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Abstract The “cythosome c oxidase subunits 1”7 (COI) gene is used for
identification of species, and it is one of the so-called DNA barcode genes.
Identification of species, even using DNA barcoding can be difficult if the
biological examples are degraded. Spectral representation of sequences and the
General Regression Neural Network (GRNN) can give some interesting results in
these difficult cases. The GRNN is based on the distance between the memorized
examples of sequence and the input unknown sequence, both represented using a
vector space spectral representation. In this paper we will analyse the effectiveness
of different distance models in the GRNN implementation and will compare the
obtained results in the classification of full length sequences and degraded samples.
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1 Introduction

The so-called DNA barcode sequence is a small segment (~650 bp) of DNA, usually
from “cythosome c¢ oxidase subunits 1” mitochondrial gene (COI) [8, 13]. The
sequence is a good marker for DNA and is widely used for identification and
taxonomic rank assignment of many species [5].

DNA barcoding is difficult if the biological samples under analysis are degraded:
in this case only fragments of the barcode sequence is available. A suitable solution
for this problem is studied in [14]: in this work the barcode sequence is analysed in
order to find small subsequences that are still useful for identification of the sample
specie.

We started from a different point of view: we addressed the identification and
rank assignment of degraded barcode sequences, usually sequence fragments of
about 200 bp, building a robust classifier based on the spectral representation and
a modified version of the General Regression Neural Network (GRNN).
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Using spectral representation the DNA barcode sequence is represented using the
frequency of very short strings of length k = 3,4, ..., called k-mers. This sequence
representation is often addressed as k-mers decomposition or, more generally, as
alignment-free sequence decomposition. In this representation the order of k-mers in
the sequence is discarded and only their count is considered; if a sequence fragment
has a k-mers frequency distribution similar to the one of the whole barcode sequence
then the two will have a similar representation.

The set of the frequencies of the k-mers in a sequence constitutes the representing
vector for the sequence in a vector space. The dimension of the representation space
is 4¥ and the distance among these representing vector can be calculated using
Euclidean norm in ).

The GRNN is a neural network originally developed for regression and adapted
to classification of DNA sequences in [17]. This modification made the network a
prototype-based classification tool that classifies a new input looking at the distance
from the memorized training samples. It is clear that different distance models, like
Euclidean, manhattan and so on, can change the performances of the network, as
we found in [17].

In this paper we want to go further in this study and analyse and compare the
performances of other distance models on the GRNN, considering classification
results of both full length sequences and degraded samples.

With regards to barcode classification, very interesting results have been obtained
in the works presented in [10, 15, 20]. In particular both the algorithms described
in [15, 20] propose alignment-based methods in order to classify barcode specimen.
In [20], after the training sequences are aligned, a set of logic rules are extracted
in the form “if pos35 is G and pos300 is A then the sequence is classified as
...”, where posX represents a sequence locus. In [15], first a phylogenetic tree of
input sequences is computed; then at each branching node, a set of “characteristic
attributes” (CA) is identified for the corresponding leaf nodes. Considering a branch
node, CAs are single nucleotide position or multiple nucleotide positions that are
shared only by one of the branch descending from that node. Another alignment-free
approach more similar to our proposed method is the one presented in [10]. There
authors introduce the spectral representation for the barcode sequences and they
use two machine learning algorithms, k-Nearest Neighbour (kNN) [2] and Support
Vector Machine (SVM) [18], to train different classifiers. In this paper we are
going to compare our GRNN approach with the classifiers proposed in [10] because
they represent alignment-free approaches, differently from [15] and [20], that also
implement the spectral representation. The comparison between our GRNN method
and the SVM classifier has been already done in [17], where we demonstrated our
method outperforms SVM when dealing with sequence fragments. Therefore in this
paper we compare our GRNN method against the k-NN classifier.
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2 Methods

Prototype-based classification tools are based on sequence distance; there are many
algorithm to evaluate sequence distance besides the evolutionary distance, for
example the compression distance used in [11, 12]. The vector space representation
is obtained by considering the frequency of all possible 5-letters substring in the
DNA barcode sequence (k-mers), these k-mers are obtained by using a sliding
window on the sequence. A deeper discussion on this representation can be found
in [3, 10]. In the following sections the GRNN modified algorithm is explained and
the different distance measures applied are described; moreover the barcode dataset
used is introduced.

2.1 The General Regression Neural Network

Artificial neural networks (ANN) are a set of algorithms used to approximate
functions or cluster large sets of input values. A neural network usually have a
very large set of parameters (the network weights) adapted using a set of training
examples and a specific learning algorithm (the training algorithm). The training
phase is aimed at reducing the error of the network on a specific task, classification
or regression, by changing the weight values.

Among the neural networks the GRNN [19] is a network created for regression
i.e. the approximation of the values of a dependent continuous variable y given a set
of samples (x;,y;) i =1,2,...N.

In the following we will discuss the one dimensional output case, the extension
to an output vector y being straightforward (see [19] for details).

The GRNN do not have a training phase, it is based on the memorization of all
the training examples in the hidden layer: one neural unit for each training samples
(see Fig. 1). When a new pattern x’ is presented to the network input the output y is
calculated using the following equation:

Wi * i
y = LAY (1)
Do Wi
where the weight w; are obtained from each hidden unit as
d(x', xi)
i = - 2
Wi = exp { i 2)

The o value, called spread factor, is the only parameter of the GRNN network.
The weight w; is considered by some literature the excitation level of the neural unit
i corresponding to the input x'.
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Fig. 1 The representation of

the GRNN neural network.
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There are some studies on the optimal value of o that can be a single value for
the whole network or a specific value for each hidden unit. In [7] it is suggested
a formula that depends on the maximum distance and number of patterns in the
training set.

The GRNN can be used in classification problems: considering a set of classifi-
cation examples (X;, ¢;) where x; (with i = 1,2,...N) is the input pattern and ¢,
(with h = 1,2, ... H; H is the number of available classes) is the class assigned to
the pattern x; it is possible to build a set of training examples for a GRNN network
as (xi, yi) were y; = [vi1,Yi2, .., Vin] i given by

0ifj#£h
= i 3
It =h )
where ¢, is the class of the pattern x;.
The set of couples (xj,y;) can be used as a training set for the GRNN and the
class of the new input X’ can be calculated as

en(X') = argmaxi{y|j = 1,2,... H} 4)
J

In order to implement our classification tool for DNA sequences, we obtained the
vector representation of the DNA sequences using a k-mer decomposition, as shown
in [10], in which sequences are coded as fixed size vectors whose components are
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the number of occurrences of short DNA snippets of k fixed-length, called k-mers.
Considering k = 5, as proposed in [10], we have vectors of dimension 4° = 1024
to represent genomic sequences.

The GRNN is used with different distance models, in particular some of the L,
norms, the correlation norm and the cosine norm.

2.2 The Distance Models

In this section the L, norms used are introduced, together with the cosine and
correlation distances.

2.2.1 L, Norms

The norm is a function that assigns a strict positive number to a vector in a vector
space f : (x) — 9 that satisfies the following properties:

flax) = |a|f(x) &)
Fx+y) =f(x) +f(y) (6)
if f(x) = O then x is the vector zero @)

the L, family norms, or p-norms, defined as:

x|l = (Z |x,-|P) : (8)

The most common norm is the Euclidean norm with p = 2, but are also used the
p = 1 norm namely City-block or Manhattan, and the Chebyshev norm, or L.
Although should be p > 1 there are also fractional norms with p < 1, that are
interesting in the case of high dimensional spaces.

In case of high-dimensionality data, such as the 1024 sized vectors representing
DNA sequences, the Euclidean norm used to define the distance tend to concentrate
[4]. That means all pairwise distances between high-dimensional objects appear
to be very similar. Authors in [4] also state that the concentration phenomenon is
intrinsic to the norm. In order to overcome this phenomenon, fractional norms can be
used in place of Euclidean norm [1, 9]; whereas with 0 < p < 1 L, norms are called
fractional norms, which induce fractional distances. Moreover, fractional norms are
able to deal with non-Gaussian noise [4]. In this work we adopted fractional norms,
considering different values of p, in order to compute Eq. (2) and to limit the effects
of the curse of dimensionality.
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If p = 1 in Eq. (8) the norm is called the Manhattan norm, or taxicab norm, and
is defined as

Ll =Z|x§—x,~’. (9)

both the names are related to the distance a taxi as to drive in a city with a rectangular
grid.
The Chebyshev distance is obtained from the formula:

d(x',x;) = max(|x] — x;|). (10)

this is usually considered as Lo, norm.

2.2.2 Cosine and Correlation Distance

Cosine and correlation distance are both based on scalar product X - x;, instead of
the difference X’ — x;. The cosine distance is defined by the following equation:

/. .
A x) = 1— — > (11)
X[ [

where the ||.|| is the Euclidean norm. The correlation distance is defined by:

WX (x-X)

dx',x) =1 — —
lx" = x| [Ix; — ;|

12)

where X’ is the mean of the input vectors X' and X; is the mean of the training
samples.

2.3 Barcode Dataset

We downloaded barcode sequences from the Barcode of Life Database (BOLD)
[16]. In our study, we considered 10 barcode datasets belonging to different BOLD
projects and living organisms. These datasets have been selected according to some
criteria: we chose only barcode compliant dataset, i.e certified by BOLD as true
barcode sequences, with sequence length not shorter than 500 bp and not longer
than 800 bp. These datasets differ each other on the basis of the number of species
and specimen, the sequence length and the sequence quality (in terms of undefined
nucleotides). Following these criteria, we collected 2210 sequences. The dataset
composition, in terms of number of different taxa and number of specimen for
each taxa, is summarized in Table 1, where it is possible to note how the dataset
is unbalanced.
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Table 1 Barcode dataset composition at each taxonomic level

Sequence distribution for each taxa

Phylum Class Order

# Classes | # Seqs % Seqs | # Classes | # Seqs % Seqs | # Classes | # Seqs % Seqs
1 1361 619% |1 1361 619% |1 1049 47.46 %
2 [219,386] | 27.4% 2 [219,286] | 22.85% | 3 [209,286] | 32.30 %
2 [111,133]|11.0% |3 [100,133] | 15.56 % | 4 [100,133] | 20.22 %
Family Genus Species

# Classes | # Seqs % Seqs | # Classes | # Seqs % Seqs | # Classes | # Seqs % Seqs
1 885 40.04 % | 1 386 17.46 % | 1 279 12.64 %
3 [209,274] | 31.76 % | 3 [209,290] | 32.48 % | 4 [105,140] | 22.30 %
4 [103,164] | 23.12% | 6 [103,164] | 35.15% | 30 [14,92] |49,50 %
7 [4,46] 5.06% | 15 [4,71] 1491 % | 35 [1,11] 15.56 %

Numbers between square brackets represent range of values

3 Results and Discussion

In this section, we describe the parameter setup for the GRNN algorithm and the
adopted training/testing procedure. Then we report classification results in terms of
accuracy, precision and recall scores, and finally we discuss those results.

3.1 Experimental Setup

The only parameter of the GRNN algorithm is the spread factor o (Eq.2). In our
experiments, we tuned the o value by means of a ten fold cross validation procedure,
considering as training set the dataset composed of the full length sequences. This
procedure has been carried out implementing each distance model (see Sect.2.2),
and for values of o ranging from 0.5 to 0.8, with a step of 0.1. For each value of o
we noticed that the behaviour of the GRNN was substantially the same regardless
the distance model, and the best results, in terms of error rate, were obtained with
o = 0.6. As for the fractional distances, Eq. (8) with p < 1, we considered three
values for p: 0.3, 0.5, 0.7. All the experiments have been done using Python scripts
on a Windows 7 machine equipped with i7 Intel CPU at 2.8 GHz with 8 GB of
RAM. Computational times of the GRNN algorithm are about 1 min for a single
experiment.

The classification performances of the GRNN algorithm have been tested con-
sidering full length barcode sequences and sequence fragments of 200 consecutive
bp randomly extracted from the original sequences. We want to assess the GRNN
predictive power and its robustness with regards to the sequence sizes. In fact, in
the study of environmental species, for example, usually only small portions of the
barcode sequences are available.
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For each distance model, the training and testing procedures have been done
in two ways. In the first case, we adopted a ten fold cross validation method:
in each fold, we trained the GRNN with the 90 % of the full-length sequences
and we used as test set the remaining 10% of both the full-length sequences
and their corresponding sequence fragments of 200bp. In the second case, we
trained the GRNN with the whole dataset of the full-length sequences and then we
tested it with all the sequence fragments. In the first scenario, we want to assess
the classification performances of the GRNN considering full-length sequences
and its generalization degree when used to classify sequence fragments whose
corresponding original sequence does not belong to the training set. In the second
scenario, we supposed the GRNN is used to recognize small random fragments,
by “knowing” all the original full-length sequences. Comparison with the k-NN
classifier has been carried out following the same training and testing procedure.
We used the k-NN implementation provided by the Weka Experimenter Platform
[6], considering k = 1 and k = 3, as done similarly in [10].

3.2 Classification Results

Classification scores have been evaluated by means of the accuracy, precision and
recall performance measures.

These scores are summarized in Tables 2, 3, and 4, respectively. Each table
is composed of three parts, according to the adopted training/testing procedure.
“Full-length” means the classification results are obtained through a ten fold cross
validation scheme considering full length sequences both for training and testing;
the scores are averaged over the ten folds. “Full vs. 200-bp” means the classification
results are obtained through a ten fold cross validation scheme considering full-
length sequences for training and 200bp fragments for testing; once again the
scores are averaged over the ten folds. “200-bp” means the classification results are
obtained training with the whole dataset of full-length sequences and tested with all
the sequence fragments. In each table, in the first column there is the distance model
used to train the GRNN, and in the second row there is the taxonomic level, from
Phylum to Species. The last two rows of each table part show the results obtained
from the k-NN classifiers.

3.3 Discussion

From the classification results shown in Tables 2, 3, and 4, it is evident that the
GRNN and the k-NN algorithms are able to correctly classify full-length barcode
sequences, with scores around 100 % at each taxonomic level. The GRNN reaches
those scores with all the distance models except for the correlation and the cosine
distances.
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Table 2 Accuracy scores at each taxonomic level the GRNN algorithm, considering

each distance model, and the k-NN classifier

PRECISION
Algorithm | Phylum Class Order Family Genus Species
FULL-LENGTH
GRNN
Euclidean F100.0%
Frac. p=0.3 F100.0%
Frac. p=0.5 10%
Frac. p=0.7 10%
Chebyshev Fi00.0%
ity Block lo%
orrelation I 18.7%
osine I 6.3%

K-NN

k=1
K=3

F100.0%

FULL Vs. 200-bp

GRNN
Euclidean B5s1% Ws3ox B 243% F 138%
Frac. p=0.3 W76 WE70% Wss2% Wae.7%
Frac. p=0.5 s 8o Weosx Wacix%
Frac. p=0.7 6.2 WEosx Wsscx Was.o%
hebyshev Fo1so% F o109% [ san [ 20%
ity Block s WEsax Ws7.0% Waio%
orrelation B B27w B oo2n | o19%
osine P 63% I a9% [ 74% | 18%

K-NN
|=1 W12 Wsoex W7a7% Wer7%
K=3 Pe20x 803 B7s53% 62.8%

20000 0]

GRNN
Euclidean Wes1x W67.2% Was7% I 29s%
Frac. p=0.3 m% ‘1% ‘Ls% ‘.4%
Frac. p=0.5 5375 WSosx W81e% WFss%
Frac. p=0.7 m% mg% ‘.9% ‘.3%
hebyshey Foozaw Fo1san [ ossx [ 38%
ity Block Wss2 Weoax Wssx W70.6%
orrelation Fgre B oosu B 100% | 15%
osine P 6o% I 9ax I 829 | 16%

K-NN
-1 e WEsox Wsex Wio%
K=3 W8a3y Wesax Wisex W73.9%

127
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Table 3 Precision scores at each taxonomic level the GRNN algorithm, considering
each distance model, and the k-NN classifier

PRECISION
Algorithm | Phylum Class Order Family Genus Species
FULL-LENGTH
GRNN
Euclidean FH00.0% M00.0% ‘9% Fo6.1%
Frac. p=0.3 Wio0.0% WHo00.0% 6% 8a.7%
Frac. p=0.5 ‘D% “.0% ‘8 l@%
Frac. p=0.7 W00.0% MHooo% MSo1% WMS6.1%
Chebyshev ‘0% l.ﬂ% B.6% “9%
ity Block Wi00.0% MHoo.o% Woosy We7.0%
orrelation Fasrs B a2o% I oesn [ 23%
osine F 63 | 33% | osx | o03%
K-NN
|k=1 WHo0.0% WHoo.o% WMHoo.o% M69.3%
K=3 a2 Weosx W7a7% We17%
FULL Vs. 200-bp
GRNN
Euclidean 2% Wsa1% Ws39% W 2a3% B 13.8%
Frac. p=0.3 802 W6ex WE70%x Wss2% Was7%
Frac. p=0.5 W6 WG7sx WEsox Weosx Wasax
Frac. p=0.7 6.2 WEosx Wsscx Was.o%
hebyshev Fosax B 132 F 100 | sax [ 20%
ity Block B63% Wssx W8sax Ws70% Waiox
orrelation Fooes Fa177% F127% F s2% [ 19%
osine P oaoes I 63% I a0 [ 74% [ 18%
K-NN
|=1 o% W12 WEoex W% W617%
K=3 Passx Ws20x WE0sx Ws3% 62.8%
~ 200bp I
GRNN
Euclidean G0 W6z W67.2% Was7x W29.s%
Frac. p=0.3 W5scx W670x WS11% Weosx WMEs.ax
Frac, p=0.5 504 We37% WMoosx W8iex WFss%
Frac. p=0.7 W00 Wessx Wgoox We1ox WF9.5%
hebyshev Wasow B 23a% F 1a1% [ ssx [ 38%
ity Block WiGo.ox Wes2x Weoax WFssx W0.6%
orrelation F o5 Basrn F osx I 100% [ 15%
osine P aoss I 60% B 9ax [ s2% [ 16%
K-NN
=1 W& g5 WEsox Wsex Waox
K=3 W8esx WEasx Wesax Wisex W73.9%
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Table 4 Recall scores at each taxonomic level the GRNN algorithm, considering

each distance model, and the k-NN classifier

RECALL
Algorithm [ Phylum Class Order Family Genus Species
FULL-LENGTH

GRNN
Euclidean ‘0% ‘.0% 10% ‘056 15%
Frac. p=0.3 A ‘0% m%
Frac. p=0.5 10% 14%
Frac. p=0.7 10% “3%

hebyshev 10% ‘0%

ity Block Fio0.0% W89.7%

orrelation F 7% B a13sx K aesx [ ssu%

osine B wern B 125 | son | as%

K-NN
k=1 Fi00.0%
k=3 Wi00.0%

FULL Vs. 200-bp

GRNN
Euclidean 2% Wao9% Wsoaw B 267% F 154%
Frac. p=0.3 671 W6s3x WF7sx Wasay Was7%
Frac. p=0.5 21 WGos Ws3x Wse7x Wasix
Frac. p=0.7 e Wesx Wseax Ws03%
hebyshev Fo7sw B218% B o1sex B 103% | as%
City Block W2z W6oax WBiax WSe2x Wazsx
orrelation B B a1a7% Fa2ss B osox | 35%
osine P e P 12s% | sa% [ 62% | 26%

K-NN
k=1 5% WEeox W73 We7s% W57.3%
||<=3 20 60w Wisex Wessw [Wss.a%

200-bp

GRNN
Euclidean 51 Weoox 5729 Ws73% B 23s%
Frac. p=0.3 &7 WEisx W8iox Weo1x W62.9%
Frac. p=0.5 557 WEssx W& 922w Wer.2x
Frac. p=0.7 WSoe% WSoox WBaox Waex WSo0.0%
hebyshev Ba22% Woaaw Foaa2% B 111x | oa3%
City Block W00 W81 WE2sx WFa1% Wesexn
Correlation B B aaex I oosw [ ssx | 25%
osine P I 125% | 67% | s53% | 18%

K-NN
k=1 W87 e WG7ex Wersx WS7.7%
K=3 g.m W766x Ws.5% .3% ss.7%

129
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Full Vs. 200-bp
100%

90%
80%
70%
60% — Euclidean

0% — Frac. 0.3 <=p<=1
’ — Chebyshev

40% /\/\ Correlation
30% \ Cosine
20% ~
10%
0%

Phylum Class Order Family Genus Species

Accuracy %

Fig. 2 Accuracy scores at each taxonomic level for the “Full vs. 200-bp” training/testing scheme
of the GRNN classifier with different distance models

Using those distances, the performances of the GRNN drop significantly,
reaching about 62 % in terms of accuracy at phylum level, and only about 20 and
12 % in terms of recall and precision respectively. That means distances based on
scalar product of the patterns are not suitable with the GRNN algorithm. The most
interesting results are therefore the ones obtained during the classification evaluation
of the sequence fragments. First of all, the performances decrease with respect to
taxonomic level, as it is also evident in the chart of Fig. 2. As the taxonomic rank
goes down, indeed, the number of categories to classify increases (see Table 1) and,
as a consequence, it is more difficult to correctly classify the patterns. Considering
the “Full vs. 200-bp” part, the only meaningful scores are provided by the GRNN
implementing fractional and city block distances. In particular while the correlation
and the cosine distances keep on giving low scores as in the case of full-length
sequences, the Chebyshev and the Euclidean distance have a strong drop of
performances, with scores about 40 % for Euclidean distance at Phylum level and
about 20 % for Chebyshev distance at Phylum level. The same drop of performances
also affects the k-NN classifiers, with very similar scores regardless the value of k.
On the other hand, considering fractional and city block distances, the GRNN is still
able to provide acceptable classification results for sequence fragments, with scores
ranging from about 85 % at phylum level to abut 57 % at Species level. These results
further confirm that fractional norms contrast the effects of distance concentration.
It is important to remember that in the case of “Full vs. 200-bp” the GRNN network
classify the sequence fragments without “knowing” the corresponding full length
sequences during the training phase. It is interesting to note (see Fig.2) that at the
family level there are the best scores: that because the distribution of specimen
at family level is very unbalanced, with one family collecting about the 40 % of
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available samples, as reported in Table 1. Finally, considering the “200-bp” part of
Tables 2, 3, and 4, once again only the GRNN implementing the fractional and
the city block distances are able to provide a proper classification for sequence
fragments. In this last case, the performance scores are higher than the “Full vs. 200-
bp” scenario, because in this situation we carried out a complete training procedure
of the GRNN considering all full-length sequences. Of course, because the spectral
representation of full-length and sequence fragments are different from each other,
no sequence fragment used in the test set belong to the training set.

4 Conclusion

In this work, a modified version of the GRNN algorithm implementing different
distance models for barcode sequence classification is presented. The GRNN
classification performances have been assessed with regards to sequence sizes.
Experimental trials have been carried out considering full-length sequences and
sequence fragments that simulate a very common scenario in which only environ-
mental samples are available. In the case of full-length sequences, 6 out of 8 distance
models provided near perfect results, in terms of accuracy, precision and recall, with
scores ranging between 100 % at Phylum level and 90 % at Species level. The same
scores are reached using the k-NN classifier. Only correlation and cosine distance
did not provide acceptable results. In the case of sequence fragments, fractional
and city block distances only gave meaningful results: in the “Full vs. 200-bp”
scenario, accuracy ranged from 85 % at Phylum level to 57 % at Species level; in the
“200-bp” scenario, accuracy ranged from 95 to 100 % at Phylum level to 70-79 %
at Species level. In both scenarios our GRNN approach outperformed the k-NN
classifier. That means GRNN implementing fractional and city block distances was
able to correctly predict the similarity between original full-length sequences and
their corresponding sequence fragments. All the other distance model were affected
by a strong classification performance drop.
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