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Abstract. The large cyberphysical systems that are currently being
developed such as Car2X come with sophisticated security architectures
that involve a complex interplay of security protocols and security APIs.
Although formal methods for security protocols have achieved a mature
stage there are still many challenges left. One is to improve the verifica-
tion of equivalence-based security properties. A second challenge is the
compositionality problem: how can the security of a composition of secu-
rity protocols and APIs be derived from the security of its components.
It seems intuitively clear that foundational results on causal equivalences
and process calculi could help in this situation. In this talk we first iden-
tify four ways to exploit causality in security verification. In particular,
this will lead us to review results on causal equivalences. Finally, we
discuss how such results could help us to tackle the two challenges.

1 Motivation

Cyberphysical systems such as Car2X are potentially vulnerable against attacks
that could have a drastic impact on the safety as well as the privacy of their
users. Therefore such systems must be protected by a sophisticated security
architecture. Take Car2X as an example. Based on a threat and risk analysis,
the ETSI1 standards advocate a security architecture that includes authenticated
Car2X communication by digital signatures, cryptographic keys and credentials
management, privacy enabling technologies by pseudonyms, and in-car software
and hardware security based on hardware security modules (HSMs) [11,12].

Two mechanisms are central within such a security architecture: security
protocols and security APIs. A security protocol specifies an exchange of crypto-
graphic messages between two or several principals, intended to achieve security
objectives such as authentication, key establishment, or confidentiality of data.
A security API (Application Programming Interface) is the software interface to
a security services layer. At the lowest level this will typically be the API to an
HSM that stores and uses sensitive cryptographic keys.
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The security properties that are central for the verification of security pro-
tocols and APIs fall into two categories: one is that of reachability-based (or
trace-based) properties, the second is the class of equivalence-based properties.
Traditional properties such as authentication and syntactic secrecy are trace-
based properties. They express properties of protocol runs: if A and B exchange
a secret s and during no run of the protocol the attacker can obtain the value s
then the protocol satisfies syntactic secrecy of s. In contrast, privacy-type prop-
erties such as untraceability, vote secrecy, or anonymity have to be expressed in
terms of indistinguishability: if an attacker has no way to distinguish the process
in which A votes ‘yes’ from the process in which she votes ‘no’ then vote secrecy
is satisfied. Formally, indistinguishability is expressed in terms of a notion of
behavioural equivalence.

The verification of security protocols has reached a mature state with
many tools available that can automatically check whether a security prop-
erty is satisfied (up to certain assumptions or abstractions) (e.g. [46]). How-
ever, there are still many challenges left. Decidability and complexity results
as well as automatic tools mainly target reachability-based properties so far.
Hence, one challenge is to improve the foundations and verification techniques
for equivalence-based properties. Only few results on the applied equivalences are
known (c.f. [6]). The tool ProVerif does support the verification of privacy-type
properties but it does so by an ad hoc encoding of the situation when processes
differ only in their choice of some terms [4].

A second challenge concerns compositionality. Most of the formal methods
and automatic tools are only capable of checking one protocol at a time. It is
folklore that as long as two protocols are disjoint in that they do not share any
data their composition is secure iff each protocol is secure in isolation. However,
as exemplified by real security architectures such as that of Car2X this situation
is far from reality. A stack of different protocols and APIs is necessary exactly
because there are different interconnected phases such as key management on
a server, key establishment between a server and a principal, and exchange of
confidential information between them. Another problem is that an attacker
might deliberately induce that protocols share a key they are not supposed to
share, or this might be induced by users who use the same passwords in different
situations. For a summary of works that already address the compositionality
problem see [2,7].

In this talk we explore how causality as a general theme, and causal equiva-
lences from ‘pure’ concurrency theory can help us in the verification of complex
security architectures. We proceed as follows. In Section 2 we review four ways to
exploit causality in security verification, and note that causality has mainly been
applied to reachability-based verification problems. We identify that the fourth
way to exploit causality could be very relevant for equivalence-based properties.
The idea is to apply and lift a positive trend for causal equivalences from concur-
rency theory to equivalence-based verification. Thereby motivated, in Section 3
we take a closer look at these causal equivalences. We give an overview of known
decidability and complexity results, and identify some open problems relevant
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for their application. Finally, in Section 4 we discuss what it takes to lift this
trend into an applied setting, and close with some general remarks.

2 Four Ways to Exploit Causality

2.1 Modelling

1. Modelling: “A causal model says more than a million transitions.”

Transition systems are the natural model when it comes to automatic state
space explorations. But when it comes to modelling or analysing a system by
hand then models that faithfully represent the causal structure of the system
are usually the model of choice. The reason for this success of causal models
is twofold: they avoid the state explosion problem by modelling concurrency
explicitly; and, they typically come with an intuitive graphical notation. So just
as “a picture says more than a thousand words” “a causal model says more than
a million transitions”.

In security verification this is exemplified by the strand space model, which
is the causal model for security protocols. The strand space model was intro-
duced by Thayer, Herzog, and Guttman in their paper “Strand Spaces: Why is
a Security Protocol Correct?” [13] as a special-purpose model that allows one to
develop correctness proofs by hand. To use the author’s own words, it is “distin-
guished from other work on protocol verification by the simplicity of the model
and the ease of producing intelligible and reliable proofs of protocol correctness
even without automated support”.

2.2 Verification

2. Verification: “Refute that an attack exists by tracing all possible causal con-
stellations to a contradiction.”

Everybody has a notion that some event A is a cause of another event B. And
that if event A hadn’t happened then event B wouldn’t have happened either.
This translates into a natural proof principle of backwards analysis. Say we wish
to show that a bad event B cannot happen. To the contrary assume that B has
occurred and analyse what must have happened beforehand. If we can lead all
possible causal constellations to a contradiction then we can conclude that our
assumption was wrong and B can indeed not happen.

This is the proof method that is originally associated with the strand space
model [13]. The original manual proof method also sparked off several gener-
ations of semi-automated tools which work by backwards search. Among the
earliest is the semi-automated tool Athena by Song [47], which translates the
backwards reasoning style into a backwards search algorithm. The Athena tool
has in turn influenced many of the more recent ones: Cremer’s tool Scyther [8],
which has recently been used to analyse the large Internet protocol IPSec by
using supercomputer power [9], and the successor tool Tamarin [46].
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The proof principle has also been employed in the verification of security
APIs. The strand space method has inspired our backwards reasoning app-
roach to security API verification [18,23], including case studies of the standard
PKCS#11. Moreover, an approach for automated backward analysis for a class
of PKCS# 11 configurations as been presented in [35]: by translation into the
Tamarin prover. Finally, the strand space method has also been used to tackle
the compositionality problem: Among the recent proof methods by hand there
is Lowe et al.’s approach to verify layered security architectures including a case
study of TLS [33].

2.3 Decidability and Complexity I

3. Decidability and Complexity I: “Exploit causal structure to reduce a search
space of attacks to a decidable search space of ‘well-structured’ attacks.”

If we work with a model that faithfully represents the causal structure of a
system, we may be able to exploit this extra structure to obtain results we may
not be able to formulate and prove otherwise. An explicit representation of causal
dependencies gives us concepts at hand such as the causal shape or the causal
depth of attacks. Moreover, if we can show that there is an attack iff there is one
with a particularly ‘good and regular’ causal structure then we may be able to
reduce our search for attacks to a search for more manageable ‘well-structured
attacks’, and thereby obtain new decidability and complexity results.

We have used this principle to prove that reachability is decidable in
nexptime for protocols with disequality constraints and bounded message size
[17]; and more recently, that leakiness is decidable for well-founded protocols
[19]. (Leakiness is a type of secrecy that does not admit temporary secrets.)

Well-founded protocols strictly contain a group of protocols that impose condi-
tions that make encrypted messages context-explicit [5,37,43–45]. The idea is that
such protocols merely satisfy the prudent engineering practice recommended by
Abadi and Needham [1]. For example, a ‘light’ way to achieve context-explicitness
is to tag protocols by introducing a constant into each encryption, and thereby to
uniquely identify encrypted subterms occurring in the protocol specification. The
decidability of well-founded protocols confirms that even under this static notion
of context-explicitness security protocols lose their ability to encode Turing com-
plete models, even without bounding message size or the number of nonces. The
key to the result was to introduce a notion of honest causality, which captures that
honest information is propagated from one event to another: there is a causal chain
which contains a backbone of messages and control flow transitions that could not
have been manipulated by the intruder. One can then show that the depth of hon-
est causality is bounded for well-founded protocols.

Context-explicit protocols also enjoy good properties wrt the compositional-
ity problem. In particular, in [7] Ciobâcă and Cortier obtain: any attack trace
on the composition of two differently tagged protocols can be transformed into
an attack against one of the protocols. Hence, the security of a composed pro-
tocol can be derived from the security of each component protocol. The result
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is obtained for a variant of the applied pi-calculus that covers both parallel and
sequential composition. It therefore includes the case where one protocol uses
a sub-protocol for an initial key exchange phase. This result is extended in [2],
and also investigated for equivalence-based properties. A composition result is
obtained for the case of key-exchange protocols wrt diff-equivalence.

2.4 Decidability and Complexity II

4. Decidability and Complexity II: “Use causal counterparts of equivalences
and logics rather than interleaving ones to obtain good decidability and
complexity.”

Typical for the previous subsection is that the verification problem is still
in the realm of interleaving semantics, i.e. can be formulated without relating
to causality, but we use causal concepts to obtain the proof. The fourth slogan
suggests to exploit causality more directly by taking the verification problem
itself into the causal setting. The hope is that then good structural properties of
the systems directly translate into good decidability and complexity properties,
e.g. by admitting a divide and conquer approach.

While reachability-based security properties naturally fall into the previ-
ous category equivalence-based properties seem ideally suited to this approach.
Indeed, there are only few decidability results for equivalence checking in the
context of security protocols, and most of them have concentrated on how to
handle messages rather than the computational power induced by the composi-
tion operators. In contrast, in “pure” concurrency theory there is a body of work,
which has investigated the decidability and complexity of equivalence-checking
for both classical and causal equivalences. Thereby motivated let us next take a
closer look at the standard causal equivalences and their computational power
compared to their interleaving counterparts.

3 Equivalences

3.1 Three Causal Equivalences

Equivalences for concurrency have mainly been studied in the classical setting
where the behaviour of a concurrent system is captured in terms of transitions
labelled by atomic actions rather than sending and receiving of terms. The var-
ious behavioural equivalences can be classified according to two main distinc-
tions: one is linear-time versus branching-time; the second is interleaving versus
causality.

In the linear-time view the behaviour of a system is understood in terms of
its set of possible runs. If concurrency is abstracted away by nondeterministic
interleaving a system run will simply be modelled as a totally ordered sequence
of labelled transitions. Thus, the coarsest behavioural equivalence is trace equiv-
alence: two systems are trace equivalent iff their sets of runs are equivalent up to
isomorphism (i.e. as sequences of actions). In the causal approach a system run
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is more faithfully modelled by a partially ordered set of labelled events. Since
events with the same label may occur concurrently, technically we are dealing
with partially ordered multisets of actions, or pomsets as coined by Pratt. The
causal counterpart of trace equivalence is then represented by pomset trace equiv-
alence: two systems are pomset trace equivalent iff their sets of labelled partial
order runs are equivalent up to isomorphism (i.e. as pomsets of actions).

In branching-time notions of conflict, choice, or branching that naturally
arise during a computation are modelled faithfully. The behaviour of a system is
understood in terms of an ‘unfolding’ that reflects such information, and thereby
shows how the system can unfold into many different possible futures. In the
interleaving view a system naturally unfolds into a tree, or to be precise into
a synchronization tree [39]. Attempts to capture what it means to distinguish
branching in an observational way have culminated in the notion of bisimula-
tion equivalence (short: bisimilarity) [39,42]. It is best explained in terms of a
game between two players, Spoiler and Duplicator, on the two systems to be
compared: Spoiler chooses a transition of one of the systems, and in response,
Duplicator must choose a transition of the other system such that the labels are
matching. The game then continues at the resulting pair of processes. The game
continues like this forever, in which case Duplicator wins, or until either Spoiler
or Duplicator is unable to move, in which case the other participant wins. Two
systems are bisimilar iff Duplicator has a winning strategy in this game.

What are the unfolding structures of the causal approach? It turns out there
are two different ways of capturing causality. One way is to stay within a tree-
shaped view of the world but keep pointers that indicate when one transition is
causally dependent on a previous transition of the same branch. The unfolding
structure is then a causal tree [10]. The corresponding behavioural equivalence
is history preserving bisimilarity (short: hp-b) [50]. It refines the bisimulation
game as follows. Game positions now keep track of the history of the game.
Technically, the histories are pairs (r1, r2, f) where r1 is a partial order run of
the first system, r2 is a partial order run of the second system, and f is a pomset
isomorphism between them. In her move Duplicator must now respond such that
this pair of runs grows pomset isomorphic, i.e. f ∪{t1, t2} must remain a pomset
isomorphism.

The second way of capturing causality while keeping branching information
departs from a tree-shaped structure but unfolds a system into an event structure
[40]. In its most basic form an event structure is a set of events with a partial
order that models causal dependence, and a symmetric and irreflexive relation
added on that captures when two events are in conflict. Several axioms must
hold to implement natural intuitions of this interpretation. They satisfy a basic
principle of concurrency: whenever two independent events can occur consecu-
tively they can also occur in the opposite order. The corresponding behavioural
equivalence is hereditary history preserving bisimilarity (short: hhp-b) [3,31]. It
further refines the bisimulation game by giving Spoiler the option of a backtrack
move: Spoiler may choose a transition in one of the runs that is maximal in the
partial order, and backtrack it. Duplicator must respond by backtracking the
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transition in the other run that is related to Spoiler’s transition in f . The game
continues at the resulting histories. Note how the backtrack move reflects that
history can be traced back in different ways just as independent transitions can
be shuffled in their order.

3.2 Finite-State Results

For finite-state systems the decidability and complexity of the discussed equiv-
alences are well-understood. Fig. 1 gives an overview for finite 1-safe Petri nets.
Checking trace equivalence on finite-state transition systems is similar to check-
ing language equivalence on finite automata, and turns out to be PSPACE-
complete [34]. Bisimilarity on finite-state transition systems is PTIME-complete
[34]; it can be solved in polynomial-time by partition-refinement algorithms
[34,41]. Based on these classical results Jategaonkar and Meyer have obtained
the following results for finite 1-safe Petri nets: trace equivalence is EXPSPACE-
complete, and bisimilarity is DEXPTIME-complete respectively [30]. The blow-
up in complexity reflects that the transition system induced by a finite 1-safe
Petri net is in general exponentially larger than the size of the net.

finite 1-safe Petri nets

trace equivalence EXPSPACE-complete [30] using [34]

pomset trace equivalence EXPSPACE-complete [30]

bisimilarity DEXPTIME-complete [30] using [34]

hp-b DEXPTIME-complete [30]

hhp-b undecidable [32]

Fig. 1. Finite-state results

Hp-b and pomset trace equivalence behave similarly to their interleaving
counterparts. Checking hp-b is DEXPTIME-complete [30]. It can be decided
analogously to bisimilarity using the following insight: it is not necessary to keep
the entire history to capture hp-b, but to see whether pomsets grow isomorphic it
is sufficient to record only those events that can act as maximal causes. Moreover,
this essential fragment of history can be captured in a finite way: by the ordered
markings of [51], or the growth-sites of [30] respectively. The same insight leads
to EXPSPACE-decidability of pomset trace equivalence [30].

In contrast, hhp-b turns out undecidable for finite 1-safe Petri nets [32]. The
root cause of the higher power lies in the different way of capturing causality:
by allowing Spoiler to backtrack the game is taken to the event-based unfolding
level, where the relationship of transitions concerning concurrency and conflict
is globally captured. A key insight is to use the following gadget that is inspired
by a similar tool in [38]: A tiling system T to be played on the ω × ω grid can
be universally encoded by a finite 1-safe Petri net N(T ) such that the building
of a domino snake can be faithfully mimicked by a special pattern of forwards
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and backtrack moves in the unfolding structure of N(T ). Hence, on their event-
based unfolding level, systems such as finite 1-safe Petri nets are strong enough
to encode tiling problems, and hence the computations of Turing machines, in a
relatively straightforward sense.

All we have established so far is this: in the finite-state world the causal
equivalences are at least as hard as their interleaving counterparts. So is our
suggestion to use causal equivalences for their better composition properties a
futile endeavour? Indeed, we have only reviewed here results on the full class of
finite 1-safe Petri nets. There is a trend that suggests that as soon as we look
at system classes that have good composition properties, and hence, a ‘tame’
interplay between causality, concurrency and conflict then hhp-b and to a degree
also hp-b are better behaved than classical bisimilarity. A survey of results on
subclasses of finite 1-safe Petri nets and open problems can be found in [16]. In
the following, we will investigate this trend for infinite-state classes generated
by process calculi.

3.3 A Hierarchy of Causal Processes

In the interleaving setting equivalence checking has been investigated along a
hierarchy of process behaviours that can be captured in terms of rewrite rules.
This Process Rewrite Systems (PRS) hierarchy is inspired by the Chomsky hier-
archy of formal languages but the PRS grammars are interpreted as generators
of infinite-state transition systems rather than languages. For borderline inves-
tigations of causal equivalences we consider the process algebras of the PRS-
hierarchy as generators of infinite-state 1-safe Petri nets (or other causal models
such as asynchronous transition systems).

Fig. 2 gives an overview of the PRS classes, expanded by the classes Simple
BPP and Simple PA to be explained below. The root of the hierarchy comprises
all finite-state transition systems (FS). At the next level there are two extensions
that can be seen as two interpretations of context-free grammars: Basic Process
Algebra (BPA) extends FS by a sequential composition operator while Basic
Parallel Processes (BPP) integrate a parallel composition operator. The class
Process Algebra (PA) generalizes BPA and BPP by admitting both parallel and
sequential composition. PDA is the class of pushdown processes, the processes
described by pushdown automata, while on the right side we have Petri nets
(PN). The process classes on the left are not interesting here: since they do
not integrate any parallel operator, the causal equivalences will coincide with
their interleaving counterparts. Note that while in the classical interpretation
the infinite-state classes contain all finite-state transition systems, under causal
semantics up to PN they are incomparable with finite-state 1-safe Petri nets.
This is so because BPP and PA restrict the interplay between concurrency and
conflict due to the discipline of the grammars.

Given a set Act of atomic actions, usually denoted by a, b, . . ., and a set Var
of process variables, ranged over by X,Y, . . ., the grammars for FS, BPP, or PA
process expressions over Act and Var are defined as follows:
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Fig. 2. The causal PRS-hierarchy

FS : F ::= 0 | X | a.F | F + F
BPP : E ::= 0 | X | a.E | E + E | E ‖ E
PA : P ::= 0 | X | a.P | P + P | P ‖ P | P · P

where 0 denotes the empty process, X stands for a process variable, and a. ,
+ , ‖ , · denote the operations of action prefix (for each a ∈ Act), nonde-

terministic choice, parallel composition, and sequential composition respectively.
BPP processes are defined as pairs (E,Δ) where Δ is a finite family of (possibly
recursive) defining equations Xi

def= Ei. As usual we require that each occurrence
of a variable in Ei is guarded, i.e. within the scope of an action prefix. This
analogous for FS and PA.

The PRS grammars give rise to BPP, and respectively PA, in normal form.
While in the interleaving world they represent the entire process classes, under
causal semantics they only describe the subclasses Simple BPP, and Simple PA
respectively. They are defined by the following grammars:

SBPP: E ::= X | SE | E ‖ E
SPA: P ::= X | SP | P ‖ P | P · P

where SE stands for an initially sequential SBPP expression given by the fol-
lowing grammar:

SE ::= 0 | a.E | SE + SE

and analogously for SP . Thus, SBPP restrict the mixture of choice and parallel
composition: general summation is replaced by guarded summation. In particu-
lar, this excludes processes such as (P1 ‖ P2) + P3. This is similar for SPA.

Causal semantics for BPP processes have been provided in terms of net
unfoldings, e.g. in [14], and equivalently in terms of event structures via their
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Fig. 3. The unfolding of SBPP E .

Fig. 4. The unfolding of BPP E .

syntax-tree unfoldings [20]. Under such semantics BPP and SBPP have a tree-
like structure. We provide two examples as an illustration.

Example 1. Fig. 3 gives the net unfolding of the SBPP E = (Δ,X1), where
Δ = {X1

def= t1.(X1 ‖ X2) + t2.X2; X2
def= t3.0 + t4.(X1 ‖ X1)}.
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SBPP = BPP? BPP PA PN

=tr yes undecidable [25] undecidable undecidable [24,28]

=pom yes [49] decidable [49] ? undecidable

∼ yes PSPACE-complete [29,48] PSPACE-hard undecidable [28]

∼hp no P [20,36] ? undecidable

∼hhp no P [20,21] ? undecidable

Fig. 5. Summary

Example 2. Fig. 4 demonstrates the unfolding of the BPP E = (Δ,X1), where
Δ = {X1

def= (t1.X2 ‖ t2.X3) + t3.0;X2
def= (t4.X1 + t5.0) ‖ t6.X2;X3

def= (t7.X1 ‖
t8.0) + (t9.0 ‖ t10.X3)}.

PA and SPA have not been equipped with causal semantics yet. But one
would expect that an appropriately defined unfolding semantics would display a
regular structure of fork and join of ‘chunks of independent behaviour’.

Problem 1. Define causal semantics for SPA, and PA respectively.

3.4 Infinite-State Results

Fig. 5 gives an overview of results and open questions in the process hierarchy
up to PA and PN.

PN. For Petri nets all equivalences are undecidable. This follows from
Jančars’s reduction from the halting problem of counter machines, which proves
that bisimilarity as well as trace equivalence is undecidable [28]: first observe
that Petri nets can simulate counter machines, but only in a weak way since
they cannot check for 0; given a counter machine C one constructs two varia-
tions of the Petri net that weakly simulates C such that the difference between
these two nets can only be exposed by faithfully simulating C and reaching the
halting state (in one of the nets); the two nets are non-equivalent iff C halts.
The proof carries over to hp-b and hhp-b. The undecidability of language equiv-
alence was first proved by Hack [24], but Jančar’s proof is stronger in that it
only requires 5 unbounded places.

BPP. Building on Jančar’s technique Hirshfeld managed to resolve that trace
equivalence is undeciable for communication-free Petri nets, and hence BPP [25].
The result does not carry over to pomset trace equivalence on (S)BPP. In con-
trast, Sunesen and Nielsen prove that pomset trace equivalence is decidable for
BPP [49]. The proof first shows that in the linear-time world SBPP and BPP
coincide in that every BPP can effectively be translated into a SBPP such that
they are pomset trace equivalent. The decidability result then follows by a reduc-
tion to the equivalence problem of recognizable tree languages. The complexity
of the algorithm is left open (but should not be hard to resolve).

Problem 2. Resolve the complexity of pomset trace equivalence on (S)BPP.
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While for BPP deciding classical bisimilarity is PSPACE-complete [29] we
obtain polynomial-time decision procedures for both hp-b [36] and hhp-b [21].
The two bisimilarities coincide for SBPP [15] but they do not coincide for BPP
in general. This follows by the standard example of [3]. The decision procedures
rely on different techniques. However, they can both be decided due to good
decomposition properties.

Hp-b has the unique decomposition property : every BPP can be expressed, up
to hp-b, as a parallel composition of prime processes, where a process is prime
when it cannot be represented as a non-trivial parallel composition, up to hp-b.
Moreover, this decomposition is unique up to the permutation of the primes.
Then hp-b can be decided using the general scheme of Hirshfeld, Jerrum, and
Moller [26] of deciding classical bisimilarity on normed BPP [22,36]. The fastest
algorithm for hp-b on BPP runs in O(n6) [20], and is based on the technique of
the distance-to-disabling functions introduced in [29].

Hhp-b has even stronger decomposition properties: modulo trivial choices it
fully reflects the structure of BPP expressions. It can then be decided similarly
to the standard algorithm for solving tree isomorphism [20,21].

In [20] the decision algorithms for both hp-b and hhp-b are presented in a
unified framework. Hhp-b is solved in time O(n3log n), and hp-b in time O(n6)
respectively. In particular, both algorithms use the fact that on BPP hp-b and
hhp-b have a a fixpoint characterization in terms of local games played over BPP
processes of causal depth 1.

To sum up, for SBPP and BPP we can confirm the trend that as soon as we
look at system classes that have a ‘tame’ interplay between causality and conflict
causal equivalences are better behaved than their interleaving counterparts. This
concerns both the linear-time as well as the branching-time equivalences. All
algorithms make use of the fact that under causal semantics BPP and SBPP
have tree-like structure.

PA. While BPP and PN are well-investigated hardly anything is known for
PA. Naturally, the hardness results of BPP carry over. Tackling PA in the inter-
leaving world has turned out to be difficult. The only known positive result is
that bisimilarity on normed PA is decidable in 2-NEXPTIME [27]. The proof
is technically involved and 63 pages long. It is based on an exhaustive case
analysis which investigates when a seqential and a parallel composition can be
equivalent. This might be much easier for causal equivalences. We believe that in
particular hhp-b on simple PA could have very strong decomposition properties
analogously to those for BPP.

Problem 3. Does the positive trend for causal equivalences extend to SPA, and
PA respectively?

4 Summary and Outlook

To sum up, we have the following trend for causal equivalences:
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The computational dichotomy of causality: For finite-state systems causal
equivalences are often computationally much harder than their inter-
leaving counterparts. However, as soon as we consider classes with a
restricted interplay between causality and conflict this trend may be
reversed. In particular, this includes standard infinite-state classes such
as BPP, and might extend to PA.

To use causal equivalences for equivalence-based security properties it is nec-
essary to lift them into the applied pi-calculus. In particular, this means we have
to introduce asynchronous message input and output. While this would destroy
the causal structure enforced by the discipline of the composition operators we
might be able to regain this structure when we restrict ourselves to tagged pro-
tocols. Say a composition is homogeneous when the components relate to the
same protocol process, and heteregenous when the components relate to different
protocol processes. Then, roughly speaking, one could say the results of [6,19]
suggest:

Wrt homogeneous compositions of tagged protocols, atoms only have a
bounded range of decisive influence, and messages only have decisive
influence up to a bounded size.

Thereby we could hope to achieve decidability of reachability- and
equivalence-based properties for tagged protocols when verified in isolation.
Moreover, roughly speaking, one could say the results of [2,7] indicate:

Wrt hetergeneous compositions of tagged protocols, messages have only
a local range of decisive influence as long as the tagging is disjoint.

One could define an appropriate calculus of tagged protocols, for which one
could hope that reachability-based properties would be decidable, and causal
equivalence-based properties would also be decidable by composition results
based on the local effect of messages and the insights from the ‘pure’ causal
equivalences. Altogether this should also lead to an efficient verification method
as long as the component protocols are small.

It is nontrivial to put this down more formally, and it will be even less trivial
to prove it (or disprove if it turns out not to be true!). However, it might be
most difficult of all to carry such ‘design for verification’ paradigms like working
with tagged protocols into the various standards. Striving to do so is essential:
interpreted the other way around, this just implements the general engineering
principle to only interconnect systems in a way that does not create any side
effects.
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28. Jančar, P.: Undecidability of bisimilarity for Petri nets and some related problems.
Theoretical Computer Science 148(2), 281–301 (1995). STACS 1994
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