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Abstract. Petri games, introduced in recent joint work with Ernst-
Rüdiger Olderog, are an extension of Petri nets for the causality-based
synthesis of distributed systems. In a Petri game, each token is a player
in a multiplayer game, played between the “environment” and “system”
teams. In this paper, we propose a new technique for finding winning
strategies for the system players based on the bounded synthesis app-
roach. In bounded synthesis, we limit the size of the strategy. By incre-
mentally increasing the bound, we can focus the search towards small
solutions while still eventually finding every finite winning strategy.

1 Introduction

The ambition to translate formal specifications into executable programs, and
to do so automatically, without a human programmer, dates back to the early
beginnings of computer science [1,2,10,19]. In the area of reactive systems, which
includes hardware circuits, communication protocols, and generally all systems
that interact continuously with their environment, the first formalization of the
problem is generally attributed to Alonzo Church at the Summer Institute of
Symbolic Logic in 1957 at Cornell University:

Given a requirement which a circuit is to satisfy [...]. The synthesis prob-
lem is then to find recursion equivalences representing a circuit that sat-
isfies the given requirement (or alternatively, to determine that there is
no such circuit) [2].

Synthesis algorithms have the potential to dramatically simplify the devel-
opment of complex systems. Instead of manually writing a program, one only
needs to specify the actions available to the system and the objective, or win-
ning condition, that one would like the system to guarantee against all possible
behaviors of the system’s environment. A strategy that achieves the winning
condition by reacting to the actions of the environment with appropriate system
actions is then constructed automatically.

Over the years, Church’s synthesis problem has been studied in many vari-
ations. Of particular interest for the purposes of this paper is the problem of
synthesizing distributed systems [6–9,13,15,16,18,20]. Many modern reactive
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systems are distributed in the sense that they consist of multiple processes with
individual inputs, which they may or may not share with other processes. A key
challenge in the design of such systems is to decide how the processes should
interact so that each process obtains the information needed to carry out its
functionality.

Computationally, the synthesis of distributed systems is a very hard prob-
lem, often with nonelementary lower bounds on the complexity [9]. An encour-
aging observation is, however, that practical specifications often have reasonably
small implementations. This observation is exploited by the bounded synthesis
approach [7,20], which restricts the space of potential solutions by some (itera-
tively growing) bound. Despite the uncomfortable lower bounds on the worst-case
behavior of the synthesis algorithms, bounded synthesis is often able to find an
implementation in reasonable time, as long as the solution is small with respect
to a suitable parameter such as the number of states of the implementation.

In this paper, we propose a first bounded synthesis approach for Petri games.
Petri games [5], introduced in recent joint work with Ernst-Rüdiger Olderog,
are an extension of Petri nets for the causality-based synthesis of distributed
systems. In a Petri game, each token is a player in a multiplayer game, played
between the “environment” and the “system” team. In the tradition of Zielonka’s
automata [21], Petri games model distributed systems with causal memory, i.e.,
the processes memorize their causal histories and learn about each other’s histo-
ries when synchronizing. The environment tokens represent independent sources
of input, such as different users of the system. The system players represent the
processes of the system. Each system player is only allowed to act on informa-
tion it actually knows, either through direct interaction with the environment, or
indirectly, through synchronization with other system players. Since the different
system players have the same objective but different knowledge about the system
state, a winning strategy usually involves an active synchronization between the
system players to ensure that every player has the knowledge needed to win the
game. A good example for the type of system that can be constructed with Petri
games is the distributed burglar alarm system discussed in detail in [5]: a break-
in may occur at one of several locations, and the alarm system at that location
must inform the other distributed components about this, so that the alarm can
be activated in all locations. Petri games have also been used to synthesize con-
trollers for robots in production plants [4], where the Petri net is used to capture
the concurrency, usage constraints, and uncertain availability of machines in the
plant. The winning condition is to accomplish certain tasks, such as to process a
certain number of orders on a certain number of machines, despite the actions of
the hostile environment, which may declare a subset of the machines to be defect.

Strategies in a Petri game are, in general, infinite objects, because they are
defined in terms of the (infinite) unfolding of the net. The reason for this con-
struction is that different places in the unfolding reflect different causal histories;
this enables the strategy to act depending on the individual history of a player.
In practice we are, however, mostly interested in winning strategies that can be
represented by a finite net. For the special case of a single environment token,
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Fig. 1. Example Petri game. Places belonging to the system player are shown in gray, all
other places belong to the environment player. The set of bad markings consists of the
markings {B, G} and {C, F}, where the net has reached a deadlock. The system player
can win the game by waiting in place D until a synchronization with the environment
token in places B or C becomes possible. The move after the synchronization then
depends on whether the synchronization was via transition u or via transition x. In
case of u, the system player takes transition v, thus avoiding {B, G}; in case of x, the
system player takes w, thus avoiding {C, F}.

the existence of a winning strategy can be decided, and a finite representation of
the winning strategy can be constructed in single-exponential time via a reduc-
tion to two-player games over finite graphs [5]. This synthesis algorithm has
been implemented as a BDD-based fixed point iteration in the tool Adam [4].
The bounded synthesis approach of the present paper complements the symbolic
algorithm of Adam with a satisfiability-based approach. We bound the size of
the solutions of interest by setting a bound on the number of instances of each
place of the Petri game. The existence of a winning strategy is then encoded
as a quantified boolean formula, where the choices of the strategy appear as
existentially quantified variables. We use a QBF solver to extract a satisfying
assignment to these variables, which defines a winning strategy that meets the
specified bounds.

The remainder of the paper is structured as follows. We begin in Section 2
with a review of the main notions for Petri games from [5]. In Section 3, we
define bounded strategies. Section 4 then presents an encoding of the existence
of winning strategies as a quantified boolean formula. In Section 5 we discuss the
analysis of trade-offs, in particular the trade-off between the memory allocated
to different players, and the trade-off between memory and proof complexity.
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2 Petri Games

Petri games were introduced in [5] as an extension of Petri nets. In the following
we briefly review the main definitions. To simplify the presentation, we consider
in this paper only safe nets, where each place can be marked with at most one
token. The definitions for the general case are given in [5].

Figure 1 shows a simple Petri game, which will serve as our running example
in the following. If we ignore the distinction between gray and white places for
the moment, then the net shown in the figure is a standard Petri net. A Petri
net N = (P, T ,F , In) consists of disjoint sets P of places and T of transitions,
a flow relation F ⊆ (P × T ) ∪ (T × P), and an initial marking In ⊆ P. We
depict places as circles and transitions as rectangles. Note that the flow relation
defines a bipartite graph, i.e., the flow relation connects places with transitions
and transitions with places. Places and transitions are generically called nodes.
A finite Petri net is a Petri net with finitely many nodes. For nodes x, y we write
xF y for (x, y) ∈ F .

The presence of a flow between two nodes models a causal dependency. The
preset of a node x, denoted by •x, is the set {y | y F x}. The postset of x, denoted
by x•, is the set {y | xF y}.

The behavior of a Petri net is defined in terms of its markings, which are
subsets of the places. A transition t is enabled in a marking M ⊆ P if •t ⊆ M . A
marking M ′ is reachable from a marking M in one step, denoted by M → M ′ if
there is a transition t that is enabled in M and M ′ = (M �

•t) ∪ t•. A sequence
M1M2M3 . . . Mn such that Mi → Mi+1 for all i ∈ {1, . . . , n − 1} is a firing
sequence of N . The set of reachable markings is defined as R(N ) = {M ′ | In →∗

M ′} where →∗ is the reflexive and transitive closure of →.
In the example of Fig. 1, the initial marking {A,D} (which is depicted by the

black dots on places A and D) has four enabled transitions, namely s, t, v and
w, which result in the successor markings {B,D}, {C,D}, {A,F} and {A,G},
respectively. An example for a firing sequence is the infinite repetition of the
sequence {A,D} {B,D} {E,D} {E,F}{A,D}. Note that there is no reachable
marking that contains both B and C. Places B and C are in conflict: transition s,
which adds a token to B, also removes the token from A, which is needed to
enable t. We say that two nodes x and y are in conflict, denoted by x�y, if there
exists a place p ∈ P, different from x and y, from which one can reach x and y
via the transitive closure F+ of F , exiting p by different transitions.

A Petri game G = (PS ,PE , T ,F , In,B) is a finite Petri net where the set
of places has been partitioned into a subset PS belonging to the system and a
subset PE belonging to the environment ; additionally, the Petri game identifies
a set B ⊆ 2P of bad markings (from the point of view of the system), which
indicate a victory for the environment1. We call the Petri net N = (P, T ,F , In)
with P = PS ∪ PE the underlying Petri net of G.

1 In [5], the bad markings are given as a set of bad places that must be avoided by
the system.
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We view each token as a player in a multiplayer game. Informally, the tokens
on the environment places show the complete, unrestricted behavior, while the
tokens on the system places restrict the behavior strategically by forbidding a
subset of the transitions in the postset of the currently occupied place.

In the example game of Fig. 1, places belonging to the system are shown in
gray, all other places belong to the environment. Let the set of bad markings
consist of the markings {B,G} and {C,F}, where the net has reached a deadlock.
The example has two tokens, one that moves on environment places, one on
system places. We will refer to these two tokens as the system player and the
environment player, respectively. Note that, in general, there may be more than
one token in a team, which means that these players have the same objective,
but not necessarily the same knowledge about decisions that have been made by
the players of the other team.

Initially, in place D, the system player must choose a subset of the transitions
u, v, w and x. To avoid the bad markings, it is crucial that the system player
stays in place D until it is clear whether the environment player has played
transition s or t. If the system player proceeds with, for example, transition v,
and the environment player turns out to be in place C, then the bad marking
{C,F} is reached. To win the game, the system player must forbid transitions
v and w and thus stay in place D until a synchronization with the environment
token in places B or C becomes possible. After the synchronization via u or x,
the system player knows whether the environment player is in place E or H and
can, correspondingly, enable v if the synchronization was via transition u or w if
the synchronization was via transition x. Transition v thus leads to the marking
{E,F}, transition w to the marking {G,H} and the bad markings {B,G} and
{C,F} are avoided.

The example illustrates that information about other players can be obtained
through synchronization. The system player does not know whether the envi-
ronment player went from place A via s to B or via t to C until the players
synchronize via transitions u or x. The formalization of this idea is based on the
notions of occurrence nets, branching processes, and unfoldings.

Informally, the unfolding of a Petri net is constructed by splitting any places
with multiple incoming flows into separate copies that each only have a single
incoming flow. Loops are unrolled into an infinite structure. Figure 2 shows
the unfolding of the example game from Fig. 1. Note that every place in the
unfolding has a unique causal history. Each place thus captures precisely the
knowledge of the player when the token reaches the place in a play of the game.
This correspondence between nodes and knowledge is exploited in the definition
of strategies: a strategy fixes for each place in the unfolding the set of transitions
that are not forbidden by any of the players. In Fig. 2, the strategy discussed
above is depicted with thick lines. Note that, because there are multiple instances
of place D, the system token in D can choose to forbid different transitions
depending on whether transition u, transition x, or neither u or x has occurred
in the present round of the game.
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Fig. 2. Unfolding and winning strategy of the Petri game from Fig. 1. The winning
strategy is shown with thick lines.
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Formally, an occurrence net is a Petri net where (ON1) each place has at most
one incoming transition; (ON2) the inverse flow relation F−1 is well-founded,
i.e., starting from any node of N there does not exist an infinite path following
the flow relation backwards; (ON3) no transition t ∈ T is in self-conflict, i.e., t�t
does not hold for any transition t, and (ON4) the initial marking is the set of
places without incoming transitions.

Two nodes x, y of an occurrence net are causally related if xF∗ y or y F∗ x,
where F∗ denotes the reflexive and transitive closure of F . They are concurrent
if they are neither causally related nor in conflict. A homomorphism from a Petri
net N1 to a Petri net N2 is a mapping h : P1 ∪ T1 → P2 ∪ T2 that preserves the
type of the elements, i.e., h(P1) ⊆ P2 and h(T1) ⊆ T2, and the pre- and postsets
of the transitions, i.e., for all transitions t ∈ T1 : h ↓ •t is a bijection from •t
onto •h(t) and h ↓ t• is a bijection from t• onto h(t)•, where h ↓ D denotes
the restriction of h to the domain D. If additionally the restriction h ↓ In1 is a
bijection from In1 onto In2, then h is called initial.

A branching process of a net N is a pair β = (N B , λB), where N B is an
occurrence net and λB is a homomorphism from N B to N that is injective
on transitions with the same preset, i.e., for all transitions t1 and t2 of the
branching process, if •t1 = •t2 and λB(t1) = λB(t2), then t1 and t2 must be the
same transition. If λB is initial, β is called an initial branching process.

The unfolding of a net N is an initial branching process βU = (N U , λU )
that is complete in the sense that every transition of the net is recorded in the
unfolding, i.e., for every transition t and every set C of concurrent places, if
λU ↓ C is a bijection from C onto •t, then there exists a transition tU ∈ T U

such that •tU = C and λU (tU ) = t. The unfolding of a game G is the unfolding
of the underlying net N .

A branching process β1 is a subprocess of a branching process β2 if the identity
on the nodes of β1 is an initial homomorphism from β1 to β2. A strategy for the
system players is a subprocess σ = (N σ, λσ) of the unfolding βU = (N U , λ) of N
subject to the following conditions: (S1) σ is deterministic in all system places,
i.e., for all reachable markings M ∈ R(N σ) and all system places p, there is at
most one transition t ∈ T σ such that p ∈ •t and •t ⊆ M ; (S2) the strategy does
not restrict local transitions of the environment, i.e., if, for a transition t ∈ T U ,
•t ⊆ Pσ

E , then t ∈ T σ; and (S3) if an instance t of a transition is forbidden by
σ there exists a place p ∈ •t where σ uniformly forbids all instances t′ of this
transition.

A strategy σ for the system players is winning if the bad markings are
unreachable in the strategy, i.e., B ∩ R(N σ) = ∅. For example, the strategy
shown in Fig. 2 is a winning strategy for the system player of the Petri game in
Fig. 1. To avoid trivial solutions, we look for strategies σ that are deadlock avoid-
ing in the sense that for all reachable markings M ∈ R(N σ), if there exists an
enabled transition in the unfolding, i.e., t ∈ T U with •t ⊆ M , then there exists
an enabled transition in the strategy as well, i.e., t ∈ T σ with •t ⊆ M . Note
that we allow the strategy to produce a deadlock if the deadlock was already
present in the game. In such situations we say that the game has terminated. If
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Fig. 3. Bounded unfolding und winning strategy of the Petri game from Fig. 1 for a
bound b that allows for three instances of place D: b(p) = 1 for p ∈ {A, B, C, E, H}
and b(p) = 3 for p ∈ {D, F, G}. The b-bounded unfolding admits the winning strategy
shown with thick lines.

termination is undesired (as in the example of Fig. 1), such markings must be
explicitly included in the set of bad markings.

3 Bounded Strategies

Since strategies are subprocesses of the unfolding, they are in general infinite
objects, even if the state space of an actual controller implementing the strategy
turns out to be finite. A strategy σ = (N σ, λσ) is finitely generated if there exists
a finite net N f and a homomorphism λ from N σ to N f such that (N σ, λ) is an
unfolding of N f . We say that σ is finitely generated by N f .

We search for finitely generated strategies by considering bounded unfold-
ings of the game. A bound b : P → N assigns to each place of the game a
natural number. A pair (N b, λb) consisting of a finite net N b and a homomor-
phism λb from N b to N is a b-bounded unfolding of the game G if there exists a
homomorphism λ from the net N U of the unfolding (N U , λU ) of G to N b such
that λU (p) = λb(λ(p)) for all nodes p of N U , and, furthermore, each place p of G
occurs at most b(p) times in N b, i.e., |(λb)−1(p)| ≤ b(n) for every p ∈ P. Figure 3
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Fig. 4. Bounded unfolding of the Petri game from Fig. 1 for a bound b′ that allows
only two instances of place D: b′(p) = 1 for p ∈ {A, B, C, E, H} and b′(p) = 2 for
p ∈ {D, F, G}. The b′-bounded unfolding does not admit a winning strategy.

shows a b-bounded unfolding of the Petri game from Fig. 1 for the bound b with
b(p) = 1 for p ∈ {A,B,C,E,H} and b(p) = 3 for p ∈ {D,F,G}.

We find bounded strategies by restricting the flow of a bounded unfolding.
A b-bounded strategy is a finite net N f such that there is a b-bounded unfolding
N b of G with Pf = Pb, T f = T b, Inf = Inb and Ff ⊆ Fb, and there is a
strategy σ that is finitely generated by N f . We say that N b admits the bounded
strategy N f . The bounded strategy N f is winning iff σ is winning.

In Fig. 3, a bounded strategy is depicted as part of the bounded unfolding.
The thick lines indicate the flow that is preserved by the strategy. Note that the
strategy from Fig. 2 is finitely generated by this bounded strategy. The bounded
strategy is thus winning. Obviously, not every bounded unfolding admits a win-
ning strategy. Consider, for example, the b′-bounded unfolding of our game in
Fig. 4. The bound b′ with b′(p) = 1 for p ∈ {A,B,C,E,H} and b′(p) = 2 for
p ∈ {D,F,G} only allows two instances of D. The transitions u and x thus
lead to the same instance of place D. As a result, the information whether the
environment token is in place E or H is not available in the place reached by
the two transitions. The strategy cannot forbid both outgoing transitions v and
w, because this would result in a deadlock; however, no matter if the strategy
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chooses to enable v or w, there is always a corresponding choice of s vs. t for the
environment player that results in a bad marking.

4 Finding Bounded Strategies

We look for winnning strategies of a given game by considering bounded unfold-
ings for a sequence of increasing bounds. For each such bounded unfolding, we
check whether it admits a winning strategy. In this section, we describe an effi-
cient method that carries out this check.

Our method is based on an encoding into quantified boolean formula (QBF)
satisfiability. Syntactically, the quantified boolean formulas over a set of boolean
variables V are described by the following grammar:

φ ::= x | φ ∧ φ | φ ∨ φ | ¬φ | φ ⇒ φ | φ ⇔ φ | true | false
Φ ::= φ | Φ ∧ Φ | Φ ∨ Φ | ∃x. Φ | ∀x. Φ

where x denotes boolean variables from V and ∧,∨,¬,⇒,⇔ are the usual
boolean connectives.

QBF satisfiability can be reduced to boolean satisfiability (SAT) by replacing
every existentially quantified formula ∃x.φ by a disjunction φ[x/true]∨φ[x/false]
where the quantified variable is replaced by true and false, respectively, in the
two disjuncts, and by replacing every universally quantified formula ∀x.φ by a
conjunction φ[x/true] ∧ φ[x/false]. QBF solving is, however, more difficult than
SAT, both in theory (PSPACE-complete vs. NP-complete), and in practice [17].
Nevertheless, QBF is increasingly being used for practical applications and sev-
eral powerful QBF solvers are available (cf. [14]).

Let N b be a bounded unfolding. We encode the existence of a winning strat-
egy that is admitted by N b as a formula

Φn = ∃VS . ∀VT,n. φn,

where VS is a set of boolean variables that encode which transitions are chosen
by the strategy, VT,n is a set of boolean variables that encode a sequence of
transitions, and φn is a boolean formula that expresses that if the choices of
VS and VT,n result in a firing sequence in N b, then the sequence is won by the
system players. The index n ∈ N is a natural number that indicates the length
of the firing sequence to be considered. We consider firing sequences that end in
a repeated marking. Since there are only 2|Pb| many different markings, such a
repetition must occur after at most exponentially many steps, and it suffices to
set n = 2|Pb| +1. However, we leave n as a parameter, which allows us to restrict
the encoding to shorter firing sequences.

Our encoding of the existence of a winning strategy as a quantified boolean
formula resembles the reduction of the bounded model checking problem to
SAT [11]. The main difference is that in model checking, one is interested in
finding a single firing sequence that leads from the initial marking to a bad
marking, while in synthesis one must ensure that all firing sequences are correct.
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We accomplish this by quantifying universally over the variables in VT,n, which
select the sequence of transitions, and by requiring that every firing sequence
has a loop (unless it ends in a deadlock).

Proposition 1. Let N b be a bounded unfolding. There is a family of quantified
boolean formulas Φn such that Φn is satisfiable for some n ≤ 2|Pb| + 1 iff N b

admits a deadlock-avoiding winning strategy for the system players.

Proof. We define Φn = ∃VS . ∀VT,n. φn as follows. The set VS = {(p, λb(t)) | p ∈
Pb

S , t ∈ T b, p ∈ •t} consists of boolean variables encoding the system strategy.
There is a variable for each pair of a system place and a transition where the
preset of some instance of the transition contains the system place2. The set
VT,n = {(p, i) | p ∈ Pb, i ∈ {1, . . . n}} contains one boolean variable for each
place and index position between 1 and n, representing a sequence of markings
of length n. The formula φn expresses that every sequence up to length n is
winning for the system players. If the sequence reaches the full length n (i.e.,
there is no previous deadlock) it must be a loop:

φn =
(∧

i∈{1,...,n} sequencei ⇒ winning i

)
∧ (sequencen ⇒ loopn)

Condition sequencen describes that the sequence of markings encoded by VT,n

is indeed a firing sequence:

sequencei = initial ∧ ¬deadlock1 ∧ flow1 ∧ ¬deadlock2 ∧ flow2∧
. . . ∧ ¬deadlock i−1 ∧ flow i−1

where initial , deadlock i, and flow i encode that the first marking is the initial
marking, the occurrence of deadlock in the ith marking, and the satisfaction of
the flow relation from the ith to the (i + 1)st marking, respectively:

initial =
(∧

p∈Inb(p, 1)
)

∧
(∧

p∈Pb
�Inb ¬(p, 1)

)

deadlock i =
∧

t∈T b

(∨
p∈•t ¬(p, i)

)
∨

(∨
p∈•t∩Pb

S
¬(p, λb(t))

)

flow i =
∨

t∈T b

(∧
p∈•t(p, i)

)
∧

(∧
p∈•t∩Pb

S
(p, λb(t))

)
∧

(∧
p∈t•(p, i + 1)

)

∧
(∧

p∈Pb
�(•t∪t•)(p, i) ⇔ (p, i + 1)

)
∧

(∧
p∈•t�t• ¬(p, i + 1)

)

Condition winning i ensures that there are no bad markings, that all deadlocks
are terminating markings (i.e., the deadlock was already present in the net), and
that the strategy is deterministic in all markings (as required by condition (S1)):

2 The variable refers to λb(t) ∈ T instead of t ∈ T b because of condition (S3) on
strategies, which requires that all instances of a transition must be uniformly for-
bidden.
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Fig. 5. Trade-off between the memory requirements of two players. The Petri game
has a single bad marking {C, F}. Both the b-bounded unfolding with b(A) = 1 and
b(B) = 2 and the b′-bounded unfolding with b′(A) = 2 and b′(B) = 1 admit a winning
strategy, but the b′′-bounded unfolding with b′′(A) = 1 and b′′(B) = 1 does not admit
a winning strategy.

winning i = nobadmarking i ∧ deadlockstermi ∧ deterministici

nobadmarking i =
∧

M∈B

(∨
p∈M ¬(p, i)

)
∨

(∨
p∈Pb

�M (p, i)
)

deadlockstermi = deadlock i ⇒ terminating i

terminating i =
∧

t∈T b

∨
p∈•t ¬(p, i)

deterministici =
∧

t1,t2∈T b,t1 �=t2,•t1∩•t2∩Pb
S �=∅(∨

p∈•t1∪•t2
¬(p, i)

)
∨

(∨
p∈(•t1∪•t2)∩Pb

S
¬(p, λb(t))

)

Finally, condition loopn ensures that the nth marking is a repetition of an earlier
marking:

loopn =
∨

i∈{1,...n−1}

(∧
p∈Pb(p, i) ⇔ (p, n)

)

��

For each choice of n, the formula Φn can be translated into conjunctive normal
form by tools like the Boolean circuit tool package (BCpackage) [12] and then
solved by a standard QBF solver like DepQBF [14].

5 Trade-Offs

An interesting type of analysis made possible by the bounded synthesis app-
roach is to trade different bounds against each other. The Petri game in Fig. 5
illustrates a trade-off between the memory needed in different processes of a
system. The bad marking of the game is the combination of the places C of the
first player and F of the second player. The bad marking is reached if the two
players choose their local transitions w and z. To avoid the bad marking, one of
the players must wait for the other player before taking the local transition. For
example, the token in A could initially enable transition y, and, once the token
in B has moved via y to E, safely take w to C. This winning strategy requires
two instances of A and only a single instance of B. Symmetrically, the token in
B could first enable x and then z, provided that two instances of B are available.
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Fig. 6. Trade-off between memory and proof complexity. The Petri game has a single
bad marking {C, F}. The b-bounded unfolding with b(A) = 1 and b(B) = 2, the b′-
bounded unfolding with b′(A) = 2 and b′(B) = 1, and also the b′′-bounded unfolding
with b′′(A) = 1 and b′′(B) = 1 admit a winning strategy. However, the synthesis of the
winning strategy in the b′′-bounded unfolding requires a firing sequence of length six,
while the firing sequences of the winning strategies in the b-bounded and b′-bounded
unfoldings only have length three.

A winning strategy thus requires either two instances of A or two instances of B.
Both the b-bounded unfolding with b(A) = 1 and b(B) = 2 and the b′-bounded
unfolding with b′(A) = 2 and b′(B) = 1 admit a winning strategy, indicating
that the memories allocated to the two players can be traded against each other,
while the b′′-bounded unfolding with b′′(A) = 1 and b′′(B) = 1 does not admit
a winning strategy.

Since the encoding of the bounded synthesis problem in Section 4 is paramet-
ric in the length of the firing sequences, i.e., in the complexity of the correctness
proof, another interesting trade-off to be analyzed is between memory and proof
complexity. This is illustrated by the Petri game in Fig. 6, where, similarly to
the previous example, the goal is to avoid the bad marking in places C and F .
This time, however, the players can avoid the synchronization, if the token on
place A takes the local transition to C and the token on B moves along the long
chain towards the right. While this solution can be implemented within bound
b′′(A) = b′′(B) = 1, the length of the firing sequence corresponds to the length
of the chain plus the firing of w, resulting in length six, while the b-bounded
unfolding with b(A) = 1, b(B) = 2 (and, analogously, the b′-bounded unfolding
with b′(A) = 2, b′(B) = 1) admits a winning strategy where the firing sequence
has only three markings.

6 Conclusions

We have presented a bounded synthesis method for Petri games. Similarly to
the bounded synthesis approach for the synthesis of distributed systems from
temporal logic [7,20], our approach limits the size of the solution and there-
fore finds small solutions fast. Petri games appear to be particularly well-suited
for bounded synthesis because the net typically provides more structure than
a logical specification. Because specific bounds can be set for individual places
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(and, hence, for individual players), bounded synthesis can also be used to ana-
lyze trade-offs in the memory needed for different the players, and even trade-offs
between memory and proof complexity.

The bounded synthesis approach complements the BDD-based symbolic deci-
sion procedure for Petri games implemented in the Adam tool [4]. In model
checking, SAT-based bounded methods often dramatically outperform BDD-
based symbolic methods [3]. It will be interesting to see if the situation is similar
for the synthesis problem.

It is important to note, however, that the two methods are not directly
comparable. While the symbolic decision procedure is limited to games with a
single environment token, the bounded approach is universally applicable. On the
other hand, the symbolic decision procedure can prove the absence of a strategy
(of arbitrary size), while the bounded approach is currently limited to proving
the existence of a strategy. Combining the two approaches is an interesting topic
for future work.

Acknowledgments. I am deeply grateful to Ernst-Rüdiger Olderog for our produc-
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