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Abstract This paper deals with the modeling, routing, and managing aspects of a
warehouse with parallel aisles and cross-aisles, in which we assume a picker-to-part
process. Pickers either retrieve in the aisles-stored products to fulfill a customer
order, or do some nonurgent activity. The main contribution of this paper is the
consideration of constraints, which are often disregarded by other papers. We study
in particular the consequences of some ‘working conditions’ for the pickers on the
overall solution quality. We analyze a warehouse layout designated to vehicle
routing. We study the organization of products into locations, given some statistical
forecasts on the future orders. Then we describe a management strategy to regulate
the number of pickers doing the picking activity. Finally, an algorithm is proposed
as a solution and tested by simulation experiments.
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Introduction

Warehousing is an important part in a logistic process (Roodbergen 2001).
A careful designing and planning of a warehouse provides a better service for lower
cost. We study here the order picking process, as it is known as the most
time-consuming task in a warehouse (Tompkins et al. 1996). Order picking has
been widely studied for decades on the designing of the warehouse, the storing
strategies, and the control of the pickers (De Koster et al. 2007).
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The designing of the warehouse is a complex task with few structured approaches
(Backer and Canessa 2009). We consider here the most common design of the
warehouse composed of parallel aisles and cross-aisles. Concerning the organization
of the storage area, we refer to Roodbergen and De Koster (2001), De Koster et al.
(2007). The control of the pickers raises two questions, namely the routing of the
pickers and the management of the number of needed pickers. Several papers pro-
pose efficient heuristics to solve the routing problem (Roodbergen and De Koster
2001; Hall 1993; Ratliff and Rosenhal 1983; Theys et al. 2010). However, there have
only been a few papers about a dynamic management of the pickers. Our work is
close to the one of Mazalov and Gurtov (2012), who considered a queuing model
with a dynamic number of servers depending on the queue length. Both works
assume that we can call additional pickers or send them back to do some nonurgent
activities in the warehouse, in order to minimize the number of pickers while
optimizing the service quality. However, instead of running simulations to find out
the maximal number of pickers we need, we fix the number of pickers present in the
warehouse, and evaluate the service quality under different working constraints.

The contributions of this paper are the following. First, current control strategies
for the pickers disregard their situation. Pickers are asked for an intensive work and
a high flexibility. Our main contribution is to provide a compromise between the
service quality, the number of pickers at disposal, and the picker’s flexibility. The
second contribution is a storage strategy for a given order forecast and warehouse
design. The third contribution is the modeling of car-traffic like routing regulation
in the warehouse in order to facilitate dense picker movements.

In this paper, we first complete the warehouse model to define exactly how the
pickers move. Second, we study a strategy to store products efficiently in the
warehouse. Then, we present a multicriteria problem, which is to determine how
many pickers are needed to fulfill efficiently the orders. The number of pickers is
then dynamically adapted. Finally, we describe an algorithm for the management of
pickers and simulate it under different conditions.

Description of the Warehouse

We consider a rectangular layout composed of several parallel pick aisles
(Roodbergen and De Koster 2001), which is one of the most common structures for
a warehouse. The warehouse is subdivided into several blocks separated by
cross-aisles. A cross-aisle does not contain any product location, but can be used to
travel from a pick aisle to another. Two other cross-aisles are also present at the
front and at the back of the warehouse. The products are placed into locations on
both sides of each pick aisle. These locations can be, for example, pallet racks or
stacking blocks (Roodbergen 2001).

The proposed warehouse layout is intended for a picker-to-part system with
carts or other vehicles, i.e., the pickers are supposed to move from location to
location to retrieve the products corresponding to a pick list, and finally bring the
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products to a packing station called depot. We can argue that placing the depot in
the middle of the frontal cross-aisle provides better travel times (Merkuryev et al.
2009). To facilitate the traffic in the warehouse and speed up the retrieval of
products, the aisles will be wide enough to let carts cross to each other. Several
pickers can then pick up products in the same picking area.

The aisles and cross-aisles are divided into two unidirectional corridors. For
example, we only let the pickers move in the right corridor of the aisle in traffic
direction, as shown in Fig. 1. A picker can freely change corridors to move in the
opposite direction, or move out of the corridor to the side of the aisle to pick up a
product without disturbing the other pickers movements.

An interesting point of this layout is that there always exists a shortest path from
a location L1 to a location L2 using at most one cross-aisle. Therefore, the shortest
path from a location to another can be computed in constant time O(1).

A last problem to deal with is to determine in which sequence the products of an
order should be retrieved. This task is an instance of the Travelling Salesman
Problem (TSP) (Lawler et al. 1985), which is NP-hard. The shortest path to take
begins and ends at the depot and must go through every location corresponding to
an ordered product. A lot of work has been done in this domain, especially when

Fig. 1 Layout of the warehouse. The dashed lines represent the corridors, and the arrows give the
movement directions
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there are only two or three cross-aisles (Roodbergen and De Koster 2001). In our
simulation, the TSP has been solved by enumeration, which is fast enough to
compute the sequence of less than eight products. For higher numbers of products,
we refer to more efficient algorithms (Ratliff and Rosenhal 1983; Theys et al. 2010).

Positioning the Products

In this section, we present a strategy to position the products in the warehouse
locations. For this purpose, we must predict which products will be the most
frequently ordered and which products will be often ordered together. Indeed,
frequently ordered products should be placed as close to the depot as possible,
while products which are often ordered together should be placed close to each
other. This step is independent of the design of the layout, as we just have to know
the shortest path between each pair of locations.

We assume here that some forecasting method could generate a large set of orders
representing the future orders. Then we optimize the positioning of products
according to this sample. From a sequence function S giving the retrieving sequence
of the products for each order, we can compute a transition probability matrix P
(S) so that Pi,j is the probability that the next product to pick up after product Pi is Pj.

1

Our objective is to determine the position of each product. This product orga-
nization is characterized by the position matrix X, where Xi,j = 1 if the product Pi

should be located in the location Lj, Xi,j = 0 otherwise. We denote by D the (already
known) distance matrix providing the distance Di,j between each pair of locations
(Li, Lj). The average path length Z(P, X) to fulfill an order is

ZðS;XÞ ¼
X

i;j

ðXT � PðSÞ � XÞi;j � Di;j ð1Þ

The objective is to find an optimal value of X, i.e., a value minimizing the
average path length. We have to solve the following optimization problem:

min
S;X

ZðS;XÞ ð2Þ

under;
S gives the products retrieving sequence for each order
8 i; jð Þ:Xi;j 2 0; 1f g
8i: P

j
Xi;j ¼ 1; 8j: P

i
Xi;j � 1;

1We set for example that the product noted P0 represents the depot, whose location is fixed.
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We already saw that for fixed product position X, the optimal path for each order
is the solution of a TSP. For given X, computing the solution S′ of a TSP for each
order of the set provides a new transition probability matrix P(S′). Since the new
product sequence for each order is optimal, we have

8S; Z S0;Xð Þ� Z S;Xð Þ ð3Þ

On the other side, when the sequence function S is known, (2) becomes a
quadratic assignment problem (QAP) (Finke et al. 1987). Given S, solving QAP
provides a new positioning of products X′ so that

8X; Z S;X 0ð Þ � Z S;Xð Þ ð4Þ

Given a sample of orders to fulfill, the following heuristic organizes efficiently
the products in the warehouse:

1. Initialization:

(a) Set an initial sequence function S.
(b) Compute X solution of the QAP minimizing Z(S, Y).

2. Optimization loop:

(a) Compute S′ solution of the TSP minimizing Z(Y, X).
(b) If Z(S, X) = Z(S′, X): stop the loop. Else S := S′
(c) Compute X′ solution of the QAP minimizing Z(S, Y).
(d) If Z(S, X) = Z(S, X′): stop the loop. Else X := X′.

The computed solution is locally optimal. The algorithm terminates because of
the following observation: at each step, we compute the best sequence function
S for the given positioning matrix X, and then update the value of X. Since the value
Z(S, X) of the solution improves at each step, we cannot compute twice the same
matrix X until the last step. Therefore, the number of steps is limited to |X| + 1,
where |X| is the number of possible product organizations.

This heuristic can be accelerated by fixing a maximal number of iterations and a
precision error ϵ so that we stop the algorithm when Z(P, X) ≤ Z(P, X′) + ϵ. Finally,
the initialization step can be replaced by more meaningful values for S and X.

Dynamic Picker Management

In the two previous sections, we studied how to minimize the service time, i.e., the
time needed to fulfill an order, assuming that this time is proportional to the length
of the travelled path. In this section, we consider a different problem. We suppose
that the products are already well positioned in the warehouse, and that we can
quickly compute the path to travel to pick up products and fulfill the corresponding
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order. We denote by μ = 1/Z(P, X) the service rate resulting from the position of the
products and the computation of the shortest path to fulfill an order.

We are interested in the number of pickers that are required to carry out this
picking activity. By manager, we refer to a decision maker who decides when to
call pickers to the depot to do the picking activity, and when to make a picker leave
the picking activity to pursue other tasks. The manager can either a human being or
computer algorithm.

Among the different activities assigned to the pickers, the picking activity is one
of the most critical and requires a lot of efforts (Roodbergen and De Koster 2001).
Therefore, it is usually the most costly one. For this reason, it is important to use as
few pickers as possible while providing a good service. We define here the
objectives of three different stakeholders: the clients want to get the best service
possible, the pickers in the warehouse ask for good working conditions, while the
manager wants to minimize the costs of the picking activity while obeying the
objective of the other groups.

Having the best service usually means minimizing not only the average service
time, but also the worst case waiting time, as large service times may create strong
dissatisfaction of clients.

The pickers’ working conditions are considered as constraints, because they are
supposed to be guaranteed to them, and do not need to be further optimized. The
number of pickers is limited, and the pickers are guaranteed minimal activity
durations as well as an arrival delay. So, a picker must not be affected on the
picking activity for duration below γ, and a picker leaving the picking activity
should not be called back for duration β. Furthermore, called pickers dispose of a
delay δ to finish their current activity and go to the depot.

Before introducing the key performance indicators (KPI) to measure the effi-
ciency of picker management, we present some theoretical results.

We consider a queuing model for the waiting orders. The waiting orders are then
recorded in a queue and treated in their arrival sequence. We denote by λ the
average arrival rate of the orders. The optimal number of pickers that should be on
the picking activity is α = λ/μ. If we always use less than α pickers, then the orders
will arrive faster than they are fulfilled. The queue will thus grow infinitely, so as
the waiting time of the orders, following the theorem of Little (Little 1961):

E Lq½ � ¼ k � E Wt½ �; ð5Þ

where E[Lq] denotes the average queue length and E[Wt] denotes the average
waiting time of an order.

Thus, the manager must minimize the number of active pickers while keeping it
on average above α. An active picker is either busy, i.e., fulfilling an order, or idle if
he waits for an order to arrive, which happens when the queue is empty. We say
here that a strategy to manage pickers has an optimal cost when the queue length
does not grow indefinitely and the picker costs are minimal. The following theorem
provides sufficient conditions for a strategy to have optimal cost:
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Theorem Consider a strategy providing in average na active pickers and ni idle
pickers:

• na ≤ α if and only if ni = 0.
• na ≥ α if and only if the queue does not grow up indefinitely.

Proof We consider a probabilistic model with the following notations:

• Δ: considered time period where the pickers work while orders arrive.
• τ = na Δ: sum of the picking activity durations of all pickers.
• ΩΔ = λΔ: number of orders arrived during period Δ.
• R = μ(na − ni) ≤ λ: the order fulfillment rate.
• Ωτ = ΔR ≤ ΩΔ: number of orders fulfilled during period Δ.

Suppose first that ni = 0:

a ¼ k � l�1 ¼ ðXD � D�1Þ � ðna � D � X�1
s Þ ¼ XD � X�1

s � na � na

Suppose instead that na < α. The order fulfillment rate naμ is smaller than the
order arrival rate λ = cμ, and thus the queue length will in average keep growing
up. There will always be waiting orders and thus no idle picker.

Suppose now that α is an integer and na = α. If we had ni ≠ 0, the order
fulfillment rate μ (na − ni) would be smaller than the order arrival rate αμ. There
would be no idle picker, which is a contradiction. Therefore, ni = 0 if and only if
na ≤ α.

Consider the second rule of the theorem. The queue does not grow up indefi-
nitely if and only if the order arrival rate λ = αμ is not strictly greater than the order
fulfillment rate μ (na − ni). When the queue is growing up, there are no idle pickers.
Therefore, the queue does not grow up indefinitely if and only if α ≤ na.

Minimizing the number of active pickers is actually not a good criterion, since it
is not clear how to have in average α active pickers, while minimizing the queue
length. This theorem points out that minimizing the costs actually means having in
average zero idle pickers. Therefore, it makes more sense to minimize the wasted
manpower, i.e., the number of active pickers that are idle. The criterion of wasted
manpower is simple to minimize, as we just make sure that no active picker is idle.
We can then freely optimize the other criteria.

In practice, the minimal duration γ of the picking activity may make it impos-
sible to make a picker leave while the queue is empty; hence he will be idle for
some time. Likewise, the minimal duration β before he can return to the picking
activity can increase the maximal waiting time for orders.

The calling delay of the pickers increases also the difficulty, as a picker also
loses some time every time he is called to come to the depot. Thus, we should also
minimize the call frequency, i.e., the frequency of calling pickers to the depot to do
the picking activity.

Another interesting objective is to maximize the average number of the pickers
that have been inactive for duration greater than β, and therefore can be called to the
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depot. This improves neither the cost nor the service quality. Nonetheless, it
indicates a certain comfort in the management, as it shows how many pickers are
not necessary for the picking activity with the given strategy, and how well
unexpected increase of the order arrival rate can be dealt with.

We define the five KPI of a strategy to manage pickers as the following:

• The wasted manpower (WMp): the average number of idle active pickers.
• The average waiting time of an order (AWt).
• The maximal waiting time of an order (MWt).
• The call frequency (CF): the rate of picker calls.
• The extra manpower (EMp): the average number of inactive pickers that can be

called to the picking activity.

We finally present an algorithm to efficiently manage the number of pickers.
This algorithm is nevertheless generic and must be calibrated to meet the real
objectives of the manager. The algorithm obeys two rules of the theorem to provide
an optimal cost. The algorithm decomposes the set of possible queue lengths into
several intervals (In) so that

• The interval In is the set of queue lengths where n pickers can be active. The
value of n only changes if the queue length gets a value outside In.

• There are no active pickers if and only if the queue is empty.
• Interval In must not be larger than interval In+1.
• The final decision to make a picker leave occurs when he finishes fulfilling his

current order.

If the queue length exceeds the interval bound of the current number of active
pickers, the algorithm calls an additional picker. If the queue length falls below the
interval bound, the algorithm will make leave the next picker who finishes an order.
If the intervals overlap, then the current number of active pickers also depends on
its previous value and is chosen to minimize the call frequency.

Simulation

We implemented a simulation model to test our algorithm on randomly generated
data. The order arrival is generated with a Poisson process, with in average between
75 and 90 incoming orders per hour. The order generation and the warehouse
dimensions are set to obtain an average order fulfilling time of μ−1 = 4 min. The
optimal average number of active pickers is then [5, 6]. At the beginning of each
test, the queue is supposed to be empty and none of the eight pickers at disposal is
active. Each simulation lasts 5 hours, which is long enough so that the initial state
of the process has a minimal importance in the results. The time scale between each
decision is 15 s. We present here simulations for two scenarios providing different
working quality, as presented in Table 1. A more extensive simulation of the
algorithm will be presented in an upcoming paper.

662 N. Jami and M. Schröder



For the algorithm, we divide the intervals into two groups (In)n<α and (In)n>α:

• n < α: I0 = {0}; I1 = {1, 2}; I2 = {1, 2, 3}; I3 = {2, 3, 4}; I4 = {3, 4, 5}; I5 = {4, 5,
6}

• n > α:

– I6 = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
– 8n, |In| = 11, |In\ In+1 | = 6

The results of the simulations are presented in Table 2. We first note that the
algorithm managed to avoid any waste of manpower. Thus, the manager can afford
to ensure a minimal picking activity duration of γ = 20 min to the pickers.

The simulation with good working conditions provides a good compromise of
the average waiting time, namely between 100 and 200 % of the average picking
time, in order to deal with order arrival rate variations. Furthermore, the algorithm
usually keeps one or two extra pickers. This is enough in this situation to face a
sudden increase of the order arrival rate.

In comparison to the simulation with bad working conditions, the average
waiting time is a little larger while the call frequency is slightly smaller. This means
that sometimes, the algorithm would like to add a picker but cannot, resulting in a
small increase of the waiting time. However, the maximal waiting time has a similar
value in both scenarios. Moreover, giving better working conditions to pickers does
not decrease too much the extra manpower to make it critical.

Further simulations that we do not present here also show that a high value of γ
generates a significant waste of manpower, and a long duration δ emphasize this
waste. A high value of β leads to higher waiting times, and this effect is increased
by a low value of δ, that is for a higher call frequency.

We mention again that satisfying results require the calibration of the algorithm,
which should be set depending on the requirements of the warehouse.

Finally, it is meaningful to take some picker constraints into account, namely by
reducing the picker call frequency, in order to get a more accurate estimation of the
service time and the picker costs.

Table 1 Simulation Scenarios

Scenario 1: good working conditions γ = 10 min, β = 20 min, δ = 2 min

Scenario 2: bad working conditions γ = β = δ = 0 min

Table 2 Simulation results

KPI AWt (min) MWt (min) CF (h − 1) WMp EMpa

Scenario 1 5.25 10.0 4.9 0 1.6

Scenario 2 4.56 9.4 5.7 0 2.9

The duration of each simulation is 5 h
aThe EMp is the only of the four KPI that we want to maximize, in order to be sure that we can
always call pickers, and to see if we can reduce the number of pickers present in the warehouse
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Conclusion

This paper dealt with the management of a warehouse with parallel wide aisles. We
studied the three main problems of an order picking process, which are the layout of
the warehouse, the storing strategies for the products and the control of the number
of pickers.

For the layout, we used a car-traffic like circulation to facilitate the movement of
vehicles that the pickers would use. We then presented an algorithm organizing the
products into locations according to a sample of predicted orders. Finally, we
considered the problem of dynamic management of picker activities. The goal was
to minimize the number of pickers on the order picking activity while ensuring low
picker flexibility and a good service quality.

KPI have been presented to model the objective functions of this multicriteria
problem. We described a generic algorithm deciding on the number of pickers, and
used it in a simulation experiment. With a good calibration of the algorithm, we can
minimize the waste of manpower, while providing efficient service times and
keeping available pickers for sudden increases of the order arrival rate.

An interesting topic for future research would be to study the restock of the
products at the same time as their picking, in order to create a strategy allocating the
pickers between these two activities. Further research can also be done on the
algorithm positioning the products, in order to determine how many iterations of the
loop are needed to place the products, and how much computation time it takes in
different situations. Finally, it would be interesting to develop the picker’s con-
straints to provide a better dispatching or to send tome pickers home when the order
arrival rare is too low, hence reducing the picker’s costs.
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