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Abstract Exploratory Data Analysis (EDA) is an approach for summarizing and
visualizing the important characteristics of a data set, in order to make a prearranged
data screening and display multivariate data in a graphical way, to render them
more comprehensible. Moreover, it reveals hidden aspects within the simple
evaluations. In particular, EDA is suitable for datasets with comparable variables,
as structural-geometrical protein features. In this work, we analyzed some proteins
belonging to ten different architectural families. After retrieval, feature selection and
normalization stages, the dataset has been processed by means of simple correlation,
partial correlation and principal component analysis (PCA), highlighting family-
independent or family-specific relationships, and possible outliers for the dataset
itself. The results can be useful to connect these features to functional protein
properties.

Keywords Correlation * Exploratory data analysis ¢ Global features ¢ Principal
component analysis ¢ Protein structure

1 Background

Exploratory Data Analysis (EDA) is the process of looking through data to get a
basic idea of their structures and attributes, often with visualizations. EDA is a
graphical-statistical approach, almost a philosophy of research, applied to data in
order to make some aspects clearer and answer some questions about them. It is like
a magnifying glass that helps in:
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* leading towards a right interpretation of data;

* showing and summarizing data in a clear way;

* finding underlying relationships among observations and, main thing, among
variables.

It can be univariate or multivariate and can use graphical or not graphical
methods. A historical explanation can be found in [1]. Main point is that EDA
is essential in understanding data, because it can reinforce or undermine a priori
knowledge about observations and prepare data for the following inference step.

In the analysis of large data sets, an inevitable phase that must anticipate the
statistical analysis concerns getting and cleaning data. Data can be obtained from
a variety of sources: downloaded from online repositories, streamed on-demand
from online sources, automatically generated by physical apparatus interfaced to
a computer, generated by a computer software, manually entered in a spreadsheet
or text file. Data origin, management and storage are other issues related to the
getting part of the data analysis. Raw data retrieved are probably not in a convenient
format, because of semantic errors, missing entries, inconsistent formatting. Thus,
it is recommended to make a control on all variables and, if necessary, integrate
new ones from different sources that are coherent with the previous ones, in order
to create a tidy final dataset [2].

Investigations on protein structure and function represent a field of research in
which experimental techniques as well as computational methods are widely applied
[3-6]. Nevertheless, many aspects are still unsolved, in particular concerning the
relationships between structure and function of proteins. While successful methods
have been developed to “predict” the complex three-dimensional structure of a
protein from a simple structural information as the amino acid sequence, and are
largely applied in literature and by our research group [7-9], it is less investigated
the deep nature of the structural features and their relationships with protein
function. In other words, evolution may modify the amino acid sequence of an
ancestral protein at a large extent among living species, thus affecting the lower level
of structural organization of a protein family member. This has low impact on the
three-dimensional structure, i.e. the higher level of structural organization, so that
the protein family maintains its specific biochemical function over the species. On
the other hand, a single amino acid substitution within a protein can strongly affect
structure and function, as in human pathologies due to genetic diseases [10-12].
However, it is still unclear in detail how the modification of amino acid sequence is
softened or emphasized when it is reflected at the functional level. In this context, we
are interested to exploit graphical and mathematical methods, poorly used in protein
science up to now, in order to explore protein structure and function relationships
from a new point of view.

In this study, multivariate graphical methods have been used, because of tabular
(observations—variables) data type. Data are composed of protein families chosen
for their functional similarity; it is interesting to examine protein structure and
analyze conformational features within a family and among the families, in order to
find relationships that could be related to functional properties. Ten protein families
have been chosen, depending on CATH different architectural classification [13].
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2 Materials and Methods

2.1 Analysis Workflow

The workflow (Fig. 1) consists of four steps, of which the first three concern getting
and cleaning data, whereas the fourth step is the real EDA. More in details:

e Step 1. 153 crystallographic structures (Table 1) have been retrieved from RCSB
PDB [14]. The structures have been selected to represent ten structural protein
families, and different architectural classes in CATH. Rules applied to select
structures to be analyzed are: families for which a similar number of structures is
available (i.e., in the range 13—19); within each family, only one chain per protein
(in homo-multimeric proteins, A chain), and structures which differ for less than
50 residues in length;

e Step 2. Different online and local tools have been used to extract protein
structural properties from PDB files: Vadar [15], for secondary structure (also
confirmed with DSSP [16]), hydrogens bonds, accessible surface areas, torsion
angles, packing defects, charged residues numbers, free energy of folding; McVol
[17] for volumes, with a mean difference of 4 % from that extracted from
Vadar, but using a more robust algorithm; an in-house-developed R-script for
automatic search of salt bridges conditions [18]. Parsing of Vadar results has
been performed by means of regular expression commands in R;

¢ CATH CLASSES
* PDB CODE
* A CHAIN

* VADAR & DSSP
* MCVOL VOLUME

Uaaticll * SALT BRIDGES
FEATURES

* FEATURES CHOICE
* PERCENTAGE
* STANDARDIZATION

| « CORRELATION & DIS_SIMILARITY
* FEATURES NETWORK

PLOTTING  ICHO7
GRAPHICS &

Fig. 1 Analysis graphical workflow. There are four simply identifiable steps: steps 1-3 composed
the getting and cleaning data part, step 4 is the Exploratory Data Analysis
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e Step 3. Among all the variables extracted by means of Vadar, percent features
have been preferred for their intrinsic homogeneity. More in details, the features
related to residues have been transformed in a percent form by means of protein
sequence length; on the other hand, the ones related to surfaces have been
transformed by means of total accessible surface area. Furthermore, they have
been normalized in a standard score form for a better stability relative to the
EDA. That is, mean value has been subtracted from the data and the result has
been divided by the standard deviation: details are described in the Sect. 2.3.
Redundant features, as expected values, have been ignored;

e Step 4. Variables have been transformed into correlation and dissimilarity
matrices, through the procedures explained under Sect. 2.3.1. Then, they have
been used as features for an overall PCA, in order to verify the existence of
common information. A comparison with a features network has been showed.

All the work has been executed with R [19] inside R Studio IDE, using some
specific R packages to perform getting and cleaning phase and EDA. In particular:
stringr, to rearrange file names [20]; RCurl, to manage connection for downloading
[21]; bio3d, to compute DSSP inside R and read PDB files [22]; corrplot, to plot
graphical correlation matrix [23]; Hmisc, to calculate correlation matrix with p-
value [24]; ppcor, to calculate partial and semi-partial correlations with p-value [25];
dendroextras, to readjust and color dendrogram [26]; ggplot2, to plot PCA clustering
[27]; GeneNet: to plot features network [28].

2.2 Statistical Methods

As part of EDA, two proven statistical procedures have been chosen for our work:
correlation and principal component analysis [29], with different developments and
additional interpretations.

Correlation has been performed as Pearson’s correlation coefficients between
pairwise features. Its practice must be carefully implemented, because of a batch
of well-known traps (causality, multi-collinearity, outliers and so on). Statistical
validation, performed here, procures only a quantitative robustness: an incisive
analysis, together with a knowledge of data, allows to reach non-misleading
conclusions. Partial correlation can helps with collinearity problem, taking away the
effects of another variable, or several other variables, on a relationship. Moreover, it
can be used to detect possible redundant features.

Principal component analysis (PCA) is a very common multivariate statistical
method, simple and powerful: it is an unsupervised approach and it is considered
an EDA method. It allows summarizing initial variables in new ones, so-called
components, which represent data in a more compact way and their tendency.
Furthermore, given the intrinsic orthogonality of the components, PCA can be
applied to obtain a kind of clustering [30], depending on inner information derived
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from explained variance. This grouping helps in seeking possible outliers when
executed on a dataset (it is a good habit searching for outliers, because they could
polarize inferred results).

2.3 Mathematical Overview
2.3.1 Correlation, Partial Correlation and Dissimilarity

Given two variables with continuous values X = (x1,...,x,) and Y = (y,...,¥).,
where r is rows-observations number and ¢ column-variables number, the density
f(xi,y;) is represented by a single element in the normalized data table, and it is
just a sort of bivariate distribution in a numerical form. A measure of strength and
direction of association between the variables is provided by the covariance:

Oy =E [(X — iy ) (Y - /Ly)] = E[XY] — pepty (1
where
EXY] = )% xf (xi.y) 2)
i=1j=1

where p, u, are the expected values for a single variable. An index of covariation
between X and Y is provided by the correlation coefficient:

Oxy

Pxy = (3)

0x0y

where oy, o, are the standard deviations for a single variable. Given a third
variable Z, the partial correlation coefficient between X and Y after removing the
effect of Z is:

Pyz = PyxPzx

Pyxz =
\ll_p)%x A% l_pZZ)C

and it is possible to extend the formula in case of removing the effect of all
the variables but one [31, 32]. Furthermore, a transformation from correlation to
dissimilarity, by means of the formula:

“)

dxy =1- ’ny’ (5)
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allows to obtain a distance matrix, consistent with a cluster dendrogram on the
variables themselves. dy, is also known as Pearson’s distance [33, 34]. Finally,
every correlation coefficient has been validated with a #-test for significance, with
the statistic:

(6)

where p is a generic correlation and n — 2 are the degrees of freedom [32].

2.3.2 Principal Component Analysis

Give a data table in a matrix form, it is possible to create new variables as linear
combination of the old ones:

PCy = an Xy + apXs + - + a1 X
PCy, = a1 Xy + anXs + -+ + ar X,

—_

@)
PCy=anXi +apXo + -+ + ai X,

that have the largest variance. For a single principal component loading vector a,,, =

(ari,..., alE)T, withm = 1,...,[, itis required to resolve an optimization problem:
2
1 r C
max { — E aicx; ®)
am I« N
i=1 \ j=1

c
subject to Za%j = 1. This is an eigenvalues-eigenvectors problem, numerical and
J=1
computationally resolvable with Single Value Decomposition factorization, with a,,
determined by:

(2 - A'mI) am =0 )

where X is the covariance/correlation matrix of the original data, A,, are eigenvalues

in descending order associated with a,, eigenvectors and / is the identity matrix.
1

After calculating the contribution of every eigenvalue A,/ an, it is possible to
k=1

choose the first several A, that cover a preset quantity of explained variability. In

other words, the new data table composed by scores PCy, always in matrix form,



180 E. Del Prete et al.

represents the old one with a reduced dimensionality. Scores and loading vectors
are plotted in a single biplot display [35, 36]. The challenge with this method is the
new variables interpretation in the reality: that is, they are not so intuitive and their
understanding is often delegated to investigator’s experience.

2.3.3 Standardized Variables

Also known as z-score or standard score, a standardized variable has a mean equal
to zero and a variance (standard deviation) equal to one, and it is possible to obtain
it by means of the linear transformation:

X — My

= (10)
Ox

useful for comparing same variables from different distributions or variables with
different units of measurement. This kind of normalization is recommended when
correlations have to be used [32].

3 Results

Dendrogram in Fig. 2, obtained following formula (5), highlights relationships
between the features chosen for the entire proteins dataset: it is the landmark about
structural and geometrical features, but only in reference to the proteins chosen for
assembling the dataset. There are four evident clusters: from the left, the first and
the third concern torsion angles, the second concerns volume, free energy of folding
and residues buried for the most part, and the fourth concerns secondary structures
and residues convolved in hydrogen bonds.

Features network in Fig. 3 has been plotted by means of partial correlations and
graphical Gaussian model (GGM) [37]: it helps in seeking spurious correlations
and pruning excessive features. For this dataset, torsion angles information results
peripheral in the network, therefore they can be considered as unnecessary for the
purpose of the work.

PCA, performed on the whole dataset, allows to extract the real important
features in term of variability, producing a sort of clustering. In Fig. 4, the
first principal component is composed by structural features (%A, %RHB) and
second principal component by energy-geometrical ones (VOL, FEF, %RB95). This
statistical technique is useful for outliers detection: for example, in the same plot, an
isolated protein results so distant that it must be consider an outlier not only for its
family (SOD), but also for the entire dataset. PCA performed only on SOD family
has confirmed the result.
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Fig. 2 Dissimilarity dendrogram for proteins dataset. Every number (and color) indicates a cluster
for the features. Cut-off has been put at 0.4, as deduced from the grafico. Legend: ROx omega angle
core/allowed/generous, PD packing defect, BC buried charge, NPA non polar accessible surface
area, T turn, RB95 buried 95 %, VOL volume, FEF free energy folding, RHB hydrogen bond, A
alpha helix, B beta sheet, RPx phi-psi angles core/allowed/generous, PA polar accessible surface
area, RSB salt bridge

Moreover, previous plot questions if some relationships between the features
are family-independent. A graphical correlation matrix for a single family protein
may answer to this query. For example, choosing SOD family in Fig. 5 as test,
it is possible to notice a strong family-specific “four-relationship” in the bottom
left corner, between buried charged residues, secondary structure and free energy
of folding. In this work, strong correlation threshold is 0.65, deduced from data.
By contrast, some relationships are family-independent: for example, because
of intrinsic physical-conformational connection (secondary structure and residues
involved in hydrogen bonds) or prediction formula (volume and free energy of
folding [15]).
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Fig. 3 Features network for proteins dataset. Continuous line represent partial correlation, dotted
line represent partial anticorrelation (with the support of GGM). Peripheral subnetworks have been
showed in the squares, which contain phi, psi and omega angle features. Meaning of acronyms as
in Fig. 2

4 Conclusions and Perspectives

All the procedures that are part of EDA are well-suited for this kind of multivariate
data: (a) distance dendrogram shows an overview about features interactions; (b)
partial correlation indicates some possible redundant feature, if integrated in a
network algorithm; (c) simple correlation helps in seeking family-specific features
relationships; (d) principal component analysis is useful in finding family-specific
connections to features and possible outliers. Therefore, these graphical multivariate
procedures may be good tools in order to create a sort of fingerprint for the protein
families themselves.



Basic Exploratory Proteins Analysis with Statistical Methods Applied. . .

Princpal Component 2

PCA CLUSTERING

-IJ -IE B! 1':| |
Pnncipal Component 1

183

= CTS
« FTL
—=- GTF
* HGB
* LCN
= LYS
+ PCNA

Fig. 4 PCA for protein dataset. Centralizing ellipses enclosed each protein family. GTF family is
polarized near positive PC2, FTL family near positive PC1 and SOD family is wide open. Bottom
left arrow points to an outlier: Pseudomonas putida SOD A chain (PDB code: 3SDP). Protein
families short names refer to legend in Table 1

As future perspective, there are two directions of work enhancement: using

advanced regression analysis to make a more robust features selection—partial
correlation aids to do this, on the other hand PCA is not a real feature selection
technique: it is rather a sort of “compression features” method—and integrating
functional information (for example, by the analysis of protein interaction networks,
as shown in Fig. 6) to highlight connections with the structural-geometrical ones.
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in the matrix show correlation statistically non-significant (p-value >0.05)
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