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Abstract In Artificial Neural Network (ANN) computing the learned knowledge
about a problem domain is “implicitly” used by ANN-based system to carry
on Machine Learning, Pattern Recognition and Reasoning in several application
domains. In this work, by adopting a Weightless Neural Network (WNN) model of
computation called DRASiW, we show how the knowledge of a problem, internally
stored in a data representation called “Mental” Image (MI), can be made “explicit”
both to perform additional and useful tasks in the same domain, and to better tune
and adapt WNN behavior in order to improve its performance in the target domain.
In this paper, three case studies of MI processing in the realm of WNN applications
are discussed with the aim of proving the viability and the potentialities of exploiting
internal knowledge of WNNs to self-adapt and improve their performance.
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1 Introduction

In traditional ANNs the knowledge about a problem domain is coded in the
configuration of synaptic weights between neurons. The goal of the ANN training
phase is to find the optimal configuration of weights that allows the network to
properly generate the expected outputs in the classification/recognition phase. The
configuration of weights can be considered as the internal state of the network. How
it is obtained and changed during the network operation is a matter of the particular
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ANN model adopted. What is important is that, once the network architecture
(i.e., layers, number of neurons per layer, and connection paths) is set, the ANN
configuration of weights fully characterizes its behavior.

RAM-based neural networks are alternative models of ANNs in which the
learned knowledge about the problem domain is coded inside RAM-neuron contents
rather than on their interconnections. As in the classical weight-based ANNs, the
particular configuration of RAM cells is obtained in the training phases, either
if they are carried out in super-, semi- or unsupervised manner. At any time
during a RAM-based neural network operation, the configuration of RAM contents
represents the internal state of the network. Once we have set the RAM-based ANN
architecture (i.e., layers, number of neurons per layer, RAM bit address, type of
data stored, etc.), the “image” (snapshot) of RAM contents fully characterizes the
internal state of the ANN and, as a consequence, the image represents the knowledge
and the behavior of the ANN functioning.

Generally in ANN models this internal state is implicit. Although the internal
state of the learning process is coded by the information stored in the ANN
data structures (either weights or RAM contents), this information may not be
accessible by the neural-based system to be exploited in a computational meta-
level. In the RAM-based model of the ANN adopted in this work, the DRASiW
weightless model, this is possible thanks to a particular feature: the contents of
RAM-neurons not only characterize the network behavior, but they are also an
additional information explicitly available to the neural-based system, in such a way
that the ANN can process this information in a computing meta-level in order to
adapt and to tune its future behavior.

As in [10], our approach tries to make explicit the internal representation of
knowledge of an ANN with the aim of facilitating an interpretation (that can be
geometrical, physical, symbolic, etc.) of the learning process and of discovering its
correlation to the input. While authors do not suggest applications of the ANN inner
knowledge processing, in our work we prove with real case studies how to exploit
this knowledge to adapt to domain changes as well as to improve ANN performance
in the target domain.

Works like [13, 18] propose methods to interpret and to make explicit the ANN
internal knowledge by extracting the knowledge in form of rules (either symbolic
or fuzzy) with the only aim of using such rules to simulate the ANN behavior.
On the contrary, in our approach we exploit learned knowledge of an ANN to
improve and/or to adapt the performance of the same ANN, automatically and/or
with the user feedback, to a data domain which may change in time or may contain
incomplete and/or ambiguous information.

The fact that we start from an already trained ANN and we refine its performance,
by extracting and exploiting its internal knowledge, makes our approach also
different from others, like [21], in which the knowledge of an ANN trained on a
problem domain is used to extract a set of concise and intelligible symbolic rules
that can be used to “refine” an already existing rule-based system, which may have
an incomplete or even incorrect initial knowledge of the target problem.
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Another close topic is how to integrate explicit and implicit knowledge in neuro-
symbolic (hybrid) processing [15]. In this perspective the solution presented in our
work can be considered hybrid too. Regardless of how we explicitly represent the
mental images of ANNs, our intent is to exploit high-order characteristics of the
learned knowledge (macro quantities, invariants, etc.) as an additional information
to the neural-based system to improve its performance.

This chapter is organised as follows. Sections 2 and 3 are devoted to the
introduction of the DRASiW model and its internal knowledge representation
(“Mental” Images). Section 4 shows and discusses three different applications in
which the use of “Mental” Images in the computational process improves the
performance of the DRASiW systems. Finally, Sect. 5 sums up concluding remarks
and perspectives.

2 DRASiW Model

Weightless Neural Networks (WNNs) [1, 12], differently from classical ANNs,
adopt a RAM-based model of neuron by which learning information about a
data domain is stored into RAM contents instead of computed weights of neuron
connections. A RAM-neuron receives an n-bit input that is interpreted as a unique
address (stimulus) of a RAM cell, and used to access it either in writing (learning)
or reading (classification) mode. WNNs have proved to provide fast and flexible
learning algorithms [2].

WiSARD systems are a particular type of WNN, that can be developed directly
on reprogrammable hardware [3]. A WiSARD is composed by a set of classifiers,
called discriminators, each one assigned to learn binary patterns belonging to a
particular class. The WiSARD, also called multi-discriminator architecture, has as
many discriminators as the number of classes it should be able to distinguish.

Each discriminator consists of a set of RAM-neurons, which store the informa-
tion of occurrences of binary patterns during the learning stage. Given a binary
pattern of size s, the so-called retina, it can be classified by a set of WiSARD
discriminators, each one having m RAMs with 2n cells such that s D m � n. Since
each RAM cell is uniquely addressed by an n-tuple of bits, the input pattern can be
partitioned into a set of n-tuples of bits, each one addressing one cell of a RAM.
n-tuples of bits are pseudo-randomly selected and biunivocally mapped to RAMs
(see right part of Fig. 1), in such a way that the input binary pattern is completely
covered.

The WiSARD training phase works as follows:

1. Initialization: all RAMs cells for each discriminator are set to 0.
2. Training set selection: a training set of binary patterns, all with the same size, is

selected; each pattern is known to belong to (and to represent) only one class.
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Fig. 1 RAM-neuron (left) and WiSARD discriminator (right)

3. Training: for each training pattern the discriminator assigned to the belonging
class is selected; the pseudo-random mapping is used to define, from the binary
pattern, all n-tuples; each n-tuple forms a unique address of a RAM cell of the
discriminator, whose content is set to 1.

After training, if a RAM cell is set to 0 then the n-tuple of bits in the retina,
corresponding to physical address (in binary notation) of that memory cell, never
occurred across all samples in the training set, otherwise it occurred at least in one
sample.

The WiSARD classification phase works as follows:

1. Test set selection: a test set of binary patterns, all with the same size, is selected;
for each sample of the test set we want to know which category it belongs to.

2. Classification: the pseudo-random mapping is used to extract, from each test
pattern, the n-tuples of bits in such a way to identify RAM cells to be accessed
across all discriminators; contents of accessed cells are summed by an adder (†)
so giving the number r of RAMs that output 1; r is called discriminator response.

It is easy to see that r D m if the input pattern belongs to the training set. While
r D 0 if no n-tuple of bits in the input pattern appears in the training set. Intermediate
values of r express a “similarity measure” of the input pattern with respect to
training patterns. The adder enables a network of RAM-neurons to exhibit (like
ANN models based on synaptic weights) generalization and noise tolerance [2].

DRASiW [8] is an extension of WiSARD: instead of having RAM cells set to 1
once accessed during training, they are incremented by 1 at each access. Thus, after
training, RAM contents store the number of occurrences (frequency) of a specific
n-tuple of bits across training patterns. The new domain of memory cells contents
(non negative integers) produces the same classification capability of a WiSARD
provided that † counts the number of addressed non-zero memory cells.

The DRASiW model augments the WiSARD model adding a backward classifi-
cation capability by which it is possible to generate prototypes (i.e., representative
samples) of classes learned from training patterns [11, 19]. In DRASiW, RAM-
neuron cells act as access counters, whose contents can be reversed to an internal
“retina” storing a “Mental” Image (MI). Memory cell contents of DRASiW
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discriminators can hence be interpreted as sub-pattern frequencies in the training set.
The MI and the internal “retina” metaphors were originally explored and discussed
with respect to their cognitive plausibilities in [6].

3 Mental Images

There are two different ways a DRASiW system can produce MIs: statically and
dynamically. Static MIs are generated after the training phase and do not change
anymore. They represent a pictorial representation of the discriminator internal
information. Let consider the 12 instances of black “7”s, reported in Fig. 2a, as the
training set for the class “seven”. An example of static MI produced by a DRASiW
system trained on this training set, is reported in Fig. 2b. This gray level, non-
crisp example of class “seven” is the result of how the sub-patterns appear in the
training set. In fact, the gray levels are generated taking into account the sub-pattern
frequencies.

Another way of producing MIs is to update them each time the system receives
a new training set pattern. This mode, also called online training, is by far one
of the more interesting operation mode of a DRASiW system. There are many
applications in which the system has to adapt to the new and changing appearance
of the pattern to classify. The only way to face this problem is to update and store
the new information in the MIs. The system updates the MIs each time it receives a
new pattern. In Fig. 2c, the reader can notice how the MI changes with respect to the
input of patterns. The first MI is produced just with the first “7”. The second one is
produced by increasing the gray level of those pixels in common with the previous
pattern (more frequent pixels). All the other MIs are the result of applying this
procedure each time a new pattern is presented to the system. The MI in Fig. 2d is
the result at the end of the process. To sum up, RAM contents corresponding to sub-
patterns of the binary input on the retina are increased by one (reinforcement), while
RAM contents corresponding to those sub-patterns which were not present in the
binary input image on the retina are decremented by one (forgetting). In other words,

Fig. 2 Static and dynamic mental images: (a) training patterns; (b) static MI; (c) dynamic MI after
each training pattern; (d) dynamic MI at the end of training
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the Reinforcement & Forgetting strategy (RF) allows to store the frequency of sub-
patterns occurrences during training time. In this way the MI stored and updated in
time represents a sort of dynamic prototype (history) of the corresponding class.

4 Improving DRASiW Performance

The first two applications reported in the following subsections deal with the
problems of tracking deformable objects and of isolating the background in video
sequences. Both of these applications take advantage of dynamic MIs. The third
application faces the problem of classification through features. In this case,
the information coded in MIs is exploited by the system to identify a set of
“metaclasses” used to better refine and improve the classification process.

4.1 Tracking Deformable Objects

In the realm of object tracking systems [22], many real life scenarios, which span
from domestic interaction to industrial manufacturing processes, pose hard chal-
lenges. In particular, when the object is non-rigid, deformable, and/or manipulated
during the tracking, both its position and deformation have to be followed.

In [20] we present a DRASiW system designed and implemented for tracking
deformable objects. It supports online training on texture and shape of the object,
with the aim of adapting in real-time to changes and of coping with occlusions.
This object tracking system deals with Pizza Making problem. Pizza is a non-rigid
deformable object that can assume whatever shape we want. Hence, it is not possible
to define a model for the tracking. In this context, the system should be able to
dynamically identify the pizza dough and robustly track it without prior knowledge.

At the beginning, the tracking system is fed with an image representing the
object to follow with its initial shape and position. This image is used to train a set
of DRASiW discriminators: one discriminator is placed at the target position, the
remaining discriminators are placed all around the target position with increasing
displacements in the XY directions. The configured set of discriminators forms
the so called prediction window of the tracking system. When the object starts
moving, the DRASiW-based tracking system tries to localize the object through
the discriminator responses. The higher is the response the more probable the object
is in that part of the prediction window processed by that discriminator. Once the
system localizes the object in a new position, it uses this image to train again the set
of discriminators in the prediction window which is also displaced jointly to the
target. So doing, the MI of the object is updated and, hence, it will represent the
more recent object shapes.

Figure 3 shows snapshots of pizza making actions: manipulation, dough stretch-
ing, seasoning, and backing. The outputs of the DRASiW system are represented
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Fig. 3 Sketches of the DRASiW tracking system results in a frame sequence (top row), and
corresponding MIs (bottom row)

by colored crosses. The green cross represents the retina center of the discriminator
with the higher response; while the red cross is the mass center of the current MI.

As one can notice, the tracking results improve if the DRASiW system takes
into account the information given by the updated MI. We could not reach the same
performance if the information contained in the current MI had not been exploited
by the system tracking procedure.

4.2 Generating Background Models

Change Detection (CD) is the problem of separating foreground objects from
background areas in a video sequence. Several techniques and solutions have been
proposed to face the CD problem. Evaluation and comparison surveys of existing
techniques can be found in [5, 14, 16, 17]. Regardless of the specific applied
method,1 most approaches share the basic idea of insulating moving objects from the
background by comparing image areas of new video frames with respect to either a
background model or a model of the target moving objects. Background models can
also be classified as pixel-based or region-based depending on whether computation
is based on only the pixel color or a neighborhood of pixels.

In [9] a CD method based on DRASiW is proposed. It exploits a pixel-based
background model built around the notion of MI. In the approach, pixel processing is
carried out by a DRASiW discriminator. The information stored in neurons is related
to the evolution of changeable pixel color in the video timeline. The dynamic MI
associated to each pixel represents the dynamic background model of it, that is the
storing in time of more frequent and up-to-date RGB values assumed by that pixel in
video frames. The RF mechanism (see Sect. 3) allows to dynamically adapt the MI
in such a way that, during the video timeline, not up-to-date RGB values gradually
disappear from the background model while new and stable colors of recent frames

1Just to mentions a fews: physical models, statistical methods with Gaussian mixtures, pixel
clustering, image filtering (Kalman, Grabcut, etc.), particle filters and neuron network modeling.
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Fig. 4 Outputs of the DRASiW-based CD method: (a) original frame; (b) moving objects
highlighting; and (c) MI background model

will contribute more in the background model. The dynamic MI of pixels allows
to better adapt the background model to gradual changes in brightness of lights
and shadows as well as to natural background noise. Foreground object detection
is carried out by evaluating whether the difference between the current pixel color
and the stored MI model of the background overcomes a certain threshold. A queue
of more recent foreground samples is used to control the time the pixel stays in the
foreground. When the queue is full it means that an object was moved to a position
of the scene and it has become part of the background.

In Fig. 4 snapshots showing the outputs of the DRASiW-based CD method2 are
reported. As one can notice, MIs are not only used to fully control the change
detection process, but also to filter the input video in order to accomplish two
important tasks in video surveillance: 1) moving objects highlighting (see Fig. 4b);
2) subtracting changeable areas from video frames (see Fig. 4c).

4.3 Improving Classification

Activity Recognition aims at identifying the actions carried out by a person given a
set of observations of itself and the surrounding environment [7]. Recognition can
be accomplished, for example, by exploiting the information retrieved from inertial
sensors, such as accelerometers. In some smartphones these sensors are embedded
by default and one can benefit from this to classify a set of physical activities
(standing, sitting, laying, walking, walking upstairs and walking downstairs) by

2The proposed method participated in the international competition of CD methods on the video
repository ChangeDetection.net in 2014, reporting the 3rd best score.

http://www.changedetection.net
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processing inertial body signals through a supervised Machine Learning algorithm
for hardware with limited resources [4].

We tried to classify this set of physical activities with DRASiW trained and tested
on the HAR3 (Human Activity Recognition) data set of the UCI Machine Learning
Repository. The data set consists of 10,299 instances: 7352 for the training set,
and 2947 for the test set. Each instance is formed by 561 features with time and
frequency domain variables.

The confusion matrix obtained with the best DRASiW system configuration
(16-bit addressing for RAM cells) performing an F-measure of 89.7, is shown in
Table 1a. The confusion matrix of the Table 1b reports the F-measure obtained by
the same DRASiW system configuration but exploiting the information content of
the static MIs. The DRASiW system automatically analyses the MIs to identify
features with a very high discriminating power. The analysis outcome is that the six
classes can be grouped in three different “metaclasses”: walking (classes 1, 2, and 3),
vertical activity (classes 4 and 5), horizontal activity (class 6). This is automatically
discovered by the DRASiW system finding out MI overlappings. For the above
metaclasses, the MIs have no intersection (no confusion). At this point, when the
DRASiW system has to classify a test sample, it first selects the best-matched
metaclass, then it classifies the test sample using only discriminators belonging to
that metaclass. The result of this new two-level classification approach is that the
confusion matrix is now almost diagonalized (see italic values in Table 1b), and the
F-measure reaches the value of 94.1, that is, the system improved its classification
power by 4.4 %.

5 Conclusions

The DRASiW model makes available the learned knowledge in form of an internal
data structure called “Mental” Image. This information, which is the synthesis of the
learning process, is explicitly available at the programming level and it can be used
in several application domains. In this paper we showed how exploitation of MIs, in
the context of a DRASiW computational process, allows to pursue different goal-
s/tasks: 1) using global metrics and/or invariants of MIs as additional information
(feedback) the system can take advantage of in order to control its functioning (self-
healing); 2) verifying the correctness of a training procedure; 3) tuning/adapting
classification process by detecting and exploiting more discriminating regions in
MIs; 4) facilitating user-system interface and communication.

3https://archive.ics.uci.edu/ml/machine-learning-databases/00240/.

https://archive.ics.uci.edu/ml/machine-learning-databases/00240/
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We are aware that the natural unfolding of this work is looking for new ways
of using MIs in the context of neurosymbolic systems. Indeed, this is the main
investigation direction we will pursue in the next future on this topics. Although it
would be nice to have a general formalism and/or (rule-based) high-order language
to express the information contained in MIs, we are afraid that any choice would be
inevitably effective only in a specific (or class of) problem domains.

References

1. Aleksander, I., De Gregorio, M., França, F.M.G., Lima, P.M.V., Morton, H.: A brief intro-
duction to weightless neural systems. In: Proceedings of the 17st European Symposium on
Artificial Neural Networks, pp. 299–305 (2009)

2. Aleksander, I., Morton, H.: An Introduction to Neural Computing. Chapman & Hall, London
(1990)

3. Aleksander, I., Thomas, W.V., Bowden, P.A.: WISARD a radical step forward in image
recognition. Sensor Rev. 4, 120–124 (1984)

4. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes–Ortiz, J.L.: A public domain dataset
for human activity recognition using smartphones. In: Proceedings of the 21st European
Symposium on Artificial Neural Networks, pp. 437–442 (2013)

5. Bouwmans, T.: Recent advanced statistical background modeling for foreground detection: a
systematic survey. Recent Patents Comput. Sci. 4(3), 147–176 (2011)

6. Burattini, E., De Gregorio, M., Tamburrini, G.: Generation and classification of recall images
by neurosymbolic computation. In: Proceedings of the 2nd European Conference on Cognitive
Modelling, pp. 127–134 (1998)

7. Davies, N., Siewiorek, D.P., Sukthankar, R.: Activity-based computing. IEEE Pervasive
Comput. 7(2), 20–21 (2008)

8. De Gregorio, M.: On the reversibility of multi-discriminator systems. Technical Report 125/97,
Istituto di Cibernetica, CNR (1997)

9. De Gregorio, M., Giordano, M.: Change Detection with Weightless Neural Networks, IEEE
Change Detection Workshop – CVPR 2014, pp. 403–407 (2014)

10. Feng, T.J., Houkes, Z., Korsten, M., Spreeuwers, L.: Internal measuring models in trained
neural networks for parameter estimation from images. In: IPA, pp. 230–233 (1992)

11. Grieco, B.P., Lima, P.M.V., De Gregorio, M., França, F.M.G.: Producing pattern examples from
“mental” images. Neurocomputing 73(79), 1057–1064 (2010)

12. Ludermir, T.B., Carvalho, A.C., Braga, A.P., Souto, M.C.P.: Weightless neural models: a review
of current and past works. Neural Comput. Surv. 2, 41–61 (1999)

13. Mantas, C., Puche, J., Mantas, J.: Extraction of similarity based fuzzy rules from artificial
neural networks. Int. J. Approx. Reason. 43(2), 202–221 (2006)

14. Mc Ivor, A.: Background subtraction techniques. In: International Conference on Image and
Vision Computing New Zealand, IVCNZ (2000)

15. Neagu, C.D., Palade, V.: Neural explicit and implicit knowledge representation. In: Proceed-
ings of the 4th International Conference on Knowledge-Based Intelligent Engineering Systems
and Allied Technologies, vol. 1, pp. 213–216 (2000)

16. Panahi, S., Sheikhi, S., Hadadan, S., Gheissari, N.: Evaluation of background subtraction
methods. In: Digital Image Computing: Techniques and Applications, pp. 357–364 (2008)

17. Piccardi, M.: Background subtraction techniques: a review. In: IEEE International Conference
on Systems, Man and Cybernetics, pp. 3099–3104 (2004)

18. Sato, M., Tsukimoto, H.: Rule extraction from neural networks via decision tree induction. In:
International Joint Conference on Neural Networks, vol. 3, pp. 1870–1875 (2001)



44 M. De Gregorio and M. Giordano

19. Soares, C.M., da Silva, C.L.F., De Gregorio, M., França, F.M.G.: Uma implementação em
software do classificador WiSARD. In: 5th SBRN, pp. 225–229 (1998)

20. Staffa, M., Rossi, S., Giordano, M., De Gregorio, M., Siciliano, B.: Segmentation performance
in tracking deformable objects via WNNs. In: Robotics and Automation (ICRA) (2015)

21. Towell, G., Shavlik, J.: Extracting refined rules from knowledge-based neural networks. Mach.
Learn. 13(1), pp. 71–101 (1993)

22. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), pp. 1–45
(2006)


	Exploiting ``Mental'' Images in Artificial NeuralNetwork Computation
	1 Introduction
	2 DRASiW Model
	3 Mental Images
	4 Improving DRASiW Performance
	4.1 Tracking Deformable Objects
	4.2 Generating Background Models
	4.3 Improving Classification

	5 Conclusions
	References


