
Toward a Comprehensive Approach
to the Transformation of Logistic Models

Hans-Jörg Kreowski, Marco Franke, Karl Hribernik, Sabine Kuske,
Klaus-Dieter Thoben and Caro von Totth

Abstract In this paper, we propose a framework for modeling of logistic systems
with an emphasis on model transformation. Due to the complexity of logistic
systems, their models are bound to consist of many heterogeneous components on
various descriptive levels from the requirement definition to the platform-specific
implementation. To cover these phenomena in a comprehensive way, our approach
provides two main concepts: First, we introduce logistic models that may be the
combination of a variety of component models, which in turn may be of different
types, i.e., they may be specified by means of different modeling methods. Second,
we offer model transformations that allow to translate logistic models of one type
into logistic models of another type whenever needed (for example, to bridge the
gap between visual platform-independent models and textual platform-specific
models or to facilitate the interaction of component models of different types).

Keywords Interoperability � Model transformation � Heterogeneous modeling

H.-J. Kreowski (&) � S. Kuske � C. von Totth
Universität Bremen, Linzer Strasse 9a, 28359 Bremen, Germany
e-mail: kreo@informatik.uni-bremen.de

S. Kuske
e-mail: kuske@informatik.uni-bremen.de

C. von Totth
e-mail: caro@informatik.uni-bremen.de

M. Franke � K. Hribernik � K.-D. Thoben
BIBA—Bremer Institut für Produktion und Logistik, Hochschulring 20,
28359 Bremen, Germany
e-mail: fma@biba.uni-bremen.de

K. Hribernik
e-mail: hri@biba.uni-bremen.de

K.-D. Thoben
e-mail: tho@biba.uni-bremen.de

© Springer International Publishing Switzerland 2016
H. Kotzab et al. (eds.), Dynamics in Logistics,
Lecture Notes in Logistics, DOI 10.1007/978-3-319-23512-7_11

115

Introduction

Today’s logistic systems are often characterized by a widespread network of var-
ious processes and further components, like data bases and programming platforms,
a dynamic structuring where subcomponents may be added, removed, or adapted to
new requirements, many involved players with different interests, and fast changing
customer requests, markets, and technologies. These phenomena result in quite
heterogeneous logistic systems consisting of processes and further components that
run on different platforms and are developed by means of various planning and
modeling methods. For detailed information see Barnhart and Laporte (2006),
Laguna and Marklund (2004), Recker (2006).

The increasing complexity, heterogeneity, and dynamism of current and future
logistics systems mean that modeling and the transformation of models is highly
relevant to the field of logistics. For example, the rapid cycles of contractual
relationships in today’s supply networks mean that logistics stakeholders frequently
need to change their processes. This increasingly entails the integration of processes
previously outside the scope of logistics providers, such as manufacturing pro-
cesses. Furthermore, the integration of these processes into close, multi-stakeholder
collaborations throughout supply networks means that multiple process models,
often of different types, need to be integrated, simulated, and verified prior to and
during contracts.

The IT systems employed by logistics providers also need to be able to handle
this increasing complexity, heterogeneity, and dynamism. Currently, logistics
providers often meet these demands with quick, in-house development of propri-
etary systems with little or no support for standard interfaces or data exchange
formats. Current advances in cloud computing allow logistics stakeholders to
completely outsource IT resources and use individual software modules as “cloud
services” on demand on a pay-per-use basis. The resulting IT landscape is highly
complex and distributed and spans multiple stakeholders across supply and retail
chains. While standard interfaces and data exchange formats exist in the sector,
their uptake by industry is not widespread. Correct, verifiable, and robust trans-
formations between different data formats and interfaces, which themselves can be
seen as models, are thus critical for the operation of today’s logistics systems.

The demand for individualized products and services leads to an atomization of
manufacturing and logistic operations. The result is the increasing need for logistics
stakeholders to deal with high volumes of “batch size one” orders. Demands with
regard to the quality, speed, and traceability of logistic operations are also rising.
Recent technical and organizational developments in logistics have beenmade tomeet
these demands. The integration of auto-ID technologies such as RFID into logistic
processes strives to manage individual items throughout supply and retail chains.
With the Internet of Things, traceability can be extended to include information about
the environment and condition of goods using sensors and embedded systems.
Research into the autonomous control of individual logistics entities has been
explored, for example, in the Collaborative Research Centre 637. “Autonomous

116 H.-J. Kreowski et al.

Cooperating Logistic Processes—A Paradigm Shift and its Limitations” (Hülsmann
and Windt 2007; Hülsmann et al. 2011). Here, logistic objects with the capability to
take decisions on their own are assumed to interact with each other in
non-deterministic systems. The aim is to achieve increased robustness and positive
emergence of the overall system due to the distributed and flexible handling of
dynamics and complexity. Conventional methods of modeling are limited in their
applicability to these types of highly complex and dynamic logistic systems. While a
modeling methodology for autonomous control in logistics has been developed
(Scholz-Reiter et al. 2011b), numerous challenges remain unaddressed (Scholz-Reiter
et al. 2011a).

Cyber-physical systems (CPS) are the current culmination of these develop-
ments. A corresponding definition and detailed information are given in NSF
National Science Foundation (2008) or Broy (2010). Their application is expected
to revolutionize manufacturing and logistic processes—hence the title “Industrie
4.0” of the relevant high-tech strategy announced by the German government,
which anticipates a fourth Industrial Revolution. CPS are themselves highly com-
plex and dynamic “systems of systems” consisting of numerous computational and
mechatronic devices. CPS components and their interactions are, however, cur-
rently represented by many different models spanning multiple domains so that
suitable transformation approaches are required to achieve adequate views upon the
systems and their components in design, engineering, and operation.

These trends lead to an increasing number of autonomous and heterogeneous
systems in the application field of logistics. This evolution will increase the chal-
lenges in the interoperability of logistic processes regarding both the modeling and
implementation of the underlying IT landscape. To enable the interoperability of
logistic processes in the future, this paper presents an approach to how information
can be exchanged between different modeling methods in design phase and
between different IT systems in operation time. For this purpose, the notion of
heterogeneous logistic model is given in section “Heterogeneous Logistic Models”.
Subsequently, a general and formal specification of transformation processes
between different types of logistic models is given and illustrated with an example
in section “Model Transformation Units”. The example translates a specific type of
business process model into Petri nets, in particular. Finally, the impact of such
kind of representation forms and given transformation possibilities is described in
the conclusion. The proposed modeling framework adapts earlier work in Kreowski
et al. (2010, 2012), Kreowski and Kuske (2013) to the needs of logistics.

Heterogeneous Logistic Models

Models of logistic systems—in particular, large, distributed systems that support
the cooperation of many parties—consist of many components that may be
designed heterogeneously by means of different modeling methods. The compo-
nents themselves may be structured in the same way. Without loss of generality,

Toward a Comprehensive Approach to the Transformation … 117

the components may be ordered such that n components can be numbered from 1 to
n and a model becomes a tuple of components. If a component is not structured
itself, it can be specified as an entity or process of a modeling method or modeling
language like BPMN, UML or Petri nets, or it is an elementary data object like a
number, a symbol, a finite set, a string, a file or a document. Summarizing, we
propose the following notion of (heterogeneous) logistic models.

Definition 1 Let L be a collection of modeling methods and modeling languages
and let D be a set of data domains. Then a logistic model mod of type T is

1. mod 2 L for some L 2 L with type(mod) = L,
2. mod 2 D for some D 2 D with type(mod) = D,
3. a tuple (mod1, …, modk) for some k 2 ℕ and a model modi of type Ti for i = 1,

…, k with type(mod) = T1 × ⋯ × Tk.

The set of all models of type T is denoted by M(T).
To avoid distinction between these cases, in the following we consider all

models as tuples. This is possible because there is no need to distinguish between a
model mod and the 1-tuple (mod).

The underlying modeling framework is generic in that the modeling languages
and the domains can be chosen according to the intended application and the taste
of the designers. The following example may illustrate the principle.

Example 1 L may contain the modeling language Business Process Model and
Notation BPMN, the Unified Modeling Language UML, the modeling methods of
Petri nets, and of event-driven process chains. D may contain the integers, a set ID
of identifiers, and the truth values BOOL = {true, false}. Then a sample model is
the simple production process producer depicted in Fig. 1. It is of type BPMNlight

which is BPMN without pools and swim lanes (OMG 2013).
It can produce two products A and B, each of which can be sent whenever there

is a respective order. The process producer is part of a supply chain with a trading

get order A

produce A

produce B

get order B

send A

send B

Fig. 1 The producer process in BPMNlight

118 H.-J. Kreowski et al.

process trader that puts orders of A and B to the producer and receives the sent
products from there. In turn, it gets orders from a consumer process consumer that
also receives the products sent by the trader. The start event triggers the activities
get order A and get order B only if there are such orders in the environment, i.e.,
put by the consumer. Finally, consumer can put orders to trader and receive the
products from there. The processes trader and consumer may also be modeled in
BPMNlight as given in Figs. 2 and 3 respectively.

If we consider the two sets of activities InOut = {get order A,get order B,send A,
send B} and OutIn = {put order A,put order B,receive A,receive B}, then the
communication between producer and trader on one hand and between trader and
consumer on the other hand can be expressed by the pairs (put order A,get order A),
(put order B,get order B), (send A,receive A), (send B,receive B). The set connect of
these four pairs is a model of the set type with elements of the type InOut × OutIn.
The combination

supply0 ¼ producer; connect; trader; connect; consumerð Þ

models the whole supply chain as a quintuple of type BPMNconnect =
BPMNlight × C × BPMNlight × C × BPMNlight where C is the type of connect.

To complete the section of logistic models, one further aspect is important. As
long as one considers free tupling, the components are unrelated with each other so
that the tuple and its separate components provide the same information. But in
many practical cases the components are related—and should be related—in some
way. For example, the supply0-tuple only makes sense if the first set of connectors
connects activities of producer and trader while the second set connects activities
of trader and consumer. Therefore, we allow adding conditions to the declaration of
model types restricting the class of models. To formulate the conditions, called

get order A

get order B

put order A

put order B

receive A

receive B

send A

send B

order A?

order B?

Fig. 2 The trader process in BPMNlight

put order A

put order B

receive A

receive B

Fig. 3 The consumer process in BPMNlight

Toward a Comprehensive Approach to the Transformation … 119

constraints in the following, one may assume a proper logic like the propositional
calculus or first order logic. More practically speaking, constraints may be written
like Boolean expressions in programming languages.

Definition 2 Let T = T1 × ⋯ × Tk be a type with types Ti for i = 1, …, k. Let x be
some syntactic entity that describes a property that may hold for models of type T or
not. Then x is called a constraint and T with x a constraint type. The set of all
models of type T for which x holds is denoted by M(T with x).

It should be noted that constraints can be combined by Boolean operators like
and and or with the obvious meaning that and yields the intersection and or the
union respectively. If we assume the constraint true that always holds, then the type
T and the constraint type T with true specify the same set of models. Hence, there is
no need to distinguish between types and constraint types. In the following, the
term type includes constraint types.

Model Transformation Units

As discussed in the Introduction, there are various good reasons, if not necessities,
to transform logistic models. First of all, visual models must be transformed into
programs to be integrated into a running logistic system. Moreover, one may want
to check required properties using some model checker. But the input models of the
respective tool may be of a different type than the models at hand. Model trans-
formation can solve the problem. In this section, we introduce the notion of model
transformation units that allow transforming logistic models as introduced in the
previous section. As a logistic model is a tuple of component models, the com-
ponents can be transformed componentwise and simultaneously by means of
actions. An action specifies for each component how it is processed using opera-
tions that are available for the models of the respective types. If the component
models are numbers, strings, or sets, then one can use arithmetic, word-processing,
or set-theoretic operations respectively. If the component models are modeled
according to a logistic modeling language or method, then suitable operations must
be chosen for the construction, reconstruction, and deconstruction of the models. If,
finally, the component models are tuples again, then the component operation can
be recursively chosen as an action.

As actions keep the type of models, their application can be iterated. In this way,
a set of actions defines a complex model transformation. But, usually, transfor-
mation processes are not just arbitrary sequences of action applications starting and
ending on arbitrary models. Therefore, we assume in addition that initial and ter-
minal models can be specified and that the order of action application can be
restricted by means of a control condition.

There is one further aspect to be considered. While actions preserve the type of
the processed model, model transformations are meant to transform input models

120 H.-J. Kreowski et al.

into output models which have different types usually. For example, a visual model
of BPMNlight may be transformed into a Petri net or a JAVA program so that not
only the models change, but also their types. To cover this aspect, input, output, and
working types can be chosen separately due to the intended model transformation.
Then the input models are adapted by an initialization to models of the working
type on which the actions run. Finally, the resulting working models are projected
to the output type by a terminalization. Given an input model, some components of
the working type can be components of the input models, while others may be
auxiliary or needed as output components. They are chosen as fixed constant initial
models. Given a resulting working model, some of its components are taken as the
output model. This leads to the following definition:

Definition 3 Let L be a collection of modeling methods and modeling languages
and D be a set of data domains. Let, for each X 2 L [D, OPX be a set of unary
operations on the models of type X. Then a model transformation unit is a system
mtu = (ITD, OTD, WT, A, C) where

• WT = T1 × ⋯ × Tk is the working type,
• A is a set of actions on WT,
• C is a control condition,
• ITD is the input type declaration consisting of an input type IT = I1 × …. × Im

with x and an initialization initial,
• OTD is the output type declaration consisting of an output type

OT = O1 × …. × On with y and a terminalization terminal.

subject to the following conditions:

1. each action has the form a ¼ op1; . . .:; opkð Þ with z where opi 2 OPTi for i ¼
1; . . .:; k and z is a constraint,

2. initial associates each working type component Ti with some input type com-
ponent Ij or with a fixed model of type Ti,

3. terminal associates each output type component Oj with some working type
component Ti.

To enhance the flexibility of actions, we assume that the set of operations OPT

for each type T contains the void operation “-”, which refers to the identity.
Consequently, an action keeps a component of a model invariant if the respective
component of the action is void.

The following example may illustrate the features of model transformation units.

Example 2 We would like to transform a BPMNlight model like producer into a
Petri net, the type of which is denoted by PN, to enable us—for example—to
employ a model checker for Petri nets (see Aalst and Stahl 2011; Hee et al. 2013 for
further relations between business process models and Petri nets). Therefore, the
input type is BPMNlight and the output type is PN. As working type, we take the
product BPMNlight × PN. The initialization assigns BPMNlight to itself and PN to the
empty Petri net ∅. Therefore, the initial working models are pairs of BPMNlight

models and ∅ like (producer, ∅). The terminalization assigns the only output type

Toward a Comprehensive Approach to the Transformation … 121

PN to the PN-component of the working type. Consequently, the Petri net of any
resulting working model is considered as output model. To specify the dynamic
part, we need operations and actions. The basic idea is to replace each flow object
f of the initial BPMNlight model by a place pf, a transition tf and a flow relation from
tf to pf as well as each sequence flow from a flow object f to a flow object f′ by a
flow relation between pf and tf′. In the case of the end event, the transition must be
doubled with a flow to the end place each and the two sequence flows into the end
event must be redirected to the now different end transitions. To achieve this, we
need an operation mark on BPMNlight models that mark flow objects and sequence
flows as done provided that they are not yet marked and operations add(f) and add
(f → f′) on Petri nets where add(f) adds tf → pf to a given Petri net and add(f → f′)
adds an edge from the place pf to the transition tf′ provided that both exist. This
allows us to combine these operations to the actions act(f) = (mark(f), add(f)) and
act(f → f′) = (mark(f → f′), add(f → f′)) for some identifiers f, f′ 2 ID. It should be
noted that the actions can only be applied if the parameters are flow objects and
sequence flows of the input process and that none of them can be applied twice so
that the length of every sequence of action applications is bounded by the number
of flow objects and sequence flows. Moreover, no action can be applied if all
elements of the input process are marked by done. If we require as control condition
that act(f) and act(f′) be applied before act(f → f′) and that actions be applied as
long as possible, then each sequence flow becomes reflected in the flow relation of
the corresponding Petri net and all elements of the input process are carried over to
the Petri net part. For example, the input model producer is transformed into the
following Petri net, which is shown in Fig. 4.

A schematic representation of the sample model transformation unit may look as
follows.

As the sample model transformation unit transforms BPMNlight processes into
Petri nets, a model transformation unit relates input models to output models in
general. A given input model induces an initial working model due to the input type
declaration. The working model is transformed by a sequence of action applications
which is regulated by the control condition. In particular, the control condition
specifies when the action application can terminate. Then the reached working
model induces an output model due to the output type declaration.

122 H.-J. Kreowski et al.

Definition 4 Let mtu = (ITD, OTD, WT, A, C) be a model transformation unit. Then
mtu specifies the semantic relation SEM(mtu) � M(IT) × M(OT) between input
and output models, where an input model in 2 M(IT) is transformed into an output
model out 2 M(OT), i.e. (in, out) 2 SEM(mtu), in the following three steps:

t start

p start

t produce A t produce B

p produce Bp produce A

t get order A

p get order A

t + A

p + A

t send A

p send A

t + B

p + B

t send B

p send B

t get order B

p get order B

t end A t end B

p end

Fig. 4 The BPMNlight process producer transformed into a Petri net

Toward a Comprehensive Approach to the Transformation … 123

1. Let IT = I1 × ⋯ × Im with x and WT = T1 × ⋯ × Tk. Then in = (in1, …, inm) gives
rise to a working model mod(in) = (mod1, …, modk) with modi = inj if initial
associates Ti with Ij, and modi = initj if initial associates Ti with the fixed model
initj.

2. Let ⇒ A � M(WT) × L(WT) denote the application of actions in A to working
models, ⇒A* � L(WT) × M(WT) the reflexive and transitive closure of ⇒A,
i.e., the arbitrary iterations of action applications, and ⇒A*,
C � M(WT) × M(WT) the iterated action applications that obey the control
condition C. Then mod(in) is transformed using⇒ A, C*. A working model mod′
2 M(WT) is considered as a result if mod ⇒A, C* mod′.

3. Let mod′ = (mod′1,…,mod′k) be a result and OT = O1 ×⋯ × On with y. Then the
output out = (out1, …, outn) is given by outj = mod′i if terminal associates Oj

with Ti provided that out satisfies the constraint y.

A further example may help to see the meaning and significance of the intro-
duced concepts.

Example 3 The supply chain supply0 in Example 1 is a heterogeneous model with
five components of two different types. It may be preferable to have a homogeneous
model of some suitable type, say BPMN, because there may be a simulator available
for BPMN processes or an automatic transformation of BPMN processes into JAVA
programs. A model transformation unit can bridge the gap between supply0 and
BPMN.

where ∅ denotes an empty pool, the operation add(p) for a BPMNlight process
p adds p as a new swim lane to the given pool, the operation add(c) for a binary
relation c � ID × ID adds the elements of c as message flows provided that c relates
flow objects of two swim lanes of the given pool, and where (p1, c1, p2, c2, p3)
identifies the input model. Moreover, the control condition requires that the five
actions are applied one after the other denoted by means of the sequencing operator
“;”. Semantically, the model transformation unit takes a BPMNconnect model,
combines it with the empty pool in the first step, applies the five actions, and
projects the result to the second component. Note that the first component is not
changed and that the model constraints make sure that the two connectors c1 and c2
relate activities of the respective swim lanes. Applied to supply0, the transformation
yields the BPMN process supply1, which is shown in Fig. 5, where dashed arrows

124 H.-J. Kreowski et al.

denote the message flows and those activities of the three swim lane processes that
are involved in the communication are given explicitly.

Conclusion

In this paper, we have sketched fundamental concepts constituting a framework for the
modeling of logistic systems: logistic models that can be heterogeneously composed
of component models and specified bymeans of different modeling languages as well
as model transformations that bridge the gap between different descriptive levels and
support the interaction of models of different types. To shed more light on the
significance and usefulness of the approach, further topics must be studied:

1. Further case studies, which are more realistic than our small toy supply chain,
are needed. In particular, the use of further modeling languages and methods and
their coexistence within modeling of one model should be demonstrated.

2. We have pointed out that model transformation is necessary if one wants to
employ a tool for testing, simulation, visualization, or verification that requires
input models of another type than the models at hand. It would be of interest to
show explicit cases where such transformations are advantageous.

3. The actions of model transformation units combine operations on the compo-
nent models depending on their types. If the types refer to truth values, numbers,
sequences, or sets, then one can use the usual Boolean, arithmetic,
word-processing, or set-theoretic operations respectively. If a component is a
tuple again, then it can be operated by actions again. But if it is specified by

p
ro

d
u

ce
r

get order A send Aget order B send B

put order A receive Aput order B receive B

get order A send Aget order B send B

put order A receive Aput order B receive B

tr
ad

er
co

n
su

m
er

Fig. 5 BPMN model of the supply chain (confer example 1 for the complete subprocesses)

Toward a Comprehensive Approach to the Transformation … 125

means of a modeling language, then it may be necessary to enrich the language
by new operations like the marking of activities and sequence flows in the
BPMNlight examples and the building operations in the BPMN and Petri net
examples.

4. The introduced modeling of logistic systems has not only a formal syntax, but
also a precise formal semantics. Potentially, this permits to prove interesting
properties like termination, functionality, and correctness of model transfor-
mations, which cannot be addressed properly without formal semantics.

References

Barnhart C, Laporte G (2006) Handbooks in operations research and management science:
transportation. Elsevier Science and Technology, Amsterdam

Broy M (2010) Cyber-physical systems: innovation durch softwareintensive eingebettete Systeme.
Springer, Berlin

Hee K, Sidorova N, Werf J (2013) Business process modeling using petri nets. In: Jensen K, van
der Aalst WMP, Balbo G, Koutny M, Wolf K (eds) Transactions on petri nets and other models
of concurrency lecture, Notes in Computer Science 7480:116–161

Hülsmann M, Windt K (2007) Understanding of autonomous cooperation and control in logistics
—the impact of autonomy on management, information, communication and material flow.
Springer, Berlin

Hülsmann M, Scholz-Reiter B, Windt K (2011) Autonomous cooperation and control in logistics.
Springer, Berlin

Kreowski H-J, Kuske S (2013) Graph tuple transformation. Electronic Communications of the
EASST 62, 23 pages

Kreowski H-J, Kuske S, von Totth C (2010) Stepping from graph transformation units to model
transformation units. Electronic Communications of the EASST 30, 24 pages

Kreowski H-J, Kuske S, von Totth C (2012) Combining graph transformation and algebraic
specification into model transformation. In: Mossakowski T, Kreowski H-J (eds) Proceedings
of the international workshop on algebraic development techniques (WADT 2010) Lecture
Notes in Computer Science, vol 7137. pp 193–208

Laguna M, Marklund J (2004) Business process modeling, simulation, and design.
Pearson/Prentice Hall, New Jersey

NSF National Science Foundation (2008) Cyber-physical systems. Program announcements and
information. NSF 08–11, http://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf08611.
Accessed 16 Oct 2013

OMG Object Management Group (2013) Business process model and notation (BPMN), http://
www.omg.org/spec/BPMV/2.02/pdf. Accessed 10 Mar 2013

Recker JC (2006) Process modeling in the 21st century. BP Trend, pp 1–6
Scholz-Reiter B, Rippel D, Sowade S (2011a) Limitations in modeling autonomous logistic

processes—challenges and solutions in business process modeling. In: Proceedings of the
IEEE international symposium on assembly and manufacturing 2011 (ISAM’11). Tampere,
USB-Proceedings, 6 pages

Scholz-Reiter B, Sowade S, Rippel D (2011b) Modeling the control system infrastructure for
autonomous logistics processes. In: Duffy NA (ed) 44th CIRP conference on manufacturing
systems. Omnipress, Madison-Wisconsin, pp 1–6

Van der Aalst W, Stahl C (2011) Modeling business processes: a petri net-oriented approach.
Cooperative information systems. MIT Press, Cambridge

126 H.-J. Kreowski et al.

http://www.nsf.gov/publications/pub_summ.jsp%3fods_key%3dnsf08611
http://www.omg.org/spec/BPMV/2.02/pdf
http://www.omg.org/spec/BPMV/2.02/pdf

	11 Toward a Comprehensive Approach to the Transformation of Logistic Models
	Abstract
	Introduction
	Heterogeneous Logistic Models
	Model Transformation Units
	Conclusion
	References

