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Abstract Embryonic Stem Cells (ESCs) are of great interest for providing a
resource to generate useful cell types for transplantation or novel therapeutic studies.
However, molecular events controlling the unique ability of ESCs to self-renew as
pluripotent cells or to differentiate producing somatic progeny have not been fully
elucidated yet. In this context, the Colony Forming (CF) assay provides a simple,
reliable, broadly applicable, and highly specific functional assay for quantifying
undifferentiated pluripotent mouse ESCs (mESCs) with self-renewal potential. In
this paper, we discuss first results obtained by developing and using automatic soft-
ware tools, interfacing image processing modules with machine learning algorithms,
for morphological analysis and classification of digital images of mESC colonies
grown under standardized assay conditions. We believe that the combined use of
CF assay and the software tool should enhance future elucidation of the mechanisms
that regulate mESCs propagation, metastability, and early differentiation.
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1 Introduction

Application of image analysis and machine learning algorithms and tools to cell
biology is a very active research field aimed to provide fast and objective methods
for analyzing the large amount of images produced by modern high-throughput
screening platforms available in biological research laboratories [3, 20, 22, 25].

In this work we describe first results related to the development of a multi-
component software framework devoted to define automated morphological
analysis and classification of Embryonic Stem Cells (ESCs) colonies. The colony-
forming (CF) assay is widely used for monitoring the quality of ESC cultures as
it currently offers the most sensitive and specific method to quantify the frequency
of undifferentiated cells present in a culture. Moreover, it provides a reliable tool
also for evaluating quantitative changes in pluripotent cell numbers, following
manipulations that may affect the self-renewal and differentiation properties of the
treated cells. In a clonogenic assay, under specific supportive conditions, pluripotent
mouse embryonic stem cells (mESCs) form tridimensional round-shaped (domed)
colonies. After the exposure to conditions that affect their metastability promoting
an Epiblast-like phenotype [4] or induce differentiation, cells loose the ability to
grow tridimensionally and form irregular and flattened (flat) colonies. The 4-day CF
assay, by detecting the ability of mESCs to form domed or flat colonies, allows the
composition of test cell populations to be quantified at the single cell level. However,
to achieve acceptable statistical accuracy, a high number of cell colonies is required.
In this regard, manual counting and classification are tedious, time-consuming,
resource-intensive and subjective (operator-dependent). Therefore, the development
of a reliable automated colony counter and classifier for such clonogenic assays
would reduce time and resources required, while allowing greater statistical
accuracy, standardization and reproducibility, thus offering the possibility for
greater throughput over extended periods. To this aim, we proposed an experimental
software tool which is able to automatically discriminate and quantify domed
colonies, raising from undifferentiated self-renewing mESCs, and flat colonies,
derived from undifferentiated Epiblast-like or differentiating cells. It is a multi-
component framework interfacing different general-purpose software modules,
implementing highly accurate algorithms for image pre-processing (spanning from
region of interest identification to background removal), segmentation, and feature-
based classification. Trained on untreated reference samples as well as on samples
treated with reference compounds, the prototypal version of the software has been
tested on a dataset of 40 microscopy images of single wells containing cells grown in
different conditions. Comparison of the first results from automated versus manual
colony segmentation and classification on randomly chosen images proved that the
proposed tool is promising to be used as blind tool to support reliable analysis of
molecular screening.
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The paper is organized as follows. In Sect. 2 we describe the software com-
ponents, both in terms of functionality and of main models and algorithms. In
Sect. 3 we present first results and provide a quantitative performance analysis
referring to usual performance metrics for segmentation and classification problems.
Conclusions are drawn in Sect. 4.

2 Software System Components

According to the typical image analysis pipeline for High-Content Analysis [22],
the proposed steps for automatically discriminating domed and flat colonies in
microscopy images can be summarized as follows:

1. Pre-processing, to reduce image artifacts caused by imperfections in the image
acquisition process.

2. Segmentation, to separate the cell colonies in each well image.
3. Feature computation, to provide numerical descriptors of each segmented

colony.
4. Classification, to finally provide the discrimination and quantification of domed

and flat colonies, based on the most discriminating features.

2.1 Pre-Processing

Input images are initially pre-processed, in order to allow an easier and more
accurate segmentation of ESC colonies.

First of all, the well area is extracted by the whole image, in order to focus on the
actual region of interest (ROI) in all subsequent steps, as exemplified in Fig. 1. This
allows us to reduce not only the computational complexity of the entire procedure,
but also the potentially misleading influence of non interesting image details (e.g.,
shadows and dark areas around the well, as shown in Fig. 1-a).

Fig. 1 Extraction of the ROI: (a) original image; (b) circular ROI of the well; (c) obtained sub-
image, which will be the input for subsequent steps (non interesting pixels shown in black)



20 L. Casalino et al.

Relying on the strong intensity discontinuities (edges) provided by the well
borders, the circular ROI is accurately obtained through the Hough Transform [10],
a powerful tool for the detection of parametric curves in images. It implements
a voting process that maps image edge points into manifolds in an appropriately
defined parameter space; peaks in this space correspond to the parameters of
detected curves. Specifically, the Circle Hough Transform is designed to determine
the parameters of a circle when a number of points that fall on its perimeter
are known. A circle with radius r and center (x0; y0) can be described with the
parametric equations

�
x D x0 C r cos �

y D y0 C r sin �
:

When the angle � sweeps through the full 360 degree range, the points (x; y)
trace the perimeter of the circle. An image edge point (x; y) is mapped to the 3D
parameter space (x0; y0; r), voting for all the circles that it could lie on. These votes
are accumulated in a 3D array, whose maxima provide the parameters of most
prominent circles. In the case of our single-well images, the accumulator maximum
provides the well center pixel coordinates and the radius.

The next pre-processing step estimates and then removes the well background,
in order to avoid the influence of eventual uneven illumination, as exemplified in
Fig. 2. The goal is achieved through mathematical morphology operations [21],
that, based on set theory, provide a tool to extract image components useful for
the representation and description of region shape, and for pre- and post-processing
of images.

Specifically, we relied on closing top-hat filtering, an operation that extracts small
elements and details from a given image. Let f be a grayscale image, and let b be a
grayscale structuring element. The closing top-hat transform of f (sometimes called
the bottom-hat transform or the black top-hat transform) is given by:

Tb.f / D f � b � f ;

Fig. 2 Background estimation and removal: (a) input image (green color band of the image in
Fig. 1-c); (b) estimated background; (c) obtained image, with background removed
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where � indicates the closing operation. It returns an image containing the objects
that are smaller than the structuring element and are darker than their surroundings.
In the case of our images, morphological closing f � b using a structuring element
b having size greater than any expected cell colony removes all the colonies,
thus providing a faithful approximation of the well background (see Fig. 2-b). The
subsequent subtraction of the original image by the estimated background provides
a uniformly illuminated image of the cell colonies, as shown in the normalized result
reported in Fig. 2-c.

2.2 Segmentation

In order to partition each well image into its constituent objects (ESC colonies and
background), we devised two different approaches. In the first approach, the image
resulting from pre-processing is binarized through Otsu’s method [17] (see Fig. 3-b)
and then refined through binary morphological operations. Specifically, refinement
involves morphological closing for removing small holes, hole-filling for removing
internal holes, and removal of very small objects, i.e., small cell colonies or generic
particles of no biological interest (see Fig. 3-c).

A second approach is based on a well-known variational model, for which we
recently proposed efficient numerical solvers [9] with the final aim to develop
software modules for modern high-performance environments [8]. In the following
we briefly describe the model and the main features of the numerical approach and
discuss the subsequent refinement of variational-based segmentation for application
to the cell identification problem.

The image segmentation problem can be mathematically formulated in terms of
a variational model, i.e., in terms of an energy minimization criterion. We look for a
piecewise smooth function u which approximates the original image function f , with
u discontinuous across a closed set K that is included in the image domain ˝ and
represented by a suitable function z. In more details, let ˝ � <2 be a bounded open

Fig. 3 First approach to ESC colonies segmentation: (a) input image (the pre-processed image of
Fig. 2-c); (b) binarized image; (c) refined binarized image
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set and f 2 L1.˝/ the observed gray-level image. The problem can be described
in terms of the minimization of the following functional:

E�.u; z/ D
Z

˝

.u � f /2dxdy C ˇ

Z
˝

z2jruj2dxdy C ˛

Z
˝

�
�jrzj2 C .z � 1/2

4�

�
dxdy;

where u 2 C1.˝ n K/, 0 � z � 1 is a function which controls jruj and gives an
approximate representation of the set K, ˛ and ˇ are positive coefficients and � is
a positive sufficiently small parameter. The choice of the parameter set, especially
of �, affects the accuracy in the detection of K and it is a main drawback in the
numerical solution of 1. Our approach for the solution of 1, known as the Ambrosio-
Tortorelli model or phase-field approximation of the Mumford-Shah model [1],
is based on the classical approach of Calculus of Variations which consists in
writing the corresponding Euler-Lagrange equations, representing the necessary
conditions for the minimizer. Euler-Lagrange equations for 1 are a non-linear system
of elliptic partial differential equations coupled with Neumann conditions, which
can be solved by finite-difference discretization. We proposed to apply a second-
order finite-difference scheme and, starting from a block form of the resulting
algebraic equations, we applied a first-order alternating minimization scheme based
on the non-linear Gauss-Seidel method, accelerated by inner linear iterations. Our
numerical results and comparisons with standard numerical techniques show the
efficiency and the robustness of our solution approach for increasing sizes of cell
colony images. Details on the numerical scheme and on the above results are
discussed in [9]. Here, we only point out that results discussed in the following have
been obtained, starting from the preprocessed image obtained by the green band
of the original RGB image, when the parameters in 1 were set as follows: ˛ D 1,
ˇ D 2 and � D 10�3.

The obtained function z (see Fig. 4-a), also known as the edge set of the image,
represents the set K where the piecewise smooth function u (also known as the
restored image) is discontinuous and allow us to identify the borders of the cell
colonies. Indeed, starting from the edge set, we applied subsequent refinements,

Fig. 4 Second approach to ESC colonies segmentation: (a) edge set of the preprocessed image of
Fig. 2-c; (b) binarized version of the edge set; (c) refined binarized image
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Fig. 5 Examples of ESC colonies extracted from the image in Fig. 1: (a) a domed colony (size
about 4 % of the original image); (b) a flat colony (size about 7 % of the original image)

based on binarization (see Fig. 4-b), hole-filling for removing internal holes, and
finally removal of very small objects, analogous to those of the previously described
approach, which leads to the cell colony segmentation (see Fig. 4-c).

2.3 Features Computation

In order to classify the ESC colonies and be able to differentiate between domed
and flat ones, we designed a general approach to feature selection and classification,
based only on distinctive feature estimates that can be computed by the available
images.

The most distinctive features that allow the biologist to discriminate the two
kinds of colonies concern their shape: domed colonies appear compact and rounded,
as opposed to flat colonies that spread more or less throughout the well (see Fig. 5)
This prior knowledge is exploited by using geometric models locally estimated for
each colony in a well. Among the considered shape features, the most significative
are those reported in Table 1. The Area A.X/ provides the number of pixels of the
object (colony) X and the Perimeter P.X/ is computed as the sum of the distances
between consecutive pairs of boundary pixels of X. Solidity S.X/ is given by the
ratio of the area A.X/ of the object X and the area A.CH.X// of its convex hull [5].
Solidity ranges in [0,1], producing low values when the shape of the object shows
many concavities (as in the flat colonies) and high values when the shape of the
object shows few or zero concavities (as in the domed colonies). The irregularity of
a contour is expressed through Compactness C.X/ [7], given by the ratio between
the area A.X/ of the object and P2.X/=4� , the area of a circle having the same
perimeter P.X/ as the object. Indeed, this feature, ranging in [0, 1], provides low
values for scarcely compact shapes (as in the flat colonies) and high values for
compact shapes (as in the domed colonies), reaching its maximum for the most
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Table 1 Some of the adopted shape (S) and texture (T) features and their values for
the ESC colonies of Fig. 5

Feature Description
Value for
Fig. 5-a

Value for
Fig. 5-b

(S) Area A.X/ = # pixels of object X 1512 3258

(S) Perimeter P.X/ = length of border of object X 153:09 496:54

(S) Solidity S.X/ = A.X/=A.CH.X// 0:93 0:65

(S) Compactness C.X/ = 4�A.X/=P2.X/ 0:81 0:18

(T) Entropy H.X/ = � P
i

P
j M.i; j/ log2 M.i; j/ 6:75 6:96

(T) Contrast CN.X/ =
P

i

P
j.i � j/2M.i; j/ 0:28 0:30

(T) Energy E.X/ =
P

i

P
j M.i; j/2 0:37 0:14

(T) Correlation CR.X/ =
P

i
P

j.i��i/.j��j/M.i;j/p
.�2

i /.�2
j /

0:96 0:95

compact shape: the circle. Other adopted shape features are: Eccentricity, that is
the eccentricity of the minimum area ellipse including the colony image; Min and
Max axis length, that are the minimum and the maximum axis length of the ellipse
containing the colony image, respectively; Nsegments, that gives the ratio of the
number of contour segments and the area of a colony image.

Besides shape estimates, textures have also been considered. In an image, the
intensity variations which define a texture are mostly related to physical variations
in the scene (such as pebbles on the ground). It is very difficult to model these
variations and no precise definition of texture is present in computer vision literature
[6]. For this reason, textures are usually characterized by intensity value variations
in the two-dimensional space of an image. The adopted texture features of each
object can be described in terms of the gray-level co-occurrence matrix (GLCM)
[13], that allows us to capture the spatial dependence of gray-level values which
contribute to the perception of texture, by showing how often different combinations
of pixel brightness values occur in an image. The GLCM matrix is a square matrix
M of dimension n, where n is the number of different gray levels in the image.
Each element M.i; j/ is generated by counting the number of times a pixel in X
with gray value i is adjacent to a pixel in X having gray value j. Each element
M.i; j/ is then normalized so that the sum of all elements of M is equal to 1, and can
thus be considered as the probability of occurrence of adjacent pixel pairs having
gray level values i and j in the image. Among the considered texture features, the
most significant are those reported in Table 1. The Entropy H.X/ measures the
randomness of the gray-level distribution in the colony image X, while the Contrast
CN.X/ is a measure of the intensity contrast between a pixel and its neighbors
over X, assuming null value for a constant image. The Energy E.X/ yields the
smallest value when all entries in M are equal; it is 1 for a constant image. The
Correlation CR.X/ measures the dependency of gray levels on those of neighboring
pixels. Further texture features that have been considered are the Homogeneity,
that measures the closeness of the distribution of elements in the GLCM to the
GLCM diagonal, and Centropy and Bentropy, that measure the entropy of color and
grayscale colony image, respectively.
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2.4 Classification

In machine learning, supervised classification methods aim at inferring a classi-
fication rule from a class-labeled set of examples described by a set of features.
The inferred rule is then used for predicting the class of further unlabeled data.
Therefore, a classifier can be considered as a mapping from a feature space to a set
of classes. There exist several classifiers in literature, since there are several ways
of building up such a mapping. For example, the mapping can be described by a
set of induction rules, like in the tree-based classifiers, or the classifiers may be
expressed as a linear separator in the original feature space, like for the perceptron
or the support vector machines (SVM) classifiers. The choice of a good classifier is
not a simple task, as it depends on several choices [14], including the complexity of
the classification rule, the size of the training set, and the number of features.

For the classification of ESC colonies into domed and flat ones, we trained a
set of binary classifiers from a set of labeled images described by the selected
features (see Sect. 2.3). The classifiers have been chosen based on the criterion that
the classification rule can be expressed either by a set of induction rules or by an
easy interpretable mathematical function, where the importance of each feature in
the classification rule is easily interpretable. This suggests which features are more
relevant for labeling an image.

Specifically, we adopted three classifiers based on decision trees, that return
induction rules for deciding the label of an instance: CART [2], J48 [19] and
Adaboost [11] using as weak learners CART classifiers (AdaboostCCART). Among
the classifiers searching for a linear separator in the feature space between instances
with different labels, we used two versions of the SVM classifier: the SVM linear
[24] and the SVM linear with hinge loss [18]. Finally, we adopted the Naïve Bayes
classifier [15], a probabilistic algorithm which assigns a probability to each instance
for each label, according to the highest label probability. All the above classifiers are
available through the open source Weka software [12], that allows testing several
classifiers in a very user friendly way.

3 Experimental Results

The proposed software framework has been tested on images of a CF assay done
by plating mESCs in 96-well plates at the density of 500 cells=cm2 in medium
for propagation of undifferentiated cells (with Lif and serum). After cell adhesion
(4 h), cells were treated with reference compounds controlling their metastability
or differentiation, L-Proline [4] and Retinoic Acid [23], respectively, added at three
different concentrations and allowed to grow for 4 days. Single well bright field
images were acquired under a Leica MZ16FA stereo microscope.
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Randomly chosen images of treated and untreated wells have been manually
annotated, in order to provide the ground-truths for objective evaluation of the
software components.

3.1 Performance Metrics

Validation of all the system modules has been performed in terms of different
metrics frequently adopted in the literature [16], namely Precision and Recall

Recall D TP

TP C FN
; Precision D TP

TP C FP
;

where TP; FN; and FP indicate the total number of true positives, false negatives,
and false positives, respectively. Recall, also known as detection rate or sensitivity,
gives the percentage of detected true positives as compared to the total number of
true positives in the ground truth. Precision, also known as positive prediction, gives
the percentage of detected true positives as compared to the total number of items
detected by the method. Using the above mentioned metrics, generally a method
is considered good if it reaches high Recall values, without sacrificing Precision.
A further metric F1, also known as F-score or F-measure, given by the weighted
harmonic mean of Precision and Recall

F1 D 2 � Recall � Precision

Recall C Precision
;

provides a single measure that can be used to “rank” different methods.
For validating the classification accuracy, we adopted also the False Positive Rate

(FPR)

FPR D FP

FP C TN
;

where TN indicates the total number of true negatives.

3.2 Evaluation of the Segmentation Step

For the segmentation step, Recall, Precision, and F1 metrics have been adopted both
as pixel-based and as object-based measures, depending on wether true positives
(resp. false negatives) are intended as true positive (resp. false negative) pixels or
objects (colonies), respectively. While the pixel-based measures provide hints on
the fine-grain segmentation accuracy, the object-based measures provide hints on the
colony counting ability of the proposed modules. Average segmentation accuracy of
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Table 2 Average segmentation accuracy of the two segmentation
approaches

Approach1 Approach 2

Metric Pixel-based Object-based Pixel-based Object-based

Recall 0.7246 0.9194 0.8793 0.8387

Precision 0.9663 0.9344 0.8826 0.9630

F1 0.8282 0.9268 0.8809 0.8966

Fig. 6 Evaluation of the segmentation step: details of the original image of Fig. 1 (first column),
of the ground truth (second column), and of corresponding results obtained by the first and second
segmentation approaches (third and fourth column, respectively). Green pixels superimposed on
the original image indicate pixels included into the segmentation

the two segmentation approaches in term of the above metrics is reported in Table 2
and some details of the achieved results are reported in Fig. 6. The higher pixel-
based accuracy values of the second approach (fourth column of Table 2) indicate
a better ability of the variational model-based segmentation to precisely detect the
colony contours (e.g., compare Figs. 6-g and 6-h). However, this ability leads also
to fuse different colonies that are very close (e.g., see Fig. 6-d), resulting in lower
object-based accuracy values (fifth column of Table 2).

Both the approaches report very few false positives and false negatives. Examples
of false positives, e.g., segmented colonies that have no interest for the biologist, are
reported in Figs. 6-g and 6-h, where the detected small colony has been excluded by
the biologist in the ground truth reported in Fig. 6-f. Most of the false negatives
are linked to adjacent colonies, barely distinguishable by an untrained human
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eye, that are segmented as a single colony. An example is given in the third row
of Fig. 6, where the adjacent colonies of the original image (Fig. 6-i) have been
manually segmented in the ground truth as two separate colonies (Fig. 6-j) based
only on the biologist experience. The two approaches, instead, both provide a
single segmented colony (Figs. 6-k and 6-l). This analysis of false positives and
false negatives suggests that features other than contrast or edges, able to better
describe the discrimination ability of the trained eye, could help avoiding the few
segmentation errors reported. Hints could be provided by the subsequent steps of
feature computation and feature-based classification.

Although the segmentation results are quite accurate for both the proposed
approaches, a suitable combination of them, together with a feedback from the
subsequent steps of feature computation and classification, could help further
improving segmentation accuracy.

3.3 First Classification Results

Each of the selected classifiers (see Sect. 2.4) has been trained using the selected
features (see Sect. 2.3) of the colonies included into the constructed ground truths.
The statistical validation of results has been obtained using a 10-fold cross
validation. This procedure consists in splitting the training set in ten parts; at each
step, one of those parts is used for testing and the remaining nine are used for
training. Therefore, the performance metrics have been evaluated as the average
among the one hundred repetitions of the ten-fold cross validation. Table 3 reports
the classification performance values for each classifier, suggesting that all the six
classifiers are very accurate in predicting the label of an instance. In the case of
SVM with hinge loss, the number of false positives is reduced up to 1 %. This
is exemplified in Fig. 7, where we compare the manual classification provided by
the biologist with the automatic classification computed using the SVM with hinge
loss for the well of Fig. 1. Table 4 reports the weights (one for each feature) of
the normalized equation of the hyperplane that separates domed vs. flat colonies in
the feature space. Positive weights are associated to domed colonies. The higher the
absolute value of the weights, the more the feature is relevant for discriminating

Table 3 10-fold cross validation of classification results

Classifier FPR Recall Precision F-measure

CART 0.040 0.96585 0.96593 0.96587

J48 0.032 0.96585 0.96635 0.96589

Adaboost+CART 0.024 0.97561 0.97563 0.97560

SVM linear 0.038 0.97073 0.97097 0.97076

SVM linear with hinge loss 0.010 0.98537 0.98540 0.98536
Naïve Bayes 0.024 0.97561 0.97568 0.97562
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Fig. 7 Example of classification results: (a) manual classification; (b) automatic classification
using SVM with hinge loss

Table 4 SVM with hinge loss: shape (S) and texture (T) features ordered by the absolute value
of (normalised) weights

Feature Weight Feature Weight Feature Weight

(S) Solidity 8.3231 (S) Eccentricity 3.4247 (T) Contrast 1.8952

(S) Compactness 7.5965 (T) Color �2.7622 (S) Perimeter �1.8120

(T) Correlation �6.4780 (S) Min axis length �2.6790 (T) Homogeneity 1.6923

(S) Nsegments 5.9170 (T) Centropy �2.4002 (S) Area �0.7793

(T) Energy 5.1318 (S) Max axis length �2.1554 (T) Bentropy 0.3709

the classes. Also the other classifiers1 confirmed that, as expected, Solidity and
Compactness shape features are the most discriminant features for our binary
classification. Among texture features, Correlation is the most relevant.

4 Concluding Remarks

In this paper we present a novel software framework for the segmentation and
classification of microscopic images obtained by CF assays of mESCs and suitable
for high-throughput applications. Our main aims were to use general-purpose soft-
ware components for image processing and machine learning, eventually developed
in different projects, to support biological experiments within a multidisciplinary
context. First results show that our approach is promising to be used as blind tool

1Detailed results may be supplied on demand.
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to support reliable analysis of molecular high-throughput screening. Future works
will include comparisons in terms of efficiency, reliability and flexibility with some
existing application-specific software tools and the development of a user-friendly
software interface for biologists without deep knowledge in computer programming.
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