
Towards a Formal Model for Dynamic
Networks Through Refinement
and Evolving Graphs

Faten Fakhfakh, Mohamed Tounsi, Ahmed Hadj Kacem
and Mohamed Mosbah

Abstract Due to the highly dynamic behavior and the time complexity in Mobile
Ad-hoc NEtworks (MANETs), modeling distributed algorithms and looking at their
assumptions represent a challenging research task. Also, proving the correctness
of these algorithms for dynamic networks is a topic of intensive research. In fact,
the solutions which have been proposed to express and prove the correctness of
distributed algorithms are usually done manually. In addition, all these solutions
lack a consensus about their development and their proof. The main contribution of
this paper is to propose a general and formal model for dynamic networks based on
evolving graphs and Event-B formal method. In fact, evolving graphs is a powerful
tool to expressfine-grainedproperties. Thismodel allows to handle topological events
and to characterize the concept of time with some particularities. We implement it
with Event-B, based on refinement technique. To illustrate the proposed model, we
investigate an example of a distributed algorithm encoded by local computations
models.
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1 Introduction

1.1 Overview

In recent years, wireless communication networks have witnessed rapid advances in
the computing industry and are widely available in our everyday life. AMANET [13]
is a form of wireless networks. It is composed of mobile computing devices, called
nodes, such as laptops, smartphones, etc. These nodes are dynamically connected
in an arbitrary manner, without the support of any fixed infrastructure or centralized
administration.MANETs cover a large range of applications likemilitary operations,
emergency relief, wireless sensor networks, etc.

Due to nodemobility, disconnections and failures that can be produced,MANETs
are extremely dynamic and the connections between nodes vary in time. One well-
known challenge in these networks is modeling such dynamics and creating a refer-
ence model on which results could be compared and reproduced. In this context, a
MANET can be naturally represented as a dynamic graph whose nodes are mobile
devices and the edges are instantaneous wireless links between the nodes. The evolv-
ing graph formalism has been proposed by A. Ferreira [8] as a combinatorial model
for dynamic networks. In this model, a dynamic graph can be decomposed as a
discrete sequence of static graphs. Each static graph is a snapshot of the dynamic
network at a given time.

In a dynamic graph, the communication between nodes can be ensured by a dis-
tributed algorithm [14]. The latter is designed to run on interconnected autonomous
computing entities for achieving a common task. In order to encode distributed algo-
rithms, we use local computations model and particularly graph relabelling systems
[12]. In this context, a node can realize a computation step if there is a specific rule
that describes the corresponding label modifications. The rule can be applied if it is
consistent with the states of the node and its neighbours.

To specify the abstraction provided by local computation, we use a formalmethod.
In fact, formal methods provide a real help for expressing correctness with respect to
safety properties in the design of distributed algorithms. Particularly, the correct-by-
construction approach [11] provides a way to prove algorithms. It can be supported
by a progressive and incremental process controlled by the refinement [3] of models
for distributed algorithms. This process allows to simplify the proofs and to validate
the integration of requirements. The Event-B modeling language [1] can support
this methodological proposal suggesting proof-based guidelines. It is supported by
a tool called “RODIN” [2] which provides an environment for developing correct-
by-construction models for software-based systems.
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1.2 Contribution

In this paper, we propose a reusable model for dynamic networks by combining
the evolving graphs formalism and the refinement approach of the Event-B method.
More precisely, we develop a general and formal solution which defines the different
topological events in a dynamic network and the resulting changes in the evolving
graph. In addition, we focus in this model on the concept of time to present the situ-
ations which need a time evolution. Moreover, the proposed model gives primitives
to analyze an evolving graph. Our model takes into consideration only the variation
of edges in the network. It can be extended in the future to address the movements
of nodes.

Formally, we propose a refinement strategy that allows to enrich a model in a
step by step fashion. The refinement is the foundation of the correct-by-construction
which is a well suited approach to prove algorithms. Themain objective of our model
is to enable reuse during the development. In fact, different components of the model
can be refined and reused to specify distributed algorithms in dynamic networks.
Hence, we can save effort on proving correct algorithms.

To illustrate our model, we present an example of a counting algorithm encoded
by local computations models. The main goal of this example is to demonstrate how
we can use and refine the proposed model.

1.3 Related Work

Evolving graphs are an effective and powerful formalism which helps to capture
the dynamic behavior of MANETs. That’s why, it has drawn the attention of the
research community in the last few years. Several research works have been based
on this formalism to deal with network dynamics.

In [6], A. Casteigts proposed an analysis framework for distributed algorithms
on dynamic networks. The proposed framework provides general formalisms and
methods for studying the main properties of the distributed algorithms in dynamic
networks. It allows to characterize the necessary and/or sufficient connectivity con-
ditions required for the success of a distributed algorithm in a dynamic network.
It is based on the combination of the evolving graphs and graph relabellings [12].
This framework is illustrated by the analysis of three simple algorithms (propaga-
tion algorithm, centralized counting and decentralized counting) whose necessary
and sufficient conditions were derived into a sketch of classification of dynamic
networks.

Furthermore, P. Floriano et al. [9] presented a study of necessary and sufficient
conditions, in dynamic networks, for two distributed problems which are mutual
exclusion and K-mutual exclusion. To do this, they exploit the framework proposed
by A. Casteigts [6].
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The author [10] provided a sufficient condition for the decentralized counting
algorithm suggested by A. Casteigts [6]. In fact, he shows that a complete underlying
graph was sufficient for the decentralized counting algorithm to succeed. Moreover,
he introduces the concept of tight conditions, to strengthen the guarantees offered
by necessary and sufficient conditions. Then, he demonstrates the tightness of the
sufficient condition provided for the decentralized counting algorithm.

In addition, M. Barjon et al. [4] proposed an algorithm which maintains a forest
of spanning trees in dynamic networks. The proposed algorithm aims to maintain
exactly one token (root) per tree. It is based on three operations on tokens: circulation,
merging and regeneration. To do this, a computation step takes as input the state of
a pair of nodes and modifies these states according to some rules.

Throughout the related works outlined above, we note a lack of consensus about
the development and proof of distributed algorithms in dynamic networks. More-
over, the proofs which have been presented are done manually. In addition, most of
the distributed algorithms which have been investigated, in dynamic networks, are
simple.

1.4 Organization of the Paper

The remainder of this paper is organized as follows: In Sect. 2, we present basic
concepts of the evolving graph and the Event-B formal method. Section3 introduces
our proposed model for dynamic networks based on the evolving graphs formalism.
In Sect. 4, we present the formal development of the proposed model. Section5
applies our model to develop an example of a distributed algorithm. Finally, the last
section concludes and outlines areas for our future research.

2 Preliminaries

2.1 Evolving Graphs

The formalism of evolving graphs has been proposed as a combinatorial model for
dynamic networks. In this model, the evolution of the network topology is simply
recorded as a sequenceof static graphs.As an example,we consider the four snapshots
taken at different time intervals of a MANET, as shown in Fig. 1. Each static graph
is a snapshot of the dynamic network at a given time. This view is precisely adopted
by A. Ferreira [8].
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Fig. 1 Sucessive snapshots of a MANET evolution over time

Fig. 2 The evolving graph
corresponding to the
MANET in Fig. 1
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Formally, an evolving graph g is a triplet (G, SG , ST), where:

• ST = t0, t1, . . . , tn is an ordered sequence of dates used to capture the static graphs.
These dates correspond to every time step in a discrete-time system (T ⊆ N).
Except for t0 and tn , each ti corresponds to one or more topological events that
modifies the network. Each edge is labeled with the dates of its presence.

• SG = G0,G1, . . . ,Gn−1 is the sequence of undirected static graphs. Each Gi

represents the network topology during the period [ti , ti+1[ in the evolving graph g.
• G represents the union of all Gi in SG , called the underlying graph of g (see Fig. 2).
The edges are labeled with the date of their presence. For example, the presence
of the edge “ae” in Fig. 1 at the dates “2” and “3” is represented in Fig. 2 by an
edge “ae” labeled “2, 3”.

We will use the simple notations “V” and “E” to denote respectively the sets of nodes
and edges of the underlying graph “G”.

2.2 Event-B Overview

The Event-B modeling language [1] defines mathematical structures into contexts
and the formal model of the system into machines. The modeling process starts by
identifying the domain of the problem expressed by means of context. This latter is
characterized by a list of sets, list of constants, list of axioms and theorems that can
be derived from the axioms of the context. An Event-B machine describes a reactive
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system by a set of invariants properties and a finite list of events modifying state
variables. A machine “M” may see a context “C”, this means that all carrier sets and
constants defined in “C” can be used in “M”.

The key tool behind the Event-B method is the refinement [3]. The refinement of
a specification allows to enrich it in a step-by-step fashion. It is the foundation of the
correct-by-construction approach. It provides a way to strengthen invariants and add
details to a model. It is also used to transform an abstract model into a more concrete
version by modifying the state definition. This is done by extending the list of state
variables, by refining each abstract event into a corresponding concrete version and
by adding new events.

An Event-B specification is considered as correct only if each machine, as well as
the process of refinement, are proved by adequate theorems named Proof Obligations
(PO). The management of proof obligations is a technical task supported by RODIN
tool [2],which provides an environment for developing correct-by-constructionmod-
els for software based systems.

3 The Proposed Model

Based on evolving graphs, we propose in this section a formal and general model for
dynamic networks. The proposed model defines the different topological changes in
a dynamic network allowing to specify a distributed algorithm, the manner of time
evolution and the primitives to analyze the evolving graph. The main objective of
this model is to be reused or instantiated to specify distributed algorithms in dynamic
network.

As mentioned earlier, the formalism of evolving graphs allows to represent the
changing connectivity of a dynamic network as a sequence of static graphs.

Let g = (G, SG , ST ) be an evolving graph. Every static graph, Gi ∈ SG , cor-
responds to the network topology during the interval of time [ti , ti+1[ where “ti”
represents the date when one or several topological events occur in the system. In
our work, the time evolution from a date “ti” to a date “ti+1” is performed after one
or many topological events. We can distinguish two situations of these events:

• Adding edge:
Pre-condition: appearance of a new edge in the network at the current date “t”.
Post-condition: addition of the new edge labeled “t”.

• Removing edge:
Pre-condition: presence of an edge in the network at the date “t-1” and its disap-
pearance at the current date “t”.
Post-condition: no change takes place in the evolving graph.

There is another event that requires changing the evolving graph without affecting
the time evolution.We call this event “Maintaining edge”.We talk about this situation
if an edge is present at the date “t-1” and it undergoes no change at the date “t”. In
this case, we add the date “t” to the label of the concerned edge.
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Fig. 3 Combination of graph relabellings and evolving graphs

In our proposed model, we take into account some hypotheses. On the one hand,
we will consider only the variation of edges in the network. In contrast, we don’t
consider the appearance or disappearance of nodes. On the other hand, a distributed
algorithm in the local computation model is simply given by a set of relabelling
rules. So, we suppose that such distributed algorithm can apply its rewriting rule(s)
to every edge before the final date “tn”. In order to analyze distributed algorithms
on dynamic networks, we combine the evolving graphs and the formalism of graph
relabellings [12]. As illustrated in Fig. 3, each static graph Gi in SG covers the
time interval [ti , ti+1[. We denote by “Eventti ” the one or more topological events
occurring at the time “ti”. Between two consecutive topological events, any number
of relabellings may take place. For a given algorithm A and two consecutive dates
ti , ti+1 ∈ ST, we denote by:

• Gi[ the labeled graph representing the network state just before “Eventti ”;
• Gi the labeled graph representing the state of the network just after the topological
events of the date “ti”;

• RA[ti ,ti+1[ one of the possible relabelling sequence induced by the algorithm A on
the graph Gi during the period [ti , ti+1[.

Then, we have Eventti (Gi[) = Gi and RA[ti ,ti+1[(Gi ) = Gi+1[.

4 Formal Development

We remember that the specification of our proposed model is performed with Event-
B method and done with RODIN platform. In our work, the development strategy
of our model is composed of one context “c” and two machines “M0” and “M1”.
We begin by presenting the context which describes static properties of the network.
After that, we detail the specification of the two machines. In fact, we start with a
very abstract model and then we add details, to obtain a correct and concrete model.
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4.1 Formal Development of the Context “c”

The context “c” describes the static properties of the network. Formally, a graph
namely “g” is modeled by a set of nodes called “V”. However, we have supposed
in our work that the dynamic graph is composed of stable nodes and variable edges.
For this reason, we define “V” in the context as an abstract set. Moreover, we add
“tn” as a constant which represents the final system date. By means of the “axm1”,
we state that “tn” is an integer different to the start date of the system. Furthermore,
we add “axm2” to indicate that the number of nodes in the network is finite. The
axioms specification of the context “c” is done as follows:

axm1 : tn ∈ N \ {0}
axm2 : f ini te(V )

4.2 Formal Development of the First Level: Machine M0

In this level, a network canbe formallymodeled as a connected, undirected and simple
graph “g” where nodes denote processors and edges denote direct communication
links (see inv1). A graph is undirected if there is no distinction between two nodes
associated with each edge (see inv2). A simple graph means that it does not have
more than one edge between any two nodes and no edge starts and ends at the same
node (see inv3). The invariants specification of M0 is done as follows:

inv1 : g ⊆ V × V
inv2 : g = g−1

inv3 : (V � id) ∩ g = ∅

In the first level, we can notice the appearance of new edges and the maintain of the
existing ones from a graph Gi to the following graph Gi+1. In fact, the basic idea
of the evolving graph is the superposition of graphs one another. As a consequence,
we do not consider the concept of time and the removing of edges. Nevertheless,
it is necessary to have another level which refines the first. In Fig. 4, we present
an example of evolving-graphs sequence which we can see in the first level. This
sequence corresponds to the network topology taken in Fig. 1. Formally, we introduce
two events “Adding_Edge” and “Maintaining_Edge”.

G0 G1 G2 G3

Fig. 4 Example of evolving-graphs sequence in M0
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• Adding_Edge: In this event, if an edge does not belong to the graph “g” (grd1,
grd2 and grd3), then we can add it to “g” (act1). To respect the invariant “inv2”,
we add both “x �→ y” and “y �→ x”. We provide below the specification of this
event.

• Maintaining_Edge: Based on the evolving graphs, if an edge exists in a graph Gi

then it still exists in the following graph Gi+1. Formally, in the guard component,
we define “grd1” to verify the existence of an edge “e” in the graph “g”. This
event with no action is considered to have the action skip.

Adding_Edge
any x, y
where

grd1 : x �→ y ∈ V × V
grd2 : x �→ y /∈ g
grd3 : x 	= y

then
act1 : g := g ∪ {x �→ y, y �→ x}

end

Maintaining_Edge
any e
where

grd1 : e ∈ g
then

act1 : skip
end

4.3 Formal Development of the Second Level: Machine M1

The second machine, called M1, refines the previous one. In fact, we keep the vari-
ables, invariants and events of the machine M0 and we add details to transform an
abstract model into a more concrete version. If an invariant refers to both the abstract
and concrete model, we call it a “gluing invariant” (inv3, inv4). The gluing invari-
ants are used to relate the states between the concrete and abstract machines. In this
level, we introduce the concept of time to distinguish the situations of appearance,
disappearance and maintain of an edge in the network. Indeed, each edge has a label
that indicates the dates when it is present in the network.

• The appearance of a new edge in the network at the date “t” requires the addition
of this edge labeled “t”;

• The disappearance of an edge does not change anything in the evolving graph;
• The presence of an existing edge at the current date “t” requires adding the date

“t” to the label of the concerned edge.

To illustrate these details, we present an example of evolving-graphs sequence in
Fig. 5 which refines the first level.

In order to specify these events, we refine the “Adding_Edge” event of M0
by another event “Adding_Edge” which add more details. Also, we refine the
“Maintaining_Edge” event to obtain two events “Maintaining_Edge” and “Remov-
ing_Edge”. Moreover, we introduce a new event called “Incrementing_Time”, to
ensure the incrementation of time when one or many topological changes occur in
the network.

Formally, we specify the machine M1 by adding two variables “t” and “LE”.
The variable “t” represents the current time and “LE” is a function that assigns
a label to each edge. The specification of this function takes the following form:
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G0 G1 G2 G3

0 0, 1 0, 1, 2 0, 1, 2

1 1 1

1 1, 2 1, 2

t0 t1 t2 t3 t4

Fig. 5 Example of evolving-graphs sequence in M1

L E ∈ g → P(N ). The addition of these two variables involves the addition of new
properties in the invariant component (inv1, inv2, inv3 and inv4).

inv1 : L E ∈ g → P(N)

inv2 : t ∈ N ∧ t ≥ 0 ∧ t ≤ tn
inv3 : ∀e · e ∈ g =⇒ (∃t1 · t1 ∈ N ∧ t1 ≥ 0 ∧ t1 ≤ t ∧ t1 ∈ L E(e))
inv4 : change ∈ N

Initially, the system time is initialized to zero (t = 0). Then, the edges which are
present at the time “t = 0” have the label “0” (LE={0}).

If we say that an edge “e” exists in “g” (e ∈ g), then its label contains at least
one date “t1” knowing that t1≤t (see inv3).

As we said above, the incrementation of time, from a date “t” to a date “t+1”, is
done after one or several topological events (adding edge, removing edge). To do so,
we introduce a new variable of type integer called “change” (see inv4). This variable
is initialized to zero (change=0) and if an event takes place, then “change=1”.

In order to express the different topological changes over time, based on the
evolving graphs, we explain and we specify the different events as follows:

• Adding_Edge: By introducing the concept of time, the appearance of a new edge
in the network requires the addition of the edge and a label containing the current
date “t”. Thus, the “Adding_Edge” event presented in M0 is refined by modifying
the action component. In fact, we add the new edge and then we add a label
containing the current date. Also, the variable “change” receives the value “1”
(act2) to indicate that a topological change has been produced. We provide below
the specification of the “Adding_Edge” event.

• Maintaining_Edge: If an edge has appeared at a date “t1”, with “t1” strictly
lower than the current date “t”, and it still exists at the date “t”, then we call this
event “Maintaining_Edge”. Formally, in the guard component, we define “grd1”
to verify the existence of an edge “e” in the graph “g” before the date “t”. Also,
we add “grd2” to guarantee that the date “t” does not belong to the label of the
edge “e”. In the action component, we update the label of the edge “e” by adding
the date “t” to the existing label (act1). The variable “change” does not change
since the network has not undergone any modification. The “Maintaining_Edge”
event is specified as follows:
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Adding_Edge
refines Adding_Edge
any x, y
where

grd1 : x �→ y ∈ V × V
grd2 : x �→ y /∈ g
grd3 : x 	= y

then
act1 : g, L E : |g′ = g ∪ {x �→ y, y �→ x}
∧L E ′ = L E ∪ {(x �→ y) �→ {t}, (y �→ x) �→ {t}}

act2 : change := 1
end

Maintaining_Edge
any e
where

grd1 : e ∈ g
grd2 : t /∈ L E(e)

then
act1 : L E(e) := L E(e) ∪ {t}

end

• Removing_Edge:An edge has been removed at the actual date “t” if it exists at the
date “t-1” (see grd1 and grd2), but it does not exist at the date “t” (see grd3). In this
situation, nothing will change in the evolving graph. So, in the action component,
we modify only the variable “change” (act1). We provide the specification of the
“Removing_Edge” event below.

• Incrementing_Time: We have introduced a new event, called “Incrementing_
Time”, which ensure the incrementation of time. In the guard component, we verify
that t≥0 and t<tn (grd1). This event is activated when one or several topological
events (Adding_Edge, Removing_Edge) occur in the network, which means that
“change” is equal to 1 (grd2). In the action component, we increment the time to
“t +1” and we reset the variable “change” (act2). Then, we have no topological
change at the time “t +1”. The “Incrementing_Time” specification is done as
follows:

Removing_Edge
any e
where

grd1 : e ∈ g
grd2 : t ≥ 1 ∧ (t − 1) ∈ L E(e)
grd3 : t /∈ L E(e)

then
act1 : change := 1

end

Incrementing_Time
where

grd1 : t ≥ 1 ∧ t < tn
grd2 : change = 1

then
act1 : t := t + 1
act2 : change := 0

end

Using the proposed model, it is possible to find the historical data of a dynamic
network. So, it is a way to analyze an evolving graph. In fact, through the function
“LE”, we can obtain the presence dates of each edge in the network. Then, we can
verify the connectivity over time [7] of the network. Also, we can find the set of
all possible paths over time from one node to another, called journeys. Thus, it is
possible to compute optimal journeys in dynamic networks like the minimum delay
of path (fastest journey), the earliest arrival date (foremost journey) and theminimum
number of hops (shortest journey) [5].

5 Example

In this section, we present an illustration of our model by specifying a distributed
algorithm encoded by local computations model. For this purpose, we choose a sim-
ple example of algorithm, called centralized counting algorithm. It is a distributed
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Fig. 6 Execution example of the centralized counting algorithm over evolving graph

algorithm which computes all the nodes in a network. In fact, each entity executes
asynchronously the same code and interacts locally with its immediate neighbours.
The proposed model can be applied to other distributed algorithms. The main objec-
tive of this section is to demonstrate how our model can be used and incorporated
during development. Through this example, we list and we discuss the instantiation
of the different model components, by refinement technique, to generate a correct
specification.We begin in this section by presenting the chosen algorithm. After that,
we illustrate how we obtain an instance of the proposed model.

5.1 Algorithm Presentation

The centralized counting algorithm, depicted inAlgorithm1, assumes a distinguished
node at initial time. This node, called the counter, is in charge of counting all the
nodes it meets during the execution. Therefore, the counter node has two labels
(C, i), meaning that it is the counter (C), and that it has already counted i nodes
(initially 1, i.e., itself). The other nodes are labeled either “F” or “N”, depending on
whether they have already been counted or not. The counting rule is given by the
relabelling rule “R” in Algorithm 1. An execution example of this algorithm over
the evolving graph is given in Fig. 6.
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Fig. 7 Using the model in Event-B development (Example: centralized counting algorithm)

5.2 Formal Specification

To explain the specification of the centralized counting algorithm,we present in Fig. 7
how the proposed model is used to construct a correct distributed algorithm. In fact,
we begin by specifying the application field of the algorithm. Then, we introduce
a new context called “c1”, as an extension of the context “c”, which describes the
specific algorithmic properties. Generally, the development of a distributed algorithm
starts with a very abstract algorithm and then by successive refinement we obtain a
concrete one that expresses the local behavior of the processor in the network.

According to this development strategy and with respect to the given algorithm,
three basic levels are necessary to build a correct distributed algorithm.

In the first level, we define a machine M0’ which refines M0. Then, it includes
the events “Adding_Edge” and “Maintaining_Edge”. M0’ can access to all com-
ponents of the context “c1” (via the clause SEES). It expresses only the goal of
the distributed algorithm through a new event “oneshot” which does not describe
how the solution is computed. In the second level, M1 is incorporated into M1’
(via the clause INCORPORATES). Thus, M1’ includes the events “Adding_Edge”,
“Maintaining_Edge”, “Removing_Edge” and “Incrementing_Time” as defined in
M1. In addition, we refine the events “Adding_Edge” and “Maintaining_Edge” of
M0’ in the same manner as the refinement done in the proposed model. Also, we
refine the event “oneshot”. In the third level, we introduce a machine, called M2,
which refines M1’. In this level, we specify the local label modification and encode
the relabelling rule described above.

The details of the context andmachines developmentwill be explained afterwards.

• The context “c1”
In this context, we define the node “c0” as a constant which is in charge of counting
all the nodes it meets during the execution. We denote node labels by a set called
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“LN”: The node “c0” is labeled “C”. The other nodes are labeled “F” if they have
already been counted and “N” if they have not (see axm 2). All these specific
algorithmic properties are specified as follows:

context c1
extends c
sets

L N
constants

c0, N , F,C
axioms

axm1 : c0 ∈ V
axm2 : parti tion(L N , {C}, {N }, {F})

end

• The first level: Machine M0’
In this level, the “Adding_Edge” and the “Maintaining_Edge” events remain
unchanged and we add an event called “oneshot”. This event avows the result
of the distributed algorithm when its execution is completed. Then, it returns the
number of nodes in the network without describing how the solution is computed.
In order to specify the “oneshot” event, we introduce two variables “nodes”
and “nb_nodes” which will contain respectively the sets of nodes that have been
counted and the resulting number of nodes. These new variables are specified by
the following invariants:

inv4 : nodes ⊆ V
inv5 : nodes 	= ∅
inv6 : c0 ∈ nodes
inv7 : ∀x · x ∈ nodes\{c0} =⇒ c0 �→ x ∈ g
inv8 : nb_nodes ∈ N

Initially, “nodes” contains the center “c0”. Thus, “nb_nodes” is equal to 1. The
following initialization establishes the invariants:

act1 : g : |(g′ ⊆ V × V ) ∧ (g′ = g′−1) ∧ ((V � id) ∩ g′ = ∅)
act2 : nodes := {c0}
act3 : nb_nodes := 1

We provide the specification of the “oneshot” event below. In the guard compo-
nent, all nodes, except “c0”, must be connected to the center “c0”. In the action
component, the variable “nodes” contains all the network nodes and “nb_nodes”
is the number of nodes in the network. We prove by means of the theorem “Th1”
that the graph “g” is connected.

oneshot
where

grd1 : ∀x · x ∈ V \ {c0} =⇒ c0 �→ x ∈ g
T h1 : ∀s · s ⊆ V ∧ s 	= ∅ ∧ g[s] ⊆ s =⇒ V ⊆ s

then
act1 : nodes := V
act2 : nb_nodes := card(V )

end
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• The second level: Machine M1’
The refinement of M0’, named M1’, remains in a high level abstraction. It encodes
the algorithm and computes its result without considering the relabelling rules.
The specification presented in the second level of the model still exists. However,
we have to refine the “oneshot” event defined in M0’, due to the presence of the
time aspect in this level. In fact, the “grd1” presented in M0’ is reinforced by a
new condition called “grd2”. It ensures that each node “x” in the graph, except
“c0”, will be linked to the node “c0” at one or several dates. Then, the label of
each edge “c0 �→ x” in the graph contains one or several dates. The guard “grd2”
of the “oneshot” event specification is given as follows:

grd2 : ∀x · x ∈ V \ {c0} =⇒ (∃t1 · t1 ≥ 0 ∧ t1 ≤ tn ∧ t1 ∈ L E(c0 �→ x))

• The third level: Machine M2
The thirdmachine, calledM2, refines the previous one. It introduces labels of nodes
and edges. The “oneshot” event still exists but it is more concrete. However, the
other events (Adding_Edge, Maintaining_Edge, Removing_Edge), presented in
M1’, remain unchanged.
Let “lab” be the variable which describes the states of nodes: “lab ∈ V → L N”
(inv1) where “LN” is defined in the context “c1” as the set of possible labels for the
nodes. At every time, each node is in a particular state and this statewill be encoded
by a node label. According to its own state and to the states of its neighbours, each
node may decide to perform a computation step by applying the relabelling rule.
Initially, the node “c0” is labeled “C” and the other nodes are labeled “N”, since
they have not been counted. The initialization of the variable “lab” is defined as
follows:

act5 : lab := ((V \ {c0}) × {N }) ∪ ({c0 �→ C})

Formally, the relabelling rule “R” is specified by the event “Rule” as follows:

Rule
any

s2
where

grd1 : c0 �→ s2 ∈ g
grd2 : lab[{s2}] = {N }
grd3 : t ∈ L E(c0 �→ s2)

then
act1 : lab(s2) := F

end

We also define a gluing invariant called “gluing_inv”. Generally, the gluing invari-
ants are used to relate the states between the concrete and abstract machines. In
our context, if a node “x” belongs to “nodes”, which represents the sets of nodes
that have been counted, then it is connected to the center “c0” and labeled “F”.
Furthermore, the edge joining the node “x” and “c0” should be present in one or
several times. The gluing invariant specification of M2 is done as follows:
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gluing_inv : ∀x · x ∈ nodes\{c0} =⇒ lab(x) = F
∧c0 �→ x ∈ g ∧ (∃t1 · t1 ≥ 0 ∧ t1 ≤ tn ∧ t1 ∈ L E(c0 �→ x))

In this level, we refine the “oneshot” event by adding new guards and reinforcing
the action “act1” of the abstract event. In fact, we reinforce the guard component
by adding “grd3”, “grd4” and “grd5” which ensure that the node “c0” is labeled
“C” (grd3), all the other nodes are labeled “F” (grd4) and no node is labeled “N”
(grd5). The added guards in the “oneshot” event specification is given as follows:

grd3 : lab[{c0}] = {C}
grd4 : lab[V \ {c0}] = {F}
grd5 : lab−1[{N }] = ∅

Also, we reinforce the action “act1” to indicate that, at the end of the execution of
the algorithm, the nodes are labeled “C” or “F”.

act1 : nodes := lab ∼ [{C, F}]

Weprove bymeans of the theorem2 (Th2) that our algorithmcan apply its rewriting
rules to every edge before “tn”.

T h2 : ∀x · x ∈ V \ {c0} ∧ c0 �→ x ∈ g =⇒ (∃t1 · t1 ≥ 0 ∧ t1 ≤ tn ∧ t1 ∈ L E(c0 �→ x) ∧ lab(x) = F)

6 Conclusion and Future Work

In this paper, we have presented a formal and general model for dynamic networks
based on the evolving graph formalism. It aims to define the different topological
changes and the situations of time evolution. It is also a way to analyze the evolving
graph. The proposed model is based on the refinement technique by using the Event-
B formal method and the RODIN platform. The main characteristic of this model is
that it enables reuse in the development and minimizes efforts on proving distributed
algorithms. We have illustrated it by investigating an example of the centralized
counting algorithm.

We are currentlyworking on dealingwith other examples of distributed algorithms
which aremore complex.Weplan to extendourmodel by introducing someproperties
related to evolving graphs such as connectivity over time, journeys, etc. Moreover, it
is interesting to choose a case study supporting the dynamic behavior of the network
in order to apply the proposed model in realistic scenarios.
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