks theoretical guarantees that can be expected on the
generalization capacity of the classifier associated to a learned metric.
The theoretical framework of (ε, γ, τ)-good similarity functions [1] has
been one of the first attempts to draw a link between the properties of
a similarity function and those of a linear classifier making use of it. In
this paper, we extend this theory to a method where the metric and
the separator are jointly learned in a semi-supervised way, setting that
has not been explored before, and provide a theoretical analysis of this
joint learning via Rademacher complexity. Experiments performed on
standard datasets show the benefits of our approach over state-of-the-
art methods.

Keywords: Similarity learning · (ε, γ, τ)-good similarity · Rademacher
complexity

.
1 Introduction

Many researchers have used the underlying geometry of the data to improve
classification algorithms, e.g. by learning Mahanalobis distances instead of the
standard Euclidean distance, thus paving the way for a new research area termed
metric learning [5,6]. If most of these studies have based their approaches on
distance learning [3,9,10,22,24], similarity learning has also attracted a grow-
ing interest [2,12,16,20], the rationale being that the cosine similarity should
in some cases be preferred over the Euclidean distance. More recently, [1] have
proposed a complete framework to relate similarities with a classification algo-
rithm making use of them. This general framework, that can be applied to any
c© Springer International Publishing Switzerland 2015
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bounded similarity function (potentially derived from a distance), provides gen-
eralization guarantees on a linear classifier learned from the similarity. Their
algorithm does not enforce the positive definiteness constraint of the similar-
ity, like most state-of-the-art methods. However, to enjoy such generalization
guarantees, the similarity function is assumed to be known beforehand and to
satisfy (ε, γ, τ)-goodness properties. Unfortunately, [1] do not provide any algo-
rithm for learning such similarities. In order to overcome these limitations, [4]
have explored the possibility of independently learning an (ε, γ, τ)-good similar-
ity that they plug into the initial algorithm [1] to learn the linear separator. Yet
the similarity learning step is done in a completely supervised way, while the
setting in [1] opens the door to the use of unlabeled data.

In this paper, we aim at better exploiting the semi-supervised setting under-
lying the theoretical framework of [1], which is based on similarities between
labeled data and unlabeled reasonable points (roughly speaking, the reasonable
points play the same role as that of support vectors in SVMs). Furthermore,
and unlike [4], we propose here to jointly learn the metric and the classifier, so
that both the metric and the separator are learned in a semi-supervised way.
To our knowledge, this approach has not been explored before in metric learn-
ing. Enforcing (ε, γ, τ)-goodness allows us to preserve the theoretical guarantees
from [1] on the classifier in relation to the properties of the similarity. We use
the Rademacher complexity to derive new generalization bounds for the joint
optimization problem. Lastly, we provide an empirical study on seven datasets
and compare our method to different families of supervised and semi-supervised
learning algorithms.

The remainder of this paper is organized as follows: Section 2 reviews some
previous results in metric and similarity learning. Section 3 reminds the theory
of (ε, γ, τ)-good similarities and introduces our method that jointly learns the
metric and the linear classifier, followed in Section 4 by generalization guarantees
for our formulation. Finally, Section 5 presents an experimental study on various
standard datasets.

2 Related Work

We denote vectors by lower-case bold symbols (x) and matrices by upper-case
bold symbols (A). Consider the following learning problem: we are given access
to labeled examples z = (x, y) drawn from some unknown distribution P over
S = X ×Y, where X ⊆ R

d and Y = {−1, 1} are respectively the instance and the
output spaces. A pairwise similarity function over X is defined as K : X × X →
[−1, 1], and the hinge loss as [c]+ = max(0, 1 − c). We denote the L1 norm by
|| · ||1, the L2 norm by || · ||2 and the Frobenius norm by || · ||F .

Metric learning aims at finding the parameters of a distance or similarity
function that best account for the underlying geometry of the data. This infor-
mation is usually expressed as pair-based (x and x′ should be (dis)similar) or
triplet-based constraints (x should be more similar to x′ than to x′′). Typically,
the learned metric takes the form of a matrix and is the result of solving an
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optimization problem. The approaches that have received the most attention
in this field involve learning a Mahalanobis distance, defined as dA(x,x′) =
√

(x − x′)T A(x − x′), in which the distance is parameterized by the symmetric
and positive semi-definite (PSD) matrix A ∈ R

d×d. One nice feature of this type
of approaches is its interpretability: the Mahalanobis distance implicitly corre-
sponds to computing the Euclidean distance after linearly projecting the data to
a different (possibly lower) feature space. The PSD constraint on A ensures dA
is a pseudo metric. Note that the Mahalanobis distance reduces to the Euclidean
distant when A is set to the identity matrix.

Mahalanobis distances were used for the first time in metric learning in [25].
In this study, they aim to learn a PSD matrix A as to maximize the sum of dis-
tances between dissimilar instances, while keeping the sum of distances between
similar instances small. Eigenvalue decomposition procedures are used to ensure
that the learned matrix is PSD, which makes the computations intractable for
high-dimensional spaces. In this context, LMNN [23,24] is one of the most widely-
used Mahalanobis distance learning methods. The constraints they use are pair-
and triplet-based, derived from each instance’s nearest neighbors. The optimiza-
tion problem they solve is convex and has a special-purpose solver. The algorithm
works well in practice, but is sometimes prone to overfitting due to the absence
of regularization, especially when dealing with high dimensional data. Another
limitation is that enforcing the PSD constraint on A is computationally expen-
sive. One can partly get around this latter shortcoming by making use of specific
solvers or using information-theoretic approaches, such as ITML [9]. This work
was the first one to use LogDet divergence for regularization, and thus pro-
vides an easy and cheap way for ensuring that A is a PSD matrix. However, the
learned metric A strongly depends on the initial value A0, which is an important
shortcoming, as A0 is handpicked.

The following metric learning methods use a semi-supervised setting, in order
to improve the performance through the use of unlabeled data. LRML [14,15]
learns Mahalanobis distances with manifold regularization using a Laplacian
matrix. Their approach is applied to image retrieval and image clustering. LRML
performs particularly well compared to fully supervised methods when side infor-
mation is scarce. M-DML [28] uses a similar formulation to that of LRML,
with the distinction that the regularization term is a weighted sum using multi-
ple metrics, learned over auxiliary datasets. SERAPH [19] is a semi-supervised
information-theoretic approach that also learns a Mahalanobis distance. The
metric is optimized to maximize the entropy over labeled similar and dissimilar
pairs, and to minimize it over unlabeled data.

However, learning Mahalanobis distances faces two main limitations. The
first one is that enforcing the PSD and symmetry constraints on A, beyond
the cost it induces, often rules out natural similarity functions for the problem
at hand. Secondly, although one can experimentally notice that state-of-the-
art Mahalanobis distance learning methods give better accuracy than using the
Euclidean distance, no theoretical guarantees are provided to establish a link
between the quality of the metric and the behavior of the learned classifier. In
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this context, [20,21] propose to learn similarities with theoretical guarantees for
the kNN based algorithm making use of them, on the basis of perceptron algo-
rithm presented in [11]. The performance of the classifier obtained is competitive
with those of ITML and LMNN. More recently, [1] introduced a theory for learn-
ing with so called (ε, γ, τ)-good similarity functions based on non PSD matrices.
This was the first stone to establish generalization guarantees for a linear classi-
fier that would be learned with such similarities. Their formulation is equivalent
to a relaxed L1-norm SVM [29]. The main limitation of this approach is however
that the similarity function K is predefined and [1] do not provide any learn-
ing algorithm to design (ε, γ, τ)-good similarities. This problem has been fixed
by [4] who optimize the (ε, γ, τ)-goodness of a bilinear similarity function under
Frobenius norm regularization. The learned metric is then used to build a good
global linear classifier. Moreover, their algorithm comes with a uniform stability
proof [8] which allows them to derive a bound on the generalization error of
the associated classifier. However, despite good results in practice, one limita-
tion of this framework is that it imposes to deal with strongly convex objective
functions.

Recently, [13] extended the theoretical results of [4]. Using the Rademacher
complexity (instead of the uniform stability) and Khinchin-type inequalities,
they derive generalization bounds for similarity learning formulations that are
regularized w.r.t. more general matrix-norms including the L1 and the mixed
L(2,1)-norms. Moreover, they show that such bounds for the learned similarities
can be used to upper bound the true risk of a linear SVM. The main distinction
between this approach and our work is that we propose a method that jointly
learns the metric and the linear separator at the same time. This allows us to
make use of the semi-supervised setting presented by [1] to learn well with only
a small amount of labeled data.

3 Joint Metric and Classifier Learning

In this section, we first briefly recall the (ε, γ, τ)-good framework [1] that we
are using, prior to presenting our semi-supervised framework for jointly learn-
ing a similarity function and a linear separator from data. The (ε, γ, τ)-good
framework is based on the following definition of a good similarity.

Definition 1. [1] K is a (ε, γ, τ)-good similarity function in hinge loss for a
learning problem P if there exists a random indicator function R(x) defining a
probabilistic set of “reasonable points” such that the following conditions hold:

1. We have
E(x,y)∼P

[

[1 − yg(x)/γ]+
]

≤ ε, (1)

where g(x) = E(x′,y′),R(x′) [y′K(x,x′)|R(x′)].
2. Prx′(R(x′)) ≥ τ .

The first condition can be interpreted as having a (1 − ε) proportion of
examples x on average 2γ more similar to random reasonable examples x′ of
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their own label than to random reasonable examples x′ of the other label. It
also expresses the tolerated margin violations in an averaged way: this allows
for more flexibility than pair- or triplet-based constraints. The second condition
sets the minimum mass of reasonable points one must consider (greater than
τ). Notice that no constraint is imposed on the form of the similarity function.
Definition 1 is used to learn a linear separator:

Theorem 1. [1] Let K be an (ε, γ, τ)-good similarity function in hinge loss for a
learning problem P. For any ε1 > 0 and 0 < δ < γε1/4 let S = {x′

1,x
′
2, . . . ,x

′
du

}
be a sample of du = 2

τ

(

log(2/δ) + 16 log(2/δ)
(ε1γ)2

)

landmarks drawn from P. Con-

sider the mapping φS : X → R
du , φS

i (x) = K(x,x′
i), i ∈ {1, . . . , du}. With

probability 1 − δ over the random sample S, the induced distribution φS(P ) in
R

du , has a separator achieving hinge loss at most ε + ε1 at margin γ.

In other words, if K is (ε, γ, τ)-good according to Definition 1 and enough
points are available, there exists a linear separator α with error arbitrarily close
to ε in the space φS . The procedure for finding the separator involves two steps:
first using du potentially unlabeled examples as landmarks to construct the fea-
ture space, then using a new labeled set of size dl to estimate α ∈ R

du . This is
done by solving the following optimization problem:

min
α

{
dl
∑

i=1

[

1 −
du
∑

j=1

αjyiK(xi,xj)
]

+
:

du
∑

j=1

|αj | ≤ 1/γ
}

. (2)

This problem can be solved efficiently by linear programming. Furthermore,
as it is L1-constrained, tuning the value of γ will produce a sparse solution.
Lastly, the associated classifier takes the following form:

y = sgn
du
∑

j=1

αjK(x,xj). (3)

We now extend this framework to jointly learn the similarity and the sep-
arator in a semi-supervised way. Let S be a sample set of dl labeled exam-
ples (x, y) ∈ Z = X × {−1;+1}) and du unlabeled examples. Furthermore, let
KA(x,x′) be a generic (ε, γ, τ)-good similarity function, parameterized by the
matrix A ∈ R

d×d. We assume that KA(x,x′) ∈ [−1;+1] and that ||x||2 ≤ 1,
but all our developments and results can directly be extended to any bounded
similarities and datasets. Our goal here is to find the matrix A and the global
separator α ∈ R

du that minimize the empirical loss (in our case, the hinge loss)
over a finite sample S, with some guarantees on the generalization error of the
associated classifier. To this end, we propose a generalization of Problem (2)
based on a joint optimization of the metric and the global separator:

min
α,A

dl
∑

i=1

[

1 −
du
∑

j=1

αjyiKA(xi,xj)
]

+
+ λ||A − R|| (4)
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s.t.
du
∑

j=1

|αj | ≤ 1/γ (5)

A diagonal, |Akk| ≤ 1, 1 ≤ k ≤ d, (6)

where λ > 0 is a regularization parameter, and R ∈ R
d×d is a fixed diagonal

matrix such that ||R|| ≤ d. Here, the notation || · || refers to a generic matrix
norm, for instance L1 or L2 norms.

The novelty of this formulation is the joint optimization over A and α: by
solving Problem (4), we are learning the metric and the separator at the same
time. One of its significant advantages is that it extends the semi-supervised
setting from the separator learning step to the metric learning, and the two
problems are solved using the same data. This method can naturally be used in
situations where one has access to few labeled examples and some unlabeled ones:
the labeled examples are used in this case to select the unlabeled examples that
will serve to classify new points. Another important advantage of our technique,
coming from [1], is that the constraints on the pair of points do not need to be
satisfied entirely, as the loss is averaged on all the reasonable points. In other
words, this formulation is less restrictive than pair or triplet-based settings.
Constraint (5) takes into account the desired margin γ and is the same as in [1].
Constraint (6) ensures that the learned similarity is bounded in [−1;+1]. Note
that the diagonality constraint on A can be relaxed (in which case the bound
constraint becomes ||A|| ≤ 1 and R is no longer diagonal); we restrict ourselves
to diagonal matrices to simplify the presentation and to limit the number of
parameters to be learned.

The matrix R can be used to encode prior knowledge one has on the problem,
in a way similar to what is proposed in [9]. If the non parameterized version of
the similarity considered performs well, then a natural choice of R is the identity
matrix I, so that the learned matrix will preserve the good properties of the non
parameterized version (and will improve it through learning). Another form of
prior knowledge relates to the importance of each feature according to the classes
considered. Indeed, one may want to give more weight to features that are more
representative of one of the classes {−1;+1}. One way to capture this importance
is to compare the distributions of each feature on the two classes, e.g. through
Kullback-Leibler (KL) divergence. We assume here that each feature follows a
Gaussian distribution in each class, with means μ1 (class +1) and μ2 (class −1)
and standard deviations σ1 (class +1) and σ2 (class −1). The KL divergence is
expressed in that case as:

Dk
KL = log

(

σ1

σ2

)

+
1
2

(

σ2
1

σ2
2

− σ2
2

σ2
1

+
(μ2 − μ1)2

σ2
2

)

, 1 ≤ k ≤ d.

and the matrix R corresponds to diag(D1
KL,D2

KL, · · · ,Dd
KL).

Lastly, once A and α have been learned, the associated (binary) classifier
takes the form given in Eq. (3).



600 M.-I. Nicolae et al.

4 Generalization Bound for Joint Similarity Learning

In this section, we establish a generalization bound for our joint similarity learn-
ing formulation (4) under constraints (5) and (6). This theoretical analysis is
based on the Rademacher complexity and holds for any regularization parame-
ter λ > 0. Note that when λ = 0, we can also prove consistency results based on
the algorithmic robustness framework [26,27]. In such a case, the proof is simi-
lar to the one in [18]. Before stating the generalization bound, we first introduce
some notations.

Definition 2. A pairwise similarity function KA : X ×X → [−1, 1], parameter-
ized by a matrix A ∈ R

d×d, is said to be (β, c)-admissible if, for any matrix norm
|| · ||, there exist β, c ∈ R such that ∀x,x′ ∈ X , |KA(x,x′)| ≤ β+c · ||x′xT || · ||A||.

Examples: Using some classical norm properties and the Frobenius inner prod-
uct, we can show that:

– The bilinear similarity K1
A(x,x′) = xT Ax′ is (0, 1)-admissible, that is

|K1
A(x,x′)| ≤ ||x′xT || · ||A||;

– The similarity derived from the Mahalanobis distance K2
A(x,x′) = 1 − (x −

x′)T A(x−x′) is (1, 4)-admissible, that is |K2
A(x,x′)| ≤ 1+4 · ||x′xT || · ||A||.

Note that we will make use of these two similarity functions K1
A and K2

A in our
experiments. For any B,A ∈ R

n×d and any matrix norm || · ||, its dual norm
|| · ||∗ is defined, for any B, by ||B||∗ = sup||A||≤1 Tr(BT A), where Tr(·) denotes
the trace of a matrix. Denote X∗ = supx,x′∈X ||x′xT ||∗.

Let us now rewrite the minimization problem (4) with a more generalized
notation of the loss function:

min
α,A

1
dl

dl
∑

i=1

�(A,α, zi = (xi, yi)) + λ||A − R||, (7)

s.t.
du
∑

j=1

|αj | ≤ 1/γ (8)

A diagonal, |Akk| ≤ 1, 1 ≤ k ≤ d, (9)

where �(A,α, zi = (xi, yi))) =
[

1 −
∑du

j=1 αjyiKA(xi,xj)
]

+
is the instanta-

neous loss estimated at point (xi, yi). Note that from constraints (8) and (9), we
deduce that ||A|| < d. Let ES(A,α) = 1

dl

∑dl

i=1 �(A,α, zi) be the overall empir-
ical loss over the training set S, and let E(A,α) = Ez∼Z�(A,α, z) be the true
loss w.r.t. the unknown distribution Z. The target of generalization analysis for
joint similarity learning is to bound the difference E(A,α) − ES(A,α).

Our generalization bound is based on the Rademacher complexity which can
be seen as an alternative notion of the complexity of a function class and has
the particularity to be (unlike the VC-dimension) data-dependent.
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Definition 3. Let F be a class of uniformly bounded functions. For every integer
n, we call

Rn(F) := ESEσ

[

sup
f∈F

1
n

n
∑

i=1

σif(zi)

]

the Rademacher average over F , where S = {zi : i ∈ {1, . . . , n}} are independent
random variables distributed according to some probability measure and {σi : i ∈
{1, . . . , n}} are independent Rademacher random variables, that is, Pr(σi = 1) =
Pr(σi = −1) = 1

2 .

The Rademacher average w.r.t. the dual matrix norm is then defined as:

Rdl
:= ES,σ

[

sup
x̃∈X

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
dl

dl
∑

i=1

σiyixix̃T

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∗

]

We can now state our generalization bound.

Theorem 2. Let (AS ,αS) be the solution to the joint problem (7) and KAS a
(β, c)-admissible similarity function. Then, for any 0 < δ < 1, with probability
at least 1 − δ, the following holds:

E(AS ,αS) − ES(AS ,αS) ≤ 4Rdl

(

cd

γ

)

+
(

β + cX∗d

γ

)

√

2 ln 1
δ

dl
.

Theorem 2 proves that learning A and α in a joint manner from a training
set minimizes the generalization error, as the latter is bounded by the empirical
error of our joint regularized formulation. Its proof makes use of the Rademacher
symmetrization theorem and contraction property (Theorem 3 and Lemma 1):

Theorem 3. [7] Let Rn(F) be the Rademacher average over F defined as pre-
viously. We have:

E

[

sup
f∈F

(

Ef(S) − 1
n

n
∑

i=1

f(zi)

)]

≤ 2Rn(F).

Lemma 1. [17] Let F be a class of uniformly bounded real-valued functions on
(Ω,μ) and m ∈ N. If for each i ∈ {1, . . . , m}, φi : R → R is a function having a
Lipschitz constant ci, then for any {xi}i∈Nm

,

Eε

(

sup
f∈F

∑

i∈Nm

εiφi(f(xi))

)

≤ 2Eε

(

sup
f∈F

∑

i∈Nm

ciεif(xi)

)

.

Proof (Theorem 2).
Let ES denote the expectation with respect to sample S. Observe that

ES(AS ,αS) − E(AS ,αS) ≤ supA,α [ES(A,α) − E(A,α)]. Also, for any S =
(z1, . . . , zk, . . . , zdl

) and S̃ = (z1, . . . , z̃k, . . . , zdl
), 1 ≤ k ≤ dl:



602 M.-I. Nicolae et al.

∣

∣

∣

∣

sup
A,α

[ES(A, α) − E(A, α)] − sup
A,α

[ES̃(A, α) − E(A, α)]

∣

∣

∣

∣

≤ sup
A,α

|ES(A, α) − ES̃(A, α)|

=
1

dl
sup
A,α

∣

∣

∣

∣

∣

∣

∑

z=(x,y)∈S

[

1 −
du
∑

j=1

αjyKA(x,xj)

]

+

−
∑

z̃=(x̃,ỹ)∈S̃

[

1 −
du
∑

j=1

αj ỹKA(x̃,xj)

]

+

∣

∣

∣

∣

∣

∣

=
1

dl
sup
A,α

∣

∣

∣

∣

∣

∣

[

1 −
du
∑

j=1

αjykKA(xk,xj)

]

+

−
[

1 −
du
∑

j=1

αj ỹkKA(x̃k,xj)

]

+

∣

∣

∣

∣

∣

∣

=
1

dl
sup
A,α

∣

∣

∣

∣

∣

du
∑

j=1

αj ỹkKA(x̃k,xj) −
du
∑

j=1

αjykKA(xk,xj)

∣

∣

∣

∣

∣

(10)

≤ 2

dl
sup
A,α

∣

∣

∣

∣

∣

du
∑

j=1

αjy
max
k KA(xmax

k ,xj)

∣

∣

∣

∣

∣

where zmax
k = arg max

z=(x,y)∈{zk,z̃k}
yKA(x,xj)

≤ 2

dl
sup
A,α

{

du
∑

j=1

|αj | · |ymax
k | · |KA(xmax

k ,xj)|
}

≤ 2

dl

(

β + cX∗d

γ

)

(11)

Inequality (10) comes from the 1-lipschitzness of the hinge loss; Inequality (11)
comes from Constraint (8), ||A|| ≤ d and the (β, c)-admissibility of KA. Applying
McDiarmid’s inequality to the term supA,α [ES(A,α) − E(A,α)], with proba-
bility 1 − δ, we have:

sup
A,α

[ES(A, α) − E(A, α)] ≤ ES sup
A,α

[ES(A, α) − E(A, α)] +

(

β + cX∗d

γ

)

√

2 ln 1
δ

dl
.

In order to bound the gap between the true loss and the empirical loss, we now
need to bound the expectation term of the right hand side of the above equation.

ES sup
A,α

[ES(A,α) − E(A,α)]

=ES sup
A,α

⎧

⎨

⎩

1
dl

dl
∑

i=1

⎡

⎣1 −
du
∑

j=1

αjyiKA(xi,xj)

⎤

⎦

+

− E(A,α)

⎫

⎬

⎭

≤2ES,σ sup
A,α

⎧

⎨

⎩

1
dl

dl
∑

i=1

σi

⎡

⎣1 −
du
∑

j=1

αjyiKA(xi,xj)

⎤

⎦

+

⎫

⎬

⎭

(12)

≤4ES,σ sup
A,α

∣

∣

∣

∣

∣

∣

1
dl

dl
∑

i=1

σiyi

du
∑

j=1

αjKA(xi,xj)

∣

∣

∣

∣

∣

∣

(13)

≤4
(

cd

γ

)

ES,σ sup
x̃

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
dl

dl
∑

i=1

σiyixix̃T

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∗

= 4Rdl

(

cd

γ

)

. (14)
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We obtain Inequality (12) by applying Theorem 3, while Inequality (13) comes
from the use of Lemma 1. The Inequality on line (14) makes use of the (β, c)-
admissibility of the similarity function KA (Definition 2). Combining Inequali-
ties (11) and (14) completes the proof of the theorem. �	

After proving the generalization bound of our joint similarity approach, we
now move to the experimental validation of the approach proposed.

5 Experiments

The state of the art in metric learning is dominated by algorithms designed
to work in a purely supervised setting. Furthermore, most of them optimize a
metric adapted to kNN classification (e.g. LMNN, ITML), while our work is
designed for finding a global linear separator. For these reasons, it is difficult
to propose a totally fair comparative study. In this section, we first evaluate
the effectiveness of problem (4) with constraints (5) and (6) (JSL, for Joint
Similarity Learning) with different settings. Secondly, we extensively compare
it with state-of-the-art algorithms from different categories (supervised, kNN-
oriented). Lastly, we study the impact of the quantity of available labeled data
on our method. We conduct the experimental study on 7 classic datasets taken
from the UCI Machine Learning Repository1, both binary and multi-class. Their
characteristics are presented in Table 1. These datasets are widely used for metric
learning evaluation.

Table 1. Properties of the datasets used in the experimental study.

Balance Ionosphere Iris Liver Pima Sonar Wine

# Instances 625 351 150 345 768 208 178
# Dimensions 4 34 4 6 8 60 13
# Classes 3 2 3 2 2 2 3

5.1 Experimental Setting

In order to provide a comparison as complete as possible, we compare two main
families of approaches2:

1. Linear classifiers: in this family, we consider the following methods:
– BBS, corresponding to Problem (2) and discussed above;
– SLLC [4], an extension of BBS in which a similarity is learned prior to

be used in the BBS framework;
– JSL, the joint learning framework proposed in this study;
– Linear SVM with L2 regularization, which is the standard approach for

linear classification;
1 http://archive.ics.uci.edu/ml/.
2 For all the methods, we used the code provided by the authors.

http://archive.ics.uci.edu/ml/
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2. Nearest neighbor approaches: in this family, we consider the methods:
– Standard 3-nearest neighbor classifier (3NN) based on the Euclidean

distance;
– ITML [9], which learns a Mahalanobis distance that is used here in 3NN

classification;
– LMNN with a full matrix and LMNN with a diagonal matrix (LMNN-

diag) [23,24], also learning a Mahalanobis distance used here in 3NN
classification;

– LRML [14,15]; LRML also learns a Mahalanobis distance used in 3NN
classifier, but in a semi-supervised setting. This method is thus the
“most” comparable to JSL (even though one is learning a linear sep-
arator and the other only a distance).

All classifiers are used in their binary version, in a one-vs-all setting when the
number of classes is greater than two. BBS, SLLC and JSL rely on the same
classifier from Eq. (3), even though learned in different ways. We solve BBS
and JSL using projected gradient descent. In JSL, we rely on an alternating
optimization that consists in fixing A (resp. α) and optimizing for α (resp. A),
then changing the variable, until convergence.

Data Processing and Parameter Settings. All features are centered around
zero and scaled to ensure ||x||2 ≤ 1, as this constraint is necessary for some of the
algorithms. We randomly choose 15% of the data for validation purposes, and
another 15% as a test set. The training set and the unlabeled data are chosen
from the remaining 70% of examples not employed in the previous sets. In order
to illustrate the classification using a restricted quantity of labeled data, the
number of labeled points is limited to 5, 10 or 20 examples per class, as this is
usually a reasonable minimum amount of annotation to rely on. The number of
landmarks is either set to 15 points or to all the points in the training set (in
which case their label is not taken into account). These two settings correspond
to two practical scenarios: one in which a relatively small amount of unlabeled
data is available, and one in which a large amount of unlabeled data is available.
When only 15 unlabeled points are considered, they are chosen from the training
set as the nearest neighbor of the 15 centroids obtained by applying k-means++
clustering with k = 15. All of the experimental results are averaged over 10
runs, for which we compute a 95% confidence interval. We tune the following
parameters by cross-validation: γ, λ ∈ {10−4, . . . , 10−1} for BBS and JSL (λ only
for the second), λITML ∈ {10−4, . . . , 104}, choosing the value yielding the best
accuracy. For SLLC, we tune γ, β ∈ {10−7, . . . , 10−2}, λ ∈ {10−3, . . . , 102}, as
done by the authors, while for LRML we consider γs, γd, γi ∈ {10−2, . . . , 102}.
For LMNN, we set μ = 0.5, as done in [24].

5.2 Experimental Results

Analysis of JSL. We first study here the behavior of the proposed joint learn-
ing framework w.r.t. different families of similarities and regularization functions
(choice of R and || · ||). In particular, we consider two types of similarity measures:
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Table 2. Average accuracy (%) with confidence interval at 95%, 5 labeled points per
class, 15 unlabeled landmarks.

Sim. Reg. Balance Ionosphere Iris Liver Pima Sonar Wine

I-L1 85.2±3.0 85.6±2.4 76.8±3.2 63.3±6.2 71.0±4.1 72.9±3.6 91.9±4.2
K1

A I-L2 85.1±2.9 85.6±2.6 76.8±3.2 63.1±6.3 71.0±4.0 73.2±3.8 91.2±4.5
KL-L1 84.9±2.9 85.0±2.6 77.3±2.7 63.9±5.5 71.0±4.0 72.9±3.6 90.8±4.7
KL-L2 85.2±3.0 85.8±3.3 76.8±3.2 62.9±6.4 71.3±4.3 74.2±3.8 90.0±5.4

I-L1 87.2±2.9 87.7±2.6 78.6±4.6 64.7±5.6 75.1±3.5 73.9±5.7 80.8±9.5
K2

A I-L2 86.8±3.0 87.7±2.8 75.9±5.7 64.3±5.4 75.6±3.6 74.8±5.8 80.8±8.6
KL-L1 87.2±2.9 87.3±2.4 78.6±4.6 62.9±5.6 75.0±3.7 75.5±6.2 79.6±11.8
KL-L2 87.1±2.7 85.8±3.3 79.1±5.4 64.9±5.9 75.6±3.4 77.1±5.2 79.6±9.7

Table 3. Average accuracy (%) with confidence interval at 95%, all points used as
landmarks.

Sim. Reg. Balance Ionosphere Iris Liver Pima Sonar Wine

I-L1 85.8±2.9 88.8±2.5 74.5±3.1 65.5±4.5 71.4±3.8 70.3±6.6 85.8±5.0
K1

A I-L2 85.8±2.9 87.7±2.7 74.5±3.5 64.7±5.5 71.7±4.1 68.7±6.7 84.6±5.5
KL-L1 85.6±3.1 87.9±3.4 75.0±3.5 65.3±4.9 71.6±4.2 70.3±6.8 85.4±5.3
KL-L2 85.1±3.1 88.5±3.7 75.9±3.4 65.1±4.8 72.1±4.2 71.9±6.7 86.5±6.0

I-L1 85.9±2.3 90.4±2.2 71.8±6.1 67.3±3.5 73.1±3.5 72.9±4.2 81.5±8.4
K2

A I-L2 86.2±2.5 90.6±2.2 73.2±6.6 68.6±3.3 73.3±3.2 73.2±4.2 82.7±9.0
KL-L1 85.8±2.6 89.4±2.0 72.7±5.5 67.5±3.8 73.8±3.5 71.0±4.1 80.0±7.4
KL-L2 85.9±2.4 89.6±2.2 74.5±6.2 68.4±3.6 73.1±3.8 72.3±4.8 80.0±11.5

bilinear (cosine-like) similarities of the form K1
A(x,x′) = xT Ax′ and similarities

derived from the Mahalanobis distance K2
A(x,x′) = 1 − (x − x′)T A(x − x′).

For the regularization term, R is either set to the identity matrix (JSL-I), or
to the approximation of the Kullback-Leibler divergence (JSL-KL) discussed in
Section 3. As mentioned above, these two settings correspond to different prior
knowledge one can have on the problem. In both cases, we consider L1 and L2

regularization norms. We thus obtain 8 settings, that we compare in the situation
where few labeled points are available (5 points per class), using a small amount
(15 instances) of unlabeled data or a large amount (the whole training set) of unla-
beled data. The results of the comparisons are reported in Tables 2 and 3.

As one can note from Table 2, when only 15 points are used as landmarks, K2
A

obtains better results in almost all of the cases, the difference being more impor-
tant on Iris, Pima and Sonar. The noticeable exception to this better behavior
of K2

A is Wine, for which cosine-like similarities outperform Mahalanobis-based
similarities by more than 10 points. A similar result was also presented in [21].
The difference between the use of the L1 or L2 norms is not as marked, and there
is no strong preference for one or the other, even though the L2 norm leads to
slightly better results in average than the L1 norm. Regarding the regularization
matrix R, again, the difference is not strongly marked, except maybe on Sonar.
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Fig. 1. Average accuracy (%) with confidence interval at 95%, 5 labeled points per
class, 15 unlabeled landmarks.

In average, regularizing through the Kullback-Leibler divergence leads to slightly
better results than regularizing through the identity matrix.

When all points are used as landmarks (Table 3), similar conclusions can be
drawn regarding the similarity functions and the norms used. However, in that
case, the regularization based on the identity matrix yields better results than
the one based on the KL divergence. It is important to note also that the overall
results are in general lower than the ones obtained when only 15 points are used
as landmarks. We attribute this effect to the fact that one needs to learn more
parameters (via α), whereas the amount of available labeled data is the same.

From the above analysis, we focus now on two JSL based methods: JSL-
15 with K2

A, L2 norm and R =KL when 15 points are used as landmarks, and
JSL-all with K2

A, L2 norm and R = I when all the points are used as landmarks.

Comparison of the Different Methods. We now study the performance of
our method, compared to state-of-the-art algorithms. For this, we consider JSL-
15 and JSL-all with 5, 10, respectively 20 labeled examples per class. As our
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Table 4. Average accuracy (%) over all datasets with confidence interval at 95%.

Method 5 pts./cl. 10 pts./cl. 20 pts./cl.

3NN 64.6±4.6 68.5±5.4 70.4±5.0
LMNN-diag 65.1±5.5 68.2±5.6 71.5±5.2
LMNN 69.4±5.9 70.9±5.3 73.2±5.2
ITML 75.8±4.2 76.5±4.5 76.3±4.8
SVM 76.4±4.9 76.2±7.0 77.7±6.4
BBS 77.2±7.3 77.0±6.2 77.3±6.3
SLLC 70.5±7.2 75.9±4.5 75.8±4.8
LRML 74.7±6.2 75.3±5.9 75.8±5.2
JSL-15 78.9±6.7 77.6±5.5 77.7±6.4
JSL-all 78.2±7.3 76.6±5.8 78.4±6.7

(a) Ionosphere (b) Pima

Fig. 2. Average accuracy w.r.t. the number of labeled points with 15 landmarks.

methods are tested using the similarity based on the Mahalanobis distance, we
use the euclidean distance for BBS to ensure fairness.

Figure 1 presents the average accuracy per dataset obtained with 5 labeled
points per class. In this setting, JSL outperforms the other algorithms on 5
out of 7 datasets and has similar performances on one other. The exception is
the Wine dataset, where none of the JSL settings yields competitive results. As
stated before, this is easily explained by the fact cosine-similarities are more
adapted for this dataset. Even though JSL-15 and JSL-all perform the same
when averaged over all datasets, the difference between them is marked on some
datasets: JSL-15 is considerably better on Iris and Sonar, while JSL-all signifi-
cantly outperforms JSL-15 on Ionosphere and Liver. Averaged over all datasets
(Table 4), JSL obtains the best performance in all configurations with a limited
amount of labeled data, which is particularly the setting that our method is
designed for. The values in bold are significantly better than the rest of their
respective columns, confirmed by a one-sided Student t-test for paired samples
with a significance level of 5%.
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Impact of the Amount of Labeled Data. As an illustration of the methods’
behavior when the level of supervision varies, Figure 2 presents the accuracies
on two representative datasets, Ionosphere and Pima, with an increasing number
of labeled examples. In both cases, the best results are obtained by JSL (and
more precisely JSL-15) when less than 50% of the training set is used. This
is in agreement with the results reported in Table 4. The results of JSL are
furthermore comparable only to BBS for the Pima dataset. Lastly, the accuracy
of JSL improves slightly when adding more labeled data, and the results on the
whole training set are competitive w.r.t. the other algorithms.

6 Conclusion

In this paper, we have studied the problem of learning similarities in the situation
where few labeled (and potentially few unlabeled) data is available. To do so,
we have developed a semi-supervised framework, extending the (ε, γ, τ)-good
of [1], in which the similarity function and the classifier are learned at the same
time. To our knowledge, this is the first time that such a framework is provided.
The joint learning of the similarity and the classifier enables one to benefit
from unlabeled data for both the similarity and the classifier. We have also
showed that the proposed method was theoretically well-founded as we derived a
Rademacher-based bound on the generalization error of the learned parameters.
Lastly, the experiments we have conducted on standard metric learning datasets
show that our approach is indeed well suited for learning with few labeled data,
and outperforms state-of-the-art metric learning approaches in that situation.

Acknowledgments. Funding for this project was provided by a grant from Région
Rhône-Alpes.
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20. Qamar, A.M., Gaussier, É.: Online and batch learning of generalized cosine simi-
larities. In: ICDM, pp. 926–931 (2009)
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Abstract. Learning a proper distance metric is of vital importance for
many distance based applications. Distance metric learning aims to learn
a set of latent factors based on which the distances between data points
can be effectively measured. The number of latent factors incurs a trade-
off: a small amount of factors are not powerful and expressive enough
to measure distances while a large number of factors cause high com-
putational overhead. In this paper, we aim to achieve two seemingly
conflicting goals: keeping the number of latent factors to be small for the
sake of computational efficiency, meanwhile making them as effective as
a large set of factors. The approach we take is to impose a diversity
regularizer over the latent factors to encourage them to be uncorrelated,
such that each factor can capture some unique information that is hard
to be captured by other factors. In this way, a small amount of latent
factors can be sufficient to capture a large proportion of information,
which retains computational efficiency while preserving the effectiveness
in measuring distances. Experiments on retrieval, clustering and classifi-
cation demonstrate that a small amount of factors learned with diversity
regularization can achieve comparable or even better performance com-
pared with a large factor set learned without regularization.

1 Introduction

In data mining and machine learning, learning a proper distance metric is of vital
importance for many distance based tasks and applications, such as retrieval [22],
clustering [18] and classification [16]. In retrieval, a better distance measure can
help find data entries that are more relevant with the query. In k-means based
clustering, data points can be grouped into more coherent clusters if the distance
metric is properly defined. In k-nearest neighbor (k-NN) based classification, to
find better nearest neighbors, the distances between data samples need to be
appropriately measured. All these tasks rely heavily on a good distance measure.
Distance metric learning (DML) [3,16,18] takes pairs of data points which are
labeled either as similar or dissimilar and learns a distance metric such that
similar data pairs will be placed close to each other while dissimilar pairs will
be separated apart. While formulated in various ways, most DML approaches
choose to learn a Mahalanobis distance (x − y)TM(x − y), where x, y are d-
dimensional feature vectors and M ∈ R

d×d is a positive semidefinite matrix to be
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 610–624, 2015.
DOI: 10.1007/978-3-319-23528-8 38



Learning Compact and Effective Distance Metrics 611

learned. DML can be interpreted as a latent space model. By factorizing M into
M = ATA, the Mahalanobis distance can be written as ‖Ax−Ay‖2, which can be
interpreted as first projecting the data from the original feature space to a latent
space using the linear projection matrix A ∈ R

k×d, then measuring the squared
Euclidean distance in the latent space. Each row of A corresponds to one latent
factor (or one dimension of the latent space). Ax is the latent representation of
x and can be used as input of downstream tasks. These latent factors are aimed
at capturing the latent features of the observed data. The latent features usually
carry high-level semantic meanings and reflect the inherent characteristics of
data, thus measuring distance in the latent feature space could be more effective.

In choosing the number k of latent factors (or the dimension of the latent
space), there is an inherent tradeoff between the effectiveness of the distance
matrix A and computational efficiency. A larger k would bestow A more expres-
siveness and power in measuring distances. However, the resultant latent rep-
resentations would be of high dimensionality, which incurs high computational
complexity and inefficiency. This is especially true for retrieval where performing
nearest neighbor search on high-dimensional representations is largely difficult.
On the other hand, a smaller k can reduce the computational cost, but would
render the distance matrix less effective.

In this paper, we aim to investigate whether it is possible to achieve the best
of both worlds: given a sufficiently small k which facilitates computational effi-
ciency, can the effectiveness of the distance matrix be comparable to that of a
large k? In other words, the goal is to learn a compact (with small k) but effective
distance matrix. Our way to approach this goal is motivated by Principal Com-
ponent Analysis (PCA). Similar to DML, PCA also learns a linear projection
matrix, where the row vectors are called components. Unlike DML which imposes
no constraints on the row vectors (latent factors), PCA requires the components
to be orthogonal to each other. Such an orthogonality constraint renders the
components to be uncorrelated and each component captures information that
cannot be captured by other components. As a result, a small number of com-
ponents are able to capture a large proportion of information. This inspires us
to place an orthogonality constraint over the row vectors of A in DML, with the
hope that a small number of latent factors are sufficient to effectively measure
distances. However, as verified in our experiments, requiring the latent factors
to be strictly orthogonal may be too restrictive, which hurts the quality of dis-
tance measurement. Instead, we impose a diversity regularizer over the latent
factors to encourage them to approach orthogonality, but not necessarily to be
orthogonal. We perform experiments on retrieval, clustering and classification
to demonstrate that with diversity regularization, a distance matrix with small
k can achieve comparable or even better performance in comparison with an
unregularized matrix with large k.

The rest of the paper is organized as follows. In Section 2, we review related
works. In Section 3, we present how to diversity DML. Section 4 gives experi-
mental results and Section 5 concludes the paper.
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2 Related Works

Many works [3,5,8,16,18,21] have been proposed for distance metric learning.
Please see [15,19] for an extensive review. There are many problem settings
regarding the form of distance supervision, the type of distance metric to be
learned and the learning objective. Among them, the most common setting
[3,5,18] is given data pairs labeled either as similar or dissimilar, learning a
Mahalanobis distance metric, such that similar pairs will be placed close to each
other and dissimilar pairs will be separated apart. As first formulated in [18], a
Mahalanobis distance metric is learned under similarity and dissimilarity con-
straints by minimizing the distances of similar pairs while separating dissimilar
pairs with a certain margin. Guillaumin et al [5] proposed to use logistic discrim-
inant to learn a Mahalanobis metric from a set of labelled data pairs, with the
goal that positive pairs have smaller distances than negative pairs. Kostinger
et al [6] proposed to learn Mahalanobis metrics using likelihood test, which
defines the Mahalanobis matrix to be the difference of covariance matrices of
two Gaussian distributions used for modeling dissimilar pairs and similar pairs
respectively. Ying and Li [21] developed an eigenvalue optimization framework
for learning a Mahalanobis metric, which is shown to be equivalent to minimizing
the maximal eigenvalue of a symmetric matrix.

Some works take other forms of distance supervision such as class labels
[14], rankings [10], triple constraints [13], time series alignments [8] to learn
distance metrics for specific tasks, such as k-nearest neighbor classification [16],
ranking [10], time series aligning [8]. Globerson and Roweis [4] assumed the class
label for each sample is available and proposed to learn a Mahalanobis matrix
for classification by collapsing all samples in the same class to a single point
and pushing samples in other classes infinitely far away. Weinberger et al [16]
proposed to learn distance metrics for k-nearest neighbor classification with the
goal that the k-nearest neighbors always belong to the same class while samples
from different classes are separated by a large margin. This method also requires
the presence of class labels of all samples. Trivedi et al [14] formulated the
problem of metric learning for k nearest neighbor classification as a large margin
structured prediction problem, with a latent variable representing the choice
of neighbors and the task loss directly corresponding to classification error. In
this paper, we focus on the pairwise similarity/dissimilarity constraints which
are considered as the most common and natural supervision of distance metric
learning. Other forms of distance supervision, together with the corresponding
specific-purpose tasks, will be left for future study.

To avoid overfitting, various methods have been proposed to regularize dis-
tance metric learning. Davis et al [3] imposed a regularization that the Maha-
lanobis distance matrix should be close to a prior matrix and the Bregman
divergence is utilized to measure how close two matrices are. Ying and Li
[20] and Niu et al [11] utilized a mixed-norm regularization to encourage the
sparsity of the projection matrix. Qi et al [12] used �1 regularization to learn
sparse metrics for high dimensional problems with small sample size. Qian et
al [13] applied dropout to regularize distance metric learning. In this paper,
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Algorithm 1.. Algorithm for solving DDML.
Input: S,D,k,λ
repeat

Fix Ã, optimize g using subgradient method
Fix g, optimize Ã using projected subgradient method

until converge

Table 1. Statistics of datasets

Feature Dim. #training data #data pairs

20-News 5000 11.3K 200K

15-Scenes 1000 3.2K 200K

6-Activities 561 7.4K 200K

we investigate a different regularizer for DML: diversity regularization, which
has not been studied by previous works.

The problem of diversifying the latent factors in latent variable models has
been studied in [7,17], with the goal to reduce the redundancy of latent fac-
tors and improve the coverage of infrequent latent features/structures. Zou and
Adams [23] used a Determinantal Point Process (DPP) prior to diversify the
latent factors and Xie et al [17] defined a diversity measure based on pair-
wise angles between latent factors. In this paper, we study the diversification
of distance metric learning, aiming to learn compact distance metrics without
compromising their effectiveness.

3 Diversify Distance Metric Learning

In this section, we begin with reviewing the DML problem proposed in [18] and
reformulate it as a latent space model using ideas introduced in [16]. Then we
present how to diversify DML.

3.1 A Latent Space Modeling View of DML

Distance metric learning represents a family of models and has various formula-
tions regarding the distance metric to learn, the form of distance supervision and
how the objective function is defined. Among them, the most popular setting is:
(1) distance metric: Mahalanobis distance (x − y)TM(x − y), where x and y are
feature vectors of two data instances and M is a symmetric and positive semidef-
inite matrix to be learned; (2) the form of distance supervision: pairs of data
instances labeled either as similar or dissimilar; (3) learning objective: to learn a
distance metric to place similar points as close as possible and separate dissimi-
lar points apart. Given a set of pairs labeled as similar S = {(xi, yi)}|S|

i=1 and a
set of pairs labeled as dissimilar D = {(xi, yi)}|D|

i=1, DML learns a Mahalanobis
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Table 2. Retrieval average precision (%) on 20-News dataset

k 10 100 300 500 700 900

DML 72.4 74.0 74.9 75.4 75.8 76.2

DDML 76.7 81.0 81.1 79.2 78.3 77.8

Table 3. Retrieval average precision (%) on 15-Scenes dataset

k 10 50 100 150 200

DML 79.5 80.2 80.7 80.7 80.8

DDML 82.4 83.6 83.3 83.1 82.8

distance matrix M by optimizing the following problem

minM
1

|S|
∑

(x,y)∈S
(x − y)TM(x − y)

s.t. (x − y)TM(x − y) ≥ 1,∀(x, y) ∈ D
M � 0

(1)

where M � 0 denotes that M is required to be positive semidefinite. This opti-
mization problem aims to minimize the Mahalanobis distances between pairs
labeled as similar while separating dissimilar pairs with a margin 1. M is required
to be positive semidefinite to ensure that the Mahalanobis distance is a valid dis-
tance metric.

By re-parametrizing M with ATA [16], where A is a matrix of size k × d
(k ≤ d) and ATA guarantees the positive semi-definiteness of M , the Maha-
lanobis distance can be written as ‖Ax−Ay‖2, which can be interpreted as first
projecting the data from the original space to a latent space using the linear pro-
jection matrix A, then computing the squared Euclidean distance in the latent
space. Each row of A corresponds to a latent factor. Accordingly, the problem
defined in Eq.(1) can be written as

minA
1

|S|
∑

(x,y)∈S
‖Ax − Ay‖2

s.t. ‖Ax − Ay‖2 ≥ 1,∀(x, y) ∈ D
(2)

To this end, we see that the DML problem can be interpreted as a latent space
modeling problem. The goal is to seek a latent space where the squared Euclidean
distances of similar data pairs are small and those of dissimilar pairs are large.
The latent space is characterized by the projection matrix A.

3.2 Diversify DML

To diversify DML, we use the diversity measure proposed in [17] to regularize
the latent factors to encourage them to approach orthogonality. Given k latent
factors in A ∈ Rk×d, one can compute the non-obtuse angle θ(ai, aj) between
each pair of latent factors ai and aj , where ai is the ith row of A. θ(ai, aj)
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Table 4. Retrieval average precision (%) on 6-Activities dataset

k 10 50 100 150 200

DML 93.2 94.3 94.5 94.5 94.5

DDML 96.2 95.5 95.9 95.3 95.1

Table 5. Retrieval average precision (%) on three datasets

20-News 15-Scenes 6-Activities

EUC 62.8 65.3 85.0
DML [18] 76.2 80.8 94.5

LMNN [16] 67.0 70.3 71.5
ITML [3] 74.7 79.1 94.2

DML-eig [21] 71.2 71.3 86.7
Seraph [11] 75.8 82.0 89.2

DDML 81.1 83.6 96.2

is defined as arccos( |ai·aj |
‖ai‖‖aj‖ ). A larger θ(ai, aj) indicates that ai and aj are

more different from each other. Given the pairwise angles, the diversity measure
Ω(A) is defined as Ω(A) = Ψ(A) − Π(A), where Ψ(A) and Π(A) are the mean
and variance of all pairwise angles. The mean Ψ(A) measures how these factors
are different from each other on the whole and the variance Π(A) is intended
to encourage these factors to be evenly different from each other. The larger
Ω(A) is, the more diverse these latent factors are. And Ω(A) attains the global
maximum when the factors are orthogonal to each other.

Using this diversity measure to regularize the latent factors, we define a
Diversified DML (DDML) problem as:

minA
1

|S|
∑

(x,y)∈S
‖Ax − Ay‖2 − λΩ(A)

s.t. ‖Ax − Ay‖2 ≥ 1,∀(x, y) ∈ D
(3)

where λ > 0 is a tradeoff parameter between the distance loss and the diversity
regularizer. The term −λΩ(A)1 in the new objective function encourages the
latent factors in A to be diverse. λ plays an important role in balancing the
fitness of A to the distance loss

∑

(x,y)∈S ‖Ax − Ay‖2 and its diversity. Under
a small λ, A is learned to best minimize the distance loss and its diversity is
ignored. Under a large λ, A is learned with high diversity, but may not be well
fitted to the distance loss and hence lose the capability to properly measure
distances. A proper λ needs to be chosen to achieve the optimal balance.

3.3 Optimization

In this section, we present an algorithm to solve the problem defined in Eq.(3),
which is summarized in Algorithm 1. First, we adopt a strategy similar to [16]
1 Note that a negative sign is used here because the overall objective function is to be

minimized but Ω(A) is intended to be maximized.
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Table 6. Clustering accuracy (%) on 20-News dataset

k 10 100 300 500 700 900

DML 23.7 25.1 26.2 26.9 28.1 28.4

DDML 33.4 42.7 44.6 39.5 40.6 41.3

Table 7. Normalized mutual information (%) on 20-News dataset

k 10 100 300 500 700 900

DML 34.1 35.4 36.8 36.9 38.0 38.2

DDML 42.5 49.7 51.1 47.2 47.8 48.1

to remove the constraints. By introducing slack variables ξ to relax the hard
constraints, we get

minA
1

|S|
∑

(x,y)∈S
‖Ax − Ay‖2 − λΩ(A) + 1

|D|
∑

(x,y)∈D
ξx,y

s.t. ‖Ax − Ay‖2 ≥ 1 − ξx,y, ξx,y ≥ 0,∀(x, y) ∈ D
(4)

Using hinge loss, the constraint in Eq.(4) can be further eliminated

minA
1

|S|
∑

(x,y)∈S
‖Ax − Ay‖2 − λΩ(A)

+ 1
|D|

∑

(x,y)∈D
max(0, 1 − ‖Ax − Ay‖2) (5)

Since Ω(A) is non-smooth and non-convex, which is hard to optimize directly,
Xie et al [17] instead optimized a low bound of Ω(A), and they proved that
maximizing the lower bound can increase Ω(A). Factorizing A into diag(g) ˜A,
where g is a vector and gi denotes the �2 norm of the ith row of A, then the �2
norm of each row vector in ˜A is one. According to the definition of Ω(A), it is
clear that Ω(A) = Ω( ˜A). The problem defined in Eq.(5) can be reformulated as

minÃ,g
1

|S|
∑

(x,y)∈S
‖diag(g) ˜A(x − y)‖2 − λΩ( ˜A)

+ 1
|D|

∑

(x,y)∈D
max(0, 1 − ‖diag(g) ˜A(x − y)‖2)

s.t. ‖ ˜Ai‖ = 1,∀i = 1, · · · , k

(6)

where ˜Ai denotes the ith row of ˜A. This problem can be optimized by alternating
between g and ˜A: optimizing g with ˜A fixed and optimizing ˜A with g fixed. With
˜A fixed, the problem defined over g is

ming
1

|S|
∑

(x,y)∈S
‖diag(g) ˜A(x − y)‖2 + 1

|D|
∑

(x,y)∈D
max(0, 1 − ‖diag(g) ˜A(x − y)‖2)

(7)
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Table 8. Clustering accuracy (%) on 15-Scenes dataset

k 10 50 100 150 200

DML 33.9 36.5 40.1 37.0 37.8

DDML 46.9 51.3 46.2 46.5 49.6

Table 9. Normalized mutual information (%) on 15-Scenes dataset

k 10 50 100 150 200

DML 41.4 41.0 42.0 41.4 41.6

DDML 46.7 48.9 47.3 48.8 47.1

which can be optimized with subgradient method. Fixing g, the problem defined
over ˜A is

minÃ
1

|S|
∑

(x,y)∈S
‖diag(g) ˜A(x − y)‖2 − λΩ( ˜A)

+ 1
|D|

∑

(x,y)∈D
max(0, 1 − ‖diag(g) ˜A(x − y)‖2)

s.t. ‖ ˜Ai‖ = 1,∀i = 1, · · · , k

(8)

Since Ω( ˜A) is non-smooth and non-convex, (sub)gradient method is not applica-
ble. Xie et al [17] derived a smooth lower bound of Ω( ˜A) and instead optimized
the low bound with projected gradient descent. Please refer to [17] for details.

4 Experiments

In this section, on three tasks — retrieval, clustering and classification — we
corroborate that through diversification it is possible to learn distance metrics
that are both compact and effective.

4.1 Datasets

We used three datasets in the experiments: 20 Newsgroups2 (20-News), 15-Scenes
[9] and 6-Activities [1]. The 20-News dataset has 18846 documents from 20 cat-
egories, where 60% of the documents were for training and the rest were for
testing. Documents were represented with tfidf vectors whose dimensionality is
5000. We randomly generated 100K similar pairs and 100K dissimilar pairs from
the training set to learn distance metrics. Two documents were labeled as sim-
ilar if they belong to the same group and dissimilar otherwise. The 15-Scenes
dataset contains 4485 images belonging to 15 scene classes. 70% of the images
were used for training and 30% were for testing. Images were represented with
bag-of-words vectors whose dimensionality is 1000. Similar to 20-News, we gener-
ated 100K similar and 100K dissimilar data pairs for distance learning according
to whether two images are from the same scene class or not. The 6-Activities

2 http://qwone.com/∼jason/20Newsgroups/

http://qwone.com/~jason/20Newsgroups/
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Table 10. Clustering accuracy (%) on 6-Activities dataset

k 10 50 100 150 200

DML 75.0 75.6 76.1 75.6 75.7

DDML 94.9 96.3 96.6 95.1 95.7

Table 11. Normalized mutual information (%) on 6-Activities dataset

k 10 50 100 150 200

DML 83.6 83.5 84.0 83.5 83.5

DDML 90.3 91.9 91.3 91.4 91.1

dataset is built from recordings of 30 subjects performing six activities of daily
living while carrying a waist-mounted smart phone with embedded inertial sen-
sors. The features are 561-dimensional sensory signals. There are 7352 training
instances and 2947 testing instances. Similarly, 100K similar pairs and 100K dis-
similar pairs were generated to learn distance metrics. Table 1 summarizes the
statistics of these three datasets.

4.2 Experimental Settings

Our method DDML contains two key parameters — the number k of latent
factors and the tradeoff parameter λ — both of which were tuned using 5-fold
cross validation. We compared with 6 baseline methods, which were selected
according to their popularity and the state of the art performance. They are: (1)
Euclidean distance (EUC); (2) Distance Metric Learning (DML) [18]; (3) Large
Margin Nearest Neighbor (LMNN) metric learning [16]; (4) Information Theoret-
ical Metric Learning (ITML) [3]; (5) Distance Metric Learning with Eigenvalue
Optimization (DML-eig) [21]; (6) Information-theoretic Semi-supervised Met-
ric Learning via Entropy Regularization (Seraph) [11]. Parameters of the base-
line methods were tuned using 5-fold cross validation. Some methods, such as
ITML, achieve better performance on lower-dimensional representations which
are obtained via Principal Component Analysis. The number of leading principal
components were selected via 5-fold cross validation.

4.3 Retrieval

We first applied the learned distance metrics for retrieval. To evaluate the effec-
tiveness of the learned metrics, we randomly sampled 100K similar pairs and
100K dissimilar pairs from 20-News test set, 50K similar pairs and 50K dissim-
ilar pairs from 15-Scenes test set, 100K similar pairs and 100K dissimilar pairs
from 6-Activities test set and used the learned metrics to judge whether these
pairs were similar or dissimilar. If the distance was greater than some threshold t,
the pair was regarded as similar. Otherwise, the pair was regarded as dissimilar.
We used average precision (AP) to evaluate the retrieval performance.
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Table 12. Clustering accuracy (%) on three datasets

20-News 15-Scenes 6-Activities

EUC 36.5 29.0 61.6
DML [18] 28.4 40.1 76.1

LMNN [16] 32.9 33.6 56.9
ITML [3] 34.5 38.2 93.4

DML-eig [21] 27.3 26.6 63.3
Seraph [11] 48.1 48.2 74.8

DDML 44.6 51.3 96.6

Table 13. Normalized mutual information (%) on three datasets

20-News 15-Scenes 6-Activities

EUC 37.9 28.7 59.9
DML [18] 38.2 42.0 83.6

LMNN [16] 33.3 34.3 58.2
ITML [3] 39.2 41.5 87.0

DML-eig [21] 34.0 31.8 58.6
Seraph [11] 49.7 47.5 71.1

DDML 51.1 48.9 91.9

Table 2, 3 and 4 show the average precision under different number k of latent
factors on 20-News, 15-Scenes and 6-Activities dataset respectively. As shown in
these tables, DDML with a small k can achieve retrieval precision that is com-
parable to DML with a large k. For example, on the 20-News dataset (Table 2),
with 10 latent factors, DDML is able to achieve a precision of 76.7%, which can-
not be achieved by DML with even 900 latent factors. As another example, on
the 15-Scenes dataset (Table 3), the precision obtained by DDML with k = 10
is 82.4%, which is largely better than the 80.8% precision achieved by DML
with k = 200. Similar behavior is observed on the 6-Activities dataset (Table 4).
This demonstrates that, with diversification, DDML is able to learn a distance
metric that is as effective as (if not more effective than) DML, but is much more
compact than DML. Such a compact distance metric greatly facilitates retrieval
efficiency. Performing retrieval on 10-dimensional latent representations is much
easier than on representations with hundreds of dimensions. It is worth noting
that the retrieval efficiency gain comes without sacrificing the precision, which
allows one to perform fast and accurate retrieval. For DML, increasing k con-
sistently increases the precision, which corroborates that a larger k would make
the distance metric to be more expressive and powerful. However, k cannot be
arbitrarily large, otherwise the distance matrix would have too many parameters
that lead to overfitting. This is evidenced by how the precision of DDML varies
as k increases.

Table 5 presents the comparison with the state of the art distance metric
learning methods. As can be seen from this table, our method achieves the
best performances across all three datasets. The Euclidean distance does not
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Table 14. 3-NN accuracy (%) on 20-News dataset

k 10 100 300 500 700 900

DML 39.1 48.0 53.0 55.0 56.4 57.5

DDML 51.3 64.1 64.5 63.3 62.9 61.4

Table 15. 10-NN accuracy (%) on 20-News dataset

k 10 100 300 500 700 900

DML 39.4 49.4 54.3 56.2 57.9 58.6

DDML 54.2 66.6 66.8 66.1 65.3 64.5

Table 16. 3-NN accuracy (%) on 15-Scenes dataset

k 10 50 100 150 200

DML 47.7 47.7 50.8 51.7 51.1

DDML 57.4 57.5 57.9 58.8 57.3

Table 17. 10-NN accuracy (%) on 15-Scenes dataset

k 10 50 100 150 200

DML 51.6 51.7 54.0 54.4 54.9

DDML 59.2 60.9 60.5 60.6 59.6

incorporate distance supervision provided by human, thus its performance is
inferior. DML-eig imposes no regularization over the distance metric, which is
thus prone to overfitting. To avoid overfitting, ITML utilized a Bregman diver-
gence regularizer and Seraph used a sparsity regularizer. But the performances
of both regularizers are inferior to the diversity regularizer utilized by DDML.
LMNN is specifically designed for k-NN classification, thus the learned distance
metrics cannot guarantee to be effective in retrieval tasks.

4.4 Clustering

The second task we study is to apply the learned distance metrics for k-means
clustering, where the number of clusters was set to the number of categories in
each dataset and k-means was run 10 times with random initialization of the
centroids. Following [2], we used two metrics to measure the clustering perfor-
mance: accuracy (AC) and normalized mutual information (NMI). Please refer
to [2] for their definitions.

Table 6,8 and 10 show the clustering accuracy on 20-News, 15-Scenes and
6-Activity test set respectively under various number of latent factors k. Table 7,
9 and 11 show the normalized mutual information on 20-News, 15-Scenes and 6-
Activity test set respectively. These tables show that the clustering performance
achieved by DDML under a small k is much better than DML under a much
larger k. For instance, DDML can achieve 33.4% accuracy on the 20-News dataset
(Table 6) with 10 latent factors, which is much better than the 28.4% accuracy
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Table 18. 3-NN accuracy (%) on 6-Activities dataset

k 10 50 100 150 200

DML 94.9 94.8 94.6 95.1 95.0

DDML 94.3 96.2 96.5 95.5 95.9

Table 19. 10-NN accuracy (%) on 6-Activities dataset

10 50 100 150 200

DML 95.3 95.0 95.2 95.2 95.3

DDML 96.6 96.8 96.4 96.3 96.1

Table 20. 3-NN accuracy (%) on three datasets

20-News 15-Scenes 6-Activities

EUC 42.6 42.5 88.7
DML [18] 57.5 51.7 95.1

LMNN [16] 60.6 53.5 91.5
ITML [3] 50.9 51.9 93.5

DML-eig [21] 39.2 33.1 82.3
Seraph [11] 67.9 55.2 91.4

DDML 64.5 58.8 96.5

Table 21. 10-NN accuracy (%) on three datasets

k 20-News 15-Scenes 6-Activities

EUC 41.7 44.9 90.2
DML [18] 58.6 54.9 95.3

LMNN [16] 62.7 56.2 91.5
ITML [3] 54.8 54.3 94.0

DML-eig [21] 43.8 34.0 82.8
Seraph [11] 69.8 60.3 92.5

DDML 66.8 60.9 96.8

obtained by DML with 900 latent factors. As another example, the NMI obtained
by DDML on the 15-Scenes dataset (Table 9) with k = 10 is 46.7%, which
is largely better than the 41.6% NMI achieved by DML with k = 200. This
again corroborates that the diversity regularizer can enable DDML to learn
compact and effective distance metrics, which significantly reduce computational
complexity while preserving the clustering performance.

Table 12 and 13 present the comparison of DDML with the state of the
art methods on clustering accuracy and normalized mutual information. As can
be seen from these two tables, our method outperforms the baselines in most
cases except that the accuracy on 20-News dataset is worse than the Seraph
method. Seraph performs very well on 20-News and 15-Scenes dataset, but its
performance is bad on the 6-Activities dataset. DDML achieves consistently good
performances across all three datasets.
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Fig. 1. Sensitivity of DDML to the tradeoff parameter λ on (a) 20-News dataset (b)
15-Scenes dataset (c) 6-Activities dataset
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Fig. 2. Sensitivity of DDML to the number of latent factors k on (a) 20-News dataset
(b) 15-Scenes dataset (c) 6-Activities dataset

4.5 Classification

We also apply the learned metrics for k-nearest neighbor classification, which
is also an algorithm that largely depends on a good distance measure. For each
testing sample, we find its k-nearest neighbors in the training set and use the class
labels of the nearest neighbors to classify the test sample. Table 14, 16 and 18
show the 3-NN classification accuracy on the 20-News, 15-Scenes and 6-Activities
dataset. Table 15, 17 and 19 show the 10-NN classification accuracy on the 20-
News, 15-Scenes and 6-Activities dataset. Similar to retrieval and clustering,
DDML with a small k can achieve classification accuracy that is comparable to
or better than DML with a large k. Table 20 and 21 present the comparison
of DDML with the state of the art methods on 3-NN and 10-NN classification
accuracy. As can be seen from these two tables, our method outperforms the
baselines in most cases except that the accuracy on 20-News dataset is worse
than the Seraph method.

4.6 Sensitivity to Parameters

We study the sensitivity of DDML to the two key parameters: tradeoff parameter
λ and the number of latent factors k. Figure 1 shows how the retrieval average
precision (AP) varies as λ increases on the 20-News, 15-Scenes and 6-Activities
dataset respectively. The curves correspond to different k. As can be seen from
the figure, initially increasing λ improves AP. The reason is that a larger λ
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encourages the latent factors to be more uncorrelated, thus different aspects of
the information can be captured more comprehensively. However, continuing to
increase λ degrades the precision. This is because if λ is too large, the diver-
sify regularizer dominates the distance loss and the resultant distance metric
is not tailored to the distance supervision and loses effectiveness in measuring
distances.

Figure 2 shows how AP varies as k increases on the 20-News, 15-Scenes and
6-Activities dataset respectively. The curves correspond to different λ. When k
is small, the average precision is low. This is because a small amount of latent
factors are insufficient to capture the inherent complex pattern behind data,
hence lacking the capability to effectively measure distances. As k increases, the
model capacity increases and the AP increases accordingly. However, further
increasing k causes performance to drop. This is because a larger k incurs higher
risk of overfitting to training data.

5 Conclusions

In this paper, we study the problem of diversifying distance metric learning,
with the purpose to learn compact distance metrics without losing their effec-
tiveness in measuring distances. Diversification encourages the latent factors in
the distance metric to be different from each other, thus each latent factor is
able to capture some unique information that is hard to be captured by other
factors. Accordingly, the number of latent factors required to capture the total
information can be greatly reduced. Experiments on retrieval, clustering and
classification corroborate the effectiveness of the diversity regularizer in learning
compact and effective distance metrics.
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Abstract. We present a general formulation of metric learning for co-
embedding, where the goal is to relate objects from different sets. The
framework allows metric learning to be applied to a wide range of
problems—including link prediction, relation learning, multi-label tag-
ging and ranking—while allowing training to be reformulated as con-
vex optimization. For training we provide a fast iterative algorithm
that improves the scalability of existing metric learning approaches.
Empirically, we demonstrate that the proposed method converges to a
global optimum efficiently, and achieves competitive results in a variety
of co-embedding problems such as multi-label classification and multi-
relational prediction.

1 Introduction

The goal of metric learning is to learn a distance function that is tuned to a target
task. For example, a useful distance between person images would be significantly
different when the task is pose estimation versus identity verification. Since
many machine learning algorithms rely on distances, metric learning provides
an important alternative to hand-crafting a distance function for specific prob-
lems. For a single modality, metric learning has been well explored (Xing et al.
2002; Globerson and Roweis 2005; Davis et al. 2007; Weinberger and Saul 2008,
2009; Jain et al. 2012). However, for multi-modal data, such as comparing text
and images, metric learning has been less explored, consisting primarily of a slow
semi-definite programming approach (Zhang et al. 2011) and local alternating
descent approaches (Xie and Xing 2013).

Concurrently, there is a growing literature that tackles co-embedding prob-
lems, where multiple sets or modalities are embedded into a common space to
improve prediction performance, reveal relationships and enable zero-shot learn-
ing. Current approaches to these problems are mainly based on deep neural
networks (Ngiam et al. 2011; Srivastava and Salakhutdinov 2012; Socher et al.
2013a, b; Frome et al. 2013) and simpler non-convex objectives (Chopra et al.
2005; Larochelle et al. 2008; Weston et al. 2010; Cheng 2013; Akata et al. 2013).
Unlike metric learning, the focus of this previous work has been on exploring
heterogeneous data, but without global optimization techniques. This disconnect
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appears to be unnecessary however, since the standard association scores used
for co-embedding are related to a Euclidean metric.

In this paper, we demonstrate that co-embedding can be cast as metric
learning. Once formalized, this connection allows metric learning methods to
be applied to a wider class of problems, including link prediction, multi-label
and multi-class tagging, and ranking. Previous formulations of co-embedding
as metric learning were either non-convex (Zhai et al. 2013; Duan et al. 2012),
introduced approximation (Akata et al. 2013; Huang et al. 2014), dropped posi-
tive semi-definiteness (Chechik et al. 2009; Kulis et al. 2011), or required all data
to share the same dimensionality (Garreau et al. 2014). Instead, we provide a
convex formulation applicable to heterogeneous data.

Once the general framework has been established, the paper then investi-
gates optimization strategies for metric learning that guarantee convergence to
a global optimum. Although many metric learning approaches have been based
on convex formulations, these typically introduce a semi-definite constraint over
a matrix variable, C � 0, which hampers scalability. An alternative approach
that has been gaining popularity has been to work with a low-rank factoriza-
tion Q that implicitly maintains positive semi-definiteness through C = QQ′

(Burer and Monteiro 2003). This approach allows one to optimize over smaller
matrices while avoiding the semi-definite constraint. Recently, Journée et al.
(2010) proved that if Q has more columns than the globally optimal rank, a
locally optimal Q∗ provides a global solution C∗ = Q∗Q∗′, provided that the
objective is smooth and convex in C. This result is often neglected in the metric
learning literature. However, by using this result, we are able to develop a fast
approach to metric learning that improves previous approaches (Journée et al.
2010; Zhang et al. 2012).

The paper then concludes with an empirical investigation of a metric learn-
ing task and two co-embedding tasks: multi-label classification and tagging. We
demonstrate that the diversity of local minima contracts rapidly in these prob-
lems and that local solutions approach global optimality well before the true
rank is attained.

2 Metric Learning

The goal of metric learning is to learn a distance function between data instances
that helps solve prediction problems. To obtain task-specific distances without
extensive manual design, supervised metric learning formulations attempt to
exploit task-specific information to guide the learning process. For example, to
recognize individual people in images a distance function needs to emphasize
certain distinguishing features (such as hair color, etc.), whereas to recognize
person-independent facial expressions in the same data, different features should
be emphasized (such as mouth shape, etc.).

Suppose one has a sample of t observations, xi ∈ X , and a feature map
φ : X →R

n. Then a training matrix φ(X) = [φ(x1), . . . , φ(xt)] ∈ R
n×t can be
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obtained by applying φ to each of the original data points.1 A natural distance
function between points x1, x2 ∈ X can then be given by a Mahalanobis distance
over the feature space

dC(x1,x2) = (φ(x1) − φ(x2))′C(φ(x1) − φ(x2)) (1)

specified by some positive semi-definite inverse covariance matrix C ∈ C ⊂ R
n×n.

Although an inverse covariance in this form can be learned in an unsupervised
manner, there is often side information that should influence the learning. As
a general framework, Kulis (2013) unifies metric learning problems as learning
a positive semi-definite matrix C that minimizes a sum of loss functions plus a
regularizer:2

min
C�0,C∈C

∑

i

Li(φ(X)′Cφ(X)) + β reg(C). (2)

For example, in large margin nearest neighbor learning, one might want to min-
imize

L(φ(X)′Cφ(X)) =
∑

(i,j)∈S
dC(xi,xj) +

∑

(i,j,k)∈R
[1 + dC(xi,xj) − dC(xi,xk)]+

where S is a set of “should link” pairs, and R provides a set of triples (i, j, k)
specifying that if (i, j) ∈ S then xk should have a different label than xi.

Although supervised metric learning has typically been used for classification,
it can also be applied to other settings where distances between data points are
useful, such as for kernel regression or ranking. Interestingly, the applicability of
metric learning can be extended well beyond the framework (2) by additionally
observing that co-embedding elements from different sets can also be expressed
as a joint metric learning problem.

3 Co-embedding as Metric Learning

Co-embedding considers the problem of mapping elements from distinct sets
into a common (low dimensional) Euclidean space. Once so embedded, simple
Euclidean proximity can be used to determine associations between elements
from different sets. This idea underlies many useful formulations in machine
learning. For example, in retrieval and recommendation, Bordes et al. (2014) use
co-embedding of questions and answers to rank appropriate answers to a query,
and Yamanishi (2008) embeds nodes of a heterogeneous graph for link prediction.
In natural language processing, Globerson et al. (2007) embed documents, words
and authors for semantic document analysis, while Bordes et al. (2012) embed
words and senses for word sense disambiguation.

1 Throughout the paper we extend functions R → R to vectors or matrices element-
wise.

2 Kulis (2013) equivalently places the trade-off parameter on the loss rather than the
regularizer.
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Despite the diversity of these formulations, we show that co-embedding can
be unified in a simple metric learning framework. Such a unification is inspired
by (Mirzazadeh et al. 2014), who proposed a general framework for bi-linear co-
embedding models but did not investigate the extension to metric learning. Here
we develop a full formulation of co-embedding as metric learning and develop
algorithmic advances.

Input layer

Embedding layer

Co-embedding layer

Output layer

targetd(x,y)

t1(x)

t2(y)

...

...

...

...

φ(x)1
φ(x)2

φ(x)n

ψ(y)1
ψ(y)2

ψ(y)m

U

V

...

...

u0

v0

Fig. 1. A neural network view of co-embedding

For co-embedding, assume we are given two sets of data objects X and Y with
feature maps φ(x) ∈ R

n and ψ(y) ∈ R
m respectively. Without loss of generality,

we assume that the number of samples from Y, ty, is no more than t, the number
of samples from X ; that is, ty ≤ t. The goal is to map the elements x ∈ X and
y ∈ Y from each set into a common Euclidean space.3

A standard approach is to consider linear maps into a common d dimensional
space where U ∈R

d×n and V ∈R
d×m are parameters. To provide decision thresh-

olds two dummy items can also be embedded from each space, parameterized by
u0 and v0 respectively. Figure 1 depicts this standard co-embedding set-up as
a neural network, where the trainable parameters, U , V , u0 and v0, are in the
first layer. The inputs to the network are the feature representations φ(x)∈R

n

and ψ(y)∈R
m. The first hidden layer, the embedding layer, linearly maps input

to embeddings in a common d dimensional space via:

u(x) = Uφ(x), �(y) = V ψ(y).

The second hidden layer, the co-embedding layer, computes the distance func-
tion between embeddings, d(x,y), and decision thresholds, t1(x) and t2(y):

d(x,y) = ‖u(x) −�(y)‖2, t1(x) = ‖u(x) − u0‖2, t2(y) = ‖�(y) − v0‖2. (3)

The output layer nonlinearly combines the association scores and thresholds
to predict targets. For example, in a multi-label classification problem, given
an element x ∈ X , its association to each y ∈ Y can be determined via:

3 The extension to more than two sets can be achieved by considering tensor repre-
sentations.
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label(y|x) = sign(t1(x)−d(x,y)). Alternatively, in a symmetric (i.e. undirected)
link prediction problem, the association between a pair of elements x∈X , y∈Y
can be determined by label(x,y) = sign(min(t1(x), t2(y)) − d(x,y)), and so on.

Although the relationship to metric learning might not be obvious, it is useful
to observe that the quantities in (3) can be expressed in terms of underlying
covariances:

d(x,y) =
[

φ(x)
−ψ(y)

]′ [
U ′U U ′V
V ′U V ′V

] [

φ(x)
−ψ(y)

]

=
[

φ(x)
−ψ(y)

]′
C1

[

φ(x)
−ψ(y)

]

t1(x) =
[

φ(x)
−1

]′ [
U ′U U ′u0

u′
0U u′

0u0

] [

φ(x)
−1

]

=
[

φ(x)
−1

]′
C2

[

φ(x)
−1

]

t2(y) =
[

ψ(y)
−1

]′ [
V ′V V ′v0

v′
0V v′

0v0

] [

ψ(y)
−1

]

=
[

ψ(y)
−1

]′
C3

[

ψ(y)
−1

]

where C1, C2 and C3 are symmetric positive semi-definite matrices.
Although our previous work on bi-linear coembedding (Mirzazadeh et al.

2014) did not suggest embedding the thresholds, these turn out to be essen-
tial. In fact, to ensure the construction of a common metric space where the
inverse covariances are mutually consistent (but without introducing auxiliary
equality constraints), one must merge C1, C2 and C3 into a common inverse
covariance matrix, C ∈ R

p×p, p = n + m + 2, via:

C =
[

U V u0 v0

]′ [
U V u0 v0

]

(4)

From (4), the distance functions d, t1 and t2, can then be expressed by

d(x,y) = [φ(x), −ψ(y), 0, 0] C [φ(x), −ψ(y), 0, 0]′

t1(x) = [φ(x), 0, −1, 0] C [φ(x), 0, −1, 0]′ (5)
t2(y) = [0, −ψ(y), 0, −1] C [0, −ψ(y), 0, −1]′.

This yields a novel distance function representation with mutually consistent
thresholds.

Finally, based on this new representation, we can extend the general frame-
work (2) to encompass co-embedding in a novel formulation. Let Y ∈ R

ty×m

denote the data matrix from the Y space and let ̂ψ(Y ) ∈ R
t×m denote a

zero-padded version of ψ(Y ); that is, a matrix whose top ty × m block is
ψ(Y ) with the remaining t − ty rows being all zero. Then, defining f(X,Y ) =
[φ(X)′,− ̂ψ(Y )′,−1,−1]′ ∈ R

t×(n+m+2), where 1 denotes an all-one vector (of
dimension t in this case), we propose to find C by solving

min
C∈Rp×p,C�0

∑

i

Li(f(X,Y )′ C f(X,Y )) + β reg(C) . (6)

Duan et al. (2012) developed a similar algorithm for domain adaptation, which
learned a matrix C � 0 instead of U and V ; however, they approached a less
general setting, which, for example, did not include thresholds nor general losses.
Furthermore, their formulation leads to a non-convex optimization problem.
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Regularization. Regularization is also an important consideration since the
risk of over-fitting is ever present. We focus on the most widely used regular-
izer, the Frobenius norm, which if applied to the factors yields the trace norm
regularizer on C:

‖U‖2F + ‖V ‖2F + ‖u0‖2F + ‖v0‖2F = tr(C) = ‖C‖tr.

The trace norm (aka nuclear norm) is the sum of the singular values of C. This is
a common choice for metric learning since it is the tightest convex lower bound to
the rank of a matrix, a widely desired objective for compact learned models and
generalization. Moreover, for metric learning, since we have the constraint C � 0,
the trace norm simplifies to ‖C‖tr = tr(C), which allows efficient optimization.

4 Algorithm

Given the formulation (6), we consider how to efficiently solve it. First note that
the objective can be written, using L(C) =

∑

i Li(f(X,Y )′Cf(X,Y )), as

min
C∈Rp×p,C�0

f(C) where f(C) = L(C) + β tr(C). (7)

One way to encode the semi-definite constraint is via a change of variable C =
QQ′:

min
Q∈Rp×d

f(QQ′) = min
Q∈Rp×d

L(QQ′) + β tr(QQ′). (8)

This optimization, however, becomes non-convex in Q. Recently, how-
ever, Journée et al. (2010) showed that local optimization of a related trace
constrained problem attains global solutions for rank-deficient local minima
Q ∈ R

p×d; that is, if Q is a local minimum of (8) with rank(Q) < d, then QQ′ is
a global optimum of (7). In what follows, C∗ will denote an optimum of (7) and
d∗ its rank. Although we have inequality rather than equality constraints, the
proof follows easily for our case using the techniques developed in (Bach et al.
2008; Journée et al. 2010; Haeffele et al. 2014), and is an easy consequence of
the following, more general result.

Proposition 1. Consider a local solution of (8), yielding a Q such that
∇L(QQ′)Q + βQ = 0. Let u1, ...,uk be the eigenvectors corresponding to the
top k positive eigenvalues λ1, ..., λk of −∇L(C) − βI. Then, if C is not a solu-
tion to (7), it follows that

1. k > 0
2. u1, ...,uk are orthogonal to Q, yielding Qk = [Q u1 ... uk] such that Ck =

QkQ′
k = C +

∑k
i=1 uiu′

i satisfies rank(Ck) = rank(C) + k; and
3. the descent direction

∑

i=1 uiu′
i is the solution to

argmin
‖ui‖≤1,i=1,...,k

u′
iuj=0,i 	=j, ui 	=0

〈

− ∇L(C) − βI,
∑k

i=1 uiu′
i

〉

. (9)
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Proof. Part 1: First, form the Lagrangian of (7), given by L(C) + β tr(C) −
tr(SC) with S � 0, and consider the KKT conditions:

S = ∇L(C) + βI, S � 0, C � 0, SC = 0. (10)

The problem is strictly feasible, since C = I is a strictly feasible point; therefore,
Slater’s condition holds and (10) is sufficient for optimality. Consequently, an
optimal solution is reached when −S 	 0; that is, the largest eigenvalue of
−∇L(C) − βI is negative or zero. We assumed that C is not optimal, therefore
k > 0.
Part 2: We know that 0 = ∇L(QQ′)Q+βQ = SQ. Therefore, either S = 0, in
which case we are at a global minimum (which we assumed was not the case) or
S is orthogonal to Q. It follows that −λiu′

iQ = (u′
iS

′)Q = u′
i(S

′Q) = u′
i0 = 0

since ui is an eigenvector of S and S is symmetric.
Part 3: To optimize the inner product (9), introduce Lagrange multipliers
ξi > 0 for the norm constraints. Since −S is symmetric, we can re-express the
inner objective as

argmin
u1,...,uk

u′
iuj=0,i 	=j, ui 	=0

∑

i

u′
i(−S)′ui −

∑

i

ξiu′
iui.

Considering the gradients yields ∂
∂ui

= −Sui − 2ξiui = 0, which implies
(−S)ui = 2ξiui; that is ui is an eigenvector of −S corresponding to eigen-
value λi = 2ξi > 0. 
�

Corollary 1. Let Q ∈ R
p×d. If (i) Q is a local minimum of f(QQ′) with

rank(Q) < d or (ii) Q is a critical point of f(QQ′) with rank(Q) = p, then QQ′

is a solution of (7).

Proof. First assume condition (i) holds and argue by contradiction. Assume
QQ′ is not a global optimum of (7), and let u1 ∈ R

p be as defined as in Proposi-
tion 1. Then, f(QQ′ + βu1u′

1) < f(QQ′) for a sufficiently small β > 0. Further-
more, since rank(Q) < d, there exists an orthogonal matrix V ∈ R

d×d such that
QV has a zero column. Let ̂Qα be the matrix obtained from QV by replacing
this zero column by αu1, α =

√
β. Then limα→0

̂QαV ′ = QV V ′ = Q. More-
over, since u1 is orthogonal to the columns of Q, it is also orthogonal to the
columns of QV , so ̂QαV ( ̂QαV )′ = QV (QV )′ + α2u1u′

1 = QQ′ + βu1u′
1. There-

fore, f( ̂Qα
̂Q′

α) = f(QQ′ + βu1u′
1) < f(QQ′) for Qα ∈ R

p×d, hence Q is not a
local optimum of f .

Next assume (ii). Since Q is a critical point of f(QQ′), ∇f(QQ′)Q = 0.
Since Q has rank p, the null-space of ∇f(QQ′) is of dimension p, yielding that
∇f(QQ′) = 0. Since QQ′ � 0 and f is convex, C = QQ′ is an optimum of
(7). 
�

To efficiently solve (7), we therefore propose the Iterative Local Algorithm
(ILA) shown in Algorithm 1. ILA iteratively adds multiple columns to an initially
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Algorithm 1 Iterative local algorithm (ILA)
1: Input: L : C → R, β > 0
2: Output: Q, such that QQ′ = minC:C�0 L(C) + β tr(C)
3: Q ← 0, k ← 1, ε ← 10−6 � Note L(QQ′) + tr(QQ′) is evaluable without forming

QQ′

4: while not converged do
5: {u1, ...,uj} ← up-to-k-top-positive-eigenvectors(−∇L(QQ′) − βI)
6: {λ1, ..., λj} ← up-to-k-top-positive-eigenvalues(−∇L(QQ′) − βI)
7: if k = 0 or λ1 ≤ ε then break � converged

8: k ← j
9: U ←∑i uiu

′
i

10: (a, b) ← argmin
a≥0,b≥0

L(aQQ′ + bU) + βa tr(QQ′) + βbk � Line search

11: Qinit ← [
√

aQ,
√

bu1, ...,
√

buk] � Start local optimization from Qinit

12: Q ← locally optimize(Qinit, L(QQ′) + β tr(QQ′))
13: k ← 2k
14: return C = QQ′

empty Q and performs a local optimization over Q ∈ R
p×d until convergence.

The main advantage of this approach over simply setting d = p is that good ini-
tial points are generated, and if d∗  p, then incrementally growing d optimizes
over much smaller Q variables. Furthermore, one hopes that when the number
of columns d of Qinit is at least d∗, ILA finds the global optimum. In particular,
if the local optimizer in line 12 of ILA always returns a local optimum whose
rank is smaller than d if d > d∗ (we call this a nice local optimizer), then the
optimality of a rank-deficient local minimum implies that ILA finds the global
optimum when d > d∗. While in theory we cannot guarantee such a behavior of
the local algorithm, it always happened in our experiments, similarly to what
was reported in earlier work (Journée et al. 2010; Haeffele et al. 2014).

The main novelty of ILA over previous approaches is in the initialization
and expansion of columns in Q, which reduces the number of iterations from
d∗ to O(log d∗) for nice local optimizers. In particular, motivated by Proposi-
tion 1, to generate the candidate columns, ILA uses eigenvectors corresponding
to the top k positive eigenvalues of −∇L(C) − βI capped at 2i−1 columns on
the ith iteration. Such an exponential search quickly covers the space of possible
d, even when d∗ is large, while still initially optimizing over smaller Q matrices.
This approach can be significantly faster than the typical single column incre-
ment (Journée et al. 2010; Zhang et al. 2012), whose complexity typically grows
linearly with d∗.4

Compared to earlier work, there are also small differences in the optimization:
Zhang et al. (2012) do not constrain C to be positive semi-definite. Journée et al.
(2010) assume an equality constraint on the trace of C; their Lagrange variable
(i.e., regularization parameter) can therefore be negative. Finally, ILA more effi-

4 One can create problems where adding single columns improves performance, but we
observe in our experiments that the proposed approach is more effective in practice.
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ciently exploits the local algorithm. The convergence analysis of Zhang et al.
(2012) does not include local training. In practice, we find that solely using
boosting (with the top eigenvector as the weak learner) without local optimiza-
tion, results in much slower convergence.

Corollary 1 implies ILA solves (7) when the local optimizer avoids saddle
points.

Corollary 2. Suppose the local optimizer always finds a local optimum, where
d is the number of columns in Q. Then ILA stops with a solution to (7) in line 12
with rank(Q)<d or d=p. If, in addition, the local optimizer is nice, this happens
for d>d∗.

Due to the exponential search in ILA, the algorithm stops in essentially at
most log(p) iterations when the local optimizer avoids saddle points, and in
about log(d∗) iterations for nice local optimizers. However, ILA can potentially
be slower if there are not enough eigenvectors to add in a given iteration; i.e.,
j < k in line 5.

Similarly to (Journée et al. 2010; Zhang et al. 2012; Haeffele et al. 2014) we
have found that the local optimizer always returns local minima in practice.
However, all of these search-based algorithms risk strange behavior if the local
optimizer returns saddle points. Note that even in this case, if d reaches p in any
iteration, ILA finds an optimum by Corollary 1. However, there is no guarantee
that the rank of Q is not reduced in the local optimization step. If this happens
and Q is a local optimum, QQ′ is optimal by Corollary 1 and the algorithm
halts. Unfortunately, this is not the only possibility: in every iteration of ILA
we obtain Qinit by increasing the rank of the previous Q, but the ranks might
be subsequently reduced during the local optimization step. This creates the
potential for a loop where rank(Q) never reaches p.

Such potential effects of saddle points have not been considered in previous
papers. However, we close this section by showing that ILA is still consistent
under mild technical conditions on L, even if the local optimizer can get trapped
in saddle points.

Proposition 2. Suppose that f is ν-smooth; that is, ‖∇f(C+S)−∇f(C)‖tr ≤
νρ(S) for all C, S ∈ R

p×p, C, S � 0 and some ν ≥ 0, where ρ(S) denotes the
spectral norm of S. Assume furthermore, for simplicity, that L(C) ≥ 0 for all
C � 0. If the local optimizer in line 12 always returns a Q such that ∇f(QQ′)Q =
0, then QQ′ in ILA converges to the globally optimal solution of (7).

Proof. Let Qm and Um denote the matrix Q and U in ILA when line 10 is exe-
cuted the mth time, and let Qinit,m denote Qinit obtained from Qm. Note that
Qinit,m =

√
aQm+

√
bUm and Qm+1 is obtained from Qinit,m via local optimiza-

tion in line 12. Furthermore, let Cm = QmQ′
m and Cinit,m = Qinit,mQ′

init,m =
amCm + bmUmU ′

m.
If Cm is not a global optimum of (7), then f(Cinit,m) < f(Cm) by Propo-

sition 1. Furthermore, we assume that the local optimizer in line 12 can-
not increase the function value f of Cinit,m, hence f(Cm+1) ≤ f(Cinit,m),
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and consequently f(Cm+1) < f(Cm). Note that since L(Cm) ≥ 0, we have
‖Qm‖F = tr(Cm) ≤ f(C0), thus the entries of Cm are uniformly bounded for all
m. Therefore, (Cm)m has a convergent subsequence, and denote its limit point
by ̂C. We will show that ̂C is an optimal solution of (7) by verifying the KKT
conditions (10) with S = ∇f( ̂C). First notice that ̂C is positive semi-definite,
∇f( ̂C) ̂C = 0 by continuity since ∇f(Cm)Cm = ∇f(QQ′)QQ′ = 0. Thus, we
only need to verify that ∇f( ̂C) is positive semi-definite.

To show the latter, we first apply Lemma 1 (provided in the appendix) to
obtain a lower bound ILA’s progress:

f(Cm+1) ≤ f(Cinit,m+1) = f(aCm + bUmU ′
m) ≤ f(Cm + b̂UmU ′

m)

≤ f(Cm) + tr((b̂UmU ′
m)′∇f(Cm)) +

ν

2
ρ(b̂UmU ′

m)2

= f(Cm) + tr(b̂U ′
m∇f(Cm)Um) +

νb̂2

2
(11)

for any b̂ ≥ 0, where the last equality holds since UmU ′
m has km eigenvalues

equal 1, and p − km equal 0, where km denotes the number of columns of Um.
Now consider

b̂ = − tr(U ′
m∇f(Cm)Um)

ν
=

tr(U ′
mΛmUm)

ν
=

1
ν

km
∑

i=1

λm,i,

where λ1 ≥ · · · ≥ λkm
> 0 are the eigenvalues of −∇f(Cm), and Λm

is the diagonal matrix of the eigenvalues padded with p − mk zeros. Then
tr(b̂U ′

m∇f(Cm)Um) = −νb̂2, hence (11) yields

f(Cm) − f(Cm+1) ≥ ν

2
b̂2 =

1
ν

(

km
∑

i=1

λm,i

)2

≥
λ2

m,1

2ν
.

By our assumptions, f(C0) ≥ 0, and so using the monotonicity of f(Cm), we
have

f(C0) ≥ lim
m→∞

f(C0) − f(Cm+1) = lim
m→∞

m
∑

i=0

f(Ci) − f(Ci+1) ≥ 1
2ν

∞
∑

m=0

λ2
m,1.

Therefore, limm→∞ λm,1 = 0. Thus, by continuity, −∇f( ̂C) has no positive
eigenvalues, implying that ∇f( ̂C) is positive semi-definite, concluding the proof.


�

5 Empirical Computational Complexity

To compare the exponential versus linear rank expansion strategies for ILA we
first consider a standard metric learning problem. In this experiment to control
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Fig. 2. Comparing the run time in minutes (y-axis) of linear versus exponential strate-
gies in ILA as data dimension (x-axis) is increased. Left shows t = 250, middle shows
t = 1000, and right shows t = 2000.

the rank of the solution, we generated synthetic data X ∈ R
n×t from a standard

normal distribution, systematically increasing the data dimension from n = 1 to
n = 1000 and increasing the sample sizes from t = 250 to t = 2000. The training
objective was set to

min
C�0

‖X ′X − X ′CX‖2F + β tr(C) (12)

with a regularization parameter β = 0.5.
Figure 2 compares the run times of the linear versus exponential expansion

strategies, both of which optimize over Q of increasing width rather than C =
QQ′. Both methods used the same local optimizer but differed in how many new
columns were generated for Q in ILA Line 8. For the smaller sample size t = 250,
the exponential search already demonstrates an advantage as data dimension is
increased. However, for larger sample sizes, the advantage of the exponential
approach becomes even more pronounced. In this case, when n is increased from
0 to 1000 the run time of the linear expansion strategy goes from being about
the same as of the exponential strategy to much slower. The trend indicates that
the exponential search becomes more useful as the data dimension and number
of samples increases.

6 Case Study: Multi-label Classification

Next, we evaluated ILA on a challenging problem setting—multi-label
classification—with real data. In this setting one can view the labels themselves
as objects to be co-embedded with data instances; given such an embedding, the
multi-label classification of an input instance x can be determined by compar-
ing the distance of its embedding to the embedded locations of each label. In
particular, given a feature representation φ(x) ∈ R

n for data instances x ∈ X ,
we introduce a simple indicator feature map ψ(y) ∈ R

m over y ∈ Y, which
specifies a vector of all zeros with a single 1 in the entry corresponding to label
y. From a co-embedding perspective, the training problem then becomes to map
the feature representations of both the input instances x ∈ X and target labels
y ∈ Y into a common Euclidean space.
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Based on this observation, we can then cast multi-label learning as an equiv-
alent metric learning problem where one learns the inverse covariance C. Fol-
lowing the development in Section 3 (but here not using the threshold for y
since it is not needed), the co-embedding parameters U , V and u0 can first be
combined into a joint matrix Q =

[

U, V, u0

]

∈ R
p×d, where p = n + m + 1.

Then, as in (4), the co-embedding problem of optimizing U , V and u0 can be
equivalently expressed as a metric learning problem of optimizing the inverse
covariance C = QQ′ ∈ R

p×p.

Training Objective. To develop a novel metric learning based approach to
multi-label classification, we adopt a standard training loss that encourages
small distances between an instance’s embedding and the embeddings of its
associated labels while encouraging large distances to embeddings of disassoci-
ated labels. In particular, we investigate the convex large margin loss suggested
by Mirzazadeh et al. (2014) which was reported to yield good performance for
multi-label classification (in a bilinear co-embedding model but not a metric
learning model):

min
C�0

β tr(C)+
∑

x∈X

[

sftmx
y∈Y(x)

h̃(dC(x,y)−tC(x))+ sftmx
ȳ∈Ȳ(x)

h̃(tC(x)−dC(x, ȳ))
]

(13)

where sftmxy∈Y(zy) = ln
∑

y∈Y exp(zy), tC(x) = [φ(x), 0, −1] C [φ(x), 0, −1]′,
dC(x,y) = [φ(x), −ψ(y), 0] C [φ(x), −ψ(y), 0]′ and h̃(z) = (2 + z)2+/4 if
0 ≤ z ≤ 2; (1 + z)+ otherwise. Here we are using Y(x) ⊂ Y to denote the
subset of labels associated with x, and Ȳ(x) ⊂ Y to denote the subset of labels
disassociated with x.

Note that in (13) we also use Frobenius norm regularization on the co-
embedding parameters U , V and u0, which was shown in Section 3 to yield trace
regularization of C: ‖U‖2F +‖V ‖2F +‖u0‖22 = tr(U ′U)+tr(V ′V )+u′

0u0 = tr(C).

Table 1. Data properties for multi-
label experiments. 1000 used for train-
ing and the rest for testing (2/3-1/3
split for Emotion).

Data set examples features labels

Emotion 593 72 6
Scene 2407 294 6
Yeast 2417 103 14
Mediamill 3000 120 30
Corel5K 4609 499 30

Results. We investigate the behav-
ior of ILA on five widely used multi-
label classification data sets, summa-
rized in Table 1. To establish the suit-
ability of metric learning for multi-label
classification, we evaluated test perfor-
mance using three commonly used cri-
teria for multi-label classification: Ham-
ming score (Table 2), micro averaged
F1 measure (Table 3) and macro aver-
aged F1 measure (Table 4). Here β
was chosen by cross-validation over
{1, 0.5, 0.1, 0.05, 0.01, 0.005}. We compared the performance of the proposed app-
roach against six standard competitors: BR(SMO), an independent SVM clas-
sifiers for each label (Platt 1998); BR(LOG), an independent logistic regression
(LOG) classifiers for each label (Hastie et al. 2009); CLR(SMO) and CLR(LOG),
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the calibrated pairwise label ranking method of Fürnkranz et al. (2008) with
SVM and LOG, respectively; and CC(SMO) and CC(LOG), a chain of SVM
classifiers and a chain of logistic regression classifiers for multi-label classifica-
tion by Read et al. (2011). The results in Tables 2–4 are averaged over 10 splits
and demonstrate comparable performance to the best competitors consistently
in all three criteria for all data sets.

Table 2. Comparison of ILA with competitors in terms of Hamming score.

BR(SMO) BR(LOG) CLR(SMO) CLR(LOG) CC(SMO) CC(LOG) ILA

Emotion 80.9 ±1.0 77.1 ±1.2 79.9 ±0.7 76.0 ±1.4 79.0 ±0.9 75.2 ±1.1 80.2 ±0.8
Scene 88.7 ±0.4 81.9 ±0.6 89.7 ±0.3 85.7 ±0.4 88.9 ±0.4 80.9 ±0.4 88.0 ±0.5
Yeast 79.8 ±0.2 77.0 ±0.2 77.2 ±0.2 75.3 ±0.3 78.9 ±0.5 76.0 ±0.2 78.9 ±0.3
Mediamill 90.3 ±0.1 87.4 ±0.2 87.8 ±0.1 87.7 ±0.1 89.9 ±0.1 86.3 ±0.3 90.4 ±0.5
Corel5K 89.8 ±0.1 88.5 ±0.2 88.8 ±0.1 88.0 ±0.1 89.6 ±0.1 83.1 ±0.4 87.8 ±0.4

Table 3. Comparison of ILA with competitors in terms of Micro F1.

BR(SMO) BR(LOG) CLR(SMO) CLR(LOG) CC(SMO) CC(LOG) ILA

Emotion 66.3 ±2.3 63.2 ±1.8 70.1 ± 1.2 64.5 ± 2.1 65.9 ± 1.8 60.3 ± 1.9 65.9 ± 1.3
Scene 66.8 ±1.0 49.5 ±1.5 72.2 ± 0.7 61.8 ± 1.3 68.8 ± 1.1 50.1 ± 1.1 65.9 ± 0.8
Yeast 63.2 ±0.3 62.0 ±0.4 65.0 ± 0.3 61.9 ± 0.4 63.7 ± 0.8 60.0 ± 0.4 62.4 ± 0.5
Mediamill 55.4 ±0.5 55.1 ±0.6 59.7 ± 0.4 58.7 ± 0.4 50.7 ± 0.9 53.1 ± 0.7 58.0 ± 0.7
Corel5K 21.9 ±0.7 17.4 ±0.5 27.6 ± 0.4 26.3 ± 0.5 21.9 ± 0.5 16.7 ± 0.6 21.9 ± 0.6

Table 4. Comparison of ILA with competitors in terms of Macro F1.

BR(SMO) BR(LOG) CLR(SMO) CLR(LOG) CC(SMO) CC(LOG) ILA

Emotion 62.3 ±3.1 62.0 ±1.9 69.0 ±1.0 63.8 ±2.0 64.3 ±1.8 59.3 ±2.0 64.4 ±1.4
Scene 67.6 ±0.9 50.6 ±1.6 73.3 ±0.6 63.3 ±1.3 69.8 ±1.0 50.9 ±1.0 66.8 ±0.9
Yeast 32.9 ±0.7 41.9 ±0.8 40.3 ±0.6 42.6 ±0.7 35.1 ±0.4 40.4 ±0.4 37.8 ±0.8
Mediamill 10.0 ±0.4 29.9 ±0.7 21.4 ±0.7 31.7 ±0.8 8.9 ±1.0 29.5 ±0.8 16.2 ±0.9
Corel5K 17.8 ±0.4 11.6 ±0.4 21.4 ±0.5 22.0 ±0.5 17.6 ±0.5 14.4 ±0.6 17.8 ±0.6

Next, to also investigate the properties of the local optima achieved we ran
local optimization from 1000 random initializations of Q at successive values
for d, using β = 1. The values of the local optima we observed are plotted in
Figure 3 as a function of d.5 As expected, the local optimizer always achieves
the globally optimal value when d ≥ d∗. Interestingly, for d < d∗ we see that the
initially wide diversity of local optimum values contracts quickly to a singleton,
with values approaching the global minimum before reaching d = d∗. Although
not displayed in the graphs, other useful properties can be observed. First, for
d ≥ d∗, the global optimum is achieved by local optimization under random
initialization, but not with initialization to any of the critical points of smaller

5 Note that Q is not unique since C = QQ′ is invariant to transform QR for orthonor-
mal R.
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Fig. 3. Objective values achieved by local optimization given 1000 initializations of
Q ∈ R

p×d. For small d a diversity of local minima are observed, but the set of local
optima contracts rapidly as d increases, reaching a singleton at the global optimum by
d = d∗.

d observed in Figure 3, which traps the optimization in a saddle point. Overall,
empirically and theoretically, we find that ILA quickly finds global solutions for
the multi-label objective, while typically producing good solutions before d = d∗.

7 Case Study: Tagging via Tensor Completion

Finally, we investigated Task 2 of the 2009 ECML/PKDD Discovery Challenge: a
multi-relational problem involving users, items and tags, where users have tagged
subsets of the items and the goal is to predict which tags the users will assign to
other items. Here the training data is given in a tensor T , where T (x, y, z) = 1
indicates that x has tagged z with y, T (x, y, z)=−1 indicates that y is not a tag
of z according to x, and T (x, y, z)=0 denotes an unknown entry. The goal is to
predict the unknown values, subject to a constraint that at most five tags can
be active for any user-item pair. The “core at level 10” subsample reduces the
data to 109, 192, 229 unique users, items, and tags respectively (Jäschke et al.
2008). The winner of this challenge (Rendle and Schmidt-Thieme 2009) used a
multi-linear co-embedding model that assumed the completed tensor has a low
rank structure.

Training Objective. To show that this multi-relational prediction problem
can be tackled from the novel perspective of metric learning, we first express
the problem in terms of a multi-way co-embedding where users, tags and items
are mapped to a joint embedding space: x �→ σ, y �→ τ and z �→ ρ where σ,
τ , ρ ∈ R

d. The training problem can then be expressed in terms of proximi-
ties between embeddings. In particular, following Rendle and Schmidt-Thieme
(2009), we summarize the three-way interaction between a user, item and tag
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Fig. 4. F1 measure achieved by ILA on test data with an increasing number of columns
(optimal rank is 84 in this case).

Fig. 5. Training objectives for β ∈ {0.01, 0.1, 1} as a function of the rank of C, where
the optimal ranks are 105, 84 and 62 respectively.

by the squared distance between the user and tag embeddings, and between the
item and tag embeddings: d(x, y, z) := d(x, y) + d(z, y) = ‖σ − τ‖2 + ‖ρ − τ‖2.
Given this definition, tags can be predicted from a given user-item pair (x, z)
via

T̂ (x, y, z) =

{

1 if d(x, y, z) among smallest five d(x, ·, z)
−1 otherwise

.

The training problem can be expressed as metric learning by exploit-
ing a construction reminiscent of Section 3: the embedding vectors can con-
ceptually be stacked in matrix factor Q =

[

σ, τ, ρ
]′, which defines the

inverse covariance C = QQ′. To learn C, we use the same loss proposed by
Rendle and Schmidt-Thieme (2009), regularized by the Frobenius norm over σ,
τ and ρ (which again corresponds to trace regularization of C), yielding the
convex training problem

min
C�0

β tr(C) +
∑

x,z

∑

y∈tag(x,z)

∑

ȳ /∈tag(x,z)

L(dC(x, z, ȳ) − dC(x, z, y)). (14)

Results. To establish the suitability of metric learning for multi-relational pre-
diction, we first evaluated the test performance achieved on the down-sampled
Discovery Challenge data. Figure 4 shows that ILA efficiently approaches the
state of the art F1 performance of 0.42 reported by Mirzazadeh et al. (2014).
Furthermore, we also investigated the behavior of local minima at different d
by comparing the training objective values achieved by local optimization com-
pared to the global minimum, here using β ∈ {0.01, 0.1, 1}. Figure 5 shows
that although the optimal rank can be larger in this scenario, the properties of
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the local solutions become even more apparent: interestingly, the local minima
approach the training global minimum at ranks much smaller than the opti-
mum. These results further support the effectiveness of metric learning and the
potential for ILA to solve these problems much more efficiently than standard
semi-definite programming approaches.

8 Conclusion

We have demonstrated a unification of co-embedding and metric learning that
enables a new perspective on several machine learning problems while expand-
ing the range of applicability for metric learning methods. Additionally, by using
recent insights from semi-definite programming theory, we developed a fast local
optimization algorithm that is able to preserve global optimality while signifi-
cantly improving the speed of existing methods. Both the framework and the effi-
cient algorithm were investigated in different contexts, including metric learning,
multi-label classification and multi-relational prediction—demonstrating their
generality. The unified perspective and general algorithm show that a surpris-
ingly large class of problems can be tackled from a simple perspective, while
exhibiting a local-global property that can be usefully exploited to achieve faster
training methods.
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A An Auxiliary Lemma

Lemma 1. Suppose f is ν-smooth. Then for any positive semi-definite C, S ∈
R

p×p,
f(C + S) ≤ f(C) + tr(S′∇f(C)) +

ν

2
ρ(S)2 . (15)

Proof. Define h(η) = f(C + ηS) for η ∈ [0, 1]. Note that h(0) = f(C), h(1) =
f(C + S), and h′(η) = tr(S′∇f(C + ηS)) for any η ∈ (0, 1). Then

f(C + S) − f(C) − tr(S′∇f(C))

= h(1) − h(0) − tr(S′∇f(C)) =
∫ 1

0

h′(η)dη − tr(S′∇f(C))

=
∫ 1

0

tr(S′∇f(C+ηS))dη−tr(S′∇f(C)) =
∫ 1

0

tr
(

S′(∇f(C+ηS)−∇f(C))
)

dη

≤
∫ 1

0

ρ(S)‖∇f(C+ηS)−∇f(C)‖tr dη ≤
∫ 1

0

νρ(S)ρ(ηS)η =
∫ 1

0

νηρ(S)2dη =
ν

2
ρ(S)2

where the first inequality holds by the Cauchy-Schwarz inequality, and the second
by the Lipschitz condition on ∇f . Reordering the inequality establishes the
lemma. 
�
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Abstract. We consider a generic convex-concave saddle point problem
with a separable structure, a form that covers a wide-ranged machine
learning applications. Under this problem structure, we follow the frame-
work of primal-dual updates for saddle point problems, and incorpo-
rate stochastic block coordinate descent with adaptive stepsizes into this
framework. We theoretically show that our proposal of adaptive stepsizes
potentially achieves a sharper linear convergence rate compared with the
existing methods. Additionally, since we can select “mini-batch” of block
coordinates to update, our method is also amenable to parallel process-
ing for large-scale data. We apply the proposed method to regularized
empirical risk minimization and show that it performs comparably or,
more often, better than state-of-the-art methods on both synthetic and
real-world data sets.

Keywords: Large-scale optimization · Parallel optimization · Stochas-
tic coordinate descent · Convex-concave saddle point problems

1 Introduction

The generic convex-concave saddle point problem is written as

min
x∈Rd

max
y∈Rq

{L(x,y) = g(x) + 〈x,Ky〉 − φ∗(y)} , (1)

where g(x) is a proper convex function, φ∗(·) is the convex conjugate of a convex
function φ(·), and matrix K ∈ R

d×q. Many machine learning tasks reduce to
solving a problem of this form [3,6]. As a result, this saddle problem has been
widely studied [1,2,4,5,14,16].

One important subclass of the general convex concave saddle point problem
is where g(x) or φ∗(y) exhibits an additive separable structure. We say φ∗(y)
is separable when φ∗(y) = 1

n

∑n
i=1 φ∗

i (yi), with yi ∈ R
qi , and

∑n
i=1 qi = q.

Separability for g(·) is defined likewise. To keep the consistent notation for the
machine learning applications discussed later, we introduce matrix A and let

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 645–658, 2015.
DOI: 10.1007/978-3-319-23528-8 40
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K = 1
nA. Then we partition matrix A into n column blocks Ai ∈ R

d×qi , i =
1, . . . , n, and Ky = 1

n

∑n
i=1 Aiyi, resulting in a problem of the form

min
x∈Rd

max
y∈Rq

{

L(x,y) = g(x) +
1
n

n
∑

i=1

(〈x,Aiyi〉 − φ∗
i (yi))

}

(2)

for φ∗(·) separable. We call any problem of the form (1) where g(·) or φ∗(·)
has separable structure, a Separable Convex Concave Saddle Point (Sep-CCSP)
problem. Eq. (2) gives the explicit form for when φ∗(·) is separable.

In this work, we further assume that each φ∗
i (yi) is γ-strongly convex, and

g(x) is λ-strongly convex, i.e.,

φ∗
i (y

′
i) ≥ φ∗

i (yi) + ∇φ∗(yi)T (y′
i − yi) +

γ

2
‖y′

i − yi‖22, ∀yi,y′
i ∈ R

qi

g(x′) ≥ g(x) + ∇g(x)T (x′ − x) +
λ

2
‖x′

i − xi‖22, ∀x,x′ ∈ R
d,

where we use ∇ to denote both the gradient for smooth function and subgradient
for non-smooth function. When the strong convexity cannot be satisfied, a small
strongly convex perturbation can be added to make the problem satisfy the
assumption [15].

One important instantiation of the Sep-CCSP problem in machine learning
is the regularized empirical risk minimization (ERM, [3]) of linear predictors,

min
x∈Rd

{

J(x) =
1
n

n
∑

i=1

φi(aT
i x) + g(x)

}

, (3)

where a1, . . . ,an ∈ R
d are the feature vectors of n data samples, φi(·) corre-

sponds the convex loss function w.r.t. the linear predictor aT
i x, and g(x) is a

convex regularization term. Many practical classification and regression mod-
els fall into this regularized ERM formulation, such as linear support vector
machine (SVM), regularized logistic regression and ridge regression, see [3] for
more details.

Reformulating the above regularized ERM by employing conjugate dual of
the function φi(·), i.e.

φ∗
i (a

T
i x) = max

yi∈R

〈x, yiai〉 − φ∗
i (yi), (4)

leads directly to the following Sep-CCSP problem

min
x∈Rd

max
y∈Rn

g(x) +
1
n

n
∑

i=1

(〈x, yiai〉 − φ∗
i (yi)) . (5)

Comparing with the general form, we note that the matrix Ai in (2) is now a
vector ai. For solving the general saddle point problem (1), many primal-dual
algorithms can be applied, such as [1,2,4,5,16]. In addition, the saddle point
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problem we consider can also be formulated as a composite function minimiza-
tion problem and then solved by Alternating Direction Method of Multipliers
(ADMM) methods [9].

To handle the Sep-CCSP problem particularly for regularized ERM problem
(5), Zhang and Xiao [15] proposed a stochastic primal-dual coordinate descent
(SPDC) method. SPDC applies stochastic coordinate descent method [8,10,11]
into the primal-dual framework, where in each iteration a random subset of dual
coordinates are updated. This method inherits the efficiency of stochastic coor-
dinate descent for solving large-scale problems. However, they use a conservative
constant stepsize during the primal-dual updates, which leads to an unsatisfying
convergence rate especially for unnormalized data.

In this work, we propose an adaptive stochastic primal-dual coordinate
descent (AdaSPDC ) method for solving the Sep-CCSP problem (2), which is
a non-trivial extension of SPDC. By carefully exploiting the structure of indi-
vidual subproblem, we propose an adaptive stepsize rule for both primal and dual
updates according to the chosen subset of coordinate blocks in each iteration.
Both theoretically and empirically, we show that AdaSPDC could yield a signif-
icantly better convergence performance than SPDC and other state-of-the-art
methods.

The remaining structure of the paper is as follows. Section 2 summarizes the
general primal-dual framework our method and SPDC are based on. Then we
elaborate our method AdaSPDC in Section 3, where both the theoretical result
and its comparison with SPDC are provided. In Section 4, we apply our method
into regularized ERM tasks, and experiment with both synthetic and real-world
datasets, and we show the superiority of AdaSPDC over other competitive meth-
ods empirically. Finally, Section 5 concludes the work.

2 Primal-dual Framework for Convex-Concave Saddle
Point Problems

Chambolle and Pock [1] proposed a first-order primal-dual method for the CCSP
problem (1). We refer this algorithm as PDCP. The update of PDCP in the
(t + 1)th iteration is as follows:

yt+1 = argminyφ∗(y) − 〈xt,Ky〉 +
1
2σ

‖y − yt‖22 (6)

xt+1 = argminxg(x) + 〈x,Kyt+1〉 +
1
2τ

‖x − xt‖22 (7)

xt+1 = xt+1 + θ(xt+1 − xt). (8)

When the parameter configuration satisfies τσ ≤ 1/‖K‖2 and θ = 1, PDCP
could achieve O(1/T ) convergence rate for general convex function φ∗(·) and g(·),
where T is total number of iterations. When φ∗(·) and g(·) are both strongly
convex, a linear convergence rate can be achieved by using a more scheduled
stepsize. PDCP is a batch method and non-stochastic, i.e., it has to update
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all the dual coordinates in each iteration for Sep-CCSP problem, which will be
computationally intensive for large-scale (high-dimensional) problems.

SPDC [15] can be viewed as a stochastic variant of the batch method PDCP
for handling Sep-CCSP problem. However, SPDC uses a conservative constant
stepsize for primal and dual updates. Both PDCP and SPDC do not consider
the structure of matrix K and only apply constant stepsize for all coordinates
of primal and dual variables. This might limit their convergence performance in
reality.

Based on this observation, we exploit the structure of matrix K (i.e., 1
nA)

and propose an adaptive stepsize rule for efficiently solving Sep-CCSP problem.
A better linear convergence rate could be yielded when φ∗

i (·) and g(·) are strongly
convex. Our algorithm will be elaborated in the following section.

3 Adaptive Stochastic Primal-Dual Coordinate Descent

As a non-trivial extension of SPDC [15], our method AdaSPDC solves the Sep-
CCSP problem (2) by using an adaptive parameter configuration. Concretely,
we optimize L(x,y) by alternatively updating the dual and primal variables in
a principled way. Thanks to the separable structure of φ(y), in each iteration we
can randomly select m blocks of dual variables whose indices are denoted as St,
and then we only update these selected blocks in the following way,

yt+1
i = argminyi

[

φi(yi) −
〈

xt,Aiyi

〉

+
1

2σi
‖yi − yt

i‖22
]

, if i ∈ St. (9)

For those coordinates in blocks not selected, i /∈ St, we just keep yt+1
i = yt

i . By
exploiting the structure of individual Ai, we configure the stepsize parameter of
the proximal term σi adaptively

σi =
1

2Ri

√

nλ

mγ
, (10)

where Ri = ‖Ai‖2 =
√

μmax

(

AT
i Ai

)

, with ‖·‖2 is the spectral norm of a matrix
and μmax(·) to denote the maximum singular value of a matrix.

Our step size is different from the one used in SPDC [15], where R is a
constant R = max{‖ai‖2 : i = 1, . . . , n} (since SPDC only considers ERM
problem, the matrix Ai is a feature vector ai).

Remark. Intuitively, Ri in AdaSPDC can be understood as the coupling
strength between the i-th dual variable block and primal variable, measured
by the spectral norm of matrix Ai. Smaller coupling strength allows us to use
larger stepsize for the current dual variable block without caring too much about
its influence on primal variable, and vice versa. Compared with SPDC, our pro-
posal of an adaptive coupling strength for the chosen coordinate block directly
results in larger step size, and thus helps to improve convergence speed.
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In the stochastic dual update, we also use an intermediate variable xt as in
PDCP algorithm, and we will describe its update later.

Since we assume g(x) is not separable, we update the primal variable as a
whole,

xt+1 = argminx

⎡

⎣g(x) +

〈

x, rt +
1
m

∑

j∈St

Aj(yt+1
j − yt

j)

〉

+
1

2τ t
‖x − xt‖22

⎤

⎦ .

(11)
The proximal parameter τ t is also configured adaptively,

τ t =
1

2Rt
max

√

mγ

nλ
, (12)

where Rt
max = max {Ri|i ∈ St}, compared with constant R used in SPDC. To

account for the incremental change after the latest dual update, an auxiliary
variable rt = 1

n

∑n
i=1 Aiyt

i is used and updated as follows

rt+1 = rt +
1
n

∑

j∈St

Aj

(

yt+1
j − yt

j

)

. (13)

Finally, we update the intermediate variable x, which implements an extrapola-
tion step over the current xt+1 and can help to provide faster convergence rate
[1,7].

xt+1 = xt+1 + θt(xt+1 − xt), (14)

where θt is configured adaptively as

θt = 1 − 1
n/m + Rt

max

√

(n/m)/(λγ)
, (15)

which is contrary to the constant θ used in SPDC.
The whole procedure for solving Sep-CCSP problem (2) using AdaSPDC

is summarized in Algorithm 1. There are several notable characteristics of our
algorithms.

– Compared with SPDC, our method uses adaptive step size to obtain faster
convergence (will be shown in Theorem 1), while the whole algorithm does
not bring any other extra computational complexity. As demonstrated in the
experiment Section 4, in many cases, AdaSPDC provides significantly better
performance than SPDC.

– Since, in each iteration, a number of block coordinates can be chosen and
updated independently (with independent evaluation of individual step size),
this directly enables parallel processing, and hence use on modern computing
clusters. The ability to select an arbitrary number of blocks can help to make
use of all the computation structure available as effectively as possible.
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Algorithm 1. AdaSPDC for Separable Convex-Concave Saddle Point Problems
1: Input: number of blocks picked in each iteration m and number of iterations T .
2: Initialize: x0, y0, x0 = x0, r0 = 1

n

∑n
i=1 Aiy

0
i

3: for t = 0, 1, . . . , T − 1 do
4: Randomly pick m dual coordinate blocks from {1, . . . , n} as indices set St, with

the probability of each block being selected equal to m/n.
5: According to the selected subset St, compute the adaptive parameter configura-

tion of σi, τ t and θt using Eq. (10), (12) and (15), respectively.
6: for each selected block in parallel do
7: Update the dual variable block using Eq.(9).
8: end for
9: Update primal variable using Eq.(11).

10: Extrapolate primal variable block using Eq.(14).
11: Update the auxiliary variable r using Eq.(13).
12: end for

3.1 Convergence Analysis

We characterise the convergence performance of our method in the following
theorem.

Theorem 1. Assume that each φ∗
i (·) is γ-strongly convex, and g(·) is λ-strongly

convex, and given the parameter configuration in Eq. (10), (12) and (15), then
after T iterations in Algorithm 1, the algorithm achieves the following conver-
gence performance

(

1
2τT

+ λ

)

E
[

‖xT − x�‖22
]

+ E
[

‖yT − y�‖2ν
]

≤
(

T
∏

t=1

θt

)

((

1
2τT

+ λ

)

‖x0 − x�‖22 + ‖y0 − y�‖2ν′

)

, (16)

where (x�,y�) is the optimal saddle point, νi = 1/(4σi)+γ
m , ν′

i = 1/(2σi)+γ
m , and

‖yT − y�‖2ν =
∑n

i=1 νi‖yT
i − y�

i ‖22.
Since the proof of the above is technical, we provide it in the full version of this
paper [17].

In our proof, given the proposed parameter θt, the critical point for obtaining
a sharper linear convergence rate than SPDC is that we configure τ t and σi as
Eq. (12) and (10) to guarantee the positive definiteness of the following matrix
in the t-th iteration,

P =
[ m

2τt I −ASt

−AT
St

1
2diag(σSt )

]

, (17)

where ASt
= [. . . ,Ai, . . . ] ∈ R

d×mqi and diag(σSt
) = diag(. . . , σiIqi

, . . . ) for i ∈
St. However, we found that the parameter configuration to guarantee the positive
definiteness of P is not unique, and there exist other valid parameter configura-
tions besides the proposed one in this work. We leave the further investigation
on other potential parameter configurations as future work.
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3.2 More Comparison with SDPC

Compared with SPDC [15], AdaSPDC follows the similar primal-dual frame-
work. The crucial difference between them is that AdaSPDC proposes a larger
stepsize for both dual and primal updates, see Eq. (10) and (12) compared with
SPDC’s parameter configuration given in Eq.(10) in [15], where SPDC applies
a large constant R = max{‖ai‖2 : i = 1, . . . , n} while AdaSPDC uses a more
adaptive value of Ri and Rt

max for t-th iteration to account for the different cou-
pling strength between the selected dual coordinate block and primal variable.
This difference directly means that AdaSPDC can potentially obtain a signif-
icantly sharper linear convergence rate than SPDC, since the decay factor θt

of AdaSPDC is smaller than θ in SPDC (Eq.(10) in [15]) , see Theorem 1 for
AdaSPDC compared with SPDC (Theorem 1 in [15]). The empirical performance
of the two algorithms will be demonstrated in the experimental Section 4.

To mitigate the problem that SPDC uses a large R, the authors of SPDC pro-
poses to non-uniformly sample the the dual coordinate to update in each iteration
according to the norm of the each ai. However, as we show later in the empir-
ical experiments, this non-uniform sampling does not work very well for some
datasets. By configuring the adaptive stepsize explicitly, our method AdaSPDC
provides a better solution for unnormalized data compared with SPDC, see
Section 4 for more empirical evidence.

Another difference is that SPDC only considers the regularized ERM task,
i.e., only handling the case that each Ai is a feature vector ai, while AdaSPDC
extends that Ai can be a matrix so that AdaSPDC can cover a wider range of
applications than SPDC, i.e. in each iteration, a number of block coordinates
could be selected while for SPDC only a number of coordinates are allowed.

4 Empirical Results

In this section, we appy AdaSPDC to several regularized empirical risk min-
imization problems. The experiments are conducted to compare our method
AdaSPDC with other competitive stochastic optimization methods, including
SDCA [13], SAG [12], SPDC with uniform sampling and non-uniform sampling
[15]. In order to provide a fair comparison with these methods, in each iteration
only one dual coordinate (or data instance) is chosen, i.e., we run all the methods
sequentially. To obtain results that are independent of the practical implementa-
tion of the algorithm, we measure the algorithm performance in term of objective
suboptimality w.r.t. the effective passes to the entire data set.

Each experiment is run 10 times and the average results are reported to show
statistical consistency. We present all the experimental results we have done for
each application.

4.1 Ridge Regression

We firstly apply our method AdaSPDC into a simple ridge regression problem
with synthetic data. The data is generated in the same way as Zhang and Xiao [15];
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n = 1000 i.i.d. training points {ai, bi}n
i=1 are generated in the following manner,

b = aT x� + ε, a ∼ N (0,Σ), ε ∼ N (0, 1),

where a ∈ R
d and d = 1000, and the elements of the vector x� are all ones. The

covariance matrix Σ is set to be diagonal with Σjj = j−2, for j = 1, . . . , d. Then
the ridge regression tries to solve the following optimization problem,

min
x∈Rd

{

J(x) =
1
n

n
∑

i=1

1
2
(aT

i x − bi)2 +
λ

2
‖x‖22

}

. (18)

The optimal solution of the above ridge regression can be found as

x� =
(

AAT + nλId

)−1
Ab.

By employing the conjugate dual of quadratic loss (crossref, Eq. (4)), we can
reformulate the ridge regression as the following Sep-CCSP problem,

min
x∈Rd

max
y∈Rn

λ

2
‖x‖22 +

1
n

n
∑

i=1

(

〈x, yiai〉 −
(

1
2
y2

i + biyi

))

. (19)

It is easy to figure out that g(x) = λ/2‖x‖22 is λ-strongly convex, and φ∗
i (yi) =

1
2y2

i + biyi is 1-strongly convex.
Thus, for ridge regression, the dual update in Eq. (9) and primal update in

Eq. (11) of AdaSPDC have closed form solutions as below,

yt+1
i =

1
1 + 1/σi

(

〈

xt,ai

〉

+ bi +
1
σi

yi

)

, if i ∈ St

xt+1 =
1

λ + 1/τ t

⎛

⎝

1
τ t

xt −

⎛

⎝rt +
1
m

∑

j∈St

aj(yt+1
j − yt

j)

⎞

⎠

⎞

⎠

The algorithm performance is evaluated in term of objective suboptimal-
ity (measured by J(xt) − J(x�)) w.r.t. number of effective passes to the entire
datasets. Varying values of regularization parameter λ are experimented to
demonstrate algorithm performance with different degree of ill-conditioning,
λ = {10−3, 10−4, 10−5, 10−6}.

Fig. 1 shows algorithm performance with different degrees of regularization.
It is easy to observe that AdaSPDC converges substantially faster than other
compared methods, particularly for ill-conditioned problems. Compared with
SPDC and its variant with non-uniform sampling, the usage of adaptive stepsize
in AdaSPDC significantly improves convergence speed. For instance, in the case
with λ = 10−6, AdaSPDC achieves 100 times better suboptimality than both
SPDC and its variant SPDC with non-uniform sampling after 300 passes.
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(c) λ = 10−5 (d) λ = 10−6

Fig. 1. Ridge regression with synthetic data: comparison of convergence performance
w.r.t. the number of passes. Problem size: d = 1000, n = 1000. We evaluate the con-
vergence performance using objective suboptimality, J(xt) − J(x�).

4.2 Binary Classification on Real-world Datasets

We now compare the performance of our method AdaSPDC with other com-
petitive methods on several real-world data sets. Our experiments focus on the
freely-available benchmark data sets for binary classification, whose detailed
information are listed in Table 1. The w8a, covertype and url data are obtained
from the LIBSVM collection1. The quantum and protein data sets are obtained
from KDD Cup 20042. For all the datasets, each sample takes the form (ai, bi)

Table 1. Benchmark datasets used in our experiments for binary classification.

Datasets Number of samples Number of features Sparsity

w8a 49,749 300 3.9%

covertype 20,242 47,236 0.16%

url 2,396,130 3,231,961 0.0018%

quantum 50,000 78 43.44%

protein 145,751 74 99.21%

1 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html
2 http://osmot.cs.cornell.edu/kddcup/datasets.html

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://osmot.cs.cornell.edu/kddcup/datasets.html
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Fig. 2. Comparison of algorithm performance with smooth Hinge loss.

with ai is the feature vector and bi is the binary label −1 or 1. We add a bias term
to the feature vector for all the datasets. We aim to minimize the regularized
empirical risk with following form

J(x) =
1
n

n
∑

i=1

φi(aT
i x) +

λ

2
‖x‖22 (20)
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Fig. 3. Comparison of algorithm performance with Logistic loss.

To provide a more comprehensive comparison between these methods, we exper-
iment with two different loss function φi(·), smooth Hinge loss [13] and logistic
loss, described in the following.

Smooth Hinge loss (with smoothing parameter γ = 1.)

φi(z) =

⎧

⎪

⎨

⎪

⎩

0 if biz ≥ 1,

1 − γ
2 − biz if biz ≤ 1 − γ

1
2γ (1 − biz)2 otherwise.
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And its conjugate dual is

φ∗
i (yi) = biyi +

1
2
y2

i , with biyi ∈ [−1, 0].

We can observe that φ∗
i (yi) is γ-strongly convex with γ = 1. The dual update of

AdaSPDC for smooth Hinge loss is nearly the same with ridge regression except
the necessity of projection into the interval biyi ∈ [−1, 0].

Logistic loss
φi(z) = log (1 + exp(−biz)) ,

whose conjugate dual has the form

φ∗
i (yi) = −biyi log(−biyi) + (1 + biyi) log(1 + biyi) with biyi ∈ [−1, 0].

It is also easy to obtain that φ∗
i (yi) is γ-strongly convex with γ = 4. Note that

for logistic loss, the dual update in Eq. (9) does not have a closed form solution,
and we can start from some initial solution and further apply several steps of
Newton’s update to obtain a more accurate solution.

During the experiments, we observe that the performance of SAG is very
sensitive to the stepsize choice. To obtain best results of SAG, we try different
choices of stepsize in the interval [1/16L, 1/L] and report the best result for
each dataset, where L is Lipschitz constant of φi(aT

i x), 1/16L is the theoretical
stepsize choice for SAG and 1/L is the suggested empirical choice [12]. For
smooth Hinge loss, L = maxi{‖ai‖2, i = 1, . . . , n}, and for logistic loss, L =
1
4 maxi{‖ai‖2, i = 1, . . . , n}.

Fig. 2 and Fig. 3 depict the algorithm performance on the different methods
with smooth Hinge loss and logistics loss, respectively. We compare all these
methods with different values of λ = {10−5, 10−6, 10−7}. Generally, our method
AdaSPDC performs consistently better or at least comparably with other meth-
ods, and performs especially well for the tasks with small regularized parameter
λ. For some datasets, such as covertype and quantum, SPDC with non-uniform
sampling decreases the objective faster than other methods in early epochs,
however, cannot achieve comparable results with other methods in later epochs,
which might be caused by its conservative stepsize.

5 Conclusion and Future Work

In this work, we propose Adaptive Stochastic Primal-Dual Coordinate Descent
(AdaSPDC) for separable saddle point problems. As a non-trivial extension of a
recent work SPDC [15], AdaSPDC uses an adaptive step size choices for both pri-
mal and dual updates in each iteration. The design of the step size for our method
AdaSPDC explicitly and adaptively models the coupling strength between cho-
sen block coordinates and primal variable through the spectral norm of each Ai.
We theoretically characterise that AdaSPDC holds a sharper linear convergence
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rate than SDPC. Additionally, we demonstrate the superiority of the proposed
AdaSPDC method on ERM problems through extensive experiments on both
synthetic and real-world data sets.

An immediate further research direction is to investigate other valid param-
eter configurations for the extrapolation parameter θ, and the primal and dual
step sizes τ and σ both theoretically and empirically. In addition, discovering
the potential theoretical connections with other stochastic optimization methods
will also be enlightening.

Acknowledgments. Z. Zhu is supported by China Scholarship Coun-
cil/University of Edinburgh Joint Scholarship. The authors would like to thank
Jinli Hu for insightful discussion on the proof of Theorem 1.
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Abstract. In this paper we introduce a novel hash learning frame-
work that has two main distinguishing features, when compared to past
approaches. First, it utilizes codewords in the Hamming space as ancil-
lary means to accomplish its hash learning task. These codewords, which
are inferred from the data, attempt to capture similarity aspects of the
data’s hash codes. Secondly and more importantly, the same frame-
work is capable of addressing supervised, unsupervised and, even, semi-
supervised hash learning tasks in a natural manner. A series of compar-
ative experiments focused on content-based image retrieval highlights its
performance advantages.

Keywords: Hash function learning · Codeword · Support vector
machine

1 Introduction

With the explosive growth of web data including documents, images and videos,
content-based image retrieval (CBIR) has attracted plenty of attention over the
past years [1]. Given a query sample, a typical CBIR scheme retrieves samples
stored in a database that are most similar to the query sample. The similarity
is gauged in terms of a pre-specified distance metric and the retrieved samples
are the nearest neighbors of the query point w.r.t. this metric. However, exhaus-
tively comparing the query sample with every other sample in the database may
be computationally expensive in many current practical settings. Additionally,
most CBIR approaches may be hindered by the sheer size of each sample; for
example, visual descriptors of an image or a video may number in the thousands.
Furthermore, storage of these high-dimensional data also presents a challenge.

Considerable effort has been invested in designing hash functions transform-
ing the original data into compact binary codes to reap the benefits of a poten-
tially fast similarity search; note that hash functions are typically designed to
preserve certain similarity qualities between the data. For example, approximate
nearest neighbors (ANN) search [2] using compact binary codes in Hamming
space was shown to achieve sub-liner searching time. Storage of the binary code
is, obviously, also much more efficient.
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 659–674, 2015.
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Existing hashing methods can be divided into two categories: data-
independent and data-dependent. The former category does not use a data-driven
approach to choose the hash function. For example, Locality Sensitive Hashing
(LSH) [3] randomly projects and thresholds data into the Hamming space for
generating binary codes, where closely located (in terms of Euclidean distances
in the data’s native space) samples are likely to have similar binary codes. Fur-
thermore, in [4], the authors proposed a method for ANN search using a learned
Mahalanobis metric combined with LSH.

On the other hand, data-dependentmethods can, in turn, be grouped into super-
vised, unsupervised and semi-supervised learning paradigms. The bulk of work in
data-dependent hashing methods has been performed so far following the super-
vised learning paradigm. Recent work includes the Semantic Hashing [5], which
designs the hash function using a Restricted Boltzmann Machine (RBM). Binary
Reconstructive Embedding (BRE) in [6] tries to minimize a cost function mea-
suring the difference between the original metric distances and the reconstructed
distances in the Hamming space. Minimal Loss Hashing (MLH) [7] learns the hash
function from pair-wise side information and the problem is formulated based on
a bound inspired by the theory of structural Support Vector Machines [8]. In [9], a
scenario is addressed, where a small portion of sample pairs are manually labeled
as similar or dissimilar and proposes the Label-regularized Max-margin Partition
algorithm.Moreover, Self-TaughtHashing [10] first identifies binary codes for given
documents via unsupervised learning; next, classifiers are trained to predict codes
for query documents. Additionally, Fisher Linear Discriminant Analysis (LDA) is
employed in [11] to embed the original data to a lower dimensional space and hash
codes are obtained subsequently via thresholding. Also, Boosting based Hashing
is used in [12] and [13], in which a set of weak hash functions are learned accord-
ing to the boosting framework. In [14], the hash functions are learned from triplets
of side information; their method is designed to preserve the relative relationship
reflected by the triplets and is optimized using column generation. Finally, Kernel
Supervised Hashing (KSH) [15] introduces a kernel-based hashing method, which
seems to exhibit remarkable experimental results.

As for unsupervised learning, several approaches have been proposed: Spec-
tral Hashing (SPH) [16] designs the hash function by using spectral graph anal-
ysis with the assumption of a uniform data distribution. [17] proposed Anchor
Graph Hashing (AGH). AGH uses a small-size anchor graph to approximate
low-rank adjacency matrices that leads to computational savings. Also, in [18],
the authors introduce Iterative Quantization, which tries to learn an orthogo-
nal rotation matrix so that the quantization error of mapping the data to the
vertices of the binary hypercube is minimized.

To the best of our knowledge, the only approach to date following a semi-
supervised learning paradigm is Semi-Supervised Hashing (SSH) [19] [20]. The
SSH framework minimizes an empirical error using labeled data, but to avoid
over-fitting, its model also includes an information theoretic regularizer that
utilizes both labeled and unlabeled data.

In this paper we propose *Supervised Hash Learning (*SHL) (* stands for all
three learning paradigms), a novel hash function learning approach, which sets
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itself apart from past approaches in two major ways. First, it uses a set of Hamming
space codewords that are learned during training in order to capture the intrinsic
similarities between the data’s hash codes, so that same-class data are grouped
together. Unlabeled data also contribute to the adjustment of codewords leverag-
ing from the inter-sample dissimilarities of their generated hash codes as measured
by the Hamming metric. Due to these codeword-specific characteristics, a major
advantage offered by *SHL is that it can naturally engage supervised, unsupervised
and, even, semi-supervised hash learning tasks using a single formulation. Obvi-
ously, the latter ability readily allows *SHL to perform transductive hash learning.

In Sec. 2, we provide *SHL’s formulation, which is mainly motivated by an
attempt to minimize the within-group Hamming distances in the code space
between a group’s codeword and the hash codes of data. With regards to the
hash functions, *SHL adopts a kernel-based approach. The aforementioned for-
mulation eventually leads to a minimization problem over the codewords as
well as over the Reproducing Kernel Hilbert Space (RKHS) vectors defining
the hash functions. A quite noteworthy aspect of the resulting problem is that
the minimization over the latter parameters leads to a set of Support Vector
Machine (SVM) problems, according to which each SVM generates a single bit
of a sample’s hash code. In lieu of choosing a fixed, arbitrary kernel function, we
use a simple Multiple Kernel Learning (MKL) approach (e.g. see [21]) to infer
a good kernel from the data. We need to note here that Self-Taught Hashing
(STH) [10] also employs SVMs to generate hash codes. However, STH differs
significantly from *SHL; its unsupervised and supervised learning stages are
completely decoupled, while *SHL uses a single cost function that simultane-
ously accommodates both of these learning paradigms. Unlike STH, SVMs arise
naturally from the problem formulation in *SHL.

Next, in Sec. 3, an efficient Majorization-Minimization (MM) algorithm is
showcased that can be used to optimize *SHL’s framework via a Block Coordi-
nate Descent (BCD) approach. The first block optimization amounts to train-
ing a set of SVMs, which can be efficiently accomplished by using, for example,
LIBSVM [22]. The second block optimization step addresses the MKL parameters,
while the third one adjusts the codewords. Both of these steps are computation-
ally fast due to the existence of closed-form solutions.

Finally, in Sec. 5 we demonstrate the capabilities of *SHL on a series of
comparative experiments. The section emphasizes on supervised hash learning
problems in the context of CBIR, since the majority of hash learning approaches
address this paradigm. We also included some preliminary transductive hash
learning results for *SHL as a proof of concept. Remarkably, when compared
to other hashing methods on supervised learning hash tasks, *SHL exhibits the
best retrieval accuracy for all the datasets we considered. Some clues to *SHL’s
superior performance are provided in Sec. 4.

2 Formulation

In what follows, [·] denotes the Iverson bracket, i.e., [predicate] = 1, if the predi-
cate is true, and [predicate] = 0, if otherwise. Additionally, vectors and matrices
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are denoted in boldface. All vectors are considered column vectors and ·T denotes
transposition. Also, for any positive integer K, we define NK � {1, . . . , K}.

Central to hash function learning is the design of functions transforming data
to compact binary codes in a Hamming space to fulfill a given machine learning
task. Consider the Hamming space H

B � {−1, 1}B , which implies B-bit hash
codes. *SHL addresses multi-class classification tasks with an arbitrary set X as
sample space. It does so by learning a hash function h : X → H

B and a set of G
labeled codewords μg, g ∈ NG (each codeword representing a class), so that the
hash code of a labeled sample is mapped close to the codeword corresponding
to the sample’s class label; proximity is measured via the Hamming distance.
Unlabeled samples are also able to contribute to learning both the hash function
and the codewords as it will demonstrated in the sequel. Finally, a test sample
is classified according to the label of the codeword closest to the sample’s hash
code.

In *SHL, the hash code for a sample x ∈ X is eventually computed as
h(x) � sgn f(x) ∈ H

B , where the signum function is applied component-wise.
Furthermore, f(x) � [f1(x) . . . fB(x)]T , where fb(x) � 〈wb, φ(x)〉Hb

+ βb with
wb ∈ Ωwb

�
{

wb ∈ Hb : ‖wb‖Hb
≤ Rb, Rb > 0

}

and βb ∈ R for all b ∈ NB . In
the previous definition, Hb is a RKHS with inner product 〈·, ·〉Hb

, induced norm

‖wb‖Hb
�

√

〈wb, wb〉Hb
for all wb ∈ Hb, associated feature mapping φb : X → Hb

and reproducing kernel kb : X × X → R, such that kb(x, x′) = 〈φb(x), φb(x′)〉Hb

for all x, x′ ∈ X . Instead of a priori selecting the kernel functions kb, MKL
[21] is employed to infer the feature mapping for each bit from the available
data. In specific, it is assumed that each RKHS Hb is formed as the direct
sum of M common, pre-specified RKHSs Hm, i.e., Hb =

⊕

m

√

θb,mHm, where

θb � [θb,1 . . . θb,M ]T ∈ Ωθ �
{

θ ∈ R
M : θ � 0, ‖θ‖p ≤ 1, p ≥ 1

}

, � denotes the

component-wise ≥ relation, ‖·‖p is the usual lp norm in R
M and m ranges over

NM . Note that, if each preselected RKHS Hm has associated kernel function km,
then it holds that kb(x, x′) =

∑

m θb,mkm(x, x′) for all x, x′ ∈ X .
Now, assume a training set of size N consisting of labeled and unlabeled

samples and let NL and NU be the index sets for these two subsets respectively.
Let also ln for n ∈ NL be the class label of the nth labeled sample. By adjusting
its parameters, which are collectively denoted as ω, *SHL attempts to reduce
the distortion measure

E(ω) �
∑

n∈NL

d
(

h(xn),μln

)

+
∑

n∈NU

min
g

d
(

h(xn),μg

)

(1)

where d is the Hamming distance defined as d(h,h′) �
∑

b [hb 
= h′
b]. However,

the distortion E is difficult to directly minimize. As it will be illustrated further
below, an upper bound Ē of E will be optimized instead.

In particular, for a hash code produced by *SHL, it holds that d (h(x),μ) =
∑

b [μbfb(x) < 0]. If one defines d̄ (f ,μ) �
∑

b [1 − μbfb]+, where [u]+ �
max {0, u} is the hinge function, then d (sgn f ,μ) ≤ d̄ (f ,μ) holds for every
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f ∈ R
B and any μ ∈ H

B. Based on this latter fact, it holds that

E(ω) ≤ Ē(ω) �
∑

g

∑

n

γg,nd̄
(

f(xn),μg

)

(2)

where

γg,n �
{

[g = ln] n ∈ NL
[

g = arg ming′ d̄
(

f(xn),μg′
)]

n ∈ NU

(3)

It turns out that Ē, which constitutes the model’s loss function, can be efficiently
minimized by a three-step algorithm, which delineated in the next section.

3 Learning Algorithm

The next proposition allows us to minimize Ē as defined in Eq. (2) via a MM
approach [23], [24].

Proposition 1. For any *SHL parameter values ω and ω′, it holds that

Ē(ω) ≤ Ē(ω|ω′) �
∑

g

∑

n

γ′
g,nd̄

(

f(xn),μg

)

(4)

where the primed quantities are evaluated on ω′ and

γ′
g,n �

{

[g = ln] n ∈ NL
[

g = arg ming′ d̄
(

f ′(xn),μ′
g′

)]

n ∈ NU

(5)

Additionally, it holds that Ē(ω|ω) = Ē(ω) for any ω. In summa, Ē(·|·)
majorizes Ē(·).
Its proof is relative straightforward and is based on the fact that for any value
of γ′

g,n ∈ {0, 1} other than γg,n as defined in Eq. (3), the value of Ē(ω|ω′) can
never be less than Ē(ω|ω) = Ē(ω).

The last proposition gives rise to a MM approach, where ω′ are the cur-
rent estimates of the model’s parameter values and Ē(ω|ω′) is minimized with
respect to ω to yield improved estimates ω∗, such that Ē(ω∗) ≤ Ē(ω′). This
minimization can be achieved via a BCD.

Proposition 2. Minimizing Ē(·|ω′) with respect to the Hilbert space vectors,
the offsets βp and the MKL weights θb, while regarding the codeword parameters
as constant, one obtains the following B independent, equivalent problems:

inf
wb,m∈Hm,m∈NM
βb∈R,θb∈Ωθ,μg,b∈H

C
∑

g

∑

n

γ′
g,n [1 − μg,bfb(xn)]+

+
1
2

∑

m

‖wb,m‖2Hm

θb,m
b ∈ NB (6)

where fb(x) =
∑

m 〈wb,m, φm(x)〉Hm
+βb and C > 0 is a regularization constant.
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The proof of this proposition hinges on replacing the (independent) con-
straints of the Hilbert space vectors with equivalent regularization terms and,
finally, performing the substitution wb,m ←

√

θb,mwb,m as typically done in
such MKL formulations (e.g. see [21]). Note that Prob. (6) is jointly convex with
respect to all variables under consideration and, under closer scrutiny, one may
recognize it as a binary MKL SVM training problem, which will become more
apparent shortly.

First block minimization: By considering wb,m and βb for each b as a
single block, instead of directly minimizing Prob. (6), one can instead maximize
the following problem:

Proposition 3. The dual form of Prob. (6) takes the form of

sup
αb∈Ωab

αT
b 1NG − 1

2
αT

b Db[(1G1T
G) ⊗ Kb]Dbαb b ∈ NB (7)

where 1K stands for the all ones vector of K elements (K ∈ N), μb �
[μ1,b . . . μG,b]

T , Db � diag (μb ⊗ 1N ), Kb �
∑

m θb,mKm, where Km is the
data’s mth kernel matrix, Ωab

�
{

α ∈ R
NG : αT

b (μb ⊗ 1N ) = 0,0  αb  Cγ′}

and γ′ �
[

γ′
1,1, . . . , γ

′
1,N , γ′

2,1, . . . , γ
′
G,N

]T .

Proof. After eliminating the hinge function in Prob. (6) with the help of slack
variables ξb

g,n, we obtain the following problem for the first block minimization:

min
wb,m,βb

ξb
g,n

C
∑

g

∑

n

γ′
g,nξb

g,n +
1
2

∑

m

‖wb,m‖2Hm

θb,m

s.t. ξb
g,n ≥ 0

ξb
g,n ≥ 1 − (

∑

m

〈wb,m, φm(x)〉Hm
+ βb)μg,b (8)

Due to the Representer Theorem (e.g., see [25]), we have that

wb,m = θb,m

∑

n

ηb,nφm(xn) (9)

where n is the training sample index. By defining ξb ∈ R
RG to be the vector con-

taining all ξb
g,n’s, ηb � [ηb,1, ηb,2, ..., ηb,N ]T ∈ R

N and μb � [μ1,b, μ2,b, ..., μG,b]T ∈
R

G, the vectorized version of Prob. (8) in light of Eq. (9) becomes

min
ηb,ξb,βb

Cγ′ξb +
1
2
ηT

b Kbηb

s.t. ξb � 0

ξb � 1NG − (μb ⊗ Kb)ηb − (μb ⊗ 1N )βb (10)
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where γ′ and Kb are defined in Prop. 3. From the previous problem’s Lagrangian
L, one obtains

∂L
∂ξb

= 0 ⇒
{

λb = Cγ′ − αb

0  αb  Cγ′ (11)

∂L
∂βb

= 0 ⇒ αT
b (μb ⊗ 1N ) = 0 (12)

∂L
∂ηb

= 0
∃K−1

b⇒ ηb = K−1
b (μb ⊗ Kb)T αb (13)

where αb and λb are the dual variables for the two constraints in Prob. (10).
Utilizing Eq. (11), Eq. (12) and Eq. (13), the quadratic term of the dual problem
becomes

(μb ⊗ Kb)K−1
b (μT

b ⊗ Kb) =

= (μb ⊗ Kb)(1 ⊗ K−1
b )(μT

b ⊗ Kb)

= (μb ⊗ IN×N )(μT
b ⊗ Kb)

= (μbμ
T
b ) ⊗ Kb (14)

Eq. (14) can be further manipulated as

(μbμ
T
b ) ⊗ Kb =

= [(diag (μb)1G)(diag (μb)1G)T ] ⊗ Kb

= [diag (μb) (1G1T
G) diag (μb)] ⊗ [INKbIN ]

= [diag (μb) ⊗ IN ][(1G1T
G) ⊗ Kb][diag (μb) ⊗ IN ]

= [diag (μb ⊗ 1N )][(1G1T
G) ⊗ Kb][diag (μb ⊗ 1N )]

= Db[(1G1T
G) ⊗ Kb]Db (15)

The first equality stems from the identity diag (v)1 = v for any vector v, while
the third one stems form the mixed-product property of the Kronecker product.
Also, the identity diag (v ⊗ 1) = diag (v) ⊗ I yields the fourth equality. Note
that Db is defined as in Prop. 3. Taking into account Eq. (14) and Eq. (15), we
reach the dual form stated in Prop. 3.

Given that γ′
g,n ∈ {0, 1}, one can easily now recognize that Prob. (7) is an

SVM training problem, which can be conveniently solved using software pack-
ages such as LIBSVM. After solving it, obviously one can compute the quantities
〈wb,m, φm(x)〉Hm

, βb and ‖wb,m‖2Hm
, which are required in the next step.

Second block minimization: Having optimized over the SVM parameters,
one can now optimize the cost function of Prob. (6) with respect to the MKL
parameters θb as a single block using the closed-form solution mentioned in Prop.
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Algorithm 1 Optimization of Prob. (6)
Input: Bit Length B, Training Samples X containing labeled or unlabled data.
Output: ω.
1. Initialize ω.
2. While Not Converged
3. For each bit
4. γ′

g,n ← Eq. (5).
5. Step 1: wb,m ← Eq. (7).
6. βb ← Eq. (7).
7. Step 2: Compute ‖wb,m‖2

Hm
.

8. θb,m ← Eq. (16).
9. Step 3: μg,b ← Eq. (17).
10. End For
11. End While
12. Output ω.

2 of [21] for p > 1 and which is given next.

θb,m =
‖wb,m‖

2
p+1
Hm

(

∑

m′ ‖wb,m′‖
2p

p+1
Hm′

) 1
p

, m ∈ NM , b ∈ NB . (16)

Third block minimization: Finally, one can now optimize the cost function
of Prob. (6) with respect to the codewords by mere substitution as shown below.

inf
μg,b∈H

∑

n

γg,n [1 − μg,bfb(xn)]+ g ∈ NG, b ∈ NB (17)

On balance, as summarized in Algorithm 1, for each bit, the combined
MM/BCD algorithm consists of one SVM optimization step, and two fast steps
to optimize the MKL coefficients and codewords respectively. Once all model
parameters ω have been computed in this fashion, their values become the cur-
rent estimate (i.e., ω′ ← ω ), the γg,n’s are accordingly updated and the algo-
rithm continues to iterate until convergence is established1. Based on LIBSVM,
which provides O(N3) complexity [26], our algorithm offers the complexity
O(BN3) per iteration , where B is the code length and N is the number of
instances.

4 Insights to Generalization Performance

The superior performance of *SHL over other state-of-the-art hash function
learning approaches featured in the next section can be explained to some extent

1 A MATLAB� implementation of our framework is available at
https://github.com/yinjiehuang/StarSHL

https://github.com/yinjiehuang/StarSHL
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by noticing that *SHL training attempts to minimize the normalized (by B)
expected Hamming distance of a labeled sample to the correct codeword, which
is demonstarted next. We constrain ourselves to the case, where the training set
consists only of labeled samples (i.e., N = NL, NU = 0) and, for reasons of con-
venience, to a single-kernel learning scenario, where each code bit is associated
to its own feature space Hb with corresponding kernel function kb. Also, due to
space limitations, we provide the next result without proof.

Lemma 1. Let X be an arbitrary set, F � {f : x �→ f(x) ∈ R
B , x ∈ X},

Ψ : RB → R be L-Lipschitz continuous w.r.t ‖·‖1, then

�̂N (Ψ ◦ F) ≤ L�̂N (‖F‖1) (18)

where ◦ stands for function composition, �̂N (G)� 1
N Eσ

{

supg∈G
∑

n σng(xn, ln)
}

is the empirical Rademacher complexity of a set G of functions, {xn, ln} are i.i.d.
samples and σn are i.i.d random variables taking values with Pr{σn = ±1} = 1

2 .

To show the main theoretical result of our paper with the help of the previous
lemma, we will consider the sets of functions

F̄ �{f : x �→ [f1(x), ..., fB(x)]T , fb ∈ Fb, b ∈ NB} (19)

Fb �{fb : x �→ 〈wb, φb(x)〉Hb
+ βb, βb ∈ R s.t. |βb| ≤ Mb,

wb ∈ Hb s.t. ‖wb‖Hb
≤ Rb, b ∈ NB} (20)

Theorem 1. Assume reproducing kernels of {Hb}B
b=1 s.t. kb(x, x′) ≤

r2, ∀x, x′ ∈ X . Then for a fixed value of ρ > 0, for any f ∈ F̄ , any
{μl}G

l=1, μl ∈ H
B and any δ > 0, with probability 1 − δ, it holds that:

er (f ,μl) ≤ êr (f ,μl) +
2r

ρB
√

N

∑

b

Rb +

√

log
(

1
δ

)

2N
(21)

where er (f ,μl) � 1
BE{d (sgn (f(x),μl))}, l ∈ NG is the true label of x ∈ X ,

êr (f ,μl) � 1
NB

∑

n,b Qρ (fb(xn)μln,b), where Qρ(u) � min
{

1,max
{

0, 1 − u
ρ

}}

.

Proof. Notice that

1
B

d (sgn (f(x),μl)) =
1
B

∑

b

[fb(x)μl,b < 0] ≤ 1
B

∑

b

Qρ (fb(x)μl,b)

⇒ E

{

1
B

d (sgn (f(x),μl))
}

≤ E

{

1
B

∑

b

Qρ (fb(x)μl,b)

}

(22)
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Consider the set of functions

Ψ � {ψ : (x, l) �→ 1
B

∑

b

Qρ (fb(x)μl,b) , f ∈ F̄ , μl,b ∈ {±1}, l ∈ NG, b ∈ NB}

Then from Theorem 3.1 of [27] and Eq. (22), ∀ψ ∈ Ψ , ∃δ > 0, with probability
at least 1 − δ, we have:

er (f ,μl) ≤ êr (f ,μl) + 2�N (Ψ) +

√

log
(

1
δ

)

2N
(23)

where �N (Ψ) is the Rademacher complexity of Ψ . From Lemma 1, the following
inequality between empirical Rademacher complexities is obtained

�̂N (Ψ) ≤ 1
Bρ

�̂N

(∥

∥F̄μ

∥

∥

1

)

(24)

where F̄μ � {(x, l) �→ [f1(x)μl,1, ..., fB(x)μl,B ]T , f ∈ F̄ and μl,b ∈ {±1}}. The
right side of Eq. (24) can be upper-bounded as follows

�̂N

(∥

∥F̄μ

∥

∥

1

)

=
1
N

Eσ

{

sup
f∈F̄,{μln

}∈HB

∑

n

σn

∑

b

|μln,bfb(xn)|
}

=
1
N

Eσ

{

sup
f∈F̄

∑

n

σn

∑

b

|fb(xn)|
}

=
1
N

Eσ

{

sup
ωb∈Hb,‖ωb‖Hb

≤Rb,|βb|≤Mb

∑

n

σn

∑

b

| 〈wb, φb(x)〉Hb
+ βb|

}

=
1
N

Eσ

{

sup
ωb∈Hb,‖ωb‖Hb

≤Rb,|βb|≤Mb

∑

n

σn

∑

b

| 〈wb, sgn(βb)φb(x)〉Hb
+ |βb||

}

=
1
N

Eσ

{

sup
|βb|≤Mb

∑

b

[Rb

√

σT Kbσ + |βb|
∑

n

σn]

}

=
1
N

Eσ

{

∑

b

Rb

√

σT Kbσ

}

Jensen’s Ineq.

≤ 1
N

∑

b

Rb

√

Eσ {σT Kbσ}

=
1
N

∑

b

Rb

√

trace{Kb} ≤ r√
N

∑

b

Rb (25)

From Eq. (24) and Eq. (25) we obtain �̂N (Ψ) ≤ r
ρB

√
N

∑

b Rb. Since �N (Ψ) �

Es

{

�̂N (Ψ)
}

, where Es is the expectation over the samples, we have

�N (Ψ) ≤ r

ρB
√

N

∑

b

Rb (26)

The final result is obtained by combining Eq. (23) and Eq. (26).
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It can be observed that, minimizing the loss function of Prob. (6), in essence,
also reduces the bound of Eq. (21). This tends to cluster same-class hash codes
around the correct codeword. Since samples are classified according to the label
of the codeword that is closest to the sample’s hash code, this process may lead
to good recognition rates, especially when the number of samples N is high, in
which case the bound becomes tighter.

5 Experiments

5.1 Supervised Hash Learning Results

In this section, we compare *SHL to other state-of-the-art hashing algorithms:
Kernel Supervised Learning (KSH) [15], Binary Reconstructive Embedding
(BRE) [6], single-layer Anchor Graph Hashing (1-AGH) and its two-layer ver-
sion (2-AGH) [17], Spectral Hashing (SPH) [16] and Locality-Sensitive Hashing
(LSH) [3].

Five datasets were considered: Pendigits and USPS from the UCI Repository,
as well as Mnist, PASCAL07 and CIFAR-10. For Pendigits (10, 992 samples, 256
features, 10 classes), we randomly chose 3, 000 samples for training and the rest
for testing; for USPS (9, 298 samples, 256 features, 10 classes), 3000 were used for
training and the remaining for testing; for Mnist (70, 000 samples, 784 features,
10 classes), 10, 000 for training and 60, 000 for testing; for CIFAR-10 (60, 000
samples, 1, 024 features, 10 classes), 10, 000 for training and the rest for testing;
finally, for PASCAL07 (6878 samples, 1, 024 features after down-sampling the
images, 10 classes), 3, 000 for training and the rest for testing.

For all the algorithms used, average performances over 5 runs are reported
in terms of the following two criteria: (i) retrieval precision of s-closest hash
codes of training samples; we used s = {10, 15, . . . , 50}. (ii) Precision-Recall
(PR) curve, where retrieval precision and recall are computed for hash codes
within a Hamming radius of r ∈ NB .
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Fig. 1. The top s retrieval results and Precision-Recall curve on Pendigits dataset over
*SHL and 6 other hashing algorithms. (view in color)
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The following *SHL settings were used: SVM’s parameter C was set to 1000;
for MKL, 11 kernels were considered: 1 normalized linear kernel, 1 normalized
polynomial kernel and 9 Gaussian kernels. For the polynomial kernel, the bias
was set to 1.0 and its degree was chosen as 2. For the bandwidth σ of the Gaus-
sian kernels the following values were used: [2−7, 2−5, 2−3, 2−1, 1, 21, 23, 25, 27].

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Bits

T
os

 s
 R

et
rie

va
l P

re
ci

si
on

 (
s 

=
 1

0)

USPS

 

 

*SHL
KSH
LSH
SPH
BRE
1−AGH
2−AGH

10 15 20 25 30 35 40 45 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Top s

T
os

 s
 R

et
rie

va
l P

re
ci

si
on

USPS

 

 

*SHL
KSH
LSH
SPH
BRE
1−AGH
2−AGH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

USPS

 

 

*SHL
KSH
LSH
SPH
BRE
1−AGH
2−AGH

Fig. 2. The top s retrieval results and Precision-Recall curve on USPS dataset over
*SHL and 6 other hashing algorithms. (view in color)
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Fig. 3. The top s retrieval results and Precision-Recall curve on Mnist dataset over
*SHL and 6 other hashing algorithms. (view in color)
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Fig. 4. The top s retrieval results and Precision-Recall curve on CIFAR-10 dataset
over *SHL and 6 other hashing algorithms. (view in color)
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Fig. 5. The top s retrieval results and Precision-Recall curve on PASCAL07 dataset
over *SHL and 6 other hashing algorithms. (view in color)

Regarding the MKL constraint set, a value of p = 2 was chosen. For the remain-
ing approaches, namely KSH, SPH, AGH, BRE, parameter values were used
according to recommendations found in their respective references. All obtained
results are reported in Fig. 1 through Fig. 5.

We clearly observe that *SHL performs best among all the algorithms consid-
ered. For all the datasets, *SHL achieves the highest top-10 retrieval precision.
Especially for the non-digit datasets (CIFAR-10, PASCAL07 ), *SHL achieves
significantly better results. As for the PR-curve, *SHL also yields the largest
areas under the curve. Although noteworthy results were reported in [15] for
KSH, in our experiments *SHL outperformed it across all datasets. Moreover,
we observe that supervised hash learning algorithms, except BRE, perform bet-
ter than unsupervised variants. BRE may need a longer bit length to achieve
better performance as implied by Fig. 1 and Fig. 3. Additionally, it is worth
pointing out that *SHL performed remarkably well for short big lengths across
all datasets.

It must be noted that AGH also yielded good results, compared with other
unsupervised hashing algorithms, perhaps due to the anchor points it utilizes as
side information to generate hash codes. With the exception of *SHL and KSH,
the remaining approaches exhibit poor performance for the non-digit datasets
we considered.

When varying the top-s number between 10 and 50, once again with the
exception of *SHL and KSH, the performance of the remaining approaches
deteriorated in terms of top-s retrieval precision. KSH performs slightly worse,
when s increases, while *SHL’s performance remains robust for CIFAR-10 and
PSACAL07. It is worth mentioning that the two-layer AGH exhibits better
robustness than its single-layer version for datasets involving images of digits.
Finally, Fig. 6 shows some qualitative results for the CIFAR-10 dataset. In con-
clusion, in our experimentation, *SHL exhibited superior performance for every
code length we considered.
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Query Image: Car

*SHL

KSH

LSH

SPH

BRE

1−AGH

2−AGH

Fig. 6. Qualitative results on CIFAR-10. Query image is “Car”. The remaining 15
images for each row were retrieved using 45-bit binary codes generated by different
hashing algorithms .

5.2 Transductive Hash Learning Results

As a proof of concept, in this section, we report a performance comparison
of our framework, when used in an inductive versus a transductive [28] mode.
Note that, to the best of our knowledge, no other hash learning approaches to
date accommodate transductive hash learning in a natural manner like *SHL.
For illustration purposes, we used the Vowel and Letter datasets. We randomly
chose 330 training and 220 test samples for the Vowel and 300 training and 200
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Fig. 7. Accuracy results between Inductive and Transductive Learning.
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test samples for the Letter. Each scenario was run 20 times and the code length
(B) varied from 4 to 15 bits. The results are shown in Fig. 7 and reveal the
potential merits of the transductive *SHL learning mode across a range of code
lengths.

6 Conclusions

In this paper we considered a novel hash learning framework with two
main advantages. First, its Majorization-Minimization (MM)/Block Coordinate
Descent (BCD) training algorithm is efficient and simple to implement. Sec-
ondly, this framework is able to address supervised, unsupervised and, even,
semi-supervised learning tasks in a unified fashion. In order to show the mer-
its of the method, we performed a series of experiments involving 5 benchmark
datasets. In these experiments, a comparison between *Supervised Hash Learn-
ing (*SHL) to 6 other state-of-the-art hashing methods shows *SHL to be highly
competitive.
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Abstract. Hierarchical Classification (HC) is an important problem
with a wide range of application in domains such as music genre clas-
sification, protein function classification and document classification.
Although several innovative classification methods have been proposed
to address HC, most of them are not scalable to web-scale problems.
While simple methods such as top-down “pachinko” style classification
and flat classification scale well, they either have poor classification per-
formance or do not effectively use the hierarchical information. Current
methods that incorporate hierarchical information in a principled man-
ner are often computationally expensive and unable to scale to large
datasets. In the current work, we adopt a cost-sensitive classification
approach to the hierarchical classification problem by defining misclassi-
fication cost based on the hierarchy. This approach effectively decouples
the models for various classes, allowing us to efficiently train effective
models for large hierarchies in a distributed fashion.

1 Introduction

Categorizing entities according to a hierarchy of general to specific classes is a
common practice in many disciplines. It can be seen as an important aspect
of various fields such as bioinformatics, music genre classification, image clas-
sification and more importantly document classification [18]. Often the data is
curated manually, but with exploding sizes of databases, it is becoming increas-
ingly important to develop automated methods for hierarchical classification of
entities.

Several classification methods have been developed over the past several years
to address the problem of Hierarchical Classification (HC). One straightforward
approach is to simply use multi-class or binary classifiers to model the relevant
classes and disregard the hierarchical information. This methodology has been
called flat classification scheme in HC literature [18]. While flat classification can
be competitive, an important research directions is to improve the classification
performance by incorporating the hierarchical structure of the classes in the
learning algorithm. Another simple data decomposition approach trains local
classifiers for each of the classes defined according to the hierarchy, such that the
trained model can be used in a top-down fashion to take the most relevant path
in testing. This top-down approach trains each classifier on a smaller dataset and
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 675–690, 2015.
DOI: 10.1007/978-3-319-23528-8 42
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is quite efficient in comparison to flat classification, which generally train one-vs-
rest classifiers on the entire dataset. However, a severe drawback of this approach
is that if a prediction error is committed at a higher level, then the classifier
selects a wrong prediction path, making it impossible to recover from the errors
at lower levels. Due to this error propagation, sometimes, sever degradation in
performance has been noted for the top-down classifier in comparison to flat
classifier [9]. A review of HC in several application domains can be found in a
recent survey by Silla Jr. et al. [18].

In recent years, researchers have shown more interest in large scale classifica-
tion where the number of categories, number of instances, as well as the number
of features are large. This has been highlighted by large scale hierarchical text
classification competitions such as LSHTC1 [15] and BioASQ 2, which pose sev-
eral interesting challenges. Firstly, since these problems deal with several thou-
sands of classes, scalability of the methods is a crucial requirement. Secondly, in
spite of having large number of total training examples, many categories have
few positive training samples. For example, 76% of the class-labels in the Yahoo!
Directory have 5 or fewer positive instances [11], and 72% in the Open Directory
Project have fewer than 4 positive instances [9]. This data sparsity brings about
two issues: (i) due to the lack of sufficient examples, the learned models tend
to be less robust, and (ii) due to the large skew in positive and negative class
distributions, the performance of smaller classes tends to deteriorate severely as
the mis-predictions tend to favor larger classes.

In this paper, we try to address two main issues of large scale hierarchical
classification, class imbalance and training efficiency, by extending the flat classi-
fication approach using cost sensitive training examples. Although regularization
methods which constrain the learned models to be close to neighboring classes
according to the hierarchy have been effective, they induce large scale optimiza-
tion problems which require specialized solutions [3]. Instead, by re-defining the
problem from regularization based approach to a cost sensitive classification
approach (based on similar assumptions) tends to decouple the training of the
models which can be trained in parallel fashion. We study various methods to
incorporate cost-sensitive information into hierarchical classification and empir-
ically evaluate their performance on several datasets. Finally, since any instance
based cost sensitive method can be used as a base classifier, the HC problem can
benefit from advancements in cost-sensitive classification.

2 Definitions and Notations

In this section, we discuss the notations commonly used in this paper. N denotes
the set of all the nodes in the hierarchy, and T ⊂ N denotes the set of terminal
nodes to which examples are assigned. wn denotes the model learnt for class
n ∈ N . (xi, li) denotes the ith example where xi ∈ R

D and li ∈ T . The number
of examples is denote by N . We use yn

i to denote the binary label used in the
1 http://lshtc.iit.demokritos.gr
2 http://bioasq.org

http://lshtc.iit.demokritos.gr
http://bioasq.org
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learning algorithm for wn. For the training example (xi, li) we set yn
i = 1 iff

li = n and yn
i = −1 otherwise. γ (a, b) denotes the graph distance between

classes a, b ∈ N in the hierarchy, which is defined as the number of edges in the
undirected path between nodes a and b. We use cn

i to denote the cost of example
i in training of the model for class n. To simplify the notation, in some places,
we drop the super-script explicitly indicating the class, and use yi , ci and w
in place of yn

i , cn
i and wn where the class is implicitly understood to be n. L is

used to denote a generic loss function. In the current work, logistic loss function
is used, which is defined as L (y, f (x)) = log (1 + exp (−yf (x))).

3 Motivation and Related Work

In this section, we discuss the motivation for the approach taken in this paper
and examine various related methods proposed in the literature for addressing
the hierarchical classification problem.

A few large margin methods have been proposed as cost sensitive extensions
to the multi-class classification problem. Dekel et al. [5] proposed a large margin
method where the margin is defined with respect to the tree distance. Although
their method shows improvement on tree-error, the performance degrades with
respect to misclassification error. The methods proposed by Cai et al. [2] and
more recently by Chen et al. [4], also make an argument in favor of modifying
the misclassification error by making it dependent on the hierarchy. Both these
methods can be seen as special cases of a more general large margin structured
output prediction method proposed by Tsochantaridis et al. [20]. Although all
these methods try to incorporate cost sensitive losses based on the hierarchy, they
formulate a global optimization problem where the models for all the classes are
learned jointly and are not scalable to large scale classification problems.

Several methods try to incorporate the bias that categories which are seman-
tically related according to the hierarchy should also be similar with respect
to the learned models. McCallum et al. [13] show that for Naive Bayes classi-
fier, smoothing the parameter estimates of the data-sparse children nodes with
the parameter estimates of parent nodes, using a technique known as shrinkage,
produces more robust models. Other models in this class of methods typically
incorporate this assumption using parent child regularization or hierarchy based
priors [9,13,17]. In one of the prototypical models in this class of works, which
extends Support Vector Machines (SVM) and Logistic Regression (LR) [9], the
objective function takes the form given in (1),

min
w1,...,w|N|

∑

n∈N

1
2

∥

∥wn − wπ(n)

∥

∥

2

2
+ C

∑

n∈T

N
∑

i=1

L
(

yn
i ,wT

nxi

)

(1)

where, π (n) represents the parent of the class n according to the provided hier-
archy. The loss function L has been modeled as logistic loss or hinge loss. Note
that the loss is defined only on the terminal nodes T , and the non-terminal
node N − T , are introduced only as a means to facilitate regularization. Since
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the weights associated with different classes are coupled in the optimization
problem, Gopal et al. [9] used a distributed implementation of block coordinate
descent where each block of variables corresponds to wn for a particular class
n. The model weights are learned similarly to standard LR or SVM for the leaf
nodes n ∈ T , with the exception that the weights are shrunk towards parents
instead of towards the zero vector by the regularizer. For an internal non-leaf
node, the weights updates are averages of the other nodes which are connected
to it according to the hierarchy, i.e., the parents and children in the hierarchy.

The kind of regularization discussed above can be compared to the formula-
tions proposed in transfer and multi-task learning (MTL) literature [7], where
externally provided task relationships can be utilized to constrain the jointly
learned model weights to be similar to each other. In the case of HC, the task
relationship are explicitly provided as hierarchical relationships. However, one
significant difference between the application of this regularization between HC
and MTL is that the sets of examples in MTL for different tasks are, in gen-
eral, disjoint. Whereas, in the case of HC, the examples which are classified
as positive for one class are negative for all other classes except those which
belong to the ancestors of that class. Therefore, even though these models impose
similarity between siblings indirectly through the parent, when their respective
models are trained, the negative and positive examples are flipped. Hence, the
opposing forces for examples and regularization are acting simultaneously during
the learning of these models. However, due to the regularization strength being
imposed by the hierarchy, the net effect is that the importance of misclassifying
the examples coming for nearby classes is down-weighted. This insight can be
directly incorporated into the learning algorithm by defining the loss of nearby
negative examples for a class, where ”near” is defined with respect to the hierar-
chy, to be less severe than the examples which are farther. This yields a simple
cost sensitive classification method where the misclassification cost is directly
proportional to the distance between the nodes of the classes, which is the key
contribution of our work. With respect to prediction, there are only two classes
for each trained model, but the misclassification costs of negative examples are
dependent on the nodes from which they originate.

In this framework for HC, we essentially decouple the learning for each node
of the hierarchy and train the model for each one independently. Thus, rendering
scalability to this method. Instead of jointly formulating the learning of model
parameters for all the classes, we turn the argument around from that of regular-
izing the model weights towards those of the neighboring models, to the rescaling
the loss of example depending on the class relationships. A similar argument was
made in the case of multi-task transfer learning by Saha et al. [16], where, in
place of joint regularization of model weights, as is typically done in multi-task
learning [8], they augment the target tasks with examples from source tasks.
However, the losses for the two sets of examples are scaled differently.
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4 Methods

As shown in some previous works [1,9], the performance of flat classification has
been found to be very competitive, especially for large scale problems. Although,
the top-down classification method is efficient in training, it fares poorly with
respect to classification performance due to error propagation. Hence, in this
work, we extend the flat classification methodology to deal with HC. We use
the one-vs-all approach for training, where for each class n, to which examples
are assigned, we learn a classification model with weight wn. Note, that it is
unnecessary to train the models for non-terminal classes, as they only serve
as virtual labels in the hierarchy. Once the models for each terminal class are
trained, we perform prediction for input example x as per (2)

ŷ = argmaxn wT
nx (2)

The essential idea is to formulate the learning algorithm such that the mis-
predictions on negative examples coming from nearby classes are treated as
being less severe. We encode this assumption through cost sensitive classification.
Standard regularized binary classification models, such as SVMs and Logistic
Regression, minimize an objective function consisting of loss and regularization
terms as shown in (3).

min
w

N
∑

i=1

L (yi, f (xi | w))

︸ ︷︷ ︸

loss

+ρ R (w)
︸ ︷︷ ︸

regularizer

(3)

where w denotes the learned model weights. The loss function L, which is gen-
erally a convex approximation of zero-one loss, measures how well the model fits
the training examples. Here, each example is considered to be equally important.
As per the arguments made previously, we modify the importance of correctly
classifying examples according to the hierarchy using example based misclassifi-
cation costs. For models such as logistic regression, incorporating example based
costs into the learning algorithm is simply a matter of scaling the loss by a con-
stant positive value. Assuming that the classifier is being learned for class n, we
can write the cost sensitive objective function as shown in (4).

min
w

N
∑

i=1

ciL
(

yi,wTxi

)

+ ρR (w) (4)

Here, ci denotes the cost associated with misclassification of the ith example.
Although, this scaling works for the smooth loss function of Logistic Regression,
it is not as straightforward in the case of non-smooth loss functions such as hinge
loss [12]. Therefore, using the formulation given in (4), for each of the models,
we can formulate the objective function for class n as a cost sensitive logistic
regression problem where the cost of the example xi for the binary classifier of
class n depends on how far the actual label li ∈ T is from n, according to the
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hierarchy. Additionally, to deal with the issue of rare categories, we can also
increase the cost of the positive examples for data-sparse classes thus mitigating
the effects of highly skewed datasets. Since our primary motivation is to argue
in favor of using hierarchical cost sensitive learning instead of more expensive
regularization models, we only concentrate on logistic loss, which is easier to
handle, from optimization perspective, than non-smooth losses such as SVM’s
hinge loss. The central issue, now, is that of defining the appropriate costs for
the positive and negative examples based on the distance of the examples from
the true class according to the hierarchy and the number of examples available
for training the classifiers. In the following section we discuss the selection of
costs for negative and positive examples.

4.1 Cost Calculations

Hierarchical Cost. Hierarchical costs impose the requirement that the mis-
classification of negative examples that are farther away from the training class
according to the hierarchy should be penalized more severely. Encoding this
assumption, we define the following instantiations of hierarchical costs. We
assume the class under consideration is denoted by n.

Tree Distance (TrD): In (5), we define the cost of negative examples as the
undirected graphical distance, γ (n, li), between the class n and li, the class label
of example xi. We call this cost Tree Distance (TrD). We define γi ≡ γ (n, li)
and γmax = maxj∈T γj . Since dissimilarity increases with increasing γi, the cost
is a monotonically increasing function of γi.

ci =

{

γmax li = n

γi li �= n
(5)

Number of Common Ancestors (NCA): In some applications, where the depth
(distance of a node from the root node) of all terminal labels is not uniform, a
better definition of similarity might be the number of common ancestor between
two nodes. This is encoded in NCA costs, represented in (6). In the definition,
αi is used to denote the number of common ancestors between the pair of nodes
li and n. Unlike γi which is a monotonically increasing function of dissimilarity,
αi is a monotonically increasing function of similarity. αmax = maxj∈T αj .

ci =

{

αmax + 1 li = n

αmax − αj + 1 li �= n
(6)

Exponentiated Tree Distance (ExTrD): Finally, in some cases, especially for deep
hierarchies, the tree distances can be large, and therefore, in order to shrink the
values of cost into a smaller range, we define ExTrD in (7), where k > 1, can be
tuned according to the hierarchy. Through tuning we found that on our dataset,
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the range of values 1.1 ≤ k ≤ 1.25 of works well.

ci =

{

kγmax li �= n

kγi li �= n
(7)

In all these cases, we set the cost of the positive class to the maximum cost of
any example.

Imbalance Cost. In certain cases, especially for large scale hierarchical text
classification, some classes are extremely small with respect to the number of pos-
itive examples available for training. In these cases, the learned decision bound-
ary might favor the larger classes. Therefore, to deal with this imbalance in the
class distributions, we increase the cost of misclassifying rare classes. This has
the effect of mitigating the influence of skew in the data distributions of abun-
dant and rare classes. We call the cost function incorporating this as Imbalance
Cost (IMB), which is given in (8). We noticed that using cost such as inverse
of class size diminishes the performance. Therefore, we use a squashing function
inspired by logistic function f (x) = L/ [1 + exp −k (x − x0)], which would not
severely disadvantage very large classes.

ci = 1 + L/
[

1 + exp
(

|Ni − N0|+
)]

(8)

where |a|+ = max (a, 0) and Ni is the number of examples belonging to class
denoted by li. The value of ci lies in the range (1, L/2 + 1). We can use a tunable
parameter N0, which can be intuitively interpreted as the number of examples
required to build a “good” model, above which increasing the cost does not have
a significant effect or might adversely affect the classification performance. In
our experiments, we used N0 = 10 and L = 20.

In order to combine the Hierarchical Costs with the Imbalance Costs, we
simply multiply the contributions of both the costs. We also experimented with
several other hierarchical cost variants, which are not discussed here due to space
constraints.

4.2 Optimization

Since we are dealing with large scale classification problems, we need an efficient
optimization method which relies only on the first order information to solve the
learning problem given in (9).

min
w

[

f (w) =
N

∑

i=1

ci log
(

1 + exp
(

−yiwTxi

))

+ ρ ‖w‖22

]

(9)

Since the cost values ci are predefined positive scalars, we can adapt any method
used to solve the standard regularized Logistic Regression (LR). We use acceler-
ated gradient descent due to its efficiency and simplicity. The ordinary gradient
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descent method has a convergence rate of O (1/k), where k is the number of iter-
ations. Accelerated gradient method improves the convergence rate to O

(

1/k2
)

by additionally using the gradient information from the previous iteration [14].
The complete algorithm to solve the cost-sensitive binary logistic regression is
provided in Line 1. We describe the notations and expressions used in the algo-
rithm below.

N is the number of examples; X ∈ R
N×D denotes the data matrix;

y ∈ {±1}N is the binary label vector for all examples; ρ ∈ R+ is the regu-
larization parameter; c = (c1, c2, . . . , cN ) ∈ R

N
+ denotes the cost vector, where

ci is the cost for example i ; w ∈ R
D denotes the weight vector learned by the

classifier; f (w) denotes the objective function value, given in (10)

f (w) = cT (log [1 + exp (Xw)]) + ρ ‖w‖22 (10)

∇f is the gradient of f w.r.t. w, which is defined in (11), where (y ◦ c) denotes
the vector obtained from the element-wise product of y and c. Similarly exp(·)
and division in (11) are element-wise operators.

∇f (w) = 2w + XT

(

−y ◦ c
1 + exp {(Xw) ◦ y}

)

(11)

f̂λ (u,w), described in (12), is the quadratic approximation of f (u) at w using
approximation constant or step size λ. The appropriate step size in each iteration
is found using line search.

f̂λ (u,w) = f (w) + (u − w)T ∇f (w) + 1/2λ ‖u − w‖22 (12)

4.3 Dealing with Hierarchical Multi-label Classification

HC problems are trivially multi-label problems because every example belonging
to a class also inherits the labels of the ancestor classes. But in the current
context, we call a problem as hierarchical multi-label problem if an example can
be assigned multiple labels such that neither is an ancestor nor descendant of
the other.

In the case of single label classification, we perform prediction as per (2),
which selects only a single label per example. A trivial extension to multi-label
classification can be done by choosing a threshold of 0 such that we assign label n
to example x if wT

nx > 0 as in the case of binary classification. However, a better
strategy is to optimize the threshold tn for each class using a validation set, such
that the label n is assigned to the test example if wT

nx > tn . This strategy
is called SCut method [21]. Other strategies such as learning a thresholding
function t

(

wT
1 x,wT

2 x, . . . ,wT
Mx

)

using the margin scores [9] might improve the
results, but they are somewhat more expensive to tune for large scale problems.
The SCut method can tune the threshold independently of all other classes. In
cases where we do not have sufficient examples to tune the threshold, i.e. the
class has a single training example, we set the threshold to tn = 0.
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Algorithm 1. Accelerated Gradient Method for Cost Sensitive LR
Data: X,y, c, ρ, β ∈ (0, 1), max iter
Result: w
Let λ0 := 1;w−1 = w0 = 0;
for k = 1 . . . max iter do

θk = k−1
k+2

λ = λk−1

while TRUE do
w = uk − λ∇f (uk−1)
if f(w) ≤ f̂λ (u,w) then

λk = λ
wk = w
break

else
λ = βλ

end

end
if converged then

break
end

end
return wk

The second issue that we must deal with is the definition of cost based on
hierarchical distances and class sizes. With respect to the training of a class n,
an example xi might be associated with multiple labels l1, l2 . . . , lK . In this case
the tree distance γi is not uniquely defined. Hence, we must aggregate the values
of γ (n, l1) , . . . , γ (n, lK). One strategy is to use an average of the values, but we
found that the taking the minimum works a little better. Similarly we can use
a minimum of of the number of common ancestors to all target labels for NCA
costs.

Finally, since an example is associated with multiple class labels, the class
size Ni of the examples is also not uniquely defined, in this case as well, we
use the the effective size as the minimum size out of all the labels associated
with xi for our IMB cost. It also makes intuitive sense, because we are trying
to upweight the rare classes, and the rarest class should be given precedence in
terms of the cost definition.

5 Experimental Evaluations

5.1 Datasets

The details of the datasets used for our experimental evaluations are provided
in Table 1. CLEF [6] is a dataset comprising of medical images annotated with
hierarchically organized Image Retrieval in Medical Applications (IRMA) codes.
The task is to predict the IRMA codes from image features. Images are described
with 80 features extracted using a technique called local distribution of edges.
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IPC is a collection of patent documents classified according to the Interna-
tional Patent Classification (IPC) System3. DMOZ-small, DMOZ-2010 and
DMOZ-2012 are hierarchical text classification datasets released as part of
PASCAL Large Scale Hierarchical Text Classification Challenge (LSHTC)4 [15].
For LSHTC datasets except DMOZ-small, labels of the test datasets are not
available, but certain classification metrics can be obtained through their online
evaluation system. RCV1-v2 [10] is a multi-label text classification dataset
extracted from Reuters corpus of manually categorized newswire stories. RCV1
is multi-label and non-mandatory leaf node predication [18] dataset, while the
rest of the datasets are single label datasets with examples assigned only to leaf
nodes. All the hierarchies used in the experiments are tree-based. For all the text
datasets, raw term frequencies were converted to term weights using Cornell ltc
term weighting [10].

Table 1. Dataset Statistics.

CLEF DMOZ
SMALL

IPC RCV1 DMOZ
2010

DMOZ
2012

Num. Training Examples 10000 4463 46324 23149 128710 383408

Num. Test Examples 1006 1858 28926 781265 34880 103435

Num. Features 80 51033 345479 48728 381580 348548

Num. Nodes 97 2388 553 117 17222 13963

Num. Terminal Nodes 63 1139 451 101 12294 11947

Max. Depth of Leaf Nodes 4 6 4 6 6 6

Avg. Labels per Example 1 1 1 3.18 1 1

5.2 Evaluation Metrics

We evaluate the prediction using the following standard performance measures
used in HC literature. The set based measures Micro-F1 and Macro-F1 are shown
below.

Micro-F1 = (2PR) / (P + R) (13)

Macro-F1 =
1

|T |
∑

t∈T
2PtRt/ (Pt + Rt) (14)

T denotes is the set of class labels, Pt and Rt are the precision and recall values
for class t ∈ T . P and R are the overall precision and recall values for the all the
classes taken together. Micro-F1 gives equal weight to all the examples therefore
it favors the classes with more number of examples. In the case of single label
classification, Micro-F1 is equivalent to accuracy. Macro-F1 gives equal weight

3 http://www.wipo.int/classifications/ipc/en/
4 http://lshtc.iit.demokritos.gr/

http://www.wipo.int/classifications/ipc/en/
http://lshtc.iit.demokritos.gr/
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to all the classes irrespective of their size. Hence, the performance on the smaller
categories is also taken into consideration.

Set based measures do not consider the distance of misclassification with
respect to the true label of the example, but in general, it is reasonable to
assume in most cases that misclassifications that are closer to the actual class
are less severe than misclassifications that are farther from the true class with
respect to the hierarchy. Hierarchical measures, therefore, take the distances
between the actual and predicted class into consideration. The hierarchical mea-
sures, described in eqs. (15) to (17), are Hierarchical Precision (hP ), Hierarchi-
cal Recall (hR), and their harmonic mean, Hierarchical F1 (hF1) respectively.
These are hierarchical extensions of standard precision and recall scores. Tree-
induced Error (TE) [19], given in (18), measures the average hierarchical distance
between the actual and predicted labels.

hP =
N

∑

i=1

∣

∣

∣A (li) ∩ A
(

l̂i

)∣

∣

∣ /

N
∑

i=1

∣

∣

∣A
(

l̂i

)∣

∣

∣ (15)

hR =
N

∑

i=1

∣

∣

∣A (li) ∩ A
(

l̂i

)∣

∣

∣ /

N
∑

i=1

|A (li)| (16)

hF1 = 2 · hP · hR/ (hP + hR) (17)

TE =
1
N

N
∑

i=1

γ
(

li, l̂i

)

(18)

where, l̂i and li are the predicted label and true labels of example i, respectively.
γ (a, b) the graph distance between a and b according to the hierarchy. A (l)
denotes the set that includes the node l and all its ancestors except the root
node. For TE lower values are better, whereas for all other measures higher
values are better.

For multi-label classification, where each li is a set of micro-labels, we redefine

graph distance and ancestors as: γml(li, l̂i) =
∣

∣

∣l̂i

∣

∣

∣

−1
∑

a∈l̂i
minb∈li γ (a, b) and

Aml (l) = ∪a∈lA (a).

5.3 Experimental Details

For all the experiments, the regularization parameter is tuned using a validation
set. The model is trained for a range of values 10k with appropriate values for
k selected depending on the dataset. Using the best parameter selected on vali-
dation set, we retrained the models on the entire training set and measured the
performance on a held out test set. The source code implementing the methods
discussed in this paper is available on our website 5. The experiments were per-
formed on computers with Dell C8220 processors with dual Intel Xeon E5-2670
8 core CPUs and 64 GB memory.
5 http://cs.gmu.edu/∼mlbio/HierCost/

http://cs.gmu.edu/~mlbio/HierCost/


686 A. Charuvaka and H. Rangwala

5.4 Methods for Comparison

In our experimental evaluations, we compare our cost sensitive hierarchical clas-
sification methods with the following hierarchical and flat classification methods
proposed in the literature.

Logistic Regression (LR). One-vs-rest binary logistic regression is used in
the conventional flat classification setting. For single label classification, we
assign test examples to the class which achieves best classification score.

Hierarchical Regularization for LR (HRLR). This method proposed by
Gopal et al. [9], extends flat classification using recursive regularization based
on hierarchical relationships. Since we used exactly the same setup as the
authors, in terms of training and test datasets, we are reporting their clas-
sification scores directly from [9].

Top-Down Logistic Regression (TD). This denotes Top-down logistic
regression model, where we train a one-vs-rest multi-class classifier at each
internal node. At testing time, the predictions are made starting from the
root node. At each internal node, the highest scoring child node is selected
until we reach a leaf node.

5.5 Results

In this section, we present experimental comparisons of various cost sensitive
learning strategies with other baseline methods. We provide separate compar-
isons of different cost based improvements on smaller datasets, and finally com-
pare our best method with the competing methods. In the tables, statistically
significant results for Micro-F1 and Macro-F1 [22] are marked with either † or ‡
which correspond to p-values < 0.05 and < 0.001 respectively.

In Table 2, we compare LR with various hierarchical costs defined in
Section 4.1. The results show a uniform improvement in all the metrics reported.
There was a statistically significant improvement in Micro-F1, especially for
DMOZ Small, IPC and RCV1 datasets. Macro-F1 scores were also improved,
but due to the presence of only a small number of categories in CLEF and RCV1
datasets, statistical significance could not be established, except for ExTrD.

In Table 3 we compare the effect of introducting imbalance costs, discussed
in Section 4.1, on standard LR and hierarchical costs. In IMB+LR only the
imbalance cost is used, in others, we use the product of costs derived from
IMB strategy and the corresponding hierarchical costs. We also measured the
significance of the improvement over the corresponding results from Table 2.
Only for DMOZ Small, which has a large number of classes with few examples,
imbalance costs further improve the results significantly for all the methods. On
CLEF, IPC and RCV1, where majority of the classes have sufficient number of
examples for training, the results did not improve significantly in most cases.
Overall, the IMB+ExTrD method provides more robust improvements.

The final comparison of our best method (IMB+ExTrD, which we call Hier-
Cost in the following) against various baseline methods is presented in Table 4.
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Table 2. Performance comparison of hierarchical costs.

Micro-F1 (↑) Macro-F1 (↑) hF1 (↑) TE (↓)

CLEF LR 79.82 53.45 85.24 0.994

TrD 80.02 55.51 85.39 0.984

NCA 80.02 57.48 85.34 0.986

ExTrD 80.22 57.55† 85.34 0.982

DMOZ SMALL LR 46.39 30.20 67.00 3.569

TrD 47.52‡ 31.37‡ 68.26 3.449

NCA 47.36‡ 31.20‡ 68.12 3.460

ExTrD 47.36‡ 31.19‡ 68.20 3.456

IPC LR 55.04 48.99 72.82 1.974

TrD 55.24‡ 50.20‡ 73.21 1.954

NCA 55.33‡ 50.29‡ 73.28 1.949

ExTrD 55.31‡ 50.29‡ 73.26 1.951

RCV1 LR 78.43 60.37 80.16 0.534

TrD 79.46‡ 60.61 82.83 0.451

NCA 79.74‡ 60.76 83.11 0.442

ExTrD 79.33‡ 61.74† 82.91 0.466

The evaluations on Dmoz 2010 and Dmoz 2012 datasets are blind and the pre-
dictions have to be uploaded to LSHTC website in order to obtain the scores.
For Dmoz 2012, Tree Errors are not available and for Dmoz 2010, the hF1 are
not available. For HRLR, we do not have access to the predictions, hence, we
could only report the values for Micro-F1 and Macro-F1 scores from [9]. Sta-
tistical significance tests compare the results of HierCost with LR. These tests
could not be performed on LSHTC datasets due to non-availability of the true
labels on test sets. As seen in Table 4, HierCost improves upon the baseline LR
results as well as the results reported in [9], in most cases, especially the Macro-
F1 scores. The results of HierCost are better on most measures. TD performs
worst on average on set-based measures. In fact, only on Dmoz 2012 dataset,
TD is competitive, on the rest, the results are much worse than the flat LR
classifier and its hierarchical extensions. On hierarchical measure, however, TD
outperformed flat classifiers on some datasets.

In Table 5, we report the run-times comparisons of TD, LR and HierCost.
We trained the models in parallel for different classes and computed the sum of
run-times for each training instance. In theory, the run-times of LR and Hier-
Cost should be equivalent, because they solve similar optimization problems.
However, minor variations in the run-times were observed because of the varia-
tions in optimal regularization penalties, which influences the convergence of the
optimization algorithm. The runtimes of flat methods were significantly worse
than TD, which is efficient in terms of training, but at considerable loss in classi-
fication performance. Although, we do not measure the training times of HRLR,
based on the experience from a similar problem [3], the recursive model take
between 3-10 iterations for convergence. In each iteration, the models for all the
terminal labels need to be trained hence each iteration is about as expensive as
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Table 3. Peformance comparison with imbalance cost included.

Micro-F1 (↑) Macro-F1 (↑) hF1 (↑) TE (↓)

CLEF IMB + LR 79.52 53.11 85.19 1.002

IMB + TrD 79.92 52.84 85.59 0.978

IMB + NCA 79.62 51.89 85.34 0.994

IMB + ExTrD 80.32 58.45 85.69 0.966

DMOZ SMALL IMB + LR 48.55‡ 32.72‡ 68.62 3.406

IMB + TrD 49.03‡ 33.21‡ 69.41 3.334

IMB + NCA 48.87‡ 33.27‡ 69.37 3.335

IMB + ExTrD 49.03‡ 33.34‡ 69.54 3.322

IPC IMB + LR 55.04 49.00 72.82 1.974

IMB + TrD 55.60‡ 50.45† 73.56 1.933

IMB + NCA 55.33 50.29 73.28 1.949

IMB + ExTrD 55.67‡ 50.42 73.58 1.931

RCV1 IMB + LR 78.59‡ 60.77 81.27 0.511

IMB + TrD 79.63‡ 61.04 83.13 0.435

IMB + NCA 79.61 61.04 82.65 0.458

IMB + ExTrD 79.22 61.33 82.89 0.469

Table 4. Performance comparison of HierCost with other baseline methods.

Micro-F1 (↑) Macro-F1 (↑) hF1 (↑) TE (↓)

TD 73.06 34.47 79.32 1.366

CLEF LR 79.82 53.45 85.24 0.994

HRLR 80.12 55.83 - -

HierCost 80.32 58.45† 85.69 0.966

TD 40.90 24.15 69.99 3.147

DMOZ SMALL LR 46.39 30.20 67.00 3.569

HRLR 45.11 28.48 - -

HierCost 49.03‡ 33.34‡ 69.54 3.322

TD 50.22 43.87 69.33 2.210

IPC LR 55.04 48.99 72.82 1.974

HRLR 55.37 49.60 - -

HierCost 55.67‡ 50.42† 73.58 1.931

TD 77.85 57.80 88.78 0.524

RCV1 LR 78.43 60.37 80.16 0.534

HRLR 81.23 55.81 - -

HierCost 79.22‡ 61.33 82.89 0.469

TD 38.86 26.29 - 3.867

DMOZ 2010 LR 45.17 30.98 - 3.400

HRLR 45.84 32.42 - -

HierCost 45.87 32.41 - 3.321

TD 51.65 30.48 73.33 -

DMOZ 2012 LR 51.72 27.19 72.53 -

HRLR 53.18 20.04 - -

HierCost 53.36 28.47 73.79 -
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Table 5. Total training runtimes (in mins).

TD-LR LR HierCost

CLEF <1 <1 <1

DMOZ SMALL 4 41 40

IPC 27 643 453

RCV1 20 29 48

DMOZ 2010 196 15191 20174

DMOZ 2012 384 46044 50253

a single run of LR. In addition, the distributed recursive models require commu-
nication between the training machines which incurs an additional overhead.

6 Conclusions

In this paper, we have argued that the methods that extend flat classifica-
tion using hierarchical regularization, can be viewed in a complementary way
as weighting the losses on the negative examples depending on dissimilarity
between the positive and negative classes. The approach proposed in this paper,
incorporates this insight directly into the loss function by scaling the loss func-
tion according to the dissimilarity between the classes with respect to the hier-
archy, thus obviating the need for recursive regularization and iterative model
training. At the same time, this approach also makes parallelization trivial. Our
method also mitigates the adverse effects of imbalance in the training data by up-
weighting the loss for examples from smaller classes, thus, significantly improv-
ing their classification results. Our experimental results show that the proposed
method is able to efficiently incorporate hierarchical information by transform-
ing the hierarchical classification problem into an example based cost sensitive
classification problem. In future work, we would like to evaluate the benefits of
cost sensitive classification using large margin classifiers such as support vector
machines.
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Abstract. In this work, we generalized and unified two recent com-
pletely different works of Jascha [10] and Lee [2] respectively into one
by proposing the proximal stochastic Newton-type gradient (PROX-
TONE) method for optimizing the sums of two convex functions: one is
the average of a huge number of smooth convex functions, and the other
is a nonsmooth convex function. Our PROXTONE incorporates second
order information to obtain stronger convergence results, that it achieves
a linear convergence rate not only in the value of the objective function,
but also for the solution. The proofs are simple and intuitive, and the
results and technique can be served as a initiate for the research on the
proximal stochastic methods that employ second order information. The
methods and principles proposed in this paper can be used to do logistic
regression, training of deep neural network and so on. Our numerical
experiments shows that the PROXTONE achieves better computation
performance than existing methods.

1 Introduction and Problem Statement

In this work, we consider the problems of the following form:

min
x∈Rp

f(x) :=
1
n

n
∑

i=1

gi(x) + h(x), (1)

where gi is a smooth convex loss function associated with a sample in a train-
ing set, and h is a non-smooth convex penalty function or a regularizer. Let
g(x) = 1

n

∑n
i=0 gi(x). We assume the optimal value f� is attained at some opti-

mal solution x�, not necessarily unique. Problems of this form often arise in
machine learning, such as the least-squares regression, the Lasso, the elastic net,
the logistic regression, and deep neural network.

For optimizing (1), the standard and popular proximal full gradient method
(ProxFG) uses iterations of the form

xk+1 = arg min
x∈Rp

{

∇g(xk)T x +
1

2αk
‖x − xk−1‖2 + h(x)

}

, (2)

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 691–704, 2015.
DOI: 10.1007/978-3-319-23528-8 43



692 Z. Shi and R. Liu

where αk is the step size at the k-th iteration. Under standard assumptions the
sub-optimality achieved on iteration k of the ProxFG method with a constant
step size is given by

f(xk) − f(x∗) = O(
1
k

).

When f is strongly-convex, the error satisfies [11]

f(xk) − f(x∗) = O(
(L − μg

L + μh

)k),

where L is the Lipschitz constant of f(x), μg, and μh are the convexity param-
eters of g(x) and h(x) respectively. These notations mentioned here will be
detailed in Section 1.1. This result in a linear convergence rate, which is also
known as a geometric or exponential rate because the error is cut by a fixed
fraction on each iteration.

Unfortunately, the ProxFG methods can be unappealing when n is large
or huge because its iteration cost scales linearly in n. When the number of
components n is very large, then each iteration of (2) will be very expensive
since it requires computing the gradients for all the n component functions gi,
and also their average.

To overcome this problem, researchers proposed the proximal stochastic gra-
dient descent methods (ProxSGD), whose main appealing is that they have an
iteration cost which is independent of n, making them suited for modern prob-
lems where n may be very large. The basic ProxSGD method for optimizing (1),
uses iterations of the form

xk = proxαkh

(

xk−1 − αk∇gik(xk−1)
)

, (3)

where at each iteration an index ik is sampled uniformly from the set {1, ..., n}.
The randomly chosen gradient ∇gik(xk−1) yields an unbiased estimate of the
true gradient ∇g(xk−1) and one can show under standard assumptions that, for
a suitably chosen decreasing step-size sequence {αk}, the ProxSGD iterations
have an expected sub-optimality for convex objectives of [1]

E[f(xk)] − f(x∗) = O(
1√
k

)

and an expected sub-optimality for strongly-convex objectives of

E[f(xk)] − f(x∗) = O(
1
k

).

In these rates, the expectations are taken with respect to the selection of the ik
variables.

Besides these first order method, there is another group of methods, called
proximal Newton-type methods, which converge much faster, but need more
memory and computation to obtain the second order information about the
objective function. These methods are always limited to small-to-medium scale
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problems that require a high degree of precision. For optimizing (1), proximal
Newton-type methods [2] that incorporate second order information use itera-
tions of the form xk+1 ← xk + Δxk, here Δxk is obtained by

Δxk = arg min
d∈Rp

∇g(xk)T d +
1
2
dT Hkd + h(xk + d), (4)

where Hk denotes an approximation to ∇2g(xk). According to the strategies
for choosing Hk, we obtain different method, such as proximal Newton method
(ProxN) when we choose Hk to be ∇2g(xk); proximal quasi-Newton method
(ProxQN) when we build an approximation to ∇2g(xk) using changes mea-
sured in ∇g according to a quasi-Newton strategy [2]. Indeed if we compared (4)
with (2), it can be seen ProxN is the ProxFG with scaled proximal mappings.

Based on the related background introduced above, now we can describe our
approaches and findings. The primary contribution of this work is the proposal
and analysis of a new algorithm that we call the proximal stochastic Newton-type
gradient (PROXTONE, pronounced /prok stone/) method, a stochastic variant
of the ProxN method. The PROXTONE method has the low iteration cost as
that of ProxSGD methods, but achieves the convergence rates like the ProxFG
method stated above. The PROXTONE iterations take the form xk+1 ← xk +
tkΔxk, where Δxk is obtained by

Δxk ← arg min
d

dT (∇k + Hkxk) +
1
2
dT Hkd + h(xk + d), (5)

here ∇k = 1
n

∑n
i=1 ∇i

k, Hk = 1
n

∑n
i=1 Hi

k, and at each iteration a random index
j and corresponding Hj

k+1 is selected, then we set

∇i
k+1 =

{

∇gi(xk+1) − Hi
k+1x

k+1 if i = j,
∇i

k+1 otherwise.

and Hi
k+1 ← Hi

k (i �= j).
That is, like the ProxFG and ProxN methods, the steps incorporates a gradi-

ent with respect to each function; but, like the ProxSGD method, each iteration
only computes the gradient with respect to a single example and the cost of
the iterations is independent of n. Despite the low cost of the PROXTONE
iterations, we show in this paper that the PROXTONE iterations have a linear
convergence rate for strongly-convex objectives, like the ProxFG method. That
is, by having access to j and by keeping a memory of the approximation for
the Hessian matrix computed for the objective funtion, this iteration achieves a
faster convergence rate than is possible for standard ProxSGD methods.

Besides PROXTONE, there are a large variety of approaches available to
accelerate the convergence of ProxSGD methods, and a full review of this
immense literature would be outside the scope of this work. Several recent
work considered various special cases of (1), and developed algorithms that
enjoy the linear convergence rate, such as ProxSDCA [8], MISO [3], SAG [7],
ProxSVRG [11], SFO [10], and ProxN [2]. All these methods converge with an
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exponential rate in the value of the objective function, except that the ProxN
achieves superlinear rates of convergence for the solution, however it is a batch
mode method. Shalev-Shwartz and Zhang’s ProxSDCA [8,9] considered the case
where the component functions have the form gi(x) = φi(aT

i x) and the Fenchel
conjugate functions of φi and h can be computed efficiently. Schimidt et al.’s
SAG [7] and Jascha et al.’s SFO [10] considered the case where h(x) ≡ 0.

Different from above related methods, our PROXTONE is a extension of
the SFO and ProxN to a proximal stochastic Newton-type method for solving
the more general nonsmooth ( compared to ProxSDCA, SAG and SFO) class
of problems defined in (1). PROXTONE makes connections between two com-
pletely different approaches. It achieves a linear convergence rate not only in the
value of the objective function, but also for the solution. We now outline the rest
of the study. Section 2 presents the main algorithm and gives an equivalent form
in order for the ease of analysis. Section 3 states the assumptions underlying
our analysis and gives the main results; we first give a linear convergence rate
in function value (weak convergence) that applies for any problem, and then
give a strong linear convergence rate for the solution, however with some addi-
tional conditions. We report some experimental results in Section 4 and provide
concluding remarks in Section 5.

1.1 Notations and Assumptions

In this paper, we assume the function h(x) is lower semi-continuous and convex,
and its effective domain, dom(h) := {x ∈ R

p |h(x) < +∞}, is closed. Each gi(x),
for i = 1, . . . , n, is differentiable on an open set that contains dom(h), and their
gradients are Lipschitz continuous, that is, there exist Li > 0 such that for all
x, y ∈ dom(h),

‖∇gi(x) − ∇gi(y)‖ ≤ Li‖x − y‖. (6)

Then from the Lemma 1.2.3 and its proof in Nesterov’s book [5], for i =
1, . . . , n, we have

|gi(x) − gi(y) − ∇gi(y)T (x − y)| ≤ Li

2
‖x − y‖2. (7)

A function f(x) is called μ-strongly convex, if there exist μ ≥ 0 such that for
all x ∈ dom(f) and y ∈ R

p,

f(y) ≥ f(x) + ξT (y − x) +
μ

2
‖y − x‖2, ∀ ξ ∈ ∂f(x). (8)

The convexity parameter of a function is the largest μ such that the above
condition holds. If μ = 0, it is identical to the definition of a convex function. The
strong convexity of f(x) in (1) may come from either g(x) or h(x) or both. More
precisely, let g(x) and h(x) have convexity parameters μg and μh respectively,
then μ ≥ μg + μh. From Lemma B.5 in [3] and (8), we have

f(y) ≥ f(x∗) +
μ

2
‖y − x∗‖2. (9)
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2 The PROXTONE Method

In this section we present the Proximal Stochastic Newton-type Gradient
Descent (PROXTONE) algorithm for solving problems of the form (1). There
are two key steps in the algorithm: (step 2) the regularized quadratic model (5)
is solved to give a search direction; (step 4) the component function gj(x) is
sampled randomly and the regularized quadratic model (5) is updated using
this selected function. Once these key steps have been performed, the current
point xk is updated to give a new point xk+1, and the process is repeated.

We summarize the PROXTONE method of (5) in Algorithm 1, while a thor-
ough description of each of the key steps in the algorithm will follow in the rest
of this section. It can be easily checked that if n = 1, then it becomes the deter-
mined proximal Newton-type methods proposed by Lee and Sun et al. [2] for
minimizing composite functions:

min
x∈Rp

f(x) := g(x) + h(x) (10)

by (4). Thus PROXTONE is indeed a generalization of ProxN [2].

Algorithm 1. PROXTONE: A generic PROXimal sTOchastic NEwton-type
gradient descent method
Input: start point x0 ∈ dom f ; for i ∈ {1, 2, .., n}, let Hi

−1 = Hi
0 be a positive definite

approximation to the Hessian of gi(x) at x0, ∇i
−1 = ∇i

0 = ∇gi(x
0) − Hi

0x
0; and

∇0 = 1
n

∑n
i=1 ∇i

0, H0 = 1
n

∑n
i=0 Hi

0.
1: repeat
2: Solve the subproblem for a search direction:�xk ← arg mind dT (∇k + Hkxk) +
1
2
dTHkd + h(xk + d).

3: Update: xk+1 = xk + �xk.
4: Sample j from {1, 2, .., n}, use the ∇gj(x

k+1) and Hj
k+1, which is a positive definite

approximation to the Hessian of gj(x) at xk+1, to update the ∇i
k+1 (i ∈ {1, 2, .., n}):

∇j
k+1 ← ∇gj(x

k+1) − Hj
k+1x

k+1, while leaving all other ∇i
k+1 and Hi

k+1 unchanged:

∇i
k+1 ← ∇i

k and Hi
k+1 ← Hi

k (i �= j) ; and finally obtain ∇k+1 and Hk+1 by ∇k+1 ←
1
n

∑n
i=1 ∇i

k+1, Hk+1 ← 1
n

∑n
i=1 Hi

k+1.
5: until stopping conditions are satisfied.
Output: xk.

It is also a generalization of recent work by Jascha [10], whose SFO is the
special case of our PROXTONE with h(x) ≡ 0. Our algorithm in Jascha’s style
is summarized in Algorithm 2 which is equivalent to the original PROXTONE.
To see the equivalence, keep in mind that Gk(x) in Algorithm 2 is a quadratic
function, we only need to check the following equations:

∇2Gk(x) =
1
n

n
∑

i=1

Hi
k and ∇Gk(x) =

1
n

n
∑

i=1

∇gi(x) +
1
n

n
∑

i=1

(x − xk)T Hi
k,
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and

∇k + Hkxk =
1
n

n
∑

i=1

[∇gi(xθi,k) + (xk − xθi,k−1)T Hi
θi,k

]. (11)

In following analysis, we will not distinguish these two forms of PROXTONE
from each other.

Algorithm 2. PROXTONE in a form that is easy to analyze
Input: start point x0 ∈ dom f ; for i ∈ {1, 2, .., n}, let g0

i (x) = gi(x
0) + (x −

x0)T∇gi(x
0) + 1

2
(x − x0)THi

0(x − x0), where the notation Hi
0 (i ∈ {1, 2, .., n}) are

totally the same as they in Algorithm 1; and G0(x) = 1
n

∑n
i=1 g0

i (x).
1: repeat
2: Solve the subproblem for new approximation of the solution:

xk+1 ← arg min
x

[
Gk(x) + h(x)

]
. (12)

3: Sample j from {1, 2, .., n}, and update the quadratic models or surrogate functions:

gk+1
j (x) = gj(x

k+1) + (x − xk+1)T∇gj(x
k+1) +

1

2
(x − xk+1)THi

k+1(x − xk+1), (13)

while leaving all other gk+1
i (x) unchanged: gk+1

i (x) ← gk
i (x) (i �= j); and Gk+1(x) =

1
n

∑n
i=1 gk+1

i (x).
4: until stopping conditions are satisfied.
Output: xk.

To better understand this method, we make the following illustration and
observations.

2.1 The Regularized Quadratic Model in Algorithm 2

For fixed x ∈ R
p, we define a regularized piecewise quadratic approximation of

f(x) as follows:

Gk(x) + h(x) =
1
n

n
∑

i=1

gk
i (x) + h(x)

where gk
i (x) is the quadratic model for gi(x)

gk
i (x)

=gi(xθi,k) + (x − xθi,k)T ∇gi(xθi,k) +
1
2
(x − xθi,k)T Hi

θi,k
(x − xθi,k), (14)

here θi,k is a random variable which have the following conditional probability
distribution in each iteration:

P(θi,k = k|j) =
1
n

and P(θi,k = θi,k−1|j) = 1 − 1
n

, (15)
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and Hi
θi,k

is any positive definite matrix, which possibly depends on xθi,k . Then
at each iteration the search direction is found by solving the subproblem (12).

One of the crucial ideas of this algorithm is that the component function to be
used for updating the search direction at each iteration is chosen randomly. This
allows the function to be selected very quickly. After the component function
gj(x) selected and updated by (13), while leaving all other gk+1

i (x) unchanged.

2.2 The Hessian Approximation

Arguably, the most important feature of this method is that the regularized
quadratic model (12) incorporates second order information in the form of a
positive definite matrix Hi

k. This is key because, at each iteration, the user has
complete freedom over the choice of Hi

k. A few suggestions for the choice of
Hi

k include: the simplest option is Hi
k = I that no second order information is

employed; Hi
k = ∇2gi(xk) provides the most accurate second order information,

but it is (potentially) more computationally expensive to work with.

3 Convergence Analysis

In this section we provide convergence theory for the PROXTONE algorithm.
Under the standard assumptions, we now state our convergence result.

Theorem 1. Suppose ∇gi(x) is Lipschitz continuous with constant Li > 0 for
i = 1, ..., n, and LiI  mI  Hi

k  MI for all i = 1, ..., n, k ≥ 1. h(x) is strongly
convex with μh ≥ 0. Let Lmax = {L1, ..., Ln}, then the PROXTONE iterations
satisfy for k ≥ 1:

E[f(xk)] − f∗ ≤ M + Lmax

2
[
1
n

M + Lmax

2μh + m
+ (1 − 1

n
)]k‖x∗ − x0‖2. (16)

The ideas of the proof is closed related to that of MISO by Mairal [3] and
for completeness we give a simple version in the appendix.

We have the following remarks regarding the above result:

– In order to satisfy E[f(xk)] − f∗ ≤ ε, the number of iterations k needs to
satisfy

k ≥ (log ρ)−1 log
[ 2ε

(M + Lmax)‖x∗ − x0‖2
]

,

where ρ = 1
n

M+Lmax

2μh+m + (1 − 1
n ).

– Inequality (16) gives us a reliable stopping criterion for the PROXTONE
method.

At this moment, we see that the expected quality of the output of PROX-
TONE is good. However, in practice we are not going to run this method many
times on the same problem. What is the probability that our single run can give
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us also a good result. Since f(xk) − f∗ ≥ 0, Markov’s inequality and Theorem 1
imply that for any ε > 0,

Prob
(

f(xk) − f∗ ≥ ε
)

≤ E[f(xk) − f∗]
ε

≤ (M + Lmax)ρk‖x∗ − x0‖2
2ε

.

Thus we have the following high-probability bound.

Corollary 1. Suppose the assumptions in Theorem 1 hold. Then for any ε > 0
and δ ∈ (0, 1), we have

Prob
(

f(xk) − f(x�) ≤ ε
)

≥ 1 − δ,

provided that the number of iterations k satisfies

k ≥ log
(

(M + Lmax)‖x∗ − x0‖2
2δε

)/

log
(

1
ρ

)

.

Based on Theorem 1 and its proof, we give a deeper and stronger result that
the PROXTONE achieves a linear convergence rate for the solution.

Theorem 2. Suppose ∇gi(x) and ∇2gi are Lipschitz continuous with constant
Li > 0 and Ki > 0 respectively for i = 1, ..., n, h(x) is strongly convex with μh ≥
0. Let Lmax = {L1, ..., Ln} and Kmax = (1/n)

∑n
i=1 Li. If Hi

θi,k
= ∇2gi(xθi,k)

and LiI  mI  Hi
k  MI, then PROXTONE converges exponentially to x� in

expectation:

E[‖xk+1 − x�‖]

≤(
Kmax + 2Lmax

m

M + Lmax

2μh + m
+

2Lmax

m
)[

1
n

M + Lmax

2μh + m
+ (1 − 1

n
)]k−1‖x∗ − x0‖2.

In order to satisfy E[‖xk+1 − x�‖] ≤ ε, the number of iterations k needs to
satisfy

k ≥ (log ρ)−1 log
[ ε

C‖x∗ − x0‖2
]

,

where ρ is as before and C = Kmax+2Lmax

m
M+Lmax

2μh+m + 2Lmax

m .
Due to the Markov’s inequality, Theorem 2 implies the following result.

Corollary 2. Suppose the assumptions in Theorem 2 hold. Then for any ε > 0
and δ ∈ (0, 1), we have

Prob
(

‖xk+1 − x�‖ ≥ ε
)

≥ 1 − δ,

provided that the number of iterations k satisfies

k ≥ log

(
((Kmax + 2Lmax)(M + Lmax) + 2Lmax(2μh + m))‖x∗ − x0‖2

m(2μh + m)δε

)/
log

(
1

ρ

)
.



Large Scale Optimization with Proximal Stochastic Newton-Type 699

4 Numerical Experiments

The technique proposed in this paper has wide applications, it can be used to
do least-squares regression, the Lasso, the elastic net, and the logistic regression.
Furthermore the principle of PROXTONE can also be applies to do nonconvex
optimization problems, such as training of deep convolutional network and so on.

In this section we present the results of some numerical experiments to illus-
trate the properties of the PROXTONE method. We focus on the sparse regular-
ized logistic regression problem for binary classification: given a set of training
examples (a1, b1), . . . , (an, bn) where ai ∈ R

p and bi ∈ {+1,−1}, we find the
optimal predictor x ∈ R

p by solving

min
x∈Rp

1
n

n
∑

i=1

log
(

1 + exp(−bia
T
i x)

)

+ λ1‖x‖22 + λ2‖x‖1,

where λ1 and λ2 are two regularization parameters. We set

gi(x) = log(1 + exp(−bia
T
i x) + λ1‖x‖22, h(x) = λ2‖x‖1, (17)

and
λ1 = 1E − 4, λ2 = 1E − 4.

In this situation, the subproblem (12) become a lasso problem, which can be
effectively and accurately solved by the proximal algorithms [6].

(a) (b)

Fig. 1. A comparison of PROXTONE to competing optimization techniques for two
datasets. The bold lines indicate the best performing hyperparameter for each opti-
mizer.

We used some publicly available data sets. The protein data set was obtained
from the KDD Cup 20041; the covertype data sets were obtained from the LIB-
SVM Data2.
1 http://osmot.cs.cornell.edu/kddcup
2 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets

http://osmot.cs.cornell.edu/kddcup
http://www.csie.ntu.edu.tw/~{}cjlin/libsvmtools/datasets
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The performance of PROXTONE is compared with some related algorithms:

– ProxSGD: We used a constant step size that gave the best performance among
all powers of 10.

– ProxSAG: This is a proximal version of the SAG method, with the trailing
number providing the Lipschitz constant.

The results of the different methods are plotted for the first 100 effective
passes through the data in Figure 1. The PROXTONE iterations seem to achieve
the best of all.

5 Conclusions

This paper introduces a proximal stochastic method called PROXTONE for
minimizing regularized finite sums. For nonsmooth and strongly convex prob-
lems, we show that PROXTONE not only enjoys the same linear rates as those
of MISO, SAG, ProxSVRG and ProxSDCA, but also showed that the solution
of this method converges in exponential rate too. There are some directions
that the current study can be extended. In this paper, we have focused on the
theory and the convex experiments of PROXTONE; it would be meaningful to
also make clear the implementation details and do the numerical evaluation to
nonconvex problems [10]. Second, combine with randomized block coordinate
method [4] for minimizing regularized convex functions with a huge number of
varialbes/coordinates. Moreover, due to the trends and needs of big data, we
are designing distributed/parallel PROXTONE for real life applications. In a
broader context, we believe that the current paper could serve as a basis for
examining the method on the proximal stochastic methods that employ second
order information.

Appendix

In this Appendix, we give the proofs of the two propositions.

A Proof of Theorem 1

Since in each iteration of the PROXTONE, we have (14) and (15), that yields

E[‖x∗ − xθi,k‖2] =
1
n
E[‖x∗ − xk‖2] + (1 − 1

n
)E[‖x∗ − xθi,k−1‖2]. (18)

Since 0  Hi
θi,k

 MI and ∇2gk
i (x) = Hi

θi,k
, by Theorem 2.1.6 of [5] and

the assumption, ∇gk
i (x) and ∇gi(x) are Lipschitz continuous with constant M

and Li respectively, and further ∇gk
i (x) − ∇gi(x) is Lipschitz continuous with

constant M + Li for i = 1, . . . , n. This together with (7) yieds

|[gk
i (x) − gi(x)] − [gk

i (y) − gi(y)] − ∇[gk
i (y) − gi(y)]T (x − y)| ≤ M + Li

2
‖x − y‖2.
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Applying the above inequality with y = xθi,k , and using the fact that
∇[gk

i (xθi,k)] = ∇[gi(xθi,k)] and gk
i (xθi,k) = gi(xθi,k), we have

|gk
i (x) − gi(x)| ≤ M + Li

2
‖x − xθi,k‖2.

Summing over i = 1, . . . , n yields

[Gk(x) + h(x)] − [g(x) + h(x)] ≤ 1
n

n
∑

i=1

M + Li

2
‖x − xθi,k‖2. (19)

Then by the Lipschitz continuity of ∇gi(x) and the assumption LiI  mI  Hi
k,

we have

gi(x)

≤ gi(xθi,k) + ∇gi(xθi,k)T (x − xθi,k)| +
Li

2
‖x − xθi,k‖2

≤ gi(xθi,k) + (x − xθi,k)T ∇gi(xθi,k) +
1
2
(x − xθi,k)T Hi

θi,k
(x − xθi,k) = gk

i (x),

and thus, by summing over i yields g(x) ≤ Gk(x), and further by the optimality
of xk+1, we have

f(xk+1) ≤ Gk(xk+1) + h(xk+1) ≤ Gk(x) + h(x)

≤ f(x) +
1
n

n
∑

i=1

M + Li

2
‖x − xθi,k‖2 (20)

Since mI  Hθi,k
and ∇2gk

i (x) = Hθi,k
, by Theorem 2.1.11 of [5], gk

i (x) is
m-strongly convex. Since Gk(x) is the average of gk

i (x), thus Gk(x) + h(x) is
(m + μh)-strongly convex, we have

f(xk+1) +
m + μh

2
‖x − xk+1‖2 ≤ Gk(xk+1) + h(xk+1) +

m + μh

2
‖x − xk+1‖2

≤ Gk(x) + h(x)
= f(x) + [Gk(x) + h(x) − f(x)]

≤ f(x) +
1
n

n
∑

i=1

M + Li

2
‖x − xθi,k‖2.

By taking the expectation of both sides and let x = x∗ yields

E[f(xk+1)] − f∗ ≤ E[
1
n

n
∑

i=1

M + Li

2
‖x∗ − xθi,k‖2] − E[

m + μh

2
‖x∗ − xk+1‖2].

We have
μh

2
‖xk+1 − x∗‖2 ≤ E[f(xk+1)] − f∗

≤ E[
1
n

n
∑

i=1

M + Lmax

2
‖x − xθi,k‖2] − E[

m + μh

2
‖x − xk+1‖2].
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thus

‖xk+1 − x∗‖2 ≤ M + Lmax

2μh + m
E[

1
n

n
∑

i=1

‖x∗ − xθi,k‖2]. (21)

then we have

E[
1
n

n
∑

i=1

‖x∗ − xθi,k‖2] =
1
n

‖xk − x∗‖2 + (1 − 1
n

)E[
1
n

n
∑

i=1

‖x∗ − xθi,k−1‖2]

≤ 1
n

‖xk − x∗‖2 + (1 − 1
n

)E[
1
n

n
∑

i=1

‖x∗ − xθi,k−1‖2]

≤ [
1
n

M + Lmax

2μh + m
+ (1 − 1

n
)]E[

1
n

n
∑

i=1

‖x∗ − xθi,k−1‖2]

≤ [
1
n

M + Lmax

2μh + m
+ (1 − 1

n
)]kE[

1
n

n
∑

i=1

‖x∗ − xθi,0‖2]

≤ [
1
n

M + Lmax

2μh + m
+ (1 − 1

n
)]k‖x∗ − x0‖2.

Thus we have E[f(xk+1)] − f∗ ≤ M+Lmax

2 [ 1n
M+Lmax

2μh+m + (1 − 1
n )]k‖x∗ − x0‖2.

B Proof of Theorem 2

We first examine the relations between the search directions of ProxN and
PROXTONE.

By (4), (5) and Fermat’s rule, Δxk
ProxN and Δxk are also the solutions to

Δxk
ProxN = arg min

d∈Rp
∇g(xk)T d + (Δxk

ProxN )T Hkd + h(xk + d),

Δxk = arg min
d∈Rp

(∇k + Hkxk)T d + (Δxk)T Hkd + h(xk + d).

Hence Δxk and Δxk
ProxN satisfy

∇g(xk)T Δxk + (Δxk
ProxN )T HkΔxk + h(xk + Δxk)

≥∇g(xk)T Δxk
ProxN + (Δxk

ProxN )T HkΔxk
ProxN + h(xk + Δxk

ProxN )

and

(∇k + Hkxk)T Δxk
ProxN + (Δxk)T HkΔxk

ProxN + h(xk + Δxk
ProxN )

≥ (∇k + Hkxk)T Δxk + (Δxk)T HkΔxk + h(xk + Δxk).

We sum these two inequalities and rearrange to obtain

(Δxk)T HkΔxk − 2(Δxk
ProxN )T HkΔxk + (Δxk

ProxN )T HkΔxk
ProxN

≤ (∇k + Hkxk − ∇g(xk))T (Δxk
ProxN − Δxk).
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The assumptions mI  Hθi,k
yields that mI  Hk, together with (11) we

have

m‖Δxk − Δxk
ProxN‖2 (22)

≤ ‖ 1
n

n
∑

i=1

(∇gi(xθi,k) − ∇gi(xk) − (xθi,k − xk)T Hi
θi,k

)‖‖(Δxk − Δxk
ProxN )‖.

Since ∇2gi is Lipschitz continuous with constant Ki > 0, by Lemma 1.2.4 of [5]
we have

‖∇gi(xθi,k) − ∇gi(xk) − (xθi,k − xk)T Hi
θi,k

‖ ≤ Ki

2
‖xθi,k − xk‖2. (23)

Then from (22) and (23), we have

‖Δxk − Δxk
ProxN‖ ≤ Kmax

2mn

n
∑

i=1

‖xθi,k−1 − xk‖2. (24)

Since the ProxN method converges q-quadratically (cf. Theorem 3.3 of [2]),

‖xk+1 − x�‖
≤ ‖xk + Δxk

ProxN − x�‖ + ‖Δxk − Δxk
ProxN‖

≤ Kmax

m
‖xk − x�‖2 + ‖Δxk − Δxk

ProxN‖. (25)

Thus from (24) and (25), we have almost surely that

‖xk+1 − x�‖

≤ Kmax

m
‖xk − x�‖2 +

Lmax

2mn

n
∑

i=1

‖xθi,k−1 − xk‖2

≤ Kmax

m
‖xk − x�‖2 +

Lmax

mn

n
∑

i=1

2‖xθi,k−1 − x∗‖2 +
Lmax

mn

n
∑

i=1

2‖x∗ − xk‖2.

Then by (21), we have

‖xk+1 − x�‖ ≤ (
Kmax + 2Lmax

m

M + Lmax

2μh + m
+

2Lmax

m
)E[

1
n

n
∑

i=1

‖xθi,k − x∗‖2]

which yieds

‖xk+1 − x�‖ ≤ (
Kmax + 2Lmax

m

M + Lmax

2μh + m
+

2Lmax

m
)[

1
n

M + Lmax

2μh + m

+ (1 − 1
n

)]k‖x∗ − x0‖2.
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Fig. 2. Pairwise F-Measure clustering results of different active clustering methods
with increasing number of queries. Results are averaged over 30 runs. Error bars are
shown as mean and 95% confidence interval.



Erratum to: Scalable Metric Learning
for Co-Embedding

Farzaneh Mirzazadeh1(B), Martha White2, András György1,
and Dale Schuurmans1

1 Department of Computing Science, University of Alberta, Edmonton, Canada
{mirzazad,dale}@cs.ualberta.ca, gyorgy@ualberta.ca

2 Department of Computer Science and Informatics, Indiana University,
Bloomington, USA
martha@indiana.edu

Erratum to:
Chapter 39 in: A. Appice et al. (Eds.)
Machine Learning and Knowledge Discovery
in Databases
DOI: 10.1007/978-3-319-23528-8 39

(i) In the original version, Corresponding author & E-mail ids were missing,
they should read as follows:

Farzaneh Mirzazadeh1(B), Martha White2, András György1,
and Dale Schuurmans1

1 Department of Computing Science, University of Alberta, Edmonton, Canada
{mirzazad,dale}@cs.ualberta.ca, gyorgy@ualberta.ca

2 Department of Computer Science and Informatics, Indiana University,
Bloomington, USA
martha@indiana.edu

(ii) In the original version, Displayed Equation in p. 628, l. 20 was wrong:

u(x) = Uφ(x), �(y) = V ψ(y).

It should read as follows:

u(x) = Uφ(x), v(y) = V ψ(y).

The online version of the original chapter can be found under
DOI: 10.1007/978-3-319-23528-8 39

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. E3–E5, 2015
DOI: 10.1007/978-3-319-23528-8 45



E4 F. Mirzazadeh et al.

(iii) In the original version, Equation 3 was wrong:

d(x,y) = ‖u(x) −�(y)‖2, t1(x) = ‖u(x) − u0‖2, t2(y) = ‖�(y) − v0‖2. (3)

It should read as follows:

d(x,y) = ‖u(x) − v(y)‖2, t1(x) = ‖u(x) − u0‖2, t2(y) = ‖v(y) − v0‖2. (3)

(iv) The following corrections were missing in the original version:

Page No. &
Line No.

Error Corrected

p. 628, l. 3: by (Mirzazadeh et al.
2014), who proposed a
general framework for
bi-linear co-

by Mirzazadeh et al.
(2014), who proposed a
general framework for
bi-linear co-

p. 631, l.
24:

QQ′ is not a global
optimum of (7), and let
u1 ∈ R

p be as defined as in
Proposi-

QQ′ is not a global
optimum of (7), and let
u1 ∈ R

p be as defined in
Proposi-

p. 634, l. 2 ‖Qm‖F = tr(Cm) ≤ f(C0),
thus the entries of Cm are
uniformly bounded for all

‖Qm‖2F = tr(Cm) ≤ f(C0),
thus the entries of Cm are
uniformly bounded for all

(v) In the original version, Displayed Equation in p. 634, l. 20 was wrong:

f(Cm) − f(Cm+1) ≥ ν

2
b̂2 =

1
ν

(

km
∑

i=1

λm,i

)2

≥
λ2

m,1

2ν
.

It should read as follows:

f(Cm) − f(Cm+1) ≥ ν

2
b̂2 =

1
2ν

(

km
∑

i=1

λm,i

)2

≥
λ2

m,1

2ν
.

(vi) The following correction was missing in the original version:

Page No. &
Line No.

Error Corrected

p. 641, l. 43 Srivastava, N.,
Salakhutdinov, R.:
Multimodal learning with
deep boltzmann machines.

Srivastava, N.,
Salakhutdinov, R.:
Multimodal learning with
deep Boltzmann machines.
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(vii) In the original version, Equation in p. 642, l. 22 was wrong:

≤
∫ 1

0
ρ(S)‖∇f(C+ηS)−∇f(C)‖tr dη ≤

∫ 1

0
νρ(S)ρ(ηS)η =

∫ 1

0
νηρ(S)2dη = ν

2ρ(S)2

It should read as follows:

≤
∫ 1

0
ρ(S)‖∇f(C+ηS)−∇f(C)‖tr dη ≤

∫ 1

0
νρ(S)ρ(ηS)dη =

∫ 1

0
νηρ(S)2dη = ν

2ρ(S)2

(viii) In the original version, the following Acknowledgments paragraph was
missing:
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nology Futures (AITF) and Natural Sciences and Engineering Research Council of
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