
Fast Generation of Best Interval Patterns
for Nonmonotonic Constraints

Aleksey Buzmakov1,2(B), Sergei O. Kuznetsov2, and Amedeo Napoli1

1 LORIA (CNRS – Inria NGE – University de Lorraine),
Vandœuvre-lès-Nancy, France

aleksey.buzmakov@inria.fr, amedeo.napoli@loria.fr
2 National Research University Higher School of Economics, Moscow, Russia

skuznetsov@hse.ru

Abstract. In pattern mining, the main challenge is the exponential
explosion of the set of patterns. Typically, to solve this problem, a con-
straint for pattern selection is introduced. One of the first constraints
proposed in pattern mining is support (frequency) of a pattern in a
dataset. Frequency is an anti-monotonic function, i.e., given an infre-
quent pattern, all its superpatterns are not frequent. However, many
other constraints for pattern selection are not (anti-)monotonic, which
makes it difficult to generate patterns satisfying these constraints. In
this paper we introduce the notion of projection-antimonotonicity and
ϑ−∑

oψια algorithm that allows efficient generation of the best patterns
for some nonmonotonic constraints. In this paper we consider stability
and Δ-measure, which are nonmonotonic constraints, and apply them
to interval tuple datasets. In the experiments, we compute best inter-
val tuple patterns w.r.t. these measures and show the advantage of our
approach over postfiltering approaches.

Keywords: Pattern mining · Nonmonotonic constraints · Interval tuple
data

1 Introduction

Interestingness measures were proposed to overcome the problem of combina-
torial explosion of the number of valid patterns that can be discovered in a
dataset [1]. For example, pattern support, i.e., the number of objects covered by
the pattern, is one of the most famous measures of pattern quality. In particular,
support satisfies the property of anti-monotonicity (aka “a priori principle”), i.e.,
the larger the pattern is the smaller the support is [2,3]. Many other measures
can be mentioned such as utility constraint [4], pattern stability [5,6], pattern
leverage [7], margin closeness [8], MCCS [9], cosine interest [10], pattern robust-
ness [11], etc.

Some of these measures (e.g., support, robustness for generators [11], or upper
bound constraint of MCCS [9]) are “globally anti-monotonic”, i.e., for any two
patterns X � Y we have M(X) ≥ M(Y), where M is a measure and � denotes
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 157–172, 2015.
DOI: 10.1007/978-3-319-23525-7 10

158 A. Buzmakov et al.

the (subsumption) order relation on patterns. When a measure is anti-monotonic,
it is relatively easy to find patterns whose measure is higher than a certain
threshold (e.g., patterns with a support higher than a threshold). In contrast
some other measures are called “locally anti-monotonic”, i.e., for any pattern X
there is an immediate subpattern Y ≺ X such that M(Y) ≥ M(X). Then the
right strategy should be selected for traversing the search space, e.g., a pattern Y
should be extended only to patterns X such that M(Y) ≥ M(X). For example,
for “locally anti-monotonic” cosine interest [10], the extension of a pattern Y
consists in adding only attributes with a smaller support than any attribute from
Y . The most difficult case for selecting valid patterns occurs when a measure is
not locally anti-monotonic. Then, valid patterns can be retained by postfiltering,
i.e., finding a (large set of) patterns satisfying an antimonotone constraint and
filtering them w.r.t. the chosen nonmonotonic measure (i.e., neither monotonic
nor anti-monotonic) [6,8,11], or using heuristics such as leap search [12] or low
probability of finding interesting patterns in the current branch [7].

Most of the measures are only applicable to one type of patterns, e.g., pattern
leverage or cosine interest can be applied only to binary data since their defini-
tions involve single attributes. “Pattern independent measures” usually relies on
support of the pattern and/or on support of other patterns from the search space.
In particular, support, stability [5], margin-closeness [8] and robustness [11] are
pattern independent measures. In this paper we work with interval tuple data,
where only pattern independent measures as well as specific measures for interval
tuples can be applied. In addition, given a measure, it can be difficult to define a
good threshold. Thus various approaches for finding top-K patterns were intro-
duced [13–15], with the basic idea to automatically adjust the threshold for a
measure M.

In this paper we introduce a new algorithm ϑ − ∑
oϕια, i.e., Sofia, for

“Searching for Optimal Formal Intents Algorithm” for a interestingness thresh-
old , for extracting the best patterns of a kind, e.g., itemsets, interval tuples,
strings, graph patterns, etc. ϑ − ∑

oϕια algorithm is applicable to a class of
measures called “projection-antimonotonic measures” or more precisely “mea-
sures anti-monotonic w.r.t. a chain of projections”. This class includes globally
anti-monotonic measures such as support, locally anti-monotonic measures such
as cosine interest and some of the nonmonotonic measures such as stability or
robustness of closed patterns. The main novelty of this paper is ϑ − ∑

oϕια,
a new efficient algorithm for finding best patterns of different kinds w.r.t.
projection-antimonotonic measures which constitutes a rather large class of mea-
sures.

The remaining of the paper is organized as follows. The formalization of the
current approach is based on Formal Concept Analysis (FCA) [16] and pattern
structures [17] which are introduced in Section 2. Then, ϑ−∑

oϕια algorithm is
detailed in Section 3 first for an arbitrary measure and second for the Δ-measure.
Experiments and a discussion are proposed in Section 4, before conclusion.

Fast Generation of Best Interval Patterns for Nonmonotonic Constraints 159

2 Data Model

2.1 FCA and Pattern Structures

Formal Concept Analysis (FCA) is a formalism for knowledge discovery and
data mining thanks to the design of concept lattices [16]. It is also convenient
for describing models of itemset mining, and, since [18], lattices of closed itemsets
(i.e., concept lattices) and closed descriptions are used for concise representation
of association rules. For more complex data such as sequences and graphs one
can use an extension of the basic model, called pattern structures [17]. With
pattern structures it is possible to define closed descriptions and to give a concise
representation of association rules for different descriptions with a natural order
(such as subgraph isomorphism order) [19,20].

A pattern structure is a triple (G, (D,�), δ), where G is a set of objects,
(D,�) is a complete meet-semilattice of descriptions and δ : G → D maps an
object to a description.

The intersection � gives the similarity of two descriptions. Standard FCA
can be presented in terms of a pattern structure. A formal context (G,M, I),
where G is a set of objects, M is a set of attributes and I ⊆ G×M an incidence
relation giving information about attributes related to objects, is represented
as a pattern structure (G, (℘(M),∩), δ), where (℘(M),∩) is a semilattice of
subsets of M with ∩ being the set-theoretical intersection. If x = {a, b, c} and
y = {a, c, d}, then x � y = x ∩ y = {a, c}. The mapping δ : G → ℘(M) is given
by δ(g) = {m ∈ M | (g,m) ∈ I} and returns the description of a given object as
a set of attributes.

The following mappings or diamond operators give a Galois connection
between the powerset of objects and descriptions:

A� :=
�

g∈A

δ(g), for A ⊆ G

d� := {g ∈ G | d � δ(g)}, for d ∈ D

Given a subset of objects A, A� returns the description which is common
to all objects in A. Given a description d, d� is the set of all objects whose
description subsumes d. A partial order � (subsumption) on descriptions from
D is defined w.r.t. the similarity operation �: c � d ⇔ c � d = c, and c is
subsumed by d.

A pattern concept of a pattern structure (G, (D,�), δ) is a pair (A, d), where
A ⊆ G, called pattern extent and d ∈ D, called pattern intent, such that A� = d
and d� = A. A pattern extent is a closed set of objects, and a pattern intent is
a closed description, e.g., a closed itemset when descriptions are given as sets
of items (attributes). As shown in [19], descriptions closed in terms of counting
inference (which is a standard data mining approach), such as closed graphs [21],
are elements of pattern intents.

A pattern extent corresponds to the maximal set of objects A whose descrip-
tions subsume the description d, where d is the maximal common description

160 A. Buzmakov et al.

for objects in A. The set of all pattern concepts is partially ordered w.r.t. inclu-
sion on extents, i.e., (A1, d1) ≤ (A2, d2) iff A1 ⊆ A2 (or, equivalently, d2 � d1),
making a lattice, called pattern lattice.

2.2 Interval Pattern Structure

A possible instantiation of pattern structures is interval pattern structures intro-
duced to support efficient processing of numerical data without binarization [20].
Given k numerical or interval attributes whose values are of the form [a, b], where
a, b ∈ R, the language of a pattern space is given by tuples of intervals of size k.
For simplicity, we denote intervals of the form [a, a] by a.

Figure 1a exemplifies an interval dataset. It contains 6 objects and 2
attributes. An interval as a value of an attribute corresponds to an uncertainty in
the value of the attribute. For example, the value of m1 for g2 is known exactly,
while the value of m2 is lying in [1, 2]. Given this intuition for intervals it is
natural to define similarity of two intervals as their convex hull, since by adding
new objects one increases the uncertainty. For example, for g1 the value of m1

is 0, while for g6 it is 1, thus given the set {g1, g6}, the uncertainty of m1 in
this set is [0, 1], i.e., the similarity of g1 and g6 w.r.t. m1 is [0, 1]. More formally,
given two intervals [a, b] and [c, d], the similarity of these two intervals is given
by [a, b] � [c, d] = [min(a, c),max(b, d)]. Given a tuple of intervals, the similarity
is computed component-wise. For example, g�

1 � g�
6 = 〈[0, 1]; [0, 2]〉. Reciprocally,

〈[0, 1]; [0, 2]〉 = {g1, g2, · · · , g6}.
The resulting concept lattice is shown in Figure 1b. Concept extents are

shown by indices of objects, intents are given in angle brackets, the numbers
on edges and on concepts are related to interestingness of concepts and will be
described in the next subsection.

2.3 Stability Index of a Concept

For real datasets, the number of patterns can be very large, even computing the
number of closed patterns is a #P-complete problem [22]. Different measures
were tested for selecting most interesting patterns, such as stability [5]. Stability
measures the independence of a concept intent w.r.t. randomness in data.

Given a concept C, concept stability Stab(C) is the relative number of subsets
of the concept extent (denoted by Ext(C)), whose descriptions, i.e., the result of
(·)� is equal to the concept intent (denoted by Int(C)).

Stab(C) :=
|{s ∈ ℘(Ext(C)) | s� = Int(C)}|

|℘(Ext(C))| (1)

Here ℘(P) is the powerset of P . The larger the stability, the more objects
can be deleted from the context without affecting the intent of the concept, i.e.,
the intent of the most stable concepts is likely to be a characteristic pattern of
a given phenomenon and not an artifact of a dataset.

Fast Generation of Best Interval Patterns for Nonmonotonic Constraints 161

m1 m2

g1 0 0
g2 0 [1, 2]
g3 0 [1, 2]
g4 0 2
g5 1 [0, 2]
g6 1 [0, 2]

(a) An interval context.

(∅;�)[1]

(4; 〈0; 2〉)[0.5]

1

(1; 〈0; 0〉)[0.5]

1

(234; 〈0; [1, 2]〉)[0.75]

2

(1234; 〈0; [0, 2]〉)[0.44]
1

3
(56; 〈1; [0, 2]〉)[0.75]

2

(123456; 〈[0, 1]; [0, 2]〉)[0.7]
2

4

(b) An interval concept lattice with corresponding sta-
bility indexes. Objects are given by their indices.

Fig. 1. A formal context and the corresponding lattice.

We say that a concept is stable if its stability is higher than a given threshold
θ; a pattern p is stable if there is a concept in the lattice with p as the intent
and the concept is stable.

Example 1. Figure 1b shows a lattice for the context in Figure 1a. Concept
extents are given by their indices, i.e., {g1, g2} is given by 12. The extent of
the highlighted concept C is Ext(C) = {g2, g3, g4}, thus, its powerset contains 23

elements. Descriptions of 2 subsets of Ext(C) ({g4} and ∅) are different from the
intent of C, Int(C) = {m3}, while all other subsets of Ext(C) have a common
set of attributes equal to 〈0; [1, 2]〉. So, Stab(C) = 23−2

23 = 0.75. Stability of
other concepts is shown in brackets. It should be noticed that stability of all
comparable patterns for Int(C) in the lattice is smaller than the stability of C,
which highlights the nonmonotonicity of stability.

Concept stability is closely related to the robustness of a closed pattern [11].
Indeed, robustness is the probability of a closed pattern to be found in a subset
of the dataset. To define this probability, the authors define a weight for every
subset given as a probability of obtaining this subset by removing objects from
the dataset, where every object is removed with probability α, e.g., given a
subset of objects X ⊆ G, the probability of the induced subset is given by
p(Dα = (X, (D,�), δ)) = α|X|(1−α)|G\X|. Stability in this case is the robustness
of closed pattern if the weights of subsets of the dataset are equal to 2−|G|.

The problem of computing concept stability is #P-complete [5]. A fast com-
putable stability estimate was proposed in [23], where it was shown that this
estimate ranks concepts almost in the same way as stability does. In particular,
Stab(C) ≤ 1 − 2−Δ(C), where Δ(C) = min

D≤C
|Ext(C) \ Ext(D)|, i.e., the minimal

difference in supports between concept C and all its nearest subconcepts. For a
threshold θ, patterns p with Δ(p) ≥ θ are called Δ-stable patterns.

Example 2. Consider the example in Figure 1. Every edge in the figure is labeled
with the difference in support between the concepts this edge connects. Thus,

162 A. Buzmakov et al.

Δ of a pattern is the minimum label of the edges going down from the con-
cept. The value Δ(({g2, g3, g4}; 〈0; [1, 2]〉)) is equal to 2. Another example is
Δ((G; 〈[0, 1]; [0, 2]〉)) = 2. For this example we can also see that Δ-measure is
not anti-monotonic either.

Δ-measure is related to the work of margin-closeness of an itemset [8]. In
this work, given a set of patterns, e.g., frequent closed patterns, the authors
rank them by the minimal distance in their support to the closest superpattern
divided over the support of the pattern. In our case, the minimal distance is
exactly the Δ-measure of the pattern.

Stability and Δ-measure are not anti-monotonic but rather projection-
antimonotonic. Patterns w.r.t. such kind of measures can be mined by a
specialized algorithm introduced in Section 3. But before we should intro-
duce projections of pattern structures in order to properly define projection-
antimonotonicity and the algorithm.

2.4 Projections of Pattern Structures

The approach proposed in this paper is based on projections introduced for
reducing complexity of computing pattern lattices [17].

A projection ψ : D → D is an “interior operator”, i.e., it is (1) mono-
tonic (x � y ⇒ ψ(x) � ψ(y)), (2) contractive (ψ(x) � x) and (3) idempotent
(ψ(ψ(x)) = ψ(x)). A projected pattern structure ψ((G, (D,�), δ)) is a pattern
structure (G, (Dψ,�ψ), ψ ◦ δ), where Dψ = ψ(D) = {d ∈ D | ∃d∗ ∈ D : ψ(d∗) =
d} and ∀x, y ∈ D,x �ψ y := ψ(x � y).

Example 3. Consider the example in Figure 1. If we remove a column corre-
sponding to an attribute, e.g., the attribute m2, from the context in Figure 1a,
we define a projection, given by ψ(〈[a, b]; [c, d]〉) = 〈[a, b]; [−∞,+∞]〉, meaning
that no value of m2 is taken into account.

Given a projection ψ we call ψ(D) = {d ∈ D | ψ(d) = d} the fixed set of
ψ. Note that, if ψ(d) �= d, then there is no other d̃ such that ψ(d̃) = d because
of idempotency of projections. Hence, any element outside the fixed set of the
projection ψ is pruned from the description space. Given the notion of a fixed
set we can define a partial order on projections.

Definition 1. Given a pattern structure P = (G, (D,�), δ) and two projections
ψ1 and ψ2, we say that ψ1 is simpler than ψ2 (ψ2 is more detailed than ψ1),
denoted by ψ1 < ψ2, if ψ1(D) ⊂ ψ2(D), i.e., ψ1 prunes more descriptions
than ψ2.

Our algorithm is based on this order on projections. The simpler a projection
ψ is, the less patterns we can find in ψ(P), and the less computational efforts
one should take. Thus, we compute a set of patterns for a simpler projection,
then we remove unpromising patterns and extend our pattern structure and the
found patterns to a more detailed projection. This allows us to reduce the size
of patterns within a simpler projection in order to reduce the computational
complexity of more detailed projection.

Fast Generation of Best Interval Patterns for Nonmonotonic Constraints 163

2.5 Projections of Interval Pattern Structures

Let us first consider interval pattern structures with only one attribute m. Let us
denote by W = {w1, · · · , w|W |} all possible values of the left and right endpoints
of the intervals corresponding to the attribute in a dataset, so that w1 < w2 <
· · · < w|W |. By reducing the set W of possible values for the left or the right end
of the interval we define a projection. For example, if {w1} is the only possible
value for the left endpoint of an interval and {w|W |} is the only possible value
of the right endpoint of an interval, then all interval patterns are projected to
[w1, w|W |]. Let us consider this in more detail.

Let two sets L,R ⊂ W such that w1 ∈ L and w|W | ∈ R be constraints on
possible values on the left and right endpoints of an interval, respectively. Then
a projection is defined as follows:

ψm[L,R]([a, b]) = [max{l ∈ L|l ≤ a},min{r ∈ R|r ≥ b}] . (2)

Requiring that w1 ∈ L and w|W | ∈ R we ensure that the sets used for minimal
and maximal functions are not empty. It is not hard to see that (2) is a projection.
The projections given by (2) are ordered w.r.t. simplicity (Definition 1). Indeed,
given L1 ⊆ L and R1 ⊆ R, we have ψm[L1,R1] < ψm[L,R], because of inclusion of
fixed sets. Let us notice that a projection ψm[W,W] does not modify the lattice
of concepts for the current dataset, since any interval for the value set W is
possible. We also notice that a projection ψm[L,R] is defined for one interval,
while we can combine the projections for different attributes in a tuple to a
single projection for the whole tuple ψm1[L1,R1]m2[L2,R2]....

Example 4. Consider example in Figure 1. Let us consider a projection

ψm1[{0,1},{1}]m2[{0,2},{0,2}].

The fixed set of this projection consists of {[0, 1], 1} × {0, 2, [0, 2]}, i.e., 6 inter-
vals. Let us find the projection of (g2)� = 〈0; [1, 2]〉 in a component-wise way:
ψm1[{0,1},{1}](0) = [0, 1], since 0 is allowed on the left endpoint of an interval but
not allowed to be on the right endpoint of an interval; ψm2[{0,2},{0,2}]([1, 2]) =
[0, 2] since 1 is not allowed on the left endpoint of an interval. Thus,

ψm1[{0,1},{1}]m2[{0,2},{0,2}](〈0; [1, 2]〉) = 〈[0, 1]; [0, 2]〉 .

The lattice corresponding to this projection is shown in Figure 2.

3 ϑ − ∑
oϕια Algorithm

3.1 Anti-monotonicity w.r.t. a Projection

Our algorithm is based on the projection-antimonotonicity, a new idea intro-
duced in this paper. Many interestingness measures for patterns, e.g., stability,
are not (anti-)monotonic w.r.t. subsumption order on patterns. A measure M

164 A. Buzmakov et al.

(∅;�)

(4; 〈[0, 1]; 2〉)(1; 〈[0, 1]; 0〉) (56; 〈1; [0, 2]〉)

(123456; 〈[0, 1]; [0, 2]〉)

Fig. 2. Projected lattice from example in Figure 1 by projection
ψm1[{0,1},{1}]m2[{0,2},{0,2}]. See Example 4.

is called anti-monotonic, if for two patterns q � p, M(q) ≥ M(p). For instance,
support is a anti-monotonic measure w.r.t. pattern order and it allows for effi-
cient generation of patterns with support larger than a threshold [2,3,18]. The
projection-antimonotonicity is a generalization of standard anti-monotonicity
and allows for efficient work with a larger set of interestingness measures.

Definition 2. Given a pattern structure P and a projection ψ, a measure M is
called anti-monotonic w.r.t. the projection ψ, if

(∀p ∈ ψ(P))(∀q ∈ P, ψ(q) = p) Mψ(p) ≥ M(q), (3)

where Mψ(p) is the measure M of a pattern p computed in ψ(P).

Here, for any pattern p of a projected pattern structure we check that a
preimage q of p for ψ has a measure smaller than the measure of p. It should
be noticed that a measure M for a pattern p can yield different values if M
is computed in P or in ψ(P). Thus we use the notation Mψ for the measure
M computed in ψ(P). The property of a measure given in Definition 2 is called
projection-antimonotonicity.

It should be noticed that classical anti-monotonic measures are projection-
antimonotonic for any projection. Indeed, because of contractivity of ψ (ψ(p) �
p), for any anti-monotonic measure one has M(ψ(p)) ≥ M(p). This definition
covers also the cases where a measure M is only locally anti-monotonic, i.e.,
given a pattern p there is an immediate subpattern q ≺ p such that M(q) ≥
M(p), see e.g., the cosine interest of an itemset, which is only locally anti-
monotonic [10]. Moreover, this definition covers also some measures that are not
locally anti-monotonic. As we mentioned in Examples 1 and 2 stability and Δ-
measure are not locally anti-monotonic. However, it can be shown that they are
anti-monotonic w.r.t. any projection [24]. Moreover, following the same strategy
one can prove that robustness of closed patterns from [11] is also anti-monotonic
w.r.t. any projection. In particular, the robustness of closed patterns defines a
anti-monotonic constraint w.r.t. any projection.

Thus, given a measure M anti-monotonic w.r.t. a projection ψ, if p is a pattern
such that Mψ(p) < θ, then M(q) < θ for any preimage q of p for ψ. Hence, if, given
a pattern p of ψ(P), one can find all patterns q ofP such that ψ(q) = p, it is possible
to first find all patterns of ψ(P) and then to filter them w.r.t. Mψ and a threshold,

Fast Generation of Best Interval Patterns for Nonmonotonic Constraints 165

and finally to compute the preimages of filtered patterns. It allows one to cut earlier
unpromising branches of the search space or adjust a threshold for finding only a
limited number of best patterns.

3.2 Anti-monotonicity w.r.t. a Chain of Projections

However, given just one projection, it can be hard to efficiently discover the
patterns, because the projection is either hard to compute or the number of
unpromising patterns that can be pruned is not high. Hence we introduce a
chain of projections ψ0 < ψ1 < · · · < ψk = 1, where a pattern lattice for ψ0(P)
can be easily computed and 1 is the identity projection, i.e., (∀x)1(x) = x. For
example, to find frequent itemsets, we typically search for small frequent itemsets
and then extend them to larger ones. This corresponds to extension to a more
detailed projection.

Definition 3. Given a pattern structure P and a chain of projections ψ0 <
ψ1 < · · · < ψk = 1, a measure M is called anti-monotonic w.r.t. the chain of
projections if M is anti-monotonic w.r.t. all ψi for 0 ≤ i ≤ k.

Example 5. Let us construct a chain of projections satisfying (2) for the exam-
ple in Figure 1. The value set for the first attribute is W1 = {0, 1} and the
value set for the second is W2 = {0, 1, 2}. Let us start the chain from a pro-
jection ψ0 = ψm1[{0},{1}]m2[{0},{2}]. This projection allows only for one pattern
〈[0, 1]; [0, 2]〉, i.e., the concept lattice is easily found. Then we increase the com-
plexity of a projection by allowing more patterns. For example, we can enrich
the first component of a tuple without affecting the second one, i.e., a projection
ψ1 = ψm1[{0,1},{0,1}]m2[{0},{2}]. This projection allows for 3 patterns, i.e., any
possible interval of the first component and only one interval [0,2] for the second
component. Let us notice that it is not hard to find preimages for ψ0 in ψ1(D).
Indeed, for any pattern p from ψ0(D) one should just modify either the left side
of the first interval of p by one value, or the right side of the first interval of p.

Then we can introduce a projection that slightly enrich the second com-
ponent of a tuple, e.g., ψ2 = ψm1[{0,1},{0,1}]m2[{0,1},{1,2}] and finally we have
ψ3 = ψm1[W1,W1]m2[W2,W2]. Finding preimages in this chain is not a hard prob-
lem, since on every set we can only slightly change left and/or right side of the
second interval in a tuple. Thus, starting from a simple projection and making
transitions from one projection to another, we can cut unpromising branches
and efficiently find the set of interesting patterns.

3.3 Algorithms

Given a measure anti-monotonic w.r.t. a chain of projections, if we are able to
find all preimages of any element in the fixed set of ψi that belong to a fixed
set of ψi+1, then we can find all patterns of P with a value of M higher than
a given threshold θ. We call this algorithm ϑ − ∑

oϕια and its pseudocode is
given in Algorithm 1. In lines 11-12 we find all patterns for ψ0(P) satisfying the

166 A. Buzmakov et al.

Data: A pattern structure P, a chain of projections Ψ = {ψ0, ψ1, · · · , ψk}, a
measure M anti-monotonic for the chain Ψ , and a threshold θ for M.

1 Function ExtendProjection(i, θ, Pi−1)
Data: i is the projection number to which we should extend (0 < i ≤ k), θ

is a threshold value for M, and Pi−1 is the set of patterns for the
projection ψi−1.

Result: The set Pi of all patterns with the value of measure M higher
than the threshold θ for ψi.

2 Pi ←− ∅;
3 /* Put all preimages in ψi(P) for any pattern p */

4 foreach p ∈ Pi−1 do
5 Pi ←− Pi ∪ Preimages(i,p)
6 /* Filter patterns in Pi to have a value of M higher than θ */

7 foreach p ∈ Pi do
8 if Mψi(p) ≤ θ then
9 Pi ←− Pi \ {p}

10 Function Algorithm ϑ − ∑
oϕια

Result: The set P of all patterns with a value of M higher than the
threshold θ for P.

11 /* Find all patterns in ψ0(P) with a value of M higher than θ */

12 P ←− FindPatterns(θ, ψ0);
13 /* Run through out the chain Ψ and find the patterns for ψi(P) */

14 foreach 0 < i ≤ k do
15 P ←− ExtendProjection(i, θ, P);

Algorithm 1. The ϑ − ∑
oϕια algorithm for finding patterns in P with a

value of a measure M higher than a threshold θ.

constraint that a value of M is higher than a threshold. Then in lines 13-15 we
iteratively extend projections from simpler to more detailed ones. The extension
is done by constructing the set Pi of preimages of the set Pi−1 (lines 2-5) and
then by removing the patterns that do not satisfy the constraint from Pi (lines
6-9).

The algorithm is sound and complete, since first, a pattern p is included
into the set of preimages of p (ψ(p) = p) and second, if we remove a pattern p
from the set P, then the value M(p) < θ and, hence, the measure value of any
preimage of p is less than θ by the projection-antimonotonicity of M. The worst
case time complexity of ϑ − ∑

oϕια algorithm is

T(ϑ −
∑

oϕια) = T(FindPatterns(ψ0))+

+ k · max
0<i≤k

|Pi| · (T(Preimages) + T(M)), (4)

where k is the number of projections in the chain, T(X) is time for computing
operation X . Since projection ψ0 can be chosen to be very simple, in a typical
case the complexity of FindPatterns(θ, ψ0) can be low or even constant. The
complexities of Preimages and M depend on the measure, the chain of projec-
tions, and the kind of patterns. In many cases max

0<i≤k
|Pi| can be exponential in

Fast Generation of Best Interval Patterns for Nonmonotonic Constraints 167

the size of the input, because the number of patterns can be exponential. It can
be a difficult task to define the threshold θ such that the maximal cardinality
of Pi is not larger than a given number. This can be solved by an automatically
adjustment of the threshold θ, which is not discussed here.

3.4 ϑ − ∑
oϕια Algorithm for Interval Tuple Data

In this subsection we consider a pattern structure K = (G, (DI ,�), δ), where DI

is a semilattice of interval tuple descriptions. We say that every component of
a tuple p corresponds to an attribute m ∈ M , where M is the set of interval
attributes. Thus, the size of any tuple in DI is |M |, and for any attribute m ∈ M
we can denote the corresponding interval by m(p). We also denote the value set
of m by Wm. Since the set Wm is totally ordered we also denote by W

(j)
m and

W
(−j)
m the sets containing the first j (smallest) elements and the last j (largest)

elements from Wm, respectively.
A projection chain for interval tuple data is formed in the same way as

discussed in Example 5. We start from the projection containing only one pattern
corresponding to the largest interval in each component, i.e., for an attribute m

the projection is of the form ψm[W (1)
m ,W

(−1)
m]. Then to pass to a next projection,

we select the attribute m, and for this attribute we extend the projection from
ψm[W (j)

m ,W
(−j)
m] to ψm[W (j+1)

m ,W
(−j−1)
m]. Thus, there are k = max

m∈M
|Wm| · |M |

projections.
Finding preimages in this case is not hard, since to make a projection more

detailed one should just extend the corresponding interval in left and/or on right
end of the interval, i.e., there are only 4 possible preimages for a pattern when
passing from one projection to another in this chain. Thus, we have proved the
following

Proposition 1. The worst case complexity for ϑ−∑
oϕια algorithm for interval

tuple data is

T(ϑ −
∑

oϕια
intervals

) = max
m∈M

|Wm| · |M | · max
0<i≤k

|Pi| · T(M). (5)

.

3.5 ϑ − ∑
oϕια Algorithm for Closed Patterns

Closed frequent itemsets are widely used as a condensed representation of all
frequent itemsets since [18]. Here we show how we can adapt the algorithm for
closed patterns. A closed pattern in ψi−1(P) is not necessarily closed in ψi(P).
However, the extents of ψ(P) are extents of P [17]. Thus, we associate the closed
patterns with extents and then work with extents instead of patterns, i.e., a
pattern structure P = (G, (D,�), δ) is transformed into PC = (G, (DC ,�C), δC),
where DC = 2G. Moreover, for all x, y ∈ DC we have x�C y = (x� � y�)�, where
diamond operator is computed in P and δC(g ∈ G) = {g}. Hence, every pattern
p in DC corresponds to a closed pattern p� in D. A projection ψ of P induces a
projection ψC of PC , given by ψC(X ⊆ G) = ψ(X�)� with (·)� for P.

168 A. Buzmakov et al.

Table 1. Patterns found for every projection in a chain for the example in Figure 1.
Patterns are grey if they are removed for the corresponding projetion and they are
labeled with “–” if they have not yet been found.

Pattern Ext.
Δ-measure
ψ0 ψ1 ψ2 ψ3

1 {g1, g2, g3, g4, g5, g6} 6 2 2 2
2 {g1, g2, g3, g4} – 4 1 1
3 {g5, g6} – 2 2 2
4 {g1} – – 1 1
5 {g2, g3, g4} – – 3 2
6 {g4} – – – 1

3.6 Δ-measure and ϑ − ∑
oϕια Algorithm

In this subsection we show that Δ-measure is anti-monotonic for any projection;
it is a stronger condition than the one required by Definition 3. Δ-measure
works for closed patterns, and, hence, we identify every description by its extent
(Subsection 3.5).

Proposition 2. Δ is anti-monotonic for any projection ψ.

Proof. By properties of a projection, an extent of ψ(P) is an extent of P [17]. Let
us consider an extent E and an extent of its descendant in ψ(P). Let us suppose
that Ep is a preimage of E for the projection ψ. Since Ec and Ep are extents
in P, the set Ecp = Ec ∩ Ep is an extent in P (the intersection of two closed
sets is a closed set). Since Ep is a preimage of E, then Ep �≤ Ec (otherwise,
Ep is a preimage of Ec and not of E). Then, Ecp �= Ep and Ecp ≤ Ep. Hence,
Δ(Ep) ≤ |Ep \Ecp| ≤ |E \Ec|. So, given a preimage Ep of E, (∀Ec ⊆ E)Δ(Ep) ≤
|E \ Ec|, i.e., Δ(Ep) ≤ Δ(E). Thus, we can use Δ-measure in combination with
ϑ − ∑

oϕια.

3.7 Example of Δ-Stable Patterns in Interval Tuple Data

Let us consider the example in Figure 1 and show how we can find all Δ-stable
patterns with a threshold θ = 2. The chain of projections for this example is
given in Example 5, it contains 4 projections:

ψ0 = ψm1[{0},{1}]m2[{0},{2}] ψ1 = ψm1[{0,1},{0,1}]m2[{0},{2}]
ψ2 = ψm1[{0,1},{0,1}]m2[{0,1},{1,2}] ψ3 = ψm1[{0,1},{0,1}]m2[{0,1,2},{0,1,2}]

Since we are looking for closed patterns, every pattern can be identified by
its extent. In Table 1 all patterns are given by their extents, i.e., by elements of
DC . For every pattern Δ-measure is shown for every ψi. A cell is shown in grey
if the pattern is no more considered (the value of Δ less than 2). A cell has a
dash “–”, if a pattern in the row has not been generated for this projection.

For the example in Figure 1 the global process is as follows. At the begin-
ning ψ0(DI) contains only one element corresponding to pattern extent 123456

Fast Generation of Best Interval Patterns for Nonmonotonic Constraints 169

(a short cut for {g1, g2, g3, g4, g5, g6}) with a description 〈[0, 1]; [0, 2]〉. Then, in
ψ1(G, (DI ,�), δ) possible preimages of 123456 are patterns with descriptions
〈0; [0, 2]〉 and 〈1; [0, 2]〉 given by pattern extents 1234 and 56, respectively. Then
we continue with these three patterns which are all Δ-stable for the moment. The
pattern extents 123456 and 56 have no preimages for the transition ψ1 → ψ2,
while the pattern extent 1234 has two preimages with descriptions 〈0; [0, 1]〉 and
〈0; [1, 2]〉 for this projection, which correspond to pattern extents 1 and 234. The
first one is not Δ-stable and thus is no more considered. Moreover, the pattern
extent 1234 is not Δ-stable (because of 234) and should also be removed. Finally,
in transition ψ2 → ψ3 only extent-pattern 234 has a preimage, a pattern extent
4, which is not Δ-stable. In such a way, we have started from a very simple
projection ψ0 and achieved the projection ψ3 that gives us the Δ-stable patterns
of the target pattern structure.

4 Experiments and Discussion

In this section we compare our approach to approaches based on postfiltering.
Indeed, there is no approach that can directly mine stable-like pattern, e.g.,
stable, Δ-stable or robust patterns. The known approaches use postfiltering to
mine such kind of patterns [6,8,11,24]. Recently it was also shown that it is
more efficient to mine interval tuple data without binarization [20]. In their
paper the authors introduce algorithm MinIntChange for working directly with
interval tuple data. Thus we compare ϑ−∑

oϕια and MinIntChange for finding
Δ-stable patterns. We find Δ-stable concepts with ϑ − ∑

oϕια and then adjust
frequency threshold θ such that all Δ-stable patterns are among the frequent
ones.

The experiments are carried out on an “Intel(R) Core(TM) i7-2600 CPU @
3.40GHz” computer with 8Gb of memory under Ubuntu 14.04 operating system.
The algorithms are not parallelized and are coded in C++.

4.1 Dataset Simplification

For interval tuple data stable patterns can be very deep in the search space, such
that neither of the algorithms can find them quickly. Thus, we join some similar
values for every attribute in an interval in the following way. Given a threshold
0 < β, two consequent numbers wi and wi+1 from a value set W are joined in
the same interval if wi+1 − wi < β. In order to properly set the threshold β, we
use another threshold 0 < γ < 1, which is much easier to set.

If we assume that the values of the attribute m are distributed around several
states with centers w̃1, · · · , w̃l, then it is natural to think that the difference
between the closest centers abs(w̃i − w̃i±1) are much larger than the difference
between the closest values. Ordering all values in the increasing order and finding
the maximal difference δmax can give us an idea of typical distance between the
states in the data. Thus, γ is defined as a proportion of this distance that should
be considered as a distance between states, i.e., we put β = γ · δmax. If the

170 A. Buzmakov et al.

Table 2. Runtime in seconds of and MinIntChange for different datasets.

DS # Objs # Attrs γ Δ # Ptrns θ t tMIC
EM 61 9 0.3 3 3 21 < 0.1 57
BK 96 4 0.3 4 50 46 < 0.1 11
CN 105 20 0.8 2 5362 30 2.4 28
CU 108 5 0.3 5 4 27 < 0.1 1.5
FF 125 3 0.3 6 3 48 < 0.1 1
AP 135 4 0.01 5 1 19 < 0.1 34
EL 211 12 0.3 6 33 83 < 0.1 34
BA 337 16 0.5 4 736 91 1.5 32
AU 398 7 0.3 7 17 234 0.7 73
HO 506 13 0.8 10 1 340 0.7 57
QU 2178 25 0.3 40 1 659 1.3 28
AB 4177 8 0.3 46 3 1400 11 86
CA 8192 21 0.3 85 6 2568 112 24
PT 9065 48 0.3 2 1 2 45 14

distance between closest values in W are always the same, then even γ = 0.99
does not join values in intervals. However, if there are two states and the values
are distributed very closely to one of these two states, then even γ = 0.01 can
join values into one of two intervals corresponding to the states.

4.2 Datasets

We take several datasets from the Bilkent University database1. The datasets are
summarized in Table 2. The names of datasets are given by standard abbrevia-
tions used in the database of Bilkent University. For every dataset we provide the
number of objects and attributes and the threshold γ for which the experiments
are carried out. For example, database EM has 61 objects, 9 numeric attributes,
and the threshold γ is set to 0.3. Categorical attributes and rows with missing
values, if any, are removed from the datasets.

4.3 Experiments

In Table 2 we show the computation time for finding the best Δ-stable pattern
(or patterns if they have the same value for Δ-measure) for ϑ − ∑

oϕια and for
MinIntChange. The last algorithm is abbreviated as MIC. Since MinIntChange
algorithm sometimes produces too many patterns, i.e., we do not have enough
memory in our computer to check all of them, we interrupt the procedure and
show the corresponding time in grey. We also show the number of the best pat-
terns and the corresponding threshold Δ. The support threshold θ for finding the
best Δ-stable patterns is also shown. For example, dataset CN contains 5362 best
Δ-stable patterns, all having a Δ of 2. To find all these patterns with a post-
filtering, we should mine frequent patterns with a support threshold lower than
30 or 30

105 = 30%. ϑ − ∑
oϕια computes all these patterns in 2.4 seconds, while

MinIntChange requires at least 28 seconds and the procedure was interrupted
without continuation.
1 http://funapp.cs.bilkent.edu.tr/DataSets/

http://funapp.cs.bilkent.edu.tr/DataSets/

Fast Generation of Best Interval Patterns for Nonmonotonic Constraints 171

As we can see, ϑ − ∑
oϕια is significantly faster than MinIntChange in all

datasets. In the two datasets CA and PT, MinIntChange was stopped before
computing all patterns and the runtime did not exceed the runtime of ϑ−∑

oϕια.
However, in both cases, MinIntChange achieved less than 10% of the required
operations.

5 Conclusion

In this paper we have introduced a new class of interestingness measures that are
anti-monotonic w.r.t. a chain of projections. We have designed a new algorithm,
called ϑ − ∑

oϕια, which is able to efficiently find the best patterns w.r.t. such
interestingness measures for interval tuple data. The experiments reported in the
paper are the witness of the efficiency of the ϑ−∑

oϕια algorithms compared to
indirect approaches based on postfiltering. Many future research directions are
possible. Different measures should be studied in combination with ϑ − ∑

oϕια.
One of them is robustness, which is very close to stability and can be applied to
nonbinary data. Moreover, the choice of a projection chain is not a simple one
and can affect the algorithm efficiency. Thus, a deep study of suitable projection
chains should be carried out.

Acknowledgments. this research was supported by the Basic Research Program at
the National Research University Higher School of Economics (Moscow, Russia) and
by the BioIntelligence project (France).

References

1. Vreeken, J., Tatti, N.: Interesting patterns. In: Aggarwal, C.C., Han, J. (eds.) Freq.
Pattern Min., pp. 105–134. Springer International Publishing, Heildelberg (2014)

2. Mannila, H., Toivonen, H., Verkamo, A.I.: Efficient algorithms for discovering asso-
ciation rules. In: Knowl. Discov. Data Min., pp. 181–192 (1994)

3. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In:
Proc. 20th Int. Conf. Very Large Data Bases, VLDB, Vol. 1215, pp. 487–499 (1994)

4. Yao, H., Hamilton, H.J.: Mining itemset utilities from transaction databases. Data
Knowl. Eng. 59(3), 603–626 (2006)

5. Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell.
49(1–4), 101–115 (2007)

6. Roth, C., Obiedkov, S.A., Kourie, D.G.: On succinct representation of knowledge
community taxonomies with formal concept analysis. Int. J. Found. Comput. Sci.
19(02), 383–404 (2008)

7. Webb, G.I.: Self-sufficient itemsets. ACM Trans. Knowl. Discov. Data 4(1), 1–20
(2010)

8. Moerchen, F., Thies, M., Ultsch, A.: Efficient mining of all margin-closed itemsets
with applications in temporal knowledge discovery and classification by compres-
sion. Knowl. Inf. Syst. 29(1), 55–80 (2011)

9. Spyropoulou, E., De Bie, T., Boley, M.: Interesting pattern mining in multi-
relational data. Data Min. Knowl. Discov., 1–42 (April 2013)

172 A. Buzmakov et al.

10. Cao, J., Wu, Z., Wu, J.: Scaling up cosine interesting pattern discovery: A depth-
first method. Inf. Sci. (Ny) 266, 31–46 (2014)

11. Tatti, N., Moerchen, F., Calders, T.: Finding Robust Itemsets under Subsampling.
ACM Trans. Database Syst. 39(3), 1–27 (2014)

12. Yan, X., Cheng, H., Han, J., Yu, P.S.: Mining significant graph patterns by leap
search. In: Proc. 2008 ACM SIGMOD Int. Conf. Manag. Data - SIGMOD 2008,
pp. 433–444. ACM Press, New York, June 2008

13. Han, J., Wang, J., Lu, Y., Tzvetkov, P.: Mining top-k frequent closed patterns
without minimum support. In: Proceedings. 2002 IEEE Int. Conf. Data Mining,
ICDM 2003, pp. 211–218 (2002)

14. Xin, D., Cheng, H., Yan, X., Han, J.: Extracting redundancy-aware top-k patterns.
In: Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. - KDD 2006,
p. 444. ACM Press, New York, August 2006

15. Webb, G.I.: Filtered-top-k association discovery. Wiley Interdiscip. Rev. Data Min.
Knowl. Discov. 1(3), 183–192 (2011)

16. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st
edn. Springer, Heildelberg (1999)

17. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In:
Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120,
pp. 129–142. Springer, Heidelberg (2001)

18. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of Association
Rules Using Closed Itemset Lattices. Inf. Syst. 24(1), 25–46 (1999)

19. Kuznetsov, S.O., Samokhin, M.V.: Learning closed sets of labeled graphs for chem-
ical applications. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI),
vol. 3625, pp. 190–208. Springer, Heidelberg (2005)

20. Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting numerical pattern mining
with formal concept analysis. In: Proc. 22nd Int. Jt. Conf. Artif. Intell. Barcelona,
IJCAI 2011, Catalonia, Spain, July 16–22, 2011, pp. 1342–1347 (2011)

21. Yan, X., Han, J., Afshar, R.: CloSpan: mining closed sequential patterns in large
databases. In: Proc. SIAM Int’l Conf. Data Min., pp. 166–177 (2003)

22. Kuznetsov, S.O.: On Computing the Size of a Lattice and Related Decision Prob-
lems. Order 18(4), 313–321 (2001)

23. Buzmakov, A., Kuznetsov, S.O., Napoli, A.: Scalable estimates of concept stability.
In: Glodeanu, C.V., Kaytoue, M., Sacarea, C. (eds.) ICFCA 2014. LNCS, vol. 8478,
pp. 157–172. Springer, Heidelberg (2014)

24. Buzmakov, A., Egho, E., Jay, N., Kuznetsov, S.O., Napoli, A., Räıssi, C.: On pro-
jections of sequential pattern structures (with an application on care trajectories).
In: Proc. 10th Int. Conf. Concept Lattices Their Appl., pp. 199–208 (2013)

	Fast Generation of Best Interval Patternsfor Nonmonotonic Constraints
	1 Introduction
	2 Data Model
	2.1 FCA and Pattern Structures
	2.2 Interval Pattern Structure
	2.3 Stability Index of a Concept
	2.4 Projections of Pattern Structures
	2.5 Projections of Interval Pattern Structures

	3 -o Algorithm
	3.1 Anti-monotonicity w.r.t. a Projection
	3.2 Anti-monotonicity w.r.t. a Chain of Projections
	3.3 Algorithms
	3.4 -o Algorithm for Interval Tuple Data
	3.5 -o Algorithm for Closed Patterns
	3.6 -measure and -o Algorithm
	3.7 Example of -Stable Patterns in Interval Tuple Data

	4 Experiments and Discussion
	4.1 Dataset Simplification
	4.2 Datasets
	4.3 Experiments

	5 Conclusion
	References

