Automatic Generation of S-LAM
Descriptions from UML/MARTE
for the DSE of Massively Parallel
Embedded Systems

Manel Ammar, Mouna Baklouti, Maxime Pelcat,
Karol Desnos and Mohamed Abid

Abstract Massively Parallel Multi-Processors System-on-Chip (MP2SoC) archi-
tectures require efficient programming models and tools to deal with the massive
parallelism present within the architecture. In this paper, we propose a tool which
automates the generation of the System-Level Architecture Model (S-LAM) from a
Unified Modeling Language-based (UML) model annotated with the Modeling and
Analysis of Real-Time and Embedded Systems (MARTE) profile. The S-LAM-based
description of the MP2SoC architecture is conformed to the IP-XACT standard. The
integration of our generator within a co-design framework provides the specification
of the whole MP2SoC system using UML and MARTE. Then, gradual refinements
allow the execution of a rapid prototyping process.

1 Introduction

Recent trends in High-Performance Computing (HPC) architectures show that, due to
the end of processor frequency scaling, performance increases are mostly gained by
employing more processor cores [1]. This trend draws attention to the effectiveness
of Massively Parallel Multi-Processors System-on-Chip (MP2SoC) architectures in
the HPC domain. Designers of high performance MP2SoC are facing many critical
design challenges including:

M. Ammar (X)) - M. Baklouti - M. Abid
CES Laboratory, National Engineering School of Sfax, Sfax, Tunisia
e-mail: manel.ammar@ceslab.org

M. Pelcat - K. Desnos
IETR, INSA Rennes, CNRS UMR 6164, UEB, Rennes, France
e-mail: mpelcat@insa-rennes.fr

© Springer International Publishing Switzerland 2016 195
R. Lee (ed.), Software Engineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing 2015, Studies in Computational Intelligence 612,

DOI 10.1007/978-3-319-23509-7_14

196 M. Ammar et al.

1.1 Raising the Level of Abstraction of the Specification

The raising complexity of embedded systems creates a need for intensive speci-
fication task. In the history of design flows, changes in design productivity were
always related to raising the level of abstraction in design entry. In the 1970s, the
highest level of abstraction was a transistor schematic. 10 years later, design entry
had moved up from transistors to gates. Then, with the appearance of Hardware
Description Languages (HDL) other levels of abstraction were proposed including
the Register-Transfer Level (RTL) and the behavioral level. In the beginning of the
2000s, and with the emergence of new languages (mainly SystemC) for the descrip-
tion of systems, a higher level of abstraction was created named the system-level.
Current research targeting the Model Driven Engineering (MDE) methodology [2]
shows the effectiveness of this methodology in the domain of System-on-Chip (SoC)
design. Describing complex systems using models, which is the primary issue of
MDE, leads to the creation of a higher level-of-abstraction: the model level. This
level is mainly based on the Unified Modeling Language (UML) [3] and a domain-
specific profile dealing with a specific type of systems: embedded systems.

1.2 Reusing IP Blocks

Historically, design reuse has proven its utility in the SoC design field as system
complexity continuously increases [4]. However, there is one important challenge
in adopting this methodology: the lack of formal characterization of platforms. As
a result, platforms should be formally defined in terms of semantics to facilitate
verification, automatic design, reuse and interoperability between Electronic Design
Automation (EDA) tools. IP-XACT [5] was created to face this challenge. It describes
electronic components and their designs in an Extensible Markup Language (XML)
format that facilitates exchanging IPs between different EDA tools for complex SoC
design. IP-XACT was standardized by the SPIRIT Consortium.

1.3 Building Well Structured Methodologies

Methods and tools used in the specification and design space exploration of HPC
architectures aim at managing the increasing complexity of hardware architectures
specification task while promoting IP reuse through the IP-XACT standard. Current
hardware specification efforts within the MDE community can be summarized in
two key points:

Automatic Generation of S-LAM Descriptions from UML/MARTE ... 197

e Modeling IP-XACT designs in UML and annotating models with IP-XACT spe-
cific stereotypes

e Applying UML as high-level specification methodology and link it with IP-XACT
in a lower-level of abstraction using MDE transformation rules

The work presented in this paper is an effort towards the second key point. Actually,
we propose a new approach that takes advantage from UML as high-level model-
ing language combined with the Modeling and Analysis of Real-Time and Embed-
ded Systems (MARTE) profile [6] and introduces another level that facilitates IP
integration, architecture generation and system analysis. This level is based on the
System-Level Architecture Model (S-LAM) [7] which conforms to the IP-XACT
standard. S-LAM proposes a simple description of MP2SoC architectures at system-
level while reducing the architecture simulation complexity. This paper presents the
MARTE to S-LAM generator, able to generate from a UML/MARTE description of
the MP2SoC architecture, the corresponding S-LAM description required for run-
ning a system-level rapid prototyping process.

This paper is organized as follows: related works dedicated to hardware resource
modeling and IP-XACT integration are highlighted in Sect.2. Section 3 introduces
our framework for the co-design of MP2SoC embedded systems. Section4 details
our proposed S-LAM generator including the implemented meta-models and trans-
formation rules. Finally, Sect.5 gives some experimental results.

2 Related Work

In recent years, there has been an extensive interest in merging MDE-based frame-
works and metadata IP reuse approaches. Initial efforts targeting to combine UML
design entries with IP-XACT have been gaining traction [8—10]. These efforts aim
to choose the adequate profile that covers the specification of complex hardware
platforms on the one hand, and to implement the adequate mapping that generates
the required IP-XACT description of the architecture on the other hand.

2.1 Using UML Profiles for HW Resource Modeling

UML is a general language but its extensibility, introduced with UML 2.0 via the
notion of profiles, extends the language to domain-specific problems. More precisely,
UML started to be adopted as a standard in the domain of real-time and embedded
systems during the past years. Several profiling mechanisms aiming to use UML in
SoC design and especially in hardware specification have been proposed including
UML for SoC [11] and Omega-RT [12] profiles. With the ever increasing demand
and complexity of embedded systems, a new profile has emerged. This standardized
profile, named MARTE [6], is structured around two central concerns, modeling

198 M. Ammar et al.

the characteristics of embedded systems and annotating the models to support the
analysis of the system features. Defining accurate semantics for time and Hw/Sw
resource modeling and supporting real-time and embedded systems co-design flows
are the major goals of the MARTE profile. These two goals can be achieved using
the MDE foundations when defining embedded system design flows. This explains
the use of MARTE and MDE in the proposed co-design flow. In one hand, MDE
facilitates automatic transformations from one abstraction level to a lower one, for
simulation or implementation purposes. In the other hand, it promotes the integration
of different tools thanks to transformation techniques. As a result, analysis tools,
verification tools and modeling tools can be coupled in a single co-design flow.

2.2 Merging UML and IP-XACT in MDE-based Design Flows

Several works have shown the importance of integrating IP-XACT while taking
advantage from MDE principles in their design flows. In [8] a MARTE-based method-
ology that exploits IP-XACT to specify and automatically generate Dynamic Partial
Reconfiguration (DPR) SoC designs was proposed. MARTE models of the plat-
form are parsed executing a chain of model transformations to obtain an IP-XACT
description of the system that can be used in the Xilinx EDK (Embedded Design
Kit) environment. In the COMPLEX framework [9], the IP-XACT description of the
architecture can be automatically generated from the UML/MARTE model using the
MARTE to IP-XACT (MARTIX) code generator [10]. Then, an executable model
can be built from the IP-XACT platform description for functional validation and
performance estimation. In another work [13], IP-XACT was used as input point in an
MDE-based approach aiming to generate SystemC code. The authors propose a multi-
level design flow that integrates extensions of the IP-XACT standard and different
meta-models. Comparing these related works with our approach, we can observe that
none of them uses IP-XACT for the high-level design space exploration of MP2SoC
systems. Moreover, these works try to exploit the whole IP-X ACT metadata targeting
low-level simulations. On the contrary, our approach is based on a simplified sub-set
of IP-XACT, named S-LAM, for the high-level analysis of MP2SoC.

3 A Co-Design Framework Integrating the S-LAM
Generator

Our proposed approach, depicted in Fig.1, is a complete EDA tool for the co-
specification, design space exploration and code generation of MP2SoC systems
that relies on Object Management Group (OMG) standards and MDE techniques.
Being based on the Eclipse framework, front-end, transformation engine and back-
end tools are grouped together in a fully-integrated flow.

Automatic Generation of S-LAM Descriptions from UML/MARTE ...

Papyrus modeler

UML/MARTE
Front-end

ion engine

Transformat

PREESM rapid
prototyping tool
back-end

UML

meta-model and
MARTE profile

<<conforms to>>

Application and
SW deployment

Architecture and
HW deployment

SW/HW

allocation

||

. QVTO .
. TISDF | UML2MARTE SLAM :
. generator [_ (M2M) ﬁ generator :
Application Allocation Architecture
generic model| [generic model| |generic model
<qconforms to>>} <<c0nfoims to>> i<<conform-
MARTE |¢:----m-o- 4
QVTO meta-model QVTO
MARTE to UA“E‘W;L MARTE to
TISDF (M2M) MARTE to S-LAM (M2M —<conforms tos>
i‘;:a;.;'f;};;';;a;'; """ i ¢ Scenario (M2T) ﬁ i 1
TISDF TISDF S-LAM S-LAM
meta-model model Scenario model meta-model
v file
= . TISDF to pi <entry>> S-LAM to slam| ¢ .
e files (M2T) files (M2T) W
.pi .slam
files files
<<entry>> <<entry>>
Automatic mapping

and scheduling

Performance
estimation

Fig. 1 The S-LAM generator in the context of the co-design flow

3.1 UML/MARTE Front-End

The proposed co-design flow uses UML/MARTE and the associated Papyrus tool
[14] as modeling front-end. This high-level modeling front-end allows a user to
graphically specify an embedded system conforming to the UML meta-model and
the MARTE profile. Our methodology defines four sub-models to be specified and
associated in a unified UML/MARTE based-model: application, architecture, allo-
cation, and deployment sub-models.

200 M. Ammar et al.
3.1.1 Application Sub-model

Contains the structural specification of a given data-intensive application where com-
putations are defined as a set of interconnected tasks inside a UML composite struc-
ture diagram. Application constraints and properties are defined in this sub-model
including execution time value of each task using the «swSchedulableResource»
stereotype from the MARTE Software Resource Modeling (SRM) sub-profile. The
MARTE Repetitive Structure Modeling (RSM) sub-profile is used to model the par-
allel computations and the multidimensional data structures in the application. In
addition, the Generic Component Modeling (GCM) sub-profile helps to define data
flow ports and connectors.

3.1.2 Architecture Sub-model

Gathers a number of interconnected resources specifying the hardware components
of an embedded system in a structural way. Therefore, the composite structure dia-
gram is used to model the hierarchic structure of MP2SoC. Stereotypes from the
MARTE Hardware Resource Modeling (HRM) sub-profile are exploited to indicate
which kind of hardware component each UML element represents («<HwProcessor»
«HwMemory» «HwCommunicationResource» stereotypes). Properties of hardware
processing resources, storage resources and communication resources are also spec-
ified using tagged values of these stereotypes. Multidimensional parallel resources
of massively parallel MP2SoC architectures are specified using the RSM sub-profile.
Ports and interconnections between hardware resources are annotated with stereo-
types from the GCM sub-profile.

3.1.3 Allocation Sub-model

Defines the allocation constraints which associate tasks from the application sub-
model with resources from the architecture sub-model. To allocate tasks to hard-
ware components, the MARTE alloc sub-profile is used. In fact, UML dependencies
between class instances of the application and the architecture are annotated with
«allocate» or «distribute» stereotypes helping to map each task to a component or a
repetition of a task to a group of components. The allocation is partial and defines only
mapping constraints since the rapid prototyping tool automatically makes mapping
decisions.

3.1.4 Deployment Sub-model
Describes the deployment of the software and the hardware components on IPs

using the UML deployment diagram. The UML deployment mechanism and the
MARTE profile lack aspects that allow the deployment of IPs on a component of

Automatic Generation of S-LAM Descriptions from UML/MARTE ... 201

the SoC. For this reason, our flow proposes an additional profile, the Deployment
profile to facilitate deploying elementary components with IPs. The proposed profile
facilitates both the high-level modeling of IPs and the automatic generation of the
S-LAM system description. The «HwIP» stereotype, from the Deployment profile,
models an IP deployed on a component of the architecture facilitating the generation
of S-LAM descriptions. It gathers a set of attributes used to specify a component
description in the S-LAM standard.

3.2 Transformation Engine

Three transformation engines were developed inside the transformation engine:

e The = SDF generator: produces 7w SDF graphs of the data-parallel application to
facilitate the analysis of modern data-intensive applications running on MP2SoC
architectures. The implementation of the 7 SDF generator is detailed in [15].

e The S-LAM generator: produces an S-LAM description of the architecture (cf.
Section V).

e The MARTE to Scenario transformation: produces a scenario file for the rapid
prototyping framework. This scenario gathers systems constraints and properties
aiming to guide the rapid prototyping process.

3.3 PREESM Tool Back-End

The generated 7w SDF graphs of the application, S-LAM description of the architecture
and scenario file can be automatically analyzed and processed using the PREESM [7]
rapid prototyping tool for automatic allocation, scheduling [16], system performance
estimation [7] and finally code generation.

4 The S-LAM Generator

The implementation of a transformation flow in the MDE approach relies on the
definition of ad-hoc meta-models for each abstraction level. For this reason, two
meta-models are proposed in the context of the S-LAM generator: the MARTE
meta-model and the S-LAM meta-model. In addition, model-to-model (M2M) and
model-to-text (M2T) transformations were defined inside the transformation chains
as depicted in Fig. 1. In our approach, M2M transformation rules are defined using the
QVTO language [17] and M2T transformation rules are described using the Acceleo
tool [18].

202 M. Ammar et al.

4.1 MARTE Meta-Model Relevant Parts Used in the S-LAM
Generator

The input of each transformation chain in the proposed framework is a UML model
compliant with the MARTE profile. Generating a MARTE model (conforming to
the MARTE meta-model) from a profiled UML model (conforming to the UML
meta-model) is a typical transformation in a UML/MARTE-based framework. The
developed UML2MARTE transformation corresponds to a bridge connecting the
specification of the system and the developed generators. This transformation is out
of the scope of this paper. The open-source Ecore version of the MARTE meta-
model provided with the source code of Papyrus and extended with the Deployment
elements is used as the input of the S-LAM generator.

4.1.1 Conserving the Hierarchical Structure of MP2SoC with GCM
Meta-Model

The GCM package from the MARTE profile defines arich base of notations helping to
annotate ports, interconnections, etc. However, supporting component-based models
remains most important when focusing on moving up from specification purposes,
where the MARTE profile is employed as a foundation, to successive transforma-
tions for DSE, where the MARTE meta-model is used as starting point. The GCM
meta-model can preserve the hierarchical structure of a model without losing any
detail since it represents an abstraction of the UML structured classes. A hierarchical
component in MARTE is a StructuredComponent that encloses instances of other
components, presented using the AssemblyPart element. Two assembly parts are
connected via their ports (FlowPort element) using connectors. Connectors between
two AssemblyParts are named AssemblyConnectors.

4.1.2 Capturing Repetitive Structures in the RSM Meta-Model

The RSM meta-model extends the basic concepts of the MARTE meta-model by pro-
viding meta-classes that capture shaped multiplicities and link topologies of inten-
sive computation embedded systems. This meta-model proposes high-level meta-
modeling mechanisms that express all the available parallelism of the hardware
execution platform precisely and in a compact manner. These mechanisms are ori-
ented toward two features: capturing the regularity of an MP2SoC system structure
(composed of a repetition of structural elements) and denoting the topologies of links
between hardware components of the system.

Automatic Generation of S-LAM Descriptions from UML/MARTE ... 203
4.1.3 Capturing System Properties in the HRM Meta-Model

The Hw_Logical meta-model is the relevant part from the HRM meta-model used
in the S-LAM generator as it gathers the set of hardware resources that are central
to the MP2SoC platform definition. Properties of memories (size), communication
networks (speedup) and processors can then be captured inside the meta-classes of
this meta-model.

4.1.4 Capturing IP Properties in the Deployment Meta-Model

The Ecore version of the current MARTE meta-model was extended to enable its
merging with the Deployment meta-model. Properties of each IP can be then deduced
in the generated MARTE model from the «<hwIP» stereotype and captured inside the
hwIP meta-class.

4.2 The S-LAM Meta-Model

At high-levels of abstraction, a detailed description of each hardware resource is
not necessary to succeed a rapid prototyping process. For this reason, the S-LAM
meta-model does not use the entire IP-XACT meta-model, but it exploits a sub-set of
concepts that capture the needed information for the exploration phase. This sub-set
includes two meta-models: the component meta-model and the design meta-model.

4.2.1 The Component Meta-Model: Simplifying IP Description for DSE

A component, according to the IP-XACT standard, specifies a single hardware IP
and details the required information for the integration of this IP including its inter-
faces and its internal structure. Assuming that a specification approach that ignores
the implementation details of each component of the hardware architecture while
detailing its primary properties makes the system-level exploration process faster
and gives satisfactory solutions, the S-LAM component meta-model defines only
three component types: operators, enablers and communication nodes. These com-
ponents are efficient enough to specify a massively parallel embedded architecture
that gathers processing elements (operators), local and shared memories (enablers)
and regular and irregular communication networks (communication nodes).

4.2.2 The Design Meta-Model: Supporting Hierarchy and Composition

The S-LAM design meta-model, depicted in Fig.2, describes a design as a set of
component instances (Componentinstance element), links (Link element), hierarchy

204 M. Ammar et al.

0.*
destinationInterface interfaces
[pataLink | [E ControlLink | 1 . vinv
[1 | I busType H vinv 1
L ! ‘ t ‘ H Cominterface 1 | % vendor : EString
= - T library : EString
H Link T name : EString T name : EString
3 yuid : i T version : EStrin
TT‘ “9"’ HESTng sourcelnterface I Vers ing
T directed : EBoolean 1 internallnterface
1
i srcComplnstance
I(\)nfs destComplnstance |y P externallnterface

1 1

K Componentinstance internalComplnstance
T instanceName : EString
T repetitionSize : EString
@ isHierarchical() : EBoolean

hierarchyPorts
0.*

component
1

instances
componentInstances 0.*
0.* H HierConnection

5] Com?onent

hierarchyConnections I
0.*

E Design

= path : EString

@ containsComponentlnstance(EString) : EBoolean

@ containsComponent(VLNV) : EBoolean

@ getComponentlnstance(EString) : ComponentInstance
® getComponent(VLNV,EClass)

refinements

Fig. 2 S-LAM design meta-model

ports (HierarchyPort element) and hierarchy connections (HierConnection element).
Both Design and Component elements are identified using their VLNV which spec-
ifies the vendor, the containing library, the element name, and the version number
of a given IP. Each component instance in the design refers to the initial component
description. These component instances can be connected using two types of con-
nection elements: Link and HierConnection. While links are point-to-point connec-
tions between communication interfaces (Cominterface element) of the component
instances, hierarchy connections connect sub-designs or components from different
hierarchical levels using hierarchy ports. The original Ecore version of the S-LAM
meta-model [7] was extended to allow the specification of a repetition of the same
IP. The repetitionShape attribute was added to the Componentlnstance meta-class
allowing to specify the repetition shape of a given component instance.

4.3 M2M Mapping Rules: From MARTE Model to S-LAM
Model

The basic UML to MARTE and MARTE to S-LAM implemented QVTO mappings
are sketched in Fig. 3.

Automatic Generation of S-LAM Descriptions from UML/MARTE ... 205

UML meta-model ' MARTE meta-model | S-LAM meta-model
(e Design
UML::Class GCM:: slam::Design
(with parts) StructuredComponent
UML::Property GCM:: slam::
(part inside a hierachical class) AssemblyPart ComponentInstance
UML::Port GCM::FlowPort slam::
(port inside a hierachical class) (of a StructuredComponent) HierarchyPort
UML::Connector GCM::AssemblyConnector slam::DataLink
(between two parts) (between AssemblyParts) or slam::ControlLink
""""""""""""""""""""""""""""""" Component T
UML::Property GCM:: slam::Component
(part inside a hierachical class) AssemblyPart . P
UML::Port GCM::FlowPort slam::ComInterface
(port inside a part) (of an AssemblyPart) ”

UML::Property

H GCM::AssemblyPart
i (stereotyped HwProcessor)

(with a HwProcessor : slam::Compoonent::Operator :

Fig. 3 Mappings between UML, MARTE and S-LAM meta-models

4.3.1 Building the Hierarchical Structure of S-LAM

The S-LAM generator navigates the MARTE-compliant model and produces one S-
LAM model. This model is produced if and only if the S-LLAM generator finds at least
one StructuredComponent in the MARTE model. Then, the hierarchical structure of
the S-LAM model is created based on the Design meta-model. First, each Structured-
Component is transformed into a Design. Each AssemblyPart within the Structured-
Component becomes a Componentlnstanse inside the Design element. Moreover,
if the shape of the AssemblyPart is superior to one, the repetitionSize attribute of
the Componentlnstance will take the value of the shape element, indicating a rep-
etition of a hardware component instance. Examining each StructuredComponent,
the S-LAM generator looks for the AssemblyConnectors which associate Assem-
blyParts, and produces DataLinks or ControlLinks depending on the AssemblyParts
type (HwProcessor, HwMemory, etc.). In addition, AssemblyConnectors linking an
AssemblyPart with the StructuredComponent itself are transformed into Hierarchi-
calConnections. For the production of HierarchyPorts, the generator explores the
ports set of a given StructuredComponent, and transforms each FlowPort into a
HierarchyPort.

206 M. Ammar et al.

4.3.2 Generating the Interface Set of Each Component Instance
and Deducing its Type

For each AssemblyPart of the StructuredComponent, the S-LAM generator simulta-
neously produces a Componentlnstance and a Component. The implemented trans-
formation automates the generation of the corresponding Comlnterfaces of each
Component. In fact, FlowPorts of each AssemblyPart are converted into Com-
Interfaces when mapping the corresponding AssemblyPart into Component. Fur-
thermore, the generator is able to produce the right type of Component once it
checks the classifierTypeExtension element attached to the AssemblyPart. In fact,
if the AssemblyPart is not hierarchic, it will be transformed into an Operator,
a Mem or a ComNode depending on its classifierTypeExtension (HW_Processor,
HW_Memory, HW_CommunicationResource, HW_Bus). A hierarchical Assembly-
Part is an instance of a StructuredComponent which was a hierarchical class stereo-
typed «HwResource» in the UML model. It is transformed into an Operator if it
contains in its internal structure a processor.

4.4 M2T Mapping Rules: From S-LAM Model to S-LAM Files

Figure 4 shows the main Acceleo template which is the entry point of the M2T trans-
formation. Given that this template requires an instance of the parameter Design,
the transformation will navigate in the whole model to find all the available Design
elements and generate one S-LAM file per Design. The produced files are named
as the Design plus the “.slam” suffix, and encloses the «spirit:design» entry. Then,
for each Componentinstance element from the S-LAM model, the transformation
will produce one component instance inside the «spirit:componentInstances» and
«spirit:componentlnstances» delimiters. At the same time, this transformation con-
trols the repetitionShape value of each ComponentInstance in order to generate N
(where N is the value defined by the repetitionShape attribute) component instances
indicating the presence of a repetition of the same component instance in the design.
The M2T transformation searches all the DataLinks and ControlLinks and produces
a set of S-LAM interconnections. It also implements a similar navigation to figure
out the list of hierarchical connections.

5 Case Study

To evaluate the benefits of our framework, we conduct a series of experiments on
the M-JPEG encoder application. Originally developed for streaming multimedia
application, the M-JPEG video compression format is now considerably exploited
in video-capture devices where each video frame or video sequence is compressed
separately as a JPEG image. Compared to the recently emerged video compression

Automatic Generation of S-LAM Descriptions from UML/MARTE ... 207

[template public generateDesign(design : Design)]
[comment @main/]
[file (design.name.toString().concat('.slam'), false, 'UTF-8')]

<?xml version="1.0" encoding="UTF-8"?>
<spirit:design
xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4">

[design.generateVLNV()/]

<spirit:componentInstances>
[for (compInstance:ComponentInstance | self.componentInstances)]
[compInstance.generateComponentInstance()/]

[/for]

</spirit:componentInstances>

<spirit:interconnections>
[for (datalink:DatalLink | self.links)]
[datalink.generateDatalLink()/]
[/for]

[for (controllink:ControlLink | self.links)]
[controllink.generateControlLink()/]
[/for]

</spirit:interconnections>

<spirit:hierConnections>
[for (hierconn:HierConnection | self.hierarchyConnections)]
[hierconn.generateHierConnection()/]
[/for]

<spirit:hierConnections/>

<spirit:vendorExtensions>
[design.generatevendorExtensions()/]
</spirit:vendorExtensions>

</spirit:design>
[/file]
[/template]

Fig. 4 Acceleo main template

standards, M-JPEG describes a relatively simple encoding workflow. But, it is a typ-
ical streaming application that contains inherent task and data parallelism the fact
that provides rich experimentation opportunities when running on MP2SoC archi-
tectures. Figure5 shows the composite structure diagram of the application. The
video sequence should first be partitioned into frames (M-JPEG_encoder class).
Frames are split in blocks of 8*8 pixels and processed separately as JPEG images
(Encode_Frame class). We performed experiments by simulating the M-JPEG on a
stream of 100 and 200 frames of QCIF format (352 x 288 pixels). For this reason,
multiplicities of tasks and ports expressed via the «Shaped» stereotype were varied.

208 M. Ammar et al.

<<swSchedulableResource-> <swSchedulableResource->
M-JPEG_encoder Encode_Frm
:Read_vid <shaped>> :Display_output]
- :Encode_Frm haped _shaped. il »
' flowPort. flowPort.. F flowPort. flowPort.»
i Frm_in Frm_out S - blockin block_out Frm_out
Fig. 5 UML/MARTE specification of the application
Clusterl
[PE|— «
—
=)
£ PE]
Cluster0 g
:
9
=]
M PE - PE M
| Global network |
Fig. 6 MP2SoC architecture
«<hwResource->
MP2SoC_Architecture
:Cluster_0 | :global_network | :Cluster_1
flowPort-- «flowPort> <flowPort- AlowPorte
global_net cluster 0 cluster_I éloba] net
<<hwResource>> <«<hwResource>>
Cluster_1 Cluster_0
<shaped-> :local_network :PE_clus0 :local_mem
:PU <diler> | shaped, <flowPort-,
<<shaped, flowPort., <<flowPorts> «flowPort-> <flowPort-:| flowPorts
flowPort>> global_net local_net global_net local_mem

pe
global_net

flowPort-~ global_ne|
PU

Fig. 7 UML/MARTE specification of the architecture

MP2SoC, as presented in Fig. 6, is composed of two clusters. While the first cluster
contains one processing element (PE), the second cluster includes a variable number
of processing elements. Processing elements inside the clusters are homogenous.
Inside each cluster, each processing element is connected to its local memory and
can communicate to other processors via a local network. The clusters can communi-
cate via a global interconnection network. In order to model such complex system, a
UML composite structure diagram is used as seen in Fig. 7. Each hierarchic hardware
resource (MP2SoC system, clusters, processing units) is specified using a hierarchic
class. For the rapid prototyping of the M-JPEG application, five configurations of
MP2SoC were specified and generated varying the number of processing units (by
changing the shape value of the PU class) containing 2, 4, 8, 24 and 32 processing

Automatic Generation of S-LAM Descriptions from UML/MARTE ... 209

Clusterl.slam

ClusterO.slam
/

references

AMPZSoC_Architecture.slam

global_network
cluster 0
cluster 1

references >

PU.slam

b .\\.' . ‘. _________________

—-

et ComtrolLink

=3 HierConnection
= DataLink
(Mem)

Fig. 8 Generated S-LAM files

units in Clusterl. Executing the S-LAM generator, four .slam files were created and
visualized using the S-LAM editor as shown in Fig. 8. Each hierarchic class is trans-
formed first into a Design element then into an .slam file. Class instances inside
the hierarchic class are mapped into operators, memories or communication nodes.
Hierarchic class instances that reference classes containing operators are transformed
into operators that reference the .slam file that describes the internal structure of the
classes themselves. Ports of the hierarchic classes becomes hierarchy ports. The
«Shaped» annotation attached to the PU class and the port of the Cluster] hierarchic
class allows to produce eight hierarchy ports and link them with the eight opera-
tors with hierarchy connections in the MP2SoC configuration that contains eight
processing units. 7 SDF files and the scenario file are also generated executing the
two other transformation chains. The final step in the proposed approach is the rapid
prototyping of the w SDF/S-LAM combination using PREESM. Figure 9 shows the
average speedup of the application for two video sequence containing 100 and 200
frames respectively running on different MP2SoC configurations. We notice that for

210 M. Ammar et al.

Fig. 9 Speed 1t T
1g. peedup results 30 —4— 100 Frames

—— 200 Frames
25

20 A

Speedup
&

0 T T T T T T 1
0 5 10 15 20 25 30 35

PU number

the video sequence containing 200 frames, increasing the PU number from 2 to 32
contributes for up to 10x M-JPEG encoder speedup. This observation justifies the
use of MP2SoC architectures.

6 Conclusion

In this paper, the S-LAM generator, a tool able to generate S-LLAM description of an
MP2SoC architecture described in UML/MARTE under the proposed co-design flow
specification methodology was presented. High-level models of the complex archi-
tecture are progressively refined enabling the production of a system-level descrip-
tion of the architecture for the design space exploration step, which is based on
the PREESM framework. The S-LAM generator reduces the modeling effort as it
starts from a co-specification of the whole MP2SoC system, including the applica-
tion and the architecture parts, and captures needed information for the generation
of IP-XACT compliant description of the architecture. Our next future work will
be concentrated on the elaboration of a use case that takes as design entry a com-
plex massively parallel application (An H.264 decoder for example) running on an
MP2SoC architecture.

References

1. Engelmann, C., Lauer, F.: Facilitating co-design for extreme-scale systems through lightweight
simulation. In IEEE International Conference on Cluster Computing Workshops and Posters,
CLUSTER WORKSHOPS, 2010, pp. 1-8 September 2010

2. Lugato, D., Bruel, J-M., Ober, 1.: Model-Driven Engineering for High Performance Computing
Applications. In: S. Cakaj (ed.) Modeling Simulation and Optimization-Focus on Applications
(2010)

Automatic Generation of S-LAM Descriptions from UML/MARTE ... 211

10.

14.
15.

16.

17.

18.

Object Management Group. Unified Modeling Language specification, version 2.1. Available:
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF

Ecker, W., Miiller, W., Domer, R.: Hardware-Dependent Software, pp. 1-13. Springer, Nether-
lands (2009)

IEEE standard for IP-XACT, standard structure for packaging, integrating, and reusing IP
within tools flows, IEEE Std 1685-2009, February 2010, pp. C1-360

Object Management Group. UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems, version 1.0. Available: http://www.omg.org/spec/MARTE/1.0/PDF/
Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J.-F., Aridhi, S.: Preesm: A dataflow-based
rapid prototyping framework for simplifying multicore DSP programming. In 6! European
Embedded Design in Education and Research Conference. EDERC 2014, pp. 36-40 (2014)
Ochoa-Ruiz, G., Labbani, O., Bourennane, E.-B., et al.: A high-level methodology for auto-
matically generating dynamic partially reconfigurable systems using IP-XACT and the UML
MARTE profile. Des. Autom. Embed. Syst. 16(3), 93—128 (2012)

Herrera, F., Posadas, H., Villar, E., Calvo, D.: Enhanced IP-XACT platform descriptions for
automatic generation from UML/MARTE of fast performance models for DSE. In 15" Euromi-
cro Conference on Digital System Design, DSD 2012, pp. 692-699, September 2012
Herrera, F., Villar, E.: A Framework for the Generation from UML/MARTE Models of IP-
XACT HW Platform Descriptions for Multi-Level Performance Estimation. Proceedings of
the Forum of Design and Specification Languages, FDL'2011, November 2011

. Object Management Group. UML profile for System on a Chip, version 1.0. Available: http://

www.omg.org/spec/SoCP/1.0/PDF/

. Graf, S., Ober, I, Ober, I.: A real-time profile for UML. Int. J. Softw. Tools Technol. Trans.

8(2), 113-127 (2006)

. El Mrabti, A., Pétrot, F., Bouchhima, A.: Extending IP-XACT to support an MDE based

approach for SoC design. In Design, Automation and Test in Europe Conference and Exhibition,
DATE’09, pp. 586-589, April 2009

Papyrus, http://www.eclipse.org/papyrus/

Ammar, M., Baklouti, M., Pelcat, M., Desnos, K., Abid, M.: MARTE to 7 SDF transformation
for data-intensive applications analysis. In Conference on Design and Architectures for Signal
and Image Processing, DASIP, October 2014

Pelcat, M., Menuet, P., Aridhi, S., Nezan, J.F.: Scalable compile-time scheduler for multi-core
architectures. In Proceedings of the Conference on Design, Automation and Test in Europe,
DATE’09, pp. 1552-1555, April 2009

Guduric, P, Puder, A., Todtenhofer, R.: A comparison between relational and operational QVT
mappings. In the 6" International Conference on Information Technology: New Generations,
ITNG *09, pp.266-271, April 2009

Acceleo (2015) https://www.eclipse.org/acceleo/

http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF
http://www.omg.org/spec/MARTE/1.0/PDF/
http://www.omg.org/spec/SoCP/1.0/PDF/
http://www.omg.org/spec/SoCP/1.0/PDF/
http://www.eclipse.org/papyrus/
https://www.eclipse.org/acceleo/

	Automatic Generation of S-LAM Descriptions from UML/MARTE for the DSE of Massively Parallel Embedded Systems
	1 Introduction
	1.1 Raising the Level of Abstraction of the Specification
	1.2 Reusing IP Blocks
	1.3 Building Well Structured Methodologies

	2 Related Work
	2.1 Using UML Profiles for HW Resource Modeling
	2.2 Merging UML and IP-XACT in MDE-based Design Flows

	3 A Co-Design Framework Integrating the S-LAM Generator
	3.1 UML/MARTE Front-End
	3.2 Transformation Engine
	3.3 PREESM Tool Back-End

	4 The S-LAM Generator
	4.1 MARTE Meta-Model Relevant Parts Used in the S-LAM Generator
	4.2 The S-LAM Meta-Model
	4.3 M2M Mapping Rules: From MARTE Model to S-LAM Model
	4.4 M2T Mapping Rules: From S-LAM Model to S-LAM Files

	5 Case Study
	6 Conclusion
	References

