
Roland Meyer
André Platzer
Heike Wehrheim (Eds.)

Correct System Design

Fe
st

sc
hr

ift
LN

CS
 9

36
0

Symposium in Honor of Ernst-Rüdiger Olderog
on the Occasion of His 60th Birthday
Oldenburg, Germany, September 8–9, 2015, Proceedings

 123

Lecture Notes in Computer Science 9360

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Roland Meyer • André Platzer
Heike Wehrheim (Eds.)

Correct System Design
Symposium in Honor of Ernst-Rüdiger Olderog
on the Occasion of His 60th Birthday
Oldenburg, Germany, September 8–9, 2015
Proceedings

123

Editors
Roland Meyer
University of Kaiserslautern
Kaiserslautern
Germany

André Platzer
Carnegie Mellon University
Pittsburgh, PA
USA

Heike Wehrheim
University of Paderborn
Paderborn
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-23505-9 ISBN 978-3-319-23506-6 (eBook)
DOI 10.1007/978-3-319-23506-6

Library of Congress Control Number: 2015947414

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Ernst-Rüdiger Olderog
Photograph taken by Wilfried Golletz.

Preface

Ernst-Rüdiger Olderog turned 60 in 2015. Congratulations, Ernst-Rüdiger!
On the occasion of his 60th birthday, this Festschrift features contributed papers

dedicated to Ernst-Rüdiger Olderog. Besides a brief laudatio, the Festschrift includes
contributions from colleagues who have accompanied Ernst-Rüdiger Olderog through
his scientific life in one way or another, be it in joint projects, research articles or even
the writing of complete books. The contributions in this Festschrift formed the major
part of the scientific program of the associated Festschrift Symposium, which took
place September 8–9, 2015.

We would like to thank all the contributors to this Festschrift for their hard work and
for their scientifically interesting as well as individual articles, which fit very well to
Ernst-Rüdiger Olderog’s own research agenda in the area of formal methods. These
contributed articles make this Festschrift a very suitable surprise to celebrate
Ernst-Rüdider Olderog’s contributions to science on the occasion of his birthday.

Our thanks furthermore go to all the reviewers whose support has made excellent
articles even better. Many thanks also to Alfred Hofmann at Springer for his helpful
interactions and advice on how to approach a Festschrift and for his help in making it
manifest, and to Anna Kramer from Springer for her fast responses in all matters big or
small. In addition, we are much indepted to the Local Organizing Committee at Old-
enburg, especially Manuel Gieseking, Stephanie Kemper, Heinrich Ody, and Maike
Schwammberger, for numerous hours of work organizing the Festkolloquium. And,
last but not least, we appreciate the financial support of the AVACS project and its
director, Werner Damm, as well as the support of the symposium coordinator, Jürgen
Niehaus.

July 2015 Roland Meyer
André Platzer

Heike Wehrheim

Organization

Organized by the group Correct System Design of the University of Oldenburg and
AVACS:

Local Organization Chairs

Manuel Gieseking University of Oldenburg, Germany
Stephanie Kemper University of Oldenburg, Germany
Heinrich Ody University of Oldenburg, Germany
Maike Schwammberger University of Oldenburg, Germany

Additional Reviewers

Furbach, Florian
Henriques, David
Hüchting, Reiner
Jakobs, Marie-Christine
Jeannin, Jean-Baptiste
Ji, Ran
Krämer, Julia Désirée

Martins, João G.
Mitsch, Stefan
Müller, Andreas
Travkin, Oleg
Walther, Sven
Wolff, Sebastian

Contents

Laudationes

From Program Verification to Time and Space: The Scientific Life
of Ernst-Rüdiger Olderog . 3

Roland Meyer and Heike Wehrheim

Ernst-Rüdiger Olderog: A Life for Meaning . 5
André Platzer

Warmest Congratulations, Ernst-Rüdiger! . 10
Willem Paul de Roever

Semantics

Understanding Probabilistic Programs . 15
Joost-Pieter Katoen, Friedrich Gretz, Nils Jansen,
Benjamin Lucien Kaminski, and Federico Olmedo

Fairness for Infinitary Control. 33
Jochen Hoenicke and Andreas Podelski

Evaluation Trees for Proposition Algebra: The Case for Free
and Repetition-Proof Valuation Congruence . 44

Jan A. Bergstra and Alban Ponse

Process Algebra

On Applicative Similarity, Sequentiality, and Full Abstraction 65
Raphaëlle Crubillé, Ugo Dal Lago, Davide Sangiorgi,
and Valeria Vignudelli

Causality, Behavioural Equivalences, and the Security of Cyberphysical
Systems . 83

Sibylle Fröschle

Structure Preserving Bisimilarity, Supporting an Operational Petri Net
Semantics of CCSP . 99

Rob J. van Glabbeek

http://dx.doi.org/10.1007/978-3-319-23528-8_1
http://dx.doi.org/10.1007/978-3-319-23528-8_1
http://dx.doi.org/10.1007/978-3-319-23528-8_2
http://dx.doi.org/10.1007/978-3-319-23528-8_3
http://dx.doi.org/10.1007/978-3-319-23528-8_4
http://dx.doi.org/10.1007/978-3-319-23528-8_5
http://dx.doi.org/10.1007/978-3-319-23528-8_6
http://dx.doi.org/10.1007/978-3-319-23528-8_6
http://dx.doi.org/10.1007/978-3-319-23528-8_7
http://dx.doi.org/10.1007/978-3-319-23528-8_8
http://dx.doi.org/10.1007/978-3-319-23528-8_8
http://dx.doi.org/10.1007/978-3-319-23528-8_9
http://dx.doi.org/10.1007/978-3-319-23528-8_9

Logic

Translating Testing Theories for Concurrent Systems. 133
Jan Peleska

No Need Knowing Numerous Neighbours: Towards a Realizable
Interpretation of MLSL . 152

Martin Fränzle, Michael R. Hansen, and Heinrich Ody

Automated Reasoning Building Blocks . 172
Christoph Weidenbach

Analysis

Being and Change: Reasoning About Invariance . 191
Frank S. de Boer and Stijn de Gouw

Toward Compact Abstractions for Processor Pipelines 205
Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm

Synthesis

Bounded Synthesis for Petri Games. 223
Bernd Finkbeiner

Mediator Synthesis in a Component Algebra with Data 238
Lukáš Holík, Malte Isberner, and Bengt Jonsson

Safe and Optimal Adaptive Cruise Control . 260
Kim Guldstrand Larsen, Marius Mikučionis, and Jakob Haahr Taankvist

Author Index . 279

XII Contents

http://dx.doi.org/10.1007/978-3-319-23528-8_10
http://dx.doi.org/10.1007/978-3-319-23528-8_11
http://dx.doi.org/10.1007/978-3-319-23528-8_11
http://dx.doi.org/10.1007/978-3-319-23528-8_12
http://dx.doi.org/10.1007/978-3-319-23528-8_13
http://dx.doi.org/10.1007/978-3-319-23528-8_14
http://dx.doi.org/10.1007/978-3-319-23528-8_15
http://dx.doi.org/10.1007/978-3-319-23528-8_16
http://dx.doi.org/10.1007/978-3-319-23528-8_17

Laudationes

From Program Verification to Time and Space:
The Scientific Life of Ernst-Rüdiger Olderog

Roland Meyer1 and Heike Wehrheim2(B)

1 Department of Computer Science, University of Kaiserslautern,
Kaiserslautern, Germany
meyer@cs.uni-kl.de

2 Department of Computer Science, University of Paderborn, Paderborn, Germany
wehrheim@upb.de

The Festschrift and associated symposium celebrate Ernst-Rüdiger Olderog’s
60th birthday with invited contributions of colleagues, all touching the theme
of formal modeling and correctness in system design. Here, we would like to
say some words about Ernst-Rüdiger Olderog himself and his contributions to
formal methods research over the years.

Geographically, Ernst-Rüdiger Olderog started his scientific life in Kiel,
Germany. This start location Kiel (or more generally, Schleswig Holstein) has
in a sense remained the geographical fixpoint in his life throughout the years,
new years eve meetings with old friends in Kiel being an annually reoccuring
event. In Kiel, he studied Mathematics, Computer Science and Logic finishing
with a “Diplom” degree in 1979. This was followed by a record-breaking short
time for his PhD, supervised by Hans Langmaak, in 1981. In what today would
be called a post-doc phase, he then started to visit the world outside Kiel, most
notably Oxford, Amsterdam, Edinburgh, Yorktown Heights, and Saarbrücken.
For his habilitation he returned back to Kiel. Shortly after the habilitation, he
received his first “Ruf” for a professorship in Oldenburg, Germany, to which he
then moved and where he has since then been working.

Scientifically, Ernst-Rüdiger Olderog has gone through different phases in his
research. This started with his PhD thesisCharakterisierung Hoare’scher Systeme
für ALGOL-ähnliche Programmiersprachen about Hoare-style proof systems for
imperative programs. The main result, characterizing the existence of sound and
relatively complete proof systems in the presence of recursion, settled an impor-
tant problem in program verification in the beginning of the 1980s and was received
with considerable interest by the scientific community, leading to publications in
prestigious venues like ICALP, Acta Informatica, and STOC. The work on Hoare
logics also introduced Ernst-Rüdiger Olderog and the logician Krzysztof Apt to
each other, resulting in a lifelong friendship, several joint articles, and the stan-
dard textbook on program verification. After Hoare logics, which Ernst-Rüdiger
Olderog remains interested in until today, the (consequently) next topic to study
was CSP, naturally together with Tony Hoare. This led his research into the area
of concurrency and gave his work a shift towards system design. In his book Nets,
Terms and Formulas: Three Views of Concurrent Processes and Their Relation-
ship Ernst-Rüdiger Olderog explains the worries he had developed about a pos-
teriori program verification and how he would favor a method that would design
c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 3–4, 2015.
DOI: 10.1007/978-3-319-23506-6 1

4 R. Meyer and H. Wehrheim

correct systems right from the start. The outcome of this contemplation is the first
ever formal process of synthesizing machine-level operational models of concurrent
systems from high-level declarative specifications. Starting from a logical speci-
fication of the desired system characteristics, decisions for the system design are
made explicit in terms of a formal derivation of a process-algebraicmodel.The alge-
braic model is then translated into a Petri net which shows how to implement the
required control. The work, which was summarized in his habilitation thesis, was
later awarded the Leibniz Preis, the highest award the German research associa-
tion (DFG) has to give across its subject areas. The combination of different for-
malisms and the idea of designing a system via transformation became a constant
in his research. With the project ProCoS, two more aspects of system design moved
into Ernst-Rüdiger Olderog’s focus: real time and data. Real time came about in
the form of Duration Calculus, data aspects were formalized in the specification
language Z. During ProCos, Ernst-Rüdiger Olderog met a second lifelong friend,
Anders Ravn, with whom he shares several common interests, including the study
of real-time systems. In the 1990s, the languages CSP, Z, and DC were integrated
into a modeling method with the interesting name CSP-OZ-DC — an abbrevia-
tion all of the project members of the flagship initiative AVACS soon had to learn.
AVACS finally brought the insight that it is not only CSP, Object-Z, and Duration
Calculus what is required for formal modeling, but that, in addition to a model of
time, an explicit model of space (e.g. on roads) is necessary as well.

While the list of topics reflects the broad spectrum of research, every new
topic is well-connected to previous work. All topics center around the theme
of correctness and have evolved along two dimensions. The work on modeling
and semantics evolved towards expressiveness and applicability, starting from
imperative programs over recursion to concurrency, real-time behavior, support
of data, and spatial information. The modeling aspect is always accompanied by
verification techniques. They evolved from manual correctness proofs to manual
synthesis, from there to an automated verification approach, and today we find
Ernst-Rüdiger Olderog working on automatic synthesis. “Correct system design”
has become the name of his research group, the title of this Festschrift, and could
also well be the headline of his scientific research.

In all his work, Ernst-Rüdiger Olderog’s leading principle can be character-
ized as elegance through simplicity. This principle is not only reflected in his
research articles, but also in his presentations at conferences and lectures for
students. Numerous Oldenburg undergraduate students complement their con-
cern of not being particularly good in theory with the observation “but when
Professor Olderog explains it, I can understand it”. This shows Ernst-Rüdiger
Olderog’s enormous interest in teaching and his opinion of teaching being equally
important to research: Like research, teaching needs time, detailed preparation
and careful thinking about examples. Indeed, a precious advice to students is
to study concepts on examples — examples that are instructive but still small
enough to fit on a single sheet of paper. Ernst-Rüdiger Olderog’s deep interest in
teaching can also been seen in his passion for writing books, books which soon
become classics and are being used in courses at universities all over the world.
We hope for much more in the future!

Ernst-Rüdiger Olderog: A Life for Meaning

André Platzer(B)

Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
aplatzer@cs.cmu.edu

While it is indubitably impossible to summarize all the many important aspects
of Ernst-Rüdiger Olderog’s scientific contributions and to do justice to each and
every one of the areas that he contributed to, it is remarkably easy to identify and
characterize the common core behind his investigations. An important leitmotif
in his research agenda is semantics, the study of meaning.

Even if a significant share of his research does not study semantics in and
of itself, but rather as a means to an end, Ernst-Rüdiger Olderog stands out as
having recognized the significance of semantics as an important foundation in
the first place. He accurately observes how crucial the study of the meaning of
a mathematical object of study is for the progress of a research area as a whole,
as well as for achieving the individual results he is looking for. The most promi-
nent results that Ernst-Rüdiger Olderog’s research enables are various forms of
correctness results, as are engraved in the name of his research group: “Cor-
rect System Design”. The main analytic tool to obtain them, though, is Ernst-
Rüdiger Olderog’s dedication to semantics.1 Be it to develop an understanding of
concurrency by logical communication formulas to algebraic process terms and
further to Petri nets [21], to understand sequential and concurrent programs for
the purpose of verification [3,2], or specification and verification techniques for
real-time systems [26]. A strong devotion to semantics is a pervasive aspect of his
research throughout his career [27,4,28,5,21,3,22,12,26,11], whether on commu-
nicating processes [28,27], concurrency at large [5,4,21], real-time systems [26,22]
and specification languages for richer realtime systems [15,12], traffic agents [9,8],
or games for distributes systems synthesis [11]. Ernst-Rüdiger Olderog’s atten-
tion to semantics is quite prominently featured already in the first column of a
paper on his first research results [20]:

To explore the applicability of this idea, we have to formalize what
“capturing the true partial correctness formulas” means. [20]

In that paper he investigates completeness of Hoare calculi and limits thereof for
programs with procedures [20,19] based on his dissertation [18], refining earlier
results of Clarke [7]. It is quite an achievement for a proper treatment of seman-
tics to span such a wide range of topics, each with its own different conceptual
and technical challenges.

Most of his Ph.D. students got accustomed to Ernst-Rüdiger Olderog’s quest
for semantics quite quickly. So quickly that there was ample opportunity to over-
hear the following question among the first raised during many random hallway

1 As reflected in the former name of Ernst-Rüdiger Olderog’s group: “Semantics”.

c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 5–9, 2015.
DOI: 10.1007/978-3-319-23506-6 2

6 A. Platzer

conversations among students about their most recent (sometimes ingenious but
certainly still immature) discovery:

“Was soll denn das heissen???”
which roughly translates to: “But what’s that even supposed to mean???”

Of course, Ernst-Rüdiger Olderog himself used an infinitely more polite and
modest way of rephrasing this question, albeit in a semantics-preserving way.
But by carefully thought-out remarks and polite questions, Ernst-Rüdiger made
sure his students ultimately understand that everything else crumbles apart
unless the semantics holds it all neatly together. It takes the right semantics
to start off a scientific development. If the semantics is inappropriate, the best
theorems about it do not help. If the semantics expresses the right aspects, but
exposes them in inapt ways, then proofs about the semantics become tedious.

Ernst-Rüdiger Olderog does not just ask whether a semantics is “right”. He
asks whether it is “exactly right”. Does the semantics fit to the intuitive expecta-
tions for the domain of discourse? Does it lend itself to extrapolating appropriate
verification and reasoning techniques? Does it pass muster under the respec-
tive principles of semantics, such as compositionality principles in denotational
semantics or progress properties in operational semantics? Does it lead to sim-
ple and elegant proofs? A semantics that is exactly right will satisfy all these
criteria, which leads to a spectrum of quite finely nuanced semantical choices
that the uninitiated might struggle with.

Indeed, Ernst-Rüdiger’s focus on getting the semantics right also makes all
the sense in the world in another context. Higher-order proof assistants such as
Isabelle [17], Coq [16], and Nuprl [1] make it possible to develop rich theories
with machine-checked proofs. Since that makes mistakes in proofs impossible
(if the prover kernel is implemented correctly), getting the semantics right as
reflected in the basic definitions themselves is what probably matters the most.

Ernst-Rüdiger Olderog deserves particular admiration for his dauntless inves-
tigation of semantical nuances in ever more demanding challenges. Rather than
settling for the (already very challenging) world of concurrent processes [21], he
went on to a semantic study of programs [3,2], even concurrent programs, with
all their extremely subtle semantic interactions. In shared-variable parallel pro-
grams and synchronization in parallel programs, a fine line separates a permissive
semantics that allows all kinds of concurrent interactions but makes analysis and
predictions impossible from a semantics that makes verification straightforward
but is so overly restrictive that it hardly does justice to the intended purposes
of concurrent programs. Rather than settling for the challenges of concurrency,
however, Ernst-Rüdiger went on to study the semantical challenges of real-time
systems [26], and did not shy away from subtle and challenging integrations of
real-time reasoning with concurrency and rich data structures [15].

These directions of real-time systems as well as of semantically integrating
real-time systems with complex systems aspects were one instrumental part of
the AVACS project Automatic Verification and Analysis of Complex Systems [6].
Ernst-Rüdiger Olderog played a major role in AVACS, where he has been serving
as the coordinator for the whole Real-Time Systems group R as well as for one

Ernst-Rüdiger Olderog: A Life for Meaning 7

of its 3 subprojects on real-time systems with complex aspects such as rich data
[23] ever since its beginning in 2004 until today. AVACS is a Sonderforschungs-
bereich/Transregio funded by the German Science Foundation (DFG) spanning
real-time systems (the R subprojects), hybrid systems (H), and systems of sys-
tems verification (S) in a major research initiative of researchers at the University
of Oldenburg, the University of Freiburg, the University of Saarbrücken as well
as the Max-Planck Institute in Saarbrücken. AVACS involved around 10 subpro-
jects, each with around 5 principle investigators and even more researchers.

While real-time systems have received significant attention by the research
community at large, Ernst-Rüdiger Olderog noticed early on that real-time
systems are not just important in isolation but that real-time aspects arise in
systems with a proper software structure [29,24,30,12,15,25,26,23]. These consid-
erations include transformations from real-time specifications to program specifi-
cations [29], decompositions of Duration Calculus formulas into untimed systems
communicating by timers [24], and a verification and design approach for real-time
software in Programmable Logic Controllers (PLCs) [22], which was held together
by a backbone of a semantic link via Duration Calculus between Constraint Dia-
grams and PLCs, and which had applications in railway signaling systems. This
approach has been implemented in the verification tool Moby/PLC [10], which
led to Moby/RT [25], a more general verification tool for real-time systems with
a similar basis. Ernst-Rüdiger Olderog pursued his interest in combinations of
specification techniques further in the development of CSP-OZ-DC [15], an inte-
gration of Communicating Sequential Processes with Object-Z and Duration Cal-
culus, which formed an important foundation for the real-time efforts throughout
AVACS to understand the interaction of concurrent process behavior, infinite data
structures, and continuous real-time dynamics [23].

In addition to serving as scientific director for the real-time efforts in AVACS,
Ernst-Rüdiger Olderog also contributed to efforts on the hybrid systems side,
especially in verification efforts for traffic agents obeying certain cooperation prin-
ciples, both in railway systems [8] as well as in car platooning [9]. The basic obser-
vation that made an analysis more feasible, was that such traffic applications can
often be simplified by partitioning its operations into phases where traffic agents
are still far away, then when they come closer and need to negotiate a safe action,
as well as when they are correcting their actions to avoid or mitigate safety risks.
Of course, the corresponding verification principles are backed up by a detailed
semantical analysis how, generically, the components of such a system can inter-
act to justify its correctness. Careful considerations exploiting the abstract struc-
ture of traffic also led to a dedicated logic for multilane scenario reasoning in cars
by abstracting the motion qualitatively in spatial interval logic [14,13] again, of
course, with a dedicated semantics suitable for the application domain.

I cannot say for sure whether Ernst-Rüdiger Olderog found the meaning of
life yet, but with all his dedication to giving it all a semantics, I am confident
that he is leading a life for meaning. Congratulations, Ernst-Rüdiger Olderog!

8 A. Platzer

References

1. Allen, S.F., Constable, R.L., Eaton, R., Kreitz, C., Lorigo, L.: The nuprl open
logical environment. In: McAllester, D. (ed.) CADE-17. LNCS, vol. 1831, pp. 170–
176. Springer, Heidelberg (2000). http://dx.doi.org/10.1007/10721959 12

2. Apt, K.R., de Boer, F.S., Olderog, E.R.: Verification of Sequential and Concurrent
Programs, 3rd edn. Springer (2010)

3. Apt, K.R., Olderog, E.R.: Verification of Sequential and Concurrent Programs.
Texts and Monographs in Computer Science, 2nd edn. Springer (1997)

4. de Bakker, J.W., Meyer, J.C., Olderog, E., Zucker, J.I.: Transition systems, infini-
tary languages and the semantics of uniform concurrency. In: Proceedings of the
17th Annual ACM Symposium on Theory of Computing, Providence, Rhode Island,
USA, May 6–8, pp. 252–262 (1985)

5. de Bakker, J.W., Meyer, J.C., Olderog, E., Zucker, J.I.: Transition systems, metric
spaces and ready sets in the semantics of uniform concurrency. J. Comput. Syst.
Sci. 36(2), 158–224 (1988)

6. Becker, B., Podelski, A., Damm, W., Fränzle, M., Olderog, E., Wilhelm, R.:
SFB/TR 14 AVACS - automatic verification and analysis of complex systems
(der sonderforschungsbereich/transregio 14 AVACS - automatische verifikation und
analyse komplexer systeme). IT - Information Technology 49(2), 118–126 (2007)

7. Clarke, E.M.: Programming language constructs for which it is impossible to obtain
good Hoare axiom systems. J. ACM 26(1), 129–147 (1979)

8. Damm, W., Hungar, H., Olderog, E.-R.: On the verification of cooperating traffic
agents. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2003. LNCS, vol. 3188, pp. 77–110. Springer, Heidelberg (2004)

9. Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents.
International Journal of Control 79(5), 395–421 (2006)

10. Dierks, H., Tapken, J.: Tool-supported hierarchical design of distributed real-time
systems. In: 26th Euromicro Conference on Real-Time Systems. IEEE Computer
Society, Los Alamitos (1998)

11. Finkbeiner, B., Olderog, E.: Petri games: synthesis of distributed systems with
causal memory. In: Proceedings Fifth International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2014, Verona, Italy, Septem-
ber 10–12, pp. 217–230 (2014)

12. Fischer, C., Olderog, E.-R., Wehrheim, H.: A CSP view on UML-RT structure dia-
grams. In: Hussmann, H. (ed.) FASE 2001. LNCS, vol. 2029, pp. 91–108. Springer,
Heidelberg (2001)

13. Hilscher, M., Linker, S., Olderog, E.-R.: Proving safety of traffic manoeuvres on
country roads. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming
and Formal Methods. LNCS, vol. 8051, pp. 196–212. Springer, Heidelberg (2013)

14. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving
safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011)

15. Hoenicke, J., Olderog, E.: CSP-OZ-DC: A combination of specification techniques
for processes, data and time. Nord. J. Comput. 9(4), 301–334 (2002)

16. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project (2004). http://coq.inria.fr (version 8.0)

17. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-order Logic. Springer, Heidelberg (2002)

http://dx.doi.org/10.1007/10721959_12
http://coq.inria.fr

Ernst-Rüdiger Olderog: A Life for Meaning 9

18. Olderog, E.R.: Charakterisierung Hoare-scher Systeme für Algol-ähnliche Program-
miersprachen. Ph.D. thesis, Universität Kiel (1981)

19. Olderog, E.: Sound and complete Hoare-like calculi based on copy rules. Acta Inf.
16, 161–197 (1981)

20. Olderog, E.: A characterization of Hoare’s logic for programs with pascal-like pro-
cedures. In: Proceedings of the 15th Annual ACM Symposium on Theory of Com-
puting, Boston, Massachusetts, USA, April 25–27, pp. 320–329 (1983)

21. Olderog, E.R.: Nets, Terms and Formulas: Three Views of Concurrent Processes
and Their Relationship. Cambridge University Press (1991)

22. Olderog, E.-R.: Correct real-time software for programmable logic controllers. In:
Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS, vol. 1710, pp.
342–362. Springer, Heidelberg (1999)

23. Olderog, E.-R.: Automatic verification of real-time systems with rich data: an
overview. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol.
7287, pp. 84–93. Springer, Heidelberg (2012)

24. Olderog, E.-R., Dierks, H.: Decomposing real-time specifications. In: de Roever,
W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp.
465–489. Springer, Heidelberg (1998)

25. Olderog, E., Dierks, H.: Moby/RT: A tool for specification and verification of real-
time systems. J. UCS 9(2), 88–105 (2003)

26. Olderog, E.R., Dierks, H.: Real-Time Systems: Formal Specification and Automatic
Verification. Cambridge Univ. Press (2008)

27. Olderog, E., Hoare, C.A.R.: Specification-oriented semantics for communicating
processes. In: Diaz, J. (ed.) Automata, Languages and Programming. LNCS, vol.
154, pp. 561–572. Springer, Heidelberg (1983)

28. Olderog, E., Hoare, C.A.R.: Specification-oriented semantics for communicating
processes. Acta Inf. 23(1), 9–66 (1986)

29. Olderog, E.R., Schenke, M.: Design of real-time systems: the interface between
duration calculus and program specifications. In: Desel, J. (ed.) Structures in Con-
currency Theory, pp. 32–54. WICS. Springer (1995)

30. Schenke, M., Olderog, E.: Transformational design of real-time systems part I: from
requirements to program specifications. Acta Inf. 36(1), 1–65 (1999)

Warmest Congratulations, Ernst-Rüdiger!

Willem Paul de Roever

Christian-Albrechts-Universität zu Kiel,
Ebereschenweg 70, 24161 Altenholz, Germany

corinnederoever@gmail.com

Dear Ernst-Rüdiger,

This is the place to express my admiration for the continued high quality and
scientific integrity of your scientific work through all these years. Frank de Boer
and I, when speaking about you some while ago, came to the conclusion that
you are a light beacon for both of us, you are a true Professors’ Professor, raising
and maintaining the high standard of scientific endeavor within our field, that
of Program Verification and Program Semantics within Computer Science. At
the same time you have never developed any pretensions, but always remained
your amiable, utterly reliable, friendly, modest and respectable self. That is why
you have been our beacon throughout our lives not only in scientific respect but
also as a respected human being, who maintains these simple values of human
life — values which make our lives worthwhile also outside of and beyond our
professional activities. Your students speak about you with warmth and respect,
and consider themselves fortunate that you have been their mentor! All these
qualities make you a truly worthy successor of your friend and Doctor-Vater
Hans Langmaack in the very best tradition of German Science. What more can
a University Professor aspire to be!
c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 10–11, 2015.
DOI: 10.1007/978-3-319-23506-6 3

Warmest Congratulations, Ernst-Rüdiger! 11

I hope from the bottom of my heart that the coming 5 years until your retire-
ment will be as fruitful as your many previous years have been at the Carl von
Ossietzky Universität Oldenburg, and that you will be offered a nice gradual
transition from your professional life to what you would like to do once your
retirement takes effect. I would have liked to dedicate a scientific contribution
to your festschrift, but since I have withdrawn from research, that lays outside
my possibilities.

The warmest wishes for a happy life from your friends,

Willem Paul de Roever

Semantics

Understanding Probabilistic Programs

Joost-Pieter Katoen(B), Friedrich Gretz, Nils Jansen,
Benjamin Lucien Kaminski, and Federico Olmedo

RWTH Aachen University, Aachen, Germany
{katoen,friedrich.gretz,nils.jansen,benjamin.kaminski,

federico.olmedo}@cs.rwth-aachen.de

Abstract. We present two views of probabilistic programs and their
relationship. An operational interpretation as well as a weakest pre-
condition semantics are provided for an elementary probabilistic guarded
command language. Our study treats important features such as sam-
pling, conditioning, loop divergence, and non-determinism.

1 Introduction

Probabilistic programs are sequential programs with the ability to draw values at
random from probability distributions. Probabilistic programs are not new at all.
Seminal papers from the mid–eighties consider their formal semantics [16] as well
as their formal verification [25]. Variations of probabilistic propositional dynamic
logic [5] have been defined to enable reasoning about probabilistic programs.
McIver and Morgan [17] generalized Dijkstra’s weakest pre–conditions to weakest
pre–expectations (wp) so as to formally analyze pGCL—the probabilistic guarded
command language. Mechanized wp–reasoning has been realized [3,13].

In the last years the interest in probabilistic programs is rapidly growing [8].
This is mainly due to their wide applicability. Probabilistic programs are used
in security to describe cryptographic constructions (such as randomized encryp-
tion) and security experiments [1], in machine learning to describe distribution
functions that are analyzed using Bayesian inference, and naturally occur in
randomized algorithms [18]. Other applications include [6] scientific modeling,
information retrieval, bio–informatics, epidemiology, vision, seismic analysis,
semantic web, business intelligence, human cognition, and more. The variety of
probabilistic programming languages is immense. Almost each programming lan-
guage, being it imperative, declarative, object–oriented or logical, has a proba-
bilistic counterpart. Probabilistic C [21] extends C with sampling, Church is based
on the λ–calculus, Figaro [22] is fully integrated in the Scala object–oriented lan-
guage, and CHRiSM is a probabilistic version of Prolog. Probabilistic programs
are not just of academic interest; they are highly relevant to industry; DARPA
invests 48 million US dollar on probabilistic programming for advanced machine
learning because:

This work was supported by the Excellence Initiative of the German federal and
state government.

c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 15–32, 2015.
DOI: 10.1007/978-3-319-23506-6 4

16 J.-P. Katoen et al.

“probabilistic programming is a new programming paradigm for man-
aging uncertain information. By incorporating it into machine learning,
we seek to greatly increase the number of people who can successfully
build machine learning applications, and make machine learning experts
radically more effective”.

Microsoft has recently started a large initiative to improve the usability of prob-
abilistic programming. New languages and approaches such as Infer.NET (akin
to C#), R2 [19] and Tabular [7] emerged.

What is special about probabilistic programs? They are typically just a few
number of lines, but hard to understand and analyze, let alone algorithmically.
For instance, the elementary question of almost–sure termination—for a given
input, does a probabilistic program terminate with probability one?—is as hard
as [14] the universal halting problem—does an ordinary program halt on all pos-
sible inputs? Loop invariants of probabilistic programs typically involve quantita-
tive statements and synthesizing them requires more involved techniques than for
ordinary programs [2,15]. Modern probabilistic programming languages do not
just support sampling, but also have the ability to condition values of variables in
a program through observations. Conditioning blocks all program runs violating
its Boolean condition and prevents those runs from happening. Consequently,
the likelihood of the remaining runs is normalized. The latter effect makes obser-
vations differ from program annotations like probabilistic assertions [24].

Conditioning of variables through observations is less well–understood and
raises various semantic difficulties, in particular in the presence of possibly non–
terminating loops and non–determinism1. Previous works on semantics for prob-
abilistic programs with observations [12,19] do not consider these important
features. In fact, many works on probabilistic programs ignore the notion of
non–termination and assume that loops always terminate—a property that is
unrealistic in practice and highly undecidable to establish. This paper sketches
the semantic intricacies, and presents ideas of providing a formal semantics of
pGCL treating conditioning in presence of possibly diverging loops and non–
determinism.

Much in the vein of Olderog’s view [20] that multiple semantic perspectives
are useful for a full understanding of programs and systems, we provide two
semantic views and study their relationship. We present an operational seman-
tics in terms of infinite–state parametric Markov decision processes [23] as well
as a weakest (liberal) precondition semantics à la McIver and Morgan [17] and
Dijkstra [4]. The main result is a transfer theorem that establishes the rela-
tionship between the two semantics. A program transformation is described to
remove conditioning and its correctness is established. The presentation is kept
informal; full technical details can be found in [9–11].

1 As stated in [8], “representing and inferring sets of distributions is more compli-
cated than dealing with a single distribution, and hence there are several technical
challenges in adding non–determinism to probabilistic programs”.

Understanding Probabilistic Programs 17

2 Probabilistic Programs

This section introduces our programming language. Probabilistic programs are
presented by means of examples that elucidate the key insights behind them.

Main Features. Roughly speaking, probabilistic programs are ordinary sequen-
tial programs with two additional features:

(i) The ability to draw samples from a probability distribution. For simplicity,
we consider discrete probability distributions only, and model sampling by
means of a probabilistic choice2 of the form:

{P1} [p] {P2} .

Here, P1 and P2 are programs and p is a probability value in [0, 1]. Intu-
itively, this construct behaves as P1 with probability p and as P2 with
probability 1−p.

(ii) The ability to condition the distribution of program states with respect to
an observation. This is done using statements of the form:

observe (G) ,

where G is a Boolean expression over the program variables. The effect
of such an instruction is to block all program executions violating G and
rescale the probability of the remaining executions so that they sum up
to one. In other words, observe (G) transforms the current distribution μ
over states into the conditional distribution μ|G.

To clarify these features consider the two simple sample programs given below:

1: {x := 0} [1/2] {x := 1}; 1: {x := 0} [1/2] {x := 1};
2: {y := 0} [1/2] {y := −1} 2: {y := 0} [1/2] {y := −1};

3: observe (x + y = 0)

The left program flips two fair (and independent) coins and assigns different
values to variables x and y depending on the result of the coin flips. This program
admits four executions and yields the outcome

Pr[x=0, y=0] = Pr[x=0, y=−1] = Pr[x=1, y=0] = Pr[x=1, y=−1] = 1
4 .

The program on the right blocks two of these four executions as they violate the
observation x+y equals zero in the last line. The probabilities of the remaining
two executions are normalized. This leads to the outcome

Pr[x=0, y=0] = Pr[x=1, y=−1] = 1
2 .

2 Alternatively, one can use random assignments which sample a value from a distri-
bution and assign it to a program variable; see e.g. [8].

18 J.-P. Katoen et al.

Remarks on Conditioning. The observe statement is related to the well–known
assert statement: both statements observe (G) and assert (G) block all
runs violating the Boolean condition G. The crucial difference, however, is that
observe (G) normalizes the probability of the remaining runs while assert (G)
does not. This yields a sub–probability distribution of total mass possibly less
than one [1].

We also like to point out that an observation may block all program runs. In
this case the normalization process is not well–defined and the program admits
no feasible run. This is similar to the situation that conditional probabilities are
ill–defined when conditioning to an event of probability zero. Section 3 sheds
more light on this phenomenon. A possible way out is to only allow conditioning
at the end of the program, in particular not inside loops. Whereas this view
indeed simplifies matters, modern probabilistic programming languages [7,19,21]
do not impose this restriction for good reasons. Instead, they allow the use of
observe statements at any place in a program, e.g. in loops. Section 4 presents
two program semantics that adequately handle such (infeasible) programs.

Loops. Let us now consider loops. Consider the following two loopy programs:

1: i := 0; 1: i := 0;
2: repeat 2: repeat

3: {b := heads} [p] {b := tails}; 3: {b := heads} [p] {b := tails};
4: i := i + 1 4: i := i + 1
5: until (b = heads) 5: until (b = heads);

6: observe (odd(i))

The left program tosses a (possibly biased) coin until it lands heads and tracks
the number of necessary trials. It basically simulates a geometric distribution
with success probability p and upon program termination we have

Pr[i = N] = (1 − p)N−1 p for N ≥ 1 .

The program on the right is as the left program but models the situation where on
termination we observe that the number of trials until the first heads is odd. The
set of program executions complying this observation has an overall probability
of

∑
N≥0 (1 − p)2Np = 1/(2−p). This follows from considering a geometric series

on even indices. Accordingly, the distribution of variable i is now governed by

Pr[i = 2N+1] = (1 − p)2Np
(
2 − p

)

Pr[i = 2N] = 0
for N ≥ 0 .

As a final remark regarding the previous pair of loopy programs, observe that we
allow the probability value of probabilistic choices to remain unspecified. This
allows us to deal with parametric programs in which the exact values of the
probabilities are not known.

Understanding Probabilistic Programs 19

Non–determinism. Our programming model also accounts for the possibility
of non–determinism. Let {P1} � {P2} represent the non–deterministic choice
between the programs P1 and P2. Non–deterministic choices are resolved by
means of a so–called scheduler (akin: adversary). On the occurrence of the non–
deterministic choice {P1} � {P2} during a program run, a scheduler decides
whether to execute P1 or P2. This choice can in principle depend on the sequence
of program states encountered so far in the run. Consider, for instance

1: {i := 2j} � {i := 2j+1};
2: {i := i+1} [1/3] {i := i+2} .

It admits the schedulers L and R, say. Scheduler L resolves the non–deterministic
choice in favor of the assignment i := 2j, whereas scheduler R selects the assign-
ment i := 2j+1. Evidently, imposing either the scheduler L or R on this program
yields a purely probabilistic program.

As in [17], we consider a demonic model to determine the probability of an
event in the presence of non–determinism. This amounts to resolving all non–
deterministic choices in a way that minimizes the probability of the event at
hand. In other words, we assume a scheduler that leads to the event occurring
with the least probability. For instance, the probability that i is odd in the above
program is computed as follows

Pr[odd(i)] = min
{
PrL[odd(i)], PrR[odd(i)]

}
= min

{
1
3 , 2

3

}
= 1

3 .

By a similar reasoning it follows that the probability that i is even is also 1/3.
This shows that in the presence of non–determinism the law of total probability,
namely Pr[A] + Pr[¬A] = 1, does not hold.

Observe that our demonic model of non-determinism impacts directly on the
termination behavior of programs. This is because in the probabilistic setting, the
termination behaviour of a program is given by the probability of establishing
true, which—like the probability of any other event—is to be minimized. To
clarify this consider the following example. Assume that P is a program which
admits a scheduler that leads to a probability of termination zero, while all
other schedulers induce a probability of termination that is strictly positive. We
will then say that P is non-terminating, or more formally, that it diverges almost
surely, since according to our demonic model of non-determinism, the probability
of establishing true, i.e., termination, will be zero.

3 Semantic Intricacies

In this section, we investigate semantic difficulties that arise in the context of
non–deterministic and probabilistic uncertainty in probabilistic programs, in
particular in combination with conditioning. We do this by means of exam-
ples. Consider as a first example the following two ordinary (i.e. deterministic

20 J.-P. Katoen et al.

and non–probabilistic) programs Pdiv (left) and Pterm (right):

1: repeat 1: repeat

2: x := 1 2: x := 0
3: until (x = 0) 3: until (x = 0)

While the left program never terminates as the variable x is always set to one,
the right program performs only one loop iteration. The right program is said
to certainly terminate.

Non–deterministic Uncertainty. The first type of uncertainty we take a look at
is non–determinism. For that, consider the following program Pnd :

1: repeat

2: {x := 1} � {x := 0}
3: until (x = 0)

In each loop iteration, the variable x is set non–deterministically either to 1 or to
0. A natural question is whether this program terminates or not. Obviously, this
depends on the resolution of the non–deterministic choice inside the loop body.
For the scheduler that chooses the left branch x := 1 in each loop iteration, the
probability of termination is zero, while for any other scheduler the probability
of termination is one. (As Pnd contains no probabilistic choice, any event will
occur with probability either zero or one). In view of our demonic model of
non-determinism, the program presents a certain behavior: non-termination.

Probabilistic Uncertainty. Consider now the following program Ppr , which is
obtained from the previous program Pnd by replacing the non-deterministic
choice by a random choice:

1: repeat

2: {x := 1} [1/3] {x := 0}
3: until (x = 0)

In each loop iteration, the variable x is set to 1 with probability 1/3 and to 0
with probability 2/3. Again we pose the question: does this program terminate?
The answer to that requires a differentiated view: there does exist a single non–
terminating program run, namely the one in which x is set to 1 in each loop
iteration. This infinite run, however, has probability 1/3 · 1/3 · 1/3 · · · = 0 . Thus,
the terminating runs have probability 1−0 = 1. In this case, the program is said
to terminate almost surely. Note that it does not terminate certainly though, as
it admits an infinite run.

Understanding Probabilistic Programs 21

Combining Non–deterministic and Probabilistic Uncertainty. Let us consider the
two notions of uncertainty in a single program Pnd+pr :

1: repeat

2: {{x := 1} [8/9] {x := 0}} � {{x := 1} [1/9] {x := 0}}
3: until (x = 0)

In each loop iteration, the variable x is set to 0 with a certain probability, but
this probability is chosen non–deterministically to be 1/9 or 8/9. Again we pose
the question: does this program terminate almost–surely? As a matter of fact,
the scheduler cannot prevent this program from terminating almost–surely. In
fact the two programs

1: repeat 1: repeat

2: {x := 1} [1/9] {x := 0} 2: {x := 1} [8/9] {x := 0}
3: until (x = 0) 3: until (x = 0)

are semantically equivalent in both our semantic views [11,17].
Still it seems natural to ask whether choosing 1/9 over 8/9 as the probability

of setting x to 0 would not be—so to say—more demonic as this would increase
the expected time until termination and therefore the right program converges
slower. To the best of our knowledge, however, existing semantics for proba-
bilistic programs with non–determinism do not take this convergence rate into
account (and neither do our two semantic views).

Observations. Next, we turn towards the second characteristic feature of proba-
bilistic programs—conditioning—and take a look at termination in this context.
Consider the following two programs Pdiv (left) and Pobs (right):

1: repeat 1: repeat

2: x := 1 2: {x := 1} [1/2] {x := 0};
3: until (x = 0) 3: observe (x = 1)

4: until (x = 0)

As noted earlier, the left program certainly diverges. For the right program,
things are not so clear any more: On the one hand, the only non–terminating
run is the one in which in every iteration x is set to 1. This event of setting
x infinitely often to 1, however, has probability 0. So the probability of non–
termination would be 0. On the other hand, the global effect of the observe
statement within the loop is to condition on exactly this event, which occurs
with probability 0. Hence, the conditional termination probability is 0 divided
by 0, i.e. undefined.

Remark 1. Notice that while in this sample program it is immediate to see that
the event to which we condition has probability 0, in general it might be highly
non–trivial to identify this. Demanding from a “probabilistic programmer” to

22 J.-P. Katoen et al.

condition only to events with non–zero probability would thus be just as (if
not even more) far–fetched as requiring an “ordinary programmer” to write only
terminating programs. Therefore, a rigorous semantics for probabilistic programs
with conditioning has to take the possibility of conditioning to zero–probability
events into account: To the program on the right such a semantics should assign
a dedicated denotation which represents undefined due to conditioning to a zero–
probability event.

Conditioning in Presence of Uncertainty. Our final example in this section blurs
the situation even further by incorporating both notions of uncertainty and
conditioning into the single program Pall :

1: repeat

2: {x := 1} [1/2] {x := 0};
3: {x := 1} � {observe (x = 1)}
4: until (x = 0)

This program first randomly sets x to 1 or 0. Then it either sets x to 1 or
conditions to the event that x was set to 1 in the previous probabilistic choice.
The latter choice is made non–deterministically and therefore the semantics of
the entire program is certainly not clear: If in line 3, the scheduler always chooses
x := 1, then this results in certain non–termination. If, on the other hand, the
scheduler always chooses observe (x = 1), then the global effect of the observe
statement is a conditioning to this zero–probability event. Which behavior of
the scheduler is more demonic? We take the point of view that certain non–
termination is a more well–behaved phenomenon than conditioning to a zero–
probability event. Therefore a demonic scheduler should prefer the latter.

4 Expectation Transformer and Operational Semantics

This section presents the two semantic views and their relationship. The first
perspective is a semantics in terms of weakest pre–expectations, the quanti-
tative analogue of Dijkstra’s weakest pre–conditions [4]. The second view is
an operational semantics in terms of Markov decision processes (MDPs) [23].
The relationship between the semantics is established by linking weakest pre–
expectations to (conditional) rewards in the MDPs associated to the programs.

4.1 Weakest Pre–expectation Semantics

The semantics of Dijkstra’s seminal guarded command language [4] has been
given in terms of weakest preconditions. It is in fact a predicate transformer
semantics, i.e. a total function between two predicates on the state of a program.
The predicate transformer E = wp(P, F) for program P and postcondition F
yields the weakest precondition E on the initial state of P ensuring that the
execution of P terminates in a final state satisfying F . There is a direct relation

Understanding Probabilistic Programs 23

with axiomatic semantics: the Hoare triple 〈E〉P 〈F 〉 holds for total correctness
if and only if E ⇒ wp(P, F). The weakest liberal precondition wlp(P, F) yields
the weakest precondition for which P either does not terminate or establishes
F . It does not ensure termination and corresponds to Hoare logic for partial
correctness.

Weakest Pre–expectations. Qualitative annotations in predicate calculus are
often insufficient for probabilistic programs as they cannot express quantities
such as expectations over program variables. To that end, we adopt the app-
roach by McIver and Morgan [17] and consider expectations over program vari-
able valuations. They are the quantitative analogue of predicates and are in fact
just random variables (over variable valuations). An expectation transformer is
a total function between expectations on the state of a program. Stated col-
loquially, the expectation transformer e = wp(P, f) for pGCL–program P and
post–expectation f over final states yields the least expected “value” e on P ’s
initial state ensuring that P ’s execution terminates with a “value” f . That is
to say, e(σ) = wp(P, f)(σ) represents the expected value of f with respect to
the distribution of final states obtained from executing program P in state σ,
where σ is a valuation of the program variables. The annotation 〈e〉P 〈f〉 holds
for total correctness if and only if e ≤ wp(P, f), where ≤ is to be interpreted in
a point–wise manner. The weakest liberal pre–expectation wlp(P, f) yields the
least expectation for which P either does not terminate or establishes f . It does
not ensure termination and corresponds to partial correctness.

Determining Weakest Pre–expectations. We explain the transformation of expec-
tations by means of an example. Consider the program P :

{{x := 5} � {x := 2}} [p] {x := 2}
We would like to find the (least) average value of x produced by this program.
This quantity is given by

wp(P, x) = wp({{x := 5} � {x := 2}} [p] {x := 2}, x) .

The expectation of the probabilistic choice is given by the weighted average of
the expectations of its sub–programs, thus we obtain

p · wp({x := 5} � {x := 2}, x) + (1 − p) · wp(x := 2, x) .

As non–determinism is resolved in a demonic manner, it yields the expectation
given by the minimum between the expectations of the sub–programs

p · min{wp(x := 5, x),wp(x := 2, x)} + (1 − p) · wp(x := 2, x) .

In the last step we apply the assignments and evaluate the expression

p · min{5, 2} + (1 − p) · 2 = p · 2 + (1 − p) · 2 = 2 .

For loops, the semantics is as usual defined by a least fixed point; in our case,
over the domain of expectations with partial order the point–wise ordering ≤ on
expectations.

24 J.-P. Katoen et al.

Conditioning. Let wp(observe(G), f) = wlp(observe(G), f) = [G] · f , where
[G] stands for the characteristic function of the Boolean expression G over the
program variables. For probabilistic programs with observations we define a
transformer to determine the conditional expectation cwp(P, f). Intuitively, the
conditioning takes place on the probability that all observations in the program
are successfully passed. The conditional expectation of program P with respect
to post–expectation f is given as a pair:

cwp(P, f) =
(
wp(P, f), wlp(P, 1)

)
.

The first component gives the expectation of the random variable f , whereas
wlp(P, 1) is the probability that no observation has been violated (this includes
non–terminating runs). The pair

(
wp(P, f), wlp(P, 1)

)
is to commonly be inter-

preted as the quotient
wp(P, f)
wlp(P, 1)

.

It is possible though that both wp(P, f) and wlp(P, 1) evaluate to 0. In that case,
the quotient 0

0 is undefined due to division by zero. The pair (0, 0), however, is
well–defined. Let us give an example. Consider the program P from Section 2:

1: {x := 0} [1/2] {x := 1};
2: {y := 0} [1/2] {y := −1};
3: observe (x + y = 0)

Assume we want to compute the conditional expected value of expression x given
that observation x + y = 0 is passed. This expected value is given by cwp(P, x)
and its computation is sketched below. During the computation we use Pi−j to
denote the fragment of program P from line i to line j. For the first component
of cwp(P, x) we have:

wp(P, x)
= wp(P1−2, [x + y = 0] · x)
= 1/2 · wp(P1−1; y := 0, [x + y = 0] · x) + 1/2 · wp(P1−1; y := −1, [x + y = 0] · x)
= 1/2 · wp(P1−1, [x = 0] · x) + 1/2 · wp(P1−1, [x = 1] · x)
= 1/2 · (1/2 · 1 · 0 + 1/2 · 0 · 1) + 1/2 · (1/2 · 0 · 0 + 1/2 · 1 · 1)
= 1/4

For the second component of cwp(P, x) we derive:

wlp(P, 1)
= wlp(P1−2, [x + y = 0] · 1)
= 1/2 · wlp(P1−1; y := 0, [x + y = 0]) + 1/2 · wlp(P1−1; y := −1, [x + y = 0])
= 1/2 · wlp(P1−1, [x = 0]) + 1/2 · wlp(P1−1, [x = 1])
= 1/2 · (1/2 · 1 + 1/2 · 0) + 1/2 · (1/2 · 0 + 1/2 · 1)
= 1/2

Understanding Probabilistic Programs 25

Thus the conditional expected value of x is

wp(P, x)
wlp(P, 1)

=
1/4
1/2

=
1
2

.

Revisiting the purely probabilistic example programs of Section 3 (i.e. those not
containing any non–deterministic choices), with respect to post–expectation x+5
we would obtain the following conditional expectations and according quotients:

Pdiv (0, 1) 0
1 = 0

Pterm (5, 1) 5
1 = 5

Ppr (5, 1) 5
1 = 5

Pobs (0, 0) 0
0 = undefined

In particular notice that Pdiv and Pobs diverge due to different reasons and that
our semantics discriminates these two programs by assigning different denota-
tions to them.

Remark 2. Note that the example for the weakest pre–expectation semantics
for programs with conditioning does not contain non–determinism. This is delib-
erate as it is impossible to treat non–determinism in a compositional manner [9].
The problem is that determining the conditional expectation in a compositional
fashion is not feasible.

4.2 Operational Semantics

MDPs. Markov decision processes (MDPs [23]) serve as a model for probabilistic
systems that involve non–determinism. An MDP is a state–transition system in
which the target of a transition is a discrete probability distribution over states.
As in state–transition systems, several transitions may emanate from a state. An
MDP thus reduces to an ordinary state–transition system in case all transitions
are equipped with a Dirac distribution. In the sample MDP in Figure 1 there is
a choice in state s0 between distributions (or: transitions) α and β. Choosing α
results in a probabilistic choice of moving either to state s1 or to state s2 with
probability 1/2 in each case. Choosing β results in going to s3 with probability
9/10 and to s1 with probability 1/10. Additionally, in state s1 a reward (also
referred to as cost) of 10 is earned; all other states have reward zero, which is
omitted from the figure. The expected reward of reaching s1 from state s0 equals
the reward that on average will be earned with respect to the overall probability
of reaching state s1.

These MDPs serve as an operational model for our probabilistic programs.
The MDP states are tuples of the form 〈P, σ〉 where P denotes the remaining
program to be executed (or equals 〈sink 〉 if the program successfully terminated),
and σ is the current valuation of the program variables. Executing a program
statement is mimicked by a state change in the MDP. By equipping the MDP
states with rewards it is possible to express the expected outcome of a program

26 J.-P. Katoen et al.

〈s0〉

〈s1〉 10

〈s2〉〈s3〉

0.5

0.5

α

0.9

0.1

β

1

11

Fig. 1. Sample MDP with four states and a non–deterministic choice between α and β

variable as an expected reward on the MDP. This will become more explicit
when discussing the relationship to the weakest pre-expectation semantics at
the end of this section. Note that the resulting MDP of a probabilistic program
is in general countably infinite (as the variable domains can be infinitely large)
and parametric (as probabilistic choices can be parametric).

The Structure of MDPs for Probabilistic Programs. Let us examine the different
kinds of runs a program can have. First, we have terminating runs where—in
presence of conditioning—one has to distinguish between runs that satisfy the
condition and those that do not. In addition, a program may have diverging
runs, i.e. runs that do not terminate. Schematically, the MDP of a probabilistic
program has the following structure:

For terminating runs of the program, we use a dedicated 〈sink 〉 state where
all terminating runs will end. All diverging runs never reach 〈sink 〉. A program
terminates either successfully, i.e. a run passes a �–labeled state, or terminates
due to violating an observation, i.e. a run passes 〈�〉. Squiggly arrows indicate
reachability via possibly multiple paths and states; the clouds indicate that there
might be several or even infinitely many states of the particular kind. The �–
labeled states are the only ones where one is allowed to assign positive reward
as this corresponds to a desired outcome of the program when subsequently
terminating. Note that the sets of paths that eventually reach 〈�〉, eventually
reach �, or diverge, are pairwise disjoint.

As an example, consider the following program:

{{x := 5} � {x := 2}} [q] {x := 2};
observe (x > 3)

Understanding Probabilistic Programs 27

With parametrized probability q, a non–deterministic choice either assigns x with
2 or 5. With probability 1−q, x is directly assigned 2, so in this program branch
no non–deterministic choice occurs. The event that x exceeds 3 is observed.
For the sake of readability, let: P1 = {x := 5} � {x := 2}, P2 = x := 2,
P3 = observe (x > 3), and P4 = x := 5. Figure 2 shows the resulting MDP,
where σI denotes some initial variable valuation for x. Let σI [x/y] denote the
variable valuation that is obtained from σI by replacing x by y. Starting in

Fig. 2. Reward MDP for the example program

the initial state 〈P, σI〉, the probabilistic choice takes place. With probability
q, the next state is 〈P1; P3, σI〉 while with probability 1−q, the next state is
〈P2; P3, σI〉. The non–deterministic choice in state 〈P1; P3, σI〉 is indicated by
left and right . Note that non–deterministic choices yield a choice in the MDP
between Dirac distributions.

Conditional Expected Rewards. The operational semantics of a probabilistic pro-
gram P , a program state σ and an expectation (i.e. random variable) f is the
reward MDP Rf

σ�P � constructed as described in the paragraph above. Note that
in the context of MDPs, the random variable f can also be seen as a reward func-
tion which adds a positive real–valued reward to certain states of the MDP. In
our previous example, the only state with positive reward (5) is s′ := 〈↓, σI [x/5]〉;
all other states have reward zero. In absence of conditioning, we are interested
in the expected reward to reach a 〈sink 〉–state from the MDP’s initial state σI :

er(P, f)(σI) = ExpRewRf
σI

�P � (♦ sink) .

The right-hand side denotes the sum over all (countably many) paths in the
reward MDP Rf

σI
�P � where for each path its likelihood is weighed with its

28 J.-P. Katoen et al.

reward. The reward of a path is simply the sum of the rewards of the states it
contains.

In the presence of conditioning (i.e. for programs having observe–
statements), we consider the conditional expected reward to reach a 〈sink 〉–state
without intermediately passing the 〈�〉–states:

cer(P, f)(σI) =
ExpRewRf

σI
�P � (♦ sink ∩ ¬♦�)

Pr(¬♦�)
.

Let us illustrate these two notions by our example reward MDP in Figure 2.
Consider a scheduler choosing action left in the state 〈P1; P3, σI〉. Then, the
only path accumulating positive reward is the path π going from 〈P, σI〉 via s′

to 〈sink 〉; it has reward 5 and occurs with probability q. This gives an expected
reward

er(P, f)(σI) = 5 · q .

The overall probability of not reaching 〈�〉 is q. The conditional expected reward
of eventually reaching 〈sink 〉 given that 〈�〉 is not reached is hence

cer(P, f)(σI) =
5 · q

q
= 5 .

Consider now the scheduler choosing right at state 〈P1; P3, σI〉. In this case,
there is no path with positive accumulated reward, yielding an expected reward
of 0. The probability of not reaching 〈�〉 is also 0. The conditional expected
reward in this case is undefined (0/0). Thus, the right branch is preferred over
the left branch by a demonic scheduler, as discussed in Section 3.

4.3 Relating the Two Semantic Views

A key insight is that the operational program semantics in terms of MDPs and
the semantics in terms of expectation transformers, as explained in the previous
section, correspond in the following sense:

Theorem 1 (Transfer theorem [11]). For a probabilistic program P without
observations, a random variable f , and some initial state σI :

wp(P, f)(σI) = er(P, f)(σI) .

Stated in words, this result asserts that the weakest-pre-expectation of program
P in initial state σI wrt. post-expectation f coincides with the expected reward
in the MDP of P where reward f is assigned to successfully terminating states.
For probabilistic programs with observations but without non–determinism we
can establish a correspondence between the conditional expected reward on the
MDP of a program and its conditional pre–expectation:

Understanding Probabilistic Programs 29

Theorem 2 (Transfer theorem for conditional expectations [9]). For a
purely probabilistic program P (with observations), a random variable f , and
some initial state σI , let cwp(P, f) = (g, h). Then

g(σI)
h(σI)

	 cer(P, f)(σI) ,

where x 	 y holds iff either x = y or both sides of the equation are undefined.

For weakest liberal pre-expectations, we obtain a similar pair of theorems, where
the notions of (conditional) liberal expected reward also takes the mere probabil-
ity of not reaching the target states into account. For further details, the reader
is referred to [9–11].

5 Program Transformations

In this section, we use the semantics to show the correctness of a program trans-
formation aimed at removing observations from programs. The program trans-
formation basically allows removing observations from programs through the
introduction of a global loop. It is motivated by a well–known technique to sim-
ulate a uniform distribution in some interval [a, b] using fair coins [26, Th. 9.2].
The technique is illustrated by a program simulating a six–sided die:

1: repeat

2: {a0 := 0} [1/2] {a0 := 1};
3: {a1 := 0} [1/2] {a1 := 1};
4: {a2 := 0} [1/2] {a2 := 1};
5: i := 4a0 + 2a1 + a0 + 1
6: until (1 ≤ i ≤ 6)

The body of the loop simulates a uniform distribution over the interval [1, 8],
which is repeatedly sampled (in variable i) until its outcome lies in [1, 6]. The
effect of the repeated sampling is precisely to condition the distribution of i to
1 ≤ i ≤ 6. As a result, Pr[i = N] = 1

6 for all N = 1, . . . , 6.
Our program transformation follows the same idea. Given a program P with

observations, we repeatedly sample executions from P until the sampled exe-
cution satisfies all observations in P . To implement this, we have to take into
account three issues. First, we introduce a flag that signals whether all obser-
vations along a program execution were satisfied or not. Let variable flag be
initially true and replace every observation observe (G) in the original pro-
gram by the assignment flag := flag ∧ G. In this way, the variable flag is true
until an observation is violated. Secondly, since a program execution is no longer
blocked on violating an observation, we need to modify the program to avoid
any possible divergence after an observation has been violated. This is achieved
by adapting the loop guards. For instance loop while (G) {P} is transformed

30 J.-P. Katoen et al.

into while (G∧flag) {P}, whereas loop repeat {P} until (G) is changed into
repeat {P} until (G ∨ ¬flag). Finally, observe that we need to keep a perma-
nent copy of the initial program state since every time we sample an execution,
the program must start from its original initial state. In general, the transformed
program will have the following shape:

1: s1, . . . , sn := x1, . . . , xn;
2: repeat

3: flag := true;
4: x1, . . . , xn := s1, . . . , sn;
5: modified version of original program;
6: until (flag)

Here x1, . . . , xn denote the set of variables that occur in the original program
and s1, . . . , sn are auxiliary variables used to store the initial program state; note
that if the original program is closed (i.e. independent of its input), Lines 1 and
4 can be omitted. Line 5 includes the modified version of the original program
which accounts for the replacement of observations by flag updates and, possibly,
the adaptation of loop guards.

We illustrate the program transformation on the left program below:

1: {x := 0} [1/2] {x := 1}; 1: repeat

2: {y := 0} [1/2] {y := −1}; 2: flag := true;
3: observe (x + y = 0) 3: {x := 0} [1/2] {x := 1};

4: {y := 0} [1/2] {y := 1};
5: flag := flag ∧ (x + y = 0)
6: until (flag)

The transformed—observe–free—program is given on the right. Using the
operational semantics from Section 4 we establish that the transformation is
semantic-preserving:

Theorem 3 (Correctness of the program transformation). Let P be a
probabilistic program and let P ′ be the result of applying the above transformation
to program P . Then for initial state σI and reward function f ,

cer(P, f)(σI) = er(P ′, f)(σI) .

In some circumstances it is possible to apply a dual program transformation
that replaces program loops with observations. This is applicable when there
is no data flow between loop iterations and the samplings across iterations are
thus independent and identically distributed. This is the case, e.g. for the earlier
program that simulates a six-sided dice. One can show that this program is

Understanding Probabilistic Programs 31

semantically equivalent to the program

1: {a0 := 0} [1/2] {a0 := 1};
2: {a1 := 0} [1/2] {a1 := 1};
3: {a2 := 0} [1/2] {a2 := 1};
4: i := 4a0 + 2a1 + a0 + 1;
5: observe (1 ≤ i ≤ 6)

6 Conclusion

We have presented two views on the semantics of probabilistic programs
and showed their relationship for purely probabilistic programs. Whereas the
operational semantics can cope with all features—loops, conditioning, non–
termination, and non–determinism—the weakest pre–expectation approach can-
not be directly applied to handle non–determinism in this setting. We believe
that formal semantics, verification, and program analysis has much to offer to
improve modern probabilistic programming, and consider this as an interesting
and challenging avenue for further research.

References

1. Barthe, G., Kopf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic relational reasoning
for differential privacy. ACM Trans. Program. Lang. Syst. 35(3), 9 (2013)

2. Chakarov, A., Sankaranarayanan, S.: Expectation invariants for probabilistic pro-
gram loops as fixed points. In: Müller-Olm, M., Seidl, H. (eds.) Static Analysis.
LNCS, vol. 8723, pp. 85–100. Springer, Heidelberg (2014)

3. Cock, D.: Verifying probabilistic correctness in Isabelle with pGCL. El. Proc. in
Th. Comp. Sc. 102, 167–178 (2012)

4. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)
5. Feldman, Y.A., Harel, D.: A probabilistic dynamic logic. In: Proc. of STOC, pp.

181–195. ACM (1982)
6. Gordon, A.D.: An agenda for probabilistic programming: Usable, portable, and

ubiquitous (2013). http://research.microsoft.com/en-us/projects/fun
7. Gordon, A.D., Graepel, T., Rolland, N., Russo, C.V., Borgström, J., Guiver, J.:

Tabular: a schema-driven probabilistic programming language. In: Proc. of POPL,
pp. 321–334. ACM Press (2014)

8. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Proc. of FOSE, pp. 167–181. ACM Press (2014)

9. Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J.P., McIver, A., Olmedo, F.:
Conditioning in probabilistic programming. In: Proc. of MFPS, p. 12 (2015)

10. Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J.P., McIver, A., Olmedo, F.:
Conditioning in probabilistic programming. CoRR (2015)

11. Gretz, F., Katoen, J.P., McIver, A.: Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval. 73,
110–132 (2014)

http://research.microsoft.com/en-us/projects/fun

32 J.-P. Katoen et al.

12. Hur, C.K., Nori, A.V., Rajamani, S.K., Samuel, S.: Slicing probabilistic programs.
In: Proc. of PLDI, pp. 133–144. ACM Press (2014)

13. Hurd, J., McIver, A., Morgan, C.: Probabilistic guarded commands mechanized
in HOL. Theor. Comput. Sci. 346(1), 96–112 (2005)

14. Kaminski, B.L., Katoen, J.-P.: On the hardness of almost–sure termination. In:
Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234,
pp. 307–318. Springer, Heidelberg (2015)

15. Katoen, J.-P., McIver, A.K., Meinicke, L.A., Morgan, C.C.: Linear-invariant gen-
eration for probabilistic programs. In: Cousot, R., Martel, M. (eds.) SAS 2010.
LNCS, vol. 6337, pp. 390–406. Springer, Heidelberg (2010)

16. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

17. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Springer (2004)

18. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

19. Nori, A.V., Hur, C.K., Rajamani, S.K., Samuel, S.: R2: An efficient MCMC sam-
pler for probabilistic programs. In: Proc. of AAAI. AAAI Press (July 2014)

20. Olderog, E.R.: Nets, Terms and Formulas: Three Views of Concurrent Processes
and their Relationship. Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press (1990)

21. Paige, B., Wood, F.: A compilation target for probabilistic programming lan-
guages. In: Proc. of ICML. JMLR Proceedings, vol. 32, pp. 1935–1943. JMLR.org.
(2014)

22. Pfeffer, A.: Figaro: An object-oriented probabilistic programming language. Tech-
nical report, Charles River Analytics (2000)

23. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley and Sons (1994)

24. Sampson, A., Panchekha, P., Mytkowicz, T., McKinley, K.S., Grossman, D., Ceze,
L.: Expressing and verifying probabilistic assertions. In: Proc. of PLDI, p. 14.
ACM (2014)

25. Sharir, M., Pnueli, A., Hart, S.: Verification of probabilistic programs. SIAM
Journal on Computing 13(2), 292–314 (1984)

26. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press (2009)

Fairness for Infinitary Control

Jochen Hoenicke(B) and Andreas Podelski

Institut für Informatik, Universität Freiburg, Freiburg im Breisgau, Germany
{hoenicke,podelski}@informatik.uni-freiburg.de

Abstract. In 1988, Olderog and Apt developed a fair scheduler for a
system with finitely many processes based on the concept of explicit
scheduling. In 2010, Hoenicke, Olderog, and Podelski extended the fair
scheduler from static to dynamic control. In systems with dynamic con-
trol, processes can be created dynamically. Thus, the overall number of
processes can be infinite, but the number of created processes is finite
at each step of an execution of the system. In this paper we extend the
fair scheduler to infinitary control. In systems with infinitary control, the
number of created processes can be infinite. The fair scheduler for infini-
tary control is perhaps interesting for its apparent unfairness: instead
of treating all processes equal, the scheduler discriminates each process
against finitely many other processes. However, it also privileges each
process against infinitely many other processes (in fact, all but finitely
many).

1 Introduction

When Ernst-Rüdiger Olderog was even younger than today, a Dutch/German
colleague offered him a generous advice: “Do not work on fairness. I have solved it
all!” Whether it was in immediate response or not, Olderog and Apt developed
an alternative approach to fairness, called explicit fair scheduling [6]. In fact,
research on fairness has never stopped. Olderog and Podelski [7] investigated
explicit fair scheduling in a setting of infinitary control. In this setting, a system
is composed of infinitely many parallel processes. The motivation of this setting
was to accommodate the setting where processes can be created dynamically. In
this setting of dynamic control, the overall number of processes can be infinite
but the number of created processes is finite at each step of an execution of
the system. This contrasts with the setting of static control in [6] where the
number of processes is arbitrary but fixed. The concept of explicit scheduling
is fundamental. It applies not only to the setting of static control but also to
the settings of dynamic control and even infinitary control. This motivates the
question whether the fair schedulers of [6] can be extended to fair schedulers
for dynamic and infinitary control. This paper settles the last remaining case of
strong fairness for infinitary control.

As shown in [7], the scheduler for weak fairness from [6] extends without
change to the setting of dynamic control (but not to infinitary control). The
scheduler for strong fairness from [6] is not sufficient for dynamic control (and
c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 33–43, 2015.
DOI: 10.1007/978-3-319-23506-6 5

34 J. Hoenicke and A. Podelski

neither for the general setting of infinitary control). Hoenicke, Olderog, and
Podelski [5] developed a scheduler for strong fairness for dynamic control. They
also showed that this scheduler is not sufficient for infinitary control. This opened
the question whether a scheduler exists for the last case of strong fairness for
infinitary control.

The contribution of this paper is to close the final gap and present a sched-
uler for strong fairness and infinitary control. The fair scheduler for infinitary
control is perhaps interesting for its apparent unfairness: instead of treating all
processes equal, the scheduler discriminates each process against finitely many
other processes. However, it also privileges each process against infinitely many
other processes (in fact, all but finitely many). We note that the scheduler applies
also to the less general settings of dynamic and even static control. The moral
of the story is that fairness can be obtained by giving up égalité. From the per-
spective of a single process, it is irrelevant that the process has less priority than
others. It only matters that it has a higher priority than all but finitely many
other processes.

Summary of Results. We summarize the results of this paper and compare them
with those of [5] and [6] in Table 1. Theorems 1 and 2 are established in the set-
ting of infinitary control, where a possibly infinite number of processes is allowed.
The setting of dynamic control is a special case of infinitary control where the
number of processes in every step is finite but unbounded. The setting of static
control is a special case of dynamic control where the number of processes is
finite and the same for every step. So results for infinitary control carry over to
the setting of dynamic control and results for dynamic control carry over to the
setting of static control. We omit the reference if the result carries over.

Table 1. Schedulers for strong fairness and the extend of their validity to different
settings. S2015 (defined in this paper), S2010 [5], and S1988 [6] are the schedulers for
strong fairness for infinitary, dynamic, and static control, respectively. Static control is
the setting of an arbitrary, but fixed number of processes. Dynamic control is the setting
where processes can be created dynamically and the number of processes is finite but
unbounded (even in a single execution). Infinitary control refers to the theoretically
motivated setting where we have infinitely many processes at the same moment.

static control dynamic control infinitary control

S2015 is sound yes yes yes (Theorem 1)
is universal yes yes yes (Theorem 2)

S2010 is sound yes yes [5] no [5]
is universal yes yes yes [5]

S1988 is sound yes [6] no [5] no
is universal yes yes yes [5]

Roadmap. Presently you are still reading the introduction. In Section 2 we intro-
duce the concepts on which we build in this paper. We generalize Dijkstra’s

Fairness for Infinitary Control 35

guarded command programs to infinitary guarded command programs, i.e., with
infinitely many branches in the do loops. These programs formalize the set-
ting of infinitary control where infinitely many processes can be active at the
same moment. In dynamic control only finitely many processes can be active at
each moment. We then reformulate the classical notion of (strong) fairness for
infinitary guarded command programs. Next, we present the notion of explicit
scheduling and the specific schedulers for strong fairness from [6] and [5]. In
Section 3 we present a new scheduler S2015 that is valid for infinitary control.
We prove its correctness and its universality. Section 4 concludes this paper.

2 Basic Concepts

Though the motivation for considering fairness stems from concurrency, it is
easier and more elegant to study it in terms of structured nondeterministic pro-
grams such as Dijkstra’s guarded commands [4]. We follow this approach in this
paper. In this section, we carry the classical definitions of fairness from Dijkstra’s
guarded command language over to an infinitary guarded command language,
i.e., with infinitely many branches in do loops. It is perhaps a surprise that
the definitions carry over directly. We then immediately have the definitions of
fairness of programs with dynamically created processes because we will define
those formally as a subclass of infinitary guarded command programs.

2.1 Infinite Control

We introduce programs with infinitary control by extending Dijkstra’s language
of guarded command programs [3] with do loops that have infinitely many
branches. Syntactically, these do loops are statements of the form

S ≡ do []∞i=0 Bi → Si od (1)

where for each i ∈ N the component Bi → Si consists of a Boolean expression Bi,
its guard, and the statement Si, its command. Therefore a component Bi → Si

is called a guarded command and S is called an infinitary guarded command.
We define the class of programs with dynamic control as a subclass of pro-

grams with infinitary control. At each moment each of the infinitely many pro-
cesses “exists” (whether it has been created or not). Each process is modeled by
a branch in the infinitary do loop. However, at each moment, only finitely many
processes have been created (or activated or allocated). All others are dormant.

Processes are referred to by natural numbers. The process (with number) i is
represented by the guarded command Bi → Si. To model process creation we use
a Boolean expression cri for each process i such that this process is considered as
being created if cri evaluates to true. All other processes are treated as not being
created yet. It is an important assumption that a created process can disappear
but not reappear, i.e., once the value of the expression cri has changed from true
to false it cannot go back to true.

36 J. Hoenicke and A. Podelski

We define a structural operational semantics in the sense of Plotkin [8] for
infinitary guarded commands. As usual, it is defined in terms of transitions
between configurations. A configuration K is a pair <S, σ> consisting of a state-
ment S that is to be executed and a state σ that assigns a value to each program
variable. A transition is written as a step K → K ′ between configurations. To
express termination we use the empty statement E: a configuration <E, σ>
denotes termination in the state σ. For a Boolean expression B we write σ |= B
if B evaluates to true in the state σ. Process i is created in a state σ if σ |= cri

and it is enabled in state σ if it is created and its guard Bi evaluates to true,
formally, σ |= cri ∧ Bi.

For the infinitary do loop S as in (1) we have two cases of transitions:

1. <S, σ> → <Si;S, σ> if σ |= cri ∧ Bi for each i ∈ N,

2. <S, σ> → <E, σ> if σ |= ∧∞
i=1 ¬(cri ∧ Bi).

Case 1 states that each enabled component Bi → Si of S, i.e., with both the
expression cri and the guard Bi evaluating to true in the current state σ, can be
entered. If more than one component of S is enabled, one of them will be chosen
nondeterministically. The successor configuration <Si;S, σ> formalizes the rep-
etition of the do loop: once the command Si is executed the whole loop S has to
be executed again. Formally, the transitions of the configuration <Si;S, σ> are
determined by the transition rules for the other statements of the guarded com-
mand language. For further details see, e.g., [1]. Case 2 states that the do loop
terminates if none of the components is enabled any more, i.e, if all expressions
cri ∧ Bi evaluate to false in the state σ.

In this paper we investigate programs with only one infinitary do loop S
of the form (1). This simplifies its definition of fairness and is sufficient for
modeling dynamic control. An execution of S starting in a state σ0 is a sequence
of transitions

K0 → K1 → K2 → . . . , (2)

with K0 = <S, σ0> as the initial configuration, which is either infinite or maxi-
mally finite, i.e., the sequence cannot be extended further by some transition.

Consider a program S of the form (1). Then for S having infinitary control
there is no further requirement on the set of created processes. A program S has
dynamic control if for every execution (2) of S the set of created processes is
finite in every state of a configuration in (2).

A program S has bounded control if for every execution (2) there exists some
n ∈ N such that the number of created processes is bounded by n in every state
of a configuration in (2). A program S has static control if there is a fixed finite
set F of processes such that for every execution (2) the set of created processes
is contained in F in every state of a configuration in (2).

Note that we have the following hierarchy: programs with static control are
a special case of programs with bounded control, which are a special case of
programs with dynamic control, which in turn are a special case of programs
with infinitary control.

Fairness for Infinitary Control 37

2.2 Fairness

In this paper we extend the definition of fairness1 of [6] from programs with
static control to programs with process creation and infinitary control. Since
fairness can be expressed in terms of created, enabled, and selected processes
only, we abstract from all other details in executions and define it on runs.

We now pick an execution as in (2) and define the corresponding run. A
transition Kj → Kj+1 with j ∈ N is a select transition if it consists of the
selection of an enabled process of S, formally, if Kj = <S, σ> and Kj+1 =
<Si;S, σ> with σ |= cri ∧ Bi for some i ∈ N, so process i has been selected for
execution in this transition. We define the selection of the transition Kj → Kj+1

as the triple (Cj , Ej , ij), where Cj is the set of all created processes, i.e.,

Cj = {i ∈ N | σ |= cri},

and Ej is the subset of all enabled processes, i.e.,

Ej = {i ∈ Cj | σ |= Bi},

and ij is the (index of the) selected process, i.e., ij = i. Obviously, the selected
command is among the enabled components. A run of the execution (2) is the
sequence of all its selections, formally, the sequence

(Cj0 , Ej0 , ij0)(Cj1 , Ej1 , ij1). . .

such that Cj0Cj1 . . . is the subsequence of configurations with outgoing select
transitions. Computations that do not pass through any select transition yield
the empty run. A run of a program S is the run of one of its executions.

A run
(C0, E0, i0)(C1, E1, i1)(C2, E2, i2). . . (3)

is called fair if it satisfies the condition

∀i ∈ N : (
∞
∃j ∈ N : i ∈ Ej → ∞

∃j ∈ N : i = ij).

where the quantifier
∞
∃ denotes “there exist infinitely many”. By our assump-

tion (see Subsection 2.1), the fact that the process i is infinitely often enabled,

formally
∞
∃j ∈ N : i ∈ Ej , implies by Ej ⊆ Cj that process i is created at some

moment and stays created forever, formally ∃j0 ∈ N ∀j ≥ j0 : i ∈ Cj .
In a fair run, every process i which is enabled infinitely often, is selected

infinitely often. Note that every finite run is trivially fair. An execution of a
program S of the form (1) is fair if its run is fair. Thus for fairness only select
transitions are relevant; transitions inside the commands Si of S do not matter.
Again, every finite execution is trivially fair. Thus we concentrate on infinite
executions throughout this paper.
1 In the literature, this notion of fairness is qualified as strong fairness (or compassion).

For brevity, we simply refer to this notion without the qualifier in this paper.

38 J. Hoenicke and A. Podelski

Although we are not interested in the case where infinitely many processes
can be enabled at the same time (continuously or infinitely often) and although
this case is perhaps not practically relevant, the definition of fairness still makes
sense, i.e., there exist fair executions in this case.

2.3 Explicit Scheduling

We extend the definition of a scheduler from [6] to the setting of infinitary
control. In a given state σ the scheduler inputs a set C of created processes
and a subset E ⊆ C of enabled processes. It outputs some process i ∈ E and
transitions to a new state σ′. We require that the scheduler is totally defined,
i.e., for every scheduler state and every input set E the scheduler will produce
an output i ∈ E and update its scheduler state. Thus a scheduler can never
block the execution of a program but only influence its direction. Summarizing,
we arrive at the following definition.

Definition 1 ([6]). A scheduler is a triple S = (Σ,Σ0, δ), where

– Σ is a set of states with typical element σ,
– Σ0 ⊆ Σ is the set of initial states, and
– δ is a transition relation of the form

δ ⊆ Σ × 2N × 2N × N × Σ

which is total in the following sense:

∀σ ∈ Σ ∀C ∈ 2N ∀E ∈ 2C \ {∅} ∃ i ∈ E ∃σ′ ∈ Σ : (σ,C,E, i, σ′) ∈ δ.

Thus for every state σ, every set C of created processes, and every nonempty
subset E ⊆ C of enabled processes there exists a process i ∈ E and the
updated state σ′ such that the tuple (σ,C,E, i, σ′) satisfies the transition
relation δ.

A run (C0, E0, i0)(C1, E1, i1)(C2, E2, i2). . . is produced by a scheduler S if there
exists an infinite sequence σ0σ1σ2. . . ∈ Σω with σ0 ∈ Σ0 such that

(σj , Cj , Ej , ij , σj+1) ∈ δ

holds for all j ∈ N. A scheduler S is sound if every run that is produced by S is
fair. A scheduler S is universal if every fair run is produced by S. A scheduler S

is valid if it is both sound and universal.

2.4 The Schedulers S1988 and S2010

The schedulers S1988 and S2010 given in [5,6] use auxiliary integer-valued vari-
ables (so called scheduling variables), one for each process, to keep track of the
relative urgency of each process (relative to the other processes). Making it more
urgent is implemented by decrementing its scheduling value. Thus, scheduling

Fairness for Infinitary Control 39

values can become negative. The crucial step is the non-deterministic update
to a nonnegative integer each time after the process has been selected. Then,
the process is not necessarily less urgent than all other processes. However, it is
definitely less urgent than those that already have a negative scheduling value.

In [5] a scheduler for fairness of programs with dynamic control was proposed.
With each process i it associates a scheduling variable z[i] representing a priority
assigned to that process. A process i has a higher priority than a process j if
z[i] < z[j] holds.

Definition 2 ([6],[5]). The schedulers S1988 and S2010 are defined as the sched-
uler (Σ,Σ0, δ) where

– The states σ ∈ Σ are given by the values of an infinitary array z of type
N → Z, i.e., z[i] is a positive or negative integer for each i ∈ N.

– The initial states in Σ0 are those where each scheduler variable z[i] has some
nonnegative integer value.

– The relation (σ,C,E, i, σ′) ∈ δ holds for states σ, σ′ ∈ Σ, a set C of created
processes, a set E ⊆ C of enabled processes, and a process i ∈ E if the value
of z[i] is minimal in σ, i.e., if

z[i] = min{z[k] | k ∈ E}
holds in σ, and σ′ is obtained from σ by executing the statement UPDATEi

for S1988 resp. S-UPDATEi for S2010 where

UPDATEi ≡ z[i] := ?;
for all j ∈ E \ {i} do z[j] := z[j] − 1 od.

S-UPDATEi ≡ z[i] := ?;
for all j ∈ C \ {i} do z[j] := z[j] − 1 od.

Note that the transition relation δ is total as required by Definition 1. The
update of the scheduling variables guarantees that the priorities of all created
but not selected processes j (resp. of all created processes for S-UPDATE) are
increased. The priority of the selected process i, however, is reset to an arbitrary
nonnegative number. The idea is that by gradually increasing the priority of
processes that are not taken, their activation cannot be refused forever.

We next present the two main results of [5].

– The scheduler S2010 is valid for dynamic control.
– The scheduler S2010 is not valid for infinitary control.

We give the proof from [5] which shows that S2010 is not sound for pro-
grams with infinitary control. Table 2 shows the initial segment of a run pro-
duced by S2010 where every process is treated unfairly. More precisely, every
process is always enabled but selected only once, in the ith selection of the
run: (N,N, 0)(N,N, 1)(N,N, 2) . . . This is possible by choosing the corresponding
sequence σ0σ1σ3 . . . of scheduler states as follows:

σj(z[i]) =

{
i + 1 − j if i < j

−j if i ≥ j

40 J. Hoenicke and A. Podelski

Table 2. A run of a system with infinitely many processes under the scheduler S2010.
The run is not fair (in fact, every process is treated unfairly). Each entry in the table
shows the value of the scheduling variable z[i] of the process i in the scheduler state
σj of the run. A star ∗ after a value in, say, the i-th row and the j-th column indicates
that in the state σj the process i is scheduled.

process σ0(z) σ1(z) σ2(z) σ3(z) σ4(z) . . .

0 0* 0 -1 -2 -3 . . .

1 0 -1* 0 -1 -2 . . .

2 0 -1 -2* 0 -1 . . .

3 0 -1 -2 -3* 0 . . .

4 0 -1 -2 -3 -4* . . .

. .

3 The Scheduler S2015 for Infinitary Fairness

The counterexample given in Table 2 leads to the following observation regarding
infinitary fairness. Namely, it is not enough to treat all processes equal to be
fair. In the counterexample every process is scheduled exactly once and the run
is not fair for every process. A fair schedule needs to treat the processes in an
unequal manner. In particular, one can show that in a fair run some processes
are scheduled arbitrarily often before other processes are scheduled for the first
time.

We use this idea to change the scheduler into a new fair scheduler for infini-
tary fairness. It will prefer processes with a small process identifier over processes
with a large process identifier. Although this sounds unfair, it is exactly what is
needed to treat all processes fair. The intuition is that in the end every process
has a “small” process identifier (in the sense that it is smaller than almost all
other process identifiers). Thus the changed scheduler will schedule every process
more often.

The only change from the scheduler S2010 is the definition of the priority.
Instead of choosing the process with the minimal value z[i] we choose the process
i with the minimal value z[i] + i, i. e., we add the process id to the integer
representing the urgency.

Definition 3. The scheduler S2015 results from S2010 by replacing the relation
δ with

– The relation (σ,C,E, i, σ′) ∈ δ holds for states σ, σ′ ∈ Σ, a set C of created
processes, a set E ⊆ C of enabled processes, and a process i ∈ E if the value
of z[i] + i is minimal in σ, i.e., if

z[i] + i = min{z[k] + k | k ∈ E}
holds in σ, and σ′ is obtained from σ by executing the following statement:

Fairness for Infinitary Control 41

S-UPDATEi ≡ z[i] := ?;
for all j ∈ C \ {i} do z[j] := z[j] − 1 od.

Theorem 1. The scheduler S2015 is sound for infinitary control.

Proof. Consider a run

(C0, E0, i0). . .(Cj , Ej , ij). . . (4)

of a program of the form (1) with infinitary control that is produced by S2015

using the sequence σ0 σ1 . . .σj σj+1 . . . of scheduler states. We claim that (4) is
fair.

Suppose the contrary holds. Then there exists some process i that is enabled
infinitely often, but from some moment on never selected. Formally, for some
j0 ≥ 0

(
∞
∃j ∈ N : i ∈ Ej) ∧ (∀j ≥ j0 : i �= ij)

holds in (4). Then the variable z[i] of S2015, which gets decremented whenever
the process i is not selected, becomes arbitrarily small. Thus, we can choose j0
large enough so that z[i] + i < 0 holds in σj0 . Consider the set

Cri,j = {k ∈ N | k ∈ Cj ∧ σj |= z[k] + k ≤ z[i] + i}
of all created processes in Cj whose priority is least that of the neglected pro-
cess i, formally, whose scheduling variable has at most the value of the scheduling
variable of i. Since z[k] is either set to a nonnegative number or it is decremented
by one, it cannot go below −j0 in j0 steps. Hence, there are at most j0 processes
k with z[k] + k < 0. Therefore, the set Cri,j0 is finite in σj0 .

We show that for all j ≥ j0:

Cri,j+1 ⊆ Cri,j and Cri,j+1 �= Cri,j if i ∈ Ej . (5)

Consider a process p that was not in Cri,j . We show p /∈ Cri,j+1 to prove
the inclusion. If p was scheduled in step j, then σj+1 |= z[i] + i < 0 ≤ z[p] + p,
thus p /∈ Cri,j+1.

If process p is newly created in step j we exploit two facts. (1) By the defini-
tion of S-UPDATEi, its scheduling variable z[p] is not decremented as long as p
is not created. (2) The process p has not been created before by the assumption
that a created process can disappear but not reappear, stated in Subsection 2.1.
By (1) and (2), z[p] has still its initial nonnegative value in state σj+1, thus
σj+1 |= z[p] ≥ 0. So p �∈ Cri,j+1.

If we take a process p different from the selected process then in the successor
state σj+1 the validity of the inequality z[p]+p ≤ z[i]+i is preserved (both p and
i have their scheduling variable decremented by the definition of S-UPDATEi).

If process i is enabled in step j, the scheduler needs to select a process p
from Cri,j . As seen before, the scheduled process is not in Cri,j+1, thus Cri,j �=
Cri,j+1. This proves property (5).

By assumption, i is enabled infinitely often. By (5), the set Cri,j is strictly
decreasing infinitely often. This contradicts the fact that Cri,j0 is finite. �

42 J. Hoenicke and A. Podelski

Theorem 2. The scheduler S2015 is universal for infinitary control.

Proof. Consider a fair run

(C0, E0, i0)(C1, E1, i1)(C2, E2, i2). . .. (6)

We show that (6) can be produced by S2015 by constructing a sequence σ0. . .σj . . .
of scheduler states satisfying (σj , Cj , Ej , ij , σj+1) ∈ δ for every j ∈ N. The first
step of the construction determines for every step the maximum process number
of every process that was scheduled until this step,

p(j) = max{ik | k < j}.

The function p(j) is monotone.
Because the run (6) is fair, there must be for every process i and every step j

a step m(i, j), such that either (1) m(i, j) ≥ j and i is scheduled in step m(i, j)
or (2) i becomes disabled forever in step m(i, j). The value m(i, j) is defined as

m(i, j) = min

⎧
⎪⎨

⎪⎩

(1) (j ≤ m ∧ im = i)
m ∈ N ∨

(2) (∀n ≥ m : i �∈ En)

⎫
⎪⎬

⎪⎭
.

The construction proceeds by assigning appropriate values to the scheduling
variables z[i] of S2015. For i, j ∈ N we put

σj(z[i]) = max(0, p(m(i, j)) − i) + |{k ∈ N | j ≤ k < m(i, j) ∧ i ∈ Ck}|
− |{k ∈ N | m(i, j) ≤ k < j ∧ i ∈ Ck}| , (7)

In case (1) of the definition of m(i, j), i.e., when i is eventually selected, the
value σj(z[i]) is nonnegative. However, in case (2) of the definition of m(i, j),
i.e., when i is not enabled any more, the value σj(z[i]) can denote arbitrarily
negative values.

This construction of values σj(z[i]) is possible with the assignments in S2015.
Initially the value chosen by σ0(z[i]) is non-negative since the last set is empty.
If i is not scheduled in step j, then m(i, j) = m(i, j + 1). If j ≥ m(i, j) the
value j is added to the second set in (7) if i ∈ Cj . If j < m(i, j) the value j is
removed from the first set in (7) if i ∈ Cj . Thus, the value of z[i] decreases if
and only if i ∈ Cj as demanded by S-UPDATE. If i is scheduled in step j, then
m(i, j + 1) ≥ j + 1 (since i ∈ Ej) and σj+1(z[i]) is a non-negative number.

In the constructed run the selected process ij of step j has the scheduling
value z[ij] + i = p(j), since m(ij , j) = j. For all other enabled processes k, we
have m(k, j) > j. Hence, z[k] + k > p(m(k, j)) since the first set in (7) contains
k and the second set is empty. Thus, z[k] + k > p(m(i, j)). So i is the unique
enabled process with the minimum of all scheduling values. �

Fairness for Infinitary Control 43

4 Conclusion

We have given an explicit scheduler for the setting of infinitary control. This
setting encompasses static control and dynamic control. The generality of our
setting allows us to shed a new light on the notion of fairness: fairness is different
from égalité.

We see the potential of explicit scheduling in its use for program analysis [2].
Instead of implementing fairness in the program analyzer, we can apply a generic
program analyzer to the program with an explicit fair scheduler. By using a
universal scheduler as the one presented in this paper, this approach is oblivious
to a particular instance of an operating system.

References

1. Apt, K.-R., Olderog, E.-R.: Verification of Sequential and Concurrent Programs,
2nd edn., Springer (1997)

2. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixedpoints. In: POPL,
pp. 238–252. ACM (1977)

3. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Comm. of the ACM 18, 453–457 (1975)

4. Francez, N.: Fairness. Springer-Verlag, New York (1986)
5. Hoenicke, J., Olderog, E.-R., Podelski, A.: Fairness for dynamic control. In:

Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 251–265.
Springer, Heidelberg (2010)

6. Olderog, E.R., Apt, K.R.: Fairness in parallel programs, the transformational
approach. ACM TOPLAS 10, 420–455 (1988)

7. Olderog, E.-R., Podelski, A.: Explicit fair scheduling for dynamic control. In:
Dams, D., Hannemann, U., Steffen, M. (eds.) Concurrency, Compositionality, and
Correctness. LNCS, vol. 5930, pp. 96–117. Springer, Heidelberg (2010)

8. Plotkin, G.: A structural approach to operational semantics. J. of Logic and Alge-
braic Programming 60–61, 17–139 (2004)

Evaluation Trees for Proposition Algebra

The Case for Free and Repetition-Proof Valuation
Congruence

Jan A. Bergstra and Alban Ponse(B)

Section Theory of Computer Science, Informatics Institute,
Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands

{j.a.bergstra,a.ponse}@uva.nl
https://staff.fnwi.uva.nl/

Abstract. Proposition algebra is based on Hoare’s conditional connec-
tive, which is a ternary connective comparable to if-then-else and used
in the setting of propositional logic. Conditional statements are provided
with a simple semantics that is based on evaluation trees and that char-
acterizes so-called free valuation congruence: two conditional statements
are free valuation congruent if, and only if, they have equal evaluation
trees. Free valuation congruence is axiomatized by the four basic equa-
tional axioms of proposition algebra that define the conditional connec-
tive. A valuation congruence that is axiomatized in proposition algebra
and that identifies more conditional statements than free valuation con-
gruence is repetition-proof valuation congruence, which we characterize
by a simple transformation on evaluation trees.

Keywords: Conditional composition · Evaluation tree · Proposition
algebra · Short-circuit evaluation · Short-circuit logic

1 Introduction

In 1985, Hoare’s paper A couple of novelties in the propositional calculus [12]
was published. In this paper the ternary connective � � is introduced as the
conditional.1 A more common expression for a conditional statement

P � Q � R

Dedicated to Ernst-Rüdiger Olderog on the occasion of his sixtieth birthday.
Jan Bergstra recalls many discussions during various meetings as well as joint work
with Ernst-Rüdiger and Jan Willem Klop on readies, failures, and chaos back in 1987.
Alban Ponse has pleasant memories of the process of publishing [8], the Selected
Papers from the Workshop on Assertional Methods, of which Ernst-Rüdiger, who
was one of the invited speakers at this workshop (held at CWI in November 1992),
is one of the guest editors. An extended version of this paper appeared as report [6].

1 To be distinguished from Hoare’s conditional introduced in his 1985 book on
CSP [11] and in his well-known 1987 paper Laws of Programming [10] for expressions
P � b � Q with P and Q denoting programs and b a Boolean expression.

c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 44–61, 2015.
DOI: 10.1007/978-3-319-23506-6 6

Evaluation Trees for Proposition Algebra 45

Table 1. The set CP of equational axioms for free valuation congruence

x � T � y = x (CP1)
x � F � y = y (CP2)
T � x � F = x (CP3)

x � (y � z � u) � v = (x � y � v) � z � (x � u � v) (CP4)

is “if Q then P else R”, but in order to reason systematically with condi-
tional statements, a notation such as P � Q � R is preferable. In a conditional
statement P � Q � R, first Q is evaluated, and depending on that evaluation
result, then either P or R is evaluated (and the other is not) and determines the
final evaluation result. This evaluation strategy is reminiscent of short-circuit
evaluation.2 In [12], Hoare proves that propositional logic can be characterized
by extending equational logic with eleven axioms on the conditional, some of
which employ constants for the truth values true and false.

In 2011, we introduced Proposition Algebra in [4] as a general approach to
the study of the conditional: we defined several valuation congruences and pro-
vided equational axiomatizations of these congruences. The most basic and least
identifying valuation congruence is free valuation congruence, which is axioma-
tized by the axioms in Table 1, where we use constants T and F for the truth
values true and false. These axioms stem from [12] and define the conditional as
a primitive connective. We use the name CP (for Conditional Propositions) for
this set of axioms. Interpreting a conditional statement as an if-then-else expres-
sion, axioms (CP1)-(CP3) are natural, and axiom (CP4) (distributivity) can be
clarified by case analysis: if z evaluates to true and y as well, then x determines
the result of evaluation; if z evaluates to true and y evaluates to false, then v
determines the result of evaluation, and so on and so forth. A simple example,
taken from [4], is the conditional statement that a pedestrian evaluates before
crossing a road with two-way traffic driving on the right:

(look-left-and-check � look-right-and-check � F) � look-left-and-check � F.

This statement requires one, or two, or three atomic evaluations and cannot be
simplified to one that requires less.3

In Section 2 we characterize free valuation congruence with help of eval-
uation trees, which are simple binary trees proposed by Daan Staudt in [13]
(that appeared in 2012). Given a conditional statement, its evaluation tree rep-
resents all possible consecutive atomic evaluations followed by the final eval-
uation result (comparable to a truth table in the case of propositional logic).
2 Short-circuit evaluation denotes the semantics of binary propositional connectives in

which the second argument is evaluated only if the first argument does not suffice
to determine the value of the expression.

3 Note that look-left-and-check � (look-right-and-check � look-left-and-check � F) � F
prescribes by axioms (CP4) and (CP2) the same evaluation.

46 J.A. Bergstra and A. Ponse

Two conditional statements are equivalent with respect to free valuation con-
gruence if their evaluation trees are equal. Free valuation congruence identifies
less than the equivalence defined by Hoare’s axioms in [12]. For example, the
atomic proposition a and the conditional statement T � a � a are not equivalent
with respect to free valuation congruence, although they are equivalent with
respect to static valuation congruence, which is the valuation congruence that
characterizes propositional logic.

A valuation congruence that identifies more than free and less than static val-
uation congruence is repetition-proof valuation congruence, which is axiomatized
by CP extended with two (schematic) axioms, one of which reads

x � a � (y � a � z) = x � a � (z � a � z),

and thus expresses that if atomic proposition a evaluates to false, a consecu-
tive evaluation of a also evaluates to false, so the conditional statement at the
y-position will not be evaluated and can be replaced by any other. As an exam-
ple, T � a � a = T � a � (T � a � F) = T � a � (F � a � F), and the left-hand and
right-hand conditional statements are equivalent with respect to repetition-proof
valuation congruence, but not with respect to free valuation congruence.

In Section 3 we characterize repetition-proof valuation congruence by defin-
ing a transformation on evaluation trees that yields repetition-proof evaluation
trees: two conditional statements are equivalent with respect to repetition-proof
valuation congruence if, and only if, they have equal repetition-proof evaluation
trees. Although this transformation on evaluation trees is simple and natural,
our proof of the mentioned characterization—which is phrased as a completeness
result—is non-trivial and we could not find a proof that is essentially simpler.

In section 4 we discuss the general structure of the proof of this last result,
which is based on normalization of conditional statements, and we conclude with
a brief digression on short-circuit logic and an example on the use of repetition-
proof valuation congruence.

The approach followed in this paper also works for most other valuation
congruences defined in [4] and the case for repetition-proof valuation congruence
is prototypical, as we show in [6].

2 Evaluation Trees for Free Valuation Congruence

Consider the signature ΣCP(A) = { � � ,T,F, a | a ∈ A} with constants T
and F for the truth values true and false, respectively, and constants a for atomic
propositions, further called atoms, from some countable set A. We write

CA

for the set of closed terms, or conditional statements, over the signature ΣCP(A).
Given a conditional statement P � Q � R, we refer to Q as its central condition.

We define the dual P d of P ∈ CA as follows:

Td = F, ad = a (for a ∈ A),

Fd = T, (P � Q � R)d = Rd � Qd � P d.

Evaluation Trees for Proposition Algebra 47

Observe that CP is a self-dual axiomatization: when defining xd = x for each
variable x, the dual of each axiom is also in CP, and hence

CP � P = Q ⇐⇒ CP � P d = Qd.

A natural view on conditional statements in CA involves short-circuited eval-
uation, similar to how we consider the evaluation of an “if y then x else z”
expression. The following definition is taken from [13].

Definition 2.1. The set TA of evaluation trees over A with leaves in
{T,F} is defined inductively by

T ∈ TA,

F ∈ TA,

(X � a � Y) ∈ TA for any X,Y ∈ TA and a ∈ A.

The function � a � is called post-conditional composition over a. In the
evaluation tree X � a � Y , the root is represented by a, the left branch by X and
the right branch by Y .

We refer to trees in TA as evaluation trees, or trees for short. Post-conditional
composition and its notation stem from [2]. Evaluation trees play a crucial role
in the main results of [13]. In order to define our “evaluation tree semantics”,
we first define an auxiliary function on trees.

Definition 2.2. Given evaluation trees Y,Z ∈ TA, the leaf replacement func-
tion [T �→ Y,F �→ Z] : TA → TA, for which post-fix notation

X[T �→ Y,F �→ Z]

is adopted, is defined as follows, where a ∈ A:

T[T �→ Y,F �→ Z] = Y,

F[T �→ Y,F �→ Z] = Z,

(X1 � a � X2)[T �→ Y,F �→ Z] = X1[T �→ Y,F �→ Z] � a � X2[T �→ Y,F �→ Z].

We note that the order in which the replacements of leaves of X is listed is irrel-
evant and we adopt the convention of not listing identities inside the brackets,
e.g., X[F �→ Z] = X[T �→ T,F �→ Z]. Furthermore, repeated leaf replacements
satisfy the following equation:

(
X[T �→ Y1,F �→ Z1]

)
[T �→ Y2,F �→ Z2]

= X[T �→ Y1[T �→ Y2,F �→ Z2], F �→ Z1[T �→ Y2,F �→ Z2]].

We now have the terminology and notation to define the interpretation of
conditional statements in CA as evaluation trees by a function se (abbreviating
short-circuit evaluation).

48 J.A. Bergstra and A. Ponse

Definition 2.3. The short-circuit evaluation function se : CA → TA is
defined as follows, where a ∈ A:

se(T) = T,

se(F) = F,

se(a) = T � a � F,

se(P � Q � R) = se(Q)[T �→ se(P),F �→ se(R)].

Example 2.4. The conditional statement a � (F � a � T) � F yields the follow-
ing evaluation tree:

se(a � (F � a � T) � F) = se(F � a � T)[T �→ se(a),F �→ se(F)]
= (F � a � T)[T �→ se(a)]
= F � a � (T � a � F).

A more pictorial representation of this evaluation tree is the following, where �

yields a left branch and � a right branch:

a

F a

T F

As we can see from the definition on atoms, evaluation continues in the left
branch if an atom evaluates to true and in the right branch if it evaluates to false.
We shall often use the constants T and F to denote the result of an evaluation
(instead of true and false).

Definition 2.5. Let P ∈ CA. An evaluation of P is a pair (σ,B) where σ ∈
(A{T,F})∗ and B ∈ {T,F}, such that if se(P) ∈ {T,F}, then σ = ε (the empty
string) and B = se(P), and otherwise,

σ = a1B1a2B2 · · · anBn,

where a1a2 · · · anB is a complete path in se(P) and

– for i < n, if ai+1 is a left child of ai then Bi = T, and otherwise Bi = F,
– if B is a left child of an then Bn = T, and otherwise Bn = F.

We refer to σ as the evaluation path and to B as the evaluation result.

So, an evaluation of a conditional statement P is a complete path in se(P)
(from root to leaf) and contains evaluation values for all occurring atoms. For
instance, the evaluation tree F � a � (T � a � F) from Example 2.4 encodes the
evaluations (aT,F), (aFaT,T), and (aFaF,F). As an aside, we note that this
particular evaluation tree encodes all possible evaluations of ¬a && a, where &&
is the connective that prescribes short-circuited conjunction (we return to this
connective in Section 4).

In turn, each evaluation tree gives rise to a unique conditional statement. For
Example 2.4, this is F � a � (T � a � F) (note the syntactical correspondence).

Evaluation Trees for Proposition Algebra 49

Definition 2.6. Basic forms over A are defined by the following grammar

t ::= T | F | t � a � t for a ∈ A.

We write BFA for the set of basic forms over A. The depth d(P) of P ∈ BFA

is defined by d(T) = d(F) = 0 and d(Q � a � R) = 1 + max{d(Q), d(R)}.
The following two lemmas exploit the structure of basic forms and are step-

ping stones to our first completeness result (Theorem 2.11).

Lemma 2.7. For each P ∈ CA there exists Q ∈ BFA such that CP � P = Q.

Proof. First we establish an auxiliary result: if P,Q,R are basic forms, then
there is a basic form S such that CP � P � Q � R = S. This follows by structural
induction on Q.

The lemma’s statement follows by structural induction on P . The base cases
P ∈ {T,F, a | a ∈ A} are trivial, and if P = P1 � P2 � P3 there exist by induc-
tion basic forms Qi such that CP � Pi = Qi, hence CP � P1 � P2 � P3 =
Q1 � Q2 � Q3. Now apply the auxiliary result. �	
Lemma 2.8. For all basic forms P and Q, se(P) = se(Q) implies P = Q.

Proof. By structural induction on P . The base cases P ∈ {T,F} are trivial.
If P = P1 � a � P2, then Q
∈ {T,F} and Q
= Q1 � b � Q2 with b
= a, so
Q = Q1 � a � Q2 and se(Pi) = se(Qi). By induction we find Pi = Qi, and hence
P = Q. �	
Definition 2.9. Free valuation congruence, notation =se , is defined on CA

as follows:
P =se Q ⇐⇒ se(P) = se(Q).

Lemma 2.10. Free valuation congruence is a congruence relation.

Proof. Let P,Q,R ∈ CA and assume P =se P ′, thus se(P) = se(P ′). Then
se(P � Q � R) = se(Q)[T �→ se(P),F �→ se(R)] = se(Q)[T �→ se(P ′),F �→
se(R)] = se(P ′ � Q � R), and thus P � Q � R =se P ′ � Q � R. The two remaining
cases can be proved in a similar way. �	
Theorem 2.11 (Completeness of CP). For all P,Q ∈ CA,

CP � P = Q ⇐⇒ P =se Q.

Proof. We first prove ⇒. By Lemma 2.10, =se is a congruence relation and it eas-
ily follows that all CP-axioms are sound. For example, soundness of axiom (CP4)
follows from

se(P � (Q � R � S) � U)
= se(Q � R � S)[T �→ se(P),F �→ se(U)]
=

(
se(R)[T �→ se(Q),F �→ se(S)]

)
[T �→ se(P),F �→ se(U)]

= se(R)[T �→ se(Q)[T �→ se(P),F �→ se(U)],
F �→ se(S)[T �→ se(P),F �→ se(U)]]

= se(R)[T �→ se(P � Q � U),F �→ se(P � S � U)]
= se((P � Q � U) � R � (P � S � U)).

50 J.A. Bergstra and A. Ponse

In order to prove ⇐, let P =se Q. According to Lemma 2.7 there exist basic
forms P ′ and Q′ such that CP � P = P ′ and CP � Q = Q′, so CP � P ′ = Q′.
By soundness (⇒) we find P ′ =se Q′, so by Lemma 2.8, P ′ = Q′. Hence,
CP � P = P ′ = Q′ = Q. �	

A consequence of the above results is that for each P ∈ CA there is a unique
basic form P ′ with CP � P = P ′, and that for each basic form, its se-image has
exactly the same syntactic structure (replacing � by � , and � by �). In the
remainder of this section, we make this precise.

Definition 2.12. The basic form function bf : CA → BFA is defined as
follows, where a ∈ A:

bf (T) = T,

bf (F) = F,

bf (a) = T � a � F,

bf (P � Q � R) = bf (Q)[T �→ bf (P),F �→ bf (R)].

Given Q,R ∈ BFA, the auxiliary function [T �→ Q,F �→ R] : BFA → BFA for
which post-fix notation P [T �→ Q,F �→ R] is adopted, is defined as follows:

T[T �→ Q,F �→ R] = Q,

F[T �→ Q,F �→ R] = R,

(P1 � a � P2)[T �→ Q,F �→ R] = P1[T �→ Q,F �→ R] � a � P2[T �→ Q,F �→ R].

(The notational overloading with the leaf replacement function on evaluation
trees is harmless).

So, for given Q,R ∈ BFA, the auxiliary function [T �→ Q,F �→ R] applied
to P ∈ BFA (thus, P [T �→ Q,F �→ R]) replaces all T-occurrences in P by Q,
and all F-occurrences in P by R. The following two lemmas imply that bf is a
normalization function.

Lemma 2.13. For all P ∈ CA, bf (P) is a basic form.

Proof. By structural induction. The base cases are trivial. For the inductive case
we find bf (P � Q � R) = bf (Q)[T �→ bf (P),F �→ bf (R)], so by induction, bf (P),
bf (Q), and bf (R) are basic forms. Furthermore, replacing all T-occurrences and
F-occurrences in bf (Q) by basic forms bf (P) and bf (R), respectively, yields a
basic form. �	
Lemma 2.14. For each basic form P , bf (P) = P .

Proof. By structural induction on P . �	
Definition 2.15. The binary relation =bf on CA is defined as follows:

P =bf Q ⇐⇒ bf (P) = bf (Q).

Evaluation Trees for Proposition Algebra 51

Lemma 2.16. The relation =bf is a congruence relation.

Proof. Let P,Q,R ∈ CA and assume P =bf P ′, thus bf (P) = bf (P ′). Then
bf (P � Q � R) = bf (Q)[T �→ bf (P),F �→ bf (R)] = bf (Q)[T �→ bf (P ′),F �→
bf (R)] = bf (P ′ � Q � R), and thus P � Q � R =bf P ′ � Q � R. The two remain-
ing cases can be proved in a similar way. �	

Before proving that CP is an axiomatization of the relation =bf , we show
that each instance of the axiom (CP4) satisfies =bf .

Lemma 2.17. For all P, P1, P2, Q1, Q2 ∈ CA,

bf (Q1 � (P1 � P � P2) � Q2) = bf ((Q1 � P1 � Q2) � P � (Q1 � P2 � Q2)).

Proof. By definition, the lemma’s statement is equivalent with
(
bf (P)[T �→ bf (P1),F �→ bf (P2)]

)
[T �→ bf (Q1),F �→ bf (Q2)]

= bf (P)[T �→ bf (Q1 � P1 � Q2),F �→ bf (Q1 � P2 � Q2)]. (1)

By Lemma 2.13, bf (P), bf (Pi), and bf (Qi) are basic forms. We prove (1) by
structural induction on the form that bf (P) can have. If bf (P) = T, then

(
T[T �→ bf (P1),F �→ bf (P2)]

)
[T �→ bf (Q1),F �→ bf (Q2)]
= bf (P1)[T �→ bf (Q1),F �→ bf (Q2)]

and

T[T �→ bf (Q1 � P1 � Q2),F �→bf (Q1 � P2 � Q2)]
= bf (Q1 � P1 � Q2)
= bf (P1)[T �→ bf (Q1),F �→ bf (Q2)].

If bf (P) = F, then equation (1) follows in a similar way.
The inductive case bf (P) = R1 � a � R2 is trivial (by definition of the last

defining clause of the auxiliary functions [T �→ Q,F �→ R] in Definition 2.12). �	
Theorem 2.18. For all P,Q ∈ CA, CP � P = Q ⇐⇒ P =bf Q.

Proof. We first prove ⇒. By Lemma 2.16, =bf is a congruence relation and it
easily follows that arbitrary instances of the CP-axioms (CP1)-(CP3) satisfy
=bf . By Lemma 2.17 it follows that arbitrary instances of axiom (CP4) also
satisfy =bf .

In order to prove ⇐, assume P =bf Q. According to Lemma 2.7, there
exist basic forms P ′ and Q′ such that CP � P = P ′ and CP � Q = Q′, so
CP � P ′ = Q′. By ⇒ it follows that P ′ =bf Q′, which implies by Lemma 2.14
that P ′ = Q′. Hence, CP � P = P ′ = Q′ = Q. �	
Corollary 2.19. For all P ∈ CA, P =bf bf (P) and P =se bf (P).

Proof. By Lemma 2.13 and Lemma 2.14, bf (P) = bf (bf (P)), thus P =bf bf (P).
By Theorem 2.18, CP � P = bf (P), and by Theorem 2.11, P =se bf (P). �	

52 J.A. Bergstra and A. Ponse

3 Evaluation Trees for Repetition-proof Valuation
Congruence

In [4] we defined repetition-proof CP as the extension of the axiom set CP with
the following two axiom schemes, where a ranges over A:

(x � a � y) � a � z = (x � a � x) � a � z, (CPrp1)
x � a � (y � a � z) = x � a � (z � a � z). (CPrp2)

We write CPrp(A) for this extension. These axiom schemes characterize that for
each atom a, a consecutive evaluation of a yields the same result, so in both
cases the conditional statement at the y-position will not be evaluated and can
be replaced by any other. Note that (CPrp1) and (CPrp2) are each others dual.

We define a proper subset of basic forms with the property that each condi-
tional statement can be proved equal to such a basic form.

Definition 3.1. Rp-basic forms are inductively defined:

• T and F are rp-basic forms, and
• P1 � a � P2 is an rp-basic form if P1 and P2 are rp-basic forms, and if Pi is

not equal to T or F, then either the central condition in Pi is different from
a, or Pi is of the form Qi � a � Qi.

It will turn out useful to define a function that transforms conditional state-
ments into rp-basic forms and that is comparable to the function bf .

Definition 3.2. The rp-basic form function rpbf : CA → CA is defined by

rpbf (P) = rpf (bf (P)).

The auxiliary function rpf : BFA → BFA is defined as follows:

rpf (T) = T,

rpf (F) = F,

rpf (P � a � Q) = rpf (fa(P)) � a � rpf (ga(Q)).

For a ∈ A, the auxiliary functions fa : BFA → BFA and ga : BFA → BFA are
defined by

fa(T) = T,

fa(F) = F,

fa(P � b � Q) =

{
fa(P) � a � fa(P) if b = a,

P � b � Q otherwise,

and

ga(T) = T,

ga(F) = F,

ga(P � b � Q) =

{
ga(Q) � a � ga(Q) if b = a,

P � b � Q otherwise.

Evaluation Trees for Proposition Algebra 53

Thus, rpbf maps a conditional statement P to bf (P) and then transforms
bf (P) according to the auxiliary functions rpf , fa, and ga.

Lemma 3.3. For all a ∈ A and P ∈ BFA, ga(fa(P)) = fa(fa(P)) = fa(P) and
fa(ga(P)) = ga(ga(P)) = ga(P).

Proof. By structural induction on P . The base cases P ∈ {T,F} are trivial. For
the inductive case P = Q � b � R we have to distinguish the cases b = a and
b
= a. If b = a, then

ga(fa(Q � a � R)) = ga(fa(Q)) � a � ga(fa(Q))
= fa(Q) � a � fa(Q) by IH
= fa(Q � a � R),

and fa(fa(Q � a � R)) = fa(Q � a � R) follows in a similar way. If b
= a, then
fa(P) = ga(P) = P , and hence ga(fa(P)) = fa(fa(P)) = fa(P).

The second pair of equalities can be derived in a similar way. �	
In order to prove that for all P ∈ CA, rpbf (P) is an rp-basic form, we use the
following auxiliary lemma.

Lemma 3.4. For all a ∈ A and P ∈ BFA, d(P) ≥ d(fa(P)) and d(P) ≥
d(ga(P)).

Proof. Fix some a ∈ A. We prove these inequalities by structural induction on
P . The base cases P ∈ {T,F} are trivial. For the inductive case P = Q � b � R
we have to distinguish the cases b = a and b
= a. If b = a, then

d(Q � a � R) = 1 + max{d(Q), d(R)}
≥ 1 + d(Q)
≥ 1 + d(fa(Q)) by IH
= d(fa(Q) � a � fa(Q))
= d(fa(Q � a � R)),

and d(Q � a � R) ≥ d(ga(Q � a � R)) follows in a similar way.
If b
= a, then fa(P) = ga(P) = P , and hence d(P) ≥ d(fa(P)) and d(P) ≥

d(ga(P)). �	
Lemma 3.5. For all P ∈ CA, rpbf (P) is an rp-basic form.

Proof. We first prove an auxiliary result:

For all P ∈ BFA, rpf (P) is an rp-basic form. (2)

This follows by induction on the depth d(P) of P . If d(P) = 0, then P ∈ {T,F},
and hence rpf (P) = P is an rp-basic form. For the inductive case d(P) = n + 1
it must be the case that P = Q � a � R. We find

rpf (Q � a � R) = rpf (fa(Q)) � a � rpf (ga(R)),

which is an rp-basic form because

54 J.A. Bergstra and A. Ponse

– by Lemma 3.4, fa(Q) and ga(R) are basic forms with depth smaller than or
equal to n, so by the induction hypothesis, rpf (fa(Q)) and rpf (ga(R)) are
rp-basic forms,

– rpf (fa(Q)) and rpf (ga(R)) both satisfy the following property: if the central
condition (if present) is a, then the outer arguments are equal. We show this
first for rpf (fa(Q)) by a case distinction on the form of Q:
1. If Q ∈ {T,F}, then rpf (fa(Q)) = Q, so there is nothing to prove.
2. If Q = Q1 � a � Q2, then fa(Q) = fa(Q1) � a � fa(Q1) and thus by

Lemma 3.3, rpf (fa(Q)) = rpf (fa(Q1)) � a � rpf (fa(Q1)).
3. If Q = Q1 � b � Q2 with b
= a, then fa(Q) = Q1 � b � Q2 and thus

rpf (fa(Q)) = rpf (fb(Q1)) � b � rpf (gb(Q2)), so there is nothing to prove.
The fact that rpf (ga(R)) satisfies this property follows in a similar way.

This finishes the proof of auxiliary result (2).
The lemma’s statement now follows by structural induction: the base cases

(comprising a single atom a) are again trivial, and for the inductive case,

rpbf (P � Q � R) = rpf (bf (P � Q � R)) = rpf (S)

for some basic form S by Lemma 2.13, and by auxiliary result (2), rpf (S) is an
rp-basic form. �	
The following, rather technical result is used in Proposition 3.7 and Lemma 3.8.

Lemma 3.6. If Q � a � R is an rp-basic form, then Q = rpf (Q) = rpf (fa(Q))
and R = rpf (R) = rpf (ga(R)).

Proof. We first prove an auxiliary result:

If Q � a � R is an rp-basic form, then fa(Q) = ga(Q) and fa(R) = ga(R). (3)

We prove both equalities by simultaneous induction on the structure of Q and
R. The base case, thus Q,R ∈ {T,F}, is trivial. If Q = Q1 � a � Q1 and R =
R1 � a � R1, then Q and R are rp-basic forms with central condition a, so

fa(Q) = fa(Q1) � a � fa(Q1)
= ga(Q1) � a � ga(Q1) by IH
= ga(Q),

and the equality for R follows in a similar way. If Q = Q1 � a � Q1 and R
=
R1 � a � R1, then fa(R) = ga(R) = R, and the result follows as above. All
remaining cases follow in a similar way, which finishes the proof of (3).

We now prove the lemma’s statement by simultaneous induction on the
structure of Q and R. The base case, thus Q,R ∈ {T,F}, is again trivial. If
Q = Q1 � a � Q1 and R = R1 � a � R1, then by auxiliary result (3),

rpf (Q) = rpf (fa(Q1)) � a � rpf (fa(Q1)),

Evaluation Trees for Proposition Algebra 55

and by induction, Q1 = rpf (Q1) = rpf (fa(Q1)). Hence, rpf (Q) = Q1 � a � Q1,
and

rpf (fa(Q)) = rpf (fa(fa(Q1))) � a � rpf (ga(fa(Q1)))
= rpf (fa(Q1)) � a � rpf (fa(Q1)) by Lemma 3.3
= Q1 � a � Q1,

and the equalities for R follow in a similar way.
If Q = Q1 � a � Q1 and R
= R1 � a � R1, the lemma’s equalities follow in a

similar way, although a bit simpler because ga(R) = fa(R) = R.
For all remaining cases, the lemma’s equalities follow in a similar way. �	

Proposition 3.7 (rpbf is a normalization function). For all P ∈ CA,
rpbf (P) is an rp-basic form, and for each rp-basic form P , rpbf (P) = P .

Proof. The first statement is Lemma 3.5. For the second statement, it suffices
by Lemma 2.14 to prove that for each rp-basic form P , rpf (P) = P . This
follows by case distinction on P . The cases P ∈ {T,F} follow immediately, and
otherwise P = P1 � a � P2, and thus rpf (P) = rpf (fa(P1)) � a � rpf (ga(P2)). By
Lemma 3.6, rpf (fa(P1)) = P1 and rpf (ga(P2)) = P2, hence rpf (P) = P . �	
Lemma 3.8. For all P ∈ BFA, CPrp(A) � P = rpf (P).

Proof. We apply structural induction on P . The base cases P ∈ {T,F} are trivial.
Assume P = P1 � a � P2. By induction CPrp(A) � Pi = rpf (Pi). We proceed by
a case distinction on the form that P1 and P2 can have:

1. If Pi ∈ {T,F, Qi � bi � Q′
i} with bi
= a, then fa(P1) = P1 and ga(P2) = P2,

and hence rpf (P) = rpf (P1) � a � rpf (P2), and thus CPrp(A) � P = rpf (P).
2. If P1 = R1 � a � R2 and P2 ∈ {T,F, Q′ � b � Q′′} with b
= a, then ga(P2) =

P2 and by auxiliary result (2) in the proof of Lemma 3.5, rpf (R1) and rpf (P2)
are rp-basic forms. We derive

CPrp(A) � P = (R1 � a � R2) � a � P2

= (R1 � a � R1) � a � P2 by (CPrp1)
= (rpf (R1) � a � rpf (R1)) � a � rpf (P2) by IH
= (rpf (fa(R1)) � a � rpf (fa(R1))) � a � rpf (ga(P2)) by Lemma 3.6
= rpf (fa(R1 � a � R2)) � a � rpf (ga(P2))
= rpf ((R1 � a � R2) � a � P2)
= rpf (P).

3. If P1 ∈ {T,F, Q′ � b � Q′′} with b
= a and P2 = S1 � a � S2, we can proceed
as in the previous case, but now using axiom scheme (CPrp2) and the identity
fa(P1) = P1, and the fact that rpf (P1) and rpf (S2) are rp-basic forms.

4. If P1 = R1 � a � R2 and P2 = S1 � a � S2, we can proceed as in two previous
cases, now using both (CPrp1) and (CPrp2), and the fact that rpf (R1) and
rpf (S2) are rp-basic forms.

�	

56 J.A. Bergstra and A. Ponse

Theorem 3.9. For all P ∈ CA, CPrp(A) � P = rpbf (P).

Proof. By Theorem 2.18 and Corollary 2.19 we find CPrp(A) � P = bf (P). By
Lemma 3.8, CPrp(A) � bf (P) = rpf (bf (P)), and rpf (bf (P)) = rpbf (P). �	
Definition 3.10. The binary relation =rpbf on CA is defined as follows:

P =rpbf Q ⇐⇒ rpbf (P) = rpbf (Q).

Theorem 3.11. For all P,Q ∈ CA, CPrp(A) � P = Q ⇐⇒ P =rpbf Q.

Proof. Assume CPrp(A) � P = Q. By Theorem 3.9, CPrp(A) � rpbf (P) =
rpbf (Q). In [4] the following two statements are proved (Theorem 6.3 and an
auxiliary result in its proof), where =rpf is a binary relation on CA:

1. For all P,Q ∈ CA, CPrp(A) � P = Q ⇐⇒ P =rpf Q.
2. For all rp-basic forms P and Q, P =rpf Q ⇒ P = Q.

By Lemma 3.5 these statements imply rpbf (P) = rpbf (Q), that is, P =rpbf Q.
Assume P =rpbf Q. By Lemma 2.14, bf (rpbf (P)) = bf (rpbf (Q)). By Theo-

rem 2.18, CP � rpbf (P) = rpbf (Q). By Theorem 3.9, CPrp(A) � P = Q. �	
So, the relation =rpbf is axiomatized by CPrp(A) and is thus a congruence.

With this observation in mind, we define a transformation on evaluation trees
that mimics the function rpbf and prove that equality of two such transformed
trees characterizes the congruence that is axiomatized by CPrp(A).

Definition 3.12. The unary repetition-proof evaluation function

rpse : CA → TA

yields repetition-proof evaluation trees and is defined by

rpse(P) = rp(se(P)).

The auxiliary function rp : TA → TA is defined as follows (a ∈ A):

rp(T) = T,

rp(F) = F,

rp(X � a � Y) = rp(Fa(X)) � a � rp(Ga(Y)).

For a ∈ A, the auxiliary functions Fa : TA → TA and Ga : TA → TA are defined
by

Fa(T) = T,

Fa(F) = F,

Fa(X � b � Y) =

{
Fa(X) � a � Fa(X) if b = a,

X � b � Y otherwise,

Evaluation Trees for Proposition Algebra 57

and

Ga(T) = T,

Ga(F) = F,

Ga(X � b � Y) =

{
Ga(Y) � a � Ga(Y) if b = a,

X � b � Y otherwise.

Example 3.13. Let P = a � (F � a � T) � F. We depict se(P) (as in Exam-
ple 2.4) and the repetition-proof evaluation tree rpse(P) = F � a � (F � a � F):

a

F a

T F

a

F a

F F

The similarities between rpse and the function rpbf can be exploited:

Lemma 3.14. For all a ∈ A and X ∈ TA, Ga(Fa(X)) = Fa(Fa(X)) = Fa(X)
and Fa(Ga(X)) = Ga(Ga(X)) = Ga(X).

Proof. By structural induction on X (cf. the proof of Lemma 3.3). �	
We use the following lemma in the proof of our final completeness result.

Lemma 3.15. For all P ∈ BFA, rp(se(P)) = se(rpf (P)).

Proof. We first prove an auxiliary result:

For all P ∈ BFA and for all a ∈ A, rp(Fa(se(P))) = se(rpf (fa(P)))
and rp(Ga(se(P))) = se(rpf (ga(P))). (4)

We prove the first equality of (4) by structural induction on P . The base cases
P ∈ {T,F} are trivial. For the inductive case P = Q � a � R, let b ∈ A. We have
to distinguish the cases b = a and b
= a. If b = a, then

rp(Fa(se(Q � a � R)))
= rp(Fa(se(Q) � a � se(R)))
= rp(Fa(se(Q)) � a � Fa(se(Q)))
= rp(Fa(Fa(se(Q)))) � a � rp(Ga(Fa(se(Q))))
= rp(Fa(se(Q))) � a � rp(Fa(se(Q))) by Lemma 3.14
= se(rpf (fa(Q))) � a � se(rpf (fa(Q))) by IH
= se(rpf (fa(Q)) � a � rpf (fa(Q)))
= se(rpf (fa(fa(Q))) � a � rpf (ga(fa(Q)))) by Lemma 3.3
= se(rpf (fa(Q � a � fa(Q))))
= se(rpf (fa(Q � a � R))).

58 J.A. Bergstra and A. Ponse

If b
= a, then

rp(Fb(se(Q � a � R))) = rp(Fb(se(Q) � a � se(R)))
= rp(se(Q) � a � se(R))
= rp(Fa(se(Q))) � a � rp(Ga(se(R)))
= se(rpf (fa(Q))) � a � se(rpf (ga(R))) by IH
= se(rpf (fa(Q)) � a � rpf (ga(R)))
= se(rpf (Q � a � R))
= se(rpf (fb(Q � a � R))).

The second equality can be proved in a similar way, and this finishes the
proof of (4).

The lemma’s statement now follows by a case distinction on P . The cases
P ∈ {T,F} follow immediately, and otherwise P = Q � a � R, and thus

rp(se(Q � a � R)) = rp(se(Q) � a � se(R))
= rp(Fa(se(Q))) � a � rp(Ga(se(R)))
= se(rpf (fa(Q))) � a � se(rpf (ga(R))) by (4)
= se(rpf (fa(Q)) � a � rpf (ga(R)))
= se(rpf (Q � a � R)).

�	
Finally, we relate conditional statements by means of their repetition-proof

evaluation trees.

Definition 3.16. Repetition-proof valuation congruence, notation =rpse ,
is defined on CA as follows:

P =rpse Q ⇐⇒ rpse(P) = rpse(Q).

The following characterization result immediately implies that =rpse is a
congruence relation on CA (and hence justifies calling it a congruence).

Proposition 3.17. For all P,Q ∈ CA, P =rpse Q ⇐⇒ P =rpbf Q.

Proof. In order to prove ⇒, assume rpse(P) = rpse(Q), thus rp(se(P)) =
rp(se(Q)). By Corollary 2.19,

rp(se(bf (P))) = rp(se(bf (Q))),

so by Lemma 3.15, se(rpf (bf (P))) = se(rpf (bf (Q))). By Lemma 2.8 and aux-
iliary result (2) (see the proof of Lemma 3.5), it follows that rpf (bf (P)) =
rpf (bf (Q)), that is, P =rpbf Q.

In order to prove ⇐, assume P =rpbf Q, thus rpf (bf (P)) = rpf (bf (Q)). Then
se(rpf (bf (P))) = se(rpf (bf (Q))) and thus by Lemma 3.15,

rp(se(bf (P))) = rp(se(bf (Q))).

Evaluation Trees for Proposition Algebra 59

By Corollary 2.19, se(bf (P)) = se(P) and se(bf (Q)) = se(Q), so rp(se(P)) =
rp(se(Q)), that is, P =rpse Q. �	

We end this section with a last completeness result.

Theorem 3.18 (Completeness of CPrp(A)). For all P,Q ∈ CA,

CPrp(A) � P = Q ⇐⇒ P =rpse Q.

Proof. Combine Theorem 3.11 and Proposition 3.17. �	

4 Conclusions

In [4] we introduced proposition algebra using Hoare’s conditional x � y � z and
the constants T and F. We defined a number of varieties of so-called valuation
algebras in order to capture different semantics for the evaluation of conditional
statements, and provided axiomatizations for the resulting valuation congru-
ences. In [3,5] we introduced an alternative valuation semantics for proposition
algebra in the form of Hoare-McCarthy algebras (HMA’s) that is more elegant
than the semantical framework provided in [4]: HMA-based semantics has the
advantage that one can define a valuation congruence without first defining the
valuation equivalence it is contained in.

In this paper, we use Staudt’s evaluation trees [13] to define free valuation
congruence as the relation =se (see Section 2) and this appears to be a relatively
simple and stand-alone exercise, resulting in a semantics that is elegant and much
simpler than HMA-based semantics [3,5] and the semantics defined in [4]. By
Theorem 2.11, =se coincides with “free valuation congruence as defined in [4]”
because both relations are axiomatized by CP (see [4, Thm.4.4andThm.6.2]).
The advantage of “evaluation tree semantics” is that for a given conditional
statement P , the evaluation tree se(P) determines all relevant atomic evalu-
ations, and P =se Q is determined by evaluation trees that contain no more
atoms than those that occur in P and Q; this is comparable to how truth tables
can be used in the setting of propositional logic.

In Section 3 we define repetition-proof valuation congruence =rpse on CA

by P =rpse Q if, and only if, rpse(P) = rpse(Q), where rpse(P) = rp(se(P))
and rp is a transformation function on evaluation trees. It is obvious that this
transformation is “natural”, given the axiom schemes (CPrp1) and (CPrp2) that
are characteristic for CPrp(A). The equivalence on CA that we want to prove is

CPrp(A) � P = Q ⇐⇒ P =rpse Q, (5)

by which =rpse coincides with “repetition-proof valuation congruence as defined
in [4]” because both are axiomatized by CPrp(A) (see [4, Thm.6.3]). However,
equivalence (5) implies that =rpse is a congruence relation on CA and we could
not find a direct proof of this fact. We chose to simulate the transformation rpse
by the transformation rpbf on conditional statements and to prove that the
resulting equivalence relation =rpbf is a congruence axiomatized by CPrp(A).

60 J.A. Bergstra and A. Ponse

This is Theorem 3.11, the proof of which depends on [4, Thm.6.3]) and on
Theorem 3.9, that is,

For all P ∈ CA, CPrp(A) � P = rpbf (P).

In order to prove equivalence (5) (which is Theorem 3.18), it is thus sufficient
to prove that =rpbf and =rpse coincide, and this is Proposition 3.17.

In [6] we define evaluation trees for most of the other valuation congruences
defined in [4] by transformations on se-images that are also “natural”, and this
also results in elegant “evaluation tree semantics” for each of these congruences.

We conclude with a brief digression on short-circuit logic, which we defined
in [7] (see [5] for a quick introduction), and an example on the use of CPrp(A).
Familiar binary connectives that occur in the context of imperative program-
ming and that prescribe short-circuit evaluation, such as && (in C called “logical
AND”), are often defined in the following way:

P && Q =def if P then Q else false,

independent of the precise syntax of P and Q, hence, P && Q =def Q � P � F. It
easily follows that && is associative (cf. Footnote 3). In a similarly way, negation
can be defined by ¬P =def F � P � T. In [7] we focus on this question:

Question 4.1. Which are the logical laws that characterize short-circuit evalu-
ation of binary propositional connectives?

A first approach to this question is to adopt the conditional as an auxiliary
operator, as is done in [5,7], and to answer Question 4.1 using definitions of the
binary propositional connectives as above and the axiomatization for the val-
uation congruence of interest in proposition algebra (or, if “mixed conditional
statements” are at stake, axiomatizations for the appropriate valuation congru-
ences). An alternative and more direct approach to Question 4.1 is to establish
axiomatizations for short-circuited binary connectives in which the conditional is
not used. For free valuation congruence, an equational axiomatization of short-
circuited binary propositional connectives is provided by Staudt in [13], where
se(P && Q) =def se(P)[T �→ se(Q)] and se(¬P) =def se(P)[T �→ F,F �→ T]
(and where the function se is also defined for short-circuited disjunction), and
the associated completeness proof is based on decomposition properties of such
evaluation trees. For repetition-proof valuation congruence it is an open question
whether a finite, equational axiomatization of the short-circuited binary propo-
sitional connectives exists, and an investigation of repetition-proof evaluation
trees defined by such connectives might be of interest in this respect. We end
with an example on the use of CPrp(A) that is based on [7, Ex.4].

Example 4.2. Let A be a set of atoms of the form (e==e′) and (n=e) with
n some initialized program variable and e, e′ arithmetical expressions over the
integers that may contain n. Assume that (e==e′) evaluates to true if e and e′

represent the same value, and (n=e) always evaluates to true with the effect that

Evaluation Trees for Proposition Algebra 61

e’s value is assigned to n. Then these atoms satisfy the axioms of CPrp(A).4

Notice that if n has initial value 0 or 1, ((n=n+1) && (n=n+1)) && (n==2) and
(n=n+1) && (n==2) evaluate to different results, so the atom (n=n+1) does not
satisfy the law a && a = a, by which this example is typical for the repetition-proof
characteristic of CPrp(A).

We acknowledge the helpful comments of two anonymous reviewers.

References

1. Bergstra, J.A., Bethke, I., Rodenburg, P.H.: A propositional logic with 4 values:
true, false, divergent and meaningless. Journal of Applied Non-Classical Logics
5(2), 199–218 (1995)

2. Bergstra, J.A., Loots, M.E.: Program algebra for sequential code. Journal of Logic
and Algebraic Programming 51(2), 125–156 (2002)

3. Bergstra, J.A., Ponse, A.: On Hoare-McCarthy algebras [cs.LO] (2010).
http://arxiv.org/abs/1012.5059

4. Bergstra, J.A., Ponse, A.: Proposition algebra. ACM Transactions on Computa-
tional Logic 12(3), Article 21, 36 pages (2011)

5. Bergstra, J.A., Ponse, A.: Proposition algebra and short-circuit logic. In: Arbab,
F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp. 15–31. Springer, Heidelberg
(2012)

6. Bergstra, J.A., Ponse A.: Evaluation trees for proposition algebra.
arXiv:1504.08321v2 [cs.LO] (2015)

7. Bergstra, J.A., Ponse, A., Staudt, D.J.C.: Short-circuit logic. arXiv:1010.3674v4
[cs.LO, math.LO] (version v1: October 2010) (2013)

8. de Boer, F.S., de Vries, F.-J., Olderog, E.-R., Ponse, A. (guest editors): Selected
papers from the Workshop on Assertional Methods. Formal Aspects of Computing,
6(1 Supplement; Special issue) (1994)

9. Harel, D.: Dynamic logic. In: Gabbay, D., Günthner, F. (eds.) Handbook of Philo-
sophical Logic, vol. II, pp. 497–604. Reidel Publishing Company (1984)

10. Hayes, I.J., He Jifeng, Hoare, C.A.R., Morgan, C.C., Roscoe, A.W., Sanders, J.W.,
Sorensen, I.H., Spivey, J.M., Sufrin B.A.: Laws of programming. Communications
of the ACM 3(8), 672–686 (1987)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International
(1985)

12. Hoare, C.A.R.: A couple of novelties in the propositional calculus. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik 31(2), 173–178 (1985);
Republished. In: Hoare, C.A.R., Jones, C.B. (eds.) Essays in Computing Science.
Series in Computer Science, pp. 325–331. Prentice Hall International (1989)

13. Staudt, D.J.C.: Completeness for two left-sequential logics. MSc. thesis Logic, Uni-
versity of Amsterdam (May 2012). arXiv:1206.1936v1 [cs.LO] (2012)

14. Wortel, L.: Side effects in steering fragments. MSc. thesis Logic, University of
Amsterdam (September 2011). arXiv:1109.2222v1 [cs.LO] (2011)

4 Of course, not all equations that are valid in the setting of Example 4.2 follow from
CPrp(A), e.g., CPrp(A) �� (0==0) = T. We note that a particular consequence of
CPrp(A) in the setting of short-circuit logic is (¬a && a) && x = ¬a && a (cf.
Example 3.13), and that Example 4.2 is related to the work of Wortel [14], where
an instance of Propositional Dynamic Logic [9] is investigated in which assignments
can be turned into tests; the assumption that such tests always evaluate to true is
natural because the assumption that assignments always succeed is natural.

http://arxiv.org/abs/1012.5059
http://arxiv.org/abs/1504.08321v2
http://arxiv.org/abs/1010.3674v4
http://arxiv.org/abs/1206.1936v1
http://arxiv.org/abs/1109.2222v1

Process Algebra

On Applicative Similarity, Sequentiality,
and Full Abstraction

Raphaëlle Crubillé1, Ugo Dal Lago2, Davide Sangiorgi2(B),
and Valeria Vignudelli2

1 ENS-Lyon, Lyon, France
raphaelle.crubille@ens-lyon.fr

2 Universitá di Bologna and INRIA, Bologna, Italy
{ugo.dallago,davide.sangiorgi2,valeria.vignudelli2}@unibo.it

Abstract. We study how applicative bisimilarity behaves when instan-
tiated on a call-by-value probabilistic λ-calculus, endowed with Plotkin’s
parallel disjunction operator. We prove that congruence and coincidence
with the corresponding context relation hold for both bisimilarity and
similarity, the latter known to be impossible in sequential languages.

Keywords: Probabilistic lambda calculus · Bisimulation ·
Coinduction · Sequentiality

1 Introduction

The work in this paper is part of a general effort in trying to transport techniques
and concepts for program correctness and verification that have been introduced
and successfully applied to ordinary (first-order) concurrency (CCS, CSP, Petri
Nets), following pioneering work by Bergstra, Hoare, Milner, Olderog, and oth-
ers, onto formalisms with higher-order features, in which the values exchanged or
manipulated may include pieces of code. Specifically, we focus on the prototypical
higher-order language, the λ-calculus, enriched with a probabilistic choice, and
use coinductive methods and logics to understand and characterise behavioural
equivalences.

Probabilistic models are more and more pervasive. Examples of application
areas in which they have proved to be useful include natural language process-
ing [16], robotics [23], computer vision [3], and machine learning [19]. Sometimes,
being able to “flip a fair coin” while computing is a necessity rather than an alter-
native, like in cryptography (where, e.g., secure public key encryption schemes
are bound to be probabilistic [11]): randomness is not only a modeling tool, but
a capability algorithms can exploit.

The specification of probabilistic models and algorithms can be made eas-
ier by the design of programming languages. And indeed, various probabilistic
programming languages have been introduced in the last years, from abstract

The authors are partially supported by the ANR project 12IS02001 PACE.

c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 65–82, 2015.
DOI: 10.1007/978-3-319-23506-6 7

66 R. Crubillé et al.

ones [13,18,22] to more concrete ones [12,20]. A common scheme consists in
endowing deterministic languages with one or more primitives for probabilis-
tic choice, like binary probabilistic choice or primitives for distributions. Many
of them, as a matter of fact, are designed around the λ-calculus or one of its
incarnations, like Scheme. This, in turn, has stimulated foundational research
about probabilistic λ-calculi, and in particular about the nature of program
equivalence in a probabilistic setting. This has already started to produce some
interesting results in the realm of denotational semantics, where adequacy and
full-abstraction results have recently appeared [8,10].

Operational techniques for program equivalence, and in particular coinduc-
tive methodologies, have the advantage of not requiring a too complicated
mathematical machinery. Various notions of bisimilarity have been proved ade-
quate and, in some cases, fully abstract, for deterministic and nondeterministic
computation [1,15,17]. A recent paper [6] generalizes Abramsky’s applicative
bisimulation [1] to a call-by-name, untyped λ-calculus endowed with binary, fair,
probabilistic choice [7]. Probabilistic applicative bisimulation is shown to be a
congruence, thus included in context equivalence. Completeness, however, fails,
but can be recovered if call-by-value evaluation is considered, as shown in [4].
This can appear surprising, given that in nondeterministic λ-calculi, both when
call-by-name and call-by-value evaluation are considered, applicative bisimilar-
ity is a congruence, but finer than context equivalence [15]. But there is another,
even less expected result: the aforementioned correspondence does not hold any-
more if we consider applicative simulation and the contextual preorder.

The reason why this happens can be understood if one looks at the testing-
based characterization of similarity and bisimilarity from the literature [9,24]:
the class of tests characterizing bisimilarity is simple enough to allow any test to
be implementable by a program context. This is impossible for tests characteriz-
ing similarity, which include not only conjunction (which can be implemented as
copying) but also disjunction, an operator that seems to require the underlying
language to be parallel.

In this paper, we show that, indeed, the presence of Plotkin’s disjunction
[2,21] turns applicative similarity into a relation which coincides with the con-
text preorder. This is done by checking that the proof of precongruence for
applicative bisimilarity [4,6] continues to hold, and by showing how tests involv-
ing conjunction and disjunction can be implemented by contexts. This somehow
completes the picture about how applicative (bi)similarity behaves in a proba-
bilistic scenario.

2 Programs and Their Operational Semantics

In this section, we present the syntax and operational semantics of Λ⊕or, the lan-
guage on which we define applicative bisimulation. Λ⊕or is a λ-calculus endowed
with probabilistic choice and parallel disjunction operators.

The terms of Λ⊕or are built up from variables, using the usual constructs
of λ-calculus, binary choice and parallel disjunction. In the following, Var =
{x, y, . . .} is a countable set of variables

On Applicative Similarity, Sequentiality, and Full Abstraction 67

Definition 1. The terms of Λ⊕or are expressions generated by the following
grammar:

M,N,L ::= x | λx.M | M ⊕ N | M N | [M ‖ N] � L

where x ∈ Var.

In what follows, we consider terms of Λ⊕or as α-equivalence classes of syntax
trees. We let FV (M) denote the set of free variables of the term M . A term M
is closed if FV (M) = ∅. Given a set x of variables, Λ⊕or(x) is the set of terms
M such that FV (M) ⊆ x. We write Λ⊕or for Λ⊕or(∅). The (capture-avoiding)
substitution of N for the free occurrences of x in M is denoted by M [N/x].

The constructs of the λ-calculus have their usual meanings. The construct
M ⊕ N is a binary choice operator, to be interpreted probabilistically, as in
Λ⊕ [7]. The construct [M ‖ N] � L corresponds to the so-called parallel
disjunction operator: if the evaluation of M or N terminates, then the behaviour
of [M ‖ N] � L is the same as the behaviour of L, otherwise this term does not
terminate. Since we are in a probabilistic calculus, this means that [M ‖ N] � L
converges to L with a probability that is equal to the probability that either M or
N converge. (This formulation of parallel disjunction is equivalent to the binary
one, without the third term.)

Example 1. Relevant examples of terms are Ω = (λx.xx) (λx.xx), and I = λx.x:
the first one always diverges, while the second always converges (to itself). In
between, one can find terms such as I ⊕ Ω, and I ⊕ (I ⊕ Ω), converging with
probability one half and three quarters, respectively.

2.1 Operational Semantics

Because of the probabilistic nature of choice in Λ⊕or, a program doesn’t evaluate
to a value, but to a probability distribution on values. Therefore, we need the
following notions to define an evaluation relation.

Definition 2. Values are terms of the form V ::= λx.M . We will call V⊕or

the set of values. A value distribution is a function D : V⊕or→ [0, 1], such that∑
V ∈V⊕or

D(V) ≤ 1. Given a value distribution D , we let S(D) denote the set of
those values V such that D(V) > 0. Given a set X of values, D(X) is the sum
of the probabilities assigned to every element of X, i.e., D(X) =

∑
V ∈X D(V).

Moreover, we define
∑

D =
∑

V D(V), which corresponds to the total weight
of the distribution D . A value distribution D is finite whenever S(D) has finite
cardinality. If V is a value, we write {V 1} for the value distribution D such
that D(W) = 1 if W = V and D(V) = 0 otherwise. We’ll note D ≤ E for the
pointwise preorder on value distributions.

We first define an approximation semantics, which attributes finite probabil-
ity distributions to terms, and only later define the actual semantics, which is
the least upper bound of all distributions obtained through the approximation
semantics. Big-step semantics is given by means of a binary relation ⇓ between

68 R. Crubillé et al.

be
M ⇓ ∅ bv

V ⇓ {V 1}
M ⇓ D N ⇓ E

bs
M ⊕ N ⇓ 1

2
D + 1

2
E

M ⇓ K N ⇓ F {P [V/x] ⇓ E P,V }λx.P∈S(K), V ∈S(F)
ba

MN ⇓∑V ∈S(F) F (V) · (
∑

λx.P∈S(K) K (λx.P) · EP,V)

M ⇓ D N ⇓ E L ⇓ F
bor

[M ‖ N] � L ⇓ (
∑

D +
∑

E − (
∑

D ·∑ E)) · F

Fig. 1. Evaluation

closed terms and value distributions, which is defined by the set of rules from
Figure 1. This evaluation relation is the natural extension to Λ⊕or of the eval-
uation relation given in [7] for the untyped probabilistic λ-calculus. Since the
calculus has a call-by-value evaluation strategy, function arguments are evalu-
ated before being passed to functions.

Lemma 1. For every term M , if M ⇓ D , and M ⇓ E , then there exists a
distribution F such that M ⇓ F with D ≤ F , and E ≤ F .

Proof. The proof is by induction on the structure of derivations for M ⇓ D . We
only consider two cases, since the others are the same as in [7]:
• If the derivation for M ⇓ D is: be

M ⇓ ∅ : Then it is enough to take F = E ,
and since ∅ ≤ E and E ≤ E , the result holds.

• If the derivation for M ⇓ D is of the form:

P ⇓ G N ⇓ H L ⇓ I
bor

M = [P ‖ N] � L ⇓ D = (
∑

G +
∑

H − (
∑

G ·∑H)) · I

Since M = [P ‖ N] � L , there are only two possible structures for the
derivation of M ⇓ E : either E = ∅ and the result holds by F = D , or the
structure of M ⇓ E is the following:

P ⇓ G2 N ⇓ H2 L ⇓ I2
bor

M = [P ‖ N] � L ⇓ E = (
∑

G2 +
∑

H2 − (
∑

G2 ·∑H2)) · I2

By applying the induction hypothesis, we obtain that there exist J ,K ,L
value distributions such that P ⇓ J , N ⇓ K , L ⇓ L , and, more-
over, G ,G2 ≤ J , H ,H2 ≤ K , and I ,I2 ≤ L . We define F =
(
∑

J +
∑

K − (
∑

J · ∑
K)) · L , and we have that M ⇓ F . We must

show that D ≤ F and E ≤ F . Let f : [0, 1] × [0, 1] → [0, 1] be the function
defined by f(x, y) = x + y − x · y. The result follows from the fact that f
is an increasing function, which holds since its two partial derivatives are
positive.
�

Definition 3. For any closed term M , we define the big-steps semantics �M�

of M as supM⇓D D .

On Applicative Similarity, Sequentiality, and Full Abstraction 69

Since distributions form an ω-complete partial order, and for every M the set of
those distributions D such that M ⇓ D is a countable directed set (by Lemma
1), this definition is well-posed, and associates a unique value distribution to
every term.

2.2 The Contextual Preorder

The general idea of the contextual preorder is the following: a term M is smaller
than a term N if the probability of convergence of any program L where M occurs
is less than or equal to the probability of convergence of the program obtained
by replacing M by N in L. The notion of context allows us to formalize this
idea.

Definition 4. A context C of Λ⊕or is a syntax tree with a unique hole:

C ::=[·] | λx.C | CM | MC | C ⊕ M | M ⊕ C

| [C ‖ M] � N | [M ‖ C] � N | [M ‖ N] � C .

We let C denote the set of all contexts.

Definition 5. Terms M,N ∈ Λ⊕or(x) are put in relation by the contextual
preorder (M ≤ N) if for every context C of Λ⊕or such that C[M] and C[N]
are closed terms, it holds that

∑
�C[M]� ≤ ∑

�C[N]�. M,N are contextually
equivalent (M = N) if M ≤ N , and N ≤ M .

Note that the contextual preorder is directly defined on open terms, by requiring
contexts to bind the free variables of terms. It is easy to verify that the contextual
preorder is indeed a preorder, and analogously for equivalence.

Example 2. To see how things differ when we consider the contextual preorder
in Λ⊕ and in Λ⊕or, consider the following terms of Λ⊕:

M = λy.(Ω ⊕ I) N = (λy.Ω) ⊕ (λy.I).

where Ω and I are defined as in Example 1. We let ≤⊕ and =⊕ respectively
denote the contextual preorder and equivalence for the language Λ⊕, i.e., the
relations restricted to terms and contexts without the parallel disjunction con-
struct. In [4] it is proved that M ≤⊕ N . The converse does not hold, since if we
take the Λ⊕ context

C = (λx.(xI)(xI))[·]
we have that in C[M] the term λy.(Ω ⊕ I) is copied with probability one, while in
C[N] both term λy.Ω and term λy.I are copied with probability one half. Hence,
C[M] converges with probability one quarter (i.e., the probability that Ω ⊕ I
converges two times in a row) while C[N] has probability one half of diverging
(i.e., one half times the probability that Ω diverges two times in a row) and
one half of converging (i.e., one half times the probability that I converges two

70 R. Crubillé et al.

times in a row). In Λ⊕or we still have that N �≤ M , since the contexts of Λ⊕ are
contexts of Λ⊕or as well, but we also have that M �≤ N . Consider the context

C = (λx. [(xI) ‖ (xI)] � I)[·]

If we put term M in context C then λy.(Ω ⊕ I) is copied, which has probability
one half of converging when applied to I. Hence, by summing the probabilities of
convergence of the two copies of (λy.(Ω ⊕ I))I and subtracting the probability
that they both converge, we obtain that �C[M]� = 3

4 · {I1}. Term C[N] only
converges with probability one half, since with one half probability we have
the parallel disjunction of two terms that never converge and with one half
probability we have the parallel disjunction of two terms that always converge.
Hence, both in Λ⊕ and in Λ⊕or terms M,N are not contextually equivalent,
but it is only in Λ⊕or that neither M is below N nor N is below M in the
contextual preorder. We will see in the following section that this corresponds
to what happens when we consider the simulation preorder.

3 Applicative Simulation

In this section we introduce the notions of probabilistic applicative simula-
tion and bisimulation for Λ⊕or. Then we define probabilistic simulation and
bisimulation on labelled Markov chains (LMCs, which also appear as Reac-
tive Probabilistic Labelled Transition Systems in the literature). Bisimilarity
on this class of structures was defined in [14]. We show how to define a labelled
Markov chain representing terms of Λ⊕or and their evaluation. Two states in
the labelled Markov chain corresponding to terms M,N are in the simulation
preorder (respectively, bisimilar) if and only if terms M,N are in the applica-
tive simulation preorder (respectively: applicative bisimilar). Recall that, given
a relation R ⊆ X × Y and a set Z ⊆ X, R(Z) = {y|∃x ∈ Z such that xRy}.

Definition 6. A relation R ⊆ Λ⊕or × Λ⊕or is a probabilistic applicative simu-
lation if MRN implies:
• for all X ⊆ V⊕or, �M�(X) ≤ �N�(R(X))
• if M = λx.L and N = λx.P then L[V/x]RP [V/x] for all V ∈ V⊕or.
A relation R is a probabilistic applicative bisimulation if both R and R−1

are probabilistic applicative simulations. We say that M is simulated by N
(M �a N) if there exists a probabilistic applicative simulation R such that
MRN . Terms M,N are bisimilar (M ∼a N) if there exists a probabilistic
applicative bisimulation R such that MRN .

Definition 7. A labelled Markov chain (LMC) is a triple M = (S,L,P), where
S is a countable set of states, L is a set of labels, and P is a transition proba-
bility matrix, i.e., a function P : S × L × S → R such that for every state s ∈ S
and for every label l ∈ L, ∑

u∈S P(s, l, u) ≤ 1.

On Applicative Similarity, Sequentiality, and Full Abstraction 71

Definition 8. Let (S,L,P) be a labelled Markov chain. A probabilistic simula-
tion is a relation R on S such that (s, t) ∈ R implies that for every X ⊆ S and
for every l ∈ L, P(s, l,X) ≤ P(t, l,R(X)). A probabilistic bisimulation is a
relation R on S such that both R and R−1 are probabilistic simulation relations.
We say that s is simulated by t (s � t) if there exists a probabilistic simulation
R such that sRt. States s, t are bisimilar (s ∼ t) if there exists a probabilistic
bisimulation R such that sRt.

Labelled Markov chains allow for external nondeterminism (every state can reach
different probability distributions, depending on the chosen label) but they do
not allow for internal nondeterminism (given a state and a label there is only one
associated probability distribution). This is the reason why bisimilarity coincides
with simulation equivalence on labelled Markov chains, i.e., ∼=� ∩ �−1.

Lemma 2. For any labelled Markov chain (S,L,P):
1. relations � and ∼ are the largest simulation and the largest bisimulation on

S, respectively;
2. relation � is a preorder and relation ∼ is an equivalence.

Proof. Let us examine the two points separately:
1. Simulations and bisimulations are closed under union, hence the results fol-

lows.
2. The identity relation is a simulation, hence � is reflexive. Given two simu-

lation relations R1,R2, relation R1;R2 = {(s, t)|sR1uR2t for some u} is a
simulation. Hence, � is transitive as well. By definition, relation ∼ is sym-
metric, which implies that it is an equivalence.
�

We will now define a labelled Markov chain that has among its states all terms
of Λ⊕or and that models the evaluation of these terms.

Definition 9. The labelled Markov chain M⊕or = (S⊕or,L⊕or,P⊕or) is given
by:
• A set of states S⊕or = {Λ⊕or} � {V̂⊕or}, where terms and values are taken
modulo α-equivalence and V̂⊕or = {V̂ |V ∈ V⊕or} is a set containing copies of
the values in Λ⊕or decorated with .̂ We call these values distinguished values.

• A set of labels L⊕or = V⊕or � {eval}, where, again, terms are taken modulo
α-equivalence.

• A transition probability matrix P⊕or such that:
• for every M ∈ Λ⊕or and for every V̂ ∈ V̂⊕or, P⊕or(M, eval , V̂) = �M�(V)
and P⊕or(M, eval ,M ′) = 0 for all M ′ ∈ Λ⊕or.

• for every ˆλx.M ∈ V̂⊕or and for every V ∈ V⊕or, P⊕or(ˆλx.M,

V,M [V/x]) = 1 and P⊕or(ˆλx.M, V,M ′) = 0 for all M ′ ∈ Λ⊕or such
that M ′ �= M [V/x].

Please observe that if V ∈ V⊕or, then both V and V̂ are states of the Markov
chain M⊕or. A similar labelled Markov chain is defined in [5] for a call-by-name
untyped probabilistic λ-calculus Λ⊕, and for a call-by-value typed probabilistic

72 R. Crubillé et al.

version of PCF in [4]. Actions in V⊕or and action eval respectively represent the
application of a term to a value and the evaluation of a term.

Following [9], given a state and an action we allow the sum of the probabili-
ties of reaching other states in the labelled Markov chain to be smaller than 1,
modelling divergence this way. The definition of simulation implies that when-
ever M is simulated by N we have that

∑
�M� ≤ ∑

�N�. Analogously, if M is
bisimilar to N , then

∑
�M� =

∑
�N�.

An applicative simulation R on terms of Λ⊕or can be easily seen as a simu-
lation relation R′ on states of M⊕or, obtained by adding to relation R the pairs
{(V̂ , Ŵ)|V RW}. Analogously, a simulation relation on M⊕or corresponds to an
applicative simulation for Λ⊕or.

Theorem 1. On terms of Λ⊕or, �a=� and ∼a=∼.

In what follows, we will mainly use the definitions of simulation and bisim-
ulation for the labelled Markov chain M⊕or. By Lemma 2, � coincides with
the simulation preorder defined in [4], which requires simulations to be pre-
orders themselves. For instance, I and II are (applicative) bisimilar since

λy.(Ω ⊕ I) (λy.Ω) ⊕ (λy.I)

̂λy.(Ω ⊕ I) λ̂y.Ω λ̂y.I

(Ω ⊕ I) Ω I

Î

eval
eval

1
2

1
2

V V V

eval1
2 eval

Fig. 2. LMC for M, N .

R = {(I, (II))} ∪ ID ∪ {(V̂ , V̂)|V ∈ V⊕or}, where ID is the identity relation on
Λ⊕or, is a bisimulation on M⊕or. Consider now the terms M and N defined in
Example 2 and represented in Figure 2 as states in M⊕or. Term M is not simu-
lated by N : if a simulation R relates them, then it must also relate term (Ω ⊕ I)
to both term Ω and term I. However, (Ω ⊕ I) can perform eval and reach I with
probability one half, while Ω has zero probability of becoming a value, which
means that R cannot be a simulation relation. In the other direction, we have

On Applicative Similarity, Sequentiality, and Full Abstraction 73

that N cannot be simulated by M either. If R is simulation such that NRM
then it must relate term I to term (Ω ⊕ I), but the former has probability one
of convergence and the latter has probability one half of convergence.

4 The Simulation Preorder is a Precongruence

The extension �◦ of the applicative simulation preorder to open terms is defined
by considering all closing substitutions, i.e., for all M,N ∈ Λ⊕or(x1, . . . , xn), we
have M�◦N if

M [V1, . . . , Vn/x1, . . . , xn]�◦N [V1, . . . , Vn/x1, . . . , xn], for all V1, . . . , Vn ∈ V⊕or.

Here we show that �◦ is a precongruence, i.e., closed with respect to the opera-
tors of Λ⊕or.

It is here convenient to work with generalizations of relations called Λ⊕or-
relations, i.e. sets of triples in the form (x,M,N), where M,N ∈ Λ⊕or(x). Given
a relation R on open terms, if MRN and M,N ∈ Λ⊕or(x) then the triple
(x,M,N) is in the corresponding Λ⊕or-relation. We denote this by x � MRN .
We extend the usual notions of symmetry, reflexivity and transitivity to Λ⊕or-
relations as expected.

Definition 10. A Λ⊕or-relation R is compatible if and only if the following
conditions hold:
(Com1) ∀x,∀x ∈ x, x � x Rx ;
(Com2) ∀x,∀x �∈ x,∀M,N , x ∪ {x} � M RN =⇒ x � λx.M Rλx.N ;
(Com3) ∀x,∀M,N,P,Q, x � M RN ∧ x � P RQ =⇒ x � MP RNQ;
(Com4) ∀x,∀M,N,P,Q, x � M RN ∧ x � P RQ =⇒ x � M ⊕ P RN ⊕ Q;
(Com5) ∀x,∀M,N,P,Q, T , x � M RN ∧ x � P RQ =⇒ x � [M ‖ P] �

T R [N ‖ Q] � T ;

It follows from these properties that a compatible relation is reflexive, since this
holds by (Com1) on variables, and it is preserved by the other operators by
(Com2)-(Com5):

Proposition 1. If a relation is compatible, then it is reflexive.

4.1 Howe’s Method

The main idea of Howe’s method consists in defining an auxiliary relation �H
◦

such that it is easy to see that it is compatible, and then prove that �◦ =�H
◦ .

Definition 11. Let R be a relation. We define inductively the relation RH by
the rules in Figure 3.

We are now going to show that if the relation R we start from satisfies minimal
requirements, namely that it is reflexive and transitive, then RH is guaranteed
to be compatible and to contain R. This is a direct consequence of the following
results, whose proofs are standard inductions:

74 R. Crubillé et al.

x ∪ {x} � x R M

x ∪ {x} � x RH M

x ∪ {x} � M RH N x � λx.N R L

x � λx.M RH L

x � M RH N x � L RH P x � NP R R

x � ML RH R

x � M RH N x � L RH P x � N ⊕ P R R

x � M ⊕ L RH R

x � M RH N x � L RH P x � [N ‖ P] � T R R

x � [M ‖ L] � T RH R

Fig. 3. Howe’s Construction

• Let R be a reflexive relation. Then RH is compatible.
• Let R be transitive. Then:

(
x � M RH N

) ∧ (x � N R L) ⇒ (
x � M RH L

)
(1)

• If R is reflexive, then x � M R N implies x � M RH N .
We can now apply Howe’s construction to �◦, since it is clearly reflexive and
transitive. The properties above then tell us that �H

◦ is compatible and that
�◦ ⊆�H

◦ . What we are left with, then, is proving that �H
◦ is also a simulation.1

Lemma 3. �H
◦ is value-substitutive: for all terms M,N and values V,W such

that x � M �H
◦ N and ∅ � V �H

◦ W , it holds that ∅ � M [V/x] �H
◦ N [W/x]

Proof. By induction on the derivation of x � M �H
◦ N .

We also need an auxiliary, technical, lemma about probability assignments:

Definition 12. P =
({pi}1≤i≤n, {rI}I⊆{1,...,n}

)
is said to be a probability

assignment if for every I ⊆ {1, .., n}, it holds that
∑

i∈I pi ≤ ∑
J∩I �=∅ rJ .

Lemma 4 (Disentangling Sets). Let P =
({pi}1≤i≤n, {rI}I⊆{1,...,n}

)
be a

probability assignment. Then for every non-empty I ⊆ {1, . . . , n}, and for every
k ∈ I, there is an sk,I ∈ [0, 1] satisfying the following conditions:
• for every I, it holds that

∑
k∈I sk,I ≤ 1;

• for every k ∈ 1, . . . , n, it holds that pk ≤ ∑
{I|k∈I} sk,I · rI .

The proof is an application of the Max-Flow Min-Cut Theorem, see e.g., [4,6].
Given a set of set of open terms X, let λx.X = {λx.M |M ∈ X}.

1 In the proof of congruence for the probabilistic call-by-value λ-calculus presented
in [4], the transitive closure of �H

◦ is considered, since the definition of simulation
required the relation to be preorder, which implies that the transitivity of �H

◦ is
needed. Since we relaxed the definition of simulation, this is not anymore necessary.

On Applicative Similarity, Sequentiality, and Full Abstraction 75

Lemma 5 (Key Lemma). For all terms M,N , if ∅ � M �H
◦ N , then for

every λx.X ⊆ V⊕or it holds that �M� (λx.X) ≤ �N�
(
�◦

(
λx. �H

◦ (X)
))
.

Proof. We show that the inequality holds for every approximation of the seman-
tics of M , which implies the result since the semantics is the supremum of the
approximations. In particular, we prove by induction on the structure of the
derivation of M ⇓ D that, for any M,N , if M ⇓ D and ∅ � M �H

◦ N , then
for every λx.X ⊆ V⊕or it holds that D (λx.X) ≤ �N�

(
�◦

(
λx. �H

◦ (X)
))

. We
consider separately every possible rule which can be applied at the bottom of
the derivation:
• If the rule is bv

M ⇓ ∅ then D = ∅, and for all set of values λx.X,
D(λx.X) = 0, and it concludes the proof.

• If M is a value V = λx.L and the last rule of the derivation is bv
V ⇓ {V 1}

then D = {V 1} is the Dirac distribution for V and, by the definition of Howe’s
lifting,

(∅ � λx.L �H
◦ N

)
was derived by the following rule:

x � L �H
◦ P ∅ � λx.P�◦N

∅ � λx.L �H
◦ N

It follows from the definition of simulation and from (∅ � λx.P �◦ N) that 1 =
�N�(�◦ {λx.P}). Let λx.X ⊆ V⊕or. If λx.L �∈ λx.X then D(λx.X) = 0 and
the thesis holds. Otherwise, D(λx.X) = D(λx.L) = 1 = �N�(�◦ {λx.P}).
It follows from L �H

◦ P and from λx.L ∈ λx.X that λx.P ∈ λx.(�H
◦ X);

hence, �N�(�◦ {λx.P}) ≤ �N�(�◦ λx.(�H
◦ X)).

• If the derivation of M ⇓ D is of the following form:
M1 ⇓ K M2 ⇓ F {P [V/x] ⇓ EP,V }λx.P∈S(K),V ∈S(F)

M1M2 ⇓∑V ∈S(F) F (V)
(∑

λx.P∈S(K) K (λx.P).EP,V

)

Then M = M1M2 and we have that the last rule used in the derivation of
∅ � M �H

◦ N is:

∅ � M1 �H
◦ M ′

1 ∅ � M2 �H
◦ M ′

2 ∅ � M ′
1M

′
2�◦N

∅ � M1M2 �H
◦ N

Let S(K) = {λx.P1, . . . , λx.Pn} and Ki = �◦{λx.L |x � Pi �H
◦ L} and,

symmetrically, S(F) = {V1, . . . , Vl} and Xk = �◦{λx.L |Vk = λx.M ′ and
x � M ′ �H

◦ L}. Then by the inductive hypothesis on M1 ⇓ K and M2 ⇓ F
we have that K

(⋃
i∈I{λx.Pi}

) ≤ �M ′
1�

(⋃
i∈I Ki

)
for every I ⊆ {1, .., n} and

F (
⋃

k∈I{Vk}) ≤ �M ′
2�

(⋃
k∈I Xk

)
for every I ⊆ {1, .., l}.

Lemma 4 allows us to derive that for all U ∈ ⋃
1≤i≤n Ki there exist prob-

ability values rU1 , . . . , rUn and for all W ∈ ⋃
1≤k≤l Xk there exist probability

values sW1 , .., sWl such that:

�M ′
1�(U) ≥

∑

1≤i≤n

rUi �M ′
2�(W) ≥

∑

1≤k≤l

sWk ∀U ∈
⋃

1≤i≤n

Ki,W ∈
⋃

1≤k≤l

Xk

K (λx.Pi) ≤
∑

U∈Ki

rUi F (Vk) ≤
∑

W∈Xk

sWk ∀ 1 ≤ i ≤ n, 1 ≤ k ≤ l

76 R. Crubillé et al.

Hence, for every value Z ∈ V⊕or, we have that:

D(Z) =
∑

1≤k≤l

F (Vk) ·
∑

1≤i≤n

K (λx.Pi) · EPi,Vk
(Z)

≤
∑

1≤k≤l

∑

W∈Xk

sWk ·
∑

1≤i≤n

∑

U∈Ki

rUi · EPi,Vk
(Z)

If U = λx.U ′ ∈ Ki then there exists S such that:

(2) ∅ � λx.S �◦ U (3) x � Pi �H
◦ S

By (2), ∅ � S[W/x] �◦ U ′[W/x]. By (3) and by Lemma 3, for W ∈ Xk we
have that ∅ � Pi[Vk/x] �H

◦ S[W/x]. It follows from (1) that ∅ � Pi[Vk/x] �H
◦

U ′[W/x]. Hence, by the induction hypothesis applied to Pi[Vk/x] we have
EPi,Vk

(λx.X) ≤ �U ′[W/x]�(�◦λx.(�H
◦ X)). Therefore,

D(λx.X) ≤
∑

1≤k≤l

∑

W∈Xk

sW
k ·

∑

1≤i≤n

∑

U∈Ki

rU
i · EPi,Vk(λx.X)

≤
∑

W∈ ⋃

1≤k≤l
Xk

∑

U∈ ⋃

1≤i≤n
Ki

(∑

{k|W∈Xk}
sW

k

)
·
(∑

{i|U∈Ki}
rU

i

)
�LU,W �(�◦λx.(�H

◦ X))

≤
∑

W∈ ⋃

1≤k≤l
Xk

∑

U∈ ⋃

1≤i≤n
Ki

�M ′
2�(W) · �M ′

1�(U) · �LU,W �(�◦λx.(�H
◦ X))

≤ �M ′
1M

′
2�(�◦λx.(�H

◦ X))

where LU,W = U ′[W/x] for any U such that U = λx.U ′.
• If M ⇓ D is derived by:

M1 ⇓ D1 M2 ⇓ D2

M1 ⊕ M2 ⇓ 1
2
D1 + 1

2
D2

then ∅ � M �H
◦ N is derived by:

∅ � M1 �H
◦ N1 ∅ � M2 �H

◦ N2 ∅ � N1 ⊕ N2 �◦ N

∅ � M1 ⊕ M2 �H
◦ N

By the inductive hypothesis, for i ∈ {1, 2} we have that for any λx.X ⊆ V⊕or,

Di(λx.X) ≤ �Ni�(�◦λx.(�H
◦ X))

Hence, the result follows from:

1

2
·D1(λx.X) +

1

2
·D2(λx.X) ≤ 1

2
· �N1�(�◦λx.(�H

◦ X)) +
1

2
· �N2�(�◦λx.(�H

◦ X))

• If the last rule applied in the derivation of M ⇓ D is of the following form:
M1 ⇓ D1 M2 ⇓ D2

[M1 ‖ M2] � T ⇓ (
∑

D1 +
∑

D2 −∑D1 ·∑D2) · {T 1}

On Applicative Similarity, Sequentiality, and Full Abstraction 77

then M = [M1 ‖ M2] � T and ∅ � M �H
◦ N is derived by:

∅ � M1 �H
◦ N1 ∅ � M2 �H

◦ N2 ∅ � [N1 ‖ N2] � T �◦ N

∅ � [M1 ‖ M2] � T �H
◦ N

By inductive hypothesis on M1 ⇓ D1 we have that for any λx.X ⊆ V⊕or,
D1(λx.X) ≤ �N1�(�◦λx.(�H

◦ X)). Hence, for λx.X = S(D1) we have that:
∑

D1 = D1(λx.X) ≤ �N1�(�◦λx.(�H
◦ X)) ≤ �N1�(S(�N1�)) =

∑
�N1�

and, symmetrically, by the inductive hypothesis on M2 ⇓ D2 we have
∑

D2 ≤∑
�N2�. Therefore,

∑
D1 +

∑
D2 −

∑
D1 ·

∑
D2 ≤

∑
�N1� +

∑
�N2� −

∑
�N1� ·

∑
�N2�

Let λx.X ⊆ V⊕or. If T �∈ λx.X then D = 0 and the result follows. Otherwise,
it follows from T = λx.T ′ ∈ �◦λx.(�H

◦ {T ′}) (since both �◦ and �H
◦ are

reflexive) that

D(λx.X) = D(λx.T ′) =
∑

D1 +
∑

D2 −
∑

D1 ·
∑

D2

≤
∑

�N1� +
∑

�N2� −
∑

�N1� ·
∑

�N2�

= �N�(λx.T ′) = �N�(�◦λx.(�H
◦ X))

�
A consequence of the Key Lemma, then, is that relation �H

◦ on closed terms is
an applicative simulation, thus included in the largest one, namely �. Hence, if
M,N are open terms and x1, . . . , xn � M �H

◦ N then it follows from Lemma
3 that for all V1, . . . , Vn,W1, . . . , Wn such that ∅ � Vi �H

◦ Wi we have that
∅ � M [V1, . . . , Vn/x1, . . . , xn] �H

◦ N [W1, . . . , Wn/x1, . . . , xn], which implies (by
the reflexivity of �H

◦ and by �H
◦ ⊆ �◦ on closed terms) that for all V1, . . . , Vn we

have that ∅ � M [V1, . . . , Vn/x1, . . . , xn]�◦N [V1, . . . , Vn/x1, . . . , xn], i.e., M�◦N .
Since �◦ is itself included in �H

◦ , we obtain that �◦ =�H
◦ . Hence, it follows from

the transitivity of �◦ and from the fact that �H
◦ is compatible that:

Theorem 2 (Congruence). �◦ is a precongruence .

The congruence of �◦ allows us to prove that it is a sound with respect to the
contextual preorder.

Theorem 3 (Soundness). If M�◦N then M ≤ N .

Proof. Let M�◦N . Using Theorem 2, it can be easily proved by induction on
C that for any context C it holds that C[M]�◦C[N]. If C[M]�◦C[N] then∑

�C[M]� ≤ ∑
�C[M]�, which implies the result.
�

78 R. Crubillé et al.

5 Full Abstraction

In [24], both bisimilarity and similarity on labelled Markov chains are charac-
terised by a language of test, refining the testing characterization of bisimilarity
presented in [14]. This characterisation is used in [4] to show that the bisimilar-
ity relation on terms is fully abstract with respect to the contextual equivalence.
The language of tests used to characterize bisimulation is the following:

Definition 13. Let M = (S,L,P) be a LMC. The test language T0(M) is
given by the grammar t ::= ω | a · t | 〈t, t〉, where a ∈ L.
This language represents tests in the following sense: for any t in the test language
T0(M), and for any s state of M, we can define the probability Pr(s, t) that the
test t succeeds when executed on s.

The full-abstraction result in [4] is based on the fact that, when we consider
the particular Markov chain used to define a bisimulation relation on terms, any
of these tests can actually be simulated by a context. However, the characteri-
sation of the simulation preorder requires to add disjunctive tests:

Definition 14. Let M = (S,L,P) be a LMC. The test language T1(M) is
given by the grammar t ::= ω | a · t | 〈t, t〉 | t ∨ t, where a ∈ L.

We are now going to define the success probability of a test. The success
probability of ω is 1 no matter what state we are starting from. The success
probability of a disjunctive test corresponds to the probability that at least one
of the two tests is successful.

Definition 15. Let M = (S,L,P) be a LMC. For all s ∈ S, and t ∈ T1(M),
we define:

Pr(s, ω) = 1; Pr(s, t ∨ u) = Pr(s, t) + Pr(s, u) − Pr(s, t) · Pr(s, u)

Pr(s, 〈t, u〉) = Pr(s, t) · Pr(s, u); Pr(s, a · t) =
∑

s′∈S P(s, a, s′) · Pr(s′, t).

The following theorem characterises bisimilarity and the simulation preorder on
labelled Markov chains by means of sets of tests.

Theorem 4 ([24]). Let M = (S,L,P) be a LMC and let s, s′ ∈ S. Then:
• s ∼ s′ if and only if for every t ∈ T0(M) it holds that: Pr(s, t) = Pr(s′, t)
• s � s′ if and only if for every t ∈ T1(M) it holds that Pr(s, t) ≤ Pr(s′, t)

Example 3. Consider the two terms M = λx.(I ⊕ Ω) and N = (λx.I) ⊕ (λx.Ω)
from Example 2. We already know that, since they do not verify M � N , there
exists a test t ∈ T1(M⊕or) whose success probability when executed on M is
strictly greater that its success probability when executed on N . We can actually
explicitly give such a test: let t = eval · (I · eval · ω ∨ I · eval · ω) Then it holds
that:

Pr(λx.(I ⊕ Ω), t) =
3
4
; Pr((λx.I) ⊕ (λx.Ω), t) =

1
2
.

On Applicative Similarity, Sequentiality, and Full Abstraction 79

5.1 From Tests to Contexts

It is shown in [4] that simulation is not fully abstract for PCFL⊕ with respect
to the contextual preorder: a direct consequence is that disjunctive tests cannot
be simulated by contexts. In other terms, it is not possible to write a program
that has access to two sub-programs, and terminates with a probability equal to
the probability that at least one of its sub-programs terminates. The proof of [4]
is based on an encoding from T0(M⊕) to the set of contexts. We are going to
extend it into two encodings from T1(M⊕or) to the set of contexts of Λ⊕or: one
encoding expresses the action of tests on states of the form M , and the other
one on states of the form V̂ . The intuitive idea behind Θval and Θterm is the
following: if we take a test t, its success probability starting from the state M
is the same as the convergence probability of the context Θterm(t) filled by M ,
and similarly, its success probability starting from the state V̂ is the same as the
convergence probability of the context Θterm(t) filled by V .

Definition 16. Let Θval : T1(M⊕or) → C and Θterm : T1(M⊕or) → C be
defined by:

Θterm(ω) = λx.[·]; Θval(ω) = λx.[·];
Θterm(V · t) = Ω[·]; Θval(V · t) = Θterm(t)[([·]V)];

Θterm(eval · t) = λx.(Θval(t)[x])[·]; Θval(eval · t) = Ω[·];
Θterm(t ∨ u) = g(Θterm(t), Θterm(u)); Θval(t ∨ u) = g(Θval(t), Θval(u));

Θterm(〈t, u〉) = f(Θterm(t), Θterm(u)); Θval(〈t, u〉) = f(Θval(t), Θval(u));

where f, g : C × C → C are defined by:

f(C,D) = (λx.(λy, z.I)(C[xI])(D[xI]))(λx.[·]);
g(C,D) = (λx.([C[xI] ‖ D[xI]] � I)(λx.[·]).

The apparently complicated structure of f and g comes from the fact that we
cannot construct contexts with several holes. However, since our language has
copying capability, we can emulate contexts with several holes by means of con-
texts with only one hole. Intuitively, we could say that g(C,D) would correspond
to a multihole context [C ‖ D] � I . Please observe that the encoding of the
fragment of T1(M⊕or) corresponding to T0(M⊕or) does not use parallel dis-
junction, i.e., the image of T0(M⊕or) by the encoding is a subset of Λ⊕. We can
now apply this encoding to the test we defined in Example 3.

Example 4. Recall the test t = eval ·(I · eval · ω ∨ I · eval · ω) defined in Example
3. We can apply the embedding to this particular test:

Θterm(t) = (λx. (λz. [(λy.(λw.y))zII ‖ (λy.(λw.y))zII] � I) (λy.x)) [·].
We can see that if we consider the terms M = λx.(I ⊕ Ω) and N =
(λx.I) ⊕ (λx.Ω) defined in Example 2, the context Θterm(t) simulates the test t
with respect to M and N :

Pr(M, t) =
∑

�Θterm(t)[M]�; Pr(N, t) =
∑

�Θterm(t)[N]�.

80 R. Crubillé et al.

Theorem 5. Let t be a test in T1(M⊕or). Then for every M closed term and
every V closed value it holds that:

Pr(M, t) =
∑

�Θterm(t)[M]�; Pr(V̂ , t) =
∑

�Θval(t)[V]�.

Proof. We are going to show the thesis by induction on the structure of t.
• If t = ω, then for every closed term M , and every closed value V , Pr(M,ω) =

Pr(V̂ , ω) = 1, and we have defined Θterm(ω) = Θval(ω) = λx.[·]. Since
Θterm(ω)[M] and Θval(ω)[V] are values, the weight of their semantics is 1,
and so the result holds.

• If t = 〈u1, u2〉, we can directly adapt the construction proposed in [4] to the
untyped case. By the inductive hypothesis, for all 1 ≤ i ≤ 2 it holds that for
every closed term M and every closed value V ,

Pr(M,ui) =
∑

�Θterm(ui)[M]�; Pr(V̂ , ui) =
∑

�Θval(ui)[V]�.

The overall effect of f is to copy the content of the hole into the holes of the
two contexts C and D. For any closed term M , we can express the conver-
gence probability of f(C,D)[M] as a function of the convergence probability
of C[M] and D[M]:

∑
�f(C,D)[M]� =

(∑
�C[(λx.M)I]�

)
·
(∑

�D[(λx.M)I]�
)

=
(∑

�C[M]�
)

·
(∑

�D[M]�
)

Please recall that we have defined:

Θterm(〈u1, u2〉) = f(Θterm(u1), Θterm(u2))

Θval(〈u1, u2〉) = f(Θval(u1), Θval(u2))

We have that, for any closed term M , and any closed value V :
∑

�Θterm(〈u1, u2〉)[M]� = Pr(M,u1) · Pr(M,u2) = Pr(M, 〈u1, u2〉)
∑

�Θval(〈u1, u2〉)[V]� = Pr(V̂ , u1) · Pr(V̂ , u2) = Pr(V̂ , 〈u1, u2〉)
• Now the case t = u1 ∨ u2. By the inductive hypothesis, for all 1 ≤ i ≤ 2 it

holds that for every closed term M and every closed value V ,

Pr(M,ui) =
∑

�Θterm(ui)[M]� Pr(V̂ , ui) =
∑

�Θval(ui)[V]�.

The definition of g allows us to show:
∑

�g(C,D)[M]� =
∑

�C[M]� +
∑

�D[M]� −
∑

�C[M]� ·
∑

�D[M]�

and now it is straightforward to see that:
∑

�Θterm(u1 ∨ u2)[M]� = Pr(M,u1 ∨ u2);
∑

�Θval(u1 ∨ u2)[V]� = Pr(V̂ , u1 ∨ u2).

On Applicative Similarity, Sequentiality, and Full Abstraction 81

• If t = a · u, there are two different kinds of actions:
• when a = eval , we first consider Θval(t): since the eval action is relevant

only for states of M⊕or which are terms (and not distinguished values),
we want that Θval(t)[V] always diverges. Since Θval(t) = Ω[·] and since
�Ω� = ∅, we have that for any closed value V , �Θval(t)[V]� = ∅.
Now, we consider Θterm(t). By the inductive hypothesis, we know that:

Pr(V̂ , u) =
∑

�Θval(u)[V]�.

Please recall that we have defined: Θterm(a · u) = λx.(Θval(u)[x])[·]. Let
be M a closed term. Then it holds that:

∑
�Θterm(a · u)[M]� =

∑

V

�M�(V) ·
∑

�Θval(u)[V]�

=
∑

V

�M�(V) · Pr(V̂ , u)

=
∑

e∈S⊕or

P⊕or(M, eval , e) · Pr(e, u) = Pr(M,u)

• When a = V , with V ∈ V⊕or, we consider first Θterm(V · u). It has been
designed to be a context which diverges whatever its argument is, and so
we indeed have: Pr(M,V ·u) = 0 =

∑
�Θterm(V ·u)[M]�. Then we consider

Θval(t). Recall that we have defined: Θval(V · u) = Θterm(u)[[·]V]. Let
W = λx.M be a closed value:
∑

�Θval(V · u)[W]� =
∑

�Θterm(u)[WV]�

= Pr(WV, u)
= Pr(M [x/V], u) since �WV � = �M [x/V]�
= Pr(W,V · u).

�
Theorem 6. � is fully abstract with respect to the contextual preorder.

Proof. We already know that � is sound, that is �⊆≤. Hence, what is left
to show is that ≤⊆�, which follows from Theorem 5. Let M and N be two
closed terms such that M ≤ N . We want to show that M � N . The testing
characterisation of simulation allows us to say that it is sufficient to show that,
for every test t ∈ T1(M⊕or), Pr(M, t) ≤ Pr(N, t), which in turn is a consequence
of Theorem 5, since every test t of T1(M⊕or) can be simulated by a context of
Λ⊕or.

References

1. Abramsky, S.: The lazy λ-Calculus. In: Turner, D. (ed.) Research Topics in Func-
tional Programming, pp. 65–117. Addison Wesley (1990)

82 R. Crubillé et al.

2. Abramsky, S., Ong, C.-H.L.: Full abstraction in the lazy lambda calculus. Inf.
Comput. 105(2), 159–267 (1993)

3. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans.
on Pattern Analysis and Machine Intelligence 25(5), 564–577 (2003)

4. Crubillé, R., Dal Lago, U.: On probabilistic applicative bisimulation and call-by-
value λ-calculi (long version). CoRR, abs/1401.3766 (2014)

5. Dal Lago, U., Sangiorgi, D., Alberti, M.: On coinductive equivalences for higher-
order probabilistic functional programs (long version). CoRR, abs/1311.1722
(2013)

6. Dal Lago, U., Sangiorgi, D., Alberti, M.: On coinductive equivalences for higher-
order probabilistic functional programs. In: POPL, pp. 297–308 (2014)

7. Dal Lago, U., Zorzi, M.: Probabilistic operational semantics for the lambda calcu-
lus. RAIRO - Theor. Inf. and Applic. 46(3), 413–450 (2012)

8. Danos, V., Harmer, R.: Probabilistic game semantics. ACM Trans. Comput. Log.
3(3), 359–382 (2002)

9. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov pro-
cesses. Inf. Comput. 179(2), 163–193 (2002)

10. Ehrhard, T., Tasson, C., Pagani, M.: Probabilistic coherence spaces are fully
abstract for probabilistic PCF. In: POPL, pp 309–320 (2014)

11. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

12. Goodman, N.D.: The principles and practice of probabilistic programming. In:
POPL, pp. 399–402 (2013)

13. Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations. In: LICS,
pp. 186–195 (1989)

14. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

15. Lassen, S.B.: Relational Reasoning about Functions and Nondeterminism. PhD
thesis, University of Aarhus (1998)

16. Manning, C.D., Schütze, H.: Foundations of statistical natural language processing,
vol. 999. MIT Press (1999)

17. Ong, C.-H.L.: Non-determinism in a functional setting. In: LICS, pp. 275–286
(1993)

18. Park, S., Pfenning, F., Thrun, S.: A probabilistic language based on sampling
functions. ACM Trans. Program. Lang. Syst. 31(1) (2008)

19. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Morgan Kaufmann (1988)

20. Pfeffer, A.: IBAL: A probabilistic rational programming language. In: IJCAI,
pp. 733–740. Morgan Kaufmann (2001)

21. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci.
5(3), 223–255 (1977)

22. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: POPL, pp. 154–165 (2002)

23. Thrun, S.: Robotic mapping: A survey. Exploring Artificial Intelligence in the New
Millennium, pp. 1–35 (2002)

24. van Breugel, F., Mislove, M.W., Ouaknine, J., Worrell, J.: Domain theory, test-
ing and simulation for labelled markov processes. Theor. Comput. Sci. 333(1–2),
171–197 (2005)

Causality, Behavioural Equivalences,
and the Security of Cyberphysical Systems

Sibylle Fröschle(B)

OFFIS and University of Oldenburg, 26121 Oldenburg, Germany
froeschle@informatik.uni-oldenburg.de

Abstract. The large cyberphysical systems that are currently being
developed such as Car2X come with sophisticated security architectures
that involve a complex interplay of security protocols and security APIs.
Although formal methods for security protocols have achieved a mature
stage there are still many challenges left. One is to improve the verifica-
tion of equivalence-based security properties. A second challenge is the
compositionality problem: how can the security of a composition of secu-
rity protocols and APIs be derived from the security of its components.
It seems intuitively clear that foundational results on causal equivalences
and process calculi could help in this situation. In this talk we first iden-
tify four ways to exploit causality in security verification. In particular,
this will lead us to review results on causal equivalences. Finally, we
discuss how such results could help us to tackle the two challenges.

1 Motivation

Cyberphysical systems such as Car2X are potentially vulnerable against attacks
that could have a drastic impact on the safety as well as the privacy of their
users. Therefore such systems must be protected by a sophisticated security
architecture. Take Car2X as an example. Based on a threat and risk analysis,
the ETSI1 standards advocate a security architecture that includes authenticated
Car2X communication by digital signatures, cryptographic keys and credentials
management, privacy enabling technologies by pseudonyms, and in-car software
and hardware security based on hardware security modules (HSMs) [11,12].

Two mechanisms are central within such a security architecture: security
protocols and security APIs. A security protocol specifies an exchange of crypto-
graphic messages between two or several principals, intended to achieve security
objectives such as authentication, key establishment, or confidentiality of data.
A security API (Application Programming Interface) is the software interface to
a security services layer. At the lowest level this will typically be the API to an
HSM that stores and uses sensitive cryptographic keys.

This work is partially supported by the Niedersächsisches Vorab of the Volkswagen
Foundation and the Ministry of Science and Culture of Lower Saxony as part of
the Interdisciplinary Research Center on Critical Systems Engineering for Socio-
Technical Systems.

1 European Telecommunications Standards Institute: http://www.etsi.org.

c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 83–98, 2015.
DOI: 10.1007/978-3-319-23506-6 8

http://www.etsi.org

84 S. Fröschle

The security properties that are central for the verification of security pro-
tocols and APIs fall into two categories: one is that of reachability-based (or
trace-based) properties, the second is the class of equivalence-based properties.
Traditional properties such as authentication and syntactic secrecy are trace-
based properties. They express properties of protocol runs: if A and B exchange
a secret s and during no run of the protocol the attacker can obtain the value s
then the protocol satisfies syntactic secrecy of s. In contrast, privacy-type prop-
erties such as untraceability, vote secrecy, or anonymity have to be expressed in
terms of indistinguishability: if an attacker has no way to distinguish the process
in which A votes ‘yes’ from the process in which she votes ‘no’ then vote secrecy
is satisfied. Formally, indistinguishability is expressed in terms of a notion of
behavioural equivalence.

The verification of security protocols has reached a mature state with
many tools available that can automatically check whether a security prop-
erty is satisfied (up to certain assumptions or abstractions) (e.g. [46]). How-
ever, there are still many challenges left. Decidability and complexity results
as well as automatic tools mainly target reachability-based properties so far.
Hence, one challenge is to improve the foundations and verification techniques
for equivalence-based properties. Only few results on the applied equivalences are
known (c.f. [6]). The tool ProVerif does support the verification of privacy-type
properties but it does so by an ad hoc encoding of the situation when processes
differ only in their choice of some terms [4].

A second challenge concerns compositionality. Most of the formal methods
and automatic tools are only capable of checking one protocol at a time. It is
folklore that as long as two protocols are disjoint in that they do not share any
data their composition is secure iff each protocol is secure in isolation. However,
as exemplified by real security architectures such as that of Car2X this situation
is far from reality. A stack of different protocols and APIs is necessary exactly
because there are different interconnected phases such as key management on
a server, key establishment between a server and a principal, and exchange of
confidential information between them. Another problem is that an attacker
might deliberately induce that protocols share a key they are not supposed to
share, or this might be induced by users who use the same passwords in different
situations. For a summary of works that already address the compositionality
problem see [2,7].

In this talk we explore how causality as a general theme, and causal equiva-
lences from ‘pure’ concurrency theory can help us in the verification of complex
security architectures. We proceed as follows. In Section 2 we review four ways to
exploit causality in security verification, and note that causality has mainly been
applied to reachability-based verification problems. We identify that the fourth
way to exploit causality could be very relevant for equivalence-based properties.
The idea is to apply and lift a positive trend for causal equivalences from concur-
rency theory to equivalence-based verification. Thereby motivated, in Section 3
we take a closer look at these causal equivalences. We give an overview of known
decidability and complexity results, and identify some open problems relevant

Causality, Behavioural Equivalences, and the Security 85

for their application. Finally, in Section 4 we discuss what it takes to lift this
trend into an applied setting, and close with some general remarks.

2 Four Ways to Exploit Causality

2.1 Modelling

1. Modelling: “A causal model says more than a million transitions.”

Transition systems are the natural model when it comes to automatic state
space explorations. But when it comes to modelling or analysing a system by
hand then models that faithfully represent the causal structure of the system
are usually the model of choice. The reason for this success of causal models
is twofold: they avoid the state explosion problem by modelling concurrency
explicitly; and, they typically come with an intuitive graphical notation. So just
as “a picture says more than a thousand words” “a causal model says more than
a million transitions”.

In security verification this is exemplified by the strand space model, which
is the causal model for security protocols. The strand space model was intro-
duced by Thayer, Herzog, and Guttman in their paper “Strand Spaces: Why is
a Security Protocol Correct?” [13] as a special-purpose model that allows one to
develop correctness proofs by hand. To use the author’s own words, it is “distin-
guished from other work on protocol verification by the simplicity of the model
and the ease of producing intelligible and reliable proofs of protocol correctness
even without automated support”.

2.2 Verification

2. Verification: “Refute that an attack exists by tracing all possible causal con-
stellations to a contradiction.”

Everybody has a notion that some event A is a cause of another event B. And
that if event A hadn’t happened then event B wouldn’t have happened either.
This translates into a natural proof principle of backwards analysis. Say we wish
to show that a bad event B cannot happen. To the contrary assume that B has
occurred and analyse what must have happened beforehand. If we can lead all
possible causal constellations to a contradiction then we can conclude that our
assumption was wrong and B can indeed not happen.

This is the proof method that is originally associated with the strand space
model [13]. The original manual proof method also sparked off several gener-
ations of semi-automated tools which work by backwards search. Among the
earliest is the semi-automated tool Athena by Song [47], which translates the
backwards reasoning style into a backwards search algorithm. The Athena tool
has in turn influenced many of the more recent ones: Cremer’s tool Scyther [8],
which has recently been used to analyse the large Internet protocol IPSec by
using supercomputer power [9], and the successor tool Tamarin [46].

86 S. Fröschle

The proof principle has also been employed in the verification of security
APIs. The strand space method has inspired our backwards reasoning app-
roach to security API verification [18,23], including case studies of the standard
PKCS#11. Moreover, an approach for automated backward analysis for a class
of PKCS# 11 configurations as been presented in [35]: by translation into the
Tamarin prover. Finally, the strand space method has also been used to tackle
the compositionality problem: Among the recent proof methods by hand there
is Lowe et al.’s approach to verify layered security architectures including a case
study of TLS [33].

2.3 Decidability and Complexity I

3. Decidability and Complexity I: “Exploit causal structure to reduce a search
space of attacks to a decidable search space of ‘well-structured’ attacks.”

If we work with a model that faithfully represents the causal structure of a
system, we may be able to exploit this extra structure to obtain results we may
not be able to formulate and prove otherwise. An explicit representation of causal
dependencies gives us concepts at hand such as the causal shape or the causal
depth of attacks. Moreover, if we can show that there is an attack iff there is one
with a particularly ‘good and regular’ causal structure then we may be able to
reduce our search for attacks to a search for more manageable ‘well-structured
attacks’, and thereby obtain new decidability and complexity results.

We have used this principle to prove that reachability is decidable in
nexptime for protocols with disequality constraints and bounded message size
[17]; and more recently, that leakiness is decidable for well-founded protocols
[19]. (Leakiness is a type of secrecy that does not admit temporary secrets.)

Well-founded protocols strictly contain a group of protocols that impose condi-
tions that make encrypted messages context-explicit [5,37,43–45]. The idea is that
such protocols merely satisfy the prudent engineering practice recommended by
Abadi and Needham [1]. For example, a ‘light’ way to achieve context-explicitness
is to tag protocols by introducing a constant into each encryption, and thereby to
uniquely identify encrypted subterms occurring in the protocol specification. The
decidability of well-founded protocols confirms that even under this static notion
of context-explicitness security protocols lose their ability to encode Turing com-
plete models, even without bounding message size or the number of nonces. The
key to the result was to introduce a notion of honest causality, which captures that
honest information is propagated from one event to another: there is a causal chain
which contains a backbone of messages and control flow transitions that could not
have been manipulated by the intruder. One can then show that the depth of hon-
est causality is bounded for well-founded protocols.

Context-explicit protocols also enjoy good properties wrt the compositional-
ity problem. In particular, in [7] Ciobâcă and Cortier obtain: any attack trace
on the composition of two differently tagged protocols can be transformed into
an attack against one of the protocols. Hence, the security of a composed pro-
tocol can be derived from the security of each component protocol. The result

Causality, Behavioural Equivalences, and the Security 87

is obtained for a variant of the applied pi-calculus that covers both parallel and
sequential composition. It therefore includes the case where one protocol uses
a sub-protocol for an initial key exchange phase. This result is extended in [2],
and also investigated for equivalence-based properties. A composition result is
obtained for the case of key-exchange protocols wrt diff-equivalence.

2.4 Decidability and Complexity II

4. Decidability and Complexity II: “Use causal counterparts of equivalences
and logics rather than interleaving ones to obtain good decidability and
complexity.”

Typical for the previous subsection is that the verification problem is still
in the realm of interleaving semantics, i.e. can be formulated without relating
to causality, but we use causal concepts to obtain the proof. The fourth slogan
suggests to exploit causality more directly by taking the verification problem
itself into the causal setting. The hope is that then good structural properties of
the systems directly translate into good decidability and complexity properties,
e.g. by admitting a divide and conquer approach.

While reachability-based security properties naturally fall into the previ-
ous category equivalence-based properties seem ideally suited to this approach.
Indeed, there are only few decidability results for equivalence checking in the
context of security protocols, and most of them have concentrated on how to
handle messages rather than the computational power induced by the composi-
tion operators. In contrast, in “pure” concurrency theory there is a body of work,
which has investigated the decidability and complexity of equivalence-checking
for both classical and causal equivalences. Thereby motivated let us next take a
closer look at the standard causal equivalences and their computational power
compared to their interleaving counterparts.

3 Equivalences

3.1 Three Causal Equivalences

Equivalences for concurrency have mainly been studied in the classical setting
where the behaviour of a concurrent system is captured in terms of transitions
labelled by atomic actions rather than sending and receiving of terms. The var-
ious behavioural equivalences can be classified according to two main distinc-
tions: one is linear-time versus branching-time; the second is interleaving versus
causality.

In the linear-time view the behaviour of a system is understood in terms of
its set of possible runs. If concurrency is abstracted away by nondeterministic
interleaving a system run will simply be modelled as a totally ordered sequence
of labelled transitions. Thus, the coarsest behavioural equivalence is trace equiv-
alence: two systems are trace equivalent iff their sets of runs are equivalent up to
isomorphism (i.e. as sequences of actions). In the causal approach a system run

88 S. Fröschle

is more faithfully modelled by a partially ordered set of labelled events. Since
events with the same label may occur concurrently, technically we are dealing
with partially ordered multisets of actions, or pomsets as coined by Pratt. The
causal counterpart of trace equivalence is then represented by pomset trace equiv-
alence: two systems are pomset trace equivalent iff their sets of labelled partial
order runs are equivalent up to isomorphism (i.e. as pomsets of actions).

In branching-time notions of conflict, choice, or branching that naturally
arise during a computation are modelled faithfully. The behaviour of a system is
understood in terms of an ‘unfolding’ that reflects such information, and thereby
shows how the system can unfold into many different possible futures. In the
interleaving view a system naturally unfolds into a tree, or to be precise into
a synchronization tree [39]. Attempts to capture what it means to distinguish
branching in an observational way have culminated in the notion of bisimula-
tion equivalence (short: bisimilarity) [39,42]. It is best explained in terms of a
game between two players, Spoiler and Duplicator, on the two systems to be
compared: Spoiler chooses a transition of one of the systems, and in response,
Duplicator must choose a transition of the other system such that the labels are
matching. The game then continues at the resulting pair of processes. The game
continues like this forever, in which case Duplicator wins, or until either Spoiler
or Duplicator is unable to move, in which case the other participant wins. Two
systems are bisimilar iff Duplicator has a winning strategy in this game.

What are the unfolding structures of the causal approach? It turns out there
are two different ways of capturing causality. One way is to stay within a tree-
shaped view of the world but keep pointers that indicate when one transition is
causally dependent on a previous transition of the same branch. The unfolding
structure is then a causal tree [10]. The corresponding behavioural equivalence
is history preserving bisimilarity (short: hp-b) [50]. It refines the bisimulation
game as follows. Game positions now keep track of the history of the game.
Technically, the histories are pairs (r1, r2, f) where r1 is a partial order run of
the first system, r2 is a partial order run of the second system, and f is a pomset
isomorphism between them. In her move Duplicator must now respond such that
this pair of runs grows pomset isomorphic, i.e. f ∪{t1, t2} must remain a pomset
isomorphism.

The second way of capturing causality while keeping branching information
departs from a tree-shaped structure but unfolds a system into an event structure
[40]. In its most basic form an event structure is a set of events with a partial
order that models causal dependence, and a symmetric and irreflexive relation
added on that captures when two events are in conflict. Several axioms must
hold to implement natural intuitions of this interpretation. They satisfy a basic
principle of concurrency: whenever two independent events can occur consecu-
tively they can also occur in the opposite order. The corresponding behavioural
equivalence is hereditary history preserving bisimilarity (short: hhp-b) [3,31]. It
further refines the bisimulation game by giving Spoiler the option of a backtrack
move: Spoiler may choose a transition in one of the runs that is maximal in the
partial order, and backtrack it. Duplicator must respond by backtracking the

Causality, Behavioural Equivalences, and the Security 89

transition in the other run that is related to Spoiler’s transition in f . The game
continues at the resulting histories. Note how the backtrack move reflects that
history can be traced back in different ways just as independent transitions can
be shuffled in their order.

3.2 Finite-State Results

For finite-state systems the decidability and complexity of the discussed equiv-
alences are well-understood. Fig. 1 gives an overview for finite 1-safe Petri nets.
Checking trace equivalence on finite-state transition systems is similar to check-
ing language equivalence on finite automata, and turns out to be PSPACE-
complete [34]. Bisimilarity on finite-state transition systems is PTIME-complete
[34]; it can be solved in polynomial-time by partition-refinement algorithms
[34,41]. Based on these classical results Jategaonkar and Meyer have obtained
the following results for finite 1-safe Petri nets: trace equivalence is EXPSPACE-
complete, and bisimilarity is DEXPTIME-complete respectively [30]. The blow-
up in complexity reflects that the transition system induced by a finite 1-safe
Petri net is in general exponentially larger than the size of the net.

finite 1-safe Petri nets

trace equivalence EXPSPACE-complete [30] using [34]

pomset trace equivalence EXPSPACE-complete [30]

bisimilarity DEXPTIME-complete [30] using [34]

hp-b DEXPTIME-complete [30]

hhp-b undecidable [32]

Fig. 1. Finite-state results

Hp-b and pomset trace equivalence behave similarly to their interleaving
counterparts. Checking hp-b is DEXPTIME-complete [30]. It can be decided
analogously to bisimilarity using the following insight: it is not necessary to keep
the entire history to capture hp-b, but to see whether pomsets grow isomorphic it
is sufficient to record only those events that can act as maximal causes. Moreover,
this essential fragment of history can be captured in a finite way: by the ordered
markings of [51], or the growth-sites of [30] respectively. The same insight leads
to EXPSPACE-decidability of pomset trace equivalence [30].

In contrast, hhp-b turns out undecidable for finite 1-safe Petri nets [32]. The
root cause of the higher power lies in the different way of capturing causality:
by allowing Spoiler to backtrack the game is taken to the event-based unfolding
level, where the relationship of transitions concerning concurrency and conflict
is globally captured. A key insight is to use the following gadget that is inspired
by a similar tool in [38]: A tiling system T to be played on the ω × ω grid can
be universally encoded by a finite 1-safe Petri net N(T) such that the building
of a domino snake can be faithfully mimicked by a special pattern of forwards

90 S. Fröschle

and backtrack moves in the unfolding structure of N(T). Hence, on their event-
based unfolding level, systems such as finite 1-safe Petri nets are strong enough
to encode tiling problems, and hence the computations of Turing machines, in a
relatively straightforward sense.

All we have established so far is this: in the finite-state world the causal
equivalences are at least as hard as their interleaving counterparts. So is our
suggestion to use causal equivalences for their better composition properties a
futile endeavour? Indeed, we have only reviewed here results on the full class of
finite 1-safe Petri nets. There is a trend that suggests that as soon as we look
at system classes that have good composition properties, and hence, a ‘tame’
interplay between causality, concurrency and conflict then hhp-b and to a degree
also hp-b are better behaved than classical bisimilarity. A survey of results on
subclasses of finite 1-safe Petri nets and open problems can be found in [16]. In
the following, we will investigate this trend for infinite-state classes generated
by process calculi.

3.3 A Hierarchy of Causal Processes

In the interleaving setting equivalence checking has been investigated along a
hierarchy of process behaviours that can be captured in terms of rewrite rules.
This Process Rewrite Systems (PRS) hierarchy is inspired by the Chomsky hier-
archy of formal languages but the PRS grammars are interpreted as generators
of infinite-state transition systems rather than languages. For borderline inves-
tigations of causal equivalences we consider the process algebras of the PRS-
hierarchy as generators of infinite-state 1-safe Petri nets (or other causal models
such as asynchronous transition systems).

Fig. 2 gives an overview of the PRS classes, expanded by the classes Simple
BPP and Simple PA to be explained below. The root of the hierarchy comprises
all finite-state transition systems (FS). At the next level there are two extensions
that can be seen as two interpretations of context-free grammars: Basic Process
Algebra (BPA) extends FS by a sequential composition operator while Basic
Parallel Processes (BPP) integrate a parallel composition operator. The class
Process Algebra (PA) generalizes BPA and BPP by admitting both parallel and
sequential composition. PDA is the class of pushdown processes, the processes
described by pushdown automata, while on the right side we have Petri nets
(PN). The process classes on the left are not interesting here: since they do
not integrate any parallel operator, the causal equivalences will coincide with
their interleaving counterparts. Note that while in the classical interpretation
the infinite-state classes contain all finite-state transition systems, under causal
semantics up to PN they are incomparable with finite-state 1-safe Petri nets.
This is so because BPP and PA restrict the interplay between concurrency and
conflict due to the discipline of the grammars.

Given a set Act of atomic actions, usually denoted by a, b, . . ., and a set Var
of process variables, ranged over by X,Y, . . ., the grammars for FS, BPP, or PA
process expressions over Act and Var are defined as follows:

Causality, Behavioural Equivalences, and the Security 91

Fig. 2. The causal PRS-hierarchy

FS : F ::= 0 | X | a.F | F + F
BPP : E ::= 0 | X | a.E | E + E | E ‖ E
PA : P ::= 0 | X | a.P | P + P | P ‖ P | P · P

where 0 denotes the empty process, X stands for a process variable, and a. ,
+ , ‖ , · denote the operations of action prefix (for each a ∈ Act), nonde-

terministic choice, parallel composition, and sequential composition respectively.
BPP processes are defined as pairs (E,Δ) where Δ is a finite family of (possibly
recursive) defining equations Xi

def= Ei. As usual we require that each occurrence
of a variable in Ei is guarded, i.e. within the scope of an action prefix. This
analogous for FS and PA.

The PRS grammars give rise to BPP, and respectively PA, in normal form.
While in the interleaving world they represent the entire process classes, under
causal semantics they only describe the subclasses Simple BPP, and Simple PA
respectively. They are defined by the following grammars:

SBPP: E ::= X | SE | E ‖ E
SPA: P ::= X | SP | P ‖ P | P · P

where SE stands for an initially sequential SBPP expression given by the fol-
lowing grammar:

SE ::= 0 | a.E | SE + SE

and analogously for SP . Thus, SBPP restrict the mixture of choice and parallel
composition: general summation is replaced by guarded summation. In particu-
lar, this excludes processes such as (P1 ‖ P2) + P3. This is similar for SPA.

Causal semantics for BPP processes have been provided in terms of net
unfoldings, e.g. in [14], and equivalently in terms of event structures via their

92 S. Fröschle

Fig. 3. The unfolding of SBPP E .

Fig. 4. The unfolding of BPP E .

syntax-tree unfoldings [20]. Under such semantics BPP and SBPP have a tree-
like structure. We provide two examples as an illustration.

Example 1. Fig. 3 gives the net unfolding of the SBPP E = (Δ,X1), where
Δ = {X1

def= t1.(X1 ‖ X2) + t2.X2; X2
def= t3.0 + t4.(X1 ‖ X1)}.

Causality, Behavioural Equivalences, and the Security 93

SBPP = BPP? BPP PA PN

=tr yes undecidable [25] undecidable undecidable [24,28]

=pom yes [49] decidable [49] ? undecidable

∼ yes PSPACE-complete [29,48] PSPACE-hard undecidable [28]

∼hp no P [20,36] ? undecidable

∼hhp no P [20,21] ? undecidable

Fig. 5. Summary

Example 2. Fig. 4 demonstrates the unfolding of the BPP E = (Δ,X1), where
Δ = {X1

def= (t1.X2 ‖ t2.X3) + t3.0;X2
def= (t4.X1 + t5.0) ‖ t6.X2;X3

def= (t7.X1 ‖
t8.0) + (t9.0 ‖ t10.X3)}.

PA and SPA have not been equipped with causal semantics yet. But one
would expect that an appropriately defined unfolding semantics would display a
regular structure of fork and join of ‘chunks of independent behaviour’.

Problem 1. Define causal semantics for SPA, and PA respectively.

3.4 Infinite-State Results

Fig. 5 gives an overview of results and open questions in the process hierarchy
up to PA and PN.

PN. For Petri nets all equivalences are undecidable. This follows from
Jančars’s reduction from the halting problem of counter machines, which proves
that bisimilarity as well as trace equivalence is undecidable [28]: first observe
that Petri nets can simulate counter machines, but only in a weak way since
they cannot check for 0; given a counter machine C one constructs two varia-
tions of the Petri net that weakly simulates C such that the difference between
these two nets can only be exposed by faithfully simulating C and reaching the
halting state (in one of the nets); the two nets are non-equivalent iff C halts.
The proof carries over to hp-b and hhp-b. The undecidability of language equiv-
alence was first proved by Hack [24], but Jančar’s proof is stronger in that it
only requires 5 unbounded places.

BPP. Building on Jančar’s technique Hirshfeld managed to resolve that trace
equivalence is undeciable for communication-free Petri nets, and hence BPP [25].
The result does not carry over to pomset trace equivalence on (S)BPP. In con-
trast, Sunesen and Nielsen prove that pomset trace equivalence is decidable for
BPP [49]. The proof first shows that in the linear-time world SBPP and BPP
coincide in that every BPP can effectively be translated into a SBPP such that
they are pomset trace equivalent. The decidability result then follows by a reduc-
tion to the equivalence problem of recognizable tree languages. The complexity
of the algorithm is left open (but should not be hard to resolve).

Problem 2. Resolve the complexity of pomset trace equivalence on (S)BPP.

94 S. Fröschle

While for BPP deciding classical bisimilarity is PSPACE-complete [29] we
obtain polynomial-time decision procedures for both hp-b [36] and hhp-b [21].
The two bisimilarities coincide for SBPP [15] but they do not coincide for BPP
in general. This follows by the standard example of [3]. The decision procedures
rely on different techniques. However, they can both be decided due to good
decomposition properties.

Hp-b has the unique decomposition property : every BPP can be expressed, up
to hp-b, as a parallel composition of prime processes, where a process is prime
when it cannot be represented as a non-trivial parallel composition, up to hp-b.
Moreover, this decomposition is unique up to the permutation of the primes.
Then hp-b can be decided using the general scheme of Hirshfeld, Jerrum, and
Moller [26] of deciding classical bisimilarity on normed BPP [22,36]. The fastest
algorithm for hp-b on BPP runs in O(n6) [20], and is based on the technique of
the distance-to-disabling functions introduced in [29].

Hhp-b has even stronger decomposition properties: modulo trivial choices it
fully reflects the structure of BPP expressions. It can then be decided similarly
to the standard algorithm for solving tree isomorphism [20,21].

In [20] the decision algorithms for both hp-b and hhp-b are presented in a
unified framework. Hhp-b is solved in time O(n3log n), and hp-b in time O(n6)
respectively. In particular, both algorithms use the fact that on BPP hp-b and
hhp-b have a a fixpoint characterization in terms of local games played over BPP
processes of causal depth 1.

To sum up, for SBPP and BPP we can confirm the trend that as soon as we
look at system classes that have a ‘tame’ interplay between causality and conflict
causal equivalences are better behaved than their interleaving counterparts. This
concerns both the linear-time as well as the branching-time equivalences. All
algorithms make use of the fact that under causal semantics BPP and SBPP
have tree-like structure.

PA. While BPP and PN are well-investigated hardly anything is known for
PA. Naturally, the hardness results of BPP carry over. Tackling PA in the inter-
leaving world has turned out to be difficult. The only known positive result is
that bisimilarity on normed PA is decidable in 2-NEXPTIME [27]. The proof
is technically involved and 63 pages long. It is based on an exhaustive case
analysis which investigates when a seqential and a parallel composition can be
equivalent. This might be much easier for causal equivalences. We believe that in
particular hhp-b on simple PA could have very strong decomposition properties
analogously to those for BPP.

Problem 3. Does the positive trend for causal equivalences extend to SPA, and
PA respectively?

4 Summary and Outlook

To sum up, we have the following trend for causal equivalences:

Causality, Behavioural Equivalences, and the Security 95

The computational dichotomy of causality: For finite-state systems causal
equivalences are often computationally much harder than their inter-
leaving counterparts. However, as soon as we consider classes with a
restricted interplay between causality and conflict this trend may be
reversed. In particular, this includes standard infinite-state classes such
as BPP, and might extend to PA.

To use causal equivalences for equivalence-based security properties it is nec-
essary to lift them into the applied pi-calculus. In particular, this means we have
to introduce asynchronous message input and output. While this would destroy
the causal structure enforced by the discipline of the composition operators we
might be able to regain this structure when we restrict ourselves to tagged pro-
tocols. Say a composition is homogeneous when the components relate to the
same protocol process, and heteregenous when the components relate to different
protocol processes. Then, roughly speaking, one could say the results of [6,19]
suggest:

Wrt homogeneous compositions of tagged protocols, atoms only have a
bounded range of decisive influence, and messages only have decisive
influence up to a bounded size.

Thereby we could hope to achieve decidability of reachability- and
equivalence-based properties for tagged protocols when verified in isolation.
Moreover, roughly speaking, one could say the results of [2,7] indicate:

Wrt hetergeneous compositions of tagged protocols, messages have only
a local range of decisive influence as long as the tagging is disjoint.

One could define an appropriate calculus of tagged protocols, for which one
could hope that reachability-based properties would be decidable, and causal
equivalence-based properties would also be decidable by composition results
based on the local effect of messages and the insights from the ‘pure’ causal
equivalences. Altogether this should also lead to an efficient verification method
as long as the component protocols are small.

It is nontrivial to put this down more formally, and it will be even less trivial
to prove it (or disprove if it turns out not to be true!). However, it might be
most difficult of all to carry such ‘design for verification’ paradigms like working
with tagged protocols into the various standards. Striving to do so is essential:
interpreted the other way around, this just implements the general engineering
principle to only interconnect systems in a way that does not create any side
effects.

Acknowledgments. Part of this work has been conducted while I was a member of
Ernst-Rüdiger Olderog’s group working towards my habilitation. I would like to express
my sincere gratitude for his guidance and mentoring during this time. It is due to his
influence that I have adopted the verification viewpoint and realized the necessity to
address cyberphysical systems security.

96 S. Fröschle

References

1. Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols.
IEEE Trans. Softw. Eng. 22(1), 6–15 (1996)

2. Arapinis, M., Cheval, V., Delaune, S.: Composing security protocols: from con-
fidentiality to privacy. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol.
9036, pp. 324–343. Springer, Heidelberg (2015)

3. Bednarczyk, M.: Hereditary history preserving bisimulation or what is the power of
the future perfect in program logics. Technical report, Polish Academy of Sciences,
Gdańsk (1991)

4. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming 75(1),
3–51 (2008)

5. Blanchet, B., Podelski, A.: Verification of Cryptographic Protocols: Tagging
Enforces Termination. Theoretical Computer Science 333(1–2), 67–90 (2005). Spe-
cial issue FoSSaCS 2003

6. Chréetien, R., Cortier, V., Delaune, S.: Typing messages for free in security proto-
cols: the case of equivalence properties. In: Baldan, P., Gorla, D. (eds.) CONCUR
2014. LNCS, vol. 8704, pp. 372–386. Springer, Heidelberg (2014)

7. Ciobâcă, Ş., Cortier, V.: Protocol composition for arbitrary primitives. In: Proceed-
ings of the 23rd IEEE Computer Security Foundations Symposium (CSF 2010),
Edinburgh, Scotland, UK, pp. 322–336. IEEE Computer Society Press, Edinburgh,
July 2010

8. Cremers, C.J.F.: The scyther tool: verification, falsification, and analysis of security
protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418.
Springer, Heidelberg (2008)

9. Cremers, C.: Key exchange in ipsec revisited: formal analysis of IKEv1 and IKEv2.
In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 315–334.
Springer, Heidelberg (2011)

10. Darondeau, P., Degano, P.: Causal trees. In: Ausiello, G., Dezani-Ciancaglini,
M., Rocca, S.R.D. (eds.) ICALP 1989. LNCS, vol. 372, pp. 234–348. Springer,
Heidelberg (1989)

11. ETSI. TS 102 731 V1.1.1: ITS; security; security services and architecture, 09 2010
12. ETSI. TS 102 940 V1.1.1: ITS; security; ITS communications security architecture

and security management, 06 2012
13. Fábrega, F.J.T., Herzog, J.C., Guttman, J.D.:. Strand spaces: Why is a security

protocol correct? In: Symposium on Security and Privacy. IEEE Computer Society
(1998)

14. Fröschle, S.: Decidability and Coincidence of Equivalences for Concurrency. PhD
thesis, University of Edinburgh (2004)

15. Fröschle, S.: Composition and decomposition in true-concurrency. In: Sassone, V.
(ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 333–347. Springer, Heidelberg (2005)

16. Fröschle, S.: The decidability border of hereditary history preserving bisimilarity.
Information Processing Letters 93(6), 289–293 (2005)

17. Fröschle, S.: The insecurity problem: tackling unbounded data. In: Proceedings of
the 20th IEEE Computer Security Foundations Symposium, pp. 370–384 (2007)

18. Fröschle, S.: Causality in Security Protocols and Security APIs: Foundations and
Practical Verification, Habilitation thesis, Universität Oldenburg (2012)

19. Fröschle, S.: Leakiness is decidable for well-founded protocols. In: Focardi, R.,
Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 176–195. Springer, Heidelberg
(2015)

Causality, Behavioural Equivalences, and the Security 97

20. Fröschle, S., Jančar, P., Lasota, S., Sawa, Z.: Non-interleaving bisimulation equiv-
alences on basic parallel processes. Information and Computation 208(1), 42–62
(2010)

21. Fröschle, S., Lasota, S.: Decomposition and complexity of hereditary history pre-
serving bisimulation on BPP. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 263–277. Springer, Heidelberg (2005)

22. Fröschle, S., Lasota, S.: Normed processes, unique decomposition, and complexity
of bisimulation equivalences. In: Proceedings of INFINITY 2006-2009, vol. 239, pp.
17–42. Elsevier (2009)

23. Fröschle, S., Sommer, N.: Reasoning with past to prove PKCS#11 keys secure.
In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp.
96–110. Springer, Heidelberg (2011)

24. Hack, M.: The equality problem for vector addition systems is undecidable. Theo-
ret. Comput. Sci. 2(1), 77–95 (1976)

25. Hirshfeld, Y.: Petri nets and the equivalence problem. In: Meinke, K., Börger, E.,
Gurevich, Y. (eds.) CSL 1993. LNCS, vol. 832, pp. 165–174. Springer, Heidelberg
(1994)

26. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial time algorithm for deciding
bisimulation equivalence of normed Basic Parallel Processes. Mathematical Struc-
tures in Computer Science 6, 251–259 (1996)

27. Hirshfeld, Y., Jerrum, M.: Bisimulation equivalence is decidable for normed process
algebra (Extended abstract). In: Wiedermann, J., Van Emde Boas, P., Nielsen, M.
(eds.) ICALP 1999. LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)

28. Jančar, P.: Undecidability of bisimilarity for Petri nets and some related problems.
Theoretical Computer Science 148(2), 281–301 (1995). STACS 1994

29. Jančar, P.: Bisimilarity of basic parallel processes is PSPACE-complete. In: Proc.
LICS 2003, pp. 218–227. IEEE Computer Society (2003)

30. Jategaonkar, L., Meyer, A.R.: Deciding true concurrency equivalences on safe, finite
nets. Theoretical Computer Science 154(1), 107–143 (1996)

31. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Information and
Computation 127(2), 164–185 (1996)

32. Jurdziński, M., Nielsen, M., Srba, J.: Undecidability of domino games and hhp-
bisimilarity. Inform. and Comput. 184, 343–368 (2003)

33. Kamil, A., Lowe, G.: Analysing tls in the strand spaced model. Journal of Computer
Security 19(5), 975–1025 (2011)

34. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. Information and Computation 86(1), 43–68 (1990)

35. Künnemann, R.: Automated backward analysis of PKCS#11 v2.20. In: Focardi, R.,
Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 219–238. Springer, Heidelberg
(2015)

36. Lasota, S.: A polynomial-time algorithm for deciding true concurrency equivalences
of basic parallel processes. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol.
2747, pp. 521–530. Springer, Heidelberg (2003)

37. Lowe, G.: Towards a completeness result for model checking of security protocols.
Journal of Computer Security 7(1), 89–146 (1999)

38. Madhusudan, P., Thiagarajan, P.S.: Controllers for discrete event systems via mor-
phisms. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 18–33. Springer, Heidelberg (1998)

39. Milner, R. (ed.): A calculus of communicating systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

98 S. Fröschle

40. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part i. Theor. Comput. Sci. 13, 85–108 (1981)

41. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

42. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
Theoretical Computer Science. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg
(1981)

43. Ramanujam, R., Suresh, S.P.: A decidable subclass of unbounded security proto-
cols. In: WITS 2003, pp. 11–20 (2003)

44. Ramanujam, R., Suresh, S.P.: Tagging makes secrecy decidable with unbounded
nonces as well. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS,
vol. 2914, pp. 363–374. Springer, Heidelberg (2003)

45. Ramanujam, R., Suresh, S.P.: Decidability of context-explicit security protocols.
Journal of Computer Security 13(1), 135–165 (2005)

46. Schmidt, B., Sasse, R., Cremers, C., Basin, D.: Automated verification of group
key agreement protocols. In: Proceedings of the 2014 IEEE Symposium on Security
and Privacy SP 2014, DC, USA, Washington, pp. 179–194 (2014)

47. Song, D.X.: Athena: A new efficient automatic checker for security protocol anal-
ysis. In: CSFW 1999, pp. 192–202. IEEE Computer Society (1999)

48. Srba, J.: Strong bisimilarity and regularity of basic parallel processes is PSPACE-
hard. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 535–546.
Springer, Heidelberg (2002)

49. Sunesen, K., Nielsen, N.: Behavioural equivalence for infinite systems—partially
decidable!. In: Billington, J., Reisig, W. (eds.) ICATPN 1996. LNCS, vol. 1091,
pp. 460–479. Springer, Heidelberg (1996)

50. van Glabbeek, R., Goltz, U.: Equivalence notions for concurrent systems and refine-
ment of actions. In: Kreczmar, A., Mirkowska, G. (eds.) MFCS 1989. LNCS, vol.
379, pp. 237–248. Springer, Heidelberg (1989)

51. Vogler, W.: Deciding history preserving bisimilarity. In: Albert, J.L., Monien, B.,
Artalejo, M.R. (eds.) Automata, Languages and Programming. LNCS, vol. 510,
pp. 495–505. Springer, Heidelberg (1991)

Structure Preserving Bisimilarity, Supporting
an Operational Petri Net Semantics of CCSP

Rob J. van Glabbeek1,2(B)

1 NICTA, Sydney, Australia
rvg@cs.stanford.edu

2 Computer Science and Engineering, UNSW, Sydney, Australia

Abstract. In 1987 Ernst-Rüdiger Olderog provided an operational Petri
net semantics for a subset of CCSP, the union of Milner’s CCS and
Hoare’s CSP. It assigns to each process term in the subset a labelled,
safe place/transition net. To demonstrate the correctness of the app-
roach, Olderog established agreement (1) with the standard interleaving
semantics of CCSP up to strong bisimulation equivalence, and (2) with
standard denotational interpretations of CCSP operators in terms of
Petri nets up to a suitable semantic equivalence that fully respects the
causal structure of nets. For the latter he employed a linear-time seman-
tic equivalence, namely having the same causal nets.

This paper strengthens (2), employing a novel branching-time version
of this semantics—structure preserving bisimilarity—that moreover pre-
serves inevitability. I establish that it is a congruence for the operators
of CCSP.

1 Introduction

The system description languages CCS and CSP have converged to one theory
of processes which—following a suggestion of M. Nielsen—was called “CCSP”
in [26]. The standard semantics of this language is in terms of labelled transition
systems modulo strong bisimilarity, or some coarser semantic equivalence. In
the case of CCS, a labelled transition system is obtained by taking as states
the closed CCS expressions, and as transitions those that are derivable from a
collection of rules by induction on the structure of these expressions [24]; this
is called a (structural) operational semantics [30]. The semantics of CSP was
originally given in quite a different way [3,20], but [28] provided an operational
semantics of CSP in the same style as the one of CCS, and showed its consistency
with the original semantics.

Such semantics abstract from concurrency relations between actions by
reducing concurrency to interleaving. An alternative semantics, explicitly mod-
elling concurrency relations, requires models like Petri nets [33] or event struc-
tures [25,36]. In [21,36] non-interleaving semantics for variants of CCSP are

NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.

c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 99–130, 2015.
DOI: 10.1007/978-3-319-23506-6 9

100 R.J. van Glabbeek

given in terms of event structures. However, infinite event structures are needed
to model simple systems involving loops, whereas Petri nets, like labelled tran-
sition systems, offer finite representations for some such systems. Denotational
semantics in terms of Petri nets of the essential CCSP operators are given in
[16,18,35]—see [27] for more references. Yet a satisfactory denotational Petri net
semantics treating recursion has to my knowledge not been proposed.

Olderog [26,27] closed this gap by giving an operational net semantics in the
style of [24,30] for a subset of CCSP including recursion—to be precise: guarded
recursion. To demonstrate the correctness of his approach, Olderog proposed two
fundamental properties such a semantics should have, and established that both
of them hold [27]:

– Retrievability. The standard interleaving semantics for process terms should
be retrievable from the net semantics.

– Concurrency. The net semantics should represent the intended concurrency
of process terms.

The second requirement was not met by an earlier operational net semantics
from [5].

To formalise the first requirement, Olderog notes that a Petri net induces
a labelled transition system through the firing relation between markings—
the interleaving case graph—and requires that the interpretation of any CCSP
expression as a state in a labelled transition system through the standard inter-
leaving semantics of CCSP should be strongly bisimilar to the interpretation of
this expression as a marking in the interleaving case graph induced by its net
semantics.

To formalise the second requirement, he notes that the intended concurrency
of process terms is clearly represented in the standard denotational semantics
of CCSP operators [16,18,35], and thus requires that the result of applying a
CCSP operator to its arguments according to this denotational semantics yields
a similar result as doing this according to the new operational semantics. The
correct representation of recursion follows from the correct representation of the
other operators through the observation that a recursive call has the very same
interpretation as a Petri net as its unfolding.

A crucial parameter in this formalisation is the meaning of “similar”. A logi-
cal choice would be semantic equivalence according to one of the non-interleaving
equivalences found in the literature, where a finer or more discriminating seman-
tics gives a stronger result. To match the concurrency requirement, this equiva-
lence should respect concurrency, in that it only identifies nets which display the
same concurrency relations. In this philosophy, the semantics of a CCSP expres-
sion is not so much a Petri net, but a semantic equivalence class of Petri nets, i.e.
a Petri net after abstraction from irrelevant differences between nets. For this
idea to be entirely consistent, one needs to require that the chosen equivalence
is a congruence for all CCSP constructs, so that the meaning of the composition
of two systems, both represented as equivalence classes of nets, is independent
of the choice of representative Petri nets within these classes.

Instead of selecting such an equivalence, Olderog instantiates “similar” in
the above formalisation of the second requirement with strongly bisimilar, a new

Structure Preserving Bisimilarity 101

relation between nets that should not be confused with the traditional relation of
strong bisimilarity between labelled transition systems. As shown in [1], strong
bisimilarity fails to be an equivalence: it is reflexive and symmetric, but not
transitive.

As pointed out in [27, Page37] this general shortcoming of strong bisimilarity
“does not affect the purpose of this relation” in that book: there it “serves
as an auxiliary notion in proving that structurally different nets are causally
equivalent”. Here causal equivalence means having the same causal nets, where
causal nets [29,34] model concurrent computations or executions of Petri nets. So
in effect Olderog does choose a semantic equivalence on Petri nets, namely having
the same concurrent computations as modelled by causal nets. This equivalence
fully respects concurrency.

1.1 Structure Preserving Bisimilarity

The contribution of the present paper is a strengthening of this choice of a
semantic equivalence on Petri nets. I propose the novel structure preserving
bisimulation equivalence on Petri nets, and establish that the result of apply-
ing a CCSP operator to its arguments according to the standard denotational
semantics yields a structure preserving bisimilar result as doing this according to
Olderog’s operational semantics. The latter is an immediate consequence of the
observation that structure preserving bisimilarity between two nets is implied
by Olderog’s strong bisimilarity.

bisimulation
semantics

trace
semantics

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

structure
preserving
semantics

≈it

≈ib

≈tree

≈st

≈sb

≈2t

≈2b

≈STt

≈STb

≈pt

≈h

≈h (collective)

≡caus

↔sp

≡occ

≈pb

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

Fig. 1. A spectrum of semantic equivalences on Petri nets

Figure 1 shows a map of some equivalence relations on nets found in the liter-
ature, in relation to the new structure preserving bisimilarity, ↔sp. The equiva-
lences become finer when moving up or to the right; thus coarser or less discrim-
inating when following the arrows. The rectangle from ≈it to ≈h is taken from
[10]. The vertical axis is the linear time – branching time spectrum, with trace
equivalence at the bottom and (strong) bisimulation equivalence, or bisimilarity,
at the top. A host of intermediate equivalences is discussed in [11]. The key dif-
ference is that linear time equivalences, like trace equivalence, only consider the

102 R.J. van Glabbeek

set of possible executions of a process, whereas branching time equivalences, like
bisimilarity, additionally take into account at which point the choice between two
executions is made. The horizontal axis indicates to what extent concurrency
information is taken into account. Interleaving equivalences—on the left—fully
abstract from concurrency by reducing it to arbitrary interleaving; step equiva-
lences additionally take into account the possibility that two concurrent actions
happen at exactly the same moment; split equivalences recognise the beginning
and end of actions, which here are regarded to be durational, thereby captur-
ing some information about their overlap in time; ST- or interval equivalences
fully capture concurrency information as far as possible by considering durational
actions overlapping in time; and partial order equivalences capture the causal
links between actions, and thereby all concurrency. By taking the product of these
two axes, one obtains a two-dimensional spectrum of equivalence relations, with
entries like interleaving bisimulation equivalence ≈ib and partial order trace equiv-
alence ≈pt. For the right upper corner several partial order bisimulation equiv-
alences were proposed in the literature; according to [13] the history preserving
bisimulation equivalence ≈h, originally proposed by [32], is the coarsest one that
fully captures the interplay between causality and branching time.

The causal equivalence employed by Olderog, ≡caus , is a linear time equiva-
lence strictly finer than ≈pt. Since it preserves information about the number of
preplaces of a transition, it is specific to a model of concurrency based on Petri
nets; i.e. there is no obvious counterpart in terms of event structures. I found
only two equivalences in the literature that are finer than both ≡caus and ≈h,
namely occurrence net equivalence [16]—≡occ—and the place bisimilarity ≈pb

of [1]. Two nets are occurrence net equivalent iff they have isomorphic unfold-
ings. The unfolding, defined in [25], associates with a given safe Petri net N a
loop-free net—an occurrence net—that combines all causal nets of N , together
with their branching structure. This unfolding is similar to the unfolding of a
labelled transition system into a tree, and thus the interleaving counterpart of
occurrence net equivalence is tree equivalence [11], identifying two transition
systems iff their unfoldings are isomorphic. The place bisimilarity was inspired
by Olderog’s strong bisimilarity, but adapted to make it transitive, and thus
an equivalence relation. My new equivalence ↔sp will be shown to be strictly
coarser than ≡occ and ≈pb, yet finer than both ≡caus and ≈h.

The equivalences discussed above (without the diagonal line in Figure 1) are
all defined on safe Petri nets. Additionally, the definitions generalise to unsafe
Petri nets. However, there are two possible interpretations of unsafe Petri nets,
called the collective token and the individual token interpretation [12], and this
leads to two versions of history preserving bisimilarity. The history preserving
bisimilarity based on the individual token interpretation was first defined for
Petri nets in [2], under the name fully concurrent bisimulation equivalence. At
the level of ST-semantics the collective and individual token interpretations col-
lapse. The unfolding of unsafe Petri nets, and thereby occurrence net equivalence,
has been defined for the individual token interpretation only [7,12,23], and like-
wise causal equivalence can be easily generalised within the individual token

Structure Preserving Bisimilarity 103

interpretation. The new structure preserving bisimilarity falls in the individual
token camp as well.

1.2 Criteria for Choosing This Semantic Equivalence

In selecting a new semantic equivalence for reestablishing Olderog’s agreement
of operational and denotational interpretations of CCSP operators, I consider
the following requirements on such a semantic equivalence (with subsequent
justifications):

1. it should be a branching time equivalence,
2. it should fully capture causality relations and concurrency (and the interplay

between causality and branching time),
3. it should respect inevitability [22], meaning that if two systems are equiva-

lent, and in one the occurrence of a certain action is inevitable, then so is it
in the other,

4. it should be real-time consistent [16], meaning that for every association of
execution times to actions, assuming that actions happen as soon as they
can, the running times associated with computations in equivalent systems
should be the same,

5. it should be preserved under action refinement [4,13], meaning that if in two
equivalent Petri nets the same substitutions of nets for actions are made, the
resulting nets should again be equivalent,

6. it should be finer than Olderog’s causal equivalence,
7. it should not distinguish systems whose behaviours are patently the same,

such as Petri nets that differ only in their unreachable parts,
8. it should be a congruence for the constructs of CCSP,
9. and it should allow to establish agreement between the operational and deno-

tational interpretations of CCSP operators.

Requirement 1 is the driving force behind this contribution. It is motivated by the
insight that branching time equivalences better capture phenomena like deadlock
behaviour. Since in general a stronger result on the agreement between opera-
tional and denotational semantics is obtained when employing a finer semantics,
I aim for a semantics that fully captures branching time information, and thus
is at least as discriminating as interleaving bisimilarity.

Requirement 2 is an obvious choice when the goal of the project is to capture
concurrency explicitly. The combination of Requirements 1 and 2 then natu-
rally asks for an equivalence that is at least as fine as ≈h. One might wonder,
however, for what reason one bothers to define a semantics that captures con-
currency information. In the literature, various practical reasons have been given
for preferring a semantics that (partly) respects concurrency and causality over
an interleaving semantics. Three of the more prominent of these reasons are
formulated as requirements 3, 4 and 5 above.

Requirement 3 is manifestly useful when considering liveness properties of
systems. Requirement 4 obviously has some merit when timing is an issue.
Requirement 5 is useful in system design based on stepwise refinement [13].

104 R.J. van Glabbeek

Requirement 6 is only there so that I can truthfully state to have strengthened
Olderog’s agreement between the denotational and operational semantics, which
was stated in terms of causal equivalence. This requirement will not be needed
in my justification for introducing a new semantic equivalence—and neither will
Requirement 2.

Requirement 7 is hardly in need of justification. The paper [1] lists as a
desirable property of semantic equivalences—one that is not met by their own
proposal ≈pb—that they should not distinguish nets that have isomorphic unfold-
ings, given that unfolding a net should not be regarded as changing it behaviour.
When working within the individual token interpretation of nets I will take this
as a suitable formalisation of Requirement 7.

The argument for Requirement 8 has been given earlier in this introduc-
tion, and Requirement 9 underlies my main motivation for selecting a semantic
equivalence in the first place.

1.3 Applying the Criteria

Table 1 tells which of these requirements are satisfied by the semantic equiv-
alences from Section 1.1 (not considering the one collective token equivalence
there). The first two rows, reporting which equivalences satisfy Requirements
1 and 2, are well-known; these results follow directly from the definitions. The
third row, reporting on respect for inevitability, is a contribution of this paper,
and will be discussed in Section 1.4, and delivered in Sections 11–14.

Regarding Row 4, In [16] it is established that ST-bisimilarity is real-time
consistent. Moreover, the formal definition is such that if a semantic equivalence
≈ is real-time consistent, then so is any equivalence finer than ≈. Linear time
equivalences are not real-time consistent, and neither is ≈2b [17].

In [13] it is established that ≈pt and ≈h are preserved under action refine-
ment, but interleaving and step equivalences are not, because they do not capture
enough information about concurrency. In [10] it is shown that ≈STt and ≈STb

are already preserved under action refinement, whereas by [17] split semantics

Table 1. Which requirements are satisfied by the various semantic equivalences

Equivalence ≈tree ≡occ

≈ib ≈sb ≈2b ≈STb ≈h ↔sp ≈pb

Requirement ≈it ≈st ≈2t ≈STt ≈pt ≡caus

1. Branching time × � � × � × � × � × � × � � �
2. Causality × × × × × × × × × � � � � � �
3. Inevitability × × × × × × × × × × × × � � �
4. Real-time consistency × × × × × × × × � × � × � � �
5. Action refinement × × × × × × × � � � � �? �? �?
6. Finer than ≡caus × × × × × × × × × × × � � � �
7. Coarser than ≡occ � � � � � � � � � � � � � � ×
8. Congruence � � �
9. Operat. ≡ denotat. � � × � � � � � � � � � � ×

Structure Preserving Bisimilarity 105

are not. I conjecture that ≡caus and ≡occ are also preserved under action refine-
ment, but I have not seen a formal proof. I also conjecture that the new ↔sp is
preserved under action refinement.

Rows 6 and 7 follow as soon as I have formally established the implications
of Figure 1 (in Section 10). As for Row 8, I will show in Section 7 that ↔sp is
a congruence for the operators of CCSP. That also ≈it and ≈ib are congruences
for CCSP is well known. The positive results in Row 9 follow from the fact that
Olderog’s strong bisimilarity implies ↔sp, which will be established in Section 6.

Requirements 1 and 6 together limit the search space for suitable equivalence
relations to ≡occ, ≈pb and the new ↔sp. When dropping Requirement 6, but
keeping 2, also ≈h becomes in scope. When also dropping 2, but keeping 4, I
gain ≈STb as a candidate equivalence. However, both ≈h and ≈STb will fall pray
to Requirement 3, so also without Requirements 2 and 6 the search space will
be limited to ≡occ, ≈pb and the new ↔sp.

Requirement 7 rules out ≈pb, as that equivalence makes distinctions based on
unreachable parts of nets [1]. The indispensable Requirement 9 rules out ≡occ,
since that equivalence distinguishes the operational and denotational semantics
of the CCSP expression a0 + a0. According to the operational semantics this
expression has only one transition, whereas by the denotational semantics it
has two, and ≡occ does not collapse identical choices. The same issue plays in
interleaving semantics, where the operational and denotational transition sys-
tem semantics of CCSP do not agree up to tree equivalence. This is one of the
main reasons that bisimilarity is often regarded as the top of the linear time –
branching time spectrum.

This constitutes the justification for the new equivalence ↔sp.

1.4 Inevitability

The meaning of Requirement 3 depends on which type of progress or fairness
property one assumes to guarantee that actions that are due to occur will actually
happen. Lots of fairness assumption are mentioned in the literature, but, as far
as I can tell, they can be classified in exactly 4 groups: progress, justness, weak
fairness and strong fairness [15]. These four groups form a hierarchy, in the
sense that one cannot consistently assume strong fairness while objecting to
weak fairness, or justness while objecting to progress.

Strong and weak fairness deal with choices that are offered infinitely often.
Suppose you have a shop with only two customers A and B that may return to
the shop to buy something else right after they are served. Then it is unfair to
only serve customer A again and again, while B is continuously waiting to be
served. In case B is not continuously ready to be served, but sometimes goes
home to sleep, yet always returns to wait for his turn, it is weakly fair to always
ignore customer B in favour of A, but not strongly fair.

Weak and strong fairness assumptions can be made locally, pertaining to
some repeating choices of the modelled system but not to others, or globally,
pertaining to all choices of a given type. Since the real world is largely unfair,

106 R.J. van Glabbeek

strong and weak fairness assumptions need to be made with great caution, and
they will not appear in this paper.

Justness and progress assumptions, on the other hand, come only in the global
variant, and can be safely assumed much more often. A progress assumption says
that if a system can do some action (that is not contingent on external input) it
will do an action. In the example of the shop, if there is a customer continuously
ready to be served, and the clerk stands pathetically behind the counter staring
at the customer but not serving anyone, there is a failure of progress. Without
assuming progress, no action is inevitable, because it is always possible that a
system will remain in its initial state without ever doing anything. Hence the
concept of inevitability only makes sense when assuming at least progress.

Justness [8,15] says roughly that if a parallel component can make progress
(not contingent on input from outside of this component) it will do so. Suppose
the shop has two counters, each manned by a clerk, and, whereas customer A
is repeatedly served at counter 1, customer B is ready to be served by counter
2, but is only stared at by a pathetic clerk. This is not a failure of progress,
as in any state of the system someone will be served eventually. Yet it counts
as a failure of justness. In the context of Petri nets, a failure of justness can
easily be formalised as an execution, during which, from some point onwards,
all preplaces of a given transition remain marked, yet the transition never fires
[14]. One could argue that, when taking concurrency seriously, justness should
be assumed whenever one assumes progress.

Inevitability can be easily expressed in temporal logics like LTL [31] or CTL
[6], and it is well known that strongly bisimilar transition systems satisfy the
same temporal formulas. This suggests that interleaving bisimilarity already
respects inevitability. However, this conclusion is warranted only when assuming
progress but not justness, or perhaps also when assuming some form of weak or
strong fairness. The system C := 〈X|X = aX + bX〉—using the CCSP syntax
of Section 2—repeatedly choosing between the actions a and b, is interleaving
bisimilar to the system D := 〈Y |Y =aY 〉‖〈Z|Z =bZ〉, which in parallel performs
infinitely many as and infinitely many bs. Yet, when assuming justness but not
weak fairness, the execution of the action b is inevitable in D, but not in C. This
shows that when assuming justness but not weak fairness, interleaving bisim-
ilarity does not respect inevitability. The paper [22], which doesn’t use Petri
nets as system model, leaves the precise formulation of a justness assumption
for future work—this task is undertaken in the different context of CCS in [15].
Also, respect of inevitability as a criterion for judging semantic equivalences
does not occur in [22], even though “the partial order approach” is shown to be
beneficial.

In this paper, assuming justness but not strong or weak fairness, I show
that neither ≈h nor ≡caus respects inevitability (using infinite nets in my coun-
terexample). Hence, respecting concurrency appears not quite enough to respect
inevitability. Respect for inevitability, like real-time consistency, is a property
that holds for any equivalence relation finer than one for which it is known
to hold already. So also none of the ST- or interleaving equivalences respects

Structure Preserving Bisimilarity 107

inevitability. I show that the new equivalence ↔sp respects inevitability. This
makes it the coarsest equivalence of Figure 1 that does so.

2 CCSP

CCSP is parametrised by the choice of an infinite set Act of actions, that I
will assume to be fixed for this paper. Just like the version of CSP from Hoare
[20], the version of CCSP used here is a typed language, in the sense that with
every CCSP process P an explicit alphabet α(P) ⊆ Act is associated, which is a
superset of the set of all actions the process could possibly perform. This alphabet
is exploited in the definition of the parallel composition P‖Q: actions in the
intersection of the alphabets of P and Q are required to synchronise, whereas all
other actions of P and Q happen independently. Because of this, processes with
different alphabets may never be identified, even if they can perform the same set
of actions and are alike in all other aspects. It is for this reason that I interpret
CCSP in terms of typed Petri nets, with an alphabet as extra component.

I also assume an infinite set V of variable names. A variable is a pair XA

with X ∈ V and A ⊆ Act. The syntax of (my subset of) CCSP is given by

P ::= 0A | aP | P + P | P‖P | R(P) | XA | 〈XA|S〉 (with XA ∈ VS)

with A ⊆ Act, a ∈ Act, R ⊆ Act × Act, X ∈ V and S a recursive specification:
a set of equations {YB = SYB

| YB ∈ VS} with VS ⊆ V × Act (the bound
variables of S) and SYB

a CCSP expression satisfying α(SYB
) = B for all YB ∈VS

(were α(SYB
) is defined below). The constant 0A represents a process that is

unable to perform any action. The process aP first performs the action a and
then proceeds as P . The process P + Q will behave as either P or Q, ‖ is a
partially synchronous parallel composition operator, R a renaming, and 〈XA|S〉
represents the XA-component of a solution of the system of recursive equations
S. A CCSP expression P is closed if every occurrence of a variable XA occurs
in a subexpression 〈YB |S〉 of P with XA ∈ VS .

The constant 0 and the variables are indexed with an alphabet. The alphabet
of an arbitrary CCSP expression is given by:

– α(0A) = α(XA) = α(〈XA|S〉) = A
– α(aP) = {a} ∪ α(P)
– α(P + Q) = α(P‖Q) = α(P) ∪ α(Q)
– α(R(P)) = {b | ∃a ∈ α(P) : (a, b) ∈ R}.

Substitutions of expressions for variables are allowed only if the alphabets match.
For this reason a recursive specification S is declared syntactically incorrect if
α(SYB

) �=B for some YB ∈VS . The interleaving semantics of CCSP is given by the
labelled transition relation → ⊆ TCCSP×Act×TCCSP on the set TCCSP of closed
CCSP terms, where the transitions P

a−→ Q (on arbitrary CCSP expressions) are
derived from the rules of Table 2. Here 〈P |S〉 for P an expression and S a
recursive specification denotes the expression P in which 〈YB |SYB

〉 has been
substituted for the variable YB for all YB ∈ VS .

108 R.J. van Glabbeek

Table 2. Structural operational interleaving semantics of CCSP

aP
a−→ P

P
a−→ P ′

P‖Q
a−→ P ′‖Q

(a /∈ α(Q))
P

a−→ P ′

R(P) b−→ R(P ′)
((a, b) ∈ R)

P
a−→ P ′

P + Q
a−→ P ′

P
a−→ P ′, Q

a−→ Q′

P‖Q
a−→ P ′‖Q′ (a ∈ α(P) ∩ α(Q))

Q
a−→ Q′

P + Q
a−→ Q′

Q
a−→ Q′

P‖Q
a−→ P‖Q′ (a /∈ α(P))

〈SXA
|S〉 a−→ P ′

〈XA|S〉 a−→ P ′

A CCSP expression is well-typed if for any subexpression of the form aP one
has a ∈ α(P) and for any subexpression of the form P + Q one has α(P) =
α(Q). Thus a0{a} + bX∅ is not well-typed, although the equivalent expression
a0{a,b}+bX{a,b} is. A recursive specification 〈XA|S〉 is guarded if each occurrence
of a variable YB ∈ VS in a term SZC

for some ZC∈VS lays within a subterm of
SZC

of the form aP. Following [27] I henceforth only consider well-typed CCSP
expressions with guarded recursion.

In Olderog’s subset of CCSP, each recursive specification has only one equa-
tion, and renamings must be functions instead of relations. Here I allow mutual
recursion and relational renaming, where an action may be renamed into a choice
of several actions—or possibly none. This generalisation does not affect any of
the proofs in [27].

Example 1. The behaviour of the customer from Section 1.4 could be given by
the recursive specification SCus:

CusCu = enter buy leave CusCu

indicating that the customer keeps coming back to the shop to buy more
things. Here enter, buy, leave∈ Act and Cus∈ V . The customer’s alphabet Cu is
{enter, buy, leave}. Likewise, the behaviour of the store clerk could be given by
the specification SClk:

ClkCl = serve ClkCl

where Cl={serve}. The CCSP processes representing the customer and the clerk,
with their reachable states and labelled transitions between them, are displayed
in Figure 2.

In order to ensure that the parallel composition synchronises the buy-action
of the customer with the serve-action of the clerk, I apply renaming operators
RCus and RClk with RCus(buy) = serves and RClk(serve) = serves and leaving all
other actions unchanged, where serves is a joint action of the renamed customer
and the renamed clerk. The total CCSP specification of a store with one clerk
and one customer is

RCus(〈CusCu |SCus〉)‖RClk(〈ClkCl |SClk〉)

Structure Preserving Bisimilarity 109

〈CusCu |SCus〉

buy leave 〈CusCu |SCus〉

enter leave 〈CusCu |SCus〉
buy

leave

〈ClkCl |SClk〉 serve

Fig. 2. Labelled transition semantics of customer and clerk

RCus(〈CusCu |SCus〉)‖RClk(〈ClkCl |SClk〉)

RCus(buy leave 〈CusCu |SCus〉)‖RClk(〈ClkCl |SClk〉)

enter RCus(leave 〈CusCu |SCus〉)‖RClk(〈ClkCl |SClk〉)
serves

leave

Fig. 3. Labelled transition semantics of the 1-customer 1-clerk store

and the relevant part of the labelled transition system of CCSP is displayed
above.
One possible behaviour of this system is the sequence of actions enter serves leave
enter, followed by eternal stagnation. This behaviour is ruled out by the progress
assumption of Section 1.4. The only behaviour compatible with this assumption
is the infinite sequence of actions (enter serves leave)∞.

To model a store with two customers (A and B) and 2 clerks (I and II), I
introduce a relational renaming for each of them, defined by

RA(enter) = A enters RA(buy) = {I servesA, II servesA} RA(leave) = A leaves
RB(enter) = B enters RB(buy) = {I servesB, II servesB} RB(leave) = B leaves

RI(serve) = {I servesA, I servesB}
RII(serve) = {II servesA, II servesB}.

The CCSP specification of a store with two clerks and two customers is
(
RA(〈CusCu |SCus〉)‖RB(〈CusCu |SCus〉)

)‖(
RI(〈ClkCl |SClk〉)‖RII(〈ClkCl |SClk〉)

)

and the part of the labelled transition system of CCSP reachable from that
process has 3 × 3 × 1 × 1 = 9 states and 6 × 4 = 24 transitions.

3 Petri Nets

A multiset over a set S is a function C : S → IN, i.e. C ∈ INS ; let |C| :=∑
x∈X C(x); x ∈ S is an element of C, notation x ∈ C, iff C(x) > 0.
The function ∅ :S → IN, given by ∅(x) :=0 for all x∈S, is the empty multiset

over S. For multisets C and D over S one writes C ≤ D iff C(x) ≤ D(x) for all
x ∈ S; C ∩ D denotes the multiset over S with (C ∩ D)(x) := min(C(x),D(x)),
C + D denotes the multiset over S with (C + D)(x) := C(x) + D(x); and the

110 R.J. van Glabbeek

multiset C − D is only defined if D ≤ C and then (C − D)(x) := C(x) − D(x).
A multiset C with C(x) ≤ 1 for all x is identified with the (plain) set {x |
C(x) = 1}. The construction C := {f(x1, ..., xn) | xi ∈ Di} of a set C out of
sets Di (i = 1, ..., n) generalises naturally to multisets C and Di, taking the
multiplicity C(x) of an element x to be

∑
f(x1,...,xn)=x D1(x1) · ... · Dn(xn).

Definition 1. A (typed) Petri net is a tuple N = (S, T, F,M0, A, �) with
– S and T disjoint sets (of places and transitions),
– F : ((S × T) ∪ (T × S)) → IN (the flow relation including arc weights),
– M0 : S → IN (the initial marking),
– A a set of actions, the type of the net, and
– � : T → A (the labelling function).

Petri nets are depicted by drawing the places as circles and the transitions as
boxes, containing their label. Identities of places and transitions are displayed
next to the net element. For x, y ∈ S ∪ T there are F (x, y) arrows (arcs) from
x to y. When a Petri net represents a concurrent system, a global state of this
system is given as a marking, a multiset M of places, depicted by placing M(s)
dots (tokens) in each place s. The initial state is M0.

The behaviour of a Petri net is defined by the possible moves between mark-
ings M and M ′, which take place when a transition t fires. In that case, t
consumes F (s, t) tokens from each place s. Naturally, this can happen only if M
makes all these tokens available in the first place. Moreover, t produces F (t, s)
tokens in each place s. Definition 2 formalises this notion of behaviour.

Definition 2. Let N = (S, T, F,M0, A, �) be a Petri net and x ∈ S ∪ T . The
multisets •x, x•: S∪T → IN are given by •x(y) = F (y, x) and x•(y) = F (x, y)
for all y ∈S∪T ; for t∈T , the elements of •t and t• are called pre- and postplaces
of t, respectively. Transition t∈T is enabled from the marking M ∈INS—notation
M [t〉—if •t ≤ M . In that case firing t yields the marking M ′ := M − •t + t•

—notation M [t〉M ′.

A path π of a Petri net N is an alternating sequence M0t1M1t2M2t3 . . . of
markings and transitions, starting from the initial marking M0 and either being
infinite or ending in a marking Mn, such that Mk[tk〉Mk+1 for all k (<n). A
marking is reachable if it occurs in such a path. The Petri net N is safe if all
reachable markings M are plain sets, meaning that M(s) ≤ 1 for all places s.
It has bounded parallelism [16] if there is no reachable marking M and infinite
multiset of transitions U such that

∑
t∈U

•t ≤ M . In this paper I consider Petri
nets with bounded parallelism only, and call them nets.

4 An Operational Petri Net Semantics of CCSP

This section recalls the operational Petri net semantics of CCSP, given by
Olderog [26,27]. It associates a net [[P]] with each closed CCSP expression P .

Structure Preserving Bisimilarity 111

The standard operational semantics of CCSP, presented in Section 2, yields
one big labelled transition system for the entire language.1 Each individual closed
CCSP expression P appears as a state in this LTS. If desired, a process graph—an
LTS enriched with an initial state—for P can be extracted from this system-wide
LTS by appointing P as the initial state, and optionally deleting all states and
transitions not reachable from P . In the same vein, an operational Petri net
semantics yields one big Petri net for the entire language, but without an initial
marking. I call such a Petri net unmarked. Each process P ∈ TCCSP corresponds
with a marking dex(P) of that net. If desired, a Petri net [[P]] for P can be
extracted from this system-wide net by appointing dex(P) as its initial mark-
ing, taking the type of [[P]] to be α(P), and optionally deleting all places and
transitions not reachable from dex(P).

The set SCCSP of places in the net is the smallest set including:

aP prefixing μ + ν choice
μ‖A left parallel component A‖μ right component R(μ) renaming

for P ∈ TCCSP, a ∈ Act, μ, ν ∈ SCCSP, A ⊆ Act and renamings R. The mapping
dex : TCCSP → P(SCCSP) decomposing and expanding a process expression
into a set of places is inductively defined by:

dex(0A) = {0A}
dex(aP) = {aP} dex(R(P)) = R(dex(P))
dex(P + Q) = dex(P) + dex(Q) dex(〈XA|S〉) = dex(〈SXA

|S〉)
dex(P‖Q) = dex(P)‖A ∪ A‖dex(Q) where A = α(P) ∩ α(Q).

Here H‖A, A‖H, R(H) and H + K for H,K ⊆ SCCSP are defined element by
element; e.g. R(H) = {R(μ) | μ ∈ H}. The binding matters, so that (A‖H)‖B �=
A‖(H‖B). Since I deal with guarded recursion only, dex is well-defined.

Following [27], I construct the unmarked Petri net (S, T, F,Act, �) of CCSP
with S := SCCSP, specifying the triple (T, F, �) as a ternary relation → ⊆
INS ×Act × INS . An element H

a−→ J of this relation denotes a transition t ∈ T
with �(t) = a such that •t = H and t• = J . The transitions H

α−→ J are derived
from the rules of Table 3.

Note that there is no rule for recursion. The transitions of a recursive pro-
cess 〈XA|S〉 are taken care of indirectly by the decomposition dex(〈XA|S〉) =
dex(〈SXA

|S〉), which expands the decomposition of a recursive call into a decom-
position of an expression in which each recursive call is guarded by an action
prefix.

Example 2. The Petri net semantics of the 2-customer 2-clerk store from
Section 2 is displayed in Figure 4. It is more compact than the 9-
state 24-transition labelled transition system. The name of the bottom-
most place is Ser‖ ∅‖RII(serve 〈ClkCl |SClk〉) where Ser is the alphabet
{I servesA, I servesB, II servesA, II servesB}.
1 A labelled transition system (LTS) is given by a set S of states and a transition
relation T ⊆ S × L × S for some set of labels L . The LTS generated by CCSP has
S := TCCSP, L := Act and T := →.

112 R.J. van Glabbeek

Table 3. Operational Petri net semantics of CCSP

{aP} a−→ dex(P)

H
a−→ J

R(H) b−→ R(J)
((a, b) ∈ R)

H
a−→ J

H‖A
a−→ J‖A

(a /∈ A)

H ∪· K
a−→ J

H ∪ (K + dex(Q)) a−→ J

H
a−→ J K

a−→ L

H‖A ∪ A‖K
a−→ J‖A ∪ A‖L

(a ∈ A)

H ∪· K
a−→ J

H ∪ (dex(P) + K) a−→ J

H
a−→ J

A‖H
a−→ A‖J

(a /∈ A)

A progress assumption, as discussed in Section 1.4, disallows runs that stop
after finitely many actions. So in each run some of the actions from Ser will occur
infinitely often. When assuming strong fairness, each of those actions will occur
infinitely often. When assuming only weak fairness, it is possible that II servesA
and II servesB will never occur, as long as I servesA and I servesB each occur
infinitely often, for in such a run the actions II servesA and II servesB are not
enabled in every state (from some point onwards). However, it is not possible
that I servesB and II servesB never occur, because in such a run, from some
point onwards, the action I servesB is enabled in every state.

When assuming justness but not weak fairness, a run that bypasses any two
serving actions is possible, but a run that bypasses I servesB, II servesA and
II servesB is excluded, because in such a run, from some point onwards, the
action II servesB is perpetually enabled, in the sense that both tokens in its
preplaces never move away.

A leaves • A enters

I servesA

II servesA

B leaves • B enters

I servesB

II servesB

•

•

Fig. 4. Petri net semantics of the 2-customer 2-clerk store

Olderog [26,27] shows that the Petri net [[P]] associated to a closed CCSP
expression P is safe, and that all its reachable markings are finite; the latter
implies that it has bounded parallelism. The following result, from [26,27], shows
that the standard interleaving semantics of CCSP is retrievable from the net
semantics; it establishes a strong bisimulation relating any CCSP expression

Structure Preserving Bisimilarity 113

(seen as a state in a labelled transition system) with its interpretation as a
marking in the Petri net of CCSP.

Theorem 1. There exists a relation B between closed CCSP expressions and
markings in the unmarked Petri net of CCSP, such that

– P B dex(P) for each closed, well-typed CCSP expression with guarded
recursion,

– if PBM and P
a−→ P ′ then there is a marking M ′ and transition t with

�(t) = a, M [t〉M ′ and PBM ′, and

– if PBM and M [t〉M ′ then there is CCSP process P ′ with P
�(t)−−→ P ′ and

PBM ′.

To formalise the concurrency requirement for his net semantics Olderog
defines for each n-ary CCSP operator op an n-ary operation opN on safe Petri
nets, inspired by proposals from [16,18,35], and requires that

(1) [[op(P1, . . . , Pn)]] ≈ opN ([[P1]], . . . , [[Pn]])
(2) [[〈XA|S〉]] ≈ [[〈SXA

|S〉]]

for a suitable relation ≈. In fact, (2) turns out to hold taking for ≈ the identity
relation. He establishes (1) taking for ≈ a relation he calls strong bisimilarity,
whose definition will be recalled in Section 6. When a relation ≡ includes ≈, and
(1) holds for ≈, then it also holds for ≡.

The operations opN (i.e. (0A)N for A⊆Act, aN for a∈Act, RN for R⊆Act×
Act, ‖N and +N) are defined only up to isomorphism, but this is no problem
as isomorphic nets are strongly bisimilar. The definition is recalled below—it
generalises verbatim to non-safe nets, except that +N is defined only for nets
whose initial markings are nonempty plain sets.

Definition 3. [27] The net 0A has type A and consists of a single place, initially
marked: (0A)N := ({0A}, ∅, ∅, {0A}, A, ∅).

Given a net N = (S, T, F,M,A, �) and a ∈ Act, take s0, ta �∈ S ∪ T . Then the
net aN N is obtained from N by the addition of the fresh place s0 and the fresh
transition ta, labelled a, such that •ta = {s0} and ta

• = M . The type of aN N
will be A ∪ {a} and the initial marking {s0}.

Given a net N = (S, T, F,M,A, �) and a renaming operator R(), the net
RN (N) has type R(A) := {b ∈ Act | ∃a ∈ A, (a, b) ∈ R}, the same places and
initial marking as N , and transitions tb for each t∈T and b∈Act with (�(t), b)∈R.
One has •tb := •t, tb

• := t•, and the label of tb will be b.
Given two nets Ni = (Si, Ti, Fi,Mi, Ai, �i) (i=1, 2), their parallel composition

N1‖N N2 = (S, T, F,M,A, �) is obtained from the disjoint union of N1 and N2 by
the omission of all transitions t of T1∪· T2 with �(t)∈A1∩A2, and the addition of
fresh transitions (t1, t2) for all pairs ti∈Ti (i=1, 2) with �1(t1) = �2(t2) ∈ A1∩A2.
Take •(t1, t2) = •t1+•t2, (t1, t2)

• = t1
• +t2

•, �(t1, t2) = �(t1), and A := A1∪A2.
Given nets Ni = (Si, Ti, Fi,Mi, Ai, �i) with Mi �= ∅ a plain set (i = 1, 2), the

net N1 +N N2 with type A1 ∪ A2 is obtained from the disjoint union of N1 and

114 R.J. van Glabbeek

N2 by the addition of the set of fresh places M1 ×M2—this set will be the initial
marking of N1+N N2—and the addition of fresh transitions tKi for any ti∈Ti and
∅ �=K ≤•ti ∩Mi. �(tKi)=�i(t),

•
tK1 =•t1−K +(K ×M2),

•
tK2 =•t2−K +(M1×K)

and (tKi)• = ti
•.

5 Structure Preserving Bisimulation Equivalence

This section presents structure preserving bisimulation equivalence on nets.

Definition 4. Given two nets Ni = (Si,Ti,Fi,Mi,Ai,�i), a link is a pair
(s1, s2)∈S1×S2 of places. A linking l ∈ INS1×S1 is a multiset of links; it can
be seen as a pair of markings with a bijection between them. Let πi(l) ∈ INSi

be these markings, given by π1(l)(s1) =
∑

s2∈S2
l(s1, s2) for all s1 ∈ S1 and

π2(l)(s2) =
∑

s1∈S1
l(s1, s2) for all s2 ∈ S2. A structure preserving bisimulation

(sp-bisimulation) is a set B of linkings, such that

− if c ≤ l ∈ B and π1(c) = •t1 for t1 ∈ T1 then there are a transition t2 ∈ T2

with �(t2) = �(t1) and π2(c) = •t2, and a linking c̄ such that π1(c̄) = t1
•,

π2(c̄) = t2
• and l̄ := l − c + c̄ ∈ B.

− if c ≤ l ∈ B and π2(c) = •t2 then there are a t1 and a c̄ with the same
properties.

N1 and N2 are structure preserving bisimilar, notation N1 ↔sp N2, if A1 = A2

and there is a linking l in a structure preserving bisimulation with M1 = π1(l)
and M2 = π2(l).

Note that if B is an sp-bisimulation, then so is its downward closure
{k | ∃l ∈ B. k ≤ l}. Moreover, if B is an sp-bisimulation between two nets,
then the set of those linkings l ∈ B for which π1(l) and π2(l) are reachable
markings is also an sp-bisimulation.

If B is a set of a links, let B be the set of all linkings that are multisets
over B.

Proposition 1. Structure preserving bisimilarity is an equivalence relation.

Proof. The relation Id , with Id the identity relation on places, is an sp-
bisimulation, showing that N ↔sp N for any net N .

Given an sp-bisimulation B, also {l−1 | l∈B} is an sp-bisimulation, showing
symmetry of ↔sp.

Given linkings h ∈ INS1×S3 , k ∈ INS1×S2 and l ∈ INS2×S3 , write h ∈
k; l if there is a multiset m ∈ INS1×S2×S3 of triples of places, with
k(s1, s2) =

∑
s3∈S m(s1, s2, s3), l(s2, s3) =

∑
s1∈S m(s1, s2, s3) and h(s1, s3) =∑

s2∈S m(s1, s2, s3). Now, for sp-bisimulations B and B′, also B;B′ := {h∈k; l |
k ∈ B ∧ l ∈ B′} is an sp-bisimulation, showing transitivity of ↔sp. ��

Structure Preserving Bisimilarity 115

6 Strong Bisimilarity

As discussed in the introduction and at the end of Section 4, Olderog defined a
relation of strong bisimilarity on safe Petri nets.

Definition 5. For B ⊆ S1 ×S2 a binary relation between the places of two safe
nets Ni = (Si, Ti, Fi,Mi, Ai, �i), write B̂ for the set of all linkings l ⊆ B such that
πi(l) is a reachable marking of Ni for i = 1, 2 and B ∩ (

π1(l) × π2(l)
)

= l. Now
a strong bisimulation as defined in [27] can be seen as a structure preserving
bisimulation of the form B̂. The nets N1 and N2 are strongly bisimilar if A1=A2

and there is a linking l in a strong bisimulation with M1 =π1(l) and M2 =π2(l).

This reformulation of the definition from [27] makes immediately clear that
strong bisimilarity of two safe Petri nets implies their structure preserving bisim-
ilarity. Consequently, the concurrency requirement for the net semantics from
Olderog, as formalised by Requirements (1) and (2) in Section 4, holds for struc-
ture preserving bisimilarity.

7 Compositionality

In this section I show that structure preserving bisimilarity is a congruence for
the operators of CCSP, or, in other words, that these operators are compositional
up to ↔sp.

Theorem 2. If N1 ↔sp N2, a∈Act and R ⊆ Act×Act, then aN N1 ↔sp aN N2

and RN (N2) ↔sp RN (N2). If N l
1

↔sp N l
2 and Nr

1
↔sp Nr

2 then N l
1‖N Nr

1
↔sp

N l
2‖N Nr

2 and, if the initial markings of N l
i and Nr

i are nonempty sets, N l
1 +N

Nr
1

↔sp N l
2 +N Nr

2 .

Proof. Let Ni = (Si, Ti, Fi,Mi, Ai, �i) for i = 1, 2, and let si and ui be the fresh
place and transition introduced in the definition of aN Ni. From N1 ↔sp N2 it
follows that A1 = A2 and hence A1 ∪ {a} = A2 ∪ {a}.

Let B be an sp-bisimulation containing a linking k with Mi = πi(k) for
i=1, 2. Let Ba := B∪{h}, with h = {(s1, s2)}. Then h links the initial markings
of aN N1 and aN N2. Hence it suffices to show that Ba is an sp-bisimulation. So
suppose c ≤ h and π1(c) = •t1 for some t1 ∈ T1. Then c = h and t1 = u1. Take
t2 := u2 and h̄ := c̄ := k.

To show that RN (N2) ↔sp RN (N2) it suffices to show that B also is an
sp-bisimulation between RN (N2) and RN (N2), which is straightforward.

Now let N l
i = (Sl

i, T
l
i , F

l
i ,M

l
i , A

l
i, �

l
i) and Nr

i = (Sr
i , T r

i , F r
i ,Mr

i , Ar
i , �

r
i) for

i=1, 2. Let A := Al
1∩Ar

1 = Al
2∩Ar

2. Create the disjoint union of N l
i and Nr

i in the
definition of N l

i‖N Nr
i by renaming all places s and transitions t of N l

i into s‖A

and t‖A, and all places s and transitions t of Nr
i into A‖s and A‖t. Let Bl and Br

be sp-bisimulations containing linkings kl and kr, respectively, with M l
i = πi(kl)

and Mr
i =πi(kr), for i=1, 2. Take B := {(hl‖A) + (A‖hr) | hl ∈ Bl ∧ hr ∈ Br},

where hl‖A := {(s1‖A, s2‖A) | (s1, s2) ∈ hl}, and A‖hr is defined likewise. Then

116 R.J. van Glabbeek

πi((kl‖A)+(A‖kr)) = πi(kl)‖A+A‖πi(kr) = M l
i‖A+A‖Mr

i is the initial marking
of N l

i‖N Nr
i for i = 1, 2, so it suffices to show that B is an sp-bisimulation.

So suppose c≤(hl‖A)+(A‖hr)∈B with hl∈Bl∧hr∈Br and π1(c)=•t1 for t1 a
transition of N l

1‖N Nr
1 . Then c has the form (cl‖A)+(A‖cr) for cl ≤hl ∈Bl and cr ≤

hr ∈Br, and t1 has the form (i) tl1‖A for tl1 ∈ T l
1 with �l

1(t
l
1) /∈A, or (ii) (tl1‖A, A‖tr1)

for tl1 ∈ T l
1 and tr1 ∈ T r

1 with �l
1(t

l
1) = �r

1(t
r
1) ∈ A, or (iii) A‖tr1 for tr1 ∈ T r

1 with
�r
1(t

r
1) /∈A. In case (i) one has cr =∅ and π1(cl)=•

tl1, whereas in case (ii) π1(cl)=•
tl1

and π1(cr)=•tr1. I only elaborate case (ii); the other two proceed likewise. SinceBl

is an sp-bisimulation, there are a transition tl2 with �l
2(t

l
2) = �l

1(t
l
1) and π2(cl)=•

tl2,
and a linking c̄l such that π1(c̄l) = tl1

•, π2(c̄l) = tl2
• and h̄l := hl − cl + c̄l ∈ Bl.

Likewise, since Br is an sp-bisimulation, there are a transition tr2 with �r
2(t

r
2) =

�r
1(t

r
1) and π2(cr) = •tr2, and a linking c̄r such that π1(c̄r) = tr1

•, π2(c̄r) = tr2
• and

h̄r := hr −cr + c̄r ∈Br. Take t2 := (tl2‖A, A‖tr2). This transition has the same label
as tl2, tr2, tl1, tr1 and (tl1‖A, A‖tr1) = t1. Moreover, π2(c) = π2(cl)‖A + A‖π2(cr) =•
tl2‖A + A‖•tr2 = •t2. Take c̄ := (c̄l‖A) + (A‖c̄r). Then π1(c̄) = t1

•, π2(c̄) = t2
•

and h̄ := (hl‖A) + (A‖hr) − c + c̄ = (h̄l‖A) + (A‖h̄r) ∈ B.
Let N l

i = (Sl
i, T

l
i , F

l
i ,M

l
i , A

l
i, �

l
i) and Nr

i = (Sr
i , T r

i , F r
i ,Mr

i , Ar
i , �

r
i) for i = 1, 2,

with M l
i and Mr

i nonempty plain sets, but this time I assume the nets to already
be disjoint, and such that all the places and transitions added in the construction
of N l

i +N Nr
i are fresh. Let Bl and Br be as above. Without loss of generality

I may assume that the linkings h in Bl and Br have the property that πi(h) is
a reachable marking for i = 1, 2, so that the restriction of πi(h) to M l

i or Mr
i is

a plain set. Define

B+ := {hl
• + (hl

+ ⊗ kr) | hl
• + hl

+ ∈ Bl ∧ hl
+ � kl}

{hr
• + (kl ⊗ hr

+) | hr
• + hr

+ ∈ Br ∧ hr
+ � kr} ∪ {kl ⊗ kr}

where hl⊗hr := {((sl
1, s

r
1), (s

l
2, s

r
2)) | (sl

1, s
l
2)∈hl∧(sr

1, s
r
2)∈hr}. Now πi(kl⊗kr) =

πi(kl)×πi(kr) = M l
i ×Mr

i is the initial marking of N l
i +N Nr

i , so again it suffices
to show that B+ is an sp-bisimulation.

So suppose c ≤ hl
•+(hl

+⊗kr)∈B+ with hl
•+hl

+∈Bl, hl
+ � kl and π1(c)=•t1

for t1 a transition of N l
1 +N Nr

1 .
First consider the case that c ≤ hl

•. Then c ≤ hl
• ≤ hl

•+hl
+∈Bl. Since Bl is an

sp-bisimulation, there are a transition t2∈T l
2 with �l

2(t2) = �l
1(t1) and π2(c) = •t2,

and a linking c̄ such that π1(c̄) = t1
•, π2(c̄) = t2

• and hl
• +hr

+ − c+ c̄ ∈ Bl. Now
hl

•+(hl
+⊗kr)−c+ c̄ = (hl

•−c+ c̄)+(hr
+⊗k2)∈B+ because (hl

•−c+ c̄)+hr
+∈Bl.

In the remaining case π1(c) contains a place (sl
1, s

r
1) ∈ M l

1 × Mr
1 , so t1 must

have either the form tK1l with ∅ �= K ≤ •
tl1 ∩ M l

1 for some tl1 ∈ T l
1, or tK1r with

∅ �= K ≤ •tr1 ∩ Mr
1 for some tr1 ∈ T r

1 . First assume, towards a contradiction,
that t1 = tK1r. Then M l

1×K ≤ •
tK1r = π1(c) ≤ π1(hl

•) + π1(hl
+ ⊗ kr). Since the

places in M l
1×K ⊆ M l

1×Mr
1 are fresh, it follows that M l

1 × K ≤ π1(hl
+ ⊗ kr) ≤

π1(hl
+)×π1(kr) ≤ π1(hl

+)×Mr
1 , implying that M l

1 ≤ π1(hl
+) and K ≤ Mr

1—here
I use that M l

1 �=∅ �=K and π1(hl
+) and Mr

1 are plain sets. However, the condition
hl
+ � kl implies that π1(hl

+) � π1(kl) = M l
1, yielding a contradiction. Hence t1

is of the form tK1l .

Structure Preserving Bisimilarity 117

Since π1(c) = •
tK1l = •

tl1−K + (K × Mr
1), the linking c must have the form

c•+c′ with π1(c•) = •
tl1 − K and π1(c′) = K × Mr

1 . As no place in •
tl1 − K

can be in M l
1 × Mr

1 ⊇ π1(hl
+ ⊗ kr), it follows that c• ≤ hl

•. Likewise, as none
of the places in K × Mr

1 can be in π1(hl
•), it follows that c′ ≤ hl

+ ⊗ kr. Thus
K × Mr

1 = π1(c′) ≤ π1(hl
+ ⊗ kr) ≤ π1(hl

+) × π1(kr) ≤ π1(hl
+) × Mr

1 , implying
K ≤ π1(hl

+)—again using that π1(hl
+) and Mr

1 �= ∅ are plain sets. The linking
hl
+ ⊗ kr has the property that its projection π1(hl

+ ⊗ kr) is a plain set. Since a
subset c′′ of a such linking is completely determined by its first projection π1(c′′),
it follows that c′ = c+ ⊗ kr for the unique linking c+ ≤ hl

+ with π1(c+) = K.
Now c• + c+ ≤ hl

• + hl
+ ∈ Bl and π1(c• + c+) = (•

tl1−K) + K = •
tl1. Since

Bl is an sp-bisimulation, there are a transition tl2 ∈ T l
2 with �l

2(t
l
2) = �l

1(t
l
1) and

π2(c•+c+)=•
tl2, and a linking c̄ such that π1(c̄) = tl1

•, π2(c̄) = tl2
• and hl

• +hl
+−

(c•+c+)+c̄ ∈ Bl. Let L:=π2(c+). Then L �=∅ since K �=∅, L = π2(c+) ≤ π2(hl
+) ≤

π2(kl) = M l
2 and L = π2(c+) ≤ π2(c• + c+) = •

tl2. By Definition 3 N l
2+N Nr

2 has
a transition tL2l with �(tL2l) = �l

2(t
l
2) = �l

1(t
l
1) = �(tL1l),

•
tL2l = •

tl2−L + (L × M l
2) =

π2(c• + c+) − π2(c+) + (π2(c+) × π1(kr)) = π2(c• + (c+ ⊗ kr)) = π2(c) and
tL2l

• = tl2
• = π2(c̄). Moreover, π1(c̄) = tl1

• = tK1
•. Finally, hl

• + (hl
+ ⊗ kr) − c + c̄ =

(hl
• − c• + c̄) + ((hl

+−c+) ⊗ kr) ∈ B+ since (hl
• − c• + c′) + (hl

+−c+) ∈ Bl and
hl
+−c+ ≤ hl

+ � kl.
The case supposing c ≤ hr

• + (kr ⊗ hr
+) ∈ B+ follows by symmetry, whereas

the case c ≤ kl ⊗ kr proceeds by simplification of the other two cases. ��

8 Processes of Nets and Causal Equivalence

A process of a net N [9,19,29] is essentially a conflict-free, acyclic net together
with a mapping function to N . It can be obtained by unwinding N , choosing one
of the alternatives in case of conflict. It models a run, or concurrent computation,
of N . The acyclic nature of the process gives rise to a notion of causality for
transition firings in the original net via the mapping function. A conflict present
in the original net is represented by the existence of multiple processes, each
representing one possible way to decide the conflict. This notion of process differs
from the one used in process algebra; there a “process” refers to the entire
behaviour of a system, including all its choices.

Definition 6. A causal net2 is a net N = (S,T,F,M0,A, �N) satisfying

– ∀s ∈ S.|•s| ≤1≥ |s•| ∧ M0(s) =
{

1 if •s = ∅
0 otherwise,

– F is acyclic, i.e., ∀x ∈ S ∪ T.(x, x) �∈ F
+, where F

+ is the transitive closure
of {(x, y) | F(x, y) > 0},

– and {t ∈ T | (t, u) ∈ F
+} is finite for all u ∈ T.

2 A causal net [29,34] is traditionally called an occurrence net [9,19,33]. Here, following
[27], I will not use the terminology “occurrence net” in order to avoid confusion with
the occurrence nets of [25,36]; the latter extend causal nets with forward branch-
ing places, thereby capturing all runs of the represented system, together with the
branching structure between them.

118 R.J. van Glabbeek

A folding from a net N = (S,T,F,M0,A, �N) into a net N = (S, T, F,M0, A, �)
is a function ρ : S ∪ T → S ∪ T with ρ(S) ⊆ S and ρ(T) ⊆ T , satisfying

– A = A and �N(t) = �(ρ(t)) for all t ∈ T,
– ρ(M0) = M0, i.e. M0(s) = |ρ−1(s) ∩ M0| for all s ∈ S, and
– ∀t ∈ T, s ∈ S. F (s, ρ(t)) = |ρ−1(s) ∩ •t| ∧ F (ρ(t), s) = |ρ−1(s) ∩ t•|. 3

A pair P = (N, ρ) of a causal net N and a folding of N into a net N is a process
of N . P is called finite if T is finite.

Note that if N has bounded parallelism, than so do all of its processes.

Definition 7. [27] A net N is called a causal net of a net N if it is the first
component of a process (N, ρ) of N . Two nets N1 and N2 are causal equivalent,
notation ≡caus , if they have the same causal nets.

Olderog shows that his relation of strong bisimilarity is included in ≡caus [27],
and thereby establishes the concurrency requirement (1) from Section 4 for
≡caus .

For N = (S,T,F,M0,A, �N) a causal net, let N
◦ := {s ∈ S | s• = ∅}. The

following result supports the claim that finite processes model finite runs.

Proposition 2. [19, Theorems3.5and3.6] M is a reachable marking of a net N
iff N has a finite process (N, ρ) with ρ(N◦) = M . Here ρ(N◦)(s) = |ρ−1(s)∩N◦|.
A process is not required to represent a completed run of the original net. It
might just as well stop early. In those cases, some set of transitions can be added
to the process such that another (larger) process is obtained. This corresponds
to the system taking some more steps and gives rise to a natural order between
processes.

Definition 8. LetP=((S,T,F,M0,A, �), ρ) andP′=((S′
,T ′,F ′,M′

0,A
′
, �′), ρ′)

be two processes of the same net. P′ is a prefix of P, notation P
′ ≤ P, and P an

extension of P′, iff S
′ ⊆ S, T ′ ⊆ T, M′

0 = M0, F ′ = F �(S′×T ′ ∪ T ′×S
′) and

ρ′ = ρ �(S′ ∪ T ′). (This implies that A′ = A and �′ = � �T.)

The requirements above imply that if P′ ≤ P, (x, y) ∈ F
+ and y∈S′∪T ′ then x∈

S
′ ∪ T ′. Conversely, any subset T ′ ⊆ T satisfying (t, u) ∈ F

+ ∧ u ∈ T ′ ⇒ t ∈ T ′

uniquely determines a prefix of P. A process (N, ρ) of a net N is initial if N
contains no transitions; then ρ(N◦) is the initial marking of N . Any process has
an initial prefix.

Proposition 3. [19, Theorem 3.17] If Pi = ((Si,Ti,Fi,M0i,Ai, �i), ρi) (i ∈ IN)
is a chain of processes of a net N , satisfying Pi ≤ Pj for i ≤ j, then there
exists a unique process P = ((S,T,F,M0,A, �), ρ) of N with S =

⋃
i∈IN Si and

T =
⋃

i∈IN Ti—the limit of this chain—such that Pi ≤ P for all i ∈ IN. ��

3 For H ⊆ S, the multiset ρ(H) ∈ INS is defined by ρ(H)(s) = |ρ−1(s) ∩ H|. Using
this, these conditions can be reformulated as ρ(•t) = •ρ(t) and ρ(t•) = ρ(t)•.

Structure Preserving Bisimilarity 119

In [9,19,29] processes were defined without the third requirement of Definition 6.
Goltz and Reisig [19] observed that certain processes did not correspond with
runs of systems, and proposed to restrict the notion of a process to those that
can be obtained as the limit of a chain of finite processes [19, endofSection 3].
By [19, Theorems 3.18 and 2.14], for processes of finite nets this limitation is
equivalent with imposing the third bullet point of Definition 6. My restriction
to nets with bounded parallelism serves to recreate this result for processes of
infinite nets.

Proposition 4. Any process of a net can be obtained as the limit of a chain of
finite approximations.

Proof. Define the depth of a transition u in a causal net as one more than the
maximum of the depth of all transitions t with tF+u. Since the set of such
transitions t is finite, the depth of a transition u is a finite integer. Now, given a
process P, the approximation Pi is obtained by restricting to those transitions in
P of depth ≤ i, together with all their pre- and postplaces, and keeping the initial
marking. Clearly, these approximations form a chain, with limit P. By induction
on i one shows that Pi is finite. For P0 this is trivial, as it has no transitions.
Now assume Pi is finite but Pi+1 is not. Executing, in Pi+1, all transitions of Pi

one by one leads to a marking of Pi+1 in which all remaining transitions of Pi+1

are enabled. As these transitions cannot have common preplaces, this violates
the assumption that Pi+1 has bounded parallelism. ��

9 A Process-Based Characterisation of Sp-bisimilarity

This section presents an alternative characterisation of sp-bisimilarity that will
be instrumental in obtaining Theorems 4 and 5, saying that ↔sp is a finer
semantic equivalence than ≡caus and ≈h. This characterisation could have been
presented as the original definition; however, the latter is instrumental in show-
ing that ↔sp is coarser than ≈pb and ≡occ , and implied by Olderog’s strong
bisimilarity.

Definition 9. A process-based sp-bisimulation between two nets N1 and N2 is
a set R of triples (ρ1,N, ρ2) with (N, ρi) a finite process of Ni, for i = 1, 2, such
that

– R contains a triple (ρ1,N, ρ2) with N a causal net containing no transitions,
– if (ρ1,N, ρ2) ∈ R and (N′

, ρ′
i) with i ∈ {1, 2} is a fin. proc. of Ni extending

(N, ρi) then Nj with j := 3−i has a process (N′
, ρ′

j) ≥ (N, ρj) such that
(ρ′

1,N
′
, ρ′

2) ∈ R.

Theorem 3. Two nets are sp-bisimilar iff there exists a process-based sp-
bisimulation between them.

Proof. Let R be a process-ba sed sp-bisimulation between nets N1 and N2.
Define B := {{(ρ1(s), ρ2(s)) | s ∈ N

◦} | (ρ1,N, ρ2) ∈ R}. Then B is an sp-
bisimulation:

120 R.J. van Glabbeek

– Let c ≤ l∈B and π1(c) = •t1 for t1∈T1. Then l = {(ρ1(s), ρ2(s) | s ∈ N
◦} for

some (ρ1,N, ρ2) ∈ R. Extend N to N′ by adding a fresh transition t and fresh
places si for s∈S1 and i∈IN with F1(t1, s) > i; let •t = {s ∈ N

◦ | ρ1(s)∈•t1}
and t• = {si | s∈S1 ∧ i∈ IN ∧F1(t1, s) > i}. Furthermore, extend ρ1 to ρ′

1 by
ρ′
1(t):=t1 and ρ′

1(si):=s. Then •ρ′
1(t)=

•t1=ρ′
1(

•t) and ρ′
1(t)

• = t1
•=ρ′

1(t
•), so

(N′
, ρ′

1) is a process of N1, extending (N, ρ1). Since R is a process-based sp-
bisimulation, N2 has a process (N′

, ρ′
2) ≥ (N, ρ2) such that (ρ′

1,N
′
, ρ′

2) ∈ R.
Take t2 := ρ′

2(t). Then �2(t2) = �N(t) = �1(t1) and c = {(ρ1(s), ρ2(s) | s ∈
•t}, so π2(c) = {ρ2(s) | s ∈ •t} = ρ2(•t) = ρ′

2(
•t) = •

ρ′
2(t) = •t2. Take

c′ := {(ρ′
1(s), ρ

′
2(s)) | s ∈ t•}. Then π1(c′) = t1

•, π2(c′) = t2
• and l′ :=

l − c+ c′ = {(ρ′
1(s), ρ

′
2(s)) | s ∈ N

◦−•t+t•} = {(ρ′
1(s), ρ

′
2(s)) | s ∈ N

′◦} ∈ B.
– The other clause follows by symmetry.

Since R contains a triple (ρ1,N, ρ2) with N a causal net containing no tran-
sitions, B contains a linking l := {(ρ1(s), ρ2(s)) | s ∈ N

◦ such that πi(l) =
ρi(N

◦) = Mi for i=1, 2, where Mi is the initial marking of Ni. Since (N, ρi) is a
process of Ni, Ni must have the the same type as N, for i = 1, 2. It follows that
N1 ↔sp N2.

Now let B be an sp-bisimulation between nets N1 and N2. Let R :=
{(ρ1,N, ρ2) | (N, ρi) is a finite process of Ni (i = 1, 2) and {(ρ1(s), ρ2(s)) | s ∈
N

◦} ∈ B}. Then R is a process-based sp-bisimulation.

– B must contain a linking l with πi(l) = Mi for i=1, 2, where Mi is the initial
marking of Ni; let l = {(sk

1 , s
k
2) | k ∈ K}. Let N be a causal net with places

sk for k ∈ K and no transitions, and define ρi for i = 1, 2 by ρi(sk) = sk
i for

k ∈ K. Then (N, ρi) is an initial process of Ni (i = 1, 2) and (ρ1,N, ρ2) ∈ R.
– Suppose (ρ1,N, ρ2) ∈ R and (N′

, ρ′
1) is a finite process of N1 extending

(N, ρ1). (The case of a finite process of N2 extending (N, ρ1) will follow by
symmetry.) Then l := {(ρ1(s), ρ2(s)) | s∈N◦}∈B. Without loss of generality,
I may assume that N

′ extends N by just one transition, t. The definition
of a causal net ensures that •t ⊆ N

◦, and the definition of a process gives
ρ′
1(

•t) = •t1, where t1 := ρ′
1(t). Let c := {(ρ1(s), ρ2(s)) | s ∈ •t}. Then

c ≤ l and π1(c) = ρ1(•t) = ρ′
1(

•t) = •t1. Since B is an sp-bisimulation, there
are a transition t2 with �(t2) = �(t1) and π2(c) = •t2, and a linking c′ such
that π1(c′) = t1

•, π2(c′) = t2
• and l′ := l − c + c′ ∈ B. The definition of a

process gives ρ′
1(t

•) = t1
•. This makes it possible to extend ρ2 to ρ′

2 so that
ρ′
2(t) := t2, ρ′

2(t
•) = t2

• and c′ = {(ρ′
1(s), ρ

′
2(s)) | s ∈ t•}. Moreover, ρ′

2(
•t) =

ρ2(•t) = π2(c) = •t2. Thus (N′
, ρ′

2) is a finite process of N2 extending (N, ρ2).
Furthermore, {(ρ′

1(s), ρ
′
2(s)) | s ∈ N

′◦} = {(ρ′
1(s), ρ

′
2(s)) | s ∈ N

◦ −•t+t•} =
l − c + c′ ∈ B. Hence (ρ′

1,N
′
, ρ′

2) ∈ R. ��

10 Relating Sp-bisimilarity to other Semantic
Equivalences

In this section I place sp-bisimilarity in the spectrum of existing semantic equiv-
alences for nets, as indicated in Figure 1.

Structure Preserving Bisimilarity 121

10.1 Place Bisimilarity

The notion of a place bisimulation, defined in [1], can be reformulated as follows.

Definition 10. A place bisimulation is a structure preserving bisimulation of
the form B (where B is defined in Section 5). Two nets Ni = (Si, Ti, Fi,Mi, Ai, �i)
(i = 1, 2) are strongly bisimilar, notation N1 ≈pb N2, if A1 = A2 and there is a
linking l in a place bisimulation with M1 = π1(l) and M2 = π2(l).

It follows that ≈pb is finer than ↔sp, in the sense that place bisimilarity of two
nets implies their structure preserving bisimilarity.

10.2 Occurrence Net Equivalence

Definitions of the unfolding for various classes of Petri nets into an occurrence
net appear in [7,12,16,23,25,35,36]—I will not repeat them here. In all these
cases, the definition directly implies that if an occurrence net N results from
unfolding a net N then N is safe and there exists a folding of N into N (recall
Definition 6) satisfying

– if M is a reachable marking of N, and t∈T is a transition of N with •t ≤ ρ(M)
then there is a t ∈ T with ρ(t) = t.

Proposition 5. If such a folding from N to N exists, then N ↔sp N .

Proof. The set of linkings B := {{(s, ρ(s)) | s ∈ M} | M a reachable marking
of N} is an sp-bisimulation between N and N . Checking this is trivial. ��
Two nets N1 and N2 are occurrence net equivalent [16] if they have isomorphic
unfoldings. Since isomorphic nets are strongly bisimilar [27] and hence structure
preserving bisimilar, it follows that occurrence net equivalence between nets is
finer than structure preserving bisimilarity.

In [1] it is pointed out that the strong bisimilarity of Olderog “is not compat-
ible with unfoldings”: they show two nets that have isomorphic unfoldings, yet
are not strongly bisimilar. However, when the net N is safe, the sp-bisimulation
displayed in the proof of Proposition 5 is in fact a strong bisimulation, showing
that each net is strongly bisimilar with its unfolding. This is compatible with
the observation of [1] because of the non-transitivity of strong bisimilarity.

10.3 Causal Equivalence

Causal equivalence is coarser than structure preserving bisimilarity.

Theorem 4. If N1 ↔sp N2 for nets N1 and N2, then N1 ≡caus N2.

Proof. By Theorem 3 there exists a process-based sp-bisimulation R between
N1 and N2. R must contain a triple (ρ01,N

0
, ρ02) with N

0 a causal net contain-
ing no transitions. So (N0

, ρ01) and (N0
, ρ02) are initial processes of N1 and N2,

122 R.J. van Glabbeek

respectively. The net N0 contains isolated places only, as many as the size of the
initial markings of N1 and N2.

Let N be a causal net of N1. I have to prove that N is also a causal net of
N2. Without loss of generality I may assume that N0 is a prefix of N, as being
a causal net of a given Petri net is invariant under renaming of its places and
transitions.

So N1 has a process P1 = (N, ρ1). By Proposition 4, P1 is the limit of a
chain P

0
1 ≤ P

1
1 ≤ P

2
1 ≤ . . . of finite processes of N1. Moreover, for P

0
1 one can

take (N0
, ρ01). Let Pi

1 = (Ni
, ρi

1) for i ∈ IN. By induction on i ∈ IN, it now follows
from the properties of a process-based sp-bisimulation that N2 has processes
P

i+1
2 = (Ni+1

, ρi+1
2), such that (Ni

, ρi
2) ≤ (Ni+1

, ρi+1
2) and (ρi+1

1 ,N
i+1

, ρi+1
2) ∈ R.

Using Proposition 3, the limit P2 = (N, ρ2) of this chain is a process of N2,
contributing the causal net N. ��

10.4 History Preserving bisimilarity

The notion of history preserving bisimilarity was originally proposed in [32]
under the name behavior structure bisimilarity, studied on event structures in
[13], and first defined on Petri nets, under to the individual token interpretation,
in [2], under the name fully concurrent bisimulation equivalence.

Definition 11. [2] Let Ni = (Si,Ti,Fi,M0i,Ai, �i) (i = 1, 2) be two causal
nets. An order-isomorphism between them is a bijection β : T1 → T2 such that
A1 = A2, �2(β(t)) = �1(t) for all t ∈ T1, and t F

+
1 u iff β(t) F

+
2 β(u) for all

t, u ∈ T1.

Definition 12. [2] A fully concurrent bisimulation between two nets N1 and
N2 is a set R of triples ((ρ1,N1), β, (N2, ρ2)) with (Ni, ρi) a finite process of Ni,
for i = 1, 2, and β an order-isomorphism between N1 and N2, such that

– R contains a triple ((ρ1,N1), β, (N2, ρ2)) with N1 containing no transitions,
– if (P1, β,P2) ∈ R and P

′
i with i ∈ {1, 2} is a fin. proc. of Ni extending Pi,

then Nj with j := 3−i has a process P′
j ≥ Pj such that (P′

1, β
′,P′

2) ∈ R for
some β′ ⊇ β.

Write N1 ≈h N2 or N1 ≈fcb N2 iff such a bisimulation exists.

It follows immediately from the process-based characterisation of sp-bisimilarity
in Section 9 that fully concurrent bisimilarity (or history preserving bisimilar-
ity based on the individual token interpretation of nets) is coarser than sp-
bisimilarity.

Theorem 5. If N1 ↔sp N2 for nets N1 and N2, then N1 ≈fcb N2.

Proof. A process-based sp-bisimulation is simply a fully concurrent bisimulation
with the extra requirement that β must be the identity relation. ��

Structure Preserving Bisimilarity 123

11 Inevitability for Non-reactive Systems

A run or execution of a system modelled as Petri net N can be formalised as a
path of N (defined in Section 3) or a process of N (defined in Section 8). A path
or process representing a complete run of the represented system—one that is
not just the first part of a larger run—is sometimes called a complete path or
process. Once a formal definition of a complete path or process is agreed upon,
an action b is inevitable in a net N iff each complete path (or each complete
process) of N contains a transition labelled b. In case completeness is defined
both for paths and processes, the definitions ought to be such that they give rise
to the same concept of inevitability.

The definition of which paths or processes count as being complete depends
on two factors: (1) whether actions that a net can perform by firing a transition
are fully under control of the represented system itself or (also) of the envi-
ronment in which it will be running, and (2) what type of progress or fairness
assumption one postulates to guarantee that actions that are due to occur will
actually happen. In order to address (2) first, in this section I deal only with
nets in which all activity is fully under control of the represented system. In
Section 14 I will generalise the conclusions to reactive systems.

When making no progress or fairness assumptions, a system always has the
option not to progress further, and all paths and all processes are complete—
in particular initial paths and processes, containing no transitions. Conse-
quently, no action is inevitable in any net, so each semantic equivalence respects
inevitability.

When assuming progress, but not justness or fairness, any infinite path or
process is complete, and a finite path or process is complete iff it is maximal, in
the sense that it has no proper extension. In this setting, interleaving bisimilarity,
and hence also each finer equivalence, respects inevitability. The argument is that
an interleaving bisimulation induces a relation between the paths of two related
nets N1 and N2, such that

– each path of N1 is related to a path of N2 and vice versa,
– if two paths are related, either both or neither contain a transition labelled

b,
– if two paths are related, either both or neither of them are complete.

In the rest of this paper I will assume justness, and hence also progress,
but not (weak or strong) fairness, as explained in Section 1.4. In this setting a
process is just or complete4 iff it is maximal, in the sense that it has no proper
extension.

•• a
ta

b
tb

Example. The net depicted on the right has a com-
plete process performing the action a infinitely often,
but never the action b. It consumes each token that

4 The term “complete” is meant to vary with the choice of a progress or fairness
assumption; when assuming only justness, it is set to the value “just”.

124 R.J. van Glabbeek

is initially present or stems from any firing of the transition ta. Hence b is not
inevitable. This fits with the intuition that if a transition occurrence is per-
petually enabled it will eventually happen—but only when strictly adhering to
the individual token interpretation of nets. Under this interpretation, each firing
of tb using a particular token is a different transition occurrence. It is possible
to schedule an infinite sequence of as in such a way that none such transition
occurrence is perpetually enabled from some point onwards.

When adhering to the collective token interpretation of nets, the action b
would be inevitable, as in any execution scheduling as only, transition tb is
perpetually enabled. Since my structure preserving bisimulation fits within the
individual token interpretation, here one either should adhere to that interpre-
tation, or restrict attention to safe nets, where there is no difference between
both interpretations.

12 History Preserving Bisimilarity does not Respect
Inevitability

Consider the safe net N1 depicted in Figure 5, and the net N2 obtained from
N1 by exchanging for any transition tbi (i>0) the preplace s1i−1 for s4. The net
N2 performs in parallel an infinite sequence of a-transitions (where at each step
i>0 there is a choice between tli and tri) and a single b-transition (where there
is a choice between tbi for i>0). In N2 the action b is inevitable. In N1, on the
other hand, b is not inevitable, for the run of N1 in which tli is chosen over tri

•
s0

•
s4

•
s20

atr1 •
s30

a tl1•
s10

b

tb1

s21

atr2 •
s31

a tl2•
s11

b

tb2

s22

.

.

.

.

.

.

Fig. 5. A net in which the action b is not inevitable

Structure Preserving Bisimilarity 125

for all i>0 is complete, and cannot be extended which a b-transition. Thus, each
semantic equivalence that equates N1 and N2 fails to respect inevitability.

Theorem 6. Causal equivalence does not respect inevitability.

Proof. N1 ≡caus N2, because both nets have the same causal nets. One of these
nets is depicted in Figure 6; the others are obtained by omitting the b-transition,
and/or omitting all but a finite prefix of the a-transitions. ��

• •
b

•
a

•

•

a

•

•

. . .

Fig. 6. A causal net of N1 and N2

Theorem 7. History preserving bisimilarity does not respect inevitability.

Proof. Recall that N1 and N2 differ only in their flow relations, and have the
same set of transitions. I need to describe a fully concurrent bisimulation R
between N1 and N2. R consists of a set of triples, each consisting of a process
of N1, a related process of N2, and an order isomorphism between them. First
of all I include all triples (P1, β,P2) where P1 is an arbitrary process of N1,
P2 is the unique process of N2 that induces the same set of transitions as P1,
and β relates transition of P1 and P2 when they map to the same transition of
Ni (i=1, 2). Secondly, I include all triples (P1, β,P2) where P2 is an arbitrary
process of N2 inducing both tbk and tlk for some k>0, and P1 is any process of N1

that induces the same transitions as P2 except that, for some h≥k the induced
transition tlh, if present, is replaced by trh, and tbk is replaced by tbh. (β should
be obvious.) It is trivial to check that the resulting relation is a fully concurrent
bisimulation indeed. ��

13 Structure Preserving Bisimilarity Respects
Inevitability

Definition 13. A net N is called a complete causal net of a net N if it is the
first component of a maximal process (N, ρ) of N . Two nets N1 and N2 are
complete causal net equivalent, notation ≡cc , if they have the same complete
causal nets.

Since the causal nets of a net N are completely determined by the complete
causal nets of N , namely as their prefixes, N1 ≡cc N2 implies N1 ≡caus. N2.
It follows immediately from the definition of inevitability that ≡cc respects
inevitability. Thus, to prove that ↔sp respects inevitability it suffices to show
that ↔sp is finer than ≡cc .

126 R.J. van Glabbeek

Theorem 8. If N1 ↔sp N2 for nets N1 and N2, then N1 ≡cc N2.

Proof. Suppose N1 ↔sp N2. By Theorem 3 there exists a process-based sp-
bisimulation R between N1 and N2. R must contain a triple (ρ01,N

0
, ρ02) with

N
0 a causal net containing no transitions. So (N0

, ρ01) and (N0
, ρ02) are initial

processes of N1 and N2, respectively. The net N0 contains isolated places only.
Let N be a complete causal net of N1. I have to prove that N is also a

complete causal net of N2. Without loss of generality I may assume that N0 is
a prefix of N, as being a complete causal net of a given Petri net is invariant
under renaming of its places.

So N1 has a complete process P1 = (N, ρ1). By Proposition 4, P1 is the limit
of a chain P

0
1 ≤P

1
1 ≤P

2
1 ≤ . . . of finite processes of N1. Moreover, for P0

1 one can
take (N0

, ρ01). Let Pi
1 = (Ni

, ρi
1) for i ∈ IN. By induction on i ∈ IN, it now follows

from the properties of a process-based sp-bisimulation that N2 has processes
P

i+1
2 = (Ni+1

, ρi+1
2), such that (Ni

, ρi
2) ≤ (Ni+1

, ρi+1
2) and (ρi+1

1 ,N
i+1

, ρi+1
2) ∈ R.

Using Proposition 3, the limit P2 = (N, ρ2) of this chain is a process of N2. It
remains to show that P2 is complete.

Towards a contradiction, let P2u = (Nu, ρ2u) be a proper extension of P2,
say with just one transition, u. Then •u ⊆ N

◦. By the third requirement on
occurrence nets of Definition 6, their are only finitely many transitions t with
(t, u) ∈ F

+
2u. Hence one of the finite approximations Nk of N contains all these

transitions. So •u ⊆ (Nk)◦. Let, for all i≥ k, Pi
2u =(Ni

u, ρi
2u) be the finite prefix

of P2 that extends P
i
2 with the single transition u. Then P

i
2u ≤ P

i+1
2u for all

i ≥ k, and the limit of the chain P
k
2u ≤ P

k+1
2u ≤ . . . is P2u. By induction on

i∈ IN, it now follows from the properties of a process-based sp-bisimulation that
N1 has processes P

i
1u = (Ni

u, ρi
1u) for all i ≥ k, such that (ρi

1u,N
i
u, ρi

2u) ∈ R,
(Nk

, ρk
1)≤ (Nk

u, ρk
1u) and (Ni

u, ρi
1u)≤ (Ni+1

u , ρi+1
1u). Using Proposition 3, the limit

P1u = (Nu, ρ1u) of this chain is a process of N1. It extends P1 with the single
transition u, contradicting the maximality of P1. ��

14 Inevitability for Reactive Systems

In the modelling of reactive systems, an action performed by a net is typically
a synchronisation between the net itself and its environment. Such an action
can take place only when the net is ready to perform it, as well as its environ-
ment. In this setting, an adequate formalisation of the concepts of justness and
inevitability requires keeping track of the set of actions that from some point
onwards are blocked by the environment—e.g. because the environment is not
ready to partake in the synchronisation. Such actions are not required to occur
eventually, even when they are perpetually enabled by the net itself. Let’s speak
of a Y -environment if Y is this set of actions. In Section 11 I restricted atten-
tion to ∅-environments, in which an action can happen as soon as it is enabled
by the net in question. In [15] a path is called Y -just iff, when assuming just-
ness, it models a complete run of the represented system in a Y -environment.

Structure Preserving Bisimilarity 127

The below is a formalisation for this concept for Petri nets under the individual
token interpretation.

Definition 14. A process of a net is Y -just or Y -complete it each of its proper
extensions adds a transition with a label in Y .

Note that a just or complete path as defined in Section 11 is a ∅-just or ∅-complete
path. In applications there often is a subset of actions that are known to be fully
controlled by the system under consideration, and not by its environment. Such
action are often called non-blocking. A typical example from process algebra [24]
is the internal action τ . In such a setting, Y -environments exists only for sets of
actions Y ⊆ C , where C is the set of all non-non-blocking actions.

A process of a net is complete if it models a complete run of the represented
system in some environment. This is the case iff it is Y -complete for some set
Y ⊆ C , which is the case iff it is C -complete.

In [34], non-blocking is a property of transitions rather than actions, and non-
blocking transitions are called hot. Transitions that are not hot are cold, which
inspired my choice of the latter C above. In this setting, a process P = (N, ρ) is
complete iff the marking ρ(N◦) enables cold transitions only [34].

Definition 15. A action b is Y -inevitable in a net if each Y -complete process
contains a transition labelled b. A semantic equivalence ≈ respects Y -inevitability
if whenever N1 ≈ N2 and b is Y -inevitable in N1, then b is Y -inevitable in N2.
It respects inevitability iff it respects Y -inevitability for each Y ⊆ C .

In Section 12 it is shown that ≡caus and ≈h do not respect ∅-inevitability. From
this it follows that they do not respect inevitability. In Section 13 it is shown that
↔sp does respect ∅-inevitability. By means of a trivial adaptation the same proof
shows that ↔sp respects Y -inevitability, for arbitrary Y . All that is needed is to
assume that the transition u in that proof has a label /∈ Y . Thus ↔sp respects
inevitability.

15 Conclusion

This paper proposes a novel semantic equivalence for current systems represented
as Petri nets: structure preserving bisimilarity. As a major application—the one
that inspired this work—it is used to establish the agreement between the opera-
tional Petri net semantics of the process algebra CCSP as proposed by Olderog,
and its denotational counterpart. An earlier semantic relation used for this pur-
pose was Olderog’s strong bisimilarity on safe Petri nets, but that relation failed
to be transitive. I hereby conjecture that on the subclass of occurrence nets,
strong bisimilarity and structure preserving bisimilarity coincide. If this it true,
it follows, together with the observations of Section 6 that strong bisimilarity
is included in structure preserving bisimilarity, and of Section 10.2 that each
safe net is strongly bisimilar with its unfolding into an occurrence net, that
on safe nets structure preserving bisimilarity is the transitive closure of strong
bisimilarity.

128 R.J. van Glabbeek

Section 1.2 proposes nine requirements on a semantic equivalence that is
used for purposes like the one above. I have shown that structure preserving
bisimilarity meets eight of these requirements and conjecture that it meets the
remaining one as well.

– It meets Requirement 1, that it respects branching time, as a consequence of
Theorem 5, saying that it is finer than history preserving bisimilarity, which
is known to be finer than interleaving bisimilarity.

– It meets Requirement 2, that it fully captures causality and concurrency (and
their interplay with branching time),5 also as a consequence of Theorem 5.

– It meets Requirement 3, that it respects inevitability (under the standard
interpretation of Petri nets that assumes justness but not fairness),5 as shown
in Section 13.

– It meets Requirement 4, that it is real-time consistent, as a result of Theo-
rem 5.

– I conjecture that it meets Requirement 5, that it is preserved under action
refinement.

– It meets Requirement 6, that it is finer than causal equivalence, by Theo-
rem 4.

– It meets Requirement 7, that it is coarser than ≡occ , as shown in Section 10.2.
– It meets Requirement 8, that it is a congruence for the CCSP operators, by

Thm. 2.
– It meets Requirement 9, that it allows to establish agreement between the

operational and denotational interpretations of CCSP operators, since it is
coarser than Olderog’s strong bisimilarity, as shown in Section 6.

Moreover, structure preserving bisimilarity is the first known equivalence that
meets these requirements. In fact, it is the first that meets the key Requirements
3, 4, 7 and 9.

Acknowledgments. My thanks to Ursula Goltz for proofreading and valuable feed-
back.

References

1. Autant, C., Belmesk, Z., Schnoebelen, P.: Strong bisimilarity on nets revisited. In:
Aarts, E.H.L., van Leeuwen, J., Rem, M. (eds.) Proc. PARLE 1991. LNCS, vol.
506, pp. 295–312. Springer, Heidelberg (1991)

2. Best, E., Devillers, R., Kiehn, A., Pomello, L.: Concurrent Bisimulations in Petri
nets. Acta Informatica 28, 231–264 (1991). doi:10.1007/BF01178506

3. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. Journal of the ACM 31(3), 560–599 (1984). doi:10.1145/828.833

4. Castellano, L., De Michelis, G., Pomello, L.: Concurrency vs interleaving: an
instructive example. Bulletin of the EATCS 31, 12–15 (1987)

5 When taking the individual token interpretation of nets, or restricting attention to
safe ones

http://dx.doi.org/10.1007/BF01178506
http://dx.doi.org/10.1145/828.833

Structure Preserving Bisimilarity 129

5. Degano, P., De Nicola, R., Montanari, U.: CCS is an (augmented) contact free C/E
system. In: Zilli, M.V. (ed.) MMSP 1987. LNCS, vol. 280, pp. 144–165. Springer,
Heidelberg (1987)

6. Emerson, E.A., Clarke, E.M.: Using Branching Time Temporal Logic to Synthe-
size Synchronization Skeletons. Science of Computer Programming 2(3), 241–266
(1982). doi:10.1016/0167-6423(83)90017-5

7. Engelfriet, J.: Branching Processes of Petri Nets. Acta Informatica 28(6), 575–591
(1991). doi:10.1007/BF01463946

8. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan,
W.L.: A Process Algebra for Wireless Mesh Networks used for Modelling, Verifying
and Analysing AODV. Technical Report 5513, NICTA, Sydney, Australia (2013).
http://arxiv.org/abs/1312.7645

9. Genrich, H., Stankiewicz-Wiechno, E.: A dictionary of some basic notions of net
theory. In: Brauer, W. (ed.) Advanced Course: Net Theory and Applications.
LNCS, vol. 84, pp. 519–531. Springer, Heidelberg (1980)

10. van Glabbeek, R.J.: The refinement theorem for ST-bisimulation semantics. In:
Broy, M., Jones, C.B. (eds.) Proceedings IFIP TC2 Working Conference on Pro-
gramming Concepts and Methods. IFIP, pp. 27–52. Springer, Heidelberg (1990)

11. van Glabbeek, R.J.: The linear time - branching time spectrum I; the seman-
tics of concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A.
(eds.) Handbook of Process Algebra, vol. 1, pp. 3–99. Elsevier (2001). doi:10.1016/
B978-044482830-9/50019-9

12. van Glabbeek, R.J.: The individual and collective token interpretations of petri
nets. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp.
323–337. Springer, Heidelberg (2005)

13. van Glabbeek, R.J., Goltz, U.: Refinement of Actions and Equivalence Notions
for Concurrent Systems. Acta Informatica 37, 229–327 (2001). doi:10.1007/
s002360000041

14. van Glabbeek, R.J., Höfner, P.: CCS: It’s not fair!. Acta Informatica 52(2–3),
175–205 (2015). doi:10.1007/s00236-015-0221-6

15. van Glabbeek, R.J., Höfner, P.: Progress, Fairness and Justness in Process Algebra
(2015). http://arxiv.org/abs/1501.03268

16. van Glabbeek, R.J., Vaandrager, F.W.: Petri net models for algebraic theories
of concurrency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) Proc.
PARLE. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987)

17. van Glabbeek, R.J., Vaandrager, F.W.: The Difference Between Splitting in n and
n+1. Information and Comput. 136(2), 109–142 (1997). doi:10.1006/inco.1997.
2634

18. Goltz, U., Mycroft, A.: On the relationship of CCS and Petri nets. In: Paredaens, J.
(ed.) Proceedings 11th ICALP. LNCS, vol. 172, pp. 196–208. Springer, Heidelberg
(1984)

19. Goltz, U., Reisig, W.: The Non-Sequential Behaviour of Petri Nets. Information
and Control 57(2–3), 125–147 (1983). doi:10.1016/S0019-9958(83)80040-0

20. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs (1985)

21. Loogen, R., Goltz, U.: Modelling nondeterministic concurrent processes with event
structures. Fundamenta Informaticae 14(1), 39–74 (1991)

22. Mazurkiewicz, A.W., Ochmanski, E., Penczek, W.: Concurrent Systems and
Inevitability. TCS 64(3), 281–304 (1989). doi:10.1016/0304-3975(89)90052-2

http://dx.doi.org/10.1016/0167-6423(83)90017-5
http://dx.doi.org/10.1007/BF01463946
http://arxiv.org/abs/http://arxiv.org/abs/1312.7645
http://dx.doi.org/10.1016/B978-044482830-9/50019-9
http://dx.doi.org/10.1016/B978-044482830-9/50019-9
http://dx.doi.org/10.1007/s002360000041
http://dx.doi.org/10.1007/s002360000041
http://dx.doi.org/10.1007/s00236-015-0221-6
http://arxiv.org/abs/http://arxiv.org/abs/1501.03268
http://dx.doi.org/10.1006/inco.1997.2634
http://dx.doi.org/10.1006/inco.1997.2634
http://dx.doi.org/10.1016/S0019-9958(83)80040-0
http://dx.doi.org/10.1016/0304-3975(89)90052-2

130 R.J. van Glabbeek

23. Meseguer, J., Montanari, U., Sassone, V.: On the semantics of place/transition
Petri nets. Mathematical Structures in Computer Science 7(4), 359–397 (1997).
doi:10.1017/S0960129597002314

24. Milner, R.: Operational and algebraic semantics of concurrent processes. In: van
Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, chap. 19. Elsevier
Science Publishers B.V. (North-Holland), pp. 1201–1242 (1990). Alternatively see
Communication and Concurrency, Prentice-Hall, Englewood Cliffs, of which an
earlier version appeared as A Calculus of Communicating Systems. LNCS, vol. 92.
Springer (1980). doi:10.1007/3-540-10235-3

25. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. TCS 13(1), 85–108 (1981). doi:10.1016/0304-3975(81)90112-2

26. Olderog, E.-R.: Operational Petri net semantics for CCSP. In: Rozenberg, G. (ed.)
Advances in Petri Nets 1987. LNCS, vol. 266, pp. 196–223. Springer, Heidelberg
(1987)

27. Olderog, E.-R.: Nets, Terms and Formulas: Three Views of Concurrent Processes
and their Relationship. Cambridge Tracts in Theor. Comp. Sc. 23. Cambridge
University Press (1991)

28. Olderog, E.-R., Hoare, C.A.R.: Specification-oriented semantics for communicating
processes. Acta Informatica 23, 9–66 (1986). doi:10.1007/BF00268075

29. Petri, C.A.: Non-sequential processes. Internal Report GMD-ISF-77.05, GMD, St.
Augustin (1977)

30. Plotkin, G.D.: A Structural Approach to Operational Semantics. The Journal of
Logic and Algebraic Programming 60–61, 17–139 (2004). doi:10.1016/j.jlap.2004.
05.001. Originally appeared in 1981

31. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science
(FOCS 1977), pp. 46–57. IEEE (1977). doi:10.1109/SFCS.1977.32

32. Rabinovich, A., Trakhtenbrot, B.A.: Behavior Structures and Nets. Fundamenta
Informaticae 11(4), 357–404 (1988)

33. Reisig, W.: Petri nets – an introduction. EATCS Monographs on Theoretical Com-
puter Science, vol. 4. Springer (1985). doi:10.1007/978-3-642-69968-9

34. Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Methods,
Case Studies. Springer (2013). doi:10.1007/978-3-642-33278-4

35. Winskel, G.: A new definition of morphism on Petri nets. In: Fontet, M., Mehlhorn,
K. (eds.) STACS 84. LNCS, vol. 166, pp. 140–150. Springer, Heidelberg (1984)

36. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Petri Nets: Applications and Relationships to Other Models of Concurrency. LNCS,
vol. 255, pp. 325–392. Springer, Heidelberg (1986)

http://dx.doi.org/10.1017/S0960129597002314
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1016/0304-3975(81)90112-2
http://dx.doi.org/10.1007/BF00268075
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1007/978-3-642-69968-9
http://dx.doi.org/10.1007/978-3-642-33278-4

Logic

Translating Testing Theories
for Concurrent Systems

Jan Peleska(B)

Department of Mathematics and Computer Science,
University of Bremen, Bremen, Germany

jp@informatik.uni-bremen.de

http://informatik.uni-bremen.de/agbs

Abstract. In this article the “classical” topic of theory translation is re-
visited. It is argued that the importance of this research field is currently
growing fast, due to the necessity of re-using known theoretical results
in the context of novel semantic frameworks. As a practical background,
we consider cyber-physical systems and their development and verifica-
tion in distributed collaborative environments, where multiple modelling
formalisms are used for different sub-systems. For verification of the inte-
grated system, these different views need to be integrated and consoli-
dated as well, in order to ensure that the required emergent properties
have been realised as intended. The topic is illustrated by a practical
problem from the field of runtime verification. It is shown how a class
of complete health monitors (i.e. checkers monitoring system behaviour)
elaborated within the semantic framework of Kripke structures and LTL
assertions can be re-used for runtime verification in the context of the
CSP process algebra with trace/refusal specifications. We point out how
crucial ideas for this theory translation have already been anticipated in
Ernst-Rüdiger Olderog’s early work.

Keywords: Semantics · Institutions · Cyber-physical systems · Model-
based testing · Runtime verification

1 Introduction

1.1 Motivation

History is periodically re-evaluated and interpreted in the light of new events
and from evolving sociological perspectives. Similarly, “classical” results from
computer science are re-visited, as novel opportunities for their application arise,
and growing computing power and more ingenious algorithms allow for the auto-
mated solution of more complex problems.

In this paper, we re-visit the problem of theory translation between different
semantic frameworks. This problem has originally been investigated in the con-
text of Goguen’s and Burstall’s institutions, where it was shown how assertions
like “M is a model for ϕ” can be translated between different signatures, pro-
vided that certain consistency conditions for mapping semantic models M and
c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 133–151, 2015.
DOI: 10.1007/978-3-319-23506-6 10

134 J. Peleska

sentences ϕ are fulfilled by the signature morphisms involved [8]. The availability
of such mappings allows not only for translation of single pairs of models and
sentences, but also of whole theories, that is, collections of sentences already
established to be valid in one semantic framework. Over the years, alternative
model-theoretic approaches have been developed; we name the unifying theories
of programming [10] as a prominent example.

The main motivation for us to further investigate problems of theory trans-
lation is very practical and concerns the field of cyber-physical systems (CPS)
development, where distributed computational entities control physical objects.
The growing complexity of CPSs and the heterogeneity of their sub-components
(controllers, smart sensors, actuators, electric drives, and other electromechani-
cal devices) suggest the application of multiple formalisms for their development.
When verifying the complete system, however, methodological integration is
required in order to justify that the CPS satisfies its emergent properties. More-
over, complex methods and associated tools have been developed for application
in specific semantic frameworks, and it would be too expensive to re-develop
these for another semantics.

1.2 Main Contributions and Overview

In this paper, theory translation techniques are illustrated by means of a problem
from the field of runtime verification which is detailed in Section 2: the existence
of health monitors1 with specific properties, namely (1) completeness (every devi-
ation of the monitored system from the specified behaviour is detected, while
the monitor is active), (2) absence of synchronisation requirements (the health
monitor can be activated at any time and will detect all errors from then on),
and (3) hard realtime suitability (monitoring can be performed with bounded
resources and in bounded response time). We show in the semantic framework of
Kripke structures and LTL formulas, that complete, unsynchronised hard real-
time health monitors exist and how they can be implemented. In Section 3, this
solution is exemplified by application to nondeterministic programs as intro-
duced by Apt, de Boer, and Olderog in [3]. These programs are interpreted in
a Kripke structure semantics, so the theory elaborated before can be directly
applied.

In Section 4, the existence and implementation of complete, unsynchronised
hard realtime health monitors for CSP processes and trace/refusal specifica-
tions is investigated. Instead of developing a CSP-specific theory from scratch,
we construct a mapping from CSP processes to nondeterministic programs,
thereby introducing a model mapping associating CSP failures models with
Kripke structures, and a sentence translation mapping associating LTL formulas
with trace/refusal specifications. It is shown that these mappings fulfil the sat-
isfaction condition which is required in order to consistently map theories from

1 We use the term health monitor as introduced, for example, for avionic control
systems in [1], for checkers monitoring the behaviour of a software component or of
a complete CPS at runtime.

Translating Testing Theories for Concurrent Systems 135

one semantic framework to another. As a consequence, the construction proves
the existence of these health monitors for CSP processes, and the mapping from
CSP to nondeterministic programs shows how CSP process simulators can be
implemented as nondeterministic programs, to be monitored with the techniques
introduced before.

It is noteworthy that the basic ideas of this approach have already been
anticipated by Apt and Olderog around 1990 (see the first edition of [3]), when
constructing a translation from distributed CSP-like sequential processes into
sequential nondeterministic programs, so that properties of the former could be
established by using the proof theory of the latter. The main difference between
their essential ideas and the exposition presented here in this paper is that Apt
and Olderog investigated this translation in a uniform framework of Kripke struc-
tures, while our construction creates mappings between the semantic domain of
CSP failures models and that of Kripke structures.

Further motivation for investigating other test-related problems of theory
translation is presented in the Conclusions (Section 5). References to related
work are given throughout the exposition.

2 Runtime Verification and Complete, Unsynchronised
Hard Realtime Health Monitors

2.1 Definition

Monitoring a software component or a complete system at runtime for the
purpose of error detection is called runtime verification [9]. Typically, certain
observations are extracted from the running system and checked against some
specification of admissible behaviour. Runtime verification methods may include
mechanisms for reacting on detected failures. In contrast to dynamic testing,
however, it does not purposefully stimulate the SUT for provoking specific reac-
tions to be analysed for certain test objectives. Therefore it is also called passive
testing [2]. Methods and techniques for monitoring an SUT during its real oper-
ation have been known for a long time; they are mandatory, for example, in
avionics2 and railway control systems. In the following, we will use the shorter
term health monitor for the error detection mechanism of an implemented run-
time verification method.

The trustworthiness of health monitors can be captured by the notions of
soundness and completeness, as defined, for example, in [15]:

Soundness. Whenever an observation leads to the verdict FAIL produced by
the health monitor, the property under consideration has really been vio-
lated.

Completeness. The health monitor is sound, and whenever an observation
could not have been produced by a correct property implementation, this
leads to the verdict FAIL.

2 Systems performing runtime verification of avionic components are called built-in
test equipment (BITE) or health monitors.

136 J. Peleska

When performing runtime verification on software components or very small
HW/SW systems, it is usually possible to activate the checking mechanism in
synchrony with the SUT. In that case the full trace (i.e. finite sequence) of obser-
vations is available to the health monitor. For large-scale systems, however, this
synchrony cannot be achieved, because there does not exist a fully synchronous
startup procedure, and components as well as the health monitor itself may enter
the system configuration at a later point in time or may be re-started during
system operation. Therefore we have suggested the concept of unsynchronised
health monitors, whose verdict does not rely on the availability of the full obser-
vation trace, but only on a suffix thereof [13]. It is obvious that the absence of
synchronisation requirements depends on the class of specifications to be checked
by the health monitor against the actual system behaviour. Therefore the health
monitoring problem may be re-phrased in a more formal way as

Given a semantic framework of models M and specifications S, find a
health monitor design H and a subset of specifications S ′ ⊆ S, such that
H is complete, unsynchronised, and suitable for hard realtime execution
against all implementations of models from M and specifications from
S ′.

2.2 Health Monitor Design for Kripke Structures and LTL
Properties

As our first semantic framework we will now consider Kripke structures with
specifications described by linear temporal logic LTL. The material presented in
this section is based on [13, Section 4.5], where a complete, unsynchronised hard
realtime health monitor has been constructed for a well-defined subset of LTL.
This so-called Gϕ-monitor is presented in the following paragraphs.

Recall that a Kripke structure is specified by a tuple K = (S, s0, R, L,AP)
with state space S, initial state s0 ∈ S, total transition relation R ⊆ S×S, atomic
propositions p ∈ AP , and labelling function L : S → 2AP . Let us suppose that
K is a reference model for the expected behaviour of the SUT to be checked
by means of runtime verification. The labelling function provides a means for
property abstraction: instead of analysing the details of each execution state
s ∈ S, it often suffices to check whether the execution fulfils the “vital properties”
L(s) that should hold in that state. Whole computations – that is, sequences
of states s0.s1.s2 . . . starting in the initial state, such that R(si−1, si) holds for
all i > 0 – can be abstracted to the associated sequences L(s0).L(s1).L(s2) . . .
of atomic proposition sets. The admissibility of these abstracted observations
can be specified by LTL formulas using atomic propositions from AP as free
variables. As a consequence, it is often unnecessary to explicitly specify the
whole Kripke structure, including its transition relation: instead, it suffices to
specify AP , s0, an LTL formula to be respected by any valid implementation of
K, and rules for extracting the validity of atomic propositions p ∈ AP from the
sequence of runtime observations.

A typical health monitor (see Fig. 1) is then structured into a lower layer
abstracting concrete observations s0.s1.s2 . . . (e.g. variable values) to the sets

Translating Testing Theories for Concurrent Systems 137

of atomic propositions they fulfil, and an upper layer checking the abstracted
observation sequence L(s0).L(s1).L(s2) . . . with respect to its conformity to the
specification ϕ. The upper layer acts as a test oracle. It signals FAIL as soon as
a violation of the specification formula ϕ has been detected and PASS if ϕ can
be decided to be fulfilled on a finite observation trace (e.g. in the case where
the SUT terminates). The output INCONCLUSIVE indicates that no violation of
ϕ has been detected so far, but the system is still running and may still violate
its specification at a later point in time.

s0 s1 s2 s3 s4 s5

Abstraction Layer

Test Oracle

L(s0) = {p00, . . . , p
0
k0

}

L(s1) = {p10, . . . , p
1
k1

} L(s3) = {p30, . . . , p
3
k3

}

L(s2) = {p20, . . . , p
2
k2

} L(s4) = {p40, . . . , p
4
k4

}

L(s5) = {p50, . . . , p
5
k5

}

si |= p ∈ AP ?

L(s0).L(s1).L(s2). . . . |= ϕ ?

PASS/FAIL/INCONCLUSIVE

Fig. 1. Basic architecture of a health monitor.

2.3 An LTL Subclass S′ for Unsynchronised Health Monitoring

Since runtime verification can only be performed on finite observation traces,
we are only interested in specifications whose violation can be decided on a
finite computation prefix, that is, we only investigate safety formulas. According
to [20], the safety formulas of LTL can be characterised in a syntactic way as
the LTL subset specified as follows.

– Every Boolean constant true(= 1) or false(= 0) is a safety formula.
– Every atomic proposition p ∈ AP is a safety formula.

138 J. Peleska

– Every propositional formula constructed from atomic propositions using ∧,¬
is a safety formula.

– If ϕ,ψ are safety formulas, then ϕ ∧ ψ, Xϕ, and ϕWψ are safety formulas.

The above definition implies that safety LTL formulas are always positive: this
means that none of the temporal operators X,W (further temporal operators
will be derived from these basic ones below) appear in the scope of ¬. Therefore
negation only occurs as prefix of some propositional sub-formula. In particular,
LTL formulas in negation normal form are always positive.

Temporal operator X is the “usual” next-operator, and W is the weak until
operator. The semantics of safety formulas is explained over computations π =
s0.s1.s2 . . . of the Kripke structure under consideration as specified in Table 1.
There the ith element of π is denoted by π(i) = si, and the path suffix starting
at si is denoted by πi = si.si+1.si+2 If computation π is a model for safety
formula ϕ, we write π |= ϕ. In the table it can be seen that the weak until
operator differs from the conventional until operator U in the fact that ϕWψ
evaluates to true for the case where ϕ evaluates to true everywhere, while the
validity of ϕUψ guarantees that ψ will finally become true. It is evident that
the semantic rules from Table 1 can be directly applied to abstracted traces
L(π) = L(s0).L(s1).L(s2) . . . of proposition sets.

Table 1. Semantics of safety formulas.

πi |= true for all i ≥ 0

πi �|= false for all i ≥ 0

πi |= p iff p ∈ L(si) for all p ∈ AP

πi |= ¬ϕ iff πi �|= ϕ for all propositional formulas ϕ

πi |= ϕ ∧ ψ iff πi |= ϕ and πi |= ψ for all safety formulas ϕ, ψ

πi |= Xϕ iff πi+1 |= ϕ for all safety formulas ϕ

πi |= ϕWψ iff either ∀k ≥ i : πk |= ϕ

or ∃j ≥ i : πj |= ψ and ∀i ≤ k < j : πk |= ϕ

for all safety formulas ϕ, ψ

More LTL operators can be defined by semantic equivalence with expressions
over the safety operators specified in Table 1. These equivalences are listed in
Table 2. Note that formulas involving these new operators are not necessarily
safety formulas again, even if their operands are safety formulas: if ϕ,ψ are safety
formulas, Gϕ is also one, but Fϕ and ϕUψ are not.

Translating Testing Theories for Concurrent Systems 139

Table 2. LTL operators defined by semantic equivalence with safety expressions.

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ) ϕ ⇒ ψ ≡ ¬ϕ ∨ ψ ϕ ⇔ ψ ≡ (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)
Gϕ ≡ ϕ W false Fϕ ≡ ¬G¬ϕ ϕUψ ≡ ϕWψ ∧ Fψ

It is easy to see that the subclass of LTL safety formulas

S ′ = {Gϕ | ϕ is a safety formula with temporal operators in {X,W}} (1)

can be monitored starting at an arbitrary observation point si.si+1.si+2
Violations of Gϕ having occurred in that lost prefix s0.s1.s2 . . . si−1 cannot
be detected anymore. But starting at observation si, the semantics of the G-
operator implies that the monitor can start checking the validity of πi |= ϕ,
πi+1 |= ϕ,πi+2 |= ϕ, . . . , so it will detect violations of Gϕ that happen at
observation si or later on. In contrast to that, the conformity of an execution π to
a proposition or a safety formula starting with X,W can generally not be decided
by a health monitor, if a prefix of π could not be observed [13, Lemma 1,p. 51].
Fortunately, the subset of safety formulas identified by Formula (1) contains
the most important specification patterns, in particular, the state invariants Gϕ
where ϕ is a proposition.

If πi violates Gϕ, then it can be seen after finitely many steps that πi |= ¬Gϕ.
All negations ¬Gϕ can be represented as [13, Lemma 2,p. 52]

¬Gϕ ≡ Fψ, where ψ only contains operators in {X,U,∧,∨}
or propositions containing {∧,∨,¬}

2.4 Health Monitor H for S′

Given an arbitrary LTL formula α, it is well known that it can be checked against
a model (Kripke structure) M by transforming α into a Büchi Automaton (BA)
B and checking the synchronous product of M and B with respect to emptiness,
which would imply that α does not hold on any path of M [7]. This general fact
is now specialised on the situation where the model M is just a computation
suffix πi, and α is a formula of the type Gϕ ∈ S ′ as specified in (1).

Since a violation of Gϕ ∈ S ′ according to formula (1) is uncovered if
Fψ ≡ ¬Gϕ evaluates to true on a finite trace segment si.si+1.si+2 . . . sk, it
suffices to check from every state si+j , j ≥ 0 on, whether ψ is fulfilled on
si+j .si+j+1.si+j+2 To see this, recall that the equivalence Fψ ≡ (ψ ∨XFψ)
holds and can be recursively applied to path segments si+j .si+j+1.si+j+2 . . .
with j ≥ 0.

A checker for ψ ∨ XFψ can be implemented by creating a Büchi automaton
B for ψ that reads proposition sets L(si+j) ⊆ AP, j ≥ 0 as inputs and transits
into an accepting state if and only if si+j .si+j+1.si+j+2 . . . fulfils ψ. The product

140 J. Peleska

of si+j .si+j+1.si+j+2 . . . and B has path segments of state pairs

(si+j , init).(si+j+1, S�1).(si+j+2, S�2) . . .

(init, S�, and accept used below denote states of B). This product deadlocks,
if B does not accept the next input L(si+j+k) when in state S�k . If the product
can execute a sequence

(si+j , init).(si+j+1, S�1).(si+j+2, S�2) . . . (si+j+k, accept)

ending in an accepting state of B, this means that πi+j |= ψ, so πi |= Fψ, and a
violation of Gϕ has been uncovered in a finite trace segment starting at π(i+j).
Conversely, if (si+j , init).(si+j+1, S�1) . . . deadlocks before an accepting state
of B is reached, this means that πi+j 	|= ψ. But then it can still be the case that
πi+j+1 |= ψ or πi+j+2 |= ψ and so on, so we have to check the product of every
πi+j , j ≥ 0 with B.

We use the approach of [4,6] for translating LTL formulas to BA: the tools
LTL2BA and LTL3BA associated with [4,6] represent the resulting automaton
B in the form of a Promela Never Claim3 which can be used as a basis for
implementing a test oracle checking whether some formula ψ holds in a given
state si+j of the trace segment. Instead of creating a new instance of B for every
path segment πi+j , j ≥ 0, this can be implemented with a single representation
of B, where potential actual automata states are marked, and FAIL is raised
when an accepting state of the automaton could be reached. This procedure is
described by the algorithm in Table 3 which specifies the test oracle layer of the
health monitor H, as indicated in the architectural model from Fig. 1.

Table 3. Test oracle algorithm of H, executing the Büchi automaton B.

1. Initialisation: set the initial state of B to ‘marked’, all others to ‘unmarked’, set
output to INCONCLUSIVE

2. Input: the next set P of atomic propositions abstracted from the actual execution
state that has been observed

3. Initialise the set M of states to be marked in this processing step with M := {init}
4. For all marked states S of B:

(a) Unmark S

(b) If S has an outgoing transition t labelled with P , add its target state to M .
(c) If the target state of t is an accepting state, signal FAIL

5. Set all states contained in M to ‘marked’
6. Continue with step 2

3 See http://spinroot.com/spin/Man/never.html

http://spinroot.com/spin/Man/never.html

Translating Testing Theories for Concurrent Systems 141

By choice of formula class S ′ from (1) and the BA-based test oracle, the
resulting health monitor H is complete and unsynchronised. Moreover, H’s
abstraction layer (see Fig. 1) can be implemented by a loop checking which
propositions p ∈ AP evaluate to true in the current state si. Since AP is finite,
this can be performed with a constant amount of memory and in constant time.
Finally, the test oracle operates on a single instance of the finite automaton B,
and each evaluation cycle according to the algorithm in Table 3 is realised by a
loop ranging over the constant number of B-states. This shows that H can be
executed in hard realtime.

In the next section, an example for such a health monitor will be given.

3 Application to Nondeterministic Programs

3.1 Nondeterministic Programs in Normal Form

Let us now apply the runtime verification method introduced above to a sub-
class of nondeterministic programs as introduced by Apt, Olderog and de Boer
in [3, pp. 349]. These programs are represented by while programs extended by
Dijkstra’s guarded commands

if B1 → S1 � . . . � Bn → Sn fi

representing nondeterministic choice (the Bi denote Boolean conditions, the
choice fails if

∧n
i=1 ¬Bi holds, the Si denote sequential program parts) and

do B1 → S1 � . . . � Bn → Sn od

representing nondeterministic repetition (the loop terminates if
∧n

i=1 ¬Bi holds).
The formal program semantics specified in [3, Section 10.2] consists of rules <
P1, σ1 >−→< P2, σ2 >, where P1, P2 are program states and σ1, σ2 are valuation
functions σi : V → D mapping variable symbols x to their current values σi(x)
in the respective program states. If the program fails due to a failure in a nonde-
terministic choice command, the post-state is < E, fail >, where E is the empty
program and σ = fail denotes the failure state of the variable valuation functions.

A subclass of interest for the investigation of health monitors consists of
programs with a normal form structure

P ::= P0; do B1 → P1 � . . . � Bn → Pn od

such that the program segments Pi only contain assignments, nondeterministic
choice, and terminating while-loops. This means, that there is only one nonde-
terministic “main loop” in the program, and no further ones inside the Pi.

3.2 Kripke Structure Semantics

While the semantics introduced in [3] was mostly applied to investigate program
states on termination and possible failure conditions, we are also interested in

142 J. Peleska

internal “observation points”, namely in program states at the beginning of
each nondeterministic main loop cycle. It is assumed that we can observe each
program’s initial state < P, σ0 >, its termination states < E, σ >, and the states
at the beginning of each cycle, that is, at < do �n

i=1 Bi → Pi od, σ >.
These observation points induce a Kripke structure K = (S, s0, R, L,AP)

with valuation functions s : V ∪ {pc} → D as states: each state s ∈ S,
when restricted to V , corresponds to a variable valuation σ of program P .
Symbol pc (“program counter”) extends the domain to indicate the program
state s(pc) ∈ {0, 1, 2} from where the variable valuation has been obtained;
s(pc) = 0 corresponds to initial state P , s(pc) = 1 corresponds to program state
do �n

i=1 Bi → Pi od, and s(pc) = 2 signifies the termination state E. We write
s = σ ⊕ {pc �→ k}, if s restricted to V equals program state σ, and the program
counter pc has current value k ∈ {0, 1, 2}. If Pi is a terminating program part of
P that, when activated in variable pre-state σi will terminate in post-state σj ,
this is denoted by < Pi, σi >−→∗< E, σj >: the symbol “−→∗” is the transitive
closure of the transition relation for sequential while program parts contain-
ing assignments, nondeterministic choice, and terminating while-loops only. The
transition relation R is then defined by

R = {(σ0 ⊕ {pc �→ 0}, σ ⊕ {pc �→ 1}) | < P0, σ0 >−→∗< E, σ > ∧σ 	= fail} ∪
{(σ0 ⊕ {pc �→ 0}, fail ⊕ {pc �→ 2}) | < P0, σ0 >−→∗< E, fail >} ∪
{(σ1 ⊕ {pc �→ 1}, σ2 ⊕ {pc �→ 1}) | ∃i ∈ {1, . . . , n} : σ1 |= Bi ∧

< Pi, σ1 >−→∗< E, σ2 > ∧σ2 	= fail} ∪
{(σ1 ⊕ {pc �→ 1}, fail ⊕ {pc �→ 2}) | ∃i ∈ {1, . . . , n} : σ1 |= Bi ∧

< Pi, σ1 >−→∗< E, fail >} ∪

{(σ ⊕ {pc �→ 1}, σ ⊕ {pc �→ 2}) | σ |=
n∧

i=1

¬Bi} ∪

{(σ ⊕ {pc �→ 2}, σ ⊕ {pc �→ 2}) | σ = fail ∨ σ |=
n∧

i=1

¬Bi}

The transition relation R relates the initial state to every possible post-state
of P0. States where at least one of the Bi evaluates to true are related to all
possible post-states of each of the associated Pi. States where none of the guards
Bi evaluate to true are related to the termination state. Whenever a program
fragment Pi might fail when executing from some pre-state σ1, R relates this
to the fail-state with pc-value 2. Since Kripke structures require total transition
relations (so that all computations are infinite), we introduce stuttering for all
termination states and failure states.

The elements p ∈ AP are now atomic propositions over variable symbols
from V ∪ {pc}. Depending on the type of each variable, Boolean comparisons
and arithmetic expressions are allowed in each p. A special atomic proposition
p = fail indicates failure. The labelling function L : V ∪ {pc} → D is defined by
the valuation functions: for all s ∈ S, atomic proposition p is in L(s) if and only

Translating Testing Theories for Concurrent Systems 143

if s |= p, that is, p evaluates to true when replacing every symbol x ∈ V ∪ {pc}
in p by its value s(x).

3.3 Example: Health Monitor for Nondeterministic Normal Form
Program

Since nondeterministic normal form programs have Kripke structures as mod-
els as explained above, the health monitors H constructed in Section 2.4 for
assertions Gϕ ∈ S ′ are directly applicable. The following example illustrates the
operation of H, applied to the nondeterministic normal form program

P ::= unsigned int x, y, i, inputs[max]; y := 0; i = 0; x := inputs[i];
do

i < max ∧ x > 0 → y := 0; i := i + 1; x := inputs[min{i,max − 1}];
�
i < max ∧ x = 0 → y := 1; i := i + 1; x := inputs[min{i,max − 1}];

od

The program operates on an array of input values; and the actual input to be
processed is assigned to variable x. If the actual value of x is greater than zero,
variable y (which could be a shared output variable read by another program)
is set to zero, otherwise y is set to one.

We wish to check by means of runtime verification, whether a drop of x to
zero leads to a non-zero y value at the beginning of the next main loop cycle,
and whether y is reset to zero after x becomes positive again. This property can
be expressed by the safety formula

Φ1 ≡ G
(
(x > 0 ∧ Xy = 0)W(x = 0 ∧ Xy 	= 0)

)

which is an element of S ′ defined in (1). H observes traces

si.si+1.si+2 . . . sk . . .

of valuation functions si : {i, inputs[], x, y, pc} → unsigned int. The atomic
propositions AP = {p, q, r, u} define the following abstractions.

p ≡ x > 0, q ≡ x = 0, r ≡ y = 0, u ≡ y > 0

Abstracting Φ1 with propositions from AP results in

Φ ≡ G
(
(p ∧ Xr)W(q ∧ Xu)

)
,

and its negation is4

¬Φ ≡ F
(
(p ∨ Xr)U((p ∨ Xr) ∧ (q ∨ Xu))

)

≡ Fψ with
ψ ≡ ((p ∨ Xr) ∧ (q ∨ Xu))

4 Observe that ¬(ϕWψ) ≡ (¬ψU¬(ϕ ∨ ψ)
)

and F(αUβ) ≡ Fβ, see [13, Lemma 7].

144 J. Peleska

Translating ψ into a Büchi Automaton B using the LTL2BA tool results
in the Promela Never Claim shown in Table 4; it is graphically depicted as a
nondeterministic state machine in Fig. 2. The test oracle layer of H performs
the algorithm specified above in Table 3 on B.

Table 4. Promela Never Claim for checking against formula ψ ≡ ((p∨Xr)∧ (q ∨Xu))

never { /* (p || X r) && (q || X u) */
accept_init:

if
:: (p && q) -> goto accept_all
:: (p) -> goto accept_S1
:: (q) -> goto accept_S2
:: (1) -> goto accept_S3
fi;

accept_S1:
if
:: (u) -> goto accept_all
fi;

accept_S2:
if
:: (r) -> goto accept_all
fi;

accept_S3:
if
:: (r && u) -> goto accept_all
fi;

accept_all:
skip

}

init accept

S1

S2

S3

{p, q}

{p}
{q}

∅

{u}

{r}

{r, u}

Fig. 2. Checking state machine resulting from Promela Never Claim.

The abstraction layer of H observes sequences of state valuations si

over variables {i, inputs[], x, y, pc} and abstracts these to sets of propositions

Translating Testing Theories for Concurrent Systems 145

Pi ⊆ AP . The transition labels of B’s state machine representation denote sub-
sets Q ⊆ AP . A transition labelled by Q can be taken at observation point si, if
its source state is active and if Q ⊆ Pi. Now suppose that the monitor observes
the following sequence of state valuations at the beginning of each main loop,
which are abstracted as shown in column P .

j si+j(x) si+j(y) P m(init) m(S1) m(S2) m(S3) m(accept)

– – – – 1 0 0 0 0
0 17 0 {p, r} 1 1 0 1 0
1 17 0 {p, r} 1 1 0 1 0
2 11 0 {p, r} 1 1 0 1 0
3 1 0 {p, r} 1 1 0 1 0
4 0 0 {q, r} 1 0 1 1 0
5 0 1 {q, u} 1 0 1 1 0
6 0 1 {q, u} 1 0 1 1 0
7 1 1 {p, u} 1 1 0 1 0
8 2 0 {p, r} 1 1 0 1 0

The above table also shows how the test oracle marks the states of the Büchi
automaton from Fig. 2: initially, only the init-node is marked, and it will stay
marked because every new observation starts an evaluation of ψ from the init-
node. When the first observation is made (j = 0), P = {p, r} enables transitions
from init to S1 and from init to S3. Consequently, m(S1) = m(S3) = 1, and
m(init) stays 1 in preparation for the next observation.

Next, observation j = 1 is abstracted to P = {p, r}. In S1 and S3, this
observation is not accepted, so their markers are reset: this reflects the fact that
πi 	|= ψ. From init, however, P = {p, r} enables once again transitions to S1
and S3, so these nodes are marked again. This continues until observation j = 4
is made. Again, the associated input P = {q, r} is not accepted by S1 and S3, so
their markers are reset. From init, P now leads to S2 and S3, and these nodes
are marked accordingly. In observation j = 5, P = {q, u} holds and leads again
to markings of init, S2, and S3. This continues to observation j = 7, where P
becomes {p, u}, leading again to markings of init, S1, and S3. Since y is reset
to zero in observation j = 8, this marking is preserved, and no accepting state
of the Büchi automaton can be reached.

If P contained a programming error, such as

P ′ ::= unsigned int x, y, i, inputs[max]; y := 0; i = 0; x := inputs[i];
do

i < max ∧ x ≥ 0 → y := 0; i := i + 1; x := inputs[min{i,max − 1}];
�
i < max ∧ x = 0 → y := 1; i := i + 1; x := inputs[min{i,max − 1}];

od

146 J. Peleska

an abstracted observation sequence L(si+j).L(si+j+1) = {q, r}.{q, r} could be
encountered during a program execution; and this would lead to an accepting
state of the Büchi automaton, so that FAIL would be signalled by the test oracle.

4 Health Monitors for CSP Simulations

4.1 CSP Processes with Failures Semantics

Now suppose that we wish to verify CSP processes Q interpreted in the failures
model of CSP in a semi-formal way by running simulation traces of Q and
checking whether such a trace violates a given assertion

Q sat S(tr, U)

with free variables tr denoting the trace Q has run through and U a refusal set of
Q/tr. Instead of developing runtime verification support for CSP from scratch, it
is more effective to make use of the existing solution elaborated above in the con-
text of Kripke structures, the subset S ′ of LTL formulas, and nondeterministic
programs.

The method to achieve this has been inspired by Apt’s and Olderog’s obser-
vation on distributed programs and their property-preserving transformation
into nondeterministic programs [3, Chapter 11]. There it has been pointed out
by the authors that certain verification objectives for CSP-like communicating
sequential processes can be translated into proof obligations for nondeterministic
programs. As a consequence, proof theories (as elaborated in [3, Chapter 10])
and tool support for the latter class of programs could be applied to verification
tasks of the former class. Apart from the examples given in [3], this technique
has been applied, for example, in [16] for the purpose of combining algebraic
proof techniques with Hoare-style verification techniques using pre and post
conditions.

Recall that the failures model of CSP introduces a denotational semantics
F for each process Q as a set of failures (tr, U) ∈ F . For each failure (tr, U),
tr is a trace the process may run through and U is a refusal containing events
of the alphabet that may be refused by Q after having run through tr. The
axioms specifying admissible semantic models F have been described and dis-
cussed in [11,18,19]. 5

4.2 Model Map From Failures Models into Kripke Structures

We will now create a model map fM from failures models into Kripke structures.
To this end, we make use of the normalisation algorithm for CSP processes, as

5 As is common in the context of testing and its formal foundations, we assume that Q
is free of divergences, because black-box testing cannot distinguish internal process
divergence from deadlock. As a consequence, there is no need to interpret processes Q
in the more refined failures/divergence model, which is also described in [11,18,19].

Translating Testing Theories for Concurrent Systems 147

presented in [18, Chapter 21]. There it is shown that the semantic model F of a
finite state CSP process Q with alphabet A can be represented as a finite graph

G = (N,n0, e : N × A 	→ N, r : N → P(P(A)))

with nodes n ∈ N , initial node n0 ∈ N , and labelled edges specified by a
partial function e: if (n, a) ∈ N × A is contained in the domain of e, then there
exists a uniquely defined edge from n to e(n, a), which is labelled by a. Function
r labels each node n ∈ N with the set r(n) of maximal refusals defined in
n.6 Every trace tr of Q is associated with exactly one finite path through G,
such that edges are labelled with the events of tr. If process Q, after having
performed tr, is associated with node n ∈ N , then every failure (tr, U) ∈ F
fulfils ∃X ∈ r(n) : U ⊆ X. This means that every refusal U associated with Q
after tr is a subset of (at least) one of the maximal refusals n is labelled with.

Given CSP process Q with normalised transition graph G = (N,n0, e : N ×
A 	→ N, r : N → P(P(A))), we map this graph into the nondeterministic program
ν(Q) displayed in Table 5.

Table 5. Nondeterministic program ν(Q) created from CSP process Q.

ν(Q) ::= N n; P(A) U ; A∗ tr;
tr := 〈〉; n = n0; if �U ′∈r(n)true → U := U ′; fi;
do

�a∈A(a ∈ A − U) →
tr := tr 	 〈a〉;
n := e(n, a);
if �U ′∈r(n)true → U := U ′; fi;

od

Program ν(Q) is in fact a simulator for CSP process Q. It uses a variable n
to record the current process state Q is residing in, a variable U representing the
current refusal selected at random for the current process state, and a variable tr
for recording the trace the process has run through so far. The initialisation part
of ν(Q) sets tr to the empty trace, n to the initial node, and selects a refusal from
r(n0) – that is, a refusal associated with the initial state – at random, which
is then stored in U . Program ν(Q) is constructed in such a way that (tr, U)
always represents a valid failure from F , if evaluated at the beginning of a main
6 Recall that the set of all refusals associated with a process state is subset closed.

Therefore it is determined by the identification of its maximal refusals.

148 J. Peleska

loop cycle. This is already clear for the initial arrival at the loop. Inside the
loop body, an event a ∈ A is selected at random from the subset of events that
cannot be refused when in state n and refusal U applies. A deadlock situation
is characterised by the condition U = A, whereupon the simulator terminates,
since all guards of the loop evaluate to false. If deadlock does not occur in
state n and for refusal U , one of the accepted events a is selected at random.
The selection is recorded in the trace variable tr, and n is set to the uniquely
defined post state n = e(n, a) under event a. Then a possible maximal refusal of
e(n, a) is selected at random and stored again in U , and this ends the current
main loop cycle.

Program ν(P) can be directly mapped into a Kripke structure with states
s : {n,U, tr, pc} → D and atomic propositions p ∈ AP with free variables in
{n,U, tr, pc} as described in the previous section. Thus we have constructed a
model mapping fM from CSP failures models F via normalised transition graphs
and nondeterministic programs to Kripke structures.

4.3 Sentence Translation Map and Health Monitor for CSP
Processes

Since ν(Q) is a nondeterministic normal form program interpreted by its Kripke
structure semantics, an unsynchronised, complete, hard realtime health monitor
can be constructed for ν(Q), as exemplified in Section 3.3 above. While such a
health monitor exists for arbitrary formulas Gϕ ∈ S ′ over atomic propositions
with free variables from {n,U, tr, pc}, we will now restrict this class further to
formulas

G(pc = 1 ⇒ ϕ) such that ϕ is a proposition with free variables in {tr,U} (2)

These formulas express assertions that are only evaluated at the beginning of
each main loop cycle and can be expressed as simple propositions, without the
help of temporal operators. We now define a sentence (i.e. formula) translation
map fS from safety LTL formulas of the type specified in formula (2) to CSP
specifications S(tr, U) by setting

fS(G(pc = 1 ⇒ ϕ)) = ϕ

It is straightforward to see that the whole construction process for fM , fS

yields the following essential property:

For all formulas G(pc = 1 ⇒ ϕ) according to (2) and for all failure
models F :

F sat fS(G(pc = 1 ⇒ ϕ)) iff fM (F) sat G(pc = 1 ⇒ ϕ) (3)

or, equivalently,

F sat ϕ iff fM (F) sat G(pc = 1 ⇒ ϕ)

Translating Testing Theories for Concurrent Systems 149

Formula (3) represents a specific case of the satisfaction condition required for
Goguen’s and Burstall’s institutions [8]. The situation, however, is slightly more
complicated than described there, because we map models and formulas between
signatures of different institutions: the CSP process algebra can be considered
as an institution (this has been elaborated in [14]), but this institution does not
contain Kripke structures. This is typically handled by institutions with many-
sorted signatures, and these can be conveniently represented by Grothendiek
Institutions [5, Chapter 12]. In any case, the satisfaction condition (3) allows us
to transfer theories established in the context of Kripke structures into the CSP
process algebra and vice versa.

The practical consequences for our example are as follows.

– We can map any divergence-free CSP process Q via its normalised transition
graph into a nondeterministic program ν(Q).

– This program can be interpreted in a Kripke structure, and therefore run-
time verification can be performed in hard realtime with a complete health
monitor, provided that the specification to be monitored is an LTL safety
formula of the type Gϕ introduced above.

– The satisfaction condition (3) guarantees that original CSP process Q sat-
isfies a specification S(tr, U) over traces and refusals if and only if ν(Q)
satisfies LTL safety formula G(pc = 1 ⇒ S(tr, U)).

– Since S(tr, U) is a proposition with free variables from {tr, U}, the unsyn-
chronised, complete, hard realtime health monitor is applicable for checking
the conformity of ν(Q)’s behaviour with G(pc = 1 ⇒ S(tr, U)).

For practical application, the FDR model checker7 can be used to generate
normalised transition graphs from CSP processes. Then ν(Q) is easy to pro-
gram as an interpreter traversing the transition graph structure – this has been
actually performed in the model-based testing tool RT-Tester for testing against
CSP processes [17].

5 Conclusions

In this paper the existence of complete, unsynchronised, hard realtime health
monitors for runtime verification in the semantic framework of Kripke struc-
tures and a subset of LTL formulas has been shown. The results could be directly
applied to nondeterministic programs. Constructing a mapping from CSP pro-
cesses interpreted in the denotational failures semantics to nondeterministic pro-
grams interpreted by Kripke models, the theory of health monitors, as well as
concrete implementation guidelines could be transferred into the CSP process
algebra.

The problem described in this paper is just one of a larger number of theory
translation problems related to testing theories: in [12] a complete equivalence
class testing theory has been developed for model-based testing against models

7 http://www.cs.ox.ac.uk/projects/concurrency-tools/

http://www.cs.ox.ac.uk/projects/concurrency-tools/

150 J. Peleska

interpreted as Kripke structures. The crucial step of the completeness proof con-
sisted in creating an abstraction from Kripke structures to finite state machines
(FSM). This abstraction allowed to apply an existing complete theory for FSM
and “translate” it into a theory for Kripke structures. Using the theory trans-
lation approach described here we expect that it is possible to map a variety
of similar valuable results from the FSM domain into more general semantic
frameworks.

Acknowledgements. I would like to express my gratitude to Ernst-Rüdiger Olderog
for substantial support and valuable advice during the time when I still worked in
industry and became strongly attracted by formal methods in computer science.

The work presented in this paper as been elaborated within project ITTCPS –

Implementable Testing Theory for Cyber-physical Systems8 which has been granted

by the University of Bremen in the context of the German Universities Excellence

Initiative.9

References

1. Aeronautical Radio Inc: ARINC SPECIFICATION 653P1-2: Avionics Application
Software Standard Interface, Part 1 - Required Services, December 2005

2. Andrés, C., Cavalli, A.R.: How to reduce the cost of passive testing. In: 14th Inter-
national IEEE Symposium on High-Assurance Systems Engineering, HASE 2012,
Omaha, NE, USA, October 25–27, 2012, pp. 209–216. IEEE Computer Society
(2012). http://dx.doi.org/10.1109/HASE.2012.36

3. Apt, K.R., de Boer, F.S., Olderog, E.R.: Verification of Sequential and Concurrent
Programs. Springer, Heidelberg (2010)

4. Babiak, T., Kret́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi automata
translation: fast and more deterministic. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012).
http://link.springer.com/chapter/10.1007/978-3-642-28756-5 8

5. Diaconescu, R.: Institution-independent Model Theory. Birkhäuser Verlag AG,
Basel (2008)

6. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001). http://link.springer.com/chapter/10.1007/3-540-44585-4 6

7. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic veri-
fication of linear temporal logic. In: Dembinski, P., Sredniawa, M. (eds.) PSTV,
Protocol Specification, Testing and Verification XV, Proceedings of the Fifteenth
IFIP WG6.1 International Symposium on Protocol Specification, Testing and Ver-
ification, Warsaw, Poland, June 1995. IFIP Conference Proceedings, vol. 38, pp.
3–18. Chapman & Hall (1995)

8. Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory for Speci-
fication and Programming. J. ACM 39(1), 95–146 (1992). http://doi.acm.org/
10.1145/147508.147524

8 http://www.informatik.uni-bremen.de/agbs/projects/ittcps/index.html
9 http://en.wikipedia.org/wiki/German Universities Excellence Initiative

http://dx.doi.org/10.1109/HASE.2012.36
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-642-28756-5_8
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/3-540-44585-4_6
http://doi.acm.org/10.1145/147508.147524
http://doi.acm.org/10.1145/147508.147524
http://www.informatik.uni-bremen.de/agbs/projects/ittcps/index.html
http://en.wikipedia.org/wiki/German_Universities_Excellence_Initiative

Translating Testing Theories for Concurrent Systems 151

9. Havelund, K.: Rule-based runtime verification revisited. STTT 17(2), 143–170
(2015). http://dx.doi.org/10.1007/s10009-014-0309-2

10. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall (1998)
11. Hoare, T.: Communication Sequential Processes, vol. 07632. Prentice-Hall Inter-

national, Englewood Cliffs (1985)
12. Huang, W.l., Peleska, J.: Complete model-based equivalence class testing. Interna-

tional Journal on Software Tools for Technology Transfer, 1–19 (2014). http://dx.
doi.org/10.1007/s10009-014-0356-8

13. Huang, W.l., Peleska, J., Schulze, U.: Contract Support for Evolving SoS.
Public Document D34.3, COMPASS (2014). http://www.compass-research.eu/
deliverables.html

14. Mossakowski, T., Roggenbach, M.: Structured CSP – a process algebra as an
institution. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS,
vol. 4409, pp. 92–110. Springer, Heidelberg (2007). http://dx.doi.org/10.1007/
978-3-540-71998-4 6

15. Netravali, A.N., Sabnani, K.K., Viswanathan, R.: Correct passive testing algo-
rithms and complete fault coverage. In: König, H., Heiner, M., Wolisz, A.
(eds.) FORTE 2003. LNCS, vol. 2767, pp. 303–318. Springer, Heidelberg (2003).
http://link.springer.com/chapter/10.1007/978-3-540-39979-7 20

16. Peleska, J.: Design and verification of fault tolerant systems with csp. Distributed
Computing 5(2), 95–106 (1991). http://dx.doi.org/10.1007/BF02259751

17. Peleska, J.: Formal methods for test automation - hard real-time testing of
controllers for the airbus aircraft family. In: Proc. of the Sixth Biennial World
Conference on Integrated Design & Process Technology (IDPT2002), Pasadena,
California, June 23–28, 2002. Society for Design and Process Science, June 2002.
ISSN 1090–9389

18. Roscoe, A.W. (ed.): A Classical Mind: Essays in Honour of C.A.R. Hoare. Prentice
Hall International (UK) Ltd., Hertfordshire (1994)

19. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency.
Prentice Hall PTR, Upper Saddle River (1997)

20. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects
of Computing 6(5), 495–511 (1994). http://link.springer.com/article/10.1007/
BF01211865

http://dx.doi.org/10.1007/s10009-014-0309-2
http://dx.doi.org/10.1007/s10009-014-0356-8
http://dx.doi.org/10.1007/s10009-014-0356-8
http://www.compass-research.eu/deliverables.html
http://www.compass-research.eu/deliverables.html
http://dx.doi.org/10.1007/978-3-540-71998-4_6
http://dx.doi.org/10.1007/978-3-540-71998-4_6
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-540-39979-7_20
http://dx.doi.org/10.1007/BF02259751
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/BF01211865
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/BF01211865

No Need Knowing Numerous Neighbours

Towards a Realizable Interpretation of MLSL

Martin Fränzle1, Michael R. Hansen2, and Heinrich Ody1(B)

1 Department of Computing Science, University of Oldenburg, Oldenburg, Germany
fraenzle@informatik.uni-oldenburg.de, heinrich.ody@uni-oldenburg.de

2 DTU Compute, Technical University of Denmark, Lyngby, Denmark
mire@dtu.dk

Abstract. The Multi-Lane Spatial Logic MLSL introduced by Hilscher
et al. in [4] is a two-dimensional spatial logic geared towards modelling
and analysis of traffic situations, where the two dimensions are inter-
preted as the lanes of a road and the distance travelled down that road,
respectively. The intended use of MLSL is for capturing (and reason-
ing about) guards and invariants in decision-making schemes for highly
automated driving [12]. Unfortunately, the logic turns out to be undecid-
able [7,8,11], rendering implementability and thus the actual use of such
guard conditions in real-time decision making questionable in general.

We here show that under a reasonable model of technical observa-
tion of the traffic situation, the actual decidability and implementability
issues take a much more pleasing form: given that an actual autonomous
car can only sample state information of a finite set of environmental cars
in real-time, we show that it is decidable whether truth of an arbitrary
MLSL formula can be safely determined on a given sample size. For such
feasible formulas, we furthermore state a procedure for determining their
truth values based on such a sample.

Keywords: Highly automated driving · Real-time decision making ·
Spatial logic · Decidability

1 Introduction

The societal need for drastically enhancing efficiency of transportation has
recently provided impetus to research on automated driving, as automation
has the potential for significantly improving both the ecological footprint and
the safety of road-bound traffic. While automated driving — in all its variants,

M. Fränzle—Work of the author was partially supported by Deutsche Forschungs-
gemeinschaft within the Transregional Collaborative Research Center SFB/TR 14
AVACS.
M.R. Hansen—Work of the author was partially supported by the Danish Research
Foundation for Basic Research within the IDEA4CPS project.
H. Ody—Work of the author was partially supported by Deutsche Forschungsge-
meinschaft within the Research Training Group DFG GRK 1765 SCARE.

c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 152–171, 2015.
DOI: 10.1007/978-3-319-23506-6 11

No Need Knowing Numerous Neighbours 153

ranging from low over partial to high automation — earlier was conceived as a
commodity, it now is a central element of the concerted actions deemed to con-
tribute to, e.g., the EU’s “Vision Zero”1 of eliminating fatalities in road-bound
traffic. Such reliance on automation in complex and only partially observable
environments, however, induces a personal and societal dependence on the reli-
ability of automatic object detection and classification, on correctness of com-
puterized situation interpretation, on permanent adequacy of automated deci-
sion making, and on the reliable availability and continued operation of diverse
supervision and control functions. While reliability of the latter components can
to quite some extent be achieved by classical means of reliability engineering,
ranging from functional verification of system designs to fault-tolerance mech-
anisms in their implementation, the front-end tasks of object detection, object
classification, and situation interpretation are prone to relatively high rates of
— in general unavoidable — errors. Understanding the genesis and rigorously
controlling the propagation of such errors is of utmost importance to the safety
of autonomous driving, as they may lead to misconceptions and situationally
inadequate decisions, which could in turn induce inappropriate control actions.

As the decision-making, being based on the situation interpretation and in
turn determining which traffic maneuver to select and how to decompose it into
a sequence of low-level control tasks, is the pivotal point in this propagation
chain, suggestions for systematizing its design and enhancing its safety analysis
by model-based principles have recently been made. The common denominator
of all model-based approaches is to first establish a sufficiently detailed model of
the system under design and the relevant sphere of its environment, then utilize
this model for validation and verification of desired functional and non-functional
properties (whereby different, viewpoint-specific models may well be used), and
later on refine the design to an actual implementation. Depending on how faith-
ful the model(s) underlying the analysis steps were — and there are many good
reasons for choosing simplified, approximate models here —, the implementation
step may require different forms of justification, ranging from a demonstration
that it refines its design model to rigorous arguments for insensitivity of prop-
erty satisfaction to the particular simplifications adopted in the analysis models.
The latter problem becomes particularly prominent if the system design is not
elaborated manually by domain experts, but a correct-by-construction approach
is applied, where the design is (partially or fully) generated or derived from the
environment model and the desired properties.

An interesting variant of this theme has been developed by Hilscher et al. in
[4,5]: In a strife for separating the logical design of the decision layer from ques-
tions concerning the detailed dynamics of road objects, Hilscher et al. suggest to
employ (timed) automata manipulating abstract traffic situations as their inputs
and states. Such traffic situations are in turn described by a dedicated spatial
logic, called Multi-Lane Spatial Logic (MLSL), able to describe quantitative spa-
tial relations between traffic participants on the road. Using MLSL conditions

1 The term “Vision Zero” originally was conceived in Sweden in 1997 as name for a
long-term concerted action on road safety. It has later been adopted by the EU.

154 M. Fränzle et al.

as, e.g., guards and invariants in the automata [4,8], traditional means of pro-
gram verification, like reasoning over pre- and postconditions of actions, can be
generalized to methods for proving maintenance of desired functional properties
by the decision-making algorithms (e.g., maintaining spatial separation between
cars, i.e., collision freedom). The desired separation of concerns between logical
design and detailed dynamics however comes at the price of deferring questions
concerning the observability and controllability of the dynamics of road objects
to later stages of design; the analysis at the logical level essentially adopts a sim-
plified model in order to realize a useful divide-and-conquer approach to design.

Demonstrating appropriate controllability can be tackled by well-established
methods from control: it amounts to devising adequate low-level controllers and
proving that these, whenever activated in a situation satisfying the precondition,
will establish the postcondition (within the given time frame, if applicable). Such
proofs can be conducted with respect to the low-level dynamics, which mostly
is kinematic and hence well-understood. The problem of observability, i.e., of
reliably determining whether the guard (and thus precondition) of an action
actually is met, however is a fundamentally different one. It involves reasoning
about situational awareness. The central question here is whether the guard can
reliably be evaluated at all, i.e., whether an evaluation mechanism can be imple-
mented which reliably determines the truth value of the guard, as necessary for
actually using the decision-making strategy encoded in the control automaton.
It is that later problem we will address in this article, thereby formalizing some
(necessary) criteria for suitability as an implementable guard and answering
decidability questions concerning these criteria.

Following the lines of Hilscher et al. [4] and extending their framework
towards implementation, we exemplify our ideas on MLSL. The logic MLSL
is a multi-dimensional interval logic with a discrete dimension of lanes and a
continuous dimension of travel distance. It is tailored towards reasoning about
traffic manoeuvres, a very specific use case, and the design of MLSL is primarily
inspired by Duration Calculus [2], Propositional Interval Temporal Logic [10]
and Shape Calculus [13]. The first two logics are usually used to describe tem-
poral properties, while Shape Calculus is considered as a spatio-temporal logic.
Other interval logics having some similarities with MLSL are CDT, a modal
logic for chopping intervals [14] and Halpern-Shoham-logic [3], a logic based on
Allen’s interval relations [1]. While Duration Calculus and Shape Calculus allow
quantitative reasoning, the other logics only permit qualitative reasoning.

Being inspired by interval logics, MLSL has similar strengths and weaknesses
as such logics, that is, MLSL is expressive and satisfiability problems for MLSL
are typically undecidable [7,8,11]. The satisfiability (and model-checking) prob-
lem for a fragment of MLSL is shown decidable in [11] when a fixed maximal
bound on the number of cars in a traffic situation is imposed.

A primary application of MLSL exemplifying the above ideas of logical design
of decision strategies is in the definition of lane change controllers for motorways
[4,8]. These controllers are defined as extended timed automata which, addi-
tionally to clock constraints, may have MLSL formulas as transition guards.

No Need Knowing Numerous Neighbours 155

A central implementability constraint then is that MLSL reasons about a count-
able infinite set of car identifiers, yet technical surveillance of the traffic situation
can in real-time only harvest information about a finite set (also called a sample)
of neighbouring cars. Evaluation of guard or invariant conditions employed in
the lane change controller can consequently only resort to such a finite sample.
Due to random effects, including arbitration protocols as well as disturbances
and imperfect observation, different samples may be drawn from the same traffic
situation (or it may at least be practically impossible to unambiguously describe
the sample to be drawn). This immediately provokees two questions:

1. Is the evaluation of an MLSL formula used as a guard independent from the
particular sample drawn, which may vary within reasonable bounds?

2. Will the evaluation of the guard on the finite sample provide reliable infor-
mation on its validity over all cars, including the hidden cars, i.e., cars that
are not currently observed by the equipment?

Extending MLSL with a so-called scope formula {c1, c2, . . . , cn} : φ which
restricts quantification over cars in φ to a finite subset c1, c2, . . . , cn, we arrive at
a logic in which the above two questions can be formalized and studied. The aim
of this work is to get decidability results for the above questions under reasonable
assumptions, thus providing a mechanism for checking suitability of an MLSL
condition as a guard.

In Sect. 2 we therefore introduce our extension of MLSL called Multi-Lane
Spatial Logic with Scope (MLSLS), and in Sect. 3 we formalize the above ques-
tions. In Sect. 4, it is shown that the satisfiability problem for so-called well-
scoped MLSLS formulas is decidable. The technique for showing this decidabil-
ity result is strongly based on [11], where the satisfiability problem for MLSL
is reduced to the satisfiability problem for quantified linear mixed integer-real
arithmetic (QLIRA). A difference is that while the decidability result of [11] is
based on a bound on the number of cars considered, i.e., on a constraint on traffic
scenes which may or may not apply in a particular situation, the decidability for
well-scoped MLSLS formulas is based on a syntactical restriction on formulas.
Here it suffices that every existentially quantified formula ∃c.ψ occurs within
the context of a scoped formula {c1, c2, . . . , cn} :φ, thereby restricting the range
of c to a finite set given by {c1, c2, . . . , cn}. In Sect. 5 we show how this deci-
sion procedure can be used in connections with reasonable model and formula
assumptions to decide the questions above. Sect. 6 contains a brief summary.

2 Multi-lane Spatial Logic with Scope

In this section we introduce Multi-Lane Spatial Logic (MLSL) due to Hilscher et
al. together with a novel extension called Multi-Lane Spatial Logic with Scope
(MLSLS). In this extension it is possible to confine the scope for the cars consid-
ered in a given traffic situation. MLSLS is a conservative extension of MLSL. The
definition of MLSLS is based on the definition of MLSL in [4,8]. It is simpler in
the sense that we only consider spatial properties of static traffic configurations
in this paper, and more complex because we introduce a scope component.

156 M. Fränzle et al.

2.1 The Model

Only motorway traffic is considered here and a motorway is modelled as a two-
dimensional world; the vertical discrete dimension represents the different lanes
and the horizontal dense dimension represents the extension of the lanes. A
traffic snapshot contains for every car information about the current lane of the
car, which we call reservation and the position along the lane. Usually, a car only
has a reservation for one lane, but when it is changing lanes it has reservations
on two adjacent lanes. Additionally, when a car would like to change to another
lane it has a claim for that lane.

We assume a countably infinite set of car identifiers I and an arbitrary but
fixed set of lanes L = {0, . . . , k}, for some k ∈ N≥1 to be given. Let P(L) denote
the powerset of L.

Definition 1 (Traffic snapshot [4,8]). A traffic snapshot T S is a structure
T S = (res, clm,pos), where

– res : I → P(L) maps cars to their reserved lanes,
– clm : I → P(L) maps cars to their claimed lanes and
– pos : I → R maps cars to the position of their rear along the lanes.

Furthermore, we require the following sanity conditions to hold for all C ∈ I:

1. Car C cannot both reserve and claim the same lane: res(C) ∩ clm(C) = ∅
2. Car C can reserve at most two lanes: 1 ≤ |res(C)| ≤ 2
3. Reserved lanes must be next to each other:

|res(c)| = 2 implies ∃n ∈ L.res(C) = {n, n + 1}
4. Car C can claim at most one lane: 0 ≤ |clm(C)| ≤ 1
5. Car C can reserve or claim at most two lanes: 1 ≤ |res(C)| + |clm(C)| ≤ 2
6. A claimed lane must be next to a reserved lane for car C:

clm(C) �= ∅ implies ∃n ∈ L.res(C) ∪ clm(C) = {n, n + 1}

7. Only finitely many cars participate or initiate in lane changing manoeuvres:

|res(C)| = 2 or |clm(C)| = 1 holds only for finitely many C ∈ I

We denote the set of all traffic snapshots by TS.

To address the safety of given traffic situation, a notion of safety envelope
of a car is introduced in [4] to capture the necessary space for a safe stop of
the car. No car should interfere with the safety envelope of another car during
an overtake manoeuvre, for example. The safety envelope of C in the traffic
snapshot T S is

se(C, T S) = [pos(C),pos(C) + spacingC] ,

No Need Knowing Numerous Neighbours 157

where spacingC is derived from the current speed (both absolute and relative)
and an accepted temporal spacing Δt between cars, which may transiently be
considerably shorter than the legal minimum spacing of 1.8 seconds required
by traffic laws. Determining Δt is beyond the scope of this article, but has
extensively been studied by traffic psycholgy, cf. e.g. [6].

In MLSL, properties from the perspective of a specific car called ego are con-
sidered. The notion view captures this perspective, where a view has information
about the lanes, their extension and the identity of ego. Intuitively, a view is a
window through which ego perceives a traffic snapshot.

Definition 2 (View). A view is a structure V = (L,X,E), where

– L = [l, n] ⊆ L is an interval of lanes that are visible in the view,
– X = [r, t] ⊆ R is the extension of the lanes that is visible in the view and
– E ∈ I is the identifier of the car under consideration, that is, ego.

A subview of V is obtained by restricting the lanes and extension we observe.
Let L′,X ′ be subintervals of L and X, then we define

V L′
= (L′,X,E) and VX′ = (L,X ′, E).

If l > n or r = t we say that the view is empty.

Let CVar be a set of variables ranging over car identifiers. In the logic we
use a special constant ego to refer to the owner of the current view. A valuation
maps variables and the special symbol ego to car identifiers, i.e., a valuation is
a function ν : CVar ∪ {ego} → I. Further, we define valuation updates with the
override notation ⊕ from Z [16] as ν ⊕ {c �→ C}(c′) = C if c = c′ and ν(c′)
otherwise.

A view narrows down the spatial part of the motorway to a possibly restricted
set of lanes with a possibly restricted extent. We introduce the notion scope to
the model to be able to narrow down the considered cars in a given situation.
This leads to the following definition of a model with scope.

Definition 3 (Model with Scope). Let CS ⊆ I be a set of cars, T S be a traffic
snapshot, V be a view and ν be a valuation. Then we call M = (CS , T S, V, ν) a
model of MLSLS with scope CS.

Notice that a model M with scope I is a model of MLSL in the sense of [4,8].

2.2 The Logic: MLSLS

The logic MLSL is a multi-modal, first-order logic with modalities inspired by
interval logic, i.e., a vertical chop modality for partitioning a view into an upper
and a lower subview, and a horizontal chop modality for partitioning a view into
a left and a right subview. MLSLS extends MLSL with formulas of the form:

cs :φ , for cs ⊆ CVar ,

where the set of cars considered when determining the truth value of φ is nar-
rowed down to cars denoted by variables in cs.

158 M. Fränzle et al.

Definition 4 (Syntax). The set of MLSLS formulas φ ∈ Φ is given as

φ ::= γ = γ′ | free | re(γ) | cl(γ) | � = k | ¬φ | φ ∧ φ | ∃c.φ | φ � φ | φ
φ

| cs :φ ,

where c ∈ CVar, k is a rational number, i.e., k ∈ Q, γ, γ′ ∈ CVar ∪ {ego},
cs ⊆ CVar and � is a special symbol denoting the length of the lanes’ extension.

Contrary to [4,8] we use rational constants as they are machine representable.
The formula free is true for one-lane views containing no cars, re(c) and

cl(c) are true for one-lane views that are fully covered by the safety envelope of
a reservation or claim, respectively, by c. Furthermore, φ � ψ denotes horizontal

partitioning of a view and
φ
ψ

vertical chop of a view.

Let freeVar(φ) denote the set of free variables occurring in an MLSLS formula
φ. The definition of this function is standard for the first-order fragment, so we
just give the parts for ego, chopped and scoped formulas:

freeVar(ego) = {ego}

freeVar(φ � ψ) = freeVar
(

φ
ψ

)

= freeVar(φ) ∪ freeVar(ψ)

freeVar(xs :φ) = xs ∪ freeVar(φ)

Definition 5 (Semantics). Let c ∈ CVar, k ∈ Q and γ, γ′ ∈ CVar ∪ {ego}.
Given a scope CS ⊆ I, a traffic snapshot T S, a view V = ([l, n], [r, t], E) and a
valuation ν with ν(ego) = E we define the satisfaction of a formula by a model
M = (CS , T S, V, ν) as follows:

M |= γ = γ′ ⇔ ν(γ) = ν(γ′)
M |= free ⇔ (l �∈ res(C) ∪ clm(C) or se(C, T S) ∩ (r, t) = ∅)

for every C ∈ CS , and l = n and r < t

M |= re(γ) ⇔ l ∈ res(ν(γ)) and [r, t] ⊆ se(ν(γ), T S) and l = n and r < t

M |= cl(γ) ⇔ l ∈ clm(ν(γ)) and [r, t] ⊆ se(ν(γ), T S) and l = n and r < t

M |= � = k ⇔ t − r = k

M |= cs :φ ⇔ ({ν(c) | c ∈ cs}, T S, V, ν) |= φ

M |= ¬φ ⇔ M �|= φ

M |= φ0 ∧ φ1 ⇔ M |= φ0 and M |= φ1

M |= ∃c.φ ⇔ (CS , T S, V, ν ⊕ {c �→ C}) |= φ, for some C in CS
M |= φ0 � φ1 ⇔ (CS , T S, V[r,s], ν) |= φ0 and (CS , T S, V[s,t], ν) |= φ1,

for some s, where r ≤ s ≤ t

M |= φ1

φ0
⇔ l ≤ n implies

(CS , T S, V [l,m], ν) |= φ0 and (CS , T S, V [m+1,n], ν) |= φ1

for some m, where l − 1 ≤ m ≤ n, and
l > n implies (CS , T S, V, ν) |= φ0 and (CS , T S, V, ν) |= φ1

No Need Knowing Numerous Neighbours 159

In the semantics of the vertical chop operator
φ1

φ0
, we deviate from the classical

semantics and distinguish two cases. If the current view contains at least one
lane we split the view into a lower and an upper subview and evaluate φ0 on
the lower subview and φ1 on the upper subview. Otherwise, when the view is
empty, we do not chop the view and instead evaluate both formulas on the same
view. The intuition here is that all subviews of an empty view are empty and we
can not distinguish different empty views with MLSLS. This special handling is
necessary, because if we chop along a lane into a lower and an upper subview
the lanes of the two subviews should be disjoint. However, for horizontal chops
the endpoint of left subview and the startpoint of the right subview are shared.

The scope component CS of a model (CS , T S, V, ν) is used in the semantics
for the formulas free and ∃c.φ. The formula free holds if no car from the scope
CS occupies a part of the lane under consideration, and ∃c.φ holds if φ holds for
some car C in the scope CS .

Definition 6 (Satisfiability and Validity).

– An MLSLS formula φ is satisfiable iff (CS , T S, V, ν) |= φ holds for some
scope CS ⊆ I, traffic snapshot T S, view V , and valuation ν.

– An MLSLS formula φ is valid iff (I, T S, V, ν) |= φ holds for every traffic
snapshot T S, view V , and valuation ν.

If we disregard formulas of the form cs : φ and use I as scope component in
models, then the above semantics coincides with that for MLSL.

We make use of the standard first order abbreviations such as true, false,∨,∀.
In addition we define

� ≥ k ≡ � = k � true ,

denoting the fact that the extension is longer than or equal to k. It is now easy
to define � < k, � ≤ k, and � > k.

To derive a similar constraint for the lane dimension: L = 1, i.e., the number
of lanes in the current view is one, we use the formula free:

L = 1 ≡ {} :free

together with the empty scope. Inspecting the semantics we see that this formula
is true for a model with view ([l, n], [r, t], E) iff l = n and r < t, i.e., it is required
that a lane has a positive extent. Further relations on the number of lanes can
be derived using vertical chop, for example:

L = 2 ≡
(L = 1

L = 1

)

The abbreviation 〈φ〉 expresses that there is a subview satisfying φ:

〈φ〉 ≡ true �

⎛

⎝
true
φ

true

⎞

⎠ � true

160 M. Fränzle et al.

The following example of a specification formula expresses that any two cars
on the same lane should always keep clear by at least 4 distance units (generally
taken to be meters):

¬ 〈∃c, d.re(c)� � < 4� re(d)〉

3 Technical Observability and Stable Models

While MLSL reasons about a countable infinite set I of (unique) car identifiers,
technical surveillance of the traffic situation by the ego car can in real-time and
thus in situ only harvest information about a finite set S ⊂ I of neighbouring
cars. Evaluation of guard or invariant conditions employed in decision making
can consequently only resort to state information pertaining to the perceived set
S of cars. Let us assume that the particular sample S ⊂ I drawn satisfies some
reasonable constraints that the on-board sensing and data-harvesting subsystems
of the ego car can guarantee. Then this leads to the question

1. whether evaluating such a guard or invariant condition instrumental to deci-
sion making is independent from the particular sample S ⊂ I drawn and

2. whether evaluating that condition on a sample S ⊂ I provides reliable infor-
mation on its validity over I itself, including the hidden states of cars present
in I \ S, yet not detected and observed.

Note that the constraints do not determine a single sample, but rather exclude
samples that we do not expect to observe. In the rest of this section we first
formalize these properties and then give an example.

We assume that S has a fixed maximal size |S| ≤ N ∈ N imposed by the
real-time constraints on harvesting environmental information via measurements
by the ego car and via car2x communication. We furthermore assume that we
know which sample sets S may arise in a given situation, which in turn is rep-
resented by an omniscient traffic snapshot T S. That is, we assume a relation
consistent ⊂ TS × P(I), where consistent(T S,S) captures the relation between
overall traffic situations T S and samples S ⊂ I that may arise due to techni-
cal surveillance within that particular situation. We use MLSLS to express the
consistency relation.

Definition 7 (Consistency Constraint). Let c̄ ≡ ego, c2, . . . , cN be a vector
of car variables. A consistency constraint is an MLSLS formula consistent(c̄)
which has c2, . . . , cN as free variables. In any satisfying model of consistent(c̄),
the assignments to c̄ constitute a consistent sample for the traffic snapshot.

Note that a sample may contain less than N identifiers. In this case some of the
variables from c̄ are mapped to the same car. This consistency formula can be
considered a requirements specification for the in-car equipment used for sensing
cars in the neighbourhood and for data harvesting.

Now we can formalize properties 1. and 2. from above in MLSLS. A formula
is stable iff on all models, the evaluation of its truth value does not depend
on the particular consistent sample drawn. Further, a formula is strongly stable

No Need Knowing Numerous Neighbours 161

iff it always evaluates to the same value on any consistent sample as over the
omniscient traffic snapshot.

Definition 8 (Stability under sampling). Let c̄ ≡ ego, c2, . . . , cN and c̄′ ≡
ego, c′

2, . . . , c
′
N be two vectors of car variables, where c2, . . . , cN and c′

2, . . . , c
′
N

are mutually distinct and let consistent(c̄) be a consistency constraint, as defined
above. Then an MLSLS formula φ is called stable iff

(consistent(c̄) ∧ consistent(c̄′)) =⇒ ({c̄} :φ ⇐⇒ {c̄′} :φ) is valid, (1)

and it is called strongly stable iff

consistent(c̄) =⇒ ({c̄} :φ ⇐⇒ φ) is valid. (2)

3.1 An Example of Stability Under Sampling

In the following, we give an example of a consistency constraint and an MLSL
formula and argue that that particular formula is stable under sampling. As
abbreviations we introduce

notObs(c̄, c) ≡ ∧
c′∈c̄ c �= c′ ∧ (re(c) ∨ cl(c)) ,

someObs(c̄) ≡ ∨
c′∈c̄(re(c

′) ∨ cl(c′)) ,

where notObs(c̄, c) holds if the extension [r, t] of the considered lane is covered
by a reservation or claim of a car c that does not belong to the sample, and
someObs(c̄) holds if the extension [r, t] of the considered lane is covered by a
reservation or claim of some sampled car (possibly ego itself).

The following onservability constraint, later used for defining consistency of a
sample, is organized into three groups: The first concerns cars that are definitely
not observed, the second and third groups concern observed cars ahead of the
ego car, where the second addresses the same lane as the ego lane, while the last
concerns the lanes next to the ego lane:

1. Cars beyond a certain distance, e.g. 500 m or two lanes, are never observed,
be it due to physical limits of sensors or to filtering mechanisms in car2x
communication aiming at confining communication bandwidth.

Con1(c̄) ≡ ¬

⎛

⎜
⎜
⎜
⎜
⎝

(〈re(ego)〉 � � ≥ 500� 〈someObs(c̄)〉)

∨

⎛

⎜
⎝

〈re(ego)〉
L ≥ 2

〈someObs(c̄)〉

⎞

⎟
⎠ ∨

⎛

⎜
⎝

〈someObs(c̄)〉
L ≥ 2

〈re(ego)〉

⎞

⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎠

2. Within a distance of 250 m from ego, it is not the case that a car on the own
lane is not sampled while another car further away from ego is sampled.2

Con2(c̄) ≡ ¬(〈re(ego)� � ≤ 250� ∃c.notObs(c̄, c)〉 � 〈someObs(c̄)〉)
2 The intuition is that within a range of 250m, all cars are observed unless occluded

by another car closer to ego.

162 M. Fränzle et al.

3. All cars on neighboring lanes within 100 m of ego belong to the sample.

Con3(c̄) ≡ ¬

⎛

⎜
⎜
⎜
⎜
⎜
⎝

〈(L = 1
re(ego)

)

� � ≤ 100�
(∃c.notObs(c̄, c)

L = 1

)〉

∨ 〈(
re(ego)
L = 1

)

� � ≤ 100�
(L = 1

∃c.notObs(c̄, c)

)〉

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Constraints concerning the region behind ego could be organized in a similar
fashion. We omit them here for the sake of brevity. Given the above constraints
on possible observations, we define the overall consistency constraint as

consistent(c̄) ≡
3∧

i=1

Coni(c̄) (3)

Consider next a guard on a transition of a control automaton that should be
taken when an overtake manoeuvre is initiated. This guard should ensure that
an overtake manoeuvre is meaningful and safe. It is meaningful when there is a
car in front of ego (on the same lane) within 35 m, and it is safe when the lane to
the left of ego is free for at least 100 m.3 This leads to the following specification:

guard ≡
〈

(free ∧ � ≥ 100)� true
re(ego)� (free ∧ � < 35)� ∃c.re(c)� true

〉

In order to draw a driving decision for or against overtaking, this guard will have
to be evaluated on a given sample for a given traffic snapshot.

In order to check whether the guard is stable when evaluated over consistent
samples up to size N = 20, we let c̄ ≡ ego, c2, . . . , c20 and c̄′ ≡ ego, c′

2, . . . , c
′
20 be

two vectors of car variables. We instantiate the stability formula from Definition 8
as

(consistent(c̄) ∧ consistent(c̄′)) =⇒ ({c̄} :guard ⇐⇒ {c̄′} :guard)

and check whether it is satisfied by all models of the form (I, T S, V, ν).
To see that the MLSL formula guard is stable w.r.t. the consistency constraint

from (3), observe that when (I, T S, V, ν) |= consistent(c̄) ∧ consistent(c̄′) holds,
then ν contains an assignments to c̄, c̄′, which induces two consistent samples S

and S
′. Furthermore, we know that Con3 ensures that S and S

′ both contain all
cars on adjacent lanes within 100 m in front of ego. Similarly, we know from Con2

that a car in front of us will be detected if in the 35 m range. As guard reasons
about space at most 100 m from ego on the left lane, and at most 35 m from ego
on the own lane, we can deduce that (I, T S, V, ν) |= {c̄} :guard ⇐⇒ {c̄′} :guard
holds for each consistent pair of samples S and S

′. The MLSL formula guard
consequently is stable. A similar argument shows that it is strongly stable.

3 Safety under these conditions obviously applies to the low-speed regime only. This
example specification therefore is not a complete one, yet should be considered being
part of a larger overall scenario.

No Need Knowing Numerous Neighbours 163

4 Satisfiability of MLSLS

In this section, we give a decision procedure for deciding a subset of MLSLS. To
do so we transform formulas to constraints belonging to quantified linear integer-
real arithmetic (QLIRA), for which the satisfiability problem is decidable [9,15].
In the considered fragment, scoped formulas are used to enforce that there is a
fixed bound on the number of cars that need consideration. In particular, it is
required that the formulas free and ∃c.φ occur only inside a scoped formula.
Such formulas are called well-scoped formulas.

Definition 9 (Well-scoped MLSLS formulas). The set of well-scoped
MLSLS formulas φ ∈ ΦW is generated by the following grammar:

φ ::= A | ¬φ | φ ∧ φ | φ �φ | φ
φ

| cs :φ′ ,

A ::= � = k | γ = γ′ | re(γ) | cl(γ)

φ′ ::= free | ∃c.φ′ | A | ¬φ′ | φ′ ∧ φ′ | φ′ � φ′ | φ′

φ′ | cs :φ′ ,

where c ∈ CVar, cs ⊆ CVar is finite, k ∈ Q and γ, γ′ ∈ CVar ∪ {ego}.
In QLIRA we use variables ranging over the real numbers, as well as the

operations of linear arithmetic and rounding to the next smaller integer.

Definition 10 (Formulas of QLIRA). The set of QLIRA formulas ψ ∈ Ψ is
generated by the following grammar:

ψ ::= ∃x ∈ R.ψ | term ≤ term | ¬ψ | ψ ∧ ψ ,

term ::= k | x | �x� | term + term ,

where x ∈ RVar (a set of variables ranging over real numbers) and k ∈ Q.

We use the remaining propositional connectives and =, <,≥ and > as abbrevi-
ations. Furthermore, ∃i ∈ N.ψ is an abbreviation for ∃i ∈ R.i = �i� ∧ 0 ≤ i ∧ ψ.
When the constraint i = �i� ∧ 0 ≤ i is associated with a variable i, then i
ranges over natural numbers and we say that i ∈ NVar , that is, NVar is a set
of variables ranging over natural numbers.

For terms termj , j ∈ [0, 3], and terms term0, . . . , termk, k ∈ N≥1, we define

[term0, term1] ⊆ [term2, term3] ≡ term2 ≤ term0 ∧ term1 ≤ term3 ,

term0 ∈ {term1, . . . , termk} ≡
∨

termj∈{term1,...,termk}
termj = term0 ,

[term0, term1] ∩ (term2, term3) = ∅ ≡ term1 ≤ term2 ∨ term3 ≤ term0 .

Note that both intervals in the subset definition are closed, but for the intersec-
tion definition the interval (term2, term3) is open.

164 M. Fränzle et al.

4.1 A QLIRA Representation of a Traffic Snapshot T S
It is now described how the satisfiability problem for well-scoped formulas φ
is reduced to satisfiability of QLIRA formulas. Variables of QLIRA are intro-
duced so that the various components of a model (CS , T S, V, ν), for V =
([l, n], [r, t], E), can be represented in QLIRA, and so that the translation func-
tion “mimics” the definition of the semantics relation |= in Definition 5. A key
issue is the QLIRA representation of a traffic snapshot.

Let φ be a well-scoped formula with free variables cs = {c0, c1, . . . , cn−1} =
freeVar(φ). Then, due to the structure of well-scoped formulas, the number of
free variables n is a bound on the number of cars necessary to consider when
checking for the satisfiability of φ. Hence, only a finite traffic snapshot needs to
be represented when checking for satisfiability. To do so, we introduce n natural
number variables of QLIRA C0, C1, . . . , Cn−1 representing n cars. Furthermore,
let finit : cs → NVar be defined by

finit(ci) = Ci (4)

The spatial information for each of these cars, say Ci ∈ NVar , is represented
by five QLIRA variables: Ci

pos, Ci
res, Ci

res′ , Ci
clm, and Ci

spacing, for the position,
lane reserved, alternative lane reserved, lane claimed, and size of the safety enve-
lope. Hence, prior to the translation of φ a table is created containing n entries
(Ci, (Ci

pos, C
i
res, C

i
res′ , Ci

clm, Ci
spacing)) with QLIRA variables for n cars.

Variables Ci
pos and Ci

spacing range over the reals and variables Ci
res range

over natural numbers. Variables Ci
res′ , Ci

clm range over natural numbers denoting
a lane or may take a special value, say nil = −2 denoting no reservation or
no claim. Technically this is enforced by associating a constraint of the form
(x = �x� ∧ 0 ≤ x) ∨ x = −2 with each such variable.

To meaningfully represent a traffic snapshot, these variables must satisfy
properties such as Ci

spacing > 0 and if two distinct variables Ci and Cj denote
the same car, then the characterizing variables for Ci and Cj must agree. Such
properties can be formulated in QLIRA, for example:

Ci = Cj =⇒
⎛

⎝
Ci

pos = Cj
pos ∧ Ci

spacing = Cj
spacing

∧ Ci
res = Cj

res ∧ Ci
res′ = Cj

res′ ∧ Ci
clm = Cj

clm

∧ (Ci
res′ = nil ∨ Ci

clm = nil)

⎞

⎠

Notice that also the sanity constraints of Definition 1 can be expressed in
QLIRA using the variables introduced. We will not give further details here but
just assume the existence of a QLIRA formula, named “sanity”, capturing the
sanity constraints for the QLIRA representation (like the formula above) as well
as the sanity constraints for traffic snapshots.

4.2 Translating Well-Scoped MLSLS Formulas to QLIRA

The translation function from well-scoped formulas to QLIRA should “mimic”
the definition of the semantic relation |= in Definition 5. Inspecting this seman-
tics, it is observed that the traffic snapshot T S and the ego part E of a view

No Need Knowing Numerous Neighbours 165

V = ([l, n], [r, t], E) remain constants throughout the recursive definition of
(CS , T S, V, ν) |= φ.

Hence, the translation function must keep track of the

– scope part CS , i.e. a subset of {C0, C1, . . . , Cn−1},
– the lane part [l, n] of V , i.e. two natural number variables of QLIRA,
– the extent part [r, t] of V , i.e. two real number variables of QLIRA, and
– the valuation part ν, i.e. a function with type: f : cs → {C0, C1, . . . , Cn−1}.

The part that may change during translation is modelled by the type T:

T = P(NVar) × NVar × NVar × RVar × RVar × ((CVar ∪ {ego}) → NVar)

Definition 11 (Transformation). The transformation is given by a function

tr : T × ΦW → Ψ .

Let Υ = (CS , i, i′, x, x′, f) ∈ T, k ∈ Q, γ, γ′ ∈ CVar ∪ {ego} and c ∈ CVar.
Then the transformation is given as:

tr(Υ, re(γ)) := x′ > x ∧ [x, x′] ⊆ [Cpos, Cpos + Cspacing] ∧
i = i′ ∧ (i = Cres ∨ i = Cres′), where C = f(γ)

tr(Υ, cl(γ)) := x′ > x ∧ [x, x′] ⊆ [Cpos, Cpos + Cspacing] ∧
i = i′ ∧ i = Cclm, where C = f(γ)

tr(Υ, free) := i = i′ ∧ x′ > x ∧
∧

C∈CS

⎛

⎝
i �∈ {Cres, Cres′ , Cclm}
∨
[x, x′] ∩ [Cpos, Cpos + Cspacing] = ∅

⎞

⎠

tr(Υ, � = k) := x′ − x = k

tr(Υ, γ = γ′) := f(γ) = f(γ′)

tr(Υ, cs :φ) := tr(({f(c) | c ∈ cs}, i, i′, x, x′, f), φ)

tr(Υ, φ0 ∧ φ1) := tr(Υ, φ0) ∧ tr(Υ, φ1)

tr(Υ, ¬φ) := ¬tr(Υ, φ)

tr(Υ, ∃c.φ) :=
∨

C∈CS

tr((CS , i, i′, x, x′, f ⊕ {c �→ C}), φ)

tr(Υ, φ0 � φ1) := ∃x′′ ∈ R.x ≤ x′′ ≤ x′ ∧
tr((CS , i, i′, x, x′′, f), φ0) ∧ tr((CS , i, i′, x′′, x′, f), φ1)

where x′′ is a fresh QLIRA variable

tr(Υ,
φ1

φ0
) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

i ≤ i′ =⇒ ∃i′′ ∈ N.

⎛

⎝
i − 1 ≤ i′′ ≤ i′

∧ tr((CS , i, i′′, x, x′, f), φ0)
∧ tr((CS , i′′ + 1, i′, x, x′, f), φ1)

⎞

⎠

∧
i > i′ =⇒

(
tr((CS , i, i′, x, x′, f), φ0)

∧ tr((CS , i, i′, x, x′, f), φ1)

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

where i′′ is a fresh QLIRA variable

166 M. Fränzle et al.

Notice that the translation function is a direct reflection of the definition of
semantic relation |=.

We define
F (φ) ≡ sanity ∧ tr((∅, i, i′, x, x′, finit), φ) ,

where the formula “sanity” is the QLIRA formula mentioned above that
expresses the sanity constraints on traffic snapshots and sanity constraints on
the encoding and finit is given by (4). Since the QLIRA constraint F (φ) fol-
lows the structure of Definition 5, it is equisatisfiable to the well-scoped MLSLS
formula φ, which is stated in the following theorem.

Corollary 1. Given a well-scoped MLSLS formula φ we can effectively create
QLIRA constraints F (φ) such that

φ is satisfiable iff F (φ) is satisfiable .

A direct consequence is decidability of well-scoped MLSLS:

Theorem 1 (Decidability of well-scoped MLSLS). Satisfiability and valid-
ity of well-scoped MLSLS are decidable.

Proof. Well-scoped MLSLS is closed under negation. Hence, both satisfiabil-
ity and validity can be reduced to satisfiability problems. Given a well-scoped
MLSLS formula φ, Corollary 1 permits generating a QLIRA constraint F (φ)
which is equisatisfiable to φ. Satisfiabilty of F (φ), and thus equivalently satisfi-
ability of φ, is decidable due to decidability of QLIRA. ��

5 Deciding Stability

We now turn to the problem of deciding whether an MLSLS formula φ is
stable, as defined by condition (1) in Definition 7, i.e., of deciding whether the
following formula is valid:

(consistent(c̄) ∧ consistent(c̄′)) =⇒ ({c̄} :φ ⇐⇒ {c̄′} :φ)

Observing that the satisfiablity problem of well-scoped MLSLS is decidable,
we address the above problem by adequately scoping formula (1) by successive
introduction of scope operators. These introduced scopes must be in connection
with subformulas of the form: ∃c.ξ (cf. Definition 9), as such existential quan-
tifiers may otherwise range over an unbounded number of cars. When scopes
are introduced for such formulas, special care must be taken concerning possible
occurrences of the formula free in ξ. The reason is the universal quantification
over all cars in the semantic definition of free (cf. Definition 5), which causes
problems when the particular occurrence is outside of any scope operator.

No Need Knowing Numerous Neighbours 167

We note two properties of the scope operator which permit its introduction:

Lemma 1 (Scope introduction). Let φ be an MLSLS formula containing
a positive (or negative, respectively) occurrence of some subformula ψ ≡ ∃c.ξ.
Furthermore assume that ψ occurs outside any scope operator in φ and that the
formula free does not occur in ξ outside a scope operator. Let φ′ be the formula
that is obtained by replacing ψ in φ by {d1, . . . , dn} :ψ, where d1, . . . , dn are fresh
variable names. Then validity of φ′ is a sufficient (necessary, resp.) condition
for validity of φ.

Proof. The freshly introduced scope operator confines the range of the
existential quantifier to a subrange of the car identifiers, which strengthens or
weakens, respectively, the overall formula depending on polarity of the quantifier
occurrence. ��

Due to decidability of well-scoped formulas (Theorem 1), we obtain a safe, yet
incomplete method for checking stability under sampling: in our exemplary con-
sistency formulas Con1 to Con3, we do only encounter universal statements over
objects outside the sample,4 which we consider to be the general form.5 Further-
more, observe that the formula free does not occur in the example consistency
formula at all and that it occurs only properly scoped within our exemplary
stability formula.

For such consistency formulas, we can proceed as follows:

1. Build formula (1). Within this formula, existential quantifiers outside scope
operators do only occur positively.

2. Scope these quantifiers by arbitrarily large scopes according to Lemma 1.
3. Decide validity of the resulting well-scoped formula using the procedure of

Theorem 1.
4. If the formula is valid then report “stable” and stop. This is sound as validity

of the scoped formula is a sufficient condition for validity of the original
stability condition (1) according to Lemma 1.

5. Else go back to Step 2 and repeat with larger scopes.

Whenever this procedure terminates, it constitutes a constructive proof of sta-
bility of the formula under investigation.

In most cases, we can however do better than such blind search for sufficiently
large scopes, as the range of technical perception tends to be bounded. This means
that there is a fixed range around the ego car outside which we do not expect cars
to show up in the sample. In such cases, a lossless scoping of the consistency predi-
cate by introduction of (generally very large) scope operators is possible, which in

4 The only quantifiers not ranging over samples are existential quantifiers in negative
context.

5 To this end please note that there is no need to express that a sampled object actually
exists in the outside world, as this has been built into the semantics. Existential
statements about objects outside the sample therefore seem to be of no practical
value.

168 M. Fränzle et al.

turn will be exploited for deciding whether the actual (and generally much smaller)
sample still is large enough for stably determining truth values.

To get there, we first note some semantic properties of scope operators char-
acterizing situations where introduction of scope operators does not affect sat-
isfaction.

Lemma 2. Let T S be a traffic snapshot, V = ([l, n], [r, t], E) be a view and ν
be a valuation, and denote by

IV = {C | C ∈ I ∧ [r, t] ∩ se(C, T S) �= ∅ ∧ [l, n] ∩ (res(C) ∪ clm(C)) �= ∅}
the set of cars visible within the current view. Let φ be an MLSLS formula. Then

(I, T S, V, ν) |= φ ⇐⇒ ∃CS = IV � S ⊂ I.|S| = m ∧ (CS , T S, V, ν) |= φ ,

where m is the number of quantifiers in φ and � denotes disjoint union. That
is φ holds over all cars iff there is a satisfying sample containing all cars in the
view plus as many extra cars as there are quantifiers.

Proof. By induction on the structure of φ. For the induction start observe that
the only atomic formula which is influenced by scoping is free. It is easy to check
that the theorem holds when φ itself is the formula free, because the semantics
of free depends only on the cars in the view. The only interesting case left for
the induction step is quantification, as the semantics of the remaining constructs
is not influenced by scoping. Therefore assume in the remainder that φ = ∃c.ψ.

To show the implication from left to right, assume that (I, T S, V, ν) |= ∃c.ψ.
Then there exists C ∈ I such that (I, T S, V, ν ⊕ {c → C}) |= ψ. By induction
hypothesis, as ψ has one quantifier less, there is CS ′ = IV � S′ ⊂ I with |S′| =
m−1 such that (CS ′, T S, V, ν ⊕{c → C}) |= ψ. If C ∈ CS ′ then C ∈ CS ′ ∪{D}
for an arbitrary D ∈ I \ CS ′ and consequently (CS ′ ∪ {D}, T S, V, ν) |= ∃c.ψ.
If C �∈ CS ′ then especially C �∈ IV . Thus, from (I, T S, V, ν) |= ∃c.ψ we can
conclude that binding c to C does not affect any of the spatial subformulas of
ψ. For the equations between car identifiers observe that C is distinct from all
the identifiers in CS ′. Consequently (CS ′ ∪ {C}, T S, V, ν) |= ∃c.ψ holds again.

Let us now assume that (I, T S, V, ν) �|= ∃c.ψ. Then for all C ∈ I we have
(I, T S, V, ν ⊕ {c → C}) �|= ψ. By induction hypothesis, as ψ has one quantifier
less, (CS ′, T S, V, ν ⊕ {c → C}) �|= ψ holds for all CS ′ = IV � S′ ⊂ I with
|S′| = m − 1. As this does in particular apply for all such CS ′ with C �∈ CS ′, we
can conclude (CS , T S, V, ν) �|= ∃c.ψ for all CS = IV � S with |S| = m.

Consequently the bi-implication holds. ��
To achieve decidability of stability, we introduce the assumption that an area

of bounded size contains at most a bounded number of cars, which is trivially
true due to the given geometric extent of cars.6

6 The critical reader may object that the geometry of a car may change rather arbi-
trarily upon a severe crash. This argument, while true, however is irrelevant here, as
the decision-making aims at maintaining safety such that its verification conditions
invariantly apply to states in the pre-crash phase. Once a crash is encountered, the
safety system has failed anyhow and there is no need to analyse any further.

No Need Knowing Numerous Neighbours 169

Assumption 1. Assume that a part of a motorway of length s with k lanes
contains at most n = bound(s, k) different cars, for some monotonic function
bound.

A direct consequence of this assumption is the following.

Corollary 2. Let T S be a traffic snapshot, V be a view, ν be a valuation and n
be the maximal number of cars fitting into V . Let φ be an MLSLS formula. Then
(I, T S, V, ν) |= φ iff there is a valuation ν′ extending ν such that (I, T S, V, ν′) |=
{c1, . . . , cn, d1, . . . , dm} :φ, where m is the number of quantifiers in φ.

We say that a quantifier ∃c.φ is unscoped if it ranges over the full range of
car identifiers rather than just a finite sample. The crucial point of the previous
corollary is to evaluate unscoped quantifiers only on a fixed area. We fix this area
to ego and then we can introduce scopes to a large subset of MLSLS without
losing completeness for this subset.

Lemma 3 (Exact scope introduction). Let φ be an MLSLS formula where
each unscoped quantifier occurs within a context of the form (η ∧ � ∼1 k1 ∧
L ∼2 k2) � ψ, which in turn occurs positively in the overall formula. Here, η ∈
{re(ego), cl(ego), 〈re(ego)〉 , 〈cl(ego)〉}, each ki is a constant and ∼i∈ {<,≤,=},
for i ∈ {1, 2}, and � ∈ { =⇒ ,∧}. Let K1 and K2 be the largest such constants
occurring in the formula. Then

φ is equisatisfiable to {c1, . . . , cn, d1, . . . , dm} :φ

where n is the maximum number of cars fitting a view V of length 2K1 and width
2K2 − 1 according to Assumption 1 and m is the number of quantifiers in φ.

Proof. Note that all subviews satisfying the “guarding” conditions (η ∧ � ∼1

k1 ∧L ∼2 k2) have to contain the ego car due to η and are thus within a range of
[−K1,K1] around the ego car position and within the range of [−K2 +1,K2 −1]
lanes around the ego car lane. The statement then follows from the previous. ��

Note that this lemma permits to convert certain partially scoped formulas
into equisatisfiable well-scoped formulas. Due to decidability of well-scoped for-
mulas, this gives rise to the following decidability result.

Theorem 2 (Decidability of stability). Let φ be an MLSLS formula and let
consistent(c̄) be a consistency predicate for which each unscoped quantifier occurs
within a context of the form: (η∧� ∼1 k1∧L ∼2 k2)�ψ, which in turn occurs neg-
atively in the overall formulas. Here, η ∈ {re(ego), cl(ego), 〈re(ego)〉 , 〈cl(ego)〉},
ki is constant and ∼i∈ {<,≤,=}, for i ∈ {1, 2}, and � ∈ { =⇒ ,∧}. Then it
is decidable whether φ is stable under sampling with the consistency predicate
consistent(c̄).

Proof. Stability under sampling is logically characterized by validity of formula
(1). Under the preconditions of the theorem, the negation of formula (1) can
be rewritten to an equisatisfiable MLSLS formula in scoped form according to
Lemma 3. As satisfiablity of scoped MLSLS formulas is decidable due to Theo-
rem 1, the claim follows. ��

170 M. Fränzle et al.

We show that the exemplary consistency conditions from Sect. 3 fall into the
fragment of MLSLS such that stability under sampling can be decided according
to Theorem 2. We first define φ ≡ re(ego)� � ≤ 250� ∃c.notObs(c̄, c) and then
we can introduce upper bounds into Con2(c̄) ≡ ¬(〈φ〉 � 〈someObs(c̄)〉) from
Sect. 3 such that

Con2(c̄) ⇐⇒ ¬((〈φ〉 ∧ � ≤ 251 ∧ L = 1)� 〈someObs(c̄)〉) ,

which holds because views satisfying reservations can be arbitrary small, as
long as the view has length greater zero, and the formula after the last chop is a
somewhere formula. Note that instead of 251 we can use any number greater 250.
Therefore, consistency constraint Con2(c̄) can be properly scoped according to
Lemma 3, and so can consistency constraint Con3(c̄) using a similar technique.

In many cases, it even is possible to decide strong stability

consistent(c̄) =⇒ ({c̄} :φ ⇐⇒ φ) .

As an example consider this formula instantiated with φ ≡ guard, as given in
Sect. 3.1. This formula contains an unscoped occurrence of the formula

guard ≡
〈

(free ∧ � ≥ 100)� true
re(ego)� (free ∧ � < 35)� ∃c.re(c)� true

〉

.

According to to Lemma 1, {c̄} : guard is a sufficient condition for guard s.t. we
can reduce the strong stability condition (2) to

consistent(c̄) =⇒ ({c̄} :φ ⇐= φ) .

Here, the unscoped φ occurs in negative context only and the formula can thus
be decided according to Theorem 2 after adequately rewriting φ by the means
demonstrated above on the consistency formulas.

6 Conclusion

Multi-Lane Spatial Logic (MLSL) has been suggested as a means of increasing
the level of abstraction in the design of decision-making algorithms for auto-
mated driving. This abstractness, however, comes at the price of raising concerns
about implementability of its concepts. A crucial such concern is whether safe
evaluation of guard conditions formulated in MLSL is technically feasible, given
that technical observation of the environment in a car can only represent part
of the environmental objects, which is in stark contrast to the omniscient per-
spective taken by MLSL’s standard semantics. To address this problem, we have
defined a conservative extension of MLSL called MLSL with scope (MLSLS),
which permits to formulate observability constraints in the logic itself. As the
relevant subset of well-scoped MLSL formulas is decidable, as demonstrated by
a reduction to QLIRA developed herein, questions of suitability of an MLSL
constraint as a technically realizable guard can be answered mechanically.

No Need Knowing Numerous Neighbours 171

Acknowledgments. The authors are grateful to their dear colleague Ernst-Rüdiger
Olderog for many years of friendship, support, and scientific inspiration. Without him
as a continuous source of intriguing ideas, not only the work reported herein, but many
results thatwepersonally build our scientific reputation uponwould not have comeabout.

We would also like to thank the editors of this volume, R. Meyer, A. Platzer, and
H. Wehrheim, for the opportunity to prepare this article and publish it in a volume ded-
icated to Ernst-Rüdiger on the coccasion of his 60th birthday.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

2. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Information
Processing Letters 40(5), 269–276 (1991)

3. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. Journal
of the ACM (JACM) 38(4), 935–962 (1991)

4. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An Abstract Model for Proving
Safety of Multi-lane Traffic Manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011)

5. Hilscher, M., Linker, S., Olderog, E.-R.: Proving Safety of Traffic Manoeuvres on
Country Roads. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming
and Formal Methods. LNCS, vol. 8051, pp. 196–212. Springer, Heidelberg (2013)

6. Klebelsberg, D.: Verkehrspsychologie. Springer (2013)
7. Linker, S.: Proofs for traffic safety : combining diagrams and logic. Ph.D. thesis,

Carl von Ossietzky University of Oldenburg (2015)
8. Linker, S., Hilscher, M.: Proof Theory of a Multi-Lane Spatial Logic. In: Liu, Z.,

Woodcock, J., Zhu, H. (eds.) ICTAC 2013. LNCS, vol. 8049, pp. 231–248. Springer,
Heidelberg (2013)

9. Monniaux, D.: A Quantifier Elimination Algorithm for Linear Real Arithmetic. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330,
pp. 243–257. Springer, Heidelberg (2008)

10. Moszkowski, B.: A temporal logic for multi-level reasoning about hardware. IEEE
Computer 18(2), 10–19 (1985)

11. Ody, H.: Analysing decision problems of multi-lane spatial logic (2015)
(manuscript). http://theoretica.informatik.uni-oldenburg.de/ sefie/files/decidabi-
lity.pdf

12. Olderog, E.-R., Ravn, A.P., Wisniewski, R.: Linking Discrete and Continuous Mod-
els (2014) (manuscript)

13. Schäfer, A.: A Calculus for Shapes in Time and Space. In: Liu, Z., Araki, K. (eds.)
ICTAC 2004. LNCS, vol. 3407, pp. 463–477. Springer, Heidelberg (2005)

14. Venema, Y.: A modal logic for chopping intervals. Journal of Logic and Computa-
tion 1(4), 453–476 (1991)

15. Weispfenning, V.: Mixed real-integer linear quantifier elimination. In: ISSAC,
pp. 129–136. ACM (1999)

16. Woodcock, J., Davies, J.: Using Z – Specification, Refinement, and Proof. Prentice
Hall (1996)

http://theoretica.informatik.uni-oldenburg.de/~sefie/files/decidability.pdf
http://theoretica.informatik.uni-oldenburg.de/~sefie/files/decidability.pdf

Automated Reasoning Building Blocks

Christoph Weidenbach(B)

Max Planck Institute for Informatics, Saarbrücken, Germany
weidenbach@mpi-inf.mpg.de

Abstract. There are automated reasoning building blocks shared
between the prime calculi for propositional and first-order logic with
equality, conflict driven clause learning (CDCL) and superposition,
respectively. In this paper I identify these building blocks by a projec-
tion of superposition to propositional logic. Underlying both calculi is a
partial model assumption guiding ordered resolution inferences that are
not redundant.

1 Introduction

Superposition [3,4,13,19] and CDCL (Conflict Driven Clause Learning) [6,10,
11,16] are the prime calculi for first-order and propositional logic, respectively.
While the superposition calculus was the result of an evolution of first-order logic
calculi theory research, the progress on CDCL was driven by system development
and experimental evaluation. Whereas superposition semi-decides unsatisfiabil-
ity of first-order clause sets, CDCL decides satisfiability of propositional clause
sets. Satisfiability of a first-order clause set is undecidable. Because of the latter,
syntactic restrictions on inferences and effective syntactic redundancy criteria are
state-of-the-art for today’s superposition implementations. Still, the technique
for proving superposition completeness relies on an explicit model assumption,
a candidate model, that is unfortunately not effective in the first-order context.
The candidate model is build with respect to a fixed, total, well-founded order-
ing on atoms, literals, and clauses. If sufficiently many superposition inferences
are performed, the candidate model turns into a model for the overall clause set.
For the success of CDCL an explicit, partial model assumption, again a candi-
date model, is one key ingredient. The candidate model is built via decisions,
i.e., guessing the truth value of a literal, and propagations, i.e., forcing the truth
value of a literal in order to satisfy a certain clause with respect to the candidate
model so far. During a CDCL run the partial model assumption can then either
be extended to an overall model or there exists a clause that is false in the model
assumption guiding a resolution inference.

It seems that the two calculi don’t have much in common. However, in this
paper I show that CDCL can be seen as a variant of a projection of super-
position to propositional logic. The main contributions of this paper are: (i) a
generalized superposition model operator preserving important superposition
properties (Definition 17, Lemma 18, Theorem 19), (ii) clauses learned by the
CDCL calculus are not redundant, (iii) resolution inferences performed by the
c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 172–188, 2015.
DOI: 10.1007/978-3-319-23506-6 12

Automated Reasoning Building Blocks 173

CDCL calculus are actually superposition inferences, (iv) the superposition and
CDCL model assumptions are identical (all Theorem 20). Ordering restrictions,
model guided inferences and a compatible redundancy notion are important
building blocks for automated reasoning systems. The results are discussed in
more detail in Section 6. The paper starts with fixing the basic notions and
notation, Section 2. The following Section 3 projects the standard superposition
calculus to propositional logic. Next CDCL is introduced in form of an abstract
rewrite system, Section 4, where as a first contribution I show that CDCL does
not learn the same clause twice, Lemma 13. The two sections 3 and 4 are then
the basis for a detailed comparison of CDCL and superposition, Section 5.

The paper focuses on the relationship between a candidate model, resolution
inferences, a redundancy notion, and ordering restrictions for superposition and
CDCL. In order to turn both calculi into sate-of-the-art systems a lot more is
needed including sophisticated algorithms and data-structures enabling efficient
implementations. These aspects are far beyond the scope of this paper.

2 Preliminaries

The background for CDCL as well as superposition is propositional clause logic.
A propositional clause language is built over a set Σ of propositional variables, ¬
denotes negation, ∨ disjunction, ∧ conjunction, ⊥ false and � true. For proposi-
tional variables I write P , Q. A propositional variable is an atom. An atom P ∈ Σ
or its negation ¬P is a literal. For literals I write L, K. The function atom maps
a literal to its respective atom and the function comp a literal to its complemen-
tary literal, i.e., comp(P) = ¬P and comp(¬P) = P for all P ∈ Σ. A clause is a
finite disjunction of literals where I identify the disjunction L1 ∨ . . .∨Ln and the
multiset {L1, . . . , Ln}. The empty clause ∅ corresponds to ⊥. For clauses I write
C, D. A clause set is interpreted as the conjunction of all its clauses. I identify
clause sets and clause sequences depending on whether the ordering plays a role
or not. For clause sets (sequences) I write N , M , U .

An (partial) interpretation I is a set (or a sequence) of literals such that
no complementary literals occur in I. The relation “entails” |= and the notions
of a model, (un)satisfiability, validity are defined as usual. So I |= L if L ∈ I
and the relation is not defined if neither L nor its complement occurs in I. The
relation |= is extended accordingly to clauses, clause sets, e.g., N |= C holds if
for every interpretation I with I |= N it holds I |= C. An interpretation I can
be partial in the sense that not all atoms from Σ or atoms contained in a clause
set N are defined by I or that I is only a partial model for some clause set N ,
i.e., it satisfies only a subset of N . A Herbrand interpretation H is a set (or a
sequence) of atoms. A Herbrand interpretation is always total because H |= P
if P ∈ H and H |= ¬P if P �∈ H. For example, H = {P} then H |= ¬Q and thus
corresponds to the interpretation I = {P,¬Q} for Σ = {P,Q}.

The calculi in the paper are defined in the form of rewrite systems with
respect to a rewrite relation ⇒. A calculus is complete with respect to satisfia-
bility, if for any clause set N that is satisfiable, it finds a model. It is strongly

174 C. Weidenbach

complete if for any clause set N and interpretation I |= N the calculus finds I.
It is sound if whenever the calculus finds a model for N it actually is a model.

3 Propositional Superposition

Superposition was originally developed for first-order logic with equality
[3,4,13,19]. It can be seen as an refinement of the traditional resolution cal-
culus, where, in particular, resolution inferences are restricted to maximal liter-
als with respect to an ordering. Here I introduce its projection to propositional
logic. Superposition tests unsatisfiability of a finite clause set. For propositional
clauses it is guaranteed to terminate either by deriving ⊥, or by generating a so
called saturated clause set where no more inferences are needed to be performed,
see Definition 6, below. Compared to the resolution calculus [15] superposition
adds (i) ordering restrictions on inferences, (ii) an abstract redundancy notion,
(iii) the notion of a (partial) model, based on the ordering for inference guidance,
and (iv) a saturation concept.

Definition 1 (Clause Ordering). Let ≺ be a total strict ordering on Σ. Then
≺ can be lifted to a total ordering on literals ≺L by ≺⊆≺L and P ≺L ¬P and
¬P ≺L Q, ¬P ≺L ¬Q for all P ≺ Q. The ordering ≺L can be lifted to a total
ordering on clauses ≺C by considering the multiset extension of ≺L for clauses.

For example, if P ≺ Q, then P ≺L ¬P ≺L Q ≺L ¬Q and P ∨ Q ≺C

P ∨ Q ∨ Q ≺C ¬Q because {P,Q} ≺mul
L {P,Q,Q} ≺mul

L {¬Q}.
Eventually, I overload ≺ with ≺L and ≺C . So if ≺ is applied to literals it

denotes ≺L, if it is applied to clauses, it denotes ≺C . Recall that ≺ is a total
ordering on literals and clauses as well. Eventually we will restrict inferences to
maximal literals with respect to ≺. A literal L ∈ C is maximal in C if there is
no larger literal with respect to ≺ in C. It is strictly maximal if it is maximal
and there are no duplicate occurrences of L in C. For a clause set N , I define
N≺C = {D ∈ N | D ≺ C}.

Proposition 2 (Properties of the Clause Ordering).
1. The orderings on literals and clauses are total and well-founded.
2. Let C and D be clauses with P = atom(max(C)), Q = atom(max(D)), where
max(C) denotes the maximal literal in C with respect to ≺L:

1. If Q ≺L P then D ≺C C.
2. If P = Q, ¬P = max(C), P = max(D), then D ≺C C.

Definition 3 (Abstract Redundancy). A clause C is redundant with respect
to a clause set N if N≺C |= C.

Tautologies are redundant, because they are entailed by any clause set. Sub-
sumed clauses are redundant for strict subset relationship. If C ⊂ D, then D is
redundant in the presence of C. Duplicate clauses are anyway eliminated quietly
because the calculus operates on sets of clauses.

Automated Reasoning Building Blocks 175

Note that for finite propositional N , and any C ∈ N redundancy N≺C |= C
can be decided but is as hard as testing unsatisfiability for a clause set N . So
the goal is to invent useful redundancy notions that can be efficiently decided.

Definition 4 (Partial Model Construction). Given a clause set N and an
ordering ≺ the (partial) Herbrand model NI for N is constructed inductively as
follows:

NC :=
⋃D∈N

D≺C δD

δD :=

{
{P} if D = D′ ∨ P, P strictly maximal,and ND |= ¬D′

∅ otherwise
NI :=

⋃
C∈N δC

Clauses C with δC �= ∅ are called productive. Recall that atoms not contained
in NI are false. The operator only extends the model by an atom P if it is forced
to by a clause C ∨ P where C is false and P maximal. Therefore, it constructs
minimal models with respect to the subset relationship.

Please properly distinguish: N is a set of clauses interpreted as the conjunc-
tion of all clauses. N≺C is of set of clauses from N strictly smaller than C with
respect to ≺. NI , NC are Herbrand interpretations. NI is the overall (partial)
Herbrand model for N , whereas NC is generated from all clauses from N strictly
smaller than C.

Proposition 5. Some properties of the partial model construction.

1. For every D with (C ∨ ¬P) ≺ D we have δD �= {P}.
2. If δC = {P} then NC ∪ δC |= C.
3. If NC |= D and D ≺ C then for all C ′ with C ≺ C ′ we have NC′ |= D and

in particular NI |= D.
4. If NC |= C then NI |= C.
5. If NI |= N then there is no H ⊂ I such that H |= N .

The superposition calculus operates on a set of clauses. It is defined below as
a set of non-deterministic, don’t care rewrite rules on clause sets. The left hand
side of a rule is matched against the clause set and the clause set is replaced by
the right hand side of the rule. The symbol � denotes disjoint union.

The result of this rewrite rule presentation is a separation between the order-
ing in which a clause set is changed by superposition from the actual changes.
Then properties of the calculus can be shown by induction and independent
case analysis on the rules. Furthermore, properties relying on a particular rule
application strategy can be distinguished from properties relying on the manip-
ulations only. For example, see the different assumptions of Proposition 12 and
Lemma 13 in the next section.

Superposition Left (N � {C1 ∨ P,C2 ∨ ¬P}) ⇒SUP (N ∪ {C1 ∨ P,C2 ∨
¬P} ∪ {C1 ∨ C2})

176 C. Weidenbach

where (i) P is strictly maximal in C1 ∨ P (ii) ¬P is maximal in C2 ∨ ¬P

Factoring (N �{C∨P ∨P}) ⇒SUP (N ∪{C∨P ∨P}∪{C∨P})
where P is maximal in C ∨ P ∨ P

Note that the superposition factoring rule differs from the resolution factoring
rule in that it only applies to positive literals. In contrast to CDCL (Section 4),
duplicate literal occurrences are not silently merged but either condensed (see
below) or factorized. In fact, in propositional logic Condensation can effectively
replace Factoring. However, as soon as the logic gets (a little) more expressive,
Factoring and Condensation need to be distinguished (see also Section 6).

Definition 6 (Saturation). A set N of clauses is called saturated up to redun-
dancy, if any clause generated by Superposition Left or Factoring from non-
redundant clauses in N is redundant with respect to N or contained in N .

Examples for specific rules that eliminate redundant clauses or replace clauses
by clauses making them redundant are:

Subsumption (N � {C1, C2}) ⇒SUP (N ∪ {C1})
provided C1 ⊂ C2

Tautology
Deletion

(N � {C ∨ P ∨ ¬P}) ⇒SUP (N)

Condensation (N � {C1 ∨ L ∨ L}) ⇒SUP (N ∪ {C1 ∨ L})

Subsumption
Resolution

(N � {C1 ∨ L,C2 ∨ ¬L}) ⇒SUP (N ∪ {C1 ∨ L,C2})

where C1 ⊆ C2

A clause C where Condensation is not applicable is called condensed. Note
that there are no ordering restrictions on the literals involved in any of the
rules. All clauses removed by Subsumption, Tautology Deletion, Condensation
and Subsumption Resolution are redundant with respect to the kept or added
clauses. In an implementation the redundancy elimination rules are priorized
over Superposition Left and Factoring.

Theorem 7. If N is saturated up to redundancy and ⊥ /∈ N then N is satisfi-
able and NI |= N .

Proof. The proof is by contradiction. So I assume: (i) for any clause D derived
by Superposition Left or Factoring from N that D is redundant, i.e., N≺D |= D,
(ii) ⊥ /∈ N and (iii) NI �|= N . Then there is a minimal, with respect to ≺, clause
C ∨ L ∈ N such that NI �|= C ∨ L and L is maximal. This clause must exist
because ⊥ /∈ N .

The clause C ∨ L is not redundant. For otherwise, NC∨L |= C ∨ L and hence
NI |= C ∨ L, Proposition 5.4, a contradiction.

Automated Reasoning Building Blocks 177

I distinguish the case where L is a positive or L is a negative literal. Firstly,
assume L is positive, i.e., L = P for some propositional variable P . Now if P is
strictly maximal in C ∨ P then actually δC∨P = {P} and hence NI |= C ∨ P ,
a contradiction. So P is not strictly maximal. But then actually C ∨ P has the
form C ′

1 ∨ P ∨ P and Factoring derives C ′
1 ∨ P where (C ′

1 ∨ P) ≺ (C ′
1 ∨ P ∨ P).

Now C ′
1 ∨ P is not redundant, strictly smaller than C ∨ L, we have C ′

1 ∨ P ∈ N
and NI �|= C ′

1 ∨ P , a contradiction against the choice that C ∨ L is minimal.
Secondly, assume L is negative, i.e., L = ¬P for some propositional variable

P . Then, since NI �|= C ∨ ¬P it holds P ∈ NI . So there is a clause D ∨ P ∈ N
where δD∨P = {P} and P is strictly maximal in D∨P and (D∨P) ≺ (C∨¬P). So
Superposition Left derives C ∨ D where (C ∨ D) ≺ (C ∨ ¬P) by Proposition 2.
The derived clause C ∨ D cannot be redundant, because for otherwise either
NC∨D |= D or NC∨D |= C. So C ∨ D ∈ N and NI �|= C ∨ D, a contradiction
against the choice that C ∨ L is the minimal false clause. �

Note that the reverse of the above theorem does not hold. If NI |= N the set
N is not necessarily saturated. For example, consider the clause set N = {P,¬P∨
¬Q} with ordering Q ≺ P . Then NI |= N but for saturation a Superposition
Left inference between the two clauses is required. Maintaining an explicit model
assumption can be beneficial for deciding satisfiability of N , because it enables
to detect satisfiability before the clause set is saturated.

For a superposition implementation, the proof actually implies that at any
point in the derivation only either a Superposition Left inference between a min-
imal false clause and a productive clause or a Factoring inference on a minimal
false clause need to be considered. This principle is shared by the CDCL calculus,
see the section below.

4 CDCL – Conflict Driven Clause Learning

The CDCL calculus tests satisfiability of a finite set N of propositional clauses.
I assume that ⊥ �∈ N and that the clauses in N do not contain duplicate literal
occurrences.

The CDCL calculus explicitely builds a candidate model for a clause set. If
such a sequence of literals L1, . . . , Ln satisfies the clause set N , it is done. If
not, there is a false clause C ∈ N with respect to L1, . . . , Ln. Now instead of
just backtracking through the literals L1, . . . , Ln, CDCL generates in addition
a new clause that actually guarantees that the subsequence of L1, . . . , Ln that
caused C to be false will not be generated anymore. This causes CDCL to be
exponentially more powerful in proof length than its predecessor DPLL [7] or
classical Tableau [17].

A CDCL problem state is a five-tuple (M ;N ;U ; k;C) where M a sequence
of annotated literals representing a partial model, called a trail, N and U are
sets of clauses, k ∈ N, and C is a non-empty clause or � or ⊥, called the mode
of the state. In particular, the following states can be distinguished:

178 C. Weidenbach

(ε;N ; ∅; 0;�) is the start state for some clause set N
(M ;N ;U ; k;�) is a final state, if M |= N and all literals from N are

defined in M
(M ;N ;U ; k;⊥) is a final state, where N has no model
(M ;N ;U ; k;�) is an intermediate model search state if M �|= N or

not all literals from N are defined in M
(M ;N ;U ; k;D) is a backtracking state if D �∈ {�,⊥}

Literals in L ∈ M are either annotated with a number, a level, i.e., they have
the form Lk meaning that L is the k − th guessed decision literal, or they are
annotated with a clause that forced the literal to become true. A literal L is of
level k with respect to a problem state (M ;N ;U ; j;C) if L or comp(L) occurs
in M and the first decision literal left from L (comp(L)) in M is annotated with
k. If there is no such decision literal then k = 0. A clause D is of level k with
respect to a problem state (M ;N ;U ; j;C) if k is the maximal level of a literal
in D. Recall that the mode C is a non-empty clause or � or ⊥. The rules are

Propagate(M ;N ;U ; k;�) ⇒CDCL (MLC∨L;N ;U ; k;�)
provided C ∨ L ∈ (N ∪ U), M |= ¬C, and L is undefined in M

Decide (M ;N ;U ; k;�) ⇒CDCL (MLk+1;N ;U ; k + 1;�)
provided L is undefined in M

Conflict (M ;N ;U ; k;�) ⇒CDCL (M ;N ;U ; k;D)
provided D ∈ (N ∪ U) and M |= ¬D

Skip (MLC∨L;N ;U ; k;D) ⇒CDCL (M ;N ;U ; k;D)
provided D �∈ {�,⊥} and comp(L) does not occur in D

Resolve (MLC∨L;N ;U ; k;D ∨ comp(L)) ⇒CDCL (M ;N ;U ; k;D ∨ C)
provided D is of level k

Backtrack(M1K
i+1M2;N ;U ; k;D∨L) ⇒CDCL (M1L

D∨L;N ;U∪{D∨L}; i;�)
provided L is of level k and D is of level i.

Restart (M ;N ;U ; k;�) ⇒CDCL (ε;N ;U ; 0;�)
provided M �|= N

Forget (M ;N ;U � {C}; k;�) ⇒CDCL (M ;N ;U ; k;�)
provided M �|= N

Compared to expositions of this calculus in the literature, e.g. [12], the above
rule set is more concrete. It does not need a Fail rule anymore and 1UIP back-
tracking [6] is build in. The clause D ∨ L immediately propagates after Back-
tracking. Recall that ⊥ denotes the empty clause, hence failure of searching
for a model. The level of the empty clause ⊥ is 0. The clause D ∨ L added in
rule Backtrack to U is called a learned clause. When applying Resolve I silently
assume that duplicate literal occurrences are merged, i.e., the clause D ∨ C is
always condensed (see Section 3). Compared to superposition, condensation is

Automated Reasoning Building Blocks 179

always applied eagerly without mentioning. The CDCL algorithm stops with a
model M if neither Propagate nor Decide nor Conflict are applicable to a state
(M ;N ;U ; k;�), hence M |= N and all literals of N are defined in M . The only
possibility to generate a state (M ;N ;U ; k;⊥) is by the rule Resolve. So in case
of detecting unsatisfiability the CDCL algorithm actually generates a resolu-
tion proof as a certificate. I will discuss this aspect in more detail in Section 5.
In the special case of a unit clause L, the rule Propagate actually annotates
the literal L with itself. So the propagated literals on the trail are anno-
tated with the respective propagating clause and the decision literals with the
respective level.

Obviously, the CDCL rule set does not terminate in general for a number of
reasons. For example, starting with (ε;N ; ∅; 0;�) any combination of the rules
Propagate, Decide and eventually Restart yields the start state again. Even after
a successful application of Backtrack, exhaustive application of Forget followed
by Restart again may produce the start state. So why these rules Forget and
Restart? Actually, any modern SAT solver makes use of the two rules. The rule
Forget is needed to get rid of “redundant” clauses. For otherwise, the number of
clauses in N ∪ U may get too large to be processed anymore in an efficient way.
The rule Restart makes sense with respect to a suitable heuristic for selecting
the decision literals. If applied properly, it helps the calculus to focus on a part
of N where it currently can make progress [6].

The original SAT literature [6,10,11,16] does not contain a redundancy
notion for CDCL. A huge part of the results were found out via system design,
such as the early Chaff or RelSAT, and experimental evaluation. I will develop
a theoretical foundation in Section 5.

The following examples show that if the CDCL rules are applied in an arbi-
trary order, then unwanted phenomena can happen. The rules produce stuck
states and clauses are learned that are already contained in the set N ∪ U . In
order to overcome all these situations, a strategy prioritizing certain rule appli-
cations is eventually added.

Example 8 (CDCL Proof). Consider the clause set N = {P∨Q,¬P∨Q,¬Q∨
P,¬P∨¬Q}. For the following CDCL derivation the rules Conflict and Propagate
are preferred over the other rules.

(ε;N ; ∅; 0;�)
⇒Decide

CDCL (Q1;N ; ∅; 1;�)
⇒Propagate

CDCL (Q1P¬Q∨P ;N ; ∅; 1;�)
⇒Conflict

CDCL (Q1P¬Q∨P ;N ; ∅; 1;¬P ∨ ¬Q)
⇒Resolve

CDCL (Q1;N ; ∅; 1;¬Q)
⇒Backtrack

CDCL (¬Q¬Q;N ; {¬Q}; 0;�)
⇒Propagate

CDCL (¬Q¬QPP∨Q;N ; {¬Q}; 0;�)
⇒Conflict

CDCL (¬Q¬QPP∨Q;N ; {¬Q}; 0;¬P ∨ Q)
⇒Resolve

CDCL (¬Q¬Q;N ; {¬Q}; 0;Q)
⇒Resolve

CDCL (ε;N ; {¬Q}; 0;⊥)

180 C. Weidenbach

For the clause set N \{¬P ∨Q} the fourth last state (¬Q¬QPP∨Q;N ; {¬Q}; 0;�)
is terminal, representing the model ¬Q P .

Example 9 (CDCL Stuck). The CDCL calculus can even get stuck, i.e., a
sequence of rule applications leads to a state where no rule is applicable anymore,
but the state does neither indicate satisfiability, nor unsatisfiability. Consider a
clause set N = {Q ∨ P,¬P ∨ ¬R, . . .} and the derivation

(ε;N ; ∅; 0;�)
⇒Decide

CDCL (P 1;N ; ∅; 1;�)
⇒Decide

CDCL (P 1R2;N ; ∅; 2;�)
⇒Decide

CDCL (P 1R2Q3;N ; ∅; 3;�)
⇒Conflict

CDCL (P 1R2Q3;N ; ∅; 3;¬P ∨ ¬R).

Obviously, neither Skip nor Resolve are applicable to the final state. Backtrack-
ing is not applicable as well because ¬P ∨ ¬R is of level 2 and the actual level
of the final state is 3.

Example 10 (CDCL Redundancy). The CDCL calculus can also produce
redundant clauses, in particular learn a clause that is already contained in N ∪U .
Consider again a clause set N = {Q ∨ P,¬P ∨ ¬R, . . .} and the derivation

(ε;N ; ∅; 0;�)
⇒Decide

CDCL (P 1;N ; ∅; 1;�)
⇒Decide

CDCL (P 1R2;N ; ∅; 2;�)
⇒Conflict

CDCL (P 1R2;N ; ∅; 2;¬P ∨ ¬R).
⇒Backtrack

CDCL (P 1¬R¬P∨¬R;N ; {¬P ∨ ¬R}; 1;�)

where the clause ¬P ∨ ¬R is learned although it is already contained in N .

In an implementation the rule Conflict is preferred over the rule Propagate
and both over all other rules. Exactly this strategy has been used in Example 8
and is called reasonable below. A further ingredient of a state-of-the-art imple-
mentation is a dynamic heuristic suggesting which literal is actually used by the
rule Decide. This heuristic typically depends on the literals resolved by the rule
Resolve or that are contained in an eventually learned clause. All these literals
“get a bonus”, e.g., see [6].

Definition 11 (Reasonable CDCL Strategy). A CDCL strategy is reason-
able if the rule Conflict is always preferred over the rule Propagate which is
always preferred over all other rules.

Proposition 12 (CDCL Basic Properties). Consider a CDCL state
(M ;N ;U ; k;C) derived from a start state (ε,N, ∅, 0,�) by any strategy but
without using the rules Restart and Forget. Then the following properties hold:

1. M is consistent.

Automated Reasoning Building Blocks 181

2. All C is entailed by N .
3. If C �∈ {�,⊥} then M |= ¬C.
4. If C = � and M contains only propagated literals then for each interpreta-

tion I with I |= N it holds that I |= M , i.e., M ⊆ I.
5. If C = �, M contains only propagated literals and M |= ¬D for some

D ∈ (N ∪ U) then N is unsatisfiable.
6. If C = ⊥ then CDCL terminates and N is unsatisfiable.
7. k is the maximal level of a literal in M .
8. Each infinite derivation

(ε;N ; ∅; 0;�) ⇒CDCL (M1;N ;U1; k1;D1) ⇒CDCL . . .
contains an infinite number of Backtrack applications.

Lemma 13 (CDCL Redundancy). Consider a CDCL derivation by a rea-
sonable strategy. Then CDCL never learns a clause contained in N ∪ U .

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e.,
it reaches a state (M ;N ;U ; k;D ∨ L) where Backtracking is applica-
ble and D ∨ L ∈ (N ∪ U). More precisely, the state has the form
(M1K

i+1M ′
2K

k
1K2 . . . Kn;N ;U ; k;D ∨ L) where the Ki, i > 1 are propagated

literals that do not occur complemented in D, as for otherwise D cannot be of
level i. Furthermore, one of the Ki is the complement of L. But now, because
D ∨L is false in M1K

i+1M ′
2K

k
1K2 . . . Kn and D ∨L ∈ (N ∪U) instead of decid-

ing Kk the literal L should have been propagated by a reasonable strategy. A
contradiction. �

Lemma 14 (CDCL Soundness). In a reasonable CDCL derivation, CDCL
can only terminate in two different final states: (M ;N ;U ; k;�) where M |= N
and (M ;N ;U ; k;⊥) where N is unsatisfiable.

Proof. If CDCL terminates with (M ;N ;U ; k;�) then all literals of N are defined
in M and Conflict is not applicable, i.e., for all clauses C ∈ N it holds M |=
C, so M |= N . In addition if CDCL terminates with (M ;N ;U ; k;⊥) then by
Proposition 12.2 the clause set N is unsatisfiable.

What remains is to show that with a reasonable strategy CDCL cannot get
stuck, see Example 9. I prove that no stuck state can be reached by contradiction.
Assume that CDCL terminates in a state (M1K

i+1M ′
2K

k
1K2 . . . Kn;N ;U ; k;D∨

L), where the Ki, i > 1, are propagated literals. If comp(Kn) �= L and n > 1
then Skip is applicable. If comp(Kn) = L then either Resolve or Backtrack
is applicable. Since neither Skip, Resolve, or Backtrack are applicable, it holds
n = 1 and the complement of Kk

1 does not occur in D∨L. But then M1K
i+1M ′

2 |=
¬(D ∨ L) so the decision on Kk

1 contradicts a reasonable strategy. �

Proposition 15 (CDCL Strong Completeness). The CDCL rule set is
strongly complete: for any interpretation M restricted to the variables occur-
ring in N with M |= N , there is a reasonable sequence of rule applications
generating (M ′;N ;U ; k;�) as a final state, where M and M ′ only differ in the
order of literals.

182 C. Weidenbach

Proof. By induction on the length of M . Assume we have already reached a state
(M ′;N ;U ; k;�) where M ′ ⊂ M . If Propagate is applicable to (M ′;N ;U ; k;�)
extending it to (M ′LC∨L;N ;U ; k;�) then L ∈ M . For otherwise, I pick a literal
L ∈ M that is not defined in M ′ and apply Decide yielding (M ′Lk+1;N ;U ; k +
1;�). The rule Conflict is not applicable, because M |= N and M ′ ⊂ M . �

Proposition 16 (CDCL Termination). Assume the algorithm CDCL with
all rules except Restart and Forget is applied using a reasonable strategy. Then
it terminates in a state (M ;N ;U ; k;D) with D ∈ {�,⊥}.

Proof. By Lemma 14 if CDCL terminates using a reasonable strategy then
D ∈ {�,⊥}. I show termination by contradiction. By Proposition 12.8 an infi-
nite run includes infinitely many Backtrack applications. By Lemma 13 each
learned clause does not occur in N ∪ U . But there are only finitely many dif-
ferent condensed clauses with respect to the finite signature contained in N . A
contradiction. �

5 Superposition and CDCL

At the time of this writing it is often believed that the superposition (resolution)
calculus is not a good choice on SAT problems in practice. Most of the successful
SAT solvers implemented in 2015 are based on CDCL. In this section I will
develop some relationships between superposition and CDCL. Actually, CDCL
can be considered as a superposition calculus with respect to a generalized model
operator.

The goal of the original superposition model operator, Definition 4, is to cre-
ate minimal models with respect to positive literals, see Proposition 5.5. How-
ever, if the goal of generating minimal models is dropped, then there is more
freedom to construct models while preserving the general properties of the super-
position calculus, in particular, the notion of redundancy. The gained freedom
can be used to be more flexible when generating a partial model with respect to
a given set of clauses. For example, consider the two clauses in the clause set

N = {P ∨ Q, ¬P ∨ R}
with precedence R ≺ Q ≺ P . The superposition model operator generates
NI = {P} which is not a model for N . However, this model can be extended
to a model for N by adding R to it. The superposition model operator does
not include R because it is not maximal in the second clause. Starting with a
decision on P , the CDCL calculus derives the model P R via propagation. In
the sequel, I show that a generalized superposition model operator can in fact
generate this model as well.

In addition to an ordering ≺ I assume a decision heuristic H that selects
whether a literal should be productive, i.e., included in the model, or not.

Definition 17 (Heuristic-Based Partial Model Construction). Given a
clause set N , an ordering ≺ and a variable heuristic H : Σ → {0, 1}, the (partial)

Automated Reasoning Building Blocks 183

model NH
Σ for N and signature Σ, with P,Q ∈ Σ is inductively constructed as

follows:

NH
P :=

⋃
Q≺P δH

Q

δH
P :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{P} if there is a clause (D ∨ P) ∈ N, such that NH
P |= ¬D

and either P is strictly maximal or
H(P) = 1 and there is no clause (D′ ∨ ¬P) ∈ N,D′ ≺ P
such that NH

P |= ¬D′

∅ otherwise

NH
Σ :=

⋃
P∈Σ δH

P

Please note that NI is defined inductively over the clause ordering ≺ whereas
NH

Σ is defined inductively over the atom ordering ≺. For each atom P , the
heuristic model construction NH

Σ considers all clauses with maximal P , and
clauses with maximal ¬P at once.

Lemma 18 (NH
Σ generalizes NI). If H(P) = 0 for all P ∈ Σ then NI = NH

Σ

for any N .

Proof. The proof is by contradiction. Assume NI �= NH
Σ , i.e., there is a minimal

P ∈ Σ such that P occurs only in one set out of NI and NH
Σ .

Case 1: P ∈ NI but P �∈ NH
Σ .

Then there is a productive clause D = D′∨P ∈ N such that P is strictly maximal
in this clause and ND |= ¬D′. Since P is strictly maximal in D the clause D′

only contains literals strictly smaller than P . Since both interpretations agree on
all literals smaller than P from ND |= ¬D′ it follows NH

P |= ¬D′ and therefore
δH
P = {P} contradicting P �∈ NH

Σ .

Case 2: P �∈ NI but P ∈ NH
Σ .

Then there is a minimal productive clause D = D′ ∨ P ∈ N such that P is
strictly maximal in this clause and NH

P |= ¬D′ because H(P) = 0. The atom P
is strictly maximal in D, so the clause D′ only contains literals strictly smaller
than P . Since both interpretations agree on all literals smaller than P from
NH

P |= ¬D′ it follows ND |= ¬D′ and therefore δD = {P} contradicting P �∈ NI .
�

So the new model operator NH
Σ is a generalization of NI . Next, I will show

that with the help of NH
Σ a close relationship between the model assumptions

generated by the CDCL calculus and the superposition model operator can be
established. This result can then further be used to apply the abstract super-
position redundancy criteria to CDCL. But before going into the relationship
I first show that the generalized superposition partial model operator NH

Σ sup-
ports the standard superposition completeness result, analogous to Theorem 7.
Recall that the same notion of redundancy, Definition 3, is used.

Theorem 19. If N is saturated up to redundancy with eager Condensation and
⊥ /∈ N then N is satisfiable and NH

Σ |= N .

184 C. Weidenbach

Proof. The proof is by contradiction. So I assume: (i) any clause C derived by
Superposition Left or Factoring from N is redundant, i.e., N≺C |= C, (ii) ⊥ /∈ N
and (iii) NH

Σ �|= N . Then there is a minimal, with respect to ≺, clause C1∨L ∈ N
such that NH

Σ �|= C1 ∨ L and L is a maximal literal in C1 ∨ L. This clause must
exist because ⊥ /∈ N .

The clause C1 ∨ L is not redundant. For otherwise, NH
atom(L) ∪ δH

P |= C1 ∨ L

and hence NH
Σ |= C1 ∨ L, a contradiction.

I distinguish the case whether L is a positive or a negative literal. Firstly,
assume L is positive, i.e., L = P for some propositional variable P . Now if P is
strictly maximal in C1 ∨ P then actually δH

P = {P} and hence NH
Σ |= C1 ∨ P ,

a contradiction. So P is not strictly maximal. But then actually C1 ∨ P has the
form C ′

1∨P ∨P and Factoring derives C ′
1∨P where (C ′

1∨P) ≺ (C ′
1∨P ∨P). The

clause C ′
1∨P is not redundant, strictly smaller than C1∨L, we have C ′

1∨P ∈ N
and NH

Σ �|= C ′
1 ∨ P , a contradiction against the choice that C1 ∨ L is minimal.

Secondly, assume L is negative, i.e., L = ¬P for some propositional variable
P . Then, since NH

Σ �|= C1 ∨ ¬P we know P ∈ NH
Σ , i.e., δH

P = {P}. There are
two cases to distinguish. Firstly, there is a clause C2 ∨P ∈ N where P is strictly
maximal, NH

P |= ¬C2, and by definition (C2∨P) ≺ (C1∨¬P). Since C1 ≺ ¬P and
C1 ∨ ¬P is not a tautology, it holds C1 ≺ P . So a Superposition Left inference
derives C1 ∨ C2 where (C1 ∨ C2) ≺ (C1 ∨ ¬P). The derived clause C1 ∨ C2

cannot be redundant, because for otherwise either NH
P |= C2 or NH

P |= C1. So
C1 ∨ C2 ∈ N and NH

Σ �|= C1 ∨ C2, a contradiction against the choice that C1 ∨ L
is minimal. Secondly, there is no clause C2 ∨P ∈ N where P is strictly maximal
but H(P) = 1. But a further condition for this case is that there is no clause
(C1∨¬P) ∈ N , ¬P strictly maximal in C1∨¬P , because the clause is condensed,
such that NH

P �|= C1 contradicting the above choice of C1 ∨ ¬P . �

Recalling Section 3, Superposition is based on an ordering ≺. It relies on
a model assumption NI , Definition 4, or its generalization NH

Σ , Definition 17.
Given a set N of clauses, either NI (NH

Σ) is a model for N , N contains the
empty clause, or there is a superposition inference on the minimal false clause
with respect to ≺, see the proof of Theorem 7 or Theorem 19, respectively.

CDCL is based on a variable decision heuristic. It computes a model assump-
tion via decision variables and propagation. Either this assumption is a model of
N , N contains the empty clause, or there is a backjump clause that is learned.

For a CDCL state (M,N,U, k,D) generated by an application of the rule
Conflict, where M = L1, . . . , Ln, the subsequent Resolve step actually corre-
sponds to a superposition step between a minimal false clause and its productive
counterpart, with respect to the atom ordering atom(L1) ≺ atom(L2) ≺ . . . ≺
atom(Ln). The decision heuristic H is defined by H(atom(Lm)) = 1 if there is
a positive decision literal Li

m occurring in M and H(atom(Lm)) = 0 otherwise.
Then the learned CDCL clause is in fact generated by a superposition infer-
ence with respect to the model operator NH

Σ . The below theorem presents this
relationship between Superposition and CDCL in full detail.

Automated Reasoning Building Blocks 185

Theorem 20. Let (M,N,U, k, C ∨K) be a CDCL state generated by rule Con-
flict and a reasonable strategy where M = L1, . . . , Ln. Let H(atom(Lm)) = 1
for any positive decision literal Li

m occurring in M and H(atom(Lm)) = 0
otherwise. Furthermore, I assume that if CDCL could propagate both P and
¬P in some state, then P is propagated. The superposition precedence is
atom(L1) ≺ atom(L2) ≺ . . . ≺ atom(Ln). Let K be maximal in C ∨ K and
C ∨ K be the minimal false clause with respect to ≺. Then

1. Ln is a propagated literal and K = comp(Ln).
2. The clause generated by C∨K and the clause propagating Ln is the result of

a Superposition Left inference between the clauses and it is not redundant.
3. NH

{L1,...,Ln} = {P | P ∈ M}
Proof. 1. Assume K �= comp(Ln). Since C ∨K was derived by rule Conflict it is
false with respect to M . Since K is maximal in C∨K it is the complement of some
Li from M with i < n contradicting a reasonable strategy. So K = comp(Ln).
Assume Ln is a decision literal. But then at trail L1, . . . , Ln−1 the clause C ∨ K
propagates K with respect to L1 . . . Ln−1, so with a reasonable strategy, the
literal Ln cannot be a decision literal but its complement was propagated by the
clause C ∨ K.

2. Let D ∨ Ln be the clause propagating Ln. Both C and D only contain
literals with variables from atom(L1), . . . , atom(Ln−1). Since in CDCL dupli-
cate literals are (silently) removed, the literal Ln is strictly maximal in D ∨ Ln

and comp(Ln) is strictly maximal in C ∨ K. So resolving on Ln is a superpo-
sition inference with respect to the atom ordering atom(L1) ≺ atom(L2) . . . ≺
atom(Ln). Now assume C ∨ D is redundant, i.e., there are clauses D1, . . . , Dn

from N ∪U with Di ≺ C ∨D and D1, . . . , Dn |= C ∨D. Since C ∨K is the min-
imal false clause, the resolvent C ∨ D is false in L1 . . . Ln−1 and there is at least
one Di that is also false in L1 . . . Ln−1. A contradiction against the assumption
that L1 . . . Ln−1 does not falsify any clause in N ∪ U , i.e., rule Conflict was not
applied eagerly contradicting a reasonable strategy.

3. Firstly, note that if CDCL can propagate both P and ¬P then either way
the next applicable reasonable rule is Conflict, so propagating P in favor of ¬P
is not a restriction on the propagation order. I prove the equality of the atom
sets by induction on n.
“⊇” For n = 1 and L1 = [¬]P propagated in M , there are two cases: (i) L1 = P ,
so P ∈ N and δH

P = {P}; (ii) L1 = ¬P , so ¬P ∈ N and P �∈ N , therefore
δH
P = ∅. If L1 = [¬]P is a decision literal then ¬P �∈ N and P �∈ N . Again there

are two cases: (i) L1 = P , so H(P) = 1 and hence δH
P = {P}; (ii) L1 = ¬P , so

H(P) = 0 and hence δH
P = ∅.

For the step (n − 1) → n, I do the same case analysis as for the base case
n = 1. If Ln = [¬]P is propagated in M , there are two cases: (i) Ln = P , so
D∨P ∈ N and L1 . . . Ln−1 |= ¬D. By induction hypothesis NH

{L1,...,Ln−1} |= ¬D,
Li ≺ P , so δH

P = {P}; (ii) Ln = ¬P , so D ∨ ¬P ∈ N , H(P) = 0 and there is no
clause D′∨P ∈ N propagating P , hence δH

P = ∅. If Ln = [¬]P is a decision literal
in M then due to the reasonable strategy, there is no clause propagating Ln on

186 C. Weidenbach

the basis of the trail L1 . . . Ln−1. Again two cases: (i) Ln = P , so H(P) = 1 and
there is no clause C1∨¬P such that L1, . . . , Ln−1 |= ¬C1, hence δH

P = {P}; (ii) if
Ln = ¬P , H(P) = 0, and there is no clause C1∨P such that L1 . . . Ln−1 |= ¬C1,
so δH

P = ∅.
“⊆” By construction. �

Theorem 20 is actually a nice explanation for the efficiency of the CDCL
procedure: a learned clause is never redundant. Recall that redundancy here
means that the learned clause C is not entailed by smaller clauses in N ∪ U .
Furthermore, the ordering underlying Theorem 20 is based on the trail, i.e., it
changes during a CDCL run. For superposition it is well known that changing
the ordering is not compatible with the notion of redundancy, i.e., superposi-
tion is incomplete when the ordering may be changed infinitely often and the
superposition redundancy notion is applied.

Example 21. Consider the Superposition Left inference between the clauses
P ∨ Q and R ∨ ¬Q with ordering P ≺ R ≺ Q generating P ∨ R. Changing the
ordering to Q ≺ P ≺ R the inference P ∨ R becomes redundant. So flipping
infinitely often between P ≺ R ≺ Q and Q ≺ P ≺ R is already sufficient to
prevent any saturation progress.

6 Conclusion

Although Example 21 shows that changing the ordering is not compatible with
redundancy and superposition completeness, Theorem 20 proves that any CDCL
learned clause is not redundant in the superposition sense. This relationship
shows the power of reasoning with respect to a (partial) model assumption. The
model assumption actually prevents the generation of redundant clauses. Nev-
ertheless, also in the CDCL framework completeness would be lost if redundant
clauses are eagerly removed, in general. Either the ordering is not changed and
the superposition redundancy notion can be eagerly applied or only a weaker
notion of redundancy is possible while keeping completeness for both calculi.

The crucial point is that for the superposition calculus the ordering is
the basis for redundancy, termination and completeness. If the completeness
proof can be decoupled from the ordering, then the ordering might be changed
infinitely often and other notions of redundancy become available. However,
these new notions of redundancy need to be compatible with the complete-
ness and termination proof. For example, if the redundancy ordering requires in
addition a length restriction, i.e., C is redundant if D1, . . . , Dn |= C for Di ≺ C
and |Di| < |C| then CDCL and superposition remain complete with respect to
this weaker notion of redundancy, even if the atom ordering or the heuristics
H are dynamically changed. The ordering < is already well-founded on clauses
independently from the choice of ≺. Eager application of Forget on redundant
clauses preserves completeness for CDCL. However, the above length restriction
is very strong and as said the redundancy ordering is not the only parameter
that can be adjusted. An interesting future research question is to investigate

Automated Reasoning Building Blocks 187

further the relationship between decoupled orderings, redundancy, termination,
and completeness.

A “slightly” more expressive logic than propositional logic is the first-order
logic Bernays-Schönfinkel (BS) fragment. Satisfiability of a BS clause set remains
decidable, because the problem can be actually reduced, with a worst-case expo-
nential blow up, to propositional satisfiability. The overall worst-case complexity
moves from NP-completeness (propositional) to NEXPTIME-completeness (BS).
A natural question is what happens if the principles developed in this paper are
applied to calculi for the Bernays-Schönfinkel fragment. Actually, the calculi of
all systems developed in particular for the BS fragment apply inferences with
respect to a (partial) model assumption [5,8,14], partly in the spirit of this
paper. Recently, we have shown [1] that the principles of this paper can be lifted
to the BS fragment, but not in a straightforward way. An explicit Factoring
inference is needed. The model assumption gets far more complicated, in order
to receive compact representations of models and to guarantee non-redundant
learned clauses. Actually, I see this as an important direction of future research.
For all model assumption representations we know today, there are BS clause
sets where the model representation becomes exponential in the size of the clause
set. An important difference to SAT.

Finally, if aiming at full first-order logic available results are at a very early
stage. A key operation with respect to a model representation is deciding whether
a clause is false. It is open how the known representations providing decidability
of this operation for first-order models can be integrated in an overall automated
reasoning approach in the style of this paper, although some steps have been
done into this direction [2,9,18]. The situation becomes even more difficult if
first-order logic with equality is considered. Here no “expressive” representations
with the above property is known.

Acknowledgments. I thank the anonymous reviewers for their detailed and construc-
tive comments and Marco Voigt for his careful proof reading.

References

1. Alagi, G., Weidenbach, C.: NRCL - a model building approach to the Bernays-
Schönfinkel fragment. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNAI, vol. 9322.
Springer (2015)

2. Aravantinos, V., Echenim, M., Peltier, N.: A resolution calculus for first-order
schemata. Fundamenta Informaticae 125(2), 101–133 (2013)

3. Bachmair, L., Ganzinger, H.: On restrictions of ordered paramodulation with sim-
plification. In: Stickel, M.E. (ed.) CADE-10. LNCS, vol. 449, pp. 427–441. Springer,
Heidelberg (1990)

4. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 2, vol. I, pp. 19–99.
Elsevier (2001)

5. Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma Learning in the Model Evolu-
tion Calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI),
vol. 4246, pp. 572–586. Springer, Heidelberg (2006)

188 C. Weidenbach

6. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds). Handbook of Satisfiability.
IOS Press (2009)

7. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Communications of the ACM 5(7), 394–397 (1962)

8. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving.
In: LICS 2003, pp. 55–64. IEEE Computer Society (2003)

9. Ganzinger, H., Meyer, C., Weidenbach, C.: Soft typing for ordered resolution. In:
McCune, W. (ed.) CADE-14. LNAI, vol. 1249, pp. 321–335, Townsville, Australia.
Springer, Heidelberg (1997)

10. Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve exception-
ally hard SAT instances. In: Freuder, E.C. (ed.) CP. LNCS, vol. 1118, pp. 46–60.
Springer, Heidelberg (1996)

11. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: DAC, pp. 530–535. ACM (2001)

12. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theo-
ries: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM 53, 937–977 (2006)

13. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robin-
son, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 7, vol. I,
pp. 371–443. Elsevier (2001)

14. Piskac, R., de Moura, L.M., Bjørner, N.: Deciding effectively propositional logic
using DPLL and substitution sets. Journal of Automated Reasoning 44(4),
401–424 (2010)

15. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal
of the ACM 12(1), 23–41 (1965)

16. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: ICCAD, pp. 220–227. IEEE Computer Society Press (1996)

17. Smullyan, R.M.: First-Order Logic. Ergebnisse der Mathematik und ihrer Gren-
zgebiete. Springer (1968) (revised republication 1995 by Dover Publications)

18. Teucke, A., Weidenbach, C.: First-order logic theorem proving and model building
via approximation and instantiation. In: Lutz, C., Ranise, S. (eds) FroCos 2015.
LNAI, vol. 9322. Springer (2015)

19. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson,
A., Voronkov, A. (eds) Handbook of Automated Reasoning, ch. 27, vol. 2,
pp. 1965–2012. Elsevier (2001)

Analysis

Being and Change: Reasoning About Invariance

Frank S. de Boer1,2(B) and Stijn de Gouw1

1 Centre Mathematics and Computer Science, Amsterdam, Netherlands
{frb,cdegouw}@cwi.nl

2 Leiden Advanced Institute of Computer Science, Leiden, Netherlands

Abstract. We introduce a new way of reasoning about invariance
in terms of foot-prints in a Hoare logic for recursive programs with
(unbounded) arrays. A foot-print of a statement is a predicate that
describes that part of the state that can be changed by the statement.
We define invariance of an assertion with respect to a foot-print by means
of a logical operation. This new Hoare logic is applied in a new simpler
and modular proof of correctness of the well-known Quicksort sorting
algorithm.

1 Introduction

During a visit of Ernst-Ruediger Olderog at the CWI in 2014, together with
Krzysztof R. Apt we discussed different alternative proofs of correctness of the
well-known Quicksort sorting algorithm [Hoa62]. These discussions resulted in
various proof strategies which have been further detailed by Ernst-Ruediger and
which form the starting point of this paper.

Proving correctness of (imperative) programs in Hoare logic is in general a
challenging task, even for what seem to be relatively simple programs (measured
for example in terms of the lines of code). Most of the complications are due
to the basic fact that an imperative program specifies what changes, whereas
an assertion describes what is. Consequently, most of the effort in proving cor-
rectness goes in specifying and verifying what does not change, i.e., what is
invariant.

Proving correctness of recursive programs in Hoare logic requires special
auxiliary rules (axioms) for reasoning about invariance [AdBO09], the so-called
adaptation rules. These rules are used to adapt a given correctness formula, for
example by adding to the pre- and postcondition an invariant. Hoare introduced
in [Hoa71] one rule, the adaptation rule, which generalizes these rules. In his
seminal paper [Old83] Ernst-Ruediger Olderog studied the expressiveness and
the completeness of the adaptation rule.

Programs with, for example, array variables give rise to aliasing, i.e., the
phenomenon of two syntactically different expressions which refer to the same
memory location. In the presence of aliasing we cannot determine statically any-
more general invariant properties, whereas the standard adaptation rules are
based on such a static determination, namely checking syntactically whether a
given assertion contains occurrences of variables changed in the given program.
c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 191–204, 2015.
DOI: 10.1007/978-3-319-23506-6 13

192 F.S. de Boer and S. de Gouw

The adaptation rules, including Hoare’s rule, therefore are of limited use in
proving invariant properties of (recursive) programs with arrays. This limitation
in general greatly complicates the correctness proofs because it does not fully
support modularity : invariant properties in general are verified in terms of the
internal control structure of a given program.

For recursive programs with array variables we extend in this paper the
standard pre-postcondition specification with a footprint. A footprint is a set of
predicates indexed by an array name. The arity of the predicate equals that of
the array (interpreted as a function). Such a predicate associated with an array
describes that subset of the domain of the array which can be changed by the
program. We show how to extend the syntactic characterization of invariance to
these footprints by means of a logical operation. We prove soundness of this logi-
cal operation and apply the logic to the verification of the well-known Quicksort
sorting algorithm, which results in a simpler and modular proof.

Related Work. A large body of related work focuses on reasoning about invariant
properties of object-oriented programs. For example, dynamic frames [Wei11]
have been introduced as an extension of Hoare logic where invariant proper-
ties are specified and verified in terms of an explicit heap representation. Such a
representation however in general does not match the abstraction level of object-
oriented languages like Java. In separation logic [Rey05] invariant properties of
object-oriented programs are specified and verified in terms of a logical opera-
tion of separation conjunction which allows to split the heap into two disjoint
parts. The resulting logic however is undecidable for its propositional subset
[BK14]. Moreover, in [CYO01] it is shown that validity of the first-order lan-
guage restricted to so-called “points to” predicate is not recursively enumerable,
and as such not axiomatizable. In general, such axiomatizations are needed to
prove formally the verification conditions which establish program correctness.

In contrast our approach, which can be extended to object-oriented programs
(see Section 5), is based on standard predicate logic which allows established the-
orem proving techniques/engines. Further it allows reasoning at an abstraction
level which coincides with the programming language, i.e., it does not require
special predicates like the “points to” predicate.

2 Adaptation Rules

To allow for modular reasoning in Hoare logic, adaptation rules are needed to
adapt the specifications in correctness formulas to a specific context. This section
discusses four such adaptation rules [AdBO09], abstracting from the program-
ming language: a conjunction rule, an existential introduction rule, an invariance
rule, and a substitution rule. The invariance rule provides a basic form to reason
about invariance using a simple syntactic test. A more precise semantic form,
introduced in the next section, is needed for arrays. The adaptation rules are
amenable to this extension; the next section shows that a modest addition to
these rules suffices. In this section we clarify the relation between these adap-
tation rules and Hoare’s single rule of adaptation [Hoa71], which was analyzed

Being and Change: Reasoning About Invariance 193

by Olderog in [Old83]. The precise definitions of the adaptation rules are given
below (for details about the standard logical operations used, like substitution
p[z := x] of z for x in p, we refer to [AdBO09]):

RULE A1: CONJUNCTION

{p1} S {q1}, {p2} S {q2}
{p1 ∧ p2} S {q1 ∧ q2}

RULE A2: ∃-INTRODUCTION

{p} S {q}
{∃z : p} S {q}

where z does not occur in S or q.

RULE A3: INVARIANCE

{p} S {q}
{r ∧ p} S {r ∧ q}

where S does not assign to the variables in the formula r.

RULE A4: SUBSTITUTION

{p} S {q}
{p[z := t]} S {q[z := t]}

where z does not occur in S, and S does not assign the variables in the term t.

The invariance rule above provides a basic way to reason about assertions
whose truth remains invariant under execution of S. However, in the presence
of arrays, the invariance rule is rather crude. Due to the syntactic check in the
side-condition, if any array element is assigned to, any assertion that mentions
the array cannot be used with the invariance rule, even if the assertion accesses
only those indices that are not assigned. The next section shows how to address
this problem.

Hoare’s rule of adaptation is:
RULE (H) : HOARE-ADAPT

{p} S {q}
{∃z : (p ∧ ∀y : (q[x := y] → r[x := y]))} S {r}

where z does not occur in S or r, x is the list of all variables occurring in S and
y is a list of fresh variables.

The question arises: what is the relation between Hoare’s rule (H) and the
other adaptation rules? The next example by Olderog [Old83] shows that they
differ in proof strength.

194 F.S. de Boer and S. de Gouw

Lemma 1. Let k be a variable that does not occur in S. From the correctness
formula {x = k} S {x = k} we can derive {x = k + 1} S {x = k + 1} by A4, but
not by rule (H). ��

Proof : To derive {x = k + 1} S {x = k + 1} simply apply A4, substituting k+1
for k. To see that this is not derivable with (H), note that the precondition
∃z : x = k ∧ ∀y : y = k → y = k + 1 given by (H) simplifies to false. ��
Theorem 1. In the presence of the consequence rule, (H) is derivable by A2,
A3. ��

Proof : we show that from {p} S {q}, we can derive

{∃z : (p ∧ ∀y : (q[x := y] → r[x := y]))} S {r}
where z does not occur in S or r, x is the list of all variables occurring in S and
y is a list of fresh variables. Assume

{p} S {q}
From A3:

{p ∧ ∀y : (q[x := y] → r[x := y])} S {q ∧ ∀y : (q[x := y] → r[x := y])}
Consequence rule:

{p ∧ ∀y : (q[x := y] → r[x := y])} S {r}
From A2:

{∃z : (p ∧ ∀y : (q[x := y] → r[x := y]))} S {r}
��

Thus, in the presence of the consequence rule, theorem 1 and lemma 1 show
that A1, A2, A3 and A4 are strictly stronger than rule (H).

3 Reasoning About Invariance

The Programming Language. We assume a basic imperative programming lan-
guage featuring the usual sequential control structures. We distinguish between
two kinds of (typed) variables: simple variables like x, y, u, v, . . . which range over
elements of the included basic types integer or Boolean, and array variables
like a, b, . . . of a higher type T1 × . . . × Tn → T , where the argument types and
the result type are basic types. Semantically arrays are functions, e.g., an array
of type integer → integer is unbounded. Expressions are side-effect free (every
operator in the language is semantically interpreted as a total function, e.g., divi-
sion by zero results by definition in, for example, zero). A subscripted variable of
type T is of the form a[s1, . . . , sn], where a is of some type T1× . . .×Tn → T and

Being and Change: Reasoning About Invariance 195

si is an expression of type Ti, for i = 1, . . . , n. For technical convenience only
we restrict here to array assignments of the form a[s1, . . . , sn] := t, where the
argument expressions s1, . . . , sn do not contain subscripted variables. A program
consists of a statement S and a set of procedure declarations P (u1, . . . , un) ::= S,
with formal parameters u1, . . . , un of a basic type and body S. A procedure call
is of the form P (t1, . . . , tn), where ti is an expression of a basic type which equals
that of the corresponding formal parameter.

Correctness Formulas. Assertions p, q, . . . are logical formula, defined as usual
(as in [AdBO09]) (in contrast to program assignments, in assertions we do allow
nested subscripted variables). By

F : {p} S {q}

we denote a correctness formula with a footprint F . A footprint F is a (finite)
set of uniquely labeled formulas a : p(x1, . . . , xn), where n is the arity of array
a. All the formulas of the footprint F are syntactically invariant in that they do
not contain any program variables which can be affected by an execution of S

The partial correctness interpretation of F : {p} S {q} (we assume an implic-
itly given set of procedure declarations D) extends that of {p} S {q} with the
following clause:

σ |= p and
< S, σ >→∗< a[s1, . . . , sn] := t;S′, σ′ > and a : r(x1, . . . , xn) ∈ F
implies
σ′ |= r(s1, . . . , sn).

Here →∗ denotes the reflexive, transitive closure of the transition system for
recursive programs (see Section 5.2 in [AdBO09]). In words, the above addi-
tional clause states that whenever an assignment to an array is executed the
corresponding footprint should hold.

The Hoare Logic of Footprints. The footprint of an array assignment is captured
by the following rule:

RULE 1: ARRAY ASSIGNMENT

q[a[s1, . . . , sn] := t] → p(s1, . . . , sn)
{a : p(x1, . . . , xn)} : {q[a[s1, . . . , sn] := t]} a[s1, . . . , sn] := t {q}

Here the weakest precondition q[a[s1, . . . , sn] := t] is calculated by means of
a substitution operation [a[s1, . . . , sn] := t] which takes into account aliasing (see
Section 2.7 in [AdBO09]). For the soundness of this rule, we refer to [AdBO09]
to a proof that σ |= q[a[s1, . . . , sn] := t] if and only if σ[a[s1, . . . , sn] := t] |=
q, where σ[a[s1, . . . , sn] := t] denotes the result of executing the assignment
a[s1, . . . , sn] := t in σ. It remains to show that the above additional clause

196 F.S. de Boer and S. de Gouw

defining the semantics of a foot-print is valid, i.e., σ |= q[a[s1, . . . , sn] := t]
implies σ |= p(s1, . . . , sn). This follows immediately from the premise.

As a very simple example, it is trivial to derive

{a : x = j} : {true} a[j] := 1 {true}
In order to reason semantically about invariance in terms of footprints we

introduce the restriction q ↑ F of a formula q which “talks” only about that
part of the state disjoint from the footprint. First we transform q in a formula
q′ in prenex normal form such that its matrix r is in disjunctive normal form.
For technical convenience only and without loss of generality we assume that r
contains no nested subscripted variables. The formula q ↑ F then can be obtained
from q′ by simply adding for each subscripted variable a[s1, . . . , sn] appearing
as an argument in a literal the formula ¬pa(s1, . . . , sn) to the conjunct in which
the literal appears, where pa(x1, . . . , xn) ∈ F . More formally, we replace every
literal l(s1, . . . , sn) in q′ by l(s1, . . . , sn) ∧ ∧

i ¬pai
(t̄i), where i ranges over those

indices such that si ≡ ai(t̄i).
Given the above we can now introduce the following rule:

RULE 2: SEMANTIC INVARIANCE

F : {p} S {q}
F : {p ∧ r ↑ F} S {q ∧ r ↑ F}

where none of the simple variables which appear free in r appear in S at the
left-hand-side of an assignment.

Let us illustrate the use of this latter rule by a very simple example. We want
to prove

{∀i : i �= j → a[i] = 0} a[j] := 1 {∀i : i �= j → a[i] = 0}
As already stated above it is trivial to derive from the above array assignment
rule that

{a : x = j} : {true} a[j] := 1 {true}
Calculating next

(∀i : i �= j → a[i] = 0) ↑ x �= j

yields the formula
∀i : i = j ∨ (a[i] = 0 ∧ i �= j).

Clearly this latter formula is logically equivalent to ∀i : i �= j → a[i] = 0 itself.
So we can apply the above RULE 2 which gives us the desired result.

Soundness of the above proof system derives in a straightforward manner
from the following lemma (soundness proofs of the remaining rules are standard,
see [AdBO09]).

Lemma 2. (Soundness): Let a be an array variable that does not appear (free)
in the formulas of the footprint F . Further, let σ′ = σ[a[s̄] := u] and σ |= pa(s̄).
It follows that σ |= r ↑ F iff σ′ |= r ↑ F .

Being and Change: Reasoning About Invariance 197

Proof : By definition of r ↑ F it suffices to show the above for any literal
l. By definition of σ′, we have that σ(t) = σ′(t), for any term t which does
not involve the array variable a. So it suffices to show that σ |= l ↑ F or
σ′ |= l ↑ F implies that σ(a[t̄]) = σ′(a[t̄]), for any subscripted variable a[t̄]
appearing as argument of l. By definition of l ↑ F , we have that l ↑ F implies
¬pa(t̄). Consequently, since σ |= pa(s̄), we have that σ(s̄) �= σ(t̄), which in turn
implies that σ(a[t̄]) = σ[a[t̄] := u](a[t̄]) = σ′(a[t̄]). ��

We have the following extension of the consequence rule.

RULE 3: CONSEQUENCE

p → p′ F : {p′} S {q′} q′ → q

F : {p} S {q}

The following two rules deal with recursion. For technical convenience only
we restrict to procedure declarations with read-only formal parameters and pro-
cedure calls with actual parameters which are not affected by the call. In Rule
5 “” denotes the derivability in the proof system itself. It allows to introduce
assumptions about recursive calls (see [AdBO09]).

RULE 4: INSTANTIATION

F : {p} P (ū) {q}
F [ū := t̄] : {p[ū := t̄]} P (t̄) {q[ū := t̄]}

where P (ū) ::= S ∈ D and S does not assign to the variables appearing t̄.

RULE 5: RECURSION

F : {p1} P1(ū1) {q1}, . . . , F : {pn} Pn(ūn) {qn} F : {p} S {q},
F : {p1} P1(ū1) {q1}, . . . , F : {pn} Pn(ūn) {qn}

F : {pi} Si {qi}, i ∈ {1, . . ., n}
F : {p} S {q}

where Pi(ūi) :: Si ∈ D for i ∈ {1, . . . , n}.

To extend the standard auxiliary rules (as discussed in the previous section)
to footprints is straightforward (we omit the similar straightforward extensions of
the standard axiom and rules, e.g., the axiom for assignments to simple variables,
the conditional rule, the while rule, and the rule for sequential composition).

RULE A5: CONJUNCTION

F : {p1} S {q1}, F : {p2} S {q2}
F : {p1 ∧ p2} S {q1 ∧ q2}

198 F.S. de Boer and S. de Gouw

RULE A6: ∃-INTRODUCTION

F : {p} S {q}
F : {∃z : p} S {q}

where z does not occur in F , S or q.

RULE A7: SUBSTITUTION

F : {p} S {q}
F [z := t] : {p[z := t]} S {q[z := t]}

where z does not occur in S and S does not change any of the variables in the
term t.

The following invariance rule additionally allows to adjust the footprint.

RULE A8: INVARIANCE

(r ∧ F) → F ′ F : {p} S {q}
F ′ : {p ∧ r} S {q ∧ r}

where S does not assign to the variables in the formula r. Further, (r ∧F) → F ′

holds if for every a : p′(x̄) ∈ F there exists a : p′′(x̄) ∈ F ′ such that (r ∧
p′(x̄)) → p′′(x̄).

4 Case Study: Quicksort

We illustrate the use of footprints in a proof of correctness of the well-known
quicksort sorting algorithm [Hoa62,FH71]:

QS(l, r) ::
if l < r
then P (l, r);

begin
local u := m;
QS(l, u − 1);
QS(u, r)
end

fi

Here P (l, r) calls the partitioning algorithm which operates on an array a :
integer → integer and generates a value for the global integer variable m. The
partitioning algorithm satisfies the following contracts.

– A1 ≡ x ∈ [l : r] : {l < r} P (l, r) {m ∈ (l : r] ∧ a[l : m − 1] ≤ a[m : r]}
– A2 ≡ x ∈ [l : r] : {a = a0} P (l, r) {perm(a, a0 , l , r)}

Being and Change: Reasoning About Invariance 199

where m ∈ (l : r] abbreviates l < m ∧ m ≤ r and a[l : m − 1] ≤ a[m : r]
abbreviates ∀i ∈ [l : m − 1] : ∀j ∈ [m : r] : a[i] ≤ a[j]. The postcondition of the
first contract thus states that the array segment a[l : r] can be split into two
segments a[l : m−1] and a[m : r] such that all numbers in a[l : m−1] are smaller
or equal to all numbers in a[m : r]. The predicate perm(a, a0, l, r) states that the
array a is a permutation of a0 on the interval [l : r], which can be expressed by
the assertion

∃b : ∀i, j ∈ [l : r] : ∃k ∈ [l : r] : (i �= j → b[i] �= b[j]) ∧ b[i] = k ∧ a[i] = a0[b[i]]

where b is an array of type integer → integer. Finally, the footprint x ∈ [l : r]
of the array a states that the array a is only changed on the interval [l : r] (we
thus omit for notational convenience the label “a”).

Given these contracts we want to prove the following specifications of Quick-
sort:

– B1 ≡ x ∈ [l : r] : {true} QS(l, r) {sorted(a[l : r])}
– B2 ≡ x ∈ [l : r] : {a = a0} QS(l, r) {perm(a, a0, l, r)}

where sorted(a[l : r]) abbreviates the assertion

∀i ∈ [l : r − 1] : a[i] ≤ a[i + 1]

Let SQS denote the body of the procedure QS. By the recursion rule it suffices
to prove (assuming the contracts A1 and A2)

A1, A2, B1, B2
x ∈ [l : r] : {true} SQS {sorted(a[l : r])} (1)

and
A1, A2, B2

x ∈ [l : r] : {a = a0} SQS {perm(a, a0, l, r)} (2)

Proof of Obligation (1). By the conditional rule it suffices to prove that

x ∈ [l : r] : {l ≥ r} skip {sorted(a[l : r])} (3)

and
A1, B1, B2 x ∈ [l : r] : {l < r} T {sorted(a[l : r])} (4)

where T denotes the then-branch of S.
The first follows directly from a trivial application of the consequence rule.

Using A1, the (standard) assignment axiom, the block [AdBO09] and sequential
composition rule, it is straightforward to establish proof obligation (4) from

x ∈ [l : r] :
{u ∈ (l : r] ∧ a[l : u − 1] ≤ a[u : r]}

QS(l, u − 1);QS(u, r)
{sorted(a[l : r])}

(5)

200 F.S. de Boer and S. de Gouw

In order to establish this proof obligation, we first instantiate l and r by u and
r, respectively, in B1:

x ∈ [u : r] : {true} QS(u, r) {sorted(a[u : r])}

By instantiating l and r by u and r, respectively, in B2, and the conjunction
rule:

x ∈ [u : r] : {a = a0} QS(u, r) {sorted(a[u : r]) ∧ perm(a, a0, u, r)}

It is straightforward to check that

(sorted(a[l : u − 1]) ∧ a[l : u − 1] ≤ a0[u : r]) ↑ x ∈ [u : r] ↔
(sorted(a[l : u − 1]) ∧ a[l : u − 1] ≤ a0[u : r])

Thus applying the footprint rule 2:

x ∈ [u : r] :
{a = a0 ∧ sorted(a[l : u − 1]) ∧ a[l : u − 1] ≤ a0[u : r]}

QS(u, r)
{sorted(a[u : r]) ∧ perm(a, a0, u, r) ∧ sorted(a[l : u − 1]) ∧ a[l : u − 1] ≤ a0[u : r]}

Next observe that

– perm(a, a0, u, r) ∧ a[l : u − 1] ≤ a0[u : r] implies a[l : u − 1] ≤ a[u : r], and
– sorted(a[l : u − 1]) ∧ sorted(a[u : r]) ∧ a[l : u − 1] ≤ a[u : r] implies

sorted(a[l : r]).

Thus by the consequence rule:

x ∈ [u : r] :
{a = a0 ∧ sorted(a[l : u − 1]) ∧ a[l : u − 1] ≤ a0[u : r]}

QS(u, r)
{sorted(a[l : r])}

Existential elimination (of a0) and consequence rule:

x ∈ [u : r] :
{sorted(a[l : u − 1]) ∧ a[l : u − 1] ≤ a[u : r]}

QS(u, r)
{sorted(a[l : r])}

Invariance rule A8 (adjusting the footprint: u ∈ (l : r] ∧ x ∈ [u : r] implies
x ∈ [l : r]):

x ∈ [l : r] :
{u ∈ (l : r] ∧ sorted(a[l : u − 1]) ∧ a[l : u − 1] ≤ a[u : r]}

QS(u, r)
{u ∈ (l : r] ∧ sorted(a[l : r])}

Being and Change: Reasoning About Invariance 201

Consequence rule:

x ∈ [l : r] :
{u ∈ (l : r] ∧ sorted(a[l : u − 1]) ∧ a[l : u − 1] ≤ a[u : r]}

QS(u, r)
{sorted(a[l : r])}

(6)

Following a similar pattern as above, from assumption B1 we obtain by
instantiation

x ∈ [l : u − 1] : {true} QS(l, u − 1) {sorted(a[l : u − 1])}

By instantiating assumption B2 and the conjunction rule:

x ∈ [l : u−1] : {a = a0} QS(l, u − 1) {sorted(a[l : u − 1]) ∧ perm(a, a0, l, u − 1)}

It is straightforward to check that

(a0[l : u − 1] ≤ a[u : r]) ↑ x ∈ [l : u − 1] ↔ (a0[l : u − 1] ≤ a[u : r])

Thus applying the footprint rule 2:

x ∈ [l : u − 1] :
{a = a0 ∧ a0[l : u − 1] ≤ a[u : r]}

QS(l, u − 1)
{sorted(a[l : u − 1]) ∧ perm(a, a0, l, u − 1) ∧ a0[l : u − 1] ≤ a[u : r]}

Since
perm(a, a0, l, u − 1) ∧ a0[l : u − 1] ≤ a[u : r]

implies a[l : u − 1] ≤ a[u : r], we obtain by the consequence rule:

x ∈ [l : u − 1] :
{a = a0 ∧ a0[l : u − 1] ≤ a[u : r]}

QS(l, u − 1)
{sorted(a[l : u − 1]) ∧ a[l : u − 1] ≤ a[u : r]}

Existential elimination (of a0) and consequence rule:

x ∈ [l : u − 1] :
{a[l : u − 1] ≤ a[u : r]}

QS(l, u − 1)
{sorted(a[l : u − 1]) ∧ a[l : u − 1] ≤ a[u : r]}

Invariance rule A8 (adjusting the footprint: u ∈ (l : r] ∧ x ∈ [l : u − 1] implies
x ∈ [l : r]):

x ∈ [l : r] :
{u ∈ (l : r] ∧ a[l : u − 1] ≤ a[u : r]}

QS(l, u − 1)
{u ∈ (l : r] ∧ sorted(a[l : u − 1]) ∧ a[l : u − 1] ≤ a[u : r]}

(7)

Sequential composition applied to the correctness formulas (6) and (7) finally
establishes proof obligation (5).

202 F.S. de Boer and S. de Gouw

Proof of Obligation (2). In this proof we use the next lemma.

Lemma 3. Suppose z does not occur in S and let p be a binary transitive rela-
tion. From F : {x = z} S {p(x, z)} we can derive F : {p(x, z)} S {p(x, z)}.
Proof : Assume F : {x = z} S {p(x, z)}. Apply the standard invariance rule,
where y is a fresh variable:

F : {x = z ∧ p(z, y)} S {p(x, z) ∧ p(z, y)}

Consequence (rule 3):

F : {x = z ∧ p(z, y)} S {p(x, y)}

Existential elimination (rule A6) and consequence (rule 3):

F : {p(x, y)} S {p(x, y)}

Substitution (rule A7):
F : {p(x, z)} S {p(x, z)}

��
We are now ready to establish proof obligation (2). By the conditional rule

it suffices to prove

x ∈ [l : r] : {l ≥ r ∧ a = a0} skip {perm(a, a0, l, r)} (8)

and
B2 x ∈ [l : r] : {l < r ∧ a = a0} T {perm(a, a0, l, r)} (9)

where T denotes the then-branch of S. The first follows trivially by the conse-
quence rule. To establish proof obligation (9), we obtain from assumption B2 by
instantiation

x ∈ [u : r] : {a = a0} QS(u, r) {perm(a, a0, u, r)}
Note that perm(a, a0, l, u − 1) ↑ x ∈ [u : r] is logically equivalent to
perm(a, a0, l, u − 1) itself. Thus applying the footprint rule 2:

x ∈ [u : r] :
{a = a0 ∧ perm(a, a0, l, u − 1)} QS(u, r) {perm(a, a0, l, u − 1) ∧ perm(a, a0, u, r)}

Consequence rule:

x ∈ [u : r] : {a = a0} QS(u, r) {perm(a, a0, l, r)}

Note that perm is a binary, transitive predicate in the first two arguments. Thus
lemma 3 gives:

x ∈ [u : r] : {perm(a, a0, l, r)} QS(u, r) {perm(a, a0, l, r)}

Being and Change: Reasoning About Invariance 203

Invariance rule A8 (adjusting the footprint) and consequence rule (weakening
the postcondition):

x ∈ [l : r] : {u ∈ (l : r] ∧ perm(a, a0, l, r)} QS(u, r) {perm(a, a0, l, r)} (10)

As above, we can derive

x ∈ [l : u − 1] : {perm(a, a0, l, r)} QS(l, u − 1) {perm(a, a0, l, r)}

Invariance rule A8 (adjusting the footprint again):

x ∈ [l : r] :
{u ∈ (l : r] ∧ perm(a, a0, l, r)} QS(l, u − 1) {u ∈ (l : r] ∧ perm(a, a0, l, r)}

(11)
Sequential composition (applied to the correctness formulas (10) and (11)):

x ∈ [l : r] :
{u ∈ (l : r] ∧ perm(a, a0, l, r)} QS(l, u − 1);QS(r, u) {perm(a, a0, l, r)}

The remainder of the proof follows in a straightforward manner by instantiating
A1 and A2, and applying the conjunction rule, the block rule (for u := m), and
the rule for sequential composition.

5 Future Work

First we want to prove (relative) completeness of the Hoare logic extended with
footprints. We conjecture that this requires a straightforward extension of the
usual Gorelick (relative) completeness proof (see [Apt84]).

It is not difficult to extend the notion of footprints to reasoning about invari-
ant properties of object-oriented programs. The basic idea is simply to include
for each field f a monadic predicate pf : Object → Boolean which holds for all
those objects which have updated their field f . This extension we want to inte-
grate with our proof theory of abstract object creation [AdBG09] which allows
specification and verification of dynamic heap structures at an abstraction level
that coincides with the Java programming language and which already has been
implemented in the KeY theorem prover [BHS07].

References

[AdBG09] Ahrendt, W., de Boer, F.S., Grabe, I.: Abstract Object Creation in Dynamic
Logic. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850,
pp. 612–627. Springer, Heidelberg (2009)

[AdBO09] Apt, K.R., de Boer, F.S., Olderog, E.-R.: Verification of Sequential and
Concurrent Programs, Texts in Computer Science. Springer (2009)

[Apt84] Apt, K.R.: Ten years of hoare’s logic: A survey part II: nondeterminism.
Theor. Comput. Sci. 28, 83–109 (1984)

204 F.S. de Boer and S. de Gouw

[BHS07] Beckert, B., Hähnle, R., Schmitt, P.H.: Verification of object-oriented soft-
ware: The KeY approach. Springer (2007)

[BK14] Brotherston, J., Kanovich, M.I.: Undecidability of propositional separation
logic and its neighbours. J. ACM 61(2), 14 (2014)

[CYO01] Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and Complex-
ity Results for a Spatial Assertion Language for Data Structures. In:
Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS,
vol. 2245, pp. 108–119. Springer, Heidelberg (2001)

[FH71] Foley, M., Hoare, C.A.R.: Proof of a recursive program: Quicksort. Comput.
J. 14(4), 391–395 (1971)

[Hoa62] Hoare, C.A.R.: Quicksort. Comput. J. 5(1), 10–15 (1962)
[Hoa71] Hoare, C.A.R.: Procedures and parameters: An axiomatic approach. In:

Symposium on Semantics of Algorithmic Languages, pp. 102–116 (1971)
[Old83] Olderog, E.-R.: On the notion of expressiveness and the rule of adaption.

Theor. Comput. Sci. 24, 337–347 (1983)
[Rey05] Reynolds, J.C.: An Overview of Separation Logic. In: Meyer, B.,

Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 460–469. Springer,
Heidelberg (2008)

[Wei11] Weiß, B.: Deductive Verification of Object-Oriented Software: Dynamic
Frames, Dynamic Logic and Predicate Abstraction. PhD thesis, Karlsruhe
Institute of Technology (2011)

Toward Compact Abstractions for Processor
Pipelines

Sebastian Hahn1(B), Jan Reineke1, and Reinhard Wilhelm1,2

1 Informatik, Saarland University, Saarbrücken, Germany
sebastian.hahn@cs.uni-saarland.de

2 AbsInt Angewandte Informatik GmbH, Saarbrücken, Germany

Abstract. Hard real-time systems require programs to react on time.
Static timing analysis derives timing guarantees by analyzing the behav-
ior of programs running on the underlying execution platform. Efficient
abstractions have been found for the analysis of caches. Unfortunately,
this is not the case for the analysis of processor pipelines. Pipeline anal-
ysis typically uses an expensive powerset domain of concrete pipeline
states. Therefore, pipeline analysis is the most complex part of timing
analysis. We propose a compact abstract domain for pipeline analysis.
This pipeline analysis determines the minimal progress of instructions in
the program through the pipeline.

We give a concrete semantics for an in-order pipeline, which forms the
basis for an abstract semantics. On the way, we found out that in-order
pipelines are not guaranteed to be free of timing anomalies, i.e. local
worst decisions do not lead to the global worst case. We prove this by
giving an example. A major problem is how to find an abstract semantics
that guarantees progress on the abstract side. It turns out that mono-
tonicity on the partial progress order is sufficient to guarantee this.

1 Introduction

In state-of-the-art timing analysis, microarchitectural analysis, i.e. the part deal-
ing with the influence of the underlying hardware platform on the execution time
behavior, is the most complex part. There are two main reasons for this.

The first one is the complexity of modern microprocessors, which feature
(cyclic) interdependencies between components. These interdependencies make
it hard to impossible to decompose the analysis into several more efficient sub-
analyses. Additionally, they often result in so called timing anomalies (i.e. fol-
lowing local worst cases does not lead to global worst cases) that complicate the
analysis.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part
of the Transregional Collaborative Research Centre SFB/TR 14 (AVACS) and by
the Saarbrücken Graduate School of Computer Science which receives funding from
the DFG as part of the Excellence Initiative of the German Federal and State
Governments.

c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 205–220, 2015.
DOI: 10.1007/978-3-319-23506-6 14

206 S. Hahn et al.

The second, not quite independent, reason is that no compact abstract
domain for pipeline analysis has been found, yet, making it necessary to fall-back
to a very expensive powerset domain of concrete pipeline states. The resulting
state space exploration has to investigate all possible transitions of instructions
through the microarchitecture in order not to miss the worst-case behavior. In
this context, the aforementioned timing anomalies prevent state space reduction
based on local decisions.

There are approaches that tackle the efficiency problem. Wilhelm [11] uses
a symbolic representation of the elements of the powerset domain. Other
approaches almost exclusively try to overcome the complexity of modern micro-
processors. They range from stepping-back towards very simplistic pipeline
designs [7] to limiting processor features such that decomposition into more
efficient analyses are possible. One example is the PRET architecture [5] that
features a thread-interleaved pipeline basically leading to sequential execution
w.r.t. a single thread.

Not much research has so far been undertaken to develop compact abstract
domain for pipelines. In the following, we present (speculative) ideas and
thoughts on how such a compact domain could look like. We also determine suf-
ficient conditions on the concrete pipeline behavior that admit compact domains
while leading to precise results. Enforcing these conditions in hardware can
lead to degradation of the system’s overall performance. Although it cannot be
expected that the efficiency problem is ultimately “solved”, i.e. compact domains
for arbitrarily complex architectures are found, it is a step in this new direction.
In any case, it will provide a better understanding of how to model the microar-
chitectural timing behavior.

2 Background

2.1 Pipelines

We consider a normal RISC-like 5-stage in-order pipeline as depicted in Figure 1,
i.e. program instructions are executed in an overlapped fashion, but in the order
they occur in the program. First, an instruction is fetched from memory. Second,
the instruction is decoded and operands are fetched from the register file. Next,
the instruction is executed and potentially a memory address is generated and
the corresponding memory access is initiated. In the next stage, pending data
memory operations are finished. Last, the results computed by the instruction are
written back to the register file. The fetch stage and the memory stage access a
common background memory, possibly via separate instruction and data caches.
The progress of an instruction in the pipeline is stalled when data dependencies
would be violated or when an instruction is waiting for a memory access to be
serviced.

Definition 1. We call a pipeline in-order if each stage processes the instructions
in the order they occur in the program.

Toward Compact Abstractions for Processor Pipelines 207

Fetch (IF)
Decode (ID)
Execute (EX)

Memory (MEM)
Write-back (WB)

I$

D$

Memory

Fig. 1. 5-stage RISC pipeline. Fetch and memory stage access a common background
memory through separate caches.

(i8, ml)

(i7, 2)
(i6, 0)

IF
ID
EX

MEM
WB

λij ∈ I.

(pre, 0) j > 8
(IF, ml) j = 8
(EX, 2) j = 7
(MEM, 0) j = 6
(post, 0) j < 6

Fig. 2. A concrete pipeline state in stage-centric and instruction-centric representation.
The numbers denote the individual latencies, i.e. the cycles needed for the instruction
to become ready in its current stage.

There are more advanced pipelining techniques that feature dynamic schedul-
ing to reorder instruction and execute them out-of-(program)-order, speculation
across branches, and additional buffers to decouple the pipeline and the memory
hierarchy. We discuss the influence of these features on a compact representation
for pipeline analysis in Section 5. For the remainder of this article, we focus on
the presented in-order processor architecture.

2.2 Concrete Semantics of an In-Order Pipeline

In the following, we give a concrete semantics of an in-order pipeline. The remain-
der of this article is based on this concrete semantics.

As depicted in Figure 2, there are two equivalent views of a concrete pipeline
state: A stage-centric view describing which stage is occupied by which instruc-
tion and an instruction-centric view describing which instruction occupies which
stage. We select the second view because the abstract semantics, to be presented
later, will represent the guaranteed progress of instructions through the pipeline.
We use the first view for visualization purposes only.

Domain. An instruction in the pipeline can occupy one of the stages IF, ID, EX,
MEM, and WB. We further distinguish between instructions that have not yet
entered the pipeline, which are in the conceptual stage “pre”, and instructions
that have already left the pipeline, which are in the conceptual stage “post”.
Together, we obtain the following set of stages:

S := {pre, IF, ID,EX,MEM,WB, post}.

208 S. Hahn et al.

Some of the pipeline stages are multi-cycle, e.g. IF and MEM in case of a
cache miss and EX in the case of expensive arithmetic operations like floating
point division. Thus, we introduce counters that capture how many cycles an
instruction needs to remain in its current stage until being able to advance to
the next stage.

The concrete domain is then defined as

Pipe := I → S × N,

where I denotes the set of instruction instances that form the instruction
sequence i1, i2, . . . , in occurring during program execution.

Cycle Update. The cycle update cycle : Pipe → Pipe describes the concrete
behavior of the pipeline informally described above, i.e. how a pipeline state
changes during the execution of one processor cycle. The structure is quite
generic and can be adapted to different pipeline designs: An instruction can
advance in the pipeline if the instruction is ready to move to the next pipeline
stage and this next pipeline stage would be free in the next cycle. An instruction
might not be ready if there are unsatisfied data dependencies or it needs to wait
for a memory transfer. In this case the instruction stays in the same stage, but its
counter of remaining wait cycles might be decremented. If the next pipeline stage
is still occupied in the next cycle, the instruction is stalled and stays unmodified
in its current stage.

The next pipeline stage will be free in the next cycle if it is already free or
if the instruction occupying it can move on to the next stage. An instruction
in the WB stage is considered to always find its (fictive) next stage in the next
cycle.

cycle(p : Pipe) :=

λi ∈ I.

⎧
⎪⎨

⎪⎩

(stage(i), cnt′(i)) : ¬ready(i)
(stage′(i), latency(stage′(i), i)) : ready(i) ∧ willbefree(stage′(i))
(stage(i), cnt(i)) : ready(i) ∧ ¬willbefree(stage′(i))

where (stage(i), cnt(i)) := p(i) and cnt′(i), stage′(i), ready(i), willbefree(s), and
latency(s, i) are defined as follows:

cnt′(i) :=

{
cnt(i) − 1 : cnt(i) > 0
0 : cnt(i) = 0

stage′(i) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

post : stage(i) = WB ∨ (stage(i) = ID ∧ i = nop)
WB : stage(i) = MEM

MEM : stage(i) = EX

EX : stage(i) = ID

ID : stage(i) = IF

IF : stage(i) = pre ∧ tofetch(i)
pre : stage(i) = pre ∧ ¬tofetch(i)

Toward Compact Abstractions for Processor Pipelines 209

busfree := ¬∃i.(stage(i) = IF ∨ stage(i) = MEM) ∧ cnt(i) > 0
ready(i) := (cnt(i) = 0) ∧ (stage(i) = ID ⇒ data dependencies satisfied)

∧ (stage(i) = EX ∧ i = load/store ⇒ (dcachehit ∨ busfree)
∧ (stage(i) = pre ⇒ (icachehit ∨ (busfree ∧ ¬dcachemiss))

willbefree(s) := (s = post) ∨ (¬∃i.stage(i) = s)
∨ (∃i.stage(i) = s ∧ ready(i) ∧ willbefree(stage′(i)))

latency(s, i) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 : s ∈ {ID,WB, pre, post}
lat(i) : s = EX

0 : (s = IF ∧ icachehit) ∨ (s = MEM ∧ dcachehit)
ml : (s = IF ∧ icachemiss) ∨ (s = MEM ∧ dcachemiss)

where ml denotes the cache miss latency, and lat(i) denotes the execution
latency of instruction i that can depend on the operand values (e.g. in case
of a division). Some of the values, i.e. lat, icachehit, icachemiss, dcachehit,
dcachemiss, and tofetch(i), depend on the environment of the pipeline that is
known during an actual execution. A latency of 1 cycle is assumed for the access
to an L1 cache. We omitted the state of the environment, such as caches, in this
formulation for the sake of readability.

2.3 State-of-the-art Pipeline Analysis

Current pipeline analyses rely on expensive powerset domains as abstract
domains. An abstract state is a set of concrete pipeline states. The abstract
domain is thus given by

Pipe#ps := (2Pipe ,⊆,∪).

Basically, state-of-the-art pipeline analysis [4,9] computes the so-called col-
lecting semantics of pipeline states, i.e. it computes for each program point the
set of concrete pipeline states that reach the program point during execution.
The transfer function f#

ps : Pipe#ps → Pipe#ps can thus be defined using the con-
crete cycle-function applied element-wise. The (abstract) transfer of a single
concrete pipeline state can nevertheless lead to several successors due to uncer-
tainty in the environment. E.g. it might be uncertain whether a memory access
hits or misses the caches, or what the values of operands are. In these cases, the
necessary parts of the environment are concretized resulting in several environ-
ments. The cycle of the concrete state is then applied with each such (partially
concretized) environment.

3 Are In-Order Pipelines Interesting?
Or: What About Timing Anomalies?

Microarchitectural analysis has to cope with uncertainty about (components of
the) execution states. First, it does not generally know the initial execution state,

210 S. Hahn et al.

A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

C ready

Fig. 3. Timing Anomaly: The local worst case does not lead to the global worst case [6].

e.g. the initial occupation of the pipeline stages with old instructions. Secondly,
the analysis works with an abstract model of the architecture, potentially omit-
ting some details in a safe way, thereby introducing uncertainty in the pipeline
and the environment (e.g. caches). Thirdly, it typically combines information
about the execution states resulting from different paths leading to one program
point. Uncertainty about some components of the execution state may result in
non-deterministic decisions to be made by the analysis based on the powerset
domain.

A (timing) anomaly is a scenario where the local worst-case in a non-
deterministic decision does not lead to the global worst case. A classical example
depicted in Figure 3 is a cache miss (locally worse than a cache hit) that leads
to a shorter overall execution time, because in the hit case operations are re-
ordered in a way better suiting the subsequent program. This is often referred
to as scheduling anomaly which is typically present in architectures featuring
out-of-order execution. These anomalies hinder local state space reductions that
would simplify the state-exploring pipeline analysis described in the previous
section.

In-order pipelines with timing anomalies have been discussed earlier in liter-
ature. The anomalous behavior was exclusively triggered by odd cache behavior
such as pseudo round-robin replacement [9] or partial cache line fills [3]. In-order
pipelines with LRU caches have (implicitly) been considered anomaly-free as they
execute instructions in a very regular fashion. As an example, Wenzel et al [10]
identified resource allocation decisions as necessary condition for timing anoma-
lies. A resource allocation decision describes a situation where a latency variation
causes instructions to execute in different orders in the functional units of an super-
scalar processor.

The pipeline described in Section 2.2 does not allow resource allocation deci-
sions, but nevertheless features a timing anomaly. All instructions enter the (sole)
functional unit in program order – independent of any latency variation. The def-
inition of a resource allocation decision does not capture, that a latency variation
at the beginning of an instruction sequence can have an anomalous impact on

Toward Compact Abstractions for Processor Pipelines 211

load ...
nop
load r1, ...
div ..., r1

ret

(load r1, 0)

(load, 0)

load H IF ret load r1 M EX div

load M load r1 M IF ret

EX div

Fig. 4. Left: The program to execute that leads to an anomalous behavior. Middle:
The pipeline state serving as starting point for the anomaly. Right: The ongoing
execution of the program demonstrating the anomaly.

the latency (not the ordering) of later instructions. We will demonstrate that a
timing anomaly is possible anyway and thus the property of in-order execution
is not sufficient. However, the definition of Wenzel et al. [10] could be extended
to also exclude reorderings of memory accesses.

Let us consider an in-order pipeline with separate caches, but common back-
ground memory as described earlier in Figure 1. The anomaly is based on the
observation that in-order pipelines still allow the fetch of a instruction to be
scheduled before the data access of a preceding instruction. In the following, we
discuss the anomaly in more detail.

We make use of the following assumptions on the pipeline behavior that par-
tially extend the formal description in Section 2.2. The pipeline has the ability to
eliminate instructions from the pipeline that have no effect, e.g. nop instructions
or predicated instructions whose condition is false. Furthermore, the pipeline
features a long-lasting instruction such as floating-point division whose latency
is at least as long as an L1 cache miss. This seems unrealistic at first glance,
however when second-level caches are used to serve first-level misses it might
very well be realistic.

Consider the program and (part of) its execution in Figure 3. The division
instruction is data-dependent on the second load denoted by the dashed arrow
in the right column. The dashed line in the left column denotes the beginning
of a new cache line.

The pipeline state depicted in the middle column arises during execution of
the program and serves as a starting point for the timing anomaly. We consider
the following cache environment: The first load instruction might hit (H) or
miss (M) the data cache, resulting in a non-deterministic decision that triggers
the anomalous behavior. The second load instruction misses the data cache. The
fetch of the return instruction misses the instruction cache. The right column
shows the ongoing execution of the program, demonstrating the possibility of
a timing anomaly. The stage between the two loads is free resulting from the
eliminated nop. The anomaly is due to the fact, that the second load can advance
to the EX stage while waiting for the first load to complete its miss. Thus it can
be started before the fetch of the return instruction which suits the execution of
the data-dependent division instruction. In the hit case, the second load becomes
ready too late and is blocked by the already ongoing instruction fetch.

212 S. Hahn et al.

This example demonstrates that in-order pipelines are not a priori anomaly-
free. The existence of timing anomalies thus hinders local state space reductions
even for in-order pipelines. So, they are interesting candidates for a compact
abstract representation—getting rid of the expensive powerset domain and state
space exploration.

4 Compact Abstract Pipeline Domain Based on Minimal
Progress

One idea for a compact representation of pipelines is inspired by our efficient
cache analysis [2]. In this cache analysis, must and may analyses are employed
to under-/overapproximate the cache content by tracking the maximal/minimal
age of a cache block. In analogy, the idea for pipeline analysis is to track mini-
mal/maximal progress of the instructions in the pipeline. The minimal progress
metric can be used to guarantee that an instruction has eventually finished exe-
cution. One concern with minimal progress is, that – despite being conservative –
some progress must be guaranteed for each call of the abstract domain’s transfer
function. Otherwise no bound can be derived.

4.1 Abstract Domain

First, we consider the pipeline behavior for one fixed instruction sequence
i1i2 . . . in with ij ∈ I. This eliminates uncertainty about the program’s control-
flow. We briefly discuss how to handle diverging and merging control-flow later.

Thus, the variation in execution times stems from cache uncertainty and
variable-execution-latency instructions.

Minimal Progress. The abstract domain maps each instruction in the
sequence to its minimal progress

Pipe# := I → Pmin ,

where Pmin := S × N.
Note, that the domain is identical to the concrete domain, however the inter-

pretation of a domain element is different. An element ap ∈ Pipe# describes for
each instruction its minimal progress, i.e. the pipeline stage that the instruction
reached at least. Thereby, we establish an ordering on concrete pipeline states.

Defining the Partial Order. First, we define a progress order on the stages
an instruction can be in. The idea behind the ordering is, that later stages are
“better” in the sense that execution should not take longer starting from later
stages. The order
S is then given by

post
S WB
S MEM
S EX
S ID
S IF
S pre.

Toward Compact Abstractions for Processor Pipelines 213

(i1, n1)

(i2, n2)

(i3, n3)

(i1, n′
1)

(i2, n′
2)

(i3, n′
3)

(i1, n1)

(i2,max{n2, n
′
2})

(i3, n′
3)

�
� �

�� ��∧

Fig. 5. Example of minimal-progress based join function. Take the minimum of the
progress of individual instructions.

Some of the stages are multi-cycle, so we extend this to an ordering on progress

Pmin

as follows

(s, n)
Pmin
(s′, n′) ⇔ s
S s′ ∨ (s = s′ ∧ n ≤ n′).

As the ordering
Pmin
is total, the induced join is

p Pmin
p′ = (p
Pmin

p′) ? p′ : p.

The minimal-progress order on individual pipeline stages can then be
extended to whole pipeline states. Two abstract pipeline states are ordered, if
the minimal progress of all instructions is ordered:

s
 s′ ⇔ ∀i ∈ I.s(i)
Pmin
s′(i).

Note, that the order respects the “has left the pipeline” property, i.e. whether
an instruction has left the pipeline and thus finished its execution. Formally, if
s(i) = post for i ∈ I and s ∈ Pipe#, then

∀s′ ∈ Pipe#. s′
 s ⇒ s′(i) = post.

The join function is induced by the partial order
 and corresponds to
taking the minimal progress for each instruction:

s s′ = λi ∈ I.s(i) Pmin
s′(i).

As an example consider the illustration in Figure 5.

214 S. Hahn et al.

Concretization/Abstraction Function. As already noted, the concrete
domain and the abstract domain based on minimal progress are structurally
equivalent, yet their interpretations are different. Therefore, an abstract minimal-
progress pipeline state can also be viewed as a concrete state and vice versa. Note,
that we can use the partial order and join defined above for concrete pipeline
states as well. Exploiting this, we give the concretization function γ : Pipe# →
2Pipe and abstraction function α : 2Pipe → Pipe# that relate our abstract domain
to the collecting semantics domain and vice versa

γ(ap) := {cp ∈ Pipe | cp
 ap}
α(CP) :=

⊔

cp∈CP

cp

An abstract minimal-progress pipeline state ap thus describes all concrete
pipeline states that have at least the progress of ap. The concretization and
the abstraction function form a Galois connection [1].

4.2 Transfer Function

Before we discuss the transfer function, we present the general correctness crite-
rion.

Definition 2 (Local Consistency and Best Abstract Transformer, [1]).
Let C and A be the concrete and abstract domains, and let γ : A → C and
α : C → A be the concretization and abstraction functions, and let f : C → C
be the concrete transformer. An abstract transformer f# : A → A is locally
consistent if and only if

∀a ∈ A. γ(f#(a)) �C f(γ(a)).

Let f#
best = α ◦ f ◦ γ. If α and γ form a Galois connection, f#

best is the best
abstract transformer. The best abstract transformer is locally consistent.

Local consistency implies global consistency of the analysis results, i.e. the cor-
rectness of the overall analysis. Thus, it is sufficient to demonstrate local consis-
tency of our abstract transformer as correctness proof.

Next, we try to come up with an abstract transformer for the abstract pipeline
domain based on minimal progress.

The Easy Part
The transfer function takes a minimal progress abstract pipeline state from
Pipe# and computes the effect of the execution for a certain amount of time, e.g.
one cycle. To be useful, the transfer function must always be able to guarantee
strict progress in the sense of our partial order
 defined in Section 4.1.

The question to answer is: On what does the progress of an instruction
depend? Clearly, the progress of an instruction depends on whether the next

Toward Compact Abstractions for Processor Pipelines 215

(add,0)pre :

(load, 0)

I$

D$

Memory

miss

miss

Fig. 6. How can progress be guaranteed during cycle transfer of this minimal-progress
abstract state?

stage will be free – which in turn depends on the progress the instructions in
these stages will make in the current cycle. This can be observed directly as
the function willbefree in Section 2.2 is recursive. As a consequence, the trans-
fer function should proceed backwards through the pipeline, i.e. the progress of
instructions in later stages should be determined first. An instruction at least
in stage write back will be at least in stage post after one cycle – no further
dependencies.

Next there are data dependencies that cause hazards, so it also matters how
far the dependent instructions have at least advanced in the pipeline (see ready
in Section 2.2). Most of the data dependencies can be removed by employing
techniques like forwarding; however some remain. Consider a load instruction
followed by an arithmetic operation depending on the loaded value. If the arith-
metic operation is at least in the decode stage, progress can only be guaranteed
if the load is at least in the write-back phase. Observe that data dependen-
cies have the same “direction” – upstream instructions depend on downstream
instructions – as “resource dependencies” discussed in the previous paragraph.

The Hard Part
Unfortunately, the progress dependencies can be bidirectional in general, i.e. the
progress of an instruction may also depend on the progress of an instruction
further upstream in the pipeline. As an example, consider an instruction in the
memory stage just about to request memory as part of a data access that is
blocked by an already ongoing instruction fetch. This is caused by the unified
background memory with sequential access.

Why are bidirectional dependencies problematic? A downstream instruction
may be stalled by an upstream instruction and vice versa. If under the abstrac-
tion, it cannot be determined which of the two instructions is progressing and
which is stalled, then no progress is guaranteed for either of the two.

Consider the example abstract state in Figure 6. Recall that the positions
of the instructions represent their minimal progress, i.e. instructions could be
further down the pipeline in a concrete execution. Considering the data access
that might just be about to happen: it could be blocked as the instruction fetch
could already have started. On the other hand, consider the instruction access
that might just be about to happen: it could be blocked as the data access could
already have started. Combining these two arguments, it follows that with the

216 S. Hahn et al.

information available in the abstract domain, no progress can be guaranteed
out of this state during one cycle. Essentially the pipeline deadlocks under the
abstraction and no execution-time bound can be derived at all.

Note, that the uncertainty of whether instruction or data are scheduled for
the bus does not exist within the powerset domain since in each concrete state
it is always clear whether instruction fetch or data fetch acquire the bus first.

Monotonicity
A sufficient criterion to guarantee progress on each call of the transfer function
cycle# is monotonicity of the cycle update cycle. Monotonicity states that the
transfer function preserves the ordering of states:

Definition 3 (Monotonicity). Let two states s1, s2 ∈ Pipe. We call the (con-
crete) transfer function cycle monotone if and only if

s1
 s2 ⇒ cycle(s1)
 cycle(s2).

Theorem 1. The abstract transformer cycle# := cycle is the best abstract trans-
former of the minimal-progress abstract domain if cycle is monotone.

Proof. We have to prove that cycle# = cycle = α ◦ cycle ◦ γ. By plugging in the
definition of γ and α, the claim becomes

cycle(ap) =
⊔

cp�ap

cycle(cp).

Using the monotonicity property of cycle concludes the proof.

Corollary 1. The abstract transformer cycle# := cycle is a sound abstract
transfer function of the minimal-progress abstract domain.

Combined with the property that the order
 respects whether instructions
are finished, and given that we start with a correct initial value, it follows that
the analysis leads to overall sound results.

However, the transfer function cycle as described in Section 2.2 is not mono-
tone. This can be derived from the timing-anomalous behavior we described in
Section 3. After one cycle, the state in the load-hit case made more progress
compared to the load-miss case. But at the end, the load-miss case leads to a
state that has progressed more.

Proposition 1 (Absence of Timing Anomalies). If the transfer function
cycle is monotone, the powerset-domain-based analysis can safely follow local
worst-cases.

The terminology local worst-/best-case suggests that, after one cycle, the state
following the local best-case should have at least the progress as the state follow-
ing the local worst-case has. The monotonicity property guarantees, that further
cycling will always preserve this progress ordering. Thus, it is safe to follow the

Toward Compact Abstractions for Processor Pipelines 217

state with the minimal progress (arising from the local worst-case) – if the above
characterization of local worst-/best-case is appropriate.

Having completely separate instruction and data memory ensures monotonic-
ity. Then, the progress of an instruction solely depends monotonically on the
progress of instructions further down in the pipeline. However, this scenario is
unrealistic – applications could rely on self-modifying code or need to load data
from the instruction memory (e.g. constant pools).

Another “hardware” attempt to ensure monotonicity is to never start a mem-
ory request upon an instruction-cache miss as long as an instruction, potentially
accessing data memory, could be blocked by this. This way, we enforce a stronger
property than in-order execution as we defined it above. In-order execution for
example still allows that the fetch (memory access) of a later instruction can
be scheduled before the data access of an earlier execution. In some sense, the
execution is not in-order w.r.t. to externally visible events such as the acquisition
of the memory bus.

Definition 4 (Strictly In-Order). We call a pipeline strictly in-order if each
resource processes the instructions in the order they occur in the program.

These resources include the pipeline stages as well as the common background
memory. The definition enforces, that all memory accesses of one instruction (i.e.
the instruction fetch and potential data accesses) happen before any memory
access of a later instruction.

Recall the definition of the concrete pipeline semantics in Section 2.2 that
is not strictly in-order. We modify the underlying pipeline such that it becomes
strictly in-order as follows:

ready(i) := . . . ∧ (stage(i) = pre ⇒ (icachehit∨
(busfree ∧ ∀pr ∈ prev(i). (pr �= ld/str ∨ stage(pr) �∈ {IF, ID,EX}))).

An instruction miss that could block the bus for earlier data memory accessing
instructions is delayed until no such instructions are in the “critical area” any
more. In the case of an instruction cache hit, no such actions are necessary as
the caches are separated.

Proposition 2. The strictly in-order pipeline just described is monotone in the
sense of Definition 3.

The detailed proof of this proposition is quite lengthy and therefore we only
present a sketch here. Given two pipeline states s1, s2 such that s1
 s2. The
proof uses a case distinction of the progress of an instruction in s2. The cases
should be considered in a bottom-up fashion starting with post and ending with
pre. This represents the progress dependencies on the progress of instructions
further down the pipeline. Then, we exploit that each instruction has at least
the same progress in s1. Using the definition of the concrete semantics, it follows
that cycle(s1)
 cycle(s2).

Note that in general, even a strictly in-order pipeline may feature timing
anomalies, e.g., if it contains multiple incomparable functional units as described
by Wenzel et al [10].

218 S. Hahn et al.

Outlook: Enriched Abstraction
An alternative to enforcing monotonicity of the concrete behavior of the pipeline
by hardware modifications is to come up with more expressive abstractions. The
idea is to enrich the abstraction with further (instrumented) properties about
the time that has been spent at least in a specific stage.

An analogous idea has been successfully used in shape analysis via three-
valued logic [8]. Additionally introduced instrumentation predicates made it pos-
sible to establish and preserve complex statements about heap-allocated data
structures.

Transferred to our domain: To ensure that some progress is always made
in the abstraction, one can instrument the semantics, so that every instruction
tracks the number of cycles it has spent in a pipeline stage. Independently of
the executed instruction, there is an upper bound on the time needed to pass a
stage that can be determined from the concrete microarchitectural behavior. As
soon as an instruction exceeds this bound, it is guaranteed to have advanced to
the next stage.

Another possibility is to employ additional relational information. The exam-
ple in Figure 6 shows, that progress cannot be guaranteed individually neither
for the add nor the load instruction. However, we know that at least one of the
two instructions makes progress in each cycle. Thus, an abstraction that tracks
the progress of both instructions in a relational manner is eventually able to
guarantee that both instructions have progressed to the next stage.

4.3 Diverging and Joining Control Flow

So far, we considered instruction sequences without branching and joining of
control flow. The actual static analysis is performed on a control-flow graph
with branches, control joins, and loops. A detailed and formal explanation of the
consequences is out of the scope of this article, however we want to give a rough
idea of how to extend the domain.

The problem with branching/joining is that one abstract state would need
to talk about the behavior of different instruction sequences coming from/going
to different branches of the control-flow graph. The obvious solution is to keep
several abstract states – namely one per branch/different instruction sequence.
After several abstract transformer cycles, the differing instructions will finally
leave the pipeline and allow to join the remaining abstract states according to
their minimal progress.

An efficient representation could be based on directed, acyclic graphs. Nodes
in the graph are the instructions currently processed in the pipeline associated
with their minimal progress. An edge points to the preceding instructions. In case
of branch, several instructions have the same preceding instruction. In case of a
control-flow join, the first common instruction has several preceding instructions
and thus several outgoing edges.

Toward Compact Abstractions for Processor Pipelines 219

4.4 Why Maximal Progress is not so Important

In this article, we focused on the minimal progress of instructions within a
pipeline which is sufficient to derive an upper bound on the execution times of a
program. In analogy to must-/may-cache analyses, an abstract domain tracking
the maximal progress can be defined. This is needed e.g. for the calculations of
lower bounds on the execution times of a program. Furthermore, in the case of
non-monotone transformers it might be useful to prune some cases as infeasible.

5 Open Problems

So far, we examined in-order pipelines with separate caches which are well-suited
candidates for compact abstractions due to their regular behavior. Modern pro-
cessors, however, invest far more complexity to cleverly predict and optimize
the executed instruction sequence. Their behavior is sensitive even to small local
changes – leading to large global changes. This complicates the search for com-
pact representations.

Branch Prediction and Speculation. Speculation techniques allow to exe-
cute instructions although it is unclear whether they should be executed at all
(e.g. due to an unresolved branch). Speculative execution is known to cause tim-
ing anomalies [6] and is also problematic from the point of view of guaranteed
progress. Corresponding concrete transformers are non-monotone: Speculatively
executed instructions that progress further can turn out to be detrimental for the
overall progress. Besides direct effects such as unnecessary and expensive mem-
ory accesses (see [6] for an example), speculation can pollute the cache leading
to indirect effects due to reloads later.

Buffers such as Store Buffers. Additional buffers in the pipeline allow to
further decouple the pipeline and the memory. As an example, stores complete to
a store buffer such that the pipeline can continue execution while – in parallel –
the store is actually performed in memory. Such behavior introduces additional
dependencies, e.g. instruction fetches, data loads, and stores compete for the
exclusive bus resource.

Out-Of-Order Execution. Data dependencies can hinder the execution of
the current instruction in a program. Out-of-order execution allows to reorder
instructions and thus to execute subsequent instructions whose dependencies are
already satisfied. This complicates the dependencies of an instruction’s progress
– it might depend on the progress of instructions later in the program. Out-of-
order execution is also known to cause timing anomalies [6].

220 S. Hahn et al.

6 Summary and Conclusion

We introduced design principles for pipelines with compact abstractions. We
focus on an abstraction that is based on minimal progress of instructions through
the pipeline. Any useful abstract transformer should guarantee some progress in
each abstract transition. Otherwise, no execution-time bounds can be derived.

We showed that in-order pipelines are not automatically free of timing anoma-
lies. Further, we found that monotonicity of the concrete transformer is sufficient
for the absence of timing anomalies. Then, we defined strictly in-order pipelines
and showed that these provide for monotone concrete transformers and thus for
compact and effective abstractions.

References

1. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Aho,
A.V., Zilles, S.N., Rosen, B.K. (eds.) Conference Record of the Sixth Annual ACM
SymposiumonPrinciplesofProgrammingLanguages,pp.269–282.ACMPress(1979)

2. Ferdinand, C., Wilhelm, R.: Efficient and precise cache behavior prediction for
real-time systems. Real-Time Systems 17(2–3), 131–181 (1999)

3. Gebhard, G.: Timing anomalies reloaded. In: Lisper, B. (ed.) 10th International
Workshop on Worst-Case Execution Time Analysis, WCET. OASICS, vol. 15,
pp. 1–10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2010)

4. Langenbach, M., Thesing, S., Heckmann, R.: Pipeline modeling for timing analysis.
In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 294–309.
Springer, Heidelberg (2002)

5. Liu, I., Reineke, J., Lee, E.A.: A PRET architecture supporting concurrent pro-
grams with composable timing properties. In: Conference Record of the Forty
Fourth Asilomar Conference on Signals, Systems and Computers, pp. 2111–2115.
IEEE (2010)

6. Reineke, J., Wachter, B., Thesing, S., Wilhelm, R., Polian, I., Eisinger, J.,
Becker, B.: A definition and classification of timing anomalies. In: Mueller, F. (ed.)
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis. OASICS,
vol. 4. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany (2006)

7. Rochange, C., Sainrat, P.: A time-predictable execution mode for superscalar
pipelines with instruction prescheduling. In: Bagherzadeh, N., Valero, M., Ramı́rez,
A. (eds.) Proceedings of the Second Conference on Computing Frontiers,
pp. 307–314. ACM (2005)

8. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL 1999, pp. 105–118. ACM, New York (1999)

9. Thesing, S.: Safe and precise WCET determination by abstract interpretation of
pipeline models. Ph.D. thesis, Saarland University (2005)

10. Wenzel, I., Kirner, R., Puschner, P., Rieder, B.: Principles of timing anomalies
in superscalar processors. In: Fifth International Conference on Quality Software
(QSIC 2005). IEEE (2005)

11. Wilhelm, S.: Efficient analysis of pipeline models for WCET computation. In:
Wilhelm, R. (ed.) 5th Intl. Workshop on Worst-Case Execution Time (WCET)
Analysis. OASICS, vol. 1. Internationales Begegnungs- und Forschungszentrum für
Informatik (IBFI), Schloss Dagstuhl, Germany (2005)

Synthesis

Bounded Synthesis for Petri Games

Bernd Finkbeiner(B)

Universität des Saarlandes, Saarbrücken, Germany
finkbeiner@cs.uni-saarland.de

Abstract. Petri games, introduced in recent joint work with Ernst-
Rüdiger Olderog, are an extension of Petri nets for the causality-based
synthesis of distributed systems. In a Petri game, each token is a player
in a multiplayer game, played between the “environment” and “system”
teams. In this paper, we propose a new technique for finding winning
strategies for the system players based on the bounded synthesis app-
roach. In bounded synthesis, we limit the size of the strategy. By incre-
mentally increasing the bound, we can focus the search towards small
solutions while still eventually finding every finite winning strategy.

1 Introduction

The ambition to translate formal specifications into executable programs, and
to do so automatically, without a human programmer, dates back to the early
beginnings of computer science [1,2,10,19]. In the area of reactive systems, which
includes hardware circuits, communication protocols, and generally all systems
that interact continuously with their environment, the first formalization of the
problem is generally attributed to Alonzo Church at the Summer Institute of
Symbolic Logic in 1957 at Cornell University:

Given a requirement which a circuit is to satisfy [...]. The synthesis prob-
lem is then to find recursion equivalences representing a circuit that sat-
isfies the given requirement (or alternatively, to determine that there is
no such circuit) [2].

Synthesis algorithms have the potential to dramatically simplify the devel-
opment of complex systems. Instead of manually writing a program, one only
needs to specify the actions available to the system and the objective, or win-
ning condition, that one would like the system to guarantee against all possible
behaviors of the system’s environment. A strategy that achieves the winning
condition by reacting to the actions of the environment with appropriate system
actions is then constructed automatically.

Over the years, Church’s synthesis problem has been studied in many vari-
ations. Of particular interest for the purposes of this paper is the problem of
synthesizing distributed systems [6–9,13,15,16,18,20]. Many modern reactive

This research was partially supported by the German Research Council (DFG) in
the Transregional Collaborative Research Center SFB/TR 14 AVACS.

c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 223–237, 2015.
DOI: 10.1007/978-3-319-23506-6 15

224 B. Finkbeiner

systems are distributed in the sense that they consist of multiple processes with
individual inputs, which they may or may not share with other processes. A key
challenge in the design of such systems is to decide how the processes should
interact so that each process obtains the information needed to carry out its
functionality.

Computationally, the synthesis of distributed systems is a very hard prob-
lem, often with nonelementary lower bounds on the complexity [9]. An encour-
aging observation is, however, that practical specifications often have reasonably
small implementations. This observation is exploited by the bounded synthesis
approach [7,20], which restricts the space of potential solutions by some (itera-
tively growing) bound. Despite the uncomfortable lower bounds on the worst-case
behavior of the synthesis algorithms, bounded synthesis is often able to find an
implementation in reasonable time, as long as the solution is small with respect
to a suitable parameter such as the number of states of the implementation.

In this paper, we propose a first bounded synthesis approach for Petri games.
Petri games [5], introduced in recent joint work with Ernst-Rüdiger Olderog,
are an extension of Petri nets for the causality-based synthesis of distributed
systems. In a Petri game, each token is a player in a multiplayer game, played
between the “environment” and the “system” team. In the tradition of Zielonka’s
automata [21], Petri games model distributed systems with causal memory, i.e.,
the processes memorize their causal histories and learn about each other’s histo-
ries when synchronizing. The environment tokens represent independent sources
of input, such as different users of the system. The system players represent the
processes of the system. Each system player is only allowed to act on informa-
tion it actually knows, either through direct interaction with the environment, or
indirectly, through synchronization with other system players. Since the different
system players have the same objective but different knowledge about the system
state, a winning strategy usually involves an active synchronization between the
system players to ensure that every player has the knowledge needed to win the
game. A good example for the type of system that can be constructed with Petri
games is the distributed burglar alarm system discussed in detail in [5]: a break-
in may occur at one of several locations, and the alarm system at that location
must inform the other distributed components about this, so that the alarm can
be activated in all locations. Petri games have also been used to synthesize con-
trollers for robots in production plants [4], where the Petri net is used to capture
the concurrency, usage constraints, and uncertain availability of machines in the
plant. The winning condition is to accomplish certain tasks, such as to process a
certain number of orders on a certain number of machines, despite the actions of
the hostile environment, which may declare a subset of the machines to be defect.

Strategies in a Petri game are, in general, infinite objects, because they are
defined in terms of the (infinite) unfolding of the net. The reason for this con-
struction is that different places in the unfolding reflect different causal histories;
this enables the strategy to act depending on the individual history of a player.
In practice we are, however, mostly interested in winning strategies that can be
represented by a finite net. For the special case of a single environment token,

Bounded Synthesis for Petri Games 225

•
A

B C

s tD
•

u v w x

E F G H

y z

Fig. 1. Example Petri game. Places belonging to the system player are shown in gray, all
other places belong to the environment player. The set of bad markings consists of the
markings {B, G} and {C, F}, where the net has reached a deadlock. The system player
can win the game by waiting in place D until a synchronization with the environment
token in places B or C becomes possible. The move after the synchronization then
depends on whether the synchronization was via transition u or via transition x. In
case of u, the system player takes transition v, thus avoiding {B, G}; in case of x, the
system player takes w, thus avoiding {C, F}.

the existence of a winning strategy can be decided, and a finite representation of
the winning strategy can be constructed in single-exponential time via a reduc-
tion to two-player games over finite graphs [5]. This synthesis algorithm has
been implemented as a BDD-based fixed point iteration in the tool Adam [4].
The bounded synthesis approach of the present paper complements the symbolic
algorithm of Adam with a satisfiability-based approach. We bound the size of
the solutions of interest by setting a bound on the number of instances of each
place of the Petri game. The existence of a winning strategy is then encoded
as a quantified boolean formula, where the choices of the strategy appear as
existentially quantified variables. We use a QBF solver to extract a satisfying
assignment to these variables, which defines a winning strategy that meets the
specified bounds.

The remainder of the paper is structured as follows. We begin in Section 2
with a review of the main notions for Petri games from [5]. In Section 3, we
define bounded strategies. Section 4 then presents an encoding of the existence
of winning strategies as a quantified boolean formula. In Section 5 we discuss the
analysis of trade-offs, in particular the trade-off between the memory allocated
to different players, and the trade-off between memory and proof complexity.

226 B. Finkbeiner

2 Petri Games

Petri games were introduced in [5] as an extension of Petri nets. In the following
we briefly review the main definitions. To simplify the presentation, we consider
in this paper only safe nets, where each place can be marked with at most one
token. The definitions for the general case are given in [5].

Figure 1 shows a simple Petri game, which will serve as our running example
in the following. If we ignore the distinction between gray and white places for
the moment, then the net shown in the figure is a standard Petri net. A Petri
net N = (P, T ,F , In) consists of disjoint sets P of places and T of transitions,
a flow relation F ⊆ (P × T) ∪ (T × P), and an initial marking In ⊆ P. We
depict places as circles and transitions as rectangles. Note that the flow relation
defines a bipartite graph, i.e., the flow relation connects places with transitions
and transitions with places. Places and transitions are generically called nodes.
A finite Petri net is a Petri net with finitely many nodes. For nodes x, y we write
x F y for (x, y) ∈ F .

The presence of a flow between two nodes models a causal dependency. The
preset of a node x, denoted by •x, is the set {y | y F x}. The postset of x, denoted
by x•, is the set {y | x F y}.

The behavior of a Petri net is defined in terms of its markings, which are
subsets of the places. A transition t is enabled in a marking M ⊆ P if •t ⊆ M . A
marking M ′ is reachable from a marking M in one step, denoted by M → M ′ if
there is a transition t that is enabled in M and M ′ = (M �

•t) ∪ t•. A sequence
M1M2M3 . . . Mn such that Mi → Mi+1 for all i ∈ {1, . . . , n − 1} is a firing
sequence of N . The set of reachable markings is defined as R(N) = {M ′ | In →∗

M ′} where →∗ is the reflexive and transitive closure of →.
In the example of Fig. 1, the initial marking {A,D} (which is depicted by the

black dots on places A and D) has four enabled transitions, namely s, t, v and
w, which result in the successor markings {B,D}, {C,D}, {A,F} and {A,G},
respectively. An example for a firing sequence is the infinite repetition of the
sequence {A,D} {B,D} {E,D} {E,F}{A,D}. Note that there is no reachable
marking that contains both B and C. Places B and C are in conflict: transition s,
which adds a token to B, also removes the token from A, which is needed to
enable t. We say that two nodes x and y are in conflict, denoted by x�y, if there
exists a place p ∈ P, different from x and y, from which one can reach x and y
via the transitive closure F+ of F , exiting p by different transitions.

A Petri game G = (PS ,PE , T ,F , In,B) is a finite Petri net where the set
of places has been partitioned into a subset PS belonging to the system and a
subset PE belonging to the environment ; additionally, the Petri game identifies
a set B ⊆ 2P of bad markings (from the point of view of the system), which
indicate a victory for the environment1. We call the Petri net N = (P, T ,F , In)
with P = PS ∪ PE the underlying Petri net of G.

1 In [5], the bad markings are given as a set of bad places that must be avoided by
the system.

Bounded Synthesis for Petri Games 227

We view each token as a player in a multiplayer game. Informally, the tokens
on the environment places show the complete, unrestricted behavior, while the
tokens on the system places restrict the behavior strategically by forbidding a
subset of the transitions in the postset of the currently occupied place.

In the example game of Fig. 1, places belonging to the system are shown in
gray, all other places belong to the environment. Let the set of bad markings
consist of the markings {B,G} and {C,F}, where the net has reached a deadlock.
The example has two tokens, one that moves on environment places, one on
system places. We will refer to these two tokens as the system player and the
environment player, respectively. Note that, in general, there may be more than
one token in a team, which means that these players have the same objective,
but not necessarily the same knowledge about decisions that have been made by
the players of the other team.

Initially, in place D, the system player must choose a subset of the transitions
u, v, w and x. To avoid the bad markings, it is crucial that the system player
stays in place D until it is clear whether the environment player has played
transition s or t. If the system player proceeds with, for example, transition v,
and the environment player turns out to be in place C, then the bad marking
{C,F} is reached. To win the game, the system player must forbid transitions
v and w and thus stay in place D until a synchronization with the environment
token in places B or C becomes possible. After the synchronization via u or x,
the system player knows whether the environment player is in place E or H and
can, correspondingly, enable v if the synchronization was via transition u or w if
the synchronization was via transition x. Transition v thus leads to the marking
{E,F}, transition w to the marking {G,H} and the bad markings {B,G} and
{C,F} are avoided.

The example illustrates that information about other players can be obtained
through synchronization. The system player does not know whether the envi-
ronment player went from place A via s to B or via t to C until the players
synchronize via transitions u or x. The formalization of this idea is based on the
notions of occurrence nets, branching processes, and unfoldings.

Informally, the unfolding of a Petri net is constructed by splitting any places
with multiple incoming flows into separate copies that each only have a single
incoming flow. Loops are unrolled into an infinite structure. Figure 2 shows
the unfolding of the example game from Fig. 1. Note that every place in the
unfolding has a unique causal history. Each place thus captures precisely the
knowledge of the player when the token reaches the place in a play of the game.
This correspondence between nodes and knowledge is exploited in the definition
of strategies: a strategy fixes for each place in the unfolding the set of transitions
that are not forbidden by any of the players. In Fig. 2, the strategy discussed
above is depicted with thick lines. Note that, because there are multiple instances
of place D, the system token in D can choose to forbid different transitions
depending on whether transition u, transition x, or neither u or x has occurred
in the present round of the game.

228 B. Finkbeiner

•
A

B C

s tD
•

u

v w

F G

x

E D

v w

F G

D

v w

F G

H

y z
A

B C

s tD

u

v w

F G

x

E D

v w

F G

D

v w

F G

H

y z

.

A

B C

s tD

u

v w

F G

x

E D

v w

F G

D

v w

F G

H

y z

.

Fig. 2. Unfolding and winning strategy of the Petri game from Fig. 1. The winning
strategy is shown with thick lines.

Bounded Synthesis for Petri Games 229

Formally, an occurrence net is a Petri net where (ON1) each place has at most
one incoming transition; (ON2) the inverse flow relation F−1 is well-founded,
i.e., starting from any node of N there does not exist an infinite path following
the flow relation backwards; (ON3) no transition t ∈ T is in self-conflict, i.e., t�t
does not hold for any transition t, and (ON4) the initial marking is the set of
places without incoming transitions.

Two nodes x, y of an occurrence net are causally related if x F∗ y or y F∗ x,
where F∗ denotes the reflexive and transitive closure of F . They are concurrent
if they are neither causally related nor in conflict. A homomorphism from a Petri
net N1 to a Petri net N2 is a mapping h : P1 ∪ T1 → P2 ∪ T2 that preserves the
type of the elements, i.e., h(P1) ⊆ P2 and h(T1) ⊆ T2, and the pre- and postsets
of the transitions, i.e., for all transitions t ∈ T1 : h ↓ •t is a bijection from •t
onto •h(t) and h ↓ t• is a bijection from t• onto h(t)•, where h ↓ D denotes
the restriction of h to the domain D. If additionally the restriction h ↓ In1 is a
bijection from In1 onto In2, then h is called initial.

A branching process of a net N is a pair β = (N B , λB), where N B is an
occurrence net and λB is a homomorphism from N B to N that is injective
on transitions with the same preset, i.e., for all transitions t1 and t2 of the
branching process, if •t1 = •t2 and λB(t1) = λB(t2), then t1 and t2 must be the
same transition. If λB is initial, β is called an initial branching process.

The unfolding of a net N is an initial branching process βU = (N U , λU)
that is complete in the sense that every transition of the net is recorded in the
unfolding, i.e., for every transition t and every set C of concurrent places, if
λU ↓ C is a bijection from C onto •t, then there exists a transition tU ∈ T U

such that •tU = C and λU (tU) = t. The unfolding of a game G is the unfolding
of the underlying net N .

A branching process β1 is a subprocess of a branching process β2 if the identity
on the nodes of β1 is an initial homomorphism from β1 to β2. A strategy for the
system players is a subprocess σ = (N σ, λσ) of the unfolding βU = (N U , λ) of N
subject to the following conditions: (S1) σ is deterministic in all system places,
i.e., for all reachable markings M ∈ R(N σ) and all system places p, there is at
most one transition t ∈ T σ such that p ∈ •t and •t ⊆ M ; (S2) the strategy does
not restrict local transitions of the environment, i.e., if, for a transition t ∈ T U ,
•t ⊆ Pσ

E , then t ∈ T σ; and (S3) if an instance t of a transition is forbidden by
σ there exists a place p ∈ •t where σ uniformly forbids all instances t′ of this
transition.

A strategy σ for the system players is winning if the bad markings are
unreachable in the strategy, i.e., B ∩ R(N σ) = ∅. For example, the strategy
shown in Fig. 2 is a winning strategy for the system player of the Petri game in
Fig. 1. To avoid trivial solutions, we look for strategies σ that are deadlock avoid-
ing in the sense that for all reachable markings M ∈ R(N σ), if there exists an
enabled transition in the unfolding, i.e., t ∈ T U with •t ⊆ M , then there exists
an enabled transition in the strategy as well, i.e., t ∈ T σ with •t ⊆ M . Note
that we allow the strategy to produce a deadlock if the deadlock was already
present in the game. In such situations we say that the game has terminated. If

230 B. Finkbeiner

•
A

B C

s tD
•

u

v w

F G

x

E D

v w

F G

D

v w

F G

H

y z

Fig. 3. Bounded unfolding und winning strategy of the Petri game from Fig. 1 for a
bound b that allows for three instances of place D: b(p) = 1 for p ∈ {A, B, C, E, H}
and b(p) = 3 for p ∈ {D, F, G}. The b-bounded unfolding admits the winning strategy
shown with thick lines.

termination is undesired (as in the example of Fig. 1), such markings must be
explicitly included in the set of bad markings.

3 Bounded Strategies

Since strategies are subprocesses of the unfolding, they are in general infinite
objects, even if the state space of an actual controller implementing the strategy
turns out to be finite. A strategy σ = (N σ, λσ) is finitely generated if there exists
a finite net N f and a homomorphism λ from N σ to N f such that (N σ, λ) is an
unfolding of N f . We say that σ is finitely generated by N f .

We search for finitely generated strategies by considering bounded unfold-
ings of the game. A bound b : P → N assigns to each place of the game a
natural number. A pair (N b, λb) consisting of a finite net N b and a homomor-
phism λb from N b to N is a b-bounded unfolding of the game G if there exists a
homomorphism λ from the net N U of the unfolding (N U , λU) of G to N b such
that λU (p) = λb(λ(p)) for all nodes p of N U , and, furthermore, each place p of G
occurs at most b(p) times in N b, i.e., |(λb)−1(p)| ≤ b(n) for every p ∈ P. Figure 3

Bounded Synthesis for Petri Games 231

•
A

B C

s tD

•

u

v w

F G

x

E

D
v

F

w

G

H

y z

Fig. 4. Bounded unfolding of the Petri game from Fig. 1 for a bound b′ that allows
only two instances of place D: b′(p) = 1 for p ∈ {A, B, C, E, H} and b′(p) = 2 for
p ∈ {D, F, G}. The b′-bounded unfolding does not admit a winning strategy.

shows a b-bounded unfolding of the Petri game from Fig. 1 for the bound b with
b(p) = 1 for p ∈ {A,B,C,E,H} and b(p) = 3 for p ∈ {D,F,G}.

We find bounded strategies by restricting the flow of a bounded unfolding.
A b-bounded strategy is a finite net N f such that there is a b-bounded unfolding
N b of G with Pf = Pb, T f = T b, Inf = Inb and Ff ⊆ Fb, and there is a
strategy σ that is finitely generated by N f . We say that N b admits the bounded
strategy N f . The bounded strategy N f is winning iff σ is winning.

In Fig. 3, a bounded strategy is depicted as part of the bounded unfolding.
The thick lines indicate the flow that is preserved by the strategy. Note that the
strategy from Fig. 2 is finitely generated by this bounded strategy. The bounded
strategy is thus winning. Obviously, not every bounded unfolding admits a win-
ning strategy. Consider, for example, the b′-bounded unfolding of our game in
Fig. 4. The bound b′ with b′(p) = 1 for p ∈ {A,B,C,E,H} and b′(p) = 2 for
p ∈ {D,F,G} only allows two instances of D. The transitions u and x thus
lead to the same instance of place D. As a result, the information whether the
environment token is in place E or H is not available in the place reached by
the two transitions. The strategy cannot forbid both outgoing transitions v and
w, because this would result in a deadlock; however, no matter if the strategy

232 B. Finkbeiner

chooses to enable v or w, there is always a corresponding choice of s vs. t for the
environment player that results in a bad marking.

4 Finding Bounded Strategies

We look for winnning strategies of a given game by considering bounded unfold-
ings for a sequence of increasing bounds. For each such bounded unfolding, we
check whether it admits a winning strategy. In this section, we describe an effi-
cient method that carries out this check.

Our method is based on an encoding into quantified boolean formula (QBF)
satisfiability. Syntactically, the quantified boolean formulas over a set of boolean
variables V are described by the following grammar:

φ ::= x | φ ∧ φ | φ ∨ φ | ¬φ | φ ⇒ φ | φ ⇔ φ | true | false
Φ ::= φ | Φ ∧ Φ | Φ ∨ Φ | ∃x. Φ | ∀x. Φ

where x denotes boolean variables from V and ∧,∨,¬,⇒,⇔ are the usual
boolean connectives.

QBF satisfiability can be reduced to boolean satisfiability (SAT) by replacing
every existentially quantified formula ∃x.φ by a disjunction φ[x/true]∨φ[x/false]
where the quantified variable is replaced by true and false, respectively, in the
two disjuncts, and by replacing every universally quantified formula ∀x.φ by a
conjunction φ[x/true] ∧ φ[x/false]. QBF solving is, however, more difficult than
SAT, both in theory (PSPACE-complete vs. NP-complete), and in practice [17].
Nevertheless, QBF is increasingly being used for practical applications and sev-
eral powerful QBF solvers are available (cf. [14]).

Let N b be a bounded unfolding. We encode the existence of a winning strat-
egy that is admitted by N b as a formula

Φn = ∃VS . ∀VT,n. φn,

where VS is a set of boolean variables that encode which transitions are chosen
by the strategy, VT,n is a set of boolean variables that encode a sequence of
transitions, and φn is a boolean formula that expresses that if the choices of
VS and VT,n result in a firing sequence in N b, then the sequence is won by the
system players. The index n ∈ N is a natural number that indicates the length
of the firing sequence to be considered. We consider firing sequences that end in
a repeated marking. Since there are only 2|Pb| many different markings, such a
repetition must occur after at most exponentially many steps, and it suffices to
set n = 2|Pb| +1. However, we leave n as a parameter, which allows us to restrict
the encoding to shorter firing sequences.

Our encoding of the existence of a winning strategy as a quantified boolean
formula resembles the reduction of the bounded model checking problem to
SAT [11]. The main difference is that in model checking, one is interested in
finding a single firing sequence that leads from the initial marking to a bad
marking, while in synthesis one must ensure that all firing sequences are correct.

Bounded Synthesis for Petri Games 233

We accomplish this by quantifying universally over the variables in VT,n, which
select the sequence of transitions, and by requiring that every firing sequence
has a loop (unless it ends in a deadlock).

Proposition 1. Let N b be a bounded unfolding. There is a family of quantified
boolean formulas Φn such that Φn is satisfiable for some n ≤ 2|Pb| + 1 iff N b

admits a deadlock-avoiding winning strategy for the system players.

Proof. We define Φn = ∃VS . ∀VT,n. φn as follows. The set VS = {(p, λb(t)) | p ∈
Pb

S , t ∈ T b, p ∈ •t} consists of boolean variables encoding the system strategy.
There is a variable for each pair of a system place and a transition where the
preset of some instance of the transition contains the system place2. The set
VT,n = {(p, i) | p ∈ Pb, i ∈ {1, . . . n}} contains one boolean variable for each
place and index position between 1 and n, representing a sequence of markings
of length n. The formula φn expresses that every sequence up to length n is
winning for the system players. If the sequence reaches the full length n (i.e.,
there is no previous deadlock) it must be a loop:

φn =
(∧

i∈{1,...,n} sequencei ⇒ winning i

)
∧ (sequencen ⇒ loopn)

Condition sequencen describes that the sequence of markings encoded by VT,n

is indeed a firing sequence:

sequencei = initial ∧ ¬deadlock1 ∧ flow1 ∧ ¬deadlock2 ∧ flow2∧
. . . ∧ ¬deadlock i−1 ∧ flow i−1

where initial , deadlock i, and flow i encode that the first marking is the initial
marking, the occurrence of deadlock in the ith marking, and the satisfaction of
the flow relation from the ith to the (i + 1)st marking, respectively:

initial =
(∧

p∈Inb(p, 1)
)

∧
(∧

p∈Pb
�Inb ¬(p, 1)

)

deadlock i =
∧

t∈T b

(∨
p∈•t ¬(p, i)

)
∨

(∨
p∈•t∩Pb

S
¬(p, λb(t))

)

flow i =
∨

t∈T b

(∧
p∈•t(p, i)

)
∧

(∧
p∈•t∩Pb

S
(p, λb(t))

)
∧

(∧
p∈t•(p, i + 1)

)

∧
(∧

p∈Pb
�(•t∪t•)(p, i) ⇔ (p, i + 1)

)
∧

(∧
p∈•t�t• ¬(p, i + 1)

)

Condition winning i ensures that there are no bad markings, that all deadlocks
are terminating markings (i.e., the deadlock was already present in the net), and
that the strategy is deterministic in all markings (as required by condition (S1)):

2 The variable refers to λb(t) ∈ T instead of t ∈ T b because of condition (S3) on
strategies, which requires that all instances of a transition must be uniformly for-
bidden.

234 B. Finkbeiner

•
A

•
B

w x y z

C D E F

Fig. 5. Trade-off between the memory requirements of two players. The Petri game
has a single bad marking {C, F}. Both the b-bounded unfolding with b(A) = 1 and
b(B) = 2 and the b′-bounded unfolding with b′(A) = 2 and b′(B) = 1 admit a winning
strategy, but the b′′-bounded unfolding with b′′(A) = 1 and b′′(B) = 1 does not admit
a winning strategy.

winning i = nobadmarking i ∧ deadlockstermi ∧ deterministici

nobadmarking i =
∧

M∈B
(∨

p∈M ¬(p, i)
)

∨
(∨

p∈Pb
�M (p, i)

)

deadlockstermi = deadlock i ⇒ terminating i

terminating i =
∧

t∈T b

∨
p∈•t ¬(p, i)

deterministici =
∧

t1,t2∈T b,t1 �=t2,•t1∩•t2∩Pb
S �=∅(∨

p∈•t1∪•t2
¬(p, i)

)
∨

(∨
p∈(•t1∪•t2)∩Pb

S
¬(p, λb(t))

)

Finally, condition loopn ensures that the nth marking is a repetition of an earlier
marking:

loopn =
∨

i∈{1,...n−1}
(∧

p∈Pb(p, i) ⇔ (p, n)
)

��
For each choice of n, the formula Φn can be translated into conjunctive normal

form by tools like the Boolean circuit tool package (BCpackage) [12] and then
solved by a standard QBF solver like DepQBF [14].

5 Trade-Offs

An interesting type of analysis made possible by the bounded synthesis app-
roach is to trade different bounds against each other. The Petri game in Fig. 5
illustrates a trade-off between the memory needed in different processes of a
system. The bad marking of the game is the combination of the places C of the
first player and F of the second player. The bad marking is reached if the two
players choose their local transitions w and z. To avoid the bad marking, one of
the players must wait for the other player before taking the local transition. For
example, the token in A could initially enable transition y, and, once the token
in B has moved via y to E, safely take w to C. This winning strategy requires
two instances of A and only a single instance of B. Symmetrically, the token in
B could first enable x and then z, provided that two instances of B are available.

Bounded Synthesis for Petri Games 235

•
A

•
B

w x y z

C D E F

s
G

t
H

u

I

v

J

Fig. 6. Trade-off between memory and proof complexity. The Petri game has a single
bad marking {C, F}. The b-bounded unfolding with b(A) = 1 and b(B) = 2, the b′-
bounded unfolding with b′(A) = 2 and b′(B) = 1, and also the b′′-bounded unfolding
with b′′(A) = 1 and b′′(B) = 1 admit a winning strategy. However, the synthesis of the
winning strategy in the b′′-bounded unfolding requires a firing sequence of length six,
while the firing sequences of the winning strategies in the b-bounded and b′-bounded
unfoldings only have length three.

A winning strategy thus requires either two instances of A or two instances of B.
Both the b-bounded unfolding with b(A) = 1 and b(B) = 2 and the b′-bounded
unfolding with b′(A) = 2 and b′(B) = 1 admit a winning strategy, indicating
that the memories allocated to the two players can be traded against each other,
while the b′′-bounded unfolding with b′′(A) = 1 and b′′(B) = 1 does not admit
a winning strategy.

Since the encoding of the bounded synthesis problem in Section 4 is paramet-
ric in the length of the firing sequences, i.e., in the complexity of the correctness
proof, another interesting trade-off to be analyzed is between memory and proof
complexity. This is illustrated by the Petri game in Fig. 6, where, similarly to
the previous example, the goal is to avoid the bad marking in places C and F .
This time, however, the players can avoid the synchronization, if the token on
place A takes the local transition to C and the token on B moves along the long
chain towards the right. While this solution can be implemented within bound
b′′(A) = b′′(B) = 1, the length of the firing sequence corresponds to the length
of the chain plus the firing of w, resulting in length six, while the b-bounded
unfolding with b(A) = 1, b(B) = 2 (and, analogously, the b′-bounded unfolding
with b′(A) = 2, b′(B) = 1) admits a winning strategy where the firing sequence
has only three markings.

6 Conclusions

We have presented a bounded synthesis method for Petri games. Similarly to
the bounded synthesis approach for the synthesis of distributed systems from
temporal logic [7,20], our approach limits the size of the solution and there-
fore finds small solutions fast. Petri games appear to be particularly well-suited
for bounded synthesis because the net typically provides more structure than
a logical specification. Because specific bounds can be set for individual places

236 B. Finkbeiner

(and, hence, for individual players), bounded synthesis can also be used to ana-
lyze trade-offs in the memory needed for different the players, and even trade-offs
between memory and proof complexity.

The bounded synthesis approach complements the BDD-based symbolic deci-
sion procedure for Petri games implemented in the Adam tool [4]. In model
checking, SAT-based bounded methods often dramatically outperform BDD-
based symbolic methods [3]. It will be interesting to see if the situation is similar
for the synthesis problem.

It is important to note, however, that the two methods are not directly
comparable. While the symbolic decision procedure is limited to games with a
single environment token, the bounded approach is universally applicable. On the
other hand, the symbolic decision procedure can prove the absence of a strategy
(of arbitrary size), while the bounded approach is currently limited to proving
the existence of a strategy. Combining the two approaches is an interesting topic
for future work.

Acknowledgments. I am deeply grateful to Ernst-Rüdiger Olderog for our produc-
tive and most enjoyable collaboration on Petri games. Thanks are also due to the
anonymous referees for their helpful comments on this paper.

References

1. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Transactions of the American Mathematical Society 138 (1969)

2. Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis.
In: Summaries of the Summer Institute of Symbolic Logic, vol. 1, pp. 3–50. Cornell
Univ., Ithaca (1957)

3. Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi,
M.Y.: Benefits of bounded model checking at an industrial setting. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 436. Springer, Hei-
delberg (2001)

4. Finkbeiner, B., Gieseking, M., Olderog, E.-R.: ADAM: causality-based synthesis
of distributed systems. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 433–439. Springer, Heidelberg (2015)

5. Finkbeiner, B., Olderog, E.: Petri games: synthesis of distributed systems with
causal memory. In: Peron, A., Piazza, C. (eds.) Proc. Fifth Intern. Symp. on
Games, Automata, Logics and Formal Verification (GandALF). EPTCS, vol. 161,
pp. 217–230 (2014). http://dx.doi.org/10.4204/EPTCS.161.19

6. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proc. LICS,
pp. 321–330. IEEE Computer Society Press (2005)

7. Finkbeiner, B., Schewe, S.: Bounded synthesis. International Journal
on Software Tools for Technology Transfer 15(5–6), 519–539 (2013).
http://dx.doi.org/10.1007/s10009-012-0228-z

8. Gastin, P., Lerman, B., Zeitoun, M.: Distributed games with causal memory are
decidable for series-parallel systems. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS
2004. LNCS, vol. 3328, pp. 275–286. Springer, Heidelberg (2004)

http://dx.doi.org/10.4204/EPTCS.161.19
http://dx.doi.org/10.1007/s10009-012-0228-z

Bounded Synthesis for Petri Games 237

9. Genest, B., Gimbert, H., Muscholl, A., Walukiewicz, I.: Asynchronous games over
tree architectures. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part II. LNCS, vol. 7966, pp. 275–286. Springer, Heidelberg (2013)

10. Green, C.: Application of theorem proving to problem solving. In: Proceedings
of the 1st International Joint Conference on Artificial Intelligence. IJCAI 1969,
pp. 219–239. Morgan Kaufmann Publishers Inc., San Francisco (1969). http://dl.
acm.org/citation.cfm?id=1624562.1624585

11. Heljanko, K.: Bounded reachability checking with process semantics. In:
Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 218–232.
Springer, Heidelberg (2001)

12. Junttila, T.A., Niemelä, I.: Towards an efficient tableau method for boolean cir-
cuit satisfiability checking. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W.,
Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL
2000. LNCS (LNAI), vol. 1861, pp. 553–567. Springer, Heidelberg (2000)

13. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: Proc. LICS,
pp. 389–398. IEEE Computer Society Press (2001)

14. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. JSAT 7(2–3),
71–76 (2010)

15. Madhusudan, P., Thiagarajan, P.S., Yang, S.: The MSO theory of connectedly
communicating processes. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS,
vol. 3821, pp. 201–212. Springer, Heidelberg (2005)

16. Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local speci-
fications. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, p. 396. Springer, Heidelberg (2001)

17. Mangassarian, H.: QBF-based formal verification: Experience and perspectives.
JSAT 133–191

18. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Proc. FOCS 1990, pp. 746–757 (1990)

19. Rabin, M.O.: Automata on Infinite Objects and Church’s Problem, Regional Con-
ference Series in Mathematics, vol. 13. Amer. Math. Soc. (1972)

20. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488.
Springer, Heidelberg (2007)

21. Zielonka, W.: Asynchronous automata. In: Rozenberg, G., Diekert, V. (eds.) Book
of Traces, pp. 205–248. World Scientific (1995)

http://dl.acm.org/citation.cfm?id=1624562.1624585
http://dl.acm.org/citation.cfm?id=1624562.1624585

Mediator Synthesis in a Component
Algebra with Data

Lukáš Hoĺık1(B), Malte Isberner2, and Bengt Jonsson3

1 Brno University of Technology, Brno, Czech Republic
holik@fit.vutbr.cz

2 Technical University of Dortmund, Dortmund, Germany
malte.isberner@cs.uni-dortmund.de
3 Uppsala University, Uppsala, Sweden

bengt@it.uu.se

Abstract. We formulate a compositional specification theory for com-
ponents that interact by directed synchronous communication actions.
The theory is an extension of interface automata which is also able to
capture both absence of deadlock as well as constraints on data parame-
ters in interactions. We define refinement, parallel composition, and quo-
tient. The quotient is an adjoint of parallel composition, and produces
the most general component that makes the components cooperate to
satisfy a given system specification. We show how these operations can
be used to synthesize mediators that allow components in networked sys-
tems to interoperate. This is illustrated by application to the synthesis
of mediators in e-commerce applications.

1 Introduction

Modern software-intensive systems are increasingly composed of independently
developed and network-connected software components. In many cases, these
components exhibit heterogeneous behaviour, e.g., employing different proto-
cols, which prevents them from cooperating to achieve user-level goals. Such
cases call for the synthesis of mediators, which are intermediary software entities
that allow software components to interact by coordinating their behaviours.
Mediator synthesis has many different applications, including protocol convert-
ers [22], web service composition [4], and driver synthesis [20].

Component-based development, including mediator synthesis, should be per-
formed within a specification theory. The theory should express how specifications
capture the requirements for a component to function in an intended system con-
text, while operators and refinement relations allow the composition and compar-
ison of specifications, in analogy with how components are composed and refined
towards an overall system design. Several such theories have been proposed, one of
the earliest by Olderog and Hoare for Hoare-style specifications of Communicat-
ing Sequential Processes [14]. A more recent theory is that of interface automata
of de Alfaro and Henzinger [7], in which components are assumed to communi-
cate by synchronisation of input and output (I/O) actions, with the understand-
ing that outputs are non-blocking. If an output is issued when another component
c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 238–259, 2015.
DOI: 10.1007/978-3-319-23506-6 16

Mediator Synthesis in a Component Algebra with Data 239

is unwilling to receive it, a communication mismatch is said to occur. This allows
to capture assumptions on the behaviour of a component’s environment.

The theory of interface automata is formulated in a finite-state, finite-
alphabet setting. This falls short of adequately capturing the behavior of real-
istic systems, where communicating components exchange messages containing
data values (e.g., header information or payload) ranging over large or infinite
domains, and the overall control flow depends crucially on these values. Further-
more, the theory does not have any facilities for modeling progress or deadlock
properties.

In this paper, we address the aforementioned issues by extending the for-
malism of interface automata to model both progress and constraints on data
parameters. The constraints on data parameters are restricted to equalities and
negated equalities between data values; this still allows to use the formalism
in many interesting applications. We define refinement, parallel composition for
structural composition of components, and quotient for synthesizing new com-
ponents to satisfy partial requirements. The quotient is an adjoint of parallel
composition, and produces the most general component that makes the system
components cooperate to satisfy a given system specification.

Thereafter, we demonstrate how our specification theory and its operators
can be used to automatically synthesize mediators in component-based systems.
Several previous approaches to mediator synthesis require the user to supply a
specification of the overall system functionality. However, the facilities of our
theory allow to automatically generate such a system specification in many situ-
ations. More precisely, the ability to model constraints on data allows to capture
data flow properties of a system, which in turn induces constraints on the control
flow that result in a specification. We further show how the ability to specify
progress properties results in the pruning of unproductive behavior from the
resulting mediator. We have implemented the computation of quotients, and
show the applicability of our approach by synthesizing mediators in e-commerce
applications.

Related Work. Our component algebra is rooted in the theory of interface
automata, which was developed for finite-state specifications, without covering
data or progress [7]. The extension to progress was developed in our previous
work [6]. Another related theory is the trace theory of Dill [8], which is based
on the same distinction between inputs and outputs, and a notion of progress
based on infinite traces. Another variation of this theory is the modal interfaces
by Raclet and others [15–18], and the modal specifications by Larsen et al. [12],
where must and may transitions play the role of input and output transitions.
Yet another related theory is the ioco theory for model based testing due to
Tretmans [21], which has a notion of deadlock that is very similar to ours.

For finite-state specifications, several works have presented a construction for
computing quotients. Bhaduri and Ramesh [5] showed that for finite-state inter-
face automata, which do not capture progress properties, quotient can be refor-
mulated by combining parallel composition and renaming of interface actions:

240 L. Hoĺık et al.

this reformulation does not hold when deadlock and progress are considered.
In our previous work [2], we used finite-state quotient to synthesize mediators.
In the absence of facilities for modeling data, it was necessary to use an ontol-
ogy for correlating different actions. In the current paper, the ability to specify
constraints on data makes the use of ontologies unnecessary.

All works mentioned in the preceding paragraph are developed for the finite-
state case, not covering data. There is one work that extends the theory of
modal specifications with data [1]. It is based on a different model of interaction
between processes, where data values are communicated via shared variables
rather than as parameters in synchronization primitives. Moreover, the theory
of modal specifications is based on a semantic foundation different from ours,
in which specifications are compared in terms of the sets of transition systems
that implement them. Our theory is based on notions of simulation between
specifications, which allows mainstream techniques from controller synthesis to
be adapted to the extension with data.

The synthesis of mediators has been addressed in works that target web ser-
vice composition, e.g., in [3,4,9,10]. The authors of these works model compo-
nents, representing web services, using automata extended with data. Mediators
are synthesized using planning techniques, typically by a forward search in the
space of possible mediators. The synthesized mediators are not required to be
“best” or “most general” in a sense provided by some speficiation theory. In [4],
loop-free controllers are synthesized that guarantee that the composed system
reaches a target state while avoiding unsafe states. In contrast, our specifica-
tion is a combination of a safety condition and a deadlock-freeness condition;
these two kinds of specifications are of incomparable expressive power. Further
difference include that our synthesized controllers may contain loops, and [4]
under-approximates infinite data domains by finite ones.

2 Processes

In this section, we define our model of processs with data.
We assume an unbounded domain D of data values and a set of actions. Each

action has a certain arity, which is the number of data parameters it takes. A
symbol is a term of the form α(d1, . . . , dn), where α is an action of arity n, and
d1, . . . , dn are data values in D. We further assume a set of variables, ranged
over by x, y, z, etc., and a set of formal parameters ranged over by pi for i ∈ N.
A parameterized symbol is of form α(p1, . . . , pn), where α is an action of arity
n, and p1, . . . , pn are distinct formal parameters. A guard is a conjunction of
equalities and negated equalities over variables and formal parameters.

Definition 1. A process P is a tuple P = (IP , OP , LP , �0P ,XP , σ0
P , δP ,QuieP),

where

– IP is a finite set of input actions,
– OP is a finite set of output actions,
– LP is a finite set of locations,

Mediator Synthesis in a Component Algebra with Data 241

– �0P ∈ LP is the initial location,
– XP is a tuple x1, . . . , xk of variables,
– σ0

P : XP → D is the initial valuation, assigning to each variable in XP an
initial value,

– δP is a finite set of transitions, each of which is of form 〈�, stmt, �′〉 where
�, �′ ∈ LP are locations, and stmt is a statement of form

α(p1, . . . , pn) ; g ; x1, . . . , xk := e1, . . . , ek ,

where
• α(p1, . . . , pn) is a parameterized symbol with α ∈ (IP ∪ OP),
• g is a guard over XP and p1, . . . , pn,
• x1, . . . , xk := e1, . . . , ek assigns to each variable xi ∈ XP an expression

ei over variables in XP and formal parameters in p1, . . . , pn.
– QuieP maps each location in LP to a predicate over XP . ��

We write p̄ for p1, . . . , pn, d̄ for d1, . . . , dn, x for x1, . . . , xk, and similarly
for e. We write AP for IP ∪ OP . We use the term α-transition for a transition
〈�, α(p̄); g;x := e , �′〉 with the action α. For an action α and a location � ∈ LP ,
let gα

� denote the disjunction of the guards of the outgoing α-transitions from �;
if there is no such statement, then gα

� is defined as false.
Intuitively, a process is at any point in time in a state, given by a location

and a valuation of its variables. The process can change its state by performing a
transition 〈�, α(p̄); g;x := e , �′〉, provided that its current location is �, and that
there is some α(d̄) that makes the guard g[d̄/p̄] evaluate to true under the current
valuation. It synchronizes via the symbol α(d̄), binds the formal parameters p̄ to
data values d̄, and simultaneously assigns new values to the variables according
to x := e.

The distinction between input and output actions is interpreted as follows.
When in a state 〈�, σ〉, a process P is willing to receive any input α(d) that
is enabled in the current state. Some input symbols may not be enabled: this
expresses the assumption that the environment never generates these inputs
when P is in 〈�, σ〉. This is in contrast to I/O-automata [11,13], which in every
state must be prepared to receive any input. A process P can also emit any
output symbol that is enabled. The predicate QuieP(�) constrains when P can
be quiescent, in the sense that if no input is received, the system must eventually
emit some output symbol, unless the predicate QuieP(�) is satisfied under the
current valuation σ. Quiescence can be used to model termination or deadlock.
We require that any process P is consistent with QuieP in the sense that for
any location � of P, the formula

QuieP(�) ∨
∨

α∈OP

∃p. gα
�

is universally valid. Here, p refers to the formal parameters of the respective
action α.

242 L. Hoĺık et al.

Determinism. We assume that processes are deterministic, i.e., if g1 and g2 are
the guards of two outgoing α-statements from a location �, then g1 and g2 are
mutually exclusive. Note that this still allows to express non-determinism on the
level of data values. Consider, for instance, a process which nondeterministically
selects an identifier, assigns it to a variable id and then transmits it in an action
showid(p), where p is id. We can represent this behavior by a single transition
labeled by the statement

showid(p) ; true ; id := p .

Since this transition has the guard true, the parameter of showid can be an
arbitrary identifier. We have just slightly remodeled the process so that id is
assigned in connection with the transition, rather than before the transition; the
external behavior remains the same. We use this modeling idiom in several of
the examples in Section 6.

Underlying Theory. In this paper, we have restricted the relations in guards
and predicates to equalities and negated equalities, and avoided functions in
expressions (i.e., each ei in an assignment x := e is either a formal parameter
or a variable). Under these restrictions, the elimination of existential quantifiers
is fairly simple (as described at the end of this section). Our solution to the
synthesis problem does not inherently rely on these restrictions. In principle, the
set of relations and functions could be extended to include other theories as well.
Our constructions would still work under restrictions that guarantee termination
of concerned algorithms. We leave the precise formulation of such restrictions as
future work.

Semantics of Processes. For a set X of variables, an X-valuation is a partial
mapping from X to D. For an X-valuation σ and a guard g over X, we let σ |= g
denote that g evaluates to true under the valuation σ. A state of P is a pair 〈�, σ〉
where � ∈ LP and σ is an XP -valuation. The initial state of P is 〈�0P , σ0

P〉, where
�0P is the initial location and σ0

P is the initial valuation. A step of P, denoted

by 〈�, σ〉 α(d̄)−−−→P 〈�′, σ′〉, transfers P from 〈�, σ〉 to 〈�′, σ′〉 while performing the
symbol α(d̄). According to whether α is in IP or OP , we call 〈�′, σ′〉 an input or
output successor of 〈�, σ〉. It is derived from a transition 〈�, stmt, �′〉 ∈ δP , with
stmt of the form α(p1, . . . , pn); g;x1, . . . , xk := e1, . . . , ek, such that σ |= g[d/p],
and for each xi ∈ XP , we have

1. σ′(xi) = σ(ei) when ei ∈ XP , and
2. σ′(xi) = dj when ei is formal parameter pj .

For a sequence of symbols w = α1(d̄1) · · · αm(d̄m), we write 〈�, σ〉 w=⇒P

〈�′, σ′〉 to denote that there is a sequence of steps 〈�, σ〉 α1(d̄1)−−−−→P

〈�1, σ1〉 · · · 〈�m−1, σm−1〉 αm(d̄m)−−−−−→P 〈�′, σ′〉. We write 〈�, σ〉 =⇒P 〈�′, σ′〉 to
express that there exists a w such that 〈�, σ〉 w=⇒P 〈�′, σ′〉. A state 〈�, σ〉 is

Mediator Synthesis in a Component Algebra with Data 243

reachable if 〈�0P , σ0
P〉 w=⇒P 〈�, σ〉 for some w. A trace of P is a sequence w such

that 〈�0P , σ0
P〉 w=⇒P 〈�, σ〉 for some 〈�, σ〉. The trace is quiescent if σ |= QuieP(�).

We let TP denote the set of traces of P, and let QP denote the set of quiescent
traces of P.

A symbol α(d̄) is enabled in a state 〈�, σ〉 if there is a step 〈�, σ〉 α(d̄)−−−→P 〈�′, σ′〉
for some state 〈�′, σ′〉. Intuitively, σ |= gα

� [d̄/p̄] iff α(d̄) is enabled in 〈�, σ〉.
Computing Pre- and Postconditions. The algorithms in later sections use,
as a basic building block, the computation of pre- and postconditions of state-
ments. Let us first consider postconditions. Let ϕ be a formula and let g be a
guard. Let x′ be a vector of the same length as x, containing fresh variables.
The postcondition with respect to an assignment and a guard, respectively, are
computed in the standard way as

post(x := e ; ϕ) := ∃x′. (ϕ[x′/x] ∧ x = e[x′/x]) and post(g ; ϕ) := ϕ ∧ g.

Putting the above rules together, we derive the postcondition of a statement as
follows.

post(α(p); g;x := e; ϕ) := ∃p. ∃x′. ((g ∧ ϕ)[x′/x] ∧ x = e[x′/x]) .

Let us next consider preconditions in the analogous way. The precondition of an
assignment and a guard, respectively, is defined as

pre(x := e;ϕ) := ϕ[e/x] and pre(g;ϕ) := g ∧ ϕ,

and a precondition of a whole statement is obtained by putting these together:

pre(α(p); g;x := e ; ϕ) = ∃p. (g ∧ ϕ[e/x]) .

The existential quantifiers that arise in both the post- and precondition com-
putation can, in the equality domain, be eliminated by a procedure involving
two steps, saturation and elimination. Assume that ϕ is a formula in disjunctive
normal form (DNF) over equalities and negated equalities over a set of variables.
Formula ∃(x1, . . . , xn). ϕ is obtained by transforming every clause of ϕ in the
following way:

1. Saturation: compute the reflexive, transitive and symmetric closure of the
equality relation = as partially given by the respective clause. This induces
a partition on the set of variables. Let [x]= denote the class of this partition
containing x. Then, transform ϕ by replacing every conjunct x = y with∧

x′∈[x]=,y′∈[y]=
x′ = y′, and x = y with

∧
x′∈[x]=,y′∈[y]=

x′ = y′.
2. Elimination: from the saturated predicate, remove all conjuncts involving

some of x1, . . . , xn. Thus, the conjunct x = y (x = y) is removed (or replaced
with true) if x or y (or both) are in {x1, . . . , xn}.

Example. Let ϕ be the predicate x = y ∧ y = z. For eliminating the existential
quantifier in ∃(y, z). ϕ, we first saturate ϕ, which yields x = y ∧ y = z ∧ x = z.
Since every conjunct in the saturated formula involves either y or z (or both),
elimination leaves us with the empty conjunction, which is equivalent to true.

244 L. Hoĺık et al.

3 Refinement

We adapt the refinement relation between interface automata [7] to our processes
with data, and at the same time we extend the definition to include quiescence.

Definition 2. Let S and P be processes. We say that S is refined by P, denoted
P � S, if IS ⊆ IP , OP ⊆ OS , and whenever t is a trace of both S and P (i.e.,
t ∈ TS ∩TP), then

1. for any input symbol i, if ti ∈ TS then ti ∈ TP ,
2. for any output symbol o, if to ∈ TP then to ∈ TS ,
3. if t is quiescent in P, then it is also quiescent in S (i.e., QP ∩TS ⊆ QS). ��

Condition 1 reflects the assumption that the environment does not supply unen-
abled input symbols. This assumption must not be strengthened by refinement;
hence P must be prepared to accept any input that S can accept. Condition 2
reflects that the set of enabled output symbols constrains what the process may
produce, which must not be weakened by refinement: hence P may at most pro-
duce the outputs that may be produced by S. Condition 3 similarly reflects the
view that allowed quiescence is viewed as a constraint on a process.

Given two processes, refinement can be checked by first computing the set
of pairs of states of S and P which can be reached by the same trace, and
thereafter checking the conditions in Definition 2 on these states. As the state
space is infinite due to the unboundedness of D, the set of reachable states has
to be computed symbolically.

Let us assume (without loss of generality) that XS ∩ XP = ∅. To check
whether P � S, we compute for each pair 〈�S , �P〉 of locations a predicate
Reach(〈�S , �P〉) over XS ∪ XP such that for an XS -valuation σS and XP -
valuation σP , we have σS ∪σP |= Reach(〈�S , �P〉) iff there is a trace w ∈ TS ∩TP
such that 〈�0S , σ0

S〉 w=⇒S 〈�S , σS〉 and 〈�0P , σ0
P〉 w=⇒P 〈�P , σP〉.

We compute values of Reach by a repeated postcondition computation, start-
ing from the strongest condition that holds for the pair of initial states of S and
P. Let ϕ0 be the strongest predicate satisfied by the union of the initial valua-
tions σ0

S ∪ σ0
P of S and P. This predicate expresses precisely that all variables

have their initial values. The computation of Reach is then carried out by a
standard fixpoint procedure, shown in Algorithm 1.

It is initialized by letting Reach(〈�0S , �0P〉) be ϕ0, and letting any other
Reach(〈�S , �P〉) be false. Therafter the predicates Reach(〈�S , �P〉) are iteratively
extended: for each pair of transitions 〈�S , stmtS , �′

S〉 and 〈�P , stmtP , �′
P〉 with the

same action, we calculate the postcondition φ of the joint transition, in which
S and P synchronize on a common symbol α(d). More precisely, letting stmtS
be α(p); gS ;xS := eS , letting stmtP be α(p); gP ;xP := eP , and letting ϕ be a
formula over xS and xP , we define the joint postcondition of stmtS and stmtP
wrp. to ϕ, denoted jointpost(stmtS , stmtP ; ϕ) as

jointpost(stmtS , stmtP ; ϕ) = ∃p. ∃x′
S , x′

P .

⎡

⎣
(gS ∧ gP ∧ ϕ)[x′

S , x′
P/xS , xP]

∧ xS = eS [x′
S/xS]

∧ xP = eP [x′
P/xP]

⎤

⎦

Mediator Synthesis in a Component Algebra with Data 245

Algorithm 1. Computing Reach(〈�S , �P〉) for all �S ∈ LS and �P ∈ LP
1 Initialise Reach as ϕ0 for 〈�0S , �0P〉 and false otherwise;
2 repeat
3 changed := false;
4 forall the 〈�S , stmtS , �′

S〉 ∈ δS and 〈�P , stmtP , �′
P〉 ∈ δP with equal actions

do
5 φ := jointpost(stmtS , stmtP ;Reach(〈�S , �P〉));
6 if IsSat(φ ∧ ¬Reach(〈�′

S , �′
P〉)) then

7 Reach(〈�′
S , �′

P〉) := Reach(〈�′
S , �′

P〉) ∨ φ;
8 changed := true;

9 until ¬changed ;

where x′
S is a tuple containing fresh variables, of the same length as

xS , and similarly for x′
P . In the algorithm, the predicates Reach(〈�S , �P〉)

are iteratively extended: for each pair of transitions 〈�S , stmtS , �′
S〉 and

〈�P , stmtP , �′
P〉 with the same action, we calculate their joint postcondition in

φ := jointpost(stmtS , stmtP ;Reach(〈�S , �P〉)). As long as Reach(〈�′
S , �′

P〉) is not
weaker than φ, it is weakened by updating it to the disjunction of its previous
value and φ. This process is repeated until convergence.

The following proposition states that, after Reach has been computed, check-
ing refinement P � S amounts to checking validity of three conditions for each
pair 〈�S , �P〉 of locations.

Proposition 1. P � S if and only if IS ⊆ IP , OP ⊆ OS , and for each pair
〈�S , �P〉 of locations of S and P it holds that

1. Reach(〈�S , �P〉) ⇒ (gα
�S ⇒ gα

�P) for all input actions α ∈ IS ,
2. Reach(〈�S , �P〉) ⇒ (gα

�P ⇒ gα
�S) for all output actions α ∈ OP , and

3. Reach(〈�S , �P〉) ⇒ (QuieP(�P) ⇒ QuieS(�S)). ��
Proof. First, assume that P � S. We exemplify the proof idea focusing on the
first condition only. Let σS ∪ σP |= Reach(〈�S , �P〉), i.e., there exists a trace
w ∈ TS ∩TP such that 〈�0S , σ0

S〉 w=⇒S 〈�S , σS〉 and 〈�0P , σ0
P〉 w=⇒P 〈�P , σP〉.

Furthermore, let i = α(d), α ∈ IS , be any input symbol such that σS |= gα
�S [d/p],

i.e., α(d) is enabled in 〈�S , σS〉 and hence wi ∈ TS . Since P � S implies that
wi ∈ TP , α(d) is enabled in 〈�P , σP〉 as well, thus σP |= gα

�P [d/p], rendering the
implication gα

�S ⇒ gα
�P true.

For the converse, assume that P � S. Then, at least one of the conditions
of Definition 2 is violated. Again, we exemplify the proof idea by looking at
the third condition only, i.e., assuming that there exists a trace w ∈ TS ∩TP
such that w is quiescent in P but not in S. Let 〈�0S , σ0

S〉 w=⇒S 〈�S , σS〉 and
〈�0P , σ0

P〉 w=⇒P 〈�P , σP〉 (thus, σS ∪ σP |= Reach(〈�S , �P〉)). Since w is quiescent
in P, we have σP |= QuieP(�P). Conversely, since w is not quiescent in S, we
have σS |= QuieS(�S), and thus σS ∪ σP |= (QuieP(�P) ⇒ QuieS(�S)). ��

246 L. Hoĺık et al.

4 Parallel Composition

In this section, we generalize parallel composition of interface automata [7] to
our processes with data and quiescence. Intuitively, the parallel composition
operator yields the combined effect of its operands running asynchronously, but
synchronizing on common actions. We use a broadcast model of communication
in which an output from a component can be received by multiple components.
An input ?a(d) and output !a(d) combine to form an output !a(d). Here, the
attributes ? and ! on actions (as in !a(d)) are not part of the actions, they serve
only to remind that the action in question is an input or output in the considered
context.

Product Operation. Before defining parallel composition of processes, we will
as an auxiliary building block define the product of two processes as the process
obtained by letting them run in parallel, while synchronizing on common actions
and ignoring communication mismatches.

Let us define the parallel composition of two statements stmt1 =
α(p); g1;x1 := e1 and stmt2 = α(p); g2;x2 := e2 with the same action α,1 in two
processes with disjoint sets of variables, as stmt1‖stmt2 = α(p); g1∧g2;x1, x2 :=
e1, e2 .

We can now define product of two processes.

Definition 3. Let P and Q be two processes. Then define δP⊗Q as the set of
transitions between product locations in LP × LQ, which is obtained from δP
and δQ as follows.

– If 〈�P , stmt, �′
P〉 ∈ δP has an action which is not an action of Q, (i.e., it is

non-synchronizing), then 〈〈�P , �Q〉, stmt, 〈�′
P , �Q〉〉 ∈ δP⊗Q for any location

�Q ∈ LQ.
– Symmetrically, if 〈�Q, stmt, �′

Q〉 ∈ δQ has an action which is not an action of
P, then 〈〈�P , �Q〉, stmt, 〈�P , �′

Q〉〉 ∈ δP⊗Q for any location �P ∈ LP .
– If 〈�P , stmtP , �′

P〉 ∈ δP and 〈�Q, stmtQ, �′
Q〉 ∈ δQ have the same action, i.e.,

they synchronize, then 〈〈�P , �Q〉, stmtP‖stmtQ, 〈�′
P , �′

Q〉〉 ∈ δP⊗Q. ��
Note that while we restrict ourselves to defining a product transition relation
δP⊗Q instead of a complete product operation P ⊗ Q (mostly because there is
no reasonable choice for QuieP⊗Q), we nonetheless adapt the notation w=⇒P⊗Q
for sequences of steps, as established in Section 2.

Parallel Composition. We can now define parallel composition of processes.
Note that there does not always exist a parallel composition of two processes. A
necessary (but not sufficient, cf. Definition 5) precondition that has to be met is
stated in the following definition.
1 Similarly to many programming languages, we assume that actions only have posi-
tional arguments, i.e., their formal parameters are identified solely by their order of
occurrence in p, not their name (if any).

Mediator Synthesis in a Component Algebra with Data 247

Definition 4. Two processes P and Q are composable if OP ∩ OQ = ∅.2

Intuitively, the parallel composition will be obtained from the product by
restricting input transitions so that the product cannot reach an illegal state.
A state of the product is illegal if one of the processes can generate an output
symbol in their joint set of symbols which the other cannot receive. We say that
a state of the product is unsafe if the product can reach an illegal state by a
sequence of output steps. The parallel composition is now obtained by restricting
input transitions so that they do not reach unsafe states.

Let us now formalize this intuition. First, we define a mapping, denoted
IllegalP‖Q from pairs of locations of P and Q to the formula

IllegalP‖Q(〈�P , �Q〉) :=
∨

α∈OP∩IQ

∃p. (gα
�P ∧ ¬gα

�Q) ∨
∨

α∈OQ∩IP

∃p. (gα
�Q ∧ ¬gα

�P)

Intuitively, IllegalP‖Q(〈�P , �Q〉) is true if P in location �P can produce a syn-
chronizing output symbol for which Q does not have a matching input step, or
vice versa. Thereafter, we perform the pruning process, by defining the map-
ping UnsafeP‖Q from pairs of locations of P and Q to formulas over XP ∪ XQ
such that σP ∪ σQ |= UnsafeP‖Q(〈�P , �Q〉) iff there exists a sequence of symbols
w ∈ (OP ∪ OQ)∗ such that 〈〈�P , �Q〉, σP ∪ σQ〉 w=⇒P⊗Q 〈〈�′

P , �′
Q〉, σ′

P ∪ σ′
Q〉 and

σ′
P ∪ σ′

Q |= IllegalP‖Q(〈�′
P , �′

Q〉). The mapping UnsafeP‖Q can be computed in
a fashion similar to the computation of Reach, as illustrated in Algorithm 2.

Algorithm 2. Computing UnsafeP‖Q for product of P and Q
1 UnsafeP‖Q := IllegalP‖Q;

2 repeat
3 changed := false;
4 forall the output transitions 〈�, stmt, �′〉 of δP⊗Q do
5 φ := pre(stmt; UnsafeP‖Q(�′));
6 if IsSat(φ ∧ ¬UnsafeP‖Q(�)) then

7 UnsafeP‖Q(�) := UnsafeP‖Q(�) ∨ φ;

8 changed := true;

9 until ¬changed ;

Definition 5. Let P and Q be processes. The parallel composition of P and
Q exists if and only if 1. P and Q are composable, and 2. σ0

P ∪ σ0
Q |=

UnsafeP‖Q(〈�0P , �0Q〉). In this case, it is the process P‖Q, obtained as
P‖Q = (IP‖Q, OP‖Q, LP‖Q, �0P‖Q,XP‖Q, σ0

P‖Q, δP‖Q,QuieP‖Q), where

2 Formally, composing P and Q also requires XP and XQ to be disjoint. However, this
can be assumed without loss of generality (as remarked in Section 3), as renaming
variables does not change the behaviour of a process.

248 L. Hoĺık et al.

– IP‖Q = (IP ∪ IQ) \ OP‖Q,
– OP‖Q = OP ∪ OQ,
– LP‖Q = LP × LQ,
– �0P‖Q = 〈�0P , �0Q〉,
– XP‖Q = XP ∪ XQ,
– σ0

P‖Q = σ0
P ∪ σ0

Q,
– δP‖Q is obtained from δP⊗Q by strengthening every guard g of every input

transitions of form 〈〈�P , �Q〉, α(p); g;x := e, 〈�′
P , �′

Q〉〉 in δP⊗Q to

g ∧ pre(x := e;¬UnsafeP‖Q(〈�′
P , �′

Q〉)) ,

– QuieP‖Q(〈�P , �Q〉) = IllegalP‖Q(〈�P , �Q〉) ∨ (QuieP(�P) ∧ QuieQ(�Q)). ��

An important observation is that parallel composition preserves the consis-
tency requirement introduced in Section 2.

Proposition 2. Let P and Q be processes such that the parallel composition P ‖
Q exists, and that P and Q are consistent with QuieP and QuieQ, respectively.
Then, P ‖ Q is consistent with QuieP‖Q, i.e., for any location �P‖Q ∈ LP‖Q,

QuieP‖Q(�P‖Q) ∨
∨

α∈OP‖Q

∃p. gα
�P‖Q

is universally valid.

Proof. Let �P‖Q = 〈�P , �Q〉, and let σP‖Q be a valuation such that σP‖Q |=
QuieP‖Q(〈�P , �Q〉), i.e., we have σP‖Q |= IllegalP‖Q(〈�P , �Q〉) and either of
σP‖Q |= QuieP(�P) or σP‖Q |= QuieQ(�Q) (or both). Without loss of gener-
ality, we only consider the first case. Due to the consistency of P, there exists
an output action α ∈ OP such that σP‖Q |= ∃p. gα

�P . If α is not an (input)
action of Q, then, by definition of the parallel composition, we have gα

�P‖Q ≡ gα
�P

(note that only guards of input transitions are strengthened in Definition 5)
and thus σP‖Q |= ∃p. gα

�P‖Q . Otherwise, we have gα
�P‖Q ≡ gα

�P ∧ gα
�Q . From

σP‖Q |= IllegalP‖Q(〈�P , �Q〉) we can conclude that σP‖Q |= ∀p. (gα
�P ⇒ gα

�Q).
Combining this with σP‖Q |= ∃p. gα

�P yields σP‖Q |= ∃p. gα
�Q , and thus

σP‖Q |= ∃p. gα
�P‖Q . ��

The following proposition establishes the important property that refinement
is preserved by parallel composition.

Proposition 3. Let P, Q, S and T be processes with P � S and Q � T , such
that the parallel composition S ‖ T exists. Then the parallel composition P ‖ Q
exists and P ‖ Q � S ‖ T . ��

Mediator Synthesis in a Component Algebra with Data 249

5 Quotient

In this section, we introduce the quotient operation, which can be seen as an
“inverse” of parallel composition. It is connected to the synthesis problem in the
following way: given a specification for a system R, together with a component P
implementing part of R, the quotient, denoted R \ P, yields the least refined (in
the sense of �) process for the remaining part of R, i.e., such that P‖(R\P) � R.
Therefore, quotient can be thought of as an adjoint of parallel composition.

Looking at the treatment of sets of actions in Definition 5, we see that a
necessary requirement for the existence of a quotient is that OP ⊆ OR. Then,
the set of output actions of the quotient must be OR \ OP . However, there is
some freedom for the set IR\P of input actions of the quotient. From Defini-
tion 5, we take as a natural choice IR\P to be (OP ∪ IR), since a quotient with
these actions will always exist if there is one with a smaller set, and since the
subsequently presented technique to produce a quotient will not have to consider
the difficulties that come with actions that are not visible to the quotient.

Computing the Quotient. Let us provide an algorithmic construction of the
quotient. The structure of our construction is the following. We first construct
the product of P and R using the product construction of Definition 3. We
thereafter construct R \ P so that it ensures that the combination of P and R
does not reach an undesired state. An undesired state occurs if 1. P can produce
an output which cannot be produced by R, or 2. R can receive an input which
cannot be received by P, or 3. the state of R is not quiescent, but it is a deadlock,
that is, no output transition of R can be taken without R\P losing control (i.e.,
R\P will no longer be able to ensure that an undesired state will not eventually
be reached).

To enforce the above criteria, we define a mapping Bad from pairs of loca-
tions of P and R to predicates over XP ∪ XR such that σ |= Bad(〈�P , �R〉)
iff there exists a sequence of symbols w ∈ O∗

P such that 〈〈�P , �R〉, σ〉 w=⇒P⊗R
〈〈�′

P , �′
R〉, σ′〉 and 〈〈�′

P , �′
R〉, σ′〉 is an undesired state according to any (or all)

of the above criteria. In the following, we describe how Bad can be computed
algorithmically. As a first step, we define a mapping NotRefineR\P from pairs
of locations of P and R to predicates such that NotRefineR\P(〈�P , �R〉) is true
in the situations that should be avoided according to Criterion 1 or 2 above. We
can represent NotRefineR\P(〈�P , �R〉) as the formula

∨

α∈IR∩IP

(gα
�R ∧ ¬gα

�P) ∨
∨

α∈OP

(gα
�P ∧ ¬gα

�R)

To formalize Criterion 3, we first define deadlock as a predicate parameterized
by the set of states which are uncontrollable (represented by the predicate Bad),
i.e., from which R \ P cannot guarantee avoiding undesired states. We define
DeadlockBad(〈�P , �R〉) as

¬
∨

〈〈�P ,�R〉,stmt,〈�′
P ,�′

R〉〉∈δ
OR
P⊗R

pre(stmt; ¬Bad(〈�′
P , �′

R〉))

250 L. Hoĺık et al.

Algorithm 3. Computing Bad
1 Bad := NotRefineR\P ;

2 repeat
3 changed := false;
4 forall the OP -transitions 〈�, stmt, �′〉 of δP⊗R do
5 φ := pre(stmt;Bad(�′));
6 if IsSat(φ ∧ ¬Bad(�)) then
7 Bad(�) := Bad(�) ∨ φ;
8 changed := true;

9 forall the 〈�P , �R〉 ∈ LP × LR do

10 φ := DeadlockBad(〈�P , �R〉) ∧ ¬QuieR(�R);
11 if IsSat(φ ∧ ¬Bad(〈�P , �R〉)) then
12 Bad(〈�P , �R〉) := Bad(〈�P , �R〉) ∨ φ;
13 changed := true;

14 until ¬changed ;

where δOR
P⊗R are the OR-transitions of δP⊗R. Notice that DeadlockBad(〈�P , �R〉)

is automatically true if 〈�P , �R〉 has no output transitions. A state 〈〈�R, �P〉, σ〉
is undesired according to Criterion 3 above if

σ |= DeadlockBad(〈�P , �R〉) ∧ ¬QuieR(�R) .

The complete computation of Bad is illustrated in Algorithm 3.
After Bad is computed, we compute R \ P as the process

R \ P = (IR\P , OR\P , LR\P , �0R\P ,XR\P , σ0
R\P , δR\P ,QuieR\P) where

– IR\P = OP ∪ IR,
– OR\P = OR \ OP ,
– LR\P = LP × LR,
– �0R\P = 〈�0P , �0R〉,
– XR\P = XP ∪ XR,
– σ0

R\P = σ0
P ∪ σ0

Q,
– δR\P is obtained from δP⊗R by strengthening every guard g of every OR\P -

transition of the form 〈〈�P , �R〉, α(p); g;x := e, 〈�′
P , �′

R〉〉 in δP⊗R to

g ∧ pre(x := e;¬Bad(〈�′
P , �′

R〉)

– QuieR\P = QuieP(�P) ⇒ QuieR(�R)

The input transitions of R \ P are the same as the input IR\P -transitions
of δP⊗R. Output transitions of R \ P will be obtained from OR\P -transitions
of δP⊗R by equipping them with additional guards which keep computations of
(R \ P) ‖ P outside Bad and hence also outside undesired states.

The following proposition states that the quotient, if it exists, is indeed the
most general component that can cooperate with P to satisfy R.

Mediator Synthesis in a Component Algebra with Data 251

Proposition 4. Let P and R be such that OP ⊆ OR and IP ⊆ (IR ∪ OR). If
R \ P as computed in this section exists, then

– P ‖ (R \ P) � R, and
– for any Q with OQ = OR\P and IQ = IR\P such that P ‖ Q � R, we have

Q � (R \ P). ��

Pruning the Quotient. The quotient obtained by the above method may
contain a significant amount of redundancy. Particularly, 1. some of its states
may never be reached, 2. some transitions may never be taken, and 3. some
parts of conditions within guards may be true for every computation reaching
the source location of the transition.

To obtain a more compact solution, we will prune the redundant parts of
R\P. Using a procedure analogous to Algorithm 1 in Section 3, we compute for
every location 〈�P , �R\P〉 of P ‖ (R\P) a predicate Reach(〈�P , �R\P〉) such that
a state 〈〈�P , �R\P〉, σ〉 is reachable in P‖(R\P) iff σ satisfies Reach(〈�P , �R\P〉).
As before, we assume (w.l.o.g.) that XR\P ∩XP = ∅; further, let us assume that
XP is the tuple xP

1 , . . . , xP
k . Then, for every location �R\P of R \ P, we will

compute

Reach(�R\P) = ∃xP
1 , . . . , xP

k .
∨

�P∈LP

Reach(〈�P , �R\P〉)

which characterizes all possible valuations of variables of R\P that can appear in
a computation of P‖(R\P) together with �R\P . We then prune the redundancies
of the types 1–3 above from R \ P as follows:

1. Remove locations �R\P where IsSat(Reach(�R\P)) is false.
2. Remove transitions 〈�R\P , α(p); g;x := e, �′

R\P〉 where IsSat(Reach(�R\P)∧
g) is false.

3. For each remaining transition 〈�R\P , α(p); g;x := e, �′
R\P〉, we weaken the

guard g to Reach(�R\P) ⇒ g, possibly enabling further simplification of the
formula (e.g., by transforming it to DNF and removing redundant literals
and clauses).

6 Applications to the Synthesis of Mediators

We demonstrate our framework and our implementation on examples from medi-
ator synthesis. A mediator is a process that mediates communication between
several parties with incompatible interfaces, ensuring that they interact to
achieve a certain aim, while preventing any communication mismatches. We
demonstrate how this task can be specified as a problem of computing a quo-
tient for a specification R which can be automatically generated from this aim.
We have implemented the computation of quotient, and illustrate its application
on mediator synthesis in e-commerce applications.

252 L. Hoĺık et al.

l0

l1

l2

l3

l4

m0

m1

m2

m3

CFRing XMPP

?start()

!msgout(p); true;msg1 := p

!id(p); true; id1 := p

?�(p1, p2, p3, p4);
p1 = id1 ∧ p2 = msg1

?who(p); true; id2 := p

?msgin(p); true;msg2 := p

?�(p1, p2, p3, p4);
p3 = id2 ∧ p4 = msg2

r0

r1

r2

R

!start() !msgout(p)
!msgin(p)
!id(p)
!who(p)!�(p1, p2, p3, p4); p1 = p3 ∧ p2 = p4;

Fig. 1. Messaging clients CFRing and XMPP , on the left. The synthesis problem is
specified by the process R on the right.

Messaging Protocol. In the first example, the scenario consists of two incom-
patible messaging protocols, CFRing and XMPP , both of which need to com-
municate with one another through a mediator that we must construct. The
two messaging clients are represented by the two processes shown on the left in
Figure 1. In the description, we omit guards of transitions that are true. Variables
are initialized by a special value ⊥.

– The process CFRing has input actions start, output actions msgout and id,
variables msg1 and id1, and locations {l0, l1, l2, l3, l4}.

– The process XMPP has input actions msgin and who, variables msg2 and
id2, and locations {m0,m1,m2,m3}.

The goal of the communication is that the two clients agree on the message
and the id. That is, the values of variables msg1 and id1 of CFRing should on
termination be equal to the values of msg2 and id2 of XMPP . This goal can
be captured by adding a special action �, which is performed at the end, and
which reveals the values of the relevant variables of CFRing and XMPP . The
specification R allows the components to perform any sequence of actions, but
requires that quiescence is reached only after jointly performing the � action,
where the revealed variables satisfy the desired goal constraints. In other words,
the communication parties are forced to reveal the values of their variables within
action �, and R checks that they correspond. R does not specify what exactly
happens before, it only states that the trace should begin with start and may
continue by any sequence of actions msgout, msgin, id, and who. To ensure that
� will indeed be performed eventually, that is, that both processes reach their
terminal states, QuieR is defined to be false for r0, r1 and true for r2.

We follow the scheme of the previous sections, and compute first the process
P = CFRing ‖ XMPP shown in the upper part of Figure 2, which inherits all
the transitions of CFRing and XMPP unsynchronized.

We are looking for the least refined process such that its composition with
P refines R, that is, we are looking for the quotient R \ P. The next step is
the construction of the transition relation δP⊗R which is shown in Figure 2
(lower part). We proceed by computing the mapping Bad that characterizes

Mediator Synthesis in a Component Algebra with Data 253

〈l0, m0〉 〈l1, m0〉 〈l2, m0〉 〈l3, m0〉

〈l0, m1〉 〈l1, m1〉 〈l2, m1〉 〈l3, m1〉

〈l0, m2〉 〈l1, m2〉 〈l2, m2〉 〈l3, m2〉

〈l4, m3〉

P?start()

!msgout(p); true;
msg1 := p

!id(p); true;
id1 := p

?�(p1, p2, p3, p4);
p1 = id1 ∧ p2 = msg1 ∧ p3 = id2 ∧ p4 = msg2

?who(p); id2 := p

?msgin(p);msg2 := p

〈〈l0, m0〉, r0〉 〈〈l1, m0〉, r1〉 〈〈l2, m0〉, r1〉 〈〈l3, m0〉, r1〉

〈〈l1, m1〉, r1〉 〈〈l2, m1〉, r1〉 〈〈l3, m1〉, r1〉

〈〈l1, m2〉, r1〉 〈〈l2, m2〉, r1〉 〈〈l3, m2〉, r1〉

〈〈l4, m3〉, r2〉

δP⊗R
start()

msgout(p); true;
msg1 := p

id(p); true;
id1 := p

who(p); true; id2 := p

msgin(p); true;msg2 := p

�(p1, p2, p3, p4);
p1 = id1 ∧ p2 = msg1 ∧ p3 = id2 ∧ p4 = msg2∧

p1 = p3 ∧ p2 = p4

Fig. 2. The process P = CFRing ‖ XMPP and the transition relation δP⊗R. The
statements of the transitions marked by vertical arrows are defined by the labels on
the left margin of the figure. The statements of the transitions marked by horizontal
arrows are defined by the labels on the top margin of the figure.

uncontrollable states of R \ P (from where R \ P cannot guarantee that no
undesired state is reached). This is done by running Algorithm 3.

Let us discuss some steps of the computation of Bad in detail. The undesired
states here are only those which deadlock and are not quiescent according to R,
that is, the location of R is different from r2. Since Bad(�) is initially false for
all locations of R \ P, the computation starts by evaluating DeadlockBad . Let
us pick the location � = 〈〈l3,m2〉, r1〉. DeadlockBad(�) evaluates initially to the
disjunction ϕ ≡ id1 = id2 ∨ msg1 = msg2, which falsifies the guard of the only
output transition of � (leading to 〈〈l4,m3〉, r2〉). We set Bad(�) to ϕ and we then
propagate Bad(�) = ϕ backwards via output transitions of R. The precondition
of ϕ with respect to the transition from �′ = 〈〈l2,m2〉, r1〉 to � is evaluated as
true (particularly, the disjunct id2 = id1 is first transformed into id2 = p which
is then turned into true by the existential quantification over p). Hence, we set
Bad(�′) to true; therefore, R\P must avoid visiting �′ in all situations. Note that
it is indeed the case that if R \ P allows XMPP to reach state m2 (where the
value of msg2 is already fixed) before msg1 is generated by CFRing , then R\P

254 L. Hoĺık et al.

〈〈l0, m0〉, r0〉 〈〈l1, m0〉, r1〉 〈〈l2, m0〉, r1〉 〈〈l3, m0〉, r1〉

〈〈l3, m1〉, r1〉

〈〈l3, m2〉, r1〉

〈〈l4, m3〉, r2〉

R \ P!start()

?msgout(p); true;
msg1′ := p

?id(p); true;
id1′ := p

!who(p); p = id1′; id2′ := p

!msgin(p); p = msg1′;msg2′ := p

!�(id1′, msg1′, id2′, msg2′)

Fig. 3. The resulting mediator R \ P for the application with messaging.

cannot guarantee msg1 = msg2 at the end of the communication which may
lead to an undesired deadlock. Let us now look at the precondition of ϕ wrt. the
transition from 〈〈l3,m1〉, r1〉. Since � is its successor and we have set Bad(�) = ϕ,
DeadlockBad(〈〈l3,m1〉, r1〉) evaluates to id2 = id1 (particularly, the disjunct
msg1 = msg2 turns into msg1 = p which after the universal quantification
over p becomes false). (Particularly, ¬Bad(�) ≡ id1 = id2 ∧ msg1 = msg2,
pre(¬ϕ,msgin(p);msg2 := p) evaluates to id1 = id2 which is then negated.)
Intuitively, this reflects the fact that when CFRing is in state l3 and XMPP in
state m1, the values of id1 and id2 should be already equal since they cannot
become equal otherwise. The rest of the symbolic backward computation of Bad
is carried out analogously.

The construction of R \ P continues by adding guards to the transitions
of δP⊗R to guarantee that any computation stays outside of Bad . Finally, we
prune unreachable states, useless transitions, and redundant guard conditions,
as described in Section 14. The resulting quotient R \ P is shown in Figure 3.

E-Commerce. The next example is a more realistic and larger system. Due
to its size, we only explain the specification and the functionality of the sys-
tem and the synthesized mediator. We are given both a client and a customer
service application, shown in Figure 4, that together are supposed to realize
an e-commerce workflow, but are incompatible. The client Blue starts by send-
ing a StartOrder message containing its id and expects to receive an id of a new
order. It then orders a number of items in some quantities using the AddToOrder
action, provides its payment information via the PlaceOrder action, and expects
all items together with their quantities to be confirmed by the customer ser-
vice. It blocks in case that it does not receive the right confirmation. Blue then
announces that it is ready to quit the transaction and expects to receive the
result of the payment transaction, Result (indicating whether or not the pay-
ment transaction was successful).

The customer service Moon expects to receive the client’s id, then it sends a
confirmation and sends an id of a new order, together with a client verification.
It is then prepared to repeat a loop in which it 1) receives an order of an item, 2)

Mediator Synthesis in a Component Algebra with Data 255

b0start

b1

b02b12bn2

b03b13bn3

b4

b5

b6

!StartOrder(p); true;ClientId := p

?StartOrder′(p); true;OrderId := p

!stmt1!stmt2!stmtn

?stmt′1?stmt′2?stmt′n

!stmt !stmt

!Quit(OrderId)

?Quit′(p); true;Result := p

?�(p1, . . . , p4n+6);
∧n

i=1pi = ItemIdi∧
∧n

i=1pi+n = Quanti∧
p2n+1 = OrderId∧
p2n+2 = CreditCardNo∧
p2n+3 = Result

m0start

m1

m2

m0
3a m0

3b

m0
3cm1

3am1
3b

m1
3c m2

3a

mn
3a

m4

m5

m6

?login′(p); true; client id := p

!login(client id)

!create order(p1, p2); true;
order id := p1,

client verification := p2

?stmt1a

?stmt1b

!stmt1c?stmt2a

?stmt2b

!stmt2c

?stmtd

?stmtd

?stmtd

!close order′(p); true; result := p

?�(p1, . . . , p4n+6);
∧n

i=1pi+2n+3 = item idi∧
∧n

i=1pi+3n+3 = quanti∧
p4n+4 = order id∧
p4n+5 = credit card no∧
p4n+6 = result

stmt = PlaceOrder(p1, p2); p1 = OrderId;CreditCardNo := p2

stmti = AddToOrder(p1, p2, p3); p1 = OrderId;
ItemIdi, Quantityi := p2, p3

stmt′i = ReceiveConfirmation(p1, p2, p3);
p1 = OrderId ∧ p2 = ItemIdi ∧ p3 = Quantityi

stmtia = process item(p1, p2); p1 = order id; item idi := p2

stmtib = set quantity(p); true; quantityi := p
stmtic = confirm item(order id, item idi, quantityi)
stmtd = close order(p1, p2); p1 = order id; credit card no := p2

Blue(n) Moon(n)

Fig. 4. Client Blue and service Moon, parameterized by maximum number of ordered
items n.

.

receives a quantity in which the item is ordered, and 3) confirms that the item
in the given quantity is ordered. After that, it receives payment information,
arranges the payment via a third-party service (which is invisible to the client
and not modelled here), and sends the result of the payment transaction.

Ideally, we would like to model the scenario where the client can order any
number of items. However, our modelling mechanism allows only processes with
a finite number of variables. This scenario would require processes with an
unbounded number of variables, both for the Blue and Moon services and for the
specification, as well as for mediator. We therefore restrict ourselves to the case

256 L. Hoĺık et al.

where the number of ordered items is bounded by a constant n, which becomes
a parameter of the synthesis problem.

The specification (parameterized by the maximum number of ordered items
n) is given by the process R(n) in Figure 5. QuieR is defined as true for r2 and
false otherwise. Similar to the previous examples, R specifies that both sides
finish the transaction and that at the end of the transaction, both sides agree
on all the important values.

A mediator for a fixed number of ordered items n can be synthesized analo-
gously to the previous example. We construct the process P = Blue(n)‖Moon(n)
and synthesize the mediator in the form of the quotient R \ P by: 1. computing
the predicate Bad characterizing uncontrollable states of the product of P and
R, using Algorithm 3, 2. strengthening guards in δP⊗R so that no uncontrollable
state (and hence no undesirable state) can be reached, and 3. pruning the useless
states and transitions, utilizing Algorithm 1.
The synthesized mediator for the case n = 2 is shown in Figure 6. For simplicity,
the figure displays only the P-component of locations of R\P, i.e., the locations
of Blue(2) ‖ Moon(2). The location 〈b0,m0〉 is coupled with r0, the location
〈b6,m6〉 with r2, and all the other displayed locations with r1.

The functionality of the synthesized mediator can be explained as follows.
It first brings the system to the point when Blue has ordered its first item (the
state 〈b12,m0

3a〉). It can now decide to start forwarding the first order to Moon
(vertical transitions). At the same time, it has to be ready to receive either the
second order or the credit card details from Blue (the horizontal transitions). If
Blue ordered also the second item, the mediator will forward the second order to
Moon after it has forwarded the first one. The mediator will send the payment
credit card details to Moon only after it has received it from Blue and after
it has forwarded all orders of Blue (this is taken care of by the guard of the
statement stmt∗d). It waits for Blue to confirm all orders. Sending confirmations
to Blue is independent from receiving confirmations from Moon since to send
the right confirmations, the mediator only needs to know what was ordered by
Blue. The mediator can therefore choose from many variants of interleaving the
communication with Blue and Moon.

r0

r1

r2

R

!StartOrder(p)

!StartOrder′(p), !PlaceOrder(p1, p2, p3),
!AddToOrder(p1, p2, p3),
ReceiveConfirmation(p1, p2, p3),
!Quit(p), Quit′(p)
!login(p), !login′(p), !create order(p1, p2, p3),
!process item(p1, p2), !set quantity(p),
!confirm item(p1, p2, p3)
!close order(p1, p2, p3), !close order′(p)

!�(p1, . . . , p4n+6);
∧2n+3

i=1 pi = pi+2n+3

Fig. 5. Specification of the synthesis problem where the number of ordered items is
bounded by n is given by the process R(n).

Mediator Synthesis in a Component Algebra with Data 257

〈b0, m0〉start 〈b1, m0〉 〈b1, m1〉 〈b1, m2〉 〈b1, m0
3a〉 〈b02, m0

3a〉

〈b12, m0
3a〉〈b22, m0

3a〉〈b23, m0
3a〉〈b13, m0

3a〉〈b03, m0
3a〉〈b4, m0

3a〉

〈b12, m0
3b〉〈b22, m0

3b〉〈b23, m0
3b〉〈b13, m0

3b〉〈b03, m0
3b〉〈b4, m0

3b〉

〈b12, m0
3c〉〈b22, m0

3c〉〈b23, m0
3c〉〈b13, m0

3c〉〈b03, m0
3c〉〈b4, m0

3c〉

〈b12, m1
3a〉〈b22, m1

3a〉〈b23, m1
3a〉〈b13, m1

3a〉〈b03, m1
3a〉〈b4, m1

3a〉

〈b22, m1
3b〉〈b23, m1

3b〉〈b13, m1
3b〉〈b03, m1

3b〉〈b4, m1
3b〉

〈b22, m1
3c〉〈b23, m1

3c〉〈b13, m1
3c〉〈b03, m1

3c〉〈b4, m1
3c〉

〈b22, m2
3a〉〈b23, m2

3a〉〈b13, m2
3a〉〈b03, m2

3a〉〈b4, m2
3a〉

〈b23, m4〉〈b13, m4〉〈b03, m4〉〈b4, m4〉

〈b23, m5〉〈b13, m5〉〈b03, m5〉〈b4, m5〉

〈b5, m5〉

〈b6, m6〉

?StartOrder(p);
true;

CId := p

!login′(p);
p = CId;
cid := p ?login(p)

?create order
(p1, p2); true;

oid, cv := p1, p2

!StartOrder′(p);
p = oid;
OId := p

?stmt1

?stmt2

?stmt

!stmt1a

!stmt1b

?stmt1c

!stmt2a

!stmt2b

?stmt2c

!stmtd

?close order′(p);
true; r := p

!stmt′2!stmt′1?Quit(p)

!Quit(p); p = r;R := p

!�(I1, . . . , In, Qi, . . . , Qn, OId, CCN, R,
i1, . . . , in, qi, . . . , qn, oid, ccn, r)

?stmt

?stmt

?stmt

?stmt
!s
tm

t∗ d

!s
tm

t∗ d

!s
tm

t∗ d
R \ P

stmt = PlaceOrder(p1, p2); true;CCN := p2

stmti = AddToOrder(p1, p2, p3); true; Ii, Qi := p2, p3

stmt′i = ReceiveConfirmation(OId, Ii, Qi)
stmtia = process item(p1, p2); p1 = oid; ii := p2

stmtib = set quantity(p); p = Qi; qi := p
stmtic = confirm item(p1, p2, p3)
stmtd = close order(p1, p2); true; ccn := p2

stmt∗d = close order(p1, p2);
I1 ∧ q2 = Q2 ∧ i2 = I2; ccn := p2

Fig. 6. Resulting mediator R \ P for the e-commerce service with n = 2. The labels of
the vertical edges in a row agree with the label of the right-most edge in the row, the
labels of the horizontal edges in a column agree with the label of the bottom edge of
the column.

7 Summary and Future Work

We have extended the theory of interface automata [7] with data and progress,
using mechanisms that have been naturally adapted from similar other works
in the literature. The resulting theory allows to capture data-flow behaviour at
the modelling level, and can also be used to formulate the mediator synthesis
problem. Further extensions can be done along several dimensions. One is to
extend the theory to richer sets of relations and functions over the data domain.
Another dimension is to handle non-deterministic processes, which brings the

258 L. Hoĺık et al.

problem of uncertainty – the mediator cannot be completely sure about the
state of the systems it controls. A further dimension is to extend the specification
framework to cover liveness properties. Such extensions have been considered for
the finite-state case in the literature (see, e.g., [19]), but their adaption to handle
data appears nontrivial.

Acknowledgments. This work is carried out as part of the European FP7 ICT FET
Connect project (http://connect-forever.eu/). The last author was supported in part
by the UPMARC centre of excellence, the first author was supported by the Czech
Science Foundation project 202/13/37876P.

References

1. Bauer, S., Larsen, K., Legay, A., Nyman, U., Wasowski, A.: A Modal Specification
Theory for Components with Data. Sci. Comput. Program. 83, 106–128 (2014)

2. Bennaceur, A., Chilton, C., Isberner, M., Jonsson, B.: Automated mediator synthe-
sis: combining behavioural and ontological reasoning. In: Hierons, R.M., Merayo,
M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 274–288. Springer,
Heidelberg (2013)

3. Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., Mecella, M.: Automatic
composition of transition-based semantic web services with messaging. In: Proc. of
VLDB 2005. VLDB Endowment (2005)

4. Bertoli, P., Pistore, M., Traverso, P.: Automated Composition of Web Services via
Planning in Asynchronous Domains. Artif. Intell. 174(3–4) (2010)

5. Bhaduri, P., Ramesh, S.: Interface Synthesis and Protocol Conversion. Form. Asp.
Comput. 20(2), 205–224 (2008)

6. Chen, T., Chilton, C., Jonsson, B., Kwiatkowska, M.: A compositional specification
theory for component behaviours. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211,
pp. 148–168. Springer, Heidelberg (2012)

7. de Alfaro, L., Henzinger, T.A.: Interface Automata. SIGSOFT Softw. Eng. Notes
26(5), 109–120 (2001)

8. Dill, D.: Trace Theory for Automatic Hierarchical Verification of Speed-
independent Circuits. PhD thesis, Carnegie Mellon University (1988)

9. Guermouche, N., Perrin, O., Ringeissen, C.: A mediator based approach for services
composition. In: SERA 2008. IEEE (2008)

10. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services: a look behind the
curtain. In: Proc. 22nd ACM Symp. on Principles of Database Systems, pp. 1–14.
ACM (2003)

11. Jonsson, B.: Compositional specification and verification of distributed systems.
ACM Trans. on Programming Languages and Systems 16(2), 259–303 (1994)

12. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

13. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: Proc. 6th ACM Symp. on Principles of Distributed Computing, pp.
137–151 (1987)

14. Olderog, E., Hoare, C.: Specification-oriented semantics for communicating pro-
cesses. Acta Informatica 23(1), 9–66 (1986)

Mediator Synthesis in a Component Algebra with Data 259

15. Raclet, J.-B.: Residual for component specifications. Electronic Notes in Theoret-
ical Computer Science 215, 93–110 (2008)

16. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
Modal interfaces: unifying interface automata and modal specifications. In: Proc.
of EMSOFT 2009, pp. 87–96. ACM (2009)

17. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
A Modal Interface Theory for Component-based Design. Fundamenta Informaticae
108(1–2), 119–149 (2011)

18. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Passerone, R.: Why are
modalities good for interface theories? In: ACSD 2009, pp. 119–127. IEEE (2009)

19. Raskin, J.-F., Chatterjee, K., Doyen, L., Henzinger, T.A.: Algorithms for Omega-
Regular Games with Imperfect Information. Logical Methods in CS 3(3) (2007)

20. Ryzhyk, L., Chubb, P., Kuz, I., Sueur, E.L., Heiser, G.: Automatic device driver
synthesis with termite. In: SOSP 2009, pp. 73–86. ACM (2009)

21. Tretmans, J.: Model-based testing and some steps towards test-based modelling.
In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 297–326.
Springer, Heidelberg (2011)

22. Yellin, D.M., Strom, R.E.: Protocol Specifications and Component Adaptors. ACM
Trans. Program. Lang. Syst. 19(2), 292–333 (1997)

Safe and Optimal Adaptive Cruise Control

Kim Guldstrand Larsen(B), Marius Mikučionis, and Jakob Haahr Taankvist

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg Øst, Denmark

kgl@cs.aau.dk

Abstract. In a series of contributions Olderog et al. have formulated
and verified safety controllers for a number of lane-maneuvers on multi-
lane roads. Their work is characterized by great clarity and elegance
partly due to the introduction of a special-purpose Multi-Lane Spatial
Logic. In this paper, we want to illustrate the potential of current model-
checking technology for automatic synthesis of optimal yet safe (collision-
free) controllers. We demonstrate this potential on an Adaptive Cruise
Control problem, being a small part of the overall safety problem con-
sidered by Olderog1.

1 Introduction

These days the Google Self-Driving car is about to become a reality: legislation
has been passed in several U.S. states allowing driverless cars, in April 2014,
Google announced that their vehicles had been logging nearly 1.1 million km,
and it is forecast that Google’s self-driving cars will hit the roads this summer1.

Also in Europe driverless cars have been actively pursued, both by the auto-
motive industry itself and within a number of national and European research
projects (e.g. FP7 and Horizon2020). With more and more traffic, European
roads are becoming increasingly congested, polluted and unsafe. One potential
solution to this growing problem is seen to be the use of small, automated, low-
polluting vehicles for driverless transport in (and between) cities. Within the last
decade, a number of European projects have been launched for making transport
systems capable of fully automated driving, energy efficient and environmentally
friendly while performing.

In addition, many individual driving assistant systems based on suitable sen-
sors have been developed for cars. Moreover, car-to-car communication is con-
sidered to combine individual cars into more advanced assistance functionality.
One particular class of such functionality considered by several researchers from
the formal methods and verification community is that of driver assistance on
multi-lane roads, with lane-changing and overtaking maneuvers. Overall this con-
stitutes a hybrid systems verification problem, where the car dynamics, discrete

This paper is partially sponsored by the EU FET projects SENSATION and CASST-
ING as well as the Sino-Danish Basic Research Center IDEA4CPS.

1 http://recode.net/2015/05/15/googles-homemade-self-driving-cars-

are-hitting-the-roads-this-summer/

c© Springer International Publishing Switzerland 2015
R. Meyer et al. (Eds.): Olderog-Festschrift, LNCS 9360, pp. 260–277, 2015.
DOI: 10.1007/978-3-319-23506-6 17

http://recode.net/2015/05/15/googles-homemade-self-driving-cars-are-hitting-the-roads-this-summer/
http://recode.net/2015/05/15/googles-homemade-self-driving-cars-are-hitting-the-roads-this-summer/

Safe and Optimal Adaptive Cruise Control 261

or timed controllers as well as road-specific assumptions should imply safety, i.e.
absence of collisions.

The California PATH (Partners for Advanced Transit and Highways) project
has spurred a series of research towards provable safe lane-maneuvers by develop-
ing advancing technologies that connect vehicles to surrounding infrastructure
and other vehicles or automates vehicle processes2. For example the work by
Lygos et al. [9,14], sketch a safety proof for manoeuvres of car platoons including
lane change by taking car dynamics into account, but admitting safe collisions,
i.e., collisions at a low speed.

More recently, within the German Transregional Collaborative Research Cen-
ter AVACS – sponsored by the German Research Council (DFG) – Olderog
together with colleagues made significant progress on proving safety of a number
of automated maneuvers for overtaking on roads of varying complexity, ranging
from highways (with uni-directional traffic) [11] to country roads (with two-
directional traffic) [10]. The main contribution has been to show that (also here)
one can separate the purely spatial reasoning from the underlying car dynamics
in the safety proof. In particular, the approach taken by Olderog et. al. intro-
duces a Multi-Lane Spatial Logic inspired by Moszkowski’s interval temporal
logic [16], Zhou, Hoare and Ravn’s Duration Calculus [5] and Schäfer’s Shape
Calculus [17], and may be summarized by the following characteristics:

– The dynamics of cars are separated from the control laws – thus related to
work by Raisch et al [15] and Van Schuppen et al [8].

– Development of the special-purpose multi-lane spatial logic MLSL to allow
for easy formulation and verification.

– Design of controllers for lane-change maneuvers.
– Manual verification for proving safety of proposed controllers under general

scenarios.

In addition to the Multi-Lane Spatial Logic (MLSL) [13], the formalism of
timed automata [1] were used for specifying the protocol for safe lane-changing.
However, though in principle possible, tool-support using a timed automata
model-checker was never exploited in the above work. In this paper – celebrating
the several contributions by Olderog to the area of the modeling and verifica-
tion of real-time systems in general – we consider a small part of lane-change
manoeuvres, namely the existence of a safe-distance controller (assumed in the
above work of Olderog et al.). In particular, we aim at demonstrating how the
most recent developments of the real-time model-checking tool Uppaal [12] may
be applied. Contrasting with the methodology of Olderog et.al. our method may
be characterized as follows:

– Abstract away from dynamics for safety, but reconsidered dynamics for opti-
mization (here to minimize the expected distance between cars).

– Use of a general purpose formalism in terms of various extensions of timed
automata and games.

2 http://www.path.berkeley.edu/

http://www.path.berkeley.edu/

262 K.G. Larsen et al.

– Automatic synthesis of a range of controllers, ranging from safety controllers
to optimal controllers, and to optimal yet safe controllers under specific
scenarios.

– Extensive use of automated tool support, in terms of model checking, synthe-
sis and optimization as provided by the most recent branch of the Uppaal
tool suite, Uppaal Stratego [6,7].

The outline of the paper is as follows: in Section 2 we describe the Adap-
tive Cruise Control problem considered. In Section 3, we present the formalism
of (weighted and stochastic) timed automata and games as used in Uppaal
Stratego by means of a small Route Choosing Problem. Section 4 details our
game model of the Adaptive Cruise Control problem, and Section 5 offers our
results in terms of synthesis and analysis of safe, optimal and optimal-yet-safe
controllers for the Adaptive Cruise Control problem.

Acknowledgement The authors would like to thank Anders P. Ravn for suggest-
ing the Adaptive Cruise Control (or safety distance control) problem to us.

2 The Problem of Adaptive Cruise Control

We now define the case we will be analyzing using Uppaal Stratego in the
remainder of the paper.

Two cars Ego and Front are driving on a road shown in Figure 1. We are
capable of controlling Ego, but not Front . Both cars can drive a maximum
of 20 m/s forward and a maximum of 10 m/s backwards. The cars have three
different possible accelerations: −2 m/s2, 0 m/s2 and 2 m/s2, between which they
can switch instantly.

For the car to be safe there should be a distance of at least 5 m between
them. Any distance less than 5 m between the cars is considered unsafe.

Ego’s sensors can detect the position of Front only within 200 meters. If the
distance between the cars is more than 200 meters then Front is considered to
be far away. Front can reenter the scope of Ego’s sensor with arbitrary velocity
it desires, as long as the velocity is smaller or equal to that of Ego.

We would then like to know the answers to the following questions:
– Is it possible that the cars crash?

• If so, what is the probability of the cars crashing?
– Can we find a strategy for Ego such that the cars can never crash, no

matter what Front does?

Distance

VelocityEgo
AccelerationEgo

VelocityFront
AccelerationFront

Fig. 1. Distance, velocity and acceleration between two cars.

Safe and Optimal Adaptive Cruise Control 263

• Are there more than one of such strategies?
• Which of the safe strategies lets Ego travel the furthest?

– How does Ego respond to Front ’s choices under all these different strate-
gies?

3 Stochastic Priced Timed Games

For the synthesis of safe and optimal strategies, we will use (weighted and
stochastic) timed automata and games, exploiting the tool Uppaal Strat-
ego [7] being a novel branch of the Uppaal tool suite that allows to generate,
optimize, compare and explore consequences and performance of strategies syn-
thesized for stochastic priced timed games (SPTG) in a user-friendly manner.
In particular, Uppaal Stratego comes with an extended query language (see
Table 1), where strategies are first class objects that may be constructed, com-
pared, optimized and used when performing (statistical) model checking of a
game under the constraints of a given synthesized strategy.

To illustrate the features of Uppaal Stratego, let us look at the example
in Fig. 2, providing an “extended” timed automata based model of a car, that
needs to make it from its initial position Start to the final position End. In fact
the model constitutes a timed game, where the driver of the car twice needs to
make a decision as to whether (s)he wants to use a high road (H1 and H2) or a low
road (L1 and L2). The four roads differ in their required travel-time (up to 100

Table 1. Various types of Uppaal Stratego queries: “strategy S =” means strategy
assignment and “under S” is strategy usage via strategy identifier S. Here the variables
NS, DS and SS correspond to non-deterministic, deterministic and stochastic strategies
respectively; bound is a bound expression on time or cost like x<=100 and n is the
number of simulations.

Strategy generators using [6]:
Minimize objective: strategy DS = minE (expr) [bound]: <> prop

Maximize objective: strategy DS = maxE (expr) [bound]: <> prop under NS

Strategy generators using Uppaal Tiga:
Guarantee objective: strategy NS = control: A<> prop

Guarantee objective: strategy NS = control: A[] prop

Statistical Model Checking Queries:
Hypothesis testing: Pr[bound](<> prop)>=0.1 under SS

Evaluation: Pr[bound](<> prop) under SS

Comparison: Pr[bound](<> prop1) under SS1 >= Pr[<=20](<> prop2) under SS2

Expected value: value E[bound;n](min: prop) under SS

Simulations simulate n [bound] { expr1, expr2 } under SS

Symbolic model checking queries:
Safety: A[] prop under NS

Liveness: A<> prop under NS

Infimum of value: inf { condition } : expression

Supremum of value: sup { condition } : expression

264 K.G. Larsen et al.

Fig. 2. The route choice problem for a car.

minutes respectively 50 minutes as reflected by the invariants on the clock x).
Also the roads differ in fuel-consumption reflected by the difference in the rate
of the continuous variable fc (representing the total amount of fuel consumed).
Whereas the choice of road is up to the driver of the car to control (indicated
by the solid transitions), the actual travel-time of the road is uncontrollable
(indicated by the dashed transitions) reflecting the uncertainty of the amount of
traffic on the particular day. In one scenario, the objective of the car it to choose
the combination of roads that will ensure the shortest overall travel-time even
in the most hostile traffic situation on the four roads. Under this interpretation,
Fig. 2 represents a timed game. However, it may also be seen as a stochastic
priced timed game (SPTG), assuming that the travel-times of the four roads
are chosen by uniform distributions, and the objective of the control strategy
is to minimize the expected overall travel-time, or the expected overall fuel-
consumption (e.g. the rate or fuel-consumption fc’==3 on the first high road H1
indicates that the cost variable fc grows with rate 3 in this location).

We are interested in synthesizing strategies for various objectives. Being pri-
marily concerned with fuel-consumption, the query

strategy Opt = minE (fc) [<=200] : <> Car.End

(a) fc trajectory samples. Fuel con-
sumption on the vertical axis

(b) Road choice samples.

Fig. 3. Evaluation of strategy Opt via simulation.

Safe and Optimal Adaptive Cruise Control 265

will provide (by reinforcement learning3) the strategy Opt, that minimizes the
expected total fuel-consumption, learning from runs which are maximally 200
time units long. The relativized query E[<=200 ; 1000] (max: fc) under
Opt, generates 1000 runs of length 200 time units and then averages the maxi-
mum value of fc from each run. this is used to estimate the expected cost to be
200.39. Figure 3a summarizes 10 random runs according Opt illustrating fuel-
consumption. None of the runs had a fuel consumption of 400 indicating that we
always choose the energy-efficient roads. In Figure 3b we see that this is actually
the case as the simulations always choose to go to locations H1 and H2, which
models the energy-efficient roads.

Now, assume that the task must be completed before 150 time-units. From
Fig. 3 it can be seen that the strategy Opt unfortunately does not guarantee
this, as there are a few runs which exceeds 150 before reaching End. However,
the query

strategy Safe = control: A<> Car.End and time<=150

will generate the most permissive (non-deterministic) strategy Safe that guar-
antees this bound but unfortunately with a high expected total fuel-consumption
of 342.19. However, the relativized learning query

strategy OptSafe = minE (fc) [<=200] : <> Car.End under Safe

will provide a sub-strategy OptSafe that minimizes the expected total fuel-
consumption – here found to be 279.87 – subject to the constraints of Safe.
Figure 4 summarizes 10 random runs according to SafeOpt, incidating that only
road L1 is never choosen. Also, the failed model checking of E<> Car.H2 and
time>=51 and Car.x==0 under Safe reveals that the high road H2 may only
be choosen in case the first phase is completed before 50 time-units, confirming
the observations from the simulations.

In general, as shown in the overview Fig. 5, Uppaal Stratego will start
from a SPTG P. It can then abstract P into a timed game (TGA) G by sim-
ply ignoring prices and stochasticity in the model. Using G, Uppaal Tiga [2]
may now be used to (symbolically) synthesize a (most permissive) strategy σ
meeting a required safety or (time-bounded) liveness constraint φ. The TGA
G under σ (denoted G|σ) may now be subject to additional (statistical) model
checking using classical Uppaal [3] and Uppaal SMC [4]. Similarly, the original
STGA P under σ may be subject to statistical model checking. Now using rein-
forcement learning[6], we may synthesize near-optimal strategies that minimizes
(maximizes) the expectation of a given cost-expression cost. In case the learn-
ing is performed from P|σ, we obtain a sub-strategy σo of σ that optimizes the
expected value of cost subject to the hard constraints guaranteed by σ. Finally,
given σo, one may perform additional statistical model checking of P|σo.

3 The reinforcement learning uses machine learning techniques to learn strategies from
sets of randomly generated runs. See [6] for more details.

266 K.G. Larsen et al.

(a) fc trajectory samples. (b) Road choice samples.

Fig. 4. Evaluation of strategy OptSafe via simulation.

P
stochastic priced timed game

P|σ σ◦
strategy

P|σ◦
stochastic timed automata
(statistical model checking)

G
timed game

σ
strategy

G|σ
time automata

((statistical)model checking)

abstraction

(optimization)
Learning

min E(C)

(synthesis)

φ

Fig. 5. Overview of Uppaal Stratego

4 Modeling the Adaptive Cruise Control

In this section we introduce a model of the scenario described in Section 2.
We model the velocities and accelerations of the cars, where both cars can

choose the acceleration they wish to have in each second. There are two sets
of variables modeling the velocity and distance between the cars. The first set
is a discrete set of variables. These variables are updated each second using
the method updateDiscrete() seen in Listing 1. Note that when distance >
maxSensorDistance we keep the distance constant, as the sensor cannot read

how far away Front is anymore.
The second set measures the velocity and distance in a continuous way. The

equations in Listing 2 define the rate of growth for continuous variables, we see
that these are updated as expected. The rate of rDistance is defined using the
function distanceRate, this function is presented in Listing 3.

What we see in Listing 3 is that when Front is far away from Ego we keep
the distances between the cars constantly at the maxSensorDistance by setting
the rate of rDistance to zero like with the discrete distance. If Front is not
far away the rate of the distance is the expected velFront - velEgo, thus the
relative velocity of the cars.

Safe and Optimal Adaptive Cruise Control 267

void updateDiscrete (){

int oldVel , newVel;

oldVel = velocityFront - velocityEgo;

velocityEgo = velocityEgo + accelerationEgo;

velocityFront = velocityFront + accelerationFront;

newVel = velocityFront - velocityEgo;

if (distance > maxSensorDistance) {

distance = maxSensorDistance + 1;

} else {

distance += oldVel + (newVel - oldVel)/2;

}

}

Listing 1. The code updating the discrete variables: updateDiscrete().

rVelocityEgo ’ == accelerationEgo && rVelocityFront ’ ==

accelerationFront && rDistance ’ ==

distanceRate(rVelocityFront ,rVelocityEgo , rDistance) &&

D’ ==

rDistance

Listing 2. The differential equations controlling the continuous variables.

Figure 6 validates by simulation that the discrete distance is correctly
tracking the continuous trajectory of rDistance: the updated discrete val-
ues lie exactly on the continuous curve; the same applies to the difference of
velocities.

Four parallel automata model and control the scenario: the system compo-
nent, the models of Ego and Front , and the monitor component. The system
component controls the system and enforces the discretisation of time, the mon-
itor component monitors the state of the system and updates the hybrid variables
correspondingly. We do not show the monitor component here as it is simply one
location with the equations in Listing 2 as its invariant.

double distanceRate(double velFront , double velEgo ,

double dist) {

if (dist > maxSensorDistance) return 0.0;

else return velFront - velEgo;

}

Listing 3. The function distanceRate() defining how rDistance grows.

268 K.G. Larsen et al.

Fig. 6. Continuous and discrete distance (above) and velocity (below).

4.1 System Component

The System component, seen in Fig. 7 controls the discretisation of time, and
also makes sure that Ego chooses its acceleration before Front . This means that
when Ego chooses its acceleration for the next second it does not know what the
acceleration of Front will be in the next step. It is also responsible for updating
the discrete variables via the function updateVelocities().

Fig. 7. The system component of the model: the component first lets Ego choose an
acceleration, and then Front , i.e. Ego chooses an acceleration without knowing which
acceleration Front will choose. The accelerations are chosen at discrete time instances
every second.

Note that the only location in the System component which is not urgent (no
time can pass in an urgent location) is the Wait location. Thus the cars have to
choose their acceleration urgently.

When the system component has finished a loop and is in the UpdateFront
location it will send an update broadcast before going to the Wait location, this
signal is used by Front to determine weather it is far away.

4.2 The Model of Ego and Front

The two cars are modeled with a component each. The basic models of the cars
are the same, however Front has extra behavior for the case when it is far away.
We describe the model of Ego and in the end we describe the differences in the
component for Front .

Safe and Optimal Adaptive Cruise Control 269

Fig. 8. Model of Ego.

The component for Ego can be seen in Fig. 8. There are four locations,
the three locations which are not committed4; No acc, Positive acc and
Negative acc denotes the choice of acceleration in the current second, the last,
choice is the location from which the choice is made. We also keep track of the
acceleration via the variable accelerationEgo.

When the car gets a signal chooseEgo? it will go to the committed location
Choose. From this location Ego will choose which acceleration to have in the
next round. The location is committed to make sure Ego chooses it’s acceleration
before Front .

In this component we also enforce that the car cannot go faster than it’s top
speed (both backwards and forwards). This is done via the guards velocityEgo
< maxVelocityEgo and velocityEgo > minVelocityEgo which ensure that it
is only possible to have a positive acceleration if the current velocity is less than
the top speed, and similarly it is not possible to have a negative acceleration if
the current velocity is greater than the maximum negative speed.

The model of Front can be seen in Fig. 9. We see that it has the same set
of places as Ego and the same set of variables. In addition to these it has the
location Faraway and two committed locations. Front will go to the location
Faraway if the distance between the cars is greater than maxSensorDistance,
and it gets the update signal from the System component. The next time it
gets the chooseFront signal there is fifty percent chance it will stay far away
and fifty percent chance it will reenter the sensor distance. If it reenters the
sensor distance it will choose which velocity it wants via the select statement
i:int[minVelocityFront, maxVelocityFront].

4 When a component is in a committed location, the next transition must be from
this location, without any delay.

270 K.G. Larsen et al.

Fig. 9. Model of Front .

5 Synthesis and Analysis

With the model defined we can start analyzing it. Uppaal Stratego offers a
set of different analysis tools which view the model in different ways.

Uppaal Stratego can view the model as a game with a number of different
players.

Half player game In a half player game all choices are stochastic. The part of
Uppaal Stratego concerned with this kind of games is Uppaal SMC.
In half player games the kind of questions asked is typically, what is the
probability to reach this state?. In Uppaal Stratego there has to be a
timebound, so the question is then, what is the probability of reaching this
state in t time units?.

One player game In one player games all choices are nondeterministic. The part
of Uppaal Stratego which is concerned with this kind of games is tradi-
tional Uppaal. In one player games we ask questions such as is it possible
to reach this state?.

One and a half player game In one and a half player games some choices are
nondeterministic and others are stochastic. Uppaal Stratego is the first
version of Uppaal to include support for one and a half player games. A
question asked in a one and a half player game could be what is the best
strategy to maximize the expected value of x?. As with half player games

Safe and Optimal Adaptive Cruise Control 271

there has to be a timebound in Uppaal Stratego, so the question will be
what is the best strategy to maximize the expected value of x in t time units?

Two player game In two player games all choices are nondeterministic, one set
of choices are made by the controller, the other set is made by the envi-
ronment. The part of Uppaal which handles two player games is Uppaal
Tiga. Questions in two player games could be does there exist a strategy
that makes sure I always reach this state, no matter which choices the envi-
ronment makes?

5.1 No Strategy

We can now analyze the model described in Section 4 using Uppaal Stratego.
The first question we could ask is if the cars will always be at least five meter
from each other no matter what happens. This is a one player question. We can
use the following Uppaal query to answer the question:

A[] distance > 5

This is not true and Uppaal gives us a trace which tells us that if Ego starts by
accelerating forward and Front starts by accelerating backwards then the cars
will collide.

A next question could then be what the probability that the distance between
the two cars is less than five after 100 seconds. This is a half player question and
is answered using the Uppaal SMC query:

Pr[<=100] (<> distance <= 5)

This tells us that the probability of a crash if both cars drive randomly is in the
interval [0.856, 0.866] with a confidence of 95%. In Fig. 10 we can see that the
probability of a crash is greatest in the beginning of the run and then decreases.
We can also see that the average crash happens around 20 seconds after the cars
starts moving.

We can also do a set of random simulations of the model to get a more
nuanced view on how the model behaves. A set of simulations can be seen in
Fig. 11, on the horizontal axis we see the time and on the vertical we see the
distance between the cars.

Fig. 10. The cumulative probability and the probability density of a crash.

272 K.G. Larsen et al.

Fig. 11. A set of ten random simulations over the half player version of the model.

5.2 Safe Strategy

Clearly a probability of 85% for a crash is not acceptable. To remove the risk
of a crash we consider the model as a two player game where we control Ego
and the antagonistic environment controls Front . We can then ask for a strategy
which makes sure that no matter what Front does we will avoid a crash. We can
request such a strategy using the query:

control: A[] distance > 5

With Uppaal Stratego it is possible to save a strategy in a named variable,
we will do this as we would like to use the strategy later. The query then looks
like this:

strategy safe = control: A[] distance > 5

This will give us the most permissive strategy which makes sure that the dis-
tance between the cars is kept greater than 5. The most permissive strategy is a
strategy which in every state suggests the biggest set of actions possible to the
controller. We can now do a set of simulations under this strategy. This is done
using the query:

simulate 10 [<=100] rDistance under safe

This gives us the plot in Fig. 12. What we can see is that here, as opposed to
Fig. 11 where there was no strategy, the distances is always greater than five for
all ten runs, to be absolutely sure this is always the case we use the query:

A[] distance > 5 under safe

Which is of course true as the strategy is constructed to ensure exactly that, in
the same way we can verify that it is possible to have a distance of 6.

Another one player query we can ask is:

inf{velocityFront-velocityEgo==v}: distance under safe

Safe and Optimal Adaptive Cruise Control 273

Fig. 12. A set of ten random simulations over the half player version of the model
subject to a strategy which guarantees that distance is greater than five.

 0

 20

 40

 60

 80

 100

 120

 140

-20 -10 0 10 20 30

in
fim

um
: d

is
ta

nc
e

v=(velocityFront - velocityEgo)

model
6.00+2.50v2

5.54+0.905v+0.0589v2+0.00177v3

Fig. 13. Smallest distance possible under the safe strategy as a function of speed
difference computed using inf{velocityFront-velocityEgo==v}: distance under

safe for each v value. Connecting lines are from linear regression analysis.

this will return the smallest (inf) distance seen in any state where

velocityFront-velocityEgo==v,

thus the smallest distance at the relative velocity v possible under the safe strat-
egy. In Fig. 13 we see the result of running this query with v at different values.
When the velocity difference v is negative, the safe distance dependency is exactly
quadratic: this is the distance the Front car would cover towards Ego if it kept
accelerating and Ego were not able to keep up. Thus the faster the cars are
driving towards each other the greater the distance should be to ensure the cars
are safe. When v is positive the safe distance slope is not as steep, but it follows
a similar worst case scenario that the Front may immediately start accelerating
towards Ego, except it will take longer to make the velocity difference negative.

274 K.G. Larsen et al.

5.3 Safe and Fast Strategy

In Section 5.2 we generated the most permissive strategy which made sure the
cars was safe. However the most permissive strategy is the union of all strategies,
thus we have the opportunity of choosing the best strategy according to some
measure. In Listing 2 we see that the rate of D is defined as D’ == rDistance.
This means that the value of D is the accumulated distance during the run. We
can choose a strategy which minimizes D, this will mean that Ego will try to
stay close to Front , but it will still stay far enough away that it will be safe. We
can learn such a strategy using the query

strategy safeFast = minE (D) [<=100]: <> time >= 100 under safe

This is a one and a half player query, thus we assume the environment to
be stochastic. We can then learn a strategy which attempts to minimize the
expected value of D, as done in the query.

Using the learned strategy safeFast we can then make a set of simulations
with simulate 10 [<=100] rDistance under safeFast, this gives us the plot
in Fig. 14.

Fig. 14. A set of ten random simulations over the half player version of the model sub-
jected to the strategy safeFast which optimizes the value of D, while still guaranteeing
that the distance is greater than five.

We see that under this strategy the distance between the cars are much
smaller, thus we now have a strategy that is not only safe but which also attempts
to make the distance between the cars small.

We can also directly compare the two strategies safe and safeFast using
the query:

Pr[rDistance <= maxSensorDistance + 1] <> time >= 100 under safe.

This query asks what the probability of reaching time >= 100 is in runs which
are bounded by rDistance. As rDistance never is greater than maxSensorDis-
tance, we know that all runs will reach time >= 100. Thus the query reports

Safe and Optimal Adaptive Cruise Control 275

Fig. 15. The probability density distribution over rDistance at time >= 100 thus
after 100 time units under the strategies safe and safeFast. The (dark) red bars for
safe and the (light) green bars for safeFast.

10 20 30 40 50 60 70

0
50

00
10

00
0

20
00

0

(a) Distance histogram.

−4 −2 0 2 4

0
10

00
0

20
00

0
30

00
0

(b) Velocity histogram. (c) Distance over velocity.

Fig. 16. Statistics from 1000 fixed-time-step simulations under safeFast strategy:
overall 100000 data points about distance and velocity difference.

correctly that the probability is 1. However we can then look at what rDistance
was when we reached time >= 100.

In Fig. 15 we see the probability density distribution for the value of
rDistance when time >= 100 generated using the query above. The red part
shows the distribution under safe and the green part shows the distribution
under safeFast.

What we can see is that under safe Ego just stays far away from Front , as
this is safe. This is of cause boring as Ego will then never really move forward.
Under safeFast on the other hand we see that Ego stays relatively close to
Front thus minimizing D just like we intended.

Figure 16 summarizes the characteristics of the safeFast strategy of indi-
vidual simulation points. The histograms show that the distance is limited by 70
metres and most of the time the cars are close to each other. Interestingly the
velocity is also limited to a narrow range meaning that Ego manages to mimic
the speed of Front and only rarely the speed difference greater than 2m/s.

276 K.G. Larsen et al.

6 Conclusion

We have demonstrated that safe and optimal distance controllers may be syn-
thesized automatically using the recently emerged Uppaal Stratego branch
of the Uppaal tool suite. What remains for future work that we would like to
undertake, is to synthesize the complete safe overtaking protocol suggested by
Olderog et al in their previous work.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-tiga: time for playing games!. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

3. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: Proceedings of the 3rd International Conference on
the Quantitative Evaluation of Systems, QEST 2006, pp. 125–126. IEEE Computer
Society, Washington (2006)

4. Bulychev, P.E., David, A., Larsen, K.G., Mikučionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: UPPAAL-SMC: statistical model checking for priced timed automata.
In: Wiklicky, H., Massink, M. (eds.) Proceedings 10th Workshop on Quantitative
Aspects of Programming Languages and Systems, QAPL 2012. EPTCS, Tallinn,
Estonia, vol. 85, pp. 1–16, March 2012

5. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Information
Processing Letters 40(5), 269–276 (1991)

6. David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sørensen, M.G.,
Taankvist, J.H.: On time with minimal expected cost!. In: Cassez, F., Raskin, J.-F.
(eds.) ATVA 2014. LNCS, vol. 8837, pp. 129–145. Springer, Heidelberg (2014)

7. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 206–211. Springer, Heidelberg (2015)

8. Habets, L.C.G.J.M., Collins, P.J., van Schuppen, J.H.: Reachability and control
synthesis for piecewise-affine hybrid systems on simplices. IEEE Transactions on
Automatic Control 51(6), 938–948 (2006)

9. Haddon, J.A., Godbole, D.N., Deshpande, A., Lygeros, J.: Verification of hybrid
systems: monotonicity in the AHS control system. In: Alur, R., Sontag, E.D.,
Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066. Springer, Heidelberg (1996)

10. Hilscher, M., Linker, S., Olderog, E.-R.: Proving safety of traffic manoeuvres on
country roads. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming
and Formal Methods. LNCS, vol. 8051, pp. 196–212. Springer, Heidelberg (2013)

11. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving
safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011)

12. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1–2), 134–152 (1997)

13. Linker, S., Hilscher, M.: Proof theory of a multi-lane spatial logic. In: Liu, Z.,
Woodcock, J., Zhu, H. (eds.) ICTAC 2013. LNCS, vol. 8049, pp. 231–248. Springer,
Heidelberg (2013)

Safe and Optimal Adaptive Cruise Control 277

14. Lygeros, J., Pappas, G.J., Sastry, S.: An approach to the verification of the center-
TRACON automation system. In: Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998.
LNCS, vol. 1386, pp. 289–304. Springer, Heidelberg (1998)

15. Moor, T., Raisch, J., O’Young, S.: Discrete supervisory control of hybrid sys-
tems based on l-complete approximations. Discrete Event Dynamic Systems 12(1),
83–107 (2002)

16. Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Com-
puter 18(2), 10–19 (1985)

17. Schäfer, A.: A calculus for shapes in time and space. In: Liu, Z., Araki, K. (eds.)
ICTAC 2004. LNCS, vol. 3407, pp. 463–477. Springer, Heidelberg (2005)

Author Index

Bergstra, Jan A. 44

Crubillé, Raphaëlle 65

Dal Lago, Ugo 65
de Boer, Frank S. 191
de Gouw, Stijn 191
de Roever, Willem Paul 10

Finkbeiner, Bernd 223
Fränzle, Martin 152
Fröschle, Sibylle 83

Gretz, Friedrich 15

Hahn, Sebastian 205
Hansen, Michael R. 152
Hoenicke, Jochen 33
Holík, Lukáš 238

Isberner, Malte 238

Jansen, Nils 15
Jonsson, Bengt 238

Kaminski, Benjamin Lucien 15
Katoen, Joost-Pieter 15

Larsen, Kim Guldstrand 260

Meyer, Roland 3
Mikučionis, Marius 260

Ody, Heinrich 152
Olmedo, Federico 15

Peleska, Jan 133
Platzer, André 5
Podelski, Andreas 33
Ponse, Alban 44

Reineke, Jan 205

Sangiorgi, Davide 65

Taankvist, Jakob Haahr 260

van Glabbeek, Rob J. 99
Vignudelli, Valeria 65

Wehrheim, Heike 3
Weidenbach, Christoph 172
Wilhelm, Reinhard 205

	Preface
	Organization
	Contents
	Laudationes
	 From Program Verification to Time and Space: The Scientific Life of Ernst-Rüdiger Olderog
	Ernst-Rüdiger Olderog: A Life for Meaning
	References

	Warmest Congratulations, Ernst-Rüdiger!

	Semantics
	Understanding Probabilistic Programs
	1 Introduction
	2 Probabilistic Programs
	3 Semantic Intricacies
	4 Expectation Transformer and Operational Semantics
	4.1 Weakest Pre--expectation Semantics
	4.2 Operational Semantics
	4.3 Relating the Two Semantic Views

	5 Program Transformations
	6 Conclusion
	References

	Fairness for Infinitary Control
	1 Introduction
	2 Basic Concepts
	2.1 Infinite Control
	2.2 Fairness
	2.3 Explicit Scheduling
	2.4 The Schedulers S1988 and S2010

	3 The Scheduler S2015 for Infinitary Fairness
	4 Conclusion
	References

	Evaluation Trees for Proposition Algebra
	1 Introduction
	2 Evaluation Trees for Free Valuation Congruence
	3 Evaluation Trees for Repetition-proof Valuation Congruence
	4 Conclusions
	References

	Process Algebra
	On Applicative Similarity, Sequentiality, and Full Abstraction
	1 Introduction
	2 Programs and Their Operational Semantics
	2.1 Operational Semantics
	2.2 The Contextual Preorder

	3 Applicative Simulation
	4 The Simulation Preorder is a Precongruence
	4.1 Howe's Method

	5 Full Abstraction
	5.1 From Tests to Contexts

	References

	Causality, Behavioural Equivalences, and the Security of Cyberphysical Systems
	1 Motivation
	2 Four Ways to Exploit Causality
	2.1 Modelling
	2.2 Verification
	2.3 Decidability and Complexity I
	2.4 Decidability and Complexity II

	3 Equivalences
	3.1 Three Causal Equivalences
	3.2 Finite-State Results
	3.3 A Hierarchy of Causal Processes
	3.4 Infinite-State Results

	4 Summary and Outlook
	References

	Structure Preserving Bisimilarity, Supporting an Operational Petri Net Semantics of CCSP
	1 Introduction
	1.1 Structure Preserving Bisimilarity
	1.2 Criteria for Choosing This Semantic Equivalence
	1.3 Applying the Criteria
	1.4 Inevitability

	2 CCSP
	3 Petri Nets
	4 An Operational Petri Net Semantics of CCSP
	5 Structure Preserving Bisimulation Equivalence
	6 Strong Bisimilarity
	7 Compositionality
	8 Processes of Nets and Causal Equivalence
	9 A Process-Based Characterisation of Sp-bisimilarity
	10 Relating Sp-bisimilarity to other Semantic Equivalences
	10.1 Place Bisimilarity
	10.2 Occurrence Net Equivalence
	10.3 Causal Equivalence
	10.4 History Preserving bisimilarity

	11 Inevitability for Non-reactive Systems
	12 History Preserving Bisimilarity does not Respect Inevitability
	13 Structure Preserving Bisimilarity Respects Inevitability
	14 Inevitability for Reactive Systems
	15 Conclusion
	References

	Logic
	Translating Testing Theories for Concurrent Systems
	1 Introduction
	1.1 Motivation
	1.2 Main Contributions and Overview

	2 Runtime Verification and Complete, Unsynchronised Hard Realtime Health Monitors
	2.1 Definition
	2.2 Health Monitor Design for Kripke Structures and LTL Properties
	2.3 An LTL Subclass S' for Unsynchronised Health Monitoring
	2.4 Health Monitor H for S'

	3 Application to Nondeterministic Programs
	3.1 Nondeterministic Programs in Normal Form
	3.2 Kripke Structure Semantics
	3.3 Example: Health Monitor for Nondeterministic Normal Form Program

	4 Health Monitors for CSP Simulations
	4.1 CSP Processes with Failures Semantics
	4.2 Model Map From Failures Models into Kripke Structures
	4.3 Sentence Translation Map and Health Monitor for CSP Processes

	5 Conclusions
	References

	No Need Knowing Numerous Neighbours
	1 Introduction
	2 Multi-lane Spatial Logic with Scope
	2.1 The Model
	2.2 The Logic: MLSLS

	3 Technical Observability and Stable Models
	3.1 An Example of Stability Under Sampling

	4 Satisfiability of MLSLS
	4.1 A QLIRA Representation of a Traffic Snapshot TS
	4.2 Translating Well-Scoped MLSLS Formulas to QLIRA

	5 Deciding Stability
	6 Conclusion
	References

	Automated Reasoning Building Blocks
	1 Introduction
	2 Preliminaries
	3 Propositional Superposition
	4 CDCL -- Conflict Driven Clause Learning
	5 Superposition and CDCL
	6 Conclusion
	References

	Analysis
	Being and Change: Reasoning About Invariance
	1 Introduction
	2 Adaptation Rules
	3 Reasoning About Invariance
	4 Case Study: Quicksort
	5 Future Work
	References

	Toward Compact Abstractions for Processor Pipelines
	1 Introduction
	2 Background
	2.1 Pipelines
	2.2 Concrete Semantics of an In-Order Pipeline
	2.3 State-of-the-art Pipeline Analysis

	3 Are In-Order Pipelines Interesting? Or: What About Timing Anomalies?
	4 Compact Abstract Pipeline Domain Based on Minimal Progress
	4.1 Abstract Domain
	4.2 Transfer Function
	4.3 Diverging and Joining Control Flow
	4.4 Why Maximal Progress is not so Important

	5 Open Problems
	6 Summary and Conclusion
	References

	Synthesis
	Bounded Synthesis for Petri Games
	1 Introduction
	2 Petri Games
	3 Bounded Strategies
	4 Finding Bounded Strategies
	5 Trade-Offs
	6 Conclusions
	References

	Mediator Synthesis in a Component Algebra with Data
	1 Introduction
	2 Processes
	3 Refinement
	4 Parallel Composition
	5 Quotient
	6 Applications to the Synthesis of Mediators
	7 Summary and Future Work
	References

	Safe and Optimal Adaptive Cruise Control
	1 Introduction
	2 The Problem of Adaptive Cruise Control
	3 Stochastic Priced Timed Games
	4 Modeling the Adaptive Cruise Control
	4.1 System Component
	4.2 The Model of Ego and Front

	5 Synthesis and Analysis
	5.1 No Strategy
	5.2 Safe Strategy
	5.3 Safe and Fast Strategy

	6 Conclusion
	References

	Author Index

