
Annalisa Appice · Pedro Pereira Rodrigues
Vitor Santos Costa · Carlos Soares
João Gama · Alípio Jorge (Eds.)

 123

LN
AI

 9
28

5

European Conference, ECML PKDD 2015
Porto, Portugal, September 7–11, 2015
Proceedings, Part II

Machine Learning and
Knowledge Discovery
in Databases

Lecture Notes in Artificial Intelligence 9285

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Annalisa Appice • Pedro Pereira Rodrigues
Vitor Santos Costa • João Gama
Alípio Jorge • Carlos Soares (Eds.)

Machine Learning and
Knowledge Discovery
in Databases
European Conference, ECML PKDD 2015
Porto, Portugal, September 7–11, 2015
Proceedings, Part II

123

Editors
Annalisa Appice
University of Bari Aldo Moro
Bari
Italy

Pedro Pereira Rodrigues
University of Porto
Porto
Portugal

Vitor Santos Costa
University of Porto - CRACS/INESC TEC
Porto
Portugal

João Gama
University of Porto - INESC TEC
Porto
Portugal

Alípio Jorge
University of Porto - INESC TEC
Porto
Portugal

Carlos Soares
University of Porto - INESC TEC
Porto
Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-23524-0 ISBN 978-3-319-23525-7 (eBook)
DOI 10.1007/978-3-319-23525-7

Library of Congress Control Number: 2015947118

LNCS Sublibrary: SL7 – Artificial Intelligence

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

We are delighted to introduce the proceedings of the 2015 edition of the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases, or ECML PKDD for short. This conference stems from the former ECML
and PKDD conferences, the two premier European conferences on, respectively,
Machine Learning and Knowledge Discovery in Databases. Originally independent
events, the two conferences were organized jointly for the first time in 2001. The
sinergy between the two led to increasing integration, and eventually the two merged in
2008. Today, ECML PKDD is a world-wide leading scientific event that aims at
exploiting the synergies between Machine Learning and Data Mining, focusing on the
development and application of methods and tools capable of solving real-life
problems.

ECML PKDD 2015 was held in Porto, Portugal, during September 7–11. This was
the third time Porto hosted the major European Machine Learning event. In 1991, Porto
was host to the fifth EWSL, the precursor of ECML. More recently, in 2005, Porto was
host to a very successful ECML PKDD. We were honored that the community chose to
again have ECML PKDD 2015 in Porto, just ten years later. The 2015 ECML PKDD
was co-located with “Intelligent System Applications to Power Systems”, ISAP 2015, a
well-established forum for scientific and technical discussion, aiming at fostering the
widespread application of intelligent tools and techniques to the power system network
and business. Moreover, it was collocated, for the first time, with the Summer School
on “Data Sciences for Big Data.”

ECML PKDD traditionally combines the research-oriented extensive program of the
scientific and journal tracks, which aim at being a forum for high quality, novel
research in Machine Learning and Data Mining, with the more focused programs of the
demo track, dedicated to presenting real systems to the community, the PhD track,
which supports young researchers, and the nectar track, dedicated to bringing relevant
work to the community. The program further includes an industrial track, which brings
together participants from academia, industry, government, and non-governmental
organizations in a venue that highlights practical and real-world studies of machine
learning, knowledge discovery, and data mining. The industrial track of ECML PKDD
2015 has a separate Program Committee and separate proceedings volume. Moreover,
the conference program included a doctoral consortium, three discovery challenges,
and various workshops and tutorials.

The research program included five plenary talks by invited speakers, namely,
Hendrik Blockeel (University of Leuven and Leiden University), Pedro Domingos
(University of Washington), Jure Leskovec (Stanford University), Nataša Milić-Fray-
ling (Microsoft Research), and Dino Pedreschi (Università di Pisa), as well as one ISAP
+ECML PKDD joint plenary talk by Chen-Ching Liu (Washington State University).
Three invited speakers contributed to the industrial track: Andreas Antrup (Zalando and

University of Edinburgh), Wei Fan (Baidu Big Data Lab), and Hang Li (Noah’s Ark
Lab, Huawei Technologies).

Three discovery challenges were announced this year. They focused on “MoRe-
BikeS: Model Reuse with Bike rental Station data,” “On Learning from Taxi GPS
Traces,” and “Activity Detection Based on Non-GPS Mobility Data,” respectively.

Twelve workshops were held, providing an opportunity to discuss current topics in a
small and interactive atmosphere: “MetaSel - Meta-learning and Algorithm Selection,”
“Parallel and Distributed Computing for Knowledge Discovery in Databases,”
“Interactions between Data Mining and Natural Language Processing,” “New Frontiers
in Mining Complex Patterns,” “Mining Ubiquitous and Social Environments,”
“Advanced Analytics and Learning on Temporal Data,” “Learning Models over
Multiple Contexts,” “Linked Data for Knowledge Discovery,” “Sports Analytics”,
“BigTargets: Big Multi-target Prediction,” “DARE: Data Analytics for Renewable
Energy Integration”, and “Machine Learning in Life Sciences.”

Ten tutorials were included in the conference program, providing a comprehensive
introduction to core techniques and areas of interest for the scientific community:
“Similarity and Distance Metric Learning with Applications to Computer Vision,”
“Scalable Learning of Graphical Models,” “Meta-learning and Algorithm Selection,”
“Machine Reading the Web - Beyond Named Entity Recognition and Relation
Extraction,” “VC-Dimension and Rademacher Averages: From Statistical Learning
Theory to Sampling Algorithms,” “Making Sense of (Multi-)Relational Data,” “Col-
laborative Filtering with Binary, Positive-Only Data,” “Predictive Maintenance,”
“Eureka! - How to Build Accurate Predictors for Real-Valued Outputs from Simple
Methods,” and “The Space of Online Learning Problems.”

The main track received 380 paper submissions, of which 89 were accepted. Such a
high volume of scientific work required a tremendous effort by the Area Chairs, Pro-
gram Committee members, and many additional reviewers. We managed to collect
three highly qualified independent reviews per paper and one additional overall input
from one of the Area Chairs. Papers were evaluated on the basis of significance of
contribution, novelty, technical quality, scientific, and technological impact, clarity,
repeatability, and scholarship. The industrial, demo, and nectar tracks were equally
successful, attracting 42, 32, and 29 paper submissions, respectively.

For the third time, the conference used a double submission model: next to the
regular conference tracks, papers submitted to the Springer journals Machine Learning
(MACH) and Data Mining and Knowledge Discovery (DAMI) were considered for
presentation at the conference. These papers were submitted to the ECML PKDD 2015
special issue of the respective journals, and underwent the normal editorial process
of these journals. Those papers accepted for one of these journals were assigned a
presentation slot at the ECML PKDD 2015 conference. A total of 191 original
manuscripts were submitted to the journal track during this year. Some of these papers
are still being refereed. Of the fully refereed papers, 10 were accepted in DAMI and 15
in MACH, together with 4+4 papers from last year’s call, which were also scheduled
for presentation at this conference. Overall, this resulted in a number of 613 submis-
sions (to the scientific track, industrial track and journal track), of which 126 were
selected for presentation at the conference, making an overall acceptance rate of
about 21%.

VI Preface

Part I and Part II of the proceedings of the ECML PKDD 2015 conference contain
the full papers of the contributions presented in the scientific track, the abstracts of the
scientific plenary talks, and the abstract of the ISAP+ECML PKDD joint plenary talk.
Part III of the proceedings of the ECML PKDD 2015 conference contains the full
papers of the contributions presented in the industrial track, short papers describing the
demonstrations, the nectar papers, and the abstracts of the industrial plenary talks.

The scientific track program results from continuous collaboration between the
scientific tracks and the general chairs. Throughout we had the unfaltering support
of the Local Chairs, Carlos Ferreira, Rita Ribeiro, and João Moreira, who managed this
event in a thoroughly competent and professional way. We thank the Social Media
Chairs, Dunja Mladenić and Márcia Oliveira, for tweeting the new face of
ECML PKDD, and the Publicity Chairs, Ricardo Campos and Carlos Ferreira, for their
excellent work in spreading the news. The beautiful design and quick response time
of the web site is due to the work of our Web Chairs, Sylwia Bugla, Rita Ribeiro, and
João Rodrigues. The beautiful image on all the conference materials is based on the
logo designed by Joana Amaral e João Cravo, inspired by Porto landmarks. It has been
a pleasure to collaborate with the Journal, Industrial, Demo, Nectar, and PhD Track
Chairs. ECML PKDD would not be complete if not for the efforts of the Tutorial
Chairs, Fazel Famili, Mykola Pechenizkiy, and Nikolaj Tatti, the Workshop Chairs,
Stan Matwin, Bernhard Pfahringer, and Luís Torgo, and the Discovery Challenge
Chairs, Michel Ferreira, Hillol Kargupta, Luís Moreira-Matias, and João Moreira. We
thank the Awards Committee Chairs, Pavel Brazdil, Sašo Džerosky, Hiroshi Motoda,
and Michèle Sebag, for their hard work in selecting papers for awards. A special meta
thanks to Pavel: ECML PKDD at Porto is only possible thanks to you. We gratefully
acknowledge the work of the Sponsorship Chairs, Albert Bifet and André Carvalho, for
their key work. Special thanks go to the Proceedings Chairs, Michelangelo Ceci and
Paulo Cortez, for the difficult task of putting these proceedings together. We appreciate
the support of Artur Aiguzhinov, Catarina Félix Oliveira, and Mohammad Nozari
(U. Porto) for helping to check this front matter. We thank the ECML PKDD Steering
Committee for kindly sharing their experience, and particularly the General Steering
Committe Chair, Fosca Giannotti. The quality of ECML PKDD is only possible due to
the tremendous efforts of the Program Committee; our sincere thanks for all the great
work in improving the quality of these proceedings. Throughout, we relied on the
exceptional quality of the Area Chairs. Our most sincere thanks for their support, with a
special thanks to the members who contributed in difficult personal situations, and to
Paulo Azevedo for stepping in when the need was there. Last but not least, we would
like to sincerely thank all the authors who submitted their work to the conference.

July 2015 Annalisa Appice
Pedro Pereira Rodrigues

Vítor Santos Costa
Carlos Soares

João Gama
Alípio Jorge

Preface VII

Organization

ECML/PKDD 2015 Organization

Conference Co-chairs

João Gama University of Porto, INESC TEC, Portugal
Alipío Jorge University of Porto, INESC TEC, Portugal

Program Co-chairs

Annalisa Appice University of Bari Aldo Moro, Italy
Pedro Pereira Rodrigues University of Porto, CINTESIS, INESC TEC, Portugal
Vtor SantosCosta University of Porto, INESC TEC, Portugal
Carlos Soares University of Porto, INESC TEC, Portugal

Journal Track Chairs

Concha Bielza Technical University of Madrid, Spain
João Gama University of Porto, INESC TEC, Portugal
Alipío Jorge University of Porto, INESC TEC, Portugal
Indré Žliobaité Aalto University and University of Helsinki, Finland

Industrial Track Chairs

Albert Bifet Huawei Noah’s Ark Lab, China
Michael May Siemens, Germany
Bianca Zadrozny IBM Research, Brazil

Local Organization Chairs

Carlos Ferreira Oporto Polytechnic Institute, INESC TEC, Portugal
João Moreira University of Porto, INESC TEC, Portugal
Rita Ribeiro University of Porto, INESC TEC, Portugal

Tutorial Chairs

Fazel Famili CNRC, France
Mykola Pechenizkiy TU Eindhoven, The Netherland
Nikolaj Tatti Aalto University, Finland

Workshop Chairs

Stan Matwin Dalhousie University, NS, Canada
Bernhard Pfahringer University of Waikato, New Zealand
Luís Torgo University of Porto, INESC TEC, Portugal

Awards Committee Chairs

Pavel Brazdil INESC TEC, Portugal
Sašo Džeroski Jožef Stefan Institute, Slovenia
Hiroshi Motoda Osaka University, Japan
Michèle Sebag Université Paris Sud, France

Nectar Track Chairs

Ricard Gavaldà UPC, Spain
Dino Pedreschi Università di Pisa, Italy

Demo Track Chairs

Francesco Bonchi Yahoo! Labs, Spain
Jaime Cardoso University of Porto, INESC TEC, Portugal
Myra Spiliopoulou Otto-von-Guericke University Magdeburg, Germany

PhD Chairs

Jaakko Hollmén Aalto University, Finland
Panagiotis Papapetrou Stockholm University, Sweden

Proceedings Chairs

Michelangelo Ceci University of Bari, Italy
Paulo Cortez University of Minho, Portugal

Discovery Challenge Chairs

Michel Ferreira University of Porto, INESC TEC, Geolink, Portugal
Hillol Kargupta Agnik, MD, USA
Luís Moreira-Matias NEC Research Labs, Germany
João Moreira University of Porto, INESC TEC, Portugal

Sponsorship Chairs

Albert Bifet Huawei Noah’s Ark Lab, China
André Carvlho University of São Paulo, Brazil
Pedro Pereira Rodrigues University of Porto, Portugal

X Organization

Publicity Chairs

Ricardo Campos Polytechnic Institute of Tomar, INESC TEC, Portugal
Carlos Ferreira Oporto Polytechnic Institute, INESC TEC, Portugal

Social Media Chairs

Dunja Mladenić JSI, Slovenia
Márcia Oliveira University of Porto, INESC TEC, Portugal

Web Chairs

Sylwia Bugla INESC TEC, Portugal
Rita Ribeiro University of Porto, INESC TEC, Portugal
João Rodrigues INESC TEC, Portugal

ECML PKDD Steering Committee

Fosca Giannotti ISTI-CNR Pisa, Italy
Michèle Sebag Université Paris Sud, France
Francesco Bonchi Yahoo! Research, Spain
Hendrik Blockeel KU Leuven, Belgium and Leiden University,

The Netherlands
Katharina Morik University of Dortmund, Germany
Tobias Scheffer University of Potsdam, Germany
Arno Siebes Utrecht University, The Netherlands
Peter Flach University of Bristol, UK
Tijl De Bie University of Bristol, UK
Nello Cristianini University of Bristol, Uk
Filip Železný Czech Technical University in Prague, Czech Republic
Siegfried Nijssen LIACS, Leiden University, The Netherlands
Kristian Kersting Technical University of Dortmund, Germany
Rosa Meo Università di Torino, Italy
Toon Calders Eindhoven University of Technology, The Netherlands
Chedy Raïssi INRIA Nancy Grand-Est, France

Area Chairs

Paulo Azevedo University of Minho
Michael Berthold Universität Konstanz
Francesco Bonchi Yahoo Labs Barcelona
Henrik Boström University of Stockholm
Jean-Françis Boulicaut Institut National des Sciences Appliquées de Lyon, LIRIS
Pavel Brazdil University of Porto
André Carvalho University of São Paulo
Michelangelo Ceci Università degli Studi di Bari Aldo Moro

Organization XI

Jesse Davis Katholieke Universiteit Leuven
Luc De Raedt Katholieke Universiteit Leuven
Peter Flach University of Bristol
Johannes Fürnkranz TU Darmstadt
Thomas Gaertner Fraunhofer IAIS
Bart Goethals University of Antwerp
Andreas Hotho University of Kassel
Eyke Hüllermeier University of Paderborn
George Karypis University of Minnesota
Kristian Kersting Technical University of Dortmund
Arno Knobbe Universiteit Leiden
Pedro Larrañaga Technical University of Madrid
Peter Lucas Radboud University Nijmegen
Donato Malerba Università degli Studi di Bari Aldo Moro
Stan Matwin Dalhousie University
Katharina Morik TU Dortmund
Sriraam Natarajan Indiana University
Eugénio Oliveira University of Porto
Mykola Pechenizkiy Eindhoven University of Technology
Bernhard Pfahringer University of Waikato
Michèle Sebag CNRS
Myra Spiliopoulou Otto-von-Guericke University Magdeburg
Jerzy Stefanowski Poznań University of Technology
Luís Torgo University of Porto
Stefan Wrobel Fraunhofer IAIS, Germany
Philip Yu University of Illinois at Chicago

Program Committee

Leman Akoglu
Mehmet Sabih Aksoy
Mohammad Al Hasan
Omar Alonso
Aijun An
Aris Anagnostopoulos
Marta Arias
Rubén Armañanzas
Ira Assent
Martin Atzmueller
Chloé-Agathe Azencott
Paulo Azevedo
Antonio Bahamonde
James Bailey

Narayanaswamy
Balakrishnan
Elena Baralis
Daniel Barbará
Gustavo Batista
Christian Bauckhage
Roberto Bayardo
Vaishak Belle
András Benczúr
Bettina Berendt
Michele Berlingerio
Indrajit Bhattacharya
Marenglen Biba
Enrico Blanzieri

Jerzy Blaszczynski
Konstantinos Blekas
Mario Boley
Gianluca Bontempi
Christian Borgelt
José Luís Borges
Marc Boullé
Ulf Brefeld
Róbert Busa-Fekete
Toon Calders
Rui Camacho
Longbing Cao
Henrique Lopes Cardoso
Francisco Casacuberta

XII Organization

Gladys Castillo
Loic Cerf
Tania Cerquitelli
Edward Chang
Duen Horng Chau
Sanjay Chawla
Keke Chen
Ling Chen
Weiwei Cheng
Silvia Chiusano
Frans Coenen
Fabrizio Costa
Germán Creamer
Bruno Crémilleux
Marco Cristo
Tom Croonenborghs
Boris Cule
Tomaž Curk
James Cussens
Alfredo Cuzzocrea
Claudia d’Amato
Sašo Džeroski
Maria Damiani
Jeroen De Knijf
Gerard de Melo
Marcílio de Souto
Kurt DeGrave
Juan del Coz
Krzysztof Dembczyński
François Denis
Anne Denton
Mohamed Dermouche
Christian Desrosiers
Luigi Di Caro
Nicola Di Mauro
Jana Diesner
Ivica Dimitrovski
Ying Ding
Stephan Doerfel
Anne Driemel
Chris Drummond
Brett Drury
Devdatt Dubhashi
Wouter Duivesteijn
Bob Durrant
Inês Dutra

Tapio Elomaa
Floriana Esposito
Roberto Esposito
Hadi Fanaee-T
Nicola Fanizzi
Elaine Faria
Fabio Fassetti
Hakan Ferhatosmanoglou
Stefano Ferilli
Carlos Ferreira
Hugo Ferreira
Cèsar Ferri
George Fletcher
Eibe Frank
Élisa Fromont
Fabio Fumarola
Mohamed Medhat Gaber
Fábio Gagliardi Cozman
Patrick Gallinari
José A. Gámez
Jing Gao
Byron Gao
Paolo Garza
Éric Gaussier
Pierre Geurts
Fosca Giannotti
Christophe Giraud-Carrier
Aris Gkoulalas-Divanis
Marco Gori
Pablo Granitto
Michael Granitzer
Maria Halkidi
Jiawei Han
Daniel Hernández Lobato
José Hernández-Orallo
Thanh Lam Hoang
Frank Hoeppner
Geoff Holmes
Arjen Hommersom
Estevam Hruschka
Xiaohua Hu
Minlie Huang
Dino Ienco
Iñaki Inza
Frederik Janssen
Nathalie Japkowicz

Szymon Jaroszewicz
Ulf Johansson
Tobias Jung
Hachem Kadri
Theodore Kalamboukis
Alexandros Kalousis
U. Kang
Andreas Karwath
Hisashi Kashima
Ioannis Katakis
Mehdi Kaytoue
John Keane
Latifur Khan
Dragi Kocev
Levente Kocsis
Alek Kolcz
Irena Koprinska
Jacek Koronacki
Nitish Korula
Petr Kosina
Walter Kosters
Lars Kottof
Georg Krempl
Artus Krohn-Grimberghe
Marzena Kryszkiewicz
Matjaž Kukar
Meelis Kull
Sergei Kuznetsov
Nicolas Lachiche
Helge Langseth
Mark Last
Silvio Lattanzi
Niklas Lavesson
Nada Lavrač
Gianluca Lax
Gregor Leban
Sangkyun Lee
Wang Lee
Florian Lemmerich
Philippe Lenca
Philippe Leray
Carson Leung
Lei Li
Jiuyong Li
Juanzi Li
Edo Liberty

Organization XIII

Hsuan-Tien Lin
Shou-de Lin
Yan Liu
Lei Liu
Corrado Loglisci
Eneldo Loza Mencía
Jose A. Lozano
Chang-Tien Lu
Panagis Magdalinos
Giuseppe Manco
Yannis Manolopoulos
Enrique Martinez
Elio Masciari
Florent Masseglia
Luís Matias
Oleksiy Mazhelis
Wannes Meert
Wagner Meira
Ernestina Menasalvas
Corrado Mencar
Rosa Meo
Pauli Miettinen
Dunja Mladenić
Anna Monreale
João Moreira
Emmanuel Müller
Mohamed Nadif
Mirco Nanni
Amedeo Napoli
Houssam Nassif
Benjamin Nguyen
Thomas Niebler
Thomas Nielsen
Siegfried Nijssen
Xia Ning
Niklas Norén
Kjetil Nørvåg
Eirini Ntoutsi
Andreas Nürnberger
Irene Ong
Salvatore Orlando
Gerhard Paaß
David Page
George Paliouras
Panče Panov
Spiros Papadimitriou

Apostolos Papadopoulos
Panagiotis Papapetrou
Ioannis Partalas
Andrea Passerini
Dino Pedreschi
Nikos Pelekis
Jing Peng
Yonghong Peng
Ruggero Pensa
Andrea Pietracaprina
Fabio Pinelli
Marc Plantevit
Pascal Poncelet
Lubos Popelinksky
George Potamias
Ronaldo Prati
Doina Precup
Ricardo Prudêncio
Kai Puolamäki
Buyue Qian
Chedy Raïssi
Liva Ralaivola
Karthik Raman
Jan Ramon
Huzefa Rangwala
Zbigniew Ras
Chotirat Ann

Ratanamahatana
Jan Rauch
Soumya Ray
Jesse Read
Steffen Rendle
Achim Rettinger
Rita Ribeiro
Fabrizio Riguzzi
Céline Robardet
Marko Robnik-Šikonja
Juan Rodriguez
Irene Rodríguez Luján
André Rossi
Fabrice Rossi
Juho Rousu
Céline Rouveirol
Salvatore Ruggieri
Stefan Rüping
Y. van Saeys

Alan Said
Lorenza Saitta
Ansaf Salleb-Aouissi
Jose S. Sanchez
Raul Santos-Rodriguez
Sam Sarjant
Claudio Sartori
Yücel Saygin
Erik Schmidt
Lars Schmidt-Thieme
Christoph Schommer
Matthias Schubert
Marco Scutari
Thomas Seidl
Nazha Selmaoui
Giovanni Semeraro
Junming Shao
Yun Sing Koh
Andrzej Skowron
Kevin Small
Tomislav Šmuc
Yangqiu Song
Cheng Soon Ong
Arnaud Soulet
Mauro Sozio
Alessandro Sperduti
Eirini Spyropoulou
Steffen Staab
Gregor Stiglic
Markus Strohmaier
Enrique Sucar
Mahito Sugiyama
Johan Suykens
Einoshin Suzuki
Panagiotis Symeonidis
Sándor Szedmák
Andrea Tagarelli
Domenico Talia
Letizia Tanca
Dacheng Tao
Nikolaj Tatti
Maguelonne Teisseire
Alexandre Termier
Evimaria Terzi
Ljupco Todorovski
Vicenç Torra

XIV Organization

Roberto Trasarti
Brigitte Trousse
Panayiotis Tsaparas
Vincent Tseng
Grigorios Tsoumakas
Theodoros Tzouramanis
Antti Ukkonen
Takeaki Uno
Athina Vakali
Wil van der Aalst
Guy van der Broeck
Maarten van der Heijden
Peter van der Putten
Matthijs van Leeuwen

Putten
Martijn van Otterlo
Maarten van Someren
Joaquin Vanschoren
Iraklis Varlamis
Raju Vatsavai
Michalis Vazirgiannis

Julien Velcin
Shankar Vembu
Sicco Verwer
Vassilios Verykios
Herna Viktor
Ricardo Vilalta
Pavlovic Vladimir
Christel Vrain
Jilles Vreeken
Willem Waegeman
Byron Wallace
Fei Wang
Jianyong Wang
Yang Wang
Takashi Washio
Jörg Simon Wicker
Chun-Nam Yu
Jeffrey Yu
Jure Zabkar
Gerson Zaverucha
Demetris Zeinalipour

Filip Železný
Bernard Ženko
Junping Zhang
Kun Zhang
Lei Zhang
Min-Ling Zhang
Nan Zhang
Shichao Zhang
Zhongfei Zhang
Liang Zhao
Ying Zhao
Elena Zheleva
Bin Zhou
Kenny Zhu
Xiaofeng Zhu
Djamel Zighed
Arthur Zimek
Albrecht Zimmermann
Blaž Zupan

Additional Reviewers

Greet Baldewijns
Jessa Bekker
Nuno Castro
Shiyu Chang
Yu Cheng
Paolo Cintia
Heidar Davoudi
Thomas Delacroix
Martin Dimkovski
Michael Färber
Ricky Fok
Emanuele Frandi
Tatiana Gossen
Valerio Grossi
Riccardo Guidotti
Ming Jiang
Nikos Katzouris

Sebastian Kauschke
Jinseok Kim
Jan Kralj
Thomas Low
Stijn Luca
Rafael Mantovani
Pasquale Minervini
Shubhanshu Mishra
Christos Perentis
Fábio Pinto
Dimitrios Rafailidis
Giulio Rossetti
Alexandros Sarafianos
Antonio Vergari
Dimtrios Vogiatzis
Andreas Zioupos

Organization XV

Sponsors

Platinum Sponsors

BNP PARIBAS http://www.bnpparibas.com/
ONR Global www.onr.navy.mil/science-technology/onr-global.aspx

Gold Sponsors

Zalando https://www.zalando.co.uk/
HUAWEI http://www.huawei.com/en/

Silver Sponsors

Deloitte http://www2.deloitte.com/
Amazon http://www.amazon.com/

Bronze Sponsors

Xarevision http://xarevision.pt/
Farfetch http://www.farfetch.com/pt/
NOS http://www.nos.pt/particulares/Pages/home.aspx

Award Sponsor

Machine Learning http://link.springer.com/journal/10994
Data Mining and

Knowledge
http://link.springer.com/journal/10618

Discovery Deloitte http://www2.deloitte.com/

Lanyard Sponsor

KNIME http://www.knime.org/

Invited Talk Sponsors

ECCAI http://www.eccai.org/
Cliqz https://cliqz.com/
Technicolor http://www.technicolor.com/
University of Bari Aldo

Moro
http://www.uniba.it/english-version

XVI Organization

http://www.bnpparibas.com/
http://www.onr.navy.mil/science-technology/onr-global.aspx
https://www.zalando.co.uk/
http://www.huawei.com/en/
http://www2.deloitte.com/
http://www.amazon.com/
http://xarevision.pt/
http://www.farfetch.com/pt/
http://www.nos.pt/particulares/Pages/home.aspx
http://springerlink.bibliotecabuap.elogim.com/journal/10994
http://springerlink.bibliotecabuap.elogim.com/journal/10618
http://www2.deloitte.com/
http://www.knime.org/
http://www.eccai.org/
https://cliqz.com/
http://www.technicolor.com/
http://www.uniba.it/english-version

Additional Supporters

INESCTEC https://www.inesctec.pt/
University of Porto,

Faculdade de
Economia

http://sigarra.up.pt/fep/pt/web_page.inicial

Springer http://www.springer.com/
University of Porto http://www.up.pt/

Official Carrier

TAP http://www.flytap.com/

Organization XVII

https://www.inesctec.pt/
http://sigarra.up.pt/fep/pt/web_page.inicial
http://www.springer.com/
http://www.up.pt/
http://www.flytap.com/

Abstracts of Journal Track Articles

A Bayesian Approach for Comparing Cross-Validated Algorithms
on Multiple Data Sets
Giorgio Corani and Alessio Benavoli
Machine Learning
DOI: 10.1007/s10994-015-5486-z

We present a Bayesian approach for making statistical inference about the accuracy (or
any other score) of two competing algorithms which have been assessed via
cross-validation on multiple data sets. The approach is constituted by two pieces. The
first is a novel correlated Bayesian t-test for the analysis of the cross-validation results
on a single data set which accounts for the correlation due to the overlapping training
sets. The second piece merges the posterior probabilities computed by the Bayesian
correlated t-test on the different data sets to make inference on multiple data sets.
It does so by adopting a Poisson-binomial model. The inferences on multiple data sets
account for the different uncertainty of the cross-validation results on the different data
sets. It is the first test able to achieve this goal. It is generally more powerful than the
signed-rank test if ten runs of cross-validation are performed, as it is anyway generally
recommended.

A Decomposition of the Outlier Detection Problem into a Set
of Supervised Learning Problems
Heiko Paulheim and Robert Meusel
Machine Learning
DOI: 10.1007/s10994-015-5507-y

Outlier detection methods automatically identify instances that deviate from the
majority of the data. In this paper, we propose a novel approach for unsupervised
outlier detection, which re-formulates the outlier detection problem in numerical data as
a set of supervised regression learning problems. For each attribute, we learn a
predictive model which predicts the values of that attribute from the values of all other
attributes, and compute the deviations between the predictions and the actual values.
From those deviations, we derive both a weight for each attribute, and a final outlier
score using those weights. The weights help separating the relevant attributes from the
irrelevant ones, and thus make the approach well suitable for discovering outliers
otherwise masked in high-dimensional data. An empirical evaluation shows that our
approach outperforms existing algorithms, and is particularly robust in datasets with
many irrelevant attributes. Furthermore, we show that if a symbolic machine learning
method is used to solve the individual learning problems, the approach is also capable
of generating concise explanations for the detected outliers.

http://dx.doi.org/10.1007/s10994-015-5486-z
http://dx.doi.org/10.1007/s10994-015-5507-y

Assessing the Impact of a Health Intervention via User-Generated
Internet Content
Vasileios Lampos, Elad Yom-Tov, Richard Pebody, and Ingemar J. Cox
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0427-9

Assessing the effect of a health-oriented intervention by traditional epidemiological
methods is commonly based only on population segments that use healthcare services.
Here we introduce a complementary framework for evaluating the impact of a targeted
intervention, such as a vaccination campaign against an infectious disease, through a
statistical analysis of user-generated content submitted on web platforms. Using
supervised learning, we derive a nonlinear regression model for estimating the
prevalence of a health event in a population from Internet data. This model is applied to
identify control location groups that correlate historically with the areas, where a
specific intervention campaign has taken place. We then determine the impact of the
intervention by inferring a projection of the disease rates that could have emerged in the
absence of a campaign. Our case study focuses on the influenza vaccination program
that was launched in England during the 2013/14 season, and our observations consist
of millions of geo-located search queries to the Bing search engine and posts on
Twitter. The impact estimates derived from the application of the proposed statistical
framework support conventional assessments of the campaign.

Beyond Rankings: Comparing Directed Acyclic Graphs
Eric Malmi, Nikolaj Tatti, Aristides Gionis
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0406-1

Defining appropriate distance measures among rankings is a classic area of study which
has led to many useful applications. In this paper, we propose a more general
abstraction of preference data, namely directed acyclic graphs (DAGs), and introduce a
measure for comparing DAGs, given that a vertex correspondence between the DAGs
is known. We study the properties of this measure and use it to aggregate and cluster a
set of DAGs. We show that these problems are NP-hard and present efficient methods
to obtain solutions with approximation guarantees. In addition to preference data, these
methods turn out to have other interesting applications, such as the analysis of a
collection of information cascades in a network. We test the methods on synthetic and
real-world datasets, showing that the methods can be used to, e.g., find a set of
influential individuals related to a set of topics in a network or to discover meaningful
and occasionally surprising clustering structure.

XXII Abstracts of Journal Track Articles

http://dx.doi.org/10.1007/s10618-015-0427-9
http://dx.doi.org/10.1007/s10618-015-0406-1

Clustering Boolean Tensors
Saskia Metzler and Pauli Miettinen
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0420-3

Graphs - such as friendship networks - that evolve over time are an example of data that
are naturally represented as binary tensors. Similarly to analysing the adjacency matrix
of a graph using a matrix factorization, we can analyse the tensor by factorizing it.
Unfortunately, tensor factorizations are computationally hard problems, and in
particular, are often significantly harder than their matrix counterparts. In case of
Boolean tensor factorizations - where the input tensor and all the factors are required to
be binary and we use Boolean algebra - much of that hardness comes from the
possibility of overlapping components. Yet, in many applications we are perfectly
happy to partition at least one of the modes. For instance, in the aforementioned
timeevolving friendship networks, groups of friends might be overlapping, but the time
points at which the network was captured are always distinct. In this paper we
investigate what consequences this partitioning has on the computational complexity
of the Boolean tensor factorizations and present a new algorithm for the resulting
clustering problem. This algorithm can alternatively be seen as a particularly
regularized clustering algorithm that can handle extremely high-dimensional observa-
tions. We analyse our algorithm with the goal of maximizing the similarity and argue
that this is more meaningful than minimizing the dissimilarity. As a by-product we
obtain a PTAS and an efficient 0.828-approximation algorithm for rank-1 binary
factorizations. Our algorithm for Boolean tensor clustering achieves high scalability,
high similarity, and good generalization to unseen data with both synthetic and
realworld data sets.

Consensus Hashing
Cong Leng and Jian Cheng
Machine Learning
DOI: 10.1007/s10994-015-5496-x

Hashing techniques have been widely used in many machine learning applications
because of their efficiency in both computation and storage. Although a variety of
hashing methods have been proposed, most of them make some implicit assumptions
about the statistical or geometrical structure of data. In fact, few hashing algorithms can
adequately handle all kinds of data with different structures. When considering hybrid
structure datasets, different hashing algorithms might produce different and possibly
inconsistent binary codes. Inspired by the successes of classifier combination and
clustering ensembles, in this paper, we present a novel combination strategy for
multiple hashing results, named Consensus Hashing (CH). By defining the measure of
consensus of two hashing results, we put forward a simple yet effective model to learn

Abstracts of Journal Track Articles XXIII

http://dx.doi.org/10.1007/s10618-015-0420-3
http://dx.doi.org/10.1007/s10994-015-5496-x

consensus hash functions which generate binary codes consistent with the existing
ones. Extensive experiments on several large scale benchmarks demonstrate the overall
superiority of the proposed method compared with state-of-the art hashing algorithms.

Convex Relaxations of Penalties for Sparse Correlated Variables
With Bounded Total Variation
Eugene Belilovsky, Andreas Argyriou, Gael Varoquaux, Matthew B. Blaschko
Machine Learning
DOI: 10.1007/s10994-015-5511-2

We study the problem of statistical estimation with a signal known to be sparse,
spatially contiguous, and containing many highly correlated variables. We take
inspiration from the recently introduced k-support norm, which has been successfully
applied to sparse prediction problems with correlated features, but lacks any explicit
structural constraints commonly found in machine learning and image processing. We
address this problem by incorporating a total variation penalty in the k-support
framework. We introduce the (k,s) support total variation norm as the tightest convex
relaxation of the intersection of a set of sparsity and total variation constraints. We
show that this norm leads to an intractable combinatorial graph optimization problem,
which we prove to be NP-hard. We then introduce a tractable relaxation with
approximation guarantees that scale well for grid structured graphs. We devise several
first-order optimization strategies for statistical parameterestimation with the described
penalty. We demonstrate the effectiveness of this penalty on classification in the low
sample regime, classification with M/EEG neuroimaging data, and image recovery with
synthetic and real data background subtracted image recovery tasks. We extensively
analyse the application of our penalty on the complex task of identifying predictive
regions from low-sample high-dimensional fMRI brain data, we show that our method
is particularly useful compared to existing methods in terms of accuracy, interpret-
ability, and stability.

Direct Conditional Probability Density Estimation with Sparse
Feature Selection
Motoki Shiga, Voot Tangkaratt, and Masashi Sugiyama
Machine Learning
DOI: 10.1007/s10994-014-5472-x

Regression is a fundamental problem in statistical data analysis, which aims at
estimating the conditional mean of output given input. However, regression is not
informative enough if the conditional probability density is multi-modal, asymmetric,
and heteroscedastic. To overcome this limitation, various estimators of conditional
densities themselves have been developed, and a kernel-based approach called

XXIV Abstracts of Journal Track Articles

http://dx.doi.org/10.1007/s10994-015-5511-2
http://dx.doi.org/10.1007/s10994-014-5472-x

leastsquares conditional density estimation (LS-CDE) was demonstrated to be
promising. However, LS-CDE still suffers from large estimation error if input contains
many irrelevant features. In this paper, we therefore propose an extension of LS-CDE
called sparse additive CDE (SA-CDE), which allows automatic feature selection in
CDE. SACDE applies kernel LS-CDE to each input feature in an additive manner and
penalizes the whole solution by a group-sparse regularizer. We also give a
subgradient-based optimization method for SA-CDE training that scales well to
high-dimensional large data sets. Through experiments with benchmark and humanoid
robot transition datasets, we demonstrate the usefulness of SA-CDE in noisy CDE
problems.

DRESS: Dimensionality Reduction for Efficient Sequence Search
Alexios Kotsifakos, Alexandra Stefan, Vassilis Athitsos, Gautam Das,
and Panagiotis Papapetrou
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0413-2

Similarity search in large sequence databases is a problem ubiquitous in a wide range of
application domains, including searching biological sequences. In this paper we focus
on protein and DNA data, and we propose a novel approximate method method for
speeding up range queries under the edit distance. Our method works in a
filter-and-refine manner, and its key novelty is a query-sensitive mapping that
transforms the original string space to a new string space of reduced dimensionality.
Specifically, it first identifies the most frequent codewords in the query, and then uses
these codewords to convert both the query and the database to a more compact
representation. This is achieved by replacing every occurrence of each codeword with a
new letter and by removing the remaining parts of the strings. Using this new
representation, our method identifies a set of candidate matches that are likely to satisfy
the range query, and finally refines these candidates in the original space. The main
advantage of our method, compared to alternative methods for whole sequence
matching under the edit distance, is that it does not require any training to create the
mapping, and it can handle large query lengths with negligible losses in accuracy. Our
experimental evaluation demonstrates that, for higher range values and large query
sizes, our method produces significantly lower costs and runtimes compared to two
state-of-the-art competitor methods.

Abstracts of Journal Track Articles XXV

http://dx.doi.org/10.1007/s10618-015-0413-2

Dynamic Inference of Social Roles in Information Cascade
Sarvenaz Choobdar, Pedro Ribeiro, Srinivasan Parthasarathy,
and Fernando Silva
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0402-5

Nodes in complex networks inherently represent different kinds of functional or
organizational roles. In the dynamic process of an information cascade, users play
different roles in spreading the information: some act as seeds to initiate the process,
some limit the propagation and others are in-between. Understanding the roles of users
is crucial in modeling the cascades. Previous research mainly focuses on modeling
users behavior based upon the dynamic exchange of information with neighbors. We
argue however that the structural patterns in the neighborhood of nodes may already
contain enough information to infer users’ roles, independently from the information
flow in itself. To approach this possibility, we examine how network characteristics of
users affect their actions in the cascade. We also advocate that temporal information is
very important. With this in mind, we propose an unsupervised methodology based on
ensemble clustering to classify users into their social roles in a network, using not only
their current topological positions, but also considering their history over time. Our
experiments on two social networks, Flickr and Digg, show that topological metrics
indeed possess discriminatory power and that different structural patterns correspond to
different parts in the process. We observe that user commitment in the neighborhood
affects considerably the influence score of users. In addition, we discover that the
cohesion of neighborhood is important in the blocking behavior of users. With this we
can construct topological fingerprints that can help us in identifying social roles, based
solely on structural social ties, and independently from nodes activity and how
information flows.

Efficient and Effective Community Search
Nicola Barbieri, Francesco Bonchi, Edoardo Galimberti,
and Francesco Gullo
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0422-1

Community search is the problem of finding a good community for a given set of query
vertices. One of the most studied formulations of community search asks for a
connected subgraph that contains all query vertices and maximizes the minimum
degree. All existing approaches to min-degree-based community search suffer from
limitations concerning efficiency, as they need to visit (large part of) the whole input
graph, as well as accuracy, as they output communities quite large and not really
cohesive. Moreover, some existing methods lack generality: they handle only
single-vertex queries, find communities that are not optimal in terms of minimum
degree, and/or require input parameters. In this work we advance the state of the art on

XXVI Abstracts of Journal Track Articles

http://dx.doi.org/10.1007/s10618-015-0402-5
http://dx.doi.org/10.1007/s10618-015-0422-1

community search by proposing a novel method that overcomes all these limitations: it
is in general more efficient and effective—one/two orders of magnitude on average, it
can handle multiple query vertices, it yields optimal communities, and it is
parameter-free. These properties are confirmed by an extensive experimental analysis
performed on various real-world graphs.

Finding the Longest Common Sub-Pattern in Sequences
of Temporal Intervals
Orestis Kostakis and Panagiotis Papapetrou
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0404-3

We study the problem of finding the Longest Common Sub-Pattern (LCSP) shared by
two sequences of temporal intervals. In particular we are interested in finding the LCSP
of the corresponding arrangements. Arrangements of temporal intervals are a powerful
way to encode multiple concurrent labeled events that have a time duration.
Discovering commonalities among such arrangements is useful for a wide range of
scientific fields and applications, as it can be seen by the number and diversity of the
datasets we use in our experiments. In this paper, we define the problem of LCSP and
prove that it is NP-complete by demonstrating a connection between graphs and
arrangements of temporal intervals, which leads to a series of interesting open
problems. In addition, we provide an exact algorithm to solve the LCSP problem, and
also propose and experiment with three polynomial time and space underapproximation
techniques. Finally, we introduce two upper bounds for LCSP and study their
suitability for speeding up 1-NN search. Experiments are performed on seven datasets
taken from a wide range of real application domains, plus two synthetic datasets.

Generalization Bounds for Learning with Linear, Polygonal,
Quadratic and Conic Side Knowledge
Theja Tulabandhula and Cynthia Rudin
Machine Learning
DOI: 10.1007/s10994-014-5478-4

In this paper, we consider a supervised learning setting where side knowledge is
provided about the labels of unlabeled examples. The side knowledge has the effect of
reducing the hypothesis space, leading to tighter generalization bounds, and thus
possibly better generalization. We consider several types of side knowledge, the first
leading to linear and polygonal constraints on the hypothesis space, the second leading
to quadratic constraints, and the last leading to conic constraints. We show how
different types of domain knowledge can lead directly to these kinds of side knowledge.

Abstracts of Journal Track Articles XXVII

http://dx.doi.org/10.1007/s10618-015-0404-3
http://dx.doi.org/10.1007/s10994-014-5478-4

We prove bounds on complexity measures of the hypothesis space for quadratic and
conic side knowledge, and show that these bounds are tight in a specific sense for the
quadratic case.

Generalization of Clustering Agreements and Distances
for Overlapping Clusters and Network Communities
Reihaneh Rabbany and Osmar R. Zaiane
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0426-x

A measure of distance between two clusterings has important applications, including
clustering validation and ensemble clustering. Generally, such distance measure
provides navigation through the space of possible clusterings. Mostly used in cluster
validation, a normalized clustering distance, a.k.a. agreement measure, compares a
given clustering result against the ground-truth clustering. The two widely-used
clustering agreement measures are Adjusted Rand Index (ARI) and Normalized Mutual
Information (NMI). In this paper, we present a generalized clustering distance from
which these two measures can be derived. We then use this generalization to construct
new measures specific for comparing (dis)agreement of clusterings in networks, a.k.a.
communities. Further, we discuss the difficulty of extending the current, contingency
based, formulations to overlapping cases, and present an alternative algebraic
formulation for these (dis)agreement measures. Unlike the original measures, the
new co-membership based formulation is easily extendable for different cases,
including overlapping clusters and clusters of inter-related data. These two extensions
are, in particular, important in the context of finding communities in complex networks.

Generalized Twin Gaussian Processes Using Sharma-Mittal
Divergence
Mohamed Elhoseiny and Ahmed Elgammal
Machine Learning
DOI: 10.1007/s10994-015-5497-9

There has been a growing interest in mutual information measures due to its wide range
of applications in Machine Learning and Computer Vision. In this manuscript, we
present a generalized structured regression framework based on Shama-Mittal
divergence, a relative entropy measure, firstly addressed in the Machine Learning
community, in this work. Sharma-Mittal (SM) divergence is a generalized mutual
information measure for the widely used Rényi, Tsallis, Bhattacharyya, and
Kullback-Leibler (KL) relative entropies. Specifically, we study Sharma-Mittal
divergence as a cost function in the context of the Twin Gaussian Processes, which
generalizes over the KL-divergence without computational penalty. We show
interesting properties of Sharma-Mittal TGP (SMTGP) through a theoretical analysis,

XXVIII Abstracts of Journal Track Articles

http://dx.doi.org/10.1007/s10618-015-0426-x
http://dx.doi.org/10.1007/s10994-015-5497-9

which covers missing insights in the traditional TGP formulation. However, we
generalize this theory based on SM-divergence instead of KL-divergence which is a
special case. Experimentally, we evaluated the proposed SMTGP framework on several
datasets. The results show that SMTGP reaches better predictions than KL-based TGP
(KLTGP), since it offers a bigger class of models through its parameters that we learn
from the data.

Half-Space Mass: A Maximally Robust and Efficient Data
Depth Method
Bo Chen, Kai Ming Ting, Takashi Washio, and Gholamreza Haffari
Machine Learning
DOI: 10.1007/s10994-015-5524-x

Data depth is a statistical method which models data distribution in terms of
centeroutward ranking rather than density or linear ranking. While there are a lot of
academic interests, its applications are hampered by the lack of a method which is both
robust and efficient. This paper introduces Half-Space Mass which is a significantly
improved version of half-space data depth. Half-Space Mass is the only data depth
method which is both robust and efficient, as far as we know. We also reveal four
theoretical properties of Half-Space Mass: (i) its resultant mass distribution is concave
regardless of the underlying density distribution, (ii) its maximum point is unique
which can be considered as median, (iii) the median is maximally robust, and (iv) its
estimation extends to a higher dimensional space in which the convex hull of the
dataset occupies zero volume. We demonstrate the power of Half-Space Mass through
its applications in two tasks. In anomaly detection, being a maximally robust location
estimator leads directly to a robust anomaly detector that yields a better detection
accuracy than halfspace depth; and it runs orders of magnitude faster than L2 depth, an
existing maximally robust location estimator. In clustering, the Half-Space Mass
version of Kmeans overcomes three weaknesses of K-means.

Improving Classification Performance Through Selective Instance
Completion
Amit Dhurandhar and Karthik Sankarnarayanan
Machine Learning
DOI: 10.1007/s10994-015-5500-5

In multiple domains, actively acquiring missing input information at a reasonable cost
in order to improve our understanding of the input-output relationships is of increasing
importance. This problem has gained prominence in healthcare, public policy making,
education, and in the targeted advertising industry which tries to best match people to
products. In this paper we tackle an important variant of this problem: Instance
Completion, where we want to choose the best k incomplete instances to query from a

Abstracts of Journal Track Articles XXIX

http://dx.doi.org/10.1007/s10994-015-5524-x
http://dx.doi.org/10.1007/s10994-015-5500-5

much larger universe of N(>>k) incomplete instances so as to learn the most accurate
classifier. We propose a principled framework which motivates a generally applicable
yet efficient meta-technique for choosing k such instances. Since we cannot know a
priori the classifier that will result from the completed dataset, i.e. the final classifier,
our method chooses the k instances based on a derived upper bound on the expectation
of the distance between the next classifier and the final classifier. We additionally
derive a sufficient condition for these two solutions to match. We then empirically
evaluate the performance of our method relative to the state-of-the-art methods on 4
UCI datasets as well as 3 proprietary e-commerce datasets used in previous studies. In
these experiments, we also demonstrate how close we are likely to be to the optimal
solution, by quantifying the extent to which our sufficient condition is satisfied. Lastly,
we show that our method is easily extensible to the setting where we have a non
uniform cost associated with acquiring the missing information.

Incremental Learning of Event Definitions with Inductive Logic
Programming
Nikos Katzouris, Alexander Artikis, and Georgios Paliouras
Machine Learning
DOI: 10.1007/s10994-015-5512-1

Event recognition systems rely on knowledge bases of event definitions to infer
occurrences of events in time. Using a logical framework for representing and
reasoning about events offers direct connections to machine learning, via Inductive
Logic Programming (ILP), thus allowing to avoid the tedious and error-prone task of
manual knowledge construction. However, learning temporal logical formalisms,
which are typically utilized by logic-based event recognition systems is a challenging
task, which most ILP systems cannot fully undertake. In addition, event-based data is
usually massive and collected at different times and under various circumstances.
Ideally, systems that learn from temporal data should be able to operate in an
incremental mode, that is, revise prior constructed knowledge in the face of new
evidence. In this work we present an incremental method for learning and revising
event-based knowledge, in the form of Event Calculus programs. The proposed
algorithmrelies on abductive-inductive learning and comprises a scalable clause
refinement methodology, based on a compressive summarization of clause coverage in
a stream of examples. We present an empirical evaluation of our approach on real and
synthetic data from activity recognition and city transport applications.

XXX Abstracts of Journal Track Articles

http://dx.doi.org/10.1007/s10994-015-5512-1

Knowledge Base Completion by Learning Pairwise-Interaction
Differentiated Embeddings
Yu Zhao, Sheng Gao, Patrick Gallinari, and Jun Guo
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0430-1

Knowledge base consisting of triple like (subject entity, predicate relation, object
entity) is a very important database for knowledge management. It is very useful for
humanlike reasoning, query expansion, question answering (Siri) and other related AI
tasks. However, knowledge base often suffers from incompleteness due to a large
volume of increasing knowledge in the real world and a lack of reasoning capability. In
this paper, we propose a Pairwise-interaction Differentiated Embeddings (PIDE) model
to embed entities and relations in the knowledge base to low dimensional vector
representations and then predict the possible truth of additional facts to extend the
knowledge base. In addition, we present a probability-based objective function to
improve the model optimization. Finally, we evaluate the model by considering the
problem of computing how likely the additional triple is true for the task of knowledge
base completion.Experiments on WordNet and Freebase dataset show the excellent
performance of our model and algorithm.

Learning from Evolving Video Streams in a Multi-camera Scenario
Samaneh Khoshrou, Jaime dos Santos Cardoso, and Luís Filipe Teixeira
Machine Learning
DOI: 10.1007/s10994-015-5515-y

Nowadays, video surveillance systems are taking the first steps toward automation, in
order to ease the burden on human resources as well as to avoid human error. As the
underlying data distribution and the number of concepts change over time, the
conventional learning algorithms fail to provide reliable solutions for this setting.
Herein, we formalize a learning concept suitable for multi-camera video surveillance
and propose a learning methodology adapted to that new paradigm. The proposed
framework resorts to the universal background model to robustly learn individual
object models from small samples and to more effectively detect novel classes. The
individual models are incrementally updated in an ensemble based approach, with older
models being progressively forgotten. The framework is designed to detect and label
new concepts automatically. The system is also designed to exploit active learning
strategies, in order to interact wisely with operator, requesting assistance in the most
ambiguous to classify observations. The experimental results obtained both on real and
synthetic data sets verify the usefulness of the proposed approach.

Abstracts of Journal Track Articles XXXI

http://dx.doi.org/10.1007/s10618-015-0430-1
http://dx.doi.org/10.1007/s10994-015-5515-y

Learning Relational Dependency Networks in Hybrid Domains
Irma Ravkic, Jan Ramon, and Jesse Davis
Machine Learning
DOI: 10.1007/s10994-015-5483-2

Statistical Relational Learning (SRL) is concerned with developing formalisms for
representing and learning from data that exhibit both uncertainty and complex,
relational structure. Most of the work in SRL has focused on modeling and learning
from data that only contain discrete variables. As many important problems are
characterized by the presence of both continuous and discrete variables, there has been
a growing interest in developing hybrid SRL formalisms. Most of these formalisms
focus on reasoning and representational issues and, in some cases, parameter learning.
What has received little attention is learning the structure of a hybrid SRL model from
data. In this paper, we fill that gap and make the following contributions. First, we
propose Hybrid Relational Dependency Networks (HRDNs), an extension to Relational
Dependency Networks that are able to model continuous variables. Second, we propose
an algorithm for learning both the structure and parameters of an HRDN from data.
Third, we provide an empirical evaluation that demonstrates that explicitly modeling
continuous variables results in more accurate learned models than discretizing them
prior to learning.

MassExodus: Modeling Evolving Networks in Harsh Environments
Saket Navlakha, Christos Faloutsos, and Ziv Bar-Joseph
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-014-0399-1

Defining appropriate distance measures among rankings is a classic area of study which
has led to many useful applications. In this paper, we propose a more general
abstraction of preference data, namely directed acyclic graphs (DAGs), and introduce a
measure for comparing DAGs, given that a vertex correspondence between the DAGs
is known. We study the properties of this measure and use it to aggregate and cluster a
set of DAGs. We show that these problems are NP-hard and present efficient methods
to obtain solutions with approximation guarantees. In addition to preference data, these
methods turn out to have other interesting applications, such as the analysis of a
collection of information cascades in a network. We test the methods on synthetic and
real-world datasets, showing that the methods can be used to, e.g., find a set of
influential individuals related to a set of topics in a network or to discover meaningful
and occasionally surprising clustering structure.

XXXII Abstracts of Journal Track Articles

http://dx.doi.org/10.1007/s10994-015-5483-2
http://dx.doi.org/10.1007/s10618-014-0399-1

Minimum Message Length Estimation of Mixtures of Multivariate
Gaussian and von Mises-Fisher Distribution
Parthan Kasarapu and Lloyd Allison
Machine Learning
DOI: 10.1007/s10994-015-5493-0

Mixture modelling involves explaining some observed evidence using a combination of
probability distributions. The crux of the problem is the inference of an optimal number
of mixture components and their corresponding parameters. This paper discusses
unsupervised learning of mixture models using the Bayesian MinimumMessage Length
(MML) criterion. To demonstrate the effectiveness of search and inference of mixture
parameters using the proposed approach, we select two key probability distributions,
each handling fundamentally different types of data: the multivariate Gaussian
distribution to address mixture modelling of data distributed in Euclidean space, and
the multivariate von Mises-Fisher (vMF) distribution to address mixture modelling of
directional data distributed on a unit hypersphere. The key contributions of this paper, in
addition to the general search and inference methodology, include the derivation of
MML expressions for encoding the data using multivariate Gaussian and von
Mises-Fisher distributions, and the analytical derivation of the MML estimates of the
parameters of the two distributions. Our approach is tested on simulated and real world
data sets. For instance, we infer vMF mixtures that concisely explain experimentally
determined three dimensional protein conformations, providing an effective null model
description of protein structures that is central to many inference problems in structural
bioinformatics. The experimental results demonstrate that the performance of our
proposed search and inference method along with the encoding schemes improve on the
state of the art mixture modelling techniques.

Mining Outlying Aspects on Numeric Data
Lei Duan, Guanting Tang, Jian Pei, James Bailey,
Akiko Campbell, and Changjie Tang
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-014-0398-2

When we are investigating an object in a data set, which itself may or may not be an
outlier, can we identify unusual (i.e., outlying) aspects of the object? In this paper, we
identify the novel problem of mining outlying aspects on numeric data. Given a query
object o in a multidimensional numeric data set O, in which subspace is o most
outlying? Technically, we use the rank of the probability density of an object in a
subspace to measure the outlyingness of the object in the subspace. A minimal
subspace where the query object is ranked the best is an outlying aspect. Computing the
outlying aspects of a query object is far from trivial. A naїve method has to calculate
the probability densities of all objects and rank them in every subspace, which is very

Abstracts of Journal Track Articles XXXIII

http://dx.doi.org/10.1007/s10994-015-5493-0
http://dx.doi.org/10.1007/s10618-014-0398-2

costly when the dimensionality is high. We systematically develop a heuristic method
that is capable of searching data sets with tens of dimensions efficiently. Our empirical
study using both real data and synthetic data demonstrates that our method is effective
and efficient.

Multiscale Event Detection in Social Media
Xiaowen Dong, Dimitrios Mavroeidis, Francesco Calabrese,
Pascal Frossard
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0421-2

Event detection has been one of the most important research topics in social media
analysis. Most of the traditional approaches detect events based on fixed temporal and
spatial resolutions, while in reality events of different scales usually occur simulta-
neously, namely, they span different intervals in time and space. In this paper, we
propose a novel approach towards multiscale event detection using social media data,
which takes into account different temporal and spatial scales of events in the data.
Specifically, we explore the properties of the wavelet transform, which is a
welldeveloped multiscale transform in signal processing, to enable automatic handling
of the interaction between temporal and spatial scales. We then propose a novel
algorithm to compute a data similarity graph at appropriate scales and detect events of
different scales simultaneously by a single graph-based clustering process. Further-
more, we present spatiotemporal statistical analysis of the noisy information present in
the data stream, which allows us to define a novel term-filtering procedure for the
proposed event detection algorithm and helps us study its behavior using simulated
noisy data. Experimental results on both synthetically generated data and real world
data collected from Twitter demonstrate the meaningfulness and effectiveness of the
proposed approach. Our framework further extends to numerous application domains
that involve multiscale and multiresolution data analysis.

Optimised Probabilistic Active Learning (OPAL) for Fast,
Non-Myopic, Cost-Sensitive Active Classification
Georg Krempl, Daniel Kottke, and Vincent Lemaire
Machine Learning
DOI: 10.1007/s10994-015-5504-1

In contrast to ever increasing volumes of automatically generated data, human
annotation capacities remain limited. Thus, fast active learning approaches that allow
the efficient allocation of annotation efforts gain in importance. Furthermore,
cost-sensitive applications such as fraud detection pose the additional challenge of
differing misclassification costs between classes. Unfortunately, the few existing
cost-sensitive active learning approaches rely on time-consuming steps, such as

XXXIV Abstracts of Journal Track Articles

http://dx.doi.org/10.1007/s10618-015-0421-2
http://dx.doi.org/10.1007/s10994-015-5504-1

performing self labelling or tedious evaluations over samples. We propose a fast,
non-myopic, and cost-sensitive probabilistic active learning approach for binary
classification. Our approach computes the expected reduction in misclassification loss in
a labelling candidate's neighbourhood. We derive and use a closed-form solution for this
expectation, which considers the possible values of the true posterior of the positive
class at the candidate’s position, its possible label realisations, and the given labelling
budget. The resulting myopic algorithm runs in the same linear asymptotic time as
uncertainty sampling, while its non-myopic counterpart requires an additional factor of
O(m log m) in the budget size. The experimental evaluation on several synthetic and
real-world data sets shows competitive or better classification performance and runtime,
compared to several uncertainty sampling- and error-reduction-based active learning
strategies, both in cost-sensitive and cost-insensitive settings.

Poisson Dependency Networks - Gradient Boosted Models
for Multivariate Count Data
Fabian Hadiji, Alejandro Molina, Sriraam Natarajan, and Kristian Kersting
Machine Learning
DOI: 10.1007/s10994-015-5506-z

Although count data are increasingly ubiquitous, surprisingly little work has employed
probabilistic graphical models for modeling count data. Indeed the univariate case has
been well studied, however, in many situations counts influence each other and should
not be considered independently. Standard graphical models such as multinomial or
Gaussian ones are also often ill-suited, too, since they disregard either the infinite range
over the natural numbers or the potentially asymmetric shape of the distribution of
count variables. Existing classes of Poisson graphical models can only model negative
conditional dependencies or neglect the prediction of counts or do not scale well. To
ease the modeling of multivariate count data, we therefore introduce a novel family of
Poisson graphical models, called Poisson Dependency Networks (PDNs). A PDN
consists of a set of local conditional Poisson distributions, each representing the
probability of a single count variable given the others, that naturally facilities a simple
Gibbs sampling inference. In contrast to existing Poisson graphical models, PDNs are
non-parametric and trained using functional gradient ascent, i.e., boosting. The
particularly simple form of the Poisson distribution allows us to develop the first
multiplicative boosting approach: starting from an initial constant value, alternatively a
log-linear Poisson model, or a Poisson regression tree, a PDN is represented as
products of regression models grown in a stage-wise optimization. We demonstrate on
several real world datasets that PDNs can model positive and negative dependencies
and scale well while often outperforming state-of-the-art, in particular when using
multiplicative updates.

Abstracts of Journal Track Articles XXXV

http://dx.doi.org/10.1007/s10994-015-5506-z

Policy Gradient in Lipschitz Markov Decision Processes
Matteo Pirotta, Marcello Restelli, and Luca Bascetta
Machine Learning
DOI: 10.1007/s10994-015-5484-1

This paper is about the exploitation of Lipschitz continuity properties for Markov
Decision Processes (MDPs) to safely speed up policy-gradient algorithms.Starting from
assumptions about the Lipschitz continuity of the state-transition model, the reward
function, and the policies considered in the learning process, we show that both the
expected return of a policy and its gradient are Lipschitz continuous w.r.t. policy
parameters.By leveraging such properties, we define policy-parameter updates that
guarantee a performance improvement at each iteration. The proposed methods are
empirically evaluated and compared to other related approaches using different
configurations of three popular control scenarios: the linear quadratic regulator, the
mass-spring-damper system and the ship-steering control.

Probabilistic Clustering of Time-Evolving Distance Data
Julia Vogt, Marius Kloft, Stefan Stark, Sudhir S. Raman,
Sandhya Prabhakaran, Volker Roth, and Gunnar Rätsch
Machine Learning
DOI: 10.1007/s10994-015-5516-x

We present a novel probabilistic clustering model for objects that are represented via
pairwise distances and observed at different time points. The proposed method utilizes
the information given by adjacent time points to find the underlying cluster structure
and obtain a smooth cluster evolution. This approach allows the number of objects and
clusters to differ at every time point, and no identification on the identities of the
objects is needed. Further, the model does not require the number of clusters being
specified in advance – they are instead determined automatically using a Dirichlet
process prior. We validate our model on synthetic data showing that the proposed
method is more accurate than state-of-the-art clustering methods. Finally, we use our
dynamic clustering model to analyze and illustrate the evolution of brain cancer
patients over time.

Ranking Episodes Using a Partition Model
Nikolaj Tatti
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0419-9

One of the biggest setbacks in traditional frequent pattern mining is that overwhelm-
ingly many of the discovered patterns are redundant. A prototypical example of such
redundancy is a freerider pattern where the pattern contains a true pattern and some

XXXVI Abstracts of Journal Track Articles

http://dx.doi.org/10.1007/s10994-015-5484-1
http://dx.doi.org/10.1007/s10994-015-5516-x
http://dx.doi.org/10.1007/s10618-015-0419-9

additional noise events. A technique for filtering freerider patterns that has proved to be
efficient in ranking itemsets is to use a partition model where a pattern is divided into
two subpatterns and the observed support is compared to the expected support under
the assumption that these two subpatterns occur independently. In this paper we
develop a partition model for episodes, patterns discovered from sequential data. An
episode is essentially a set of events, with possible restrictions on the order of events.
Unlike with itemset mining, computing the expected support of an episode requires
surprisingly sophisticated methods. In order to construct the model, we partition the
episode into two subepisodes. We then model how likely the events in each subepisode
occur close to each other. If this probability is high—which is often the case if the
subepisode has a high support—then we can expect that when one event from a
subepisode occurs, then the remaining events occur also close by. This approach
increases the expected support of the episode, and if this increase explains the observed
support, then we can deem the episode uninteresting. We demonstrate in our
experiments that using the partition model can effectively and efficiently reduce the
redundancy in episodes.

Regularized Feature Selection in Reinforcement Learning
Dean Stephen Wookey and George Dimitri Konidaris
Machine Learning
DOI: 10.1007/s10994-015-5518-8

We introduce feature regularization during feature selection for value function
approximation. Feature regularization introduces a prior into the selection process,
improving function approximation accuracy and reducing overfitting. We show that the
smoothness prior is effective in the incremental feature selection setting and present
closed-form smoothness regularizers for the Fourier and RBF bases. We present two
methods for feature regularization which extend the temporal difference orthogonal
matching pursuit (OMP-TD) algorithm and demonstrate the effectiveness of the
smoothness prior; smooth Tikhonov OMP-TD and smoothness scaled OMP-TD. We
compare these methods against OMP-TD, regularized OMP-TD and least squares TD
with random projections, across six benchmark domains using two different types of
basis functions.

Soft-max Boosting
Matthieu Geist
Machine Learning
DOI: 10.1007/s10994-015-5491-2

The standard multi-class classification risk, based on the binary loss, is rarely directly
minimized. This is due to (i) the lack of convexity and (ii) the lack of smoothness (and
even continuity). The classic approach consists in minimizing instead a convex

Abstracts of Journal Track Articles XXXVII

http://dx.doi.org/10.1007/s10994-015-5518-8
http://dx.doi.org/10.1007/s10994-015-5491-2

surrogate. In this paper, we propose to replace the usually considered deterministic
decision rule by a stochastic one, which allows obtaining a smooth risk (generalizing
the expected binary loss, and more generally the cost-sensitive loss). Practically, this
(empirical) risk is minimized by performing a gradient descent in the function space
linearly spanned by a base learner (a.k.a. boosting). We provide a convergence analysis
of the resulting algorithm and experiment it on a bunch of synthetic and real world data
sets (with noiseless and noisy domains, compared to convex and non convex boosters).

Tractome: A Visual Data Mining Tool for Brain Connectivity
Analysis
Diana Porro-Munoz, Emanuele Olivetti, Nusrat Sharmin,
Thien Bao Nguyen, Eleftherios Garyfallidis, and Paolo Avesani
Data Mining and Knowledge Discovery
DOI: 10.1007/s10618-015-0408-z

Diffusion magnetic resonance imaging data allows reconstructing the neural pathways
of the white matter of the brain as a set of 3D polylines. This kind of data sets provides
a means of study of the anatomical structures within the white matter, in order to detect
neurologic diseases and understand the anatomical connectivity of the brain. To the
best of our knowledge, there is still not an effective or satisfactory method for
automatic processing of these data. Therefore, a manually guided visual exploration of
experts is crucial for the purpose. However, because of the large size of these data sets,
visual exploration and analysis has also become intractable. In order to make use of the
advantages of both manual and automatic analysis, we have developed a new visual
data mining tool for the analysis of human brain anatomical connectivity. With such
tool, humans and automatic algorithms capabilities are integrated in an interactive data
exploration and analysis process. A very important aspect to take into account when
designing this tool, was to provide the user with comfortable interaction. For this
purpose, we tackle the scalability issue in the different stages of the system, including
the automatic algorithm and the visualization and interaction techniques that are used.

XXXVIII Abstracts of Journal Track Articles

http://dx.doi.org/10.1007/s10618-015-0408-z

Contents – Part II

Research Track

Matrix and Tensor Analysis

BoostMF: Boosted Matrix Factorisation for Collaborative Ranking 3
Nipa Chowdhury, Xiongcai Cai, and Cheng Luo

Convex Factorization Machines . 19
Mathieu Blondel, Akinori Fujino, and Naonori Ueda

Generalized Matrix Factorizations as a Unifying Framework for Pattern Set
Mining: Complexity Beyond Blocks . 36

Pauli Miettinen

Scalable Bayesian Non-Negative Tensor Factorization for Massive
Count Data. 53

Changwei Hu, Piyush Rai, Changyou Chen, Matthew Harding,
and Lawrence Carin

A Practical Approach to Reduce the Learning Bias Under Covariate Shift . . . 71
Van-Tinh Tran and Alex Aussem

Hyperparameter Optimization with Factorized Multilayer Perceptrons 87
Nicolas Schilling, Martin Wistuba, Lucas Drumond,
and Lars Schmidt-Thieme

Hyperparameter Search Space Pruning – A New Component for Sequential
Model-Based Hyperparameter Optimization . 104

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme

Multi-Task Learning with Group-Specific Feature Space Sharing 120
Niloofar Yousefi, Michael Georgiopoulos,
and Georgios C. Anagnostopoulos

Opening the Black Box: Revealing Interpretable Sequence Motifs
in Kernel-Based Learning Algorithms . 137

Marina M.-C. Vidovic, Nico Görnitz, Klaus-Robert Müller,
Gunnar Rätsch, and Marius Kloft

Pattern and Sequence Mining

Fast Generation of Best Interval Patterns for Nonmonotonic Constraints 157
Aleksey Buzmakov, Sergei O. Kuznetsov, and Amedeo Napoli

http://dx.doi.org/10.1007/978-3-319-23525-7_1
http://dx.doi.org/10.1007/978-3-319-23525-7_2
http://dx.doi.org/10.1007/978-3-319-23525-7_3
http://dx.doi.org/10.1007/978-3-319-23525-7_3
http://dx.doi.org/10.1007/978-3-319-23525-7_4
http://dx.doi.org/10.1007/978-3-319-23525-7_4
http://dx.doi.org/10.1007/978-3-319-23525-7_5
http://dx.doi.org/10.1007/978-3-319-23525-7_6
http://dx.doi.org/10.1007/978-3-319-23525-7_7
http://dx.doi.org/10.1007/978-3-319-23525-7_7
http://dx.doi.org/10.1007/978-3-319-23525-7_8
http://dx.doi.org/10.1007/978-3-319-23525-7_9
http://dx.doi.org/10.1007/978-3-319-23525-7_9
http://dx.doi.org/10.1007/978-3-319-23525-7_10

Non-Parametric Jensen-Shannon Divergence. 173
Hoang-Vu Nguyen and Jilles Vreeken

Swap Randomization of Bases of Sequences for Mining Satellite Image
Times Series. 190

Nicolas Méger, Christophe Rigotti, and Catherine Pothier

The Difference and the Norm Characterising Similarities and Differences
Between Databases . 206

Kailash Budhathoki and Jilles Vreeken

Preference Learning and Label Ranking

Dyad Ranking Using A Bilinear Plackett-Luce Model 227
Dirk Schäfer and Eyke Hüllermeier

Fast Training of Support Vector Machines for Survival Analysis. 243
Sebastian Pölsterl, Nassir Navab, and Amin Katouzian

Superset Learning Based on Generalized Loss Minimization. 260
Eyke Hüllermeier and Weiwei Cheng

Probabilistic, Statistical, and Graphical Approaches

Bayesian Modelling of the Temporal Aspects of Smart Home Activity
with Circular Statistics . 279

Tom Diethe, Niall Twomey, and Peter Flach

Message Scheduling Methods for Belief Propagation 295
Christian Knoll, Michael Rath, Sebastian Tschiatschek,
and Franz Pernkopf

Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs . . . 311
David Tolpin, Jan-Willem van de Meent, Brooks Paige, and Frank Wood

Planning in Discrete and Continuous Markov Decision Processes
by Probabilistic Programming . 327

Davide Nitti, Vaishak Belle, and Luc De Raedt

Simplifying, Regularizing and Strengthening Sum-Product Network
Structure Learning. 343

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito

Sparse Bayesian Recurrent Neural Networks. 359
Sotirios P. Chatzis

XL Contents – Part II

http://dx.doi.org/10.1007/978-3-319-23525-7_11
http://dx.doi.org/10.1007/978-3-319-23525-7_12
http://dx.doi.org/10.1007/978-3-319-23525-7_12
http://dx.doi.org/10.1007/978-3-319-23525-7_13
http://dx.doi.org/10.1007/978-3-319-23525-7_13
http://dx.doi.org/10.1007/978-3-319-23525-7_14
http://dx.doi.org/10.1007/978-3-319-23525-7_15
http://dx.doi.org/10.1007/978-3-319-23525-7_16
http://dx.doi.org/10.1007/978-3-319-23525-7_17
http://dx.doi.org/10.1007/978-3-319-23525-7_17
http://dx.doi.org/10.1007/978-3-319-23525-7_18
http://dx.doi.org/10.1007/978-3-319-23525-7_19
http://dx.doi.org/10.1007/978-3-319-23525-7_20
http://dx.doi.org/10.1007/978-3-319-23525-7_20
http://dx.doi.org/10.1007/978-3-319-23525-7_21
http://dx.doi.org/10.1007/978-3-319-23525-7_21
http://dx.doi.org/10.1007/978-3-319-23525-7_22

Structured Prediction of Sequences and Trees Using Infinite Contexts 373
Ehsan Shareghi, Gholamreza Haffari, Trevor Cohn, and Ann Nicholson

Temporally Coherent Role-Topic Models (TCRTM): Deinterlacing
Overlapping Activity Patterns . 390

Evgeniy Bart, Bob Price, and John Hanley

The Blind Leading the Blind: Network-Based Location Estimation
Under Uncertainty . 406

Eric Malmi, Arno Solin, and Aristides Gionis

Weighted Rank Correlation: A Flexible Approach Based on Fuzzy
Order Relations. 422

Sascha Henzgen and Eyke Hüllermeier

Rich Data

Concurrent Inference of Topic Models and Distributed Vector
Representations. 441

Debakar Shamanta, Sheikh Motahar Naim, Parang Saraf,
Naren Ramakrishnan, and M. Shahriar Hossain

Differentially Private Analysis of Outliers . 458
Rina Okada, Kazuto Fukuchi, and Jun Sakuma

Inferring Unusual Crowd Events from Mobile Phone Call Detail Records . . . 474
Yuxiao Dong, Fabio Pinelli, Yiannis Gkoufas, Zubair Nabi,
Francesco Calabrese, and Nitesh V. Chawla

Learning Pretopological Spaces for Lexical Taxonomy Acquisition 493
Guillaume Cleuziou and Gaël Dias

Multidimensional Prediction Models When the Resolution
Context Changes. 509

Adolfo Martínez-Usó and José Hernández-Orallo

Semi-Supervised Subspace Co-Projection for Multi-class Heterogeneous
Domain Adaptation . 525

Min Xiao and Yuhong Guo

Towards Computation of Novel Ideas from Corpora of Scientific Text 541
Haixia Liu, James Goulding, and Tim Brailsford

Social and Graphs

Discovering Audience Groups and Group-Specific Influencers 559
Shuyang Lin, Qingbo Hu, Jingyuan Zhang, and Philip S. Yu

Contents – Part II XLI

http://dx.doi.org/10.1007/978-3-319-23525-7_23
http://dx.doi.org/10.1007/978-3-319-23525-7_24
http://dx.doi.org/10.1007/978-3-319-23525-7_24
http://dx.doi.org/10.1007/978-3-319-23525-7_25
http://dx.doi.org/10.1007/978-3-319-23525-7_25
http://dx.doi.org/10.1007/978-3-319-23525-7_26
http://dx.doi.org/10.1007/978-3-319-23525-7_26
http://dx.doi.org/10.1007/978-3-319-23525-7_27
http://dx.doi.org/10.1007/978-3-319-23525-7_27
http://dx.doi.org/10.1007/978-3-319-23525-7_28
http://dx.doi.org/10.1007/978-3-319-23525-7_29
http://dx.doi.org/10.1007/978-3-319-23525-7_30
http://dx.doi.org/10.1007/978-3-319-23525-7_31
http://dx.doi.org/10.1007/978-3-319-23525-7_31
http://dx.doi.org/10.1007/978-3-319-23525-7_32
http://dx.doi.org/10.1007/978-3-319-23525-7_32
http://dx.doi.org/10.1007/978-3-319-23525-7_33
http://dx.doi.org/10.1007/978-3-319-23525-7_34

Estimating Potential Customers Anywhere and Anytime
Based on Location-Based Social Networks . 576

Hsun-Ping Hsieh, Cheng-Te Li, and Shou-De Lin

Exact Hybrid Covariance Thresholding for Joint Graphical Lasso 593
Qingming Tang, Chao Yang, Jian Peng, and Jinbo Xu

Fast Inbound Top-K Query for Random Walk with Restart 608
Chao Zhang, Shan Jiang, Yucheng Chen, Yidan Sun, and Jiawei Han

Finding Community Topics and Membership in Graphs 625
Matt Revelle, Carlotta Domeniconi, Mack Sweeney, and Aditya Johri

Finding Dense Subgraphs in Relational Graphs. 641
Vinay Jethava and Niko Beerenwinkel

Generalized Modularity for Community Detection. 655
Mohadeseh Ganji, Abbas Seifi, Hosein Alizadeh, James Bailey,
and Peter J. Stuckey

Handling Oversampling in Dynamic Networks Using Link Prediction 671
Benjamin Fish and Rajmonda S. Caceres

Hierarchical Sparse Dictionary Learning. 687
Xiao Bian, Xia Ning, and Geoff Jiang

Latent Factors Meet Homophily in Diffusion Modelling. 701
Minh-Duc Luu and Ee-Peng Lim

Maintaining Sliding-Window Neighborhood Profiles in Interaction
Networks . 719

Rohit Kumar, Toon Calders, Aristides Gionis, and Nikolaj Tatti

Response-Guided Community Detection: Application to Climate
Index Discovery . 736

Gonzalo A. Bello, Michael Angus, Navya Pedemane,
Jitendra K. Harlalka, Fredrick H.M. Semazzi, Vipin Kumar,
and Nagiza F. Samatova

Robust Classification of Information Networks by Consistent
Graph Learning. 752

Shi Zhi, Jiawei Han, and Quanquan Gu

Author Index . 769

XLII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-23525-7_35
http://dx.doi.org/10.1007/978-3-319-23525-7_35
http://dx.doi.org/10.1007/978-3-319-23525-7_36
http://dx.doi.org/10.1007/978-3-319-23525-7_37
http://dx.doi.org/10.1007/978-3-319-23525-7_38
http://dx.doi.org/10.1007/978-3-319-23525-7_39
http://dx.doi.org/10.1007/978-3-319-23525-7_40
http://dx.doi.org/10.1007/978-3-319-23525-7_41
http://dx.doi.org/10.1007/978-3-319-23525-7_42
http://dx.doi.org/10.1007/978-3-319-23525-7_43
http://dx.doi.org/10.1007/978-3-319-23525-7_44
http://dx.doi.org/10.1007/978-3-319-23525-7_44
http://dx.doi.org/10.1007/978-3-319-23525-7_45
http://dx.doi.org/10.1007/978-3-319-23525-7_45
http://dx.doi.org/10.1007/978-3-319-23525-7_46
http://dx.doi.org/10.1007/978-3-319-23525-7_46

Research Track

Matrix and Tensor Analysis

BoostMF: Boosted Matrix Factorisation
for Collaborative Ranking

Nipa Chowdhury(B), Xiongcai Cai, and Cheng Luo

The University of New South Wales, Sydney, NSW 2052, Australia
{nipac,xcai,luoc}@cse.unsw.edu.au

Abstract. Personalised recommender systems are widely used informa-
tion filtering for information retrieval, where matrix factorisation (MF)
has become popular as a model-based approach to personalised recom-
mendation. Classical MF methods, which directly approximate low rank
factor matrices by minimising some rating prediction criteria, do not
achieve a satisfiable performance for the task of top-N recommendation.
In this paper, we propose a novel MF method, namely BoostMF, that
formulates factorisation as a learning problem and integrates boosting
into factorisation. Rather than using boosting as a wrapper, BoostMF
directly learns latent factors that are optimised toward the top-N rec-
ommendation. The proposed method is evaluated against a set of state-
of-the-art methods on three popular public benchmark datasets. The
experimental results demonstrate that the proposed method achieves sig-
nificant improvement over these baseline methods for the task of top-N
recommendation.

Keywords: Recommender system · Collaborative filtering · Matrix fac-
torisation · Learning to rank · Boosting

1 Introduction

Recommender systems (RS) have gained much attention in information retrieval
(IR) to guide users when searching information from the information pool. Col-
laborative filtering (CF) is widely used to build personalised recommender sys-
tems such as book recommendation in Amazon [2], movie recommendation in
Netflix [2] and friend recommendation in Facebook [2]. It aims to predict the
preference of a user on its unseen items by learning the preference from the
historic feedback of this user and other like-minded users to provide the user
with a list of recommended items or prediction score of items. The personalised
prediction problem [1–3,15] in presenting recommendation list can be regarded
as estimating the preference function in CF. Usually, this problem can be solved
by either i) generating the recommendation list by sorting the predicted ratings
in descending order, known as rating-oriented CF or ii) learning the ranking
function directly, known as ranking-oriented CF. When the recommendation list
itself becomes large, it will be obsolete since people prefer only top listed items

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-23525-7 1

4 N. Chowdhury et al.

[2,15]. So recommender systems should not only be optimised to reflect user
tastes and preferences but also rank top items correctly.

Matrix factorisation is a popular model-based CF method, which demon-
strates great success in Netflix prize competition [7]. In MF, given N users and
M items, the user-item preference matrix R ∈ �N×M can be approximated by
two low rank matrices P ∈ �N×K and Q ∈ �M×K as R ≈ P · Q′

by minimising
the sum of squared errors, where K � min(N,M) is the dimensionality of latent
factors representing user preferences and item characteristics. The major purpose
of MF is to obtain some forms of lower-rank approximation to original matrix
for understanding the interaction of user preferences and item attractiveness in
forms of latent factors [7].

Nevertheless, traditional matrix factorisation algorithms [7,13] based on
rating-oriented CF do not achieve satisfactory ranking performance in the task
of top-N recommendation [2,14,15,17]. As users are more concerned about rec-
ommended items in the top of the recommendation list, items with higher rat-
ings (i.e., higher possibilities to be preferred by users) should be modelled more
correctly than low rating items. Hence, it is important to consider the accu-
racy of ranked list during learning, and give different emphasises on items with
different users’ feedback. However, the conventional approach usually does not
discriminate the significances of different feedback of items, and the learned
latent factors representing user preferences and item characteristics are thus
not the optimal ones for generating personalised recommendations. Meanwhile,
most of existing methods assume that each latent factor could not contribute
differently during the learning of user preferences and item characteristics. This
assumption leads to simply update the latent factors as a whole, which may
not perform well. In reality, users who originate from different backgrounds are
highly proportional to select preferable items based on their different character-
istics. These various characteristics are compactly represented by different latent
factors. Furthermore, most of existing methods for the top-N recommendation
task minimise some error metrics, such as the sum of squared errors, to generate
the recommendation list. Unlike optimising against some ranking metrics such
as the one used in the paper, this approach is actually an indirect approach that
degrades the ranking performance. For example, probabilistic matrix factorisa-
tion [13] (PMF), which forms the basis of many model-based recommendation
algorithms, adopts even weights on all items and learns all latent factors at a
time by minimising the sum of squared errors via stochastic gradient descent.

To improve the accuracy of the top ranked items in the recommendation lists
during learning and exploit the contribution of each latent factor separately, we
develop a novel method, namely BoostMF, that uses boosting to learn the low
rank factor matrices by directly optimising the ranking measure to improve
top-N recommendation performance. Specially, rather than treating all observed
items with equal importance for each user, BoostMF imposes different empha-
sises on observed items using a personalised feature selection scheme based on
the current estimation of IR evaluation measure. Without computing any struc-
tured estimation of ranking loss or continuous approximations of non-smooth IR

BoostMF: Boosted Matrix Factorisation for Collaborative Ranking 5

measure, the proposed method optimises the IR measure directly by integrating
boosting into the optimisation, i.e. by gradient descent, of matrix factorisation
methods. As the iteration of the optimisation procedure continues, the algorithm
is able to place more focus on training examples that have not yet been ranked
in top positions correctly. As in real-world deployment, users are more interested
in top-N recommended items; this shifting on focus is important and rational
for our method to achieve an improved recommendation performance, which will
be demonstrated in Section 4. In the end, the learned latent factors represent-
ing user preferences and item characteristics are more suitable for generating
top-N recommendation. To empirically study the performance of BoostMF, we
evaluate our algorithm with some state-of-the-art methods in top-N recommen-
dation and the results demonstrate that our method significantly outperforms
these methods for top-N recommendation in terms of recommendation accuracy.
Because contextual information is sensitive and expensive to collect, we only
focus on user feedback without bothering contextual information. Therefore, we
do not compare our method with other rating or ranking-oriented CF methods
that use contextual information in addition to user feedback.

The rest of the paper is arranged as follows: in Section 2, we summarise
related work and place our work with respect to it. In Section 3, we present the
proposed boosted matrix factorisation method. Experimental results are pre-
sented in Section 4. Finally, we draw conclusions in Section 5.

2 Related Work

Learning to rank (LTR) is an important research direction in information
retrieval where the goal is to present a ranked list of information in response
to a query or request [10]. AdaRank [18], MPBoost [19], and RankBoost [4] are
well known LTR methods that use boosting to improve ranking performance.
If we consider a query as a user and a list of information as items, recom-
mender systems focus on the personalised view of same ranking task as that of
LTR. However, incorporating LTR techniques in personalised recommendation
is challenging. LTR methods can only handle non-personalised ranking prob-
lems rather than personalised ranking and recommendation problems, and also
consider that feature vector of items are given and unchanged during learning.
But in recommendation settings, user feature and item feature are not explicitly
presented during training. The challenge also arises from learning the low rank
matrices by optimising the training criterion which is different from the final
evaluation criterion that is used to measure the ranking performance. Although
different approaches [2,14,15,17] in LTR are adopted to minimise the ambiguity
between learning objective criterion and final evaluation measure, these methods
either have unsatisfactory performance or incur with computational overhead.
The developed BoostMF method in this paper thus aims to simultaneously learn
feature vectors and optimise ranking.

Existing methods in ranking-oriented CF can be generally divided into three
categories based on the type of issues needed to be addressed. The first class

6 N. Chowdhury et al.

of methods relies on the transformation of ranking measure. CofiRank [17] and
CLiMF [14] are the methods that fall into this category. CofiRank uses struc-
tured estimation of the ranking loss and CLiMF derives a lower bound of the
smooth ranking measure to solve ranking problem in recommendation. How-
ever, these transformation results to significantly computational overhead. Our
proposed BoostMF algorithm directly accounts the final evaluation criteria into
approximating low rank matrices from a high rank matrix. Specifically, based
on PMF, we incorporate boosting procedure to learn low rank factor matrices
directly for top-N recommendations. To the best of our knowledge, this app-
roach has not been applied before for top-N recommendations. The second class
of methods views the recommendation problem as a list-wise ranking problem
and uses list-wise loss functions. For example, ListRank-MF [15] uses list-wise
loss function based on cross entropy of the top one probability of items. Uni-
fied recommendation model (URM) [16] combines both rating-oriented CF, (i.e.,
PMF) and a ranking-oriented CF, (i.e., ListRank-MF) to improve ranking per-
formance. However, these methods optimise loss function which is not directly
related to the final ranking measure, which is not optimal to improve the perfor-
mance of top-N recommendation. In this regard, BoostMF employs personalised
weak ranker at each round to relate the final evaluation measure into the learn-
ing process of the model. The third class of methods solves the ranking problem
as a regression problem. In collaborative ranking [2], PMF is used to generate
feature vectors and regression based LTR algorithm (i.e., point-wise and pair-
wise) is constructed by these feature vectors to produce the ranking. OrdRec
is proposed in [8] as a CF framework following point based approach, and it
aims to minimise ordinal regression loss. BPR-MF uses [12] different pair-wise
optimisation criterion where pairs are formed by taking one from observed items
and the other from unobserved items by assuming a user prefers observed items
over unobserved items. But, these methods optimise ranking criterion which is
different from the final evaluation measure and hence the final ranking measure
is not directly applied to the learning process of the model. The learning model
of these methods also imposes equal errors on items misplacement in all positions
of the recommendation list. However, in BoostMF, the final ranking measure is
directly related to the learning process of the model. BoostMF also uses person-
alised weight distribution for each user on its rated items to emphasize errors of
the learning model on misplacing items in higher positions than lower positions.
Thus BoostMF is able to generate better recommendation list which is optimal
for the task of top-N recommendation.

3 Boosted Matrix Factorisation (BoostMF)

In this section, we firstly present a key component related to our algorithm proba-
bilistic matrix factorisation (PMF) [13] and then show how to integrate boosting
procedure in PMF to learn the best feature vectors for top-N recommendations.

BoostMF: Boosted Matrix Factorisation for Collaborative Ranking 7

3.1 Probabilistic Matrix Factorisation (PMF)

Assuming there are N users and M items in the data, let matrix R ∈ �N×M be a
user preference matrix. PMF [13] learns two low rank matrices, user factor matrix
P ∈ �N×K and item factor matrix Q ∈ �M×K to approximate R ∈ �N×M using
probabilistic inference of conditional distributions of observed rating, user priors
and item priors, where K is the number of dimensions of latent factors. We
use Pu to indicate the latent feature vector of user u, Qi to indicate the latent
feature vector of item i and Rui to indicate the rating that user u gives to item
i, respectively. The maximum of the log posterior in PMF can be formulated as

P, Q = argminP,Q{1

2

N∑

u=1

M∑

i=1

Iui(Rui − PuQ
′
i)

2 +
λp

2
‖P‖2

F +
λq

2
‖Q‖2

F }, (1)

where Iui is an indicator function which equals to 1 for all observed rating,
otherwise 0; λp and λq are regularisation parameters. As the user preference
matrix is usually very sparse, ‖P‖F and ‖Q‖F are the Frobenius norms of the
matrices P and Q used as regularisation to prevent the learning procedure from
overfitting. We use λp = λq = λ for computational simplicity.

3.2 BoostMF

In matrix factorisation, if one of the factor matrices, say Q
′

is fixed and only
P needs to be learned, then fitting each row of the target matrix R is a linear
prediction problem where Q

′
is the feature vector and each row of P is the

model parameter of the linear predictor. The approximation can be formulated
as a learning problem for each row R(u, :) : R(u, :) = P (u, :)∗Q

′
. Similarly, when

P is fixed and Q
′

needs to be learned, each column of Q
′

works as the model
parameter of the linear prediction model for feature vector P to fit each column
of target matrix R. For each column R(:, i), we have: R(:, i) = P ∗ Q(:, i)

′
. In

this way, the MF can be thought as a linear regression problem where P and Q
′

are both unknown and need to be learned. Therefore, an appropriate learning
algorithm to solve the linear regression problem is required.

In this work, we use boosting-based techniques to solve the linear regres-
sion problem in collaborative learning. Boosting-based techniques come with
better convergence properties and stability [5]. We use boosting optimisation
technique inside MF to learn low rank factor matrices directly for ranking. We
aim at constructing a set of weak learners {F t|t = 1, . . . , T − 1} sequentially to
learn user preferences and item characteristics that reside in the data. Based on
latent factor selection in the weak learner construction, therefore, the algorithm
will be able to stochastically focus on different aspects of user preferences and
item characteristics that are modeled by the different selected latent compo-
nents. By treating each rating as a training instance, a set of training weights
{W t|t = 1, . . . , T − 1} is imposed on the ratings. An overall strong learner F
is finally assembled by linearly combining weak rankers, which is expected to
perform better than any individual learner. The weights of training ratings are
updated to reflect the accuracy of the prediction of the weak learner. People

8 N. Chowdhury et al.

usually follow information that appears at the top-N positions in the recommen-
dation list. Therefore, the items that are ranked at the top should be consid-
ered more than those at the bottom of the recommendation list. To this end,
we dynamically construct personalised weak rankers1 and modify personalised
weights by considering the ranking performance on training items. In next iter-
ations, the learning procedure will give more attention on those items that have
not yet been ranked in correct positions. Due to the automatic selection and
optimisation of the personalised weak ranker and the dynamic updating of the
personalised weights, the learned latent factors for users and items are best suited
for top-N recommendation.

The BoostMF method creates weak rankers in the direction that has maxi-
mum IR performance improvement over training data. At each boosting round,
the method constructs a weak ranker for each user based on IR performance
over the items rated by the same user with personalised weight distribution. If
user u rates mk items and the set of items is indicated by i = i1, i2, . . . , imk

2

then for round t, BoostMF creates a weak ranker for each user by

F (t)
u (l) = argmax

l∈{1,...,K}

(
E
[
πu(W

(t)
ui f

(t)
uil), Rui

])
, (2)

where f
(t)
uil = P

(t)
ul Q

(t)′

il is the ranking score according to the l-th dimension
of latent factors, Wui is the weights of user u on its item set i, E represents
the IR performance measure and K is the feature dimension of the low rank
matrices, respectively. For user u, its permutation list πu is used to order the
items i by taking as inputs W

(t)
ui and f

(t)
uil . The design of permutation list πu is

usually correlated with the adoption of E. For simplicity, the weights W
(t)
ui is

linearly combined with the ranking score f
(t)
uil in the permutation to emphasize

its confidence.
The purpose of Equation (2) is to select weak ranker for each user based on

the items score f
(t)
uil . But in the same time we need to select the weak ranker

that will be able to contribute more on items on which previous ranker did not
perform well. To provide this information in weak ranker selection as well as
to reflect the individual tastes and rating scale of a user, BoostMF uses weight
distribution W

(t)
ui for each user u on every training item i from item set i. The

weight value W
(t)
ui is different in each round from user to user and even for the

same item belongs to different user. The weight W
(t)
ui restricts the factor selection

formula in Equation (2) not to select ranker that gives just best E measure,
but to select ranker that has the ability to place the items in correct positions
on which previous rankers do not perform well. BoostMF increases the values
of weights on items that are not ranked well by the dynamically constructed
ranking model. So in next iteration, these weight values will make more effect in
next ranker selection to improve overall ranking performance.

1 The term weak learner and weak ranker are used interchangeably throughout the
paper.

2 Bold font of i is used to denote set of items and normal to denote single item.

BoostMF: Boosted Matrix Factorisation for Collaborative Ranking 9

The weight value of an item is calculated based on the performance of the
current ranker in placing the item w.r.t. other items in the ranking list. Ideally,
we aim for a ranking model that makes no mistake in item placement. But the
error in placing two items with rating 5 and 1 has a heavier influence on the
IR performance measure than that of placing two items with rating 5 and 4.
To reflect this loss, we add the pairwise preference term (Rui − Ruj) into the
weight function to give more penalties for misplacing the items in higher position.
Specifically, if the current ranking model for user u is F

(t)
u with selected latent

factor l, and its updated ranking score on an item i is indicated by f
(t+1)
uil =

P
(t+1)
ul Q

(t+1)′

il , the weight value of item i for that user on the l-th latent factor
at t + 1 iteration is expressed as,

W
(t+1)
uil =

∑mk
j=1,j �=i exp{−(f

(t+1)
uil − f

(t+1)
ujl)(Rui − Ruj)}

maxiεmk

∑mk
j=1,j �=i exp{−(f

(t+1)
uil − f

(t+1)
ujl)(Rui − Ruj)}

. (3)

Note that the pairwise preference term in BoostMF is different from the com-
mon pairwise preference formulation used in [9,12]. In these methods, with only
implicit feedback, the pair of items consists of one observed item and one unob-
served item where the observed item is assumed to have higher preference over
the unobserved one. However, the formulation may be inconsistent with the real
world scenario because unobserved items could be either unfavoured by the user
or simply just unexposed to the user. In contrast, BoostMF uses explicit pref-
erences to construct the personalised pairwise preference term, which is more
reliable. Meanwhile, to facilitate the computation, uniform sampling is adopted
in almost all of the models with the pairwise preference in order to select the set
of pairs of items. However, it is shown [11] that this approach is very inefficient
because most of selected items will be correctly ranked after a few of iterations
and almost all the gradient magnitude from the selected pairs become less infor-
mative. In this regards, BoostMF provides an efficient and informative selection
and updating mechanism by constantly focusing on the disordered items for
every user across the whole procedure of learning.

At the initialisation, the value of user weight W
(t)
ui on every item is identical.

At the current round t, BoostMF increases the values of weights on items that
are not ranked well by the dynamically constructed ranking model. Hence in
round t + 1 these weights will make more contribution to construct the next
ranking model that will attempt to rectify the incorrect ranking of these items.
The value of W

(t)
ui yields a clear indication how much the item i is misplaced in

the rank list of user u. So in next iteration, this weight will make more effect in
next ranker selection to improve the performance.

To model the fact that various users will judge their preferences over different
items based on different criteria, BoostMF also selects the direction that has
maximum capacity to generate a good ranking list on the training items for
each user at every round and performs maximum adjustment in that direction.
All other factors for that user are remaining unchanged on the round. Let l
denote the dimension of the selected latent factors for the current weak ranker.
If the objective function in Equation (1) is denoted by L, then for the ranking

10 N. Chowdhury et al.

Algorithm 1. Boosted Matrix Factorisation
Input: Rating matrix R, no. of iterations T , performance measure E, no. of users
N and no. of items M , no. of training items per user mk, feature dimension K and
learning rate η
Output: Low rank factor matrices P and Q
Initialisation: Initialise P (1) and Q(1) randomly, and initialise W

(1)
ui = 1

mk
for each

user u on available training items.

for t=1:T-1 do
for u=1:N do

Select ranking model F
(t)
u (l), l ∈ {1, . . . , K} using Equation (2) for user u on

its rated item set i with weighted distribution of W
(t)
ui .

Compute δL

δP
(t)
ul

and δL

δQ
(t)
il

using Equation (4) and (5).

Update Pul and Qil by
P

(t+1)
ul = P

(t)
ul − η δL

δP
(t)
ul

, Q
(t+1)
il = Q

(t)
il − η δL

δQ
(t)
il

Update W
(t+1)
ui using Equation (3).

end for
end for

Output: P (T)Q(T)′

model F
(t)
u , BoostMF updates user and item latent factor by

δL

δP
(t)
ul

=

mk∑

i=1

Iui(P
(t)
ul Q

(t)′
il − Rui)Q

(t)
il + λP

(t)
ul (4)

δL

δQ
(t)
il

= Iui(P
(t)
ul Q

(t)′
il − Rui)P

(t)
ul + λQ

(t)
il .3 (5)

Compared with the updating stages of latent factors in conventional MF methods,
the difference terms in Equation (4) and Equation (5) in BoostMF have also shifted
the focus to the contribution of individual latent factor. Instead of combining the weak
learner estimation to form final strong learner, BoostMF takes all latent dimensions of
P (T)Q(T)′

as strong learner after the completion of round T − 1, as the weak ranking
models are updated during learning. Finally, personalised ranking list is generated by
sorting the ratings which are predicted by using all latent dimensions of P (T) and
Q(T)′

. At each boosting round t = 1, . . . , T − 1, BoostMF creates a weak ranker F
(t)
u

for each user, updates the ranker, modifies weights based on the ranking performance
and finally outputs a personalised ensemble model as F ≈ P (T)Q(T)′

. An overview of
the algorithm is presented in Algorithm 1.

The complexity of weak ranker selection is in the order of O(NK), where N is the
number of users and K is the feature dimension size. The complexity of the gradient
computation in Equation (4) and (5) is in order of O(R), where R is the number of
observed ratings in the given user-item matrix. The computation complexity of the
weight updating formula in Equation (3) is O(Nm2

k), where mk denotes the number
of training items per user. In collaborative filtering, R � N, M and even dominates

3 The summation sign is not used on the right hand side of (5), because we formulate
the algorithm user-wise and the item set i is rated by one user as shown in Algorithm
1.

BoostMF: Boosted Matrix Factorisation for Collaborative Ranking 11

the term Nm2
k. When Nm2

k dominates R, BoostMF has complexity in the order of
O(Nm2

k), otherwise it has linear time complexity in the order of O(R).

3.3 Theoretical Analysis

In this section, we show theoretical insights by developing an upper error bound of
BoostMF following MPBoost [19] and RankBoost [4]. Allowing both rating magnitude
in the ranking loss and dynamic changes in the feature vectors for the weak learner
model at each boosting round in BoostMF leads to the following theorem:

Theorem 1. The misplacement loss of the personalised ranking model in BoostMF
is bounded by

∑mk
i=1

∑mk
j=1,j �=i|Ri>Rj

�Fi ≤ Fj� +
∑mk

i=1

∑mk
j=1,j �=i|Ri<Rj

�Fi ≥ Fj� ≤ ZT ,

where ZT =
∑mk

i=1

∑mk
j=1,j �=i exp{−[(Fi − Fj)(Ri − Rj)]} and �x� is defined to be 1 if

predicate x is true and 0 otherwise.

Proof. The personalised ranking model in BoostMF produces two types of misplace-
ment. The first one is when Fi ≥ Fj but Ri < Rj and the second one is when Fi ≤ Fj

but Ri > Rj . Note that �x ≥ 0� ≤ exp{αx} and �x ≤ 0� ≤ exp{−αx} hold for all α > 0
and all real x. We can write the total loss as
∑mk

i=1

∑mk
j=1,j �=i|Ri>Rj

�Fi ≤ Fj� +
∑mk

i=1

∑mk
j=1,j �=i|Ri<Rj

�Fi ≥ Fj�

≤∑mk
i=1

∑mk
j=1,j �=i|Ri>Rj

exp{−[(Fi − Fj)(Ri − Rj)]}
+
∑mk

i=1

∑mk
j=1,j �=i|Ri<Rj

exp{[−(Fi − Fj)(Ri − Rj)]}
=
∑mk

i=1

∑mk
j=1,j �=i exp{−[(Fi − Fj)(Ri − Rj)]} = ZT �

This bound is guaranteed to produce a combined low ranking loss if we choose
the weak ranker that minimises

∑mk

i=1

∑mk

j=1,j �=i exp{−[(Fi − Fj)(Ri − Rj)]} on
each round t [4]. Minimising the misplacement loss is equivalent to maximising
the IR measure [19]. In BoostMF, the weak ranker is set to select the ranking
model that maximises the IR measure which is equivalent to minimising the
misplacement loss and the weight update formula is set to give more penalties
to the ranking model that makes misplacement in higher position. Finally, in
terms of misplacement loss, the total error of BoostMF is bounded by ZT .

4 Experiments

4.1 Datasets and Evaluation Metric

We test the performance of BoostMF on three publicly available datasets for the
task of personalised top-N recommendation: MovieLens 100K4 dataset, Movie-
Lens 1M dataset4 and Netflix5 dataset. MovieLens 100K dataset consists of
100,000 ratings from 943 users on 1682 movies. MovieLens 1M dataset consists
of 1,000,000 ratings from 6040 users and 3900 movies. Ratings are integers and
scaled on 1-5. and each user has rated at least 20 movies on both datasets. For
Netflix dataset, we use a sampled version, which is extracted from 4% of the

4 http://www.grouplens.org/node/73
5 B. James and L. Stan, The Netflix prize, (2007).

http://www.grouplens.org/node/73

12 N. Chowdhury et al.

Netflix dataset with 20% users and 20% movies are randomly selected from the
whole pool. The Netflix dataset contains 3,843,340 ratings on scaled 1-5 from
95526 users on 3561 movies.

As our goal is to generate efficient recommendation list that would contain
higher rating items in top-N position, we prefer a metric capable of award-
ing models that correctly rank items in higher positions and penalising models
that make more errors in higher positions than in lower positions. Following
the standard evaluation metric used in [2,15,17], we use normalised discounted
cumulative gain (NDCG) as IR performance measure for testing and evaluation
of our algorithm.

4.2 Experimental Setup

We adopt the same experimental protocol from [2,17]. We use 3 different set-
tings of training data based on the number of randomly selected items for each
user, namely SN=10, SN=20 and SN=50. The remaining items are used for
testing. Users with less than 20, 30 or 60 rated items are removed respectively
in each setting to ensure the feasibility to compute NDCG@10. Following the
common practice in RS [2,17], items that are not rated by at least 5 users in
the dataset are also removed. We also eliminate items from test dataset those
are not appeared in training dataset. These settings cause a slightly decrement
of user-movie combination than the original dataset. We report the number of
users and items available in each setting for all datasets in Table 1. For each
setting, we generate 10 versions of the dataset, by randomly sampling items.
We report the mean and standard deviation of NDCG@5 and NDCG@10 on
those 10 sets over all users. We compare BoostMF with a sets of the state-
of-the-art algorithms including PMF [13], and OrdRec [8] which are the state-
of-the-art rating-oriented CF methods; ListRank-MF [15], CofiRank [17], and
BPR-MF [12], which are the state-of-the-art ranking-oriented CF methods; and
URM [16], which combines both rating-oriented and ranking-oriented methods.
From the experimental results in [17], CofiRank method that optimises root
mean square loss (denote as CofiRankReg) performs better than CofiRank that
optimises NDCG directly (denote as CofiRankNDCG). Therefore, we compare
BoostMF with both CofiRankReg and CofiRankNDCG.

Table 1. No. of users and items for experimental settings SN=10, 20 and 50 on the
datasets.

Dataset No. of users for SN=10/20/50 No. of items for SN=10/20/50

MovieLens 100K 941/743/496 1349/1336/1312
MovieLens 1M 6035/5286/3937 3415/3411/3400
Netflix 45508/35749/20067 3558/3556/3546

BoostMF: Boosted Matrix Factorisation for Collaborative Ranking 13

4.3 Results

Before comparing the performance of our algorithm with other state-of-the-art
approaches, we at first examine whether the weak ranker selection and weight
update formula in BoostMF improve the algorithms performance or not. To this
end, we create two versions of BoostMF algorithm named (1) RandomBoostMF
that selects weak ranker randomly for each user, (2) ModifiedBoostMF that
selects ranking model by NDCG but updates item weights without consider-
ing the effect of the pairwise preference term (Rui − Ruj). The comparison of
BoostMF with RandomBoostMF indicates whether factor selection by NDCG in
BoostMF makes any benefits over random factor selection, and the comparison
with ModifiedBoostMF indicates the advantages of using the modified weight
update mechanism in Equation (3). We also want to see how these algorithms
perform with respect to various feature dimensions. To apply these algorithms,
MovieLens 100K dataset with user/item settings SN=50 is used. We record
NDCG@10 for each data fold for factor dimension 5, 10, 15, 25 and 50 and the
mean of NDCG over 10 folds for each feature dimension is presented in Fig. 1.

From the results in Fig. 1, we can see that BoostMF performs much bet-
ter than RandomBoostMF, which verifies that factor selection by NDCG in
BoostMF helps improve the performance of top-N recommendation as random
selection is not able to generate suitable feature vectors to boost the learning
procedure of MF. BoostMF also outperforms ModifiedBoostMF, which shows
the success of the developed pairwise preference scheme in the procedure of
dynamic weight updating. Most importantly, the performance of BoostMF is
stable under different settings of the feature dimension size. It performs the best
for feature dimension size of 15 which the NDCG score is 0.7139. The NDCG
score slightly decreases for feature dimension size of 50 which is 0.7020 but still
much better in comparison to the performance of RandomBoostMF (0.6765) and
ModifiedBoostMF (0.6908).

Now we compare our algorithm with PMF, ListRank-MF, URM, OrdRec,
BPR-MF and CofiRank. We tune parameters separately on a validation set for
all algorithms by cross validation to achieve their best performance on the used
datasets. NDCG performance on validation set is used to choose the hyperparam-
eters with the best performance. We implement CofiRank using publicly available
software.6 OrdRec[8] and BPR-MF[12] are implemented by publicly available
software Lenskit7 and Mymedialite8, respectively. BoostMF uses η=0.01, λ=0.02
and K=5 for MovieLens datasets and η=0.00005, λ=0.000009 and K=10 for
Netflix dataset. As each method has different settings of hyperparameters under
different settings of experiments, due to the space limitation, we do not state
the hyperparameters of other algorithms. We also perform paired t test [6] with
significant level of 5%, and all the improvement are statistically significant. The
mean and standard deviation over 10 data folds for different approaches with
respect to different experimental settings are reported in Table 2-4.
6 http://www.cofirank.org/downloads.
7 http://lenskit.org/download/
8 http://mymedialite.net/download/index.html

http://www.cofirank.org/downloads.
http://lenskit.org/download/
http://mymedialite.net/download/index.html

14 N. Chowdhury et al.

Fig. 1.Performance comparison of RandomBoostMF, ModifiedBoostMF and BoostMF.

According to Table 2, BoostMF significantly outperforms all compared state-
of-the-art algorithms in most of the cases. BoostMF achieves 10∼12% improve-
ment over CofiRankNDCG for settings SN=50 and gains 6∼8% improvement
for settings SN=10 and SN=20 on both NDCG@5 and NDCG@10 metrics for
MovieLens 100K dataset. It also gains 1.6∼4% improvement over PMF, 1∼4.7%
improvement over URM and 3∼5% improvement over CofiRankReg on both eval-
uation measures for all experimental settings. BoostMF also shows 0.7∼2.3%
improvement over ListRank-MF. Although for settings SN=10, BoostMF per-
forms slightly worse than ListRank-MF on NDCG@5, it performs better than
ListRank-MF for all other settings on both metrics. BoostMF outperforms BPR-
MF and OrdRec for all experimental settings on both NDCG@5 and NDCG@10
metrics. It achieves 8∼11% improvement over BPR-MF and 10∼20% improve-
ment over OrdRec.

Results on MovieLens 1M dataset are shown in Table 3. BoostMF achieves
significant improvement over CofiRank, BPR-MF and OrdRec for all experimen-
tal settings on all the evaluations. It achieves 10-19% improvement over OrdRec,
5-8% improvement over BPR-MF, and 4-9% improvement over CofiRankNDCG

and CofiRankReg respectively on both evaluations for all experimental settings.
In comparison with URM, BoostMF achieves 2∼2.4% improvement on NDCG@5
metric and 1.1∼2.14% improvement on NDCG@10 metric over all experimen-
tal settings. BoostMF also outperforms ListRank-MF by 9∼10% for settings
SN=10, 6.5∼6.8% for setting SN=20 and also achieves more than 1% improve-
ment for settings SN=50 on both evaluations. It gains 5∼6% improvement for
settings SN=10 and 3∼4% improvement for settings SN=20 and SN=50 on both
metrics when comparison is made with PMF.

From the results in Table 4, it is clear that BoostMF outperforms all other
state-of-art approaches on Netflix dataset. It outperforms CofiRankNDCG by
10∼12% over all experimental settings on both NDCG computations. It achieves
7∼10% improvement over CofiRankReg for experimental settings SN=10, SN=20
and 4∼5% improvement for experimental settings SN=50 on both metrics.
Compared to OrdRec and BPR-MF, BoostMF results 8∼16% improvement for
all settings on both metrics. It also gains 9∼14% performance improvement for

BoostMF: Boosted Matrix Factorisation for Collaborative Ranking 15

Table 2. The NDCG@5 and NDCG@10 accuracy and standard deviation over 10 data
folds for PMF, BPR-MF, ListRank-MF, URM, OrdRec, CofiRank and BoostMF on
MovieLens 100K dataset. The best performance is in bold.

SN=10 SN=20 SN=50

NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10

PMF 0.6330±.009 0.6606±.005 0.6762±.007 0.6864±.007 0.6765±.005 0.6819±.007
BPR-MF 0.5558±.002 0.5942±.003 0.5872±.002 0.6098±.004 0.6292±.001 0.6309±.002
CofiRankNDCG 0.5927±.006 0.6314±.006 0.6098±.005 0.6331±.003 0.5897±.006 0.6096±.005
CofiRankReg 0.6381±.008 0.6629±.004 0.6398±.003 0.6540±.004 0.6580±.004 0.6708±.002
OrdRec 0.5197±.001 0.5687±.001 0.4852±.003 0.5290±.002 0.58±.002 0.6081±.004
ListRank-MF 0.6725±.005 0.6844±.005 0.6834±.004 0.6947±.003 0.6887±.003 0.6982±.004
URM 0.6421±.005 0.6561±.006 0.6778±.004 0.6851±.007 0.6919±.005 0.7034±.004
BoostMF 0.6722±.008 0.7034±.007 0.6921±.005 0.7019±.004 0.7117±.004 0.7135±.004

Table 3. The NDCG@5 and NDCG@10 accuracy and standard deviation over 10 data
folds for PMF, BPR-MF, ListRank-MF, URM, OrdRec, CofiRank and BoostMF on
MovieLens 1M dataset. The best performance is in bold.

SN=10 SN=20 SN=50

NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10

PMF 0.6814±.007 0.6842±.005 0.7030±.002 0.7043±.003 0.7224±.002 0.7189±.003
BPR-MF 0.6734±.007 0.6873±.006 0.6747±.005 0.6790±.006 0.6711±.007 0.6769±.006
CofiRankNDCG 0.6485±.002 0.6685±.002 0.6587±.005 0.6763±.001 0.6679±.007 0.6812±.007
CofiRankReg 0.6698±.005 0.6838±.006 0.6728±.005 0.7005±.005 0.6844±.007 0.7049±.006
OrdRec 0.5095±.002 0.5431±.003 0.4948±.002 0.5312±.002 0.6288±.002 0.6485±.001
ListRank-MF 0.6424±.005 0.6423±.004 0.6792±.007 0.6827±.006 0.7406±.004 0.7344±.004
URM 0.7205±.004 0.7222±.002 0.7236±.001 0.7365±.001 0.7328±.003 0.7301±.002
BoostMF 0.7433±.007 0.7389±.007 0.7475±.005 0.7480±.004 0.7528±.004 0.7515±.004

settings SN=10, 7∼8% for settings SN=20 and more than 4% for settings SN=50
over PMF on both NDCG evaluations. Over ListRank-MF, BoostMF gains
1.6∼3.8% improvement on NDCG@5 metric for settings SN=20 and SN=50, and
it gains 7∼10% improvement on NDCG@10 for experimental settings SN=10.
It also outperforms URM by 2∼4.8% on NDCG@5 computation and 1.4∼2.8%
on NDCG@10 computation for all experimental settings.

To gain a deep understanding of the success of BoostMF, the reasons for the
experimental results will be explored as follows. PMF is the rating-oriented col-
laborative filtering algorithm that minimises sum of squared errors at each step
of learning process. Hence, the learning procedure spends its efforts on a criterion
that is not directly related to the task of top-N recommendation. OrdRec, which
is a regression based rating-oriented CF method, assumes users’ feedback as ordi-
nal rather than number. Although it considers users’ personalised rating scales,
the ranking measure is not directly applied to the learning model. ListRank-
MF is the ranking-oriented CF algorithm that aims to present better ranking
list, however, unlike BoostMF, the IR evaluation measure of ListRank-MF is not
directly related to the learning process of the model. BPR-MF, which is a ranking

16 N. Chowdhury et al.

Table 4. The NDCG@5 and NDCG@10 accuracy and standard deviation over 10 data
folds for PMF, BPR-MF, ListRank-MF, URM, OrdRec, CofiRank and BoostMF on
Netflix dataset. The best performance is in bold.

SN=10 SN=20 SN=50

NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10

PMF 0.6239±.007 0.5913±.006 0.6481±.004 0.6689±.004 0.6876±.007 0.6980±.005
BPR-MF 0.5724±.003 0.6005±.005 0.5725±.004 0.5982±.005 0.5783±.003 0.6095±.003
CofiRankNDCG 0.6203±.001 0.6272±.005 0.6134±.002 0.6139±.003 0.6249±.005 0.6316±.002
CofiRankReg 0.6146±.005 0.6128±.004 0.6252±.003 0.6599±.005 0.6790±.006 0.6931±.005
OrdRec 0.5597±.002 0.6076±.003 0.5908±.005 0.6315±.006 0.6264±.002 0.6556±.003
ListRank-MF 0.6453±.002 0.6359±.001 0.7011±.004 0.7017±.007 0.7156±.007 0.7118±.002
URM 0.6808±.006 0.7217±.002 0.7118±.002 0.7188±.005 0.6831±.002 0.7099±.004
BoostMF 0.7216±.006 0.7364±.002 0.7352±.004 0.7398±.006 0.7317±.003 0.7383±.002

based model, solves personalised ranking problem by optimising area under the
curve (AUC). Unlike the optimisation criterion used in BoostMF, AUC imposes
equal error on misplacing items irrespective of their positions in the generated
recommendation list; thus BPR-MF does not perform well on list based top-N
recommendation. URM employs both rating and ranking information together
but still the IR evaluation measure is not directly applied in the learning model.
Meanwhile, the relative contribution of rating information and ranking infor-
mation depends on the particular dataset. CofiRank is also a ranking-oriented
CF method, but from our experimental results, CofiRankNDCG that uses NDCG
information directly into learning phases performs worse than CofiRankReg that
optimises for regression with root mean square loss. This finding is consistent
with experimental results from [2,15,17]. On the other hand, BoostMF is pro-
posed to improve the underlying factor learning in matrix factorisation using
boosting with feature selection and to optimise IR measure directly aiming at
resolving the mismatch between training objective function and evaluation met-
ric. Without imposing any overhead of IR measure conversion, BoostMF creates
ranking model and updates according to the correctness of the ranking list. Thus,
BoostMF presents a better ranked recommendation list than the state-of-the-art
recommendation approaches by focusing on the factors that are best suited to
represent ranking task.

In addition to the comparison, we carry the experiment to see in what extent
PMF and BoostMF handle overfitting, which is an important issue when the
data is extremely sparse which is common in recommender systems. Note that
this is also important for the boosting algorithm whose capability of generalisa-
tion is usually considered under non-sparse dataset [4,19]. Specifically, we want
to evaluate the IR performance of both algorithms, i.e. PMF and BoostMF,
on the test set while the IR performance keeps increasing on training set as
the number of training round increases. For experimental settings of SN=50 on
MovieLens 100K dataset, we record the performance of the models on both train
set and test set for every iteration of PMF and BoostMF. Fig. 2 and 3 show the
average NDCG@10 on train set and test set over 10 folds. Learning rate and

BoostMF: Boosted Matrix Factorisation for Collaborative Ranking 17

Fig. 2. Average NGCG@10 of PMF and
BoostMF over 10 folds on train set

Fig. 3. Average NGCG@10 of PMF and
BoostMF over 10 folds on test set

regularisation parameter of PMF and BoostMF are set separately according to
their best performance on validation set. The stopping conditions for both algo-
rithms are also set from cross validation and marked as black circle in Fig. 2
and 3.

As shown in the Fig. 2 and 3, PMF suffers from serious overfitting problem
whereas BoostMF is very robust to overfitting. This overfitting behaviour of
PMF shows its inappropriateness to the ranking problem. As the iteration con-
tinues, it ignores the information from IR measure and thus deviates away from
improving NDCG. The test performance in PMF is decreasing while the train-
ing performance is steadily improving. On the contrary, BoostMF constructs
weak learner in the direction that gives maximum ranking accuracy on training
data, performs maximum update in that ranking direction and reweights items
according to the correctness of the ranking list. All of those three features are
the keys for stable ranking as the number of training round increases and thus
it avoids overfitting issues.

5 Conclusion

In this paper, we present a novel method, BoostMF, to the problem of matrix
factorisation by learning the best feature vectors for ranking and apply it to the
task of personalised top-N recommendation. In addition to using latent factors to
represent various user preferences and item characteristics, the BoostMF method
uses boosting procedure to select best factors to optimise for the ranking task
and performs updating only on that factor. In contrast to other ranking-oriented
CF methods, the BoostMF method optimises the ranking measure directly by
learning low rank factor matrices rather than using the structured estimation of
ranking loss or computing continuous approximations of IR measure. To demon-
strate the efficiency of BoostMF, we evaluate it against a set of state-of-the-art
approaches on three real-world publicly available datasets with different user-
item distributions. The experimental results verify that the BoostMF method
achieves significant improvement over these baseline methods for the task of
top-N recommendation.

18 N. Chowdhury et al.

Our method will cope with cold start user problems in the future that users
have very few ratings (one or two). We would like to apply our boosting-based
collaborative filtering model with other IR evaluation metrics, such as minimum
average precision (MAP) and minimum reciprocal ranking (MRR) for recom-
mendation. We also want to apply this algorithm to other problems where MF
approach is frequently applied. As MF consists of the fundamentals of many
existing methods in top-N recommendation, it is reasonable to expect the pro-
posed method also to be valuable for existing top-N recommendation methods
that are based on PMF such as these methods shown in Section 2.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems:
a survey of the state-of-the-art and possible extensions. IEEE TKDE 17(6) (2005)

2. Balakrishnan, S., Chopra, S.: Collaborative ranking. In: WSDM (2012)
3. Cai, X., Bain, M., Krzywicki, A., Wobcke, W., Kim, Y., Compton, P.,

Mahidadia, A.: Learning collaborative filtering and its application on people-to-
people recommendation in social networks. In: ICDM (2010)

4. Freund, Y., Iyer, R., Schapire, R., Singer, Y.: An efficient boosting algorithm for
combining preferences. J. Mac. Learn. Res. 4 (2003)

5. Friedman, J., Hastie, T., Tibshirani, R.: Additive Logistic Regression: a Statistical
View of Boosting. The Annals of Statistics 38(2) (2000)

6. Goulden, C.: Methods of Statistical Analysis. Wiley (1956)
7. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender

systems. J Comput. 42 (2009)
8. Koren, Y., Sill, J.: Ordrec: an ordinal model for predicting personalized item rating

distributions. In: RecSys (2011)
9. Krohn-Grimberghe, A., Drumond, L., Freudenthaler, C., Schmidt-Thieme, L.:

Multi-relational matrix factorization using bayesian personalized ranking for social
network data. In: WSDM (2012)

10. Liu, T.: Learning to rank for information retrieval. Found. and Trends in Inf. Retr.
3 (2009)

11. Rendle, S., Freudenthaler, C.: Improving pairwise learning for item recommenda-
tion from implicit feedback. In: WSDM (2014)

12. Rendle, S., Freudenthaler, C., Gantner, Z., Thieme, L.: BPR: bayesian personalized
ranking from implicit feedback. In: UAI (2009)

13. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS (2008)
14. Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N., Hanjalic, A.:

CLiMF: Learning to maximize reciprocal rank with collaborative less-is-more fil-
tering. In: RecSys (2012)

15. Shi, Y., Larson, M., Hanjalic, A.: List-wise learning to rank with matrix factoriza-
tion for collaborative filtering. In: RecSys (2010)

16. Shi, Y., Larson, M., Hanjalic, A.: Unifying rating-oriented and ranking-oriented
collaborative filtering for improved recommendation. J. of Inf., Sci. (2013)

17. Weimer, M., Karatzoglou, A., Le, Q.V., Smola, A.: CofiRank-maximum margin
matrix factorization for collaborative ranking. In: NIPS (2007)

18. Xu, J., Li, H.: AdaRank: a boosting algorithm for information retrieval. In: SIGIR
(2007)

19. Zhu, C., Chen, W., Zhu, Z., Gang, W., Wang, D., Chen, Z.: A general magnitude-
preserving boosting algorithm for search ranking. In: CIKM (2009)

Convex Factorization Machines

Mathieu Blondel(B), Akinori Fujino, and Naonori Ueda

NTT Communication Science Laboratories, Kyoto, Japan
mblondel@gmail.com

Abstract. Factorization machines are a generic framework which allows
to mimic many factorization models simply by feature engineering. In
this way, they combine the high predictive accuracy of factorization mod-
els with the flexibility of feature engineering. Unfortunately, factorization
machines involve a non-convex optimization problem and are thus sub-
ject to bad local minima. In this paper, we propose a convex formulation
of factorization machines based on the nuclear norm. Our formulation
imposes fewer restrictions on the learned model and is thus more general
than the original formulation. To solve the corresponding optimization
problem, we present an efficient globally-convergent two-block coordi-
nate descent algorithm. Empirically, we demonstrate that our approach
achieves comparable or better predictive accuracy than the original fac-
torization machines on 4 recommendation tasks and scales to datasets
with 10 million samples.

Keywords: Factorization machines · Feature interactions · Recom-
mender systems · Nuclear norm

1 Introduction

Factorization machines [12] [13] are a generic framework which allows to mimic
many factorization models simply by feature engineering. Similarly to linear mod-
els, factorization machines learn a feature weight vector w ∈ R

d, where d is the
number of features. However, factorization machines also learn a pairwise feature
interaction weight matrix Z ∈ R

d×d. Given a feature vector x ∈ R
d, factorization

machines use w and Z to predict a target y ∈ R. The main advantage of factoriza-
tion machines is that they learn the feature interaction weight matrix in factorized
form, Z = V V T, where V ∈ R

d×k and k � d is a rank hyper-parameter. This
reduces overfitting, since the number of parameters to estimate is reduced from
d2 to kd, and allows to compute predictions efficiently. Although they can be used
for any supervised learning task such as classification and regression, factorization
machines are especially useful for recommender systems. As shown in [12][13], fac-
torization machines can mimic many existing factorization models just by choos-
ing an appropriate feature representation for x. Examples include standard matrix
factorization, SVD++ [8], timeSVD++[9] and PITF (pairwise interaction tensor
factorization) [16]. Moreover, it is easy to incorporate auxiliary features such as
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 19–35, 2015.
DOI: 10.1007/978-3-319-23525-7 2

20 M. Blondel et al.

user and item attributes, contextual information [15] and cross-domain feedback
[10]. In [14], it was shown that factorization machines achieve predictive accuracy
as good as the best specialized models on the Netflix and KDDcup 2012 challenges.
In short, factorization machines are a generic framework which combines the high
predictive accuracy of factorization models with the flexibility of feature engineer-
ing. Unfortunately, factorization machines have two main drawbacks. First, they
involve a non-convex optimization problem. Thus, we can typically only obtain
a local solution, the quality of which depends on initialization. Second, factoriza-
tion machines require the choice of a rank hyper-parameter. In practice, predictive
accuracy can be quite sensitive to this choice.

In this paper, we propose a convex formulation of factorization machines
based on the nuclear norm. Our formulation is more general than the original one
in the sense that it imposes fewer restrictions on the feature interaction weight
matrix Z. For example, in our formulation, imposing positive semi-definiteness is
possible but not necessary. In addition, our formulation does not require choos-
ing any rank hyper-parameter and thus have one less hyper-parameter than the
original formulation. For solving the corresponding optimization problem, we
propose a globally-convergent two-block coordinate descent algorithm. Our algo-
rithm alternates between estimating the feature weight vector w and a low-rank
feature interaction weight matrix Z. Estimating w is easy, since the problem
reduces to a simple linear model objective. However, estimating Z is challeng-
ing, due to the quadratic number of feature interactions. Following a recent line
of work [17] [4] [7], we derive a greedy coordinate descent algorithm which breaks
down the large problem into smaller sub-problems. By exploiting structure, we
can solve these sub-problems efficiently. Furthermore, our algorithm maintains
an eigendecomposition of Z. Therefore, the entire matrix Z is never material-
ized and our algorithm can scale to very high-dimensional data. Empirically, we
demonstrate that our approach achieves comparable or better predictive accu-
racy than the original non-convex factorization machines on 4 recommendation
tasks and scales to datasets with 10 million samples.

Notation. For arbitrary real matrices, the inner product is defined as 〈A,B〉 :=
Tr(ATB) and the squared Frobenius matrix norm as ‖A‖2F := 〈A,A〉. We
denote the element-wise product between two vectors a ∈ R

d and b ∈ R
d by

a◦b := [a1b1, . . . , adbd]T. We denote the Kronecker product between two matrices
A ∈ R

m×n and B ∈ R
p×q by A⊗B ∈ R

mp×nq. We denote the set of symmetric
d × d matrices by S

d×d. Given A ∈ R
m×n, vec(A) ∈ R

mn denotes the vector
obtained by stacking the columns of A. By [n], we denote the set {1, . . . , n}.
The support of a vector λ ∈ R

d is defined as supp(λ) := {j ∈ [d] : λj 	= 0}.

2 Factorization Machines

Factorization machines [12][13] predict the output associated with an input x =
[x1, . . . , xd]T ∈ R

d using the following simple equation:

ỹ(x|w,V) = wTx +
d∑

j=1

d∑

j′=j+1

(V V T)jj′xjxj′ (1)

Convex Factorization Machines 21

where w ∈ R
d, V ∈ R

d×k and k � d is a hyper-parameter which defines the rank
of the factorization. The vector w contains the weights of individual features for
predicting y, while the positive semi-definite matrix Z = V V T ∈ S

d×d contains
the weights of pairwise feature interactions. Because factorization machines learn
Z in factorized form, the number of parameters to estimate is reduced from d2 to
kd. In addition to helping reduce overfitting, this factorization allows to compute
predictions efficiently by using

ỹ(x|w,V) = wTx +
1
2

(
‖V Tx‖2 −

k∑

s=1

‖vs ◦ x‖2
)
,

where vs ∈ R
d is the sth column of V . Thus, computing predictions costs O(kd),

instead of O(d2) when implemented naively. For sparse x, the prediction cost
reduces to O(kNz(x)), where Nz(x) is the number of non-zero features in x.

Although they can be used for any supervised learning task such as classifica-
tion and regression, factorization machines are especially useful for recommender
systems. As shown in [12][13], factorization machines can mimic many existing
factorization models just by choosing an appropriate feature representation for
x. For example, consider a record (u, i, y), where u ∈ U is a user index, i ∈ I is
an item index and y ∈ R is a rating given by u to i. Then factorization machines
are exactly equivalent to matrix factorization (c.f., Section A in the supplemen-
tary material) simply by converting (u, i, y) to (x, y), where x ∈ R

d is expressed
in the following binary indicator representation with d = |U | + |I|

x := [0, . . . , 0,

u
︷︸︸︷
1 , 0, . . . , 0

︸ ︷︷ ︸
|U |

, 0, . . . , 0,

|U |+i
︷︸︸︷
1 , 0, . . . , 0

︸ ︷︷ ︸
|I|

]T. (2)

Using more elaborated feature representations [12] [13], it is possible to mimic
many other factorization models, including SVD++ [8], timeSVD++[9] and
PITF (pairwise interaction tensor factorization) [16]. Moreover, it is easy to
incorporate auxiliary features such as user and item attributes, contextual infor-
mation [15] and cross-domain feedback [10]. The ability to quickly try many
different features (“feature engineering”) is very flexible from a practitioner per-
spective. In addition, since factorization machines behave much like classifiers or
regressors, they are easy to integrate in a consistent manner to a machine learn-
ing library (see [3] for a discussion on the merits of library design consistency).

Given a training set consisting of n feature vectors X = [x1, . . . ,xn]T ∈ R
n×d

and corresponding targets [y1, . . . , yn]T ∈ R
n, we can estimate w ∈ R

d and
V ∈ R

d×k using the principle of empirical risk minimization. For example, we
can solve the following optimization problem

min
w∈Rd,V ∈Rd×k

n∑

i=1

�
(
yi, ỹ(xi|w,V)

)
+

α

2
‖w||2 +

β

2
‖V ‖2F , (3)

where �(y, ỹ) is the loss “suffered” when predicting ỹ instead of y. Throughout
this paper, we assume � is a twice-differentiable convex function. For instance, for

22 M. Blondel et al.

predicting continuous outputs, we can use the squared loss �(y, ỹ) = 1
2 (ỹ − y)2.

α > 0 and β > 0 are hyper-parameters which control the trade-off between low
loss and low model complexity. In practice, (3) can be solved using the stochastic
gradient or coordinate descent methods. Both methods have a runtime complex-
ity of O(kNz(X)) per epoch [13], where Nz(X) is the total number of non-zero
elements in X. Assuming (2) is used, this is the same runtime complexity as for
standard matrix factorization. We now state some important properties of the
optimization problem (3), which were not mentioned in [12] and [13].

Proposition 1. The optimization problem (3) is i) convex in w, ii) non-convex
in V and iii) convex in vjs (elements of V taken separately). If we replace
∑d

j′=j+1(V V T)jj′xjxj′ by
∑d

j′=j(V V T)jj′xjxj′ in (1), i.e., if we use diagonal
elements of V V T, then (3) is iv) non-convex in both V and vjs.

Property ii) means that the stochastic gradient and coordinate descent methods
are only guaranteed to reach a local minimum, the quality of which typically
depends on the initialization of V . Property iii) explains why coordinate descent
is a good method for solving (3): it can monotonically decrease the objective (3)
until it reaches a local minimum. Property iv) shows that if we use diagonal
elements of V V T, (3) becomes a much more challenging optimization problem,
possibly subject to more bad local minima. In contrast, our formulation is convex
whether or not we use diagonal elements.

3 Convex Formulation

We begin by rewriting the prediction equation (1) as

ŷ(x|w,Z) = wTx +
d∑

j=1

d∑

j′=1

zjj′xjxj′ = wTx + 〈Z,xxT〉,

where zjj′ denote the entries of the symmetric matrix Z ∈ S
d×d. Clearly, we

need to impose some structure on Z to avoid its O(d2) memory complexity.
We choose to learn a low-rank matrix Z, i.e., rank(Z) � d. Following recent
advances in convex optimization, we can achieve this by regularizing Z with the
nuclear norm (a.k.a. trace norm), which is known to be the tightest convex lower
bound on matrix rank [11]. Given a symmetric matrix Z ∈ S

d×d, the nuclear
norm is defined as (c.f. supplementary material Section C)

‖Z‖∗ = Tr
(√

Z2
)

= ‖λ‖1, (4)

where λ is a vector which gathers the eigenvalues of Z. We see that regularizing
Z with the nuclear norm is equivalent to regularizing its eigenvalues with the �1
norm, which is known to promote sparsity. Since rank(Z) = ‖λ‖0 = | supp(λ)|,
the nuclear norm thus promotes low-rank solutions. We therefore propose to
learn factorization machines by solving the following optimization problem

min
w∈Rd,Z∈Sd×d

n∑

i=1

�
(
yi, ŷ(xi|w,Z)

)
+

α

2
‖w||2 + β‖Z‖∗, (5)

Convex Factorization Machines 23

where, again, � is a twice-differentiable convex loss function and α > 0 and
β > 0 are hyper-parameters. Problem (5) is jointly convex in w and Z. In our
formulation, there is no rank hyper-parameter (such as k for V). Instead, the
rank of Z is indirectly controlled by β (the larger β, the lower rank(Z)).

Convexity is an important property, since it allows us to derive an efficient
algorithm for finding a global solution (i.e., our algorithm is insensitive to initial-
ization). In addition, our convex formulation is more general than the original
one in the sense that imposing positive semi-definiteness of Z or ignoring diag-
onal elements of Z is not necessary (although it is possible, c.f., Section D and
Section E in the supplementary material).

Any symmetric matrix Z ∈ S
d×d can be written as an eigendecomposition

Z = PΛPT =
∑

s λspsp
T
s , where P is an orthogonal matrix with columns

ps ∈ R
d and Λ = diag(λ) is a diagonal matrix with diagonal entries λs. Using

this decomposition, we can compute predictions efficiently by

ŷ(x|w,PΛPT) = wTx + 〈PΛPT,xxT〉 = wTx +
k∑

s=1

λs(pT
s x)2, (6)

where k = rank(Z). Thus, prediction cost is the same as non-convex factoriza-
tion machines, i.e., O(kNz(x)). The algorithm we present in Section 4 always
maintains such a decomposition. Therefore, Z is never materialized in memory
and we can scale to high-dimensional data. Equation (6) also suggests an inter-
esting interpretation of convex factorization machines. Let κ(p,x) = (pTx)2,
i.e., κ is a homogeneous polynomial kernel of degree 2. Then, (6) can be writ-
ten as ŷ(x|w,PΛPT) = wTx +

∑k
s=1 λsκ(ps,x). Thus, convex factorization

machines evaluate the homogeneous polynomial kernel between orthonormal
basis vectors p1, . . . ,pk and x. In contrast, kernel ridge regression and other
kernel machines compute predictions using

∑n
i=1 aiκ(xi,x), i.e., the kernel is

evaluated between training instances and x. Thus, the main advantage of con-
vex factorization machines over traditional kernel machines is that the basis
vectors are actually learned from data.

4 Optimization Algorithm

To solve (5), we propose a two-block coordinate descent algorithm. That is, we
alternate between minimizing with respect to w and Z until convergence. When
the algorithm terminates, it returns w and Z = PΛPT.

4.1 Minimizing with Respect to w

For minimizing (5) with respect to w, we need to solve

min
w∈Rd

n∑

i=1

�(yi,w
Txi + πi) +

α

2
‖w||2, (7)

where πi = 〈Z,xix
T
i 〉. This is a standard linear model objective, except that the

predictions are shifted by πi. Thus, we can solve (7) using standard methods.

24 M. Blondel et al.

Algorithm 1. Minimizing (8) w.r.t. Z

Input: {(xi, yi)}n
i=1, initial Z = P diag(λ)P T, β > 0

Zλ :=
∑

s∈supp(λ) λspsp
T
s

repeat
Compute p = dominant eigenvector of ∇L(Zλ)

Find λ = argminλ∈R
L

(
Zλ + λppT

)
+ β|λ|

P ← [P p] λ ← [λ λ]

Diagonal refitting case

λ̄ ← λ
λ ← argmin

λ∈Rsupp(λ̄) L̃(λ) + β‖λ‖1 = argmin
λ∈Rsupp(λ̄) L(Zλ) + β‖λ‖1

Fully-corrective refitting case

A = argminA∈Sk×k L(P AP T) + β‖A‖∗ where k = rank(Zλ)
P ← P Q λ ← diag(Σ) where A = QΣQT

until convergence
Output: Z = P diag(λ)P T

4.2 Minimizing with Respect to Z

For minimizing (5) with respect to Z, we need to solve

min
Z∈Sd×d

n∑

i=1

�
(
yi,w

Txi + 〈Z,xix
T
i 〉

)

︸ ︷︷ ︸
:=L(Z)

+β‖Z‖∗. (8)

Two standard methods for solving nuclear norm regularized problems are proxi-
mal gradient and ADMM. For these methods, the key operation is the proximal
operator, which requires an SVD and is thus a bottleneck in scaling to large
matrix sizes. In order to address this issue, we adapt greedy coordinate descent
algorithms [4] [7] designed for general nuclear norm regularized minimization.
The main difference of our algorithm is that we learn an eigendecomposition of
Z rather than an SVD, in order to take advantage of the symmetry of Z.

Outline. To minimize (8), on each iteration we greedily find the rank-one matrix
ppT that most violates the optimality conditions and add it to Z by Z ←
Z+λppT, where λ is the optimal weight. Thus, the rank of Z increases by at most
1 on each iteration. In practice, however, we never materialize Z and maintain
its eigendecomposition Z = P diag(λ)PT instead. To ensure convergence, we
refit the eigendecomposition of Z on each iteration using one of two methods:
diagonal refitting (update λ only) or fully corrective refitting (update both λ
and P). The entire procedure is summarized in Algorithm 1.

Convex Factorization Machines 25

Finding λ and p. Using (4) and (6), we obtain that (8) is equivalent to

min
λ∈Θ

n∑

i=1

�
(
yi,w

Txi +
∑

s∈S
λs(pT

s xi)2
)

︸ ︷︷ ︸
:=L̃(λ)

+β‖λ‖1, (9)

where S is an index set for the elements of the set {ppT : p ∈ R
d, ‖p‖ = 1} and

Θ := {λ ∈ R
S : supp(λ) is finite}. Thus, we converted a problem with respect

to Z in the space of symmetric matrices to a problem with respect to λ in the
space of (normalized) rank-one matrices. This space can be arbitrarily large.
However, the number of non-zero elements in λ is at most d. Moreover, λ will
be typically sparse thanks to the regularization term β‖λ‖1, i.e., | supp(λ)| =
rank(Z) � d. A difference between (9) and past works [17] [4] is that we do not
constrain λ to be non-negative, since eigenvalues can be negative, unlike singular
values. Constraining λ to be non-negative corresponds to a positive semi-definite
constraint on Z, which we cover in Section D of the supplementary material.

According to the Karush-Kuhn-Tucker (KKT) conditions, for any s ∈ S, the
optimality violation of λs at λ is given by

νs =

⎧
⎪⎪⎨

⎪⎪⎩

|∇sL̃(λ) + β|, if λs > 0
|∇sL̃(λ) − β|, if λs < 0

max
(
|∇sL̃(λ)| − β, 0

)
, if λs = 0,

where ∇sL̃(λ) = ∂L̃(λ)
∂λs

. Using the chain rule, we obtain

∇sL̃(λ) = 〈∇L(Zλ),psp
T
s 〉 = pT

s ∇L(Zλ)ps,

where Zλ :=
∑

s∈supp(λ) λspsp
T
s and ∇L(Z) ∈ S

d×d is the gradient of L at Z.
Intuitively, we would like to find the eigenvector ps which maximizes νs:

argmax
s �∈supp(λ)

νs = argmax
s∈S

|∇sL̃(λ)| = argmax
s∈S

|pT
s ∇L(Zλ)ps|

Thus, ps corresponds to the dominant eigenvector of ∇L(Zλ) (eigenvector corre-
sponding to the greatest eigenvalue in absolute value). We can find ps efficiently
using the power iteration method. Since ∇L(Zλ) is a d × d matrix, we cannot
afford to store it in memory when d is large. Fortunately, the power iteration
method only accesses ∇L(Zλ) through matrix-vector products ∇L(Zλ)p for
some vector p ∈ R

d. By exploiting the structure of ∇L(Zλ), we can compute
this product efficiently (c.f., Section 4.3 for the squared loss).

Let λ̄ be the current iterate of λ. Once we found ps, we can find λs by

λs = argmin
λ∈R

L̃
(
λ̄ + (λ − λ̄s)es

)
+ β|λ| = argmin

λ∈R

L
(
Zλ̄ + (λ − λ̄s)psp

T
s

)
+ β|λ|,

(10)

26 M. Blondel et al.

where es = [0, . . . , 0
︸ ︷︷ ︸

s−1

, 1, 0, . . . , 0]T. For the squared loss, this problem can be

solved in closed form (c.f., Section 4.3). For other loss functions, we can solve
the problem iteratively.

Diagonal Refitting. Similarly to [4], we can refit λ restricted to its current
support. Let λ̄ be the current iterate of λ. Then, we solve

min
λ∈Rsupp(λ̄)

L̃(λ) + β‖λ‖1.

This can easily be solved by iteratively using (10) for all s ∈ supp(λ̄) until
the sum of violations

∑
s∈supp(λ̄) νs converges. We call this method “diagonal

refitting”, since the matrix Λ = diag(λ) in Z = PΛPT is diagonal.

Fully-corrective Refitting. Any matrix Z ∈ S
d×d can be written as PAPT,

where P ∈ R
d×k, A ∈ S

k×k (A not necessarily diagonal) and k = rank(Z).
Following a similar idea to [17] and [7], injecting Z = PAPT in (8), we can
solve

min
A∈Sk×k

L(PAPT) + β‖A‖∗, (11)

where we used ‖PAPT‖∗ = ‖A‖∗. This problem is similar to (8); only this
time, it is k × k dimensional instead of d × d dimensional. Once we obtained A,
we can update P and λ by P ← PQ and λ ← diag(Σ), where QΣQT is an
eigendecomposition of A (cheap to compute since A is k × k).

We propose to solve (11) by the alternating direction method of multipliers
(ADMM). To do so, we consider the following augmented Lagrangian

min
A∈Sk×k,B∈Sk×k

L(PAPT) + β‖B‖∗ s.t. A − B = 0. (12)

ADMM solves (12) using the following iterative procedure:

Aτ+1 = argmin
A∈Sk×k

L(PAPT) +
ρ

2
‖A − Bτ + M τ‖2

︸ ︷︷ ︸
:=L̂(A)

(13)

Bτ+1 = Sβ/ρ

(
Aτ+1 + M τ

)
(14)

M τ+1 = M τ + Aτ+1 − Bτ+1,

where ρ is a parameter and Sc is the proximal operator (here, shrinkage oper-
ator). In practice, a common choice is ρ = 1. The procedure converges when
‖Aτ − Bτ‖2F ≤ ε. We now explain how to solve (14) and (13).

Given an eigendecomposition A = QΣQT, where Σ = diag(σ1, . . . , σk), the
shrinkage operator is defined as

Sc(A) = argmin
B

1
2
‖A − B‖2F + c‖B‖∗ = Q diag(σ̂1, . . . , σ̂k)QT,

Convex Factorization Machines 27

where σ̂s = sign(σs)max(|σs| − c, 0). In other words, we apply the soft-
thresholding operator to the eigenvalues of A. For solving the sub-problem (13),
we can afford to use the Newton method, since k � d. Let ∇L̂(A) ∈ S

k×k and
∇2L̂(A) ∈ S

k2×k2
be the gradient and Hessian of L̂ at A. On each iteration, the

Newton method updates A by

A ← A − γD

where D ∈ R
k×k is the solution of the system of linear equations

∇2L̂(A) vec(D) = vec
(
∇L̂(A)

)
(15)

and γ is adjusted by line search (typically, using the Wolfe conditions). Using
the chain rule, we can compute ∇L̂(A) and ∇2L̂(A) by

∇L̂(A) = PT
(
∇L(Z)|Z=P AP T

)
P + ρ(A − Bτ + M τ)

∇2L̂(A) = PT ⊗ PT
(
∇2L(Z)|Z=P AP T

)
P ⊗ P + ρI

To compute ∇L(Z)|Z=P AP T and ∇2L(Z)|Z=P AP T , we need to compute the
predictions at Z = PAPT. This can be done efficiently by ŷ(x|w,PAPT) =
wTx + xT(PA)(PTx).

To solve (15), we can use the conjugate gradient method. This method only
accesses the Hessian through Hessian-vector products, i.e., ∇2L̂(A) vec(D). By
using the problem structure together with the property (A ⊗ B) vec(D) =
vec(BDAT), we can usually compute these products efficiently.

4.3 Squared Loss Case

For the case of the squared loss, we obtain very simple expressions and closed-
form solutions.

Minimizing with Respect to w. For the squared loss, (7) becomes

min
w∈Rd

1
2
‖Xw − τ‖2 +

α

2
‖w||2,

where τ ∈ R
n is a vector with elements τi = yi − 〈Z,xix

T
i 〉. This is a stan-

dard ridge regression problem. A closed-form solution can be computed by
w = XT(XXT + αI)−1τ in O(n3) or by w = (XTX + αI)−1XTτ in O(d3).
When n and d are both large, we can use an iterative method (e.g., conjugate
gradient) instead.

Finding the Dominant Eigenvector. For finding the dominant eigenvector
of ∇L(Zλ), we use the power iteration method, which needs to compute matrix-
vector products ∇L(Zλ)p. For the squared loss, the gradient is given by:

∇L(Z) =
n∑

i=1

rixix
T
i = XTRX, (16)

28 M. Blondel et al.

where R = diag(r1, . . . , rn) and ri = ŷi − yi is the residual of xi at
(w,Z). Clearly, we can compute ∇L(Zλ)p efficiently without ever materializing
∇L(Zλ).

Minimizing with Respect to λ. For the squared loss, we obtain that (10) is
equivalent to

λs = argmin
λ∈R

∇sL̃(λ̄)(λ− λ̄s)+
1

2
∇2

ssL̃(λ̄)(λ− λ̄s)
2 +β|λ| = argmin

λ∈R

1

2

(
λ− λ̃s

)2

+ cs|λ|

where λ̃s := λ̄s − ∇sL̃(λ̄)

∇2
ssL̃(λ̄)

and cs := β

∇2
ssL̃(λ̄)

. This is the well-known soft-
thresholding operator, whose closed-form solution is given by

λs = sign(λ̃s)max(|λ̃s| − cs, 0).

The first and second derivatives of L̃ with respect to λs can be computed effi-
ciently by

∇sL̃(λ) =
n∑

i=1

ri〈psp
T
s ,xix

T
i 〉 =

n∑

i=1

ri(pT
s xi)2 (17)

∇2
ssL̃(λ) =

n∑

i=1

〈psp
T
s ,xix

T
i 〉2 =

n∑

i=1

(pT
s xi)4, (18)

where, again, ri = ŷi − yi is the residual of xi at (w,Zλ).

Fully-corrective Refitting. For the squared loss, the Newton method gives
the exact solution of (13) in one iteration and γ can be set to 1 (i.e., no line
search needed). Given an initial guess Ā, if we solve the system

∇2L̂(Ā) vec(D) = vec
(
∇L̂(Ā)

)
(19)

w.r.t. vec(D), then the optimal solution of (13) is A = Ā − D. To solve (19),
we use the conjugate gradient method, which accesses the Hessian only through
Hessian-vector products. Thus, we never need to materialize the Hessian matrix.
The gradient and Hessian-vector product expressions are given by

∇L̂(A) = PTXTRXP + ρ(A − B + M) (20)

∇2L̂(A) vec(D) = vec(PTXTΠXP) + ρ vec(D), (21)

where R = diag(r1, . . . , rn), ri = ŷi − yi is the residual of xi at (w,PAPT),
Π = diag(π1, . . . , πn) and πi = 〈PDPT,xix

T
i 〉 = xT

i (PDPT)xi. Note that
the Hessian-vector product is independent of A.

4.4 Computational Complexity

We focus our discussion on minimizing w.r.t. Z when using the squared loss
(we assume the implementation techniques described in Section G of the supple-
mentary material are used). For power iteration, the main cost is computing the

Convex Factorization Machines 29

matrix-vector product ∇L(Zλ)p. From (16), this costs O(Nz(X)). For minimiz-
ing with respect to λs, the main task consists in computing the first and second
derivatives (17) and (18), which costs O(n). For the fully corrective refitting,
ADMM alternates between (13) and (14). For (13), the main cost stems from
computing the gradient and Hessian-vector product (20) and (21), which takes
O(kNz(X) + dk2). For (14), the main cost stems from computing the eigende-
composition of a k × k matrix, which takes O(k3), where k � d. If we use the
binary indicator representation (2), then convex factorization machines have the
same overall runtime cost as convex matrix factorization [7].

4.5 Convergence Guarantees

Our method is an instance of block coordinate descent with two blocks, w and
Z. Past convergence analysis of block coordinate descent typically requires sub-
problems to have unique solutions [2, Proposition 2.7.1]. However, (5) is convex
in Z but not strictly convex. Hence minimization with respect to Z may have
multiple optimal solutions. Fortunately, for the case of two blocks, the uniqueness
condition is not needed [6]. For minimization with respect to Z, our greedy
coordinate descent algorithm is an instance of [4] when using diagonal refitting
and of [7] when using fully corrective refitting. Both methods asymptotically
converge to an optimal solution, even if we find the dominant eigenvector only
approximately. Thus, our two-block coordinate descent method asymptotically
converges to a global minimum.

5 Experimental Results

5.1 Synthetic Experiments

We conducted experiments on synthetic data in order to compare the predictive
power of different models:

– Convex FM (use diag): ŷ = wTx + 〈Z,xxT〉
– Convex FM (ignore diag): ŷ = wTx + 〈Z,xxT − diag(x)2〉
– Original FM: ŷ = wTx +

∑d
j=1

∑d
j′=j+1(V V T)jj′xjxj′

– Ridge regression: ŷ = wTx
– Kernel ridge regression: ŷ =

∑n
i=1 aiκ(xi,x)

For kernel ridge regression, the kernel used was the polynomial kernel of degree
2: κ(xi,xj) = (γ + xT

i xj)2. Due to lack of space, the parameter estimation pro-
cedure for Convex FM (ignore diag) is explained in the supplementary material.
We compared the above models under various generative assumptions.

Data generation. We generated y = [y1, . . . , yn]T by yi = wTxi + 〈Z,xix
T
i 〉

(use diagonal case) or by yi = wTxi + 〈Z,xix
T
i − diag(xi)2〉 (ignore diagonal

case). To generate w = [w1, . . . , wd]T, we used wj ∼ N (0, 1) ∀j ∈ [d] where
N (0, 1) is the standard normal distribution. To generate Z = P diag(λ)PT, we

30 M. Blondel et al.

Table 1. Test RMSE of different methods on synthetic data.

Generative process Convex FM
(use diag)

Convex FM
(ignore diag) Original FM Ridge Kernel ridge

(polynomial kernel)
dense, PSD, use diag 68.35 110.18 104.39 104.67 76.77

dense, PSD, ignore diag 27.45 5.93 5.97 56.91 31.74
dense, not PSD, use diag 92.31 159.47 165.90 223.76 154.12

dense, not PSD, ignore diag 60.74 21.17 139.66 208.55 138.17
sparse, PSD, use diag 23.12 25.23 23.82 25.45 25.10

sparse, PSD, ignore diag 8.93 5.10 5.92 21.41 14.39
sparse, not PSD, use diag 12.75 23.13 30.60 36.43 25.17

sparse, not PSD, ignore diag 11.66 7.91 27.46 34.62 21.75

used pjs ∼ N (0, 1) ∀j ∈ [d] ∀s ∈ [k] and λs ∈ N (0, 1) ∀s ∈ [d] (not positive semi-
definite [PSD] case) or λs ∼ U(0, 1) ∀s ∈ [d] (positive semi-definite case), where
U(0, 1) is the uniform distribution between 0 and 1. For generating X ∈ R

n×d,
we compared two cases. In the dense case, we used xij ∼ N (0, 1) ∀i ∈ [n] ∀j ∈ [d].
In the sparse case, we sampled d̄ features from a multinomial distribution whose
parameters are set uniformly at random. We chose n = 1000, d = 50, k = 5
and d̄ = 5. We split the data into 75% training and 25% testing and added 1%
Gaussian noise to the training targets.

Results. Results (RMSE on test data) are indicated in Table 1. Hyper-
parameters of the respective methods were optimized by 5-fold cross-validation.
The setting which is most favorable to Original FM is when the matrix Z used
for generating synthetic data is PSD and diagonal elements of Z are ignored
(2nd and 6th rows in Table 1). In this case, Original FM performed well, although
worse than Convex FM (ignore diag). However, in other settings, especially when
Z is not PSD, convex FM outperformed the Original FM. For example, for dense
data, when Z is not PSD and diagonal elements of Z are ignored, Convex FM
(use diag) achieved a test RMSE of 60.74, Convex FM (ignore diag) 21.17 and
Original FM 139.66. Ridge regression was the worst method in all settings. This
is not surprising since it does not use feature interactions. Kernel ridge regres-
sion with a polynomial kernel of degree 2 outperformed ridge regression but was
worse than convex FM on all datasets.

5.2 Recommender System Experiments

We also conducted experiments on 4 standard recommendation tasks. Datasets
used in our experiments are summarized below.

Dataset n d = |U | + |I|
Movielens 100k 100,000 (ratings) 2,625 = 943 (users) + 1,682 (movies)
Movielens 1m 1,000,209 (ratings) 9,940 = 6,040 (users) + 3,900 (movies)
Movielens 10m 10,000,054 (ratings) 82,248 = 71,567 (users) + 10,681 (movies)

Last.fm 108,437 (tag counts) 24,078 = 12,133 (artists) + 11,945 (tags)

For simplicity, we used the binary indicator representation (2), which results
in a design matrix X of size n × d. We split samples uniformly at random
between 75% for training and 25% for testing. For Movielens datasets, the task
is to predict ratings between 1 and 5 given by users to movies, i.e., y ∈ {1, . . . , 5}.

Convex Factorization Machines 31

For Last.fm, the task is to predict the number of times a tag was assigned to an
artist, i.e., y ∈ N. In all experiments, we set α = 10−9 for convex and original
factorization machines, as well as ridge regression. Because we used the binary
indicator representation (2), w plays the same role as unpenalized bias terms
(c.f., Section A in the supplementary material).

Solver Comparison. For minimizing our objective function with respect to Z,
we compared greedy coordinate descent (GCD) with diagonal refitting and with
fully-corrective refitting, the proximal gradient method and ADMM. Minimiza-
tion with respect to w was carried out using the conjugate gradient method.
Results when setting β = 10 are given in Figure 1. We were only able to run
ADMM on Movielens 100K because it needs to materialize Z in memory. Exper-
iments were run on a machine with Intel Xeon X5677 CPU (3.47GHz) and 48
GB memory.

Results. GCD with fully-corrective refitting was consistently the best solver
both with respect to objective value and test RMSE. GCD with diagonal refitting
converged slower with respect to objective value but was similar with respect
to test RMSE, except on Last.fm. The proximal gradient and ADMM methods
were an order of magnitude slower than GCD.

Model Comparison. We used the same setup as in Section 5.1 except that
we replaced kernel ridge regression with support vector regression (we used the
implementation in libsvm, which has a kernel cache and scales better than kernel
ridge regression w.r.t. n). For hyper-parameter tuning, we used 3-fold cross-
validation (CV). For convex and original factorization machines, we chose β from
10 log-spaced values between 10−1 and 102. For original factorization machines,
we also chose k from {10, 20, 30, 40, 50}. For Movielens 10M, we only chose β
from 5 log-spaced values and we set k = 20 in order to reduce the search space.
For SVR, we chose the regularization parameter C from 10 log-spaced values
between 10−5 and 105. For convex factorization machines, we made use of warm-
start when computing the regularization path in order to accelerate training. For
practical reasons, we used early stopping in order to keep rank(Z) under 50.

Results. Test RMSE, training time (including hyper-parameter tuning using
3-fold CV) and the rank obtained (when applicable) are indicated in Table 2.
Except on Movielens 100k, Convex FM (ignore diag) obtained lower RMSE, was
faster to converge and obtained lower rank than Convex FM (use diag). This
comes however at the cost of more complicated gradient and Hessian expressions
(c.f., Section E in the supplementary material for details). Except on Movielens
10M, Convex FM (ignore diag) obtained lower RMSE than Original FM. Train-
ing time was also lower thanks to the reduced number of hyper-parameters to
search. Ridge regression (RR) was a surprisingly strong baseline, SVR was worse
than RR. This is due to the extreme sparsity of the design matrix when using the
binary indicator representation (2). Since features co-occur exactly only once,
SVR cannot exploit the feature interactions despite the use of polynomial ker-
nel. In contrast, factorization machines are able to exploit feature interactions

32 M. Blondel et al.

Fig. 1. Solver comparison when using α = 10−9 and β = 10. Left: relative objective
error |(f t − f∗)/f∗|, where f t is the objective value measured on time t and f∗ is the
optimal objective value. Right: RMSE on test data.

Convex Factorization Machines 33

Table 2. Test RMSE, training time (including hyper-parameter tuning using 3-fold
cross-validation) and rank of different models on real data. Results are averaged over
3 runs using different train / test splits (rank uses the median).

Dataset Convex FM
(use diag)

Convex FM
(ignore diag) Original FM Ridge

SVR
(polynomial

kernel)

Movielens 100k
RMSE 0.93 0.93 0.93 0.95 1.20
Time 7.09 min 6.72 min 10.05 min 0.28 s 35.30 s
Rank 23 20 20

Movielens 1m
RMSE 0.87 0.85 0.86 0.91 1.24
Time 1.07 h 38.74 min 3.93 h 3.14 s 3.68 min
Rank 27 20 20

Movielens 10m
RMSE 0.84 0.82 0.81 0.87 N/A
Time 5.02 h 4.29 h 5.84 h 59.35 s N/A
Rank 34 17 20

Last.fm
RMSE 2.21 2.05 2.13 2.60 3.24
Time 7.77 min 6.91 min 14.17 min 0.63 s 36.70 s
Rank 50 48 40

despite high sparsity thanks to the parameter sharing induced by the factoriza-
tion Z = PΛPT.

6 Related Work

Recently, convex formulations for the estimation of a low-rank matrix have been
extensively studied. The key idea [5] is to replace the rank of a matrix, which is
non-convex, by the nuclear norm (a.k.a. trace norm), which is known to be the
tightest convex lower bound on matrix rank [11]. Nuclear norm regularization has
been applied to numerous applications, including multi-task learning and matrix
completion [18]. The latter is typically formulated as the following optimization
problem. Given a matrix X ∈ R

|U |×|I| containing missing values, we solve

min
M∈R|U|×|I|

1
2
‖PΩ(X) − PΩ(M)‖2F + λ‖M‖∗, (22)

where Ω is the set of observed values in X and (PΩ(M))i,j = (M)i,j if (i, j) ∈ Ω,
0 otherwise. Extensions to tensor factorization have also been proposed for data
with more than two modes (e.g., user, item and time) [19]. However, in (22)
and tensor extensions, it is not trivial to incorporate auxiliary features such as
user (age, gender, ...) and item (release date, director’s name, ...) attributes. The
most related work to convex factorization machines is [1], in which a collabo-
rative filtering method which can incorporate additional attributes is proposed.
However, their method can only handle two modes (e.g., user and item) and no
scalable learning algorithm is proposed. The advantage of convex factorization
machines is that it is very easy to engineer features, even for more than two
modes (e.g., user, item and context).

34 M. Blondel et al.

7 Conclusion

Factorization machines are a powerful framework that can exploit feature
interactions even when features co-occur very rarely. In this paper, we pro-
posed a convex formulation of factorization machines. Our formulation imposes
fewer restrictions on the feature interaction weight matrix and is thus more gen-
eral than the original one. For solving the corresponding optimization problem,
we presented an efficient globally-convergent two-block coordinate descent algo-
rithm. Our formulation achieves comparable or lower predictive error on several
synthetic and real-world benchmarks. It can also overall be faster to train since
it has one less hyper-parameter than the original formulation. As a side contri-
bution, we also clarified the convexity properties (or lack thereof) of the original
factorization machine’s objective function. Future work includes trying (convex)
factorization machines on more data (e.g., genomic data, where feature interac-
tions should be useful) and developing algorithms for out-of-core learning.

References

1. Abernethy, J., Bach, F., Evgeniou, T., Vert, J.P.: A new approach to collaborative
filtering: Operator estimation with spectral regularization. J. Mach. Learn. Res.
10, 803–826 (2009)

2. Bertsekas, D.P.: Nonlinear programming. Athena scientific Belmont (1999)
3. Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae,

V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A.,
Holt, B., Varoquaux, G.: API design for machine learning software: experiences from
the scikit-learn project. In: ECMLPKDDWorkshop: Languages forDataMining and
Machine Learning, pp. 108–122 (2013)

4. Dudik, M., Harchaoui, Z., Malick, J.: Lifted coordinate descent for learning with
trace-norm regularization. In: AISTATS, vol. 22, pp. 327–336 (2012)

5. Fazel, M., Hindi, H., Boyd, S.P.: A rank minimization heuristic with application to
minimum order system approximation. American Control Conference 6, 4734–4739
(2001)

6. Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear gauss-seidel
method under convex constraints. Operations Research Letters 26(3), 127–136
(2000)

7. Hsieh, C.J., Olsen, P.: Nuclear norm minimization via active subspace selection.
In: ICML, pp. 575–583 (2014)

8. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: KDD, pp. 426–434 (2008)

9. Koren, Y.: Collaborative filtering with temporal dynamics. Communications of the
ACM 53(4), 89–97 (2010)

10. Loni, B., Shi, Y., Larson, M., Hanjalic, A.: Cross-domain collaborative filtering
with factorization machines. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai,
C.X., de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416,
pp. 656–661. Springer, Heidelberg (2014)

11. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM Review 52(3), 471–501
(2010)

Convex Factorization Machines 35

12. Rendle, S.: Factorization machines. In: ICDM, pp. 995–1000. IEEE (2010)
13. Rendle, S.: Factorization machines with libfm. ACM Transactions on Intelligent

Systems and Technology (TIST) 3(3), 57–78 (2012)
14. Rendle, S.: Scaling factorization machines to relational data. In: VLDB, vol. 6,

pp. 337–348 (2013)
15. Rendle, S., Gantner, Z., Freudenthaler, C., Schmidt-Thieme, L.: Fast context-aware

recommendations with factorization machines. In: SIGIR, pp. 635–644 (2011)
16. Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for per-

sonalized tag recommendation. In: WSDM, pp. 81–90. ACM (2010)
17. Shalev-Shwartz, S., Gonen, A., Shamir, O.: Large-scale convex minimization with

a low-rank constraint. In: ICML, pp. 329–336 (2011)
18. Srebro, N., Rennie, J., Jaakkola, T.S.: Maximum-margin matrix factorization. In:

Advances in Neural Information Processing Systems, pp. 1329–1336 (2004)
19. Tomioka, R., Hayashi, K., Kashima, H.: Estimation of low-rank tensors via convex

optimization. arXiv preprint arXiv:1010.0789 (2010)

http://arxiv.org/abs/1010.0789

Generalized Matrix Factorizations as a Unifying
Framework for Pattern Set Mining: Complexity

Beyond Blocks

Pauli Miettinen(B)

Max-Planck-Institut Für Informatik, Saarbrücken, Germany
pauli.miettinen@mpi-inf.mpg.de

Abstract. Matrix factorizations are a popular tool to mine regulari-
ties from data. There are many ways to interpret the factorizations, but
one particularly suited for data mining utilizes the fact that a matrix
product can be interpreted as a sum of rank-1 matrices. Then the fac-
torization of a matrix becomes the task of finding a small number of
rank-1 matrices, sum of which is a good representation of the original
matrix. Seen this way, it becomes obvious that many problems in data
mining can be expressed as matrix factorizations with correct definitions
of what a rank-1 matrix and a sum of rank-1 matrices mean. This paper
develops a unified theory, based on generalized outer product operators,
that encompasses many pattern set mining tasks. The focus is on the
computational aspects of the theory and studying the computational
complexity and approximability of many problems related to generalized
matrix factorizations. The results immediately apply to a large number
of data mining problems, and hopefully allow generalizing future results
and algorithms, as well.

1 Introduction

One of the most fundamental tasks in data mining is to explain (or summarize)
a data set using a collection of simple and easy-to-understand structures (com-
monly referred to as regularities or patterns). A block of some kind has been the
predominant type of patterns sought by many data mining algorithms; a clique
(or quasi-clique) in a network or a frequent itemset or a tile in transaction data
are all blocks, or more precisely, (binary) rank-1 (sub-)matrices. Consequently,
a collection of these blocks summarizing the data can be seen as a matrix fac-
torization of the data matrix [27].

But in recent years, increased emphasis has been put to patterns that go
‘beyond blocks’, for example, nested submatrices [17], taxonomies [18], stars,
biclique cores, or chains [19], or hyperbolic subgraphs [3] (see Figure 1 for exam-
ples of some of these patterns). At first, it might seem like these patterns share
very little, if anything, with simple blocks; they are, for example, not rank-1. It
seems, then, that we have to re-do much of the work we have already done in
analysing the computational aspects of mining collections of blocks.

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 36–52, 2015.
DOI: 10.1007/978-3-319-23525-7 3

Generalized Matrix Factorizations as a Unifying Framework 37

More in-depth study, however, starts revealing various similarities between
these patterns that are ‘beyond blocks’ and the simple blocks. The intuition of
expressing a data sets using a collection of simple patterns, for example, is the
same. Consequently, we can still consider the patterns as ‘rank-1’ sub-matrices,
and the whole summarization as a form of matrix factorization – we only need
new definitions of ranks and matrix factorizations.

In this paper I propose generalized outer products as a unifying framework
to express different kinds of patterns. As the name implies, it generalizes the
outer product of two vectors (i.e. the operator used to express cliques and other
block patterns). The new generalized definitions of matrix rank and factorization
follow from the outer product, as we will see in Section 3.

The framework works over any semi-ring, but for the sake of concreteness,
the examples are presented using a fixed set of binary patters, introduced in
Example 1 and Figure 1. After we have seen the definition of the framework
(Section 3), we study how some common concepts, such as the matrix rank,
behave under it (Section 3.2).

The framework alone is not useful for data mining researchers, though. To
that end, it must help the researchers to obtain interesting results. To demon-
strate the proposed framework’s capability to do that, we see a series of general
results regarding the computational complexity (Section 4) and approximability
(Section 5) of some fundamental problems related to the generalized decompo-
sitions in binary matrices. These results will immediately yield corresponding
results for any pattern fitting to the framework.

The purpose of this paper is to develop the framework and to demonstrate its
usefulness via number of general results. As a consequence, some of the results we
will see are already known in the literature in some specific cases; indeed, some
of the results have been presented for multiple special cases – an unnecessary
repetition that can be avoided with the proposed framework. The goal of this
paper is not to present novel algorithms for mining the patterns. While it is
expected that the framework facilitates developing of general algorithms, more in-
depth studies to that end are left for future work. That said, we do see number of
existing algorithms (mostly in Section 5) that can be used to solve certain general
problems in the proposed framework with provable performance guarantees.

Before moving on, let us briefly discuss some related work.

2 Related Work

Finding patterns from data is in the core of data mining, with frequent itemset
mining being an early and prominent example. Much of the research focus has
nowadays sifted from finding all the patterns to finding an interesting subset
of them, with the interestingness being defined either in combinatorial [15,34],
information-theoretic [10,33], or other means. Similar problems were also studied,
for example, in formal concept analysis [6] and role mining [12].

What all of the aforementioned work shares is that they aim at describing a
binary matrix using a set of rank-1 binary sub-matrices. The requirement for sub-
matrices is strict: all these methods are restricted to rank-1 matrices that appear

38 P. Miettinen

in the input data as such (known as from-below or dominated decompositions).
When this requirement is lifted, the problem is usually referred to as Boolean
matrix factorization [22,25], although especially earlier other names were also
used [28].

A seemingly unrelated line of research grew from the problem of finding com-
munities from graphs. Traditionally, communities were considered exclusively as
cliques (or bicliques, in case of bipartite graphs), corresponding again to rank-1
sub-matrices of the adjacency matrix. While this connection is often not made
explicitly, it can be – and has been [35] – used to design community-detection
algorithms, especially for the overlapping case.

Mere cliques (or bicliques), however, might not be enough to properly explain
the interesting communities in the graphs [19], and recently many real-world com-
munities were found out to be more hyperbolic than clique-like [3]. The require-
ment for communities more complex than simply cliques has been encapsulated
to the “beyond blocks” slogan.

Communities or itemsets or rank-1 matrices are not the only kind of pat-
terns data miners are interested about, of course. Patterns such as nested or
banded submatrices [17] or taxonomies [18], among many others, are equally
well expressed in the generalized framework of this paper.

3 Definitions

Throughout this paper, upper-case bold symbols (A) will be used to denote
matrices, lower-case bold symbols (a) denote vectors, and lower-case normal
symbols (a) denote scalars. If n is an integer, the shorthand notation [n] is used
for set {1, 2, . . . , n}.

For any matrix A (binary or not), |A| denotes the number of non-zero ele-
ments in it.

We work over algebraic structure T = (T,�,�, 0, 1). The binary operator �
is called addition and the binary operator � is called multiplication, with 0 ∈ T
and 1 ∈ T being their respective identity elements. T is required to be at least a
semiring, that is, � is commutative and � distributes over �.

Before going forward to the definitions, let us see different types of patterns
that will be used in examples throughout the paper.

Example 1. A biclique, a binary rank-1 matrix, and a (combinatorial) tile all
refer to the same kind of pattern: a submatrix full of 1s, that is, a block. A star
(Figure 1, left) and a biclique core (Figure 1, middle-left) are forms of patterns
in (undirected) graphs: star represents a collection of vertices that are connected
to each other only via a single hub vertex, while a biclique core represents a
set of vertices that form a complete bipartite graph. A chain (Figure 1, middle-
right) is a set of vertices where each vertex is connected only to the next one,
while nested matrix (Figure 1, right) is a bipartite graph where each subsequent
vertice’s neighbors are a subset of the previous one’s neighbors.

Note that in Figure 1, all matrices are permuted for maximum readability;
in general, no particular ordering of the rows or columns is required. ♦

Generalized Matrix Factorizations as a Unifying Framework 39

Fig. 1. Different types of patters, from left to right: star, biclique core, chain, and
nested. The first three are symmetric square matrices; nested is asymmetric general
matrix.

3.1 Generalized Outer Product

The definition of the generalized outer product is the core of the proposed frame-
work. Similar definitions have appeared earlier, but to the best of the author’s
knowledge, this exact definition of generalized outer product has not been pro-
posed earlier.

Definition 1. The generalized outer product operator of two vectors x ∈ T
n

and y ∈ T
m with parameters θ ∈ Θ is a function o : Tn ×T

m ×Θ → T
n×m such

that for all (i, j) ∈ [n] × [m], if xi = 0 or yj = 0, then o(x,y, θ)ij = 0.

It is helpful to consider the outer products of the four patterns in Figure 1:

Example 2. The star pattern can be generated using generalized outer product
os(x,x, k) = (aij), where

aij =

{
1 if xi = 1 and xj = 1 and either i = k or j = k

0 otherwise .

This can be interpreted as follows: binary vector x selects the rows and columns
(e.g. vertices) that participate in the pattern, while parameter k chooses the
vertex that is the centre of the star. Naturally, if xk = 0 this yields empty
pattern. We could require that xk = 1 without significant changes to anything
that follows. Similar requirements could be applied to many of the following
patterns, as well, but they are not stated for the sake of brevity.

The biclique core pattern can be generated using generalized outer product
obc(x,x, I ⊂ [n]) = (aij), where

aij =

{
1 if xi = 1 and xj = 1 and exactly one of i ∈ I or j ∈ I holds
0 otherwise .

The outer product generating the chain pattern is oc(x,y) = (aij), where
aij = 1 if xi = 1, yj = 1, and j = i + 1, and aij = 0 otherwise.

The outer product for nested pattern is on(x,y, s) = (aij), where s ∈ [m]n

defines a step function and

aij =

{
1 if xi = 1 and yj = 1 and j ≤ si

0 otherwise .

40 P. Miettinen

Notice that for the resulting pattern to be valid, si ≤ sj for all i > j if we are
looking for direct nested submatrices; if we want to find general nested submatri-
ces, the indices must be permuted appropriately (see [17] for more information
on direct and general nested patterns). ♦

In the above examples, all outer products were defined element-wise. The
generalized outer products that can be defined element-wise form an important
sub-class of generalized outer products, called decomposable outer products:

Definition 2. A generalized outer product operator o is decomposable if we
have that o(x,y, θ)ij = f(xi, yj , i, j, θ) for all i and j. We say that o is decom-
posable to f .

The indices i and j can be considered as two additional parameters in θ and
will often be omitted for brevity’s sake.

Another common feature shared with most of the above examples is that the
outer product is with vector x itself. This ensures that the product is symmetric.

Definition 3. An outer product o(x,y, θ) is symmetric if x = y and
o(x,y, θ) = o(x,y, θ)T .

For decomposable outer products, it is enough to require that x = y as the
other constraint follows automatically.

3.2 Generalized Rank

A common way to measure the complexity of the structure of a matrix is its
rank. Multiple equivalent definitions of a matrix rank exist under normal linear
algebra, but most of them do not generalize well to our case. We shall now
generalize the so-called Schein rank and study some properties of the resulting
general rank.

Definition 4. Matrix M ∈ T
n×m has outer product operator o induced rank,

ranko(M) = 1 if there exists vectors x ∈ T
n and y ∈ T

m and parameters θ ∈ Θ
such that M = o(x,y, θ).

For brevity, the outer product will be omitted from the rank when it is clear
from the context. Hence, if matrix M is rank-1, it implicitly means that its
o-induced rank is 1.

Definition 5. The (generalized) sum of two matrices A ∈ T
n×m and B ∈

T
n×m is the element-wise sum A � B using the summation � of T. That is,

(A � B)ij = aij � bij.

Generalized Matrix Factorizations as a Unifying Framework 41

Definition 6. A set D = {F i ∈ T
n×m : ranko(F i) = 1} is the decomposition

(under o and �) of a matrix M ∈ T
n×m if

M = F 1 � F 2 � · · · � F |D| . (1)

The size of the decomposition D is |D|.
If D is a decomposition of A and o is decomposable to f , we get the familiar

element-wise matrix product form

aij =
|D|

�
k=1

f(xik, yjk, θ) , (2)

where o(xk,yk, θ) = F k ∈ D for all i ∈ [|D|].
Hence, we can define the matrix product for decomposable outer products.

Definition 7. If o is decomposable to f , the matrix product of A ∈ T
n×k and

B ∈ T
k×m (under o, θ, and �) is defined element-wise as

(A �θ B)ij =
k

�
l=1

f(ail, blj , θ) . (3)

Definition 8. Let o be decomposable to f . The operator 〈·, ·〉 : Tn × T
n → T is

inner product if it satisfies the following rules for all x,y,z ∈ T
n and α ∈ T:

〈x,y〉 = 〈y,x〉 (4a)
〈α � x,y〉 = α � 〈x,y〉 (4b)
〈x � y,z〉 = 〈x,z〉 � 〈y,z〉 (4c)

〈x,x〉 ≥ 0 (4d)
〈x,x〉 = 0 ⇒ x = 0 . (4e)

If decomposable o induces an inner product, we say o is inner-product
compatible.

Notice that the decomposability is the crucial element here.

Definition 9. The rank (over o) of A ∈ T
n×m, ranko(T), is the smallest integer

k such that there exists a decomposition D of A with size k. If no decomposition
exist, ranko(T) = ∞.

A singleton matrix has exactly one non-zero value, and is characterized by
triple (i, j, α), corresponding to a matrix A for which apq = α if i = p and j = q
and apq = 0 otherwise. If an outer product operator o can generate all n-by-m
singleton matrices (i, j, α) ∈ [n] × [m] × T (it is singleton-generating), the rank
of any A ∈ T

n×m induced by o is bounded by ranko(A) ≤ |A| ≤ nm.

42 P. Miettinen

Example 3. The star outer product os is singleton-generating: we can set x
to have exactly one non-zero and set k to the index of that non-zero. These
singleton-stars can be used to represent any symmetric binary matrix A. The
biclique core outer product obc is not singleton-generating, however, and it can
induce infinite ranks. Consider, for example, the 2-by-2 identity matrix I2:

I2 =
(

1 0
0 1

)

.

As every vertex is connected to itself, and only to itself, there are no bipar-
tite graphs and I2 cannot be expressed with a set of biclique cores, that is,
rankobc

(I2) = ∞. ♦

4 Computational Complexity

We will now move to the applications of the proposed framework. Specifically, we
will consider some results regarding the computational complexity and approx-
imability of problems related to generalized decompositions in binary matrices.

4.1 Rank-1 Submatrices

Let us start by studying problems regarding finding the largest rank-1 matrix.
It is a very common sub-problem in almost all algorithms that need to find a set
of patterns. For the results, we need the definition of hereditary outer product.

Definition 10. Binary outer product operator o is hereditary if the class of
rank-1 matrices induced by it is closed under permutation and deletion of rows
and columns.

Example 4. Stars, biclique cores, and nested matrices are closed under permuta-
tions and deletions of rows and columns, and consequently their outer products
are hereditary. Chains are not closed under deletion of rows and columns, and
the outer product is not hereditary.

The exact definition of the problems depends on how we define “large”. We
start by studying the case where large pattern is one with large circumference.

Problem 1. In the binary maximum-circumference o-induced rank-1 submatrix
problem we are given a binary matrix A ∈ {0, 1}n×m and our task is to find
vectors x ∈ {0, 1}n and y ∈ {0, 1}m and parameters θ such that o(x,y, θ) is
dominated by A and we maximize the (half-) circumference |x| + |y|.
Proposition 1. Let Mo be the family of all o-induced rank-1 matrices (of any
size), where o is hereditary. If the number of distinct rows (or columns) in matri-
ces of Mo is unbounded, the binary maximum-circumference o-induced rank-1
submatrix problem is NP-hard; if the number of distinct rows (or columns) is
bounded, the problem can be solved in polynomial time.

Generalized Matrix Factorizations as a Unifying Framework 43

The result follows straight forwardly from Corollary 4 of Yannakakis [36].
Many interesting patterns have bounded number of distinct rows, for example,
bicliques have exactly two kinds of rows: the rows corresponding to the nodes
that are in the biclique, and the rows corresponding to the nodes that are not in
it. On the other hand, for example nested matrices have unbounded number of
distinct rows. Notice also that one cannot have bounded number of distinct rows
but unbounded number of distinct columns (or vice versa) in a binary matrix:
for k distinct rows one cannot have more than 2k distinct columns.

The symmetric maximum-circumference rank-1 submatrix problem is like
its asymmetric case, but we require the input matrix A ∈ {0, 1}n×n and the
outer product o be symmetric (and hence the outer product is of type o(x,x, θ)).
Adding the symmetry requirement makes the problem harder, as now it is enough
that there are infinitely-many rank-1 submatrices and infinitely many matrices
with higher ranks.

Proposition 2. Let So be the family of all binary matrices generated by hered-
itary binary symmetric outer product o(x,x, θ) and let Sc

o be the family of all
symmetric binary matrices not in So. If |So| = |Sc

o | = ∞, then finding the
maximum-circumference o-induced symmetric rank-1 submatrix is NP-hard.

The result follows from Lewis and Yannakakis [21].
Another possible definition for “large” is to study the area: the maximum-

area rank-1 problems ask to maximize the area instead of the circumference.

Problem 2. In the binary maximum-area o-induced rank-1 submatrix problem
we are given a binary matrix A ∈ {0, 1}n×m and our task is to find vectors
x ∈ {0, 1}n and y ∈ {0, 1}m and parameters θ such that o(x,y, θ) is dominated
by A and we maximize the area |x| |y|.

The symmetric binary maximum-area rank-1 submatrix problem is defined
analogously. As the area of a symmetric rank-1 matrix is simply |x|2, the hard-
ness of the symmetric problems is a straight forward corollary of Proposition 2.

Proposition 3. The binary symmetric maximum-area rank-1 submatrix prob-
lem is NP-hard exactly when the binary symmetric maximum-circumference
rank-1 problem is.

Proof. The maximum-circumference problem asks us to decide if the given
matrix has a symmetric rank-1 submatrix such that 2 |x| ≥ t, while in the
maximum-area problem the condition is that |x|2 ≥ t′. Thus, we can solve the
maximum-circumference problem by solving the maximum-area problem with
t′ = t2/4. ��

For the asymmetric case this trivial correspondence does not necessarily hold,
as can be readily witnessed by noticing that the binary maximum-area rank-1
submatrix problem under standard algebra corresponds to the maximum-edge
biclique, and hence is NP-hard [29].

44 P. Miettinen

The third variant of binary maximum rank-1 submatrices are the maximum-
content submatrices, that is, the submatrices with maximum number of non-
zeros (in symmetric matrices, this corresponds to maximum-edge subgraphs).
The complexity of these problems can often be reduced to the complexity of the
maximum-area or maximum-circumference problems.

Proposition 4. If there exists a set of parameters θ such that the number of
non-zeros in o(x,y, θ) depends only on circumference |x|+|y| (resp. area |x| |y|),
then finding the maximum-content rank-1 submatrix is NP-hard if finding the
maximum-circumference (resp. maximum-area) rank-1 submatrix is NP-hard.

4.2 Selecting Some Rank-1 Submatrices

We now turn to problems where we are given a set of rank-1 matrices, and our
task is to select some of them (e.g. to be presented to the user). This is also a
common subproblem in many pattern set mining algorithms, where first a set
of candidate solutions is generated, and then a final selection is performed from
that set.

Problem 3. In the smallest binary sub-decomposition problem we are given
a matrix A ∈ {0, 1}n×m and its decomposition D = {F i ∈ {0, 1}n×m :
ranko(F i) = 1} and our task is to find the smallest subset C ⊆ D that is
still a valid decomposition, i.e., �F∈C F = A.

Proposition 5. If � is either logical OR, logical AND, or logical XOR, the
smallest binary sub-decomposition problem is NP-hard.

Proof. We study the cases separately.
OR: This case is very similar to the Tiling databases [15], and we present the

reduction only for the sake of completeness. The reduction is from the minimum
set cover problem [14]. Let (U,S ⊂ 2U) be a set system. Let a ∈ {0, 1}n be an
all-1s vector where |U | = n, and for each S ∈ S, define vector f (S) ∈ D to be the
characteristic vector of S, that is f

(S)
i = 1 if ui ∈ S and f

(S)
i = 0 otherwise. It is

trivial to see that the smallest sub-decomposition C ⊆ D for which
∨

f(S)∈C f (S)

is equivalent to the minimum set cover.
AND: This is similar to above, except that the reduction constructs the

complements of a (which is all-0s) and f (S)s and the proof follows from De
Morgan’s laws.

XOR: In the decoding of linear codes problem [14], we are given a binary
matrix B ∈ {0, 1}n×k and a binary vector a ∈ {0, 1}k and we need to find a
binary vector x ∈ {0, 1}k minimizing |x| such that

⊕k
j=1 xjbij = ai for all i ∈ [n],

where ⊕ is the logical XOR operatior. To reduce this to the sub-decomposition
problem, it is enough to notice that if we take the column vectors bj of matrix B
as the factors in D we have the smallest binary sub-decomposition problem.1 ��
1 A minor technicality is that B for which

⊕
j bj �= a does not yield to a valid input

to the smallest sub-decomposition problem. This can be solved by adding a new
column c =

⊕
j bj to B, and by adding one row to B and a; this row has value 1

in a and c, and is 0 in other columns of B.

Generalized Matrix Factorizations as a Unifying Framework 45

These problems can also be seen as generalizations of a test for linear inde-
pendency: in some sense, what we need to remove are the factors that are not
independent from the others.

4.3 Minimum-Error Sub-Decompositions

In many applications we can assume the input data contains noise, and has
high (or even infinite) o-induced rank. In these situations, we might be more
interested on approximate decompositions, and instead of finding the smallest
exact sub-decomposition, we want to find a sub-decomposition that induces the
minimum error.

Problem 4. In the minimum-error binary sub-decomposition problem we are
given a matrix A ∈ {0, 1}n×m and a set D = {F i ∈ {0, 1}n×m : ranko(F i) = 1}
and our task is to find subset C ⊆ D of size k that minimizes

∣
∣
∣
∣
∣�
F∈C

F − A

∣
∣
∣
∣
∣

. (5)

Using the Hamming distance, as in (5), is natural in case of binary decom-
positions; other error measures are of course possible, especially for matrices
taking non-binary values. These problems are no easier than the smallest sub-
decomposition problems.

Proposition 6. If � is either logical OR, logical AND, or logical XOR, the
minimum-error binary decomposition problem is NP-hard.

Proof. We again work case-by-case:
OR: In the basis usage problem we are given a binary vector a ∈ {0, 1}n

and a binary matrix B ∈ {0, 1}n×k, and our task is to find a binary vector
x ∈ {0, 1}k such that

∣
∣
∣a − ∨k

i=1 xibi

∣
∣
∣ is minimized, where xibi yields all-0s

vector if xi = 0, and b if xi = 1. This clearly a special case of minimum-error
binary sub-decomposition, and the claim follows as basis usage problem is NP-
hard [25].

AND: This case again follows from De Morgan’s laws by taking complements
and using the above reduction.

XOR: In the nearest codeword problem we are given a binary vector a ∈
{0, 1}n and a binary matrix B ∈ {0, 1}n×k, and our task is to find a binary
vector x ∈ {0, 1}k such that

∣
∣a − ⊕k

i=1xibi

∣
∣ is minimized. This, again, is a special

case of minimum-error binary sub-decomposition, and the claim follows as the
nearest codeword problem is NP-hard [4]. ��

4.4 Deciding the Rank

Deciding the (generalized) rank of a matrix is a fundamental question. Unfor-
tunately, the complexity of deciding the rank depends on the interplay between
the underlying algebraic structure T and the generalized outer product o, as the
following examples illustrate.

46 P. Miettinen

Example 5. Consider binary n-by-m matrices and the normal outer product
o(x,y, θ) = xyT . If the summation � is the logical OR operator, the rank
is the Boolean rank of the matrix, and consequently NP-hard (see, e.g. [28]). If,
however, the summation � is the logical XOR operator, finding the rank can be
done in polynomial time [31]. ♦

We say binary outer product o(x,y, θ) subsumes bicliques if there exists
parameters θ such that o(x,y, θ) = xyT for all x and y.

Corollary 1. Let T = ({0, 1},∨,�, 0, 1). Finding the o-induced rank of A ∈
T

n×m is NP-hard if o subsumes the bicliques.

4.5 Minimum-Error Approximate Decompositions

The minimum-error fixed-rank decompositions are to the rank-decision problems
what the minimum-error fixed-size sub-decompositions are to the smallest sub-
decompositions.

Problem 5. In the minimum-error fixed-rank binary decomposition we are given
a matrix A ∈ {0, 1}n×m and an integer k, and our task is to find set D = {F i ∈
{0, 1}n×m : ranko(F i) = 1, i ∈ [k]} that minimizes

∣
∣
∣
∣
∣�
F∈D

F − A

∣
∣
∣
∣
∣

. (6)

In the decision version of Problem 5, the input is prepended with parameter
t ∈ R and instead of minimizing (6), the task is to decide if there exists D such
that ∣

∣
∣
∣
∣�
F∈D

F − A

∣
∣
∣
∣
∣
≤ t . (7)

It is easy to see that the complexity of these problems is no easier than that of
the related rank-decision problems:

Proposition 7. If computing the o-rank is NP-hard, so is computing the
minimum-error approximate decomposition.

Proof. If we set t = 0 in (7), the o-rank of A is the least k for which we have
positive answer. ��

5 Approximability

As we saw, most problems related to binary generalized outer products are NP-
hard. Approximation algorithms are a common recourse to the NP-completeness,
and in this section we will study the approximability of some of the problems
studied above. As we shall see, many – but not all – problems are hard even to
approximate, giving a post hoc justification to the various heuristics employed
in the prior work.

Generalized Matrix Factorizations as a Unifying Framework 47

5.1 Approximating Smallest Sub-Decompositions

We start with the problem that is easiest to approximate:

Proposition 8. If � = ∨, the smallest binary sub-decomposition can be approx-
imated to within ln n (and no better) in polynomial time.

Proof. We reduce the problem to the minimum set cover in an approximation-
preserving way. Let U = {(i, j) : aij = 1} be the set of all locations of A that
are 1. For every matrix F k ∈ D, define set Fk = {(i, j) : (F k)ij = 1} as the
locations of ones in F k and let the collection D = {Fk : k = 1, . . . , |D|}. As
D is a decomposition of A, it is guaranteed that

⋃|D|
k=1 Fk = U . The task of

finding the smallest sub-decomposition of D is equivalent to finding the smallest
sub-collection C ⊆ D such that

⋃
Fk∈C Fk = U , that is, the minimum set cover

problem. As the reduction preserves the value of the optimization target, it
preserves the approximability and hence we can use, for example, the famous
greedy Θ(ln n)-approximation algorithm [16]. On the other hand, the reduction
in the proof of Proposition 5 is also approximation-preserving, and consequently,
the ln n bound is tight unless P = NP [13]. ��

The approximation-preserving reduction to and from set cover, together with
the result of Simon [32], gives us the following interesting corollary:

Corollary 2. Given an algorithm that, in every iteration of the greedy algo-
rithm, selects the factor F i ∈ D that approximates the best choice by a factor of
O(h(n)), we can approximate the smallest binary sub-decomposition by a factor
of O(h(n) ln n).

This corollary can be very useful when the decomposition D is given only
implicitly, and cannot be exhaustively searched for the best solution in every iter-
ation. For example, the tiling algorithm of [15] needs – in principle – to search
every closed itemset of the input data in every iteration. To avoid that, the
authors resolve to clever heuristics, but with the cost of approximation guaran-
tees. If the heuristic algorithm could be replaced with one with provable approx-
imation guarantees, Corollary 2 would give us an overall approximation guaran-
tee.

When � = ⊕, the problem becomes harder to approximate. The minimum
weight codeword problem is similar to the aforementioned decoding of linear
codes problem. In the former, we are given a matrix B ∈ {0, 1}n×k and an all-
zeros vector a ∈ {0, 1}n, and our task is to find a non-empty vector x ∈ {0, 1}n

such that Bx = a and x has as few 1s as possible. This problem is as hard to
approximate as the smallest binary sub-decomposition when � = ⊕.

Proposition 9. If � = ⊕, the smallest binary sub-decomposition problem is as
hard to approximate as the minimum weight codeword problem.

Proof. Notice first that we can replace the all-zeros vector a in the minimum
weight codeword problem by an arbitrary binary vector c by adding that vector

48 P. Miettinen

also as a column to B and by adding a new row to B and c to enforce that c
must be part of the solution, similarly to the proof of Proposition 5.

To see that the smallest binary sub-decomposition is at least as hard to
approximate as the minimum weight codeword, notice that the reduction in
Proposition 5 is approximation-preserving.

To see that the smallest binary sub-decomposition is no harder to approx-
imate than the minimum weight codeword, consider an instance (A,D =
{F 1, . . . ,F k}) of the sub-decomposition problem. Re-shape matrix A into a
nm-dimensional binary column vector a. Reshape all matrices F k similarly into
binary vectors fk, and collect them as columns of nm-by- |D| binary matrix B.
Our task now is to select the least number of columns of B such that their sum
modulo-2 is a, that is, to find the vector x in the minimum-weight codeword
problem. This reduction is also approximation-preserving, concluding the proof.

��
For the following results, we need the concept of (randomized) quasi-NP-

hardness.

Definition 11. We say a problem Π is quasi-NP-hard if Π cannot be solved
in polynomial time unless NP ⊆ DTIME(npolylog(n)). We say Π is random-
ized quasi-NP-hard, if it cannot be solved in polynomial time unless NP ⊆
RTIME(npolylog(n)), where RTIME(npolylog(n)) is the set of all languages rec-
ognizable by Monte Carlo algorithms with probability exceeding 1/2 in time
O(npolylog(n)).

Corollary 3. If � = ⊕, the smallest binary sub-decomposition is randomized
quasi-NP-hard to approximate to within 2log

1−ε k for any ε > 0. It can, however,
be approximated in polynomial time to within εk for any fixed ε.

Proof. The negative result follows from a result of Dumer et al. [11] and
Proposition 9. The positive result comes from Berman and Karpinski [8] and
Proposition 9. ��

5.2 Approximating Minimum-Error Sub-Decompositions

We now turn our attention to the minimum-error sub-decompositions.

Proposition 10. Let (A,D = {F i}), with |D| = k, be an input for the
minimum-error binary sub-decomposition problem. If � = ∨, it is quasi-NP-hard
to approximate the minimum-error binary sub-decomposition problem to within
a factor of Ω(2(4 log k)1−ε

) and NP-hard to approximate it within Ω(2log
1−ε|A|)

for any ε > 0. The problem can be approximated to within a factor of
2
√

(k + |A|) log |A| in polynomial time.

Proof. The hardness-of-approximation result follows directly from the proof of
Proposition 6 in case of � = ∨: the reduction from the basis usage problem is
approximation-preserving, and corresponding lower bounds are known for the
basis usage problem [24,25].

Generalized Matrix Factorizations as a Unifying Framework 49

For the positive result, we need the reduction to go the other way. Let
(A,D = {F i}) be an input for the minimum-error sub-decomposition problem.
Re-shape A to an nm-dimensional column vector a, and re-shape factor matri-
ces F i similarly and collect them into an nm-by-k binary matrix B. This is a
valid input for the basis usage problem, and the solution can be approximated
using Peleg’s algorithm [30]. The result can be mapped back to minimum-error
sub-decomposition problem without any change in the target value, and hence
the reduction is approximation-preserving. The claim follows from known upper
bounds for Peleg’s algorithm for basis usage problem [25]. ��

It is interesting to notice that the size of A plays no role in Proposi-
tion 10, only the number of its non-zeros. Also, quasi-NP-hardness is slightly
stronger assumption than randomized quasi-NP-hardness that was assumed in
Proposition 9.

The claim (and proof) for � = ⊕ is similar to the above.

Proposition 11. Let (A ∈ {0, 1}n×m,D = {F i}), with |D| = k, be an input
for the minimum-error binary sub-decomposition problem. If � = ⊕, it is quasi-
NP-hard to approximate the minimum-error binary sub-decomposition problem
to within a factor of Ω(2log

0.8−ε n) for any ε > 0 and NP-hard to approximate
it to within any constant factor. The problem can be approximated to within a
factor of O(k/ log(nm)) in randomized polynomial time and to the same factor
deterministically in time (nm)O(log∗ nm).

Proof. This proof is similar to the above ones, and only a sketch of the proof
is presented. The reduction from the nearest codeword problem in the proof
of Proposition 6 is approximation-preserving, giving the negative result when
paired with the results from [4]. The positive results require similar re-writing
as above, after which we can use the results from [8] and [1]. ��

6 Conclusions and Future Work

This paper presents an approach to unify pattern set mining using generalized
outer products. Not every type of pattern can be expressed as a generalized outer
product – not, at least, without making the outer products so general that we
lose any reasonable way to study them as a group. Yet, as the above discussion
has demonstrated, many interesting types of patterns – stars, biclique covers,
nested matrices, and others – can easily be expressed in the framework, making
it probable that also many yet-to-be-invented types of patterns will fit into it.

When a new type of pattern set mining problem can be expressed within
the proposed framework, the researcher gains many benefits: the connections to
other, sometimes seemingly unrelated work became more clear, many existing
results might already apply, saving the researcher from tedious proofs, and the
new results and techniques could generalize as well, immediately benefitting the
whole field.

50 P. Miettinen

The work presented in this paper is only the beginning. The results concen-
trate on binary matrices, but recent work has generalized the binary setting
to ordered lattices [5], ternary values [23], and rank matrices [20]. The general
framework presented here could be extended to these situations, as well.

Another line of research extending the framework is to move from matrices
to tensors (i.e. multi-way arrays). Again, there exists precedence in the pattern
set mining, where mining higher-order (binary) data has gathered significant
research interest [7,9,26].

Instead of finding the smallest or minimum-error pattern set, one can seek
for a planted pattern, that is, a pattern we know the data contains, but that has
been perturbed by noise. Recent research has shown that we can find individual
planted patterns relatively well, even under strong noise assumptions [2,31].

There is, then, a lot to do to before the proposed framework can gain its full
power. Yet, even this short preliminary work should be enough to demonstrate
the potential the framework has, and – hopefully – convince researchers to frame
their research within it.

References

1. Alon, N., Panigrahy, R., Yekhanin, S.: Deterministic approximation algorithms for
the nearest codeword problem. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.)
PPROX and RANDOM 2009. LNCS, vol. 5687, pp. 339–351. Springer, Heidelberg
(2009)

2. Ames, B.P.W., Vavasis, S.A.: Nuclear norm minimization for the planted clique
and biclique problems. Math. Program. B 129(1), 69–89 (2011)

3. Araujo, M., Günnemann, S., Mateos, G., Faloutsos, C.: Beyond blocks: hyperbolic
community detection. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.)
ECML PKDD 2014, Part I. LNCS, vol. 8724, pp. 50–65. Springer, Heidelberg
(2014)

4. Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The hardness of approximate optima
in lattices, codes, and systems of linear equations. In: FOCS 1993, pp. 724–733
(1993)

5. Bělohlávek, R., Krmelova, M.: Beyond boolean matrix decompositions: toward
factor analysis and dimensionality reduction of ordinal data. In: ICDM 2013,
pp. 961–966 (2013)

6. Bělohlávek, R., Vychodil, V.: Discovery of optimal factors in binary data via a
novel method of matrix decomposition. J. Comput. Syst. Sci. 76(1), 3–20 (2010)

7. Belohlavek, R., Vychodil, V.: Factorizing three-way binary data with triadic formal
concepts. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010,
Part I. LNCS, vol. 6276, pp. 471–480. Springer, Heidelberg (2010)

8. Berman, P., Karpinski, M.: Approximating minimum unsatisfiability of linear equa-
tions. In: SODA 2002, pp. 514–516 (2002)

9. Cerf, L., Besson, J., Nguyen, K.N.T., Boulicaut, J.F.: Closed and noise-tolerant
patterns in n-ary relations. Data Min. Knowl. Discov. 26(3), 574–619 (2013)

10. De Bie, T.: Maximum entropy models and subjective interestingness: an application
to tiles in binary databases. Data Min. Knowl. Discov. 23(3), 407–446 (2011)

Generalized Matrix Factorizations as a Unifying Framework 51

11. Dumer, I., Micciancio, D., Sudan, M.: Hardness of approximating the minimum
distance of a linear code. IEEE Trans. Inform. Theory 49(1), 22–37 (2003)

12. Ene, A., Horne, W., Milosavljevic, N., Rao, P., Schreiber, R., Tarjan, R.E.: Fast
exact and heuristic methods for role minimization problems. In: SACMAT 2008,
pp. 1–10 (2008)

13. Feige, U.: A threshold of lnn for Approximating Set Cover. J. ACM 45(4), 634–652
(1998)

14. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-Completeness. W. H. Freeman, New York (1979)

15. Geerts, F., Goethals, B., Mielikäinen, T.: Tiling databases. In: Suzuki, E., Arikawa,
S. (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 278–289. Springer, Heidelberg
(2004)

16. Johnson, D.S.: Approximation Algorithms for Combinatorial Problems. J. Comput.
Syst. Sci. 9, 256–278 (1974)

17. Junttila, E.: Patterns in permuted binary matrices. Ph.D. thesis, Helsinki Univer-
sity Press, Helsinki, August 2011

18. Kötter, T., Günnemann, S., Berthold, M., Faloutsos, C.: Extracting taxonomies
from bipartite graphs. In: WWW 2015 Companion, pp. 51–52 (2015)

19. Koutra, D., Kang, U., Vreeken, J., Faloutsos, C.: VoG: summarizing and under-
standing large graphs. In: SDM 2014, pp. 91–99 (2014)

20. Le Van, T., van Leeuwen, M., Nijssen, S., Fierro, A.C., Marchal, K., De Raedt, L.:
Ranked tiling. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML
PKDD 2014, Part II. LNCS, vol. 8725, pp. 98–113. Springer, Heidelberg (2014)

21. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

22. Lucchese, C., Orlando, S., Perego, R.: A Unifying Framework for Mining Approx-
imate Top-k Binary Patterns. IEEE Trans. Knowl. Data Eng. 26(12), 2900–2913
(2013)

23. Maurus, S., Plant, C.: Ternary matrix factorization. In: ICDM 2014, pp. 400–409
(2014)

24. Miettinen, P.: On the positive-negative partial set cover problem. Inform. Process.
Lett. 108(4), 219–221 (2008)

25. Miettinen, P.: Matrix Decomposition Methods for Data Mining: Computational
Complexity and Algorithms. Ph.D. thesis, Department of Computer Science, Uni-
versity of Helsinki (2009)

26. Miettinen, P.: Boolean tensor factorizations. In: ICDM 2011, pp. 447–456 (2011)
27. Miettinen, P.: Fully dynamic quasi-biclique edge covers via Boolean matrix factor-

izations. In: DyNetMM 2013, pp. 17–24 (2013)
28. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The Discrete Basis

Problem. IEEE Trans. Knowl. Data Eng. 20(10), 1348–1362 (2008)
29. Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Appl.

Math. 131(3), 651–654 (2003)
30. Peleg, D.: Approximation algorithms for the Label-CoverMAX and Red-Blue Set

Cover problems. J. Discrete Alg. 5(1), 55–64 (2007)
31. Ramon, J., Miettinen, P., Vreeken, J.: Detecting bicliques in GF[q]. In: Blockeel,

H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part I. LNCS,
vol. 8188, pp. 509–524. Springer, Heidelberg (2013)

32. Simon, H.U.: On approximate solutions for combinatorial optimization problems.
SIAM J. Discrete Math. 3(2), 294–310 (1990)

52 P. Miettinen

33. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress.
Data Min. Knowl. Discov. 23(1), 169–214 (2011)

34. Xiang, Y., Jin, R., Fuhry, D., Dragan, F.F.: Summarizing transactional databases
with overlapped hyperrectangles. Data Min. Knowl. Discov. 23(2), 215–251 (2011)

35. Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative
matrix factorization approach. In: WSDM 2013 (2013)

36. Yannakakis, M.: Node-Deletion Problems on Bipartite Graphs. SIAM J. Comput.
10(2), 310–327 (1981)

Scalable Bayesian Non-negative Tensor
Factorization for Massive Count Data

Changwei Hu1, Piyush Rai1(B), Changyou Chen1, Matthew Harding2,
and Lawrence Carin1

1 Department of Electrical and Computer Engineering,
Duke University, Durham, USA

{ch237,piyush.rai,cc448,lcarin}@duke.edu
2 Sanford School of Public Policy and Department of Economics,

Duke University, Durham, USA
matthew.harding@duke.edu

Abstract. We present a Bayesian non-negative tensor factorization
model for count-valued tensor data, and develop scalable inference algo-
rithms (both batch and online) for dealing with massive tensors. Our gen-
erative model can handle overdispersed counts as well as infer the rank
of the decomposition. Moreover, leveraging a reparameterization of the
Poisson distribution as a multinomial facilitates conjugacy in the model
and enables simple and efficient Gibbs sampling and variational Bayes
(VB) inference updates, with a computational cost that only depends on
the number of nonzeros in the tensor. The model also provides a nice
interpretability for the factors; in our model, each factor corresponds to
a “topic”. We develop a set of online inference algorithms that allow fur-
ther scaling up the model to massive tensors, for which batch inference
methods may be infeasible. We apply our framework on diverse real-world
applications, such as multiway topic modeling on a scientific publications
database, analyzing a political science data set, and analyzing a massive
household transactions data set.

Keywords: Tensor factorization · Bayesian learning · Latent factor
models · Count data · Online bayesian inference

1 Introduction

Discovering interpretable latent structures in complex multiway (tensor) data is
an important problem when learning from polyadic relationships among multiple
sets of objects. Tensor factorization [5,14] offers a promising way of extracting
such latent structures. The inferred factors can be used to analyze objects in
each mode of the tensor (e.g., via classification or clustering using the factors),
or to do tensor completion.

Of particular interest, in the context of such data, are sparsely-observed
count-valued tensors. Tensors are routinely encountered in many applications.
For example, in analyzing a database of scientific publications, the data may be
in form of a sparse four-way count-valued tensor (authors × words × journals
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 53–70, 2015.
DOI: 10.1007/978-3-319-23525-7 4

54 C. Hu et al.

× years). Another application where multiway count data is routinely encoun-
tered is the analysis of contingency tables [11] which represent the co-occurrence
statistics of multiple sets of objects.

We present a scalable Bayesian model for analyzing such sparsely-observed
tensor data. Our framework is based on a beta-negative binomial construction,
which provides a principled generative model for tensors with sparse and poten-
tially overdispersed count data, and produces a non-negative tensor factorization.
In addition to performing non-negative tensor factorization and tensor comple-
tion for count-valued tensors, our model has the property that each latent factor
inferred for a tensor mode also represents a distribution (or “topic”, as in topic
models) over the objects of that tensor mode; our model naturally accomplishes
this by placing a Dirichlet prior over the columns of the factor matrix of each
tensor mode. In addition to providing an expressive and interpretable model for
analyzing sparse count-valued tensors, the model automatically infers the rank
of the decomposition, which side-steps the crucial issue of pre-specifying the rank
of the decomposition [14,18,22].

Our framework also consists of a set of batch and scalable online inference
methods. Using a reparameterization of the Poisson distribution as a multinomial
allows us to achieve conjugacy, which facilitates closed-form Gibbs sampling as
well as variational Bayes (VB) inference. Moreover, we also develop two online
inference algorithms - one based on online MCMC [7] and the other based on
stochastic variational inference [9]. These inference algorithms enable scaling up
the model to massive-sized tensor data.

One of the motivations behind our work is analyzing massive multiway data
for tasks such as understanding thematic structures in scholarly databases (e.g.,
to design better recommender systems for scholars), understanding consumer
behavior from shopping patterns of large demographies (e.g., to design better
marketing and supply strategies), and understanding international relations in
political science studies. In our experiments, we provide qualitative analyses for
such applications on large-scale real-world data sets, and the scalability behavior
of our model.

2 Canonical PARAFAC Decomposition

Given a tensor Y of size n1 × n2 × · · · × nK , with nk denoting the size of Y
along the kth mode (or “way”) of the tensor, the goal in a Canonical PARAFAC
(CP) decomposition [14] is to decompose Y into a set of K factor matrices
U(1), . . . ,U(K) where U(k) = [u(k)

1 , . . . ,u
(k)
R], k = {1, . . . , K}, denotes the

nk × R factor matrix associated with mode k. In its most general form, CP
decomposition expresses the tensor Y via a weighted sum of R rank-1 tensors
as Y ∼ f(

∑R
r=1 λr.u

(1)
r � . . . � u

(K)
r). The form of f depends on the type of

data being modeled (e.g., f can be Gaussian for real-valued, Bernoulli-logistic
for binary-valued, Poisson for count-valued tensors). Here λr is the weight asso-
ciated with the rth rank-1 component, the nk × 1 column vector u(k)

r represents
the rth latent factor of mode k, and � denotes vector outer product.

Scalable Bayesian Non-negative Tensor Factorization 55

3 Beta-Negative Binomial CP Decomposition

We focus on modeling count-valued tensor data [4] and assume the following
generative model for the tensor Y

Y ∼ Pois(
R∑

r=1

λr.u
(1)
r � . . . � u(K)

r) (1)

u(k)
r ∼ Dir(a(k), . . . , a(k)) (2)

λr ∼ Gamma(gr,
pr

1 − pr
) (3)

pr ∼ Beta(cε, c(1 − ε)) (4)

We use subscript i = {i1, . . . , iK} to denote the index of the i-th entry
in Y. Using this notation, the i-th entry of the tensor can be written as yi ∼
Pois(

∑R
r=1 λr

∏K
k=1 u

(k)
ikr). We assume that we are given N observations {yi}N

i=1

from the tensor Y.
Since the gamma-Poisson mixture distribution is equivalent to a negative

binomial distribution [15], (1) and (3), coupled with the beta prior (Eq 4) on pr,
lead to what we will call the beta-negative binomial CP (BNBCP) decomposition
model. A few things worth noting about our model are

– The Dirichlet prior on the factors u
(k)
r naturally imposes non-negativity con-

straints [4] on the factor matrices U(1), . . . ,U(K). Moreover, since each col-
umn u

(k)
r of these factor matrices sums to 1, u(k)

r can also be thought of a
distribution (e.g., a “topic”) over the nk entities in mode k.

– The gamma-beta hierarchical construction of λr (Eq 3 and 4) allows inferring
the rank of the tensor by setting an upper bound R on the number of factors
and letting the inference procedure infer the appropriate number of factors by
shrinking the coefficients λr’s to close to zero for the irrelevant factors.

– The resulting negative binomial model is useful for modeling overdispersed
count data in cases where the Poisson likelihood may not be suitable.

– Using alternate parameterizations (Section 3.1) of the Poisson distribution in
(1) leads to a fully conjugate model and facilitates efficient Gibbs sampling
and variational Bayes (VB) inference, in both batch as well as online settings.

3.1 Reparametrizing the Poisson Distribution

The generative model described in Eq (1)-(4) is not conjugate. We now describe
two equivalent parametrizations [6,24] of (1), which transform (1)-(4) into a fully
conjugate model and facilitate easy-to-derive and scalable inference procedures.
These parameterizations are based on a data augmentation scheme described
below.

The first parametrization expresses the i-th count-valued entry yi of the
tensor Y as a sum of R latent counts {ỹir}R

r=1

yi =
R∑

r=1

ỹir, ỹir ∼ Pois(λr

K∏

k=1

u
(k)
ikr) (5)

56 C. Hu et al.

The second parametrization assumes the vector {ỹir}R
r=1 of latent counts is

drawn from a multinomial as

ỹi1, . . . , ỹiR ∼ Mult(yi; ζi1, . . . , ζiR)

ζir =
λr

∏K
k=1 u

(k)
ikr

∑R
r=1 λr

∏K
k=1 u

(k)
ikr

(6)

The above parameterizations follows from the following lemma [6,24]:

Lemma 1. Suppose that x1, . . . , xR are independent random variables with
xr ∼ Pois(θr) and x =

∑R
r=1 xr. Set θ =

∑R
r=1 θr; let (z, z1, . . . , zR) be

another set of random variables such that z ∼ Pois(θ), and (z1, . . . , zR)|z ∼
Mult(z; θ1

θ , . . . , θR

θ). Then the distribution of x = (x, x1, . . . , xR) is the same as
the distribution of z = (z, z1, . . . , zR).

These parameterizations, along with the fact that the columns u
(k)
r of each

factor matrix are drawn from a Dirichlet, allows us to leverage the Dirichlet-
multinomial conjugacy and derive simple Gibbs sampling and variational Bayes
(VB) inference update equations, as described in Section 4.

4 Inference

We first present the update equations for batch Gibbs sampling (Section 4.1)
and batch VB inference (Section 4.2). We then present two online inference algo-
rithms, based on: (i) conditional density filtering [7], which provides an efficient
way to perform online MCMC sampling using conditional sufficient statistics of
the model parameters; and (ii) stochastic variational inference [9], which will
allow scaling up VB inference by processing data in small minibatches.

We also define two quantities s
(k)
j,r =

∑
i:ik=j ỹir and sr =

∑
i ỹi,r which

denote aggregates (sufficient statistics) computed using the latent counts ỹir.
These quantities appear at various places in the description of the inference
algorithms we develop.

4.1 Gibbs Sampling

– Sampling ỹir: The latent counts {ỹir}R
r=1 are sampled from a multino-

mial (6).

– Sampling u
(k)
r : Due to the Dirichlet-multinomial conjugacy, the columns of

each factor matrix have Dirichlet posterior and are sampled as

u(k)
r ∼ Dir(a(k) + s

(k)
1,r , a(k) + s

(k)
2,r , . . . , a(k) + s(k)nk,r) (7)

– Sampling pr: Using the fact that sr =
∑

i ỹi,r and marginalizing over the
u
(k)
ikr’s in (5), we have sr ∼ Pois(λr). Using this, along with (3), we can express

Scalable Bayesian Non-negative Tensor Factorization 57

sr using a negative binomial distribution, i.e., sr ∼ NB(gr, pr). Then, due to
the conjugacy between negative binomial and beta, we can sample pr as

pr ∼ Beta(cε + sr, c(1 − ε) + gr) (8)

– Sampling λr: Again using the fact that sr ∼ Pois(λr), and due to the gamma-
Poisson conjugacy, we have

λr ∼ Gamma(gr + sr, pr) (9)

Computational Complexity: Sampling the latent counts {ỹir}R
r=1 for each

nonzero observation yi (note that for yi = 0, the latent counts are trivially
zero) requires computing {ζir}R

r=1, and computing each ζir requires O(K) time
(Eq 6). Therefore, sampling all the latent counts {ỹir}R

r=1 requires O(NRK)
time. Sampling the latent factors {u(k)

r }R
r=1 for the K tensor modes requires

O(RK) time. Sampling {pr}R
r=1 and {λr}R

r=1 requires O(R) time each. Of all
these steps, sampling the latent counts {ỹir}R

r=1 (which are also used to compute
the sufficient statistics s

(k)
j,r and sr) is the most dominant step, leading to an

overall time-complexity of O(NRK) for the Gibbs sampling procedure.
The linear dependence on N (number of nonzeros) is especially appealing

because most real-world count-valued tensors are extremely sparse (have much
less than even 1% nonzeros. In contrast to the standard negative-binomial models
for count data, for which the inference complexity also depends on the zeros
whose number may be massive (and therefore heuristics, such as subsampling
the zeros, are needed), the reparametrizations (Section 3.1) used by our model
allow us to ignore the zeros in the multinomial sampling step (the sufficient
statistics do not depend on the zero entries in the tensor), thereby significantly
speeding up the inference.

4.2 Variational Bayes Inference

Using the mean-field assumption [12], we approximate the target posterior dis-
tribution by Q =

∏
i,r q(ỹir)

∏
k,r q(u(k)

r)
∏

r q(λr)
∏

r q(pr). Our fully conjugate
model enables closed-form variational Bayes (VB) inference updates, with the
distribution q(ỹir), q(u(k)

r), q(λr), and q(pr) being multinomial, Dirichlet, beta,
and gamma, respectively. We summarize the update equations for the variational
parameters of each of these distributions, below:

– Updating ỹir: Using (6), the updates for yir are given by E[yir] = yiζir

where ζir is defined as ζir = ζ̃ir∑R
r=1 ζ̃ir

and ζ̃ir can be computed as

ζ̃ir = exp{Ψ(sr +gr)+ln(pr)+
K∑

k=1

Ψ(s(k)ik,r +a(k))−Ψ [
K∑

k=1

(s(k)ik,r +a(k))]} (10)

where Ψ(.) is the digamma function, which is the first derivative of the loga-
rithm of the gamma function.

58 C. Hu et al.

– Updating u
(k)
ikr: The mean-field posterior q(u(k)

r) is Dirichlet with each of the

component means given by E[u(k)
ikr] =

ρ
(k)
ikr

∑nk
ik=1 ρ

(k)
ikr

where ρ
(k)
ikr = a(k) + s

(k)
ik,r.

– Updating pr: The mean-field posterior q(pr) is beta with mean given by
E[pr] = pra

pra+prb
where pra = cε + sr, prb = c(1 − ε) + gr.

– Updating λr: The mean-field posterior q(λr) is gamma with mean given by
E[λr] = λraλrb, where λra = (gr + sr) and λrb = pr.

A note on Gibbs vs VB: The per-iteration time-complexity of the VB infer-
ence procedure is also O(NRK). It is to be noted however that, in practice, one
iteration of VB in this model is a bit more expensive than one iteration of Gibbs,
due to the digamma function evaluation for the ζ̃ir which is needed in VB when
updating the ỹir’s. Prior works on Bayesian inference for topic models [8] also
support this observation.

4.3 Online Inference

Batch Gibbs (Section 4.1) and VB (Section 4.2) inference algorithms are simple
to implement and efficient to run on moderately large-sized problems. These
algorithms can however be slow to run for massive data sets (e.g., where the
number of tensor entries N and/or the dimension of the tensor is massive).
The Gibbs sampler may exhibit slow mixing and the batch VB may be slow to
converge. To handle such massive tensor data, we develop two online inference
algorithms. The first is online MCMC based conditional density filtering [7],
while the second is based on stochastic variational inference [9]. Both these
inference algorithms allow processing data in small minibatches and enable our
model to analyze massive and/or streaming tensor data.

Conditional Density Filtering: The conditional density filtering (CDF) algo-
rithm [7] for our model selects a minibatch of tensor entries at each iteration,
samples the latent counts {ỹir}R

r=1 for these entries conditiond on the previous
estimates of the model parameters, updates the sufficient statistics s

(k)
j,r and sr

using these latent counts (as described below), and resamples the model param-
eters conditioned on these sufficient statistics. Denoting It as data indices in
minibatch at round t, the algorithm proceeds as

– Sampling ỹir: For all i ∈ It, sample the latent counts ỹir(i∈It) using (6).

– Updating the conditional sufficient statistics: Using data from the cur-
rent minibatch, update the conditional sufficient statistics as:

s
(k,t)
j,r = (1 − γt)s

(k,t−1)
j,r + γt

N

B

∑

i∈It:ik=j

ỹir (11)

s(t)r = (1 − γt)s(t−1)
r + γt

N

B

∑

i∈It

ỹi,r (12)

Scalable Bayesian Non-negative Tensor Factorization 59

Note that the updated conditional sufficient statistics (CSS), indexed by
superscript t, is a weighted average of the old CSS, indexed by superscript
t − 1, and of that computing only using the current minibatch (of size B). In
addition, the latter term is further weighted by N/B so as to represent the
average CSS over the entire data. In the above, γt is defined as γt = (t0+t)−κ,
t0 ≥ 0, and κ ∈ (0.5, 1] is needed to guarantee convergence [3].

– Updating u
(k)
r , pr, λr: Using the updated CSS, draw M samples for each of

the model parameters {u(k,m)
r , p

(m)
r , λ

(m)
r }M

m=1, from the following condition-
als:

u(k)
r ∼ Dir(a(k) + s

(k,t)
1,r , . . . , a(k) + s(k,t)

nk,r) (13)

pr ∼ Beta(cε + s(t)r , c(1 − ε) + gr) (14)
λr ∼ Gamma(gr + s(t)r , pr) (15)

and either store the sample averages of u
(k)
r , pr, and λr, or their analytic

means to use for the next CDF iteration [7]. Since the analytic means of the
model parameters are available in closed-form in this case, we use the latter
option, which obviates the need to draw M samples, thereby also speeding up
the inference significantly.

We next describe the stochastic (online) VB inference for our model.

Stochastic Variational Inference: The batch VB inference (Section 4.2)
requires using the entire data for the parameter updates in each iteration,
which can be computationally expensive and can also result in slow convergence.
Stochastic variational inference (SVI), on the other hand, leverages ideas from
stochastic optimization [9] and, in each iteration, uses a small randomly chosen
minibatch of the data to updates the parameters. Data from the current mini-
batch is used to compute stochastic gradients of the variational objective w.r.t.
each of the parameters and these gradients are subsequently used in the param-
eter updates. For our model, the stochastic gradients depend on the sufficient
statistics computed using the current minibatch It: s

(k,t)
j,r =

∑
i∈It:ik=j ỹir and

s
(t)
r =

∑
i∈It

ỹi,r, where ỹir is computed using Eq 10. Denoting B as the mini-
batch size, we reweight these statistics by N/B to compute the average sufficient
statistics over the entire data [9] and update the other variational parameters as
follows:

ρ
(k,t)
ikr = (1 − γt)ρ

(k,t−1)
ikr + γt(a(k) + (N/B)s(k,t)

ik,r) (16)

p(t)ra = (1 − γt)p(t−1)
ra + γt(cε + (N/B)s(t)r) (17)

p
(t)
rb = (1 − γt)p

(t−1)
rb + γt(c(1 − ε) + gr) (18)

λ(t)
ra = (1 − γt)λ(t−1)

ra + γt(gr + (N/B)s(t)r) (19)

λ
(t)
rb = (1 − γt)λ(t−1)

ra + γtpr (20)

where γt is defined as γt = (t0 + t)−κ, t0 ≥ 0, and κ ∈ (0.5, 1] is needed to
guarantee convergence [9].

60 C. Hu et al.

Computational Complexity: In contrast to the batch Gibbs and batch VB,
both of which have O(NRK) cost per-iteration, the per-iteration cost of the
online inference algorithms (CDF and SVI) is O(|It|RK) where |It| is the mini-
batch size at round t. We use a fixed minibatch size B for each minibatch, so
the per-iteration cost is O(BRK).

5 Related Work

Although tensor factorization methods have received considerable attention
recently, relatively little work exists on scalable analysis of massive count-valued
tensor data. Most of the recently proposed methods for scalable tensor decom-
position [2,10,13,17] are based on minimizing the Frobenious norm of the tensor
reconstruction error, which may not be suitable for count or overdispersed count
data. The rank of decomposition also needs to be pre-specified, or chosen via
cross-validation. Moreover, these methods assume the tensor to be fully observed
and thus cannot be used for tensor completion tasks. Another key difference
between these methods and ours is that scaling up these methods requires par-
allel or distributed computing infrastructure, whereas our fully Bayesian method
exhibits excellent scalability on a single machine. At the same time, the simplicity
of the inference update equations would allow our model to be easily parallelized
or distributed. We leave this possibility to future work.

One of the first attempts to explicitly handle count data in the context of
non-negative tensor factorization includes the work of [4], which is now part of
the Tensor Toolbox 1. This method optimizes the Poisson likelihood, using an
alternating Poisson regression sub-routine, with non-negative constraints on the
factor matrices. However, this method requires the rank of the decomposition
to be specified, and cannot handle missing data. Due to its inability in handling
missing data, for our experiments (Section 6), as a baseline, we implement and
use a Bayesian version of this model which can handle missing data.

Among other works of tensor factorization for count data, the method in [1]
can deal with missing values, though the rank still needs to be specified, and
moreover the factor matrices are assumed to be real-valued, which makes it
unsuitable for interpretability of the inferred factor matrices.

In addition to the Poisson non-negative tensor factorization method of [4],
some other non-negative tensor factorization methods [5,20,21] also provide
interpretability for the factor matrices. However, these methods usually have one
or more of the following limitations: (1) there is no explicit generative model for
the count data, (2) the rank needs to be specified, and (3) the methods do not
scale to the massive tensor data sets of scales considered in this work.

Methods that facilitate a full Bayesian analysis for massive count-valued
tensors, which are becoming increasingly prevalent nowadays, are even fewer.
A recent attempt on Bayesian analysis of count data using Poisson likelihood
is considered in [19]; however, unlike our model, their method cannot infer the
rank and relies on batch VB inference, limiting its scaling behavior. Moreover,
the Poisson likelihood may not be suitable for overdispersed counts.
1 http://www.sandia.gov/∼tgkolda/TensorToolbox/index-2.6.html

http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html

Scalable Bayesian Non-negative Tensor Factorization 61

Finally, inferring the rank of the tensor, which is NP-complete in gen-
eral [14], is another problem for which relatively little work exists. Recent
attempts at inferring the rank of the tensor in the context of CP decomposi-
tion include [18,22]; however (1) these methods are not applicable for count
data, and (2) the inferred factor matrices are real-valued, lacking the type of
interpretability needed in many applications.

Our framework is similar in spirit to the matrix factorization setting pro-
posed in [24] which turns out to be a special case of our framework. In addition,
while [24] only developed (batch) Gibbs sampling based inference, we present
both Gibbs sampling as well as variational Bayesian inference, and design effi-
cient online Bayesian inference methods to scale up our framework for handling
massive real-world tensor data.

To summarize, in contrast to the existing methods for analyzing tensors,
our fully Bayesian framework, based on a proper generative model, provides a
flexible method for analyzing massive count-valued tensors, side-stepping crucial
issues such as rank-specification, providing good interpretability of the latent
factors, while still being scalable for analyzing massive real-world tensors via
online Bayesian inference.

6 Experiments

We apply the proposed model on a synthetic and three real-world data sets that
range in their sizes from moderate to medium to massive. The real-world tensor
data sets we use in our experiments are from diverse application domains, such as
analyzing country-country interaction data in political science, topic modeling on
multiway publications data (with entities being authors, words, and publication
venues), and analysis of massive household transactions data. These data sets
include:

– Synthetic Data: This is a tensor of size 300× 300× 300 generated using our
model by setting an upper bound R = 50 over the number of factors; only 20
factors were significant (based on the values of λr), resulting in an effective
rank 20.

– Political Science Data (GDELT): This is a real-world four-way tensor
data of country-country interactions. The data consists of 220 countries, 20
action types, and the interactions date back to 1979 [16]. We focus on a sub-
set of this data collected during the year 2011, resulting in a tensor of size
220 × 220 × 20 × 52. Section 6.4 provides further details.

– Publications Data: This is a 2425 × 9088 × 4068 count-valued tensor, con-
structed from a database of research papers published by researchers at Duke
University2; the three tensor modes correspond to authors, words, and venues.
Section 6.3 provides further details.

2 Obtained from https://scholars.duke.edu/

https://scholars.duke.edu/

62 C. Hu et al.

– Transactions (Food) Data: This is a 117054 × 438 × 67095 count-valued
tensor, constructed from a database of transactions data of food item pur-
chases at various stores in the US 3; the three tensor modes correspond to
households, stores, and items. Section 6.5 provides further details.

We compared our model with the following baselines: (i) Bayesian Poisson
Tensor Factorization (BayesPTF), which is fully Bayesian version of the Pois-
son Tensor Factorization model proposed in [4], and (ii) Non-negative Tensor
Decomposition based on Low-rank Approximation (lraNTD) proposed in [23].
All experiments are done on a standard desktop computer with Intel i7 3.4GHz
processor and 24GB RAM.

6.1 Inferring the Rank

To begin with, as a sanity check for our model, we first perform an experiment
on the synthetic data described above to see how well the model can recover the
true rank (tensor completion results are presented separately in Section 6.2). For
this experiment, we run the batch Gibbs sampler (the other inference methods
also yield similar results) with 1000 burn-ins, and 1000 collection samples. We
experiment with three settings: using 20%, 50% and 80% data for training. The
empirical distribution (estimated using the collected MCMC samples) of the
effective inferred rank for each of these settings is shown in Figure 1 (left). In each
collection iteration, the effective rank is computed after a simple thresholding on
the λr’s where components with very small λr are not counted (also see Figure 1

0 10 20 30 40 500

0.5

1

1.5

2 x 104

λ

truth
inferred

Fig. 1. Distribution over inferred ranks for syntheric data (left), and λ inferred using
80% training data (right).

3 Data provided by United States Department of Agriculture (USDA) under a Third
Party Agreement with Information Resources, Inc. (IRI).

Scalable Bayesian Non-negative Tensor Factorization 63

(right)). With 80% training data, the distribution shows a distinct peak at 20
and even with smaller amounts of training data (20% and 50%), the inferred
rank is fairly close to the ground truth of 20. In Figure 1 (right), we show the
spectrum of all the λr’s comparing the ground truth vs the inferred values;

6.2 Tensor Completion Results

We next experiment on the task of tensor completion, where for each method
95% of the data are used for training and the remaining 5% data is used as
the heldout set (note that the data sets we use are extremely sparse in nature,
with considerably less than 1% entries of the tensor being actually observed).
The results are reported in Table 1 where we show the log likelihood and the
mean-absolute error (MAE) in predicting the heldout data. Timing-comparison
for the various batch and online inference methods is presented separately in
Section 6.6.

For this experiment, we compare our BNBCP model (using the various infer-
ence methods) with (1) BayesPTF - a fully Bayesian variant (we implented it
ourselves) of a state-of-the-art Poisson Tensor Factorization model originally pro-
posed in [4] (which cannot however handle missing data), and (2) lraNTD [23]
which is an optimization based non-negative tensor decomposition method. As
Table 1 shows, our methods achieve better log-likelihood and MAE as com-
pared to these baselines. Moreover, among our batch and online Bayesian infer-
ence methods, the online inference methods give competitive or better results as
compared to their batch counterparts. In particular, the online MCMC method
based on conditional density filtering (BNBCP-CDF) works the best across all
the methods (please see Section 6.6 for a timing comparison).

Table 1. Loglikelihood and MAE comparison for different methods (the two baselines,
our model with batch inference, and our model with online inference) on four datasets.
Note: lraNTD gave out-of-memory error on publications and food transactions data
sets so we are unable to report its results on these data sets. We also only report the
MAE for lraNTD, and not the log-likelihood, because it uses a Gaussian likelihood
model for the data.

Datasets Toy data GDELT Publication Food Toy data GDELT Publication Food

BayesPTF -107563 -4425695 -860808 -2425433 1.012 55.478 1.636 1.468

lraNTD N/A N/A N/A N/A 1.019 65.049 N/A N/A

BNBCP-Gibbs -97580 -3079883 -619258 -2512112 0.989 45.436 1.565 1.459

BNBCP-VB -99381 -2971769 -632224 -2533086 0.993 43.485 1.574 1.472

BNBCP-CDF -95472 -2947309 -597817 -2403094 0.985 44.243 1.555 1.423
BNBCP-OnlineVB -98446 -3169335 -660068 -2518996 0.989 46.188 1.601 1.461

6.3 Analyzing Publications Database

The next experiment is on a three-way tensor constructed from a scientific publi-
cations database. The data consist of abstracts from papers published by various
researchers at Duke University 4. In addition to the paper abstract, the venue
4 Data crawled from https://scholars.duke.edu/

https://scholars.duke.edu/

64 C. Hu et al.

information for each paper is also available. The data collection contains 2425
authors, 9088 words (after removing stop-words), and 4068 venues which results
in a 2425 × 9088 × 4068 word-counts tensor, on which we run our model. As
the output of the tensor decomposition, we get three factor matrices. Since the
latent factors in our model are non-negative and sum to one, each latent factor
can also be interpreted as a distribution over authors/words/venues, and conse-
quently represents a “topic”. Therefore the three factor matrices inferred by our
model for this data correspond to authors × topics, words × topics, and venue
× topics, which we use to further analyze the data.

We apply the model BNBCP-CDF on this data (with R = 200) and using the
inferred words × topics matrix, in Table 2 (left) we show the list of 10 most prob-
able words in four factors/topics that seem to correspond to optics, genomics,
machine learning & signal processing, and statistics. To show the topic rep-
resentation across different departments, we present a histogram of departmental
affiliations for 20 authors with highest probabilities in these four factors. We find
that, for the genomics factor, the top authors (based on their topic scores) have
affiliations related to biology which makes intuitive sense. Likewise, for the statis-
tics factor, most of the top authors are from statistics and biostatistics depart-
ments. The top 20 authors in factors that correspond to optics and machine learn-
ing & signal processing, on the other hand, are from departments of electrical and
computer engineering and/or computer science, etc.

Table 2. Most probable words in topics related to optics, genomics, machine learn-
ing/signal processing(ML/SP) and statistics (Stats), and top ranked venues in ML/SP
community.

Optics Genomics ML/SP Stats Top Venues in ML/SP

gigapixel gene dictionary model ICASSP

microcamera chromatin sparsity priors IEEE trans. sig. proc.

cameras occupancy model bayesian ICML

aperture centromere bayesian lasso Siam J. img. sci.

lens transcription compressed latent IEEE trans. img. proc.

multiscale genome compressive inference IEEE int. symp. biomed. img.

optical sites matrix regression NIPS

system expression denoising sampler IEEE trans. wireless comm.

nanoprobes sequence gibbs semiparametric IEEE workshop stat. sig. proc.

metamaterial vegfa noise nonparametric IEEE trans. inf. theory

Similarly, using the inferred venues × topics matrix, we list the most likely
venues for each topic. Due to space-limitations, here we only present the most
likely venues in machine learning & signal processing factor/topic; the result is
shown in Table 2 (right-most column). The result shows that venues like ICASSP,
IEEE Trans. Signal Proc., ICML, and NIPS all rank at the top in the machine
learning & signal processing factor, which again makes intuitive sense.

6.4 Analyzing Political Science Data

We use the model to analyze a real-world political science data set consisting
of country-country interactions. Such analyses are typically done by political

Scalable Bayesian Non-negative Tensor Factorization 65

Fig. 2. Histogram of affiliations for top 20 authors in factors related to machine learn-
ing/signal processing (top left) and statistics (top right), optics (bottom left), and
genomics(bottom right)

scientists to study, analyze and understand complex international multilateral
relations among countries. The data set is from the Global Database of Events,
Location, and Tone (GDELT) [16]. GDELT records the dyadic interactions
between countries in the form of “Country A did something to Country B”. In
our experiments, we consider 220 countries (“actors”) and 20 unique high-level
action types in 52 weeks of year 2012. After preprocessing, we have a four-way
(country-country-action-time) action counts tensor of size 220 × 220 × 20 × 52.
Note that both first and second tensor mode represents countries; first mode
as “sender” and the second mode as “receiver” of a particular action. In this
analysis, we set R to be large enough (200) and the model discovered roughly
about 120 active components (i.e., components with significant value of λr).

We apply the model (BNBCP-CDF; other methods yield similar results)
and examine each of the time dimension factors, specifically looking for the

GBR ECU US SWE
0

0.5

1
Julian Assange Asylum in Ecuador

Countries

S
co

re

June − August 52
0

0.5

1

Weeks

S
co

re

Egypt & Libya USA

0.2

0.4

0.6

0.8
2012 Benghazi attack

Countries

F
ac

to
r

S
co

re

1 37−38 52

0.1

0.2

0.3

0.4

Weeks

F
ac

to
r

S
co

re

Fig. 3. Country factors (top row) and time factors (bottom row) for Julian Assange
asylum in Ecuador (left column) and 2012 Benghazi attack (right column).

66 C. Hu et al.

significant components (based on the magnitude of λr) in which the time dimen-
sion factor also peaks during certain time(s) of the year. We show results with
two such factors in Figure 3. In Figure 3 (column 1), the time and country (actor)
factors seems to suggest that this factor/topic corresponds to the event “Julian
Assange”. The actor subplot shows spikes at Ecuador, United Kingdom, United
States, and Sweden whereas the time factor in the bottom left subplot shows
spikes between June and August. The time and countries involved are consis-
tent with the public knowledge of the event of Julian Assange seeking refuge in
Ecuador.

Likewise, in Figure 3 (column 2), the time and country (actor) factors seems
to suggest that this factor corresponds to the event “Benghazi Attack” which
took place on Sept. 12 (week 37) of 2012, in which Islamic militants attacked
American diplomatic compound in Benghazi, Libya. The attack killed an US
Ambassador. As the Figure shows, the top actors identified are US, Libya and
Egypt, and spikes are found at around week 37 and 38, which are consistent with
the public knowledge of this event.

The results of these analyses demonstrate that the interpretability of our
model can be useful for identifying events or topics in such multiway interaction
data.

6.5 Analyzing Transactions Data

We next apply our model (BNBCP-CDF; other methods yield similar results)
for analyzing transactions data for food item purchases made at stores. Our data
is collected for a demographically representative sample of US consumers who
reside in large urban and suburban areas and purchase food in supermarkets
and grocery stores. The data were provided by the USDA under a Third Party
Agreement with IRI. Each transaction is identified by a unique Universal Prod-
uct Code (UPC) barcode and the store where the transaction occurred. Some
items such as fresh produce do not have UPCs and are identified separately. The
households are observed over a four year period, during which they are provided
with a technology that allows them to scan each purchase and record additional
information such as the store where the purchase was made (and other economic
data). Participating households are provided with incentives designed to encour-
age compliance. For each household-product-store combination we record the
number of unique purchases over the sampling period. The database has a total
of 117,054 unique households, 438 stores, and 67,095 unique items and we con-
struct a 3-way count tensor of size 117054 × 438 × 67095 with about 6.2 million
nonzero entries.

We apply the proposed model on this data by setting R = 100 (out of which
about 60 components were inferred to have a significant value of λr) and looked
at the stores factor matrix. Since each column (which sums to 1) of the store
factor matrix can be thought of as a distribution over the stores, we look at
three of the factors from the store factor matrix and tried to identify the stores
that rank at the top in that factor. In Table 3, we show results from each of
these factors. Factor 1 seems to suggest that it is about the most popular stores

Scalable Bayesian Non-negative Tensor Factorization 67

(included Walmart, for example), Factor 2 has stores that primarily deal in
wholesale (e.g., Costco, Sam’s Wholesale Club), and Factor 3 contains stores
that sell none or very few food items (e.g., Mobil, Petco). Note that the Walmart
Super Center figures prominently in both Factor 1 and Factor 2.

Table 3. Three of the store factors inferred from the transaction data (top-5 stores
shown for each)

Factor 1 Factor 2 Factor 3

Walmart Sup. Center Sam’s Club Dick’s Sporting

Walmart Traders Meijer Mobil

Walmart Neighb. Costco Petco

Walmart B J’S Wholesale Sally Beauty

Kroger Walmart Sup. Center GNC All

0 1 2 3 4 5 6 7

x 10
4

0

0.005

0.01

Item Index

0 1 2 3 4 5 6 7

x 10
4

0

0.01

0.02

Item Index

0 1 2 3 4 5 6 7

x 10
4

1.4904

1.4904

1.4905
x 10

−5

Item Index

Factor 1: Distribution over items

Factor 2: Distribution over items

Factor 3: Distribution over items

Fig. 4. Distributions over items for three factors (each factor corresponds to a cluster).

We next look at the items factor matrix. In Figure 2, we plot the inferred
distribution over items in each of the three clusters described above. For factors
1 and 2 (which correspond to the most popular stores and wholesale stores
respectively), the distribution over the items (top and bottom panel in Figure 2)
have a reasonably significant mass over a certain range of items (for the items
indexed towards the left side in the plots of factors 1 and 2). On the other hand,
for factor 3 which corresponds to stores that sell no or very few types of food
items, the distribution over the items is rather flat and diffuse with very weak
intensities (looking at the scale on the y axis). From the Figure 2, it is also
interesting to observe that the set of active items in factors (1 & 2) vs factor 3
seem to be mostly disjoint.

This analysis provides a first attempt to analyze food shopping patterns for
American consumers on a large scale. As the world, at large, struggles with a
combination of increasing obesity rates and food insecurity, this analysis shows
that consumer preferences are densely clustered across both stores and items.
This indicates that household tend to have fairly rigid preferences over the stores
where they shop. Furthermore, they tend to consume a relatively small num-
ber of products from the universe of available products. The concentration in
both stores and products is indicative of limited search behavior and substantial
behavioral rigidity which may be associated with suboptimal outcomes in terms
of nutrition and health.

68 C. Hu et al.

6.6 Scalability

We now perform an experiment comparing the proposed inference methods (batch
and online) to assess their scalability (Figure 5). We first use the Transactions data
(117054×438×67095) for this experiment. We would like to note that the state-of-
the-art methods for count-valued tensor, such as the Poisson Tensor Factorization
(PTF) method from the Tensor Toolbox [4], are simply infeasible to run on this
data because of storage explosion issue (the method requires expensive flattening
operations of the tensor). The other baseline lraNTD [23] we used in our exper-
iments was also infeasible to run on this data. We set R = 100 for each method
(about 60 factors were found to be significant, based on the inferred values of the
λr’s) and use a minibatch size of 100000 for all the online inference methods. For
the conditional density filtering as well as stochastic variational inference, we set
the learning rate as t0 = 0 and κ = 0.5. Figure 5 shows that online inference
methods (conditional density filtering and stochastic variational inference) con-
verge much faster to a good solution than batch methods. This experiment shows
that our online inference methods can be computationally viable alternatives if
their batch counterparts are slow/infeasible to run on such data.

10
1

10
2

10
3

−5

−4.5

−4

−3.5

−3

−2.5

x 10
6 Food Transactions Data

Time in seconds (log scale)

H
el

do
ut

 L
og

 L
ik

el
ih

oo
d

Batch Gibbs
Batch VB
Stochastic Variational Inference
Conditional Density Filttering

Fig. 5. Time vs heldout log likelihoods with various methods on transactions data

Fig. 6. Timing comparison of various
methods on Scholars data

We then perform another experi-
ment on the Scholars data, on which
the PTF method of [4] was feasible
to run and compare its per-iteration
running time with our model (using
both batch as well as online infer-
ence). Since PTF cannot handle miss-
ing data, for this experiment, each
method was run with all the data. As
Fig 6 shows, our methods have running
times that are considerably smaller
than that of PTF.

7 Conclusion

We have presented a fully Bayesian framework for analyzing massive tensors
with count data, and have designed a suite of scalable inference algorithms for

Scalable Bayesian Non-negative Tensor Factorization 69

handling massive tensor data. In addition to giving interpretable results and
inferring the rank from the data, the proposed model can infer the distribution
over objects in each of the tensor modes which can be useful for understanding
groups of similar objects, and also for doing other types of qualitative analyses
on such data, as shown by our various experiments on real-world data sets.
Simplicity of the inference procedure also makes the proposed model amenable
for parallel and distributed implementations. e.g., using MapReduce or Hadoop.
The model can be a useful tool for analyzing data from diverse applications
and scalability of the model opens door to the application of scalable Bayesian
methods for analyzing massive multiway count data.

Acknowledgments. The research reported here was supported in part by ARO,
DARPA, DOE, NGA and ONR. Any opinions, findings, recommendations, or con-
clusions are those of the authors and do not necessarily reflect the views of the Eco-
nomic Research Service, U.S. Department of Agriculture. The analysis, findings, and
conclusions expressed in this paper also should not be attributed to either Nielsen or
Information Resources, Inc. (IRI). This research was conducted in collaboration with
USDA under a Third Party Agreement with IRI.

References

1. Bazerque, J.A., Mateos, G., Giannakis, G.B.: Inference of poisson count processes
using low-rank tensor data. In: ICASSP (2013)

2. Beutel, A., Kumar, A., Papalexakis, E.E., Talukdar, P.P., Faloutsos, C., Xing, E.P.:
Flexifact: Scalable flexible factorization of coupled tensors on hadoop. In: SDM
(2014)

3. Cappé, O., Moulines, E.: On-line expectation-maximization algorithm for latent
data models. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 71(3), 593–613 (2009)

4. Chi, E.C., Kolda, T.G.: On tensors, sparsity, and nonnegative factorizations. SIAM
Journal on Matrix Analysis and Applications 33(4), 1272–1299 (2012)

5. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative matrix and tensor
factorizations: applications to exploratory multi-way data analysis and blind source
separation. John Wiley & Sons (2009)

6. Dunson, D.B., Herring, A.H.: Bayesian latent variable models for mixed discrete
outcomes. Biostatistics 6(1), 11–25 (2005)

7. Guhaniyogi, R., Qamar, S., Dunson, D.B.: Bayesian conditional density filtering.
arXiv preprint arXiv:1401.3632 (2014)

8. Heinrich, G., Goesele, M.: Variational Bayes for Generic Topic Models. In:
Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 161–168.
Springer, Heidelberg (2009)

9. Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference.
The Journal of Machine Learning Research 14(1), 1303–1347 (2013)

10. Inah, J., Papalexakis, E.E., Kang, U., Faloutsos, C.: Haten2: Billion-scale tensor
decompositions. In: ICDE (2015)

11. Johndrow, J.E., Battacharya, A., Dunson, D.B.: Tensor decompositions and sparse
log-linear models. arXiv preprint arXiv:1404.0396 (2014)

12. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to vari-
ational methods for graphical models. Machine Learning 37(2), 183–233 (1999)

http://arxiv.org/abs/1401.3632
http://arxiv.org/abs/1404.0396

70 C. Hu et al.

13. Kang, U., Papalexakis, E., Harpale, A., Faloutsos, C.: Gigatensor: scaling tensor
analysis up by 100 times-algorithms and discoveries. In: KDD (2012)

14. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review
51(3), 455–500 (2009)

15. Kozubowski, T.J., Podgórski, K.: Distributional properties of the negative binomial
Lévy process. Centre for Mathematical Sciences, Faculty of Engineering, Lund
University, Mathematical Statistics (2008)

16. Leetaru, K., Schrodt, P.A.: Gdelt: Global data on events, location, and tone,
1979–2012. ISA Annual Convention 2, 4 (2013)

17. Papalexakis, E., Faloutsos, C., Sidiropoulos, N.: Parcube: Sparse parallelizable
candecomp-parafac tensor decompositions. ACM Transactions on Knowledge Dis-
covery from Data (2015)

18. Rai, P., Wang, Y., Guo, S., Chen, G., Dunson, D., Carin, L.: Scalable bayesian
low-rank decomposition of incomplete multiway tensors. In: ICML (2014)

19. Schein, A., Paisley, J., Blei, D.M., Wallach, H.: Inferring polyadic events with
poisson tensor factorization. In: NIPS Workshop (2014)

20. Schmidt, M., Mohamed, S.: Probabilistic non-negative tensor factorisation using
markov chain monte carlo. In: 17th European Signal Processing Conference (2009)

21. Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to
statistics and computer vision. In: ICML (2005)

22. Zhao, Q., Zhang, L., Cichocki, A.: Bayesian cp factorization of incomplete tensors
with automatic rank determination

23. Zhou, G., Cichocki, A., Xie, S.: Fast nonnegative matrix/tensor factorization
based on low-rank approximation. IEEE Transactions on Signal Processing 60(6),
2928–2940 (2012)

24. Zhou, M., Hannah, L.A., Dunson, D., Carin, L.: Beta-negative binomial process
and poisson factor analysis. In: AISTATS (2012)

A Practical Approach to Reduce
the Learning Bias Under Covariate Shift

Van-Tinh Tran(B) and Alex Aussem

LIRIS, UMR 5205, University of Lyon 1, 69622 Lyon, France
{van-tinh.tran,aaussem}@univ-lyon1.fr

Abstract. Covariate shift is a specific class of selection bias that arises
when the marginal distributions of the input features X are different in
the source and the target domains while the conditional distributions
of the target Y given X are the same. A common technique to deal
with this problem, called importance weighting, amounts to reweighting
the training instances in order to make them resemble the test distribu-
tion. However this usually comes at the expense of a reduction of the
effective sample size. In this paper, we show analytically that, while the
unweighted model is globally more biased than the weighted one, it may
locally be less biased on low importance instances. In view of this result,
we then discuss a manner to optimally combine the weighted and the
unweighted models in order to improve the predictive performance in
the target domain. We conduct a series of experiments on synthetic and
real-world data to demonstrate the efficiency of this approach.

1 Introduction

Selection bias, also termed dataset shift or domain adaptation in the litera-
ture [8], occurs when the training distribution P (x, y) and the test distribution
P ′(x, y) are different. It is pervasive in almost all empirical studies, including
Machine Learning, Statistics, Social Sciences, Economics, Bioinformatics, Bio-
statistics, Epidemiology, Medicine, etc. Selection bias is prevalent in many real-
world machine learning problems because the common assumption in machine
learning is that the training and the test data are drawn independently and
identically from the same distribution. The term ”domain adaptation” is used
when one builds a model from some fixed source domain, but wishes to deploy it
across one or more different target domains. The term ”selection bias” is slightly
more specific as it assumes implicitly that there exists a binary variable S that
controls the selection of examples in the training set, in other words we only
have access to the examples that have S = 1. For instance, case-control stud-
ies in Epidemiology are particularly susceptible to selection bias, including bias
resulting from inappropriate selection of controls in case-control studies, bias
resulting from differential loss-to-follow-up, incidence-prevalence bias, volunteer
bias, healthy-worker bias, and nonresponse bias [4].

It is well known that one may account for the difference between P (x, y)
and P ′(x, y) by re-weighting the training points using the so-called importance
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 71–86, 2015.
DOI: 10.1007/978-3-319-23525-7 5

72 V.-T. Tran and A. Aussem

weight, denoted as β(x, y) = P ′(x, y)/P (x, y). Formally, let {hθ∗}θ∈Θ be a model
family from which we want to select an optimal model hθ∗(x) = h(x, θ∗) for our
learning task and let l(y, h(x, θ)) be the loss function we would like to minimize,
the optimal model we are searching for is the one that minimizes the expected
loss over the test (or target) distribution:

θ∗ = argmin
θ∈Θ

∑

(x,y)∼P

β(x, y)P (x, y)l(y, h(θ, x))

So in practice, weighting the empirical loss of the training instances by β(x, y)
provides a well-justified solution to the selection bias problem.

In general, the estimation of β(x, y) with two different distributions P (x, y)
and P ′(x, y) is unsolvable, as the two terms could be arbitrarily far apart. One
simple assumption we can make about the connection between the distributions
of the source and the target domains is that P (x, y) and P ′(x, y) differ only in
P (x) and P ′(x) while their conditional distribution P (y|x) remains unchanged.
This specific selection bias is known as covariate shift in the literature [10]. In this
case, the weighting term reduces to β(x) = P ′(x)/P (x) and effective adaptation
is possible. At first glance, it may appear that covariate shift is not a prob-
lem because, for classification, we are only interested in P (Y |X) which remains
unchanged. In fact, Shimodaira [10] showed that there are circumstances under
which the predictive performance is jeopardized by covariate shift. This happens
typically when the parametric model family {P (Y |X, θ)}θ∈Θ is misspecified, that
is, there does not exist any θ ∈ Θ such that P (Y |X = x, θ) = P (Y |X = x) for
all x ∈ X , so none of the models in the model family can exactly match the true
relation between X and Y .

The intuitive reason why covariate shift under model misspecification is a
problem is that the optimal (misspecified) model performs better in dense regions
of the input space than in sparse regions, because the dense regions dominate
the average classification error, which is what we want to minimize. If the dense
regions of X are different in the training and test sets, the optimal model on
the training set will no longer be optimal on the test set. In other words, the
optimal model depends on P (x), and if P ′(x) �= P (x), then the optimal model
for the target domain differs from that for the source domain. It was proven
that, if the support of P ′(x) (the set of x for which P ′(x) > 0) is contained in
the support of P (x), then the optimal model that maximizes this re-weighted log
likelihood function asymptotically converges to the optimal model for the target
domain [10] and a large body of research has been devoted to the estimation of
P ′(x)/P (x) e.g. [13], [5], [11], [2], [1], [6], [7], [9]. However, reweighting methods
do not necessarily improve the prediction accuracy as they also dependent on
the extent to which the model is misspecified [12].

In this paper, we show analytically that, despite the fact that the unweighted
model is globally more biased than the weighted one, the former may locally be
less biased on low importance instances. In view of this result, we design a simple
algorithm that combines the weighted and the unweighted models in order to

A Practical Approach to Reduce the Learning Bias 73

improve the predictive performance in the target domain. More specifically, we
prove that an optimal B� always exists such that, in the region where β(x) ≤ B�,
the biased model trained on the unweighted sample should be preferred to the
unbiased one, and vice-versa. We propose a practical procedure to estimate this
threshold value from training data.

The remainder of this paper is structured as follows. In Section 2, we define
some key concepts used along the paper and state some results that will support
our analysis. Then in Section 3, we conduct a theoretical analysis to prove that
an optimal (but not necessarily unique) B� always exists and discuss a man-
ner to optimally combine the weighted and the unweighted models in order to
improve the predictive performance in the target domain. In section 4, a series
of experiments are carried out on toy problems and real-world data sets to assess
the effectiveness of this approach.

2 Preliminaries

In this section, we define some key concepts used along the paper and state
some results that will support our analysis. Consider the supervised learning
problem where we observed n training samples, denoted by ((xt; yt) : t = 1, ..., n),
where xt ∈ X ⊂ Rd are i.i.d training input points drawn from some probability
distribution p(x) and yt ∈ Y ⊂ R are the corresponding training output values
drawn from a conditional probability distribution p(y|x). We are interested in
predicting the output value y at an input point x using a model hθ(x) = h(x, θ)
parameterized by θ ∈ Θ ⊂ Rm. Under covariate shift assumption, the test inputs
follow a different probability distribution p′(x) while the conditional probability
distribution of test output p(y|x) remains unchanged. The ratio β(x) = p′(x)

p(x) is
called the importance of x. Given a loss function l(y, h(x, θ)) : X × Y × Y →
[0,∞), we shall consider throughout this paper, the following loss functions:

– EL-Tr: Expectation of loss over training distribution p(x, y) = p(x)p(y|x)

Loss0(hθ) = Ex,y∼p[l(y, h(x, θ))] =
∫

p(x)
∫

p(y|x)l(y, h(x, θ))dydx

– EL-Te: Expectation of loss over test distribution p′(x, y) = p′(x)p(y|x)

Loss1(hθ) = Ex,y∼p′ [l(y, h(x, θ))] =
∫

p′(x)
∫

p(y|x)l(y, h(x, θ))dydx

– EL-IWTr: Expectation of Importance-weighted loss over training distribu-
tion

Lossβ(hθ) = Ex,y∼p[β(x)l(y, h(x, θ))]

– B-LEL-Te: We then define Local Expectation of loss over test distribution
given β(x) ≤ B of any given hypothesis hθ:

loss(hθ, β(x) ≤ B) =
∫

β(x)≤B

p′(x)
∫

Y
p(y|x)l(y, h(x, θ))dydx

74 V.-T. Tran and A. Aussem

We also define the optimal parameters of EL-Tr, EL-Te and EL-IWTr:
⎧
⎪⎨

⎪⎩

θ0 = argminθ Loss0(hθ)
θ1 = argminθ Loss1(hθ)
θβ = argminθ Lossβ(hθ).

It may easily be shown that EL-IWTr is equal to EL-Te,

Ex,y∼p[β(x)l(y, h(x, θ))] =
∫

p(x)
∫

p(y|x)
p′(x)
p(x)

l(y, h(x, θ))dydx

=
∫

p′(x)
∫

p(y|x)l(y, h(x, θ))dydx

Therefore, minimizing EL-IWTr is equivalent to minimizing EL-Te. Nonethe-
less, while hθβ

is globally less biased than hθ0 , we will show next that it is
more biased than hθ0 on low-importance instances. Note that B-LEL-Te can be
rewritten as:

loss(hθ, β(x) ≤ B) =
∫

β(x)≤B

β(x)
∫

Y
p(x)p(y|x)l(y, h(x, θ))dydx

Suppose β(x) takes on continuous value in [b0, bM] where b0 > 0, we may
rewrite B-LEL-Te as following:

loss(hθ, β(x) ≤ B) =
∫ B

b0

b

∫

β(x)=b

∫

Y
p(x)p(y|x)l(y, h(x, θ))dydxdb

Let L(hθ, β(x) = b) =
∫

β(x)=b

∫
Y p(x)p(y|x)l(y, h(x, θ))dydx, then:

loss(hθ, β(x) ≤ B) =
∫ B

b0

bL(hθ, β(x) = b)db

Similarly, if β(x) takes on discrete values in {bi}M
i=0 such that b0 < b1 < ... <

bM , we rewrite B-LEL-IWTr as:

loss(hθ, β(x) ≤ B) =
k(B)∑

i=0

biL(hθ, β(x) = bi)

where k(B) is the largest integer such that bk(B) ≤ B. From the definitions
above, we may write

⎧
⎪⎨

⎪⎩

Loss1(hθ) = loss(hθ, β(x) ≤ bM),
Loss0(hθ) =

∫ ∞
b0

L(hθ, β(x) = b)db, for continuous β(x),
Loss0(hθ) =

∑M
i=0 L(hθ, β(x) = bi), for discrete β(x).

A Practical Approach to Reduce the Learning Bias 75

As aforementioned, a model h(x, θ) is said to be correctly specified if there
exist parameter θ∗ ∈ Θ such that h(x, θ∗) = f(x), otherwise it is said to be
misspecified. It is obvious that if a model is correctly specified, the optimal
parameter θ of EL-Tr, EL-Te, and any B-LEL-Te coincide. Therefore, the model
that minimizes EL-Tr will perform well on the test data globally (i.e., minimizing
EL-Te) as well as locally (i.e., B-LEL-Te) in any region of the form β(x) < B.
Yet, in practice, almost all models are more or less misspecified. So minimizing
EL-Tr θ0 is not necessarily equivalent minimizing EL-Te. Since EL-Te is equal
to EL-IWTr, the parameter minimizing of EL-IWTr θβ , which can be estimated
from data, will also minimize EL-Te as shown in [10], [13]. However, due to the
model misspecification, θβ does not necessarily minimize B-LEL-Te. In fact, we
will prove that there exist some B∗(hθβ

) ∈ [b0, bM] such that B-LEL-Te of θβ

exceeds that of θ0 by proving a stronger conclusion that for all model hθ, with
θ ∈ Θ, there exist some B∗(hθ) ∈ [b0, bM] such that B*-LEL-Te of hθ exceeds
that of hθ0 , in other words any hθ is locally more biased than hθ0 when
predicting instance with β(x) ≤ B∗.

In addition, the estimation of θβ may subject to high variance since it involves
instance weighting, which is known to reduce the effective samples size [2], [3].
Hence the idea to use hθ0 of instead of hθβ

to predict the test instances with
β(x) ≤ B∗.

3 Problem Analysis

In this section, we conduct theoretical analyses for a simple and then a more gen-
eral selection bias mechanism. Those analyses will be used to derive a practical
procedure aiming at reducing the bias due to covariate shift with misspecified
regression or classification learning models.

We first show how EL-Tr is related to B-LEL-Te,

Lemma 1. Suppose β(x) takes on continuous value in [b0, bM] with bM > b0 >
0, then:

Loss0(hθ) =
1

bM
loss(hθ, β(x) ≤ bM) +

∫ bM

b0

1
B2

loss(hθ, β(x) ≤ B)dB

Proof. For continuous β(x):

∫ bM

b0

1
B2

loss(hθ, β(x) ≤ B)dB =
∫ bM

b0

loss(hθ, β(x) ≤ B)d
(−1

B

)

= loss(hθ, β(x) ≤ B)
(−1

B

)

|bM

b0
−

∫ bM

b0

−1
B

d(loss(hθ, β(x) ≤ B))

76 V.-T. Tran and A. Aussem

By definition, loss(hθ, β(x) ≤ B) =
∫ B

b0
bL(b, hθ)db, so loss(hθ, β(x) ≤ b0) = 0

and d(loss(hθ, β(x) ≤ B)) = BL(hθ, β(x) = B)dB. Thus:

∫ bM

b0

1
B2

loss(hθ, β(x) ≤ B)dB =
−1
bM

loss(hθ, β(x) ≤ bM)

+
∫ bM

b0

1
B

(BL(hθ, β(x) = B)dB)

By definition, we have Loss0(hθ) =
∫ bM

b0
L(hθ, β(x) = B)dB, so:

∫ bM

b0

1
B2

loss(hθ, β(x) ≤ B)dB = − 1
bM

loss(hθ, bM) + Loss0(hθ)

which concludes the proof �	
A similar results holds in the discrete case.

Corollary 1. Suppose β(x) takes on discrete values {bi}M
i=0 such that b0 < b1 <

... < bM , then:

Loss0(hθ) =
1

bM
loss(hθ, β(x) ≤ bM) +

M−1∑

k=0

(
1
bk

− 1
bk+1

)

loss(hθ, β(x) ≤ bk)

Proof.

M−1∑

k=0

(
1
bk

− 1
bk + 1

)

loss(hθ, β(x) ≤ bk) +
1

bM
loss(hθ, β(x) ≤ bM)

=
(

1
b0

− 1
b1

)

[b0L(hθ, β(x) = b0)]

+
(

1
b1

− 1
b2

)

[b0L(hθ, β(x) = b0) + b1L(hθ, β(x) = b1)]

+ ...

+
(

1
bM−1

− 1
bM

)

[b0L(hθ, β(x) = b0) + ... + bM−1L(hθ, β(x) = bM−1)]

+
1

bM
[b0L(hθ, β(x) = b0) + b1L(hθ, β(x) = b1) + .. + bML(hθ, β(x) = bM)]

A Practical Approach to Reduce the Learning Bias 77

= b0L(hθ, β(x) = b0)
[(

1
b0

− 1
b1

)

+
(

1
b1

− 1
b2

)

+ ... +
(

1
bM−1

− 1
bM

)

+
1

bM

]

+ ...

+ bM−1L(hθ, β(x) = bM−1)
[(

1
bM−1

− 1
bM

)

+
1

bM

]

+ bML(hθ, β(x) = bM)
[

1
bM

]

=
M∑

i=0

L(hθ, β(x) = bi) = Loss0(hθ) �	

In view of Corollary 1, we may now state the following theorem,

Theorem 1. Suppose there exists two real values, b0 and b1, such that b0 < 1 <
b1 and a subset X0 ⊂ X such that

β(x) =

{
b0 if x ∈ X0

b1 if x /∈ X0,

then there exists a threshold B∗ such that:

loss(hθ1 , β(x) ≤ B∗) ≥ loss1(hθ0 , β(x) ≤ B∗).

In fact, B∗ can take any value in [b0, b1).

Proof. By definition, Loss0(hθ0) ≤ Loss0(hθ1), using Lemma 1, we may write:

Loss0(hθ0) =
1
b1

loss(hθ0 , β(x) ≤ b1) +
(

1
b0

− 1
b1

)

loss(hθ0 , β(x) ≤ b0)

=
1
b1

Loss1(hθ0) +
(

1
b0

− 1
b1

)

loss(hθ0 , β(x) ≤ b0)

Similarly,

Loss0(hθ1) =
1
b1

Loss1(hθ1) +
(

1
b0

− 1
b1

)

loss(hθ1 , β(x) ≤ b0)

Thus,

1
b1

Loss1(hθ0) +
(

1
b0

− 1
b1

)

loss(hθ0 , β(x) ≤ b0) ≤ 1
b1

Loss1(hθ1)

+
(

1
b0

− 1
b1

)

loss(hθ1 , β(x) ≤ b0)

Finally,

loss(hθ1 , β(x) ≤ b0) − loss(hθ0 , β(x) ≤ b0) =
b0

b1 − b0
[Loss1(hθ0) − Loss1(hθ1)]

78 V.-T. Tran and A. Aussem

It is easily shown that the right hand side of inequality above is non-negative
due to the definition of θ1. It follows that

loss(hθ1 , β(x) ≤ b0) − loss(hθ0 , β(x) ≤ b0) ≤ 0

which, given the assumption about β(x), is equivalent to,

loss(hθ1 , β(x) = b0) − loss(hθ0 , β(x) = b0) ≤ 0

Thus the Theorem is true when B∗ = b0. It is also true for any other B∗ ∈ [b0, b1)
as a consequence. �	

When the assumptions of Theorem 1 holds, we say that the covariate shift
scheme follows a simple step distribution. The equality in Theorem 1 only occurs
when θ0 minimizes EL-Te and θ1 minimizes EL-Tr. Such condition indicates
that covariate shift does not have an effect on searching for optimal θ, which
is a rare case as shown by other studies. Theorem 1 shows that for simple step
distribution where inclusion in the training sample is either proportional to b−1

0

(over-sampled instances), or to b−1
1 (under-sampled instances), hθ0 exhibits a

lower bias compared to hθ1 on the low importance test instances. This type of
selection bias mechanism is actually quite common. For instance, prospective
cohort studies in epidemiology are by design prone to covariate shift because
selection criteria are associated with the exposure to potential risk factors.

Theorem 2. For all θ ∈ Θ, there exists a threshold B∗(hθ) such that

loss(hθ, β(x) ≤ B∗(hθ)) ≥ loss(hθ0 , β(x) ≤ B∗(hθ)) (1)

B∗(hθ) could take any value in the set below:

B∗(hθ) = argmax
B

(loss(hθ, β(x) ≤ B) − loss(hθ0 , β(x) ≤ B))

The equality occurs whenever θ1 is also a minimum for EL-Tr.

Proof. We prove by contradiction that Theorem 2 holds. Assume that inequality
1 does not hold for B∗(hθ) defined above:

loss(hθ, β(x) ≤ B∗(hθ)) − loss(hθ0 , β(x) ≤ B∗(hθ)) < 0 (2)

By definition of B∗(hθ), we may show that, for all B ∈ [b0, bM],

loss(hθ, β(x) ≤ B) − loss(hθ0 , β(x) ≤ B) < 0

Thus, for all B ∈ [b0, bM]

loss(hθ0 , β(x) ≤ B) > loss(hθ, β(x) ≤ B)

Now, using Lemma 1 for continuous β(x), we have:

Loss0(hθ0) =
1

bM
loss(hθ0 , β(x) ≤ bM) +

∫ bM

b0

1
B2

loss(hθ0 , β(x) ≤ B)dB

>
1

bM
loss(hθ, β(x) ≤ bM) +

∫ bM

b0

1
B2

loss(hθ, β(x) ≤ B)dB = Loss0(hθ)

A Practical Approach to Reduce the Learning Bias 79

Hence, Loss0(hθ0) > Loss0(hθ), contradicts the fact that θ0 = argminθ

Loss0(hθ) is the optimal hypothesis under the unweighting scheme and θ �=
argminθ Loss0(hθ).

If the two terms in inequality 1 are equal, then we can prove similarly that
Loss0(hθ0) = Loss0(hθ), which implies that θ1 is also a minimal solution of EL-
Tr. The demonstration for discrete β(x) values follows similarly. �	

Theorem 2 states that any model hθ with θ ∈ Θ is outperformed by hθ0

learned from the unweighted training samples in terms of bias when predicting
examples with β(x) ≤ B∗(hθ). This is also applied to model hθβ

which minimizes
EL-IWTr. In addition, the estimation of θβ may exhibit a higher variance due to
the effective sample size reduction as discussed in [2,3]. These results altogether
suggest that hθ0 should be preferred to hθβ

for predicting the instance’s outputs
in the region β(x) ≤ B∗(hθ), termed low-importance region. Therefore, for
any learning task with covariate shift, we shall train two distinct models, one
with and the other without the importance weighting scheme. Then, we shall use
the latter to predict instances satisfying β(x) ≤ B∗(hθ) and use the former to
predict the remaining instances. The optimal value for B∗(hθ) may be estimated
from the training data. The set of all possible empirical threshold B̂∗(hθβ

) can
be obtained empirically by solving the following problem :

B̂∗(hθ) = argmax
B

1
n

∑

i∈{1,..,n}
β(xi)≤B

β(xi)[l(yi, h(xi, θβ)) − l(yi, h(yi, θ0))] (3)

As n grows to infinity, it follows from the law of large numbers that,

B̂∗(hθ) → B∗(hθ)

Therefore, B∗(hθβ
) could be estimated empirically either from training data

or by cross validation. In this study, we use a 5-fold importance weighted cross
validation to estimate B∗(hθβ

) as suggested in [11]. It should be emphasized that
B∗(hθβ

) is not necessarily unique. For instance, any value between b0 and b1 in
Theorem 1 is admissible as mentioned earlier.

4 Experiments

In this section, we assess the ability of our ”hybrid approach” to reduce the
learning bias under covariate shift based on Theorem 2. We first discuss the
strategies employed to estimate the importance weights: one is based explicitly
on the true bias mechanism, the other is based on linear density-ratio model.
We emphasize that the latter does not require any prior knowledge of the true
sampling probabilities to estimate the β(x) values, and uses the test input fea-
tures instead. In fact, the estimation of distribution is a hard problem, thus it
is more appealing to directly estimate β(x). Indeed, a large body of work has
been devoted to this line of research e.g. [13], [5], [11], [9], [2], [1], [6]. From the
many references, we choose the Unconstrained Least-Square Importance Fitting

80 V.-T. Tran and A. Aussem

(uLSIF) estimator for β(x) that was proved to be successful with covariate shift.
We then study a toy regression problem to show if covariate shift corrections
based on our method reduces prediction error on the test set when the learning
model is misspecified. We then test our approach on real world benchmark data
sets, from which the training examples are selected according to various biased
sampling schemes as suggested in [6].

4.1 Importance Ratio Estimation

As aforementioned, we use two weighting schemes in ours experiments, one is
derived from the true selection bias mechanism an one is Unconstrained Least-
Square Importance Fitting (uLSIF), a method based on linear density-ratio mod-
els [6]. Formally, it assumes that the density ratio β(x) can be approximated by
a linear model β̂(x) =

∑M
i=1 αihi(x) where the basis functions hi, i = 1, ...,M

are chosen so that hi(x) ≥ 0 for all input value x. The coefficients α1, ..., αM

are parameters of the linear model and are estimated from data by minimizing
the empirical square error between weighted biased distribution (from training
data) and the bias-free distribution of x:

min
α

1
2n

n∑

i=1

(β̂(xi))2 − 1
n′

n′
∑

i=1

β̂(x′
i) + λ.Reg(α)

where {xi}n
i=1 and {x′

i}n′
i=1, are the training and test inputs, Reg(α) is the reg-

ularization term, introduced to avoid overfitting. A heuristic choice of hi(x)
proposed in [6] is a Gaussian kernel centered at the test points {xi}n′

i=1 when
the number of test points is small (less than 100) or at template points {x′

i}100i=1,
which is a random subset of test set when the number of test points is large for
computation advantage. The kernel width and the regularization term Reg(α)
are optimized by cross-validation with grid search.

4.2 Toy Regression Problem

Consider the following training data generating process: x ∼ N(μ0, σ0) and
y = f(x) + ε, where μ0 = 0, σ0 = 0.5, f(x) = −x + x3, and ε ∼ N(0, 0.3). In
the test data, we have the same relationship between x and y but the distribu-
tion of the covariate x is shifted to x ∼ N(μ1, σ1), where μ1 = 0, σ1 = 1. The
training and test distributions, along with their ratio are depicted in Fig. 1a
and 1b. The minimization of EL-Tr is obtained using the unweighted Least
Square Regression (uLSR) method for the normal regression while minimiza-
tion of EL-Te is performed by the weighted Least Square Regression (wLSR).
As shown in [10], wLSR is unbiased thus it should perform better than uLSR,
which is biased, on test data. However, as can be seen in Fig. 1c, uLSR (red
dashed line) seems to better approximate the y = f(x) curve (in blue) than
wLSR (black dashed line) on instances in the interval (−1, 1). As may be seen
in Fig.1d, the hybrid model that optimally combines wLSR and uLSR, based

A Practical Approach to Reduce the Learning Bias 81

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

x

D
en

si
ty

Train
Test

(a) Input density distribution

−2 −1 0 1 2

0.
5

2.
0

10
.0

50
.0

x

w
ei

gh
t

(b) True importance weights

(c) True function, uSLR and wSLR on test data.

1e+02 1e+03 1e+04 1e+05 1e+06

6
7

8
9

10

number of training examples

M
SE

Mix
wLSR

(d) MSE vs training sample size

Fig. 1. An illustrative example of fitting a function f(x) using a linear model
with/without the weight importance scheme (wLSR/uLSR) and a combination
of both (termed “Mix”).

82 V.-T. Tran and A. Aussem

on Theorem 1, achieves a lower Mean Square Error (MSE) compared to wLSR.
The experiment was repeated 30 times for each number of sample size. It should
be noted that the hybrid model always outperforms the weighted model and the
gain in performance on the test set is more noticeable for larger training sizes.

4.3 Simple Step Sample Selection Distribution

In this second experiment, we consider a simple step distribution with known or
estimated selection probabilities and we apply this selection scheme on a variety
of UCI data sets in order to assess the efficiency of our bias correction procedure
in more realistic scenarios. We use a SVM classifier for both classification and
regression tasks. Experiments are repeated 100 times for each data set. In each
trial, we randomly select an input feature xc to control the bias along with 300
training samples. We then apply the following single step probability distribution
as discussed in Theorem 1,

P (s = 1|x = xc
i) = ps =

{
p1 = 0.9 if xc

i ≤ mean(xc)
p2 = 0.9

1+exp(r)otherwise

where r is a parameter that controls the strength of the selection bias. In each
trial r takes a random value from a normal distribution N(2, 0.1). With these
parameters, the selection probability for instances having an xc value (e.g. a
degree of exposure to some risk factor) above the mean is between 7 to 10 times
smaller than for those having of a lower value. This is a scenario that typically
arises in epidemiological cohort studies when subjects are includes in the study

Table 1. Mean test error averaged over 200 trials with different weighting
schemes on 15 UCI data sets. Data sets marked with ‘*’ are regression prob-
lems. P denotes the weighting scheme using the true selection probability and P̂
denotes the weighting scheme using a noisy selection probability. For each pair of
weighted and mix models, the better prediction value is highlighted in boldface

Data set No weighting P P mix P̂ P̂ mix

India diabetes 1.000 ± 0.020 0.966 ± 0.019 0.960 ± 0.018 0.968 ± 0.019 0.962 ± 0.018
Ionosphere 1.000 ± 0.128 0.915 ± 0.105 0.902 ± 0.107 0.911 ± 0.104 0.897 ± 0.106
BreastCancer 1.000 ± 0.039 1.020 ± 0.044 1.013 ± 0.044 1.020 ± 0.044 1.013 ± 0.043
GermanCredit 1.000 ± 0.008 1.000 ± 0.007 0.996 ± 0.008 1.000 ± 0.008 0.996 ± 0.008
Australian credit 1.000 ± 0.006 0.963 ± 0.008 0.947 ± 0.010 0.964 ± 0.008 0.947 ± 0.010
Mushroom 1.000 ± 0.068 0.090 ± 0.057 0.872 ± 0.060 0.888 ± 0.058 0.874 ± 0.056
Congressional Voting 1.000 ± 0.033 1.026 ± 0.039 0.993 ± 0.038 1.030 ± 0.038 1.000 ± 0.037
Banknote 1.000 ± 0.040 0.970 ± 0.043 0.978 ± 0.038 0.969 ± 0.042 0.975 ± 0.039
Airfoil self noise* 1.000 ± 0.023 0.997 ± 0.015 0.961 ± 0.012 0.993 ± 0.015 0.958 ± 0.012
Abanlone* 1.000 ± 0.032 0.984 ± 0.020 0.960 ± 0.020 0.985 ± 0.021 0.961 ± 0.020
Auto MGP* 1.000 ± 0.084 0.939 ± 0.066 0.933 ± 0.067 0.939 ± 0.066 0.930 ± 0.067
Boston Housing* 1.000 ± 0.057 1.037 ± 0.053 0.994 ± 0.050 1.037 ± 0.053 0.994 ± 0.050
Space GA* 1.000 ± 0.009 1.021 ± 0.007 0.962 ± 0.008 1.018 ± 0.008 0.961 ± 0.008
Cadata* 1.000 ± 0.013 1.038 ± 0.022 1.029 ± 0.017 1.037 ± 0.022 1.029 ± 0.017

A Practical Approach to Reduce the Learning Bias 83

according to some exposure factor. Consider the two following weighting schemes.
The first one: β = p′(x)/p(x) = p(s = 1)/p(s = 1|x) ∼ 1/ps assumes that the
bias mechanism is known exactly.

β(x) ∼ p−1
s ∼

{
b1 = 1 if xc

i ≤ mean(xc)
b2 = 1 + exp(r)otherwise

In practice, however, the selection probability is rarely known exactly. So let
us assume that the estimation of β is subject to some error and let us consider
the following approximate weighting scheme:

β̂(x) ∼ p−1
s ∼

{
b1 = 1 if xc

i ≤ mean(xc)
b2 = 1 + exp(r̂) if otherwise

(a) (b)

(c) (d)

Fig. 2. MSE gain of the mix model vs. MSE gain of the weighted model. Points
below the diagonal line indicate that the mix model outperforms the weighted
model. Figures (a) and (b): simple step distribution covariate shift used in the
first experiment with the weighted model based on (a) the true selection proba-
bility and (b) based on the estimated selection probability. Figures (c) and (d):
covariate shift in used in the second experiment when the weighted model based
was based on: (c) true selection probability; (d) on uLSIF.

84 V.-T. Tran and A. Aussem

where r̂ = r + N (0, 0.1) is our noisy estimate of r. For each weighting scheme,
we fit a true weighted model (denoted as P in Table 1) and an approximated
weighted model (denoted as P̂ in Table 1). As p1 < 1 and p2 > 1, our weighting
mechanism satisfies the assumptions of Theorem 1, so we set B∗ = 1. We report
the mean square errors (MSE) in Table 1. All values are normalized by the
MSE of the unweighted model (our gold standard). As may be seen from the
plots in Fig. 2a and 2b, the combined models outperform the weighted ones.
That is, when using either exact probability ratio, the results obtained with
Pmix are better than that of P . The same observation can be made when the
estimated probability ratios are used instead (i.e., P̂mix versus P̂) and except on
the Banknote data set. The gain is significant at the significance level 5% using
the Wilcoxon signed rank test.

4.4 General Covariate Selection Mechanisms

In this last experiment, we use the same setting as above but we use a more
general distribution:

P (s = 1|x = xc
i) = ps =

⎧
⎪⎨

⎪⎩

p1 = 0.9 if xc
i ≤ mean(xc)

p2 = 0.1 if xc
i > mean(xc) + 0.8 × 2σ(xc)

p3 = 0.9 − xc
i −mean(xc)

2σ(xc) otherwise.

where σ(xc) denotes the standard deviation of xc. As may be observed, the
assumptions required in Theorem 1 do no hold anymore with this more general

Table 2. Mean test error averaged over 200 trials for different weighting schemes
on UCI data set. Data sets marked with * are for regression problems. P denotes
the weighting scheme based on the true selection probability and uLSIF denotes
the weighting scheme using the uLSIF estimator. For each pair of weighted and
mix models, the better prediction value is highlighted in boldface.

Data set No weighting P P mix uLSIF uLSIF mix

India diabetes 1.000 ± 0.021 0.980 ± 0.018 0.975 ± 0.018 1.016 ± 0.021 1.006 ± 0.021
Ionosphere 1.000 ± 0.087 1.006 ± 0.087 0.988 ± 0.085 1.028 ± 0.093 1.007 ± 0.087
BreastCancer 1.000 ± 0.019 1.004 ± 0.018 0.993 ± 0.019 1.000 ± 0.018 0.993 ± 0.019
GermanCredit 1.000 ± 0.008 1.003 ± 0.008 0.999 ± 0.008 1.009 ± 0.008 1.001 ± 0.008
Australian credit 1.000 ± 0.009 0.972 ± 0.007 0.967 ± 0.007 1.007 ± 0.008 1.005 ± 0.008
Mushroom 1.000 ± 0.558 1.011 ± 0.054 0.963 ± 0.051 0.991 ± 0.054 0.989 ± 0.054
Congressional Voting 1.000 ± 0.037 1.023 ± 0.036 1.010 ± 0.037 0.987 ± 0.036 0.997 ± 0.036
Banknote 1.000 ± 0.060 1.083 ± 0.057 0.962 ± 0.062 0.962 ± 0.061 0.979 ± 0.058
Airfoil self noise* 1.000 ± 0.007 0.995 ± 0.007 0.995 ± 0.007 1.011 ± 0.008 1.001 ± 0.008
Abanlone* 1.000 ± 0.007 1.001 ± 0.008 1.001 ± 0.007 1.005 ± 0.007 0.998 ± 0.006
Auto MGP* 1.000 ± 0.026 0.990 ± 0.025 0.970 ± 0.025 1.015 ± 0.027 0.994 ± 0.026
Boston Housing* 1.000 ± 0.043 0.984 ± 0.031 0.940 ± 0.032 1.036 ± 0.040 0.989 ± 0.042
Space GA* 1.000 ± 0.006 1.005 ± 0.005 0.980 ± 0.006 1.000 ± 0.005 0.996 ± 0.005
Cadata* 1.000 ± 0.012 1.008 ± 0.013 1.006 ± 0.012 1.023 ± 0.013 1.010 ± 0.012

A Practical Approach to Reduce the Learning Bias 85

sample selection distribution. According to Eq. 3, we need to estimate B̂∗(hθ)
empirically from data. We consider again two importance weighting schemes:
one is based on the true underlying probability and is referred to as P , while
the other is based on the uLSIF estimator. As may be observed from Table 2
and Figures 2c and 2d that performances of the hybrid models are significantly
improved with respect to the weighted models, except with the Congressional
Voting and Banknote data sets.

5 Conclusions

In this paper, we showed that the standard importance weighting approach used
to reduce the bias due to covariate shift can easily be improved when misspecified
training models are used. Considering a simple class of selection bias mechanisms,
we proved analytically that the unweighted model exhibits a lower prediction bias
compared to the globally unbiased model in the low importance input subspace.
Even for more general covariate shift scenarios, we proved that there always exist
a threshold for the importance weight below which the test instances should be
predicted by the globally biased model. In view of this result, we proposed a
practical procedure to estimate this threshold and we discussed a simple proce-
dure to combine the weighted and unweighted prediction models. The method
was shown to be effective in reducing the bias on several UCI data sets.

Acknowledgments. This work was partially supported by a grant from the European
ENIAC Joint Undertaking (INTEGRATE project).

References

1. Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning under covariate shift.
The Journal of Machine Learning Research 10, 2137–2155 (2009)

2. Cortes, C., Mansour, Y., Mohri, M.: Learning bounds for importance weighting. In:
Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances
in Neural Information Processing Systems, vol. 23, pp. 442–450. Curran Associates,
Inc. (2010)

3. Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.:
Covariate shift by kernel mean matching (2009)

4. Hernán, M.A., Hernández-Dı́az, S., Robins, J.M.: A structural approach to selec-
tion bias. Epidemiology 15(5), 615–625 (2004)

5. Huang, J., Smola, A.J., Gretton, A., Borgwardt, K.M., Schölkopf, B.: Correcting
sample selection bias by unlabeled data. In: Schölkopf, B., Platt, J., Hoffman, T.
(eds.) NIPS, pp. 601–608. MIT Press (2006)

6. Kanamori, T., Hido, S., Sugiyama, M.: A least-squares approach to direct impor-
tance estimation. J. Mach. Learn. Res. 10, 1391–1445 (2009)

7. Kanamori, T., Suzuki, T., Sugiyama, M.: Statistical analysis of kernel-based least-
squares density-ratio estimation. Machine Learning 86(3), 335–367 (2012)

8. Moreno-Torres, J.G., Raeder, T., Alaiz-Rodŕıguez, R., Chawla, N.V., Herrera,
F.: A unifying view on dataset shift in classification. Pattern Recognition 45(1),
521–530 (2012)

86 V.-T. Tran and A. Aussem

9. Nguyen, X., Wainwright, M.J., Jordan, M.I.: Estimating divergence functionals and
the likelihood ratio by convex risk minimization. IEEE Transactions on Information
Theory 56(11), 5847–5861 (2010)

10. Shimodaira, H.: Improving predictive inference under covariate shift by weighting
the log-likelihood function. Journal of Statistical Planning and Inference 90(2),
227–244 (2000)

11. Sugiyama, M., Nakajima, S., Kashima, H., von Bünau, P., Kawanabe, M.: Direct
importance estimation with model selection and its application to covariate shift
adaptation. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) NIPS (2007)

12. Wen, J., Yu, C.-N., Greiner, R.: Robust learning under uncertain test distribu-
tions: relating covariate shift to model misspecification. In: Jebara, T., Xing, E.P.
(eds.) Proceedings of the 31st International Conference on Machine Learning (ICML
2014), pp. 631–639 (2014)

13. Zadrozny, B.: Learning and evaluating classifiers under sample selection bias. In:
Greiner, R., Schuurmans, D. (eds.) Proceedings of the 21st International Confer-
ence on Machine Learning (ICML 2004) (2004)

Hyperparameter Optimization
with Factorized Multilayer Perceptrons

Nicolas Schilling(B), Martin Wistuba, Lucas Drumond,
and Lars Schmidt-Thieme

Information Systems and Machine Learning Lab,
University of Hildesheim, 31141 Hildesheim, Germany

{schilling,wistuba,ldrumond,schmidt-thieme}@ismll.uni-hildesheim.de

Abstract. In machine learning, hyperparameter optimization is a chal-
lenging task that is usually approached by experienced practitioners or
in a computationally expensive brute-force manner such as grid-search.
Therefore, recent research proposes to use observed hyperparameter per-
formance on already solved problems (i.e. data sets) in order to speed up
the search for promising hyperparameter configurations in the sequential
model based optimization framework.

In this paper, we propose multilayer perceptrons as surrogate mod-
els as they are able to model highly nonlinear hyperparameter response
surfaces. However, since interactions of hyperparameters, data sets and
metafeatures are only implicitly learned in the subsequent layers, we
improve the performance of multilayer perceptrons by means of an
explicit factorization of the interaction weights and call the resulting
model a factorized multilayer perceptron. Additionally, we evaluate dif-
ferent ways of obtaining predictive uncertainty, which is a key ingredient
for a decent tradeoff between exploration and exploitation. Our experi-
mental results on two public meta data sets demonstrate the efficiency of
our approach compared to a variety of published baselines. For reproduc-
tion purposes, we make our data sets and all the program code publicly
available on our supplementary webpage.

Keywords: Hyperparameter optimization · Sequential model-based
optimization

1 Introduction

Unfortunately, machine learning models are very rarely parameter-free, as they
usually contain a set of hyperparameters which have to be chosen appropriately on
validation data. As a simple example, the number of latent variables in a matrix
factorization cannot be determined using gradient descent as firstly, it is not explic-
itly given in the objective function and secondly is not a continuous but a dis-
crete parameter. Additionally, the choice of kernel function for an SVM can also
be understood as hyperparameter, where gradient descent approaches fail. Besides
being a parameter of learned model, hyperparameters can also be part of the objec-
tive function, such as regularization constants. Moreover, they can also be part of
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 87–103, 2015.
DOI: 10.1007/978-3-319-23525-7 6

88 N. Schilling et al.

the learning algorithm that is used to optimize themodel for the objective function,
for example the steplength of a gradient based technique or the threshold of a stop-
ping criterion. Finally, even the choice of preprocessing can be viewed as a hyper-
parameter. Some of these hyperparameters are continuous, some are categorical,
but what they all have in common is that there is no efficient learning algorithm
for them. Therefore many researchers rely on searching them on a grid, which is
computationally very expensive, as with growing data and growing complexity of
models the optimization part usually requires a lot of time.

The performance of a model on test data trained with specific hyperparame-
ters depends on the data set where the machine learning model should be learned,
and therefore hyperparameter optimization is usually started from the scratch
for each new data set. Thus, possibly valuable information of past hyperparam-
eter performance on other data sets is ignored. Recent work proposes to use
this information to be able to perform a more efficient and faster hyperparame-
ter optimization than before [2]. To accomplish this, the sequential model-based
optimization framework is applied, where a surrogate model is learned to pre-
dict hyperparameter performances in a first step. Then an acquisition function
is queried to choose the next hyperparameter to test while maintaining a rea-
sonable tradeoff between exploration and exploitation. As the prediction of the
surrogate model can be done in constant time, hyperparameters can be opti-
mized in a controlled way, resulting in less runs of the actual learning algorithm
until a promising configuration is found.

This paper targets the problem of hyperparameter learning and more gener-
ally model selection across different data sets. We propose to use a multilayer
perceptron as surrogate model and show how it can be learned to also include
hyperparameter performances of data sets observed in the past. Additionally, we
propose a factorized multilayer perceptron that contains a factorization part in
the first layer of the network to directly model interactions of hyperparameters
and datasets. For both of these surrogates, we propose different ways of assessing
their uncertainty which is a key ingredient for hyperparameter optimization in
the SMBO framework. Finally, we conduct three different experiments, where the
first shows the capability of a surrogate model to predict the response surface.
The second experiment compares different ways of estimating prediction uncer-
tainty, and the last demonstrates surrogate performance in a standard SMBO
setting against a variety of published baselines.

2 Related Work

In the recent years, the field of hyperparameter optimization has attracted more
and more interest from the research community. The current state-of-the-art can
be roughly classified into four different method categories.

At first, there are exhaustive methods that search the hyperparameter space
exhaustively and therefore are usually conducted on a compute cluster as they
are computationally expensive. The most simple and most widely used method
is a grid search. Another exhaustive method was proposed by [3], where hyper-
parameters are not sampled on a grid but using probability distributions and

Hyperparameter Optimization with Factorized Multilayer Perceptrons 89

work well in cases of low effective dimensionality, i.e. the case where one hyper-
parameter does not affect the final performance as much as others.

Secondly, there are the model-specific methods that optimize hyperparam-
eters for a specific model choice, such as [1] and [7], which is tailored to least
squares SVM. For a regression with small sample size, the work of [5] can be
applied. Furthermore, [10] deal with hyperparameter optimization in the case
of semi-supervised learning. There is a plethora of model-specific methods, but
their common downside is that they are tailored to a chosen model class and
therefore cannot be applied in general.

A third class of methods to optimize hyperparameter is based on evolutionary
algorithms, for instance [11] optimizes kernel hyperparameters of an SVM and
therefore can be seen as also a model-specific method.

Lastly, a more recent class of hyperparameter optimization methods is based
on the sequential model-based optimization (SMBO) [9] framework which stems
from black-box optimization. The choice of this framework is quite reasonable,
as the function that maps hyperparameters for a given model on a given data set
to the final validation performance is certainly a black-box. All SMBO methods
learn a surrogate model on given hyperparameter choices to infer the perfor-
mance of unknown hyperparameters, where the next hyperparameter to test is
chosen based on the prediction of the surrogate model and its uncertainty. Gaus-
sian processes are used as surrogate model in [19], but are not used to include
hyperparameter performances on other data sets. Moreover, SMAC [8] employs
random forests as surrogate model, but also does not learn across data sets.
The first paper that proposed to include past hyperparameter performances for
SMBO-based hyperparameter optimization is [2], their method SCoT employs
an SVM Rank as surrogate and uses a second stage Gaussian process that is
learned on the output of SVM Rank to allow for uncertainty in the prediction.
Another work uses past hyperparameter performances to come up with a good
initialization for Bayesian hyperparameter optimization [6]. The work in [12]
chooses hyperparameters and models by using active testing on the past obser-
vations, which can be seen as SMBO with a very specific choice of surrogate and
acquisition function.

Finally, [21] uses a Gaussian process with a more sophisticated choice of kernel
function, which is able to generalize over past performances on other data sets,
which is very close to the multi-task Gaussian process approach used by [20].

Compared to exhaustive methods, SMBO algorithms are more efficient in the
overall number of hyperparameters that have to be evaluated; compared to model-
specific methods, they may be applied for every model choice. Moreover, SMBO
algorithms learn a model for the hyperparameter space, which itself is very inter-
esting as it gives a deeper understanding of hyperparameter interactions.

3 Background

In this section, we will first introduce the problem setting, to then discuss impor-
tant properties of surrogate functions. Afterwards, we propose three new surro-
gates and finally show how to assess their prediction uncertainty.

90 N. Schilling et al.

3.1 Problem Setting

Let us define by D the space of all data sets. Furthermore, for a fixed model
class M, let us denote by Aλ a machine learning algorithm as a mapping Aλ :
D −→ M that maps training data Dtrain ∈ D to a learned model Mλ ∈ M for a
given hyperparameter configuration λ ∈ Λ by searching through M and finding
a model that minimizes:

Aλ(Dtrain) := arg min
Mλ∈M

L(Mλ,Dtrain) . (1)

Usually, Λ = Λ1 × . . . × Λp, where Λi may be a continuous or discrete space.
Having learned a model for a given hyperparameter configuration λ, the hyper-
parameter optimization problem can be stated as choosing the λ�, for which the
associated model Mλ� has a minimal error on a validation set

λ� := arg min
λ∈Λ

L(Aλ(Dtrain),Dval) := arg min
λ∈Λ

f(λ) . (2)

Thus, the problem of hyperparameter optimization can be stated as minimizing
computationally expensive black-box function f over Λ. As discussed earlier,
these hyperparameters cannot be optimized using standard means, as there is
no knowledge of f , and therefore exhaustive search methods such as grid search
partition Λ into a discrete subset G ⊂ Λ and optimize f over G, which takes a
lot of time as many hyperparameter configurations have to be tested.

A more recent class of hyperparameter optimization methods follows the
SMBO framework, where on known hyperparameter responses of f on a dis-
crete subset G, a surrogate model Ψ(λ) is learned to most accurately predict f .
Once this is accomplished, Ψ is then used to predict promising hyperparameter
configurations to choose next, while maintaining a tradeoff between exploration
and exploitation. Exploration drives the choice of choosing distant hyperparam-
eter configurations, where the surrogate model Ψ is very uncertain. Exploitation
chooses hyperparameters in well-known regions of f , which might find local but
not necessarily global optima. Therefore, a decent tradeoff between exploration
and exploitation is desired.

As [2] proposed, this procedure is not limited to only one data set and can
therefore be expanded in a way that Ψ learns the response for given hyperpa-
rameters across many data sets D ∈ {D1, . . . , Dm} where the response surface
has already been observed, to then use the gained knowledge to optimize hyper-
parameters for a new data set Dnew. In order to learn such a surrogate, we now
denote the input of Ψ and f by x, which also contains dataset information.

x = (λ, d,m) , (3)

where d is a binary dataset indicator and for a given data set Dj defined as

d(Dj) = (d1, ..., dm) di = δ(i = j) , (4)

for δ being the indicator function. By m or more formally m(Dj), we denote
descriptive features for data set Dj . They are usually called meta features and

Hyperparameter Optimization with Factorized Multilayer Perceptrons 91

can be simple statistics, such as number of attributes, number of instances [2]
[21] or more complex features such as the classification accuracy of a decision
tree or a linear SVM [15]. Finally, an observation history H is built to contain all
hyperparameter responses for λ ∈ G for all data sets D where hyperparameter
optimization has already been accomplished.

The resulting procedure can be seen in Algorithm 1. At the beginning of one
trial, we fit the surrogate model Ψ to the given observation history. Then we
query an acquisition and choose its maximum to be the next hyperparameter
configuration to test. The most widely used acquisition function is the expected
improvement (EI) [9], which given a currently best hyperparameter configuration
xbest is defined as

EI(x) :=
∫ ∞

0

I · p(I |Ψ, xbest) dI . (5)

Afterwards, f is evaluated for the proposed hyperparameter configuration and
the tuple (x, f(x)) is then added into the observation history H.

Algorithm 1. Sequential Model-based Optimization Across Data Sets
Input: Hyperparameter space Λ, observation history H, target data set Dnew, number

of iterations T , acquisition function a, surrogate model Ψ .
Output: Best hyperparameter configuration xbest for Dnew

1: for t = 1 to T do
2: Fit Ψ to H
3: xnew = arg max

x
a (x, Ψ(x))

4: Evaluate f (xnew)
5: if f(xnew) > f(xbest) then
6: xbest = xnew

7: H = H ∪ (xnew, f (xnew))
8: return xbest

3.2 Requirements for a Surrogate Model

We have identified three main ingredients for a surrogate model to be able to
accurately predict hyperparameter responses across data sets.

Nonlinearity. Usually, the hyperparameter response f is highly nonlinear and
therefore dictates a surrogate model to also adapt this property. We will see
later in our experiments, that even nonlinear models can fail to reproduce the
response surface, if the employed basis functions are not well chosen and thus
the model does not offer enough complexity.

Prediction Uncertainty. If we fully trust the surrogate model Ψ in its pre-
dictions, i.e. use the identity as acquisition function and therefore always query
the hyperparameter configuration with the best predicted performance, we are

92 N. Schilling et al.

doomed to fail because only exploitation of the model is done, meaning that we
always stay in a region of the hyperparameter space Λ where we have started.
This is due to the fact that the surrogate model is learned on a few observations
of f and therefore will not accurately predict every hyperparameter performance.
To circumvene this issue, acquisition functions such as the EI are employed, that
try to balance exploration and exploitation. In order for EI to work, the surro-
gate model needs a predictive posterior, i.e. a probability distribution on Ψ(x)
that can be queried for how uncertain the prediction is, thus forming the second
key ingredient for a decent surrogate model.

Shared and Data Set Specific Parameters. To successfully learn surrogate
model across different problem aspects (i.e. data sets), it should be able to dis-
tinguish between these to learn specific data set characteristics. A natural way
is to add binary dataset indicators as it was done above. However, to be able
to learn more than only a data set bias with these features, we aim to learn
factorization models that can also model the interactions of hyperparameters
with datasets, hyperparameters with model choices and so on. In this way, we
automatically learn latent characteristics of a data set.

Another way to let the surrogate learn across problems is to add meta features
that describe the problems, where for data sets, many meta features have already
been proposed. If we think one step further and want to generalize over other
problem aspects such as preprocessing, choice of model, etc. we have to come
up with meta features describing these problem aspects, which does not seem
reasonable to us anymore.

3.3 Proposed Models

Factorization Machines. The first surrogate model we propose is a factor-
ization machine which was introduced in [16]. It works as a generalization of
factorization models and can mimic all different kind of models if the features
are preprocessed in a certain way. To every given feature, i.e. in our case hyperpa-
rameters and binary data set indicators, the model associates a vector of K ∈ N

latent features. The final prediction is then given through

Ψ(x) = w0 +
n∑

i=1

wixi +
1
2

n∑

i=1

n∑

j=i+1

〈vi, vj〉xixj . (6)

The model is also sometimes called a factorized polynomial regressor, as in its
essence it is a polynomial regression of degree two, if one sets wi,j := 〈vi, vj〉,
though by factorizing this weight the model can be fitted more effectively in
sparse settings as the parameters have more instances to learn from. Moreover,
by applying a factorization machine, we are also able to learn interactions of
data sets and hyperparameters. Ultimatively, we are even able to use continuous
features, such as meta features, which a standard matrix factorization model
would not allow us to do.

Hyperparameter Optimization with Factorized Multilayer Perceptrons 93

Multilayer Perceptron. The next model we propose to use as a surrogate is
the multilayer perceptron, which may be more commonly named as feedforward
neural network. A multilayer perceptron consists of L many layers, where each
layer comprises N many nodes and is fully connected to the next layer, forming
the structure of a directed acyclic graph. At the beginning, x = x0 is used as
input for the first layer. The k-th output of a layer l is then defined as

xl
k = σl−1

(
wl−1

0,k +
n∑

i=1

wl−1
i,k xl−1

i

)
= σ(sl

k) , (7)

thus acts as input for the subsequent layer, where σl−1 is a sigmoid function, in
our case we used the hyperbolic tangent, and w are the weights, i.e. parameters
of the model. In this way, the information is propagated forward until predictions
are made in the final layer. As our task is regression, the final prediction will be
one-dimensional and σL−1 is defined as the identity function

Ψ(x) = wl−1
0 +

n∑

i=1

wl−1
i xl−1

i . (8)

Let us have a closer look at what the model does with binary data set indica-
tors. In the input layer, the multilayer perceptron learns exactly N many weights
per each data set, which act as a data set bias, and therefore can be used by
the model to generalize across data sets. From the second layer onwards, the
model acts independently from the data set as all features then are fitted glob-
ally. Nevertheless, interactions can still implicitly be modeled throughout the
learning process of the network. The question to answer is whether an explicit
modelling of these interactions such as in a factorization machine is better than
an implicit one.

Factorized Multilayer Perceptron. Finally, the third surrogate model pro-
posed by us is a mixture of both previous models and is therefore called a
factorized multilayer perceptron. Closely related to a multilayer perceptron, it
also consists of L many layers, where each layer comprises N many nodes, also
the final prediction is the same as given in Equation 8. The only difference is
that here we explicitly model feature interactions in the input layer, by using
the prediction of a factorization machine instead of a linear model. Thus, the
k-th output of the first layer is defined as

xk = σ(s1k) = σ
(
w0,k +

n∑

i=1

wi,kxi +
1
2

n∑

i=1

n∑

j=i+1

〈vi,k, vj,k〉xixj

)
, (9)

where vi,k ∈ R
K are the latent characteristics of feature i for the output k.

Note that we only do this in the first layer and therefore dropped the layer
dependencies to avoid unnecessary clutter.

In this way, we explicitly model the feature interactions of a factorization
machine into the first layer of a multilayer perceptron, as the binary data set

94 N. Schilling et al.

indicators are naturally only given in the input layer. This model can be learned
straightforward using backpropagation [17], the only difference is that we have to
consider the update for the latent feature vectors as well. The resuling procedure
can be viewed in Algorithm 2, where the updates are denoted for a stochastic
gradient descent approach. We dropped the usual momentum term to avoid
clutter, the implementation of such a term is straightforward.

Algorithm 2. SGD-Backpropagation for Factorized Multilayer Perceptron
Input: Data Set D, Loss function L, step length η > 0.
1: repeat
2: Draw (x, y) ∈ D
3: Predict ŷ(x)

4: Compute δl
k = ∂L(ŷ(x),y)

∂sl
k

· dσ

dsl
k

for all layers l and nodes k

5: Update wl
i,k = wl

i,k − ηδl
kxi

6: Precompute μk
j =
∑n

i=1 vk
i,jxi

Update vk
i,j = vk

i,j − ηδl
k(xiμ

k
j − vk

i,jx
2
i)

7: until Convergence

3.4 Estimating Prediction Uncertainty

The proposed surrogate models are still lacking the ability to predict under
uncertainty, which is a key ingredient for running SMBO with a decent trade-
off between exploration and exploitation. SMAC uses a random forest, i.e. a
bagged ensemble of decision trees, and is thus able to compute a mean and a
standard deviation by assuming that the prediction of the ensemble is Gaussian
distributed. Alternatively, SCoT uses a ranking approach and learns a Gaussian
process on the ranked output, thus obtaining prediction uncertainty through the
Gaussian process.

By treating the abovely proposed surrogate models in a Bayesian setting as
it is described in [13], it is possible to deduce prediction uncertainty using a
Taylor approximation of the objective function. Let us denote by w a vector of
all parameters of Ψ , including biases, weights and possibly latent characteristics.
Assuming a Gaussian prior with covariance α−1 of the form

p(w) = N (w |0, α−1I) , (10)

the posterior distribution of the parameters w given the data D, α and data set
noise σ2 can be estimated by using a second-order Taylor decomposition on the
objective function. The resulting parameter posterior is approximated as

p(w |D,α, σ2) ≈ N (w |w�, A−1) , (11)

where A = βH + αI, and H is the Hessian matrix of the loss on the data set.
The densitiy of the predictive posterior can then be written as

p(y |x,D, α, σ2) =
∫

N (y |Ψ(x,w), σ2)N (w |w�, A−1)dw . (12)

Hyperparameter Optimization with Factorized Multilayer Perceptrons 95

As [13] argues, this integral is not feasible to compute because of the nonlinearity
of Ψ , thus a first order approximation is done around w� yields

Ψ(x,w) ≈ Ψ(x,w�) + g�(w − w�) where g = ∇wΨ(x,w)|w=w� . (13)

Finally, the predictive posterior can be written as Gaussian

p(y |x,D, α, σ2) = N (y |Ψ(x,w�), σ2 + g�A−1g) . (14)

In conclusion, to predict the uncertainty of Ψ for an instance x, we need to
estimate the Hessian of the loss of Ψ on D, and a gradient g depending on x.
The latter is easy at it only involves a computation of the gradient, which is for
a multilayer perceptron a forward and a backward pass through the network.

To compute the inverse Hessian in an analytic fashion is usually not feasible
as computing one entry of the Hessian involves a pass over the whole data and
then inverting the resulting matrix has an effort that is cubical in the number of
parameters, i.e. the dimensionality of w. Out of this reason, we seek to approxi-
mate the inverse of the Hessian directly by using a sum of outer products as it is
exposed in [4]. As the target loss is least squares, the Hessian can be written as

H =
∑

(x,y)∈D

∇Ψ(x,w)∇Ψ(x,w)� +
∑

(x,y)∈D

(y − Ψ(x,w))∇∇Ψ(x,w) . (15)

As [4] outlines, for a carefully learned model the second sum can be neglected
as the quantity (y − Ψ(x,w)) is close to zero. Thus, H can be approximated
using only the first term which is a sum of outer products. The inverse of H

Fig. 1. Predictive Posterior of a multilayer perceptron learned on (x1, y1) = (0, 1) and
(x2, y2) = (π, −1). The red line shows the mean, the grey line shows one standard
deviation (Best viewed in color)

96 N. Schilling et al.

can directly be computed in an iterative fashion over the data set using the
Sherman-Woodbury formula and starting with an initialization of H−1 = α−1I.
In this way, we we effectively compute the inverse of H +αI, which is exactly the
matrix we seeked to invert. A one dimensional example can be seen in Figure 1,
where a multilayer perceptron is learned on two data points.

As an alternative approach, we simply compute an ensemble of surrogates
and predict the uncertainty using the estimated mean and standard deviation of
all the predictions, as it is also done by SMAC. The resulting variance then stems
from differently learned models, which in the case of SMAC results from bagging.
As the most simple approach, we propose to learn an average ensemble, where
the resulting variance stems only from different initializations of the surrogate
model, which is reasonable if the whole optimization problem is not convex and
therefore yields different solutions.

4 Experiments

To assess the performance of our proposed surrogate models we will conduct three
different experiments on two meta data sets that we have created on our own.

4.1 Meta Data Set Creation

For 25 randomly chosen classification data sets of the UCI repository1, we merged
existing splits into one data set, then shuffled the data set and created one split
where 80% of the data was used for training, and the remaining 20% for testing.
To create the first data set, we learned AdaBoost2 by employing decision prod-
ucts as weak learners of the ensemble. This involves two hyperparameters, the
number of iterations I and the number of product terms M . For all 25 classifica-
tion datasets, the resulting test accuracy was recorded when learning AdaBoost
with hyperparameters I ∈ {2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000}
and M ∈ {2, 3, 4, 5, 7, 10, 15, 20, 30} which yields 108 meta instances per data
set.

The second meta data set was created by learning an SVM3 with four
involved hyperparameters, namely the choice of kernel between linear, poly-
nomial and Gaussian, the tradeoff parameter C, the degree of the polynomial
d and the width γ of the Gaussian kernel. If a hyperparameter is not involved,
for example the polynomial degree for the SVM with Gaussian Kernel, we set
it to zero in the meta instances. Again, the test accuracy was precomputed on
a grid consisting of hyperparameters C ∈ {2−5, . . . , 26}, d ∈ {2, . . . , 10} and
γ ∈ {0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100, 1000}, which results
in a meta dataset of 288 instances per data set. By including also the choice of
kernel for the SVM, this meta data set can already be viewed as cross-model,
since we try to learn not only the hyperparameters but also a model choice.
1 http://archive.ics.uci.edu/ml/index.html
2 http://www.multiboost.org
3 http://svmlight.joachims.org

http://archive.ics.uci.edu/ml/index.html
http://www.multiboost.org
http://svmlight.joachims.org

Hyperparameter Optimization with Factorized Multilayer Perceptrons 97

As they are an indispensable part of the competing methods, we also added
the meta features used by [2] and [21] to our meta data sets. These encompass the
number of classes c, the logarithm of the number of predictors log(p) and finally
the logarithm of the quotient of dataset instances and number of predictors
log(|D|/p). Finally, we scaled the meta features to have values in [0, 1].

Table 1. Confidence intervals of the resulting RMSE of experiment 1 for all models
when reconstructing the response surface

RF SVR FM MLP FMLP

SVM 0.0997±0.028 0.1110±0.020 0.1041±0.029 0.0596±0.013 0.0550 ±
0.016

AdaBoost 0.0462±0.012 0.0840±0.009 0.0579±0.015 0.0380±0.008 0.0377 ±
0.009

4.2 Experiment 1: Reconstruction of the Response Surface

As a first experiment, we seek to learn models to reconstruct the hyperparameter
response surface in order to determine their usefulness for hyperparameter opti-
mization in the sequential model-based optimization framework. The evaluation
protocol is designed in a leave-one-out fashion, where we learn a surrogate model
on 24 response surfaces plus a few observations of hyperparameter responses of
the new dataset to then predict the full response surface. For the test data, we
took 4% of the responses as training data, 10% as validation data for hyperpa-
rameter optimization of the surrogate model and used the remaining 86% as test
data.

As surrogate models, we used a random forest (RF), a support vector regres-
sion (SVR), a factorization machine (FM), a multilayer perceptron (MLP) and
a factorized multilayer perceptron (FMLP). For the RF, we used the implemen-
tation in MLTK4, for the support vector regression we used the implementation
by Joachims 5 . All remaining models were implemented in Java by ourselves
and optimized for minimal root mean squared error (RMSE). Hyperparameters
of all models have been optimized using grid search, for more detail on the grids,
we refer to our supplementary webpage [18]. The resulting 95% confidence inter-
vals of the leave-one-out cross validation are reported in Table 1. Clearly, both
neural network models outperform the other models by a considerable margin,
where the FMLP tends to achieve the best performance, although the lift to a
normal MLP is marginal and not statistically significant. It is observable that
results on AdaBoost are much better, therefore indicating that the hyperparam-
eter optimization problem for this specific model is easier than for an SVM.
We acknowledge that also the lift of our models compared to the RF is not
statistically significant.

4 http://www.cs.cornell.edu/∼yinlou/projects/mltk/
5 http://svmlight.joachims.org/

http://www.cs.cornell.edu/~yinlou/projects/mltk/
http://svmlight.joachims.org/

98 N. Schilling et al.

Unexpectedly, a factorization machine fails to reconstruct the response sur-
face as its RMSE is clearly worse than of the MLP, for instance. This stems
from the fact that its expressivity in this setting is rather limited as a stan-
dalone model, which can be demonstrated by a small example. If we consider an
instance out of the SVM meta data set with RBF kernel, then, leaving out the
meta features, the prediction can be shown to have the form:

Ψ(x) = w0 + wCC + wγγ + wC,γ Cγ , (16)

which has the geometrical form of a hyperbolic paraboloid. This clearly fails
to reproduce any complex response surface and therefore a plain Factorization
Machine is not a good candidate for a surrogate model.

4.3 Experiment 2: Uncertainty Estimation in SMBO

In this experiment we compare the a multilayer perceptron in two different sce-
narios. Before we proceed, we first introduce the evaluation metrics that we
applied in the SMBO setting.

Evaluation Metrics for SMBO. We use two different evaluation metrics, at
first the average rank of the individual models, where the second metric is the
average hyperparameter rank.

Average Rank. The average rank among different tuning strategies ranks all
tuning strategies by the best hyperparameter configuration they have found so
far, where ties are solved by granting the average rank. If we for example have
four different tuning strategies where one obtains an accuracy of 0.9, two others
obtain 0.8 and the third obtains an accuracy of 0.7, we associate the ranks 1,
2.5, 2.5, 4.

Average Hyperparameter Rank. By average hyperparameter rank we do not com-
pare between methods but between hyperparameters found. For a fixed data set
D, the hyperparameter responses are ranked according to their performance,
then the average hyperparameter rank is simply the average over all folds.

Experiment Setup and Results. We evaluate at first the MLP when com-
puting predictive uncertainty by means of an inverse Hessian matrix (MLPH)
as proposed in section 3.4, opposed to the approach where the uncertainty is
assessed by using an average ensemble (MLPE). The development of the aver-
age hyperparameter rank for both the SVM and the AdaBoost data set is plotted
in Figure 2, where results are averaged over 10 runs for both methods. As the
figure indicates, the convergence of MLPE is much faster, which is due to sev-
eral reasons. At first, having an ensemble yields a better approximation of the
response surface itself. Secondly, the predicted uncertainty does not seem to help
in exploring the hyperparameter space, which then results in an overall small
convergence. This is due to the fact, that the inverse Hessian is only approx-
imated in many ways, if we consider Equation 15, which is already a Tailor

Hyperparameter Optimization with Factorized Multilayer Perceptrons 99

0

20

40

60

0 10 20 30 40 50
Number of Trials

Av
er

ag
e

H
yp

er
pa

ra
m

et
er

 R
an

k

MLPH MLPE
AdaBoost

0

50

100

0 10 20 30 40 50
Number of Trials

Av
er

ag
e

H
yp

er
pa

ra
m

et
er

 R
an

k

MLPH MLPE
SVM

Fig. 2. Development of the average hyperparameter rank with increasing numbers of
trials. Clearly, the convergence of the ensemble MLP is much faster than using the
inverse Hessian (Best viewed in color)

approximation, the second term was neglected for a carefully trained model. By
adding the new target data set to our overall loss, this assumption is likely not
valid anymore as the surrogate has almost no knowledge of the new data set and
therefore cannot be perfectly trained for it. Moreover, if we consider Figure 1,
it still shows quite a bit uncertainty around points which have already been
evaluated which might lead to exploitation. The uncertainty only decreases if
more points in this region are queried, a luxury that we are not permitted in the
SMBO scenario.

Consequently, as it also takes more time to compute the inverse Hessian than
learning an ensemble model, we propose to follow the latter strategy. This is also
done in the next experiment, where MLP and FMLP are used in an ensemble
fashion.

4.4 Experiment 3: Sequential Model Based Optimization

As a final experiment, we test our surrogate models, the MLP and FMLP in
the SMBO setting, where we again perform a leave-one-out cross validation over
data sets. Hyperparameters of baseline models have been specifically optimized
for the average hyperparameter rank, for the models proposed by us we used
the optimal hyperparameters of the first experiment. To consider initialization
variance, all results are averaged over 10 runs, except for the random search
where 1000 runs were executed. We will briefly describe the competing methods
in the following.

Tuning Strategies.

Random Search. This is a tuning strategy that neither uses a surrogate model
nor uses an acquisition function. It was first proposed in [3], and has proven to
work well in scenarios of low effective dimensionality.

100 N. Schilling et al.

Independent Gaussian Process (I-GP). This tuning stategy uses a Gaussian
Process with a Gaussian kernel as surrogate model. It does not employ any
information of hyperparameter responses on other datasets, therefore does not
learn across data sets.

Sequential Model-based Algorithm Configuration++ (SMAC++). SMAC [8] uses
a random forest as surrogate model, we denote by SMAC++ a random forest
that also incorporates meta features and therefore is able to take hyperparameter
performance of other datasets into account.

Surrogate-based Collaborative Tuning (SCoT). This is the tuning strategy pro-
posed by [2]. Its surrogate model is based on a two stage approach, as it first
learns a ranking using SVMRANK with an RBF Kernel. Then, a Gaussian Pro-
cess is learned on the output of the ranking. As indicated by [21], learning an
RBF Kernel takes too much time, we followed their suggestion and learned a
linear kernel instead.

Gaussian Process with MKL (MKL-GP). As proposed by [21], this tuning strat-
egy is based on a Gaussian Process as surrogate model where the kernel is a
mixture of an SE-ARD Kernel combined with a kernel modelling the distances
between data sets, which is estimated based on the meta features.

Multilayer Perceptron (MLP). Our tuning strategy based on a multilayer percep-
tron that associates weights to binary data set indicators. We learn an average-
ensemble of 100 models to assess uncertainty in the prediction. The weights of
the network are initialized using the Nguyen-Widrow [14] initialization for faster
convergence of the model.

Factorized Multilayer Perceptron (FMLP). The final tuning strategy that we
propose. It is similar to the multilayer perceptron, but uses an additional factor-
ization part in the first layer to directly model all interactions of hyperparame-
ters, data sets and meta features. As for the MLP, we again learn an ensemble
of 100 models to predict uncertainties, the network weights are being initialized
as for the MLP, the latent factors are initialized using a Gaussian prior.

Optimal. This is an artificial surrogate model that always predicts the best
hyperparameter configurations and is plotted for orientation purposes.

Results. Figure 3 shows the development of the average rank with increasing
number of trials. For both meta data sets the first ten trials of SMBO encompass
some noise as basically all competing methods start out equally good (or bad).
Afterwards, we see that the FMLP performs best in the arguably most interesting
region, where there is a proper tradeoff between the optimal hyperparameter
found so far and the overall used percentage of the grid, as in the beginning,
there is a lot of noise involved and in the end the improvement in hyperparameter

Hyperparameter Optimization with Factorized Multilayer Perceptrons 101

Optimal

FMLP

Random

SMAC++

SCoT

2

4

6

0 30 60 90
Number of Trials

Av
er

ag
e

R
an

k

Random
I−GP
SMAC++
SCoT

MKL−GP
MLP
FMLP
Optimal

AdaBoost

Optimal

FMLP

Random

SMAC++

SCoT

2

4

6

0 50 100 150
Number of Trials

Av
er

ag
e

R
an

k

SVM

Fig. 3. Development of the average rank with increasing numbers of trials (Best viewed
in color or online [18])

MKL−GP

SCoT

FMLP0

10

20

30

40

0 10 20 30 40 50
Number of Trials

Av
er

ag
e

H
yp

er
pa

ra
m

et
er

 R
an

k

Random
I−GP
SMAC++
SCoT

MKL−GP
MLP
FMLP

AdaBoost

MKL−GP

SMAC++

FMLP

0

25

50

75

100

0 10 20 30 40 50
Number of Trials

Av
er

ag
e

H
yp

er
pa

ra
m

et
er

 R
an

k

Random
I−GP
SMAC++
SCoT

MKL−GP
MLP
FMLP

SVM

Fig. 4. Development of the average hyperparameter rank with increasing numbers of
trials (Best viewed in color or online [18])

performance degrades. Note that the MLP also is very competitive and therefore
empirically already a decent tuning strategy.

Figure 4 demonstrates the development of the average hyperparameter rank.
This chart gives an impression of how fast the actual performance of proposed
hyperparameter configurations converges to the optimal configuration on the
grid. Again, we observe that the FMLP works best for both the AdaBoost and
the SVM data set, which none of the baselines accomplish, as for example SCoT
only works well on the SVM data set. We acknowledge the good results of an
independent Gaussian Process on the AdaBoost data, which degrades on the

102 N. Schilling et al.

SVM data set. This may be due to the higher complexity of the SVM data
as it not only contains different hyperparameters but also model choices. On
AdaBoost, the MKL-GP also performs really well, but does not show the same
performance when applied to the SVM data set.

5 Conclusions

We proposed to use multilayer perceptrons as surrogate model and improved
them by using a factorization approach in the first layer. Our experimental
results on two public meta data sets show that the FMLP outperforms cur-
rent state of the art surrogate models in hyperparameter optimization using the
SMBO framework. Moreover, we evaluated two different strategies of assessing
prediction uncertainty and showed empirically, that the simpler and faster strat-
egy works better. For future work, we want to extend our meta data sets to a
cross-model problem by using a plethora of base models and then try to learn a
common latent feature space for datasets and models. We argue that this is the
next step to be made in hyperparameter optimization.

References

1. Adankon, M.M., Cheriet, M.: Model selection for the LS-SVM. Application to
handwriting recognition. Pattern Recognition 42(12), 3264–3270 (2009)

2. Bardenet, R., Brendel, M., Kegl, B., Sebag, M.: Collaborative hyperparameter
tuning. In: Dasgupta, S., Mcallester, D. (eds.) JMLR Workshop and Conference
Proceedings of the 30th International Conference on Machine Learning (ICML
2013), vol. 28, pp. 199–207, May 2013

3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

4. Bishop, C.M., et al.: Pattern recognition and machine learning, vol. 4. springer
New York (2006)

5. Chapelle, O., Vapnik, V., Bengio, Y.: Model selection for small sample regression.
Machine Learning 48(1–3), 9–23 (2002)

6. Feurer, M., Springenberg, J.T., Hutter, F.: Initializing bayesian hyperparameter
optimization via meta-learning. In: Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence (2015)

7. Guo, X.C., Yang, J.H., Wu, C.G., Wang, C.Y., Liang, Y.C.: A novel ls-svms hyper-
parameter selection based on particle swarm optimization. Neurocomput. 71(16–
18), 3211–3215 (2008)

8. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

9. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. of Global Optimization 13(4), 455–492 (1998)

10. Kapoor, A., Ahn, H., Qi, Y., Picard, R.W.: Hyperparameter and kernel learning
for graph based semi-supervised classification. In: Advances in Neural Information
Processing Systems, pp. 627–634 (2005)

Hyperparameter Optimization with Factorized Multilayer Perceptrons 103

11. Koch, P., Bischl, B., Flasch, O., Bartz-Beielstein, T., Weihs, C., Konen, W.:
Tuning and evolution of support vector kernels. Evolutionary Intelligence 5(3),
153–170 (2012)

12. Leite, R., Brazdil, P., Vanschoren, J.: Selecting classification algorithms with active
testing. In: Perner, P. (ed.) MLDM 2012. LNCS, vol. 7376, pp. 117–131. Springer,
Heidelberg (2012)

13. Murphy, K.P.: Machine learning: a probabilistic perspective. MIT press (2012)
14. Nguyen, D., Widrow, B.: Improving the learning speed of 2-layer neural networks

by choosing initial values of the adaptive weights. In: 1990 IJCNN International
Joint Conference on Neural Networks, 1990, pp. 21–26. IEEE (1990)

15. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking
various learning algorithms. In: Proceedings of the Seventeenth International Con-
ference on Machine Learning, pp. 743–750. Morgan Kaufmann (2000)

16. Rendle, S.: Factorization machines. In: 2010 IEEE 10th International Conference
on Data Mining (ICDM), pp. 995–1000. IEEE (2010)

17. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Cognitive modeling 5 (1988)

18. Schilling, N.: Supplementary website. http://hylap.org/publications/hyper-opt-
with-factorized-multilayer-perceptrons

19. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.)
Advances in Neural Information Processing Systems, vol. 25, pp. 2951–2959.
Curran Associates, Inc. (2012)

20. Swersky, K., Snoek, J., Adams, R.P.: Multi-task bayesian optimization. In:
Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.)
Advances in Neural Information Processing Systems, vol. 26, pp. 2004–2012.
Curran Associates, Inc. (2013)

21. Yogatama, D., Mann, G.: Efficient transfer learning method for automatic hyperpa-
rameter tuning. In: International Conference on Artificial Intelligence and Statistics
(AISTATS 2014) (2014)

http://hylap.org/publications/hyper-opt-with-factorized-multilayer-perceptrons
http://hylap.org/publications/hyper-opt-with-factorized-multilayer-perceptrons

Hyperparameter Search Space Pruning – A New
Component for Sequential Model-Based

Hyperparameter Optimization

Martin Wistuba(B), Nicolas Schilling, and Lars Schmidt-Thieme

Information Systems and Machine Learning Lab,
University of Hildesheim,

31141 Hildesheim, Germany
{wistuba,schilling,schmidt-thieme}@ismll.uni-hildesheim.de

Abstract. The optimization of hyperparameters is often done manu-
ally or exhaustively but recent work has shown that automatic methods
can optimize hyperparameters faster and even achieve better final per-
formance. Sequential model-based optimization (SMBO) is the current
state of the art framework for automatic hyperparameter optimization.
Currently, it consists of three components: a surrogate model, an acquisi-
tion function and an initialization technique. We propose to add a fourth
component, a way of pruning the hyperparameter search space which is
a common way of accelerating the search in many domains but yet has
not been applied to hyperparameter optimization. We propose to discard
regions of the search space that are unlikely to contain better hyperpa-
rameter configurations by transferring knowledge from past experiments
on other data sets as well as taking into account the evaluations already
done on the current data set.

Pruning as a new component for SMBO is an orthogonal contribution
but nevertheless we compare it to surrogate models that learn across
data sets and extensively investigate the impact of pruning with and
without initialization for various state of the art surrogate models. The
experiments are conducted on two newly created meta-data sets which
we make publicly available. One of these meta-data sets is created on 59
data sets using 19 different classifiers resulting in a total of about 1.3
million experiments. This is by more than four times larger than all the
results collaboratively collected by OpenML.

1 Introduction

Most machine learning algorithms depend on hyperparameters that need to be
tuned. In contrast to model parameters, hyperparameters are not estimated
during the learning process but have to be set before. Since the hyperparam-
eter tuning often decides whether the performance of an algorithm is state
of the art or just moderate, the task of hyperparameter optimization is as
important as developing new models [2,7,20,22,25]. Typical hyperparameters
are for example the trade-off parameter C of a support vector machine or the
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 104–119, 2015.
DOI: 10.1007/978-3-319-23525-7 7

Hyperparameter Search Space Pruning 105

regularization constant of a Tikhonov-regularized model. Taking a step fur-
ther, the chosen model as well as preprocessing steps can be considered as
hyperparameters [25]. Then, hyperparameter optimization not only involves
model selection but also model class selection, choice of learning algorithms and
preprocessing.

The conventional way of hyperparameter optimization is a combination of
manual search with a grid search. This is an exhaustive search in the hyperpa-
rameter space which involves multiple training of the model. For high-complex
hyperparameter spaces or large data sets this becomes infeasible. Therefore,
methods to accelerate the process of hyperparameter optimization are currently
an interesting topic for researchers [3,22,25]. Sequential model-based optimiza-
tion (SMBO) [15] is a black-box optimization process and has proven to be effec-
tive in accelerating the hyperparameter optimization process. SMBO is based
on a surrogate model that approximates the response function of a data set for
given hyperparameters such that sequentially possibly interesting hyperparam-
eter configurations can be evaluated.

Recent work tries to transfer knowledge about the hyperparameter space
from past experiments to a new data set [1,24,29]. They motivate this idea by
assuming that regions of the hyperparameter space that perform well for few data
sets likely contain promising hyperparameter configurations for new data sets.

1.1 Our Contributions

The SMBO framework currently has at most three components. First, the sur-
rogate model that predicts the performance for each possible hyperparame-
ter configuration. Secondly, the acquisition function which uses the surrogate
model to propose the next hyperparameter configuration to evaluate. These
are the two mandatory components. The third optional component is some
initialization technique which usually starts which a hyperparameter config-
uration that has proven to be good on many data sets [9,11]. We propose
to add a fourth component which is orthogonal to all the others. Our idea
is to reduce the hyperparameter search space by using knowledge from past
experiments to discard regions that are very likely not interesting. This avoids
that the acquisition function chooses hyperparameter configurations in these
regions because of high uncertainty and therefore avoids unnecessary function
evaluations.

Additionally, we created two meta-data sets and make them publicly avail-
able. One is a meta-data set created by running a kernel support vector machine
on 50 different data sets with 288 different hyperparameter configurations result-
ing into 14,000 meta-instances. The second is a large scale meta-data set cre-
ated by using 19 different classifiers provided by Weka [13] on 59 data sets. In
total 1,290,389 meta-instances were created such that the number of runs is by
more than 4 times larger than the number of runs collaboratively collected by
OpenML [26].

106 M. Wistuba et al.

2 Related Work

Pruning is a well known technique to accelerate the search in several domains.
Thus, for example, various pruning techniques are applied to the minimax algo-
rithm such as the killer heuristic or null move pruning [8]. Branch-and-Bound
[18] is a pruning technique that is applied in the domain of operations research
for discrete and combinatorial optimization problems and is very common for
NP-hard optimization problems [17]. Nevertheless, we are not aware of any pub-
lished work that is trying to prune the search space in the SMBO framework for
hyperparameter optimization.

Since pruning as proposed by us is some way of transferring knowledge from
past experiments to a new experiment, other techniques that try exactly the same
are the closest related work but as we will see, orthogonal to our contribution.
One common and easy way to use experience in the hyperparameter optimization
domain is to define an initialization, a sequence of hyperparameter configurations
that are chosen first. These are usually those hyperparameter configurations that
performed best on average across data sets [9,11]. The second and last method
to do so is by using the surrogate model. Instead of learning the surrogate model
only on the new data set, the surrogate model is learned across all data sets
[1,24,29]. We want to highlight that all these three possibilities are not mutually
exclusive and can be combined and thus these ideas are orthogonal to each other.

Leite et al. [19] propose a similar distance function between data sets as we
use. But they propose a hyperparameter selection strategy that is limited to the
hyperparameter configurations that have been seen on the meta-training data.

Furthermore, there also exist strategies to optimize hyperparameters that are
based on optimization techniques from artificial intelligence such as tabu search
[4], particle swarm optimization [12] and evolutionary algorithms [10] as well as
gradient-based optimization techniques [6] designed for SVMs.

3 Background

3.1 The Formal Setup

A machine learning algorithm Aλ is a mapping Aλ : D → M where D is the
set of all data sets, M is the space of all models and λ ∈ Λ is the chosen
hyperparameter configuration with Λ = Λ1 × . . . × Λp being the p-dimensional
hyperparameter space. The learning algorithm estimates a model Mλ ∈ M that
minimizes a regularized loss function L (e.g. misclassification rate):

Aλ

(
D(train)

)
:= arg min

Mλ∈M
L

(
Mλ,D(train)

)
+ R (Mλ) . (1)

Then, the task of hyperparameter optimization is finding the optimal hyperpa-
rameter configuration λ∗ using a validation set i.e.

λ∗ := arg min
λ∈Λ

L
(
Aλ

(
D(train)

)
,D(valid)

)
:= arg min

λ∈Λ
fD (λ) . (2)

Hyperparameter Search Space Pruning 107

3.2 Sequential Model-Based Optimization

Exhaustive hyperparameter search methods such as grid search are becoming
more and more expensive. Data sets are growing, models are getting more com-
plex and have high-dimensional hyperparameter spaces. Sequential model-based
optimization (SMBO) [15] is a black-box optimization framework that replaces
the time-consuming function f to evaluate with a cheap-to-evaluate surrogate
function Ψ that approximates f . With the help of an acquisition function such
as expected improvement [15] it sequentially chooses new points such that a bal-
ance between exploitation and exploration is found and f is optimized. In our
scenario evaluating f is equivalent to learning a model on some training data
for a given hyperparameter configuration and estimating the performance of this
model on a hold-out data set.

Algorithm 1 outlines the SMBO framework. It starts with an observation
history H that equals the empty set in cases where no knowledge from past
experiments is used [2,14,22] or is non-empty in cases where past experiments
are used [1,24,29]. First, the optimization process can be initialized. Then, the
surrogate model Ψ is fitted to H where Ψ can be any regression model. Since the
acquisition function usually needs to assess prediction uncertainty of the surro-
gate, common choices are Gaussian processes [1,22,24,29] or ensembles such as
random forests [14]. The acquisition function chooses the next candidate to eval-
uate. A common choice for the acquisition function is expected improvement [15]
but further acquisition functions exist such as probability of improvement [15],
the conditional entropy of the minimizer [27] or a criterion based on multi-armed
bandits [23]. The evaluated candidate is finally added to the set of observations.
After T -many SMBO iterations, the best currently found hyperparameter con-
figuration is returned.

Line 6 is our proposed addition to the SMBO framework. Selecting the iden-
tity function as prune results in the typical SMBO framework. In the next section
we propose a more suitable pruning function.

Algorithm 1. Sequential Model-based Optimization
Input: Hyperparameter space Λ, observation history H, number of iterations T , acqui-

sition function a, surrogate model Ψ , initial hyperparameter configurations Λ(init).
Output: Best hyperparameter configuration found.
1: for λ ∈ Λ(init) do
2: Evaluate f (λ)
3: H ← H ∪ {(λ, f (λ))}
4: for t =

∣∣∣Λ(init)
∣∣∣+ 1 to T do

5: Fit Ψ to H
6: Λ(pruned) ← prune (Λ)
7: λ ← arg maxλ∈Λ(pruned) a (λ, Ψ)
8: Evaluate f (λ)
9: H ← H ∪ {(λ, f (λ))}

10: return arg max(λ,f(λ))∈H f (λ)

108 M. Wistuba et al.

4 Pruning the Search Space

The idea of pruning is to consider only a subset of the hyperparameter config-
uration space Λ to avoid unnecessary function evaluations in regions where we
do not expect any improvements. It is obvious that if it is possible to identify
regions that are for sure not of interest without evaluating any point in this
region highly accelerates the hyperparameter optimization. We propose to pre-
dict the potential of regions by transferring knowledge from past experiments.
The key idea is that similar data sets to the new data set have similar or even
the same regions that are not interesting and therefore not worth investigating.

4.1 Formal Description

We define a region R by its center λ ∈ Λ and diameter δ ∈ R
p, δ > 0. The

potential of this region after t trials on the new data set D(new) is defined by

potential (R = (λ, δ) , Λt) :=
∑

D′∈N(D(test))
f̃D′ (λ) − max

λ′∈Λt

f̃D′ (λ′) (3)

where Λt is the set of already evaluated hyperparameter configurations on D(new)

and N (
D(new)

)
is the set of data sets that are closest to the new data set.

f̃D is the normalized version of the response function fD of data set D. fD is
scaled to the interval [0, 1] such that each data set has the same influence on
the potential. Thus, the potential is the predicted improvement when choosing λ
over the hyperparameter configurations already evaluated. Since fD is not fully
observed for D ∈ D, where D is the meta-training set, we approximate f̃D with
a plug-in estimator ŷD. We use a Gaussian process [21] that is trained on all
normalized meta-instances of a data set such that we get for each training data
set a plug-in estimator

f̃D (λ) ∼ ŷD (λ) := GP (mD (λ) , kD (λ, λ′)) (4)

where we define mD as the mean function and kD as the covariance function of
f̃D. As a kernel function we are using the squared exponential kernel

k (λ, λ′) := exp

(

−‖λ − λ′‖22
2σ2

)

. (5)

This allows to estimate f̃D for arbitrary hyperparameter configurations. Then,
we replace the definition from Equation 3 with

potential (R = (λ, δ) , Λt) :=
∑

D′∈N(D(new))
ŷD′ − max

λ′∈Λt

ŷD′ (λ′) . (6)

To estimate the nearest neighbors of the new data set D(new) we have to
define a distance function between data sets. A common choice for this is the

Hyperparameter Search Space Pruning 109

Euclidean distance with respect to the meta-features [1,29]. Since we experienced
better results with a distance function based on rank correlation metrics such as
the Kendall tau rank correlation coefficient [16], we are using following distance
function

KTRC (D1,D2, Λt) :=
∑

λ1,λ2∈Λt
I(ŷD1 (λ1)>ŷD1 (λ2)⊕ŷD2 (λ1)>ŷD2 (λ2))

(|Λt|−1)|Λt| (7)

where ⊕ is the symbol for an exclusive or.

Algorithm 2. Prune
Input: Hyperparameter space Λ, observation history H, region radius δ, fraction of

the pruned space ν.
Output: Pruned hyperparameter space Λpruned ⊆ Λ.
1: Estimate the most similar data sets of the new data set N (Dnew) using Equation

7.
2: Estimate the set Λ′ containing the ν |G| hyperparameter configurations λ′ ∈ G ⊂ Λ

with little potential using Equation 6.
3: Λ(pruned) := {λ ∈ Λ | dist (λ, λ′) > δ, λ′ ∈ Λ′}.
4: return Λ(pruned) ∪ {λ ∈ Λ | dist (λ, λ′) ≤ δ, λ′ ∈ Λt}

Algorithm 2 summarizes the pruning function. Line 1 estimates the k most
similar data sets which we know from past experiments using the KTRC dis-
tance function defined in Equation 7. In Line 2 the potential of hyperparameter
configurations are estimated using the plug-in estimators (Equation 6) on a fine
grid G ⊂ Λ. The ν |G| hyperparameter configurations with little potential define
regions where no improvement is predicted. Hence, the pruned hyperparameter
space is defined as the set of hyperparameter configurations that are not within
an δ-region of these low-potential hyperparameter configurations (Line 3). Addi-
tionally, the hyperparameter configurations that are within a δ-region of already
evaluated hyperparameter configurations are added (Line 4). The intuition here
is that since we have already observed an evaluation in this region, the acquisi-
tion function will not choose a hyperparameter combination close to these points
for exploration but only for exploitation. Hence, no evaluations will be done
by the standard SMBO framework without a very likely improvement. For the
distance function between hyperparameter configurations we need to consider
one that does not take discrete variables into account. Obviously, the loss does
not change smoothly when changing a categorical variable that e.g. indicates
which algorithm was chosen. Therefore, we define the distance function in
Algorithm 2 as

dist (λ, λ′) :=

{
∞ if λ and λ′ differ in a categorical variable
‖λ − λ′‖ otherwise

. (8)

110 M. Wistuba et al.

5 Experimental Evaluation

First, we will introduce the reader to the state of the art tuning strategies which
are used to evaluate pruning. Then, the evaluation metrics are defined and the
meta-data sets are introduced. Finally, the results are presented.

5.1 Tuning Strategies

We want to give a short introduction to all the tuning strategies we will con-
sider in our experiments. We are considering both strategies that are using no
knowledge from previous experiments and those that do.

Random Search. This is the only strategy that is not using any surrogate model.
Hyperparameter configurations are sampled uniformly at random. This is a com-
mon strategy in cases where a grid search is not possible. Bergstra and Bengio
[3] have shown that this is very effective for hyperparameters with low effective
dimensionality.

Independent Gaussian Process (I-GP). This tuning strategy uses a Gaussian
process [22] with squared-exponential kernel as a surrogate model. It only uses
knowledge from the current data set and is not using any knowledge from pre-
vious experiments.

Independent Random Forest (I-RF). Next to Gaussian processes, random forests
are the most widely used surrogate models [14] and hence we are using them in
our experiments. Like the independent Gaussian process, the I-RF does not use
any knowledge from previous experiments.

Sequential Model-based Algorithm Configuration++ (SMAC++). SMAC [14] is
a tuning strategy that is based on a random forest as a surrogate model without
background knowledge of previous experiments. SMAC++ is our extension to
SMAC. SMAC++ is using the typical SMBO framework but the random forest
is also trained on the meta-training data.

Surrogate Collaborative Tuning (SCoT). SCoT [1] uses a Gaussian process
with squared-exponential kernel with automatic relevance determination and
is trained on hyperparameter observations of previous experiments evaluated
on other data sets and the few knowledge achieved on the new data set. An
SVMRank is learned on the data set and its predictions are used instead of
the hyperparameter performances. Bardenet et al. [1] argue that this overcomes
the problem of having data sets with different scales of hyperparameter perfor-
mances. In the original work it was proposed to use an RBF kernel for SVMRank.
For reasons of computational complexity we follow the lead of Yogatama and
Mann [29] and use a linear kernel instead.

Hyperparameter Search Space Pruning 111

Gaussian Process with MKL (MKL-GP). Similarly to Bardenet et al. [1],
Yogatama and Mann [29] propose to use a Gaussian process as a surrogate
model for the SMBO framework. Instead of using SVMRank to deal with the
different scales, they are adapting the mean of the Gaussian process, accord-
ingly. Additionally, they are using a specific kernel, a linear combination of an
SE-ARD kernel with a kernel modelling the distance between data sets.

Optimal. This is an artificial tuning strategy that always evaluates the best
hyperparameter configuration and is added to plots for orientation purposes.

Kernel parameters are learned by maximizing the marginal likelihood on the
meta-training set [21]. Hyperparameters of the tuning strategies are optimized
in a leave-one-out cross-validation on the meta-training set.

The results reported are the average of at least ten repetitions. For the strate-
gies with random initialization (Random, I-GP, I-RF), the mean of 1000 repeti-
tions is reported.

5.2 Evaluation Metrics

In our experiments we are using three different evaluation metrics which we will
explain here in detail.

Average Rank. The average rank among different hyperparameter tuning strate-
gies or for short simply average rank is a relative metric between different tuning
strategies. The tuning strategies are ranked by the best hyperparameter config-
uration that they have found so far, ties are solved by granting them the average
rank. If we have for example four different tuning strategies that have found
hyperparameter configurations that achieve an accuracy of 0.78, 0.77, 0.77 and
0.76, respectively, then the ranking is 1, 2.5, 2.5 and 4.

Normalized Average Loss. The disadvantage of the average rank is that it gives
no information about by which margin the found hyperparameters of one tuning
strategy are better than another and it will vary when strategies are added or are
removed. One metric that overcomes this disadvantage is the normalized average
loss. In our experiments we will consider only classification problems such that
fD (λ) is the accuracy on data set D using hyperparameter configuration λ.
Since the scale of fD varies for different D we normalize fD between 0 and 1
such that every data set has the same impact on the evaluation metric. Thus,
the normalized average loss at iteration t is defined as

NAL (D, Λt) :=
1

|D|
∑

D∈D
1 − maxλ∈Λt

fD (λ) − minλ∈Λ fD (λ)
maxλ∈Λ fD (λ) − minλ∈Λ fD(λ)

. (9)

112 M. Wistuba et al.

Average Hyperparameter Rank. The average hyperparameter rank is another way
to overcome the disadvantages of the average rank. Compared to the average
rank it is not ranking the tuning strategies but ranking the hyperparameter
configurations. Let rD (λ) be the rank of the hyperparameter configuration λ on
data set D, then the average hyperparameter rank is defined as

AHR (D, Λt) :=
1

|D|
∑

D∈D
min
λ∈Λt

rD (λ) − 1 . (10)

5.3 Meta-Data Sets

The SVM meta-data set was created by using 50 classification data sets chosen
at random. All instances were merged in cases where splits were already given,
shuffled and split into 80% train and 20% test. We then used a support vector
machine (SVM) [5] to create the meta-instances. We trained the SVM using three
different kernels (linear, polynomial and Gaussian) and estimated the labels
of the meta-instances by evaluating the trained model on the test split. The
hyperparameter space dimension is six, three dimensions for binary features that
indicate which kernel was chosen, one for the trade-off parameter C, one for the
degree of the polynomial kernel d and the width γ of the Gaussian kernel. If the
hyperparameter is not involved, e.g. the degree if we are using the linear kernel,
it was set to 0. The test accuracy was precomputed on a grid C ∈ {

2−5, . . . , 26
}
,

d ∈ {2, . . . , 10}, γ ∈ {
10−4, 10−3, 10−2, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 102, 103

}

resulting into 288 meta-instances per data set. Since meta-features are a vital
part for many surrogate models and mandatory for SCoT and MKL-GP, we
added the meta-features that were used by [1,29] to our meta-data. First , we
extracted the number of training instances n, the number of classes c and the
number of predictors m. The final meta-features are c, log (m) and log (n/m)
scaled to [0.1].

The Weka meta-data set was created using 59 classification data sets which
were preprocessed like the classification data sets used for the SVM meta-data
set. We used 19 different Weka classifiers [13] and produced 21,871 hyperparam-
eter configurations per data set. The dimension of the hyperparameter space is
102 including the indicator variables for the classifier. Thus, this meta-data set
focuses stronger on the model class selection. Overall, this meta-data set contains
1,290,389 instances. In comparison, OpenML [26] has collaboratively collected
344,472 runs.1

The meta-data sets are available on our supplementary website together with
a visualization of the meta-data as well as more details about how the meta-data
sets were created and a detailed list which data sets were used [28].

5.4 Hyperparameter Optimization for SVMs

To show that the proposed plug-in estimators work (Equation 4), we did not use
all 288 hyperparameter configurations for training but only 50 per data set. The
1 Status 2015/03/27 by http://openml.org

http://openml.org

Hyperparameter Search Space Pruning 113

evaluation is nevertheless done on all 288 of the new data set. We choose G to
contain these 288 configurations and fixed |N (Dnew)| = 2, ν = 1 − |G|−1 and δ
such that the two closest neighbored hyperparameter configurations of the test
region are within δ-distance.

We want to conduct two different experiments. First, we want to compare a
surrogate model with pruning to current state of the art tuning strategies. We
once again want to stress that pruning in the SMBO framework is an orthogonal
contribution such that these results are actually of minor interest. Second, we
want to compare different surrogate models with and without pruning or ini-
tialization. Pruning is a useful contribution as long as it does not worsen the
optimization speed in general and accelerates it in some cases.

Figure 1 shows the results of the comparison of pruning to the current state
of the art method. As a surrogate model we decided to choose the Gaussian
process that is not learned across data sets since it is the most common and
simple surrogate model. Surprisingly, the pruning alone with the Gaussian pro-
cess is able to outperform all the competitor strategies with respect to all three
evaluation metrics.

I−GP (pruned)

Optimal

2

4

6

0 20 40 60
Number of Trials

Av
er

ag
e

R
an

k

10−2

10−1.5

10−1

10−0.5

0 20 40 60
Number of Trials

N
or

m
al

iz
ed

 A
ve

ra
ge

 L
os

s

10−0.5

100

100.5

101

101.5

102

0 20 40 60
Number of Trials

Av
er

ag
e

H
yp

er
pa

ra
m

et
er

 R
an

k

Random I−GP I−RF SMAC++ SCoT MKL−GP I−GP (pruned) Optimal

Fig. 1. Pruning is an orthogonal contribution to the SMBO framework. Nevertheless,
we compare a pruned independent Gaussian process to many current state of the art
tuning strategies without pruning.

Figures 2 to 6 show the results of different surrogate models. We distinguish
four different cases: i) only the surrogate model, ii) the surrogate model with
pruning, iii) the surrogate model with three steps of initialization and iv) the
surrogate model with three steps of initialization and pruning. Figures 2 and 3
show the results for the surrogate models that do not learn across data sets and
the remaining three Figures show the results for the surrogate models that learn
across data sets. Our expectation before the experiments were that the lift is
higher i) for the experiments without initialization and ii) for the experiments
with the surrogate models that do not learn across data sets. The reason for this
is simple. An initialization is a fixed policy that proposes hyperparameter config-
urations that has been good on average while pruning discards regions that were

114 M. Wistuba et al.

not useful. Thus, pruning will also have an effect of initialization. The differ-
ence between initialization and pruning is that initialization proposes a specific
hyperparameter while pruning reduces the full hyperparameter space to a set
of good hyperparameter configurations and pruning is applied at each iteration
and not just for the initial iterations. Additionally, pruning is a way to trans-
fer knowledge between data sets such that those strategies that do not use this
knowledge at all benefit more and are prevented from conducting unnecessary
exploration queries.

This is exactly what the results of the experiments show. The SMBO exper-
iments with pruning have comparable good starting points like those with ini-
tialization. If we compare the results of the independent Gaussian process and
random forest for the setting with only initialization with the one with only
pruning, we clearly see the unnecessary exploration queries after a good start.
The setting with both initialization and pruning does not suffer from this prob-
lem and thus is clearly the best strategy. This effect is weaker for the surrogate
models that are learned across data sets in Figures 4 and 6. Only for SCoT
(Figure 5) pruning does not accelerate the hyperparameter optimization on this
meta-data set but it also does not worsen it. Table 1 shows the results for all
evaluation metrics and surrogate models.

The reader may notice two important things. First, the results in the plot
will always converge to the same value across different tuning strategies if you
allow only enough trials. Second, even a very small improvement of the per-
formance just by choosing a better hyperparameter configurations is already a
success especially since this optimization is usually limited in time. This little
improvement may result in significantly better results for a new model compared
to the competitors or decides whether a research challenge will be won or not.

2.0

2.5

3.0

3.5

4.0

0 20 40 60
Number of Trials

Av
er

ag
e

R
an

k

10−3

10−2.5

10−2

10−1.5

10−1

10−0.5

0 20 40 60
Number of Trials

N
or

m
al

iz
ed

 A
ve

ra
ge

 L
os

s

10−0.5

100

100.5

101

101.5

102

0 20 40 60
Number of Trials

Av
er

ag
e

H
yp

er
pa

ra
m

et
er

 R
an

k

I−GP I−GP (pruned) I−GP (init) I−GP (init + pruned)

Fig. 2. Average rank, normalized average loss and average hyperparameter rank for
I-GP on the SVM meta-data set.

Hyperparameter Search Space Pruning 115

2.0

2.5

3.0

3.5

0 20 40 60
Number of Trials

Av
er

ag
e

R
an

k

10−2.5

10−2

10−1.5

10−1

10−0.5

0 20 40 60
Number of Trials

N
or

m
al

iz
ed

 A
ve

ra
ge

 L
os

s

10−0.5

100

100.5

101

101.5

102

0 20 40 60
Number of Trials

Av
er

ag
e

H
yp

er
pa

ra
m

et
er

 R
an

k

I−RF I−RF (pruned) I−RF (init) I−RF (init + pruned)

Fig. 3. Average rank, normalized average loss and average hyperparameter rank for
I-RF on the SVM meta-data set.

2.00

2.25

2.50

2.75

3.00

0 20 40 60
Number of Trials

Av
er

ag
e

R
an

k

10−2

10−1.5

10−1

0 20 40 60
Number of Trials

N
or

m
al

iz
ed

 A
ve

ra
ge

 L
os

s

100

100.5

101

101.5

0 20 40 60
Number of Trials

Av
er

ag
e

H
yp

er
pa

ra
m

et
er

 R
an

k

SMAC++ SMAC++ (pruned) SMAC++ (init) SMAC++ (init + pruned)

Fig. 4. Average rank, normalized average loss and average hyperparameter rank for
SMAC++ on the SVM meta-data set.

2.0

2.5

3.0

0 20 40 60
Number of Trials

Av
er

ag
e

R
an

k

10−1.8

10−1.6

10−1.4

10−1.2

10−1

10−0.8

10−0.6

0 20 40 60
Number of Trials

N
or

m
al

iz
ed

 A
ve

ra
ge

 L
os

s

100

100.5

101

101.5

0 20 40 60
Number of Trials

Av
er

ag
e

H
yp

er
pa

ra
m

et
er

 R
an

k

SCoT SCoT (pruned) SCoT (init) SCoT (init + pruned)

Fig. 5. Average rank, normalized average loss and average hyperparameter rank for
SCoT on the SVM meta-data set.

116 M. Wistuba et al.

2.25

2.50

2.75

3.00

3.25

0 20 40 60
Number of Trials

Av
er

ag
e

R
an

k

10−3

10−2.5

10−2

10−1.5

10−1

10−0.5

0 20 40 60
Number of Trials

N
or

m
al

iz
ed

 A
ve

ra
ge

 L
os

s
10−1

10−0.5

100

100.5

101

101.5

102

0 20 40 60
Number of Trials

Av
er

ag
e

H
yp

er
pa

ra
m

et
er

 R
an

k

MKL−GP MKL−GP (pruned) MKL−GP (init) MKL−GP (init + pruned)

Fig. 6. Average rank, normalized average loss and average hyperparameter rank for
MKL-GP on the SVM meta-data set.

Table 1. Average rank, normalized average loss and average hyperparameter rank
after 30 trials on the SVM meta-data set. Best results are bold.

I-GP no pruning/init pruned init init + pruned

Average Rank@30 3.12 2.35 2.72 1.81
NAL@30 0.0224 0.0131 0.0291 0.0055
AHR@30 3.48 2.60 3.98 1.97

I-RF no pruning/init pruned init init + pruned

Average Rank@30 3.51 2.11 2.51 1.87
NAL@30 0.0281 0.0149 0.0116 0.0070
AHR@30 4.75 2.64 2.98 2.14

SMAC++ no pruning/init pruned init init + pruned

Average Rank@30 2.72 2.45 2.65 2.18
NAL@30 0.0251 0.0228 0.0256 0.0210
AHR@30 5.42 4.92 4.52 3.53

SCoT no pruning/init pruned init init + pruned

Average Rank@30 2.55 2.55 2.47 2.43
NAL@30 0.0244 0.0244 0.0237 0.0237
AHR@30 3.44 3.44 3.02 2.90

MKL-GP no pruning/init pruned init init + pruned

Average Rank@30 2.68 2.52 2.49 2.31
NAL@30 0.0349 0.0232 0.0120 0.0099
AHR@30 6.30 3.48 3.00 2.40

Hyperparameter Search Space Pruning 117

5.5 Hyperparameter Optimization for Weka

In the last chapter, we have seen little improvement in cases where an initial-
ization is combined with surrogate models that are learning across data sets.
We expect pruning to be useful in two scenarios: if i) the dimensionality of the
hyperparameter space is very high and ii) the meta-data set is too large such
that surrogate models that are learning across data sets are no longer a cost-
efficient alternative to evaluating the true function. Since most surrogate models
are based on Gaussian processes, a further problem is storing the kernel matrix.
In our next meta-data set we are using more than a million meta-instances which
result into a kernel matrix of dimensions 106 ×106 which needs 8 TB of memory
for storing it.

2.1

2.4

2.7

0 10 20 30 40 50
Number of Trials

Av
er

ag
e

R
an

k

10−1.5

10−1.4

10−1.3

10−1.2

10−1.1

0 10 20 30 40 50
Number of Trials

N
or

m
al

iz
ed

 A
ve

ra
ge

 L
os

s

102.5

103

103.5

0 10 20 30 40 50
Number of Trials

Av
er

ag
e

H
yp

er
pa

ra
m

et
er

 R
an

k

I−RF (init) I−RF (init + pruned) I−GP (init) I−GP (init + pruned)

Fig. 7. Average rank, normalized average loss and average hyperparameter rank for
I-RF and I-GP on the Weka meta-data set.

For the Weka meta-data set we conducted a similar experiment as for the
SVM meta-data set. Due to the size we restricted ourselves to the tuning strate-
gies that do not learn across data sets. Previously, we have seen that a tuning
strategy without initialization and pruning is outperformed by a large margin
by the same strategy only using pruning. Hence, we show here only the compar-
ison between the strategy i) only using an initialization step and ii) using both
initialization and pruning. Figure 7 concludes our experiments. As we have seen
on the SVM meta-data set, pruning again indicates that it is a useful addition to
the SMBO framework by further accelerating the hyperparameter optimization.

6 Conclusion and Future Work

We propose pruning as an orthogonal contribution the the SMBO framework
and show in elaborated experiments on two different data set that it accelerates
the hyperparameter optimization in most cases and in the worst case does not
worsen it. It can be especially considered for tuning strategies that do not use
information from the past for the surrogate model. Additionally, we created a

118 M. Wistuba et al.

new meta-data set which is the largest to the best of our knowledge with about
four times more experiments than OpenML and make it publicly available.

Acknowledgments. The authors gratefully acknowledge the co-funding of their work
by the German Research Foundation (DFG) under grant SCHM 2583/6-1.

References

1. Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperparameter
tuning. In: Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16–21 June 2013, pp. 199–207 (2013)

2. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Advances in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing Systems 2011. Proceedings
of a meeting held 12–14 December 2011, Granada, Spain, pp. 2546–2554 (2011)

3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

4. Cawley, G.: Model selection for support vector machines via adaptive step-size
tabu search. In: Proceedings of the International Conference on Artificial Neural
Networks and Genetic Algorithms, Prague, Czech Republic, pp. 434–437, April
2001

5. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011). software
available at http://www.csie.ntu.edu.tw/ cjlin/libsvm

6. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple param-
eters for support vector machines. Machine Learning 46(1–3), 131–159 (2002)

7. Coates, A., Ng, A.Y., Lee, H.: An analysis of single-layer networks in unsupervised
feature learning. In: Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April
11–13, 2011, pp. 215–223 (2011)

8. David-Tabibi, O., Netanyahu, N.S.: Verified null-move pruning. ICGA Journal
25(3), 153–161 (2002)

9. Feurer, M., Springenberg, J.T., Hutter, F.: Using meta-learning to initialize
bayesian optimization of hyperparameters. In: ECAI workshop on Metalearning
and Algorithm Selection (MetaSel), pp. 3–10 (2014)

10. Friedrichs, F., Igel, C.: Evolutionary tuning of multiple svm parameters. Neuro-
comput. 64, 107–117 (2005)

11. Gomes, T.A.F., Prudêncio, R.B.C., Soares, C., Rossi, A.L.D., Carvalho, A.C.P.L.F.:
Combining meta-learning and search techniques to select parameters for support
vector machines. Neurocomputing 75(1), 3–13 (2012)

12. Guo, X.C., Yang, J.H., Wu, C.G., Wang, C.Y., Liang, Y.C.: A novel ls-svms
hyper-parameter selection based on particle swarm optimization. Neurocomput.
71(16–18), 3211–3215 (2008)

13. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

14. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

http://www.csie.ntu.edu.tw/cjlin/libsvm

Hyperparameter Search Space Pruning 119

15. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. of Global Optimization 13(4), 455–492 (1998)

16. Kendall, M.G.: A New Measure of Rank Correlation. Biometrika 30(1/2), 81–93
(1938)

17. Land, A.H., Doig, A.G.: An Automatic Method for Solving Discrete Programming
Problems. Econometrica 28, 497–520 (1960)

18. Lawler, E.L., Wood, D.E.: Branch-And-Bound Methods: A Survey. Operations
Research 14(4), 699–719 (1966)

19. Leite, R., Brazdil, P., Vanschoren, J.: Selecting classification algorithms with active
testing. In: Perner, P. (ed.) MLDM 2012. LNCS, vol. 7376, pp. 117–131. Springer,
Heidelberg (2012)

20. Pinto, N., Doukhan, D., DiCarlo, J.J., Cox, D.D.: A high-throughput screening
approach to discovering good forms of biologically inspired visual representation.
PLoS Computational Biology 5(11), e1000579 (2009). PMID: 19956750

21. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning.
Adaptive Computation and Machine Learning. The MIT Press (2005)

22. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems 25:
26th Annual Conference on Neural Information Processing Systems 2012. Proceed-
ings of a meeting held December 3–6, 2012, Lake Tahoe, Nevada, United States,
pp. 2960–2968 (2012)

23. Srinivas, N., Krause, A., Seeger, M., Kakade, S.M.: Gaussian process optimiza-
tion in the bandit setting: no regret and experimental design. In: Fürnkranz, J.,
Joachims, T. (eds.) Proceedings of the 27th International Conference on Machine
Learning (ICML 2010), pp. 1015–1022. Omnipress (2010)

24. Swersky, K., Snoek, J., Adams, R.P.: Multi-task bayesian optimization. In:
Advances in Neural Information Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013. Proceedings of a meeting held
December 5–8, 2013, Lake Tahoe, Nevada, United States, pp. 2004–2012 (2013)

25. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: combined
selection and hyperparameter optimization of classification algorithms. In: Pro-
ceedings of the 19th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD 2013, pp. 847–855. ACM, New York (2013)

26. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: Openml: Networked science
in machine learning. SIGKDD Explorations 15(2), 49–60 (2013)

27. Villemonteix, J., Vazquez, E., Walter, E.: An informational approach to the global
optimization of expensive-to-evaluate functions. Journal of Global Optimization
44(4), 509–534 (2009)

28. Wistuba, M.: Supplementary website, June 2015. http://hylap.org/publications/
Hyperparameter-Search-Space-Pruning

29. Yogatama, D., Mann, G.: Efficient transfer learning method for automatic hyperpa-
rameter tuning. In: International Conference on Artificial Intelligence and Statistics
(AISTATS 2014) (2014)

http://hylap.org/publications/Hyperparameter-Search-Space-Pruning
http://hylap.org/publications/Hyperparameter-Search-Space-Pruning

Multi-Task Learning with Group-Specific
Feature Space Sharing

Niloofar Yousefi1(B), Michael Georgiopoulos1,
and Georgios C. Anagnostopoulos2

1 Department of Electrical Engineering and Computer Science,
University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA

{niloofar.yousefi,michaelg}@ucf.edu
2 Department of Electrical and Computer Engineering,

Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
georgio@fit.edu

Abstract. When faced with learning a set of inter-related tasks from a
limited amount of usable data, learning each task independently may lead
to poor generalization performance. (MTL) exploits the latent relations
between tasks and overcomes data scarcity limitations by co-learning all
these tasks simultaneously to offer improved performance. We propose a
novel Multi-Task Multiple Kernel Learning framework based on Support
Vector Machines for binary classification tasks. By considering pair-wise
task affinity in terms of similarity between a pair’s respective feature
spaces, the new framework, compared to other similar MTL approaches,
offers a high degree of flexibility in determining how similar feature spaces
should be, as well as which pairs of tasks should share a common feature
space in order to benefit overall performance. The associated optimiza-
tion problem is solved via a block coordinate descent, which employs a
consensus-form Alternating Direction Method of Multipliers algorithm
to optimize the Multiple Kernel Learning weights and, hence, to deter-
mine task affinities. Empirical evaluation on seven data sets exhibits a
statistically significant improvement of our framework’s results compared
to the ones of several other Clustered Multi-Task Learning methods.

1 Introduction

Multi-Task Learning (MTL) is a machine learning paradigm, where several
related task are learnt simultaneously with the hope that, by sharing information
among tasks, the generalization performance of each task will be improved. The
underlying assumption behind this paradigm is that the tasks are related to each
other. Thus, it is crucial how to capture task relatedness and incorporate it into
an MTL framework. Although, many different MTL methods [1,7,12,15,18,27]
have been proposed, which differ in how the relatedness across multiple tasks is
modeled, they all utilize the parameter or structure sharing strategy to capture
the task relatedness.

However, the previous methods are restricted in the sense that they assume
all tasks are similarly related to each other and can equally contribute to the joint
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 120–136, 2015.
DOI: 10.1007/978-3-319-23525-7 8

Multi-Task Learning with Group-Specific Feature Space Sharing 121

learning process. This assumption can be violated in many practical applications
as “outlier” tasks often exist. In this case, the effect of “negative transfer”, i.e.,
sharing information between irrelevant tasks, can lead to a degraded generaliza-
tion performance.

To address this issue, several methods, along different directions, have been
proposed to discover the inherent relationship among tasks. For example, some
methods [3,26–28], use a regularized probabilistic setting, where sharing among
tasks is done based on a common prior. These approaches are usually com-
putationally expensive. Another family of approaches, known as the Clustered
Multi-Task Learning (CMTL), assumes that tasks can be clustered into groups
such that the tasks within each group are close to each other according to a
notion of similarity. Based on the current literature, clustering strategies can be
broadly classified into two categories: task-level CMTL and feature-level CMTL.

The first one, task-level CMTL, assumes that the model parameters used
by all tasks within a group are close to each other. For example, in [2,13,17],
the weight vectors of the tasks belonging to the same group are assumed to be
similar to each other. However, the major limitations for these methods are: (i)
that such an assumption might be too risky, as similarity among models does
not imply that meaningful sharing of information can occur between tasks, and
(ii) for these methods, the group structure (number of groups or basis tasks) is
required to be known a priori.

The other strategy for task clustering, referred to as feature-level CMTL, is
based on the assumption that task relatedness can be modeled as learning shared
features among the tasks within each group. For example, in [19] the tasks are
clustered into different groups and it is assumed that tasks within the same group
can jointly learn a shared feature representation. The resulting formulation leads
to a non-convex objective, which is optimized using an alternating optimization
algorithm converging to local optima, and suffers potentially from slow conver-
gence. Another similar approach has been proposed in [25], which assumes that
tasks should be related in terms of feature subsets. This study also leads to a
non-convex co-clustering structure that captures task-feature relationship. These
methods are restricted in the sense that they assume that tasks from different
groups have nothing in common with each other. However, this assumption is
not always realistic, as tasks in disjoint groups might still be inter-related, albeit
weekly. Hence, assigning tasks into different groups may not take full advantage
of MTL. Another feature-level clustering model has been proposed in [29], in
which the cluster structure can vary from feature to feature. While, this model
is more flexible compared to other CMTL methods, it is, however, more compli-
cated and also less general compared to our framework, as it tries to find a shared
feature representation for tasks by decomposing each task parameter into two
parts: one to capture the shared structure between tasks and another to capture
the variations specific to each task. This model is further extended in [16], where
a multi-level structure has been introduced to learn task groups in the context
of MTL. Interestingly, it has been shown that there is an equivalent relationship
between CMTL and alternating structure optimization [30], wherein the basic
idea is to identify a shared low-dimensional predictive structure for all tasks.

122 N. Yousefi et al.

In this paper, we develop a new MTL model capable of modeling a more gen-
eral type of task relationship, where the tasks are implicitly grouped according to
a notion of feature similarity. In our framework, the tasks are not forced to have a
common feature space; instead, the data automatically suggests a flexible group
structure, in which a common, similar or even distinct feature spaces can be
determined between different pairs of tasks. Additionally, our MTL framework
is kernel-based and, thus, may take advantage of the non-linearity introduced by
the feature mapping of the associated Reproducing Kernel Hilbert Space (RKHS)
H. Also, to avoid a degradation in generalization performance due to choos-
ing an inappropriate kernel function, our framework employs a Multiple Kernel
Learning (MKL) strategy [21], hence, rendering it a Multi-Task Multiple Kernel
Learning (MT-MKL) approach.

It is worth mentioning that a widely adopted practice for combining kernels is
to place an Lp-norm constraint on the combination coefficients θ = [θ1, . . . , θM],
which are learned during training. For example, a conically combination of task
objectives with an Lp-norm feasible region is introduced in [23] and further
extended in [22]. Also, another method introduced in [24] proposes a partially
shared kernel function kt �

∑M
m=1(μ

m+λm
t)km, along with L1-norm constraints

on μ and λ. The main advantage of such a method over the traditional MT-MKL
methods, which consider a common kernel function for all tasks (by letting
λm

t = 0,∀t,m), is that it allows tasks to have their own task-specific feature
spaces and, potentially, alleviate the effect of negative transfer. However, popu-
lar MKL formulations in the context of MTL, such as this one, are capable of
modeling two types of tasks: those that share a global, common feature space
and those that employ their own, task-specific feature space. In this work we
propose a more flexible framework, which, in addition to allowing some tasks to
use their own specific feature spaces (to avoid negative transfer learning), it per-
mits forming arbitrary groups of tasks sharing the same, group-specific (instead
of a single, global), common feature space, whenever warranted by the data.
This is accomplished by considering a group lasso regularizer applied to the set
of all pair-wise differences of task-specific MKL weights. For no regularization
penalty, each task is learned independently of each other and will utilize its own
feature space. As the regularization penalty increases, pairs of MKL weights are
forced to equal each other leading the corresponding pairs of tasks to share a
common feature space. We demonstrate that the resulting optimization problem
can be solved by employing a 2-block coordinate descent approach, whose first
block consists of the Support Vector Machine (SVM) weights for each task and
which can be optimized efficiently using existing solvers, while its second block
comprises the MKL weights from all tasks and is optimized via a consensus-form,
Alternating Direction Method of Multipliers (ADMM)-based step.

The rest of the paper is organized as follows: In Sect. 2 we describe our for-
mulation for jointly learning the optimal feature spaces and the parameters of
all the tasks. Sect. 3 provides an optimization technique to solve our non-smooth
convex optimization problem derived in Sect. 2. Sect. 4 presents a Rademacher
complexity-based generalization bound for the hypothesis space corresponding
to our model. Experiments are provided in Sect. 5, which demonstrate the

Multi-Task Learning with Group-Specific Feature Space Sharing 123

effectiveness of our proposed model compared to several MTL methods. Finally,
in Sect. 6 we conclude our work and briefly summarize our findings.

Notation: In what follows, we use the following notational conventions: vectors
and matrices are depicted in bold face. A prime ′ denotes vector/matrix trans-
position. The ordering symbols � and � when applied to vectors stand for the
corresponding component-wise relations. If Z+ is the set of postivie integers, for
a given S ∈ Z+, we define NS � {1, . . . , S}. Additional notation is defined in
the text as needed.

2 Formulation

Assume T supervised learning tasks, each with a training set {(xn
t , yn

t)}nt

n=1 , t ∈
NT , which is sampled from an unknown distribution Pt(x, y) on X × {−1, 1}.
Here, X denotes the native space of samples for all tasks and ±1 are the
associated labels. Without loss of generality, we will assume an equal num-
ber n of training samples per task. The objective is to learn T binary classi-
fication tasks using discriminative functions ft(x) � 〈wt,φt(x)〉Ht,θ

+ bt for
t ∈ NT , where wt is the weight vector associated to task t. Moreover, the
feature space of task t is served by Ht,θ =

⊕M
m=1

√
θm

t Hm with induced fea-
ture mapping φt � [

√
θ1t φ1

′ · · ·
√

θM
t φM

′]′ and endowed with the inner product
〈·, ·〉Ht,θ

=
∑M

m=1 θm
t 〈·, ·〉Hm

. The reproducing kernel function for this feature

space is given as kt(xi
t, x

j
t) =

∑M
m=1 θm

t km(xi
t, x

j
t) for all xi

t, x
j
t ∈ X . In our

framework, we attempt to learn the wt’s and bt’s jointly with the θt’s via the
following regularized risk minimization problem:

min
w∈Ω(w),θ∈Ω(θ),b

T∑

t=1

‖wt‖2
2

+ C

T∑

t=1

n∑

i=1

[
1 − yi

tft(xi
t)

]
+

+ λ

T−1∑

t=1

T∑

s>t

‖θt − θs‖2

Ω (w) �{w = (w1, · · · ,wT) : wt ∈ Ht,θ,θ ∈ Ω (θ)}
Ω (θ) �{θ = (θt, · · · ,θT) : θt � 0, ‖θt‖1 ≤ 1,∀t ∈ NT } (1)

where w � (wt, · · · ,wT) and θ � (θt, · · · ,θT), Ω (w) and Ω (θ) are the corre-
sponding feasible sets for w and θ respectively, and [u]+ = max {u, 0} , u ∈ R

denotes the hinge function. Finally, C and λ are non-negative regularization
parameters.

The last term in Problem 1 is the sum of pairwise differences between the
tasks’ feature weight vectors. For each pair of (θt,θs), the pairwise penalty ‖θt−
θs‖2 may favor a small number of non-identical θt. Therefore, it ensures that
a flexible (common, similar or distinct) feature space, will be selected between
tasks t and s. In this manner, a flexible group structure of shared features across
multiple tasks can be achieved by this framework. It is also worth mentioning
that two special cases are covered by the proposed model: (i) if λ → ∞ (λ is only
required to be sufficiently large), for all task pairs ‖θt − θs‖2 → 0 and, thus, all
tasks share a single common feature space. (ii) As λ → 0, the proposed model
reduces to T independent classification tasks.

124 N. Yousefi et al.

It is easy to verify that Problem 1 is a convex minimization problem, which
can be solved using a block coordinate descent method alternating between the
minimization with respect to θ and the (w, b) pair. Motivated by the non-smooth
nature of the last regularization term, in Sect. 3 we develop a consensus version
of the ADMM to solve the minimization problem with respect to θ.

3 The Proposed Consensus Optimization Algorithm

Problem 1 can be formulated as the following equivalent problem, which entails
T inter-related SVM training problems:

min
θ,w,b,ξ

T∑

t=1

M∑

m=1

‖wm
t ‖2Hm

2θm
t

+ C

T∑

t=1

n∑

i=1

ξi
t + λ

T−1∑

t=1

T∑

s>t

‖θt − θs‖2

s.t. yi
t

(〈
wt, φ(xi

t)
〉

Ht
+ bt

)
≥ 1 − ξi

t, ξi
t ≥ 0, ∀ t ∈ NT , i ∈ Nn

θt � 0, ‖θt‖1 ≤ 1,∀ t ∈ NT (2)

It can be shown that the primal-dual form of Problem 2 with respect to θ
and {w, b, ξ} is given by

min
θt∈Ω(θ)

max
αt∈Ω(α)

T∑

t=1

α
′
t1n − 1

2

T∑

t=1

M∑

m=1

θm
t (α

′
tYtK

m
t Ytαt) + λ

T−1∑

t=1

T∑

s>t

‖θt − θs‖2

Ω (α) �{α = (αt, · · · ,αT) : 0 � αt � C1n, α
′
tyt = 0, ∀ t ∈ NT }

Ω (θ) �{θ = (θt, · · · ,θT) : θt � 0, ‖θt‖1 ≤ 1,∀ t ∈ NT } (3)

where 1n is a vector containing n 1’s, Y t � diag(yt), Km
t ∈ R

n×n is the kernel
matrix, whose (i, j) entry is given as km(xi

t, x
j
t), θt � [θ1t , . . . , θM

t]′, and αt is
the Lagrangian dual variable for the minimization problem w.r.t.{wt, bt, ξt}.

It is not hard to verify that the optimal objective value of the dual prob-
lem is equal to the optimal objective value of the primal one, as the strong
duality holds for the primal-dual optimization problems w.r.t.{w, b, ξ} and α
respectively. Therefore, a block coordinate descent framework1 can be applied
to decompose Problem 3 into two subproblems. The first subproblem, which is
the maximization problem with respect to α, can be efficiently solved via LIBSVM
[8], and the second subproblem, which is the minimization problem with respect
to θ, takes the form

min
θt

λ
T−1∑

t=1

T∑

s>t

‖θt − θs‖2 +
T∑

t=1

θ
′
tqt

s.t. θt � 0, ‖θt‖1 ≤ 1, ∀ t ∈ NT (4)

1 A MATLAB� implementation of our framework is available at
https://github.com/niloofaryousefi/ECML2015

https://github.com/niloofaryousefi/ECML2015

Multi-Task Learning with Group-Specific Feature Space Sharing 125

where we defined qm
t � − 1

2α
′
tYtK

m
t Ytαt and qt � [q1t , . . . , qM

t]′. Due to the non-
smooth nature of Problem 4, we derive a consensus ADMM-based optimization
algorithm to solve it efficiently. Based on the exposition provided in Sections
5 and 7 of [6], it is straightforward to verify that Problem 4 can be written in
ADMM form as

min
s,θ,z

λ

N∑

i=1

hi(si) + g(θ) + IΩ(θ)(z)

s.t. si − θ̃i = 0, i ∈ NN

z − θ = 0 (5)

where N � T (T−1)
2 , and the local variable si ∈ R

2M consists of two vector
variables (si)j and (si)j′ , where (si)j = θM(i,j). Note that the index mapping
t = M(i, j) maps the jth component of the local variable si to the tth component
of the global variable θ. Also, θ̃i can be considered as the global variable’s
idea of what the local variable si should be. Moreover, for each i, the function
hi(si) is defined as ‖(si)j − (si)j′‖2, and the objective term g(θ) is given as
∑T

t=1 θ
′
tqt. Finally, IΩ(θ)(z) is the indicator function for the constraint set θ

(i.e., IΩ(θ)(z) = 0 for z ∈ Ω (θ), and IΩ(θ)(z) = ∞ for z /∈ Ω (θ)).
The augmented Lagrangian (using scaled dual variables) for Problem 5 is

Lρ(s,θ,z,u,v) =λ

N∑

i=1

hi(si) + g(θ) + IΩ(θ)(z) + (ρ/2)
N∑

i=1

‖si − θ̃i + ui‖22

+ (ρ/2)‖z − θ + v‖22, (6)

where ui and v are the dual variables for the constraints si = θ̃i and z =
θ respectively. Applying ADMM on the Lagrangian function given in (6), the
following steps are carried out in the kth iteration

sk+1
i = arg min

si

{λhi(si) + (ρ/2)‖si − θ̃
k

i + uk
i ‖22} (7)

θk+1 = arg min
θ

{g(θ) + (ρ/2)
N∑

i=1

‖sk+1
i − θ̃i + uk

i ‖22 + (ρ/2)‖zk − θ + vk‖22}

(8)

zk+1 = arg min
z

{IΩ(θ)(z) + (ρ/2)‖z − θk+1 + vk‖22} (9)

uk+1
i = uk

i + sk+1
i − θ̃

k+1

i (10)

vk+1 = vk + zk+1 − θk+1 (11)

where, for each i ∈ NN , the s- and u-updates can be carried out independently
and in parallel. It is also worth mentioning that the s-update is a proximal
operator evaluation for ‖.‖2 which can be simplified to

sk+1
i = Sλ/ρ(θ̃

k

i + uk
i), ∀ i ∈ NN (12)

126 N. Yousefi et al.

where Sκ is the vector-valued soft thresholding (or shrinkage) operator and which
is defined as

Sκ(a) � (1 − κ/‖a‖2)+a, Sκ(0) � 0. (13)

Furthermore, as the objective term g is separable in θt, the θ-update can be
decomposed into T independent minimization problems, for which a closed from
solution exists

θk+1
t =

1
T − 1

⎡

⎣
∑

M(i,j)=t

(
(si)k+1

j + (ui)k
j

)
+

(
zk

t + vk
t

) − (1/ρ)qt

⎤

⎦ , ∀ t ∈ NT

(14)

Algorithm 1. Algorithm for solving Problem 3.
Require: X1, . . . , XT , Y 1, . . . , Y T , C, λ
Ensure: θ1, . . . , θT , α1, . . . , αT

1: Initialize: θ
(0)
1 , . . . , θ

(0)
T , r = 1

2: Calculate: Base kernel matrices Km
t using Xt’s for the T tasks and the M kernels.

3: while not converged do

4: α(r) ← arg max α∈Ω(α)

∑T
t=1 α

′
te − 1

2

∑T
t=1

∑M
m=1(θ

m
t)(r−1)(α

′
tYtK

m
t Ytαt)

5: (qm
t)(r) ← − 1

2
(α

′
t)

(r)YtK
m
t Yt(αt)

(r), ∀t, m

6: θ(r) ← arg min θ∈Ω(θ) λ
∑T−1

t=1

∑T
s>t ‖θt − θs‖2 +

∑T
t=1 θ

′
tq

(r)
t using Algorithm

2
7: end while
8: α∗ = α(r)

9: θ∗ = θ(r)

In the third step of the ADMM, we project (θk+1 − vk) onto the constraint
set Ω (θ). Note that, this set is separable in θ, so the projection step can also
be performed independently and in parallel for each variable zt, i.e.,

zk+1
t = ΠΩ(θ)(θ

k+1
t + vk

t), ∀ t ∈ NT . (15)

The zt-update can also be seen as the problem of finding the intersection
between two closed convex sets Ω1 (θ) = {θt � 0, ∀ t ∈ NT } and Ω2 (θ) =
{‖θt‖1 ≤ 1, ∀ t ∈ NT }, which can be handled using Dykstra’s alternating
projections method [5,11] as follows

yk+1
t = ΠΩ1(θ)(θ

k+1
t + vk

t − βk
t) =

1
2

[
θk+1

t + vk
t − βk

t

]

+
, ∀ t ∈ NT (16)

zk+1
t = ΠΩ2(θ)(y

k+1
t + βk

t) = PM (yk+1
t + βk

t) +
1
M

1M , ∀ t ∈ NT (17)

βk+1
t = βk

t + yk+1
t − zk+1

t , ∀ t ∈ NT (18)

Multi-Task Learning with Group-Specific Feature Space Sharing 127

where PM �
(

IM − 1M1
′
M

M

)

is the centering matrix. Furthermore, the yt- and zt

updates are the Euclidean projections onto Ω1 (θ) and Ω2 (θ) respectively with
dual variables βt ∈ R

M×1, t = 1, . . . , T . Finally, we update the dual variables
ui and v using the equations given in (10) and (11).

Algorithm 2. Consensus ADMM algorithm to solve optimization Problem 4

Require: q
(r)
1 , . . . , q

(r)
T , ρ

Ensure: θ
(r)
1 , . . . , θ

(r)
T

1: Initialize: θ̂
(0)

1 , . . . , θ̂
(0)

T , k = 0
2: while not converged do
3: for i ∈ NN , t ∈ NT do

4: sk+1
i ← Sλ/ρ(θ̃

k

i + uk
i)

5: θ̂
k+1

t ← 1

T − 1

[∑
M(i,j)=t

(
(si)

k+1
j + (ui)

k
j

)
+

(
zk

t + vk
t

) − (1/ρ)qt

]

6: yk+1
t ← 1

2

[
θ̂

k+1

t + vk
t − βk

t

]

+

7: zk+1
t ← PM (yk+1

t + βk
t) + 1

M
1M

8: βk+1
t ← βk

t + yk+1
t − zk+1

t

9: uk+1
i ← uk

i + sk+1
i − θ̃

k+1

i

10: vk+1
t ← vk

t + zk+1
t − θ̂

k+1

t

11: end for
12: end while
13: θ(r) ← θ̂

(k+1)

3.1 Convergence Analysis and Stopping Criteria

Convergence of Algorithm 2 can be derived based on two mild assumptions
similar to the standard convergence theory of the ADMM method discussed
in [6]; (i) the objective functions h(s) =

∑N
i=1 ‖(si)j − (si)j′‖2 and g(θ) =

∑T
t=1 θ

′
tqt are closed, proper and convex, which implies that the subproblems

arising in the s-update (7) and θ-update (8) are solvable, and (ii) the augmented
Lagrangian (6) for ρ = 0 has a saddle point. Under these two assumptions, it
can be shown that our ADMM-based algorithm satisfies the following

– Convergence of residuals : si
k − θ̃

k

i → 0, ∀ i ∈ NN , and zk − θk → 0 as
k → ∞.

– Convergence of dual variables: uk
i → u∗

i ,∀i ∈ NN , and vk → v∗ as k → ∞,
where u∗ and v∗ are the dual optimal points.

– Convergence of the objective : h(sk) + g(zk) → p∗ as k → ∞, which means
the objective function (4) converges to its optimal value as the algorithm
proceeds.

Also, the algorithm is terminated, when the primal and dual residuals satisfy
the following stopping criteria

‖ek
p1

‖2 ≤ εpri
1 , ‖ek

p2
‖2 ≤ εpri

2 , ‖ek
p3

‖2 ≤ εpri
3

128 N. Yousefi et al.

‖ek
d1

‖2 ≤ εdual
1 , ‖ek

d2
‖2 ≤ εdual

2 , ‖ek
d3

‖2 ≤ εdual
3 (19)

where the primal residuals of the kth iteration are given as ek
p1

= sk − θk,
ek

p2
= zk−θk and ek

p3
= yk−zk. Similarly ek

d1
= ρ(θk+1−θk), ek

d2
= ρ(zk−zk+1)

and ek
d3

= ρ(yk − yk+1)are dual residuals at iteration k. Also, the tolerances
εpri > 0, and εdual > 0 can be chosen appropriately using the method described
in Chapter 3 of [6].

3.2 Computational Complexity

Algorithm 1 needs to compute and cache TM kernel matrices; however, they
are computed only once in O(TMn2) time. Also, as long as the number of tasks
T is not excessive, all the matrices can be computed and stored on a single
machine, since (i) the number M of kernels, is typically chosen small (e.g., we
chose M = 10), and (ii) the number n of training samples per task is not usually
large; if it were large, MTL would probably not be able to offer any advantages
over training each task independently. For each iteration of Algorithm 1, T inde-
pendent SVM problems are solved at a time cost of O(n3) per task. Therefore,
if Algorithm 2 converges in K iterations, the runtime complexity of Algorithm 1
becomes O(Tn3 + KMT 2) per iteration. Note, though, that K is not usually
more than a few tens of iterations [6].

On the other hand, if the number of tasks T is large, the nature of our problem
allows our algorithm to be implemented in parallel. The α-update can be handled
as T independent optimization problems, which can be easily distributed to T
subsystems. Each subsystem N needs to compute once and cache M kernel
matrices for each task. Then, for each iteration, one SVM problem is required to
be solved by each subsystem, which takes O(n3) time. Moreover, our ADMM-
based algorithm updating the θ parameters can also be implemented in parallel
over i ∈ NN . Assuming that exchanging data and updates between subsystems
consumes negligible time, the ADMM only requires O(KM) time. Therefore,
taking advantage of a distributed implementation, the complexity of Algorithm 1
is only O(n3 + KM) per iteration.

4 Generalization Bound Based on Rademacher
Complexity

In this section, we provide a Rademacher complexity-based generalization bound
for the Hypothesis Space (HS) considered in Problem 1, which can be identified
with the help of the following Proposition 1.

1 Note that Proposition 1 here utilizes the first part of Proposition 12 in [20] and does
not require the strong duality assumption, which is necessary for the second part of
Proposition 12 in [20].

Multi-Task Learning with Group-Specific Feature Space Sharing 129

Proposition 1. (Proposition 12 in [20], part (a)) Let C ⊆ X and let f, g : C �→ R

be two functions. For any ν > 0, there must exist a η > 0, such that the optimal
solution of (20) is also optimal in (21)

min
x∈C

f(x) + νg(x) (20)

min
x∈C,g(x)≤η

f(x) (21)

Using Proposition 1, one can show that Problem 1 is equivalent to the fol-
lowing problem

min
w∈Ω′ (w)

C

T∑

t=1

n∑

i=1

l
(
wt, φt

(
xi

t

)
, yi

t

)

Ω
′
(w) �{w = (w1, · · · ,wT) : wt ∈ Ht,θ,θ ∈ Ω

′
(θ) , ‖wt‖2 ≤ Rt, t ∈ NT }

(22)

where

Ω
′
(θ) � Ω (θ) ∩

{

θ = (θt, · · · ,θT) :
T−1∑

t=1

T∑

s>t

‖θt − θs‖2 ≤ γ

}

The goal here is to choose the w and θ from their relevant feasible sets,
such that the objective function of (22) is minimized. Therefore, the relevant
hypothesis space for Problem 22 becomes

F �
{

x �→ [〈w1,φ1〉, . . . , 〈wT ,φT 〉]′ : ∀twt ∈ Ht,θ, ‖wt‖2 ≤ Rt,θ ∈ Ω
′
(θ)

}

(23)

Note that finding the Empirical Rademacher Complexity (ERC) of
F is complicated due to the non-smooth nature of the constraint∑T−1

t=1

∑T
s>t ‖θt − θs‖2 ≤ γ. Instead, we will find the ERC of the HS H defined

in (24); notice that F ⊆ H.

H �
{

x �→ [〈w1,φ1〉, . . . , 〈wT ,φT 〉]′ : ∀twt ∈ Ht,θ, ‖wt‖2 ≤ Rt,θ ∈ Ω
′′
(θ)

}

(24)

where

Ω
′′

(θ) � Ω (θ) ∩
{

θ = (θt, · · · ,θT) :
T−1∑

t=1

T∑

s>t

‖θt − θs‖22 ≤ γ2

}

(25)

Using the first part of Theorem (12) in [4], it can be shown that the ERC
of H upper bounds the ERC of function class F . Thus, the bound derived for
H is also valid for F . The following theorem provides the generalization bound
for H.

130 N. Yousefi et al.

Theorem 1. Let H defined in (24) be the multi-task HS for a class of functions
f = (f1, . . . , fT) : X �→ R

T . Then for all f ∈ H, for δ > 0 and for fixed ρ > 0,
with probability at least 1 − δ it holds that

R(f) ≤ R̂ρ(f) +
2
ρ
R̂S(H) + 3

√

log 1
δ

2Tn
(26)

where

R̂S (H) ≤ R̂ub (H) =

√√
3γRM

nT
(27)

where R̂S(H), the ERC of H, is given as

R̂S(H) =
1

nT
Eσ

{

sup
f=(f1,...,fT)∈F

T∑

t=1

n∑

i=1

σi
tft(xi

t)

∣
∣
∣
∣
∣

{
xi

t

}
t∈NT ,i∈Nn

}

(28)

the ρ-empirical large margin error R̂ρ(f), for the training sample S =
{(

xi
t, y

i
t

)}n,T

i,t=1
is defined as

R̂ρ(f) =
1

nT

T∑

t=1

n∑

i=1

min
(
1, [1 − yi

tft(xi
t)/ρ]+

)

Also, R(f) = Pr[yf(x) < 0] is the expected risk w.r.t. 0-1 loss, n is the number
of training samples for each task, T is the number of tasks to be trained, and M
is the number of kernel functions utilized for MKL.

The proof of this theorem is omitted due to space constraints. Based on
Theorem 1, the second term in (26), the upper bound for ERC of H, decreases
as the number of tasks increases. Therefore, it is reasonable to expect that the
generalization performance to improve, when the number T of tasks or the num-
ber n of training samples increase. Also, due to the formulation’s group lasso
(L1/L2-norm) regularizer on the pair-wise MKL weight differences, the ERC in
(27) depends on M as O√

M . It is worth mentioning, that, while this could be
improved to O√

log M as in [9], if one considers instead a Lp/Lq-norm regular-
izer, we won’t pursue this avenue here. Let us finally note, that (26) allows one
to construct data-dependent confidence intervals for the true, pooled (averaged
over tasks) misclassification rate of the MTL problem under consideration.

5 Experiments

In this section, we demonstrate the merit of the proposed model via a series
of comparative experiments. For reference, we consider two baseline methods

Multi-Task Learning with Group-Specific Feature Space Sharing 131

referred to as STL and MTL, which present the two extreme cases discussed in
Sect. 2. We also compare our method with five state-of-the-art methods which,
like ours, fall under the CMTL family of approaches. These methods are briefly
described below.

– STL: single-task learning approach used as a baseline, according to which
each task is individually trained via a traditional single-task MKL strategy.

– MTL: a typical MTL approach, for which all tasks share a common feature
space. An SVM-based formulation with multiple kernel functions was utilized
and the common MKL parameters for all tasks were learned during training.

– CMTL [17]: in this work, the tasks are grouped into disjoint clusters, such
that the model parameters of the tasks belonging to the same group are close
to each other.

– Whom [19]: clusters the task, into disjoint groups and assumes that tasks of
the same group can jointly learn a shared feature representation.

– FlexClus [29]: a flexible clustering structure of tasks is assumed, which can
vary from feature to feature.

– CoClus [25]: a co-clustering structure is assumed aiming to capture both the
feature and task relationship between tasks.

– MeTaG [16]: a multi-level grouping structure is constructed by decomposing
the matrix of tasks’ parameters into a sum of components, each of which
corresponds to one level and is regularized with a L2-norm on the pairwise
difference between parameters of all the tasks.

5.1 Experimental Settings

For all experiments, all kernel-based methods (including STL, MTL and our
method) utilized 1 Linear, 1 Polynomial with degree 2, and 8 Gaussian kernels
with spread parameters

{
20, . . . , 27

}
for MKL. All kernel functions were normal-

ized as k(x,y) ← k(x,y)/
√

k(x,x)k(y,y). Moreover, for CMTL, Whom and
CoClus methods, which require the number of task clusters to be pre-specified,
cross-validation over the set {1, . . . , T/2} was used to select the optimal number
of clusters. Also, the regularization parameters of all methods were chosen via
cross-validation over the set

{
2−10, . . . , 210

}
.

5.2 Experimental Results

We assess the performance of our proposed method compared to the other meth-
ods on 7 widely-used data sets including 3 real-world data sets: Wall-Following
Robot Navigation (Robot), Statlog Vehicle Silhouettes (Vehicle) and Statlog
Image Segmentation (Image) from the UCI repository [14], 2 handwritten digit
data sets, namely MNIST Handwritten Digit (MNIST) and Pen-Based Recog-
nition of Handwritten Digits (Pen), as well as Letter and Landmine.

The data sets from the UCI repository correspond to three multi-class
problems. In the Robot data set, each sample is labeled as: “Move-Forward,
“SlightRight-Turn”, “Sharp-Right-Turn” and “Slight-Left-Turn”. These classes

132 N. Yousefi et al.

are designed to navigate a robot through a room following the wall in a clock-
wise direction. The Vehicle data set describes four different types of vehicles as
“4 Opel”, “SAAB”, “Bus” and “Van”. On the other hand, the instances of the
Image data set were drawn randomly from a database of 7 outdoor images which
are labeled as “Sky”, “Foliage”, “Cement”, “Window”, “Path” and “Grass”.

Also, two multi-class handwritten digit data sets, namely MNIST and Pen,
consist of samples of handwritten digits from 0 to 9. Each example is labeled as
one of ten classes. A one-versus-one strategy was adopted to cast all multi-class
learning problems into MTL problems, and the average classification accuracy
across tasks was calculated for each data set. Moreover, an equal number of
samples from each class was chosen for training for all five multi-class problems.

We also compare our method on two widely-used multi-task data sets, namely
the Letter and Landmine data sets. The former one is a collection of handwritten
words collected by Rob Kassel of MIT’s spoken Language System Group, and
involves eight tasks: ‘C’ vs. ‘E’, ‘G’ vs. ‘Y’, ‘M’ vs. ‘N’, ‘A’ vs. ‘G’, ‘I’ vs. ‘J’, ‘A’
vs. ‘O’, ‘F’ vs. ‘T’ and ‘H’ vs. ‘N’. Each letter is represented by a 8 by 16 pixel
image, which forms a 128 dimensional feature vector per sample. We randomly
chose 200 samples for each letter. An exception is letter J, for which only 189
samples were available. The Landmine data set consists of 29 binary classifica-
tion tasks collected from various landmine fields. The objective is to recognize
whether there is a landmine or not based on a region’s characteristics, which are
described by four moment-based features, three correlation-based features, one
energy ratio feature, and one spatial variance feature.

In all our experiments, for all methods, we considered training set sizes of
10%, 20% and 50% of the original data set to investigate the influence of the
data set size on generalization performance. An exception was the Landmine
data set, for which we used 20% and 50% of the data set for training purposes
due to its small size. The rest of data were split into equal sizes for validation
and testing.

In Table 1, we report the average classification accuracy over 20 runs of
randomly sampled training sets for each experiment. Note that we utilized the
method proposed in [10] for our statistical analysis. More specifically, Fried-
man’s and Holm’s post-hoc tests at significance level α = 0.05 were employed to
compare our proposed method with the other methods.

As shown in Table 1, for each data set, Friedman’s test ranks the best per-
forming model as first, the second best as second and so on. The superscript next
to each value in Table 1 indicates the rank of the corresponding model on the
relevant data set, while the superscript next to each model reflects its average
rank over all data sets for the corresponding training set size. Note that methods
depicted in boldface are deemed statistically similar to our model, since their
corresponding p-values are not smaller than the adjusted α values obtained by
Holm’s post-hoc test. Overall, it can be observed that our method dominates
three, six and five out of seven methods, when trained with 10%, 20% and 50%
training set sizes respectively.

Multi-Task Learning with Group-Specific Feature Space Sharing 133

Table 1. Experimental comparison between our method and seven benchmark methods

10% STL(7) MTL(5.42) CMTL(6.33) Whom(3.25) FlexClus(4.33) Coclus(4) MetaG(5) Our Method(1.67)

Robot 84.51(7) 84.82(6) 84.15(8) 88.90(1) 88.34(4) 87.83(5) 88.77(2) 88.67(3)

Vehicle 79.73(8) 80.38(6) 80.23(7) 83.14(4) 82.45(5) 86.79(1) 83.53(3) 84.51(2)

Image 97.08(7) 97.43(3) 97.09(6) 97.27(4) 98.05(2) 97.24(5) 97.05(8) 98.19(1)

Pen 98.16(7) 98.28(5.5) 95.78(8) 98.28(5.5) 98.67(3) 99.26(1) 98.57(4) 99.12(2)

MNIST 94.09(7) 94.87(4) 94.49(6) 95.56(3) 94.59(5) 93.09(8) 96.13(2) 96.70(1)

Letter 84.12(6) 83.12(8) 85.62(3) 86.82(2) 83.72(7) 85.46(4) 85.41(5) 87.41(1)

20% STL(6) MTL(4.43) CMTL(6.14) Whom(3.29) FlexClus(5.57) Coclus(4.57) MetaG(4.71) Our Method(1.14)

Robot 87.67(7) 88.23(6) 85.08(8) 90.76(1) 90.15(3) 88.43(5) 89.12(4) 90.34(2)

Vehicle 85.88(4) 86.16(3) 82.29(8) 85.67(6) 85.29(7) 87.15(2) 85.78(5) 87.76(1)

Image 97.41(6) 98.02(3) 97.32(7) 98.46(2) 97.44(5) 97.50(4) 97.29(8) 98.54(1)

Pen 98.57(7) 99.01(6) 96.06(8) 99.14(3) 99.13(4) 99.30(2) 99.02(4) 99.63(1)

MNIST 96.13(6) 96.71(4) 96.56(5) 96.76(3) 95.04(7) 94.09(8) 96.84(2) 97.86(1)

Landmine 58.76(8) 61.89(7) 65.28(2) 62.53(5) 62.46(6) 63.52(3) 62.59(4) 65.82(1)

Letter 88.75(4) 89.98(2) 88.24(5) 88.88(3) 83.79(7) 82.26(8) 87.99(6) 90.72(1)

50% STL(5.64) MTL(3.85) CMTL(6.29) Whom(3.29) FlexClus(6.21) Coclus(5.29) MetaG(4.42) Our Method(1)

Robot 91.26(5.5) 91.49(3) 86.26(8) 91.70(2) 91.26(5.5) 89.04(7) 91.27(4) 92.41(1)

Vehicle 88.33(3) 88.71(2) 83.91(8) 87.3(5) 86.72(7) 87.55(4) 86.81(6) 89.83(1)

Image 98.40(6) 98.43(5) 97.56(8) 98.58(2) 98.04(7) 98.52(3) 98.49(4) 99.07(1)

Pen 98.77(7) 99.23(5) 96.17(8) 99.32(4) 99.33(3) 99.34(2) 99.21(6) 99.77(1)

MNIST 97.20(6) 97.37(4) 97.31(5) 97.78(3) 96.60(7) 95.87(8) 98.46(2) 98.64(1)

Landmine 63.76(8) 64.98(6) 66.76(2) 65.57(4) 64.87(7) 65.15(5) 66.24(3) 67.15(1)

Letter 91.18(4) 91.62(2) 90.97(5) 91.25(3) 86.47(7) 86.27(8) 90.66(6) 92.49(1)

Table 2. Comparison of our method against the other methods with the Holm test

10% STL MTL CMTL Whom FlexClus Coclus MeTaG

Test statistic 3.93 2.13 3.49 1.25 2.40 2.62 2.29
p value 0.0005 0.0138 0.0022 0.2869 0.0777 0.1214 0.1214
Adjusted α 0.0071 0.0083 0.0100 0.0125 0.01667 0.0250 0.0500

20% STL MTL CMTL Whom FlexClus Coclus MeTaG

Test statistic 3.71 2.51 3.82 1.64 3.38 2.62 2.73
p value 0.00021 0.0121 0.0001 0.1017 0.0007 0.0088 0.0064
Adjusted α 0.0083 0.0250 0.0071 0.0500 0.0100 0.01667 0.0125

50% STL MTL CMTL Whom FlexClus Coclus MeTaG

Test statistic 3.55 2.18 4.04 1.75 3.98 3.27 2.61
p value 0.0004 0.0291 0.0001 0.0809 0.0001 0.0011 0.0089
Adjusted α 0.0100 0.0250 0.0071 0.0500 0.0083 0.0125 0.01667

Also, in Figure 1, we provide better insight of how the grouping of task feature
spaces might be determined in our framework. For the purpose of visualization,
we applied two Gaussian kernel functions with spread parameters 2 and 28 and
used the Letter multi-task data set.

In this figure, the x and y axes represent the weights of these two kernel
functions for each task. From Figure 1(a), when a small training size (10%) is
chosen, it can be seen that our framework yields a cluster of 3 tasks, namely {“A”
vs “G”, “A” vs “O”, “G” vs “Y”} that share a common feature space to benefit

134 N. Yousefi et al.

(a) Traning set size 10%

(b) Traning set size 50%

Fig. 1. Feature space parameters for Letter multi-task data set

from each other’s data. However, as the number n of training samples per task
increases, every task is allowed to employ its own feature space to guarantee
good performance. This is shown in Figure 1 (b), which displays the results
obtained for a 50% training set size. Note, that the displayed MKL weights lie
on the θ1 + θ2 = 1 line due to the framework’s L1 MKL weight constraint.

6 Conclusions

In this work, we proposed a novel MT-MKL framework for SVM-based binary
classification, where a flexible group structure is determined between each pair of
tasks. In this framework, tasks are allowed to have a common, similar, or distinct
feature spaces. Recently, some MTL frameworks have been proposed, which also
consider clustering strategies to capture task relatedness. However, our method

Multi-Task Learning with Group-Specific Feature Space Sharing 135

is capable of modeling a more general type of task relationship, where tasks may
be implicitly grouped according to a notion of feature space similarity. Also, our
proposed optimization algorithm allows for a distributed implementation, which
can be significantly advantageous for MTL settings involving large number of
tasks. The performance advantages reported on 7 multi-task SVM-based classifi-
cation problems largely seem to justify our arguments in favor of our framework.

Acknowledgments. N. Yousefi acknowledges support from National Science
Foundation (NSF) grants No. 0806931 and No. 1161228. Moreover, M. Georgiopou-
los acknowledges partial support from NSF grants No. 0806931, No. 0963146, No.
1200566, No. 1161228, and No. 1356233. Finally, G. C. Anagnostopoulos acknowledges
partial support from NSF grant No. 1263011. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

References

1. Argyriou, A., Clémençon, S., Zhang, R.: Learning the graph of relations among
multiple tasks. In: ICML 2014 workshop on New Learning Frameworks and Mod-
els for Big Data (2013)

2. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning.
Machine Learning 73(3), 243–272 (2008)

3. Bakker, B., Heskes, T.: Task clustering and gating for bayesian multitask learning.
The Journal of Machine Learning Research 4, 83–99 (2003)

4. Bartlett, P.L., Mendelson, S.: Rademacher and gaussian complexities: Risk
bounds and structural results. The Journal of Machine Learning Research 3,
463–482 (2003)

5. Bauschke, H., Borwein, J.M.: Dykstra’s alternating projection algorithm for two
sets. Journal of Approximation Theory 79(3), 418–443 (1994)

6. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning 3(1), 1–122 (2011)

7. Caruana, R.: Multitask learning. Machine Learning 28(1), 41–75 (1997)
8. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011). http://
www.csie.ntu.edu.tw/∼cjlin/libsvm

9. Cortes, C., Mohri, M., Rostamizadeh, A.: Generalization bounds for learning ker-
nels. In: Proceedings of the 27th International Conference on Machine Learning
(ICML 2010), pp. 247–254 (2010)

10. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The
Journal of Machine Learning Research 7, 1–30 (2006)

11. Dykstra, R.L.: An algorithm for restricted least squares regression. Journal of the
American Statistical Association 78(384), 837–842 (1983)

12. Evgeniou, A., Pontil, M.: Multi-task feature learning. Advances in Neural Infor-
mation Processing Systems 19, 41 (2007)

13. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel
methods. Journal of Machine Learning Research, 615–637 (2005)

14. Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.
ics.uci.edu/ml

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

136 N. Yousefi et al.

15. Gu, Q., Li, Z., Han, J.: Joint feature selection and subspace learning. In: IJCAI
Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, p.
1294 (2011)

16. Han, L., Zhang, Y.: Learning multi-level task groups in multi-task learning. In:
Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI) (2015)

17. Jacob, L., Vert, J.p., Bach, F.R.: Clustered multi-task learning: a convex for-
mulation. In: Advances in Neural Information Processing Systems, pp. 745–752
(2009)

18. Jalali, A., Sanghavi, S., Ruan, C., Ravikumar, P.K.: A dirty model for multi-task
learning. In: Advances in Neural Information Processing Systems, pp. 964–972
(2010)

19. Kang, Z., Grauman, K., Sha, F.: Learning with whom to share in multi-task
feature learning. In: Proceedings of the 28th International Conference on Machine
Learning (ICML 2011), pp. 521–528 (2011)

20. Kloft, M., Brefeld, U., Sonnenburg, S., Zien, A.: Lp-norm multiple kernel learning.
The Journal of Machine Learning Research 12, 953–997 (2011)

21. Lanckriet, G.R., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learn-
ing the kernel matrix with semidefinite programming. The Journal of Machine
Learning Research 5, 27–72 (2004)

22. Li, C., Georgiopoulos, M., Anagnostopoulos, G.C.: Conic multi-task classification.
In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014,
Part II. LNCS, vol. 8725, pp. 193–208. Springer, Heidelberg (2014)

23. Li, C., Georgiopoulos, M., Anagnostopoulos, G.C.: Pareto-path multitask multiple
kernel learning. IEEE Transactions on Neural Networks and Learning Systems
26(1), 51–61 (2015)

24. Tang, L., Chen, J., Ye, J.: On multiple kernel learning with multiple labels. In:
IJCAI, pp. 1255–1260 (2009)

25. Xu, L., Huang, A., Chen, J., Chen, E.: Exploiting task-feature co-clusters in multi-
task learning. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence (AAAI 2015) (2015)

26. Xue, Y., Liao, X., Carin, L., Krishnapuram, B.: Multi-task learning for classifica-
tion with dirichlet process priors. The Journal of Machine Learning Research 8,
35–63 (2007)

27. Zhang, Y., Yeung, D.Y.: A convex formulation for learning task relationships in
multi-task learning. arXiv preprint arXiv:1203.3536 (2012)

28. Zhang, Y., Yeung, D.Y.: A regularization approach to learning task relationships
in multitask learning. ACM Transactions on Knowledge Discovery from Data
(TKDD) 8(3), 12 (2014)

29. Zhong, W., Kwok, J.: Convex multitask learning with flexible task clusters. arXiv
preprint arXiv:1206.4601 (2012)

30. Zhou, J., Chen, J., Ye, J.: Clustered multi-task learning via alternating struc-
ture optimization. In: Advances in Neural Information Processing Systems,
pp. 702–710 (2011)

http://arxiv.org/abs/1203.3536
http://arxiv.org/abs/1206.4601

Opening the Black Box: Revealing Interpretable
Sequence Motifs in Kernel-Based Learning

Algorithms

Marina M.-C. Vidovic1(B), Nico Görnitz1, Klaus-Robert Müller1,2(B),
Gunnar Rätsch3(B), and Marius Kloft4(B)

1 Berlin Institute of Technology, 10587 Berlin, Germany
marina.vidovic@ml.tu-berlin.de,

{nico.goernitz,klaus-robert.mueller}@tu-berlin.de
2 Department of Brain and Cognitive Engineering, Korea University, Anam-dong,

Seongbuk-gu, Seoul 136-713, Republic of Korea
3 Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA

raetsch@mskcc.org
4 Humboldt University of Berlin, 10099 Berlin, Germany

kloft@hu-berlin.de

Abstract. This work is in the context of kernel-based learning algo-
rithms for sequence data. We present a probabilistic approach to
automatically extract, from the output of such string-kernel-based
learning algorithms, the subsequences—or motifs—truly underlying the
machine’s predictions. The proposed framework views motifs as free
parameters in a probabilistic model, which is solved through a global
optimization approach. In contrast to prevalent approaches, the proposed
method can discover even difficult, long motifs, and could be combined
with any kernel-based learning algorithm that is based on an adequate
sequence kernel. We show that, by using a discriminate kernel machine
such as a support vector machine, the approach can reveal discriminative
motifs underlying the kernel predictor. We demonstrate the efficacy of
our approach through a series of experiments on synthetic and real data,
including problems from handwritten digit recognition and a large-scale
human splice site data set from the domain of computational biology.

1 Introduction

In the view of the rapidly increasing amount of data collected in science and
technology, effective automation of decisions is necessary. To this end, kernel-
based methods [13,17,19,26,31,32] such as support vector machines (SVM)
[5,7] have found diverse applications due to their distinct merits such as the
descent computational complexity, high usability, and the solid mathematical
foundation [24]. Kernel-based learning allows us to obtain more complex non-
linear learning machines from simple linear ones in a canonical way, since the
learning and data representation processes are decoupled in a modular fashion.
Yet, after more than a decade of research, kernel methods are widely consid-
ered as black boxes, and it remains an unsolved problem to make their decisions
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 137–153, 2015.
DOI: 10.1007/978-3-319-23525-7 9

138 M.M.-C. Vidovic et al.

accessible or interpretable to domain experts. This is especially pressing in nat-
ural and life sciences, where not maximum prediction accuracy but unveiling the
underlying natural principles is the foremost aim.

In several important application fields, the data exhibits an inherent sequence
structure. This includes DNA sequences in genomics, text data in natural lan-
guage processing, and speech data in speech recognition. A state-of-the-art app-
roach to learn from such sequence data consists in the weighted-degree (WD)
kernel [4,27,28,31] in combination with a kernel-based learning machine such as
an SVM. Given two discrete sequences x = (x1, . . . , xL), x′ = (x′

1, . . . , x
′
L) ∈ AL

of length L over the alphabet A with |A| < ∞, the weighted-degree kernel is
defined by

κ(x, x′) =
�max∑

�=1

L−�+1∑

j=1

I{x[j]� = x′[j]�} , (1)

where x[j]� denotes the length-� subsequence of x starting at position j and ter-
minating at position j + � − 1. In a nutshell, it breaks x and x′ into all possible
subsequences up to a maximum length �max ≤ L and computes the number of
matching subsequences. The WD-kernel SVM has been shown to achieve state-
of-the-art prediction accuracies in many genomic discrimination tasks, including
the detection of transcription start sites [38] and splice sites [37]—achieving the
winning entry in the international comparison by [1] of 19 leading gene finders
and remains still unbeaten. Efficient implementations such as the one contained
in the SHOGUN machine-learning toolbox [33], which employs effective fea-
ture hashing techniques [36], have been applied to problems where millions of
sequences, each with more than thousand positions, are processed at the same
time [34].

WebLogo 3.4

0.0

0.5

1.0

pr
ob

ab
ilit

y

0
G
C
A
T

T
G
C
A

T
CTG

5
A
G
T

C
T
A

G
A
C
T

T
G
A

G
C
A
T

10
G
T
C
A

C
A
T

C
T
AC

A
T

T
C
A

15
CAT

GG
C
T

G
C
T
A

Fig. 1. Example of a motif, that is, an
“interesting” subsequence in a sequence
learning task that has a significance or
impact on the label. The task here was gene
detection and the motif has been gener-
ated using the WebLogo 3 software [8]. The
motif is illustrated as a positional weight
matrix (PWM), where the size of a letter
indicates the probability of its occurrence
at a certain position in the motif. The like-
liest entries are arranged top down.

Like many other kernels, the
WD kernel is a black-box that hin-
ders direct interpretation and analy-
sis of the classifier that is output by
the kernel-based learning algorithm
(for other approaches for interpreting
non-linear classification see e.g.
[2,3,14,25,41]). It is an aim of this
paper to work toward unveiling the
function of such a classifier by com-
puting the most important subse-
quences that determine the classi-
fier’s decision—the so-called motifs. A
motif is a widespread and typical pat-
tern in the input data that has, or is
conjectured to have, a significance or
impact on the associated label. For instance in the detection of gene starts, a
motif is a nucleotide sequence (i.e., a string over the alphabet A = {A,C,G, T}),

Sequence Motifs in Kernel-Based Learning Algorithms 139

which frequently appears at the start positions of genes in the DNA. For instance
in Figure 1, we give an illustration of the motif TACTGTATATATATACAGTA.

The main contributions of this work can be summarized as follows:

1. Putting forward the work of [35] on positional oligomer importance matri-
ces (POIMs), we propose a novel probabilistic framework to finally go the
full way from the output of a WD-kernel SVM to the relevant motifs truly
underlying the kernel machine’s predictions.

2. To deal with the sheer exponentially large size of the feature space associated
with the WD kernel, we propose a very efficient optimization framework
based on advanced sequence decomposition techniques.

3. Our approach is able to even find multiple motifs consisting of hundreds of
positions, while previous approaches are limited to either comparably short
or contiguous motifs.

4. We demonstrate the efficiency and efficacy of our approach on synthetic data
sets, on the USPS hand-written digits dataset, as well as on a human splice
data set, where we achieve near-perfect motif reconstruction quality when
evaluated by means of the JASPAR database [29].

2 Preliminaries

A first step towards the identification of motifs from the WD-kernel classifiers is
achieved in [35], where the concept of positional oligomer importance matrices
(POIMs) is introduced, which we review below, after giving more details on the
concept of the WD kernel.

2.1 Weighted-Degree (WD) Kernel

The weighted-degree kernel is formally defined in (1). It is important to note,
however, that we may equivalently represent the WD kernel by the corresponding
binary feature embedding Φ, with κ(x, x′) = 〈Φ(x), Φ(x′)〉, where each entry of
Φ(x) represents a valid positional subsequence y of length � ∈ {1, . . . , �max}
starting at position j ∈ {1, . . . , L − � + 1}. A WD-kernel SVM then simply fits
the parameter w of the linear model s(x) := 〈w,Φ(x)〉, which can, more concisely,
be expressed as

s(x) =
�max∑

�=1

L−�+1∑

i=1

w(x[i]�,i) (2)

since Φ(x) is inherently sparse (only the entries in Φ(x) corresponding to the
subsequences y = x[i]� with � ∈ {1, . . . , �max} and i ∈ {1, . . . , L − � + 1} are
non-zero).

2.2 Positional Oligomer Importance Matrices (POIMs)

Given the base sequence length L, a positional k-gram is a subsequence (y, j) ∈
Σk × {1, . . . , L − k + 1} of length k starting at a position j. Positional oligomer

140 M.M.-C. Vidovic et al.

importance matrices (POIMs) assign each positional k-gram with an importance
score. This allows us to visualize the significance of the various positional k-grams
as illustrated in Fig. 2. To formally introduce the POIM approach, let Σ be a
discrete alphabet, let X ∼ U(ΣL) be a random variable that uniformly takes
values in ΣL, and let x ∈ ΣL be a realization thereof. For any positional k-gram
(y, j) starting at position j, denote as

Qk,y,j := E[s(X)|X [j]k = y] − E[s(X)] , (3)

the POIM of order k is defined as the tupel

Q ≡ Qk :=
(
Qk,y,j

)
(y,j)∈Σk×{1,...,L−k+1}.

We may interpret (3) as a measure for the contribution of the positional k-gram
(y, j) to the SVM prediction function s as follows: a high value of w(y,j), by (2),
implies a strong contribution to the prediction score s(x) if and only if y = x[j]k.
We can very well visualize POIMs in terms of heatmaps as illustrated in Fig. 2,

Fig. 2. Illustra-
tion of a POIM of
k-grams (k = 4)
over the binary
alphabet A = {0, 1}
and sequence length
L = 5 for a trained
kernel predictor.
Each positional
4-gram corresponds
to a cell, where the
color indicates the
significance of the
positional 4-gram to
the kernel predictor.

from which we may obtain the most discriminative fea-
tures by manual inspection. As a first step towards a more
automatic analysis of POIMs, [40] propose an extension of
the POIM method, the so-called differential POIM, which
aims to identify the most relevant motif lengths as well as
the corresponding starting positions. Formally, the differ-
ential POIM Ω is defined as a �max×L matrix Ω :=

(
Ω�,j

)

with entries

Ω�,j :=
{

q�,j
max − max{q�−1,j

max , q�−1,j+1
max } if � ∈ {2, . . . , L}

0 elsewise ,

where q�,j
max := max

y∈Σ�
|Q�,y,j | . We can interpret Ω�,j as an

overall score for the general importance of the subsequence
of length � at position j.

2.3 Shortcomings of POIMs

Although being a major step towards the explanation of
trained WD kernel models, POIMs suffer from the fact
that their size grows exponentially with the length of the
motif, which renders their computation feasible only for
rather small motif sizes, typically k ≤ 12. It also ham-
pers manual inspection (in order to determine candidate
motifs) already for rather small motif sizes such as k ≈ 5
and is prohibitive for k ≥ 10. For example, a POIM of
order k = 5 contains, at each position, already 45 ≈ 1, 000
oligomers that a domain expert would have to manually
inspect. Slightly increasing the motif length to k = 10
leads to an unfeasible amount of 410 ≈ 1, 000, 000 subse-
quences per position in the POIM.

Sequence Motifs in Kernel-Based Learning Algorithms 141

2.4 What is Coming Up: The Proposed Approach in a Nutshell

0
1
00001111

0
100001111

Fig. 3. Illustration of the pro-
posed approach: extracting a motif
(top right) from a trained kernel
machine (top left) by approximat-
ing the corresponding POIM (bot-
tom left) by another POIM (bot-
tom right) that is derived from a
set of candidate motifs, over which
we optimize (top right).

In this paper, we tackle obtaining motifs from
a trained kernel machine via the use of POIMs
from a different perspective. In a nutshell, our
approach is the other way round (!): we pro-
pose a probabilistic framework to reconstruct,
from a given motif, the POIM that is the most
likely to be generated by the motif. By sub-
sequently minimizing the reconstruction error
with respect to the truly given POIM, we can
in fact optimize over the motif in order to find
the one that is the most likely to have gen-
erated the POIM at hand. The latter poses
a substantial numerical challenge due to the
extremely high dimensionality of the feature
space. Figure 3 illustrates our approach.

3 Methodology for Revealing
Discriminative Motifs by
Mimicking POIMs

In this section, we introduce the proposed motifPOIM methodology for extrac-
tion of motifs from POIMs, state the optimization problem, and derive an effi-
cient optimization procedure. In a nutshell, our motifPOIM methodolology (illus-
trated in Figure 3) is based on associating each candidate motif by a probability
of occurrence at a certain location—which we call probabilistic positional motif
(PPM)—and then (re-)construct from each PPM the POIM that is the most
likely to be generated from the candidate PPM, which we call motifPOIM. The
final motif is obtained by optimizing over the candidate motifs such that the
reconstruction error of the motifPOIM with respect to the truly given POIM is
minimized.

To this end, let us formally define the PPM as a tuple mk := (r, μ, σ), where
r ∈ R

|Σ|×k and μ, σ ∈ R. We think of mk as a candidate motif with PWM r and
estimated starting position μ of which the variable σ encodes the uncertainty in
the location of the motif. For this PPM we define a probabilistic model, with a
probability of the starting position given by a Gaussian function with parameters
μ and σ

P 1
(z,i)(mk) :=

1√
2πσ

exp

(

− (i − μ)2

2σ2

)

,

and a probability for the motif sequence itself, given by the product of its PWM
entries

P 2
(z,i)(mk) :=

k∏

�=1

rz�,� .

Under this probabilistic model, we define, in analogy to the SVM weight
vector w occurring in (2), a motif weight vector v ≡ v(mk) with entries

142 M.M.-C. Vidovic et al.

(
v(mk)

)
z,i

= v(z,i)(mk) defined as v(z,i)(mk) := P 1
(z,i)(mk)P 2

(z,i)(mk) , for any
positional k-gram of length k, (z, i) ∈ Σk ×{1, . . . , L− k +1}. Consequently, we
define in analogy to (2) a function

s̄(x|mk) :=
L−k+1∑

i=1

v(x[i]k,i)(mk) . (4)

By means of the above function, we can construct, from a PPM as defined in
the paragraph above, a POIM R ≡ R(mk) with entries

Ry,j(mk) := E[s̄(X|mk)|X [j]k = y] − E[s̄(X|mk)] . (5)

Our overall aim is, by optimizing over the motifPOIM R, to approximate the
original POIM (cf. also the illustration given by Figure 3). Due to the fact that
searching for motifs of length k means computing POIMs of degree k, which
is for longer PPMs (k ≥ 5) computationally expensive, we have modified our
optimization problem in a way that finding long PPMs can be accomplished
using POIMs of lower degrees k̃ ∈ {2, 3}.The basic idea is to split longer PPMs
of length k into shorter overlapping PPMs of length k̃ ≤ k and use only the
small POIM of degree k̃ for our optimization approach. First we define a set of
smaller overlapping motifs, the SubPPMs, which should be devoted to the large
PPM: A PPM of length k is modeled as a set of D SubPPMs, D := k − k̃ + 1
with length k̃ ≤ k. The SubPPMs are defined by:

m̃d(mk, k̃) := (r̃, μ̃, σ), ∀ d = 0, . . . , D − 1

with μ̃ := μ + d and r̃ := r[d, d + k̃], where r[d, d + k̃] is the d-th until the
(d + k̃)-th column of the PPMs PWM r.

3.1 Optimization Problem
We now derive the optimization problem for the extraction of motifs from
POIMs. The core idea is to determine a motif mk with an corresponding motif-
POIM R(mk) that approximates the original POIM Qk. To this end, let us
introduce some notation. Let K ⊂ N be the set of all motif lengths to be con-
sidered and kmax = max

k∈K
k the maximum length. The vector T ∈ N

kmax
0 con-

tains the number of PPMs for each motif length, where Tk is the given number
of PPMs of length k for all k ∈ K. For example, when K = {2, 4, 10} and
T = (0, 6, 0, 3, 0, 0, 0, 0, 0, 2), then the goal is to find 6 PPMs of length 2, 3
PPMs of length 4, and 2 PPMs of length 10. Our optimization method is as
follows: given the set K and the vector T , we randomly initialize the PPMs
mk,t t = 1, . . . , Tk , k ∈ K and generate a set of motifPOIMs for the SubPPMs
m̃d(mk, k̃), d = 0, . . . , D−1. The optimization variables are the Tk many PPMs
for all k ∈ K. For obtaining the priorities of the PPMs we weight the PPMs by
λk,t, t = 1, . . . , Tk , k ∈ K and additionally optimize over the weights. Hence,
the optimization variables are:

– PPM mk,t = (rk,t, μk,t, σk,t), t = 1, . . . , Tk , k ∈ K ,

where μk,t ∈ R, σk,t ∈ R, rk,t ∈ R
|Σ|×k, t = 1, . . . , Tk , k ∈ K

Sequence Motifs in Kernel-Based Learning Algorithms 143

– weight of mk,t λk,t ∈ R, t = 1, . . . , Tk , k ∈ K .

A PPM generates a motifPOIM, which is given by the sum of D motif-
POIMs generated by its SubPPMs. The sum of the weighted motifPOIMs,
λk,tR(mk,t), t = 1, . . . , Tk, should estimate the POIM Qk̃ for each k ∈ K.
The optimization problem is now that of minimizing the distance between the
sum of the motifPOIMs and the original POIM, which leads to a non-convex
optimization problem with the following objective function:

f(η) =
1
2

∑

k∈K

∑

y∈Σk̃

L∑

j=1

(Tk∑

t=1

λk,t

D−1∑

d=0

Ry,j(m̃d(mk,t, k̃)) − Qk̃,y,j

)2

, (6)

where η = (mk,t, λk,t, k̃)t=1,...,Tk,k∈K . The associated constrained non-linear
optimization problem is thus as follows:

min
(mk,t,λk,t)t=1,...,Tk,k∈K

f(η) (7)

subject to ε ≤ σk,t ≤ k, t = 1, . . . , Tk , k ∈ K
1 ≤ μk,t ≤ L − k + 1, t = 1, . . . , Tk , k ∈ K

0 ≤ λk,t ≤ W, t = 1, . . . , Tk , k ∈ K
ε ≤ rk,t,o,s ≤ 1, t = 1, . . . , Tk , k ∈ K

o = 1, . . . , |Σ|, s = 1, . . . , k ,

|Σ|∑

o=1

rk,t,o,s = 1

where W ∈ R
+. The objective function f(η) is defined on compact set U , since all

parameters are defined in a closed and bounded, convex space. Consequently, if U
is not empty, f(η) is a continuously differentiable function, since its conforming
parts, that is, the Gaussian function and the product of the PWM entries, all
are continuously differentiable. Thus the global minimum of the optimization
problem (7) is guaranteed to exist. Due to the non-convex nature of (7), however,
there may exist multiple local minima.

3.2 Efficient Computation of motifPOIM
To allow for numerical optimization of (7), we need an efficient way of comput-
ing (5). To this end, note that (5) consists of two summands. The right-hand
summand can be computed as follows:

E[s̄(X|mk)] =
1

|ΣL|
∑

x∈ΣL

s̄(x;mk) =
1

|ΣL|
∑

x∈ΣL

k∑

�=1

L−�+1∑

i=1

v(x[i]�,i)(mk)

=
k∑

�=1

L−�+1∑

i=1

1
|ΣL|

∑

x∈ΣL

v(x[i]�,i)(mk) =
k∑

�=1

L−�+1∑

i=1

1
|Σ�|

∑

z∈Σ�

v(z,i)(mk)

=
k∑

�=1

∑

z∈Σ�

L−�+1∑

i=1

v(z,i)(mk)P(X [i]� = z) . (8)

144 M.M.-C. Vidovic et al.

Furthermore, by an analogous computation, we compute the left-hand summand
in (5) and obtain

E[s̄(X|mk)|X [j]k = y] =
k∑

�=1

∑

z∈Σ�

L−�+1∑

i=1

v(z,i)(mk)P(X [i]� = z|X [j]k = y) . (9)

We now consider this probability term and its influence on the summation in
(5). To this end, we introduce the following notation as in [37].

Definition 1. Two positional subsequences (z, i) and (y, j) of length � and k are
independent if and only if they do not share any position; in this case we write
(y, j) ⊀ (z, i) and (y, j) ≺ (z, i) otherwise (i.e., when they are dependent). If they
are dependent and also agree on all shared positions we say they are compatible
and we write (y, j) � (z, i) (and (y, j) � (z, i) if they are not compatible).

According to the cases discussed in the above definition, the conditioned
probability term can take the following values:

P(X [i]� = z|X [j]k = y) =

⎧
⎪⎨

⎪⎩

1
|Σ�| if (y, j) ⊀ (z, i)
0 if (y, j) � (z, i)
|Σc|
|Σ�| if (y, j) � (z, i)

, (10)

where c is the number of shared and compatible positions of two positional
subsequences:

c
(
(y, j), (z, i)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

� − |i − j| if i < j and (y, j) � (z, i)
� if i = j and (y, j) � (z, i)
k − |i − j| if i > j and (y, j) � (z, i)
0 else.

.

Taken the case (y, j) ⊀ (z, i), the probability terms in the motifPOIM formula
(5) subtract to zero, so that the positional subsequence (z, i) is not considered
in the sum Ry,j(mk). Hence, in order to compute Ry,j(mk), it is sufficient to
sum over two positional subsequence sets, where one contains all (z, i) with
(y, j) � (z, i), I�

(y,j), and the others contains all (z, i) with (y, j) � (z, i), I�
(y,j):

Ry,j(mk) =
∑

(z,i)∈I�
(y,j)

v(z,i)(mk)
(|Σc|
|Σk| − 1

|Σk|
)

+
∑

(z,i)∈I�
(y,j)

v(z,i)(mk)
(− 1

|Σk|
)
) , (11)

where I◦
(y,j) :=

{

(z, i) ∈ Σ|y|×{
1, . . . , L−|y|+1

}|(y, j)◦(z, i)
}

and ◦ ∈ {�, �} .

4 Empirical Analysis

In this section, we analyze our proposed mathematical model (7) empirically.
After introducing the experimental setup, we evaluate our approach on the USPS

Sequence Motifs in Kernel-Based Learning Algorithms 145

data set, containing grayscale handwritten digit images. Afterwards, we con-
duct a biology experiment with a synthetic data set where we fully control the
underlying ground truth. Finally, we investigate our model on a real human
splice data set and compare our results to motifs contained in the JASPAR
database [29]. As kernel-based learning algorithm, we use a support vector
machine in all experiments.

4.1 Experimental Setup

For SVM training, we use the SHOGUN machine-learning toolbox [33]. The
regularization constant C of the SVM and the degree d of the weighted-degree
kernel are set to C = 1 and d = 20 for the biological experiments, which are
proven default values. For the experiments on the USPS data, we set d = 8 and
select C through model selection.

After SVM training, the POIM Q is generated through the Python script
compute poims.py included in the SHOGUN toolbox. The Python frame-
work obtains the trained SVM and the POIM of order k as parameters and
returns the differential POIM and the regular POIMs Ql, l = 1, . . . , kpoim. We
set k = 7 because of memory requirements (storing all POIMs up to a degree
of 10 requires about 4 gigabytes of space). Note that this is no restriction as
our modified optimization problem (7) requires POIMs of degree two or three
only. Nevertheless, POIMS of higher degree than three can provide additional
useful information since they contain prior information about the optimization
variables.

We then compute the differential POIM using the Python scripts included
in the SHOGUN toolbox, where we search for points of accumulation of high
scoring entries, from which we estimate the number of motifs as well as their
length and starting position. Throughout the experiments, we use a greedy app-
roach for estimating the initial values of PWMs given a POIM. Once the motif
interval is estimated, we select the leading nucleotide from the highest scoring
column entry within the interval from the corresponding POIM and initialize the
respective PWM entry with a value of 0.7 and 0.1 for non-matches. Indeed, we
found that this approach is more stable and reliable than using random initializa-
tions. These parameters serve as initialization for our non-convex optimization
problem (7). To compute a PWM from the computed POIMs, we employ the
L-BFGS-B Algorithm [23], where the parameters λ and σ are initialized as 1 and
0.01, respectively.

As a measure of the motif reconstruction quality (MRQ), we employ in the
biological experiments the same score as in the established JASPAR SPLICE
database [30]. Given a ground truth sequence motif t we test the reconstruction
quality of an equally-sized, revealed motif r according to the following formula:

MRQ =
∑k

p=1

[
1
k − 1

2k

∑

c∈{A,C,G,T}
(tcp − rcp)2

]

We also introduce a second mea-

sure, the maximal-value MRQ (mvMRQ), which is defined in exactly the same
way as the MRQ but uses the maximum posteriori motif r̂ ∈ {0, 1}4×k, that

146 M.M.-C. Vidovic et al.

is, it considers only the most likely sequence in the motif, which can have the
advantage of discarding potential noise in the data and motif.

4.2 Experimental Results for USPS Dataset

We first evaluate the proposed methodology on the USPS data set [15,16], which
includes 9298 images of handwritten digits, encoded through gray scale values
ranging in [−1, 1]. For pre-processing, the data was converted to a binary format
by setting a threshold at −0.2 for the gray scale values. To preserve locality in
the vectorial image representation, we further preprocessed the data by scanning
the image using a Hilbert curve of order 4, which is a proven method for mapping
images to sequences [6,9]. Fig. 4 (a) shows the path of the Hilbert-curve scan for
the handwritten images of the digit three. To determine the justification of the
use of a high-dimensional weighted degree kernel, we compare it with a linear
kernel on the gray scale values as well as with the weighted degree kernel of degree
one only. The results in terms of multi-class classification accuracy are shown in
Fig 4 (b), where the SVM was trained in one-vs.-all scheme. We observe that a
weighted degree kernel of degree 8 (dimensionality: 28 ∗ 256 = 65536) performs
best in our experiments.

For the remaining experiments, we focus on the binary classification tasks
of the handwritten digits three vs. eight and two vs. nine, respectively. These

(a) Hilbert Curve (b) SVM performance

Fig. 4. (a) Foreground: illustration of Hilbert-curve scanning (of order 4) of an image
depicting of the handwritten digit three. The image is converted into a sequence through
a curve that traverses the image in a way that mimics a fractal structure. It has been
shown in [6,9] that this strategy is able to well capture the image’s locality structure.
The heatmap in the background shows the average feature values for the images of the
digit three.
(b) The one-vs.-all SVM prediction accuracy is shown as a function of the number of
training sequences per class for various WD sequence kernels over the Hilbert-scanned
sequences and for a linear kernel on the gray-scale pixel values. The WD kernel of
degree 8 performers best, even for only a small number of training sequences.

Sequence Motifs in Kernel-Based Learning Algorithms 147

(a) (b) (c) (d)

Fig. 5. Illustration of the results found by our proposed framework, when training a
WD-kernel SVM of degree 8 for the handwritten digits three vs. eight and two vs. nine,
respectively. The highest scoring positions in the motif are highlighted in red. Note that
these are very characteristic positions for the dissimilarities between both digits. The
background the average feature values for the images of the respective digit.

respective digit pairs are considered to be especially difficult to discriminate. For
both digit pairs we train a WD-kernel SVM of degree 8 on the Hilbert-scanned
sequences. Afterward, we compute the POIM as described in Section 4.1 and
use our presented methodology to find a motif that incorporates the discrim-
inative positions of the SVM decision for both classes. In this experiment, we
simply fix the length of the motif to 256, which thus coincides with the sequence
length. The step of intializing the POIM parameter through analyzing the dif-
ferential POIM is thus omitted in this experiment. The results, illustrated in
Figure 5, show the precise coherence between the discriminative motifs found
and the obvious individually characteristic differences of the two digits, respec-
tively. For instance in the discriminative task three-vs.-eight, we can observe that
the most distinctive positions in the motif of the digit eight (highlighted in red in
Figure 5 (b)) are exactly the parts that are missing in the digit-three image.

4.3 Results for Synthetic Splice Site Experiments

Next, we evaluate the proposed methodology for biology DNA sequence data,
by generating a synthetic data set, where we have full access to the underlying
ground truth. This experiment aims at demonstrating the ability of our method
in reconstructing the truly underlying motifs.

To this end, we generate the following sample sets: the sample set S1 con-
sists of 10,000 DNA sequences of length 30 over the alphabet {A,C,G, T}30,
randomly drawn from a uniform distribution U(ΣL) over ΣL. We subsequently
modify 25% of the sequences by replacing the positions 6 to 11 by the synthetic
target sequence CCTATA. These modified sequences form the positively labeled
examples, while the remaining 75% of sequences are assigned with a negative
label. The sample set S2 includes the motif GATACATTAGGC of length 12
starting at position 16 in the positively labeled sequences. In the third sample
set S3 we insert both motifs at the same time.

The result of the realization of this synthetic experiments using the base
sample S1 and S2 are shown in Figure 6. The corresponding motif/PWM com-
puted by our approach correctly identifies the true underlying motif sequence as
the most likely path in the PWM. More detailed results are shown in Table 1,

148 M.M.-C. Vidovic et al.

Position

Pr
ob

ab
ili

ty

1 2 3 4 5 6

1.0

0.8

0.6

0.4

0.2

0.0

Fig. 6. Illustration of the motifs computed by our approach in the synthetic experi-
ment: the size of a letter indicates the probability of occurrence of the corresponding
nucleotide at a certain position in the motif. The left- and right-hand figures show
the results for the synthetic data sets S1 and S2, respectively. Note that the truly
underlying motifs where CCTATA for S1 and GATACATTAGGC for S2.

Table 1. Experimental results for the synthetic experiments on the three different
sample sets S1, S2, and S3.

sample set SVM acc #iter time (s) fevals λopt MRQ mvMRQ

S1 0.9987 157 13.2 116 1.0 0.93 1.0
S2 1.0 31 19.7 64 1.0 0.65 1.0
S3 1.0 31 25.87 64 0.42 0.85 1.0 (motif 1)

0.58 0.84 1.0 (motif 2)

where, besides the MRQ and the mvMRQ value, we report also on the runtime of
our approach, as well as the number of function evaluations, the optimal param-
eters for λ, the number of iterations needed, and the achieved SVM accuracy.
Inspecting the mvMRQ, one can observe that even for the difficult dataset S3,
where we implanted both motives into the training sequences, we reconstruct
both truly underlying motifs with 100% accuracy. The runtime of our approach
ranges between 13 and 26 seconds.

4.4 Real-World Experiments on Human Splice Data

In this section, we evaluate our methodology on a human splice data set, which
we downloaded from http://www.fml.tuebingen.mpg.de/raetsch/projects/lsmkl.
For verifying our results we use the JASPAR database [29] (Available from
http://jaspar.genereg.net), which provides us with a collection of important
DNA motifs and also contains a splice site database. Note that real DNA
sequences may contain non-polymorphic loci, which is why such a motif is not

Table 2. Execution times and optimal parame-
ters for the human splice data set.

σ fixed λopt fopt time (s) f evals MRQ
0.01 0.005 78.97 37.91 24 90.1
0.1 0.84 59.48 28.3 20 97.58
1 1.67 57.18 33.53 17 97.03

discriminative and we may thus
not expect the SVM to iden-
tify this locus. We thus catch
this special case and place this
positional oligomer in the solu-
tion sequence. We apply the full
experimental pipeline described
in Section 4.1 to this data set.

http://www.fml.tuebingen.mpg.de/raetsch/projects/lsmkl
http://jaspar.genereg.net

Sequence Motifs in Kernel-Based Learning Algorithms 149

Fig. 7. Results of the real-world human splice experiment: Figures (a) and (c) show
the differential POIM and the POIM of degree 2, respectively, for the entire sequence
length of 200, while Figures (b) and (d) zoom into the “interesting” positions 70–110
only.

Figure 7 shows the preliminary results in terms of the differential POIM and
the corresponding POIM of degree 2, shown for the entire sequence (see Figures
7 (a) and (c), respectively) as well as zoomed in for the “interesting” positions
70–110 of the sequence (see Figures 7 (b) and (d)). According to Figure 7 (b)
the largest entry corresponds to a 7-mer that is found at position 95; further-
more, we observe high scoring entries for 7-,6- and 5-mers at position 85, from
which we conclude that the discriminative motif starts at position 85 and ends
at position 102. Thus, the motif we are searching is expected to have a length of
18 nucleotides, which we use as an initialization for our motifPOIM approach.
We also account for non-polymorphic loci and find that the nucleotides A and G
appear in all DNA sequences of the data set, always at the positions 100 and 101,
respectively. We thus place them in the final PWM with a probability of 10%.
The JASPAR splice database provides us with splice site motifs of length 20
only, which is why we search for motifs of the same size instead of the expected
motif length 18.

The final results are shown in Figure 8, where the true underlying motif
taken from the JASPAR splice database is shown in Figure (a), while the motif
computed by our approach is shown in Figures (b)–(d). We observe a striking
accordance with the true motif as evidenced by a high consensus score of 98.39

Ground Truth σ=0.01 σ=0.1 σ=1.0

Fig. 8. Further results of the real-world human splice experiment: Figure (a) shows
the (normalized) real splice sequence as taken from JASPAR. Figure (b)–(d) show
the (normalized) computed PWMs for different values of the parameter σ. The best
JASPAR score of 97.58, is achieved with σ = 0.1. This is, interestingly, followed by
σ = 1 with a JASPAR score of 97.03 although the reconstructed motif of b) with
σ = 0.01 and a score of 90.1 appears much more similar to the true motif in a).

150 M.M.-C. Vidovic et al.

for σ = 0.1, shown in Figure (c). Note that, for example, a completely random
sequence (uniformly drawn nucleotides) has an average consensus of 89.31, which
is greatly exceeded by our result. It is interesting to note that the function value
corresponding to the best consensus score is suboptimal; this might indicate
that the function is highly nonconvex with many local minima. Moreover, it is
interesting to note that the PWM with the mixed nucleotides, shown in (d), is
assigned a much higher accordance with the true motif than the well ordered one,
shown in (b), which is more similar to the original JASPAR PWM. Furthermore,
from Table 2, we observe moderate execution times of up to 32 seconds.

5 Conclusion and Discussion

Putting forward the work of [35] on positional oligomer importance matrices
(POIMs), we have developed a new probabilistic methodology to automatically
extract discriminative motifs from trained weighted-degree kernel machines such
as support vector machines. To deal with the exponentially large size of the
feature space associated with the SVM weight vector and the corresponding
POIM (“[..] we realize that the list of POs can be prohibitively large for manual
inspection.” [35], page 8), we proposed an efficient optimization framework.

The results clearly illustrate the power of our approach in discovering
discriminative motifs. For the experiment on handwritten digits, the proposed
approach excels in finding intuitive motifs, as can be seen in Figure 5. In the
synthetic experiments, the hidden motifs could be found and almost perfectly
reconstructed. For the human splice site experiments, we recovered known motifs
up to a very high precision of 98.39% as compared to the Jaspar splice data base.

We will provide the core algorithms as an add-on to the Python interface
of the SHOGUN Machine Learning Toolbox. It is not only an established
machine-learning framework, moreover, it already incorporates the possibility
to extract positional-oligomer importance matrices (POIMs) of trained support
vector machines using a WD-kernel. Ultimately, the usage by experimentalists
will determine the utility of this approach and govern the direction of further
extensions. A core issue might be the extension to other interesting kernels,
such as, e.g., spectrum kernels [22], multiple kernels [17–19,21], other learning
methods [11,12], or learning settings [10,20,39].

Acknowledgments. Acknowledgments MK acknowledges support by the German
Research Foundation through the grant KL 2698/1-1 and KL 2698/2-1. MMCV and
NG were supported by BMBF ALICE II grant 01IB15001B. We also acknowledges the
support by the German Research Foundation through the grant DFG MU 987/6-1 and
RA 1894/1-1. KRM thanks for partial funding by the National Research Foundation
of Korea funded by the Ministry of Education, Science, and Technology in the BK21
program and the German Ministry for Education and Research as Berlin Big Data
Center BBDC, funding mark 01IS14013A.

Sequence Motifs in Kernel-Based Learning Algorithms 151

References

1. Abeel, T., de Peer, Y.V., Saeys, Y.: Towards a gold standard for promoter predic-
tion evaluation. Bioinformatics (2009)

2. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PLOS ONE (2015)

3. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller,
K.R.: How to explain individual classification decisions. JMLR 11, 1803–1831
(2010)

4. Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support
vector machines and kernels for computational biology. PLoS Comput Biology
4(10), e1000173 (2008). http://www.ploscompbiol.org/article/info:doi/10.1371/
journal.pcbi.1000173

5. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classi-
fiers. In: Haussler, D. (ed.) COLT. pp. 144–152. ACM (1992)

6. Chung, K.L., Huang, Y.L., Liu, Y.W.: Efficient algorithms for coding hilbert curve
of arbitrary-sized image and application to window query. Information Sciences
177(10), 2130–2151 (2007)

7. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–297
(1995)

8. Crooks, G., Hon, G., Chandonia, J., Brenner, S.: Weblogo: A sequence logo gen-
erator. Genome Research 14, 1188–1190 (2004)

9. Dafner, R., Cohen-Or, D., Matias, Y.: Context-based space filling curves. In: Com-
puter Graphics Forum, vol. 19, pp. 209–218. Wiley Online Library (2000)

10. Goernitz, N., Braun, M., Kloft, M.: Hidden markov anomaly detection. In: Proceed-
ings of The 32nd International Conference on Machine Learning, pp. 1833–1842
(2015)

11. Görnitz, N., Kloft, M., Brefeld, U.: Active and semi-supervised data domain
description. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.)
ECML PKDD 2009, Part I. LNCS, vol. 5781, pp. 407–422. Springer, Heidelberg
(2009)

12. Görnitz, N., Kloft, M., Rieck, K., Brefeld, U.: Active learning for network intrusion
detection. In: AISEC, p. 47. ACM Press (2009)

13. Görnitz, N., Kloft, M.M., Rieck, K., Brefeld, U.: Toward supervised anomaly detec-
tion. Journal of Artificial Intelligence Research (2013)

14. Hansen, K., Baehrens, D., Schroeter, T., Rupp, M., Müller, K.R.: Visual interpre-
tation of kernel-based prediction models. Molecular Informatics 30(9), September
2011. WILEY-VCH Verlag

15. Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., Tibshirani, R.:
The elements of statistical learning, vol. 2. Springer (2009)

16. Hull, J.J.: A database for handwritten text recognition research. IEEE Transactions
on Pattern Analysis and Machine Intelligence 16(5), 550–554 (1994)

17. Kloft, M., Brefeld, U., Sonnenburg, S., Zien, A.: lp-Norm Multiple Kernel Learning.
JMLR 12, 953–997 (2011)

18. Kloft, M., Brefeld, U., Düessel, P., Gehl, C., Laskov, P.: Automatic feature selec-
tion for anomaly detection. In: Proceedings of the 1st ACM Workshop on AISec,
pp. 71–76. ACM (2008)

19. Kloft, M., Brefeld, U., Sonnenburg, S., Laskov, P., Müller, K.R., Zien, A.: Efficient
and accurate lp-norm multiple kernel learning. Advances in Neural Information
Processing Systems 22(22), 997–1005 (2009)

http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000173
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000173

152 M.M.-C. Vidovic et al.

20. Kloft, M., Laskov, P.: Online anomaly detection under adversarial impact. In:
AISTATS, pp. 405–412 (2010)

21. Kloft, M., Rückert, U., Bartlett, P.: A unifying view of multiple kernel learning.
Machine Learning and Knowledge Discovery in Databases pp. 66–81 (2010)

22. Leslie, C.S., Eskin, E., Noble, W.S.: The spectrum kernel: A string kernel for svm
protein classification. In: Pacific Symposium on Biocomputing, pp. 566–575 (2002)

23. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for
large scale optimization. Math. Program. 45(3), 503–528 (1989).
http://dx.doi.org/10.1007/BF01589116

24. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of machine learning.
MIT press (2012)

25. Montavon, G., Braun, M.L., Krueger, T., Müller, K.R.: Analyzing local structure
in kernel-based learning: Explanation, complexity and reliability assessment. Signal
Processing Magazine, IEEE 30(4), 62–74 (2013)

26. Müller, K.R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to
kernel-based learning algorithms. IEEE Transactions on Neural Networks 12(2),
181–201 (2001). http://dx.doi.org/10.1109/72.914517

27. Rätsch, G., Sonnenburg, S., Srinivasan, J., Witte, H., Müller, K.R., Sommer,
R.J., Schölkopf, B.: Improving the caenorhabditis elegans genome annotation using
machine learning. PLoS Comput. Biol. 3(2), e20 (2007)

28. Rätsch, G., Sonnenburg, S.: Accurate splice site prediction for caenorhabditis ele-
gans. Kernel Methods in Computational Biology, 277–298 (2004). MIT Press series
on Computational Molecular Biology, MIT Press

29. Sandelin, A., Alkema, W., Engström, P., Wasserman, W.W., Lenhard, B.: Jaspar:
an open-access database for eukaryotic transcription factor binding profiles. Nucleic
Acids Research 32(Database–Issue), 91–94 (2004)

30. Sandelin, A., Höglund, A., Lenhardd, B., Wasserman, W.W.: Integrated analysis
of yeast regulatory sequences for biologically linked clusters of genes. Functional
& Integrative Genomics 3(3), 125–134 (2003)

31. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)
32. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel

eigenvalue problem. Neural Computation 10(5), 1299–1319 (1998)
33. Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A.,

Bona, F.D., Binder, A., Gehl, C., Franc, V.: The SHOGUN machine learning tool-
box. Journal of Machine Learning Research 11, 1799–1802 (2010)

34. Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large scale multiple kernel
learning. Journal of Machine Learning Research 7, 1531–1565 (2006)

35. Sonnenburg, S., Zien, A., Philips, P., Rätsch, G.: POIMs: positional oligomer
importance matrices – understanding support vector machine based signal detec-
tors. Bioinformatics (2008). (received the Outstanding Student Paper Award at
ISMB 2008)

36. Sonnenburg, S., Franc, V.: Coffin: a computational framework for linear SVMs. In:
ICML, pp. 999–1006 (2010)

37. Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.: Accurate Splice
Site Prediction. BMC Bioinformatics, Special Issue from NIPS workshop on New
Problems and Methods in Computational Biology Whistler, Canada, December
18, 2006, vol. 8(Suppl. 10), p. S7, December 2007

38. Sonnenburg, S., Zien, A., Rätsch, G.: ARTS: Accurate Recognition of Transcription
Starts in Human. Bioinformatics 22(14), e472–480 (2006)

http://dx.doi.org/10.1007/BF01589116
http://dx.doi.org/10.1109/72.914517

Sequence Motifs in Kernel-Based Learning Algorithms 153

39. Zeller, G., Goernitz, N., Kahles, A., Behr, J., Mudrakarta, P., Sonnenburg, S.,
Raetsch, G.: mtim: rapid and accurate transcript reconstruction from rna-seq data.
arXiv preprint arXiv:1309.5211 (2013)

40. Zien, A., Philips, P., Sonnenburg, S.: Computing Positional Oligomer Importance
Matrices (POIMs). Research Report; Electronic Publication 2, Fraunhofer Institute
FIRST, December 2007

41. Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.R.: Engi-
neering support vector machine kernels that recognize translation initiation sites
in DNA. BioInformatics 16(9), 799–807 (2000)

http://arxiv.org/abs/1309.5211

Pattern and Sequence Mining

Fast Generation of Best Interval Patterns
for Nonmonotonic Constraints

Aleksey Buzmakov1,2(B), Sergei O. Kuznetsov2, and Amedeo Napoli1

1 LORIA (CNRS – Inria NGE – University de Lorraine),
Vandœuvre-lès-Nancy, France

aleksey.buzmakov@inria.fr, amedeo.napoli@loria.fr
2 National Research University Higher School of Economics, Moscow, Russia

skuznetsov@hse.ru

Abstract. In pattern mining, the main challenge is the exponential
explosion of the set of patterns. Typically, to solve this problem, a con-
straint for pattern selection is introduced. One of the first constraints
proposed in pattern mining is support (frequency) of a pattern in a
dataset. Frequency is an anti-monotonic function, i.e., given an infre-
quent pattern, all its superpatterns are not frequent. However, many
other constraints for pattern selection are not (anti-)monotonic, which
makes it difficult to generate patterns satisfying these constraints. In
this paper we introduce the notion of projection-antimonotonicity and
ϑ−∑

oψια algorithm that allows efficient generation of the best patterns
for some nonmonotonic constraints. In this paper we consider stability
and Δ-measure, which are nonmonotonic constraints, and apply them
to interval tuple datasets. In the experiments, we compute best inter-
val tuple patterns w.r.t. these measures and show the advantage of our
approach over postfiltering approaches.

Keywords: Pattern mining · Nonmonotonic constraints · Interval tuple
data

1 Introduction

Interestingness measures were proposed to overcome the problem of combina-
torial explosion of the number of valid patterns that can be discovered in a
dataset [1]. For example, pattern support, i.e., the number of objects covered by
the pattern, is one of the most famous measures of pattern quality. In particular,
support satisfies the property of anti-monotonicity (aka “a priori principle”), i.e.,
the larger the pattern is the smaller the support is [2,3]. Many other measures
can be mentioned such as utility constraint [4], pattern stability [5,6], pattern
leverage [7], margin closeness [8], MCCS [9], cosine interest [10], pattern robust-
ness [11], etc.

Some of these measures (e.g., support, robustness for generators [11], or upper
bound constraint of MCCS [9]) are “globally anti-monotonic”, i.e., for any two
patterns X � Y we have M(X) ≥ M(Y), where M is a measure and � denotes
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 157–172, 2015.
DOI: 10.1007/978-3-319-23525-7 10

158 A. Buzmakov et al.

the (subsumption) order relation on patterns. When a measure is anti-monotonic,
it is relatively easy to find patterns whose measure is higher than a certain
threshold (e.g., patterns with a support higher than a threshold). In contrast
some other measures are called “locally anti-monotonic”, i.e., for any pattern X
there is an immediate subpattern Y ≺ X such that M(Y) ≥ M(X). Then the
right strategy should be selected for traversing the search space, e.g., a pattern Y
should be extended only to patterns X such that M(Y) ≥ M(X). For example,
for “locally anti-monotonic” cosine interest [10], the extension of a pattern Y
consists in adding only attributes with a smaller support than any attribute from
Y . The most difficult case for selecting valid patterns occurs when a measure is
not locally anti-monotonic. Then, valid patterns can be retained by postfiltering,
i.e., finding a (large set of) patterns satisfying an antimonotone constraint and
filtering them w.r.t. the chosen nonmonotonic measure (i.e., neither monotonic
nor anti-monotonic) [6,8,11], or using heuristics such as leap search [12] or low
probability of finding interesting patterns in the current branch [7].

Most of the measures are only applicable to one type of patterns, e.g., pattern
leverage or cosine interest can be applied only to binary data since their defini-
tions involve single attributes. “Pattern independent measures” usually relies on
support of the pattern and/or on support of other patterns from the search space.
In particular, support, stability [5], margin-closeness [8] and robustness [11] are
pattern independent measures. In this paper we work with interval tuple data,
where only pattern independent measures as well as specific measures for interval
tuples can be applied. In addition, given a measure, it can be difficult to define a
good threshold. Thus various approaches for finding top-K patterns were intro-
duced [13–15], with the basic idea to automatically adjust the threshold for a
measure M.

In this paper we introduce a new algorithm ϑ − ∑
oϕια, i.e., Sofia, for

“Searching for Optimal Formal Intents Algorithm” for a interestingness thresh-
old , for extracting the best patterns of a kind, e.g., itemsets, interval tuples,
strings, graph patterns, etc. ϑ − ∑

oϕια algorithm is applicable to a class of
measures called “projection-antimonotonic measures” or more precisely “mea-
sures anti-monotonic w.r.t. a chain of projections”. This class includes globally
anti-monotonic measures such as support, locally anti-monotonic measures such
as cosine interest and some of the nonmonotonic measures such as stability or
robustness of closed patterns. The main novelty of this paper is ϑ − ∑

oϕια,
a new efficient algorithm for finding best patterns of different kinds w.r.t.
projection-antimonotonic measures which constitutes a rather large class of mea-
sures.

The remaining of the paper is organized as follows. The formalization of the
current approach is based on Formal Concept Analysis (FCA) [16] and pattern
structures [17] which are introduced in Section 2. Then, ϑ−∑

oϕια algorithm is
detailed in Section 3 first for an arbitrary measure and second for the Δ-measure.
Experiments and a discussion are proposed in Section 4, before conclusion.

Fast Generation of Best Interval Patterns for Nonmonotonic Constraints 159

2 Data Model

2.1 FCA and Pattern Structures

Formal Concept Analysis (FCA) is a formalism for knowledge discovery and
data mining thanks to the design of concept lattices [16]. It is also convenient
for describing models of itemset mining, and, since [18], lattices of closed itemsets
(i.e., concept lattices) and closed descriptions are used for concise representation
of association rules. For more complex data such as sequences and graphs one
can use an extension of the basic model, called pattern structures [17]. With
pattern structures it is possible to define closed descriptions and to give a concise
representation of association rules for different descriptions with a natural order
(such as subgraph isomorphism order) [19,20].

A pattern structure is a triple (G, (D,�), δ), where G is a set of objects,
(D,�) is a complete meet-semilattice of descriptions and δ : G → D maps an
object to a description.

The intersection � gives the similarity of two descriptions. Standard FCA
can be presented in terms of a pattern structure. A formal context (G,M, I),
where G is a set of objects, M is a set of attributes and I ⊆ G×M an incidence
relation giving information about attributes related to objects, is represented
as a pattern structure (G, (℘(M),∩), δ), where (℘(M),∩) is a semilattice of
subsets of M with ∩ being the set-theoretical intersection. If x = {a, b, c} and
y = {a, c, d}, then x � y = x ∩ y = {a, c}. The mapping δ : G → ℘(M) is given
by δ(g) = {m ∈ M | (g,m) ∈ I} and returns the description of a given object as
a set of attributes.

The following mappings or diamond operators give a Galois connection
between the powerset of objects and descriptions:

A� :=
�

g∈A

δ(g), for A ⊆ G

d� := {g ∈ G | d � δ(g)}, for d ∈ D

Given a subset of objects A, A� returns the description which is common
to all objects in A. Given a description d, d� is the set of all objects whose
description subsumes d. A partial order � (subsumption) on descriptions from
D is defined w.r.t. the similarity operation �: c � d ⇔ c � d = c, and c is
subsumed by d.

A pattern concept of a pattern structure (G, (D,�), δ) is a pair (A, d), where
A ⊆ G, called pattern extent and d ∈ D, called pattern intent, such that A� = d
and d� = A. A pattern extent is a closed set of objects, and a pattern intent is
a closed description, e.g., a closed itemset when descriptions are given as sets
of items (attributes). As shown in [19], descriptions closed in terms of counting
inference (which is a standard data mining approach), such as closed graphs [21],
are elements of pattern intents.

A pattern extent corresponds to the maximal set of objects A whose descrip-
tions subsume the description d, where d is the maximal common description

160 A. Buzmakov et al.

for objects in A. The set of all pattern concepts is partially ordered w.r.t. inclu-
sion on extents, i.e., (A1, d1) ≤ (A2, d2) iff A1 ⊆ A2 (or, equivalently, d2 � d1),
making a lattice, called pattern lattice.

2.2 Interval Pattern Structure

A possible instantiation of pattern structures is interval pattern structures intro-
duced to support efficient processing of numerical data without binarization [20].
Given k numerical or interval attributes whose values are of the form [a, b], where
a, b ∈ R, the language of a pattern space is given by tuples of intervals of size k.
For simplicity, we denote intervals of the form [a, a] by a.

Figure 1a exemplifies an interval dataset. It contains 6 objects and 2
attributes. An interval as a value of an attribute corresponds to an uncertainty in
the value of the attribute. For example, the value of m1 for g2 is known exactly,
while the value of m2 is lying in [1, 2]. Given this intuition for intervals it is
natural to define similarity of two intervals as their convex hull, since by adding
new objects one increases the uncertainty. For example, for g1 the value of m1

is 0, while for g6 it is 1, thus given the set {g1, g6}, the uncertainty of m1 in
this set is [0, 1], i.e., the similarity of g1 and g6 w.r.t. m1 is [0, 1]. More formally,
given two intervals [a, b] and [c, d], the similarity of these two intervals is given
by [a, b] � [c, d] = [min(a, c),max(b, d)]. Given a tuple of intervals, the similarity
is computed component-wise. For example, g�

1 � g�
6 = 〈[0, 1]; [0, 2]〉. Reciprocally,

〈[0, 1]; [0, 2]〉 = {g1, g2, · · · , g6}.
The resulting concept lattice is shown in Figure 1b. Concept extents are

shown by indices of objects, intents are given in angle brackets, the numbers
on edges and on concepts are related to interestingness of concepts and will be
described in the next subsection.

2.3 Stability Index of a Concept

For real datasets, the number of patterns can be very large, even computing the
number of closed patterns is a #P-complete problem [22]. Different measures
were tested for selecting most interesting patterns, such as stability [5]. Stability
measures the independence of a concept intent w.r.t. randomness in data.

Given a concept C, concept stability Stab(C) is the relative number of subsets
of the concept extent (denoted by Ext(C)), whose descriptions, i.e., the result of
(·)� is equal to the concept intent (denoted by Int(C)).

Stab(C) :=
|{s ∈ ℘(Ext(C)) | s� = Int(C)}|

|℘(Ext(C))| (1)

Here ℘(P) is the powerset of P . The larger the stability, the more objects
can be deleted from the context without affecting the intent of the concept, i.e.,
the intent of the most stable concepts is likely to be a characteristic pattern of
a given phenomenon and not an artifact of a dataset.

Fast Generation of Best Interval Patterns for Nonmonotonic Constraints 161

m1 m2

g1 0 0
g2 0 [1, 2]
g3 0 [1, 2]
g4 0 2
g5 1 [0, 2]
g6 1 [0, 2]

(a) An interval context.

(∅;�)[1]

(4; 〈0; 2〉)[0.5]

1

(1; 〈0; 0〉)[0.5]

1

(234; 〈0; [1, 2]〉)[0.75]

2

(1234; 〈0; [0, 2]〉)[0.44]
1

3
(56; 〈1; [0, 2]〉)[0.75]

2

(123456; 〈[0, 1]; [0, 2]〉)[0.7]
2

4

(b) An interval concept lattice with corresponding sta-
bility indexes. Objects are given by their indices.

Fig. 1. A formal context and the corresponding lattice.

We say that a concept is stable if its stability is higher than a given threshold
θ; a pattern p is stable if there is a concept in the lattice with p as the intent
and the concept is stable.

Example 1. Figure 1b shows a lattice for the context in Figure 1a. Concept
extents are given by their indices, i.e., {g1, g2} is given by 12. The extent of
the highlighted concept C is Ext(C) = {g2, g3, g4}, thus, its powerset contains 23

elements. Descriptions of 2 subsets of Ext(C) ({g4} and ∅) are different from the
intent of C, Int(C) = {m3}, while all other subsets of Ext(C) have a common
set of attributes equal to 〈0; [1, 2]〉. So, Stab(C) = 23−2

23 = 0.75. Stability of
other concepts is shown in brackets. It should be noticed that stability of all
comparable patterns for Int(C) in the lattice is smaller than the stability of C,
which highlights the nonmonotonicity of stability.

Concept stability is closely related to the robustness of a closed pattern [11].
Indeed, robustness is the probability of a closed pattern to be found in a subset
of the dataset. To define this probability, the authors define a weight for every
subset given as a probability of obtaining this subset by removing objects from
the dataset, where every object is removed with probability α, e.g., given a
subset of objects X ⊆ G, the probability of the induced subset is given by
p(Dα = (X, (D,�), δ)) = α|X|(1−α)|G\X|. Stability in this case is the robustness
of closed pattern if the weights of subsets of the dataset are equal to 2−|G|.

The problem of computing concept stability is #P-complete [5]. A fast com-
putable stability estimate was proposed in [23], where it was shown that this
estimate ranks concepts almost in the same way as stability does. In particular,
Stab(C) ≤ 1 − 2−Δ(C), where Δ(C) = min

D≤C
|Ext(C) \ Ext(D)|, i.e., the minimal

difference in supports between concept C and all its nearest subconcepts. For a
threshold θ, patterns p with Δ(p) ≥ θ are called Δ-stable patterns.

Example 2. Consider the example in Figure 1. Every edge in the figure is labeled
with the difference in support between the concepts this edge connects. Thus,

162 A. Buzmakov et al.

Δ of a pattern is the minimum label of the edges going down from the con-
cept. The value Δ(({g2, g3, g4}; 〈0; [1, 2]〉)) is equal to 2. Another example is
Δ((G; 〈[0, 1]; [0, 2]〉)) = 2. For this example we can also see that Δ-measure is
not anti-monotonic either.

Δ-measure is related to the work of margin-closeness of an itemset [8]. In
this work, given a set of patterns, e.g., frequent closed patterns, the authors
rank them by the minimal distance in their support to the closest superpattern
divided over the support of the pattern. In our case, the minimal distance is
exactly the Δ-measure of the pattern.

Stability and Δ-measure are not anti-monotonic but rather projection-
antimonotonic. Patterns w.r.t. such kind of measures can be mined by a
specialized algorithm introduced in Section 3. But before we should intro-
duce projections of pattern structures in order to properly define projection-
antimonotonicity and the algorithm.

2.4 Projections of Pattern Structures

The approach proposed in this paper is based on projections introduced for
reducing complexity of computing pattern lattices [17].

A projection ψ : D → D is an “interior operator”, i.e., it is (1) mono-
tonic (x � y ⇒ ψ(x) � ψ(y)), (2) contractive (ψ(x) � x) and (3) idempotent
(ψ(ψ(x)) = ψ(x)). A projected pattern structure ψ((G, (D,�), δ)) is a pattern
structure (G, (Dψ,�ψ), ψ ◦ δ), where Dψ = ψ(D) = {d ∈ D | ∃d∗ ∈ D : ψ(d∗) =
d} and ∀x, y ∈ D,x �ψ y := ψ(x � y).

Example 3. Consider the example in Figure 1. If we remove a column corre-
sponding to an attribute, e.g., the attribute m2, from the context in Figure 1a,
we define a projection, given by ψ(〈[a, b]; [c, d]〉) = 〈[a, b]; [−∞,+∞]〉, meaning
that no value of m2 is taken into account.

Given a projection ψ we call ψ(D) = {d ∈ D | ψ(d) = d} the fixed set of
ψ. Note that, if ψ(d) �= d, then there is no other d̃ such that ψ(d̃) = d because
of idempotency of projections. Hence, any element outside the fixed set of the
projection ψ is pruned from the description space. Given the notion of a fixed
set we can define a partial order on projections.

Definition 1. Given a pattern structure P = (G, (D,�), δ) and two projections
ψ1 and ψ2, we say that ψ1 is simpler than ψ2 (ψ2 is more detailed than ψ1),
denoted by ψ1 < ψ2, if ψ1(D) ⊂ ψ2(D), i.e., ψ1 prunes more descriptions
than ψ2.

Our algorithm is based on this order on projections. The simpler a projection
ψ is, the less patterns we can find in ψ(P), and the less computational efforts
one should take. Thus, we compute a set of patterns for a simpler projection,
then we remove unpromising patterns and extend our pattern structure and the
found patterns to a more detailed projection. This allows us to reduce the size
of patterns within a simpler projection in order to reduce the computational
complexity of more detailed projection.

Fast Generation of Best Interval Patterns for Nonmonotonic Constraints 163

2.5 Projections of Interval Pattern Structures

Let us first consider interval pattern structures with only one attribute m. Let us
denote by W = {w1, · · · , w|W |} all possible values of the left and right endpoints
of the intervals corresponding to the attribute in a dataset, so that w1 < w2 <
· · · < w|W |. By reducing the set W of possible values for the left or the right end
of the interval we define a projection. For example, if {w1} is the only possible
value for the left endpoint of an interval and {w|W |} is the only possible value
of the right endpoint of an interval, then all interval patterns are projected to
[w1, w|W |]. Let us consider this in more detail.

Let two sets L,R ⊂ W such that w1 ∈ L and w|W | ∈ R be constraints on
possible values on the left and right endpoints of an interval, respectively. Then
a projection is defined as follows:

ψm[L,R]([a, b]) = [max{l ∈ L|l ≤ a},min{r ∈ R|r ≥ b}] . (2)

Requiring that w1 ∈ L and w|W | ∈ R we ensure that the sets used for minimal
and maximal functions are not empty. It is not hard to see that (2) is a projection.
The projections given by (2) are ordered w.r.t. simplicity (Definition 1). Indeed,
given L1 ⊆ L and R1 ⊆ R, we have ψm[L1,R1] < ψm[L,R], because of inclusion of
fixed sets. Let us notice that a projection ψm[W,W] does not modify the lattice
of concepts for the current dataset, since any interval for the value set W is
possible. We also notice that a projection ψm[L,R] is defined for one interval,
while we can combine the projections for different attributes in a tuple to a
single projection for the whole tuple ψm1[L1,R1]m2[L2,R2]....

Example 4. Consider example in Figure 1. Let us consider a projection

ψm1[{0,1},{1}]m2[{0,2},{0,2}].

The fixed set of this projection consists of {[0, 1], 1} × {0, 2, [0, 2]}, i.e., 6 inter-
vals. Let us find the projection of (g2)� = 〈0; [1, 2]〉 in a component-wise way:
ψm1[{0,1},{1}](0) = [0, 1], since 0 is allowed on the left endpoint of an interval but
not allowed to be on the right endpoint of an interval; ψm2[{0,2},{0,2}]([1, 2]) =
[0, 2] since 1 is not allowed on the left endpoint of an interval. Thus,

ψm1[{0,1},{1}]m2[{0,2},{0,2}](〈0; [1, 2]〉) = 〈[0, 1]; [0, 2]〉 .

The lattice corresponding to this projection is shown in Figure 2.

3 ϑ − ∑
oϕια Algorithm

3.1 Anti-monotonicity w.r.t. a Projection

Our algorithm is based on the projection-antimonotonicity, a new idea intro-
duced in this paper. Many interestingness measures for patterns, e.g., stability,
are not (anti-)monotonic w.r.t. subsumption order on patterns. A measure M

164 A. Buzmakov et al.

(∅;�)

(4; 〈[0, 1]; 2〉)(1; 〈[0, 1]; 0〉) (56; 〈1; [0, 2]〉)

(123456; 〈[0, 1]; [0, 2]〉)

Fig. 2. Projected lattice from example in Figure 1 by projection
ψm1[{0,1},{1}]m2[{0,2},{0,2}]. See Example 4.

is called anti-monotonic, if for two patterns q � p, M(q) ≥ M(p). For instance,
support is a anti-monotonic measure w.r.t. pattern order and it allows for effi-
cient generation of patterns with support larger than a threshold [2,3,18]. The
projection-antimonotonicity is a generalization of standard anti-monotonicity
and allows for efficient work with a larger set of interestingness measures.

Definition 2. Given a pattern structure P and a projection ψ, a measure M is
called anti-monotonic w.r.t. the projection ψ, if

(∀p ∈ ψ(P))(∀q ∈ P, ψ(q) = p) Mψ(p) ≥ M(q), (3)

where Mψ(p) is the measure M of a pattern p computed in ψ(P).

Here, for any pattern p of a projected pattern structure we check that a
preimage q of p for ψ has a measure smaller than the measure of p. It should
be noticed that a measure M for a pattern p can yield different values if M
is computed in P or in ψ(P). Thus we use the notation Mψ for the measure
M computed in ψ(P). The property of a measure given in Definition 2 is called
projection-antimonotonicity.

It should be noticed that classical anti-monotonic measures are projection-
antimonotonic for any projection. Indeed, because of contractivity of ψ (ψ(p) �
p), for any anti-monotonic measure one has M(ψ(p)) ≥ M(p). This definition
covers also the cases where a measure M is only locally anti-monotonic, i.e.,
given a pattern p there is an immediate subpattern q ≺ p such that M(q) ≥
M(p), see e.g., the cosine interest of an itemset, which is only locally anti-
monotonic [10]. Moreover, this definition covers also some measures that are not
locally anti-monotonic. As we mentioned in Examples 1 and 2 stability and Δ-
measure are not locally anti-monotonic. However, it can be shown that they are
anti-monotonic w.r.t. any projection [24]. Moreover, following the same strategy
one can prove that robustness of closed patterns from [11] is also anti-monotonic
w.r.t. any projection. In particular, the robustness of closed patterns defines a
anti-monotonic constraint w.r.t. any projection.

Thus, given a measure M anti-monotonic w.r.t. a projection ψ, if p is a pattern
such that Mψ(p) < θ, then M(q) < θ for any preimage q of p for ψ. Hence, if, given
a pattern p of ψ(P), one can find all patterns q ofP such that ψ(q) = p, it is possible
to first find all patterns of ψ(P) and then to filter them w.r.t. Mψ and a threshold,

Fast Generation of Best Interval Patterns for Nonmonotonic Constraints 165

and finally to compute the preimages of filtered patterns. It allows one to cut earlier
unpromising branches of the search space or adjust a threshold for finding only a
limited number of best patterns.

3.2 Anti-monotonicity w.r.t. a Chain of Projections

However, given just one projection, it can be hard to efficiently discover the
patterns, because the projection is either hard to compute or the number of
unpromising patterns that can be pruned is not high. Hence we introduce a
chain of projections ψ0 < ψ1 < · · · < ψk = 1, where a pattern lattice for ψ0(P)
can be easily computed and 1 is the identity projection, i.e., (∀x)1(x) = x. For
example, to find frequent itemsets, we typically search for small frequent itemsets
and then extend them to larger ones. This corresponds to extension to a more
detailed projection.

Definition 3. Given a pattern structure P and a chain of projections ψ0 <
ψ1 < · · · < ψk = 1, a measure M is called anti-monotonic w.r.t. the chain of
projections if M is anti-monotonic w.r.t. all ψi for 0 ≤ i ≤ k.

Example 5. Let us construct a chain of projections satisfying (2) for the exam-
ple in Figure 1. The value set for the first attribute is W1 = {0, 1} and the
value set for the second is W2 = {0, 1, 2}. Let us start the chain from a pro-
jection ψ0 = ψm1[{0},{1}]m2[{0},{2}]. This projection allows only for one pattern
〈[0, 1]; [0, 2]〉, i.e., the concept lattice is easily found. Then we increase the com-
plexity of a projection by allowing more patterns. For example, we can enrich
the first component of a tuple without affecting the second one, i.e., a projection
ψ1 = ψm1[{0,1},{0,1}]m2[{0},{2}]. This projection allows for 3 patterns, i.e., any
possible interval of the first component and only one interval [0,2] for the second
component. Let us notice that it is not hard to find preimages for ψ0 in ψ1(D).
Indeed, for any pattern p from ψ0(D) one should just modify either the left side
of the first interval of p by one value, or the right side of the first interval of p.

Then we can introduce a projection that slightly enrich the second com-
ponent of a tuple, e.g., ψ2 = ψm1[{0,1},{0,1}]m2[{0,1},{1,2}] and finally we have
ψ3 = ψm1[W1,W1]m2[W2,W2]. Finding preimages in this chain is not a hard prob-
lem, since on every set we can only slightly change left and/or right side of the
second interval in a tuple. Thus, starting from a simple projection and making
transitions from one projection to another, we can cut unpromising branches
and efficiently find the set of interesting patterns.

3.3 Algorithms

Given a measure anti-monotonic w.r.t. a chain of projections, if we are able to
find all preimages of any element in the fixed set of ψi that belong to a fixed
set of ψi+1, then we can find all patterns of P with a value of M higher than
a given threshold θ. We call this algorithm ϑ − ∑

oϕια and its pseudocode is
given in Algorithm 1. In lines 11-12 we find all patterns for ψ0(P) satisfying the

166 A. Buzmakov et al.

Data: A pattern structure P, a chain of projections Ψ = {ψ0, ψ1, · · · , ψk}, a
measure M anti-monotonic for the chain Ψ , and a threshold θ for M.

1 Function ExtendProjection(i, θ, Pi−1)
Data: i is the projection number to which we should extend (0 < i ≤ k), θ

is a threshold value for M, and Pi−1 is the set of patterns for the
projection ψi−1.

Result: The set Pi of all patterns with the value of measure M higher
than the threshold θ for ψi.

2 Pi ←− ∅;
3 /* Put all preimages in ψi(P) for any pattern p */

4 foreach p ∈ Pi−1 do
5 Pi ←− Pi ∪ Preimages(i,p)
6 /* Filter patterns in Pi to have a value of M higher than θ */

7 foreach p ∈ Pi do
8 if Mψi(p) ≤ θ then
9 Pi ←− Pi \ {p}

10 Function Algorithm ϑ − ∑
oϕια

Result: The set P of all patterns with a value of M higher than the
threshold θ for P.

11 /* Find all patterns in ψ0(P) with a value of M higher than θ */

12 P ←− FindPatterns(θ, ψ0);
13 /* Run through out the chain Ψ and find the patterns for ψi(P) */

14 foreach 0 < i ≤ k do
15 P ←− ExtendProjection(i, θ, P);

Algorithm 1. The ϑ − ∑
oϕια algorithm for finding patterns in P with a

value of a measure M higher than a threshold θ.

constraint that a value of M is higher than a threshold. Then in lines 13-15 we
iteratively extend projections from simpler to more detailed ones. The extension
is done by constructing the set Pi of preimages of the set Pi−1 (lines 2-5) and
then by removing the patterns that do not satisfy the constraint from Pi (lines
6-9).

The algorithm is sound and complete, since first, a pattern p is included
into the set of preimages of p (ψ(p) = p) and second, if we remove a pattern p
from the set P, then the value M(p) < θ and, hence, the measure value of any
preimage of p is less than θ by the projection-antimonotonicity of M. The worst
case time complexity of ϑ − ∑

oϕια algorithm is

T(ϑ −
∑

oϕια) = T(FindPatterns(ψ0))+

+ k · max
0<i≤k

|Pi| · (T(Preimages) + T(M)), (4)

where k is the number of projections in the chain, T(X) is time for computing
operation X . Since projection ψ0 can be chosen to be very simple, in a typical
case the complexity of FindPatterns(θ, ψ0) can be low or even constant. The
complexities of Preimages and M depend on the measure, the chain of projec-
tions, and the kind of patterns. In many cases max

0<i≤k
|Pi| can be exponential in

Fast Generation of Best Interval Patterns for Nonmonotonic Constraints 167

the size of the input, because the number of patterns can be exponential. It can
be a difficult task to define the threshold θ such that the maximal cardinality
of Pi is not larger than a given number. This can be solved by an automatically
adjustment of the threshold θ, which is not discussed here.

3.4 ϑ − ∑
oϕια Algorithm for Interval Tuple Data

In this subsection we consider a pattern structure K = (G, (DI ,�), δ), where DI

is a semilattice of interval tuple descriptions. We say that every component of
a tuple p corresponds to an attribute m ∈ M , where M is the set of interval
attributes. Thus, the size of any tuple in DI is |M |, and for any attribute m ∈ M
we can denote the corresponding interval by m(p). We also denote the value set
of m by Wm. Since the set Wm is totally ordered we also denote by W

(j)
m and

W
(−j)
m the sets containing the first j (smallest) elements and the last j (largest)

elements from Wm, respectively.
A projection chain for interval tuple data is formed in the same way as

discussed in Example 5. We start from the projection containing only one pattern
corresponding to the largest interval in each component, i.e., for an attribute m

the projection is of the form ψm[W (1)
m ,W

(−1)
m]. Then to pass to a next projection,

we select the attribute m, and for this attribute we extend the projection from
ψm[W (j)

m ,W
(−j)
m] to ψm[W (j+1)

m ,W
(−j−1)
m]. Thus, there are k = max

m∈M
|Wm| · |M |

projections.
Finding preimages in this case is not hard, since to make a projection more

detailed one should just extend the corresponding interval in left and/or on right
end of the interval, i.e., there are only 4 possible preimages for a pattern when
passing from one projection to another in this chain. Thus, we have proved the
following

Proposition 1. The worst case complexity for ϑ−∑
oϕια algorithm for interval

tuple data is

T(ϑ −
∑

oϕια
intervals

) = max
m∈M

|Wm| · |M | · max
0<i≤k

|Pi| · T(M). (5)

.

3.5 ϑ − ∑
oϕια Algorithm for Closed Patterns

Closed frequent itemsets are widely used as a condensed representation of all
frequent itemsets since [18]. Here we show how we can adapt the algorithm for
closed patterns. A closed pattern in ψi−1(P) is not necessarily closed in ψi(P).
However, the extents of ψ(P) are extents of P [17]. Thus, we associate the closed
patterns with extents and then work with extents instead of patterns, i.e., a
pattern structure P = (G, (D,�), δ) is transformed into PC = (G, (DC ,�C), δC),
where DC = 2G. Moreover, for all x, y ∈ DC we have x�C y = (x� � y�)�, where
diamond operator is computed in P and δC(g ∈ G) = {g}. Hence, every pattern
p in DC corresponds to a closed pattern p� in D. A projection ψ of P induces a
projection ψC of PC , given by ψC(X ⊆ G) = ψ(X�)� with (·)� for P.

168 A. Buzmakov et al.

Table 1. Patterns found for every projection in a chain for the example in Figure 1.
Patterns are grey if they are removed for the corresponding projetion and they are
labeled with “–” if they have not yet been found.

Pattern Ext.
Δ-measure
ψ0 ψ1 ψ2 ψ3

1 {g1, g2, g3, g4, g5, g6} 6 2 2 2
2 {g1, g2, g3, g4} – 4 1 1
3 {g5, g6} – 2 2 2
4 {g1} – – 1 1
5 {g2, g3, g4} – – 3 2
6 {g4} – – – 1

3.6 Δ-measure and ϑ − ∑
oϕια Algorithm

In this subsection we show that Δ-measure is anti-monotonic for any projection;
it is a stronger condition than the one required by Definition 3. Δ-measure
works for closed patterns, and, hence, we identify every description by its extent
(Subsection 3.5).

Proposition 2. Δ is anti-monotonic for any projection ψ.

Proof. By properties of a projection, an extent of ψ(P) is an extent of P [17]. Let
us consider an extent E and an extent of its descendant in ψ(P). Let us suppose
that Ep is a preimage of E for the projection ψ. Since Ec and Ep are extents
in P, the set Ecp = Ec ∩ Ep is an extent in P (the intersection of two closed
sets is a closed set). Since Ep is a preimage of E, then Ep �≤ Ec (otherwise,
Ep is a preimage of Ec and not of E). Then, Ecp �= Ep and Ecp ≤ Ep. Hence,
Δ(Ep) ≤ |Ep \Ecp| ≤ |E \Ec|. So, given a preimage Ep of E, (∀Ec ⊆ E)Δ(Ep) ≤
|E \ Ec|, i.e., Δ(Ep) ≤ Δ(E). Thus, we can use Δ-measure in combination with
ϑ − ∑

oϕια.

3.7 Example of Δ-Stable Patterns in Interval Tuple Data

Let us consider the example in Figure 1 and show how we can find all Δ-stable
patterns with a threshold θ = 2. The chain of projections for this example is
given in Example 5, it contains 4 projections:

ψ0 = ψm1[{0},{1}]m2[{0},{2}] ψ1 = ψm1[{0,1},{0,1}]m2[{0},{2}]
ψ2 = ψm1[{0,1},{0,1}]m2[{0,1},{1,2}] ψ3 = ψm1[{0,1},{0,1}]m2[{0,1,2},{0,1,2}]

Since we are looking for closed patterns, every pattern can be identified by
its extent. In Table 1 all patterns are given by their extents, i.e., by elements of
DC . For every pattern Δ-measure is shown for every ψi. A cell is shown in grey
if the pattern is no more considered (the value of Δ less than 2). A cell has a
dash “–”, if a pattern in the row has not been generated for this projection.

For the example in Figure 1 the global process is as follows. At the begin-
ning ψ0(DI) contains only one element corresponding to pattern extent 123456

Fast Generation of Best Interval Patterns for Nonmonotonic Constraints 169

(a short cut for {g1, g2, g3, g4, g5, g6}) with a description 〈[0, 1]; [0, 2]〉. Then, in
ψ1(G, (DI ,�), δ) possible preimages of 123456 are patterns with descriptions
〈0; [0, 2]〉 and 〈1; [0, 2]〉 given by pattern extents 1234 and 56, respectively. Then
we continue with these three patterns which are all Δ-stable for the moment. The
pattern extents 123456 and 56 have no preimages for the transition ψ1 → ψ2,
while the pattern extent 1234 has two preimages with descriptions 〈0; [0, 1]〉 and
〈0; [1, 2]〉 for this projection, which correspond to pattern extents 1 and 234. The
first one is not Δ-stable and thus is no more considered. Moreover, the pattern
extent 1234 is not Δ-stable (because of 234) and should also be removed. Finally,
in transition ψ2 → ψ3 only extent-pattern 234 has a preimage, a pattern extent
4, which is not Δ-stable. In such a way, we have started from a very simple
projection ψ0 and achieved the projection ψ3 that gives us the Δ-stable patterns
of the target pattern structure.

4 Experiments and Discussion

In this section we compare our approach to approaches based on postfiltering.
Indeed, there is no approach that can directly mine stable-like pattern, e.g.,
stable, Δ-stable or robust patterns. The known approaches use postfiltering to
mine such kind of patterns [6,8,11,24]. Recently it was also shown that it is
more efficient to mine interval tuple data without binarization [20]. In their
paper the authors introduce algorithm MinIntChange for working directly with
interval tuple data. Thus we compare ϑ−∑

oϕια and MinIntChange for finding
Δ-stable patterns. We find Δ-stable concepts with ϑ − ∑

oϕια and then adjust
frequency threshold θ such that all Δ-stable patterns are among the frequent
ones.

The experiments are carried out on an “Intel(R) Core(TM) i7-2600 CPU @
3.40GHz” computer with 8Gb of memory under Ubuntu 14.04 operating system.
The algorithms are not parallelized and are coded in C++.

4.1 Dataset Simplification

For interval tuple data stable patterns can be very deep in the search space, such
that neither of the algorithms can find them quickly. Thus, we join some similar
values for every attribute in an interval in the following way. Given a threshold
0 < β, two consequent numbers wi and wi+1 from a value set W are joined in
the same interval if wi+1 − wi < β. In order to properly set the threshold β, we
use another threshold 0 < γ < 1, which is much easier to set.

If we assume that the values of the attribute m are distributed around several
states with centers w̃1, · · · , w̃l, then it is natural to think that the difference
between the closest centers abs(w̃i − w̃i±1) are much larger than the difference
between the closest values. Ordering all values in the increasing order and finding
the maximal difference δmax can give us an idea of typical distance between the
states in the data. Thus, γ is defined as a proportion of this distance that should
be considered as a distance between states, i.e., we put β = γ · δmax. If the

170 A. Buzmakov et al.

Table 2. Runtime in seconds of and MinIntChange for different datasets.

DS # Objs # Attrs γ Δ # Ptrns θ t tMIC
EM 61 9 0.3 3 3 21 < 0.1 57
BK 96 4 0.3 4 50 46 < 0.1 11
CN 105 20 0.8 2 5362 30 2.4 28
CU 108 5 0.3 5 4 27 < 0.1 1.5
FF 125 3 0.3 6 3 48 < 0.1 1
AP 135 4 0.01 5 1 19 < 0.1 34
EL 211 12 0.3 6 33 83 < 0.1 34
BA 337 16 0.5 4 736 91 1.5 32
AU 398 7 0.3 7 17 234 0.7 73
HO 506 13 0.8 10 1 340 0.7 57
QU 2178 25 0.3 40 1 659 1.3 28
AB 4177 8 0.3 46 3 1400 11 86
CA 8192 21 0.3 85 6 2568 112 24
PT 9065 48 0.3 2 1 2 45 14

distance between closest values in W are always the same, then even γ = 0.99
does not join values in intervals. However, if there are two states and the values
are distributed very closely to one of these two states, then even γ = 0.01 can
join values into one of two intervals corresponding to the states.

4.2 Datasets

We take several datasets from the Bilkent University database1. The datasets are
summarized in Table 2. The names of datasets are given by standard abbrevia-
tions used in the database of Bilkent University. For every dataset we provide the
number of objects and attributes and the threshold γ for which the experiments
are carried out. For example, database EM has 61 objects, 9 numeric attributes,
and the threshold γ is set to 0.3. Categorical attributes and rows with missing
values, if any, are removed from the datasets.

4.3 Experiments

In Table 2 we show the computation time for finding the best Δ-stable pattern
(or patterns if they have the same value for Δ-measure) for ϑ − ∑

oϕια and for
MinIntChange. The last algorithm is abbreviated as MIC. Since MinIntChange
algorithm sometimes produces too many patterns, i.e., we do not have enough
memory in our computer to check all of them, we interrupt the procedure and
show the corresponding time in grey. We also show the number of the best pat-
terns and the corresponding threshold Δ. The support threshold θ for finding the
best Δ-stable patterns is also shown. For example, dataset CN contains 5362 best
Δ-stable patterns, all having a Δ of 2. To find all these patterns with a post-
filtering, we should mine frequent patterns with a support threshold lower than
30 or 30

105 = 30%. ϑ − ∑
oϕια computes all these patterns in 2.4 seconds, while

MinIntChange requires at least 28 seconds and the procedure was interrupted
without continuation.
1 http://funapp.cs.bilkent.edu.tr/DataSets/

http://funapp.cs.bilkent.edu.tr/DataSets/

Fast Generation of Best Interval Patterns for Nonmonotonic Constraints 171

As we can see, ϑ − ∑
oϕια is significantly faster than MinIntChange in all

datasets. In the two datasets CA and PT, MinIntChange was stopped before
computing all patterns and the runtime did not exceed the runtime of ϑ−∑

oϕια.
However, in both cases, MinIntChange achieved less than 10% of the required
operations.

5 Conclusion

In this paper we have introduced a new class of interestingness measures that are
anti-monotonic w.r.t. a chain of projections. We have designed a new algorithm,
called ϑ − ∑

oϕια, which is able to efficiently find the best patterns w.r.t. such
interestingness measures for interval tuple data. The experiments reported in the
paper are the witness of the efficiency of the ϑ−∑

oϕια algorithms compared to
indirect approaches based on postfiltering. Many future research directions are
possible. Different measures should be studied in combination with ϑ − ∑

oϕια.
One of them is robustness, which is very close to stability and can be applied to
nonbinary data. Moreover, the choice of a projection chain is not a simple one
and can affect the algorithm efficiency. Thus, a deep study of suitable projection
chains should be carried out.

Acknowledgments. this research was supported by the Basic Research Program at
the National Research University Higher School of Economics (Moscow, Russia) and
by the BioIntelligence project (France).

References

1. Vreeken, J., Tatti, N.: Interesting patterns. In: Aggarwal, C.C., Han, J. (eds.) Freq.
Pattern Min., pp. 105–134. Springer International Publishing, Heildelberg (2014)

2. Mannila, H., Toivonen, H., Verkamo, A.I.: Efficient algorithms for discovering asso-
ciation rules. In: Knowl. Discov. Data Min., pp. 181–192 (1994)

3. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In:
Proc. 20th Int. Conf. Very Large Data Bases, VLDB, Vol. 1215, pp. 487–499 (1994)

4. Yao, H., Hamilton, H.J.: Mining itemset utilities from transaction databases. Data
Knowl. Eng. 59(3), 603–626 (2006)

5. Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell.
49(1–4), 101–115 (2007)

6. Roth, C., Obiedkov, S.A., Kourie, D.G.: On succinct representation of knowledge
community taxonomies with formal concept analysis. Int. J. Found. Comput. Sci.
19(02), 383–404 (2008)

7. Webb, G.I.: Self-sufficient itemsets. ACM Trans. Knowl. Discov. Data 4(1), 1–20
(2010)

8. Moerchen, F., Thies, M., Ultsch, A.: Efficient mining of all margin-closed itemsets
with applications in temporal knowledge discovery and classification by compres-
sion. Knowl. Inf. Syst. 29(1), 55–80 (2011)

9. Spyropoulou, E., De Bie, T., Boley, M.: Interesting pattern mining in multi-
relational data. Data Min. Knowl. Discov., 1–42 (April 2013)

172 A. Buzmakov et al.

10. Cao, J., Wu, Z., Wu, J.: Scaling up cosine interesting pattern discovery: A depth-
first method. Inf. Sci. (Ny) 266, 31–46 (2014)

11. Tatti, N., Moerchen, F., Calders, T.: Finding Robust Itemsets under Subsampling.
ACM Trans. Database Syst. 39(3), 1–27 (2014)

12. Yan, X., Cheng, H., Han, J., Yu, P.S.: Mining significant graph patterns by leap
search. In: Proc. 2008 ACM SIGMOD Int. Conf. Manag. Data - SIGMOD 2008,
pp. 433–444. ACM Press, New York, June 2008

13. Han, J., Wang, J., Lu, Y., Tzvetkov, P.: Mining top-k frequent closed patterns
without minimum support. In: Proceedings. 2002 IEEE Int. Conf. Data Mining,
ICDM 2003, pp. 211–218 (2002)

14. Xin, D., Cheng, H., Yan, X., Han, J.: Extracting redundancy-aware top-k patterns.
In: Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. - KDD 2006,
p. 444. ACM Press, New York, August 2006

15. Webb, G.I.: Filtered-top-k association discovery. Wiley Interdiscip. Rev. Data Min.
Knowl. Discov. 1(3), 183–192 (2011)

16. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st
edn. Springer, Heildelberg (1999)

17. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In:
Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120,
pp. 129–142. Springer, Heidelberg (2001)

18. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of Association
Rules Using Closed Itemset Lattices. Inf. Syst. 24(1), 25–46 (1999)

19. Kuznetsov, S.O., Samokhin, M.V.: Learning closed sets of labeled graphs for chem-
ical applications. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI),
vol. 3625, pp. 190–208. Springer, Heidelberg (2005)

20. Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting numerical pattern mining
with formal concept analysis. In: Proc. 22nd Int. Jt. Conf. Artif. Intell. Barcelona,
IJCAI 2011, Catalonia, Spain, July 16–22, 2011, pp. 1342–1347 (2011)

21. Yan, X., Han, J., Afshar, R.: CloSpan: mining closed sequential patterns in large
databases. In: Proc. SIAM Int’l Conf. Data Min., pp. 166–177 (2003)

22. Kuznetsov, S.O.: On Computing the Size of a Lattice and Related Decision Prob-
lems. Order 18(4), 313–321 (2001)

23. Buzmakov, A., Kuznetsov, S.O., Napoli, A.: Scalable estimates of concept stability.
In: Glodeanu, C.V., Kaytoue, M., Sacarea, C. (eds.) ICFCA 2014. LNCS, vol. 8478,
pp. 157–172. Springer, Heidelberg (2014)

24. Buzmakov, A., Egho, E., Jay, N., Kuznetsov, S.O., Napoli, A., Räıssi, C.: On pro-
jections of sequential pattern structures (with an application on care trajectories).
In: Proc. 10th Int. Conf. Concept Lattices Their Appl., pp. 199–208 (2013)

Non-parametric Jensen-Shannon Divergence

Hoang-Vu Nguyen and Jilles Vreeken(B)

Max Planck Institute for Informatics and Saarland University, Saarbrücken, Germany
{hnguyen,jilles}@mpi-inf.mpg.de

Abstract. Quantifying the difference between two distributions is a
common problem in many machine learning and data mining tasks. What
is also common in many tasks is that we only have empirical data. That
is, we do not know the true distributions nor their form, and hence, before
we can measure their divergence we first need to assume a distribution
or perform estimation. For exploratory purposes this is unsatisfactory,
as we want to explore the data, not our expectations. In this paper we
study how to non-parametrically measure the divergence between two
distributions. More in particular, we formalise the well-known Jensen-
Shannon divergence using cumulative distribution functions. This allows
us to calculate divergences directly and efficiently from data without
the need for estimation. Moreover, empirical evaluation shows that our
method performs very well in detecting differences between distributions,
outperforming the state of the art in both statistical power and efficiency
for a wide range of tasks.

1 Introduction

Measuring the difference between two distributions – their divergence – is a
key element of many data analysis tasks. Let us consider a few examples. In
time series analysis, for instance, to detect either changes or anomalies we need
to quantify how different the data in two windows is distributed [18,23]. In
discretisation, if we want to maintain interactions, we should only merge bins
when their multivariate distributions are similar [13]. In subgroup discovery,
the quality of a subgroup depends on how much the distribution of its targets
deviates from that of its complement data set [3,6].

To optimally quantify the divergence of two distributions we need the actual
distributions. Particularly for exploratory tasks, however, we typically only have
access to empirical data. That is, we do not know the actual distribution, nor
even its form. This is especially true for real-valued data. Although we can always
make assumptions (parametric) or estimating them by kernel density estimation
(KDE), these are not quite ideal in practice. For example, both parametric and
KDE methods are prone to the curse of dimensionality [22]. More importantly,
they restrict our analysis to the specific types of distributions or kernels used.
That is, if we are not careful we are exploring our expectations about the data,
not the data itself. To stay as close to the data as possible, we hence study a
non-parametric divergence measure.

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 173–189, 2015.
DOI: 10.1007/978-3-319-23525-7 11

174 H.-V. Nguyen and J. Vreeken

In particular, we propose cjs, an information-theoretic divergence measure
for numerical data. We build it upon the well-known Jensen-Shannon (js) diver-
gence. Yet, while the latter works with probability distribution functions (pdfs),
which need to be estimated, we consider cumulative distribution functions (cdfs)
which can be obtained directly from data. cjs has many appealing properties. In
a nutshell, it does not make assumptions on the distributions or their relation,
it permits non-parametric computation on empirical data, and is robust against
the curse of dimensionality.

Empirical evaluation on both synthetic and real-world data for a wide range
of exploratory data analysis tasks including change detection, anomaly detection,
discretisation, and subgroup discovery shows that cjs consistently outperforms
the state of the art in both quality and efficiency.

Overall, the main contributions of this paper are as follows:
(a) a new information-theoretic divergence measure cjs,
(b) a non-parametric method for computing cjs on empirical data, and
(c) a wide range of experiments on various tasks that validate the measure.

The road map of this paper is as follows. In Section 2, we introduce the
theory of cjs. In Section 3, we review related work. In Section 4 we evaluate
cjs empirically. We round up with discussion in Section 5 and finally conclude
in Section 6. For readability and succinctness, we postpone the proofs for the
theorems to the online Appendix.1

2 Theory

We consider numerical data. Let X be a univariate random variable with
dom(X) ⊆ R, and let X be a multivariate random variable X = {X1, . . . , Xm},
with X ⊆ R

m. Our goal is to measure the difference between two distributions
p(X) and q(X) over the same random variable, where we have np and nq data
samples, respectively. We will write p and q to denote the pdfs, and say P and
Q for the respective cdfs. All logarithms are to base 2, and by convention we use
0 log 0 = 0.

Ideally, a divergence measure gives a zero score iff p(x) = q(x) for every
x ∈ dom(X). That is, p(X) = q(X). Second, it is often convenient if the score is
symmetric. Third, it should be well-defined without any assumption on the values
of p(x) and q(x) for x ∈ dom(X). That is, no assumption the relation between
p and q needs to be made. Fourth, to explore the data instead of exploring
our expectations, the measure should permit non-parametric computation on
empirical data. Finally, as real-world data often has high dimensionality and
limited observations, the measure should be robust to the curse of dimensionality.

To address each of these desired properties, we propose cjs, a new
information-theoretic divergence measure. In short, cjs embraces the spirit of
Kullback-Leibler (kl) and Jensen-Shannon (js) divergences, two well-known
information-theoretic divergence measures. They both have been employed

1 http://eda.mmci.uni-saarland.de/cjs/

http://eda.mmci.uni-saarland.de/cjs/

Non-parametric Jensen-Shannon Divergence 175

widely in data mining [8,12]. As we will show, however, in their traditional form
both suffer from some drawbacks w.r.t. exploratory analysis. We will alleviate
these issues with cjs.

2.1 Univariate Case

To ease presentation, let us discuss the univariate case; when X is a single
variable.

On univariate distributions, we consider a single univariate random variable
X. We start with Kullback-Leibler divergence – one of the first information-
theoretic divergences proposed in statistics [9]. Conventionally, it is defined as
follows.

kl(p(X) || q(X)) =
∫

p(x) log
p(x)
q(x)

dx .

Importantly, it holds that kl(p(X) || q(X)) = 0 iff p(X) = q(X). Although kl
is assymetic itself, we can easily achieve symmetry by using kl(p(X) || q(X)) +
kl(q(X) || p(X)). In addition, kl does suffer from two issues, however. First, it
is undefined if q(x) = 0 and p(x) �= 0, or vice versa, for some x ∈ dom(X). Thus,
p and q have to be absolutely continuous w.r.t. each other for their kl score to be
defined [11]. As a result, kl requires an assumption on the relationship between
p and q. Second, kl works with pdfs which need parametric or KDE estimation.

Another popular information-theoretic divergence measure is the Jensen-
Shannon divergence [11]. It is defined as

js(p(X) || q(X)) =
∫

p(x) log
p(x)

1
2p(x) + 1

2q(x)
dx .

As for kl, for js we also have that js(p(X) || q(X)) = 0 iff p(X) = q(X), and we
can again obtain symmetry by considering js(p(X) || q(X)) + js(q(X) || p(X)).
In contrast, js is well defined independent of the values of p(x) and q(x) with
x ∈ dom(X). However, it still requires us to know or estimate the pdfs.

To address this, that is, to address the computability of js on empirical
data, we propose to redefine it by replacing pdfs with cdfs. This gives us a new
divergence measure, cjs, for cumulative js divergence.

Definition 1 (Univariate CJS). The cumulative js divergence of p(X) and
q(X), denoted cjs(p(X) || q(X)), is

∫

P (x) log
P (x)

1
2P (x) + 1

2Q(x)
dx +

1
2 ln 2

∫

(Q(x) − P (x)) dx .

As we will explain shortly below, the second integral is required to make the
score non-negative. Similar to kl and js, we address symmetry by considering
cjs(p(X) || q(X))+cjs(q(X) || p(X)). Similar to js, our measure does not make
any assumption on the relation of p and q. With the following theorem we proof
that cjs is indeed a divergence measure.

176 H.-V. Nguyen and J. Vreeken

Theorem 1. cjs(p(X) || q(X)) ≥ 0 with equality iff p(X) = q(X).

Proof. Applying in sequence the log-sum inequality, and the fact that α log α
β ≥

1
ln 2 (α − β) for any α, β > 0, we obtain

∫

P (x) log
P (x)

1
2P (x) + 1

2Q(x)
dx ≥

∫

P (x)dx log
∫

P (x)dx
∫

(12P (x) + 1
2Q(x))dx

≥ 1
2 ln 2

∫

(P (x) − Q(x)) dx .

For the log-sum inequality, equality holds if and only if P (x)
1
2P (x)+ 1

2Q(x)
= δ for

every x ∈ dom(X) with δ being a constant. Further, equality of the second
inequality holds if and only if

∫
P (x)dx =

∫
(12P (x) + 1

2Q(x))dx. Combining the
two, we arrive at δ = 1, i.e. P (x) = Q(x) for every x ∈ dom(X). Taking the
derivatives of the two sides, we obtain the result. ��

In Sec. 2.3, we will show in more detail that by considering cdfs, cjs permits
non-parametric computation on empirical data. Let us now consider multivariate
variables.

2.2 Multivariate Case

We now consider multivariate X. In principle, the multivariate versions of kl
and js are obtained by replacing X with X. We could arrive at a multivariate
version of cjs in a similar way. However, if we were to do so, we would have
to work with the joint distribution over all dimensions in X, which would make
our score prone to the curse of dimensionality. To overcome this, we build upon
a factorised form of kl, as follows.

Theorem 2. kl (p(X) || q(X)) =

kl(p(X1) || q(X1)) + kl(p(X2 | X1) || q(X2 | X1))
+ . . . +
kl(p(Xm | X \ {Xm}) || q(Xm | X \ {Xm}))

where

kl(p(Xi | X1, . . . , Xi−1) || q(Xi | X1, . . . , Xi−1))

=
∫

kl(p(Xi | x1, . . . , xi−1) || q(Xi | x1, . . . , xi−1))

× p(x1, . . . , xi−1) × dx1 × . . . × dxi−1

is named an (i − 1)-order conditional kl divergence.

Proof. We extend the proof of Theorem 2.5.3 in [5] to the multivariate case. ��

Non-parametric Jensen-Shannon Divergence 177

Theorem 2 states that kl(p(X) || q(X)) is the summation of the difference
between univariate (conditional) pdfs. This form of kl is less prone the curse of
dimensionality thanks to the low-order conditional divergence terms. We design
the multivariate version of cjs along the same lines. In particular, directly fol-
lowing Theorem 2 multivariate cjs is defined as.

Definition 2 (Fixed-Order CJS). cjs(p(X1, . . . , Xd) || q(X1, . . . , Xd)) is

cjs(p(X1) || q(X1)) + cjs(p(X2 | X1) || q(X2 | X1))
+ . . . +
cjs(p(Xd | X \ {Xd}) || q(Xd | X \ {Xd}))

where

cjs(p(Xi | X1, . . . , Xi−1) || q(Xi | X1, . . . , Xi−1))

=
∫

cjs(p(Xi | x1, . . . , xi−1) || q(Xi | x1, . . . , xi−1))

× p(x1, . . . , xi−1) × dx1 × . . . × dxi−1

is named an (i − 1)-order conditional cjs divergence.

From Definition 2, one can see the analogy between multivariate cjs and the
factorised form of kl. However, unlike kl, when defined as in Definition 2 cjs
may be variant to how we factorise the distribution, that is, the permutation of
dimensions. To circumvent this we derive a permutation-free version of cjs as
follows. Let F be the set of bijective functions σ : {1, . . . , m} → {1, . . . , m}.

Definition 3 (Order-Independent CJS). cjs(p(X) || q(X)) is

max
σ∈F

d∑

i=2

cjs
(
p(Xσ(1), . . . , Xσ(m)) || q(Xσ(1), . . . , Xσ(m))

)
.

Definition 3 eliminates the dependence on any specific permutation by taking
the maximum score over all permutations. Now we need to show that multivari-
ate cjs is indeed a divergence.

Theorem 3. cjs(p(X) || q(X)) ≥ 0 with equality iff p(X) = q(X).

Proof. For readability, we postpone the proof to the online Appendix. ��
We now know that cjs is a suitable divergence measure for multivariate

distributions. To compute cjs, however, we would have to search for the optimal
permutation among m! permutations. When m is large, this is prohibitively
costly. We tackle this by proposing cjspr , a practical version of cjs.

Definition 4 (Practical CJS). cjspr (p(X) || q(X)) is

cjs
(
p(Xσ(1), . . . , Xσ(m)) || q(Xσ(1), . . . , Xσ(m))

)

where σ ∈ F is a permutation such that cjs(Xσ(1)) ≥ . . . ≥ cjs(Xσ(m)).

178 H.-V. Nguyen and J. Vreeken

In other words, cjspr chooses the permutation corresponding to the sorting of
dimensions in descending order of cjs values. The intuition behind this choice is
that the difference between p(Xi | . . .) and q(Xi | . . .) is likely reflected through
the difference between p(Xi) and q(Xi). Thus, by ordering dimensions in terms
of their cjs values, we can approximate the optimal permutation. Although
a greedy heuristic, our experiments reveal that cjspr works well in practice.
For exposition, from now on we simply assume that σ is the identity mapping
function, i.e. the permutation of dimensions is X1, . . . , Xm. Following the proof
of Theorem 3, we also have that cjspr is a divergence measure.

Theorem 4. cjspr (p(X) || q(X)) ≥ 0 with equality iff p(X) = q(X).

In the remainder of the paper we will consider cjspr and for readability
simply refer to it as cjs.

2.3 Computing CJS

To compute cjs(p(X) || q(X)), we need to compute unconditional and condi-
tional cjs. For the former, suppose that we want to compute cjs(p(X) || q(X))
for X ∈ X. Let v ≤ X[1] ≤ . . . ≤ X[np] ≤ V be realisations of X drawn from
p(X). Further, let Pnp

(x) = 1
np

∑np

j=1 I(X[j] ≤ x). Following [15], we have

∫

P (x)dx =
np−1∑

j=1

(X[j + 1] − X[j])
j

np
+ (V − X[np]) .

The other terms required for calculating cjs(p(X) || q(X)) (cf., Definition 1),
e.g.

∫
Q(x)dx, are similarly computed. More details can be found in [15].

Computing conditional cjs terms, however, requires pdfs – which are
unknown. We resolve this in a non-parametric way using optimal discreti-
sation. That is, we first compute cjs(p(X1) || q(X1)). Next, we calculate
cjs(p(X2 | X1) || q(X2 | X1)) by searching for the discretisation of X1 that max-
imises this term. At step k ≥ 3, we compute cjs(p(Xk | X1, . . . , Xk−1) || q(Xk |
X1, . . . , Xk−1)) by searching for the discretisation of Xk−1 that maximises this
term. Thus, we only discretise the dimension picked in the previous step and do
not re-discretise any earlier chosen dimensions. First and foremost, this increases
the efficiency of our algorithm. Second, and more importantly, it facilitates inter-
pretability as we only have to consider one discretisation per dimension.

Next, we show that the discretisation at a step can be done efficiently and
optimally by dynamic programming. For simplicity, let X′ ⊂ X be the set
of dimensions already picked and discretised. We denote X as the dimension
selected in the previous step but not yet discretised. Let Xc be the dimension
selected in this step. Our goal is to find the discretisation of X maximising
cjs(p(Xc | X′,X) || q(Xc | X′,X)).

To accomplish this, let X[1] ≤ . . . ≤ X[np] be realisations of X drawn from
the samples of p(X). We write X[j, u] for {X[j],X[j+1], . . . ,X[u]} where j ≤ u.

Non-parametric Jensen-Shannon Divergence 179

Note that X[1, np] is in fact X. We use

cjs(p(Xc | X′, 〈X [j , u]〉) || q(Xc | X′, 〈X [j , u]〉))

to denote cjs(p(Xc | X′) || q(Xc | X′)) computed using the (u − j + 1) samples
of p(X) corresponding to X[j] to X[u], projected onto X. For 1 ≤ l ≤ u ≤ np,
we write

f(u, l) = max
dsc:|dsc|=l

cjs
(
p(Xc | X′,Xdsc[1, u]) || q(Xc | X′,Xdsc[1, u])

)

where dsc is a discretisation of X[1, u], |dsc| is its number of bins, and Xdsc[1, u]
is the discretised version of X[1, u] produced by dsc. For 1 < l ≤ u ≤ np, we
have

Theorem 5. f(u, l) = max
j∈[l−1,u)

Aj where

Aj =
j

u
f(j, l − 1)+

u − j

u
cjs (p(Xc | X′, 〈X[j+1, u]〉) || q(Xc | X′, 〈X[j + 1, u]〉))

Proof. For readability, we postpone the proof to the online Appendix. ��
Theorem 5 shows that the optimal discretisation of X[1, u] can be derived

from that of X[1, j] with j < u. This allows us to design a dynamic programming
algorithm to find the discretisation of X maximising cjs(p(Xc | X′,X) || q(Xc |
X′,X)).

2.4 Complexity Analysis

We now discuss the time complexity of computing cjs(p(X) || q(X)). When
discretising a dimension X ∈ X, if we use its original set of data samples as cut
points, the time complexity of solving dynamic programming is O(n2

p), rather
restrictive for large data. Most cut points, however, will not be used in the
optimal discretisation. To gain efficiency, we can hence impose a maximum grid
size max grid = nε

p and limit the number of cut points to c × max grid with
c > 1. To find these candidate cut points, we follow Reshef et al. [20] and apply
equal-frequency binning on X with the number of bins equal to (c×max grid+1).
Note that this pre-processing trades off accuracy for efficiency. Other types of
pre-processing are left for future work.

Regarding ε and c, the larger they are, the more candidate discretisations we
consider, and hence, at a higher the computational cost, the better the result.
Our empirical results show that ε = 0.5 and c = 2 offers a good balance between
quality and efficiency, and we will use these values in the experiments. The
cost of discretising each dimension X then is O(np). The overall complexity of
computing cjs(p(X) || q(X)) is therefore O(m × np). Similarly, the complexity
of computing cjs(q(X) || p(X)) is O(m × nq).

180 H.-V. Nguyen and J. Vreeken

2.5 Summing Up

We note that cjs is asymmetric. To have a symmetric distance, we use

cjssym(p(X) || q(X)) = cjs(p(X) || q(X)) + cjs(q(X) || p(X)) .

In addition, we present two important properties pertaining specifically to uni-
variate cjssym . Although in the interest of space we will not explore these prop-
erties empirically, but they may be important to know for other applications of
our measure.

Theorem 6. cjssym(p(X) || q(X)) ≤ ∫
(P(x) + Q(x)) dx .

Proof. For readability, we postpone the proof to the online Appendix. ��
Theorem 7. Univariate

√
cjssym is a metric.

Proof. We follow the proof of Theorem 1 in [7]. ��
Theorem 6 tells us that the value of univariate cjssym is bounded above,

which facilitates interpretation [11]. Theorem 7 on the other hand says that the
square root of univariate cjssym is a metric distance. This is beneficial for, e.g.
query optimisation in multimedia databases.

3 Related Work

Many divergence measures have been proposed in the literature. Besides
Kullback-Leibler and Jensen-Shannon, other well-known divergence measures
include the Kolmogorov-Smirnov test (ks), the Cramér-von Mises criterion
(cm), Earth Mover’s Distance (emd), and the quadratic measure of divergence
(qr) [13]. Each has its own strengths and weaknesses – most particularly w.r.t.
exploratory analysis. For example, multivariate ks, cm, emd, and qr all operate
on the joint distributions over all dimensions. Thus, they inherently suffer from
the curse of dimensionality, which reduces their statistical power when applied
on non-trivial numbers of dimensions. In addition, emd needs probability mass
functions (pmfs). While readily available for discrete data, real-valued data first
needs to be discretised. There currently exists no discretisation method that
directly optimises emd, however, by which the results may turn out ad hoc.
Recently, Perez-Cruz [17] studied how to estimate kl using cdfs. Park et al. [16]
proposed ckl, redefining KL by replacing pdfs with cdfs. While computable on
empirical data, as for regular kl it may be undefined when p(x) = 0 or q(x) = 0
for some x ∈ dom(X). Further, ckl was originally proposed as a univariate
measure. Wang et al. [24] are the first to formulate js using cdfs. However, their
cjs relies on joint cdfs and hence suffers from the curse of dimensionality.

Many data mining tasks require divergence measures. For instance, for change
detection on time-series, it is necessary to test whether two windows of data are
sampled from the same underlying distribution. Song et al. [23] proposed such

Non-parametric Jensen-Shannon Divergence 181

a test, using Gaussian kernels to approximate the data distribution – includ-
ing the joint distribution over all dimensions. Generalisations of kl computed
using Gaussian kernels have shown to be powerful alternatives [8,12]. kl is also
used for anomaly detection in time series, where we can compute an anomaly
score for a window against the reference data set [18]. In interaction-preserving
discretisation we need to assess how different (multivariate) distributions are
between two consecutive bins. This can be done through contrast mining [3], or
by using qr [13]. In multi-target subgroup discovery, also known as exceptional
model mining [10], we need to compare the distributions of subgroup against
that of its complement data set. Leman et al. use a quadratic measure of diver-
gence [10], whereas Duivesteijn et al. consider the edit distance between Bayesian
networks [6]. In Section 4, we will consider the efficacy of cjs for each of these
areas.

Nguyen et al. [15] proposed a correlation measure inspired by factorised kl
using cumulative entropy [19]. Although it permits reliable non-parametric com-
putation on empirical data, it uses ad hoc clustering to compute conditional
entropies. Nguyen et al. [14] showed that these are inferior to optimal discreti-
sation, in their case for total correlation. In cjs we use the same general idea of
optimal discretisation, yet the specifics for measuring divergence are nontrivial
and had to be developed from scratch.

4 Experiments

Next, we empirically evaluate cjs. In particular, we will evaluate the statisti-
cal power at which it quantifies differences between data distributions, and its
scalability to data size and dimensionality. In addition, we evaluate its perfor-
mance in four exploratory data mining tasks. We implemented cjs in Java, and
make our code available for research purposes.2 All experiments were performed
single-threaded on an Intel(R) Core(TM) i7-4600U CPU with 16GB RAM. We
report wall-clock running times.

We compare cjs to mg [23] and rsif [12], two measures of distribution differ-
ence recently proposed for change detection on time series. In short, to compare
two samples Sp and Sq, mg randomly splits Sp into S1

p and S2
p . Next, it uses S1

p

to model the distribution of data. Then it fits S2
p and Sq into the model. The

difference in their fitness scores is regarded as the difference between Sp and Sq.
rsif on the other hand uses a non-factorised variant of kl divergence. To com-
pute this divergence, it estimates the ratio p(X)

q(X) . As third baseline, we consider
qr, a quadratic measure of distribution difference recently proposed by Nguyen
et al. [13]. It works on P (X) and Q(X), i.e. the cdfs of all dimensions. Note
that by their definition these three competitors are prone to the curse of dimen-
sionality. Finally, we include ckl, extended to the multivariate setting similarly
to cjs.

2 http://eda.mmci.uni-saarland.de/cjs/

http://eda.mmci.uni-saarland.de/cjs/

182 H.-V. Nguyen and J. Vreeken

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

noise level

st
at

is
tic

al
po

w
er

CJS CKL

QR RSIF

MG

(a) m = 1

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

noise level

st
at

is
tic

al
po

w
er

(b) m = 5

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

noise level

st
at

is
tic

al
po

w
er

(c) m = 10

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

noise level

st
at

is
tic

al
po

w
er

(d) m = 20

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

noise level

st
at

is
tic

al
po

w
er

(e) m = 40

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

noise level

st
at

is
tic

al
po

w
er

(f) m = 80

Fig. 1. [Higher is better] Statistical power vs. dimensionality of cjs, ckl, qr, rsif,
and mg on synthetic data sets. Overall, cjs achieves the best statistical power across
different dimensionality and noise levels.

4.1 Statistical Power

Our aim here is to examine if our measure is really suitable for quantifying
the difference between two data distributions. For this purpose, we perform
statistical tests using synthetic data. To this end, the null hypothesis is that
the two distributions are similar. To determine the cutoff for testing the null
hypothesis, we first generate 100 pairs of data sets of the same size (n) and
dimensionality (m), and having the same distribution f1. Next, we compute
the divergence score for each pair. Subsequently, we set the cutoff according to
the significance level α = 0.05. We then generate 100 pairs of data sets, again
with the same n and m. However, two data sets in such a pair have different
distributions. One follows distribution f1 while the other follows distribution
f2. The power of the measure is the proportion of the 100 new pairs of data
sets whose divergence scores exceed the cutoff. We simulate a noisy setting by
adding Gaussian noise to the data. We show the results in Fig. 1 for n = 1000
and varying over m with f1 and f2 two Gaussian distributions with different
mean vectors and covariance matrices. For other data sizes and distributions we
observe the same trend.

Inspecting these results, we find that cjs obtains higher statistical power than
other measures. Moreover, it is very stable across dimensionality and noise. Other
measures, especially qr and rsif, deteriorate with high dimensionality. Overall,
we find that cjs reliably measures the divergence of distributions, regardless of
dimensionality or noise.

Non-parametric Jensen-Shannon Divergence 183

0.1 0.5 1 1.5 2

·104

0

100

200

300

400

500

data size (n)

tim
e

(s
)

CJS

CKL

QR

RSIF

MG

(a) Runtime against data size

1 20 40 60 80
0

20

40

60

80

dimensionality (m)

tim
e

(s
)

(b) Runtime against dimensionality

Fig. 2. [Lower is better] Runtime scalability of cjs, ckl, qr, rsif, and mg on synthetic
data sets. Overall, cjs scales similarly to ckl, qr, and mg and much better than rsif.

4.2 Scalability

Next, we study the scalability of our measures with respect to the data size n and
dimensionality m. For scalability to n, we generate data sets with m = 10 and
n varied from 1 000 to 20 000. For scalability to m, we generate data sets with
n = 1000 and m varied from 1 to 80. We present the results in Fig. 2. We observe
that our measure is efficient. It scales similarly as ckl, qr, and mg, and much
better than rsif. Combining this with our results regarding statistical power,
we conclude that cjs yields the best balance between quality and efficiency.

The results show that cjs outperforms ckl while the two have similar run-
time. We therefore exclude ckl in the remainder.

4.3 Change Detection on Time Series

Divergence measures are widely used for change detection on time series
[4,12,21]. The main idea is that given a window size W , at each time instant
t, we measure the difference between the distribution of data over the interval
[t − W, t) to that over the interval [t, t + W). A large difference is an indicator
that a change may have occurred. The quality of change detection is thus depen-
dent on the quality of the measure. In this experiment, we apply cjs in change
detection. In particular, we use it in the retrospective change detection model
proposed by Liu et al. [12].

As data, we use the PAMAP data set,3 which contains human activity mon-
itoring data. Essentially, it consists of data recorded from sensors attached to 9
human subjects. Each subject performs different types of activities, e.g. stand-
ing, walking, running, and each activity is represented by 51 sensor readings
recorded per second. Since each subject has different physical characteristics, we
consider his/her data to be a separate data set. One data set is very small, so
we discard it. We hence consider 8 time series over 51 dimensions with in the
order of 100 000 time points. In each time series, the time instants when the

3 http://www.pamap.org/demo.html

http://www.pamap.org/demo.html

184 H.-V. Nguyen and J. Vreeken

Table 1. [Higher is better] AUC scores of cjs, qr, rsif, and mg in time-series change
detection on PAMAP data sets. Highest values are in bold. Overall, cjs yields the best
accuracy across all subjects.

Data CJS qr rsif mg

Subject 1 0.972 0.658 0.662 0.775
Subject 2 0.977 0.669 0.694 0.782
Subject 3 0.971 0.663 0.857 0.954
Subject 4 0.973 0.641 0.662 0.642
Subject 5 0.988 0.678 0.756 0.850
Subject 6 0.977 0.662 0.497 0.550
Subject 7 0.978 0.646 0.782 0.705
Subject 8 0.973 0.741 0.552 0.424

Average 0.976 0.670 0.683 0.710

respective subject changes his/her activities are regarded as change points. As
the change points are known, we evaluate how well each measure tested retrieves
these cut points. It is expected that each measure should assign higher differ-
ence scores at the change points in comparison to other normal time instants.
As performance metric we construct Receiver Operating Characteristic (ROC)
curves and consider the Area Under the ROC curve (AUC) [8,12,23].

Table 1 gives the results. We see that cjs consistently achieves the best AUC
over all subjects. Moreover, it outperforms its competitors with relatively large
margins.

4.4 Anomaly Detection on Time Series

Closely related to change detection is anomaly detection [2,18]. The core idea
is that a reference data set is available as training data. For example, obtained
for instance from historical records. It is used for building a statistical model
capturing the generation process of normal data. Then, a window is slid along
the test time series to compute the anomaly score for each time instant, using
the model constructed. With cjs, we can perform the same task by simply
comparing the distribution over a window against that of the reference set. That
is, no model construction is required. In contrast to ggm [18] – a state of the
art method for anomaly detection in time series – cjs can be considered as a
‘lazy’ detector. We will assess how cjs performs against ggm. For this, we use
the TEP data set, as it was used by Qiu et al. [18]. It contains information on
an industrial production process. The data has 52 dimensions. Following their
setup, we set the window size to 10. We vary the size of the training set to assess
stability.

Fig. 3 presents the results. We see that cjs outperfoms ggm at its own game.
In particular, we see that cjs is less sensitive to the size of the training set than
ggm, which could be attributed to its ‘lazy’ approach. Overall, the conclusion
is that cjs reliably measures the difference of multivariate distributions.

Non-parametric Jensen-Shannon Divergence 185

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

false postive rate

tr
ue

po
si

tiv
e

ra
te

CJS

GGM

(a) training size = 200

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

false postive rate

tr
ue

po
si

tiv
e

ra
te

(b) training size = 300

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

false postive rate

tr
ue

po
si

tiv
e

ra
te

(c) training size = 400

Fig. 3. [Higher is better] ROC curves of cjs and ggm regarding time-series anomaly
detection on the TEP data set. AUC scores of cjs are respectively 0.780, 0.783, and
0.689. AUC scores of ggm are respectively 0.753, 0.691, and 0.552. Overall, cjs out-
performs ggm.

4.5 Multivariate Discretisation

When discretising multivariate data the key goal is to discretise the data such
that the output data preserves the most important multivariate interactions
in the input data [3,13]. Only when we do so it will be possible to use tech-
niques that require discrete data – such as pattern mining – to pick up on truly
interesting correlations. One of the major components of interaction-preserving
discretisation is to measure the difference of data distributions in different bins.
The difference scores are then used to decide if bin merge takes place or not.

In principle, the better such measure, the better correlations can be main-
tained. For example, the better pattern-based compressors such as CompreX [1]
can compress it. In this experiment, we apply cjs in ipd [13] – a state of the art
technique for interaction-preserving discretisation. To evaluate, we apply Com-
preX to the discretised data and compare the total encoded size. We compare
against original ipd, which uses qr. For testing purposes, we use 6 public data
sets available in the UCI Repository.

We display the results in Fig. 4. The plot shows the relative compression rates
with ipd as the bases, per data set. Please note that lower compression costs are
better. Going over the results, we can see that cjs improves the performance
ipd in 4 out of 6 data sets. This implies that cjs reliably assesses the difference
of multivariate distributions in different bins [13].

4.6 Multi-Target Subgroup Discovery

In subgroup discovery we are after finding queries – patterns – that identify
subgroups of data points for which the distribution of some target attribute
varies strongly compare to either the complement, or the whole data. As the
name implies, in multi-target subgroup discovery we do not consider a univariate
targets, but multivariate ones.

Formally, let us consider a data set D with attributes A1, . . . , Ak and tar-
gets T1, . . . , Tl. A subgroup S on D is characterized by condition(s) imposed on
some attribute(s). A condition on an attribute A has the form of an interval.

186 H.-V. Nguyen and J. Vreeken

Crime Gas KDD Mini Parki
nsonSatIm

age

20%

40%

60%

80%

100%

120%

Crime Gas KDD Mini Parki
nsonSatIm

age

re
la
ti
ve

co
m
pr
es
si
on

co
st

CJS

IPD

Fig. 4. [Lower is better] Relative compression costs of cjs and ipd in interaction-
preserving discretisation. CompreX [1] is the compressor. The compression costs of
ipd are the bases. Overall, cjs outperforms ipd.

The subset of D corresponding to S is denoted as DS . The set of remaining data
points, the complement set, is DS = D\DS . Within subgroup discovery, excep-
tional model mining is concerned with detecting S such that p(T1, . . . , Tl | DS)
is different from p(T1, . . . , Tl | DS) [6,10]. The higher the difference, the better.

In this experiment, we use cjs for quantifying the distribution divergence
non-parametrically. Apart from that, we apply as-is the search algorithm pro-
posed in [6] for discovering high quality subgroups. As data sets, we use 3 public
ones. Two from the UCI Repository, namely, the Bike dataset of 731 data points
over 6 attributes with 2 targets, and the Energy dataset of 768 rows over 8
attributes also with 2 targets. Third, we consider the Chemnitz dataset of 1440
rows over 3 attributes and with 7 targets.4 Our objective here is to see if cjs can
assist in discovering interesting subgroups on these data sets. The representative
subgroups on three data sets are in Table 2 (all subgroups are significant at
significance level α = 0.05).

Going over the results, we see cjs to detect subgroups having different dis-
tribution in targets compared to that of their respective complement set. For
instance, on Bike we discover the subgroup temperature ≥ 6.5 ∧ temperature <
10.7. In this subgroup, we find that its numbers of registered and non-registered
bikers are significantly lower than those of its complement set. This is intu-
itively understandable, as at these low temperatures one expects to see only
a few bikers, and especially few casual ones. In contrast, for the subgroup
temperature ≥ 27.1 ∧ temperature < 31.2, the numbers of bikers in both tar-
gets are very high. This again is intuitively understandable.

From the Energy data, we find that the two subgroups surface area ≥ 624.8∧
surface area < 661.5 and roof area < 124.0 have much higher heating and cooling
loads compared to their complement sets.

The previous two data sets contain 2 targets only. In contrast, Chemnitz
data set has 7 targets, which poses a more challenging task. Nevertheless, with
cjs we can detect informative subgroups as it can capture divergences between
distributions that are involved in different numbers of targets – not all tar-
get attributes have to be ‘divergent’ at the same time, after all. In particular,

4 http://www.mathe.tu-freiberg.de/Stoyan/umwdat.html

http://www.mathe.tu-freiberg.de/Stoyan/umwdat.html

Non-parametric Jensen-Shannon Divergence 187

Table 2. Representative subgroups discovered by cjs on Bike, Energy, and Chemnitz
data sets. On Chemnitz, only targets where the divergence is large are shown. Overall,
cjs helps detect high quality and informative subgroups on all three data sets.

Mean

Data Target subgroup (DS) complement (DS)

Bike

6.5 ≤ temperature < 10.7 (support = 63)

registered bikers 166 913
non-registered bikers 1 889 3 840

27.1 ≤ temperature < 31.2 (support = 127)

registered bikers 1 347 743
non-registered bikers 4 406 3 499

Energy

624.8 ≤ surface area < 661.5 (support = 128)

heating 38.6 20.8
cooling 40.2 23.1

roof area < 124.0 (support = 192)

heating 31.6 19.1
cooling 33.1 21.7

Chemnitz

4.25 ≤ temperature < 7.5 (support = 370)

dust 53.5 109.7
SO2 80.6 184.4
NO2 20.4 41.4
NOx 50.2 94.3

wind < −0.75 (support = 395)

NO 69.0 39.0
NOx 106.4 74.1

the subgroup temperature ≥ 4.25 ∧ temperature < 7.5 has its divergence traced
back to five targets. On the other hand, there are only two targets responsible
for the divergence of the subgroup wind < −0.75.

Overall, we find that cjs can be successfully applied to non-parametrically
discover subgroups in real-world data with multiple targets.

5 Discussion

The experiments show that cjs is efficient and obtains high statistical power
in detecting divergence for varying dimensionality and noise levels. Further,
we demonstrated that cjs is well-suited for a wide range of exploratory
tasks, namely time-series change detection and anomaly detection, interaction-
preserving discretisation, and multi-target subgroup discovery. The improvement

188 H.-V. Nguyen and J. Vreeken

in performance of cjs over existing measures can be traced back to its three main
properties: (a) it does not make any assumption on the relation between two dis-
tributions, (b) it allows non-parametric computation on empirical data, and (c)
it is less sensitive to the curse of dimensionality.

Yet, there is room for alternative methods as well as further improvements.
For instance, in this paper, we pursue the non-parametric setting. As long as the
knowledge on data distributions is known, one can resort to parametric methods
to compute other divergence measures, e.g. kl and js. A promising direction
is to extend cjs to heterogeneous data types. That is, in addition to numerical
data, we can consider categorical data as well. A possible solution to this end
is to combine js and cjs. More in particular, js is used to handle categorical
data; cjs is used for numerical data; and discretisation can be used to bridge
both worlds. The details, however, are beyond the scope of this work. As future
work, we also plan to develop new subgroup discovery methods that integrate
cjs more deeply into the mining process. This will help us to better exploit the
capability of cjs in this interesting branch of exploratory analysis.

6 Conclusion

In this paper, we proposed cjs, an information-theoretic divergence measure
to quantify the difference of two distributions. In short, cjs requires neither
assumptions on the forms of distributions nor their relation. Further, it permits
efficient non-parametric computation on empirical data. Extensive experiments
on both synthetic and real-world data showed that our measure outperforms
the state of the art in both statistical power and efficiency in a wide range of
exploratory tasks.

Acknowledgments. The authors thank the anonymous reviewers for insightful com-
ments. Hoang-Vu Nguyen and Jilles Vreeken are supported by the Cluster of Excellence
“Multimodal Computing and Interaction” within the Excellence Initiative of the Ger-
man Federal Government.

References

1. Akoglu, L., Tong, H., Vreeken, J., Faloutsos, C.: Comprex: compression based
anomaly detection. In: CIKM. ACM (2012)

2. Arnold, A., Liu, Y., Abe, N.: Temporal causal modeling with graphical granger
methods. In: KDD, pp. 66–75 (2007)

3. Bay, S.D.: Multivariate discretization for set mining. Knowledge and Information
Systems 3(4), 491–512 (2001)

4. Chandola, V., Vatsavai, R.R.: A gaussian process based online change detection
algorithm for monitoring periodic time series. In: SDM, pp. 95–106 (2011)

5. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience,
New York (2006)

6. Duivesteijn, W., Knobbe, A.J., Feelders, A., van Leeuwen, M.: Subgroup discov-
ery meets bayesian networks - an exceptional model mining approach. In: ICDM,
pp. 158–167 (2010)

Non-parametric Jensen-Shannon Divergence 189

7. Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. IEEE
Transactions on Information Theory 49(7), 1858–1860 (2003)

8. Kawahara, Y., Sugiyama, M.: Change-point detection in time-series data by direct
density-ratio estimation. In: SDM, pp. 389–400 (2009)

9. Kullback, S., Leibler, R.: On information and sufficiency. Annals of Mathematical
Statistics 22(1), 79–86 (1951)

10. Leman, D., Feelders, A., Knobbe, A.J.: Exceptional model mining. In: Daelemans,
W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI),
vol. 5212, pp. 1–16. Springer, Heidelberg (2008)

11. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Transactions
on Information Theory 37(1), 145–151 (1991)

12. Liu, S., Yamada, M., Collier, N., Sugiyama, M.: Change-point detection in time-
series data by relative density-ratio estimation. Neural Networks 43, 72–83 (2013)

13. Nguyen, H.V., Müuller, E., Vreeken, J., Efros, P., Böhm, K.: Unsupervised
interaction-preserving discretization of multivariate data. Data Min. Knowl. Dis-
cov. 28(5–6), 1366–1397 (2014)

14. Nguyen, H.V., Müller, E., Vreeken, J., Efros, P., Böhm, K.: Multivariate maximal
correlation analysis. In: ICML, pp. 775–783 (2014)

15. Nguyen, H.V., Müller, E., Vreeken, J., Keller, F., Böhm, K.: CMI: an information-
theoretic contrast measure for enhancing subspace cluster and outlier detection.
In: SDM, pp. 198–206 (2013)

16. Park, S., Rao, M., Shin, D.W.: On cumulative residual Kullback-Leibler informa-
tion. Statistics and Probability Letters 82, 2025–2032 (2012)

17. Perez-Cruz, F.: Kullback-Leibler divergence estimation of continuous distributions.
In: ISIT, pp. 1666–1670. IEEE (2008)

18. Qiu, H., Liu, Y., Subrahmanya, N.A., Li, W.: Granger causality for time-series
anomaly detection. In: ICDM, pp. 1074–1079 (2012)

19. Rao, M., Chen, Y., Vemuri, B.C., Wang, F.: Cumulative residual entropy: A
new measure of information. IEEE Transactions on Information Theory 50(6),
1220–1228 (2004)

20. Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., McVean, G.,
Turnbaugh, P.J., Lander, E.S., Mitzenmacher, M., Sabeti, P.C.: Detecting novel
associations in large data sets. Science 334(6062), 1518–1524 (2011)

21. Saatci, Y., Turner, R.D., Rasmussen, C.E.: Gaussian process change point models.
In: ICML, pp. 927–934 (2010)

22. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization.
John Wiley & Sons Inc, New York (1992)

23. Song, X., Wu, M., Jermaine, C.M., Ranka, S.: Statistical change detection for
multi-dimensional data. In: KDD, pp. 667–676 (2007)

24. Wang, F., Vemuri, B.C., Rangarajan, A.: Groupwise point pattern registration
using a novel cdf-based Jensen-Shannon divergence. In: CVPR, pp. 1283–1288
(2006)

Swap Randomization of Bases of Sequences
for Mining Satellite Image Times Series

Nicolas Méger1(B), Christophe Rigotti2, and Catherine Pothier3

1 LISTIC Laboratory, Université Savoie Mont Blanc, Polytech Annecy-Chambéry,
B.P. 80439, 74944 Annecy-le-vieux Cedex, France

nicolas.meger@univ-smb.fr
2 LIRIS Laboratory (UMR 5205), Université de Lyon, CNRS, INRIA, INSA-Lyon,

20 Avenue A. Einstein, 69621 Villeurbanne Cedex, France
christophe.rigotti@insa-lyon.fr

3 LGCIE Laboratory, Université de Lyon, INSA-Lyon, 20 Av. A. Einstein,
69621 Villeurbanne Cedex, France
catherine.pothier@insa-lyon.fr

Abstract. Swap randomization has been shown to be an effective tech-
nique for assessing the significance of data mining results such as Boolean
matrices, frequent itemsets, correlations or clusterings. Basically, instead
of applying statistical tests on selected attributes, the global structure
of the actual dataset is taken into account by checking whether obtained
results are likely or not to occur in randomized datasets whose column
and row margins are equal to the ones of the actual dataset. In this paper,
a swap randomization approach for bases of sequences is proposed with
the aim of assessing sequential patterns extracted from Satellite Image
Time Series (SITS). This assessment relies on the spatiotemporal loca-
tions of the extracted patterns. Using an entropy-based measure, the
locations obtained on the actual dataset and a single swap randomized
dataset are compared. The potential and generality of the proposed app-
roach is evidenced by experiments on both optical and radar SITS.

1 Introduction

Earth observation satellite technology is continuously being enhanced, providing
end users with ever ever-growing data volumes. Improvements relate to the num-
ber of acquisition channels, the spatial resolution and the revisit frequency. The
revisit capability makes possible to gather acquisitions of a same geographical
zone through time and form Satellite Image Time Series (SITS). SITS are large
datasets containing complex spatiotemporal information that can be affected
both by atmospheric perturbations and sensor problems. In order to fully exploit
such SITS, information retrieval and data mining techniques are being developed.
Among them, unsupervised data mining techniques demonstrate their potential
when it comes to describe and discover spatiotemporal phenomena. They rely
either on global models such as clusterings (e.g., [13] or [21]) or on local patterns
such as sequential patterns (e.g., [16] or [14]). In particular, a SITS can be con-
sidered as a special kind of base of sequences, as first introduced in [1]. In that
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 190–205, 2015.
DOI: 10.1007/978-3-319-23525-7 12

Swap Randomization of Bases of Sequences 191

initial context, each sequence gives the transactions of a customer whereas, in
the case of a SITS, each sequence contains the descriptions of the values of a
pixel through time and is thus located spatially. As proposed in [17], Grouped
Fequent Sequential patterns (GFS-patterns) can be extracted from such a base of
sequences. Besides expressing pixel temporal evolutions, these sequential patterns
also take into account the spatial information brought by SITS: each GFS-pattern
is required to affect a group of pixels that are sufficiently numerous and connected
to each other. Reciprocally, each pixel can be affected by different GFS-patterns.
As a consequence, pixel groups corresponding to extracted GFS-patterns can par-
tially or fully overlap each other: they can refine each other. Extracting GFS-
patterns thus differs from segmenting or clustering a SITS. Experiments reported
in [17] or [22] show that GFS-patterns can be used both on radar and optical data,
for various applications ranging from agricultural to crustal deformation moni-
toring. Despite their ability to address various types of datasets and applications,
these patterns can be numerous, even if maximal ones are focused on. How to select
the most significant ones without making any assumption? We aim to answer that
question by adapting swap randomization to the SITS mining context.

In statistics, the significance of a result (e.g., the number of correlations found
in a dataset) can be assessed via randomization testing methods [12]. Basically,
they check whether the result observed on the actual dataset is likely to be
obtained or not on randomized datasets. These datasets are meant to sufficiently
differ from the actual one while sharing some of its structural properties such
as the number of 0’s and 1’s in the case of a Boolean matrix. With this aim in
view, randomized datasets are built by shuffling the actual dataset. Considering
randomized datasets avoids generating random ones by sampling a distribution
law that has to be defined a priori. Swap randomization follows these guidelines
and focuses on more fined-grained structural properties such as the column and
row margins of a Boolean matrix [5]. In data mining, as evidenced in [9], [10]
or [15], swap randomization can be exploited to assess the significance of global
models characterizing the whole actual dataset. These models can be clusterings,
sets of frequent itemsets, sets of correlations or singular values. Even if they do
not describe the entire dataset, local patterns such as frequent itemsets can also
be evaluated individually (e.g., [10] or [15]).

To our knowledge, no swap randomization techniques handling bases of
sequences or SITS have been proposed so far. In this paper, such a proposal is made
with the aim of evaluating GFS-patterns [17] individually. While being dedicated
to GFS-patterns, the presented approach could also be used for any kind of sequen-
tial patterns or episodes. Assessing GFS-patterns is not a trivial task. Their spa-
tiotemporal nature must be taken into consideration and the following questions
must be answered: which fine-grained structure should be maintained when ran-
domizing the base of sequences representing a SITS? Which GFS-pattern-related
information should be considered for their individual assessment? How to com-
pare the information observed on the actual dataset with the one obtained for
the randomized datasets? How to be efficient when considering a SITS containing
millions of pixel values? Our answers are as follows: with regards to the structure

192 N. Méger et al.

to be maintained while randomizing, the distributions of the values of each image
and each pixel sequence are preserved. The assessment of a GFS-pattern is then
performed by comparing its spatiotemporal locations on the actual dataset with
the ones on the randomized datasets. This comparison relies on the Normalised
Mutual Information (NMI) [6], an entropy-based measure. Efficiency is achieved
by performing the comparison using a single randomized dataset, as opposed to
hundreds of randomized datasets when considering the standard swap random-
ization approach. This paper is organized as follows: Section 2 gives some pre-
liminary definitions regarding SITS and GFS-patterns. The swap randomization
approach proposed to shuffle bases of sequences representing a SITS is detailed in
Sect. 3. Section 4 explicates GFS-pattern assessment and its use for SITS sum-
marization. Experiments are presented in Sect. 5. They show that the proposed
approach is general enough to mine either radar or optical SITS, yields relevant
patterns on real datasets and can support different applications such as land cover
or crustal deformation monitoring. Section 6 concludes this paper and gives future
work directions.

2 Grouped Frequent Sequential Patterns

In this section, the definition of Grouped Frequent Sequential Patterns (GFS-
patterns), as first introduced in [17], is recalled. Let us consider a SITS, i.e., a
satellite image time series covering the same area at n different dates. Within
each image, each pixel is associated with a value, e.g., the reflectance intensity
of the geographical zone it represents. These values are discretized to get event
types (symbols) encoding events under the form of a pair (t, e) with e an event
type and t its occurrence date (here the date will be the index of the image in the
series). Event types can correspond to ranges obtained by image quantization or
to pixel clusters. A symbolic SITS is a set of pixel evolution sequences, each one
containing the coordinates (x, y) of a pixel and its corresponding event sequence,
i.e., a tuple of events 〈(t1, e1), (t2, e2), ..., (tn, en)〉. In pattern mining, a typical
base of sequences is a set of sequences of discrete events, in which each sequence
has a unique sequence identifier. Each location (x, y) being unique, a symbolic
SITS is a base of sequences and the standard notions of sequential patterns,
support and frequent sequential patterns introduced in [1] can be easily reused
as follows1. A sequential pattern α is a tuple of m event types 〈α1, α2, . . . , αm〉.
The support of α in a SITS, denoted by support(α), is the number of pixel evolu-
tion sequences in which α occurs at least once. Note that the event types do not
need to occur contiguously. Sequential pattern α is a frequent sequential pattern if
support(α) ≥ σ with σ a support threshold. Reusing the definitions of sequential
patterns permits to take advantage of the efficient extraction techniques devel-
oped in this domain (e.g., [1], [25] or [20]). The pixels where a pattern α occurs
are said to be covered by α. For a SITS, the notion of support can be interpreted
very naturally as an area. In order to obtain pixels forming regions in space, an
average connectivity measure is also used. It is based on the 8-nearest neighbors
1 Sequences are simpler here since there is a single event type for each timestamp.

Swap Randomization of Bases of Sequences 193

(8-NN) convention [8]. For α, the connectivity of a pixel (x, y) is the number
of pixels covered by α among the 8 nearest neighbors of (x, y) (i.e., the pixels
surrounding (x, y)). The average connectivity of α, denoted AC(α), is simply
the average of the connectivity over all pixels covered by α. Finally, a Grouped
Frequent Sequential pattern (GFS-pattern) α is a frequent sequential pattern
such that AC(α) ≥ κ with κ a positive real number termed average connectiv-
ity threshold. Depending on the parameter settings and the dataset, numerous
GFS-patterns can be produced. In order to reduce the redundancy among the
patterns, a standard method is to retain only the maximal ones (e.g., [19]). This
approach is also used here. The maximal GFS-patterns of a collection of GFS-
patterns C are the elements in C that are not subpattern of any other pattern
in C. In other words, the GFS-patterns focusing on the most specific evolutions
are retained. Though the number of GFS-patterns can be drastically reduced
by adopting such a strategy, it can still be large. How to select the most signif-
icant ones without making any additional assumption with respect to covered
pixels (e.g., assumptions about the shape or the texture of pixel groups)? We
propose to answer that question by adapting the swap randomization of Boolean
matrices to the SITS mining context.

3 Swap Randomization of Base of Sequences
Representing SITS

Swap randomization is aimed at generating Boolean matrices having the same
row and column margins without assuming any underlying distribution law.
To this end, the elements of the matrices are swapped. A swap is defined as
follows [23]: let B be a m × n Boolean matrix. Let u and v be two rows. Let i
and j be two columns. If Bu,i = Bv,j = 0 and Bu,j = Bv,i = 1 then rows (or
columns) are changed so that Bu,i = Bv,j = 1 and Bu,j = Bv,i = 0 : values 0
and 1 are swapped. By construction, such a swap does not modify column and
row margins. These margins give the number of occurrences of symbol ’1’ (or
symbol ’0’, its dual symbol) for each column and each row. An example is given
in Fig. 1. Boolean matrix B′ is obtained from matrix B via a single swap such
that u = 2, v = 4, i = 1 and j = 3. Swapped 0’s and 1’s are underlined.

In [23], Ryser shows that it is possible, starting from a given Boolean matrix,
to generate all possible Boolean matrices having the same row and column mar-
gins by applying a series of swaps, each swap being applied to the latest matrix
that had been obtained. In [5], on the basis of this result, the authors show that it
is possible to randomly generate equiprobable matrices having the same row and
column margins. More precisely, starting from a given Boolean matrix, a series of
swap is performed by choosing rows and columns at random. Rows and columns
can be chose more than once. As a consequence, swaps can be undone. Each swap
can be seen as a random step from a vertex to another one in a graph whose ver-
tices represent all possible matrices and whose edges represent transitions that
can be performed by swapping 0’ s and 1’s. The series of swaps can thus be inter-
preted as a random walk on a graph that, in turn, can be formalized as a Markov

194 N. Méger et al.

B =

⎛

⎜⎜⎝

0 1 0 0
1 0 0 1
1 0 1 1
0 0 1 0

⎞

⎟⎟⎠ , B′ =

⎛

⎜⎜⎝

0 1 0 0
0 0 1 1
1 0 1 1
1 0 0 0

⎞

⎟⎟⎠

Fig. 1. Boolean matrix B′ is obtained from B by swapping underlined values. Both
matrices have the same row and column margins.

chain. In such a chain, the authors explain that the probability of state (i.e., each
vertex/matrix when considering the graph) to be reached by a sequence of tran-
sitions can differ from one state to another. The proposed solution consists in
adding self-loops to have all vertices being reached by the same amount of edges,
which guarantees that vertices, and thus Boolean matrices are equiprobable [5].
One important question remains: how many random walk steps are needed to
get a Boolean matrix that is sufficiently randomized, i.e., that sufficiently differs
from the actual dataset? This is still an open research question. See [3] and [2] for
discussions regarding the obtention of p-values using a Markov chain. Neverthe-
less, empirical results are available (e.g., [10]). Holding in place with self-loops
is not efficient when trying to get data sets that are sufficiently randomized. An
optimization can be achieved by relying on the Metropolis-Hastings algorithm
(e.g., [5] or [10]). Another simpler and efficient optimization is proposed in [10].
It is based on the same approach than [5] but requires less self-loops. It relies
on a set P containing all pairs (u, i) such that Bu,i = 1. This structure is made
available throughout the whole algorithm. The swapping procedure differs from
the standard one: u, v, i and j are not fully chosen at random. They are chosen
by randomly selecting two pairs (u, i) and (v, j) in P . If pairs (u, j) and (v, i)
are not in P , then Bu,j = Bv,i = 0 and the swap is made effective. Otherwise,
the swap attempt is counted as a self-loop. By avoiding a full random walk, the
convergence is accelerated and the overhead induced by the management of P
is absorbed. In [10], using this algorithm, it is empirically estimated that the
number of random walk steps should be in order of the number of 1’s of the
matrix to converge to a sufficiently randomized Boolean matrix.

Swap randomization is basically applied to Boolean matrices to assess data
mining results using p-values. The bottom line is to define a null hypothesis
stating that the result observed for the actual dataset is likely to be observed
on randomized datasets having the same structure, i.e., the same column and
row margins. If the null hypothesis is rejected then the result is considered to
be significant. In order to run such a test, a metric of interest has to be chosen.
With regards to correlations, it is proposed in [10] to compute the number of
correlations or the maximum and the minimum correlation values. The same
kind of strategy is also used to analyze sets of frequent itemsets by consider-
ing the number of extracted frequent itemsets, the fraction of frequent itemsets
that are preserved and the fraction of frequent itemsets that disappear. For this
latter case, the analysis is run by directly comparing these numbers and frac-
tions, without using p-values. Still, if required, it would be possible to compute

Swap Randomization of Bases of Sequences 195

them. Finally, clusterings are studied through clustering errors. Besides global
models, local patterns such as frequent itemsets can also be evaluated individu-
ally through their support measure directly or via p-values (e.g., [10]) or [15]).
The ratio between the support observed on the actual dataset and the mean
support observed for randomized datasets is also mentionned as an interesting
alternative. The experiments reported in [5], [9], [10] or [15] all demonstrate the
potential of the swap randomization approach in the case of Boolean matrices.

With regard to a m × n non-Boolean symbolic matrix S, i.e., a matrix con-
taining elements defined with more than two distinct symbols such as ‘0’ and
‘1’, the standard Boolean swap defined in [23] can be extended as follows : let
u and v be two rows, and let i and j be two columns. If Su,i = Sv,j = α and
Su,j = Sv,i = β with α and β two distinct symbols, then rows (or columns)
are changed so that Su,i = Sv,j = β and Su,j = Sv,i = α: symbols α and β
are swapped. This symbolic swap preserves row and column margins. For each
symbol used to define S, these margins give the number of its occurrences for
each row and each column. A symbolic swap is illustrated in Fig. 2. Non-boolean
symbolic matrix C ′ is obtained from C via a single swap such that u = 1, v = 3,
i = 1 and j = 2. Swapped symbols ‘2’ and ‘3’ are underlined. Both matrices
share the same row and column margins. Sadly, it is not possible to generate
all non-Boolean symbolic matrices having the same row and column margins by
swapping data. Fig. 2 gives an example: no swap series can be found to trans-
form D into D′ though both matrices have the same row and column margins.
Consequently, if swap randomization is performed on such matrices, then swap
randomized datasets must be compared with the actual dataset to check whether
they sufficiently differ from each other.

Following the principles of swap randomization as defined for Boolean matri-
ces, we aim to assess GFS-patterns by randomizing bases of sequences, and more
specifically symbolic SITS. This randomization is thus required to maintain a
fine-grained structure of the dataset while breaking event connectivity within
each image and event ordering within each pixel evolution sequence. This raises
the following question: which structure can be preserved? In order to break event
connectivity and ordering only, we propose to maintain event type frequencies
within each image and each pixel evolution sequence. This can be achieved by
considering spatiotemporal swaps, i.e symbolic swaps. Indeed, as long as more
than two even types are considered, a symbolic SITS representing n acquisitions
of m pixels can be transformed into a m × n non-Boolean symbolic matrix (and

C =

⎛

⎝
3 2
1 1
2 3

⎞

⎠ , C′ =

⎛

⎝
2 3
1 1
3 2

⎞

⎠ , D =

⎛

⎝
1 2
2 3
3 1

⎞

⎠ , D′ =

⎛

⎝
2 1
3 2
1 3

⎞

⎠

Fig. 2. Non-boolean symbolic matrix C′ is obtained from C by swapping underlined
values. C and C′ have the same row and column margins. D′ can not obtained from
D by swapping data though they share the same column and row margins.

196 N. Méger et al.

vice versa). In such a matrix, an element located at row k and column l gives
the event type describing a pixel whose coordinates are mapped bijectively to k
in the lth image. Consequently, in order to swap randomize a symbolic SITS, we
propose to adapt the algorithm described in [10] by performing a series of swap
attempts which are defined as follows:

Definition 1. (swap attempt) Let S be a m × n non-Boolean symbolic
matrix representing a symbolic SITS defined over E, the set of event types. Let
P = {{(u, i), (v, j)}|Su,i = Sv,j = α, ∀α ∈ E}. A swap attempt is selecting
p = {(u, i), (v, j)} = α ∈ P randomly. If ∃ p′ ∈ P such that p′ = {(u, j), (v, i)} =
β | β �= α, then a symbolic swap is performed so that Su,i = Sv,j = β and
Su,j = Sv,i = α. Otherwise no swap is performed but it is still counted as a
self-loop.

By performing such spatiotemporal swaps, a first structure level of SITS
is maintained, i.e., event type frequencies. Maintaining event type frequencies
in images is equivalent to preserving their histograms which are standard first
level image descriptors [11]. With respect to pixel evolution sequences, their first
structure level can also be given by event type frequencies. From the application
point of view, this makes sense. At the image level, an image affected by clouds
should not be converted into an image expressing the presence of vegetation (and
vice versa). Similarly, vegetation should not be transformed into a glacier. At the
pixel evolution sequence level, since each sequence relates to a specific location,
if the presence of water is expressed through a sequence, then there is no reason
to change it to a sequence relating to bare soils. The same holds for a pixel whose
sequence is giving variations between snow and rocks with little vegetation: swap
randomization should not transform it into a sequence of permanent vegetation.
Maintaining the spatiotemporal structure of a SITS is a strategy similar to the
one adopted in [24] to randomize time series collections. In that case, a time
series collection is represented by J real-valued matrices, where J is the number
of wavelet coefficients used to describe the series, i.e., the maximum detail level.
An element located at position (i, j) of the f th matrix gives the value of the f th

wavelet coefficient for series i at time point j. These matrices are independen-
tely randomized by approximately preserving the temporal distributions (row
distributions) and the series domain distributions (column distributions) of the
wavelet coefficients. Hence, this approach could be adapted to SITS random-
ization. Nevertheless, in addition to performing a discrete wavelet transform of
the original time series and randomizing several matrices (one per coefficient),
an inverse discrete wavelet transform is required to transform each random-
ized dataset back to the original representation. Finally, if one were to assess
GFS-patterns using this approach, then every randomized dataset should also
be quantized. Back to our approach, even if the SITS first structure level is pre-
served, the connectivity and the order of the event types forming GFS-patterns
is affected. This allows to detect the GFS-patterns that are due or not to such
a structure. As for the algorithm of [10], convergence is accelerated through the
use of set P and self-loops allow to generate equiprobable datasets. However, in

Swap Randomization of Bases of Sequences 197

practice, as already stated previously in this section, it is not possible to gener-
ate all m × n non Boolean symbolic matrices (and thus symbolic SITS) having
the same row and column margins. Still, as shown empirically in Sect. 5, it is
possible to generate and explore randomized datasets that differ from each other
and that also differ from the actual SITS sufficiently. As long as it makes sense
to preserve row and column margins, this kind of technique can also be applied
to other types of bases of sequences.

4 GFS-Pattern Assessment and SITS Summarization

Using the SITS swap randomization approach proposed in Sect. 3, we aim to
assess GFS-patterns individually. As explained in Sect. 3, when considering the
swap randomization of Booleean matrices, frequent itemsets can be assessed
through their support measures directly, support ratios or p-values (e.g., [10])
or [15]). With regard to GFS-patterns, considering their support measure only
is not sufficient since their spatiotemporal nature is not taken into account fully.
The coordinates and the temporal locations (starting dates, ending dates, times-
pans, etc.) of the pixels affected by a GFS-pattern must also be considered.
Therefore, we propose to focus on pixel coordinates and ending dates by rely-
ing on SpatioTemporal Localization Map (STL-maps). An STL-map is an image
generated for each GFS-pattern given a symbolic SITS (randomized or not). In
such an image, if a pixel is covered by the GFS-pattern for which the image was
generated, then its value gives the ending date of the earliest occurrence available
for the corresponding coordinates. Otherwise, no ending date is stored (a black
pixel value is used). By construction, STL-maps also include the information
related to the support of GFS-pattern. As shown in Sect. 5, and though other
types of temporal locations are also interesting, considering ending dates only
allows to perform an efficient and reliable GFS-pattern assessment. Efficiency is
also achieved by considering a single swap randomized symbolic SITS only: this
avoid generating lots of STL-maps and running numerous comparisons.

How to compare the STL-map M , obtained on the actual SITS for a pattern
α, with M ′, the STL-map obtained for α on a single swap-randomized SITS?
How to compare them without having to make any assumption about their rela-
tion? At this stage, we are interested by the following two settings:

– M and M ′ are dissimilar: M is singular as it can not be obtained for a ran-
domized dataset with the same structure in terms of event type frequencies,

– M and M ′ are similar: the swap-randomization does not destroy the occur-
rences of α and thus C expresses a prominent phenomena explained by the
margins.

The first setting is in line with the standard swap randomization approach while
the second one is usually not considered since one-tailed tests are focused on.
Still, the second setting is of primary interest. Geographical zones affected by few
changes are expressed through event types that are sowewhat always the same.
Hence, the corresponding events are hardly randomized. If we were to reject

198 N. Méger et al.

them, the SITS exploration would be biased towards GFS-patterns expressing
changes and interesting areas such as deserts, lakes or cities would disappear
from extracted descriptions. How to assess and distinguish the latter two settings
using a single measure? Let Ω be the sample space containing all ending dates.
Let us consider each ending date x of M as the realization of a discrete random
variable X and each ending date y of M ′ as the realization of a discrete random
variable Y . We propose to rely on the Normalized Mutual Information (NMI)
as presented in details in [6].

NMI(X;Y) =

∑
x,y∈Ω2 P (x, y) log P (x,y)

P (x)P (y)

min(H(X),H(Y))
(1)

where H(X) = −∑
x∈Ω P (x) log P (x) and P (x, y) represents the probability of

co-occurrence of the two ending dates x and y at the same pixel position, in M
and M ′. The NMI quantifies the information content shared by two random vari-
ables. In other words, knowing the realizations of two random variables X and
Y , it measures the extent to which the realizations of variable X can be deduced
from the ones of Y , and vice versa. It can been therefore seen as a measure of
the mutual dependence between X and Y . The more X and Y are independent
(respectively dependent), the more the NMI tends to 0 (respectively 1) since
no bit is shared between the two variables. A particular case must be handled:
the black pixels. These pixels show no realizations, no ending dates. Since we
extract GFS-patterns that may only cover little fractions of the observed zone,
black pixels can be numerous with respect to non-black ones. If these numerous
black pixels were to be considered as showing another special ending date, a
lot of black pixels in M could be associated to other black pixels in M ′: their
joint probability would be high, raising the NMI measure artificially and mask-
ing the other, but more important, joint probabilities. Consequently, the joint
probability of black pixels is not considered. Nevertheless, because of the swap-
randomization, black pixels can differ from M to M ′: these other cases are taken
into account thanks to joint probabilities having one of the two values set to a
black pixel value.

Once the NMI is computed for each STL-map/GFS-pattern, then STL-
maps/GFS-patterns are ranked accordingly. The NMI-based ranking that is
obtained can be easily browsed to build a SITS summary by focusing on both
ends of the ranking. Phenomena that can not be obtained on a swap-randomized
SITS have low NMI scores and prominent phenomena that are still present in
a swap-randomized STIS have high NMI scores. As shown in Sect. 5, if several
swap randomized SITS are computed, then rankings are stable for high and low
NMI GFS-patterns: a single swap randomized SITS can thus be considered. By
relying on the NMI, no assumption about the relation between the ending dates
is done. Beside extracting GFS-patterns, this allows us to produce summaries
which are as unsupervised as possible.

Swap Randomization of Bases of Sequences 199

5 Experiments

The swap randomization approach presented in this paper was assessed by con-
ducting experiments on two different SITS, a radar one and an optical one. Their
characteristics are given by Table 1. For each SITS, raw data are transformed into
a single synthesized channel dedicated to the application domain. Regarding Etna,
phase delays were computed [7] by Marie-Pierre Doin (ISTerre laboratory, CNRS).
These floats express vertical and/or lateral displacements w.r.t. a master acquis-
tion. An example is given by Fig. 9 where Mount Etna is revealed in the upper part
of the image. For NC, the Normalized Difference Vegetation Index (NDVI) [4] was
generated by Rémi Andréoli (Bluecham S.A.S. www.bluecham.net). It expresses
the presence of biomass. An example is shown in Fig. 10: the ocean (resp. land) is
mainly located in the lower right part (resp. upper left part) of the image. Radar
shadows, atmospheric perturbations, clouds and sensor defaults are still present in
these synthesized channels. Preprocessing details are available in Table 1.

The experiments were run on a standard computing platform (a single core on
a 2.7 GHz Intel Core i7) using our own prototype SITS-miner implemented in C
and Python. On the side of parameter settings, average connectivity threshold κ
is set to 5 neighbors to extract zones making sense spatially. This is a standard
setting [17]. In order to assess reasonable amounts of GFS-patterns, we focus
on maximal ones, as explained in Sect. 2. With regard to minimum support
threshold σ, it is set such that the richest/most diverse description is obtained.
This achieved by finding the lowest value of σ such that the number of maximal
GFS-patterns is maximum: the widest possible range of surfaces, from σ to
the surface of the image itself, is considered. Following this strategy, minimum
support threshold σ was found to be 7000 for both SITS (covering about 2.11%
of an image in Etna and 2.66% in NC). By consuming no more than 655 MB
of RAM and in less than one minute, 508 maximal GFS-patterns are extracted
from Etna and 297 maximal GFS-patterns are mined in NC2.

These patterns were assessed using the swap randomization approach and the
NMI ranking procedure described in this paper. Regarding swap randomization,
the parameter to be set is Ns, the number of swap attempts to be performed. In
[10], it is empirically estimated that Ns should be in order of the number 1’s of the
matrix to converge to a sufficiently randomized Boolean matrix. In our case, we will
consider the number of events multiplied by about 20 to adopt a very conservative
setting: Ns = 100.000.000. This setting makes sense since it can be empirically
shown that the two SITS are sufficiently randomized to get stable NMI values for
the patterns we are interested in, i.e., those located at both ends of the NMI rank-
ings (see Sect. 4). Let us the consider the 20 highest and the 20 lowest NMI pat-
terns obtained for 100M swaps. Their respective NMI values were also computed
for Ns = 20M, 40M, . . ., 140M, and are reported as randomizations labelled 0 to
6 in the figures 3, 4, 5 and 6. As it can be observed, they rapidly converge to levels
that are quite stable, especially around 100M of swaps. With regard to swapped

2 The reader is referred to [17] and [18] for discussions regarding the impact of σ and
of the number of event types on the number of extracted patterns.

200 N. Méger et al.

Table 1. SITS properties, preprocessing and extraction settings.

SITS name Etna NC

provider/credit ESA USGS/NASA Landsat

satellite ENVISAT LANDSAT 7

SITS type Synthetic Aperture Radar Multispectral

time period 16 images 2003-2010 16 images 2000-2011

site Geohazards Supersite:
Mount Etna

UNESCO World Heritage Site:
lagoons of New Caledonia

application crustal deformation monitoring soil erosion monitoring

data quality pixel values are not always avail-
able (radar shadows), atmo-
pheric perturbations

a lot of clouds, sensor defaults

image size 598 × 553 513 × 513

resolution 160 m 30 m

synthesized channel phase delays NDVI

discretization quantization/all images
(33rd and 66th centiles)

quantization/each image
(33rd and 66th centiles)

event types ‘1’: motion towards satellite
(satellite on the left)
‘2’: stable
‘3’: motion away from satellite

‘1’: few biomass
‘2’: average biomass
‘3’: lot of biomass

parameters σ = 7000, κ = 5 σ = 7000, κ = 5

randomized SITS themselves, we generated 1000 swap randomized datasets for
each SITS to evaluate them. Though 73.9% of the Etna events and 16.2% of the
NC events can not be swapped, in average, 6.5% of the Etna events and 32.9%
of the NC events were swapped. The standard deviation of these swapped event
rates tends to 0, which shows the stability of our swap randomization process.
Finally, if we consider a single randomization and focus on effective swaps (self-
loops are not counted), it should be mentioned that 1.070.219 different swap ran-
domized datasets are explored when randomizing Etna. Among them, one dataset
is generated 8 times and others are obtained only once. In the case of SITS NC,
8.911.591 different datasets are generated once, one dataset is obtained 4189 times
and another one is reach 44 times. Consequently, and though no all SITS having
the same column and row margins can be reached (see Sect. 3), the proposed swap
randomization approach does explore a lot of different SITS having the same struc-
ture. As proposed in Sect. 4, for efficiency reasons, rankings are established using
a single swap randomized dataset. This makes sense for both SITS since rankings
are stable for high and low NMI GFS-patterns. As shown by Fig. 7 and Fig. 8, the
rank standard deviation is less than 1 for both ends of the ranking. It was computed
using the rankings obtained for the 1000 swap randomized datasets we generated
for both SITS. Similar results are obtained when plotting the rank standard devi-
ation against the rank mode or a reference ranking. For both SITS, memory con-
sumption and execution times do no not exceed 1.66 GB of RAM and 700 seconds
to perform the pattern extraction, the STL-map computation for the maximal pat-
terns, a single randomization and the final ranking of STL-maps.

Swap Randomization of Bases of Sequences 201

Fig. 3. 20 highest NMI values vs. Ns,
Etna.

Fig. 4. 20 lowest NMI values vs. Ns,
Etna.

Fig. 5. 20 highest NMI values vs. Ns,
NC.

Fig. 6. 20 lowest NMI values vs. Ns, NC.

Fig. 7. Rank std. vs. rank mean, Etna. Fig. 8. Rank std. vs. rank mean, NC.

202 N. Méger et al.

Fig. 9. Total phase delays, from negative
values (black) to positive values (white),
2003/01/22, Marie-Pierre Doin, Etna.

Fig. 10. NDVI, from low values (black)
to high values (white), 2004/01/13,
Bluecham S.A.S., NC.

Fig. 11. STL-map: 1st lowest NMI pat-
tern 〈1,1,2,1,1,1,1,3〉, Etna.

Fig. 12. STL-map: 1st highest NMI pat-
tern 〈1,2,3,3,3,3,3,3,3,3,3,3,3,3,3〉, Etna.

Fig. 13. STL-map: 6th lowest NMI pat-
tern 〈2,2,1,1,1,2〉, NC.

Fig. 14. STL-map: 2nd highest NMI pat-
tern 〈3,3,3,3,3,3,3,3,3,3,3,3,3,3〉, NC.

Swap Randomization of Bases of Sequences 203

Fig. 15. Color scale: from the SITS starting date in red to the SITS ending date in
violet.

Regarding qualitative results, it is possible to extract known and unknown
meaningful phenomena, at both ends of the NMI rankings and for both datasets.
Different STL-maps, representative of the well ranked ones, are shown in
figures 11-12 (for the Etna SITS) and in figures 13-14 (for the NC SITS). Pixels
where there is no occurence of the pattern are represented in black for NC and
in gray for Etna (depicting a digital elevation model available for the area). The
color scale used to represent the occurrence dates is given Fig. 15. In Fig. 11,
pattern 〈1,1,2,1,1,1,1,3〉 (1st lowest NMI pattern) shows, at the foot of the vol-
cano, a zone moving towards the satellite before going away from the satellite
(for this SITS the location of the satellite is on the left side of the image). It
matches a sedimentary zone that is affected by movements due to subduction
plates. In Fig. 12, pattern 〈1,2,3,3,3,3,3,3,3,3,3,3,3,3,3〉 (1st highest NMI pattern)
denotes a short motion towards the satellite and then a very long motion away
from the satellite. It covers a part of the east flank of the volcano, called the
Valle del Bove, which is known to be slipping into the sea. In Fig. 13, pattern
〈2,2,1,1,1,2〉 (6th lowest NMI pattern) traces losses of vegetation due to anthropic
activities (mining area at center and middle-left, mining facilities bottom-left).
It also uncovers the impact of drought on a lakeshore (top-left) and exhibits sed-
iment deposition (top-right). Notice that the color scale shows clear differences
among the dates of occurrence of the phenomena. In Fig. 14, the simple pattern
〈3,3,3,3,3,3,3,3,3,3,3,3,3,3〉 (2nd highest NMI pattern) locates dense vegetation
along the coastline. The STL-maps obtained on the NC SITS are commercial-
ized through the web-based decision support system operated by Bluecham S.A.S
(Qëhnelö plateform www.yate.nc). Finally, the fact that encouraging results are
obtained for very different datasets (radar or optical, different spatiotemporal
resolutions and different rates of swappable events) shows the general nature of
the approach.

6 Conclusion

This paper extends the swap randomization of Boolean matrices to the swap
randomization of a base of sequences representing a Satellite Image Time Series
(SITS). The proposed approach is aimed at assessing spatiotemporal patterns
extracted from SITS. It preserves event frequencies, spatially and temporally,
while breaking event connectivity and ordering. Once swap randomized datasets
are generated, patterns are ranked using the Normalized Mutual Information
(NMI). Low NMI patterns underline singular phenomena that are unlikely in
randomized datasets while high NMI patterns express prominent phenomena
that cannot be destroyed via swap randomization. Experiments on an optical

204 N. Méger et al.

and a radar SITS evidence the stability of the swap randomization approach and
its ability to explore a lot of different datasets. They also confirm that efficiency
can be achieved by considering a single swap randomized dataset. Since the
method is made as unsupervised as possible, extracted patterns allow to explore
known and unknown phenomena, which gives access to different application
domains ranging from agricultural monitoring to crustal deformation monitoring.
Results regarding soil erosion monitoring are already commercialized. Future
work include handling multispectral SITS, building clustering on top of extracted
patterns and pushing NMI constraints within the extraction process.

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of
the Eleventh International Conference on Data Engineering, Taipei, Taiwan,
pp. 3–14, March 1995

2. Besag, J.: Markov chain monte carlo methods for statistical inference (2004).
http://www-users.mat.umk.pl/∼wniem/SemMgr/besag MCMC.pdf

3. Besag, J., Clifford, P.: Generalized monte carlo significance tests. Biometrika 76(4),
633–642 (1989)

4. Chuvieco, E., Huete, A.: Fundamentals of Satellite Remote Sensing. CRC Press,
Boca Raton (2009)

5. Cobb, G.W., Chen, Y.: An application of markov chain monte carlo to community
ecology. The American Mathematical Monthly 110(4), 265–288 (2003)

6. Cover, T.M., Thomas, J.A.: Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience (2006)

7. Doin, M., Lodge, F., Guillaso, S., Jolivet, R., Lasserre, C., Ducret, G., Grandin, R.,
Pathier, E., Pinel, V.: Presentation of the small baseline nsbas processing chain on
a case example: the etna deformation monitoring from 2003 to 2010 using envisat
data. In: Proceedings of the Fringe Symposium, pp. 3434–3437. ESA SP-697, ESA
Communications, Frascati, September 2011

8. Fisher, R., Dawson-Howe, K., Fitzgibbon, A., Robertson, C., Trucco, E.: Dictionary
of Computer Vision and Image Processing. John Wiley and Sons, New York (2005)

9. Gionis, A., Mannila, H., Mielikäinen, T., Tsaparas, P.: Assessing data mining
results via swap randomization. In: Proceedings of the Twelfth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Philadelphia,
PA, USA, pp. 167–176, August 2006

10. Gionis, A., Mannila, H., Mielikäinen, T., Tsaparas, P.: Assessing data mining
results via swap randomization. TKDD 1(3) (2007)

11. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall
Inc., Upper Saddle River (2006)

12. Good, P.: Permutation tests : a practical guide to resampling methods for testing
hypotheses. Springer series in statistics. Springer, New York (2000)

13. Gueguen, L., Datcu, M.: Image time-series data mining based on the information-
bottleneck principle. IEEE Trans. Geoscience and Remote Sensing 45(4), 827–838
(2007)

14. Guttler, F., Ienco, D., Teisseire, M., Nin, J., Poncelet, P.: Towards the use of
sequential patterns for detection and characterization of natural and agricultural
areas. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU
2014, Part I. CCIS, vol. 442, pp. 97–106. Springer, Heidelberg (2014)

http://www-users.mat.umk.pl/~wniem/SemMgr/besag_MCMC.pdf

Swap Randomization of Bases of Sequences 205

15. Hanhijärvi, S., Ojala, M., Vuokko, N., Puolamäki, K., Tatti, N., Mannila, H.: Tell
me something I don’t know: randomization strategies for iterative data mining. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Paris, France, pp. 379–388, June-July 2009

16. Honda, R., Konishi, O.: Temporal rule discovery for time-series satellite images
and integration with RDB. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS
(LNAI), vol. 2168, p. 204. Springer, Heidelberg (2001)

17. Julea, A., Méger, N., Bolon, P., Rigotti, C., Doin, M., Lasserre, C., Trouvé, E.,
Lazarescu, V.: Unsupervised spatiotemporal mining of satellite image time series
using grouped frequent sequential patterns. IEEE Trans. Geoscience and Remote
Sensing 49(4), 1417–1430 (2011)

18. Julea, A., Méger, N., Rigotti, C., Trouvé, E., Jolivet, R., Bolon, P.: Efficient spatio-
temporal mining of satellite image time series for agricultural monitoring. Trans.
MLDM 5(1), 23–44 (2012)

19. Luo, C., Chung, S.M.: Efficient mining of maximal sequential patterns using mul-
tiple samples. In: Proceedings of the 2005 SIAM International Conference on Data
Mining, SDM 2005, Newport Beach, CA, USA, pp. 415–426. SIAM, April 2005

20. Pei, J., Han, J., Wang, W.: Constraint-based sequential pattern mining: the
pattern-growth methods. J. Intell. Inf. Syst. 28(2), 133–160 (2007)

21. Petitjean, F., Inglada, J., Gançarski, P.: Satellite image time series analysis under
time warping. IEEE Trans. Geoscience and Remote Sensing 50(8), 3081–3095
(2012)

22. Rigotti, C., Lodge, F., Méger, N., Pothier, C., Jolivet, R., Lasserre, C.: Monitoring
of tectonic deformation by mining satellite image time series. In: Reconnaissance
de Formes et Intelligence Artificielle (RFIA), Rouen, France, June 2014

23. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Canadian
Journal of Mathematics 9, 371–377 (1957)

24. Vuokko, N., Kaski, P.: Significance of patterns in time series collections. In: Pro-
ceedings of the Eleventh SIAM International Conference on Data Mining, SDM
2011, April 28–30, Mesa, Arizona, USA, pp. 676–686 (2011)

25. Zaki, M.J.: Sequence mining in categorical domains: Incorporating constraints. In:
Proceedings of the Ninth International Conference on Information and Knowledge
Management, CIKM 2000, pp. 422–429. ACM, New York, November 2000

The Difference and the Norm — Characterising
Similarities and Differences Between Databases

Kailash Budhathoki and Jilles Vreeken(B)

Max Planck Institute for Informatics and Saarland University, Saarbrücken, Germany
{kbudhath,jilles}@mpi-inf.mpg.de

Abstract. Suppose we are given a set of databases, such as sales records
over different branches. How can we characterise the differences and the
norm between these datasets? That is, what are the patterns that charac-
terise the general distribution, and what are those that are important to
describe the individual datasets? We study how to discover these pattern
sets simultaneously and without redundancy – automatically identify-
ing those patterns that aid describing the overall distribution, as well as
those pointing out those that are characteristic for specific databases. We
define the problem in terms of the Minimum Description Length prin-
ciple, and propose the DiffNorm algorithm to approximate the MDL-
optimal summary directly from data. Empirical evaluation on synthetic
and real-world data shows that DiffNorm efficiently discovers descrip-
tions that accurately characterise the difference and the norm in easily
understandable terms.

1 Introduction

Suppose we are given a set of databases, such as the sales records over differ-
ent branches of a chain. How can we characterise the differences and the norm
between these datasets? That is, what are the patterns that are common to all
databases, and what are those that are important to characterise the individual
databases? For example, whereas bread and butter may be an important pattern
in all stores, pasta and ketchup may only be descriptive for the store on campus.
When we mine only the complete data we risk missing the locally important pat-
terns, and when we mine the databases individually we risk missing the bigger
picture. We want to discover all important patterns, without redundancy, and
such that it is clear which databases they are characteristic for.

More in particular, given a set of databases, we want to discover a set of
patterns per database or combination of databases that the user is interested in.
These pattern sets should only include patterns that are descriptive for the
databases associated with the set, and overall these sets should be as non-
redundant as possible. That is, together these pattern sets should succinctly
summarise the given data.

We formalise this goal in terms of the Minimum Description Length prin-
ciple [5,13]. That is, we define the best model as the set of pattern sets that
describes the data most succinctly without loss. By this objective, a pattern
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 206–223, 2015.
DOI: 10.1007/978-3-319-23525-7 13

The Difference and the Norm Characterising Similarities and Differences 207

will only be included in the model if it simplifies the description – if it aids
compression. This means our model will not be redundant, nor will it include
noise.

To describe an individual database we only have to consider those patterns
that are associated with that database. This allows us to associate patterns
with the databases they are most characteristic for. As characteristic does not
necessarily mean ‘same frequency’, we do not want to punish patterns for having
different frequencies in the different databases they are associated with. To avoid
such undue bias we carefully construct a score for this setup using prequential
coding, a form of Refined MDL [5].

To discover good model directly from data we introduce the DiffNorm algo-
rithm. DiffNorm iteratively searches for that pattern that maximally simplifies
the current description. To this end it searches for those itemsets X and Y in its
model that are most frequently co-used to describe the same transaction, and
considers their union as a candidate pattern. The intuition is that these codes
for X and Y are redundant, and that by introducing that X ∪ Y to the model
the description will become more succinct.

Empirical evaluation on synthetic and real-world data shows that DiffNorm
efficiently discovers descriptions that in easily understandable terms accurately
characterise the difference and the norm. On synthetic data it recovers the
ground truth of both local and global patterns, without picking up on noise.
On real world data it discovers succinct and interpretable pattern sets that
characterise the split over the data well.

The remainder of this paper is organised as usual. For readability we postpone
details on selected derivations to the online Appendix.1

2 Related Work

Comparing two or more transaction databases is a common task, yet there exist
surprisingly few techniques that can characterise similarities and differences of
databases in easily understandable terms. Traditional frequent pattern [1] as
well as supervised pattern mining approaches [10] for example, discover far too
many patterns for the result to be interpretable. Pattern set mining circumvents
the pattern explosion [17]. Existing unsupervised methods such as Tiling [4],
Slim [14], and mtv [8] only characterise one database at a time, while supervised
methods only describe what sets databases apart. Running these algorithms on
multiple (combinations of) databases and comparing the results does not work
in practice – small differences in the data distribution can lead to very different
pattern sets which are difficult to compare.

Earlier, Vreeken et al. [16] proposed a dissimilarity measure for transaction
data based on Krimp [17]. The main idea is to infer a pattern set per database,
and then measure how many bits more we need to describe the other databases
with these patterns – the more similar the data, the small the difference. Here,

1 http://eda.mmci.uni-saarland/diffnorm/

http://eda.mmci.uni-saarland/diffnorm/

208 K. Budhathoki and J. Vreeken

on the other hand, we are interested in characterising all databases at the same
time, without redundancy.

In Joint Subspace Matrix Factorization (JSMF) the goal is to discover the
common subspace between the two datasets, as well as those that are represen-
tative of the specific datasets. Most relevant, as it considers binary databases, is
Joint Subspace Boolean Matrix Factorization (JSBMF) [9]. To avoid overfitting,
it requires the user to specify the number of patterns per pattern set. Our app-
roach is parameter free. Moreover, as JSMF is defined for pairs of databases, and
not trivially extendable to arbitrary combinations of databases, it cannot simul-
taneously and without redundancy find the patterns over multiple subspaces.

3 Preliminaries

In this section we discuss preliminaries and introduce notation.

3.1 Notation

We consider transaction data. Let I be a set of items, e.g. products for sale in
a store. A transaction t ∈ P(I) then corresponds to the set of items a customer
bought. A database D over I is a bag of transactions, e.g. the sales transactions
on a given day. We consider bags D of d such databases, e.g. the sales transactions
for different branches of store.

We assume this bag to be indexed such that by Di ∈ D we can access the
transactions sold at the i’th branch. Let J = {1, · · · , d} be the set of indexes.
An index set j ∈ P(J) then identifies a subset of databases {Di ∈ D | i ∈ j}.
Finally, U ⊆ P(J) identifies those subsets of databases the user specifies as
interesting.

We say that a transaction t ∈ D supports an itemset X ⊆ I, iff X ⊆ t. The
support suppD(X) of X in D is the number of transactions in the database where
X occurs. The relative support of X is its frequency, freqD(X) = suppD(X)/|D|,
with |D| for the number of transactions in D. Further, let ||D|| =

∑
t∈D |t| the

total number of items. For D, we write |D| =
∑

Di∈D |Di|, and define ||D||
analogue.

All logarithms are to base 2, and by convention we use 0 log 0 = 0.

3.2 MDL, a Brief Primer

The MDL (Minimum Description Length) [5,12] principle, like its close cousin
MML (Minimum Message Length) [18,19], is a practical version of Kolmogorov
complexity [6,7]. All three embrace the slogan Induction by Compression. For
MDL, this principle can be roughly described as follows.

Given a set of models M, the best model M ∈ M is the one that minimises

L(M) + L(D | M)

The Difference and the Norm Characterising Similarities and Differences 209

where L(M) is the length, in bits, of the description of model M , and L(D | M)
is the length, in bits, of the description of the data when encoded with M .

This is called two-part MDL, or crude MDL. As opposed to refined MDL,
where model and data are encoded together [5]. We use two-part MDL because
we are specifically interested in the model: the pattern sets that yield the best
compression. Although refined MDL has stronger theoretical foundations, it can
only be computed in special cases. From refined MDL we will use prequential
coding to encode the data without bias. Note that MDL requires the compression
to be lossless in order to allow for fair comparison between different M ∈ M.

To use MDL in practice we have to define our model class M, how to describe
a model M ∈ M, and how a model M describes the data D. In MDL we are only
interested in the length of the description, and never in the encoded data. That
is, we are only concerned with the length of the encoding, not with materialised
codes.

4 MDL for the Difference and the Norm

We first informally introduce our problem, and then formalise our objective.

4.1 The Problem, Informally

Suppose we are given a bag D of transaction databases. Loosely speaking, by
MDL we are after those patterns – itemsets – that together describe these
databases best. More in particular, we want to optimally jointly characterise
the database subsets U that the user specified as interesting. Our model S will
hence consist of a set of patterns Sj for every j ∈ U . Every individual database
Di ∈ D will be described – characterised – using the union of all Sj ∈ S associ-
ated with Di in the sense that i is an element of j. This allows us to associate
patterns with that database subset j they are most characteristic for. Not only
does this makes the overall description of the databases more efficient – no dupli-
cation is necessary – it also makes the model more insightful – if a pattern is
characteristic for all databases, it will be included in the pattern set that is asso-
ciated with all databases, when it is characteristic only for one database it will
only be included in the pattern set associated with that particular database, etc.

We will now formally introduce our objective.

4.2 Our Models

A model S is a set of pattern sets S ⊆ P(I), such that every Sj ∈ S is associated
with one of the database subsets j ∈ U the user identifies as interesting. To
describe an individual database Di ∈ D, we consider the union of all pattern
sets in S that are associated with Di, and to make sure every database over
I can be encoded without loss, we also add all singletons Formally, we write
πi(S) = {Sj ∈ S | i ∈ j} for the subset of S relevant to Di, and define the
coding set Ci for Di as Ci = I ∪ ⋃

πi(S).

210 K. Budhathoki and J. Vreeken

4.3 Encoded Length of the Data

Next, we discuss how we describe data D given a model S, and in particular how
to calculate the encoded length L(D | S). We do so bottom up, starting by how
to encode an individual transaction t ∈ D given an arbitrary coding set C . We
do so using a cover function cover(t,C) that returns a set of patterns from C
such that

⋃
cover(t,C) = t.

To encode the patterns in the cover of t, we will use optimal prefix codes. The
length of an optimal prefix code is given by Shannon entropy [2], − log Pr(X).
To compute these lengths, we hence need the probability of a pattern X in the
cover of the data. Let usgD(X,C) = |{t ∈ D | X ∈ cover(t,C)}| be the number
of times a pattern X ∈ C is used in the cover of D. Wherever clear from context
we simply write usg(X), and slightly abusing notation, we say usg(C) for the
sum of usages of coding set C , i.e. usg(C) =

∑

X∈C

usg(X). The probability

of X is then Pr(X) = usg(X)∑
Y ∈C usg(Y) , and the length of its optimal prefix code

L(code(X) | C) = − log Pr(X).
More in particular, we will use a prequential coding scheme [5]. Prequential

codes are Universal codes [13], which means they are asymptotically optimal
without having to know the usages in advance. That is, unlike for Krimp [17]
we do not have to make arbitrary choices for how to encode the usages in the
model – choices that may incur undue bias. The idea behind prequential coding
is simple: after every received code we re-calculate all probabilities over the data
received so far, initialising the usages to ε. This means that at any stage we
have a valid probability distribution and hence can send optimal prefix codes.
Surprisingly, the order in which we transmit codes does not affect the encoded
length – a sum of logarithms is the logarithm of a product, of which we can move
its terms around at will.

For the encoded length of a transaction t ∈ D we have

L(t | C) = LN(|t|) +
∑

X∈cover(t,C)

L(code(X) | C) , (0)

where we first encode the cardinality of the transaction, and then the patterns
in its cover. For the cardinality, we use LN, the Universal code for integers [13]
which for n ≥ 1 is defined as LN(n) = log∗(n) + log(c0) with log∗ = log(n) +
log log(n) + To make it a valid code it has to satisfy the Kraft inequality,
and hence we set c0 = 2.865064.

For the encoded length of a database D given a coding set C we then have

L(D | C) = LN(|D|) +
∑

t∈D

L(t | C) , (0)

where we encode the number of transactions in D using LN and then each of the
transactions in turn. Aggregating the lengths of all prequential prefix codes, we
have

The Difference and the Norm Characterising Similarities and Differences 211

L(D | C) =

[

LN(|D|) +
∑

t∈D

LN(|t|)
]

+

⎡

⎢
⎢
⎢
⎣

log

usg(C)−1∏

j=0

(j + ε|C |)

∏

X∈C

usg(X)−1∏

j=0

(j + ε)

⎤

⎥
⎥
⎥
⎦

. (0)

Note that the first two terms are constant for all models for the same data, and
can hence be ignored during optimisation. The right hand term is the length of
the data when encoded using prequential coding. By common convention, for
ε = 0.5 we have

L(D | C) = LN(|D|) +
∑

t∈D

LN(|t|) + log Γ (usg(C) + 0.5|C |)−

log Γ (0.5|C |) −
∑

X∈C

log ((2usg(X) − 1)!!) − usg(X) ,

where !! denotes the double factorial defined as (2k − 1)!! =
∏k

i=1(2i − 1), and
Γ is the Gamma function, which is an extension of the factorial function to the
complex plane. That is, Γ (x + 1) = xΓ (x), with relevant base cases Γ (1) = 1
and Γ (0.5) =

√
π. We refer the interested reader to the online appendix for

more details on prequential coding and its computation. Finally, by encoding the
number of databases in D, and then simply encoding every individual database
in order, we have

L(D | S) = LN(|J |) +
∑

Di∈D
L(Di | Ci) ,

for the encoded size of D given a model S. This leaves discussing the encoding
of S.

4.4 Encoded Length of the Model

Let us first discuss L(Sj), the encoded length of a pattern set Sj ∈ S. We define

L(Sj) = LN(|Sj |) +
∑

X∈Sj

(

LN(|X|) −
∑

x∈X

log freqD(x)

)

in which we first encode the number of patterns, then their cardinalities. Third,
we transmit the elements of X using optimal prefix codes – allowing us to recon-
struct patterns up to the names of the items – and do so using the marginal item
probabilities over D. By this choice a pattern X is equally expensive regardless
of the datasets for which Sj is relevant. Note that we do not have to encode the
pattern usages as we encode the data prequentially.

Finally, for the encoded length of a model S we have

L(S) = LN(|I|) + LN(||D||) + log
(||D|| − 1

|I| − 1

)

+
∑

Sj∈S
L(Sj) ,

212 K. Budhathoki and J. Vreeken

where we encode the length of the alphabet, the number of items in the data, and
then the support per item using an index over a canonically ordered enumeration
of all possibilities of distributing ||D|| events over |I| labels. This cost is constant
for the same data and can hence be ignored when optimising the model. It is
necessary, however, if we want to compare different encodings or model classes.

4.5 The Problem, Formally

Combining the above, the total encoded length of data D and a model S is
defined as

L(D,S) = L(S) + L(D | S) .

By MDL we are after the model that minimises the total encoded length. For-
mally, our problem definition is as follows.

Minimal Pattern Sets Problem. Let I be a set of items, D a bag of transac-
tion databases over I, U a set of index sets for D, cover a cover algorithm, and
F the space of all admissible models, F = P(P(I))|U |. Find the set of pattern
sets S ∈ F with the smallest

⋃ S such that the corresponding total compressed
size L(D,S) is minimal.

The search space we have to consider for this problem is rather large – even
if we take into account that only patterns that occur in the data can be used
to describe the data. Moreover, it does not exhibit structure we can exploit
to efficiently find the optimal pattern sets, such as submodularity or (weak)
monotonicity.

Hence, we resort to heuristics.

5 Algorithm

To discover good models directly from data, we propose the DiffNorm algo-
rithm.

5.1 The Cover Algorithm

First, however, we need a cover function cover(t,C) to determine which pat-
terns from C will be used to describe transaction t. Ideally cover minimises
L(D,S). However, as there exists a complex non-linear relation between the
total encoded length and the individual usages of patterns, optimising the cover
is non-trivial [15]. We therefore adopt the greedy heuristic successfully used
in Krimp [17]. That is, we greedily cover transaction t with non-overlapping
patterns from C . We do so in Standard Cover Order, i.e. we consider the
patterns in C sorted descending on cardinality, on support, and lexicographi-
cally. The intuition is that by doing so we need as few as possible, as frequent
as possible patterns to cover t. Algorithm 1 gives the pseudo-code.

The Difference and the Norm Characterising Similarities and Differences 213

Algorithm 1. GreedyCover

Input: A transaction t over items I and a coding set C
Output: A cover(t,C) ⊆ C

1 for X ∈ C in Standard Cover Order do
2 if X ⊆ t then return{X} ∪ cover(t \ X,C) ;

3 return ∅

5.2 The DIFFNORM Algorithm

Next we discuss the DiffNorm algorithm. We give the pseudo code as Algo-
rithm 2. The main intuition is that we iteratively reduce redundancy in the cur-
rent description of the data by adding combinations of existing patterns. That
is, we take a Slim-like approach [14]. We start with empty pattern sets (line 1).
We iteratively generate candidates in the form of X ∪ Y with X,Y ∈ S ∪ I. We
consider these in order of estimated gain (2). (We postpone the details of ΔL to
Sec. 5.4.) Note that we can easily impose additional constraints (e.g. minimum
support) to accommodate user preferences.

Per candidate, we calculate the difference in bits when adding it to the coding
set for each database (line 3–4). We use these gains to determine to which pattern
set(s) Sj ∈ S we will add the candidate (5–7). We do so greedily (6). We first
sort the user specified index sets U descending on gain, cardinality, and last
lexicographically. We iteratively pick the top-most index set, and updating the
gain scores of the remaining sets by removing the gain for data sets already
covered by the chosen index sets, and stop when we cannot select an index set
with positive gain.

As the new pattern may have superseded the use of older ones, we have to
Prune the model [17]. We give the pseudo-code as Algorithm 3. In a nutshell,
we simply iteratively re-consider every pattern in S for which the usage has
decreased – as these are now more expensive to encode – ordered by how much
the usage has decreased. After pruning we iterate until we cannot find any pat-
terns that improve the total encoded length. Before we return the patterns, we
order them by their relative importance – the number of bits we would have to
spend extra if the pattern would not be included.

5.3 Candidate Generation and Evaluation

The naive approach to optimising a model is to first mine all frequent patterns
F in D, and then iteratively consider these as candidates. Kramp [14] is the
locally optimal strategy of iteratively adding that Z ∈ F to the model that
maximises compression. Being quadratic in the size of the candidate set, this
approach is prohibitively costly. Krimp considers these candidates in a fixed
order, greedily selecting those that improve compression [17]. Considering every
candidate only once and in a static order Krimp is linear in the number of
candidates, but quality suffers and as all candidates need to be pre-mined and
ordered materialised the approach remains costly.

214 K. Budhathoki and J. Vreeken

Algorithm 2. DiffNorm

Input: A bag D of transaction databases over items I, and a database index
set U including at least the individual indices over D

Output: An approximation of the MDL-optimal model S for D
1 S ← {∅ | j ∈ U};

2 for Z ∈ {X ∪ Y | X, Y ∈ S ∪ I} descending on ΔL̂(D, S ⊕ Z) do
3 for Di ∈ D do
4 gaini ← ΔL(Di | Ci ⊕ Z);

5 w ← {ΔL(D, S ⊕j Z) | j ∈ U};
6 U ′ ← WeightedGreedyCover(J , U, w);
7 S ′ ← S with Z added to every Sj with j ∈ U ′;
8 S ←Prune(D, S, S ′);

9 Order every Sj ∈ S descending on ΔL(D, S �j Z);
10 return S;

Algorithm 3. Prune
Input: A bag D of databases over I, a previous model S and a current model T
Output: A pruned model T

1 Cands ← all patterns X ∈ T for which usg(X, T) < usg(X, S);
2 for X ∈ Cands in Standard Pruning Order do
3 if L(D, T � X) < L(D, T) then
4 T ← T � X;
5 Add all patterns Y ∈ T for which usg reduced to Cands;

6 return T ;

Instead, we can iteratively refine the current model by searching for redun-
dancies. Translated to our setting, Slam [14] is the locally optimal approach. It
iteratively evaluates all pairwise combinations X,Y ∈ S∪I, accepting that X∪Y
which maximises compression. Slim [14] considers the same candidates, but eval-
uates these in order of estimated quality, accepting the first that improves com-
pression. This leads to much improved run time and overall description length
close to Slam.

Loosely speaking DiffNorm follows the same adage as Slim. However,
unlike Slim, we consider multiple pattern sets – each of which relevant to
different set of databases. When we extend Slim naively, we would generate
overly many candidates and evaluate them on by far too many pattern sets and
databases. To refine this process we make use of the fact that MDL punishes
redundancy – which means that patterns will only be included in pattern sets
they are most relevant for.

First we adapt the candidate generation process. We observe that it is very
unlikely that X∪Y will be used much when X and Y are drawn from pattern sets
that are not used to describe the same database. This observation allows us to
refine the Slim strategy as follows. Instead of considering all pairs X,Y ∈ S ∪I,

The Difference and the Norm Characterising Similarities and Differences 215

we consider only X ∪ Y if they co-occur in a coding set C for a database D.
Formally, we consider only X ∪ Y for X ∈ Sj and Y ∈ Sk with j ∩ k �= ∅ as
candidates.

Next, we take a closer look at the candidate evaluation process. When we
consider a pattern X ∪ Y with X from a pattern set Sj that is more ‘specific’
than the pattern set Sk that we draw Y from, that is, j ⊂ k, it will be very
unlikely that X ∪Y will be a good candidate to add to Sk – otherwise, X would
have resided in Sk. We use this intuition and in these cases only consider to add
this candidate to Sj , not to Sk. More in general, we evaluate the candidate in
all Sl ∈ S with l ⊆ j. When j and k overlap, but j is not a strict subset of k, we
evaluate the candidate in all Sl ∈ S with l ⊂ j or l ⊂ k.

5.4 Estimating Candidate Quality

As we aim to minimise the description length, the quality of a candidate Z is
the gain in total compressed size when we would add Z to pattern set Sj ∈ S,
i.e. ΔL(D,S ⊕j Z). Formally,

ΔL(D,S ⊕j Z) = L(D,S) − L(D,S ⊕j Z)

= ΔL(Sj ⊕ Z) +
∑

i∈j

ΔL(Di | Ci ⊕ Z))

= L(Sj) − L(Sj ⊕ Z) +
∑

i∈j

L(Di | Ci) − L(Di | Ci ⊕ Z))

Note that ΔL(Di | Ci ⊕ Z) is constant regardless to which pattern set Sj ∈ S
we add Z – as long as i is in the index set j. Calculating the actual gain for
every candidate is prohibitively costly, however – we need to cover all relevant
databases to re-determine the usages. Instead, we therefore estimate the gain in
bits when adding a pattern Z to pattern set Sj , i.e. ΔL̂(D,S ⊕j Z). We then use
WeightedGreedyCover to get the total estimated gain, ΔL̂(D,S ⊕Z), from
ΔL̂(D,S ⊕j Z) ∀ j ∈ U . To this end we assume that as candidate we consider
the union of patterns X,Y ∈ S ∪ I, and that adding X ∪ Y to pattern Sj will
affect only the usages of X and Y and not that of other patterns in S. Formally,
we have

ΔL̂(D,S ⊕j X ∪ Y) = ΔL̂(Sj ⊕ X ∪ Y) +
∑

i∈j

ΔL̂(Di | Ci ⊕ X ∪ Y) ,

where for the estimated difference in encoded length of Sj we have

ΔL̂(Sj ⊕ X ∪ Y) = L(Sj) − L(Sj ⊕ X ∪ Y)

= LN(|X ∪ Y |) −
∑

x∈X∪Y

log freqD(x) .

216 K. Budhathoki and J. Vreeken

Somewhat more intimidating, for the estimated encoded length of the data we
have

ΔL̂(Di | Ci ⊕ X ∪ Y) = log(Γ (usg(C) + ε|C |)) − log(Γ (ûsg(C ′) + ε|C ′|))+
log(Γ (ûsg(X,C ′) + ε)) − log(Γ (usg(X,C) + ε))+
log(Γ (ûsg(Y,C ′) + ε)) − log(Γ (usg(Y,C) + ε))+

log(Γ (ûsg(X ∪ Y,C ′) + ε)) − log(Γ (ε))+
log(Γ (ε|C ′|)) − log(Γ (ε|C |))

were C ′ = C ∪ {X ∪ Y }, and ûsg(Z,C ′) is the estimation of the usage of
pattern Z when covering the data using C ′. We estimate the usage of X ∪ Y
optimistically, assuming it will be used wherever X and Y were co-used. That
is, we say ûsg(X ∪Y,C ′) = |utids(X)∩utids(Y)|, where utids(X) = {tid(t) | t ∈
D,X ∈ cover(t,C)} are the ids of the transactions covered using X. Following
the same assumption, we have ûsg(X,C ′) = usg(X,C) − ûsg(X ∪ Y,C ′), and
analogue for Y .

Since we only generate and evaluate the candidates against their relevant cod-
ing sets Ci, we do the same when estimating gain. Further, to avoid re-computing
all estimates at every iteration we cache the estimated gains of patterns. How-
ever, whenever a candidate Z is added to or pruned from S the usages of other
patterns X ∈ S may change – and hence so should the estimates of any candi-
dates that use X. We re-estimate the gains of these candidates, and maintain
those for the other candidates.

5.5 Complexity

Finally, we analyse the computational complexity of DiffNorm. In worst
case, a model S contains all the frequent patterns F . Let |S| be the total
number of patterns in model S. At worst, generating the candidates takes
O((|S| + |I|)2) ⊆ O(|F|2) steps. Calculating the gain takes O(|S|) ⊆ O(|F|)
steps. WeightedGreedyCover takes O(|U | × log |U |) steps for sorting U and
O(|U |2) steps for greedy selection and gain re-computation. Finally, Prune
takes O(|S|2 × |D|) steps. Altogether, the worst case computational complex-
ity is O(|F|3 × |D|). In practice, DiffNorm is fast. First, MDL restricts the
number of patterns in the model, pruning keeps the model non-redundant, and
model changes rarely affect many patterns. Second, we generate candidates not
naively from S but over coding sets C , and evaluate candidates only on the
relevant databases Di.

6 Experiments

We implemented our algorithm in C++ and provide the source code for the
research purposes, along with the used datasets, and synthetic dataset genera-
tor.2 All experiments were executed single-threaded on Intel Xeon E5-2643 v3
2 http://eda.mmci.uni-saarland/diffnorm/

http://eda.mmci.uni-saarland/diffnorm/

The Difference and the Norm Characterising Similarities and Differences 217

Table 1. Base statistics of the datasets used in the experiments. We report the num-
ber of rows, the size of the alphabet, the total number of items, and the number of
databases.

machines with 256 GB memory running Linux. We report the wall-clock running
times.

We consider both synthetic and real-world data. We give the basic statistics
of the real-world datasets in Table 1. For each dataset we give the number of
rows, size of the alphabet |I|, total number of items and number of databases.
For readability we use the shorthand notation L% = L(D,S)

L(D,S0)
% for the relative

compressed size of D with S0 the model consisting of only empty pattern sets –
lower is better.

In all experiments we consider U = {{1}, . . . , {|D|}, Ω} where Ω =
{1, . . . , |D|}. That is, we want a pattern set Si per individual Di ∈ D, and
in addition we want to have a pattern set SΩ that contains the patterns charac-
teristic to all databases in D.

6.1 Synthetic Data

First, we consider synthetic data to study the behaviour of DiffNorm on data
with known ground truth. We divide the possible data into four categories: data
with no patterns included, data where patterns are local to individual databases,
data where patterns occur globally in every database, and data where we mix
global and local patterns, i.e. data containing both local and global patterns.

For each setup we generate a D of two databases of 5 000 rows each over
120 items. We randomly plant non-overlapping patterns of cardinality uniformly
chosen over the range of 4 to 8, with random frequency over the range 10% to
30%. In addition, we add 5% uniform noise. We run DiffNorm with a minimum
support of 4.5%. Table 2 shows the result of DiffNorm per synthetic dataset,
i.e. number of planted patterns, the total encoded size given the simplest model
S0, relative compressed size L%. Further, following [20], we report the number
of exactly recovered patterns, the number of discovered patterns that are unions
or subsets of unions of planted patterns, the number of discovered patterns
that correspond to intersections between planted patterns, and the number of
patterns that are tainted with, or completely due to noise.

218 K. Budhathoki and J. Vreeken

Table 2. DIFFNORM recovers true patterns. Results on synthetic data. Per
dataset we give the number of planted patterns, the baseline description length, and
the relative compression L% we obtain. Further, we report the total number of pat-
terns DiffNorm discovers, and break this down into the number of exactly recovered
patterns (=), the number of discovered patterns that are (subsets of) unions of planted
patterns (∪), the number of discovered patterns that are intersections of planted pat-
terns (∩), the number of patterns unrelated to planted patterns (?).

We find that for Random, DiffNorm correctly infers that the data does not
contain any patterns. As for the other datasets, DiffNorm discovers exactly
all the planted patterns. In addition, DiffNorm discovers patterns that are
the union, or a subset thereof, of planted patterns X and Y – this is due to
generative process. As we allow multiple patterns on the same row, particularly
when X and Y are very frequent their combination can also become frequent,
and therewith descriptive for the data. Overall, DiffNorm identifies all the
interesting patterns from the synthetic datasets.

6.2 Real World Data

Next, we investigate the performance of DiffNorm on real-world data. In par-
ticular, we first consider seven datasets from Frequent Itemset Mining Implemen-
tations (FIMI) repository.3 For these experiments we set a minimum support of
2. The result on FIMI datasets is given in Table 3. We see that DiffNorm
is efficient, requiring only seconds for these datasets. Moreover, we find that it
achieves very good compression ratios (lower is better), and returns only modest
numbers of patterns.

This leaves us to compare these numbers. This is more difficult than it may
seem. For starters, comparing description lengths only makes sense when we con-
sider the same model class and exactly the same data. Comparing on the number
of discovered patterns is not trivial either. Comparing to the number of (closed)
frequent itemsets [11] is not fair as it is not meant to give a summary of the data.
Supervised methods [21] only report patterns that set classes apart, and do not
describe the data awhole. Summarisation methods such as Slim [14] do give
succinct description per database, but lack a way to identify patterns common
between the databases. Considering the number of patterns discovered summed

3 http://fimi.ua.ac.be/data/

http://fimi.ua.ac.be/data/

The Difference and the Norm Characterising Similarities and Differences 219

Table 3. DIFFNORM discovers succinct descriptions. Results of DiffNorm on
the real data sets. For DiffNorm we give the baseline compression cost L(D, S0), the
relative compressed size L% (lower is better), the wall-clock time in seconds, and the
total number of discovered patterns. For comparison, in addition we report the number
of patterns DiffNorm and Slim [14] discover when we concatenate all databases into
D∪ =

⋃D.

over all databases would be hugely inflated. Most fair, we find is to compare to
the number of patterns discovered over the whole data, i.e. over D∪ =

⋃D. We
run both DiffNorm and Slim on this database with minsup 2 and report the
number of discovered patterns. We see that DiffNorm discovers roughly the
same number of patterns as before, while Slim on the other hand generally finds
many more patterns. This is likely due to overfitting as its encoding scheme does
not encode pattern lengths and codes without loss.

Next, we investigate how the patterns that DiffNorm discovers are dis-
tributed over the different databases. That is, in Figure 1 we show the sizes of
the discovered pattern sets, starting with the size SΩ , the pattern set associated
with all databases, and then the sizes of each of the Si corresponding to Di ∈ D.
We see that the patterns are nicely distributed over S, it is not the case that all
patterns are in either the global, or just in the local pattern sets.

We proceed to evaluate how well DiffNorm optimises our objective. As
we do not know the true optimum, we look at how the relative compression
L% converges over the search iterations. An iteration here refers to the event
when a pattern is accepted by DiffNorm. As shown in Figure 2(a), for the
Adult dataset, the relative compression reduces very sharply in the beginning
and after a certain number of iterations it converges more slowly as it then needs
to refine the more general patterns discovered in the first iterations. Note that
as we Prune the number of iterations and the final number of patterns differ.

DiffNorm relies heavily on the quality of estimating ΔL. We evaluate the
quality of our estimate by checking how well ΔL̂(D,S ⊕ X ∪ Y) correlates to
the actual gain ΔL(D,S ⊕ X ∪ Y). We consider Adult and plot the estimated
and actual gain for all the candidates considered by DiffNorm in Figure 2(b).
We see that the two are strongly correlated, as most of the points lie along the

220 K. Budhathoki and J. Vreeken

Fig. 1. DIFFNORM discovers both local and global patterns. For FIMI datasets,
we show the number of patterns in each pattern set discovered by DiffNorm as indi-
cated by the width of each colored box. The leftmost purple colored box indicates the
global pattern set SΩ .

diagonal, particularly those for high gain candidates. This also explains the shape
of the convergence curve in Figure 2(a) – candidates with higher estimated gains
are tested during early stages of the algorithm. We find that for lower estimated
gains the correlation is weaker. This is explained by our assumption that all
usages of all patterns in S remain constant, except for X and Y .

In our final experiment, we evaluate DiffNorm qualitatively. For this, we
consider the ICDM dataset.4 This data consists of the abstracts – stemmed and
stop-word removed – of 859 papers published at ICDM. We divide the data
into two classes: one of the abstracts that do contain the word mining (359
rows) versus the remainder (500 rows). With the minimal support set to 5,
DiffNorm takes 71.5 seconds, and discovers 637 patterns in total, 35 for the
first class, 54 for the second, and 548 in SΩ . As expected, we find that the
patterns found in abstracts containing mining point more towards exploratory
analysis. The patterns discovered from abstracts not containing mining point
more towards machine learning. On the global patterns, we find commonly used
phrases in research papers like “state of the art”, “evaluation”, etc. We give 5
highly characteristic exemplars drawn from the top-10 of each pattern set in
Table 4.

7 Discussion

The experiments show that DiffNorm works well in practice. On synthetic data
we recover all planted patterns exactly, and returns these top-ranked in the out-
put. On the real world data DiffNorm discovers succinct descriptions, returning
on average less than half as many patterns as Slim [14]. Moreover, the ICDM
abstracts data show that the results are clean and easily interpretable. Finally,

4 Available from the authors of [3].

The Difference and the Norm Characterising Similarities and Differences 221

Fig. 2. DIFFNORM searches efficiently and estimates accurately. For Adult we
show (left) the convergence of the relative compression L% per search iteration, and
(right) the correlation between the estimated and actual gains of candidates. Candi-
dates marked as circles were accepted whereas those marked as crosses were rejected.

Table 4. DIFFNORM finds meaningful patterns. Results of DiffNorm on the
ICDM dataset when split on abstracts including the word ‘mining’ and those that do
not. Shown are five patterns per pattern set, where SΩ is the pattern set associated
with both databases.

we showed that DiffNorm efficiently optimises its objective score thanks to
effective quality estimation of candidates.

Although these results are very encouraging, we see many possibilities to
further improve DiffNorm. A particular strong point is that our concept of
multiple pattern sets and prequential coding can be extended to other data and
pattern types, such as serial episodes [15]. Moreover, it will make for engaging
future work to extend DiffNorm such that it can automatically discover the
optimal U for a given set of databases, and/or simultaneously find the optimal
partitioning of a single given database.

Last, we have to note that MDL is not a magic wand. That is, even though
we use prequential coding our objective function involves choices, and so does
the optimisation. Currently we encode patterns in the pattern sets using the
global singleton frequencies. In certain settings it may more sense to use the

222 K. Budhathoki and J. Vreeken

frequencies over the relevant databases instead. Extending DiffNorm to allow
for overlap would likely lead to even more succinct descriptions.

8 Conclusion

We studied how we can characterise the differences and similarities between a set
of databases using pattern sets. We formalised the problem in terms of the Min-
imum Description Length principle [5], defining the best set of pattern sets as
the one that gives the most succinct description of the data. To find good mod-
els directly from data we introduced the parameter-free DiffNorm algorithm.
Empirical evaluation showed that DiffNorm discovers easily interpretable and
non-redundant summaries that clearly identify which patterns are globally, and
which ones are locally important. Future work includes refining the encoding
and extending towards other data and pattern types, as well as exploring how
well the patterns DiffNorm selects perform in classification.

Acknowledgments. The authors thank the anonymous reviewers for detailed com-
ments. Kailash Budhathoki and Jilles Vreeken are supported by the Cluster of Excel-
lence “Multimodal Computing and Interaction” within the Excellence Initiative of the
German Federal Government.

References

1. Aggarwal, C.C., Han, J. (eds.): Frequent Pattern Mining. Springer (2014)
2. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience

New York (2006)
3. De Bie, T.: Maximum entropy models and subjective interestingness: an application

to tiles in binary databases. Data Min. Knowl. Disc. 23(3), 407–446 (2011)
4. Geerts, Floris, Goethals, Bart, Mielikäinen, Taneli: Tiling databases. In: Suzuki,

Einoshin, Arikawa, Setsuo (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 278–289.
Springer, Heidelberg (2004)

5. Grünwald, P.: The Minimum Description Length Principle. MIT Press (2007)
6. Kolmogorov, A.N.: Three approaches to the quantitative definition of information.

Problemy Peredachi Informatsii 1(1), 3–11 (1965)
7. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applica-

tions. Springer (1993)
8. Mampaey, M., Vreeken, J., Tatti, N.: Summarizing data succinctly with the most

informative itemsets. ACM TKDD 6, 1–44 (2012)
9. Miettinen, P.: On finding joint subspace Boolean matrix factorizations. In: SDM,

pp. 954–965. SIAM (2012)
10. Nijssen, P., Guns, T., De Raedt, L.: Correlated itemset mining in ROC space: a

constraint programming approach. In: KDD, pp. 647–656. Springer (2009)
11. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-

sets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS,
vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

12. Rissanen, J.: Modeling by shortest data description. Automatica 14(1), 465–471
(1978)

The Difference and the Norm Characterising Similarities and Differences 223

13. Rissanen, J.: A universal prior for integers and estimation by minimum description
length. Annals Stat. 11(2), 416–431 (1983)

14. Smets, K., Vreeken, J.: Slim: Directly mining descriptive patterns. In: SDM,
pp. 236–247. SIAM (2012)

15. Nikolaj, T., Jilles, V.: The long and the short of it: Summarizing event sequences
with serial episodes. In: KDD. ACM (2012)

16. Vreeken, J., van Leeuwen, M., Siebes, A.: Characterising the difference. In: KDD,
pp. 765–774 (2007)

17. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: Mining itemsets that compress.
Data Min. Knowl. Disc. 23(1), 169–214 (2011)

18. Wallace, C.S.: Statistical and inductive inference by minimum message length.
Springer (2005)

19. Wallace, C.S., Boulton, D.M.: An information measure for classification. Comput.
J. 11(1), 185–194 (1968)

20. Webb, G., Vreeken, J.: Efficient discovery of the most interesting associations.
ACM TKDD 8(3), 1–31 (2014)

21. Zimmermann, A., Nijssen, S.: Supervised pattern mining and applications to classi-
fication. In: Aggarwal, C.C., Han, J. (eds.) Frequent Pattern Mining, pp. 425–442.
Springer (2014)

Preference Learning and Label Ranking

Dyad Ranking Using A Bilinear
Plackett-Luce Model

Dirk Schäfer1 and Eyke Hüllermeier2(B)

1 University of Marburg, Marburg, Germany
dirk.schaefer@uni-marburg.de

2 Department of Computer Science, University of Paderborn, Paderborn, Germany
eyke@upb.de

Abstract. Label ranking is a specific type of preference learning prob-
lem, namely the problem of learning a model that maps instances to
rankings over a finite set of predefined alternatives. These alternatives
are identified by their name or label while not being characterized in
terms of any properties or features that could be potentially useful for
learning. In this paper, we consider a generalization of the label rank-
ing problem that we call dyad ranking. In dyad ranking, not only the
instances but also the alternatives are represented in terms of attributes.
For learning in the setting of dyad ranking, we propose an extension of
an existing label ranking method based on the Plackett-Luce model, a
statistical model for rank data. Moreover, we present first experimental
results confirming the usefulness of the additional information provided
by the feature description of alternatives.

Keywords: Label ranking · Plackett-Luce model · Meta-learning

1 Introduction

Preference learning is an emerging subfield of machine learning, which deals with
the induction of preference models from observed or revealed preference informa-
tion [7]. Such models are typically used for prediction purposes, for example, to
predict context-dependent preferences of individuals on various choice alterna-
tives. Depending on the representation of preferences, individuals, alternatives,
and contexts, a large variety of preference models are conceivable, and many
such models have already been studied in the literature.

A specific type of preference learning problem is the problem of label ranking,
namely the problem of learning a model that maps instances to rankings (total
orders) over a finite set of predefined alternatives [26]. An instance, which defines
the context of the preference relation, is typically characterized in terms of a set
of attributes or features; for example, an instance could be a person described by
properties such as sex, age, income, etc. As opposed to this, the alternatives to be
ranked, e.g., the political parties of a country, are only identified by their name
(label), while not being characterized in terms of any properties or features.
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 227–242, 2015.
DOI: 10.1007/978-3-319-23525-7 14

228 D. Schäfer and E. Hüllermeier

In this paper, we introduce dyad ranking as a generalization of the label
ranking problem. In dyad ranking, not only the instances but also the alterna-
tives are represented in terms of attributes. For learning in the setting of dyad
ranking, we propose an extension of an existing label ranking method based on
the Plackett-Luce model, a statistical model for rank data.

The paper is organized as follows. In the next section, we introduce the
problem of dyad ranking. Following a discussion of related work in Section 3,
we then propose the aforementioned method for dyad ranking in Section 4. In
Section 5, we present first experimental results, both for synthetic data and a
case study in meta-learning, confirming the usefulness of the additional feature
information of alternatives. The paper ends with some concluding remarks in
Section 6.

2 Dyad Ranking

As will be explained in more detail later on (cf. Section 3), the learning problem
addressed in this paper has connections to several existing problems in the realm
of preference learning. In particular, it can be seen as a combination of dyadic
prediction [19–21] and label ranking [26], hence the term “dyad ranking”. Since
our method for tackling this problem is an extension of a label ranking method,
we will introduce dyad ranking here as an extension of label ranking.

2.1 Label Ranking

Let Y = {y1, . . . , yK} be a finite set of (choice) alternatives; adhering to the ter-
minology commonly used in supervised machine learning, and accounting for the
fact that label ranking can be seen as an extension of multi-class classification,
the yi are also called class labels or simply labels. We consider total order rela-
tions � on Y, that is, complete, transitive, and antisymmetric relations, where
yi � yj indicates that yi precedes yj in the order. Since a ranking can be seen
as a special type of preference relation, we shall also say that yi � yj indicates
a preference for yi over yj . We interpret this order relation in a wide sense, so
that a � b can mean that the alternative a is more liked that alternative b by a
person, but also for example that an algorithm a outperforms algorithm b.

Formally, a total order � can be identified with a permutation π of the set
[K] = {1, . . . , K}, such that π(i) is the index of the label on position i. We
denote the class of permutations of [K] (the symmetric group of order K) by
SK . By abuse of terminology, though justified in light of the above one-to-one
correspondence, we refer to elements π ∈ SK as both permutations and rankings.

In the setting of label ranking, preferences on Y are “contextualized” by
instances x ∈ X, where X is an underlying instance space. Thus, each instance
x is associated with a ranking �x of the label set Y or, equivalently, a permuta-
tion πx ∈ SK . More specifically, since label rankings do not necessarily depend
on instances in a deterministic way, each instance x is associated with a prob-
ability distribution P(· |x) on SK . Thus, for each π ∈ SK , P(π |x) denotes the
probability to observe the ranking π in the context specified by x.

Dyad Ranking Using A Bilinear Plackett-Luce Model 229

As an illustration, suppose X is the set of people characterized by attributes
such as sex, age, profession, and marital status, and labels are music genres:
Y = {Rock, Pop, Classic, Jazz}. Then, for x = (m, 30, teacher,married) and
π = (2, 1, 3, 4), P(π |x) denotes the probability that a 30 years old married
man, who is a teacher, prefers Pop music to Rock to Classic to Jazz.

The goal in label ranking is to learn a “label ranker”, that is, a model

M : X −→ SK

that predicts a ranking π for each instance x given as an input. More specifically,
seeking a model with optimal prediction performance, the goal is to find a risk
(expected loss) minimizer

M∗ ∈ argmin
M∈M

∫

X×SK

L(M(x), π) dP ,

where M is the underlying model class, P is the joint measure P(x, π) =
P(x)P(π |x) on X × SK and L is a loss function on SK .

As training data D, a label ranker uses a set of instances xn (n ∈ [N]),
together with information about the associated rankings πn. Ideally, complete
rankings are given as training information, i.e., a single observation is a tuple
of the form (xn, πn) ∈ X × SK . From a practical point of view, however, it is
important to allow for incomplete information in the form of a ranking of some
but not all of the labels in Y:

yπ(1) �x yπ(2) �x . . . �x yπ(J) , (1)

where J ≤ K and {π(1), . . . , π(J)} ⊂ [K]. For example, for an instance x, it
might be known that y2 �x y1 �x y5, while no preference information is given
about the labels y3 or y4.

2.2 Dyad Ranking as an Extension of Label Ranking

In the setting of label ranking as introduced above, instances are supposed to
be characterized in terms of properties—typically, an instance is represented
as an r-dimensional feature vector x = (x1, . . . , xr). As opposed to this, the
alternatives to be ranked, the labels yi, are only identified by their name, just
like categories in classification.

Needless to say, a learner may benefit from knowledge about properties of
the alternatives, too. In fact, if the preferences of an instance are somehow
connected to such properties, then alternatives with similar properties should
also be ranked similarly. In particular, by sharing information via features, it
would in principle be possible to rank alternatives that have never be seen in
the training process so far.

Returning to our above example of ranking music genres, suppose we know
(or at least are quite sure) that Rock �x Classic �x Jazz for a person x.
We would then expect that Pop is ranked more likely close to the top than

230 D. Schäfer and E. Hüllermeier

close to the bottom, simply because Pop music is more similar to Rock than to
Classic or Jazz. In contrast to a label ranker, for which the music genres are just
uninformative names, we are able to make a prediction of that kind thanks to
our knowledge about the different types of music.

Given that useful properties of alternatives are indeed often available in prac-
tice, we introduce dyad ranking as an extension of label ranking, in which alter-
natives are elements of a feature space:

y = (y1, y2, . . . , yc) ∈ Y = Y1 × Y2 × · · · × Yc (2)

Then, a dyad is a pair
z = (x,y) ∈ Z = X × Y (3)

consisting of an instance x and an alternative y. We assume training information
to be given in the form of rankings

ρi : z(1) � z(2) � . . . � z(Mi) (4)

of a finite number of dyads, where Mi is the length of the ranking. Typically,
though not necessarily, all dyads in (11) share the same context x, i.e., they are
all of the form z(j) = (x,y(j)); in this case, (11) can also be written

ρi : y(1) �x y(2) �x . . . �x y(Mi) . (5)

Likewise, a prediction problem will typically consist of ranking a subset
{
y(1),y(2), . . . ,y(M)

}
⊆ Y

in a given context x. Given a dyad ranker, i.e., a model that produces a ranking
of dyads as an output, this can be accomplished by applying that ranker to the
set of dyads (

x,y(1)
)
,
(
x,y(2)

)
, . . . ,

(
x,y(M)

)

and then projecting the result to the alternatives, i.e., transforming a ranking
of the form (11) into one of the form (5). This setting, which generalizes label
ranking in the sense that additional information in the form of feature vectors is
provided for the labels, is the main subject of this paper and will subsequently
be referred to as contextual dyad ranking.

3 Related Work

As already mentioned earlier, the problem of dyad ranking is not only connected
to label ranking, but also to several other types of ranking and preference learning
problems that have been discussed in the literature. Although a comprehensive
review of related work is beyond the scope of this paper, we shall give a brief
overview in this section.

Dyad Ranking Using A Bilinear Plackett-Luce Model 231

The term “dyad ranking” derives from the framework of dyadic prediction as
introduced by Menon and Elkan [20]. This framework can be seen as a general-
ization of the setting of collaborative filtering (CF), in which row-objects (e.g.,
clients) are distinguished from column-objects (e.g., products). Moreover, with
each combination of such objects, called a dyad by Menon and Elkan, a value
(e.g., a rating) is associated. While in CF, row-objects and column-objects are
only represented by their name (just like the alternatives in label ranking), they
are allowed to have a feature representation (called side-information) in dyadic
prediction. Menon and Elkan are trying to exploit this information to improve
performance in matrix completion, i.e., predicting the values for those object
combinations that have not been observed so far, in very much the same way as
we are trying to make use of feature information in the context of label ranking.

Methods for learning-to-rank or object ranking [6,13] have received a lot of
attention in the recent years, especially in the field of information retrieval. In
general, the goal is to learn a ranking function that accepts a subset O ⊂ O of
objects as input, where O is a reference set of objects (e.g., the set of all books).
As output, the function produces a ranking (total order) � of the objects O.
The ranking function is commonly implemented by means of a scoring function
U : O → R, i.e., objects are first scored and then ranked according to their scores.
In order to induce a function of that kind, the learning algorithm is provided with
training information, which typically comes in the form of exemplary pairwise
preferences between objects. As opposed to label ranking, the alternatives to be
ranked are described in terms of properties (feature vectors), while preferences
are not contextualized. In principle, methods for object ranking could be applied
in the context of dyad ranking, too, namely by equating the object space O with
the “dyad space” Z in (3); in fact, dyads can be seen as a specific type of
object, i.e., as objects with a specific structure. Especially close in terms of the
underlying methodology is the so-called listwise approach in learning-to-rank [4].

Close to our setting is also the (kernel-based) framework of conditional rank-
ing [24]. Here, relational data is represented in terms of a graph structure, in
which nodes correspond to objects and (directed) edges are labeled with asso-
ciations between these objects. Conditional ranking then refers to the problem
of ranking a set of nodes relative to another (target) node, namely, of ranking
the former in decreasing order of association with the latter. Associations are
modeled in terms of a specific type of kernel function called preference kernel,
and an SVM-like training procedure (with quadratic instead of hinge loss) is
used for model induction. The framework is quite flexible and covers different
learning problems as special cases, depending on the type of graph (bipartite or
complete), the type of edge labels and the type of training information [23].

4 A Bilinear Plackett-Luce Model

4.1 The Plackett-Luce Model

The Plackett-Luce (PL) model is a parameterized probability distribution on
the set of all rankings over a set of alternatives y1, . . . , yK . It is specified by a

232 D. Schäfer and E. Hüllermeier

parameter vector v = (v1, v2, . . . vK) ∈ R
K
+ , in which vi accounts for the “skill” of

the option yi. The probability assigned by the PL model to a ranking represented
by a permutation π is given by

P(π |v) =
K∏

i=1

vπ(i)

vπ(i) + vπ(i+1) + . . . + vπ(K)
(6)

This model is a generalization of the well-known Bradley-Terry model [18], a
model for the pairwise comparison of alternatives, which specifies the probability
that “a wins against b” in terms of

P(a � b) =
va

va + vb
.

Obviously, the larger va in comparison to vb, the higher the probability that
a is chosen. Likewise, the larger the parameter vi in (6) in comparison to the
parameters vj , j �= i, the higher the probability that yi appears on a top rank.

As a nice feature of Plackett-Luce, we note that marginals (i.e., probabilities
of rankings of a subset of the alternatives) can be computed very easily for this
model: The probability of an incomplete ranking (1) is given by

P(π |v) =
J∏

i=1

vπ(i)

vπ(i) + vπ(i+1) + . . . + vπ(J)
,

i.e., by an expression of exactly the same form as (6), except that the number
of factors is J instead of K.

4.2 Label Ranking Using the PL Model

A method for label ranking based on the PL model was proposed in [5]. The
main idea of this approach is to contextualize the skill parameters of the labels
yi by modeling them as functions of the context x. More precisely, to guarantee
the non-negativity of the parameters, they are modeled as log-linear functions:

vk = vk(x) = exp

(
r∑

d=1

w
(k)
d · xd

)

= exp
(〈

w(k),x
〉)

. (7)

The parameters of the label ranking model, namely the w
(k)
d (1 ≤ k ≤ K, 1 ≤

d ≤ r), are estimated by maximum likelihood inference.
Given estimates of these parameters, prediction for new query instances x

can be done in a straightforward way: v̂ = (v̂1, . . . , v̂K) is computed based on
(7), and a ranking π̂ is determined by sorting the labels yk in decreasing order
of their (predicted) skills v̂k. This ranking π̂ is a reasonable prediction, as it
corresponds to the mode of the distribution P(· | v̂).

Dyad Ranking Using A Bilinear Plackett-Luce Model 233

4.3 Dyad Ranking Using the PL model

In (7), the skill of the label yk is modeled as a log-linear function of x, with a
label-specific weight vector w(k). In the context of dyad ranking, this approach
can be generalized to the modeling of skills for dyads as follows:

v(z) = v(x,y) = exp
(〈w, Φ(x,y)〉)

, (8)

where Φ is a joint feature map [25]. A common choice for such a feature map is
the Kronecker product:

Φ(x,y) = x ⊗ y =
(
x1 · y1, x1 · y2, . . . , xr · yc

)
= vec

(
xy�)

, (9)

which is a vector of length r · c consisting of all pairwise products of the com-
ponents of x and y. Thus, the inner product 〈w, Φ(x,y)〉 can be rewritten as a
bilinear form x�Wy with an r×c matrix W = (wi,j); the entry wi,j can be con-
sidered as the weight of the interaction term xiyj . This choice of the joint-feature
map yields a bilinear version of the PL model:

v(z) = v(x,y) = exp
(
x�Wy

)
(10)

Suppose training data D to be given in the form of a set of rankings (11), i.e.,
rankings ρ1, . . . , ρN of the following kind:

ρn : (x(1)
n ,y(1)

n) � (x(2)
n ,y(2)

n) � . . . � (x(Mn)
n ,y(Mn)

n) (11)

The likelihood of the parameter vector w is then given by

L(w) = P(D |w) =
N∏

n=1

Mn∏

m=1

exp
(
w�(x(m)

n ⊗ y
(m)
n)

)

∑Mn

l=m exp
(
w�(x(l)

n ⊗ y
(l)
n)

) ,

and the log-likelihood by

�(w) =
N∑

n=1

Mn∑

m=1

w�(x(m)
n ⊗ y(m)

n) −
N∑

n=1

Mn∑

m=1

log

(
Mn∑

l=m

exp
(
w�(x(l)

n ⊗ y(l)
n)

)
)

.

Like in the case of the linear PL model, the learning problem can now be for-
malized as finding the maximum likelihood (ML) estimate, i.e., the parameter
w that maximizes the log-likelihood:

wML = argmax
w

�(w) , (12)

To save the costly computations of the Hessian during ML estimation, a quasi-
Newton type algorithm (L-BFGS, [17]) is used in our implementation. Further
remarks on the identifiability of the model parameters are provided below.

234 D. Schäfer and E. Hüllermeier

4.4 Identifiability of the Bilinear PL Model

The bilinear PL model introduced above defines a probability distribution on
dyad rankings that is parameterized by the weight matrix W. An interesting
question concerns the identifiability of this model. Recall that, for a parameter-
ized class of models M, identifiability requires a bijective relationship between
models Mθ ∈ M and parameters θ, that is, models are uniquely identified by
their parameters. Or, stated differently, parameters θ �= θ∗ induce different mod-
els Mθ �= Mθ∗ . Identifiability is a prerequisite for a meaningful interpretation
of parameters and, perhaps even more importantly, guarantees unique solutions
for optimization procedures such as maximum likelihood estimation.

Obviously, the original PL model (6) with constant skill parameters v =
(v1, . . . , vK) is not identifiable, since the model is invariant against multiplication
of the parameter by a constant factor c > 0: The models parameterized by v
and v∗ = (cv1, . . . , cvK) represent exactly the same probability distribution,
i.e., P(π |v) = P(π |v∗) for all rankings π. The PL model is, however, indeed
identifiable up to this kind of multiplicative scaling. Thus, by fixing one of the
weights to the value 1, the remaining K − 1 weights can be uniquely identified.

Now, what about the identifiability of our bilinear PL model, i.e., to what
extent is such a model uniquely identified by the parameter W? We can show
the following result.

Proposition 1: Suppose the feature representation of labels does not include
a constant feature, i.e., |Yi| > 1 for each of the domains in (2), and that the
feature representation of instances includes at most one such feature (accounting
for a bias, i.e., an intercept of the bilinear model). Then, the bilinear PL model
with skill values defined according to (10) is identifiable.

Proof (sketch): Recall that the standard PL model is invariant against multipli-
cation with a positive constant, and that this is the only invariance of the model.
Since the bilinear PL model defined by (10) is log-linear in W, invariance on
the level of this parameter can only be additive. Now, suppose there are two
parameters W �= W∗ that both induce the same distribution on the set of all
potential dyad subsets, which means that

x�Wy = x�W∗y + γ (13)

for all dyads (x,y), where γ is a constant that may depend on the parameters W
and W∗ but not on the dyads (x,y). More specifically, for the case of contextual
dyad ranking, γ is also allowed to depend on x, but again, must not depend on
y. Under our assumptions, however, this independence cannot hold. In fact,
denoting the elements of W and W∗ by wi,j and w∗

i,j , respectively, (13) means
that

r∑

i=1

c∑

j=1

(wi,j − w∗
i,j)xiyj =

r∑

i=1

c∑

j=1

Δwi,jxiyj = γ .

Then, exploiting the fact that not all Δwi,j can vanish at the same time, it is
not difficult to show that a variation of some values yj , which will also have an
influence on the difference γ, is always possible.

Dyad Ranking Using A Bilinear Plackett-Luce Model 235

4.5 Comparison Between the Linear and Bilinear PL Model

It is not difficult to see that the linear model (7), subsequently referred to as
LinPL, is indeed a special case of the bilinear model (10), called BilinPL. In fact,
the former is recovered from the latter by means of a (1-of-K) dummy encoding
of the alternatives: The label yk is encoded by a K-dimensional vector with a
1 in position k and 0 in all other positions. The columns of the matrix W are
then given by the weight vectors w(k) in (7).

The other way around, LinPL can also be applied in the setting of dyad rank-
ing, provided the domain Y of the alternatives is finite. To this end, one would
simply introduce one “meta-label” Yk for each feature combination (y1, . . . , yc)
in (2) and apply a standard label ranking method to the set of these meta-labels.
Therefore, both approaches are in principle equally expressive. Still, an obvious
problem of this transformation is the potential size1

K = |Y| = |Y1| × |Y2| × . . . × |Yc|

of the label set thus produced, which might be huge. In fact, the number of
parameters that need to be learned for the model (7) is r · |Y|, i.e., r · ac under
the assumptions that each feature has a values. For comparison, the number of
parameters is only r · c in the bilinear model. Moreover, all information about
relationships between the alternatives (such as shared features or similarities)
are lost, since a standard label ranker will only use the name of a meta-label
while ignoring its properties.

Against the background of these consideration, one should expect dyad rank-
ing to be advantageous to standard label ranking provided the assumptions
underlying the bilinear model (10) are indeed valid, at least approximately. In
that case, learning with (meta-)labels and disregarding properties of the alterna-
tives would come with an unnecessary loss of information (that would need to be
compensated by additional training data). In particular, using the standard label
ranking approach is supposedly problematic in the case of many meta-labels and
comparatively small amounts of training data.

Having said that, dyad ranking could be problematic if the model (10) is in
fact a misspecification: If the features are not meaningful, or the bilinear model
is not properly reflecting their interaction, then learning on the basis of (10)
cannot be successful.

In this regard, it is also interesting to mention that both approaches can
be combined. To this end, the feature vectors y are extended by a (1-of-K)
dummy-encoding, i.e., dyad ranking is used with feature vectors of the following
form:

y =
(
y1, y2, . . . , yc, 0, . . . , 0, 1, 0, . . . , 0

︸ ︷︷ ︸
length K

)
(14)

1 This is an upper bound, since in practice, not all feature combinations are necessarily
realized.

236 D. Schäfer and E. Hüllermeier

Using this representation, subsequently called LinSidePL, the learner is in prin-
ciple free to exploit the side-information yi or to ignore it and only use the
dummy-labels.

In summary, the main observations can be summarized as follows:

– The linear PL model, like standard label ranking in general, assumes all
alternatives to be known beforehand and to be included in the training
process. If generalization beyond alternatives encountered in the training
process is needed, then BilinPL can be used while LinPL cannot.

– If the assumption (10) of the bilinear model is correct, then BilinPL should
learn faster than LinPL, as it needs to estimate fewer parameters. Yet, since
LinPL can represent all dependencies that can be represented by BilinPL,
the learning curve of the former should reach the one of latter with growing
sample size.

– If the bilinear model (10) is actually a misspecification, then LinPL is likely
to perform better than BilinPL, at least with enough training data being
available (for small training sets, BilinPL could still be better).

5 Experiments

In order to verify the expectations summarized above, we conducted experiments
with both synthetic and real data sets. In addition to LinPL (as implemented
in [5]), BilinPL and LinSidePL, we included Ranking by Pairwise Comparison
(RPC, [12]) and Constrained Classification (CC, [9,10]), which are both state-
of-the-art label ranking methods, as additional baselines.2

Predictive performance was measured in terms of Kendall’s tau coefficient
[15], a rank correlation measure commonly used for this purpose in the label
ranking literature [26,27]. It is defined as

τ =
C(π, π̂) − D(π, π̂)

K(K − 1)/2
, (15)

with C and D the number of concordant (put in the same order) and discordant
(put in the reverse order) label pairs, respectively, and K the length of the
rankings π and π̂ (number of labels). Kendall’s tau assumes values in [−1,+1],
with τ = +1 for the perfect prediction π̂ = π and τ = −1 if π̂ is the exact
reversal of π.

5.1 Synthetic Data

Ideal synthetic ranking data is created by sampling from the Plackett-Luce dis-
tribution according to the BilinPL model specification under the setting (5) of
contextual dyad ranking. A realistic scenario is simulated in which labels can be
missing, i.e., observed rankings are incomplete [11]. To this end, a biased coin is

2 CC was used in its online variant as described in [12].

Dyad Ranking Using A Bilinear Plackett-Luce Model 237

flipped for every label, and it is decided with probability p ∈ [0, 1] to keep or to
delete it. We choose a missing rate of p = 0.3, which means that on average 70%
of all labels of the training set are kept while the remaining labels are dismissed.
Feature vectors of length c = 4 for labels and length r = 3 for instances were
generated by sampling the elements from a standard normal distribution (except
for one instance feature, which is a constant). The weight components were sam-
pled randomly from a normal distribution with mean 1 and standard deviation
9. The predictive performance is then determined on a sufficiently large number
of (complete) test examples and averaged over 10 repetitions.

5 Labels

Ground truth

BilinPL

CC

LinPL

LinSidePL

RPC

K
e

n
d

a
ll'

s
 T

a
u

Number of Training Instances

5 10 20 40 80 200 400
0.4

0.6

0.8

1
10 Labels

Ground truth

BilinPL

CC

LinPL

LinSidePL

RPC

K
e

n
d

a
ll'

s
 T

a
u

Number of Training Instances

5 10 20 40 80 200 400
0.5

0.6

0.7

0.8

0.9

1

20 Labels

Ground truth

BilinPL

CC

LinPL

LinSidePL

RPC

K
e

n
d

a
ll'

s
 T

a
u

Number of Training Instances

5 10 20 40 80 200 400

0.5

0.6

0.7

0.8

0.9

1
40 Labels

Ground truth

BilinPL

CC

LinPL

LinSidePL

RPC

K
e

n
d

a
ll'

s
 T

a
u

Number of Training Instances

5 10 20 40 80 200 400

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. Learning curves (generalization performance as a function of the number of
training examples) of the ranking methods for different numbers of labels.

The learning curves thus produced are shown in Figure 1 for different num-
bers of labels. Overall, all ranking methods are able to learn and predict correctly
if enough training data are available. In the limit, they all reach the performance
of the “ground truth”: given complete knowledge about the true PL model, the
optimal (Bayes) prediction is the mode of that distribution (note that the aver-
age performance of that predictor is still not perfect, since sampling from the
distribution will not always yield the mode). As expected, BilinPL and LinSid-
ePL both benefit from the additional label description compared to the other

238 D. Schäfer and E. Hüllermeier

label ranking approaches over a wide range of different training set sizes and
numbers of labels.

Apart from predictive accuracy, it is worth mentioning that, in comparison
with the BilinPL model, standard label ranking methods also exhibit poor run-
time characteristics.

5.2 Case Study in Meta-Learning

As conjectured in Section 4.5 and confirmed in Section 5.1, BilinPL is poten-
tially advantageous to LinPL in cases where the number of alternatives (labels)
is large in comparison to the amount of training information being available
and, moreover, these alternatives can be described in terms of suitable features.
An interesting application for which these assumptions seem to hold is meta-
learning [2]. In this section, we therefore employ the framework of meta-learning
for algorithm recommendation as described in [2,3,14]. In particular, we aim at
predicting a ranking over several variants of a class of algorithms such as genetic
algorithms (GA), which can be obtained by instantiating the algorithm with
different parameter combinations.

Several choices need to be made within the meta-learning framework, includ-
ing the way of how meta-data is acquired (see Figure 2). The meta-features as
part of the meta-data should be able to relate a data set to the relative per-
formance of the candidate algorithms. They are usually made up by a set of
numbers acquired by using descriptive statistics. Another possibility consists of
probing a few parameter settings of the algorithm under consideration. The per-
formance values of those landmarkers can then be used as instance-features for
the meta-learner. In addition to the meta-features, the meta-data consists of
rankings of the candidate algorithms, i.e., a sorting of the variants in decreasing
order of performance. Using the meta-learning terminology, these rankings cor-
respond to the so-called meta-target. The novel aspect in this paper is the use
of qualitative performance data in the form of rankings3 in conjunction with the
consideration of side-information.

In analogy to the majority classifier typically used as a baseline in multi-class
classification, the meta-learning literature suggests a simple approach called the
Average Ranks (AR) method [2]. This approach corresponds to what is called
the Borda count in the ranking literature and produces a default prediction
by sorting the alternatives according to their average position in the observed
rankings.

Learning to Rank Genetic Algorithms. This case study aims at recom-
mending GA parameter settings for instances of the symmetric traveling sales-
man problem (TSP). The GA performance averages are taken to construct rank-
ings, in which a single performance value corresponds to the distance of the
shortest route found by a GA. The GAs share the properties of using the same

3 This also comprises partial rankings and pairwise preferences as special cases.

Dyad Ranking Using A Bilinear Plackett-Luce Model 239

characterization
descriptive statistics

landmarkingrepository
problem 1..N

evaluation
algorithm 1..K

meta-data
meta-features 1..N
algorithm ranking 1..N

meta-learning
(/w side-information)

result
algorithm

ranking model

Fig. 2. The components of the “meta-learning for algorithm recommendation” frame-
work shown above are based on [2]. The left box shows the meta-data acquisition
process which consists of learning problem (or data set) characterization and the eval-
uation of the algorithms on the problems (or data sets). The box on the right side, the
meta-level learning part, shows the meta-learning process and its outcome. In this case
study, the meta-learner must be able to deal with qualitative data in form of rankings
and is furthermore allowed to use additional knowledge (side-information) about the
algorithms if it is available.

selection criterion, which is “roulette-wheel”, the same mutation operator, which
is “exchange mutation” and “elitism” of 10 chromosomes [22]. We tested the
performance of three groups of GAs on a set of TSP instances. The groups are
determined by their choice of the crossover operator, which can be cycle (CX),
order (OX) or partially mapped crossover (PMX) [16].

The set of meta-features represent the instance vectors for the ranking mod-
els. They are composed of the number of cities and the performances of three
landmarkers.

In total, 246 problems are considered, with the number of cities ranging
between 10 and 255.4 For each problem, the city locations (x, y) are drawn ran-
domly from the uniform distribution on [1, 100]2. Moreover, 72 different GAs are
considered as alternatives with their parameters as optional label descriptions.
They share the number of generations, 500, and the population size of 100. The
combinations of all the other parameters, namely, crossover type, crossover rate
and mutation rate, are used for characterization:

– Crossover types: {CX, OX, PMX}
– Crossover rates: {0.5, 0.6, 0.7, 0.8, 0.9}
– Mutation rates: {0.08, 0.09, 0.1, 0.11, 0.12}.

The three landmarker GAs have a crossover rate of 0.6 and a mutation rate
of 0.12, combined with one of the three crossover types, respectively. They are
excluded from the set of alternatives to be ranked. The label and dyad rankers
are faced with rankings under different conditions (M,N), with N the number
of training instances and M the average length of the rankings (M of the 72
alternatives are chosen at random while the others are discarded).

The results in Table 1 are quite consistent with our first study and again
confirm that additional information about labels can principally be exploited
by a learner to achieve better predictive performances. In particular, BilinPL is
4 The data set can be obtained from https://www.cs.uni-paderborn.de/fachgebiete/

intelligente-systeme/

https://www.cs.uni-paderborn.de/fachgebiete/intelligente-systeme/
https://www.cs.uni-paderborn.de/fachgebiete/intelligente-systeme/

240 D. Schäfer and E. Hüllermeier

Table 1. Average performance in terms of Kendall’s tau and standard deviations of
different meta-learners and different conditions (average rankings lengths M and the
numbers of training instances N).

M N AR BilinPL CC LinPL LinSidePL RPC

5

30 0.192 ± 0.063 0.727 ± 0.014 0.290 ± 0.063 0.317 ± 0.049 0.663 ± 0.031 0.158 ± 0.052

60 0.358 ± 0.046 0.766 ± 0.014 0.428 ± 0.040 0.452 ± 0.041 0.681 ± 0.026 0.311 ± 0.038

90 0.404 ± 0.030 0.770 ± 0.014 0.573 ± 0.042 0.575 ± 0.037 0.691 ± 0.018 0.372 ± 0.035

120 0.430 ± 0.029 0.777 ± 0.009 0.610 ± 0.031 0.619 ± 0.022 0.697 ± 0.015 0.387 ± 0.032

10

30 0.423 ± 0.054 0.775 ± 0.007 0.539 ± 0.054 0.551 ± 0.049 0.696 ± 0.018 0.397 ± 0.043

60 0.487 ± 0.017 0.781 ± 0.004 0.690 ± 0.021 0.696 ± 0.013 0.718 ± 0.012 0.493 ± 0.037

90 0.523 ± 0.014 0.781 ± 0.007 0.726 ± 0.015 0.726 ± 0.012 0.727 ± 0.010 0.576 ± 0.018

120 0.522 ± 0.015 0.783 ± 0.006 0.750 ± 0.014 0.748 ± 0.014 0.735 ± 0.011 0.620 ± 0.020

20

30 0.516 ± 0.037 0.781 ± 0.005 0.722 ± 0.019 0.722 ± 0.015 0.728 ± 0.014 0.622 ± 0.018

60 0.549 ± 0.014 0.784 ± 0.005 0.763 ± 0.013 0.758 ± 0.014 0.741 ± 0.015 0.714 ± 0.022

90 0.561 ± 0.014 0.787 ± 0.006 0.779 ± 0.010 0.774 ± 0.013 0.750 ± 0.015 0.751 ± 0.021

120 0.571 ± 0.022 0.787 ± 0.008 0.786 ± 0.010 0.782 ± 0.010 0.758 ± 0.013 0.772 ± 0.014

30

30 0.554 ± 0.028 0.782 ± 0.005 0.753 ± 0.013 0.746 ± 0.018 0.734 ± 0.015 0.717 ± 0.019

60 0.567 ± 0.008 0.785 ± 0.003 0.782 ± 0.007 0.775 ± 0.009 0.751 ± 0.010 0.767 ± 0.011

90 0.578 ± 0.008 0.787 ± 0.004 0.791 ± 0.005 0.786 ± 0.005 0.758 ± 0.010 0.781 ± 0.006

120 0.580 ± 0.011 0.786 ± 0.006 0.794 ± 0.005 0.789 ± 0.007 0.761 ± 0.011 0.787 ± 0.005

able to take advantage of this information for small values of M and favorably
compares to the other label rankers (and, in addition, has of course the advantage
of being able to rank GA variants that have not been used in the training phase).
As expected, standard label rankers (in this case, CC) surpass BilinPL only for
a sufficiently large amount of training data.

6 Summary and Outlook

In this paper, we proposed dyad ranking as an extension of the label ranking
problem, a specific type of preference learning problem in which preferences on
a finite set of choice alternatives are represented in the form of a contextual-
ized ranking. While the context is described in terms of a feature vector, the
alternatives are merely identified by their label.

In practice, however, information about properties of the alternatives is often
available, too, and such information could obviously be useful from a learning
point of view. In dyad ranking, not only the context but also the alternatives
are therefore characterized as feature vectors.

The concrete method we developed, BilinPL, is a generalization of an existing
label ranking method based on the Plackett-Luce model. First experimental
results using synthetic data as well as a case study in meta-learning confirm

Dyad Ranking Using A Bilinear Plackett-Luce Model 241

that BilinPL tends to be superior to standard label ranking methods if feature
information about alternatives is available, at least if training data is scarce in
comparison to the number of alternatives to be ranked.

Since the PL approach is only one among several existing label ranking meth-
ods, one may wonder to what extent other methods are amenable to the incor-
poration of label features. This is a question we seek to address in future work.
Another interesting idea is to combine label ranking with (unsupervised) rep-
resentation learning for feature construction [1]: first, labels are embedded in a
feature space so as to reflect their similarity in a proper way, and the feature
representation thus produced is then used in dyad ranking. Last but not least,
there are several interesting applications of dyad ranking, notably those in which
standard label ranking has already been used, though without exploiting feature
information about choice alternatives. An example of that kind is preference-
based reinforcement learning, where label ranking is used to sort actions given
states [8]. Since actions do have a natural representation in terms of features or
parameters in many reinforcement learning problems, there is obviously scope
for enhancement through the incorporation of dyad ranking.

References

1. Bengio, Y., Courville, A.C., Vincent, P.: Representation learning: A review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

2. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications
to Data Mining, 1st edn. Springer Publishing Company, Incorporated (2008)

3. Brazdil, P., Soares, C., Coasta, J.P.D.: Ranking learning algorithms: Using IBL
and meta-learning on accuracy and time results. Machine Learning 50, 251–277
(2003)

4. Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., Li, H.: Learning to rank: from pairwise
approach to listwise approach. In: Proceedings of the 24th International Conference
on Machine learning (ICML 2007), pp. 129–136. ACM (2007)

5. Cheng, W., Dembczynski, K., Hüllermeier, E.: Label ranking methods based on
the Plackett-Luce model. In: Proceedings of the 27th International Conference on
Machine Learning (ICML 2010), pp. 215–222 (2010)

6. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. Journal of
Artificial Intelligence Research 10(1), 243–270 (1999)

7. Fürnkranz, J., Hüllermeier, E.: Preference learning: An introduction. Preference
Learning (2010)

8. Fürnkranz, J., Hüllermeier, E., Cheng, W., Park, S.H.: Preference-based reinforce-
ment learning: A formal framework and a policy iteration algorithm. Machine
Learning 89(1), 123–156 (2012)

9. Har-Peled, S., Roth, D., Zimak, D.: Constraint classification: a new approach to
multiclass classification. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.) ALT
2002. LNCS (LNAI), vol. 2533, pp. 365–379. Springer, Heidelberg (2002)

10. Har-Peled, S., Roth, D., Zimak, D.: Constraint classification for multiclass classi-
fication and ranking. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in
Neural Information Processing Systems, vol. 15, pp. 809–816. MIT Press (2003)

242 D. Schäfer and E. Hüllermeier

11. Hüllermeier, E., Cheng, W.: Superset learning based on generalized loss minimiza-
tion. In: Proc. ECML/PKDD 2015, European Conference on Machine Learning
and Knowledge Discovery in Databases, Porto, Portugal (2015)

12. Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning
pairwise preferences. Artificial Intelligence 172(16), 1897–1916 (2008)

13. Kamishima, T., Kazawa, H., Akaho, S.: A survey and empirical comparison of
object ranking methods. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learn-
ing, pp. 181–201. Springer (2011)

14. Kanda, J., Soares, C., Hruschka, E., de Carvalho, A.: A meta-learning approach to
select meta-heuristics for the traveling salesman problem using MLP-based label
ranking. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part III.
LNCS, vol. 7665, pp. 488–495. Springer, Heidelberg (2012)

15. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93
(1938)

16. Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S.: Genetic
algorithms for the traveling salesman problem: A review of representations and
operators. Artificial Intelligence Review 13, 129–170 (1999)

17. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale opti-
mization. Mathematical Programming 45(1–3), 503–528 (1989)

18. Marden, J.I.: Analyzing and Modeling Rank Data, 1st edn. Chapman & Hall (1995)
19. Menon, A.K., Elkan, C.: Dyadic prediction using a latent feature log-linear model

(2010). arXiv preprint arXiv:1006.2156
20. Menon, A.K., Elkan, C.: A log-linear model with latent features for dyadic predic-

tion. In: Proceedings of the 2010 IEEE International Conference on Data Mining,
ICDM 2010, pp. 364–373. IEEE Computer Society (2010)

21. Menon, A.K., Elkan, C.: Predicting labels for dyadic data. Data Mining and Knowl-
edge Discovery 21(2), 327–343 (2010)

22. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1998)

23. Pahikkala, T., Airola, A., Stock, M., De Baets, B., Waegeman, W.: Efficient regu-
larized least-squares algorithms for conditional ranking on relational data. Machine
Learning 93, 321–356 (2013)

24. Pahikkala, T., Waegeman, W., Airola, A., Salakoski, T., De Baets, B.:
Conditional ranking on relational data. In: Balcázar, J.L., Bonchi, F., Gionis,
A., Sebag, M. (eds.) ECML PKDD 2010, Part II. LNCS, vol. 6322, pp. 499–514.
Springer, Heidelberg (2010)

25. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research, 1453–1484 (2005)

26. Vembu, S., Gärtner, T.: Label ranking algorithms: a survey. In: Preference Learn-
ing, pp. 45–64. Springer (2011)

27. Zhou, Y., Liu, Y., Yang, J., He, X., Liu, L.: A taxonomy of label ranking algorithms.
Journal of Computers 9(3), 557–565 (2014)

http://arxiv.org/abs/1006.2156

Fast Training of Support Vector Machines
for Survival Analysis

Sebastian Pölsterl1(B), Nassir Navab1,2, and Amin Katouzian1

1 Chair for Computer Aided Medical Procedures,
Technische Universität München, Munich, Germany

{poelster,navab,katouzian}@in.tum.de
2 Johns Hopkins University, Baltimore, MD, USA

Abstract. Survival analysis is a commonly used technique to iden-
tify important predictors of adverse events and develop guidelines for
patient’s treatment in medical research. When applied to large amounts
of patient data, efficient optimization routines become a necessity. We
propose efficient training algorithms for three kinds of linear survival
support vector machines: 1) ranking-based, 2) regression-based, and 3)
combined ranking and regression. We perform optimization in the pri-
mal using truncated Newton optimization and use order statistic trees to
lower computational costs of training. We employ the same optimization
technique and extend it for non-linear models too. Our results demon-
strate the superiority of our proposed optimization scheme over existing
training algorithms, which fail due to their inherently high time and space
complexities when applied to large datasets. We validate the proposed
survival models on 6 real-world datasets, and show that pure ranking-
based approaches outperform regression and hybrid models.

Keywords: Survival analysis · Support vector machine · Optimization

1 Introduction

Recently, researchers have become interested in studying the effective use of
electronic health records to improve outcomes of medical procedures, reduce
health care costs, evaluate the efficiency of newly developed drugs, and predict
health trends or adverse events (see e.g. [13] for an overview). In the latter case,
survival analysis is employed to examine how a particular set of covariates affects
the time until the occurrence of an event of interest, such as death or reaching
a specific state of disease progression. The objective in survival analysis is to
establish a connection between covariates and the time between the start of
the study and an event. What makes survival analysis differ from traditional
machine learning is the fact that parts of the training data can only be partially
observed – they are censored. In a clinical study, patients are often monitored
for a particular time period, and events occurring in this particular period are
recorded. If a patient experiences an event, the exact time of the event can

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 243–259, 2015.
DOI: 10.1007/978-3-319-23525-7 15

244 S. Pölsterl et al.

be recorded – the patient’s record is uncensored. In contrast, right censored
records refer to patients that remained event-free during the study period and
it is unknown whether an event has or has not occurred after the study ended.
Consequently, survival models demand for proper training algorithms that take
this unique characteristic of such a dataset into account.

Cox’s proportional hazards model [6] is the standard for analyzing time-
to-event data, despite having several shortcomings: 1) it assumes that hazard
functions for any two individuals are proportional, i.e., their ratio is constant
over time, 2) it is not applicable to data with more features than samples, 3)
it fails if features are highly correlated, and 4) its decision function is linear
in the covariates. The advantage of large-margin methods for classification and
regression has motivated researchers to adapt these models for survival analysis.
Authors in [17,22] cast survival analysis as a regression problem and adapted
support vector regression, whereas Eleuteri et al. [9] formulated a loss function
derived from quantile regression. Steck et al. [23] observed that survival analysis
can be expressed as a ranking problem, which led to extensions of Rank Support
Vector Machines (RankSVMs) [10,24]. Finally, Van Belle et al. [26] proposed a
hybrid solution between the ranking and regression approach.

The main disadvantage of ranking-based techniques is that their objective
function depends on a quadratic number of constraints with respect to the num-
ber of training samples, which makes training intractable with medium to large
sized datasets. By clustering data according to survival times, authors in [25]
showed that the computational complexity can be lowered without considerable
loss in performance. For regular RankSVMs, which do not account for censor-
ing, authors in [2,19] proposed the use of order statistic trees to alleviate this
problem.

In this paper, we extend the work of Lee et al. [19] to efficiently train rank-
ing, and regression-based survival models by re-formulating their approach to
be applicable to survival analysis in the presence of right censoring. In [10,24],
ranking-based survival support vector machines were based on the hinge loss
and optimization was carried out in the dual using a generic quadratic program-
ming solver. In contrast, we use the squared hinge loss and perform truncated
Newton optimization, which leads to a more efficient training algorithm. A fur-
ther improvement is due to order statistic trees to avoid explicitly storing all
pairwise comparisons of samples, which requires O(n2) space, where n is the
number of samples. Moreover, we introduce a straightforward training technique
for a combined regression and ranking approach. When considering non-linear
functions, we demonstrate that training can still be carried out efficiently using
the primal formulation. Finally, experimental results of 7 synthetic and 6 real
world datasets justify the advantages of our proposed solution.

2 Survival Analysis

The objective in training a survival model is to derive a model’s parameters in
the presence of censoring. After training, the model can be used to predict the

Fast Training of Support Vector Machines for Survival Analysis 245

survival time of patients based on a given set of features. For a set of n patients,
we know for the i-th patient: 1) the exact time ci ≥ 0 of censoring, i.e., the time
until which the patient was observed, and 2) the time ti ≥ 0 when a patient
experienced an event, if any. From these two quantities, we define the survival
time yi as

yi = min(ti, ci) =

{
ti if δi = 1
ci if δi = 0,

where δi ∈ {0, 1} is the event indicator. Thus, training data for a survival model
consists of triples (xi, yi, δi), where xi is a d-dimensional feature vector.

During training, information about the occurrence of an event is only par-
tially available for censored patients, i.e., those that did not experience an event
or dropped out of the study. When training a survival model, one has to consider
that two patients i and j are only comparable if both experienced an event or
only one of them experienced an event and the time of the event occurred before
the time of censoring, formally: (yi < yj ∧ δi = 1) ∨ (yi > yj ∧ δj = 1). If two
patients do not satisfy this condition, they are incomparable and their relation
cannot be used to deduce a survival model.

Here, we discuss two approaches to survival analysis: the first approach treats
survival analysis as a ranking problem, and the second approach as a regression
problem. Finally, we present an objective function that combines both ideas. Our
implementation of the methods proposed in this paper are publicly available.1

3 Survival Analysis as Ranking Problem

In ranking, the goal is to recover the correct order of samples according to
their relevance. For survival analysis, relevance corresponds to the survival time.
However, not all pairwise comparisons are meaningful in the presence of right
censoring. The set P = {(i, j) | yi > yj ∧ δj = 1}i,j=1,...,n defines the pairs of
comparable samples that can be used for training and p = |P| the cardinality of
this set, which is bounded by O(n2). We minimize our objective function similar
to the work in [19], but additionally account for right censoring during training.

Definition 1. The objective function of ranking-based linear survival support
vector machine is defined as

f(w) =
1
2
wTw +

γ

2

∑

i,j∈P
max(0, 1 − (wTxi − wTxj))2, (1)

where w ∈ IRd are the coefficients and γ > 0 is a regularization parameter. A
new set of data points Xnew, can be ranked with respect to their predicted survival
time according to elements of Xneww.

1 https://github.com/tum-camp/survival-support-vector-machine

https://github.com/tum-camp/survival-support-vector-machine

246 S. Pölsterl et al.

The sum in the second term of (1) has a complexity of O(n2) and thus training
with only a few thousand samples is already intractable. We will first derive
a gradient-based minimization of the objective function, based on Newton’s
method, and then outline a more efficient optimization, which does not depend
on the number of comparable pairs, using truncated Newton optimization and
order statistic trees.

The objective function (1) can be expressed in matrix form as

f(w) =
1
2
wTw +

γ

2
(1l − AXw)T Dw (1l − AXw) , (2)

where 1l is a vector of all ones, X = [x1, . . . ,xn]T , and A ∈ IRp×n a sparse
matrix with Aki = 1 and Akj = −1 if (i, j) ∈ P and zero otherwise. Dw is
a p × p diagonale matrix that has an entry for each (i, j) ∈ P that indicates
whether this pair is a support vector, i.e., 1 − (wTxi − wTxj) > 0 [19]. For the
k-th item of P, representing the pair (i, j), the corresponding entry in Dw is
defined as

(Dw)k,k =

{
1 if wTxj > wTxi − 1
0 else

. (3)

Thus, we obtain an objective function that is convex in w and can apply New-
ton’s method to minimize it. One update in Newton’s method with step size μ
becomes

wnew = w − μ

(
∂2f

∂w∂wT

)−1
∂f

∂w
(4)

with partial derivatives

∂f

∂w
= w + γXT

(
ATDwAXw − ATDw1l

)
(5)

∂2f

∂w∂wT
= I + γXTATDwAX. (6)

Note that we used the generalized Hessian in the second derivative, because f(w)
is not twice differentiable at w [16].

Next, we simplify the derivatives by expressing the product AT DwA in
terms of a new matrix Aw ∈ {−1, 0, 1}pw,n that is a restricted version of A,
limited to rows corresponding to support vectors:

AT DwA = AT
wAw, (7)

where pw denotes the number of pairs (i, j) ∈ P – rows of A – where wTxj >
wTxi − 1.

Fast Training of Support Vector Machines for Survival Analysis 247

Algorithm 1. Survival Support Vector Machine Training.
Input: Training data D = {(xi, yi, δi)}n

i=1, hyper-parameter γ > 0.
Output: Coefficients w.

1 Randomly resolve ties in survival times yi ∀i ∈ {1, . . . , n};
2 w0 ← 0;
3 t ← 0;
4 while not converged do

5 Use conjugate gradient to determine search direction u =
(

∂2f
∂w∂wT

)−1
∂f
∂w

with w = wt;
6 Choose step size μ by backtracking line search;
7 Update wt+1 ← wt + μu;
8 t ← t + 1;

9 end
10 w ← wt;

Definition 2. Formula (2) and its derivatives can be re-formulated using Aw

to eliminate Dw.

f(w) =
1
2
wTw +

γ

2
(
pw + wTXT

(
AT

wAwXw − 2AT
w1l

))
(8)

∂f

∂w
= w + γXT

(
AT

wAwXw − AT
w1l

)
(9)

∂2f

∂w∂wT
= I + γXTAT

wAwX (10)

3.1 Truncated Newton Optimization

Medical research is often challenging due to high-dimensional data: a patient’s
health record comprises several hundred features, and microarray data consists
of several thousand measurements. In this applications, explicitly computing
and storing the Hessian matrix can be prohibitive, therefore, we use a truncated
Newton method that uses a linear conjugate gradient method to compute the
search direction [7,16,20]. This only requires the computation of the Hessian-
vector product Hv, which can be computed by

Hv = v + γXTAT
wAwXv. (11)

Thus, the complexity of a single conjugate gradient iteration is O(nd + p + d),
when multiplying from the right, which is lower than O(pd2 + pd + d) to obtain
the full Hessian matrix. Truncated Newton optimization consists of an outer
loop to update the coefficients w and an inner loop to find the search direction
via conjugate gradient (see algorithm 1).

248 S. Pölsterl et al.

3.2 Efficient Calculation of Search Direction

In each iteration of Newton’s method, Aw has to be recomputed due to its
dependency on w, which requires iterating over all comparable pairs, being of
order

(
n
2

)
. Therefore, the complexity of learning a new model is still quadratic

in the number of samples. Next, we will derive an improved algorithm that
avoids constructing Aw explicitly. First, we derive the conditions under which
an entry in Aw is non-zero, followed by proposing a compact representation of
an entry in AT

wAw, which finally leads to an efficient optimization scheme that
is independent of the size of P.

Proposition 1. For k ∈ {1, . . . , pw} and q ∈ {1, . . . , n}, (Aw)k,q = 1 if all of
the following conditions are satisfied:

(a) survival time of q-th sample is lower than survival time of some sample
s ∈ {1, . . . , n} (s outlives q): yq < ys.

(b) the q-th sample is uncensored: δq = 1.
(c) the pair (s, q) ∈ P is a support vector: wTxs < wTxq + 1.

Proposition 2. For k ∈ {1, . . . , pw} and q ∈ {1, . . . , n}, (Aw)k,q = −1 if all of
the following conditions are satisfied:

(a) survival time of q-th sample is higher than survival time of some sample
s ∈ {1, . . . , n} (q outlives s): yq > ys.

(b) the s-th sample is uncensored: δs = 1.
(c) the pair (q, s) ∈ P is a support vector: wTxs > wTxq − 1.

Proof. Note that the only difference between both propositions is the order of
samples s and q with respect to their survival times. Thus, the first proposition
can be transformed into the second by swaping s and q, and vice versa. Con-
ditions (a) and (b) are directly derived from the definition of A. Each row of
A and Aw contains exactly one element that is 1, one element that is -1, and
the rest is all zeros. For each pair of samples (row of A), the sample with the
shorter survival time is assigned 1, and the other sample -1, which is reflected
by condition (a). In addition, each pair must be comparable, i.e., the sample
with the shorter survival time must be uncensored, which leads to condition (b).
Finally, condition (c) is due to the multiplication ADw that restricts rows of A
to pairs of samples that are support vectors. ��
If proposition 1 or 2 holds, the result of the multiplication (Aw)k,i · (Aw)k,j
is either 1 or -1, if i = j or i �= j, respectively, for k ∈ {1, . . . , pw} and i, j ∈
{1, . . . , n}. In the latter case, the conditions of propositions 1 and 2 are equal.

Fast Training of Support Vector Machines for Survival Analysis 249

Combining all cases, the product (Aw)k,i · (Aw)k,j is defined as

(Aw)k,i · (Aw)k,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = j, (Aw)k,i = (Aw)k,j = 1,

and proposition 1 holds for q = i,

1 if i = j, (Aw)k,i = (Aw)k,j = −1,

and proposition 2 holds for q = i,

−1 if i �= j, (Aw)k,i = 1, (Aw)k,j = −1,

and proposition 1 holds for q = i, s = j

⇔ proposition 2 holds for q = j, s = i,

−1 if i �= j, (Aw)k,i = −1, (Aw)k,j = 1,

and proposition 1 holds for q = j, s = i,

⇔ proposition 2 holds for q = i, s = j,

0 else.

(12)

We can compactly express
(
AT

wAw

)
i,j

=
∑pw

k=1(Aw)k,i · (Aw)k,j using above
definitions and by defining the following two sets and their cardinalities.

SV+
i = {s | ys > yi ∧ wTxs < wTxi + 1 ∧ δi = 1} l+i = |SV+

i | (13)

SV−
i = {s | ys < yi ∧ wTxs > wTxi − 1 ∧ δs = 1} l−i = |SV−

i | (14)

The set SV+
i represents proposition 1, and SV−

i represents proposition 2. This
allows us to compactly express an entry of AT

wAw as

(AT
wAw)i,j =

⎧
⎪⎨

⎪⎩

l+i + l−i if i = j,

−1 if i �= j, and j ∈ SV+
i or j ∈ SV−

i ,

0 else,
(15)

where the second case is due to only one addend being non-zero, because each
pair of samples is compared only once.

The term AT
wAwXv is part of the objective function, its gradient, and the

Hessian-vector product. Applying the formulation in (15), we obtain

(AT
wAwXv)i = (l+i + l−i)xT

i v −
∑

s∈SV+
i

xsv −
∑

s∈SV−
i

xsv

= (l+i + l−i)xT
i v − σ+

i − σ−
i .

(16)

and

XTAT
wAwXv = XT

⎛

⎜
⎝

(l+1 + l−1)xT
1 v − (σ+

1 + σ−
1)

...
(l+n + l−n)xT

nv − (σ+
n + σ−

n)

⎞

⎟
⎠ . (17)

250 S. Pölsterl et al.

Additionally, the objective function and its gradient contain the term AT
w1l,

where one component is computed as

(AT
w1l)i = |SV+

i ∪ SV−
i |

= |{(s, t) | yt < yi < ys ∧ δt = 1 ∧ δi = 1 ∧
wTxs − 1 < wTxi < wTxt + 1}|

= l−i − l+i .

(18)

By substituting (17) and (18) together with pw =
∑n

i=1 l+i =
∑n

i=1 l−i into
(8), (9), and (11), all terms that depend on Aw during optimization can be
eliminated. Assuming that l+i , l−i , σ+

i , and σ−
i have been computed already, the

complexity of evaluating the objective function, gradient, and Hessian-vector
product is O(nd+d). Subsequently, we will discuss an efficient method to obtain
these values.

3.3 Improving Optimization by Order Statistic Trees

The main difficulty is that the order of actual survival times yi and predictions
wTxi have to be considered when constructing the sets SV+

i and SV−
i . Assum-

ing that samples have been sorted in ascending order according to wTxi, we
illustrate how both sets can be constructed by the following example:

i 1 2 3 4 5 6 7 8 9
wTxi -0.7 -0.1 0.15 0.2 0.3 0.8 1.6 1.7 2.3

yi 1 9 6 5 8 2 7 3 4
δi 0 0 1 0 1 1 1 0 0

As we can see, the first element for which SV+
i �= ∅ occurs at i = 3, because both

the first and second sample are censored (δi = 0), which violates condition (b) of
proposition 1. For i = 3, we obtain SV+

3 = {s|ys > 6 ∧ wTxs < 1.15} = {2, 5}.
The next set (i = 4) is again empty, because of censoring, and SV+

5 = {s|ys >
8∧wTxs < 1.3} = {2}. This example shows, that SV+

i is non-empty if and only if
the i-th sample is uncensored, and that SV+

i+1 can be constructed incrementally
from the set SV+

i :

{s|wTxs < wTxi+1 + 1 ∧ δi+1 = 1}
={s|wTxs < wTxi + 1} ∪ {s|wTxi + 1 ≤ wTxs < wTxi+1 + 1 ∧ δi+1 = 1}.

When constructing the set SV−
i , we can obtain a similar incremental update

rule when iterating the list of samples according to decreasing values of wTxi.
Here, SV−

9 = ∅, because no element with wTxs > 1.3 satisfies conditions (a)
and (b) of proposition 2, and SV−

8 = {s|ys < 3 ∧ wTxs > 0.7 ∧ δs = 1} = {6}.
An incremental update when going from i to i − 1 is defined as

{s|wTxs > wTxi−1 − 1 ∧ δs = 1} = {s|wTxs > wTxi − 1 ∧ δs = 1}
∪ {s|wTxi − 1 ≥ wTxs > wTxi−1 − 1 ∧ δs = 1}.

Fast Training of Support Vector Machines for Survival Analysis 251

To maintain the respective sets of relevant samples for computing SV+
i and SV−

i ,
we incrementally add elements yi and xT

i v to an order statistic tree that allows
retrieving |{s|ys > yi}| and |{s|ys < yi}| in logarithmic time. Note that both sets
in the incremental update of SV−

i consider censoring, whereas for SV+
i censoring

is only relevant for the second set, but not the first. For the former, we use an
order statistic tree to sort uncensored samples according to their survival time
yi, and for the latter we sort all samples, disregarding censoring. Formally, an
order statistic tree is defined as follows.

Definition 3. An order statistic tree is a balanced binary search tree that stores
key-value pairs and has the following properties.

1. For an internal node x with left child left(x) and right child right(x):

key(left(x)) ≤ key(x) and key(right(x)) ≥ key(x).

2. For n elements in the tree, the height of the tree is limited by O(log n).
3. Each node x in the tree stores two additional attributes size and sum.

(a) size denotes the size of the subtree mounted at x:

size(x) =

{
0 if x = ∅

size(left(x)) + size(right(x)) + 1 else

(b) sum denotes the sum of all values in the subtree mounted at x:

sum(x) =

{
0 if x = ∅

sum(left(x)) + sum(right(x)) + value(x) else

4. The correct value for above attributes is maintained after insertion.

Based on aforementioned definitions, we use algorithm 2 to compute l+i , xv+
i , l−i

and xv−
i . The auxiliary function CountSmaller is defined in algorithm 3, and

CountLarger works in a similar manner. The complexity of these functions cor-
responds to the complexity of finding an element in a binary search tree, which
is O(log n). Hence, the overall complexity of algorithm 2 is O(n log n), and the
Hessian-vector product in (11) can be carried out in O(nd + d + n log n), after
sorting according to wTxi, which costs O(n log n). Thus, one conjugate gradi-
ent iteration does not depend on the number of comparable pairs p anymore,
which scales quadratically in the number of samples. Finally, the overall com-
plexity of training a ranking-based survival support vector machine as outlined
in algorithm 1 is

[O(n log n) + O(nd + d + n log n)] · N̄CG · NNewton, (19)

where N̄CG and NNewton are the average number of conjugate gradient iterations
and the total number of Newton updates, respectively.

252 S. Pölsterl et al.

Algorithm 2. Efficient computation of l+i , l−i , σ+
i , and σ−

i .
Input: Training data D = {(xk, yk, δk)}n

k=1, coefficient vectors w and v.
Output: l+i , l−i , σ+

i , and σ−
i ∀i ∈ {1, . . . , n}

1 Sort all wT xi in ascending order, such that wT xπ(1) ≤ · · · ≤ wT xπ(n);
2 T ← an empty order statistic tree;
3 j ← 1;
4 for i ← 1 to n do
5 while j ≤ n and wT xπ(j) < wT xπ(i) + 1 do
6 Insert (yπ(j), x

T
π(j)v) into T ;

7 j ← j + 1;

8 end
9 if δπ(i) = 1 then

10 (l+π(i), xv+
π(i)) ← CountLarger(root of T , yπ(i));

11 else
12 (l+π(i), xv+

π(i)) ← (0, 0);

13 end

14 end
15 j ← n;
16 T ← an empty order statistic tree;
17 for i ← n to 1 do
18 while j ≥ 1 and wT xπ(j) > wT xπ(i) − 1 do
19 if δπ(j) = 1 then Insert (yπ(j), x

T
π(j)v) into T ;

20 j ← j − 1;

21 end

22 (l−π(i), xv−
π(i)) ← CountSmaller(root of T , yπ(i));

23 end

Algorithm 3. CountSmaller
Input: node x in order statistic tree, survival time yi

Output: l−i (number of uncensored samples with ys < yi), and
σ−

i =
∑

s∈SV−
i

xT
i v

1 if x = ∅ then
2 l−i ← 0; σ−

i ← 0;
3 else if key(x) = yi then
4 l−i ← size(left(x));

5 σ−
i ← sum(left(y));

6 else if key(x) < yi then
7 (l−i , σ−

i) ← CountSmaller(right(x), yi);

8 l−i ← l−i + size(x) − size(right(x));

9 σ−
i ← σ−

i + sum(x) − sum(right(x));

10 else // key(x) > yi

11 (l−i , σ−
i) ← CountSmaller(left(x), yi);

12 end

Fast Training of Support Vector Machines for Survival Analysis 253

4 Survival Analysis as Regression Problem

Instead of treating survival analysis as a ranking problem, authors have proposed
regression-based approaches using an absolute loss as well [17,22]. In contrast
to a ranking-based model, a regression model can predict the exact time of an
event. Training algorithms for such a model need to be aware of censored patient
record as well. For right censored patients – those who did not experience an
event – no information about the correctness of predicted survival times beyond
the time of censoring is available. A valid error can only be computed for patients
that experienced an event during the study period, or if the predicted survival
time is too early, i.e., before the time of censoring. Experiments in [26] revealed
that survival models based on ε-insensitive support vector regression worked
equally well if the insensitive zone is set to zero. Hence, our regression objective
is based on an ordinary least square problem with �2 penalty and the additional
consideration of right censoring.

fRegr.(w, b) =
1
2
wTw +

γ

2

n∑

i=0

(ζw,b(yi, xi, δi))
2 (20)

ζw,b(yi,xi, δi) =

{
max(0, yi − wTxi − b) if δi = 0,
yi − wTxi − b if δi = 1,

(21)

where b ∈ IR is the intercept.
By combining all parameters into a single vector ω = (b,w)T , and extending

X by a column of all ones to accommodate the intercept, the objective can be
expressed in matrix form as follows:

fRegr.(ω) =
1
2
ωTω +

γ

2
(y − Xω)T Rω (y − Xω) (22)

where Rω is a diagonal matrix with the i-th element being 1 if yi > wTxi + b or
δi = 1, and zero otherwise. Due to fRegr. being a convex quadratic function, we
can use truncated Newton optimization to minimize it, as described in algorithm
1. In addition, we can easily create a hybrid model that addresses the ranking
and regression objective concurrently; its objective function is defined as

fhybrid(w, b) =
1
2
wTw +

γ

2

⎡

⎣α
∑

i,j∈P
max(0, 1 − (wTxi − wTxj))2

+ (1 − α)
n∑

i=0

(ζw,b(yi, xi, δi))
2

]

. (23)

The hyper-parameter α ∈ [0, 1] controls the relative weight of the regression and
ranking objective. Clearly, if α = 1 it reduces to the ranking objective, and if
α = 0 to the regression objective.

254 S. Pölsterl et al.

5 Non-linear Extension

So far, we only discussed linear survival support vector machines and their effi-
cient training in the primal. If data are more complex, one might want to model
non-linear functions through the use of kernel functions. Commonly, the rep-
resenter theorem [18] is employed and optimization is carried out in the dual
rather than the primal. The weights w are then a linear combination of the
training samples. However, if training data is large, the number of support vec-
tors increases as well, resulting in excessive computational costs. Chapelle et al.
[5] showed that solving the non-linear problem is equivalent to the combination
of Kernel PCA and training in the primal. Thus, efficient training of non-linear
survival models is straightforward using the optimization scheme outlined above.

6 Experiments

In our experiments, we first studied the efficiency of our proposed algorithm to
minimize the ranking-based objective function and then investigated the predic-
tive performance of ranking, regression, and hybrid approaches. We standard-
ized continuous features to have zero mean and unit standard deviation, and
randomly resolved ties in survival times before optimization. For regression, we
used the logarithm of survival times yi as target value.

6.1 Computational Efficiency

In the first set of experiments, we compared the training time of three different
formulations of the ranking-based objective function: the simple formulation in
(2), the alternative formulation in (8), and our efficient proposed formulation in
(17). We generated synthetic survival data of varying size following [4]. Data con-
sisted of 10 normal distributed features and two redundant features, which were
linear combinations of a subset of the first ten features. Correlations between
the first ten features were defined as follows: r1,3 = 0.03, r2,5 = 0.42, r3,5 = 0.08,
r3,9 = 0.03, r5,8 = −0.55, r6,9 = 0.32, and the remainder all zero. Survival times
were Gompertz distributed and depended on a linear combination of all features.
Finally, half of the samples were randomly censored. Our choice of order statistic
trees were red-black trees [3] and AVL trees [1]. To minimize the influence of the
operating system’s process scheduler in our measurements, we report the lowest
training time of ten repetitions in wall time.

Figure 1 shows the lowest training time following algorithm 1. The naive and
improved optimization failed with more than 20,000 samples because of exces-
sive memory requirements due to explicitly constructing the sparse matrix A
and Aw, respectively. For all datasets, optimization converged after less than 20
iterations. Although A has to be constructed only once for the simple optimiza-
tion, training time quickly degenerates because it repeatedly has to be multiplied
by Xw, which takes O(pn) time. The improved optimization updates Aw after

Fast Training of Support Vector Machines for Survival Analysis 255

Fig. 1. Training time of survival models using ranking objective with truncated Newton
optimization. Simple refers to the objective function in (2) and improved to the one in
(8). Our proposed algorithm uses the efficient formulation in (17) with red-black trees
or AVL trees.

Table 1. Overview of datasets used in our experiments.

Dataset n d Events Outcome

AIDS study [12] 1, 151 13 96 (8.3%) AIDS defining event
or death

Breast cancer [8] 198 80 62 (31.3%) Distant metastases
Coronary artery disease [21] 1, 204 60 196 (15.9%) Myocardial infarc-

tion or death
Framingham Offspring [15] 4, 892 150 1,166 (23.8%) Coronary vessel dis-

ease
Veteran’s Lung Cancer [14] 137 6 128 (93.4%) Death

Worcester Heart Attack Study [12] 500 14 215 (43.0%) Death

each iteration of Newton’s method, but only needs to perform O(pwn) oper-
ations when multiplied by Xw, which results in a lower training time. Using
order statistic trees, the training time and memory requirements can be lowered
significantly; for very large datasets, red-black trees were superior to AVL trees.

6.2 Prediction Performance

We evaluated the predictive performance of our proposed method for survival
analysis on six real-world datasets of varying size, number of features, and
amount of censoring (see table 1). In addition to the three models proposed here,
we included Cox’s proportional hazards model [6] with �2 (ridge) penalty, and
ranking-based survival SVM with hinge loss [10,24]. The regularization parame-
ter γ for survival SVM controls the weight of the (squared) hinge loss, whereas for
Cox’s proportional hazards model, λ = γ−1 controls the weight of the �2 penalty.

256 S. Pölsterl et al.

Fig. 2. Concordance index of Cox’s proportional hazards model with �2 (ridge) penalty
and four different survival SVM models: ranking objective with hinge loss, ranking
objective with squared hinge loss, regression objective, and combined ranking and
regression (hybrid).

Optimal performance was determined by a grid search over hyper-parameters.
We set γ and λ to 2i, where we altered i from −12 to 12 in steps of 2. Similar
for α, which ranged from 0.05 to 0.95 in steps of 0.05. The maximum number of
iterations of Newton’s method was one thousand. Performance was measured by
Harrell’s concordance index (c index) [11], which is the ratio of correctly ordered
pairs to comparable pairs. A c index of 0.5 corresponds to a random model and
1.0 to a perfect model. In addition, we measured the root mean squared error
(RMSE) on uncensored patients to evaluate regression models. For each param-
eter setting, we randomly split each dataset into two equally sized parts, one for
training and one for testing. Results reported here are with respect to the con-
figuration that performed best on the training portion of 200 different random
splits.

Figure 2 summarizes the results of our experiments with respect to c index.
We observed that ranking-based approaches to survival analysis, using hinge
or squared hinge loss, were comparable to Cox’s proportional hazards model
with �2 penalty and superior to a regression-based approach. We believe this
is why the combined ranking-regression technique did not exceed the perfor-
mance of the pure ranking approach. In fact, hyper-parameter search assigned
more weight to the ranking objective in all cases but one. The only exception
occurred for the breast cancer dataset, where α = 0.25 was chosen and the
hybrid model performed best. The reason for this becomes obvious when look-
ing at the RMSE shown in figure 3. Predictions of survival time are off by a
large extent on all datasets, which renders the regression objective unsuitable.
This can be explained by the distribution of survival times, which are – even

Fast Training of Support Vector Machines for Survival Analysis 257

Fig. 3. Root mean squared error (RMSE) of regression-based and hybrid survival sup-
port vector machine.

after log-transformation – far from normally distributed, and thus violate a basic
assumption of ordinary least squares. In [26] however, regression was based on
absolute loss and outperformed ranking. A possible explanation might be the
fact that squared loss is more sensitive to outliers than absolute loss. This prob-
lem could be alleviated by introducing sample weights to reduce the influence of
outliers in the squared loss function. Finally, the performance of all approaches
varied to a similar degree among 200 randomly selected train-test splits. We
obtained similar results for non-linear survival models.

7 Conclusion

In this paper, we proposed an efficient method for training ranking-based and
regression-based survival support vector machines. Our algorithm accounts for
right censoring of patient records and avoids explicitly constructing a matrix
of pairwise constraints – quadratic in the number of samples – by using order
statistic trees. We experimentally showed that the reduced time and space com-
plexity allow efficient training of survival models based on millions of patients,
which would otherwise not been possible on commodity hardware. In addition
to its high efficiency, the algorithm can be easily adapted for training non-linear
as well as hybrid ranking and regression survival models. This opens up the
opportunity to build survival models from large sets of medical health records
to obtain new insights about the impact of particular factors on a disease.

Acknowledgments. We thank the Leibniz Supercomputing Centre (LRZ,
www.lrz.de) for providing the computational resources for our experiments. Data were
provided by the Framingham Heart Study of the National Heart Lung and Blood Insti-
tute of the National Institutes of Health and Boston University School of Medicine
(Contract No.N01-HC-25195).

258 S. Pölsterl et al.

References

1. Adelson-Velsky, G., Landis, E.: An algorithm for the organization of information.
In: Doklady Akademii Nauk SSSR, vol. 146, pp. 263–266 (1962)

2. Airola, A., Pahikkala, T., Salakoski, T.: Training linear ranking SVMs in lin-
earithmic time using red–black trees. Pattern Recogn. Lett. 32(9), 1328–1336
(2011)

3. Bayer, R.: Symmetric binary B-trees: Data structure and maintenance algorithms.
Acta Inform. 1(4), 290–306 (1972)

4. Bender, R., Augustin, T., Blettner, M.: Generating survival times to simulate Cox
proportional hazards models. Stat. Med. 24(11), 1713–1723 (2005)

5. Chapelle, O., Keerthi, S.S.: Efficient algorithms for ranking with SVMs. Informa-
tion Retrieval 13(3), 201–215 (2009)

6. Cox, D.R.: Regression models and life tables (with discussion). J. Roy. Stat. Soc.
B 34, 187–220 (1972)

7. Dembo, R.S., Steihaug, T.: Truncated Newton algorithms for large-scale opti-
mization. Math. Programming 26(2), 190–212 (1983)

8. Desmedt, C., Piette, F., Loi, S., Wang, Y., Lallemand, F., Haibe-Kains, B., Viale,
G., Delorenzi, M., Zhang, Y., d’Assignies, M.S., Bergh, J., Lidereau, R., Ellis, P.,
Harris, A.L., Klijn, J.G., Foekens, J.A., Cardoso, F., Piccart, M.J., Buyse, M.,
Sotiriou, C.: Strong Time Dependence of the 76-Gene Prognostic Signature for
Node-Negative Breast Cancer Patients in the TRANSBIG Multicenter Indepen-
dent Validation Series. Clin. Cancer Res. 13(11), 3207–3214 (2007)

9. Eleuteri, A., Taktak, A.F.G.: Support vector machines for survival regression. In:
Biganzoli, E., Vellido, A., Ambrogi, F., Tagliaferri, R. (eds.) CIBB 2011. LNCS,
vol. 7548, pp. 176–189. Springer, Heidelberg (2012)

10. Evers, L., Messow, C.M.: Sparse kernel methods for high-dimensional survival
data. Bioinformatics 24(14), 1632–1638 (2008)

11. Harrell, F.E., Califf, R.M., Pryor, D.B., Lee, K.L., Rosati, R.A.: Evaluating the
Yield of Medical Tests. J. Am. Med. Assoc. 247(18), 2543–2546 (1982)

12. Hosmer, D., Lemeshow, S., May, S.: Applied Survival Analysis: Regression Mod-
eling of Time to Event Data. John Wiley & Sons, Inc. (2008)

13. Jensen, P.B., Jensen, L.J., Brunak, S.: Mining electronic health records: towards
better research applications and clinical care. Nat. Rev. Genet. 13(6), 395–405
(2012)

14. Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data.
John Wiley & Sons, Inc. (2002)

15. Kannel, W.B., Feinleib, M., McNamara, P.M., Garrision, R.J., Castelli, W.P.: An
Investigation of Coronary Heart Disease in Families: The Framingham Offspring
Study. Am. J. Epidemiol. 110(3), 281–290 (1979)

16. Keerthi, S.S., DeCoste, D.: A Modified Finite Newton Method for Fast Solution
of Large Scale Linear SVMs. J. Mach. Learn. Res. 6, 341–361 (2005)

17. Khan, F.M., Zubek, V.B.: Support vector regression for censored data (SVRc):
a novel tool for survival analysis. In: 8th IEEE Int. Conf. on Data Mining, pp.
863–868 (2008)

18. Kimeldorf, G.S., Wahba, G.: A correspondence between bayesian estimation on
stochastic processes and smoothing by splines. Ann. Math. Stat. 41, 495–502
(1970)

19. Lee, C.P., Lin, C.J.: Large-Scale Linear RankSVM. Neural Comput. 26(4),
781–817 (2014)

Fast Training of Support Vector Machines for Survival Analysis 259

20. Mangasarian, O.: A finite newton method for classification. Optimization Methods
and Software 17(5), 913–929 (2002)

21. Ndrepepa, G., Braun, S., Mehilli, J., Birkmeier, K.A., Byrne, R.A., Ott, I.,
Hösl, K., Schulz, S., Fusaro, M., Pache, J., Hausleiter, J., Laugwitz, K.L., Mass-
berg, S., Seyfarth, M., Schömig, A., Kastrati, A.: Prognostic value of sensitive
troponin T in patients with stable and unstable angina and undetectable conven-
tional troponin. Am. Heart J. 161(1), 68–75 (2011)

22. Shivaswamy, P.K., Chu, W., Jansche, M.: A support vector approach to censored
targets. In: 7th IEEE Int. Conf. on Data Mining, pp. 655–660 (2007)

23. Steck, H., Krishnapuram, B., Dehing-oberije, C., Lambin, P., Raykar, V.C.: On
ranking in survival analysis: bounds on the concordance index. In: Adv. Neural
Inf. Process. Syst., vol. 20, pp. 1209–1216 (2008)

24. Van Belle, V., Pelckmans, K., Suykens, J.A., Van Huffel, S.: Support vector
machines for survival analysis. In: Proc. 3rd Int. Conf. Comput. Intell. Med.
Healthc, pp. 1–8 (2007)

25. Van Belle, V., Pelckmans, K., Suykens, J.A., Van Huffel, S.: Survival SVM: a
practical scalable algorithm. In: Proc. of 16th European Symposium on Artificial
Neural Networks, pp. 89–94 (2008)

26. Van Belle, V., Pelckmans, K., Van Huffel, S., Suykens, J.A.K.: Support vec-
tor methods for survival analysis: a comparison between ranking and regression
approaches. Artif. Intell. Med. 53(2), 107–118 (2011)

Superset Learning Based on Generalized Loss
Minimization

Eyke Hüllermeier1(B) and Weiwei Cheng2

1 Department of Computer Science, University of Paderborn, Paderborn, Germany
eyke@upb.de

2 Amazon Inc., Berlin, Germany

Abstract. In standard supervised learning, each training instance is
associated with an outcome from a corresponding output space (e.g., a
class label in classification or a real number in regression). In the super-
set learning problem, the outcome is only characterized in terms of a
superset—a subset of candidates that covers the true outcome but may
also contain additional ones. Thus, superset learning can be seen as a
specific type of weakly supervised learning, in which training examples
are ambiguous. In this paper, we introduce a generic approach to superset
learning, which is motivated by the idea of performing model identifica-
tion and “data disambiguation” simultaneously. This idea is realized by
means of a generalized risk minimization approach, using an extended
loss function that compares precise predictions with set-valued obser-
vations. As an illustration, we instantiate our meta learning technique
for the problem of label ranking, in which the output space consists of
all permutations of a fixed set of items. The label ranking method thus
obtained is compared to existing approaches tackling the same problem.

1 Introduction

Superset learning is a specific type of learning from weak supervision, in which
the outcome (response) associated with a training instance is only characterized
in terms of a subset of possible candidates. Thus, superset learning is somehow in-
between supervised and semi-supervised learning, with the latter being a special
case (in which supersets are singletons for the labeled examples and cover the
entire output space for the unlabeled ones). There are numerous applications in
which only partial information about outcomes is available [13].

Correspondingly, the superset learning problem has received increasing atten-
tion in recent years, and has been studied under various names, such as learning
from ambiguously labeled examples or learning from partial labels [6,11,15,5]. The
contributions so far also differ with regard to their assumptions on the incomplete
information being provided. In this paper, we only assume the actual outcome
to be covered by the subset—hence the name superset learning.

We introduce an approach to superset learning based on direct loss minimiza-
tion with a suitably generalized loss function. While previous work on superset
learning has mainly been focused on (multi-class) classification, our approach is
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 260–275, 2015.
DOI: 10.1007/978-3-319-23525-7 16

Superset Learning Based on Generalized Loss Minimization 261

Fig. 1. Data generating process in the setting of superset learning.

completely generic and does not make any specific assumptions about the out-
put space. In fact, we argue that superset learning is specifically interesting for
complex, structured output prediction, because information about such outputs
is indeed often incomplete. This is why, in the second part of the paper, we apply
our approach to the problem of label ranking, where outputs take the form of
rankings. More specifically, by instantiating our approach to superset learning
for the case of label ranking, we develop a new method for this problem, which
turns out to perform quite strongly in first experimental studies.

The rest of the paper is organized as follows. In the next section, we introduce
the basic problem setting and the main notation to be used throughout the
paper. Our new approach to superset learning is then introduced in Section 3.1

In Sections 4 and 5, we recall the label ranking problem and introduce our new
method.2 The paper concludes with a summary and an outlook on future work
in Section 6.

2 Setting and Notation

Consider a standard setting of supervised learning with an input (instance) space
X and an output space Y. The goal is to learn a mapping from X to Y that
captures, in one way or the other, the dependence of outputs (responses) on
inputs (predictors). The learning problem essentially consists of choosing an
optimal model (hypothesis) M∗ from a given model space (hypothesis space)
M, based on a set of training data

D =
{

(xn, yn)
}N

n=1
∈ (X × Y)N . (1)

More specifically, optimality typically refers to optimal prediction accuracy, i.e.,
a model is sought whose expected prediction loss or risk

R(M) =
∫

L
(
y,M(x)

)
dP(x, y) (2)

is minimal; here, L : Y × Y −→ R is a loss function, and P is an (unknown)
probability measure on X ×Y modeling the underlying data generating process.

In this paper, we are interested in the case where output values yn ∈ Y are
not necessarily observed precisely; instead, only a superset Yn ⊆ Y is observed.

1 This approach is leaned on [8], where a similar problem is studied in the context of
learning from “fuzzy data”.

2 A first version of this method has been presented at M-PREF 2013, 7th Multidisci-
plinary Workshop on Advances in Preference Handling, Beijing, China.

262 E. Hüllermeier and W. Cheng

Therefore, the learning algorithm does not have direct access to the (precise)
data (1), but only to the (imprecise, ambiguous) observations

O =
{
(xn, Yn)

}N

n=1
∈ (X × 2Y)N . (3)

More specifically, we assume a data generating process as sketched in Figure 1:
Given an instance x ∈ X , an underlying process first generates a precise outcome
y ∈ Y, which is then turned into an imprecise observation in the form of a
superset Y � y. We refer to this process of generating Y as “ambiguation” or
“imprecisiation” of y.

In the following, we denote by Y = Y1×Y2×· · ·×YN the (Cartesian) product
of the supersets observed for x1, . . . ,xN . Moreover, each y = (y1, . . . , yN) ∈ Y
is called an instantiation of the imprecisely observed data. More generally, we
call D in (1) an instantiation of O if the instances xn coincide and yn ∈ Yn for
all n ∈ [N] = {1, . . . , N}.

Prior to proceeding, let us emphasize that the Yn are considered as constraints
on actual outcomes yn, not on any kind of ideal outcomes or predictions for the
instance xn. In regression, for example, outcomes yn could be random variables
with expected value μ(xn) and standard deviation σ(xn). What we assume,
then, is Yn � yn but not necessarily Yn � μ(xn).

3 A Loss Minimization Approach

Given the data generating process as outlined above, the likelihood of a model
M ∈ M can be defined by the probability of the data given the model, i.e.,

�(M) = P
(O,D |M)

= P(D |M)P(O |D,M) . (4)

A reasonable assumption is that the imprecise observations Yn only depend on
the underlying true outcomes yn but not on the model M or, in other words,
that O is conditionally independent of M given D. Under this assumption,
P(O |D,M) = P(O |D) and (4) becomes

�(M) = P
(O,D |M)

= P(D |M)P(O |D) . (5)

As can be seen, the likelihood of M under the superset data is a weighted aver-
age of standard likelihoods P(D |M), with each precise data sample D being
weighted by the probability P(O |D) of observing O if the true underlying data
were D. In some cases, specific knowledge about these probabilities, i.e., about
the process of imprecisiation, is available; for example, in a classification set-
ting, a connection between true labels and observed partial labels is established
in terms of a so-called mixing matrix in [17]. However, in lack of any specific
knowledge of that kind, the most reasonable assumption we can make is

P(Y | y) =
{

const if Y � y
0 if Y �� y

(6)

Superset Learning Based on Generalized Loss Minimization 263

We call this the superset assumption, as it does not assume anything else than
the observation Y being a superset of y; in fact, the uniform distribution (6) is
the “weakest” distribution in accordance with this assumption, namely the one
with the highest entropy among all distributions allocating the entire probability
mass on supersets of y.

Now, it is easy to see that the likelihood (4) will vanish as soon as yn �∈ Yn

for at least one of the observations, while P(O |D) is a non-negative constant
that does not depend on M if yn ∈ Yn for all n ∈ [N]. Thus, maximizing the
likelihood is equivalent to finding

M∗ ∈ argmax
M∈M

max
y∈Y

N∏

n=1

P(yn |M,xn) (7)

or, equivalently,

M∗ ∈ argmin
M∈M

min
y∈Y

N∑

n=1

− logP(yn |M,xn) . (8)

3.1 Generalized Loss Minimization

Recall the principle of empirical risk minimization (ERM): A model M∗ is sought
that minimizes the empirical risk

Remp(M) =
1
N

N∑

n=1

L
(
yn,M(xn)

)
, (9)

i.e., the average loss on the training data D = {(xi, yi)}N
i=1. The empirical risk

(9) serves as a surrogate of the true risk (2). In order to avoid the problem of
possibly overfitting the data, not (9) itself is typically minimized but a regularized
version thereof. This is of minor importance here, however, and the approach
outlined in the following can be generalized from standard ERM to regularized
risk minimization in a straightforward way.

Now, coming back to our superset learning problem, it is interesting to note
that the approach (8) can be seen as a special case of ERM, with the loss function
L(·) given by the logistic loss: L(y, ŷ) = L(y,M(x)) is the (negative) logarithm
of the probability of y under the distribution specified by M(x). For example,
suppose that M is the class of linear regression models with normally distributed
error term, i.e., y = Mw(x) = w�x + ε. Then,

M∗ ∈ argmin
Mw∈M

min
y∈Y

N∑

n=1

(
yn − w�xn

)2
.

As can be seen, each candidate model M is evaluated optimistically
according to

Remp(Mw) = min
y∈Y

N∑

n=1

(
yn − w�xn

)2
,

264 E. Hüllermeier and W. Cheng

i.e., the standard (squared) loss it makes on the instantiation y that is most
favorable for M , and then the model M∗ with the best optimistic evaluation is
chosen.

Of course, the logistic loss could in principle be replaced by any other loss
function L(·) of interest; this is in fact even a prerequisite for working with non-
probabilistic models, i.e., if a model M merely produces predictions in Y but
not complete probability distributions. A model M is then evaluated according
to

Remp(M) = min
y∈Y

1
N

N∑

n=1

L
(
yn,M(xn)

)
.

Moreover, given a loss that is decomposable (over examples), the “optimism”
can be moved into the loss:

min
y∈Y

N∑

n=1

L
(
yn,M(xn)

)
=

N∑

n=1

min
yn∈Yn

L
(
yn,M(xn)

)

=
N∑

n=1

L∗(yn,M(xn)
)

with the generalized loss function

L∗(Y, ŷ) = min
{
L(y, ŷ) | y ∈ Y

}
(10)

that compares (precise) predictions with set-valued observations. We call this loss
the optimistic superset loss (OSL). Note that this loss covers the superset error
�ŷ �∈ Y �, which is commonly used in superset label learning for classification [14],
as a special case.

In summary, our approach to superset learning is based on the minimization
of the empirical risk with respect to this generalized loss function. Thus, each
candidate model M ∈ M is evaluated in terms of

Remp(M) =
1
N

N∑

n=1

L∗(Yn,M(xn)
)

, (11)

and an optimal model M∗ is one that minimizes (11) — or, as mentioned before,
a regularized version thereof.

3.2 Data Disambiguation

In the context of learning from data, not only the data is providing informa-
tion about the (unknown) model, but also the other way around. This view
is made explicit in the Bayesian approach to data analysis, where the joint
model/data probability P(M,D) can be written either way, as P(M)P(D |M)
and P(D)P(M | D). From a Bayesian perspective, the superset learning prob-
lem could be tackled quite naturally by not only starting with a prior on the

Superset Learning Based on Generalized Loss Minimization 265

Fig. 2. Model identification and data disambiguation go hand in hand. Left: Assuming
a linear model, the two example marked by a cross are most likely positive. Right:
Fitting a nonlinear model, disambiguation of these examples is less obvious.

model class M but also on the data, for example defining a uniform prior on
each superset Yn and zero probability outside. Inference would then come down
to attuning these priors, e.g., by turning priors into posteriors on the model
space and the data space in an alternating way. Eventually, this will yield a joint
model/data (posterior) probability P(M,D) that will not only inform about a
most plausible model M∗ but also about a most plausible instantiation y∗ of
the imprecise data. In other words, it will help disambiguating the data.

Our approach supports data disambiguation, too, albeit in a different way.
As can be seen from the “double-max” operation in (7), model and data are
selected in the most favorable combination. Thus, disambiguation essentially
relies on the inductive bias implemented by the model class M [9]. In fact, against
the background of the learning bias, some instantiations of the ambiguous data
appear to be more plausible than others. This is illustrated in Figure 2 for
a simple scenario of binary classification, in which some instances are known
to be positive (marked in black, yn = +1), some are known to be negative
(white, yn = −1), whereas some are unlabeled (grey, Yn = {−1,+1}). Now,
consider the two unlabeled instances marked with a cross, for example. Looking
at each example in isolation, nothing can be said about the actual (precise)
label. However, when looking at the data as a whole, in conjunction with the
assumption of a linear decision boundary between the two classes, the positive
class is clearly more plausible than the negative class (left picture). Yet, looking
at the data with a slightly less biased view and also allowing for a nonlinear
(e.g., quadratic) discriminant, these cases are more difficult to disambiguate:
Both the positive and negative class appear to be plausible, since both can be
obtained with plausible models M ∈ M, i.e., models that are in agreement with
the rest of the data. This example also shows that the stronger the bias, i.e., the
more background knowledge is incorporated in the learning process, the easier
disambiguation of the data becomes.

266 E. Hüllermeier and W. Cheng

In our approach, the disambiguated outcome y∗ corresponds to those ele-
ments for which the minimizer M∗ of (11) attains its (generalized) risk, i.e.,

y∗
n = argmin

yn∈Yn

L
(
yn,M∗(xn)

)
.

3.3 Examples

It is interesting to note that several methods proposed in the literature can be
seen as special cases of our framework, i.e., these methods correspond to the
minimization of the generalized loss (11) following to a suitable imprecisiation
of the data. For example, the ε-insensitive loss L(y, ŷ) = max(|y−ŷ|−ε, 0) used in
support vector regression [16] corresponds to the OSL (10) with L the standard
L1 loss L(y, ŷ) = |y − ŷ| and precise data yn being replaced by interval-valued
data Yn = [yn − ε, yn + ε] (cf. Figure 3).

Fig. 3. The ε-insensitive loss (left) and the hat loss (right).

Perhaps more interestingly, we obtain semi-supervised learning with support
vector machines as a special case by considering unlabeled data as instances
labeled with the superset {−1,+1} (like in our above example). The generalized
loss (10), with L the standard hinge loss, then corresponds to the (non-convex)
“hat loss” (cf. Figure 3). More generally, if the loss L is a margin loss of the
form L(y, s) = f(ys), comparing a class label y ∈ {−1,+1} with a predicted
score s ∈ R in terms of a non-increasing function f : R −→ R, it is easy to
verify that (10) is given by L∗(Y, S) = f(|ys|) for Y = {−1,+1} (and, of course,
L∗(Y, S) = L(Y, s) = f(ys) for Y = {−1} and Y = {+1}).

3.4 Superset Learning for Structured Output Prediction

Existing work on superset learning has been focused almost exclusively on (multi-
class) classification. Obviously, our approach is not restricted to this problem;
instead, the output space Y is completely generic. In fact, one may even argue
that superset learning is more interesting for problems with complex, structured
outcomes, since outcomes of that kind are often only partially specified in prac-
tice. A partial structure is then quite naturally associated with a subset of Y,
namely the set of all consistent completions—note that this view is somehow
in contrast to the common view of a label set Yn as a corruption of the true

Superset Learning Based on Generalized Loss Minimization 267

label, and of the additional labels as distractors [13]. In the following, we shall
instantiate our approach for a problem of that kind, namely label ranking [19],
where the output space consists of rankings (permutations)

4 Label Ranking

Let C = {c1, . . . , cK} be a finite set of (choice) alternatives, referred to as labels.
We consider total order relations � on C, where ci � cj indicates that ci precedes
cj in the order. Since a ranking can be seen as a special type of preference
relation, we shall also say that ci � cj indicates a preference for ci over cj .
Formally, a total order � can be identified with a permutation π̄ of the set [K],
such that π̄(i) is the position of ci in the order. Let the output space Y be given
by the set of permutations of [K] (the symmetric group of order K).

In the setting of label ranking, preferences are “contextualized” by instances
x ∈ X . Thus, each instance x is associated with a ranking �x of the label set
C or, equivalently, a permutation π̄x ∈ Y. More specifically, since label rankings
do not necessarily depend on instances in a deterministic way, each instance x
is associated with a probability distribution P(· |x) on Y. Thus, for each π̄ ∈ Y,
P(π̄ |x) denotes the probability to observe π̄ in the context specified by x.

The goal in label ranking is to learn a “label ranker”, that is, a model M :
X −→ Y that predicts a ranking π̂ for each instance x given as an input. As
training data D, a label ranker uses a set of instances xn (n ∈ [N]), together
with information about the associated rankings πn. Ideally, complete rankings
are given as training information, i.e., a single observation is a tuple of the form
(xn, πn) ∈ X × Y; we call an observation of that kind a complete example.
From a practical point of view, however, it is important to allow for incomplete
information in the form of a ranking of some but not all of the labels in C:

cτ(1) �x cτ(2) �x . . . �x cτ(J) , (12)

where J < K and {τ(1), . . . , τ(J)} ⊂ [K]. In the following, we will write complete
rankings π̄ with an upper bar (as we already did above). If a ranking π is not
complete, then π(j) is the position of cj in the incomplete ranking, provided this
label is contained, and π(j) = 0 otherwise.

Information in the form of an incomplete ranking π is naturally represented
in terms of a subset Y = E(π) ⊆ Y, namely the set of all of its linear extensions
E(π) (complete rankings preserving the order of those labels contained in π).
Note that, if π̄ is a completion of π, then π̄(k) ≥ π(k) for all k ∈ [K].

4.1 Prediction Accuracy

The prediction accuracy of a label ranker is typically assessed by comparing the
true ranking π̄ with the prediction π̂ in terms of a distance measure on rankings.
Among the most commonly used measures is the Kendall distance, which is

268 E. Hüllermeier and W. Cheng

defined by the number of inversions, that is, index pairs {i, j} ⊂ [K] such that
the order of ci and cj in π̄ is inverted in π̂:

D(π̄, π̂) =
∑

1≤i<j≤K

�
sign(π̄(i) − π̄(j)) �= sign(π̂(i) − π̂(j))

�
(13)

The well-known Kendall rank correlation measure is an affine transformation of
(13) to the range [−1,+1]. Besides, the sum of L1 or L2 losses on the ranks of
the individual labels are often used as an alternative:

D1(π̄, π̂) =
K∑

i=1

|π̄(i) − π̂(i)|, D2(π̄, π̂) =
K∑

i=1

(π̄(i) − π̂(i))2 (14)

These measures are closely connected with two other well-known rank corre-
lation measures: Spearman’s footrule is an affine transformation of D1 to the
interval [−1,+1], and Spearman’s rank correlation (Spearman’s rho) is such a
transformation of D2.

4.2 Label Ranking Methods

Several methods for label ranking have been proposed that try to exploit, in
one way or the other, the complex though highly regular structure of the output
space SK . These include generalizations of standard machine learning methods
such as nearest neighbor estimation and decision tree learning [4], as well as sta-
tistical inference based on parametrized models of rank data [3]. Moreover, sev-
eral reduction techniques have been proposed, that is, meta-learning techniques
that reduce the original label ranking problem into one or several classification
problems that are easier to solve [7,10].

Since the (base) learner used to realize label ranking is actually of minor
interest for our purpose, we shall stick to a simple nearest neighbor approach
in this paper. The most obvious way of exploiting our framework for superset
learning to realize such an approach consists of predicting, for a new query
instance x0, the ranking

π̂ ∈ argmin
π∈Y

nn∑

n=1

L∗(E(πn), π) , (15)

where π1, . . . , πnn are the (incomplete) rankings coming from the nn nearest
neighbors of x0, and L∗ is the OSL extension of a loss such as (13) or (14).
However, depending on the loss chosen, the problem of finding a minimizer in (15)
may become computationally expensive. Therefore, we subsequently introduce
a new meta-learning technique for label ranking, which is based on the idea of
reducing the original problem to standard classification problems.

5 Label Ranking based on Labelwise Decomposition

Unlike existing reduction techniques, which transform the original label ranking
problem to a single large or a quadratic number of small binary classification

Superset Learning Based on Generalized Loss Minimization 269

problems [7,10], our approach is based on a labelwise decomposition into K
ordinal classification problems. As will be explained in more detail in the follow-
ing, the basic idea is to train one model per label, namely a model that maps
instances to ranks.

5.1 Complete Training Information

If the training data D is precise, i.e., consists of complete examples (xn, π̄n), then
each such example informs about the rank π̄(k) of the label ck in the ranking
associated with xn. Thus, a quite natural idea is to learn a model

Mk : X −→ [K]

that predicts the rank of ck, given an instance x ∈ X as an input. Indeed, such
a model can be trained easily on the (label-specific) data

Dk =
{

(xn, rn) | (xn, π̄n) ∈ D, rn = π̄n(k)
}

. (16)

The classification problems thus produced are multi-class problems with K
classes, where each class corresponds to a possible rank. More specifically, since
these ranks have a natural order, we are facing an ordinal classification problem.
Thus, training of the models Mk (k ∈ [K]) can in principle be accomplished by
any existing method for ordinal classification.

5.2 Incomplete Training Information

As mentioned before, the original training data is not necessarily precise; instead,
for a training instance xn, only an incomplete ranking πn of a subset of the labels
in C might have been observed, while the complete ranking π̄n is not given. In
this case, the above method is not directly applicable: If at least one label is
missing, i.e., |πn| < K, then none of the true ranks π̄n(k) is precisely known;
consequently, the training data (16) cannot be constructed.

Nevertheless, even in the case of incomplete rankings, non-trivial information
can be derived about the rank π̄(k) for at least some of the labels ck. In fact, if
|π| = J and π(k) = r > 0, then

π̄(k) ∈ Y =
{
r, r + 1, . . . , r + K − J

}
.

Of course, if π(k) = 0 (i.e., ck is not present in the ranking), only the trivial
information π̄(k) ∈ [K] can be derived. Yet, more precise information can be
obtained under additional assumptions on the process of imprecisiation, which
in this case is responsible for removing labels from the complete ranking. For
example, if π is known to be the top of the ranking π̄, then

{
π̄(k) = π(k) if π(k) > 0
π̄(k) ∈ {J + 1, . . . , K} if π(k) = 0 . (17)

270 E. Hüllermeier and W. Cheng

This scenario is practically relevant, since top-ranks are observed in many appli-
cations.

In general, the type of training data that can be derived for a label ck in the
case of incomplete rank information is of the form

O =
{(

xn, Yn

)}N

n=1
⊂ X × 2[K] , (18)

that is, an instance xn together with a set of possible ranks Yn. Again, this
is exactly the type of data assumed as an input by our approach to superset
learning.

5.3 Generalized Nearest Neighbor Estimation

As already mentioned, we use a simple nearest neighbor approach for prediction:
Given a new query instance x0, a prediction π̂ is obtained by combining the
(incomplete) rankings π1, . . . , πnn coming from the nn nearest neighbors of x0 in
the training data O. Denote by Yk,n (k ∈ [K], n ∈ [nn]) the (possibly imprecise)
rank information for label ck provided by πn. Moreover, consider a distance D(·)
on Y that is labelwise decomposable, i.e., which can be written in the form

D(π̄, π̂) =
K∑

k=1

L(π̄(k), π̂(k)).

Obviously, the L1 and L2 loss in (14) are both of this type. Then, the empirical
risk of π̂, i.e., the loss of this prediction in the neighborhood of x0, is given by

nn∑

n=1

D(π̄n, π̂) =
nn∑

n=1

K∑

k=1

L(π̄n(k), π̂(k)) (19)

=
K∑

k=1

nn∑

n=1

L(π̄n(k), π̂(k)) (20)

=
K∑

k=1

Lk(π̂(k)), (21)

where Lk(r) is the cost of putting label ck on position r. Taking into account
that in general only incomplete rankings πn are observed, the loss L(·) should
be replaced by its generalization (10) and, therefore, Lk should be defined as

Lk(r) =
nn∑

n=1

L∗(Yk,n, r) .

Thus, an optimal solution would consist of assigning ck the position π̂(k) = r
for which Lk(r) is minimal. However, noting that each position r ∈ [K] must
be assigned at most once, this approach is obviously not guaranteed to produce
a feasible solution. Instead, the minimization of (19) requires the solution of an
optimal assignment problem [2]:

Superset Learning Based on Generalized Loss Minimization 271

– labels ck ∈ C must be uniquely assigned to ranks r = π̂(k) ∈ [K];
– assigning ck to rank r causes a cost of Lk(r);
– the goal is to minimize the sum of all assignment costs.

Assignment problems of that kind have been studied extensively in the litera-
ture, and efficient algorithms for their solution are available. The well-known
Hungarian algorithm [12], for example, solves the above problem in time O(K3).
Such algorithms can be used to produce a prediction π̂ that minimizes the sum
of assignment costs L1(π̂(1))+ . . .+LK(π̂(K)), and therefore to realize our near-
est neighbor approach to label ranking. In the next section, we experimentally
analyze this approach with L given by D1 in (14).

5.4 Experiments

In this section, we experimentally compare our new method, referred to as LWD
(for Label-Wise Decomposition), with another nearest neighbor approach to
label ranking. This approach is based on the (local) estimation of the parameters
of a probabilistic model called the Plackett-Luce (PL) model [3]. It is known
to achieve state-of-the-art performance, not only among the nearest neighbor
approaches but among label ranking methods in general. Apart from that, the
comparison with PL is specifically interesting for the following reason: The app-
roach is based on finding the probabilistic model, identified by a parameter vector
v = (v1, . . . , vK), for which the likelihood of observing the (neighbor) rankings
is maximized:

v∗ ∈ argmax
v∈R

K
+

nn∏

n=1

PL(πn |v)

Now, with PL being a probability measure on the set of permutations Y, the
probability of an incomplete ranking πn is given by the corresponding marginal,
namely

P(πn |v) =
∑

π∈E(πn)

PL(π |v) .

Thus, as can be seen, ambiguous examples are dealt with by summing over the
corresponding superset, as opposed to maximizing as suggested by our approach
(7). Since summation is more in line with averaging over all candidates than
selecting the most plausible one, this approach is obviously less in the spirit of
superset learning through data disambiguation.

As data sets, we used several benchmarks for label ranking that have also
been used in previous studies [10]; these are semi-synthetic data sets, namely
label ranking versions of (real) UCI multi-class data. Moreover, we used two real
label ranking data sets: The Sushi data3 consists of 5000 instances (customers)
described by 11 features, each one associated with a ranking of 10 types of
sushis. The Students data [1] consists of 404 students (each characterized by 126
attributes) with associated rankings of five goals (want to get along with my

3 http://kamishima.new/sushi/

http://kamishima.new/sushi/

272 E. Hüllermeier and W. Cheng

Table 1. Properties of the data sets.

data set # inst. (N) # attr. (d) # labels (K)

authorship 841 70 4
glass 214 9 6
iris 150 4 3
pendigits 10992 16 10
segment 2310 18 7
vehicle 846 18 4
vowel 528 10 11
wine 178 13 3
sushi 5000 11 10
students 404 126 5

Table 2. Performance in terms of Kendall’s tau on synthetic data: missing-at-random
(above) and top-rank setting (below).

complete ranking 30% missing labels 60% missing labels
LWD PL LWD PL LWD PL

authorship .933±.016 .936±.015 .925±.018 .833±.030 .891±.021 .601±.054
glass .840±.075 .841±.067 .819±.078 .669±.064 .721±.072 .395±.068
iris .960±.036 .960±.036 .932±.051 .896±.069 .876±.068 .787±.111
pendigits .940±.002 .939±.002 .924±.002 .770±.004 .709±.005 .434±.007
segment .953±.006 .950±.005 .914±.009 .710±.013 .624±.020 .381±.020
vehicle .853±.031 .859±.028 .836±.032 .753±.032 .767±.037 .520±.050
vowel .876±.021 .851±.020 .821±.022 .612±.027 .536±.034 .327±.033
wine .938±.050 .947±.047 .933±.054 .919±.059 .921±.062 .863±.094

authorship .933±.016 .936±.015 .932±.017 .927±.017 .923±.015 .886±.022
glass .840±.075 .841±.067 .838±.074 .809±.066 .815±.075 .675±.069
iris .960±.036 .960±.036 .956±.036 .926±.051 .932±.048 .868±.070
pendigits .940±.002 .939±.002 .933±.002 .918±.002 .837±.004 .794±.004
segment .953±.006 .950±.005 .943±.005 .874±.008 .844±.010 .674±.015
vehicle .853±.031 .859±.028 .851±.033 .838±.030 .818±.032 .765±.035
vowel .876±.021 .851±.020 .867±.021 .785±.020 .800±.021 .588±.024
wine .938±.050 .947±.047 .936±.049 .926±.061 .930±.059 .907±.066

parents, want to feel good about myself, want to have nice things, want to be
different from others, want to be better than others). See Table 1 for a summary
of the data.

Two missing label scenarios (imprecisiation procedures) were simulated,
namely a “missing-at-random” setting and the top-rank setting (17). In the first
case, a biased coin is flipped for every label in a ranking to decide whether to
keep or delete that label; the probability for a deletion is specified by a parame-
ter p ∈ [0, 1]. Thus, p × 100% of the labels will be missing on average. Similarly,
in the second case, only the J top-labels in a ranking are kept, where J has a
binomial distribution with parameters K and 1 − p.

The results in Tables 2 and 3 are presented as averages of 5 × 10-fold cross
validation in terms of the Kendall correlation measure; other measures such as

Superset Learning Based on Generalized Loss Minimization 273

Table 3. Performance in terms of Kendall’s tau on real-world data: missing-at-random
(above) and top-rank setting (below).

sushi 0% 10% 20% 30% 40% 50% 60% 70%
LWD .323±.012 .322±.011 .320±.011 .319±.010 .315±.011 .308±.011 .296±.011 .277±.010
PL .321±.010 .320±.010 .318±.010 .311±.010 .298±.011 .278±.010 .246±.010 .203±.012
LWD .325±.012 .324±.011 .324±.011 .323±.011 .323±.011 .323±.011 .321±.011 .316±.011
PL .321±.010 .320±.010 .320±.011 .320±.011 .319±.010 .316±.010 .310±.010 .303±.011

students 0% 10% 20% 30% 40% 50% 60% 70%
LWD .641±.051 .641±.051 .640±.050 .640±.051 .638±.052 .637±.051 .633±.054 .626±.055
PL .386±.028 .384±.027 .382±.026 .377±.029 .365±.025 .350±.027 .327±.027 .274±.033
LWD .641±.051 .641±.051 .641±.051 .641±.051 .640±.051 .640±.052 .638±.050 .628±.052
PL .386±.028 .385±.028 .386±.028 .385±.027 .383±.029 .379±.026 .377±.026 .371±.028

0 30 60

0.7
0.8
0.9

authorship

0 30 60
0

0.5

1
glass

0 30 60

0.7
0.8
0.9

iris

0 30 60
0

0.5

1
pendigits

0 30 60
0

0.5

1
segement

0 30 60

0.6

0.8

1

0 30 60
0

0.5

1
vovel

0 30 60
0.85

0.9

0.95
wine

Fig. 4. Performance of LWD (solid lines) and PL (dashed line) in the missing-at-
random setting.

(14) led to similar results. The number of nearest neighbors was determined
through internal cross-validation. As a distance measure on X , the standard
Euclidean distance was used.

These results clearly support the conclusion that, while LWD and PL are
quite en par in the complete ranking case, the latter is much more sensitive
toward missing label information than the former. In fact, the performance of
LWD is comparably stable, and its drop in performance due to missing label
information is less pronounced than in the case of PL; this observation is espe-
cially clear in the missing-at-random setting (see Figure 4), whereas the differ-
ences in performance are less visible in the top-rank setting. In any case, these
results are very interesting in light of our previous remarks on the comparison
between averaging (product-sum inference) and maximizing (product-maximum
inference) and clearly provide first evidence in favor of the effectiveness of learn-
ing through disambiguation in the context of structured output prediction.

274 E. Hüllermeier and W. Cheng

6 Summary and Outlook

Our approach to superset learning is based on the idea of simultaneously find-
ing the most plausible combination of model and data. As we explained, this
idea could in principle also be realized by means of a probabilistic approach,
and indeed, the principle of likelihood maximization was on the origin of our
considerations. However, a full-fledged probabilistic approach is quite demand-
ing and requires working with probability distributions both in the model and
the data space. While perhaps being less principled, our approach relaxes these
requirements: The plausibility of a model is captured in terms of how well it fits
the data (according to a given loss); moreover, by merely distinguishing between
possible and impossible instantiations of the imprecise data, plausibility in the
data space is treated as a purely bivalent notion.

There are various directions for future work, notably the following:

– Depending on the underlying loss function L(·), the computation of the cor-
responding OSL (10) and solution of the optimization problem (11) may
become complex, especially since (10) could be non-convex. Therefore, effi-
cient algorithmic solutions need to be found for specific instantiations of our
framework.

– Theoretical properties of our approach to superset learning need to be inves-
tigated. A specifically important question concerns conditions under which
successful learning, for example in the sense of (stochastic) convergence
toward an optimal model, is actually possible. An analysis of this kind obvi-
ously requires assumptions about the process of imprecisiation. Imagine, for
example, a classification problem in which class A is deterministically added
to the observed superset whenever the true class is B and vice versa. Learn-
ing to distinguish A from B is obviously impossible in that case. See [14]
for a first analysis of learnability in the context of superset label learning
problem (superset learning for binary classification).

– The idea of tackling structured output prediction by superset learning
appears to be interesting, and our results for label ranking are indeed promis-
ing. This idea should therefore be realized for other types of structured out-
put prediction, too, for example multi-label classification [18].

References

1. Boekaerts, M., Smit, K., Busing, F.M.T.A.: Salient goals direct and energise stu-
dents’ actions in the classroom. Applied Psychology: An International Review
4(S1), 520–539 (2012)

2. Burkard, R.E., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM (2009)
3. Cheng, W., Dembczynski, K., Hüllermeier, E.: Label ranking based on the

Plackett-Luce model. In: Proc. ICML 2010, Int. Conf. on Machine Learning, Haifa,
Israel (2010)

4. Cheng, W., Hühn, J., Hüllermeier, E.: Decision tree and instance-based learning
for label ranking. In: Proc. ICML 2009, 26th International Conference on Machine
Learning, Montreal, Canada (2009)

Superset Learning Based on Generalized Loss Minimization 275

5. Cour, T., Sapp, B., Taskar, B.: Learning from partial labels. Journal of Machine
Learning Research 12, 1501–1536 (2011)

6. Grandvalet, Y.: Logistic regression for partial labels. In: IPMU 2002, Int. Conf.
Information Processing and Management of Uncertainty in Knowledge-Based Sys-
tems, pp. 1935–1941, Annecy, France (2002)

7. Har-Peled, S., Roth, D., Zimak, D.: Constraint classification for multiclass classi-
fication and ranking. In: Proc. NIPS 2002, pp. 785–792 (2003)

8. Hüllermeier, E.: Learning from imprecise and fuzzy observations: Data disam-
biguation through generalized loss minimization. International Journal of Approx-
imate Reasoning 55(7), 1519–1534 (2014)

9. Hüllermeier, E., Beringer, J.: Learning from ambiguously labeled examples. Intel-
ligent Data Analysis 10(5), 419–440 (2006)

10. Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning
pairwise preferences. Artificial Intelligence 172, 1897–1917 (2008)

11. Jin, R., Ghahramani, Z.: Learning with multiple labels. In: 16th Annual Confer-
ence on Neural Information Processing Systems, Vancouver, Canada (2002)

12. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2(1–2), 83–97 (1955)

13. Liu, L.P., Dietterich, T.G.: A conditional multinomial mixture model for superset
label learning. In: Proc. NIPS (2012)

14. Liu, L.P., Dietterich, T.G.: Learnability of the superset label learning problem.
In: Proc. ICML 2014, Int. Conference on Machine Learning, Beijing, China (2014)

15. Nguyen, N., Caruana, R.: Classification with partial labels. In: Proc. KDD 2008,
14th Int. Conf. on Knowledge Discovery and Data Mining, Las Vegas, USA (2008)

16. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press (2001)

17. Sid-Sueiro, J.: Proper losses for learning from partial labels. In: Proc. NIPS (2012)
18. Sun, Y.Y., Zhang, Y., Zhou, Z.H.: Multi-label learning with weak label. In: Proc.

24th AAAI Conference on Artificial Intelligence, Atlanta, Georgia, USA (2010)
19. Zhou, Y. Lui, Y., Yang, J., He, X., Liu, L.: A taxonomy of label ranking algo-

rithms. Journal of Computers 9(3) (2014)

Probabilistic, Statistical,
and Graphical Approaches

Bayesian Modelling of the Temporal Aspects
of Smart Home Activity with Circular Statistics

Tom Diethe(B), Niall Twomey, and Peter Flach

Intelligent Systems Laboratory, University of Bristol, Bristol, UK
{tom.diethe,niall.twomey,peter.flach}@bristol.ac.uk

Abstract. Typically, when analysing patterns of activity in a smart
home environment, the daily patterns of activity are either ignored com-
pletely or summarised into a high-level “hour-of-day” feature that is
then combined with sensor activities. However, when summarising the
temporal nature of an activity into a coarse feature such as this, not
only is information lost after discretisation, but also the strength of the
periodicity of the action is ignored. We propose to model the temporal
nature of activities using circular statistics, and in particular by perform-
ing Bayesian inference with Wrapped Normal (WN) and WN Mixture
(WNM) models. We firstly demonstrate the accuracy of inference on
toy data using both Gibbs sampling and Expectation Propagation (EP),
and then show the results of the inference on publicly available smart-
home data. Such models can be useful for analysis or prediction in their
own right, or can be readily combined with larger models incorporating
multiple modalities of sensor activity.

1 Introduction

One of the central hypotheses of a “smart home” is that a number of different
sensor technologies may be combined to build accurate models of the Activi-
ties of Daily Living (ADL) of its residents. These models can then be used to
make informed decisions relating to medical or health-care issues. For example,
such models could help by predicting falls, detecting strokes, analysing eating
behaviour, tracking whether people are taking prescribed medication, or detect-
ing periods of depression and anxiety. Since 2007, the Centre for Advanced Stud-
ies in Adaptive Systems (CASAS) research group has been collecting data from
homes with various different sensor layouts and differing numbers of residents
(see e.g. [2]).

In most of the approaches taken to date [6,7,13], classifiers are learnt which
put weights over individual sensors, and then take linear combinations of these
weights to produce a decision function for the set of active sensors at any given
time. In addition, an extra “hour-of-day” feature is often added, which in some
sense attempts to capture the periodic nature of many of the activities under
examination. However this can produce undesirable effects, since this is a rather
coarse discretisation. This in turn can result in border effects, such as activities
that are short-lived but often span an hour boundary.
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 279–294, 2015.
DOI: 10.1007/978-3-319-23525-7 17

280 T. Diethe et al.

We propose instead that it is more satisfactory to take a model-based app-
roach, in which the temporally periodic nature of the activities (i.e. circadian or
diurnal rhythms) is taken directly into account. A natural framework for this is
the area of “circular” statistics [5,9,18], where univariate data is defined on an
angular scale, typically the (unit) circle.

In addition we suggest that, rather than using frequentist methods to fit cir-
cular distributions to the data, a full Bayesian approach would be advantageous
in this setting. To begin with, this allows for a principled way of incorporating
prior knowledge (or results of a previous round of inference in order to perform
on-line learning) if such knowledge exists. However, beyond this, inferring the
full distribution over the parameters facilitates model comparison and hypothe-
sis testing. Furthermore, if the results of inference are to be used in a decision-
making context, such as for the medical application being considered here, the
optimal decision is the Bayesian decision [17]. The model-based approach is also
appealing as it allows us to consider building larger models, such as hierarchi-
cal models that enable us to reason about the differences between individuals
and groups of people (using shared hyper-priors), and also to consider transfer
learning.

In order to solve the (intractable) inference problems, we will take two
approaches. Firstly, we will use Gibbs sampling [3], which is a Markov chain
Monte Carlo (MCMC) algorithm for obtaining a sequence of observations which
are approximated from a specified multivariate probability distribution. Gibbs
sampling has the advantage of being easy to implement, and is particularly
well-adapted to sampling the posterior distribution of a Bayesian network, since
Bayesian networks are typically specified as a collection of conditional distribu-
tions.

We will also consider the deterministic approximation method Expectation
Propagation (EP) [11], a generalisation of Belief Propagation (BP) in which the
true posterior distribution is approximated with a simpler distribution, which
is close in the sense of Kullback-Leibler (KL) divergence. EP approximates the
belief states with expectations, such as means and variances, giving it much
wider scope than would be possible with BP.

2 Related Work

Many methods and statistical techniques have been developed to analyse and
understand circular data, mainly from a frequentist perspective. The popular
approaches have been embedding, wrapping and intrinsic approaches (see e.g.
[5,9]). Here we focus on the wrapping approach, and specifically the Wrapped
Normal (WN) distribution [9]. A survey of Bayesian analysis of circular data
using the wrapping method was given by [15], and the approaches herein build
upon this work.

The use of circular statistics to model circadian or diurnal rhythms was first
considered by [9], and also discussed by [16], in which various procedures for the
analysis of circadian rhythms at population, organism, cellular and molecular

Bayesian Modelling of the Temporal Aspects of Smart Home Activity 281

levels were examined, ranging from visual inspection of time plots to several
mathematical methods of time series analysis.

A multivariate WN Mixture (WNM) model was defined used by [1] for the
modelling of high-rate quantisation of phase data of speech, in which the authors
used the Expectation Maximisation (EM) algorithm to learn the location and
covariance parameters. Note however that a maximisation algorithm such as EM
is capable of only returning a single point from the distribution, rather than a
full distribution over the parameters.

Recently two non-parametric Bayesian models of circular variables based on
Dirichlet Process (DP) Mixtures of normal distributions were introduced [14]:
the first was a projected DP mixture of of bi-variate normals and the second
was based on WN s. Inference was done in this case using Gibbs slice sampling,
and has the appeal that in theory it is possible to learn the number of mixture
components rather than having to pre-specify or use model comparison. However,
inference in this case is extremely expensive, with large numbers of iterations
(40,000 were used) required, and large numbers of data points are required to
fit the large number of parameters in the model.

3 Methods

Let x be a circular random variable defined on the circumference of a circle.
The corresponding circular probability density function (pdf) f(·) is periodic
with period γ: f(x) = f(x + wγ),∀w ∈ Z, γ ≥ 0. Usually the distributions are
defined over the unit circle, in which case γ = 2π, but arbitrary γ ≥ 0 can
be considered by a simple rescaling of x. The function f(·) integrates to 1 over
(0, γ]. For notational simplicity, we will assume that all circular variables are
constrained to their principal values, obtained by taking the modulo operation
x ← x mod γ.

The circular distance between two points x, z for a given period γ is given
by [9, eq.2.3.13]:

dγ(x, z) = min (x − z, γ − (x − z)) =
γ

2
−

∣
∣
∣
γ

2
− |x − z|

∣
∣
∣ . (1)

There exist distributions directly defined on the (unit) circle, such as the von-
Mises or Circular Normal distribution (see [9, section2.2.4]), but for reasons given
below we will focus on the WN distribution.

3.1 The Wrapped Normal (WN) Distribution

A “wrapped” distribution is one that results from wrapping the pdf of a linear
random variable to the circumference a (unit) circle (infinitely many times). The
corresponding distributions are called wrapped distributions, and any continuous
pdf can be wrapped in this way. The Wrapped Normal (WN) distribution is the
circular analog of the normal distribution, achieved by wrapping in this way. In
practice, the von-Mises and the WN distribution are very similar [9]. However,

282 T. Diethe et al.

the wrapped Normal distribution is more convenient for Bayesian inference, as
many of the technical details can be brought over from the (well studied) Normal
distribution – for example, it is closed under convolution [9]. The probability
density function of the wrapped normal distribution is [9]

fWN (x;μ, σ, γ) =
1

σ
√

2π

∞∑

k=−∞
exp

[−(x − μ + γk)2

2σ2

]

, (2)

with x ∈ [0, 2π), location parameter μ ∈ [0, 2π), and uncertainty parameter
σ > 0. We will use τ = 1

σ2 to denote the precision. Because the summands of
the series converge to zero, it is natural to approximate the pdf with the finite
series:

f̂WN (x;μ, σ, γ) =
1

σ
√

2π

K∑

k=−K

exp
[−(x − μ + γk)2

2σ2

]

≈ fWN (x;μ, σ, γ), (3)

where only 2K + 1 summands are considered. However, one can intuitively see
that for small values of K, this will only be a good approximation for small
values of σ.

The WN can also be expressed in terms of the Jacobi theta function (see [5,
eq.(2.2.15)]), which leads to a second approximation that is more accurate for
large values of σ.

f̃WN (x;μ, σ, γ) ≈ fWN (x;μ, σ, γ)

=
1
γ

(

1 + 2
K∑

k=1

e− σ2
2 (2πk

γ)2 cos
(

2πk

γ
(x − μ)

))

, (4)

where only K summands are considered. Theoretical bounds are given in [8]
that show that the errors of both approximations decrease exponentially with
the number of summands, and show that the first representation performs well
for small σ whereas the other performs well for large σ.

3.2 Bayesian Inference

The WN distribution possesses the additive property [5], i.e. the convolution
of two WN distributed variables is also a an WN distribution. Hence for the
purposes of Bayesian inference, the conjugate prior for the location parame-
ter μ of a WN distribution is another WN distribution, which we denote as
WN 0(μ;μ0, σ0, γ). The conjugate prior for the precision τ is the Gamma dis-
tribution, denoted by Ga(τ ;α0, β0) for shape and rate parameters α0 and β0

respectively, as would be the case for the Normal distribution.
In Figure 1a we show the factor graph for the WN model, where the shading

of the x variable indicates that it is observed, and the box around x and the
WN factor is a plate, indicating that this part of the graph is repeated N times.
Inference can be performed in this model using Gibbs sampling, where we use the
approximations given in Equation 3 and Equation 4, and where we the former
is used if σ2 < 0.15 and the latter in the reverse case, as suggested by [8].

Bayesian Modelling of the Temporal Aspects of Smart Home Activity 283

3.3 WN Mixture (WNM) Models

We define the WN Mixture (WNM) distribution (i.e. a mixture of WN dis-
tributions) in the following way,

fWNM(x;μ, σ, γ, φ,M) =
M∑

m=1

wmWN (x;μk, σ2
k, γ), (5)

where w ∈ R
M :

∑M
m=1 wm = 1, wm ≥ 0, i.e. w ∼ Cat(φ) are the mixing coef-

ficients which are drawn from a categorical (discrete) distribution of dimension
M > 0 with a probability vector φ. The conjugate prior for φ is the Dirichlet
distribution, with a concentration parameter vector αφ ∈ R

M : α > 0.
In Figure 1b we show the factor graph for the WNM model using gate

notation for representing the mixture model [12]. φ is the Dirichlet distributed
variable, from which the discrete variable Ψ ∈ R

m is drawn, where m is the
number of mixture components, representing the gate selector is sampled.

x

μ τ

WN

μ0 τ0 γ

WN

α0 β0

Ga

N

N : Number of instances
x: Time of instance

(a)

x

μ τ

WN
ψ

φ

αφ

Dir

Cat

μ0 τ0 γ

WN

α0 β0

Ga

N

N : Number of instances
x: Time of instance

(b)

Fig. 1. (a) Wrapped Normal (WN) and (b) WN Mixture (WNM) models.

As has been noted by [14], the standard WNM model suffers from issues of
identifiability, which we also found when trying to perform inference using the
model. There the authors tackle the problem by “unwrapping” the distribution
by conditioning on the wrapping number ki, which results in a complex sampling
procedure. Here we will take a simpler approach, that also allows us to use EP
as well as Gibbs sampling.

284 T. Diethe et al.

3.4 Approximate WN (AWN)

We approximate the WN with mixture of M̃ normal distributions. If we insist
that M̃ is odd, and define a vector of offsets, δ = (δ/2)M̃−1

δ=−M̃−1
, the AWN

model is defined by

fAWN (x;μ, σ2, M̃) =
1
M̃

∑

δ∈δ

N (x;μ + δγ, σ2). (6)

This model cascades a series of M̃ Gaussian distributions along the real line
where adjacent distributions are a distance of γ apart, all distributions share
the same variance, and the mean of the central component is constrained to
be found within the periodic range, [0, γ) (this is the only component that will
fall within this range). The components whose means fall outside the periodic
range contribute to modelling by mimicking the wrapped tails of the WN model.
Indeed, as M̃ tends towards infinity the AWN approximation approaches WN .
AWN models requires specification of three parameters: μ, σ2 and M̃ , and the
factor graph for this model is shown in Figure 2a.

By modelling periodic distributions in this manner, we can approximate the
posterior distributions of the WN parameters as one would estimate Bayesian
mixture model parameters. We can again use Gibbs sampling to perform infer-
ence for the AWN model. However, since we have replaced the WN distribu-
tion with standard normal distributions, we can also use Expectation Propa-
gation (EP). EP has a major advantage over Gibbs sampling in this setting,
which is that it is relatively easy to compute model evidence (see Equation 7
in subsection 3.6) which will allow us to do model comparison. In the first set
of experiments (see subsection 4.1 and 5.1) we will compare the two inference
methods for this model.

3.5 Approximate WNM (AWNM)

Generalisation of the AWN models to an AWNM is achieved by straightfor-
ward application of a standard mixture model gate over the parameter means,
variances and approximation factors. The factor graph for this is given in
Figure 2b, where mixing factors have been introduced.

As with the AWN model, we can again use either Gibbs sampling or EP
to perform inference for the AWNM model. The computation of evidence
Equation 7 plays an even greater role here, since it gives us a method to select
the number of mixture components K (see 5.1). In the first set of experiments
(see subsection 4.1 and 5.1) we will compare the two inference methods for this
model.

3.6 Model Comparison

We also perform Bayesian model comparison, in which we marginalise over the
parameters for the type of model being used, with the remaining variable being

Bayesian Modelling of the Temporal Aspects of Smart Home Activity 285

x

μ τ

δ

μk

+

N

μ0 τ0

N

α0β0

Ga

Cat

N

(a)

x

μ τ

δ

μk

+

N

μ0 τ0

N

α0β0

Ga

Cat

φ

ψ

Cat

αφ

Dir

N

(b)

Fig. 2. (a) AWN and (b) AWNM models.

the identity of the model itself. The resulting marginalised likelihood, known
as the model evidence, is the probability of the data given the model type, not
assuming any particular model parameters. Using D for data, θ to denote model
parameters, H as the hypothesis, the marginal likelihood for the model H is

p(D|H) =
∫

p(D|θ,H) p(θ|H) dθ (7)

This quantity can then be used to compute the “Bayes factor”[4], which is the
posterior odds ratio for a model H1 against another model H2,

p(H1|D)
p(H2|D)

=
p(H1)p(D|H1)
p(H2)p(D|H2)

. (8)

3.7 Rose Diagrams

A useful variant of the circular histogram is a “rose diagram”, in which the bars
of a histogram are replace by segments. The area of each segment is proportional
to the frequency of the corresponding group. As such, for groups of equal width,
the radius should be proportional to the square root of the relative frequency
[9]. We will use these, but with a slight abuse (since the maximum value of a
pdf is arbitrary) we will plot the WN and WNM pdfs over the rose diagrams
with the maximum of the pdf coinciding with the outside of the plot.

286 T. Diethe et al.

Table 1. Parameter settings for toy the data generated from (a) WN distribution and
(b) WNM distribution of Equation 9

(a) WN parameters

Data set μ σ2

0 0.0 10.0
1 21.0 2.0
2 3.0 2.0
3 10.0 10.0

(b) WNM parameteres

Data set μ1 σ2
1 μ2 σ2

2

0 0.0 2.0 12.0 2.0
1 6.0 4.0 18.0 4.0
2 6.0 10.0 9.0 10.0
3 2.0 2.0 3.0 2.0

4 Experiments

All models were implemented using Infer.NET [10], a framework for running
Bayesian inference in graphical models. Model specifications will are provided in
the supplementary material accompanying this paper.

4.1 Toy Data

In order to evaluate the models, we first created toy datasets where we sampled
from WN and WNM distributed data. For testing the uni-modal models, data
were generated from WN distribution with the settings for μ and σ2 given in
Table 1a. For testing the mixture models, data were generated from the following
mixture model:

f(x) = 0.6 WN (x;μ1, σ
2
1 , γ) + 0.4 WN (x;μ2, σ

2
2 , γ) (9)

where μ1, σ
2
1 , μ2, σ

2
2 were set as in Table 1b. The first two are in some sense

“easy”, since the means are well separated, with the two cases being used to
ensure there were no inference pathologies. The third and fourth are harder
problems as the variances are large with respect to the difference in means,
where in data set 2 the variances are large and in data set 3 the variances are
smaller.

We measure the mean difference (MD) for the estimated moments of the
WN components:

MDμ =
1
n

n∑

i=1

|dγ(μi, μ̂i)|, MDσ =
1
n

n∑

i=1

|σi − σ̂i| (10)

where dγ(x, z) is the circular distance defined in Equation 1 and n is the number
of random repetitions used.

4.2 The CASAS HH101 Dataset

We next examine some real-world data collected by the CASAS research group
[2]. The HH101 data set1 contains 3 months of single-resident apartment data
1 http://casas.wsu.edu/datasets/hh101.zip

http://casas.wsu.edu/datasets/hh101.zip

Bayesian Modelling of the Temporal Aspects of Smart Home Activity 287

with partial annotations, with 30 different activities appearing in the annota-
tions. The house was equipped with motion sensors, door sensors, temperature
sensors, and ambient light sensors, which were recorded asynchronously. We
chose this data for the length of recording, and due to the fact that it was from
a single resident, to avoid further complications caused by multiple residents.
The layout of the house with sensor locations marked with circles can be seen
in Figure 3.

Fig. 3. Floorplan of the CASAS
HH101 dataset.

We note that there are sometimes errors in
the data, such as ON/OFF events not being
paired up correctly. When parsing the data
we take a conservative approach, finding only
OFF events that follow ON events. As with
the sensors, there are sometimes errors in
the activity labelling. We use the same con-
servative method. Note also that there are
sometimes activity labels that are orphaned –
i.e. there is no BEGIN/END trigger but sim-
ply a single label next to a sensor activation
– these are ignored.

Figure 4 shows the log of the total time spent performing each activity for
each of the labelled activities in the CASAS HH101 dataset. It’s worth noting
that this dataset is dominated by 3 activities (Sleep, Sleep Out Of Bed, and
Watch TV), which is perhaps in part due to the ease of labelling these activities,
and in part due the fact that the resident was an elderly person. This will clearly
play an important role in the quality of inference, simply due to the number of
examples available.

Fig. 4. Log of total time spent perform-
ing each activity for each of the labelled
activities in the CASAS HH101 dataset.

Despite not modelling the sensor acti-
vations themselves, our data instances
are in fact dependent on the sensor
activations, since the dataset only con-
tains annotations where sensor activa-
tions exist. In order to provide samples
of the times of activity occurrences to
our models, we could take the start end
times of the activity and then re-sample
from within this range (uniformly or oth-
erwise). Here for simplicity we assume
that the sensor activations in the period
between the start and end annotations
themselves provide independent samples
of the times of an activity.

4.3 Priors

The period γ of all WN distributions
in our experiments were set to 24,

288 T. Diethe et al.

representing the 24 hours in the day. In the WN model we set the location
parameter of the prior over the location to 0, and the precision to

(
γ
2

)−2, mean-
ing that two σ (wrapped standard deviations) in each direction will reach around
the period, which roughly corresponds to a uniform distribution over the circle.
We set the Gamma prior hyper-parameters were set to α0 = 1, β0 = 1, which
simply favours smaller precisions (and therefore larger variances).

In the AWN model we set the location parameter of the prior over the
location to γ

2 , as this is the uninformative prior for the approximated model. All
other hyper-parameters were the same as for the WN model. In the AWNM
model we set the location parameter of each of the mixture components to γ

2 . The
prior precision was set to

(
γ
2K

)−2 where K is the number of mixture components.
The Gamma hyper-parameters were as with the uni-modal case.

4.4 Symmetry Breaking

In a normal mixture model, it is well known there is a symmetry in the mixture
component assignments that needs to be broken by randomly initialising each
data point to one of the components. In the AWNM model, this symmetry is
also present, but there is an additional symmetry caused by the approximation.
Fortunately, both symmetries can be broken using a different method, where
the means of the components are initialised to mγ

M , k = 1, . . . , M , where M is
the number of mixture model components (not approximation components M̃),
i.e. we distribute the prior means evenly around the circle. Once the means have
been initialised in this way, it is no longer necessary to randomly assign the
mixture components (and in fact may slow down convergence).

5 Results

We first present results for the WN model and the AWN model using both
Gibbs sampling and Expectation Propagation (EP) on data generated from a
WN distribution, to show that the EP AWN model is sufficiently accurate
for our purposes. This validation is useful, since although EP is a deterministic
algorithm, there is no guarantee of convergence if there are any loops present in
the graph. We then show that this accuracy carries over to the AWNM model
on data generated from an WNM distribution. We then show results on a smart
home dataset from the Casas group.

In the following experiments we monitored the convergence of the models
after each round of inference, where a round was determined to be a single
full iteration of EP, or 100 iterations of Gibbs. The convergence criterion was
that the means of each component had not moved by more than 30 seconds
(= γ/1800 ≈ 0.01) from one the previous round (other criteria are possible, but
this was simple and effective).

Bayesian Modelling of the Temporal Aspects of Smart Home Activity 289

5.1 Toy Data

Uni-modal Data. Details of the data generating process are in subsection 4.1
using the parameter settings in Table 1a, where we generated 100 data points
and performed 5 repetitions of each data set with different random seeds. The
results of learning the WN model using Gibbs sampling, and AWN using Gibbs
sampling and EP are shown in Figure 5, where performance is measured in
terms of MDμ and MDσ as defined in Equation 10. We can see that the AWN
model using Gibbs sampling performs almost identically to the WN model in
the estimation of both moments of the distribution. The AWN model using EP
has slightly degraded performance in terms of estimating the location μ, but
is able to accurately estimate σ. The average running times were WN : 0.12s,
AWN (Gibbs): 0.40s, and AWN (EP): 0.33s.

Fig. 5. Results on data generated from a uni-modal WN distribution, comparing the
WN model with AWN model for both Gibbs and EP.

Mixture Model Data. In the following experiments we generated 100 data
points in each data set, and repeated the experiments 5 times with different
random seeds. The results in Figure 6 indicate that for fairly small data sets, the
EP version of the model is in fact more accurate in terms of MD for the estimated
moments. EP and Gibbs required on average over all of the experiments ≈ 20
and 2100 iterations to converge respectively, and EP reached convergence in on
average roughly one fifth of the computation time required by Gibbs sampling.

Fig. 6. Small data set : Accuracy of inference of the AWNM model on data generated
from an WNM distribution (details in subsection 4.1 Table 1b).

The results in Figure 7 indicate that for larger data sets, the Gibbs version of
the model is more accurate in terms of MD for the estimated moments than the
EP version. This is explained by the difficulty of data set “2”, which corresponds

290 T. Diethe et al.

to the “pathological” case outlined in the model comparison discussion below,
and as such the errors that we see EP making here are that it estimates there
there is a single mode rather than two, which is not wholly unreasonable. EP
and Gibbs required on average over all of the experiments roughly 28 and 1115
iterations to converge respectively, and EP reached convergence in roughly half
the computation time than is required by Gibbs sampling.

Fig. 7. Larger data set : Accuracy of inference of the AWNM model on data generated
from an WNM distribution (details in subsection 4.1 Table 1b).

Model Selection. We are able to take advantage of the fact that we are using
EP in the AWNM model to perform model selection, since the model evidence
computations are more straightforward for EP than for Gibbs sampling, and
in fact have already been implemented in Infer.NET. In order to test the abil-
ity to use model evidence for model selection purposes, we ran the following
experiment. We generated data from a WNM distribution with K = {1, 2, 3, 4}
components. We sampled the mixture weights for the components from a sym-
metric Dirichlet distribution Dir(10, 10) (which gives roughly equal mass to each
of the components) and then sampled 200 data points from the mixture distri-
bution according to those weights. We then computed the model evidence for
the AWNM model with K = {1, 2, 3, 4} components, i.e. we learnt a model for
each possible pair of true K and model K (16 in total). The results are shown
in Figure 8. The true K values lie on the diagonal (i.e. where the correct K
was supplied to the model). As can be seen in bold, the model gives the highest
evidence to the those values of K across each row, meaning that by selecting the
model with the highest evidence we would indeed choose the correct value for K.

Fig. 8. Model evidence computation for the
AWNM model using EP. See text for
details.

However Figure 9 shows a seemingly
pathological case. In this example the
true means μ1 = 6, μ2 = 9 are quite
close together, with a large σ2 =
10 for both components. We can see
that the model at first seems to con-
verge to the correct means, but then
appears to diverge away. At the end
of this inference run, the estimated
weights for the components were w1 ≈
0.02, w2 ≈ 0.98, showing that the
model had put all of the mass on the
second component, with the mean being close to the average of the true mean

Bayesian Modelling of the Temporal Aspects of Smart Home Activity 291

(a) Estimated and true means. (b) Model evidence.

Fig. 9. A pathological case. The x-axis in both figures shows the EP iteration count.
The true means μ1 = 9, μ2 = 6 are quite close, with a large σ2 = 10 for both. Note
that the model evidence continues to rise, despite the estimated means diverging from
the truth. This is because in this case there is insufficient evidence for a bimodal model
due to the high variances.

(a) Bathe (b) Dress

(c) Sleep (d) Sleep Out Of Bed

Fig. 10. Posterior means of the AWNM model fitted to activities from the CASAS
HH101 dataset. Note that the model correctly captures the multi-modal nature of the
activities. The WN parameters are given in the subtitles of each subplot (mixture
weights not shown).

292 T. Diethe et al.

Fig. 11. Log evidence on the CASAS HH101 dataset for different values of mixture
components M .

components. Interestingly, the model evidence continues to rise throughout, indi-
cating that the model has favoured parsimony, which in the sense of Occam’s
razor would be the sensible thing to do.

5.2 Smart Home Data

We now give results on some real-world data from the CASAS HH101 dataset,
as described in subsection 4.2. We will use the AWNM model for the following
experiments, where we run inference with M = 1, 2, 3, 4 mixture components,
M̃ = 3, priors set as given in subsection 4.3, and symmetry breaking initialisa-
tion as given in subsection 4.4. We use model evidence Equation 7 to choose the
number of mixture components K. We plot the posterior moments for four of
the activities in Figure 10, where we take the posterior means μm,m = 1, . . . , M
and the posterior mean of τm,m = 1, . . . , M , the posterior mean of the mixture
weights φ, and construct a WNM distribution using these parameters.

Note that many of the activities are clearly multi-modal, such as the “Dress”
activity in Figure 10b, and the model is able firstly to correctly identify the
number of mixture components, and also to capture the multi-modal nature of
the periodicity of the activities. The “Sleep Out Of Bed” activity is interesting
as there is a prominent “lobe” of the distribution from the narrower of the mix-
ture components. Figure 11 shows the log model evidence scaled by the number
of data points for the models learnt with K = 1, 2, 3 mixture components for
each activity, showing the number of components chosen by model selection.
Note that in some cases it is quite clear cut that one of the models should be
preferred, but in other cases the choice is more borderline.

Bayesian Modelling of the Temporal Aspects of Smart Home Activity 293

6 Discussion

The results indicate that the Approximate WNM (AWNM) is able to accu-
rately estimate the moments of WN Mixture (WNM) distributed data, as
demonstrated by the experiments on the toy dataset. Furthermore, the Expec-
tation Propagation (EP) implementation is appealing, since it gives comparable
results to the Gibbs sampling approach, but is generally faster and also enables
model selection through evidence computation.

The inferred posteriors could then be used to (a) generate continuous fea-
ture(s) to be used in a classifier (probabilistic or otherwise), e.g. by using the log
probability of activities given time-stamp. We would expect to see some improve-
ment over a simple “hour-of-day” feature as it is a more refined representation
of the distribution over time.

Potentially more interesting, however, is that since we have full distribution
over the parameters, we can use these in a larger probabilistic model. For exam-
ple, we can easily perform a modelling of the periodicity of the sensors activations
in the same way, and then learn a mapping from sensor to activity which would
in effect be a form of periodic regression.

7 Conclusions

In this paper we have shown that Bayesian inference for the WN distribution
(using Gibbs) is easy to implement and accurate for data generated from a
the model. The WNM suffers from identifiability issues, so we introduced an
approximate version AWN which can be easily implemented using either Gibbs
or EP in the modelling framework Infer.NET [10], and that this model accurately
approximates the WN model. We then showed that we could extend this to
the mixture modelling AWNM, and demonstrated how model evidence can
be used for model selection (choosing the number of mixture components). We
then showed some results of preforming inference using the AWNM model on
a real-world smart home data set.

7.1 Further Work

An appealing extension would be to construct a multivariate WNM model
to model all of the sensor activations (from binary sensors) in a smart home
together, with the resulting covariance matrix giving a description of the peri-
odic linkage between sensors. Following on from this, it would be interesting to
combine such a multivariate model with the univariate model, either by adding
an extra dimension for the activities, or by constructing a circular regression
task, for example by using the circular regression approach outlined by [15].

Another appealing extension would be to consider a hierarchical model for
different residents in a given home, where common hyper-priors are shared
between the residents, and individual priors are then inferred for each resident.
This would be a natural path to being able to transfer such models to new homes
and new residents.

294 T. Diethe et al.

Acknowledgments. This work was performed under the Sensor Platform for HEalth-
care in Residential Environment (SPHERE) Interdisciplinary Research Collaboration
(IRC) funded by the UK Engineering and Physical Sciences Research Council, Grant
EP/K031910/1.

References

1. Agiomyrgiannakis, Y., Stylianou, Y.: Wrapped Gaussian mixture models for mod-
eling and high-rate quantization of phase data of speech. IEEE Transactions on
Audio, Speech, and Language Processing 17(4), 775–786 (2009)

2. Cook, D.J., Schmitter-Edgecombe, M.: Assessing the quality of activities in a
smart environment. Methods Inf. Med. 48(5), 480–485 (2009)

3. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian data analysis,
vol. 2. Taylor & Francis (2014)

4. Goodman, S.N.: Toward evidence-based medical statistics. 2: The Bayes factor.
Annals of Internal Medicine 130(12), 1005–1013 (1999)

5. Jammalamadaka, S.R., Sengupta, A.: Topics in circular statistics, Series on Mul-
tivariate Analysis, vol. 5. World Scientific (2001)

6. Kim, E., Helal, S., Cook, D.: Human activity recognition and pattern discovery.
IEEE Pervasive Computing 9(1), 48–53 (2010)

7. Krishnan, N., Cook, D.J., Wemlinger, Z.: Learning a taxonomy of predefined and
discovered activity patterns. Journal of Ambient Intelligence and Smart Environ-
ments 5(6), 621–637 (2013)

8. Kurz, G., Gilitschenski, I., Hanebeck, U.D.: Efficient evaluation of the probabil-
ity density function of a wrapped normal distribution. In: Sensor Data Fusion:
Trends, Solutions, Applications (SDF), 2014, pp. 1–5. IEEE (2014)

9. Mardia, K.V., Jupp, P.E.: Directional statistics. John Wiley & Sons, Chichester
(2000)

10. Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B., Spengler,
A., Bronskill, J.: Infer.NET 2.6. Microsoft Research Cambridge (2014). http://
research.microsoft.com/infernet

11. Minka, T.P.: Expectation propagation for approximate Bayesian inference. In:
Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence,
pp. 362–369. Morgan Kaufmann Publishers Inc. (2001)

12. Minka, T., Winn, J.: Gates. In: Advances in Neural Information Processing Sys-
tems, pp. 1073–1080 (2009)

13. Nazerfard, E., Das, B., Holder, L.B., Cook, D.J.: Conditional random fields for
activity recognition in smart environments. In: Proceedings of the 1st ACM Inter-
national Health Informatics Symposium, pp. 282–286. ACM (2010)

14. Nuñez-Antonio, G., Auśın, M.C., Wiper, M.P.: Bayesian nonparametric models
of circular variables based on Dirichlet process mixtures of normal distributions.
Journal of Agricultural, Biological, and Environmental Statistics, 1–18 (2014)

15. Ravindran, P., Ghosh, S.K.: Bayesian analysis of circular data using wrapped
distributions. Journal of Statistical Theory and Practice 5(4), 547–561 (2011)

16. Refinetti, R., Cornélissen, G., Halberg, F.: Procedures for numerical analysis of
circadian rhythms. Biological Rhythm Research 38(4), 275–325 (2007)

17. Robert, C.: The Bayesian choice: from decision-theoretic foundations to compu-
tational implementation. Springer Science & Business Media (2007)

18. Wilks, D.S.: Statistical methods in the atmospheric sciences, vol. 100. Academic
press (2011)

http://research.microsoft.com/infernet
http://research.microsoft.com/infernet

Message Scheduling Methods for Belief
Propagation

Christian Knoll1(B), Michael Rath1, Sebastian Tschiatschek2,
and Franz Pernkopf1

1 Signal Processing and Speech Communication Laboratory,
Graz University of Technology, Graz, Austria

christian.knoll@tugraz.at
2 Learning and Adaptive Systems Group, Department of Computer Science,

ETH Zurich, Zürich, Switzerland
sebastian.tschiatschek@inf.ethz.ch

Abstract. Approximate inference in large and densely connected graph-
ical models is a challenging but highly relevant problem. Belief propaga-
tion, as a method for performing approximate inference in loopy graphs,
has shown empirical success in many applications. However, convergence
of belief propagation can only be guaranteed for simple graphs. Whether
belief propagation converges depends strongly on the applied message
update scheme, and specialized schemes can be highly beneficial. Yet,
residual belief propagation is the only established method utilizing this
fact to improve convergence properties. In experiments, we observe that
residual belief propagation fails to converge if local oscillations occur and
the same sequence of messages is repeatedly updated. To overcome this
issue, we propose two novel message update schemes. In the first scheme
we add noise to oscillating messages. In the second scheme we apply
weight decay to gradually reduce the influence of these messages and con-
sequently enforce convergence. Furthermore, in contrast to previous work,
we consider the correctness of the obtained marginals and observe sig-
nificant performance improvements when applying the proposed message
update schemes to various Ising models with binary random variables.

Keywords: Residual belief propagation · Asynchronous message
scheduling · Convergence analysis

1 Introduction

Probabilistic reasoning for complex distributions arises in many practical prob-
lems including computer vision, medical diagnosis systems, and speech process-
ing [9]. These complex distributions are often modeled as probabilistic graphical
models (PGMs). PGMs representing the joint distribution over many random

F. Pernkopf—This work was supported by the Austrian Science Fund (FWF) under
the project number P25244-N15.

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 295–310, 2015.
DOI: 10.1007/978-3-319-23525-7 18

296 C. Knoll et al.

variables (RVs) of practical problems are often complex and include many loops.
Thus performing exact inference is increasingly intricate, in fact exact inference is
intractable for general PGMs [1]. Message passing, a powerful method to approx-
imate the marginal distribution, was first introduced to the field of machine
learning as Belief Propagation (BP) by Pearl [19]. It is a parallel update scheme
where messages are recursively exchanged between RVs until the marginal prob-
abilities converge.

The conjecture that asynchronously updating the messages leads to better
convergence performance of BP is widely accepted [2,5,22]. Thus, there was a
recent interest in improving the performance of BP by applying dynamic mes-
sage scheduling. One efficient way for scheduling is residual belief propagation
(RBP) [2], where only the message that changes the most is sent. RBP has a
provable convergence rate that is at least as good as the convergence rate of
BP, while still providing good marginals. The quality of the obtained marginals
in [2,24] is comparable to existing methods. Nonetheless, a detailed analysis of
the quality of the marginals in comparison to the exact marginals is missing to
the best of our knowledge. Dynamic message scheduling increases the number of
graphs where BP converges. Yet, on graphs with many loops the occurrence of
message oscillation is observed. In this case, a small set of messages is repeatedly
selected for update and periodically takes the same values.

Inspired by this observation we introduce and investigate two different meth-
ods for dynamic message scheduling. The first method directly improves upon
RBP if message oscillations occur. Noise injection belief propagation (NIBP)
detects message oscillations of RBP. Adding random noise to the message that
is propagated prevents these oscillations and improves convergence of BP. The
second method is based on the assumption that messages repeatedly taking the
same values do not contribute to convergence of the overall PGM. A sequence
of oscillating messages does obviously not change the constraints in favor of
convergence. We apply weight decay to the residual and consequently, support
non oscillating messages to be updated. This way we avoid message oscillations
before they even occur. Weight decay belief propagation (WDBP) solely changes
the scheduling by the damping, whereas directly applying a damping term to
the beliefs can also improve the convergence properties [21].

Our proposed methods are evaluated on different realizations of Ising grid
graphs. Graphs of such structure have a rich history in statistical physics [8,15],
and these models are appealing, as phase transitions can be analytically deter-
mined. Phase transitions separate convergent from divergent behavior and can be
related to PGMs and the behavior of BP. It is shown in [25,26] how the fixed point
solutions of BP correspond to the local minima of the Gibbs free energy.

On difficult Ising graphs we compare the performance of the proposed meth-
ods to RBP and asynchronous belief propagation (ABP). The convergence
behavior is usually analyzed in terms of the number of times BP converges (i.e
converged runs) and the speed of convergence (i.e. convergence rate). In addi-
tion, we compare the approximated marginals to the exact marginals, which are
obtained by the junction tree algorithm [12].

Message Scheduling Methods for Belief Propagation 297

Our two main findings are: (i) we show empirically that NIBP significantly
increases the number of times convergence is achieved and (ii) WDBP accom-
plishes a quality of marginals superior to the remaining methods, while main-
taining good convergence properties.

The rest of this paper is structured as follows. In Section 2 we give a short
background on probabilistic graphical models and belief propagation. We intro-
duce our proposed approach to message scheduling in Section 3 and relate it
to existing methods. Our experimental results are presented and discussed in
Section 4. Related work is deferred to Section 5 for the sake of reading flow.
Section 6 summarizes the paper and provides some final conclusions.

2 Preliminaries

In this section we briefly introduce PGMs and the BP algorithm. Some appli-
cations and a detailed treatment of PGMs can be found in [11,20]. Let X be a
binary random variable (RV) taking values x ∈ S = {−1, 1}. We consider the
finite set of random variables X = {X1, . . . , XN}.

An undirected graphical model (UGM) consists of an undirected graph G =
(X,E), where X = {X1, . . . , XN} represents the nodes and E the edges. Two
nodes Xi and Xj , i �= j can be connected by an undirected edge ei,j ∈ E that
specifies an interaction between these two nodes. Note that we use the same
terminology for the nodes as for the RVs since there is a one-to-one relationship.
The set of neighbors of Xi is defined by Γ (Xi) = {Xj ∈ X\Xi : ei,j ∈ E}. We
use an UGM to model the joint distribution

P (X = x) =
1
Z

∏

(i,j) : ei,j∈E

ΦXi,Xj
(xi, xj)

N∏

i=1

ΦXi
(xi), (1)

where the first product runs over all edges, and where ΦXi,Xj
are the pairwise

potentials and ΦXi
is the local potential.

Our formulation of BP is similar to the one introduced in [25]. For a detailed
introduction to the concept of BP we refer the reader to [19,29]. The messages
are updated according to the following rule:

μn+1
i,j (xj) =

∑

xi∈S

ΦXi,Xj
(xi, xj)ΦXi

(xi)
∏

Xk∈(Γ (Xi)\{Xj})
μn

k,i(xi), (2)

where μn
i,j(xj) is the message from Xi to Xj of state xj at iteration n.1 Loosely

speaking this means that Xi collects all messages from its neighbors Γ (Xi) except
for Xj . This product is then multiplied with the pairwise and local potentials
ΦXi,Xj

(xi, xj) and ΦXi
(xi). Finally the sum over all states of Xi is sent to Xj .

1 Note that without loss of generality we will drop the superscript n where no ambi-
guities occur.

298 C. Knoll et al.

The marginals (or beliefs) P (Xi = xi) are obtained from all incoming messages
according to

P (Xi = xi) =
1
Z

ΦXi
(xi)

∏

Xk∈Γ (Xi)

μk,i(xi), (3)

where Z ∈ R
+ is the normalization constant ensuring that

∑
xi∈S

P (Xi = xi) = 1.
When the specific realization is not relevant we use the shorthand notation P (Xi)
instead.

There is a rich history of statistical physicists studying the interaction in
Ising models. The Edwards-Anderson model or Ising spin glass is an elegant
abstraction that allows both, ferromagnetic and antiferromagnetic Ising mod-
els [14, p. 44]. Following the terminology of the Edwards-Anderson model we
define the potentials of the model, such that we have a coupling Ji,j ∈ R

and a local field θi ∈ R. Let the potentials be ΦXi
(xi) = exp(θixi) and

ΦXi,Xj
(xi, xj) = exp(Ji,jxixj). Plugging these potentials into (1), the Ising spin

glass model defines the joint probability

P (X = x) =
1
Z

exp
(∑

(i,j) : ei,j∈E

Ji,jxixj +
N∑

i=1

θixi

)

, (4)

where the sum over (i, j) : ei,j ∈ E runs over all edges of G and the second
sum runs over all nodes. Spin glasses in this form offer a powerful generalization
of the Ising model that allow for frustration.2 Such models have been used to
relate the convergence problem to the occurrence of phase transitions [4]. One
can consequently derive a sharp bound for the parameter set (Ji,j , θi) and relate
it to the convergence of loopy BP [18,25,26].

When analyzing the graph convergence over time, it is remarkable that cer-
tain subgraphs are almost converged after few iterations, while other regions
are less stable. More formally we can introduce two subgraphs such that
G = Gc ∪ Gc̄. We define the almost converged subgraph as Gc = (Xc,Ec),
i.e. for all (Xi,Xj) : ei,j ∈ Ec we have μn+1

i,j (xj) ≈ μn
i,j(xj). The second sub-

graph Gc̄ = (Xc̄,Ec̄) is less stable, i.e. μn+1
i,j (xj) �≈ μn

i,j(xj). Note that Gc̄ may
even include frustrated cycles such that convergence can never be reached.

3 Scheduling

For a given graph G = (X,E) we can define any message passing algorithm by
basic operations on the alphabet of messages (cf. [14, p. 316]). The algorithm
is converged if two successive messages show approximately the same value, i.e.
μn+1

i,j (xj) ≈ μn
i,j(xj). At that point, updating the messages does not change their

values, therefore we can also speak of a fixed point solution.
Note that in the original implementation of BP all messages are syn-

chronously updated, i.e. to compute μn+1
i,j all messages at iteration n are used.

2 Frustrated cycles have an overall parametrization, such that it is impossible to simul-
taneously satisfy all local constraints, i.e. convergence can never be achieved.

Message Scheduling Methods for Belief Propagation 299

Substituting the synchronous update rule by a sequential update rule, we obtain
a flexibility in developing variants of BP. Exploiting this flexibility and chang-
ing the update schedule significantly influences the performance in practice,
as reported in [2,14]. We are essentially interested in the advantages of differ-
ent update schedules, therefore we solely consider sequential (or asynchronous)
scheduling for the remainder of the work.

All variants of BP are compared to the performance of asynchronous belief
propagation (ABP). ABP is based on a rudimentary sequential update rule,
where all messages are considered equally important. Messages are selected
according to round robin scheduling, i.e. according to a fixed order. Although no
assumptions are made on a smart choice of the order, it can be observed that this
simple message scheduling concept improves the convergence behavior [10,22].

We propose two modifications to BP to improve convergence properties.
Either we change the calculation of the message values directly (NIBP), or we
utilize alternative message scheduling (WDBP). In the following we describe
these modifications in detail. Experimental results demonstrating the effective-
ness of the proposed modifications can be found in Section 4.

3.1 Residual Belief Propagation

Residual belief propagation (RBP) utilizes a priority measure for each message
and introduces dynamic scheduling [2]. The underlying assumption is that any
message passed along an edge ei,j ∈ Ec in the already converged subgraph does
not contribute to the overall convergence. Thus focusing on the subgraph that
has not converged Gc̄ = (Xc̄,Ec̄) is beneficial for convergence of the overall
graph. As Gc̄ is not converged, messages along edges ēi,j ∈ Ec̄ vary considerably
in every step.

This leads to the update rule of RBP, where the residual rn
i,j = |μn+1

i,j (xj) −
μn

i,j(xj)| measures the distance between two messages.3 The indices that maxi-
mize the residual

(k, l) = argmax
(i,j)

rn
i,j (5)

identify the message to update next, i.e.

μ̃n+1
k,l (xl) = μn+1

k,l (xl). (6)

Compared to ABP the number of graphs where RBP converges increases signifi-
cantly [2]. Still, RBP computes all residuals although only the message with the
most significant residual is sent. To further increase the convergence rate, the
authors of [24] bound and approximate the message values for the estimation of
the residual.

3 Ultimately one would be interested in the distance to the fixed point, if it exists,
lim

n→∞
μn
i,j(xj). However, since lim

n→∞
μn
i,j(xj) is not known, the time variation of the

messages offers a valid surrogate (cf. [2]).

300 C. Knoll et al.

3.2 Noise Injection Belief Propagation

Investigating graphs with random Ising factors, where RBP fails to converge, we
observe that a large part of the PGM is almost converged. We observe local frus-
trated cycles in Gc̄, where the same message values are passed around repeatedly
along the edges ēi,j ∈ Ec̄. Noise injection belief propagation (NIBP) compares
the current message μn

i,j to the last L ∈ Z
+ messages for duplicate values. If older

messages are in an δ-neighborhood, i.e. |μn
i,j −μn−l

i,j | < δ for any l ∈ {1, 2, . . . , L},
although these messages are not converged, i.e. μn+1

i,j �≈ μn
i,j , we conclude that

the message values oscillate. If no oscillations are detected NIBP does not change
the scheduling of RBP. Therefore, NIBP always converges if RBP does. If, how-
ever, message values oscillate Gaussian noise N (0, σ2) is added to the message
μn+1

k,l that is selected according to (5). The new update rule is then given as

μ̃n+1
k,l (xl) = μn+1

k,l (xl) + N (0, σ2), (7)

where Xk and Xl are the nodes that maximize the residual in (5) and N (0, σ2)
is the normal distribution with zero mean and standard deviation σ.

Loosely speaking we aim to introduce a relevant change to the system by
injecting noise to the message selected for update μn+1

k,l . Adding noise to the
most influential part of the PGM, we assume that this minor change of one
message propagates through the whole graph and leads to a stable fixed point.
Pseudocode of the implementation can be found in Appendix A.

3.3 Weight Decay Belief Propagation

As mentioned above RBP fails to converge if message values oscillate. Obviously,
repeatedly sending around the same messages along the same path does not
contribute to achieving convergence. Weight decay belief propagation (WDBP)
penalizes this behavior by damping the residual of messages along ēi,j . Conse-
quently, WDBP increases the relevance of Gc and further refines the parametriza-
tion of this subgraph. In doing so, messages μi,j between both subgraphs, where
Xi ∈ Xc and Xj ∈ Xc̄ are re-evaluated, such that convergence can be achieved
on the overall graph G.

In particular, we damp the residual of all messages of a node Xi based on
the number of times a message has already been scheduled. More formally we
rewrite (5), such that the indices of the selected message μ̃n+1

k,l are given to

(k, l) = argmax
(i,j)

rn
i,j∑n

m=1 1μm
i,j

, (8)

where the indicator function 1μm
i,j

= 1 if and only if μm
i,j = μ̃m

i,j . Hence, the
residual is divided by a factor corresponding to how often a certain message was
selected. A detailed implementation is presented in Appendix A.

Message Scheduling Methods for Belief Propagation 301

4 Experiments

In this section we evaluate the proposed methods and compare them to ABP and
RBP. We evaluate all different types of scheduling with respect to the follow-
ing measures: first the number of configurations where the algorithm converges
will be considered, secondly we consider the rate of convergence, and finally
we evaluate the quality of the marginals. To evaluate the marginals we obtain
the approximate marginal distributions P̃ (Xi) and compare them to the exact
marginal distributions P (Xi), obtained by applying the junction tree algorithm
[12,16]. Although the junction tree algorithm is intractable in general, the consid-
ered PGMs are simple enough to make exact inference computationally feasible.
We quantify the quality of the marginals by computing the mean squared error
(MSE) over all marginals. Note that the potential functions are identical for all
compared methods.

Statistical physic provides exact statements regarding the performance of BP
on Ising spin glasses, therefore such models are commonly used for evaluation of
BP variants. In this work we perform message passing on Ising spin glasses of
varying size with uniform and random coefficients.

For NIBP, the parameters of the additive Gaussian noise were optimized for
different initialization and are zero mean and σ = 0.25. Simulations were either
stopped after kmax iterations or if all messages converged, i.e. maxi,j |μn+1

i,j (xj)−
μn

i,j(xj)| < ε for all i, j : i �= j, where ε = 10−3. Experiments on Ising grids
with uniform parameters were stopped after kmax = 4 · 105 iterations, whereas
the experiments on Ising grids with random factors were stopped after kmax =
2.5 · 105 iterations.

4.1 Fully Connected Graph with Uniform Parameters

We consider a fully connected Ising spin glass with |X| = 4 binary spins, and
uniform coupling Ji,j and field θi among the four vertices. In the case of uni-
form parameters we introduce the shorthand notation (J, θ). Using such a model
allows to compare our results to similar numerical experiments performed on
this type of graphs in [18,25,26]. Figure 1 shows the complete graph for |X| = 4.

Applying BP to this graph one can benefit from the rich history of statistical
physics literature to discuss the effect of different messages schedules. For a fully
connected Ising spin glass with uniform parameters the Gibbs measure is unique
and the solution of BP is exactly equal to the one obtained by optimizing the
Bethe approximation [26]. That is, there are certain regions in the 2-dimensional
parameter-space (J, θ) where BP is guaranteed to converge. Nonetheless, there is
a phase transition in the parameter space where BP does not converge. If J ≥ 0
the model is known to be ferromagnetic and in fact reduces to the standard Ising
model. The antiferromagnetic behavior is observed for J < 0, respectively [14].

In Figure 2a we show convergence of ABP and the transition to configu-
rations (J, θ) where messages oscillate. The color encodes the logarithm of the
number of iterations until convergence. We observe that reducing J increases

302 C. Knoll et al.

the difficulty of finding an equilibrium state. This, however, is intuitive since,
the more negative J is, the more one node Xi tries to push its neighbors Γ (Xi)
into the opposite state.

Looking at Figure 2b we observe how RBP pushes the transition bound-
ary and increases the set of coefficients where convergence is achieved. Finally
Figure 2c and 2d show the performance of NIBP and WDBP respectively.
Notably, both methods further increase the region of convergence. It can be
seen that these boundaries are heavily blurred. For specific parameter configu-
rations our proposed methods result in equilibrium state after many runs, where
established methods fail to converge.

X1 X2

X3 X4

μ1,2(x2)

μ1,3(x3)μ3,1(x1)

μ
1
,4 (x

4)

μ2,1(x1)

μ 2
,
3
(x

3
)

μ2,4(x4)μ4,2(x2)

μ3,4(x4)

μ4,3(x3)

μ
4
,1 (x

1) μ 3
,
2
(x

2
)

Fig. 1. 2x2 Ising Spin Glass.

4.2 Ising Grids with Random Factors

From the experiments in Figure 2 we can hardly make any concrete statements
regarding the convergence behavior. Hence, to further investigate the influence
of WDBP and NIBP we consider Ising grids with many loops and random
parameters. These graphs are often used for evaluation of the performance of
BP, since BP is prone to diverge on those graphs. We consider grid graphs of
size N = |X| = K × K with binary spins and randomly initialized parameters
(Ji,j , θi). Depending on the grid size K these parameters are uniformly sam-
pled such that both (Ji,j , θi) ∈ [−K

2 , K
2]. Thus, besides increasing the size of the

graph, the difficulty is implicitly increased as well.
The larger the values of the coupling and the local field are, the harder the

resulting constraints for convergence are. Thus, although there is no structural
change of the grid, inference becomes easier by reducing the range of the param-
eters. According to [24] the parameters have to provide sufficient difficulty to be
of interest for analyzing convergence properties.

Message Scheduling Methods for Belief Propagation 303

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

h

J

(a) Asynchronous BP (ABP)

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

h

J

(b) Residual BP (RBP)

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

h

J

(c) Noise Injection BP (NIBP)

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

h

J

(d) Weight Decay BP (WDBP)

Fig. 2. Convergence of various BP variants for a fully connected binary Ising spin
glass with uniform parameters (J, θ). The color encodes the logarithm of the number
of iterations until convergence; blue corresponds to convergence and red means that
the method did not converge after 4 · 105 iterations. 2a shows the phase transition of
ABP. Note how the RBP variants in 2b-2d increase the region of convergence.

The proportion of converged runs for different schedules is shown in Figure 3.
We can see that ABP finds a fixed point in less scenarios than any other of the
proposed variants, demonstrating the advantage of dynamic message scheduling.
Looking at the overall performance we observe that NIBP converges most often
throughout all experiments. The more complex the network, the better NIBP
performs compared to other variants. WDBP outperforms RBP on all experi-
ments and shows the best performance on the 7 × 7 graph, although the harder
the problem, the slower it converges. Specifically, WDBP has a lower convergence
rate than RBP. This observation is expected as damping the residual reduces
the propagation of relevant messages even for relatively easy configurations.

It shall be noted that applying WDBP requires changing the residual to (8),
where damping the residual implies some computational overhead. This overhead
can be reduced partially with approximation of the messages according to [24].

304 C. Knoll et al.

Number of Updates ×10 5
0 0.5 1 1.5 2 2.5

N
um

be
r

of
 C

on
ve

rg
ed

 R
un

s
in

 %

0

10

20

30

40

50

60

70

80

90

100
K = 7

RBP
NIBP
WDBP
ABP

Number of Updates ×10 5
0 0.5 1 1.5 2 2.5

N
um

be
r

of
 C

on
ve

rg
ed

 R
un

s
in

 %

0

10

20

30

40

50

60

70

80

90

100
K = 9

RBP
NIBP
WDBP
ABP

Number of Updates ×10 5
0 0.5 1 1.5 2 2.5

N
um

be
r

of
 C

on
ve

rg
ed

 R
un

s
in

 %

0

10

20

30

40

50

60

70

80

90

100
K = 11

RBP
NIBP
WDBP
ABP

Number of Updates ×10 5
0 0.5 1 1.5 2 2.5

N
um

be
r

of
 C

on
ve

rg
ed

 R
un

s
in

 %

0

10

20

30

40

50

60

70

80

90

100
K = 13

RBP
NIBP
WDBP
ABP

Fig. 3. Number of converged runs in percentage as a function of the number of message
updates. All results were obtained by averaging over 233 random grid graphs. On graphs
of the size |X| = K × K we compare WDBP and NIBP to RBP and ABP.

All results were averaged over 233 runs with different random initialization
of the pairs (Ji,j , θi) for K ∈ {7, 9, 11, 13}.

4.3 Quality of Marginals

Currently the influence of message scheduling was only evaluated in terms of
the convergence rate and the number of graphs where BP converges. Here, we
also evaluate the correctness of the approximated marginals P̃ (Xi), averaging
the mean squared error (MSE) of all N = K × K = |X| nodes, such that

Message Scheduling Methods for Belief Propagation 305

MSE =
1
N

N∑

i=1

∑

a∈S

|P̃ (Xi = a) − P (Xi = a)|2, (9)

where P (Xi) are the exact marginals. Note that all RVs are binary and both,
P̃ (Xi) and P (Xi) are valid probability mass function, i.e.

∑
a∈S

P̃ (Xi) = 1.
Further applying symmetry properties it then follows that

MSE =
2
N

N∑

i=1

|P̃ (Xi = 1) − P (Xi = 1)|2. (10)

In Table 1 we present quantitative performance measures for all experiments.
Solely considering the number of converged runs we can recapitulate the obser-
vation from Figure 3 that RBP converges in at least 20% of all experiments,
where ABP did not. Both our proposed methods are able to further increase the
convergence; throughout all experiments NIBP converges most often.

Still, in practice we are not only interested in the number of converged runs
but also in the quality of the marginals. First we estimate the overall MSE
based on (10) and average over all 233 randomly initialized graphs (MSE over-
all). Secondly, we average the MSE over all runs where the individual methods
converged(MSE converged) – for ABP we estimate the MSE only for easy con-
figurations, whereas the MSE for other variants includes harder configurations.
Therefore, we finally estimate the MSE of all methods for those configurations
where ABP converges to a fixed point(MSE ABP conv.).

It can be seen that ABP consistently shows the lowest MSE in terms of con-
verged runs, i.e. averaging over all runs that converged with this method. This
comes as no surprise as ABP converges only on graphs with relatively easy config-
urations. For these configurations we expect P̃ (Xi) to give a good approximation
to the exact marginals P (Xi). However, estimating the MSE of different methods
for graphs where ABP is known to converge (MSE ABP conv.), we are surprised
by the observations that the approximate marginals obtained by RBP or NIBP are
consistently worse than the ones found by ABP. Still solely considering these easy
graphs it is remarkable how well WDBP performs in terms of the MSE.

Note that by using an update rule based on RBP a lot of effort is put into
locally complying with the constraints of Gc̄ whereas ABP still puts a significant
amount of resources into refining Gc. This clearly reduces the convergence rate
but potentially boosts the correctness of the approximation.

We would expect the overall MSE, i.e. averaging over all 233 runs, is reduced
using dynamic message scheduling. Despite ABP converges in less runs it still
results in surprisingly good overall approximations of the marginals. In fact the
obtained quality of the marginals is similar for ABP, RBP, and NIBP, supporting
the empirical observations that ABP performs reasonable well on many graphs.
Notably, it can also be seen that WDBP consistently reduces the overall MSE
resulting in the best approximation of the marginals.

Looking at Table 1 we want to emphasize the superior overall performance of
WDBP. The number of converged runs is significantly increased in comparison
to ABP while a proper approximation accuracy is maintained.

306 C. Knoll et al.

Table 1. Performance of different BP schedules on Ising spin glasses of size |X| =
K×K. The MSE is estimated between approximated P̃ (Xi) and exact P (Xi) marginals.
We average over all 233 runs (MSE overall), over runs where the individual methods
converged (MSE converged), and over runs where ABP converged (MSE ABP conv.)
We compare asynchronous BP (ABP), residual BP (RBP), noise injection BP (NIBP),
and weight decay BP (WDBP).

Grid Size Error Metric ABP RBP NIBP WDBP
overall 0.0514 0.041 0.0382 0.0330

K = 7 MSE converged 0.0164 0.0208 0.0218 0.0202

ABP conv. 0.0164 0.0182 0.0150 0.0130

Converged Runs 61.8% 83.26% 85.41% 86.7%

overall 0.0706 0.0622 0.0538 0.0486

K = 9 MSE converged 0.0078 0.0256 0.026 0.0230

ABP conv. 0.0078 0.0190 0.0144 0.0112

Converged Runs 38.63% 62.66% 70.39% 64.38%

overall 0.0830 0.0914 0.0750 0.0618

K = 11 MSE converged 0.0106 0.0340 0.0386 0.0258

ABP conv. 0.0106 0.0262 0.0268 0.0152

Converged Runs 20.6% 41.63% 51.5% 51.07%

overall 0.1126 0.1274 0.1102 0.0840

K = 13 MSE converged 0.0286 0.0642 0.0632 0.0314

ABP conv. 0.0286 0.0746 0.0590 0.0282

Converged Runs 8.58% 28.76% 42.92% 34.33%

5 Related Work

On trees and chains BP is guaranteed to converge, moreover BP obtains the opti-
mal maximum a posterior assignment for PGMs with a single loop [27]. However,
many graphs that represent a domain of the real world have an arbitrary struc-
ture, including loops. There is no general guarantee for BP to converge on such
complex graphs [3,27]. Yet, it was shown empirically that BP can still give good
results when applied to graphs with a complicated structure.

There are various approaches that aim to correct for the presence of loops
such as loop correction [17] or the truncated loop series introduced in [6]. There
are also many publications relating the fixed points of BP to extrema of approx-
imate free energy functions from statistical physics [7,28]. It was shown in [28]
how extrema of the Bethe free energy approximations correspond to the fixed
points of BP. Using the generalization, the Kikuchi free energy function, general-
ized BP (GBP) was introduced in [28], which significantly improves the number
of converged runs and the convergence rate compared to standard BP. Applying
a concave- convex procedure to the Bethe and Kikuchi free energies the CCCP
algorithm is introduced in [30] and results in slightly better results than those
found by GBP. Convexified free energies [13] come with good convergence prop-
erties but still lack the empirical success. Linear programming relaxation can be

Message Scheduling Methods for Belief Propagation 307

used to deal with frustrated cycles as well [23]. Long range correlations often
lead to failure of BP [14] but can be handled through the cavity method [15].

6 Conclusion

In this paper, we introduced two novel methods for dynamic message scheduling.
Refining the ideas of residual belief propagation (RBP), we further improve the
number of converged runs on various difficult graphs.

The first method, noise injection belief propagation (NIBP) detects if RBP
fails to find a fixed point, i.e. message values oscillate. Gaussian noise is then
added to the selected message such that the overall configuration is modified to
achieve convergence. Our assumption is that this noise injection propagates to
other parts of the network and counteracts the oscillations. Still if RBP con-
verges, NIBP is guaranteed to converge as well.

The second method, weight decay belief propagation (WDBP) obviates the
need for oscillation detection. Each time a message is selected for an update, the
importance of the message for potential future updates is reduced. Thus, WDBP
implicitly reduces the priority of subgraphs that oscillate and forces the overall
graph to a fixed point.

Both proposed methods are applied to various Ising grids and are evaluated in
comparison to other sequential message passing algorithms. Our main evaluation
is based on convergence properties and the correctness of the marginals. In all
experiments both methods, NIBP and WDBP converge more often than RBP
and asynchronous belief propagation (ABP).

NIBP achieves the highest convergence rate and number of converged runs.
Still, considering the mean squared error of the marginals we notice that ABP
leads to surprisingly good marginals. Applying RBP and NIBP to increase the
number of converged runs comes with a sacrifice of the approximation accuracy
of the marginals.

We further compare the MSE between the exact and the approximated
marginals in different scenarios. This quality aspect has not been mentioned in pre-
vious work. Only considering easy graphs, where ABP converges, we are surprised
by the observation that ABP consistently outperforms RBP or NIBP in terms of
the quality of the approximated marginals. The quality of the marginals obtained
by WDBP on these graphs is remarkable and superior to all compared methods.

By all means the above results highlight how the message passing schedul-
ing influences the performance of belief propagation. Still, the convergence rate
of both, NIBP and WDBP can potentially be further improved by using an
estimation of the residual [24] instead of computing the messages for every step.

Acknowledgments. This work was supported by the Austrian Science Fund (FWF)
under the project number P25244-N15.

Appendix A: Pseudocode

We present the pseudocode for NIBP and WDBP. Removing the if then else
clause in line 8 to 11 of NIBP and substituting it with μold

u ← μnew
u reduces

308 C. Knoll et al.

Algorithm 1 to RBP. The maximum number of iterations is denoted by kmax =
2.5 · 105 and ε = 10−3. NrOfMessages denotes the overall number of messages in
the graph.

Algorithm 1. Noise Injection Belief Propagation (NIBP)
input : Graph G = (X,E)
output: Converged messages μold

1 initialization

2 for i ← 1 to NrOfMessages do
3 μnew

i ← ComputeUpdate(μold
i)

4 ri ← |μold
i − μnew

i |
5 k ← 1

6 while k < kmax and max |μold − μnew| > ε do
7 u ← argmaxi r

8 if OscillationDetection(μold
u ,L) then

9 μold
u ← μnew

u + N (0, σ)
10 else

11 μold
u ← μnew

u

12 for j ← 1 to NrOfMessages do
13 μnew

j ← ComputeUpdate(μold
j)

14 rj ← |μnew
j − μold

j |
15 k = k + 1

Algorithm 2. Weight Decay Belief Propagation (WDBP)
input : Graph G = (X,E)
output: Converged messages μold

1 initialization

2 for i ← 1 to NrOfMessages do
3 μnew

i ← ComputeUpdate(μold
i)

4 ri ← |μold
i − μnew

i |
5 NrUpdates (i) ← 1

6 k ← 1

7 while k < kmax and max |μold − μnew| > ε do
8 u ← argmaxi r

9 μold
u ← μnew

u

10 NrUpdates (u) ← NrUpdates (u) + 1
11 for j ← 1 to NrOfMessages do
12 μnew

j ← ComputeUpdate(μold
j)

13 rj ← |µnew
j −µold

j |
NrUpdates(j)

14 k = k + 1

Message Scheduling Methods for Belief Propagation 309

References

1. Cooper, G.F.: The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence 42(2), 393–405 (1990)

2. Elidan, G., McGraw, I., Koller, D.: Residual belief propagation: Informed schedul-
ing for asynchronous message passing. In: Conference on Uncertainty in Artificial
Intelligence (UAI) (2006)

3. Frey, B.J., MacKay, D.J.: A revolution: Belief propagation in graphs with cycles.
In: Neural Information Processing Systems (NIPS), pp. 479–485 (1998)

4. Georgii, H.O.: Gibbs Measures and Phase Transitions, vol. 9 (2011)
5. Goldberger, J., Kfir, H.: Serial schedules for belief-propagation: analysis of conver-

gence time. IEEE Transactions on Information Theory 54(3), 1316–1319 (2008)
6. Gómez, V., Mooij, J.M., Kappen, H.J.: Truncating the loop series expansion for

belief propagation. The Journal of Machine Learning Research (2007)
7. Heskes, T.: On the uniqueness of loopy belief propagation fixed points. Neural

Computation 16(11), 2379–2413 (2004)
8. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik A

Hadrons and Nuclei 31(1), 253–258 (1925)
9. Jordan, M.I.: Graphical models. Statistical Science, pp. 140–155 (2004)

10. Kfir, H., Kanter, I.: Parallel versus sequential updating for belief propagation
decoding. Physica A: Statistical Mechanics and its Applications 330(1)

11. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT press (2009)

12. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society. Series B (Methodological), 157–224 (1988)

13. Meshi, O., Jaimovich, A., Globerson, A., Friedman, N.: Convexifying the bethe free
energy. In: Conference on Uncertainty in Artificial Intelligence (UAI), pp. 402–410.
AUAI Press (2009)

14. Mezard, M., Montanari, A.: Information, Physics, and Computation. Oxford
University Press (2009)

15. Mézard, M., Parisi, G.: The Bethe lattice spin glass revisited. The European Phys-
ical Journal B-Condensed Matter and Complex Systems 20(2), 217–233 (2001)

16. Mooij, J.M.: libdai: A free and open source c++ library for discrete approximate
inference in graphical models. The Journal of Machine Learning Research 11 (2010)

17. Mooij, J.M., Kappen, H.J.: Loop corrections for approximate inference on factor
graphs. Journal of Machine Learning Research 8, 1113–1143 (2007)

18. Mooij, J.M., Kappen, H.J.: Sufficient conditions for convergence of the sum-product
algorithm. IEEE Transactions on Information Theory 53(12), 4422–4437 (2007)

19. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Representation and Reasoning Series. Morgan Kaufmann Publishers
(1988)

20. Pernkopf, F., Peharz, R., Tschiatschek, S.: Introduction to Probabilistic Graphical
Models (2014)

21. Pretti, M.: A message-passing algorithm with damping. Journal of Statistical
Mechanics: Theory and Experiment 2005(11), P11008 (2005)

22. Sharon, E., Litsyn, S., Goldberger, J.: Efficient serial message-passing schedules
for LDPC decoding. IEEE Transactions on Information Theory 53(11), 4076–4091
(2007)

310 C. Knoll et al.

23. Sontag, D., Choe, D.K., Li, Y.: Efficiently searching for frustrated cycles in MAP
inference. In: Conference on Uncertainty in Artificial Intelligence (UAI) (2012)

24. Sutton, C.A., McCallum, A.: Improved dynamic schedules for belief propagation.
In: Conference on Uncertainty in Artificial Intelligence (UAI) (2007)

25. Taga, N., Mase, S.: On the convergence of belief propagation algorithm for stochas-
tic networks with loops. Citeseer (2004)

26. Tatikonda, S.C., Jordan, M.I.: Loopy belief propagation and Gibbs measures. In:
Conference on Uncertainty in Artificial Intelligence (UAI) (2002)

27. Weiss, Y.: Correctness of local probability propagation in graphical models with
loops. Neural Computation 12(1), 1–41 (2000)

28. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Bethe free energy, Kikuchi approxima-
tions, and belief propagation algorithms. Neural Information Processing Systems
(NIPS) 13 (2001)

29. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its
generalizations. Exploring Artificial Intelligence in the New Millennium 8, 239–269
(2003)

30. Yuille, A.L.: CCCP algorithms to minimize the Bethe and Kikuchi free energies:
Convergent alternatives to belief propagation. Neural Computation 14(7) (2002)

Output-Sensitive Adaptive Metropolis-Hastings
for Probabilistic Programs

David Tolpin(B), Jan-Willem van de Meent, Brooks Paige, and Frank Wood

Department of Engineering Science, University of Oxford, Oxford, England
{dtolpin,jwvdm,brooks,fwood}@robots.ox.ac.uk

Abstract. We introduce an adaptive output-sensitive Metropolis-Hast-
ings algorithm for probabilistic models expressed as programs, Adap-
tive Lightweight Metropolis-Hastings (AdLMH). This algorithm extends
Lightweight Metropolis-Hastings (LMH) by adjusting the probabilities
of proposing random variables for modification to improve convergence
of the program output. We show that AdLMH converges to the correct
equilibrium distribution and compare convergence of AdLMH to that of
LMH on several test problems to highlight different aspects of the adap-
tation scheme. We observe consistent improvement in convergence on the
test problems.

Keywords: Probabilistic programming · Adaptive MCMC

1 Introduction

One strategy for improving convergence of Markov Chain Monte Carlo (MCMC)
samplers is through online adaptation of the proposal distribution [1,2,15]. An
adaptation scheme must ensure that the sample sequence converges to the cor-
rect equilibrium distribution. In a componentwise updating Metropolis-Hastings
MCMC sampler, i.e. Metropolis-within-Gibbs [5,8,10], the proposal distribution
can be decomposed into two components:

1. A stochastic schedule (probability distribution) for selecting the next random
variable for modification.

2. The kernels from which new values for each of the variables are proposed.

In this paper we concentrate on the first component—adapting the schedule for
selecting a variable for modification. Our primary interest in this work is to
improve MCMC methods for probabilistic programming [6,7,11,13,17]. Prob-
abilistic programming languages facilitate development of probabilistic models
using the expressive power of general programming languages. The goal of infer-
ence in such programs is to reason about the posterior distribution over random
variates that are sampled during execution, conditioned on observed values that
constrain a subset of program expressions.

Lightweight Metropolis-Hastings (LMH) samplers [16] propose a change to
a single random variable at each iteration. The program is then rerun, reusing
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 311–326, 2015.
DOI: 10.1007/978-3-319-23525-7 19

312 D. Tolpin et al.

previous values and computation where possible, after which the new set of sam-
ple values is accepted or rejected. While re-running the program each time may
waste some computation, the simplicity of LMH makes developing probabilistic
variants of arbitrary languages relatively straightforward.

Designing robust adaptive MCMC methods for probabilistic programming is
complicated because of diversity of models that can be expressed as probabilistic
programs. Ideally, a single adaptation scheme should perform well in different
programs without requiring manual tuning of parameters. Here we present an
adaptive variant of LMH that dynamically adjusts the schedule for selecting
variables for modification. First, we review the general structure of a probabilistic
program. We discuss convergence criteria with respect to the program output
and propose a scheme for tracking the “influence” of each random variable on
the output. We then adapt the selection probability for each variable, borrowing
techniques from the upper confidence bound (UCB) family of algorithms for
multi-armed bandits [3]. We show that the proposed adaptation scheme preserves
convergence to the target distribution under reasonable assumptions. Finally,
we compare original and Adaptive LMH on several test problems to show how
convergence is improved by adaptation.

2 Preliminaries

2.1 Probabilistic Program

A probabilistic program is a stateful deterministic computation P with the fol-
lowing properties:

– Initially, P expects no arguments.
– On every call, P returns either a distribution and an address (F, α), a distri-

bution and a value (G, y), a value z, or ⊥.
– Upon returning F , P expects a value x drawn from F as the argument to the

next call.
– Upon returning (G, y) or z, P is invoked again without arguments.
– Upon returning ⊥, P terminates.

A program is run by calling P repeatedly until termination.
A program need not generate the same sequence of random variables in every

execution. For this reason we assume that each random variable x is assigned
a unique label α, which we call an address, that induces a correspondence
between variables in different executions. Every execution implicitly produces
a sequence of triples of distributions, values of latent random variables, and
addresses, (Fi, xi, αi). We call this sequence a trace and denote it by xxx. A trace
induces a sequence of pairs (Gj , yj) of distributions and values of observed ran-
dom variables. We call this sequence an image and denote it by yyy. For notational
simplicity we assume that the program always generates the same ordered set zzz
of output values zk.

Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs 313

The target density π(x) := γ(x)/Z of a program is defined in terms of the
product of the probabilities of all random choices xxx and the likelihood of all
observations yyy

γ(xxx) :=
|xxx|∏

i=1

pFi
(xi)

|yyy|∏

j=1

pGj
(yj). (1)

The objective of inference in probabilistic program P is to discover the distribu-
tion of zzz.

2.2 Adaptive Markov Chain Monte Carlo

MCMC methods generate a sequence of samples {xxxt}∞
t=1 by simulating a Markov

chain using a transition operator that leaves a target density π(xxx) invariant. In
MH the transition operator is implemented by drawing a new sample xxx′ from a
parameterized proposal distribution qθ(xxx′|xxxt) that is conditioned on the current
sample xxxt. The proposed sample is then accepted with probability

ρ = min
(

π(xxx′)qθ(xxxt|xxx′)
π(xxxt)qθ(xxx′|xxxt)

, 1
)

. (2)

If xxx′ is rejected, xxxt is re-used as the next sample.
The convergence rate of MH depends on parameters θ of the proposal distri-

bution qθ. The parameters can be set either offline or online. Variants of MCMC
in which the parameters are continuously adjusted based on the features of
the sample sequence are called adaptive. Challenges in design and analysis of
Adaptive MCMC methods include optimization criteria and algorithms for the
parameter adaptation, as well as conditions of convergence of adaptive MCMC
to the correct equilibrium distribution [14]. Continuous adaptation of parameters
of the proposal distribution is a well-known research subject [1,2,15].

In a componentwise MH algorithm [10] that targets a density π(xxx) defined
on an N -dimensional space X , the components of a sample xxx = {x1, . . . , xN}
are updated individually, in either random or systematic order. Assuming the
component i is selected at the step t for modification, the proposal xxx′ sampled
from qi

θ(xxx|xxxt) may differ from xxxt only in that component, and x′
j = xt

j for all
j �= i. Adaptive componentwise Metropolis-Hastings (Algorithm 1) chooses dif-
ferent probabilities for selecting a component for modification at each iteration.
Parameters of this scheduling distribution may be viewed as a subset of param-
eters θ of the proposal distribution qθ, and adjusted according to optimization
criteria of the sampling algorithm.

Varying selection probabilities based on past samples violates the Markov
property of {xxxt}∞

1 . However, provided the change in selection probabilities
decreases to zero as t approaches ∞, then under suitable regularity conditions
for the target density (see Section 4) an adaptive componentwise MH algorithm
will be ergodic [8], and the distribution on xxx induced by Algorithm 1 converges
to π.

314 D. Tolpin et al.

Algorithm 1. Adaptive componentwise MH
1: Select initial point xxx0.
2: Set initial selection probabilities www0.
3: for t = 1 . . . ∞ do
4: wwwt ← f t(wwwt−1,xxx0,xxx1, . . . ,xxxt).
5: Choose k ∈ {1, . . . , N} with probability wt

k.
6: Generate xxx′ ∼ qk

θ (xxx|xxxt).

7: ρ ← min
(

π(xxx′)qk
θ (xxxt|xxx′)

π(xxxt)qk
θ (xxx′|xxxt)

, 1
)

8: xxxt+1 ← xxx′ with probability ρ, xxxt otherwise.
9: end for

2.3 Lightweight Metropolis-Hastings

LMH [16] is a sampling scheme for probabilistic programs where a single random
variable drawn in the course of a particular execution of a probabilistic program
is modified via a standard MH proposal. LMH differs from componentwise MH
algorithms in that other random variables may also have to be modified, depend-
ing on the structural dependencies in the probabilistic program.

LMH initializes a proposal by selecting a single variable xk at address αk

from an execution trace xxx and resampling its value x′
k either using a reversible

kernel κ(x′
k|xk) or from the conditional prior Fk. The remainder of the program is

then rerun to generate a new trace xxx′. When generating a variable x′
j at address

α′
j in the new trace, the value xi from the previous trace such that α′

j = αi

is reused, provided it exists and still lies in the support of F ′
j . When no value

can be rescored, a new value x′
j is sampled from F ′

j . The acceptance probability
ρLMH is obtained by substituting (1) into (2):

ρLMH = min
(

1,
p(yyy′|xxx′)p(xxx′)q(xxx|xxx′)
p(yyy|xxx)p(xxx)q(xxx′|xxx)

)

. (3)

We here further simplify LMH by assuming x′
i is sampled from the conditional

prior Fi and that all variables are selected for modification with equal probability.
Under these assumptions, ρLMH takes the form [17]

ρLMH = min
(

1,
p(yyy′|xxx′)p(xxx′)|xxx|p(xxx\xxx′|xxx ∩ xxx′)
p(yyy|xxx)p(xxx)|xxx′|p(xxx′\xxx|xxx′ ∩ xxx)

)

, (4)

where xxx′ \xxx denotes the resampled variables, and xxx′ ∩ xxx denotes the variables
which have the same values in both traces.

3 Adaptive Lightweight Metropolis-Hastings

We develop an adaptive variant of LMH that dynamically adjusts the probabil-
ities of selecting variables for modification (Algorithm 2). Let xxxt be the trace at
iteration t of Adaptive LMH. We define the probability distribution of select-
ing variables for modification in terms of an indexed set of weights WWW t that we

Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs 315

Algorithm 2. Adaptive LMH
1: Initialize W 0

α to a constant for all addresses α.
2: Run the program.
3: for t = 1 . . . ∞ do
4: Randomly select a variable xt

k according to WWW t.
5: Propose a value for xt

k.
6: Run the program, accept or reject the trace.
7: if accepted then
8: Compute WWW t+1 based on the program output.
9: else

10: WWW t+1 ← WWW t

11: end if
12: end for

adapt, such that the probability wt
k of selecting the variable at address αk for

modification is

wt
k := W t

αk

/ |xt|∑

i=1

W t
αi

. (5)

Just like LMH, Adaptive LMH runs the probabilistic program once and then
selects variables for modification randomly. However, the acceptance ratio
ρAdLMH must now include selection probabilities wk and w′

k of the resampled
variable in the current and the proposed sample

ρAdLMH = min
(

1,
p(yyy′|xxx′)p(xxx′)w′

kp(xxx\xxx′|xxx ∩ xxx′)
p(yyy|xxx)p(xxx)wkp(xxx′\xxx|xxx′ ∩ xxx)

)

. (6)

This high-level description does not detail how WWW t is computed for each iteration.
Indeed, this is the most essential part of the algorithm. There are two different
aspects here — on one hand, the influence of a given choice on the output
sequence must be quantified in terms of convergence of the sequence to the target
distribution. On the other hand, the influence of the choice must be translated
into re-computation of weights of random variables in the trace. Both parts of
re-computation of WWW t are explained below.

3.1 Quantifying Influence

Extensive research has been devoted to criteria for tuning parameters of adaptive
MCMC [1,2,15]. The case of inference in probabilistic programs is different: the
user of a probabilistic program is often interested in fast convergence of the
program output {zzzt} rather than the trace {xxxt}.

In adaptive MCMC variants the acceptance rate can be efficiently used as
the optimization objective [15]. However, for convergence of the output sequence
an accepted trace that produces the same output is indistinguishable from a
rejected trace. Additionally, while optimal values of the acceptance rate [1,15]
can be used to tune parameters in adaptive MCMC, in Adaptive LMH we do

316 D. Tolpin et al.

not change the parameters of proposal distributions of individual variables, and
assume that they are fixed. However, proposing a new value for a random variable
may or may not change the output even if the new trace is accepted. By changing
variable selection probabilities we attempt to maximize the change in the output
sequence so that it converges faster. In the pedagogical example

x1 ∼ Bernoulli(0.5), x2 ∼ N (x1, 1),
z1 ← (x1, x2),

selecting the Bernoulli random choice for modification changes the output only
when a different value is sampled, while selecting the normal random choice will
change the output almost always.

Based on these considerations, we quantify the influence of sampling on the
output sequence by measuring the change in the output zzz of the probabilistic
program. Since programs may produce output of any type, we chose to discern
between identical and different outputs only, rather than to quantify the distance
by introducing a type-dependent norm. In addition, when |zzz| > 1, we quantify
the difference by the fraction of components of zzz with changed values.

Formally, let {zzzt}∞
1 = {zzz1, . . . , zzzt−1, zzzt, . . .} be the output sequence of a

probabilistic program. Then the influence of a choice that produced zzzt is defined
by the total reward Rt, computed as normalized Hamming distance

Rt =
1

|zt|
|zt|∑

l=1

11(zt
l �= zt−1

l). (7)

The reward is used to adjust the variable selection probabilities for the subse-
quent steps of Adaptive LMH by computing WWW t+1 (line 8 of Algorithm 2). It
may seem sufficient to assign the reward to the last choice and use average choice
rewards as their weights, but this approach will not work for Adaptive LMH.
Consider the generative model

x1 ∼ N (1, 10), x2 ∼ N (x1, 1),
y1 ∼ N (x2, 1),
z1 ← x1,

where we observe the value y1 = 2. Modifying x2 may result in an accepted
trace, but the value of z1 = x1, predicted by the program, will remain the same
as in the previous trace. Only when x1 is also modified, and a new trace with
the updated values for both x1 and x2 is accepted, the earlier change in x2 is
indirectly reflected in the output of the program. In the next section, we discuss
propagation of rewards to variable selection probabilities in detail.

3.2 Propagating Rewards to Variables

Both LMH and Adaptive LMH modify a single variable per trace, and
either re-use or recompute the probabilities of values of all other variables

Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs 317

Algorithm 3. Propagating Rewards to Variables
1: for l in 1, . . . , |zt| do
2: Append α to history hl

3: if zt+1
l �= zt

l then
4: δ ← 1/|hl|
5: for α′ in hl do
6: rα′ ← rα′ + δ, cα′ ← cα′ + δ
7: end for
8: Flush hl.
9: else

10: cα ← cα + 1
11: end if
12: end for

(except those absent from the previous trace or having an incompatible dis-
tribution, for which new values are also sampled). Due to this updating scheme,
the influence of modifying a variable on the output can be delayed by several
iterations. We propose the following propagation scheme: for each unique ran-
dom variable x at address α, the reward rα and count cα are kept in a data
structure used to compute WWW . A list of addresses selected for modification since
the last change in output, which we call the history hl, is maintained for each
component zl of the output zzz. When the value of zl changes, the reward is dis-
tributed between all of the addresses in the history hl, which is then emptied.
When zl does not change, the selected variable is penalized by zero reward. This
scheme is shown in Algorithm 3 which expands line 8 of Algorithm 2.

Rewarding all of the variables in the history ensures that while variables
which cause changes in the output more often get a greater reward, variables
with lower influence are still selected for modification sufficiently often. This, in
turn, ensures ergodicity of sampling sequence, and helps establish conditions for
convergence to the target distribution, as we discuss in Section 4.

Let us show that under certain assumptions the proposed reward propaga-
tion scheme has a non-degenerate equilibrium for variable selection probabilities.
Indeed, assume that for a program with two variables, x1, and x2, probability
matching, or selecting a choice with the probability proportional to the unit
reward ρi = ri

ci
, is used to compute the weights, that is, Wi = ρi. Then, the

following lemma holds:

Lemma 1. Assume that for variables xi, where i ∈ {1, 2}:
– wi is the selection probability;
– βi is the probability that the new trace is accepted given that the variable was

selected for modification;
– γi is the probability that the output changed given that the trace was accepted.

Assume further that wi, βi, and γi are constant. Then γ1 = 1, γ2 = 0 implies:

0 <
w2

w1
≤ 1

3
(8)

318 D. Tolpin et al.

Proof. We shall prove the lemma in three steps. First, we will analyze a sequence
of samples between two subsequent arrivals of x1. Then, we derive a formula for
the expected unit reward of x2. Finally, we shall bound the ratio w2

w1
.

Consider a sequence of k samples, for some k, between two subsequent arrivals
of x1, including the sample corresponding to the second arrival of x1. Since a
new value of x1 always (γ1 = 1) and x2 never (γ2 = 0) causes a change in the
output, at the end of the sequence the history will contain k occurrences of x2.
Let us denote by Δri, Δci the increase of reward ri and count ci between the
beginning and the end of the sequence. Noting that x2 is penalized each time
it is added to the history (line 10 of Algorithm 3), and k occurrences of x2 are
rewarded when x1 is added to the history (line 6 of Algorithm 3), we obtain

Δr1 =
1

k + 1
, Δc1 =

1
k + 1

Δr2 =
k

k + 1
, Δc2 = k +

k

k + 1
(9)

Consider now a sequence of M such sequences. When M → ∞, riM

ciM
approaches

the expected unit reward ρi, where riM and ciM are the reward and the count
of xi at the end of the sequence.

ρi = lim
M→∞

riM

ciM
= lim

M→∞

riM

M
ciM

M

= lim
M→∞

∑M
m=1 Δrim

M
∑M

m=1 Δcim

M

=
Δri

Δci

(10)

Each variable xi is selected randomly and independently and produces an
accepted trace with probability

pi =
wiβi

w1β1 + w2β2
. (11)

Acceptances of x1 form a Poisson process with rate 1
p1

= w1β1+w2β2
w1β1

, so k is
geometrically distributed Pr[k] = (1 − p1)kp1. Since Δr1 = Δc1 for any k, the
expected unit reward ρ1 of x1 is 1. We substitute Δri and Δci into (10) to obtain
the expected unit reward ρ2 of x2:

Δr2 =
∞∑

k=0

k

k + 1
(1 − p1)kp1

Δc2 =
∞∑

k=0

(

k +
k

k + 1

)

(1 − p1)kp1 =
1 − p1

p1︸ ︷︷ ︸
k

+
∞∑

k=0

k

k + 1
(1 − p1)kp1 (12)

ρ2 =
Δr2

Δc2
=

∞∑

k=0

k
k+1 (1 − p1)kp1

1−p1
p1

+
∞∑

k=0

k
k+1 (1 − p1)kp1

=

1 −

A
︷ ︸︸ ︷
∞∑

k=0

1
k + 1

(1 − p1)kp1

1
p1

−
∞∑

k=0

1
k + 1

(1 − p1)kp1

︸ ︷︷ ︸
A

(13)

Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs 319

For probability matching, selection probabilities are proportional to expected
unit rewards:

w2

w1
=

ρ2
ρ1

(14)

To prove the inequality, we shall derive a closed-form representation for ρ2, and
analyse solutions of (14) for w2

w1
. We shall eliminate the summation A in (13):

A =
∞∑

k=0

1
k + 1

(1 − p1)kp1 =
p1

1 − p1

∞∑

k=0

1
k + 1

(1 − p1)k+1

=
p1

1 − p1

∞∑

k=0

∫ 1

p1

(1 − ξ)kdξ =
p1

1 − p1

∫ 1

p1

∞∑

k=0

(1 − ξ)kdξ = − p1
1 − p1

log p1

(15)

By substituting A into (13), and then ρ1 and ρ2 into (14), we obtain

w2

w1
=

ρ2
ρ1

= ρ2 =
1 + p1 log p1

1−p1

1
p1

+ p1 log p1
1−p1

}

B(p1) (16)

The right-hand side B(p1) of (16) is a monotonic function for p1 ∈ [0, 1], and
B(0) = 0, B(1) = 1

3 . According to (11), w2
w1

= 0 implies p1 = 1, hence w2
w1

�= 0,
and 0 < w2

w1
≤ 1

3 . ��
By noting that any subset of variables in a probabilistic program can be

considered a single random variable drawn from a multi-dimensional distribution,
Lemma 1 is generalized to any number of variables by Corollary 1:

Corollary 1. For any partitioning of the set xxx of random variables of a prob-
abilistic program, AdLMH with weights proportional to expected unit rewards
selects variables from each of the partitions with non-zero probability.

To ensure convergence of WWW t to expected unit rewards in the stationary
distribution, we use upper confidence bounds on unit rewards to compute the
selection probabilities, an idea that we borrow from the UCB family of algo-
rithms for multi-armed bandits [3]. Following UCB1 [3], we compute the upper
confidence bound ρ̂i as the sum of the unit reward and the exploration term

ρ̂α = ρα + C

√
log

∑
α cα

cα
, (17)

where C is an exploration factor. The default value for C is
√

2 in UCB1; in
practice, a lower value of C is preferable. Note that variable selection in Adaptive
LMH is different from arm selection in multi-armed bandits: unlike in bandits,
where we want to sample the best arm at an increasing rate, in Adaptive LMH
we expect WWW t to converge to an equilibrium in which selection probabilities are
proportional to expected unit rewards.

320 D. Tolpin et al.

4 Convergence of Adaptive LMH

As adaptive MCMC algorithms may depend arbitrarily on the history at each
step, showing that a given sampler correctly draws from the target distribution
can be non-trivial. General conditions under which adaptive MCMC schemes
are still ergodic, in the sense that the distribution of samples converges to the
target π in total variation, are established in [14]. The fundamental criteria for
validity of an adaptive algorithm are diminishing adaptation, which (informally)
requires that the amount which the transition operator changes each iteration
must asymptotically decrease to zero; and containment, a technical condition
which requires that the time until convergence to the target distribution must
be bounded in probability [4].

The class of models representable by probabilistic programs is very broad,
allowing specification of completely arbitrary target densities; however, for many
models the adaptive LMH algorithm reduces to an adaptive random scan Metro-
polis-within-Gibbs in Algorithm 1. To discuss when this is the case, we invoke the
concept of structural versus structure-preserving random choices [18]. Crucially,
a structure-preserving random choice xk does not affect the existence of other
xm in the trace.

Suppose we were to restrict the expressiveness of our language to admit only
programs with no structural random choices: in such a language, the LMH algo-
rithm in Algorithm 2 reduces to the adaptive componentwise MH algorithm.
Conditions under which such an adaptive algorithm is ergodic have been estab-
lished explicitly in [8, Theorems4.10and5.5]. Given suitable assumptions on the
target density defined by the program, it is necessary for the probability vector
||wt − wt−1|| → 0, and that for any particular component k we have probability
wt

k > ε > 0. Both of these are satisfied by our approach: from Corollary 1, we
ensure that the unit reward across each xi converges to a positive fixed point.

While any theoretical result will require language restrictions such that pro-
grams only induce distributions satisfying regularity conditions, we conjecture
that this scheme is broadly applicable across most non-pathological programs.
We leave a precise theoretical analysis of the space of probabilistic programs
in which adaptive MCMC schemes (with infinite adaptation) may be ergodic
to future work. Empirical evaluation presented in the next section demonstrates
practical convergence of Adaptive LMH on a range of inference examples, includ-
ing programs containing structural random choices.

5 Empirical Evaluation

We evaluated Adaptive LMH on many probabilistic programs and observed con-
sistent improvement of convergence rate compared to LMH. We also verified
on a number of tests that the algorithm converges to the correct distribution
obtained by independent exact methods. In this section, we compare Adaptive
LMH to LMH on several representative examples of probabilistic programs. The
rates in the comparisons are presented with respect to the number of samples, or

Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs 321

1000 samples

10000 samples

100000 samples

Fig. 1. HMM, predicting the 0th and 17th state

simulations, of the probabilistic programs. The additional computation required
for adaptation takes negligible time, and the computational effort per sample is
approximately the same for all algorithms. Our implementation of the inference
engine is available at https://bitbucket.org/dtolpin/anglican.

In the following case studies differences between program outputs and target
distributions are presented using Kullback-Leibler (KL) divergence, Kolmogorov-
Smirnov (KS) distance, or L2 distance, as appropriate. In cases where target
distributions cannot be updated exactly, they were approximated by running a
non-adaptive inference algorithm for a long enough time and with a sufficient
number of restarts. In each of the evaluations, all of the algorithms were run
with 25 random restarts and 500 000 simulations of the probabilistic program
per restart. The difference plots use the logarithmic scale for both axes. In the
plots, the solid lines correspond to the median, and the dashed lines to 25% and
75% percentiles, taken over all runs of the corresponding inference algorithm.
The exploration factor for computing upper confidence bounds on unit rewards
(Equation 17) was fixed at C = 0.5 for all tests and evaluations.

The first example is a latent state inference problem in an HMM with three
states, one-dimensional normal observations (0.9, 0.8, 0.7, 0, -0.025, 5, 2, 0.1,
0, 0.13, 0.45, 6, 0.2, 0.3, -1, -1) with variance 1.0, a known transition matrix,
and known initial state distribution. There are 18 distinct random choices in all
traces of the program, and the 0th and the 17th state are predicted. The results
of evaluation are shown in Figure 1 as KL divergences between the inference
output and the ground truth obtained using the forward-backward algorithm. In
addition, bar plots of unit reward and sample count distributions among random
choices in Adaptive LMH are shown for 1000, 10 000, and 100 000 samples.

As can be seen in the plots, Adaptive LMH (black) exhibits faster convergence
over the whole range of evaluation, requiring half as many samples as LMH
(cyan) to achieve the same approximation, with the median of LMH above the
75% quantile of Adaptive LMH.

In addition, the bar plots show unit rewards and sample counts for differ-
ent random choices, providing an insight on the adaptive behavior of AdLMH.

https://bitbucket.org/dtolpin/anglican

322 D. Tolpin et al.

1000 samples

10000 samples

100000 samples

Fig. 2. Gaussian process hyperparameter estimation

On the left-hand bar plots, red bars are normalized unit rewards, and blue bars
are normalized sample counts. On the right-hand bar plots, the total height of a
bar is the total sample count, with green section corresponding to the accepted,
and yellow to the rejected samples. At 1 000 samples, the unit rewards have not
yet converged, and exploration supersedes exploitation: random choices with
lower acceptance rate are selected more often (choices 7, 8 and 13 corresponding
to states 6, 7 and 12). At 10 000 samples, the unit rewards become close to their
final values, and choices 1 and 18, immediately affecting the predicted states,
are selected more often. At 100 000 samples, the unit rewards converge, and the
sample counts correspond closely to the equilibrium state outlined in Lemma 1.

The second case study is estimation of hyperparameters of a Gaussian Pro-
cess. We define a Gaussian Process of the form

f ∼GP(m, k),

where m(x) =ax2 + bx + c, k(x, x′) = de− (x−x′)2
2g .

The process has five hyperparameters, a, b, c, d, g. The program infers the poste-
rior values of the hyperparameters by maximizing marginal likelihood of 6 obser-
vations (0.0, 0.5), (1.0, 0.4), (2.0, 0.2), (3.0,−0.05), (4.0,−0.2), and (5.0, 0.1).
Parameters a, b, c of the mean function are predicted. Maximum of KS distances
between inferred distributions of each of the predicted parameters and an approx-
imation of the target distributions is shown in Figure 2. The approximation was
obtained by running LMH with 2 000 000 samples per restart and 50 restarts,
and then taking each 100th sample from the last 10 000 samples of each restart,
5000 samples total. Just as for the previous case study, bar plots of unit rewards
and sample counts are shown for 1000, 10 000, and 100 000 samples.

Here as well, Adaptive LMH (black) converges faster over the whole range
of evaluation, outperforming LMH by a factor 2 over the first 50 000 samples.
Bar plots of unit rewards and sample counts for different number of choices,

Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs 323

Fig. 3. Logistic regression on Iris dataset.

again, show the dynamics of sample allocation among random choices. Choices
a, b, and c are predicted, while choices d and g are required for inference but
not predicted. Choice a has the lowest acceptance rate (ratio between the total
height of the bar and the green part on the right-hand bar plot), but the unit
reward is close the unit reward of choices b and c. At 1 000 samples, choice a is
selected with the highest probability. However, close to the converged state, at
100 000 samples, choices a, b, and c are selected with similar probabilities. At
the same time, choices 4 and 5 are selected with a lower probability. Both the
exploration-exploitation dynamics for choices a–c and probability matching of
selection probabilities among all choices secure improved convergence.

The third case study involves a larger amount of data observed during each
simulation of a probabilistic program. We use the well-known Iris dataset [9] to
fit a model of classifying a given flower as of the species Iris setosa, as opposite
to either Iris virginica or Iris versicolor. Each record in the dataset corresponds
to an observation. For each observation, we define a feature vector x and an
indicator variable zi, which is 1 if and only if the observation is of an Iris setosa.
We fit the model with five regression coefficients β1, . . . , β5, defined as

σ2 ∼ InvGamma(1, 1),
βj ∼ Normal(0, σ),

p(zi = 1) =
1

1 + e−βT x
.

To assess the convergence, we perform shuffle split leave-2-out cross validation,
selecting one instance belonging to the species Iris setosa and one belonging to a
different species for each run of the inference algorithm. The classification error
is shown in Figure 3 over 100 runs of LMH and Adaptive LMH. The results are
consistent with other case studies: Adaptive LMH exhibits a faster convergence
rate, requiring half as many samples to achieve the same classification accuracy
as LMH.

324 D. Tolpin et al.

Fig. 4. Kalman filter, 500 samples after 10 000 samples of burn-in.

As a final case study we consider a linear dynamical system (i.e. a Kalman
smoothing problem) that was previously described in [12]

xt ∼ Norm(A · xt−1,Q), yt ∼ Norm(C · xt,R).

In this problem we assume that 16-dimensional observations yt are conditioned
on 2-dimensional latent states xt. We impose additional structure by assuming
that the transition matrix A is a simple rotation with angular velocity ω, whereas
the transition covariance Q is a diagonal matrix with coefficient q,

A =
[

cos ω − sin ω
sin ω cos ω

]

, Q =
[

q 0
0 q

]

.

We predict posterior values for ω, and q in a setting where C and R are
assumed known, under mildly informative priors ω ∼ Gamma(10, 2.5) and
q ∼ Gamma(10, 100). Posterior inference is performed conditioned on a simu-
lated sequence y1:T of T = 100 observations, with ω∗ = 4π/T , and q∗ = 0.1. The
observation matrix C and covariance R are sampled row-wise from symmetric
Dirichlet distributions with parameters c = 0.1, and r = 0.01 respectively.

Figure 4 shows a qualitative evaluation of the mixing rate in the form of 500
consecutive samples (ω, q) from an LMH and AdLMH chain after 10 000 samples
of burn-in. The LMH sequence exhibits good mixing over ω but is strongly
correlated in q, whereas the AdLMH sequence obtains a much better coverage
of the space.

To summarize, Adaptive LMH consistently attained faster convergence than
LMH, measured by differences between the ongoing output distribution of the
random program and the target independently obtained distribution, assessed
using various metrics. Variable selection probabilities computed by Adaptive
LMH are dynamically adapted during the inference, combining exploration of
the model represented by the probabilistic program and exploitation of influence
of random variables on program output.

Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs 325

6 Contribution and Future Work

In this paper we introduced a new algorithm, Adaptive LMH, for approximate
inference in probabilistic programs. This algorithm adjusts sampling parame-
ters based on the output of the probabilistic program in which the inference is
performed. Contributions of the paper include

– A scheme of rewarding random choice based on program output.
– An approach to propagation of choice rewards to MH proposal scheduling

parameters.
– An application of this approach to LMH, where the probabilities of selecting

each variable for modification are adjusted.

Adaptive LMH was compared to LMH, its non-adaptive counterpart, and was
found to consistently outperform LMH on several probabilistic programs, while
still being almost as easy to implement. The time cost of additional computation
due to adaptation was negligible.

Although presented in the context of a particular sampling algorithm, the
adaptation approach can be extended to other sampling methods. We believe
that various sampling algorithms for probabilistic programming can benefit from
output-sensitive adaptation. Additional potential for improvement lies in acqui-
sition of dependencies between predicted expressions and random variables.
Exploring alternative approaches for guiding exploration-exploitation compro-
mise, in particular, based on Bayesian inference, is another promising research
direction.

Overall, output-sensitive approximate inference appears to bring clear advan-
tages and should be further explored in the context of probabilistic programming
models and algorithms.

Acknowledgments. This work is supported under DARPA PPAML through the U.S.
AFRL under Cooperative Agreement number FA8750-14-2-0004. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation heron. The views and conclusions contained herein
are those of the authors and should be not interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of DARPA, the U.S. Air
Force Research Laboratory or the U.S. Government.

References

1. Andrieu, C., Thoms, J.: A tutorial on adaptive MCMC. Statistics and Computing
18(4), 343–373 (2008)

2. Atchadé, Y., Fort, G., Moulines, E., Priouret, P.: Adaptive markov chain monte
carlo: theory and methods. In: Barber, D., Cemgil, A.T., Chiappa, S. (eds.)
Bayesian Time Series Models, pp. 32–51. Cambridge University Press (2011)

3. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the Multiarmed
Bandit problem. Machine Learning 47(2–3), 235–256 (2002)

326 D. Tolpin et al.

4. Bai, Y., Roberts, G.O., Rosenthal, J.S.: On the containment condition for adaptive
Markov chain Monte Carlo algorithms. Advances and Applications in Statistics
21(1), 1–54 (2011)

5. Gamerman, D., Lopes, H.F.: Markov Chain Monte Carlo: Stochastic Simulation
for Bayesian Inference. Chapman and Hall/CRC (2006)

6. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In: UAI, pp. 220–229 (2008)

7. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic
programming. In: ICSE (FOSE track) (2014)

8. �Latuszyński, K., Roberts, G.O., Rosenthal, J.S.: Adaptive Gibbs samplers and
related MCMC methods. Annals of Applied Probability 23(1), 66–98 (2013)

9. Lauritzen, S.: Graphical Models. Clarendon Press (1996)
10. Levine, R.A., Yu, Z., Hanley, W.G., Nitao, J.J.: Implementing componentwise hast-

ings algorithms. Computational Stastistics & Data Analysis 48(2), 363–389 (2005)
11. Mansinghka, V.K., Selsam, D., Perov, Y.N.: Venture: a higher-order probabilistic

programming platform with programmable inference. CoRR abs/1404.0099 (2014)
12. van de Meent, J.W., Yang, H., Mansinghka, V., Wood, F.: Particle Gibbs with

Ancestor Sampling for Probabilistic Programs. In: AISTATS, pp. 986–994 (2015)
13. Nori, A.V., Hur, C.K., Rajamani, S.K., Samuel, S.: R2: An efficient mcmc sampler

for probabilistic programs. In: AAAI, pp. 2476–2482 (2014)
14. Roberts, G.O., Rosenthal, J.S.: Coupling and ergodicity of adaptive MCMC.

Journal of Applied Probability 44, 458–475 (2007)
15. Roberts, G.O., Rosenthal, J.S.: Examples of adaptive MCMC. Journal of Compu-

tational and Graphical Statistics 18(2), 349–367 (2009)
16. Wingate, D., Stuhlmüller, A., Goodman, N.D.: Lightweight implementations of

probabilistic programming languages via transformational compilation. In: AIS-
TATS, pp. 770–778 (2011)

17. Wood, F., van de Meent, J.W., Mansinghka, V.: A new approach to probabilistic
programming inference. In: AISTATS, pp. 1024–1032 (2014)

18. Yang, L., Hanrahan, P., Goodman, N.D.: Generating efficient MCMC kernels from
probabilistic programs. In: AISTATS, pp. 1068–1076 (2014)

Planning in Discrete and Continuous
Markov Decision Processes

by Probabilistic Programming

Davide Nitti(B), Vaishak Belle, and Luc De Raedt

Department of Computer Science, KU, Leuven, Belgium
{davide.nitti,vaishak.belle,luc.deraedt}@cs.kuleuven.be

Abstract. Real-world planning problems frequently involve mixtures of
continuous and discrete state variables and actions, and are formulated in
environments with an unknown number of objects. In recent years, prob-
abilistic programming has emerged as a natural approach to capture and
characterize such complex probability distributions with general-purpose
inference methods. While it is known that a probabilistic programming
language can be easily extended to represent Markov Decision Processes
(MDPs) for planning tasks, solving such tasks is challenging. Building
on related efforts in reinforcement learning, we introduce a conceptually
simple but powerful planning algorithm for MDPs realized as a prob-
abilistic program. This planner constructs approximations to the opti-
mal policy by importance sampling, while exploiting the knowledge of
the MDP model. In our empirical evaluations, we show that this app-
roach has wide applicability on domains ranging from strictly discrete to
strictly continuous to hybrid ones, handles intricacies such as unknown
objects, and is argued to be competitive given its generality.

1 Introduction

Real-world planning problems frequently involve mixtures of continuous and
discrete state variables and actions. Markov Decision Processes (MDPs) [28] are
a natural and general framework for modeling such problems. However, while
significant progress has been made in developing robust planning algorithms for
discrete and continuous MDPs, the more intricate hybrid (i.e., mixtures) domains
and settings with an unknown number of objects have received less attention.

The recent advances of probabilistic programming languages (e.g., BLOG
[15], Church [6], ProbLog [10], distributional clauses [7]) has significantly
improved the expressive power of formal representations for probabilistic models.
While it is known that these languages can be extended for decision problems
[27,29], including MDPs, it is less clear if the inbuilt general-purpose inference
system can cope with the challenges (e.g., scale, time constraints) posed by actual
planning problems, and compete with existing state-of-the-art planners.

In this paper, we consider the problem of effectively planning in domains
where reasoning and handling unknowns may be needed in addition to cop-
ing with mixtures of discrete and continuous variables. In particular, we adopt
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 327–342, 2015.
DOI: 10.1007/978-3-319-23525-7 20

328 D. Nitti et al.

dynamic distributional clauses (DDC) [17,18] (an extension of distributional
clauses for temporal models) to describe the MDP and perform inference. In
such general settings, exact solutions may be intractable, and so approximate
solutions are the best we can hope for. Popular approximate solutions include
Monte-Carlo methods to estimate the expected reward of a policy (i.e., policy
evaluation). Monte-Carlo methods provide state-of-the-art results in probabilis-
tic planners [9,11]. Monte-Carlo planners have been mainly applied in discrete
domains (with some notable exceptions, such as [1,13], for continuous domains).
Typically, for continuous states, function approximation (e.g., linear regression)
is applied. In that sense, one of the few Monte-Carlo planners that works in
arbitrary MDPs with no particular assumptions is Sparse Sampling (SST) [8];
but as we demonstrate later, it is often slow in practice. We remark that most,
if not all, Monte-Carlo methods require only a way to sample from the model of
interest. While this property seems desirable, it prevents us from exploiting the
actual probabilities of the model, as discussed (but unaddressed) in [9].

In this work, we introduce HYPE: a conceptually simple but powerful plan-
ning algorithm for a given MDP in DDC. However, HYPE can be adapted
for other languages, such as RDDL [22]. The proposed planner exploits the
knowledge of the model via importance sampling to perform policy evaluation,
and thus, policy improvement. Importance sampling has been used in off-policy
Monte-Carlo methods [20,24,25], where policy evaluation is performed using
trajectories sampled from another policy. We remark that standard off-policy
Monte-Carlo methods have been used in reinforcement learning, which are essen-
tially model-free settings. In our setting, given a planning domain, the proposed
planner introduces a new off-policy method that exploits the model and works,
under weak assumptions, in discrete, continuous, hybrid domains as well as those
with an unknown number of objects.

We provide a detailed derivation on how the approximation is obtained using
importance sampling. Most significantly, we test the robustness of the approach
on a wide variety of probabilistic domains. Given the generality of our frame-
work, we do not challenge the plan times of state-of-the-art planners, but we do
successfully generate meaningful plans in all these domains. We believe this per-
formance is competitive given the algorithm’s applicability. Indeed, the results
show that our system at best outperforms SST [8] and at worst produces similar
results, where SST is an equally general planner; in addition, it obtains reason-
able results with respect to state-of-the-art discrete (probabilistic) planners.

2 Preliminaries

In a MDP, a putative agent is assumed to interact with its environment,
described using a set S of states, a set A of actions that the agent can perform, a
transition function p : S ×A×S → [0, 1], and a reward function R : S ×A → R.
That is, when in state s and on doing a, the probability of reaching s′ is given
by p(s′ | s, a), for which the agent receives the reward R(s, a). The agent is
taken to operate over a finite number of time steps t = 0, 1, . . . , T , with the goal

Planning in Discrete and Continuous MDPs by Prob. Programming 329

of maximizing the expected reward: E[
∑T

t=0 γtR(st, at)], where s0 is the start
state, a0 the first action, and γ ∈ [0, 1] is a discount factor.

This paper focuses on maximizing the reward in a finite horizon MDP; how-
ever the same ideas are extendable for infinite horizons. This is achieved by
computing a (deterministic) policy π : S × D → A that determines the agent’s
action at state s and remaining steps d (horizon). The expected reward starting
from state st and following a policy π is called the value function (V -function):

V π
d (st) = E

[
t+d∑

k=t

γk−tR(sk, ak) | st, π

]

. (1)

Furthermore, the expected reward starting from state st while executing action
at and following a policy π is called the action-value function (Q-function):

Qπ
d (st, at) = E

[
t+d∑

k=t

γk−tR(sk, ak) | st, at, π

]

. (2)

Since T = t + d, in the following formulas we will use T for compactness. An
optimal policy π∗ is a policy that maximizes the V -function for all states. A
sample-based planner uses Monte-Carlo methods to solve an MDP and find
a (near) optimal policy. The planner simulates (by sampling) interaction with
the environment in episodes Em =<sm

0 , am
0 , sm

1 , am
1 , ..., sm

T , am
T >, following some

policy π. Each episode is a trajectory of T time steps, and we let sm
t denote the

state visited at time t during episode m. (So, after M episodes, M × T states
would be explored). After or during an episode generation, the sample-based
planner updates Qd(sm

t , am
t) for each t according to a backup rule, for example,

averaging the total rewards obtained starting from (sm
t , am

t) till the end. The
policy is improved using a strategy that trades-off exploitation and exploration,
e.g., the ε-greedy strategy. In this case the policy used to sample the episodes
is not deterministic; we indicate with π(at|st) the probability to select action
at in state st under the policy π. Under certain conditions, after a sufficiently
large number of episodes, the policy converges to a (near) optimal policy, and
the planner can execute the greedy policy argmaxaQd(s, a).

3 Dynamic Distributional Clauses

We assume some familiarity with standard terminology of statistical relational
learning and logic programming [2]. We represent the MDP using dynamic dis-
tributional clauses [7,17], an extension of logic programming to represent contin-
uous and discrete random variables. A distributional clause (DC) is of the form
h ∼ D ← b1, . . . , bn, where the bi are literals and ∼ is a binary predicate written
in infix notation. The intended meaning of a distributional clause is that each
ground instance of the clause (h ∼ D ← b1, . . . , bn)θ defines the random variable
hθ as being distributed according to Dθ whenever all the biθ hold, where θ is
a substitution. Furthermore, a term �(d) constructed from the reserved functor
�/1 represents the value of the random variable d.

330 D. Nitti et al.

Example 1. Consider the following clauses:

n ∼ poisson(6). (3)
pos(P) ∼ uniform(1, 10) ← between(1,�(n), P). (4)
left(A, B) ← �(pos(A)) >�(pos(B)). (5)

Capitalized terms such as P, A and B are logical variables, which can be sub-
stituted with any constant. Clause (3) states that the number of people n is
governed by a Poisson distribution with mean 6; clause (4) models the position
pos(P) as a random variable uniformly distributed from 1 to 10, for each person
P such that P is between 1 and �(n). Thus, if the outcome of n is two (i.e.,
�(n) = 2) there are 2 independent random variables pos(1) and pos(2). Finally,
clause (5) shows how to define the predicate left(A, B) from the positions of any
A and B. Ground atoms such as left(1, 2) are binary random variables that can
be true or false, while terms such as pos(1) represent random variables that can
take concrete values from the domain of their distribution.

A distributional program is a set of distributional clauses (some of which may
be deterministic) that defines a distribution over possible worlds, which in turn
defines the underlying semantics. A possible world is generated starting from the
empty set S = ∅; for each distributional clause h ∼ D ← b1, ..., bn, whenever the
body {b1θ, ..., bnθ} is true in the set S for the substitution θ, a value v for the
random variable hθ is sampled from the distribution Dθ and �(hθ) = v is added
to S. This is repeated until a fixpoint is reached, i.e., no further variables can
be sampled. Dynamic distributional clauses (DDC) extend distributional clauses
in admitting temporally-extended domains by associating a time index to each
random variable.

Example 2. Let us consider an object search scenario (objsearch) used in the
experiments, in which a robot looks for a specific object in a shelf. Some of the
objects are visible, others are occluded. The robot needs to decide which object
to remove to find the object of interest. Every time the robot removes an object,
the objects behind it become visible. This happens recursively, i.e., each new
uncovered object might occlude other objects. The number and the types of
occluded objects depend on the object covering them. For example, a box might
cover several objects because it is big. This scenario involves an unknown number
of objects and can be written as a partially observable MDP. However, it can be
also described as a MDP in DDC where the state is the type of visible objects;
in this case the state grows over time when new objects are observed or shrink
when objects are removed without uncovering new objects. The probability of
observing new objects is encoded in the state transition model, for example:

type(X)t+1 ∼ val(T) ← �(type(X)t) = T, not(removeObj(X)). (6)
numObjBehind(X)t+1 ∼ poisson(1) ← �(type(X)t) = box, removeObj(X). (7)
type(ID)t+1 ∼ finite([0.2 : glass, 0.3 : cup, 0.4 : box, 0.1 : can])←

�(type(X)t) = box, removeobj(X), �(numObjBehind(X)t+1) = N, getLastID(Last)t,

NewID is Last + 1, EndNewID is NewID + N, between(NewID, EndNewID, ID). (8)

Planning in Discrete and Continuous MDPs by Prob. Programming 331

Clause (6) states that the type of each object remains unchanged when we do
not perform a remove action. Otherwise, if we remove the object, its type is
removed from the state at time t + 1 because it is not needed anymore. Clauses
(7) and (8) define the number and the type of objects behind a box X, added to
the state when we perform a remove action on X. Similar clauses are defined for
other types. The predicate getLastID(Last)t returns the highest object ID in
the state and is needed to make sure that any new object has a different ID.

To complete the MDP specification we need to define a reward function R(st, at),
the terminal states that indicate when the episode terminates, and the applica-
bility of an action at is a state st as in PDDL. For objsearch we have:

stopt ←�(type(X)t) = can.

reward(20)t ← stopt.

reward(−1)t ← not(stopt).

That is, a state is terminal when we observe the object of interest (e.g., a can),
for which a reward of 20 is obtained. The remaining states are nonterminal with
reward −1. To define action applicability we use a set of clauses of the form

applicable(action)t ← preconditionst.

For example, action removeobj is applicable for each object in the state, that is
when its type is defined with an arbitrary value Type:

applicable(removeobj(X))t ←�(type(X)t) = Type.

4 Planning by Importance Sampling

Our approach to plan in MDPs described in DDC is an off-policy strategy [28]
based on importance sampling and derived from the transition model. Related
work is discussed more comprehensively in Section 5, but as we note later,
sample-based planners typically only require a generative model (a way to gen-
erate samples) and do not exploit the declarative model of the MDP (i.e., the
actual probabilities) [9]. In our case, this knowledge leads to an effective plan-
ning algorithm that works in discrete, continuous, hybrid domains, and domains
with an unknown number of objects under weak assumptions.

In a nutshell, the proposed approach samples episodes Em and stores for each
visited state sm

t an estimation of the V -function (e.g., the total reward obtained
from that state). The action selection follows an ε-greedy strategy, where the Q-
function is estimated as the immediate reward plus the weighted average of the
previously stored V -function points at time t + 1. This is justified by the means
of importance sampling as explained later. The essential steps of our planning
system Hype (= hybrid episodic planner) are given in Algorithm 1.

The algorithm realizes the following key ideas:

– Q̃ and Ṽ denote approximations of the Q and V -function respectively.

332 D. Nitti et al.

Algorithm 1. Hype

1: function SampleEpisode(d, sm
t , m) � Horizon d, state sm

t in episode m
2: if d = 0 then
3: return 0
4: end if
5: for each applicable action a in sm

t do � Q-function estimation

6: Q̃m
d (sm

t , a) ←R(sm
t , a) + γ

∑m−1
i=0 wiṼ i

d−1(s
i
t+1)

∑m−1
i=0 wi

7: end for
8: sample u ∼ uniform(0, 1) � ε-greedy strategy
9: if u < 1 − ε then

10: am
t ← argmaxaQ̃m

d (sm
t , a)

11: else
12: am

t ∼ uniform(actions applicable in sm
t)

13: end if
14: sample sm

t+1 ∼ p(st+1 | sm
t , am

t) � sample next state
15: Gm

d ← R(sm
t , am

t) + γ ·SampleEpisode (d − 1, sm
t+1, m) � recursive call

16: Ṽ m
d (sm

t) ← Gm
d

17: store (sm
t , Ṽ m

d (sm
t), d)

18: return Ṽ m
d (sm

t) � V-function estimation for sm
t at horizon d

19: end function

– Lines 14-17 sample the next step and recursively the remaining episode of
total length T , then stores the total discounted reward Gm

d starting from
the current state sm

t . This quantity can be interpreted as a sample of the
expectation in formula (1), thus an estimator of the V -function. For this and
other reasons explained later, Gm

d is stored as Ṽ m
d (sm

t).
– Lines 8-13 implement an ε-greedy exploratory strategy for choosing actions.
– Most significantly, line 6 approximates the Q-function using the weighted aver-

age of the stored Ṽ i
d−1(s

i
t+1) points:

Q̃m
d (sm

t , a) ←R(sm
t , a) + γ

∑m−1
i=0 wiṼ i

d−1(s
i
t+1)

∑m−1
i=0 wi

, (9)

where wi is a weight function for episode i at state si
t+1. The weight exploits

the transition model and is defined as:

wi =
p(si

t+1 | sm
t , a)

q(si
t+1)

α(m−i). (10)

Here, for evaluating an action a at the current state st, we let wi be the ratio of
the transition probability of reaching a stored state si

t+1 and the probability used
to sample si

t+1, denoted using q. Recent episodes are considered more significant
than previous ones, and so α is a parameter for realizing this. We provide a
detailed justification for line 6 below.

We note that line 6 requires us to go over a finite set of actions, and so in
the presence of continuous action spaces (e.g., real-valued parameter for a move

Planning in Discrete and Continuous MDPs by Prob. Programming 333

action), we can discretize the action space or sample from it. More sophisticate
approaches are possible [5,26].

V 1
9 = 97

V 2
9 = 98 V 3

9 = 90

s = (0, 0)
a′ a′′

Fig. 1. Left: weight computation for the objpush domain. Right: a sampled episode
that reaches the goal (blue), and avoids the undesired region (red).

Example 3. As a simple illustration, consider the following example called obj-
push. We have an object on a table and an arm that can push the object in a
set of directions; the goal is to move the object close to a point g, avoiding an
undesired region (Fig. 1). The state consists of the object position (x, y), with
push actions parameterized by the displacement (DX, DY). The state transition
model is a Gaussian around the previous position plus the displacement:

pos(ID)t+1∼ gaussian(�(pos(ID)t)+ (DX, DY), cov)←push(ID, (DX, DY)). (11)

The clause is valid for any object ID; nonetheless, for simplicity, we will consider
a scenario with a single object. The terminal states and rewards in DDC are:

stopt← dist(�(pos(A)t), (0.6, 1.0)) < 0.1.

reward(100)t← stopt.

reward(−1)t← not(stopt), dist(�(pos(A)t), (0.5, 0.8)) >= 0.2.

reward(−10)t← not(stopt), dist(�(pos(A)t), (0.5, 0.8)) < 0.2. (12)

That is, a state is terminal when there is an object close to the goal point
(0.6, 1.0) (i.e., distance lower than 0.1), and so, a reward of 100 is obtained. The
nonterminal states have reward −10 whether inside an undesired region centered
in (0.5, 0.8) with radius 0.2, and R(st, at) = −1 otherwise.

Let us assume we previously sampled some episodes of length T = 10, and
we want to sample the m = 4-th episode starting from s0 =(0, 0). We compute
Q̃m

10((0, 0), a) for each action a (line 6). Thus we compute the weights wi using
(10) for each stored sample Ṽ i

9 (si
1). For example, Figure 1 shows the computation

of Q̃m
10((0, 0), a) for action a′ = (−0.4, 0.3) and a′′ = (0.9, 0.5), where we have

three previous samples i = {1, 2, 3} at depth 9. A shadow represents the likeli-
hood p(si

1|s0 = (0, 0), a) (left for a′ and right for a′′). The weight wi (10) for each
sample si

1 is obtained by dividing this likelihood by q(si
1) (with α = 1). If q(si

1)
is uniform over the three samples, sample i = 2 with total reward Ṽ 2

9 (s21) = 98

334 D. Nitti et al.

will have higher weight than samples i = 1 and i = 3. The situation is reversed
for a′′. Note that we can estimate Q̃m

d (sm
t , a) using episodes i that may never

encounter sm
t , at provided that p(si

t+1|sm
t , at) > 0.

Computing the (Approximate) Q-Function

The purpose of this section is to motivate our approximation to the Q-function
using the weighted average of the V -function points in line 6. Let us begin by
expanding the definition of the Q-function from (2) as follows:

Qπ
d (st, at)=R(st, at)+γ

∫

st+1:T ,at+1:T

Gd−1p(st+1:T , at+1:T |st, at, π)dst+1:T , at+1:T , (13)

where Gd−1 is the total (discounted) reward from time t + 1 for d − 1 steps:
Gd−1 =

∑d−1
k=1 γk−1R(st+k, at+k). Given that we sample trajectories from the

target distribution p(st+1:T , at+1:T |st, at, π), we obtain the following approxima-
tion to the Q-function equaling the true value in the sampling limit:

Qπ
d (st, at) ≈ R(st, at) +

1
N

γ
∑

i

Gi
d−1. (14)

Policy evaluation can be performed sampling trajectories using another policy,
this is called off-policy Monte-Carlo [28]. For example, we can evaluate the greedy
policy while the data is generated from a randomized one to enable exploration.
This is generally performed using (normalized) importance sampling [25]. We let
wi be the ratio of the target and proposal distributions to restate the sampling
limit as follows:

Qπ
d (st, at) ≈ R(st, at) +

1
∑

wi
γ

∑

i

wiGi
d−1. (15)

In standard off-policy Monte-Carlo the proposal distribution is of the form:

p(st+1:T , at+1:T |st, at, π
′) =

T−1∏

k=t

π′(ak+1|sk+1)p(sk+1|sk, ak)

The target distribution has the same form, the only difference is that the policy
is π instead of π′. In this case the weight becomes equal to the policy ratio
because the transition model cancels out. This is desirable when the model is
not available, for example in model-free Reinforcement Learning. The question is
whether the availability of the transition model can be used to improve off-policy
methods. This paper shows that the answer to that question is positive.

We will now describe the proposed solution. Instead of considering only tra-
jectories that start from st, at as samples, we consider all sampled trajectories
from time t+1 to T . Since we are ignoring steps before t+1, the proposal distri-
bution for sample i is the marginal

p(st+1:T , at+1:T |s0, πi)=q(st+1)πi(at+1|st+1)
T−1∏

k=t+1

πi(ak+1|sk+1)p(sk+1|sk, ak),

Planning in Discrete and Continuous MDPs by Prob. Programming 335

where q is the marginal probability p(st+1|s0, πi). To compute Q̃m
d (sm

t , a) we use
(15), where the weight wi (for 0 ≤ i ≤ m − 1) becomes the following:

p(si
t+1|sm

t , a)πm(ai
t+1|si

t+1)
∏T−1

k=t+1 πm(ai
k+1|si

k+1)p(si
k+1|si

k, ai
k)

q(si
t+1)π

i(ai
t+1|si

t+1)
∏T−1

k=t+1 πi(ai
k+1|si

k+1)p(si
k+1|si

k, ai
k)

=
p(si

t+1|sm
t , a)

q(si
t+1)

∏T−1
k=t πm(ai

k+1|si
k+1)

∏T−1
k=t πi(ai

k+1|si
k+1)

(16)

≈ p(si
t+1|sm

t , a)

q(si
t+1)

α(m−i). (17)

Thus, we obtain line 6 in the algorithm given that Ṽ i
d−1(s

i
t) = Gi

d−1. In our
algorithm the target (greedy) policy πm is not explicitly defined, therefore the
policy ratio is hard to compute. We replace the unknown policy ratio with a
quantity proportional to α(m−i) where 0 < α ≤ 1; thus, formula (16) is replaced
with (17). The quantity α(m−i) becomes smaller for an increasing difference
between the current episode index m and the i-th episode. Therefore, the recent
episodes are weighted (on average) more than the previous ones, as in recently-
weighted average applied in on-policy Monte-Carlo [28]. This is justified because
the policy is improved over time, thus recent episodes should have higher weight.

Since we are performing policy improvement, each episode is sampled from a
different policy. It has been shown [20,25] that samples from different distribu-
tions can be considered as sampled from a single distribution that is the mixture
of the true distributions. Therefore, for a given episode

q(si
t+1) =

1

m − 1

∑

j

p(si
t+1|s0, πj) =

1

m − 1

∑

j

∫

st

∫

at

p(si
t+1|st, at)p(st, at|s0, πj)dstdat

≈ 1

m − 1

∑

j

p(si
t+1|sj

t , a
j
t),

where for each j the integral is approximated with a single sample (sj
t , a

j
t) from

the available episodes. Since each episode is sampled from p(s0:T , a0:T |s0, πj),
samples (sj

t , a
j
t) are distributed as p(st, at|s0, πj) and are used in the estimation

of the integral.
The likelihood p(si

t+1|sm
t , a) is required to compute the weight. This prob-

ability can be decomposed using the chain rule, e.g., for a state with 3 vari-
ables we have: p(si

t+1|sm
t , a) = p(v3|v2, v1, sm

t , a)p(v2|v1, sm
t , a)p(v1|sm

t , a), where
si

t+1 = {v1, v2, v3}. In DDC this is performed evaluating the likelihood of each
variable in vi following the topological order defined in the DDC program. The
target and the proposal distributions might be mixed distributions of discrete
and continuous random variables; importance sampling can be applied in such
distributions as discussed in [19, Chapter 9.8].

To summarize, for each state sm
t , Q(sm

t , at) is evaluated as the immediate
reward plus the weighted average of stored Gi

d−1 points. In addition, for each
state sm

t the total discounted reward Gm
d is stored. We would like to remark

336 D. Nitti et al.

that we can estimate the Q-function also for states and actions that have never
been visited, as shown in example 1. This is possible without using function
approximations (beyond importance sampling).

Extensions

Our derivation follows a Monte-Carlo perspective, where each stored point is the
total discounted reward of a given trajectory: Ṽ m

d (sm
t) ← Gm

d . However, following
the Bellman equation, Ṽ m

d (sm
t) ← maxaQ̃m

d (sm
t , a) can be stored instead. The Q

estimation formula in line 6 is not affected; indeed we can repeat the same deriva-
tion using the Bellman equation and approximate it with importance sampling:

Qπ
d (st, at) = R(st, at) + γ

∫

st+1

V π
d−1(st+1)p(st+1|st, at)dst+1

≈ R(st, a) + γ
∑ wi

∑
wi

Ṽ i
d−1(s

i
t+1) = Q̃m

d (st, at), (18)

with wi = p(si
t+1|st,at)

q(si
t+1)

and si
t+1 the state sampled in episode i for which we

have an estimation of Ṽ i
d−1(s

i
t+1), while q(si

t+1) is the probability with which
si

t+1 has been sampled. This derivation is valid for a fixed policy π; for a chang-
ing policy we can make similar considerations to the previous approach and
add the term α(m−i). If we choose Ṽ i

d−1(s
i
t+1) ← Gi

d−1, we obtain the same
result as in (9) and (17) for the Monte-Carlo approach. Instead of choosing
between the two approaches we can use a linear combination, i.e., we replace
line 16 with Ṽ m

d (sm
t) ← λGm

d + (1 − λ)maxaQ̃m
d (sm

t , a). The analysis from ear-
lier applies by letting λ = 1. However, for λ = 0, we obtain a local value iteration
step, where the stored Ṽ is obtained maximizing the estimated Q̃ values. Any
intermediate value balances the two approaches (this is similar to, and inspired
by, TD(λ) [28]). Another strategy consists in storing the maximum of the two:
Ṽ m

d (sm
t) ← max(Gm

d ,maxaQ̃m
d (sm

t , a)). In other words, we alternate Monte-
Carlo and Bellman backup according to which one has the highest value. This
strategy works often well in practice; indeed it avoids a typical issue in Monte
Carlo methods: bad policies or exploration lead to low rewards, averaged in the
estimated Q/V -function. For this reason it may occur that optimal actions are
rarely chosen. The mentioned strategy avoids this, and a high ε value (line 9) is
possible without affecting the performance.

5 Related Work

There is an extensive literature on MDP planners, we will focus mainly on Monte-
Carlo approaches. The most notable sample-based planners include Sparse Sam-
pling (SST) [8], UCT [11] and their variations. SST creates a lookahead tree of
depth D, starting from state s0. For each action in a given state, the algorithm
samples C times the next state. This produces a near-optimal solution with theo-
retical guarantees. In addition, this algorithm works with continuous and discrete

Planning in Discrete and Continuous MDPs by Prob. Programming 337

domains with no particular assumptions. Unfortunately, the number of samples
grows exponentially with the depth D, therefore the algorithm is extremely slow
in practice. Some improvements have been proposed [31], although the worst-
case performance remains exponential. UCT [11] uses upper confidence bound
for multi-armed bandits to trade off between exploration and exploitation in the
tree search, and inspired successful Monte-Carlo tree search methods. Instead
of building the full tree, UCT chooses the action a that maximizes an upper
confidence bound of Q(s, a), following the principle of optimism in the face of
uncertainty. Several improvements and extensions for UCT have been proposed,
including handling continuous actions [13] (see [16] for a review), and continuous
states [1] with a simple Gaussian distance metric; however the knowledge of the
probabilistic model is not directly exploited. For continuous states, parametric
function approximation is often used (e.g., linear regression), nonetheless the
model needs to be carefully tailored for the domain to solve [32].

There exist algorithms that exploit instance-based methods (e.g. [3,5,26])
for model-free reinforcement learning. They basically store Q-point estimates,
and then use e.g., neighborhood regression to evaluate Q(s, a) given a new point
(s, a). While these approaches are effective in some domains, they require the user
to design distance metric that takes into account the domain. This is straightfor-
ward in some cases (e.g., in Euclidean spaces), but it might be harder in others.
We argue that the knowledge of the model can avoid (or simplify) the design of
a distance metric in several cases, where the importance sampling weights and
the transition model, can be considered as a kernel.

The closest related works include [20,21,24,25], they use importance sam-
pling to evaluate a policy from samples generated with another policy. Nonethe-
less, they adopt importance sampling differently without the knowledge of
the MDP model. Although this property seems desirable, the availability of
the actual probabilities cannot be exploited, apart from sampling, in their
approaches. The same conclusion is valid for practically any sample-based plan-
ner, which only needs a sample generator of the model. The work of [9] made a
similar statement regarding PROST, a state-of-the-art discrete planner based on
UCT, without providing a way to use the state transition probabilities directly.
Our algorithm tries to alleviate this, exploiting the probabilistic model in a
sample-based planner via importance sampling.

For more general domains that contain discrete and continuous (hybrid) vari-
ables several approaches have been proposed under strict assumptions. For exam-
ple, [23] provide exact solutions, but assume that continuous aspects of the tran-
sition model are deterministic. In a related effort [4], hybrid MDPs are solved
using dynamic programming, but assuming that transition model and reward is
piecewise constant or linear. Another planner HAO* [14] uses heuristic search
to find an optimal plan in hybrid domains with theoretical guarantees. However,
they assume that the same state cannot be visited again (i.e., they assume plans
do not have loops, as discussed in [14, sec.5]), and they rely on the availability of
methods to solve the integral in the Bellman equation related to the continuous
part of the state. Visiting the same state in our approach is a benefit and not a

338 D. Nitti et al.

limit; indeed a previous visited state s′ is useful to evaluate Qd(s, a), when the
weight is positive (i.e., when s′ is reachable from s with action a).

There exists several languages specific for planning, the most recent is RDDL
[22]. A RDDL domain can be mapped in DDC and solved with HYPE. Nonethe-
less, RDDL does not support a state space with an unknown number of variables
as in Example 2. Some planners are based on probabilistic logic programming,
for example DTProbLog [29] and PRADA [12], though they only support dis-
crete action-state spaces. For domains with an unknown number of objects, some
probabilistic programming languages such as BLOG [15], Church [6], and DC
[7] can cope with such uncertainty. To the best of our knowledge DTBLOG [27]
and [30] are the only proposals that are able to perform decision making in such
domains using a POMDP framework. Furthermore, BLOG is one of the few
languages that explicitly handles data association and identity uncertainty. The
proposed paper does not focus on POMDP, nor on identity uncertainty; however,
interesting domains with unknown number of objects can be easily described as
an MDP that HYPE can solve.

Among the mentioned sample-based planners, one of the most general is
SST, which does not make any assumption on the state and action space, and
only relies on Monte-Carlo approximation. In addition, it is one of the few plan-
ners that can be easily applied to any DDC program, including MDPs with an
unknown number of objects. For this reason SST was implemented for DDC and
used as baseline for our experiments.

6 Experiments

This section answers the following questions: (Q1) Does the algorithm obtain
the correct results? (Q2) How is the performance of the algorithm in different
domains? (Q3) How does it compare with state-of-the-art planners?

The algorithm was implemented in YAP Prolog and C++, and run on a Intel
Core i7 Desktop.

To answer (Q1) we tested the algorithm on a nonlinear version of the hybrid
mars rover domain (called simplerover1) described in [23] for which the exact V -
function is available (depth d=3 and 2 variables: a two-dimensional continuous
position and one discrete variable to indicate if the picture was taken). We choose
31 initial points and ran the algorithm for 100 episodes each. Each point took
on average 1.4s. Fig. 2 shows the results where the line is the exact V , and dots
are estimated V points. The results show that the algorithm converges to the
optimal V -function with a negligible error. This domain is deterministic, and so,
to make it more realistic we converted it to a probabilistic MDP adding Gaussian
noise to the state transition model. The resulting MDP (simplerover2) is hard
(if not impossible) to solve exactly. Then we performed experiments for different
horizons, number of pictures points (1 to 4, each one is a discrete variable) and
summed the rewards. For each instance the planner searches for an optimal policy
and executes it, and after each executed action it samples additional episodes
to refine the policy (replanning). The proposed planner is compared with SST

Planning in Discrete and Continuous MDPs by Prob. Programming 339

Table 1. Experiments: d is the horizon used by the planner, T the total number of
steps, M is the maximum number of episodes sampled for HYPE, while C is the SST
parameter (number of samples for each state and action). Time limit of 1800s per
instance. PROST results refer to IPPC2011.

Domain game1 game2 sysadmin1 sysadmin2

Planner T = 40 T = 40 T = 40 T = 40

HYPE

reward 0.87 ± 0.11 0.77±0.22 0.94 ± 0.07 0.87±0.11

time (s) 622 608 422 475

param M =1200 M =1200 M = 1200 M = 1200

d=5 d=5 d= 5 d=5

SST

reward 0.34 ± 0.15 0.14 ± 0.20 0.47 ± 0.13 0.31 ± 0.12

time (s) 986 1000 1068 1062

param C =1 C =1 C =1 C =1

d=5 d=5 d=5 d=5

HYPE

reward 0.89±0.07 0.76 ± 0.19 0.98 ± 0.06 0.86 ± 0.11

time (s) 312 582 346 392

param M =1200 M =1200 M =1200 M =1200

d=4 d=4 d= 4 d=4

SST

reward 0.79 ± 0.08 0.27 ± 0.22 0.66 ± 0.08 0.46 ± 0.12

time (s) 1538 1528 1527 1532

param C =2 C =2 C =2 C =2

d=4 d=4 d=4 d=4

PROST reward 0.99 ± 0.02 1.00 ± 0.19 1.00 ± 0.05 0.98 ± 0.09

Domain objpush simplerover2 marsrover objsearch

Planner T = 30 d=T T = 40 d=T

HYPE

reward 83.7 ± 7.6 11.8 ± 0.2 249.8 ± 33.5 2.53 ± 1.03

time (s) 472 38 985 13

param M =4500 M =200 M = 6000 M =500

d=9 d = T = 8 d=6 d=T = 5

SST

reward 82.7 ± 2.7 11.4 ± 0.3 227.7 ± 27.3 1.46 ± 1.0

time (s) 330 48 787 45

param C =1 C =1 C =1 C = 5

d=9 d = T = 8 d=6 d=T = 5

HYPE

reward 86.4 ± 1.0 11.7 ± 0.2 269.0 ± 29.4 3.64±1.09

time (s) 1238 195 983 17

param M = 4500 M =500 M = 6000 M =600

d=10 d = T = 9 d=7 d=T = 5

SST

reward 82.4 ± 1.9 11.3 ± 0.3 N/A 2.48 ± 1.0

time (s) 1574 238 timeout 138

param C = 1 C =1 C =1 C = 6

d = 10 d = T = 9 d=7 d=T = 5

HYPE

reward 87.5 ± 0.5 11.9 ± 0.3 296.3±19.5 3.3 ± 1.6

time (s) 373 218 1499 20

param M = 2000 M =500 M = 4000 M =600

d=12 d = T = 10 d=10 d=T = 6

SST

reward N/A 11.2 ± 0.3 N/A 0.58 ± 1.4

time (s) timeout 1043 timeout 899

param C = 1 C =1 C =1 C = 5

d ≥ 11 d = T = 10 d ≥ 8 d=T = 6

that requires replanning every step. The results for both planners are always
comparable, which confirms the empirical correctness of HYPE (Table 1).

To answer (Q2) and (Q3) we studied the planner in a variety of settings,
from discrete, to continuous, to hybrid domains, to those with an unknown
number of objects. We performed experiments in a more realistic mars rover
domain that is publicly available1, called marsrover (Fig. 2). In this domain we
consider one robot and 5 picture points that need to be taken, the movement
of the robot causes a negative reward proportional to the displacement and the
pictures can be taken only close to the interest point. Each taken picture provides
a different reward. Other experiments were performed in the continuous objpush
MDP described in Section 4 (Fig. 1), and in discrete benchmark domains of the
IPPC 2011 competition. In particular, we tested a pair of instances of game of
life and sysadmin domains. The results are compared with PROST [9], the IPPC
2011 winner, and shown in table 1 in terms of scores, i.e., the average reward
normalizated with respect to IPPC 2011 results; score 1 is the highest result
obtained, score 0 is the maximum between the random and the no operation
policy.

As suggested by [9], limiting the horizon of the planner increases the per-
formance in several cases. We exploited this idea for HYPE as well as SST
(simplerover2 excluded). For SST we were forced to use small horizons to keep
plan time under 30 minutes. In all experiments we followed the IPPC 2011

1 http://users.cecs.anu.edu.au/∼ssanner/IPPC 2014/index.html

http://users.cecs.anu.edu.au/~ssanner/IPPC_2014/index.html

340 D. Nitti et al.

schema, that is each instance is repeated 30 times (objectsearch excluded), the
results are averaged and the 95% confidence interval is computed. However, for
every instance we replan from scratch for a fair comparison with SST. In addi-
tion, time and number of samples refers to the plan execution of one instance.
The results (Table 1) highlight that our planner obtains generally better results
than SST, especially at higher horizons. HYPE obtains good results in discrete
domains but does not reach state-of-art results (score 1) for two main reasons.
The first is the lack of a heuristic, that can dramatically improve the perfor-
mance, indeed, heuristics are an important component of PROST [9], the IPPC
winning planner. The second reason is the time performance that allows us to
sample a limited number of episodes and will not allow to finish all the IPPC
2011 domains in 24 hours. This is caused by the expensive Q-function evalu-
ation; however, we are confident that heuristics and other improvements will
significantly improve performance and results.

Finally, we performed experiments in the objectsearch scenario (Section 3),
where the number of objects is unknown. The results are averaged over 400 runs,
and confirm better performance for HYPE with respect to SST.

Fig. 2. V-function for different rover positions (with fixed X = 0.16) in simplerover1
domain (left). A possible episode in marsrover (right): each picture can be taken inside
the respective circle (red if already taken, green otherwise).

7 Practical Improvements

In this section we briefly discuss issues and improvements of HYPE. To evaluate
the Q-function the algorithm needs to query all the stored examples, making
the algorithm potentially slow. This issue can be mitigated with solutions used
in instance-based learning, such as hashing and indexing. For example, in dis-
crete domains we avoid multiple computations of the likelihood and the pro-
posal distribution for samples of the same state. In addition, assuming policy
improvement over time, only the Nstore most recent episodes are kept, since
older episodes are generally sampled with a worse policy.

The algorithm HYPE relies on importance sampling to estimate the Q-
function, thus we should guarantee that p > 0 ⇒ q > 0, where p is the target
and q is the proposal distribution. This is not always the case, like when we

Planning in Discrete and Continuous MDPs by Prob. Programming 341

sample the first episode. Nonetheless we can have an indication of the estima-
tion reliability. In our algorithm we use

∑
wi with expectation equals to the

number of samples: E[
∑

wi] = m. If
∑

wi < thres the samples available are
considered insufficient to compute Qm

d (sm
t , a), thus action a can be selected to

perform exploration.
A more problematic situation is when, for some action at in some state st,

we always obtain null weights, that is p(si
t+1|st, at) = 0 for each of the previous

episodes i, no matter how many episodes are generated. This issue is solved by
adding noise to the state transition model, e.g., Gaussian noise for continuous
random variables. This is equivalent to adding a smoothness assumption to the
V -function. Indeed the Q-function is a weighted sum of V -function points, where
the weights are proportional to a noisy version of the state transition likelihood.

8 Conclusions

We proposed a sample-based planner for MDPs described in DDC under weak
assumptions, and showed how the state transition model can be exploited in off-
policy Monte-Carlo. The experimental results show that the algorithm produces
good results in discrete, continuous, hybrid domains as well as those with an
unknown number of objects. Most significantly, it challenges and outperforms
SST. For future work, we will consider heuristics and hashing to improve the
implementation.

References

1. Couetoux, A.: Monte Carlo Tree Search for Continuous and Stochastic Sequential
Decision Making Problems. Université Paris Sud - Paris XI, Thesis (2013)

2. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In:
De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Induc-
tive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg
(2008)

3. Driessens, K., Ramon, J.: Relational instance based regression for relational rein-
forcement learning. In: Proc. ICML (2003)

4. Feng, Z., Dearden, R., Meuleau, N., Washington, R.: Dynamic programming for
structured continuous Markov decision problems. In: Proc. UAI (2004)

5. Forbes, J., André, D.: Representations for learning control policies. In: Proc. of the
ICML Workshop on Development of Representations (2002)

6. Goodman, N., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: A language for generative models. In: Proc. UAI, pp. 220–229 (2008)

7. Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., De Raedt, L.: The magic
of logical inference in probabilistic programming. Theory and Practice of Logic
Programming (2011)

8. Kearns, M., Mansour, Y., Ng, A.Y.: A Sparse Sampling Algorithm for Near-
Optimal Planning in Large Markov Decision Processes. Machine Learning (2002)

9. Keller, T., Eyerich, P.: PROST: probabilistic planning based on UCT. In: Proc.
ICAPS (2012)

342 D. Nitti et al.

10. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the
efficient execution of problog programs. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 175–189. Springer, Heidelberg (2008)

11. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212,
pp. 282–293. Springer, Heidelberg (2006)

12. Lang, T., Toussaint, M.: Planning with Noisy Probabilistic Relational Rules. Jour-
nal of Artificial Intelligence Research 39, 1–49 (2010)

13. Mansley, C.R., Weinstein, A., Littman, M.L.: Sample-Based planning for continu-
ous action markov decision processes. In: Proc. ICAPS (2011)

14. Meuleau, N., Benazera, E., Brafman, R.I., Hansen, E.A., Mausam, M.: A heuris-
tic search approach to planning with continuous resources in stochastic domains.
Journal of Artificial Intelligence Research 34(1), 27 (2009)

15. Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., Kolobov, A.: BLOG: prob-
abilistic models with unknown objects. In: Proc. IJCAI (2005)

16. Munos, R.: From Bandits to Monte-Carlo Tree Search: The Optimistic Princi-
ple Applied to Optimization and Planning. Foundations and Trends in Machine
Learning, Now Publishers (2014)

17. Nitti, D., De Laet, T., De Raedt, L.: A particle filter for hybrid relational domains.
In: Proc. IROS (2013)

18. Nitti, D., De Laet, T., De Raedt, L.: Relational object tracking and learning. In:
Proc. ICRA (2014)

19. Owen, A.B.: Monte Carlo theory, methods and examples (2013)
20. Peshkin, L., Shelton, C.R.: Learning from scarce experience. In: Proc. ICML,

pp. 498–505 (2002)
21. Precup, D., Sutton, R.S., Singh, S.P.: Eligibility traces for off-policy policy evalu-

ation. In: Proc. ICML (2000)
22. Sanner, S.: Relational Dynamic Influence Diagram Language (RDDL): Language

Description (unpublished paper)
23. Sanner, S., Delgado, K.V., de Barros, L.N.: Symbolic dynamic programming for

discrete and continuous state MDPs. In: Proc. UAI (2011)
24. Shelton, C.R.: Policy improvement for POMDPs using normalized importance sam-

pling. In: Proc. UAI, pp. 496–503 (2001)
25. Shelton, C.R.: Importance Sampling for Reinforcement Learning with Multiple

Objectives. Ph.D. thesis, MIT (2001)
26. Smart, W.D., Kaelbling, L.P.: Practical reinforcement learning in continuous

spaces. In: Proc. ICML (2000)
27. Srivastava, S., Russell, S., Ruan, P., Cheng, X.: First-order open-universe

POMDPs. In: Proc. UAI (2014)
28. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press

(1998)
29. Van den Broeck, G., Thon, I., van Otterlo, M., De Raedt, L.: DTProbLog: a

decision-theoretic probabilistic prolog. In: Proc. AAAI (2010)
30. Vien, N.A., Toussaint, M.: Model-Based relational RL when object existence is

partially observable. In: Proc. ICML (2014)
31. Walsh, T.J., Goschin, S., Littman, M.L.: Integrating sample-based planning and

model-based reinforcement learning. In: Proc. AAAI (2010)
32. Wiering, M., van Otterlo, M.: Reinforcement learning: state-of-the-art. In: Adap-

tation, Learning, and Optimization. Springer (2012)

Simplifying, Regularizing and Strengthening
Sum-Product Network Structure Learning

Antonio Vergari(B), Nicola Di Mauro, and Floriana Esposito

University of Bari “Aldo Moro”, Bari, Italy
{antonio.vergari,nicola.dimauro,floriana.esposito}@uniba.it

Abstract. The need for feasible inference in Probabilistic Graphical
Models (PGMs) has lead to tractable models like Sum-Product Net-
works (SPNs). Their highly expressive power and their ability to provide
exact and tractable inference make them very attractive for several real
world applications, from computer vision to NLP. Recently, great atten-
tion around SPNs has focused on structure learning, leading to differ-
ent algorithms being able to learn both the network and its parameters
from data. Here, we enhance one of the best structure learner, Learn-
SPN, aiming to improve both the structural quality of the learned net-
works and their achieved likelihoods. Our algorithmic variations are able
to learn simpler, deeper and more robust networks. These results have
been obtained by exploiting some insights in the building process done by
LearnSPN, by hybridizing the network adopting tree-structured models
as leaves, and by blending bagging estimations into mixture creation. We
prove our claims by empirically evaluating the learned SPNs on several
benchmark datasets against other competitive SPN and PGM structure
learners.

1 Introduction

Probabilistic Graphical Models (PGMs) [13] use a graph-based representation
eliciting the conditional independence assumptions among a set of random vari-
ables, thus providing a compact encoding of complex joint probability distribu-
tions. The most common task one want to solve using PGMs is inference, a task
that becomes intractable for complex networks, a difficulty often circumvented
by adopting approximate inference. For instance, computing the exact marginal
or conditional probability of a query is a #P-complete problem [27].

However, there are many recently proposed PGMs where inference becomes
tractable. They include graphs with low treewidth, such as tree-structured graph-
ical models where each variable has at most one parent in the network struc-
ture [7], and their extensions with mixtures [18] or latent variables [6], or Thin
Junction Trees [4], allowing controlled treewidths. Being more general than all of
these models and yet preserving tractable and exact inference, Sum-Product Net-
works (SPNs) [23] provide an interesting model, successfully employed in image
reconstruction and recognition [1,9,23], speech recognition [21] and NLP [5]
tasks. Similarly to Arithmetic Circuits (ACs) [16], to which they are equiva-
lent for finite domains [26], they compile a high treewidth network into a deep
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 343–358, 2015.
DOI: 10.1007/978-3-319-23525-7 21

344 A. Vergari et al.

probabilistic architecture. By layering inner nodes, sum and product nodes,
they encode the probability density function over the observed variables, repre-
sented as leaf nodes. SPNs guarantee inference in time linear to their network
size [23], and they possibly becomes more expressively efficient as their depth
increases [17].

Recently the attention around SPNs has focused on structure learning algo-
rithms as ways to automate latent interaction discovery among observed vari-
ables and to avoid the cost of parameter learning [8,10,19,26]. While many
of these efforts concentrated on optimizing the likelihoods of the models, lit-
tle attention has been devoted to the structural quality of such models, or to
understand how data quality effects the learning process.

In this paper we extend and simplify one of the state-of-the-art SPN structure
learning algorithm, LearnSPN [10], providing several improvements and insights.
We show how to a) learn simpler SPNs, i.e. ones with less edges, parameters and
more layers, b) stop the building process earlier while preserving goodness of fit,
and c) be more robust and resilient in estimating the dependencies from data. In
order to accomplish this we limit the number of node children when building the
network, we introduce tractable multivariate distributions, in the form of Chow-
Liu trees [7], as leaves of an hybrid architecture without adding complexity to the
network, and we enhance the mixture models of an SPN via bootstrap samples,
i.e. by applying bagging for the likelihood function estimation.

We produced different algorithmic variants incorporating one or more of these
enhancements, and thoroughly evaluated them on standard benchmark datasets,
both under the structure quality perspective and the more usual data likelihood
gain. We compared them against the original algorithm, the best SPN structure
learner up to now, ID-SPN [26], and MT [18], learning mixture of trees, reported
to be the second best algorithm in [26] on the same datasets.

2 Sum-Product Networks

Sum-Product Networks have been introduced in [23] as a general architecture
efficiently encoding an unnormalized probability distribution over a set of ran-
dom variables X = {X1, . . . , Xn}. The graphical representation of an SPN con-
sists of a rooted DAG, S, whose leaves correspond to univariate distributions of
observable variables in X, while internal nodes are sum or product nodes. The
scope of each internal node i, denoted as Xψi

, is defined as the set of variables
appearing as its descendants. The sub-network Si rooted at node i encodes the
unnormalized distribution over its scope. The parameters of the network are
the positive weights wij associated to each edge i → j in S, where i is a sum
node. As in [10,26] we will refer to the whole network as S, and, for a given
state x of the variables X, we will indicate as S(x) the unnormalized probabil-
ity of x according to the SPN S , i.e., the value of S’s root when the network
is evaluated after X = x is observed. Intuitively, sum nodes encode mixtures
over probability distributions whose coefficients are the children weights, while
product nodes identify factorizations over independent distributions. Examples

Simplifying, Regularizing and Strengthening SPN Structure Learning 345

of different SPNs are shown in Figure 1. For the sake of simplicity, we are consid-
ering X to be discrete valued random variables (the extension to the continuous
case is straightforward [23]).

An SPN is said to be decomposable if the scopes of the children of product
nodes are disjoint, and complete when the scopes of sum nodes children are the
same. Decomposability and completeness imply validity [23], i.e. the property
of correctly and exactly computing each evidence probability by evaluating the
network, that is, for a network S and a state x, P (X = x) = S(x)/Z, where Z
is the partition function, defined as Z =

∑
x S(x). From now on, we will assume

the SPNs we are considering to be valid.
To compute S(x), the whole network is evaluated bottom-up. For a leaf

node i, representing the variable Xk, Si(x) corresponds to univariate distribution
values for x, i.e. Si(x) = P (Xk = x). While for a generic internal node i, a) if it
is a product node, then Si(xψi

) =
∏

i→j∈S Sj(xψj
); b) if it is a sum node, then

Si(xψi
) =

∑
i→j∈S wijSj(xψj

). If the weights of each sum node i sum to one,∑
j wij = 1, and the leaf distributions are normalized, then the network will

compute the exact, normalized, probability, i.e. ∀x, P (X = x) = S(X). For the
rest of the paper we will assume SPNs being normalized in this way. Following
these considerations, it can be demonstrated that all the marginal probabilities,
the partition function and all MPE queries and states can be computed in time
linear in the size of the network, i.e. its number of edges [10].

X1 X2 X3 X4 X5 X6

(a)

X1 X2 X3 X4 X5 X6

(b)

X5

X4

X5

X3

X6 X6

X2 X1

(c)

w1 w2

w3 w4

(d)

w2w1w3 w1w4

(e)

Fig. 1. Examples of SPNs: a naive factorization over 6 random variables (1a), a shallow
mixture standing for a pointwise kernel density estimation (1b) and a deeper archi-
tecture (1c) over the same scope (weights are omitted for simplicity). An SPN with
alternated layers of nodes of the same kind (1e) obtained from pruning the one in (1d)
and yet encoding the same distribution.

Note that this does not automatically imply the tractability of inference, for
it to be feasible the number of edges should be polynomial in the number of ran-
dom variables. One way to control the number of edges is to layer the nodes into

346 A. Vergari et al.

a deep architecture, where parameters are reused across the levels. We define the
depth of a network as the longest path from the root to a leaf node in networks
with strictly interleaving layers of nodes of the same kind. Note that it is always
possible to convert an SPN in such a layered architecture. A node c having par-
ents {pi}I

i=1 sharing its same type can be pruned, and c’s children, {gj}J
j=1, can

be directly attached to each pi. If c was a sum node, the new weights for each gj

can be computed as wpicwcgj
, see Figures 1d and 1e. For a visual comparison of

how the depth impacts the network size, see Figure 1c, where local dependencies
are exploited compared to the shallow SPN in Figure 1b where they are not and
each leaf is fully connected to the upper layer. Moreover, it has been shown that
increasing the depth of a network makes it more expressively efficient [17]. Even
the number of weights in a network impacts weight learning feasibility [9], when
hand-crafted SPNs are employed, usually some sparsity constraint is applied dur-
ing learning to prune as many edges as possible [23]. The opportunity to directly
learn the structure of an SPN offers a way to govern the time future inferences
and learning stages will take. However, up to now, the focus of structure learn-
ing algorithms has not been the quality of the learned architectures in terms of
depth, number of parameters and edges, but the ability to better capture the
data probability distribution in terms of the achieved likelihood scores.

2.1 Structure Learning

Learning the structure of SPNs has always been tackled as a constraint-based
search problem exploiting heuristics and statistical tests to elicit the local latent
relationships in the data [8,19]. The first principled structure learning algorithm
is LearnSPN [10], it performs a greedy construction of treed SPNs, also referred
to as formula SPN [17], i.e. networks with inner nodes having at most one parent.
Nevertheless it is still the most attractive for its simplicity, parallelizability and
ability to learn the networks weights as well. It is the starting point for all the
extensions we will introduce.

The core idea behind LearnSPN, which is sketched in Algorithm 1, is to grow
a tree top down by recursively partitioning the input data matrix consisting of
a set T of rows as i.i.d instances, over V , the set of columns, i.e. the features.
For each call of LearnSPN on a submatrix, column splits add child nodes to
product nodes, while those on rows extend sum nodes. To split columns, the
corresponding features are checked for independency by means of a statistical
test in the splitFeatures procedure, while clusterInstances is employed to aggre-
gate rows together by a similarity criterion. The weights of sum nodes children
represent the proportions of instances falling into the computed clusters (line
13). Termination is achieved in two cases, when the current submatrix contains
only one column (line 3) or when the number of its rows falls under a certain
threshold m (line 5). In the former, a leaf node, standing for a univariate distri-
bution, is introduced by estimating it from the submatrix data entries, i.e., for
categorical random variables by counting their values occurrences while apply-
ing Laplace smoothing with parameter α. In the latter, the random variables
for the submatrix columns are modeled with a naive factorization, i.e. they are

Simplifying, Regularizing and Strengthening SPN Structure Learning 347

Algorithm 1. LearnSPN(T , V , α, m)
1: Input: a set of row instances T over a set of column features V ; m: minimum

number of instances to split; α: Laplace smoothing parameter
2: Output: an SPN S encoding a pdf over V learned from T
3: if |V | == 1 then
4: S ← univariateDistribution(T, V, α)
5: else if |T | < m then
6: S ← naiveFactorization(T, V, α)
7: else
8: {Vj}C

j=1 ← splitFeatures(V, T)
9: if C > 1 then

10: S ← ∏C
j=1 LearnSPN(T, Vj , α, m)

11: else
12: {Ti}R

i=1 ← clusterInstances(T, V)

13: S ← ∑R
i=1

|Ti|
|T | LearnSPN(Ti, V, α, m)

return S

Algorithm 2. naiveFactorization(T , V , α)
1: Input: a set of row instances T over a set of column features V , α Laplace smooth-

ing parameter
2: Output: an SPN S encoding a product of factors V estimated from T
3: return S ← ∏|V |

j=1 univariateDistribution(T, Vj , α)

considered to be independent and a product node is put over a set of univariate
leaf nodes, as in Algorithm 2.

It is worth noting that the two splitting procedures depend on each other:
the quality of row clusterings is likely to be enhanced by column splits correctly
identifying dependent features. At the same time, well done instance splits would
allow for finer independence tests in the next call of the algorithm. The likelihood
on the data is never computed explicitly, the search for local hidden relationships
leads to small submatrices whose likelihood can be easily estimated via naive
factorizations. In [10] it is said that if the two splitting procedures are able to
exactly separate the columns into independent groups and the rows by similarity,
they would lead to locally optimal structures in the terms of data likelihood.

While the presented version of LearnSPN allows for different kinds of splitting
procedures, the way they are implemented is crucial. In [10] a G-Test is used to
check for the independence of pairs of random variables in splitFeatures: if the
test p-value is less than a threshold ρ, then the two features are considered to
be independent. Two subsets of approximately dependent features are produced
by exploring features starting from one randomly chosen. Rows are aggregated
into an adaptive number of clusters l, by employing the hard online EM algo-
rithm. Columns Vj are assumed to be independent given the row clusters Ci,
i.e., P (V) =

∑
i P (Ci)

∏
j P (Vj |Ci). To control the cluster numbers, an expo-

nential prior on clusterings in the form of e−λl|V | is used, with λ as a tuning

348 A. Vergari et al.

parameter. In this concrete formulation, the algorithm searches for treed SPNs
in the hyperparameter space formed by m, α, ρ and λ. If the algorithm finds all
the features in the complete data matrix to be independent, it would build an
SPN representing a naive factorization consisting in a single product node over
|V | leaves (like the one in Figure 1a over X1, . . . , X6). However, this degeneration
is prevented by forcing a split on the rows during the first call of the algorithm.
On the other hand, in the case of each cluster containing a single instance, the
network would be similar to a pointwise kernel density estimation (see Figure 1b
for a graphical example, where six instances are considered).

3 Contributions

Being greedy by design, LearnSPN, is highly prone to learn far from optimal
structures, both in terms of likelihood scores and network quality. This is par-
ticularly true when the training data is noisy and/or scarce. The statistical
tests implemented by the splitting procedures can easily be mislead into wrong
choices, and, worst of all, overfitting could lead to overcomplex networks for
which inference can be an issue. Given these shortcomings, our contributions
will affect them in several ways: here we show how limiting the number of node
children while splitting leads to deeper and simpler networks, how more complex
and yet tractable factorizations as leaves are able to reduce network complexity
favoring early termination, and how model averaging by bagging can be blended
into the definition of SPNs in order to get more robust models.

3.1 Deepening by Limiting Node Splits

Our first contribution is to limit the number of node children while learning,
resulting in networks that will be deeper, and potentially with less edges and
parameters. Basically, we fix to two the number of submatrices the current matrix
can split into, for each call of LearnSPN, i.e., C ≤ 2 and R ≤ 2 on lines 8,
12 of Algorithm 1. This is already achieved in LearnSPN when splitFeatures is
implemented to decompose the features into two subsets, thus our variation will
effectively limit only row splits.

This simplifying idea is based on a number of observations. The first one is
that checking earlier and more often for independency among features enhances
the quality of row splits, reduces the average number of sum node children mak-
ing the network less wide but deeper. Successive splits along the same axis can be
seen as a hierarchical divisive clustering process whose termination is achieved
when splits along the other axis happen. The aim is to slow down this greedy
decision process to make it take the most out of data, while trying to exactly
determine all the splits along one axis at once would lead to local optima faster.
Secondly, we can observe that other splits on the same axis could always be
done in the following iterations, but only if necessary. As noted in the previ-
ous section, in this way we are not limiting the expressive power of the learned
SPNs at all, since after pruning nodes whose parent has their same type, the

Simplifying, Regularizing and Strengthening SPN Structure Learning 349

number of children per node can be more than two. This variation can be seen
as an application of the simplicity bias criterion. By not committing to complex
choices too early, the algorithm remains able to explore structures where the
splits on the features could lead to better networks. Moreover, it is also more
robust to overclustering in noisy situations since in those cases it can receive
the valuable help from the anticipated independence tests. As our experiments
suggested, this is particularly true when a row split is forced on the first call of
LearnSPN.

Under these observations, to implement clusterInstances in our simplified ver-
sion one could still use any clustering algorithm, but limiting the number of
clusters to two, thus resulting in one hyperparameter less to tune.

3.2 Regularization by Tractable Multivariate Distribution
Hybridization

As our second contribution, we tackle the problem of fitting tractable multi-
variate distributions as leaves of an SPN. By substituting them to the naive
factorizations we aim at a twofold objective: improving the network likelihood
by capturing finer local dependencies when estimating leaf distributions, and
being able to stop the building process earlier.

To balance complexity and expressive power, we chose tree-structured dis-
tributions as the simplest tractable distributions that are able to model more
dependencies than a naive factorization while not adding complexity to the struc-
ture by adding additional parameters or layers. Directed Tree distributions [18]
are Bayesian Networks whose nodes, standing for the random variables Xj , have
at most one parent each, Paj , which leads to the following factorization for the
joint distribution P (X) =

∏
j P (Xj |Paj). From this formulation, it is easy to see

how we preserve the same complexity for computing inference on complete evi-
dences: it reduces again to a product of the same number of factors. Differently
from a naive factorization, each factor here provides the valuable information
about the conditional dependency between parent and child variables. More-
over, tree distributions guarantee that marginalizations, and MPE inference as
well, can be computed in time linear to the number of factors [18]. The validity of
the network is also preserved, row and column splits guarantee that the scope of
the multivariate leaves will not compromise decomposability nor completeness.

The classic Chow-Liu algorithm [7] can be used to learn the tree distribu-
tion that best approximates the underlying joint distribution in terms of the
Kullback-Liebler divergence. The algorithm builds a maximum spanning tree
over the graph formed by the pairwise Mutual Information (MI) values among
each pair of columns in the current submatrix. It then turns the undirected tree
into a directed one by randomly selecting a root and traversing it. In practice,
we substitute the procedure naiveFactorization from line 6 of Algorithm 1 with
the procedure LearnCLT as shown in Algorithm 3. In our hybrid architecture
now leaves can be simple univariate distributions like before or subnetworks St

encoding multivariate tree distributions over the set Xψt
of random variables.

Computing St(xψt
) equals to evaluate the Chow-Liu tree on xψt

.

350 A. Vergari et al.

Algorithm 3. LearnCLT(T , V , α)
1: Input: a set of instances T over a set of features V , α Laplace smoothing parameter
2: Output: a Chow-Liu tree S encoding a pdf over V learned from T
3: M ← 0|V |×|V |
4: for each Xu, Xv ∈ V do
5: Mu,v ← estimateMutualInformation(Xu, Xv, α)

6: T ← maximumSpanningTree(M)
7: return S ← traverseTree(T)

The complexity of learning a Chow-Liu tree is quadratic in the number of
features taken into account, however efficient implementations can lower it to
sub-quadratic times [18]. Note that we limit this stage to the last steps of the
algorithm, where submatrices have usually only few features.

The hyperparameter α is still needed to smooth the marginals in Algorithm 3,
line 5. If we consider the original formulation of LearnSPN, m and α offer the only
simplistic forms of regularization, however, when using naive factorizations, m is
not as valuable in terminating the search earlier as it is when tree distributions
are employed. In fact, to have the naive independency assumption hold, one has
to let the search continue up to small submatrices, where even larger ones can
be equally or better approximated by a Chow-Liu tree. As we will show in the
Section 5, by doing a grid search over the hyperparameter m, the best likelihood
wise structures on a validation set, employing naive factorizations, would prefer
smaller values for m, while the best ones introducing tree distributions would
likely be the ones learned with larger values for m. In this way one is able to
prefer even simpler models, possibly avoiding overfitting.

3.3 Strengthening by Model Averaging

While on the previous sections we concentrated on improving the structure qual-
ity, our next contribution will focus on directly increasing the likelihood estima-
tion capability of LearnSPN. In order to do so, we leverage a very well know
statistical tool for robust parameter estimation: bagging [12].

Before performing a split on rows, we draw k bootstrapped samples TBi
from

the current submatrix (sampling rows with replacements) and on each of those
we call clusterInstances, thus leading to k learned SPNs, SBi

. We then build
the resulting network as a sum node as the parent of all the other sum nodes
representing the roots of the networks SBi

. We introduce 1/k as the weight for
these nodes, as in usual parameter estimation by bagging1. The bagged SPN
would result in this more robust estimation: Ŝ =

∑k
i=1

1
kSBi

. Note that while
this approach is theoretically applicable at each stage of the algorithm before
learning the mixture components, it will eventually build a network with an
exponential number of edges, making inference unfeasible in practice. Hence we

1 We have experimented with weights proportional to the likelihood score obtained by
each bootstrapped component, however the gain over uniform ones is negligible.

Simplifying, Regularizing and Strengthening SPN Structure Learning 351

Algorithm 4. baggingSPN(T , V , α, m, k)
1: Input: a set of row instances T over a set of column features V ; m: minimum

number of instances to split; α: Laplace smoothing parameter
2: Output: an SPN S encoding a pdf over V learned from T
3: {TBi}k

i=1 ← bootstrapSamples(T, k)
4: return S ← ∑k

i=1
1
k
LearnSPN(TBi , V, α, m)

limit this step to the first recursive call, where the split on rows is mandatory
and it is more likely to improve the model estimation globally. The procedure,
which we call baggingSPN is shown in Algorithm 4.

Our approach is similar to the one used in the discriminative framework for
tasks like regression, when model averaging is applied over a set of bootstrapped
weak learners, e.g. forests of regression trees [12]. In our case it is worth noting
that the resulting architecture is still an SPN: by pruning the roots of the SPNs
SBi

as shown in the previous section, we end up with a single sum node averaging
local and possibly perturbed distributions over the same scopes; as a matter of
fact the validity of the network is preserved as well as the ability to use it
as a generative model. Inference is tractable as long as the number of edges
remains polynomial. Indeed, the newly introduced complexity grows linearly
in the number of the bootstrapped components, k. To limit the growth of the
number of edges and parameters in the network, it would be possible to merge
identical subtrees to compact the model; or, by separating the bootstrapped
SPNs aggregation from their learning phases, one could use a more informative
procedure, i.e. a L1-regularized gradient descent, to select only the components
consistently contributing to the likelihood increase.

4 Related Works

The first SPN structure learner has been proposed in [8]. It splits the data
matrix top-down, however splits and their meaning are different from LearnSPN:
instances are clustered only once, at the start, and feature clustering is achieved
by K-Means, which is not able to locate independencies correctly. Arbitrary sum
nodes are then introduced as product nodes parents. The EM algorithm is needed
to learn the network weights. On the other hand, [19] proceeds bottom-up by
selecting the features to merge iteratively with a Bayesian-Dirichlet test, then
sum nodes and their parameters are learned by maximizing the MI through the
Information Bottleneck method, however considering only the best likelihood
scoring features to reduce the high complexity of the approach. Like in [8] the
learned SPNs are not tree structured, while the overall approach is still greedy.

The recent ID-SPN algorithm [26], by exploiting both indirect and direct
interactions among variables, unifies works on learning SPNs through top-down
clustering with works on learning tractable Markov networks [16]. ID-SPN learns
Sum-Products of Arithmetic Circuits (SPACs) models which consist of sum and

352 A. Vergari et al.

product nodes as inner nodes, and ACs as leaf nodes. ID-SPN consistently out-
performs the previous SPN and several other PGM structure learners [26]. AC
leaves can potentially better approximate more complex distributions than our
Chow-Liu tree leaves, however, at the cost of increasing structural complexity.
Note that our approach differs from ID-SPN not only on the choice of tractable
distributions to model leaves, but also on governing the greedy process. Starting
from a single AC, ID-SPN splits each leaf into two new ACs only if this improves
directly the likelihood on data, while we let the search be guided indirectly by
the splitting procedures, estimating leaf distributions only at the end. This, com-
bined with the high complexity of the base algorithm to learn ACs [16], makes
ID-SPN very slow in practice.

Another search approach based on directly maximizing the likelihood is found
in [20] where less expressive SPNs, named Selective SPNs, allow the efficient
optimization of a closed form of the likelihood function by stochastic local search.

On the side of mixtures of generative models, a very competitive structure
learner algorithm is MT [18]. MT learns a distribution of the form: Q(x) =
∑k

i=1 λiTi(x), where the distributions Ti, learned with the Chow-Liu algo-
rithm [7], are the mixture components and λi ≥ 0,

∑k
i=1 λi = 1 are their coef-

ficients. [18] finds the best components and weights as (local) likelihood maxima
by using EM, with k fixed in advance. MT is reported as the second most accurate
model after ID-SPN in [26]. The hybrid SPNs we propose can express more latent
interactions than a single mixture of Chow-Liu trees, moreover, they allow leaf
scopes to consist of single random variables or subsets of the whole scope. Hybrid
architectures like ours are referred to as Generalized SPNs in [22].

While leading to potentially long learning times, the EM algorithm is still the
preferred choice to learn mixtures of generative models, like in the recent case
of mixtures of Cutset Networks (CNets) [24]. CNets are weighted probabilistic
model trees with Chow-Liu trees as leaves. Their inner nodes are OR nodes con-
ditioning on a variable, thus they do not represent latent features and despite the
depth of the tree they are shallow architectures. Similar works, applying bagging
to a generative scenario like ours, are those from [25] and [2]. In the former, bag-
ging is used to regularize the variant of EM proposed to determine the number
of components in boosting a mixture of density estimators. In the latter, again
applied to density estimation, a perturbing strategy derived from bootstrapped
or totally random samples lead to more robust mixtures of tree distributions. A
further work by the same authors relaxes the Chow-Liu algorithm on random
subspaces to further differentiate mixture components [3].

5 Experiments

To empirically evaluate our enhancements, namely Binary row clustering, Tree
distributions as leaf nodes, and model averaging through Bagging, we consider
these algorithmic variations of LearnSPN: SPN-B, implementing the first one,

Simplifying, Regularizing and Strengthening SPN Structure Learning 353

SPN-BT adding to that the second one, SPN-BB including the clustering fix and
bagging, and SPN-BTB, which incorporates all three of them.

For the original LearnSPN we used the publicly available Java implementa-
tion2 from [10]. For the aforementioned ID-SPN, we used the implementation
from the Libra toolkit [14]. However, since we were not able to reproduce the
results shown in [26], we used the best learned models scores, kindly provided
by the authors (which we thank). As a third competitor, we used MT, whose
implementation can also be found in the Libra package. We implemented all our
variations in Python3, taking advantage of the scikit-learn version of EM used
for Gaussian Mixture Models4 for our variant of the clusterInstances procedure.

Table 1. Datasets used and their statistics.

|V | |Ttrain| |Tval| |Ttest| |V | |Ttrain| |Tval| |Ttest|
NLTCS 16 16181 2157 3236 DNA 180 1600 400 1186

MSNBC 17 291326 38843 58265 Kosarek 190 33375 4450 6675
KDDCup2k 65 180092 19907 34955 MSWeb 294 29441 3270 5000

Plants 69 17412 2321 3482 Book 500 8700 1159 1739
Audio 100 15000 2000 3000 EachMovie 500 4525 1002 591
Jester 100 9000 1000 4116 WebKB 839 2803 558 838
Netflix 100 15000 2000 3000 Reuters-52 889 6532 1028 1540

Accidents 111 12758 1700 2551 BBC 1058 1670 225 330
Retail 135 22041 2938 4408 Ad 1556 2461 327 491

Pumsb-star 163 12262 1635 2452

We evaluated the inferred networks comparing both the learned structures
quality and their likelihood scores on an array of 19 datasets, firstly introduced
in [15] and [11], now a standard to compare graphical model structure learning
algorithms [10,15,16,26]. They are binarized versions of datasets from tasks like
classification, frequent itemset mining, recommendation. The training, validation
and test splits statistics are reported in Table 1. Their features range from 16 to
1556, while training instances from 1670 to 291326, making them very suitable to
evaluate how we improve LearnSPN under our dimensions on different scenarios.

Our first experimental objective is to verify whether SPN-B and SPN-BT do
learn deeper and more compact structures compared to LearnSPN, and to do this
we measure the number of edges, layers and parameters of each learned model.
Secondly, we compare all algorithms in terms of average test data likelihoods
to verify if structural improvements damage likelihood scores and how much
bagging, on the other hand, improves them. ID-SPN does not appear in the first
confrontation since we were provided only the model scores.

2 http://spn.cs.washington.edu/learnspn/
3 Code is available at http://www.di.uniba.it/∼vergari/code/spyn.html
4 http://goo.gl/HNYjfZ

http://spn.cs.washington.edu/learnspn/
http://www.di.uniba.it/~vergari/code/spyn.html
http://goo.gl/HNYjfZ

354 A. Vergari et al.

5.1 Experimental Design

For each algorithm, we selected the best parameter configurations based on the
average validation log-likelihood scores, then evaluated such models on the test
sets. For LearnSPN we performed an exhaustive grid search for ρ ∈ {5, 10, 15, 20},
λ ∈ {0.2, 0.4, 0.6, 0.8}, m ∈ {10, 50, 100, 500} and α ∈ {0.1, 0.2, 0.5, 1, 2}, leaving
EM restarts to the default 4. For SPN-B and SPN-BT we use the same parameter
space for ρ, m and α, to make the comparison as fair as possible. We leave all
the default parameters for scikit-learn’s EM unchanged, with the exception of
the number of restarts which we set to 3. Note that in [10], α and m were not
considered hyperparameters, we are introducing them to show effective regular-
ization in the form of early stopping achieved when not naive factorizations are
employed. For ID-SPN, please refer to the original article for its complete exper-
imental settings; here we point out that its overparametrization, which is likely
a key factor in its performance, required a uniform random search in the param-
eter space, since an exhaustive one would have been unfeasible. Concerning MT,
we learned a number of components k from 2 up to 30, with increments of 2,
rerunning each experiment five times to mitigate EM random initializations.

To reduce the complexity of the experiments for both SPN-BB and SPN-BTB,
we did not employed a grid search, but we used the best validation values for ρ,
m and α as previously found by SPN-B and SPN-BT respectively. We learned
k = 50 bootstrapped components for each of the two, then, we composed the
models by adding one component at a time, selecting as the resulting composite
model the one with the best validation score.

5.2 Results and Discussion

In Table 2 are reported the edge, the layers and the parameters statistics for
the best models learned by LearnSPN, SPN-B and SPN-BT. As it can be seen,
the introduction of the limited Binary row clustering always makes the networks
deeper and significantly reduces the number of edges for both variants, except
for SPN-B on Netflix. It is worth noting that on datasets like BBC, Reuters-
52 and MSWeb, while the number of parameter increases, the networks grow
deeper and not wider, preventing edge explosions. When SPN-BT yields smaller
networks than SPN-B, e.g. on Plants, Audio, Netflix, Kosarek and Book, the
gain is huge in terms of edges and parameters saved, while considerable depths
are preserved. On the other hand, on cases like NLTCS, MSNBC, KDDCup2K,
Jester and BBC no structural improvement is observed if we add to the count
the number of edges in the Chow-Liu trees. Table 3 reports the average test
log likelihoods; the scores in bold are significantly better than all others under a
Wilcoxon signed rank test with p-value of 0.05. Figure 2a shows the total number
of times one algorithm wins under this same test. SPN-B proves no worst than
the original algorithm on all but two datasets, scoring even six victories, the
same value achieved by ID-SPN. The addition of the Chow-Liu trees variant in
SPN-BT improves SPN-B scores on 13 datasets, confirming the ability of trees
to better capture local dependencies at low levels.

Simplifying, Regularizing and Strengthening SPN Structure Learning 355

Table 2. Structural quality results for the best validation models for LearnSPN, SPN-B
and SPN-BT as the number of edges, layers and parameters. For SPN-BT are reported
the number of edges considering those in the Chow-Liu leaves and without considering
them (in parenthesis).

edges # layers # params

LearnSPN SPN-B SPN-BT LearnSPN SPN-B SPN-BT LearnSPN SPN-B SPN-BT

NLTCS 7509 1133 1133 (1125) 4 15 15 476 275 275
MSNBC 22350 4258 4258 (3996) 4 21 21 1680 1071 1071

KDDCup2k 44544 4272 4272 (4166) 4 25 25 753 760 760
Plants 55668 13720 5948 (1840) 6 23 20 3819 2397 490
Audio 70036 16421 4059 (478) 8 23 15 3389 2631 105
Jester 36528 10793 10793 (8587) 4 19 19 563 1932 1932
Netflix 17742 25009 4132 (203) 4 25 14 1499 4070 82

Accidents 48654 12367 10547 (6687) 6 25 26 5390 2708 1977
Retail 7487 1188 1188 (1153) 4 23 23 171 224 224

Pumsb-star 15247 12800 9984 (6175) 8 25 23 1911 2662 1680
DNA 17602 3178 4225 (2746) 6 13 12 947 884 1113

Kosarek 7993 8174 2216 (1311) 6 27 21 781 1462 242
MSWeb 17339 9116 7568 (6797) 6 27 34 620 1672 1446

Book 42491 9917 3503 (3485) 4 15 13 1176 1351 430
EachMovie 52693 20756 20756 (17861) 8 23 23 1010 2637 2637

WebKB 52498 45620 8796 (6874) 8 23 16 1712 6087 1128
Reuters-52 307113 77336 77336 (59197) 12 31 31 3641 8968 8968

BBC 318313 63723 63723 (41247) 16 27 27 1134 6147 6147
Ad 70056 23606 23606 (20079) 16 59 59 1060 1222 1222

Table 3. Average test log likelihoods for all algorithms.

LearnSPN SPN-B SPN-BT ID-SPN SPN-BB SPN-BTB MT

NLTCS -6.110 -6.048 -6.048 -5.998 -6.014 -6.014 -6.008
MSNBC -6.099 -6.040 -6.039 -6.040 -6.032 -6.033 -6.076

KDDCup2k -2.185 -2.141 -2.141 -2.134 -2.122 -2.121 -2.135
Plants -12.878 -12.813 -12.683 -12.537 -12.167 -12.089 -12.926
Audio -40.360 -40.571 -40.484 -39.794 -39.685 -39.616 -40.142
Jester -53.300 -53.537 -53.546 -52.858 -52.873 -53.600 -53.057
Netflix -57.191 -57.730 -57.450 -56.355 -56.610 -56.371 -56.706

Accidents -30.490 -29.342 -29.265 -26.982 -28.510 -28.351 -29.692
Retail -11.029 -10.944 10.942 -10.846 -10.858 -10.858 -10.836

Pumsb-star -24.743 -23.315 -23.077 -22.405 -22.866 -22.664 -23.702
DNA -80.982 -81.913 -81.840 -81.211 -80.730 -80.068 -85.568

Kosarek -10.894 -10.719 -10.685 -10.599 -10.690 -10.578 -10.615
MSWeb -10.108 -9.833 -9.838 -9.726 -9.630 -9.614 -9.819

Book -34.969 -34.306 -34.280 -34.136 -34.366 -33.818 -34.694
EachMovie -52.615 -51.368 -51.388 -51.512 -50.263 -50.414 -54.513

WebKB -158.164 -154.283 -153.911 -151.838 -151.341 -149.851 -157.001
Reuters-52 -85.414 -83.349 -83.361 -83.346 -81.544 -81.587 -86.531

BBC -249.466 -247.301 -247.254 -248.929 -226.359 -226.560 -259.962
Ad -19.760 -16.234 -15.885 -19.053 -13.785 -13.595 -16.012

To consistently beat ID-SPN one has to give up simpler structures and make
more robust ones with SPN-BB and SPN-BTB, which score 11 and 13 wins respec-
tively. The likelihoods obtained on the datasets with fewer instances and many
more features, are much higher than the ones from ID-SPN and MT. This proves
how bagging can be effectively embedded as a very cheap way to strengthen
sum node mixtures. In our experiments for SPN-BB and SPN-BTB, we found a
monotonic behavior, resulting in k = 50 as the best validation parameter, while

356 A. Vergari et al.

Le
ar
nS
PN

SP
N
-B

SP
N
-B
T

ID
-S
PN

SP
N
-B
B

SP
N
-B
T
B

M
T

LearnSPN - 2 1 1 0 0 2
SPN-B 6 - 1 3 1 1 10

SPN-BT 6 13 - 3 2 1 11
ID-SPN 6 12 12 - 7 5 17
SPN-BB 11 18 15 11 - 3 16

SPN-BTB 11 18 18 13 14 - 16
MT 6 7 8 1 3 3 -

(a) (b)

Fig. 2. Numbers of statistically significant victories (Wilcoxon signed rank test, p-
value= 0.05) for the algorithms on the rows compared to those on columns in 2a.
Average test likelihood values (y-axis) on Plants for SPN-BB and SPN-BTB at the
increase of k (x-axis), and the values from the best models from LearnSPN, ID-SPN
and MT are reported in 2b.eps

for MT this value highly varies, implying that tuning is unavoidable. Trying to
balance inference complexity and likelihood accuracy one can limit k for SPN-
BB and SPN-BTB to smaller values. In Figure 2b we show an example of the
test likelihood gain by increasing k for both algorithms on Plants, plotting the
best value achieved by LearnSPN, ID-SPN and MT as a comparison. SPN-BB and
SPN-BTB, with k = 50, score faster learning times than ID-SPN (run with default
parameters) on all but four datasets, and sometimes even than MT which has
less components, e.g. for Accidents, the times in seconds are 15472, 9198, 8280,
14073 for ID-SPN, SPN-BB, SPN-BTB and MT, respectively. Additional results
including p-values, times, best parameter configurations on validation and the
plots for the remaining datasets are availabe in the supplementary material5.

6 Conclusions

We focused on enhancing LearnSPN, a state-of-the-art SPN structure learner, by
proposing three algorithmic variations to improve the network quality in terms of
the numbers of edges, layers and parameters on the one hand and the likelihood
score on the other. We showed how limiting the number of node children while
splitting yields simpler and deeper networks; how the introduction of Chow-Liu
trees as multivariate leaf nodes leads to even more compact SPNs allowing an
early interruption of the building process; and how embedding bagging into sum
node mixtures can result in more robust models. An extensive empirical eval-
uation on standard datasets proved our enhancements to be effective, suggest-
ing a number of future investigations: studying other ways of hybridizing SPNs
with tractable multivariate distributions as building blocks; how to apply other

5 http://www.di.uniba.it/∼vergari/code/spyn.html

http://www.di.uniba.it/~vergari/code/spyn.html

Simplifying, Regularizing and Strengthening SPN Structure Learning 357

ensembling methods like arcing and boosting to sum node splits and the possible
application of input corruption techniques to make this generative model even
more robust. To balance structure compactness with likelihood gains we could
try to prune or graft subtrees from different bootstrapped SPNs encoding exactly
or approximately equal distributions. Furthermore, applying these ideas to other
tractable models structure learning algorithms could also be an opportunity.

Acknowledgments. Work supported by the project PUGLIA@SERVICE (PON02
00563 3489339) financed by the Italian Ministry of University and Research (MIUR)
and by the European Commission through the project MAESTRA, grant no. ICT-
2013-612944. Experiments executed on the resources made available by two projects
financed by the MIUR: ReCaS (PONa3 00052) and PRISMA (PON04a2 A).

References

1. Amer, M.R., Todorovic, S.: Sum-product networks for modeling activities with
stochastic structure. In: 2012 IEEE Conference on (CVPR), pp. 1314–1321. IEEE
(2012)

2. Ammar, S., Leray, P., Defourny, B., Wehenkel, L.: Probability density estimation
by perturbing and combining tree structured markov networks. In: Sossai, C.,
Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 156–167. Springer,
Heidelberg (2009)

3. Ammar, S., Leray, P., Schnitzler, F., Wehenkel, L.: Sub-quadratic markov tree
mixture learning based on randomizations of the Chow-Liu algorithm. In: Pro-
ceedings of the 5th European Workshop on Probabilistic Graphical Models,
pp. 17–24 (2010)

4. Bach, F.R., Jordan, M.I.: Thin junction trees. In: Advances in Neural Information
Processing Systems 14, pp. 569–576. MIT Press (2001)

5. Cheng, W., Kok, S., Pham, H.V., Chieu, H.L., Chai, K.M.A.: Language model-
ing with sum-product networks. In: 15th Annual Conference of the International
Speech Communication Association, pp. 2098–2102 (2014)

6. Choi, M.J., Tan, V.Y.F., Anandkumar, A., Willsky, A.S.: Learning latent tree
graphical models. Journal of Machine Learning Research 12, 1771–1812 (2011)

7. Chow, C., Liu, C.: Approximating discrete probability distributions with depen-
dence trees. IEEE Transactions on Information Theory 14(3), 462–467 (1968)

8. Dennis, A., Ventura, D.: Learning the architecture of sum-product networks using
clustering on varibles. In: Advances in Neural Information Processing Systems 25,
pp. 2033–2041. Curran Associates, Inc. (2012)

9. Gens, R., Domingos, P.: Discriminative learning of sum-product networks. In:
Advances in Neural Information Processing Systems 25, pp. 3239–3247. Curran
Associates, Inc. (2012)

10. Gens, R., Domingos, P.: Learning the structure of sum-product networks. In: Pro-
ceedings of the 30th International Conference on Machine Learning, pp. 873–880.
JMLR Workshop and Conference Proceedings (2013)

11. Haaren, J.V., Davis, J.: Markov network structure learning: A randomized feature
generation approach. In: Proceedings of the 26th Conference on Artificial Intelli-
gence. AAAI Press (2012)

12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer (2009)

358 A. Vergari et al.

13. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

14. Lowd, D., Rooshenas, A.: The Libra Toolkit for Probabilistic Models. CoRR
abs/1504.00110 (2015)

15. Lowd, D., Davis, J.: Learning markov network structure with decision trees.
In: Proceedings of the 10th IEEE International Conference on Data Mining,
pp. 334–343. IEEE Computer Society Press (2010)

16. Lowd, D., Rooshenas, A.: Learning markov networks with arithmetic circuits. In:
Proceedings of the 16th International Conference on Artificial Intelligence and
Statistics. JMLR Workshop Proceedings, vol. 31, pp. 406–414 (2013)

17. Martens, J., Medabalimi, V.: On the expressive efficiency of sum product networks.
CoRR abs/1411.7717 (2014)

18. Meilǎ, M., Jordan, M.I.: Learning with mixtures of trees. Journal of Machine Learn-
ing Research 1, 1–48 (2000)

19. Peharz, R., Geiger, B.C., Pernkopf, F.: Greedy part-wise learning of sum-product
networks. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML
PKDD 2013, Part II. LNCS, vol. 8189, pp. 612–627. Springer, Heidelberg (2013)

20. Peharz, R., Gens, R., Domingos, P.: Learning selective sum-product networks. In:
Workshop on Learning Tractable Probabilistic Models. LTPM (2014)

21. Peharz, R., Kapeller, G., Mowlaee, P., Pernkopf, F.: Modeling speech with sum-
product networks: Application to bandwidth extension. In: International Confer-
ence on Acoustics, Speech and Signal Processing, pp. 3699–3703. IEEE (2014)

22. Peharz, R., Tschiatschek, S., Pernkopf, F., Domingos, P.: On theoretical properties
of sum-product networks. The Journal of Machine Learning Research (2015)

23. Poon, H., Domingos, P.: Sum-product network: a new deep architecture. In: NIPS
2010 Workshop on Deep Learning and Unsupervised Feature Learning (2011)

24. Rahman, T., Kothalkar, P., Gogate, V.: Cutset networks: a simple, tractable, and
scalable approach for improving the accuracy of chow-liu trees. In: Calders, T.,
Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014, Part II. LNCS,
vol. 8725, pp. 630–645. Springer, Heidelberg (2014)

25. Ridgeway, G.: Looking for lumps: Boosting and bagging for density estimation.
Computational Statistics & Data Analysis 38(4), 379–392 (2002)

26. Rooshenas, A., Lowd, D.: Learning sum-product networks with direct and indi-
rect variable interactions. In: Proceedings of the 31st International Conference
on Machine Learning, pp. 710–718. JMLR Workshop and Conference Proceedings
(2014)

27. Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence
82(1–2), 273–302 (1996)

Sparse Bayesian Recurrent Neural Networks

Sotirios P. Chatzis(B)

Department of Electrical Engineering, Computer Engineering and Informatics,
Cyprus University of Technology, 33 Saripolou Str., 3036 Limassol, Cyprus

sotirios.chatzis@cut.ac.cy

Abstract. Recurrent neural networks (RNNs) have recently gained
renewed attention from the machine learning community as effective
methods for modeling variable-length sequences. Language modeling,
handwriting recognition, and speech recognition are only few of the appli-
cation domains where RNN-based models have achieved the state-of-
the-art performance currently reported in the literature. Typically, RNN
architectures utilize simple linear, logistic, or softmax output layers to
perform data modeling and prediction generation. In this work, for the
first time in the literature, we consider using a sparse Bayesian regression
or classification model as the output layer of RNNs, inspired from the
automatic relevance determination (ARD) technique. The notion of ARD
is to continually create new components while detecting when a compo-
nent starts to overfit, where overfit manifests itself as a precision hyper-
parameter posterior tending to infinity. This way, our method manages
to train sparse RNN models, where the number of effective (“active”)
recurrently connected hidden units is selected in a data-driven fashion, as
part of the model inference procedure. We develop efficient and scalable
training algorithms for our model under the stochastic variational infer-
ence paradigm, and derive elegant predictive density expressions with
computational costs comparable to conventional RNN formulations. We
evaluate our approach considering its application to challenging tasks
dealing with both regression and classification problems, and exhibit its
favorable performance over the state-of-the-art.

1 Introduction

Many naturally occurring phenomena such as music, speech, or human motion
are inherently sequential. As a consequence, the problem of sequential data mod-
eling is an important area of machine learning research. Recurrent neural net-
works (RNNs) [22] are among the most powerful models for sequential data mod-
eling. As shown in [12], RNNs possess the desirable property of being universal
approximations, as they are capable of representing any measurable sequence to
sequence mapping to arbitrary accuracy. RNNs incorporate an internal mem-
ory module designed with the goal to summarize the entire sequence history
in the form of high dimensional state vector representations. This architectural
selection allows for RNNs to model and represent long-term dependencies in the
observed data, which is a crucial merit in the context of sequential data modeling
applications.
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 359–372, 2015.
DOI: 10.1007/978-3-319-23525-7 22

360 S.P. Chatzis

A major challenge RNN-based architectures are confronted with concerns
the fact that it is often the case that gradient-based optimization results in
error signals either blowing up or decaying exponentially for events many time
steps apart, rendering RNN training largely impractical [6,19]. A great deal of
research work has been devoted to the amelioration of these difficulties, usually
referred to as the problem of vanishing and exploding gradients. One first attempt
towards this end consisted in coming up with special architectures, robust to the
vanishing and exploding gradients problem. Long short-term memory (LSTM)
[13] networks constitute the most successful architecture developed for this pur-
pose, having been shown to yield the state-of-the-art performance in speech
and handwriting recognition tasks [11]. In a different vein, [15] proposed the
echo-state network (ESN) architecture, which consists in completely abandon-
ing gradient-based training of the recurrent connection weights (which gives rise
to the vanishing and exploding gradients problem). As such, ESNs solely rely on
sensible initializations of the recurrent connection weights, and limit training to
the connection weights of the output (readout) layer of the network. Finally, a
recent breakthrough in the literature of RNNs has been accomplished in the
landmark publication of [17], where it was shown that even standard RNN
architectures can be successfully trained with the right optimization method.
While a sophisticated Hessian-free optimizer for RNNs was developed therein,
further research has shown that carefully designed conventional first-order meth-
ods can find optima of similar or slightly worse quality in the context of RNN
training [24].

Despite these advances in the field of RNN research, a problem that has not
been tackled by the machine learning community concerns data-driven model
selection. The problem of model selection consists in coming up with model
treatments allowing for an RNN model to automatically infer the number of
necessary hidden units, as part of its training procedure. Our work constitutes
the first attempt towards addressing these shortcomings. To achieve our goals, we
introduce the concept of training RNN models under a Bayesian inferential pro-
cedure. Specifically, we consider imposing appropriate sparsity-promoting prior
distributions on the output connection weights of RNN models. Under this con-
struction, we essentially give rise to a Bayesian inference procedure for RNNs
that yields sparse posterior distributions over the output connection weights,
and associated predictive posteriors that characterize the output variables of
the model. Under a different regard, our approach can be viewed as introducing
a sparse Bayesian regression or classification model as the output layer of RNNs,
resulting in a sparse Bayesian treatment of the whole RNN architecture.

Sparsity in the context of our model is induced by adopting a prior model
configuration inspired from an inference technique widely known as automatic
relevance determination (ARD) [10]. The notion of ARD is to continually cre-
ate new model components while detecting when a component starts to overfit.
Overfit manifests itself as a precision hyperparameter posterior tending to infin-
ity, indicating that a single data value is being modeled by the component. In the
case of the proposed model, the ARD mechanism is implemented by imposing an

Sparse Bayesian Recurrent Neural Networks 361

appropriate hierarchical prior over the weights of the output layer connections,
which results in an efficient mechanism for automatically inferring the effec-
tive number of (“active”) recurrently connected hidden units, in a data-driven
fashion. We derive an efficient and scalable training algorithm for our model
under the stochastic variational inference (SVI) paradigm [14], exploiting the
most recent advances on gradient-based RNN training algorithms. We dub our
approach sparse Bayesian RNN (SB-RNN).

The layout of the paper is as follows. In Section 2, we briefly introduce the
concept of RNNs, and discuss modern RNN training algorithms that obviate the
vanishing and exploding gradients problem. In Section 3, we present our method
and derive efficient model training and inference algorithms. In Section 4, we
perform an extensive experimental evaluation of our approach considering sev-
eral challenging benchmark tasks; we compare the obtained performance of our
approach to related state-of-the-art approaches. Finally, in Section 5 we sum-
marize our results, discussing the shortcomings and advantages of the proposed
model, and conclude this work.

2 Recurrent Neural Networks

RNNs are neural network architectures designed for modeling sequential data
with long temporal dynamics. RNNs operate by simulating a discrete-time
dynamical system presented with M -dimensional inputs {xt}T

t=1, with corre-
sponding N -dimensional outputs {yt}T

t=1, where T is the length (time-duration)
of the observed sequences. The postulated dynamical system is defined by

yt = φ0(V ht) (1)

where φ0 is the activation function of the output units, V ∈ R
N×H is the

parameters (weights) matrix of the connections of the output layer of the model,
and ht ∈ R

H is the hidden state vector of the model. In essence, ht is the vector
of the activations of the hidden units of the network, which encodes the history
of observations presented to the system up to time t in the form of a high-
dimensional data point representation. Typically, the expressions of the hidden
state vectors of the postulated dynamical system are considered to be given by
the following expression:

ht =
{

φh(Wht−1 + Ωxt),t > 0
0, t = 0

(2)

In Eq. (2), φh is the activation function of the hidden (recurrently connected)
units that capture the temporal dynamics in the modeled data, W ∈ R

H×H is
the recurrent connections weights matrix of the model, and U ∈ R

H×M is the
input connections weights matrix. Regarding selection of the hidden and output
unit activation functions, typically a saturating nonlinear function is used, such
as a logistic sigmoid function or a hyperbolic tangent function.

362 S.P. Chatzis

RNN model training, i.e. optimal estimation of the parameter values of
the model given a set comprising S training sequences, D = {(xs

1,y
s
1), . . . ,

(xs
Ts

,ys
Ts

)}S
s=1, can be performed by minimization of the cost function

J(Θ) =
1
S

S∑

s=1

Ts∑

t=1

d(ys
t , φ0(V hs

t)) (3)

where Θ is the parameters set of the RNN, Θ = {V ,W ,U}, hs
t = φh(Whs

t−1 +
Uxs

t), and d(a, b) is a suitable divergence measure, appropriate for the learning
problem at hand (e.g., a Euclidean distance function when dealing with regres-
sion problems, and a cross-entropy function in cases of classification problems).

To effect the minimization task of the RNN objective function J(Θ) in a scal-
able manner, stochastic gradient descent (SGD) algorithms are typically used,
with the gradient of the cost function in Eq. (3) computed by means of back-
propagation through time (BPTT) [22]. However, as we already discussed in
the introduction of this paper, conventional BPTT-based RNN training is often
confronted with the problem of the obtained error signals either blowing up
or decaying exponentially for events many time steps apart, with detrimental
effects to the outcome of the model training algorithm. The effort to mitigate
these hurdles has recently triggered a significant corpus of new research in the
field of RNN methods. Among this large corpus of works, we here focus on a very
recent research result showing that first-order optimizers can, indeed, avoid the
problem of exploding and vanishing gradients by: (i) performing an appropriate
initialization of the model weights based on the principles of ESNs; and (ii) using
Nesterov’s Accelerated Gradient (NAG) [18] to perform model training instead
of conventional SGD [24].

As discussed in Section 1, ESNs are RNN-based architectures where the
recurrent connections weights matrix W is not trained but merely properly
initialized. Specifically, ESN theory stipulates that the initialization of the matrix
W should be performed in a way ensuring that the largest absolute eigenvalue of
the determinant |W | (spectral radius) be close to one. This way, the dynamics
of the network can be shown to become oscillatory and chaotic, allowing it to
generate responses that are varied for different input histories. At the same time
though, the gradients are no longer exploding (and if they do explode, then only
“slightly so”), so learning may be possible for even the hardest sequential data
modeling problems that conventional RNNs fail to address [15].

On the other hand, NAG has been the subject of much recent attention
by the convex optimization community [9,16]. Like SGD, NAG is a first-order
optimization method with better convergence rate guarantee than conventional
SGD. NAG has been shown to be closely related to classical momentum-based
SGD variants (e.g., [20]), with the only difference lying in the precise update
expression of the velocity vector of the algorithm. These differences, although
slight, can be of major significance to the asymptotic rates of local convergence
of the optimization algorithm, as discussed in [24].

Inspired from these merits, in developing the training algorithm of our pro-
posed model we shall rely on both performing an ESN-inspired initialization,

Sparse Bayesian Recurrent Neural Networks 363

and using NAG instead of mainstream SGD optimization algorithms. We shall
introduce our model and elaborate on our selected training strategies in the
following section.

3 Proposed Approach

We differentiate SB-RNN model formulation between regression and (multiclass)
classification tasks, to allow for better handling the intricacies of each type of
problems. In the following, we elaborate on our modeling strategies in both cases,
and derive efficient training algorithms under the SVI paradigm.

3.1 Regression SB-RNN

Let us consider that the modeled output variables yt are N -dimensional real
vectors, i.e. yt ∈ R

N . In this case, we define a likelihood function for our model
of the form

p(yt|xt;V , β) = N (yt|V ht, β
−1I) (4)

where β is the precision (inverse variance) of a simple white noise model adopted
in the context of our method, and ht is the state vector of our model that encodes
the history of past observations {xτ}t−1

τ=1. In essence, ht consists the vector of the
activations of the (recurrently connected) hidden units of our model; we consider
that it is expressed by a discrete-time dynamical system of the form (2). In the
same vein, V can essentially be perceived as the weight matrix of the output
connections of our model.

Further, we introduce an appropriate prior distribution over the weights
matrix V ; we consider a zero-mean Gaussian prior of the form

p(V |α) =
N∏

n=1

H∏

u=1

N (vnu|0, α−1
u) (5)

where αu is the precision of the weights pertaining to the uth hidden unit,
{vnu}N

n=1, and α = [αu]Hu=1. Finally, we impose a Gamma hyper-prior over the
precision hyperparameters αu, yielding

p(αu) = G(αu|η1, η2) (6)

This hierarchical prior configuration of our model essentially gives rise to an
ARD mechanism that allows for data-driven inference over the number of hidden
units, H. As we have already discussed, the notion of ARD is to continually cre-
ate new components while detecting when a component starts to overfit. Overfit
manifests itself as a precision hyperparameter posterior tending to infinity, indi-
cating that a single data value is being modeled by the component. Hence, in the
case of our SB-RNN model, the ARD mechanism is implemented by imposing a
hierarchical prior over the output weights matrix V , to discourage large weight
values, with the width of each prior being controlled by a Gamma distributed

364 S.P. Chatzis

precision hyperparameter, αu, as illustrated in Eqs. (5)-(6). If one of these pre-
cisions tends to infinity, αu → ∞, then the outgoing weights will have to be
very close to zero in order to maintain a high likelihood under this prior. This in
turn leads the model to ignore the likelihood contribution of the corresponding
hidden unit, which is effectively ‘switched off’ of the model.

We underline that this approach is substantially different from dropout [5,23],
where, on each iteration of the training algorithm, different hidden units are
randomly ignored, while all hidden units are used to perform prediction.

Model Training. To perform training of our model in a way scalable to mas-
sive datasets, we resort to the SVI paradigm [14]. SVI is an iterative stochastic
optimization algorithm for mean-field variational inference that approximates
the posterior distribution of a probabilistic model, and can handle massive
datasets of observations. Indeed, SVI renders Bayesian inference scalable to mas-
sive datasets by splitting the observed data into small batches, and letting the
inference algorithm operate only on one batch on each iteration.

SVI yields a lower bound to the log-evidence of the treated model (evidence
lower bound, ELBO) expressed as a function of an approximate (variational) pos-
terior distribution it seeks to optimally determine. Then, inference for a treated
model consists in maximizing the corresponding ELBO over the variational pos-
terior and the estimates of the associated hyper-parameters. For this purpose,
SVI computes on each iteration a set of noisy estimates of the natural gradient [2]
of the model’s ELBO, and uses them in the context of a stochastic optimization
scheme.

In the following, we denote as 〈·〉 the posterior expectation of a quantity;
the analytical expressions of these posteriors can be found in the Appendix. Let
us consider that the training set D = {(xs

1,y
s
1), . . . , (x

s
Ts

,ys
Ts

)}S
s=1 comprises S

sequences, and that we split this dataset into batches comprising Sb sequences
each. Then, the SVI algorithm for the proposed SB-RNN regression model yields
the following posterior over the output weights matrix V :

q(V) =
N∏

n=1

N (vn|v̄n, Σ̄) (7)

where the posterior hyperparameters v̄n and Σ̄ are updated according to

Σ̄
−1 ← (1 − ρk)Σ̄−1 + ρk

[

〈A〉 + (βH̃
T
H̃)

S

Sb

]

(8)

v̄n ← (1 − ρk)v̄n + ρk
S

Sb
βΣ̄H̃

T
ỹn (9)

where 〈A〉 = diag(〈α〉). In Eqs. (8)-(9), H̃ denotes the matrix of the network
state vectors pertaining to the sequences included in the current batch, while ỹn

denotes the (target) values of the nth model output pertaining to the sequences
included in the current batch. On the other hand, ρk is the learning rate of

Sparse Bayesian Recurrent Neural Networks 365

the developed stochastic updating algorithm on the current (say, kth) iteration.
Following common practice (e.g., [14]), in this work the learning rates ρk are
updated on each algorithm iteration according to the rule

ρk = (k + κ)−f (10)

where the delay κ satisfies κ ≥ 0, and the forgetting rate f satisfies f ∈ (0.5, 1].
Further, the precision hyperparameters α yield the hyperposteriors:

q(α) =
∏

G(αu|η̄1u, η̄2u) (11)

where
η̄1u = η1 + N

S

2
(12)

η̄2u ← (1 − ρk)η̄2u + ρk

[

η2 +
S

2Sb

N∑

n=1

〈
v2

nu

〉
]

(13)

Interestingly, note that the updates of η̄1u do not depend on the training data
points of each batch; as such, the value of η̄1u need not be updated on each
algorithm iteration.

Finally, the input weights matrix Ω and the recurrent connection weights
matrix W of our model are updated as model hyperparameters, yielding point-
estimates. This is effected by optimization of the ELBO of our model by appli-
cation of a NAG-type optimization procedure, yielding:

W ← (1 − ρk)W + ρkβδW + μW (14)

Ω ← (1 − ρk)Ω + ρkβδΩ + μΩ (15)

In these equations, δW and δΩ are the updates of the weights matrices W and
Ω obtained by application of conventional BPTT [22], by setting the value of V
equal to its posterior expectation V̄ = [v̄n]Nn=1. In addition, μW and μΩ are the
momentum-type terms introduced by adoption of the NAG optimization scheme
(c.f. [24]), as discussed in Section 2. Initialization of the recurrent connection
weights matrix W is performed by adopting the principles of ESN architectures,
as also discussed in Section 2.

Predictive Density. Having found estimates of the model hyperparameters
and parameter posteriors, we can now proceed to derive the expression of its
predictive distribution over the output variables yt for a new input xt, with
corresponding observation history {xτ}t−1

τ=1 and state vector ht. We have

q(yt|{xτ}t
τ=1) = N (yt|V̄ ht, σ

2(xt)I) (16)

where
σ2(xt) = β−1 + hT

t Σ̄ht (17)

366 S.P. Chatzis

It is worthwhile to underline here a significant difference between our app-
roach and conventional RNN formulations when it comes to prediction genera-
tion: Conventional RNNs only provide an estimate of the target (output vari-
ables); instead, our SB-RNN approach, apart from this estimate (taken as the
mode ŷ = V̄ ht of the predictive distribution) does also yield a predictive vari-
ance estimate, given by σ2(xt). The obtained predictive variance is in essence a
measure of the confidence of the model in the obtained predictions ŷ, and can be
utilized to provide error bars (or a reject option in safety-critical applications).

3.2 Classification SB-RNN

We now turn to the case of modeling a multiclass classification problem using
our SB-RNN approach. Let us denote as yt ∈ {0, 1}N the output variables of
the addressed problem. In this case, the nth component of vector yt indicates
whether class n ∈ {1, . . . , N} is on or off at time t. On this basis, to obtain
a suitable construction for our model, we postulate a standard Multinomial
likelihood assumption of the form:

p(yt|xt;V) =
N∏

n=1

φ0(vT
nht)ytn (18)

where vn is the nth row of matrix V , and φ0 is a sigmoid activation function.
We impose the same hierarchical prior over the output weights matrix V as in
the previously examined regression setting, given by Eqs. (5)-(6), to introduce
the ARD mechanism into our model.

Model Training. To perform SB-RNN model training in the classification
setting, we can again resort to the SVI inference paradigm. However, a major
obstacle to the application of SVI in this setting concerns the fact that the
imposed likelihood (18) does not yield a conjugate model formulation. This in
turn prohibits obtaining closed-form analytical expressions for the (variational)
posterior distribution over the weights matrix V . Specifically, we have

logq(vn) ∝
∑

t

ytnlogφ0(vT
nht) + 〈logp(vn|α)〉 ∀n (19)

To resolve these issues, in this work we resort to a Laplace approximation of
the intractable posteriors q(vn). Laplace approximation consists in taking the
second order Taylor expansion of logq(vn) around its mode, resulting in the con-
sidered posterior distribution being conveniently approximated by a Gaussian.
Specifically, our model yields

q(vn) ≈ N (vn|v̄n, Σ̄n) (20)

where

Σ̄
−1
n ← (1 − ρk)Σ̄−1

n + ρk

[

〈A〉 + (H̃
T
B̃nH̃)

S

Sb

]

(21)

Sparse Bayesian Recurrent Neural Networks 367

v̄n ← (1 − ρk)v̄n + ρk
S

Sb
Σ̄nH̃

T
B̃nỹn (22)

and B̃n is the diagonal matrix of the set of quantities φ0(vT
nht) corresponding

to the sequences in the current batch.
On the basis of the derivations (20)-(22), the updates of the hyperposteriors

q(α), as well as the updates of the model weight matrices W and Ω, yield
exactly the same expressions as in (11)-(15).

Predictive Density. Having obtained the training algorithm expressions of
the SB-RNN model for the case of dealing with classification tasks, we now
turn to deriving the corresponding predictive density expressions. Based on the
preceding discussions, the predictive density of our model yields:

q(ytn = 1|{xτ}t
τ=1) ∝ 〈

φ0(vT
nht)

〉
(23)

where the state vectors ht are given by (2). Note that the posterior expectations
in (23) cannot be computed analytically due to the nonlinear nature of the
activation function φ0(·). For this reason, we resort to a Monte Carlo sampling-
based approximation, yielding:

〈
φ0

(
vT

nht

)〉 ≈ 1
Z

Z∑

ζ=1

φ0

(
(vζ

n)T ht

)
(24)

where Z is the number of samples vζ
n drawn i.i.d. from the posterior q(vn),

approximated by (20).

4 Experiments

We experimentally evaluate our approach in both regression and classification
tasks. In all cases, we manually tune the hyperparameters of the learning rate
schedule (10) for each dataset, as well as the hyperparameters of the momen-
tum terms, similar to [24]. We developed our source codes in Python, using the
Theano library [4]1. We run our experiments on an Intel Xeon 2.5GHz Quad-
Core server with 64GB RAM and an NVIDIA Tesla K40 GPU.

4.1 Human Motion Modeling

We begin by evaluating our method in a regression task. For this purpose, we use
a publicly available benchmark, namely walking sequences from the CMU motion
capture (MoCap) dataset [1]. The considered training sequences correspond to
several different subjects included in the CMU MoCap database, following the
experimental setup of [8]. After training, we use the obtained models to generate
1 The source codes will be made available through our website, to allow for easier

reproducibility of our results.

368 S.P. Chatzis

the human pose information in a different set of walking sequence videos, namely
videos 35-03, 12-02, 16-21, 12-03, 07-01, 07-02, 08-01, and 08-02 of the same
database2. The inputs presented to the evaluated algorithms are the positions
of the tracked human joints, and their output is the predicted joint positions at
a time point of interest. The dimensionality of the input space is equal to 62,
similar to the output space.

To obtain some comparative results, apart from our method we also evaluate
conventional RNNs trained as described in Section 2; we also cite the perfor-
mance of ESNs, an ESN-driven formulation of Gaussian processes dubbed the
ESGP method [8], and the Dynamic GP method [25]. In Table 1, we provide the
RMSEs obtained by each one of the considered methods. These results corre-
spond to optimal numbers of hidden units for the evaluated recurrent network-
based methods; interestingly, this optimal model size turned out to be equal to
100 hidden units in all cases, as also observed in [8]. As we illustrate in Table 1,
the SB-RNN method outperforms all the rest of the evaluated methods, both in
average and in each single individual experimental case considered here.

Table 1. Human Motion Modeling: Obtained missing frames RMSEs.

Video ID Dynamic GP ESN ESGP RNN SB-RNN

35-03 49.68 62.55 32.59 35.11 32.28

12-02 54.96 63.14 45.32 42.88 39.58

16-21 78.05 98.74 59.03 51.17 48.02

12-03 63.63 72.12 46.25 47.09 44.14

07-01 84.12 121.47 77.34 76.18 75.69

07-02 80.77 100.94 73.88 75.37 72.87

08-02 95.52 120.45 101.54 95.66 94.66

08-01 82.66 152.44 118.0 97.54 93.05

Average 73.67 98.98 69.24 65.13 62.54

4.2 Acoustic Novelty Detection

Further, in this experiment we perform evaluation of our approach in the con-
text of a classification task, and under a setup that also allows for evaluating
the quality of the obtained predictive distributions. Specifically, we consider the
problem of novelty detection in acoustic signals. For the purposes of this experi-
ment, we use a dataset composed of around three hours of recordings of a home
environment, taken from the PASCAL CHiME speech separation and recogni-
tion challenge dataset [3]. Our dataset corresponds to a typical in-home scenario
(a living room), recorded during different days and times; the inhabitants are two
adults and two children that perform common actions, namely talking, watching
2 All videos have been downsampled by a factor of 4, following the experimental setup

of [8].

Sparse Bayesian Recurrent Neural Networks 369

television, playing, and eating. On this basis, we use randomly chosen sequences
to compose 100 minutes of background for training set, around 40 minutes for
validation set, and another 30 minutes for test set. The validation and test sets
were generated by randomly adding in the available sequences different kinds of
sounds, namely screams, alarms, falls, and fractures. The total duration of each
novel type is equal to 200 s.

Our experimental setup is the following: Initially, we train our model consid-
ering as input variables the auditory spectral features (ASF) computed by means
of the short-time Fourier transformation (STFT); we use a frame size of 30 ms
and a frame step of 10 ms. Each STFT yields the power spectrogram of the sig-
nal, which is eventually converted to the Mel-Frequency scale using a filter-bank
with 26 triangular filters; we use a logarithmic representation of these features,
to match the human perception of loudness. Finally, we also include the frame
energy in our feature vectors, following standard practices in the literature.

Subsequently, we use the trained model to predict the class corresponding to
each frame in the validation set. Since some frames correspond to novel classes
which the model has not been trained to recognize, we are interested in examining
how certain the model is for its predictions when these novel classes are actually
the ones that appear in the data. Indeed, one would expect that the model should
yield lowpredictive probability values for thewinner class in caseswhere the actual
class belongs to the set of novel ones. To examine whether this assumption does
actually hold, we use the results obtained from our validation set to determine
a novelty threshold for our model: if the predictive probability pertaining to the
winner class is lower than this threshold, we consider that the current data frame
actually belongs to a novel class. Determination of this threshold is performed on
the basis of two different criteria: (i) maximization of the precision of the model in
the task of novelty detection; (ii) maximization of the recall of the model in the task
of novelty detection. Eventually, we utilize the so-obtained thresholds to measure
the novelty detection precision and recall of our model using the available test set.

To obtain some comparative results, apart from our method we also evaluate
conventional RNNs (trained as described in Section 2), and the state-of-the-
art I/O-RNN-RBM and I/O-RNN-NADE methods presented in [7], under the
same experimental setup. Our results are depicted in Table 2; these results our
obtained for the best-performing model size in all cases. We observe that our
method yields a very competitive result both in terms of the obtained precision
and the yielded recall on the test set.

Table 2. Acoustic novelty detection: Precision and recall (%) of the evaluated models.

Model Size Precision Recall

RNN 600 90.12 86.21

I/O-RNN-RBM 400 91.87 87.55

I/O-RNN-NADE 400 92.15 88.03

SB-RNN 600 92.30 88.56

370 S.P. Chatzis

4.3 Computational Complexity

Let us now turn to an analysis of the computational complexity of our method,
and how it compares to conventional RNNs (trained as discussed in Section 2).
We begin with the case of regression tasks: From the computational complexity
perspective, the main difference between our approach and conventional RNNs
concerns the fact that our approach also computes the quantities Σ̄ and η̄2u, ∀u.
However, the expressions of these approaches can be computed in time linear to
the number of hidden units, as they do not entail any tedious calculations. Similar
is the case when it comes to classification tasks. As such, one can expect that our
method and conventional RNNs should share same computational complexity.
To conclude, to provide some empirical evidence towards this direction, we here
report the total training time of our method and conventional RNNs in the case
of the acoustic novelty detection task (similar results can be obtained for the rest
of our experimental scenarios). In our implementation, conventional RNNs took
6,855 sec to train, while our approach took 7,169 sec, that is a mere 4.58% extra
computational time. Prediction generation took identical time in both cases. As
such, we deduce that our approach offers a favorable performance/complexity
trade-off over existing RNN formulations.

5 Conclusions and Future Work

In this paper, we proposed a sparse Bayesian formulation of RNNs, based on the
introduction of a sparsity-inducing hierarchical prior over the output connection
weights of the model. As we discussed, this model formulation introduces the
ARD mechanism into the inferential procedures of RNNs, which allows for data-
driven determination of the effective number of hidden (recurrently connected)
units. We provided two alternative formulations of our model: one with likelihood
function properly selected for handling regression tasks, and one designed for
handling classification tasks. We devised simple and efficient inference algorithms
for our model, scalable to massive datasets, for both the regression and (multi-
class) classification settings. For this purpose, we resorted to the SVI paradigm.

To empirically evaluate the efficacy of our approach and how it compares
to the competition, we conducted a number of experimental investigations deal-
ing with human motion modeling using MoCap data and novelty detection in
acoustic signals. In all cases, we used benchmark datasets in our experiments,
and compared the performance of our method to state-of-the-art methods in
the corresponding domains. As we observed, our approach yields a clear mod-
eling performance advantage over the competition, without inducing notable
overheads in terms of computational complexity.

In this work, posterior inference was conducted only for the output connec-
tion weights of the postulated RNNs, and the associated precision hyperparam-
eters. In contrast, for the input and recurrent connection weight matrices of
the model we obtained point-estimates, by maximization of the ELBO of the
model over them. As such, one direction for future research concerns obtaining
a fully Bayesian treatment of RNNs, with appropriate priors imposed over all

Sparse Bayesian Recurrent Neural Networks 371

the weight matrices of the model, and associated posterior distributions obtained
during model inference. A challenge we expect to encounter working towards this
direction concerns the nonlinear nature of the activation functions of the hid-
den units φh(·), which may prevent us from obtaining closed-form expressions of
the associated posteriors. Employing the black-box variational inference frame-
work proposed in [21] to train our model might be a suitable possible candidate
solution towards the amelioration of these issues.

Appendix

We have

〈α〉 =
[
η̄1u

η̄2u

]H

u=1

(25)

and 〈
v2

nu

〉
=

[〈
vnvT

n

〉]
u

(26)

where [·]u stands for the uth element of a vector, and it holds

〈
vnvT

n

〉
=

{
v̄nv̄T

n + Σ̄, for regression tasks
v̄nv̄T

n + Σ̄n, for classification tasks
(27)

Finally, the expression of 〈logp(vn|α)〉 yields (ignoring constant terms)

〈logp(vn|α)〉 = −1
2

H∑

u=1

〈
v2

nu

〉 〈αu〉 +
1
2

H∑

u=1

〈logαu〉 (28)

where
〈logαu〉 = ψ(η̄1u) − logη̄2u (29)

and ψ(·) is the Digamma function.

Acknowledgments. We gratefully acknowledge the support of NVIDIA Corporation
with the donation of one Tesla K40 GPU used for this research.

References

1. The CMU MoCap database. http://mocap.cs.cmu.edu/
2. Amari, S.: Natural gradient works efficiently in learning. Neural Computation

10(2), 251–276 (1998)
3. Barker, J., Vincent, E., Ma, N., Christensen, H., Green, P.: The Pascal Chime

speech separation and recognition challenge. Computer Speech & Language 27(3),
621–633 (2013)

4. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A.,
Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. In: Deep
Learning and Unsupervised Feature Learning NIPS 2012 Workshop (2012)

http://mocap.cs.cmu.edu/

372 S.P. Chatzis

5. Bayer, J., Osendorfer, C., Korhammer, D., Chen, N., Urban, S., van der Smagt, P.:
On fast dropout and its applicability to recurrent networks. In: Proc. ICLR (2014)

6. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks 52(2), 157–166 (1994)

7. Boulanger-Lewandowski, N., Bengio, Y., Vincent, P.: High-dimensional sequence
transduction. In: Proc. ICASSP, pp. 3178–3182 (2013)

8. Chatzis, S., Demiris, Y.: Echo state Gaussian process. IEEE Transactions on Neural
Networks 22(9), 1435–1445 (2011)

9. Cotter, A., Shamir, O., Srebro, N., Sridharan, K.: Better mini-batch algorithms
via accelerated gradient methods. In: Proc. NIPS (2011)

10. Fokoue, E.: Stochastic determination of the intrinsic structure in Bayesian factor
analysis. Tech. Rep. TR-2004-17, Statistical and Applied Mathematical Sciences
Institute (2004)

11. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: Proc. ICASSP (2013)

12. Hammer, B.: On the approximation capability of recurrent neural networks. Neu-
rocomputing 31(1), 107–123 (2000)

13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation
9(8), 1735–1780 (1997)

14. Hoffman, M., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference.
Journal of Machine Learning Research 14(5), 1303–1347 (2013)

15. Jaeger, H.: The “echo state” approach to analysing and training recurrent neu-
ral networks. Tech. Rep. 148, German National Research Center for Information
Technology, Bremen (2001)

16. Lan, G.: An optimal method for stochastic composite optimization. Mathematical
Programming, 1–33 (2010)

17. Martens, J., Sutskever, I.: Learning recurrent neural networks with hessian-free
optimization. In: Proc. ICML (2011)

18. Nesterov, Y.: A method of solving a convex programming problem with conver-
gence rate o(1/sqr(k)). Soviet Mathematics Doklady 27, 372–376 (1983)

19. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. In: Proc. ICML (2013)

20. Polyak, B.: Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics 4(5), 1–17 (1964)

21. Ranganath, R., Gerrish, S., Blei, D.M.: Black box variational inference. In: Proc.
AISTATS (2014)

22. Rumelhart, D., Hinton, G., Williams, R.: Learning internal representations by error
propagation. In: Parallel Dist. Proc., pp. 318–362. MIT Press (1986)

23. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. J. Machine
Learning Research 15(6), 1929–1958 (2014)

24. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization
and momentum in deep learning. In: Proc. ICML (2013)

25. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models for
human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence
30(2), 283–298 (2008)

Structured Prediction of Sequences and Trees
Using Infinite Contexts

Ehsan Shareghi1(B), Gholamreza Haffari1, Trevor Cohn2, and Ann Nicholson1

1 Monash University, Melbourne, Australia
{ehsan.shareghi,gholamreza.haffari,ann.nicholson}@monash.edu

2 University of Melbourne, Melbourne, Australia
t.cohn@unimelb.edu.au

Abstract. Linguistic structures exhibit a rich array of global phenom-
ena, however commonly used Markov models are unable to adequately
describe these phenomena due to their strong locality assumptions.
We propose a novel hierarchical model for structured prediction over
sequences and trees which exploits global context by conditioning each
generation decision on an unbounded context of prior decisions. This
builds on the success of Markov models but without imposing a fixed
bound in order to better represent global phenomena. To facilitate learn-
ing of this large and unbounded model, we use a hierarchical Pitman-Yor
process prior which provides a recursive form of smoothing. We propose
prediction algorithms based on A* and Markov Chain Monte Carlo sam-
pling. Empirical results demonstrate the potential of our model compared
to baseline finite-context Markov models on three tasks: morphological
parsing, syntactic parsing and part-of-speech tagging.

Keywords: Structured prediction · Infinite markov model · Chinese
restaurant process

1 Introduction

Markov models are widespread popular techniques for modelling the underlying
structure of natural language, e.g., as sequences and trees. However local Markov
assumptions often fail to capture phenomena outside the local Markov context,
i.e., when the data generation process exhibits long range dependencies. A prime
example is language modelling where only short range dependencies are cap-
tured by finite-order (i.e. n-gram) Markov models. However, it has been shown
that going beyond finite order in a Markov model improves language modelling
because natural language embodies a large array of long range depepndencies
[Wood et al., 2009]. While infinite order Markov models have been extensively
explored for language modelling [Gasthaus and Teh, 2010; Wood et al., 2011],
this has not yet been done for structure prediction.

In this paper, we propose an infinite-order Markov model for predicting latent
structures, namely tag sequences and trees. We show that this expressive model
can be applied to various structure prediction tasks in NLP, such as syntac-
tic and morphological parsing and part-of-speech tagging. We propose effective
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 373–389, 2015.
DOI: 10.1007/978-3-319-23525-7 23

374 E. Shareghi et al.

algorithms to tackle significant learning and inference challenges posed by the
infinite Markov model.

More specifically, we propose an unbounded-depth, hierarchical, Bayesian
non-parametric model for the generation of linguistic utterances and their corre-
sponding structure (e.g., the sequence of POS tags or syntax trees). Our model
conditions each decision in a tree generating process on an unbounded context
consisting of the vertical chain of their ancestors, in the same way that infinite
sequence models (e.g., ∞-gram language models) condition on an unbounded
window of linear context [Mochihashi and Sumita, 2007; Wood et al., 2009].

Learning in this model is particularly challenging due to the large space of
contexts and corresponding data sparsity. For this reason predictive distribu-
tions associated with contexts are smoothed using distribtions for successively
smaller contexts via a hierarchical Pitman-Yor process, organised as a suffix trie.
The infinite context makes it impossible to directly apply dynamic programing
for structure prediction. We present two inference algorithms based on A* and
Markov Chain Monte Carlo (MCMC) for predicting the best structure for a
given input utterance.

The experiments on part-of-speech (POS) tagging show that our generative
model obtains similar performance to the state-of-the-art Stanford POS tag-
ger [Toutanova and Manning, 2000] for English and Swedish. For Danish, our
model outperforms the Stanford tagger, which is impressive given the Stanford
parser uses many more complex features and a discriminative training objective.
Our experiments on morphological parsing and syntactic parsing show that our
unbounded-context tree model adapts itself to the data to effectively capture
sufficient context to outperform the PCFG baseline.

2 Background and Related Work

The parse tree of an utterance can be generated by combining a set of rules
from a grammar, such as a context free grammar (CFG). A CFG is a 4-tuple
G = (T ,N , S,R), where T is a set of terminal symbols, N is a set of non-
terminal symbols, S ∈ N is the distinguished root non-terminal and R is a
set of productions (aka rewriting rules). A PCFG assigns a probability to each
grammar rule, where

∑
B,C P (A → B C|A) = 1. The grammar rules are often

in Chomsky Normal Form (CNF), taking either the form A → B C or A → a
where A,B,C are nonterminals, and a is a terminal.

Syntactic parsing is the task of predicting the parse tree of a given sentence.
In syntactic parsing, the nonterminals of the underlying grammar are syntac-
tic catergories, e.g. the input sentence (S), noun phrase (NP) and verb phrase
(VP); the terminals are words. Morphological parsing is the task of breaking
down an unsegmented input into words and their morphological structure. In
this task, the grammar terminals are morphemes (smallest meaningful units of
a language), and nonterminals represent the input Sequence, Word, prefix (P),
etc. Tag sequences can also be represented as a tree structure, without loss of
generality, in which rules take the form A → B a or A → a where A,B are POS

Structured Prediction of Sequences and Trees Using Infinite Contexts 375

tags, and a is a word. This unified view to syntactic parsing, morphological pars-
ing, and POS tagging will allow us to apply our model and inference algorithms
to these problems with only minor refinements (see Figure 1).

In PCFG, a tree is generated by starting with the root symbol and rewrit-
ing (substituting) it with a grammar rule, then continuing to rewrite frontier
non-terminals with grammar rules until there are no remaining frontier non-
terminals. When making the decision about the next rule to expand a frontier
non-terminal, the only conditioning context used from the partially generated
tree is the frontier non-terminal itself, i.e., the rewrite rule is assumed indepen-
dent from the remainder of the tree given the frontier non-terminal. Our model
relaxes this strong independence assumptions by considering unbounded vertical
history when making the next inference decision. This takes into account a wider
context when making the next parsing decision.

Perhaps the most relevant work is on unbounded history language models
[Mochihashi and Sumita, 2007; Wood et al., 2009]. A prime work is Sequence
Memoizer [Wood et al., 2011] which conditions the generation of the next word
on an unbounded history of previously generated words. We build on these tech-
niques to develop rich infinite-context models for structured prediction, leading
to additional complexity and challenges.

For syntactic parsing, several infinite extensions of probabilistic context free
grammars (PCFGs) have been proposed [Finkel et al., 2007; Liang et al., 2007].
These approaches achieve infinite grammars by allowing an unbounded set of
non-terminals (hence grammar rules), but still make use of a bounded history
when expanding each non-terminal. An alternative method allows for infinite
grammars by considering segmentation of trees into arbitrarily large tree frag-
ments, although only a limited history is used to conjoin fragments [Cohn et al.,
2010; Johnson et al., 2006]. Our work achieves infinite grammars by growing the
vertical history needed to make the next parsing decision, as opposed to growing
the number of rules, non-terminals or states horizontally, as done in prior work.

Earlier work in syntactic parsing has also looked into growing both the his-
tory vertically and the rules horizontally, in a bounded setting. [Johnson, 1998]
has increased the history for the parsing task by parent-annotation, i.e., anno-
tating each non-terminal in the training parse trees by its parent, and then
reading off the grammar rules from the resulting trees. [Klein and Manning,
2003] have considered vertical and horizontal markovization while using the head
words’ part-of-speech tag, and showed that increasing the size of the vertical
contexts consistently improves the parsing performance. [Petrov et al., 2006],
[Petrov and Klein, 2007] and [Matsuzaki et al., 2005] have treated non-terminal
annotations as latent variables and estimated them from the data.
Likewise, finite-state hidden Markov models (HMMs) have been extended

horizontally to have countably infinite number of states [Beal et al., 2001].
Previous works on applying Markov models to part-of-speech tagging
either considered finite-order Markov models [Chen, 2000], or finite-order
HMM [Thede and Harper, 1999]. We differ from these works by conditioning
both the emissions and transitions on their full contexts.

376 E. Shareghi et al.

3 The Model

Our model relaxes strong local Markov assumptions in PCFG to enable captur-
ing phenomena outside of the local Markov context. The model conditions the
generation of a rule in a tree on its unbounded vertical history, i.e., its ancestors
on the path towards the root of the tree (see Figure 1). Thus the probability of
a tree T is

P (T) =
∏

(u,r)∈T

G[u](r) (1)

where r denotes the rule and u its history, and G[u](.) is the probability of the
next inference decision (i.e., grammar rule) conditioned on the context u. In
other words, a tree T can be represented as a sequence of context-rule events
{(u, r) ∈ T}.

Fig. 1. Examples of infinite-order conditioning and smoothing mechanism. The
bold symbols (NN, ADV, fine, T, S) are the part of the structure being
generated, and the boxes correspond to the conditioning context. (a) Syntactic
Parsing, (b) Infinite-order HMM for POS tagging, (c) Morphological Parsing.

When learning such a model from data, a vector of predictive probabilities for
the next rule G[u](.) given each possible vertical context u ∈ U must be learned,
where depending on the problem U can denote the set of spines of non-terminals
N ∗ (as in Fig. 1(a),(b)) or chains of rules R∗(as in Fig. 1(c)). As the context size
increases, the number of events observed for such long contexts in the training
data drastically decreases which makes parameter estimation challenging, par-
ticularly when generalising to unseen contexts. Assuming our unbounded-depth
model, we need suitable smoothing techniques to estimate conditional rule prob-
abilities for large (and possibly infinite depth) contexts. We achieve smoothing

Structured Prediction of Sequences and Trees Using Infinite Contexts 377

by placing a hierarchical Bayesian prior over the set of probability distributions
{G[u]}u∈U . We smooth G[u] with a distribution conditioned on a shorter con-
text G[π(u)], where π(u) is the suffix of u containing all but the earliest event.
This ties parameters of longer histories to their shorter suffixes in a hierarchical
manner, and leads to sharing statistical strengths to overcome sparsity issues.
Figure 1 shows our infinite-order Markov model and the smoothing mechanism
described here.

More specifically, we assume that a distribution with the full history G[u]

is related to a distribution with the most recent history G[π(u)] through the
Pitman-Yor process PY P [Wood et al., 2011]:

G[ε] | d[ε], c[ε],H ∼ PY P (d0, c0,H) (2)
G[u] | d|u|, c|u|, G[π(u)] ∼ PY P (d|u|, c|u|, G[π(u)]) (3)

where H denotes the base (e.g. uniform) distribution, and ε denotes the empty
context. The Pitman-Yor process PY P (d, c,H) is a distribution over distribu-
tions, where d is the discount parameter, c is the concentration parameter, and
H is the base distribution. Note that G[u] depends on G[π(u)] which itself depends
on G[π(π(u))], etc. This leads to a hierarchical Pitman-Yor process prior where
context-dependent distributions are hidden. The formulation of the hierarchical
PYP over different length contexts is illustrated in Figure 2.

Figure 3 demonstrates the property of PYP and how its behavior depends on
discount d, and concentration c parameters. Note that the PYP allows a good fit
to data distribution compared to the Dirichlet Process (d = 0; as used in prior
work) which cannot adequately represent the long tail of events.

Fig. 2. Part of the smoothing mechanism corresponding to Figure 1(a). Each
node represents a distribution G labeled with a context, and the directed edges
demonstrate the direction of smoothing. The path in bold corresponds to the
smoothing for the rule NP → NN .

378 E. Shareghi et al.

(a) u : S NP (b) u : VERB

Fig. 3. log-log plot of rule frequency vs rank, illustrated for (a) syntactic parsing
and (b) POS tagging. Besides the data distribution, we also show samples from
three PYP distributions with different hyperparameter values, c, d.

4 Learning

Given a training tree-bank, i.e., a collection of utterances and their trees, we are
interested in the posterior distribution over {G[u]}u∈U . We make use of the app-
roach developed in [Wood et al., 2011] for learning such suffix-based graphical
models when learning infinite-depth language models. It makes use of Chinese
Restaurant Process (CRP) representation of the Pitman-Yor process in order to
marginalize out distributions G[u] [Teh, 2006] and learn the predictive probabil-
ities P (r|u).

Under the CRP representation each context corresponds to a restaurant.
As a new (u, r) is observed in the training data, a customer is entered to the
restaurant, i.e., the trie node corresponding to u. Whenever a customer enters a
restaurant, it should be decided whether to seat him on an existing table serving
the dish r, or to seat him on a new table and sending a proxy customer to the
parent node in the trie to order r (i.e., based on (π(u), r)). Fixing a seating
arrangement S and PYP parameters θθθ for all restaurants (i.e., the collection
of concentration and discount parameters), the predictive probability of a rule
based on our infinite-context rule model is:

P (r|ε,S, θθθ) = H(r) (4)

P (r|u,S, θθθ) =
nu

r. − d|u|tur
n|u|

.. + c|u|
+

c|u| + d|u|tu.
nu

.. + c|u|
P (r|π(u),S, θθθ) (5)

where d|u| and c|u| are the discount and concentration parameters, nu
rk is the

number of customers at table k served the dish r in the restaurant u (accord-
ingly nu

r. is the number of customers served the dish r and nu
.. is the number of

customers), and tur is the number of tables serving dish r in the restaurant u
(accordingly tu. is the number of tables).

Structured Prediction of Sequences and Trees Using Infinite Contexts 379

The seating arrangements (the state of all restaurants including their tables
and customers sitting on each table) are hidden, so they need to be marginalized
out:

P (r|u,D) =
∫

P (r|u,S, θθθ)P (S, θθθ|D)d(S, θθθ) (6)

where D is the training tree-bank. We approximate this integral by the so called
“minimal assumption seating arrangement” and the MAP parameter setting
θθθ which maximizes the corresponding data posterior. Based on the minimal
assumption, a new table is created only when there is no table serving the desired
dish in a restaurant u. That is, a proxy customer is created and sent to the par-
ent node in the trie π(u) for each unique dish type (sequence of events). This
approximation is related to the well-known interpolated Kneser-Ney smooth-
ing [Chen and Goodman, 1996], when applied to hierarchical Pitman-Yor pro-
cess language models [Teh, 2006].

The parameter θθθ is learned by maximising the posterior, given the seat-
ing arrangement corresponding to the minimal assumption. We put the fol-
lowing prior distributions over the parameters: dm ∼ Beta(am, bm) and cm ∼
Gamma(αm, βm). The posterior is the prior multiplied by the following likeli-
hood term:

∏

r

H(r)n0
r.

∏

u

[c|u|]
tu.
d|u|

[c|u|]
nu
..

1

∏

r

tu.∏

k=1

[1 − d|u|]
(nu

rk−1)
1 (7)

where [a]cb denotes the generalised factorial function.1 We maximize the posterior
with the constraints cm ≥ 0 and dm ∈ [0, 1) using the L-BFGS-B optimisation
method [Zhu et al., 1997], leading to the optimised discount and concentration
for each context size.

5 Prediction

In this section, we propose algorithms for the challenging problem of predicting
the highest scoring tree. The key ideas are to compactly represent the space of
all possible trees for a given utterance, and then search for the best tree in this
space in a top-down manner. By traversing the hyper-graph top-down, the search
algorithms have access to the full history of grammar rules.

In the test time, we need to predict the tree structure of a given utterance
w by maximizing the tree score:

arg max
T

P (T |D,w) = arg max
T

∏

(u,r)∈T

P (r|u,D) (8)

The unbounded context allowed by our model makes it infeasible to apply
dynamic programming, e.g. CYK [Cocke and Schwartz, 1970], for finding the

1 [a]0b = [a]−1
b = 1 and [a]bc =

∏c−1
i=0 (a + ib).

380 E. Shareghi et al.

highest scoring tree. CYK is a bottom-up algorithm which requires storing in a
dynamic programming table the score of each utterance’s sub-span conditioned
on all possible contexts. Even truncating the context size to bound this term
may be insufficient to allow CYK for prediction, due to the unreasonable com-
putational complexity.

The space of all possible trees for a given utterance can be compactly rep-
resented as a hyper-graph [Klein and Manning, 2001]. Each hyper-graph node
is labelled with a non-terminal and a sub-span of the utterance. There exists
a hyper-edge from the nodes B[i, j] and C[j + 1, k] to the node A[i, k] if the
rule A → B C belongs to the grammar (Figure 4). Starting from the top node
S[0, N], our prediction algorithms search for the highest scoring tree sub-graph
that covers all of the utterance terminals in the hyper-graph. Our top-down
prediction algorithms have access to the full history needed by our model when
deciding about the next hyper-edge to be added to the partial tree.

Fig. 4. Hyper-graph representation of the search space for a syntactic parsing
example. The gray areas are examples of two partial hypotheses in A* priority
queue.

5.1 A* Search

This algorithm incrementally expands frontier nodes of the best partial tree
until a complete tree is constructed. In the expansion step, all possible rules for
expanding all frontier non-terminals are considered and the resulting partial trees
are inserted into a priority queue (see Figure 4), sorted based on the following
score:

Score(T+) = log P (T) + log Gu(A → B C) + h(T+, A → B C, i, k, j|G′) (9)

where T+ is a partial tree after expanding a frontier non-terminal, P (T) is
the probability of the current partial tree, Gu(A → B C) is the probability of
expanding a non-terminal via a rule A → B C in the full context u, and h is
the heuristic function (i.e., the estimate of the score for the best tree completing
T+). We use various heuristic functions when expanding a node A[i, j] in the
hypergraph via a hyperedge with tails B[i, k] and C[k + 1, j]:

Structured Prediction of Sequences and Trees Using Infinite Contexts 381

– Full Frontier: which estimates the completion cost by

h(T+, A → B C, i, k, j|G′) =
∑

(A′,i′,j′)∈Fr(T+)

log P (A′, i′, j′|G′) (10)

where Fr(T+) is the set of frontier nodes of the partial tree, and G′ is a sim-
plified grammar admitting dynamic programming. Here we choose the PCFG
used the base measure H in the root of the PYP hierarchy. Accordingly the
log P terms can be computed cheaply using the PCFG inside probabilities.

– Local Frontier: which only considers the completion of the following frontier
nodes, and uses the completion cost of the sub-span using the selected rule:

h(T+, A → B C, i, k, j|G′) = log P (B, i, k|G′) + log P (C, k + 1, j|G′) (11)

The above heuristics functions are not admissible, hence the A* algorithm is
not guaranteed to find the optimal tree. However the PCFG provides reasonable
estimates of the completion costs, and accordingly with a sufficiently wide beam,
search error is likely to be low.

5.2 MCMC Sampling

We make use of Metropolis-Hastings (MH) algorithm, which is a Markov chain
Monte Carlo (MCMC) method, for obtaining a sequence of random trees. We
then combine these trees to construct the predicted tree.

We use a PCFG as our proposal distribution Q and draw samples from it.
Each sampled tree is then accepted/rejected using the following acceptance rate:

α(T, T ′) = min
{

1,
P (T ′)Q(T)
P (T)Q(T ′)

}

(12)

where T ′ is the sampled tree, T is the current tree, P (T ′) is the probability of the
proposed tree under our model, and Q(T ′) is its probability under the proposal
PCFG. Under some conditions, i.e., detailed balance and ergodicity, it is guaran-
theed that the stationary distribution of the underlying Markov chain (defined
by the MH sampling) is the distribution that our model induces over the space of
trees P . For each utterence, we sample a fresh tree for the whole utterance from
a PCFG using the approach of [Johnson et al., 2007], which works by first com-
puting the inside lattice under the proposal model (computed once and reused),
followed by top-down sampling to recover a tree. Finally the proposed tree is
scored using the MH test, according to which the tree is randomly accepted as
the next sample or else rejected in which case the previous sample is retained.

Once the sampling is finished, we need to choose a tree based on statistics
of the sampled collection of trees. One approach is to select the most frequently
sampled tree, however this does not work effectively in such large search spaces
because of high sampling variance. Note that local Gibbs samplers might be able
to address this problem, at least partly, through resampling subtrees instead of

382 E. Shareghi et al.

full tree sampling (as done here). Local changes would allow for more rapid mix-
ing from trees with some high and low scoring subtrees to trees with uniformly
high scoring sub-structures. We leave local sampling for future work, noting
that the obvious local operation of resampling complete sub-trees or local tree
fragments would compromise detailed balance, and thus not constitute a valid
MCMC sampler [Levenberg et al., 2012].

To address this problem, we use a Minimum Bayes Risk (MBR) decoding
method to predict the best tree [Goodman, 1996] as follows: For each pair of a
nonterminal-span, we record the count in the collection of sampled trees. Then
using the Viterbi algorithm, we select the tree from the hypergraph for which the
sum of the induced pairs of nonterminal-span is maximized. Roughly speaking,
this allows to make local corrections that result in higher accuracy compared to
the best sampled trees.

6 Experiments

In order to evaluate the proposed model and prediction algorithms, we per-
formed two sets of experiments on tasks with different structural complexity.
The statistics of the tasks and datasets are provided in Table 1.

6.1 Morphological Parsing

We consider the problem of morphological parsing of unsegmented inputs, i.e.
seeking to model words and their morphological structure in the input stream.
A morphological structure of a word breaks it into its building blocks: Prefixes,
Stem, and Suffixes. For example, for the word “antidisestablishmentarianism”,
the terms “anti”, “dis” are the prefixes,“establish” is the stem, and “ment”,
“arian”, and “ism” are the suffixes.

For this experiment, we model the Sesotho language, a Bantu language
which combines rich productive agglutinative morphology with relatively simple
phonology. We use the dataset from [Johnson, 2008], which comprises utterances
marked with word boundaries. In contrast to Johnson’s approach, our method
is supervised, and consequently we require treebanked input for training and

Table 1. Statistics for PTB syntactic Parsing and part-of-speech tagging, show-
ing the number of training and test sentences, average sentence length in words
and number of grammar rules. For morph the numbers are averaged over the 10
folds.

Task Train Test Len Rules

morph 36479 4000 5 3080
parse 33180 2416 24 31920
pos EN 38219 5462 24 29499
pos DN 3638 1000 20 5269
pos SW 10653 389 18 9739

Structured Prediction of Sequences and Trees Using Infinite Contexts 383

TOP

Sequence

Word

T

moo

Word

P1

u

Word-BAR

P2

tla

Word-BAR

T

dul

S

a

Fig. 5. Binarized morphological tree for the Sethoso sequence “moo utladula”.

evaluation. To form a proxy ‘gold-standard’, we augmented the input to include
morphological trees with prefix (P), suffix (S) and stem (T) structure inferred
automatically from segmented utterances using Johnson’s Adaptor Grammar
with his word-smorph grammar. In this grammar a word consists of a stem with
an optional suffix, and zero to three prefixes: Word → (P1(P2(P3))) T (S),
where P1, P2, P3 are prefixes, and T , and S are stem and suffix. An example
input is shown in Figure 5. We right-binarized the trees and replaced segments
with count ≤ 2 with two categories of OUT-V and OUT-C depending on their
initial character being a vowel or consonant. We applied 10-fold cross validation,
and the predicted trees were evaluated using EVALB evaluation package.

As reported in Table 2, the best result is achieved by A* search with local
frontier heuristic. It might seem surprising that considering the full frontier
heuristic results in lower performance. We speculate that this is because the
PCFG over estimates the completion cost, due to its reduced conditioning con-
text which leads to higher entropy distributions and lower probability estimates.
The reduced effect of the heuristic in the local method moderates this issue. The
MCMC sampler obtains similar results to the baseline PCFG.

In the morphological parsing task, the grammar has 3080 rules, and the aver-
age sentence length is 5 words. This leads to a reasonably-small search space,
with the net effect that A* search (with beam size 200) is an effective parsing
strategy. The small grammar size of this task has allowed us to use grammar
rules as fine-grained conditioning contexts. In the remaining tasks of syntactic
parsing and POS tagging, we will condition only on the spine. This is due to
the intractable magnitude of the spaces generated by infinite order rule condi-
tioning, which are problematic for MCMC sampling and A* search based on our
preliminary experiments.

6.2 Syntactic Parsing

For syntactic parsing, we use the Penn. treebank (PTB) dataset [Marcus et al.,
1993]. We used the standard data splits for training and testing (train sec 2-21;

384 E. Shareghi et al.

Table 2. Morphological parsing results, showing 10-fold cross validation evalua-
tion for unlabelled F-Measure (F1) and exact bracketing match (ACC). MCMC
results are averaged over 10 runs.

Parser (Morphological) F1 ACC

A* Search (Local Frontier) 95.99 89.77
A* Search (Full Frontier) 93.08 85.04
MCMC 91.33 78.86

PCFG CYK 91.27 79.39

validation sec 22; test sec 23). We followed [Petrov et al., 2006] preprocessing
steps by right-binarizing the trees and replacing words with count ≤ 1 in the
training sample with generic unknown word markers representing the tokens’
lexical features and position. The results reported in Table 3 are produced by
EVALB.

The results in Table 3 demonstrate the superiority of our model compared
to the baseline PCFG. We note that the A* parser becomes less effective (even
with a large beam size) for this task, which we attribute to the large search
arising for the large grammar and long sentences. Our best results are achieved
by MCMC, demonstrating the effectiveness of MCMC in large search spaces.

An interesting observation is how our results compare with those achieved by
bounded vertical and horizontal Markovization reported in [Klein and Manning,
2003]. Our binarization corresponds to one of their simpler settings for horizontal
markovization, namely h = 0 in their terminology, and note also that we ignore
the head information which is used in their models. Despite this we still manage
to equal their results obtained using vertical context of size 3 (v = 3), with 76.7
F1 score. Their best result, F1 = 79.74, was achieved with h ≤ 2, v = 3 (and tags
for head words). We believe that our model would outperform theirs if we con-
sider greater horizontal markovization and incorporate head word information.
To facilitate a fair comparison with vertical markovization, we experimented with
limiting the size of the vertical contexts to 2, 3 or 4 within our model. Using
MCMC parsing we found that performance consistently improved as the size of
the context was increased, scoring 68.1, 71.1, 75.0 F-measure respectively. This
is below 76.7 F-measure of our unbounded-context model which adapts itself to
data to effectively capture the right context.

Table 3. Syntactic parsing results for the Penn. treebank, showing labelled
F-Measure (F1) and exact bracketing match (ACC).

all ≤ 40

Syntactic Parser F1 ACC F1 ACC

A* (Local Frontier) 75.33 16.12 76.21 16.85
A* (Full Frontier) 72.27 13.14 72.34 13.57
MCMC 76.74 18.23 78.21 18.99

PCFG CYK 58.91 4.11 60.25 4.42

Structured Prediction of Sequences and Trees Using Infinite Contexts 385

Fig. 6. The analogy between HMM (i) and our representation (ii) for the part-
of-speech tags of the sentence “that’s fine now.”

The run-time of our parser under MCMC (with 30k samples) is 0.29×|S| secs,
and under A*(Local) is 0.13 × |S| secs, where |S| is the length of the sentence.
With a smaller number of samples the parsing time reduces linearly and the
predictive accuracy only suffers slightly; for instance with 5k samples the F1
measure (all) falls by 0.8.

Overall our approach significantly outperforms the baseline PCFG, although
note these results are well below the current state-of-the-art in parsing, which
typically makes use of discriminative training with much richer features. We
speculate that future enhancements could close the gap between our results and
that of modern parsers, while offering the potential benefits of our generative
model which allows further incorporation of different types of contexts (e.g.,
head words and n-gram lexical context).

6.3 Part-of-Speech Tagging

The part of speech (POS) corpora have been extracted from PTB (sections 0-18
for training and 22-24 for test) for English, and NAACL-HLT 2012 Shared task
on Grammar Induction2 for Danish and Swedish [Gelling et al., 2012]. We con-
vert the sequence of part-of-speech tags for each sentence into a tree structure
analogous to a Hidden Markov Model (HMM). For each POS tag we introduce a
twin (e.g., ADJ’ for ADJ) in order to encode HMM-like transition and emission
probabilities in the grammar. As shown in Figure 6, this representation guar-
antees that all the rules in the structures are either in the form of ti → tj t′j
(transition) or t′ → word (emission).

The tagging results are reported in Table 4, including comparison with
the baseline PCFG (≡ HMM) and the state-of-the-art Stanford POS Tagger
[Toutanova and Manning, 2000], which we trained and tested on these datasets.
As illustrated in Table 4, our model consistently improves the PCFG base-
line. While for Danish we outperform the state-of-the-art tagger, the results
for English and Swedish we are a little behind the Stanford Tagger. This is a
promising result since our model is only based on the rules and their contexts,

2 http://wiki.cs.ox.ac.uk/InducingLinguisticStructure/SharedTask

http://wiki.cs.ox.ac.uk/InducingLinguisticStructure/SharedTask

386 E. Shareghi et al.

Table 4. TL stands for Token-Level Accuracy, SL stands for Sentence-Level
Accuracy. MCMC results are the average of 10 runs.

English Danish Swedish

POS Tagger TL SL TL SL TL SL

A*(Local Frontier) 95.50 54.11 89.85 35.10 87.04 32.13
A*(Full Frontier) 95.27 53.88 88.57 32.6 85.62 28.53
MCMC 96.04 54.25 95.55 72.93 89.97 34.45

PCFG CYK 94.69 47.22 89.04 31.7 89.76 33.93

Stanford Tagger 97.24 56.34 93.66 51.30 91.28 37.02

Table 5. (a) Percentage of the matched spines over the top-1000 frequent spines
for each spine length in the trees predicted by our unbounded-context model
(v = ∞) and the baseline limited-context model (v = 2). (b) The top-5 frequent
contexts for NP, VP, DT, and JJ in the trees predicted by our model; the ones
marked with (*) exist in the top-5 contexts in the gold standard trees as well.

v = ∞ v = 2

parse POS parse POS

size WSJ EN DN SW WSJ EN DN SW

2 100 96 100 97 100 96 100 97
3 75 100 100 100 75 100 100 100
4 72 69 72 68 70 68 72 68
5 68 57 58 57 63 57 58 57
6 62 56 51 53 60 56 51 53
7 59 52 55 37 59 50 55 38
8 58 42 45 29 51 41 44 29
9 60 68 61 37 49 60 31 37
10 68 75 67 35 51 69 25 34

(a)

NP VP

S* S*
SINV* S VP SBAR S*
S PP* SINV*
S VP PP S SBAR S
S VP* S PRN

DT JJ

S NP * S NP*
S PP NP* S PP NP*
S VP SBAR S NP* S VP ADJP*
S VP PP NP* SINV NP
S S-BAR NP S VP SBAR S VP PP NP*

(b)

as opposed to the Stanford Tagger which uses complex hand-designed features
and a complex form of discriminative training. Note the strong performance of
MCMC sampling, which consistently outperforms A* search.

6.4 Analysis

For the analysis we focus on the syntactic parsing and POS tagging tasks. For
each different spine size from 2 to 10, we extract the top-1000 frequent spines in
the trees predicted based on our model, and compare them with those extracted
from the gold standard trees. The numbers reported in Table 5(a), are the per-
centage of the intersection of these two sets. As reported in the table, in all
cases (except one) the infinite order model (v = ∞) outperforms the model with
limited size context (v = 2). Particularly in Danish POS tagging, our model
predicts correctly 65% of top-1000 high-frequency spines of length 10 vs. 25%
of the model with limited context. For syntactic parsing, the short range depen-
dencies captured by limited context model (v = 2) over the spines of size 2 and

Structured Prediction of Sequences and Trees Using Infinite Contexts 387

3 matches the results of our unbounded context model (v = ∞); however, the
gap becomes wider for longer spines.

Our next analysis looks into the contexts of 4 linguistic categories in syn-
tactic parsing: NP (noun phrase), VP (verb phrase), DT (determiner), and JJ
(adjective). data set. We chose NP and VP mainly because they tend to appear
in higher levels of the tree and most probably often in shorter contexts, and DT
and JJ for the opposite reason. A list of the most frequent contexts for these
syntactic categories in the trees predicted by our model is provided in Table 5(b);
the ones marked with (*) exist in the gold standard trees as well. Our model
successfully retrieves most of the long and short high-frequency contexts for the
aforementioned syntactic categories.

7 Conclusion and Future Work

We have proposed a novel hierarchical model over linguistic trees which exploits
global context by conditioning the generation of a rule in a tree on an unbounded
tree context consisting of the vertical chain of its ancestors.

To facilitate learning of such a large and unbounded model, the predictive
distributions associated with tree contexts are smoothed in a recursive manner
using a hierarchical Pitman-Yor process. We have shown how to perform predic-
tion based on our model to predict the parse tree of a given utterance using vari-
ous search algorithms, e.g. A* and Markov Chain Monte Carlo. This consistently
improved over baseline methods in several tasks, and produced state-of-the-art
results for Danish part-of-speech tagging.

In future, we would like to consider sampling the seating arrangements and
model hyperparameters, and seek to incorporate several different notions of con-
text besides the chain of ancestors.

Acknowledgments. The authors are grateful to National ICT Australia (NICTA)
for generous funding, as part of collaborative machine learning research projects. This
work was funded in part by the Australian Research Council. We would like to thank
the anonymous reviewers for their constructive comments.

References

Beal, M.J., Ghahramani, Z., Rasmussen, C.E.: The infinite hidden markov model. In:
Advances in Neural Information Processing Systems, Vancouver, British Columbia,
Canada, pp. 577–584 (2001)

Brants, T.: Tnt - A statistical part-of-speech tagger. In: Proceedings of the Sixth Con-
ference on Applied Natural Language Processing, pp. 224–231 (2000)

Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language
modeling. In: Proceedings of the 34th Annual meeting on Association for Computa-
tional Linguistics, pp. 310–318. Association for Computational Linguistics (1996)

Cocke, J., Schwartz, J.T.: Programming languages and their compilers : preliminary
notes. Technical report (1970)

388 E. Shareghi et al.

Cohn, T., Blunsom, P., Goldwater, S.: Inducing tree-substitution grammars. The Journal
of Machine Learning Research 11, 3053–3096 (2010)

Finkel, J., Grenager, T., Manning, C.: The infinite tree. In: Proceedings of the 45th
Annual Meeting of Association for Computational Linguistics, pp. 272–279 (2007)

Gasthaus, J., Teh, Y.W.: Improvements to the sequence memoizer. In: Advances in
Neural Information Processing Systems, pp. 685–693 (2010)

Gelling, D., Cohn, T., Blunsom, P., Graca, J.: The PASCAL challenge on
grammar induction. In: Proceedings of the NAACL-HLT Workshop on the
Induction of Linguistic Structure, pp. 64–80. Association for Computational
Linguistics (2012)

Goodman, J.: Parsing algorithms and metrics. In: Proceedings of the 34th Annual
Meeting on Association for Computational Linguistics, ACL 1996, Stroudsburg, PA,
USA, pp. 177–183. Association for Computational Linguistics (1996)

Johnson, M.: Pcfg models of linguistic tree representations. Computational Linguistics
24(4), 613–632 (1998). ISSN 0891–2017

Johnson, M.: Unsupervised word segmentation for Sesotho using adaptor grammars.
In: Proceedings of the 10th Meeting of ACL Special Interest Group on Compu-
tational Morphology and Phonology, Columbus, Ohio, pp. 20–27. Association for
Computational Linguistics, June 2008

Johnson, M., Griffiths, T.L., Goldwater, S.: Adaptor grammars: A framework for spec-
ifying compositional nonparametric bayesian models. In: Advances in Neural Infor-
mation Processing Systems 19, Proceedings of the Twentieth Annual Conference
on Neural Information Processing Systems, Vancouver, British Columbia, Canada,
December 4–7, pp. 641–648 (2006)

Johnson, M., Griffiths, T.L., Goldwater, S.: Bayesian inference for pcfgs via markov
chain monte carlo. In: HLT-NAACL, pp. 139–146 (2007)

Klein, D., Manning, C.D.: Parsing and hypergraphs. In: Proceedings of the Sev-
enth International Workshop on Parsing Technologies (IWPT-2001), October 17–19,
Beijing, China (2001)

Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the 41st
Annual Meeting on Association for Computational Linguistics, vol. 1, pp. 423–430.
Association for Computational Linguistics (2003)

Levenberg, A., Dyer, C., Blunsom, P.: A bayesian model for learning scfgs with discon-
tiguous rules. In: Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning,
pp. 223–232. Association for Computational Linguistics (2012)

Liang, P., Petrov, S., Jordan, M., Klein., D.: The infinite PCFG using hierarchical
dirichlet processes. In: Proceedings of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pp. 688–697 (2007)

Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated corpus
of english: The penn treebank. Computational Linguistics 19(2), 313–330 (1993)

Matsuzaki, T., Miyao, Y., Tsujii, J.: Probabilistic cfg with latent annotations. In:
Proceedings of the 43rd Annual Meeting on Association for Computational Linguis-
tics, ACL 2005, Stroudsburg, PA, USA, pp. 75–82. Association for Computational
Linguistics (2005). doi:10.3115/1219840.1219850

Mochihashi, D., Sumita, E.: The infinite markov model. In: Advances in Neural Infor-
mation Processing Systems 20, Proceedings of the Twenty-First Annual Conference
on Neural Information Systems, Vancouver, British Columbia, Canada (2007)

http://dx.doi.org/10.3115/1219840.1219850

Structured Prediction of Sequences and Trees Using Infinite Contexts 389

Petrov, S., Klein, D.: Learning and inference for hierarchically split PCFGs. In: Pro-
ceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, Vancou-
ver, British Columbia, Canada (2007)

Petrov, S., Barrett, L., Thibaux, R., Klein, D.: Learning accurate, compact, and inter-
pretable tree annotation. In: Proceedings of the 21st International Conference on
Computational Linguistics and the 44th Annual Meeting of the Association for
Computational Linguistics, pp. 433–440. Association for Computational Linguistics
(2006)

Teh, Y.W.: A hierarchical bayesian language model based on pitman-yor processes.
In: Proceedings of the 21st International Conference on Computational Linguistics
and the 44th Annual Meeting of the Association for Computational Linguistics,
pp. 985–992. Association for Computational Linguistics (2006)

Thede, S.M., Harper, M.P.:. A second-order hidden markov model for part-of-speech
tagging. In: Proceedings of the 37th Annual Meeting of the Association for Computa-
tional Linguistics on Computational Linguistics, ACL 1999, Stroudsburg, PA, USA,
pp. 175–182. Association for Computational Linguistics (1999). ISBN 1-55860-609-3

Toutanova, K., Manning, M.D.: Enriching the knowledge sources used in a maximum
entropy part-of-speech tagger. In: Proceedings of the 2000 Joint SIGDAT Conference
on Empirical Methods in Natural Language Processing and Very Large Corpora,
pp. 63–70. Association for Computational Linguistics (2000)

Wood, F., Archambeau, C., Gasthaus, J., James, L., Teh, Y.W.: A stochastic memo-
izer for sequence data. In Proceedings of the 26th Annual International Conference
on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14–18, p. 142
(2009a)

Wood, F., Archambeau, C., Gasthaus, J., James, L., Teh, Y.W.: A stochastic memoizer
for sequence data. In: Proceedings of the 26th Annual International Conference on
Machine Learning, pp. 1129–1136. ACM (2009b)

Wood, F., Gasthaus, J., Archambeau, C., James, L., Teh, Y.W.: The sequence memo-
izer. Commun. ACM 54(2), 91–98 (2011)

Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-bfgs-b: Fortran subroutines
for large-scale bound-constrained optimization. ACM Transactions on Mathematical
Software (TOMS) 23(4), 550–560 (1997)

Temporally Coherent Role-Topic Models
(TCRTM): Deinterlacing Overlapping Activity

Patterns

Evgeniy Bart(B), Bob Price, and John Hanley

Palo Alto Research Center, Palo Alto, USA
{bart,bprice,jhanley}@parc.com

Abstract. The Temporally Coherent Role-Topic Model (TCRTM) is a
probabilistic graphical model for analyzing overlapping, loosely tempo-
rally structured activities in heterogeneous populations. Such structure
appears in many domains where activities have temporal coherence, but
no strong ordering. For instance, editing a PowerPoint presentation may
involve opening files, typing text, and downloading images. These events
occur together in time, but without fixed ordering or duration. Further,
several different activities may overlap – the user might check email while
editing the presentation. Finally, the user population has subgroups; for
example, managers, salespeople and engineers have different activity dis-
tributions. TCRTM automatically infers an appropriate set of roles and
activity types, and segments users’ event streams into high-level activity
instance descriptions. On two real-world datasets involving computer user
monitoring and debit card transactions we show that TCRTM extracts
semantically meaningful structure and improves hold-out perplexity score
by a factor of five compared to standard models.

1 Introduction

Models of user activities can be used to improve productivity and enable new
services across a wide variety of domains such as finance, personal assistants,
health care, and many others. However, such modeling is very challenging due
to the complexity and variations in activities. We present a new generative model
whose structure uniquely exploits properties of user activity streams in order to
build better models of behavior in realistic contexts. Because these behavior
models are generative, they can be used for a variety of classification and predic-
tion tasks ranging from predicting future user needs, to detecting organizational
saboteurs, to connecting users with common interests.

Real-world event streams (such as financial transaction streams or computer
event logs) exhibit several forms of complexity. First, the latent structure is non-
obvious, because semantically meaningful activities often manifest via groups of
observed events that may be large, heterogeneous, and include significant varia-
tions in composition, order, and size. For example, editing a PowerPoint presen-
tation may involve opening files, typing text, downloading images, and saving

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 390–405, 2015.
DOI: 10.1007/978-3-319-23525-7 24

Coherent Role-Topic Models 391

Events

Ac vi es

Y3
OUTLOOK

Y1
COMPILING

Y4
PROFILING

Z2=EMAIL μ2=4:00 PM σ2=5min

4:10 3:45 3:50 3:55 4:00 4:05 4:15

Y5
TYPING

Y2
OPENFILE

Y6
COMPILING

Z1=CODING μ1=3:45 PM σ1=15min

Time

Fig. 1. A given user on a given day typically engages in multiple, possibly overlap-
ping, activities. Each activity has a defined temporal extent. These activities in turn
generate a sequence of events at specific times. Events from multiple activities may be
interleaved.

files, but the exact order and frequency of these events varies significantly. Some
users prefer saving their presentation more often than others; some presentations
may involve a lot of text and not many images, while for others the opposite is
true; some users download content using Firefox, while others prefer Chrome or
Safari; and so on.

Second, the activities generating events can overlap in complex ways: a user
email activity, a user powerpoint development activity and a background operat-
ing system update activity could all be active simultaneously. In real-world data
streams, the events generated by these activities are intermixed in an extended
history and are not segmented out or distinguished in any way.

Third, users typically comprise multiple distinct subgroups with very differ-
ent behaviors. For instance, an office may include administrators, salespeople,
and engineers; these will have very different computer activity distributions.
Identifying these groups may be interesting in itself; in addition, attempting to
create one model for all groups may result in poor performance.

As an example, consider the events associated with a workstation user who
is coding and writing emails during the same interval (see Figure 1). These
two activities result in interleaved operating system events such as compiling,
opening of files and text entry. We note that while activities have temporal
extents, the events generated by the activities do not have strong sequential
orderings. Compiling, editing and file events are all part of coding, but the
specific ordering of these is not highly determined.

A desirable goal is abstracting these complex raw event streams into a concise,
high-level description of the user’s typical activities. In this paper, we explain
how our proposed model addresses the issues outlined above, and provide exam-
ples of its modeling capability on two challenging real-world datasets.

The remainder of this paper is organized as follows. In section 2, we summa-
rize relevant prior work and highlight the differences from our proposed model. In
section 3, we describe the proposed TCRTM model. The experiments in section 4
demonstrate that TCRTM successfully overcomes the challenges outlined above
and significantly outperforms previously available methods. We conclude with
some final remarks in section 5.

392 E. Bart et al.

2 Related Work

Although some existing methods could be applied to analyze overlapping, loosely
structured activities as described in this paper, none addresses all of the chal-
lenges outlined above. Below, we summarize the most relevant prior work, cate-
gorized by approach.

Handcrafted Models of Behavior. Behavior analysis has a long history in
psychology and organizational theory [11], but these theories do not provide a
formal computational model that can be used for prediction. The multi-agent
systems community has applied computational agents to modeling of organiza-
tions [3]. These approaches are based on simulation, which allows us to see the
implications of predefined behaviors. We find that our data changes too rapidly
to admit handcrafted rules. Existing models from psychology and organizational
behavior do not include an inferential component capable of directly extracting
new behavioral insights from observational data.

Hidden Markov Models. Automatically learning human activity from obser-
vational data is a more recent endeavor but widely studied by many researchers.
Many of these models employ variations on the Hidden Markov Model (HMM) [8].
Interestingly, in many transactional domains we find that the user activities have
temporal coherence but do not have a strong sequential regularity. As illustrated in
section 1, editing a PowerPoint presentation may involve events such as opening
files, typing text, downloading images, and saving files, but the exact order and
frequency of these events varies significantly from one case to another. Transitions
between different activities are often not very structured as well; for example, some
users may check email while working on a presentation, while others prefer to com-
plete the current task before doing so. If such loosely structured activities were to
be learned by an HMM, it would have to learn multiple different orderings of events
and activities separately to account for all possible variations. This would combi-
natorially increase model complexity and training data requirements, and result
in poor generalization.

Topic Models. Topic modeling is a key method for explaining discrete events
in terms of a mixture of shared latent distributions. LDA [2] is perhaps the best-
known example, although numerous generalizations exist (see below for some
examples). Originally designed to simultaneously extract a set of topic vectors
from a corpus of documents, and model the content of the documents as a
mixture of extracted topics, LDA has been used in a wide variety of applications
in which one wants to represent the content of the objects as a mixture of a
small number of shared profiles.

A significant drawback of LDA is that it doesn’t model time or temporal
coherence. As a result, the topics it discovers may correspond not to a coherent
user activity, but rather to a set of related events across multiple activities.

Coherent Role-Topic Models 393

This is illustrated in section 4 and in Figures (3) and (4) giving examples of
inferred activity types and LDA topics respectively. A detailed comparison of
the proposed model to LDA is given in section 4.

Dynamic Topic Models. such as DTM [1] ignore local ordering of events (such
as the order of words in a single document), and model how both the topics and
mixture priors change over time (across multiple documents, typically spanning
years). DTM could capture topic content changes such as the fact that articles
about football have recently begun to include material on head injuries as well
as capturing changes in preferences over topics such as a shift from football
discussion topic to a cell-phone apps discussion topic over time. Variations of
this model have been applied to to capture shopping behavior over time [5]
and industrial chlorine sensor network streams [14]. The problems addressed by
dynamic topic models are orthogonal to the problem discussed here; our focus is
on exploiting local temporal coherence of events (within a single document) to
improve the semantic meaning of extracted topics and achieve better fit to the
data. The drift of these topics over time is not addressed in this paper, although
that is certainly an interesting future direction. Returning to the example in
Figure 1, we’d like our model to understand, for example, that the ‘check email’
activity started later than the ‘coding’ activity, rather than determine how the
‘check email’ activity evolved over 5 years.

Dynamic Processes Treated as Stationary Distribution. Topic models
have been applied to activity recognition in video sequences [9]. Spatio-temporal
interest points (small patches in time that capture visual and motion texture)
are extracted from a short video segment. A topic model is used to find a small
set of topics that explains the features extracted from a set of short video clips
of various actions. The interpretability of the model can be increased by semi-
supervised training in which the classes (identified with latent topics) are known
and a subset of instances are labeled [15]. In cases where there are common
behaviors and rare behaviors, the model can be augmented to share features
between common and rare behaviors so that the model only has to model how
rare behaviors are different from common behaviors [13] – reminiscent of hier-
archical population model style inference when data is sparse. These models
treat an entire clip as features drawn from a stationary distribution, so they will
not work unless the data is already segmented into regions of coherent activity
(which is the goal of this paper).

Encoding Time in Vocabulary Words. Topic models have been extended
to include time by augmenting vocabulary words with time information [6]. In
this model, the user’s location behavior is categorized as being at home (H), work
(W) or other (O). The sequence of locations sampled at 1/2 hours resolution is
grouped into trigrams (e.g., HHH or WWO) which are then augmented with a
“coarse day segment” number (early morning 0-7am=1, morning 7-11am =2, etc.)

394 E. Bart et al.

to get segment-augmented trigrams such as HHH1 or HHH2. The augmented tri-
grams are fed into a generic author-topic model which learns that specific users
have certain patterns such as being home early in the afternoon or going out in
the evenings. This model does not have any notion of an activity independent
of time – the observation distributions are directly coupled to coarse time seg-
ments. So it is not possible to learn about shopping behavior in the morning and
use this to make inferences about a shopping trip planned in the afternoon.

Preprocessing via Topic Models for Dynamical Models. In some work,
topic models are used as a preprocessing step for later stages of activity recog-
nition [4]. Topic models can be used as part of a preprocessing step to compress
or project high-dimensional signals down to a vector over a small set of topics.
The topic indexes can then be fed to an HMM or classifier. These models com-
bine the drawbacks of LDA and HMM: for the preprocessing step to succeed,
LDA must extract relevant topics, which is difficult with loosely structured event
streams (see section 4); while HMM at the subsequent stage will only succeed if
the sequence of transitions between topics is highly structured.

Topic Models over Multiple Corpora. Practitioners have recognized that
there may be distinct subpopulations which need to be modeled in different ways.
Topic models have been extended to explicitly model the interests of authors [12].
Topic models have also be extended to cover multiple corpora over time [16] in
order to expose commonalities and differences of different media over time. While
these models capture subpopulations, they, like LDA, do not reflect temporal
coherence.

Non-negative Matrix Factorization. Mixture models can be applied to data
to pull out possibly overlapping subcomponents. Non-negative matrix factoriza-
tion [7] has been a popular approach for factorizing data. The technique has been
explicitly applied to signal separation [10]. While NNMF does utilize the idea of
events being generated by mixtures, it doesn’t exploit the temporal coherence
of activities. As a result (just like with LDA, see above), the clusters extracted
are not necessarily coherent activities, but just collections of events with similar
properties. In addition, NNMF typically requires very structured input that can
be organized in a matrix or a higher-dimensional tensor. This makes it difficult
to apply to our data, where different users have a different number of events at
different time points.

In summary, existing models do not handle the challenges of distinct subpop-
ulations with loosely structured, temporally coherent activities found in many
real-world datasets. In the next section, we develop a model that has elements
of a mixture model but incorporates temporal coherence, subpopulations and a
notion of activity instances to handle these challenges.

Coherent Role-Topic Models 395

3 Model

The observations that we are interested in modeling generally consist of streams
of discrete events. Each event description includes the user who performed it,
the timestamp, and an ‘event type’. This event type is a discrete category label
such as ‘file open’, ‘image download’, and so on.

Two key components of our model are activity type and activity instance.
Activity type is a general category of activity performed by users, such as ‘check-
ing email’ or ‘road trip’. Activity instance is a specific exemplar of that activity
being performed by a given user at a given time, such as ‘user 124 checking
email at 10 am’ or ‘customer 71 taking a road trip to Las Vegas on June 14th’.
In our model, activity types are modeled as multinomial parameter vectors ψ,
with ψt specifying the distribution over event types for the given activity type
t. For instance, ψemail might be a distribution favoring events such as ‘selecting
message’, ‘sending email’, ‘typing up a response’, etc. (cf. Figure 3(a)). Activity
instances are modeled by selecting an activity type, as well as the mean and
variance of event timestamps in the activity instance. The mean and variance
parameters define the temporal extent of the activity. So an ‘email’ activity
instance might be for ‘10:00 am ± 10 minutes’, and the email-related events
around this time (as determined by a Gaussian density) will be preferentially
associated with this activity instance. The smoothness of the Gaussian likelihood
will facilitate the sampler’s exploration of assignments of events to instances.

One additional component of the proposed model addresses the fact that
users can often be grouped into distinct subgroups based on their observed activ-
ity. For example, company employees have different job roles. These roles dictate
the types of activities users typically engage in. In our model, roles are modeled
as multinomial parameter vectors φ. Each parameter φr specifies the distribu-
tion over activity types that users in role r are likely to engage in. A software
engineer role might have a high probability for coding-related activities such as
code compilation, whereas a marketing role might have a high probability for
email and presentation activities.

The plate diagram for the TCRTM model incorporating user roles, activ-
ity types and activity instances is shown in Figure 2, where the corresponding
generative process is also summarized.

The proposed TCRTM model could be compared to standard LDA [2] as
follows. Consider treating users as documents, and individual events as words.
Then both LDA and TCRTM explain the observed event types in a document
via a set of topics ψt. The difference is that LDA has no concept of activity
instance; all events assigned to a topic t are treated equally, and their times-
tamps are ignored. In contrast, in TCRTM an event is assigned to a ‘topic’
via an intermediate Iuj variable that corresponds to a specific activity instance;
therefore, an activity type (such as ‘checking email’) may be repeated multiple
times by each user, and there is an explicit separation of these multiple instances.
The timestamps in TCRTM are not ignored, but rather are used to encourage
temporal coherence of individual instances.

396 E. Bart et al.

Fig. 2. (a): TCRTM plate diagram. Shaded nodes represent observable variables; vari-
ables not enclosed in circles represent hyperparameters. In the diagram, ru is the role
assigned to user u; φr is the distribution over activity types for role r; Tui is the activity
type for the i’th activity instance for user u; Iuj is the activity instance assigned to the
j’th event of user u; euj is the event type and tuj is the timestamp for the j’th event;
ψt is the distribution of event types for activity type t; and μui and σ2

ui represent the
time and duration of activity instance i. The conditional distributions are as follows:
φr ∼ Dir(α); ru ∼ Mult(1/R); Tui ∼ Mult(φru); Iuj ∼ Mult(1/I); euj ∼ Mult(ψTuIuj

);

tuj ∼ N(μuIuj , σ
2
uIuj

); μui, σ
2
ui ∼ NIχ2(μ0, κ0, ν0, σ

2
0); ψt ∼ Dir(γ). R: number of roles;

I: number of instances per user. (b): the corresponding generative process.

Compared to hidden Markov models (HMMs), the TCRTM allows mul-
tiple simultaneous activities to take place. Such multitasking is common in
many datasets; for example, workstation data exhibits considerable overlap-
ping activity due to both the user’s attempts at multi-tasking, as well as due
to the system executing background processes during the course of the user’s
normal work. These simultaneous activities are separated from each other in

Coherent Role-Topic Models 397

TCRTM (a process called ‘deinterlacing’), and are grouped into coherent activ-
ity instances. In contrast, in standard HMM implementations multiple simulta-
neous activities are usually modeled by augmenting the latent space to include
a cross-product of multiple activities – a process that increases the modeling
complexity significantly. The TCRTM also loosely models temporal coherence
without imposing ordering. Unlike an HMM, the TCRTM’s activity instances
prefer representations in which the events of an activity occur close together in
time without requiring any specific ordering of these events. To get the same
generalization power as a TCRTM, an HMM must be trained on enough data
to learn each possible ordering.

Finally, in addition to the differences discussed above, TCRTM also incorpo-
rates the concept of roles. These determine the activity types users can engage
in, but are otherwise not constrained by official job titles. As a result, informal,
but significant subgroups of people will be allocated distinct roles; these could
correspond to different job types when modeling an organization’s computer
logs, or to customer groups when modeling debit card transaction data. The
advantages of the TCRTM are summarized below:

– Compared to HMM, TCRTM can deinterlace overlapping activities.
This is important for many practical datasets.

– Compared to LDA, TCRTM can deal with observable events that are
temporally coherent (as opposed to activity that occurs throughout
an interval of time)

– Compared to HMM, TCRTM can deal with observable events that
are not strictly ordered.

– Compared to both LDA and HMM, TCRTM models user roles. This
allows finding coherent groups of people with similar behavior.

3.1 Inference

The goal of inference is to estimate the parameters of the model given a collection
of observed events and the hyperparameters (α, γ, κ0, etc.). The parameters
of interest describe the inferred domain structure (for example, ψt describes
activity types in terms of event types that are likely under that activity), as well
as specific assignments of objects to clusters (for example, Iuj represents the
activity instance to which the j’th event of user u is assigned).

Our overall approach is to use Gibbs sampling, which allows drawing sam-
ples from the posterior distribution of the model’s parameters given the data.
The parameters of interest can then be estimated from these samples. For effi-
ciency, we use a collapsed Gibbs sampler, where the variables φ, ψ, μ, and σ2

are integrated out, and the remaining discrete variables ru, Tui, and Iuj are

398 E. Bart et al.

sampled until convergence. Estimates for the integrated-out variables can then
be obtained in terms of the discrete variables.

The expressions below are derived using standard methodology for Gibbs
sampling; therefore, the derivations are omitted. The resulting conditional dis-
tributions are shown for completeness, as well as for intuition and for comparison
to standard models.

As usual, the sampling distributions are expressed using count data. In our
notation, N represents a count variable. Its superscript indicates what entities
are being counted (for example, N I is a count of activity instances and Ne is a
count of individual events). The subscripts are indices of the relevant entities. A
dot in place of an index indicates summation over that index. The current entity
being sampled is omitted from the counts.

In the conditional sampling distributions below, N I
rt is the number of activity

instances that belong to users with role r that have activity type t, excluding
the current instance. Similarly, N I

ut is the number of instances of user u that
have activity type t, and T is the total number of activity types.

The conditional sampling distribution for the role of user u is:

p(ru = r0|rest) ∝
∏

t Γ (α + N I
r0t + N I

ut)
Γ (αT + N I

r0· + N I
u·)

· Γ (αT + N I
r0·)∏

t Γ (α + N I
r0t)

. (1)

The conditional sampling distribution for the activity type of the ith activity
instance of user u is given next. Here, Ne

te is the number of events of type e
assigned to activity type t, Ne

uie is the number of events of type e for user u
assigned to activity instance i, and E is the total number of event types:

p(Tui = t0|rest) ∝ α + N I
rut0

αT + N I
ru·

·
∏

e Γ (γ + Ne
t0e + Ne

uie)
Γ (γE + Ne

t0· + Ne
ui·)

· Γ (γE + Ne
t0·)∏

e Γ (γ + Ne
t0e)

(2)

The conditional sampler for the user u’s jth activity is given below. Here,
tν is the Student’s t distribution, and its parameters are νui0 = ν0 + Ne

ui0·,

κui0 = κ0 + Ne
ui0·, μui0 = κ0

κui0
μ0 +

Ne
ui0·

κui0
tui0 , and

σ2
ui0 =

1
νui0

[

ν0σ
2
0 + SSui0 − Ne

ui0·t
2
ui0 +

κ0N
e
ui0·

κ0 + Ne
ui0·

(tui0 − μ0)2
]

, (3)

where tui0 is the empirical mean and SSui0 is the empirical sum of squares of
timestamps for user u, activity instance i0.

p(Iuj = i0|rest) ∝
γ + Ne

Tui0euj

γE + Ne
Tui0 ·

tνui0

(

tuj | μui0 ,
1 + κui0

κui0

σ2
ui0

)

. (4)

It is interesting to compare these expressions with the corresponding sam-
pling equation for regular LDA. In LDA, the probability of assigning an event
euj to a topic z0 is

p(zuj = z0|rest) ∝ γ + Ne
z0euj

γE + Ne
z0·

· α + Ne
uz0

αT + Ne
u·

. (5)

Coherent Role-Topic Models 399

In TCRTM, the equivalent of topics is activity types. Events, however, are
not assigned to activity types directly; rather, events are assigned to activity
instances via eq. (4), and the activity instance i is associated with an activity
type given by Tui. Comparing eq. (5) to eq. (4), we note that the first term for
LDA is similar to the first term for TCRTM, except z0 is replaced with Tui0

(since the activity instance i0 has activity type Tui0 , which is equivalent to the
topic z0 in LDA). The second term in LDA is absent from eq. (4), but appears
instead as the first term in eq. (2), except that individual users u are replaced
with user roles r that combine multiple users, and the fact that in TCRTM,
activity instances are counted instead of individual events. Finally, the last term
in eq. (4) is absent from the LDA sampling because LDA doesn’t model event
time stamps. This term simply encourages individual events from a particular
activity instance to be clustered in time.

4 Experiments

We have experimented with two datasets. The first dataset includes debit card
transactions from over 300,000 users over a period of approximately 7 month.
The users are the beneficiaries of various state government programs; once a
month each card is loaded with an allotment of money which the users can
subsequently spend. The total number of transactions is about 50 million. Each
transaction includes a timestamp and a merchant code. This merchant code is
a description of the general type of products sold or services provided, such as
“Veterinary services” or “Hardware stores”. This merchant code was used as the
‘event type’ in our model.

The second dataset includes data from monitoring user workstations at a
large defense contractor. In this domain, the observables correspond to operat-
ing system primitives such as opening a file, executing a utility, or initiating a
network connection. Each such primitive consists of two parts: the application
that was used to perform the action (e. g., ‘firefox.exe’) and the action itself
(e.g., ‘ImageDownloadEvent’). About 5000 employees were monitored over one
month, resulting in over 100 million individual events.

TCRTM is not very sensitive to the choice of hyperparameters. For our exper-
iments, the following settings were used: α = 1, γ = 1. These were selected using
simple logarithmic grid search. In addition, μ0 was set to the empirical mean of
all the timestamps in each dataset, and κ0 = 0.0001 was used to reduce influ-
ence of the prior mean on timestamp variance (eq. (3)). Further, σ2

0 was set to
(D/I)2, where D is the duration of the modeled time period and I is the number
of activity instances within that time period. This prior simply splits the entire
time period into I intervals of roughly equal length (note that the posterior dis-
tribution will adjust this prior based on the actual observed data). Finally, ν0
was set to 5.0, again, chosen using simple logarithmic grid search.

TCRTM was initialized at random, and then Gibbs sampling was run for
200 iterations. Examining the marginal likelihood revealed that the sampler
converged typically after about 30 iterations (not shown).

400 E. Bart et al.

Fig. 3. Example activity types learned automatically by TCRTM. For each activity
type, top event types and corresponding probabilities are shown; the numbers are
rounded to nearest integer. The captions are not part of the model and were given by
the authors for illustration. (a)-(c): workstation dataset. (d)-(f): debit card dataset. As
can be seen, TCRTM successfully identifies semantically related groups of events.

The remaining parameters of interest in TCRTM are the number of roles R,
the number of activity types T , and the number of activity instances per user
I. For the debit card dataset, we’ve used R = 25, T = 25, and I = 14. R was
chosen by trial and error, T was chosen by observing that for settings of T > 25
duplicate activity types started appearing, and I was chosen so that there would
be roughly two activity instances per month (so that beginning-of-the-month and
end-of-the-month spending patterns could be separated).

For the workstation dataset, we’ve used R = 10 and T = 100. Since activity
types in this dataset (such as ‘checking email’ or ‘creating a presentation’) are

Coherent Role-Topic Models 401

Fig. 4. Example topic learned by LDA on the workstation dataset. As can be seen,
LDA grouped together a variety of events related to the MS Office suite. Although this
grouping is understandable (as users who have Office installed typically use multiple
applications within the suite), it is unlikely that they use all three applications simul-
taneously. Thus, the grouping reflects an artefact of software bundling rather than a
semantically meaningful, coherent user activity.

of inherently much shorter average duration, we’ve used a setting of 10 activity
instances per day, or 300 activity instances per month (which is our modeling
period). While TCRTM could run with these settings as is, an additional obser-
vation is that activities are short and rarely span across day boundaries because
of the way most people’s work days are scheduled. Therefore, we modified the
model in Figure 2 to treat each day separately, with the corresponding obvious
modifications to the sampling equations. The effect of this change is that instead
of selecting one of 300 global activity instances for each event (most of the 300
with very low probability), the model only needs to select one of 10 activity
instances for a particular day. This makes the sampler computationally more
efficient.

TCRTM was compared to standard LDA [2]. LDA was chosen as a basis
for comparison because it is naturally suited to modeling observations that
are generated by several distinct latent processes, as the observations in our
datasets are. Alternative methods, such as HMM, are unlikely to perform well
on our datasets because there are no natural fixed transitions between events
and between activities.

4.1 Activity Types

Several activity types discovered automatically by TCRTM are shown in
Figure 3. As can be seen, the model organizes event types into semantically
meaningful groups. Note that these groups encompass events that occur together
when a user performs a natural task; they are not limited to grouping together
all events from a single executable file or all events that co-occur in temporal
proximity. For example, in Figure 3(a), all event types that occur when working
with email are identified, even though they are performed by separate executable
files. Note that the executable names themselves were not available to TCRTM;
the events in question were encoded as ‘1733077456:98’, ‘2341822329:303’, and
‘1733077456:96’, providing no text similarity clues to the appropriate event

402 E. Bart et al.

Table 1. Perplexity of LDA and TCRTM on the two datasets used. Lower values are
better (note that perplexity measures the degree of surprise or confusion). Note that
the values are on logarithmic scale. As can be seen, TCRTM significantly outperforms
LDA on both datasets.

��������
Dataset

Method LDA TCRTM

Debit cards 11.44 2.56

Workstation data 10.12 5.91

groupings. Similarly, multiple executable files pertaining to using the Dropbox
service were grouped together (Figure 3(b)), and preference of several users to
listen to music while editing notes with OneNote was identified (Figure 3(c)).

In contrast, topics learned by LDA often reflected not a coherent activity, but
rather related events across multiple activities. This is illustrated in Figure 4.
As can be seen, LDA grouped together a variety of events related to the MS
Office suite. Although this grouping is understandable (as users who have Office
installed typically use multiple applications within the suite), it is unlikely that
they use all three applications simultaneously. Thus, the grouping reflects an
artefact of software bundling rather than a semantically meaningful, coherent
user activity.

For debit card data, several interesting patterns were identified as well. For
example, an activity type in Figure 3(d) groups together event types related to
cash aspects of the card (checking the balance, receiving the monthly allotment,
and withdrawing it as cash). Figure 3(e) shows an activity type related to buying
food and other everyday items (such as gas).

The conclusion is that TCRTM can successfully identify semantically mean-
ingful, coherent activity types.

4.2 Perplexity

Next, we compared TCRTM to LDA in terms of their ability to extract structure
from data and anticipate future events. To perform the comparison, we split each
dataset into a training and hold-out set (there was no overlap between the two
sets). TCRTM and LDA were both fitted to the training set, and the perplexity
of the corresponding models was then evaluated on the hold-out set. For this,
the log-probability of each hold-out event was evaluated for each model under
the parameters of an immediately preceding observed event. The results are
reported in Table 1. As can be seen, TCRTM significantly outperforms LDA on
both datasets.

Coherent Role-Topic Models 403

Fig. 5. Effect of TCRTM roles. (a): unordered histories; (b): histories ordered by
TCRTM roles. In the top half of subfigure (b) we see blue online grocery purchases
over the whole monthly cycle whereas in the bottom half of (b) we see a concentration
of bright green ATM cash withdrawls early in the monthly cycle (cf. Figure 3(d)) and
few online transactions of any type mid month. Thus TCRTM automatically infers
cash-based vs. online client types. (Best viewed on-screen, enlarged and in color.)

404 E. Bart et al.

4.3 Effect of Roles

To visualize the effect of modeling user roles, we performed an experiment on
a small subset of the debit card dataset that contained a randomly selected set
of 287 users and 50,000 transactions. The same settings as for the main dataset
were used, except we reduced the number of roles to 2 (this was done for easier
visualization, as well as due to the small size of the subset). The results are
shown in Figure 5 (the figure is best viewed on-screen, enlarged and in color).
In both images, each row corresponds to a different user. Time flows from left to
right. Each transaction type is color-coded according to the legend at the bot-
tom. Thus, each row shows a snapshot of user’s behavior over 3 months (note
that the full 7 months of data were used for modeling, but the display was trun-
cated to 3 months due to space considerations). In Figure 5(a), the users are
shown in the original, random order. In Figure 5(b), the same set of users was
rearranged by their role, as inferred automatically by TCRTM. Thus, the only
difference between sub-figures 5(a) and 5(b) is that in Figure 5(b), rows are shuf-
fled such that users with the same role are clustered together. As can be seen,
TCRTM groups users with similar behavior into the same role. There are notice-
able similarities in behavior between users with the same role, and significant
differences in behavior across roles. For example, the bottom part in Figure 5(b)
contains more bright green transactions, corresponding to cash-based activi-
ties (cf. Figure 3(d)), and is overall brighter, while the top part contains more
blue transactions and is overall darker. Examining the conditional distributions
inferred for the roles indeed confirms that for the ‘AUTOMATED CASH DIS-
BURSEMENT’ transactions (color-coded bright green), the probability under
role 2 (corresponding to the bottom part in Figure 5(b)) is 0.19, while for role
1 (corresponding to the top part) it is only 0.08. For the ‘GROCERY STORES
SUPERMARKETS’ transaction (color-coded dark blue), the probability under
role 1 (top part) is 0.12, while under role 2 (bottom part) it is only 0.06. The
conclusion is that the role modeling aspect of TCRTM identifies semantically
meaningful groups of users.

5 Conclusions

The experiments comparing temporally coherent role-topic model (TCRTM) to
conventional models such as LDA suggest that TCRTM can exploit the local
temporal coherence of events and population subgroup modeling to increase
the predictive power of the model. The significant increase in modeling power
makes us optimistic about the potential for TCRTM to improve a broad range
of applications related to activity analysis such as prediction, recommendation
and classification. As such, we argue that the TCRTM is an important milestone
that will stimulate more accurate algorithms for real-world transactional activity
analysis applications.

Acknowledgments. The authors gratefully acknowledge support for this work from
DARPA through the ADAMS (Anomaly Detection At Multiple Scales) program funded

Coherent Role-Topic Models 405

project GLAD-PC (Graph Learning for Anomaly Detection using Psychological Con-
text). Any opinions, findings, and conclusions or recommendations in this material are
those of the authors and do not necessarily reflect the views of the government funding
agencies.

References

1. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the 23rd Inter-
national Conference on Machine Learning, pp. 113–120. ACM (2006)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. In: NIPS,
pp. 601–608 (2001)

3. Dignum, V. (ed.): Handbook of Research on Multi-Agent Systems: Semantics and
Dynamics of Organizational Models (2009)

4. Huynh, T., Fritz, M., Schiele, B.: Discovery of activity patterns using topic models.
In: Proceedings of the 10th International Conference on Ubiquitous Computing,
UbiComp 2008 (2008)

5. Iwata, T., Watanabe, S., Yamada, T., Ueda, N.: Topic tracking model for analyzing
consumer purchase behavior. In: IJCAI (2009)

6. Gatica-Perez, D., Farrahi, K.: Discovering routines from large-scale human loca-
tions using probabilistic topic models. In: ACM Transactions on Intelligent Systems
and Technology (2011)

7. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS,
pp. 556–562. MIT Press (2000)

8. Natarajan, P., Nevatia, R.: Coupled hidden semi markov models for activity recog-
nition. In: Proceedings of the IEEE Workshop on Motion and Video Computing,
WMVC 2007, Washington, DC, USA, p. 10. IEEE Computer Society (2007)

9. Niebles, J.C., Wang, H., Li, F.-F.: Unsupervised learning of human action cat-
egories using spatial-temporal words. International Journal of Computer Vision
79(3), 299–318 (2008)

10. Plumbley, M.: Conditions for non-negative independent component analysis. IEEE
Signal Processing Letters 9(6), 177–180 (2002)

11. Robbins, S.P.: Organizational Behavior: Concepts, Controversies and Applications,
5th edn. Prentice-Hall (1991)

12. Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic model for
authors and documents. In: Proceedings of the 20th Conference on Uncertainty
in Artificial Intelligence, UAI 2004, Arlington, Virginia, USA, pp. 487–494. AUAI
Press (2004)

13. Gong, S., Hospedales, T.M., Li, J.: Identifying rare and subtle behaviors: A weakly
supervised joint topic model. In: Pattern Analysis and Machine Vision (2011)

14. Wei, X., Wang, X., Sun, J.: Dynamic mixture models for multiple time-series. In:
IJCAI (2007)

15. Mori, G., Wang, Y.: Human action recognition by semilatent topic models. In:
Pattern Analysis and Machine Intelligence (2009)

16. Zhang, J., Song, Y., Zhang, C., Liu, S.: Evolutionary hierarchical dirichlet processes
for multiple correlated time-varying corpora. In: Proceedings of the 16th ACM
(2010)

The Blind Leading the Blind: Network-Based
Location Estimation Under Uncertainty

Eric Malmi1,2(B), Arno Solin1,2, and Aristides Gionis1,2

1 Helsinki Institute for Information Technology, Helsinki, Finland
{eric.malmi,arno.solin,aristides.gionis}@aalto.fi

2 Department of Computer Science, Aalto University, Espoo, Finland

Abstract. We propose a probabilistic method for inferring the geo-
graphical locations of linked objects, such as users in a social network.
Unlike existing methods, our model does not assume that the exact loca-
tions of any subset of the linked objects, like neighbors in a social net-
work, are known. The method efficiently leverages prior knowledge on the
locations, resulting in high geolocation accuracies even if none of the loca-
tions are initially known. Experiments are conducted for three scenarios:
geolocating users of a location-based social network, geotagging histori-
cal church records, and geotagging Flickr photos. In each experiment, the
proposed method outperforms two state-of-the-art network-based meth-
ods. Furthermore, the last experiment shows that the method can be
employed not only to network-based but also to content-based location
estimation.

1 Introduction

Observations recorded as data are typically associated with a location. Simi-
larly, data attributes are often spatially correlated. For example, consider friend-
ship relations in a social network that correlate with the geographical distances
between friends, or business types that cluster in different parts of a city, such
as restaurants and cafés being more concentrated in touristic areas.

On the other hand, there is a plethora of available datasets that lack explicit
location information, even though the data objects they contain are inherently
associated with a location (or a distribution of locations). For instance, consider
online social networks where only a small fraction of the users provide their
location explicitly. As a second example, motivated by the domain of historical
research and social sciences, consider historical documents, such as letters or pub-
lic registry records. Such documents contain many pieces of valuable information,
but are often not accurately geolocated, either because their authors assumed
that the location is implicit, or because there is a reference to an uncertain
location, as the location of an old village can be uncertain.

As can be easily motivated from the previous examples, identifying the loca-
tion of data objects is an important problem, and has compelling applications.
For example, as pointed out by Backstrom et al. [2], locating the users of an
online social network can be used to improve the network security by detecting
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 406–421, 2015.
DOI: 10.1007/978-3-319-23525-7 25

The Blind Leading the Blind: Network-Based Location Estimation 407

“phishing” attempts, or to improve the user experience by offering personal-
ized functionalities. Similarly, locating place names or whereabouts of people
mentioned in historical documents is an extremely valuable tool for research in
history or other social sciences. Yet another domain where geolocation can pro-
vide vital insights is the field of forensics where it has been used to pinpoint
serial offenders [9].

In this paper, we propose a new method for inferring the geographical location
of linked objects. In a nutshell, our method can be described as follows. We
consider a set of objects for which certain attributes are known but the location
information is missing. We assume that the known attributes can be used to
provide two types of additional information:

1. A prior distribution of each data object over a set of candidate locations. For
instance, in the social-network scenario, known friend locations can be taken
as candidate locations [2]. Or if we know the city where the object is located,
we can simply define a grid over the city and impose a uniform prior over
the grid cells, as done in the Flickr experiment in this paper.

2. Links between data objects. In the case of social networks, friendship relations
between users are available, indicating that friends are more likely to be
located in nearby locations. Similarly, in the photo-location application, two
photos taken by the same user within a short time interval are more likely
to be located in nearby locations.

Our method follows a probabilistic inference approach and gives predictions for
the locations of the objects in the dataset by taking into account the prior
distribution over locations and the links between objects.

The most closely-related work to our paper is the study of Backstrom et
al. [2], who propose a probabilistic model for inferring the locations of Facebook
users, given the location of their friends. However, our method extends and
improves this prior work in the following ways:

– Our method does not assume that the exact locations for any of the linked
data objects, like neighbors in a social network, are known. Instead we
impose a prior distribution over these locations. This generalization makes
the method very well suited to cope with the uncertainty that is present in
most datasets. The case that the location of some objects is known, can also
be naturally incorporated in our model.

– The proposed model offers a general abstraction that can be used to infer the
locations of any kind of linked data with spatial dependencies. We demon-
strate the generality of the model by applying it to three application sce-
narios: (i) geolocating users in a social network; (ii) geotagging historical
church records from the 1600s to 1800s; and (iii) geotagging Flickr photos.

– The last experiment regarding Flickr photos shows that the proposed method
can be adapted to content-based analysis, even though it is primarily
designed for network-based geolocation.

Even though many relevant problems naturally fall under this problem setup
as is demonstrated in the experiments, to our knowledge there is a lack of methods

408 E. Malmi et al.

that would attempt to perform location estimation based on linked items whose
locations are not known exactly.

The rest of the paper is organized as follows. In Section 2 we give an overview
of previous related work. Our method is presented in Section 3, where we for-
malize the abstract geolocation problem and present the probabilistic algorithm
for solving it. The three experiments discussed above are presented in detail in
Section 4. Section 5 contains a final discussion and suggestions for future research
directions.

2 Related Work

With the abundance of data gathered from all kinds of human activity, and
the wide spread of social media applications that support collection of large
amounts of user-generated content, problems related to geolocating various types
of data have gained importance. As a result, a large number of related papers
have appeared in machine learning, data mining, and web science venues. These
pieces of work can be roughly categorized under network-based and content-
based methods [10].

Network-Based Geolocation. In network-based methods, only the network
structure and the location information about the other nodes are used for geolo-
cation. Examples of this type of approach are the methods proposed by Back-
strom et al. [2] and Jurgens [5]. These two methods will be further described in
Section 3.4.

Rout et al. [10] approach the user geolocation problem as a classification
problem and apply an SVM classifier. The classification is done on a city-level,
and for each city a number of features, including the number of friends in the city
and its total population, are extracted. The performance on the city prediction
problem is better than the performance by the Backstrom et al. [2] method, but
it is not clear how the classification approach scales down if we need to predict
more fine-grained locations since the number of classes and sparsity of the data
would both increase.

McGee et al. [8] build on the work of Backstrom et al., and they study the
effect of incorporating information about tie strengths in the geolocation model.
This line of thinking is complementary to our method. As we discuss later, our
approach supports having different edge types, which can be learned separately.
Nevertheless, our focus is in the general network-based geolocation problem,
whereas many of the features used for inferring the tie strength in McGee et al.
are Twitter specific, like the number followers and mentions in Twitter.

Sadilek et al. [11] propose a probabilistic method for location prediction based
on dynamic Bayesian networks. This method is shown to provide high accuracy
estimates, but the problem setting is more specific than ours. They assume that
a time series of friend locations is provided as an input for the system.

Content-Based Geolocation. A different approach to the problem of geolo-
cating users in social networks is to perform a more detailed analysis on the

The Blind Leading the Blind: Network-Based Location Estimation 409

content generated by users. Most of the content-based methods from the recent
years have focused on geolocating Twitter users [1,6,7,13].

The focus of our work is in network-based geolocation, but in our last exper-
iment, we show that the proposed method can be used for content-based esti-
mation as well. In that experiment, we aim to geotag Flickr photos based on
textual annotations (tags). We show that the solution obtained using our frame-
work corresponds to the method proposed by Serdyukov et al. [12]. Additionally,
we present the idea of linking consecutive photos of a user in order to estimate
their locations jointly and show that it slightly improves the geotagging accuracy.
Another approach for geotagging Flickr photos has been proposed by Crandall et
al. [4]. Their method also uses tags, but additionally they extract visual features
(SIFT descriptors) from the photos. The photos are then geolocated using the
resulting distribution over the joint feature space. However, the idea of estimat-
ing the locations of consecutive photos jointly is not explored in either of these
works.

3 Methods

In this section we describe the general setting for the geolocation problem. As
mentioned in the introduction, our model offers a unified framework that can fit
various, seemingly very different types of geolocation problems. We present our
solution in two steps. First we derive an exact solution for the general problem
in the case of geolocating a single object. Then we extend to the multiple object
case and show how to obtain an approximate solution. Later we show how the
specific application scenarios fit under the general model.

3.1 Problem Setting

We consider a set V of items whose locations we want to find out. We assume
that relations between items have been observed and represented by a set of
edges E. Thus, the data items form a graph G = (V,E). The neighbors of an
item u in the graph G are denoted by N(u) = {v | {u, v} ∈ E}.

We also consider a discrete set of locations L which are the candidate loca-
tions to place the items in V . A distance function d : L × L → R is defined
between locations, such that d(�1, �2) denotes the distance between locations
�1, �2 ∈ L. In this paper, d(·, ·) is considered to be a geodetic distance, except for
the photo geotagging case study where employ use the Manhattan (city block)
distance since we consider the center of New York City. For each item u ∈ V we
write �(u) ∈ L to denote the location where to u is mapped. The mapping of
all the items in V to locations in L is denoted by (boldface) vector �, in other
words, � = 〈�(u) | u ∈ V 〉.

We model uncertainty by considering a probability distribution Pr[�(u)] for
item u over the space of possible locations. In our problem formulation we assume
that initially, as part of the input, a prior distribution Pr[�(u)] for each item u is
given. This is a fairly natural assumption for many applications as illustrated by

410 E. Malmi et al.

Observed edges Prior distributions

G L

Fig. 1. A simple example of the GeoLocation problem with three items to be located,
and a set of discrete candidate locations.

our experiments. For item u, we denote by L(u) the subset of locations in L for
which the prior distribution Pr[�(u)] is non-zero. In other words, L(u) is the set
of candidate locations where to place item u. Depending on the application, L(u)
may be a significantly smaller set than L. In practice, we can further prune the
set L(u) by removing locations that have very small prior probability for u. If the
exact location of an item u is known then Pr[�(u)] is a delta distribution. If no
information about an item u is known then Pr[�(u)] is the uniform distribution.
Note that we also assume that the set of candidate locations L is discrete. This is
the case with the first two of our case studies. In cases where the set of locations
is continuous, we can discretize it on a set of grid cells, as done in our Flickr
photo geolocation case study.

We consider data for which spatial dependencies are present. The existence of
an edge between two items u and v is thus assumed to depend on the location of
the items. In our probabilistic model setting, the locations of the items are viewed
as model parameters and edges as the observed data. Each edge {u, v} ∈ E is
assumed to be produced by a generative process that depends on the location of
the two items u and v. Given two candidate locations �(u) and �(v) for items u
and v we write Pr[{u, v} ∈ E | �(u), �(v)] for the likelihood of an edge between u
and v given their candidate locations. To simplify the problem we assume that
an edge depends only on the distance between the two candidate locations, and
we write Pr[{u, v} ∈ E | d(�(u), �(v))] to denote this likelihood.

In the context of social networks, the generative process would correspond to
the process of people forming social ties. Even for online social networks, formed
in a virtual world, distance have been shown to play an important role in the
process of relationship formation [2]. We also note that we may have different
kinds of edges and the likelihood of an edge may depend also on the edge type.
For instance, in our third case study, where we estimate the locations of Flickr
photos based on their tags and consecutive photos, we have two types of edges:
“photo-to-tag” and “photo-to-photo.”

Our problem can now be defined as follows.

Problem 1. (GeoLocation) Consider a graph G = (V,E) over items V , and a set
of candidate locations L. For each item u ∈ V we are given a prior distribution

The Blind Leading the Blind: Network-Based Location Estimation 411

Pr[�(u)]. The goal is to infer a mapping � of items to locations in order to maximize
the likelihood Pr[E | �] of observing the data given the inferred locations.

In some cases, we are interested in estimating the locations for a subset of
the items U ⊆ V . In this case, we consider that for the rest of the items V \U the
prior distributions are kept fixed. This special case can be easily incorporated in
our framework. Unless stated otherwise, we assume that U = V .

An illustration of a very simple instance of the geolocation problem is shown
in Figure 1. In this case there are three items (depicted by three different shapes:

, , and) and two edges, as shown in the left side of the figure. The prior
distribution of each item to 2 or 3 candidate locations is assumed to be uniform
and it is shown in the right. If the edge probability increases as the distance
between items decreases, then the maximum-likelihood estimate will give a solu-
tion according to which the items lie in the upper-right corner of the figure.

3.2 Estimating a Single Location

We start by deriving the maximum a posteriori (MAP) estimate for the location
�(u) of a single item u ∈ V assuming that the location distributions of the other
items are kept fixed. The likelihood function of the observed edges is given by

Pr[E | �(u)] =
∑

�N(u)

Pr[E, �N(u) | �(u)]

=
∑

�N(u)

Pr[�N(u) | �(u)] Pr[E | �(u), �N(u)]

=
∑

�N(u)

∏

v:{u,v}∈E

Pr[�(v)] Pr[{u, v} ∈ E | �(u), �(v)],

where �N(u) = {�(v) : {u, v} ∈ E} are the locations of the neighbors of u and
the summation goes over all different candidate locations of each neighbor. In
the above derivation we have assumed independence for the prior probabilities
of different locations and for the different edges. As already discussed, we fur-
ther assume that the likelihood of an edge being present, given the locations of
the adjacent vertices, Pr[{u, v} ∈ E | �(u), �(v)], only depends on the distance
d(�(u), �(v)) of the locations. By reordering the terms, we then get

Pr[E | �(u)] =
∏

v:{u,v}∈E

∑

�(v)

Pr[�(v)] Pr[{u, v} ∈ E | d(�(u), �(v))]. (1)

The maximum a posteriori estimate for �(u) is then given by

�̂(u) = arg max
�(u)∈L(u)

Pr[�(u)] Pr[E | �(u)].

If no information is provided for the items and the prior is set to the uniform
distribution the MAP estimate corresponds to the maximum-likelihood estimate
(MLE).

412 E. Malmi et al.

Alg. 1. Approximate maximum likelihood estimation for multiple locations.
Input: Graph G = (V, E), prior distributions Pr[�(v)] for each v ∈ V , and items

whose locations we want to estimate U ⊆ V .
Output: Locations for each u ∈ U .
Initialize a list of lists T ; // Stores likelihood of each candidate location of each user

for i ← 1 to max iter do
foreach u ∈ U do

foreach j ∈ L(u) do
Tu,j ← Pr[E | �(u) = j] ; // Use Eq. (1)

foreach u ∈ U do

Tu,: ← Tu,:∑
j Tu,j

; // Normalize distribution

Pr[�(u)] ← Tu,: ; // Update priors in a batch

return arg max�(u) Pr[�(u)] for each u ∈ V ;

In the above estimation we assumed that the term Pr[{u, v} ∈ E |
d(�(u), �(v))] is known. This probability function can be learned from train-
ing data containing items with known locations and some edges between them.
Learning the edge probability function includes also the case that there are edges
of different types. In this case the edge probability function may depend on the
edge type. It should be expected that the edge probability function is a mono-
tonically decreasing function of the distance, and indeed, this is the case in all
three of our case studies. However, the model does not require monotonicity.

3.3 Estimating Multiple Dependent Locations

We now show how to extend the method to find MAP or MLE location estimates
for all items jointly. The likelihood of the edges in the graph, given all locations
is given by

Pr[E | �] =
∏

{u,v}∈E

Pr[{u, v} ∈ E | �] =
∏

{u,v}∈E

Pr[{u, v} ∈ E | d(�(u), �(v))].

This function is not maximized by simply computing the MLE for each loca-
tion individually using Eq. (1). The reason is that if the distribution of �(u) is
updated, it will potentially change the MLEs of u’s neighbors.

In order to get an approximate MLE, we use a simple iterative method. In
each iteration, for each item u the prior Pr[�(u)] is recomputed using the current
estimate for the locations of the neighbors of u. The recomputation of Pr[�(u)] is
done by computing Pr[E | �(u) = j], using Eq. (1), for each candidate location
j ∈ L(u) and normalizing. The method terminates when the estimates converge
or when a maximum number of iterations is reached. The method is illustrated
in Algorithm 1.

Note that an alternative way of getting an approximate solution for the
locations of all items could be to define an inference problem for an undirected

The Blind Leading the Blind: Network-Based Location Estimation 413

graphical model, where the items would correspond to the vertices of the graph,
and use methods such as loopy belief propagation for estimating the locations.
However, in our early experimentation we noticed that the estimation of condi-
tional density functions Pr[�(u) | �(v)] used in graphical models is more challeng-
ing than the estimation of edge probabilities, since the former seems to depend
more heavily on geographical characteristics, like oceans or metropolitan areas.

3.4 Baseline Methods

The method closest to our approach is the algorithm proposed by Backstrom
et al. [2] for the problem of determining the locations of Facebook users. They
also compute a MLE for each user and then iterate the computation step with
the user locations updated in a batch. However, there are two key differences
compared to our method: First, they consider only friends whose location is
known exactly and after each iteration the users are assigned to their most likely
locations. If there are multiple almost as probable locations for a user, assigning
her to a single location seems harsh, which is why we have designed our method
to work with location distributions. Second, they include an additional term
which is a product over all edges not being present. However, they state that
this term typically plays a small role and is expensive to compute, so in our
experiments we run a slightly simplified version of their algorithm by omitting
the additional term. This baseline method is referred to as Backstrom*.

As another baseline, we use the method proposed by Jurgens [5]. This method
is designed for cases when only a small fraction of locations is known initially,
and the idea is to propagate location “labels” in the network until all users have
been geolocated. The author experimented with different ways for selecting the
user location �(u) based on the known neighbor locations �(v), and the best
performance was obtained by selecting the geometric median

arg min
�(u)

∑

�(v)

d(�(u), �(v)).

We note that this term can be rewritten as

arg max
�(u)

∏

�(v)

e−d(�(u),�(v)),

which, quite interestingly, shows that the method is equivalent to Backstrom*
given that

Pr[{u, v} ∈ E | d(�(u), �(v))] ∝ e−d(�(u),�(v)).

We refer to this baseline method as Jurgens.

4 Experiments

The problem of determining the geographical location of an entity—such as
a person in a social network, a tweet, a photo, or virtually any piece of

414 E. Malmi et al.

information—is an integral part of many services. We present three very dif-
ferent types of geolocation problems which can be all represented and solved
under the same general framework described in Section 3.1. Our experiments
are performed on publicly available data, and on data collected via public APIs.
To facilitate reproducibility of our results, we have made the software used for
the experiments available at: https://github.com/ekQ/geolocation.

4.1 Predicting Social Network User Home Locations

In this experiment, we use a similar setup that was used in Backstrom et al. [2]
and vary the fraction of users, whose locations are initially known exactly. For the
remaining users, we try to find the best location from a candidate set consisting of
the known or the most probable locations of the neighboring users. Then we start
iterating and update the candidate sets in the beginning of each iteration. This
method is compared with Backstrom* and Jurgens presented in Section 3.4.

Data. We use a location-based social network called Brightkite [3]. This dataset
contains 58 228 users, 214 078 edges between the users, and 4 491 143 check-ins
by the users. In order to estimate the ground truth locations of the users, we
simply compute the median latitude and longitude of their check-ins. The users
are randomly split into a training set (50%), used for fitting the models, and a
testing set (50%), used for evaluating the geolocation performance. Any edges
between the training and testing users are ignored.

Social Network Experimental Results. The proposed method, which keeps
track of the uncertainty in the estimates, is compared to two other recently pro-
posed methods which assign a single location to a user instead of a distribution.
If a user already initially has some friends whose exact location is known, then
it is not clear that keeping track of the location distributions should improve
the estimation. And even if none of the user’s friends have a known location,
they will eventually be assigned one if the graph is connected, as the estimates
will propagate throughout the graph, enabling location estimation for each user.
Nevertheless, the results in Figure 2 show that the proposed method outper-
forms Backstrom* and Jurgens. Accuracy is defined as the fraction of users
geolocated within 40 km from the ground truth location and the average accu-
racy improvement over Backstrom* is 0.5 percentage points. McNemar’s test
confirms that the improvements are statistically significant (p < 0.001) up till
fraction 0.6. After this point, quantifying the uncertainty does not help any-
more since most of the neighbor locations are known exactly. Compared to Jur-
gens, the difference is more clear, the average improvement being 4.7 percentage
points. Figure 3 shows a power-law fit for the term Pr[{u, v} ∈ E | d(�(u), �(v))]
employed in MLE and Backstrom*.

4.2 Geotagging Historical Church Records

We consider a big historical dataset containing digitized church records from
Finland. The digitalization from the original hand-written documents has been

https://github.com/ekQ/geolocation

The Blind Leading the Blind: Network-Based Location Estimation 415

Fig. 2. Brightkite user geolocation performance with the proposed method (MLE) and
two other recently proposed methods.

Fig. 3. Probability of two Brightkite users being friends given their distance and the
power law fit to the data.

obtained by volunteers in the “HisKi” project.1 This data can be considered an
early population register, which was kept by the Evangelical Lutheran Church,
the national church of Finland. The data contains millions of records of births,
deaths, marriages and migration, spanning approximately three hundreds years
from the 1600s to the late 1800s. The coverage of the church records was orig-
inally close to full, but the digitized material covers only parts of the complete
dataset (some material is not digitized yet, and some is lost).

As part of the exploratory data analysis of the HisKi dataset, our interest
in this paper is to attach geographical coordinates to the records in the data by
geolocating the village associated with each record. This is not a trivial problem
since most village names are not unique. In addition to the village name, the
records contain the associated parish name, and the name of the estate/farm.

1 The Genealogical Society of Finland has an online interface to the HisKi data: http://
hiski.genealogia.fi/hiski?en

http://hiski.genealogia.fi/hiski?en
http://hiski.genealogia.fi/hiski?en

416 E. Malmi et al.

Data. The dataset contains 9 410 villages and 521 parishes in total. Village
names can be matched against the Finnish geographic name database,2 which
contains coordinates for all villages in contemporary Finland, but in most cases,
the match is not one-to-one since there are lots of duplicate village names. Fur-
thermore, some of the village names have slightly changed over time, so we find
the matching candidate villages by employing Damerau–Levenshtein string edit
distance with a cutoff value of two.

Finding the correct village location among the candidates would not be fea-
sible without additional information. However, we can leverage the fact that we
know which villages belong to the same parish and that these villages are likely
to be located nearby. This insight can be captured under the proposed frame-
work by representing the village data as a graph, containing a node for each
village and an edge between each pair of villages belonging to the same parish.
The prior distribution for a village node is given by the locations of the matching
villages in the geographic name database.

In this experiment, we consider only the 427 parishes with a known location
and their 4 574 member villages whose names have at least two matches in the
geographic name database. The average number of matches is 7.2. The ground
truth location of a village is defined as the candidate location nearest to the
associated parish. The parishes are split into training (30%) and testing (70%)
parishes.

Village Geolocation Results. The locations of all village objects are initially
unknown. The proposed method can readily model this uncertainty but Back-
strom* and Jurgens rely on the assumption that at least a part of the locations
are initially known. However, we can also apply the latter two methods by first
assigning each village randomly to a candidate location and then running the
methods. Since some of these initial guesses will be correct, the algorithms might
be able to gradually find more and more correct locations. This is indeed what
happens as is shown in Figure 4(a). The term Pr[{u, v} ∈ E | d(�(u), �(v))]
is learned from the data for the proposed method and Backstrom*, whereas
Jurgens inherently assumes that it follows an exponential distribution. Hence
Backstrom* obtains a higher accuracy in the first iterations than Jurgens but
they both stagnate to the same accuracy of 79%. The proposed method clearly
outperforms these by achieving an 87% accuracy, which is remarkable given that
none of the locations are initially known and randomly assigning the villages to
candidate locations would yield an accuracy of only 25%.

Geolocating Parishes. In addition to villages, we can use the proposed method
for geolocating the parishes whose coordinates are not recorded in the HisKi
database. One way of achieving this, is to build a graph where each village is
linked only to its parish. The HisKi database contains also information about
neighboring parishes, so we can additionally draw edges between parishes.

2 Open data provided by the National Land Survey of Finland: http://www.
maanmittauslaitos.fi/en/digituotteet/geographic-names

http://www.maanmittauslaitos.fi/en/digituotteet/geographic-names
http://www.maanmittauslaitos.fi/en/digituotteet/geographic-names

The Blind Leading the Blind: Network-Based Location Estimation 417

Fig. 4. (a) Fraction of correctly geolocated villages considering the 4 574 villages with
at least two village name matches. (b) Location of a historical parish called “Sääminki”
as identified by our method () and the location of an island called Sääminki in

contemporary Finland (). Candidate village locations are shown by black crosses.

Fig. 5. (ab) Prior distributions for Flickr tags ‘harlemriver’ (blue) and ‘stadium’
(black) around New York City with a grid size of 0.5 km. (c) A photo with the tag
‘stadium’ can be narrowed down to the neighborhood of the Yankee Stadium, using
MLE, if the next photo has been tagged with ‘harlemriver’.

Due to lack of space, we do not present the full results of this experiment
here, but instead we provide some anecdotal evidence that the locations found
by the method are useful. Let us study a parish called Sääminki for which
there is only one match in the geographic name database. However, it turns out
that this match is 200 km away from the location found by the algorithm. By
searching for some background information on this parish, we find out that there
used to be a municipality called Sääminki but nowadays it belongs to the city of
Savonlinna. However, 200 km away from Savonlinna, there is still an island called
Sääminki, where we might erroneously locate the parish if we do not consider the
information about the member villages. The member village candidate locations
and the two different Sääminki locations are visualized in Figure 4(b).

418 E. Malmi et al.

4.3 Geotagging Flickr Photos

Finally, we apply the proposed method to a different application domain and
show that it can be employed, not only to network-based, but also to content-
based geolocation. The specific task we aim to accomplish is to estimate the
locations of photos uploaded in the Flickr photo-sharing system.3 Our input
consists of a set of photos specified by their IDs, timestamps, and user-provided
tags for each photo. We present a mapping of this problem to our general frame-
work, and find out that the obtained maximum likelihood solution corresponds
to a method proposed by Serdyukov et al. [12], showing that their method is a
special case of our framework. Additionally, the framework allows us to link con-
secutive, presumably nearby photos of a user to estimate their locations jointly.
This idea is shown to improve the maximum likelihood estimate.

The set of items V consists of all photos and all tags. We only focus on
estimating the photo locations, so the set U contains only the photo items. As
the candidate locations for each photo and tag, we define an N × N grid over
the city, giving a total of N2 candidate locations. The prior distributions of the
tags are learned by counting the occurrences of the tags in different grid cells
from a set of training photos with known locations. For the photos, we employ
a uniform prior over the whole grid.

Edges are created between a photo h and all its tags a. We assume a tag to be
located in the same cell where its photo was taken, and thus, if d(�(h), �(a)) > 0,
we set Pr[{h, a} ∈ E | d(�(h), �(a))] = 0. Otherwise, when d(�(h), �(a)) = 0, the
term Pr[{h, a} ∈ E | d(�(h), �(a))] simply corresponds to the probability of tag
a at location �(h), which can be estimated as the fraction of training photos at
�(h) having tag a. Considering only the edges between photos and tags, would
lead to the multiplication of tag probabilities in each cell, which is equivalent
to the maximum likelihood solution proposed by Serdyukov et al. [12]. They
show that geolocation accuracy can be improved by applying various smoothing
techniques, but for simplicity, we have only applied Laplace smoothing, adding
a dummy count of 0.1 to each grid cell.

Furthermore, we create an edge between two consecutive photos u and v
taken by the same user, within a 5-minute interval. The underlying assumption
is that such photos have been taken in nearby locations. Term Pr[{u, v} ∈ E |
d(�(u), �(v))] corresponds to the edge probability between two photos by a single
user given their distance. This term peaks at distance 0 and then decreases
monotonically. In this experiment, distances are measured by the Manhattan
distance. Figure 5 illustrates the advantage of using edges between consecutive
photos. Dots correspond to individual photos with a given tag and heatmaps
show the estimated probabilities.

Computation. Next we show how to evaluate Eq. (1) used in Algorithm 1
conveniently using matrix operations due to shared candidate locations (recall
that we assume that each photo can be located in any grid cell). First, we define
a linear indexing from 1 to N2 for the grid cells. Second, we have two different

3 http://www.flickr.com/

http://www.flickr.com/

The Blind Leading the Blind: Network-Based Location Estimation 419

types of edges: “photo–tag” and “photo–photo.” For a photo h we denote by
Nt(h) the tags of the photo, and by Np(h) the neighboring photos of h (which
can be 0, 1, or 2, as we assume a linear order induced by time with a 5-min
cutoff). Then, the evaluation of Eq. (1) for a location j ∈ {1, . . . , N2} takes the
following form:

Pr[E | �(h) = j] =
∏

v∈N(h)

∑

�(v)

Pr[�(v)] Pr[{h, v} ∈ E | d(j, �(v))]

=
∏

vt∈Nt(h)

N2
∑

i=1

Pr[�(vt) = i] Pr[{h, vt} ∈ E | d(j, i)]

×
∏

vp∈Np(h)

N2
∑

i=1

Pr[�(vp) = i] Pr[{h, vp} ∈ E | d(j, i)]

=: A(h, j)
∏

vp∈Np(h)

B(vp, j).

Let us first look at term A(h, j). As pointed out earlier in this section, the edge
probability is nonzero only when d(i, j) = 0 and thus we get rid of the summation

A(h, j) =
∏

vt∈Nt(h)

Pr[�(vt) = j] Pr[{h, vt} ∈ E | d(j, j)] = C
∏

vt∈Nt(h)

Pr[�(vt) = j],

where C is a constant.
Let P be the number of photos and A ∈ R

P×N2
a matrix defined by Av,j =

A(v, j). The matrix A can be precomputed before starting Algorithm 1, since
the location distributions of the tags are not updated.

Then let matrix T ∈ R
P×N2

denote the uniform prior probabilities of the
photo locations, given by Tv,j = Pr[�(v) = j] = 1

N2 , and P ∈ R
N2×N2

the edge
probabilities given the locations of the adjacent vertices P�(u),�(v) = Pr[{u, v} ∈
E | d(�(u), �(v))]. Now we notice that we can compute B(vp, j) using the follow-
ing vector multiplication

B(vp, j) =
N2
∑

i=1

Pr[�(vp) = i] Pr[{h, vp} ∈ E | d(j, i)] = Tvp,·P·,j

and thus

Pr[E | �(h) = j] = A(h, j)
∏

vp∈Np(h)

B(vp, j) = Ah,j

∏

vp∈Np(h)

Tvp,·P·,j .

Using this formula, we can execute Algorithm 1 efficiently and conveniently,
updating the matrix T at every iteration.

Data Preprocessing. The Flickr service allows users to geolocate their photos
at different accuracy levels. The dataset we use contains only the photos with the
highest accuracy level. Furthermore, in Flickr, it is possible to upload multiple

420 E. Malmi et al.

photos with the same set of tags in a bulk. To reduce noise in the data due to
bulk uploads, we only keep the first photo if there are multiple photos from the
same user, on the same date, and with exactly the same tags. Additionally, we
filter out the tags that have been used by fewer than three users. The photos
originate from a 10 km × 10 km area in the center of New York City, and in
total we have 727 457 photos, 42 519 users, and 59 190 unique tags, after the
aforementioned preprocessing steps.

Geotagging Results. In our experimental setup, the grid size is set to 10 × 10
so that each cell is 1 km by 1 km. From each user, we take only the photos
that have an edge to another photo to understand the effect of linking photos
in more detail. A 10-fold cross-validation over users is employed to evaluate the
performance of the methods.

A majority-vote baseline, computed by predicting the grid cell with the
largest number of training photos, yields an accuracy of 23.5%. The method by
Serdyukov et al. [12] obtains a clearly higher accuracy of 46.6%. This is further
improved by the MLE method, which converges in two iterations, yielding an
accuracy of 47.1%. The 0.5% improvement is statistically significant (p < 0.001)
according to McNemar’s test, suggesting that the information regarding consec-
utive photos could prove useful when designing methods tailored for the photo
geotagging problem.

5 Conclusions and Discussion

We have presented a probabilistic framework for inferring the geographical loca-
tions of objects. We assume that the objects are linked in a graph structure, and
a prior distribution of the object locations is available. We showed that these
assumptions are mild, and many application scenarios fit the proposed setting.
To demonstrate the generality of the proposed method and to evaluate its perfor-
mance, we presented detailed experiments for three different types of geolocation
problems. Our evaluation indicated that the proposed method outperforms two
other recently proposed network-based geolocation methods, Backstrom* and
Jurgens.

An important novelty of the method is that it can manage large degrees of
uncertainty in the data. Unlike the existing approaches we are aware of, our
method does not need to assume the exact locations for any of the objects in
the data. This is convincingly demonstrated in all three of our case studies.

Several future directions are worth exploring. In some cases it is more natural
to treat location as a continuous variable. Thus we could try to find the maximum
likelihood estimate in the continuous case, employing gradient-based methods.
Also, it would be interesting to compare the proposed approach with undirected
graphical models (Markov random fields), in which approximate inference can
be achieved, for instance, by adopting loopy belief propagation.

Acknowledgments. We would like to thank the team in the Genealogical Society of
Finland and Jouni Malinen for making the HisKi data available to us. We also thank
Géraud Le Falher for sharing the Flickr dataset.

The Blind Leading the Blind: Network-Based Location Estimation 421

References

1. Ahmed, A., Hong, L., Smola, A.: Hierarchical geographical modeling of user loca-
tions from social media posts. In: Proceedings of the 22nd International Conference
on World Wide Web, pp. 25–36. ACM (2013)

2. Backstrom, L., Sun, E., Marlow, C.: Find me if you can: improving geographical
prediction with social and spatial proximity. In: Proceedings of the 19th Interna-
tional Conference on World Wide Web, pp. 61–70. ACM (2010)

3. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in
location-based social networks. In: Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1082–1090.
ACM (2011)

4. Crandall, D.J., Backstrom, L., Huttenlocher, D., Kleinberg, J.: Mapping the
world’s photos. In: Proceedings of the 18th International Conference on World
Wide Web, pp. 761–770. ACM (2009)

5. Jurgens, D.: That’s what friends are for: Inferring location in online social media
platforms based on social relationships. In: Proceedings of the 7th International
AAAI Conference on Weblogs and Social Media, pp. 273–282 (2013)

6. Li, R., Wang, S., Deng, H., Wang, R., Chang, K.C.C.: Towards social user pro-
filing: unified and discriminative influence model for inferring home locations. In:
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1023–1031. ACM (2012)

7. Mahmud, J., Nichols, J., Drews, C.: Where is this tweet from? inferring home
locations of twitter users. In: Proceedings of the 6th International AAAI Conference
on Weblogs and Social Media, pp. 511–514. ACM (2012)

8. McGee, J., Caverlee, J., Cheng, Z.: Location prediction in social media based on
tie strength. In: Proceedings of the 22nd ACM International Conference on Infor-
mation & Knowledge Management, pp. 459–468. ACM (2013)

9. O’Leary, M.: The mathematics of geographic profiling. Journal of Investigative
Psychology and Offender Profiling 6(3), 253–265 (2009)

10. Rout, D., Bontcheva, K., Preoţiuc-Pietro, D., Cohn, T.: Where’s @wally? a classi-
fication approach to geolocating users based on their social ties. In: Proceedings of
the 24th ACM Conference on Hypertext and Social Media, pp. 11–20. ACM (2013)

11. Sadilek, A., Kautz, H., Bigham, J.P.: Finding your friends and following them to
where you are. In: Proceedings of the 5th ACM International Conference on Web
Search and Data Mining, pp. 723–732. ACM (2012)

12. Serdyukov, P., Murdock, V., Van Zwol, R.: Placing flickr photos on a map. In:
Proceedings of the 32nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 484–491. ACM (2009)

13. Yamaguchi, Y., Amagasa, T., Kitagawa, H., Ikawa, Y.: Online user location infer-
ence exploiting spatiotemporal correlations in social streams. In: Proceedings of the
23rd ACM International Conference on Conference on Information and Knowledge
Management, pp. 1139–1148. ACM (2014)

Weighted Rank Correlation: A Flexible
Approach Based on Fuzzy Order Relations

Sascha Henzgen and Eyke Hüllermeier(B)

Department of Computer Science, University of Paderborn, Paderborn, Germany
{shenzgen,eyke}@upb.de

Abstract. Measures of rank correlation are commonly used in statistics
to capture the degree of concordance between two orderings of the same
set of items. Standard measures like Kendall’s tau and Spearman’s rho
coefficient put equal emphasis on each position of a ranking. Yet, moti-
vated by applications in which some of the positions (typically those
on the top) are more important than others, a few weighted variants of
these measures have been proposed. Most of these generalizations fail to
meet desirable formal properties, however. Besides, they are often quite
inflexible in the sense of committing to a fixed weighing scheme. In this
paper, we propose a weighted rank correlation measure on the basis of
fuzzy order relations. Our measure, called scaled gamma, is related to
Goodman and Kruskal’s gamma rank correlation. It is parametrized by
a fuzzy equivalence relation on the rank positions, which in turn is speci-
fied conveniently by a so-called scaling function. This approach combines
soundness with flexibility: it has a sound formal foundation and allows
for weighing rank positions in a flexible way. The usefulness of our class
of weighted rank correlation measures is shown by means of experimental
studies using both synthetic and real-world ranking data.

1 Introduction

Rank correlation measures such as Kendall’s tau [11] and Spearman’s rho [20],
which have originally been developed in non-parametric statistics, are used
extensively in various fields of application, ranging from bioinformatics [1] to
information retrieval [21]. In contrast to numerical correlation measures such as
Pearson correlation, rank correlation measures are only based on the ordering of
the observed values of a variable. Thus, measures of this kind are not limited to
numerical variables but can also be applied to non-numerical variables with an
ordered domain (i.e., measured on an ordinal scale) and, of course, to rankings
(permutations) directly.

In many applications, such as Internet search engines, one is not equally
interested in all parts of a ranking. Instead, the top positions of a ranking (e.g.,
the first 10 or 50 web sites listed) are typically considered more important than
the middle part and the bottom. Standard rank correlation measures, however,
put equal emphasis on all positions. Therefore, they cannot distinguish disagree-
ments in different parts of a ranking. This is why weighted variants have been
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 422–437, 2015.
DOI: 10.1007/978-3-319-23525-7 26

A Flexible Approach Based on Fuzzy Order Relations 423

proposed for some correlation measures, as well as alternative measures specif-
ically focusing on the top of a ranking [6,7,10,16,21]. Most of these generaliza-
tions fail to meet desirable formal properties, however. Besides, they are often
quite inflexible in the sense of committing to a fixed weighing scheme.

In this paper, we develop a general framework for designing weighted rank
correlation measures based on the notion of fuzzy order relation, and use this
framework to generalize Goodman and Kruskal’s gamma coefficient [8].1 Our
approach has a sound formal foundation and allows for weighing rank positions in
a flexible way. In particular, it is not limited to monotone weighing schemes that
emphasize the top in comparison to the rest of a ranking. The key ingredients
of our approach, to be detailed further below, are as follows:

– Fuzzy order relations [4] are generalizations of the conventional order rela-
tions on the reals or the integer numbers: SMALLER, EQUAL and GREATER. They
enable a smooth transition between these predicates and allow for express-
ing, for instance, that a number x is smaller than y to a certain degree, while
to some degree these numbers are also considered as being equal. Here, the
EQUAL relation is understood as a kind of similarity relation that seeks to
model the “perceived equality” (instead of the strict mathematical equality).

– Scaling functions for modeling fuzzy equivalence relations [12]. For each ele-
ment x of a linearly ordered domain X, a scaling function s(·) essentially
expresses the degree s(x) to which x can be (or should be) distinguished from
its neighboring values. A measure of distance (or, equivalently, of similarity)
on X can then be derived via accumulation of local degrees of distinguisha-
bility.

– Fuzzy rank correlation [5,17] generalizes conventional rank correlation on
the basis of fuzzy order relations, thereby combining properties of standard
rank correlation (such as Kendall’s tau) and numerical correlation measures
(such as Pearson correlation). Roughly, the idea is to penalize the inversion
of two items (later on called a discordance) depending on how dissimilar the
corresponding rank positions are: the more similar (less distinguishable) the
positions are according to the EQUAL relation, the smaller the influence of
the inversion on the rank correlation.

The rest of the paper is organized as follows. In the next two sections, we briefly
recall the basics of fuzzy order relations and fuzzy rank correlation, respectively.
Our weighted rank correlation measure, called scaled gamma, is then introduced
in Section 5, and related work is reviewed in Section 6. A small experimental
study is presented in Section 7, prior to concluding the paper in Section 8.

2 Rank Correlation

Consider N ≥ 2 paired observations {(xi, yi)}N
i=1 ⊂ X × Y of two variables X

and Y , where X and Y are two linearly ordered domains; we denote

x = (x1, x2, . . . , xN), y = (y1, y2, . . . , yN) .

1 A preliminary version of this paper has been presented in [9], on the occasion of the
German Workshop on Computational Intelligence, Dortmund, Germany, 2013.

424 S. Henzgen and E. Hüllermeier

In particular, the values xi (and yi) can be real numbers (X = R) or rank
positions (X = [N] = {1, 2, . . . , N}). For example, x = (3, 1, 4, 2) denotes a
ranking of four items, in which the first item is on position 3, the second on
position 1, the third on position 4 and the fourth on position 2.

The goal of a (rank) correlation measure is to capture the dependence
between the two variables in terms of their tendency to increase and decrease
(their position) in the same or the opposite direction. If an increase in X tends
to come along with an increase in Y , then the (rank) correlation is positive.
The other way around, the correlation is negative if an increase in X tends to
come along with a decrease in Y . If there is no dependency of either kind, the
correlation is (close to) 0.

2.1 Concordance and Discordance

Many rank correlation measures are defined in terms of the number C of con-
cordant, the number D of discordant, and the number T of tied data points. Let
P = {(i, j) | 1 ≤ i < j ≤ N} denote the set of ordered index pairs. We call a pair
(i, j) ∈ P concordant, discordant or tied depending on whether (xi −xj)(yi −yj)
is positive, negative or 0, respectively. Thus, let us define three N × N relations
C, D and T as follows:

C(i, j) =
{

1 (xi − xj)(yi − yj) > 0
0 otherwise (1)

D(i, j) =
{

1 (xi − xj)(yi − yj) < 0
0 otherwise (2)

T (i, j) =
{

1 (xi − xj)(yi − yj) = 0
0 otherwise (3)

The number of concordant, discordant and tied pairs (i, j) ∈ P are then obtained
by summing the entries in the corresponding relations:

C =
∑

(i,j)∈P
C(i, j) =

1
2

∑

i∈[N]

∑

j∈[N]

C(i, j)

D =
∑

(i,j)∈P
D(i, j) =

1
2

∑

i∈[N]

∑

j∈[N]

D(i, j)

T =
∑

(i,j)∈P
T (i, j) =

1
2

∑

i∈[N]

∑

j∈[N]

T (i, j) − N

2

Note that
C(i, j) + D(i, j) + T (i, j) = 1 (4)

for all (i, j) ∈ P, and

C + D + T = |P| =
N(N − 1)

2
. (5)

A Flexible Approach Based on Fuzzy Order Relations 425

2.2 Rank Correlation Measures

Well-known examples of rank correlation measures that can be expressed in
terms of the above quantities include Kendall’s tau [11]

τ =
C − D

N(N − 1)/2
(6)

and Goodman and Kruskal’s gamma coefficient [8]

γ =
C − D

C + D
. (7)

As will be detailed in the following sections, our basic strategy for generalizing
rank correlation measures such as γ is to “fuzzify” the concepts of concordance
and discordance. Thanks to the use of fuzzy order relations, we will be able to
express that a pair (i, j) is concordant or discordant to a certain degree (between
0 and 1). Measures like (7) can then be generalized in a straightforward way,
namely by accumulating the degrees of concordance and discordance, respec-
tively, and putting them in relation to each other.

3 Fuzzy Relations

3.1 Fuzzy Equivalence

The notion of a fuzzy relation generalizes the standard notion of a mathematical
relation by allowing to express “degrees of relatedness”. Formally, a (binary)
fuzzy relation on a set X is characterized by a membership function E : X×X −→
[0, 1]. For each pair of elements x, y ∈ X, E(x, y) is the degree to which x is related
to y.

Recall that a conventional equivalence relation on a set X is a binary relation
that is reflexive, symmetric and transitive. For the case of a fuzzy relation E ,
these properties are generalized as follows:

– reflexivity: E(x, x) = 1 for all x ∈ X

– symmetry: E(x, y) = E(y, x) for all x, y ∈ X

– �-transitivity: �(E(x, y), E(y, z)) ≤ E(x, z) for all x, y, z ∈ X

A fuzzy relation E having these properties is called a fuzzy equivalence
relation [5]. While the generalizations of reflexivity and symmetry are rather
straightforward, the generalization of transitivity involves a triangular norm
(t-norm) �, which plays the role of a generalized logical conjunction [13]. For-
mally, a function � : [0, 1]2 −→ [0, 1] is a t-norm if it is associative, commutative,
monotone increasing in both arguments, and satisfies the boundary conditions
�(a, 0) = 0 and �(a, 1) = a for all a ∈ [0, 1]. Examples of commonly used
t-norms include the minimum �(a, b) = min(a, b) and the product �(a, b) = ab.
To emphasize the role of the t-norm, a relation E satisfying the above properties
is also called a �-equivalence.

426 S. Henzgen and E. Hüllermeier

3.2 Fuzzy Ordering

The notion of an order relation ≤ is similar to that of an equivalence relation,
with the important difference that the former is antisymmetric while the latter is
symmetric. A common way to formalize antisymmetry is as follows: a ≤ b and b ≤
a implies a = b. Note that this definition already involves an equivalence relation,
namely the equality = of two elements. Thus, as suggested by Bodenhofer [2], a
fuzzy order relation can be defined on the basis of a fuzzy equivalence relation.
Formally, a fuzzy relation L : X × X −→ [0, 1] is called a fuzzy ordering with
respect to a t-norm � and a �-equivalence E , for brevity �-E-ordering, if it
satisfies the following properties for all x, y, z ∈ X:

– E-reflexivity: E(x, y) ≤ L(x, y)
– �-E-antisymmetry: �(L(x, y),L(y, x)) ≤ E(x, y)
– �-transitivity: �(L(x, y),L(y, z)) ≤ L(x, z)

Furthermore a �-E-ordering L is called strongly complete if

max
(L(x, y),L(y, x)

)
= 1

for all x, y ∈ X. This is expressing that, for each pair of elements x and y, either
x ≤ y or y ≤ x should be fully true.

A fuzzy relation L as defined above can be seen as a generalization of the
conventional “smaller or equal” on the real or the integer numbers. What is often
needed, too, is a “stricly smaller” relation <. In agreement with the previous
formalizations, a relation of that kind can be defined as follows: A binary fuzzy
relation R is called a strict fuzzy ordering with respect to a �-norm and a �-
equivalence E , or strict �-E-ordering for short, if it has the following properties
for all x, x′, y, y′, z ∈ X [5]:

– irreflexivity: R(x, x) = 0
– �-transitivity: �(R(x, y),R(y, z)) ≤ R(x, z)
– E-extensionality: �(E(x, x′), E(y, y′),R(x, y)) ≤ R(x′, y′)

3.3 Practical Construction

The above definitions provide generalizations E , L and R of the standard rela-
tions =, ≤ and <, respectively, that exhibit reasonable properties and, moreover,
are coherent with each other. Practically, one may start by choosing an equiva-
lence relation E and a compatible t-norm �, and then derive L and R from the
corresponding �-equivalence.

More specifically, suppose the set X to be a linearly ordered domain, that
is, to be equipped with a standard (non-fuzzy) order relation ≤. Then, given a
�-equivalence E on X, the following relation is a coherent fuzzy order relation,
namely a strongly complete �-E-ordering:

L(x, y) =
{

1 if x ≤ y
E(x, y) otherwise

A Flexible Approach Based on Fuzzy Order Relations 427

Moreover, a strict fuzzy ordering R can be obtained from L by

R(x, y) = 1 − L(y, x) (8)

The relations thus defined have a number of convenient properties. In particular,
min(R(x, y),R(y, x)) = 0 and

R(x, y) + E(x, y) + R(y, x) = 1 (9)

for all x, y ∈ X. These properties can be interpreted as follows. For each pair of
elements x and y, the unit mass splits into two parts: a degree a = E(x, y) to
which x and y are equal, and a degree 1 − a to which either x is smaller than y
or y is smaller than x.

4 Fuzzy Relations on Rank Data

Since we are interested in generalizing rank correlation measures, the underlying
domain X is given by a set of rank positions [N] = {1, 2, . . . , N} (equipped with
the standard < relation) in our case. As mentioned before, this domain could
be equipped with fuzzy relations E , L and R by defining E first and deriving L
and R afterward. Note, however, that the number of degrees of freedom in the
specification of E is of the order O(N2), despite the constraints this relation has
to meet.

4.1 Scaling Functions on Rank Positions

In order to define fuzzy relations even more conveniently, while emphasizing the
idea of weighing the importance of rank positions at the same time, we leverage
the concept of a scaling function as proposed by Klawonn [12]. Roughly speaking,
a scaling function w : X −→ R+ specifies the dissimilarity of an element x from
its direct neighbor elements, and the dissimilarity between any two elements
x and y is then obtained via integration of the local dissimilarities along the
chain from x to y. In our case, a scaling function can be defined as a mapping
w : [N − 1] −→ [0, 1] or, equivalently, as a vector

w =
(
w(1), w(2), . . . , w(N − 1)

)
∈ [0, 1]N−1 . (10)

Here, w(n) can be interpreted as the degree to which the rank positions n and
n − 1 are distinguished from each other; correspondingly, 1 − w(n) can be seen
as the degree to which these two positions are considered to be equal. From the
local degrees of distinguishability, a global distance function is derived on X by
defining

d(x, y) = min

⎛

⎝1,

max(x,y)−1∑

i=min(x,y)

w(i)

⎞

⎠ . (11)

428 S. Henzgen and E. Hüllermeier

Put in words, the distance between x and y is the sum of the degrees of distin-
guishability between them, thresholded at the maximal distance of 1. In princi-
ple, accumulations of the degrees of distinguishability other than the sum are of
course conceivable. For example, the maximum could be used as well:

d(x, y) = max
{

w(i) | i ∈ {min(x, y), . . . ,max(x, y) − 1}
}

. (12)

In general, d(x, y) is supposed to define a pseudo-metric on X. Under this con-
dition, it can be shown that the fuzzy relation E defined as

E(x, y) = 1 − d(x, y)

for all x, y ∈ X is a �L-equivalence, where �L is the �Lukasiewicz t-norm
�L(a, b) = max(0, a + b − 1) [3]. Relations L and R can then be derived from E
as described in Section 3.3. In particular, we obtain

R(x, y) =
{

d(x, y) if x < y
0 otherwise

According to our discussion so far, the only remaining degree of freedom is the
scaling function s. Obviously, this function can also be interpreted as a weighing
function: the more distinguishable a position n from its neighbor positions, i.e.,
the larger w(n − 1) and w(n), the higher the importance of that position.

An example of a scaling function for N = 12 is shown in Figure 1. This
function puts more emphasis on the top and the bottom ranks and less on the
middle part. According to (11), the distinguishability between the positions 4
and 7 is d(4, 7) = 0.4 + 0.2 + 0.2 = 0.8 (sum of the weights w(i) in the shaded
region). Thus, 4 is strictly smaller than 7 to the degree of R(4, 7) = 0.8, while
both positions are considered equal to the degree E(4, 7) = 0.2.

Note that, with w(i) = �i < k�, we also cover the top-k scenario as a special
case. Here, the standard < relation is recovered for all elements on the first k
positions, whereas the remaining positions are considered as fully equivalent,
i.e., these elements form an equivalence class in the standard sense.

Fig. 1. Example of a scaling function.

A Flexible Approach Based on Fuzzy Order Relations 429

5 Weighted Rank Correlation

Our approach to generalizing rank correlation measures is based on the “fuzzifi-
ciation” of the relations (1–3) and, correspondingly, the number of concordant,
discordant and tied item pairs. The tools that are needed to do so have already
been introduced in the previous sections. In particular, suppose a fuzzy equiva-
lence relation E and a “strictly smaller” relation R to be derived from a scaling
function w on X, based on the procedure outlined above. For notational conve-
nience, we assume the same scaling function (and hence the same relations) to
be used on both domains X and Y. In principle, however, different functions wX

and wY (and hence relations EX , RX and EY , RY) could be used.
Now, according to (1), a pair (i, j) ∈ P is concordant if both xi is (strictly)

smaller than xj and yi is smaller than yj , or if xj is smaller than xi and yj is
smaller than yi. Using our fuzzy relation R and a t-norm � as a generalized
conjunction, this can be expressed as follows:

C̃(i, j) = �(R(xi, xj),R(yi, yj)
)

+ �(R(xj , xi),R(yj , yi)
)

(13)

The discordance relation can be expressed analogously:

D̃(i, j) = �(R(xi, xj),R(yj , yi)
)

+ �(R(xj , xi),R(yi, yj)
)

(14)

Finally, the degree to which (i, j) is tied is given by

T̃ (i, j) = ⊥(E(xi, xj), E(yi, yj)
)

,

where ⊥ is the t-conorm associated with � (i.e., ⊥(u, v) = 1 − �(1 − u, 1 − v)),
serving as a generalized logical disjunction. Generalizing (4), the three degrees
sum up to 1, i.e.,

C̃(i, j) + D̃(i, j) + T̃ (i, j) ≡ 1 , (15)

and either C̃(i, j) = 0 or D̃(i, j) = 0. In other words, a pair (i, j) that has origi-
nally been concordant (discordant) will remain concordant (discordant), at least
to some extent. However, since E may introduce a certain indistinguishability
between the positions xi and xj or the positions yi and yj , the pair could also
be considered as a partial tie.

Given the above fuzzy relations, the number of concordant, discordant and
tied data points can be obtained as before, namely by summing over all ordered
pairs (i, j) ∈ P:

C̃ =
∑

(i,j)∈P
C̃(i, j) , D̃ =

∑

(i,j)∈P
D̃(i, j) , T̃ =

∑

(i,j)∈P
T̃ (i, j) .

According to (15),

C̃ + D̃ + T̃ = |P| =
N(N − 1)

2
,

430 S. Henzgen and E. Hüllermeier

which generalizes (5). Using these quantities, rank correlation measures
expressed in terms of the number of concordant and discordant pairs can be gen-
eralized in a straightforward way. In particular, a generalization of the gamma
coefficient (7) is obtained as

γ̃ =
C̃ − D̃

C̃ + D̃
. (16)

It is worth mentioning that the weighted rank correlation measure thus defined
exhibits a number of desirable formal properties, which it essentially inherits
from the general fuzzy extension of the gamma coefficient; we refer to [17], in
which these properties are analyzed in detail.

6 Related Work

Weighted versions of rank correlation measures have not only been studied in
statistics but also in other fields, notably in information retrival [6,10,16,21].
Most of them are motivated by the idea of giving a higher weight to the top-
ranks: in information retrieval, important documents are supposed to appear in
the top, and a swap of important documents should incur a higher penalty than
a swap of unimportant ones.

Kaye [10] introduced a weighted, non-symmetric version of Spearman’s rho
coefficient. Costa and Soares [6] proposed a symmetric weighted version of Spear-
man’s coefficient resembling the one of Kaye. Another approach, based on aver-
age precision and called AP correlation, was introduced by Yilmaz et al. [21].
Maturi and Abdelfattah [16] define weighted scores Wi = wi with w ∈ (0, 1) and
compute the Pearson correlation coefficient on these scores. All four measures
give higher weight to the top ranks.

Two more flexible measures, not restricted to monotone decreasing weights,
have been proposed by Shieh [19] and Kumar and Vassilivitskii [14]. In the
approach of Shieh [19], a weight is manually given to every occurring concordance
or discordance through a symmetric weight function w : [N] × [N] −→ R+:

τw =

∑
i<j wijCij − ∑

i<j wijDij
∑

i<j wij
=

∑
i<j wij(Cij − Dij)

∑
i<j wij

. (17)

The input parameter for w are the ranks of a reference ranking πref , which is
assumed to be the natural order (1, 2, 3, . . . , N). Therefore, this approach is not
symmetric. To handle the quadratic number of weights, Shieh proposed to define
them as wij = vivj with vi the weight of rank i.

Kumar and Vassilivitskii [14] introduce a generalized version of Kendall’s dis-
tance. Originally, they proposed three different weights: element weights, position
weights, and element similarities. The three weights are defined independently
of each other, and each of them can be used by its own for weighting discordant
pairs. Here, we focus on the use of position weights. Like in our approach, Kumar
and Vassilivitskii define N − 1 weights δi ≥ 0, which are considered as costs for
swapping two elements on adjacent positions i + 1 and i. The accumulated cost

A Flexible Approach Based on Fuzzy Order Relations 431

of changing from position 1 to i ∈ {2, . . . , N} is pi =
∑i−1

j=1 δj , with p1 = 0.
Moreover,

p̄i(π1, π2) =
pπ1(i) − pπ2(i)

π1(i) − π2(i)
(18)

is the average cost of moving element i from position π1(i) to position π2(i);
if π1(i) = π2(i) then p̄i = 1.The weighted discordance of a pair (i, j) is then
defined in terms of the product of the average costs for index i and j:

D̂δ(i, j) =

{
p̄i(π1, π2)p̄j(π1, π2) if (i, j) is discordant
0 otherwise

. (19)

Finally, the weighted Kendall distance Kδ is given by

Kδ = D̃δ =
N−1∑

i=1

N∑

i+1

D̂δ(i, j) . (20)

Note that (20) is indeed a distance and not a correlation measure. To enable a
comparison with τω and γ̃ in the next section, we define

Ĉδ(i, j) =

{
p̄i(π1, π2)p̄j(π1, π2) if (i, j) is concordant
0 otherwise

(21)

as the weighted concordance of a pair (i, j), and finally another weighted version
of gamma:

γ̃δ =
C̃δ − D̃δ

C̃δ + D̃δ

.

7 Experiments

Needless to say, an objective comparison of weighted rank correlation measures
is very difficult, if not impossible. Even in the case of standard measures, one
cannot say, for example, that Kendall’s tau is “better” than Spearman’s rho.
Instead, these are simply different measures trying to capture different types of
correlation in the data.

Nevertheless, we conducted some controlled experiments with synthetic data,
for which there is a natural expectation of how the measures are supposed to
behave and what results they should ideally produce. We compare our app-
roach with those of Shieh as well as Kumar and Vassilivitskii, since these are
able to handle non-monotone weight functions, too. For the purpose of these
experiments, our measure γ̃ was instantiated with the maximum in (12) and the
product t-norm in (13) and (14).2

2 Of course, other instantiations are conceivable; however, tuning our measure by
optimizing the choice of operators was beyond the scope of the experiments.

432 S. Henzgen and E. Hüllermeier

7.1 First Study

In a first experiment, we generated rank data by sampling from the Plackett-Luce
(PL) model, which is a parameterized probability distribution on the set of all
rankings over N items. It is specified by a parameter vector v = (v1, v2, . . . vN) ∈
R

N
+ , in which vi accounts for the “skill” of the ith item. The probability assigned

by the PL model to a ranking represented by a permutation π is given by

P(π |v) =
N∏

i=1

vπ−1(i)

vπ−1(i) + vπ−1(i+1) + . . . + vπ−1(N)
, (22)

where π(i) is the position of item i in the ranking, and π−1(j) the index of the
item on position j. This model is a generalization of the well-known Bradley-
Terry model [15], a model for the pairwise comparison of alternatives, which
specifies the probability that “a wins against b” in terms of va/(va + vb). Obvi-
ously, the larger va in comparison to vb, the higher the probability that a is
chosen. Likewise, the larger the parameter vi in (22) in comparison to the param-
eters vj , j
= i, the higher the probability that the ith item appears on a top
rank. Moreover, the more similar the skill parameters, the more likely two items
are reversed. Thus, a ranking drawn from a PL model is more stable, and hence
more “reliable”, in regions in which the difference between the skill values (sorted
in decreasing order from highest to lowest) is large, and less stable in regions in
which this difference is small.

Instead of defining the skills v directly, it is more convenient to define them
via the representation of PL as a Thurstone model with scores following a Gum-
ble distribution. The means μi of this distribution translate into PL-parameters
via vi = exp(μi

β), with β the scaling parameter of the Gumble distribution.
For our experimental study, we generated mixtures of c = 4 PL distributions,

i.e., data sets consisting of four clusters. To this end, c reference rankings were
first generated by sampling from the PL distribution with µ = (30, 29, . . . , 1) and
β = 0.3, i.e., these references are perturbations of the identity πid = (1, 2, . . . , n).
Then, a score vector

µ(0) = (18, . . . 14, 13.1, 12.3, . . . , 9.6, . . . , 9.6, 9.5, 9.3, . . . , 5.9, 5, . . . , 1)

is defined, which reflects high stability in the top and bottom ranks, and low sta-
bility in the middle ranks, and new score vectors µ(i), i = 1, . . . , c, are generated
by permuting µ(0) according to the reference rankings; each of these rankings
µ(i) defines the center of a cluster. Finally, 200 rankings are sampled from each of
the PL models with parameter µ(i) and β = 0.3, and these rankings are assigned
label i.

We produced 100 such data sets with rankings of length 30. As a weight
vector, which corresponds to the scaling function (10) for γ̃ and defines the
transitions costs δi for γ̃δ, we used

w = (1, 1, 1, 1, 0.9, . . . , 0.1, 0, 0, 0, 0.1, . . . , 0.9, 1, 1, 1, 1) .

A Flexible Approach Based on Fuzzy Order Relations 433

(a) (b)

Fig. 2. Both plots show the average accuracy against the neighborhood size k. The
right plot additionally shows the results for classical Kendall’s tau.

This weight vector seeks to account for the fact that, according to our con-
struction, the middle positions of the observed rankings are less reliable and,
therefore, should have a lower weight in the computation of similarities between
rankings. The weight vector for τω is derived from w, so as to make it maximally
comparable, and is given by vi = (wi−1 + wi)/2 with w−1 = 1 and wn = 1.

For each correlation measure and each data set, we applied a k-nearest neigh-
bor classifier with the correlation as a similarity measure. Here, the idea is the
following: the better the similarity between rankings is reflected by a correlation
measure, the stronger the performance of the classifier is supposed to be. The
classifiers were validated by averaging one hundred repetitions of a 10-fold cross
validation. In the end, we also averaged over all data sets. The results are shown
in Figure 2. As can be seen, γ̃δ and γ̃ are performing more or less on par, with a
slight advantage for γ̃. Moreover, they both outperform τω, which is nevertheless
much better than the classical Kendall’s tau (Figure 2(b)).

In Figure 3, two exemplary data sets are visualized using a kernel-PCA [18]
for dimensionality reduction, using the different correlation measures to produce
the similarity matrices. Every data point is colored according to its original class
membership. As can be seen, the classical Kendall’s tau is hardly able to separate
the classes, whereas γ̃δ, γ̃, and τω are at least able to separate three of the four
classes. Despite following quite different approaches, the results of these three
measures appear to be surprisingly similar.

7.2 Second Study

The second experiment is meant to explore the behavior of the rank correlation
coefficients when comparing two rankings of a specific type. We compared a
ranking πid = (1, 2, . . . , 11, 12) with rankings πi→1 = (2, 3, . . . i, 1, i + 1, . . . , 12)
in which the ith item is moved from rank i to rank 1 and all items with index
smaller i are shifted one position to the right. Each time the index i is incre-
mented, another discordant pair is created, hence the similarity between πid and

434 S. Henzgen and E. Hüllermeier

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Visualization of 30-dimensional ranking data sets. Every column shows one
data set, every row one rank correlation coefficient. (a) – (b) Kendall’s tau, (c) – (d)
γ̃δ, (e) – (f) τω, (g) – (h) γ̃.eps

A Flexible Approach Based on Fuzzy Order Relations 435

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Behavior of γ̃δ, τω, and γ̃ in the “item i on rank 1” setting. The fol-
lowing weight vectors are used: (a) (1 0.9, . . . , 0.1, 0), (b) (1 0.8, . . . , 0, 0.2, . . . , 1),
(c) (1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1), (d) (0, 0.1, . . . , 0.9, 1), (e) (0, 0.2, . . . , 1, 0.8, . . . , 0), (f)
(0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0)

πi→1 should be monotone decreasing in i. Moreover, the higher the weight of the
position i, the more pronounced the decrease should be.

Only γ̃ meets this expectation for all 6 weight vectors that have been consid-
ered (Figure 4). For instance, in Figure 4(a), γ̃δ shows an increasing weighting of
discordance with an increasing item index, although the weights are decreasing.

436 S. Henzgen and E. Hüllermeier

The strange behavior of τω can be explained by the way in which weights wij =
vivj are generated. In particular, as soon as one of the items has a small weight,
all discordances in which this item is involved will have a small influence, too.

8 Conclusion and Future Work

We introduced a new approach to weighted rank correlation based on fuzzy
order relations, as well as a concrete measure called scaled gamma. The latter
allows for specifying the importance of rank positions in a quite flexible and
convenient way by means of a scaling function. Thanks to the underlying formal
foundation, such a scaling function immediately translates into a concrete version
of our measure, in which the rank positions are processed within an appropriate
weighting scheme.

First experimental studies with synthetic data are promising and suggest the
usefulness of our approach. Experiments of this type will be continued in future
work, not only with synthetic but also with real data. Moreover, let us again
highlight that our extension of gamma is actually not a single measure but a
family of measures, which is parameterized by the weight function w as well
as the generalized logical conjunction (t-norm) used to define concordance and
discordance. While the former will typically be specified as an external parameter
by the user, the (fuzzy) logical operators offer an interesting degree of freedom
that could be used to optimally adapt the measure to the application at hand.
Again, this is an interesting direction for future work. Finally, going beyond
the gamma coefficient, we also intend to apply our generalization to other rank
correlation measures.

References

1. Balasubramaniyan, R., Hüllermeier, E., Weskamp, N., Kämper, J.: Clustering of
gene expression data using a local shape-based similarity measure. Bioinformatics
21(7), 1069–1077 (2005)

2. Bodenhofer, U.: A similarity-based generalization of fuzzy orderings preserving
the classical axioms. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems
8(5), 593–610 (2000)

3. Bodenhofer, U.: Representations and constructions of similarity-based fuzzy order-
ings. Fuzzy Sets and Systems 137, 113–136 (2003)

4. Bodenhofer, U., Demirci, M.: Strict fuzzy orderings with a given context of similar-
ity. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 16(2), 147–178
(2008)

5. Bodenhofer, U., Klawonn, F.: Robust rank correlation coefficients on the basis of
fuzzy orderings: Initial steps. Mathware & Soft Computing 15, 5–20 (2008)

6. Pinto da Costa, J., Soares, C.: A weighted rank measure of correlation. Australian
& New Zealand Journal of Statistics 47(4), 515–529 (2005)

7. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM Journal on
Discrete Mathematics 17(1), 134–160 (2003)

8. Goodman, L.A., Kruskal, W.H.: Measures of Association for Cross Classifications.
Springer-Verlag, New York (1979)

A Flexible Approach Based on Fuzzy Order Relations 437

9. Henzgen, S., Hüllermeier, E.: Weighted rank correlation measures based on fuzzy
order relations. In: Hoffmann, F., Hüllermeier, E. (eds.) Proceedings 23. Workshop
Computational Intelligence, pp. 227–236. KIT Scientific Publishing, Dortmund,
Germany (2013)

10. Kaye, D.: A weighted rank correlation coefficient for the comparison of relevance
judgements. Journal of Documentation 29(4), 380–389 (1973)

11. Kendall, M.G.: Rank correlation methods. Charles Griffin, London (1955)
12. Klawonn, F.: Fuzzy sets and vague environment. Fuzzy Sets and Systems 66,

207–221 (1994)
13. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers

(2002)
14. Kumar, R., Vassilvitskii, S.: Generalized distances between rankings. In: Proc.

WWW, 19. International Conference on World Wide Web, pp. 571–580 (2010)
15. Marden, J.I.: Analyzing and Modeling Rank Data. CRC Press (1996)
16. Maturi, T.A., Abdelfattah, E.H.: A new weighted rank correlation. Journal of

Mathematics and Statistics 4(4), 226 (2008)
17. Dolorez Ruiz, M., Hüllermeier, E.: A formal and empirical analysis of the fuzzy

gamma rank correlation coefficient. Information Sciences 206, 1–17 (2012)
18. Schölkopf, B., Smola, A., Müller, K.R.: Kernel principal component analysis. In:

Advances in Kernel Methods: Support Vector Learning, pp. 327–352. MIT Press
(1999)

19. Shieh, G.S.: A weighted Kendall’s tau statistic. Statistics & Probability Letters
39(1), 17–24 (1998)

20. Spearman, C.: The proof and measurement for association between two things.
Amer. Journal of Psychology 15, 72–101 (1904)

21. Yilmaz, E., Aslam, J.A., Robertson, S.: A new rank correlation coefficient for
information retrieval. In: Proc. 31st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 587–594. ACM (2008)

Rich Data

Concurrent Inference of Topic Models
and Distributed Vector Representations

Debakar Shamanta1(B), Sheikh Motahar Naim1, Parang Saraf2,
Naren Ramakrishnan2, and M. Shahriar Hossain1

1 Department of Computer Science, University of Texas at El Paso,
El Paso, TX 79968, USA

{dshamanta,snaim}@miners.utep.edu, mhossain@utep.edu
2 Department of Computer Science, Virginia Tech, Arlington, VA 22203, USA

{parang,naren}@cs.vt.edu

Abstract. Topic modeling techniques have been widely used to uncover
dominant themes hidden inside an unstructured document collection.
Though these techniques first originated in the probabilistic analysis of
word distributions, many deep learning approaches have been adopted
recently. In this paper, we propose a novel neural network based architec-
ture that produces distributed representation of topics to capture topical
themes in a dataset. Unlike many state-of-the-art techniques for generat-
ing distributed representation of words and documents that directly use
neighboring words for training, we leverage the outcome of a sophisti-
cated deep neural network to estimate the topic labels of each document.
The networks, for topic modeling and generation of distributed represen-
tations, are trained concurrently in a cascaded style with better runtime
without sacrificing the quality of the topics. Empirical studies reported
in the paper show that the distributed representations of topics repre-
sent intuitive themes using smaller dimensions than conventional topic
modeling approaches.

Keywords: Topic modeling · Distributed representation

1 Introduction

The representation of textual datasets in vector space has been a long-standing
central issue in data mining with a veritable cottage industry devoted to repre-
senting domain-specific information. Most representations consider features as
localized chunks as a result of which the interpretation of the features might lack
generalizability. Researchers have recently become interested in distributed rep-
resentations [8,12,14,19] because distributed representations generalize features
based on the facts captured from the entire dataset rather than one single object
or a small group of objects. Moreover, modern large and unstructured datasets
involve too many heterogeneous entries for which local subspaces cannot capture
relationships between the features. For example, publication datasets nowadays
come with a substantial number of features like author information, scientific
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 441–457, 2015.
DOI: 10.1007/978-3-319-23525-7 27

442 D. Shamanta et al.

area, and keywords along with the actual text for each document. News article
datasets have author information, time stamp data, category, and sometimes
tweets and comments posted against the articles. Movie clips are accompanied
by synopsis, production information, rating, and text reviews. The focus of this
paper is on the design of a flexible mechanism that can generate multiple types of
features in the same space. We show that the proposed method is not only able to
generate feature vectors for labeled information available with the datasets but
also for discovered information that are not readily available with the dataset
as labels, for example, topics. Current state-of-the-art of distributed representa-
tions for unstructured text datasets can model two different types of elements
in the same hyperspace, as described by Le and Mikolov [16]. Le and Mikolov’s
framework generates distributed vectors of documents (or paragraphs) and words
in the same space using a deep neural network. Further generalization, that we
have described in this paper, can provide distributed representations for hetero-
geneous elements of a dataset in the same hyperspace. However, the problem
of creating distributed representations becomes more challenging when the label
information is not contained within the dataset. The focus of this paper is on the
generation of topical structures and their representations in the same space as
documents and words. The capability of representing topics, documents, words,
and other labeled information in the same space opens up the opportunity to
compute syntactic and semantic relationships between not only words but also
between topics and documents by directly by using simple vector algebra.

Estimating the topic labels for documents is another challenge while using
distributed representations. Earlier topic modeling techniques [9,13] used to
define a document as a mixture of topics and estimate the probability p(t|d)
of a topic (t) of a document (d) through probabilistic reasoning. More recently,
topic models are seen from a neural network point of view [6,15,26] where these
probabilities are generated from the hidden nodes of a network. Such neural
networks require compact numeric representations of words and documents for
effective training, which are not easy to estimate with traditional vector space
based document modeling techniques that represent the documents using a very
high dimensional space. There have been attempts to use the compact distributed
representations of words and documents learned from a general purpose large
dataset [6] but the precomputed vectors may not be always appropriate for
many new domain specific datasets. Furthermore, the vocabulary shifts in a new
direction over time resulting in changes in the distributed representations.

Specific contributions of this paper are as follows.

1. We formulate the problem of computing distributed representation of topics
in the same space as documents and words using a novel fusion of a neural
network based topic modeling and a distributed representation generation
technique.

2. The tasks of computing topics for documents and generating distributed rep-
resentations are simultaneous in the proposed method unlike closely related
state-of-the-art techniques where precomputed distributed vectors of words
are leveraged to compute topics. Additionally, none of the state-of-the-art

Concurrent Inference of Topic Models and Distributed Representations 443

methods generates distributed representation of topics to the best of our
knowledge.

3. Our proposed method generates the distributed vectors using a smaller num-
ber of dimensions than the actual text feature space. Even if the space is
of lower number of dimensions, the vectors capture syntactic and semantic
relationships between language components.

4. We demonstrate that the generated topic vectors explain domain specific
properties of datasets, help identify topical similarities, and exhibit topic-
specific relationships with document vectors.

2 Related Work

Distributed representations have been used in diverse fields of scientific research
with notable success due to their superiority in capturing generalized view of
information over local representations. Rumelhart et al. [22] designed a neural
network based approach for distributed representation of words which has been
followed by many efforts in language modeling. One such model is the neural
probabilistic model [2] proposed by Bengio et al. This framework uses a sliding
window based context of a word to generate compact representations. Mikolov
et al. [17] brings in continuous bag-of-words (CBOW) and skip-gram models to
compute continuous vector representations of words efficiently from very large
data sets. The skip-gram model was significantly improved in [18], which includes
phrase vectors along with words. Le and Mikolov [16] extended the CBOW
model to learn distributed representation of higher level texts like paragraphs
and documents. Our proposed model further enriches the literature by including
the capability to generate (1) vectors for arbitrary labels in the dataset and
(2) vectors for topics for which a text dataset does not contain any labeled
information.

Finding hidden themes in a document collection has been of great interest
to data mining and information retrieval researchers for more than two decades.
An earlier work in the literature is latent semantic indexing (LSI) [9] that maps
document and terms in a special “latent semantic” space by applying dimen-
sionality reduction on traditional bag-of-words vector space representations of
documents. A probabilistic version of LSI, pLSI [13], introduces a mixture model
where each document is represented by a mixing proportion of hidden “top-
ics”. Latent Dirichlet Allocation (LDA) [5], a somewhat generalized but more
sophisticated version of pLSI, is one of the most notable ones in the literature.
It provides a generative probabilistic approach for document modeling assuming
a random process by which the documents are created. LDA spawned a deluge
of work exploring different aspects of topic modeling. For example, the Dynamic
Topic Model (DTM) [4] captures the evolution of topics in a time-labeled corpus.
Online LDA (OLDA) [1] handles streams of documents with dynamic vocabulary,
Wallach [25] and Griffiths et al. [11] exploit the sentence structures of documents
and Correlated Topic Model (CTM) [3] captures the correlation between topics.

More recently, neural network based models have received great attention
from the data mining community. Wan [26] et al. introduce a hybrid model

444 D. Shamanta et al.

in computer vision settings; DocNADE [15] provides an autoregressive neural
network for topic modeling; Cao et al. [6] propose a neural topic model (NTM)
with supervised extension. The latter work has close resemblance to a part of
our proposed model that focuses on generating topics for each document.

3 Problem Formulation

Let D = {d1, d2, . . . , dN} be a text dataset containing N documents taking terms
from the set of M words W = {w1, w2, . . . , wM}. Each document can contain
an arbitrary number of words in any sequence. The objective is to generate a
universal distributed representation for the labeled items (e.g., words and docu-
ments) and latent topics of each document of dataset D. Let T = {t1, t2, . . . , tK}
be the set of topics. Consider that the expected number of dimensions in the
distributed representation of words, documents, and topics is L. L should be
much smaller than the number of words M . Word vectors W ∈ R

M×L, docu-
ment vectors, D ∈ R

N×L and topic vectors, T ∈ R
K×L generated in the same

L-dimensional space should maintain two specific properties: (1) distributed rep-
resentation of each type should be capable of capturing the semantic, syntactic,
and topical aspect of conventional language models, and (2) all types of vectors
(topics, documents, and words) organized in the L-dimensional hyperspace must
be comparable to each other.

The first property aligns the framework with the objectives of any language
model where features are generated for most common data mining tasks likes
clustering and classification. The second property, however, is unique and spe-
cific to relating vectors of different types of entities like topics, documents, and
vectors. In word2vec [17], the authors show that distributed representations of
word can retrieve linguistic similarities between pairs of words. For example,
WKing − WMan is close to WQueen − WWoman. The ability to model topics in the
same hyperspace extends this property by capturing similarity between relation-
ships among topics and documents. For example, if two documents di and dj are
drawn from the same topic tp then Tp−Di should be closer to Tp−Dj . Similarly,
if two documents di and dj are drawn from two different topics tp and tq, then
Tp − Di should tend to be different than Tp − Dj .

4 Methodology

The main objective of the proposed framework is to generate a compact dis-
tributed representation for topics, documents, and words of a document collec-
tion in the same hyperspace in such a way that all these heterogeneous objects are
comparable to each other and capture the semantic, syntactic and thematic prop-
erties. The proposed framework has three major components. First, we adopt
a generic neural network that can generate distributed vectors for documents,
words, and any given labels. Second, we propose a deep neural network based
topic modeling that can take distributed representations of words and docu-
ments, and estimate topic distribution for each document. Finally, we convolute

Concurrent Inference of Topic Models and Distributed Representations 445

Fig. 1. The proposed framework.

both these networks so that they can share information and train simultane-
ously. Fig. 1 shows the proposed framework. The following subsections describe
the model in a sequence.

4.1 Distributed Representation of Heterogeneous Entities

Inferring a distributed representation W for the words of a document collection
D having vocabulary W is based on predicting a word given other words in the
same context. The objective of such a word representation model is to maximize
the average log probability

1
M

M−p∑

m=p

log p(wm|wm−p, . . . , wm+p) (1)

The individual probabilities in Equation 1 are estimated by training a multi-class
deep neural network, such as softmax. They can be computed as:

p(wm|wm−p, . . . , wm+p) =
eym

∑
i e

yi
(2)

Algorithm 1. LearnDistRep – algorithm for learning topic vectors
input : Document id, d

Set of topics in d, Td

Word to predict, w
Context of w, Cw

parameter: Distributed representations D, W and T
1 Calculate y using Equation 4 ;
2 Calculate gradient gr using stochastic gradient descent ;
3 Update document vector Dd, topic vectors TTd and word vectors WCw using gr;

446 D. Shamanta et al.

where yi is the unnormalized log-probability for every output word wi.

yi = b + Uh(wm|wm−p, . . . , wm+p;W) (3)

Here, U and b are the softmax parameters. h is constructed by a concatenation
or average of relevant word vectors. We use hierarchical softmax [17] instead of
softmax for faster training, and calculate the gradient using stochastic gradient
descent. After the training converges, words with similar meaning are mapped to
a similar position in the vector space. To obtain a document vector, a document
is thought of as another word. The only change in the model is in Equation 3,
where h is constructed using W and D.

Inclusion of further labels, for example, authors, topic, and tags can be done
the same way document vectors are added. Our focus in this paper is to incor-
porate topics instead of additional labels. Incorporation of topic vectors is chal-
lenging because the topics are not given and rather should be generated using
the documents and words. For the time being, let us assume that topic is just a
given label that comes with the data. In contrast to the word vector matrix W
that is shared across all the documents, a topic vector can be shared only across
the documents which contain that particular topic. Considering topic vectors
along with the vectors for words and documents, Equation 3 is modified to:

y = b + Uh(wt−k, . . . , wt+k, dq, tr1 , tr2 , . . . , trs ;W,D, T) (4)

For the training purpose, we use sampling of variable-length contexts using a
sliding window over each document. Such a sliding window is commonly referred
to as n-gram. We use n-grams instead of single words (unigrams) since n-grams
produce representative contexts around each word [18]. A procedure for training
this generic network for topic, documents, and words is explained in Algorithm 1.

4.2 Estimating Topic Labels of Documents

As stated earlier, the generic model described in Section 4.1 requires topic as
labels of each document. This section focuses on a topic modeling technique
that can generate topic labels taking document vectors and word vectors into
account. For effective and efficient generation of topic vectors, the topic mod-
eling technique must synchronize with the iterations of the distributed vector
generation part. Several topic modeling techniques have been proposed in the
literature to find topic distribution of documents of such unlabeled datasets.
In a general topic model, each document is seen as a mixture of topics, and
each topic is represented as a probability distribution over the vocabulary of
the entire corpus. The conditional probability p(w|d) of a word and a document
is computed from word-topic distribution and topic-document distribution as
p(w|d) =

∑K
i=1 p(w|ti)p(ti|d), where K is the number of topics and ti is a latent

topic. This equation can be re-written as

p(w|d) = φ(w) × θT (d) (5)

Concurrent Inference of Topic Models and Distributed Representations 447

Algorithm 2. LearnTopic – algorithm for learning topic distribution.
input : Document id, d

N -gram or context id, g
parameter: Distributed representations D, W and T

Weight matrices W1 and W2

output : Updated weight matrices

1 Calculate ls(g, d) using equations for lt and ld ;
2 Determine error in output node with respect to the ideal value:

δ(3) = ls(g, d) − 1 ;
3 Compute the error in n-gram-topic hidden node:

δ
(2)
1 = (δ(3) × ld(d)) · (lt(g) · (1 − lt(g))) ;

4 Update W2: W2 = W2 + α[δ
(2)
1 × Wg + λ × W2] ;

5 Compute error in the document-topic hidden node:

new ld(d) = ld(d) + α[δ(3) × lt(g) + λ × ld(d)] ;

6 δ
(2)
2 = new ld(d) − ld(d) ;

7 Update W1: W1 = W1 + α[δ
(2)
2 × Dd + λ × W1] ;

where φ(w) = [p(w|t1), p(w|t2), . . . , p(w|tK)] is the conditional probabilities of w
with all the topics and θ(d) = [p(t1|d), p(t2|d), . . . , p(tK |d)] is the topic distribu-
tion of d.

We can view topic models from a neural network perspective considering
the formation of Equation 5. Let us consider a neural network with two input
nodes for sliding window with n-gram g and document d, two hidden nodes lt
(representing φ(g)) and ld (representing θ(d)), and one output node ls produc-
ing the conditional probability p(g|d). The topic-document node ld ∈ R

1×K

computes the topic distribution of a document (similar to θ in topic mod-
els) using the weight matrix W1 ∈ R

L×K . It is computed by the equation
ld(d) = softmax(Dd × W1) which uses a softmax function to maintain the
probabilistic constraint on topic distribution that all the topic probabilities of a
document must sum up to 1.

The n-gram-topic node lt ∈ R
1×K stands for the topic representation of the

input n-grams, and calculated as lt(g) = sigmoid(Wg × W2) where W2 ∈ R
L×K

denotes the weight matrix between the n-gram input node and the n-gram-topic
node. This vector follows a probabilistic form similar to φ in topic models.

The output node ls ∈ R gives the matching score of an n-gram g and a
document d by computing the dot product of lt(g) and ld(d). The outputted score
ls(g, d) = lt(g) × ld(d)T is a value between 0 and 1, similar to the conditional
probability of p(g|d).

The n-gram-document probability p(g|d), which initially is expected to be
very different from the ideal value, is estimated by performing a forward prop-
agation in the network. Algorithm 2 describes the training procedure for the
neural topic model part of our proposed model. For each n-gram-document
pair (g, d) the expected output value is 1 due to the fact that g is taken from

448 D. Shamanta et al.

document d. The weights are updated using backpropagation to mitigate that
error (Steps 3 to 7 in Algorithm 2).

4.3 Concurrent Training

The training process runs concurrently for both topic modeling and distributed
vector generation. Fig. 1 shows the proposed combination of two networks. Notice
the training is simultaneous unlike NTM [6] where already trained word vectors are
used for topic modeling. All the weights (W1 and W2 matrices) and vectors (W, D
and T matrices) in both the networks are initialized with random values (Step 1
and 2 of Algorithm 3). As shown in the loop at Step 3 of Algorithm 3, the combined
framework reads each document in sequence of n words (context) using a continu-
ous window. For a particular document, the topic modeling network gives its topic
distribution as the output of the hidden node ld. We select k most probable topics
from this distribution – with an assumption that a document is made up of k num-
ber of topics – and provide them as input to the distributed vector generation net-
work. The call to the method LearnTopics in Step 7 of Algorithm 3 accomplishes
this task. The corresponding word, document and topic vectors are updated using
method LearnDistRep in Step 8 of Algorithm Algorithm 3. Method LearnTopics
and LearnDistRep are explained in Algorithms 2 and 1, respectively.

Notice that the document and word vectors of context (n-gram) generated by
Algorithm 1 are provided as input to the topic modeling network of Algorithm 2.
Also the top k topics generated for each document using Algorithm 2 are provided
to the distributed vector generation part (Algorithm 1). Algorithm 3 combines all
these steps.

Algorithm 3. ConcurrentTrain – algorithm for simultaneous training of
both networks
input : Document collection D
parameter: Distributed representations D, W and T

Weight matrices W1 and W2 of topic modeling network
output : D, W and T

1 Randomly initialize D, W and T ;
2 Randomly initialize W1 and W2 ;
3 for each document d ∈ D do
4 Topics in d, Td ← top k topics from ld(d) ;
5 for each word w of d do
6 Cw ← context of w ;
7 LearnTopics(d, Cw) ;
8 LearnDistRep(d, Td, w, Cw) ;

9 end

10 end

Concurrent Inference of Topic Models and Distributed Representations 449

5 Complexity Analysis

Although both the neural networks in our proposed framework are concurrently
trained, we analyze their complexities separately for simplicity. For every exam-
ple during the training of the distributed vector generation network, there are
P words (context length), k topics and one document as input resulting in
I = P +k+1 input nodes. These inputs are projected into a L dimensional space.
Although there are V = N +M +K output nodes, this part of the network needs
to update only O(log V) nodes using the gradient vector since the model uses
hierarchical softmax. I input nodes get updated during backpropagation making
the complexity for training a single example, Cdr = I × L + O(log V) × L.

The topic modeling network takes the same document and input words. Cal-
culating Wg from the words in n-gram g takes O(P × L) time. Calculating each
of ld and lt takes O(L × K) operations and ls requires O(K) operations. Back-
propagation (step 3 to 7 of Algorithm 2) runs in O(L×K) time incurring a total
cost of Ctm = O(P × L) + O(L × K) + O(K) + O(L × K), or Ctm = O(L × K)
given K > P , for every example. Therefore, the cost of training the combined
network for each example is C = Ctm + Cdr.

6 Evaluation

We use a number of metrics to evaluate the quality of our results. Some of
these metrics are generally used to evaluate clustering results when ground truth
labels are not available. Two such evaluations are the Dunn Index (DI) [10]
and the Average Silhouette Coefficient (ASC) [21]. DI measures the separation
between groups of vectors and larger values are better. ASC is a measure that
takes both cohesion and separation of groups into account (higher values are
better). In our experiments, we utilize ASC and DI together to evaluate the
final topic assignments of the documents. Topics are analogous to clusters in
those evaluations. ASC and DI give us an idea about how crisply the topics are
distributed across the documents.

In the presence of ground truth labels, we evaluated the assigned topics
using Normalized Mutual Information (NMI) [7], Adjusted Rand Index (ARI)
[24], and the hypergeometric distribution-based enrichment. Both NMI and ARI
estimates the agreement between two topic assignments, irrespective of permu-
tations. Higher values are better for NMI and ARI. Hypergeometric enrichment
[23] maps topics to available ground truth labels. This allows us to measure a
significance based on hypergeometric distribution of the topic assignments over
the already known labels. Higher number of enriched topics is better.

Our proposed model is able to generate topic and document vectors in the
same hyperspace. In an ideal case, all angles between a topic vector and each
document vector assigned to this topic should be similar and the standard devi-
ation of those angles should be small. We use this concept to compute alignment
between a topic vector and a given set of document vectors. Given a topic vector
Ti of topic ti, and a set of document vectors Dtj that are assigned a topic tj , we
compute alignment using the following formula:

450 D. Shamanta et al.

A(Ti,Dtj) =

√
√
√
√ 1

|Dtj |
|Dtj |∑

m=1

(
Ti.Dtj

m

‖Ti‖‖Dtj
m‖ − μ

)2

(6)

where Dtj
m refers to the document vector of mth document in topic tj , and

μ =
1

|Dtj |
|Dtj |∑

m=1

Ti.Dtj
m

‖Ti‖‖Dtj
m‖ (7)

Notice that Equation 6 is the standard deviation between the cosine angles
between the topic vectors and the document vectors. Lower values are expected
when ti = tj and higher values are expected when ti �= tj .

7 Experiments

In this section, we seek to answer the following questions to justify the capabil-
ities and correctness of the proposed model.

1. Can our framework establish relationships between distributed representa-
tions of topics and documents? (Section 7.1)

2. Are the generated topic vectors expressive enough to capture similarity
between topics and to distinguish difference between them? (Section 7.2)

3. How do our topic modeling results compare with the results produced by
other topic modeling algorithms? (Section 7.3)

4. Do the generated topics bring documents with similar domain-specific
themes together? (Section 7.4)

5. How does the runtime of the proposed framework scale with the size of the
distributed representations, increasing number of documents, and increasing
number of topics? (Section 7.5)

We used seven different text datasets1 with different number of documents
and words. The datasets are listed in Table 1. Some of these datasets are widely
used in the text processing literature (e.g., Reuters , WebKB, and 20News-
groups datasets), while we have collected most of the other corpora from the
public domain. The PubMed dataset is collected from publicly available cita-
tion databases for biomedical literature provided by the US National Library
of Medicine. The PubMed dataset contains abstracts of cancer -related publica-
tions. The Spanish news dataset was collected as a part of the EMBERS [20]
project. The articles covered news stories from 207 countries around the world.

7.1 Analysis of Distributed Representations of Topics and
Documents

The topic and document vectors generated by the proposed framework maintain
consistent relationships that can be leveraged in many applications to study the

1Data and software source codes are provided here: http://dal.cs.utep.edu/
projects/tvec/.

http://dal.cs.utep.edu/projects/tvec/
http://dal.cs.utep.edu/projects/tvec/

Concurrent Inference of Topic Models and Distributed Representations 451

Table 1. Summary of the datasets.

Dataset #Docs #Words Additional information

Synthetic 400 40,000 Four lower and two upper level groups.

20 Newsgroups 18,821 2,654,769 20 categories in seven groups.

Reuters R8 7,674 495,226 Eight category labels.

Reuters R52 9,100 624,456 52 groups.

WebKB 4,199 559,984 Four overlapping categories

PubMed 1.3 million 220 million Publication abstracts related to cancer.

Spanish news 3.7 million 3 billion News articles from 2013 and 2014.

topics of a stream of unseen documents. To be able to develop such applications, a
relationship between a topic vector Ti and any of its document vectors Dti

p should
be different than the relationship between another topic Tj and a document
vector Dtj

q .

Fig. 2. Heat map of variance of
cosine similarity between topic
vector i and all documents of
topic j.

In contrast, such topic-document relation-
ships should be similar for two documents of
the same topic. Each plot of Fig. 2 shows a
heat map of alignment between a topic vec-
tor Ti of topic ti and all document vectors
Dtj of topic tj using Equation 6. Fig. 2 shows
the heat map with four topics of the synthetic
dataset. In this heat map, lower alignment val-
ues result in darker cells depicting stronger
topic-document alignment for topic and doc-
ument vectors of the same topic, whereas
weaker alignments are exhibited when docu-
ment vectors are chosen from a different topic.
This indicates that our proposed framework
captures topical structures as well as it models
relationships between topics and documents
in the same hyperspace.

7.2 Expressiveness of Topic Vectors

As described in Section 4.3, k-best topics generated by the topic modeling part of
the proposed model are selected as input to the distributed representation gener-
ation part. We set k = 1 for all our experiments including the ones described in
this subsection . To examine how expressive our distributed topic vectors are, we
prepared a synthetic corpus containing documents with term from seven sets as
illustrated by Fig. 3(a). Four groups of documents contains terms specific to each
group. The same dataset can be divided into two groups of documents because
each group contains terms from a specific group set of words. Additionally, all
sets of documents share a common set of terms. We generated topic, document,

452 D. Shamanta et al.

(a) The synthetic dataset has four
groups of documents.

(b) Dendrogram generated using topic
vectors.

Fig. 3. Experiment with a synthetic dataset. (a) Sets of terms used to prepare the
synthetic text corpus, (b) Dendrogram generated from the topic vectors.

and words vectors using our proposed framework. A dendrogram for the gen-
erated four topic vectors is shown in Fig. 3(b). As expected, the dendrogram
exhibits the topical structure where two topic vectors separately and then those
two groups merge at the top of the hierarchy. The dendrogram of topic vectors
reflects the grouping mechanism we used to create the dataset.

Fig. 4. Dendrogram prepared with the 20
category vectors of 20 Newsgroups dataset.

In a second experiment in this
space, we used a dataset that already
has category labels (20 Newsgroups)
to verify how intuitive the topic vec-
tors are in bringing similar cate-
gories together. To be able to gen-
erate distributed vectors for existing
categories along with document and
word vectors, we directly provided
the known labels to the distributed
representation generation part of the
model as an inputs as opposed to
providing topics generated by the
topic modeling network. The official
site for the 20 News Groups dataset
reports that some of the newsgroups
are very closely related to each other
(e.g. comp.sys.ibm.pc.hardware and
comp.sys.mac.hardware), while others
may be highly unrelated (e.g misc.forsale and soc.religion.christian). Our tar-
get is to verify if the generated category vectors can provide insights about how
the topics should be merged. Fig. 4 shows the dendrogram prepared for the 20
category vectors of 20 Newsgroups dataset. There are some differences between
the official grouping and the grouping we have discovered using the category

Concurrent Inference of Topic Models and Distributed Representations 453

(a) Adjusted rand index. (b) Normalized mutual information.

(c) Dunn index. (d) Average Silhouette score.

Fig. 5. Evaluation using benchmark labels (a & b) and locality of the topics (c & d).

vectors, for example, sci.electronics is grouped with comp.sys.mac.hardware and
comp.sys.ibm.pc.hardware. The label sci.electronics is far away from sci.space
even though they have a common prefix “sci”. Our observation is that
sci.electronics has many documents containing hardware related discussions. As
a result, sci.electronics has greater similarity with hardware than sci.space. Sim-
ilar evidences are found for the rec.* groups. For example, rec.sport.* groups are
different from rec.motorcycles and rec.autos but the latter two groups are closely
related, as evident in the dendrogram.

7.3 Comparison of Quality of Generated Topics

Fig. 5 shows a comparison of results generated by our framework and two other
topic modeling methods, LDA and NTM, when applied on four classification
datasets — synthetic, Reuters-R8, Reuters-R52, WebKB, and 20 Newsgroups.
Fig. 5 (a) and (b) use adjusted Rand index (ARI) and normalized mutual infor-
mation (NMI) to compare the topic assignments of the documents with the
expected classes. ARI and NMI are larger for the proposed methods for all
the datasets. This implies that our framework realizes the expected themes of
the collections better than LDA and NTM. Not only the expected categories bet-
ter match with the topic assignments, but also the generated topics are local in
the corresponding space of our framework. Higher Dunn index and higher aver-
age silhouette coefficient for all the datasets, as depicted in Fig. 5(c) and (d),
imply that our model provides high quality local topics. Notice that Fig. 5(c)
and (d) do not have NTM. This is because Dunn index and average silhouette
coefficient require document vectors, but NTM [6] does not directly use any
document vector; rather, it uses precomputed word vectors only.

454 D. Shamanta et al.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Tr
u

e
P

o
si

ti
ve

Top n MeSH terms

Proposed method

LDA

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Tr
u

e
N

eg
at

iv
e

Top n MeSH terms

Proposed method

LDA

(a) Ratio of true positives. (b) Ratio of true negatives.

Fig. 7. Comparison of our method and LDA using MeSH terms associated with the
PubMed abstracts.

Fig. 6. Comparison of numbers of topics
enriched by hypergeometric distribution.

We also used a hypergeometric
distribution based procedure to map
each topic to a class label. Fig. 6
shows that the topic assignments
suing our framework have higher
number of enriched topics than any
other method. This indicates that the
topics generated by our methods has
higher thematic resemblance with the
benchmark labels.

All these datasets described so far, in this subsection are labeled and are
widely used a ground truths in many data mining and machine learning eval-
uations. In addition to these datasets, we used our EMBERS data containing
around 3.7 million news articles to compare locality of the topics with other
methods. Table 2 shows that our method produces topics with greater Dunn
index and average silhouette score than other methods. This indicates that our
method performs even better when the datasets are very large.

7.4 Evaluation using Domain Specific Information

Table 2. Evaluation using the
EMBERS news article dataset.

Method
Evaluation metric

Dunn index Silhouette score
NTM 0.04 0.01
LDA 0.01 -0.015

Proposed method 0.1 0.05

In this experiment, we used the PubMed
dataset to compute overlap of domain specific
information for documents in the same topic
(i.e., true positive) and lack of such overlap for
a pair of documents from two different topics
(i.e., true negative). In the PubMed dataset,
each abstract is provided with some major
Medical Subject Header (MeSH) terms which come from a predefined ontol-
ogy. We used these MeSH terms as domain specific information to evaluate the
topics. It is expected that the sets of MeSH terms of two documents of the
same topic will have some common entries, where as the sets of MeSH terms
of two documents from two different topics will have lesser or no overlapping
records. For each abstract, we ordered the MeSH terms based on Jaccard simi-
larity between a MeSH terms and the abstract. Notice that if we pick up n best

Concurrent Inference of Topic Models and Distributed Representations 455

0

5

10

15

20

25
R

u
n

ti
m

e
(s

ec
)

Number of documents

25 words/doc

50 words/doc

75 words/doc

100 words/doc

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100

R
u

n
ti

m
e

(s
ec

)

Number of topics

25 words/doc

50 words/doc

75 words/doc

100 words/doc

0

5

10

15

20

25

30

35

40

50 100 150 200 250 300 350 400

R
u

n
ti

m
e

(s
ec

)

Vector size

25 words/doc

50 words/doc

75 words/doc

100 words/doc

(a) (b) (c)

Fig. 8. Execution time with varying (a) number of documents, (b) number of topics,
and (c) vector size.

MeSH terms for two documents from the same topic the chance that these two
sets of n best MeSH terms have common entries increases with larger n. This
trend is observed in Fig. 7(a) for both our framework and LDA. The true positive
ratio quickly becomes around 80% with only five best MeSH terms for each pair
of documents. Now, the top n MeSH terms of two documents from two different
topics should have higher absence of overlapping terms with smaller n since the
topical similarity of these two documents is minimal. As n increases the true
negative ratio will decrease due to inclusion of more general entries in the lists
of n best MeSH terms. Fig. 7(b) shows the expected trend for both LDA and
our framework. We selected random 5,000 pairs of documents from same topics
and another 5,000 pairs from different topics for the two plots, Fig. 7(a) and (b)
respectively. Fig. 7(a) and (b) demonstrate that our method follows an expected
trend of sharing domain specific information. Although the true positive values
are slightly lower than LDA in our method in some cases, the true negative
values are always greater than LDA. This indicates that our model generates
topics containing similar biological themes while documents of different topics,
as expected, have lesser similarity in domain specific information.

7.5 Runtime Characteristics
Fig. 8 depicts the runtime behavior of our proposed framework with varying
number of documents, topics, and vector size. The runtime increases almost
linearly with each of these variables. This indicates our proposed framework
is scalable with large amount of data. The experiments in this space were done
using synthetic data with different number of words in each document as depicted
by multiple lines in each of the plots of Fig. 8.

8 Conclusion

We have presented a framework to generate distributed vectors for elements in a
corpus as well as the underlying latent topics. All types of vectors — topics, doc-
uments, and words — share the same space allowing the framework to compute
relationships between all types of elements. Our results show that the framework
can efficiently discover latent topics and generate distributed vectors simultane-
ously. The proposed framework is expressive and able to capture domain specific

456 D. Shamanta et al.

information in a lower-dimensional space. In future, we will investigate how one
can study the information genealogy of a document collection with temporal
signatures using the proposed framework. We are inspired by the fact that we
can train the distributed vector generation network in a sequence as found in the
temporal signatures associated with the documents and observe the shift of the
word probabilities at the output of the network. We can also observe how the
probability distributions of the topic generation network change over the given
time sequence. This would help identify how one topic influence and transcend
another and how the topical vocabulary shifts over time.

Acknowledgments. This work is supported in part by M. S. Hossain’s startup grant
at UTEP, University Research Institute (URI, Office of Research and and Sponsored
Projects, UTEP), and the Intelligence Advanced Research Projects Activity (IARPA)
via DoI/NBC contract number D12PC000337. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript. The
US Government is authorized to reproduce and distribute reprints of this work for
Governmental purposes notwithstanding any copyright annotation thereon.

References

1. AlSumait, L., Barbará, D., Domeniconi, C.: On-line lda: adaptive topic models for
mining text streams with applications to topic detection and tracking. In: ICDM
2008, pp. 3–12 (2008)

2. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language
model. Machine Learning Research 3, 1137–1155 (2003)

3. Blei, D., Lafferty, J.: Correlated topic models. Advances in Neural Information
Processing Systems 18, 147 (2006)

4. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: ICML 2006, pp. 113–120
(2006)

5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Machine Learning
Research 3, 993–1022 (2003)

6. Cao, Z., Li, S., Liu, Y., Li, W., Ji, H.: A novel neural topic model and its supervised
extension. In: AAAI 2015 (2015)

7. Chaitin, G.J.: Algorithmic information theory. Wiley Online Library (1982)
8. Chalmers, D.J.: Syntactic transformations on distributed representations. In:

Connectionist Natural Language Processing, pp. 46–55. Springer (1992)
9. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.:

Indexing by latent semantic analysis. American Society for Information Science
41(6), 391–407 (1990)

10. Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact
well-separated clusters (1973)

11. Griffiths, T.L., Steyvers, M., Blei, D.M., Tenenbaum, J.B.: Integrating topics and
syntax. In: NIPS 2004, pp. 537–544 (2004)

12. G. E. Hinton. Learning distributed representations of concepts. In: CogSci 1986,
vol. 1, p. 12 (1986)

13. Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR 1999, pp. 50–57.
ACM (1999)

14. Hummel, J.E., Holyoak, K.J.: Distributed representations of structure: A theory
of analogical access and mapping. Psychological Review 104(3), 427 (1997)

Concurrent Inference of Topic Models and Distributed Representations 457

15. Larochelle, H., Lauly, S.: A neural autoregressive topic model. In: NIPS 2012,
pp. 2708–2716 (2012)

16. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In:
ICML 2014, pp, 1188–1196 (2014)

17. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space (2013). arXiv preprint arXiv:1301.3781

18. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed rep-
resentations of words and phrases and their compositionality. In: NIPS 2013,
pp. 3111–3119 (2013)

19. Pollack, J.B.: Recursive distributed representations. Artificial Intelligence 46(1),
77–105 (1990)

20. Ramakrishnan, N., et al.: ‘Beating the news’ with EMBERS: Forecasting civil
unrest using open source indicators. In: SIGKDD 2014, pp. 1799–1808 (2014)

21. Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Computational and Applied Mathematics 20, 53–65 (1987)

22. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Cognitive Modeling 5, (1988)

23. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Enrichment or depletion of a go
category within a class of genes: which test? Bioinformatics 23(4), 401–407 (2007)

24. Steinley, D.: Properties of the hubert-arable adjusted rand index. Psychological
Methods 9(3), 386 (2004)

25. Wallach, H.M.: Topic modeling: beyond bag-of-words. In: ICML 2006, pp. 977–984
(2006)

26. Wan, L., Zhu, L., Fergus, R.: A hybrid neural network-latent topic model. In:
AISTATS 2012, pp. 1287–1294 (2012)

http://arxiv.org/abs/1301.3781

Differentially Private Analysis of Outliers

Rina Okada(B), Kazuto Fukuchi, and Jun Sakuma

University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
{rina,kazuto}@mdl.cs.tsukuba.ac.jp, jun@cs.tsukuba.ac.jp

Abstract. This paper presents an investigation of differentially private
analysis of distance-based outliers. Outlier detection aims to identify
instances that are apparently distant from other instances. Meanwhile,
the objective of differential privacy is to conceal the presence (or absence)
of any particular instance. Outlier detection and privacy protection are
therefore intrinsically conflicting tasks. In this paper, we present dif-
ferentially private queries for counting outliers that appear in a given
subspace, instead of reporting the outliers detected. Our analysis of the
global sensitivity of outlier counts reveals that regular global sensitivity-
based methods can make the outputs too noisy, particularly when the
dimensionality of the given subspace is high. Noting that the counts of
outliers are typically expected to be small compared to the number of
data, we introduce a mechanism based on the smooth upper bound of the
local sensitivity. This study is the first trial to ensure differential privacy
for distance-based outlier analysis. The experimentally obtained results
show that our method achieves better utility than global sensitivity-
based methods do.

Keywords: Differential privacy · Outlier detection · Smooth sensitivity

1 Introduction

Data mining technologies are now becoming increasingly influential in our daily
life. When data mining is processed over personal data collected from individuals,
the acquired knowledge might be used to infer private information. In this paper,
we investigate differentially private outlier analysis.

Outlier detection is a task to identify instances that are apparently distant
from the remaining instances. The objective of differential privacy [3] is to pre-
vent adversaries from learning of the presence (or absence) of any particular
instance from released information. Outlier detection and privacy protection are
therefore intrinsically conflicting tasks. It presents a challenging difficulty. To
overcome this difficulty, instead of identifying outliers, we consider reporting
information which helps to recognize the occurrence of anomalous situations.
More specifically, we examine the problem of counting outliers that appear in a
given subspace with a guarantee of differential privacy.

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 458–473, 2015.
DOI: 10.1007/978-3-319-23525-7 28

Differentially Private Analysis of Outliers 459

Related Works. We introduce existing studies of privacy aspects of outlier
analysis. Secure multiparty computation (SMC) is a cryptographic tool that
facilitates the evaluation of a specified function over their private inputs jointly,
while maintaining these inputs as private. Vaidya et al. [20] introduced a SMC
for distance-based outlier detection from horizontally and vertically partitioned
private databases using random shares. Xue et al. [21] investigated a SMC for
spatial outlier detection. Dung et al. [1] presented a SMC for distance-based
outlier detection with the Mahalanobis distance. Li et al. [12] presented a SMC
for density-based outlier detection. The objective of these works is to detect
outliers securely without mutually sharing privately distributed data; privacy
invasion caused by observing detected outliers is not considered.

Studies of differential privacy for outlier analysis are few, presumably because
of its intrinsic difficulty, as described. Only one report in the literature [5]
describes a study that considers the differential privacy of outlier analysis. This
study was conducted to detect anomalous changes from a time series under a
guarantee of differential privacy. The objective of this study is closely related to
ours, whereas this method releases a one-dimensional time series with differen-
tial privacy; outlier detection is applied to the released data as a post process.
Consequently, the approach differs from ours.

Lui et al. [14] introduced a novel privacy notion, outlier privacy, as a gener-
alization of differential privacy. Outlier privacy measures an individual’s privacy
parameter by how much of an “outlier” the individual is. The objective of this
study is to define privacy using the notion of outliers, but not for differentially
private outlier analysis.

Our Contribution. We examine the problem of counting outliers that appear
in a given subspace with a guarantee of differential privacy (Section 2). Random-
ization of query responses based on the global sensitivity analysis is the most
straightforward approach for realization of differential privacy [4]. We derive
the lower and upper bound of the global sensitivity of outlier counts (Section
4.1). From the derived bounds, we reveal that the global sensitivity-based ran-
domization can make the outputs too noisy, particularly when the dimensional-
ity of the given subspace is high. We specifically examine the observation that
the counts of outliers are expected to be small compared to the number of
data in typical datasets. Taking advantage of this, we develop a randomiza-
tion mechanism for the counts of outliers based on the smooth upper bound of
local sensitivity [18] (Section 4.2). A randomization mechanism based on the
smooth upper bound typically has better utility because of its data-dependency.
However, its evaluation is often costly. To alleviate this, we provide an effi-
cient algorithm for evaluation of the smooth upper bound for counting outliers
(Section 4.2). We demonstrated our methods with synthesized datasets and real
datasets (Section 5). The experimentally obtained results demonstrate that our
methods achieve better utility than that achieved using global sensitivity-based
methods.

460 R. Okada et al.

2 Differential Privacy

Let X = {x1,x2, . . . ,xN} ∈ R
d×N be a database. An analyst issues a query

q : Rd×N → T ; then the database returns an output, where T denotes the range
of the outputs. Differential privacy measures the privacy breach of database X
caused by releasing output T ∈ T with no assumptions of the background knowl-
edge of adversaries. The outputs are typically modified using a randomization
mechanism A : Rd×N → T before release to preserve differential privacy.

Let H(X,X ′) = |{i : xi �= x′
i}| denote the Hamming distance, the number

of different records in X and X ′. If H(X,X ′) = 1, then it can be said that X
and X ′ are neighbor databases. In the following, we presume |X| = |X ′| = N .
Then, mechanism A guarantees (ε, δ)-differential privacy if, ∀X ′ : H(X,X ′) = 1
and ∀T ⊆ T ,

Pr[A(X) ∈ T] ≤ eεPr[A(X ′) ∈ T] + δ.

The parameter ε and δ are designated as privacy parameters. Randomization
based on the global sensitivity is the most straightforward realization of differ-
ential privacy for continuous outputs [3].

Global Sensitivity. Presuming that the output domain of query q is in R
p,

then randomization based on the global sensitivity [3] provides a mechanism
that guarantees differential privacy for queries of any type, as long as its global
sensitivity is evaluable. The �2 global sensitivity of query q : R

d×N → R
p is

defined by GSq = maxX,X′:H(X,X′)=1 ‖q(X) − q(X ′)‖2 where ‖ · ‖ denotes �2
norm of vectors. Given the global sensitivity GSq for query q, the following
mechanism A that randomizes the output of the query by eq. (1) provides (ε, δ)-
differential privacy [2]:

Aq(X) = q(X) + Y, (1)

where Y is an sample drawn from the Gaussian distribution with mean 0 and

variance GS2
q ·2 log (2/δ)

ε2 .

Smooth Sensitivity. For some functions, the global sensitivity can be imprac-
tically large even when the sensitivities are small with almost all neighboring
pairs. This large sensitivity occurs because it is evaluated as the greatest differ-
ence of outputs among possible neighboring pair of databases. For example, the
global sensitivity of median is N , the whole sample size, but this arises only in
a pathological situation. Randomization based on the smooth sensitivity [18]
enables the use of moderate sensitivity for such overly sensitive queries. For a
given database X, the �2 local sensitivity for query q is defined as the greatest
difference of outputs for ∀X ′ s.t. X ′ : H(X,X ′) = 1:

LSq(X) = max
X′:H(X,X′)=1

||q(X) − q(X ′)||2.

It is noteworthy that GSq = maxX∈Rd×N LSq(X) holds.

Differentially Private Analysis of Outliers 461

Nissim et al. presented the smooth sensitivity [18], which is a class of smooth
upper bounds to the local sensitivity. Given β > 0, the smooth sensitivity of
query q : Rd×N → R

p is defined by

S∗
q,β(X) = max

X′∈Rd×N
(LSq(X ′) · e−βH(X,X′)).

[18] also showed that adding noise proportional to the smooth sensitivity yields
a differentially private mechanism if the noise distribution satisfies some prop-
erties. Let Y be a noise generated from the Gaussian distribution with mean
0 and variance 1. Let Sq,β be a β-smooth upper bound of query q. Then, if
α = ε

5
√

2 ln 2/δ
and β = ε

4(p+ln 2/δ) , mechanism Aq guarantees (ε, δ)-differential

privacy [18]:

Aq(X) = q(X) +
Sq,β(X)

α
· Y.

3 Problem Statement

Our objective is to analyze outliers that are included in a private database in
a differentially private manner. Outlier detection is a problem to identify an
instance that is significantly distant from other instances. Therefore, the result
of outlier detection is fundamentally privacy-invasive in terms of differential
privacy. In order to understand the behavior of the outliers in the target dataset
without identifying outliers, we investigate counting outliers in a given subspace
under the constraint of differential privacy.

3.1 Counting Outliers

In this study, we use distance-based outliers [9]. Presuming that records are real-
valued vectors, xi ∈ R

d, and letting X = {xi}N
i=1 denote the database, we let

S ∈ {1, 2, . . . , d} denote a subspace. The Euclidean distance between x,y ∈ R
d

in subspace S is denoted by distS(x,y) =
√∑

i∈S(xi−yi)2

|S| [7]. Let r > 0 and
k ∈ {1, . . . , N}. Then, the set of neighborhood vectors of x in subspace S is
defined by

NS(X, r,x) = {y ∈ X : distS(x,y) ≤ r,x �= y}.

With this definition of the neighboring vectors, the outliers in subspace S are
defined by

OS(X, k, r) = {x ∈ X : |NS(X, r,x)| < k}.

Then, the task of the outlier count is to find the number of outliers in S:

qcount(X, k, r, S) = |OS(X, k, r)|.
If the subspace is not specified, then O(X, k, r) denotes the set of outliers in
the full space. Distance-based outliers are definable with any type of object and
distance defined for the corresponding objects, but we presume that the objects
are represented as real vectors and that the Euclidean distance is used as the
distance definition.

462 R. Okada et al.

3.2 Differential Privacy of Outlier Analysis

We introduce several typical scenarios of differentially private outlier analysis
using query qcount.

Scenario 1. Given threshold k and radius r, presume that the objective is to
inspect that the outliers exists in the given dataset. The analyst issues a query
z = qcount(X, k, r); then checking z > θ yields the final result where θ denotes a
prescribed threshold parameter for outlier counts. Let z′ = qcount(X ′, k, r). For
guarantee of (ε, δ)-differential privacy, we require, for ∀X ′ : H(X,X ′) = 1 and
∀T ∈ T ,

Pr[T = A(z)] ≤ eεPr[T = A(z′)] + δ.

Scenario 2. Let the data dimension be d = 3. Given threshold k
and radius r, presume that the objective is to identify the subspaces that
cause the largest numbers of outliers. Then, the target subspace set is
S = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. The analyst issues query
qcount(X, k, r, Si) for each Si ∈ S. Let zi = qcount(X, k, r, Si). For the guarantee
of (ε, δ)-differential privacy, we require, ∀X ′ : H(X,X ′) = 1 and ∀T ∈ S,

Pr[T = A(z1, . . . , , z7)] ≤ eεPr[T = A(z1, . . . , z7)] + δ.

4 Differentially Private Count of Outliers

As explained in this section, we investigate the problem of differentially private
count of outliers in a given subspace. The discussion herein holds for any subspace
including the full space. Therefore, for this discussion, we presume that the
outlier is counted in the full space.

4.1 Difficulties in Global Sensitivity Method

Analytical evaluation of the global sensitivity of determination of qcount is not
trivial, partly because it needs the kissing number. The kissing number Kd is the
largest number of hyperspheres with same radius in R

d that can touch equivalent
hyperspheres with no intersections [15–17]. The kissing numbers in d = 1 and
d = 2 are readily derived respectively as K1 = 2 and K2 = 6 (see Fig. 1 for
K2 = 6). However, finding the kissing number in d ≥ 3 is not trivial. In addition,
the kissing number in general dimensions remains as an open problem [15–17].
We derive the upper and lower bound of the global sensitivity of qcount presuming
that the kissing number in general dimensions is given.

Theorem 1 (Upper and lower bound on the global sensitivity of qcount).
Let Kd be the kissing number in R

d. Then, the upper and lower bound on the
global sensitivity of qcount is

min(N, 2dk + 1) ≤ GSqcount,d(k) ≤ min(N, kKd + 1). (2)

Differentially Private Analysis of Outliers 463

Fig. 1. This figure shows an example of the upper bound of the global sensitivity in two
dimension. Six surrounding hyperspheres can be packed around the center hypersphere
because the kissing number is K2 = 6. We here suppose k datapoints exist at the center
of each surrounding hypersphere and no datapoint exists at x0, the center of the center
hypersphere. Then, kK2 outliers become inliers by adding a point to x0. Suppose the
added point is an outlier, Then, the added point can be changed from an outlier to
an inlier, too. The upper bound of the global sensitivity for two dimension is thus
kK2 + 1 = 6k + 1.

Sketch of Proof. The lower bound is trivial so we omit the proof. We show the
sketch of the proof for the upper bound. Suppose the radius of the center hyper-
sphere and the hyperspheres touching the center hyperspheres (referred to as the
surrounding hyperspheres) are r/2. Let x0 be the center of the center hypersphre.
Note that intersection between the surrounding hyperspheres does not exist. We
further suppose k datapoints exist at the center of each surrounding hypersphere.
These datapoints are outliers by definition, and become inliers by adding a point
to the center x0 of the center hypersphere. By definition of the kissing number,
the number of the surrounding hyperspheres that do not touch or intersect mutu-
ally is at most Kd. No more surrounding hyperspheres can be packed around x0,
so kKd + 1 is the upper bound of the outlier count. Since the global sensitivity
is at most N , we can conclude that GSqcount,d(k) ≤ min(N, kKd + 1).

We empirically investigate the tightness of the bound in low dimensions. In
d = 1 and d = 2, the global sensitivity is given respectively as GSqcount,1(k) =
2k+1 and GSqcount,2(k) = 5k+1. Noting that K1 = 2 and K2 = 6, the bound is
tight in d = 1 but not in d = 2. Fig. 2 shows the upper and lower bounds of the
global sensitivity of qcount evaluated using known upper bounds on the kissing
number [15–17]. As the figure shows, the upper bound of the global sensitivity
grows exponentially with respect to the dimensionality, which indicates that the
guarantee of differential privacy by perturbation based on the global sensitivity
can be impractical, especially when the dimensionality of the target subspace is
large.

The global sensitivity can be prohibitively large simply because the global
sensitivity is evaluated considering the worst case. However, one can typically

464 R. Okada et al.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25

lo
g(

Se
ns

iti
vi

ty
)

Dimension

Lower bound
Upper bound

Fig. 2. The bounds of the global sensitivity for counting outliers

expect that the number of outliers in the database is much smaller than the
number of instances. To improve the utility of the count query, we introduce the
smooth sensitivity, which is a sensitivity definition depending on the database.

4.2 Local Sensitivity and Smooth Sensitivity

For convenience of discussion later, several notations are introduced here. Given
radius r, deg(x) denotes the size of neighborhoods of x:

deg(X, r,x) = |N(X, r,x)|.
We say that the degree of x is k if deg(X, r,x) = k. A set of vectors in X whose
degree is exactly k is denoted as

V (X, k, r) = {x ∈ X : deg(x) = k}.

Unless specifically stated otherwise, the radius r and target database X is fixed.
Therefore, they are omitted as deg(x) and V (k). Finally, a set of degree-k neigh-
borhoods of x in X is denoted as

CV (X,x, k, r) = B(x, r) ∩ V (k),

where B(x, r) denotes the sphere with radius r and centered at x.

Local Sensitivity. Given database X, let X1 be a database s.t. H(X,X1) = 1.
Then, following the definition of the local sensitivity in Section 2, the local
sensitivity of qcount is defined as

LS(0)
qcount

(X, k, r) = max
X1:H(X,X1)=1

‖qcount(X0, k, r) − qcount(X1, k, r)‖.

Exact evaluation of the exact local sensitivity is intractable. Instead, the follow-
ing theorem gives the upper bound of the local sensitivity.

Differentially Private Analysis of Outliers 465

Theorem 2. Given X, the local sensitivity of qcount for X is bounded above as

LS(0)
qcount

(X, k, r) ≤

max
{

max
x∈X

{|CV (X,x, k, r)|}, max
x∈Rd

{|CV (X,x, k − 1, r)|}
}

+ 1.

Proof. CV (X,x, k, r) is the set of non-outliers that become outliers if x is
removed; CV (X,x, k − 1, r) is the set of outliers that become inliers if a vector
is placed at x. Thus, if vector x0 ∈ X is moved to x′

0, the number of out-
liers increases by |CV (X,x0, k, r)| by removing x0 and the number of inliers
decreases by |CV (X,x′

0, k − 1, r)| by adding x′
0. With this understanding, the

local sensitivity is given as:

LS(0)
qcount

(X, k, r)

= max
X1:H(X,X1)=1

‖qcount(X, k, r) − qcount(X1, k, r)‖

≤ max
x0∈X,x′

0∈Rd
|CV (X,x0, k, r) \ CV (X,x′

0, k − 1, r)| + 1

≤ max
x0∈X,x′

0∈Rd
max {|CV (X,x0, k, r)|, |CV (X,x′

0, k − 1, r)|} + 1

= max
{

max
x∈X

{CV (X,x, k, r)}, max
x′

0∈Rd
{CV (X,x, k − 1, r)}

}

+ 1.

Naive evaluation of the local sensitivity is intractable. An algorithm to evaluate
this upper bound is presented in Section 4.3.

Smooth Sensitivity. Given database X, let Xt be a database s.t. H(X,Xt) =
t. By definition, the smooth sensitivity of qcount is given as

S∗
qcount

(X) = max
t=0,1,...,N

e−tβLS(t)
qcount

(X),

where

LS(t)
qcount

(X) = max
Xt:H(X,Xt)=t

LS(0)
qcount

(Xt).

The function LS
(t)
q (X) returns the largest local sensitivity among the datasets

of which t records differ from X. Similarly to LS
(0)
qcount(X), exact evaluation of

LS
(t)
qcount(X) is intractable because the variation of Xt can increase exponentially

with respect to t. Instead, we derive the upper bound on LS
(t)
qcount(X) using

CV (X,x, k, r).

Theorem 3. Given X, for t ≥ 0, LS
(t)
qcount(X) is bounded above as

LS(t)
qcount

(X) ≤ max
x∈Rd

{
max{C(t)(X,x, k, r), C(t)(X,x, k − 1, r)} + t + 1

}
, (3)

466 R. Okada et al.

where

C(t)(X,x, k, r) =

∣
∣
∣
∣
∣

t⋃

i=−t

CV (X,x, k + i, r)

∣
∣
∣
∣
∣
.

For the proof of this theorem, we use the following helper lemma.

Lemma 1. Let t ≥ 0 be an integer, and let X and Xt be databases such that
H(X,Xt) = t. Then, for any x ∈ R

d, threshold k, and radius r,

|CV (Xt,x, k, r)| ≤
∣
∣
∣
∣
∣

t⋃

i=−t

CV (X,x, k + i, r)

∣
∣
∣
∣
∣
+ t.

Proof. We first consider the case t = 1. Suppose x ∈ X is moved from x to
x1, and X1 is given as X1 = X \ {x} ∪ {x1}. The degree of records in X \ {x}
around x decreases by one by removing x, and the degree of records in X \ {x}
around x1 increases by one by adding x1. Since the degree of the records in
V (X, k + 1, r) and V (X, k − 1, r) may become k in X1, V (X1, k, r) is thus a
subset of V (X, k + 1, r) ∪ V (X, k, r) ∪ V (X, k − 1, r) ∪ {x1}. When t > 1, for the
same reason, V (Xt, k, r) is a subset of

⋃t
i=−t V (X, k+i, r)∪{x1,x2, ...,xt} where

x1, ...,xt are the records moved from X to Xt. Thus, the size of CV (Xt,x, r, k)
is bounded above as

|CV (Xt,x, r, k)| ≤
∣
∣
∣
∣
∣
B(x, r) ∩

{ t⋃

i=−t

V (X, k + i, r) ∪ {x1,x2, ...,xt}
}∣

∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

t⋃

i=−t

B(x, r) ∩ V (X, k + i, r)

∣
∣
∣
∣
∣
+ |{x1,x2, ...,xt}|

≤
∣
∣
∣
∣
∣

t⋃

i=−t

CV (X,x, k + i, r)

∣
∣
∣
∣
∣
+ t.

Sketch of Proof (of Theorem 3). From Theorem 2 and exchangeability of max,
letting

C
(t)
out(X, k, r) = max

Xt:H(X,Xt)=t
max
x∈Xt

|CV (Xt,x, r, k)| and

C
(t)
in (X, k − 1, r) = max

Xt:H(X,Xt)=t
max
x∈Rd

|CV (Xt,x, r, k − 1)|

yields

LS(t)
qcount

(X) ≤ max{C
(t)
out(X, k, r), C(t)

in (X, k − 1, r)} + 1.

We derive the bound on C
(t)
out(X, k, r) using C

(t)
in (X, k − 1, r), and the bound on

C
(t)
in (X, k − 1, r) using Lemma 1.

Differentially Private Analysis of Outliers 467

4.3 Efficient Computation of Smooth Sensitivity Bound

For randomization by the mechanism of Theorem 3, it is necessary to evaluate
the smooth upper bound. Naive evaluation of the smooth upper bound of eq. (3)
is intractable because it requires an exhaustive search over continuous domain
to evaluate LS

(t)
qcount(X). To alleviate this, we first show an efficient algorithm

that evaluates the upper bound of LS
(t)
qcount(X) shown derived by Theorem 3.

Then using the algorithm, we derive the algorithm that calculates the smooth
sensitivity upper bound.

Algorithm for Local Sensitivity Bound. To evaluate the upper bound of
LS

(t)
qcount(X), we need to calculate

max
x∈Rd

C(t)(X,x, k, r) = max
x∈Rd

∣
∣
∣
∣
∣

t⋃

i=−t

V (X, k + i, r) ∩ B(x, r)

∣
∣
∣
∣
∣
, and (4)

max
x∈Rd

C(t)(X,x, k − 1, r) = max
x∈Rd

∣
∣
∣
∣
∣

t⋃

i=−t

V (X, k + i − 1, r) ∩ B(x, r)

∣
∣
∣
∣
∣
. (5)

Letting P =
⋃t

i=−t V (X, k+ i, r) (resp. P =
⋃t

i=−t V (X, k+ i−1, r)), we can
obtain the value of eq. (4) (resp. eq. (5)) by finding the largest subset C ⊆ P
that is enclosed by a ball with radius r. To check whether or not a given subset
C ⊆ P is enclosed by the ball, we use the algorithm that solves the smallest
enclosing ball (seb) problem [6]. The goal of the problem is to find the smallest
ball that encloses the given points. The given subset C ⊆ P is enclosed by a ball
with radius r if seb(C) ≤ r where seb(C) denotes the radius of the resultant ball
of the smallest enclosing ball problem of C.

Algorithm 1 shows the recursive algorithm that calculates eq. (4) or eq. (5) for
given P =

⋃t
i=−t V (X, k + i, r) or P =

⋃t
i=−t V (X, k + i− 1, r). P [i] denotes the

i-th element of the set P . Algorithm 1 searches for the largest subsets C ⊆ P
that is enclosed by a ball with radius r with the breadth-first search. In the
algorithm, the calls of seb can be skipped for efficiency by using the fact that
the radius of the enclosing ball of C2 is larger than one of C1 if C1 ⊆ C2 ⊆ P .
The computational cost of Algorithm 1 is O(2|P |) of the calls of seb.

Algorithm for Smooth Sensiticity Bound. Algorithm 1 costs exponen-
tial time with respect to |P | and the size of P increases monotonically as t
increases. However, because of exponential decrease of e−tβ , maximization of
e−tβLS

(t)
qcount(X) is attained by small t in most cases. Taking account of this

property, we provide Algorithm 2 that calculates the smooth sensitivity bound
with avoiding evaluation of LS

(t)
qcount(X) of large t.

Proposition 1. For any t and t′ < t, LS
(t)
qcount is bounded above as

LS(t)
qcount

(X) ≤ min{N, max{U
(t)
t′ (X, k, r), U (t)

t′ (X, k − 1, r)} + t + 1},

468 R. Okada et al.

Algorithm 1. Calculation of maxx∈Rd C(t)(X,x,k,r)(eq. (4) and eq. (5))
Input: Records P and radius r.
Output: The value of eq. (4) or eq. (5).
Initialization: C = ∅ and i = 1

1 Function E(r, P, C, i)
2 br ← 0
3 if C �= ∅ then
4 br ← seb(C)
5 end
6 if br ≤ r then
7 m ← |C|
8 if i ≤ |P | then
9 b1 ← E(r, P, C ∪ {P [i]}, i + 1)

10 b2 ← E(r, P, C, i + 1)
11 m ← max{m, b1, b2}
12 end
13 return m

14 end
15 else
16 return 0
17 end

18 end

where

U
(t)
t′ (X, k, r) = max

x∈Rd
C(t′)(X,x, k, r) +

∣
∣
∣
∣
∣
∣

⋃

i∈{−t,...,−t′−1}∪{t′+1,...,t}
V (X, k + i, r)

∣
∣
∣
∣
∣
∣
.

Sketch of Proof. For any database X, because the number of outliers does not
exceed the number of the records in X, the local sensitivity is less than N . In
addition, using the fact that CV (X,x, k, r) ⊆ V (X, k, r) for any x ∈ R

d, we can
derive maxx∈Rd C(t)(X,x, k, r) ≤ U

(t)
t′ (X, k, r) for any t and t′ < t.

Using the bound in Proposition 1, we have the upper bound of e−tβLS
(t)
qcount(X)

as

e−tβLS(t)
qcount

(X) ≤e−tβ min{N, max{U
(t)
t′ (X, k, r), U (t)

t′ (X, k − 1, r)} + t + 1}
=:St′,t

UB(X).

Letting St
UB(X) = maxi=1,...,N−t St,t+i

UB (X), we can obtain the following propo-
sition.

Proposition 2. If there exists UT such that maxt=0,...,T e−tβLS
(t)
qcount(X) ≤ UT

and ST
UB(X) ≤ UT , then S∗

qcount
(X) ≤ UT .

Differentially Private Analysis of Outliers 469

Algorithm 2. Calculation of the smooth sensitivity of qcount

Input: Database X, threshold k, radius r and smooth parameter ε.
Output: The smooth sensitivity upper bound of query qcount for database X.
Initialization: Smax = 0 and

maxx∈Rd C(−1)(X,x, k, r) = maxx∈Rd C(−1)(X,x, k − 1, r) = 0.
1 for t = 0 to N do
2 Calculate St−1

UB by Proposition 2

3 if St−1
UB ≤ Smax then

4 return Smax

5 end

6 Smax ← max{Smax, e
−tβLS

(t)
qcount(X)}

7 Store maxx∈Rd C(t)(X,x, k, r) and maxx∈Rd C(t)(X,x, k − 1, r) for
calculating St

UB in next loop
8 end
9 return Smax

Proof. If ST
UB(X) = maxi=1,...,N−T ST,T+i

UB (X) ≤ UT , since e−tβLS
(t)
qcount(X) ≤

ST,t
UB(X) for any t > T , we have e−tβLS

(t)
qcount(X) ≤ UT ,∀t > T . Thus, we have

maxt=0,...,T e−tβLS
(t)
qcount(X) ≤ UT and maxt>T e−tβLS

(t)
qcount(X) ≤ UT .

Proposition 2 shows that if the largest upper bound in Theorem 3 for t = 0, ..., T
can be bounded above by ST

UB(X), then the calculation of the upper bound in
Theorem 3 for t > T can be skipped. Algorithm 2 shows the calculation of the
smooth sensitivity of qcount with this skip by following Proposition 2.

5 Experiments

In this section, we show the empirical evaluation of the utility of the mechanism
for counting outliers query.

5.1 Settings

We used a synthetic dataset and a real dataset (adult). The synthetic dataset
consists with 50 samples of 2 dimensional real vectors. The dataset contains 45
inliers which are sampled from N (0, I) where I represents an identity matrix.
The 5 outliers are sampled from N (µ, Σ), where μ1 = μ2 = 20 and Σ is a
diagonal matrix such that Σ11 = Σ22 = 100.

A real dataset (adult) was chosen from UCI Machine Learning Reposi-
tory [13]. We removed two categorical attributes, “category” and “fnlwgt”. The
dataset was scaled so that the average and variance of each attribute is 0 and 1,
respectively. The dataset is originally prepared for classification tasks. For our
outlier analysis, following [19,22], 45 samples with the positive label are treated
as inliers and 5 samples with negative labels were treated as outliers (See Table
1 for the detail). We changed the privacy parameter from ε = 0.1 to 0.9; δ was

470 R. Okada et al.

Table 1. Sumarry of datasets

synthetic adult

The number of outliers 5 5
The number of inliers 45 45

The number of samples N 50 50
Dimension d 2 7
Treshold k 3 3
Radious r 1.1 0.35

fixed as δ = 0.01. See Table 1 for the parameters of the outliers. We partitioned
the instances into two classes: one is “true”, indicating the instance detected as
an outlier; the other is “false”. For each dataset, we tuned the radius r so that
the Accuracy given by eq. (6) is maximized:

Accuracy =
TP + TN

TP + FP + FN + TN
, (6)

where TP , TN , FP and FN respectively denote true positive, true negative,
false positive, and false negative. For implementation, we used [11] to solve the
smallest enclosing ball problem.

5.2 Count Outliers

Following the Scenario 1 described in Section 3.2, we evaluated the utility of
the mechanisms of qcount on the synthetic dataset. As the criterion of the utility
of the mechanisms, we show the standard deviation of the noise added to the
query. We compared the standard deviation of the noise of the mechanism based
on the smooth sensitivity upper bound in eq. (3) with the mechanism based on
the global sensitivity lower bound in eq. (2). Fig. 3 shows the output values and
the standard deviations for each mechanism in various ε. In Fig. 3, “Global” and
“Smooth” respectively present the global sensitivity-based mechanism and the
smooth sensitivity-based mechanism.

It is apparent that the standard deviation of the noise of the smooth
sensitivity-based mechanism is significantly lower than that of the global
sensitivity-based mechanism. Indeed, the standard deviation of the noise of
global sensitivity-based mechanism is approximately 10-30 times larger than that
of the smooth sensitivity-based mechanism even though the global sensitivity-
based mechanism uses the lower bound. In addition, the smooth sensitivity-based
mechanism achieves the noise of which standard deviation is lower than 7 for
ε ≥ 0.7 for each datasets. The reason why we got these results is our approach
depends only on the number of outliers, not on the number of dimensions. From
these results, we can conclude that our framework is sufficiently practical in this
setting.

Differentially Private Analysis of Outliers 471

Fig. 3. Experimental results for the global sensitivity-based mechanism and the smooth
sensitivity-based mechanism on each dataset. The right panel is obtained by scaling the
left panel so that the error bars of the smooth sensitivity-based mechanism are visible.
The horizontal axis denotes the privacy parameter ε. The vertical axis denotes the
output value of the query without randomization. The error bars denote the standard
deviation of the noise added by the mechanisms.

6 Conclusion and Future Works

We present the differentially private distance-based outlier analysis for the query
that counts outliers in a given subspace. Taking advantage of the smooth sensi-
tivity [18], the resulting output of the mechanism can be less noisy than that of
the global sensitivity-based mechanism. Although the evaluation of the smooth
upper bound is often costly, we provide an efficient algorithm for the evaluation
of the smooth upper bound for the problem for outlier counting. This paper
describes an initial step towards differentially private outlier analysis, and the
experimental evaluation is performed with relatively small-size datasets. In our
algorithm, we invoke the smallest enclosing ball algorithm that takes as input
the power set of instances. Because of this construction, we need a more efficient
algorithm for application to larger size datasets.

Subspace discovery for outlier analysis has been investigated as a major topic
of outlier detection [7,8,10]. Differentially private subspace discovery can be

472 R. Okada et al.

achieved by issuing count queries sequentially to each subspace; however, the
number of subspaces increases exponentially with respect to the dimensional-
ity, which costs a large amount of privacy budget. An efficient mechanism for
subspace discovery is left as an area of the future work.

Acknowledgments. This research was supported by KAKENHI 24680015, JST
CREST Advanced Core Technologies for Big Data Integration, and the program
Research and Development on Real World Big Data Integration and Analysis of the
MEXT, Japan.

References

1. Bao, H.T., et al.: A distributed solution for privacy preserving outlier detection.
In: Proceedings of the 2011 Third International Conference on Knowledge and
Systems Engineering, pp. 26–31. IEEE Computer Society (2011)

2. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, our-
selves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)

3. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006)

4. Dwork, C., Smith, A.: Differential privacy for statistics: What we know and what
we want to learn. Journal of Privacy and Confidentiality 1(2), 2 (2010)

5. Fan, L., Xiong, L.: Differentially private anomaly detection with a case study on
epidemic outbreak detection. In: Proceedings of the 2013 IEEE 13th International
Conference on Data Mining Workshops, pp. 833–840. IEEE Computer Society
(2013)

6. Fischer, K., Gärtner, B., Kutz, M.: Fast smallest-enclosing-ball computation in
high dimensions. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832,
pp. 630–641. Springer, Heidelberg (2003)

7. Keller, F., Müller, E., Böhm, K.: Hics: high contrast subspaces for density-
based outlier ranking. In: IEEE 28th International Conference on Data Engineer-
ing (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1–5 April, 2012,
pp. 1037–1048. IEEE Computer Society (2012)

8. Keller, F., Müller, E., Wixler, A., Böhm, K.: Flexible and adaptive subspace search
for outlier analysis. In: 22nd ACM International Conference on Information and
Knowledge Management, CIKM 2013, San Francisco, CA, USA, October 27 -
November 1, 2013, pp. 1381–1390. ACM (2013)

9. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large
datasets. In: Proceedings of the 24rd International Conference on Very Large Data
Bases. pp. 392–403. VLDB 1998, Morgan Kaufmann Publishers Inc., San Francisco,
CA (1998)

10. Knorr, E.M., Ng, R.T.: Finding intensional knowledge of distance-based outliers.
In: Proceedings of the 25th International Conference on Very Large Data Bases,
pp. 211–222. VLDB 1999, Morgan Kaufmann Publishers Inc., San Francisco, CA
(1999)

11. Kutz, M., Kaspar, F., Bernd, G.: A java library to compute the miniball of a point
set. https://github.com/hbf/miniball, last Accessed Time: February 2, 2015

https://github.com/hbf/miniball

Differentially Private Analysis of Outliers 473

12. Li, L., Huang, L., Yang, W., Yao, X., Liu, A.: Privacy-preserving lof outlier detec-
tion. Knowledge and Information Systems 42(3), 579–597 (2015)

13. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
14. Lui, E., Pass, R.: Outlier privacy. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,

Part II. LNCS, vol. 9015, pp. 277–305. Springer, Heidelberg (2015)
15. Mittelmann, H.D., Vallentin, F.: High-accuracy semidefinite programming bounds

for kissing numbers. Experimental Mathematics 19(2), 175–179 (2010)
16. Musin, O.R.: The kissing problem in three dimensions. Discrete & Computational

Geometry 35(3), 375–384 (2006)
17. Musin, O.R.: The kissing number in four dimensions. Annals of Mathematics

168(1), 1–32 (2008)
18. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in

private data analysis. In: Proceedings of the Thirty-ninth Annual ACM Symposium
on Theory of Computing, pp. 75–84. STOC 2007. ACM, New York (2007)

19. Pham, N., Pagh, R.: A near-linear time approximation algorithm for angle-based
outlier detection in high-dimensional data. In: Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 877–885. KDD 2012. ACM, New York (2012)

20. Vaidya, J., Clifton, C.: Privacy-preserving outlier detection. In: The Fourth IEEE
International Conference on Data Mining, pp. 233–240. IEEE Computer Society,
Brighton (2004)

21. Xue, A., Duan, X., Ma, H., Chen, W., Ju, S.: Privacy preserving spatial outlier
detection. In: Proceedings of the 9th International Conference for Young Computer
Scientists, pp. 714–719. IEEE Computer Society (2008)

22. Zhang, K., Hutter, M., Jin, H.: A new local distance-based outlier detection approach
for scattered real-world data. In: Theeramunkong, T., Kijsirikul, B., Cercone, N.,
Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 813–822. Springer, Heidelberg
(2009)

http://archive.ics.uci.edu/ml

Inferring Unusual Crowd Events from Mobile
Phone Call Detail Records

Yuxiao Dong1, Fabio Pinelli2, Yiannis Gkoufas2, Zubair Nabi2,
Francesco Calabrese2(B), and Nitesh V. Chawla1

1 Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, USA

{ydong1,nchawla}@nd.edu
2 IBM Research, Mulhuddart, Ireland

{fabiopin,yiannisg,zubairn,fcalabre}@ie.ibm.com

Abstract. The pervasiveness and availability of mobile phone data offer
the opportunity of discovering usable knowledge about crowd behavior
in urban environments. Cities can leverage such knowledge to provide
better services (e.g., public transport planning, optimized resource allo-
cation) and safer environment. Call Detail Record (CDR) data represents
a practical data source to detect and monitor unusual events considering
the high level of mobile phone penetration, compared with GPS equipped
and open devices. In this paper, we propose a methodology that is able to
detect unusual events from CDR data, which typically has low accuracy
in terms of space and time resolution. Moreover, we introduce a concept
of unusual event that involves a large amount of people who expose an
unusual mobility behavior. Our careful consideration of the issues that
come from coarse-grained CDR data ultimately leads to a completely
general framework that can detect unusual crowd events from CDR data
effectively and efficiently. Through extensive experiments on real-world
CDR data for a large city in Africa, we demonstrate that our method
can detect unusual events with 16% higher recall and over 10× higher
precision, compared to state-of-the-art methods. We implement a visual
analytics prototype system to help end users analyze detected unusual
crowd events to best suit different application scenarios. To the best of
our knowledge, this is the first work on the detection of unusual events
from CDR data with considerations of its temporal and spatial sparse-
ness and distinction between user unusual activities and daily routines.

1 Introduction

The ubiquity of mobile devices offers an unprecedented opportunity to ana-
lyze the trajectories of movement objects in an urban environment, which can

We wish to thank the Orange D4D Challenge (http://www.d4d.orange.com) organiz-
ers for releasing the data we used for testing our algorithms. Research was sponsored
in part by the Army Research Laboratory under Cooperative Agreement Number
W911NF-09-2-0053 and the U.S. Air Force Office of Scientific Research (AFOSR)
and the Defense Advanced Research Projects Agency (DARPA) grant #FA9550-12-
1-0405.

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 474–492, 2015.
DOI: 10.1007/978-3-319-23525-7 29

http://www.d4d.orange.com

Inferring Unusual Crowd Events from Mobile Phone Call Detail Records 475

have a significant effect on city planning, crowd management, and emergency
response [4]. The big data generated from mobile devices, thus, provides a new
powerful social microscope, which may help us to understand human mobility
and discover the hidden principles that characterize the trajectories defining
human movement patterns. Cities can leverage the results of the analytics to
better provide and plan services for citizens as well as to improve their safety.
For example, during the occurrence of expected or chaotic events such as riots,
parades, big sport events, concerts, the city should be able to provide a proactive
response in allocating the correct amount of resources, adapt public transport
services, and more generally adopt all possible actions to safely handle such
events. Many methods have been proposed in the literature to detect groups
of people moving together from a trajectory database [14,16,18,32], specifically
the GPS data. However, only a very little percentage of people currently carry
GPS devices, and share their movement trajectories with a central entity that
can use them to identify crowd events.

In this paper, we study the problem of unusual event detection from mobile
phone data that is opportunistically collected by telecommunication operators,
in particular the Call Detail Records (CDR). In 2013, the number of mobile-
phone subscriptions reached 6.8 billion, corresponding to a global penetration
of 96%. The pervasiveness of mobile phones is spreading fast, with the number
of subscriptions reaching 7.3 billion by 2014, from a recent report by Interna-
tional Telecommunications Union (ITU) at 2013 Mobile World Congress [7].
Therefore, CDR data represents a practical data source to detect and monitor
unusual events considering the high level of mobile phone penetration. This is
specifically useful in developing countries where other methodologies to gather
crowd movement data (e.g., GPS or cameras) are very expensive to be installed.

The task of detecting unusual events from CDR data is very different from
previous work on fine-grained trajectory data, such as GPS data, and presents
several unique challenges. Temporal sparseness: CDR data only records the
user location when a call or text message is made or received, thus is temporally
sparse since call or message frequency of users is usually low and unpredictable.
Spatial sparseness: The location information of users when they make a call
or message is recorded as the location of the antenna, which brings the spa-
tial sparseness of CDR data. Non-routine events: Our objective is to detect
unusual crowd events from human daily movements, which mostly consist of
usual routines. Thus, it is necessary to discriminate unusual crowd movements
from routine trajectories.

To address these challenges, we aim to estimate the location of users in
absence of spatio-temporal observations (i.e., the users don’t make phone calls),
detect groups of people moving together, and proactively discover unusual events.
We propose a general framework to infer unusual crowd events from mobile phone
data. Specifically, our contributions can be summarized as follows:

– We first define the cylindrical cluster to capture sparse spatio-temporal loca-
tion data and provide practical methods to extract crowd events from CDR
data, and further formalize the unusual crowd event detection problem by

476 Y. Dong et al.

Fig. 1. Process flow of the system to detect unusual events.

considering the similarity between individuals’ trajectories and their histor-
ical mobility profiles.

– We provide a Visual Analytics Prototype System to help the end user (e.g. a
city manger or analyst) analyze the detected crowd events and set the values
of the parameters to best suit an application scenario.

– Finally, we evaluate our proposed framework on a real-world CDR dataset
and demonstrate its effectiveness and efficiency. Our method significantly
outperforms (10× precision and +16% recall) previous event detection meth-
ods on GPS data with verification on real-world unusual crowd events.

The mobile phone CDR data used in this work is collected from Cote d’Ivoire
over five months, from December 2011 to April 2012. During that period, this
Africa country faced the Second Ivorian Civil War and political crisis1. From the
election of new president and parliament, continued outbreaks of post-election
conflicts happened, including boycott, violence and protest etc. The experimen-
tal results on this real-world dataset deliver the effectiveness of our proposed
methodologies, which demonstrates the significant importance of our work in
the supervision of unusual crowds and events for city and country management.
Moreover, through the proposed method, city mangers and officials can gain
insights into non-ticketed events taking place in public spaces, which could lead
to estimating the number of attendees and to estimating the event’s success. A
particular instance of such method has been recently implemented to help the
police and the event organizers monitor visitors to the Mons 2015 - European
Capital of Culture Opening Ceremony [3].

2 Unusual Event Detection Problem

Given the nature of CDR data, we face three major challenges in extracting
accurate individual trajectories. First, we can only record user locations when
they make calls or receive calls (text messages). As most mobile users do not
make phone calls frequently and periodically, positions are not regularly sampled,
as opposed to GPS navigation systems. Moreover, mobile users do not follow a
call pattern consistently with others in the group. Second, when a user makes
a call, CDR data only records the base station she is using, providing very low
quality location information. Finally, the scenario that we are considering—e.g.,
1 http://en.wikipedia.org/wiki/2010-11 Ivorian crisis

http://en.wikipedia.org/wiki/2010-11_Ivorian_crisis

Inferring Unusual Crowd Events from Mobile Phone Call Detail Records 477

going to a protest—is not consistent with an individual’s daily activity pattern
such as going from home to office, thus we cannot leverage the previous history
of the user to enrich his trajectory to make it more accurate.

We formally define the problem of unusual event detection and decompose
the problem in different steps that enable us to solve the challenges brought
by CDR data. Figure 1 shows the process flow to detect unusual events. The
system receives CDR data as input, extracts clusters, and detects crowds from
the sequences of clusters. Then, the system verifies some constraints for each
crowd and labels them as unusual if necessary. Subsequently, one or more unusual
crowds compose unusual events.

Let DBCDR = {call1, call2, · · · , calln} denote the set of all calls collected
from a mobile phone network. We define a call as a tuple calli =< ti, vj , lk >,
which means a user vj makes or receives a call at location lk at timestamp
ti, where vj ∈ V, ti ∈ T, lk ∈ L. V is the set of all users and T denotes all
possible timestamps. Specifically, lk stands for the geographical location of the
kth mobile network antenna and L means the set of locations of all antennas
found in DBCDR. We define the individual mobility trajectory [10,27] for each
user as follows.

Definition 1. Individual Trajectory: A user vj ’s mobility trajectory from start
time tp to end time tq is defined as a sequence of spatio-temporal tuples spqj =⋃

(ti, lk), where tp ≤ ti ≤ tq and spqj ∈ S. S stands for the set of user trajectory
sequences.

Cylindrical Cluster. The first step to identify crowd events from individual
trajectories is to find, at any specific timestamp, clusters of individuals that are
close in space. However, since CDR data is very sparse on the time scale (i.e.,
users do not make calls regularly), we propose the concept of cylindrical cluster
in coarse-grained spatio-temporal data. Finer grain clustering methods, such as
density-based clustering [8], cannot be applied as the antenna is the lowest level
of spatial resolution available in the data. Indeed, users are already clustered by
association to the antenna they use at each call (which defines a specific coverage
area in the city, ranging from a few hundred squared meters to a few kilometers).

Definition 2. Cylindrical Cluster: Given a CDR database DBCDR which con-
tains individual calls with time and antenna information, and a scale threshold
εn, the cylindrical cluster CCt at timestamp t is a non-empty subset of users
Vt ⊆ V satisfying the following conditions:

– Connectivity. ∀vi ∈ Vt, vi makes at least one call by using antenna ax, in the
interval [t - εt, t + εt].

– Scale. The number of users |Vt| in CCt is no less than εn.

Figure 2(a) shows an illustrative example for cylindrical clusters. Given a
timestamp t1, we can see that user1, user2, user3 and user4 make calls during
time interval [t1 − εt, t1 + εt]. Also, user3, user1 and user2 use the same antenna
which is different from user user4’s. Then they are clustered into two groups.
One potential issue is that there may exist multiple locations for one single user
if she/he makes multiple calls during time interval [t1 − εt, t1 + εt]. A number of

478 Y. Dong et al.

methods can be considered to assign one single location from multiple locations,
such as the central position or the most common position. We use the most
common position due to its ease of calculation and understanding.

Crowd. In order to detect crowds lasting for a certain amount of time we
need to consider shared characteristics between clusters detected in consecutive
timestamps.

Definition 3. Crowd: Given a CDR database DBCDR with individual tra-
jectories, a lifetime threshold εlt, a consecutive intersection threshold εci and
a commitment probability threshold εp, a crowd C is a sequence of consecu-
tive cylindrical clusters {CCtm , CCtm+1 , · · · , CCtn} which satisfy the following
constraints:

– Movement. The number of total locations in one crowd is more than one.
– Durability. The lifetime of C, C.lt, namely the number of consecutive clus-

ters, is greater than εlt, i.e., C.lt ≥ εlt where C.lt = n − m + 1.
– Commitment. At least εci users appear in each cylindrical cluster with exis-

tence probability εp.

The movement and durability characterizations specify the types of crowd we
are interested in. The commitment instead characterizes the fact that a certain
subset of users needs to participate to all clusters. Again, due to the spatio-
temporal sparsity of the CDR data, the computation of the commitment of an
user requires some further considerations. Therefore, we propose the concept of
existence probability, which is designed to overcome CDR sparsity. Indeed, as
an individual is not constantly making calls, consecutive timestamps could not
see all users in the cluster making calls.

We design the existence probability of one user locating in a cluster at times-
tamp t as the proportion of the number of users in CCt to the number of users in
CCt−1. The intuition for the definition of existence probability is that the user
has conformity to follow others in the group that she or he was assigned to [24].
For example, the existence probability of user3 in Figure 2(a) at time t2 is 1/3.
In timestamp t1, user1, user2, and user3 stay in cluster CCt1 , and one of them,
user user2, goes to cluster CCt2 at timestamp t2. user1 and user3 do not make
calls in timestamp t2, which results in the uncertainty of their locations. Thus,
we assign them the probability to stay with user2, which is in cluster CCt2 .
Furthermore, we make the existence probability decay over time, i.e., if a user
does not appear in consecutive timestamps, such as user user4 in timestamp
t3 and t4. Her existence probabilities in Figure 2(a) are [0, 1, 1

2 , 1
2 × 2

3] at each
timestamp, respectively.

Considering that a crowd is a sequence of clusters, we use the standard
terminology of sequential pattern mining and affirm that: a crowd C is called a
closed crowd if it has no super crowds, which means there does not exist super
sequences containing C.

Unusual Crowd. Usually, people have their own mobility trajectories in daily
lives, such as going from home to work place everyday. When people go to
attend a concert or a protest, their trajectories differ from their usual ones.

Inferring Unusual Crowd Events from Mobile Phone Call Detail Records 479

(a) Cylindrical Cluster (b) Closed Crowd

Fig. 2. Illustrative Examples of Cylindrical Cluster and Closed Crowd.

The definition of crowd given above includes both usual daily trajectories (e.g.,
commuting) as well as unusual event trajectories (e.g., protests). This is, for
instance, what the method in [32] aims to do. As we will show in the experiments
section, such method generates an enormous amount of events, as opposed to
what a city would need in order to identify specific unusual events. Here we define
the concept of mobility profile to capture people’s normal movement behaviors,
by comparing with which we can detect abnormal mobility behaviors.

Definition 5. Mobility Profile: Given a CDR database DBCDR with individ-
ual trajectories, one’s mobility profile is the groups of locations she/he visited
for each time unit (hour) in every day. Notice that a location here corresponds
to an antenna.

Definition 6. Unusual Crowd: Given the mobility profiles of users, a similarity
threshold εsi, a closed crowd C is said to be an unusual crowd UC if the average
similarity between the trajectory of each user in the crowd and her/his mobility
profile in corresponding time intervals is less than εsi.

Unusual Event Detection. Due to the inaccuracy of CDR data and to the
introduction of the existence probability concept, it is possible that two or more
crowds share users and thus they represent the same event. Moreover, it is pos-
sible that many crowds might correspond to the same large event (e.g., two
parades converging to the same square). To group together these unusual crowds,
we define the concept of unusual event:

Definition 7. Unusual Event: Given two unusual crowds UCi and UCj , UCi

and UCj are connected into one unusual event if they satisfy the following prin-
ciples:

– Overlapping: The ending time Ci.tend of crowd Ci is temporally close to the
beginning time Cj .tbegin of other crowd Cj , w.r.t. Cj .tbegin < Ci.tend.

– Sharing: The number of common users, |Ci

⋂
Cj |, is larger than or equal to

half of the total users |Ci

⋃
Cj |.

An unusual event is a set of unusual crowds E = {UC1, UC2, · · · , UCn} in
which any two unusual crowds are connected to each other by a path. Here one
separate unusual crowd is also an unusual event, if it does not connect with
others. Based on the discussed concepts above, we formalize the unusual event
detection problem as follows.

480 Y. Dong et al.

Problem 1. Unusual Event Detection: Given all detected crowds during
the interval of two timestamps, the goal of unusual event detection is to extract
all unusual events happening in the time interval.

Unusual crowd event detection in mobile phone CDR data faces several
unique challenges. First, the sparseness of CDR data comes from not only the
fact that a user’s location is recorded only when a call is made but also the way
that this location is approximated as the cover area of an antenna that is being
used by this call. To solve the temporal and spatial sparseness of CDR data, we
propose to define user existence probability that can overcome the fact that a
user’s location is recorded only when a call is made, and also to leverage the
idea of cylindrical cluster to address the coarseness of user locations as they are
recorded as the cover area of involved antenna. Moreover, the problem is tar-
geted at inferring unusual events rather than people daily routines. To achieve
so, we propose the concept of mobility profile to distinguish unusual crowding
behavior from daily movements.

3 Unusual Event Detection Framework

Given the formal definitions above, we describe now an innovative and efficient
framework to detect unusual crowd events from CDR data. Our framework is
composed of four parts: cylindrical cluster detection, closed crowd detection,
unusual crowd detection, and unusual event detection.

Cylindrical Cluster Detection. Given the database of the individual calls
with the respective time and antenna information, a duration threshold εt, and
a scale threshold εn, the Cylindrical Cluster Detection algorithm maintains at
each timestamp t the set of users observed from each antenna a, in the time
interval [t - εt, t + εt]. Then, for each timestamp it returns all the set of users
whose size is larger than εn. All the detected cylindrical clusters are stored in
ClusterDB.

Closed Crowd Detection. The input for crowd detection is a set of cylin-
drical clusters ClusterDB extracted at each timestamp. There are three con-
straint thresholds considered in our crowd definition: movement, durability,
commitment. Explicitly, if the subcrowd of one crowd meets the durability and
movement constraints, it will satisfy the commitment constraint also. Thus the
crowd definition satisfies the requirement of downward closure property, and
then it is unnecessary to output all crowds, including the subcrowds of closed
crowds. To avoid the redundancy resulted from outputting subcrowds, we can
follow the Lemma 1 to decide if a crowd is closed or not.

Lemma 1. A crowd C with clusters {CCt+m, CCt+m+1,· · · , CCt+n} is a closed
crowd, if there does not exist CCt+m−1 or CCt+n+1 that can be added to crowd
C such that a new crowd is formed.

The restriction of closed crowd contains two conditions, one is that no suffixed
cluster can be appended into it and the other is that no prefixed cluster can be

Inferring Unusual Crowd Events from Mobile Phone Call Detail Records 481

merged in its front. To discover closed crowds in cluster database at current
timestamp t, the first condition is easy to check: if there exist clusters in next
timestamp t+1 that can be appended to current crowd C, then the process will
continue; if not, we only need to verify whether current crowd C is the subcrowd
of crowds formed at current timestamp t. It is not necessary to check every crowd
at previous timestamps because that current crowd at timestamp t can only be
the subcrowd of crowds ending at timestamp t.

Figure 2(b) shows an illustrative example for this process. Suppose that
crowds C1 and C2 are found as closed crowds, if there is no cluster at timestamp
t6 that can be appended to crowd C3, then we need to further check whether it
is the subcrowd of previous crowds. It is obvious that it is impossible for C3 to
be the subcrowd of crowds ending at t4 or earlier timestamps, such as C1, but
it is possible to be the subcrowd of crowds ended at t5, such as C2.

To find all closed crowds in ClusterDB, we start with iterating each times-
tamp in an increasing order. At each timestamp t, we check whether each can-
didate crowd at timestamp t − 1 can be appended by clusters at timestamp t.
If the candidate crowd satisfies the movement and durability constraints, and at
the same time it is not the subcrowd of crowds ending at timestamp t − 1, then
we can output the current candidate as a closed crowd. The current candidate
crowd can then be appended by one more cluster to form a new candidate crowd
at t. The candidate crowd set contains all crowds which can be appended by a
new cluster at t. Then we put all clusters at timestamp t to it to form a new
candidate crowd set at t. This order of adding candidate crowd to candidate
set guarantees that we only need to check whether the potential crowd is the
subcrowd of closed crowds ending at the same timestamp.

Complexity : The extraction of closed crowds is similar to the extraction of
closed frequent sequential patterns whose complexity in the worst case can be
approximated with O(|A|2 ∗ |T |) where |A| is the number of antennas (i.e. clus-
ters) and |T | is the number of timestamps.

Unusual Crowd Detection. With the detected closed crowds, we further
verify whether their users present unusual or regular behaviors. As introduced in
Section 2, we use mobility profile to decide whether users’ movement trajectories
are unusual.

To generate the mobility profiles, we scan the historic CDR data once to
record the specific locations a user visited at each timestamp during every
time period. For example, user4’s existence probability vector in correspond-
ing crowd is wc = [0, 1, 1

2 , 1
2 × 2

3] in Figure 2(a). His profile vector is extracted
from his mobility profile at corresponding timestamps (from t1 to t4), i.e.
wm = [03 , 2

2+5 , 1
4+1 , 2

2+1]. There are several ways to define the similarity between
user’s mobility profile and his trajectory in the crowd. We use cosine similarity
to calculate the similarity score, because of its ease of understanding and imple-
mentation. The cosine similarity between two vectors wc and wm is defined as:
CosSim(wc,wm) = wc·wm

‖wc‖‖wm‖ .

The Unusual Crowd Detection algorithm first calculates for each user in
the crowd the similarity between her trajectory and her own mobility profile.

482 Y. Dong et al.

Then the similarities obtained are averaged, and the obtained value is greater
than the similarity parameter εsi, it is an unusual crowd.

Complexity : The mobility profile construction requires a scan of the dataset,
therefore its complexity is O(DBCDR). The detection of Unusual Crowds
requires for each crowd the computation of the cosine similarity for all the users
being part of a crowd, thus its complexity is O(|C|∗|V |) where |C| is the number
of crowds and |V | the number of users.

Unusual Event Detection. With discovered unusual crowds, we finally detect
their relationships and connect them into one event if they meet the requirements
of Definition 7. In this step, we use graph theory to find and generate unusual
events. First if two unusual crowds satisfy both overlapping and sharing prin-
ciples, we create an edge to connect them. With this generated graph, where
each node is one unusual crowd and an edge indicates that two crowds belong to
the same event, the event detection is to generate all components in the graph.
Note that this graph may not only be disjoint but also include single nodes.
Each component or single node is an unusual event that is our final goal of
this work. The first part of this algorithm checks if two unusual crowds can be
connected to each other by parameters overlapping and sharing. The second
part generates all the components in the unusual crowds graph, where any graph
algorithm can be used. The detected event contains the users in each cluster and
its corresponding timestamp and location.

Complexity : The detection of Unusual Events requires a pair-wise comparison
between all the Unusual Crowds, therefore the complexity of this procedure is
O(|UC|2) where |UC| is the number of Unusual Crowds.

4 Experiments

4.1 Experimental Setup

CDR Data. The D4D Orange challenge made available data collected in
Cote d’Ivoire over a five-month period, from December 2011 to April 2012.
The datasets describe call activities of 50,000 users chosen randomly from every
two weeks. Specifically, the data contains the cell phone tower and a times-
tamp at which the user sent or received a text message or a call in the form of
tuple <UserID, Day, Time, Antenna>. Each antenna is associated with loca-
tion information. To avoid privacy issues, the data has been anonymized by D4D
data provider.

From the CDR data, we find that about 63% users do not make calls in
consecutive hours and 19% users make calls in only two consecutive hours. The
pattern demonstrates the necessity of existence probability for user’s location
estimation, as most of users do not make regular and consecutive calls at each
timestamp. We also observe that the probability that there is one hour between
one user’s two calls is more than 75% and that is 8% for a two-hour interval.
In total, there are more than 80% two consecutive calls whose intervals are at
most two hours. These observations demonstrate the challenges of CDR data’s

Inferring Unusual Crowd Events from Mobile Phone Call Detail Records 483

Table 1. Comparison of the unusual event detection (UE) and gathering detection
(GAT) [32].

Period Date Event Name [22] UE #UE GAT #GAT

Dec. 05 - Dec. 18
Dec. 07 Anniversary of Felix Death

√
20

√
287Dec. 11 Parliament election

√ ×
Dec. 17 Violence

√ √

Dec. 19 - Jan. 01
Dec. 25 Christmas day ×

36
×

56Dec. 31 New year eve
√ √

Jan. 1 New year day
√ ×

Jan. 02 - Jan. 16
Jan. 08 Baptism of Lord Jesus

√
31

√
176

Jan. 14 Arbeen Iman Hussain
√ ×

Jan. 17 - Jan. 29
Jan. 17 Visit of Hilary Clinton

√
15

√
481

Jan. 18 Visit of Kofi Annan
√ √

Jan. 30 - Feb. 12

Jan. 30 ACNF 2012 vs Angola
√

58

√

310

Feb. 04 ACNF 2012 vs Equatorial Guinea
√ √

Feb. 04 Mawlid an Nabi Sunni
√ √

Feb. 05 Yam
√ ×

Feb. 08 ACNF 2012 Semi Final VS. Mali × √
Feb. 09 Mawlid an Nabi Shia

√ √
Feb. 12 ACNF 2012 Final VS. Zambia

√ ×
Feb. 13 - Feb. 26

Feb. 13 Post African Cup of Nations Recovery
√

52

√
152

Feb. 22 Ash Wednesday
√ √

Feb. 27 - Mar. 10 None 26 269

Mar. 11 - Mar 25
Mar. 12 Election of National Assembly President

√
17

√
342

Mar. 13 Election of National Prime Minister
√ √

Mar. 26 - Apr 08
Apr. 01-04 Education International Congress

√
75

√
1220

Apr. 06 Good Friday
√ √

Apr. 09 - Apr. 22
Apr. 09 Easter Monday

√
10

√
33

Apr. 13-14 Assine fashion days
√ √

Total 23/25 340 19/25 3326

Precision 0.0676 0.0057

Recall 0.9200 0.7600

spatio-temporal sparseness, which makes the design for degenerative existence
probability reasonable for the coarse-grained CDR data.

Comparison Methods. To the best of our knowledge, this is the first work
to detect unusual crowds and events in spatio-temporal data, and it is also the
first time that we discover moving clusters in CDR data. We compare the results
of our approach with GAT described in [32] and MOV in [17], as the methods
employed in these work are also able to identify moving crowds. However, those
methods are not designed to work on CDR and have to be adapted to perform
the comparison. GAT defines a method to detect the gatherings in a trajectory
dataset. A gathering is a sequence of spatial clusters with a certain number
of committed users being member of an enough number of clusters. We use the
same setting with GAT for parameters that indicate the same physical meanings
in both methods. Clearly by following our intuition and goal of problem design,
there should not exist any crowd or event at most days. Based on the results of
parameter analysis in Section 4.3 and the developed Visual Analytics System,
we selected the following parameters εn=20, εlt=4, εci=10, εp=0.2, and εsi=0.2.
Since they correspond to a probability to find unusual crowds to be around
10-15%, which helps us focus on rare events (as opposed to business as usual
events).

484 Y. Dong et al.

2011−12−06 Tue 00:00 12−09 Fri 06:00 12−12 Mon 12:00 12−15 Thu 18:00 12−18 Sun 23:00
0

1

2

3

4

5

date

#Unusual−crowds
#Unusual−events

(a) Number of unusual events

date
2011-12-06 Tue 00:00 12-09 Fri 06:00 12-12 Mon 12:00 12-15 Thu 18:00 12-18 Sun 23:00

#g
at

he
rin

gs

0

100

200

300

400

500

kp=3, mp=10, d=0.0
kp=3, mp=10, d=0.5
kp=3, mp=10, d=1.0
kp=3, mp=10, d=1.5
kp=2, mp=10, d=1
kp=3, mp=10, d=1
kp=4, mp=10, d=1
kp=3, mp=5, d=1
kp=3, mp=10, d=1
kp=3, mp=15, d=1

(b) Number of gatherings

2011−12−06 Tue 00:00 12−09 Fri 06:00 12−12 Mon 12:00 12−15 Thu 18:00 12−18 Sun 23:00
0

5000

10000

15000

date

Users
Calls

(c) Number of total call users/times

2011−12−06 Tue 00:00 12−09 Fri 06:00 12−12 Mon 12:00 12−15 Thu 18:00 12−18 Sun 23:00
0

100

200

300

400

500

date

antenna 808
antenna 670
antenna 1040
antenna 274
antenna 1027

(d) Number of calls at antennas

Fig. 3. Time series of unusual events, gatherings, users, and calls in the first two-week.

4.2 Experimental Results

Detected Unusual events. Table 1 reports a series of events occurred in
Abidjan in the different periods covered by the datasets. In order to perform
a fair study of the effectiveness of our method in comparison with GAT, we
selected a third part set of events reported in [22]. To limit the explosion in
the number of detected gatherings, we have set the most restrictive values for
the remaining parameters: d = 0.0, kp = 2, and mp = 5. Moreover, we report
the total number of generated events by both methods for each two-week period
and subsequently generate Precision and Recall scores for both algorithms. It
is possible to notice that our method detects a lower number of unusual events
w.r.t. GAT. This is reflected in a higher value of Precision. Although, our method
reports a lower number of events, it is able to detect a greater number of ground
truth events, and this corresponds to a higher value of Recall. Notice that the
two measures represent an estimation of precision and recall since the ground
truth is not given. Indeed the list of events in [22] is not comprehensive of all
events that happened in Ivory Coast in the monitored 5-month period, and this
explains the low precision of both methods. This is the reason why we did not try

Inferring Unusual Crowd Events from Mobile Phone Call Detail Records 485

to find the optimal values of the parameters to maximize Precision and Recall,
but instead set such values based on the general criteria to find unusual crowds
only in around 10-15% of the hours. However, the list in Table 1 gives a good
basis for comparison and shows that our method is 10 times more precise than
GAT.

We further perform comparisons with MOV, where the authors introduce the
concept of moving clusters. Extracting moving clusters is equivalent to run our
method with the parameter εp (the probability of a user to be committed) and
εsi (the similarity threshold between the mobility profile and the trajectories
in the event) to 1. With these parameter settings the algorithm was not able
to find any moving clusters. This is due to the fact that our method is able to
handle the spatial and temporal sparsity of CDR data, while the MOV method
is designed to work with GPS trajectories.

Time-Series. We report the time series of the numbers of unusual events
and gatherings detected with different input parameter settings by using our
method and the GAT algorithm in Figures 3(a) and 3(b). We try to match the
same parameters we used in our method. For the minimum lifetime as well as the
minimum number of objects that should belong to a cluster, we choose the same
values adopted in the study of the effectiveness of our method (εlt = 4 and εn =
20). The rest of the input parameters of the algorithm to detect gatherings are
the following: d is the minimum distance necessary to connect clusters detected
in two consecutive time snapshots; kp is the minimum number of time snapshots
required to consider an user as a participant; mp is the minimum number of
participants to create a gathering. For these input parameters, we tried different
enumerations to span the full admissible ranges. As it is possible to see, the
number of detected gatherings is very high even if the parameters are chosen to
be very restrictive. All the graphs show a daily trend, demonstrating that this
method is not able to find unusual events our proposed method. Indeed, GAT
can detect a large number of gatherings every day, which might not correspond
to specific unusual events.

To further evaluate our discoveries, we check the total communication vol-
umes and the specific antenna activities. We can clearly see that between Dec.
06 and Dec. 18, in Figure 3(c) there exist periodic patterns on each day without
obvious peak values corresponding to the discovery of crowds—anniversary of
Felix death on Dec. 07 and Parliament election on Dec. 11. Furthermore, the
events on the day of parliament election involved five antennas. Their communi-
cation activities are plotted in Figure 3(d). Obviously there do not exist corre-
lations between corresponding antenna activities and our unusual crowd/event
output. These two regular and stable time series of communication activities
further confirm the effectiveness of our problem design. These examples show
that detecting unusual events is a complex task, which cannot be easily accom-
plished by looking at outliers in call time series. Thus, methods like [6,21] are
not directly applicable.

Spatial Distributions. Another comparison performed against GAT regards
the spatial distribution of the detected events/gatherings. For both methods, we

486 Y. Dong et al.

(a) Detected unusual events (b) Detected gatherings

Fig. 4. The unusual events (a) by our methods and the gatherings (b) by GAT
detected on December 11th. Colors range from green to red as function of the number
of detected participants

select the results obtained on December 11th. For the GAT method we select
the results with lowest number of detected gatherings. In Figures 4(a) and 4(b)
we report the detected events and detected gatherings respectively. Notice that
a Voronoi tessellation has been applied in order to associate a covering area to
each antenna. Our method detect 2 events, Event 1 (left) covers 3 antennas and
lasts for 4 hours. Event 2 (right) covers 2 antennas and also lasts for 4 hours.
For the same day, the GAT algorithm detects many gatherings (25) occurring
in different regions of the city. This is probably due to the fact that the typical
mobility profiles of the users are not taken into account in the process and thus
recurring and unusual events are both detected. Moreover, if we consider the
lifetime of gatherings occurring in the same locations of our events, we notice
that it is generally longer. For example, a gathering, covering the same antennas
of Event 1, lasts for 14 hours. Another characteristic of the gatherings is that
they happen in the same location at different times. Instead, in our model, we
define a method to consider those as one large event. In summary, with our
method it is possible to identify events that occur occasionally in a precise zone
of the city and happen in a precise period of time, while the other method detects
several events without any distinctions between the periodical and the unusual
ones.

4.3 Efficiency and Parameters

Our algorithms are implemented in Python 2.7.5, and all experiments were per-
formed on a laptop running Windows 7 with Intel(R) Core(TM) i7-2720QM
CPU@2.20GHz (2 cores) and 8GB memory. All related experiments are running
on the first two-week dataset, which contains about two million CDR historic
data. We simulate each experiment with specific parameter setting for 100 times
to get both the average running time and standard deviation. In general, the
algorithms for detecting unusual crowd events are efficient, in the fact that it
only takes about 30 seconds to two minutes on two million CDR data. Further-
more, the execution of our methods is stable among different runs.

We evaluate the effect of parameter setting on the number of detected unusual
crowds and discuss the guidelines for determining parameter settings. We find
that the algorithm is particularly sensitive to εlt, εp, and εsi. εlt is indicative of

Inferring Unusual Crowd Events from Mobile Phone Call Detail Records 487

Fig. 5. Real-time view of city map and statistics.

the duration of moving crowds. Based on the definition of commitment, a larger
εp can produce more compact crowds, which have much higher probabilities to
be unusual events. Finally, the lower similarity εsi threshold between regular
mobility profiles and specific trajectory we set, the more crowds will consist of
people whose mobility behavior differs from their typical profiles.

We would like to point out that there is not an unique way to optimally select
the values of the parameters, as this strongly depends on the end-user application.
For instance, if a city manager is interested in monitoring visitors to a museums,
she might set different values of εlt and εp, compared to the monitoring on a protest.
We develop a visual analytics tool described in Section 5 to help end users explore
and test the detected results under different parameter settings for different appli-
cations.

5 Visual Analytics Prototype System

We have developed a visual analytics system to support the exploration of the
unusual crowd events based on the proposed framework. The system allows end
users—such as analysts and city managers—to analyze the formation and evo-
lution of crowds, and study the impact of different parameters on the obtained
results, heuristically suggesting possible changes to get more meaningful results
depending on the desired application. The interface consists mainly of two com-
ponents: the map overview of the observed city (Figure 5 (a)) and the statistics
of users, crowds, and events (Figure 5 (b)).

Map View. In the map, the system visualizes the latest clusters, crowds
and unusual events detected in the form of polygons as shown in Figure 5 (a).

488 Y. Dong et al.

Fig. 6. Analyst statistics view

The polygons are the convex hulls of the location updates of the users belonging
to one of the aforementioned groups. The clusters detected by the system at a
given timestamp are visualized on the map as green polygons. On mouse-over, the
UI shows a pop-up window with the cluster attributes, including 1) timestamp—
the timestamp when the cluster was detected, 2) #users—the number of users
that are a part of the cluster, 3) area—the area covered by the Cluster poly-
gon in square kilometers, 4) density—the ratio between the number of users in
the Cluster and its area, and 5) POIs—the list of Points Of Interest located
within the cluster area. The detected Crowds and the Unusual events are visu-
alized on the map as blue and red polygons, respectively. Similar to the cluster
visualization, a set of properties can be shown in a pop-up window.

Statistics View. We envision the tool to be used by two different types of
actors: the Analyst, which is in charge of setting up the analytics system, and
the city manager, who has to take actions based on the identified unusual crowd
events. The City manager tab contains a single time-series graph representing
the number of Clusters, Crowds, Unusual Events detected at every timestamp
as displayed in Figure 5 (b). This tab contains the most crucial outcome of
the analytics performed and it provides an intuitive way to represent the most
recent mobility patterns of the city. The Analyst tab contains a richer set of
statistics in Figure 6. In order to make efficient use of available space we fit
the graphs into collapsible panels into groups of semantically relevant statistics,
including 1) Cumulative—the cumulative trends of the detected clusters, crowds
and unusual events, 2) Detection per minute—the time-series of the number of
clusters, candidate crowds, crowds, and unusual events, 3) Event monitoring—
the time-series of maximum and minimum value of lifetime, number of committed
users, total number of users, and similarity of the candidate crowds, 4) Cluster
monitoring—the time-series of the maximum size of the detected clusters, and
their minimum spatial radius. In addition, a red dashed-line corresponding to
each parameter is shown to depict parameter efficacy (e.g. event monitoring,

Inferring Unusual Crowd Events from Mobile Phone Call Detail Records 489

cluster monitoring). This allows the Analyst to understand the role of each
parameter on the obtained results and to set the most appropriate parameters
for the specific application in scope.

6 Related Work

The availability of mobility data has offered researchers the opportunity to ana-
lyze both individual’s and group’s moving behaviors. In [12,14], the authors
defined a methodology to extract dense areas in spatio-temporal databases, thus
identifying where and when dense areas of mobile objects appear. A similar defi-
nition was proposed in [17], where the authors introduced the concept of moving
clusters. Following these ideas, several group and cluster mobility pattern mod-
els have been proposed [1,16,19,31]. For instance, in [2,11,28,29] the concept
of flock is widely investigated. A flock is a group of objects that travel together
within a disc of some user-specified size for at least k consecutive timestamps.
The main limit of this model is that a simple circular shape does not reflect
natural grouping in reality. A marginal different concept convoy was introduced
in [15,16], where a density-based clustering is adopted instead of the radius of
the disk. Li at al. [18] proposed a more general type of trajectory patterns:
swarm. The swarm is a cluster of moving objects that lasts for at least k times-
tamps, possibly non-consecutive. Another group mobility model was introduced
in [32], called gathering, whose novelty regards the introduction of the concept
of commitment.

Other interesting works dealing with the detection of anomalies in city traffic
flow are presented in [6,21,25]. In [21], the authors use likelihood ratio test statis-
tic (LRT) on GPS trajectories of taxis to detect traffic flow anomalies. Trans-
portation model detection problem is studied in mobile phone data and GIS data
[23]. A passive route sensing framework is introduced to monitor users’ signifi-
cant driving routes with low-power sensors in mobile phones [20]. However, these
works do not address the problem detecting unusual events considering people
mobility but are more focused on traffic flow analysis through an aggregation of
the information. On the contrary, in this paper we are interested in detecting
such events that involve a large number of people whose current mobility differs
from their typical one.

All the above works are designed and tested on high-resolution trajectory
data, such as the one provided by GPS systems. Low-resolution location data
collected from telecommunication operators, on the other hand, is much more
pervasive resulting in a much larger sample of the population being monitored,
see [4,5,9,13]. In this paper, we propose a new method to mine coarse grain
mobile phone data (in the form of CDR) to detect unusual crowd events. Indeed,
the aim of our work is to detect events that involve a large number of people
performing unusual activities. To do so, we compute a similarity between the
mobility profile of the users and their trajectories in group pattern. This extends,
thus, the concept of commitment since users need to be committed and have
trajectories that differ from the ones in their mobility profiles. Our method

490 Y. Dong et al.

however is able to identify moving events that span several locations over time,
and involve a subset of committed users, something that could not be detected
by using the methods in [26,30].

7 Conclusion and Future Work

In this paper, we formally define the problem of inferring unusual crowd events
from mobility data. Previous work on event detection is limited on inferring the
usual event from the fine-grained GPS data. Our problem definition differs by
characterizing the unusual crowd events and we present a new methodology to
extract them from coarse-grained CDR data. The main contributions of this
paper w.r.t. existing methods are the ability to analyze temporally and spatially
sparse data as CDRs and the definition of a subclass of events which are unusual
to its attendees. Our experimental results demonstrate the effectiveness of our
proposed method in real-world mobile datasets.

Despite the promising results of the present work, there is still much room
left for future work. First, while this proposed method relies on Visual Analytics
to help end users set parameters, we are planning to design algorithms to deter-
mine parameters for specific applications of interest as well as an optimization
procedure for evaluation metrics. Moreover, we are working toward combining
mobile and social media data together to detect unusual events. In doing so, we
have the potential to detect and monitor crowding activities in real time, and
eventually yield a better and smarter planet.

References

1. Appice, A., Malerba, D.: Leveraging the power of local spatial autocorrelation in
geophysical interpolative clustering. DMKD 28(5–6), 1266–1313 (2014)

2. Benkert, M., Gudmundsson, J., Hbner, F., Wolle, T.: Reporting flock patterns.
Computational Geometry 41(3), 111–125 (2008)

3. Calabrese, F., Di Lorenzo, G., McArdle, G., Pinelli, F., Van Lierde, E.: Real-time
social event analytics. In: Netmob 2015 (2015)

4. Calabrese, F., Ferrari, L., Blondel, V.: Urban sensing using mobile phones network
data: a survey of research. ACM Comput. Surv. (2014)

5. Calabrese, F., Pereira, F.C., Di Lorenzo, G., Liu, L., Ratti, C.: The geography of
taste: analyzing cell-phone mobility and social events. In: Floréen, P., Krüger, A.,
Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 22–37. Springer, Hei-
delberg (2010)

6. Chawla, S., Zheng, Y., Hu, J.: Inferring the root cause in road traffic anomalies.
In: IEEE ICDM 2012, pp. 141–150 (2012)

7. Dong, Y., Yang, Y., Tang, J., Yang, Y., Chawla, N.V.: Inferring user demographics
and social strategies in mobile social networks. In: KDD 2014, pp. 15–24. ACM
(2014)

8. Ester, M., Peter Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: ACM SIGKDD 1996,
pp. 226–231 (1996)

Inferring Unusual Crowd Events from Mobile Phone Call Detail Records 491

9. Georgiev, P., Noulas, A., Mascolo, C.: The call of the crowd: Event participation
in location-based social services. In ICWSM 2014 (2014)

10. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In:
ACM SIGKDD 2007, pp. 330–339. ACM, New York (2007)

11. Gudmundsson, J., van Kreveld, M.: Computing longest duration flocks in trajec-
tory data. In: ACM GIS 2006, pp. 35–42. ACM, New York (2006)

12. Hadjieleftheriou, M., Kollios, G., Gunopulos, D., Tsotras, V.J.: On-line discov-
ery of dense areas in spatio-temporal databases. In: Proc. of the 7th Interna-
tional Conference on Advances in Spatial and Temporal Databases, SSTD 2003,
pp. 306–324 (2003)

13. Isaacman, S., Becker, R., Cáceres, R., Martonosi, M., Rowland, J., Varshavsky, A.,
Willinger, W.: Human mobility modeling at metropolitan scales. In: Proceedings of
the 10th International Conference on Mobile Systems, Applications, and Services,
MobiSys 2012, pp. 239–252. ACM, New York (2012)

14. Jensen, C.S., Lin, D., Ooi, B.C., Zhang, R.: Effective density queries on contin-
uously moving objects. In: IEEE ICDE 2006, pp. 71–81. Washington, DC, USA
(2006)

15. Jeung, H., Shen, H.T., Zhou, X.: Convoy queries in spatio-temporal databases. In:
IEEE ICDE 2008, pp. 1457–1459. IEEE Computer Society, Washington (2008)

16. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in
trajectory databases. Proc. VLDB Endow. 1(1), 1068–1080 (2008)

17. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-
temporal data. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005.
LNCS, vol. 3633, pp. 364–381. Springer, Heidelberg (2005)

18. Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object
clusters. Proc. VLDB Endow. 3(1–2), 723–734 (2010)

19. Lu, E.H.-C., Tseng, V.S., Yu, P.S.: Mining cluster-based temporal mobile sequen-
tial patterns in location-based service environments. IEEE Trans. on Knowl. and
Data Eng. 23(6), 914–927 (2011)

20. Nawaz, S., Mascolo, C.: Mining users’ significant driving routes with low-power
sensors. In: ACM SenSys 2014, pp. 236–250. ACM (2014)

21. Pang, L.X., Chawla, S., Liu, W., Zheng, Y.: On detection of emerging anomalous
traffic patterns using gps data. Data Knowl. Eng. 87, 357–373 (2013)

22. Paraskevopoulos, P., Dinh, T.-C., Dashdorj, Z., Palpanas, T., Serafini, L.: Identi-
fication and characterization of human behavior patterns from mobile phone data.
In: International Conference on the Analysis of Mobile Phone Datasets (NetMob
2013) (2013)

23. Stenneth, L., Wolfson, O., Yu, P.S., Xu, B.: Transportation mode detection using
mobile phones and gis information. In: GIS 2011, pp. 54–63. ACM, New York
(2011)

24. Tang, J., Wu, S., Sun, J.: Confluence: conformity influence in large social networks.
In: ACM SIGKDD 2013, pp. 347–355. ACM, New York (2013)

25. Telang, A., Deepak, P., Joshi, S., Deshpande, P., Rajendran, R.: Detecting localized
homogeneous anomalies over spatio-temporal data. DMKD 28(5–6), 1480–1502
(2014)

26. Traag, V.A., Browet, A., Calabrese, F., Morlot, F.: Social event detection in mas-
sive mobile phone data using probabilistic location inference. In: SocialCom 2011,
pp. 625–628. IEEE (2011)

27. Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for
car pooling. In: ACM SIGKDD 2011, pp. 1190–1198. ACM, New York (2011)

492 Y. Dong et al.

28. Vieira, M.R., Bakalov, P., Tsotras, V.J.: On-line discovery of flock patterns in
spatio-temporal data. In: ACM GIS 2009, pp. 286–295. ACM, New York (2009)

29. Wachowicz, M., Ong, R., Renso, C., Nanni, M.: Finding moving flock patterns
among pedestrians through collective coherence. International Journal of Geo-
graphical Information Science 25(11), 1849–1864 (2011)

30. Witayangkurn, A., Horanont, T., Sekimoto, Y., Shibasaki, R.: Anomalous event
detection on large-scale gps data from mobile phones using hidden markov model
and cloud platform. In: ACM UbiComp 2013 Adjunct, pp. 1219–1228. ACM,
New York (2013)

31. Wu, M., Jermaine, C., Ranka, S., Song, X., Gums, J.: A model-agnostic framework
for fast spatial anomaly detection. ACM Trans. Knowl. Discov. Data 4(4), 1–30
(2010)

32. Zheng, K., Zheng, Y., Yuan, N.J., Shang, S.: On discovery of gathering patterns
from trajectories. In: IEEE ICDE 2013, pp. 242–253, Washington, DC, USA (2013)

Learning Pretopological Spaces for Lexical
Taxonomy Acquisition

Guillaume Cleuziou1(B) and Gaël Dias2

1 Université D’Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France
cleuziou@univ-orleans.fr

2 Université de Caen Basse-Normandie, GREYC UMR 6072, Caen, France

Abstract. In this paper, we propose a new methodology for semi-
supervised acquisition of lexical taxonomies. Our approach is based on
the theory of pretopology that offers a powerful formalism to model
semantic relations and transforms a list of terms into a structured term
space by combining different discriminant criteria. In order to learn a
parameterized pretopological space, we define the Learning Pretopolog-
ical Spaces strategy based on genetic algorithms. In particular, rare but
accurate pieces of knowledge are used to parameterize the different crite-
ria defining the pretopological term space. Then, a structuring algorithm
is used to transform the pretopological space into a lexical taxonomy.
Results over three standard datasets evidence improved performances
against state-of-the-art associative and pattern-based approaches.

1 Introduction and Related Work

By coding the semantic relations between terms, lexical taxonomies (LTs) such
as WordNet [7] have enriched the reasoning capabilities of applications in infor-
mation retrieval and natural language processing. However, the globalized devel-
opment of semantic resources is largely limited by the efforts required for their
construction [5]. As a consequence, many research studies have been appearing
to automatically learn LTs. Instead of manually creating LTs, learning them
from texts has undeniable advantages. First, they may fit the semantic compo-
nent neatly and directly within a given domain. Second, the cost per entry is
greatly reduced, giving rise to much larger resources.

The two main stages for the automatic construction of LTs are term extrac-
tion (TE) and term structuring (TS). A substantial amount of works exist on TE
[8], but the present study exclusively focuses on the TS stage. Within this con-
text, similarity-based, pattern-based, set-theoretical and associative approaches
have traditionally been proposed.

Similarity-based or clustering-based approaches [9,10] hierarchically cluster
terms based on similarities of their meanings usually represented by a vector
of quantifiable features. They have the main advantage that they are able to
discover relations which do not explicitly appear in text. They also avoid the
problem of inconsistent chains by addressing the structure of a taxonomy glob-
ally from the outset. However, it is generally believed that these methods can
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 493–508, 2015.
DOI: 10.1007/978-3-319-23525-7 30

494 G. Cleuziou and G. Dias

not generate relations as accurate as pattern-based approaches [5]. Pattern-based
strategies [5,15] define lexical- syntactic patterns for semantic relations and use
these patterns to discover instances of relations. They are known for their high
accuracy in recognizing instances of relations if the patterns are carefully cho-
sen, either manually or via automatic boostrapping. However, this approach
suffers from sparse coverage of patterns in specific corpora, especially technical
domain ones. Moreover, it may evidence inconsistent concept chains as instances
are extracted in pairs and gathered to form taxonomy hierarchies. Set-theoretic
approaches [3] use formal concept analysis that naturally structures terms with
intensional inclusion relations within a concept lattice. Such term organization
differs from usual lexical taxonomies that provide semantic relations between
terms rather than inclusion relations between formal concepts. This strategy
usually highlights low performance as contextual vector seldom overlap in large
open uncontrolled domains. Finally, associative frameworks [12] use asymmetric
similarities between terms to model the subsumption relation. For that pur-
pose, distributions of terms over document collections are used to discover gen-
eral/specific noun relationships. The main drawback of this approach is that the
subsumption model implicitly hypotheses that general terms are always more
frequent than their specific terms, which is not always satisfied in practice.

Note that these methodologies rely on one exclusive criterion to model the
subsumption (is-a) relation and build the respective taxonomy. In order to take
advantage of multiple criteria, two important works have been proposed [14,16].
Both methodologies first learn an ontology metric, which models the is-a relation
based on vectors of discriminant criteria (e.g. contextual, cooccurrence, syntac-
tic dependency or patterns). This step is obtained by supervised learning over
existing taxonomies. The logistic regression is used by [14] and [16] applies the
ridge regression. Then, the ontology metric guides the incremental taxonomy
acquisition process modeled as an optimization task: 1-objective for [14] and
2-objectives for [16]. The main advantage of these approaches is to model the
is-a relation between terms based on multiple criteria, thus greatly avoiding data
sparseness and low coverage. However, both proposals depend on a supervised
learning stage that relies on large known ontologies such as WordNet or Open
Directory Project. However, in real-world situations, this knowledge is not acces-
sible and only partial (usually small) knowledge of the domain can be accessed.
Moreover, note that these large resources are mainly available for the English
general language. As such, language/domain/genre adaptability is not ensured.

In this paper, we propose a new semi-supervised multi-criteria strategy for
taxonomy induction. The overall idea is (1) to learn a propagation metric1 based
on a set of relevant associative and pattern-based features constrained by small
(yet accessible) pieces of knowledge of the domain and (2) to induce the tax-
onomy based on a pretopological framework which transforms the pretopologi-
cal term space into a directed acyclic graph, the output taxonomy. To achieve
these objectives, we consider pretopology on the multi-criteria analysis point of
view, where criteria are statistical indices (associative approach) and linguistic

1 As opposed to the ontology metric.

Learning Pretopological Spaces for Lexical Taxonomy Acquisition 495

patterns (pattern-based approach) retrieved from a corpus. In particular, we
define the concept of parameterized pretopological space (P-space), where param-
eters express the confidence that exists over each criterion. As such, LT induc-
tion can be viewed as learning the set of parameters (confidences), which best
(1) approximate the expected LT structure and (2) verify a given number of
linguistic patterns constraints. In order to learn the parameters, we define a
new Learning Pretopological Spaces (LPS) strategy based on genetic algorithms,
which leads to induce a LT from an “optimized” P-space. The main advantages
of the LT acquisition methodology presented in this paper, when compared to
state-of-the-art methodologies are enunciated as follows:

(1) We learn a propagation metric, which directly models the is-a relation into
the taxonomy induction process in contrast to [16] and [14] who propose a
two-steps process,

(2) Linguistic patterns, which embody small (yet accessible) pieces of knowl-
edge of the domain constrain the semi-supervised learning process but are
also used as relevant criteria,

(3) We deal with both general and specialized domains where linguistic patterns
fail to retrieve any relation,

(4) Our framework is quasi-independent regarding to language as only few and
simple linguistic patterns and raw texts are required.

In the remainder of this paper, we first define the required notions of our
pretopological framework and its usage for multi-criteria analysis (Section 2).
Then, in Section 3, we define the concept of parameterized pretopological space
(P-space) and propose the learning pretopological spaces (LPS) strategy based
on genetic algorithms in the context of taxonomy induction. In Section 4, we
evaluate our framework on the LT reconstruction task, considering both gen-
eral (i.e. WordNet) and specialized domains (i.e. UMLS). Finally, in Section 5,
concluding statements are enunciated.

2 Pretopological Framework

Pretopology [1] is a theory that generalizes both topology and graph theories
and is commonly used to model complex propagation phenomena thanks to a
pseudo-closure function. Let’s consider a non-empty set E and its powerset P(E).
A pretopological space2 is noted (E, a), where a(.) is a pseudo-closure function
described in Definition 1.

Definition 1 (Pseudo-closure). A pseudo-closure is a function a(.) : P(E) →
P(E), which respects the following three conditions:

i) a(∅) = ∅,
ii) ∀A ∈ P(E), A ⊆ a(A),
2 Note that in this paper, we always consider V -type spaces, as they present good

structuring properties.

496 G. Cleuziou and G. Dias

iii) ∀A,B ∈ P(E), A ⊆ B ⇒ a(A) ⊆ a(B).

So, the pseudo-closure function behaves as an expansion operator that
enlarges any non-empty subset A ⊂ E. As a consequence, successive applica-
tions of a(.) on A lead to a fix-point called closed subset and noted FA. Two
other concepts are required to introduce our model: elementary closed subset
and maximal elementary closed subset formalized in Definitions 2 and 3 respec-
tively.

Definition 2 (Elementary Closed Subset). An elementary closed subset
F{x}, is the closure of a singleton {x} with x ∈ E.

Definition 3 (Maximal Elementary Closed Subset). A maximal elemen-
tary closed subset is an elementary closed subset, maximal in terms of inclusion
with respect to all possible elementary closed subsets in E.

These definitions give us two key concepts on a structuring point of view: (1)
an elementary closed subset F{x} refers to the subset of items reachable from x
and (2) when F{x} is maximal, it means that x is only reachable from items y
with an identical elementary closed subset (F{x} = F{y}), thus capturing a kind
of equivalence class.

2.1 Pretopology and Multi-criteria Analysis

Pretopology can be used in the context of multi-criteria analysis since it allows
complex but efficient aggregation of several criteria at the pseudo-closure func-
tion level. So, considering (1) a set of K criteria providing different views on
the manner a discrete set E is structured and (2) each criterion defining one
neighborhood relation on E and Nk(x) the kth neighborhood of x, the fam-
ily of neigborhoods N = {N1, . . . , NK} suggests a multi-criteria environment.
Note that to be consistent with the formal definition of neighborhoods [1], we
constrain any Nk(x) to contain x itself:

∀k = 1, . . . , K, ∀x ∈ E, x ∈ Nk(x). (1)

A usual pseudo-closure definition for neighborhood aggregation, which satis-
fies the V -type space conditions is given by

∀A ∈ P(E), a(A) = {x ∈ E| ∀ Nk ∈ N , Nk(x) ∩ A
= ∅}. (2)

Such a pseudo-closure expands a subset A to an item x if and only if all
neighborhoods (criteria) of x intersect A. It is important to note that when A is
not reduced to a singleton, the agreement can be reached by intersections that
concern different items of A. Thus, a complex propagation process is defined at
the subset level rather than at the element level and there is no way to reproduce
such a process on a single neighborhood structure that would result from the a
priori aggregation of the different criteria3.
3 Proof of this statement is out of the scope of this paper.

Learning Pretopological Spaces for Lexical Taxonomy Acquisition 497

2.2 Pretopology and LT Acquisition

It is well-established that known LTs such as WordNet or Cyc share some specific
common structure. As a consequence, a learned LT should ideally satisfy the
following two structural requirements:

(1) a DAG structure: each node must be characterized by two disjoint sets of
predecessors and successors with no cycles,

(2) aggregating nodes: each node must contain one or several terms from the
vocabulary E.

Such a structure can be obtained based on a pretopological term space with
the structuring algorithm proposed by [6]. In our specific case, we propose a top-
down version of this algorithm. So, instead of considering minimal closed subsets,
we consider maximal ones. The basic idea of the algorithm for LT induction is
defined in Figure 1 and illustrated in Figure 24.

1. Determine elementary closed subsets associated to each element x of E giving
rise to the family of closures Fe(E, a).

2. Find the family of maximal elementary closed subsets FM(E, a). This means
enumerating all the maximal elementary closed subsets by inclusion in Fe(E, a).
Any element F ∈ FM(E, a) is then a core.

3. Within each core, recursively determine the largest elementary closed subsets of
E in terms of inclusion, until no other can longer be found. The recursive process
allows to generate, from each core, a set of homogeneous parts by successive
reductions and outputs the final LT.

Fig. 1. LT induction algorithm.

vehicle bicycle

automotive
car

truck

axle

wheel

vehicl e, truck, car, automotive ,
bicycle, wheel, axle

truck , automotive , ca r ,
wheel, axle

axle , wheel

whee l

bicycl e, wheel

vehicle

automotive
car truck

bicycle

axle

wheel

Fig. 2. Top-down structuring inducing a DAG from a pretolopological term space.

4 More details can be found in [4].

498 G. Cleuziou and G. Dias

2.3 Current Limitations

Despite its interesting properties for multi-criteria analysis as evidenced in [4]
for LT induction, in its current form, the pretopological LT process evidences
two main limitations that make it under-efficient:

(1) it is sensitive to unreliable criteria,
(2) it only allows a limited number of criteria to combine.

Both issues are due to the definition of the pseudo-closure operator itself that
requires that all criteria must satisfy the intersection property in order to start
the propagation process from elementary sets.

3 Learning Pretopological Spaces

To overcome previous limitations, we propose in this paper a new learning pre-
toplogical spaces (LPS) framework based on a more flexible pseudo-closure def-
inition. It is illustrated in Figure 3.

w1

N2

NK

N1

...

a(.)w2

wK

...

Fig. 3. The LPS process uses partial knowledge on the expected structure in order to
improve the parameterization of the pseudo-closure operator.

This new framework relies on the one-pass process from [4] that first computes
a unique pretopological space from a family of criteria using the pseudo-closure
defined in (2) and then applies the top-down variant of the structuring algorithm
from [6]. But, rather than providing the resulting structure as output, the LPS
framework consists in comparing the built structure to some partial knowledge
and modifying the pseudo-closure operator in order to improve the final struc-
turing. This is achieved by an iterative semi-supervised learning process. Such
a framework requires to introduce new concepts into the pretopology theory,
especially the concept of parameterized pretopological space (P-Space).

Learning Pretopological Spaces for Lexical Taxonomy Acquisition 499

3.1 Parameterized Pretopological Space

To relax the constraint that requires the agreement on all criteria to allow the
propagation process, we propose to introduce a parameter p that indicates a
requirement on the minimum number of neighborhoods that must intersect a
subset A in order to expand it. Its formalization is given in Equation 3 with
p ∈ {1, . . . , K} and 1Nk(x)∩A �=∅ = 1 if the neighborhood Nk(x) intersects A and
0 otherwise.

∀A ∈ P(E), a(A) = {x ∈ E |
∑

Nk∈N
1Nk(x)∩A �=∅ ≥ p} (3)

To express the combination model as a learning model, we define the notion
of parameterized pretopological space (P-Space) that introduces supplementary
parameters to manage the reliability of the criteria in Definition 4.

Definition 4 (P-Space). A P-space (E, a,w) is a V -type pretopological space
with a parameterized pseudo-closure a(.) defined by

∀A ∈ P(E), a(A) = {x ∈ E |
∑

Nk∈N
wk.1Nk(x)∩A �=∅ ≥ w0} (4)

such that (1) w0 > 0, (2)
∑K

k=1 wk ≥ w0 and (3) ∀k, wk ≥ 0.

Note that conditions (1), (2) and (3) over the set of parameters w are defined
to respectively ensure the three conditions i), ii) and iii) expressed in Defini-
tion 1 over the V -type spaces. In particular, each parameter wk in Equation (4)
quantifies the reliability on the kth criteria and w0 represents a global required
confidence to expand the subset. Thus, a subset A will be expanded to an ele-
ment x only if the sum of the confidences on the criteria in agreement with the
expansion exceeds the global required confidence w0.

The P-Space concept evidences two strong advantages: (1) it overcomes the
limitations about reliability and multiplication of the criteria and (2) it extends
significantly the possibilities of combination, passing from a single conjunctive
decision rule to a set of logical decision rule (without negation). But the notice-
able improvement on the model makes a new challenging question to appear:
How to parameterize a P-Space?

3.2 Semi-supervised Learning of P-Spaces

We propose a semi-supervised strategy to learn the parameters of a P-Space. So,
if S is a given source providing a true partial structuring on E5 and considering
that a V -type pretopological space induces a unique DAG, the Learning P-Space
(LPS) process aims to find a P-Space inducing a DAG that satisfies:

5 Note that in the context of LT acquisition S is usually a small number of “evident”
subsumption relations between terms.

500 G. Cleuziou and G. Dias

(1) the constraints implied by the partial knowledge S and
(2) a taxonomy-like structuring.

The following Score(., .) quantifies such a satisfaction:

Score(w, S) = FMeasure(w, S) × Itaxonomy(w). (5)

The FMeasure is the usual external validation index [11] that, in our context,
combines precision and recall calculated over the pairs of elements linked in the
partial knowledge S only. More precisely, given a DAG Dw induced by the P-
Space with parameters w and the partial knowledge S also formalized as a (more
sparse) DAG, we first operate a closure operation on both graphs (resulting
in D̄w and S̄) in order to make any implicit (indirect) edge to emerge before
computing precision, recall and FMeasure. Metrics are defined in Equations 6
where S̄t denotes the graph opposite to S̄, which must be considered in order to
count the false positive relations.

precision = |{(x,y)∈D̄w∩S̄}|
|{(x,y)∈D̄w∩(S̄∪S̄t)}|

recall = |{(x,y)∈D̄w∩S̄}|
|{(x,y)∈S̄}|

FMeasure = 2.precision.recall
precision+recall

(6)

The Itaxonomy term is used to control the structural properties of the induced
DAG Dw (independently to S). Although, the structure of a taxonomy is not
formally defined, one can observe that a taxonomy usually looks like more to a
tree (with one parent per node - except for the root) than to a lattice structure
(for example). In order to favor tree-like structures, we compute on Dw its
average ascendant degree (i.e. average number of parents per node) Ad(Dw),
and we use it to penalize a DAG moving away from a tree-like structure. This
constraint is formalized in Equation 7.

Itaxonomy(w) = e−(Ad(Dw)−1)2 ∈ [0, 1] (7)

The final satisfaction measure Score(w, S) reaches a maximum value of 1 for
a DAG that (1) fits exactly to the knowledge source S and (2) structures the
elements with an average ascendant degree of 1 (taxonomy).

This measure is used to guide the exploration of the space of solutions through
a learning strategy based on a Genetic Algorithm (GA). GAs are stochastic
exploration methods inspired from the natural selection principle [13]. Given
a fitness(.) function over the solution space, they simulate a natural evolution
process by iteratively (1) generating populations of solutions (with mutation and
crossover operators) and then (2) selecting the ones with highest fitness. The
LPS approach uses such a stochastic exploration process based on the following
fitness function:

fitness(w) =
{

Score(w, S) if w satisfies Def. (4)
0 otherwise. (8)

Learning Pretopological Spaces for Lexical Taxonomy Acquisition 501

Figure 4 gives an overview of the general LPS process. Each iteration of the
algorithm leads to an ensemble of P-Spaces, evaluated and selected as regard
to their ability to induce a taxonomy-like structure satisfying partial knowledge
requirements. Ultimately, only the best P-Spaces are returned. Let us notice
that, in addition to the expected taxonomies the final P-Spaces allow to induce,
the returned P-Spaces are themselves of high interest since they hold a learned
propagation process that could be reused in an incremental context6.

1. Given:
a set of elements E,
a family of criteria N = {N1, . . . , NK},
a partial knowledge S,
a maximum number of iterations tmax.

2. Build an initial population W0 = {w ∈ [0, 1]K+1}.
3. t ← 0
4. For each solution w ∈ Wt

- Build the induced DAG Dw,
- Evaluate its fitness(w)

5. Select the best P-Spaces
6. if (t < tmax) then

t ← t + 1,
- Generate a new population Wt by mutation
and crossover,

- GoTo step 4
7. else return the selection.

Fig. 4. LPS general algorithm.

4 Experiments on LT Acquisition

The objective of the present proposal is to combine associative and pattern-based
methods for LT acquisition by applying our multi-criteria LPS algorithm. Two
situations have been considered in the following experiments:

When the linguistic patterns succeed in retrieving (maybe few) accurate rela-
tions. This is usually the case for generic domains. In this case, the set of term
relations automatically extracted from a given set of patterns plays the role of
the partial knowledge S. LT acquisition is thus performed in an auto-supervised
context since no expert intervention is needed,

When the linguistic patterns fail to provide any reliable piece of knowledge
that could guide the structuring process. This situation frequently occurs for
specialized domains and makes most of the existing pattern-based approaches
[5,15] totally inoperative. An expert is so required to give at least a couple of
term relations (S) as in a usual semi-supervised learning context.

6 This is out of the scope of this paper.

502 G. Cleuziou and G. Dias

4.1 Experimental Setups

For each LT construction experiment, the list of terms to structure E comes
from a reference R (in english) and the acquired taxonomies are compared to
this reference using the FMeasure as defined in (6) but with R that stands in for
S. Indeed, S is only a set of term relations that helps the learning process and
R is the complete gold standard reference taxonomy, to which the induced LT
must be compared.

The linguistic patterns used are limited to the following list of four simple
and usual ones [5]: “X such as Y ”, “X including Y ”, “X like Y ” and “Y are
X that”. For any pair of terms (x, y) from the list, each pattern is tested on
en.wikipedia.org and each time a pattern is observed between x and y, an edge
x ← y (x subsumes y) is added to S.

The english subpart of wikipedia.org (i.e. en.wikipedia.org) is also used as
corpus for frequency counts extraction. For each pair of terms (x, y), we retrieve
the number of wikipedia pages where both terms occur (hits(x, y)) in the cor-
responding sub-domain of wikipedia. Sub-domains are artificially identified by
introducing the root term of the taxonomy into the wikipedia query. For exam-
ple, hits(cars, trucks) is retrieved with the following query [“cars” AND “trucks”
AND “vehicle”], vehicle being the root of the taxonomy to reconstruct.

From the frequency counts, three kinds of associative criteria are built in
order to serve as basis neighborhoods for the P-Spaces:

NkSand corresponds to the subsumption relation modeled by [12] : y ∈
NkSand(x) iff P (y|x) ≈ hits(x,y)

hits(x) ≥ σk ∧ P (y|x) > P (x|y).
NkNP associates to each term x its k Nearest Parents in the sense of P (y|x):

y ∈ NkNP (x) iff P (y|x) is one of the k best {P (z|x)}z∈E .
NkNC associates to each term x its k Nearest Children: y ∈ NkNC(x) iff P (y|x)

is one of the k best {P (y|z)}z∈E .

All criteria depend of the parameter k that controls the number of selected
relations. In particular, we adjust the threshold σk in such a way that NkSand

selects as many relations as the two other criteria for a same value of k (i.e. k.|E|
relations). So, each type of criterion provides several effective criteria depending
of the parameter k. In the following experiments, each criterion will be used with
three different values (k ∈ {1 . . . 3}) leading to families containing respectively
three, six and nine effective criteria.

Let us notice that, unlike the two first criteria, NkNC has a strong weakness
as it tends towards a non-taxonomic structure. In particular, it will be used to
illustrate the behaviour of our approach in the context of an existing unreliable
criterion when compared to previous studies.

To conclude on the preliminaries, let us mention the following operational
details. The LPS algorithm has been implemented using the R package “GA”
[13] with default configurations for crossover and mutation operators. We fixed
the size of the population in the range {25 . . . 1000} depending of the number
of terms to structure and a maximum number of iterations to 25. As GAs are

Learning Pretopological Spaces for Lexical Taxonomy Acquisition 503

stochastic methods, we select in the coming results the best learned P-Space (in
terms of fitness(w)) over a set of 5 runs.

4.2 LT Acquisition with Auto-supervision

The LT construction task is experimented on three domains extracted from
WordNet, Vehicles, Plants and Food, with respectively 108, 554 and 1485 terms.
The first two datasets are usually used as gold standards on LT induction [5,15]
and the Food dataset is provided by the recent SEMEVAL 2015 contest [2].

Table 1 reports in the three top parts, the scores obtained (and the corre-
sponding best parameters k) using purely associative approaches (without LPS),
with or without aggregation of two or three statistical criteria.

Table 1. Quantitative evaluation of reconstructed lexical taxonomies on the domains
Vehicles, Plants and Food.

Vehicles Plants Food

Criteria Prec. Rec. FM. k Prec. Rec. FM. k Prec. Rec. FM. k

[12] NkSand. 0.75 0.35 0.48 2 0.55 0.32 0.40 2 0.28 0.20 0.23 4

NkNP 0.44 0.45 0.44 2 0.57 0.29 0.38 1 0.50 0.23 0.31 1

NkNC 0.06 0.26 0.10 2 0.04 0.02 0.03 1 0.01 0.03 0.01 10

2-Criteria Combinations (without LPS)

NkSand. ∧ NkNP 0.77 0.34 0.47 2 0.70 0.31 0.43 2 0.72 0.19 0.30 8

NkSand. ∨ NkNP 0.42 0.46 0.44 2 0.57 0.29 0.38 1 0.43 0.23 0.30 1

[4] NkSand. � NkNP 0.77 0.34 0.47 2 0.70 0.31 0.43 2 0.72 0.19 0.30 8

3-Criteria Combinations (without LPS)

∧ Combination 0.31 0.41 0.36 14 0.15 0.07 0.10 15 0.26 0.03 0.05 20

∨ Combination 0.33 0.37 0.35 1 0.28 0.30 0.29 1 0.24 0.23 0.24 1

[4] � Comb. 0.45 0.36 0.40 6 0.16 0.34 0.22 14 0.26 0.03 0.05 20

LPS based on associative criteria only

3 criteria 0.77 0.34 0.47 2 0.95 0.25 0.40 1 0.50 0.23 0.31 1

6 criteria 0.77 0.34 0.47 1..2 0.58 0.32 0.41 1..2 0.49 0.23 0.31 1..2

9 criteria 0.76 0.36 0.49 1..3 0.64 0.32 0.43 1..3 0.44 0.25 0.32 1..3

LPS based on associative criteria + the linguistic criteria S

4 criteria 0.84 0.37 0.52 1 0.96 0.31 0.47 1 0.50 0.23 0.31 1

7 criteria 0.77 0.42 0.55 1..2 0.58 0.40 0.47 1..2 0.49 0.23 0.31 1..2

10 criteria 0.74 0.48 0.58 1..3 0.62 0.40 0.49 1..3 0.43 0.27 0.32 1..3

The N2Sand criterion corresponding to the methodology of [12] clearly out-
performs all other single criteria in terms of precision while NkNP evidences
increased recall compared to all other criteria for the Vehicles domain. Note
that this situation is reversed for the Plants and Food domains, which indicates
that the subsumption relation can be described differently depending on the
studied domain. This is an important issue when compared to [14,16], who sup-
pose that the is-a relation can universally be learned from WordNet. Expectedly,
NkNC shows poor performance due to its non-taxonomic nature.

504 G. Cleuziou and G. Dias

When the best two criteria are joined into a non-guided (without LPS) aggre-
gation strategy, results show similar performance (with slight improvements for
the Food domain), especially for the conjunctive (∧) and pretopological (�) [4]
aggregations. However, the disjunctive (∨) aggregation operator leads to worst
results as the subsumption definition is not enough constrained. Note that the
disjunctive and conjunctive aggregations consist in generating one new criterion
from initial ones by considering respectively their union and their intersection
i.e. the neighborhood family is thus reduced to a single neighborhood.

Finally, when the three criteria (including a non-performant one, i.e. NkNC)
are gathered in the multi-criteria framework without LPS, all aggregations fail
and performance drastically drops. The difference is even higher for the Plants
and Food domains, which are known to be well-structured. These experiments
clearly show the incapacity of this previous model to handle unreliable criteria.
The next experiments aim to evidence the superiority of the LPS strategy.

As pattern-based methods succeed in extracting reliable relations from the
three domains, we performed our LPS approach in an auto-supervised way. In
particular, for Vehicles, 93 relations were found corresponding to a recall of 17.6%
and with a rate of 78.5% in precision as regards the reference. For Plants, 332
relations were foundwith a recall of 10.2% and a precision of 61.9%, and for Food
only 244 relations were extracted, resulting in a low recall (3%) and with a small
precision (36%). So, the fourth sub-table of Table 1 shows how the LPS method-
ology allows to learn new P-Spaces by selecting and combining more efficiently
three, six or nine associative criteria and reaches slightly improved results to
the ones presented by [12], which are the best up to now in terms of associative
frameworks. Interestingly, higher precision is obtained to the detriment of recall,
especially for the Plants domain.

Let us mention that if S can be used as a partial supervisor in the LPS
method, it can also be used, without reserve, as a new criterion in the family of
neighborhoods N . In Table 1, the bottom part reports the scores obtained by
introducing the pattern-based feature S as a supplementary criterion to consider
in the construction of the combination rule. This experiment evidences the effi-
ciency of LPS with such a mixture of pattern-based and associative criteria that
makes reachable new P-Spaces inducing strongly improved taxonomies (e.g. up
to 9% FMeasure for Vehicles and 6% for Plants). To illustrate the P-Space learned
by the four criteria (N1Sand, N1NP , N1NC and S) on the Vehicles domain, we
derive the DNF rule from the final parameters w and we obtain the following
(simplified) expansion strategy:

δS ∨ (δN1Sand
∧ δN1NP

) ∨ (δN1Sand
∧ δN1NC

), (9)

which means that a subset A can be expanded with an element x if one of the
following properties are satisfied:

(1) x is in relation with at least one element from A in the partial knowledge S,
(2) both neighborhoods N1Sand(x) and N1NP (x) intersect A,
(3) both neighborhoods N1Sand(x) and N1NC(x) intersect A.

Learning Pretopological Spaces for Lexical Taxonomy Acquisition 505

(a) Obtained LT with NkSand. best configuration (FMeasure = 0.48 and k = 2)

(b) Obtained LT with 10 criteria best configuration (FMeasure = 0.58)

Fig. 5. Examples of induced LT with NkSand. and LPS for Vehicles.

It is also interesting to visualize well-chosen results in order to understand the
different behaviours between approaches. In Figure 5, we present LT subparts
respectively resulting from the best configurations of the methodology proposed
by [12] and the 10 criteria LPS learning approach. In particular, continuous edges
are present in S and dashed ones are learned relations for Vehicles.

Finally, in order to propose a meaningful evaluation, we summarize in
Table 2 the comparative results with most reproducible state-of-the-art
approaches7: [12] for the associative paradigm, [4] for the initial pretopologi-
cal framework and [5] for the pattern-based approach.

Table 2. Comparison of LT acquisition methodologies on Vehicles, Plants and Food.

Vehicles Plants Food

Method/Approach Prec. Rec. FM. Prec. Rec. FM. Prec. Rec. FM.

[12] associative 0.75 0.35 0.48 0.55 0.32 0.40 0.28 0.20 0.23

[4] pretopological 0.45 0.36 0.40 0.16 0.34 0.22 0.26 0.03 0.05

[5] pattern-based 0.79 0.18 0.29 0.62 0.10 0.18 0.36 0.03 0.05

LPS framework 0.74 0.48 0.58 0.62 0.40 0.49 0.43 0.26 0.32

Let us mention that in order to compare these methods within similar condi-
tions, the final structuring approach from [5] has been performed on the partial

7 Note that [16] evidence a FMeasure of 0.82 on a non-available WordNet dataset,
where training and testing are performed over the same data, thus invalidating any
conclusion. Note also that [14] only present experiments for populating an existing
ontology and direct comparison cannot be evidenced.

506 G. Cleuziou and G. Dias

knowledge S extracted from en.wikipedia.org. Results obtained by [5] on the
same datasets are higher but they are obtained using the (non-free) Yahoo!Boss
search engine. Moreover, note that results of [5] are very similar to the ones of
[15] who use different evaluation metrics in their paper. As a consequence, only
results of [5] are reported here.

Results in Table 2 clearly reveal the benefice of mixing both statistical infor-
mation and linguistic patterns within a unified learning process. The pattern-
based approach obtains, as expected, better precision but significantly fails to
retrieve most of the relations, whereas the LPS framework outperforms any other
method on recall without drastic loss in precision so evidencing high FMeasure.

4.3 LT Acquisition with Semi-supervision

To deal with the acquisition of specialized LTs, we take as reference the concate-
nation of four sub-domains from the Unified Medical Language System8 (UMLS)
produced by the U.S. National Institutes of Health. The selected sub-domains
are cardiovascular system, digestive system, nervous system and respiratory sys-
tem. Their concatenation results in a list of 128 specialized terms like upper
gastrointestinal tract or blood-retinal barrier.

Over this term list, none of the four considered lexical patterns retrieved any
relation on en.wikipedia.org, whereas terms actually occur with an average of
2225 counts per term. A pattern-based extraction test performed on the more
specialized corpus PubMed9 has led to the same statement. Thus, we used our
LPS methodology in a semi-supervised context. In particular, we simulated the
input of expert knowledge S by randomly extracting relations from the reference.

Figure 6 (left) shows the performances in reconstructing the UMLS subpart
with LPS as regards to the number of given external relations. The means and
standard deviations on 5 trials (different sets of randomly extracted relations)
are reported and the area in gray represents the benefice of the LPS process with
respect to the structuring based on the external knowledge only.

First, we can notice that the obtained FMeasures are much lower than the
scores obtained on the previous general domains. This statement reveals the
complexity of the task that is reinforced by the fact that UMLS is not struc-
tured with only is-a relations but also with part-of subsumptions. Despite that,
we clearly observe that the acquired taxonomies take advantage of the proposed
semi-supervised LPS methodology, especially in situations where the given exter-
nal knowledge is lacking. This situation matches with a more realistic practical
context of use.

Finally, we performed the same experiment on the Nervous system sub-
domain that contains 28 terms mainly structured with is-a relations. We can
observe in Figure 6 (right) the same tendency but with strongly increased ben-
efits although on a small dataset.

8 http://www.nlm.nih.gov/research/umls/
9 http://www.nlm.nih.gov/research/pubmed/

http://www.nlm.nih.gov/research/umls/
http://www.nlm.nih.gov/research/pubmed/

Learning Pretopological Spaces for Lexical Taxonomy Acquisition 507

Fig. 6. Quantitative evaluation of reconstructed lexical taxonomies on the medical
domain (UMLS).

5 Conclusions

In this paper, we proposed a new learning strategy to efficiently combine linguis-
tic and statistical features for lexical taxonomy acquisition. This methodology
uses the pretopological formalism into which we defined the new concept of P-
Space that relies on a parameterized pseudo-closure operator formalized in a
multi-criteria analysis context. Then, we developed a semi-supervised strategy
called LPS to learn P-Spaces in the taxonomy induction perspective. Exper-
iments confirmed our expectations on both general and specialized domains.
In particular, significant FMeasure improvements are obtained for the auto-
supervised context when compared to recent works [5]. Moreover, where pattern-
based methodologies [5,15] fail to learn LTs due to the absence of pattern evi-
dences (usually for specialized domains), the introduction of external knowledge
combined with statistical features allows the construction of LTs with reasonable
accuracy.

References

1. Belmandt, Z.T.: Basics of Pretopology. Hermann (2011)
2. Bordea, G., Buitelaar, P., Faralli, S., Navigli, R.: Semeval-2015 task 17: Taxonomy

extraction evaluation (texeval). In: Proceedings of the 9th International Workshop
on Semantic Evaluation. Association for Computational Linguistics (2015)

508 G. Cleuziou and G. Dias

3. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text cor-
pora using formal concept anaylsis. Journal of Artificial Intelligence Research 24,
305–339 (2005)

4. Cleuziou, G., Buscaldi, D., Levorato, V., Dias, G.: A pretopological framework for
the automatic construction of lexical-semantic structures from texts. In: 20th ACM
International Conference on Information and Knowledge Management (CIKM),
pp. 2453–2456 (2011)

5. Kozareva, Z., Hovy. E.: Tailoring the automated construction of large-scale tax-
onomies using the web. Language Resource Evaluation 47(3) (2013)

6. Largeron, C., Bonnevay, S.: A pretopological approach for structural analysis.
Information Sciences 144, 169–185 (2002)

7. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to
wordnet: An on-line lexical database. International Journal of Lexicography 3(4),
235–244 (1990)

8. Navigli, R., Velardi, P.: Learning domain ontologies from document warehouses
and dedicated websites. Computational Linguistics 30(2), 151–179 (2004)

9. Paaß, G., Kindermann, J., Leopold, E.: Learning prototype ontologies by hierachi-
cal latent semantic analysis. In: Workshop on Knowledge Discovery and Ontologies
at the joint European Conferences on Machine Learning and Principles and Prac-
tice of Knowledge Discovery in Databases (ECML/PKDD) (2004)

10. Pereira, F., Tishby, N., Lee, L.: Distributional clustering of english words. In: 31st
Annual Meeting on Association for Computational Linguistics (ACL), pp. 183–190
(1993)

11. Van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworth-Heinemann,
Newton (1979)

12. Sanderson, M., Croft, B.: Deriving concept hierarchies from text. In: 22nd Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval (SIGIR), pp. 206–213 (1999)

13. Scrucca, L.: Ga: A package for genetic algorithms in r. Journal of Statistical Soft-
ware 53(4), 1–37 (2013)

14. Snow, R., Jurafsky, D., Ng, Y.A.: Semantic taxonomy induction from heterogenous
evidence. In: 21st International Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational Linguistics, pp. 801–808
(2006)

15. Velardi, P., Faralli, S., Navigli, R.: OntoLearn Reloaded: A Graph-Based Algorithm
for Taxonomy Induction. Computational Linguistics 39(3), 665–707 (2013)

16. Yang, H., Callan, J.: A metric-based framework for automatic taxonomy induc-
tion. In: Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP,
pp. 271–279 (2009)

Multidimensional Prediction Models
When the Resolution Context Changes

Adolfo Mart́ınez-Usó(B) and José Hernández-Orallo

DSIC, Universitat Politècnica de València, Camı́ de Vera s/n, 46022 València, Spain
{admarus,jorallo}@dsic.upv.es

Abstract. Multidimensional data is systematically analysed at multiple
granularities by applying aggregate and disaggregate operators (e.g., by
the use of OLAP tools). For instance, in a supermarket we may want to
predict sales of tomatoes for next week, but we may also be interested
in predicting sales for all vegetables (higher up in the product hierarchy)
for next Friday (lower down in the time dimension). While the domain
and data are the same, the operating context is different. We explore
several approaches for multidimensional data when predictions have to
be made at different levels (or contexts) of aggregation. One method
relies on the same resolution, another approach aggregates predictions
bottom-up, a third approach disaggregates predictions top-down and a
final technique corrects predictions using the relation between levels. We
show how these strategies behave when the resolution context changes,
using several machine learning techniques in four application domains.

Keywords: Multidimensional data · Operating context aggregation ·
Disaggregation · OLAP cubes · Quantification

1 Introduction

Most existing algorithms in machine learning only manipulate data at an indi-
vidual level (flat data tables), not considering the case of multiple abstract levels
for the given data set. However, in many applications, data contains structured
information that is multidimensional (or multilevel) in nature, such as retail-
ing, geographic, economic or scientific data. The multidimensional model is a
widely extended conceptual model originated in the database literature that
can be used to properly capture the multiresolutional character of many data
sets [1,5,13,26]. Multidimensional databases arrange data into fact tables and
dimensions. A fact table includes instances of facts at the lowest possible level.
Each row represents a fact, such as “The sales of product ‘Tomato soup 500ml’
in store ‘123’ on day ‘20/06/2014’ totalled 25 units”. The features (or fields) of
a fact table are either measures (indicators such as units, euros, volumes, etc.)
or references to dimensions. A dimension is here understood as a particular vari-
able that has predefined (and hopefully meaningful) levels of aggregation, with
a hierarchical structure.
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 509–524, 2015.
DOI: 10.1007/978-3-319-23525-7 31

510 A. Mart́ınez-Usó and J. Hernández-Orallo

Figure 1 shows several examples of dimensions and hierarchies. Using the
hierarchies, the data can be aggregated or disaggregated at different granulari-
ties. Each of this set of aggregation choices for all dimensions is known as a data
cube [6], which provides an easy understanding and offers flexibility for visuali-
sation (aggregated tables and cubes). OLAP technology, for instance, has been
developed to handle large volumes of multidimensional data in a highly efficient
way, and moving through the space of cubes by the use of roll-up, drill-down,
slice&dice and pivoting operators.

Fig. 1. Examples of dimension hierarchies. Left: Time dimension, Middle: Location
dimension, Right: Product dimension.

Despite the success of multidimensional schemas and its widespread use for
data warehouses for about two decades, a full integration of machine learning
and multidimensional datasets has not taken place. Even in business intelligence
tools, which aim at integrating data warehouses, OLAP technology and data
mining tools, the usual procedure is to select a cube using an OLAP query or
operator, and derive a view from it. Next, this ‘minable view’ is transferred to
the data mining tool to apply machine learning or statistical techniques to this
flat, traditional view of the data.

When we analyse the problem more carefully, we see that the main issue for a
successful integration is that we would like to use off-the-shelf machine learning
techniques but taking full potential of the hierarchical information. Machine
learning models are not designed to take hierarchical attributes. Consequently,
we need to do something different whenever the cube we want to predict for
changes. In other words, the predictions for tomatoes and weeks will be different
than the predictions for vegetables and Fridays. These two situations represent
operating contexts. In principle, a model that has been obtained for one context
cannot be directly applied to a different context.

This leads us to two major alternatives. On the one hand, we can learn one
model for each operating context and apply it for that level of aggregation,
which means retraining the model for each operating context. On the other
hand, we can learn one, more versatile, model at the lowest operating context
(highest resolution) and then aggregate their predictions, as in a quantification
problem [2,3,11]. This second point of view results in reframing the model for
each operating context. In addition to these major views, it is worth exploring
other models such as disaggregation, where a reframing philosophy is addressed

Multidimensional Prediction Models 511

in the opposite way, that is, working at an upper level (lower resolution) and then
disaggregating the predictions until the working level of granularity is reached.
Finally, there also exists the possibility of correcting the predictions worked out
for each operating context by means of using the coarse information from upper
levels of granularity for improving (correcting somehow) finer predictions, as
done by [10] in a multilevel (but not multidimensional) scenario.

In this paper we analyse all these approaches systematically with several
machine learning techniques in four different application environments.

The rest of the paper is organised as follows. Section 2 formalises the notion
of multidimensional context and properly defines the two main approaches that
we will study: the same-level (retraining) approach and the low-level (reframing)
approach. Furthermore, the disaggregation model and the same-level correction
model are also defined in this section. Section 3 discusses how datamarts have to
be understood when models are required to predict some of the measures of the
fact table and also states some measurement considerations. Section 4 presents
the techniques, datamarts and error measure that will be used in the experi-
ments. After that, results for each approach are analysed. Section 5 discusses
some related work and section 6 closes the paper with some take-away messages
and some future work.

2 Multidimensional Contexts

We consider a multidimensional data set D (or datamart) of schema 〈X,Y 〉
where X = {X1, . . . , Xd} is the set of d dimensions (used as predictor attributes
or features) and Y , which is the target attribute (one measure or indicator that
can be numeric or nominal). We use DA to denote the projection of dataset
for attribute A. Note that datasets and projections are multisets (i.e., they can
have repeated values). Each dimension Xi has an associated hierarchy h(Xi) of
mi elements or levels {X

(1)
i , . . . , X

(mi)
i } with a strict partial order <. In this

paper we will assume that hierarchies are linear, so the partial order becomes
a total order from the lowest level X

(1)
i to the highest level X

(mi)
i . This is not

a strong restriction, as a non-linear dimension can be converted into several
linear dimensions (one for each possible pathway in the lattice). For instance, if
X2 = location, as in Figure 1 (middle), we have X

(1)
2 = store, X

(2)
2 = district,

X
(3)
2 = municipality and X

(4)
2 = country with store < district < municipality <

country and their transitive closure. We will consider that the top level mi for
every hierarchy is all-i, such that for every l ∈ h(Xi), l < all-i. Non-hierarchical
attributes are just special cases, by just considering that mi = 2 (the bottom
and the top all-i level). These dimensions then just become regular attributes
but with the possibility of aggregating them to the top level all.

Each level X
(j)
i of a hierarchy h(Xi) has an associated domain X (j)

i , which
can be nominal or numeric. We will assume that there are no levels with the same
name in the same or different hierarchies. In this way, if the name of a level is
name then we can just refer to the level by X(name) and the associated domain

512 A. Mart́ınez-Usó and J. Hernández-Orallo

by X (name). For instance, the domain of the level country for dimension location,
i.e., X (4)

2 , or X (country), might be the set with values {UK, Spain, France}. For
every pair of consecutive levels X

(j)
i and X

(j+1)
i in a hierarchy we define a

regrouping function φj
i between the values of X

(j)
i to the values of X

(j+1)
i . For

instance, φ3
2(Valencia) = Spain. We denote by φj:k

i , with j ≤ k the successive
application of φ from j to k, i.e., φj:k

i (v) = φk
i (...φj+1

i (φj
i (v))...). Given a value v

at a level X
(k)
i of the dimension i, we denote by ⊥(v) the set of all the values at

the lowest level of that hierarchy that belongs to, i.e., {w ∈ X (1)
i | φ1:k

i (w) = v}.
For instance, ⊥(Valencia) would be all the stores of all the districts of Valencia.

Definition 1. A multidimensional operating context or resolution is a d-tuple of
levels 〈l1, . . . , ld〉, with each li ∈ h(Xi). A multidimensional context determines
the level for every dimension of the dataset.

Definition 2. Given a multidimensional context, a selection of D at a context
〈l1, . . . , ld〉 with values 〈v1, . . . , vd〉 is defined as follows:

σ[l1=v1,...,ld=vd](D) � {〈x1, . . . , xd, y〉 |x1 ∈ ⊥(v1), . . . , xd ∈ ⊥(vd)} (1)

For instance, if we have three dimensions X1 = product, X2 = location and X3 =
time, and Y is representing units, we could select all the facts for the context
〈item,municipality, year〉 with values tomato, Valencia and 2013 respectively
with σ[item=Tomato,munic.=Valencia,year=2013](D).

Finally, we can define an aggregation operator as follows:

Definition 3. Given an aggregation function, agg, as a function from sets to
real numbers, the aggregation of a datamart D for a context 〈l1, . . . , ld〉 is defined
as follows:

γagg
[l1,...,ld]

(D) � {〈x1, . . . , xd, z〉 |x1 ∈ X (l1), . . . , xd ∈ X (ld),

z = agg({y| 〈v1, . . . , vd, y〉 ∈ σ[l1=x1,...,ld=xd](D)})}
The above aggregation is extended for unlabelled datasets with no y attribute.

For instance, γsum
[item,municipality,year](D) returns all the tuples for each pos-

sible combination of values at the level item in the dimension product, at the
level municipality in the dimension location and at the level year in the dimen-
sion time, where the output variable is constructed by summing all the y of the
corresponding rows according to the hierarchies.

Given the above notation, now we consider a predictive problem from X to
Y . For instance, how many tomatoes we expect to sell in Valencia next week?
Assuming we have a training dataset, how would we train our model? As a
first idea, it seems reasonable to aggregate the training data using the γ oper-
ator above for the context c = 〈item,municipality,week〉, producing a model M

Multidimensional Prediction Models 513

that will be applied to the deployment data with the same context. However,
if some time later we are interested in predicting sales for all vegetables for
next Friday, what would we do? We could aggregate the training data for the
context c′ = 〈category,municipality, day〉, learn a new model M ′ and predict for
the deployment data. This is what we see in Figure 2 (top). We refer to this
approach as the Same-Level (SL) approach or the retraining approach.

Definition 4. Given a training data T with measure Y and a deployment data
D, a model learnt for measure Y at the same level, denoted by SL, in context
〈l1, . . . , ld〉 is defined as follows. We first aggregate T for that context, i.e., TΔ �
γagg
[l1,...,ld]

(T). Then we train a model MΔ : XΔ → Y Δ. For the deployment data

D we also aggregate the original data as DΔ � γagg
[l1,...,ld]

(D). We finally add an

attribute Ŷ to DΔ by setting it equal to the predictions of the model MΔ for
each of these aggregated rows, so producing D̂Δ. This yields pairs 〈X, Ŷ 〉 at that
context.

An alternative approach goes as follows. Consider that we train a predictive
model M for the lowest level in D. Once a new multidimensional appears, we
apply the model to the deployment data and aggregate the predictions. With
this approach, one model is used for every possible context. This is illustrated in
Figure 2 (middle). We refer to this approach as the Lowest-Level (LL) approach
or the reframing approach.

Definition 5. Given a training data T with measure Y and a deployment data
D, a model learnt for measure Y at the lowest level, denoted by LL, and deployed
at a context 〈l1, . . . , ld〉 is defined as follows. We first train a model M : X → Y
for the whole training dataset T . Now, for each row at the lowest level in the
deployment data D we apply M . We add a new attribute Ŷ , and set it to the result
of the model for each row, giving a new dataset D̂. Finally, given an aggregation
function agg, we now calculate the predictions for a context 〈l1, . . . , ld〉 as D̂Δ �
γagg
[l1,...,ld]

(D̂), which produces pairs 〈X, Ŷ 〉 at that context.

Another alternative is to disaggregate predictions from a higher level of gran-
ularity. Figure 2 (bottom), trains a predictive model M for a higher level and
keeps the frequencies or proportions that are shared on the lower levels for the
training set. Then with a new prediction at a higher level, the frequencies are
used for the disaggregation. We refer to this approach as the Disaggregation
(dAg) approach. Figure 3 shows a disaggregation example taking into account
the two first levels of the product dimension from Fig.1. This example takes into
account one dimension and only one level of disaggregation. However, it could
be extended to more than one level of disaggregation, for instance from section
to product in the same dimension (2 levels), and for more than one dimension,
for instance taking into account dimensions product and location, which would
also imply working out all the combinations. Nonetheless, for simplicity, in the
rest of the paper, we have limited the disaggregation approach to the following
setting:

514 A. Mart́ınez-Usó and J. Hernández-Orallo

Fig. 2. Retraining (Same-Level approach), reframing (Lowest-Level approach) and dis-
aggregation for two different multidimensional contexts c and c′. Retraining (top) needs
to convert the training data for the two contexts c and c′ and then aggregating the
output into z or z′ respectively. Two models Mc and Mc′ are learnt (one for each con-
text) at the same level the predictions must be done. Reframing (middle) shows how
the training data is used just once at the lowest level to create a single model M that is
applied to different operating contexts c or c′ by aggregating the outputs appropriately.
Disaggregation (bottom) shows how the training data is used just once at a higher level
to create a single model M that is applied to different operating contexts c or c′ by
disaggregating the outputs appropriately.

– Only one level per dimension has been disaggregated for each result, that is,
we just disaggregate to the level immediately below.

– All the dimensions are taken into account, although we only disaggregate
one dimension for each result.

Definition 6. Given a training data T with measure Y and a deployment data
Dlo, a model learnt for measure Y using disaggregation, denoted by dAg, and
deployed at a context 〈l1, . . . , ld〉, is defined as follows. Let us suppose the context
〈l′1, . . . , l′d〉 as the context at the level immediately below to 〈l1, . . . , ld〉. We first
aggregate T for the upper context, i.e., TΔ

hi � γagg
[l1,...,ld]

(T) and for its immediately

context below, i.e., TΔ
lo � γagg

[l′1,...,l′d]
(T). We define a function F that counts the

number of observations that fall into each of the disjoint categories. This is done
as an aggregation function as in Definition 3 but using count as the aggregation
function. Let us also suppose that we have predictions for the deployment data
DΔ

hi at the high level using the SL approach. Now, for each row at the lower

Multidimensional Prediction Models 515

Fig. 3. Disaggregation example for the product dimension. The frequency of each prod-
uct (whisky, beer, tomatoes, etc.) within each category (Alcohol, Vegetables) is learned
during the training. These frequencies are then applied to the predictions made for a
higher level of granularity resulting in the disaggregated predictions for the lower level.
Light blue cells represent real values whereas light red represent derived values (such
as frequencies) or predictions.

context in the deployment data DΔ
lo we apply F on the predictions for DΔ

hi to
create the predictions for the lower level.

Finally, in [10], the authors presented a method for improving the current
predictions using the coarse information from upper levels of granularity. Their
methodology uses the approximation values of the aggregated targets (in our
case the predictions) and the predictions of the individual targets for producing
new modified predictions. Figure 4 shows an example of this procedure taking
into account the two first levels of the product dimension from Fig.1. As it can
be seen, we work out a correction ε as the relation between the sum of the
predictions at the category level and the sum of the predictions at the product
level, using then this value for uniformly distributing the differences among the
predictions of the lower level. This approach is actually a correction of the same-
level model and we thus refer to this approach as the same-level correction model
(SLc).

Definition 7. Let us consider the deployment data at two different contexts, Dlo

and Dhi, where deployment data Dlo is defined at the context immediately below to
Dhi. D̂Δ

lo and D̂Δ
hi have been produced applying the SLmodel to each deployment data

respectively and, therefore, Ŷlo and Ŷhi attributes with predictions can be found for
each context respectively. Thus, the same-level correction model, denoted by SLc, is
defined as follows. We first work out sŶlo =

∑
i Ŷlo [i] and sŶhi =

∑
i Ŷhi [i] and let

us define ε = sŶhi

sŶlo
. For the deployment data Dlo we correct the attribute Ŷlo for each

row by means of multiplying each Ŷlo value by ε.

516 A. Mart́ınez-Usó and J. Hernández-Orallo

Fig. 4. Same-level correction example for the product dimension. Cells in light red
represent predictions.

3 Measure Properties and Mean Models

The first thing we need to consider is the kind of machine learning tasks that are
common with multidimensional data. The way the information is arranged in a
multidimensional schema, with a fact table containing measures suggests that
many machine learning tasks, especially predictive ones, are usually focussed on
predicting the measures. For instance, if facts are sales, consumptions, failures,
usages, etc., it is common to become interested in predicting some of the mea-
sures in these tables (e.g., units, dollars, hours, etc.) from past data. As measures
are usually numerical, many problems will turn out to be regression problems.
Nonetheless, some measures can be nominal, such as whether a purchase has
been satisfactory or not. In that case, however, the measure becomes a percent-
age, i.e., a number, when we aggregate, so binary nominal measures can also be
taken as numbers.

The time dimension is found in most datamarts. In a predictive scenario,
the time dimension becomes slightly special: predictions are about future facts,
so training is usually performed with available data up to a given time and
the model is then used to extrapolate from that point on (next week, next
month, next year, depending on the resolution). This occurs in three out of four
datamarts used in this work. Some other databases are sparse and only collect
positive cases (e.g., 0 sales are not included) and have to be preprocessed to
contain this information for them to be meaningful.

Another important issue about multidimensional schemas is whether the
measures we want to predict are additive, semi-additive or non-additive. A mea-
sure is additive when, for any dimension and any set of values S at level j that
we want to aggregate up to level n+k, the summation of these values using any
partition of S is equivalent, i.e., gives consistent results. For instance, units sold
in a supermarket aggregate well for all dimensions, i.e., the result is independent
of the way it has been aggregated. However, percentages do not aggregate well,
as the denominator is not known when performing the aggregation. Therefore
percentages are non-additive. Finally, the term semi-additive measure is used for
those measures that aggregate well for some dimensions but not for others. For
instance, measures that accumulate or depend on the state, such as stock levels
are usually semi-additive.

Multidimensional Prediction Models 517

The aggregated function that is used for aggregating datamarts, as in Def-
inition 3, does not have to always be sum(S) �

∑
s∈S s. For instance, it could

be an average, avg(S) � sum(S)
|S| . Some functions just work for some measures.

For instance, consumption (e.g., in kWh) can be aggregated by averaging it.
However, we have to be very careful about how this aggregation is performed.
For instance, avg is not composable.

In regression tasks, we usually look at a baseline method that consists in
averaging the values for the training data and apply these values systematically
during deployment. This is known as the mean or constant model. In this work,
we define our baseline method as follows:

Definition 8. Given a training data T with measure Y and a deployment data
D, the MEAN model for measure Y at the same level in context 〈l1, . . . , ld〉,
denoted by SL.MEAN, is defined as follows. We first aggregate T for that context,
i.e., TΔ � γagg

[l1,...,ld]
(T). Then we calculate Y Δ � avg(TΔ

Y), the average of the
measure Y for this context. For the deployment data D we also aggregate the
original data as DΔ � γagg

[l1,...,ld]
(D). We finally add an attribute Ŷ to DΔ by

setting it equal to Y Δ for every row in DΔ, so producing D̂Δ. This produces
pairs 〈X, Ŷ 〉 at that context.

4 Experimental Setting and Results

The MEAN approach is useful as a baseline, but we of course are interested in the
use of machine learning methods to get good predictions. We have also considered
other four techniques: LRW (linear regression using RWeka in R [14,22]), M5P
(regression tree using RWeka), SVM (package e1071 in R, linear kernel) and
KNN (package kknn in R). The datamarts used are now presented:

– GENOMICS: Originally, this human genome dataset contains genomic
data (HGDB) from several public and private research databases, including
information about genes, chromosomes, mutations, diseases, etc. structured
in 20 (numerical and nominal) attributes [20]. Data goes from years 1970
to 2012 and the output variable is the number of variations. We converted
it into a multidimensional datamart, where each fact showed the number
of variations according to five different dimensions (hierarchies in paren-
thesis): SPEC (Eff < All), GENOTYPE (ID < Chrom < All), PHENOTYPE
(Name < ICD10 < ICD10.Cat < All), DBANK (Dbnk < All) and DATE (Year).
Note that as we use the DATE dimension to split the data we only consider
one level here. The number of possible multidimensional contexts is then
2 × 3 × 4 × 2 × 1 = 48.

– AROMA: This is an artificial dataset constructed from IBM sales informa-
tion. It contains sales data for coffee and tea products sold in stores across
the United States [16]. The data is almost directly converted into a multi-
dimensional datamart where each fact describes the sales of products using
two measures (units and dollars, although we will only use dollars as the

518 A. Mart́ınez-Usó and J. Hernández-Orallo

output variable) according to five dimensions (hierarchies in parenthesis):
PROMO (KeyPromo < PromoType < All), CLASS (KeyClass < All), PROD-
UCT (KeyProduct < All), STORE (KeyStore < KeyMKT < MKT-HQ-City <
MKT-HQ-State < MKT-District < MKT-Region < All) and PERIOD (Year).
Note that as we use the PERIOD dimension to split the data we only con-
sider one level here. Data goes from years 2004 to 2006 and the number of
possible multidimensional contexts is 3 × 2 × 2 × 7 × 1 = 84.

– CARS: This is a dataset for car fuel consumption and emissions which is
created as a reduced representation of [9] (some attributes are removed)
in order to construct a datamart. It describes fuel consumption in cars
from years 2000 to 2013, being published by the UK’s Vehicle Certification
Agency (VCA). The target variable is car fuel emissions (CO2) and we have
six dimensions (hierarchies in parenthesis): CAR (Man.Model.Description <
Man.Model < Manufacturer < All), ENGINE (EngineCapacity < All),
TRANS (Transmission < TransType < All), EURO (EuroSTD < All), FUEL
(FuelType < All) and TIME (Year). Note that as we use the TIME dimension
to split the data we only consider one level here. The number of possible
multidimensional contexts is 4 × 2 × 3 × 2 × 2 × 1 = 96.

– UJIndoorLoc: This is a dataset for benchmarking indoor localisation
algorithms [25]. UJIndoorLoc contains the Wi-Fi access points readings
for all the spaces (offices, laboratories, etc.) of the School of Technology
and Experimental Sciences of the University Jaume I. The average signal
intensity has been used as the target variable (INTENSITY). We have
three dimensions in this case (hierarchies in parenthesis):WHERE (Space <
Floor < Building < All), TIME (Hour < Day < WeekDay < All), PHONE
(Model < Manufacturer < All), being the number of possible multidimen-
sional contexts 4 × 4 × 3 = 48.

We split GENOMICS, AROMA and CARS datasets into training and test
on the basis of a split-year. Parameter split-year has been set to 2006 for all the
datasets, being the split-year included in the test set. On the other hand, for
UJIndoorLoc dataset, the authors already provide the training and evaluation
subsets (see [25]). No rows with zeros were added to CARS and UJIndoorLoc
datasets, as missing cases are just absence of information. The target variable
is a ratio, so the aggregation function that makes sense for these datasets is
avg, which is neither additive nor associative. Finally, we clip the predictions
of all methods to 0 if they are negative, as in the four datamarts the measures
cannot be negative. This is important for methods that could potentially predict
negative values such as M5P or LRW.

As the four datamarts have led to regression problems, we may use the Mean
Squared Error (MSE) as the error measure. However, for the two datamarts that
use sum as aggregating function, the magnitude of the error will be much higher
for highly aggregated contexts, and the values will be difficult to compare. A
good way of getting rid of this problem is to divide SE (or MSE) by the SE
(or MSE) of the MEAN model. Interestingly, in a classical regression setting, the
MSE of the MEAN model equals its error variance. So, actually, what we are

Multidimensional Prediction Models 519

doing is to show the MSE by some kind of error variance. We use the SL.MEAN
model, as it ensures that it is constant for the deployment multidimensional
context.

Definition 9. The normalised squared error (NSE) of a technique TECH is

defined as MSE(TECH)

MSE(SL.MEAN)
.

Table 1. Comparison NSE among LL, SL, dAg and SLc.

GENOMICS AROMA CARS UJIndoorLoc

SL LL dAg SLc SL LL dAg SLc SL LL dAg SLc SL LL dAg SLc

MEAN 1.00 0.57 0.46 0.62 1.00 0.54 0.28 0.53 1.00 0.92 1.39 1.73 1.00 0.97 2.51 6.99
SVM 0.49 0.50 0.44 0.63 0.11 0.03 0.02 0.05 0.73 0.46 1.25 1.64 1.02 1.21 2.49 7.00
M5P 0.92 0.14 0.42 0.85 0.87 0.04 0.34 0.40 0.79 0.77 1.31 1.62 1.06 2.81 2.49 7.07
LRW 1.02 0.58 0.44 0.82 1.09 0.67 0.33 0.56 0.84 0.92 1.31 1.66 1.07 0.82 2.49 7.05
KNN 0.87 0.08 0.36 0.71 1.07 0.03 0.27 0.34 0.79 0.48 1.51 1.88 1.08 1.31 2.53 6.95

Table 2. Rank summary for the four datasets.

GENOMICS AROMA CARS UJIndoorLoc

SL LL dAg SLc SL LL dAg SLc SL LL dAg SLc SL LL dAg SLc

MEAN 5.00 2.80 1.53 3.97 5.00 3.22 1.97 3.57 2.37 1.66 3.86 2.62 1.88 1.49 3.18 3.81
SVM 3.48 3.31 1.58 4.83 4.34 3.37 2.11 3.71 2.48 1.06 3.73 3.33 1.38 2.39 2.81 3.85
M5P 4.74 1.00 2.80 4.02 5.00 1.01 2.95 3.83 2.35 1.83 3.67 2.78 1.34 3.24 2.38 3.65
LRW 4.98 2.66 1.71 3.94 5.00 3.92 1.89 3.01 2.07 2.48 3.50 2.67 2.30 1.09 3.05 3.96
KNN 4.58 1.00 2.53 4.28 5.00 1.00 2.88 3.74 2.20 1.15 3.84 3.40 1.43 2.28 2.93 3.81

Overall 4.56 2.15 2.03 4.21 4.87 2.50 2.36 3.57 2.29 1.64 3.72 2.96 1.67 2.10 2.87 3.82

Table 1 compares all the techniques for the four datasets in terms of the nor-
malised squared error (NSE). For the GENOMICS and AROMA datasets we
see that the LL and dAg approaches are better. LL continues its good behaviour
for CARS and UJIndoorLoc, being clearly the best one (or close to the best one
when it is the second), however a very different picture happens for the disag-
gregation strategy, which shows a quite poor performance on these datamarts,
especially on UJIndoorLoc.

In order to offer a more comprehensive perspective of the results, Table 2
rank all the strategies within each technique for each dataset individually. The
lower the better on these ranks, being the ranks averaged when they tie.

Focusing on the ranking results, for the AROMA and CARS datasets we
see that the LL approach is better, obtaining a very good ranking when the
KNN technique is used. Moreover, LL obtains the second best rank in the other
datasets. SL obtains the best rank in UJIndoorLoc dataset. However, it shows a
quite poor performance for GENOMICS and AROMA. dAg obtains good results
in GENOMICS (the best) and AROMA, however its rank is not so good for the
other datasets.

520 A. Mart́ınez-Usó and J. Hernández-Orallo

Finally, as mentioned in Sect.2, there exist many operating contexts where
several dimensions could be disaggregated at the same time. Instead of just
comparing the results when only one dimension is disaggregated, we could have
taken into account all the possible disaggregating operations for that context
and averaged the results (as an ensemble) for comparing them to the SL and LL
approaches. This option, called dAgavg, was analysed experimentally and showed
worse results in general. Table 3 shows the overall rankings for each strategy and
for each dataset when all the possible dimensions in each cube have been taken
into account by means of averaging their predictions. The overall rankings for the
dAgavg methodology are always worse than the ones shown in Table 2 except for
the CARS dataset whereas in UJIndoorLoc dataset, dAg and dAgavg practically
obtain the same rank.

Table 3. Summary results for all the strategies and for each dataset when all the
disaggregation operations for each cube have been performed and their results have
been averaged.

SL LL dAgavg SLc

GENOMICS 3.70 1.93 2.42 4.37
AROMA 3.60 1.60 3.10 4.39
CARS 2.12 1.40 3.63 3.54
UJIndoorLoc 1.49 1.84 2.89 4.12

5 Related Work

As we mentioned in the introduction, the efforts for a full integration of data
mining and OLAP tools have not been as common as originally expected. There
are, though, some significant contributions for descriptive models. For instance,
multidimensional association rules were firstly introduced in [17] and, since then,
some related approaches have appeared in areas such as hierarchical association
rules, subgroup discovery, granular computing [18] and others [7].

‘Prediction cubes’ [7,8], despite the term ‘predictive’ in their name, actually
perform subgroup discovery or exploratory mining [23], where we want to have
a metric (e.g., predictive accuracy) for a model on a given subset of the data
(a cell in a cube) and see whether some cells have different metrics than others
(hence being special). It is important to note that “Prediction Cubes” are not
meant to aggregate outputs. They are not actually used to make predictions at
several resolution levels of values that are unknown. In fact, they always work
with a labelled test set to which they compare to get the metrics.

When looking at predictive modelling, the usual approach in the literature
has been the same level approach (i.e., generating a view for the resolutions
at hand). There is no versatile model that can work for the whole hierarchy
in every dimension. A significant exception is the area of multilevel modelling
(MLM) [4,12], also known as hierarchical (linear) modelling (HLM) [24], among

Multidimensional Prediction Models 521

other names. This is an extension of linear, and non-linear, models such that
the variables are measured at different levels of a global, usually linear, hierar-
chy. The first and key difference between a multilevel modelling problem and a
multidimensional problem is hence that in the latter all the measurements take
place at the lowest level (e.g., they come from facts in a multidimensional data
warehouse). However, in multilevel modelling, measurements may take place at
any level. As a result, in multilevel modelling, putting all the variables at the
lowest level does not make sense, as it means that some of the input variables
would have to be disaggregated (or repeated). The second difference is that in
multilevel modelling hierarchies apply to all attributes. In other words, there is
an orthogonal hierarchy, which can be applied to each attribute, depending on
the level at which the value has been measured. So it is not actually applicable
to a multidimensional database, where each attribute can be aggregated inde-
pendently. The third difference is that in multilevel modelling the predictions are
still made generally at the lowest level. In a multidimensional setting we want
predictions at whatever level of aggregation. In addition, multilevel modelling
has usually been addressed by linear (and occasionally non-linear) regression
models with several assumptions about normality, homoscedasticity, indepen-
dence, etc. Despite the differences, in [19], multilevel models are applied to a
datamart. However, we still see a separate concept hierarchy that is applied to
all dimensions, instead of having a particular hierarchy for each dimension, as
usual in datamarts and OLAP tools, so it is not actually a multidimensional
database.

Some connections have also been found with the work of Perlich and Provost
in [21], where the authors introduce new aggregates that capture more informa-
tion about the distributions. That is, instead of using simpler aggregates such as
the MEAN, MODE or SUM, this work presents novel aggregates that empirically
improve predictive modelling in high-dimensional (categorical) domains. The set-
ting of hierarchies is different to our multidimensional setting, and our approach
considers a given hierarchy where the natural aggregates in our case are MEAN
and SUM. Nonetheless, it could be worth studying where more aggregates or
statistics about the distributions (e.g., SKEW, VAR) could help to correct the
MEAN and SUM aggregates.

About the disaggregation approaches, the dAg and SLc models were inspired
by [10]. Actually, they do not disaggregate as it can be understood in a cube-
space data mining [23], but this work made us realise that the disaggregation
approach is not properly covered within the OLAP-style multidimensional data
analysis. Our proposed SLc model is not equivalent to the approach presented
in [10], since in their work authors needed the exact, or at least accurate enough,
values for the aggregated target.

As a result, the problem of having several hierarchies, one for each dimension
and seeing the problem (including predictions) at any possible resolution, is new.
Also there is no general approach about how to apply any data mining technique
to this kind of problem (and not only linear regression models or non-linear

522 A. Mart́ınez-Usó and J. Hernández-Orallo

variants). So, the multidimensional approach presented in this paper is more
general in at least these two aspects.

6 Conclusions and Future Work

Multidimensional data is a rich and complex scenario where the same task can
change significantly depending on the level of aggregation over some of the
dimensions. This is the ‘multidimensional context’. The approaches we have anal-
ysed are very general, and applicable to any set of off-the-shelf machine learning
techniques. Three of the approaches can be considered as retraining approaches,
whereas the LL approach the only reframing approach. From this distinction,
we see that resources are an important criterion, as retraining a model again
and again may become infeasible for some applications, and reframing a single,
versatile model may be a much better option in cost-effective terms. Also the
results are generally better for the LL approach. It may be the case that there
are some criteria to choose the best option at each granularity. From our analy-
sis, however, we have not found any clear pattern to make a different take-away
recommendation other than the LL approach. In order to facilitate repeatability
of the experiments, the software associated to this work is available at http://
users.dsic.upv.es/∼admarus/sw.html.

This work suggests many avenues for future work. One area we are undertak-
ing is a modification of the LL approach where the aggregation function is sub-
stituted by a quantification procedure [2,11]. As quantification is able to correct
some aggregation problems, we hope some quantification techniques (especially
those for regression using crisp regression models [3] or soft regression models
[15]) to be beneficial for the LL approach. The set of predictions from differ-
ent approaches could also be used as an ensemble, hopefully leading to better
results. Another further improvement could be strengthen the existing relation-
ship among the different approaches by means of more experimentation, rein-
forcing in this way our knowledge about dependencies in predictions, in which
particular circumstances any of the approaches is better or the different efficien-
cies for each methodology, which is critical in OLAP scenarios. Finally, even if
the approaches analysed in this paper are general to work for any off-the-shelf
machine learning techniques, there may be room for improvement if specific tech-
niques are developed for the multidimensional setting: multidimensional KNN,
multidimensional decision trees and multidimensional Naive Bayes.

Acknowledgments. This work was supported by the Spanish MINECO under grants
TIN 2010-21062-C02-02 and TIN 2013-45732-C4-1-P, and the REFRAME project,
granted by the European Coordinated Research on Long-term Challenges in Informa-
tion and Communication Sciences Technologies ERA-Net (CHIST-ERA), and funded
by MINECO in Spain (PCIN-2013-037) and by Generalitat Valenciana PROME-
TEOII2015/013.

http://users.dsic.upv.es/~admarus/sw.html
http://users.dsic.upv.es/~admarus/sw.html

Multidimensional Prediction Models 523

References

1. Agrawal, R., Gupta, A., Sarawagi, S.: Modeling multidimensional databases. In:
Proceedings of the Thirteenth International Conference on Data Engineering,
ICDE 1997, pp. 232–243. IEEE Computer Society (1997)

2. Bella, A., Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.: Quantification
via probability estimators. In: IEEE ICDM, pp. 737–742 (2010)

3. Bella, A., Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Aggregative
quantification for regression. DMKD 28(2), 475–518 (2014)

4. Bickel, R.: Multilevel analysis for applied research: It’s just regression! Guilford
Press (2012)

5. Cabibbo, L., Torlone, R.: A logical approach to multidimensional databases. In:
Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377,
p. 183. Springer, Heidelberg (1998)

6. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
ACM Sigmod Record 26(1), 65–74 (1997)

7. Chen, B.C.: Cube-Space Data Mining. ProQuest (2008)
8. Chen, B.C., Chen, L., Lin, Y., Ramakrishnan, R.: Prediction cubes. In: Proc. of

the 31st Intl. Conf. on Very Large Data Bases, pp. 982–993 (2005)
9. Datahub: Car fuel consumptions and emissions 2000–2013 (2013). http://datahub.

io/dataset/car-fuel-consumptions-and-emissions
10. Dhurandhar, A.: Using coarse information for real valued prediction. Data Mining

and Knowledge Discovery 27(2), 167–192 (2013)
11. Forman, G.: Quantifying counts and costs via classification. Data Min. Knowl.

Discov. 17(2), 164–206 (2008)
12. Goldstein, H.: Multilevel Statistical Models, vol. 922. John Wiley & Sons (2011)
13. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model

for data warehouses. Intl. J. of Coop. Information Systems 7, 215–247 (1998)
14. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

WEKA data mining software: An update. SIGKDD Explor. 11(1), 10–18 (2009)
15. Hernández-Orallo, J.: Probabilistic reframing for cost-sensitive regression. ACM

Transactions on Knowledge Discovery from Data 8(3) (2014)
16. IBM Corporation: Introduction to Aroma and SQL (2006). http://www.ibm.com/

developerworks/data/tutorials/dm0607cao/dm0607cao.html
17. Kamber, M., Jenny, J.H., Chiang, Y., Han, J., Chiang, J.Y.: Metarule-guided min-

ing of multi-dimensional association rules using data cubes. In: KDD, pp. 207–210
(1997)

18. Lin, T., Yao, Y., Zadeh, L.: Data Mining, Rough Sets and Granular Computing.
Studies in Fuzziness and Soft Computing. Physica-Verlag HD (2002)

19. Páircéir, R., McClean, S., Scotney, B.: Discovery of multi-level rules and exceptions
from a distributed database. In: Proc. of the 6th ACM SIGKDD Intl. Conf. on
Knowledge discovery and data mining, pp. 523–532. ACM (2000)

20. Pastor, O., Casamayor, J.C., Celma, M., Mota, L., Pastor, M.A., Levin, A.M.:
Conceptual Modeling of Human Genome: Integration Challenges. In: Düsterhöft,
A., Klettke, M., Schewe, K.-D. (eds.) Conceptual Modelling and Its Theoretical
Foundations. LNCS, vol. 7260, pp. 231–250. Springer, Heidelberg (2012)

21. Perlich, C., Provost, F.: Distribution-based aggregation for relational learning with
identifier attributes. Machine Learning 62(1–2), 65–105 (2006)

22. Team, R., et al.: R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria (2012)

http://datahub.io/dataset/car-fuel-consumptions-and-emissions
http://datahub.io/dataset/car-fuel-consumptions-and-emissions
http://www.ibm.com/developerworks/data/tutorials/dm0607cao/dm0607cao.html
http://www.ibm.com/developerworks/data/tutorials/dm0607cao/dm0607cao.html

524 A. Mart́ınez-Usó and J. Hernández-Orallo

23. Ramakrishnan, R., Chen, B.C.: Exploratory mining in cube space. Data Mining
and Knowledge Discovery 15(1), 29–54 (2007)

24. Raudenbush, S.W., Bryk, A.S.: Hierarchical linear models: applications and data
analysis methods, vol. 1. Sage (2002)

25. UCI Repository: UJIIndoorLoc data set (2014). http://archive.ics.uci.edu/ml/
datasets/UJIIndoorLoc

26. Vassiliadis, P.: Modeling multidimensional databases, cubes and cube operations.
In: Proc. of the 10th SSDBM Conference, pp. 53–62 (1998)

http://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc
http://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc

Semi-supervised Subspace Co-Projection
for Multi-class Heterogeneous Domain

Adaptation

Min Xiao and Yuhong Guo(B)

Department of Computer and Information Sciences,
Temple University, Philadelphia, PA 19122, USA

{minxiao,yuhong}@temple.edu

Abstract. Heterogeneous domain adaptation aims to exploit labeled
training data from a source domain for learning prediction models in
a target domain under the condition that the two domains have dif-
ferent input feature representation spaces. In this paper, we propose a
novel semi-supervised subspace co-projection method to address multi-
class heterogeneous domain adaptation. The proposed method projects
the instances of the two domains into a co-located latent subspace to
bridge the feature divergence gap across domains, while simultaneously
training prediction models in the co-projected representation space with
labeled training instances from both domains. It also exploits the unla-
beled data to promote the consistency of co-projected subspaces from
the two domains based on a maximum mean discrepancy criterion. More-
over, to increase the stability and discriminative informativeness of the
subspace co-projection, we further exploit the error-correcting output
code schemes to incorporate more binary prediction tasks shared across
domains into the learning process. We formulate this semi-supervised
learning process as a non-convex joint minimization problem and develop
an alternating optimization algorithm to solve it. To investigate the
empirical performance of the proposed approach, we conduct experi-
ments on cross-lingual text classification and cross-domain digit image
classification tasks with heterogeneous feature spaces. The experimen-
tal results demonstrate the efficacy of the proposed method on these
heterogeneous domain adaptation problems.

1 Introduction

Domain adaptation is the task of exploiting labeled training data in a label-rich
source domain to train prediction models in a label-scarce target domain, aiming
to greatly reduce the manual annotation effort in the target domain. Recently,
heterogeneous domain adaptation, which generalizes the standard domain adap-
tation into a more challenging scenario where the source domain and the target
domain have different feature spaces, has attracted a lot attention in the research
community [6,10,16]. Heterogeneous domain adaptation techniques have appli-
cations in many different areas, including image classification in computer vision
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 525–540, 2015.
DOI: 10.1007/978-3-319-23525-7 32

526 M. Xiao and Y. Guo

[10,16], drug efficiency prediction in biotechnology [16], cross-language text clas-
sification [6] and cross-lingual text retrieval [17] in natural language processing.

A fundamental challenge in heterogeneous domain adaptation lies in the dis-
joint feature representation spaces of the two domains; with the disjoint feature
spaces, a prediction model trained in the source domain cannot be applied in the
target domain. A number of representation learning methods have been devel-
oped in the literature to address this challenge, including the instance projection
methods [6,16] which project instances in the two domains into a common fea-
ture space, and the instance transformation methods [10,12] which transform
instances from one domain into the other one. These methods however con-
duct representation learning either in a fully unsupervised manner [16] without
exploiting the label information, or in a fully supervised manner [6,10,12] with-
out exploiting the available unlabeled instances. Moreover, some works [16,18]
perform representation learning and prediction model training separately, lead-
ing to non-optimal representations for the target classification task.

In this paper, we propose a novel semi-supervised subspace co-projection
method to address heterogeneous domain adaptation problems, which overcomes
the drawbacks of the previous methods mentioned above. The proposed method
projects instances in the source and target domains from domain-specific fea-
ture spaces to a co-located low-dimensional representation space, while simulta-
neously training prediction models in the projected feature space with labeled
instances from the two domains. Moreover, the unlabeled instances are exploited
to promote cross-domain instance co-projection by enforcing the empirical mean
distributions of the projected source instances and the projected target instances
to be similar. Furthermore, we exploit Error-Correcting Output Code (ECOC)
schemes [5] to cast a cross-domain multi-class classification task into a large
number of cross-domain binary prediction tasks, aiming to increase the stabil-
ity and discriminative informativeness of the subspace co-projection and enhance
cross-domain multi-class classification. The overall semi-supervised learning pro-
cess is formulated as a joint minimization problem, and solved using an alter-
nating optimization procedure. To evaluate the proposed learning method, we
conduct cross-lingual text classification experiments on multilingual Amazon
product reviews and cross-domain digit image classification experiments on the
UCI handwritten digits data. The experimental results demonstrate the efficacy
of the proposed approach for multi-class heterogeneous domain adaptation.

2 Related Work

In this section, we provide a brief review over the related works on heteroge-
neous domain adaptation, including latent subspace learning methods, instance
transformation methods, and auxiliary resources assisted learning methods.

A group of works address heterogeneous domain adaptation by developing
latent subspace learning methods that project instances from the domain-specific
feature spaces into a common latent subspace [6,13,16,17,20]. In particular,
Shi et al. [16] proposed a heterogeneous spectral mapping (HeMap) method,

Semi-supervised Subspace Co-Projection for Multi-class Heterogeneous 527

which learns two projection matrices and projects instances via spectral trans-
formation. Wang et al. [17] proposed a manifold alignment (DAMA) method,
which learns projection matrices by using manifold alignment and similarity/
dissimilarity constraints constructed on pairs of instances with same/different
labels. Duan et al. [6] proposed a heterogeneous feature augmentation (HFA)
method, which first projects instances into a common subspace and uses the
projected latent features to augment the original features of the instances, and
then trains a classification model with the feature-augmented instances. Later,
Li et al. [13] extended the HFA method into a semi-supervised HFA (SHFA)
method by incorporating unlabeled target training data. Wu et al. [20] proposed
to address heterogeneous domain adaptation by performing heterogeneous trans-
fer discriminant analysis of canonical correlations, which maximizes/minimizes
the intra/inter-class canonical correlations of the projected instances while simul-
taneously reducing the data distribution mismatch between the original data
and the projected data. Our proposed approach shares similarities with these
subspace learning methods on projecting original instances into common rep-
resentation subspaces. But different from these previous works, our approach
exploits both labeled and unlabeled instances and simultaneously learns the
projection matrices and the prediction models. Moreover, our approach can nat-
urally exploit error-correcting output code schemes to promote label informative
subspace co-projection.

Another group of works developed instance transformation methods to
address heterogeneous domain adaptation, which learn asymmetric mapping
matrices to transform instances from the source domain to the target domain
or vice versa [10,12,18,21]. Kulis et al. [12] proposed an asymmetric regular-
ized cross-domain transformation method that learns an asymmetric feature
transformation matrix by performing nonlinear metric learning with similar-
ity/dissimilarity constraints constructed on all pairs of labeled instances. Wang
et al. [18] proposed a two-step feature mapping method based on Hilbert-Schmidt
Independence Criterion (HSIC) [8] for heterogeneous domain adaptation. It first
selects features in each domain based on the HSIC between the instance feature
kernel matrix and the instance label kernel matrix, and then maps the selected
features across domains based on HSIC. Hoffman et al. [10] proposed a Max-
Margin Domain Transforms (MMDT) method to learn domain-invariant image
representations. It transforms target instances into the source domain and trains
a prediction model in the source domain with the original labeled instances and
the transformed labeled instances. Xiao and Guo [21] proposed a semi-supervised
kernel matching method for heterogeneous domain adaptation. It learns a predic-
tion function on the labeled source data while mapping the target data points to
similar source data points by matching the target kernel matrix to a sub-matrix
of the source kernel matrix based on a Hilbert Schmidt Independence Criterion.

In addition to the two groups of methods mentioned above, some other works
exploit different types of auxiliary resources to build connections between the
source features and the target features, including the ones that use bilingual
dictionaries [4,9,19], and the ones that use additional unlabeled image and doc-

528 M. Xiao and Y. Guo

uments [22]. However, these auxiliary resource based learning methods are typi-
cally designed for specific applications and may have difficulty to be applied on
other application tasks.

3 Semi-supervised Multi-class Heterogeneous Domain
Adaptation

In this paper, we focus on multi-class heterogeneous domain adaptation prob-
lems. We assume in the source domain we have plenty of labeled instances while
in the target domain we only have a small number of labeled instances. The two
domains have disjoint input feature spaces, Xs = R

ds and Xt = R
dt , where ds

is the dimensionality of the source domain feature space and dt is the dimen-
sionality of the target domain feature space, but share the same multi-class
output label space Y = {−1, 1}L, where L is the number of classes. In particu-
lar, let Xs = [X�

s ;X
u
s] ∈ R

ns×ds denote the data matrix in the source domain,
where each instance is represented as a row vector. X�

s ∈ R�s×ds is the labeled
source data matrix with a corresponding label matrix Ys ∈ {−1, 1}�s×L, and
Xu

s ∈ R
us×ds is the unlabeled source data matrix. Each row of the label matrix

contains only one positive 1, which indicates the class membership of the corre-
sponding instance. Similarly, let Xt = [X�

t ;X
u
t] ∈ R

nt×dt denote the data matrix
in the target domain, where X�

t ∈ R�t×dt is the labeled target data matrix with
a corresponding label matrix Yt ∈ {−1, 1}�t×L and Xu

t ∈ R
ut×dt is the unlabeled

target data matrix. The number of labeled target domain instances �t is small
and the number of labeled source domain instances �s is much larger than �t.

In this section, we present a semi-supervised subspace co-projection method
to address heterogeneous multi-class domain adaptation under the setting
described above. We formulate a co-projection based discriminative subspace
learning method to simultaneously project the instances from both domains
into a co-located subspace and train a multi-class classification model in the
projected subspace, while exploiting the available unlabeled data to enforce a
maximum mean discrepancy criterion across domains in the projected subspace.
We further exploit ECOC schemes to enhance the discriminative informative-
ness of the projected subspace while directly addressing multi-class classification
problems.

3.1 Semi-supervised Learning Framework

With the disjoint feature spaces across domains, traditional machine learn-
ing methods and homogeneous domain adaptation methods cannot be directly
applied in the heterogeneous domain adaptation setting. However, if we can
transform the two disjoint feature spaces Xs and Xt into a common subspace
Z = R

m with two transformation functions ψs : Xs −→ Z and ψt : Xt −→ Z,
we can then build a unified prediction model in the common subspace to adapt
information across domains. Since the same multi-class prediction task is shared
across the source domain and the target domain, i.e., the two domains have the

Semi-supervised Subspace Co-Projection for Multi-class Heterogeneous 529

same output label space, we can identify a useful common subspace representa-
tion of the data by enforcing the discriminative informativeness of the subspace
representation of the labeled data in both domains for the common multi-class
prediction task. Based on this motivation, we propose to project the instances
from the source domain and the target domain into a common subspace using
two projection matrices Us and Ut respectively such that ψs(Xs) = XsUs and
ψt(Xt) = XtUt, while simultaneously training shared cross-domain prediction
models using the projected data. This process can be formulated as the follow-
ing minimization problem over the projection matrices and the prediction model
parameters

min
Us,Ut,W

1
�s + β�t

L (
f(X�

sUs,W), φ(Ys)
)

+
αs

2
R(Us)+

β

�s + β�t
L (

f(X�
t Ut,W), φ(Yt)

)
+

αt

2
R(Ut) +

γ

2
R(W) (1)

where Us ∈ R
ds×m and Ut ∈ R

dt×m are two projection matrices that transform
the input data in the source domain and target domain respectively to a com-
mon and low dimensional feature space, such that m < min(ds, dt); f(·, ·) is a
prediction function for both domains in the projected common feature space and
W ∈ R

m×K is the prediction model parameter matrix; R(·) denotes a regular-
ization function; φ(·) denotes a label transformation function, which transforms
the multi-class label vectors from the original space {−1, 1}L to a new space
{−1, 1}K ; L(·, ·) is a loss function; and {β, αs, αt, γ} are trade-off parameters.
We introduce the label transformation function φ(·) to provide a mechanism for
incorporating label encoding schemes later.

Since the same prediction model is shared across the two domains, we expect
that the discriminative subspace learning framework above can successfully iden-
tify a common subspace representation if there are sufficient labeled instances
in both domains to enforce the predictive consistency of the subspace projec-
tions. However, there are typically only a small number of labeled instances
in the target domain, which might lead to poor subspace identification in the
target domain. To overcome this potential problem, we further incorporate unla-
beled instances to assist the subspace co-projection across domains. Specifically,
we assume the empirical marginal instance distributions of the two domains
in the projected subspace should be similar, i.e., P (ψ(Xs)) and P (ψ(Xt)) are
similar, and hence the prediction model built in the projected subspace using
the labeled source domain instances can work well for the target domain. We
thus propose to minimize the distance between the means of the projected
instances (both labeled and unlabeled) in the two domains, D(ψ(Xs), ψ(Xt)).
The empirical mean vector ψ(Xs) in the source domain can be expressed as
ψ(Xs) = 1

ns
1�

ns
XsUs, where 1ns

denotes a column vector of 1s with length ns.
Similarly, the empirical mean vector ψ(Xt) in the target domain can be expressed
as ψ(Xt) = 1

nt
1�

nt
XtUt, where 1nt

denotes a column vector of 1s with length nt.
By incorporating the empirical mean vector distance measure into our formu-
lation above, we produce the following semi-supervised heterogeneous domain

530 M. Xiao and Y. Guo

adaptation framework

min
Us,Ut,W

1
�s + β�t

L (
f(X�

sUs,W), φ(Ys)
)

+
αs

2
R(Us)+

β

�s + β�t
L (

f(X�
t Ut,W), φ(Yt)

)
+

αt

2
R(Ut)+

γ

2
R(W) + η D

(1
ns

1�
ns

XsUs,
1
nt

1�
nt

XtUt

)
(2)

This framework will ensure the common subspace identified across domains to be
informative for the shared prediction model in the two domains, while enforcing
the two domains have similar marginal instance distributions in the projected
subspace to facilitate information adaptation across domains.

We expect the semi-supervised formulation above to provide a general frame-
work for identifying discriminative common subspace representations for effective
information adaptation across domains. Nevertheless, to produce a specific learn-
ing problem, we need to consider specific prediction functions, loss functions,
regularization functions and distance functions. In this work, we use a linear
prediction function f(x,w) = xw, a least squares loss function L(ŷ, y) = (ŷ−y)2,
and a squared L2-norm regularization function R(w) = ‖w‖22. We consider an
Euclidean distance function D(·, ·), which leads to a maximum mean discrep-
ancy criterion [2]. The maximum mean discrepancy criterion has been used in
the literature to induce similar marginal instance distributions across domains in
homogeneous domain adaptation setting, and it has been shown to be effective
in bridging the domain divergence gaps [3,14]. We expect such an empirical dis-
tribution based criterion can be useful for learning the common subspace across
heterogeneous domains in our setting. These specific components together lead
to the following semi-supervised learning problem

min
Us,Ut,W

1
�s + β�t

∥
∥X�

sUsW − φ(Ys)
∥
∥2

F
+

αs

2
‖Us‖2F +

β

�s + β�t

∥
∥X�

t UtW − φ(Yt)
∥
∥2

F
+

αt

2
‖Ut‖2F +

γ

2
‖W‖2F + η

∥
∥
∥

1
ns

1�
ns

XsUs − 1
nt

1�
nt

XtUt

∥
∥
∥
2

2
(3)

where ‖.‖F denotes the Frobenius norm, ‖.‖2 denotes the L2 norm, and {αs, αt,
β, γ, η} are trade-off parameters.

The label transformation function φ(·) allows one to use different multi-class
classification schemes within the proposed framework above. For example, if we
use the standard one-vs-all (OVA) scheme to address multi-class classification,
i.e., training one binary predictor for each label class, we then will have an
identical label transformation function φ(Y) = Y , and set K = L for the size of
the prediction model parameter matrix W .

Semi-supervised Subspace Co-Projection for Multi-class Heterogeneous 531

3.2 Multi-class Classification with ECOC Schemes

In addition to the one-vs-all (OVA) scheme for multi-class classification, we
further exploit the general error-correcting output code (ECOC) [5] schemes
for multi-class classification. There are two reasons to use ECOC schemes in
our learning framework. First, ECOC schemes have the capacity of encoding
a multi-class classification problem into many more binary classification prob-
lems than the OVA scheme. More cross-domain binary classification tasks can
help to increase the stability and prediction informativeness of the subspace
co-projection in the proposed approach above, and lead to more robust domain
adaptation performance. Second, ECOC schemes have been used in the literature
to robustly solve multi-class classification problems with good empirical results
[5]. Incorporating an ECOC scheme in our learning framework will benefit our
multi-class classification task.

An ECOC scheme has two components: encoding process and decoding pro-
cess. Given a L-class classification problem, in the encoding process, an ECOC
scheme assigns a codeword from {−1,+1}K to each of the L classes, where K is
the length of the codeword. All the codewords for the L classes can then form
a codeword matrix M ∈ {−1,+1}L×K , whose each row contains the codeword
for one of the L classes. Based on such a codeword matrix, the label transforma-
tion function φ(·) can transform any given label vector from the one-vs-all form
into a new label vector with length K, while converting the L-class classifica-
tion problem to K binary classification problems, each of which corresponds to
one column of the codeword matrix M . In the decoding process, one can simply
compare the predicted codeword with the codewords in the codeword matrix M
to determine the predicted class (one of the L classes). In this work, we use the
Euclidean distance based loss decoding [7].

There are different ECOC schemes proposed in the literature. One standard
scheme is the exhaustive ECOC [5], which constructs codewords with length K =
2L−1 −1. Dense random encoding [1] is another simple ECOC encoding scheme.
For a given codeword length K, the random encoding constructs the codeword
vectors for the L classes by randomly filling the vectors with 1s and −1s, and
then selects the codeword matrix with the largest sum of column separation and
row separation from the results of multiple random repeats.

4 Training Algorithm

The semi-supervised learning problem in Eq (3) is a non-convex joint minimiza-
tion problem over the three parameter matrices, Us, Ut, and W . But the problem
is convex in each individual parameter matrix given the other two fixed, and has
closed-form solutions.

First, given fixed Ut and W , the optimization problem over Us in Eq (3) is
simply a least squares minimization problem. By setting the derivative of the
objective function regarding Us to zeros, we obtain the following closed-form
solution

vec(Us) =
(
(WW�) ⊗ As + I ⊗ Bs

)−1
vec(Qs) (4)

532 M. Xiao and Y. Guo

where ⊗ denotes the Kronecker product operator, vec(·) is the matrix vector-
ization operator, I is an identity matrix with proper size in the given context,
and

As =
2

�s + β�t
X��

s X�
s ,

Bs = αsI +
2η

n2
s

X�
s 1ns

1�
ns

Xs,

Qs =
2

�s + β�t
X��

s φ(Ys)W� +
2η

nsnt
X�

s 1ns
1�

nt
XtUt,

Similarly, given fixed Us and W , the optimization problem over Ut in Eq (3)
has the following closed-form solution

vec(Ut) =
(
(WW�) ⊗ At + I ⊗ Bt

)−1
vec(Qt) (5)

where

At =
2β

�s + β�t
X��

t X�
t ,

Bt = αtI +
2η

n2
t

X�
t 1nt

1�
nt

Xt,

Qt =
2β

�s + β�t
X��

t φ(Yt)W� +
2η

nsnt
X�

t 1nt
1�

ns
XsUs.

Finally, the optimization problem over W given fixed Us and Ut has the
following closed-form solution

W =
(

2Nx

�s + β�t
+ γI

)−1 (
2Ny

�s + β�t

)

(6)

where

Nx = U�
s X��

s X�
sUs + βU�

t X��
t X�

t Ut,

Ny = U�
s X��

s φ(Ys) + βU�
t X��

t φ(Yt).

Given these closed-form solutions for each individual subproblem, we use an
alternating procedure to solve the optimization problem in Eq (3) in an itera-
tive manner. After a random initialization over {Us, Ut,W}, in each iteration the
alternating procedure sequentially updates Us, Ut and W according to equations
(4), (5) and (6) respectively to minimize the objective function. We stop the iter-
ation until a local optimal objective has been reached. On high-dimensional data,
where the closed-form solutions in (4) and (5) involve large matrix inversions,
we use a conjugate gradient descent algorithm to solve the subproblems over Us

and Ut to achieve scalability.

5 Experiments

We conducted experiments on cross-lingual text classification tasks and digit
image classification tasks with heterogeneous feature spaces. In this section we
report the experimental settings and the empirical results.

Semi-supervised Subspace Co-Projection for Multi-class Heterogeneous 533

5.1 Datasets and Methods

We conducted experiments on two types of data, text data and image data,
using Amazon product reviews [15] and UCI handwritten digits [11] respectively.
The Amazon product review dataset is a multilingual sentiment classification
dataset. It contains reviews from three different categories (Books, DVD and
Music), written in four different languages (English (E) , French (F) , German
(G) and Japanese (J)), where each review is represented as a term-frequency
feature vector. With this dataset, we constructed 12 cross-lingual multi-class
classification tasks with the three categories {Books,DV D,Music} as classes,
one for each source-target language pair. For example, the task E2F uses English
as the source language and French as the target language. For each task, there
are 4000 views for each class in each language domain.

The UCI handwritten digits dataset contains 2000 digit images, evenly dis-
tributed among ten digit classes (from zero to nine). We randomly split the
dataset into two subsets with equal size as two domains. Images in one domain
are represented using the feature set of the Zernike moments (Zer), while images
in the other domain are represented using the feature set of the profile correla-
tions (Fac). We then constructed two heterogeneous domain adaptation tasks,
Fac2Zer and Zer2Fac, one for each ordered source-target domain pair.

Methods: For each constructed heterogeneous domain adaptation task, we
compared the following methods: (1) TB - this is a target baseline method
that trains a classifier using only the labeled instances in the target domain.
(2) HeMap - this is an unsupervised representation learning method for hetero-
geneous domain adaptation [16], which first learns two projection matrices for the
two domains and then trains a classifier using the projected labeled instances
from the two domains. (3) DAMA - this is a semi-supervised heterogeneous
domain adaptation method proposed in [17], which performs representation
learning and model training in separate steps. (4) MMDT - this is a maximum
margin domain transform method for heterogeneous domain adaptation [10].
(5) SHFA - this is a semi-supervised heterogeneous feature augmentation-based
domain adaptation method [13]. (6) SCP-OVA - this is the proposed subspace
co-projection method with the one-verse-all (OVA) scheme for multi-class clas-
sification. (7) SCP-ECOC - this is the proposed subspace co-projection method
with the exhaustive ECOC scheme for multi-class classification. The DAMA
method [17] cannot handle the original high-dimensional features of the review
data, we thus applied PCA to reduce the dimensionality of the input features in
each language domain to 1000, as suggested in the SHFA work [13]. The alter-
nating training algorithm for our proposed approaches is very efficient, and it
typically converges within 30 iterations in our experiments.

5.2 Cross-lingual Text Classification

For each of the 12 cross-lingual multi-class classification tasks on Amazon prod-
uct reviews, there are 4000 instances for each of the three classes in each domain.

534 M. Xiao and Y. Guo

Table 1. Average test accuracy (± standard deviations) (%) over 10 runs for cross-
lingual text classification tasks.

TASK TB HeMap DAMA MMDT SHFA SCP-OVA SCP-ECOC

E2F 73.8±0.5 73.8±0.4 74.2±0.5 78.2±0.5 78.4±0.4 79.2±0.5 80.6±0.4
E2G 72.4±0.5 76.5±0.5 77.0±0.4 79.2±0.4 79.4±0.4 81.0±0.4 82.2±0.3
E2J 66.8±0.5 67.3±0.5 67.6±0.5 72.7±0.5 70.6±0.8 73.4±0.6 74.4±0.6
F2E 72.8±0.6 79.3±0.6 80.3±0.5 82.2±0.4 82.4±0.4 84.3±0.3 85.6±0.2
F2G 72.4±0.5 76.3±0.4 77.7±0.6 79.4±0.4 79.5±0.4 80.9±0.4 82.2±0.3
F2J 66.8±0.5 67.9±0.8 68.4±0.4 72.6±0.5 70.5±0.8 73.4±0.7 74.5±0.6
G2E 72.8±0.6 79.8±0.4 80.6±0.6 82.2±0.4 82.4±0.4 84.5±0.3 85.5±0.2
G2F 73.8±0.5 73.9±0.4 75.0±0.5 78.2±0.5 78.4±0.4 79.4±0.5 80.6±0.4
G2J 66.8±0.5 65.8±1.0 67.5±0.6 72.6±0.5 70.5±0.8 73.3±0.7 74.4±0.6
J2E 72.8±0.6 81.0±0.4 81.2±0.4 82.2±0.4 82.5±0.5 84.2±0.2 85.5±0.2
J2F 73.8±0.5 74.8±0.3 75.1±0.7 78.3±0.5 78.3±0.4 79.3±0.5 80.5±0.4
J2G 72.4±0.5 76.4±0.4 77.1±0.6 79.2±0.4 79.3±0.4 81.0±0.4 82.2±0.4

We conducted experiments in the following way. In the source domain, we ran-
domly selected 2000 instances from each class as labeled data and used the
remaining 2000 instances as unlabeled data. In the target domain, we randomly
selected 100 instances and 2900 instances from each class as labeled and unla-
beled data respectively. We used all these selected instances for training, and used
the remaining 3000 instances (1000 for each class) in the target domain as testing
data. For the comparison approaches, HeMap, DAMA, SCP-OVA, SCP-ECOC,
which involve low dimensional subspaces, we set the dimension of the latent sub-
spaces, m, as 100. Then we performed empirical parameter selection using the
first task E2F with three runs. For the proposed approaches, SCP-OVA and SCP-
ECOC, we chose αs and αt from {0.01, 0.1, 1, 10, 100}, β from {1, 2, 5, 10, 100},
η from {0.01, 0.1, 1, 10, 100}, and chose γ from {0.01, 0.1, 1, 10, 100}. We picked
the parameter setting with the best test classification accuracy for each app-
roach, {αs = 0.1, αt = 0.1, β = 1, η = 10, γ = 0.1} for SCP-OVA and {αs =
10, αt = 0.1, β = 1, η = 10, γ = 0.1} for SCP-ECOC. We conducted parameter
selection for the other comparison approaches, HeMap, DAMA, MMDT, SHFA,
in the same way. Using the selected parameters, for each of the 12 tasks we then
repeatedly ran all the comparison methods for 10 times with different random
selections of the training instances. The comparison results in terms of average
test accuracy in the target domain are reported in Table 1.

From Table 1, we can see that the TB baseline method performs poorly across
all the twelve tasks, which shows that the 100 labeled target training instances
from each class are far from enough to obtain a good classification model in the
target language domain. By exploiting the labeled training data from the source
language domain, the HeMap method improves the prediction performance on
most tasks. However, its improvements over TB are very small on some tasks
and it even performs worse than TB on the task G2J. The DAMA method on
the other hand consistently outperforms both TB and HeMap. The explanation

Semi-supervised Subspace Co-Projection for Multi-class Heterogeneous 535

η
0.01 0.1 1 10 100

A
cc

ur
ac

y
74

76

78

80

82
E2F

β
1 2 5 10 100

A
cc

ur
ac

y

74

76

78

80

82
E2F

γ
0.01 0.1 1 10 100

A
cc

ur
ac

y

74

76

78

80

82
E2F

α
s

0.01 0.1 1 10 100

A
cc

ur
ac

y

74

76

78

80

82
E2F

α
t

0.01 0.1 1 10 100

A
cc

ur
ac

y

74

76

78

80

82
E2F

Fig. 1. Parameter sensitivity analysis over trade-off parameters

is that HeMap conducts representation learning in a fully unsupervised man-
ner while DAMA learns more informative representations in a semi-supervised
manner with constraints constructed from the label information. By exploiting
the label information directly for representation learning and prediction model
training, the supervised method MMDT and semi-supervised method SHFA,
further outperform DAMA on all the twelve tasks. Nevertheless, our proposed
approaches, SCP-OVA and SCP-ECOC, outperform all the other comparison
methods across all the tasks. This suggests that the proposed learning frame-
work, which exploits both labeled and unlabeled training data to simultaneously
perform subspace representation learning and prediction model training, is an
effective model for heterogeneous domain adaptation. Between the two variants
of the proposed model, SCP-ECOC consistently outperforms SCP-OVA across
all the tasks, which suggests that the exhaustive error-correcting output coding
is more effective than the one-vs-all coding scheme in our learning framework,
while our proposed learning framework has the nice property of naturally incor-
porating different ECOC schemes.

5.3 Parameter Sensitivity Analysis

Next, we conducted parameter sensitivity analysis for the proposed SCP-ECOC
approach over the trade-off parameters {η, β, γ, αs, αt} using the first cross-lingual
text classification task, E2F. We used the same experimental setting as above, and
empirically investigated how the values of the trade-off parameters {η, β, γ, αs, αt}
affect the heterogeneous cross-domain prediction performance. We first conducted
sensitivity analysis over η, which controls the relative weight for the mean discrep-
ancy term in the proposed objective function. We conducted experiments with dif-
ferent η values from {0.01, 0.1, 1, 10, 100}, while fixing the other trade-off param-
eters as the selected values in the section above. For each η value, we repeated the

536 M. Xiao and Y. Guo

Table 2. Average test accuracy (± standard deviations) (%) over 10 runs for digit
image classification tasks.

TASK TB HeMap DAMA MMDT SHFA SCP-OVA SCP-ECOC

Fac2Zer 71.9±0.7 72.0±1.0 72.5±0.6 73.4±1.0 73.8±0.6 75.0±0.8 76.6±0.5
Zer2Fac 83.8±0.9 84.2±0.9 85.4±0.6 87.0±1.1 87.6±0.7 88.7±0.7 90.4±0.5

experiment 10 times based on random partitions of the dataset and reported the
average test performance in the top left figure of Figure 1. We can see SCP-ECOC
produces the highest test accuracy when η equals 10. As η controls the contribu-
tion weight of the maximum mean discrepancy (MMD) criterion across the two
domains, the good performance of the large value of η suggests that the MMD
term is helpful for improving the cross-domain prediction performance. Another
observation is that although the test accuracy varies as we change the value of η,
the changes are small and the test accuracies produced by SCP-ECOC across the
whole range of different η values are all higher than the other comparison meth-
ods, TB, HeMap, DAMA, MMDT and SHFA (see both Figure 1 and Table 1).
This suggests that the proposed SCP-ECOC is not very sensitive to η within the
studied range of values.

We next studied how β affects cross-lingual test classification accuracy. Note
that β can be viewed as the relative weight ratio between a labeled target domain
instance and a labeled source domain instance regarding their contribution to
the training loss. As we have many more labeled training instances in the source
domain than in the target domain and we aim to learn a classification model
that works well in the target domain, it is reasonable to give a target domain
instance larger (or equal) weight than a source domain instance and consider
β ≥ 1. In particular, we conducted experiments with different β values from
{1, 2, 5, 10, 100} while fixing all the other trade-off parameters as the selected
values in the previous section. The average test classification results over 10
repeated runs are reported in the top right figure of Figure 1. We can see that
the performance of SCP-ECOC is quite stable with β values changing from 1 to
10. However, if placing too much weights (e.g., β = 100) on the target instances,
the test performance degrades. These results suggest that the performance of the
proposed SCP-ECOC is quite robust to β within a range of reasonable values.

We finally investigated the three trade-off parameters {γ, αs, αt} used for
the Frobenius norm regularization terms over W,Us, and Ut respectively. We
conducted experiments similarly as above. For each of the three parameters, we
repeated the experiment 10 times for each of its values in {0.01, 0.1, 1, 10, 100}
while fixing all the other trade-off parameters as previously selected values. We
reported the average test accuracy results in the bottom three figures of Figure 1
for the three parameters {γ, αs, αt} respectively. We can see although the per-
formance of the proposed SCP-ECOC changes with the value change for each
of the three parameters, the performance variations are very small. The perfor-
mance of SCP-ECOC is quite robust to the values of γ, αs, αt within the range
of values considered in the experiments.

Semi-supervised Subspace Co-Projection for Multi-class Heterogeneous 537

3 4 5 6 7
70

72

74

76

78

80

82
E2F

K: #of Binary Classifiers

A
cc

ur
ac

y

Random
OVA
Exhaustive

0 100 200 300 400 500

66

68

70

72

74

76

78
Fac2Zer

K: #of Binary Classifiers

A
cc

ur
ac

y

Random
OVA
Exhaustive

0 100 200 300 400 500
84

86

88

90

92
Zer2Fac

K: #of Binary Classifiers

A
cc

ur
ac

y

Random
OVA
Exhaustive

Fig. 2. Empirical comparison of different ECOC schemes.

5.4 Experimental Results on UCI Dataset

We have also conducted experiments using the UCI handwritten digits dataset.
The two tasks we constructed on the UCI handwritten digits dataset have differ-
ent feature spaces across domains, and have 100 instances from each class, i.e.,
1000 instances in total, in each domain. For each task, in the source domain,
we randomly chose 50 instances from each class (500 in total) as the labeled
training data and used the remaining 500 instances as the unlabeled train-
ing data. In the target domain, we randomly chose 10 and 70 instances from
each class as the labeled and unlabeled training data respectively, and used the
remaining instances as the testing instances. For the approaches that involve
subspaces, we set the dimension of the subspace as 20. We then used the same
parameter selection procedure as before to select values for the trade-off param-
eters of all the comparison methods using the task Fac2Zer. For our proposed
approaches, we got {αs = 0.1, αt = 0.1, β = 10, η = 0.1, γ = 10} for SCP-OVA
and {αs = 1, αt = 1, β = 1, η = 0.1, γ = 10} for SCP-ECOC. With the selected
parameters, for each task, we ran the comparison methods for 10 times with
different random selections of the training and testing data. The average test
accuracy results are reported in Table 2.

We can see that by exploiting the existing labeled data from the auxiliary
source domain, all the heterogeneous domain adaptation methods outperform
the baseline method on learning prediction models in the target domain. This
again shows the importance of performing heterogeneous domain adaptation.
Nevertheless, these few methods used in our experiments also demonstrated dif-
ferent efficacies on heterogeneous domain adaptation. HeMap displays similar
performance as in the cross-lingual text classification experiments, with limited
improvements over the baseline TB. The methods DAMA, SHFA and MMDT
outperform HeMap, while our proposed two approaches outperform all the other
comparison methods. Between the two proposed approaches, again SCP-ECOC
outperforms SCP-OVA. All these results again verified the efficacy of the pro-
posed learning framework.

538 M. Xiao and Y. Guo

5.5 Impact of the ECOC Encoding Schemes

We also conducted experiments to further study the influence of different ECOC
encoding schemes, especially the different numbers of binary classifiers, on the
proposed heterogeneous domain adaptation framework. In particular, we com-
pared the performance of one-vs-all (OVA) scheme, exhaustive ECOC scheme
and dense random ECOC encoding schemes [1]. For a L-class classification prob-
lem, the OVA scheme transforms the problem into a set of L binary classifica-
tion problems, the exhaustive ECOC scheme transforms the problem into a set
of (2L−1 − 1) binary classification problems, while the random ECOC encoding
scheme transforms the problem into a given number of K binary classification
problems.

We conducted experiments on the first cross-lingual text classification task,
E2F and the two tasks on UCI digits dataset, Fac2Zer and Zer2Fac. The E2F is
a 3-class classification task, and we tested the random encoding ECOC scheme
with different K values from {3, 5, 7}. The Fac2Zer and Zer2Fac are 10-class clas-
sification tasks, and we tested the random encoding ECOC scheme with different
K values from {10, 50, 100, 200, 500}. The experimental results are reported in
Figure 2. We can see that the exhaustive ECOC encoding scheme demonstrates
the best performance on all the three tasks, even though its codeword length is
smaller than the random schemes in some cases on the E2F task where the class
number is small. This is reasonable since the codeword matrix generated by the
exhaustive ECOC scheme typically has much better row and column separations
than randomly generated codeword matrix. With the same codeword length,
even the OVA scheme produces better performance than the random scheme.
But with the increasing of the number of binary classifiers, i.e., the codeword
length K, the performance of the proposed approach based on random encod-
ing ECOC improves quickly. In particular, on Fac2Zer and Zer2Fac, when K
increases from 10 to 100, the performance of the proposed approach increases
dramatically. Similar performance is observed on E2F as well. This observation
verifies our hypothesis that incorporating more binary classification tasks can
help to increase the stability and usefulness of the subspace co-projection in the
proposed learning framework and induce better domain adaptation performance.

6 Conclusion

In this paper, we developed a novel semi-supervised subspace co-projection app-
roach to address multi-class heterogeneous domain adaptation problems, where
the source domain and the target domain have disjoint input feature spaces.
The proposed method projects instances in the two domains into a co-located
latent subspace, while simultaneously training prediction models in the projected
feature space. It also exploits the unlabeled data to promote the consistency of
subspace co-projection from the two domains. Moreover, the proposed learning
framework can naturally exploit error-correcting output codes for multi-class
classification to enforce the informativeness of the subspace co-projection. We
formulated the overall semi-supervised learning process as a joint minimization

Semi-supervised Subspace Co-Projection for Multi-class Heterogeneous 539

problem, and solved it using an alternating optimization procedure. To investi-
gate the empirical performance of the proposed approach, we conducted cross-
lingual text classification experiments on the Amazon product reviews and cross-
domain image classification experiments on the UCI digits dataset. The empirical
results demonstrated the effectiveness of the proposed approach comparing to a
number of state-of-the-art heterogeneous domain adaptation methods.

Acknowledgments. This research was supported in part by NSF grant IIS-1065397

References

1. Allwein, E., Schapire, R., Singer, Y.: Reducing multiclass to binary: A unifying
approach for margin classifiers. Journal of Machine Learning Research (JMLR) 1,
113–141 (2001)

2. Borgwardt, K., Gretton, A., Rasch, M., Kriegel, H., Schölkopf, B., Smola, A.:
Integrating structured biological data by kernel maximum mean discrepancy. In:
Proceedings of the International Conference on Intelligent Systems for Molecular
Biology (2006)

3. Chattopadhyay, R., Fan, W., Davidson, I., Panchanathan, S., Ye, J.: Joint transfer
and batch-mode active learning. In: Proceedings of the International Conference
on Machine Learning (ICML) (2013)

4. Dai, W., Chen, Y., Xue, G., Yang, Q., Yu, Y.: Translated learning: transfer learn-
ing across different feature spaces. In: Advances in Neural Information Processing
Systems (NIPS) (2008)

5. Dietterich, T., Bakiri, G.: Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Interlligence Research (JAIR) 2(1), 263–286
(1995)

6. Duan, L., Xu, D., Tsang, I.: Learning with augmented features for heterogeneous
domain adaptation. In: Proceedings of the International Conference on Machine
Learning (ICML) (2012)

7. Escalera, S., Pujol, O., Radeva, P.: On the decoding process in ternary error-
correcting output codes. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 32(1), 120–134 (2010)

8. Gretton, A., Bousquet, O., Smola, A.J., Schölkopf, B.: Measuring statistical depen-
dence with Hilbert-Schmidt norms. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT
2005. LNCS (LNAI), vol. 3734, pp. 63–77. Springer, Heidelberg (2005)

9. He, J., Liu, Y., Yang, Q.: Linking heterogeneous input spaces with pivots for multi-
task learning. In: Proceedings of SIAM International Conference on Data Mining
(SDM) (2014)

10. Hoffman, J., Rodner, E., Donahue, J., Darrell, T., Saenko, K.: Efficient learning
of domain-invariant image representations. In: Proceedings of the International
Conference on Learning Representations (ICLR) (2013)

11. Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: A review. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (TPAMI) 22(1), 4–37 (2000)

12. Kulis, B., Saenko, K., Darrell, T.: What you saw is not what you get: domain adap-
tation using asymmetric kernel transforms. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2011)

540 M. Xiao and Y. Guo

13. Li, W., Duan, L., Xu, D., Tsang, I.: Learning with augmented features for super-
vised and semi-supervised heterogeneous domain adaptation. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI) 36(6), 1134–1148 (2014)

14. Pan, S., Tsang, I., Kwok, J., Yang, Q.: Domain adaptation via transfer compo-
nent analysis. In: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI) (2009)

15. Prettenhofer, P., Stein, B.: Cross-language text classification using structural cor-
respondence learning. In: Proceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL) (2010)

16. Shi, X., Liu, Q., Fan, W., Yu, P., Zhu, R.: Transfer learning on heterogenous fea-
ture spaces via spectral transformation. In: Proceedings of the IEEE International
Conference on Data Mining (ICDM) (2010)

17. Wang, C., Mahadevan, S.: Heterogeneous domain adaptation using manifold align-
ment. In: Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI) (2011)

18. Wang, H., Yang, Q.: Transfer learning by structural analogy. In: Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI) (2011)

19. Wei, B., Pal, C.: Heterogeneous transfer learning with rbms. In: Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI) (2011)

20. Wu, X., Wang, H., Liu, C., Jia, Y.: Cross-view action recognition over hetero-
geneous feature spaces. In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV) (2013)

21. Xiao, M., Guo, Y.: Feature space independent semi-supervised domain adapta-
tion via kernel matching. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 37(1), 54–66 (2014)

22. Zhu, Y., Chen, Y., Lu, Z., Pan, S., Xue, G., Yu, Y., Yang, Q.: Heterogeneous
transfer learning for image classification. In: Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI) (2012)

Towards Computation of Novel Ideas
from Corpora of Scientific Text

Haixia Liu1(B), James Goulding2, and Tim Brailsford1

1 School Of Computer Science, University of Nottingham Malaysia Campus,
Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia

{khyx3lhi,tim.brailsford}@nottingham.edu.my
2 Horizon Digital Economy Research, School of Computer Science,

University of Nottingham, Nottingham NG7 2TU, UK
james.goulding@nottingham.ac.uk

Abstract. In this work we present a method for the computation of
novel ‘ideas’ from corpora of scientific text. The system functions by
first detecting concept noun-phrases within the titles and abstracts of
publications using Part-Of-Speech tagging, before classifying these into
sets of problem and solution phrases via a target-word matching app-
roach. By defining an idea as a co-occurring <problem,solution> pair,
known-idea triples can be constructed through the additional assignment
of a relevance value (computed via either phrase co-occurrence or an ‘idea
frequency-inverse document frequency’ score). The resulting triples are
then fed into a collaborative filtering algorithm, where problem-phrases
are considered as users and solution-phrases as the items to be recom-
mended. The final output is a ranked list of novel idea candidates, which
hold potential for researchers to integrate into their hypothesis genera-
tion processes. This approach is evaluated using a subset of publications
from the journal Science, with precision, recall and F-Measure results for
a variety of model parametrizations indicating that the system is capable
of generating useful novel ideas in an automated fashion.

Keywords: Idea mining · Text mining · Natural language processing ·
Recommender systems · Collaborative filtering

1 Introduction

The process of attacking problems by first canvassing participants for sponta-
neous ideas, collating their responses and distilling the results, is often referred to
as brainstorming. The term, as popularized by Osborn [26] and expanded upon
by Kling [22] and Jessop [19], now corresponds to a well-known set of guidelines
for generating creative solutions that entail: discussion of the problem; uncon-
strained consideration as to how best to solve the problem; screening of the
contributions; and, finally, commitment to action. While this approach to prob-
lem solving has traditionally required active human participation, in this paper
we explore the following challenge: given the inordinate amount of scientific lit-
erature now accessible via the web, is it possible to automate the brainstorming
process via machine learning?
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 541–556, 2015.
DOI: 10.1007/978-3-319-23525-7 33

542 H. Liu et al.

While the idea of supporting the ideation process via technology is not new
(the term Computer-Assisted Brainstorming was coined three decades ago [17]),
prior research has focussed on visualization tools, organizational applications and
associated Human-Computer Interaction challenges [5,6,14]. However, text min-
ing and computational linguistic techniques have now progressed to the point that
notions of automatically extracting information from text and recognizing the
links between underlying topics and concepts has become commonplace [2,12,31].
This brings with it opportunity to not only provide support tools for ideation pro-
cess, but to actually generate ideas themselves.

Generating novel ideas from the automated processing of mass corpora of
scientific text requires us to address several conceptual problems. First, we face
the issue that the term ‘idea’ itself is not at all well-defined from a comprehen-
sion perspective [15,20]. Second, new ideas are built upon domain knowledge
that is extremely hard, if not impossible, to formalize [37]. Third, ideas from
different domains exhibit widely varying characteristics; and finally, commonly
used methods for ideation, such as the Gordon technique and expertness [32] are
very difficult to computerize. These issues imply that obtaining perfect solutions
to problems without human input is unrealistic. However, there is much poten-
tial in addressing the sub-task of generating idea candidates. Using a functional
definition of an “idea” as a <problem,solution> pair (in the vein of [37]), we
present an algorithmic approach to idea formulation. Our method breaks the
task at hand into the following components: 1. a stage of text mining and lin-
guistic processing of mass scientific corpora; 2. a supervised classification stage
to isolate problem and solution concepts; and 3. a stage of re-combination via
collaborative filtering, which outputs novel idea pairs for researchers to con-
sider. This approach is evaluated using a subset of publications from the journal
Science, and both statistical and qualitative evaluations indicate encouraging
results. With a corpus of papers that cut across multiple disciplines, it is hoped
that some of the idea candidates produced by the system will assist with the sort
of cross-disciplinary ideation that is difficult to generate by conventional means.

2 Related Work

The concept of Computer-Assisted Brainstorming (CAB) was established by
Hollander [17] in the 1980s, and envisioned interactive computer programs
designed to enhance creative thinking. It was several decades later, however,
before researchers successfully developed software tools to support brainstorm-
ing. Hardenberg et al. [14] introduced a Bare-hand HCI system, which integrated
optical finger tracking into a two-phase brainstorming scenario. Phase 1 involved
the collection a large number of ideas from participants and display on a video
wall, with phase 2 seeing participants freely and simultaneously rearrange these
items via touch manipulation. More recently, Biemann et al [5,6] developed
SemanticTalk, software for visualizing brainstorming sessions and thematic con-
cept trails that acted as a visual memory with both spoken dialogs and text
documents being captured on a two-dimensional plane.

Towards Computation of Novel Ideas from Corpora of Scientific Text 543

One of the key features of SemanticTalk was its ability to automatically gen-
erate associations between terms within the text identified as being important.
This process of identifying key concept terms is being extended by the nascent
field of Idea Mining [33], which focuses on the task of extracting reified idea
structures that are embedded within text - whether that be in websites [42,43],
patents [34], databases [27], blogs [35,38] or scientific literature [36]. A general
approach for Idea Mining was introduced by Thorleuchter et al. in [39], which
defined a technological idea as being represented by a combination of a purpose
and a corresponding means, before going on to semi-automatically discover novel
idea patterns in unstructured technological texts.

While the systems described above offer valuable digital support for the iter-
ation component in real-world brainstorming, they are all limited in one impor-
tant respect: they still rely heavily on human input to generate the novel ideas
themselves. A possible way to attack this issue is to generate new links between
problems and solutions - and a plausible approach to doing this is to harness
the success of collaborative filtering (CF) techniques. CF algorithms [7,28] have
proven to be extremely effective in generating novel recommendations, both in
scientific research and real-world applications. CF uses the known preferences
of a group of users to make recommendations (i.e. predictions) of the unknown
preferences for other users [30] and CF techniques generally fall into one of
three main categories: memory-based, model-based, and hybrid. In this work
we focus on the memory-based CF, a method whose most critical component
is the mechanism of finding similarities between items and/or users [30]. Many
different methods exist to compute similarity [1], and in this work we focus on
three that have proven effective in our experiments - log-likelihood, City Block
and Tanimoto, all of which are detailed in [13].

Motivated by previous findings in CAB, the idea mining methodology cur-
rently being developed in the literature and the established effectiveness of rec-
ommender system techniques, we present a new algorithm to generate novel
idea candidates. This approach automatically extracts <problem,solution> pairs
from the titles and abstracts of scientific publications and uses these to computes
novel ideas via a CF algorithm. While aimed at helping researchers to conduct
scientific research via novel hypothesis generation, our main contribution is to
demonstrate the possibility of automating ideation processes via CF techniques.

3 Defining an “Idea”

Young et al. [44] describe two principles for producing novel ideas:
• An idea is nothing more or less than a new combination of old elements.
• The capacity to bring old elements into new combinations depends largely

on the ability to see relationships.
Based on these principles, we argue that novel idea candidates can be established
by uncovering the relationships between problems and solutions within scientific
texts. These components can then be intelligently recombined into previously
unforeseen <problem,solution> pairs ready for consideration by researchers.

544 H. Liu et al.

This constructive definition of an “idea” echoes Thorleuchter et al ’s use of
the term, who themselves reference the definitions in [41] in their attempts to
identify concepts within various text corpora. In [39] they define an idea as a
combination of a means and an appertaining ends, using unconstrained term
vectors to represent each of these entities. In contrast, we represent problems
and solutions using noun-phrases. This assumption is based on previous studies
[16,21] which indicate that while a sentence’s main conceptual information is
usually expressed by both noun- and verb-phrases, its primary concepts are
predominantly carried by the noun-phrases.

Considering a document T , represented as an ordered set of N words, where
T = 〈w1, w2, . . . , wN 〉, then the functional definitions used to construct our rep-
resentation of an idea are as follows:

Noun-phrase: A noun-phrase, φ, is an ordered subset of the text, extracted
from T (in our case extracted from the titles or abstracts of publications
using part-of-speech tagging technique):

φ = 〈w1, w2, . . . , wn〉. (1)

P-phrase: A p-phrase is defined as a noun-phrase determined to be a scientific
problem. We define PT as the set of m p-phrases extracted from a document,
T (where m ≤ N):

PT = {φa, φb, φc, . . . } (2)

S-phrase: An s-phrase is defined as a noun-phrase that has been categorized
as a technical solution or a methodological approach. We then define ST to
be the set of q p-phrases extracted from the document, T (where q ≤ N):

ST = {φd, φe, φf , . . . } ,where ST ∩ PT = ø (3)

Idea: A specific idea1 can then be defined as a combination of some p-phrase
and s-phrase extracted from dataset, D:

idea = 〈p–phrase, s–phrase〉 (4)

Known Idea: A known-idea is defined as a combination of any p-phrase and
s-phrase that are found in the same document, T :

∃T known–idea ∈ PT × ST (5)

Known-ideas may additionally be attributed a relevance value, representing some
measure of the idea’s significance within the literature. In this work we evaluate
four statistics to measure this significance, described in more detail in §4.5.

Novel Idea: A novel-idea is the combination of some p-phrase and s-phrase
from the dataset, but which do not co-occur in the same document:

∃T∃U (novel–idea ∈ PT × SU) ∧ (T 	= U) (6)

Novel-ideas may also be assigned a value that reflects the strength of the rela-
tionship between its p-phrase and s-phrase components (as discussed in §4.6).
1 We of course do not claim that a <problem, solution> pairs represents a universal

definition of an idea, but a related pragmatic construct amenable to computation.

Towards Computation of Novel Ideas from Corpora of Scientific Text 545

4 Methodology

Our method focuses on discovering problem-solution relationships between noun-
phrases as detected in the abstracts (together with their titles) of scientific
papers. An abstract is a fully self-contained, capsule description of a paper [23].
The noun-phrases it contains should reflect the issue(s) that the author(s) wish
to address, so a list of noun-phrases extracted from it provides an ideal founda-
tion for our seed pool of p-phrases. If an s-phrase is detected in the same piece
of text, semantic relationships between it and neighbouring p-phrases are estab-
lished2. Based on this premise, our approach to subsequently computing novel
idea candidates can be broken down into six stages:

1. Noun-phrase extraction from a training-set corpora using Part-Of-Speech tagging.
2. Phrase filtering to remove stop words and text with low information content.
3. Classification of noun-phrases into p-phrases (problems) and s-phrases (solutions).
4. Aggregation of highly co-occurring <p-phrase,s-phrase,relevance> known-idea

triples.
5. Processing of this set of known-idea triples via a collaborative filtering mechanism.
6. Assessment of the resulting ranked list of novel idea candidates that is output.

Several of the steps in this automated process analogise to specific stages in
traditional brainstorming sessions. This is demonstrated in Fig. 1, which shows
the process of the novel idea computation system on the right, and the corre-
sponding steps in real-world ideation sessions on the left. We examine each of
the stages in our method in more detail below.

4.1 Noun-Phrase Extraction

The first step in our method involves the detection of noun-phrases within the
titles and abstracts of the publications that make up our training set. This is
undertaken using a standard Part-of-speech (POS) tagging algorithm3. While
there exist more complex linguistic indicators of an “idea”, there are numer-
ous advantages in assuming that noun-phrases are sufficient to represent the
informational content of concepts: they are computationally parsimonious; their
detection is well understood algorithmically; and studies show that such n-grams
preserve far more semantic content than individual term extraction [12]. Recall-
ing our definition of a noun-phrase, φ = 〈w1, w2, . . . , wn〉, for each document, T ,
we are able to produce a list of noun-phrases: ΦT = 〈φ1, φ2, ...〉.

2 For example, consider the sentence “a dynamic panel data estimation technique
is used to examine effects of internal demand on domestic credit”. The n-gram
“dynamic panel data estimation technique” will be recognised as an s-phrase, and
associated with co-occurring p-phrases such as “effects of internal demand on domes-
tic credit”.

3 In this study we have used the CiteSpace application for POS tagging [10], which
we found performed better than other options such as the TextBlob Python library.

546 H. Liu et al.

Fig. 1. System flow - each of the method’s processing steps are listed on the right hand
side, with corresponding stages in real-life brainstorming sessions mapped on the left.

4.2 Noun-Phrase Filtering

Some noun-phrases generated by the POS tagger are not suitable for inclu-
sion within idea construction. In particular, some concepts will be semantically
redundant (i.e. they will have minimal information content in the same vein as
stop words in traditional informational retrieval tasks). Examples in scientific
abstracts are n-grams such as “we present a novel model...” or “our general
approach is tested through an evaluation procedure that...”. This stage aims
to eliminate such phrases, thus streamlining the method’s subsequent processing
steps. To this end we employ two filtering steps. First, given a set of hand-crafted
“danger” terms W , we remove bi-grams that feature any of its elements:

Φfiltered = {φ ∈ ΦT : |φ| = 2 → φ ∩ W = ∅} (7)

Towards Computation of Novel Ideas from Corpora of Scientific Text 547

The version of W used in our experiments is listed in Table 7 in the appendix. In
addition, we enforce a threshold on the frequency of retained noun-phrases. For
this we used Jenks natural breaks classification method [18], assigning p-phrases
into five categories according to their frequency across the corpus, eliminating all
noun-phrases in the most frequent category. This step is based on the assumption
that phrases that exhibit extremely high frequency either have low information
content, or reflect noun-phrases that offer no untapped research value.

4.3 Noun-Phrases Categorization

Now we have a filtered set of noun-phrases we must categorize them into two
groups: p-phrases and s-phrases (representing problems and solutions respec-
tively). There are numerous possible approaches to achieve this task, ranging
from named entity recognition techniques [25] to the application of linguistic
structure matching [9]. Unfortunately, in order to utilise these techniques a vast
amount of annotated data is required, data that is as-yet-unavailable. Therefore,
and in lieu of a fully supervised machine learning approach, we fall back on a rule
based pattern-matching approach to identify s-phrases. Filtered noun-phrases,
Φfiltered, are then compared with a compact bag of trigger words, G, in order to
explicitly identify s-phrases.

Examples of these cue terms contained in G might be “method”, “approach”
and “theory” (the set of trigger words used in our experiments and method of
derivation is detailed in Table 6 of the Appendix). Those noun-phrases which
remain unmatched are subsequently designated as p-phrases4. The result is that
for a document, T , we produce a set of s-phrases, S, and p-phrases, P, where:

ST = {φ ∈ Φfiltered : ∃w ∈ G [w ∈ φ]} (8)
PT = Φfiltered − ST (9)

This stage of classification has analogies to the real-world brainstorming pro-
cesses discussed in §2 - in the “discuss the problem” stage of the process [26],
if no specific problem angle is specified, participants are instructed to conjure
up any noun-phrases that are parts of the problem (i.e. people, places, entities,
etc.) in a free-form fashion.

4.4 Known-Idea Construction

The algorithm must now enumerate known-ideas before it will be able to generate
novel idea candidates through their recombination. It does this by pairing p-
phrases and s-phrases deemed to be associated with each other. In linguistic
processing the specific relation types that are extant between noun-phrases can
be uncovered using a range of extraction techniques such as kernel methods;
dependency trees [11]; text pattern or structure creation [33]; semantic graphs,

4 In some ways this is an algorithmic rendition of the arguable expression: “if you are
not part of the solution, you are part of the problem”.

548 H. Liu et al.

topic templates and ontologies (e.g. WordNet) [4,40]. However, due to the general
qualities of a good abstract [3] - i.e. it should be a condensed and concentrated
version of the full text of the research manuscript - we are able to assume that the
concepts introduced in a single abstract are all related with each other regarding
a specific topic domain. This assumption means we can postulate valid idea-pairs
simply by observing the co-occurrence of a problem and solution within the same
abstract. We note that this approach may generate some unexpected pairings
- this, however, is still in line with the general rules of brainstorming, where
the pairing non-obvious components can expand the creativity of a real-world
ideation session. The corresponding expansion of the idea pool can increase the
chances of producing a radical and effective solution, and as such, we currently
neglect some traditional linguistic processing constraints:

1. we do not integrate details of relationship types between noun-phrases.
2. nor distances between the root and other nodes in the Parse Tree.

Once co-occurring <p-phrase,s-phrase> pairs have been identified they are
assigned a score reflecting their “interestingness” or relevance to the corpus. This
value, v, is necessarily subjective, and as such we examine several approaches
to determining it, as described in more detail in §4.5. Whatever value is
selected, the result of the idea construction process is the set of known-ideas,
K = {idea1, idea2, ...}, as summarised by algorithm 1 below.

Algorithm 1
1: procedure extract known ideas(D) � D is the full document set
2: K ←ø � Container for the results
3: for each T in D do
4: Φ ← extract noun phrases(T)
5: Φ ← filter(Φ)
6: ST ← categorize s-phrases(Φ)
7: PT ← categorize p-phrases(Φ)
8: for each s in ST do
9: for each p in PT do

10: v ← compute idea value(p, s)
11: idea ← 〈p, s, v〉
12: K = K ∪ {idea}
13: return K � The output known-idea set

4.5 Relevance Values for Known-Ideas

In this study we have implemented four statistics which attempt to measure the
relevance of a known-ideas to future recommendations (and which analogise to
the rating a user has assigned to an item in traditional collaborative filtering).
Each statistic is described below, with examples illustrated in Table 1:

Towards Computation of Novel Ideas from Corpora of Scientific Text 549

OCC: the simplest way of estimating the relationship intensity between a p-
phrase and s-phrase is to count the number of distinct documents in which
they both appear (based on the assumption that the more times they co-
occur, the stronger the relationship there is between them):

OCC(p, s) =
∣
∣
∣{T ∈ D : p ∈ PT , s ∈ ST }

∣
∣
∣ (10)

FREQ: idea frequency is similar to document occurrences, but also takes into
account the frequency of idea-pair occurrences within documents:

FREQ(p, s) =
∑

T∈D

∣
∣
∣{〈p,s〉 ∈ PT × ST }

∣
∣
∣ (11)

CON: In order to address the fact that term counts alone cannot reflect the fact
that some problems have numerous lines of attacks, while others have only
a limited solution pool, we have defined the statistic contribution. This is a
normalization that divides the number of times a certain idea pair co-occurs
by the total number of s-phrases used to address the same problem:

CON(p, s) =
OCC(p, s)

∣
∣
∣{T ∈ D : s ∈ ST }

∣
∣
∣

(12)

IF-IDF: idea frequency / inverse document frequency is an adaptation of the
traditional tf-idf statistic that we have designed to addresses two observa-
tions: 1. the more times an s-phrase occurs in any given document, the more
likely it is to be a ‘key’ solution to the document’s p-phrases, so we wish to
favour it; and 2. if an idea-pair crops up across the whole corpus the less
likely it is to be “interesting” - either its research value has been saturated,
or it is semantically redundant pairing in the same vein as a stop word.
IF-IDF balances these two conflicting issues via the following formula5:

IF-IDF(p,s) = FREQ(p,s) × log
(|D|
OCC(p,s)

)

(13)

Table 1. Examples of known-idea triplets from Journal Science:

p-phrase s-phrase OCC FREQ CON IF-IDF
global warming climate model 3 24 0.21 19.77

neuropsychiatric disorders mouse model 3 16 0.50 13.18
impurity atoms three-dimensional atom probe technique 2 6 0.5 3.00
nickel catalysis photoredox-metal catalysis approach 1 4 1.00 5.20

impulsive optical excitation first-principle theoretical simulation 1 3 1.00 3.90

5 N.b. Idea Frequency (IF) differs from traditional Term Frequency (TF) in that it
counts the idea’s support over the whole corpus, and not just for a single document,
resulting in a global statistic.

550 H. Liu et al.

4.6 Computation of Novel-Idea Pairs

We now address the prediction of new links between problems and solutions
through comparison of s-phrase and p-phrase patterns that span across different
domains. There are numerous ways to measure similarity between such patterns,
but the strategy at the heart of our techniques is based upon a collaborative fil-
tering [7]. Collaborative filtering and the recommendation systems they underpin
are based on imputation - a target user’s past behaviours are first modelled and
then compared to the habits of other users. Items favoured by similar users, but
which do not yet exist in the target user’s history, are then used as the basis for
new recommendations. Our technique considers p-phrases as analogs to users,
and s-phrases as items. Traditional recommender systems can be formulated as
user-based or item-based algorithms [28] and we assess both approaches. In the
generation of novel-ideas, our collaborative filtering task consists of the following
steps:

1. Construct a Preference Matrix: in our case, each row represents a p-
phrase and each column represents an s-phrase with the numerical value at
the intersection of a row and a column represents the idea’s relevance value,
v (as selected from one of the statistics in §4.4).

2. Compute Similarity Scores: for a specific problem vector (i.e. a row in
the preference matrix), u, iterate through every other problem vector, w, and
compute a similarity s between u and w and retain the k nearest neighbours,
N . In our experiments we optimize N for each of the following distance
metrics: Tanimoto, Loglikelihood and CityBlock6.

3. Generate Novel-Idea Pairs: this is achieved by recommending novel solu-
tions to existing problems. For each potential solution, i, that the current
problem has no entry for, we consider every vector, w, in the neighbourhood,
N , and add its relevance score for solution i to a running average, weighted
by the vector’s similarity score s. Finally, results are sorted, producing is
a ranked list of novel s-phrases to the p-phrase under consideration. The
top n s-phrases are combined with the p-phrase under consideration as our
novel-idea prediction (in our experiments n is drawn from 2, 5, 10).

5 Experimental Evaluation

A collection of the titles and abstracts was studied, extracted randomly from
3,665 English language articles published in the journal Science. The dataset,
covering the years 1998-2015, was partitioned so that half of the articles formed
our training set, D, and the other half our test set. After noun-phrase filtering,
Φ contained 57,621 noun-phrases and noun-phrase categorization resulted in
54,073 p-phrases and 3,548 s-phrases. From this the algorithm constructed 90,212
unique <p-phrase,s-phrase> known-idea pairs7.
6 please refer to http://mahout.apache.org for implementation details.
7 The restricted number of known-ideas is because no cogent s-phrases could be

extracted for many abstracts, even though numerous noun-phrases were identified.

http://mahout.apache.org

Towards Computation of Novel Ideas from Corpora of Scientific Text 551

For each model parametrization a set of novel idea candidates were generated
from the training set. These were then evaluated to determine if recommended
idea-candidates actually occurred in the test set, with results being summarized
for each p-phrase using traditional precision, recall and F-measure scores. This
process was repeated for both user- and item-based collaborative filtering, using
relevance value statistics drawn from {OCC, CON, IF-IDF} (n.b. FREQ is not
reported due to its similarity to OCC) and varying the size of the recommended
solution list for each p-phrase (n ∈ {2, 5, 10}). Overall mean precision, recall
and F-measure scores were produced for each of the 54 model parameterizations
(we report the results for each model using an optimized neighbourhood).

5.1 Results

Every stage of our approach has the potential for future refinement. Despite
this, the novel-idea candidates output by the system’s first iteration were highly
encouraging. Examples of the system’s output in Table 2, taken from a range
of categories in the Science corpus, illustrate the cogent recommendations the
system can produce. Precision and recall results are similarly positive - full
results in Tables 3-5 indicate how the number of items in the recommendation
set influences results for each of the relevance values we tested (with the size of
the neighbourhood being optimized for each recommendation set size).

Table 2. Examples of novel idea-pairs generated from journal Science.

problem old-solution proposed-solution

first stars cosmological simulation nucleosynthesis model
creep damage diffraction analysis thermodynamic analysis

ancestral state reconstruction likelihood-based approach fluorescence technique
primary dendritic cells unbiased approach genome-wide location analysis

large void volumes coincides diffraction analysis thermodynamic analysis

Because we are assessing the efficacy of our idea recommendation approach
as a whole rather than contrasting results for different collaborative filtering
parameterizations, let us first consider the system’s top 2-recommendations. The
results tables illustrate that across the board the system’s top two novel idea
recommendations match our test set over 90% of the time (with a maximum
recall of 0.941 when using the CityBlock similarity measure and a relevance value
based on OCC - see Table 2 for example idea pairs). While these statistical results
are highly encouraging we note that extensive human evaluation of output ideas
is required before we can be confident that these results could be translated into
hypothesis generation processes. Additionally - and as one might expect - as the
size of our recommendation list increases, results drop off starkly (by the time we
have reached 10-recommendations the F-measure of our recommendations has
fallen by almost half). This indicates that the system currently works optimally
only for its highest ranked recommendations.

In a comparison of the distance metric used to determine CF neighbour-
hoods, the CityBlock measure is the clear winner. This represents absolute dis-
tance between solution vectors, and for all parameterizations of the model it

552 H. Liu et al.

Table 3. OCC performance (precision/recall/F-measure)

metric 2-recommendations 5-recommendations 10-recommendations

user Loglikelihood 0.900/0.928/0.913 0.557/0.734/0.633 0.374/0.527/0.437
user CityBlock 0.951/0.941/0.946 0.730/0.765/0.747 0.474/0.685/0.560
user Tanimoto 0.901/0.929/0.915 0.561/0.735/0.636 0.366/0.536/0.435

item Loglikelihood 0.606/0.635/0.620 0.480/0.716/0.575 0.374/0.824/0.515
item CityBlock 0.209/0.208/0.208 0.027/0.027/0.027 0.013/0.126/0.023
item Tanimoto 0.423/0.437/0.430 0.259/0.403/0.315 0.267/0.611/0.372

Table 4. CON performance (precision/recall/F-measure)

metric 2-recommendations 5-recommendations 10-recommendations

user Loglikelihood 0.890/0.926/0.908 0.557/0.743/0.637 0.401/0.591/0.478
user CityBlock 0.943/0.939/0.941 0.730/0.761/0.745 0.493/0.674/0.570
user Tanimoto 0.892/0.928/0.910 0.562/0.747/0.641 0.393/0.600/0.475

item Loglikelihood 0.601/0.637/0.618 0.486/0.713/0.578 0.414/0.840/0.554
item CityBlock 0.208/0.210/0.209 0.034/0.050/0.040 0.027/0.135/0.045
item Tanimoto 0.422/0.443/0.432 0.267/0.407/0.323 0.305/0.655/0.416

Table 5. IF-IDF performance (precision/recall/F-measure)

metric 2-recommendations 5-recommendations 10-recommendations

user Loglikelihood 0.890/0.926/0.908 0.600/0.743/0.639 0.401/0.591/0.478
user CityBlock 0.943/0.940/0.941 0.730/0.761/0.745 0.493/0.674/0.570
user Tanimoto 0.892/0.928/0.910 0.565/0.747/0.643 0.393/0.600/0.475

item Loglikelihood 0.602/0.637/0.619 0.489/0.713/0.580 0.414/0.840/0.554
item CityBlock 0.207/0.210/0.210 0.034/0.050/0.041 0.027/0.135/0.045
item Tanimoto 0.422/0.443/0.432 0.267/0.407/0.323 0.305/0.655/0.416

consistently returns the highest F-measure results (this is down mostly to its
superior precision results, with recall being relatively consistent across all dis-
tance measures).

A clear contrast also exists between results for user- and item-based collabo-
rative filtering approaches, with the former performing far better than the latter
in all cases. We conclude from these results that it is far better to recommend
new solutions to old problems, than to try and bring new problems to old solu-
tions. In many ways this is an intuitive result, as it is far more likely that extant
solutions will be immediately attempted when new research problems arise.

Finally we consider the effectiveness of the three idea relevance scores tested.
Despite being the least complex statistic implemented, OCC (focusing on City-
Block measurement with 2 recommendations) provides the strongest results.
Results for CON and IF-IDF are almost indistinguishable, and examination of
idea recommendations for each problem indicate an extremely high crossover
(in fact 44% of problems received identical recommendation sets for all sizes
of recommendation list). These results appear to indicate that simply counting
idea-pair occurrences in the dataset is a sufficient basis to assess the significance
of a solution to any given problem.

6 Discussion

This study demonstrated the plausibility of generating novel idea-candidates in
an automated fashion. User-based CF offered the best performance and, while

Towards Computation of Novel Ideas from Corpora of Scientific Text 553

different distance measures produced comparable results, OCC provided a simple
method to achieve the most effective performance. Nonetheless, there is scope
for further research at each of the stages of the idea-generation process.

First, there is potential to improve the filtering of noun-phrases identified
by POS tagging (based perhaps upon a more formalized information-theoretic
approach to detecting ‘semantically redundant’ terms). Second, our approach
to classifying s-phrases and p-phrases remains relatively coarse, using a pattern
matching approach based on trigger words. A further investigation of this pro-
cessing stage would be of particular interest and numerous options seem viable.

It is our aim, for example, to implement a supervised classification model
to improve detection of s-phrases and p-phrases. The input features for this
model could be generated from language models [29], lexical cohesion [24] and
linguistic grammar-based techniques [8], in addition to the statistical features
already used. Training would need to be performed on ground truth annotations
of scientific abstracts, but these could be collated in a crowd-sourced fashion by
presenting abstracts to domain experts and allowing them to manually identify
problem and solution term patterns within the text. The goal here would be to
directly address some of the limitations with our current approach, such as the
fact that p-phrases and s-phrases are overly dependent upon their context (for
example, a p-phrase in one document might be an s-phrase in another).

Additional areas of interest lie not only in investigating other similarity mea-
sures from the collaborative filtering literature, but also in exploring other exter-
nal indicators of a known-idea’s relevance value. These might include the number
of citations generated by the paper the idea appears in, or the impact factor of
its parent publication, or indeed any of the host of methods that are used to
assess the relevance of a paper within the scientific literature.

Finally, and perhaps of greatest importance, there is a good deal of room
to extend our evaluation of the efficacy of the ideas generated by the system.
Currently, we assess a novel-idea candidate’s merit based upon whether it occurs
in (or is absent from) future literature. This neglects two factors: 1. the com-
prehensibility and interestingness of generated idea-pairs (a situation which can
only be addressed by a programme of human evaluation of the system’s outputs),
and 2. any assessment of an idea’s inventiveness. Currently, if a recommended
idea does not appear in our test set, it is deemed as a false positive out of hand,
whereas it may be the case that the idea is simply yet to be researched.

7 Conclusion

In this study, we have presented a first approach for generating novel idea candi-
dates from corpora of scientific text, that is decomposable into six distinct stages.
Noun-phrases are extracted from the abstracts of scientific papers via POS tag-
ging; a filtering process occurs to remove redundant concepts; the results set
of phrases are subsequently categorized into problem and solution; co-occurring
pairs are assigned a relevance score (based on number of co-occurrences, con-
tribution to a problem’s overall support or an idea frequency/inverse document

554 H. Liu et al.

frequency score); and finally a collaborative filtering algorithm generates new
idea recommendations. This process illustrates the ability to transform unstruc-
tured textual data into structured idea pairs, and the potential to manipulate
that structure computationally to generate new idea candidates. The approach
was evaluated using a subset of publications from the journal Science, and both
statistical and qualitative evaluations indicate strongly encouraging results, with
an OCC relevance value combined with a (user-based) CityBlock similarity mea-
sure offering the best performance. Our hope is that in establishing this mod-
ular approach to automated idea generation, each stage may be honed by the
broader research community to ultimately produce a system that has real utility
to hypothesis generation.

Acknowledgments. This work was jointly supported by CFFRC-PLUS PhD scholar-
ship scheme, the RCUK Horizon Digital Economy Research Hub grant, EP/G065802/1
and the EPSRC Neodemographics grant, EP/L021080/1.

References

1. Ahn, H.J.: A new similarity measure for collaborative filtering to alleviate the new
user cold-starting problem. Information Sciences 178(1), 37–51 (2008)

2. Allan, J., Carbonell, J.G., Doddington, G., Yamron, J., Yang, Y.: Topic detection
and tracking pilot study final report (1998)

3. Andrade, C.: How to write a good abstract for a scientific paper or conference
presentation. Indian Journal of Psychiatry 53(2), 172 (2011)

4. Banko, M., Etzioni, O., Center, T.: The tradeoffs between open and traditional
relation extraction. In: Proceedings of 46th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, vol. 8, pp. 28–36
(2008)

5. Biemann, C., Böhm, K., Heyer, G., Melz, R.: Semantictalk: software for visualizing
brainstorming sessions and thematic concept trails on document collections. In:
Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004.
LNCS (LNAI), vol. 3202, pp. 534–536. Springer, Heidelberg (2004)

6. Biemann, C., Böhm, K., Heyer, G., Melz, R.: Automatically building concept struc-
tures and displaying concept trails for the use in brainstorming sessions and content
management systems. In: Böhme, T., Larios Rosillo, V.M., Unger, H., Unger, H.
(eds.) IICS 2004. LNCS, vol. 3473, pp. 157–167. Springer, Heidelberg (2006)

7. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: Proceedings of the Fourteenth conference on Uncer-
tainty in artificial intelligence, pp. 43–52. Morgan Kaufmann (1998)

8. Brown, P.F., deSouza, P.V., Mercer, R.L., Pietra, V.J.D., Lai, J.C.: Class-based
n-gram models of natural language. Comput. Linguist. 18(4), 467–479 (1992)

9. Bybee, J.L., Hopper, P.J.: Frequency and the emergence of linguistic structure,
vol. 45. John Benjamins Publishing (2001)

10. Chen, C.: Citespace ii: Detecting and visualizing emerging trends and transient
patterns in scientific literature. Journal of the American Society for information
Science and Technology 57(3), 359–377 (2006)

11. Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In: Pro-
ceedings of the 42nd Annual Meeting on Association for Computational Linguistics,
p. 423. Association for Computational Linguistics (2004)

Towards Computation of Novel Ideas from Corpora of Scientific Text 555

12. Ding, W., Chen, C.: Dynamic topic detection and tracking: A comparison of hdp,
c-word, and cocitation methods. Journal of the Association for Information Science
and Technology (2014)

13. Guo, S., et al.: Analysis and evaluation of similarity metrics in collaborative filter-
ing recommender system (2014)

14. von Hardenberg, C., Bérard, F.: Bare-hand human-computer interaction. In: Pro-
ceedings of the 2001 Workshop on Perceptive User Interfaces, PUI 2001, pp. 1–8.
ACM, New York (2001)

15. Hare, V.C., Milligan, B.: Main idea identification: Instructional explanations in
four basal reader series. Journal of Literacy Research 16(3), 189–204 (1984)

16. Hildreth, P.M., Kimble, C.: Knowledge networks: Innovation through communities
of practice. IGI Global (2004)

17. Hollander, S.: Computer-assisted Creativity and the Policy Process. Thayer School
of Engineering (1984)

18. Jenks, G.F.: The data model concept in statistical mapping. International Year-
book of Cartography 7(1), 186–190 (1967)

19. Jessop, J.L.: Expanding our students’ brainpower: Idea generation and critical
thinking skills. IEEE Antennas and Propagation Magazine 44(6), 140–144 (2002)

20. Jitendra, A.K., Cole, C.L., Hoppes, M.K., Wilson, B.: Effects of a direct instruction
main idea summarization program and self-monitoring on reading comprehension
of middle school students with learning disabilities. Reading & Writing Quarterly:
Overcoming Learning Difficulties 14(4), 379–396 (1998)

21. Kamp, H.: A theory of truth and semantic representation. Formal semantics-the
essential readings, 189–222 (1981)

22. Kling, H.: Get more out of group projects by using structured brainstorming.
Quality Progress 23(3), 136–136 (1990)

23. Koopman, P.: How to write an abstract. Carnegie Mellon University. Retrieved
May 31, 2013 (1997)

24. Morris, J., Hirst, G.: Lexical cohesion computed by thesaural relations as an indi-
cator of the structure of text. Computational Linguistics 17(1), 21–48 (1991)

25. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification.
Lingvisticae Investigationes 30(1), 3–26 (2007)

26. Osborn, A.: Applied Imagination - Principles and Procedures of Creative Problem-
Solving. Charles Scribner’s Sons (1953)

27. Park, Y., Lee, S.: How to design and utilize online customer center to support new
product concept generation. Expert Systems with Applications 38(8) (2011)

28. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms, pp. 285–295 (2001)

29. Song, F., Croft, W.B.: A general language model for information retrieval. In:
Proceedings of the Eighth International Conference on Information and Knowledge
Management, pp. 316–321. ACM (1999)

30. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques.
Advances in Artificial Intelligence 2009, 4 (2009)

31. Tan, A.H., et al.: Text mining: the state of the art and the challenges. In: Pro-
ceedings of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced
Databases, pp. 65–70 (1999)

32. Taylor, J.W.: How to create new ideas. Prentice-Hall (1961)
33. Thorleuchter, D.: Finding new technological ideas and inventions with text mining

and technique philosophy. In: Data Analysis, Machine Learning and Applications,
pp. 413–420 (2008)

556 H. Liu et al.

34. Thorleuchter, D., den Poel, D.V., Prinzie, A.: A compared r&d-based and patent-
based cross impact analysis for identifying relationships between technologies.
Technological Forecasting and Social Change 77(7), 1037–1050 (2010)

35. Thorleuchter, D., Van den Poel, D.: Companies website optimising concerning con-
sumer’s searching for new products. In: 2011 International Conference on Uncer-
tainty Reasoning and Knowledge Engineering (URKE), vol. 1. IEEE (2011)

36. Thorleuchter, D., Van den Poel, D.: Semantic technology classificationa defence and
security case study. In: 2011 International Conference on Uncertainty Reasoning
and Knowledge Engineering (URKE), vol. 1, pp. 36–39. IEEE (2011)

37. Thorleuchter, D., Van den Poel, D.: Extraction of ideas from microsystems tech-
nology. In: Jin, D., Lin, S. (eds.) Advances in CSIE, Vol. 1. AISC, vol. 168, pp.
563–568. Springer, Heidelberg (2012)

38. Thorleuchter, D., Van den Poel, D., Prinzie, A.: Extracting consumers needs
for new products-a web mining approach. In: Third International Conference on
Knowledge Discovery and Data Mining, WKDD 2010, pp. 440–443. IEEE (2010)

39. Thorleuchter, D., den Poel, D.V., Prinzie, A.: Mining ideas from textual informa-
tion. Expert Systems with Applications 37(10), 7182–7188 (2010)

40. Trampuš, M., Mladenic, D.: Constructing domain templates with concept hierarchy
as background knowledge. Information Technology And Control 43(4) (2014)

41. Wallas, G.: The art of thought (1926)
42. Wang, C., Lu, J., Zhang, G.: Mining key information of web pages: A method and

its application. Expert Systems with Applications 33(2), 425–433 (2007)
43. Yoon, J.: Detecting weak signals for long-term business opportunities using text

mining of web news. Expert Systems with Applications 39(16), 12543–12550 (2012)
44. Young, J.W.: A technique for producing ideas. NTC Business Books (1975)

A Appendix

Table 6. S-phrase cue terms - “method” was used as a seed term, with trigger words
being expanded through synonym extraction via www.thesaurus.com and isolating
nearest neighbours using Word2vec (see https://code.google.com/p/word2vec/).

approach, technique, scheme, algorithm, analysis, model, modelling, methodology,
strategy, framework, tool, procedure, structure, processing, heuristic,

mechanism, architecture, theory, paradigm, formalism, platform, simulation

Table 7. Noun-Phrase filtering terms

overall, primary, key, valuable, excellent, potential, essential, unique, numerous, important, prior,
practical, basic, different, simple, successful,

current, possible, previous, existing, well-established, independent, particular,
usual, new, old, powerful, main, common, detailed, efficient, good, acceptable,

effective, novel, state-of-the-art, useful, modern, unreliable, additional,
methodological, available, recent, general, specific, creative, brief, critical, major,

second, reasonable, various, personal, latest , interesting

Social and Graphs

Discovering Audience Groups
and Group-Specific Influencers

Shuyang Lin1(B), Qingbo Hu1, Jingyuan Zhang1, and Philip S. Yu1,2

1 University of Illinois at Chicago, Chicago, IL, USA
{slin38,qhu5,jzhan8,psyu}@uic.edu

2 Institute for Data Science, Tsinghua University, Beijing, China

Abstract. Recently, user influence in social networks has been stud-
ied extensively. Many applications related to social influence depend on
quantifying influence and finding the most influential users of a social
network. Most existing work studies the global influence of users, i.e. the
aggregated influence that a user has on the entire network. It is often
overlooked that users may be significantly more influential to some audi-
ence groups than others. In this paper, we propose AudClus, a method to
detect audience groups and identify group-specific influencers simultane-
ously. With extensive experiments on real data, we show that AudClus
is effective in both the task of detecting audience groups and the task
of identifying influencers of audience groups. We further show that Aud-
Clus makes possible for insightful observations on the relation between
audience groups and influencers. The proposed method leads to various
applications in areas such as viral marketing, expert finding, and data
visualization.

Keywords: Social influence · Influencer detection · Audience group

1 Introduction

Quantifying influence to find the most influential users in social networks is a
fundamental problem of social network studies. Many important applications
such as influencer detection and viral marketing rely on this problem. Most
existing studies quantify the influence of a user as a globally aggregated influence
value. An observation that is often overlooked by these studies is that a social
network contains various groups of users, and the strength of influence of a
user varies drastically over different groups. On one hand, most users have their
influence limited to a small part of the social network. Even the globally most
influential users of a social network have their influence concentrated to some
specific groups of audience. On the other hand, different groups of users in a
social network have their own specific sets of influencers.

Based on this observation, in this paper, we explore group-specific influence.
We attempt to (1) detect audience groups and (2) identify influencers of audience
groups. The tasks have two major challenges. First, to make the results mean-
ingful, audience groups should reflect natural boundaries of influence, i.e. users
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 559–575, 2015.
DOI: 10.1007/978-3-319-23525-7 34

560 S. Lin et al.

in the same audience group share similar influencers, while users in different
audience groups have different influencers. However, most existing community
detection algorithm is not specifically optimized for detecting such audience
groups. Second, current methods for detecting global influencer do not work
well for the task of detecting group-specific influencers. One can certainly con-
sider each audience group as a network and apply existing influencer detection
algorithms to each network. This naive approach, however, yields to suboptimal
results, because it can only detect influencers within groups, but an influencer
of an audience group may actually be outside that group.

To solve these problems, in this paper, we propose AudClus, a probabilis-
tic mixture model based method to detect audience groups and group-specific
influencers simultaneously. By using information diffusion data, it groups users
into different audience groups according to the users who are influential to them,
and simultaneously quantifies the influence of users with respect to each audience
group. Both the tasks of detecting audience groups and identifying group-specific
influencers benefit from the simultaneous inference.

The main contributions of this paper are summarized as follows.

– We propose AudClus, a probabilistic mixture model based method, to capture
audience groups and group-specific influence. We design an EM algorithm to
infer audience groups and users’ influence over audience groups simultane-
ously.

– AudClus is very flexible in capturing group-specific influence in social net-
works. It does not rely on the structure of social networks or any specific
information diffusion model. It can capture both direct and indirect influence.

– AudClus provides a new tool for analysis and visualization of social influence.
It leads to interesting observations and insightful understandings on the struc-
ture of influence in social networks. It facilitates applications such as finding
experts in specific areas, and targeting specific groups of audience for viral
marketing.

2 Preliminary

A social network is often considered as a graph, with users as nodes, and links
between users as edges. By considering a social network as a graph, graph clus-
tering or community detection algorithms can be used to detect groups from
the social network. For a given social network, different community detection
algorithms may lead to substantially different clustering results. In this paper,
we are interested in detecting audience groups, which reflect users’ behaviors
of being influenced in information diffusion processes. Specifically, users in the
same audience group are influenced by a similar set of influencers, while users
in different groups are influenced by different influencers. To serve this purpose
well, we propose AudClus, a clustering method, which detect groups of users
from information diffusion data, instead of from social network structure.

When information diffuses in a social network, it is carried by actions of users
in the network. An action of a user is, for example, posting a tweet in Twitter,

Discovering Audience Groups and Group-Specific Influencers 561

or publishing a paper in the citation network. Each action comes with some
information. For example, a tweet can talk about some news and events, and a
paper can propose or adopt some techniques. Information carried by an action
may be introduced into the social network by the current action itself, or it may
be introduced by some previous actions and adopted by the current action. If
a current action adopts information from some previous actions, we say that
information propagates from the previous actions to the current action, and we
define it by an information propagation link from each previous action to
the current action. In this paper, we study the case that the information prop-
agation links are observable in the data. For example, in Twitter, a retweeting
or a replying can be considered as a information propagation link from the orig-
inal tweet to the current tweet, while in the citation network, a citing can be
considered as a link from the reference paper to the current paper.

A diffusion pathway graph contains a set of actions and the information
propagation links between them. Formally, we define a diffusion pathway graph
as follows.

Definition 1. A diffusion pathway graph D = (AD,LD) is a DAG (directed
acyclic graph) of actions. Each action ai ∈ AD is taken by a user denoted by
vai

. Directed links in LD ⊂ AD × AD define the information diffusion links
between actions. A directed link (ai, aj) ∈ LD means that action aj is directly
influenced by action ai. Links in LD should be acyclic. If (ai, aj) ∈ LD, we say
ai is a parent of aj.

The above definition of diffusion pathway graph is very general and flexible
in the sense that it does not make any assumption on the underlying diffusion
process. It can therefore be applied to various information diffusion models,
and different information diffusion models may add different constraints to this
general definition. For example, for an IC model [4,10], the diffusion pathway
graph is actually a forest, since any action can be triggered by only one previous
action, while the diffusion pathway graph for a LT model [5,9] can be any DAG.
Besides, a diffusion pathway graph is not limited to describe the diffusion of one
single piece of information. When the pieces of information are not explicitly
available, it means less effort in preprocessing data. For example, we can directly
construct a diffusion pathway graph from a citation network, with papers as
actions, and citation relations as information diffusion links. We do not need to
extract the pieces of information that is actually spread between papers.

The first goal of AudClus is to detect audience groups based on diffusion
pathway graphs. More formally, given a set of users V and a set of diffusion
pathway graphs D = {D1, · · · ,Dm} with these users, it detects a set of audience
groups C, such that each user u ∈ V is assigned to a group c ∈ C. Notice that
the setting is different from that of traditional community detection problem:
we detect groups of users from diffusion pathway graphs, instead of from the
social network. Unlike social networks, nodes in diffusion pathway graphs are
actions, not users. The difference in problem setting means traditional commu-
nity detection algorithms cannot be directly applied to the task of detecting
audience groups.

562 S. Lin et al.

Table 1. Notations

Description

V Set of all users.
C Set of all audience groups.
D Set of all diffusion pathway graphs.
AD Set of actions in diffusion pathway graph D.
LD Set of links in diffusion pathway graph D.
z(v) The audience group user v is assigned to.

Description

k Number of audience groups.
n Number of users.

θvc The influence user v has on group c.
ηvc The conditional probability that v belongs to c.
φc The prior probability of group c.
q Transfer rate parameter in influence backtracing method.

The second goal of AudClus is to identify influencers who are specific to each
audience group. To achieve that, AudClus quantifies the influence from each user
v ∈ V to each group c ∈ C, then it can identify users who are the most influential
to a specific group. As we will show in the next section, the two goals of AudClus
can be achieved simultaneously under a mixture model framework.

We summarize notations in Table 1.

3 The AudClus Method

In this section, we introduce a probabilistic mixture model based method to
detect audience groups of a social network and to quantify group-based influ-
ence for users simultaneously. We will first study a simple case, which we call
single-direct case. In the single-direct case, each action is either spontaneous or
influenced by exactly one previous action, i.e. each action either has no parent
in the diffusion pathway graph or has one single parent, and only the influence
from the parent is considered. We will first show a probabilistic mixture model
for audience clustering for the single-direct case, and then extend the model for
more general cases.

3.1 Audience Clustering for the Single-direct Case

The intuition for audience clustering is that users who are influenced by similar
sets of influencers should be assigned to the same group. The proposed clustering
method originates from the probabilistic mixture model proposed in [15], which
decides the group of a user according to the neighbors whom he is linked to and
assigns users who are linked to similar sets of neighbors into the same group.
The original model in [15] was designed for undirected graph, but we extend it
to make it work with directed graphs such as diffusion pathway graphs. Besides,
in the proposed model, the groups of users are decided by their influencers, not
by their neighbors.

The basic concepts with regard to the proposed clustering model are as fol-
lows. From a set of users V, each user u is assigned to a group c ∈ C, denoted by
z(u). For each group c ∈ C and each user v ∈ V, θvc defines the influence that
user v has on group c. More specifically, for an action taken by users in group
c, θvc is the probability that the action is influenced by some previous actions
taken by user v. Notice that we are considering the single-direct case that each

Discovering Audience Groups and Group-Specific Influencers 563

action is either spontaneous or influenced by exactly one parent action. For each
action ai that is influenced by a parent action, we regard the user who takes the
parent action as the influencer of ai, denoted by r(ai). r(ai) is generated from a
categorical distribution as follows.

r(ai) ∼ Categorical|V|(θ·z(vai
))

where vai
is the user who takes action ai, and z(vai

) is the group that vai
belongs

to. θ·c = {θvc}v∈V denotes the influence from users in V to group c.
For any group c, θ·c are the parameters for a categorical distribution, which

should satisfy the following normalization condition.
∑

v∈V θvc = 1, ∀c ∈ C
We consider the clustering of users as a probabilistic mixture model. The prior

probability for group c is denoted by φc, satisfying the following normalization
condition. ∑

c∈C φc = 1

We denote with Z the multivariate random variable that consists of z(v)
for all v ∈ V, i.e. Z = {z(v)}v∈V . Similarly, we have Θ = {θvc}v∈V,c∈C and
Φ = {φv}v∈V .

Given the parameters Θ and Φ, the joint probability of D and Z is the product
of two probabilities: the probability that each user v is assigned to the group
z(v), and the probability that each action ai influenced by the influencer r(ai).
Formally, the likelihood function of parameters Θ and Φ, are given as follows.

L(Θ,Φ;D,Z) =
(∏

D∈D
∏

ai∈AD
θr(ai)z(vai

)

)(∏
v∈V φz(v)

)

=
(∏

v∈V
∏

u∈V θAvu

vz(u)

)(∏
v∈V φz(v)

) (1)

where
Avu =

∑
D∈D

∑
ai∈AD,
v(ai)=u

Ir(ai)=v (2)

denotes the number of actions of user u that are influenced by user v in all
diffusion pathway graphs.

Parameter Estimation. We estimate the parameters Θ and Φ by their maxi-
mum likelihood estimation. Notice that the group of each user z(u) is the missing
data that also needs to be inferred. Therefore, the problem of finding maximum
likelihood estimation is formalized as follows:

maxΘ,Φ

∑
Z p(D,Z|Θ,Φ)

We solve this problem by EM algorithm. In the E-step, we calculate expected
value of log-likelihood function, with respect to the conditional distribution Z.
The expected value is defined as follows.

EZ|Θ(t),Φ(t) log L(Θ,Φ;D,Z) =
∑

v∈V

∑

u∈V

∑

c∈C
Avuη(t)

uc log θvc +
∑

v∈V

∑

c∈C
η(t)

vc log(φc)

(3)

564 S. Lin et al.

where
η(t)

uc =
(
φ(t)

c

∏

v∈V
(θ(t)vc)Avu

)
/
(∑

c′∈C
φ
(t)
c′

∏

v∈V
(θ(t)vc′)Avu

)

(4)

is the conditional probability that z(u) = c given D under the current estimations
of parameters Θ(t) and Φ(t).

In the M-step, we update estimation of Θ and Φ to maximize the expected
log-likelihood. By taking partial derivatives of Equation 3, we can find out that
the expected log-likelihood is maximized by the following values of parameters.

θ
(t+1)
vc =

(∑
u∈V Avuη

(t)
uc

)
/
(∑

w∈V
∑

u∈V Awuη
(t)
uc

)
(5)

and
φ
(t+1)
c =

(∑
u∈V η

(t)
uc

)
/
(∑

c′∈C
∑

u∈V η
(t)
uc′

)
(6)

We repeat the E-step and the M-step until it converges. When it converges,
the influence of user v on group c is defined by θvc, the value that θ

(t)
vc converges

to, while the belongingness of user v to group c is defined by ηvc, the value
that η

(t)
vc converges to. When a non-probabilistic clustering is needed, we assign

user v to the group c with the largest ηvc, i.e. z(v) = arg maxc∈C ηvc.

3.2 Generalized Model

In the previous section, we have introduced the audience clustering algorithm
for the single-direct case that each action either has no parent or has one single
parent in the cascade, and only the influence from the parent is considered.
Many real applications, however, do not satisfy this condition for two reasons.
First, in many diffusions, each action may have multiple parent actions. For
example, in the citation network, each action (paper) can cite multiple previous
papers, thus has multiple parent actions. Second, in many applications, both
direct and indirect influence is important and should be considered. For example,
in the citation network, an influential paper should not only have a large citation
number itself, but also inspires some innovative papers which also have plenty
of citations.

We first propose a partial credit method to generalize the clustering method,
so that actions can have arbitrary number of parents in the diffusion pathway
graph, and then further propose a influence backtracking method to incorporate
both direct and indirect influence under the same model.

Partial Credit Method. In the single-direct case, each action ai has one single
influencer r(ai). If each action can have multiple parents, the assumption will be
violated. However, similar to the partial credit method in [9], we can generalize
the model by letting all parents of an action share the “credit” of influencing
that action. Notice that the likelihood function in Equation 1 actually depends

Discovering Audience Groups and Group-Specific Influencers 565

on Avu, the number of times that user v influences user u. Thus, we can replace
Avu in Equation 2 with following value.

Avu =
∑

D∈D
∑

aj∈AD,
v(aj)=v

∑
ai∈AD,
v(ai)=u

1
|F (ai)|Iaj∈F (ai) (7)

where F (ai) is set of parents of action ai. In this equation, each parent of action
ai gets 1

|F (ai)| credit for influencing action ai.

Influence Backtracking Method. We now introduce an influence backtrack-
ing method to measure the influence between actions in a diffusion pathway
graph. The benefits of influence backtracking method are as follows: (1) the
same as the partial credit method, each action can have arbitrary number of
parents; (2) both direct and indirect influence is captured by the same measure-
ment. By incorporating the influence backtracking method, the AudClus model
can be generalized to all diffusion pathway graphs under the flexible definition
as in Definition 1.

The intuition of influence backtracking is measuring influence by the amount
of information that is brought into the social network by an action and is adopted
by following actions. Consider the scenario of an author writing a blog post. The
author gets some information from some other blog posts, and brings in some
new ideas at the same time. Therefore, some information in this new blog post
originates from previous blog posts, which are listed as references of this post,
and some may be traced back even further to references of the references. For
each piece of information carried by action ai, we can trace back the diffusion
pathway graph to find out which action brings that piece of information to the
network.

To simulate this process, for each piece of information in an action ai, we use
a reverse random walk to trace back which action brings this piece of information
to the network. The reverse random walk is defined as follows:
1. It starts at the node ai.
2. When it arrives at a node aj with no parents, the random walk terminates
at aj .
3. When it arrives at a node aj with some parents, with probability 1 − q the
random walk terminates at the node aj , and with probability q the random walk
continues. If it continues, it has equal probability to walk to each parent of aj .
If the random walk terminates at the action aj , it represents that the piece of
information originates from action aj . We call q the transfer rate parameter of
influence backtracking.

Since the diffusion pathway graph is an acyclic graph of actions, it is easy
to calculate the probability that the random walk terminates at action aj . The
probability can be calculated recursively by the equation as follows.

Q(aj , ai) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if F (ai) = ∅, i = j

0 if F (ai) = ∅, i �= j

1 − q if F (ai) �= ∅, i = j
q

|F (ai)|
∑

ak∈F (ai)
Q(aj , ak) if F (ai) �= ∅, i �= j.

566 S. Lin et al.

where F (ai) is set of parents of ai.
Suppose that there are M pieces of information in an action ai. We use the

random walk to trace back where each piece of information is from. When M
is large enough, the fraction of information pieces that are carried by action ai

and originate from action aj is approximately Q(aj , ai). Thus, for an action ai

and a previous action aj , we regard Q(aj , ai) as the part of ai that is influenced
by aj , and replace Avu, the number of actions of user u that are influenced by
actions of v in Equation 2, by the value as follows.

Avu =
∑

D∈D
∑

aj∈AD,
v(aj)=v

∑
ai∈AD,
v(ai)=u

Q(aj , ai) (8)

4 Experiment

4.1 Experiment Setup

Datasets We experiment with two real-world datasets.

– Citation Dataset. This is the citation network dataset released by Arnet-
Miner [17]. The publication data are extracted from DBLP, ACM and other
sources. Since the influence of authors changes over time, to reflect current
landscape of influence, we have removed publications before year 2000. We
have also filtered out authors who have less than 5 publications. After pre-
processing, the dataset contains 368,101 publications of 113,006 authors, and
592,889 citation links. It also contains conference information of publications,
which we use for clustering evaluation. The original dataset considers venues
such as CoRR as “conferences”. It also contains some less competitive con-
ferences which have far more larger number of accepted papers than normal
conferences. We use the conference list provided by Microsoft academic search
(http://academic.research.microsoft.com/) to clean the data. We only con-
sider the top 100 computer science conferences listed by Microsoft academic
search in the experiment.

– Meme Dataset. This is the meme dataset from Memetracker [11]. It contains
posts from news websites and blogs, and links between then. We use the meme
dataset crawled at August 2008. We consider websites as nodes (“users”) of
the network, and posts in websites as actions. Diffusion pathway graphs are
generated from links between posts. We have removed websites with less than
5 posts. After preprocessing, the dataset contains 40,072 websites, 394,636
pages, and 1,394,710 links.

Methods. For quantitative evaluation, we compare following proposed methods
and baselines.

– AC-i. AudClus with information backtracking.
– AC-p. AudClus with partial credit.
– MD. Mixture model proposed in [15]. We construct a directed network of

users by adding a directed link from user v to user u, if there is some actions
of user u linked to some actions of user v in some diffusion pathway graphs.

Discovering Audience Groups and Group-Specific Influencers 567

– FG. Fast greedy algorithm in [6]. It is a modularity based community detec-
tion algorithm. The algorithm is implemented in the igraph network analysis
package [7]. Similar to MD, we construct a directed network of users from
diffusion pathway graphs, but each edges in the user network weighted by the
number of links between actions of the two users.

4.2 Qualitative Analysis and Case Studies

Citation Dataset. We begin with a qualitative analysis on the citation dataset.
As we will show later, AC-i achieves best quantitative evaluation result among
all algorithms, and it achieve best result with q = 0.3 and k = 35 for the citation
dataset. We conform to this setting for this part of experiment.

In Table 2, we show an overview of the audience groups. For each group, we
show its top 3 most common conferences, and its top one influencer. We assign
each user v to the group that he has the largest belongingness ηvc. We identify
frequent conferences of a group by counting the number of users in that group
who have published papers in each conference, and finding the top 3 conferences
with the largest counts. We identify the top influencer of a group by finding the
user with the largest influence θvc.

The list of top frequent conferences for groups provides intuitive observations
on the clustering quality. First, the frequent conferences for a certain group are
usually conferences that are related to the same research area. For example, the
top 3 frequent conferences for group 5 (KDD, CIKM, ICDE) are conferences
related to the data mining area, while those for group 8 (ICIP, CVPR, ICCV)
are related to the computer vision area. Second, different groups tend to have
different list of frequent conferences. No two groups share exactly the same
frequent conference list. Most overlaps of frequent conferences between groups
can be explained by the phenomenon that a conference is often related to more
than one research areas. For example, the top 3 frequent conferences of group 3
are ICDE, VLDB and CIKM, and CIKM and ICDE are also the 2nd and 3rd
most frequent conferences for group 5, respectively. The explanation for it is as
follows: (1) group 3 reflects the database area, while group 5 reflects the data
mining area. (2) CIKM and ICDE accept papers in both the database and data
mining areas.

To get a detailed observation on the extracted audience groups, we show
longer lists for top influencers and top frequent conferences for group 5 in Table
5. Values in parentheses after names of influencers are θvc for that influencer.
Values in parentheses after conference are the percentage of users in the group
who have publications in the conference. It is very obvious that the top frequent
conferences are related to the data mining area and the top influencers are indeed
influential researchers in that area.

In Figure 1, we display another case study. In Figures 1(a) and 1(b), we
show the influence spread (θvc) and belongingness distribution (ηvc) of author
Jiawei Han over all groups. As shown by the figures, the belongingness of Jiawei
Han almost completely concentrates to group 5. However, the influence of Jiawei
Han spreads over several groups, although his influence on group 5 is much larger

568 S. Lin et al.

Table 2. Audience groups

Most common conf. Top Influencer

0 SC, ICS, ICPP Jos E. Moreira
1 ICC, WCNC, ICASSP Anil K. Jain
2 ICSE, HICSS, ECOOP Barry W. Boehm
3 ICDE, VLDB, CIKM David J. DeWitt
4 PODC, ICDCS, ICC Sanjay Jain
5 KDD, CIKM, ICDE Jiawei Han
6 CDC, EUROCRYPT,CRYPTO Moni Naor
7 SODA, ICRA, ICIP Joseph S. B. Mitchell
8 ICIP, CVPR, ICCV David J. Hawkes
9 CAV, CONCUR, LICS Moshe Y. Vardi
10 IJCAI, AAAI, KR Endre Boros
11 NIPS, ICML, IROS Kalyanmoy Deb
12 ICRA, IROS, CHI David H. Laidlaw
13 DAC, ICCAD, DATE David Blaauw
14 ACL, SIGIR, COLING Andrew McCallum
15 IJCAI, HICSS, AAAI Gheorghe Paun
16 CHI, CSCW, UIST Benjamin B. Bederson
17 ICIP, ICPR, ICASSP Anil K. Jain
18 ITC, DATE, DAC Krishnendu Chakrabarty
19 ICRA, IROS, ICPR Sebastian Thrun
20 DATE, DAC, ISCAS Margaret Martonosi
21 HPDC, SC, ICPP Ian T. Foster
22 IJCAI, AAAI, ICALP Jack H. Lutz
23 AAAI, IJCAI, ICRA Milind Tambe
24 SC, POPL, LICS William Gropp
25 ICC, IROS, INFOCOM Edward R. Dougherty
26 ICASSP, ISCAS, ICC Aapo Hyvrinen
27 WWW, CIKM, ICDE Ian Horrocks
28 HICSS, ICC, ICRA Viswanath Venkatesh
29 CDC, ICC, HICSS Wil M. P. van der Aalst
30 ICC, INFOCOM, WCNC Donald F. Towsley
31 ICIP, ICPR, ICC Etienne E. Kerre
32 ICASSP, ACL, IROS Andreas Stolcke
33 OR, SODA, ICC David E. Goldberg
34 SODA, STOC, FOCS Christos H. Papadimitriou

Table 3. Running time of algorithms (in
seconds)

AC-i AC-p MD FG

Preprocessing time 263.5 123.2 69.9 77.4
Inference time 104.94 39.5 34.3 7182.4

Table 4. Case study: top influential
websites

First group(political news)

website description

1 telegraph.co.uk newspaper
2 foxnews.com news channel
3 nydailynews.com newspaper
4 msnbc.msn.com news channel
5 timesonline.co.uk newspaper
6 nypost.com newspaper
7 news.bbc.co.uk news channel
8 cnn.com news channel
9 politicalticker.blogs.cnn.com political news blog
10 troktiko.blogspot.com political news blog

Second group (technology)

website description

1 blog.wired.com technology magazine
2 gizmodo.com technology blog
3 digg.com news aggregator (technology)
4 telegraph.co.uk newspaper
5 arstechnica.com technology news
6 universetoday.com technology news
7 sciencedaily.com technology news
8 engadget.com technology blog
9 msnbc.msn.com news channel
10 scienceblogs.com technology blog

Table 5. Case study: data mining
group (group 5)

Top influencers Frequent conference

1 Jiawei Han (0.0251) KDD (38.5%)
2 Jian Pei (0.0194) CIKM (33.0%)
3 Charu C. Aggarwal (0.0096) ICDE (29.2%)
4 Mohammed Javeed Zaki (0.0075) VLDB (15.2%)
5 Philip S. Yu (0.0060) WWW (11.8%)
6 Ramesh C. Agarwal (0.0060) AAAI (9.4%)
7 Johannes Gehrke (0.0035) ICML (8.8%)
8 Ke Wang (0.0043) IJCAI (8.7%)
9 George Karypis (0.0041) SIGIR (8.0%)
10 Rakesh Agrawal (0.0035) ICC (6.0%))

than his influence on other groups. Similar observations hold for other users in
the network as well: a user who is influential to a group does not have to be
a member of that class; a user can have influence over more than one groups;
however, the strength of influence can be very different in different groups.

Meme Dataset. For the meme dataset, we use AC-i with q = 0.3 and k =
10. Since there is no information like conferences in the citation network, it
is hard to summarize the category or area of each group. Instead, we show a
case study with that dataset. In Table 4, we show the top influencer of two
groups. For the first group, the top 8 influencers are either newspapers or news
channels, and political news is a major topic covered by these newspapers and
channels. The last 2 are political news blogs. For the second group, most of the
top influencers are technology news websites, except for msnbc.msn.com. Notice
that msnbc.msn.com appears in the top influencer lists of both groups, but it is
more influential on the first group than on the second group. It conforms to the
intuition that MSNBC is a more influential source for political news than it is
for technology news.

Discovering Audience Groups and Group-Specific Influencers 569

4.3 Quantitative Analysis

Clustering Evaluation. In this section, we evaluate the quality of clustering
quantitatively. For both datasets, the ground truth of groups is not available.
However, for the citation dataset, we can use the conferences of an author’s
papers to roughly identify the group of authors. Thus, we can conduct quanti-
tative evaluation of clustering on the citation dataset.

We use three measurements for the evaluation of clustering: purity, mutual
information (MI), and normalized mutual information (NMI). The three mea-
surements are often used for evaluation of clustering quality. They are usually
defined for datasets with a set of explicit classes and each node is assigned to
exactly one class. In the citation datasets, conferences of authors’ identify the
areas of study and can be used for the evaluation. However, unlike datasets with
explicit classes, each author in the citation dataset can publish in multiple con-
ferences. To make the evaluations work for the citation dataset, we use modified
definitions of purity, MI, and NMI as follows:

– Purity. We first find most frequent conferences for each group as we did
in the last section, and then defined purity(m) as the fraction of users who
have published in at least one of the top m most frequent conferences of their
groups.

– MI. For each conference e, we divide users into positive class (users who
published in this conference), and negative class (users who did not pub-
lish in this conference). We then calculate the mutual information between
positive/negative classes and groups of users. Formally, the mutual informa-
tion is defined as I(f, C) =

∑
le={0,1}

∑
c∈C

Nlec

N log NlecN
Nle·N·c

, where le = 1 and
le = 0 represent the positive and negative classes, respectively. Nlec is the
number of users in group c that belong to the positive or negative class.
Nle· =

∑
c∈C Nlec is the total number of users belong to the positive or nega-

tive class. N·c =
∑

le∈{0,1} Nlec is the total number of users in group c. N is
the total number of users. For each conference e, we calculate the mutual infor-
mation according to the equation above, and then we calculate the average
value over all conferences.

– NMI. When the number of groups k is large enough, it is easy for a clustering
method to achieve high values of purity and MI. Normalized mutual informa-
tion (NMI) can be used to tradeoff the clustering quality against the increas-
ing number of groups. For a conference e, the normalized mutual information
between it and clustering C is defined as NMI(e, C) = I(e, C)/

√
H(e)H(C),

where H(e) = −∑
le={0,1}

Nle·
N log(Nle·

N) is the entropy for conference e, and
H(C) = −∑

c∈C
N·c
N log(N·c

N) is the entropy for clustering. Similar to MI, we
use the average value over all conferences to evaluate the clustering.

Since the result clusterings of AC-i, AC-p and MD are influenced by the
random values we use to initialize parameters, we run each of them 10 times for
each setting and show both mean value and standard deviation.

570 S. Lin et al.

(a) Influence (b) Belongingness

Fig. 1. Case study: Jiawei Han

(a) MI (b) NMI

Fig. 2. MI and NMI

Figure 3 illustrates purity evaluation for all algorithms (for AC-i, q is set to
0.3). In Figures 3(a), 3(b) and 3(c), we show purity(m) with m = 1, 3, 5, respec-
tively, for varying number of groups. In each case, when k increases, purity(m) for
AC-i, AC-p and MD first increases with increasing k, and then stays around a
certain value or even drops slightly when k is large. For FG, purity(m) increases
slightly when k increases. For each case, AC-i and AC-p consistently outper-
form MD. It suggests that by considering diffusion pathway graphs of actions,
the proposed mixture model based algorithms AC-i and AC-p improves over
MD, which is also a mixture model based algorithms but considers the links
between users only. Further more, AC-i achieves better clustering quality than
AC-p and MD. That is because AC-i quantifies both the direct and indirect
influence simultaneously, while AC-p and MD consider direct influence only.
Clustering quality of AC-p and FG are comparable, with AC-p slighter better
for purity(1), and FG better for purity(3) and purity(5). This is is more clearer
in Figure 3(d), in which we show purity(m) with varying m for k = 35. As
illustrated Figure 3(d), when m, the number of top conferences of each group,
increases, purity(m) for all algorithms goes up steadily. For each m, AC-i always
achieves best purity(m) among four algorithms, while MD always has lowest
purity(m). AC-p and FG has similar purity(m) for m = 1. When n increases,
FG achieves better clustering quality than AC-p. However, as we will show
later, FG is much slower than mixture model based algorithms (AC-p, AC-i,
and MD).

Figure 2(a) illustrates the MI measurement for algorithms. In the figure, k
is illustrated on the X-axis, while MI is illustrated on the Y-axis. As shown by
the figure, when k increases, the MI for AC-i, AC-p and MD first increases
and then stays stable. while the MI for FG only slightly increases as k increases
from 5 to 50. AC-i achieves best clustering quality among the three algorithms,
and AC-p and FG outperform MD.

Figure 2(b) illustrates the NMI measurement. Comparing with the MI mea-
surement in Figure 2(a), the normalization makes NMI favors clustering with
smaller k. For AC-i, the maximum of NMI is achieved at k = 35, while for AC-
p, it is achieved at k = 15. Comparing with the curve of FG in Figure 2(a), we
can find out that the clustering of FG actually has an almost fixed entropy H(C)
when k increases. That suggests that FG does not make fully use of increasing
number of groups k, and assign most of users to a handful of groups.

Discovering Audience Groups and Group-Specific Influencers 571

(a) purity(1) (b) purity(3) (c) purity(5) (d) purity(m)

Fig. 3. Clustering evaluation with purity

(a) MI (b) NMI (c) purity(1) (d) purity(5)

Fig. 4. Selection of parameter q

Running Time. Table 3 lists the running time for four algorithms. The running
time for each algorithm has two parts: the preprocessing time and the inference
time. For AC-i and AC-p, the preprocessing time is the time spent on calcu-
lating Avu for all pair of users. For MD and FG, the preprocessing time is the
time spent on constructing user networks. For each algorithm, the inference time
is the time spent on generating the clustering. In Table 3, we show the prepro-
cessing time and the inference time for the citation network for the case k = 50.
As shown in the table, comparing with MD, both the preprocessing time and
the inference time of AC-i and AC-p are increased as they consider actions for
clustering inference. AC-i takes more time than AC-p because both direct and
indirect influences are considered by AC-i. Although the preprocessing time of
FG is similar to that of MD, the inference time is significantly longer than
those of other algorithms. That is because, as a modularity-based community
detection algorithm, FG invokes time-consuming calculation on graphs. Never-
theless, as we showed in the previous section, the clustering quality of AC-p is
similar to FG, and the clustering quality of AC-i is significantly better than
that of FG.

Selection of Parameter q. The clustering quality of AC-i depends on the
transfer rate parameter q. In Figure 4, we illustrate the clustering quality of AC-
i with varying q. Figures 4(a), 4(b),4(c) and 4(d) show the clustering evaluation
with MI, NMI, purity(1), and purity(5), respectively. For each measurement,
we show the curves for k = 10, 30 and 50. In each case, when q varies from 0.1
to 0.5, the clustering quality first increases then decreases. The explanation is
as follows: when q is too small, the indirect influence is underestimated; when q
is too large, the indirect influence is overestimated by the algorithm. For each
case, AC-i achieves the best clustering quality when q = 0.3.

572 S. Lin et al.

(a) Citation (b) Meme

Fig. 5. User influence spread over groups

(a) Citation (b) Meme

Fig. 6. Fraction of external influencers

4.4 Observations on Group-Specific Influence

Influence Spread of Users. First, we study how the influence of users spreads
over groups. To illustrate that, we first normalize the influence of each user
v over groups with his overall influence, i.e. θvc/

∑
c′∈C θvc′ , and rank groups

according to the normalized influence v has on the groups. We then show the
average normalized influence users have on their first ranked groups, second
ranked groups, etc. As illustrated by the figure, the influence spread of users
tends to concentrate to the first ranked groups. For the citation dataset, on
average, more than 65% of a user’s influence concentrates to the first ranked
group. Nevertheless, users can still have significant influence on a few other
groups. For example, in the citation dataset, on average, the second ranked group
for a user has 15% influence of that user. These results confirm the intuition that
the strength of influence of a user varies drastically over audience groups, but
the influence is not limited to the group that the user belongs to.

The second question we are interested in is whether the overall influence
of users is correlated with the extent that their influence spreads on different
groups. To answer this question, we first quantify the extent of influence spread
of a user by the entropy of user influence distribution. With larger entropy,
the influence of that user tends to spread over different groups more evenly. In
Figure 7, we illustrate the entropy of influence spread for users with increasing
overall influence. Each point in the figure represents a small range of user overall
influence, illustrated on the X-axes. The average entropy for users whose overall
influence is within that range is illustrated on the Y-axes. As shown by the figure,
comparing with users who has larger overall influence, users with smaller overall
influence are more likely to have their influence concentrated to fewer groups.

Fraction of External Influencers. The other question about the influencers
of groups that we study is: given an audience group, among the top m influencers
of the group, how many of them belong to this group, and how may of them
belong to other groups. Figure 6 illustrates the fraction of external influencers.
In the figure, X-axes illustrate m, the number of top influencers of a group,
while Y-axes illustrate the fraction of external influencers, i.e. the fraction of
top influencers who does not belong to the group. (We show average value of
that fraction over all groups). For both the citation and meme datasets, the
fraction of external influencers increases as m increases, which suggests that
influencers with larger influence on a group are more likely to be a member of that
group. Moreover, the fraction of external influencers is larger in the meme dataset

Discovering Audience Groups and Group-Specific Influencers 573

(a) Citation (b) Meme

Fig. 7. Entropy of influence spread distri-
bution vs. overall influence

3: ICDE, VLDB, CIKM

5: KDD, CIKM, ICDE

10: IJCAI, AAAI, KR

11: NIPS,ICML, IROS
14: ACL, SIGIR, COLING

22: IJCAI, AAAI, ICALP

23: AAAI, IJCAI, ICRA

27: WWW, CIKM, ICDE

Fig. 8. Visualization for influence
between some groups in the citation
dataset

than in the citation dataset. The difference can be explained by the inherent
difference between citation networks and website networks: academic authors
usually specialize in one or a few areas and seldom have large influence outside
the area they specialize in, while many influential websites are comprehensive
websites that cover various topics.

Visualization of Influence between Groups. At last, as an example for
possible applications of AudClus in influence visualization, in Figure 8, we show
the influence between 7 groups in the citation dataset. To quantify the influence
from group ci to group cj , we calculate the average influence users in ci have on
group cj , i.e. Inf(ci, cj) =

∑
z(v)=ci

θvcj/|Nci | where Nci is the total number of
users in ci. We selected the groups that are related to database, data mining,
and machine learning areas. For each group, we show its index, as well as the
top 3 most frequent conferences. The complicated relation between those areas
is clearly illustrated by the figure. For example, the research area of data mining
(group 5) is strongly influenced by the areas of database (group 3), natural
language processing (group 11), and machine learning theory (group 14). On
the other hand, the area of data mining (group 5) also has large influence back
to the database area (group 3), while it has less influence to the natural language
processing and machine learning theory areas.

5 Related Work

Quantifying Influence. There has been extensive work on the problem of quan-
tifying influence and detecting the most influential users. Some work regarded
influence as the outcome of information diffusion processes, like the independent
cascade (IC) model [4,10] and the linear threshold (LT) model [5,9]. This line of
work proposed methods for finding a set of users such that the expected influ-
ence is maximized under a given information diffusion model. Another line of
work conducted empirical studies to quantify the influence of users [1,3]. Topic-
dependent influence was also studied frequently in recent years [13,16].

574 S. Lin et al.

Information Diffusion and Community. Recently, researchers have taken
notice of the relation between information diffusion and community structures
in social networks. [12,18] proposed community-based greedy algorithms to speed
up influence maximization on social networks. [8] generalized the influence max-
imization problem to the group level. Latest work in [2,14] analyzed social influ-
ence on the community level, which were closely related to our work in this paper.
[14] proposed a hierarchical method to summarize social influence by reciprocal
influence strength between communities. [2] proposed a stochastic mixture mem-
bership generative model to detect cascade-based community. The tasks that we
work on are different from [2,14] in following aspects. First, our method focuses
on detecting audience groups, while the previous models grouped users based
on how they influence others and how they are influenced by others mixedly.
Second, our method captures the influence of each user to each audience group.
Therefore, it works for the task of identifying the most influential users to groups.
The previous models only captured the influence between groups, and could not
be used to identify the most influential users.

Since influence between users is inherently asymmetric, most traditional com-
munity detection algorithms designed for undirected network do not work well
for the study of social influence. [15] proposed a community detection method
based on probabilistic mixture model. It is a very flexible model that can be
naturally extended to detect role-based groups, such as audience groups.

6 Conclusion

In this paper, we study audience groups in networks and group-specific influence
of users. We propose AudClus, a mixture model based algorithm to detect audi-
ence groups and quantify group specific influence simultaneously. We also invent
an influence backtracking method to capture both direct and indirect influence.
We show qualitative and quantitative evaluations on real-world datasets. The
proposed AudClus algorithm provides a new approach to understand the struc-
ture of influence in social networks, which leads to many insightful observations.

Acknowledgments. This work is supported in part by NSF through grants CNS-
1115234, Google Research Award, the Pinnacle Lab at Singapore Management Univer-
sity, and Huawei grants.

References

1. Bakshy, E., Hofman, J.M., Watts, D.J., Mason, W.A.: Everyone’s an influencer:
quantifying influence on twitter. In: WSDM (2011)

2. Barbieri, N., Bonchi, F., Manco, G.: Cascade-based community detection. In:
WSDM (2013)

3. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.: Measuring user influence in
twitter: the million follower fallacy. In: ICWSM (2010)

4. Chen, W., Wang, Y.: Efficient influence maximization in social networks. In: KDD
(2009)

Discovering Audience Groups and Group-Specific Influencers 575

5. Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks
under the linear threshold model. In: ICDM (2010)

6. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70(6 Pt 2), 066111 (2004)

7. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
InterJournal, Complex Systems 1695 (2006)

8. Eftekhar, M., Ganjali, Y., Koudas, N.: Information cascade at group scale. In:
KDD (2013)

9. Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social
networks. In: WSDM (2010)

10. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: KDD (2003)

11. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the
news cycle. In: KDD (2009)

12. Lin, S., Hu, Q., Wang, G., Yu, P.S.: Understanding community effects on information
diffusion. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H.
(eds.) PAKDD2015, Part I. LNCS (LNAI), vol. 9077, pp. 82–95. Springer,Heidelberg
(2015)

13. Liu, L., Tang, J., Han, J., Jiang, M., Yang, S.: Mining topic-level influence in
heterogeneous networks. In: CIKM (2010)

14. Mehmood, Y., Barbieri, N., Bonchi, F., Ukkonen, A.: CSI: community-level social
influence analysis. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.)
ECML PKDD 2013, Part II. LNCS, vol. 8189, pp. 48–63. Springer, Heidelberg
(2013)

15. Newman,M.E.J., Leicht, E.A.:Mixturemodels and exploratory analysis in networks.
PNAS 104(23), 9564–9569 (2007)

16. Tang, J., Sun, J.,Wang,C.,Yang, Z.: Social influence analysis in large-scale networks.
In: KDD (2009)

17. Tang, J., Zhang, J., Yao, L., Li, J., Zhong, L., Su, Z.: Arnetminer: extraction and
mining of academic social networks. In: KDD (2008)

18. Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for
mining top-k influential nodes in mobile social networks. In: KDD (2010)

Estimating Potential Customers Anywhere
and Anytime Based on Location-Based

Social Networks

Hsun-Ping Hsieh1,2,3(B), Cheng-Te Li1,2,3, and Shou-De Lin1,2,3

1 Graduate Institute of Networking and Multimedia, National Taiwan University,
Taipei, Taiwan

{d98944006,sdlin}@csie.ntu.edu.tw, ctli@citi.sinica.edu.tw
2 Research Center for Information Technology Innovation, Academia Sinica,

Taipei, Taiwan
3 Department of Computer Science and Information Engineering, National Taiwan

University, Taipei, Taiwan

Abstract. Acquiring the knowledge about the volume of customers for
places and time of interest has several benefits such as determining the
locations of new retail stores and planning advertising strategies. This
paper aims to estimate the number of potential customers of arbitrary
query locations and any time of interest in modern urban areas. Our idea
is to consider existing established stores as a kind of sensors because the
near-by human activities of the retail stores characterize the geographi-
cal properties, mobility patterns, and social behaviors of the target cus-
tomers. To tackle the task based on store sensors, we develop a method
called Potential Customer Estimator (PCE), which models the spatial
and temporal correlation between existing stores and query locations
using geographical, mobility, and features on location-based social net-
works. Experiments conducted on NYC Foursquare and Gowalla data,
with three popular retail stores, Starbucks, McDonald’s, and Dunkin’
Donuts exhibit superior results over state-of-the-art approaches.

Keywords: Customer prediction · Retail stores · Location-based social
network · Check-in data · Store sensor

1 Introduction

Modern big cities, such as New York City, London, Paris, and Taipei, are densely
and crowded areas, where not only million of people live but also a great number
of business established. As time proceeds, people move around in such urban
areas in either a periodic or unpredicted manner. Various kinds of retail stores
(e.g. Starbucks, McDonald’s and Dunkin’ Donuts) usually choose the locations
possessing higher potential to attract more customers to construct new venues
expecting more people can bring more revenue. In other words, the number of
potential customers becomes one of the most important factor for business to
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 576–592, 2015.
DOI: 10.1007/978-3-319-23525-7 35

Estimating Potential Customers Anywhere and Anytime 577

determine their geographical placement or launch campaign events. It would be
very practical and useful to acquire the knowledge about where and when a
particular business can attract more consumers or audience.

In this paper, we aim to estimate the potential customers of an arbitrary loca-
tion and at a given time in an urban area. By referring the number of potential
customers as the number of people visited there, we propose to exploit the check-
in records, place information, and social connections in location-based social
networks (e.g. Foursquare and Gowalla) for estimating potential customers. The
central idea is to consider existing stores of the target retail business (e.g. Star-
bucks) as a kind of sensors to estimate its potential customers at other locations
without stores at any time. We use Figure 1 to elaborate our idea of estimating
potential customers anywhere and anytime. Take the stores of Starbucks in New
York City as examples, as marked by red circles. From location-based services,
we might know the historical customers (i.e., the number of check-ins) of each
store month by month, illustrated by the histogram of check-in numbers in terms
of months. Now Starbucks would like to construct a new store or hold a market-
ing campaign, with two arbitrary locations in mind, as labeled as A and B. The
problem is to estimate the number of potential customers of such two locations
month by month so that it is possible to acquire the knowledge which one can
bring more profit when a new business or event is launched. Given the potential
customers over time, Starbucks can further understand which months are more
profitable.

Fig. 1. An example for estimating potential customers anywhere and anytime.

Estimating the number of potential customers for arbitrary locations over
time is a challenging problem. The characteristics of a location’s geo-spatial
neighborhood is usually one of the major factors that determine the potential
customers. Such geo-spatial characteristics include population, spatial density,
traffic flows, competitiveness (i.e., number of the same category of retail chain),
how people interact and transit between different categories of venues, and the
structure of underlying social connections in the near-by area. One major chal-
lenge of this task lies in how to model the complex composition of venues and

578 H.-P. Hsieh et al.

various moving behaviors of people in its geo-neighborhood. On the other hand,
the number of potential customers of a location might change and evolve over
time. Both the temporal factors of periodic growth and decline (e.g. high vs.
slack seasons and weekdays vs. weekend) and special activities (e.g. anniversary
and seasonal discount campaign) can affect the customer numbers. Consequently,
there might not exist regular patterns to be used to predict the potential cus-
tomers of a location over time. This work tries to bring such temporal impact
into our estimation model.

Given some locations in a city, certain time periods of interest, and a set of
stores of a target retail chain (e.g. Starbucks) that already has venues established
with historical check-in data, our goal is to estimate the number of potential
customers for the given locations at the designated time periods (e.g. weeks or
months). To deal with this problem, we devise a model called Potential Customer
Estimator (PCE), whose idea is three-fold. First, we construct a Correlation
Graph (CG), which is a multi-layer graph, to represent the spatial and tempo-
ral correlation between existing stores and the query locations. We investigate
three categories of features, geographical, mobility, and social, to model the cor-
relation between locations in CG. Second, since different features have different
effects on the estimation target, we estimate the location correlation separately
by investigating the predictability of each feature. The correlation values derived
are represented as edge weights in CG. Third, based on the CG with location
correlation values on edges, we develop a Customer Inference Algorithm (CIA),
which iteratively adjusts the estimated number of potential customers of the
query locations till convergence.

2 Related Work

Investigating Location Popularity. The most relevant study is Geo-
Spotting [8], which is to identify the popular locations for optimal retail store
placement. Nevertheless, there are two differences. First, they formulate the task
as a ranking problem: ranking areas such that popular areas are at the top of
the list. However, we aim to estimate the exact number of potential customers,
which might be more useful to calculate the potential profit of the placement.
Second, while what Geo-Spotting considers is the overall popularity (i.e., the
accumulated number of check-ins), ours is capable of estimating the number
of location check-ins for a particular week, month, and season, which can be
regarded as a kind of reflection of the weekly, monthly, and seasonal revenues,
to facilitate the advertising strategy for the retail chain. Though the studies of
Li et al. [11] investigate the common characteristics of popular locations, Kisile-
vich et al. [9] analyze the geo-spatial properties of attractive areas, Tiwari and
Kaushik [20] design a new popularity measure based on user category, visiting
frequency, and stay time, they do not make the prediction of future popularity.
For other relevant work, Fu et al. [5] propose to rank the residential real estate
based on investment values by mining the opinions from online user reviews and
offline human mobility. Chen et al. [2] use the road network data to find loca-
tions to set up new servers such that the cost of clients being served by nearest

Estimating Potential Customers Anywhere and Anytime 579

servers is minimized. Liu et al. [13] leverage the technique of matrix factor-
ization to recommend locations by modeling the geographical characteristics of
their neighborhoods. In addition, Hsieh et al. [6] develop a graph-based model to
infer miss sensor values through learning the correlation between heterogeneous
features and air quality values.

Human Mobility Prediction. Human mobility prediction is to predict the
next locations that the user might visit before. Monreale et al. [16] predict
the next location of a moving object with an assumption: people tend to fol-
low common paths. With mined frequent trajectory patterns capturing common
paths, they construct a decision tree-like structure, T-pattern Tree, as a pre-
dictor of the next location. Ying et al. [21] leverage the semantic information,
which describes the activities (in the form of tags and types) of locations. Given
the recent moves of a user, they compute the matching score geographically and
semantically between mined frequent sub-trajectories and the given moves to
find the the next location. Sadilek et al. [18] predict the most likely location of
a user at any time, given the historical trajectories of his/her friends. They use
the discrete dynamic Bayesian network to model the motion patterns of users
from their friends.

3 Problem Statement

We define the number of potential customers, followed by the problem definition.

Definition 1: Number of Potential Customers. The number of potential
customers pc(v) of a location v ∈ L is the number of check-ins performed at v,
where pc(v) is a positive integer, and L is the set of locations in the check-in data.
In addition, the number of potential customers of location v at time ti, denoted
by pc(v(ti)), is the number of potential customers derived from a certain time
period ti (e.g. a week or a month).

We use Foursquare check-in data in the work. We denote the maximum num-
ber of potential customers in a check-in data to be pcmax. Note that throughout
this paper we use terms “number of potential customers”, “number of check-ins”,
and “popularity” interchangeably.

Problem Definition: Estimating Potential Customer Number Any-
where & Anytime. Given a target retail chain and a set of its stores geo-
graphically established in the city, with the historical check-in data of the stores
in time periods T = 〈t1, t2, ..., tn〉, the set L of all venues in the city, the under-
lying social network G = (V,E) among people (V is the set of users and E is the
set of social relationships between V), an arbitrary query locations v in the city
(v /∈ L), the goal is to estimate the number of potential customers pc(v(ti)) of
location v in each time period ti ∈ T .

580 H.-P. Hsieh et al.

4 Dataset

We aim to estimate the number of potential customers of query location by
utilizing the check-in and venue data from the most well-known location-
based service Foursquare1 and the commonly-used location-based social net-
work data Gowalla2. Since Foursquare had been launched in 2009, the vol-
ume of users, check-in records, and venue information are accumulated rapidly.
Up to the end of 2013, there are 45 million users, 5 billion check-ins, and
60 million venues. Although Foursquare does not allow developers to directly
access the check-in data, they allow users to share their check-ins pub-
licly on Twitter3. Therefore, with the help of Geo-Spotting [8], we have
the check-in data from Twitter and the venue data from Foursquare. To
have adequate data for the experiments, we focus on New York City where
Foursquare was launched and thus has significantly more users than any city in
the world. The collected data in New York City contains 47,581 geo-tagged
venues and 4,337,663 check-ins in a period of ten months (December 2010
to September 2011), i.e., forty weeks in total. Note that this data subset
of NYC accounts for approximately 55% of all venues collected. As for the
Gowalla location-based social network, which is collected by Cho et al. [3],
there are totally 196,591 users, 950,327 social connections between users, and
6,442,890 check-in records collected from February 2009 to October 2010.

Fig. 2. Data Statistics: (a) Cumulative distribution function (CDF) of total
check-ins per store for three retail chains. (b) The average check-ins of stores
over weeks. (c) The average check-in of stores over months.

We target at the stores of three popular retail chains, Starbucks (SB),
McDonald’s (MC), and Dunkin’ Donuts (DD). The statistics of each retail chain
is reported as – the number of stores: 245, 89, and 149 for SB, MC, and DD;
the total number of check-ins: 1,051,398, 100,520, and 187,704 for SB, MC,
and DD respectively. The cumulative distribution of check-ins are also shown
1 https://foursquare.com/
2 https://snap.stanford.edu/data/loc-gowalla.html
3 https://twitter.com/

https://foursquare.com/
https://snap.stanford.edu/data/loc-gowalla.html
https://twitter.com/

Estimating Potential Customers Anywhere and Anytime 581

in Figure 2(a). We can find that the check-in patterns of coffee shops (e.g.
Starbucks) are different from those of fast food restaurants (e.g. McDonald’s).
Starbucks has the most number of stores as well as the most number of check-ins,
in which its average number of check-in per store is almost four times than the
other two chains. In addition, about 60% of Starbucks stores have check-in num-
bers higher than 3,000, which is significantly more than the other two as well.
We believe it is because the time people take to stay in coffee shops is usually
longer than that in fast food restaurants, and longer staying time would lead
to higher possibility of performing check-ins. Since our goal is to estimate the
number of potential customers, i.e., the evolution of check-in numbers over time,
in Figure 2(b) and 2(c) we report the average number of check-ins per store over
time in terms of weeks and months respectively. In general the check-in behav-
iors of three chains are different, except for a burst in the thirty week and in the
eighth month. The average potential customer numbers of weeks fluctuate more
significantly, comparing to those of months. These statistics show the difficulty
of estimating potential customers.

5 Potential Customer Estimator (PCE)

5.1 Geographical, Mobility, and Social Features

We consider the following features to estimate potential customers. We calculate
the features from the set of venues N(v) = {u : dist(u, v) < r} in the near-by area
with a disk of radius r centered at location v to be estimated, where dist(u, v) is
the geographical distance between venue u and location v. Note that we refer a
venue to be a place that some kind of business has been established. We choose
the radius r to be 200 meters in default according to the optimal neighborhood
size suggested by the urban planning community [14]. There are three main
categories of features. The first is the geographical features (GF), which describe
the category distribution and the geographical interactions between venues. The
specific feature items include:

– Density is the number of venues in the geographical neighborhood N(v) of
location v. The formation definition of density of location v is given by:
Density(v) = | {u ∈ L : dist(u, v) < r} |, where L is the set of all venues in
the data.

– Neighbor Entropy measures the heterogeneity of venue categories in N(v). By
denoting the set of venues with category ci in the neighborhood of location
v as Nci(v) and the entire set of venue categories as C, the neighbor entropy
can be defined as: NbrEntropy(v) = −∑

ci∈C
|Nci

(v)|
|N(v)| · log |Nci

(v)|
|N(v)| .

– Competitiveness is the proportion of venues whose categories are the same as
the category of the target store (e.g. ”fast food restaurant” for McDonald’s).
Given the category of location v, denoted by cv, its competitiveness is given
by: Compete(v) = − |Ncv (v)|

|N(v)| . Locations with lower competitiveness scores tend
to be promising ones.

582 H.-P. Hsieh et al.

– Attractiveness is to capture the deployment and interactions between venue
categories. If a location of a certain venue category can attract more locations
with other venue categories in its neigborhood, such location is said to be
more attractive. The attractiveness of location v is defined as: Attract(v) =∑

ci∈C log(κci→cv) ·(|Nci(v)|−|N ′
ci(v)|), where |N ′

ci(v)| is the average number
of neighboring locations of category ci in the neighborhood of all the locations
of category cv. In addition, κci→cv denotes the inter-category coefficient from
category ci to cv. Such inter-category coefficient can be defined as: κci→cv =
|N |−|Nci

|
|Nci

|·|Ncv |
∑

u∈L
|Ncv (u)|

|N(u)|−|Ncu (u)| , where N is the entire set of locations in the
dataset, Ncu is the set of near-by locations of cu.

The second category is the mobility features, which aim to model how users
move and transit between venues. The specific feature items include:

– Area Popularity is the total number of check-ins for venues in N(v). The
formal definition of area popularity for location v is given by: AreaPop(v) =
|{(CI(u) ∈ M : dist(u, v) < r}|, where CI(u) denotes the set of check-in
records at location u and M is the set of all check-ins in the data.

– Transition Density is the density of transitions between venues within N(v). By
denoting the set of consecutive check-in transitions between each pair of loca-
tions x and y as TS((x, y) ∈ TS), the measure of transition density is defined
as: TransDensity(v) = | {(x, y) ∈ TS : dist(x, v) < r ∧ dist(y, v) < r} |.

– Incoming Flow estimates the transitions from venues outside N(v) to those
in N(v). The incoming flow score of location v is given by: InF low(v) =
| {(x, y) ∈ TS : dist(x, v) > r ∧ dist(y, v) < r} |.

– Transition Attractiveness is designed to estimate the probability of transitions
between all other types of venues and venues of the same type as the target
store. That says, assume people prefer to travel from locations of category cu
to locations of category cv, if the near-by locations u ∈ N(v) of location v can
gather higher check-in numbers, then the transition attractiveness of location v
tends to be high. The transition attractiveness is given by: TransAttract(v) =∑

u∈N(v) ρcu→cv ·Mu, where Mu is the set of check-ins at location u, and ρcu→cv

is the probability of transitions from category cu to category cv. Such inter-
category transition probability can be defined by the average percentage of all
the check-ins from cu to cv: ρcu→cv = | {(x, y) ∈ TS : x = u ∧ cy = cv} | · 1

|Mu| .

For the mobility features, we further consider two feature sets according to the
time periods used to compute the feature values: based on the current time
period to be estimated and based on the cumulative time periods from past to
now. Therefore, we have two mobility feature sets: temporal mobility features
(TMF), and cumulative mobility features (CMF). The third category is the social
features, which characterize the social interactions for users who had ever visited
the near-by area of location v. The specific feature items include:

– Cohesiveness is to model the structure connectivity of the graph G[N(v)]
induced by users who had ever visit N(v). This is designed to characterize the
extent of cohesion or separation for people who live or visit locations within

Estimating Potential Customers Anywhere and Anytime 583

N(v). We employ the density and the clustering coefficient of G[N(v)] as the
feature values. In addition, we also compute the number of components in
G[N(v)] to be another indicator of cohesiveness.

– Social Groups estimates the number of groups of potential customers on the
location-based social network G. We consider a community as a group of
potential customers, and calculate the number of communities for people who
had ever visited N(v) as the feature value. The Louvian method [1] is used for
community detection.

– Network Centrality measures the importance of users on the location-based
social network G. We compute the values of degree, closeness, betweenness,
PageRank, and SimRank, and consider the maximum, minimum, and average
scores over users who had ever visit N(v) as feature values.

– Geo-Social Metrics aim to quantify the geo-social influence of a user within
the near-by area of location v. We employ four well-known geo-social metrics:
spatial degree centrality [12], spatial closeness centrality [12], node novelty
[19], and geographic clustering coefficient [19]. We compute the maximum,
minimum, and average values over users who had ever visited N(v).

5.2 Correlation Graph

We construct the Correlation graph to model the spatial and temporal cor-
relations between existing and query locations. What follows first defines and
elaborates the correlation graph, and then describes how to exploit the features
extracted above to derive the correlation between locations as edge weights.

Definition: Correlation Graph (CG). A CG is a multi-layer weighted con-
nected graph G = 〈Gt1 , Gt2 , ..., Gtn〉, in which t is the total number of layers
for time periods t1, t2, ..., tn, and Gti = (V,E,W) is the layer graph in at the
ti-th time period, where V is the set of locations, E is the set of edges between
locations, and W = W ti +W ti,tj is the matrix representing edge weights, where
W ti and W ti,tj are edge weights learned from nodes within time period ti and
across time periods ti and tj(i �= j) respectively. The node set V consists of (a)
existing locations of retail stores whose potential customer numbers have known,
denoted by labeled nodes V•, and (b) the query locations, denoted by unlabeled
nodes V◦, where V = V• ∪ V◦. Each labeled node v• ∈ V• is associated with
its potential customer numbers pc(v•(ti)). The edge set E also consists of two
parts: the set of edges E� connecting nodes within each layer graph Gti , and
the set of edges E� connecting the same nodes across different layer graphs Gti

and Gtj (i �= j), where E = E� ∪ E�.
The construction of correlation graph consists of three parts. First, because

we aim to use existing stores to estimate the numbers of potential customers for
query locations, we connect each unlabeled node v◦ ∈ V◦ to all the labeled nodes
u• ∈ V• within each time period. Second, owing to the fact that the potential
customer number of a store is highly correlated to its historical values, we connect
each unlabeled node within time period tj to the corresponding unlabeled node
within each of its previous time period ti(i < j). Third, since the potential

584 H.-P. Hsieh et al.

Fig. 3. An illustration to the correlation graph.

customer numbers of near-by locations have higher possibility to be close to one
another (due to sharing similar volume of crowds), each unlabeled node v◦ ∈ V◦
is connected to the near-by unlabeled ones u◦ ∈ V◦ within a geographical radius
r (r = 200 meters), where dist(u◦, v◦) < r.

We illustrate the correlation graph using Figure 3. There are seven loca-
tions as nodes V = {v1, v2, ..., v7}, in which five are labeled nodes V• =
{v1, v2, v4, v6, v7} and two are unlabeled nodes V◦ = {v3, v5}. Since there are
n time periods t1, t2, ..., tn, we construct n layer graphs sharing the same node
set V . In each layer graph Gti , a set of internal edges E� are constructed, as
illustrated using bold lines. For any two layer graphs Gti and Gtj (i �= j), we
construct a set of external edges eij ∈ E� connecting the same unlabeled nodes
v◦ ∈ V◦ between Gti and Gtj , as shown using dash lines. We will describe the
way to determine edge weights W ti through feature-aware location correlation
in the following.

5.3 Location Correlation

Learning edge weights in CG from location features plays a key role in the esti-
mation of potential customer numbers for unlabeled nodes. We aim to model the
correlation between a labeled and an unlabeled node as their edge weight. The
idea is that for a certain time period, if two locations with higher correlation,
they tend to have closer potential customer numbers. In other words, for an unla-
beled node v ∈ V◦, its number of potential customer will be close to that of the
location with higher correlation to each other. The geographical, mobility, and
social features are exploited to characterize the correlation between locations. In
general, two locations whose features have lower difference should share closer
potential customer numbers, while higher difference should make their potential
customer numbers far away. Nevertheless, various feature might have different
degree of effect on the correlation of potential customer numbers between the fea-
ture difference. For example, though lower feature differences of Area Popularity
and Density between two locations make their potential customer numbers close,
one should have more significant effect on the other. Therefore, the importance
of separate feature should be considered.

Estimating Potential Customers Anywhere and Anytime 585

For a certain store, we estimate the feature-aware location correlation based
on their differences with respect to each feature. Then we combine the values of
feature-aware location correlation of all the features through weighted sum. The
weight multiplied by each feature location correlation will be determined based
on its predictability of potential customers.

Definition 7: Feature-aware Location Correlation (FLC). Given a partic-
ular feature fk, the feature-aware location correlation flcfk(u(ti), v(tj)) between
nodes u and v, (u, v) ∈ E, in time periods ti and tj respectively can be derived
from their feature difference flcfk(u(ti), v(tj)) = Δfk(u(ti), v(tj)), where Δfk is
their feature difference, defined by Δfk = ‖fk(u(ti)) − fk(v(tj))‖.

Given a set of features F = {f1, f2, ..., fm}, we combine feature-aware location
correlation value flc(u(ti), v(tj)) between nodes u and v, (u, v) ∈ E, in time
periods ti and tj , via the weighted sum of their correlation flcfk , given by:

flc(u(ti), v(tj)) = exp(−
m∑

k=1

πk × flcfk(u(ti), v(tj))), (1)

where πk is the weight of feature fk. The combined correlation is considered as
the edge weight wu(ti),v(tj) = flc(u(ti), v(tj) between nodes u and v in CG.

Feature-based Top Store Detection. To determine feature weight πk, we use
the values of each feature fk on existing stores to detecting stores with higher
check-in numbers, and if fk leads to higher precision scores, it will be assigned
a higher feature weight. We use Precision@X% to evaluate the goodness of
each feature. An instance is a store at a certain time period ti, and there are
|S| × |T | instances in total, where S is the set of all the stores. We denote
the set of all instances to be ST . By setting X% = 10%, 20%, 30% of stores
with top/higher check-in numbers, we define the scores of Precision@X% as
|STfk,X% ∩STX%|/|STX%|, where STX% is the set of stores with top X% check-
in numbers, and STfk,X% is the set of stores with top X% values of feature
fk. Features with higher precision scores provide more benefit on estimating
potential customer numbers of stores. Therefore, we compute the weight πk of
each feature fk by normalizing the average precision scores of fk over all the
features, πk = [0, 1].

5.4 Customer Inference Algorithm

We estimate the potential customer numbers of arbitrary locations over time
t1, t2, ..., tn using the correlation graph. The idea is to iteratively update the
number of potential customers pc(v◦) of each unlabeled node v◦ until the change
of their potential customer numbers converges. Since the correlation of poten-
tial customer numbers among locations or stores is described by the correlation
graph, we compute the potential customer number pc(v◦) from its neighboring
labeled or unlabeled nodes. This is fulfilled by averaging the potential customer
numbers of v◦’s neighbors, which are weighted by edge weights. Since the corre-
lation graph provides benefits on modeling the temporal and spatial correlation

586 H.-P. Hsieh et al.

Algorithm 1. Potential Customer Estimation (PCE)
Input: (a) a set of existing store locations V• with existing potential customer

numbers pc(v•) (v• ∈ V•), (b) a set of query locations V◦, (c) the time
periods to be observed T = t1, t2, ..., tn

Output: pc(v◦(ti)), where v◦ ∈ V◦ and ti ∈ T
1 V ← V• ∪ V◦;
2 fk(v) ← extracting feature fk, k = 1, 2, ..., m, v ∈ V ;
3 Construct CG from V and fk(v), v ∈ V ;
4 Compute feature weights πk by Precision@X% with normalization;
5 wuv ← exp(−∑m

k=1 πk × flcfk(u(ti), v(tj)));
6 Initialize the potential customer number of each unlabeled node

pc(v◦(ti)) ←∑u∈N(v◦(ti))&u∈V• wv◦(ti),u × pc(u);

7 ΔavgPc ← 1
|V◦| ×∑v◦(ti)∈V◦ pc(v◦(ti));

8 while ΔavgPc > ε do
9 for v◦(ti) ∈ V◦ do

10 pc(v◦(ti)) ←∑u∈N(v◦(ti))
wv◦(ti),u × pc(u);

11 ΔavgPc ← 1
|V◦| ×∑v◦(ti)∈V◦ pc(v◦(ti));

12 return pc(v◦(ti)).

of potential customers, stores with higher correlation with v◦ contribute more
weights on the estimation of potential customer numbers for unlabeled nodes.

We give the complete algorithm of Potential Customer Estimator (PCE) in
Algorithm 1. We first use both existing stores (i.e., labled nodes V•) and query
locations (i.e., unlabeled nodes V◦) to construct the correlation graph based on
the extracted features fk for each node (line 1-3). With the feature-based top store
detection, we can derive the weight of each feature πk and use feature weight to
initialize the edge weight wuv in the correlation graph (line 4-5). Then we can fur-
ther initialize the potential customer number of each unlabeled node pc(v◦(ti))
from the set of v◦(ti)’s neighboring labeled nodes N(v◦(ti)) ⊂ V• (line 6).
We also initialize the difference of the average potential customer numbers
between iterative rounds ΔavgPc by the sum of the initialized potential cus-
tomer numbers of unlabeled nodes (line 7). In the iterative updating (line 8-11),
we continue adjusting the potential customer numbers of unlabeled nodes based
on those of its neighboring labeled and unlabeled nodes and the edge weights.
This iterative process will terminate until ΔavgPc converges.

6 Experiments

We conduct experiments to exhibit the performance the proposed PCE model.
The objective is three-fold. First, we aim to understand the effectiveness of PCE,
comparing to a series of competitors. Second, we are eager to know whether or
not PCE can successfully detect the locations with higher potential customer

Estimating Potential Customers Anywhere and Anytime 587

numbers. Three, we wonder how different combinations of features and different
feature settings affect the performance of PCE.

6.1 Evaluation Plans

Competitive Methods. We compare PCE with a series of competitive meth-
ods, which are divided into four categories. The first is spatial k-nearest neigh-
bors; the second category is two interpolation-based methods, i.e., Inverse Dis-
tance Weighting and Ordinary Kriging; the third is two conventional learning
methods (i.e., Artificial Neural Network and Support Vector Regression); and the
fourth is two state-of-the-art semi-supervised learning methods, i.e., Co-Training
and Radial Basis Function-based SSL. Note that SVR is one of the methods that
have the best performance popularity ranking on Geo-Spotting [8].

– Spatial k-Nearest Neighbors (kNN) considers the average potential cus-
tomer number from the potential customer numbers of the k closet geograph-
ical neighboring locations as the estimated value.

– Inverse Distance Weighting (IDW) is a well-known interpolation method
[4]. IDW assigns values of unlabeled locations by calculating the weighted aver-
ages of the values available on labeled locations. Locations lower geographical
distances have higher weights.

– Ordinary Kriging (OK) [17] is a state-of-the-art method of spatial point
interpolation. The prediction is calculated as weighted averages of geo-
graphical neighbors, in which the weights are determined by finding the
semi-variogram values for instances between known locations and the semi-
variogram values for instances between each unknown location and all known
locations. Then a set of simultaneous equations are solved by minimizing the
estimation error of each unknown location.

– Artificial Neural Network (ANN) with the commonly-used back propa-
gation technique is used as another baseline. The constructed ANN contains
one hidden layer in the experiments for the generality. We set a linear function
for the neurons in the input layer and assign a sigmoid function for those in
the hidden and output layers.

– Support Vector Regression (SVR). A version of SVM for regression is
choose chosen to estimate the potential customer numbers. SVR utilizes the
historical check-in data on locations as the training data and learn a cost
function to build the predictive model.

– Co-Training (CT) is proposed by Nigam and Ghani [15] and serves as the
state-of-the-art method for learning the correlation between real values. The
co-training model consists of two separated classifiers. One is a spatial classifier
based on artificial neural network to model the spatial correlation of labels.
The other is a temporal classifier based on a linear-chain conditional random
field (CRF) [10] to model the temporal dependency of labels.

– Radial Basis Function-based Semi-supervised Learning (SSL), which
is a state-of-the-art graph-based learning method [23], serves as a strong com-
petitor. To apply RBF-SSL, the potential customer numbers of query loca-
tions within each time period are estimated separately, in which a graph is

588 H.-P. Hsieh et al.

constructed for each time period based on geographical distance. In addition,
we quantize the potential customer numbers of locations as ten discrete labels,
and consider the mean value of the predicted label to be the result.

Evaluation Metrics. We use two metrics in the experiments: Hit Rate and Nor-
malized Discounted Cumulative Gain (NDCG). For a location v◦ in the query
set of locations V◦ within time period ti ∈ T (T = t1, t2, ..., tm), assume its esti-
mated potential customer number is pc(v◦(ti)) and the ground-truth potential
customer number is p̃c(v◦(ti)). Then the hit rate is defined as:

HitRate =

∑
v◦∈V◦,ti∈T hit(pc(v◦(ti)), p̃c(v◦(ti)))

|V◦| · |T | , (2)

where hit(pc(v◦(ti)), p̃c(v◦(ti))) = 1 if p̃c(v◦(ti)) − γ ≤ pc(v◦(ti)) ≤ p̃c(v◦(ti)) +
γ, otherwise: hit(pc(v◦(ti)), p̃c(v◦(ti))) = 0, where the parameter γ determines
the strictness of the evaluation through varying the granularity of the ground-
truth potential customer numbers. A higher γ value indicates a loose generous
evaluation and every methods would have higher accuracy in general; a lower
γ value refers to a strict evaluation, and thus the accuracy tends to be lower
for different methods. We choose to have a strict evaluation with γ = 30. The
second evaluation metric is NDCG [7]. We use NDCG to estimate the ranking
quality between the potential customer numbers estimated by a method and the
ground-truth potential customer number. Higher scores of Hit Rate and NDCG
mean better performance.

Basic Settings. To evaluate PCE, we use the potential customer numbers of
stores of three retail chains, Starbucks (SB), McDonald’s (MC) and Dunkin’
Donuts (DD). We choose such three retail chains because their stores are three
of the most popular and the most widely scattered in New York City. Such
three retail chains are considered as three evaluation subsets. For each retail
chain, we divide its stores into training and test parts. Assume there are nS

stores and nT time periods, we randomly select 80% stores as training instances
(80%×nS ×nT) and the other 20% stores are regarded as test instances, whose
locations are used as the query and their potential customer numbers within each
time period are removed and served as the ground truth. For the parameters used
in the experiments, we have the following settings by default: (a) the geographical
neighboring radius of feature extraction r = 200 meters, (c) two categories of
time period granularity are considered: week and month, (d) all the three feature
sets, geographical features (GF), temporal mobility features (TMF), cumulative
mobility features (CMF), and social features (SF) are used together, and (e) the
strictness parameter γ = 30 for the evaluation metric of accuracy.

Detailed Plans. To reach the three goals mentioned above, we have the follow-
ing four detailed evaluation plans. The first is the general evaluation, in which
the proposed PCE is compared to seven competitors. The general evaluation will
be conducted under time periods of weeks and months for the three retail chains.

Estimating Potential Customers Anywhere and Anytime 589

The second is the top potential customers evaluation, which is designed to under-
stand whether or not the proposed PCE can successfully detect locations with
higher potential customer numbers. The third is the feature importance evalu-
ation. Through reporting the performance of PCE using different combinations
of feature sets, including GF, TMF, CMF, and SF we can know which feature is
more important in the estimation of potential customer numbers. The fourth is
the feature range evaluation. Recall the feature values computed are constrained
to a certain geographical radius r of neighborhood. We aim to present the perfor-
mance by varying the radius r, to understand the predictability of geographical
areas.

6.2 Experimental Results

General Evaluation. The results for the three retail chains under time periods
of weeks and months are shown in Table 1. We can find that PCE significantly
outperforms all of the competitors under all the cases. We think such promising
results come from not only the investigation of location correlation as well as
feature-aware location ranking, but also the simultaneous consideration of spatial
and temporal dependency between locations and stores in the correlation graph.
However, most of the competitors that purely learn the correlation between
features and potential customer numbers. In more details, it can be observed
that the accuracy is hard to exceed 0.8 under time periods of weeks, especially
for the competitors. We think it is because we choose a strict evaluation with
γ = 30 in the experiments. In addition, we can find that the performance of
months is much better than that of weeks. It is due to the fact that the popularity
value accumulated in each month is higher than that of each week. Therefore,
the potential customer numbers of months tend to be a bit far apart from each
other and make it a bit easier to be estimated.

Top Potential Customers Evaluation. We test if the proposed PCE is able
to detect the locations with higher potential customer numbers. Following the
settings described in the section of Feature-based Top Store Detection and using
and the same evaluation metric Precision@X%, we aim to present the esti-
mated potential customer numbers by PCE by varying the percentage of loca-
tions with the highest potential customer numbers from 5% to 35%. We report
the Precision@X% scores in Figure 4. We can find that the precision scores by
PCE can have 0.8 precision scores for top 20% stores with the highest potential
customer numbers. Such results exhibit the practical usages of PCE on estimat-
ing and finding hot zones in a city, and demonstrate the effectiveness of using
stores as sensors to estimate the numbers of potential customers.

Feature Importance Evaluation. To understand which feature set is more
important on potential customer estimation, we report the performance of dif-
ferent combinations of feature sets (i.e., GF, TMF, CMF, and SF) using PCE,
as shown in Table 2. We can find that comparing to GF, CMF, and SF, TMF
obtains the better results with higher scores of NDCG scores in general under

590 H.-P. Hsieh et al.

Table 1. General Evaluation Results on weeks and months.

Week Month
nDCG HitRate nDCG HitRate

SB MC DD SB MC DD SB MC DD SB MC DD

kNN 0.15 0.30 0.25 0.11 0.12 0.12 0.26 0.33 0.39 0.13 0.14 0.14
IDW 0.17 0.30 0.25 0.11 0.12 0.12 0.24 0.31 0.38 0.13 0.14 0.14
OK 0.18 0.35 0.28 0.19 0.24 0.23 0.29 0.34 0.39 0.16 0.16 0.15
ANN 0.53 0.58 0.60 0.52 0.54 0.53 0.57 0.61 0.64 0.69 0.67 0.69
SVR 0.58 0.61 0.62 0.58 0.60 0.56 0.62 0.64 0.65 0.72 0.73 0.75
CT 0.56 0.67 0.65 0.56 0.52 0.60 0.64 0.70 0.69 0.74 0.74 0.75
SSL 0.63 0.71 0.69 0.63 0.66 0.68 0.68 0.74 0.72 0.74 0.74 0.74
PCE 0.71 0.79 0.78 0.79 0.84 0.81 0.76 0.82 0.80 0.83 0.88 0.88

Fig. 4. Evaluation of Top Potential Customers using PCE, by varying the per-
centage of stores with the highest potential customer numbers.

both weeks and months and for all the three retail chains. We think the reason
could be the TMF is capable of describe the neighboring human flows at the sep-
arate time periods while CMF can only capture the historical volume of human
flow traveling in the neighborhood of a location, which reflects the total numbers
of potential customers. As for GF and SF, what it captures is the properties and
distributions of location categories and social activities in the neighborhood, and
thus cannot directly exhibit the volume of potential customers. Therefore, GF
and SF derives the worse estimation accuracy than CMF and TMF.

Feature Range Evaluation. Since the features extracted are constrained
within a certain neighborhood via the radius r (in meters), we would like to
which r is more effective and leads to better performance in PCE. The results
are shown in Figure 5. We can find the performance of using r = 300 is the best
for time periods of weeks while using r = 200 is the best for months. Too small
or large radius values r leads to worse performance because features extracted
constrain on a small area could not fully and precisely describe the neighborhood
while constraining on a large area might include irrelevant features. The feature
neighborhood radius r = 300 and r = 200 also is quite close to and responses to
the optimal neighborhood radius 200 meters suggested by urban planning [14].

Estimating Potential Customers Anywhere and Anytime 591

Table 2. Feature Importance Evaluation: the NDCG scores of different feature
sets.

Geographical Feat. (GF) Temporal Mobility Feat. (TMF)

Week Month Week Month
SB DD MC SB DD MC SB DD MC SB DD MC

kNN 0.159 0.256 0.303 0.256 0.385 0.331 0.159 0.256 0.303 0.256 0.385 0.331
IDW 0.171 0.252 0.305 0.244 0.377 0.312 0.171 0.252 0.305 0.244 0.377 0.312
OK 0.189 0.284 0.352 0.289 0.393 0.342 0.189 0.284 0.352 0.289 0.393 0.342
SVR 0.322 0.332 0.455 0.355 0.514 0.648 0.541 0.582 0.656 0.589 0.635 0.731
ANN 0.329 0.342 0.452 0.368 0.522 0.651 0.517 0.568 0.632 0.552 0.622 0.722
CT 0.334 0.351 0.452 0.369 0.524 0.652 0.533 0.578 0.649 0.561 0.642 0.729
SSL 0.341 0.382 0.464 0.431 0.529 0.668 0.557 0.580 0.658 0.562 0.657 0.712
PCE 0.349 0.401 0.481 0.462 0.552 0.681 0.582 0.619 0.713 0.663 0.685 0.756

Cumulative Mobility Feat. (CMF) Social Feat. (SF)

Week Month Week Month
SB DD MC SB DD MC SB DD MC SB DD MC

kNN 0.159 0.256 0.303 0.256 0.385 0.331 0.132 0.247 0.280 0.194 0.375 0.316
IDW 0.171 0.252 0.305 0.244 0.377 0.312 0.168 0.255 0.271 0.195 0.379 0.284
OK 0.189 0.284 0.352 0.289 0.393 0.342 0.172 0.259 0.337 0.206 0.380 0.309
SVR 0.426 0.368 0.531 0.526 0.588 0.645 0.393 0.327 0.498 0.475 0.561 0.583
ANN 0.418 0.354 0.520 0.513 0.543 0.638 0.391 0.333 0.460 0.428 0.517 0.604
CT 0.426 0.391 0.536 0.535 0.596 0.659 0.432 0.369 0.555 0.396 0.520 0.637
SSL 0.435 0.408 0.519 0.529 0.585 0.673 0.471 0.388 0.526 0.466 0.594 0.650
PCE 0.587 0.455 0.603 0.613 0.633 0.724 0.477 0.412 0.539 0.498 0.604 0.704

Fig. 5. Feature Range Evaluation, by varying the neighrborhood radius r using
PCE.

7 Conclusion

Being able to acquire the knowledge about where and when the customers will
show up can lead to many useful applications, including determining the loca-
tions of new business, choosing the right time and place to host campaign to
maximize the advertise effect. This paper proposes a method to estimate the
number of potential customers in an urban area. We leverage stores as a kind of
sensors to estimate the potential customers of of any location during any given
time span. A PCE model is developed and validated with promising perfor-
mance. In the future, we aim to go beyond location-based services and further
consider more heterogeneous urban information into the modeling of potential
customers, such as traffic status, weather, and near-by activities.

592 H.-P. Hsieh et al.

References

1. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experi-
ment (2008)

2. Chen, Z., Liu, Y., Wong, R.C.-W., Xiong, J., Mai, G., Long, C.: Efficient algorithms
for optimal location queries in road networks. In: ACM SIGMOD (2014)

3. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in
location-based social networks. In: ACM KDD (2011)

4. Donald, S.: A two-dimensional interpolation function for irregularly-spaced data.
In: ACM National Conference (1968)

5. Fu, Y., Ge, Y., Zheng, Y., Yao, Z., Liu, Y., Xiong, H., Yuan, N.J.: Sparse real
estate ranking with online user reviews and offline moving behaviors. In: IEEE
ICDM (2014)

6. Hsieh, H.-P., Lin, S.-D., Zheng, Y.: Inferring air quality for station location rec-
ommendation based on urban big data. In: ACM KDD (2015)

7. Jarvelin, K., Kekalainen, J.: Cumulated gain-based evaluation of IR techniques.
ACM TOIS (2002)

8. Karamshuk, D., Noulas, A., Scellato, S., Nicosia, V., Mascolo, C.: Geo-spotting:
mining online location-based services for optimal retail store placement. In: ACM
KDD (2013)

9. Kisilevich, S., Mansmann, F., Keim, D.: P-DBSCAN: a density based clustering
algorithm for exploration and analysis of attractive areas using collections of geo-
tagged photos. In: COM.Geo (2010)

10. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic
models for segmenting and labeling sequence data. In: ICML (2001)

11. Li, Y., Steiner, M., Wang, L., Zhang, Z.-L., Bao, J.: Exploring venue popularity in
four-square. In: IEEE INFOCOM (2013)

12. Lima, A., Musolesi, M.: Spatial dissemination metrics for location-based social
networks. In: ACM UbiComp (2012)

13. Liu, Y., Wei, W., Sun, A., Miao, C.: Exploiting geographical neighborhood char-
acteristics for location recommendation. In: ACM CIKM (2014)

14. Mehaffy, M., Porta, S., Rofe, Y., Salingaros, N.: Urban nuclei and the geometry of
streets: The emergent neighborhoods’ model. Urban Design International (2010)

15. Nigam, K., Ghani, R.: Analyzing the effectiveness and applicability of co-training.
In: ACM CIKM (2000)

16. Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: Where next: a location pre-
dictor on trajectory pattern mining. In: ACM KDD (2009)

17. Oliver, M.A., Webster, R.: Kriging: a method of interpolation for geographical
information systems. IJGIS (1990)

18. Sadilek, A., Kautz, H., Bigham, J.P.: Finding your friends and following them to
where you are. In: ACM WSDM (2012)

19. Scellato, S., Mascolo, C., Musolesi, M., Latora, V.: Distance matters: geo-social
metrics for online social networks. In: WOSN (2010)

20. Tiwari, S., Kaushik, S.: User category based estimation of location popularity using
the road GPS trajectory databases. Geoinformatica (2014)

21. Ying, J.-C., Lee, W.-C., Weng, T.-C., Tseng, V.S.: Semantic trajectory mining for
location prediction. In: ACM SIGSPATIAL GIS (2011)

22. Zhang, C., Shou, L., Chen, K., Chen, G., Bei, Y.: Evaluating geo-social influence
in location-based social networks. In: ACM CIKM (2012)

23. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian
fields and harmonic functions. In: ICML (2003)

Exact Hybrid Covariance Thresholding for Joint
Graphical Lasso

Qingming Tang1, Chao Yang1, Jian Peng2, and Jinbo Xu1(B)

1 Toyota Technological Institute at Chicago, Chicago, USA
{qmtang,harryyang}@ttic.edu

2 University of Illinois at Urbana-Champaign, Champaign, USA
jianpeng@illinois.edu

Abstract. This paper studies precision matrix estimation for multiple
related Gaussian graphical models from a dataset consisting of different
classes, based upon the formulation of this problem as group graphi-
cal lasso. In particular, this paper proposes a novel hybrid covariance
thresholding algorithm that can effectively identify zero entries in the
precision matrices and split a large joint graphical lasso problem into
many small subproblems. Our hybrid covariance thresholding method is
superior to existing uniform thresholding methods in that our method
can split the precision matrix of each individual class using different par-
tition schemes and thus, split group graphical lasso into much smaller
subproblems, each of which can be solved very fast. This paper also
establishes necessary and sufficient conditions for our hybrid covariance
thresholding algorithm. Experimental results on both synthetic and real
data validate the superior performance of our thresholding method over
the others.

1 Introduction

Graphs have been widely used to describe the relationship between variables (or
features). Estimating an undirected graphical model from a dataset has been
extensively studied. When the dataset has a Gaussian distribution, the problem
is equivalent to estimating a precision matrix from the empirical (or sample)
covariance matrix. In many real-world applications, the precision matrix is
sparse. This problem can be formulated as graphical lasso [1,22] and many algo-
rithms [4,9,16,18,19] have been proposed to solve it. To take advantage of the
sparsity of the precision matrix, some covariance thresholding (also called screen-
ing) methods are developed to detect zero entries in the matrix and then split
the matrix into smaller submatrices, which can significantly speed up the process
of estimating the entire precision matrix [12,19].

Recently, there are a few studies on how to jointly estimate multiple related
graphical models from a dataset with a few distinct class labels [3,6–8,11,13,
14,20,23–25]. The underlying reason for joint estimation is that the graphs of
these classes are similar to some degree, so it can increase statistical power and
estimation accuracy by aggregating data of different classes. This joint graph
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 593–607, 2015.
DOI: 10.1007/978-3-319-23525-7 36

594 Q. Tang et al.

estimation problem can be formulated as joint graphical lasso that makes use of
similarity of the underlying graphs. In addition to group graphical lasso, Guo et
al. used a non-convex hierarchical penalty to promote similar patterns among
multiple graphical models [6] ; [3] introduced popular group and fused graphical
lasso; and [20,25] proposed efficient algorithms to solve fused graphical lasso.
To model gene networks, [14] proposed a node-based penalty to promote hub
structure in a graph.

Existing algorithms for solving joint graphical lasso do not scale well with
respect to the number of classes, denoted as K, and the number of variables,
denoted as p. Similar to covariance thresholding methods for graphical lasso,
a couple of thresholding methods [20,25] are developed to split a large joint
graphical lasso problem into subproblems [3]. Nevertheless, these algorithms all
use uniform thresholding to decompose the precision matrices of distinct classes
in exactly the same way. As such, it may not split the precision matrices into
small enough submatrices especially when there are a large number of classes
and/or the precision matrices have different sparsity patterns. Therefore, the
speedup effect of covariance thresholding may not be very significant.

In contrast to the above-mentioned uniform covariance thresholding, this
paper presents a novel hybrid (or non-uniform) thresholding approach that can
divide the precision matrix for each individual class into smaller submatrices
without requiring that the resultant partition schemes be exactly the same
across all the classes. Using this method, we can split a large joint graphical
lasso problem into much smaller subproblems. Then we employ the popular
ADMM (Alternating Direction Method of Multipliers [2,5]) method to solve joint
graphical lasso based upon this hybrid partition scheme. Experiments show that
our method can solve group graphical lasso much more efficiently than uniform
thresholding.

This hybrid thresholding approach is derived based upon group graphical
lasso. The idea can also be generalized to other joint graphical lasso such as
fused graphical lasso. Due to space limit, the proofs of some of the theorems in
the paper are presented in supplementary material.

2 Notation and Definition

In this paper, we use a script letter, like H, to denote a set or a set partition.
When H is a set, we use Hi to denote the ith element. Similarly we use a
bold letter, like H to denote a graph, a vector or a matrix. When H is a
matrix we use Hi,j to denote its (i, j)th entry. We use {H(1),H(2), . . . ,H(N)}
and {H(1),H(2) . . . ,H(N)} to denote N objects of same category.

Let {X(1),X(2), . . . ,X(K)} denote a sample dataset of K classes and the
data in X(k) (1 ≤ k ≤ K) are independently and identically drawn from a
p-dimension normal distribution N(μ(k),Σ(k)). Let S(k) and Θ̂(k) denote the
empirical covariance and (optimal) precision matrices of class k, respectively.
By “optimal” we mean the precision matrices are obtained by exactly solving

Exact Hybrid Covariance Thresholding for Joint Graphical Lasso 595

joint graphical lasso. Let a binary matrix E(k) denote the sparsity pattern of
Θ̂(k), i.e., for any i, j(1 ≤ i, j ≤ p),E(k)

i,j = 1 if and only if Θ̂T
(k)
i,j �= 0.

Set Partition. A set H is a partition of a set C when the following conditions are
satisfied: 1) any element in H is a subset of C; 2) the union of all the elements in
H is equal to C; and 3) any two elements in H are disjoint. Given two partitions
H and F of a set C, we say that H is finer than F (or H is a refinement of
F), denoted as H � F , if every element in H is a subset of some element in F .
If H � F and H �= F , we say that H is strictly finer than F (or H is a strict
refinement of F), denoted as H ≺ F .

Let Θ denote a matrix describing the pairwise relationship of elements in a
set C, where Θi,j corresponds to two elements Ci and Cj . Given a partition H of
C, we define ΘHk

as a |Hk| × |Hk| submatrix of Θ where Hk is an element of H
and (ΘHk

)i,j ∼= Θ(Hk)i(Hk)j for any suitable (i, j).

Graph-based Partition. Let V = {1, 2, . . . , p} denote the variable (or feature)
set of the dataset. Let graph G(k) = (V,E(k)) denote the kth estimated con-
centration graph 1 ≤ k ≤ K. This graph defines a partition �(k) of V, where
an element in �(k) corresponds to a connected component in G(k). The matrix
Θ̂(k) can be divided into disjoint submatrices based upon �(k). Let E denote
the mix of E(1),E(2), . . . ,E(K), i.e., one entry Ei,j is equal to 1 if there exists
at least one k (1 ≤ k ≤ K) such that E

(k)
i,j is equal to 1. We can construct a

partition � of V from graph G = {V,E}, where an element in � corresponds to
a connected component in G. Obviously, �(k) � � holds since E(k) is a subset
of E. This implies that for any k, the matrix Θ̂(k) can be divided into disjoint
submatrices based upon �.

Feasible Partition. A partition H of V is feasible for class k or graph G(k) if
�(k) � H. This implies that 1) H can be obtained by merging some elements in
�(k); 2) each element in H corresponds to a union of some connected components
in graph G(k); and 3) we can divide the precision matrix Θ̂(k) into independent
submatrices according to H and then separately estimate the submatrices with-
out losing accuracy. H is uniformly feasible if for all k (1 ≤ k ≤ K), �(k) � H
holds.

Let H(1),H(2), . . . ,H(K) denote K partitions of the variable set V . If for
each k (1 ≤ k ≤ K), �(k) � H(k) holds, we say {H(1),H(2), . . . ,H(K)} is a
feasible partition of V for the K classes or graphs. When at least two of the K
partitions are not same, we say {H(1),H(2), . . . ,H(K)} is a non-uniform partition.
Otherwise, {H(1),H(2), . . . ,H(K)} is a class-independent or uniform partition
and abbreviated as H. That is, H is uniformly feasible if for all k (1 ≤ k ≤ K),
�(k) � H holds. Obviously, {�(1),�(2), . . . ,�(K)} is finer than any non-uniform
feasible partition of the K classes. Based upon the above definitions, we have
the following theorem, which is proved in supplementary material.

Theorem 1. For any uniformly feasible partition H of the variable set V, we
have � � H. That is, H is feasible for graph G and � is the finest uniform
feasible partition.

596 Q. Tang et al.

Proof. First, for any element Hj in H, G does not contain edges between Hj

and H−Hj . Otherwise, since G is the mixing (or union) of all G(k), there exists
at least one graph G(k) such that it contains at least one edge between Hj and
H − Hj . Since Hj is the union of some elements in �(k), this implies that there
exist two different elements in �(k) such that G(k) contains edges between them,
which contradicts with the fact that G(k) does not contain edges between any
two elements in �(k). That is, H is feasible for graph G.

Second, if � � H does not hold, then there is one element �i in � and
one element Hj in H such that �i ∩ Hj �= ∅ and �i − Hj �= ∅. Based on the
above paragraph, ∀x ∈ �i ∩ Hj and ∀y ∈ �i − Hj = �i ∩ (Hi − Hj), we have
Ex,y = Ey,x = 0. That is, �i can be split into at least two disjoint subsets such
that G does not contain any edges between them. This contradicts with the fact
that �i corresponds to a connected component in graph G.

3 Joint Graphical Lasso

To learn the underlying graph structure of multiple classes simultaneously, some
penalty functions are used to promote similar structural patterns among different
classes, including [3,6,7,13,14,16,20,21,25]. A typical joint graphical lasso is
formulated as the following optimization problem:

min
K∑

k=1

L(Θ(k)) + P (Θ) (1)

Where Θ(k) � 0 is the precision matrix (k = 1, . . . , K) and Θ represents the set
of Θ(k). The negative log-likelihood L(Θ(k)) and the regularization P (Θ) are
defined as follows.

L(Θ(k)) = − log det(Θ(k)) + tr(S(k)Θ(k)) (2)

P (Θ) = λ1

K∑

k=1

‖Θ(k)‖1 + λ2J(Θ) (3)

Here λ1 > 0 and λ2 > 0 and J(Θ) is some penalty function used to encourage
similarity (of the structural patterns) among the K classes. In this paper, we
focus on group graphical lasso. That is,

J(Θ) = 2
∑

1≤i<j≤p

√
√
√
√

K∑

k=1

(Θ(k)
i,j)2 (4)

4 Uniform Thresholding

Covariance thresholding methods, which identify zero entries in a precision
matrix before directly solving the optimization problem like Eq.(1), are widely

Exact Hybrid Covariance Thresholding for Joint Graphical Lasso 597

used to accelerate solving graphical lasso. In particular, a screening method
divides the variable set into some disjoint groups such that when two variables
(or features) are not in the same group, their corresponding entry in the preci-
sion matrix is guaranteed to be 0. Using this method, the precision matrix can
be split into some submatrices, each corresponding to one distinct group. To
achieve the best computational efficiency, we shall divide the variable set into as
small groups as possible subject to the constraint that two related variables shall
be in the same group. Meanwhile, [3] described a screening method for group
graphical lasso. This method uses a single thresholding criterion (i.e., uniform
thresholding) for all the K classes, i.e., employs a uniformly feasible partition of
the variable set across all the K classes. Existing methods such as those described
in [3,20,25] for fused graphical lasso and that in [15] for node-based learning all
employ uniform thresholding.

Uniform thresholding may not be able to divide the variable set into the finest
feasible partition for each individual class when the K underlying concentration
graphs are not exactly the same. For example, Figure 1(a) and (c) show two
concentration graphs of two different classes. These two graphs differ in variables
1 and 6 and each graph can be split into two connected components. However,
the mixing graph in (b) has only one connected component, so it cannot be split
further. According to Theorem 1, no uniform feasible partition can divide the
variable set into two disjoint groups without losing accuracy. It is expected that
when the number of classes and variables increases, uniform thresholding may
perform even worse.

(a) (b) (c)

Fig. 1. Illustration of uniform thresholding impacted by minor structure difference
between two classes. (a) and (c): the edge matrix and concentration graph for each of
the two classes. (b): the concentration graph resulting from the mixing of two graphs
in (a) and (c).

5 Non-uniform Thresholding

Non-uniform thresholding generates a non-uniform feasible partition by thresh-
olding the K empirical covariance matrices separately. In a non-uniform par-
tition, two variables of the same group in one class may belong to different

598 Q. Tang et al.

Fig. 2. Illustration of a non-uniform partition. White color indicates zero entries
detected by covariance thresholding. Entries with the same color other than white
belong to the same group.

groups in another class. Figure 2 shows an example of non-uniform partition.
In this example, all the matrix elements in white color are set to 0 by non-
uniform thresholding. Except the white color, each of the other colors indicates
one group. The 7th and 9th variables belong to the same group in the left matrix,
but not in the right matrix. Similarly, the 3rd and 4th variables belong to the
same group in the right matrix, but not in the left matrix.

We now present necessary and sufficient conditions for identifying a non-
uniform feasible partition for group graphical lasso, with penalty defined in Eq
(3) and (4).

Given a non-uniform partition {P(1),P(2), . . . ,P(K)} for the K classes, let
F (k)(i) = t denote the group which the variable i belongs to in the kth class, i.e.,
F (k)(i) ⇔ i ∈ P(k)

t . We define pairwise relationship matrices I(k) (1 ≤ k ≤ K)
as follows: {

I(k)i,j = I(k)j,i = 0; if F (k)(i) �= F (k)(j)
I(k)i,j = I(k)j,i = 1; otherwise

(5)

Also, we define Z(k)(1 ≤ k ≤ K) as follows:

Z
(k)
i,j = Z

(k)
j,i = λ1 + λ2 × τ((

∑

t�=k

|Θ̂(t)
i,j |) = 0) (6)

Here τ(b) is the indicator function.
The following two theorems state the necessary and sufficient conditions of

a non-uniform feasible partition. See supplementary material for their proofs.

Exact Hybrid Covariance Thresholding for Joint Graphical Lasso 599

Algorithm 1 Hybrid Covariance Screening Algorithm
for k = 1 to K do

Initialize I
(k)
i,j = I

(k)
j,i = 1, ∀1 ≤ i < j ≤ p

Set I
(k)
i,j = 0, if |S(k)

i,j | ≤ λ1 and i �= j

Set I
(k)
i,j = 0, if

∑K
k=1(|S(k)

i,j | − λ1)
2
+ ≤ λ2

2 and i �= j
end for
for k = 1 to K do

Construct a graph G(k) for V from I(k)

Find connected components of G(k)

for ∀(i, j) in the same component of G(k) do

Set I
(k)
i,j = I

(k)
j,i = 1

end for
end for
repeat

Search for triple (x, i, j) satisfying the following condition:

I
(x)
i,j = 0, |S(x)

i,j | > λ1 and ∃s, s.t. I
(s)
i,j = 1

if ∃(x, i, j) satisfies the condition above then
merge the two components of G(x) that containing variable i and j into new
component;
for ∀(m, n) in this new component do

Set I
(x)
m,n = I

(x)
n,m = 1;

end for
end if

until No such kind of triple.
return the connected components of each graph which define the non-uniform fea-
sible solution

Theorem 2. If {P(1),P(2), . . . ,P(K)} is a non-uniform feasible partition of the
variable set V, then for any pair (i, j) (1 ≤ i �= j ≤ p) the following conditions
must be satisfied:

{∑K
k=1(|S(k)

i,j | − λ1)2+ ≤ λ2
2; if ∀k ∈ 1, 2, . . . ,K, I

(k)
i,j = 0

|S(k)
i,j | ≤ Z

(k)
i,j ; if I(k)i,j = 0 and ∃t �= k, I

(t)
i,j = 1

(7)

Here, each S(k) is a covariance matrix of the kth class and x+ = max(0, x).

Theorem 3. If for any pair (i, j)(1 ≤ i �= j ≤ p) the following conditions hold,
then {P(1),P(2), . . . ,P(K)} is a non-uniform feasible partition of the variable
set V.

{∑K
k=1(|S(k)

i,j | − λ1)2+ ≤ λ2
2; if ∀k ∈ 1, 2, . . . ,K, I

(k)
i,j = 0

|S(k)
i,j | ≤ λ1; if I(k)i,j = 0 and ∃t �= k, I

(t)
i,j = 1

(8)

Algorithm 1 is a covariance thresholding algorithm that can identify a non-
uniform feasible partition satisfying condition (8). We call Algorithm 1 hybrid
screening algorithm as it utilizes both class-specific thresholding (e.g. |S(k)

i,j | ≤ λ1)

600 Q. Tang et al.

Fig. 3. Comparison of three thresholding strategies. The dataset contains 2 slightly
different classes and 3 variables. The two sample covariance matrices are shown on the
top of the figure. The parameters used are λ1 = 0.04 and λ2 = 0.02.

and global thresholding (e.g.
∑K

k=1(|S(k)
i,j | −λ1)2+ ≤ λ2

2) to identify a non-uniform
partition.This hybrid screening algorithmcan terminate rapidly on a typical Linux
machine, tested on the synthetic data described in section 7 with K = 10 and
p = 10000.

We can generate a uniform feasible partition using only the global threshold-
ing and generate a non-uniform feasible partition by using only the class-specific
thresholding, but such a partition is not as good as using the hybrid threshold-
ing algorithm. Let {H(1),H(2), . . . ,H(K)} , {L(1),L(2), . . . ,L(K)} and G denote the
partitions generated by hybrid, class-specific and global thresholding algorithms,
respectively. It is obvious that H(k) � L(k) and H(k) � G for k = 1, 2, . . . ,K
since condition (8) is a combination of both global thresholding and class-specific
thresholding.

Figure 3 shows a toy example comparing the three screening methods using
a dataset of two classes and three variables. In this example, the class-specific or
the global thresholding alone cannot divide the variable set into disjoint groups,
but their combination can do so.

We have the following theorem regarding our hybrid thresholding algorithm,
which will be proved in Supplemental File.

Theorem 4. The hybrid screening algorithm yields the finest non-uniform
feasible partition satisfying condition (8).

6 Hybrid ADMM (HADMM)

In this section, we describe how to apply ADMM (Alternating Direction Method
of Multipliers [2,5]) to solve joint graphical lasso based upon a non-uniform

Exact Hybrid Covariance Thresholding for Joint Graphical Lasso 601

feasible partition of the variable set. According to [3], solving Eq.(1) by ADMM
is equivalent to minimizing the following scaled augmented Lagrangian form:

K∑

k=1

L(Θ(k)) +
ρ

2

K∑

k=1

‖Θ(k) − Y (k) + U (k)‖2F + P (Y) (9)

where Y = {Y (1),Y (1), . . . ,Y (K)} and U = {U (1),U (1), . . . ,U (K)} are dual
variables. We use the ADMM algorithm to solve Eq.(9) iteratively, which
updates the three variables Θ, Y and U alternatively. The most computational-
insensitive step is to update Θ given Y and U , which requires eigen-
decomposition of K matrices. We can do this based upon a non-uniform feasible
partition {H(1),H(2), . . . ,H(K)}. For each k, updating Θ(k) given Y (k) and U (k)

for Eq (9) is equivalent to solving in total |H(k)| independent sub-problems. For
each H(k)

j ∈ H(k), its independent sub-problem solves the following equation:

(Θ(k)

H
(k)
j

)−1 = S(k)

H(k)
j

+ ρ × (Θ(k)

H(k)
j

− Y
(k)

H(k)
j

+ U
(k)

H(k)
j

) (10)

Solving Eq.(10) requires eigen-decomposition of small submatrices, which shall
be much faster than the eigen-decomposition of the original large matrices. Based
upon our non-uniform partition, updating Y given Θ and U and updating U
given Y and Θ are also faster than the corresponding components of the plain
ADMM algorithm described in [3], since our non-uniform thresholding algorithm
can detect many more zero entries before ADMM is applied.

7 Experimental Results

We tested our method, denoted as HADMM (i.e., hybrid covariance thresholding
algorithm + ADMM), on both synthetic and real data and compared HADMM
with two control methods: 1) GADMM: global covariance thresholding algorithm
+ ADMM; and 2) LADMM: class-specific covariance thresholding algorithm
+ADMM. We implemented these methods with C++ and R, and tested them
on a Linux machine with Intel Xeon E5-2670 2.6GHz.

To generate a dataset with K classes from Gaussian distribution, we first
randomly generate K precision matrices and then use them to sample 5 × p
data points for each class. To make sure that the randomly-generated precision
matrices are positive definite, we set all the diagonal entries to 5.0, and an off-
diagonal entry to either 0 or ±r × 5.0 . We generate three types of datasets as
follows.

– Type A: 97% of the entries in a precision matrix are 0.
– Type B: the K precision matrices have same diagonal block structure.
– Type C: the K precision matrices have slightly different diagonal block

structures.

For Type A, r is set to be less than 0.0061. For Type B and Type C, r
is smaller than 0.0067. For each type we generate 18 datasets by setting K =
2, 3, . . . , 10, and p = 1000, 10000, respectively.

602 Q. Tang et al.

Table 1. Objective function values of HADMM and ADMM on the six classes type C
data (first 4 iterations, p = 1000, λ1 = 0.0082, λ2 = 0.0015)

Iteration 1 2 3 4

ADMM 1713.66 -283.743 -1191.94 -1722.53
HADMM 1734.42 -265.073 -1183.73 -1719.78

7.1 Correctness of HADMM by Experimental Validation

We first show that HADMM can converge to the same solution obtained by
the plain ADMM (i.e., ADMM without any covariance thresholding) through
experiments.

To evaluate the correctness of our method HADMM, we compare the objec-
tive function value generated by HADMM to that by ADMM with respect to
the number of iterations. We run the two methods for 500 iterations over the
three types of data with p = 1000. As shown in Table 1, in the first 4 iterations,
HADMM and ADMM yield slightly different objective function values. However,
along with more iterations passed, both HADMM and ADMM converge to the
same objective function value, as shown in Figure 4 and Supplementary Figures
S3-5. This experimental result confirms that our hybrid covariance thresholding
algorithm is correct. We tested several pairs of hyper-parameters (λ1 and λ2) in
our experiment. Please refer to the supplementary material for model selection.
Note that although in terms of the number of iterations HADMM and ADMM

Fig. 4. The objective function value with respect to the number of iterations on a six
classes type C data with p = 1000, λ1 = 0.0082 and λ2 = 0.0015.

Exact Hybrid Covariance Thresholding for Joint Graphical Lasso 603

(a) Type A

(b) Type B

(c) Type C

Fig. 5. Logarithm of the running time (in seconds) of HADMM, LADMM and
GADMM for p = 1000 on Type A, Type B and Type C data.

converge similarly, HADMM runs much faster than ADMM at each iteration, so
HADMM converges in a much shorter time.

7.2 Performance on Synthetic Data

In previous section we have shown that our HADMM converges to the same
solution as ADMM. Here we test the running times of HADMM, LADMM
and GADMM needed to reach the following stop criteria for p = 1000:∑k

i=1 ||Θ(k) − Y (k)|| < 10−6 and
∑k

i=1 ||Y (k+1) − Y (k)|| < 10−6. For p = 10000,
considering the large amount of running time needed for LADMM and GADMM,
we run only 50 iterations for all the three methods and then compare the average
running time for a single iteration.

We tested the running time of the three methods using different parameters
λ1 and λ2 over the three types of data. See supplementary material for model
selection. We show the result for p = 1000 in Figure 5 and that for p = 10000 in
Figure S15-23 in supplementary material, respectively.

604 Q. Tang et al.

In Figure 5, each row shows the experimental results on one type of data
(Type A, Type B and Type C from top to bottom). Each column has the
experimental results for the same hyper-parameters (λ1 = 0.009 and λ2 =
0.0005, λ1 = 0.0086 and λ2 = 0.001, and λ1 = 0.0082 and λ2 = 0.0015 from left
to right). As shown in Figure 5, HADMM is much more efficient than LADMM
and GADMM. GADMM performs comparably to or better than LADMM when
λ2 is large. The running time of LADMM increases as λ1 decreases. Also, the
running time of all the three methods increases along with the number of classes.
However, GADMM is more sensitive to the number of classes than our HADMM.
Moreover, as our hybrid covariance thresholding algorithm yields finer non-
uniform feasible partitions, the precision matrices are more likely to be split
into many more smaller submatrices. This means it is potentially easier to par-
allelize HADMM to obtain even more speedup.

We also compare the three screening algorithms in terms of the estimated
computational complexity for matrix eigen-decomposition, a time-consuming
subroutine used by the ADMM algorithms. Given a partition H of the vari-
able set of V, the computational complexity can be estimated by

∑
Hi∈H |Hi|3.

As shown in Supplementary Figures S6-14, when p = 1000, our non-uniform
thresholding algorithm generates partitions with much smaller computational
complexity, usually 1

10 ∼ 1
1000 of the other two methods. Note that in these

figures the Y-axis is the logarithm of the estimated computational complexity.
When p = 10000, the advantage of our non-uniform thresholding algorithm over
the other two are even larger, as shown in Figure S24-32 in Supplemental File.

7.3 Performance on Real Gene Expression Data

We test our proposed method on real gene expression data. We use a lung can-
cer data (accession number GDS2771 [17]) downloaded from Gene Expression
Omnibus and a mouse immune dataset described in [10]. The immune dataset
consists of 214 observations. The lung cancer data is collected from 97 patients
with lung cancer and 90 controls without lung cancer, so this lung cancer dataset
consists of two different classes: patient and control. We treat the 214 observa-
tions from the immune dataset, the 97 lung cancer observations and the 90
controls as three classes of a compound dataset for our joint inference task.
These three classes share 10726 common genes, so this dataset has 10726 fea-
tures and 3 classes. As the absolute value of entries of covariance matrix of first
class (corresponds to immune observations) are relatively larger, so we divide
each entry of this covariance matrix by 2 to make the three covariance matrices
with similar magnitude before performing joint analysis using unique λ1 and λ2.

The running time (first 10 iterations) of HADMM, LADMM and GADMM
for this compound dataset under different settings are shown in Table 2 and the
resultant gene networks with different sparsity are shown in Fig 6 and Supple-
mental File.

As shown in Table 2, HADMM (ADMM + our hybrid screening algorithm) is
always more efficient than the other two methods in different settings. Typically,
when λ1 is small and λ2 is large (Setting 1), our method is much faster than

Exact Hybrid Covariance Thresholding for Joint Graphical Lasso 605

Fig. 6. Network of the first 100 genes of class one and class three for Setting 1.

Table 2. Running time (hours) of HADMM, LADMM and GADMM on real data.
(Setting 1: λ1 = 0.1 and λ2 = 0.5; Setting 2: λ1 = 0.2 and λ2 = 0.2; Setting 3:
λ1 = 0.3 and λ2 = 0.1; Setting 4: λ1 = 0.4 and λ2 = 0.05, and Setting 5: λ1 = 0.5
and λ2 = 0.01)

Method Setting 1 Setting 2 Setting 3 Setting 4 Setting 5

HADMM 3.46 8.23 3.9 1.71 1.11
LADMM > 20 > 20 13.6 3.72 1.98
GADMM 4.2 > 20 > 20 11.04 6.93

LADMM. In contrast, when λ2 is small and λ1 is large enough (Setting 4 and
Setting 5), our method is much faster than GADMM. What’s more, when both
λ1 and λ2 are with moderate values (Setting 2 and Setting 3), HADMM is
still much faster than both GADMM and LADMM.

As shown in Fig 6, the two resultant networks are with very similar topology
structure. This is reasonable because we use large λ2 in Setting 1. Actually,

606 Q. Tang et al.

the networks of all the three classes under Setting 1 share very similar topol-
ogy structure. What’s more, the number of edges in the network does decrease
significantly as λ1 goes to 0.5, as shown in Supplementary material.

8 Conclusion and Discussion

This paper has presented a non-uniform or hybrid covariance thresholding algo-
rithm to speed up solving group graphical lasso. We have established necessary
and sufficient conditions for this thresholding algorithm. Theoretical analysis and
experimental tests demonstrate the effectiveness of our algorithm. Although this
paper focuses only on group graphical lasso, the proposed ideas and techniques
may also be extended to fused graphical lasso.

In the paper, we simply show how to combine our covariance thresholding
algorithm with ADMM to solve group graphical lasso. In fact, our thresholding
algorithm can be combined with other methods developed for (joint) graphical
lasso such as the QUIC algorithm [9], the proximal gradient method [16], and
even the quadratic method developed for fused graphical lasso [20].

The thresholding algorithm presented in this paper is static in the sense
that it is applied as a pre-processing step before ADMM is applied to solve
group graphical lasso. We can extend this “static” thresholding algorithm to a
“dynamic” version. For example, we can identify zero entries in the precision
matrix of a specific class based upon intermediate estimation of the precision
matrices of the other classes. By doing so, we shall be able to obtain finer feasible
partitions and further improve the computational efficiency.

References

1. Banerjee, O., El Ghaoui, L., d’Aspremont, A.: Model selection through sparse max-
imum likelihood estimation for multivariate gaussian or binary data. The Journal
of Machine Learning Research 9, 485–516 (2008)

2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends R© in Machine Learning 3(1), 1–122 (2011)

3. Danaher, P., Wang, P., Witten, D.M.: The joint graphical lasso for inverse covari-
ance estimation across multiple classes. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 76(2), 373–397 (2014)

4. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with
the graphical lasso. Biostatistics 9(3), 432–441 (2008)

5. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Computers & Mathematics with Appli-
cations 2(1), 17–40 (1976)

6. Guo, J., Levina, E., Michailidis, G., Zhu, J.: Joint estimation of multiple graphical
models. Biometrika, asq060 (2011)

7. Hara, S., Washio, T.: Common substructure learning of multiple graphical gaussian
models. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.)
ECML PKDD 2011, Part II. LNCS, vol. 6912, pp. 1–16. Springer, Heidelberg
(2011)

Exact Hybrid Covariance Thresholding for Joint Graphical Lasso 607

8. Honorio, J., Samaras, D.: Multi-task learning of gaussian graphical models. In:
Proceedings of the 27th International Conference on Machine Learning, ICML
2010, pp. 447–454 (2010)

9. Hsieh, C.J., Dhillon, I.S., Ravikumar, P.K., Sustik, M.A.: Sparse inverse covari-
ance matrix estimation using quadratic approximation. In: Advances in Neural
Information Processing Systems, pp. 2330–2338 (2011)

10. Jojic, V., Shay, T., Sylvia, K., Zuk, O., Sun, X., Kang, J., Regev, A., Koller, D.,
Consortium, I.G.P., et al.: Identification of transcriptional regulators in the mouse
immune system. Nature Immunology 14(6), 633–643 (2013)

11. Liu, J., Yuan, L., Ye, J.: An efficient algorithm for a class of fused lasso problems.
In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 323–332. ACM (2010)

12. Mazumder, R., Hastie, T.: Exact covariance thresholding into connected compo-
nents for large-scale graphical lasso. The Journal of Machine Learning Research
13(1), 781–794 (2012)

13. Mohan, K., Chung, M., Han, S., Witten, D., Lee, S.I., Fazel, M.: Structured learn-
ing of gaussian graphical models. In: Advances in Neural Information Processing
Systems, pp. 620–628 (2012)

14. Mohan, K., London, P., Fazel, M., Witten, D., Lee, S.I.: Node-based learning of
multiple gaussian graphical models. The Journal of Machine Learning Research
15(1), 445–488 (2014)

15. Oztoprak, F., Nocedal, J., Rennie, S., Olsen, P.A.: Newton-like methods for sparse
inverse covariance estimation. In: Advances in Neural Information Processing Sys-
tems, pp. 755–763 (2012)

16. Rolfs, B., Rajaratnam, B., Guillot, D., Wong, I., Maleki, A.: Iterative thresholding
algorithm for sparse inverse covariance estimation. In: Advances in Neural Infor-
mation Processing Systems, pp. 1574–1582 (2012)

17. Spira, A., Beane, J.E., Shah, V., Steiling, K., Liu, G., Schembri, F., Gilman, S.,
Dumas, Y.M., Calner, P., Sebastiani, P., et al.: Airway epithelial gene expression
in the diagnostic evaluation of smokers with suspect lung cancer. Nature Medicine
13(3), 361–366 (2007)

18. Tseng, P., Yun, S.: Block-coordinate gradient descent method for linearly con-
strained nonsmooth separable optimization. Journal of Optimization Theory and
Applications 140(3), 513–535 (2009)

19. Witten, D.M., Friedman, J.H., Simon, N.: New insights and faster computations
for the graphical lasso. Journal of Computational and Graphical Statistics 20(4),
892–900 (2011)

20. Yang, S., Lu, Z., Shen, X., Wonka, P., Ye, J.: Fused multiple graphical lasso. arXiv
preprint arXiv:1209.2139 (2012)

21. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped vari-
ables. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
68(1), 49–67 (2006)

22. Yuan, M., Lin, Y.: Model selection and estimation in the gaussian graphical model.
Biometrika 94(1), 19–35 (2007)

23. Yuan, X.: Alternating direction method for covariance selection models. Journal
of Scientific Computing 51(2), 261–273 (2012)

24. Zhou, S., Lafferty, J., Wasserman, L.: Time varying undirected graphs. Machine
Learning 80(2–3), 295–319 (2010)

25. Zhu, Y., Shen, X., Pan, W.: Structural pursuit over multiple undirected graphs.
Journal of the American Statistical Association 109(508), 1683–1696 (2014)

http://arxiv.org/abs/1209.2139

Fast Inbound Top-K Query for Random Walk
with Restart

Chao Zhang(B), Shan Jiang, Yucheng Chen, Yidan Sun, and Jiawei Han

Department of Computer Science,
University of Illinois at Urbana-Champaign, Champaign, IL, USA

{czhang82,sjiang18,ychen233,ysun69,hanj}@illinois.edu

Abstract. Random walk with restart (RWR) is widely recognized as
one of the most important node proximity measures for graphs, as it
captures the holistic graph structure and is robust to noise in the graph.
In this paper, we study a novel query based on the RWR measure, called
the inbound top-k (Ink) query. Given a query node q and a number k,
the Ink query aims at retrieving k nodes in the graph that have the
largest weighted RWR scores to q. Ink queries can be highly useful for
various applications such as traffic scheduling, disease treatment, and tar-
geted advertising. Nevertheless, none of the existing RWR computation
techniques can accurately and efficiently process the Ink query in large
graphs. We propose two algorithms, namely Squeeze and Ripple, both
of which can accurately answer the Ink query in a fast and incremen-
tal manner. To identify the top-k nodes, Squeeze iteratively performs
matrix-vector multiplication and estimates the lower and upper bounds
for all the nodes in the graph. Ripple employs a more aggressive strategy
by only estimating the RWR scores for the nodes falling in the vicinity
of q, the nodes outside the vicinity do not need to be evaluated because
their RWR scores are propagated from the boundary of the vicinity and
thus upper bounded. Ripple incrementally expands the vicinity until the
top-k result set can be obtained. Our extensive experiments on real-life
graph data sets show that Ink queries can retrieve interesting results,
and the proposed algorithms are orders of magnitude faster than state-
of-the-art method.

1 Introduction

Graphs have long been considered as one of the most important structures that
can naturally model numerous real-life data objects (e.g., the Web, social net-
work, protein-protein interaction network). In most graph-related applications,
it is fundamental to quantify node-to-node structural proximity. Among existing
structural proximity measures, random walk with restart (RWR) is recognized as
one of the most important, and has been widely adopted in Web search [15], item
recommendation [12], link prediction [13], graph clustering [2], and many other
tasks. Compared with other proximity measures like shortest path, RWR enjoys
the nice property of capturing the holistic graph structure and being robust to
noise in the graph.
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 608–624, 2015.
DOI: 10.1007/978-3-319-23525-7 37

Fast Inbound Top-K Query for Random Walk with Restart 609

To date, much research effort has been devoted to RWR, including its efficient
computation ([6], [16], [5], [7], [18], [8], [14]), top-k search ([7], [10], [3], [17]), and
various mining tasks underpinned by RWR ([13], [2], [12]). However, insufficient
attention has been paid to a fundamental task that arises in many graph-related
applications, which is to determine the source nodes that have a large amount of
information flowing to a given query node. To illustrate, consider a traffic flow
network shown in Figure 1. Assume severe traffic congestion occurs at node q
every day, then the following question is key to improving traffic scheduling and
road network design: how do we find the nodes from which the traffic tends to
flow into q and cause the congestion problem? Using the RWR measure, the node
c is likely to be identified as a major source that causes congestion at q. Even
though c is not the direct in-neighbor of q, there are many short paths from c to
q. Given that c is a busy transportation hub, a large number of vehicles leaving
from c tend to gather at q.

Fig. 1. An example traffic flow network. Each node is a road intersection, and the node
size denotes the daily traffic volume at the intersection. Each edge is a road segment,
and the attached number denotes the proportion of the traffic moving along that edge
from a specific node.

We propose a novel query named the inbound top-k (Ink) query, which seeks
to identify the nodes that have a large amount of information flowing to a query
node based on RWR. Consider a query node q in a graph G. For any other node
u in G, let ru�q be the RWR from u to q. Additionally, each node u has a
nonnegative weight wu.1 Given G, q, and an integer k, the Ink query aims to
find k nodes in G that have the largest scores in terms of wu · ru�q.

The Ink query can be highly useful for a wide spectrum of applications
besides traffic flow analysis. Think of a protein-protein interaction (PPI) network
wherein each node is a protein, and a directed edge indicates one protein has a
signal transduction to another protein to cause its formation or mutation. The
signal transduction between proteins is essential to many biological processes
and diseases (e.g., Parkinson’s disease, cancer). Querying by the characteristic
protein of a disease, the Ink query can identify the top-k proteins that are most
likely to cause the formation of the query protein. Another example application
is targeted advertising. In an online social network like Facebook, suppose a
company (e.g., Walmart) wants to place advertisements on its Facebook page.
With the Ink query, that company can easily identify the top-k Facebook users
1 For instance, in our traffic flow example, wu is the average daily traffic volume at

node u.

610 C. Zhang et al.

that are most likely to visit its page. By statistically analyzing the profiles and
preferences of these users, the company can adapt the advertising content to
attract potential customers more effectively.

To the best of our knowledge, no existing methods can accurately and effi-
ciently answer Ink queries. First, methods ([6], [16], [14], [18]) have been pro-
posed to compute the approximate RWR between any two nodes with an error
bound ε. However, it is hard to pre-specify a proper ε for an ad-hoc query node q,
because a pre-specified ε may be either too coarse to generate the correct top-k
results, or too fine to avoid unnecessary computation. Second, the k-dash method
[7] can compute the exact RWR between any two nodes. However, it uses matrix
LU decomposition as a pre-computation step, which has a time complexity of
O(n3) and thus is prohibitively expensive for large graphs. Even assuming the
LU decomposition is done, later we will see, it is costly and unnecessary to com-
pute the RWR scores from all nodes to the query node q in order to answer Ink
queries. Third, techniques ([16], [10], [5], [9], [8]) have recently been reported to
process what we call outbound top-k queries, i.e., which k nodes have the largest
RWR if we start the random walk from node q? These techniques mostly use the
branch-and-bound strategy to prune the search space, but the lower and upper
bounds derived for the outbound top-k query cannot be easily adapted for the
Ink query.

To efficiently answer the Ink query, we propose two branch-and-bound meth-
ods. Our first method, called Squeeze (Section 3) does not directly compute
the exact RWR to q for each node in the graph, but maintains a lower bound
and an upper bound. It then incrementally refines the bounds by performing
matrix-vector multiplication. We prove that the error decreases exponentially
as the iterative process continues, and thus the top-k results can be determined
after a few number of iterations. Our second method, called Ripple (Section
4), is an even more efficient algorithm and thus suitable for extremely large
graphs. Compared with Squeeze, Ripple leverages locality to gain significant
performance improvement. The key observation is that the nodes falling in the
vicinity of q tend to have large RWR scores to q. Hence, Ripple maintains a
dynamic vicinity of q and estimates the RWR scores only for the nodes inside the
vicinity. The outside nodes do not need to be evaluated because their scores are
propagated from the boundary of the vicinity and thus upper bounded. Ripple
progressively expands the vicinity, and refines the error bounds until the result
set can be correctly identified.

Our theoretical analysis shows that both Squeeze and Ripple, without any
pre-computation, can accurately answer the Ink queries in a fast and incremen-
tal manner. In addition, we have conducted extensive experiments on real-life
graph data sets (Section 5). The results demonstrate the Ink query can retrieve
interesting results. Meanwhile, Squeeze and Ripple outperform state-of-the-art
method by orders of magnitude in efficiency.

Fast Inbound Top-K Query for Random Walk with Restart 611

Table 1. Notations used in the paper.

G A graph G = (V, E). P The row normalized transition matrix for G.

n The number of nodes in G. pij The transition probability from node i to j.

m The number of edges in G. c The restart probability (0 < c < 1).

wi The weight of a node i ∈ V . eu n × 1 vector, 1 for u’s element and 0 for the others.

wij The weight of an edge (i, j). ru The RWR score vector for the walk from u.

2 Preliminaries

In this section, we present some preliminaries for the Ink query. Table 1 lists the
notations used throughout this paper.

2.1 Problem Description

Definition 1 (Transition Matrix). For a node i ∈ V , let di =
∑n

j=1 wij

be the total out-degree of i. The transition matrix of G is an n × n matrix
P = [pij]n×n where pij = wij/di if (i, j) ∈ E and 0 otherwise.

Based on the definition of transition matrix, the random walk with restart
(RWR) process is described as follows. Consider a surfer who starts RWR from
the node x0 = u. Suppose the surfer is at node xt = i at step t, she returns to u
with probability c and continues surfing with probability 1 − c. If she continues
the surfing, she randomly moves to i’s neighbor j with probability pij . The
stationary distribution ru of such a process, i.e., the RWR scores of all the
nodes in V , is the solution to the equation:

ru = (1 − c)PTru + ceu. (1)

In ru, the element ru(v) denotes the RWR score from u to v, namely ru�v.
Given a query node q ∈ V , a restart probability c, and an integer k, the Ink
query aims to find a set S ⊆ V such that: (1) |S| = k; and (2) ∀u ∈ S,
∀v ∈ V − S, wuru(q) ≥ wvrv(q).

2.2 Näıve Methods

In this subsection, we describe two näıve methods for answering Ink queries,
and discuss why they are not satisfactory.

Power: Although directly solving Equation 1 costs O(n3), the power iteration
can produce an approximate solution with time complexity O(tm) where t is the
number of iterations. Accordingly, a näıve solution, named Power, can answer
the Ink query in two steps: (1) it computes ru for every node u ∈ V using the
power iteration; and (2) it selects k nodes with the largest weighted RWRs to q.

LU: Another solution, named LU, is adapted from the k-dash method proposed
by Fujiwara et al. [7]. As the solution of Equation 1 is ru = c(I−(1−c)PT)−1eu,

612 C. Zhang et al.

they perform LU decomposition on the matrix W = I − (1 − c)PT = LU in an
offline stage, and store L−1 and U−1 beforehand. Given that ru = cW−1eu =
cU−1L−1eu, the exact RWR score between any two nodes can be computed in
O(n) time based on the matrices L−1 and U−1. Accordingly, LU does not need
to compute the entire proximity matrix to answer the Ink query. Instead, it
computes only one row that corresponds to the RWR scores from all the nodes
to the query node q. Once the n RWR scores are obtained, the top-k nodes can
be easily obtained.

Remark. For every u ∈ V , the Power method needs to compute u’s RWR scores
to all the nodes in V , leading to a time complexity O(tmn), which is intolerable
for large graphs. The LU method can directly compute the exact RWR scores
from all nodes to the query node based on offline matrix decomposition. How-
ever, the time complexity of the on-line retrieval phase is O(n2 + n log k), still
time-consuming for large graphs. Later we will see, it is actually unnecessary
and wasteful to compute the RWRs from all the nodes to q. Moreover, note
that matrix LU decomposition has a time complexity of O(n3) and thus is pro-
hibitively expensive for large graphs. Finally, the matrix W is dependent on the
restart probability c. If the user launches an Ink query with a different c, the
precomputed matrices L−1 and U−1 become useless and need to be recomputed.

2.3 Overview of Squeeze and Ripple

Before presenting the Squeeze and Ripple methods, we first analyze the rela-
tions of the RWR scores from all the nodes to the query node q based on the
Decomposition Theorem proposed by Jeh and Windom [11].

Theorem 1. Given a node u, and Ou, the set of u’s out-neighbors, the RWR
proximity vector from u satisfies ru = (1 − c)

∑

v∈Ou

puvrv + ceu.

Theorem 1 says that, the RWR vector of u can be derived by linearly com-
bining the RWR vectors of u’s out-neighbors, with extra emphasis on u itself.
For any node u ∈ V , we have the RWR score from u to q computed as:

ru(q) =

⎧
⎨

⎩

(1 − c)
∑

v∈Ou

puvrv(q) if u �= q

(1 − c)
∑

v∈Ou

puvrv(q) + c if u = q.
(2)

By writing down the decomposition for every node u in V according to Equa-
tion 2, we obtain a linear system xq that consists of n variables. Specifically,
letting xq be an n × 1 vector such that xq(u) = ru(q) is the RWR score from u
to q, and letting A = (1 − c)P, then

xq = Axq + ceq. (3)

An intuitive idea to answer Ink query is to perform power iteration over
Equation 3 and obtain a good “enough” approximation of xq. Based on this

Fast Inbound Top-K Query for Random Walk with Restart 613

intuition, our first method Squeeze iteratively performs matrix-vector multi-
plication and provides an analytical error bound after each iteration. We prove
that the error shrinks at an exponential rate as the iteration proceeds, hence
Squeeze can prune the unqualified nodes quickly and retrieve the top-k results
after a small number of iterations.

Though Squeeze is simple, performing matrix-vector multiplication over the
whole graph can be costly if the graph is extremely large. Our second method
Ripple addresses this problem by leveraging the locality of RWR. The key
observation is that the nodes around q tend to have large RWR scores. As such,
Ripple employs a local update strategy, which maintains a vicinity around q and
evaluates RWR only for the nodes inside. According to Equation 3, the RWR
scores of the nodes outside the vicinity are propagated from the boundary of
the vicinity and thus upper bounded. By progressively pushing the boundary of
the vicinity, the estimations for the inside nodes become more accurate, and the
upper bound for the outside nodes becomes tighter. Finally, Ripple terminates
the vicinity expansion once the top-k results can be correctly identified.

3 The Squeeze Algorithm

In this section, we describe the details of Squeeze. As aforementioned, the
key idea of Squeeze is to iterate over Equation 3, and analyze the estimation
errors on-the-fly. To begin with, we define the lower bound relation between two
vectors.

Definition 2 (Lower Bound Vector). Let x and y be two n× 1 vectors. x is
a lower bound vector of y if ∀1 ≤ i ≤ n, x(i) ≤ y(i), denoted as x ≺ y.

Squeeze starts with the zero vector x(0)
q = 0, which serves as a lower bound

vector for xq, the solution to Equation 3. Then it iteratively updates the lower
bound vector according to the following equation:

x(i+1)
q = Ax(i)

q + ceq. (4)

In the following, we prove: (1) each iteration produces a tighter lower bound
vector, i.e., x(i+1)

q will be closer to xq, and (2) x(i)
q finally converges to xq.

Theorem 2. Let x(0)
q = 0 and x(i+1)

q = Ax(i)
q + ceq. It is ensured ∀i ≥ 0,x(i)

q ≺
x(i+1)
q ≺ xq; and x(i)

q = xq when i → ∞.

Proof. (1) Given x(0)
q = 0 and Equation 4, we have x(1)

q (u) = c ·I{u=q}(u), where
I is the indicator function. Clearly, x(0)

q ≺ x(1)
q . Further, if x(i−1)

q ≺ x(i)
q , then

∀u,
x(i+1)
q (u) − x(i)

q (u) = (1 − c)
∑

v∈Ou

puv

[
x(i)
q (u) − x(i−1)

q (u)
]

≥ 0.

614 C. Zhang et al.

(2) It is clear that x(0)
q ≺ xq. Suppose x(i)

q ≺ xq, then

x(i+1)
q (u) ≤ (1 − c)

∑

v∈Ou

puvxq(v) + c · I{u=q}(u) = xq(u).

To prove lim
i→∞

x(i)
q = x(i)

q , note that the spectral radius of A satisfies ρ(A) ≤

1 − c < 1. Then lim
i→∞

x(i)
q =

∞∑

i=0

Aieq = c(I − A)−1eq, which is the solution of

Equation 4. �

Theorem 2 tells us that the power iteration over Equation 4 produces a tighter
lower bound after each iteration, and finally converges to the exact value of xq.
Below, we proceed to analyze the RWR upper bound after each iteration.

Theorem 3. ∀u ∈ V,xq(u) ≤ x(i)
q (u) + (1 − c)i.

Proof. ∀i > 0,x(i+1)
q − x(i)

q = A(x(i)
q − x(i−1)

q). Accordingly,

‖x(i+1)
q − x(i)

q ‖ ≤ ‖A‖ · ‖x(i)
q − x(i−1)

q ‖ = (1 − c) · ‖x(i)
q − x(i−1)

q ‖.

Recursively applying the above inequality gives us ‖x(i+1)
q −x(i)

q ‖ ≤ (1−c)i‖x(1)
q −

x(0)
q ‖ = (1 − c)ic. Moreover, ∀m > i,

‖x(m)
q − x(i)

q ‖ = ‖
m−1∑

j=i

(x(j+1)
q − x(j)

q)‖ ≤
m−1∑

j=i

‖x(j+1)
q − x(j)

q ‖

≤(1 − c)ic
m−i−1∑

j=0

(1 − c)j = (1 − c)ic
1 − (1 − c)m−i

1 − (1 − c)
.

By setting m → ∞, we have ‖xq − x(i)
q ‖ ≤ (1 − c)i. �

Theorem 2 and 3 guarantee that after iteration i, ∀u ∈ V , x(i)
q (u) ≤ xq(u) ≤

x(i)
q (u) + (1 − c)i. Better still, the gap (1 − c)i between the lower and upper

bounds decreases exponentially as the iteration proceeds, which allows us to
quickly identify the top-k results. Algorithm 1 sketches Squeeze. As shown, we
first set xq = 0, and initialize a candidate set R that consists of all the nodes in
V . Then we gradually refine xq using power iteration (line 4), and select the k-th
largest weighted RWR as the threshold τ (line 5). All the nodes whose weighted
RWRs are smaller than τ can be safely pruned (lines 7-9). Squeeze terminates
when the candidate set R contains only k nodes.

4 The Ripple Algorithm

In this section, we present the Ripple method, which employs a local update
strategy to efficiently process Ink queries.

Fast Inbound Top-K Query for Random Walk with Restart 615

Algorithm 1. The Squeeze algorithm.
Input: query node q, number k, graph G = (V, E), restart probability c
Output: the top-k result set R

1 R ← V , i ← 0, xq ← 0;
2 Construct the transition matrix P;
3 while |R| > k do
4 xq ← Axq + ceq;
5 τ ← k-th largest score in terms of wu · xq(u);
6 i ← i + 1;
7 foreach u ∈ R do
8 if wu · [xq + (1 − c)i] < τ then
9 Remove u from R;

4.1 Algorithm Sketch

Given a query node q, we use Nq to denote a set of nodes falling in the vicinity of
q, and Fq to denote the nodes falling outside, i.e., Fq = V −Nq. Further, we call
node u ∈ Nq a boundary node if there exists a node v ∈ Fq such that v is an in-
neighbor of u, and use Bq to denote the set of boundary nodes. The key insight
of Ripple is that the nodes close to q tend to have large RWR scores. Hence,
starting from a small vicinity around q, Ripple estimates the RWRs for only the
nodes in the vicinity. For the outside nodes, Ripple maintains one generic upper
bound for them. As the vicinity is gradually expanded, the RWR estimations for
the inside nodes as well as the upper bound for the outside nodes become more
and more accurate. The expansion terminates when the estimations are accurate
enough to produce the top-k results.

Algorithm 2 gives a sketch of Ripple. As shown, we initialize Nq and Bq

to {q}, and iteratively select at most s boundary nodes with the largest RWRs
(lines 3-6), where s is a pre-specified parameter of Ripple. Later we will see, the
rationale of selecting the high-score boundary nodes is that such nodes determine
the estimation error for the nodes in Nq, as well as the RWR upper bound for
the nodes in Fq. We expand Nq by incorporating the in-neighbors of the selected
nodes (lines 7-8). After each expansion, we iterate over the nodes in Nq for t
times to refine their RWR estimations (lines 10-12). The RWR scores for all the
nodes in Fq are set to 0 and do not need to be computed. Once the update
operation is done, we select the k-th largest weighted RWR as the threshold τ ,
and prune the nodes whose upper bound scores are smaller than τ (lines 14-17).
Such a process repeats until there are only k nodes left in R.

Figure 2 shows a concrete example of Ripple. Suppose c = 0.2, s = 2, and
t = 2. First, the vicinity and boundary node sets are set to Nq = Bq = {q}.
In the first round, q is the only node Bq. Hence, we expand q and obtain Nq =
{2, 6, 7, 10} and Bq = {2, 7, 10}. After the expansion, starting from xq = 0,
Ripple updates the RWR for the nodes in Nq using 2 iterations, and obtains
xq(2) = 0.16,xq(6) = 0.2,xq(7) = 0.04,xq(10) = 0.16. In the second round,

616 C. Zhang et al.

Algorithm 2. The Ripple algorithm.
Input: query node q, number k, graph G = (V, E), restart probability c,

number of to-expand nodes s, number of iterations t after expansion
Output: the top-k result set R

1 R ← V , Nq ← {q}, Bq ← {q}, xq ← 0;

2 while |R| > k do
3 if |Bq| ≥ s then
4 E ← s nodes in Bq with the largest RWRs;
5 else
6 E ← Bq;

7 foreach u ∈ E do
8 Add u’s in-neighbors into Nq;

9 Update Bq;
10 for i = 1 to t do
11 foreach u ∈ Nq do
12 xq(u) = (1 − c)

∑
v∈Ou

puvxq(u) + c · I{u=q}(u);

13 τ ← k-th largest weighted RWR for the nodes in Nq;
14 foreach u ∈ R do
15 xq(u) ← the RWR upper bound;
16 if wu · xq(u) < τ then
17 Remove u from R;

18 return R;

(a) Initialization. (b) One round of expan-
sion.

(c) Two rounds of expan-
sion.

Fig. 2. Illustration of the Ripple algorithm. The nodes in the gray area are the vicinity
nodes, and the double-ringed ones are the boundary nodes.

Ripple expands node 2 and 10, and derives Nq = {2, 3, 6, 7, 9, 10} and Bq =
{3, 7, 9}. With the previous xq, Ripple updates the new Nq using 2 iterations,
and obtains xq(2) = 0.16,xq(3) = 0.08,xq(6) = 0.2,xq(7) = 0.056,xq(9) =
0.128,xq(10) = 0.16. The expansion process continues until the top-k nodes are
obtained.

Several questions remain to be answered for Algorithm 2: (1) how do we
compute the lower and upper bounds for the nodes in Nq and Fq? and (2) what

Fast Inbound Top-K Query for Random Walk with Restart 617

is the reason of selecting high-score boundary nodes when expanding Nq? In
what follows, we answer these questions in detail.

4.2 The Lower Bound

We first prove the RWR estimation is a lower bound when we set the RWR
scores of the nodes in Fq to 0 and propagate the RWR scores only among the
nodes in Nq.

Theorem 4. Let xq be the solution to the equation xq = Wxq + ceq, where
W is constructed from A by setting the rows of nodes in Fq to all zeros, then
xq ≺ xq.

Proof. The power method gives xq = lim
i→∞

c
i−1∑

j=1

Wjeq and xq = lim
i→∞

c
i−1∑

j=1

Ajeq.

It suffices to prove ∀i ≥ 1,Wieq ≺ Aieq, which can be easily proved by
induction. �

4.3 The Upper Bound

We proceed to analyze the RWR upper bounds. Let M = max
u∈Bq

xq(u). Lemma 1

and Lemma 2 show that M determines the upper bound for the nodes in both
Fq and Nq.

Lemma 1. ∀u ∈ Fq,xq(u) ≤ (1 − c)M .

Proof. When iterating over Equation 3 with x(0)
q = 0, Theorem 2 ensures ∀u ∈

Bu,∀i ≥ 0,x(i)
q (u) ≤ xq(u) ≤ M . Now consider any node u ∈ Fq: (1) when

i = 0, x(0)
q (u) = 0 ≤ (1 − c)M clearly holds. (2) ∀i ≥ 1, assume ∀v ∈

Fq,x
(i−1)
q (v) ≤ (1 − c)M . Since ∀v ∈ Bq,x

(i−1)
q (v) ≤ M , it is ensured x(i)

q (u) =
(1 − c)

∑

v∈Bq

puvx
(i−1)
q (v) + (1 − c)

∑

v∈Fq

puv(1 − c)x(i−1)
q (v) ≤ (1 − c)M . �

Lemma 2. ∀u ∈ Nq,xq(u) ≤ xq(u) + (1 − c)2M .

Proof. Let dq = xq − xq. ∀u ∈ Nq, it suffices to prove dq(u) ≤ (1 − c)2M .
Consider an n × 1 vector rF , where the entries of the nodes in Fq are set to
their accurate RWR scores, and the entries of the nodes in Nq are set to zeros.
Then dq = Wdq + rF . By setting d(0)

q = rF and using power iteration, we have
dq = lim

t→∞ d(t)
q . Note that ∀u ∈ V,d(0)

q (u) ≤ (1 − c)M . The induction ensures

lim
t→∞ d(t)

q (u) ≤ (1 − c)2M . �

Lemma 2 provides a generic upper bound for the vicinity nodes. In the follow-
ing, we introduce the concept of outward hop, which allows us to derive tighter
upper bounds for the vicinity nodes.

618 C. Zhang et al.

Definition 3 (Outward Hop). For a node u ∈ Nq, the outward hop of u,
denoted as Hop(u), is the minimum number of steps that takes u to any node in
Fq.

The RWR estimation errors are propagated inwards layer by layer among the
vicinity nodes. Hence, a larger outward hop implies a larger estimation error, as
shown below.

Lemma 3. Given a node u ∈ Nq, let Hop(u) = h, then xq(u) − xq(u) ≤ (1 −
c)h+1M .

Proof. This lemma can be proved using induction, we omit the details to save
space. �

Lemma 1 and 3 give us the RWR upper bounds for the nodes in Fq and Nq in
terms of M , which is the maximum accurate RWR among the boundary nodes.
Nevertheless, M is actually unknown to Ripple. Assume Ripple performs t

power iterations over Nq to obtain an approximate vector x(t)
q , we now establish

the connection between M and x(t)
q , and discuss how to compute the upper

bounds based on x(t)
q .

Lemma 4. Let ΔN = max
u∈V

[
x(1)
q (u) − x(0)

q (u)
]
, M (t) = max

u∈V
x(t)
q (u). We have

M ≤ 1
2c − c2

[
M (t) + (1 − c)t · ΔN/c

]
.

Proof. Similar to Theorem 3, it can be shown ∀u ∈ V, xq(u) − x(t)
q (u) ≤ (1 −

c)t · ΔN/c. Let M = max
u∈Bq

xq(u) and w ∈ Bq be the node corresponding to M .

Then
M − M (t) ≤ M − x(t)

q (w) ≤ (1 − c)t · ΔN/c. (5)

Further let v ∈ Bq be the node corresponding to M . By Lemma 2, we know
M − xq(v) ≤ (1 − c)2M , which gives M ≤ xq(v)/(2c − c2). Combining this with
Equation 5 completes the proof. �

Theorem 5. ∀u ∈ Fq, we have

xq(u) ≤ 1 − c

2c − c2

[
M (t) + (1 − c)t · ΔN/c

]
.

∀u ∈ Nq, let Hop(u) = h, we have

xq(u) ≤ x(t)
q (u) +

(1 − c)h+1

2c − c2
· M (t) +

(1 − c)h+t+1 + (2c − c2)(1 − c)t

2c2 − c3
· ΔN

Proof. The first claim is obvious from Lemma 1 and 4, and the second claim is
obvious from Lemma 3 and 4. �

Fast Inbound Top-K Query for Random Walk with Restart 619

5 Experiments

In this section, we evaluate the empirical performance of the proposed methods.
All algorithms were implemented in JAVA and the experiments were conducted
on a machine with Intel Xeon E5-2680 and 64GB memory.

5.1 Experimental Setup

Data Sets. Our experiments are based on two real graph data sets. Our first
data set, referred to as 4SQ, is collected from Foursquare during a three-month
period. The 4SQ data set consists of the check-in histories of 14,909 users living
in New York. In 4SQ, each node is a place, and the node weight is set to the total
number of visitors to reflect the popularity of the place. Meanwhile, there is a
directed edge between two places if the check-ins at the two places occur within
3 hours. The weight of the edge is the number of users whose check-in history
matches the transition. The 4SQ data set contains 48,564 nodes and 123,452
edges in total. The second data set, referred to as Wiki, is extracted from the
Wikipedia graph. We have removed the non-English Wikipedia pages as well as
the noisy pages that have less than 3 in-links. In the result Wiki data set, each
node is a Wikipedia page, and the node weight is set to the number of in-links
to reflect the importance of that page. Each edge is a directed link from one
Wikipedia page to another, and all the edges have an equal weight. There are
totally 4,382,715 nodes and 102,260,837 edges in the Wiki data set.

Compared Method. We described two näıve methods in Section 2.2, namely
Power and LU. However, the time cost of Power is too expensive for our used
data sets. Hence, we use the LU method for comparison in our experiments.
LU involves an offline stage that performs matrix decomposition and an on-line
stage that retrieves the top-k results, we only include the on-line retrieval time
when measuring the performance of LU.

5.2 Illustrating Cases

In this subsection, we issue several test Ink queries on our data sets, and com-
pare the results retrieved by the Ink query and those by the outbound top-k
query [7].

Table 2 shows the inbound and outbound top-5 results for the queries “Yan-
kee Stadium” and “Columbia University” on 4SQ,2. As shown, the results
returned by the outbound top-k query are mostly famous places in New York,
such as the Metropolitan Museum of Art and the Radio City Music Hall. As
such places are structural hubs in the graph, the random walk from the query
node is thus very likely to reach them, making their outbound RWR scores high.
In contrast, the results returned by the Ink query are less famous places but
have strong correlations with the query place. For example, the top result for
the query “Yankee Stadium” is Yankee Tavern, which is a local pub close to the
2 We do not include the query itself in the top-k results, same for the Wiki data set.

620 C. Zhang et al.

Table 2. A Comparison of the Inbound and Outbound Top-k Queries on 4SQ (c =
0.15 k = 5).

Query
Inbound Top-5 Results Outbound Top-5 Results

Rank Place Name Rank Place Name

Yankee Stadium

1 Yankee Tavern 1 The Metropolitan Museum of Art
2 Stan’s Sports Bar 2 Madison Square Garden
3 Billy’s Sports Bar 3 The Central Park
4 New York Penn Station 4 Grand Central Terminal
5 Grand Central Terminal 5 Brooklyn Museum

Columbia University

1 Morningside Park 1 Central Park
2 Seeley Mudd Hall 2 116th St/Columbia University MTA Subway
3 Whole Foods Grocery 3 Newark Liberty International Airport
4 Dinosaur Bar-B-Que 4 Grand Central Terminal
5 Starbucks 5 Lincoln Tunnel

Table 3. A Comparison of Inbound and Outbound Top-k Queries on Wiki (c =
0.15 k = 5).

Query
Inbound Top-5 Results Outbound Top-5 Results

Rank Page Title Rank Page Title

Information Retrieval

1 IDF 1 Computer Science
2 Index Term 2 Information Science
3 Keyword (Internet Search) 3 Linguistics
4 Precision and Recall 4 Association for Computing Machinery
5 Recall (Information Retrieval) 5 Mathematics

Microsoft Office

1 Microsoft Excel 1 2006
2 Microsoft Word 2 2007
3 Microsoft Windows 3 2008
4 Microsoft Office 2007 4 Microsoft
5 Microsoft FrontPage 5 Microsoft Office 2007

stadium. Yankee fans may love to gather together at the pub to have some beer
and talk about their favorite players.

Table 3 shows the results for the queries “Information Retrieval” and
“Microsoft Office” on Wiki. Again, we observe that the outbound top-k query
tends to retrieve the pages that are popular, whereas the inbound top-k query
obtains the pages that are more specific and strongly correlated to the query. For
example, given the query “Information Retrieval”, the results returned by Ink
are all terminologies in the field of information retrieval, such as IDF and index
term. In contrast, the outbound top-5 query returns general but more famous
pages like Computer Science.

5.3 Efficiency Study

In this subsection, we study the efficiency of the proposed algorithms. An Ink
query consists of two parameters: (1) the number k; and (2) the restart prob-
ability c. We set their default values as k = 20 and c = 0.15. We evaluate the
effect of one parameter while the other is fixed at its default value, and run 1000
randomly generated queries with their average cost reported. LU and Squeeze
are parameter-free, while Ripple has two parameters to tune: (1) s, the number
of boundary nodes for expansion; and (2) t, the number of iterations after each
expansion. We first fix s = 30 and t = 1 when comparing Ripple with the other
two methods. Then we study the effect of s and t on the performance of Ripple.

Fast Inbound Top-K Query for Random Walk with Restart 621

Varying k. Figure 3 shows the running time of the three methods when k varies
on 4SQ. As shown, k does not affect the running time of LU much, as the major
cost of LU is the computation of the RWR scores of all the nodes in the graph.
In contrast, the running time of Squeeze and Ripple increases with k, but at
a quite slow rate. This phenomenon could be explained by the fact that, as k
increases, the score gap between the k-th and the (k + 1)-th objects tends to
become smaller. As a result, both Squeeze and Ripple need more iterations
to retrieve the top-k results. Comparing the performance of the three methods,
we find both Squeeze and Ripple outperform LU significantly even though the
pre-computation time of LU has already been excluded. This fact suggests the
branch-and-bound strategies used by Squeeze and Ripple are quite effective,
they can largely prune the search space to avoid unnecessary RWR computations.
Figure 3(b) shows the running time of Squeeze and Ripple on Wiki. We do
not have the result of LU because the offline matrix decomposition stage fails to
complete within one week on Wiki. Similarly, Ripple needs more iterations to
produce the top-k results than Squeeze, but it takes much less time. Moreover,
the performance gap between Ripple and Squeeze is even larger on Wiki than
on 4SQ. This is explained by the fact that Ripple is a local search algorithm
and is not so sensitive to the data set size. Therefore, Ripple is suitable for
extremely large graphs.

(a) Varying k on 4SQ. (b) Varying k on Wiki.

Fig. 3. Running time v.s. k.

Varying c. Figure 4 shows the running time of the three methods on 4SQ when
c varies from 0.05 to 0.2. The running time of Squeeze and Ripple decreases
exponentially with c, which is in line with our expectation. As shown in Theorem
3, the error bound of Squeeze after i iterations is (1 − c)i. For a larger c,
Squeeze needs much less iterations to produce the top-k results. Similarly, for
Ripple, Theorem 5 suggests that the error bounds for both inside and outside
nodes are much tighter under a larger c, thus the number of iterations are fewer.
To understand this phenomenon from another perspective, Ripple leverages
RWR locality to answer Ink queries. When c is large, the random surfer has a
higher probability to jump back to the start node, thus the nodes close to the
query node are more likely to appear in the correct top-k results, making the
vicinity-based estimation prune the search space more effectively.

622 C. Zhang et al.

(a) Varying c on 4SQ. (b) Varying c on Wiki.

Fig. 4. Running time v.s. c.

(a) Varying s on 4SQ. (b) Varying t on 4SQ.

Fig. 5. Effects of s and t on Ripple.

Effects of s and t. Figure 5 shows the effects of s and t on Ripple using 4SQ
(the results on Wiki are omitted to save space). As shown, when s increases from
10 to 100, the running time of Ripple first decreases and then gradually becomes
stable. From Figure 5(b), we observe that the running time of Ripple is stable
when t is small. However, the running time increases quite rapidly when t is too
large. This suggests that iterating over a small vicinity for too many times cannot
improve the efficiency of Ripple, but only incurs unnecessary computations. In
practice, it is better to set t to a small value so that only a few iterations are
performed before a new vicinity set is generated.

6 Related Work

The efficient computation of RWR has received a substantial amount of atten-
tion over the past decade. Though obtaining the closed-form solution of RWR
requires the inversion of a matrix (Equation 1) and time-consuming, two popu-
lar strategies are widely adopted to address this problem: Monte Carlo sampling
[3], [4] and power iteration [15]. Other techniques for efficiently approximating
RWR have also been proposed. Tong et al. [16] introduced an efficient and novel
algorithm for computing approximate RWR scores. Their method relies on a
pre-processing step, which obtains the low-rank approximation of a large and
sparse matrix. Zhu et al. [18] proposed to compute the approximate PPR vector
using the inverse P-distance [18]. The key idea is to partition all random walk

Fast Inbound Top-K Query for Random Walk with Restart 623

tours into different layers according to their contributions, and given priority to
those important layers when computing the PPR vector. Methods [1] have also
been proposed to compute the approximate RWR scores from all the nodes to a
given query node. Unfortunately, these approximate algorithms cannot be easily
applied to answer the Ink queries as it is hard to pre-specify the desired error
bound for an ad-hoc query. Moreover, as suggested by Ripple, computing the
RWR scores from all the nodes is actually unnecessary.

Along another line, much attention has been paid to the outbound top-k
search problem. The goal is to retrieve the k nodes with the highest RWR/PPR
scores from a query node. Most of the existing techniques for answering out-
bound top-k search resort to the branch-and-bound strategy to prune the search
space. Specifically, Gupta et al. [10] proposed the Basic Push Algorithm, which
computes PPR bounds based on bookmark coloring. Bahmani et al. [5] pro-
posed a Monte Carlo based method for finding approximate top-k neighbors.
Their results demonstrate that, by precomputing and storing a number of short
random walk tours for all the nodes in the graph, the top-k neighbors can be
fast approximated with satisfactory accuracy. Fujiwara et al. [7] proposed the
k-dash algorithm to identify the top-k nearest neighbors of a query node based
on matrix LU decomposition. They later proposed an method [8] that does not
rely on offline pre-computation, but estimates the lower and upper bounds in an
on-line manner. However, the lower and upper bounds derived for the outbound
top-k query cannot be easily adapted for our Ink query.

7 Conclusions

We proposed the Ink query based on random walk with restart, which retrieves
the top-k nodes that have high weighted RWR scores to a given query node. To
efficiently process the Ink query, we designed the Squeeze and Ripple meth-
ods. Squeeze iteratively performs matrix vector multiplication and dynami-
cally updates the lower and upper RWR bounds to generate the top-k result
set. Ripple exploits RWR locality by maintaining a vicinity around the query
node, and incrementally expands the vicinity to refine the RWR estimations.
Our experimental results have demonstrated that both methods can answer Ink
queries efficiently on large real-life graphs, while Ripple is especially suitable
for extremely large graphs. Interesting future work includes investigating how
the Ink query can benefit higher-level tasks such as link prediction, and how to
adapt the Ripple method to a distributed version.

Acknowledgments. We thank the reviewers for their insightful comments. This work
was sponsored in part by the U.S. Army Research Lab. under Cooperative Agree-
ment No. W911NF-09-2-0053 (NSCTA), National Science Foundation IIS-1017362, IIS-
1320617, and IIS-1354329, HDTRA1-10-1-0120, and grant 1U54GM114838 awarded by
NIGMS through funds provided by the trans-NIH Big Data to Knowledge (BD2K) ini-
tiative, and MIAS, a DHS-IDS Center for Multimodal Information Access and Synthesis
at UIUC.

624 C. Zhang et al.

References

1. Andersen, R., Borgs, C., Chayes, J.T., Hopcraft, J., Mirrokni, V.S., Teng, S.-H.:
Local computation of pagerank contributions. In: Bonato, A., Chung, F.R.K. (eds.)
WAW 2007. LNCS, vol. 4863, pp. 150–165. Springer, Heidelberg (2007)

2. Andersen, R., Chung, F.R.K., Lang, K.J.: Local graph partitioning using pagerank
vectors. In: FOCS, pp. 475–486 (2006)

3. Avrachenkov, K., Litvak, N., Nemirovsky, D., Smirnova, E., Sokol, M.: Quick detec-
tion of top-k personalized pagerank lists. In: Frieze, A., Horn, P., Pra�lat, P. (eds.)
WAW 2011. LNCS, vol. 6732, pp. 50–61. Springer, Heidelberg (2011)

4. Bahmani, B., Chakrabarti, K., Xin, D.: Fast personalized pagerank on mapreduce.
In: SIGMOD Conference, pp. 973–984 (2011)

5. Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and personalized pager-
ank. PVLDB 4(3), 173–184 (2010)

6. Fogaras, D., Rácz, B., Csalogány, K., Sarlós, T.: Towards scaling fully personalized
pagerank: Algorithms, lower bounds, and experiments. Internet Mathematics 2(3),
333–358 (2005)

7. Fujiwara, Y., Nakatsuji, M., Onizuka, M., Kitsuregawa, M.: Fast and exact top-k
search for random walk with restart. PVLDB 5(5), 442–453 (2012)

8. Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Mishima, T., Onizuka, M.: Efficient
ad-hoc search for personalized pagerank. In: SIGMOD Conference, pp. 445–456
(2013)

9. Fujiwara, Y., Nakatsuji, M., Yamamuro, T., Shiokawa, H., Onizuka, M.: Efficient
personalized pagerank with accuracy assurance. In: KDD, pp. 15–23 (2012)

10. Gupta, M.S., Pathak, A., Chakrabarti, S.: Fast algorithms for topk personalized
pagerank queries. In: WWW, pp. 1225–1226 (2008)

11. Jeh, G., Widom, J.: Scaling personalized web search. In: WWW, pp. 271–279
(2003)

12. Konstas, I., Stathopoulos, V., Jose, J.M.: On social networks and collaborative
recommendation. In: SIGIR, pp. 195–202 (2009)

13. Liben-Nowell, D., Kleinberg, J.M.: The link prediction problem for social networks.
In: CIKM, pp. 556–559 (2003)

14. Lofgren, P., Banerjee, S., Goel, A., Comandur, S.: FAST-PPR: scaling personalized
pagerank estimation for large graphs. In: KDD, pp. 1436–1445 (2014)

15. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford University (1998)

16. Tong, H., Faloutsos, C., Pan, J.Y.: Fast random walk with restart and its applica-
tions. In: ICDM, pp. 613–622 (2006)

17. Yu, A.W., Mamoulis, N., Su, H.: Reverse top-k search using random walk with
restart. PVLDB 7(5), 401–412 (2014)

18. Zhu, F., Fang, Y., Chang, K.C.C., Ying, J.: Incremental and accuracy-aware
personalized pagerank through scheduled approximation. PVLDB 6(6), 481–492
(2013)

Finding Community Topics and Membership
in Graphs

Matt Revelle(B), Carlotta Domeniconi, Mack Sweeney, and Aditya Johri

George Mason University, Fairfax, VA 22030, USA
{revelle,carlotta}@cs.gmu.edu, {msweene2,ajohri3}@gmu.edu

Abstract. Community detection in networks is a broad problem with
many proposed solutions. Existing methods frequently make use of edge
density and node attributes; however, the methods ultimately have dif-
ferent definitions of community and build strong assumptions about com-
munity features into their models. We propose a new method for commu-
nity detection, which estimates both per-community feature distributions
(topics) and per-node community membership. Communities are mod-
eled as connected subgraphs with nodes sharing similar attributes. Nodes
may join multiple communities and share common attributes with each.
Communities have an associated probability distribution over attributes
and node attributes are modeled as draws from a mixture distribution.
We make two basic assumptions about community structure: commu-
nities are densely connected and have a small network diameter. These
assumptions inform the estimation of community topics and member-
ship assignments without being too prescriptive. We present competi-
tive results against state-of-the-art methods for finding communities in
networks constructed from NSF awards, the DBLP repository, and the
Scratch online community.

1 Introduction

Given a graph of self-organizing objects, we wish to estimate the latent topics
around which the objects organize and discover community membership. We
hypothesize groups with high edge density in graphs are evidence of communities
whose members have similar attributes within a subset of the feature dimensions.

In this paper we present Seeded Estimation of Network Communities
(SENC). SENC is a probabilistic method which uses both node attributes and
graph structure to simultaneously estimate community feature distributions and
members. We assume a community may exist around seed groups in the network.
Many community detection methods build strong assumptions regarding com-
munity features into their models, which limits generalizability. SENC provides
a flexible means of accounting for a variety of community structures through
the use of configurable lower and upper bounds on discovered communities. The
seed groups define the lower bounds, and they may in turn be defined by net-
work structure or node and edge attributes. In the experiments presented in
this paper, we consider every maximal k-clique in the network to be the core
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 625–640, 2015.
DOI: 10.1007/978-3-319-23525-7 38

626 M. Revelle et al.

of a partially defined community. The upper bounds provide an intuitive way
to incorporate knowledge about the degree of clustering in the network. Nodes
may be members of multiple communities and communities may overlap.

Communities are defined by the associated distribution (topic) and a set of
member nodes. Every seed group corresponds to a community, and the initial
feature distributions are a weighted average of the seed members’ attributes.
We use the features of nodes in each group to compute initial estimates for
the community feature distributions (topics). We then find initial estimates of
the membership weights given these estimated per-community topics. After this
initialization, membership weights and community feature distributions are iter-
atively updated. The feature distributions are updated by aggregating attributes
of community members and finding the maximum likelihood of a mixture distri-
bution where the parameters for all other communities are fixed.

The contributions of this paper are:

– A scalable probabilistic method for simultaneously finding highly inter-
pretable community topics and node memberships (SENC).

– A flexible and intuitive method of influencing community estimation through
the use of bounded seed groups.

– The introduction of several datasets with ground-truth communities used
for comparative experiments with top-performing methods.

2 Related Work

There are many approaches to community detection and the state-of-the-art
methods which use both network structure and node features are based on linking
models [13,21], heuristic clustering [10,11,16], or topic models [14,15]. Previous
work [17] has also considered initialization with candidate communities.

Linking models estimate the probability of links and node attributes. They
are similar to block models [2,3] with link probabilities dependent on node
attributes and community membership. Recent implementations are efficient
and competitively find communities, but treat node and community features
as binary values [21]. This results in a poor representation of the community’s
shared interest or topic.

There have been attempts at extending clustering methods to support net-
work data, such as subspace clustering [10,11,16]. In contrast to linking models,
these methods do not model edge probability and instead use observed edges
and node attributes to identify dense, connected subgraphs with similar node
attributes over a subset of the feature space. These methods are not probabilis-
tic and rely on heuristics for detecting nodes with similar attributes. Further,
they find many duplicates of a single detected community and require a distinct
post-processing step to identify the optimal detected communities.

Topic model approaches extend basic models such as LDA [5] to estimate
latent factors and introduce a dependence of edges on the latent factors. These
models are generative and require a task-specific probabilistic graphical model.
In the past they have been difficult to scale up for larger datasets due to the
sampling methods on which they rely [9].

Finding Community Topics and Membership in Graphs 627

3 Background

A substantial proportion of community detection techniques do not use node
attributes to detect communities or provide per-community feature distribu-
tions as output. Many solely rely on graph structure [8] or independently group
objects by topics and structure [23]. The state-of-the-art methods for community
detection have introduced linking models, subspace clustering, topic models, and
heterogeneous networks to improve performance and simultaneously estimate
topics and membership.

The intuition of our model is most similar to subspace clustering and topic
models and both are further discussed. We assume community members are
similar across a subset of the feature space and we consider node feature values
to be drawn from per-community feature distributions.

The recent literature on linking models which incorporate node attributes
[13,21] shows promising results. We aim to perform competitively with those
methods by taking a different approach which is probabilistic but allows the use
of heuristics to select seed groups.

Other literature [6] has focused on topic models for heterogeneous informa-
tion networks. While our model is more general and does not require customiza-
tion to support multiple types of nodes, we are still able to take advantage of the
extra information provided by those networks by adding new features or edges.

3.1 Subspace Clustering

Subspace clustering is used to find clusters of objects that occur when the objects
are embedded in a subset of the feature space dimensions. A survey of subspace
clustering methods is provided in [12] which categorizes various approaches.
Subspace clustering is frequently used on high-dimensional datasets and can be
viewed as online feature selection for clustering [7].

A major challenge of subspace clustering is finding the optimal subspace clus-
ters. A naive approach would exhaustively try every combination of features, but
this is computationally infeasible for all but the smallest datasets. Our method
is able to determine which features are relevant to each community by finding
the maximal likelihood for the target community’s feature distribution in the
context of the mixture distribution which describes the node.

Our work extends research on subspace clustering in networks by introducing
the use of probability distributions to describe the observed features and to
estimate community topics and memberships. We view communities as having
feature distributions which represent a common interest of all members.

3.2 Topic Models

Topic models are probabilistic models used to find the semantic structure of
documents [4]. They are frequently generative and make assumptions about the
relationships between topics, objects, and words. Some models support multiple

628 M. Revelle et al.

topics per object or topic hierarchies, but the model is built with those assump-
tions. Topic models have been designed for networks which group related objects
dependent on network structure [15].

The methods combining topic models with graph clustering tasks such as
community detection are limiting. They either involve complex models which
are only applicable to specific datasets or they independently find topics by
treating vertices as documents and then attempt to fit the topics onto the graph
to find clusters [23].

We represent node attributes as term-weight vectors and associate a topic
with each community. Every cluster we find is a community, and each commu-
nity has a single feature distribution or topic. We can then estimate a node’s
membership to a community by finding mixture weights which best explain the
node’s feature values through community topics.

4 Seeded Estimation of Network Communities

Network communities indicate interaction and attraction among members which
is not shared by non-members. The nature of the interaction may be reflected
in node attributes and we would expect for member nodes to be similar to
one another. However, nodes may participate in multiple communities and the
members of each community may be similar to each other in different ways.

To provide motivation for our method, let us discuss an example using an
unspecified online social network. This social network allows users to join dis-
cussion areas for topics such as “computer science” or “coffee.” Suppose a user
is interested in both CS and coffee and participates in both communities. We
expect the user’s posts to the CS community will be different from her posts to
the coffee community. We also expect the user’s post in the CS community will
be more similar in content to other posts in the CS community than to most
posts in the coffee community.

Now assume we do not have access to individual user posts. Instead we
have aggregated word counts for each user and we do not know which post
contained which words. We can model a user’s word frequencies as a random
variable drawn from a multinomial distribution. Since each user may belong to
different communities or have different levels of involvement then it’s necessary
to use a different multinomial distribution for each user. As previously hinted,
we expect posts within a single community to have similar word frequencies. If
we knew those per-community word distributions we could then represent each
user’s word distribution as a mixture distribution. This is akin to standard topic
models such as LDA [4].

The Seeded Estimation of Network Communities (SENC) method described
here has an advantage over state-of-the-art community detection methods in
its exploitation of network structure to regularize and guide estimation. This
is possible through the use of seed groups. A seed group is a subgraph with
properties which indicate the nodes are a subset of a community.

Each seed group is considered to be a lower bound of a community and its
members are representative of this corresponding community. The lower-bound

Finding Community Topics and Membership in Graphs 629

Fig. 1. Lower and upper bounds for a seed community. The lower-bound nodes are
black, upper-bound nodes are grey, and excluded nodes are white.

members, or seed members, influence estimation; the members’ attributes are
used as the initial estimate for the corresponding community’s word distribution.
The community topic is updated as additional member nodes beyond the lower
bound are found.

Along with a lower bound, each seed community has a corresponding upper
bound. The definition of this upper bound can be dependent on the network and
its selection guided by simple network statistics such as the clustering coefficient.
Figure 1 depicts an example of the bound sets for a seed community where the
distance of a node from lower-bound members is used to define the upper-bound
set. The bounds serve as a gentle bias to flexibly model assumptions regarding
the shape of communities in a network.

Table 1. Definition of notation.

N number of nodes
C number of communities
D number of feature dimensions
Φ community topics, C × D matrix
Θ community memberships, N × C matrix
G(V, E) graph defined by vertices and edges
Sc=1...C ⊆ V members of community c
x attributes of a node

4.1 Notation

Before continuing it is useful to introduce notation and additional terms for
describing the proposed method. We use topic to refer to the characteristic fea-
tures of a community as well as the associated probability distribution param-
eters for all C communities, Φ, where each row Φc,∗ is a parameter for the
categorical distribution associated with community c = 1, . . . , C with length D,
the number of feature dimensions.

The node attribute vector x is a D-length vector of node feature values.
A membership weight vector or membership vector is denoted as Θn,∗ and refers
to the probability weight vector associated with node n over all C communities.
The individual membership vectors make up the N rows of the membership
matrix Θ. The membership weights indicate the proportion of node features
which are attributed to each community. For quick reference, basic notation
used in the equations is available in Table 1.

630 M. Revelle et al.

4.2 Model

SENC uses an EM algorithm to find the maximum-likelihood estimates for com-
munity topics and node memberships. Per-node community memberships are
estimated as weighted counts of observed feature values given the community
topics in the E-step and per-community topics are maximized in the M-step.

Node memberships for each node n participating in a seed group, n ∈⋃
c=1...C Sc, are estimated using the community topics. We represent the feature

values of a node x as being drawn from a mixture distribution with per-node
mixture weights Θn,∗ over all community distributions Φ using per-community
topic distributions Φc,∗. A single term for a node n is drawn by first selecting
a community c with probabilities Θn,∗ and then choosing a specific term with
probabilities Φc,∗. For the data discussed in this paper, the community feature
distributions are categorical distributions and node features x are generated
by multiple trials of a mixture categorical distribution with proportions Θn,∗Φ.
A multinomial distribution is a categorical distribution with multiple, inde-
pendent trials. We refer to the per-node feature distributions as multinomial
distributions.

Nodes may be members of multiple communities and node features will then
be characteristic of multiple community topics. In order to untangle the features
characteristic of a community from those belonging to adjacent communities we
define a mixture categorical likelihood function. This is the standard likelihood
function but with the event probability vector p parameter computed as the
matrix product of some 1 × C mixture vector and C × D per-community topics
matrix: Θn,∗Φ.

We introduce γ as the sum of feature values from community members Sc

to improve readability:

γ =
∑

n∈Sc

x (1)

When estimating Φc,∗ using community members Sc, the mixture vector θ
is a weighted average of membership vectors {Θn,∗ : n ∈ Sc} weighted by the
proportional number of observations contributed by each node n ∈ Sc:

θ =
∑

n∈Sc

(
∑

d

xd)Θn,∗
∑

d

γd
(2)

Using θ and γ we can now show how Φc,∗ may be updated. The event prob-
ability vector p is the parameter for a categorical distribution:

p = θΦ (3)

=
C∑

i=1

θiΦi,∗ (4)

= θcΦc,∗ +
C∑

i=1,i �=c

θiΦi,∗ (5)

Finding Community Topics and Membership in Graphs 631

We can use the factoring of p in Equation (5) with the multinomial expected
value to find the maximum-likelihood value of Φc,∗ given the community member
observations γ from Equation (1).

The expected value for a single feature value i in random variable X drawn
from Mult(p, n) is E{Xi} = npi, where n is the number of trials and p is
the event probability vector. If we replace the expected value of each feature
dimension with the summation of community members’ Sc attributes γ then we
can substitute the expected value with the observed value γi for feature i and
define:

γi = (
D∑

d=1

γd)θΦ∗,i (6)

If we replace the expected value of each feature dimension with the summa-
tion of community members’ Sc attributes γ then we can define the maximum
likelihood of Φc,∗ as:

γ = (
∑

d

γd)θΦ (7)

= (
∑

d

γd)(θcΦc,∗ +
C∑

i=1,i �=c

θiΦi,∗) (8)

γ
∑

d

γd
= θcΦc,∗ +

C∑

i=1,i �=c

θiΦi,∗ (9)

θcΦc,∗ =
γ

∑

d

γd
− (

C∑

i=1,i �=c

θiΦi,∗) (10)

Φc,∗ =

γ∑

d

γd
− (

C∑

i=1,i �=c

θiΦi,∗)

θc
(11)

Using Equation (11) we can easily estimate community topics using node
attributes, per-node community membership weights, and the latest topic esti-
mates for other communities.

We use Φ′ to reference a modified version of Φ with normalized columns, each
summing to 1. The per-node community memberships are found by performing
a weighted count of node attributes over the communities, where α denotes a
normalization scalar:

Θn,∗ = αΦ′xT (12)

For each observed term, we assign a proportion of the count to each commu-
nity according to the relative probability of that term occurring in each commu-
nity. A community with a higher relative probability of a given term occurring
will receive a larger proportion of the count than the others.

632 M. Revelle et al.

4.3 Algorithm

The SENC algorithm constructs per-community lower- and upper-bound matri-
ces, initializes per-community topics Φ and per-node community memberships
Θ, and then performs expectation-maximization iterations until estimates stop
improving or the maximum number of iterations is reached. The algorithm
requires the N × N graph adjacency matrix and the N × D node attribute
matrix as input. The lower-bound matrix is a C × N binary matrix of the seed
members where 1-values indicate node n belongs to community c. The upper-
bound matrix is a binary N × C matrix where 1-values indicate node n may
belong to community c. This prevents nodes from distant communities being
assigned to communities with a similar topic. The construction of lower- and
upper-bound sets for each community is dependent on the network being pro-
cessed. Two matrices are produced as output: a C × D community topic matrix
and an N ×C community membership matrix. A goal of our method is to remove
features representative of overlapping communities over EM iterations. The node
membership vectors are estimated using the community topics to perform a
weighted count over node attributes. These weighted counts are normalized to
sum to one and used as membership weights.

Algorithm 1. Main Program: initialization, EM, termination.
Input: The graph and node attributes.
Output: The community topics and membership.
1: Construct lower-bound and upper-bound matrices;
2: Initialize community topics Φ and memberships Θ;
3: while Not convergent or max iteration do
4: Call E-step to update membership Θ;
5: Call M-step to update community topics Φ;
6: Check for convergence;
7: end while
8: return Community topics Φ and membership Θ;

Algorithm 2. E-step: update per-node community memberships.
Input: The community topics, upper-bound matrix, and node attributes.
Output: The updated membership.
1: for Each node n do
2: Identify which communities influence node n;
3: Select topics of influential communities;
4: Compute weighted counts from selected topics with Equation (12);
5: Assign normalized counts to membership vector Θn,∗;
6: end for
7: return Updated membership Θ;

Finding Community Topics and Membership in Graphs 633

Algorithm 3. M-step: update per-community topics.
Input: The node attributes, membership, influence, and community topics from the

previous iteration.
Output: The updated community topics.
1: for Each seeded community c do
2: Select all nodes with membership in c;
3: Compute weighted average of selected nodes’ membership by Equation (2);
4: Estimate topic with Equation (11);
5: Assign updated topic to parameter vector Φc,∗, if likelihood improves;
6: end for
7: return Updated topics Φ;

After initial estimates are calculated, the algorithm alternatively updates
the node memberships and community topics. The per-node and per-community
iterations within the E- and M-step are independent and computation may be
distributed across multiple threads. The E-step in Algorithm 2 updates the per-
node community memberships for all nodes given the community topics, influ-
ence matrix, and node attributes. This is done by computing the weighted counts
of node attributes using the probability of each attribute for each community, as
shown in Equation (12). The upper-bound complexity of the E-step is O(NCD),
where C and D are the number of communities to which a node may belong and
the number of dimensions relevant to those communities. In practice, C and D
will be much smaller than C and D.

The M-step, shown in Algorithm 3, updates the per-community feature dis-
tributions. We find a new estimate for Φc,∗ using Equation (11) and compare
its log-likelihood to the previous iteration’s estimate. The new estimate is used
if it better explains the feature values of the member nodes. The M-step has
computational complexity of O(C(NC + ND + CD)), where N is the number of
nodes in the upper-bound set of a community, C is the number of communities
associated with the N nodes, and D is the number of feature dimensions relevant
to all C communities and N nodes. Again, C, N , and D are usually much smaller
than C, N , and D.

5 Experiments

We evaluate our proposed method on networks with varying structure to deter-
mine whether SENC’s results are consistently competitive with state-of-the-art
methods. The networks considered are: an NSF research collaboration network,
several DBLP citation networks [19], and a Scratch project collaboration net-
work. For comparison, we evaluate the performance of four state-of-the-art com-
munity detection methods: CESNA [21], CoDA [22], EDCAR [10], and Link
Clustering [1]. CESNA and EDCAR use network structure and node attributes
to detect communities; however, the current implementations struggled to pro-
cess networks with a large number of features. In order to evaluate more methods

634 M. Revelle et al.

we elected to use smaller datasets. CoDA and Link Clustering only use network
structure.

An implementation of SENC and datasets used in experiments will be made
available at the GMU DMML website1.

5.1 Dataset Descriptions

We construct a research collaboration network from NSF awards granted by
the Directorate for Computer and Information Science and Engineering (CISE)
between January 1995 and August 2014. This is accomplished by forming undi-
rected edges between the PI and co-PIs who received funding from the same
award. The awards are associated with programs and we use the programs with
at least three associated researchers as ground truth. We find 90% of researchers
received funding from six or fewer programs; this suggests programs function
well as ground-truth communities. There are a total of 768 programs in the CISE
Directorate. NSF awards data is publicly available from the NSF website2.

An online computer science bibliography, DBLP, contains entries for pub-
lished papers with information about the authors, citations, and publication
venues. The per-year DBLP citation networks were constructed from an existing
citation dataset [19] by forming edges between authors who cited each other
within that year. Papers are linked to a publication venue and these venues were
used to define ground truth. Venues referenced only once were removed from
our dataset. Venues with three or more associated authors were used as ground
truth.

Scratch [18] is an online community where users may write and share projects
(programs) with other users. One way in which Scratch users may interact is
by remixing projects. Remixing allows a user to create a copy of any existing
project which they may then modify. We created a co-remix affiliation network
from the MIT Scratch Team’s dataset containing users, projects, and remixes.
An edge is formed when two users remix the same project. To reduce the total
number of edges we used co-remix edges where users had three or more projects
in common. Users may create project galleries which are curated collections of
projects. Galleries corresponding to three or more users were used as ground
truth. The Scratch dataset used to construct the network may obtained from
the MIT Media Lab website3.

Several of the methods make use of node attributes and these were provided
as tf-idf weighted values for EDCAR and SENC and binary values for CESNA.
For the NSF CISE network, terms associated with each researcher were taken
from NSF award titles and abstracts. The DBLP author terms were taken from
titles and abstracts of papers they wrote. Scratch user terms were extracted from
titles, descriptions, and tags of their projects. The term features in all networks
had stop words removed and terms stemmed.

1 http://cs.gmu.edu/∼dmml
2 http://www.nsf.gov/awardsearch/download.jsp
3 https://llk.media.mit.edu/scratch-data

http://cs.gmu.edu/~dmml
http://www.nsf.gov/awardsearch/download.jsp
https://llk.media.mit.edu/scratch-data

Finding Community Topics and Membership in Graphs 635

Table 2. Network statistics. N : number of nodes, E: number of edges, D: number
of node attributes, MC: number of maximal cliques with 3+ members, GCC: global
clustering coefficient, LCC: average local clustering coefficient, G: number of ground-
truth communities.

Dataset N E D MC GCC LCC G

NSF 8,168 38,212 43,445 3,331 0.590 0.683 429
DBLP 2010 32,961 130,420 58,007 37,120 0.422 0.440 2,288
DBLP 2011 32,614 131,921 56,166 39,955 0.421 0.438 2,215
DBLP 2012 33,576 135,883 54,269 42,443 0.381 0.397 1,861
Scratch 1,714 17,824 36,494 7,705 0.584 0.704 718

Multiple connected components were found in all networks and the smaller
components were removed as they may be trivially considered communities.
Table 2 lists the network statistics for the largest component of each network
used for experiments and analysis. All the networks used for experiments are
undirected, but they vary in structure.

As shown in Table 2, the NSF and Scratch networks have higher cluster-
ing coefficients than the DBLP networks. This is unsurprising as the NSF and
Scratch networks are affiliation networks (co-award and co-remix). Our exper-
iments show that while SENC is able to perform competitively across all the
networks other methods tend to either perform better on networks with higher
or lower clustering coefficients.

5.2 Methods and Evaluation

The public implementations of CESNA, CoDA, EDCAR, and Link Clustering
were used. CESNA and CoDA rely on an estimate of the number of communi-
ties. We provided the number of NSF programs, DBLP publication venues, and
Scratch galleries as estimates. CoDA is designed for directed networks but can
be used to find communities in undirected networks. It does this by processing
the network twice, switching the direction of edges between runs. As a result,
two sets of detected communities are generated. We combined both sets when
evaluating the performance of CoDA. EDCAR requires 10 parameters and the
suggested values from the implementation documentation were used. Link Clus-
tering is parameter-less and only requires the edge list as input. Maximal cliques
of size three and above were used as the lower-bound groups for SENC and the
upper-bound groups were selected based on the clustering coefficient. The high
clustering coefficients of the NSF and Scratch networks indicate tighter upper
bounds should be used than with the DBLP networks. For the DBLP networks
we extend the lower bounds by including all nodes adjacent to any lower-bound
member. The upper bounds for the NSF and Scratch networks are simply the
same maximal cliques.

Link Clustering and SENC require a post-processing step to define exact
communities. The Link Clustering implementation includes a script to calculate
the optimal dendrogram cut threshold and we use this to determine the commu-
nities for evaluation. SENC defines community membership with probabilities

636 M. Revelle et al.

and does not perform a hard assignment of nodes to communities like the other
evaluated methods. We account for this in our evaluation by filtering weaker
memberships. For all nodes, we sort their memberships in descending order by
weight and take all the assignments until the sum of weights reaches a minimum
threshold value. An optimal threshold is used for each dataset.

We use the evaluation function described in [20,21] and recited in Equation
(13) to compute the F1 score and Jaccard similarity of detected communities
against ground-truth communities. This function is especially useful when the
numbers of detected communities and ground-truth communities differ as occurs
with several of the methods in our experiments. In Equation (13), C∗ denotes a
set of ground-truth communities, C a set of detected communities, and δ(·) is a
similarity metric.

1
2|C∗|

∑

C∗
i ∈C∗

max
Cj∈C

δ(C∗
i , Cj) +

1
2|C|

∑

Cj∈C

max
C∗

i ∈C∗
δ(C∗

i , Cj) (13)

5.3 Results

Using the evaluation function defined in Equation (13) we find the F1 score and
Jaccard similarity between the detected communities from all methods and the
ground-truth communities.

Table 3. F1 scores for all methods and datasets.

Method Attr. NSF DBLP10 DBLP11 DBLP12 Scratch Avg.

CoDA No 0.216 0.278 0.273 0.263 0.283 0.263
Link Clust. No 0.303 0.266 0.265 0.258 0.399 0.298
CESNA Yes 0.228 0.272 0.263 0.255 0.356 0.275
EDCAR Yes 0.164 N/A N/A N/A N/A N/A
SENC Yes 0.346 0.301 0.297 0.298 0.365 0.321

Our results are provided in Tables 3 and 4 and show SENC outperforms most
other methods over all datasets and achieves the highest average performance.
Unfortunately, the current implementation of EDCAR was unable to process
most of the networks. We believe this is partly due to the large number of
features.

We note the relative difference in performance of CoDA and CESNA to Link
Clustering flips between the networks with higher and lower clustering coeffi-
cients. In the NSF and Scratch networks, Link Clustering outperforms CoDA
and CESNA but performs worse than CESNA on the DBLP10 network and
worse than CoDA on every DBLP network. This may indicate these other meth-
ods include a biased definition of communities which is not found in all social
networks. SENC performs well across all the networks and avoids this problem
through the use of its configurable bounds chosen based on network statistics
such as clustering coefficients.

Finding Community Topics and Membership in Graphs 637

Table 4. Jaccard index for all methods and datasets.

Method Attr. NSF DBLP10 DBLP11 DBLP12 Scratch Avg.

CoDA No 0.132 0.172 0.168 0.162 0.174 0.162
Link Clust. No 0.233 0.166 0.166 0.161 0.265 0.198
CESNA Yes 0.139 0.167 0.161 0.156 0.228 0.170
EDCAR Yes 0.112 N/A N/A N/A N/A N/A
SENC Yes 0.269 0.190 0.187 0.190 0.235 0.214

5.4 Interpretation of Detected Communities

We also perform a qualitative analysis on communities discovered by SENC to
illustrate the interpretability of its results. Several communities relating to data
mining and machine learning were found in the NSF CISE network.

Table 5. Top-5 researchers of the AMPLab and Computational Learning communities
with corresponding membership weights.

AMPLab Comp. Learning

Peter Bartlett 0.5084 Laurent El Ghaoui 0.5884
Laurent El Ghaoui 0.4116 Peter Bartlett 0.4916

Michael Franklin 0.1346 Jesse Snedeker 0.4647
Michael Jordan 0.1049 Federico Girosi 0.4134

Alexandre Bayen 0.0996 Robert Berwick 0.2830

Fig. 2. Word clouds of the top-40 terms from the AMPLab community (left) and
computational learning community (right).

We present the top-5 researchers and top-40 terms of two such groups in
Table 5 and Figure 2. The first community is associated with Berkeley’s AMPLab4,
whichworks on problems involvingmachine learning, cloud computing, and crowd-
sourcing. The top-5 researchers are all EECS faculty at Berkeley and Michael
Franklin and Michael Jordan are both directors of AMPLab. Recall membership
weights are normalizedper-researcher anda lowermembershipweight indicates the
researcher’s work is also captured by other community topics.Most of the terms are
self-explanatory, but the term Alon refers to Alon Halevy of University of Wash-
ington whose name appears in several award abstracts and has collaborated with
Michael Franklin.
4 https://amplab.cs.berkeley.edu

https://amplab.cs.berkeley.edu

638 M. Revelle et al.

We find another community with 12 members in common with the AMPLab
community. Its topic may be described as computational learning and its appli-
cations to computer vision and natural-language processing. The AMPLab and
computational learning communities have 41 and 34 members respectively, with
roughly about one-third being shared. These common members include: Michael
Jordan, Michael Franklin, Peter Bartlett, and Tomaso Poggio.

Although both communities are generally concerned with human-centric
applications of machine learning, the AMPLab community is focused on com-
puting architecture to solve such problems, while the computational learning
community is focused on understanding human vision and motor control. This
discovery of overlapping communities with shared general interests but distinct
features exemplifies an advantage of SENC’s initialization by seed groups.

6 Conclusion

We have introduced SENC — a probabilistic approach to community detection
that outputs node memberships and community topics. Simple network statis-
tics, such as the clustering coefficient, can be used to guide configuration of flexi-
ble bounds on seed groups. The bounded seed groups enable SENC to account for
differences in underlying community structure across many networks. This con-
trasts with existing methods which build strong assumptions into their models.
As a result, SENC is able to consistently outperform state-of-the-art community
detection methods on a variety of networks. No other method performed con-
sistently across all the networks used in our experiments. This indicates SENC
generalizes better than current state-of-the-art methods.

The output produced by SENC is highly interpretable. We can understand
the nature of a discovered community by examining its topic distribution. We
can also review a node’s relative community involvement through its member-
ship weights. The combination of SENC’s flexible model and interpretable results
make it an excellent choice for both exploratory analysis of networks and com-
munity detection tasks.

Our experiments have raised several interesting questions for future work.
We are interested in discovering how network characteristics affect assumptions
made in community detection methods and how other approaches for defining
bounded seed groups may further improve SENC’s performance.

Acknowledgments. We appreciate the Lifelong Kindergarten group at MIT for pub-
licly sharing the Scratch datasets. This work is partly based upon research supported
by U.S. National Science Foundation (NSF) Awards DUE-1444277 and EEC-1408674.
Any opinions, recommendations, findings, or conclusions expressed in this material are
those of the authors and do not necessarily reflect the views of NSF.

Finding Community Topics and Membership in Graphs 639

References

1. Ahn, Y.-Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale com-
plexity in networks. Nature 466(7307), 761–764 (2010)

2. Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic
blockmodels. Journal of Machine Learning Research 9, 1981–2014 (2008)

3. Balasubramanyan, R., Cohen, W.W.: Block-LDA: Jointly modeling entity-
annotated text and entity-entity links. In: Proceedings of the SIAM International
Conference on Data Mining, vol. 11, pp. 450–461. SIAM (2011)

4. Blei, D.M.: Probabilistic topic models. Communications of the ACM 55(4), 77–84
(2012)

5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. Journal of Machine
Learning Research 3, 993–1022 (2003)

6. Deng, H., Han, J., Zhao, B., Yu, Y., Lin, C.X.: Probabilistic topic models with
biased propagation on heterogeneous information networks. In: Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1271–1279. ACM (2011)

7. Domeniconi, C., Papadopoulos, D., Gunopulos, D., Ma, S.: Subspace clustering of
high dimensional data. In: Proceedings of the SIAM International Conference on
Data Mining, pp. 517–521. SIAM (2004)

8. Fortunato, S.: Community detection in graphs. Physics Reports 486(3), 75–174
(2010)

9. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI–6(6), 721–741 (1984)

10. Günnemann, S., Boden, B., Färber, I., Seidl, T.: Efficient mining of combined
subspace and subgraph clusters in graphs with feature vectors. In: Pei, J.,
Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013, Part I. LNCS,
vol. 7818, pp. 261–275. Springer, Heidelberg (2013)

11. Günnemann, S., Färber, I., Boden, B., Seidl, T.: Subspace clustering meets dense
subgraph mining: a synthesis of two paradigms. In: Proceedings of the IEEE Inter-
national Conference on Data Mining, pp. 845–850. IEEE Computer Society (2010)

12. Kriegel, H.-P., Kröger, P., Zimek, A.: Subspace clustering. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 2(4), 351–364 (2012)

13. Leskovec, J., McAuley, J.: Learning to discover social circles in ego networks. In:
Advances in Neural Information Processing Systems, pp. 539–547 (2012)

14. Liu, Y., Niculescu-Mizil, A., Gryc, W.: Topic-link LDA: Joint models of topic and
author community. In: Proceedings of the International Conference on Machine
Learning, pp. 665–672. ACM (2009)

15. McCallum, A., Wang, X., Mohanty, N.: Joint group and topic discovery from
relations and text. In: Airoldi, E.M., Blei, D.M., Fienberg, S.E., Goldenberg, A.,
Xing, E.P., Zheng, A.X. (eds.) ICML 2006. LNCS, vol. 4503, pp. 28–44. Springer,
Heidelberg (2007)

16. Moser, F., Colak, R., Rafiey, A., Ester, M.: Mining cohesive patterns from graphs
with feature vectors. In: Proceedings of the SIAM International Conference on
Data Mining, vol. 9, pp. 593–604. SIAM (2009)

17. Pool, S., Bonchi, F., Leeuwen, M.: Description-driven community detection. ACM
Transactions on Intelligent Systems and Technology 5(2), 28:1–28:28 (2014)

18. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E.,
Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., et al.: Scratch:
Programming for all. Communications of the ACM 52(11), 60–67 (2009)

640 M. Revelle et al.

19. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: Extraction
and mining of academic social networks. In: Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 990–998
(2008)

20. Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative
matrix factorization approach. In: Proceedings of the ACM International Confer-
ence on Web Search and Data Mining, pp. 587–596. ACM, New York (2013)

21. Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node
attributes. In: IEEE 13th International Conference on Data Mining, pp. 1151–1156.
IEEE (2013)

22. Yang, J., McAuley, J., Leskovec, J.: Detecting cohesive and 2-mode communities
in directed and undirected networks. In: Proceedings of the ACM International
Conference on Web Search and Data Mining, pp. 323–332. ACM (2014)

23. Zhao, Z., Feng, S., Wang, Q., Huang, J.Z., Williams, G.J., Fan, J.: Topic oriented
community detection through social objects and link analysis in social networks.
Knowledge-Based Systems 26, 164–173 (2012)

Finding Dense Subgraphs in Relational Graphs

Vinay Jethava(B) and Niko Beerenwinkel

Department of Biosystems Science and Engineering, ETH Zürich, Zurich, Switzerland
{vinay.jethava,niko.beerenwinkel}@bsse.ethz.ch

Abstract. This paper considers the problem of finding large dense sub-
graphs in relational graphs, i.e., a set of graphs which share a common
vertex set. We present an approximation algorithm for finding the dens-
est common subgraph in a relational graph set based on an extension
of Charikar’s method for finding the densest subgraph in a single graph.
We also present a simple greedy heuristic which can be implemented effi-
ciently for analysis of larger graphs. We give graph dependent bounds
on the quality of the solutions returned by our methods. Lastly, we show
by empirical evaluation on several benchmark datasets that our method
out-performs existing approaches.

1 Introduction

Finding dense subgraphs is a key subtask in many applications [see 21, forasurvey].
In many contexts, there exist several graphs encoding different relationships
between the same set of actors. Then, a subset of actors having high degree of inter-
connections (dense) which recur in multiple graphs (frequent) often have a rich
interpretation in the application domain. For example, dense recurrent subgraphs
in multiple gene co-expression networks have been shown to correspond to known
functional/transcriptional modules or protein complexes as well as phenotype-
specific modules [12,24].

Several data-miningmethodshave addressed theproblemof enumeratingdense
recurrent subgraphs [see,e.g., 6,12,13,24,26,31,33].Most existing approaches enu-
merate all frequent quasicliques depending on parameters such as minimum sup-
port threshold and minimum relative density. This results in exponential growth
of search space with increasing size of the returned subgraph, making the methods
unsuitable for identifying large dense subgraphs in multiple graphs. The approach
of [24] yields a non-convex cubic programming problem which is solved approx-
imately using multi-stage convex relaxation [34] and used in the analysis of co-
expression networks in order to identify small biologically relevant modules. [13]
present a method to identify large dense subgraphs based on solving a Multiple
Kernel Learning (MKL) problem [3,27] with precomputed kernels.

On the other hand, there is a rich body of work on approximation algo-
rithms which addresses the problem of finding the densest subgraph (DS) [7,11]
and its size-constrained variants (DkS, DalkS, DamkS) [1,5,20] including greedy
approaches [2,9,28], truncated power method [32], linear programming (LP)
based methods [7,20] and semidefinite programming (SDP) based methods
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 641–654, 2015.
DOI: 10.1007/978-3-319-23525-7 39

642 V. Jethava and N. Beerenwinkel

[8,29]. We note that given a relational graph set 1, G := {G(m) = (V,E(m))}M
m=1,

it is possible to construct integrated graphs, e.g., G∪, G∩ or G≥t having edge
sets respectively,

⋃
E(m),

⋂
E(m) or {e | supp(e,G) ≥ t}) 2; and identify dense

subgraphs in the integrated graph using these methods. However, as noted by
[16], a dense subgraph in the integrated graph may either not be dense in one
or more of the original graphs, e.g., G∪ and G≥t; or, be too pessimistic in size
of the returned subgraph, e.g., G∩.

In this paper, we formalize the notion of Densest Common Subgraph (i.e., a
subset of nodes which maximizes the density of the induced subgraph in each of
the graphs in the relational graph set) which was previously discussed in [13]. We
present an approximation algorithm (DCS LP) for finding the densest common
subgraph in a relational graph set based on an extension of Charikar’s LP based
approach [7,20] for finding the densest subgraph (DS) in a single graph. We
also present a simple greedy heuristic (DCS GREEDY) which can be implemented
efficiently for analysis of larger graphs. We give graph dependent bounds on the
quality of the solutions returned by DCS LP and DCS GREEDY. Lastly, we show by
empirical evaluation on several benchmark datasets and real-world datasets that
our methods out-perform prior approaches.

Notation. We represent vectors using lower case bold letters a,b, . . ., etc., and
matrices using upper case bold letters A,B, . . . etc.; with ai referring to ith

element of a, and similarly Aij referring to (i, j)th entry of matrix A. We use
notation [n] to denote the set {1, 2, . . . , n}. For a vector in R

d, we denote the
Euclidean norm by ‖.‖ and the p-norm by ‖.‖p. The inequality a ≥ 0 is true if
it holds element-wise.

Let G = (V,E) be a simple undirected graph of order n with vertex set
V = [n] and edge set E ⊆ V × V . Let A ∈ Sn denote the adjacency matrix of G
where Aij = 1 if edge (i, j) ∈ E, and 0 otherwise. We use shorthand notation ij
to mean (i, j) whenever clear from context. Let Ḡ denote the complement graph
of G. The adjacency matrix of Ḡ is Ā = ee� − I − A, where e = [1, 1, . . . , 1]�

is a vector of length n containing all 1’s, and I denotes the identity matrix. We
denote the indicator vector for some set S ⊆ V as eS which is one for all i ∈ S
and zero in other co-ordinates.

We use notation degG(i) to denote the degree of node i in graph G, and
degG(i, S) to denote the degree of node i in the subgraph (S,E(S)) induced by
vertex set S ⊆ V in graph G. The density δG(S) and relative density ρG(S)
of subgraph (S,E(S)) induced by vertex set S ⊆ V in graph G = (V,E) are
given by δG(S) := |E(S)|

|S| and ρG(S) := |E(S)|/(|S|
2

)
respectively. The induced

subgraph (S,E(S)) is an α-quasiclique if |E(S)| ≥ α
(|S|

2

)
, i.e., if the relative

density ρG(S) of the induced subgraph exceeds a threshold parameter α ∈ (0, 1).
Let δ∗

G := maxS⊆V δG(S) denote the density of the densest subgraph (DS) in G.

1 A relational graph set is defined as a set of simple undirected graphs which share a
common vertex set.

2 The support of an edge e in the relational graph set G denoted by supp(e,G) :=
#{m : e ∈ E(m)} is the number of graphs G(m) ∈ G which contain this edge.

Finding Dense Subgraphs in Relational Graphs 643

Given a relational graph set G = {G(m) = (V,E(m))}M
m=1, we use short-

hand notation degm(i), degm(i, S), δm(S), ρm(S) and δ∗
m to denote degG(m)(i),

degG(m)(i, S), δG(m)(S), ρG(m)(S) and δ∗
G(m) , respectively, whenever clear from

context. We use nG :=
∑

m |E(m)| to denote the total number of edges in the rela-
tional graph set. The support of a subgraph H = (VH , EH), VH ⊆ V,EH ⊆ V ×V
in G is given by supp(H,G) := #{m : EH ⊆ E(m)}.

2 Related Work

In this section, we review prior work on finding dense subgraphs and quasicliques.
Section 2.1 discusses approximation algorithms (with known worst-case bounds)
that find the subgraph with maximum density (DS) or its size-constrained vari-
ants (DkS, DalkS, DamkS). In Section 2.2 reviews methods for enumerating fre-
quent dense subgraphs present in a relational graph set.

2.1 Finding a Dense Subgraph in a Single Graph

The problem of finding maximum density subgraph was studied by Goldberg [11]
who introduced a maximum-flow algorithm for this problem (see also [10]).
Kannan and Vinay [18] studied the problem for directed graphs and introduced
an O(log n)-approximation algorithm. Charikar [7] presented a linear program-
ming relaxation from which the optimal solution can be recovered. They also
showed that the related greedy algorithm of [2] yields 2-approximation for the
problem. The work of Khuller and Saha [20] simplified the analysis in [7]. Bah-
mani et al. [4] obtained O(2 + ε)-approximation algorithm for DS in the stream-
ing model which makes O(1ε log n) passes over the data. Recently, Tsourakakis
et al. [30] defined the notion of optimal α-quasiclique (OQC) which maximizes
the edge surplus given by fα(S) := (|E(S)| − α

(|S|
2

)
); and, obtained a 2-

approximation algorithm for finding optimal quasicliques analogous to Charikar’s
algorithm [7]. Comparing their approach (α = 1/3) with Charikar’s algorithm
on several real-world graphs, the authors argue that OQC yields better results in
terms of lower diameter, higher relative density and higher triangle density of
the extracted subgraphs.

When there is a constraint on the size of the subgraph (|S| = k), the problem
of finding the densest k subgraph (DkS) is NP-Hard [2,9]. Feige et al. [9] gave
an O(n1/3−ε)-approximation algorithm for DkS. The best known current bound
for DkS is given by Bhaskara et al. [5] who obtain an O(n1/4+ε)-approximation
algorithm for DkS with any ε > 0 having run time nO(1/ε). Khot [19] showed that
under reasonable complexity assumptions, DkS cannot be approximated within
an arbitrary constant factor. Recently, Papailiopoulos et al. [25] obtained graph-
dependent bounds for DkS based on low-rank approximation of the adjacency
matrix, and experimentally showed that their bounds are tight for several large
real-world graphs.

Two variants of the DkS problem where the size constraint is relaxed were
introduced in [1], namely, densest at-most-k subgraph (DamkS, |S| ≤ k) and

644 V. Jethava and N. Beerenwinkel

densest at-least-k subgraph (DalkS, |S| ≥ k). Andersen and Chellapilla [1] gave
an 2-approximation algorithm for DalkS which was subsequently improved in
running time by [20]. Khuller and Saha [20] also showed that DamkS is as hard
as DkS, specifically, an α-approximation for DamkS implies a 4α-approximation
for DkS.

2.2 Finding Cross-Graph Quasicliques

The problem of identifying dense recurrent subgraphs has been studied in several
guises with differing terminologies. Early works on frequent subgraph mining
were based either on the apriori principle or pattern-growth approach [see 15,
forarecentsurvey]. One key bottleneck in general frequent subgraph mining is
handling graph (and subgraph) isomorphism; which is absent in relational graph
sets since the graphs share a common vertex set.

Yan et al. [31] enumerated frequent dense subgraphs in a relational graph
set where each edge has support greater than some threshold (frequent) and the
subgraph has large minimum cut (dense). Zeng et al. [33] studied the problem of
mining frequent quasicliques in a database of vertex labeled graphs by consid-
ering γ-quasicliques induced by node sets S(a) and S(b) in graphs G(a) and G(b)

respectively “γ-isomorphic” if there is a one-to-one mapping between S(a) and
S(b) which preserves their vertex labels. Boden et al. [6] present a method for
enumerating frequent quasicliques (minimum support) in edge-labelled graphs.

Hu et al. [12] presented a method for identifying coherent dense subgraphs
from gene microarray expression datasets by finding dense subgraphs in the
summary graph GS = (VS , ES) where VS ⊂ V × V and nodes (u, v) and
(w, z) have an edge in ES if their support sets in G have high Jaccard simi-
larity. Pei et al. [26] presented an exhaustive approach for enumerating all cross-
graph quasicliques defined as follows: given relational graph set G, parameters
γ(1), γ(2), . . . , γ(M) and min sup ∈ (0, 1]; a vertex set S is a frequent cross-
graph quasiclique (fCGQC) if it has relative density ρm(S) ≥ γ(m) in at least
(M · min sup) graphs.

Li et al. [24] present a method for identifying recurrent dense subgraphs in
weighted graphs based on a non-convex optimization problem which is solved
approximately using multi-state convex relaxation [34]. This is used to identify
several recurrent heavy subgraphs in multiple co-expression networks.

Jethava et al. [13] present a parameter-less algorithm based on a multiple ker-
nel learning (MKL) [3,27] formulation for finding an ordering of vertices which
maximizes the minimum relative density (across all graphs) of the induced sub-
graph. Their approach also provides weak graph-dependent bounds on the den-
sity of the induced subgraphs [see 14, Lemma 11 and Theorem 12]. However,
their method has O(n3) complexity which cannot scale to large graphs.

3 Methods

We are interested in finding a set of nodes which induces a dense subgraph
in each of the graphs in G. We formalize this notion by defining the problem

Finding Dense Subgraphs in Relational Graphs 645

of densest common subgraph (DCS). Let δG(S) := minG(m)∈G δm(S) denote the
density of the subgraph having minimum density among the subgraphs induced
by S in graphs G(m) ∈ G. In the sequel, we refer to δG(S) as the common density
of vertex set S ⊆ V in graph set G.

Definition 1 (Densest Common Subgraph). Given relational graph set G,
the densest common subgraph is given by:

SDCS := arg max
S⊆V

δG(S), (1)

We use shorthand notation δG := δG(SDCS) to denote the minimum density of
any subgraph induced by SDCS in the graph set G.

The DCS problem is related to the k-multicut (following Goldberg’s construc-
tion [11]) which is known to be NP-Hard for k ≥ 3, and therefore, DCS is sus-
pected to be NP-Hard. However, a formal proof of hardness is non-trivial and it
constitutes an interesting problem for future research.

We can define the LP relaxation (DCS LP) of the DCS problem as:

max t
s.t.

∑n
i=1 yi ≤ 1

∑
ij∈E(m) x

(m)
ij ≥ t ∀E(m), m ∈ [M]

x
(m)
ij ≤ yi, x

(m)
ij ≤ yj ∀ ij ∈ E(m)

x
(m)
ij ≥ 0, yi ≥ 0 ∀ ij ∈ E(m), ∀ i ∈ [n],

(2)

where (t, {x
(m)
ij }ij∈E(m) , {yi}i∈[n]) denote the primal variables. We make the

following observations:

Lemma 1. For any S ⊆ V , the optimal value of DCS LP in (2) is at least δG(S).
In particular, the optimal value of DCS LP is an upper bound on δG.

Proof. Suppose |S| = k. We construct a feasible solution as follows:

yi =

{
1
k if i, j ∈ S

0 otherwise
, x

(m)
ij =

{
1
k if i, j ∈ S

0 otherwise
.

Then,
∑

ij∈E(m) x
(m)
ij = 1

k

∑
ij∈E(m)(S) 1 = δG(m)(S) and t = δG(S). 	

We consider an algorithm which solves DCS LP and returns S(r) = {i : yi
∗ ≥

r} which maximizes δG(S(r)). Note that there are at most n sets to consider
corresponding to distinct values of y∗

i . The following theorem provides a lower
bound on the quality of the returned subgraph.

Lemma 2. Let (t∗, x(m)
ij

∗
, yi

∗) denote optimal solution for DCS LP (2) and let
S := {i : yi

∗ > 0} denote the set of vertices with non-zeros yi
∗’s with k := |S|

and ymin = mini∈S yi
∗. The following hold:

(a) If yi
∗ = 1

k ∀ i ∈ S, then S is a densest common subgraph, i.e., δG(S) = δG.

646 V. Jethava and N. Beerenwinkel

(b) For each graph G(m) ∈ G, there exists S(m) ⊆ S which induces a subgraph
in G(m) with density at least t∗, i.e., δG(m)(S(m)) ≥ t∗.

(c) The density of the subgraph induced by S in any graph G(m) is at least
t∗
2t∗+1�

k , i.e., δG(S) ≥ t∗
2t∗+1�
k .

Proof (of Lemma 2). Without loss of generality, assume x
(m)
ij

∗
= min(yi

∗, yj
∗)

since for any feasible solution (x, y, t), we can construct another solution by
setting x̄

(m)
ij := min(yi, yj) ≥ x

(m)
ij with t̄ ≥ t.

(a) If y∗ = 1
K eS, then t̄ = δG(S). By Lemma 1, t∗ ≥ δG and the result follows.

(b) Following the analysis of Charikar [7, Lemma 2], we define collection of sets
indexed by a parameter r ≥ 0. Let S(r) := {i : yi

∗ ≥ r} and E(m)(r) :=
{ij ∈ E(m) : x

(m)
ij

∗ ≥ r}. Since x
(m)
ij

∗
= min(yi

∗, yj
∗) by construction,

ij ∈ E(m)(r) ⇔ i, j ∈ S(r) .

Now,
∫ ∞
0

|S(r)|dr =
∑

i yi
∗ ≤ 1 and

∫ ∞
0

|E(m)(r)|dr =
∑

ij∈E(m) x
(m)
ij

∗ ≥ t∗.

Then, for each G(m) ∈ G, there exists r(m) such that |E(m)(r(m))|
|S(r(m))| ≥ t∗.

Otherwise, it leads to the following contradiction:

t∗ ≤
∫ ∞

0

|E(m)(r)|dr < t∗
∫ ∞

0

|S(r)|dr ≤ t∗

We define S(m) := S(r(m)) ⊆ S which induces a subgraph of density at least
t∗ in graph G(m) ∈ G.

(c) We observe |S(m)| ≥ �2t∗ + 1 since δm(S(m)) ≥ t∗. Consequently, for each
graph G(m) ∈ G,

δm(S) =
|E(m)(S)|

k
≥ |E(m)(S(m))|

k
=

|S(m)|
k

δm(S(m)) ≥ �2t∗ + 1
k

t∗ . 	

The LP optimal t∗ is at most δG
min := minG(m) δG(m) where δG(m) denotes

the density of the densest subgraph in G(m). This yields an upper bound on
the integrality gap of DCS LP given by δG

min

δG
. The LP solution is particularly

interesting whenever y∗ = 1
|S|eS since we get proof of optimality in that case. In

the general case, DCS LP can exhibit both integrality gap higher than 1 and an
approximation ratio lower than 1 (obtained by δG(S)) in contrast to Charikar’s
LP in the densest subgraph problem (Section 4.1).

Furthermore, solving DCS LP has running time polynomial in the number of
edges in the graph set (nO(1)

G
) which cannot be scaled to large graphs having

more than a few hundred thousand edges. In the next section, we consider a
simple greedy algorithm for finding common dense subgraphs in large graphs.

Finding Dense Subgraphs in Relational Graphs 647

Algorithm 1 (S, r) = DCS GREEDY(G)
1: Initialize V1 := V
2: while δG(Vt) > 0 do
3: mt := arg minm δm(Vt) {G(m) with min. density induced subgraph}
4: V ′ := {i ∈ Vt : degmt

(i, Vt) > 0} {Non-isolated nodes in G(mt)(Vt)}
5: it := arg mini∈Vt degmt

(i, Vt) {minimum degree node in G(mt)(Vt)}
6: For all m, assign all edges (it, j) ∈ E(m) and (j, it) ∈ E(m) to node it.
7: Set deg+

t := maxm degm(it, Vt) {Max. degree of it in any G(m)(Vt)}
8: Set deg−

t := mini∈V ′ degmt
(i, V ′) {Min. non-zero degree in G(mt)(Vt)}

9: Set kt =
deg+t
deg−

t

and rt = kt
|Vt|
|V ′| {deg+

t ≤ 2rt δG(Vt)}
10: Vt+1 ← Vt\it
11: t ← t + 1
12: end while
13: S′ := Vt {Clean-up phase}
14: while |S′| > 0 do
15: Choose random i′ ∈ S′

16: ∀m, assign edges (i′, j) ∈ E(m)(S′) and (j, i′) ∈ E(m)(S′) to i.
17: S′ ← S′\i′

18: end while
19: return S := arg maxVt δG(Vt) and r := maxt rt

3.1 A Greedy Algorithm for Densest Common Subgraph

In this section, we consider a peeling algorithm (DCS GREEDY) for solving dens-
est common subgraph problem. The algorithm iteratively constructs vertex set
Vt+1 at each time t by removing the node it from Vt where it is the minimum
degree node in the subgraph G(mt)(Vt) where G(mt)(Vt) has the minimum den-
sity among the subgraphs induced by Vt in graph set G. All edges (it, j) and
(j, it) present in induced subgraphs G(m)(Vt) are assigned to node it. The set Vt

which maximizes δG(Vt) is returned as solution. Algorithm 1 gives the complete
pseudocode for DCS GREEDY.

We now consider an analysis of the above algorithm. We have the following
invariant: after each iteration t, the set of edges E(m)

⋂
(Vt × Vt) are unassigned

while all other edges are assigned to a node in V \Vt. At the termination of
the algorithm, either all edges (i, j) ∈ E(m) ∀m are assigned to i, or all edges
(i, j) ∈ E(m) ∀m are assigned to j.

Let d
(m)
max denote the maximum number of edges (i, j) or (j, i) assigned to

any node i in graph G(m) and let dminmax denote the minimum value of d
(m)
max

among all graphs G(m) ∈ G. The following holds:

Lemma 3. For any S ⊆ V , the value δG(S) is at most dminmax. In particular,
dminmax is an upper bound on δG.

Proof (Sketch). Each edge in E(m)(S) is assigned to a vertex in S, and therefore,
|E(m)(S)| ≤ d

(m)
max · |S|. Consequently, δG(S) ≤ dminmax. 	

648 V. Jethava and N. Beerenwinkel

The greedy algorithm of Charikar [7] yields a 2-approximation for the densest
subgraph problem due to the following property: in the densest subgraph, the
degree of the minimum degree subgraph is at least the average degree otherwise
it can safely be removed to yield an even denser subgraph. This property is not
true for DCS. The following result gives an lower bound on the quality of the
solution returned by DCS GREEDY.

Lemma 4. The value dminmax is at most (2r · δG(S)) where (S, r) is the solution
returned by the DCS GREEDY algorithm. In particular, δG ≤ (2r · δG(S)).

Proof. Let m′ = arg min d
(m)
max and i′ denote the node in graph G(m′) which has

the maximum number of edges assigned to it. Let t′ denote the iteration in which
node i′ is removed from Vt′ during the execution of DCS GREEDY. By construction,
edges are assigned to any node only when it is removed from the graph and
therefore, dminmax = deg+t′ . Further, by definition of deg−

t , we have deg−
t ≤

2 |E(mt)(V ′)|
|V ′| = 2 δG(Vt)

|Vt|
|V ′| . Combining, we get

dminmax = deg+t′ ≤ 2rt′ δG(Vt′) ≤ 2r δG(S). 	

The DCS GREEDY algorithm can be efficiently implemented in O(n+nG) time

by maintaining a list of node degrees for each graph G(m) and updating the
neighbours of a node v in the degree list whenever node v is removed.

3.2 Densest Common at Least-k Subgraph (DCalkS)

We next consider the Densest Common at least-k Subgraph (DCalkS) problem
which imposes constraint on the minimum size of the induced subgraphs.

Definition 2 (Densest Common at Least-k Subgraph). Given relational
graph set G, the densest common at least-k subgraph (DCalkS) is given by,

H := arg max
S⊆V :|S|≥k

δG(S). (3)

In the sequel, we use the shorthand notation nh := |H| and δ≥k := δG(H) to
denote the cardinality of the DCalkS subgraph and the minimum density of any
subgraph by H induced in any graph G(m) ∈ G respectively.

We note that DCalkS is NP-Hard (by restriction to DalkS whenever |G| = 1)
since DalkS is known to be NP-Hard [20, Theorem 3.1]. Consider the linear
program P2(c) given by:

max t
s.t.

∑n
i=1 yi = 1

∑
ij∈E(m) x

(m)
ij ≥ t ∀E(m), m ∈ [M]

x
(m)
ij ≤ yi, x

(m)
ij ≤ yj ∀ ij ∈ E(m)

x
(m)
ij ≥ 0, yi ≥ 0, yi ≤ 1

c ∀ ij ∈ E(m), ∀ i ∈ [n] .

(4)

where c ≥ k is our guess for the size of the optimal DCalkS solution (nh). The
following result is a direct consequence of Lemma 1.

Finding Dense Subgraphs in Relational Graphs 649

Lemma 5. For any S ⊆ V with c := |S| ≥ d, the optimal value of P2(d) is at
least δG(S). In particular, the optimal value P2(k) is an upper bound on δ≥k.

We consider an algorithm (DCalkS-LP) which solves P2(k) and returns {i : yi
∗ >

0}. Then, the following holds:

Lemma 6. Let (t∗, x(m)
ij

∗
, yi

∗) denote optimal solution for P2(k) in (4) and let
S := {i : yi

∗ > 0} denote the set of vertices with non-zeros yi
∗’s with l := |S| ≥ k.

Then,

(a) if yi
∗ = 1

l ∀ i ∈ S and zero otherwise, then δG(S) = δ≥k, i.e., S is a densest
common at least-k subgraph; and,

(b) the density of the subgraph induced by S in any graph G(m) is at least
t∗
2t∗+1�

l , i.e., δG(S) ≥ t∗
2t∗+1�
l .

Proof (Sketch). The proof is analogous to the proof for Theorem 2. 	

4 Experiments

We compare our approach (DCS LP and DCS GREEDY) with MKL-based formula-
tion (MKL) in [13] and the greedy algorithm (CHARIKAR) of [7]. In order to compare
with [13], we construct the sets S(r) = {i ∈ V : α∗

i ≥ r} where α∗ is the solution
of the MKL optimization in [13] and choose the set which maximizes δG(S(r)),
i.e., SMKL := arg maxS(r) δG(S(r)). We run the greedy algorithm (CHARIKAR) to
find a dense subgraph in the intersection graph G∩.

The tensor-based approach in [24] is not considered since it has significantly
higher computational complexity (e.g., the authors report a running time of
200 hours on a high-performance computing node for analysis of co-expression
networks [See 24, SupplementaryText,S6]).

All experiments were implemented in Matlab r2014a and run on a laptop
having 2.8GHz Intel Core i5 processor and 16GB RAM. The greedy algorithm
was coded in Matlab while the linear programs were solved using Gurobi 6.0
solver using its Matlab API. Gurobi 3 is a state-of-the-art commercial solver
for linear and non-linear optimization implemented in C programming language
with APIs for several other programming languages.

4.1 Synthetic Dataset

We investigate the integrality gap and approximation ratio of DCS LP by con-
sidering small graphs for which we can find the DCS solution by exhaustive
search. Each graphset consists of m graphs each of which is generated inde-
pendently as follows: We generate an Erdös-Renyi random graph G(n, p) and
then plant a clique of size k randomly. We generate a dataset having 100 such
graphsets with the following parameters: m = 3, n = 20, p ∼ Uniform(0, 0.5)
and k ∼ Uniform[1, . . . , n/2].
3 http://www.gurobi.com

http://www.gurobi.com

650 V. Jethava and N. Beerenwinkel

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14
0

10

20

30

40

50

60

70

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

10

20

30

40

50

60

70

80

(a) Integrality gap (t∗
δG

) (b) Approximatio ratio (δG(SDCS LP)
δG

)

Fig. 1. Properties of DCS LP

Figure 1 shows the histogram of (a) the LP objective value t∗, and, (b) the
common density of subgraph obtained by rounding the LP solution S = {i :
y∗

I > 0} relative to the optimum solution δG, respectively. DCS LP recovers the
optimum solution in 70% of the cases but in general, it can and does exhibit
both integrality gap t∗ > δG and sub-optimal rounding δG(S) < δG.

4.2 Real-World Datasets

We consider the following datasets for evaluation of our methods:

– dimacs. The DIMACS 1994 dataset 4 is a comprehensive benchmark for
testing of clique finding and related algorithms. Each of the graph families
in DIMACS (brock, c-fat, p hat, san, sanr) is motivated by carefully selected
real world problems e.g. fault diagnosis (c-fat), etc.; thus covering a wide
range of practical scenarios [17]. This was used for experimental evaluation
in [13] and we repeat their experimental setup.

– snap-as. We consider the graph sets Oregon-1 and Oregon-2 from SNAP
network database 5 [22,23] related to autonomous systems. Each dataset
consists of M = 9 graphs having ∼ 11000 nodes and 20000 − 30000 edges.

– snap-amazon. This dataset consists of directed graphs amazon0312, ama-
zon0505 and amazon0601 available from SNAP network database which con-
sist of Amazon product co-purchasing networks on specific dates. We make
the graphs undirected (by introducing edges (j, i) whenever (i, j) is present)
and consider the nodes which are present in all three graphs. This yields a
graph set having n = 400727 nodes and nG = 7157921 edges in total.

4 ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/
5 http://snap.stanford.edu/data/

ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/
http://snap.stanford.edu/data/

Finding Dense Subgraphs in Relational Graphs 651

Table 1. Comparison of DCS LP and DCS GREEDY with MKL [13] and CHARIKAR [7] for
finding DCS in dimacs and snap-as datasets. M , n, nG denote resp. the number of
graphs, number of nodes in each graph, and the total number of edges summed over
all the graphs in the graph set. |S| and δG(S) denote the size and common density of
the induced subgraph found by each method. δ∩(S) (in CHARIKAR) is the density of the
subgraph in the intersection graph G∩ and t∗ denotes the optimum of DCS LP. X marks
the instances where the DCS LP failed to converge within 2 hours.

G M n nG MKL [13] DCS LP DCS GREEDY CHARIKAR [7]

|S| δG(S) |S| δG(S) t∗ |S| δG(S) |S| δG(S) δ∩(S)

c-fat200 3 200 13242 100 7.93 101 8.01 8.08 102 8.04 199 7.63 1.81
c-fat500 4 500 83416 140 9.65 140 9.65 9.65 140 9.65 140 9.65 9.65
brock200 4 200 29753 200 25.33 200 25.33 25.33 200 25.33 149 19.31 1.93
brock400 4 400 80245 400 50.04 400 50.04 50.04 400 50.04 110 14.08 1.20
brock800 4 800 447753 800 139.29 X X X 800 139.29 783 136.41 5.99
p hat300 3 300 66251 300 36.44 286 36.65 36.65 286 36.65 286 36.65 36.65
p hat500 3 500 188315 500 63.14 489 63.21 63.21 489 63.21 489 63.21 63.21
p hat700 3 700 365737 700 87.14 X X X 679 87.27 679 87.27 87.27

p hat1000 3 1000 738798 1000 122.25 X X X 973 122.41 973 122.41 122.41
p hat1500 3 1500 1701127 1500 189.95 X X X 1478 190.05 1478 190.05 190.05

san200 5 200 17910 200 9.95 200 9.95 9.95 200 9.95 2 0.50 0.50
san400 3 400 119700 400 19.95 400 19.95 19.95 400 19.95 176 9.14 0.66
sanr200 2 200 8069 200 10.19 199 10.19 10.19 199 10.19 170 9.23 3.17
sanr400 2 400 63747 400 59.83 400 59.83 59.83 400 59.83 399 59.71 29.97

Oregon-1 9 11492 203127 54 11.37 76 12.03 12.03 76 12.03 64 11.28 10.09
Oregon-2 9 11806 284031 173 22.35 X X X 119 22.45 115 21.23 17.57

Table 1 shows the results for dimacs and snap-as datasets. In all instances
(except c-fat200) where DCS LP finishes within time, the DCS LP solution is opti-
mal as verified by t∗ = δG(S). Further, DCS GREEDY also finds the optimal solution
in these instances. Both our methods out-perform MKL and CHARIKAR in all graph
sets. This is especially striking in the case of san and sanr graph sets where the
greedy algorithm (CHARIKAR) yields very poor results – highlighting the fact that
taking the intersection of the graphs is unsuitable.

We note that the high computational complexity of DCS LP (nO(1)
G

) and MKL
(O(n3)) prohibits their use for finding the densest common subgraph in the snap-
amazon graph set. The DCS GREEDY algorithm finds a subgraph with δG(S) =
5.90251 while CHARIKAR finds a subgraph with δG(S) = 2.5.

5 Discussion

This paper formalizes the Densest Common Subgraph (DCS) problem which
extends the notion of densest subgraph to a relational graph set. We present
an extension of Charikar’s linear programming approach [7] to the problem of
finding the densest common subgraph in a relational graph set.

652 V. Jethava and N. Beerenwinkel

The LP-based approach recovers the densest common subgraph in many cases
(with proof of optimality). In other cases, it provides an upper bound on the
common density (e.g. in the case of c-fat200 graph set in the experiments) and
a good starting point for further heuristic search approaches. We note that in
the worst-case, the approximation guarantee is O(n

δG
) – which can be trivially

obtained by taking original vertex set V as a solution. A tighter analysis of the
LP relaxation can reveal more insight into the problem.

Our greedy algorithm DCS GREEDY can be scaled to large graphs which is
not possible with existing methods. Further, it substantially improves over the
greedy approach (CHARIKAR) which only considers the integrated graph by taking
intersection of the different edge sets. We note that the DCS GREEDY algorithm is
closely related to the dual LP. Designing a combinatorial primal-dual algorithm
can lead to better results and will be addressed in future work.

Acknowledgments. We thank Chiranjib Bhattacharyya, Devdatt Dubhashi and Jack
Kuipers for valuable comments and suggestions. Vinay Jethava is funded by the MERiC
project as part of the European Research Council (ERC) synergy grant 2013.

References

1. Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In:
Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427,
pp. 25–37. Springer, Heidelberg (2009)

2. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense sub-
graph. Journal of Algorithms 34(2), 203–221 (2000)

3. Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic dual-
ity, and the SMO algorithm. In: Proceedings of the Twenty-First International
Conference on Machine Learning, p. 6 (2004)

4. Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and
mapreduce. Proceedings of the VLDB Endowment 5(5), 454–465 (2012)

5. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detect-
ing high log-densities: an o (n 1/4) approximation for densest k-subgraph. In: Pro-
ceedings of the Forty-Second ACM Symposium on Theory of Computing (STOC),
pp. 201–210. ACM (2010)

6. Boden, B., Günnemann, S., Hoffmann, H., Seidl, T.: Mining coherent sub-
graphs in multi-layer graphs with edge labels. In: Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1258–1266. ACM (2012)

7. Charikar, M.: Greedy approximation algorithms for finding dense components
in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913,
pp. 84–95. Springer, Heidelberg (2000)

8. Feige, U., Langberg, M.: Approximation algorithms for maximization problems
arising in graph partitioning. Journal of Algorithms 41(2), 174–211 (2001)

9. Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorithmica
29(3), 410–421 (2001)

10. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algo-
rithm and applications. SIAM Journal on Computing 18(1), 30–55 (1989)

Finding Dense Subgraphs in Relational Graphs 653

11. Goldberg, A.V.: Finding a maximum density subgraph. University of California at
Berkeley, Berkeley (1984)

12. Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense sub-
graphs across massive biological networks for functional discovery. Bioinformatics
21(suppl 1), i213–i221 (2005)

13. Jethava, V., Martinsson, A., Bhattacharyya, C., Dubhashi, D.: The lovasz θ func-
tion, svms and finding large dense subgraphs. In: Neural Information Processing
Systems (NIPS), pp. 1169–1177 (2012)

14. Jethava, V., Martinsson, A., Bhattacharyya, C., Dubhashi, D.: Lovasz theta func-
tion, SVMs and finding dense subgraphs. Journal of Machine Learning Research
14, 3495–3536 (2014)

15. Jiang, C., Coenen, F., Zito, M.: A survey of frequent subgraph mining algorithms.
The Knowledge Engineering Review 28(01), 75–105 (2013)

16. Jiang, D., Pei, J.: Mining frequent cross-graph quasi-cliques. ACM Transactions
on Knowledge Discovery from Data (TKDD) 2(4), 16 (2009)

17. Johnson, D.S., Trick, M.A.: Cliques, coloring, and satisfiability: second DIMACS
implementation challenge, October 11–13, 1993, vol. 26. Amer Mathematical
Society (1996)

18. Kannan, R., Vinay, V.: Analyzing the structure of large graphs. Rheinische
Friedrich-Wilhelms-Universität Bonn (1999)

19. Khot, S.: Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite
clique. SIAM Journal on Computing 36(4), 1025–1071 (2006)

20. Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009)

21. Lee, V.E., Ruan, N., Jin, R., Aggarwal, C.: A survey of algorithms for dense sub-
graph discovery. Managing and Mining Graph Data 303–336 (2010)

22. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection
(June 2014). http://snap.stanford.edu/data

23. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining,
pp. 177–187. ACM (2005)

24. Li, W., Liu, C.-C., Zhang, T., Li, H., Waterman, M.S., Zhou, X.J.: Integrative
analysis of many weighted co-expression networks using tensor computation. PLoS
computational biology 7(6), e1001106 (2011)

25. Papailiopoulos, D., Mitliagkas, I., Dimakis, A., Caramanis, C.: Finding dense sub-
graphs via low-rank bilinear optimization. In: Proceedings of the 31st International
Conference on Machine Learning (ICML-14), pp. 1890–1898 (2014)

26. Pei, J., Jiang, D., Zhang, A.: Mining cross-graph quasi-cliques in gene expression
and protein interaction data. In: Proceedings of the 21st International Conference
on Data Engineering. ICDE 2005, pp. 353–356. IEEE (2005)

27. Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y.: Simplemkl. Journal of
Machine Learning Research 9, 2491–2521 (2008)

28. Ravi, S.S., Rosenkrantz, D.J., Tayi, G.K.: Heuristic and special case algorithms for
dispersion problems. Operations Research 42(2), 299–310 (1994)

29. Srivastav, A., Wolf, K.: Finding dense subgraphs with semidefinite programming.
In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 181–191.
Springer, Heidelberg (1998)

http://snap.stanford.edu/data

654 V. Jethava and N. Beerenwinkel

30. Tsourakakis, C., Bonchi, F., Gionis, A., Gullo, F., Tsiarli, M.: Denser than the
densest subgraph: extracting optimal quasi-cliques with quality guarantees. In:
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 104–112. ACM (2013)

31. Yan, X., Zhou, X., Han, J.: Mining closed relational graphs with connectivity con-
straints. In: Proceedings of the Eleventh ACM SIGKDD International Conference
on Knowledge Discovery in Data Mining, pp. 324–333. ACM (2005)

32. Yuan, X.-T., Zhang, T.: Truncated power method for sparse eigenvalue problems.
The Journal of Machine Learning Research 14(1), 899–925 (2013)

33. Zeng, Z., Wang, J., Zhou, L., Karypis, G.: Coherent closed quasi-clique discovery
from large dense graph databases. In: Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 797–802.
ACM (2006)

34. Zhang, T.: Multi-stage convex relaxation for non-convex optimization. Technical
report, Rutgers University (2009)

Generalized Modularity for Community
Detection

Mohadeseh Ganji1,3(B), Abbas Seifi1, Hosein Alizadeh2, James Bailey3,
and Peter J. Stuckey3

1 Amirkabir University of Technology, Tehran, Iran
sghasempour@student.unimelb.edu.au, aseifi@aut.ac.ir
2 Iran University of Science and Technology, Tehran, Iran

halizadeh@iust.ac.ir
3 NICTA, Victoria Laboratory, Department of Computing and Information Systems,

University of Melbourne, Melbourne, Victoria
{baileyj,pstuckey}@unimelb.edu.au

Abstract. Detecting the underlying community structure of networks
is an important problem in complex network analysis. Modularity is a
well-known quality function introduced by Newman, that measures how
vertices in a community share more edges than what would be expected
in a randomized network. However, this limited view on vertex similar-
ity leads to limits in what can be resolved by modularity. To overcome
these limitations, we propose a generalized modularity measure called
GM which has a more sophisticated interpretation of vertex similarity.
In particular, GM also takes into account the number of longer paths
between vertices, compared to what would be expected in a randomized
network. We also introduce a unified version of GM which detects com-
munities of unipartite and (near-)bipartite networks without knowing the
structure type in advance. Experiments on different synthetic and real
data sets, demonstrate GM performs strongly in comparison to several
existing approaches, particularly for small-world networks.

Keywords: Community detection · Modularity · Generalized
modularity · Vertex similarity · Resolution limit

1 Introduction

As many real-world systems can be represented by networks, much research has
focused on analysing networks and finding underlying useful structural patterns.
Examples include social and biological networks [1,2], in which vertices represent
individuals or proteins and edges represent communications or interactions.

Among complex network analysis approaches, community detection is an
important task which aims to find groups of vertices which could share common
properties and/or have similar roles within the network [3]. This might reveal
friendship communities in a social network or an unexpected hard-to-predict
community structure in a biological dataset.
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 655–670, 2015.
DOI: 10.1007/978-3-319-23525-7 40

656 M. Ganji et al.

Two important network structures covered in the literature are unipartite and
bipartite networks. In unipartite networks like social networks [1], the assump-
tion is connections within communities are dense and connections between com-
munities are sparse. However, some real networks are bipartite which means they
can be partitioned into two clusters such that no two vertices within the same
cluster are adjacent [4]. People attending events [5] is one example of a bipartite
network. In addition, there are some real networks with near-bipartite proper-
ties. In these networks, there are some connections inside the two communities
but they are fewer than between-community connections. Networks of sexual
relationships are an example of near-bipartite networks.

Among community detection criteria, modularity [6] is one of the most impor-
tant because according to [7], “Modularity has the unique privilege of being at
the same time a global criterion to define a community, a quality function and
the key ingredient of the most popular method of graph clustering.” After its
introduction, modularity was rapidly adopted and physicists, computer scien-
tists, and sociologists have all developed a variety of heuristic algorithms to
optimize modularity. They are based on greedy algorithms [8] spectral meth-
ods [9], mathematical optimization [10] and other strategies [7,11].

Given an un-weighted undirected network G(V,E), let di be degree of vertex
i, m be total number of edges and Aij be an element of the adjacency matrix
which takes value 1 if vertices i and j are connected and 0 otherwise. Suppose
the vertices are partitioned into communities such that vertex i belongs to com-
munity Ci. Then the modularity of the partition is defined by equation (1).

Q =
1

2m

∑

i,j

[Aij − didj

2m
]δ(Ci, Cj) (1)

The matrix of elements Aij − didj

2m is called the modularity matrix which
is denoted by W . The modularity matrix records the difference between the
number of the edges connecting each pair of vertices and the expected number
of edges in a randomly distributed network of the same size with the same vertex
degree sequence (in the rest of this paper we call it a randomized network). If
the number of edges between i and j is the same as what is expected in the
randomized network, the corresponding element of the modularity matrix is
zero. Hence, nonzero values of the modularity matrix represent deviation from
randomness. The coefficient 1

2m normalizes modularity to the interval [-1,1].
For calculating the modularity of a network partition, one adds up the modu-

larities between each pair of vertices that lie in the same community. In equation
(1), δ(Ci, Cj), the Kronecker delta function performs this task by limiting the
summation to just over vertex pairs of the same community. The Kronecker
function has the value 1 if its arguments are equal and 0 otherwise.

Brandes et al [12] showed that finding a clustering with maximum modularity
is an NP-hard problem. However, researchers have tackled community detection
using exact and approximation methods for modularity maximization. Among
exact methods, Aloise et al [10] introduced a column generation model which
can find communities of optimal modularity value for problems of up to 512

Generalized Modularity for Community Detection 657

Fig. 1. Examples for neglecting neighbours by Modularity

vertices. Among the wide range of approximation algorithms for modularity
maximization, the hierarchical iterative two phase method of Blondel et al [8] is
one of the best (see [7]). In the first phase, communities are merged together only
if this improves the modularity value of the partition, whilst the second phase
reconstructs the network whose nodes are communities of the previous phase.

Limitations of Modularity. Although modularity performs effectively in many
cases, some limitations have been noted about its performance [7,13]. First,
modularity has a restricted interpretation of vertex similarity. Figure 1 illustrates
this problem using hand-made examples. All structures shown in this figure have
17 edges but the number of vertices are different. Degrees of the bold vertices are
the same and equal to 7 in all cases and they do not share any edges together.
Hence, in all three cases, the modularity value between the two bold vertices is
equal while one can clearly see that the structures are very different.

Figure 1 illustrates that modularity’s interpretation of vertex similarity is
limited to sharing common edges. While in reality, in addition to sharing an edge,
pairs of vertices are more similar and more likely to lie in the same community
when they have many neighbours in common. This is exactly one of the basic
vertex similarity measures called common neighbour index [14]. There are also
some other variations of vertex similarity measures based on number of common
neighbours and paths of longer lengths [7,14–16].

We propose a new measure of community detection called generalized mod-
ularity (GM) which extends modularity’s assumption about similar vertices. In
addition to common edges, GM takes into account common neighbours and
longer paths between vertices and compares the number of these paths to a ran-
domly distributed network to achieve a more comprehensive interpretation of
vertex similarity.

Although in the literature, some research has tried to detect communities
based on a vertex similarity concept [1,17], these approaches have mostly failed
to take advantage of modularity’s strength in noticing common edges between
vertices. The vertex similarity probability (VSP) model of Li and Pang [17] is
one such approach which is just based on common neighbours of vertices but
doesn’t notice common edges or relations of longer lengths.

In other work, Alfalahi et al [1] proposed the concept of vertex similarity for
modularity. They construct a virtual network which is initially the same as the
original network. Then, vertices with higher Jaccard [15] similarity index (which
is based on common edge and common neighbour concepts) than a pre-defined

658 M. Ganji et al.

threshold, would have an extra edge in the virtual network. Finally, modularity
maximization is applied to the virtual network in order to find communities.
Although this approach aims to add vertex similarity concepts into modularity’s
common edge criterion, paths of longer length than two are neglected. Also, the
consideration of similarity between vertices strongly depends on the choice of
threshold value which divides similarity status of vertices into “similar” or “not-
similar”. In generalized modularity the interpretation of vertex similarity is not
limited to 0 and 1. In addition, as opposed to Alfalahi’s approach, GM benefits
from the comparison to random graphs for measuring vertex similarity. In this
sense, GM’s interpretation of vertex similarity is close to Leicht et al [16] who
proposed a vertex similarity index based on comparison to a randomized network,
though there are basic differences in context and approach of comparison.

The second limitation of modularity, the resolution limit, arises from its null
model. It causes the systematic merging of small communities into larger mod-
ules, even when the communities are well defined and loosely connected to each
other [13]. Fortunato and Barthelemy in [13] and Fortunato in [7] discussed this
issue in more detail. According to [7], in the modularity definition, the weak
point of the null model is the implicit assumption that each vertex can commu-
nicate with every other vertex of the network. This is however questionable, and
certainly wrong for large networks like the Web graph. To address the resolution
limit problem, multiresolution versions of modularity have been introduced [18]
which allow users to specify their target scale of communities. The choice of
correct value for this scale parameter is still an issue with these approaches.

However, by considering longer paths, GM moderates the questionable
assumption of modularity’s null model. Because expecting network members
to be able to share a neighbour with others is a more reasonable assumption.
Even more realistic is the possibility of existence of paths with short lengths
between members of a network, in particular, networks with the small-world
property. According to Watts et al [19], small-world networks are those in which
the typical distance L between two randomly chosen vertices grows proportion-
ally to the logarithm of the size of the network. This means the transition from
one vertex to any other vertex of the network requires just a few hops. It has
been shown that a wide range of real-world complex networks like social net-
works, the connectivity of the Internet, wikis, collaboration networks and gene
networks exhibit small-world network characteristics. In addition to small-world
networks, Watts and Strogatz showed that in fact many real-world networks have
a small average shortest path length between vertices [19]. Thus, although GM
is a global criterion and considers the whole network for defining communities,
the small-world property of real networks supports the assumption behind its
null model.

Modularity maximization and most community detection criteria are
designed for unipartite networks in which edges inside communities are more
dense. In near-bipartite networks, however, connections between communities
are denser than inside them and modularity maximization cannot find correct
communities because it aims to minimize the number of edges between commu-
nities. Although there are community detection methods for bipartite networks

Generalized Modularity for Community Detection 659

like modularity minimization and some others [4], they require knowing the type
of the data in advance. This problem is more important when it comes to near-
bipartite networks, since the identification of such networks is more difficult. In
this paper, we also propose a unified version of generalized modularity called
UGM which can detect communities in unipartite, bipartite and near-bipartite
networks without knowing the type of the network structure.

Briefly, the main contributions of this paper are:

– Extending the “modularity” community detection quality function and
proposing a new criterion named Generalized Modularity (GM) which takes
advantage of vertex similarity and longer paths between vertices.

– Proposing a more realistic null model in comparison to modularity, which
enables generalized modularity to perform better than modularity in small-
world data sets with communities of different scales.

– Introducing a unified version of the generalized modularity measure (UGM)
which is able to detect communities in unipartite, bipartite and near-bipartite
networks without any pre-knowledge about the structure of the data.

– Experimental comparison of the GM and UGM methods with some state of
the art approaches and statistically demonstrating their high performance.

2 Generalized Modularity (GM)

The core concept of our proposed generalized modularity measure is to extend
modularity to take advantage of indirect communications between vertices.

According to the definition of modularity, a pair of vertices is likely to be
in the same community if they share more edges than what is expected from
a randomly distributed network. Pairs of vertices can be also similar to each
other based on the number of their shared neighbours [7,14]. In generalized
modularity we believe that sharing more neighbours than what is expected (in a
randomized network) also expresses how likely it is for the pair to lie in the same
community. Likewise, two vertices are more likely to be in same community if
they have more paths of length three or more, than the corresponding expected
number in a randomize network. Hence, generalized modularity is inspired by
the concept of vertex similarity while preserving the basic idea of modularity.

The general form of the proposed GM measure is presented in equation (2)
which given a partition, adds up the elements of the WGM matrix for pairs of
the same communities. The generalized modularity matrix WGM is the weighted
summation of W

(�)
norms (equation (3)) which are normalized generalized modu-

larity matrices of level � which means just relations with paths of length � are
considered. α� represents the weight of contribution of W

(�)
norm in WGM .

QGM =
∑

i,j∈V

WGM
i,j δ(Ci, Cj) (2)

WGM =
∞∑

�=1

α�W
(�)
norm =

∞∑

�=1

α�
W (�)

||N (�)|| =
∞∑

�=1

α�
[N (�) − E(�)]

||N (�)|| (3)

660 M. Ganji et al.

N (�) is the matrix representing the number of simple paths (paths contain-
ing no loops) of length � between vertices. The matrix of N (�) is equal to the
adjacency matrix power to �, (A�), for � = 1, 2. ||N (�)|| is the entry-wise 1-norm
of matrix N (�) which is summation of absolute values of the matrix elements.
The matrix E(�) represents the expected number of paths of length � between
vertices in a randomized network. We can normalize each term by dividing it by
the total number of paths of corresponding length which is denoted by ||N (�)||.
According to equation (3), W (1) is exactly the same as the modularity matrix of
Newman [6] while the matrix W (2) is the existing number of common neighbours
(relations with paths of length 2) between vertices minus the expected number of
such common neighbours in a corresponding randomized network. Other terms
are also defined likewise.

The expected number of paths of length one between i and j is calculated
by multiplying the number of edges connected to i (degree of vertex i) by the
probability that an edge ends in j which is dj/2m. By applying a similar app-
roach, we calculate the expected terms in W (2) and W (3) for a pair of vertices in
an un-weighted network. Note that the direct edges between two vertices cannot
participate in any path of length 2 and 3 between them. So, in equation (4),
apart from didj/2m expected connections between i and j, we expect (di− didj

2m)
remaining edges of i to contribute in simple paths of longer lengths. For these
edges, the probability to be linked to the intermediate vertex k is dk/2m and
then an edge from the set of dk − 1 remaining edges of k must be linked to j
with probability of (dj − didj

2m)/2m. Since the probability of existence of edges
between vertices are independent to each other, the probability of existence of a
path of length � simply equals the multiplication of probabilities of each of its �
edges. Finally, as intermediate vertex k can be any vertex of the network except
i and j, we have a summation over all possible ks.

E
(2)
i,j =

∑

k∈V \{i,j}

[
(di − didj

2m)dk

2m

][
(dk − 1)(dj − didj

2m)
2m

]

(4)

W
(2)
ij = N

(2)
ij − E

(2)
i,j = (A2)ij −

(di − didj

2m)(dj − didj

2m)
(2m)2

∑

k∈V \{i,j}
dk(dk − 1) (5)

Similarly, we can calculate the expected value for paths of length 3 which
vertices i and j are connected through two intermediate vertices k and k′.

E
(3)
i,j =

∑

k,k′∈V \{i,j}

[
(di − didj

2m)dk

2m

][
(dk − 1)dk′

2m

][
(dk′ − 1)(dj − didj

2m)
2m

]

(6)

In the calculation of paths of length 3 as opposed to the two previous cases,
there is a possibility for loops which are illustrated in Figure 2. Among these four
topologies, just Figure 2-a is considered in the calculation of term W

(3)
ij , because

the existence of the other three paths is dependent on the existence of a common

Generalized Modularity for Community Detection 661

Fig. 2. Four different possible topologies for paths of length 3 between i and j

edge between i and j which we already considered in the calculation of W
(1)
ij .

As matrix (A3) counts all four topologies, we use matrix (A3)′ of equation (7)
which just represents the number of simple paths of length 3 between vertices.
Hence, the third term of the generalized modularity is equal to the equation (8).

(A3)′
ij = (A3)ij − Aij(di + dj − 1) (7)

W
(3)
ij = N

(3)
ij − E

(3)
i,j = (A3)′

ij −
[
(di − didj

2m)(dj − didj

2m)
(2m)3

(∑

k∈V \{i,j}
dk(dk − 1)

)2
]

(8)

The number of terms in generalized modularity increases according to the
path lengths considered, however, paths of length more than 3 are more com-
plicated as the number of possible topologies and non simple paths rapidly
increases. In addition, intuitively, it seems they would have smaller importance
weight (αl) than the first couple of terms. Therefore, in this paper, we limit gen-
eralized modularity to its first three terms which are related to paths of length
(� = 1, 2, 3).

2.1 Comparison to Modularity

Although our GM quality function was initially inspired by modularity, extend-
ing the measure to consider neighborhoods with longer paths leads to improve-
ments in several aspects.

First, GM is more comprehensive in its interpretation of similarity as it con-
siders vertex similarity as well. Therefore, when edge related properties are still
the same (as in Figure 1), GM can detect communities better than modularity
since it uses common neighbours and the neighborhood of longer paths as well.

To illustrate how well generalized modularity can reveal the underlying com-
munity structures, we use visualization. The visual assessment of tendency
(VAT) [20], is a tool for revealing the number of clusters. It uses the logic
of Prim’s algorithm and reorders the objects of symmetric square dissimilar-
ity matrix R to show the number of clusters by squared shaped dark blocks
along the diagonal in the VAT image. We scaled each element of modularity
and GM matrices to (−Wij + 1)/2 to ensure elements are in interval [0,1] and
then we used them as dissimilarity matrix for VAT. Figure 3 presents VAT
images of modularity and GM (α1, α2, α3 = (0.25, 0.5, 0.25)) for an LFR data set

662 M. Ganji et al.

Fig. 3. VAT image of modularity matrix (top images) and generalized modularity
matrix (bottom images) for three data sets (a) LFR, (b) Political Books, (c) American
Football. Dark blocks in VAT images of GM correspond to communities in the data.

(which is a community detection synthetic benchmark proposed by Lancichinetti
[21]) and also two real-world data sets. In this Figure, modularity’s VAT image
does not reveal the community structure of the data sets while dark blocks in
GM’s VAT image effectively distinguish community structures. A similar trend
was also observed for the other real-world and artificial data sets used in our
experiments.

The second advantage of GM is related to community detection in data sets of
multi-scale communities. As explained about the resolution limit of modularity,
it is related to the assumption/interpretation of vertex similarity in modularity.
Modularity expects two similar vertices to share an edge while this is not rea-
sonable, in the sense that, in large networks each vertex cannot know about all
other vertices of the network. Although one cannot expect vertices to be able to
directly communicate with all other members of the network, it is more sensible
to expect them to be able to share a neighbour, or even more realistic, to expect
them to have a longer path to other members of the network. This idea is pow-
erful when it comes to small-world networks which are discussed in introduction
and proved to have a small diameter [19]. Even in large networks with this prop-
erty, although each vertex cannot communicate directly to all others, it is related
to all other vertices with comparatively very short paths. This fact supports the
more realistic underlying assumption in the definition of generalized modularity

Generalized Modularity for Community Detection 663

measure. So that in data sets with different community sizes in particular those
of small-world networks, GM can achieve higher performance than modularity.
However, GM is not completely free of resolution limit problems. Because GM
is a global optimization criterion which considers the whole network for defining
communities and resolution limit seems to be a general problem for all methods
with a global optimization goal [7].

The third advantage of our generalized modularity is discussed in Section 2.2
which introduces a unified version of the generalized modularity measure.

2.2 Unified Generalized Modularity (UGM)

As explained in the introduction, modularity maximization cannot detect com-
munities of bipartite networks. However, a specialised version of GM (in equa-
tion (9)) using the difference between the number of common neighbours and
the expected such numbers in a randomized network, can detect communities in
uni-partite, near-bipartite and bipartite networks without pre-knowledge of the
network type. In equation (9), W

(2)
ij is same as the term defined in equation (5).

QUGM =
1

||A2||
∑

i,j∈V

W
(2)
i,j δ(Ci, Cj) (9)

In unipartite models, the basic community detection principle is “edges inside
a community are dense and outside are sparse.” Consider a partition of a unipar-
tite network (Figure 4-a) detected by maximizing QUGM . As explained before,
the elements of W (2) are higher for pairs of vertices who have more common
neighbours than what is expected in a randomized network. As a general prop-
erty of unipartite networks, vertices have neighbours of the same community.
Hence, cluster members detected by QUGM have common neighbours which lie
within the same community. This means density of connections inside commu-
nities is much more than the edge density between communities. Therefore, the
QUGM criteria is completely aligned with properties of communities in unipartite
networks.

However, in bipartite (near-bipartite) networks, all (most) common neigh-
bours of members of the same cluster are definitely (probably) located in the
opposite community. In these networks, the basic community detection principle
is “edges inside communities are sparse and outside are dense.”

Consider a partition of a bipartite or near-bipartite network (Figure 4-b)
which is achieved by maximizing QUGM without any pre-knowledge about the
type of the network. QUGM maximization, assigns vertices with more common
neighbours— than the expected number in a randomized network— to the same
community. This leads to high density of between-community edges because
members of a community share neighbours which belong to the other com-
munity. Hence, QUGM maximization in bipartite and near-bipartite networks
finds communities with sparse inter-community connections and dense between-
community links. Therefore, the unified generalized modularity (UGM) measure
is able to detect communities in unipartite, near-bipartite and bipartite networks
without pre-knowledge of the network’s structure.

664 M. Ganji et al.

Fig. 4. Example of a unipartite network (left side) and a near-bipartite network (right
side)

2.3 Finding Communities Based on the GM Quality Function

Similar to modularity maximisation, finding a partition with maximum general-
ized modularity is also an NP-hard problem. However, as GM can be represented
as a matrix (similar to the modularity matrix), heuristic and exact algorithms
of modularity maximization can be reused for partitioning data based on GM.

In this paper, we use an agglomerative community detection algorithm similar
to one of Blondel et al in [8] which is also discussed in the introduction section.
This algorithm considers each vertex as a community initially and then merges
these small communities in a way that increases the GM value of the partition.
It then updates the network information based on new communities and starts
the next iteration and continues until no further improvement is possible.

3 Experiments

In this section, we present empirical analysis of generalized modularity and com-
pare it with some state of the art approaches in the literature. All experiments
are done on a PC with core i7 CPU 3.40 GHz and 16GB RAM.

Data Sets: In order to present a comprehensive comparison, we used four dif-
ferent categories of data sets which are common in the literature.

– We used LFR data sets proposed in [21]. In LFR data sets, degrees follow
a power-law distribution p(d) = d−α with parameter α and the community
size a power-law distribution with parameter β. A mixing parameter, μ is
the proportion of external degree for each vertex. Based on the original LFR
data set in [21] we fixed α and β to be 2 and 1 respectively.

– To address the resolution limit of modularity, there are some structures of
networks proposed in [13] where modularity fails to detect the underlying
communities correctly. Similarly, we used four synthetic data sets with struc-
tures of Figure 5. In this figure, each circle represents a clique or complete
graph which is denoted by k. For instance, k50 is a complete graph or clique
of 50 vertices. Figure 5-d shows a circle of 30 cliques of size 5 [13].

Generalized Modularity for Community Detection 665

Fig. 5. Synthetic data sets for testing the resolution limit

– Four real-world data sets including Zachary Karate Club [22], Books about
US Politics, American College Football [2] and Sampson’s monastery data
set [23] were selected. These data sets were chosen because their ground
truth tags are known and we can measure performance by comparing the
results to the ground truth.

– We also used the South Women data set [5] as a real bipartite network. We
also generated random near-bipartite networks for further experiments.

Comparison Measure: Since we have the real ground truth of the data sets,
for evaluating quality of partitioning, we use the Normalized Mutual Information
of equation (10) which is proposed by Danon et al [24].

Inorm(A,B) =
−2

∑CA
i=1

∑CB
j=1 Nij log(NijN/Ni.N.j)

∑CA
i=1 Ni. log(Ni./N) +

∑CB
j=1 N.j log(N.j/N)

(10)

In equation (10), A represents the real communities and B represents the
detected communities while CA and CB are the number of communities in
A and B respectively. In this formula, N is the confusion matrix with rows
representing the original communities and columns representing the detected
communities. The value of Nij is the number of common vertices that are in the
original community i but found in community j. The sum over the ith row is
denoted by Ni. and the sum over the jth column is denoted by N.j

In the rest of this section, first, we examine the unified version of generalized
modularity. Then we discuss the choice of model parameters αl based on a set of
training experiments. Finally, we report the comparison with other approaches.

3.1 Testing Unified Generalized Modularity

We tested our unified generalized modularity of equation (9) on several real and
artificial unipartite, bipartite and near-bipartite networks to evaluate its per-
formance. We compared the proposed UGM model with modularity and VSP
model of Li and Pang [17]. We chose the VSP model since it is one of the few
unified community detection algorithms and is expected to detect communities
without knowing the network structure type. For the sake of consistency, we
used the same algorithm (greedy algorithm of Blondel et al [8]) to maximize the
three examined measures. Information of the data sets are presented in three

666 M. Ganji et al.

Table 1. Comparison of UGM to other algorithms on unipartite networks

Data sets #vertices #cluster UGM Modularity VSP

LFR10K-0.3 10000 24 1.00 1.00 1.00
LFR10K-0.4 10000 23 1.00 0.98 1.00
LFR10K-0.5 10000 22 1.00 0.97 0.99
LFR15K-0.3 15000 19 1.00 0.99 1.00
LFR15K-0.4 15000 20 1.00 0.99 1.00
LFR15K-0.5 15000 19 1.00 0.92 0.99
Karate Club 34 2 0.83 0.64 0.12
PolBooks 105 3 0.54 0.54 0.54
Football 115 12 0.17 0.20 0.16
Samson T4 18 4 0.64 0.59 0.64
Samson T1-T5 25 2 0.60 0.57 0.62
Figure 5-a 65 3 1.00 0.88 0.79
Figure 5-b 40 3 1.00 0.87 0.63
Figure 5-c 40 4 0.93 0.93 0.93
Figure 5-d 150 30 0.86 0.89 0.86

p-Value baseline 0.0209 0.0588

first columns of Table 1. The normalized mutual information index achieved by
UGM, modularity and VSP are shown in the remaining columns respectively.
The real-world and artificial data sets were introduced earlier. We used mixing
parameter 0.3–0.5 and generated large LFR data sets with average degree of 30
and maximum degree of 70. In Table 1, the LFR data sets are named based
on their size and mixing parameter. The Samson data set represents affect rela-
tions among the novices in a New England monastery which were measured at
five moments in time. The first Samson data set in Table 1 is just based on
measurements on the fourth moment and the second data set is based on all
measurements at five moments. Based on results of Table 1, UGM outperforms
modularity and the VSP method in most data sets. Friedman statistical test
results are also reported with null hypothesis of no difference in performance.

WealsotestedUGMonthebipartitenetworkofSouthernWomen[5]whopartic-
ipated in social events. The proposedUGMmeasure 100%correctly detects the two
groups in this bipartite network without knowing the structural type in advance.

For further comparison, we also generated near-bipartite networks. In ran-
domly generated near-bipartite networks, each vertex shares an edge with a
(randomly chosen) member of the same community with the probability Pin

and the minimum degree of vertices is chosen uniformly from range of 1 and
corresponding community size. In Figure 6, performance of GM, modularity and
VSP are analysed over the change in Pin parameter. By increasing Pin, the data
set becomes less and less bipartite as the percentage of inter-community edges
increases. Figure 6 illustrates that the high performance of GM is maintained
on near-bipartite networks up until they become close to unipartite.

Generalized Modularity for Community Detection 667

Fig. 6. Sensitivity analysis of methods on randomly generated near-bipartite network
which has communities of size 500 and 300.

As explained earlier, when not knowing the type of data in advance, modu-
larity maximization fails to detect communities and performs poorly on bipartite
or near-bipartite data sets.

3.2 Training Parameters of Generalized Modularity

According to the definition of GM in equation (3), parameters α1, α2 and α3

determine the importance of each term to the generalized modularity. We can
tune these parameters based on use of training data.

For training the parameters, we chose the LFR benchmark data [21] because
we can generate it in different sizes and features and it properly simulates real
world [7]. Similar to Lancichinetti et al [21], we used LFR data sets of size 1000
while the size of communities is between 20 and 100 and the average degree is 20
and the maximum degree is set to be 50. The mixing parameter ranges from 0.1
to 0.5 and we also used a LFR with mixing parameter 0.7 in which communities
are not well defined and community detection seems to be more challenging.

In the generalized modularity matrix of equation (3), without loss of gener-
ality, we assumed α1, α2 and α3 to be between 0 and 1 and α3 to be equal to
1 − α1 − α2. We considered 5 levels for each parameter α1 and α2 and exam-
ined all 15 unique combinations of three parameters of our GM measure. Tabel 2
presents the average Inorm over all training data sets for each combination. Based
on results reported in Table 2, all combinations of GM which include W

(1)
norm

(α1 > 0), on average, perform better than modularity. It shows that presence
of W

(1)
norm is essential but also using W

(2)
norm and W

(3)
norm improves the results. In

Table 2 it is shown that the combination of 0.25W
(1)
norm +0.5W

(2)
norm +0.25W

(3)
norm

has the best performance on average over our train data sets. Therefore, we use
this combination in subsequent experiments for comparison with other methods.

668 M. Ganji et al.

Table 2. Empirical training for parameter configuration for generalized modularity

α2

0 0.25 0.5 0.75 1
0 0.831 0.844 0.850 0.852 0.861
0.25 0.866 0.877 0.881 0.877

α1 0.5 0.873 0.877 0.878
0.75 0.869 0.874
1 0.866

Table 3. Comparison of GM to other state of the art models of community detection

Data sets #vertices #clusters GM Modularity VSP

LFR10K-0.3 10000 24 1.00 1.00 1.00
LFR10K-0.4 10000 23 1.00 0.98 1.00
LFR10K-0.5 10000 22 1.00 0.97 0.99
LFR15K-0.3 15000 19 1.00 0.99 1.00
LFR15K-0.4 15000 20 1.00 0.99 1.00
LFR15K-0.5 15000 19 1.00 0.92 0.99
Karate Club 34 2 1.00 0.64 0.12
PolBooks 105 3 0.56 0.54 0.54
Football 115 12 0.20 0.20 0.16
Samson T4 18 4 0.69 0.59 0.64
Samson T1-T5 25 2 0.60 0.57 0.62
Figure 5-a 65 3 1.00 0.88 0.79
Figure 5-b 40 3 1.00 0.87 0.63
Figure 5-c 40 4 0.93 0.93 0.93
Figure 5-d 150 30 0.86 0.89 0.86

p-Value baseline 0.0039 0.0196

3.3 Comparison with Other Methods

In this section, we compare our trained GM community detection model with
some state of the art models in the literature. We compare GM with the modu-
larity based algorithm of Blondel et al [8]1 and the vertex similarity probability
(VSP) model of Li and Pang [17]. In order to be consistent in the experiments,
we used the same algorithm of Blondel et al [8] for optimizing VSP and GM
models. Table 3 reports average Inorm value of 10 independent runs.

Table 3 demonstrates that GM performs much better than the other methods
over different data sets. It performs very strongly in large data sets. Besides, it
detects communities of real world networks more precisely. Note that our results
for the VSP model do not exactly match with experiments reported in [17],
possibly due to differences in optimization procedure (which wasn’t described in

1 We also compared our method with modularity-based algorithms of Danon [24] and
Newman [11] but as method of Blondel et al [8] outperforms the other two, we just
report Blondel et al [8] here.

Generalized Modularity for Community Detection 669

that paper). GM also detects small communities in data sets of Figures 5-a and 5-
b. The reason that GM couldn’t outperform modularity in the data set of Figure
5-d is because this data set has a large diameter in comparison to size of the
network which shows its structure is very different from small-world networks.
The result of a pairwise Friedman statistical test is also reported at the bottom
of Table 3. The null hypothesis of this test is two algorithms have no significant
difference in their performance. This hypothesis is rejected based on the very
small p-values, indicating statistically significant differences in performance.

4 Conclusion

We have proposed a generalized modularity criterion (named GM) for commu-
nity detection in complex networks. Generalized modularity extends the interpre-
tation of modularity by taking into account paths between vertices rather than
just common edges. The modelling of existence of paths between vertices enables
GM to deliver better performance especially in small-world networks with dif-
ferent community sizes and it can also work on bipartite and near-bipartite
networks. Although GM improves the resolution limit of modularity especially
in small-world networks, still it can have this problem and approaches to solve
it are a clear direction for future work.

Acknowledgments. NICTA is funded by the Australian Government through the
Department of Communications and the Australian research Council through the ICT
center of excellence program. James Baileys work is supported by an ARC Future
Fellowship (FT110100112).

References

1. Alfalahi, K., Atif, Y., Harous, S.: Community detection in social networks through
similarity virtual networks. In: Proceedings of the 2013 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, pp. 1116–1123.
ACM (2013)

2. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)

3. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering 17(6), 734–749 (2005)

4. Barber, M.J., Clark, J.W.: Detecting network communities by propagating labels
under constraints. Physical Review E 80(2), 026129 (2009)

5. Davis, A., Gardner, B.B., Gardner, M.R.: Deep south. University of Chicago Press
(1969)

6. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Physical Review E 69(2), 026113 (2004)

7. Fortunato, S.: Community detection in graphs. Physics Reports 486(3), 75–174
(2010)

670 M. Ganji et al.

8. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experi-
ment 2008(10), P10008 (2008)

9. Newman, M.E.: Finding community structure in networks using the eigenvectors
of matrices. Physical Review E 74(3), 036104 (2006)

10. Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Perron, S., Liberti, L.: Column
generation algorithms for exact modularity maximization in networks. Physical
Review E 82(4), 046112 (2010)

11. Newman, M.E.: Fast algorithm for detecting community structure in networks.
Physical Review E 69(6), 066133 (2004)

12. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z.,
Wagner, D.: On modularity clustering. IEEE Transactions on Knowledge and Data
Engineering 20(2), 172–188 (2008)

13. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proceed-
ings of the National Academy of Sciences 104(1), 36–41 (2007)

14. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks.
Journal of the American Society for Information Science and Technology 58(7),
1019–1031 (2007)

15. Blundo, C., De Cristofaro, E., Gasti, P.: EsPRESSo: efficient privacy-preserving
evaluation of sample set similarity. In: Di Pietro, R., Herranz, J., Damiani, E.,
State, R. (eds.) DPM 2012 and SETOP 2012. LNCS, vol. 7731, pp. 89–103.
Springer, Heidelberg (2013)

16. Leicht, E., Holme, P., Newman, M.E.: Vertex similarity in networks. Physical
Review E 73(2), 026120 (2006)

17. Li, K., Pang, Y.: A unified community detection algorithm in complex network.
Neurocomputing 130, 36–43 (2014)

18. Arenas, A., Fernandez, A., Gomez, S.: Analysis of the structure of complex net-
works at different resolution levels. New Journal of Physics 10(5), 053039 (2008)

19. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature
393(6684), 440–442 (1998)

20. Bezdek, J.C., Hathaway, R.J.: Vat: a tool for visual assessment of (cluster) ten-
dency. In: Proceedings of the International Joint Conference on Neural Networks,
vol. 3, pp. 2225–2230. IEEE (2002)

21. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Physical Review E 78(4) (2008)

22. Zachary, W.W.: An information flow model for conflict and fission in small groups.
Journal of Anthropological Research 452–473 (1977)

23. Sampson, S.F.: A novitiate in a period of change: An experimental and case study
of social relationships. Ph.D. dissertation, Cornell University (September 1968)

24. Leon Danon, A.D.-G., Arenas, A.: The effect of size heterogeneity on community
identification in complex networks. Journal of Statistical Mechanics: Theory and
Experiment P11010 (2006)

Handling Oversampling in Dynamic Networks
Using Link Prediction

Benjamin Fish1,2(B) and Rajmonda S. Caceres2

1 University of Illinois at Chicago, Chicago, IL, USA
bfish3@uic.edu

2 MIT Lincoln Laboratory, Lexington, MA, USA

Abstract. Oversampling is a common characteristic of data represent-
ing dynamic networks. It introduces noise into representations of dynamic
networks, but there has been little work so far to compensate for it. Over-
sampling can affect the quality of many important algorithmic problems
on dynamic networks, including link prediction. Link prediction seeks to
predict edges that will be added to the network given previous snapshots.
We show that not only does oversampling affect the quality of link predic-
tion, but that we can use link prediction to recover from the effects of over-
sampling. We also introduce a novel generative model of noise in dynamic
networks that represents oversampling. We demonstrate the results of our
approach on both synthetic and real-world data.

1 Introduction

Networks have become an indispensable data abstraction that captures the
nature of a diverse list of complex systems, such as online social interactions
and protein interactions. All these systems are inherently dynamic and change
over time. A common abstraction for incorporating time has been the “dynamic
network,” a time series of graphs, each graph representing an aggregation of
a discrete time interval of the observed interactions. While in many cases the
system under observation naturally suggests the size of such a time interval,
it is more often the case that the aggregation is arbitrary and is done for the
convenience of the data representation and analysis. However, an abundance of
literature has demonstrated that the choice of the time interval at which the
network is aggregated has great implications on the structures observed and
inferences made [7,14,21,24].

1.1 Oversampling

We view the system through the filter of the data we collect. This data is typically
collected opportunistically, with the temporal rate of data not always matching

This work is sponsored by the Assistant Secretary of Defense for Research & Engi-
neering under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, con-
clusions and recommendations are those of the authors and are not necessarily
endorsed by the United States Government.

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 671–686, 2015.
DOI: 10.1007/978-3-319-23525-7 41

672 B. Fish and R.S. Caceres

that of the system. With the advent of microelectronic data collection systems
such as GPS and RFID sensors, it is often the case that data is sampled at
orders of magnitude more frequently than the temporal scale of the underlying
system. Therefore, it is important that the aggregation process that transforms
the collected data into a dynamic network representation correctly accounts for
the oversampling effects.

Oversampling is an aspect of the data collection process that can help with
the issue of representing continuous time discretely. It helps reduce the number of
missing interactions and allows us to better identify persistent interactions. On
the other hand, oversampling affects our ability to distinguish between noisy local
temporal orderings and critical temporal orderings. For example, when analyzing
email communication networks, the data is collected at a resolution of seconds,
but the causality of email interactions and the emergence of complex structures
such as communities is often more accurately represented and detectable at much
coarser scales.

The concept of oversampling has been studied extensively in the signal pro-
cessing community. However, to the best of our knowledge, there is no natural,
well-defined notion of oversampling that translates directly to the domain of
graph sequences. So here we use oversampling to mean a distribution over graph
sequences that displays the typical effects of sampling too frequently: noisy local
temporal orderings, spurious interactions, etc.

In this paper, we assume we are given a noisy dynamic network that has
been observed at a fixed oversampled rate. Our goal is to recover from this
oversampling by aggregating the network together in such a way as to remove any
artifactual temporal orderings, while preserving any real temporal information
such as edge co-occurrences and critical temporal orderings. We represent a
dynamic network as a sequence of discrete snapshots, that is, as a sequence of
graphs. Given a window size w, we bin together into a graph all edges that occur
within each length-w time span. This results in a new dynamic network. The
goal becomes to find the window size w that best recovers from the noise. At
one extreme, if this window size w is the entire length of the original dynamic
network, then this means that there is no temporal information and the network
is static. At the other extreme, if this window size w lasts for a single snapshot
of the original dynamic network, then this means there is no oversampling at
all and the network is observed at the right temporal scale. Thus, the window
size can be seen as a proxy for the amount of temporal information stored in
the dynamic network, and finding a good window size can be seen as finding the
temporal scale at which the network is evolving.

1.2 Link Prediction

In this work, we take the approach that the inference task should inform how
to recover from oversampling, whether the task is link prediction, community
detection, or something else. Link prediction, in particular, is an important
inference task with many applications. It has beeen used in the analysis of the
internet [1,27], social networks [2], and biological networks [3,11]. It has also

Handling Oversampling in Dynamic Networks Using Link Prediction 673

been used for designing recommendation systems [16,18] and classification sys-
tems [12]. See the survey of Al Hasan and Zaki [4] for more applications and an
introduction to the various techniques used in link prediction.

Given the importance of link prediction, we investigate whether this task can
serve as a good driver for recovering the correct temporal scale of an oversampled
dynamic network. Our approach is simple: we use the quality of a link prediction
algorithm as a score for the window size. If we can predict links better, it means
that we have found a good window size, not only because by definition we have
improved the performance of our inference task, but because at this scale we can
better capture the evolution of the network.

To our knowledge, we are the first to formally study the relationship between
temporal oversampling in networks and link prediction. As such, we need to
introduce a model of noise for dynamic networks that captures effects of over-
sampling. We define such a model by leveraging the following observation: when
a dynamic network is oversampled, edge occurrences are recorded near the “nat-
ural” occurrence time, but are spread out around that time. We present a model
that generates noisy, oversampled dynamic networks by distributing the times
of edges over a Gaussian distribution. This model can be extended to capture
unique characteristics of a given data collection process. It also is applied inde-
pendently of the underlying process generating the network, allowing for a wide
variety of phenomena to be modeled.

In this paper, we show that oversampling affects the quality of link prediction
algorithms. Furthermore, using synthetic data, we show that link prediction
performs better on graph sequences aggregated near the ground-truth window
size than on other window sizes. In this light, we can recover from the effects
of oversampling by using link prediction to find a good window size. Finally, we
show that our method results in robust results on real-world networks.

In Section 2, we give a more formal description of the oversampling prob-
lem for dynamic networks and present our link prediction based approach. We
define a generative model for Gaussian-type noise representing oversampling in
Section 3, as well as a generative model for dynamic networks for testing link
prediction algorithms. In Section 4, we use our synthetic generative model to
test our approach. We demonstrate that our method yields reasonable results
and show the impact of a variety of different parameters on our results. We then
show the results of our approach on two real-world networks in Section 5. We
end with a few concluding remarks in Section 6.

1.3 Related Work

Extensive literature has demonstrated that the choice of aggregation window
greatly impacts the quality of the corresponding dynamic network [7,21,24].
Some work has been done in developing heuristics for identifying the “right” win-
dow size or temporal partitioning, especially for numerical time series [15,26].
In dynamic networks, though, most work does so only in limited or slightly

674 B. Fish and R.S. Caceres

different contexts. Peel and Clauset, for example, consider the problem of finding
change points, points at which the generative process of a dynamic network
is itself changing [19]. Sun et al. also considers the problem of finding change
points - and more generally considers the problem of finding a partition of the
network - this time in the context of community detection [25]. In [9] and [7],
they analyze the discrete Fourier transform of time series of different graph
metrics to identify important frequencies in a dynamic network. Similarly, Sulo
et al. [24] use information-theoretic tools to analyze time series of a variety of
different graph metrics for graph sequences that have been aggregated at different
temporal scales.

Prediction as a tool to inform model selection is not new, especially in the
literature of time series analysis. Central in this literature is the principle of
minimum description length, which says that if data displays any regularity (i.e.
is predictable), then that regularity can be used to shorten an encoding of the
data. Therefore finding a short encoding is finding a good predictor, and vice
versa. See [13] for a survey on the subject. In the context of temporal networks,
this approach is not as common, but link prediction has been used to infer useful
static networks from data [8].

There are a number of models in the literature for dynamic networks, includ-
ing the GHRG model of Clauset and Peel [19], the activity-driven model of Perra
et al. [20], and the dynamic latent-space model of Sarkar and Moore [22]. Some
models for static networks can also naturally be seen as a model for dynamic
networks in which the number of nodes is growing over time, such as in the
preferential attachment model. However, none of these models are well-suited
for modeling oversampling or for controlling the quality of a link prediction
algorithm as we will need, so we use a novel model, which we detail in Section 3.

2 Problem Formulation and Methodology

To formalize the problem, we assume that a noisy dynamic network is a sequence
of discrete graphs (each graph representing one time step) on a fixed set of n
nodes. Furthermore, this graph sequence is the output of some noise process
being applied to a (possibly shorter) sequence of graphs - the ‘ground truth’
- on the same set of n nodes. Specifically, we assume that the noisy sequence
can be partitioned into ‘windows’ of fixed size, and that any temporal orderings
between edges in a single window are spurious. Thus recovery consists of the
two step process of first choosing a window size w (which in this paper we will
also refer to as a temporal scale of the graph sequence) and then aggregating
all edges within each w consecutive graphs into a single graph. This results in a
new graph sequence that is a factor of w shorter. Figure 1 gives an illustration
of this process.

In general, the goal is to recover the ground truth from the noisy sequence.
Of course, this is not always possible. In the degenerate case, the ground-truth

Handling Oversampling in Dynamic Networks Using Link Prediction 675

Fig. 1. Example of aggregating a time series of graphs into a coarser window w = 2.

sequence is just noise and this task is impossible. In this paper, we assume
the ground-truth sequence is sufficiently non-noisy, so that a link prediction
algorithm will perform well on it. Link prediction is the classification task of
finding those pairs of vertices (where there is not already an edge) which are
most likely to form an edge in the next time step. Any similarity score on pairs
of vertices can naturally be considered a link prediction algorithm: two vertices
with a high similarity score are assumed to be more likely to have a link in the
future. Liben-Nowell and Kleinberg [17] give a detailed list of such similarity
scores. We will also need similarity scores to create ground-truth synthetic data,
as detailed in Section 3. Let score(x, y) denote the similarity score between two
vertices and Γ (x) the neighborhood of x. With this notation, we use the following
four scores, as given in [17]:

1. Adamic-Adar: score(x, y) :=
∑

z∈Γ (x)∩Γ (y)
1

log |Γ (z)|
2. Katzβ : score(x, y) :=

∑∞
�=1 β� · |{paths of exactly length � from x to y}|

3. Graph distance: score(x, y) := −d(x, y), where d(x, y) is the distance between
x and y.

4. Rooted PageRankα: Consider a random walk on the graph that resets to
vertex u with probability α and moves to a random adjacent vertex with
probability 1 − α. Then score(x, y) is the stationary probability of y when
resetting to x plus the stationary probability of x when resetting to y.

To test the quality of a window size w, we analyze the performance of a link
prediction algorithm on the graph sequence aggregated at w. The link prediction
algorithm gets as input the graph at time t and predicts new edges in the graph
at time t+1. We predict the edges with the top k scores, where k is the number
of edges that actually are created in the next time step in the sequence. As is
common, we view this as a binary classification task, where pairs of vertices are
either in the category of new edges or not. When viewed in this way, it is natural
to score the algorithm as the correlation between the algorithm’s predicted edges
and those edges that actually appear, which is called the Matthews correlation

676 B. Fish and R.S. Caceres

coefficient1(MCC) [5]. Given a pair of consecutive graphs Gi and Gi+1 from
a graph sequence aggregated at a window size w, the Matthews correlation is
the [−1, 1]-valued Pearson correlation coefficient for classification defined as a
normed χ2 statistic between the predicted edges to appear in Gi+1 (using Gi as
the input to the link prediction algorithm) and the actual new edges appearing
in Gi+1. The score assigned to w is the average of these correlations over all
pairs of consecutive graphs in the aggregated sequence.

We test all window sizes2. This algorithm is summarized in Algorithm 1.

Algorithm 1. Assign scores to each window size
G = G1, . . . , Gn

for w = 1 to �n/3� do
Let G′ be G aggregated at size w, so G′ = G′

1, . . . , G
′
�n/w�.

for i = 0 to |G′| − 1 do
new links = E(G′

i+1) \ E(G′
i)

predicted links = LP (G′
i, G

′
i+1)

scorei = MCC(new links, predicted links)
end for

scorew =
∑|G′|−1

i=0 scorei
|G′|

end for
return all pairs w, scorew

Since this is a computationally-expensive task, for sufficiently long sequences,
a random ten percent of the consecutive pairs of aggregated graphs are tested
instead of all of the pairs. Based on our empirical analysis, considering only a
subsample of the windows does not significantly affect the scores.

Depending on the application, it may be desirable to use more than one
different window size - more than one time scale may be interesting or perform
highly. In addition, for a given time scale, there may be a range of window sizes
centering around that time scale that is of interest. Moreover, we leave for future
work determining how significant differences in quality scores are, given that we
make no assumptions on how many different time scales are of interest for the
application. In this light we do not return just the top-quality window size, as
seen in Algorithm 1.
1 The MCC measure is used, rather than accuracy or precision, because MCC skirts

the issue of bias that accuracy and precision have: the number of edges appearing is
often a very small fraction of the total number of possible edges. We use MCC over
other measures also resistant to unequally sized categories, such as AUC, because
MCC is computationally very fast. In addition, it seems to emphasize differences
in scores better than other measures for our link prediction task. Regardless, other
measures give very similar scores as AUC - different measures seem to preserve the
order of the qualities of the window sizes.

2 To be more precise, we only test window sizes up to a third of the length of the input.
We assume that if the actual window size is any bigger, then there is no temporal
information that we can utilize and the underlying network is really a static network.

Handling Oversampling in Dynamic Networks Using Link Prediction 677

3 Generative Models for Graph Sequences

To create synthetic data, we will use two generative models, one for the ground-
truth sequence representing the noiseless dynamic network, and the other, a
noise model that takes as input a ground-truth sequence (which we sometimes
refer to as the underlying sequence) and outputs a noisy oversampled sequence.

3.1 Generative Model for the Ground-Truth Graph Sequence

The ground-truth graph sequence can be formed from any existing model of a
dynamic network (such as the latent-space model or the activity-driven model
mentioned in the introduction), but to test the performance of a link-prediction-
based approach, we instead use a novel and simple generative process that allows
us to test our approach, which has the advantage that the quality of the link
prediction algorithm is a parameter of the generative process. This generative
process starts with an initial graph G and adds a fixed but parameterized number
of edges δ for every subsequent graph. The edges added are the non-edges with
the top scores as rated by a given similarity score. This model can easily be
extended as needed, for example by deleting the edges with the lowest similarity
score every time step as well, or still further to a probabilistic edge creation and
deletion process.

For the initial graph G, in this paper we consider both the Erdős-Rényi
model G(n, p) [10] and the preferential attachment model BA(n,m) [6]. For the
similarity scores, we use Adamic-Adar and Katz. The use of different similarity
scores allows us to test our approach both when the quality of the link prediction
algorithm does well and when it does not do well. For example, if we use Adamic-
Adar to both create the graph sequence and to do link prediction (assuming
no noise) the link prediction algorithm will perform perfectly. However if the
sequence is instead made with the Katz similarity score, the link prediction
algorithm will not perform as well. Since we can’t guarantee the quality of the
link prediction algorithm on non-synthetic data, this model allows us to see how
link prediction performance affects our approach.

3.2 Generative Model for Oversampling

We now need to model the sampling process by which non-synthetic data would
be gathered. Our primary approach to modeling noise, specifically oversampling,
is to assume that for a given time step, the edges that occur are measured to
be near that time step, but not necessarily at that time step. Furthermore,
we assume the distribution of these edges in time is Gaussian. Given an input
graph sequence of length t and parameters μ ∈ N, σ2 ∈ R≥0, this model outputs
a graph sequence of length approximately μ ·t that represents the sequence being
oversampled at a constant rate μ, with σ2 controlling how concentrated the edges
occur around the “true” times. Specifically, given these two parameters μ and σ,
for an edge that occurs in the ground-truth graph at time step i, the edge will

678 B. Fish and R.S. Caceres

occur in the new noisy graph sequence at time step j ∼ N (μi, σ2), where j is
rounded to the nearest integer.

If σ is sufficiently small, then there is likely to be intermediate graphs where
there are no edges. If windows start and end within these gaps, we can recover
fully from this noisy process. However, as σ gets larger, it becomes more and more
difficult, as more and more edges from distinct graphs in the original network
start getting added to the same graphs in the new noisy network. In the limit, all
temporal information is destroyed. Figure 3 gives two examples of the number of
edges in each time step for two different settings of parameters. It’s worth noting
that the oversampling noise model presented here can be extended so that the
oversampling rate is non-constant, the distribution used is non-Gaussian, etc.

4 Results for Synthetic Data

In this section, we analyze a variety of oversampled, dynamic networks generated
by models detailed in Section 3 and aggregated at different window sizes. We
investigate the effect of window size on the performance of link prediction. We
show that link prediction performs better on sequences aggregated at window
sizes close to ground-truth than on other window sizes. Furthermore, this holds
when the ground-truth sequence uses a different similarity score than the one
used to perform link prediction. We also show that larger values of μ, while fixing
σ (increasing the separation between means), smaller values of σ, while fixing
μ (higher degree of concentration around each mean), larger values of δ (more
edges appearing each time step), and higher quality of link prediction all make
the task of recovering the ground-truth window size easier. Yet even at higher
levels of noise we show that this approach recovers reasonable results and gives
some evidence that it outperforms the simpler approaches that rely solely on
extracted time series information, such as the number of edges per time step.

Fig. 2. MCC scores as a function of window size for three different noisy sequences.
Parameters used were μ = 100, δ = 50, and from shortest to longest, σ = 8, 20, 40. The
underlying graph sequence is generated by starting graph G(n, p) and Adamic-Adar as
the similarity score.

Handling Oversampling in Dynamic Networks Using Link Prediction 679

For the sake of brevity, given the number of parameters, including μ, σ, δ,
the number of link prediction algorithms both for creating the sequence and for
finding the quality scores, we do not show results for all possible combinations,
but instead show a representative sample.

In the remainder of this section, we fix the number of vertices n to be 250
and fix the edge probability p for the Erdős-Rényi model at 0.05. Figure 2 shows
the drastic improvement of link prediction performance at larger windows of
aggregation. For the sequence generated using σ = 8, as shown in this figure,
performance at window size of 1 (no aggregation) is essentially random (average
MCC ≈ −10−4), but when aggregated at a window size of 95, performance is
perfect (average MCC = 1.0). Note that the best performing window size is
very close to the mean separation μ = 100. When the standard deviation is
comparatively higher, as when σ = 40, Figure 2 shows that windowing has a
comparatively smaller effect. Here the link prediction is not able to separate
consecutive graphs and therefore recommends to aggregate all graphs in the
sequence together.

(a) μ = 100, δ = 50, σ = 8 (b) μ = 100, δ = 50, σ = 40

Fig. 3. Number of edges in two noisy sequences over time with the given parameters.
The underlying sequences were created with G(n, p) as the starting graph and Adamic-
Adar as the similarity score. The vertical lines indicate the borders of windows when
the window size is 95.

Figure 3 gives further evidence for why this is the case. When σ = 40, mixing
(of edges) between graphs is much higher than in the case when σ = 8. In this
latter case, there is in fact no mixing at all, which is why there are many window
sizes where link prediction performs perfectly. Since link prediction here is so
good - it will be perfect in the absence of noise - it represents an easier case.
However, this case still demonstrates a convenient benefit to our approach: we
can still perform well even when the target windowing is not uniform over the
length of the input noisy sequence. That is, the noisy sequence may have shifted
windows and as a result, one window could be smaller than the others. In our
case, window size 95 performs better than a window size 100, indicating we can

680 B. Fish and R.S. Caceres

still find a uniform window size that performs well, even if it is not the same
window size as the mean separation window.

(a) μ = 100, δ = 50, and from shortest
to longest, σ = 8, 20, and 40

(b) μ = 20, δ = 50, and σ = 2, 4, 8, 20

(c) μ = 20, σ = 8, and, from top to
bottom, δ = 100, 50, and 5

(d) μ = 100, δ = 5, and, from shortest
to longest, σ = 8, 20, and 40

Fig. 4. MCC scores as a function of window size for different noisy sequences where
the Katz similarity score was used to generate the underlying sequence. In Figure 4d,
the starting graph is the preferential attachment graph BA(n, 5) instead of G(n, p).

Figure 4a illustrates a similar behavior when the ground truth sequence was
instead created with the Katz similarity score (testing of each window size is
still done using the Adamic-Adar score as the link prediction algorithm). While
overall quality scores are lower, as the link prediction algorithm itself is worse,
the same pattern holds: near a window size of 100, the link prediction algorithm
does significantly better.

Our approach is more resilient to a higher value of σ, as seen in Figure 4b.
However, even when edge mixing is very high (σ = 20 and μ = 20), link predic-
tion is still helpful in identifying a good window size (near μ = 20). This gives
significant evidence that our approach outperforms simpler approaches that rely
solely on extracted time series information such as the number of edges per time

Handling Oversampling in Dynamic Networks Using Link Prediction 681

step. Finally, link prediction does better at recovering a good window size when δ
is higher - it retains its resiliency even for very sparse cases, as seen in Figure 4c.

As mentioned above, our generative model easily extends to more general
models. Again, for the sake of brevity, we will not discuss the performance of
our approach on every possible variation of our model, but we do want to note
that our results do extend. For example, Figure 4 shows our results when the
following two changes have been made: The initial graph is instead of G(n, p) an
instance of the preferential attachment model. In addition, instead of just adding
edges, edges are deleted as well. Namely, δ existing edges that have the lowest
Katz score are deleted. These changes show very little impact on our results, as
seen by comparing Figures 2 and 4a.

5 Results for Real-World Data

The validation process on real-world data is difficult, in general, for inference
tasks on networks, but especially for the problem of temporal scale identifica-
tion. A significant barrier is the lack of ground truth and/or formal notions of
what should be considered a good temporal scale. Real-world dynamic networks
often exhibit multiple critical temporal scales corresponding to the evolution
of different important features (e.g. communities) and processes (e.g random
walks) [21,24], but the relationship between these important features and pro-
cesses and their corresponding temporal scales is not well understood.

Our expectation is that there can be multiple peaks in the quality of a link
prediction algorithm as window size increases, each corresponding to different
important temporal scales. We validate our results by making sure that different
link prediction algorithms behave similarly as a function of window size, despite
following different mechanisms for scoring future edges. When two different link
prediction algorithms show peaks at the same time scale despite not necessar-
ily predicting the same edges, this gives evidence that the peaks are inherit
to the sequence and not a function of the particular algorithm. We now show
how our approach performs on real-world data sets, namely the Haggle Infocom
network [23] and the MIT Reality Mining network [9].

5.1 Haggle Infocom

The Haggle Infocom dataset is the result of 41 users equipped with Bluetooth
phones at the Infocom 2005 conference, over the course of four days. There is
an undirected edge between two users at time t if they were in proximity at
that time. The data we used was initially binned at 10 minute time intervals.
The results are shown in Figure 5. The four link prediction algorithms behave
consistently with clear peaks at approximately w = 75 (≈ 12.5 hours), w = 110
(≈ 18 hours), and w = 130 (≈ 22 hours). The interactions present in the Haggle
network have a periodic nature imposed by the regular conference structure and
our algorithm seems to identify such periodicities, in particular the half and
one-day periodicities.

682 B. Fish and R.S. Caceres

(a) Adamic-Adar (b) Katzβ (β = 0.005)

(c) Rooted PageRankα (α = 0.15) (d) Graph distance

Fig. 5. MCC scores for four link prediction algorithms as a function of window size for
the Haggle sequence.

5.2 MIT Reality Mining

The MIT Reality Mining dataset consists of 90 grad students and professors’
data from their cell phones in the 2004-2005 academic year. Timestamps were
kept for three types of data: Bluetooth proximity, cell tower proximity and phone
call communications. This naturally yields three different dynamic networks that
we extracted from the raw data. The first network has an undirected edge at
time t whenever Bluetooth recorded two cell phones as close at time t, the second
has an undirected edge between two participants at time t if they were recorded
near the same cell tower, and finally the third has an undirected edge between
two participants at time t whenever one participant called the other. We will
refer to these as the Bluetooth sequence, the cell tower sequence, and the call
sequence respectively. Each network is initially windowed at a size of one day.

The results are shown in Figure 6. Of interest is that the three different
networks perform - in terms of the quality of the link prediction - consistently
differently from each other, implying that they really are different types of net-
works. The Bluetooth sequence shows clear signs of oversampling; a window size
of w = 1 has smaller quality than larger window sizes. The performance of link
prediction on this sequence stabilizes after w = 14 (roughly 2 weeks), while in

Handling Oversampling in Dynamic Networks Using Link Prediction 683

(a) Adamic-Adar (b) Katzβ (β = 0.005)

(c) Rooted PageRankα (α = 0.15) (d) Graph distance

Fig. 6. MCC scores for four link prediction algorithms as a function of window size
for the Reality Mining sequence. At the far left of each plot, from top to bottom is the
cell tower sequence, the Bluetooth sequence, and the call sequence respectively.

the case of the cell tower sequence, the performance drops and then prominently
improves at w = 65 (roughly 2 months). Considering the weekly, monthly, and
semester structure of academic activities, these windows of aggregations appear
reasonable in capturing the underlying dynamics of the Reality Mining networks.

These results are given weight by the agreement between three link predic-
tion algorithms, Adamic-Adar, Katz, and Rooted PageRank, as seen in Figure 6.
The exception is the graph distance algorithm, whose performance is significantly
worse than the other three algorithms, ultimately making it difficult to discern
the quality of different window sizes. The graph distance algorithm has been
studied in the literature before and is identified as a very low performing link
prediction algorithm [17]. Figure 7b shows the relative performance of the four
link prediction algorithms for the Haggle and Reality Mining datasets and re-
emphasizes the conclusions in [17]. In picking the graph distance algorithm for
our problem, we wanted to investigate whether the performance of a bad predic-
tion algorithm can be substantially improved by a better window of aggregation.
As the analysis of the Haggle and Reality Mining datasets shows, while some
loss in the quality of prediction can be overcome (as in the case of the Haggle
sequence), sufficiently bad prediction cannot (as in the case of Reality Mining
sequence), as should be expected.

684 B. Fish and R.S. Caceres

(a) Haggle sequence (b) Reality Mining cell tower sequence

Fig. 7. Average quality of the link prediction algorithms Rooted PageRank, Katz, and
graph distance, from top to bottom (as seen at furthest to the right) in each plot. Here
the quality of the link prediction is measured as the average resemblance to the actual
links that appear, where the resemblance of a set of predicted links to actual set is
the size of their intersection divided by the size of their union. The scores are then
normalized so that the resemblance of Adamic-Adar is 0.0 (the dotted line).

6 Conclusions

In this work, we treat link prediction as a signal that helps us understand the
temporal dynamics of a network. Making the connection between the ability to
predict new edges and the appropriate temporal scale that captures the evolution
of the network, we present a novel, task-driven algorithm for de-noising oversam-
pled dynamic network into more robust representations. We formally define a
model of oversampling in dynamic networks that captures general properties of
the noise it induces and allows for a more rigorous analysis of our algorithm.
Across a variety of synthetic instances of noisy, oversampled dynamic networks,
and two real dynamic networks, we show that the performance of a link predic-
tion algorithm can serve as a good quality score for identifying the appropriate
window of aggregation.

Our work opens up several potential avenues for further investigation. As
mentioned above, we do not discuss in this paper how to select which windows
are outliers in terms of link prediction quality. We would also be interested in
extending the framework presented here to non-uniform partitions of the timeline
of the network, instead of an inform window of aggregation.

We only investigate link prediction but other tasks, such as community detec-
tion or other inference tasks, may be used to drive the choice of window size.
One direction for further work is to investigate how the choice of inference task
affects the choice of window size and to what degree do other inference tasks
agree with link prediction.

Handling Oversampling in Dynamic Networks Using Link Prediction 685

Finally, we leave issues of scalability - both in terms of properties of link
prediction as the size of the graphs gets very large and in terms of how to make
our algorithmic approach suitably fast for such large graphs - for future work.

Acknowledgments. The authors would like to thank Tanya Berger-Wolf for helpful
discussions and her generous support.

References

1. Adafre, S.F., de Rijke, M.: Discovering missing links in Wikipedia. In: Proc. of the
3rd Int. Workshop on Link Discovery, pp. 90–97. ACM (2005)

2. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Social Networks 25(3),
211–230 (2003)

3. Airoldi, E.M., Blei, D.M., Xing, E., Fienberg, S.: Mixed membership stochastic
block models for relational data, with applications to protein-protein interactions.
In: Proc. of Int. Biometric Society - ENAR Annual Meetings, vol. 5 (2006)

4. Hasan, M.A., Zaki, M.J.: A survey of link prediction in social networks. In: Social
Network Data Analytics, pp. 243–275. Springer (2011)

5. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H.: Assessing the
accuracy of prediction algorithms for classification: an overview. Bioinformatics
16(5), 412–424 (2000)

6. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

7. Clauset, A., Eagle, N.: Persistence and periodicity in a dynamic proximity network.
DIMACS Workshop on Computational Methods for Dynamic Interaction Networks
(2007)

8. De Choudhury, M., Mason, W.A., Hofman, J.M., Watts, D.J.: Inferring relevant
social networks from interpersonal communication. In: Proc. of the 19th Int. Conf.
on World Wide Web, pp. 301–310. ACM (2010)

9. Eagle, N., Pentland, A.: Reality Mining: sensing complex social systems. Personal
and Ubiquitous Computing 10(4), 255–268 (2006)

10. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)
11. Freschi, V.: A graph-based semi-supervised algorithm for protein function pre-

diction from interaction maps. In: Stützle, T. (ed.) LION 3. LNCS, vol. 5851,
pp. 249–258. Springer, Heidelberg (2009)

12. Gallagher, B., Tong, H., Eliassi-Rad, T., Faloutsos, C.: Using ghost edges for clas-
sification in sparsely labeled networks. In: Proc. of the 14th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining, pp. 256–264. ACM (2008)

13. Hansen, M.H., Bin, Y.: Model selection and the principle of minimum description
length. Journal of the American Statistical Association 96(454), 746–774 (2001)

14. Holme, P., Saramäki, J.: Temporal networks. Physics Reports 519(3), 97–125
(2012)

15. Hu, B., Rakthanmanon, T., Hao, Y., Evans, S., Lonardi, S., Keogh, E.: Discovering
the intrinsic cardinality and dimensionality of time series using MDL. In: IEEE
11th Int. Conf. on Data Mining (ICDM) 2011, pp. 1086–1091, December 2011

16. Huang, Z., Li, X., Chen, H.: Link prediction approach to collaborative filtering.
In: Proc. of the 5th ACM/IEEE-CS Joint Conf. on Digital Libraries, pp. 141–142.
ACM (2005)

686 B. Fish and R.S. Caceres

17. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks.
In: Proc. of the 12th Int. Conf. on Information and Knowledge Management. CIKM
2003, pp. 556–559. ACM, New York (2003)

18. Liu, Y., Kou, Z.: Predicting who rated what in large-scale datasets. ACM SIGKDD
Explorations Newsletter 9(2), 62–65 (2007)

19. Peel, L., Clauset, A.: Detecting change points in the large-scale structure of evolv-
ing networks (2014). CoRR, abs/1403.0989. Pre-print

20. Perra, N., Gonçalves, B., Pastor-Satorras, R., Vespignani, A.: Activity driven mod-
eling of time varying networks. Scientific Reports 2 (2012)

21. Ribeiro, B., Perra, N., Baronchelli, A.: Quantifying the effect of temporal resolution
on time-varying networks. Scientific Reports 3 (2013)

22. Sarkar, P., Moore, A.W.: Dynamic social network analysis using latent space mod-
els. ACM SIGKDD Explorations Newsletter 7(2), 31–40 (2005)

23. Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., Chaintreau, A.: CRAW-
DAD data set cambridge/haggle (v. 2006–01-31) (January 2006). Downloaded from
http://crawdad.org/cambridge/haggle/

24. Sulo, R., Berger-Wolf, T., Grossman, R.: Meaningful selection of temporal resolu-
tion for dynamic networks. In: Proc. of the 8th Workshop on Mining and Learning
with Graphs, pp. 127–136. ACM (2010)

25. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: Parameter-free
mining of large time-evolving graphs. In: Proc. of the 13th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining. KDD 2007, pp. 687–696. ACM,
New York (2007)

26. Wagner, N., Michalewicz, Z.: An analysis of adaptive windowing for time series
forecasting in dynamic environments: Further tests of the DyFor GP Model. In:
Proc. of the 10th Conf. on Genetic and Evolutionary Computation. GECCO 2008,
pp. 1657–1664. ACM, New York (2008)

27. Zhu, J., Hong, J., Hughes, J.G.: Using Markov chains for link prediction in adaptive
web sites. In: Bustard, D.W., Liu, W., Sterritt, R. (eds.) Soft-Ware 2002. LNCS,
vol. 2311, pp. 60–73. Springer, Heidelberg (2002)

http://crawdad.org/cambridge/haggle/

Hierarchical Sparse Dictionary Learning

Xiao Bian1, Xia Ning2(B), and Geoff Jiang3

1 Electrical and Computer Engineering Department,
North Carolina State University, Raleigh, NC 27695, USA

xbian@ncsu.edu
2 Department of Computer and Information Science,

IUPUI, Indianapolis, IN 46202, USA
xning@cs.iupui.edu

3 Autonomic Management Department, NEC Labs America,
Princeton, NJ 45237, USA

gfj@neclabs.com

Abstract. Sparse coding plays a key role in high dimensional data anal-
ysis. One critical challenge of sparse coding is to design a dictionary that
is both adaptive to the training data and generalizable to unseen data of
same type. In this paper, we propose a novel dictionary learning method
to build an adaptive dictionary regularized by an a-priori over-completed
dictionary. This leads to a sparse structure of the learned dictionary
over the a-priori dictionary, and a sparse structure of the data over the
learned dictionary. We apply the hierarchical sparse dictionary learning
approach on both synthetic data and real-world high-dimensional time
series data. The experimental results demonstrate that the hierarchi-
cal sparse dictionary learning approach reduces overfitting and enhances
the generalizability of the learned dictionary. Moreover, the learned dic-
tionary is optimized to adapt to the given data and result in a more
compact dictionary and a more robust sparse representation. The exper-
imental results on real datasets demonstrate that the proposed approach
can successfully characterize the heterogeneity of the given data, and
leads to a better and more robust dictionary.

1 Introduction

Sparse representation has been demonstrated as very powerful in analyzing high
dimensional data [1–3], where each data point can be typically represented as a
linear combination of a few atoms in an over-complete dictionary. Assume x ∈ Rd

is a data vector and D is the dictionary, and then the sparse representation of x
can be formulated as to find the sparse code w over D by solving the following
optimization problem,

min
w

‖w‖0
s.t. ‖Dw − x‖ ≤ σ,

where σ is a pre-defined threshold. The pursued sparse code w can been con-
sidered as a robust representation of x, and can be used for clustering [4,5],
classification [6] and denoising [2,7].
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 687–700, 2015.
DOI: 10.1007/978-3-319-23525-7 42

688 X. Bian et al.

One key question is how to construct such an over-complete dictionary that is
suitable for sparse representation. There are two major approaches for construct-
ing such dictionaries: analytic approaches and learning-based approaches [8]. In
an analytic approach, the dictionary is carefully designed a priori, e.g. with atoms
such as wavelets [9], curvelets [10] and shearlets [11,12]. One advantage of the
analytic approaches is that the dictionary can be designed as well-conditioned
for stable representation, for example, to have a better incoherence condition or
restricted isometry property [13,14].

In learning-based approaches, the dictionaries are learned from the given
data [2,15,16]. Compared to the designed dictionaries in analytic approaches, the
learned dictionaries are usually more adaptive to the given data, and therefore
lead to more robust representations. Therefore, the learning-based approaches
outperform analytic approaches in many tasks such as denoising and clas-
sification, etc [1,17]. The dictionary learning problem in the learning-based
approaches is typically formulated as the following optimization problem,

min
D∈C,W

‖X − DW‖2F
s.t. ‖W‖0 ≤ k,

(1)

where X, W and D represent the data, their sparse codes and the dictionary,
respectively, and C is a pre-specified feasible region for D. However, (1) is non-
convex and thus it is very difficult to find the global optimal solution or even a
good local optimum.

In this paper, we propose to integrate both analytic approaches and learning-
based approaches and learn from data a dictionary that is also built upon and
regularized by an a-priori dictionary. The learned dictionary will be adaptive
to the training data and its size will be determined by the intrinsic complexity
of the training data. Meanwhile, due to the regularization from the a-priori
dictionary, the non-convex optimization problem will have a more stable and
better local minimum solution, and requires fewer training data. We compare
the new method with the state-of-the-art methods on various aspects and our
experimental results demonstrate superior performance of the new method.

2 Hierarchical Sparse Structures on Dictionaries

In the dictionary learning problem in (1), the constraint D ∈ C is critical to
regularize D. In the state of the art, C is typically specified as C = {D : ∀di ∈
D, ‖di‖2 ≤ c} [2,15] or C = {D : ‖D‖F ≤ c} [16]. Intuitively, in both cases, C
tames the amplitude of D. However, these constraints do not consider any prior
knowledge on D, if available. Prior knowledge is valuable to learn a dictionary
that is more powerful to characterize the data. For example, a dictionary for
image patches is expected to have finer structures that might be further rep-
resented using DCT or wavelets. Incorporating such knowledge into dictionary
learning can result in superior results [8,18].

Hierarchical Sparse Dictionary Learning 689

Given an a-priori over-complete dictionary Φ for data X based on some
prior knowledge about X, we aim to learn a dictionary D based on Φ so that
D is more adaptive to X. In specific, we propose hierarchical sparse structures
among Φ, D and X, that is, D is constructed from Φ via sparse combination of
Φ’s atoms, and X is constructed from D via sparse combination of D’s atoms.
Mathematically, the hierarchical sparse structure of D over Φ can be specified
using the feasible region C as follows,

C = {D : D = ΦU, ‖ui‖0 ≤ l,∀i}, (2)

where U is the sparse coefficients for D over Φ. Given the dictionary D = ΦU,
data X can then be represented as

X = DW = ΦUW, (3)

where W is the sparse coefficients over D.
The hierarchical structures in (3) share some properties with deep architec-

tures of learning models. Deep architectures have been empirically demonstrated
as very effective for many complicated AI tasks [19]. Compared to a shallow
model, a deep architecture is able to characterize complex data with alleviated
overfitting. Our experimental results demonstrate that the hierarchical struc-
tures among dictionaries can also reduce overfitting and improve generalizability
of the model.

In this paper, we propose a learning framework to learn the dictionary D
and the sparse codes W in (3). The primary contributions of this paper include

– the proposed hierarchical sparse structures among an a-priori over-complete
dictionary Φ, the pursued dictionary D and the given training data X as in
(3);

– the formulation of a hierarchical sparse dictionary learning problem to learn
D and W in Sect. 3; and

– the solution algorithm for the problem in Sect. 3.

3 Hierarchical Sparse Dictionary Learning

We formulate the problem of learning a dictionary D from data X and X’s
sparse representation W over D, where D is built upon an a-priori over-complete
dictionary Φ, as in the following optimization problem.

min
D,W

‖X − DW‖2F
s.t. ‖W‖0 ≤ k

D ∈ C = {D : D = ΦU, ‖ui‖0 ≤ l,∀i}.

(4)

We denote the learning problem in (4) as Hierarchical Sparse Dictionary Learn-
ing (HiSDL). The major difficulty in HiSDL is that the feasible region C is
non-convex and even not path-connected, and thus optimization over C is very
challenging. We solve the problem by first giving an approximated sparsity of D
on Φ in Sect. 3.1, and then a corresponding optimization algorithm in Sect. 3.2.

690 X. Bian et al.

3.1 Approximated sparsity of D on Φ

We first reformulate the feasible region constraint in (4) as a regularizer in
the objective function, and then consider its convex approximation. Specifically,
using the �1 convex relaxation of ‖ · ‖0, we define an C-function of D as follows,

C(D) =
∑

i

min
di

‖ui‖1 s.t. D = ΦU

= min
D

‖U‖1 s.t. D = ΦU.

Thus, the dictionary learning problem in (4) can be reformulated as

min
D,W

1
2
‖X − DW‖2F + γ‖U‖1

s.t. ‖W‖0 ≤ k,

D = ΦU.

(5)

Then we consider a convex approximation of C(D) based on the following
theorem.

Theorem 1. Assume a d × p dictionary Φ with incoherence μ, and D = ΦU
with all ui k-sparse and k < 1 + 1/μ, then

α‖ΦTD‖1 ≤ ‖U‖1 ≤ β‖ΦTD‖1,
where α = 1

1+(p−1)µ , β = 1
1−(k−1)µ . In particular, if Φ is an orthonormal basis,

then ‖U‖1 = ‖ΦTD‖1.
The proof of Theorem 1 is presented in the Appendix section.

Since Φ is a pre-designed dictionary with a well-constrained incoherence,
based on Theorem 1, we choose ‖ΦTD‖1 to approximate C(D) and thus to
regularize the sparsity of D on Φ. Furthermore, we relax and reformulate the
sparse constraint of W as an �1-norm regularizer in the objective function. The
resulting dictionary learning problem is thus as follows.

min
D,W

1
2
‖X − DW‖2F + λ‖W‖1 + γ‖ΦTD‖1. (6)

Due to the convexity of ‖ΦTD‖1, the objective function in (6) is convex with
respect to D.

3.2 Optimization Algorithm

There are two key steps in a typical dictionary learning algorithm: sparse coding
and dictionary update. In the sparse coding step, the goal is to find the sparse
coefficients W with a fixed dictionary D from the last iteration. In the dictio-
nary update step, D is further optimized with respect to the pursued W. The
objective function is therefore minimized in an alternating fashion.

Hierarchical Sparse Dictionary Learning 691

For the objective function as in (6), the sparse coding step is similar to that
in [15], that is, it is to find W by solving the following problem after fixing D.

min
W

1
2
‖X − DW‖2F + λ‖W‖1. (7)

It is a classical linear inverse problem with l1 regularization. We utilize the
FISTA algorithm [20], due to its efficiency and robustness, to solve (7).

During the dictionary update step, the objective is to pursue the dictionary
D by solving the following problem after fixing W.

min
D

1
2
‖X − DW‖2F + γ‖ΦTD‖1. (8)

To solve the above problem, we introduce an auxiliary variable H = ΦTD. Thus,
the problem in (8) can be reformulated as follows,

Ĥ = arg min
H

1
2
‖X − Φ†HW‖2F + γ‖H‖1, (9)

D̂ = Φ†Ĥ, (10)

where Φ† = (ΦΦT)−1Φ.1 The problem in (9) is again a linear inverse problem
with �1 regularization. We can solve it similarly as for (7) in the sparse coding
step. Thus, the entire procedure for solving (6) is presented in Algorithm 1.

Algorithm 1. Hierarchical Sparse Dictionary Learning (HiSDL)

Input: Data matrix X ∈ Rm×n, dictionary Φ
Initialize: λ, γ, D0

for t = 1, 2, . . . , T do
// Sparse coding: solve (7)
Wt = arg min

W

1
2
‖X − Dt−1W‖2

F + λ‖W‖1

// Dictionary update: solve (8)
Ht = arg min

H

1
2
‖X − Φ†HWt‖2

F + γ‖H‖1

Dt = Φ†Ht

end for
return DT

3.3 Analysis of HiSDL Algorithm

Atom selection in HiSDL Generally, the number of atoms in D is largely
determined by the complexity of the given data, and is therefore difficult to
determine a priori. Moreover, the non-convex nature of the objective function
in (6) inevitably leads to non-global optima. Therefore, it is very challenging to

1 ΦΦT is invertible since Φ is an over-complete frame [9].

692 X. Bian et al.

find the correct size of a dictionary D and its associated atoms that result in a
good local minimum [2,21]. Interestingly, HiSDL as in Algorithm 1 has an “atom
selection” property. In particular, the obsolete atoms in D will be automatically
eliminated, and thereby the size of D is well-controlled. To verify this property
of HiSDL, we first have the following lemma.

Lemma 1. For any atom di ∈ D, if dt
i = 0, then dt+1

i = 0, where dt
i is the

i-th atom of D at the t-th iteration as in Algorithm 1.

The proof of Lemma 1 is presented in the Appendix section.
Different from other state-of-the-art approaches as in [2,15], Lemma 1 states

that if one atom degenerates to 0, then it will stay as 0 since then. This essentially
addresses the dictionary pruning problem, i.e. the unused atoms are automati-
cally set to zero. Indeed, if one atom dose not contribute much to the reduction
of the empirical error ‖X − DW‖F , then it will be set to zero in the dictionary
update step based on the following theorem.

Theorem 2. At iteration t0, if ‖ΨTRiWT‖∞ < γ, where Ψ = Φ†, and Ri =
X−D−iW is the empirical error without using di in D, then di = 0 for t > t0.

The proof of Theorem 2 is presented in the Appendix section.
Theorem 2 ensures that the unnecessary atoms will degenerate to 0 as the

empirical error reduces during the learning process. We are therefore able to
maintain a compact dictionary in an on-line fashion.

Computational Complexity of HiSDL The sparse coding step (7) and the
dictionary update step (8) dominate the computational complexity of HiSDL. In
particular, the sparse coding step and the dictionary update step are essentially
the same constrained �1-minimization problem, of which the computational com-
plexity is mainly from matrix multiplication when using soft-thresholding meth-
ods such as FISTA [20]. Specifically, if X is of dimension d×m, D is of dimension
d×n, and Φ is of dimension d×p, where typically m > p > n and m > d, p > d 2,
then the computational complexity of each soft-thresholding iteration in sparse
coding is O(mnd), and similarly O(pdn) for dictionary update.

4 Related Work

Structured dictionary learning has been explored in previous works [22–24] from
different perspectives. For example, in [22], a tree-like hierarchical structure is
learned among the atoms in a dictionary, instead of treating each atom inde-
pendently. Group sparsity among atoms is also considered in [23] and is applied
to model spatial relations between atoms. In [24], a smooth prior on the sparse

2 The number of samples m in X should be larger than p, the number of atoms in
Φ, and p > n, the number of atoms in a more compact dictionary D. However, n is
determined by the richness of X, and may therefore be larger or smaller than d.

Hierarchical Sparse Dictionary Learning 693

coefficients W is used in order to get a more stable representation. In con-
trast to these methods, we introduce a known dictionary representing the prior
knowledge of the given data, and the hierarchical structure is imposed on the
known dictionary and the learned dictionary rather than among the atoms in
the learned dictionary. In addition, in our model, the known dictionary is used
directly to regularize dictionary learning rather than to enforce structures in
W as in [22–24]. As shown in this paper later, the use of the known dictionary
and the hierarchical structures among the known dictionary and the learned
dictionary enable a sparser representation with lower empirical errors.

5 Experimental Results

In this section, we present experimental results on synthetic data to empirically
evaluate HiSDL. We also demonstrate the applications of HiSDL using real-world
data. In particular, we test HiSDL on the following two datasets:

1. Synthetic data: we synthesize 200 time series of length 100 using DCT and
Haar wavelets to simulate the real-world time series. DCT and Haar wavelets
are composed into the a-priori over-complete dictionary Φ. Then a few atoms
from Φ are randomly selected and combined with amplitudes following a
uniform distribution in [−1, 1] into an atom in a dictionary D, and in the
end D has 100 atoms. A random sparse matrix W is then generated and
used so as to generate the synthetic time series from D.

2. Chemical plant time series (CPT): This dataset includes 1625 time series
from various sensors monitoring an entire manufacture process of a chemical
plant. Every time series is the output of one sensor, and each sensor collects
one observation every minute. The data exhibit high heterogeneity in nature,
e.g., there are both continuous and discrete time series, smooth and non-
smooth time series, etc.

5.1 Evaluation on Empirical Errors

Fig. 1 shows the empirical errors of HiSDL and of the state-of-the-art method [15],
denoted as BatchDL, during learning iterations with different parameter λ values
on the synthetic data (γ = 0.05λ; other λ values give similar trends; the optimal
λ and γ combinations are from grid search). For each of the λ values, the sparsity
of the learned W is relatively similar from both HiSDL and BatchDL. However,
HiSDL consistently achieves smaller empirical errors than BatchDL after each
learning iteration. This demonstrates that by introducing a regularization of D
with respect to an a-priori over-complete Φ, the optimization process in (4) may
have a better chance to end up at a better local minimum within the reduced
(and better) search space. In addition, HiSDL achieves smaller empirical errors
faster than BatchDL. This implies that HiSDL can quickly find a more accurate
sparse representation than BatchDL.

We further compare the performance of HiSDL and BatchDL on the CPT
dataset. We randomly pick one-day data in the dataset for dictionary learning,

694 X. Bian et al.

0 5 10 15 20
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

HiSDL
BatchDL

0 5 10 15 20
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

HiSDL
BatchDL

0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

HiSDL
BatchDL

(a) λ = 0.05 (b) λ = 0.1 (c) λ = 0.2

Fig. 1. Empirical errors vs learning iterations on synthetic data

0 5 10 15 20 25 30
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

Iteration

E
m

pi
ric

al
 E

rr
or

HiSDL
BatchDL

Fig. 2. Empirical errors vs learning
iterations on CPT

0 0.002 0.004 0.006 0.008 0.01
0.05

0.1

0.15

λ

R
ec

on
st

ru
ct

io
n

E
rr

or

HiSDL
BatchDL

Fig. 3. Reconstruction errors on CPT
testing data

and the data from a later day for testing. For CPT, Φ is constructed as a com-
bination of DCT and Haar wavelets, of which the number of atoms is twice as
the length of time series. However, the learned dictionary is composed of only
120 atoms. Fig. 2 shows the empirical errors during learning iterations with
λ = 0.001 and γ = 0.02λ (the λ and γ values and combinations are optimized
from grid search). Again, on the real dataset, HiSDL achieves smaller empirical
errors faster than BatchDL. Fig. 3 shows the reconstruction errors of HiSDL and
BatchDL on CPT testing data with different λ values. In Fig. 3, HiSDL consis-
tently achieves smaller reconstruction errors than BatchDL, which implies that
HiSDL is able to find more robust and generalizable dictionaries than BatchDL.

5.2 Evaluation on Atom Recovery

Fig. 4 presents some sample atoms learned from HiSDL on the synthetic data.
These atoms exhibit finer structures as a linear combination of DCT and Haar
wavelets, which demonstrates the capability of HiSDL recovering the building
structures of the data. However, as shown in Fig. 5, the learned atoms by BatchDL
on the synthetic data appear less structured, more homogeneous and do not
conform to the true structures underlying the data. This is due to that fact that

Hierarchical Sparse Dictionary Learning 695

0 50 100
−1

−0.5

0

0.5

1

0 50 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0 50 100
−1

−0.5

0

0.5

1

1.5

0 50 100
−1.5

−1

−0.5

0

0.5

1

1.5

0 50 100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 50 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Fig. 4. Sample atoms from HiSDL on
synthetic data

0 50 100
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0 50 100
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100
−0.4

−0.2

0

0.2

0.4

0 50 100
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0 50 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 50 100
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Fig. 5. Sample atoms from BatchDL on
synthetic data

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

relative sample size p/n

M
ea

n
at

om
 r

ec
ov

er
y

er
ro

r

HiSDL
BatchDL

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

relative sample size p/n

M
ed

ia
n

at
om

 r
ec

ov
er

y
er

ro
r

HiSDL
BatchDL

(a) Mean recovery error (b) Median recovery error

Fig. 6. Recovery errors vs sample size

BatchDL constraints the norm of each atom and thus biases the search of the
atoms towards a bad local minimum.

To further test the performance of the methods on the discovery of latent
atoms, we evaluate HiSDL and BatchDL on the blind source separation prob-
lem [25,26] on a set of synthetic datasets. These synthetic datasets have the same
a-priori over-complete dictionary Φ and dictionary D as generated as before, but
different number of time series (150, 200, 250 up to 1000). The success of the
recovery of latent atoms relies on the ratio of the given sample size to the num-
ber of latent atoms. Intuitively, we can only expect to recover all latent atoms
when every atom has been sufficiently used in the given sample set. Naturally,
this recovery goal is more likely to be achieved when we have a large dataset.

Denote the learned dictionary as D̂, and the relative recovery error of each
atom di ∈ D is then defined as follows,

ri = min
d̂j∈D̂

{1 − cos Θ(d̂j ,di)}, (11)

696 X. Bian et al.

0 500 1000 1500
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0 500 1000 1500
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0 500 1000 1500
−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0 500 1000 1500
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0 500 1000 1500
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0 500 1000 1500
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0 500 1000 1500
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0 500 1000 1500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 500 1000 1500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 500 1000 1500
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

(a) Time series cluster 1 (b) Atoms mostly used by cluster 1

0 500 1000 1500
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0 500 1000 1500
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0 500 1000 1500
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0 500 1000 1500
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0 500 1000 1500
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0 500 1000 1500
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0 500 1000 1500
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0 500 1000 1500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0 500 1000 1500
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

(c) Time series cluster 2 (d) Atoms mostly used by cluster 2

0 500 1000 1500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 500 1000 1500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 500 1000 1500
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0 500 1000 1500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 500 1000 1500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 500 1000 1500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 500 1000 1500
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 500 1000 1500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 500 1000 1500
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0 500 1000 1500
−0.1

−0.05

0

0.05

0.1

0.15

(e) Time series cluster 3 (f) Atoms mostly used by cluster 3

Fig. 7. Sample time series clusters in CPT and the corresponding mostly used atoms

where Θ(d̂j ,di) is the angle between d̂j and di. In specific, ri ∈ [0, 1], and if
there exists d̂j ∈ D̂ that satisfies di = d̂j , then ri = 0. In Fig. 6, we show the
mean/median atom recovery error vs the relative sample size (i.e., p/n in Fig. 6,
the ratio of sample sizes over the dictionary size) on the synthetic datasets.

In this set of experiments, the initial dictionary size for both algorithms is 150,
and the dictionary of ground truth is of size 100. Each point in Fig. 6 is the mean
of 5 experiments under the same training set, but with different initialization.
We can see that when the sample size is large, i.e. sufficient information is
provided, both HiSDL and BatchDL work well. However, when the sample size

Hierarchical Sparse Dictionary Learning 697

is small, such as two to four times the number of latent atoms, HiSDL shows a
substantially superior performance. It further demonstrates that by integrating
a priori knowledge of the given dataset, HiSDL achieves better generalizability.

5.3 Evaluation on Sparse Codes

We also explore the ability of HiSDL to process heterogeneous time series data by
studying the clustering results using sparse codes. Intuitively, if the learned dic-
tionary successfully characterizes the given data, the clustering generated from
their associated sparse codes should exhibit good structures. Fig. 7 shows some
clusters of time series from CPT data and their frequently used dictionary atoms.
The clustering is done by using spectral clustering algorithm [27] on the sparse
codes. As Fig. 7 shows, the CPT data are heterogeneous including step sig-
nals, piece-wise linear signals, periodical signals and even brownian motion-like
signals. However, after representing the time series over the learned hierarchi-
cal dictionaries, the clustering over their sparse codes shows high homogeneity
within each cluster, and the frequently used atoms for each cluster represent dom-
inant features of the cluster. This demonstrates that HiSDL has the capability of
capturing the most representative features from even highly heterogeneous time
series.

6 Conclusion

In this paper, we introduce a novel dictionary learning framework HiSDL which
utilizes a hierarchical sparse structure to characterize observed data. The exper-
iments demonstrate that the hierarchical sparse structure within the model reg-
ularizes potential solutions, and enables smaller empirical errors. In addition,
HiSDL is able to identify the most representative latent atoms from a few train-
ing samples, and thus well characterizes the training data. Future work may
include constructing nonlinear and deep structures on dictionary learning mod-
els. Also it would be interesting to see a more thorough evaluation of HiSDL on
other types of data, such as videos and images.

Appendix

Proof of Theorem 1

Proof. We first show the right part of the inequality, β‖ΦTD‖1 ≥ ‖U‖1.
since D = ΦU, ‖ui‖0 ≤ k,∀ui ∈ U, it follows that

‖ΦTD‖1 = ‖ΦTΦU‖1
=

∑

i

‖ΦTΦui‖1. (12)

698 X. Bian et al.

Moreover, according to the definition of incoherence,

‖ΦTΦui‖1 ≥
∑

j

(1 − (k − 1)μ)|uij |1

= (1 − (k − 1)μ)‖ui‖1. (13)

Consequently, we have

‖ΦTD‖1 ≥
∑

i

‖ui‖1(1 − (k − 1)μ)

= (1 − (k − 1)μ)‖U‖1, (14)

and let β = 1
1−(k−1)µ , it follows that β‖ΦTD‖1 ≥ ‖U‖1.

We next prove the left part of the inequality, α‖ΦTD‖1 ≤ ‖U‖1.
Proceeding from (12), we further have

‖ΦTΦui‖1 ≤
∑

j

(1 − (p − 1)μ)|uij |1

= (1 − (p − 1)μ)‖ui‖1. (15)

and as a result,

‖ΦTD‖1 =
∑

i

‖ΦTΦui‖1

≤ (1 − (p − 1)μ)‖U‖1. (16)

Since α = 1
1+(p−1)µ , we therefore have α‖ΦTD‖1 ≤ ‖U‖1. �

Proofs of Lemma 1 and Theorem 2

We first show the proof of Lemma 1.

Proof. If dt
i = 0, then

Wt+1 = arg min
W

1
2
‖X − DtW‖2F + λ‖W‖1 (17)

implies that the ith row of Wt+1, wi
t+1, is also 0.

Now consider

Dt+1 = arg min
D

=
1
2
‖X − DWt+1‖2F + λ‖ΦTD‖1, (18)

since wi
t+1 = 0, we therefore have dt+1

i = 0. �

Having Lemma 1 proved, we can then proceed to prove Theorem 2.

Hierarchical Sparse Dictionary Learning 699

Proof. At iteration t0, let g(H) = γ‖H‖1 + 1
2‖X − ΨHW‖2F , and assume Ĥ =

arg minH g(H), we then have

∂g(Ĥ) = γ∂‖Ĥ‖1 + ΨT(X − ΨĤW)WT � 0. (19)

Rewrite H as H = Hi + H−i, where Hi = [0, . . . ,0,hi,0, . . . ,0] and H−i =
[h1, . . . ,hi−1,0,hi+1, . . . ,hn], then we have

∂g(Ĥi) � 0, ∂g(Ĥ−i) � 0. (20)

Note that

∂g(Ĥi) = γ∂‖Ĥi‖1 + ΨT(Ri − ΨĤiW)WT, (21)

where Ri = X − ΨĤ−iW = X − D−iW.
Consider the condition ‖ΨTRiWT‖∞ < γ, combined with the subgradient

of �1-norm that ∂‖x‖1 = (−1, 1), we have

Ĥi = 0 ⇔ ∂g(Ĥi) � 0. (22)

When hi = 0, since D = ΨH, it follows that di = 0 at t0 + 1. According to
Lemma 1, we consequently have di = 0 for t > t0. �

References

1. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Supervised dictionary
learning. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) NIPS, Cur-
ran Associates Inc., pp. 1033–1040 (2008)

2. Aharon, M., Elad, M., Bruckstein, A.: K-svd: An algorithm for designing overcom-
plete dictionaries for sparse representation. IEEE Transactions on Signal Process-
ing 54, 4311–4322 (2006)

3. Elad, M.: Sparse and redundant representation modeling: What next? IEEE Signal
Processing Letters 19, 922–928 (2012)

4. Bian, X., Krim, H.: Robust Subspace Recovery via Bi-Sparsity Pursuit (2014).
ArXiv e-prints

5. Soltanolkotabi, M., Elhamifar, E., Candes, E.: Robust subspace clustering (2013).
arXiv preprint arXiv:1301.2603

6. Huang, K., Aviyente, S.: Sparse representation for signal classification. In:
Advances in neural information processing systems, pp. 609–616 (2006)

7. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations
over learned dictionaries. IEEE Transactions on Image Processing 15, 3736–3745
(2006)

8. Rubinstein, R., Zibulevsky, M., Elad, M.: Double sparsity: Learning sparse dictio-
naries for sparse signal approximation. IEEE Transactions on Signal Processing
58, 1553–1564 (2010)

9. Mallat, S.: A wavelet tour of signal processing. Academic press (1999)
10. Candes, E.J., Donoho, D.L.: Curvelets: A surprisingly effective nonadaptive repre-

sentation for objects with edges. Technical report, DTIC Document (2000)

http://arxiv.org/abs/1301.2603

700 X. Bian et al.

11. Yi, S., Labate, D., Easley, G.R., Krim, H.: A shearlet approach to edge analysis
and detection. IEEE Transactions on Image Processing 18, 929–941 (2009)

12. Labate, D., Lim, W.Q., Kutyniok, G., Weiss, G.: Sparse multidimensional repre-
sentation using shearlets. In: Optics & Photonics 2005, International Society for
Optics and Photonics, pp. 59140U–59140U (2005)

13. Eldar, Y.C., Kutyniok, G.: Compressed sensing: theory and applications. Cam-
bridge University Press (2012)

14. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and
inaccurate measurements. Communications on pure and applied mathematics 59,
1207–1223 (2006)

15. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse
coding. In: Proceedings of the 26th Annual International Conference on Machine
Learning, 689–696. ACM (2009)

16. Kreutz-Delgado, K., Murray, J.F., Rao, B.D., Engan, K., Lee, T.W., Sejnowski, T.J.:
Dictionary learning algorithms for sparse representation. Neural computation 15,
349–396 (2003)

17. Elad, M., Figueiredo, M.A., Ma, Y.: On the role of sparse and redundant repre-
sentations in image processing. Proceedings of the IEEE 98, 972–982 (2010)

18. Lee, H., Ekanadham, C., Ng, A.: Sparse deep belief net model for visual area v2.
In: Advances in neural information processing systems, pp. 873–880 (2007)

19. Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in Machine
Learning 2, 1–127 (2009)

20. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences 2, 183–202 (2009)

21. Rubinstein, R., Faktor, T., Elad, M.: K-svd dictionary-learning for the analysis
sparse model. In: 2012 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5405–5408. IEEE (2012)

22. Jenatton, R., Mairal, J., Obozinski, G., Bach, F.: Proximal methods for hierarchical
sparse coding. The Journal of Machine Learning Research 12, 2297–2334 (2011)

23. Jenatton, R., Audibert, J.Y., Bach, F.: Structured variable selection with sparsity-
inducing norms. The Journal of Machine Learning Research 12, 2777–2824 (2011)

24. Bradley, D.M., Bagnell, J.A.: Differential sparse coding (2008)
25. Zibulevsky, M., Pearlmutter, B.: Blind source separation by sparse decomposition

in a signal dictionary. Neural Computation 13, 863–882 (2001)
26. Li, Y., Cichocki, A., Amari, S.: Analysis of sparse representation and blind source

separation. Neural Computation 16, 1193–1234 (2004)
27. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algo-

rithm. In: Advances in Neural Information Processing Systems, pp. 849–856. MIT
Press (2001)

Latent Factors Meet Homophily
in Diffusion Modelling

Minh-Duc Luu(B) and Ee-Peng Lim

School of Information Systems, Singapore Management University,
80 Stamford Road, Singapore 178902, Singapore

{mdluu.2011,eplim}@smu.edu.sg

Abstract. Diffusion is an important dynamics that helps spreading
information within an online social network. While there are already
numerous models for single item diffusion, few have studied diffusion of
multiple items, especially when items can interact with one another due
to their inter-similarity. Moreover, the well-known homophily effect is
rarely considered explicitly in the existing diffusion models. This work
therefore fills this gap by proposing a novel model called Topic level
Interaction Homophily Aware Diffusion (TIHAD) to include both latent
factor level interaction among items and homophily factor in diffusion.
The model determines item interaction based on latent factors and edge
strengths based on homophily factor in the computation of social influ-
ence. An algorithm for training TIHAD model is also proposed. Our
experiments on synthetic and real datasets show that: (a) homophily
increases diffusion significantly, and (b) item interaction at topic level
boosts diffusion among similar items. A case study on hashtag diffusion
in Twitter also shows that TIHAD outperforms the baseline model in
the hashtag adoption prediction task.

1 Introduction

Ubiquitous presence of online social networks (OSN) has made information diffu-
sion an important topic that attracts much research interests. While many items
may diffuse in a social network simultaneously, most existing models of diffusion
are built upon independent contagion assumption whereby the diffusion of each
item is assumed (at least implicitly) to happen independent of other items. The
interaction among items during diffusion is thus left out of the picture. This is
obviously not true in the complex dynamics of diffusion process. For instance,
the diffusion of iPhones in the Facebook friendship network may interact favor-
ably with that of iPad; and the diffusion of a catchy phrase on Twitter also aids
the diffusion of its variants.

Interaction Among Items. Modeling these interactions is crucial in both
theory and practice since it helps us understand the detailed dynamics of multiple
item diffusion. It is also valuable for business to develop suitable strategies to
promote diffusion of their own items considering the other items that have been
diffused recently or are being diffused. It may be good to time the diffusion of
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 701–718, 2015.
DOI: 10.1007/978-3-319-23525-7 43

702 M.-D. Luu and E.-P. Lim

a new item with the diffusion of other similar items (possibly by the business
or other businesses) to achieve a larger reach. This idea of diffusion with item
interaction can be further illustrated in the following motivating example.

Example. A user may be inspired to watch the movie version of “Hunger
Games” after observing some neighbors already read the book. Moreover, if both
the book and the movie versions were adopted by a neighbor, the user will even
be more likely to adopt the movie than if only one of them was adopted by the
neighbor (as he may be more convinced that the movie is good in the former
case).

The example not only highlights that diffusion of an item can support that
of another similar item but suggests other deeper ideas which will distinguish
our work from the rest. These ideas are:

1. The more similar items are, the more interaction will happen between them
in diffusion. In other words, item similarity can be used as a proxy for item
interaction. This idea will be formulated in Section 3.2 where we propose
a general diffusion framework for modeling item interaction when there is
more than one item diffusing.

2. Whether or not a user adopts an item i is affected not only by neighbors
who adopted exactly the item but also by those who adopted other items. A
neighbor who already adopted another item i′ can still influence the decision
(see Example) as i′ may be very similar to i.

3. Each neighbor’s social influence on a user’s adoption decision should include
all contributions from a set of items adopted by the neighbors, not just limited
to one item as in the existing models.

Homophily Factor. Another important aspect which also has great impact on
item diffusion, is the well-known homophily phenomenon. Homophily refers to
the tendency of individuals to associate and bond with similar others. It is well
known that homophily affects the mechanisms in which item diffusion happens,
be it innovation [14], information [3] or behavior [2]. Thus, it is important to
integrate homophily into diffusion models so that we can better quantify its effect
on diffusion. In this work, we assume a global homophily level of the network and
learn it from the diffusion cascade data. Given that networks with homophily
involves more similar users connecting with one another, it also plays a role in
determining if an item can more smoothly diffuse across the network links.

Research Objectives. In this paper, we therefore propose to consider the above
two factors in the design of a new diffusion model. To involve both item sim-
ilarity (which helps to estimate item interaction) and user similarity (due to
homophily), our modeling approach employs latent factors (LF) to represent
both items and users (e.g. [13], [10]) where each user or item is represented as
a vector in a common feature space with dimension much smaller than that
of items and users. The similarity between two items (or users) can then be
defined by the cosine similarity of the respective item (or user) vectors. Unlike

Latent Factors Meet Homophily in Diffusion Modelling 703

the collaborative filtering approach taken by recommender systems, our diffu-
sion modeling work also consider social influence among users. Although there
are recently hybrid models ([9], [12]) which combine latent factor approach with
social networks, they still do not model a user adopting an item influenced by
the neighbors’ past adoption of similar items and the strength of relationships
with these neighbors. Based on our proposed model, we seek to answer some
interesting research questions related to multiple-item diffusion in homophily
networks.

Summary of Contributions. In summary, our work makes the following con-
tributions.

– We develop an extended diffusion framework which incorporates both item
interaction and homophily into modeling diffusion. To the best of our knowl-
edge, this is the first attempt to combine the two factors. The framework is
flexible and can offer useful insights to multiple item diffusion.

– We propose a specific diffusion model based upon the new framework. This
model, known as TIHAD, utilizes latent factors to capture item interaction
and homophily effect for effective modeling diffusion processes of multiple
items.

– We formulate the parameter learning of model as a constrained optimization
problem, and devise an effective learning algorithm using Projected Gradient
Descent.

– We conduct experiments on both synthetic and real datasets to show that:
(a) homophily increases diffusion significantly, and (b) item interaction at
topic level boosts diffusion among similar items. We also shows that TIHAD
outperforms the baseline model in the hashtag adoption prediction task.

Paper Outline. We will next give an overview of the related works. In Section 3,
we present our proposed diffusion model known as TIHAD. The learning of this
model is given in Section 4. Section 5 describes experiments that evaluate the
TIHAD using both synthetic and real datasets. We finally conclude the paper
in Section 6.

2 Related Works

Our work is closely related to very well studied adoption and diffusion model-
ing research: (i) Latent Factor models and (ii) Social Influence models. In the
following sections, we briefly review these research works and relate them with
our work.

2.1 Latent Factor Models

These models ([16], [13], [10]) take a user-item adoption matrix and factorize it
into a set of user and item vectors with f dimensions where f is much smaller
than the number of users or items. For each item i, a latent factor vector qi ∈ R

f

704 M.-D. Luu and E.-P. Lim

is derived and it contains the relevance weights of the latent factors for the item
i. Similarly, a latent factor vector pu ∈ R

f is derived for each user u to represent
the weights u has for the latent factors. Thus, the amount of interest u has
towards item i can be defined as the inner product pT

u qi. Unlike latent factor
models which focus on user-item interactions only, our work considers both user-
item and item-item interactions in the diffusion setting. We are therefore also
interested in the effect of item similarity. We exploit the latent factor space by
defining the similarity between two items i and j as the inner product qT

i qj .
For better interpretability, many Latent Factor (LF) models (see [13], [15])

require latent factor vectors to have positive elements. We also follow this prac-
tice and consider only positive latent factor vectors. Although LF models enjoy
the benefit of dimension reduction by matrix factorization, they do not consider
the underlying social network which forms the substrate over which diffusion
occurs. To address this shortcoming, recent research proposed to exploit social
influence in the modeling of user-item adoptions (or ratings).

2.2 Social Influence and Diffusion Models

Social influence modeling works takes into account social interest and social
trust as additional input to achieve better accuracy for recommendation ([9],
[12], [18], [17], [4]). These works proposed various ways of modeling the social
dimension such as factorizing the social network graph ([12]) or modeling social
factors of users as another set of latent factors ([17], [4]). While these works
focus on recommendation tasks, they are similar to diffusion models in that
both estimate social influence on user-item adoptions. Social diffusion models
on the other hand consider only influence from a subset of neighbors, called the
set of active neighbors Au, who adopt exactly the target item ([6], [8], [11]).
For example, Linear Threshold (LT) model is a social diffusion model which
estimates social influence by the sum of weights of active neighbors. Thus, its
standard form is

social influence =
∑

v∈Au

wv,u (1)

As pointed out in our motivating example, items similar to the item being dif-
fused i can affect diffusion. Even though a neighbor has not yet adopted item
i, he can still affect the target user’s decision on adopting i, when the neighbor
adopted item(s) similar to i. Such a diffusion scenario has been largely overlooked
in the existing social diffusion models.

3 Proposed Framework and Model

Before we present our proposed modeling framework and the TIHAD model, we
first introduce the notations used in the problem formulation.

Latent Factors Meet Homophily in Diffusion Modelling 705

3.1 Basic Notations

We represent a social networks as a (directed), weighted graph G = (U,E) whose
nodes represent users and edges represent links among the users. For each edge
(u, v), the edge weight wv,u represents the social influence that v exerts on u. To
model diffusion over the network during a time period, we bin the continuous
time into discrete time steps {1, 2, · · · , T} and consider adoptions in each step.

Denote adoption decision of a user u on item i at time step t as au,i,t. At first
sight, it seems that au,i,t is simply a binary label which is 1 when u adopt i and
0 otherwise. However, it is often that a user does not adopt an item because he
has not been exposed to the item. It is thus incorrect to assume that he rejects
the item, and underestimate his preference for the item. We can avoid this by
considering, at each time step, only items which are exposed to the user. When
the user did not adopt an item he has exposed to, we say that the case is a non-
adoption. We call these user-exposed items as the candidate items in Definition 1,
which in turn help us to define adoption labels properly in Definition 2.

Definition 1 (Candidate item). At a given time step t, a candidate item for
a user is an item that: (i) he has not yet adopted before t; and (ii) he is exposed
to it through some source (e.g., recent adoptions by his neighbors). The set of
candidate items for a user u at time t is denoted by Cu,t.

Definition 2 (Adoption label). Given an item i ∈ Cu,t, adoption label au,i,t

is a binary variable which is 1 if u adopts i at time t and 0 otherwise.

3.2 Framework

Our proposed framework extends the latent factor model framework by consid-
ering both personal interest and social influence in the modeling of user-item
adoption at different time steps. Personal interest is estimated by user-item
similarity in a latent space and social influence is an aggregation of individual
influences from neighbors. However, that influence from a neighbor v ∈ Nu (the
set of neighbors of u) now depends on: (i) the link weight wv,u, and (ii) the
interaction level between item i and a certain set of items adopted by v. We also
follow common practice (e.g. [9]) by including in the framework global bias μ,
user bias bu and item bias bi.

For easy reading, we first state the core formula of the framework in Eqn. (2)
and provide the reasoning behind the formulae subsequently. By denoting per-
sonal interest and social influence as φ(u, i) and σ(u, i, t) respectively, we can
express the framework as follows (the logic behind will be explained soon).

âu,i,t := μ + bu + bi +

φ(u,i)
︷ ︸︸ ︷
pT

u qi +

σ(u,i,t)
︷ ︸︸ ︷∑

v∈Nu

wv,u · λ (v, t, i) (2)

where we introduce the following

706 M.-D. Luu and E.-P. Lim

1. wv,u: link weight, which will later be estimated by a function of user similarity
parameterized by the so-called homophily level, which will be denoted as h

2. λ (v, t, i): the interaction level (will be defined formally later) between the
items adopted by v and item i at time step t.

Our framework adapts the general formula by proposing in Eqn. (2) a novel
estimation of social influence term σ(u, i, t) and a homophily derived link weight
wv,u. As can be seen from the definitions, the estimation will incorporate both
item interaction and homophily factor. To keep the framework tractable, we
assume the latent factors are static. Given this framework, we can now apply
it for modeling interacting diffusion processes of items over a social network as
follows.

Framework (Interacting Diffusion of Items). Consider a set of items I and
a social network G. For each such candidate item i, its adoption label âu,i,t can
be estimated by Eqn. (2). Candidate i will be adopted by u if the estimation is
close enough to 1 (i.e., âu,i,t ≥ 1− θ). Thus, at each time step, a user can adopt
several candidate items which satisfy this criterion. The process continues until
no more adoption can happen.

We proceed by providing the logic behind Eqn. (2) of our framework. The
logic includes two parts: how to define item interaction and how to incorporate
homophily.

Item Interaction. The interaction level depends on a certain set of v’s adopted
items which can actually affect u’s decision. This leads us to the concept of
effective item set defined as follows.

Definition 3 (Effective item set). For a given neighbor v of user u, the set of
items adopted by v which can influence adoption decision au,i,t is called effective
item set from the neighbor at time step t and denoted as Ieff (v, t).

Given effective item set Ieff (v, t), we now need to estimate the interaction
level λ (v, t, i) between the adopted items of v and candidate item i and time
step t. We now provide a general estimation of λ (v, t, i) in Definition 4.

Definition 4 (Interaction level). The interaction level λ(v, t, i) is defined as
the sum of interactions (i.e. similarities) between the effective item set of v and
i at time step t.

λ(v, t, i) :=
∑

j∈Ieff (v,t)

qT
j qi (3)

The social influence from neighbor v will then be wv,u ×λ (v, t, i). In total, social
influence on u will be estimated by

σ(u, i, t) :=
∑

v∈Nu

wv,u × λ (v, t, i) =

⎛

⎝
∑

v∈Nu

∑

j∈Ieff (v,t)

wv,uqj

⎞

⎠

T

qi (4)

Latent Factors Meet Homophily in Diffusion Modelling 707

Note that for directed networks, Nu will be replaced by the followee set of u.
Replace (4) into (2), we obtain our novel estimation for adoption label

âu,i,t := μ + bu + bi + pT
u qi +

⎛

⎝
∑

v∈Nu

∑

j∈Ieff (v,t)

wv,uqj

⎞

⎠

T

qi (5)

This new estimation allows our framework to capture item interaction. Thus,
in the context of interacting diffusion, we expect it to provide a better model
than existing models (e.g. [11]). This will be realized later in our experiments
on synthetic data.

Incorporating Homophily. Eqn. (5) involves link weight wv,u which is deter-
mined by homophily factor. Due to homophily effect, more similar individuals
tend to be connected. We therefore propose to estimate wv,u as an increasing
function of the similarity between u and v. In other words, for a social network
with an underlying homophily level h ∈ [0, 1] (smaller h implies low homophily),
we propose to define wv,u as:

wv,u := g(pT
u pv|h) (6)

where g(.) is an increasing function parameterized by h. Since weights are in
[0, 1], we also choose functions g with range in [0, 1].

Finally, by replacing Eqn. (6) in (5) and using estimation of λ (v, t, i), we
obtain Eqn. (7), the main estimation of our framework.

âu,i,t := μ + bu + bi + pT
u qi +

∑

v∈Nu

g(pT
u pv|h) ·

∑

j∈Ieff (v,t)

qT
j qi (7)

3.3 Topic Interaction and Homophily Aware Diffusion (TIHAD)
Model

To apply our general framework, we need to give specific definitions for
g(pT

u pv|h), and Ieff (v, t). This leads to our proposed Topic Interaction and
Homophily Aware Diffusion (TIHAD) Model.

In TIHAD, we define the function g(.) as a linear function of user similarity
pT

u pv as follow.

g(pT
u pv|h) := h · (pT

u pv), ∀(u, v), v ∈ Nu (8)

There are other interesting forms of function g(.) including
(
pT

u pv

)h. In this
work, we focus on the linear form due to its tractability and leave other forms
for future research.

For Ieff (v, t), we choose the set of items adopted recently by neighbor v.
This is based on the common intuition that a user usually pays attention only to

708 M.-D. Luu and E.-P. Lim

those recent items (e.g., Twitter users only focus on recent hashtags from their
followees [19]). Thus, for each time t, we choose the effective set as the set of k
items which neighbor v adopted most recently with respect to time step t, which
we denote as rk,t

v . Hence, Ieff (v, t) = rk,t
v .

The TIHAD model is therefore expressed as Eqn. (9).

âtihad
u,i,t = μ + bu + bi + pT

u qi + hpT
u [St(u)] qi (9)

where the matrix St(u) is

St(u) :=
∑

v∈Nu

pv (
∑

j∈rk,t
v

qj)
T (10)

St(u) can be interpreted as the matrix characterizing the social influence from
u’s neighbors recent adoption events.

3.4 Linear Threshold with Latent Factors (LTLF)

In the special case when Ieff (v, t) = {i}, Eqn. (4) becomes

σ̃(u, i, t) =

⎛

⎝
∑

v∈Ai
u,t

wv,u

⎞

⎠ ‖qi‖2

where v now is not an arbitrary neighbor of u but instead an active neighbor
i.e. one who actually adopted i at time t. This estimation of social influence is
obviously an extension of Eqn. (1) commonly used in Linear Threshold models
([6], [1]). Thus, by substituting it into Eqn. (5), we obtain the following model,
called Linear Threshold with Latent Factors (LTLF)

âltlf
u,i,t := μ + bu + bi + pT

u qi +

⎛

⎝
∑

v∈Ai
u,t

wv,u

⎞

⎠ ‖qi‖2 (11)

4 Learning of TIHAD Model

We formulate the learning of TIHAD model parameters as a constrained opti-
mization problem, which can be solved by Projected Gradient Descent (PGD).
We provide the detailed formula to solve the problem and a pseudocode for
model learning. For brevity, we use P and Q matrices to denote user and item
latent factors respectively. All parameters of TIHAD then can be compactly
represented by Π = (h, μ, {bu}u∈U , {bi}i∈I ,P ,Q). We also use âu,i,t in place of
âtihad

u,i,t for brevity.

Latent Factors Meet Homophily in Diffusion Modelling 709

4.1 Optimization Formulation

Let AT
1 denote the set of all adoption labels in a diffusion cascade during the

time span [1, T].

AT
1 := {au,i,t : t ∈ [1, T], u ∈ U and i ∈ Cu,t} (12)

Diffusion data is then represented by a tuple of item set, the social network
and the adoption labels as D =

(
I,G,AT

1

)
. Given D, we formulate the model

learning problem as finding the optimal parameters Π∗ that minimize squared
error upon generating the adoption labels.
For a given Π, the squared error at time step t is the sum

SEt(Π|D) =
∑

u∈U

∑

i∈Cu,t

[âu,i,t(Π) − au,i,t]
2 (13)

Hence, over the whole time span [1, T], the total error is

E(Π |D) =
T∑

t=1

SEt(Π|D) =
T∑

t=1

∑

u∈U

∑

i∈Cu,t

[âu,i,t(Π) − au,i,t]
2 (14)

To avoid over-fitting, we also define a regularizer as

R(Π) := h2 +
∑

u

b2u +
∑

i

b2i + ‖P‖2F + ‖Q‖2F (15)

where ‖.‖F denotes the usual Frobenius norm. Hence, the objective function is

J(Π |D) =
1
2

[(E(Π |D) + δR(Π)]

We now can formulate the learning as the following constrained optimization
problem.

Problem 1. Given diffusion data set D =
(
I,G,AT

1

)
. We learn parameters Π

by solving for optimal parameters which minimize the objective function

Π∗ = argmin
Π

J(Π|D) = argmin
Π

1
2

[E(Π |D) + δR(Π)] (16)

subject to constraints

pu ≥ 0, ∀u ∈ U, qi ≥ 0, ∀i ∈ I and 0 ≤ h ≤ 1 (17)

4.2 Optimization Solution

In general, the above problem is not convex. Thus, we resort to a solver which
uses grid search and Projected Gradient Descent (PGD). For that, we provide
formulae of gradients in the following sections. Due to space constraints, proofs
of these formulae are not provided, interested readers can find it in the technical
note.1
1 http://goo.gl/2ltY9I

http://goo.gl/2ltY9I

710 M.-D. Luu and E.-P. Lim

Derivatives for Bias Variables

∂

∂μ
J =

∑

t

∑

u∈U

∑

i∈Cu,t

eu,i,t
︷ ︸︸ ︷
(âu,i,t(Π) − au,i,t) (18a)

∀u ∈ U,
∂

∂bu
J = δbu +

∑

t

∑

i∈Cu,t

eu,i,t (18b)

∀i ∈ I,
∂

∂bi
J = δbi +

∑

t

∑

u∈U :i∈Cu,t

eu,i,t (18c)

Derivative for Homophily Variable

∂

∂h
J = δh +

∑

t

∑

u

pT
u [St(u)] qerr

t (u) (19)

where St(u) is defined in Eqn. (10) and qerr
t (u) :=

∑
i∈Cu,t

eu,i,t · qi.

Derivatives for User and Item Factors

1. (Gradient w.r.t user factor pu) For each given user u, we have

∇pu
J = δpu +

∑

t

[
M t(u)qerr

t (u) + hηt(u)qk
t (u)

]
(20)

where matrix M t(u) and scalar ηt(u) are defined as

M t(u) := Id + hSt(u) and ηt(u) :=
∑

v∈Nu

pT
v qerr

t (v) (21)

where Id denotes the identity matrix.
2. (Gradient w.r.t. item factor qi) For each given item i, we have

∇qi
J = δqi +

∑

t

⎛

⎝h
∑

u∈U

[
qerr

t (u)ϕT
u,i,t

]
pu +

∑

u:Cu,t�i

eu,i,t [M t(u)]T pu

⎞

⎠ (22)

where vector ϕu,i,t :=
∑

recent adopters pv is the sum of factors of neighbors
who adopted i recently.

Now that all derivatives are available, we can use them in Projected Gradi-
ent Descent (PGD) with grid search to update the corresponding parameters.
Thus, we repeat Algorithm 1 with different initial parameter values to learn the
parameters of TIHAD model. All the derivatives in the algorithm are computed
using Eqns. (18a) – (18c) and (19) – (22).

Latent Factors Meet Homophily in Diffusion Modelling 711

Algorithm 1. PGD for TIHAD model using an initial guess Π0

1: procedure Train(D, Π0, ε)

2: Initialize Πc ← Π0

3: while (!converge) do

4: Compute objective value: jc ← J(Πc|D) � use Eqns. (14) – (16)

5: Compute gradients: gc ← ∇J(Πc|D) � use Eqns. (18a) – (22)

6: Descend & project: Πn ← GRADPROJ(Πc, jc, gc) � see gradproj() in [7]

7: Check convergence: converge ← (|Πn − Πc| < ε)
8: Πc ← Πn

9: end while

10: return Πn

11: end procedure

5 Experiments

In this study, we want to be able to evaluate TIHAD model with some param-
eter settings that control the item interaction and homophily factor during the
diffusion process. Hence, we need a synthetic diffusion data generation method
with the following input parameters: (a) M items, (b) N users, (c) Ne relation-
ships among the users, (d) f latent factors, (e) homophily value h for the social
network, (f) T number of time steps, and (g) k recently adopted items. The
generation steps are described below:

1. (Generation of M items and N users in latent space) We generate M items
and N users as f -dimensional vectors qi’s and pu’s respectively. The item
and user vectors are generated such that each of them has a dominant factor.
The set of users and items are denoted by U and I respectively.

2. (Generation of a social network with homophily value h) We generate
Ne edges among the users using Algorithm 2. The resultant network,
Gh = (U,Eh) where Eh denotes the set of Ne edges, satisfies the required
homophily level h.

3. (Generation of an initial adoption state) We want to ensure that every user
in the network initially has adopted at least k items. We assign k items to
each user based on his latent factor interests.

4. (Generation of a diffusion cascade) We randomly assign a user as the single
seed of diffusion. The seed user will adopt all M items initially. We then
employ TIHAD model to start generating a data set of simultaneous diffusion
of the items over the network Gh within the time interval [1, T]. The details
of this step are given in Algorithm 3.

We generate N diffusion cascades by performing steps 3 and 4 with a different
initial adoption state and different user as the seed each time. Hence every
diffusion cascade share the same network with identical user and item latent
factor vectors. We finally generate N different data sets so that we can get
empirical distribution of cascade sizes.

712 M.-D. Luu and E.-P. Lim

Algorithm 2. Generation of a network with a given homophily level
1: procedure BuildNetwork(U, Ne, h)
2: Pairs ← {(u, v) : u �= v ∈ U}
3: for each user pair (u, v) ∈ Pairs do
4: Compute user-item similarity: sim(u, v) ← pT

u pv

5: Compute edge weight: ρ(u, v) ∼ exp (h · sim(u, v))
6: end for
7: Normalize: p(u, v) ← ρ(u,v)∑

ρ(u′,v′) , ∀(u, v) ∈ Pairs

8: Collect probabilities: probs ← (p(u, v) : (u, v) ∈ Pairs)
9: Sample Ne edges based on the probabilities: Eh ← sample(Pairs, Ne, probs)

10: return Network Gh = (U, Eh)
11: end procedure

Algorithm 3. Generation of diffusion data
1: procedure CreateDiffusion(I, Gh, θ, T, us) � Gh = (U, Eh): network in

Algo. 2
2: for t ∈ [1, T] do
3: Initialize At ← ∅ � Set of adoption records at time t
4: for u ∈ U do
5: Derive Cu,t by Definition 1 � use seed us to get Cu,1, ∀u
6: for i ∈ Cu,t do
7: Compute adoption label approximation âu,i,t by Eqn. (9)
8: end for
9: Pick adoptions It(u) ← {i ∈ Cu,t : âu,i,t ≥ 1 − θ} � approx. is close to 1

10: At ← At ∪ {(u, i, t) : i ∈ It(u)} � Add to adoption records at time t
11: end for
12: end for
13: Collect all adoption records: AT

1 ← ⋃T
t=1 At

14: return D =
(
I, Gh, AT

1

)

15: end procedure

5.1 Impact of Homophily on Diffusion

Experiment Setup: We study how the size of diffusion cascade is affected by
different degrees of homophily h. Thus, we generate items and users by setting
f = 10. We then generate diffusion in five different networks Gh’s each with
a different h value, h ∈ {0, 0.2, 0.4, 0.6, 0.8}. These networks however share the
same set of users and same number of edges to minimize the effect of choices
of users and number of relationships among them. For each such network, we
generate N diffusion cascades of M items using TIHAD and study distribution of
the average cascade size over the M items. Detailed statistics of this experiment
is provided in Table 1.

Result: As the homophily level increases, the diffusion cascade also becomes
larger (see Figure 1a). This trend is observed for all items. To evaluate the
robustness of the result, we repeat the experiment for f = 15 and f = 20.

Latent Factors Meet Homophily in Diffusion Modelling 713

(a) Impact of homophily (cascades gener-
ated by TIHAD under different settings
for number of factors f)

(b) Impact of item interaction (cascades
generated by both models, for TIHAD we
set parameters h = 0.1 and f = 10)

Fig. 1. Impact of homophily and item interaction on diffusion.

We report here results for f = 10 and f = 15. This result is expected as
homophily facilitates diffusion ([5], [3]). It also shows that our model has incor-
porated homophily effect properly.

5.2 Impact of Item Interaction on Diffusion

Experiment Setup: In this experiment, we change our focus to study how
item interaction (i.e. support among items) affects diffusion. We now generate
diffusion cascades on the same network with a fixed homophily level h = 0.1.
The item set is however generated differently. We partition the item set I into
the majority set I1 (occupy 75% of I) and the minority set I2. In each subset,
items are generated such that they are similar to each other. Thus, items in I1
receive more interaction than items in I2 and we can study difference in cascade
sizes of items in two sets. Other statistics of this experiment is the same as in
Table 1.

Under this setting, we use TIHAD model to simulate diffusion as done in
the previous experiments. We then compare cascade size distribution of items
in I1 against that of items in I2. We also want to see if cascades generated by
TIHAD are significantly different from those generated by a baseline diffusion
model that does not consider item interaction. Hence, we generate another set
of cascades following the same process using the LTLF model. The cascade size
distributions of the two models are then compared.

Result: Figure 1b shows several interesting insights. First, it provides strong
evidence that TIHAD model can capture the item interaction effect (among
similar items) currently ignored by the existing models including LTLF. The
figure shows that the cascade size of an item diffused with TIHAD is much
larger than that of the item when it is diffused using LTLF. Moreover, the more
similar an item with previous items, the larger cascade size it can reach. This
makes sense since an item will receive more support in diffusion if it is more
similar to other previously adopted items.

714 M.-D. Luu and E.-P. Lim

Table 1. Parameters used in synthetic data generation

factors # items # users # edges Homophily level # recent items # time steps

f ∈ {10, 15, 20} 100 500 70K h ∈ {0, 0.2, 0.4, 0.6, 0.8} k = 5 T = 20

Table 2. Statistics of diffusion data among Singapore Twitter users in Valentine Day

Data set # hashtags # users # follow links # adoptions # time steps # adoption labels

Training 4002 1000 9935 11, 565 12 60, 875
Test 1219 884 8754 9390 12 39, 375

Total 4002 1000 9935 20, 955 24 100, 250

5.3 Hashtag Diffusion Prediction Evaluation

This experiment aims to evaluate TIHAD using real dataset and compare it with
the baseline LTLF model which does not consider item interaction.

Data Set: We first collected the diffusion of hashtags in the Twitter network
among Singapore users during on 14 February 2014, the Valentine Day. We
expected that there should be some interesting diffusion cascades on this special
day. We extracted the tweets of about 150,000 Singapore users from 3 to 16
February and sampled 1000 active users who adopted at least 3 hashtags per
day. These users are connected by a social network with 9935 follow links.

We next wanted to determine the time step when each user first adopted a
hashtag during the Valentine Day. Each time step duration is set as one hour.
We confined ourselves to fresh hashtags which only appeared during Valentine
Day but not the days during [3 Feb, 13 Feb]. We then identified the time step a
user adopted a hashtag as the first time step in 14 February he used the hashtag.
We obtained 20, 847 hashtags which the active users adopted from 00:00am to
11:59pm on the Valentine day. By filtering away unpopular hashtags, i.e., those
with less than 5 active users adopting them, we were left with 4002 hashtags and
20, 955 adoptions. Based on Definition 2, we derived 100, 250 adoption labels
(both adoption and non-adoption) associated with these 24 hours. Adoptions of
the users on previous day (13 Feb) were used as their initial adoption histories.
The hashtag diffusion data on 14 February from 0:00am to 11:59am is then used
as the training data, while the remaining data on 14 February is used as the
test data. The statistics of combined training and test datasets is summarized
in Table 2.

Training Process: We trained both TIHAD and LTLF using the diffusion
training dataset on February 14. We tried different values for the regularization
constant and observed that δ = 0.1 gives the best result in terms of mini-
mizing RMSE. We also tried different values for the number of recent items
k ∈ {1, . . . , 10} and found that k ∈ {3, 4} yield the best RMSE result for this

Latent Factors Meet Homophily in Diffusion Modelling 715

(a) RMSE obtained on training data (b) F1@l obtained on test data

Fig. 2. Comparing TIHAD against baseline LTLF. Both models were trained with
regularization coefficient δ = 0.1; for TIHAD, the number of recent items k is set as 3.

training dataset. In the learning process, we observed that both models can
achieve smallest RMSE for the training data.

Evaluation Metrics: For evaluations, we used two accuracy metrics: (i) RMSE
for measuring the model performance during training, and (ii) F1@l when using
the trained models for the hashtag adoption prediction task on the test data.
To compute F1@l, we use the trained models to predict hashtag adoptions
(based on estimated adoption labels) from 12:00 noon to 11:59pm of 14 Feb
2014. We selected those users who appear in both the training and test datasets
and extracted from their tweets generated during the test period the hashtags
that already appeared in the training set. The resultant test set had 884 users
and 1219 hashtags which were actually adopted during the test period (detailed
statistics of the test set can be found in Table 2).

Results: We first focus on the accuracy of trained models using RMSE defined
on the training data. As shown in Figure 2a, the RMSE obtained by TIHAD is
much smaller than that of LTLF when they are trained using the same dataset
for different latent factor settings (i.e., 4 ≤ f ≤ 16). TIHAD achieves the best
RMSE when f = 10, while LTLF achieves best RMSE at f = 12.

In the prediction task, TIHAD shows a huge improvement over LTLF as
shown in Figure 2b. Other than l = 2, TIHAD outperforms LTLF for all other i
values. The highest F1 achieved by TIHAD (F1@8) is more than 150% that of
LTLF (F1@10).

As TIHAD performs best for 10 factors, we would like to know what are
the 10 factors. We manually check the top hashtags of each latent factor. We
discover that the latent factors are topical and manually assign them topical
labels. Table 3 shows the latent factors and their top 3 hashtags (due to limited
space). Most of the latent factors (e.g., Music tour, Valentine, Electronics, Self-
Improve) are self explanatory based on hashtags. The “Music bands/Singers”
latent factor covers names of singers (e.g., Siti Nurhaliza and Eminem) and music
concert (e.g., SUL14). The “Local movies/actors” latent factor covers popular

716 M.-D. Luu and E.-P. Lim

Fig. 3. Histogram of influence weights wv,u which TIHAD learned for the network of
Twitter users in our experiment.

Table 3. Latent factors and their top-3 hashtags

Latent Factors Hashtags

Music bands/Singers eminemftw, DatoSitiNurhaliza, SUL14

Local movies/actors YouWhoCameFromTheStars, BrothersKeeper, GongLi

International movies/actors frozen, jimmyfallon, KristenWiig

Music tour RedAsiaTour, TheScriptUSTour, BANGERZTour2014

Sport ICC2014, F1NightRace, LFCfacebook

Beauty ILoveWTF, Dior, maybellinesg

Valentine happyvalentine, firstvalentine, TweetforLove

Scandal/Controversy AsylumSeekers, bigimmigrationrow, LittleIndiaRiot

Electronics Xiaomi, ipadmini, Logitech

Self-improve limitless, nickvijucic, empoweryourself

movies (e.g., “You Who Came From the Stars”, “Brothers Keeper”) and actor
(e.g., Gong Li). The other latent factors can be interpreted in a similar manner.

Finally we would like to see what TIHAD can tell us about the network based
on the homophily level and influence weights it learned. The homophily level
learned by TIHAD is h = 0.08. This value is quite small and can be explained
due to the sparseness of the network under study. Moreover, the histogram of
influence weights wv,u in Figure 3 shows that most weights are very small (80%
of them are close to 0), which matches the nature of weak links among most
Twitter users.

6 Conclusion

This work deals with the challenging problem of modeling multiple simultane-
ous diffusion processes where topic level interaction exists among items being
diffused in a social network with homophily. We successfully incorporate item
interaction and homophily by proposing a novel way to model social influence

Latent Factors Meet Homophily in Diffusion Modelling 717

from recent adoptions of user’s neighbors. Behavior of the model under differ-
ent settings and parameters have been investigated. Results on synthetic data
show that both homophily and interaction at topic level can increase diffusion
remarkably. Experiment on hashtag diffusion on Twitter shows that TIHAD can
model interacting diffusion effectively and give better prediction as well.

Since training TIHAD is not a convex problem, we are currently using grid
search to deal with the non-convexity. However, the problem is still convex for
each set of parameters if others are kept fixed. Thus, we plan to use Alternating
Descent to develop a more rigorous algorithm.

Acknowledgement. This research is supported by the Singapore National Research

Foundation under its International Research Centre @ Singapore Funding Initiative and

administered by the IDM Programme Office, Media Development Authority (MDA).

References

1. Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks
under the linear threshold model. In: Proceedings of the 10th ICDM, pp. 88–97.
IEEE (2010)

2. Christakis, N.A., Fowler, J.H.: The spread of obesity in a large social network over
32 years. New England Journal of Medicine 357(4), 370–379 (2007)

3. De Choudhury, M., Sundaram, H., John, A., Seligmann, D.D., Kelliher, A.: birds
of a feather: Does user homophily impact information diffusion in social media?
(2010). arXiv:1006.1702

4. Delporte, J., Karatzoglou, A., Matuszczyk, T., Canu, S.: Socially enabled pref-
erence learning from implicit feedback data. In: Blockeel, H., Kersting, K.,
Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part II. LNCS, vol. 8189,
pp. 145–160. Springer, Heidelberg (2013)

5. Golub, B., Jackson, M.O.: How homophily affects the speed of learning and best-
response dynamics. The Quarterly Journal of Economics 127(3), 1287–1338 (2012)

6. Granovetter, M.: Threshold models of collective behavior. American Journal of
Sociology, 1420–1443 (1978)

7. Kelley, C.T.: Iterative methods for optimization, vol. 18. SIAM (1999)
8. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through

a social network. In: Proceedings of the 9th KDD, pp. 137–146. ACM (2003)
9. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-

tering model. In: Proceedings of the 14th KDD, pp. 426–434 (2008)
10. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender

systems. Computer 42(8), 30–37 (2009)
11. Lin, S., Hu, Q., Wang, F., Yu, P.S.: Steering information diffusion dynamically

against user attention limitation. In: Proceedings of the 14th ICDM (2014)
12. Ma, H., Yang, H., Lyu, M.R., King, I.: Sorec: social recommendation using proba-

bilistic matrix factorization. In: Proceedings of the 17th CIKM, pp. 931–940. ACM
(2008)

13. Mnih, A., Salakhutdinov, R.: Probabilistic matrix factorization. In: Proceedings of
the 20th NIPS, pp. 1257–1264 (2007)

14. Rogers, E.M.: Diffusion of innovations. Free Press, New York (1983)

http://arxiv.org/abs/1006.1702

718 M.-D. Luu and E.-P. Lim

15. Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using
markov chain monte carlo. In: Proceedings of the 25th ICML, pp. 880–887. ACM
(2008)

16. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th WWW (2001)

17. Shen, Y., Jin, R.: Learning personal+social latent factor model for social recom-
mendation. In: Proceedings of the 18th KDD, pp. 1303–1311. ACM (2012)

18. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques.
Advances in Artificial Intelligence 2009:4 (2009)

19. Weng, L., Flammini, A., Vespignani, A., Menczer, F.: Competition among memes
in a world with limited attention. Scientific Reports (2012)

Maintaining Sliding-Window Neighborhood
Profiles in Interaction Networks

Rohit Kumar1(B), Toon Calders1, Aristides Gionis2, and Nikolaj Tatti2

1 Department of Computer and Decision Engineering,
Université Libre de Bruxelles, Brussels, Belgium

r.kumar@ulb.ac.be
2 Helsinki Institute for Information Technology and Department of Computer

Science, Aalto University, Espoo, Finland

Abstract. Large networks are being generated by applications that keep
track of relationships between different data entities. Examples include
online social networks recording interactions between individuals, sen-
sor networks logging information exchanges between sensors, and more.
There is a large body of literature on computing exact or approxi-
mate properties on large networks, although most methods assume static
networks. On the other hand, in most modern real-world applications,
networks are highly dynamic and continuous interactions along existing
connections are generated. Furthermore, it is desirable to consider that
old edges become less important, and their contribution to the current
view of the network diminishes over time.

We study the problem of maintaining the neighborhood profile of
each node in an interaction network. Maintaining such a profile has appli-
cations in modeling network evolution and monitoring the importance
of the nodes of the network over time. We present an online stream-
ing algorithm to maintain neighborhood profiles in the sliding-window
model. The algorithm is highly scalable as it permits parallel process-
ing and the computation is node centric, hence it scales easily to very
large networks on a distributed system, like Apache Giraph. We present
results from both serial and parallel implementations of the algorithm
for different social networks. The summary of the graph is maintained
such that query of any window length can be performed.

1 Introduction

Modern big-data systems are confronted with scenarios in which data are gath-
ered in exceedingly large volumes. In many cases, the system entities are modeled
as graphs, and the recorded data represent fine-grained activity among the graph
entities. Traditionally, graph mining has focused on studying static graphs. How-
ever, as the emergence of new technologies makes it possible to gather detailed
information about the behavior of the graph entities over time, a growing body
of literature is devoted to the analysis of dynamic graphs.

In this paper we focus on a dynamic-graph model suitable for recording inter-
actions between the graph entities over time. We refer to this model as interaction
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 719–735, 2015.
DOI: 10.1007/978-3-319-23525-7 44

720 R. Kumar et al.

networks [26], while it is also known in the literature as temporal networks [21]
or temporal graphs [23]. An interaction network is defined as a sequence of time-
stamped interactions E over edges of a static graph G = (V,E). In this way, many
interactions may occur between two nodes at different time points. Interaction
networks can be used to model the following modern application scenarios:

1. the set of nodes V represents the users of a social network or a communication
network, and each interaction over an edge represents an interaction between
two users, e.g., emailing, making a call, re-tweeting, etc.;

2. the set of nodes V represents autonomous agents, and each edge represents an
interaction between two agents, e.g., exchanging data, being in the physical
proximity of each other, etc.

We study the problem of maintaining the neighborhood profile of each node
of a interaction network. In particular, we are interested in maintaining a data
structure that allows to answer efficiently queries of the type “how many nodes
are within distance r from node v at time t?” Graph neighborhood profiles have
been studied extensively for static graphs [6,25]. They provide a fundamental
primitive for mining large graphs, either for characterizing the global graph
structure, or for discovering important and central nodes in the graph. In this
work, we extend the concept of neighborhood profiles for interaction networks,
and we develop algorithms for computing neighborhood profiles efficiently in
large and rapidly-evolving interaction networks. Our methods can be used for
network monitoring, and allow detecting changes in the graph structure, as well
as keeping track of the evolution of node centrality and importance.

To make our methods scalable to large and fast-evolving networks, we design
our algorithms under the data-stream model [18,24]. This model requires to pro-
cess the interactions in an online fashion, and perform fast memory updates for
each interaction processed. To make our model adaptable to changes and allow
concept drifts we focus on the sliding-window model [14], a data-stream model
that incorporates a forgetting mechanism, by considering, at any time point,
only the most recent items up to that point. One uncommon benefit of our algo-
rithm is that because of the data structure we incrementally maintain, the user
can decide about the exact window length at query time.

Concretely, in this paper we make the following contributions: (i) we introduce
a new problem of efficiently querying neighborhood profiles on interaction net-
works in Section 3; (ii) we develop and analyze an exact but memory-inefficient
(Section 4) and an inexact but more efficient streaming algorithm for the sliding-
window model (Section 5); (iii) we provide experimental validation of the algo-
rithms in Section 7.

2 Preliminaries

We consider a static underlying graph G = (V,E). An interaction over G is a
time-stamped edge ({v, w}, t) indicating an interaction between nodes v and w.
An interaction network over G is now defined as a pair (G, E), where G is a

Maintaining Sliding-Window Neighborhood Profiles in Interaction Networks 721

static graph and E is a set of interactions. We should point out that we do not
need to know E beforehand.

If the set of interactions E = {({u, v}, t)} is ordered by time, it can be seen as
a stream of edges, and written as E = 〈(e1, t1), (e2, t2), . . .〉, with t1 ≤ t2 ≤
Note that two fixed nodes may interact multiple times in E .

In our model we are only interested in recent events, and hence queries over
our interaction network will always include a window length w — recall that
the summary will be maintained in such a way that all window lengths are
possible, i.e., every query can use a different window length. The snapshot graph
at time t for window w, denoted G(t, w), is the triplet (V,E(t, w), recent) in
which E(t, w) = {e | (e, t′) ∈ E with t − w < t′ ≤ t}, and recent is a function
mapping an edge e ∈ E(t, w) to the most recent time stamp that an interaction
between the endpoints of e occurred, that is, recent(e) = max{t′ | (e, t′) ∈
E such that t − w < t′ ≤ t}.

Furthermore, for the graph G we have the usual definitions; a path of length
k between two nodes u, v ∈ V is a sequence of nodes u = w0, . . . , wk = v such
that {wi−1, wi} ∈ E, for all i = 1, . . . , k, and all wi are different. The distance
between u and v in the graph G is defined as the length of the shortest path
between u and v, if such a path exists, otherwise it is infinity. The distance
between nodes u and v in the graph G is denoted by dG(v, w), or simply d(v, w),
if G is known from the context.

3 Problem Statement

The central notion we are computing in this paper is the neighborhood profile:

Definition 1. Let G = (V,E) be a graph and let u ∈ V be a node. The r-
neighborhood of u in G, denoted NG(u, r), is is the set of all nodes that are
at distance r from node u, i.e., NG(u, r) = {v | dG(u, v) = r}. We write
nG(u, r) = |NG(u, r)| to denote the cardinality of the r-neighborhood. We will
call the sequence pG(u, r) = 〈nG(u, 1),nG(u, 2), . . . ,nG(u, r)〉 the r-neighborhood
profile of the node u in graph G.

In this paper we study the problem of maintaining the neighborhood profile
pG(t,w)(u, r), for all nodes u ∈ V , as new interactions arrive in E . Our solution
allows w to vary; hence, at a time point t, we should be able to query for
the neighborhood profile pG(t,w)(u, r) for any w. If there is an upper bound
given for w, say wmax , then we can use this information to improve memory
consumption. However, this is optional, and we can set wmax = ∞. On the
other hand, r is given and fixed. Obviously, by computing pG(t,w)(u, r) we also
compute pG(t,w)(u, r′) for r′ < r.

Let H = G(t, w). To simplify the notation we will denote NH(u, r), nH(u, r),
pH(u, r) by Nt,w(u, r), nt,w(u, r), pt,w(u, r), respectively. Moreover, if w = wmax ,
then we will use Nt(u, r), nt(u, r), pt(u, r), respectively. We will also write G(t) =
G(t, wmax) and E(t) = E(t, wmax).

722 R. Kumar et al.

Fig. 1. A toy interaction network, and three snapshot graphs with a window size of 3.

Example 1. Consider the illustration given in Figure 1 of an edge stream over
the set of nodes V = {a, b, c, d, e}. The numbers on the edges denote the time of
interactions over the edges. Let the window length be 3. The snapshot graphs
G(t) at times t = 3, 4, 5 are also depicted in Figure 1. The 3-neighborhood
profiles of node c in these graphs are respectively (1, 0, 0), (1, 1, 1), and (2, 1, 0).

To accomplish our goal we maintain a summary St of the snapshot graph
G(t, wmax), from which we can efficiently compute the neighborhood profiles
pt,w(u, r), for every node u in the graph G. More concretely, we require that the
summary St has the following properties:

1. The summary St of G(t, wmax) should require limited storage space.
2. The size of the r-neighborhood nt,w(u, r) should be easy to compute from

St. The time to compute nt,w(u, r) from St will be called query time.
3. There should be an efficient update procedure to compute Sti from Sti−1

and the edge eti on which the interaction at time-stamp ti is taking place.

4 Maintaining the Exact Neighborhood Profile

We first introduce an exact, yet memory-inefficient solution. This exact solution
will form the basis of a memory-efficient and faster approximate solution based
on the well-known hyperloglog sketches.

4.1 Summary for Neighborhood Functions

An essential notion in our solution is the horizon of a path, which expresses the
latest time that needs to be included in the sliding window in order for the path
to exist; i.e., if the sliding window starts after the horizon the path will not exist
in it anymore.

Definition 2. Let G(t) = (V,E, recent) be a snapshot graph and p =
〈v0, . . . , vk〉 a path in it. The edge horizon of p in G(t), denoted by
ht(p), is the time stamp of the oldest edge on that path: ht(p) =
min {recent((vi−1, vi)) | i = 1, . . . , k}.

We will next define the horizon between two nodes u and v. Let PH(u, v) be
all the paths from u to v in a graph H. If H = G(t), then we will write Pt(u, v).

Maintaining Sliding-Window Neighborhood Profiles in Interaction Networks 723

Fig. 2. Two toy snapshot graphs along with h(u, b, i) for i = 0, . . . , 4.

Definition 3. The horizon for length i between two different nodes u and v is
the maximum horizon of any path of at most length i between them; that is,
ht(u, v, i) = max {ht(p) | p ∈ Pt(u, v), |p| + 1 ≤ i}. We set ht(u, v, i) = −∞ if no
such path exists. For any node u, ht(u, u, i) is defined to be ∞.

Example 2. Consider the leftmost graph given in Figure 2, along with, for every
node u ∈ {a, b, c, d, e}, the list of horizons h(u, b, 0), . . . , h(u, b, 4). In this graph
h(d, b, 1) = h(d, b, 2) = 2, as there is an edge with a time stamp of 2. However,
h(d, b, 3) = 3 as there is a path 〈d, e, c, b〉 with a horizon of 3.

The horizon between two nodes u and v for a length i is very important for
our algorithm as it expresses in which windows u and v are at a distance i or
less. Windows that include the horizon will have the nodes at distance i, shorter
windows will not. Hence, if for a node u we know all horizons ht(u, v, i), for all dis-
tances i and all other nodes v, we can give the complete neighborhood profile for
u for any window length. Hence, the summary St of the snapshot graph G(t) will
be the combination, for all nodes u and distances i = 0, . . . , r, of the summaries
Su
t for Nt(u, i). In other words, for every node u, we will be maintaining the sum-

mary Su
t = (Su

t [0], . . . , Su
t [r]), where Su

t [i] = {(v, ht(u, v, i)) | ht(u, v, i) > −∞}.

Example 3. For the snapshot graph given in Fig. 2, the summary St consists of
Su[i], i = 0, . . . , r. Assuming r = 3, the summaries for a and b are as follows:

Sa

distance a b c d e

0 ∞
1 ∞ 3 4 1
2 ∞ 3 4 1 4
3 ∞ 3 4 4 4

Sb

distance a b c d e

0 ∞
1 ∞ 3 2
2 3 ∞ 3 2 3
3 3 ∞ 3 3 3

4.2 Updating Summaries

We describe how to update the summary St as new edges arrive in the stream
E or old edges expire. The latter event happens for edges whose time-stamp

724 R. Kumar et al.

Algorithm 1. AddEdge({a, b} , t), updates a summary upon addition of
{a, b} at time t

1 foreach i = 0, . . . , r − 1 and (x, t′) ∈ Sa[i] do g(b, x, i + 1) ← min(t′, t) ;

2 foreach i = 0, . . . , r − 1 and (x, t′) ∈ Sb[i] do g(a, x, i + 1) ← min(t′, t) ;
3 Propagate({g(v)}v∈V)

Algorithm 2. Propagate({g(v)}v∈V), Processes all propagations that
are in the general register g .
1 foreach i = 1, . . . , r do
2 foreach v, x ∈ V such that g(v, x, i) is set do
3 if Merge(x, v, g(v, x, i), i) then
4 foreach (v, u) ∈ Et \ {a, b} do
5 horizon ← min(g(u, x, i), recent(v, u));
6 if g(u, x, i + 1) not set or horizon > g(u, x, i + 1) then
7 g(u, x, i + 1) ← horizon;

becomes smaller than t − wmax . Removing an edge is easy enough; we need
to remove all pairs (x, t′) from summaries Su

t [i], for all u, x ∈ V , i = 1, . . . , r,
and t′ ≤ t − wmax . This operation could also be postponed and executed in
batch. Updating the summary St to reflect the addition of a new-coming edge
et, however, is much more challenging. Let us first look at an example.

Example 4. Consider the horizons of the two graphs given in Figure 2. Notice
that adding an edge {a, b} changed h(d, b, 4) from 3 to 4 because we introduced a
path 〈d, e, c, a, b〉. However, the key observation is that we also changed h(e, b, 3)
to 4 due to the path 〈e, c, a, b〉, h(c, b, 2) to 4 due to the path 〈c, a, b〉, and h(a, b, 1)
to 6 due to the path 〈a, b〉.

As can be seen in the example, the addition of an edge may result in a
considerable number of non-trivial changes. However, the example also hints
that we can propagate the summary updates.

Assume that we are adding an edge {a, b}, and this results in change of
h(u, v, i). This change is only possible if there is a path p = 〈u = v0, . . . , vk = v〉
through {a, b}. Moreover, we will also change h(u, vk−1, i − 1). By continuing in
this logic, it is easy to see that all the updates can be processed via a breadth-
first search from node b. Furthermore, whenever we can conclude that h(u, v, i)
does not need to be updated, we can stop exploring this branch since we know
that no extensions of this path will result in updates. The pseudo-code for this
procedure is given in Algorithms 1–3.

In the algorithm we update the summaries, distance by distance, and we set
new (earlier) horizons that have possibly appeared due to the newly added edge.
To maintain the updates we use a function g ; g(u, x, i) = h indicates that there is

Maintaining Sliding-Window Neighborhood Profiles in Interaction Networks 725

Algorithm 3. Merge(x, v, t, i), adds x to a summary of v with a distance
of i and edge horizon t. If false is returned, then the branch can be pruned.
1 if (x, t′) ∈ Sv[i] for some t′ ≥ t then return false;
2 remove all (x, t′) from Sv[i] for which t′ < t;
3 add x, t to Sv[i];
4 return true;

a new path between u and x of length i and horizon h. As not every new path of
length i will lead to an improved horizon, we do not propagate this information
immediately to the summary of the neighboring nodes, but rather wait until
we have processed all paths of length i − 1. For those new paths that improve
the summary of a node u, we will then propagate this information further on in
the graph. For every distance i, when we process an update to a summary we
will record potential updates to horizons of length i + 1 as follows: if g(u, x, i)
leads to a better horizon of length i between u and x; that is, either there is
not yet an entry (x, h) in Su[i], or h < g(u, x, i), then we will propagate this
information to its neighbors u. Let t = min(recent(u, v), g(v, x, i)), then we will
propagate g(u, x, i + 1) = t, if t > g(u, x, i + 1), that is, we were able to improve
our potential update.

Example 5. We will continue our running example given in Figure 2. Let us
demonstrate how the horizons of h(u, b, i), u ∈ {a, b, c, d, e} are updated once we
introduce the edge {a, b}. In Figure 3 we illustrate how the propagation is done.
At the beginning of each round we compare the current summary Su[i] against
the new candidate horizon g(u, b, i). If the latter is larger, then we update the
summary as well as propagate new candidate horizons to the neighboring nodes.
In the subsequent figures it is indicated what are the changes with respect to
the distances to node b. In the first step, due to the addition of edge {a, b} at
time 7, for distance 1 the update g(a, b, 1) = 7 is propagated. When processing
this update indeed it is seen that the summary Sa[1] is updated. Therefore,
this update is further propagated to the neighbors, leading to the following

Fig. 3. Propagation of updates for the vertex b when adding (a, b) for the rounds
i = 1, . . . , 4. The format of boxes is y/z, where y is the time of b in Sv[i] and z = g(v, b, i)
at the beginning of ith round. The edges used for propagation during ith round are
marked in red. We do not show propagation during the last round as it is not needed.

726 R. Kumar et al.

updates: {g(c, b, 2) = 4, g(e, b, 2) = 1}. As only the first update changes the
summary Sc[2], only this update will be further propagated. Furthermore, for a
there is the update g(a, b, 2) = 7 that needs to be processed. Propagation leads
to the following new updates (first three for g(c, b, 2), last two for g(a, b, 2)):
{g(a, b, 3) = 4, g(b, b, 3) = 3, g(e, b, 3) = 4, g(c, b, 3) = 4, g(e, b, 3) = 1}. The last
update g(e, b, 3) = 1 will never be considered as it is dominated by the update
g(d, b, 3) = 4. These updates are then processed and those implying changes in
the summary are again propagated.

The proofs of the following proposition is omitted due to space constraints.

Proposition 1. AddEdge updates the summary correctly. Let n = |V |, m =
|E|, and r be the upper bound on the distances we are maintaining. The time
complexity of AddEdge is O(rmn log(n)). The space complexity is O(rn2).

5 Approximating Neighborhood Function

The algorithm presented in the previous section computes the neighborhood
profiles exactly, albeit, it has high space complexity and update time. In this
section we describe an approximate algorithm, which is much more efficient in
terms of memory requirement and update time.

The approximate algorithm is based on an adaptation of the hyperloglog
sketch [17] to the sliding-window context, similar to the adaptation by Chab-
choub and Hébrail [9]. The resulting sliding hyperloglog sketch has the following
properties: (i) it provides a compact summary of a stream of items, and (ii) it
allows to answer the following question: “How many different items have appeared
in the stream since a given time point t?” Subsequently, this sketch can replace
the neighbor sets that need to be maintained by the exact algorithm.

5.1 Hyperloglog and Sliding-Window Hyperloglog Sketches

The hyperloglog sketch [17] consists of an array of numbers, whose size is 2k, and
a hash function η that assigns each item of the stream in a uniformly-random
number in the range [0, 2n −1]. The value of n should be sufficiently large in the
sense that 2n−k should significantly exceed M , the number of distinct items in
the stream. We will use the standard assumption that n ∈ O(log M). Initially
all cells of the hyperloglog sketch are set to 0. The update procedure for the
hyperloglog sketch is as follows: if an item x arrives in the stream, the first k
bits of the binary representation of η(x) are used to determine which entry of the
sketch array will be updated. We denote this index by ι(x). From the remaining
n − k bits η′(x), the quantity ρ(x) is computed as the number of trailing bits
in the binary representation of η′(x) that are equal to 0, plus 1. If the current
value at the entry ι(x) of the sketch is smaller than ρ(x), we update the value
of that entry. Clearly, the more different items in the stream, the more likely
it is to observe large tails of 0’s and the higher the numbers in the hyperloglog
sketch will become.

Maintaining Sliding-Window Neighborhood Profiles in Interaction Networks 727

In order to make the hyperloglog sketch working in the sliding-window set-
ting, we need to store multiple values per entry. Initially the sliding-HLL sketch
will start with an empty set for each entry. The process a new item x arriving in
the stream at time t, we first need to retrieve the set of time-value pairs associ-
ated with the index ι(x). We then need to add the pair (t, ρ(x)) to that set and
remove all entries (t′, β) for which β ≤ ρ(x) (as t is the most recent time-stamp,
it is also t′ < t). We denote the sliding-HLL sketch after processing the stream
of events S = 〈σ1, . . . , σn〉 by sHLL(S). More formally:

Definition 4. Let S = {(t1, β1), . . . , (tn, βn)} be a set of time-value pairs.
Define the subset of time-decreasing values of S as

dec(S) = {(ti, βi) | βi > βj for all (tj , βj) ∈ S with ti ≤ tj}.

A sliding hyperloglog sketch sHLL of dimension k is an array of length 2k in
which every entry contains a set of time-value pairs. For a stream S, sHLL(S)
is recursively defined as follows:

– If S = 〈〉, then sHLL(S)[i] = {}, for all indices i = 1 . . . 2k.
– Otherwise, if S = 〈S ′, (x, t)〉 then sHLL(S)[i] = dec(sHLL(S ′)[i]∪{(t, ρ(x)})

for i = ι(x); while sHLL(S)[i] = sHLL(S ′)[i] for all other i = 1 . . . 2k.

Example 6. Suppose that the hash η, ι, and ρ are as follows (recall that η deter-
mines the other two quantities):

item a b c d e
η 100 01 101 11 010 11 010 10 001 10
ι 1 3 3 2 2
ρ 3 1 2 2 1

For the stream of items a, b, a, c, d, e, the resulting sliding HLL sketches are
respectively the following:

ι 0 1 2 3

ρ {} {} {} {}
a−→ ι 0 1 2 3

ρ {} (1, 3) {} {}
b−→ ι 0 1 2 3

ρ {} (1, 3) {} (2, 1)
a−→ ι 0 1 2 3

ρ {} (3, 3) {} (2, 1)
c−→ ι 0 1 2 3

ρ {} (3, 3) {} (4, 2)
d−→ ι 0 1 2 3

ρ {} (3, 3) (5, 2) (4, 2)
e−→ ι 0 1 2 3

ρ {} (3, 3), (6, 1) (5, 2) (4, 2)

When b arrives, cell 3 gets value 1, which is updated later on when c arrives, since
c has the same index, but a higher value. For d and e the situation is opposite;
first d arrives giving a value of 2 in cell 2. Later on, when e arrives this value is
not updated even though e has the same index because its value is lower.

The next proposition shows that with the sliding HLL sketch we can indeed
obtain an approximate answer regarding the number of different items since
time s, for any s specified at query time. We omit the proof as it follows imme-
diately from the definition.

728 R. Kumar et al.

Proposition 2. Let S = 〈σ1, . . . , σn〉 be a stream of events in which event σt

arrives at time t. Then for every index 1 ≤ s ≤ n, it holds that for every entry
i = 1, . . . , 2k, it is HLL(σs, . . . , σn)[i] = max{r | (t, r) ∈ sHLL(S)[i] and t ≥ s},
where max({}) = 0.

5.2 Computation of Neighborhood Profiles Based on Sliding HLL

We are now ready to describe our technique for computing the approximate
neighborhood profiles. Recall that we are working over a streaming graph with
nodes from a set V and a stream of edges E = {(e1, t1), (e2, t2), . . .}. We have used
Et to denote the set of edges arrived until time t, i.e., Et = {(e, t′) ∈ E | t′ ≤ t}.
The approximate sketch is very similar to the exact sketch, with the exception
that all sets of (node,time)-pairs are replaced by the much more compact sliding
HLL sketch. Furthermore, in order to be able to propagate the updates to its
neighbors, for every node we should know its neighbors. Hence, at time t, the
summary consists, for every node u, of the following components:

Nu
t = {(v, recent(u, v)) | (u, v) ∈ Et} and Cu

t = 〈Cu
t [1], Cu

t [2], . . . , Cu
t [r]〉,

where Cu
t [i] = sHLL({(v, ht(p)) | p ∈ Pt(u, v), |p| ≤ i}).

The set Nu
t specifies the neighbors of node u in the graph Gt = (V,Et). Note

that in the set Nu
t we keep pairs (v, t) such that v is a neighbor of u and t is

the most recent time-stamp that an interaction between u and v took place.
This time-stamp is needed to decide whether the neighbor v is active for a given
window length that is specified at query time.

To update the summary Ct from the summary at the previous time instance,
after the addition of an edge (a, b) at time t, we follow the almost exact same
propagation method as the exact algorithm. The only difference is that instead of
keeping all pairs (v, ht(p)), we now keep a sliding HLL sketch over those pairs, as
specified in the previous section. Updating a sliding HLL sketch is slightly more
involved than updating the exact summary since we need to keep the sketch as
a time-decreasing sequence. The pseudo-code for this is given in Algorithm 4.

Finally, to update the sketch, we use Algorithms 1 and 2, with the exception
that the summary Su[·] is replaced with the sketch Cu[·][j] for a fixed bucket j.
We then execute 2k copies of the algorithm, each handling its own bucket. As
these algorithms are syntactically the same to the ones of the exact algorithm,
we omit them. The proof of the following proposition is omitted due to space
constraints.

Proposition 3. The sketch version of AddEdge performs correctly. Let n =
|V |, m = |E|, and r be the upper bound on the distances we are maintaining.
The time complexity of the sketch version of AddEdge is O(2krm log2(n)). The
space complexity is O(2knr log2 n).

Note that a näıve way to maintain approximate neighborhood profiles is to
execute the sketching algorithm from scratch after each newly-arriving interac-
tion. In the worst case, this brute-force method has roughly the same space and

Maintaining Sliding-Window Neighborhood Profiles in Interaction Networks 729

Algorithm 4. SketchMerge(x, v, t, i), adds x to a summary of v with a
distance of i and edge horizon t.
1 if (y, t′) ∈ Cv[i] for some t′ ≥ t, y ≥ x then return false;
2 remove all (y, t′) from Cv[i] for which t′ ≤ t and y ≤ x;
3 add (x, t) to Cv[i];
4 return true;

time complexity as our incremental algorithm. However, the brute-force method
is expected to require as much space and time as indicated by the worst-case
bound, while for our method the worst-case analysis is very pessimistic: most
of the times the summaries will not by propagated at the whole network and
updates will be very fast. This is demonstrated in our experimental evaluation.

6 Related Work

During the last two decades, a large body of work has been devoted to devel-
oping algorithms for mining data streams. Interestingly, the area started with
processing graph streams [20], but a lot of emphasis was put on computing statis-
tics over streams of items [12,18], and many fundamental techniques have been
developed for that setting. Many different models have been studied in the con-
text of data-stream algorithms, including the sliding-window model [14], which
incorporates a forgetting mechanism where data items expires after W time units
from the moment they occur. Existing work has considered estimating various
statistics in this model [2,3].

The concept of sketching is closely related to data streams, as efficient
streaming algorithms operate by maintaining compact sketches, which provide
approximate statistics and summaries of the data stream seen so far. Popular
data-stream sketches include the min-hash sketch [10], the LogLog sketch [15],
and its improvement, the hyperloglog sketch [17], all of which have been used to
approximate distinct counts. Distance distribution sketches [6,11] are built on
top of the distinct-count sketches, and provide a powerful technique to approx-
imate the number of neighbors of a node in a graph within a certain distance.
Such sketches have been used extensively in graph-mining applications [6,25].

As graphs provide a powerful abstraction to model a wide variety of real-
world datasets, and as the amount of data collected gives rise to massive graphs,
there is growing interest on algorithms for processing dynamic graphs and graph
streams. This includes work on data structures that allow to perform efficient
queries under structural changes of the graph [16,19], as well as the design of
algorithms for computing graph primitives under data-stream models. Work in
the latest category includes algorithms for counting triangles [4,5,27] and other
motifs [7,8], computing graph sparsifiers [1], and so on. Most of the above papers
consider the standard data stream model, although Crouch et al. [13] study many
graph algorithms on the sliding-window model.

730 R. Kumar et al.

Table 1. Characteristics of interaction networks.

Nodes Distinct Total Clustering Diameter Effective
Dataset edges edges coefficient diameter

Facebook 4 039 88 234 88 234 0.60 8 4.7
Cit-HepTh 27 771 352 801 352 801 0.31 13 5.3
Higgs 166 840 249 030 500 000 0.19 10 4.7
DBLP 192 357 400 000 800 000 0.63 21 8.0

Table 2. Average relative error as a function of �.

� Facebook Cit-HepTh Higgs DBLP

16 0.28 0.23 0.22 0.22
32 0.13 0.16 0.19 0.15
64 0.10 0.12 0.16 0.12
128 0.08 0.10 0.14 0.09

7 Experimental Evaluation

We provide an empirical evaluation of the approximate algorithm presented in
Section 5. We evaluate the space requirements, time, and accuracy. We com-
pare the approximate algorithm with the exact algorithm presented in Section 4
and the off-line HyperANF algorithm [6]. Since our implementations have not
been optimized, we compare to a HyperANF version developed under the same
conditions and without low-level optimizations such as broad-word computing.

Datasets and Setup: We use four real-world datasets obtained from SNAP
repository [22]. We take snapshots of the largest datasets Cit-HepTh and DBLP of
500 000 and 400 000 edges, respectively. Three of the data sets, Facebook, DBLP,
and Cit-HepTh, have unique edges and do not contain any time information.
To create an interaction network out of these static graphs, we order the edges
randomly. In the case of DBLP we allow edges to repeat until we have 800 000
edges. Statistics of these datasets are reported in Table 1.

As a maximum window size we use wmax = ∞, that is, we do not delete any
previous edges. We also set r = 3, except for one experiment where we vary r.

Accuracy of the Sketch: In order to test the accuracy of the sketch algorithm,
we compare the algorithm with the exact version, and we compute the average
relative error as a function of number of buckets (� = 2k). Running the exact
algorithm is infeasible for the large datasets due the memory requirements, and
hence we use only a subset of the large datasets to measure accuracy. The results
are given in Table 2. As expected from previous studies, the accuracy increases
with �.

Running Time for Updating Summaries: Our next goal is to study the
running time needed to update the summary upon adding an edge. The average

Maintaining Sliding-Window Neighborhood Profiles in Interaction Networks 731

Table 3. Average time in seconds needed to process 1 000 edges as a function of �

� Facebook Cit-HepTh Higgs DBLP

16 0.06 7.20 3.92 0.80
32 0.08 12.57 6.84 1.31
64 0.12 28.64 12.12 2.10
128 0.17 50.74 21.38 3.45

running time for every 1 000 edges is reported in Table 3.1 Detailed time measure-
ments are shown in Figure 4. We took average run time by running 3 iteration
of Facebook and Cit-HepTh and 2 iteration of Higgs and DBLP datasets.

The time needed to process an edge depends on two factors. First, as we
increase the number of buckets �, the processing time increases. Second, a single
edge may cause a significant number of updates if it connects two previously
disconnected components. We see the fluctuating nature and peaks in the pro-
cessing time in Figure 4 as some edge-addition updates require more time than
others whenever an edge between two disjoint cluster of nodes comes close the
propagation list grows and hence the time taken increases. Interestingly enough,
for large datasets, DBLP and Higgs, the time taken to process a new edge becomes
almost constant after the snapshot graphs stabilize.

The average processing time depends greatly on the characteristics of the
dataset. For example, we can process DBLP quickly despite its size. We suspect
that this is due to high diameter and high clustering coefficient.

We parallelize the algorithm to measure the speed-up. In Figure 5 we see
that by using 4 threads we are able to process the edges 4 times faster.

We also study the processing time as a function of the maximum distance r.
Here we use Facebook and DBLP, and vary r = 2, . . . , 5. The results are given in
Figure 6. We see that the processing time increases exponentially as a function
of r. This is expected as the neighborhood sizes also increase at a similar rate.

Space Complexity: We also evaluate the memory usage of our method. The
results are shown in Figure 7. Initially, the need for space increases rapidly as new
nodes are added with every edge. Once all the nodes are seen the memory increase
drops as only the sketches of the nodes are increasing. Note that we are not pruning
any edges. As expected, the memory requirement increases linearly with �.

Comparison with Off-line Method: Finally, for reference, we compare with a
non-streaming algorithm that uses the same hyperloglog technology, the Hyper-
ANF algorithm of Boldi et al. [6]. To support querying of any window length
as supported by our algorithm we modified the HyperANF algorithm to a
Sliding-HyperANF algorithm by replacing the HyperLogLog sketch with Sliding
HyperLogLog sketch. Running the Sliding-HyperANF algorithm in DBLP takes
3.6 seconds per sliding window. In contrast, for the same data-set, our streaming
algorithm gives a rate of 0.003 seconds per sliding window.

1 We measure the time for batches to get a more accurate reading.

732 R. Kumar et al.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 10 20 30 40 50 60 70 80 90

tim
e

(s
ec

)

edges (in thousands)

k = 4
k = 5
k = 6
k = 7

(a) Facebook

 0

 50

 100

 150

 200

 250

 50 100 150 200 250 300 350

tim
e

(s
ec

)

edges (in thousands)

k = 4
k = 5
k = 6
k = 7

(b) Cit-HepTh

 0

 10

 20

 30

 40

 50

 60

 100 200 300 400 500

tim
e

(s
ec

)

edges (in thousands)

k = 4
k = 5
k = 6
k = 7

(c) Higgs

 0

 1

 2

 3

 4

 5

 6

 7

 100 200 300 400 500 600 700 800

tim
e

(s
ec

)

edges (in thousands)

k = 4
k = 5
k = 6
k = 7

(d) DBLP

Fig. 4. Time needed to process 1 000 edges for different �

 0

 20

 400

 420

 600

 620

 800

 820

 100

 0 40 60 80 10 20 30 50 70 90

tim
e

(s
ec

)

edges (in thousands)

Serial
Parallel

Fig. 5. Running times for DBLP with parallelized version of the algorithm.

8 Concluding Remarks

We studied the problem of maintaining the neighborhood profile of the nodes
of an interaction network—a graph with a sequence of interactions, in the form
of a stream of time-stamped edges. The model is appropriate for many modern
graph datasets, like social networks where interaction between users is one of the
most important aspects. We focused on the sliding-window data-stream model,
which allows to forget past interactions and adapt to new drifts in the data.
Thus, the proposed problem and approach can be applied to monitoring large

Maintaining Sliding-Window Neighborhood Profiles in Interaction Networks 733

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90

tim
e

edges (in thousands)

r = 2
r = 3
r = 4
r = 5

(a) Facebook

 0.001

 0.01

 0.1

 1

 10

 100

 100 200 300 400 500 600 700 800

tim
e

edges (in thousands)

r = 2
r = 3
r = 4
r = 5

(b) DBLP

Fig. 6. Time needed to process 1 000 edges as a function of distance r

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90

M
em

or
y(

M
B)

edges (in thousands)

k = 5
k = 6
k = 7

(a) Facebook

 0
 200
 400
 600
 800
 100
 300
 500
 700
 900

 10 200 210 400 410 600 610

M
em

or
y(

M
B)

edges (in thousands)

k = 5
k = 6
k = 7

(b) Cit-HepTh

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 200 300 400 500

M
em

or
y(

M
B)

edges (in thousands)

k = 5
k = 6
k = 7

(c) Higgs

 0

 100

 2000

 2100

 3000

 3100

 4000

 4100

 200 300 400 500 100 600 700 800

M
em

or
y(

M
B)

edges (in thousands)

k = 5
k = 6
k = 7

(d) DBLP

Fig. 7. Memory utilization as a function of �

networks with fast-evolving interactions, and used to reason how the network
structure and the centrality of the important nodes change over time.

We presented an exact algorithm, which is memory inefficient, but it set the
stage for our main technique, an approximate algorithm based on sliding-window
hyperloglog sketches, which requires logarithmic memory per network node, and
has fast update time, in practice. The algorithm is also naturally parallelizable,
which is exploited in our experimental evaluation to further improve its perfor-
mance. One desirable property of our algorithm is that the sketch we maintain
does not depend on the length of the sliding window, but the length can be
specified at query time.

734 R. Kumar et al.

References

1. Ahn, K.J., Guha, S.: Graph sparsification in the semi-streaming model. In:
Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009, Part II. LNCS, vol. 5556, pp. 328–338. Springer, Heidelberg (2009)

2. Arasu, A., Manku, G.: Approximate counts and quantiles over sliding windows. In:
PODS, pp. 286–296 (2004)

3. Babcock, B., Datar, M., Motwani, R.: Sampling from a moving window over
streaming data. In: SODA, pp. 633–634 (2002)

4. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms,
with an application to counting triangles in graphs. In: SODA, pp. 623–632 (2002)

5. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms
for local triangle counting in massive graphs. In: KDD (2008)

6. Boldi, P., Rosa, M., Vigna, S.: Hyperanf: approximating the neighbourhood func-
tion of very large graphs on a budget. In: WWW, pp. 625–634 (2011)

7. Bordino, I., Donato, D., Gionis, A., Leonardi, S.: Mining large networks with
subgraph counting. In: ICDM, pp. 737–742 (2008)

8. Buriol, L., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Count-
ing triangles in data streams. In: PODS, pp. 253–262 (2006)

9. Chabchoub, Y., Hébrail, G.: Sliding hyperloglog: estimating cardinality in a data
stream over a sliding window. In: ICDM Workshops (2010)

10. Cohen, E.: Size-estimation framework with applications to transitive closure and
reachability. Journal of Computer and System Sciences 55(3), 441–453 (1997)

11. Cohen, E.: All-distances sketches, revisited: HIP estimators for massive graphs
analysis. In: PODS, pp. 88–99 (2014)

12. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. Journal of Algorithms 55(1), 58–75 (2005)

13. Crouch, M.S., McGregor, A., Stubbs, D.: Dynamic graphs in the sliding-window
model. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125,
pp. 337–348. Springer, Heidelberg (2013)

14. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over
sliding windows. SIAM Journal on Computing 31(6), 1794–1813 (2002)

15. Durand, M., Flajolet, P.: Loglog counting of large cardinalities. In: Di Battista, G.,
Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 605–617. Springer, Heidelberg
(2003)

16. Eppstein, D., Galil, Z., Italiano, G.: Dynamic graph algorithms. CRC Press (1998)
17. Flajolet, P., Fusy, É., Gandouet, O., Meunier, F.: Hyperloglog: the analysis of

a near-optimal cardinality estimation algorithm. In: Proceedings of the DMTCS
(2008)

18. Gama, J.: Knowledge discovery from data streams. CRC Press (2010)
19. Henzinger, M., King, V.: Randomized fully dynamic graph algorithms with poly-

logarithmic time per operation. Journal of the ACM 46(4), 502–516 (1999)
20. Henzinger, M., Raghavan, P., Rajagopalan, S.: Computing on data streams. In:

DIMACS Workshop External Memory and Visualization, vol. 50 (1999)
21. Holme, P., Saramäki, J.: Temporal networks. Physics Reports 519(3), 97–125

(2012)
22. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection,

June 2014. http://snap.stanford.edu/data
23. Michail, O.: An introduction to temporal graphs: An algorithmic perspective

(2015). arXiv:1503.00278

http://snap.stanford.edu/data
http://arxiv.org/abs/1503.00278

Maintaining Sliding-Window Neighborhood Profiles in Interaction Networks 735

24. Muthukrishnan, S.: Data streams: Algorithms and applications (2005)
25. Palmer, C., Gibbons, P., Faloutsos, C.: ANF: A fast and scalable tool for data

mining in massive graphs. In: KDD, pp. 81–90 (2002)
26. Rozenshtein, P., Tatti, N., Gionis, A.: Discovering dynamic communities in interac-

tion networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML
PKDD 2014, Part II. LNCS, vol. 8725, pp. 678–693. Springer, Heidelberg (2014)

27. Tsourakakis, C., Kang, U., Miller, G., Faloutsos, C.: Doulion: counting triangles
in massive graphs with a coin. In: KDD, pp. 837–846 (2009)

Response-Guided Community Detection:
Application to Climate Index Discovery

Gonzalo A. Bello1, Michael Angus1, Navya Pedemane1, Jitendra K. Harlalka1,
Fredrick H.M. Semazzi1, Vipin Kumar2, and Nagiza F. Samatova1,3(B)

1 North Carolina State University, Raleigh, NC, USA
samatova@csc.ncsu.edu

2 University of Minnesota, Minneapolis, MN, USA
3 Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract. Discovering climate indices–time series that summarize spa-
tiotemporal climate patterns–is a key task in the climate science domain.
In this work, we approach this task as a problem of response-guided
community detection; that is, identifying communities in a graph asso-
ciated with a response variable of interest. To this end, we propose a
general strategy for response-guided community detection that explicitly
incorporates information of the response variable during the community
detection process, and introduce a graph representation of spatiotempo-
ral data that leverages information from multiple variables.

We apply our proposed methodology to the discovery of climate
indices associated with seasonal rainfall variability. Our results suggest
that our methodology is able to capture the underlying patterns known
to be associated with the response variable of interest and to improve
its predictability compared to existing methodologies for data-driven cli-
mate index discovery and official forecasts.

Keywords: Community detection · Spatiotemporal data · Climate
index discovery · Seasonal rainfall prediction

1 Introduction

Detecting communities in real-world networks is a key task in many scientific
domains. Oftentimes, domain scientists are particularly concerned with finding
communities associated with a response variable of interest that can be used to
analyze or predict this response variable. For example, in climate science, such
communities may represent spatiotemporal climate patterns associated with a
particular weather event [24], while in biology, they may represent groups of
functionally associated genes associated with a particular phenotype [12].

However, community detection techniques are traditionally unsupervised
learning methods, and thus do not take into account the variability of the
response variable of interest. Therefore, the communities identified may not nec-
essarily be associated with this response variable. Furthermore, even though
semi-supervised methods have been proposed to incorporate prior knowledge
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 736–751, 2015.
DOI: 10.1007/978-3-319-23525-7 45

Response-Guided Community Detection 737

to the community detection process, these methods do not consider a response
variable either and require partial information about the community member-
ships, which may not be available [6]. For this reason, we introduce the problem
of response-guided community detection–that is, identifying communities in a
graph associated with a response variable of interest–and study its application
to the discovery of climate indices, an important task in the climate science
domain.

Climate indices are time series that summarize spatiotemporal patterns in
the global climate system. These patterns are often associated with temperature,
pressure, and wind anomalies, which can have a significant impact on regional
climate. Consequently, climate indices are frequently used to analyze and pre-
dict regional weather events. For example, climate indices defined for El Niño
Southern Oscillation (ENSO) are used to forecast Atlantic hurricane activity [9].

Climate indices were traditionally the product of hypothesis-driven research.
However, the increasing amount of climate data available has led to the adop-
tion of data-driven approaches to guide and accelerate climate index discovery,
most commonly by using Principal Component Analysis (PCA) to identify major
modes of variability in the data. Nonetheless, the use of PCA has important lim-
itations in regards to the physical interpretability of the climate indices obtained
and its ability to detect weaker patterns [22].

As an alternative, the application of clustering techniques, such as Shared
Nearest Neighbor (SNN) clustering, to identify regions of homogeneous long-
term variability in climate data has been proposed [22]. More recently, a network
representation of the data has been adopted to better capture the dynamics of
the global climate system [23–25]. Then, the climate index discovery task has
been approached as a community detection problem [24]. The validity of the
clusters or communities identified as climate indices has been evaluated in terms
of their ability to predict a response variable of interest [22,24]. However, since
these are unsupervised learning methodologies, the climate indices discovered
may not necessarily be good predictors.

Therefore, to discover climate indices associated with a response variable
of interest, we propose a methodology that explicitly incorporates information
of this response variable during the discovery process by using response-guided
community detection. We apply this methodology to the discovery of climate
indices associated with seasonal rainfall variability in the Greater Horn of Africa,
and validate the climate indices discovered in terms of their predictive power and
climatological relevance. Discovering climate indices associated with a response
variable of interest allows us to identify its sources of variability. Moreover, using
these climate indices as predictors allows us to improve forecasts of this response
variable, which is one of the major current challenges in climate science [20].

The main contributions of this paper are as follows. First, we formulate the
problem of response-guided community detection (Section 2.1) and propose a
general strategy to identify communities in a graph associated with a response
variable of interest by explicitly incorporating information of this response vari-
able during the community detection process (Section 2.2).

738 G.A. Bello et al.

And second, we propose a methodology to discover climate indices associated
with a response variable of interest from multivariate spatiotemporal data by
using response-guided community detection (Section 3). As part of this method-
ology, we introduce a network representation of multivariate spatiotemporal data
that, unlike existing network construction methodologies [23–25], builds the net-
work in a response-guided manner, while also incorporating multiple covariates,
spatial neighborhood information, and multiple related response variables to the
network construction process (Section 3.1).

Finally, we should note that in this paper we only demonstrate the value of
response-guided community detection in the context of climate index discovery.
Its application to other problems and domains is the subject of future work.

2 Response-Guided Community Detection

In this section, we formally define the problem of response-guided community
detection (Section 2.1), describe a general strategy for response-guided commu-
nity detection, and present two examples of community detection algorithms
that can be adapted to identify communities highly associated with a response
variable of interest (Section 2.2).

2.1 Problem Statement

Let X = {xt,d,f ∈ R | t ∈ T, d ∈ D, f ∈ F} be a multivariate spatiotemporal
data set and Y = {yt ∈ R | t ∈ T} be a response variable, where T is a set of
time steps, D is a set of spatial points, and F is a set of covariates. For our
motivating application of climate index discovery, X may be a global climate
data set for a given month, Y may be the total rainfall at a target region for a
given season, T may be a set of years, D may be a set of global coordinates, and
F may be a set of climate variables (e.g., temperature, pressure, humidity).

Let data set X be represented as a graph G = (V,E), where V ⊆ D is the set
of vertices, E is the set of edges, and each edge (d1, d2) ∈ E is defined based on a
domain-specific relationship between the data at spatial points d1 and d2 for all
covariates f ∈ F and over all time steps t ∈ T . For our motivating application of
climate index discovery, an edge (d1, d2) may represent a statistically significant
correlation between the data at spatial points d1 and d2.

Informally, we define response-guided community detection as the task of par-
titioning graph G into a set of communities C, such that every community ci ∈ C
is highly associated with the response variable Y . To quantify this association,
we construct an index for each community.

Definition 1. Given a community ci, the index constructed for ci using covari-
ate f ∈ F , Ii,f , is defined as

Ii,f (t) =
1

|ci|
∑

d∈ci

xt,d,f ∀t ∈ T (1)

Response-Guided Community Detection 739

Definition 2. Given a community ci, the association of ci with the response
variable Y , φci , is defined as

φci = max
f∈F

|rIi,f ,Y | (2)

where rIi,f ,Y is the Pearson’s linear correlation coefficient between index Ii,f and
the response variable Y over all time steps t ∈ T .

Finally, we formally define the problem of response-guided community detec-
tion: Given a graph G = (V,E) and a response variable Y , partition G into a
set of communities C = {c1, c2, ..., c|C|}, where ci ⊆ V for all ci ∈ C, ci ∩ cj = ∅
for all ci, cj ∈ C with i �= j, and

⋃|C|
i=1 ci = V , such that the average association

with the response variable Y over all ci ∈ C, φ̄C , is maximized.

2.2 Algorithms for Response-Guided Community Detection

Community detection is one of the most widely studied topics in graph data ana-
lytics and, as a result, numerous methods have been proposed for this problem
[8,11]. A common approach to community detection is to find the set of communi-
ties that maximizes a given quality function that measures the “goodness” of the
partition of the graph. For traditional community detection, a “good” partition
of the graph is generally such that there are many edges within the communities
but few edges among them. However, for response-guided community detection,
our goal is to identify communities highly associated with a response variable of
interest. Therefore, we must maximize not only the “goodness” of the partition
of the graph, but also the association of the communities in the partition with
this variable.

To this end, we introduce a joint optimization criterion, F , given by

F = α · q(C) + (1 − α) · φ̄C (3)

where C is a set of communities, q(C) is a function of the “goodness” of C, φ̄C

is the average association of the communities in C with the response variable of
interest (see Definition 2), and α is a tuning parameter to balance the trade-off
between the “goodness” of C and the association of the communities with the
response variable.

The “goodness” function is typically a metric that quantifies some structural
properties of the partition of the graph. In this paper, we choose modularity–
“by far the most used and best known quality function” for community detection
[8]–as the “goodness” function. The modularity of a given partition of a graph
is defined as the difference between the number of edges within the communities
and the expected number of such edges in a random graph with the same degree
distribution [17]. For a simple graph G = (V,E) which vertices are partitioned
into communities, the modularity Q [16] of the partition is given by

Q =
1

2m
Σvw

[

Avw − kvkw
2m

]

δ(v, w) (4)

740 G.A. Bello et al.

where A is the adjacency matrix of the graph (that is, Avw is 1 if vertices v and
w are connected and 0 otherwise), m = 1

2ΣvwAvw is the number of edges in the
graph, kv = ΣwAvw is the degree of vertex v, and δ(i, j) is the Kronecker delta
function (that is, δ(i, j) is 1 if i and j belong to the same community and 0
otherwise). Modularity optimization is an NP-complete problem [3], but many
heuristic algorithms have been proposed [8].

A general strategy for response-guided community detection is to adapt mod-
ularity optimization algorithms by replacing modularity with the joint optimiza-
tion criterion F defined in Equation 3 as the objective function. To illustrate
this strategy, we next present two algorithms that can be adapted in this way to
identify communities highly associated with a response variable of interest: the
Louvain method, a very efficient greedy algorithm for modularity optimization,
and simulated annealing, a computationally demanding but potentially more
accurate optimization technique.

Greedy Algorithms for Response-Guided Community Detection. In
general, greedy algorithms for modularity optimization identify communities by
iteratively merging vertices or communities that result in the largest increase in
the modularity of the graph partition [2,4].

In this paper, we focus on the Louvain method [2], a well-known greedy
algorithm that has been shown to outperform other community detection algo-
rithms in empirical comparative studies [15]. The Louvain method is adapted for
response-guided community detection by using the joint optimization criterion
F as the objective function.

Initially, each vertex is assigned to a different community. In the first phase
of the algorithm, each vertex is iteratively and sequentially assigned to the com-
munity that yields the highest positive gain in the joint optimization criterion,
ΔF , given by

ΔF = α · ΔQ + (1 − α) · Δφ̄ (5)

where ΔQ and Δφ̄ are the gain in modularity and the gain in average association
with the response variable of interest over all communities resulting from the
change in the communities, respectively.

In the second phase of the algorithm, a new graph is constructed by aggregat-
ing the vertices in each community into a single meta-vertex. These two phases
are repeated iteratively until no further improvement of the joint optimization
criterion F can be achieved.

Simulated Annealing for Response-Guided Community Detection.
Another strategy that has been employed for modularity optimization is sim-
ulated annealing [14], an optimization technique that avoids local optima by
incorporating stochastic noise into the search procedure. The level of noise is
defined by a computational temperature T , which decreases after each iteration.

In this paper, the simulated annealing algorithm proposed by Guimerà et
al. [10] is adapted for response-guided community detection by using the joint
optimization criterion F as the objective function.

Response-Guided Community Detection 741

Initially, each vertex is assigned to a different community. At each temper-
ature T , the algorithm performs (typically) n2 random local movements (i.e.,
moving a vertex to another community) and n random global movements (i.e.,
merging two communities and splitting a community in two). Each of these local
and global movements is accepted with probability

p =

⎧
⎪⎨

⎪⎩

1, if ΔF ≥ 0

exp
(

ΔF

T
)

, if ΔF < 0
(6)

where ΔF is the gain in the joint optimization criterion resulting from the
change in the communities, as defined in Equation 5.

After all local and global moves have been evaluated, the current temperature
T is decreased to T ′ = c · T , where c ∈ (0, 1) is a cooling parameter (typically
between 0.990 and 0.999). The algorithm stops when a minimum temperature
is reached or when there is no change in the joint optimization criterion F for
a given number of consecutive iterations.

3 Climate Index Discovery

In this section, we describe our proposed methodology for the discovery of cli-
mate indices associated with a response variable of interest from multivariate
spatiotemporal data by using response-guided community detection.

Our proposed methodology is comprised of two main steps. First, we repre-
sent the multivariate spatiotemporal data as a graph using our proposed network
construction methodology (Section 3.1). Second, we identify communities in this
graph using one of our adapted algorithms for response-guided community detec-
tion (see Section 2.2). For each community ci identified, we construct an index
Ii,fi∗ (see Definition 1) potentially associated with the response variable, where
fi

∗ is the representative covariate of the community, defined as

fi
∗ = arg max

f∈F
|rIi,f ,Y | (7)

3.1 Network Construction Methodology

Spatiotemporal data can be represented as a graph, where each vertex is a spatial
point and each edge indicates a significant relationship between a pair of spatial
points. This type of representation has been adopted to model climate data,
because it captures the dynamical behavior of the data’s underlying system [23–
25]. Furthermore, communities in these networks often have a higher association
with the response variable of interest than clusters obtained using traditional
clustering techniques, such as spectral clustering and the k-means clustering
algorithm [24].

In this paper, we propose a methodology for the construction of climate
networks associated with a response variable of interest. The key features of this
methodology are as follows.

742 G.A. Bello et al.

First, we construct the network in a response-guided manner. Existing
methodologies for climate network construction consider all the spatial points
in the data set as vertices and build the network by computing the correlation
between every pair of vertices [24,25], which can be computationally expensive.
In contrast, we only consider as vertices the spatial points associated with the
response variable.

Second, we incorporate multiple covariates to the network construction pro-
cess. Some existing methodologies have incorporated multiple covariates by
defining a cross correlation function to weight the edges of the network [23].
Here, instead, we leverage the information of multiple covariates to assess the
statistical significance of each edge in the network.

And third, we incorporate spatial neighborhood information and multiple
related response variables to the network construction process, to increase its
robustness in the case of data sets with small sample size.

Selecting the Set of Vertices. The set of vertices V of the network is selected
based on the statistical significance of the relationship between each spatial point
in the data set and the response variable of interest for multiple covariates.
To assess this statistical significance, we first calculate the Spearman’s rank
correlation coefficients between the time series for each covariate at each spatial
point and the response variable. Spearman’s rank correlation is used to capture
nonlinear relationships known to exist in climate data.

For each spatial point d, the p-values of the Spearman’s rank correlation
coefficients computed for each covariate are combined using Fisher’s X 2 test [7];
that is, by calculating the p-value of the test statistic given by

− 2
∑

f∈F

ln(pXd,f ,Y) (8)

where pXd,f ,Y is the p-value of the Spearman’s rank correlation coefficient
between the time series for covariate f at spatial point d, Xd,f , and the response
variable Y , over all time steps t ∈ T . The use of this combined probability test
allows us to capture relationships between multiple covariates and the response
variable. Finally, the set S of spatial points with a statistically significant com-
bined p-value (p < 0.01) is selected as the set of vertices V of the network (i.e,
spatial points potentially associated with the response variable of interest).

Defining the Set of Edges. The set of edges E of the network is defined based
on the statistical significance of the relationship between each pair of spatial
points in V for multiple covariates. To assess this statistical significance, we first
calculate the Pearson’s linear correlation coefficients between the time series for
each covariate at each pair of spatial points. Climate networks constructed using
Pearson’s linear correlation coefficient have been shown to be highly similar to
those constructed using nonlinear measures, such as mutual information [5].

Response-Guided Community Detection 743

For each pair of spatial points d1, d2 ∈ V , the p-values of the Pearson’s linear
correlation coefficients computed for each covariate are combined using Fisher’s
X 2 test [7]; that is, by calculating the p-value of the test statistic given by

− 2
∑

f∈F

ln(pXd1,f ,Xd2,f
) (9)

where pXd1,f ,Xd2,f
is the p-value of the Pearson’s linear correlation coefficient

between the time series for covariate f at spatial point d1, Xd1,f , and at spatial
point d2, Xd2,f , over all time steps t ∈ T . Finally, an edge (d1, d2) ∈ E is defined
for every pair of spatial points d1, d2 ∈ V with a statistically significant combined
p-value (p < 10−10, as defined in previous studies [24]).

Incorporating Spatial Neighborhood Information and Multiple
Response Variables. Data sets with small sample size, such as the ones used
in this study, can often lead to the selection of spatial points with spurious
associations with the response variable of interest as vertices. To increase the
robustness of the vertex selection in these cases, we leverage the spatial struc-
ture of the data and the information of multiple related (i.e., highly correlated)
response variables (e.g., seasonal rainfall at multiple stations in the same region)
by finding a consensus set of spatial points, S∗, given by

S∗ =
h⋂

j=1

Sj ∪ {N(d) | d ∈ Sj} (10)

where h is the number of response variables, Sj is the set of spatial points poten-
tially associated with the jth response variable and N(d) indicates the spatial
points spatially adjacent to spatial point d. We incorporate spatial neighbor-
hood information because, given the strong spatial autocorrelations present in
spatiotemporal data, it is likely that if a spatial point is associated with the
response variable of interest, then its spatially adjacent points will also be asso-
ciated with the response variable.

We then construct a climate network for the multiple related response vari-
ables using the previously described methodology with the consensus set of spa-
tial points S∗ as the set of vertices V of the network. Note that the rest of our
proposed methodology for climate index discovery, including the response-guided
community detection algorithms, can also be extended to incorporate multiple
related response variables. In this case, the association of a community ci, φci

(see Definition 2), is redefined as the average association of ci over all response
variables Yj for j = 1, 2, ..., h.

4 Experimental Evaluation

In this section, we describe the experimental evaluation of our proposed method-
ology for climate index discovery and report the results obtained. We applied

744 G.A. Bello et al.

our proposed methodology to the discovery of climate indices associated with
October to December (OND) rainfall variability in the Greater Horn of Africa
(GHA), using data from four (4) stations with highly correlated rainfall pat-
terns located in the North Eastern Highlands of Tanzania (Arusha, Kilimanjaro,
Moshi, and Same).

4.1 Data Description

We used monthly gridded ocean data for the following climate variables: Sea
Surface Temperature (SST), obtained from the NOAA Extended Reconstructed
Sea Surface Temperature version 3 (ERSST V3) data set (data available from
1854 to present at 2◦ latitude-longitude resolution) [21], and Sea Level Pres-
sure (SLP), Geopotential Height at 500 mb (GH), Relative Humidity at 850 mb
(RH) and Precipitable Water (PW), obtained from the NCEP/NCAR Reanal-
ysis 1 data set (data available from 1948 to present at 2.5◦ latitude-longitude
resolution) [13]. SST, SLP, and GH are the most frequently used variables in
identifying global climate patterns. We also include RH and PW as secondary
variables for the temperature and water vapor content of the atmosphere.

Monthly rainfall data (52 years, from 1960 to 2011) and seasonal rainfall
forecasts (14 years, from 1998 to 2011) for stations in Tanzania were provided
by the Tanzania Meteorological Agency (TMA). Data was divided into a training
set (38 years, from 1960 to 1997) and a test set (14 years, from 1998 to 2011).
Note that only the training set was used to construct the climate networks and
discover the climate indices presented in Section 4.3 and Section 4.4, respectively.

4.2 Data Preprocessing

Climate data exhibits complex characteristics, such as seasonal trends and strong
spatial and temporal autocorrelations, that may hinder the performance of data
mining techniques. To remove seasonality and minimize autocorrelations, we
normalized the data using monthly z-scores transformations by subtracting the
mean and dividing by the standard deviation of the data over the training
set [24]. Since the focus of this study is on interannual variability, we also lin-
early detrended the data. Furthermore, all experiments were performed using a
spatial resolution of 10◦ latitude-longitude for the gridded ocean data.

4.3 Climate Networks Constructed

Climate networks were constructed using our proposed network construction
methodology with OND rainfall variability in the GHA as the response variable
of interest (see Section 3.1). To capture time-lagged relationships, which are often
present in climate data, five (5) climate networks were constructed, one for each
month, starting four (4) months before the season (June) until the first month
of the season (October). It is worth noting that when constructing a climate
network for the month of May, no spatial points were selected as potentially

Response-Guided Community Detection 745

associated with the response variable, suggesting that this month may be too
early before the season to yield significant climate indices.

Each climate network was constructed by leveraging the information of four
(4) related stations in the North Eastern Highlands of Tanzania. Since these sta-
tions are located in the same climatological region and exhibit highly correlated
rainfall patterns, they are expected to be associated with the same global climate
patterns. Hence, the use of the consensus set allows us to filter out spatial points
with potentially spurious associations with the response variable. Interstation
variability is due to local factors, which are out of the scope of this paper.

4.4 Climate Indices Discovered

Communities associated with OND rainfall variability in the GHA were identi-
fied in the climate networks constructed using both the Louvain method and the
simulated annealing algorithm adapted for response-guided community detec-
tion (see Section 2.2). As previously explained, we use a tuning parameter α
to balance the trade-off between the modularity of the network partition and
the association of the communities with the response variable of interest. For
this experimental evaluation, we set the value of α to the multiple of 0.05 in
the interval [0.75, 1] that yields the set of communities with the highest average
association with the response variable over the training set. Lower values of α
were not considered to ensure a good modularity value. For each community
identified, a climate index was constructed by computing the spatial average
over the community of its representative climate variable (see Figure 1).

We compare our climate indices with those discovered using a baseline
methodology and the state of the art [24]. For the baseline methodology, com-
munities were identified in multivariate climate networks (i.e., one network was
constructed for all covariates via a combined probability test, as described in
Section 3.1) using both the original Louvain method [2] and the original sim-
ulated annealing algorithm for community detection [10]. For the state of the
art [24], communities were identified in univariate climate networks (i.e., one net-
work was constructed for each covariate) using Walktrap, a community detection
algorithm based on random walks [19]. In both cases, the community detection
and the network construction were performed in an unsupervised manner.

Table 1 summarizes the properties of the climate networks constructed and
the climate indices discovered using each methodology. Given that our response-
guided community detection algorithms do not exclusively optimize the “good-
ness” of the network partitions, our climate networks exhibit a lower modularity
than those constructed using unsupervised methodologies (0.34 vs. 0.74, 0.75,
and 0.59). However, our communities have a higher internal density (0.62 vs.
0.29, 0.28, and 0.47) and a lower internal variability (0.63 and 0.62 vs. 0.77,
0.78, and 0.74), indicating a well-defined structure.

We also observe that, unlike most of the climate indices discovered using the
baseline and the state of the art, the majority of our climate indices (66.67%)
have a statistically significant linear correlation (p < 0.01) with the response
variable of interest over the training set. Moreover, our proposed methodology

746 G.A. Bello et al.

Fig. 1. Climate indices discovered using our proposed methodology with the response-
guided community detection algorithm based on the Louvain method (left) and simu-
lated annealing (right), respectively, and with OND rainfall variability in the GHA as
the response variable of interest. Each color represents a different index, and diamonds
indicate overlaps between indices. To improve visualization, only the top 10 indices
with the highest association with the response variable over the training set are shown
in each figure. Best viewed in color.

Table 1. Properties of networks constructed and climate indices discovered for OND
rainfall variability in the GHA, using the proposed, baseline, and state-of-the-art
(SOTA) [24] methodologies with the Louvain method (LM), simulated annealing (SA)
and Walktrap as the community detection algorithms: number of networks (Num Nets),
average number of vertices and edges per network (Avg Vtxs, Avg Edges), average
modularity (Avg Mod), number of indices (Num Idxs), average number of vertices,
standard deviation, and internal density per index (Avg Vtxs, Avg Std, Avg Dens),
and percentage of indices with a statistically significant (p < 0.01) linear correlation
with the response variable of interest (% Idxs). Best values are highlighted in bold.

Method Algorithm
Networks Indices

Significant
Indices

Num Avg Avg Avg Num Avg Avg Avg Num %
Nets Vtxs Edges Mod Idxs Vtxs Std Dens Idxs Idxs

Proposed
Adapted LM 5 40.80 169.20 0.34 18 11.33 0.63 0.62 12 66.67

Adapted SA 5 40.80 169.20 0.34 18 11.33 0.62 0.62 12 66.67

Baseline
Original LM 5 446.00 2614.60 0.74 49 45.51 0.77 0.29 6 12.24

Original SA 5 446.00 2614.60 0.75 50 44.60 0.78 0.28 4 8.00

SOTA Walktrap 25 444.80 7493.80 0.59 265 41.96 0.74 0.47 6 2.26

Response-Guided Community Detection 747

Table 2. Average linear correlation with OND rainfall at each station and at the
GHA region, over the training set and the test set, of climate indices discovered for
OND rainfall variability in the GHA using the proposed, baseline, and state-of-the-
art (SOTA) [24] methodologies with the Louvain method (LM), simulated annealing
(SA) and Walktrap as the community detection algorithms. Check marks (�) indicate
that our proposed methodology performs significantly better according to a two-way
ANOVA at the 95% confidence level. Best values are highlighted in bold.

Station
Proposed Baseline SOTA

Adapted LM Adapted SA Original LM Original SA Walktrap

Train Test Train Test Train Test Train Test Train Test

Arusha 0.4436 0.2999 0.4431 0.2848 0.2496 0.2495 0.2489 0.2639 0.1481 0.2261
Kilimanjaro 0.4103 0.3752 0.4300 0.3583 0.2586 0.2437 0.2629 0.2525 0.1567 0.2230

Moshi 0.3629 0.2980 0.3764 0.2791 0.2404 0.2552 0.2317 0.2501 0.1393 0.2481
Same 0.4292 0.3403 0.4341 0.3119 0.2574 0.2111 0.2572 0.2429 0.1589 0.2148

GHA 0.4502 0.3478 0.4614 0.3272 0.2763 0.2356 0.2749 0.2497 0.1558 0.2219

Two-way ANOVA (α = 0.05) � � � � � �

performs significantly (p < 0.05) better than the baseline and the state of the art
across all stations in terms of the average linear correlation between the climate
indices and the response variable of interest over the training set and the test set
(see Table 2). This shows that, as expected, our proposed methodology is able
to discover climate indices more highly associated with the response variable of
interest than those discovered using unsupervised methodologies.

4.5 Seasonal Rainfall Prediction

We validate the climate indices discovered with our proposed methodology by
assessing their predictive power for OND rainfall in the GHA. To this end, we
trained linear regression models to predict rainfall at each station, and average
rainfall at the region, using our climate indices as predictors. As specified in
Section 4.1, data from 1960 to 1997 was used for training and data from 1998
to 2011 was used for testing. For comparison, linear regression models were also
built using the climate indices discovered with the baseline and state-of-the-art
[24] methodologies introduced in Section 4.4.

In order to avoid overfitting given the small sample size of the data sets,
only the top six (6) climate indices with the highest average correlation with
OND rainfall in the GHA over the training set were used to build the mod-
els. This number of predictors was selected because it yielded relatively stable
performance over the training set across all methodologies (see Figure 2). Fur-
thermore, to evaluate the ability of the models to make predictions before the
start of the OND rainfall season, all experiments were preformed using data up
to the month of August (one-month lead time). Climate indices discovered for
the months of September and October were reconstructed using August data.

The correlations between predicted and true rainfall and the root mean
squared errors (RMSE) obtained for each methodology are shown in Table 3.

748 G.A. Bello et al.

Fig. 2. Average linear correlation between true and predicted rainfall for predictions
of OND rainfall at each station in the GHA region over the training set using the
proposed, baseline, and state-of-the-art (SOTA) [24] methodologies with the Louvain
method (LM), simulated annealing (SA) and Walktrap as the community detection
algorithms vs. the number of predictors used to build the regression models. The dashed
line indicates the number of predictors selected for further analysis.

Table 3. Linear correlation between true and predicted rainfall (Corr) and RMSE
scores for predictions of OND rainfall at each station and at the GHA region from
1998 to 2011 obtained using the proposed, baseline, and state-of-the-art (SOTA) [24]
methodologies with the Louvain method (LM), simulated annealing (SA) and Walktrap
as the community detection algorithms. Check marks (�) indicate that our proposed
methodology performs significantly better according to a two-way ANOVA at the 95%
confidence level. Best values are highlighted in bold.

Station
Proposed Baseline SOTA

Adapted LM Adapted SA Original LM Original SA Walktrap

Corr RMSE Corr RMSE Corr RMSE Corr RMSE Corr RMSE

Arusha 0.7143 0.5017 0.5869 0.5215 0.2462 0.5023 0.3432 0.6853 0.2034 0.5779
Kilimanjaro 0.7629 0.5034 0.6736 0.5619 0.1844 1.0432 0.2053 0.7477 0.2940 0.7874

Moshi 0.6561 0.4719 0.6564 0.4664 -0.0319 0.5937 0.1059 0.7055 0.3088 0.6231
Same 0.7237 0.4779 0.6896 0.4749 0.1470 0.6796 0.1806 0.6929 0.2575 0.7121

GHA 0.7722 0.4133 0.7425 0.4007 0.1501 0.6316 0.2135 0.6390 0.2665 0.6053

Two-way ANOVA (α = 0.05) � � � � � �

We observe that the models built using our climate indices yield a significantly
(p < 0.05) higher correlation and lower RMSE than those built using climate
indices discovered using unsupervised methodologies. This suggests that climate
indices more highly associated with the response variable of interest, as the ones
discovered using our proposed methodology, have greater predictive power.

We further assess the predictive power of our climate indices by comparing
our predictions with the official forecasts of the OND rainfall season issued by
the TMA every year on September. To this end, the rainfall season for each year
was categorized according to the guidelines of the TMA as below normal, normal,
or above normal (rainfall below 75%, between 75% and 125%, or above 125%
of long-term averages, respectively). Long-term averages were computed using
the training set. Similarly to the regression models, decision trees to classify the

Response-Guided Community Detection 749

OND rainfall season at each station were trained using data up to the month
of August and considering only the top six (6) climate indices discovered with
our proposed methodology as predictors. The decision trees were built using the
Gini index as the split criterion and pruning to avoid overfitting.

The classification accuracies obtained are shown in Figure 3. We observe that
the accuracy of the decision trees built using our climate indices is higher than
that of the official forecasts for three (3) out of four (4) stations. This suggests
that the use of the climate indices discovered using our proposed methodology
can potentially improve forecasts of the response variable of interest.

4.6 Physical Interpretation of Climate Indices Discovered

Finally, we discuss the climate indices discovered in terms of their climatological
relevance. Rainfall variability in the GHA is known to be mainly associated with

Fig. 3. Classification accuracy of the prediction of the OND rainfall season at each
station in the GHA region from 1998 to 2011 obtained using the proposed methodol-
ogy with the Louvain method (LM) and simulated annealing (SA) as the community
detection algorithms, as well as official forecasts issued by the TMA.

Fig. 4. Time series of the Niño 3.4 index (upper, solid line) and the IOD index (lower,
solid line) with climate indices discovered in July (upper, dashed line) and October
(lower, dashed line) using our proposed methodology with the adapted Louvain method
as the community detection algorithm and OND rainfall variability in the GHA as the
response variable of interest. The linear correlation between the time series is shown
in the lower left corner of each figure.

750 G.A. Bello et al.

ENSO in the equatorial Pacific Ocean [18] and the Indian Ocean Dipole (IOD)
in the tropical Indo-Pacific Ocean [1].

Climate indices significantly correlated (p < 0.01) with ENSO, in particular
with the Niño 3.4 index, were discovered in June, July, August, September, and
October using both adapted community detection algorithms (for example, see
Figure 4). The representative climate variable selected for these climate indices
is mostly either SST or PW, a close proxy of SST in the equatorial Pacific Ocean
in the NCAR/NCEP Reanalysis 1 data set. Higher SSTs in the equatorial Pacific
Ocean are associated with a suppression of East African rainfall, by modulating
the strength of the global upper level wind flow [18].

Climate indices significantly correlated (p < 0.01) with the IOD were discov-
ered in July, August, September and October using both adapted community
detection algorithms (for example, see Figure 4). These climate indices were gen-
erally discovered closer to the onset of the OND rainfall season than the ones
in the equatorial Pacific Ocean, as the IOD exerts its influence on East African
rainfall on a shorter timescale through local wind anomalies [1].

5 Conclusions

In this paper, we introduced the problem of response-guided community detec-
tion through its application to the task of climate index discovery. We proposed
a methodology for the discovery of climate indices associated with a response
variable of interest from multivariate spatiotemporal data, the contribution of
which is twofold. First, we proposed a general strategy for response-guided com-
munity detection, and second, we introduced a network representation of the
data that incorporates information from multiple variables.

We applied our proposed methodology to the discovery of climate indices
associated with seasonal rainfall variability in the GHA. The climatological rel-
evance of the climate indices discovered is supported by domain knowledge,
as evidenced by their association with traditional climate indices known to be
related to seasonal rainfall in the region. Furthermore, our results show that our
methodology improves the forecast skill for this response variable with respect
to existing methodologies for climate index discovery, as well as official forecasts.

Acknowledgments. This material is based upon work supported in part by the
Laboratory for Analytic Sciences, the U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research, and NSF grant 1029711.

References

1. Black, E., Slingo, J., Sperber, K.R.: An observational study of the relationship
between excessively strong short rains in coastal East Africa and Indian Ocean
SST. Mon. Weather Rev. 131(1), 74–94 (2003)

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. J. Stat. Mech. Theor. Exp. 2008(10), P10008 (2008)

Response-Guided Community Detection 751

3. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wag-
ner, D.: On finding graph clusterings with maximum modularity. In: Brandstädt,
A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 121–132.
Springer, Heidelberg (2007)

4. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70(6), 066111 (2004)

5. Donges, J.F., Zou, Y., Marwan, N., Kurths, J.: Complex networks in climate
dynamics. The European Physical Journal-Special Topics 174(1), 157–179 (2009)

6. Eaton, E., Mansbach, R.: A spin-glass model for semi-supervised community detec-
tion. In: Proc. of the 26th AAAI Conference on Artificial Intelligence, pp. 900–906.
AAAI (2012)

7. Fisher, R.A.: Statistical methods for research workers. Edinburgh (1934)
8. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)
9. Gray, W.M.: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb

quasi-biennial oscillation influences. Mon. Weather Rev. 112(9), 1649–1668 (1984)
10. Guimerà, R., Amaral, L.A.N.: Functional cartography of complex metabolic net-

works. Nature 433(7028), 895–900 (2005)
11. Harenberg, S., Bello, G.A., Gjeltema, L., et al.: Community detection in large-scale

networks: a survey and empirical evaluation. WIREs Comput. Stat. (1939-0068)
(2014)

12. Harenberg, S., Seay, R.G., Ranshous, S., et al.: Memory-efficient query-driven com-
munity detection with application to complex disease associations. In: Proc. of the
2014 SIAM Int. Conf. on Data Mining, pp. 1010–1018. SIAM (2014)

13. Kalnay, E., Kanamitsu, M., Kistler, R., et al.: The NCEP/NCAR 40-year reanalysis
project. Bull. Amer. Meteor. Soc. 77(3), 437–471 (1996)

14. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simmulated annealing.
Science 220(4598), 671–680 (1983)

15. Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative
analysis. Phys. Rev. E 80(5), 056117 (2009)

16. Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70(5), 056131 (2004)
17. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-

works. Phys. Rev. E 69(2), 026113 (2004)
18. Omondi, P., Ogallo, L.A., Anyah, R., et al.: Linkages between global sea surface

temperatures and decadal rainfall variability over Eastern Africa region. Int. J. of
Climatol. 33(8), 2082–2104 (2013)

19. Pons, P., Latapy, M.: Computing communities in large networks using random
walks. J. Graph Algorithms Appl. 10(2), 191–218 (2006)

20. Schiermeier, Q.: The real holes in climate science. Nature 463(7279), 284–287 (2010)
21. Smith, T.M., Reynolds, R.W., Peterson, T.C., Lawrimore, J.: Improvements to

NOAA’s historical merged land-ocean surface temperature analysis (1880–2006).
J. Climate 21(10), 2283–2296 (2008)

22. Steinbach, M., Tan, P.N., Kumar, V., et al.: Discovery of climate indices using
clustering. In: Proc. of the 9th ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, pp. 446–455. ACM (2003)

23. Steinhaeuser, K., Chawla, N.V., Ganguly, A.R.: An exploration of climate data
using complex networks. ACM SIGKDD Explor. Newsl. 12(1), 25–32 (2010)

24. Steinhaeuser, K., Chawla, N.V., Ganguly, A.R.: Complex networks as a unified
framework for descriptive analysis and predictive modeling in climate science. Sta-
tistical Analysis and Data Mining 4(5), 497–511 (2011)

25. Tsonis, A.A., Roebber, P.J.: The architecture of the climate network. Phys. A 333,
497–504 (2004)

Robust Classification of Information Networks
by Consistent Graph Learning

Shi Zhi1(B), Jiawei Han1, and Quanquan Gu2

1 Department of Computer Science,
University of Illinois at Urbana-Champaign, Champaign, IL, USA

{shizhi2,hanj}@illinois.edu
2 Department of Systems and Information Engineering,

University of Virginia, Charlottesville, VA, USA
qg5w@virginia.edu

Abstract. Graph regularization-based methods have achieved great
success for network classification by making the label-link consistency
assumption, i.e., if two nodes are linked together, they are likely to belong
to the same class. However, in a real-world network, there exist links
that connect nodes of different classes. These inconsistent links raise a
big challenge for graph regularization and deteriorate the classification
performance significantly. To address this problem, we propose a novel
algorithm, namely Consistent Graph Learning, which is robust to the
inconsistent links of a network. In particular, given a network and a small
number of labeled nodes, we aim at learning a consistent network with
more consistent and fewer inconsistent links than the original network.
Since the link information of a network is naturally represented by a set
of relation matrices, the learning of a consistent network is reduced to
learning consistent relation matrices under some constraints. More specif-
ically, we achieve it by joint graph regularization on the nuclear norm
minimization of consistent relation matrices together with �1-norm mini-
mization on the difference matrices between the original relation matrices
and the learned consistent ones subject to certain constraints. Experi-
ments on both homogeneous and heterogeneous network datasets show
that the proposed method outperforms the state-of-the-art methods.

Keywords: Robust classification · Information network · Consistent
link · Consistent network · Consistent Graph Learning

1 Introduction

Information networks have been found to play increasingly important role in
real-life applications. Generally speaking, information networks can be catego-
rized into two families: (1) homogeneous information networks where there is
only one type of nodes and links. Examples include friendship network in Face-
book1, co-author and citation network in DBLP2, and the World Wide Web;
1 http://www.facebook.com
2 http://www.informatik.uni-trier.de/∼ley/db/

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 752–767, 2015.
DOI: 10.1007/978-3-319-23525-7 46

http://www.facebook.com
http://www.informatik.uni-trier.de/~ley/db/

Robust Classification of Information Networks by Consistent Graph Learning 753

and (2) heterogeneous information networks where there exist multiple types
of nodes and links. A bibliographic information network is an example of het-
erogeneous information network, which contains four types of objects: papers,
authors, conferences and terms. Papers and authors are linked by the relation of
“written by” and “write”. Papers and conferences are linked by “published in”
and “publish”. Papers and terms are linked by “contain” and “contained in”.

In the past decade, many methods have been proposed for classification
of both homogeneous information networks [5,9,11,13,14,18–21] and heteroge-
neous information networks [7,8], which are based on the link structure and the
node content of networks. Among these methods, graph regularization-based
methods [5,8,9,18,19,21] have achieved superior performance over other meth-
ods. These methods assume that if two nodes are linked in a network, their labels
are likely to be the same. Start from a small number of labeled nodes, labels are
propagated along linking nodes to preserve the local consistency. Therefore, they
heavily depend on the link structure of a network and implicitly require the links
of the network to be consistent with node labels. However, in many cases, this
requirement is not satisfied. For example, in Figure 1(a), there are two classes
of nodes denoted by different colors. The black edge links two nodes of the same
class, while the yellow edge links node from different classes. We define black link
as Consistent Link, and yellow link as Inconsistent Link. Due to the existence
of inconsistent links, graph regularization-based methods may fail to correctly
classify the nodes residing on both sides of the inconsistent edges. In our study,
we call the network with inconsistent links as Inconsistent Network. Since incon-
sistent links are prevalent in real-world networks, it is of central importance to
develop learning models for classification of inconsistent networks.

(a) Original Inconsistent Network (b) Consistent Network

Fig. 1. An example of (a) Inconsistent Network, and (b) Consistent Network. There
are two classes of nodes denoted by red and green. The black links are consistent with
the labels, while the nodes linked by yellow links have different labels. The blue dashed
links are added consistent links. The goal is to remove red links and add blue links.

Intuitively, if there are no inconsistent links, e.g., the yellow edges in
Figure 1(a), graph regularization-based classification methods [18] can achieve
good results. This motivates us to handle an inconsistent network in the follow-
ing two ways. First, if we can detect which links are inconsistent, we can delete
these inconsistent links. Second, if we can add more consistent links between
the nodes of the same classes, we can compensate the effect of the inconsistent
links as well. It is desirable to get a network as shown in Figure 1 (b), where we

754 S. Zhi et al.

remove the inconsistent yellow edges and add the dashed blue edges, i.e., consis-
tent links. Based on this modified network, graph regularization-based methods
may work better than using original relation matrices. In our study, we will show
that we can learn an approximately consistent network using a small number of
labeled data under certain constraints.

In this paper, based on the above discussion, we propose a novel regular-
ization technique, namely Consistent Graph Learning, which is robust to those
inconsistent links of a network. Our goal is to learn an approximately consistent
network based on a small number of labeled data. Since the link information of
a network can be naturally represented by a set of relation matrices, the learn-
ing of a consistent network can be transformed into learning consistent relation
matrices. More specifically, we assume that each original relation matrix can be
decomposed into a consistent relation matrix and a residue matrix. In a fully
consistent network, each pair of nodes of the same class are linked while those of
different classes are not linked. Though the real-world network is usually sparse,
nodes in a consistent network connect much more to the nodes of the same class
rather than a different class. Thus, consistent relation matrix intrinsically has
the low-rank property. We can achieve this low-rank characteristics by applying
nuclear-norm minimization on consistent relation matrix. By doing this, more
consistent links are added to the original inconsistent network. On the other
hand, since in real-world network nodes of the same class tends to have much
more links than those of different classes do, the consistent network should be
similar to the original network and the norm of the residue matrix should be
small. To remove inconsistent links and keep consistent links, we aim to have
a sparse residue matrix with non-zero elements as fewer as possible instead of
changing the value of every element in the original relation matrix. It can be
achieved by minimizing �1-norm of the residue matrix. In summary, to satisfy
both requirements, we perform a joint graph regularization on the consistent
relation matrix with nuclear-norm minimization, and the residue matrix with
�1-norm minimization, subject to the constraint that the sum of the consistent
relation matrix and the residue matrix equals to the original relation matrix, and
each element of consistent matrix is within a certain range. Given a set of labeled
data, our model can learn the consistent network by alternating direction method
of multipliers [2] (ADMM) method that solves a convex optimization problem
by breaking it into smaller pieces, each of which is easier to handle. We can use
the consistent network to classify all the other nodes by any network classifi-
cation method. Experiments on both homogeneous and heterogeneous network
datasets show that the proposed method outperforms the state-of-art methods.

The main contributions of this paper are as follows: (1) We raise and ana-
lyze the inconsistency of real-world networks; (2) we propose a consistent graph
learning technique which is able to learn an approximately consistent network
given a small number of labeled data; and (3) we validate the effectiveness of
the proposed method on both homogeneous and heterogeneous networks. The
remainder of this paper is organized as follows. In Section 2 we present a model
for classification of the information networks with inconsistent links. In Section 3,

Robust Classification of Information Networks by Consistent Graph Learning 755

we discuss several related work to our method. The experiments on Cora and
DBLP datasets are demonstrated in Section 4. Finally, we draw a conclusion
and point out the future work in Section 5.

2 The Proposed Method

In this section, we present Consistent Graph Learning for semi-supervised clas-
sification of information networks. Before going deep into the proposed method,
we first present some preliminary definitions of information network.

2.1 Preliminary Definitions

Definition 1. An information network consists of m types of objects X kl =
{X k}m

k=1, where X k is a set of objects belonging to the k-th type. A weighted
graph G = (V, E , R) is called an information network on objects X , if V = X ,
E is a binary relation on V, and R : E → R is a weight function mapping from
an edge e ∈ E to a real number w ∈ R. Specially, we call such an information
network heterogeneous network when m ≥ 2; and homogeneous network
when m = 1.

We can treat homogeneous information network as a special case of het-
erogeneous information network. The crucial difference of using heterogeneous
network is that we work on each relation matrix between two types of nodes
instead of working on a large relation matrix between all nodes of different types.
Therefore, we will introduce the proposed method in the context of heteroge-
neous network, which is more general. Now we present the formal definitions of
Consistent Link and Consistent Network.

Definition 2. A link is consistent if the nodes it connects belong to the same
class. An information network is consistent if and only if all of its links are
consistent.

The definitions of Inconsistent Link and Inconsistent Network can be
deduced analogously, hence we omit them. Note that the definitions in this paper
are specific to our problem, i.e., classification of networks. There may exist other
definitions of Consistent Link and Consistent Network in the literature.

2.2 Notation

A heterogeneous network can be represented by a collection of relation matrices,
each of which models the pairwise relation between a node in one type and
another node in a different type. Mathematically speaking, in a heterogeneous
information network, suppose there are m types of entities, i.e., X k, 1 ≤ k ≤ m,
where X k = {xk

1 , . . . , x
k
n}. A relation graph Gkl can be built corresponding to

each type of link relationships between two types of data entities X k and X l,
1 ≤ k ≤ m. Let Rkl be an nk × nl relation matrix corresponding to graph G,

756 S. Zhi et al.

in which Rkl
ij denotes the weight on link from xk

i to xl
j . Note that Rkl is not

symmetric. One possible definition of Rkl is as follows.

Rkl
ij =

{
1 if there is a link from xk

i to xl
j

0 otherwise
(1)

If we consider a weighted graph, the definition of Rkl can be extended to

Rkl
ij =

{
m if there are m links from xk

i to xl
j

0 otherwise
(2)

Suppose there are c classes, in order to encode label information of each type,
we basically define a label matrix for each type, i.e., Yk ∈ R

nk×c, such that

Y k
il =

{
1 if xk

i is labeled to the l-th class
0 otherwise (3)

Note that if xk
i is unlabeled, then Y k

il = 0 for ∀l.
For each type of objects, we are going to learn a class assignment matrix

Fk ∈ R
nk×c, whose definition is similar to Yk. We denote the i-th row of Yk by

Yk
i·, and the i-th row of Fk by Fk

i·. For a matrix Ekl, its �1-norm is defined as
||E||1 =

∑
ij |Eij |. For a m×n matrix W, its nuclear norm is defined as ||W||∗ =

∑min{m,n}
i σi, where W = UΣVT is the Singular Value Decomposition (SVD)

of W, (Σ)ii = σi. For a matrix D, its Frobenius norm is defined as ||D||F =√∑
ij D2

ij . Notation ◦ is used to get the entry-wise product of two matrices, e.g.,
D ◦E is a matrix whose each element equals to DijEij . Matrix 0 is a matrix of
all zeros, and matrix 1 is a matrix of all ones.

2.3 Standard Graph Regularization

The basic assumption of graph regularization is that if two objects xk
i and xl

j

are linked together, then their labels F k
ip and F l

jp are likely to be the same. It
can be mathematically formulated as [16],

min
Fk,Fl

1
2

nk∑

i=1

nl∑

j=1

||Fk
i· − Fl

j·||22Rkl
ij , (4)

where Rkl could either be the original relation matrix or the normalized one.
As we can see, if Rkl

ij > 0, Eq. (4) will push the label of xk
i and the label of

xl
j close. If Rkl

ij = 0, the labels are determined by other terms of the objective
function. This is the rationale of graph regularization. To give an example, in a
homogeneous citation network (k = l = 1), if the i-th paper cites the j-th paper,
standard graph regularization tends to classify these two papers into the same
class. However, we will show that it is not true in real world citation dataset
when there are inconsistent links, as we will show in the experiments. In this
case, graph regularization would fail. This shows the drawback of standard graph
regularization technique for network classification.

Robust Classification of Information Networks by Consistent Graph Learning 757

2.4 Consistent Graph Learning

The basic idea of our method is to learn an approximately consistent network,
based on which we apply graph regularization and learn a classifier. Since a het-
erogeneous information network can be represented by a set of relation matrices,
i.e., {Rkl}, the learning of a consistent network can be transformed into learning
a set of consistent relation matrices, i.e., {Wkl}. Here we say a relation matrix
is consistent if and only if its corresponding network is consistent. For each rela-
tion matrix Rkl where there may exist some entries which are inconsistent with
the labels, we decompose it into a consistent relation matrix Wkl whose entries
are consistent with the node labels, and a residue matrix Ekl whose entries
are inconsistent with the labels. Hereafter, we call Wkl as Consistent Relation
Matrix and Ekl as Residue Matrix. It is mathematically described as

Rkl = Wkl + Ekl,0 ≤ Wkl ≤ max(1,Rkl), (5)

where the function max takes the larger value of 1 and each element in Rkl. We
add a box constraint on Wkl to make it both lower and upper-bounded. The
reason is that the original relation matrix Rkl is bounded. We hope that the
learned consistent relation matrix Wkl is also bounded.

In order to make the learned relation matrix Wkl consistent, we need to
specify additional constraints as follows:

1. Wkl should be consistent with the labeled data Y. It can be achieved by
standard graph regularization on Wkl with respect to Y.

2. We assume that the number of inconsistent links is only a portion of the links
in Rkl. Hence, we require the residue matrix to be sparse. To obtain this goal,
we apply �1-norm minimization to Ekl.

3. In principal, we prefer not to remove links that connect nodes of large degree
because removing such links may take a risk to disconnect more unlabeled
nodes with labeled ones such that some labels cannot be propagated through
the consistent links. To handle this issue, we take entry-wise product of Ekl in
the �1-norm term and Dkl, where Dkl

ij =
√

didj , di =
∑

i Rkl
ij is the out-degree

of node xk
i and dj =

∑
j Rkl

ij is the in-degree of node xk
j .

4. As we mentioned before, nodes in a consistent relation matrix connect much
more to the nodes of the same class rather than different class. To pursue
the low-rank property of consistent relation matrix Wkl, we apply nuclear
norm minimization to Wkl. Note that there may be some extreme cases when
a low-rank matrix is not necessarily a consistent matrix (e.g., an all-ones
matrix). However, we can prevent our method from converging to these cases
by balancing different regularizations.

We bring in an auxiliary Qkl and let it be equal to Wkl. The advantage
of it is to allows us to solve nuclear norm minimization and box constraint in
separate steps, which is easy to solve. Putting all the above constraints together,

758 S. Zhi et al.

we obtain

min
{Qkl,Wkl,Ekl}

nk∑

i=1

nl∑

j=1

||Yk
i· − Yl

j·||22W kl
ij + γkl||Dkl ◦ Ekl||1 + βkl||Wkl||∗

subject to Rkl = Wkl + Ekl,Wkl = Qkl,0 ≤ Qkl ≤ max(1,Rkl) (6)

where γkl > 0 and βkl > 0 are regularization parameters that controls the spar-
sity of Ekl and the low-rank property of Wkl, respectively. These two parameters
essentially control the balance among the label-link consistency, sparsity and low-
rank property. The larger γkl is, the sparser Ekl will be. Larger βkl forces the
nuclear norm of Wkl to be smaller. We call the model in Eq. (6) as Consistent
Graph Learning. Note that if we set γkl = ∞ and βkl = 0, Wkl will be exactly
equal to Rkl. If we have prior knowledge indicating some of the relation matrices
Rkl are consistent, we can set the corresponding γkl to ∞ and βkl = 0. Note that
we cannot guarantee that learned Wkl is totally consistent because we only have
partial labels of the nodes, but the learned relation matrix has fewer inconsistent
links and more consistent links than the original one. In the following, we will
introduce how to solve it.

2.5 Optimization

Due to the decomposition equality constraint in Eq. (6), we use the alternat-
ing direction method of multipliers [2] (ADMM). We will derive an algorithm
based on ADMM for solving Eq. (6). Before that, we first briefly introduce aug-
mented Lagrangian multiplier [3] method. Augmented Lagrangian [3] (ALM) is
a method for solving equality constrained optimization problem. It reformulates
the problem into an unconstrained one by adding Lagrangian multipliers and an
extra quadratic penalty term for each equality constraint.

As to our method, the augmented Lagrangian function is as follows by ignor-
ing the inequality constraints on Ekl

L(Qkl,Wkl,Ekl,Zkl) =

nk∑

i=1

nl∑

j=1

||Yk
i· − Yl

j·||22W kl
ij + βkl||Wkl||∗ + γkl||Dkl ◦ Ekl||1

+ tr((Zkl)T (Wkl + Ekl − Rkl)) +
μ

2
||Wkl + Ekl − Rkl||2F

+ tr((Xkl)T (Wkl − Qkl)) +
ζ

2
||Wkl − Qkl||2F , (7)

where Zkl and Xkl are Lagrangian multipliers, μ and ζ are penalty parameters.
In the following, we will derive the updating formula for each variable. In

other words, we solve each variable when fixing the other variables. This is also
known as alternating direction method of multipliers [2] (ADMM).

Robust Classification of Information Networks by Consistent Graph Learning 759

Computation of Wkl. Given other variables fixed, the optimization of Eq. (7)
with respect to Wkl is reduced to

min
Wkl

tr((Skl)TWkl) + βkl||Wkl||∗

+tr((Zkl)T (Wkl + Ekl − Rkl)) +
μ

2
||Wkl + Ekl − Rkl||2F

+tr((Xkl)T (Wkl − Qkl)) +
ζ

2
||Wkl − Qkl||2F , (8)

where the matrix Skl is defined as Skl
ij = ||Yk

i· − Yl
j·||22. Eq. (8) is equivalent to

min
Wkl

βkl

μ + ζ
||Wkl||∗ +

1
2
||Wkl − Akl||2F , (9)

where

Akl =
ζQkl − μ(Ekl − Rkl) − Skl − Zkl − Xkl

μ + ζ
. (10)

Eq. (9) has a closed-form solution

Wkl = UΣ∗VT , (11)

where Akl = UΣVT is the SVD of Akl, and Σ∗ is the diagonal with (Σ∗)ii =
max{0, (Σ)ii −βkl/(μ+ζ)}. By setting small singular values to zero, the nuclear
norm of Wkl is reduced.

Computation of Ekl. Given other variables fixed, the optimization of Eq. (7)
with respect to Ekl boils down to

min
Ekl

γkl||Dkl ◦ Ekl||1

+tr((Zkl)T (Wkl + Ekl − Rkl)) +
μ

2
||Wkl + Ekl − Rkl||2F , (12)

which is equivalent to

min
Ekl

γkl

μ
||Dkl ◦ Ekl||1 +

1
2
||Ekl + Wkl − Rkl +

1
μ
Zkl||2F . (13)

Eq. (13) has a closed-form solution as follows,

Ekl
ij =

⎧
⎪⎪⎨

⎪⎪⎩

Bkl
ij − γklD

kl
ij

μ if Bkl
ij ≥ γklD

kl
ij

μ

0 if −γklD
kl
ij

μ < Bkl
ij <

γklD
kl
ij

μ

Bkl
ij + γklD

kl
ij

μ if Bkl
ij ≤ −γklD

kl
ij

μ

, (14)

where Bkl = −Wkl + Rkl − 1
μZ

kl. This step essentially only allows Ekl
ij to be

non-zero when falling out of a certain range. We can see that by introducing
matrix Dkl

ij , Ekl
ij is more likely to be zero if Dkl

ij is larger. Thus, the link between
nodes of large in-degree and out-degree will be less likely to be removed.

760 S. Zhi et al.

Computation of Qkl. Given other variables fixed, the optimization of Eq. (7)
with respect to Qkl boils down to

min
Qkl

tr((Xkl)T (Wkl − Qkl)) +
ζ

2
||Wkl − Qkl||2F

subject to 0 ≤ Qkl ≤ max(1,Rkl), (15)

which has a closed-form solution

Qkl
ij =

⎧
⎨

⎩

Rkl
ij Qkl

ij ≥ max(1, Rkl
ij)

W kl
ij + 1

ζ Xkl
ij 0 < Qkl

ij < max(1, Rkl
ij)

0 Qkl
ij ≤ 0

. (16)

By making Qkl = Wkl and adding a box constraint on Qkl, Wkl is essentially
upper and lower-bounded.

Computation of Zkl and Xkl. Taking the derivative of L with respect to Zkl

and Xkl, we obtain

∂L

∂Zkl
= Wkl + Ekl − Rkl and

∂L

∂Xkl
= Wkl − Qkl, (17)

which leads to the following updating formula for Lagrangian multiplier Zkl,

Zkl = Zkl + μ(Wkl + Ekl − Rkl). (18)

Similarly, the updating formula for Lagrangian multiplier is Xkl,

Xkl = Xkl + ζ(Wkl − Qkl). (19)

In summary, we present the algorithm in Algorithm 1. In our experiments, we
set μ = 10 and ζ = 10, which leads to fast convergence. In addition, we initialize
Wkl as the original relation matrix Rkl with a small perturbation by adding a
random matrix Mkl to Wkl. Note that the random perturbation matrix helps
the convergence of the ADMM algorithm [17]. We can see that in each outer
iteration of Algorithm 1, it learns the underlying consistent network between
X k and X l, i.e., Wkl by ADMM. Note that k and l can be either the same
or different. We can see later the learned consistent matrices can improve the
accuracy of classification in the next step.

2.6 Estimation of Unlabeled Data

After we compute the consistent relation matrix Wkl, we can apply existing
semi-supervised classification algorithms to estimate the unlabeled data. In the
experiment, we use LLGC [18] for homogeneous network classification and GNet-
Mine [8] for heterogeneous network classification. In the experiments, for the
citation and co-author sub-networks, we transform the learned consistent rela-
tion matrix into a symmetric one by setting W kl

ij to the larger element between
W kl

ij and W kl
ji . We do the same symmetrization on original relation matrix for

input of LLGC and GNetMine.

Robust Classification of Information Networks by Consistent Graph Learning 761

Algorithm 1 Robust Classification of Network by Consistent Graph Learning
(CGL)

Input: Rkl, βkl > 0, γkl > 0, Y, μ, ζ;
Output: Wkl, Ekl, k, l = 1, . . . , m;
for k, l = 1 → m do

Initialize Wkl = Rkl + Mkl, Zkl, Xkl

repeat
Compute Wkl as in Eq. (11)
Compute Ekl as in Eq. (14)
Compute Qkl as in Eq. (16)
Compute Zkl as in Eq. (18)
Compute Xkl as in Eq. (19)

until Convergence
end for

2.7 Analysis

The convergence of Algorithm 1 is stated in the following theorem.

Theorem 1. Algorithm 1 is theoretically guaranteed to converge to the global
minima of the problem in Eq. (6).

Proof sketch: The global convergence of the algorithm can be proved using the
technique in [10] [6].

Now we analyze the time complexity of Algorithm 1. Let c be the number of
classes, |V | denote the total number of objects, and |E| denote the total number
of links in the information network. In each inner iteration of Algorithm 1, it
takes O(n2c) to update Wkl, O(|E|) to update Qkl, O(|E|) to update Ekl, and
O(|E|) to update Xkl and Zkl. Hence the total time complexity of Algorithm 1
is O

(
T (|E| + n2c)

)
, where T is the average number of inner iterations. In our

empirical study, we found that algorithm usually converges within 30 iterations.

3 Related Work

In this section, we review some work which are closely related to our study.
Classification of information networks has been extensively studied in the

past decade. Earlier studies mainly focus on the homogeneous network. For
example, [18,21] studied classification of undirected networks while [19] studied
classification of directed networks. [20] proposed link-content matrix factoriza-
tion (LCMF) method, which integrates content and link information into a joint
matrix factorization framework. Sen et al. [14] studied collective classification
of networked data. Li and Yeung [9] proposed probabilistic relational principal
component analysis (PRPCA), which is the state-of-the-art subspace learning
method for networks. More recently, [1,15] suggested active learning for net-
worked data, whose goal is to minimize the labeling effort while maximize the
classification accuracy. Gu and Han [5] proposed a feature selection approach for

762 S. Zhi et al.

homogeneous networked data, which selects a subset of features, such that they
are consistent with the link structure of the network. Recently, classification of
heterogeneous information networks received increasing attention. For instance,
as a natural generalization of [18], Ji et al. [8] proposed a model for classification
of heterogeneous networks. Later, Ji et al. [7] proposed to integrate ranking and
classification for heterogeneous networks, where they pay more attention to the
nodes whose ranking scores are higher. All the methods mentioned above are
heavily depending on the link structure of the network. They should perform
well if we remove inconsistent links and add consistent links. However, their
classification performance is limited when the networks are inconsistent. This
motivates us to develop a new model which is robust to the inconsistent links
and performs well on inconsistent networks.

We notice that Chen et. al [4] proposed a similar technique for sparse graph
clustering. However, their method does not take into account the label informa-
tion and heavily relies on the planted partition model assumption. Luo et. al [12]
proposed a similar method namely forging the graph, while their method does
not leverage label information either.

4 Experiments

In this section, we empirically evaluate the effectiveness of the proposed method.
All the experiments are performed on a PC with Intel Core i5 3.20G CPU and
48GB RAM.

4.1 Data Sets

In our experiments, we use two benchmark datasets: one is a homogeneous cita-
tion network, the other is a heterogeneous bibliographic network.
Cora: It contains the abstracts and references of about 34,000 research papers
from the computer science community. The task is to classify each paper into
one of the subfields of data structure (DS), hardware and architecture (HA),
machine learning (ML), and programming language (PL), based on the citation
relation between the papers. We only use the link information of this dataset.
The statistics about the Cora data set are summarized in Table 1. Before we run
all the baselines and our algorithm, we first make adjacent matrices symmetric,
i.e. set r′

ij = max(rij , rji).

Table 1. Description of the Cora dataset

Data Sets #samples #links #classes

DS 751 1283 9

HA 400 793 7

ML 1617 4046 7

PL 1575 4918 9

Robust Classification of Information Networks by Consistent Graph Learning 763

DBLP: We extract a sub-network of the DBLP data set on four areas: database,
data mining, information retrieval and artificial intelligence, which naturally
form four classes. By selecting five representative conferences in each area, papers
published in these conferences, the authors of these papers and the terms that
appeared in the titles of these papers, we obtain a heterogeneous information
network that consists of four types of objects: paper, conference, author and
term. Within that heterogeneous information network, we have four types of link
relationships: paper-conference, paper-author, paper-term and author-term. The
data set we used contains 14376 papers, 20 conferences, 6401 authors and 4483
terms, with a total number of 192003 links. For evaluation, we use a labeled data
set of 2876 authors, 100 papers and all 20 conferences. The statistics about the
DBLP data set are summarized in Table 2.

Table 2. The statistics of the DBLP dataset

#paper 14376 #paper-author 33720

#author 6401 #paper-conference 14376

#conference 20 #paper-term 110187

#term 4483 #author-term 33720

4.2 Baselines and Parameter Settings

We compare the proposed method with the state-of-the-art network classification
algorithms. The methods and their parameter settings are summarized as follows.

Network-only Link-based Classification (nLB). [13] We use network-only
derivative of nLB because local features are not available in our problem. We
use the implementation from NetKit-SRL3.

Weighted-vote Relational Neighbor Classifier (wvRN). [13] We only cre-
ate a feature vector for each node based on the structure information and use
the implementation from NetKit-SRL.

Learning with Local and Global Consistency (LLGC). [18] LLGC is a
graph-based transductive classification algorithm. The regularization parameter
is tuned by searching the grid {0.01, 0.1, 1, 10, 100}.

GNetMine. [8] GNetMine is a heterogeneous generalization of LLGC. Accord-
ing to [8], we set the regularization parameters λ to be the same for every pair of
k, l, and tune it by searching the grid {0.01, 0.1, 1, 10, 100}. It uses three relation
matrices: paper-author, paper-conference and paper-term.

Consistent Graph Learning (CGL). The regularization parameters βkl are
set to be the same for all k, l, and tuned by searching the grid {0.1 : 0.1 : 1} and
{1 : 1 : 20}. Similarly, we turn regularization parameters γkl by searching the grid
{1 : 1 : 10} and {10 : 10 : 100}. After learning the consistent relation matrices,

3 http://netkit-srl.sourceforge.net

http://netkit-srl.sourceforge.net

764 S. Zhi et al.

Table 3. Classification Accuracy (%) on the Cora dataset

subset DS HA ML PL

#labeled node 20% 50% 80% 20% 50% 80% 20% 50% 80% 20% 50% 80%

nLB 39.49 41.08 57.87 38.50 48.27 64.13 45.14 55.32 60.09 46.82 58.75 61.40

wvRN 45.56 58.97 64.93 42.56 57.24 67.38 49.97 60.77 63.69 50.90 59.76 64.84

LLGC 62.77 73.39 77.32 70.38 81.71 83.50 73.54 81.05 82.79 66.66 75.33 76.16

CGL 64.39 77.02 81.45 79.72 87.31 88.38 76.26 82.68 84.94 69.54 76.90 80.68

we use LLGC for Cora and GNetMine for DBLP to estimate the unlabeled data.
Parameters are tuned in the same way as LLGC and GNetMine.

The searching grids are set based on heuristics. We found for CGL, the
balance of different regularization terms is more important than the absolute
values. Note that we do not compare our method with [1,5,7,9,20] because they
either need the content information of the nodes or come from a different line of
ideas.

4.3 Classification Results on Cora

For each subset of Cora dataset, we randomly choose 20%, 50%, 80% objects as
labeled samples, and the rest as test samples. We repeat the selection 10 times
and report the average result.

The semi-supervised classification results on the Cora data are shown in
Table 3. We can see that the proposed method outperforms the other methods
significantly on all the subsets with different proportion of labeled samples. More
specifically, considering that LLGC is the special case of our method without
relation matrix learning, it indicates that finding the consistent network is of
essential importance for classification of network.

4.4 Classification Results on DBLP

For DBLP dataset, according to [8], we randomly choose 0.1%, 0.2%, 0.3%,
0.4%, 0.5% of authors and papers, and use their label information in the classifi-
cation task. When applying LLGC to heterogeneous network, we tried different
settings. In detail, when classifying authors and papers, we tried constructing
homogeneous author-author (A-A) and paper-paper (P-P) subnetworks in vari-
ous ways, where the best results reported for author are given by the co-author
network, and the best results for papers are generated by linking two papers if
the are published in the same conference. The above two approaches are referred
as LLGC (A-A) and LLGC (P-P). Note that we do not use labels of conferences
in training, so we cannot build a conference-conference (C-C) sub-network for
classification. We also try to apply LLGC on all the objects without consider-
ing their different types. It is denoted by LLGC (A-C-P-T). The key difference
between LLGC (A-C-P-T) and GNetMine (A-C-P-T) is the normalization of
the relation matrix: the former one normalizes the whole big relation matrix,
while the latter one normalizes the small relation matrices respectively. The
semi-supervised classification results of paper, author and conference on DBLP

Robust Classification of Information Networks by Consistent Graph Learning 765

Table 4. Classification Accuracy (%) of Paper on the DBLP dataset

% of authors and LLGC CGL LLGC GNetMine CGL
papers labeled (P-P) (P-P) (A-C-P-T) (A-C-P-T) (A-C-P-T)

0.1% 63.26±2.81 67.02±2.97 58.49±2.23 71.74±2.93 74.42±2.50

0.2% 69.58±2.49 74.15±1.98 61.27±2.41 80.01±2.67 82.94±2.53

0.3% 80.70±2.68 82.47±1.73 69.82±2.78 84.91±2.31 87.75±2.23

0.4% 79.76±2.29 82.29±2.39 67.38±1.90 83.81±1.86 87.62±2.29

0.5% 79.64±1.76 82.57±2.37 74.64±2.15 83.57±2.18 87.00±2.75

Table 5. Classification Accuracy (%) of Author on DBLP dataset

% of authors and LLGC CGL LLGC GNetMine CGL
papers labeled (A-A) (A-A) (A-C-P-T) (A-C-P-T) (A-C-P-T)

0.1% 41.31±3.04 45.39±3.18 58.68±2.89 80.42±2.62 83.77±2.55

0.2% 45.51±2.83 51.47±2.93 60.86±3.41 81.24±3.46 84.71±3.58

0.3% 47.72±2.72 55.53±2.75 66.39±3.08 84.50±2.55 87.31±2.44

0.4% 47.47±3.81 55.50±3.41 70.32±2.19 85.14±2.05 88.97±1.94

0.5% 50.64±2.16 59.11±2.31 71.17±1.72 86.84±1.55 89.93±1.67

Table 6. Classification Accuracy (%) on Conference

% of authors and LLGC GNetMine CGL
papers labeled (A-C-P-T) (A-C-P-T) (A-C-P-T)

0.1% 73.50±4.84 80.50±3.25 82.00±3.94

0.2% 77.50±2.35 83.50±2.30 86.50±2.12

0.3% 82.00±3.37 87.00±2.89 90.00±2.82

0.4% 78.00±2.83 88.00±2.22 92.00±2.59

0.5% 82.50±2.17 90.00±2.77 94.50±2.80

dataset are shown in Tables 4, 5 and 6 respectively. Since wvRN and nLB per-
form much worse than the other methods on this dataset, we omit their results
due to space limit. Similar observations are reported in [8].

We can observe that:

1. CGL (A-C-P-T) outperforms the state-of-the-art method, i.e., GNetMine,
significantly on all the types of objects. The reason is that CGL is able to
learn an approximately consistent heterogeneous network. This indicates the
effectiveness of CGL on heterogeneous information networks.

2. CGL (P-P) is better than LLGC (P-P) and CGL (A-A) is better than LLGC
(A-A). This strengthens the effectiveness of CGL on homogeneous networks.

5 Conclusions and Future Work

In this paper, we proposed a Consistent Graph Learning, which is robust to
inconsistent links in networks. Experiments on both homogeneous and heteroge-
neous network datasets show that the proposed method outperforms the state-
of-the-art methods. In the future, we plan to develop theoretical analysis on the

766 S. Zhi et al.

conditions under which the relation matrices can be recovered. Also, it is inter-
esting to analyze how the percentage of inconsistent links in a network affect the
classification performance, and test the algorithm in data set with large number
of classes.

Acknowledgments. Research was sponsored in part by the U.S. Army Research
Lab. under Cooperative Agreement No. W911NF-09-2-0053 (NSCTA), National Sci-
ence Foundation IIS-1017362, IIS-1320617, and IIS-1354329, HDTRA1-10-1-0120, and
grant 1U54GM114838 awarded by NIGMS through funds provided by the trans-NIH
Big Data to Knowledge (BD2K) initiative, and MIAS, a DHS-IDS Center for Multi-
modal Information Access and Synthesis at UIUC.

References

1. Bilgic, M., Mihalkova, L., Getoor, L.: Active learning for networked data. In: ICML,
pp. 79–86 (2010)

2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foun-
dations and Trends R© in Machine Learning 3(1), 1–122 (2011)

3. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press,
Cambridge (2004)

4. Chen, Y., Sanghavi, S., Xu, H.: Clustering sparse graphs. In: Advances in Neural
Information Processing Systems, pp. 2204–2212 (2012)

5. Gu, Q., Han, J.: Towards feature selection in network. In: CIKM, pp. 1175–1184
(2011)

6. Hong, M., Luo, Z.-Q.: On the linear convergence of the alternating direction
method of multipliers. arXiv preprint arXiv:1208.3922 (2012)

7. Ji, M., Han, J., Danilevsky, M.: Ranking-based classification of heterogeneous infor-
mation networks. In: KDD, pp. 1298–1306 (2011)

8. Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regularized transductive
classification on heterogeneous information networks. In: Balcázar, J.L., Bonchi,
F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part I. LNCS, vol. 6321,
pp. 570–586. Springer, Heidelberg (2010)

9. Li, W.-J., Yeung, D.-Y., Zhang, Z.: Probabilistic relational pca. In: NIPS,
pp. 1123–1131 (2009)

10. Lin, Z., Chen, M., Wu, L.: The augmented lagrange multiplier method for exact
recovery of corrupted low-rank matrices. Analysis, math.OC:-09-2215 (2010)

11. Lu, Q., Getoor, L.: Link-based classification. In: ICML, pp. 496–503 (2003)
12. Luo, D., Huang, H., Nie, F., Ding, C.H.: Forging the graphs: a low rank and

positive semidefinite graph learning approach. In: Advances in Neural Information
Processing Systems, pp. 2960–2968 (2012)

13. Macskassy, S.A., Provost, F.J.: Classification in networked data: A toolkit and a
univariate case study. Journal of Machine Learning Research 8, 935–983 (2007)

14. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Magazine 29(3), 93–106 (2008)

15. Shi, L., Zhao, Y., Tang, J.: Combining link and content for collective active learn-
ing. In: CIKM, pp. 1829–1832 (2010)

16. Smola, A.J., Kondor, R.: Kernels and regularization on graphs. In: Schölkopf, B.,
Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 144–158.
Springer, Heidelberg (2003)

http://arxiv.org/abs/1208.3922

Robust Classification of Information Networks by Consistent Graph Learning 767

17. Sun, R., Luo, Z.-Q., Ye, Y.: On the expected convergence of randomly permuted
admm. arXiv preprint arXiv:1503.06387 (2015)

18. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local
and global consistency. In: NIPS (2003)

19. Zhou, D., Huang, J., Schölkopf, B.: Learning from labeled and unlabeled data on
a directed graph. In: ICML, pp. 1036–1043 (2005)

20. Zhu, S., Yu, K., Chi, Y., Gong, Y.: Combining content and link for classification
using matrix factorization. In: SIGIR, pp. 487–494 (2007)

21. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using gaussian
fields and harmonic functions. In: ICML, pp. 912–919 (2003)

http://arxiv.org/abs/1503.06387

Author Index

Abou-Moustafa, Karim T. I-300
Acharya, Ayan I-283
Aharon, Michal III-180
Aidos, Helena III-150
Akoglu, Leman I-267
Alizadeh, Hosein II-655
Alon, Daniel III-53
Al-Otaibi, Reem I-184
Alves, Ana Priscila III-267
Amid, Ehsan I-219
An, Senjian I-546
Anagnostopoulos, Georgios C. I-659, II-120
Andrienko, Gennady III-254, III-316,

III-337
Andrienko, Natalia III-254, III-316, III-337
Angus, Michael II-736
Assam, Roland III-329
Aussem, Alex II-71

Bailey, James II-655
Baixeries, Jaume III-227
Bangcharoensap, Phiradet III-165
Barrett, Enda III-3
Bart, Evgeniy II-390
Bartos, Karel III-85, III-116
Batista, Diana III-150
Becker, Martin I-251
Beerenwinkel, Niko II-641
Belle, Vaishak II-327
Bello, Gonzalo A. II-736
Benavoli, Alessio III-199
Bengio, Yoshua I-498
Bennamoun, Mohammed I-546
Berlingerio, Michele III-222, III-320
Betz, Hans-Dieter III-316
Bian, Xiao II-687
Bicer, Veli III-222
Bifet, Albert I-417
Bischoff, Bastian III-133
Blondel, Mathieu II-19
Bockermann, Christian III-100
Böhmer, Wendelin I-119

Bondu, Alexis I-433
Bontempi, Gianluca I-200
Börner, Mathis III-208
Bosch, Harald III-203
Botea, Adi III-222
Bouillet, Eric III-68
Boullé, Marc III-37
Boussaid, Farid I-546
Braghin, Stefano III-222, III-320
Brailsford, Tim II-541
Brown, Gavin I-351
Brügge, Kai III-100
Buchman, Ethan I-483
Budhathoki, Kailash II-206
Bulò, Samuel Rota III-150
Buss, Jens III-100
Buzmakov, Aleksey II-157, III-227

Caceres, Rajmonda S. II-671
Caelen, Olivier I-200
Cai, Xiongcai II-3
Calabrese, Francesco II-474, III-320
Calders, Toon II-719, III-281
Cardinaels, Lara III-333
Carin, Lawrence II-53
Carreiras, Carlos III-267
Chang, Xiaojun I-383
Charuvaka, Anveshi I-675
Chatzis, Sotirios P. II-359
Chawla, Nitesh V. II-474, III-245, III-259
Chen, Changyou II-53
Chen, Qun III-303
Chen, Yucheng II-608
Cheng, Weiwei II-260
Chowdhury, Nipa II-3
Clarke, Luka A. III-285
Clérot, Fabrice III-37
Cleuziou, Guillaume II-493
Climent, Laura I-335
Codocedo, Victor III-227
Cohn, Trevor II-373
Corani, Giorgio III-199

Cornuéjols, Antoine I-433
Costa e Silva, Ana III-293
Couto, Francisco M. III-285
Czarnecki, Wojciech Marian I-52

d’Aquin, Mathieu III-271
Dachraoui, Asma I-433
Dal Pozzolo, Andrea I-200
David, Yahel I-464
De Bie, Tijl III-289
De Raedt, Luc II-327, III-312
Di Mauro, Nicola II-343
Dias, Gaël II-493
Diethe, Tom II-279
Dobbie, Gillian I-417
Domeniconi, Carlotta II-625
Dong, Yuxiao II-474, III-245, III-259
Dries, Anton III-312
Drumond, Lucas II-87
Duarte, Rui Policarpo III-267
Duivesteijn, Wouter III-250
Dunne, Cody III-320

Eberts, Mona III-133
Efremova, Julia III-281
Egorov, Alexey III-100
Esposito, Floriana II-343, III-218

Fajemisin, Adejuyigbe O. I-335
Fan, Jianping I-367
Feiden, Simon III-329
Ferilli, Stefano III-218
Fern, Xiaoli Z. I-235
Finkelstein, Yehuda III-53
Fischer, Asja I-498
Fish, Benjamin II-671
Flach, Peter I-68, I-184, II-279
Forman, George III-20
Franc, Vojtech III-85
Fred, Ana III-150, III-267
Fuchs, Georg III-254, III-316
Fujino, Akinori II-19
Fukuchi, Kazuto II-458
Fürnkranz, Johannes I-102

Ganji, Mohadeseh II-655
Gaussier, Éric I-594
Gay, Dominique III-37
Georgiopoulos, Michael I-659, II-120

Ghosh, Joydeep I-283
Ghosh, Shaona I-448
Giles, C. Lee I-516
Gioannini, Corrado III-237
Gionis, Aristides I-219, II-406, II-719
Gkoufas, Yiannis II-474, III-320
Görnitz, Nico II-137
Goulding, James II-541
Großhans, Michael I-152
Gu, Quanquan II-752
Guan, Ziyu I-367
Guidotti, Riccardo III-222
Guigourès, Romain III-37
Guo, Yuhong II-525
Gupta, Kinjal Dhar III-241
György, András I-625

Haber, Rana I-20
Habrard, Amaury I-594
Haffari, Gholamreza II-373
Han, Jiawei II-608, II-752
Hanley, John II-390
Hara, Kazuo I-135
Harding, Matthew II-53
Harlalka, Jitendra K. II-736
He, Lifang I-318
Henderson, Jette I-283
Henzgen, Sascha II-422
Hernández-Orallo, José II-509
Hilbuch, Amit III-53
Hillel, Eshcar III-180
Hossain, M. Shahriar II-441
Hotho, Andreas I-251
Houdyer, Pierre III-276
Hsieh, Hsun-Ping II-576
Hu, Changwei II-53
Hu, Jinli I-560
Hu, Qingbo II-559
Huang, David Tse Jung I-417
Huang, Yinjie I-659
Hüllermeier, Eyke II-227, II-260, II-422

Im, Daniel Jiwoong I-483, I-533
Iwata, Tomoharu I-577

Jankowski, Piotr III-254
Jethava, Vinay II-641
Jiang, Geoff II-687
Jiang, Shan II-608

770 Author Index

Jiang, Tao III-303
Johnson, Reid A. III-259
Johri, Aditya II-625
Jozefowicz, Rafal I-52

Kagian, Amit III-180
Kamath, Ujval III-293
Karakasidis, Alexandros III-232
Karampatziakis, Nikos I-37
Katouzian, Amin II-243
Kawahara, Yoshinobu I-577
Kaytoue, Mehdi III-227, III-276
Ke, Qiuhong I-546
Keshet, Renato III-20
Kim, Hyunwoo J. I-102
Kimmig, Angelika III-312
Kloft, Marius II-137
Knoll, Christian II-295
Kobayashi, Hayato III-165
Koh, Yu Sing I-417
Koloniari, Georgia III-232
Kramer, Stefan III-325
Krüger, Robert III-203
Kull, Meelis I-68, I-184
Kumar, Rohit II-719
Kumar, Vipin II-736
Kuznetsov, Sergei O. II-157, III-227

Lam, Hoang Thanh III-68
Lamurias, Andre III-285
Landes, Dieter I-251
Lee, Dong-Hyun I-498
Lempel, Ronny III-180
Li, Cheng-Te II-576
Li, Kaiwen III-303
Li, Xue I-383
Li, Zhanhuai III-303
Lijffijt, Jefrey III-289
Lim, Ee-Peng II-701
Lin, Shou-De II-576
Lin, Shuyang II-559
Linder, Stephen III-3
Liu, Haixia II-541
Liu, Li-Ping I-235
Liu, Rujie I-691
Lopes, Nuno III-222
Lourenço, André III-150, III-267
Luo, Cheng II-3
Luo, Peng I-367
Luu, Minh-Duc II-701

Mahabal, Ashish III-241
Makabee, Hayim III-180
Malmi, Eric II-406
Mangili, Francesca III-199
Markert, Heiner III-133
Martínez-Usó, Adolfo II-509
Martino, Mauro III-320
Matsumoto, Yuji I-135
McVicar, Matt III-289
Meert, Wannes III-312
Méger, Nicolas II-190
Mencía, Eneldo Loza I-102
Mesnage, Cédric III-289
Miettinen, Pauli II-36
Mineiro, Paul I-37
Mirzazadeh, Farzaneh I-625
Mitchell, Joseph III-276
Morik, Katharina III-100, III-208
Motta, Enrico III-271
Müller, Klaus-Robert II-137
Murata, Tsuyoshi III-165

Nabi, Zubair II-474
Nachlieli, Hila III-20
Nahum, Shai III-53
Naim, Sheikh Motahar II-441
Nam, Jinseok I-102
Napoli, Amedeo II-157, III-227
Navab, Nassir II-243
Neuvirth, Hani III-53
Nguyen, Hoang-Vu II-173
Nguyen-Tuong, Duy III-133
Nicholson, Ann II-373
Nicolae, Maria-Irina I-594
Nie, Feiping I-383
Niebler, Thomas I-251
Ning, Xia II-687
Nissim, Raz III-180
Nitti, Davide II-327
Ntoutsi, Eirini I-401

O’Connell, Michael III-293
O’Sullivan, Barry I-335
Obermayer, Klaus I-119
Okada, Rina II-458
Ororbia II, Alexander G. I-516
Otto, Florian I-251

Author Index 771

Paige, Brooks II-311
Pan, Wei III-303
Paolotti, Daniela III-237
Pedemane, Navya II-736
Pei, Yuanli I-235
Peng, Jian II-593
Peng, Jinye I-367
Pernkopf, Franz I-86, I-168, II-295
Perra, Nicola III-237
Perrotta, Daniela III-237
Peter, Adrian M. I-20
Pinelli, Fabio II-474
Piškorec, Matija III-298
Plantevit, Marc III-276
Pölsterl, Sebastian II-243
Pothier, Catherine II-190
Pratesi, Francesca III-222
Prestwich, Steven D. I-335
Price, Bob II-390
Prudêncio, Ricardo B.C. I-184
Prügel-Bennett, Adam I-448

Quaggiotto, Marco III-237

Rahmani, Hossein III-281
Rai, Piyush II-53
Ramakrishnan, Naren II-441
Rangarajan, Anand I-20
Rangwala, Huzefa I-675
Ranjbar-Sahraei, Bijan III-281
Rasmussen, Jamie III-320
Ratajczak, Martin I-168
Rath, Michael II-295
Rätsch, Gunnar II-137
Raykar, Vikas C. I-3
Redavid, Domenico III-218
Reitter, David I-516
Renkens, Joris III-312
Revelle, Matt II-625
Rhode, Wolfgang III-100, III-208
Rigotti, Christophe II-190
Ring, Markus I-251
Rinzivillo, Salvatore III-316
Robardet, Céline III-276
Ross, Steven III-320
Rossi, Fabrice III-37
Ruhe, Tim III-100, III-208

Saha, Amrita I-3
Sakuma, Jun II-458

Samatova, Nagiza F. II-736
Saraf, Parang II-441
Schäfer, Dirk II-227
Schedl, Markus III-213
Scheffer, Tobias I-152
Schilling, Nicolas II-87, II-104
Schmidt-Thieme, Lars II-87, II-104
Schreiter, Jens III-133
Schuurmans, Dale I-300, I-625
Sebban, Marc I-594
Sechidis, Konstantinos I-351
Seidl, Thomas III-329
Seifi, Abbas II-655
Semazzi, Fredrick H.M. II-736
Shamanta, Debakar II-441
Shao, Weixiang I-318
Shareghi, Ehsan II-373
Sheng, Quan Z. I-383
Shi, Ziqiang I-691
Shigeto, Yutaro I-135
Shimbo, Masashi I-135
Shimizu, Nobuyuki III-165
Shimkin, Nahum I-464
Sluban, Borut III-298
Šmuc, Tomislav III-298
Sofka, Michal III-85, III-116
Sohel, Ferdous I-546
Solin, Arno II-406
Spiliopoulou, Myra I-401
Storkey, Amos J. I-560, I-645
Stuckey, Peter J. II-655
Sun, Yidan II-608
Suzuki, Ikumi I-135
Sweeney, Mack II-625

Tabor, Jacek I-52
Takeuchi, Koh I-577
Tang, Jie III-245
Tang, Qingming II-593
Tatti, Nikolaj II-719
Taylor, Graham W. I-483, I-533
Teffer, Dean I-283
Thaele, Julia III-250
Thom, Dennis III-203
Tiddi, Ilaria III-271
Tizzoni, Michele III-237
Tolpin, David II-311, III-308
Toussaint, Marc III-133
Tran, Van-Tinh II-71
Tschiatschek, Sebastian I-86, I-168, II-295

772 Author Index

Tuyls, Karl III-281
Twomey, Niall II-279
Tyler, Marcus I-283
Tyukin, Andrey III-325

Ueda, Naonori II-19
Ukkonen, Antti I-219

van de Meent, Jan-Willem II-311
III-308

Van den Broeck, Guy III-312
van Leeuwen, Matthijs III-333
Vergari, Antonio II-343
Verykios, Vassilios S. III-232
Vespignani, Alessandro III-237
Vidovic, Marina M.-C. II-137
Vilalta, Ricardo III-241
Vlasselaer, Jonas III-312
Vreeken, Jilles II-173, II-206

Wagner, Sebastian I-401
Wang, Sen I-383
Wang, Zhong III-303
Weiss, Gerhard III-281
White, Martha I-625
Wicker, Jörg III-325
Wistuba, Martin II-87, II-104

Wood, Frank II-311, III-308
Wu, Jian I-516

Xiao, Min II-525
Xie, Pengtao I-610
Xu, Jinbo II-593

Yamauchi, Satoshi III-165
Yang, Chao II-593
Yang, Yang III-245
Yang, Yang III-245
Yao, Lina I-383
Ye, Junting I-267
Yom-Tov, Elad III-53
Yousefi, Niloofar II-120
Yu, Philip S. I-318, II-559

Zaffalon, Marco III-199
Zhang, Chao II-608
Zhang, Jingyuan II-559
Zhang, Qian III-237
Zhang, Saizheng I-498
Zhi, Shi II-752
Zhou, Mingyuan I-283
Zhu, Zhanxing I-560, I-645
Zimmerman, Albrecht III-276
Zimmermann, Max I-401

Author Index 773

	Preface
	Organization
	Abstracts of Journal Track Articles
	Contents – Part II
	Research Track Matrix and Tensor Analysis
	BoostMF: Boosted Matrix Factorisation for Collaborative Ranking
	1 Introduction
	2 Related Work
	3 Boosted Matrix Factorisation (BoostMF)
	3.1 Probabilistic Matrix Factorisation (PMF)
	3.2 BoostMF
	3.3 Theoretical Analysis

	4 Experiments
	4.1 Datasets and Evaluation Metric
	4.2 Experimental Setup
	4.3 Results

	5 Conclusion
	References

	Convex Factorization Machines
	1 Introduction
	2 Factorization Machines
	3 Convex Formulation
	4 Optimization Algorithm
	4.1 Minimizing with Respect to bold0mu mumu ww2005/06/28 ver: 1.3 subfig packagewwww
	4.2 Minimizing with Respect to bold0mu mumu ZZ2005/06/28 ver: 1.3 subfig packageZZZZ
	4.3 Squared Loss Case
	4.4 Computational Complexity
	4.5 Convergence Guarantees

	5 Experimental Results
	5.1 Synthetic Experiments
	5.2 Recommender System Experiments

	6 Related Work
	7 Conclusion
	References

	Generalized Matrix Factorizations as a Unifying Framework for Pattern Set Mining: Complexity Beyond Blocks
	1 Introduction
	2 Related Work
	3 Definitions
	3.1 Generalized Outer Product
	3.2 Generalized Rank

	4 Computational Complexity
	4.1 Rank-1 Submatrices
	4.2 Selecting Some Rank-1 Submatrices
	4.3 Minimum-Error Sub-Decompositions
	4.4 Deciding the Rank
	4.5 Minimum-Error Approximate Decompositions

	5 Approximability
	5.1 Approximating Smallest Sub-Decompositions
	5.2 Approximating Minimum-Error Sub-Decompositions

	6 Conclusions and Future Work
	References

	Scalable Bayesian Non-negative Tensor Factorization for Massive Count Data
	1 Introduction
	2 Canonical PARAFAC Decomposition
	3 Beta-Negative Binomial CP Decomposition
	3.1 Reparametrizing the Poisson Distribution

	4 Inference
	4.1 Gibbs Sampling
	4.2 Variational Bayes Inference
	4.3 Online Inference
	Conditional Density Filtering:
	Stochastic Variational Inference:
	Computational Complexity:

	5 Related Work
	6 Experiments
	6.1 Inferring the Rank
	6.2 Tensor Completion Results
	6.3 Analyzing Publications Database
	6.4 Analyzing Political Science Data
	6.5 Analyzing Transactions Data
	6.6 Scalability

	7 Conclusion
	References

	A Practical Approach to Reduce the Learning Bias Under Covariate Shift
	1 Introduction
	2 Preliminaries
	3 Problem Analysis
	4 Experiments
	4.1 Importance Ratio Estimation
	4.2 Toy Regression Problem
	4.3 Simple Step Sample Selection Distribution
	4.4 General Covariate Selection Mechanisms

	5 Conclusions
	References

	Hyperparameter Optimization with Factorized Multilayer Perceptrons
	1 Introduction
	2 Related Work
	3 Background
	3.1 Problem Setting
	3.2 Requirements for a Surrogate Model
	3.3 Proposed Models
	3.4 Estimating Prediction Uncertainty

	4 Experiments
	4.1 Meta Data Set Creation
	4.2 Experiment 1: Reconstruction of the Response Surface
	4.3 Experiment 2: Uncertainty Estimation in SMBO
	4.4 Experiment 3: Sequential Model Based Optimization

	5 Conclusions
	References

	Hyperparameter Search Space Pruning -- A New Component for Sequential Model-Based Hyperparameter Optimization
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 Background
	3.1 The Formal Setup
	3.2 Sequential Model-Based Optimization

	4 Pruning the Search Space
	4.1 Formal Description

	5 Experimental Evaluation
	5.1 Tuning Strategies
	5.2 Evaluation Metrics
	5.3 Meta-Data Sets
	5.4 Hyperparameter Optimization for SVMs
	5.5 Hyperparameter Optimization for Weka

	6 Conclusion and Future Work
	References

	Multi-Task Learning with Group-Specific Feature Space Sharing
	1 Introduction
	2 Formulation
	3 The Proposed Consensus Optimization Algorithm
	3.1 Convergence Analysis and Stopping Criteria
	3.2 Computational Complexity

	4 Generalization Bound Based on Rademacher Complexity
	5 Experiments
	5.1 Experimental Settings
	5.2 Experimental Results

	6 Conclusions
	References

	Opening the Black Box: Revealing Interpretable Sequence Motifs in Kernel-Based Learning Algorithms
	1 Introduction
	2 Preliminaries
	2.1 Weighted-Degree (WD) Kernel
	2.2 Positional Oligomer Importance Matrices (POIMs)
	2.3 Shortcomings of POIMs
	2.4 What is Coming Up: The Proposed Approach in a Nutshell

	3 Methodology for Revealing Discriminative Motifs by Mimicking POIMs
	3.1 Optimization Problem
	3.2 Efficient Computation of motifPOIM

	4 Empirical Analysis
	4.1 Experimental Setup
	4.2 Experimental Results for USPS Dataset
	4.3 Results for Synthetic Splice Site Experiments
	4.4 Real-World Experiments on Human Splice Data

	5 Conclusion and Discussion
	References

	Pattern and Sequence Mining
	Fast Generation of Best Interval Patternsfor Nonmonotonic Constraints
	1 Introduction
	2 Data Model
	2.1 FCA and Pattern Structures
	2.2 Interval Pattern Structure
	2.3 Stability Index of a Concept
	2.4 Projections of Pattern Structures
	2.5 Projections of Interval Pattern Structures

	3 -o Algorithm
	3.1 Anti-monotonicity w.r.t. a Projection
	3.2 Anti-monotonicity w.r.t. a Chain of Projections
	3.3 Algorithms
	3.4 -o Algorithm for Interval Tuple Data
	3.5 -o Algorithm for Closed Patterns
	3.6 -measure and -o Algorithm
	3.7 Example of -Stable Patterns in Interval Tuple Data

	4 Experiments and Discussion
	4.1 Dataset Simplification
	4.2 Datasets
	4.3 Experiments

	5 Conclusion
	References

	Non-parametric Jensen-Shannon Divergence
	1 Introduction
	2 Theory
	2.1 Univariate Case
	2.2 Multivariate Case
	2.3 Computing CJS
	2.4 Complexity Analysis
	2.5 Summing Up

	3 Related Work
	4 Experiments
	4.1 Statistical Power
	4.2 Scalability
	4.3 Change Detection on Time Series
	4.4 Anomaly Detection on Time Series
	4.5 Multivariate Discretisation
	4.6 Multi-Target Subgroup Discovery

	5 Discussion
	6 Conclusion
	References

	Swap Randomization of Bases of Sequences for Mining Satellite Image Times Series
	1 Introduction
	2 Grouped Frequent Sequential Patterns
	3 Swap Randomization of Base of Sequences Representing SITS
	4 GFS-Pattern Assessment and SITS Summarization
	5 Experiments
	6 Conclusion
	References

	The Difference and the Norm --- Characterising Similarities and Differences Between Databases
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 MDL, a Brief Primer

	4 MDL for the Difference and the Norm
	4.1 The Problem, Informally
	4.2 Our Models
	4.3 Encoded Length of the Data
	4.4 Encoded Length of the Model
	4.5 The Problem, Formally

	5 Algorithm
	5.1 The Cover Algorithm
	5.2 The DIFFNORM Algorithm
	5.3 Candidate Generation and Evaluation
	5.4 Estimating Candidate Quality
	5.5 Complexity

	6 Experiments
	6.1 Synthetic Data
	6.2 Real World Data

	7 Discussion
	8 Conclusion
	References

	Preference Learning and Label Ranking
	Dyad Ranking Using A Bilinear Plackett-Luce Model
	1 Introduction
	2 Dyad Ranking
	2.1 Label Ranking
	2.2 Dyad Ranking as an Extension of Label Ranking

	3 Related Work
	4 A Bilinear Plackett-Luce Model
	4.1 The Plackett-Luce Model
	4.2 Label Ranking Using the PL Model
	4.3 Dyad Ranking Using the PL model
	4.4 Identifiability of the Bilinear PL Model
	4.5 Comparison Between the Linear and Bilinear PL Model

	5 Experiments
	5.1 Synthetic Data
	5.2 Case Study in Meta-Learning

	6 Summary and Outlook
	References

	Fast Training of Support Vector Machines for Survival Analysis
	1 Introduction
	2 Survival Analysis
	3 Survival Analysis as Ranking Problem
	3.1 Truncated Newton Optimization
	3.2 Efficient Calculation of Search Direction
	3.3 Improving Optimization by Order Statistic Trees

	4 Survival Analysis as Regression Problem
	5 Non-linear Extension
	6 Experiments
	6.1 Computational Efficiency
	6.2 Prediction Performance

	7 Conclusion
	References

	Superset Learning Based on Generalized Loss Minimization
	1 Introduction
	2 Setting and Notation
	3 A Loss Minimization Approach
	3.1 Generalized Loss Minimization
	3.2 Data Disambiguation
	3.3 Examples
	3.4 Superset Learning for Structured Output Prediction

	4 Label Ranking
	4.1 Prediction Accuracy
	4.2 Label Ranking Methods

	5 Label Ranking based on Labelwise Decomposition
	5.1 Complete Training Information
	5.2 Incomplete Training Information
	5.3 Generalized Nearest Neighbor Estimation
	5.4 Experiments

	6 Summary and Outlook

	Probabilistic, Statistical, and Graphical Approaches
	Bayesian Modelling of the Temporal Aspects of Smart Home Activity with Circular Statistics
	1 Introduction
	2 Related Work
	3 Methods
	3.1 The Wrapped Normal (WN) Distribution
	3.2 Bayesian Inference
	3.3 WN Mixture (WNM) Models
	3.4 Approximate WN (AWN)
	3.5 Approximate WNM (AWNM)
	3.6 Model Comparison
	3.7 Rose Diagrams

	4 Experiments
	4.1 Toy Data
	4.2 The CASAS HH101 Dataset
	4.3 Priors
	4.4 Symmetry Breaking

	5 Results
	5.1 Toy Data
	5.2 Smart Home Data

	6 Discussion
	7 Conclusions
	7.1 Further Work

	References

	Message Scheduling Methods for Belief Propagation
	1 Introduction
	2 Preliminaries
	3 Scheduling
	3.1 Residual Belief Propagation
	3.2 Noise Injection Belief Propagation
	3.3 Weight Decay Belief Propagation

	4 Experiments
	4.1 Fully Connected Graph with Uniform Parameters
	4.2 Ising Grids with Random Factors
	4.3 Quality of Marginals

	5 Related Work
	6 Conclusion
	References

	Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Program
	2.2 Adaptive Markov Chain Monte Carlo
	2.3 Lightweight Metropolis-Hastings

	3 Adaptive Lightweight Metropolis-Hastings
	3.1 Quantifying Influence
	3.2 Propagating Rewards to Variables

	4 Convergence of Adaptive LMH
	5 Empirical Evaluation
	6 Contribution and Future Work
	References

	Planning in Discrete and Continuous Markov Decision Processes by Probabilistic Programming
	1 Introduction
	2 Preliminaries
	3 Dynamic Distributional Clauses
	4 Planning by Importance Sampling
	5 Related Work
	6 Experiments
	7 Practical Improvements
	8 Conclusions
	References

	Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning
	1 Introduction
	2 Sum-Product Networks
	2.1 Structure Learning

	3 Contributions
	3.1 Deepening by Limiting Node Splits
	3.2 Regularization by Tractable Multivariate Distribution Hybridization
	3.3 Strengthening by Model Averaging

	4 Related Works
	5 Experiments
	5.1 Experimental Design
	5.2 Results and Discussion

	6 Conclusions
	References

	Sparse Bayesian Recurrent Neural Networks
	1 Introduction
	2 Recurrent Neural Networks
	3 Proposed Approach
	3.1 Regression SB-RNN
	3.2 Classification SB-RNN

	4 Experiments
	4.1 Human Motion Modeling
	4.2 Acoustic Novelty Detection
	4.3 Computational Complexity

	5 Conclusions and Future Work
	References

	Structured Prediction of Sequences and Trees Using Infinite Contexts
	1 Introduction
	2 Background and Related Work
	3 The Model
	4 Learning
	5 Prediction
	5.1 A* Search
	5.2 MCMC Sampling

	6 Experiments
	6.1 Morphological Parsing
	6.2 Syntactic Parsing
	6.3 Part-of-Speech Tagging
	6.4 Analysis

	7 Conclusion and Future Work
	References

	Temporally Coherent Role-Topic Models (TCRTM): Deinterlacing Overlapping Activity Patterns
	1 Introduction
	2 Related Work
	3 Model
	3.1 Inference

	4 Experiments
	4.1 Activity Types
	4.2 Perplexity
	4.3 Effect of Roles

	5 Conclusions
	References

	The Blind Leading the Blind: Network-Based Location Estimation Under Uncertainty
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Problem Setting
	3.2 Estimating a Single Location
	3.3 Estimating Multiple Dependent Locations
	3.4 Baseline Methods

	4 Experiments
	4.1 Predicting Social Network User Home Locations
	4.2 Geotagging Historical Church Records
	4.3 Geotagging Flickr Photos

	5 Conclusions and Discussion
	References

	Weighted Rank Correlation: A Flexible Approach Based on Fuzzy Order Relations
	1 Introduction
	2 Rank Correlation
	2.1 Concordance and Discordance
	2.2 Rank Correlation Measures

	3 Fuzzy Relations
	3.1 Fuzzy Equivalence
	3.2 Fuzzy Ordering
	3.3 Practical Construction

	4 Fuzzy Relations on Rank Data
	4.1 Scaling Functions on Rank Positions

	5 Weighted Rank Correlation
	6 Related Work
	7 Experiments
	7.1 First Study
	7.2 Second Study

	8 Conclusion and Future Work
	References

	Rich Data
	Concurrent Inference of Topic Models and Distributed Vector Representations
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Methodology
	4.1 Distributed Representation of Heterogeneous Entities
	4.2 Estimating Topic Labels of Documents
	4.3 Concurrent Training

	5 Complexity Analysis
	6 Evaluation
	7 Experiments
	7.1 Analysis of Distributed Representations of Topics and Documents
	7.2 Expressiveness of Topic Vectors
	7.3 Comparison of Quality of Generated Topics
	7.4 Evaluation using Domain Specific Information
	7.5 Runtime Characteristics

	8 Conclusion
	References

	Differentially Private Analysis of Outliers
	1 Introduction
	Related Works.
	Our Contribution.

	2 Differential Privacy
	Global Sensitivity.
	Smooth Sensitivity.

	3 Problem Statement
	3.1 Counting Outliers
	3.2 Differential Privacy of Outlier Analysis

	4 Differentially Private Count of Outliers
	4.1 Difficulties in Global Sensitivity Method
	4.2 Local Sensitivity and Smooth Sensitivity
	Local Sensitivity.
	Smooth Sensitivity.

	4.3 Efficient Computation of Smooth Sensitivity Bound
	Algorithm for Local Sensitivity Bound.
	Algorithm for Smooth Sensiticity Bound.

	5 Experiments
	5.1 Settings
	5.2 Count Outliers

	6 Conclusion and Future Works
	References

	Inferring Unusual Crowd Events from Mobile Phone Call Detail Records
	1 Introduction
	2 Unusual Event Detection Problem
	3 Unusual Event Detection Framework
	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Efficiency and Parameters

	5 Visual Analytics Prototype System
	6 Related Work
	7 Conclusion and Future Work
	References

	Learning Pretopological Spaces for Lexical Taxonomy Acquisition
	1 Introduction and Related Work
	2 Pretopological Framework
	2.1 Pretopology and Multi-criteria Analysis
	2.2 Pretopology and LT Acquisition
	2.3 Current Limitations

	3 Learning Pretopological Spaces
	3.1 Parameterized Pretopological Space
	3.2 Semi-supervised Learning of P-Spaces

	4 Experiments on LT Acquisition
	4.1 Experimental Setups
	4.2 LT Acquisition with Auto-supervision
	4.3 LT Acquisition with Semi-supervision

	5 Conclusions
	References

	Multidimensional Prediction Models When the Resolution Context Changes
	1 Introduction
	2 Multidimensional Contexts
	3 Measure Properties and Mean Models
	4 Experimental Setting and Results
	5 Related Work
	6 Conclusions and Future Work
	References

	Semi-supervised Subspace Co-Projection for Multi-class Heterogeneous Domain Adaptation
	1 Introduction
	2 Related Work
	3 Semi-supervised Multi-class Heterogeneous Domain Adaptation
	3.1 Semi-supervised Learning Framework
	3.2 Multi-class Classification with ECOC Schemes

	4 Training Algorithm
	5 Experiments
	5.1 Datasets and Methods
	5.2 Cross-lingual Text Classification
	5.3 Parameter Sensitivity Analysis
	5.4 Experimental Results on UCI Dataset
	5.5 Impact of the ECOC Encoding Schemes

	6 Conclusion
	References

	Towards Computation of Novel Ideas from Corpora of Scientific Text
	1 Introduction
	2 Related Work
	3 Defining an ``Idea''
	4 Methodology
	4.1 Noun-Phrase Extraction
	4.2 Noun-Phrase Filtering
	4.3 Noun-Phrases Categorization
	4.4 Known-Idea Construction
	4.5 Relevance Values for Known-Ideas
	4.6 Computation of Novel-Idea Pairs

	5 Experimental Evaluation
	5.1 Results

	6 Discussion
	7 Conclusion
	References
	A Appendix

	Social and Graphs
	Discovering Audience Groups and Group-Specific Influencers
	1 Introduction
	2 Preliminary
	3 The AudClus Method
	3.1 Audience Clustering for the Single-direct Case
	3.2 Generalized Model

	4 Experiment
	4.1 Experiment Setup
	4.2 Qualitative Analysis and Case Studies
	4.3 Quantitative Analysis
	4.4 Observations on Group-Specific Influence

	5 Related Work
	6 Conclusion
	References

	Estimating Potential Customers Anywhere and Anytime Based on Location-Based Social Networks
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Dataset
	5 Potential Customer Estimator (PCE)
	5.1 Geographical, Mobility, and Social Features
	5.2 Correlation Graph
	5.3 Location Correlation
	5.4 Customer Inference Algorithm

	6 Experiments
	6.1 Evaluation Plans
	6.2 Experimental Results

	7 Conclusion
	References

	Exact Hybrid Covariance Thresholding for Joint Graphical Lasso
	1 Introduction
	2 Notation and Definition
	3 Joint Graphical Lasso
	4 Uniform Thresholding
	5 Non-uniform Thresholding
	6 Hybrid ADMM (HADMM)
	7 Experimental Results
	7.1 Correctness of HADMM by Experimental Validation
	7.2 Performance on Synthetic Data
	7.3 Performance on Real Gene Expression Data

	8 Conclusion and Discussion
	References

	Fast Inbound Top-K Query for Random Walk with Restart
	1 Introduction
	2 Preliminaries
	2.1 Problem Description
	2.2 Naïve Methods
	2.3 Overview of Squeeze and Ripple

	3 The Squeeze Algorithm
	4 The Ripple Algorithm
	4.1 Algorithm Sketch
	4.2 The Lower Bound
	4.3 The Upper Bound

	5 Experiments
	5.1 Experimental Setup
	5.2 Illustrating Cases
	5.3 Efficiency Study

	6 Related Work
	7 Conclusions
	References

	Finding Community Topics and Membership in Graphs
	1 Introduction
	2 Related Work
	3 Background
	3.1 Subspace Clustering
	3.2 Topic Models

	4 Seeded Estimation of Network Communities
	4.1 Notation
	4.2 Model
	4.3 Algorithm

	5 Experiments
	5.1 Dataset Descriptions
	5.2 Methods and Evaluation
	5.3 Results
	5.4 Interpretation of Detected Communities

	6 Conclusion
	References

	Finding Dense Subgraphs in Relational Graphs
	1 Introduction
	2 Related Work
	2.1 Finding a Dense Subgraph in a Single Graph
	2.2 Finding Cross-Graph Quasicliques

	3 Methods
	3.1 A Greedy Algorithm for Densest Common Subgraph
	3.2 Densest Common at Least-k Subgraph (DCalkS)

	4 Experiments
	4.1 Synthetic Dataset
	4.2 Real-World Datasets

	5 Discussion
	References

	Generalized Modularity for Community Detection
	1 Introduction
	2 Generalized Modularity (GM)
	2.1 Comparison to Modularity
	2.2 Unified Generalized Modularity (UGM)
	2.3 Finding Communities Based on the GM Quality Function

	3 Experiments
	3.1 Testing Unified Generalized Modularity
	3.2 Training Parameters of Generalized Modularity
	3.3 Comparison with Other Methods

	4 Conclusion
	References

	Handling Oversampling in Dynamic Networks Using Link Prediction
	1 Introduction
	1.1 Oversampling
	1.2 Link Prediction
	1.3 Related Work

	2 Problem Formulation and Methodology
	3 Generative Models for Graph Sequences
	3.1 Generative Model for the Ground-Truth Graph Sequence
	3.2 Generative Model for Oversampling

	4 Results for Synthetic Data
	5 Results for Real-World Data
	5.1 Haggle Infocom
	5.2 MIT Reality Mining

	6 Conclusions
	References

	Hierarchical Sparse Dictionary Learning
	1 Introduction
	2 Hierarchical Sparse Structures on Dictionaries
	3 Hierarchical Sparse Dictionary Learning
	3.1 Approximated sparsity of D on
	3.2 Optimization Algorithm
	3.3 Analysis of HiSDL Algorithm

	4 Related Work
	5 Experimental Results
	5.1 Evaluation on Empirical Errors
	5.2 Evaluation on Atom Recovery
	5.3 Evaluation on Sparse Codes

	6 Conclusion
	References

	Latent Factors Meet Homophily in Diffusion Modelling
	1 Introduction
	2 Related Works
	2.1 Latent Factor Models
	2.2 Social Influence and Diffusion Models

	3 Proposed Framework and Model
	3.1 Basic Notations
	3.2 Framework
	3.3 Topic Interaction and Homophily Aware Diffusion (TIHAD) Model
	3.4 Linear Threshold with Latent Factors (LTLF)

	4 Learning of TIHAD Model
	4.1 Optimization Formulation
	4.2 Optimization Solution

	5 Experiments
	5.1 Impact of Homophily on Diffusion
	5.2 Impact of Item Interaction on Diffusion
	5.3 Hashtag Diffusion Prediction Evaluation

	6 Conclusion
	References

	Maintaining Sliding-Window Neighborhood Profiles in Interaction Networks
	1 Introduction
	2 Preliminaries
	3 Problem Statement
	4 Maintaining the Exact Neighborhood Profile
	4.1 Summary for Neighborhood Functions
	4.2 Updating Summaries

	5 Approximating Neighborhood Function
	5.1 Hyperloglog and Sliding-Window Hyperloglog Sketches
	5.2 Computation of Neighborhood Profiles Based on Sliding HLL

	6 Related Work
	7 Experimental Evaluation
	8 Concluding Remarks
	References

	Response-Guided Community Detection: Application to Climate Index Discovery
	1 Introduction
	2 Response-Guided Community Detection
	2.1 Problem Statement
	2.2 Algorithms for Response-Guided Community Detection

	3 Climate Index Discovery
	3.1 Network Construction Methodology

	4 Experimental Evaluation
	4.1 Data Description
	4.2 Data Preprocessing
	4.3 Climate Networks Constructed
	4.4 Climate Indices Discovered
	4.5 Seasonal Rainfall Prediction
	4.6 Physical Interpretation of Climate Indices Discovered

	5 Conclusions
	References

	Robust Classification of Information Networks by Consistent Graph Learning
	1 Introduction
	2 The Proposed Method
	2.1 Preliminary Definitions
	2.2 Notation
	2.3 Standard Graph Regularization
	2.4 Consistent Graph Learning
	2.5 Optimization
	2.6 Estimation of Unlabeled Data
	2.7 Analysis

	3 Related Work
	4 Experiments
	4.1 Data Sets
	4.2 Baselines and Parameter Settings
	4.3 Classification Results on Cora
	4.4 Classification Results on DBLP

	5 Conclusions and Future Work
	References

	Author Index

