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Foreword

The purpose of the 16th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD 2015) held on June 1–3, 2015 in Takamatsu, Japan, is aimed
at bringing together researchers and scientists, businessmen and entrepreneurs,
teachers and students to discuss the numerous fields of computer science, and to
share ideas and information in a meaningful way. This publication captures 17
of the conference’s most promising papers, and we impatiently await the important
contributions that we know these authors will bring to the field.

In chapter “On the Accelerated Convergence of Genetic Algorithm Using GPU
Parallel Operations”, Cheng-Chieh Li, Jung-Chun Liu, Chu-Hsing Lin, and
Winston Lo propose to accelerate the evolution speed of the genetic algorithm by
parallel computing, and optimize parallel genetic algorithms by methods such as the
island model.

In chapter “A GPU-Based Pencil Beam Algorithm for Dose Calculations in
Proton Radiation Therapy”, Georgios Kalantzis, Theodora Leventouri, Hidenobu
Tachibana and Charles Shang conduct studies on Pencil-beam dose calculation
algorithms for pro-ton therapy that have been widely utilized in clinical routine for
treatment planning purposes in most clinical settings, due to their simplicity of
calculation scheme and acceptable accuracy. The studies indicated a maximum
speedup factor of *127 in a homogeneous phantom.

In chapter “Incremental Max-Margin Learning for Semi-Supervised Multi-Class
Problem”, Taocheng Hu and Jinhui Yu propose an incremental max-margin model
for semi-supervised multi-classification learning, where efficiency and accuracy
need to be considered. Their approach captures essence of the exploration–
exploitation tradeoff.

In chapter “Improving Hypervisor Based SSD Caching with Logically
Partitioned Blocks and Scanning in Cloud Environment”, Hee Jung Park, Kyung
Tae Kim, Byungjun Lee, Rhee Man Kil and Hee Yong Youn propose a novel
hypervisor-based SSD caching scheme, employing a new metric to accurately
determine the demand on SSD cache space of each VM. Computer simulation
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confirms that it substantially improves the accuracy of cache space allocation
compared to the existing schemes. It also allows to display comparable hit ratio as
the existing schemes with less amount of SSD cache for the VMs.

In chapter “Emotional Scene Retrieval from Lifelog Videos Using Evolutionary
Feature Creation”, Hiroki Nomiya and Teruhisa Hochin propose an emotional scene
retrieval framework for the purpose of promoting the utilization of a large amount
of lifelog videos. The proposed method is evaluated through an emotional scene
detection experiment using a lifelog video dataset containing spontaneous facial
expressions.

In chapter “On Solving the Container Problem in a Hypercube with Bit
Constraint”, Antoine Bossard and Keiichi Kaneko propose a routing algorithm
selecting in a hypercube internally node-disjoint paths between any two nodes, and
such that the selected paths all satisfy a given bit constraint. The correctness of the
proposed algorithm is formally established and empirical evaluation is conducted to
inspect the algorithm’s practical behaviour.

In chapter “Algorithms for Removing Node Overlaps with Some Basis Nodes”,
Noboru Abe, Hiroaki Oh, and Kouhei Inoue propose three heuristic algorithms to
remove node overlaps in graphs with several tens of nodes by refining a previously
proposed algorithm, i.e., the force-transfer algorithm.

In chapter “Significant Frequency Range of Brain Wave Signals for
Authentication”, Preecha Tangkraingkij discusses a new biometric system using
brain wave signals (EEG). The purpose of this study is to explore which frequency
range of brain wave signals can be utilized for authentication.

In “Simple Models Characterizing the Cell Dwell Time with a Log-Normal
Distribution”, Naoshi Sakamoto presents two simple models in order to estimate the
probabilistic distribution of the cell dwell time. They show that the probabilistic
distribution of the cell dwell time of each model is approximated by a log-normal
distribution.

In chapter “A Method of Ridge Detection in Triangular Dissections Generated
by Homogeneous Rectangular Dissections”, Koichi Anada, Taiyou Kikuchi, Shinji
Koka, Youzou Miyadera and Takeo Yaku discuss a method for detection of ridges
in 3D terrain maps. They introduce the steepest ascent method in triangular dis-
sections generated by homogeneous rectangular dissections.

In chapter “Architecture for Wide Area Appliance Management”, Arata Koike,
and Ryota Ishibashi studied architecture for Internet-of-Things (IoT) appliances
with constrained resources to enable control and to manage over wide area network.
They show realization of our proposed architecture by prototyping the system.

In chapter “Towards a Model Level Replication Technique for Fault Tolerant
Systems Using AADL”, Wafa Gabsi and Bechir Zalila propose a new technique to
design replication using the AADL language and its extensibility with property sets.
We choose AADL to take advantage of its strong semantics at architecture level.

In chapter “Model Inference of Mobile Applications with Dynamic State
Abstraction”, Sebastien Salva and Patrice Laurencot and Stassia R. Zafimiharisoa
propose an automatic testing method of mobile applications, which also learns
formal models expressing navigational paths and application states.
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In chapter “Automatic Generation of S-LAM Descriptions from UML/MARTE
for the DSE of Massively Parallel Embedded Systems” Manel Ammar, Mouna
Baklouti, Maxime Pelcat, Karol Desnos, and Mohamed Abid propose a tool which
automates the generation of the System-Level Architecture Model (S-LAM) from a
Unified Modeling Language-based (UML) model annotated with the Modeling and
Analysis of Real-Time and Embedded Systems (MARTE) profile.

In chapter “Automatic Translation of OCL Meta-Level Constraints into Java
Meta-Programs” Sahar Kallel, Chouki Tibermacine, Bastien Tramoni, Christophe
Dony and Ahmed Hadj Kacem describe a system that generates metaprograms
starting from architecture constraints, written in OCL at the metamodel level, and
associated to a specific UML model of an application. These metaprograms enable
the checking of these constraints at runtime.

In chapter “Towards a Formal Model for Dynamic Networks Through
Refinement and Evolving Graphs” Faten Fakhfakh, Mohamed Tounsi, Ahmed
Hadj Kacem and Mohamed Mosbah propose a general and formal model for
dynamic networks based on evolving graphs and Event-B formal method. They
investigate an example of a distributed algorithm encoded by local computations
models.

In chapter “An Iterated Variable Neighborhood Descent Hyperheuristic for the
Quadratic Multiple Knapsack Problem”, Takwa Tlili, Hiba Yahyaoui, and Saoussen
Krichen propose a hyper-heuristic approach based on the iterated variable neigh-
borhood descent algorithm for solving the QMKP. Numerical investigations based
on well-known benchmark instances. The results clearly demonstrate the good
performance of the proposed algorithm in solving the QMKP.

It is our sincere hope that this volume provides stimulation and inspiration, and
that it will be used as a foundation for works to come.

June 2015 Keizo Saisho
Kagawa University, Japan
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On the Accelerated Convergence of Genetic
Algorithm Using GPU Parallel Operations

Cheng-Chieh Li, Jung-Chun Liu, Chu-Hsing Lin
and Winston Lo

Abstract The genetic algorithm plays a very important role in many areas of appli-
cations. In this research, we propose to accelerate the evolution speed of the genetic
algorithm by parallel computing, and optimize parallel genetic algorithms by meth-
ods such as the island model. We find that when the amount of population increases,
the genetic algorithm tends to converge more rapidly into the global optimal solu-
tion; however, it also consumes greater amount of computation resources. To solve
this problem, we take advantage of the many cores of GPUs to enhance computation
efficiency and develop a parallel genetic algorithm for GPUs. Different from the
usual genetic algorithm that uses one thread for computation of each chromosome,
the parallel genetic algorithm using GPUs evokes large amount of threads simul-
taneously and allows the population to scale greatly. The large amount of the next
generation population of chromosomes can be divided by a block method; and after
independently operating in each block for a few generation, selection and crossover
operations of chromosomes can be performed among blocks to greatly accelerate
the speed to find the global optimal solution. Also, the travelling salesman problem
(TSP) is used as the benchmark for performance comparison of the GPU and CPU;
however, we did not perform algebraic optimization for TSP.

Keywords Parallel computing ·Genetic algorithm ·TSP ·GPU computing · Island
model · Simulated annealing
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1 Introduction

The genetic algorithm, which imitates the process of natural selection, is a heuristic
approach to produce solutions for global search and optimization problems. Basi-
cally, it is a high performance, parallel, global search method consisting of fivemajor
phases: initialization, evaluation, selection, crossover, and mutation. From continu-
ous iterations of these five phases, an approximately optimal solution can be reached.
However, the genetic algorithm itself has some drawbacks, such as premature con-
vergence at local optimal solutions. To solve these issues, this research proposes
to combine the simulated annealing method with the genetic algorithm and take
advantage of parallel computing with the GPU. For parallel computing, the GPU is
fundamentally different from the CPU, due to apparent difference of the number of
cores and the computing architecture. Since GPU architecture is based on SIMD,
we need to focus on memory access techniques to realize a high level of paralleliza-
tion for genetic algorithms using GPUs. We also replace the mutation step in genetic
algorithmwith the simulated annealingmethod. In this way, the search rate for global
optimal solutions of the genetic algorithm is greatly improved. More importantly,
GPUs with many thousands of cores can handle a much larger population for genetic
algorithms a general purpose CPU. Hence, we are able to use the island model [1–3]
to perform block divisions on the large scale population to easily find the global
optimal solution for genetic algorithms.

2 Background

2.1 HAS Architecture

Inside conventional computing architecture, only one CPU, or a multi-core CPU
handles all operations. To execute massive and high speed operations, lots of CPUs
are required, resulting in increasing hardware cost and electric power consumption.
The benefit of Heterogeneous System Architecture (HSA) that integrates CPUs and
GPUs is that it selects operations of different properties inside an algorithm and sends
them to CPUs or GPUs with better hardware architecture for these operations. Thus,
we can not only implement optimal hardware architecture for specific algorithms but
also execute operations in GPUs and CPUs in parallel to accelerate computations.

2.2 Hardware Architecture of GPU

GPUs originally are hardware designed to handle graphics rendering, but in recent
years GPU manufacturing companies, such as AMD and NVIDIA, start developing
techniques to utilize the large amount of cores inside GPUs for computation. In this
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Fig. 1 SMX architecture

research, we adopt Kepler micro architecture developed by NVIDIA, in which the
core unit is called as the Streaming Multiprocessor (SMX). Each SMX consists of
192 CUDA cores. As shown in Fig. 1, each CUDA core can be treated as a thread
processing unit. Each GPU chip has more than one SMX core, which explains the
advantage of GPU for parallel computing. But since GPUs are limited by adopting
Single instruction, multiple data (SIMD) [4, 5] architecture, they are suitable for
handling operations of algorithms with data of high independence. For operations
of algorithms with data of high dependence amid one another, the performance of
GPUs may be lower than that of CPUs.

2.3 Memory Access on GPU

Many ALU cores are provided by GPUs for computation; however, to speed up
computation, memory access methods should be designed carefully, since the large
amount of cores will produce massive memory requests. When implementing an
algorithm using GPU computing, in addition to the possible levels of parallelization
for the algorithm, the sequence of memory access and arrangement of data should
be carefully considered.
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Table 1 Performance of memory access for various settings of cpu and gpu (in ms)

2047 2048 2049

CPU_host 68.34 115.96 71.0

GPU_read 0.52 0.43 0.44

GPU_write 0.73 0.67 0.66

GPU_r/w 0.40 0.35 0.39

The memory access of GPU follows a special mechanism that if the sequence of
data access is consistent with that of thread, then 32 sets of data will be accessed
simultaneously in a unit called a warp; if not, the so-called bank-conflict will occur.
Table1 shows performance of CPU and GPU with various settings for data access,
in which we observe that GPU_r/w in warp operation is most efficient, even faster
than GPU_read or GPU_write.

2.4 Genetic Algorithm

Biological evolution is mainly accomplished through mating between the chromo-
somes and mutations. The genetic algorithm mimics the biological mechanisms of
heredity and evolution. Different problems use different coding methods to repre-
sent feasible solutions to the problems, so that a variety of genetic algorithms are
constructed with different encoding methods and different genetic operators.

The genetic algorithm in the artificial intelligence is a kind of evolutionary and
heuristic algorithms used to search the optimal solutions for problems. Genetic algo-
rithm with well-adjusted parameters can quickly find approximate optimal solutions
even for solutions in a very complex space.

Basic steps of the adopted genetic algorithm are listed as follows:
Step 1: randomly generating initial population
Step 2: evaluating each chromosome
Step 3: using a Roulette method to duplicate chromosomes until the amount of

population is the same as that of the initial population
Step 4: adjoining chromosomes probabilistically carrying out mating with ran-

domly chosen blocks
Step 5: each chromosome being probabilistically decided whether to execute

mutation or not
Step 6: repeating processes from step 1 until a specified stopping criterion is

satisfied
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2.5 TSP Problem

The travelling salesman problem (TSP) is a well-known mathematical problem. It
states that a salesman is going to visit n cities, and he/she needs to select a shortest
path to visit each of the n cities once and return to the starting city in the end.

TSP is a very important combinatorial optimization problem. For illustration, we
define a problem space in Eq. (1) and an objective function in Eq. (2):

X = {node0, node1, node2, node3} (1)

Minimize

(
f (x) = dist(node0x[0]) +

2∑
i=0

dist(x[i], x[i + 1])+
dist(x[3], node0)

)
(2)

Obviously, it is usually not easy to find the minimal solution for above statements.
The genetic algorithm can be applied to solve for the approximately optimal solution.

3 Method

3.1 GPU Parallel Computing for Genetic Algorithms

Many parallel algorithms using CPUs have been proposed, but research in paral-
lel algorithm using GPUs is hard to find. Since computation architecture of GPUs
adopts SIMD, when implementing algorithms using GPUs, one must take care of
data dependence in computing. Thus, it is not easy to transport algorithms running
on CPUs to GPUs to speed up computation. For parallel computing of genetic algo-
rithms on GPUs, we examine steps of a genetic algorithm and observe three kinds
of problems need to be considered:

1. Random number generation methods in GPUs
2. Highly parallelized duplication process
3. Parallel crossover process

Random number generation plays a very important role for genetic algorithms.
It is vital to generate random number in parallel. In the library curan provided by
NVIDIA offer a random number generation method for the kernel, i.e., every thread
inside GPU can separately generate its own random number. Computers can generate
random numbers using RNG function. Same random numbers will be generated by a
kernel if inputted with the same seed to RNG. The function curandUniform() can be
used to shift a state. Before generating next random numbers, the seed of each thread
is shifted with various amount, also, states are stored back to the global memory for
later computation.
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Fig. 2 Selection operation in CPU

During the duplication process of the genetic algorithm, the evaluated chromo-
someswill be used to generate the next generation population by the Roulette method
or other Selection method; chromosomes with higher evaluation have better chance
to be chosen. Figure2 shows the conventional selection algorithms using CPUs.

For the Roulette selection method, Eq. (3) is used:

probability(xi) = xi∑n
k=1 xk

× 100% (3)

where xi is the evaluation value of chromosome i. Every duplicated chromosome
needs to go through the probabilistic Roulette operation again, i.e., each chromosome
performs one probabilistic operation. Thus, the operation cost using CPU for dupli-
cating chromosome sequence and generating random numbers is of O(n2); whereas,
the operation cost using GPU is of O(n), where the parallel Roulette method is per-
formed by threads for memory access, and then shifted n times to achieve parallel
computing. Figure3 shows the flow for the used Selection operation in GPU. The
range of probabilistic outcomes of the traditional Roulette selection method has high
dependence on the adopted equations. Also, severe bank-conflicts occur when all
threads simultaneously access data. In view of this problem, we perform Selection
operation in GPU (see Fig. 3) by Eq. (4):

ωi = Random(threadid)mod α ∗ 1

xi
(4)
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Fig. 3 Selection operation
in GPU

This Selection method uses a shift technique by threads to access memory, and
the operation can be done after several shifts of population. To implement Roulette
Selection operation, at each shifting operation, the ω value of the accessed memory
is replaced by that (i.e., ω′) of the thread if ω′ > ω. In this way, not only the thread
can access data in memory by a warp per time, but also the huge amount of resource
spent on add operations in the traditional Roulette method to generate the probability
range is alleviated.

Finally, if every thread is used for one chromosome, parallel access of data cannot
be performed for crossover operation that swapping genetic sequences between two
chromosomes. So, the number of used threads is halved, and each thread owns
different RNG sequence. Figure 4 shows the crossover operation in GPU.

So far, we have described how to perform parallel computing for general genetic
algorithms. There is still one unsolved issue for genetic algorithms, i.e., premature
convergence at local optimal solutions. To deal with this problem, we use a parallel
simulated annealing method described in the following subsection.

3.2 Parallel Simulated Annealing Method

The simulated annealing method, a generic probabilistic metaheuristic for the global
optimization problem, is inspired by annealing in metallurgy. After heating and
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Fig. 4 Crossover operation
in GPU

controlled cooling of a material such as iron, its grains will leave original place and
move randomly to other locations, thus, reducing defects in the crystal lattice.

For the simulated annealing method, two parameters representing energy and the
annealing rate are manually set, where energy gives tolerance of levels of difference
and the annealing rate indicates the rate of decline in energy. With lower energy, it
is more difficult to leave local minimums. By combining simulated annealing with
the genetic algorithm, the mutation process of the genetic algorithm is replaced with
the annealing method instead. In this way, it has a higher probability to leave local
optimal solutions. The algorithm of the simulated annealing is shown in Table2.

Table 2 Algorithm of
simulated annealing, where
acceptance probability
function p() is given in Eq. (5)

S := s0;

e := E(s);

while k < kmax && e > emax

sn := neighbor (s)

de := E(sn)

if random() < P(e, de, temp (k/kmax)) then

s:= sn

e:= de

k :=k+1

return s
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Table 3 Pseudo codes of
genetic algorithm combined
with simulated annealing

E:=evaluation(x);

d_E:=evaluation(Mutation(x));

delta:=d_E – E;

if delta>0 and exp(-delta/ Temperature) then

E:=d_E;

P =
{
1 if �E ≤ 0

e
−�E

T if � > 0

}
(5)

According to the result of acceptance probability function P(), we decide whether to
move the grain or not according to the amount of changes of energy.

To apply simulated annealing to genetic algorithm, in Table2 variable S is treated
as the state of a chromosome; e, the current evaluation value; de, the evaluation value
after mutation. When the outcome of function P() is larger than that of the random
number, this chromosome succeeds in mutation. Table3 lists the pseudo codes of the
genetic algorithm combined with the simulated annealing method.

As Temperature decreases, the allowable delta value for chromosomes to per-
form mutation becomes smaller; and at some point when Temperature is close to 0,
chromosomes will stop mutation.

The proposed mutation method has better random search ability than traditional
mutations with a fixed mutation rate. However, if Temperature decreases too fast,
the genetic algorithmmight converge to local optimal solutions; on the other hand, if
Temperature decreases too slowly, the efficiency of the genetic algorithm is affected.
To prevent this premature convergence issue, a polynomial function is used, as shown
in Eq. (6):

Temperature := T0 ∗ RODx
0 + T1 ∗ RODx

1...Tn ∗ RODx
n (6)

where x represents the iteration number; both RODi and Ti are smaller than 1, and
RODi increases (and Ti decreases) as subscript i increases from 0 to n.

3.3 Modified Parallel Genetic Algorithm

As described at above subsections, computations of all phases of genetic algorithms
have been parallelized to accelerate iteration, i.e., evolution speed. Besides, to solve
premature convergence problem, the simulated annealing method has been applied.
However, since the simulated annealing method itself probabilistically converges
to global optimal solutions, it may fall into local optimal solutions by chance. As
inspired by the Island model, we use the concept of the block method to divide
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Fig. 5 Optimized parallel
genetic algorithm using the
Island model

the whole population into several blocks. Each chromosome is still computed by a
thread. By dividing into blocks, interference among individual blocks is prevented:
each block is provided with a different initial population, and will converge to a
local or global optimal solution. After performing several iterations of the genetic
algorithm at each block, a global selection operation is conducted. In this way, we
have better chance to find the global optimum. Figure5 shows the flow chart of the
optimized parallel genetic algorithm using the Island model [1, 2, 6].

4 Result and Discussion

The setting of experiments is as follows.
For the CPU, we used Intel(R) Core(TM)i7 CPU 4770K @3.5GHz and memory

of 8.00 GB; for the GPU, we used Nvidia Titan Black. The used operating system
is Linux Ubuntu 14.04(64bit). The used CPU codes to solve TSP using genetic
algorithms references the following website: http://simulations.narod.ru/.

We did not optimize the TSP algorithm [7] in this study, since we focus on devel-
oping optimization for genetic algorithms and only use TSP as the benchmark for
performance comparison using the GPU or CPU.

4.1 Population versus Iteration Speed

To compare performance of genetic algorithms of CPUs with that of GPUs, we first
performed 2000 iterations of the genetic algorithm with various populations and
nodes. The time costs of the CPU in seconds are listed in Table4 and illustrated in

http://simulations.narod.ru/
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Table 4 CPU computation time (in seconds) of various populations and nodes for 2000 iterations

Nodes

16 32 64 128 256

Population 512 20 25.95 63.25 120.15 251.32

1024 28.01 46.43 115.39 232.43 481.84

2048 47.03 101.46 224.33 454.25 1000

4096 109.62 233.87 438.87 892 1969.5

8192 270.75 465.64 885.5 1807.75 3964

Fig. 6 CPU computation time (in seconds) of various populations and nodes for 2000 iterations

Fig. 6. As shown in Fig. 6, the computing time of the CPU increases very fast as the
population or the number of nodes increases. The time costs of the GPU in seconds
are listed in Table5 and illustrated in Fig. 7. As shown in Fig. 7, the computing time
of the CPU increases slowly as the population or the number of nodes increases. The
speedups of GPU versus CPU are listed in Table6 and illustrated in Fig. 8. As shown
in Fig. 8, significant speedups (more than two orders of magnitude) are obtained
when the population or the number of nodes increases.
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Table 5 GPU computation time (in seconds) of various populations and nodes for 2000 iterations

Nodes

16 32 64 128 256

Population 512 0.445 0.758 1.245 2.171 5.202

1024 0.465 0.789 1.299 2.265 5.355

2048 0.502 0.857 1.412 2.574 6.488

4096 0.557 1.017 1.731 3.401 8.395

8192 0.734 1.326 2.694 7.058 16.399

Fig. 7 GPU computation time (in seconds) of various populations and nodes for 2000 iterations

4.2 Converging Rates with Various Node Numbers

In this experiment, we investigate the relative errors or deviations from the global
optimal solution of the CPU and GPU.We use Eq. (7) to calculate the relative error δ:

δ =
∣∣∣∣v − vapprox

v

∣∣∣∣ × 100% (7)

Figures9 and 10 show the relative errors over 5min of computation using the CPU
and GPU, respectively. We observe that when the number of nodes increases, the
relative errors increase as expected, as it becomes harder to converge. Also, the
relative errors for initial populations are usually very high.
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Table 6 Speedup of computation time for gpu versus cpu

Nodes

16 32 64 128 256

Population 512 44.94 34.23 50.8 55.34 48.31

1024 60.23 58.84 88.82 102.61 89.97

2048 93.68 118.38 158.87 176.47 154.13

4096 196.8 229.96 253.53 262.27 234.6

8192 368.86 351.16 328.69 256.12 241.72

Fig. 8 Speedup of computation time for GPU versus CPU

Figures11 and 12 show the relative errors over 5000 iterations of computation
using the CPU and GPU, respectively. From these results, we observe that com-
pared with the CPU the optimized GPU parallel genetic algorithm also has better
convergence with the same number of iterations.
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Fig. 9 Relative errors (in percentage) using CPU in five minutes of computation

Fig. 10 Relative errors (in percentage) using GPU in five minutes of computation
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Fig. 11 Relative errors (in percentage) using CPU over 5000 iterations of computation

Fig. 12 Relative errors (in percentage) using GPU over 5000 iterations of computation



16 C.-C. Li et al.

5 Conclusion

In this study, we use GPUs instead of CPU to accelerate computations of parallel
genetic algorithms. To optimize genetic algorithms, a simulated annealing method is
used for mutation operations; however, simulated annealing itself has shortcomings
that temperature and the temperature decreasing rate should be manually adjusted.
Thus, we modify the simulated annealing method with a polynomial Temperature
function to attain efficient mutation operations. As inspired by the Island model, we
also partition population into several blocks (islands) of threads (individuals) to have
better chance to find the global optimum. The simulation results show that when pop-
ulation or the number of nodes increase, performance of optimized parallel genetic
algorithms using GPUs is much superior to that using CPUs, in regard with both the
convergence speed and computation time cost. We conclude that by stripping out
most of the operations with high dependence, the genetic algorithm can be modified
to achieve high performance parallel computing on GPUs with SIMD architecture.
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A GPU-Based Pencil Beam Algorithm
for Dose Calculations in Proton
Radiation Therapy

Georgios Kalantzis, Theodora Leventouri, Hidenobu Tachibana
and Charles Shang

Abstract Recent developments in radiation therapy have been focused on
applications of charged particles, especially—protons. Proton therapy can allow
higher dose conformality compared to conventional radiation therapy. Dose cal-
culations have an integral role in the successful application of proton therapy. Over
the years several dose calculation methods have been proposed in proton therapy. A
common characteristic of all these methods is their extensive computational burden.
One way to ameliorate that issue is the parallelization of the algorithm. Graphics
processing units (GPUs) have recently been employed to accelerate the proton dose
calculation process. Pencil-beam dose calculation algorithms for proton therapy have
been widely utilized in clinical routine for treatment planning purposes in most clin-
ical settings, due to their simplicity of calculation scheme and acceptable accuracy.
In the current study a GPU-based pencil beam algorithm for dose calculations with
protons is proposed. The studies indicated a maximum speedup factor of ∼127 in a
homogeneous phantom.

Keywords Pencil-beam · Proton therapy · GPU · Dose calculations

1 Introduction

Radiation therapy uses high-energy radiation to shrink tumors and kill cancer cells
by damaging their DNA. Contemporary radiation therapy often involves the process
where radiation beams are delivered to the cancer site from external beams. In a clin-
ical setup, external radiation therapy most commonly involves high energy photons
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or electrons. However, in 1946 Wilson demonstrated the potential clinical benefits
of protons for cancer treatment [1] and the first clinical evaluations of external radia-
tion therapy with protons appeared by Lawrence et al. [2]. The dosimetric properties
that establish protons attractive for radiation therapy is their nearly straight line tra-
jectories in the matter and a narrow Bragg peak which results in insignificant dose
downstream the treatment sites. That implies increased local tumor control while
sparing normal tissue [3].

Dose calculations play a crucial role in proton therapy treatment. In general, the
gold standard for radiotherapy dose calculations is Monte Carlo (MC) methods.
However, MC simulations for charged particles is a time-consuming and compu-
tational demanding task. In the time-critical clinical environment, fast dose calcu-
lations ensure a smooth workflow, and also offer planners the opportunity to fine
tune the treatment planning for each individual patient. The necessity of fast dose
calculations becomes more apparent in intensity-modulated proton therapy [4, 5],
and 4D treatment planning [6, 7]. One way to ameliorate that issue is to parallelize
the computational method.

Recent developments, have demonstrated the potential of Graphics processing
Units (GPUs) for MC simulations for proton therapy. In particular, Kohno et al.
[8] developed a simplified MC method (SMC) for proton transportation on a GPU
platform. The SMC was compatible with GPU’s SIMD structure in the sense that
each GPU thread calculated the transportation of the proton while all of the threads
performed the same instructions on different data depending on the current proton
status. Track-repeatingmethods have also been utilized in the past for fastGPU-based
MC simulations [9, 10]. In these methods, a database of proton transport histories is
generated in advance for a homogeneous water phantom using an accurate MC code.
Then, for a patient case, the track-repeating MC calculates dose distributions by
repeating proton tracks from the database and scaling the step length and scattering
angle within each track according to the tissue densities.

An alternative method is the pencil beam algorithms (PBAs) for dose calculations
in radiation therapy. This method has been widely utilized in daily clinical applica-
tions due to its simplicity of calculation scheme and acceptable accuracy in many
clinical cases. In PBAs a broad beam is divided into a number of small rectangu-
lar (beamlets), and the dose contribution of each beamlet to every voxel is based
on analytical or empirical calculations. PBAs are well suited for parallelization on
GPUs since each thread can calculate the dose for each beamlet. Gu et al. [11] have
reported 200–400 speedup factors for a GPU-based pencil beammethod for intensity
modulation radiation therapy, while Fujimoto el al. [12] reported speedups up to 20
for proton calculations.

Foca, a Matlab-based treatment planning software, was recently presented for
proton radiotherapy [13]. The aforementioned software was designed primarily for
research and educational purposes. In Foca, dose calculations for both, active (pencil-
beam scanning) and passive (double scattering) modalities have been implemented.
The main advantages ofMatlab are its intuitive higher-level syntax, advanced visual-
ization capabilities and the availability of toolboxes with several numerical methods.
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In the current study we present for the first time, to our best knowledge, a GPU-
based PBA for proton dose calculations in Matlab. The evaluation of our method
was established on the speedup factors for square radiation fields in homogenous
phantom of water.

2 Pencil-Beam Algorithm for Protons

2.1 Depth Dose Distributions

In the current study we employed an analytical expression for the protons depth dose
distribution [14]. For a monoenergetic proton beam along the z axis, impinging on a
homogeneous medium at z = 0 the energy fluence, �, at depth z in the medium can
be written in the form:

�(z) = �(z) · E(z) (1)

�(z) is the particle fluence, i.e. the number of protons per cm2, and E(z) is the
remaining energy at depth z. The total dose, D(z) is given by:

D(z) = −1

ρ

(
�(z)

dE(z)

dz
+ γ

d�(z)

dz
E(z)

)
(2)

where, γ is the fraction of the energy released in the inelastic nuclear interactions and
absorbed locally, and ρ is the mass density of the medium. In order to determine this
depth-dose curve, we only need to know the functions E(z) and�(z). The relationship
between the initial energy E(z = 0) = E0 and the range z = R0 in the medium is
approximately given by:

R0 = aEp
0 (3)

With p = 1.5, this relationship is known as Geiger’s rule, which is valid for protons
with energies up to about 10 MeV. For higher energies used in radiation therapy the
exponent p increases to 1.8. The factor α is approximately proportional to the square
root of the effective atomic mass of the absorbing medium. It should be noted that
this simplified range-energy relationship is valid in good approximation for arbitrary
media and various particleswith atomicmasses approximately between one (protons)
and twelve (carbon ions) [15]. The beam deposits energy in the medium along its
path from z = 0 to z = R0. Thus, according to the range-energy relationship:

E(z) = 1

a1/p
(R0 − z)1/p (4)

Lee et al. [16] have derived the proportionality for the protons fluence:
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Fig. 1 Depth-dose distribution for 50MeV (solid line) and 150MeV (dashed line) protons in water

�(z) ∝ 1

1 − P(R0 − z)
(5)

Where P is the probability that protons may be lost from the beam due to nuclear
interactions. By normalizing to the initial fluence �0 we obtain:

�(z) = �0
1 + β(R0 − z)

1 + βR0
(6)

Finally, the depth-dose distribution can be calculated as follows for z < R0:

D(z) = �0
(R0 − z)1/p−1 + (β + γβp)(R0 − z)1/p

ρpa1/p(1 + βR0)
(7)

where the slope parameter β was determined to be β = 0.012cm−1. Expression (7)
gives D in units of MeV/g, if ρ is given in g/cm3. To obtain D in Gy, one needs to
multiply by the factor 109e/C = 1.602× 10−10, where e is the elementary charge.

Figure1 illustrates the depth-dose distributions in water for protons with initial
energy 50MeV (solid line) and 150MeV (dashed line) respectively. Similarly, Fig. 2
shows the proton energy as a function of depth in water for initial energy 50 MeV
(solid line) and 150 MeV (dashed line) respectively.

2.2 Spread-Out Bragg Peak

It is well known that a pristine Bragg peak is not wide enough to cover most treatment
volumes and therefore unsuitable for cancer treatment. Rather, it is necessary to
“spread out” the Bragg peak to deliver uniform dose within the target volume, by
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Fig. 2 Protons energy as a function of depth in water for 50MeV (solid line) and 150MeV (dashed
line) E0

providing a suitably weighted energy distribution of the incident beam. For that
purpose poly-energetic pencil beams are utilized, which are individually adapted to
the proximal and distal edge of the target volume, such that the dose is constant along
the depth of the target volume. This creates a highly conformal high dose region, e.g.,
created by a spread-out Bragg peak (SOBP)with the possibility of covering the tumor
volume with high accuracy. At the same time this technique delivers lower doses to
healthy tissue than conventional photon or electron techniques. The mathematical
problem consists of the calculation of weighting factors W(R) for the Bragg peaks
such that the superposition results in a flat SOBP of height D0 within an interval
[da, db]. Bortfeld et al. [17] have derived an analytical formulation of the weights
W(R) as follows:

W(R) =
{

ρD0
p sin(π/p)a1/p

π(db−R0)1/p , da ≤ R0 < db

0 , R0 < da, R0 > db
(8)

The shape of the SOBP curve can now be calculated by estimating the D(z) (Eq.7)
and W(R). In the special case of p = 1.5 and r < 10, the depth dose of the SOBP,
DSOBP(r) can be approximated by a simpler relationship:

DSOBP(r) ≈ D0

1 + 0.44r0.6
(9)

Deviations of Eq.9 are within ±1.5% of D0. Figures3 and 4 illustrate a set of
weighted Bragg peaks and their superposition creating a SOBP respectively.
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Fig. 3 A set of weighted
pristine Bragg peaks of
different energies

Fig. 4 Superposition of
weighted Bragg peaks
creating a SOBP

2.3 Lateral Profiles of Pencil Beams

Protons are assumed to emanate axial symmetrically from the finite-sized source
with a specified mean residual range and

with no angular emittance initially. For simplicity we assumed scattering only
in the patient, which is increasing the radial emittance at the depth of the point of
interest. The dose at a point of interest is then determined, by the residual range of
protons directed at that point. This is equal to the residual range of protons entering the
patient, minus the radiographic path length from the surface to the point of interest,
r(xp, yp, zp). The radiographic path length from the surface to the point of interest,
rplp is based on a pixel-by-pixel integration through a CT study, given by:

rplp =
∫ zp

surface
dz′WED(CT(z′)) (10)

where CT(z′) is the CT value at the point of distance z′ along the path of integration,
andWED is value from a look-up Table which converts between CT value and water-
equivalent density, as described by Chen et al. [18]. To compute the dose at a point
of interest from a given pencil beam, we follow the approach of Hogstrom et al. [19]
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who reported on a pencil beam algorithm to model electron beams. The dose, d(x′,
y′, z′), at a point (x′, y′, z′), due to pencil beam is separated into a central-axis term,
C(z′), and an off-axis term, O(x′, y′, z′):

d(x′, y′, z′) = C(z′) · O(x′, y′, z′) (11)

The central-axis term is taken from the broad-beam central-axis depth dose in water
modified by an inverse square correction:

C(z′) = D(deff ) ·
(

ssd + deff

z′

)2

(12)

where D(deff) is described in Eq.7, ssd is the source-to-surface distance and deff is
the effective depth given by:

deff = R0 − (Rr − rpl(z′)) (13)

The off-axis termO(z′) is taken to be the lateral flux distribution from the radial emit-
tance suffered by protons directed along the axis of the pencil beam. The distribution
is considered Gaussian [20]:

O(x′, y′, z′) = exp(−(x′2 + y′2)/2σ(z′)2)
2πσ(z′)2

(14)

where:
σ(z′)
σ(R0)

= a1
z′

R0
+ a2

z2

R2
0

(15)

and,
σ(R0) = 0.02275R0 + 0.12085 · 10−4 · R2

0 (16)

Figure5 depicts plots of Eq.14 for 150MeVmonoenergetic protons beam for various
depths. We notice the increased variance, which reflects to larger penumbra of the
PB, as the depth increases.

2.4 GPU-Based Parallelization

The pencil beam method can be used to represent an incident broad beam as a
collection of infinitesimally narrow pencil beams (PBs). The major assumptions in
a PB dose calculation algorithm include: (1) the broad beam from a point source
can be divided into identical beamlets, and (2) the total dose to a point P(x, y, z) is
equivalent to integration over pencil beam dose contributions to P(x, y, z). A total
dose distribution is obtained by a superposition of the contributions from elementary
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Fig. 5 Lateral distributions
as a function of distance
from the central axis for
various depths d in cm

Fig. 6 Schematic
representation of dose
deposition into a particular
voxel (x, y, z) from the PBi.
The lateral Gaussian-shaped
curves represent the lateral
penumbra of the PBi

pencil beams. The total dose D(x, y, z) at point (x, y, z) is calculated as follows:

D(x, y, z) =
∫∫

dx′dy′C(x′, y′)(z)O(x − x′, y − y′, z) (17)

C(x′, y′)(z) indicates the central-axis term of the beam passing through a point (x′,
y′, z). The second term, O(x-x′, y-y′, z), is obtained from Eq.14. In practice, the
integration of Eq.17 is discretized. A region of interest is divided into small elements,
which are called voxels. The voxel size is 1 or 2mm in general. The discretization
of equation (17) leads to the following expression for the dose at voxel (i, j, k):

D(i, j, k) =
∑
i′, j′

C(i′, j′)(k)w(i′, j′, i, j) (18)

where, w(i′, j′, i, j) indicates the dose contribution to a voxel (i, j) from the beam
passing through a voxel (i′, j′) within the k plane. Figure6 illustrates a graphical
representation of the PB dose deposition method.

For the parallelization of the dose calculations, a native? approach would be that
each thread in the GPU to handles a single PB and calculates the dose at adjacent
points according toEq.17.Adifferentmethodwould be, that eachGPU in each thread
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concentrates on one particular calculation point (or else voxel) and accumulates the
dose deposited by every single PB. The main disadvantage of the former method
is the atomic operators, which are required in the case when more than one thread
tries to write the deposited dose at the same voxel. In addition, for our case the code
was implemented in MATLAB and we do not have access to each individual thread,
rather algebraic operations of matrices are parallelized internally by the software by
utilizing the high performance library CUBLAS. Therefore, we followed a different
approach for the parallelization scheme. The dose calculations for the whole volume
of each particular PB was parallelized on the GPU. That can be described by the
following three steps:

(1) Calculate C(z) according to Eq.12 along each PB;
(2) Calculate O(x, y, z) according to Eq.14 along each beam path;
(3) Calculate the dose at each voxel according to Eq.17.

Once the dose was calculated for a PB, the summation of the newly calculated dose
at each voxel was also established on the GPU and the whole process is repeated for
all the PBs.

3 Results for Homogeneous Phantom

3.1 Materials and Elements

In this section we introduce our computation environment and report our results of
our method. The serial code was implemented in MATLAB and was launched on a
desktop with a quad core Intel Xeon X5550 at 2.67GHz with 6 GB of RAM. For
the parallelization on the GPU the parallel computing toolbox was employed and
the code was launched on a GTX 770 with Kepler architecture, 1,536 CUDA cores
grouped into eight SMs operating at 1046MHz and 2 GB of GDRR5 global memory.
The performance comparison was established on the speedup factors as described
by Eq.19.

speedup = TCPU

TGPU
(19)

3.2 Dose Distribution in Water Phantom

Figure7 illustrates a 2D dose distribution of a 1mm2 proton PB of 150MeV in water
phantom. We notice the increased dose at the end of the particle trajectory due to
the Bragg peak, as well as, the elevation of the off-axis dose as the depth increases.
Isodose line distributions are shown in Fig. 8 for a 25 × 25mm2 proton beam of
50 MeV. The x-axis represents the depth of the beam in the water phantom, and the
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Fig. 7 2D dose distribution of a proton PB with energy 150 MeV in water

Fig. 8 Isodose distribution for a 25 × 25mm2 proton beam of 50 MeV in water

y-axis is the width of the open beam. Similarly we may observer the lateral spread
of the beam as the depth increases. Finally, Fig. 9 depicts lateral profiles for a proton
beam of 50 MeV for four different depths. It is worth mentioning, that the units of
y-axis are arbitrary units of the normalized dose to the max.
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Fig. 9 Lateral profiles for a
25× 25mm2 proton beam of
50 MeV in water at depth 2,
10, 15 and 20mm

3.3 Evaluation of the Algorithm Performance

The performance of the GPU code was evaluated for three different energies: low (50
MeV), medium (100 MeV) and high (150 MeV). Four square fields were selected
for each energy, and the dose calculations were performed with both the serial and
parallel codes for a homogeneous water phantom with size 300× 300 × 300mm3.
The resolution of the PBs was set to 1.0mm. Table 1 reports the details of the
simulations we used in the current study.

Figure10 illustrates the speedup factors obtained from our simulation results. We
notice that the speedup is decreased for smaller number of PBs and smaller energies.
We speculate that this is due to the communication overhead between the GPU and
the CPU during the iterations of the dose calculations for each PB. The maximum
speedup of ∼127 was achieved for the highest energy and the largest field size.

Table 1 Geometries used in performance evaluation

E (MeV) PBs TCPU (sec) TGPU (sec)

50 25× 25 50.8 1.1

50 50× 50 199.3 3.4

50 80× 80 515.6 8.5

50 100 × 100 800.1 13.3

100 25 × 25 115.0 1.4

100 50× 50 461.9 4.8

100 80 × 80 1.16 × 103 11.6

100 100 × 100 1.82 × 103 18.3

150 25 × 25 208.4 1.8

150 50 × 50 827.5 6.7

150 80 × 80 2.1 × 103 16.7

150 100 × 100 3.3 × 103 25.9
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Fig. 10 Speedup factors as a
function of energy and
number of PBs

4 Conclusions

A GPU-based PB algorithm for proton dose calculations in Matlab was presented.
A maximum speedup of ∼127 was achieved. Future directions of the current work
include extension of our method for dose calculation in heterogeneous phantoms.
Work along this line is in progress.
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Incremental Max-Margin Learning
for Semi-Supervised Multi-Class Problem

Taocheng Hu and Jinhui Yu

Abstract In this paper, we proposed an incremental max-margin model for semi-
supervised multi-classification learning, where efficient and accuracy need to be
considered. Three notable properties are introduced: (1) the model predicts a label
for unlabeled sample instance in runtime, and trained with the complete sample
instance, while unlabeled and labeled sample instances are unified in our objective
function; (2) since the objective function of our model is convex, we can design
efficient online algorithm with logarithmic regret, it achieve accurate solution with
very little overhead; (3) our model is max-margin machine, which provide our model
with considerable generalization capability for future unseen data. Our approach
captures essences of the exploration-exploitation tradeoff.

Keywords Max-margin learning · Online algorithm · Multi-classification ·
Semi-supervised learning

1 Introduction

Given a set of training instance (xt , yt ) ∈ X ×Y, t = 1, · · · , T from a sample space
X and label space Y , classification learning algorithm try to find a classifier h from
a domain X to a label space Y , and the performance of a prediction is measured by
the probability if h(x) is the correct label. It is a basic problem in machine learning,
surfacing a variety of domains, including object recognition, speech recognition,
document categorization and many more [1].

While acquisition of labeled training sample instances often requires human anno-
tators, special devices, or expensive and slow experiments, the payload may make a
fully labeled training set infeasible, whereas unlabeled sample instances is available
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in large quantity and relative easy. In such situations, semi-supervised learning has
proved to be great practical value. Moreover, many machine-learning researchers
have found that unlabeled data, when used in conjunction with a small amount of
labeled data, can produce considerable improvement in learning accuracy [2] . Thus,
semi-supervised learning is also of theoretical interest in machine learning.

When encountering to the multi-class situation, semi-supervised learning comes
to be more complicated [3]. A lot of recent researches of semi-supervised multi-
class learning attempt to addressing those limitations. The related algorithms can be
roughly divide into three categories.

1. Low-density separation. Low-density separation methods try to place boundaries
in regions where there are few sample instance. One of the most commonly used
algorithm is the transductive support vector machine(TSVM), TSVM attempt to
labeling the unlabeled data with the decision boundary has maximal margin over
all of the data, while SVM for supervised learning seeks a decision boundary
with max margin between different classes. A notable advance is a multi-class
extension to transductive support vectormachine proposed by [4];However,while
labeled and unlabeled sample instances are treated with different measures, the
related objective function is biased.

2. Boosting-based methods: There are a variety of boosting based semi-supervised
multi-classificationmethods, thesemethods differ in the loss function and regular-
ization techniques [5]. The disadvantage of them is that lake of ability to utilize
the correlation between labels and input features, especially for the unlabeled
data [6].

3. Graph-based methods: Graph-based methods use a graph representation for the
data, with a node for each labeled and unlabeled sample instances. Some recent
researches adopt Gaussian processes or Markov random walks [7], transduc-
tion by Laplacian graph [8] is also shown to be able to solve semi-supervised
multi-classification problem. Although these algorithms make use of relationship
between unlabeled and labeled sample instances, their computation complexity
is demanding, e.g. O(n3).

Aims to address the tradeoff between efficient and accuracy, and motivated by
our recent work, we try to extend our multi-classifier model for semi-supervised
learning. The underlying reasons are:

1 since the objective function of our model is convex, we can design efficient online
algorithm with logarithmic regret, it achieve accurate solution with very little
overhead. while the data is processed one after one, and the model can response
to request in training stage;

2. our model is max-margin machine, which provide our model with considerable
generalization capability for future unseen data.

For these reasons, we proposed an incremental model for semi-supervised learning,
the model predicts a label by current state of model given unlabeled data, and then
train themodelwith complete label,where both labeled and unlabeled data are unified
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under our method. The incremental model captures essences of the exploration-
exploitation tradeoff.

The rest of paper is organized as follow. In Sect. 2, we introduce basics of max-
margin learning. In Sect. 3, we start by describing our multi-classifier in supervised
learning, convex and max-margin properties is proved in the section. In Sect. 4,
we proposed a incremental algorithm for semi-supervised learning, while unlabeled
data was given a prediction value, subsequent processing is the same for labeled
and unlabeled data. Empirical result is present in Sect. 5. Section6 concludes and
discusses the future directions.

2 Preliminaries

We denote by X ∈ Rd the sample space, Y the label space. For convenience, we
denote sample variable by x, and sample instances by xt with subscript. Similar, label
variable is denoted by y, and label instance by yt .

We call the parametric family of decision functionH : X ×W �→ Y as classifiers,
each classifier (given a specific parameter w ∈ W) takes an sample x ∈ X as input
and produces an output y ∈ Y which indicator which class the sample x belongs to.
For example, in binary situation, a popular linear classifier is defined as follow.

h(x; w) = sign(wᵀx) (1)

To get the optimalw, we are given a training data setD = {(x1, y1), (x2, y2), · · · ,

(xt, yt )}, we would like to find a parameter setting w that minimize some form of
classification error. Once we have found the best parameter setting ŵ, we can use the
classifier to predict labels of future sample.

ŷ = h(x; ŵ) (2)

Measure of classification error is based on loss function �(·) for each data point
which depend on parameter w only through the classification margin, The loss func-
tion is small when the label yt agrees with the prediction h(w; x). Also, the loss
function � is usually non-decreasing and convex on the margin. A regularization
penalty R(w) is also introduced in the objective function, which favors certain para-
meters over others (like prior).

min
w,γ1:T

R(w) + 1

T

T∑
t=1

�(γt )

s.t. yt · h(xt; w) − γt ≥ 0,∀ {xt, yt } ∈ D (3)
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where the symbol · denote Hadamard product(also known as Schur product or the
entrywise product), unless otherwise stated, the symbol is used throughout the paper.
yt · h(w; x) denote the margin, quantities γt works as slack variable in optimization
context which represents the minimum margin that yt · h(xt; w) must satisfy [9].

3 Generative Correlation Multi-classifier

In this section, we introduce our Bayesian multi-classifier first, and then gives out
its objective function, followed by analysis of convex and max-margin property in
context of supervised learning.

3.1 Graphical Model

We start by describing a generative probabilistic model correlating sample variable x
and label variable y. The basic idea is that there is a topic space and related embedding
E , the embedding E coordinates different dimension of input sample, and assign a
probability measure, which aims to correlated with corresponding label variable y.

Generative correlation multi-classifier assumes following process for sample and
label pairs. shown in 1

Algorithm 1 Generative Correlation Multi-Classifier
1: Choose embedding w ∼ Gaussian(0, 1)
2: for each i.i.d. pair (x, y) do
3: q ← E(x; w)

4: Choose y ∼ Multinomial(q)

5: end for

We formulate the embedding E on sample variable as

E(x; w) = φ(w	x) (4)

parameterized by k×d matrixw, with gaussian distribution prior. And φ is defined as

φ(u ∈ Rk) = eu∑k
j=1 eu j

(5)
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3.2 Objective Function

Suppose we have a set of pair instances {(xt, yt )} generated by our model, the joint
distribution is then given by:

p({xt , yt }T
t=1, w) = p(E)

T∏
t=1

p(qt |w, xt)p(yt |qt ) (6)

Taking log operator on joint distribution, we get an log-likelihood form objective
function.

max
w

L(w; {xt , yt }T
t=1) = −1

2
‖w‖2F +

T∑
t=1

〈yt , logφ(w	xt )〉 (7)

where ‖ · ‖F denote Frobenius norm of matrix.

3.3 Convex Analysis

The logic of convex analysis is based on requirement of online convex optimiza-
tion,for an objective function consisting of two part,regularization term and data
term, an online algorithm with logarithmic regret is proposed if we can prove the
convexity of data term [10, 11].

For analysis purpose, we list aminimization optimization problemwhich is equiv-
alent to 7.

min
w

1

2
‖w‖2F −

T∑
t=1

〈yt , logφ(w	xt )〉 (8)

where ‖w‖2F act as regularization term, then we need to prove the following propo-
sition.

Proposition 1 〈y, logφ(w	x)〉 is concave on w

Proof We start by noting property of

logφ(u) = u − log
∑

k

euk (9)

there is a common factor log
∑

k euk , taking partial derivative on log
∑

k euk related
to u, the first order derivative form is formulated as
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d log
∑

k

euk = 〈φ, du〉 (10)

The second order derivative is by analogy calculas

d2 log
∑

k

euk = φi (1 − φ j )dui du j (11)

the Hessian matrix is sum of two positive rank one matrix φ(1− φ)	 + (1 − φ)φ	,
then log

∑
k euk is convexity. Cause the other part is linear and y is not less than zero,

we get the conclusion that 〈y, logφ(w	x)〉 is concave.
Moreover, by noting the embedding assign a probability measure for sample

instance, embedding act as prior of probabilities, which corresponds to dirichlet
parameter [12] in exponential family. And there is translation invariance property of
φ, φ(u) = φ(u + s), u ∈ Rk, s ∈ R. Besides, if we define functions {gt }T

t=1 on w
as:

gt (w) = −〈yt , logφ(w	xt )〉 (12)

then we can get the dual form of optimization problem 8.

max
μ1,··· ,μT

−
{
1

2
‖
∑

t

μt‖2F +
∑

t

g∗
t (μt ))

}
(13)

given w∗ is the solution of 8, and {μ∗
t }T

t=1 is the solution of its dual problem 12, then
we know there is relationship

w∗ = −
T∑

t=1

μ∗
t (14)

For these reasons, we design an online learning algorithm aggregating dualities with-
out averaging, which we terms it Duality Aggregation, shown in 2.

Algorithm 2 Duality Aggregation for Generative Correlation Multi-Classifier

Input: Training data D = {(xt , yt )}T
t=1

Output: Embedding E∗ with parameter w∗
1: w0 ← 0
2: for t = 1 to T do
3: wt ← wt−1 + (yt − φ(w	

t−1xt ))xt
	

4: end for
5: w∗ ← wT
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3.4 Max-Margin Property Analysis

In the previous section, we know margin and loss function is key elements in max-
margin learning related optimization problem, we try to build the concepts in our
optimization problem. By noting that inner product 〈yt , logφ(w	xt )〉 is not greater
than zero, we denote its Hadamard product form as margin, and also we can define
loss function �(γ) = −γ, it is obvious convex and non-decreasing. With the notation
margin and loss function introduced, 7 can be expressed as

max
w

−(
1

2
‖w‖2F +

T∑
t=1

�(

margin︷ ︸︸ ︷
yt · logφ(w	xt )) (15)

Then, we show the follow proposition.

Proposition 2 Our model is max-margin machine

Proof We know that, a machine is said to be max-margin if and only if its learning
objective function has following form:

min
w

1

2
‖w‖2 + λ

∑
t

�(γt )

s.t. yt · h(w	xt) ≥ γt ,∀t ∈ [T ] (16)

It is sufficient to show that 16 hold by introducing lower bound variables {γt }T
t=1

and replacing the margins {yt · logφ(w	xt )}T
t=1 in 15.

Before further step, we recall one more piece of definition from convex analysis.
The Fenchel conjugate of a function f : S �→ R is defined as

f ∗(x∗) = sup
x∈S

〈x∗, x〉 − f (x)

which corresponds to a optimization problem.
Fenchel conjugate has a nice property, if f is closed and convex, then the Fenchel

conjugate of f ∗ is f itself (a function is closed if for all α > 0 the level set
{x : f (x) ≤ α} is a closed set).[13, 14]

Let’s back to proof of necessary condition. Consider the optimization problem
16, the inequality constraints should be equality ones, otherwise the objective is not
optimal for nondecreasing properties of �

min
w

R(w) +
∑

t

�(γt )

s.t. yt · h(xt; w) = γt ,∀ {xt, yt } ∈ D (17)
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introducing T vectors λ1, · · · ,λT , each λt is Lagrangian multiplier of the equality
〈yt , h(xt; w)〉 = γt .then we obtain the following Lagrangian.

L(w, γ1, · · · , γT ,λ1, · · · ,λT )

=R(w) +
∑

t

[�(γt ) + 〈λt , yt · h(xt; w) − γt 〉] (18)

applying Fenchel duality theorem [13] on γ and λ in turn.

min
w,γ1,··· ,γT

max
λ1,··· ,λT

L(w, γ1, · · · , γT ,λ1, · · · ,λT )

= min
w

max
λ1,··· ,λT

R(w) +
∑

t

[−�∗(λt ) + 〈λt , yt · h(xt; w)〉]
= min

w
R(w) +

∑
t

�(yt · h(xt; w)〉) (19)

where �∗ is Fenchel conjugate of �, we did maximization and minimization on
{γ1, · · · , γT } and {λ1, · · · ,λT } sequentially, then we obtain a unconstrained opti-
mization problem again.

The proposition leads to that our model has similar generalization bound to SVM
based multi-classifiers. Moreover, cause local variables {γt }T

t=1 are eliminated, there
is only one optimization variable w in objective function 7, which is much simple
than the optimization problem with constraints 16.

4 Extending Our Model to Semi-Supervised Learning

In the previous section, we proved that our model has two notable properties. Convex
property indicates that we can design an efficient online algorithm with logarithmic
regret, while the data is processed one after one, we can pause the learning pro-
cedure, and continue the learning procedure after responding to prediction request
without any effect on learning.Max-margin property indicates ourmodel has compa-
rable generalization capability as other max-margin machines, e.g. Support Vector
Machines (SVMs), prediction on future unseen data can achieve nearly the same
performance as in training stage.

For these reasons,we propose an incremental algorithm for semi-supervised learn-
ing, when given unlabeled data, the algorithm pause the training procedure, predicts a
label with current state of model, and then continue to train the model with complete
label data.
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Label prediction is defined as following optimization problem based on max-
entropy principle

max
yt ∈Y

〈yt , log qt 〉 − 〈yt , log yt 〉 (20)

where qt is the probability measure embedding E assigning to input sample xt ,

qt = φ(w	xt ) (21)

the objective function consists of two part,cross entropy 〈yt , log qt 〉 and entropy of
yt : 〈yt , log yt 〉, representing confidence of yt given qt . The solution is

y∗
t = 1(· = argmax(qt )) (22)

where 1(· = argmax(qt )) is indicator function, which means dimension with max
value of qt labeled with 1, others labeled with 0.

With the proposed algorithm, both labeled and unlabeled data are unified under our
method. The incremental algorithm captures essences of the exploration-exploitation
tradeoff. The algorithm shown in 3.

Algorithm 3 Incremental Duality Aggregation for Semi-Supervised Multi-Class
Learning

Input: Training data D = {(xt , yt )}T
t=1

Output: Embedding E∗ with parameter w∗
1: w0 ← 0
2: repeat
3: for t = 1 to T do
4: if xt is unlabeled then
5: yt ← 1(· = argmax(φ(w	xt )))

6: end if
7: Computation aggregate with
8: wt ← wt−1 + (yt − φ(w	

t−1xt ))xt
	

9: end for
10: until Convergence
11: w∗ ← wT

5 Experiments

We present empirical results to demonstrate prediction accuracy and converge rate of
proposed semi-supervised learning algorithm, the result demonstrate merits inher-
ited from both online convex optimization and max-margin learning. Data set is
divided into training and test samples, we feed the model with training samples in
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Fig. 1 Classification accuracy versus iteration numbers. a MNIST. b COIL20. c COIL100

format (x, y) (labeled sample) or only x (unlabeled sample), after training, we feed
the model with xt in test samples set, the model returns ŷt , prediction accuracy is

defined as
∑

t 1(ỹt =yt )

|Test Samples| representing the probability whether prediction label ŷt is
equals to true label yt . The performance mainly depend on proportion of labeled
samples in training data, we test four proportions: 5, 10, 20 and 40%, governed by
exponential relationship. We care about dynamic evolutional performance of algo-
rithms, prediction accuracy of various iterations are evaluated.

To order to estimate limits of semi-supervised learning, supervised learning using
Duality Aggregation algorithm is introduced, also training with whole samples (not
only training data, test data also included) is introduced, which represents the true
risk of supervised learning.

We evaluate performance on three data set MNIST COIL20 and COIL100, which
have been extensively evaluate in context of multi-class learning.

5.1 MNIST

The MNIST database1 is handwritten digits ranging from 0 to 9, consist of 60000
training examples and 10000 test examples, The size of each image is 28×28 pixels,
with 256 gray levels per pixel, thus each image is represented by a 784-dimensional
vector.

Performance is reported in Fig. 1a and Table1, we can see that, with only 5%
labeled data, our algorithm can achieves 89.10 ± 0.20 prediction accuracy after 20
iterations, there are less than 5% accuracy lost comparing with supervised learning
(92.47 ± 0.05%) and true risk (93.18 ± 0.05%).

1http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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5.2 COIL20 and COIL100

COIL202 contains 20 objects, the images of each objects were taken 5 degrees apart
as the object is rotated on a turntable and each object has 72 images, The size of
each image is 32 × 32 pixels, with 256 gray levels per pixel, thus each image is
represented by a 1024-dimensional vector. COIL1003 contains 100 objects, other
setting is similar to COIL20.

Cause the data set is not divided into training and test samples, we divide the data
set into training samples and test samples randomly with ratio 7 : 3, performance is
shown in Fig. 1b, c and Table1. We can see that with 5% labeled data, prediction
accuracy achieves 68.24 ± 0.50% and 43.91 ± 1.47% in COIL20 and COIL100
separately. The performance is getting better with the increasing of labeled data
proportion, while it can achieve 91.40 ± 0.82% and 82.31 ± 0.54% with 40%
labeled data. Comparing with the performance ofMNIST, the reason of the unperfect
performance may caused by inadequate learning, as there are 72 samples for each
class.

6 Conclusions

In this paper, we proposed an incremental model for semi-supervised learning, the
model use two notable properties:

1. convex of objective function. we can design efficient online algorithm with log-
arithmic regret, it achieve accurate solution with very little overhead. moreover,
while the data is processed one after one, it can also response to prediction request
in training stage;

2. max-margin learning, which provide our model with considerable generalization
capability for future unseen data.

As unlabeled sample is given a prediction value, then train the model with complete
label. both labeled and unlabeled data are unified in our method, our incremental
model capture essences of the exploration-exploitation tradeoff. The empirical study
shows our approach has acceptable results. Our future work will focus on applying
the approach to more broader scenarios.

Acknowledgments This work is supported by the National Natural Science Foundation of China
(No.61379069) and the Key Technologies R&D Program of China (No.2014BAK09B04).

2http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
3http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php.
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Improving Hypervisor Based SSD
Caching with Logically Partitioned Blocks
and Scanning in Cloud Environment

Hee Jung Park, Kyung Tae Kim, Byungjun Lee, Rhee Man Kil
and Hee Yong Youn

Abstract In the era of big data and cloud computing the virtual machine (VM)
environment is important where multiple VMs of different operating system and
application can be simultaneously run on the same host. In the VM environment
the conventional hard disk drive (HDD) has limitations such as low random access
performance and high power consumption. Solid State Drive (SSD) is an emerg-
ing storage technology, playing a critical role in revolutionizing the storage system
design. Recently, SSD storage caching is widely studied for VM-based systems. The
existing works on cache space allocation identify the space demand of each VM based
on hit ratio. They are not effective for the VMs of shared SSD cache due to the filte
ring effect of higher-level caches. In this paper we propose a novel hypervisor-based
SSD caching scheme, employing a new metric to accurately determine the demand
on SSD cache space of each VM. Computer simulation confirms that it substantially
improves the accuracy of cache space allocation compared to the existing schemes. It
also allows to display comparable hit ratio as the existing schemes with less amount
of SSD cache for the VMs.
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1 Introduction

In recent years virtualization technology enables multiple virtual machines (VMs)
to be run on a physical machine, where each VM is run independently on its own
operating system. Virtualization technology has been adopted in various IT fields
because of its ability to improve the utilization of hardware resource, achieving low-
power consumption, simplifying server management, and reducing maintenance cost.
In a typical VM environment, multiple VMs are simultaneously run on the same host.

In VM environment, high-performance storage systems are in high demand espe-
cially for data-intensive computing. However, most storage systems, even those
specifically designed for high-speed data processing, are still built on conventional
hard disk drive (HDD) with several long-lasting limitations including low random
access performance and high power consumption. Unfortunately, these problems
essentially stem from the mechanical nature of HDD, and thus are difficult to be
addressed via mechanical solution. Flash memory-based Solid State Drive (SSD)
is an emerging storage technology which plays a critical role in revolutionizing the
design of storage system. Different from HDD, SSD are completely built on semi-
conductor chips without any moving parts. Such fundamental difference makes SSD
capable of providing one order of magnitude higher performance than HDD, and lets
it be an ideal storage medium for building high-performance shared storage systems.
Due to these advantages SSD caching has been widely studied in conventional sys-
tems [1, 2]. However, it would be impractical to directly apply the existing solutions
to the VM systems because the SSD caching scheme designed for a VM system must
maximize the utilization of shared SSD cache while ensuring performance isolation
among the VMs.

The previous works on cache partitioning for VMs focus on the identification of
the space demand on cache of each application [3]. For example, some researches
proposed to monitor the number of hits/misses of each cache unit and then use the
data as a basis for computing the space demand [4]. Some studies proposed to use
the change of hit ratio at main memory level during a time window as a metric to
predict the space demand [5]. However, the hit ratio-related techniques cannot be
effective for shared cache due to the filtering effect of higher-level caches. For this
reason, a cache space reallocation scheme based on random sampling was proposed
in [6]. The space allocation for a VM is determined by the memory utilization and
maximum/minimum memory quota predefined by the system administrator. The VM
of lower memory utilization has a smaller share reclaimed and thus it is more likely
to get memory. In this case, however, it can predict the memory requirement of a
VM only when there is available memory. In addition, the prediction is inaccurate
because of the mechanism of random scanning of the blocks.

In this paper a hypervisor-based SSD caching scheme is proposed, which effec-
tively manages the cache in the multi-VM environment by collecting and exploiting
the runtime information from both the VMs and storage devices. Due to the unique
position of hypervisor between the VMs and hardware devices, it does not require
any modification of guest OS, user applications, or the underlying storage systems.
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The proposed scheme uses a metric called “HLP” to identify the cache space demand
of each VM at runtime. In essence, HLP is the ratio of the cache being effectively used
by a VM to the total cache space allocated to it. It is a critical reference for cache space
allocation. Computer simulation reveals that the proposed scheme improves accuracy
and more effectively uses the cache space compared with the existing schemes.

The rest of the paper is organized as follows. In Sect. 2 the existing schemes related
to hypervisor-based SSD caching are explained. The proposed scheme is presented
in Sect. 3, and Sect. 4 compares its performance with the existing methods using
computer simulation. Finally, Sect. 5 presents the conclusion and future work.

2 Related Works

2.1 Hypervisor-Based SSD Caching

Recently, various hypervisors or VM monitors are run on top of physical machines
which schedule the execution of VMs. Here multiple instances of operating systems
may share the virtualized hardware resources. Among them, Xen hypervisor is a
popular abstraction layer existing between the guest domains and physical hardware,
and it is responsible for resource allocation and isolation. Here the LRU (Least
Recently Used) policy is usually employed to remove data from the cache. Some
studies track the count of block accesses to identify frequently used blocks, and then
cache them in SSD [5, 7].

The caches come in two varieties. Firstly, dedicated deployment such as mem-
cached where each node is allocated a fixed amount of memory along with oppor-
tunistic caches such as Linux buffer and page cache that can expand to consume
underutilized memory. With opportunistic cache a process of a VM may greedily
consume the memory pages if there is no other process inside the VM using the mem-
ory. However, there might be another VM of higher priority on the same host which
could make better use of the memory. Then efficient use of virtual resources becomes
difficult, and a new approach needs to be adopted. Meanwhile, dedicating a fixed
memory region to a memcached node is convenient for offering a predictable level
of quality of service. Also, UniCache allows flexible allocation of storage resource
to the operating system and applications by offering a unified caching service at the
hypervisor level as shown in Fig. 1.

Here data are split between hypervisor controlled main memory and flash memory
to provide varying levels of performance based on the application type and priority of
the VM. Expanding the cache to include both memory and SSD allows a much larger
amount of data to be stored, which is very important in virtualized environment where
competing VMs need to make efficient use of limited memory resources [8–10].

There exist three different approaches for using SSD cache in VM environment.
Firstly, SSD is directly managed by the hypervisor, where the management center
is located between the VMs and hardware resources. The VM-based SSD caching
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Fig. 1 The structure of a UniCache store in hypervisor and SSD RAID

has significant disadvantages such that the guest OS or user application needs to be
modified to manage the cache. This incurs extra burdens on the users, and is hardly
available for legacy systems. The storage-based SSD caching shows a drawback
in its isolated design approach. The block interface between the storage system
and the virtualization software stack is primitive without the ability to deliver rich
semantic information. Local optimization in the storage subsystem may not enhance
the performance of overall VM system.

This paper employs hypervisor-based SSD caching to avoid the limitations in
VM-based and storage-based SSD caching, while retaining their advantages. The
hypervisor can manage SSD cache for the VMs in a transparent way, addressing
the problem of modifying guest OS or application. Here the VM activities, particu-
larly I/O requests are managed by the hypervisor which collects critical information
required for effective management of SSD cache. With the full access privilege to
hardware resources, the hypervisor can directly enforce the space allocation decisions
to maximize resource utilization in an efficient way [6, 11, 12].

2.2 Cache Partitioning

At present, a number of researchers have proposed flash-based buffer management
algorithm for SSD such as CFLRU [13] and improved CRLRU [14]. Taking advan-
tage of the asymmetry in flash read-write performance, CFLRU is a kind of buffer
replacement strategy which first replaces read-only pages and assumes that write cost
of flash is far greater than read cost. Its key idea is dividing LRU linked list into two
parts: working area and replacement area. Once cache is full and some data need to
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be replaced to outside, CFLRU chooses read-only pages for replacement according
to LRU supposing that there exists read-only data in the replacement area. When
there are only dirty pages in the replacement area, the ones at the tail of the linked
list are replaced. Other researchers improved the traditional LRU and LFU policy to
accommodate diverse requirements of the applications [15–19].

Note that there exists a high potential for SSD to be widely employed in large-scale
cluster storage system. SSD is more expensive than traditional HDD, but performs
better for random reads and writes. S-CAVE [6] is a flash cache partitioning scheme
which tries to maximize cache utilization for multiple VMs on a single VMware host
by running a hypervisor module. Based on the identification of runtime working
set, S-CAVE monitors the changes in locality, especially transient bursts in data
reuse. Here the performance of caching is measured by the number of cache hits an
application encounters. If proper data blocks are cached, the number of cache hits
will increase, and accordingly the effectiveness of caching. Therefore, an efficient
algorithm needs to be employed to maximize the number of cache hits.

Figure 2 illustrates the structure of S-CAVE. For each VM, S-CAVE launches a
module, called Cache Monitor, to manage the allocated cache space and keep the
cache transparent to the VM. In order to effectively allocate the shared SSD cache
space among multiple VMs, S-CAVE also uses a central control, called Cache Space
Allocator, to analyze the information on cache usage collected from each cache
monitor and make the decision on cache allocation accordingly.

The key idea of S-CAVE is to effectively allocate an appropriate amount of cache
space to each VM. For this, S-CAVE identifies the demand of cache space of each VM,
and each cache monitor is required to provide accurate information on the demand
of the SSD cache space of the VM it monitors. Then cache space allocation is made
considering the demands of all VMs. While satisfying the demand on the cache of

Fig. 2 The structure of the S-CAVE scheme
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each VM represented by the ratio of used cache space, the cache space allocation
of all VMs needs to be properly balanced. The proposed scheme efficiently resolves
this issue as shown next.

3 The Proposed Scheme

The environment of VM is highly dynamic, where multiple VMs of different and
changing cache demands are run on a host. To rapidly reflect the runtime dynamics
and guarantee effective and fair sharing of cache space, a dynamic control mechanism
is proposed to periodically cross-compare the cache demand of each VM and adjust
the space allocation accordingly. Through this, the VMs of increasing demand is
granted more cache space, while some portion of already allocated cache space of
those of decreasing demand is deprived. In order to achieve fine adjustments, the
previous decisions are also taken into account as a feedback when a new decision is
made.

The proposed scheme consists of two steps. The first step is to estimate the value of
HLP identifying the demand of each VM on the cache space. Cache space reallocation
is made in the next step, considering the demands of all the VMs.

3.1 Assessment of Cache Utilization

This paper proposes a new metric called HLP which is the ratio of the size of cache
space being used to the allocated cache space during a time window. For a specific
VM for which n blocks have been allocated, if m unique cache blocks have been
accessed within a time window, then HLP is obtained by Eq. (1).

HLP = m

n
× 100 % (1)

To accurately and efficiently estimate the HLP value at runtime, two counters, Ci

and Cd
i , are manipulated for each VM, where Ci is the total number of cache blocks

allocated to VMi and Cd
i is the number of unique cache blocks used by VMi. At

the beginning of a time window, both counters are set to 0, and the metadata of
the blocks residing in the global pool is scanned to update the counters. Since the
global pool contains all the blocks allocable to different VMs, only the counter
corresponding to the accessed block for the VM is incremented by one. Whenever,
Ci

d is incremented, Ci is also incremented by one. Figure 3 shows how the proposed
counters are manipulated.

In order to obtain accurate HLP value, all reference counters need to be scanned
for the given time window. A small time window enables quick adjustment of cache
allocation, but it is impossible to complete the scan of entire counters during the
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(a) (b)

Ci = 7, Ci
d = 1 Ci = 8, Ci

d = 2

Allocated cache block Accessed cache block

Fig. 3 An example of counter manipulation for VMi

window. A large time window allows to finish the scan, but cache allocation becomes
less responsive to the runtime dynamics. As a result, selecting an appropriate window
size is an important issue in achieving the best performance.

In order to efficiently estimate the HLP value while rendering a high accuracy,
a new sampling mechanism is adopted in this paper. Here a time window is split
into multiple small sampling periods, and an idle period is inserted between two
consecutive sampling periods. This approach is to reduce the computation overhead
while increasing the effectiveness of the scan. Note that the change in the access
during the idle period can be counted in the subsequent sampling period, which
increases the accuracy of HLP. Within each sampling period, the scanning begins
from the block where the previous scan ends. The scanning operation stops when the
sampling period expires. Figure 4 shows an example of the operation of the proposed
scheme obtaining the HLP values. Note here that the physically tied SSD is logically
partitioned, and the demand on cache space of each partition is monitored during
each time window. The proposed scheme is different from the existing ones in the
management of the scan which allows accurate estimation of the demand on the
cache for each VM and cache space allocation based on it.

The value of HLP for jth partition of ith time window, HLPj
i, having k sam-

pling periods is the average value of k samples, Samplej
i (i = 1,…, k) which can be

formulated by Eq. (2).

HLPi = 1

k

k∑
i=1

Samplingi (2)

Assume that current time window is i. HLPi denotes the final HLP of ith time window
covering all the partitions. Then,

HLPi = 1

p

p∑
j

HLPj
i (3)
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Fig. 4 An example of scanning for the estimation of HLP

where p is the number of partitions. In the example of Fig. 4 the SSD is partitioned
into three parts, SSD1, SSD2, SSD3, and the time window consists of three scanning
periods. Each partition contains 15 blocks, and VM1 is allocated 12 blocks. The
‘index’ in each SSD partition points the block number scanned last in the previous
sampling period. In Fig. 4, it is assumed that S1 has just been finished.

To further improve the accuracy, the current HLP value is averaged with the two
recent HLP values using a weight parameter a, enabling small time window to be
more responsive to the change in the space demand. The final HLPi is obtained by
Eq. (4). In this paper a is assumed to be 0.8. Observe from the figure that six blocks
were accessed out of 12 blocks for VM1, and thus its HLP in this time window is 0.5.

HLPi = HLPj
i · a + (HLPi−2 + HLPi−1)/2 · (1 − a) (4)

Algorithm 1 shows the procedure for the estimation of HLP.
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3.2 Allocation of Cache

In cloud computing the available cache space is allocated to the cloud applications.
The cache space is provided on demand in a fine-grained, multiplexed manner. Here
the cache space allocation is based on the infrastructure as a service (IaaS).

Resource fragmentations occur as the resources are continuously allocated and
deallocated. Even though the entire amount of available resource is enough to satisfy
the need, it cannot be allocated to the requesting application due to fragmentation.
The proposed cache allocation scheme considers the issue of scarcity of resources
because the resources are usually limited while the demand is high in the hypervisor-
based cloud environment. A dynamic allocation scheme is thus adopted to solve the
problem [20].
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Each time the cache space of a VM is adjusted, the amount of change is determined
by the parameter AlloCache, which is the average number of blocks the VM can
access within a time window. It is obtained by averaging the number of accesses in
the previous time windows. VMmin and VMmax denote the VM of the smallest HLP and
largest HLP, respectively. In other words, AlloCache of VMmin is the rate of missed
accesses for a VM in the recent time window. The purpose of using the parameter
is to ensure that the new data accessed by VMmax in the subsequent time window
can be accommodated using the new available cache space released by VMmin. The
proposed scheme finds VMmax to increase its cache space, and the amount of increase
is determined by AlloCache of VMmin. Algorithm 2 below explains how to allocate
the cache space. In case the total free space is smaller than 5 %, the cache space of
VMmin is swapped with that of VMmax for maximizing the utilization of the total space
of SSD [21]. Additionally, the proposed scheme applies the CLOCK-based cache
replacement approach to be more adaptive [22]. The CLOCK algorithm captures
the information on cache access and exploits the frequency of cache access via the
reference bit unlike LRU [23].

In Algorithm 2, the dynamic cache allocation scheme based on HLP is presented.
With the HLP identifying the demand on the cache of a VM, the proposed scheme
effectively balances the allocation between the VMs considering the availability of
hardware resources. For this, the configuration information including the amount
of allocated cache of the VMs is utilized. Here Cache(VMi) denotes the amount of
cache allocated to VMi.
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4 Performance Evaluation

In this section the performance of the proposed scheme is evaluated which uses HLP
to correctly identify the demand on the cache of the VMs and thereby reallocate the
cache space when managing multiple VMs. The simulation was conducted with a
PC of Intel 3.5Ghz i3 CPU, 16GB RAM, 64bit Window 7, and the simulation code
was written in C++ language with Visual studio 2010. The size of SSD cache was
gradually increased from 1,000 to 10,000 blocks for the evaluation. The effectiveness
of the proposed scheme is compared with that of S-CAVE in terms of cache space
utilization and hit ratio. In the simulation the length of time window, sampling period,
and idle period are set to be 1 sec, 0.2 sec, 0.1 sec, respectively.

4.1 Accuracy

First, one VM is used to run a single workload each time. The VM starts with a
small size cache which will then be dynamically adjusted during runtime. Figure 5
compares the accuracy of the proposed scheme with S-CAVE. The accuracy is the
ratio of the number of blocks hit during a time window to the number of blocks
allocated to the VM. Here the workload is proj_4 from SNIA IOTTA Repository
[24]. Observe from the figure that the proposed scheme reflecting the cache usage
of entire window allows consistently better accuracy than S-CAVE. Notice that the
average accuracy with the proposed scheme is consistently higher than that with
S-CAVE, while it is much more stable.

Fig. 5 The comparison of accuracies of the schemes
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4.2 Cache Allocation

The evaluation on cache utilization with multiple VMs running with shared SSD
cache is presented here. Figure 6 shows that the proposed scheme considerably
reduces the amount of SSD cache space allocated to the VMs. It can be deemed
that the proposed scheme uses SSD cache space more efficiently than the other
scheme. Figure 7 compares hit ratio of the schemes. Both the proposed scheme and
S-CAVE display similar hit ratio.

Two additional real-world traces are employed to evaluate the proposed scheme,
which are MSR Cambridge trace from SNIA IOTTA Repository [24] and UMass
Trace Repository [25] from a search engine. The traces represent a variety of work-
loads, hm_1(hardware monitoring) and Websearch. They generate I/O accesses at
the storage disk tier and account for SSD cache as well as application caching effect.

Fig. 6 The comparison of the amount cache space allocated to each VM

Fig. 7 The comparison of hit ratio of different schemes
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Fig. 8 The comparison of allocated cache with different schemes, a hm_1, b Websearch

Figure 8 shows that the proposed scheme slightly reduces the amount of SSD cache
space compared to S-CAVE.

5 Conclusion

In this paper a hypervisor-based SSD caching scheme has been presented, which
effectively manages the SSD storage cache in the VM environment by properly col-
lecting and exploiting the runtime status of the VMs. A new metric was employed
to accurately identify the demand on the cache space of each VM. The ratio of
available cache space has also been accounted for dynamic adjustment of cache
allocation among the VMs. Computer simulation validates the effectiveness the pro-
posed scheme in achieving higher accuracy in the estimation of cache space for the
VMs compared to the existing scheme. This allows the proposed scheme to display
comparable hit ratio with less amount of SSD cache.
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As future study, the proposed scheme will be enhanced for effective allocation
with clustered SSD cache. Thereby, it will be able to provide flexible allocation of
cache space and hardware resource in large-scale cloud environment. In addition
to SSD cache, other shared resources such as CPU, memory, disk, network will be
investigated for efficient resource management in the VM environment.
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Emotional Scene Retrieval
from Lifelog Videos Using Evolutionary
Feature Creation

Hiroki Nomiya and Teruhisa Hochin

Abstract For the purpose of promoting the utilization of a large amount of lifelog
videos, an emotional scene retrieval framework is proposed. It detects emotional
scenes on the basis of facial expression recognition assuming that a kind of emotion
will be aroused with a certain facial expression in an important scene which is likely
to be a target of the retrieval. The emotional scene retrieval has a critical issue that
it is quite hard to accurately and efficiently detect the emotional scenes because
of the difficulty in discriminating spontaneous facial expressions. One of the most
effective way to enhance the performance of the retrieval is to select discriminative
facial features used for the facial expression recognition. It is, however, not easy to
manually select good facial features because very subtle and complex movements
of several facial parts will be observed in the appearance of a facial expression.
We thus propose a method to automatically generate discriminative facial features
on the basis of genetic programming. It produces discriminative facial features by
combining a number of points on some salient facial parts using various arithmetic
operators. The proposed method is evaluated through an emotional scene detection
experiment using a lifelog video dataset containing spontaneous facial expressions.

Keywords Lifelog · Video retrieval · Facial expression recognition · Genetic
programming

1 Introduction

Lifelog has recently attracted attention [1, 2]. It aims to record one’s entire life as
various types of data such as texts, images, and videos. In particular, lifelog videos
[3] become more and more popular because of the emergence of easy-to-use video
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recording devices. However, lifelog videos have a crucial problem that it is difficult
to accurately and efficiently retrieve useful scenes from large-scale video databases.
As a result, valuable lifelog videos often remain unused.

For the purpose of promoting the utilization of lifelog videos, we propose an
impressive scene retrieval method for lifelog videos. The proposed method retrieves
emotional scenes such as the scenes in which a person in the video is smiling,
considering that a certain impressive event could happen in most of emotional scenes
[4]. The emotional scenes are detected on the basis of facial expression recognition
because most of emotions can be reflected in the facial expressions.

Facial expression recognition has been applied to video-scene detection [5, 6].
Most of the facial expression recognition techniques manually define their own facial
features and discriminate facial expression using them. The facial feature is one of
the core elements in the facial expression recognition and dominates the recognition
performance. It is, however, not easy tomanually select good facial features because a
variety of very subtle and complexmovements of several facial parts will be observed
in the appearance of a facial expression.

In order to facilitate the creation of discriminative facial features, we introduce
genetic programming [7]. Genetic programming is widely used to automatically
generate computer programs that perform some kind of user-defined tasks. Since a
program is represented by a tree structure, our facial feature can be represented as
a form of a tree by combining a number of points on some salient facial parts (as
the terminal nodes) using various arithmetic operators (as the non-terminal nodes).
We attempt to create discriminative facial features by defining an effective fitness
function to evaluate the discrimination ability of the facial features in the genetic
operations.

For the detection of the emotional scenes, we introduce an efficient facial expres-
sion recognition method using the facial features and an emotional scene detection
method on the basis of the recognition result for each frame image in a video.

We show the effectiveness of the the proposed method through an emotional
scene retrieval experiment using several lifelog videos including spontaneous facial
expressions.

The remainder of this paper is organized as follows. Section2 presents related
works. Section3 illustrates the facial features. Section4 explains the creation of
facial features. Section5 shows the facial expression recognition method. Section6
elaborates the emotional scene detection method. Section7 describes an emotional
scene detection experiment. Finally, Sect. 8 concludes this study.

2 Related Works

The performance of the emotional scene detection is largely dependent on the
facial expression recognition. While there are various approaches to recognize
facial expressions [8], our approach is based on the geometric features taking into
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consideration the tradeoff between the accuracy and efficiency. The geometric fea-
tures describe the shape and locations of salient facial components such as eyebrows,
eyes, and a mouth.

For example, 3D models of the faces are used as the geometric features in order
to accurately recognize facial expressions [9]. Although they can be very precise and
effective for accurate recognition, it will be difficult to utilize the 3D facial features
within reasonable cost considering that a lifelog video database can be very large.

By using 2Dmodels, the geometric features can bemore concise. They are defined
as the positional relationships of the feature points on a face such as the distance
between two points [4, 10]. Most of the facial features are manually determined
by combining some points. It is, however, unclear whether they are sufficient to
accurately distinguish various facial expressions.

Our method has the possibility to acquire more powerful facial features since
the genetic programming selects useful facial features through the evaluations and
genetic operations to a very large number of possible facial features.

3 Facial Feature

3.1 Facial Feature Points

We introduce facial feature points, which are the points on salient facial parts, in order
to recognize facial expressions. They are introduced with the intention to achieve
the balance between the conciseness and discrimination ability of the facial features.
The facial feature points are obtained by an application software called FaceSDK
4.0 [11].

We utilize 32 facial feature points on the right half of a face considering the
symmetric feature of the facial parts. The facial features are shown in Fig. 1. The
white squares represent the points detected by FaceSDK and the points denoted by
p1 to p32 are the facial feature points used in the proposed method.

Fig. 1 Facial feature points
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3.2 Structure of Facial Feature

The facial features are defined on the basis of the facial feature points. Taking the
tradeoff between the accuracy and efficiency of the facial features into consideration,
the facial features are concisely represented by the positional relationship of several
facial feature points.

However, a single positional relationship such as the distance between two points
is too simple to accurately distinguish subtle differences of the facial expressions.
In order to make the facial features more discriminative, we introduce genetic pro-
gramming [7] into the creation of the facial features. In the proposed method, a facial
feature corresponds to a program and can be represented as a tree.

The tree representation of the facial feature consists of two types of nodes called
terminal nodes and non-terminal nodes. The terminal (non-terminal, respectively)
nodes are the leaf (non-leaf) nodes in the tree. A tree represents a certain facial
feature as a whole. A non-terminal node can be regarded as an operator and the
terminal nodes are the operands for the operator. Tables1 and 2 describe the terminal
and non-terminal nodes used in the proposed method, respectively.

The terminal nodes can be either a vector or a scalar. The vector-type ter-
minal nodes are the vector representations of the facial feature points on the
two-dimensional Euclidean space. The scalar-type terminal nodes are the integer
constants used, for example, for the coefficients of a certain term.

Table 1 Terminal nodes

Type Number of nodes Nodes

Vector 32 p1, . . . , p32
Scalar 4 1, 2, 3, 4

Table 2 Non-terminal nodes

Operation

Node #Arguments Vector Scalar

N1 2 v1 + v2 s1 + s2
N2 2 v1 − v2 s1 − s2
N3 2 v1 · v2 s1 × s2
N4 2 v1 × v2 s1/s2
N5 1 sin θ(v1)

√|s1|
N6 1 cos θ(v1) s21
N7 1 tan θ(v1) log(|s1| + 1)

N8 1 |v1| |s1|
N9 2 |v1 − v2| min{s1, s2}
N10 2 |θ(v1) − θ(v2)| max{s1, s2}

a v1 and v2 are the vector-type arguments.
b s1 and s2 are the scalar-type arguments.
c θ(vi ) is the angle of vi in the polar coordinate system.
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Fig. 2 Example of facial
features

p25 p26

N9

(a)

p25 p26

N9

(b)

p2 p30

N9

N4

We define ten types of non-terminal nodes. The operations of a non-terminal
node are separately defined for the vector arguments and the scalar arguments. For
example, N1 yields the vector of the sum of v1 and v2 for the vector-type arguments
v1 and v2. For the scalar-type arguments s1 and s2, it yields the scalar corresponding
to s1 + s2. In the case that one of the arguments is a vector and the other is a scalar,
the operation for N1 is not defined. We thus introduce a restriction in the genetic
programming so that the tree including such arguments should not be generated.

Figure2a describes a simple example of the facial feature. N9 is regarded as the
operation |v1 − v2| since both of the arguments (i.e., p25 and p26) are the vector-type
ones. This facial feature value is, therefore, represented as |p25 − p26|, which means
the Euclidean distance between the two facial feature points p25 and p26.

Figure2b shows a little more complex example. The left and right subtrees yield
the scalar values |p25 − p26| and |p2 − p30|, respectively. N4 receives two scalar-
type arguments and produces the facial feature value |p25 − p26|/|p2 − p30|, which
indicates the vertical-to-horizontal ratio of the mouth.

4 Creation of Facial Features

It is very difficult to manually create useful facial features by combining the facial
feature points because there are infinite possible combinations of the facial feature
points and the operations for them. We thus introduce genetic programming [7]
into the creation process of the facial features to make it easy to discover useful
combinations.

The algorithm to create the facial features is shown in Algorithm1. The proposed
feature creation algorithm is based on a standard genetic programming technique
including some commonly-used genetic operations such as crossover and mutation
[7]. The key point of the proposed feature creation algorithm is the fitness function
used to measure the goodness of each individual in the population.

The fitness of an individual is determined through the two-step fitness compu-
tation. In the first step, the tentative fitness value is computed for each individual
on the basis of the ratio of the between-class and within-class variances since it is
generally proportional to the discrimination performance. Additionally, as shown in
Eq. (1), the size of an individual is taken into consideration in order to prevent the
individual from being redundant. Some of the individuals cannot compute the feature
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Algorithm 1 Creation of facial features.
Input:

• Training examples {(x1, y1), . . . , (xn, yn)} where n is the number of examples
xi : A set of 32 facial feature points
yi : Class label representing the facial expression appeared in the example

• Number of facial expressions C (yi ∈ {1, . . . , C})
• Number of individuals N in the population
• Number of generations G
• Number of output facial features D
• Parameters α and M
• Several parameters for the genetic programming (explained in detail in the experimental
section)

Procedure:
1: Create the first (initial) population P1.
2: g ← 1.
3: For each individual I ∈ Pg , compute the tentative fitness value F̃ given by Eq. (1).

F̃(I ) =
{ V R(I )

1+αN (I ) if I is valid
0 otherwise

(1)

where, N (I ) is the size of I (i.e., the number of nodes in I ), and α is the parameter corresponds
to the weight for the size of the individual. V R(I ) is the ratio of the between-class variance to
the within-class variance given by Eq. (2).

V R(I ) =
∑C

i=1
ni
n (μi − μ)2

1
n

∑C
i=1

∑ni
j=1( f (xi

j ) − μi )2
(2)

where, f (x) is the facial feature value computed from the tree of I and the facial feature points
of x . xi

j is the j th training example whose class label is i (i.e., y = i). ni is the number of
training examples having the class label i . μi and μ are obtained from Eq. (3):

μi = 1

ni

ni∑
j=1

f (xi
j ), μ = 1

n

n∑
i=1

f (xi ) (3)

4: Compute the (final) fitness value F using Eq. (4).

F(I ) =
{

(1 − |K (I )|)F̃(I ) if I is valid
0 otherwise

(4)

where K (I ) is the penalty term obtained on the basis of the correlation between I and the other
individuals having large value of F̃ . For the individual Ir having the r th largest value of F̃ ,
K (Ir ) is given by Eq. (5).

K (Ir ) =

⎧⎪⎨
⎪⎩
0 r = 1
max

i=1,...,r−1
Cor(Ir , Ii ) 2 ≤ r ≤ M + 1

max
i=1,...,M

Cor(Ir , Ii ) r > M + 1
(5)

where Cor(Ir , Ii ) is Pearson’s correlation coefficient between Ir and Ii .
5: g ← g + 1.
6: if g > G then proceed to Step 7. Otherwise, create the gth population Pg using F and return to

Step 3.
7: Finish the procedure and output D facial features from PG having the first-to-Dth highest (final)

fitness values.
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values because of the type error of the arguments (for example, one of the argument
is scalar-type while the other one is vector-type). Such individuals are called invalid
and their tentative fitness values are set to 0. On the other hand, the individuals which
are able to compute feature values are called valid.

It is meaningless to simply choose the individuals having high tentative fitness
values because they tend to have very similar tree structures. Acquiring sufficient
discrimination ability needs the diversity of the facial features as well as the higher
(tentative) fitness values. In the second step, therefore, the final fitness values are
determined using the correlation between the individuals. As shown in Eq. (4), the
final fitness value is computed as the product of the tentative fitness value and the
penalty term on the basis of the correlation. For example, the penalty term of the
individual having r th highest tentative fitness value is obtained based on the maxi-
mum value of the Pearson’s correlation coefficients between the individual and the
individuals having the first-to-(r − 1)th highest tentative fitness values. In order to
reduce the computational cost, the correlation coefficients are computed only for the
individuals having the first-to-M th highest tentative fitness values when r > M + 1.
The parameter M should be experimentally determined.

At the end of the final generation, D individuals having the first-to-Dth highest
(final) fitness values are output as the facial features. The parameter D should also
be experimentally determined.

5 Facial Expression Recognition

As a result of the aforementioned feature creation, D facial features are obtained.
Each facial feature has the tree structure which receives several facial feature points
represented as vectors and outputs a (scalar) facial feature value. A D-dimensional
feature vector can therefore be defined.

The feature vector V (x) for a certain set of facial feature points x is described as
V (x) = ( f1(x), . . . , fD(x)), where fi is the value of the i th facial feature obtained
through the feature creation. An example is thus described as (V (x), y) where y is
the class label.

The problem of the discrimination of the facial expression is represented as the
problem of the determination of the class labels of given examples. This can be
solved by using a certain machine learning technique. In the proposed method, we
make use of Support Vector Machine (SVM) [12] which is widely used to predict
the class labels of given feature vectors.
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6 Emotional Scene Detection

The emotional scenes are detected from a video according to the predicted class
label for each frame image. The emotional scenes with a certain facial expression
are determined by using the frame images having the corresponding class labels.

At the first step of the emotional scene detection, each frame image having the
corresponding class label is regarded as a single emotional scene. Then, neighboring
emotional scenes are integrated into a single emotional scene. The integration process
is repeated until no more emotional scenes can be integrated. The resulting scenes
are output as the emotional scenes of the facial expression.

The algorithm to detect the emotional scenes is shown in Algorithm2. Since the
emotional scene detection algorithm can find the emotional scenes for a single facial
expression, it is required to perform the emotional scene detection C times when
there are C kinds of facial expressions in a video.

7 Experiment

7.1 Experimental Settings

7.1.1 Lifelog Videos

We prepared six lifelog videos by six subjects termed Subject A, B, C, D, E, and F.
All the subjects are male university students.

The lifelog videos contain the scenes of playing cards recorded by web cameras.
A single web camera recorded a single subject so that the subject’s frontal face was
recorded. This experimental setting is due to the limitation of FaceSDK that it can
detect the facial feature points of a single frontal face. While card games are suitable
for stably recording frontal faces, a player of most of card games tries to keep a poker
face. We thus chose the card games such as Hearts in which the players could clearly
express the emotion.

The lengths of the videos vary from 10.0min to 13.3min. The average length is
11.6min. The size of each video is 640× 480 pixels and the frame rate is 30 frames
per second. Considering the high frame rate, we selected frames from each video
after every 10 frames in order to reduce the computational cost. Consequently, the
number of frame images in a video is 2088 on average.

Apart from the web cameras, a video camera was used to record the scenes of
playing cards including all subjects at the same time. The videos were recorded in
order to show the results of the emotional scene retrieval to the users while they were
not used in this experiment. Note that the videos recorded are not shown in this paper
because of privacy reasons.
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Algorithm 2 Emotional scene detection.
Notations:

• Ec
i : The i th emotional scene in which the facial expression c appears.

• f irst (Ec
i ): Frame number of the beginning frame in Ec

i .• last (Ec
i ): Frame number of the ending frame in Ec

i .• length(Ec
i ): Length of Ec

i . It is equivalent to last (Ec
i ) − f irst (Ec

i ) − 1.
• #int (Ec

i ): Number of emotional scenes integrated into Ec
i .• #nonemo(Ec

i ): Number of nonemotional frames in Ec
i .

Note that a nonemotional frame means that the facial
expression appears in that frame is different from c.

• dist (Ec
i , Ec

j ): The distance between Ec
i and Ec

j (i < j).
It is equivalent to f irst (Ec

j ) − last (Ec
i ) − 1.

Initialize:
For each frame image having the class label c, perform the following initialization according to
Eq. (6):

f irst (Ec
i ) = last (Ec

i ) = ci , #int (Ec
i ) = 0,

#nonemo(Ec
i ) = 0, length(Ec

i ) = 1, (1 ≤ i ≤ Mc) (6)

where, ci is the frame number of the i th emotional frame in the video. Mc is the number of
emotional frames. An emotional frame is the frame having the class label c. That is, each
emotional scene consists of a single emotional frame.

Procedure:
1: Find i∗ in accordance with Eq. (7):

i∗ = argmin
i

dist (Ec
i , Ec

i+1)

s.t. dist (Ec
i , Ec

i+1) ≤ length(Ec
i ) − #nonemo(Ec

i )

#int (Ec
i ) + 1

∧ dist (Ec
i , Ec

i+1) ≤ length(Ec
i+1) − #nonemo(Ec

i+1)

#int (Ec
i+1) + 1

(7)

2: If there is no i∗ that satisfies Eq. (7), finish the procedure and output current emotional scenes.
Otherwise, proceed to step 3.

3: Integrate Ec
i∗+1 into Ec

i∗ by updating Ec
i∗ as follows:

last (Ec
i∗ ) ← last (Ec

i∗+1),#int (Ec
i∗ ) ← #int (Ec

i∗ ) + 1,

#nonemo(Ec
i∗ ) ← #nonemo(Ec

i∗ ) + f irst (Ec
i∗+1)−last (Ec

i∗ ) − 1

Note that length(Ec
i∗ ) is also updated due to the update of last (Ec

i∗ ).
4: Delete Ec

i∗+1 and renumber the subscripts of Ec
i so that the emotional scenes become

Ec
i , . . . , Ec

Mc−1.
5: Mc ← Mc − 1 and return to step 1.
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The facial expressions observed in most of the emotional scenes in the lifelog
videos were smiles. Thus, we set the value of C (described in Algorithm1) to 2
intending to detect the emotional scenes with smiles, that is, to discriminate smiles
and other facial expressions. The ratio of the emotional frames to all the frames varies
from 16.6 to 29.6%. A subject is smiling in 24.6% of the frames in the video on
average.

A two-fold cross validation was used in this experiment by dividing each video
into the former and latter parts of the same lengths. One of the part was used for the
training and the other part was used for the test.

7.1.2 Facial Feature Creation

The genetic programming module was implemented using a C++ library called
GPC++ [13]. The parameters for the genetic programming were experimentally
determined as shown in Table3.

The parameters α and M in Algorithm1 were set to 0.001 and 100 respectively
according to the result of the preliminary experiment. The experimental result is not
described here because of the space limitation but these parameters lead to relatively
good performance. The number of facial features D was set to 1 to 10 since it seemed
to have greater influence on the performance compared with the other parameters.

7.1.3 Facial Expression Recognition

SVM is used for the discrimination of the facial expression.We implemented it using
LIBSVM [14] and used linear C-SVC.

Table 3 Parameters for genetic programming

Parameter Value

Population size (Number of individuals N ) 10000

Number of generations G 100

Selection method Roulette wheel selection

Probability of crossover 0.85

Probability of mutation 0.10

Probability of copying existing individual 0.05

Population initialization method Ramped-half-and-half

Maximum tree depth for crossover 20

Maximum tree depth for mutation 10
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7.2 Experimental Result

7.2.1 Emotional Scene Detection Accuracy

The recall, precision, and F-measure of the emotional scene detection are computed
for the evaluation of the accuracy of the proposed method. The recall, precision, and
F-measure are defined by Eqs. (8), (9) and (10), respectively.

recall = |T ∩ T̂ |
|T | (8)

precision = |T ∩ T̂ |
|T̂ | (9)

F−measure = 2 · recall · precision

recall + precision
(10)

where, T is the correct set of emotional frames. One of the authors determined
whether each frame was emotional or not prior to the experiment. T̂ is the set of
emotional frames detected by the proposed method.

The recall, precision, and F-measure of the emotional scene detection for each
subject are shown in Figs. 3, 4 and 5, respectively. The average recall, precision, and
F-measure on the cross validation for each value of D are described in these figures.

The value of D does not have significant effect on the accuracy except for Subject
D. This indicates that a small number of facial features is sufficient for many people.
It could be amerit of the proposedmethod because a smaller number of facial features
leads to the smaller computational cost.

Fig. 3 Recall of emotional
scene detection
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Fig. 4 Precision of
emotional scene detection
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Fig. 5 F-measure of
emotional scene detection
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The accuracy of Subject D is lower than those of the other subjects. This means
that it is relatively difficult to discriminate his facial expression. A very small number
of facial features will not be sufficient in such a case.

The best accuracy (F-measure) is obtained when D = 4 for Subject B and C,
D = 5 for Subject A and F, and D = 6 for Subject D and E. From this observation,
six facial features seem to be sufficient since more than six facial features do not
improve the accuracy and increase the computational cost.

7.2.2 Emotional Scene Detection Efficiency

For the evaluation of the efficiency, the average computational time for each subject
when D = 6 is shown in Fig. 6.

A computer with a Xeon W3580 CPU (3.33GHz) and 16GB memory was used.
Parallel processing was not used in this experiment. The tree structures of the facial
features and the learned SVM model were stored in the external files in advance
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Fig. 6 Computational time
of emotional scene detection
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(at the learning phase). Note that the computational time to obtain the facial feature
points is not included because this process is performed by an existing software
application.

While the computational time is a little different from subject to subject due to the
difference of the structure of the facial features, the emotional scene detection takes
only about 0.1 seconds for every subject. This means that it will take less than one
minute for the emotional scene detection from a video with 24-hour length, under the
conditions that the frame rate of the video is reduced in advance, there is a memory
space enough to store the entire video, and the learning phase is completed. Our
method is fully practical since it is not difficult to satisfy these conditions. Because
of this efficiency, the proposed method can be applied to large-scale video databases.

7.2.3 Generated Facial Features

The facial features generated are shown in this section. Due to the space limitation,
only two examples are shown here.

One of the facial features generated for Subject A (Subject B, respectively) is
described as f A ( fB) in Eqs. (11), (12). These are the equational representations of
the tree structures of the individuals. pi is the vector representation of the i th facial
feature point. θ(v) is the angle of the vector v in the polar coordinate system. Note
that the redundant nodes (e.g., the node of absolute value (N8) which is the parent
of the node of square (N6)) are eliminated for the better readability.

f A = 4
√|θ(p6 − p24) − θ(p2)| (11)

fB = log({θ(p2) − θ(p13 − p24 + p22)}2 + 1) (12)

The facial feature points p2 and p24 frequently appear in the facial features of all
the subjects as well as A and B. p2 is located on the corner of the mouth and p24 is
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Fig. 7 Average number of
nodes (D = 6)
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one of the points on the nasolabial folds. These points are considered to be important
for the detection of smiles.

For each subject, the average number of nodes in the six individuals used as the
facial features is shown inFigure7.Thenumber of nodes is verydifferent fromsubject
to subject. The individuals of Subject D have larger number of nodes compared with
the other subjects. Considering that the emotional scene detection accuracy of Subject
D is significantly lower than that of the other subjects, this result could stem from
the difficulty of the discrimination of his facial expression.

The individuals of Subject F also have a large number of nodes in spite of its
relatively high emotional scene detection accuracy. This could be attributed to the
tendency that some of the individuals of Subject F contain a number of redundant
nodes. Although the degradation of the efficiency of the emotional scene detec-
tion caused by the redundant nodes seems to be very small, it is necessary to
improve the proposed method so that it can produce more concise individuals. Note
that the computational time is not always proportional to the number of nodes because
the computational complexity of each mathematical operation (of the corresponding
non-terminal node) is not uniform.

8 Conclusion

An emotional scene retrieval method is proposed for the purpose of promoting the
utilization of lifelog videos. The proposed method focuses on the creation of use-
ful facial features and provides the methodology of generating the facial features
effective for the discrimination of the facial expressions on the basis of the genetic
programming. The experimental result shows that the proposed method can effi-
ciently retrieve the emotional scenes from several lifelog videos.

In the experiment, we retrieved only the emotional scenes with smiles. Evaluating
the retrieval performance for the scenes with the other emotions is thus included in
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the future works. In addition, discriminating various kinds of smiles such as a full
smile and a wry smile is important for improving the usability of the emotional scene
retrieval system.

The genetic programming has a variety of parameters as shown inTable3. Some of
them could have great influence on the performance of the emotional scene detection.
Providing the efficient method to tuning the parameters is also included in the future
work.
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On Solving the Container Problem
in a Hypercube with Bit Constraint

Antoine Bossard and Keiichi Kaneko

Abstract As shown in the TOP500 list, hypercubes are popular as interconnection
networks of massively parallel systems. This popularity comes mainly from the sim-
plicity and ease of implementation of this topology. To avoid bottleneck situations,
communication algorithms and routing in general is a critical topic for these high-
performance systems. It has been shown that disjoint paths routing is a very desirable
property for these communication algorithms. Effectively, disjoint paths ensure the
absence of infamous parallel processing issues such as deadlocks, livelocks and
starvations. In this paper, we propose a routing algorithm selecting in a hypercube
internally node-disjoint paths between any two nodes, and such that the selected
paths all satisfy a given bit constraint. This bit constraint mechanism enables the
selection of multiple sets of disjoint paths between several node pairs each satisfying
a distinct bit constraint, something impossible with conventional routing algorithms.
The simultaneous selection of disjoint paths between different node pairs offers even
better communication performance and system dependability. The correctness of the
proposed algorithm is formally established and empirical evaluation is conducted to
inspect the algorithm practical behaviour.
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1 Introduction

Due to their simplicity and thus ease of hardware and software implementation,
hypercubes [1] are popular as interconnection networks of massively parallel sys-
tems. Suchmachines featuring a decades long history [2], the supercomputers NASA
Pleiades and NOAA Zeus [3] are two very recent examples. In addition, it is worth
noticing that hypercubes are also very popular as seed or sub-network of advanced
interconnection network topologies, and especially those for hierarchical intercon-
nection networks (HINs), such as dual-cubes [4], metacubes [5], hierarchical hyper-
cubes [6] and hierarchical cubic networks [7].

For these reasons, hypercube routing is an actively researched topic. Several hyper-
cube routing algorithms have been proposed in the literature: optimal node-to-node
disjoint paths routing algorithm [8, 9], node-to-set disjoint paths routing algorithm
[10], set-to-set disjoint paths routing algorithm [11] and k-pairwise disjoint paths
routing algorithm [12] are some examples. These conventional approaches do not
allow for enforcing a constraint on the nodes selected in the paths. Yet, routing with
constraint offers interesting properties, enables new applications, and induces better
performance and system dependability. Effectively, by enforcing such a restriction
on nodes, we can easily achieve disjoint paths routing between several nodes pairs,
each satisfying a distinct node constraint. This has been first discussed in [13] and
is a convenient way to obtain a path signature as defined in [14].

Disjoint paths routing is a critical property for communication algorithms in par-
allel systems. Indeed, routing according to mutually disjoint paths guarantees that
infamous resource allocation problems in parallel systems, such as deadlocks, live-
locks and starvations, shall never occur. In addition, the simultaneous path selection
and thus data communication is obviously important for performance matters: paral-
lel communication allows for amore efficient usage of the network, with implications
going as far as Green IT [15]. Another important aspect of disjoint paths routing is
that it dramatically increases system dependability. Effectively, considering the huge
number of computing nodes included in modern supercomputers (e.g. 705,024 in the
Fujitsu K [3]), it is unavoidable that faults (i.e. broken nodes) will occur [16]. By
selecting mutually node-disjoint paths, the impact of one such faulty node is severely
limited: one fault can jeopardise at most one path due to the mutual disjointness of
the selected paths.

Now, we describe in this paper a routing algorithm solving the container prob-
lem with bit constraint in a hypercube. The container problem is also known as the
node-to-node disjoint paths routing problem and is about finding a set of mutually
(internally) node-disjoint paths between any pair of nodes [17–19]. The possibilities
offered by this algorithm further increase the advantages induced by routing with bit
constraint. Concretely, by considering several pairs of nodes with a distinct bit con-
straint for each pair, it is possible to easily find at the same time several sets of disjoint
paths between these node pairs, something which is impossible with conventional
algorithms, evendisjoint paths routing algorithms.This enhanced capability of select-
ing disjoint paths that are available at the same time for routing induces improved
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Fig. 1 Several sets of
node-to-node disjoint paths,
enabling high performance
network communications

communication performance and increased system dependability. An illustration is
given in Fig. 1.

The rest of this paper is organised as follows. We recall in Sect. 2 notations and
definitions used throughout the paper. In Sect. 3.1, we describe the hypercube node-
to-node disjoint paths routing algorithm with bit constraint, additionally providing
pseudo-code for this algorithm. Next, we show the algorithm correctness and estab-
lish the algorithm complexities in Sect. 3.2. An example of the algorithm execution
trace is given in Sect. 3.3. In Sect. 4, we conduct an empirical evaluation of the pro-
posed algorithm in order to inspect its practical behaviour and compare it with the
theoretical results obtained in the previous sections. Finally, this paper is concluded
in Sect. 5.

2 Preliminaries

In this section, we recall several definitions and notations used hereinafter. Also,
additional notations are introduced, and previous results given.

Definition 1 An n-dimensional hypercube, denoted by Qn , consists of 2n nodes,
each having a unique n-bit address. Two nodes u and v of a hypercube are adjacent
if and only if their Hamming distance H(u, v) is equal to one.

Regarding topological properties of a hypercube, we have that a Qn is symmetric
andof connectivity, degree anddiametern [1].Additionally, it is important to note that
a Qn has a recursive structure. Effectively, for any dimension δ (0 ≤ δ ≤ n−1), a Qn

consists of two (n − 1)-dimensional hypercubes Q0
n−1 and Q1

n−1, called subcubes,
and defined as follows. The subcube Q0

n−1 (resp. Q1
n−1) is induced by the set of

nodes of Qn whose δth bits are set to 0 (resp. 1). When considering the subcubes of
a hypercube, we talk of hypercube reduction. A 4-dimensional hypercube Q4 with
its two subcubes Q0

3 and Q1
3 highlighted is illustrated in Fig. 2.
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Fig. 2 A 4-dimensional
hypercube Q4 with its two
subcubes Q0

3 and Q1
3

induced by δ = 0
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Now, let us assume that the address of any node of a Qn , that is an n-bit address,
can be stored in a fixed number of machine words, thus enabling constant time node
comparison, most significant bit (MSB) detection as well as Hamming distance and
bit weight (as defined in Definition2) calculations.

Definition 2 For a binary n-bit sequence b = bn−1 . . . b1b0, bi ∈ {0, 1}, 0 ≤ i ≤
n − 1, the bit weight of b, denoted by w(b), is the number of bits of b that are set
to 1.

In addition, we adopt the following conventions: logarithms mentioned in this
paper are in base two; the MSB of bit sequence is the leftmost bit. Furthermore, we
use the following notations to denote the binary bitwise operations: the bitwise and
is denoted by &, the binary negation is denoted by ¬, and the bitwise exclusive-or
is denoted by ⊕.

Definition 3 A k-constraint is a k-tuple of distinct natural numbers (i1, i2, . . . , ik).

In this paper, a constraint is applied to the bitweight of a hypercube node.We focus
on 2-constraints and simply speak of bit constraints, which are denoted by pairs of
natural numbers (i, j). Aswe consider routing inside hypercubeswherewe recall that
adjacent nodes have one single bit different, it is easy to understand that bit constraints
considered all have the form (i, i + 1). And if we were to consider k-constraints on
hypercubes, those bit constraints would have the form (i, i + 1, . . . , i + β) with
i + β ≤ n.

Definition 4 In a Qn , for i ∈ N and 0 ≤ i ≤ n − 1, a node u satisfies the constraint
γi = (i, i + 1) if and only if w(u) = i or w(u) = i + 1 holds.

As an example, let us consider a Q3 and the bit constraint γ1 = (1, 2). Then, the
three nodes 010, 110 and 100 all satisfy γ1 whereas the node 111 does not.

The remaining definitions and notations to be recalled deal with paths. First, a
path in a graph is an alternate sequence of nodes and edges; for a path p, we write
p : u1, (u1, u2), u2, . . . , uk−1, (uk−1, uk), uk , with (ui , ui+1) denoting the edge
between the two distinct nodes ui and ui+1. For convenience, that same path p can
also be written as u1 → u2 → . . . → uk and even more concisely as u1 � uk ,
the latter notation possibly bringing ambiguity regarding the nodes included in the
path and thus a notation to be used with care. The length of a path corresponds to
the number of its edges.
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We say that two paths are mutually node-disjoint (we simply say disjoint) when
they have no node in common. For convenience we consider a path as a set of nodes,
and thus the two paths p1 and p2 are disjoint if and only if p1 ∩ p2 = ∅. Two
paths are internally node-disjoint if and only if they have no node in common at the
possible exception of their terminal nodes (i.e. the two nodes that start and end the
path). Formally, two paths p1 : u1 � v1 and p2 : u2 � v2 are internally disjoint if
and only if p1 ∩ p2 ⊆ {u1, u2, v1, v2} holds. We recall that the container problem
(a.k.a. the node-to-node disjoint paths routing problem) is about selecting internally
disjoint paths between a pair of distinct nodes.

Definition 5 A path p connecting a node u to a node v satisfies the constraint γi =
(i, i +1) if and only if each node of p satisfies γi . We write u

γi� v, or simply u
γ� v.

So, as the Hamming distance between any two adjacent nodes in a hypercube is
equal to one, a path cannot satisfy a 2-constraint other than that of the form (i, i+1) (or

(i, i −1), which is equivalent). If the path u
γ� v connecting the nodes u and v while

satisfying a constraint γi has been generated by a shortest-path routing algorithm,

we write u
γ , spr� v to indicate that it is a shortest path.

We conclude this section by recalling the hypercube shortest-path routing algo-
rithm with bit constraint of [13] in the following theorem.

Theorem 1 ([13]) In a Qn, given a bit constraint γi = (i, i + 1) and any two

distinct nodes s and d that satisfy γi , we can select a shortest path s
γ� d (i.e. of

length H(s, d)) satisfying γi in O(H(s, d)) optimal time.

Note that this algorithm is referred to as HC-SPR thereafter.

3 Node-to-node Disjoint Paths Routing Algorithm with γi
Constraint

First, for a node u ∈ Qn satisfying γi = (i, i + 1), let us discuss the number
of its neighbours that satisfy γi . If w(u) = i + 1, then u has i + 1 neighbours
satisfying the constraint. If w(u) = i , then u has n − i neighbours satisfying the
constraint. Therefore, in a Qn , given two nodes s, d satisfying γi , we can select

at most k ≤ min(n − i, i + 1) internally node-disjoint paths s
γ� d that satisfy

γi (this is an application of Menger’s theorem [20]). In addition, one can note that
in the case i = 0, the maximum number of disjoint paths that can be selected is
min(n − i, i + 1) = 1 and thus it is more efficient to apply the shortest-path routing
algorithm of Theorem1. So, let us assume that i ≥ 1. Pseudo-code is given in
Algorithm 1 with sub-cases in Algorithms 2 and 3.
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3.1 Algorithm Description

If n − i = 0, the constraint γi = (i, i + 1) cannot be satisfied as i + 1 > n. If
n − i = 1, the constraint γi = (i, i + 1) implies that only the nodes of weights n and
n − 1 can be selected, thus H(s, d) ≤ 2. The problem in this special case is solved

as follows. If H(s, d) = 1, there exists only one path s
γ� d: the path of length one

s
γ , spr� d = s → d. If H(s, d) = 2, there exists only one path s

γ� d: the path of

length two s
γ , spr� d = s → u → d with u the unique node of Qn of weight n. So,

we can now assume that n − i ≥ 2.
The main idea of this algorithm is to follow a divide-and-conquer approach by

solving the problem recursively in one of the two subcubes Q0
n−1 and Q1

n−1 of
the original network Qn . The base case of this induction process is k = 1, with
k ≤ min(n − i, i + 1) the number of paths to find, decremented at each recursive
call. This base case k = 1 induces either i = 0 or i = n − 1, and each of these two
cases induces the selection of one single path (shortest) as already discussed. Let us
distinguish two cases.

3.1.1 Case 1: w(s) = i

We proceed in several main steps as follows. Pseudo-code is given in Algorithm 2.

Step 1 Find a bit position δ (0 ≤ δ ≤ n − 1) such that the δth bit of s is set to 0
and the δth bit of d is set to 1.
Reducing the hypercube Qn along this bit position δ, we obtain the two subcubes
Q0

n−1 and Q1
n−1, and s ∈ Q0

n−1, d ∈ Q1
n−1.

Step 2 Select the path of length one s ∈ Q0
n−1 → s′ ∈ Q1

n−1 with s′ the unique
neighbour of s in Q1

n−1. Since w(s) = i and the δth bit of s is 0, s′ satisfies γi .
Step 3 Select the edge s → s′′ with s′′ the unique neighbour of s in Q1

n−1. Select
the k − 1 neighbours v1, v2, . . . , vk−1 of s in Q0

n−1 that satisfy γi . For an arbi-
trary bit position z such that the zth bit of s is set to 1, select the k − 1 nodes
u1, u2, . . . , uk−1 in Q0 with u j = v j ⊕ 2z . Then select the edges u j → u′

j in

Q1
n−1. The nodes s′′, u′

1, u′
2, . . . , u′

k−1 are adjacent to the node s′ = (s ⊕2z)⊕2δ .

Step 4 Apply this algorithm recursively in Q1
n−1 to find k − 1 internally disjoint

paths s′ γ� d satisfying γi−1 = (i − 1, i).

Now, we distinguish two sub-cases depending on the value of w(d).

Case 1.A: w(d) = i + 1.
The configuration in this case is given in Fig. 3.

Step 5 Select the edge d → d ′ with d ′ the unique neighbour of d in Q0
n−1. Find

a path s
γ� d ′ in Q0

n−1 as follows. Select a shortest path s
γ , spr� d ′ in Q0

n−1.
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Fig. 3 Illustration of the
case w(s) = i , w(d) = i + 1
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Let v be the closest node to d ′ on that path such that v is already included in a
path s → v j → u j , say s → v1 → u1. So, s is connected to d ′ with the path

s
γ� v

γ , spr� d ′ with s
γ� v a sub-path of s → v1 → u1. See Fig. 4.

Step 6 Assume without loss of generality that d ′ is connected to s in Q0
n−1 via

v1 ∈ N (s); thus the edge u1 → u′
1 cannot be selected. The paths selected in

Q1
n−1 are connected to s as follows.

First assume that the edge s′ → s′′ is included in one of the selected paths. So, for
this particular path, simply replace the edge s′ → s′′ by s → s′′. Assume without
loss of generality that there exists a node u′

w ∈ Q1
n−1 neighbour of s′ that is not

included in any path selected in Q1
n−1. If there is no such node, it means that a

path s′ γ� d selected in Q1
n−1 includes two nodes of N (s′), say u′

1, u′
2, and thus

that path can be shortcut from s′ γ� u′
1

γ� u′
2 → d to s′ γ� u′

1 → d, freeing such
a node u′

w (here u′
w = u′

2).

If the edge s′ → u′
1 is included in one of the selected paths, that path s′ → u′

1
γ� d

is modified to s → vw → uw → u′
w → s′ → u′

1
γ� d. Each of all other paths

s′ → u′
j

γ� d is modified to s → v j → u j → u′
j

γ� d. And otherwise, each

path s′ → u′
j

γ� d is modified to s → v j → u j → u′
j

γ� d, with the exception
in the case s = d ′ (i.e. d = s′′) that the path s′ → d of length 1 is modified to
s → vw → uw → u′

w → s′ → d instead.
Assume the edge s′ → s′′ is not included in one of the selected paths in Q1

n−1. The

path s′ → u′
1

γ� d is modified to s → s′′ → s′ → u′
1

γ� d, and the other k − 2

paths s′ → u′
j

γ� d (2 ≤ j ≤ k − 1) are modified to s → v j → u j → u′
j

γ� d.
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Fig. 5 Illustration of the
case w(s) = w(d) = i
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Case 1.B: w(d) = i .
The configuration in this case is given in Fig. 5.

Step 5 Assume without loss of generality that there exists a node w ∈ Q1
n−1

neighbour of d that is not included in any path selected in Q1
n−1. If there is no

such node, it means that a path s′ γ� d selected in Q1
n−1 includes two nodes of

N (d), say w1, w2, and thus that path can be shortcut from s′ γ� w1
γ� w2 → d

to s′ γ� w1 → d, freeing such a node w (here w = w2).
Select the path d → w → d ′ with d ′ the unique neighbour of w in Q0

n−1. Find a

path s
γ� d ′ in Q0

n−1 as in Step 5 of Case A.

Step 6 Similarly, the path s
γ� d ′ in Q0

n−1 may trigger rerouting in Q1
n−1 around

s′. This is handled as in Step 6 of Case A.

3.1.2 Case 2: w(s) = i + 1

We first proceed in two steps before reducing this case to Case 1 (i.e. Sect. 3.1.1).
Pseudo-code is given in Algorithm 3.

Step 1 Find a bit position δ (0 ≤ δ ≤ n − 1) such that the δth bit of s is set to 1
and the δth bit of d is set to 0.
Reducing the hypercube Qn along this bit position δ, we obtain the two subcubes
Q0

n−1 and Q1
n−1, and s ∈ Q1

n−1, d ∈ Q0
n−1.

Step 2 Select the path of length one s ∈ Q1
n−1 → s′ ∈ Q0

n−1 with s′ the unique
neighbour of s in Q0

n−1. Since w(s) = i + 1 and the δth bit of s is set to 1, s′
satisfies γi .

Then, the case w(s) = i + 1, w(d) = i is solved similarly to the case w(s) = i ,
w(d) = i+1 (Case 1.A) by exchanging the roles of s and d, and the casew(s) = i+1,
w(d) = i + 1 is solved similarly to the case w(s) = i , w(d) = i (Case 1.B) with the
differences that
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• in Step 3, the bit position z is selected such that the zth bit of s is set to 0;
• in Step 4, the algorithm is applied recursively in Q0

n−1, the constraint considered
thus remaining γi = (i, i + 1);

• in Step 5, a shortest path routing algorithm is applied in Q1
n−1, the constraint

considered thus becoming γi−1 = (i − 1, i).

Algorithm 1 HC-CONTAINER(Qn , i , k, s, d)
Input: A Qn , a bit constraint γi = (i, i + 1), k the number of paths to find (k ≤ min(n − i, i + 1)),

a source node s and a destination node d.
Output: k internally node-disjoint paths s

γ� d in Qn satisfying γi .
1: if k = 1 then
2: return HC-SPR(Qn , i , s, d)
3: else if w(s) = i then
4: return CASE1(Qn , i , k, s, d)
5: else // w(s) = i + 1
6: return CASE2(Qn , i , k, s, d)
7: end if

3.2 Correctness and Complexities

In this section, we show the correctness of the algorithm of Sect. 3.1 and establish
its worst case time and path length complexities.

Lemma 1 The algorithm of Sect.3.1 is correct and always terminates.

Proof We recall that a path of length one s → s′ is selected, with s, s′ in distinct
subcubes. We start by showing the existence of a reduction bit δ.

Assume w(s) = i . Suppose there is no bit position δ with the δth bit of s set to 0
and the δth bit of d set to 1. If w(d) = i , this supposition implies that s = d, which
is a contradiction. If w(d) = i + 1, this supposition implies that all the bits of d
corresponding to the positions of the n − i bits of s set to 0 are also set to 0, and thus
that d has n − i bits set to 0 and i + 1 bits set to 1. This is a contradiction since d of
n bits (d ∈ Qn).

Assume w(s) = i + 1. Suppose there is no bit position δ with the δth bit of s set
to 1 and the δth bit of d set to 0. If w(d) = i + 1, this supposition implies that s = d,
which is a contradiction. If w(d) = i , this supposition implies that all the bits of s
corresponding to the positions of the n − i bits of d set to 0 are also set to 0, and thus
that s has n − i bits set to 0 and i + 1 bits set to 1. This is a contradiction since s of
n bits (s ∈ Qn).
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Regarding the existence of available neighbours, rerouting feasibility, etc., a proof
has already been given in the corresponding steps of Sect. 3 for more clarity.

Lemma 2 The algorithm of Sect.3.1 generates internally node-disjoint paths of
lengths at most n + 3k in O(kn) time.

Proof The paths generated by the algorithm of Sect. 3.1 are internally node-disjoint
as shown by the algorithm description.

We now consider themaximum length of a generated path. A total of k = min(n−
i, i + 1) paths are generated. First, one should note that exactly one hypercube
reduction is required for each path to be generated. So, in total, the original hypercube
Qn is reduced k times. In other words, routing is performed inside hypercubes of
successive dimensions n, n − 1, . . . , n − k. When the base case condition k = 1 is
satisfied a shortest-path routing algorithm is applied. This base case k = 1 actually
means that either i = 0 and thus a path of length at most two is generated, or
i = n − 1 and thus a path of length at most n − k is generated. In addition, each
hypercube reduction induces 3−1 = 2 additional edges to connect the paths selected
by induction inside one subcube to the node s located inside the other subcube.
Rerouting triggered in Step 6 may induce an extra two edges to connect a path, say

u′
1

γ� d, in the sub-cube of d to s via the special node u′
w ∈ N (s′) (precisely, the two

extra edges are u′
w → s′ → u′

1). Thus, at most four edges in total to be added at each
reduction to connect paths in the sub-cube of d to s. Therefore, generated paths have
lengths of at most 4k + (n − k) = n + 3k edges. The single path connecting d to s
by application of a shortest-path routing algorithm inside the subcube of s requires

at most two edges for the sub-path d
γ� d ′ and at most n − 1 edges for the shortest

path d ′ γ , spr� s, thus requiring in total at most n + 1 edges.
Regarding the time complexity of the algorithm of Sect. 3.1, Steps 1 and 2 are both

constant time O(1). Step 3 is linear time O(n). Let T (n) be the time required to solve
the problem in a Qn . Step 4 is thus T (n − 1) time. Steps 5 and 6 are both linear time
O(n). From this discussion, we obtain the equation T (n) = T (n −1)+ O(n). Since
we have exactly k hypercube reductions, the total time complexity of the proposed
algorithm is O(kn).

So, we can summarise this discussion in the following theorem.

Theorem 2 In a Qn, given a bit constraint γi = (i, i +1) and any two distinct nodes
s and d satisfying γi , we can select k = min(n − i, i + 1) internally node-disjoint

paths s
γ� d satisfying γi and of lengths at most n + 3k in O(kn) time.

Proof This can be directly deduced from Lemmas1 and 2.

3.3 Routing Example

In a Q5, given a bit constraint γ2 = (2, 3), a source node s : 11010 and a destination
node d : 10101, an execution trace of the algorithm of Sect. 3 is given in Table1.
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Table 1 Node-to-node disjoint paths routing example in a Q5 with γ2 = (2, 3) bit constraint

As a result, the following three internally node-disjoint paths, all satisfying γ2, are
selected:

• s = 11010 → 11000 → 11100 → 10100 → 10101 = d
• s = 11010 → 10010 → 10011 → 10001 → 10101 = d
• s = 11010 → 01010 → 01110 → 00110 → 00111 → 00101 → 10101 = d

4 Empirical Evaluation

We conducted an empirical evaluation of the proposed hypercube node-to-node dis-
joint paths routing algorithm to inspect its practical behaviour, that is how the algo-
rithmperforms in average.Our objective is also to compare these experimental results
to the theoretical estimations of Sect. 3.2.

We have implemented the algorithm of Sect. 3 using the the Scheme functional
programming language [21]. Then, in a hypercube of dimension n (4 ≤ n ≤ 8) and a
bit constraint γ2 = (2, 3), we have used this implementation to solve 1,000 random
instances of the container problem for each value of n. Values of n smaller than 4
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Fig. 6 Maximum path
length and average maximum
path length with standard
deviation for each value of n
(i = 2 and 4 ≤ n ≤ 8)

are ignored since at most k = min(n − i, i + 1) disjoint paths can be found, that is at
most one path for n < 4, and thus a shortest-path routing algorithm would suffice.

In this experiment, we have measured the maximum path length obtained for
each value of n, and also for each value of n the average of the 1,000 maximum
path lengths, each average value being obtained when solving one instance of the
container problem. The results are illustrated in Fig. 6. To facilitate comparison with
the theoretical estimation, we have additionally plotted the theoretical maximum
path length as estimated in Lemma2.

One can see that our theoretical estimation regarding the maximum path length
is slightly pessimistic as experimentation results show a small gap between the the-
oretical maximum path length and the empirical one. We may thus be able to refine
our theoretical estimations.

5 Conclusions

Due to their simplicity for both hardware and software implementation, hypercubes
are very popular as interconnection network of massively parallel systems. Disjoint
paths routing is one mainstream method to avoid notorious parallel processing prob-
lems such as deadlocks. We have proposed in this paper an algorithm solving the
container problem with bit constraint inside a hypercube Qn . Given a bit constraint
γi = (i, i + 1) and any two distinct nodes s, d satisfying γi , the algorithm selects

k = min(n − i, i + 1) internally node-disjoint paths s
γ� d satisfying γi . The paths

selected are of lengths at most n + 3k, and the time complexity of this routing algo-
rithm is O(kn). Therefore, by enforcing a bit constraint when routing, this algorithm
provides the ability to obtain several sets of disjoint paths between several node pairs,
each pair satisfying a distinct bit constraint. Conventional routing algorithms, even
disjoint paths routing algorithms, are not able to provide such result.
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Future works first include experimenting further with parameters of higher values.
Then, we are planning to extend this research to solve the node-to-set disjoint paths
routing problem with bit constraint in a hypercube. Also, enhanced fault tolerance,
such as cluster-fault tolerance, is an interesting future development.
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Algorithms for Removing Node Overlaps
with Some Basis Nodes

Noboru Abe, Hiroaki Oh and Kouhei Inoue

Abstract Graphs are used to represent various types of structures. When the nodes
of a graph are drawn by non-zero sized graphical features, it is important to avoid
node overlaps. We propose three heuristic algorithms to remove node overlaps in
graphs with several tens of nodes by refining a previously proposed algorithm, i.e.,
the force-transfer algorithm.

Keywords Graph layout · Overlapping nodes · Force transfer · Layout adjustment

1 Introduction

This paper considers drawing graphs with nodes that are non-zero sized graphical
features, such as axis-parallel rectangles. Note that avoiding node overlaps with
minimum layout area is an important problem for such a graph. First, one can obtain
a graph layout using algorithms that do not consider the node size [1–5]. Next, the
nodes of that graph can be replaced with non-zero sized nodes. Then, node overlaps
can be removed. In this case, the moved distances of nodes must be minimized to
preserve the layout esthetics. Furthermore, in dynamically changing graphs, it is
important to preserve the mental map [6] of the original graph.

Several algorithms have been proposed for this problem, such as the force-scan
algorithm (FSA) [6] and its variants [7, 8]. The FSAmoves each node by scanning the
layout horizontally and vertically. In addition, algorithms that use a Voronoi diagram
or Delaunay triangulation [9, 10], algorithms that employ a quadratic programming
[11, 12], and algorithms that expand the layout until overlaps are removed [6, 11]
were proposed.

N. Abe (B) · H. Oh · K. Inoue
Faculty of Information and Communication Engineering,
Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa-shi,
Osaka-fu 572–8530, Japan
e-mail: abe@isc.osakac.ac.jp

© Springer International Publishing Switzerland 2016
R. Lee (ed.), Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing 2015, Studies in Computational Intelligence 612,
DOI 10.1007/978-3-319-23509-7_7

93



94 N. Abe et al.

In this study, we propose three heuristic algorithms to remove node overlaps in
a graph with several tens of nodes by refining the force-transfer algorithm (FTA)
[8]. Note that this study does not consider the edges of a graph. To handle edges,
we can simply create a span between nodes. In such cases, edge-node intersections
may occur. However, this problem can be readily solved by bending edges [13].
An algorithm that avoids edge-node intersections without bending edges has been
proposed [14]. However, this algorithm does not consider preserving themental map.

The remainder of this paper is organized as follows. In Sect. 2, we define the
problem of removing node overlaps and briefly explain the FTA. In Sect. 3, we
propose three algorithms for the problem. We show experimental results in Sect. 4
and conclude the paper in Sect. 5.

2 Problem Definition and Force-Transfer Algorithm

First, we define the removing node overlaps problem. Then, we briefly explain the
FTA [8].

2.1 Problem Definition

We assume that a graph G has a set of nodes denoted by V = {1, 2, . . . , |V |} and
some of the nodes overlap. Let (x0i , y0i ) be the center of node i , and let (x1i , y1i ) and
(x2i , y2i ) be the lower left and upper right corner coordinates, respectively (Fig. 1).

Huang et al. [8] refer to the neighbor nodes of node q, denoted by NN(q), as
the set of nodes that overlap q directly. For the graph shown in Fig. 2, we have
NN(q) = {h, j, k}. In addition, they define the left, right, up, and down neighbor
nodes of q as follows:

Fig. 1 An example of a node
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neighbor nodes
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Fig. 3 An example of
a conflict graph

q
h

j

k
l

m

LNN(q) = {i |(x1i < x1q ∨ x2i < x2q ) ∧ i ∈ NN(q)},
RNN(q) = {i |(x1i ≥ x1q ∨ x2i ≥ x2q ) ∧ i ∈ NN(q)},
UNN(q) = {i |(y1i ≥ y1q ∨ y2i ≥ y2q ) ∧ i ∈ NN(q)},
and DNN(q) = {i |(y1i < y1q ∨ y2i < y2q ) ∧ i ∈ NN(q)}

For the graph shown in Fig. 2, LNN(q) = {h, j}, RNN(q) = { j, k}, UNN(q) =
{h, j, k}, and DNN(q) = {h, k}. Note that we add conditional expressions for x2i and
y2i to these definitions because the original definitions cannot frequently determine
the most efficient move direction. For example, in Fig. 2, it is efficient to move h to
the bottom of q to remove the overlap of h and q. However, the original definitions
miss this direction because the original DNN(q) does not contain h.

Here, we introduce the conflict graph from graph G. Figure3 shows the conflict
graph for the graph shown in Fig. 2. The conflict graph has nodes with one-to-one
correspondence with the nodes of G and edges if and only if the corresponding nodes
of G overlap each other.

The set of all nodes of the connected component containing q of a conflict graph
is denoted by CC(q). Huang et al. [8] refer to the set of all nodes in CC(q) − {q} as
the transfer neighbor nodes of node q, denoted by TNN(q). For the graph in Fig. 2,
TNN(q) = {h, j, k, l}. In addition, Huang et al. define the left, right, up, and down
transfer neighbor nodes of q as follows:

TLNN(q) = {i |(x1i < x1q ∨ x2i < x2q ) ∧ i ∈ TNN(q)},
TRNN(q) = {i |(x1i ≥ x1q ∨ x2i ≥ x2q ) ∧ i ∈ TNN(q)},
TUNN(q) = {i |(y1i ≥ y1q ∨ y2i ≥ y2q ) ∧ i ∈ T N N (q)},
and TDNN(q) = {i |(y1i < y1q ∨ y2i < y2q ) ∧ i ∈ TNN(q)}

Note that for the graph in Fig. 2, TLNN(q) = {h, j}, TRNN(q) = { j, k, l},
TUNN(q) = {h, j, k, l}, and TDNN(q) = {h, k}.

The objective of the defined problem is to remove node overlaps by adjusting node
positions. Huang et al. [8] present four measures, λ1, λ2, λ3, and fcost , to evaluate
the quality of an adjustment.
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λ1, defined as λ1 = n/|V | where n is the number of adjusted nodes, counts the
number of repositioned nodes.

λ2, defined as τ/(|V |(|V | − 1)), measures the change of the relative positions of
nodes. Here, τ is the number of node pairs whose relative positions have changed in
the x-axis and y-axis directions in an adjustment.

λ3 measures the change of the layout area and is defined as λ3 = 1 − W/W ′,
where W denotes the minimal area of the bounding rectangle of the original graph
layout and W ′ denotes that of the adjusted layout.

fcost , defined as the total sum of the moved distances of each node in the x- and
y-directions, measures the adjusted distances of all nodes.

The removing node overlaps problem is considered amulti-objective optimization
problem tominimize the above four measures under the condition that all nodes must
not overlap.

2.2 Force-Transfer Algorithm

Huang et al. [8] proposed the FTA to remove node overlaps. The FTA is proposed
by refining the FSA [6], and its above-mentioned adjustment quality measures are
significantly improved. The FTA begins a scan from a basis node called a seed node.
Note that the seed node affects the adjusted layout significantly [8]. In general, Huang
et al. selected the leftmost node as the seed node in their experimentation.

Starting from the seed node, the FTA executes four scans and moves overlapping
nodes located to the right, left, above, and below of the seed node. The FTA is
described as follows:

[FTA]

(1) Sort all nodes according to their x1i coordinates.
(2) Select a node or use the leftmost node as the seed node s.
(3) Execute the Right Horizontal Transfer procedure.
(4) Execute the Left Horizontal Transfer procedure.
(5) Execute the Up Vertical Transfer procedure.
(6) Execute the Down Vertical Transfer procedure.

The Right Horizontal Transfer procedure is described as follows:

Right Horizontal Transfer:

(a) For each node i = s, s + 1, s + 2, . . . , |V |, execute the following.
(a-1) Find RNN(i) and TRNN(i).
(a-2) For each node j ∈ RNN(i), execute the following.
(a-2-1) Calculate f x

i j = x2i − x1j and f y
i j = min{|y2i − y1j |, |y1i − y2j |}.

(a-2-2) If f x
i j ≤ f y

i j , then x0k = x0k + f x
i j for each node k ∈ TRNN(i).

(a-2-3) Update RNN(i) and TRNN(i).

We perform other three Transfer procedures similarly, after re-sorting all nodes.
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3 Proposed Algorithms

The FTA was primarily proposed to handle graphs with few nodes. For graphs with
many nodes, Huang et al. [8] provided a new version of the algorithm with virtual
nodes. Each virtual node contains all nodes in a connected component of the con-
flict graph. In Fig. 4a, the dashed rectangles represent virtual nodes. On the first
abstraction level, the FTA is applied to remove node overlaps within each virtual
node (Fig. 4b), and then, on the next abstraction level, the FTA is applied to remove
overlaps of virtual nodes. This procedure iteratively executes until all overlaps have
been removed.

When the conflict graph has a big connected component, the above-mentioned
virtual node version of the FTA does not work well. For this reason, Huang et al.
provided a more generalized version of virtual node version of the FTA that uses grid
cells for abstraction levels. However, the virtual node version may yield unnecessary
node movement. For example, as can be seen in Fig. 4b, the two lower virtual nodes
are moved to remove overlap even though the nodes in the virtual nodes do not
overlap. The grid cell version has the same problem. In addition, determining grid
cell size is problematic in the grid cell version.

We want to propose algorithms that are independent of grid cell size. In the case
that the normal version of the FTA is applied for graphs with many nodes, we found
that some overlaps remain. These overlaps occasionally remain for graphs with few
nodes. Here, we briefly describe two typical cases. Figure5 shows the first case.
Node a has moved up to remove the overlap of nodes a and b in step (5) of the
FTA; however, nodes a and c now overlap. To remove this overlap, a Right or Left
Horizontal Transfer procedure is required. However, these procedures can no longer
be executed because steps (3) and (4) for these procedures are already finished.

If the selected seed node s is not the leftmost, rightmost, topmost, and bottommost
node, the second case occurs (Fig. 6). To remove the overlap of a and b, a Right or Left

(a) (b)

Fig. 4 An example of virtual nodes

Fig. 5 An example of
remaining overlap (case 1)

a
b

c
a

b

c
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Fig. 6 An example of
remaining overlap (case 2)

a b

s

Horizontal Transfer procedure is required. However, the Right Horizontal Transfer
procedure omits a because it does not exist on the right side of s, and the Left
Horizontal Transfer procedure omits b because it does not exist on the left side of s.

We refine the FTA slightly to avoid such overlaps. We refer to this algorithm as
Method 1. The Method 1 algorithm is described as follows:

[Method 1]

(1) Iterate the following steps until all node overlaps have been removed.

(1-a) Sort all nodes according to their x1i coordinates.
(1-b) Select the leftmost node as the seed node s.
(1-c) Execute the Right Horizontal Transfer procedure.
(1-d) Sort all nodes according to their x2i coordinates.
(1-e) Select the rightmost node as the seed node s.
(1-f) Execute the Left Horizontal Transfer procedure.
(1-g) Execute Vertical Transfer procedures in the same manner.

We also propose two additional algorithms that are tailored for particular purposes
by refining Method 1. Method 2 attempts to minimize the layout area. The Method
2 algorithm is described as follows:

[Method 2]

(1) Sort all nodes according to their x1i coordinates.
(2) Select the leftmost node as the seed node s.
(3) Let i = s. Execute only steps (a-1) and (a-2) of the Right Horizontal Transfer

procedure.
(4) Sort all nodes according to their x2i coordinates.
(5) Select the rightmost node as the seed node s.
(6) Let i = s. Execute only steps (a-1) and (a-2) of the Left Horizontal Transfer

procedure.
(7) Execute Vertical Transfer procedures in the same manner.
(8) Execute all steps of Method 1.

Initially, Method 2 attempts to move nodes inside the layout to remove overlaps
of the leftmost, rightmost, topmost, and bottommost nodes. Note that steps (3), (6),
and (7) of Method 2 move only the transfer neighbor nodes of s to avoid expanding
the layout unnecessarily.

The third algorithm attempts to minimize the adjusted distances of nodes and
preserve the mental map. Note that nodes that are distant from s tend to move a great
distance. Thus, this algorithm, which we refer to as Method 3, attempts to avoid this
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by selecting the seed node appropriately. The Method 3 algorithm is described as
follows:
[Method 3]

(1) Sort all nodes according to their x1i coordinates.
(2) Let mid be the �|V |/2	th node. Select seed node s by executing the following

steps.

(2-a) Find the connected componentC of the conflict graph that contains the node
mid.

(2-b) For each node i ∈ C of the conflict graph, calculate the shortest path spi j

to node j ∈ C .
(2-c) For each node i ∈ C of the conflict graph, find the maximum valuemax_spi

of spi j .
(2-d) Select node i ∈ C with the minimum max_spi value as seed node s.

(3) Execute the Right Horizontal Transfer procedure.
(4) Sort all nodes according to their x2i coordinates.
(5) Execute the Left Horizontal Transfer procedure without reselecting seed node s.
(6) Execute Vertical Transfer procedures in the same manner.
(7) Execute all steps of Method 1.

For the graphs shown in Figs. 2 and 3, mid = j , max_sph = max_sp j =
max_spl = 3, and max_spq = max_spk = 2. Thus, node q or k is selected as the
seed node in step (2-d) of Method 3. In other words, step (2-d) of Method 3 attempts
to find the node at the graph-theoretic center of a conflict graph.

4 Computational Experiments

We performed computational experiments to compare the three proposed algorithms
with respect to running time and the four adjustment quality measures described in
Sect. 2.

In our experiments, we created more than a thousand 50-node graphs. The nodes
existed only inside a rectangular region R whose size was 500× 500. Each node was
assigned an individually-determined height in the range 20–40 and an individually-
determined width in the range 30–70.

The FTA and the proposed algorithms are primarily intended to adjust the node
positions of a graph. Therefore, we did not use graphs with a large overlap area; i.e.,
we did not use graphs with an overlap of nodes i and j whose area exceeded one-half
of i’s area or one-half of j’s area.

We used the C programming language to implement the algorithms. All compu-
tations were performed on an Intel Core 2 Duo E8600 CPU.

The experimental results are shown in Table1. All results are presented as the
averages of 1000 instances.
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Table 1 Experimental results Method 1 Method 2 Method 3

λ1 0.524 0.527 0.504

λ2 0.256 0.257 0.255

λ3 0.0370 0.0310 0.0640

fcost 510.6 513.4 448.7

Running time [msec] 0.58 0.71 1.01

Fig. 7 An example of an
original layout

Fig. 8 An example of a
layout obtained by Method 1
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Fig. 9 An example of a
layout obtained by Method 2

Fig. 10 An example of a
layout obtained by Method 3

The results show that compared to Method 1, Method 2 decreased the layout area
without making worse the other adjustment quality measures. In addition, Method 3
decreased the adjusted distances of nodes compared to Method 1; therefore, Method
3 strongly preserves the mental map. However, Method 3 increased the layout area.
Note that all the proposed algorithmswere sufficiently fast for real-time applications.

We show examples of an original layout and layouts obtained by the proposed
algorithms in Figs. 7, 8, 9 and 10.
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5 Conclusion

In this study, we have considered removing the node overlaps problem. We have
proposed three heuristic algorithms for graphs with several tens of nodes; two of the
proposed algorithms are tailored for particular purposes. The experimental results
show that the proposed algorithms are effective and fast. It is a futurework to compare
our algorithms with existing other methods.
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Significant Frequency Range of Brain
Wave Signals for Authentication

Preecha Tangkraingkij

Abstract This study discusses a new biometric system using brain wave signals
(EEG). The frequency range of EEG signals is 0–100 Hz, which is categorized into
five groups according to their frequency (Delta, Theta, Alpha, Beta, Gamma), how-
ever it is noted that all frequency range can degrade in accuracy and recognition
speed. The purpose of this study is to explore which frequency range of brain wave
signals can be utilized for authentication. In this study, 1,000 data points of EEG
signal in group of four channels, F4, P4, C4, and O2 are explored. The practical
technique, Independent Component Analysis (ICA) by SOBIRO algorithm is con-
sidered clean and separates the individual signals from noise using the technique of
supervised neural network for authenticating 20 subjects. Fromfive frequency ranges
of EEG signals, it is shown that the best frequency range for the authentication is
Delta, which can authenticate 20 subjects within 100% accuracy.

Keywords Electroencephalogram · Biometric · Authentication · Independent
component analysis · Neural network

1 Introduction

Biometrics systems have been used by humans for thousands of years to recognize
each other. The term “biometrics” is derived from the Greek words “bio”, which
means life, and “metric”, which means to measure. Biometrics has grown to become
an interesting topic in recent years with respect to computer and network security.
Biometrics characteristics can be divided into two main classes:

The first is physiological biometrics which relates to the shape of the different
parts of body [1], such as: DNA, Ear shape, Face recognition, Fingerprints, Hand
and finger geometry, Infrared thermogram, Iris recognition, and Retina. The second
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is behavioral biometrics. This type of biometrics relates to the behaviour of a human
such as: Gait, Signature and Typing rhythm (Keystroke).

Biometrics using brain signals have become interesting in research toward using
EEG as a biometric measure because the brain is the most complex biological struc-
ture known toman and its wave signals are very difficult tomimic or steal.Many tech-
niques such as electroencephalography (EEG), functionmagnetic resonance imaging
(fMRI), magnetoencephalography (MEG), and positron emission tomography (PET)
have been utilized for study of the brain. Each technique has its own strengths and
weaknesses.

This studyproposes the use ofEEGbecause it has a desirable property for excellent
temporal resolution, is relatively tolerant of subject movement, and its related hard-
ware costs are lower than other techniques. It has been shown in previous studies that
EEG is unique and can be used for biometric identification and authentication [2–9].
Tangkraingkij et al. [10–12] reported the preliminary results of personal authenti-
cation of EEG signals by using independent component analysis (ICA) with neural
classifier in which EEG signals were used across all frequency ranges of 1,000 data
points of 20 subjects, four channels (F4, P4, C4, O2), with the accuracy at 98.51%.
However, all frequency ranges of brain signals can degrade recognition speed and
accuracy. In this study, EEG was used to analyze basic brain signals five frequency
ranges (Delta, Theta, Alpha, Beta, and Gamma) to the best frequency range for
the authentication. The rest of this study is organized as follows. Section2 summa-
rizes the relevant backgrounds. Section3 discusses methodology and experimental
process. Section4 is the results and discussions. Section5 concludes the study.

2 Related Backgrounds

2.1 Electroencephalography (EEG)

EEG is the measurement of electrical activity produced by the brain as recorded
from electrodes placed on the scalp. The strength of each signal is considered rather
low and the signal measured from any location of scalp can be interfered with by
signals from other locations due to the activities of the brain such as eye tracking
and EMG (electromyography). In addition, the noise in EEG may be created by
the surrounding large electrical potentials from the environment. Brain waves are
categorized into five basic groups according to their frequencies as follows: (1)
Delta (1–4 Hz), (2) Theta (4–8 Hz), (3) Alpha (8–12 Hz), (4) Beta (12–30 Hz), and
(5) Gamma (30–100 Hz). EEG is the most valuable diagnosis of epilepsy. It is also
used to help predict a person’s chance of recovery after a change in consciousness.
The most advanced form of EEG usages is applied in basic Brain Computer Interface
(BCI), neuroscience, cognitive science research and statistical signal processing.
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2.2 Independent Component Analysis (ICA)

Electroencephalography signal is intrinsically a mixture of the other signals, with
such effects as delays, reverberations, and non-linear distortions [13]. It is assumed
that the EEG signals from the electrodes on the scalp picks up brain sources and
non-brain sources related to movements of eyes and muscles. ICA is a member of
a class of blind source separation (BSS). The aim of source separation is to recover
original signals from known observations where each observation is an unknown
mixture of the original signals. The objective of ICA is to clean and separate the
individual signals from different areas of the brain.

2.3 Neural Network Classification Concept

The separated signals from the ICA process cannot be directly used to authenticate a
person. The relevant features must be extracted from these signals and the problem
of authenticating a person is transformed into a classification problem.

Neural network is a process paradigm that mimics the structures and functions of
the human nervous system. Pattern recognition is an important application which can
be implemented using a feed-forward neural network that has been trained accord-
ingly. During the training, the network learns to associate output with input patterns.
When the network is used, it authenticates the input pattern and tries to output the
associated output pattern similar to the way the human brain works.

3 Methodology and Experiments

This research examines brain wave signals by sampling the brain wave signals of
20 subjects and putting them through the independent component analysis to isolate
the newly created signal in order to derive the original brain signal. Such a signal
can be divided into five intervals, based on the signal frequency. These intervals
can be developed further to measure the effectiveness in authenticating a person by
using the supervised neural network and to identify which interval of the brain signal
is more important than the others. Figure1 depicts a diagrammatic process block
visualization of this study which consists of four main procedures:

3.1 Collecting Brain Wave Signals

Electroencephalography signals were collected from 20 subjects (8 men and 12
women) from the Chulalongkorn Hospital in Bangkok. The age range of the subjects
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Fig. 1 The experimental diagram process consisting of four main procedures

is between 12 and 40years. The EEG signals were recorded from 16 electrode chan-
nels attached to the scalpwhile each subjectwasmotionless during theEEG recording
experiment and no task was performed. They were not allowed to talk or move dur-
ing this period. According to 10–20 system, the following locations on the scalp are
considered: FP1, F7, T3, T5, FP2, F8, T4, T6, F3, C3, P3, O1, F4, C4, P4, and O2.
Figure2 shows these locations on the scalp. The EEG amplifier was Grass model 8
plus. Our recording sessions used mono-polar montage with reference at the mastoid

Fig. 2 The locations of
electrode placements on the
scalp using 10–20 system
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area A1 and A2. The sampling rate was 200Hz. EEG data were notch filtered at
60Hz digitized by BMSI board using Stellate Harmony EEG software exported as
EDF (European Data Format). For each subject in each trial, 3,000 data points (15 s
recording) were simultaneously collected from each of 16 channels.

3.2 Cleaning EEG Signal by ICA

The purpose of this step is to use ICA in isolating the good signal from disturbing
signal which has been originally collected. Tangkraingkij et al. [12] found that ICA
yielding a good result in authenticating an individual is SOBIRO. Therefore, in this
experiment SOBIRO is selected to isolate the good signals by starting with the raw
brain signal which has a wavelength of 3,000 data points in all 16 channels and put
them through SOBIRO algorithm implemented in ICALAB [14]. Two parameters
used in SOBIRO algorithm were set as follows, number of time-delayed covariance
matriceswas set to 100 and orderingwas set to none. The brainwaveswere re-divided
into the five frequency ranges in the next step.

3.3 Dividing the Brain Signal into Five Frequency Ranges

In the past experiment, Tangkraingkij et al. [12] found that the signal which gets the
best result is the group of four channel signals. These groups of four channels are F4,
P4, C4, and O2. Therefore, this experiment picked these channels to be the sampling
model. The purpose of this step is divide brain wave into the five frequency ranges
for testing to determine which one is the best for the authentication. It will be divided
into three parts for this experiment:

(1) Converting Time Domain into Frequency Domain
The experiment starts by selecting the brain signal at channel F4, P4, C4, and O2
which passed the EEG signal cleaning process by ICA. In this experiment, Time
Domain is converted into Frequency Domain by using FFT process. The example of
the brain wave in Time Domain and Frequency Domain is illustrated in Fig. 3.

(2) Dividing the brain signal into 5 wave frequency ranges
After converting the brain wave into frequencies, it will further be divided into 5
intervals as follows: (1) Frequency at 0–4 Hz (Delta wave), (2) Frequency at 4–8 Hz
(Theta wave), (3) Frequency at 8–12 Hz (Alpha wave), (4) Frequency at 12–30 Hz
(Beta wave), and (5) Frequency at 30–100 Hz (Gamma wave)

(3) The process of converting Frequency Domain into Time Domain
Because the pattern recognition process uses the time domain information, it is
therefore necessary to convert the brain signal in each frequency range into the time
domain by using the reverse FFT process. The brain signal of five frequency ranges
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Fig. 3 The EEG signal from F4 location in time domain compared with frequency domain

in time domain will be re-formatted into the 1,000 data points for testing in next step.
Figure4 illustrates Delta, Theta, Alpha, Beta, and Gamma of brain signals in time
domain.

3.4 Comparing Each Range of EEG Signals by Neural
Network

The purpose of this section is to take the brain wave in each frequency and to com-
pare it using the concept of pattern recognition of the neutral network. From the past
experiment, Tangkraingkij et al. [12] used the brain signals of all combined frequen-
cies and found that the frequencies resulting in the most accurate results are F4, P4,
C4, and O2 by using a sampling of 1,000 data points of 20 subjects. The accuracy
was at 98.51%

Inorder to compare the past experiment result, it is necessary to control the position
and the wavelength to be equal to compare the results. The sampling data will be the
channels F4, P4, C4, and O2 with length of 1,000 data points. This experiment will
compare the results from 20 subjects.

Four experiments were conducted:
Experiment1: This experiment compared one frequency range to compare the

ability to authenticate 20 subjects. These frequencies are Delta, Theta, Alpha, Beta
and Gamma.
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Fig. 4 Five frequency ranges of brain signals in time domain

Experiment 2: This experiment combined the two-frequency range by pairing
up the frequencies. The pairing frequencies are Delta-Theta, Delta-Alpha, Delta-
Beta, Delta-Gamma, Theta-Alpha, Theta-Beta, Theta- Gamma, Alpha-Beta, Alpha-
Gamma, and Beta-Gamma.

Experiment 3: This experiment combined the three frequency range by comb-
ing the frequencies. These frequencies are Delta-Theta-Alpha, Delta-Theta-Beta,
Delta-Theta-Gamma, Delta-Alpha-Beta, Delta-Alpha-Gamma, Delta-Beta-Gamma,
Theta-Alpha-Beta, Theta-Alpha-Gamma, Theta-Beta-Gamma, and Alpha-Beta-
Gamma.

Experiment 4: This experiment combined the four-frequency range by combing
the frequencies. These five frequencies groups are Delta-Theta-Alpha-Beta, Delta-
Theta-Alpha-Gamma, Delta-Theta-Beta-Gamma, Delta- Alpha-Beta-Gamma, and
Theta-Alpha-Beta-Gamma.
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Fig. 5 Pattern of data partitioning to form the training, validation, and testing groups

A 3-layer feed-forward neural network with 20 hidden neurons, and 20 output
neurons was deployed. Hyperbolic tangent was used as the kernel function and acti-
vation function. All training patterns were learnt by a multi-layer perceptron with
scaled conjugate gradient backpropagation learning rule. Since four channels were
simultaneously considered in this process, each input pattern, including training,
validating, and testing consisted of 4 elements. In each sample set, every sequence
of 10 data points were grouped as follows: (1) the first six data points were grouped
as training patterns, (2) the next two data points were grouped as validating patterns,
and (3) the last two data points were grouped as testing patterns. The objective of
partitioning data was to get a good representative of the sample points for each data
division.

Figure5 illustrates how training, validating, and testing patterns were grouped
from the signals of channels F4, P4, C4, and O2. Numbers 1, 2, and 3 denote the
training, validating, testing patterns, respectively. Based on this grouping scheme,
it can be seen that 60% of data points are for training, 20% are for validating, and
another 20% are for testing.

4 Results and Discussions

In this study, thefindings show the effectiveness in using thefivebrain signal intervals.
Frequency 0–4 Hz can correctly authenticate 20 subjects with an accuracy of 100%.
Frequency 4–8 Hz can authenticate the individuals at 36.380%. Frequency 8–12 Hz
can authenticate the individuals at 38.260%. Frequency 12–30 Hz can authenticate
individual at 40.470%. Frequencies 30–100 Hz can authenticate the individuals at
52.535% as illustrated in Table1.
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Table 1 The percentage of
accuracy for 20 subjects
tested with 4 channel
combination (F4, P4, C4,
O2), SOBIRO, 1,000 data
points for 1 frequency range
in experiment 1

Wave ranges Accuracy percentage

Delta 100.000

Theta 36.380

Alpha 38.260

Beta 40.470

Gamma 52.535

Table2 illustrates the experiment result by combining the two frequencies in the
five-frequency range. The Delta Group (Delta-Theta, Delta-Alpha, Delta-Beta, and
Delta-Gamma) proves to have the accuracy rate of 99.975–100%. The accuracy in
the non-Delta group (Theta-alpha, Theta-Beta, Theta-Gamma, Alpha-Beta, Alpha-
Gamma, and Beta-Gamma) is 31.070–46.130%. Comparing the non-Delta Group to
Delta Group proves the result to be much better for the Delta Group.

Combing the three-frequency range proves the Delta Group (Delta-Theta-Alpha,
Delta-Theta-Beta, Delta-Theta-Gamma, Delta-Alpha-Beta, Delta-Alpha-Gamma,
and Delta-Beta-Gamma) to have the accuracy of 95.000–100% and the non-Delta
Group (Theta-Alpha-Beta, Theta-Alpha-Gamma, Theta-Beta-Gamma, and Alpha-
Beta-Gamma) is proven to have the accuracy of only 32.020–42.375%. The detail
is illustrated in Table3.

Table4 illustrates the four-frequency experiment. The result proves to be similar
to the two-frequency group and the three-frequency group. The accuracy in the
Delta Group (Delta-Theta-Alpha-Beta, Delta-Theta-Alpha-Gamma, Delta-Theta-
Beta-Gamma, and Delta-Alpha-Beta-Gamma) is 95.000–99.995% while the accu-
racy in the non-Delta Group (Theta-Alpha-Beta-Gamma) is 37.955%. From the
experiment, it can be seen that theDelta component of the brain signal is an important
aspect in authenticating. If such a particular Delta signal is used in the 20 subjects, the

Table 2 The percentage of accuracy for 20 subjects tested with 4 channel combination (F4, P4,
C4, O2), SOBIRO, 1,000 data points for 2 frequency ranges combination in experiment 2

Wave ranges Accuracy percentage

Delta Theta 100.000

Delta Alpha 100.000

Delta Beta 100.000

Delta Gamma 99.975

Theta Alpha 31.070

Theta Beta 32.670

Theta Gamma 41.360

Alpha Beta 35.530

Alpha Gamma 43.500

Beta Gamma 46.130
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Table 3 The percentage of accuracy for 20 subjects tested with 4 channel combination (F4, P4,
C4, O2), SOBIRO, 1,000 data points for 3 frequency ranges combination in experiment 3

Wave ranges Accuracy percentage

Delta Theta Alpha 100.000

Delta Theta Beta 95.000

Delta Theta Gamma 100.000

Delta Alpha Beta 95.000

Delta Alpha Gamma 100.000

Delta Beta Gamma 100.000

Theta Alpha Beta 32.020

Theta Alpha Gamma 38.680

Theta Beta Gamma 39.710

Alpha Beta Gamma 42.375

Table 4 The percentage of accuracy for 20 subjects tested with 4 channel combination (F4, P4,
C4, O2), SOBIRO, 1,000 data points for 4 frequency ranges combination in experiment 4

Wave ranges Accuracy percentage

Delta Theta Alpha Beta 95.000

Delta Theta Alpha Gamma 99.995

Delta Theta Beta Gamma 99.990

Delta Alpha Beta Gamma 99.995

Theta Alpha Beta Gamma 37.955

accuracy is proved to 100%. If the Delta component is combined in a two-frequency
experiment, the result still proves to be good. However, if the Delta component is
combined in the three-frequency experiment or more, the result proves to be less
accurate.

Delta wave frequency is 0–4 Hz. This wave range tends to be the highest in
amplitude and the slowest waves. The amplitude of Delta wave is higher than the
others, causing a variety of grouping by neural network. Delta wave range has been
used the group of position F4, P4, C4, and O2 in this experiment. It will be interesting
to look at the other factors such as the different position forDeltawave range, different
individual group with more subjects and different timing in the next research.

5 Conclusion

This research studied the brain wave signals (EEG) having the frequency of 0–100.
The frequency was divided into intervals to find the accuracy in the authentication
subjects in each range. The experiment combined the different frequencies to form
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the different test case. The brain signals 1,000 data points from position F4, P4,
C4, and O2 were used. The experiment used SOBIRO algorithm to bring back the
original signal then a supervised neural network was used to test the accuracy of the
authentication for 20 subjects. The experiment combined the different frequencies to
form the different test cases from one frequency range, two frequency ranges, three
frequency ranges, and four frequency ranges. The results show that Delta range of
brain wave signals is actually significant for the authentication.
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Simple Models Characterizing the Cell Dwell
Time with a Log-Normal Distribution

Naoshi Sakamoto

Abstract For designing a wireless network, the distribution of the cell dwell time
of nodes is important. It was reported that the distribution of the cell dwell time
is approximated by a log-normal distribution. Thus, in this paper, we present two
simple models in order to estimate the probabilistic distribution of the cell dwell
time. One is the model where a node moves straightforward and goes across a cell
where the velocity of a node is given by a probabilistic density function. Another
is the model of a random walk, named a “tipsy random walk,” where a node moves
with constant velocity and turns gently. We show that the probabilistic distribution of
the cell dwell time of each model can be approximated by a log-normal distribution.

1 Introduction

As mobile terminals spread, it becomes increasingly important to plan and design to
establish base stations of wireless LAN. In wireless LAN, a base station basically
communicates only one terminal in a moment, then it repeats to communicate every
terminal in the communication area. Thus, the communication capacity of the base
station is divided by the terminals in the area. Therefore, it is important to establish
base stations appropriately for the density of terminals.

In the problem about establishment of base terminals for wireless LAN, it is
generally assumed that the performance of each base station is the same, and only
one base station takes charge of an area. Then, we can assume that the shape of each
area is the same. We call an area of which a base station takes charge a “cell”. On the
other hand, we naturally consider that mobile terminals can move. Thus, the number
of terminals in a cell may be changed every moment. Therefore, the use time for
a base station of each terminal is important for the problem about establishment of
base stations.
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Recently, various kinds of investigation for mobile communication have been
made. They were investigated by methods of actual surveying, theoretical analy-
ses with an adequate model, and using a random walk with several assumptions.
Specially, the author is interested in the paper “Vehicle mobility characterization
based on measurement and its application to cellular communication systems,” writ-
ten by Kobayashi et al. [8]. According to this paper, the distribution of the cell dwell
time of actual taxis can be approximated by a log-normal distribution. Thus, in this
paper, we propose two models of which the distribution of the cell dwell can be
approximated by a log-normal distribution.

In former works, the analysis for the channel holding time and the hand-off rate
have been regarded as important. In a wireless LAN, a call is also generated and
held as well as a wired LAN. Moreover, a hand-off happens when a node reaches
the boundary of a cell while it is holding a call, in a wireless LAN. It is the fact that
the establishment of base stations depends on the distribution of participants indeed.
On the other hand, we can consider that for a node, generating and holding a call
are independent against the cells. Therefore, we can consider that we will be able
to compute the channel holding time and the hand-off rate by using the cell dwell
time and the assumptions of a call. Actually, Zonoozi and Dassanayake computed
the channel holding time by using the cell dwell time and the call duration [9].

On the other hand, the property of a randomwalk has been studied variously. In the
former works, in order to conform to mobile communication, the assumption of the
random walk of each study usually contains that a node appears at arbitrary location,
and also turns to arbitrary angle [4, 7, 9]. However, the author doubts whether these
assumptions are appropriate for the motion of actual vehicle or human. Kobayashi
et al. actually surveyed the time that taxis go across the cell that is considered virtually
by them. In order to argue the model of motion of vehicles or humans, in the author’s
opinion, it should not be assumed that a node appears at arbitrary location, but the
time from entering to exiting the node must be surveyed.

The organization of this paper is as follows.
In Sect. 2, for given a probabilistic density function(PDF) of the velocity ofmobile

nodes,we induce thePDFof the cell dwell time.Moreover,we see that the distribution
of the cell dwell time can be approximated by a log-normal distribution when the
velocity of mobile nodes obeys a uniform distribution, and mobile nodes go across
a circle.

In Sect. 3, we propose a notion of a “tipsy random walk” that enables to control
its degree of the straightness by a parameter. We show that for a round cell, the
distribution of the period from the time that a node enters to the time that it exits can
also be approximated by a log-normal distribution.

Finally, in Sect. 4, we conclude the results.
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2 Transformation of a Probabilistic Distribution Function
of Velocity

In this section, we induce formulas of the PDF of the cell dwell time by transforming
the PDF of the velocity of mobile nodes. Moreover, by assuming the distribution of
the velocity of a mobile node as a uniform distribution, we show that the obtained
PDFs of the cell dwell time can be approximated by a log-normal distribution.

2.1 Related Works

In the former works, not only the cell dwell time, but also the channel holding time
and the hand-off rate have been investigated.

Hong and Rappaport theoretically studied the channel holding time with assump-
tion that the velocity is uniformly distributed from 0 to VMAX and the direction is
also uniformly distributed from 0 to 2π independently [6]. Note that they assumed
that the happen and the endurance of a call is exponentially distributed.

Cho et al. induced and evaluated the formula of the cell resident time and the
hand-off rate from the PDF of the displacement and the velocity of mobile nodes
[3]. First, they proposed the integral transformation to the cumulative distribution
function(CDF) of the cell dwell time. Then, they induced the formula of the CDF of
the hand-off rate with the assumption that the velocity is uniformly distributed from
0 to VMAX and the direction is also uniformly distributed from 0 to 2π independently
where the cell is the round shape. Finally, they showed that their formula approx-
imates the function of Hong and Rappaport [6] by using the numerical integration
method.

With respect to the analysis of Cho et al. [3], Boche and Jugl proposed a model for
wireless communication system and induced the distribution of the cell dwell time
for the velocity distribution theoretically for the system [1]. Specially, they deeply
investigated the case when the velocity may be 0.

2.2 Assumption

We fix the size of a cell to l, as Fig. 1. We will induce the PDF of the cell dwell time
of mobile nodes that go across a cell from a given PDF of the velocity. In this section
we assume the following conditions:

1. the velocity of each node is not changed in the cell, and
2. every node goes across the cell straightforward.
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Fig. 1 Shapes of a cell for
two-dimensional area

Let m(v) denote the PDF of the velocity of nodes. That is, the probability that the
velocity within which a node moves in the cell is less than V0 is defined as the
following formula:

Pr[v ≤ V0] =
∫ V0

0
m(v)dv.

2.3 One-Dimensional Path

We induce the PDF c1(t) of the cell dwell time where the cell is an one-dimensional
path with length l.

Theorem 1 The PDF c1(t) of the cell dwell time where the cell is a one-dimensional
path, is (1).

c1(t) = l

t2
m

(
l

t

)
. (1)

Proof By the assumption, once a velocity is determined for each node, a node holds
the velocity as a constant. Thus, for the velocity V , the cell dwell time is T = l/V .
Then, we have the probability when the cell dwell time is in the period from a to b
as following:

Pr[a ≤ T ≤ b] = Pr[a ≤ l/V ≤ b]
= Pr[l/b ≤ V ≤ l/a]
=

∫ l/a

l/b
m(v)dv

=
∫ b

a

l

u2 m

(
l

u

)
du. �

Corollary 1 Let m̄ be the PDF of a uniform distribution from v0 to v1. That is, m̄ is
given by (2).
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m̄(v) =
⎧⎨
⎩
0 if v < v0,

l
v1−v0

if v0 ≤ v ≤ v1,
0 o.w.

(2)

Then, we can obtain the PDF c̄1(t) of the cell dwell time for m̄ as following:

c̄1(t) =

⎧⎪⎨
⎪⎩
0 if t < l

v1
,

l
(v1−v0)t2

if l
v1

≤ t ≤ l
v0

,

0 o.w.

Moreover, we also obtain the CDF C̄1(t) as following:

C̄1(t) =
⎧⎨
⎩
0 if t < l

v1
,

l
v1−v0

( v1
l − 1

t

)
if l

v1
≤ t ≤ l

v0
,

1 o.w.

2.4 Two-Dimensional Area

We calculate the PDF c(t) of the cell dwell time where the cell is a two-dimensional
area. At first, we assume that mobile nodes go across the cell straightforward with a
constant velocity.

We have to discuss the shape of a cell. We can ignore the angle of incidence when
the shape of the cell is round. However, circles can not tile a plane. Thus, the shape
of a cell is used to be assumed to be a square or a hexagon. On the other hand, the
boundary of an actual cell is not uniquely determined. It might always depend on
the shape of the ground and the positional relationship between the base stations.
Thus, we choose a circle with radius l/2, a inscribed square and a circumscribed
square as the shape of a cell (Fig. 1). Moreover, let the incidence angle be horizontal.
Notice that at a cell, since the cell dwell time when a node goes across the upper
half is the same as the dwell time when a node goes across the lower half, we only
consider the lower half of a cell. That is, we only consider that y is in the region
from 0 to l/2. Moreover, the position of the y-axis that a node goes across is assumed
to be uniformly distributed between 0 and l/2. Then, we have the PDF of y as the
following (3):

f (y) =
⎧⎨
⎩
0 if y < 0,
2
l if 0 ≤ y ≤ l

2 ,

0 o.w.
(3)
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2.4.1 Circumscribed Square

For the circumscribed square, since the cell dwell time does not depend on y, the
PDF is the same as the PDF for an one-dimensional path.

2.4.2 Inscribed Square

If a node goes across a cell whose shape is an inscribed square, the cell dwell time
T is 2y/V where a node goes across the y-axis at the y-coordinate y with velocity
V in the circumscribed square (0 ≤ y ≤ l/2).

Theorem 2 When the velocity is distributed with a PDF m(v), we have the PDF
cd(t) of the cell dwell time where the cell is the inscribed square of the circle of
radius l/2 as the following (4):

cd(t) = 4

lt2

∫ l/2

0
m

(
2s

t

)
sds. (4)

Proof We transform the formula of the probability that the cell dwell time is in the
period from a to b as the following:

Pr[a ≤ T ≤ b] =
∫ ∞

−∞
Pr[a ≤ T ≤ b|y = s] f (s)ds

=
∫ ∞

−∞
Pr

[
2s

b
≤ v ≤ 2s

a

]
f (s)ds

=
∫ ∞

−∞

∫ 2s/a

2s/b
m(v) f (s)dvds. (5)

We apply Fubini’s theorem. Moreover, we compute the integration by substitution.
Let u = 2s/v, then this yields dv = −2s/u2du. Finally, we apply (3). Then, we have
the following:

=
∫ b

a

∫ l/2

0

4s

lu2 m

(
2s

u

)
dsdu. �

Corollary 2 When the velocity of nodes is uniformly distributed from v0 to v1, we
have the PDF c̄d(t) of the cell dwell time where the cell is the inscribed square of
the circle of radius l/2 as follows:

c̄d(t) =

⎧⎪⎨
⎪⎩

v1+v0
2l if t < l

v1
,

1
2l(v1−v0)

(
l2

t2
− v20

)
if l

v1
≤ t ≤ l

v0
,

0 o.w.
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Moreover, we can have the CDF C̄d(t) as follows:

C̄d(t) =

⎧⎪⎪⎨
⎪⎪⎩

v1+v0
2l t if t < l

v1
,

1
v1−v0

(
v1 − v20

2
t
l − 1

2
l
t

)
if l

v1
≤ t ≤ l

v0
,

1 o.w.

2.4.3 Circle

Next, we consider that a node goes across the cell whose shape is round and radius
is l/2.

For any incidence angle, we can easily transform it to horizontal by rotation. Thus,
we consider not the upper and the lower sides of the circle, but the lower side of the
circle only, and let nodes enter between 0 and l/2 horizontally, and the y-coordinate
is assumed to be uniformly distributed. On the other hand, the cell dwell time T is
2
√

ly − y2/V .

Theorem 3 When the velocity is distributed with a PDF m(v), we have the PDF
cc(t) of the cell dwell time where a cell is a circle of radius l/2 as the following (6):

cc(t) = 4

lt2

∫ l/2

0

√
ls − s2m

(√
ls − s2

t

)
ds. (6)

Proof As similar to the proof of Theorem2, we transform the formula of the proba-
bility that the cell dwell time is in the period from a to b as following:

Pr[a ≤ T ≤ b]
=

∫ ∞

−∞
Pr[a ≤ T ≤ b|y = s] f (s)ds

=
∫ ∞

−∞
Pr

[
2
√

ls − s2

b
≤ v ≤ 2

√
ls − s2

a

]
f (s)ds

=
∫ ∞

−∞

∫ 2
√

ls−s2/a

2
√

ls−s2/b
m(v) f (s)dvds. (7)

We also apply Fubini’s theorem. Moreover, we compute the integration by substitu-
tion. Let u = 2

√
ls − s2/v, then this yields dv = (−2

√
ls − s2/u2)du. Finally, we

apply (3). Then, we have the following:

=
∫ b

a

4

lu2

∫ l/2

0

√
ls − s2m

(
2
√

ls − s2

u

)
dsdu. �
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Fig. 2 Probabilistic density functions

Corollary 3 When the velocity of nodes is uniformly distributed from v0 to v1, we
have the PDF c̄c(t) of the cell dwell time where a cell is a circle of radius l/2 as
follows:

c̄c(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

l
t2

(arcsin(v1t/ l) − arcsin(v0t/ l)) /(v1 − v0)

−
(

v1
lt

√
l2 − t2v21 − v0

lt

√
l2 − t2v20

)
/(v1 − v0), if t < l

v1
,

l
t2

(
π
2 − arcsin(v0t/ l)

)
/(v1 − v0)

+ v0
lt

√
l2 − t2v20/(v1 − v0), if l

v1
≤ t ≤ l

v0
,

0 o.w.

We graphically show the PDFs when the velocity is uniformly distributed from
v0 to v1 in Fig. 2. On the other hand, we graphically show the CDFs on a log-normal
probability plotting paper in Fig. 3. The axis of abscissas is log scale. The line of the
C̄c(t) is drawn by using the numerical integration method. According to the Fig. 3,
we can see that none of these CDFs exactly corresponds to a log-normal distribution,
but we can say that they approximate a log-normal distribution between 10 and 90%.
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Fig. 3 Cumulative distribution functions on log-normal probability plotting paper

3 Random Walk

Next, we propose a simple notion of a random walk of which the distribution of the
cell dwell time approximates a log-normal distribution.

3.1 Related Works

The property of wireless LAN has been investigated by also simulating a random
walk.

Chiang et al. analyzed the cell dwell time of a two-dimensional random walk for
a hexagon cell by dividing the cell into small hexagons [2].

Zonoozi and Dassanayake consider the following random walk in a hexagon cell
[9]:

1. a node starts at arbitrary location in the area,
2. the direction is uniformly chosen from arbitrary angle,
3. the direction is uniformly changed within the predefined limit ±α for the current

direction,
4. the velocity at the beginning is chosen by Gaussian distribution from 0 to 100

[km/h],
5. the velocity is uniformly changed in the range ±10% of the current velocity.
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They evaluated the distribution of the cell residence time obtained by the simula-
tion by using Kolmogorov-Simnov goodness-of-fit test with respect to the best-fit
generalized gamma distribution. Moreover, they also studied the distribution of the
handover rate and the channel holding time.

Guérin simulated a random walk to analyze the channel holding time and also
studied it theoretically [4]. On the simulation of the random walk, he assumed that
the shape of a cell is round, the velocity of a node is a constant, and the appearing
location and the direction are chosen with a uniform distribution. Moreover, he also
assumed that a node determines the time to move straightforward by an exponential
distribution, after the time spends, determines the new direction with a uniform
distribution, and determines the time to move straightforward again. Moreover, he
theoretically analyzed the number of hand-offs and the channel holding time by
proposing a model. In the analysis, he assumed that the shape of a cell is a hexagon
and the directions that a node is allowed to move are up and down, left and right.

Jabbari et al. studied the channel holding time in a round or a square cell by
considering a two-dimensional randomwalk and aMarkov chain as well as our study
[7]. They considered that a cell is divided into small square areas and the random
walk is assumed that a node is allowed to move to up and down, left and right.
Moreover, they assumed that the probability that a node moves to the same direction
as the previous is larger. This approach is similar to ours. However, the points of
difference between their approach and ours are the distribution of the probability and
the evaluation.

3.2 Two-Dimensional Random Walk Without Turning Back

In Sect. 2, in order to approximate the cell dwell time from a given velocity distrib-
ution, we have made the strong assumption on the shape of a cell and the condition
of the velocity. Actually, the assumption might be held in small cells. On the other
hand, the obtained PDF of the cell dwell time does not depend on the size of a cell.
By analyzing the result of Kobayashi [8], Hidaka showed that the cell dwell time
is approximated by the exponential distribution for a small cell [5]. Therefore, our
argument in Sect. 2 may be appropriate to the certain size of a cell only.

Then, we would like to propose a model where the cell dwell time depends on the
size of a cell. Moreover, it is ideal that the model enables to be controlled by the size
of a cell. As the candidate for this, we propose a random walk that has the special
condition.

In the case of formermodels of a randomwalk, since a node averagely stays around
the starting point with high probability, these models are not appropriate to apply to
the problem concerning that a node goes across the cell. Thus, at first, we propose the
two-dimensional randomwalk where a node moves to the up and down, left and right
direction without turning back. Then, we measure the cell dwell time for the model
by computer simulation. We graphically show the results in Fig. 4. According to the
result, nodes might exit from the cell in early time with high probability, regardless
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Fig. 4 Cell dwell time of random walk without turning back

of the size of the cell. Figure4 shows the CDFs of the cell dwell time where the sizes
of a cell are 10, 100, 1000, 10,000, and 100,000. The axis of abscissas is log scale.
We can see that each cumulative distribution under 90% is similar to each other,
regardless the size of a cell.

We find two consideration. One is that the direction of nodes tends to become
random for sufficiently long time. Another is that many nodes do not exit from the
opposite boundary of the cell, but return to the side of the start point. Therefore, in
this simulation, we find that a random walk without turning back becomes similar to
a normal random walk.

3.3 Tipsy Random Walk

Then, we extend the notion of a random walk without turning back. We consider that
a node can choose a direction from still only three directions at each time. Moreover,
let the directions be narrower. Notice that a random walk where the directions are
angle±90◦ is equivalent to a randomwalkwithout turning back.We denote a random
walk where the narrower directions are allowed a “tipsy random walk.” Then, we
observe the property of a tipsy random walk by computer simulation.

First, we can say that the transition model of the direction of a node can be
applied to a Markov chain. We denote n as the fraction size of the circumference.
When the allowed directions are ±2π/n, we have the transition matrix P = (pi j )

(1 ≤ i, j ≤ n) as (8).

pi, j =
{ 1

3 if i = j − 1, j, j + 1 or (i, j) = (1, n),

0 o.w.
(8)



126 N. Sakamoto

Fig. 5 Transition model of the direction, when n = 8

We show a state diagram in Fig. 5, when n = 8. For this Markov chain, we calculate
the probability of staying each direction for every time. This probability shows the
probability which direction a nodemoves to. It is clear that the state probability of the
direction of the start is the greatest, and the state probability of the opposite direction
against the start is the smallest. However, we can see that the probability of every
direction comes to be uniform. We show the probability of each direction (0, 90, and
180◦) in Fig. 6 where n = 64. The axis of abscissas is log scale of time. And, the axis
of ordinates is the probability rate to assume 1/n as 1. Thus, the rate at the direction
of the start at time 0 is equal to n. As Fig. 6 shows, the probability of staying every
direction always converses to rate 1, after long time.
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Fig. 7 Probability of staying the opposite direction

With respect to the fraction size, we show the cumulative probability of staying
the opposite direction against the start in Fig. 7. According to Fig. 7, we find that we
can control the time to converge by the fraction size. That is, we can assume that
there exists a function T (n) where nodes move almost straightforward in the time
shorter than T (n). And, nodes move randomly in the time longer than T (n).

Then, we measure the distribution of the time that a node exits a cell after the
node is put at the boundary of the circle by computer simulation (Fig. 8).We repeat to
simulate this by letting the fraction size be 4, 16, 64, 256, and 1024, and the diameter
of the circles be for 100 and 10,000, respectively, for 10,000 times. We show the
obtained distributions of the cell dwell time in Figs. 9 and 10. The axis of abscissas is
log scale of time. And, the axis of ordinates denotes probability with the inverse of the
normal distribution axis. We can see that each distribution might not be considered
as a straight line, but approximate to the straight line for the region between 20
and 90%. Thus, we can say that a tipsy random walk can roughly approximate a
log-normal distribution.

The fact that the slope is steep implies that the time to exit is in the narrow period.
In this case, we can say that most of nodes move straightforward. On the other hand,
the fact that the slope is gentle implies that there exist both nodes that exit in short
time and nodes that exit in long time. In this case, we can say that most of nodes
move randomly.

Fig. 8 Scenario of the
simulation
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Fig. 9 Cell dwell time where the size of the circle is 100
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Fig. 10 Cell dwell time where the size of the circle is 10,000

Note that the scales of the axis of abscissas of Figs. 9 and 10 are different.
Nevertheless, when we focus on the lines where the fraction size is 64, we can
find that the slope is steep when the diameter is equal to 100 but the slope is gentle
when the diameter is equal to 10,000. According to Fig. 7, the time to converge is
likely greater then 100 and less than 1000. That is, in this case, we can say that nodes
move straightforward before time 100 and move randomly after time 10,000 where
n = 64. Then, we can consider that nodes exit a cell straightforward for the circle of
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diameter 100, but exit at random location of the boundary for the circle of diameter
10,000. Therefore, we can say that the notion of a tipsy random walk enables to
control the degree of the straightness by a parameter.

4 Conclusion

Since it was reported that the actual cell dwell time is approximated by a log-normal
distribution [8], we propose twomodels where the cell dwell time is approximated by
a log-normal distribution. One is themodel that nodes go across a cell straightforward
for a given velocity distribution. In particular, when the velocity is uniformly dis-
tributed, the cell dwell time is approximated by a log-normal distribution where the
shape of a cell is round. We can say that when the actual mobile nodes are expected
to move straightforward, we can estimate the distribution of the cell dwell time by
the velocity distribution of the mobile nodes.

On the other hand, we propose another model as a tipsy random walk. This is
a random walk that turns gradually. We can say that this is the model where nodes
move almost straightforward in short time, and move randomly in long time. Then,
we can have the distribution approximated by a log-normal distribution by letting
the velocity be a constant, and giving the fraction size for the angle of a turn.

In the future, we would like to reveal the relationship between the distribution of
our model and the known other distribution. Specially, since Hidaka et al. reported
that the distribution of the cell dwell time in the small cell is approximated to an
exponential distribution [5], we have to reveal the relationship between the distri-
bution yielded for the size of a cell and an exponential distribution. Moreover, we
would like to estimate time T (n) that classifies the behavior of a tipsy random walk
where n is the fraction size.
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A Method of Ridge Detection in Triangular
Dissections Generated by Homogeneous
Rectangular Dissections

Koichi Anada, Taiyou Kikuchi, Shinji Koka, Youzou Miyadera
and Takeo Yaku

Abstract In order to display 3D terrain map effectively, detections of features on
maps are very important. In this paper, we discuss a method for detection of ridges.
It is known in the previous work that the steepest ascent method is effective for a
ridge detection on terrain map represented by rectangular dissections. We will intro-
duce the steepest ascent method in triangular dissections generated by homogeneous
rectangular dissections.

1 Introduction

In order to display 3D terrain map effectively, detections of features on maps are
very important. In this paper, we discuss a method for detection of ridges.

In [5], Yokoyama et. al. introduced amethod to detect ridges in terrainmaps called
the steepest descent line method. Steepest descent lines are similar to ones by the
drop of water principle (cf. [1]).
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Koka et al. [2] proposed another method as a modification of the steepest descent
linemethod called the steepest ascentmethod.Thismethod is basedon steepest ascent
lines obtained by selecting the maximum inclined direction from eight neighbors of
a cell in terrain maps represented by homogeneous rectangular dissections. Then
ridge lines are extracted by their steepest ascent lines on a surface.

On the other hands, triangulations of rectangular dissections may be required to
effectively display 3D terrain maps. In [3], Kikuchi et. al. introduced a method for
triangulation of rectangular dissections and a data structure for generated triangular
dissections. This triangulation is suitable to display features of 3D terrain maps such
as ridges.

In this paper, we provide amethod for ridge detections of terrainmaps represented
by triangular dissections from the triangulation by [3]. This method is similar to the
steepest ascent method by [2] and detects ridge lines along sides of triangles.

In Sect. 2, we survey the steepest ascent method by [2] and a triangulation of
rectangular dissections by [3]. In Sect. 3, we introduce an algorithm to detect ridges
in triangular dissections on terrain map. In Sect. 4, we compare our methods with
one provided in [2] by using an example. Finally, in Sect. 5 we describe conclusion
and future works.

2 Related Works

2.1 A. The Steepest Ascent Method for Homogeneous
Rectangular Dissections [2]

In [2], the steepest ascent method was proposed to effectively detect ridges. In this
paper, we refer to the steepest ascent method in [2] as “SteepestAscentForRectangle”.
Precisely, it is the following algorithm.

ALGORITHM SteepestAscentForRectangle [2]

INPUT

• elevation: a set of elevation values for all of m × n cells,
• g0: a threshold value.

OUTPUT

• color: ridge detected map with gray denoted ridge cells.

METHOD

Initialization

• Set color(i, j) := W hite and count (i, j) := 0 for all i = 1, . . . ,m and j =
1, . . . , n.
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Fig. 1 An example of ridge detection by “SteepestAscentForRectangle”

Evaluation

• for all i = 1, . . . ,m and j = 1, . . . , n,
count (i, j) + + and evaluate count (i, j) by the followings:

1. Select the (imax , jmax ) such that (imax , jmax ) is one of the neighboring cells
around (i, j) and satisfies

elevation(imax , jmax ) = max{elevation(k, l)|(k, l) is a neighbor cell.}.
2. If elevation(imax , jmax ) > elevation(i, j)

then
count (imax , jmax ) + +, replace (i, j) with (imax , jmax ) and return to line 1.

3. Else quit.

Finalization

• If count (i, j) > g0 then color(i, j) := Gray for all i = 1, . . . ,m and j =
1, . . . , n.

Figure1 is an example of ridge detection by the algorithm “SteepestAscentFor-
Rectangle”.

We note that [2, 4] described that the steepest ascent method is better than a
method by evaluating the discrete Laplacian.

2.2 A Triangulation of Rectangular Dissections [3]

Kikuchi et al. [3] considered a triangulation to convert rectangular dissections to
triangular dissections. In this paper, the method for the triangulation proposed in [3]
is referred to as “TriangulationRectangularDissection”. That is defined as follows:
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ALGORITHM TriangulationRectangularDissection [3]

INPUT

• D: a rectangular dissection.

OUTPUT

• T : a triangular dissection.

METHOD

• Step 1. Put nodes at the center, vertices and the middle of sides of rectangles.
• Step 2. Link nodes along sides and connect between the center and boundary
nodes.

Figure2 is an example of triangulations of homogeneous rectangular dissections
by the algorithm “TriangulationRectangularDissection”.

In the algorithm “TriangulationRectangularDissection”, each of nodes is classi-
fied into two types:

“center node” is a node at the center of rectangles

and

“boundary node” is a node on ruled lines is called.

When a homogeneous rectangular dissection has m × n rectangles, the number
of “center node” and “boundary node” is mn and 3mn + 2m + 2n + 1, respectively.
Therefore, the total of nodes generated by “TriangulationRectangularDissection” is

Fig. 2 An example of “TriangulationRectangularDissection”
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4mn + 2m + 2n + 1.

This implies that the number of nodes is O(mn) at most.

3 Ridge Detections on Triangular Dissections

Our purpose of this paper is to provide a method for ridge detection on triangular
dissections generated by triangulation with “TriangulationRectangularDissection”.

3.1 Graphs by Triangulation

First, we define undirected graphs to represent triangular dissections generated by
applying “TriangulationRectangularDissection” to homogeneous rectangular dis-
sections as follows:

DEFINITION

• Let D be a homogeneous rectangular dissection. Then a undirected graph G D =
(VD, ED, h) is called a “graph by triangulation for D” if and only if

– VD; a set of nodes generated by Step 1 in “TriangulationRectangularDissec-
tion”,

– ED; a set links generated by Step 2 in “TriangulationRectangularDissection”,
– h: VD → R; a real valued function on VD ,

where the value h(v) has to be defined for any v ∈ VD . �
Remark that a real valued function h gives the value of height at each of nodes in

VD to used in ridge detection.

3.2 An Algorithm “SetMeanValue”

In order to generate graphs by triangulation for rectangular dissections, we have to
define a real valued function h.

In this paper, we consider rectangular dissections with elevation values. Then, we
put elevation values to the values of h on center nodes, that is, if v ∈ VD is a center
node, then h(v) is equal to the elevation value given at a rectangle corresponding to
v ∈ VD . Next, the value of h on each of boundary nodes is defined as the mean of
values at linked center nodes.

Precisely, we provide the following algorithm to generate graphs by triangulation
for rectangular dissections with elevation values such as (Fig. 3).
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ALGORITHM SetMeanValue

INPUT

• D: a rectangular dissection D with m × n cells.
• elevation: elevation values for all of cells in D.

OUTPUT

• G D: a graph by triangulation for D.

METHOD

• Step 1. Apply “TriangulationRectangularDissection” to D and then define that

– c(i, j) is the node at the center of (i, j)-th rectangle,
– bh(i, j) is the node at the middle of the top side of (i, j)-th rectangle,
– bv(i, j) is the node at the middle of the left side of (i, j)-th rectangle,
– bx(i, j) is the node at a intersection (i, j)-th rectangle.

• Step 2. Define a set VD and ED as

VD = {c(i, j)|i = 1, . . . ,m and j = 1, . . . , n}
∪ {bh(i, j)|i = 2, . . . ,m and j = 2, . . . , n}
∪ {bv(i, j)|i = 2, . . . ,m and j = 2, . . . , n}
∪ {bx(i, j)|i = 2, . . . ,m and j = 2, . . . , n}

and

ED = {[v,w] | [v,w] is a link between v andw ∈ VD

generated by “TriangulationRectangularDissection′′}.

Fig. 3 c(i, j), bh(i, j),
bv(i, j) and bx(i, j) on the
(i, j)-th rectangle
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• Step 3. Define values of h at c(i, j) as h(c(i, j)) := elevation(i, j) for i =
1, . . . ,m and j = 1, . . . , n.

• Step 4. Calculate values of h at bh(i, j), bv(i, j) and bx(i, j) as follows:
For i = 2, . . . ,m and j = 2, . . . , n,

h(bh(i, j)) := 1

2

[
h(c(i, j)) + h(c(i − 1, j))

]
,

h(bv(i, j)) := 1

2

[
h(c(i, j)) + h(c(i, j − 1))

]
,

h(bx(i, j)) := 1

4

[
h(c(i, j)) + h(c(i + 1, j)) + h(c(i, j − 1)) + h(c(i + 1, j − 1))

]
.

Figure4 is an example of a graph generated by “SetMeanValue”.

3.3 The Steepest Ascent Method Along Sides of Triangules

In this paper, we introduce a method for ridge detections on graphs by triangulation
for rectangular dissections. Our method is a modification of “SteepestAscentForRec-
tangle” by [2] and finds steepest ascent lines along edges on graphs by triangulation
for rectangular dissections.

Precisely, the following algorithm is our method.

ALGORITHM SteepestAscentForTriangle

INPUT

• G D = (VD, ED, h): a graph by triangulation for a rectangular dissection D.
• g0: a threshold value.

Fig. 4 An example of a graph generated by “SetMeanValue”



138 K. Anada et al.

OUTPUT

• color : ridge detected map with gray denoted ridge cells

METHOD

Initialization

• Set color(v) := W hite and count (v) := 0 for all v ∈ VD .

Evaluation

• For all v ∈ VD ,
count (v) + + and evaluate count (v) by the followings:

1. Select vmax ∈ VD such that [vmax , v] ∈ ED and satisfies

h(vmax ) = max{h(w)|w ∈ Vd and [w, v] ∈ ED}.

2. If h(vmax ) > h(v), then
count (vmax ) + +, replace v with vmax and return to line 1.

3. Else quit.

Finalization

• For all v ∈ VD , if count (v) > g0 then color(v) := Gray.

Figures5 and 6 are examples of ridge detections by “SteepestAscentForTriangle”.

Remark When a map is represented by homogeneous rectangular dissections, we
first apply “SetMeanValue” and then ridge lines are detected by “SteepestAscentFor-
Triangle”.

Fig. 5 An example of Initialization and the first step of Evaluation in “SteepestAscentForTriangle”



A Method of Ridge Detection in Triangular Dissections … 139

Fig. 6 An example of Finalization in “SteepestAscentForTriangle”

In this section, we provided two algorithms. The first is “SetMeanValue” to cal-
culate values of h at boundary nodes and the second algorithm “SteepestAscent-
ForTriangle” is to detect ridge lines in maps generated by “SetMeanValue”. This
implies that we can independently develop algorithms for calculations of values of
h at baoundary nodes and detections of ridges and other features in maps.

4 Comparison

We compare our method for graphs by triangulation with a result by algorithm in [2]
in an example. That is, a homogeneous rectangular dissectionwith elevation values is
given as an example andwe apply “SetMeanValue” and “SteepestAscentForTriangle”
provided in the previous section. Then we will compare the results with one by
“SteepestAscentForRectangle”.

In this section, let D be a homogeneous rectangular dissection with the elevation
values in Fig. 7.

First, we apply our method to this example. First, a rectangular dissection D is
converted to a graph by triangulation for D, that is, we apply the algorithm “Set-
MeanValue” to D. Then we can get a graph in Fig. 8.

And then we apply the algorithm “SteepestAscentForTriangle” to a graph given
in Fig. 8.

The result is Fig. 9. Note that detected ridge lines are clear connected between
gray nodes. Precisely, the result by our method has two ridge lines in this example.
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Fig. 7 An example of a rectangular dissection D and values of elevation

Fig. 8 A graph generated by applying “SetMeanValue”

Next, we apply “SteepestAscentForRectangle” by [2] to D. Then we can get
Fig. 10. Note that the threshold value in “SteepestAscentForRectangle” is g0 = 1.

Detected ridges in Fig. 10 may not have clear lines even thought our method gives
clear ridge lines. In Fig. 11, Fig. 10 is fitted to Fig. 9 overlaped with corresponding
cells.

In this example, we show that our method can give clearer ridge lines than ones
by “SteepestAscentForRectangle” introduced in [2].

5 Conclusion

In this paper, we define graphs by triangulation for rectangular dissections. And
then we provide an algorithm to generate graphs by triangulation for rectangular
dissections and a method to detect ridge lines. Our method is a modificationof the
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Fig. 9 The result by applying “SteepestAscentForTriangle”

Fig. 10 The result by applying “SteepestAscentForRectangle”

steepest ascent method for homogeneous rectangular dissections given in [2] and can
give ridge lines in terrain map represented by homogeneous triangular dissections.

As future works, we improve our method to sharpen features such as ridges and
apply this method to triangular dissections generated by heterogeneous rectangular
dissections.
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Fig. 11 Comparison of Figs. 9 and 10
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Architecture for Wide Area
Appliance Management

Arata Koike and Ryota Ishibashi

Abstract We studied architecture for Internet-of-Things (IoT) appliances with
constrained resources to enable controlling and managing them over a wide area net-
work. By clarifying requirements for using wide area network, we examined issues
that are associated with each related standard-based technologies. Our analysis gives
us a solution by combining CoAP and ECHONET Lite to complement each other to
overcome the issues associated with using them in a wide area network, especially
suitable for virtual gateways located in a cloud. We then showed a realization of our
proposed architecture by prototyping the system.

Keywords CoAP · ECHONET Lite · Internet of things · Wide area appliance
management

1 Introduction

Lightweight and compact IP (Internet Protocol) technologies have been carried out
to support devices with constraint processing and communication capabilities [1–4].
In addition to the HTTP [5] etc., which are used in conventional Internet applications,
we have new application layer protocols such as CoAP [1] and MQTT [6]. CoAP
is especially tuned up for constraint IoT/M2M devices with lightweight implemen-
tation. MQTT also has a lightweight footprint aimed for message queue type archi-
tecture. These protocols are suitable for lightweight device management that works
with large-scale, wide area environments, such as on the Internet. However, they
are designed for general purpose, so we do not have a specific data model for actual
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device control with them. Therefore, we have to newly define data model or to import
existing ones.

Home appliances are typical examples of the constraint devices on processing
and communication capabilities. In Japan, ECHONET Lite [7] is the most widely
recognized standard protocol for controlling and managing these home appliances.
ECHONET Lite is also accepted as a standard for smart home and smart energy
management and we expect the growth of appliances implementing it. ECHONET
Lite has detailed data model to control ECHONET enabled appliances. It, however,
focuses on a local area network such as a home network so it is not easy to utilize it
for a large-scale wide area network. Therefore, the ECHONET Lite is currently used
within a local area networkwhere both home appliances and a dedicatedmanagement
system coexist.

If we can utilize ECHONETLite over wide area network such as telecom network
or the Internet, we do not need to install a dedicated management system in a local
network environment. Instead, we can place a management system on a cloud data
center and can provide a cloud-based appliance management service. The cloud-
based service makes it easy for simplifying configuration of a home network. It
can also provide flexible service update and collaboration with other services on
the cloud [8]. This gives great benefit for both users and service providers. If we
consider virtual Customer Premises Equipment (vCPE) or a virtual home gateway
in a cloud, this simplifies boxes in a home. To realize this, we have to find a way on
how to manage appliances without having any gateways or middle boxes with richer
capabilities in a home environment.

This paper proposes architecture combining ECHONET Lite and CoAP to enable
a large-scale, wide area cloud based home appliance management service. This pro-
posed architecture complements ECHONET Lite and CoAP each other and utilizes
their strength. ECHONET Lite and CoAP have different features but they are not
exclusive ones. If we can carefully combine both of them, the proposed architec-
ture has a potential to enhance their strength. The main outcome of this proposal
is to extend the ECHONET Lite system for resource constraint appliances, which
currently works within a local area network, to a cloud-based wide area system. As
we have to take into account the resource constraint for the home appliances, CoAP
plays an essential role to keep the low implementation footprint.

This paper is organized as follows. In Sect. 2, we overview researches for man-
aging home appliances over wide area network. And then we summarize features
for CoAP protocol, which was developed for constraint devices, and ECHONET
Lite, which is designed for management and control for home appliances. In Sect. 3,
we propose a novel architecture for controlling home appliances in a home network
through a wide area network by ECHONET Lite over CoAP. Section4 describes
our prototyping work to demonstrate the proposed architecture and we show that
our proposed architecture enables end-to-end communication for appliance manage-
ment. We discuss our observations in Sect. 5. Section6 concludes the paper.
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2 Managing Home Appliances over Wide Area Network

There are a number of studies conducted on controlling M2M/IoT devices through
a wide area network [8, 9]. We will first review several previous works. Then, also
review CoAP and ECHONET Lite with their features. We then describe technical
challenges associated with the use of ECHONET Lite through a wide area network.

2.1 Previous Works for Controlling Home Appliances
Through a Wide Area Network

There are a number of approaches for controlling home appliances through wide
area network [10]. Several standards exist for them. In [11], it discusses so called
Multi-PrefixMulti-Homingmethod, where different IPv6 prefixes are distributed for
home appliances depending on the service providers. Home Gateway Initiative [12]
specifies their architecture to place application gateway in a home gateway based on
OSGi [13] framework. In this case, a home gateway terminates home networking
protocols and initiates a different protocol to communicate with applications on the
cloud. Similar approaches are widely used to establish an interworking function at
application layer to correlate a closed local area network and an open wide area
networks [14]. In the methods above, we need an application in a gateway box to
establish end-to-end control and management capabilities.

In [15], they encapsulate ECHONET in HTTP for end-to-end as a way to enable
wide area Home Energy Management System (HEMS). They discuss their approach
based on the assumption that M2M/IoT appliances are capable with large frame
processing. If we consider resource constraint devices, however, we have to consider
not only frame length but also various overheads such as protocol processing as
described in [3]. When we use HTTP, we have to consider not only the frame length
and processing for HTTP itself, but also consider the lower layer TCP/IP protocol
processing. This actually affects implementation footprint. In [3], home appliances
are categorized Class 1, where we assume resources with less than 10kbyte RAM
and less than 100kbyte program code. HTTP on top of TCP/IP apparently exceeds
this class.

2.2 Communications by Devices with Resource Constraint

The Internet Engineering Task Force (IETF) recently studies IP-based communica-
tions for devices with resource constraint as in [3] actively for several layers. For
application layer, core Working Group specifies CoAP protocol [1] as an applica-
tion protocol for M2M/IoT environment based on Representational State Transfer
(REST) architecture.
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CoAP is designed to work on severe resource constraint environment with the
specific requirements. Following are its major requirements:

• Lightweight footprint to implement on scarce resource environment
• Support of sleep node
• Low latency and small processing requirement in constraint communication envi-
ronment and capable of reliable communication

• Mapping to HTTP and vice versa

CoAP architecture consists of three types of entities: client, server, and proxy.
REST architecture is used for designing CoAP protocol. It has Create, Retrieve,
Update, and Delete (CRUD) operations for resources designated by URIs. Similar
to HTTP, Proxy is also assumed. A Proxy can relay CoAP message and also can
provide interworking with HTTP. This HTTP friendliness is one of the features for
CoAP in both architecture and protocol aspects. CoAP is basically designed for low
power protocols such as [2] but it does not depend on any payload, Layer 3 nor lower
protocols except it utilizes UDP (/DTLS) for its transport protocol.

CoAP has internally two virtual layers structure. It can provide its own trans-
port function and REST capabilities by splitting transaction for CoAP message and
request/response for REST layer.

• REST layer: it provides REST function by methods such as GET/PUT to operate
resources designated by URIs.

• Transaction layer: it is located below REST layer and provides connectivity man-
agement on the UDP. It corresponds to SYN, and ACK for TCP.

Shelby et al. [1] defines a proxy server function. Similar to HTTP, the proxy
server function relays and caches CoAP messages. It also defines cross protocol
proxy, where it converts mutually between HTTP and CoAP messages.

Unlike HTTP or SIP, which is text based message format, CoAP is a binary coded
protocol. It has fixed 4 byte header and there is no mandatory options for CoAP.
Therefore, the minimum message size of CoAP is 4 byte when it comprises only
a header and no body. It uses UDP for its transport protocol but has own control
mechanisms for flow and reliability. The explanation below is a brief comparison of
CoAP controlmechanismwith that of TCP. SinceCoAPdoes not assume transactions
of large size data so it does not have a window-based control mechanism, by which
TCP relies on. CoAP has different philosophy for congestion control than TCP. TCP
relies on slow-start mechanism to control the number of packets in a connection. On
the other hand, CoAP avoids increase of flowing packets by controlling the number
of simultaneous connections to a single server. It also has a mechanism to randomize
responding timings for multicast to avoid simultaneous reply transmission. For the
CoAP retransmission mechanism, it has a maximum number for retransmission try
and exponential back-off mechanism to double the retransmission timer when it
retransmits. By combining them, it controls retransmission of packets. It chooses a
random value from a certain range for the initial value of the retransmission timer
and thus it avoids synchronization of retransmissions among multiple clients. Unlike
TCP, CoAP does not have upper limit for timer but it stops retransmission when
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number of retransmission reaches the maximum value (the default value is 4.) TCP
changes its timer value during communications by measuring Round Trip Times
(RTT) but CoAP does not.

In order to look at the lightness of CoAP, we compare data size between HTTP
and CoAP using an assumed typical communication model described below. We
model a round trip sequence of a creation (POST) of a resource and a reply (201)
message of it with standard header and options. For HTTP with standard header
structure, request is 247 bytes and response is 162 bytes. For CoAP, they are 23
bytes and 4 bytes, respectively. This is 2.5 ∼ 10% of the size for HTTP. If we
include all overheads below TCP or UDP, CoAP packet size is approximately 25%
of HTTP. CoAP uses binary format to achieve effectiveness of header space. This
effectiveness will decrease by the increase of the portion of URI and payload, which
does not obtain gains by binary coding. We calculate payload size, message size
and ratio of them for standard HTTP and CoAP request including header option.
When payload size is less than 32 bytes, CoAP can keep its message size less than
20% of HTTP. If payload size exceeds 256 bytes, CoAP/HTTP ratio exceeds 50%
and it loses size reduction effect. CoAP uses UDP as its transport layer. So it does
not need a three-way handshake as in HTTP/TCP. If we assume no retransmission,
one round-trip of request and response produces 11 packets for HTTP/TCP but 2
packets for CoAP/UDP. This is 1/5 of HTTP/TCP and improves efficiency. Note that
TCP usually sends several segments in a connection, so in this case, TCP improves
efficiency. Those are features of CoAP and we can see that it maintains compatibility
with HTTP but achieve lightness to support M2M/IoT with resource constraints. So
this compatibility gives us anticipation to apply CoAP to wide area network.

2.3 ECHONET Lite and Issues for Applying it to Wide
Area Network

ECHONET Lite is an application layer protocol. It defines objects by abstracting
appliances such as light or air conditioner. Then it defines precise data structure
that represents settings and status of each object. This enables retrieval or control
of values or status of the object from a controller. ECHONET Lite enables remote
monitoring of appliances by interpreting signals based on the defined data structure.
This data structure describes ECHONET Lite frame. It can be conveyed over any
transport layer protocol including TCP/UDP (Fig. 1 left-side). Usually, typical home
appliances are not tuned as communication equipment. So they do not have enough
assigned resources for control, manage, and status check. This lack of resources
leads simplified communication procedures without retransmission, authentication,
and security protection. And it reduces power consumption and equipment cost. As a
result, ECHONETLite lacks following key functions to use it in a wide area network,
such as the Internet.
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Fig. 1 Comparison of
protocol stacks between
ECHONET Lite and
proposed scheme
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(A) Retransmission control
Retransmission is left for transport layer protocol or application ones. This
will not cause a big problem if we use this for a small home area network
environment, where we can expect small packet loss ratio. Even if we suffer
packet loss events and the communication is not completed, appliancemanagers
or management applications can detect them in a limited local area network,
where only a limited number and kinds of appliances exist. And they can easily
take appropriate actions such as resubmission of the job since they could see
what was the result of their action.When we use it through a wide area network,
the network size becomes larger and packet loss possibility will increase. And
we could not see or identify the result of actions in this case. So it is better to
have retransmission capability within the protocol.

(B) Address resolution
ECHONET Lite does not provide a scheme to centrally manage the addresses,
types, and capabilities of target appliances in the network. When we use UDP
as its transport layer, each appliance uses IP multicast to advertise its address,
type, and capability information. Other appliances can know this informa-
tion by receiving this IP multicast. Unfortunately, only limited Internet service
providers (ISPs) allow the use of IP multicast in their network and it is used
only limited purposes, such as video distribution for IPTV within an ISP. We
have to say it is difficult to use IP multicast across several ISPs right now. This
makes it difficult to use ECHONET through a wide area network. So we need
different mechanisms for address resolution if we use it through a wide area
network.

(C) Resource Discovery
At the same timewith address resolution, a node advertises and learns types and
capabilities using IP multicast. In wide area networks, we need to investigate
how we can make this resource discovery.

As described above, Since ECHONOET Lite is targeting local network environ-
ment, there are problems A to C above for applying it for a wide area network.
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3 ECHONET Lite over CoAP for Wide Area M2M/IoT
Appliance Management

As we look at in Sect. 2, both CoAP and EHONET Lite are lightweight protocols for
M2M/IoT appliances with scarce resources. Both of them have problems if we use it
through a wide area network. In this section, we propose an architecture to combine
ECHONET Lite and CoAP to overcome these problems associated with using it in a
wide area network. We first analyze and compare both protocols from the viewpoints
of architecture, data access, protocol, Identifier, and data model.

3.1 Comparison in Architecture

CoAP is client-server type architecture. Client sends requests and server processes
receiving requests and both are completely separated. ECHONET Lite is actually
comprised of a controller where sends a controlling request, and devices where
receives and processes requests and are controlled by the requests. However, in the
specification, each ECHONET Lite node is an equal entity so we can say it is a peer-
to-peer type. CoAP is designed to accommodate proxy servers, like HTTP, to relay
messages. On the other hands, ECHONET Lite is not designed to support proxy
functions. CoAP must have both client and server function and need to use them
properly. While in ECHONET Lite, both kind of functions works simultaneously.
Therefore, if we want to have both autonomous data read and write functions and
a function accepting an incoming control message from outside, ECHONET Lite is
relatively easy to implement.

3.2 Comparison of Data Access

CoAP adopts REST style data access, i.e., it specifies server or resource using an
URI and manipulates it by a method such as GET, PUT. ECHONET Lite seeks
object-oriented style. It models appliances as ‘Objects.’ An Object has ‘Property’.
When needed, we identify Object and Property by ID, and manipulate (such as read,
write) the Property. CoAP identifies the location (IP address) of the resource using
URI and DNS. On the other hand, ECHONET Lite does not have any mechanisms to
identify an address of an appliance. This means CoAP needs only existing schemes
(i.e., IP, URI, and DNS) for web but ECHONET Lite needs to rely on other method
to identify a peer to communicate.
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3.3 Comparison of Identifier

CoAP identifies a manipulating resource using an URI. An URI is comprised of a
combination of FQDN (IP address) that designates a host and an URI path that des-
ignates a resource. An URI gives a globally unique resource location but a resource
could have multiple URIs (a resource having this multiple URIs affects cache behav-
ior.) ECHONET Lite uses ‘Object’ to represent appliance types (such as air condi-
tioner or television) and ‘Property’ to represent function of appliances (such as ON
and OFF). This abstraction gives the possibility to have the same Object IDs to the
same type of appliances and the same Property ID for the same or similar functions
among appliances. Therefore, we cannot identify a target appliance by Object ID or
Property ID only.

3.4 Comparison of Protocol

CoAP uses binary format and have a fixed 4 byte mandatory header and variable
length options using Type-Length-Value (TLV) encoding, and a payload. It uses
UDP for its transport layer and has its own retransmission mechanism. ECHONET
Lite also uses a binary format and a fixedmandatory 4 bytes header. It can have either
combination of predefined sub header and payload or combination of arbitrary format
and length of payload. There is no option field. ECHONET Lite does not assume
specific transport layer but many implementations use UDP. There is no specification
of retransmission behavior on UDP for ECHONET Lite. CoAP has more flexibility
by using option than ECHONET Lite and has potential to achieve stability among
nodes using retransmission mechanism when used in a wide area network.

3.5 Comparison of Data Model

CoAP does not specify any specific data model to express status of resources and
it depends on application. It provides a mechanism (CoRE Link Format) to refer
resource types or interfaces but it does not specify an interface itself. It does not
concern how actually an appliance runs as a result of resource operation.

For ECHONET Lite, it rigidly defines appliance (class) and functions of the
appliance (property) as a data model. Therefore, it strictly defines what kind of
appliances can be controlled by which method.

We believe that strict ruling approach like ECHONET lite contributes enhancing
interoperability among appliances especially in early market stage. It, on the other
hand, has a drawback that we have to define class and property for any appliances so
that it creates some delay to support new appliance or functions. For CoAP, how to
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support each appliance is completely application specific. So it increase risks to create
numerous similar but different data models and this leads to serious interoperability
issues unless we find a de facto standard. Note that CoAP can co-exist with strict
data model approach, as it does not specify data model itself.

3.6 Effectiveness of Protocol Integration

To summarize the observations above, we can say that CoAP is appropriate to use
withwide area networks, it has flexibility to support new appliances or new functions.
However, it has a risk on interoperability. For ECHONET Lite, it focuses on local
network and it specifies strict meaning of data for appliances and functions. So it
has better interoperability with the sacrifice of delay in supporting new appliances or
functions.These consideration leads to a solution thatECHONETLite overCoAPcan
maintain benefits of the both protocols andmitigate demerits of them, especiallywhen
we use it through a wide area network. More accurately, we treat CoAP as a transport
and ECHONET Lite as a data model. This approach compensates drawbacks of each
protocol. In Fig. 2, we show a concept of cloud based appliance management using
ECHONET Lite over CoAP and illustrate major benefits.
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Fig. 2 Concept of cloud-based system using ECHONET Lite over CoAP
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Fig. 3 The proposed
architecture
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3.7 Proposed Architecture

We show protocol stack and architecture of our proposed ECHONETLite over CoAP
in Fig. 1, right and Fig. 3.

A node capable of the proposed architecture sends and receives ECHONET Lite
frame as a payload for a CoAP message. A node acts as a client when it sends or
receives any frames with ECHONET Lite service (ESV) other than responds such
as read, write, notify, etc. It creates and sends a CoAP request with that frame as
its payload. When a node receives the CoAP message, it acts as a CoAP server and
extracts the frame and passes it to ECHONET Lite layer. The ECHONET Lite layer
processes that message in the frame and the result will become ECHONET Lite
response. The corresponding CoAP response message is created and ECHONET
Lite response is stored in the payload of it and returned to the originating client.
To identify that the payload has ECHONET Lite frame in a CoAP message, we set
Media-Type (e.g., application/enlite) in the Content-Format option field.

A CoAP server that receives requests in a node can have multiple resources
specified by URLs. In our proposed architecture, there are two cases: one resource
processes all EHONET Lite appliances’ objects in a node, and multiple resources
process the corresponding appliance’s object. For the former case, we use [16] and
define a common URL path (e.g., /.well-known/echonet-lite) as a resource to process
CoAP message. In the latter case, we adopt [17] and define the rt attribute that iden-
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tifies resource types and express the support of the proposed architecture for each
resource (e.g., rt = enlite). Each node registers and manages the above resource
information that it hosts in accordance with the procedure in [18]. A node that
directs how to control and manage discovers address and resource information of
the other nodes that process the CoAP message for control and manage by using
[19]. When address resolution is needed during message transmission, CoAP layer
utilizes existing mechanisms such as DNS.

By this proposed architecture, we can meet required functions A, B, and C
described in Sect. 2.3 using functions in CoAP or lower layer. This means we can
eliminate burden from ECHONET Lite layer or an application. We then can utilize
ECHONET Lite in IP reachable network environment including wide area network.
Therefore, we can achieve appliancemanagement through a wide area network using
ECHONET Lite.

4 Consideration by Prototyping of ECHONET Lite
over CoAP

We consider the realization of our proposed architecture in Sect. 3.7 by using a
prototyping implementation. First, we studied investigation of problems associated
with ECHONET Lite over CoAP implementation. Then we consider how we can
map functions between both protocols.

Our aim of prototyping is not for direct commercial usage but trying to establish
a reference model for future deployment. For this purpose, we utilize open source
software for our basis. And our target is home appliances sowe choose C/C++, which
is lighter than Java, for our development language.

There are several different CoAP implementations. We use libcoap [19] as this
has no strict bonding by licensing policy and based on the most up-to-date CoAP
specifications. As for ECHONET Lite, we use OpenEcho [20] as this is the only
available open source implementation. Note that [20] is Java-based implementation
so we convert it to C++ by using Java to C++ converter [21].

We developed a mapping method of ECHONET Lite objects to CoAP as shown
in the rule in Table1 for our implementation. Using our implementation, we tested
our architecture based on the sequence in Fig. 4. We confirmed that our proposed
architecture works based on the sequence.

5 Discussion

For actual device control such as turning lights on and off, we need not only
communication layer processing software but also application software, by which
we can achieve logical resource control and physical hardware control. CoAP
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Table 1 Mapping of ECHONET Lite services

protocol is a general purpose protocol so it does not specify application part. How-
ever, there are various kinds of M2M/IoT devices, so not the communication part
but the implementation of device application could be the most important factor for
the whole developing costs. In this context, it is beneficial for developers, who are
familiar with web developing, to give an http-like environment by spinning off the
communication parts from application. CoAP provides these communication parts.
Then the developers only need to focus on application parts and they do not need
to make their own ‘application’ including communication part. ECHONET Lite is
an international standard for home appliance managements. It provides logical con-
trol method for home appliances. In recent years, many appliances begin to support
ECHONET Lite. So if developer can utilize both standard based technologies, we
can say that it has a potential to extend the developer community and promote the
wide adoption of CoAP and ECHONET Lite devices.

In our prototyping experience described in Sect. 4, we confirmed that we can
easily implement general resource operation by CoAP as we do in HTTP. We also
confirmed that CoAP has compatibility with HTTP. This means it reduces bars for
M2M/IoT development for Web developers. This is one benefit of our ECHONET
over CoAP architecture.

Other benefit is that this gives a solution for realizing virtual CPE (vCPE). Virtual
CPE is a concept to locate CPE or a home gateway not in a home but in a cloud. This
means a home network domain is logically extended to a cloud through a wide area
network. Number of networked appliances in a home increases in near future, and
those need controllers. If we want to use local boxes for these controllers, we need
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POST [ESV=0x73] device notification

POST [ESV=0x73] device notification

ICMP error

GET [ESV=0x62] instance list request

2.05

2.05 [ESV=0x72] device notification

GET [ESV=0x62] state request

2.05 [ESV=0x72] state notification

General light deviceController

POST [ESV=0x73] state notification

2.05

POST [ESV=0x61] state set request

2.05 [ESV=0x71] state nofification

Fig. 4 An example sequence for testing

multiple controller boxes or a very high performance box to install various controller
applications in a home. To simplify this situation, vCPE gives a solution. When we
use vCPE in a cloud, we have to manage appliances through a wide area network.
When we communicate through a wide area network, we have requirements A–C
given in Sect. 2.3. Our proposed ECHONET Lite over CoAP architecture is designed
to meet these requirements so we can say our architecture is suitable for supporting
vCPE with remote appliance management capabilities.

6 Conclusion

In this paper, we studied the architecture to control and manage appliances with
resource constraint through a wide area network, such as the Internet. We first clarify
the requirements for remote control through a wide area network. Then, we ana-
lyze the standardized protocols and identify their difficulties when applying them
separately for remote control.We then propose to utilize CoAP as a transport function
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and ECHONET Lite as a data model function. We show that this combination can
solve difficulties associated with controlling appliances through awide area network.
And we thus establish an architecture to control resource constraint home appliances
through a wide area network by standardized protocol with our prototyping.

There are ongoing discussions for M2M platform at standardization groups such
as OneM2M [22]. We will consider remote appliance control for larger scale envi-
ronment by relying on the discovery functions provided by the M2M platform.

Acknowledgments We thank Noi Koike and Rumina Koike for proof reading this manuscript.
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Towards a Model Level Replication
Technique for Fault Tolerant Systems
Using AADL

Wafa Gabsi and Bechir Zalila

Abstract The replication, a technique widely used for fault tolerance purposes, is
defined as the redundancy of software, hardware or both units and their consideration
in the execution of the application. In this paper, we propose a new technique to
design replication using the AADL language and its extensibility with property sets.
We choose AADL to take advantage of its strong semantics at architecture level.
We enable the designer to model his application using AADL and to enrich it with
the property set Replication_Properties. We defined this property set to
describe the adopted concepts of replication. Then, based on a set of transformation
rules, we generate an intermediate AADL model enriched with different replicas.
Currently, we are extending the Ocarina tool suite to support automatic generation
of the target model.

1 Introduction

As the real-time critical systems are more and more complex and evolved, new
requirements for high dependability, fault tolerance and error recovery emerge. To
cope with this evolution, researchers focus on how to guarantee the dependability of
such systems since the design level.

The dependability is defined as the ability to deliver a service that can be justifiably
trusted. There are severalmeans to ensure dependability such as fault tolerancewhich
is defined as the capability of a system to continue providing services even in the
presence of errors [1].

A widely used technique to achieve fault tolerance is the replication [10]. This
technique involves repetition and multiplicity of different or symmetric components
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or treatments. It consists on considering multiple copies of a software or hardware
components and deploying them on different nodes in order to avoid the failure of the
system. Thus, critical hardware or software components, or even entire systems, are
replicated. Three main replication techniques are distinguished in the literature [10]:

1. Active replication: All replicas have the same inputs, keeping their internal state
synchronized and voting all on the same outputs. In this case, we must have a
voting algorithm to choose one between all the outputs.

2. Passive or primary-backup replication: Only one replica, called primary copy,
can ensure the inputs treatment. When the primary copy fails, one of the others,
called backup copies, is elected to take its place to provide the same functionality.

3. Semi-Active replication: Similar to the active one, all replicas receive the same
inputs and can thus treat them. However, similar to the passive replication, there is
a privileged copy (the primary) responsible for taking decisions without needing
a consensus algorithm to vote between replicas.

There are several work aiming at modeling or implementing fault tolerance tech-
niques based on replication. In our context,we dealwith active and passive replication
of both hardware and software components. We have chosen AADL (Architecture
Analysis &Design Language) [11], as an architecture description language, tomodel
fault tolerant real-time dynamically reconfigurable systems.

At the design level, as for replication modeling, existing approaches were consist-
ing on manual and explicit redundancy by replicating components, connections and
behaviors of AADL components. In the case of a very important number of repli-
cated components or even replicas number, this may cause on one hand the risk of
errors and the loss of design time on the other hand. Besides, both the design and the
implementation of the software systems are no longer focusing only on functional
concerns but also on crosscutting ones.

To solve this problem, we propose in this paper our approach, based on model
transformation, to allow us to enrich an AADL model by replication concepts. Our
contribution consists on proposing a new technique to design replication using the
properties extension provided by AADL in three steps.

The first consists on defining and validating the core model of the system using
AADL. This model can be expanded with annexes or properties to have finally the
AADL model application.

The second step consists on enriching this model with properties declared within
our defined property set, to describe the desired replication mechanism. In fact,
we defined Replication_Properties as a property set that contains a list of
property definitions. These properties describe the adopted replication concepts such
as the replication style and the number of replicas. Then, they are applied to AADL
specification in order to design the replication of some AADL components at model
level.

The final step consists on applying a list of transformation rules to reach an
expanded AADL model containing the different replicas. Thus, this approach takes
advantage of the extensions provided by the AADL language. It guarantees reducing
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the complexity of fault tolerant system and gaining the design time based on the
separation of concerns and the automatic model transformation.

The three steps will be detailed in the remainder of this paper which is organized
as follows: in Sect. 2, we present an overview of the AADL language. Then, we
detail the basic concepts of software and hardware FT techniques. We review some
related work in Sect. 3. After that, we briefly describe our global approach in Sect. 4
to design both active and passive replication with the property set detailed in Sect. 5.
Section6 describes the established transformation rules. Then, we illustrate the use
of our approach by a case study in Sect. 7. Finally, Sect. 8 concludes this paper and
gives future work.

2 Background

This section presents an overview about the AADL language. Then, it introduces the
basic concepts of software fault tolerance.

2.1 Introduction to the AADL Language

AADL is a standard consisting of both textual and graphical representationswith pre-
cise execution semantics for embedded software systems. AADL is a typed language
providing formal modeling concepts to design the runtime architectures of complex
systems and the mapping of software components onto hardware ones through inter-
faces. This standard defines several categories of components grouped into three
subsets:

1. Software components including process, thread, data, and subprog-
ram components. They may have associated source text specified using property
associations. In order to obtain a binary executable image, software source text,
coded either in a very-high-level or domain-specific language or in a traditional
programming language, can be processed by source text tools.

2. Hardware or execution platform components includingdevice,bus,memo-
ry, and processor components. They represent computing hardware compo-
nents.

3. Composite component including only the system component. It represents a
compositionof software, executionplatform, or other systemcomponents. System
modeling reflects a structure of interacting components organized into a hierarchy.

All hardware, software or composite AADL components of an AADL model
correspond to concrete entities that is why AADL is a concrete language. Each of
these components can be connected to others through features. These features contain
event and data ports, subprogram access, data access and bus
access, among others.
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Moreover,AADLcan be also used to describe the dynamic behavior of the runtime
architecture due to its modes andmode transitions. Amode represents an operational
mode state, which manifests itself as an execution platform or an application system
configuration. A mode transition consists on changing the system to a different
configuration triggered by an event or an event data on ports named in a mode
transition or an event raised by the component itself.

Finally, this language can be extendedwith either properties or annexes.AnAADL
property provides descriptive information about model entities such as component
types, component implementations or subcomponents through a named grouping of
property declarations known as property set. Thus, AADL offers the possibility to
define new properties and property types that can be included in an AADL specifica-
tion. Therefore, the declaration and use of properties become part of the specification
contrary to annexes. Annex libraries enable a designer to extend and customize the
AADL core specification with other concepts specified in a language other than
AADL. We can for example enrich an AADL specification with the AADL Error
Model annex [12] to specify fault tolerance requirements for core components like
propagation.

2.2 Software Fault Tolerance

Fault tolerance [1], one of the different means of dependability, is defined as the
capability of a system to continue providing offered services even in the presence
of errors. Fault tolerance, together with the other means of dependability, address
all similar threats that are faults, errors and failures. A fault is a physical hardware
or software defect causing service degradation. An error is an incorrect value caus-
ing a system failure. A failure manifests a deviation of the system relative to its
specification.

The error propagation is a major risk for dependability, in particular fault tol-
erance. In fact, an error is the manifestation of the fault on the system. When an
error is propagated to the service interface and deviates the service from its correct
specification, a service failure occurs as a result. The service failure can cause in
turn the failure of the whole system. In order to avoid it, software and hardware fault
tolerance are accomplished through the following techniques:

1. Error detection: consists on detecting error occurrence. It is either concomitant
or preemptive.

2. System recovery: consists on replacing the erroneous state of the system by
another safe state. This technique is based on two mechanisms:

• Error handling, eliminates errors from the state of the system. This is using one
of the following techniques or combining someof them in particular situations.
The first one, called Rollback Recovery, turns up the erroneous state
of the system to an earlier saved state. The second, called Rollforward
Recoverymoves the system to a new steady state in order to correct it. The
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last one is the compensation that provides from the beginning enough
redundancy of the system to be able to mask erroneous states.

• Fault handling, prevents the activation of fault oncemore. This can be achieved
by various ways such as diagnosis, isolation, reconfiguration and reinitializa-
tion.

3 Related Work

The literature about fault tolerance techniques used to handle software faults is fairly
vast. For example, the authors of [3] gave a survey of software techniques to han-
dle software faults developed in the fault tolerance and the autonomic computing
domains. As these techniques are all practically exploiting some form of redundancy,
they considered the impact of replication on the software architecture. After that, in
order to compare and classify techniques to handle software faults, they proposed a
taxonomy based on the nature and use of redundancy in such systems.

Authors in [4] applied redundancy patterns in the architecture design level
using Aspect Oriented Paradigm. They focused on the weaving of an original
(non-redundant) architecture model with redundancy related design patterns. This
approach aims at separating functional and non-functional design. The base model
is designed using UML. Then, an aspect model is integrated within the base one
using a model weaver. Thus, reusable fault tolerance and redundancy management
mechanisms together with their specific analysis sub-models were available in the
form of a design pattern library.

Based also on UML designs, authors in [2] propose MARTE-DAM: a profile to
support the dependability modeling and quantitative analysis. Unlike several works
aiming at extending UMLmodels with dependability annotations, this profile covers
different dependability aspects through rich domain models. The defined domain
concepts are thenmapped to elements of the UMLprofile. In particular, a redundancy
model introduces fault tolerant components which can provide a redundant structure
such as variants, deciders (adjudicators), and FT strategies. For performance and
dependability analysis and assessment purposes, authors translated the annotated
MARTE-DAM into Deterministic and Stochastic Petri Nets (DSPN) models. Even
if authors have been proposed the model refinement and dependability assessment,
they did not support code generation for MARTE-DAM.

In [9], authors proposed an approach to model and to formally verify replication
patterns in the AADL language and then analyze potentially unintended behaviors.
This approach is based on designing twoAADLmodels. The first defines the intended
behavior in synchronous call sequences and the second describes the replication
architecture. A primary-backup replication approach is designed using AADL based
on modes and mode transitions. Authors propose two replicas: one primary and one
backup. The transitions between primary and backup modes is triggered with an
event port. The latter is then connected to a transition controller unit that represents
either the human operator or the failure detection module.
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In [8], authors gave an example of a primary-backup replication strategy designed
with AADL and its behavioral Annex (AADL-BA). They modeled the core system
usingAADLcomponents and their connections through features. Threads in this case
are synchronized using dispatched events. Then, based on AADL-BA, they mod-
eled the automaton showing different states where the application can be blocked
to describe the executed call sequences of different threads. They proved also that
AADL-BA provides an interesting additional strategy to define critical regions. This
work difficulties reside in the design of complex synchronization mechanisms com-
monly used in distributed system design such asmutual exclusion. Besides, designers
who applied this approach must specify both their core system and the replication
pattern manually. There are no automatic tasks to help them generating consistent
model.

The main difference between the reviewed approaches above and our own is the
focus on:

(i) the two replication styles, active and passive one, using the same concepts based
on extending the core model with AADL property set

(ii) the automatic code generation of the enriched AADL model following a set of
model transformation rules. That is they proposed manual extension of their
model integrating active or primary-backup replication style but not both. Also
they do not take into consideration the automatic code generation of replication
mechanisms.

(iii) the separation of functional and non-functional design as the fault tolerance
requirements are specified separately by property set.

4 Proposed Approach

As we have already mentioned, we choose AADL [11] to model fault tolerant real-
time dynamically reconfigurable systems. This is for all reasons quoted in Sect. 2.1.
We proposed in previous work [6], a development process for the design, imple-
mentation and code generation of fault tolerant reconfigurable real-time systems.
We used AADL to design not only functional concerns but also crosscutting ones
using its different annexes. We decided to use the AADL standard annex E: Error
Model Annex [12] to integrate fault tolerant requirements since the design level. In
fact, this annex lets us design all types of faults, fault behavior, fault propagation,
fault detection and also fault recovery mechanisms. Despite its support of several
concepts related to fault tolerance and more generally dependability, this annex does
not support the design of replication techniques. It consists of manual redundancy of
AADL components, connections and also behaviors. However, the more the replicas
or the replicated component are, the more complex and error prone the model is. For
that, we decided to propose our own approach in order to help the designer modeling
the fault tolerant system easier with integrating replication techniques.
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Fig. 1 Replication design process

Our approach takes advantage of the possible extensions of AADL using prop-
erty sets and annexes. To integrate the model of replication techniques since the
design level, we decided to enrich the basic AADL model by a property set that we
defined and baptized Replication_Properties. It has a set of property decla-
rations and property types describing the adopted replication mechanism as detailed
in Sect. 5.

For that, we propose a model driven approach based on AADL model transfor-
mation as shown in Fig. 1. Our approach consists on three steps.

We start from a basic (non-redundant) AADL specification model describing an
embedded real-time system. We offer the possibility to the designer to enhance his
model by predefined properties and annexes. For example, the designer extends his
model by clauses from the Error Model Annex for fault tolerance purposes. After
that, the designer enriches his AADL model by properties related to the replication
strategies through our property set Replication_Properties.

After specifying all properties, we validate them before automatically generating
an intermediate AADL model enriched with different replicas and deciders. The
application of the replication techniques may violate real-time constraints or the
originalmodel properties like scheduling or access rights to shared data. Furthermore,
if a replicated component of the model is enriched by properties or annexes, then all
replicas should inherit them. For example, replicated components may be enriched
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with the Error Model Annex to model detected and propagated errors and their
behaviors in case of errors. So, if a thread is at the same time a replication object and
has a particular behavior in case of detected errors, then all generated threads should
have the same behavior if the same error is detected. Thus, the replicas are enriched
also with the same annexes as well as the replicated one.

For this, we defined a set of transformation rules to govern the model generation
process in order to map between the basic AADL model and its extended version
with replication concepts. It concerns the generation of either new components (like
variants and deciders) or connections between original and generated ones. It ensures
also the treatment of the behaviors of the replicas and the decider. These rules are first
established manually and then translated into some algorithms implemented from
scratch to ensure model transformation. We implemented these rules as an extension
of the Ocarina tool suite [14] for these reasons. Ocarina is used to manipulate AADL
models. It ensures their syntactic and semantic analysis. In addition, this tool supports
scheduling analysis of AADL model with Cheddar [13]. Besides, it offers formal
model generation from AADL models with Petri nets. Finally, it allows to generate
the code corresponding to the functional part of an AADL specification into Ada,
C, or RTSJ (Real Time Specification for Java).

Once the intermediate model is generated and validated, the Ocarina tool suite
allows us to generate functional concerns into Ada as it is well adapted to implement
real-time embedded systems. For compliance reasons, to generate crosscutting con-
cerns code, we selected AspectAda [5] language. In fact, this language extends the
Ada language by aspect concepts. Its design and implementation were defined by
the way that it respects real-time constraints. The separation of concerns guarantees
better code quality and modularity. It also allows to simplify the validation of either
model or code applicationwithout effecting each other. Thereby, we can either ensure
model analysis or verification of the generated AADL resulting model or generate its
corresponding application code (into Ada, C or RTSJ). We can also re-enrich it again
by the Replication_Properties applied to another component as depicted
in Fig. 1.

5 Description of Our Property Set

In the previous section, we have described our approach based on the extension of an
AADL model with the Replication_Properties property set to enrich it by
replication concepts. It contains several properties describingwith details the adopted
replication mechanism. In this section, we list and explain properties specifically
defined for replication purposes.
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5.1 Replication Context Description

To describe the context of replication, we defined a property baptized Descrip-
tion. The designer gives details about the purpose of replication, its manner or its
requirements.

Since this property provides information about the context of replication without
any impact on the replication policies, it will be generated as a comment. It is to
contribute to the documentation of the generated intermediate model helping the
designer understand it.

5.2 Number of Replicas

Using our approach, a single model can support several replicated components.
To set the number of replicas that we desire model, we defined a property named
Replica_Number applied to a given replicated component. This property is set by
the designer and corresponds exactly to the number of replicated components at the
generated model level. According to [7], the number of replicas (variants) depends
not only on the FT strategy (RB,1 NSCP2 or NVP3) (soft or solid) of faults to be
tolerated. Thus, we decided to bound the number of replicas through two parame-
terized constants, Min_Nbr_Replica and Max_Nbr_Replica, which define
respectively the minimal and the maximal number of replicas in the application. In
order to give more flexibility to our approach, both constants can be changed by the
designer when using our property set.

5.3 Identifiers of Replicas

In order to identify each of the generated replicas, we defined a property named
Replica_Identifiers composed of a list of string. Each represents an identi-
fier of a generated replica.

5.4 Replication Style

As said above, we are interested in our context to active and passive replication of
both hardware and software components. For that, we have defined a property type
called Replication_Types to describe the adopted style of replication. Such a

1Recovery Block.
2N Self-Checking Programming.
3N-Version Programming.
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property specifies the associated replication type to a given replicated component.
The replication style is then set by the defined property named Replica_Type.
The value of this property may be either ACTIVE or PASSIVE. There is no default
value for such a property: if this property is not specified, the replication type is
undefined and an error is raised to the designer.

5.5 Consensus Algorithm

The consensus (or agreement) algorithm is required in two cases related to the repli-
cation style. The first is to elect from one or more secondary copies a new primary
copy in case of failure of the current one, in the context of passive replication. The
second is to vote between the different replicas in the context of active replication. In
both cases, this algorithm can be described via an AADL subprogram component.

The implementation of an AADL subprogram is supplied by the user either as
an external file written with another language like Ada or C, or as an element of
the AADL model itself executed by a thread. In order to refer to elements of the
AADL model itself, AADL defines two kinds of property types: the classifier
and the reference. For that, to cover all possible cases, we have defined 3 proper-
ties: Consensus_Algorithm_Source_Text, Consensus_Algorithm-
_Class and Consensus_Algorithm_Ref. These three properties are applied
to different kinds of components. They can be applied to features (ports or data
access) in the case of active replication of either software or hardware components.
In this case, it has a set of outputs that to make decision about same outputs from
several replicated components, we apply the consensus algorithm to these features.
In case of passive replication, the property describing consensus algorithm must be
applied to the replicated component as it is an election algorithm for the decision
about the choice of primary copy.

There are no default values for all these properties: if one of them is not specified
for a given replicated component, the replication extension is not performed and an
error is raised to the designer.

All of these properties contained in the property set Replication_Proper-
ties were validated by the Ocarina tool suite. Considering it as an AADL specifi-
cation, this property set was parsed successfully. It was then validated using a set of
AADL model examples. In the following, we present a set of transformation rules
illustrated by some examples. Some proofs of validation are given and other less
important are omitted due to the lack of space.4

4More details about the Replication_Properties property set, the transformation algo-
rithms and the case study are available at http://goo.gl/EEQhLK.

http://goo.gl/EEQhLK
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6 Model Transformation

As noted previously, we propose in this work the extension of AADLwith replication
concepts. In the first step, the designer specifies his architectural model. The con-
ceived model is then enriched by a set of properties that we defined in the previous
section. After that, based on defined transformation rules, we generate automatically
an intermediate AADL model extended with replicas and decider specification. It
consists on a direct-manipulation M2M transformation to integrate replication poli-
cies to the basic model in order to save effort and reduce errors. Based on automatic
generation, we aim at applying a set of transformation rules to get a new enriched
model that has to be itself consistent and coherent. The transformation rules, to
map the replication concepts into the enriched AADL model, depend on various
constraints described in the following subsections.

6.1 Replicated AADL Component Subset

The replication of software component is quite different from hardware or hybrid
components. This difference is due to the containment hierarchy of these components
and then the possible connections that can be established, the modes clauses that can
be or cannot be declared and finally the conjunction with the decider regarding the
AADL hierarchy. In addition, by FT communities (for example in [7]), software and
hardware fault tolerance architectures and even implementations are not similarly
applicable.

For that, we have studied the possibility of replication for each type of component.
We support the replication of threads and processes as software components
and processors and devices as hardware components. We support also the
replication of the component system. We do not support the replication of data
and subprogram components as we require in this case to apply diversity concepts
and not replication ones [3]. In fact, the diversity aims at providing the same service
through a distinct model and implementation. Replication of identical subprograms
does not guarantee better reliability from the treatment viewpoint. For that, we have
applied the property declarations defined in the Replication_Properties
property set into only a subset of the AADL components that we find necessary and
consistent.

6.2 Replication Type

The generation of theAADLmodel enriched by replicas strongly depends on the type
of replication defined by the property Replication_Properties::Repli-
ca_Type.
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The adopted replication policies are not the same in the case of active or passive
replication.

• Active Replication: The generated model contains Replica_Number repli-
cas generated inside the same containment hierarchy of the replicated component.
Each of them is then connected directly or remotely to a generated or called decider
(voter in this case) depending on the property used to specify the consensus algo-
rithm and the type of the replicated component. This replication type distinguishes
between software, hardware and system component.

• Primary-backup Replication: Unlike active replication, passive one does not dis-
tinguish between the different possible types of replication component object. This
type of replication, based on the migration between two or more configurations,
imposes the generation of Replica_Number identical components supporting
the dynamic reconfiguration to obey the adaptation needs. To do this, we decided
to use the concepts of modes and mode transitions provided by the AADL stan-
dard to describe the dynamic behavior of the runtime architecture. Therefore, it
is necessary to establish the suitable reconfiguration constraints, responsible of
switching between modes, to guarantee that mode transition always bring us to a
new safe mode.

6.3 Features of the Replicated Component

The type of features (ports, data access or subprogram access) affects
the assumed replication policies. For each feature of replicated component of type
in out or out port or data access, we specify its corresponding voter
subprogram. That means that the consensus algorithm property is applied to each
feature of the replicated component and not to the component itself in the case of
active replication unlike the passive replication.

6.4 Consensus Algorithm

The property describing the consensus algorithm has a significant impact on the
generated model. The different properties, described in Sect. 5.5, support several
configurations of the decider. So, such a property specifies the way that connects
replicas to voter even by remote connection in the case of hardware component. For
that, we conducted a depth study aiming at discussing all possible cases of active
replication of AADL components to tolerate both software and hardware faults.

The description of the consensus algorithm is set through one of the three proper-
ties that we have already defined. This property, applied to the replicated component
or to each of its features, is then transformed to an AADL subprogram. To be exe-
cuted, this subprogram must be called by an existent or a generated thread located
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Table 1 Generated voter depending on the replicated component type

Replicated component type Generated voter

Software Thread – Thread

– Located at the same
containment hierarchy of the
replicated component
(process)

– Calls the voter subprogram

Process – Process

– Located at the same
containment hierarchy of the
replicated component (system)

– If not specified, runs on the
same processor of the original
replica

– Contains itself one voter
thread calling the voter
subprogram

Hardware or Hybrid – Thread

– The voter must be generated
inside a software component to
be executed. For that, we have
to follow the routing
connections starting from each
feature of the replicated
component until reaching the
process to which it is linked

itself in a process component. For that, we consider the following different cases
summarized in Table1.

Currently, we are implementing the different transformation algorithms as an
extension of the Ocarina tool suite to support replication mechanisms.

7 Case Study

To validate our approach, we describe in this section an example of a simple AADL
specification chosen as a case study. This system, presented in Fig. 2, is composed
of an AADL system containing three devices describing different sensors and two
processes bound onto the same processor. This system is then extended progres-
sively to illustrate our approach. For example, to apply an active replication of the
temperature_sensor component described with a device AADL component,
we extended its textual description by the lines described in listing 1. We illustrate
in this listing the use of the properties defined and explained in previous sections.
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Fig. 2 AADL specification of the basic case study

Listing 1: Replication of the temperature_Sensor device component

1 system implementation global . impl
2 . . .
3 properties
4 Replication_Properties : : Description => "The temperature sensor Replication"
5 applies to temperature_Sensor ;
6 Replication_Properties : :Replica_Number=> 3 applies to temperature_Sensor ;
7 Replication_Properties : :Replica_Type=> ACTIVE applies to temperature_Sensor ;
8 Replication_Properties : : Replica_Identifiers=> ("temp1" , "temp2" , "temp3")
9 applies to temperature_Sensor ;

10 Replication_Properties : :Consensus_Algorithm_Source_Text => "Voting .Do_Vote"
11 applies to temperature_Sensor . sensor_Out ;

We show in Fig. 3 the generated model after applying the active replication of
the temperature sensor described in Fig. 2 and specified by the properties extensions
described in listing 1. This involves creating replicas (temp1, temp2 and temp3)
and voters (thread Voter) and establishing the necessary connections between
them and original components (handling_Pro and th1). Generated components
inherit automatically the properties applied to the replicated component.

As previously noted, the replication of software component is distinct to the
hardware or composite components. For that, we give an other example enriching
our case study to illustrate the active replication of a process component. In fact,
we extended the generated intermediate model by applying again the replication
properties as depicted in listing 2. We show also in this example, the application of
the different consensus algorithm into each kind of feature of the replicated process
component.
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Listing 2: Replication of the handling_Pro process component

1 system implementation global . impl
2 . . .
3 properties
4 Replication_Properties : : Description => "Handling process replication"
5 applies to handling_Pro ;
6 Replication_Properties : :Replica_Number => 2 applies to handling_Pro ;
7 Replication_Properties : :Replica_Type => ACTIVE applies to handling_Pro ;
8 Replication_Properties : : Replica_Identifiers => ("handling_Pro" ,
9 "handling_Pro_bis") applies to handling_Pro ;

10 Replication_Properties : :Consensus_Algorithm_Source_Text => "Voting .Do_Vote"
11 applies to handling_Pro .ProOut_data ;
12 Replication_Properties : :Consensus_Algorithm_Ref => reference
13 (actuating_Pro . action_Thread . spg_call ) applies to handling_Pro .DataAccess;
14 Replication_Properties : :Consensus_Algorithm_Class => classif ier
15 (Do_treatment) applies to handling_Pro .ProOut;

Fig. 3 Active replication of a device component

We do not represent the model resulting from the replication of the process
handling_Pro due to the lack of space.5

The resulting model was validated and instantiated using ocarina. The code appli-
cation can be after that generated into Ada, C or RTSJ. If desired, other analyses

5The textual model generated after applying the list of transformation rules of the model shown in
Fig. 3 and enriched with properties in listing 2 is available at http://goo.gl/EEQhLK.

http://goo.gl/EEQhLK
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can thereby be applied on this resulting model such as schedulability analysis with
cheddar or evaluation of the dependability measures with Petri nets.

We deduce from this case study how much the generated model is complicated.
Instead of doing it manually, our approach helps the designers to save efforts and
reduce the design time and the risk of errors that may appear due to the impor-
tant number of components and connections. This is by ensuring automatic model
transformation using our extension of the Ocarina tool suite.

8 Conclusion and Future Work

We proposed, in this paper, a model level replication approach based on AADL
extension to ensure fault tolerance. We took advantage of the extensions possible for
AADL language. We defined our property set to support replication concepts since
the design level. Then, based on a set of transformation rules, we offer the automatic
generation of a new AADL specification enriched with replication concepts. Thus,
we help the designer to model his fault tolerant system using AADL easier, at lower
costs and more safely.

We have achieved the definition of the transformation rules. We have also inte-
grated the property set Replication_Properties into theOcarina tool support
and extended it by the implementation of the transformation rules.

To validate our approach, we tested the model generation for some examples. We
gave an example of an AADL specification enriched by active replication of both a
device and a process component.

As futurework,we aimat accomplishing the implementation of the transformation
rules related to the primary-backup replication based onmodes andmode transitions.
Finally, we aim at formally verifying and proving the correctness of the generated
model using a model checker.
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Model Inference of Mobile Applications
with Dynamic State Abstraction

Sébastien Salva, Patrice Laurençot and Stassia R. Zafimiharisoa

Abstract We propose an automatic testing method of mobile applications, which
also learns formal models expressing navigational paths and application states. We
focus on the quality of the models to later perform analysis (verification or test
case generation). In this context, our algorithm infers formal and exact models that
capture the events applied while testing, the content of the observed screens and the
application environment changes. A key feature of the algorithm is that it avoids the
state space explosion problem by dynamically constructing state equivalence classes
to slice the state space domain of an application in a finitemanner and to explore these
equivalence classes. We implemented this algorithm on the tool MCrawlT that was
used for experimentations. The results show that MCrawlT achieves significantly
better code coverage than several available tools in a given time budget.

Keywords Model inference · Automatic testing · Android applications · State
abstraction

1 Introduction

Desktop, Web and more recently mobile applications are becoming increasingly
prevalent nowadays and a plethora are now developed for several heterogeneous
platforms. All these pieces of software need to be tested to assess the quality of
their features in terms of functionalities e.g., conformance, security, performance,
etc. Manual testing is the most employed approach for testing them, but manual
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testing is often error-prone and insufficient to achieve high code coverage. These
applications share a common feature that can be used for automatic testing: they
expose GUIs (Graphical User Interface) for user interaction which can be automati-
cally experimented and explored. Several works already deal with GUI applications
testing e.g., desktop applications [9], Web applications [3] or mobile ones [2]. These
approaches interact with applications in an attempt to detect bugs and eventually to
record models, but all with the same purpose: to obtain good code coverage quickly.

The work, proposed in this paper, falls under this automatic testing category and
tackles the testing of mobile applications but also, and above all the learning of mod-
els. Our study of model inference techniques has revealed that they often leave aside
the notion of correctness of the learned models. This feature is not required for just
detecting bug, but is mandatory if models are later used for analysis. Indeed, false
models may easily lead to false positives. The quality of the model with regards to its
level of abstraction and the amount of information it captures is important as well.
Indeed, the more data we collect, the more precise an analysis can be done there-
after. Nevertheless, large amounts of data often lead to large models, up to a state
space explosion problem. Based on these observations, we propose an algorithm
that aims at learning exact models of mobile applications. We consider the PLTS
model (Parameterised Labelled Transition System) to capture the different events
made on GUIs. PLTS states also capture all the observed screen contents and notifi-
cations about the modifications of the application environment. These notifications
signal system events e.g., local database modifications or remote server calls. All this
amount of data provide a rich expressiveness that is used while learning the model
and that may be later considered for precise model analysis. To avoid a state space
explosion, our algorithm dynamically builds state equivalence classes while testing.
Each time a new state is discovered, it dynamically re-adjusts the state equivalence
relation and classes to limit the state set. These equivalence classes also help recog-
nise similar states that do not require to be explored. Like some available tools [7, 8],
our algorithm can also detect application crashes and create test cases for replaying
bugs.

We proceed as follows: Sect. 2 briefly presents some related work before intro-
ducing an overview of our algorithm that we apply on a straightforward Android
application example in Sect. 3. We define the model, the state equivalence relation,
and we provide the model inference algorithm in Sect. 4. We give an empirical eval-
uation on Android applications in Sect. 5 and conclude in Sect. 6.

2 Related Work

Several papers dealing with automatic testing and model generation approaches of
black-box systems were issued in the last decade. Due to lack of room, we only
present some of them relative to our work. Memon et al. [9] initially presented
GUI Ripper, a tool for scanning desktop applications. This tool produces event flow
graphs and trees showing the GUI execution behaviours. Only the click event can be
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applied and GUI Ripper produces many false event sequences which may need to be
weeded out later. Furthermore, the actions provided in the generatedmodels are quite
simple (no parameters). Mesbah et al. [10] proposed the tool Crawljax specialised in
Ajax applications. It produces state machine models to capture the changes of DOM
structures of the HTML documents by means of events (click, mouseover,etc.). To
avoid the state explosion problem, state abstractions must be given manually to
extract a model with a manageable size. Furthermore, the concatenation of identical
states proposed in [10] is done in our work by minimisation.

Google’s Monkey [7] is a random testing tool that is considered as a reference
in many papers dealing with Android application automatic testing. However, it
cannot simulate complex workloads such as authentication, hence it offers light code
coverage in such situations. Dynodroid [8] is an extension of Monkey supporting
system events. No model is provided. Amalfitano et al. [1] proposed AndroidRipper,
a crawler for crash testing and for regression test case generation. A simple model,
called GUI tree, depicts the observed screens. Then, paths of the tree not terminated
by a crash detection, are used to re-generate regression test cases. Yang et al. proposed
the tool Orbit [12] whose novelty lies in the static analysis of Android application
source code to infer the events that can be applied on screens. Then, a classical
crawling technique is employed to derive a tree labelled by events. The algorithm
implemented in SwiftHand [4] is based on the learning algorithm L∗ to generate
approximate models. The algorithm is composed of a testing engine, which executes
applications to check if event sequences meet the model under generation until a
counterexample is found. An active learning algorithm repeatedly asks the testing
engine observation sequences to infer and eventually regenerate the model w.r.t. all
the event and observation sequences.

To prevent from a state space explosion, the approaches [9, 10, 12] require state-
abstractions given by users and specified in a high level of abstraction. Choi et al. [4]
prefer using the approximate learning algorithm L∗. These choices are particularly
suitable for inferring models for comprehension aid, but these models often are over
approximations and given in a high level of abstraction, which may lead to many
false positives with test case generation. In this paper, we focus on the inference
of exact models. As in [1, 10], we consider the notion of state abstraction that we
formally define to limit the state space domain to be explored. But, our algorithm
also dynamically re-adjusts state equivalence classes to restrain the exploration and
constructs a state abstraction according to the content of the application.

3 Overview

In the following, we present an overview on our model inference algorithm. Before-
hand, we give some assumptions on mobile applications considered to design our
approach:

Mobile application testing: we consider black-box applications which can be
exercised through screens. It is possible to dynamically inspect application states
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to collect Widget properties. The set of UI events enabled on a screen should be
collected as well. If not, Widgets provide enough information (type, etc.) to deter-
mine the set of events that may be triggered. Furthermore, any new screen can be
observed and inspected (including application crashes). The application environment
modifications (databases, network traffic, etc.) can be observed with probes,

Application reset: we assume that mobile applications and their environments
(database, remote servers or mocked servers, Operating Systems) can be reset,

Back mechanism availability: several operating systems or applications (Web
navigators, etc.) also propose a specialisedmechanism, called the back mechanism to
let users going back to the previous state of an application by undoing its last action.
We do not consider that this mechanism is necessarily available and, if available, we
assume that it does not always allow to go back to the previous state of an application
(wrong implementation, unreachable state, etc.). Most of the other methods assume
that the back mechanism always works as expected [1, 8], but this is frequently not
the case.

3.1 Terminology

Mobile applications depict screens, which represent application states, the number of
states being potentially infinite. Screens are built by application components; here we
take back the notation usedwithAndroid applications, i.e.Activities. The later display
screens by instantiating Widgets (buttons, text fields, etc.) which are organised into
a tree structure. They also declare the available events that may be triggered by users
(click, swipe, etc.). A Widget is characterised by a set of properties (colour, text
values, etc.). Hence, one Activity can depict several screens, composed of different
Widgets or composed of the same Widgets but having different properties.

Figure1 depicts the screens of an Android application example used through-
out the paper. This application converts colour formats from RGB to HSL (hue-
saturation-lightness) and vice-versa by means of two radio buttons r1 and r2. When
the button Convert is pressed, the value entered in the blank text field t xt is con-
verted and the result appears in the red text field result . The chosen colour is also
displayed in a colour-box which is depicted at the screen bottom. This application is
composed of one Activity which can display an infinite number of screens composed
of different text fields values and colour-boxes.

3.2 Algorithm Overview

Figure2 introduces an overview of our algorithm which is composed of two parts.
The algorithm is framed on the task-pool paradigm (Fig. 2a). Tasks are placed into
the task-pool, implemented as an ordered list, and each can be executed in parallel.
A task Explore(q, p) corresponds to one screen to explore. A screen is transcribed
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Fig. 1 Colour converter android application

Fig. 2 Overview of the model inference algorithm. a Application exploration algorithm. b Explore
procedure

by the state q gathering all the Widget properties composing the screen and p is a
path allowing to reach q from the initial state q0. When there is no more task to do,
the exploration implicitly ends. The resulting model is then minimised to be more
readable.

The exploration of one state (Fig. 2b) is done by the Explore procedure. A set of
test events (parameter values combined with an event set), which match the current
application state, is firstly generated. The current screen is experimented with every
test event to produce new screens. However, this step may lead to an infinite set of
states to explore. To avoid this well-known issue, the algorithm slices the state space
domain into a finite state equivalence class set by means of an equivalence relation
(defined in Sect. 4.1). A state which belongs to a previously discovered equivalence
class is marked as final otherwise it has to be explored. Intuitively, for every new built
state q2 (step 2), the algorithm eventually readjusts the state abstraction to limit the



182 S. Salva et al.

Fig. 3 PLTS generation example. a q0 exploration. b Final exploration. c PLTS minimisation

state set size (step 3). It scans the detected equivalence classes and checks if some
of them (three or more in the algorithm) are different only on account of one Widget
property. If so, it has detected a Widget property which may lead to the construction
of several equivalence classes and states to explore (up to an infinite set of states).
Consequently, it readjusts the equivalence relation, classes and themodel bymasking
this Widget property. This means that this property is no more taken into account for
the equivalence class computation. Therefore, the new state q2 belongs automatically
to an already discovered equivalence class and so, it will not be explored. No new
equivalence class is built either. Then, the algorithm checks if new states have to be
explored (step 4). Finally, the algorithm tries to backtrack the application to go back
to its previous state by undoing the previous action. If it doesn’t work, the application
and its environment (OS, databases, etc.) are reset and the previous path p is used to
reach the state which is currently under exploration.

Figure3 illustrates with simplified graphs (no PLTSs) how the algorithm works
on the example of Fig. 1. For simplicity, only three values are considered for testing:
colour red (rgb=255,0,0 or hsv=0,100,50), green and blue. We also assume that these
values are always used for testing in the same order. The equivalence relation is: two
states are equivalent if they have the same Widget properties, except those related to
text field values. These last properties are usually not considered for conceiving state
abstractions since these often lead to a large potentially infinite set of states. Further-
more, if a Widget property takes more than two values in the different equivalence
classes then the relation has to be re-adjusted.
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1. Initially, we have a state q0 which corresponds to the beginning of the application
(Fig. 1a) and the corresponding equivalence class [q0]. A list of test events is
generated from q0: the events click on the radio-buttons r1, r2 or on the button
conv are combined with the colour values that are injected into the blank text field
t xt . The application is firstly experimented with the click on r1 and with the red
colour value. This produces a new screen and a state q0_1 which belongs to the
same equivalence class [q0] because only the text field t xt is modified. This new
state is marked as final (in grey in Fig. 3) and is not explored. The application is
backtracked to return to q0.With the other colours, we also reach final states q0_2
and q0_3 which are marked as final because they belong to the same equivalence
class [q0].

Then, the radio-button r2 is clicked, with the red colour. We obtain a new state
q1 (Fig. 1b) and a new equivalence class [q1] since r2 is now enabled. Therefore,
we get a new task Explore(q1, p′). Once more, the application is backtracked.
When using the other colour values, we obtain the states q1_1 and q1_2 that are
marked as final since these belong to [q1]. No task is created.

When the conv button is clicked, a value appears in the text field result and
a colour is depicted in the colour-box (Fig. 1c). We obtain a state q2, which has
to be explored, and a new equivalence class [q2]. Next, conv is clicked with
the green colour. The state q2_1 is built with a new equivalence class [q2_1].
This state is not marked as final since the colour-box displays a new colour. This
process should continue for every colour and in particular with the blue one,
which produces the state q2_2. A state space explosion may happens here. But
the algorithm detects that three equivalence classes are different only on account
of the same property colourbox.colour. The algorithm readjusts the equivalence
relation to limit the state set size. Intuitively, the equivalence relation becomes
two states are equivalent if they have the same Widget properties, except those
related to text field values and to the colourbox.colour property. Then, it updates
states and equivalence classes to match this new relation. As a consequence,
[q2], [q2_1] and q2_2] are now merged into [q2]. The new state q2_2 now
belongs to an existing equivalence class and is hence marked as final. The first
task Explore(q0, p) is finished and we obtain the graph depicted in Fig. 3a,

2. We assume that the task Explore(q1, q0
click r2,t xt=red−−−−−−−−−→ q1) is picked out to

explore q1. A list of test event, which is the same as previously is constructed.
From the state q1, when the button conv is clicked with the red colour value, a
new state q3 is added because the colour box appears. When conv is clicked with
other colour values and events we only obtain final states, since they belong to
previously discovered equivalence classes,

3. the same reasoning is followed on states q2, q2_1 and q3, but only final states
are added (no task). We obtain the PLTS of Fig. 3b,

4. the task-pool is empty. The PLTS is finally minimised [6]. Here, the final states
are merged to one unique state as illustrated in Fig. 3c.
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In this short example, we have shown that our algorithm avoids the state explosion
problem and ends once at least one state of all the detected equivalence classes is
explored. In the following, we describe formally the model, the equivalence relation,
and the algorithm.

4 Model Inference Algorithm

4.1 Mobile Application Modelling with PLTS

We use PLTSs as models for representing mobile applications. A PLTS is a kind
of state machine extended with variables and guards on transitions. Beforehand, we
assume that there exist a domain of values denoted D and a variable set X taking
values in D. The assignment of variables in Y ⊆ X to elements of D is denoted with
a mapping α : Y → D. We denote DY the assignment set over Y .

Definition 1 (PLTS) A PLTS (Parameterised Labelled Transition System) is a tuple
< V, I, Q, q0,Σ,→> where:

• V ⊆ X is the finite set of variables, I ⊆ X is the finite set of parameters used with
actions,

• Q is the finite set of states, such that a state q ∈ Q is an assignment over DV , q0
is the initial state composed of the initial condition DV 0,

• Σ is the finite set of valued actions a(α) with α ⊆ DI ,
• →⊆ Q×Σ× Q is the transition relation. A transition (q, a(α), q ′) is also denoted

q
a(α)−−→ q ′.

The behaviour of a PLTS P is characterised by its sequences of valued actions
starting from its initial state q0. These sequences are also called the traces of P:

Definition 2 (PLTS Traces) Let P =< V, I, Q, q0,Σ,→> be a PLTS. T races(P)

= T races(q0) = {a1(α1)...an(αn) | ∃q1, ...qn, q0
a1(α1)−−−→ q1...qn−1

an(αn)−−−→ qn ∈
(→)∗}.

We model mobile application behaviours with PLTSs by encoding (UI) events
with actions. We also store the properties collected from screens (Widget properties)
and notifications about the application environment changes in states with variable
assignments:

UI Events Representation

We interact with mobile applications by means of events, e.g., a click on a button,
and by entering values into editable Widgets. We capture such events with PLTS
actions of the form event (α) with α = {widget := w, w1 := val1, ..., wn := valn}
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an assignment over DI ; the parameter widget denotes the Widget name on which is
applied the event and the remaining variables are assignments of Widget properties.
We denote the triggering of the back mechanism with the action back(α) with α an
empty assignment.

Application State Representation

We specialise PLTS states to store the content of screens (Widget properties) in such a
way as to facilitate the construction of equivalence classes of states.We split the set of
Widget properties into two categories: we gathers in the set W the Widget properties
that indicate a strong application behaviourmodification and that take only fewvalues
e.g., Widget visibility, size, etc. The others that usually take a lot of different values
such as the properties about text field values, are placed into W c. This separation
affects the state representation: we denotew p the assignment composed of properties
in W , while the assignment wo is composed of the other Widget properties. A PLTS
state q is then a specific assignment of the form act ∪ w p ∪ wo ∪ env ∪ end
where:

• act is an assignment returning an Activity name,
• (w p, wo) are twoWidget property assignments. The union of w p and wo gives all
the property values of an application screen displayed by act .

• env is a boolean assignment indicating whether the application environment has
been modified,

• end is a boolean assignment marking a state as final or not.

For readability, a state q = act ∪ w p ∪ wo ∪ env ∪ end is denoted
(act, w p, wo, env, end). This state structure eases the definition of the state equiv-
alence relation given below:

Definition 3 (State equivalence relation) Let P =< V, I, Q, q0,Σ,→> be a
PLTS and for i = (1, 2) let qi = (acti , w pi , woi , envi , endi ), be two states in
Q. We say that q1 is equivalent to q2, denoted q1 ∼ q2 iff act1 = act2, w p1 = w p2
and env1 = env2. [q] denotes the equivalence class of equivalent states of q. Q/∼
stands for the set of all equivalence classes in Q.

This definition gives a very adaptable state equivalence relation whose meaning
can be modified by altering the assignments w p. If we take back our example,
one can consider two states q1 � q2 which are different only because they do not
include the same assignments of theWidget property colourbox.colour (act1 = act2,
env1 = env2, but w p1 
= w p2). We have two equivalence classes [q1], [q2]. The
equivalence relation is adaptable in the sense thatw pi can be changed as follows: ifwe
consider that colourbox.colour takes too much values and implies to much different
equivalence classes, colourbox.colour can be shifted from w pi to woi (i = 1, 2)
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in states. We obtain w p1 = w p2, q1 ∼ q2 and only one equivalence class [q1].
Intuitively, our algorithm uses this adjustment process to dynamically reduce the
equivalence class domain and the state exploration according to the screen content.

4.2 Model Inference Algorithm

In this section, we describe more precisely the Explore procedure (second part of the
overview in Fig. 2) whose pseudo code is given in Algorithm 1. Due to lack of room,
the task-pool management algorithm can be found in [11].

As stated above, this procedure aims at visiting one state to augment the PLTS
under construction, denoted P , with new transitions and states and to eventually
produce new tasks Explore(q, p) added to the task-pool. Its steps are explained
below:

• Test data generation and execution (lines 4–11): the current screen is analysed
to generate a set of events expressing how to complete Widgets with values and
to trigger an event. In short, our algorithm generates a set of events of the form
{event (α) | event is an event, α is an assignment}. It starts collecting the events
that may be applied on the different Widgets of the current screen. Then, it con-
structs assignments of the form w1 = v1 ∧ ... ∧ wn = vn, with (w1, ..., wn) the
list of editable Widget properties found on the screen and (v1, ..., vn), a list of
test values. Instead of only using random values, we propose to use several data
sets: a set User gathering values manually chosen such as logins and passwords,
a set RV composed of values well known for detecting bugs e.g., String values
like “&”, “”, or null, and of random values. A last set, denoted Fakedata, is com-
posed of fake user identities. Furthermore, we adopted a Pairwise technique [5]
to derive a set of assignment tuples over these data sets. Assuming that errors can
be revealed by modifying pairs of variables, this technique strongly reduces the
coverage of variable domains by constructing discrete combinations for pair of
parameters only. Then, each event (α) is applied on the current screen to produce
new ones (application crash included). Each screen is analysed to retrieve Widget
properties and the activity which produces this screen. Probes are requested to
detect if the application environment were modified. These data are formalised by
the state q2,

• Model readjustment: the Explore procedure now checkswhether the re-adjustment
of P and of the state equivalence classes is required (lines 9–12). We denote
CW prop(Q/∼) the number of assignments of the same Widget property W prop
found in the set of equivalence classes Q/∼. CW prop(Q/∼m) = card({α =
(W prop := val) | [q] ∈ Q/∼, q = (act, w p, wo, env, end), α ∈ w p}). For
each assignment α = (W prop := val) in w p2, we check how much values
the Widget property W prop takes in the equivalence classes: if W prop takes
more than 2 values in Q/∼ (if card(CW prop)(Q/∼) > 2), then we re-adjust the
state representation. In every state q = (act, w p, wo, env, end) of Q ∪ {q2}, the
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assignments of the form (W prop := val) are shifted from w p to wo (procedure
Readjust in Algorithm 1 line 11). The equivalence classes are also transformed in
accordance (procedure Readjust line 12),

• PLTS completion: a new transition q
event (α)−−−−−→ q2 is added to the PLTS P (lines 13-

20). q2 is marked as final if q2 belongs to an existing equivalence class. Otherwise
(line 17), q2 has the assignment (end := f alse) and a new task Explore(q2, p′) is
added to the task pool. Since the algorithm is highly parallelisable, we use critical
sections to modify the PLTS P (which is shared among threads),

• Application backtracking: to apply the next event, the Explore procedure calls the
Backtrack one (line 21) to reach the previous screen and state q. Its algorithm is
given in Algorithm 2. Here the notion of application environment really makes
a difference to achieve an exact model: if the current state q2 has an assignment
(env := f alse), its reflects the fact that the application environment has not be
modified, therefore the Backtrack procedure calls the back mechanism to undo the
most recent action (if available). We observe a new screen and check whether it is
equivalent to the previous screen stored in q (we compare theirWidget properties).
Otherwise, the application and its environment are reset andwe re-execute the path
p to reach the state q (Algorithm 2, line 7) (here, we assume that the application
is deterministic though).

Algorithm 1: Explore Procedure
Procedure Explore(q, p);1
Events = GenEvents, analyse the current screen to generate the set of events2
{event (α) | event is an event, α is an assignment};
foreach event (α) ∈ Events do3

Experiment event (α) on App → new screen I new;4
Analyse I new → assignments act2, w p2, wo2;5
Analyse the application environment → env2;6
q2 = (act2, w p2, wo2, env2, end := null);7
foreach α = {W prop := val} ∈ w p2 do8

if card(CW prop(Q/∼) ∪ {α}) > 2 then9
Read just (Q ∪ {q2}, W prop);10
Read just (Q/∼, W prop);11

if I new reflects a crash or there exists [q ′] ∈ Q/∼ such that q2 ∈ [q ′] then12

{Add a transition q
event (α)−−−−−→ q2 = (act2, w p2, wo2, env2, end := true) to →P ;13

} (in critical section)14

else15

{Add a transition t = q
event (α)−−−−−→ q2 = (act2, w p2, wo2, env2, end := f alse) to16

→P ;
Q/∼ = Q/∼ ∪ {[q2]};17
Add the task (Explore(q2, p.t)) to the task-pool;18
} (in critical section)19

Backtrack(q2, q, p);20
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4.3 PLTS Minimisation

Our algorithm performs a minimisation on the first generated PLTS to achieve a
more readable model. We have chosen a bisimulation minimisation technique since
this one still preserves the functional behaviours represented in the original model
while reducing the state space domain. A detailed algorithm can be found in [6]. In
short, this algorithm constructs sets (blocks) of states that are bisimilar equivalent
(any action from one of them can be matched by the same action from the other and
the arrival states are again bisimilar). Figure3c depicts the (simplified) minimised
PLTS of the application example. Here, final states are aggregated into one block of
states.

Algorithm 2: Backtrack procedure Algorithm

Procedure1
Backtrack(q2 = (act2, w p2, wo2, env2, end2), q = (act, w p, wo, env, end), p);

if env2 = (env := f alse) and the back mechanism is available then2
Call the back mechanism → screen I New;3
Analyse I new → assignments rc′, w p′, wo′;4
Analyse the application environment → env′;5
if act 
= act ′ or w p 
= w p′ or wo 
= wo′ or env 
= env′ then6

Reset and Execute App by covering the actions of p;7

else8

Add a transition t = q2
back(α)−−−−→ q to →T ree;9

else10
Reset and Execute App by covering the actions of p;11

4.4 Algorithm Correctness, Complexity and Termination

We express the correctness of our model inference method in term of trace equiva-
lence between the inferred PLTS and the traces of the application under test:

Proposition 1 Let P be a PLTS constructed with our model inference algorithm from
a deterministic mobile application App. We have T races(P) ⊆ T races(App).

The proof is given in [11]. Intuitively, our algorithm constructs a PLTS P with
these steps:

1. Generation of PLTS: from a given state q, every new event applied on the appli-
cation is modelled with a unique transition whose arrival state q2 is new or final.
We do not merge states and hence we construct a PLTS P ,



Model Inference of Mobile Applications with Dynamic State Abstraction 189

2. Correct use of the back mechanism:we call this mechanismwith care: it is called
only if the environment of the application (databases, remote servers, etc.) were
not modified with the execution of the last action. Indeed, if we apply the back
mechanism even so, we necessarily reach a new state since the application envi-
ronment is modified. Secondly, we check if the state of the application obtained
after the call of the backmechanism is really the previous state of the application.
If one of these conditions is not met, we reset the application and its environment
and we re-execute the path p to reach the state q,

3. Minimisation with trace equivalence: we apply a bisimulation minimisation
technique to produce a PTLS M P from P such that the two PLTS are bisimilar
and consequently trace equivalent as well.

Complexity and termination of the Algorithm: our algorithm builds at most
2∗2n equivalence classes, with n the number ofWidget properties in W . In short, we
can have two different (env := true, env := f alse) and mn different assignments
over W if m is the maximum number of values that any Widget property can take.
Nonetheless, when a property of W takes more than two values, our algorithm shifts
it from the assignment w p to wo in states. Furthermore, since we explore one state
per equivalence class, the algorithm ends and we have 2 ∗ 2n equivalence classes
and not final states. We also have at most nm transitions (Pairwise testing [5]) for
each. If N and M stand for the number of not final states and transitions, the whole
algorithm has a complexity proportional to O(M + N + M N + Mlog(N )). Indeed,
the Explore procedure covers every transition twice (one time to execute the event
and one time to go back to the previous state) and every not final state is processed
once. But, sometimes the back mechanism is not available. In this situation, the
application is reset to go back to a state q by executing the events of a path p at worst
composed of M transitions. In the worst case, this step is done for every state with
a complexity proportional to N M . Furthermore, the minimisation procedure has a
complexity proportional to O(Mlog(N )) [6].

5 Empirical Evaluation

We present here some experimentations on Android applications to answer on the
following questions: does the algorithm offer good code coverage in a reasonable
time delay? How are the models in terms of size and quality for analysis?

We have implemented our algorithm in a tool called MCrawlT (Mobile Crawler
Tool 1). It takes packaged applications or source projects and user data e.g., logins
and passwords required for the application execution. MCrawlT is based on the
testing framework Robotium 2 which retrieves the Widget properties of a screen and
simulates events.

1available here https://github.com/statops/mcrawlert.git.
2https://code.google.com/p/robotium/.

https://github.com/statops/mcrawlert.git
https://code.google.com/p/robotium/
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To avoid any bias, we compare the effectiveness of MCrawlT with the following
available tools, Monkey [7] and Dynodroid [8], on applications taken as reference in
the papers [4, 8, 9, 12] and whose source code is available (30 applications). The
results of some other tools Orbit [12], Guitar [9] and Swifthand [4] are taken from
the papers. It is important to note that Monkey is taken as a reference in most of
the papers dealing with Android testing. Thereby, our results can be compared with
other studies related to Android testing.

Code coverage: Table1 reports the percentages of code coverage obtained with
the different tools on 30 applications with a time budget of three hours. If we do a
side by side comparison of MCrawlT with the other tools, we observe that Monkey
provides better code coverage for 8 applications, SwiftHand for 2 and Dynodroid for
5. In comparison to all the tools together,MCrawlT provides better code coverage for
20 applications, the coverage difference being higher than 5% with 13 applications.
These results show that MCrawlT gives better code coverage than the other tools and
even offers good results against all the tools together on half the applications with
comparable execution times. Table1 also reveals that the obtained code coverage
percentage is between 25 and 96%. We manually analysed the 8 applications which
yield the less good results with MCrawlT to identify the underlying causes behind
low coverage. This can be explained at least by these ways:

• Specific functionalities and unreachable code: several applications are incom-
pletely covered either on account of unused code parts (libraries, packages, etc.)
that are not called, or on account of functionalities difficult to start automatically,

• Unsupported events: several applications e.g.,Nectdroid,Multism,Acal orAlogcat
chosen for experimentation with Dynodroid take UI events as inputs but also
system events such as Android broadcast messages. Our tool does not support
these events yet. Moreover, MCrawlT only supports the event list also supported
by the testing tool Robotium (viz. click and scroll). The long click is thus not
supported but is used in some applications (Mininote and Contactmanager). In
contrast, Orbit supports this event and therefore offers a better code coverage with
the application Contactmanager.

Quality and size of the models: Table2 finally shows the number of states
obtained with MCrawlT, Orbit [12] and SwitHand [4] since they produce models as
well. Before minimisation, our tool generates larger and tacitly less comprehensive
models than those obtained with Orbit. In term of quality of the learned models, we
do not produce extrapolatedmodels andwe believe that those generated byMCrawlT
offer more testing capabilities. Indeed, these models include states which store all
the observedWidget properties (colours, texts, etc.) and notifications about the appli-
cation environment changes. We have precisely chosen this feature to later perform
test case generation. For instance, with this amount of information, we can construct
test cases to apply events and to check the content of the resulting screen but also
if remote servers are called, etc. Both Orbit and SwiftHand only store UI events.
After minimisation, we obtain more compact and readable models whose sizes are
comparable to the sizes of the models obtained with Orbit. This tends to show that
our approach of producing larger but more detailed models that are after minimised,
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Table 1 Code coverage (in %)

Applications Monkey Orbit Guitar MCrawlT SwifHand Dynodroid

NotePad 60 82 88 crash

Tippy_TipperV1 41 78 79 48

ToDoManager 71 75 71 81 34

OpenManager 29 63 65 crash

HelloAUT 71 86 51 96 76

TomDroid 46 70 76 42

ContactManager 53 91 71 68 28

Aardict 52 65 67 51

Musicnote 69 81 72.2 47

Explorer 58 74 74 crash

Myexpense 25 61 41.8 40

Anynemo 61 54 52.9 crash

Whohas 58 95 59.3 65

Mininote 42 26 34 39

Weight 51 34 62 56

Tippy_TipperV2 49 74 68 12

Sanity 8 26 19.6 1

Nectdroid 70.7 54 68.6

Alogcat 66.6 66 67.2

ACal 14 46 23

Anycut 67 71 69.7

Mirrored 63 76 60

Jamendo 64 46 3.9

Netcounter 47 56 70

Multisms 65 73 77

Alarm 77 72 55

Bomber 79 75 70

Adsdroid 72 83 80

Aagtl 18 25 17

PasswordFor
Android

58 61 58

only offer advantages for model inference. In addition, MCrawlT constructs story-
boards from these minimized models by replacing states with screen-shots of the
application.

All these experimental results on real applications tend to show that our tool is
effective and can be used in practice since it produces equivalent or higher code
coverages than the other tools.
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Table 2 Inferred model size

Applications #PLTS states
(MCrawlT)

#states after
minimisation
(MCrawlT)

#states (Orbit) #states
(SwiftHand)

NotePad 13 8 7

Tippy_TipperV1 37 18 9

ToDoManager 6 2

OpenManager 31 12 20

HelloAUT 8 5 8

TomDroid 12 6 9

ContactManager 5 4 5

Sanity 31 24 78

Musicnote 41 23 46

Explorer 96 74 195

Myexpense 52 37 149

Anynemo 139 106 169

Whohas 36 11 97

Mininote 45 19 169

Tippy_TipperV2 54 26 71

Weight 69 23 109

6 Conclusion

In this paper, we present an algorithm, which infers PLTS models from mobile
applications. It constructs PLTSs that capture events and all the Widget properties
extracted from the observed screens. Despite the huge amount of collected data, we
avoid the state space explosion problem by using an equivalence relation and classes
that are dynamically re-adjusted all along the algorithm execution with regards to the
screen content. Our experimental results show that our algorithm offers good code
coverage quickly and can be used in practice. Furthermore, the generated models can
be reused for precise model analysis. An immediate line of future work would be
to apply this kind of algorithm for security breach detection. The exploration could
be specialised to target some specific application parts (login step, etc.). Then, test
cases could be automatically generated from test patterns to further explore specific
states with the purpose of improving detection.
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Automatic Generation of S-LAM
Descriptions from UML/MARTE
for the DSE of Massively Parallel
Embedded Systems

Manel Ammar, Mouna Baklouti, Maxime Pelcat,
Karol Desnos and Mohamed Abid

Abstract Massively Parallel Multi-Processors System-on-Chip (MP2SoC) archi-
tectures require efficient programming models and tools to deal with the massive
parallelism present within the architecture. In this paper, we propose a tool which
automates the generation of the System-Level Architecture Model (S-LAM) from a
Unified Modeling Language-based (UML) model annotated with the Modeling and
Analysis ofReal-Time andEmbedded Systems (MARTE) profile. The S-LAM-based
description of the MP2SoC architecture is conformed to the IP-XACT standard. The
integration of our generator within a co-design framework provides the specification
of the whole MP2SoC system using UML and MARTE. Then, gradual refinements
allow the execution of a rapid prototyping process.

1 Introduction

Recent trends inHigh-PerformanceComputing (HPC) architectures show that, due to
the end of processor frequency scaling, performance increases are mostly gained by
employing more processor cores [1]. This trend draws attention to the effectiveness
of Massively Parallel Multi-Processors System-on-Chip (MP2SoC) architectures in
the HPC domain. Designers of high performance MP2SoC are facing many critical
design challenges including:
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1.1 Raising the Level of Abstraction of the Specification

The raising complexity of embedded systems creates a need for intensive speci-
fication task. In the history of design flows, changes in design productivity were
always related to raising the level of abstraction in design entry. In the 1970s, the
highest level of abstraction was a transistor schematic. 10 years later, design entry
had moved up from transistors to gates. Then, with the appearance of Hardware
Description Languages (HDL) other levels of abstraction were proposed including
the Register-Transfer Level (RTL) and the behavioral level. In the beginning of the
2000s, and with the emergence of new languages (mainly SystemC) for the descrip-
tion of systems, a higher level of abstraction was created named the system-level.
Current research targeting the Model Driven Engineering (MDE) methodology [2]
shows the effectiveness of this methodology in the domain of System-on-Chip (SoC)
design. Describing complex systems using models, which is the primary issue of
MDE, leads to the creation of a higher level-of-abstraction: the model level. This
level is mainly based on the Unified Modeling Language (UML) [3] and a domain-
specific profile dealing with a specific type of systems: embedded systems.

1.2 Reusing IP Blocks

Historically, design reuse has proven its utility in the SoC design field as system
complexity continuously increases [4]. However, there is one important challenge
in adopting this methodology: the lack of formal characterization of platforms. As
a result, platforms should be formally defined in terms of semantics to facilitate
verification, automatic design, reuse and interoperability between Electronic Design
Automation (EDA) tools. IP-XACT [5]was created to face this challenge. It describes
electronic components and their designs in an Extensible Markup Language (XML)
format that facilitates exchanging IPs between different EDA tools for complex SoC
design. IP-XACT was standardized by the SPIRIT Consortium.

1.3 Building Well Structured Methodologies

Methods and tools used in the specification and design space exploration of HPC
architectures aim at managing the increasing complexity of hardware architectures
specification task while promoting IP reuse through the IP-XACT standard. Current
hardware specification efforts within the MDE community can be summarized in
two key points:
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• Modeling IP-XACT designs in UML and annotating models with IP-XACT spe-
cific stereotypes

• Applying UML as high-level specification methodology and link it with IP-XACT
in a lower-level of abstraction using MDE transformation rules

The work presented in this paper is an effort towards the second key point. Actually,
we propose a new approach that takes advantage from UML as high-level model-
ing language combined with the Modeling and Analysis of Real-Time and Embed-
ded Systems (MARTE) profile [6] and introduces another level that facilitates IP
integration, architecture generation and system analysis. This level is based on the
System-Level Architecture Model (S-LAM) [7] which conforms to the IP-XACT
standard. S-LAM proposes a simple description of MP2SoC architectures at system-
level while reducing the architecture simulation complexity. This paper presents the
MARTE to S-LAM generator, able to generate from a UML/MARTE description of
the MP2SoC architecture, the corresponding S-LAM description required for run-
ning a system-level rapid prototyping process.

This paper is organized as follows: related works dedicated to hardware resource
modeling and IP-XACT integration are highlighted in Sect. 2. Section3 introduces
our framework for the co-design of MP2SoC embedded systems. Section4 details
our proposed S-LAM generator including the implemented meta-models and trans-
formation rules. Finally, Sect. 5 gives some experimental results.

2 Related Work

In recent years, there has been an extensive interest in merging MDE-based frame-
works and metadata IP reuse approaches. Initial efforts targeting to combine UML
design entries with IP-XACT have been gaining traction [8–10]. These efforts aim
to choose the adequate profile that covers the specification of complex hardware
platforms on the one hand, and to implement the adequate mapping that generates
the required IP-XACT description of the architecture on the other hand.

2.1 Using UML Profiles for HW Resource Modeling

UML is a general language but its extensibility, introduced with UML 2.0 via the
notion of profiles, extends the language to domain-specific problems.More precisely,
UML started to be adopted as a standard in the domain of real-time and embedded
systems during the past years. Several profiling mechanisms aiming to use UML in
SoC design and especially in hardware specification have been proposed including
UML for SoC [11] and Omega-RT [12] profiles. With the ever increasing demand
and complexity of embedded systems, a new profile has emerged. This standardized
profile, named MARTE [6], is structured around two central concerns, modeling
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the characteristics of embedded systems and annotating the models to support the
analysis of the system features. Defining accurate semantics for time and Hw/Sw
resource modeling and supporting real-time and embedded systems co-design flows
are the major goals of the MARTE profile. These two goals can be achieved using
the MDE foundations when defining embedded system design flows. This explains
the use of MARTE and MDE in the proposed co-design flow. In one hand, MDE
facilitates automatic transformations from one abstraction level to a lower one, for
simulation or implementation purposes. In the other hand, it promotes the integration
of different tools thanks to transformation techniques. As a result, analysis tools,
verification tools and modeling tools can be coupled in a single co-design flow.

2.2 Merging UML and IP-XACT in MDE-based Design Flows

Several works have shown the importance of integrating IP-XACT while taking
advantage fromMDEprinciples in their designflows. In [8] aMARTE-basedmethod-
ology that exploits IP-XACT to specify and automatically generate Dynamic Partial
Reconfiguration (DPR) SoC designs was proposed. MARTE models of the plat-
form are parsed executing a chain of model transformations to obtain an IP-XACT
description of the system that can be used in the Xilinx EDK (Embedded Design
Kit) environment. In the COMPLEX framework [9], the IP-XACT description of the
architecture can be automatically generated from the UML/MARTEmodel using the
MARTE to IP-XACT (MARTIX) code generator [10]. Then, an executable model
can be built from the IP-XACT platform description for functional validation and
performance estimation. In anotherwork [13], IP-XACTwas used as input point in an
MDE-based approach aiming togenerateSystemCcode.The authors propose amulti-
level design flow that integrates extensions of the IP-XACT standard and different
meta-models. Comparing these related works with our approach, we can observe that
none of them uses IP-XACT for the high-level design space exploration of MP2SoC
systems.Moreover, these works try to exploit the whole IP-XACTmetadata targeting
low-level simulations. On the contrary, our approach is based on a simplified sub-set
of IP-XACT, named S-LAM, for the high-level analysis of MP2SoC.

3 A Co-Design Framework Integrating the S-LAM
Generator

Our proposed approach, depicted in Fig. 1, is a complete EDA tool for the co-
specification, design space exploration and code generation of MP2SoC systems
that relies on Object Management Group (OMG) standards and MDE techniques.
Being based on the Eclipse framework, front-end, transformation engine and back-
end tools are grouped together in a fully-integrated flow.
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Fig. 1 The S-LAM generator in the context of the co-design flow

3.1 UML/MARTE Front-End

The proposed co-design flow uses UML/MARTE and the associated Papyrus tool
[14] as modeling front-end. This high-level modeling front-end allows a user to
graphically specify an embedded system conforming to the UML meta-model and
the MARTE profile. Our methodology defines four sub-models to be specified and
associated in a unified UML/MARTE based-model: application, architecture, allo-
cation, and deployment sub-models.
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3.1.1 Application Sub-model

Contains the structural specification of a given data-intensive applicationwhere com-
putations are defined as a set of interconnected tasks inside a UML composite struc-
ture diagram. Application constraints and properties are defined in this sub-model
including execution time value of each task using the «swSchedulableResource»
stereotype from the MARTE Software Resource Modeling (SRM) sub-profile. The
MARTE Repetitive Structure Modeling (RSM) sub-profile is used to model the par-
allel computations and the multidimensional data structures in the application. In
addition, the Generic Component Modeling (GCM) sub-profile helps to define data
flow ports and connectors.

3.1.2 Architecture Sub-model

Gathers a number of interconnected resources specifying the hardware components
of an embedded system in a structural way. Therefore, the composite structure dia-
gram is used to model the hierarchic structure of MP2SoC. Stereotypes from the
MARTE Hardware Resource Modeling (HRM) sub-profile are exploited to indicate
which kind of hardware component each UML element represents («HwProcessor»
«HwMemory» «HwCommunicationResource» stereotypes). Properties of hardware
processing resources, storage resources and communication resources are also spec-
ified using tagged values of these stereotypes. Multidimensional parallel resources
of massively parallel MP2SoC architectures are specified using the RSM sub-profile.
Ports and interconnections between hardware resources are annotated with stereo-
types from the GCM sub-profile.

3.1.3 Allocation Sub-model

Defines the allocation constraints which associate tasks from the application sub-
model with resources from the architecture sub-model. To allocate tasks to hard-
ware components, the MARTE alloc sub-profile is used. In fact, UML dependencies
between class instances of the application and the architecture are annotated with
«allocate» or «distribute» stereotypes helping to map each task to a component or a
repetition of a task to a group of components. The allocation is partial and defines only
mapping constraints since the rapid prototyping tool automatically makes mapping
decisions.

3.1.4 Deployment Sub-model

Describes the deployment of the software and the hardware components on IPs
using the UML deployment diagram. The UML deployment mechanism and the
MARTE profile lack aspects that allow the deployment of IPs on a component of
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the SoC. For this reason, our flow proposes an additional profile, the Deployment
profile to facilitate deploying elementary components with IPs. The proposed profile
facilitates both the high-level modeling of IPs and the automatic generation of the
S-LAM system description. The «HwIP» stereotype, from the Deployment profile,
models an IP deployed on a component of the architecture facilitating the generation
of S-LAM descriptions. It gathers a set of attributes used to specify a component
description in the S-LAM standard.

3.2 Transformation Engine

Three transformation engines were developed inside the transformation engine:

• The π SDF generator: produces πSDF graphs of the data-parallel application to
facilitate the analysis of modern data-intensive applications running on MP2SoC
architectures. The implementation of the πSDF generator is detailed in [15].

• The S-LAM generator: produces an S-LAM description of the architecture (cf.
Section IV).

• The MARTE to Scenario transformation: produces a scenario file for the rapid
prototyping framework. This scenario gathers systems constraints and properties
aiming to guide the rapid prototyping process.

3.3 PREESM Tool Back-End

ThegeneratedπSDFgraphs of the application, S-LAMdescriptionof the architecture
and scenario file can be automatically analyzed and processed using the PREESM [7]
rapid prototyping tool for automatic allocation, scheduling [16], system performance
estimation [7] and finally code generation.

4 The S-LAM Generator

The implementation of a transformation flow in the MDE approach relies on the
definition of ad-hoc meta-models for each abstraction level. For this reason, two
meta-models are proposed in the context of the S-LAM generator: the MARTE
meta-model and the S-LAM meta-model. In addition, model-to-model (M2M) and
model-to-text (M2T) transformations were defined inside the transformation chains
as depicted in Fig. 1. In our approach,M2M transformation rules are defined using the
QVTO language [17] and M2T transformation rules are described using the Acceleo
tool [18].
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4.1 MARTE Meta-Model Relevant Parts Used in the S-LAM
Generator

The input of each transformation chain in the proposed framework is a UML model
compliant with the MARTE profile. Generating a MARTE model (conforming to
the MARTE meta-model) from a profiled UML model (conforming to the UML
meta-model) is a typical transformation in a UML/MARTE-based framework. The
developed UML2MARTE transformation corresponds to a bridge connecting the
specification of the system and the developed generators. This transformation is out
of the scope of this paper. The open-source Ecore version of the MARTE meta-
model provided with the source code of Papyrus and extended with the Deployment
elements is used as the input of the S-LAM generator.

4.1.1 Conserving the Hierarchical Structure of MP2SoC with GCM
Meta-Model

TheGCM package from theMARTEprofile defines a rich base of notations helping to
annotate ports, interconnections, etc. However, supporting component-based models
remains most important when focusing on moving up from specification purposes,
where the MARTE profile is employed as a foundation, to successive transforma-
tions for DSE, where the MARTE meta-model is used as starting point. The GCM
meta-model can preserve the hierarchical structure of a model without losing any
detail since it represents an abstraction of the UML structured classes. A hierarchical
component in MARTE is a StructuredComponent that encloses instances of other
components, presented using the AssemblyPart element. Two assembly parts are
connected via their ports (FlowPort element) using connectors. Connectors between
two AssemblyParts are named AssemblyConnectors.

4.1.2 Capturing Repetitive Structures in the RSM Meta-Model

TheRSM meta-model extends the basic concepts of theMARTEmeta-model by pro-
viding meta-classes that capture shaped multiplicities and link topologies of inten-
sive computation embedded systems. This meta-model proposes high-level meta-
modeling mechanisms that express all the available parallelism of the hardware
execution platform precisely and in a compact manner. These mechanisms are ori-
ented toward two features: capturing the regularity of an MP2SoC system structure
(composed of a repetition of structural elements) and denoting the topologies of links
between hardware components of the system.
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4.1.3 Capturing System Properties in the HRM Meta-Model

The Hw_Logical meta-model is the relevant part from the HRM meta-model used
in the S-LAM generator as it gathers the set of hardware resources that are central
to the MP2SoC platform definition. Properties of memories (size), communication
networks (speedup) and processors can then be captured inside the meta-classes of
this meta-model.

4.1.4 Capturing IP Properties in the Deployment Meta-Model

The Ecore version of the current MARTE meta-model was extended to enable its
mergingwith theDeployment meta-model. Properties of each IP can be then deduced
in the generated MARTE model from the «hwIP» stereotype and captured inside the
hwIP meta-class.

4.2 The S-LAM Meta-Model

At high-levels of abstraction, a detailed description of each hardware resource is
not necessary to succeed a rapid prototyping process. For this reason, the S-LAM
meta-model does not use the entire IP-XACTmeta-model, but it exploits a sub-set of
concepts that capture the needed information for the exploration phase. This sub-set
includes two meta-models: the component meta-model and the design meta-model.

4.2.1 The Component Meta-Model: Simplifying IP Description for DSE

A component, according to the IP-XACT standard, specifies a single hardware IP
and details the required information for the integration of this IP including its inter-
faces and its internal structure. Assuming that a specification approach that ignores
the implementation details of each component of the hardware architecture while
detailing its primary properties makes the system-level exploration process faster
and gives satisfactory solutions, the S-LAM component meta-model defines only
three component types: operators, enablers and communication nodes. These com-
ponents are efficient enough to specify a massively parallel embedded architecture
that gathers processing elements (operators), local and shared memories (enablers)
and regular and irregular communication networks (communication nodes).

4.2.2 The Design Meta-Model: Supporting Hierarchy and Composition

The S-LAM design meta-model, depicted in Fig. 2, describes a design as a set of
component instances (ComponentInstance element), links (Link element), hierarchy
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Fig. 2 S-LAM design meta-model

ports (HierarchyPort element) and hierarchy connections (HierConnection element).
Both Design and Component elements are identified using their VLNV which spec-
ifies the vendor, the containing library, the element name, and the version number
of a given IP. Each component instance in the design refers to the initial component
description. These component instances can be connected using two types of con-
nection elements: Link and HierConnection. While links are point-to-point connec-
tions between communication interfaces (ComInterface element) of the component
instances, hierarchy connections connect sub-designs or components from different
hierarchical levels using hierarchy ports. The original Ecore version of the S-LAM
meta-model [7] was extended to allow the specification of a repetition of the same
IP. The repetitionShape attribute was added to the ComponentInstance meta-class
allowing to specify the repetition shape of a given component instance.

4.3 M2M Mapping Rules: From MARTE Model to S-LAM
Model

The basic UML to MARTE and MARTE to S-LAM implemented QVTO mappings
are sketched in Fig. 3.
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Fig. 3 Mappings between UML, MARTE and S-LAM meta-models

4.3.1 Building the Hierarchical Structure of S-LAM

The S-LAM generator navigates the MARTE-compliant model and produces one S-
LAMmodel. Thismodel is produced if and only if the S-LAMgenerator finds at least
one StructuredComponent in the MARTE model. Then, the hierarchical structure of
the S-LAMmodel is created based on theDesignmeta-model. First, each Structured-
Component is transformed into a Design. Each AssemblyPart within the Structured-
Component becomes a ComponentInstanse inside the Design element. Moreover,
if the shape of the AssemblyPart is superior to one, the repetitionSize attribute of
the ComponentInstance will take the value of the shape element, indicating a rep-
etition of a hardware component instance. Examining each StructuredComponent,
the S-LAM generator looks for the AssemblyConnectors which associate Assem-
blyParts, and produces DataLinks or ControlLinks depending on the AssemblyParts
type (HwProcessor, HwMemory, etc.). In addition, AssemblyConnectors linking an
AssemblyPart with the StructuredComponent itself are transformed into Hierarchi-
calConnections. For the production of HierarchyPorts, the generator explores the
ports set of a given StructuredComponent, and transforms each FlowPort into a
HierarchyPort.
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4.3.2 Generating the Interface Set of Each Component Instance
and Deducing its Type

For each AssemblyPart of the StructuredComponent, the S-LAM generator simulta-
neously produces a ComponentInstance and a Component. The implemented trans-
formation automates the generation of the corresponding ComInterfaces of each
Component. In fact, FlowPorts of each AssemblyPart are converted into Com-
Interfaces when mapping the corresponding AssemblyPart into Component. Fur-
thermore, the generator is able to produce the right type of Component once it
checks the classifierTypeExtension element attached to the AssemblyPart. In fact,
if the AssemblyPart is not hierarchic, it will be transformed into an Operator,
a Mem or a ComNode depending on its classifierTypeExtension (HW_Processor,
HW_Memory, HW_CommunicationResource, HW_Bus). A hierarchical Assembly-
Part is an instance of a StructuredComponent which was a hierarchical class stereo-
typed «HwResource» in the UML model. It is transformed into an Operator if it
contains in its internal structure a processor.

4.4 M2T Mapping Rules: From S-LAM Model to S-LAM Files

Figure4 shows the main Acceleo template which is the entry point of the M2T trans-
formation. Given that this template requires an instance of the parameter Design,
the transformation will navigate in the whole model to find all the available Design
elements and generate one S-LAM file per Design. The produced files are named
as the Design plus the “.slam” suffix, and encloses the «spirit:design» entry. Then,
for each ComponentInstance element from the S-LAM model, the transformation
will produce one component instance inside the «spirit:componentInstances» and
«spirit:componentInstances» delimiters. At the same time, this transformation con-
trols the repetitionShape value of each ComponentInstance in order to generate N
(where N is the value defined by the repetitionShape attribute) component instances
indicating the presence of a repetition of the same component instance in the design.
The M2T transformation searches all the DataLinks and ControlLinks and produces
a set of S-LAM interconnections. It also implements a similar navigation to figure
out the list of hierarchical connections.

5 Case Study

To evaluate the benefits of our framework, we conduct a series of experiments on
the M-JPEG encoder application. Originally developed for streaming multimedia
application, the M-JPEG video compression format is now considerably exploited
in video-capture devices where each video frame or video sequence is compressed
separately as a JPEG image. Compared to the recently emerged video compression
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Fig. 4 Acceleo main template

standards, M-JPEG describes a relatively simple encoding workflow. But, it is a typ-
ical streaming application that contains inherent task and data parallelism the fact
that provides rich experimentation opportunities when running on MP2SoC archi-
tectures. Figure5 shows the composite structure diagram of the application. The
video sequence should first be partitioned into frames (M-JPEG_encoder class).
Frames are split in blocks of 8*8 pixels and processed separately as JPEG images
(Encode_Frame class). We performed experiments by simulating the M-JPEG on a
stream of 100 and 200 frames of QCIF format (352 × 288 pixels). For this reason,
multiplicities of tasks and ports expressed via the «Shaped» stereotype were varied.
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Fig. 5 UML/MARTE specification of the application
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Fig. 7 UML/MARTE specification of the architecture

MP2SoC, as presented in Fig. 6, is composed of two clusters. While the first cluster
contains one processing element (PE), the second cluster includes a variable number
of processing elements. Processing elements inside the clusters are homogenous.
Inside each cluster, each processing element is connected to its local memory and
can communicate to other processors via a local network. The clusters can communi-
cate via a global interconnection network. In order to model such complex system, a
UML composite structure diagram is used as seen in Fig. 7. Each hierarchic hardware
resource (MP2SoC system, clusters, processing units) is specified using a hierarchic
class. For the rapid prototyping of the M-JPEG application, five configurations of
MP2SoC were specified and generated varying the number of processing units (by
changing the shape value of the PU class) containing 2, 4, 8, 24 and 32 processing
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references
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Fig. 8 Generated S-LAM files

units in Cluster1. Executing the S-LAM generator, four .slam files were created and
visualized using the S-LAM editor as shown in Fig. 8. Each hierarchic class is trans-
formed first into a Design element then into an .slam file. Class instances inside
the hierarchic class are mapped into operators, memories or communication nodes.
Hierarchic class instances that reference classes containing operators are transformed
into operators that reference the .slam file that describes the internal structure of the
classes themselves. Ports of the hierarchic classes becomes hierarchy ports. The
«Shaped» annotation attached to the PU class and the port of the Cluster1 hierarchic
class allows to produce eight hierarchy ports and link them with the eight opera-
tors with hierarchy connections in the MP2SoC configuration that contains eight
processing units. πSDF files and the scenario file are also generated executing the
two other transformation chains. The final step in the proposed approach is the rapid
prototyping of the πSDF/S-LAM combination using PREESM. Figure9 shows the
average speedup of the application for two video sequence containing 100 and 200
frames respectively running on different MP2SoC configurations. We notice that for
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Fig. 9 Speedup results
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the video sequence containing 200 frames, increasing the PU number from 2 to 32
contributes for up to 10x M-JPEG encoder speedup. This observation justifies the
use of MP2SoC architectures.

6 Conclusion

In this paper, the S-LAM generator, a tool able to generate S-LAM description of an
MP2SoC architecture described inUML/MARTE under the proposed co-design flow
specification methodology was presented. High-level models of the complex archi-
tecture are progressively refined enabling the production of a system-level descrip-
tion of the architecture for the design space exploration step, which is based on
the PREESM framework. The S-LAM generator reduces the modeling effort as it
starts from a co-specification of the whole MP2SoC system, including the applica-
tion and the architecture parts, and captures needed information for the generation
of IP-XACT compliant description of the architecture. Our next future work will
be concentrated on the elaboration of a use case that takes as design entry a com-
plex massively parallel application (An H.264 decoder for example) running on an
MP2SoC architecture.
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Abstract In order to make explicit and tangible their design choices, software
developers integrate, in their applications’ models, constraints that their models and
their implementations should satisfy. Various environments enable constraint check-
ing during the modeling stage, but in most cases they do not generate code that would
enable the checking of these constraints during the implementation stage. It turns out
that this is possible in a number of cases. Environments that provide this functionality
only offer it for functional constraints (related to the states of objects in applications)
and not for architectural ones (related to the structure of applications). Consider-
ing this limitation, we describe in this paper a system that generates metaprograms
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the checking of these constraints at runtime.

Keywords Software architecture · Architecture constraint · Object constraint
language · Java reflect

S. Kallel (B) · C. Tibermacine · B. Tramoni · C. Dony
Lirmm, Montpellier University, Montpellier, France
e-mail: sahar.kallel@lirmm.fr

C. Tibermacine
e-mail: chouki.tibermacine@lirmm.fr

B. Tramoni
e-mail: bastien.tramoni@lirmm.fr

C. Dony
e-mail: dony@lirmm.fr

A.H. Kacem
ReDCAD, Sfax University, Sfax, Tunisie
e-mail: ahmed.hadjkacem@fsegs.rnu.tn

© Springer International Publishing Switzerland 2016
R. Lee (ed.), Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing 2015, Studies in Computational Intelligence 612,
DOI 10.1007/978-3-319-23509-7_15

213



214 S. Kallel et al.

1 Introduction

Software architecture description is one of the main building blocks of an
application’s design [4]. It gives us an overview of the application organization
that helps us to reason about certain properties, such as quality attributes. In this
context, architecture description languages have been created to specify and verify
such application architectures without worrying, at first, about the implementation of
their functionality. The verification can be especially based on constraints that those
languages associate to architecture descriptions. These constraints can be classified
into two categories: functional and architectural.

Functional constraints check the state of the architecture’s objects. For exam-
ple, if we consider a UML model (an architecture description) containing a class
Employee (a component in that architecture) which has an integer attribute age,
a functional constraint presenting an invariant in this class could impose that the
values of this attribute (slot of an object of that class) must be included in the interval
[16–70] for all instances of this class. On the other side, architecture constraints ana-
lyze the structure of the application, and not objects states. For example, they define
invariants (boolean conditions) imposed by the choice of a particular architectural
style or pattern, like the layered architecture style [22]. All these constraints can be
specified at design stage through a constraint language like the “Object Constraint
Language” (OCL) [19], the OMG standard.

In the literature and practice of software engineering there exists a large number of
architecture patterns [9, 11, 25]whose architecture constraints have been formalized.
But unfortunately, currently architecture constraints can be checked only at design
time on design artifacts; they are ignored in the implementation stage. Therefore, a
part of the knowledge and the expertise in the implementation of a software project
“evaporates”. To guarantee that architecture pattern source code will not undergo
changes during evolution in the implementation artifacts or at runtime, we need to
find away to check the associated architecture constraints at the implementation stage
knowing that with OCL language (for example), we can not check the architecture
constraints at this stage. We can opt to rewrite them entirely with languages used
by the developers at that development stage. And this task of rewriting all these
constraints is tedious, time consuming and error prone. Constraints on the two stages
of development (design and implementation) are syntactically different but they are
semantically equivalent (conditions on architecture descriptions that are present in
the two stages). So why not generate the ones from the others, like code can be
generated from UML models? Moreover, most of existing tools for model-to-text
(code) generation do not consider the generation of code for constraints associated
to models. For those which exist [1, 8, 18], they only translate functional constraints,
and not architectural ones.

Considering these limitations, we propose a multi-steps process for translating
OCL architecture constraints into Java code. The obtained Java code uses the intro-
spectionmechanismprovided by the programming language (JavaReflect) to analyze
the structure of the application. This choice is motivated by our willingness to use
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a standard mechanism without resorting to external libraries. Reflection (introspec-
tion) enables language users to analyze architectures and to examine the structure of
their classes at runtime. In our work, the generated code is considered as a “metapro-
gram” since it uses the introspection mechanism of the programming language for
implementing an architecture constraint.

The remaining of this paper is organized as follows. In the following section, we
illustrate the input and the output of the proposed process to better understand the
context of our work. These will serve as running examples throughout the paper.
In Sect. 3, we present our general approach indicating the steps for generating con-
straints into Java metaprograms. Sections4, 5 and 6 describe these steps in detail.
Before concluding and presenting some perspectives, we discuss the related work in
Sect. 7.

2 Illustrative Example

To introduce the context of our work, we present an example of an architecture con-
straint enabling the checking of the “MVC (Model-View-Controller) pattern” [21].
We assume that we have three stereotypes, allowing us to annotate the classes in
an application which represent the view (View), the model (Model) and the con-
troller (Controller). This constraint states that the classes stereotyped Model must
not declare dependencies with the classes stereotyped View. This makes it possible,
among other things, to have several views for the same model, and thus to uncouple
these classes that play different roles in the pattern. In addition, the classes stereo-
typed Model must not have dependencies with the classes stereotyped Controller.
This makes it possible to have several possible controllers for the model.

Using OCL and the UMLmetamodel (Fig. 1), we obtain the following constraint:

1 context Class inv :
2 self .package . profileApplication . appliedProfile
3 .ownedStereotype−> exists (s :Stereotype | s .name=’Model’ )
4 implies
5 self . supplierDependency . client−>forAll ( t :Type |
6 not( t .oclAsType(Class) .package . profileApplication
7 . appliedProfile .ownedStereotype−>exists (s :Stereotype |
8 s .name=’View’ or s .name=’Controller ’ ) ) )

Listing 1 MVC pattern constraint in OCL/UML

The first line in the Listing 1 declares the context of the constraint. It indicates that
the constraint applies to each class of the application ; the meta-class Class is then
the starting point for all navigations in the rest of the constraint. Lines 2 to 3 serve to
collect the set of classes representing the model (having the stereotype Model) by
using the navigation package.profileApplication.appliedProfile. ownedStereotype.
UML metamodel allows us to get an applied stereotype only starting from the pack-
age that contains themodeling element (a class, in our case) and not from the element
itself. The problem is resolved in some tools like RSA-IBM where the UML meta-
model has been extended with an operation named getAppliedStereotypes(), which



216 S. Kallel et al.

Fig. 1 An excerpt of UML metamodel

is inherited by the Class metaclass. In Line 5 we obtain the set of classes which
have a direct dependency with the context of the constraint. The remaining of the
Listing allows to iterate over the set of class instances and test if it contains classes
stereotyped with View or Controller.

Our goal is to obtain automatically a metaprogram generated from an OCL/UML
architecture constraint. The result would be expressed in Java as follows:

1 public boolean invariant (Class<?> aClass) {
2 i f (aClass . isAnnotationPresent(Model. class ) ) {
3 Field [] fields = aClass . getDeclaredFields () ;
4 for (Field aField : fields ){
5 Class<?> fieldType = aField .getType() ;
6 i f (fieldType . isAnnotationPresent(View. class )
7 | | fieldType . isAnnotationPresent(Controller . class ) )
8 return false ;
9 }

10 }
11 return true ;
12 }

Listing 2 MVC pattern constraint in Java

The method invariant(...) in Listing 2 accepts as a parameter an object of type
Class, representing each of the classes of the application (the classes which com-
pose the application business domain. This excludes classes of the libraries used by
the application). Unfortunately, we cannot start navigation from the Package object
representing the application package, because in java.reflect, this object does not
enable to obtain references to the classes which are declared inside it. The Package
object relates to a simple object containing information about the package(e.g. its
name). We assume that the dependencies between classes in UML is translated as
the declaration of at least one field in the first class having as a type the second class.
In addition, we assume that the equivalent of stereotypes in UML are annotations in
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Java. The method invariant (..) uses the Java reflect library by invoking, for example,
getDeclaredFields() in Line 3 to collect fields, and isAnnotationPresent(..) in Lines 6
and 7 to check if a given type has been marked with a particular annotation.

3 General Approach

We propose a three-step process for generating executable Java code from architec-
ture constraints. We note the presence of two metamodels the first one is the UML
metamodel and the second is the Java metamodel that are presented in the following
sections. Figure2 depicts the process of metaprogram generation. If the OCL con-
straint needs a refinement, the first step consists in rewriting the OCL constraint in
order to make it more accurate and concrete. For example, if the constraint has a
navigation to Dependency metaclass (in UML metamodel) then we need to refine
this constraint by specifying the different levels of dependencies. Else, the step of
transforming OCL constraints from UML metamodel to Java metamodel is estab-
lished in order to go forward in the process, to the Java code generation. These steps
are detailed in the following sections. We did not perform a direct translation from
OCL/UML to Java because this translation includes at the same time several trans-
formations: shifting to a new metamodel, changing the syntax of constraints, etc.
In fact, our approach requires first a mapping from abstractions of design level to
abstractions of implementation level (mapping abstractions from UML metamodel
to the Java metamodel) and subsequently a translation of the syntax.

Fig. 2 Approach description
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In the literature, there are many languages enabling the specification of architec-
ture constraints (see [23] for a survey). The choice of OCL and UML is motivated
by the fact that UML is the de facto standard modeling language, and that OCL is
its original constraint language. Even if a recent study [20] pointed that UML is not
widely used by developers, we all agree that it is a general-purpose modeling lan-
guage known by a lot of developers. We have intuitively chosen to make constraints
programmable in the implementation level in Java because it is a main-stream lan-
guage in object-oriented programming, which provides introspection capabilities.

4 Constraint Refinement

The refinement mechanism is used whenever some abstractions in the UML meta-
model do not have an equivalence in the JAVA language. For example, in the spec-
ification of the OCL constraint expressed on the UML metamodel, we have col-
lected all types (Classes) which have dependencies with a specific type by using
supplierDependency.client. This expression has not a direct equivalence
in Java. As a result, we refine the constraint in the UML metamodel to express the
different levels of dependencies.

Often, a dependency between two classes is translated as: (i) the declaration in
the first class of at least one attribute having as type the second class, (ii) some
parameters in operations of the first class, have as type the second class, or (iii) some
operations of the first class, have as a return type the second class.

The previous constraint (Listing 1) is refined as follows:

1 context Class inv :
2 self .package . profileApplication . appliedProfile
3 .ownedStereotype−> exists (s :Stereotype | s .name=’Model’ )
4 implies
5 self . ownedAttribute . type−>forAll ( t :Type |
6 not( t .oclAsType(Class) .package . profileApplication
7 . appliedProfile .ownedStereotype−>exists (s :Stereotype |
8 s .name=’View’ or s .name=’Controller ’ ) ) )
9 and
10 self .ownedOperation. returnValuetype−>forAll ( t :Type |
11 not( t .oclAsType(Class) .package . profileApplication
12 . appliedProfile .ownedStereotype−>exists (s :Stereotype |
13 s .name=’View’ or s .name=’Controller ’ ) ) )
14 and
15 self .ownedOperation.ownedParameter . type−>forAll ( t :Type |
16 not( t .oclAsType(Class) .package . profileApplication
17 . appliedProfile .ownedStereotype−>exists (s :Stereotype |
18 s .name=’View’ or s .name=’Controller ’ ) ) )

Listing 3 Refined MVC pattern constraint

Our constraint in Listing 3 (after refinement) is composed of three sub-constraints
(Lines 5–8, Lines 10–13 and Lines 15–18). Each sub-constraint matches one level
of the dependencies. In Line 5, the dependency is primarily verified on all attributes
defined in classes. Note that oclAsType(Class) operation is used in this constraint
to allow navigation between Type and Class through the specialization relation. In
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Lines 10 and 15, the dependency is related to the types of operation parameters and
their returned values.

The refinement of a constraint means a translation of this constraint from an
abstract level to a concrete one. In contrast to the translation detailed in the follow-
ing section, in this step, the translation is an endogenous transformation, since the
constraints which are the source and the target of the transformation both navigate
in the same (UML) metamodel.

5 Constraint Transformation

Before generating code, we transform in this step the OCL constraint specified on
the UML metamodel into an OCL constraint specified on the Java metamodel. This
simplifies the translation into Java code, since the mapping of abstractions from
UML to Java is performed in this step. In order to perform constraint transformation
we used a Java metamodel. Unfortunately, none of the metamodels found in the
literature and practice satisfied our needs. We relied on Java Reflect library to create
a new simplified Java metamodel. In fact, we can define our metamodel relying
on Java specification but we deliberately chose Java Reflect because it gives us
access to the meta-level of the language and also because it reflects exactly what
we can do in the generated Java code. In this metamodel, we limited ourselves to
the elements necessary for architecture constraint specification. Figure3 depicts the
Java metamodel that we have defined.1

The goal of constraint transformation is to replace in an architecture constraint
the UMLmetamodel vocabulary by Java metamodel vocabulary. It had to establish a
mapping between UML terms and Java terms that are classified in three categories:
metaclasses, roles and navigations.

Table1 presents for each UML metaclass, role and navigation its equivalent in
Java.

We opted for the specification of these mappings in xml, and we have written an
ad-hoc program for implementing the transformation instead of using an existing
model transformation language like Acceleo [3], Kermeta [2] or ATL [16]. In fact,
architecture constraints are not models. We might have generated models from con-
straints. But this process is complex to implement. It requires to transform the text
of the constraint in models, to use a transformation language for transforming these
models and then generate again the text of the new constraint from the new model.
We opted for a simple solution that consists in exploiting an OCL compiler. It allows
to generate an abstract syntax tree (AST) from the text of the constraint. This AST
allows us to apply easily different transformations.

1We assume in this paper that the reader is familiar with UML and Java languages. This is the
reason why the two metamodels are not detailed. They are depicted only for accompanying OCL
constraints in order to see how navigations in the metamodels are established.
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Fig. 3 Java metamodel

Table 1 Mapping UML-Java (Metaclass, Role, Navigation)

UML Java

Metaclass Role Class Class
ownedAttribute field

ownedOperation method

superClass superClass

nestedType declaringClass

interfaceRealization interface

package package

Navigation package.profileApplication

.appliedProfile.ownedStereotype annotation

Metaclass Role Property Field
type type

declaringTypeattribute declaringClass

Metaclass Role Operation Method
returnValuetype returnType

declaringTypeoperation declaringClass

ownedParameter parameterType

raisedException exceptionType

Metaclass Stereotype Annotation

Metaclass Package Package

We apply the table presented before (Table1) on the generated AST in order to
obtain a constraint expressed in Java metamodel. For applying mappings, we start
by navigations, then the roles and finally the metaclasses. The following Listing 4
presents our constraint example after applying the transformation method:
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1 context Class inv :
2 self . annotation−> exists (s :Annotation | s .name=’Model’ )
3 implies
4 self . field . type−>forAll ( t :Type |
5 not( t .oclAsType(Class) . annotation−>exists (s :Annotation |
6 s .name=’View’ or s .name=’Controller ’ ) ) )
7 and
8 self .method. returnType−>forAll ( t : Type |
9 not( t .oclAsType(Class) . annotation−>exists (s :Annotation |

10 s .name=’View’ or s .name=’Controller ’ ) ) )
11 and
12 self .method.ParameterType−>forAll ( t : Type |
13 not( t .oclAsType(Class) . annotation−>exists (s :Annotation |
14 s .name=’View’ or s .name=’Controller ’ ) ) )

Listing 4 MVC pattern constraint in OCL/Java

As indicated in Listing 4, we replace, among others, package.profileApplication.
appliedProfile.ownedStereotype by annotation, ownedOperation by method,
by respecting the mappings defined before.

The use of declarative mappings gives us the opportunity when the metamodels
evolve to modify easily the changed elements. In addition, it allows us to offer a
generic method which does not depend on particular metamodels.

6 Constraints Generation into Java Metaprograms

Code generation consists in translating the constraint expressed in Java metamodel
into a Java metaprogram. To generate this code, we relied on the following steps.
First, we generate the abstract syntax tree (AST) from the constraint expressed in
Java metamodel. Then, when traverse this tree in a Depth-First Pre-Order way in
order to generate progressively the java code by relying on rules presented below. It
is worth mentioning that the first rule is applied only once in a constraint generation
code. The other rules are applied along the analysis of the type of the AST nodes. In
fact, if it is a role or navigation then we must apply Rule 2. If is a quantifier, the rule
3 is then applied and so on.

1. Wemust consider first that a constraint is represented by a Javamethod that returns
a boolean, which takes as parameter an object of type the metaclass on which the
constraint applies (its context). This method is located in a Java class and invokes
if necessary other methods that are implemented during the code generation.

2. Each role and navigation in the Javametamodel will be transformed to its accessor
method defined in Java. For example, if we navigate to Field, we apply getDe-
claredFields(),2 and if we would like to access to a method return type we call
getReturnType().

3. Concerning the OCL quantifiers and the operations, we defined for each one a
Java template. Examples are presented in Table2. select(...) method presented in
the last row of the table can be applied on different OCL collection types, like Set

2We use getDeclaredField() instead of getFields() to retrieve all attributes (private and public). For
those we inherit, we must specify them in the OCL constraint using the role superClass.
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Table 2 OCL Quantifiers and operations generation in Java

or Sequence. During the code generation , each OCL type will be replaced by its
Java equivalent.

4. In each quantifier or operation, we traverse recursively the evaluated expression
as a sub-constraint and we generate again the corresponding code: if we meet
a role or navigation in Java metamodel, we re-apply rule 2. If the quantifier is
nested, we re-apply rule 3, and so on.

5. In the case of a nested quantifier (two quantifiers for example are defined one
inside the other), the second quantifier frequently needs to use the variables of
the first one to define its expression. So, in this case, we store the variables of the
first one (parameters of method that correspond to the first quantifier) in order to
pass them among the parameters of the method corresponding to the second one.

6. Concerning the logic operators (and, not..), we defined also methods equivalent
for each one. These methods are implemented in a class called LogicalOperator.
If the constraint contains a logic operator, This class will be declared as a super
class of the generated class that contains the invariant method.

7. The arithmetic operations (>, <, =, ...) and the types (Integer, Real, String, ...)
are the same in the generated metaprogram.

In order to better explain the code generation process, Table3 presents an example
of a metaprogram which is generated from our MVC constraint presented in Sect. 2.
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Table 3 Example of MVC constraint Code generation
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For simplicity reasons, we consider for the dependency between two classes that the
first class has at least one method return type having as type the second class.

We have presented in Table3, for each part of constraint, its equivalent Java
code by respecting the rules that was explained previously. The generated code uses
the introspection of Java in order to examine the application structure at runtime
(getAnnotations(), getMethods()). This code should be called before and
after each method and affectation implemented in the application.

It is worth noting that this code is syntactically different from the optimal code
presented at the beginning of the paper (see Listing 2) but they are semantically
equivalent. It is evident that the automatic translation does not allow to obtain a code
having an optimal complexity. However, it is a valuable tool for developers who will
rather focus on implementing the business logic of their application.

7 Related Work

In this section we present works related to OCL constraint transformation and OCL
code generation. Hassam et al. [13] proposed a method for transforming OCL con-
straints during UMLmodel refactoring usingmodel transformations. Their approach
uses first an annotation method for marking the initial UMLmodel, in order to obtain
an annotated target model. Then, a mapping table is created from these two anno-
tations in order to transform OCL constraints of the initial model into OCL con-
straints of the target one. Their solution of constraint transformations is difficult to
establish and it needs some knowledge about model transformation languages and
tools. In our work, constraint transformation is simple. It is performed in an ad-hoc
way without using additional modeling and transformation languages. In [10], the
authors propose an approach to generate (instantiate) models from metamodels tak-
ing into accountOCL constraints, usingCSP (Constraint Satisfaction Problem). They
defined some mathematical rules to transform models and constraints associated to
them. Cabot et al. [7] worked also on UML/OCL transformation into CSP in order
to check quality properties of models. These approaches are similar to our transfor-
mation process because they use an OCL compiler (DresdenOCL [8]) to transform
constraints. But in our approach, we consider source code generation from these
constraints, in order to make them executable with application’s code. In contrast to
CSP, this does not require an external tool for the interpretation of constraints.

In the practice of model-driven engineering, there exist several tools like Eclipse
OCL [1], Octopus [18], and DresdenOCL [8, 14, 17] which aim to translate OCL
constraints in Java source code. They however transform constraints which are func-
tional and not architectural. These tools translate this kind of constraints into object-
oriented programs which do not use the introspection mechanism. The generated
code by Dresden OCL is difficult to understand. Indeed, it is true that Dresden OCL
is the first tool implemented in this domain, but it extensively uses a vocabulary
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proposed only by its APIs. This code is normally intended to developers who master,
and will continue to use, Dresden OCL, contrary to our work, where code is intended
to be used by any Java developer. Besides, with these tools, we need to create before-
hand the classes of the model before generating constraints. Other works like Briand
et al. in [6] and Hamie et al. in [12] proposed a tool to transform functional (and not
architectural) constraints respectively into Java using aspect-oriented programming
and JML contracts.

8 Conclusion

It has been demonstrated that architecture constraints bring a valuable help for pre-
serving architecture styles, patterns or general design principles in a given application
after having evolved its architecture description [24]. These architecture constraints
are checked at design time. But what if the architecture evolves in the implementation
artifacts (the application’s programs)? Or, what if the architecture evolves at runtime
(through dynamic adaptation, for example)? To be able to check these constraints in
that development stage and at runtime, architecture constraints should be translated
into an appropriate format: meta-programs.

We have presented in this paper a process for generating Java code starting from
OCL architecture constraint specifications expressed in the UML metamodel. This
Java code uses the introspection mechanism provided by the programming language.
Our process is composed of three steps. The first optional one consists in refining the
constraints. The second step allows to transform them intoOCLconstraints expressed
in Java metamodel. The last step generates Java source code relying on specific code
generation rules. The reflection (instrospection) mechanism used in our approach
is a standard mechanism in Java. Otherwise, we can use static analysis libraries
like JDT [15] or ByteCode libraries like BCEL [5] but our goal was to use what
is standard in Java and not resort to external libraries. In addition, with reflection,
architecture constraints can be checked at runtime (by invoking the invariant method
in all the methods of the application where the architecture is changed: new objects
are created, references to objects are assigned to fields, etc.).

In our proposal, OCL coverage is not complete.We have implemented a prototype
called MOJaRT: Meta-OCL to JAva Reflect Translator. It is available for download
here: https://github.com/saharkallel/mojart.git/. which does not take into considera-
tion someOCL constructions, like some collection operations (union, for example).
But this does not have any impact on the work proposed in this paper.

As a future work, we plan to generalize the proposed approach, by specifying
architecture constraints in a language-independent way: using predicates on graphs
and operations on them and then making automatic transformations towards a par-
ticular object-oriented programming language.

https://github.com/saharkallel/mojart.git/
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Abstract Due to the highly dynamic behavior and the time complexity in Mobile
Ad-hoc NEtworks (MANETs), modeling distributed algorithms and looking at their
assumptions represent a challenging research task. Also, proving the correctness
of these algorithms for dynamic networks is a topic of intensive research. In fact,
the solutions which have been proposed to express and prove the correctness of
distributed algorithms are usually done manually. In addition, all these solutions
lack a consensus about their development and their proof. The main contribution of
this paper is to propose a general and formal model for dynamic networks based on
evolving graphs and Event-B formal method. In fact, evolving graphs is a powerful
tool to expressfine-grainedproperties. Thismodel allows to handle topological events
and to characterize the concept of time with some particularities. We implement it
with Event-B, based on refinement technique. To illustrate the proposed model, we
investigate an example of a distributed algorithm encoded by local computations
models.
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1 Introduction

1.1 Overview

In recent years, wireless communication networks have witnessed rapid advances in
the computing industry and are widely available in our everyday life. AMANET [13]
is a form of wireless networks. It is composed of mobile computing devices, called
nodes, such as laptops, smartphones, etc. These nodes are dynamically connected
in an arbitrary manner, without the support of any fixed infrastructure or centralized
administration.MANETs cover a large range of applications likemilitary operations,
emergency relief, wireless sensor networks, etc.

Due to nodemobility, disconnections and failures that can be produced,MANETs
are extremely dynamic and the connections between nodes vary in time. One well-
known challenge in these networks is modeling such dynamics and creating a refer-
ence model on which results could be compared and reproduced. In this context, a
MANET can be naturally represented as a dynamic graph whose nodes are mobile
devices and the edges are instantaneous wireless links between the nodes. The evolv-
ing graph formalism has been proposed by A. Ferreira [8] as a combinatorial model
for dynamic networks. In this model, a dynamic graph can be decomposed as a
discrete sequence of static graphs. Each static graph is a snapshot of the dynamic
network at a given time.

In a dynamic graph, the communication between nodes can be ensured by a dis-
tributed algorithm [14]. The latter is designed to run on interconnected autonomous
computing entities for achieving a common task. In order to encode distributed algo-
rithms, we use local computations model and particularly graph relabelling systems
[12]. In this context, a node can realize a computation step if there is a specific rule
that describes the corresponding label modifications. The rule can be applied if it is
consistent with the states of the node and its neighbours.

To specify the abstraction provided by local computation, we use a formalmethod.
In fact, formal methods provide a real help for expressing correctness with respect to
safety properties in the design of distributed algorithms. Particularly, the correct-by-
construction approach [11] provides a way to prove algorithms. It can be supported
by a progressive and incremental process controlled by the refinement [3] of models
for distributed algorithms. This process allows to simplify the proofs and to validate
the integration of requirements. The Event-B modeling language [1] can support
this methodological proposal suggesting proof-based guidelines. It is supported by
a tool called “RODIN” [2] which provides an environment for developing correct-
by-construction models for software-based systems.
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1.2 Contribution

In this paper, we propose a reusable model for dynamic networks by combining
the evolving graphs formalism and the refinement approach of the Event-B method.
More precisely, we develop a general and formal solution which defines the different
topological events in a dynamic network and the resulting changes in the evolving
graph. In addition, we focus in this model on the concept of time to present the situ-
ations which need a time evolution. Moreover, the proposed model gives primitives
to analyze an evolving graph. Our model takes into consideration only the variation
of edges in the network. It can be extended in the future to address the movements
of nodes.

Formally, we propose a refinement strategy that allows to enrich a model in a
step by step fashion. The refinement is the foundation of the correct-by-construction
which is a well suited approach to prove algorithms. Themain objective of our model
is to enable reuse during the development. In fact, different components of the model
can be refined and reused to specify distributed algorithms in dynamic networks.
Hence, we can save effort on proving correct algorithms.

To illustrate our model, we present an example of a counting algorithm encoded
by local computations models. The main goal of this example is to demonstrate how
we can use and refine the proposed model.

1.3 Related Work

Evolving graphs are an effective and powerful formalism which helps to capture
the dynamic behavior of MANETs. That’s why, it has drawn the attention of the
research community in the last few years. Several research works have been based
on this formalism to deal with network dynamics.

In [6], A. Casteigts proposed an analysis framework for distributed algorithms
on dynamic networks. The proposed framework provides general formalisms and
methods for studying the main properties of the distributed algorithms in dynamic
networks. It allows to characterize the necessary and/or sufficient connectivity con-
ditions required for the success of a distributed algorithm in a dynamic network.
It is based on the combination of the evolving graphs and graph relabellings [12].
This framework is illustrated by the analysis of three simple algorithms (propaga-
tion algorithm, centralized counting and decentralized counting) whose necessary
and sufficient conditions were derived into a sketch of classification of dynamic
networks.

Furthermore, P. Floriano et al. [9] presented a study of necessary and sufficient
conditions, in dynamic networks, for two distributed problems which are mutual
exclusion and K-mutual exclusion. To do this, they exploit the framework proposed
by A. Casteigts [6].
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The author [10] provided a sufficient condition for the decentralized counting
algorithm suggested by A. Casteigts [6]. In fact, he shows that a complete underlying
graph was sufficient for the decentralized counting algorithm to succeed. Moreover,
he introduces the concept of tight conditions, to strengthen the guarantees offered
by necessary and sufficient conditions. Then, he demonstrates the tightness of the
sufficient condition provided for the decentralized counting algorithm.

In addition, M. Barjon et al. [4] proposed an algorithm which maintains a forest
of spanning trees in dynamic networks. The proposed algorithm aims to maintain
exactly one token (root) per tree. It is based on three operations on tokens: circulation,
merging and regeneration. To do this, a computation step takes as input the state of
a pair of nodes and modifies these states according to some rules.

Throughout the related works outlined above, we note a lack of consensus about
the development and proof of distributed algorithms in dynamic networks. More-
over, the proofs which have been presented are done manually. In addition, most of
the distributed algorithms which have been investigated, in dynamic networks, are
simple.

1.4 Organization of the Paper

The remainder of this paper is organized as follows: In Sect. 2, we present basic
concepts of the evolving graph and the Event-B formal method. Section3 introduces
our proposed model for dynamic networks based on the evolving graphs formalism.
In Sect. 4, we present the formal development of the proposed model. Section5
applies our model to develop an example of a distributed algorithm. Finally, the last
section concludes and outlines areas for our future research.

2 Preliminaries

2.1 Evolving Graphs

The formalism of evolving graphs has been proposed as a combinatorial model for
dynamic networks. In this model, the evolution of the network topology is simply
recorded as a sequenceof static graphs.As an example,we consider the four snapshots
taken at different time intervals of a MANET, as shown in Fig. 1. Each static graph
is a snapshot of the dynamic network at a given time. This view is precisely adopted
by A. Ferreira [8].
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Fig. 1 Sucessive snapshots of a MANET evolution over time

Fig. 2 The evolving graph
corresponding to the
MANET in Fig. 1
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Formally, an evolving graph g is a triplet (G, SG , ST), where:

• ST = t0, t1, . . . , tn is an ordered sequence of dates used to capture the static graphs.
These dates correspond to every time step in a discrete-time system (T ⊆ N).
Except for t0 and tn , each ti corresponds to one or more topological events that
modifies the network. Each edge is labeled with the dates of its presence.

• SG = G0,G1, . . . ,Gn−1 is the sequence of undirected static graphs. Each Gi

represents the network topology during the period [ti , ti+1[ in the evolving graph g.
• G represents the union of all Gi in SG , called the underlying graph of g (see Fig. 2).
The edges are labeled with the date of their presence. For example, the presence
of the edge “ae” in Fig. 1 at the dates “2” and “3” is represented in Fig. 2 by an
edge “ae” labeled “2, 3”.

We will use the simple notations “V” and “E” to denote respectively the sets of nodes
and edges of the underlying graph “G”.

2.2 Event-B Overview

The Event-B modeling language [1] defines mathematical structures into contexts
and the formal model of the system into machines. The modeling process starts by
identifying the domain of the problem expressed by means of context. This latter is
characterized by a list of sets, list of constants, list of axioms and theorems that can
be derived from the axioms of the context. An Event-B machine describes a reactive
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system by a set of invariants properties and a finite list of events modifying state
variables. A machine “M” may see a context “C”, this means that all carrier sets and
constants defined in “C” can be used in “M”.

The key tool behind the Event-B method is the refinement [3]. The refinement of
a specification allows to enrich it in a step-by-step fashion. It is the foundation of the
correct-by-construction approach. It provides a way to strengthen invariants and add
details to a model. It is also used to transform an abstract model into a more concrete
version by modifying the state definition. This is done by extending the list of state
variables, by refining each abstract event into a corresponding concrete version and
by adding new events.

An Event-B specification is considered as correct only if each machine, as well as
the process of refinement, are proved by adequate theorems named Proof Obligations
(PO). The management of proof obligations is a technical task supported by RODIN
tool [2],which provides an environment for developing correct-by-constructionmod-
els for software based systems.

3 The Proposed Model

Based on evolving graphs, we propose in this section a formal and general model for
dynamic networks. The proposed model defines the different topological changes in
a dynamic network allowing to specify a distributed algorithm, the manner of time
evolution and the primitives to analyze the evolving graph. The main objective of
this model is to be reused or instantiated to specify distributed algorithms in dynamic
network.

As mentioned earlier, the formalism of evolving graphs allows to represent the
changing connectivity of a dynamic network as a sequence of static graphs.

Let g = (G, SG , ST ) be an evolving graph. Every static graph, Gi ∈ SG , cor-
responds to the network topology during the interval of time [ti , ti+1[ where “ti”
represents the date when one or several topological events occur in the system. In
our work, the time evolution from a date “ti” to a date “ti+1” is performed after one
or many topological events. We can distinguish two situations of these events:

• Adding edge:
Pre-condition: appearance of a new edge in the network at the current date “t”.
Post-condition: addition of the new edge labeled “t”.

• Removing edge:
Pre-condition: presence of an edge in the network at the date “t-1” and its disap-
pearance at the current date “t”.
Post-condition: no change takes place in the evolving graph.

There is another event that requires changing the evolving graph without affecting
the time evolution.We call this event “Maintaining edge”.We talk about this situation
if an edge is present at the date “t-1” and it undergoes no change at the date “t”. In
this case, we add the date “t” to the label of the concerned edge.
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t0 t1 t2 tn-1 tn

time

start Event t1
Event t2

Event tn-1
end

G0 G1[ G1 G2[ Gk-1 Gk[

G0 G1
Gtn-1

RA[t0, t1[
RA[t1, t2[

RA[tn-1, tn[

Fig. 3 Combination of graph relabellings and evolving graphs

In our proposed model, we take into account some hypotheses. On the one hand,
we will consider only the variation of edges in the network. In contrast, we don’t
consider the appearance or disappearance of nodes. On the other hand, a distributed
algorithm in the local computation model is simply given by a set of relabelling
rules. So, we suppose that such distributed algorithm can apply its rewriting rule(s)
to every edge before the final date “tn”. In order to analyze distributed algorithms
on dynamic networks, we combine the evolving graphs and the formalism of graph
relabellings [12]. As illustrated in Fig. 3, each static graph Gi in SG covers the
time interval [ti , ti+1[. We denote by “Eventti ” the one or more topological events
occurring at the time “ti”. Between two consecutive topological events, any number
of relabellings may take place. For a given algorithm A and two consecutive dates
ti , ti+1 ∈ ST, we denote by:

• Gi[ the labeled graph representing the network state just before “Eventti ”;
• Gi the labeled graph representing the state of the network just after the topological
events of the date “ti”;

• RA[ti ,ti+1[ one of the possible relabelling sequence induced by the algorithm A on
the graph Gi during the period [ti , ti+1[.

Then, we have Eventti (Gi[) = Gi and RA[ti ,ti+1[(Gi ) = Gi+1[.

4 Formal Development

We remember that the specification of our proposed model is performed with Event-
B method and done with RODIN platform. In our work, the development strategy
of our model is composed of one context “c” and two machines “M0” and “M1”.
We begin by presenting the context which describes static properties of the network.
After that, we detail the specification of the two machines. In fact, we start with a
very abstract model and then we add details, to obtain a correct and concrete model.
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4.1 Formal Development of the Context “c”

The context “c” describes the static properties of the network. Formally, a graph
namely “g” is modeled by a set of nodes called “V”. However, we have supposed
in our work that the dynamic graph is composed of stable nodes and variable edges.
For this reason, we define “V” in the context as an abstract set. Moreover, we add
“tn” as a constant which represents the final system date. By means of the “axm1”,
we state that “tn” is an integer different to the start date of the system. Furthermore,
we add “axm2” to indicate that the number of nodes in the network is finite. The
axioms specification of the context “c” is done as follows:

axm1 : tn ∈ N \ {0}
axm2 : f ini te(V )

4.2 Formal Development of the First Level: Machine M0

In this level, a network canbe formallymodeled as a connected, undirected and simple
graph “g” where nodes denote processors and edges denote direct communication
links (see inv1). A graph is undirected if there is no distinction between two nodes
associated with each edge (see inv2). A simple graph means that it does not have
more than one edge between any two nodes and no edge starts and ends at the same
node (see inv3). The invariants specification of M0 is done as follows:

inv1 : g ⊆ V × V
inv2 : g = g−1

inv3 : (V � id) ∩ g = ∅

In the first level, we can notice the appearance of new edges and the maintain of the
existing ones from a graph Gi to the following graph Gi+1. In fact, the basic idea
of the evolving graph is the superposition of graphs one another. As a consequence,
we do not consider the concept of time and the removing of edges. Nevertheless,
it is necessary to have another level which refines the first. In Fig. 4, we present
an example of evolving-graphs sequence which we can see in the first level. This
sequence corresponds to the network topology taken in Fig. 1. Formally, we introduce
two events “Adding_Edge” and “Maintaining_Edge”.

G0 G1 G2 G3

Fig. 4 Example of evolving-graphs sequence in M0
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• Adding_Edge: In this event, if an edge does not belong to the graph “g” (grd1,
grd2 and grd3), then we can add it to “g” (act1). To respect the invariant “inv2”,
we add both “x �→ y” and “y �→ x”. We provide below the specification of this
event.

• Maintaining_Edge: Based on the evolving graphs, if an edge exists in a graph Gi

then it still exists in the following graph Gi+1. Formally, in the guard component,
we define “grd1” to verify the existence of an edge “e” in the graph “g”. This
event with no action is considered to have the action skip.

Adding_Edge
any x, y
where

grd1 : x �→ y ∈ V × V
grd2 : x �→ y /∈ g
grd3 : x 	= y

then
act1 : g := g ∪ {x �→ y, y �→ x}

end

Maintaining_Edge
any e
where

grd1 : e ∈ g
then

act1 : skip
end

4.3 Formal Development of the Second Level: Machine M1

The second machine, called M1, refines the previous one. In fact, we keep the vari-
ables, invariants and events of the machine M0 and we add details to transform an
abstract model into a more concrete version. If an invariant refers to both the abstract
and concrete model, we call it a “gluing invariant” (inv3, inv4). The gluing invari-
ants are used to relate the states between the concrete and abstract machines. In this
level, we introduce the concept of time to distinguish the situations of appearance,
disappearance and maintain of an edge in the network. Indeed, each edge has a label
that indicates the dates when it is present in the network.

• The appearance of a new edge in the network at the date “t” requires the addition
of this edge labeled “t”;

• The disappearance of an edge does not change anything in the evolving graph;
• The presence of an existing edge at the current date “t” requires adding the date

“t” to the label of the concerned edge.

To illustrate these details, we present an example of evolving-graphs sequence in
Fig. 5 which refines the first level.

In order to specify these events, we refine the “Adding_Edge” event of M0
by another event “Adding_Edge” which add more details. Also, we refine the
“Maintaining_Edge” event to obtain two events “Maintaining_Edge” and “Remov-
ing_Edge”. Moreover, we introduce a new event called “Incrementing_Time”, to
ensure the incrementation of time when one or many topological changes occur in
the network.

Formally, we specify the machine M1 by adding two variables “t” and “LE”.
The variable “t” represents the current time and “LE” is a function that assigns
a label to each edge. The specification of this function takes the following form:
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G0 G1 G2 G3

0 0, 1 0, 1, 2 0, 1, 2

1 1 1

1 1, 2 1, 2

t0 t1 t2 t3 t4

Fig. 5 Example of evolving-graphs sequence in M1

L E ∈ g → P(N ). The addition of these two variables involves the addition of new
properties in the invariant component (inv1, inv2, inv3 and inv4).

inv1 : L E ∈ g → P(N)

inv2 : t ∈ N ∧ t ≥ 0 ∧ t ≤ tn
inv3 : ∀e · e ∈ g =⇒ (∃t1 · t1 ∈ N ∧ t1 ≥ 0 ∧ t1 ≤ t ∧ t1 ∈ L E(e))
inv4 : change ∈ N

Initially, the system time is initialized to zero (t = 0). Then, the edges which are
present at the time “t = 0” have the label “0” (LE={0}).

If we say that an edge “e” exists in “g” (e ∈ g), then its label contains at least
one date “t1” knowing that t1≤t (see inv3).

As we said above, the incrementation of time, from a date “t” to a date “t+1”, is
done after one or several topological events (adding edge, removing edge). To do so,
we introduce a new variable of type integer called “change” (see inv4). This variable
is initialized to zero (change=0) and if an event takes place, then “change=1”.

In order to express the different topological changes over time, based on the
evolving graphs, we explain and we specify the different events as follows:

• Adding_Edge: By introducing the concept of time, the appearance of a new edge
in the network requires the addition of the edge and a label containing the current
date “t”. Thus, the “Adding_Edge” event presented in M0 is refined by modifying
the action component. In fact, we add the new edge and then we add a label
containing the current date. Also, the variable “change” receives the value “1”
(act2) to indicate that a topological change has been produced. We provide below
the specification of the “Adding_Edge” event.

• Maintaining_Edge: If an edge has appeared at a date “t1”, with “t1” strictly
lower than the current date “t”, and it still exists at the date “t”, then we call this
event “Maintaining_Edge”. Formally, in the guard component, we define “grd1”
to verify the existence of an edge “e” in the graph “g” before the date “t”. Also,
we add “grd2” to guarantee that the date “t” does not belong to the label of the
edge “e”. In the action component, we update the label of the edge “e” by adding
the date “t” to the existing label (act1). The variable “change” does not change
since the network has not undergone any modification. The “Maintaining_Edge”
event is specified as follows:
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Adding_Edge
refines Adding_Edge
any x, y
where

grd1 : x �→ y ∈ V × V
grd2 : x �→ y /∈ g
grd3 : x 	= y

then
act1 : g, L E : |g′ = g ∪ {x �→ y, y �→ x}
∧L E ′ = L E ∪ {(x �→ y) �→ {t}, (y �→ x) �→ {t}}

act2 : change := 1
end

Maintaining_Edge
any e
where

grd1 : e ∈ g
grd2 : t /∈ L E(e)

then
act1 : L E(e) := L E(e) ∪ {t}

end

• Removing_Edge:An edge has been removed at the actual date “t” if it exists at the
date “t-1” (see grd1 and grd2), but it does not exist at the date “t” (see grd3). In this
situation, nothing will change in the evolving graph. So, in the action component,
we modify only the variable “change” (act1). We provide the specification of the
“Removing_Edge” event below.

• Incrementing_Time: We have introduced a new event, called “Incrementing_
Time”, which ensure the incrementation of time. In the guard component, we verify
that t≥0 and t<tn (grd1). This event is activated when one or several topological
events (Adding_Edge, Removing_Edge) occur in the network, which means that
“change” is equal to 1 (grd2). In the action component, we increment the time to
“t +1” and we reset the variable “change” (act2). Then, we have no topological
change at the time “t +1”. The “Incrementing_Time” specification is done as
follows:

Removing_Edge
any e
where

grd1 : e ∈ g
grd2 : t ≥ 1 ∧ (t − 1) ∈ L E(e)
grd3 : t /∈ L E(e)

then
act1 : change := 1

end

Incrementing_Time
where

grd1 : t ≥ 1 ∧ t < tn
grd2 : change = 1

then
act1 : t := t + 1
act2 : change := 0

end

Using the proposed model, it is possible to find the historical data of a dynamic
network. So, it is a way to analyze an evolving graph. In fact, through the function
“LE”, we can obtain the presence dates of each edge in the network. Then, we can
verify the connectivity over time [7] of the network. Also, we can find the set of
all possible paths over time from one node to another, called journeys. Thus, it is
possible to compute optimal journeys in dynamic networks like the minimum delay
of path (fastest journey), the earliest arrival date (foremost journey) and theminimum
number of hops (shortest journey) [5].

5 Example

In this section, we present an illustration of our model by specifying a distributed
algorithm encoded by local computations model. For this purpose, we choose a sim-
ple example of algorithm, called centralized counting algorithm. It is a distributed
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Fig. 6 Execution example of the centralized counting algorithm over evolving graph

algorithm which computes all the nodes in a network. In fact, each entity executes
asynchronously the same code and interacts locally with its immediate neighbours.
The proposed model can be applied to other distributed algorithms. The main objec-
tive of this section is to demonstrate how our model can be used and incorporated
during development. Through this example, we list and we discuss the instantiation
of the different model components, by refinement technique, to generate a correct
specification.We begin in this section by presenting the chosen algorithm. After that,
we illustrate how we obtain an instance of the proposed model.

5.1 Algorithm Presentation

The centralized counting algorithm, depicted inAlgorithm1, assumes a distinguished
node at initial time. This node, called the counter, is in charge of counting all the
nodes it meets during the execution. Therefore, the counter node has two labels
(C, i), meaning that it is the counter (C), and that it has already counted i nodes
(initially 1, i.e., itself). The other nodes are labeled either “F” or “N”, depending on
whether they have already been counted or not. The counting rule is given by the
relabelling rule “R” in Algorithm 1. An execution example of this algorithm over
the evolving graph is given in Fig. 6.



Towards a Formal Model for Dynamic Networks Through Refinement … 239

M1

c1SEESM0

M1’

M0’

M2

c SEES

EXTENDS

REFINES

REFINES REFINES

REFINES
Formal model

Algorithm development

INCORPORATES

Fig. 7 Using the model in Event-B development (Example: centralized counting algorithm)

5.2 Formal Specification

To explain the specification of the centralized counting algorithm,we present in Fig. 7
how the proposed model is used to construct a correct distributed algorithm. In fact,
we begin by specifying the application field of the algorithm. Then, we introduce
a new context called “c1”, as an extension of the context “c”, which describes the
specific algorithmic properties. Generally, the development of a distributed algorithm
starts with a very abstract algorithm and then by successive refinement we obtain a
concrete one that expresses the local behavior of the processor in the network.

According to this development strategy and with respect to the given algorithm,
three basic levels are necessary to build a correct distributed algorithm.

In the first level, we define a machine M0’ which refines M0. Then, it includes
the events “Adding_Edge” and “Maintaining_Edge”. M0’ can access to all com-
ponents of the context “c1” (via the clause SEES). It expresses only the goal of
the distributed algorithm through a new event “oneshot” which does not describe
how the solution is computed. In the second level, M1 is incorporated into M1’
(via the clause INCORPORATES). Thus, M1’ includes the events “Adding_Edge”,
“Maintaining_Edge”, “Removing_Edge” and “Incrementing_Time” as defined in
M1. In addition, we refine the events “Adding_Edge” and “Maintaining_Edge” of
M0’ in the same manner as the refinement done in the proposed model. Also, we
refine the event “oneshot”. In the third level, we introduce a machine, called M2,
which refines M1’. In this level, we specify the local label modification and encode
the relabelling rule described above.

The details of the context andmachines developmentwill be explained afterwards.

• The context “c1”
In this context, we define the node “c0” as a constant which is in charge of counting
all the nodes it meets during the execution. We denote node labels by a set called
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“LN”: The node “c0” is labeled “C”. The other nodes are labeled “F” if they have
already been counted and “N” if they have not (see axm 2). All these specific
algorithmic properties are specified as follows:

context c1
extends c
sets

L N
constants

c0, N , F,C
axioms

axm1 : c0 ∈ V
axm2 : parti tion(L N , {C}, {N }, {F})

end

• The first level: Machine M0’
In this level, the “Adding_Edge” and the “Maintaining_Edge” events remain
unchanged and we add an event called “oneshot”. This event avows the result
of the distributed algorithm when its execution is completed. Then, it returns the
number of nodes in the network without describing how the solution is computed.
In order to specify the “oneshot” event, we introduce two variables “nodes”
and “nb_nodes” which will contain respectively the sets of nodes that have been
counted and the resulting number of nodes. These new variables are specified by
the following invariants:

inv4 : nodes ⊆ V
inv5 : nodes 	= ∅
inv6 : c0 ∈ nodes
inv7 : ∀x · x ∈ nodes\{c0} =⇒ c0 �→ x ∈ g
inv8 : nb_nodes ∈ N

Initially, “nodes” contains the center “c0”. Thus, “nb_nodes” is equal to 1. The
following initialization establishes the invariants:

act1 : g : |(g′ ⊆ V × V ) ∧ (g′ = g′−1) ∧ ((V � id) ∩ g′ = ∅)
act2 : nodes := {c0}
act3 : nb_nodes := 1

We provide the specification of the “oneshot” event below. In the guard compo-
nent, all nodes, except “c0”, must be connected to the center “c0”. In the action
component, the variable “nodes” contains all the network nodes and “nb_nodes”
is the number of nodes in the network. We prove by means of the theorem “Th1”
that the graph “g” is connected.

oneshot
where

grd1 : ∀x · x ∈ V \ {c0} =⇒ c0 �→ x ∈ g
T h1 : ∀s · s ⊆ V ∧ s 	= ∅ ∧ g[s] ⊆ s =⇒ V ⊆ s

then
act1 : nodes := V
act2 : nb_nodes := card(V )

end
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• The second level: Machine M1’
The refinement of M0’, named M1’, remains in a high level abstraction. It encodes
the algorithm and computes its result without considering the relabelling rules.
The specification presented in the second level of the model still exists. However,
we have to refine the “oneshot” event defined in M0’, due to the presence of the
time aspect in this level. In fact, the “grd1” presented in M0’ is reinforced by a
new condition called “grd2”. It ensures that each node “x” in the graph, except
“c0”, will be linked to the node “c0” at one or several dates. Then, the label of
each edge “c0 �→ x” in the graph contains one or several dates. The guard “grd2”
of the “oneshot” event specification is given as follows:

grd2 : ∀x · x ∈ V \ {c0} =⇒ (∃t1 · t1 ≥ 0 ∧ t1 ≤ tn ∧ t1 ∈ L E(c0 �→ x))

• The third level: Machine M2
The thirdmachine, calledM2, refines the previous one. It introduces labels of nodes
and edges. The “oneshot” event still exists but it is more concrete. However, the
other events (Adding_Edge, Maintaining_Edge, Removing_Edge), presented in
M1’, remain unchanged.
Let “lab” be the variable which describes the states of nodes: “lab ∈ V → L N”
(inv1) where “LN” is defined in the context “c1” as the set of possible labels for the
nodes. At every time, each node is in a particular state and this statewill be encoded
by a node label. According to its own state and to the states of its neighbours, each
node may decide to perform a computation step by applying the relabelling rule.
Initially, the node “c0” is labeled “C” and the other nodes are labeled “N”, since
they have not been counted. The initialization of the variable “lab” is defined as
follows:

act5 : lab := ((V \ {c0}) × {N }) ∪ ({c0 �→ C})

Formally, the relabelling rule “R” is specified by the event “Rule” as follows:

Rule
any

s2
where

grd1 : c0 �→ s2 ∈ g
grd2 : lab[{s2}] = {N }
grd3 : t ∈ L E(c0 �→ s2)

then
act1 : lab(s2) := F

end

We also define a gluing invariant called “gluing_inv”. Generally, the gluing invari-
ants are used to relate the states between the concrete and abstract machines. In
our context, if a node “x” belongs to “nodes”, which represents the sets of nodes
that have been counted, then it is connected to the center “c0” and labeled “F”.
Furthermore, the edge joining the node “x” and “c0” should be present in one or
several times. The gluing invariant specification of M2 is done as follows:
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gluing_inv : ∀x · x ∈ nodes\{c0} =⇒ lab(x) = F
∧c0 �→ x ∈ g ∧ (∃t1 · t1 ≥ 0 ∧ t1 ≤ tn ∧ t1 ∈ L E(c0 �→ x))

In this level, we refine the “oneshot” event by adding new guards and reinforcing
the action “act1” of the abstract event. In fact, we reinforce the guard component
by adding “grd3”, “grd4” and “grd5” which ensure that the node “c0” is labeled
“C” (grd3), all the other nodes are labeled “F” (grd4) and no node is labeled “N”
(grd5). The added guards in the “oneshot” event specification is given as follows:

grd3 : lab[{c0}] = {C}
grd4 : lab[V \ {c0}] = {F}
grd5 : lab−1[{N }] = ∅

Also, we reinforce the action “act1” to indicate that, at the end of the execution of
the algorithm, the nodes are labeled “C” or “F”.

act1 : nodes := lab ∼ [{C, F}]

Weprove bymeans of the theorem2 (Th2) that our algorithmcan apply its rewriting
rules to every edge before “tn”.

T h2 : ∀x · x ∈ V \ {c0} ∧ c0 �→ x ∈ g =⇒ (∃t1 · t1 ≥ 0 ∧ t1 ≤ tn ∧ t1 ∈ L E(c0 �→ x) ∧ lab(x) = F)

6 Conclusion and Future Work

In this paper, we have presented a formal and general model for dynamic networks
based on the evolving graph formalism. It aims to define the different topological
changes and the situations of time evolution. It is also a way to analyze the evolving
graph. The proposed model is based on the refinement technique by using the Event-
B formal method and the RODIN platform. The main characteristic of this model is
that it enables reuse in the development and minimizes efforts on proving distributed
algorithms. We have illustrated it by investigating an example of the centralized
counting algorithm.

We are currentlyworking on dealingwith other examples of distributed algorithms
which aremore complex.Weplan to extendourmodel by introducing someproperties
related to evolving graphs such as connectivity over time, journeys, etc. Moreover, it
is interesting to choose a case study supporting the dynamic behavior of the network
in order to apply the proposed model in realistic scenarios.
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An Iterated Variable Neighborhood Descent
Hyperheuristic for the Quadratic Multiple
Knapsack Problem

Takwa Tlili, Hiba Yahyaoui and Saoussen Krichen

Abstract The Quadratic Multiple Knapsack Problem (QMKP) is a variant of the
well-known NP-hard knapsack problem that assign profits not only to individual
items but also to pairs of items. QMKP aims to maximize a quadratic objective
function subject to a linear capacity constraint. In this paper, we focus on propos-
ing a hyper-heuristic approach based in the iterated variable neighborhood descent
algorithm for solving the QMKP. Numerical investigations based on well-known
benchmark instances are conducted. The results clearly demonstrate the good per-
formance of the proposed algorithm in solving the QMKP.

Keywords Hyper-heuristic · Iterated variable neighborhood descent · Quadratic
multiple knapsack problem

1 Introduction

The knapsack problem (KP), a well-known NP-hard optimization problem, has been
thoroughly studied in the literature. KP can be encountered in numerous real-world
applications in different areas, such as, resource allocation [3], investment decision-
making [8], network interdiction problem, location problems [12], and capital bud-
geting problems [1]. The standard KP is defined as follows. Given a set of items with
profits and weights, and a single knapsack, the aim is to maximize the total profits
of selected items to put into the knapsack subject to the capacity constraint.

The Quadratic Knapsack Problem (QKP) firstly evoked by Gallo et al. [4] is a
generalization of the classical KP, which the total profit should reflect how well the
selected items fit together. A more recent extension of the QKP considers numerous
knapsacks, called the Quadratic Multiple Knapsack Problem (QMKP), where profit
values are assigned not only to the items but to pairs of them.
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In this paper, we handle the multiple quadratic knapsack problem using a new
Hybridization between Hyperheuristic-based Variable Neighborhood Search and the
iterated local search (HH-VNS).

The rest of the paper is organized as follows. Section2 provides a detailed descrip-
tion of the problem. Section3 describes the proposed iterated variable neighborhood
descent hyper-heuristic for the MQKP presents. Section4 presents the numerical
results compared to the other state-of-art approaches. Finally we conclude in Sect. 5.

2 Quadratic Multiple Knapsack Problem

The quadratic multiple knapsack problem (QMKP) is about packing a set of items
disjunctively to a set of knapsacks while maximising the total profit subject to the
capacity constraint. Formally the QMKP can be described as follows.

Formally, theQMKP is to assign n items tom knapsacks such that the total profit of
the allocated items is maximized. Each knapsack k ∈ {1, 2, . . . ,m} has a maximum
capacity Ck . Each object i ∈ {1, 2, . . . , n} has a profit pi and a size si . Each pair of
items (i, j) is associated with a joint profit pi j . QMKP seeks to assign each item to
a single knapsack such that the total weight of the packed items does not exceed the
capacity of used knapsack. Maximizing the total profit of all the assigned items is
our objective.

The QMKP can be formulated as follows [2, 5, 6].

Max Z(X) =
n∑

i=1

m∑
k=1

xik pi +
n−1∑
i=1

n∑
j=i+1

m∑
k=1

xik x jk pi j (1)

Subject to

n∑
i=1

xikwi ≤ Ck; ∀k (2)

m∑
k=1

xik ≤ 1; ∀i (3)

where the variables xik indicate that item i is included in knapsack k.
Hiley and Julstrom [7] proposed the first study about the QMKP which is a com-

bination of two optimization problems: the multiple-knapsack and QKP. Authors
proposed three different heuristics: a greedy heuristic, a stochastic hill-climbing
method and a genetic algorithm. Since then, a variety of metaheuristics have been
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developed for the QMKP. Saraç and Sipahioglu [9] proposed a genetic-based algo-
rithm as well as a hybrid approach for the QMKP. García-Martínez et al. [5, 6] pro-
posed a tabu-enhanced destruction mechanism for iterated greedy search, named the
tabu-enhanced iterated greedy algorithm. Authors proved that the resulting algorithm
exploits effectively the problem-knowledge associatedwith theQMKP requirements.
Sundar and Singh [11] have incorporated group preserving property into Artificial
Bee Colony (ABC) method for QMKP. García-Martínez et al. [5, 6] developed a
strategic oscillation based framework that operates in relation to a critical bound-
ary associated with important solution features. Authors showed that their proposed
approach outperforms current state of-the-art algorithms. Soak et al. [10] proposed
a memetic algorithm which is based on the adaptive link adjustment evolutionary
algorithm (ALA-EA). More recently, Chen and Hao [2] developed a new algorithm
named, iterated responsive threshold search (IRTS) approach for solving the QMKP.
The proposed IRTS discovers 41 improved lower bounds and reached all the best
known results for the benchmark instances.

3 Iterated Variable Neighborhood Descent Hyper-heuristic
for the QMKP

Hyper-heuristic refers to the coupling of artificial intelligence methods with auto-
mated theorem proving. It is a high-level search strategy that either generates or
selects a heuristic from a number of low-level heuristics at each point in the search.
In this paper, we developed the Iterated Variable Neighborhood Descent Hyper-
heuristic (IVND-H) expressed as shown in Fig. 1.

The framework resolution depicted in Fig. 1 can be formally detailed as follows.
IVND-H starts from an initial solution and iteratively explores its neighborhood
looking for a better one. Each integrated heuristic is associated with a weight which
is updated according to the performance during the search process. IVND-H iterates
until no further improvements is obtained.

4 Experimental Results

This section is devoted to describe the preliminary computational experiments carried
out to assess the quality of the solutions provided by the IVND-H for the QMKP.
The proposed approach was built in Java and ran on a personal computer with 2.4
GHz I ntel® CoreT M processor, 4 GB RAM andWindows 7 as an operating system.
In order to show the effectiveness of the IVND-H, we apply it on a benchmark
instances available on line at http://www.optsicom.es/qmkp/. The data set contains 60
instances in which the number of items n ∈ {100, 200} and the number of knapsacks
m ∈ {3, 5, 10}. Hiley and Julstrom [7] used the first five instances from each group

http://www.optsicom.es/qmkp/
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Fig. 1 IVND hyper-heuristic for the QMKP

of density 0.25 to generate the first set of thirty QMKP instances. The other set
of instances were generated in the same way from the posted QKP instances with
density 0.75. For each QMKP instance, knapsack capacities are set to 80% of the
sum of the objects weights divided by the number of knapsacks.

In Table1, we present the empirical results of both the IVND and IVND-H.
Columns in Table1 are respectively number of items n, number of knapsacks m,
N o of instance I , knapsack capacity C , solution of VND-H algorithm and solution
of IVND-H. Table1 shows that in almost all instances the IVND-H outperforms the
VND-H due to the perturbation that provide better investigation of the search space.
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5 Conclusion

In this paper, we addressed the quadratic multiple knapsack problem (QMKP) which
is a knapsack problem with multiple knapsacks and items joint profits. For handling
the QMKP, we developed the iterated variable neighborhood descent hyper-heuristic
(IVND-H). The proposed algorithm does not impose a heuristic but the selection is
done according to the score of each heuristic. The conducted numerical investigations
clearly demonstrated the good performance of the proposed algorithm to solve the
QMKP.
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