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Abstract. This paper studies precision matrix estimation for multiple
related Gaussian graphical models from a dataset consisting of different
classes, based upon the formulation of this problem as group graphi-
cal lasso. In particular, this paper proposes a novel hybrid covariance
thresholding algorithm that can effectively identify zero entries in the
precision matrices and split a large joint graphical lasso problem into
many small subproblems. Our hybrid covariance thresholding method is
superior to existing uniform thresholding methods in that our method
can split the precision matrix of each individual class using different par-
tition schemes and thus, split group graphical lasso into much smaller
subproblems, each of which can be solved very fast. This paper also
establishes necessary and sufficient conditions for our hybrid covariance
thresholding algorithm. Experimental results on both synthetic and real
data validate the superior performance of our thresholding method over
the others.

1 Introduction

Graphs have been widely used to describe the relationship between variables (or
features). Estimating an undirected graphical model from a dataset has been
extensively studied. When the dataset has a Gaussian distribution, the problem
is equivalent to estimating a precision matrix from the empirical (or sample)
covariance matrix. In many real-world applications, the precision matrix is
sparse. This problem can be formulated as graphical lasso [1,22] and many algo-
rithms [4,9,16,18,19] have been proposed to solve it. To take advantage of the
sparsity of the precision matrix, some covariance thresholding (also called screen-
ing) methods are developed to detect zero entries in the matrix and then split
the matrix into smaller submatrices, which can significantly speed up the process
of estimating the entire precision matrix [12,19].

Recently, there are a few studies on how to jointly estimate multiple related
graphical models from a dataset with a few distinct class labels [3,6–8,11,13,
14,20,23–25]. The underlying reason for joint estimation is that the graphs of
these classes are similar to some degree, so it can increase statistical power and
estimation accuracy by aggregating data of different classes. This joint graph
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estimation problem can be formulated as joint graphical lasso that makes use of
similarity of the underlying graphs. In addition to group graphical lasso, Guo et
al. used a non-convex hierarchical penalty to promote similar patterns among
multiple graphical models [6] ; [3] introduced popular group and fused graphical
lasso; and [20,25] proposed efficient algorithms to solve fused graphical lasso.
To model gene networks, [14] proposed a node-based penalty to promote hub
structure in a graph.

Existing algorithms for solving joint graphical lasso do not scale well with
respect to the number of classes, denoted as K, and the number of variables,
denoted as p. Similar to covariance thresholding methods for graphical lasso,
a couple of thresholding methods [20,25] are developed to split a large joint
graphical lasso problem into subproblems [3]. Nevertheless, these algorithms all
use uniform thresholding to decompose the precision matrices of distinct classes
in exactly the same way. As such, it may not split the precision matrices into
small enough submatrices especially when there are a large number of classes
and/or the precision matrices have different sparsity patterns. Therefore, the
speedup effect of covariance thresholding may not be very significant.

In contrast to the above-mentioned uniform covariance thresholding, this
paper presents a novel hybrid (or non-uniform) thresholding approach that can
divide the precision matrix for each individual class into smaller submatrices
without requiring that the resultant partition schemes be exactly the same
across all the classes. Using this method, we can split a large joint graphical
lasso problem into much smaller subproblems. Then we employ the popular
ADMM (Alternating Direction Method of Multipliers [2,5]) method to solve joint
graphical lasso based upon this hybrid partition scheme. Experiments show that
our method can solve group graphical lasso much more efficiently than uniform
thresholding.

This hybrid thresholding approach is derived based upon group graphical
lasso. The idea can also be generalized to other joint graphical lasso such as
fused graphical lasso. Due to space limit, the proofs of some of the theorems in
the paper are presented in supplementary material.

2 Notation and Definition

In this paper, we use a script letter, like H, to denote a set or a set partition.
When H is a set, we use Hi to denote the ith element. Similarly we use a
bold letter, like H to denote a graph, a vector or a matrix. When H is a
matrix we use Hi,j to denote its (i, j)th entry. We use {H(1),H(2), . . . ,H(N)}
and {H(1),H(2) . . . ,H(N)} to denote N objects of same category.

Let {X(1),X(2), . . . ,X(K)} denote a sample dataset of K classes and the
data in X(k) (1 ≤ k ≤ K) are independently and identically drawn from a
p-dimension normal distribution N(μ(k),Σ(k)). Let S(k) and Θ̂(k) denote the
empirical covariance and (optimal) precision matrices of class k, respectively.
By “optimal” we mean the precision matrices are obtained by exactly solving
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joint graphical lasso. Let a binary matrix E(k) denote the sparsity pattern of
Θ̂(k), i.e., for any i, j(1 ≤ i, j ≤ p),E(k)

i,j = 1 if and only if Θ̂T
(k)
i,j �= 0.

Set Partition. A set H is a partition of a set C when the following conditions are
satisfied: 1) any element in H is a subset of C; 2) the union of all the elements in
H is equal to C; and 3) any two elements in H are disjoint. Given two partitions
H and F of a set C, we say that H is finer than F (or H is a refinement of
F), denoted as H � F , if every element in H is a subset of some element in F .
If H � F and H �= F , we say that H is strictly finer than F (or H is a strict
refinement of F), denoted as H ≺ F .

Let Θ denote a matrix describing the pairwise relationship of elements in a
set C, where Θi,j corresponds to two elements Ci and Cj . Given a partition H of
C, we define ΘHk

as a |Hk| × |Hk| submatrix of Θ where Hk is an element of H
and (ΘHk

)i,j ∼= Θ(Hk)i(Hk)j for any suitable (i, j).

Graph-based Partition. Let V = {1, 2, . . . , p} denote the variable (or feature)
set of the dataset. Let graph G(k) = (V,E(k)) denote the kth estimated con-
centration graph 1 ≤ k ≤ K. This graph defines a partition �(k) of V, where
an element in �(k) corresponds to a connected component in G(k). The matrix
Θ̂(k) can be divided into disjoint submatrices based upon �(k). Let E denote
the mix of E(1),E(2), . . . ,E(K), i.e., one entry Ei,j is equal to 1 if there exists
at least one k (1 ≤ k ≤ K) such that E

(k)
i,j is equal to 1. We can construct a

partition � of V from graph G = {V,E}, where an element in � corresponds to
a connected component in G. Obviously, �(k) � � holds since E(k) is a subset
of E. This implies that for any k, the matrix Θ̂(k) can be divided into disjoint
submatrices based upon �.

Feasible Partition. A partition H of V is feasible for class k or graph G(k) if
�(k) � H. This implies that 1) H can be obtained by merging some elements in
�(k); 2) each element in H corresponds to a union of some connected components
in graph G(k); and 3) we can divide the precision matrix Θ̂(k) into independent
submatrices according to H and then separately estimate the submatrices with-
out losing accuracy. H is uniformly feasible if for all k (1 ≤ k ≤ K), �(k) � H
holds.

Let H(1),H(2), . . . ,H(K) denote K partitions of the variable set V . If for
each k (1 ≤ k ≤ K), �(k) � H(k) holds, we say {H(1),H(2), . . . ,H(K)} is a
feasible partition of V for the K classes or graphs. When at least two of the K
partitions are not same, we say {H(1),H(2), . . . ,H(K)} is a non-uniform partition.
Otherwise, {H(1),H(2), . . . ,H(K)} is a class-independent or uniform partition
and abbreviated as H. That is, H is uniformly feasible if for all k (1 ≤ k ≤ K),
�(k) � H holds. Obviously, {�(1),�(2), . . . ,�(K)} is finer than any non-uniform
feasible partition of the K classes. Based upon the above definitions, we have
the following theorem, which is proved in supplementary material.

Theorem 1. For any uniformly feasible partition H of the variable set V, we
have � � H. That is, H is feasible for graph G and � is the finest uniform
feasible partition.
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Proof. First, for any element Hj in H, G does not contain edges between Hj

and H−Hj . Otherwise, since G is the mixing (or union) of all G(k), there exists
at least one graph G(k) such that it contains at least one edge between Hj and
H − Hj . Since Hj is the union of some elements in �(k), this implies that there
exist two different elements in �(k) such that G(k) contains edges between them,
which contradicts with the fact that G(k) does not contain edges between any
two elements in �(k). That is, H is feasible for graph G.

Second, if � � H does not hold, then there is one element �i in � and
one element Hj in H such that �i ∩ Hj �= ∅ and �i − Hj �= ∅. Based on the
above paragraph, ∀x ∈ �i ∩ Hj and ∀y ∈ �i − Hj = �i ∩ (Hi − Hj), we have
Ex,y = Ey,x = 0. That is, �i can be split into at least two disjoint subsets such
that G does not contain any edges between them. This contradicts with the fact
that �i corresponds to a connected component in graph G.

3 Joint Graphical Lasso

To learn the underlying graph structure of multiple classes simultaneously, some
penalty functions are used to promote similar structural patterns among different
classes, including [3,6,7,13,14,16,20,21,25]. A typical joint graphical lasso is
formulated as the following optimization problem:

min
K∑

k=1

L(Θ(k)) + P (Θ) (1)

Where Θ(k) � 0 is the precision matrix (k = 1, . . . , K) and Θ represents the set
of Θ(k). The negative log-likelihood L(Θ(k)) and the regularization P (Θ) are
defined as follows.

L(Θ(k)) = − log det(Θ(k)) + tr(S(k)Θ(k)) (2)

P (Θ) = λ1

K∑

k=1

‖Θ(k)‖1 + λ2J(Θ) (3)

Here λ1 > 0 and λ2 > 0 and J(Θ) is some penalty function used to encourage
similarity (of the structural patterns) among the K classes. In this paper, we
focus on group graphical lasso. That is,

J(Θ) = 2
∑

1≤i<j≤p

√√√√
K∑

k=1

(Θ(k)
i,j )2 (4)

4 Uniform Thresholding

Covariance thresholding methods, which identify zero entries in a precision
matrix before directly solving the optimization problem like Eq.(1), are widely
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used to accelerate solving graphical lasso. In particular, a screening method
divides the variable set into some disjoint groups such that when two variables
(or features) are not in the same group, their corresponding entry in the preci-
sion matrix is guaranteed to be 0. Using this method, the precision matrix can
be split into some submatrices, each corresponding to one distinct group. To
achieve the best computational efficiency, we shall divide the variable set into as
small groups as possible subject to the constraint that two related variables shall
be in the same group. Meanwhile, [3] described a screening method for group
graphical lasso. This method uses a single thresholding criterion (i.e., uniform
thresholding) for all the K classes, i.e., employs a uniformly feasible partition of
the variable set across all the K classes. Existing methods such as those described
in [3,20,25] for fused graphical lasso and that in [15] for node-based learning all
employ uniform thresholding.

Uniform thresholding may not be able to divide the variable set into the finest
feasible partition for each individual class when the K underlying concentration
graphs are not exactly the same. For example, Figure 1(a) and (c) show two
concentration graphs of two different classes. These two graphs differ in variables
1 and 6 and each graph can be split into two connected components. However,
the mixing graph in (b) has only one connected component, so it cannot be split
further. According to Theorem 1, no uniform feasible partition can divide the
variable set into two disjoint groups without losing accuracy. It is expected that
when the number of classes and variables increases, uniform thresholding may
perform even worse.

(a) (b) (c)

Fig. 1. Illustration of uniform thresholding impacted by minor structure difference
between two classes. (a) and (c): the edge matrix and concentration graph for each of
the two classes. (b): the concentration graph resulting from the mixing of two graphs
in (a) and (c).

5 Non-uniform Thresholding

Non-uniform thresholding generates a non-uniform feasible partition by thresh-
olding the K empirical covariance matrices separately. In a non-uniform par-
tition, two variables of the same group in one class may belong to different
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Fig. 2. Illustration of a non-uniform partition. White color indicates zero entries
detected by covariance thresholding. Entries with the same color other than white
belong to the same group.

groups in another class. Figure 2 shows an example of non-uniform partition.
In this example, all the matrix elements in white color are set to 0 by non-
uniform thresholding. Except the white color, each of the other colors indicates
one group. The 7th and 9th variables belong to the same group in the left matrix,
but not in the right matrix. Similarly, the 3rd and 4th variables belong to the
same group in the right matrix, but not in the left matrix.

We now present necessary and sufficient conditions for identifying a non-
uniform feasible partition for group graphical lasso, with penalty defined in Eq
(3) and (4).

Given a non-uniform partition {P(1),P(2), . . . ,P(K)} for the K classes, let
F (k)(i) = t denote the group which the variable i belongs to in the kth class, i.e.,
F (k)(i) ⇔ i ∈ P(k)

t . We define pairwise relationship matrices I(k) (1 ≤ k ≤ K)
as follows: {

I(k)i,j = I(k)j,i = 0; if F (k)(i) �= F (k)(j)
I(k)i,j = I(k)j,i = 1; otherwise

(5)

Also, we define Z(k)(1 ≤ k ≤ K) as follows:

Z
(k)
i,j = Z

(k)
j,i = λ1 + λ2 × τ((

∑

t�=k

|Θ̂(t)
i,j |) = 0) (6)

Here τ(b) is the indicator function.
The following two theorems state the necessary and sufficient conditions of

a non-uniform feasible partition. See supplementary material for their proofs.
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Algorithm 1 Hybrid Covariance Screening Algorithm
for k = 1 to K do

Initialize I
(k)
i,j = I

(k)
j,i = 1, ∀1 ≤ i < j ≤ p

Set I
(k)
i,j = 0, if |S(k)

i,j | ≤ λ1 and i �= j

Set I
(k)
i,j = 0, if

∑K
k=1(|S(k)

i,j | − λ1)
2
+ ≤ λ2

2 and i �= j
end for
for k = 1 to K do

Construct a graph G(k) for V from I(k)

Find connected components of G(k)

for ∀(i, j) in the same component of G(k) do

Set I
(k)
i,j = I

(k)
j,i = 1

end for
end for
repeat

Search for triple (x, i, j) satisfying the following condition:

I
(x)
i,j = 0, |S(x)

i,j | > λ1 and ∃s, s.t. I
(s)
i,j = 1

if ∃(x, i, j) satisfies the condition above then
merge the two components of G(x) that containing variable i and j into new
component;
for ∀(m, n) in this new component do

Set I
(x)
m,n = I

(x)
n,m = 1;

end for
end if

until No such kind of triple.
return the connected components of each graph which define the non-uniform fea-
sible solution

Theorem 2. If {P(1),P(2), . . . ,P(K)} is a non-uniform feasible partition of the
variable set V, then for any pair (i, j) (1 ≤ i �= j ≤ p) the following conditions
must be satisfied:

{∑K
k=1(|S(k)

i,j | − λ1)2+ ≤ λ2
2; if ∀k ∈ 1, 2, . . . ,K, I

(k)
i,j = 0

|S(k)
i,j | ≤ Z

(k)
i,j ; if I(k)i,j = 0 and ∃t �= k, I

(t)
i,j = 1

(7)

Here, each S(k) is a covariance matrix of the kth class and x+ = max(0, x).

Theorem 3. If for any pair (i, j)(1 ≤ i �= j ≤ p) the following conditions hold,
then {P(1),P(2), . . . ,P(K)} is a non-uniform feasible partition of the variable
set V.

{∑K
k=1(|S(k)

i,j | − λ1)2+ ≤ λ2
2; if ∀k ∈ 1, 2, . . . ,K, I

(k)
i,j = 0

|S(k)
i,j | ≤ λ1; if I(k)i,j = 0 and ∃t �= k, I

(t)
i,j = 1

(8)

Algorithm 1 is a covariance thresholding algorithm that can identify a non-
uniform feasible partition satisfying condition (8). We call Algorithm 1 hybrid
screening algorithm as it utilizes both class-specific thresholding (e.g. |S(k)

i,j | ≤ λ1 )
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Fig. 3. Comparison of three thresholding strategies. The dataset contains 2 slightly
different classes and 3 variables. The two sample covariance matrices are shown on the
top of the figure. The parameters used are λ1 = 0.04 and λ2 = 0.02.

and global thresholding (e.g.
∑K

k=1(|S(k)
i,j | −λ1)2+ ≤ λ2

2 ) to identify a non-uniform
partition.This hybrid screening algorithmcan terminate rapidly on a typical Linux
machine, tested on the synthetic data described in section 7 with K = 10 and
p = 10000.

We can generate a uniform feasible partition using only the global threshold-
ing and generate a non-uniform feasible partition by using only the class-specific
thresholding, but such a partition is not as good as using the hybrid threshold-
ing algorithm. Let {H(1),H(2), . . . ,H(K)} , {L(1),L(2), . . . ,L(K)} and G denote the
partitions generated by hybrid, class-specific and global thresholding algorithms,
respectively. It is obvious that H(k) � L(k) and H(k) � G for k = 1, 2, . . . ,K
since condition (8) is a combination of both global thresholding and class-specific
thresholding.

Figure 3 shows a toy example comparing the three screening methods using
a dataset of two classes and three variables. In this example, the class-specific or
the global thresholding alone cannot divide the variable set into disjoint groups,
but their combination can do so.

We have the following theorem regarding our hybrid thresholding algorithm,
which will be proved in Supplemental File.

Theorem 4. The hybrid screening algorithm yields the finest non-uniform
feasible partition satisfying condition (8).

6 Hybrid ADMM (HADMM)

In this section, we describe how to apply ADMM (Alternating Direction Method
of Multipliers [2,5]) to solve joint graphical lasso based upon a non-uniform
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feasible partition of the variable set. According to [3], solving Eq.(1) by ADMM
is equivalent to minimizing the following scaled augmented Lagrangian form:

K∑

k=1

L(Θ(k)) +
ρ

2

K∑

k=1

‖Θ(k) − Y (k) + U (k)‖2F + P (Y ) (9)

where Y = {Y (1),Y (1), . . . ,Y (K)} and U = {U (1),U (1), . . . ,U (K)} are dual
variables. We use the ADMM algorithm to solve Eq.(9) iteratively, which
updates the three variables Θ, Y and U alternatively. The most computational-
insensitive step is to update Θ given Y and U , which requires eigen-
decomposition of K matrices. We can do this based upon a non-uniform feasible
partition {H(1),H(2), . . . ,H(K)}. For each k, updating Θ(k) given Y (k) and U (k)

for Eq (9) is equivalent to solving in total |H(k)| independent sub-problems. For
each H(k)

j ∈ H(k), its independent sub-problem solves the following equation:

(Θ(k)

H
(k)
j

)−1 = S(k)

H(k)
j

+ ρ × (Θ(k)

H(k)
j

− Y
(k)

H(k)
j

+ U
(k)

H(k)
j

) (10)

Solving Eq.(10) requires eigen-decomposition of small submatrices, which shall
be much faster than the eigen-decomposition of the original large matrices. Based
upon our non-uniform partition, updating Y given Θ and U and updating U
given Y and Θ are also faster than the corresponding components of the plain
ADMM algorithm described in [3], since our non-uniform thresholding algorithm
can detect many more zero entries before ADMM is applied.

7 Experimental Results

We tested our method, denoted as HADMM (i.e., hybrid covariance thresholding
algorithm + ADMM), on both synthetic and real data and compared HADMM
with two control methods: 1) GADMM: global covariance thresholding algorithm
+ ADMM; and 2) LADMM: class-specific covariance thresholding algorithm
+ADMM. We implemented these methods with C++ and R, and tested them
on a Linux machine with Intel Xeon E5-2670 2.6GHz.

To generate a dataset with K classes from Gaussian distribution, we first
randomly generate K precision matrices and then use them to sample 5 × p
data points for each class. To make sure that the randomly-generated precision
matrices are positive definite, we set all the diagonal entries to 5.0, and an off-
diagonal entry to either 0 or ±r × 5.0 . We generate three types of datasets as
follows.

– Type A: 97% of the entries in a precision matrix are 0.
– Type B: the K precision matrices have same diagonal block structure.
– Type C: the K precision matrices have slightly different diagonal block

structures.

For Type A, r is set to be less than 0.0061. For Type B and Type C, r
is smaller than 0.0067. For each type we generate 18 datasets by setting K =
2, 3, . . . , 10, and p = 1000, 10000, respectively.
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Table 1. Objective function values of HADMM and ADMM on the six classes type C
data (first 4 iterations, p = 1000, λ1 = 0.0082, λ2 = 0.0015)

Iteration 1 2 3 4

ADMM 1713.66 -283.743 -1191.94 -1722.53
HADMM 1734.42 -265.073 -1183.73 -1719.78

7.1 Correctness of HADMM by Experimental Validation

We first show that HADMM can converge to the same solution obtained by
the plain ADMM (i.e., ADMM without any covariance thresholding) through
experiments.

To evaluate the correctness of our method HADMM, we compare the objec-
tive function value generated by HADMM to that by ADMM with respect to
the number of iterations. We run the two methods for 500 iterations over the
three types of data with p = 1000. As shown in Table 1, in the first 4 iterations,
HADMM and ADMM yield slightly different objective function values. However,
along with more iterations passed, both HADMM and ADMM converge to the
same objective function value, as shown in Figure 4 and Supplementary Figures
S3-5. This experimental result confirms that our hybrid covariance thresholding
algorithm is correct. We tested several pairs of hyper-parameters (λ1 and λ2) in
our experiment. Please refer to the supplementary material for model selection.
Note that although in terms of the number of iterations HADMM and ADMM

Fig. 4. The objective function value with respect to the number of iterations on a six
classes type C data with p = 1000, λ1 = 0.0082 and λ2 = 0.0015.
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(a) Type A

(b) Type B

(c) Type C

Fig. 5. Logarithm of the running time (in seconds) of HADMM, LADMM and
GADMM for p = 1000 on Type A, Type B and Type C data.

converge similarly, HADMM runs much faster than ADMM at each iteration, so
HADMM converges in a much shorter time.

7.2 Performance on Synthetic Data

In previous section we have shown that our HADMM converges to the same
solution as ADMM. Here we test the running times of HADMM, LADMM
and GADMM needed to reach the following stop criteria for p = 1000:∑k

i=1 ||Θ(k) − Y (k)|| < 10−6 and
∑k

i=1 ||Y (k+1) − Y (k)|| < 10−6. For p = 10000,
considering the large amount of running time needed for LADMM and GADMM,
we run only 50 iterations for all the three methods and then compare the average
running time for a single iteration.

We tested the running time of the three methods using different parameters
λ1 and λ2 over the three types of data. See supplementary material for model
selection. We show the result for p = 1000 in Figure 5 and that for p = 10000 in
Figure S15-23 in supplementary material, respectively.
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In Figure 5, each row shows the experimental results on one type of data
(Type A, Type B and Type C from top to bottom). Each column has the
experimental results for the same hyper-parameters (λ1 = 0.009 and λ2 =
0.0005, λ1 = 0.0086 and λ2 = 0.001, and λ1 = 0.0082 and λ2 = 0.0015 from left
to right). As shown in Figure 5, HADMM is much more efficient than LADMM
and GADMM. GADMM performs comparably to or better than LADMM when
λ2 is large. The running time of LADMM increases as λ1 decreases. Also, the
running time of all the three methods increases along with the number of classes.
However, GADMM is more sensitive to the number of classes than our HADMM.
Moreover, as our hybrid covariance thresholding algorithm yields finer non-
uniform feasible partitions, the precision matrices are more likely to be split
into many more smaller submatrices. This means it is potentially easier to par-
allelize HADMM to obtain even more speedup.

We also compare the three screening algorithms in terms of the estimated
computational complexity for matrix eigen-decomposition, a time-consuming
subroutine used by the ADMM algorithms. Given a partition H of the vari-
able set of V, the computational complexity can be estimated by

∑
Hi∈H |Hi|3.

As shown in Supplementary Figures S6-14, when p = 1000, our non-uniform
thresholding algorithm generates partitions with much smaller computational
complexity, usually 1

10 ∼ 1
1000 of the other two methods. Note that in these

figures the Y-axis is the logarithm of the estimated computational complexity.
When p = 10000, the advantage of our non-uniform thresholding algorithm over
the other two are even larger, as shown in Figure S24-32 in Supplemental File.

7.3 Performance on Real Gene Expression Data

We test our proposed method on real gene expression data. We use a lung can-
cer data (accession number GDS2771 [17]) downloaded from Gene Expression
Omnibus and a mouse immune dataset described in [10]. The immune dataset
consists of 214 observations. The lung cancer data is collected from 97 patients
with lung cancer and 90 controls without lung cancer, so this lung cancer dataset
consists of two different classes: patient and control. We treat the 214 observa-
tions from the immune dataset, the 97 lung cancer observations and the 90
controls as three classes of a compound dataset for our joint inference task.
These three classes share 10726 common genes, so this dataset has 10726 fea-
tures and 3 classes. As the absolute value of entries of covariance matrix of first
class (corresponds to immune observations) are relatively larger, so we divide
each entry of this covariance matrix by 2 to make the three covariance matrices
with similar magnitude before performing joint analysis using unique λ1 and λ2.

The running time (first 10 iterations) of HADMM, LADMM and GADMM
for this compound dataset under different settings are shown in Table 2 and the
resultant gene networks with different sparsity are shown in Fig 6 and Supple-
mental File.

As shown in Table 2, HADMM (ADMM + our hybrid screening algorithm) is
always more efficient than the other two methods in different settings. Typically,
when λ1 is small and λ2 is large (Setting 1), our method is much faster than
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Fig. 6. Network of the first 100 genes of class one and class three for Setting 1.

Table 2. Running time (hours) of HADMM, LADMM and GADMM on real data.
(Setting 1: λ1 = 0.1 and λ2 = 0.5; Setting 2: λ1 = 0.2 and λ2 = 0.2; Setting 3:
λ1 = 0.3 and λ2 = 0.1; Setting 4: λ1 = 0.4 and λ2 = 0.05, and Setting 5: λ1 = 0.5
and λ2 = 0.01)

Method Setting 1 Setting 2 Setting 3 Setting 4 Setting 5

HADMM 3.46 8.23 3.9 1.71 1.11
LADMM > 20 > 20 13.6 3.72 1.98
GADMM 4.2 > 20 > 20 11.04 6.93

LADMM. In contrast, when λ2 is small and λ1 is large enough (Setting 4 and
Setting 5), our method is much faster than GADMM. What’s more, when both
λ1 and λ2 are with moderate values (Setting 2 and Setting 3), HADMM is
still much faster than both GADMM and LADMM.

As shown in Fig 6, the two resultant networks are with very similar topology
structure. This is reasonable because we use large λ2 in Setting 1. Actually,
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the networks of all the three classes under Setting 1 share very similar topol-
ogy structure. What’s more, the number of edges in the network does decrease
significantly as λ1 goes to 0.5, as shown in Supplementary material.

8 Conclusion and Discussion

This paper has presented a non-uniform or hybrid covariance thresholding algo-
rithm to speed up solving group graphical lasso. We have established necessary
and sufficient conditions for this thresholding algorithm. Theoretical analysis and
experimental tests demonstrate the effectiveness of our algorithm. Although this
paper focuses only on group graphical lasso, the proposed ideas and techniques
may also be extended to fused graphical lasso.

In the paper, we simply show how to combine our covariance thresholding
algorithm with ADMM to solve group graphical lasso. In fact, our thresholding
algorithm can be combined with other methods developed for (joint) graphical
lasso such as the QUIC algorithm [9], the proximal gradient method [16], and
even the quadratic method developed for fused graphical lasso [20].

The thresholding algorithm presented in this paper is static in the sense
that it is applied as a pre-processing step before ADMM is applied to solve
group graphical lasso. We can extend this “static” thresholding algorithm to a
“dynamic” version. For example, we can identify zero entries in the precision
matrix of a specific class based upon intermediate estimation of the precision
matrices of the other classes. By doing so, we shall be able to obtain finer feasible
partitions and further improve the computational efficiency.
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