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Abstract We propose a new algorithm to estimate the 3D configuration of a
chromatin chain from the contact frequency data provided by HI-C experiments.
Since the data originate from a population of cells, we rather aim at obtaining a
set of structures that are compatible with both the data and our prior knowledge.
Our method overcomes some drawbacks presented by other state-of-the-art meth-
ods, including the problems related to the translation of contact frequencies into
Euclidean distances. Indeed, such a translation always produces a geometrically
inconsistent distance set. Our multiscale chromatin model and our probabilistic
solution approach allow us to partition the problem, thus speeding up the solution,
to include suitable constraints, and to get multiple feasible structures. Moreover, the
density function we use to sample the solution space does not require any translation
from contact frequencies into distances.

Keywords 3D chromatin structure ¢ Chromosome Conformation Capture e
Quaternions

1 Introduction

The nuclear DNA is arranged in a 30 nm fiber called chromatin, and in human cells
has a length of about 2 m in total, folded in 46 chromosomes. Its spatial organization
ensures the continuous accessibility of DNA to translation, replication, regulation
and repair machinery. Understanding how DNA is organized will help to discover
its functional features and the epigenetic mechanisms involved. A first important
step in describing the organization of DNA within the nucleus was done with the
experiments of fluorescence in situ hybridization (FISH) [1], a technique used to
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detect and localize specific DNA sequences. Recently, high resolution techniques
have been developed, called Chromosome Conformation Capture (3C) [4], which
provide contact frequencies between pairs of DNA fragments in the whole genome.
The latest such technique, called HI-C [17], has a very high genomic resolution,
reaching a few kbp, depending on the enzyme used in the procedure.

From HI-C information, it is possible to formulate hypotheses about the three-
dimensional chromatin configurations. Many approaches have been proposed to
address this problem. They can be divided into three main categories, each offering
specific advantages and criticalities: constrained optimization, Bayesian inference,
and polymer models. The new reconstruction method we propose in this chapter
was conceived to exploit the benefits of the state-of-the-art methods while avoiding
some of their drawbacks.

All the constrained optimization strategies proposed to introduce a model for
the solution, a set of constraints, and a cost function to be optimized against
the available data. As mentioned, the 3C data available are contact frequencies
evaluated over the whole population of cells in the experiment, typically many
millions. The first attempts to translate these data into geometrical information
assume that the chromatin configurations are not very different throughout the
population, and that pairs of fragments often found in contact are closer than pairs
with low contact frequencies. On this basis, most of the existing methods propose
some formula to translate the contact frequencies into Euclidean distances, to be
fitted by the reconstructed structures. Duan et al. [7] propose a three-dimensional
model of yeast genome, in which chromatin is modeled as a bead chain, with
partially impenetrable beads, forced to stay in a spherical nucleus of 1 um. The
objective function to be minimized exploits an inverse proportionality relationship
between contacts and distances. The same deterministic law is also adopted by
Fraser et al. [8] and Dekker et al. [4]. In Sect.2, we show how this translation
leads to severe geometric inconsistencies. Bal and Marti-Renom [2] translate the
contact frequencies into harmonic forces, calibrating the distances between beads.
The constrained optimization approach has the advantage of introducing geometric
and biophysical constraints into the model, but has two big disadvantages: the high
dimensionality of the systems and the absence of confidence intervals to evaluate
the uncertainty of the solutions obtained.

The data are affected by errors and biases and, as mentioned, derive from
experiments on millions of cells. This makes necessary the adoption of a proba-
bilistic approach to sample the space of the feasible solutions. The first probabilistic
approach has been published by Rousseau et al. [16], who use a Markov Chain
Monte Carlo sampling on a Gaussian likelihood, built through an inverse-quadratic
law between contacts and distances (MCMC5C). Hu et al. [9] use the same
relationship, proposing an algorithm called BACH (Bayesian 3D Constructor for
HI-C data), to build consensus 3D structures. The novelty of the cited Bayesian
approaches is the possibility to introduce biases into the data model (as in BACH).
Another important advantage is the possibility of sampling the solution space: this
aspect is essential, since it is more meaningful to search for sets of possible solutions
rather than a single consensus. The major drawbacks of BACH are its computational
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complexity, due to the large number of parameters to be estimated, and the absence
of suitable topological constraints.

Another interesting approach is the integration of polymer physics into the 3D
chromatin structure model. This has the advantage of not requiring the translation
from frequencies into distances, and permits the adoption of iterative adaptive
methods. Meluzzi and Arya [14] propose a coarse-grained bead-chain polymer
model approximating the physical behavior of a 30 nm chromatin fiber; the system
evolves adjusting iteratively the model parameters, until a match with contact
frequency data is reached. This approach is highly reliable but very expensive
computationally. For this reason, it cannot yet be applied to experimental data:
a validation has only been performed against reference data sets obtained from
simulations of systems with up to 45 beads.

An analysis of the different solutions mentioned above reveals a number of
drawbacks that must be overcome to obtain more reliable results. Our main point
is the questionable adequacy of the translation of contact frequencies into Euclidean
distances. In Sect.2, we show that this strategy produces a set of distances often
severely incompatible with the Euclidean geometry. Then, in Sect.3, we briefly
describe our solution model, our cost function, which does not include an explicit
contact-to-distance relationship, and the stochastic algorithm we used to sample the
solution space. Section 4 concludes the chapter, with some reference to our first
experimental results.

2 Geometrical Consistency of the Frequency-Distance
Translation

The problem of the geometrical inconsistencies derived from translating contact
frequencies into Euclidean distances has been overlooked by almost all groups that
have worked with contact frequency data. An exception is the work of Duggal et al.
[6], who propose a filtering technique to select subsets of interactions obeying to
metric constraints. This method is very interesting, but has a high computational
cost.

It is important to exert some caution with the extraction of topological informa-
tion (measurements, distances) from interaction data, because contacts are discrete
events (sums of dichotomous events) with causal and random components, whereas
spatial distances are continuous quantities forced to undergo precise geometric laws.
Itis necessary to check whether the distances meet the basic geometrical consistency
conditions, e.g. the triangular inequality. The non-violation of these conditions is
a necessary but not sufficient condition for geometric consistency. If geometric
consistency conditions are severely violated, the set of distances cannot be used
as a target to achieve sensible geometric conformations of chromatin. However, the
fact that these inequalities are not violated, or are violated slightly, does not ensure
the geometrical consistency of the system. For example, if we have a set of equal
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distances (e.g. all equal to 1), the triangular inequalities would never be violated,
but no structure in the 3D Euclidean space can show such a distance set, unless it is
made of no more than 4 points.

Let us consider a chromatin chain made of N elements, and any subsequence S
of it, with M elements, identified by the index set I = {1,2,...,M}. Let us now
consider a partition P of S, that is, any set of L < M consecutive segments that sum
up to S, identified by the set of index pairs K = {(1, k»), (k2, k3), ..., (kp, M)}, with
1 <ky <k <...<kr <M. A necessary condition for the Euclidean distances
between all the possible pairs in S to be consistent with the 3D Euclidean geometry
is that, for any possible K:

diy < Z d;j (D

(ij)ek

where d;; is the distance between the i-th and the j-th elements of S.

In our preliminary study, we considered two sets of experimental data made
available in the literature, from the entire human genome in GM06690 [13] and
GSE18199 cells [18], both with genomic resolution of 1 Mbp. Then, for both data
sets, for any possible subsequence of all the chromosomes, and for 13 different
frequency-to-distance relationships, we evaluated the number and the extent of the
violations to condition (1). The results of this analysis are summarized in Table 1,
whereas the contributions of each individual chromosome are plotted in Figs. 1
and 2. The number of violations and their weights rapidly decrease by applying
the laws 1/./x, with n € {1,2, .., 5}. This does not mean that these laws are suitable
to build a good target function, since they actually tend to produce a set of nearly
equal distances, which normally lead to impossible structures.

Also considered from another viewpoint, the inversion process from contact
frequencies into distances presents a heuristic gap, because the measured contact
frequencies do not depend exclusively on geometric properties, but also on other
factors, such as the presence of topological barriers, energy conditions, and random
events. In summary, we think that assuming that pairs with many contacts are
likely to be close to each other can be justified, whereas pairs with a few contacts
are not warranted to be distant from each other. Our analysis demonstrates that
experimental frequency data very often lead to distances that are more or less
severely incompatible with real configurations in the 3D Euclidean space. For this
reason, such distances cannot be used as rigid targets for structure estimation.
Indeed, any consistent distance system identifies a precise structure in the Euclidean
space (for a general introduction to Distance Geometry, see for example [12]), but
3C data are produced by many distinct cells, so it is very unlikely that a single
relationship is able to generate geometrically consistent distances from the contact
matrix.
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Table 1 Frequency-distance conversion laws for dataset available in [13, 18]
Lieberman-Aiden et al. [13] Yaffe and Tanay [18]
Average Average
Number of | percentage | Transformation Number of |percentage
Transformation laws | violations® |violation |laws® violations® | violation
x—d=% 28003.8 |3458.5 |x—d=% 2464.6 | 4-10°
x—>d=%19,16] | 26502.8 | 424 x—d=1% 14396 6-10°
x—>d=1[4,78]|8954,1 24 |x—d=1 766.7 1501.8
x—d= -2 72,3 86 |x—d= - 604.9 994
x—d=+~ 2.7 15 x—d=+= 287.9 |32
x—d= 4~ 0 0 x—d= 3~ 559 163
x—d= <~ 0 0 x—d= <~ 9.1 |46
x—>d= @% 65.4 87 |x—>d=log*(x) |1143 1095.5
x—>d= logl(x) 0.3 0.3 x —> d = |log(»)| 566.7 72.8
x—»d:@ 0 0 x—>d=/llogx)]| 34 28
x—>d=#g(x) 0 0 x —> d = /|log(x)] 7.1 18.5
x—d= ﬁ 0 0 x —> d = {/|log(®)] 22 8.5
x—d= #g(x) 0 0 x —> d = /|log(x)| 0.7 52
In the formulas x represents the contact frequency and d the Euclidean distance
2 Averaged on chromosomes
b Contact frequency values normalized to 1
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Fig. 1 Percent contributions of the different chromosomes to the total number of geometric
violations, for the 13 transformation laws considered. Left: data from [13]. Right: data from
[18]. For each column, the contributions of the chromosomes have always the same order: from
chromosome 1 at the bottom to chromosomes 22 and X at the top of the column
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Fig. 2 Percent contributions of the different chromosomes to the average extent of the geometric
violations, for the 13 transformation laws considered. Left: data from [13]. Right: data from
[18]. For each column, the contributions of the chromosomes have always the same order: from
chromosome 1 at the bottom to chromosomes 22 and X at the top of the column

3 Our Approach

Each of the studies that proposed methods for 3D chromatin reconstruction from
contact data presents problems and advantages, summarized in Table 2. As a
contribution to the field, we propose a new algorithm that includes a list of desirable
features:

1. Possibility to enforce geometrical constraints on the solutions.

2. Computational efficiency, including partitioning and parallel processing
capabilities.

. No deterministic translation from contact frequencies to distances.

4. Possibility to get multiple configurations compatible with the data.

N}

To obtain features (1) and (2), we rely on our chromatin model. If we model the
chromatin fiber as a bead chain, we can first impose that it must remain connected,
that is, that the beads must maintain their genomic locations, and then introduce
constraints on the distances between adjacent beads and on the angles formed
by any two consecutive bead pairs. This amounts to constrain the length of any
subchain and its maximum curvature. Of course, the appropriate values for these
constraints must be decided on the basis of the relevant biological knowledge.
Partitioning the problem can enable us to speed up the estimation process. We
reach this goal by taking into account the existence of chromatin segments, called
topological domains [5], that have no important interactions with other genomic
regions, and exploiting the multiscale capabilities of our chromatin model. The
structure of each topological domain can be estimated from the data coming
exclusively from the fragments belonging to it. The resulting structure is then
considered as a bead in a lower resolution chain, whose contact frequencies are



A Statistical Approach to Infer 3D Chromatin Structure

167

Table 2 Chart of problems and advantages in the previous state of the art

Constrained
Optimization

Dekker et al. [4]

Fraser et al. [8]

Duan et al. [7]

Bau and Marti-Renom [2]

Problems

Very high dimensionality

No confidence intervals can be
computed to measure the
uncertainty of the structure
obtained

Advantages

First attempt of conversion of a
set of noisy contact frequencies
measurements into more
interpretable data

Introduction of constraints
based on the structure of the
chromatin fiber

Bayesian Any evaluation of structural Bayesian approach to sample
Inference variations of chromatin at the whole space of solutions
Russeau et al. [16] different resolution scales Introduction of systematic
(MCMC5C) No geometrical constraints biases into the data model
Hu et al. [9] Geometrical inconsistencies (BACH)
(BACH) given by translation of contact

frequencies into distances
Polymer Complexity of the system Conversion from frequencies
Models into distances not required

Nagano et al. [15]
Meluzzi and Arya [14]

Integration of polymer physics
into the 3D chromatin structure
model

evaluated along with possible higher-level isolated domains. The structures of these
new topological domains are reconstructed by the same strategy described above.
This process can continue recursively, until a data set with a single domain is found.
The full-resolution structure is then reconstructed by substituting, recursively, the
lower-resolution beads with the subchains reconstructed at finer resolutions. Except
for the finest resolution available, our beads are not spheres, but are equipped
with the macroscopic properties of the subchains they represent, each being a
non-deformable triplet identified by the centroid of the related subchain and its
endpoints. Figure 3 depicts an example of this model for two consecutive scales.

Requirement (3) is reached through our cost function. We first observe that,
as mentioned in Sect. 2, fragment pairs characterized by high contact frequencies
can reliably be considered in close proximity, but the converse does not need to
be true: pairs with low contact frequencies do not need to be far apart. We thus
avoid to consider the lowest frequencies in our cost function, which, anyway, can
sufficiently determine the problem by exploiting the geometrical constraints. The
resulting expression is:

P(%) = Z nij-dij (2

ijet

where € is the configuration of the subchain being estimated, .Z is the set of bead
pairs that are likely to be close to each other, and n;; is the contact frequency
characterizing the (i, j)-th pair. Thus, no target distance is included in the formula:
the contact frequency data are directly used to weight the contributions of the
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Fig. 3 (a)-(d) Consecutive fragments of the chromatin fiber, represented as bead sequences (red
balls linked by yellow segments), and as centroid-endpoints triples (blue balls linked by blue
segments). The larger spheres represent the assumed sizes for the beads at the lower resolution.
(e) Lower-resolution chain composed by the fragments in (a)—(d)
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individual pairs in the summation. It is apparent that an unconstrained optimization
of this cost function would find global minima in each configuration with d;; = 0
for all (i,)) € .Z. The constraints, however, make these solutions unfeasible.

Finally, requirement (4) is satisfied by our estimation algorithm. Although the
configurations that are not compatible with the constraints are not feasible solutions,
it is expected that the cost function reaches minimum values for many different
feasible configurations. To be able to sample the solution space, we treat the
objective function as a negative log-density, and use a Monte Carlo approach
to find high-probability configurations. In practice, we use a classical simulated
annealing procedure [11], where the model updates are proposed through quaternion
operators [10]. This choice allows us to maintain automatically the coherence of
the reconstructed chain at each update, thus avoiding to check the fit to most
of the constraints before continuing with the iteration. Indeed, the compatibility of
the current solution with the constraints must only be checked against possible
spatial interferences between pairs of beads. Since so many configurations fit well
the data and the constraints, different runs of this stochastic procedure will produce
different highly reliable results, whose structures should reproduce the variety of the
configurations assumed by the chromatin chain in the experimental cell population.
Our multiscale approach can also be exploited to generate different configurations
of the subchains at any resolution, and then combine them to produce, recursively,
different configurations of the overall chain.

4 Conclusions

In this chapter, we propose a new approach for the estimation of chromatin
configurations starting from HI-C contact frequency data. The main characteristics
of our approach are:

— The data-fit function does not require the translation of frequencies into
Euclidean distances.

— The multiscale bead-chain model can be equipped with biophysical constraints;
any prior information available must be translated into geometrical constraints.

— The probabilistic procedure samples the solution space so that multiple configu-
rations compatible with both the data and the constraints can be found.

— The model evolution during the iterations is obtained through quaternion
operators.

Thanks to these features, our procedure avoids some of the drawbacks in the
algorithms proposed so far in the literature. Also, our algorithm is conceptually
simple, and amenable to be speeded up by exploiting several levels of parallelism.
As a proof of principle, we have performed some tests on real HI-C data from human
cells [3]. In these tests, we obtained a number of different structures characterized
by similar values of the cost function but showing a few distinct spatial behaviors
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Fig. 4 Two typical configurations resulting from our experiments (measurements in nm): (a) more
expanded, (b) more compact

(two examples are shown in Fig. 4, from data related to the long arm of the human
chromosome 1 [13]). The macroscopic appearance of these structures is compatible
with the expected shape of a portion of chromosome.

In conclusion, we have generated an algorithm that can substantially contribute
to the elucidation of chromosomal structure, by producing families of structures
compatible with biological information. Our procedure is also innovative in the use
of quaternions to evolve the model during the estimation process.
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