Image Segmentation, Processing and Analysis
in Microscopy and Life Science

Carolina Wiihlby

Abstract Microscopes have been used for more than 400 years to understand
biological and biomedical processes by visual observation. Science is the art of
observing, but science also requires measuring, or quantifying, what is observed.
Research based on microscopy image data therefore calls for methods for quantita-
tive, unbiased, and reproducible extraction of meaningful measurements describing
what is observed. Digital image processing and analysis is based on mathematical
models of the information contained in image data, and allows for automated
extraction of quantitative measurements. Automated methods are reproducible and,
if applied consistently and accurately across experiments with positive as well as
negative controls, also unbiased. Digital image processing is further motivated by
the development of scanning microscopes and digital cameras that can capture
image data in multiple spatial-, time-, and spectral-dimensions, making visual
assessment cumbersome or even impossible due to the complexity and size of the
collected data.

The process of analyzing a digital image is usually divided into several steps,
where the objects of interest are first identified, or ‘segmented’, followed by
extraction of measurements and statistical analysis. This chapter starts from the
basics of describing images as matrices of pixel intensities. Emphasis is thereafter
put on image segmentation, which is often the most crucial and complicated step.
A number of common mathematical models used in digital image processing of
microscopy images from biomedical experiments are presented, followed by a brief
description of large-scale image-based biomedical screening.
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1 Pixels and Color Channels

A digital image is not continuous, but consists of discrete picture elements, or
pixels. A typical fluorescencemicroscopy image is built up of multiple fluorescence
channels, each representing a separate fluorescence stain, usually bound to DNA
or an antibody probing a specific protein or subcellular structure. Figure 1 shows
a fluorescence microscopy image where cell nuclei are stained with DAPI binding
DNA, and red and green dots representing mRNA molecules (for details see [12]).
Imagine that the goal of the analysis is to count the number of red and green dots
per cell. The color image in Fig. 1 can be split into its constituent image channels,
leading to one image representing the red, green and blue fluorescence respectively.
If we take a closer look at the red channel, and zoom in on one of the dots, we
can see that the image is built up of square picture elements, or ‘pixels’ for short,
see Fig. 2. Each of these pixels is represented as a number in the computer, where
a higher number means a brighter pixel, and the whole image can be thought of
as a matrix of numbers. In a color image, the three image channels represent the

Fig. 1 Using three different filter sets, three different fluorescence labels were imaged using
fluorescence microscopy. Top left is a composite image of all three image channels; cell nuclei are
stained with DAPI binding DNA, and red and green dots represent mRNA molecules (for details
see [12]). Due to autofluorescence and unspecific fluorophore binding, the cells’ cytoplasms can
be seen as a weak background staining in the red and green image channels
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Fig. 2 An image is built up of pixels. If we zoom in on a sub part of the larger image, we see
that the image is built up of square pixels, where the graylevel, or intensity of each pixel, can be
represented as a number in the computer memory. Image segmentation thresholding (/eff) assigns
the maximum value (white) to all pixels above a given threshold (in this case intensities > 50),
while other pixels are assigned the minimum value (black)

amount of red, green and blue respectively, and any image analysis operation can
work either on a single image channel, or a combination of multiple image channels
in two or more spatial dimensions, as well as with time sequences. Here we focus
on operations that work on a single channel in two dimensions, but the general idea
of images as matrices of pixels, each represented by a number, holds true in any
number of dimensions.

2 Image Segmentation

Segmentation is the process in which an image is divided into its constituent objects
or parts, and background. It is often the most vital and most difficult step in an
image analysis task. The segmentation result usually determines eventual success of
the analysis. For this reason, many segmentation techniques have been developed,
and there exist almost as many segmentation algorithms as there are segmentation
problems. The construction of a segmentation algorithm can be thought of as
defining a model of the objects that we want to detect in the image. This model
is then the basis for the segmentation algorithm.

2.1 Thresholding

In the simplest case, we create a model that says that objects are brighter than
the image background, and individual objects are well separated from each other.
If we can find a suitable intensity threshold that separates the bright objects from
the dark background, the segmentation is completed. We simply find all connected
pixels brighter than the threshold, and say that they are our objects, as shown
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in Fig. 2, left, where all pixels above a given threshold (in this case intensities
>50) are assigned the maximum value (white) while other pixels are assigned the
minimum value (black). The tricky part is to find a suitable threshold. There are
many different automated thresholding methods, see [29, 30] for a review. One
approach is to look for valleys in the image histogram. Plotting the number of pixels
per intensity-level against intensity-level creates an image histogram. If objects are
bright and background is dark, the histogram will have one peak for objects and one
for background, and a valley will be present between the peaks. Figure 3a shows
an image of fluorescence labeled nuclei of cultured cells. The image histogram is
shown in Fig. 3b, and a threshold is placed at intensity 30. In Fig. 3c, the intensity
variation along a row in (a) is plotted against x-position, and the threshold is shown
as a horizontal line. The result of thresholding the image at this level, and labeling
the different connected components, is shown in Fig. 3d. Clustered objects will not
be separated by simple intensity thresholding.
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Fig. 3 Image segmentation by thresholding. (a) Fluorescence stained nuclei of cultured cells. (b)
Image histogram of (a). A threshold is placed where the histogram shows a local minimum. The
vertical line corresponds to a threshold at intensity 30. (¢) An intensity profile along the row
y =300 of (a), with the intensity threshold represented by a horizontal line. (d) The result after
thresholding and labeling of connected pixels. Note that not all nuclei are separated by thresholding
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2.2 Watershed Segmentation

If all the objects are brighter than the image background, but clustered, as in the
image of cytoplasms in Fig. 4a, thresholding will only separate the objects from the
image background, and not separate the individual objects from each other. There
is no single threshold that will separate all cells and at the same time find all cells.
We can, however, create a model that says that objects have high intensity, and are
less intense at borders towards other objects. If image intensity is thought of as
height, the cells can be thought of as mountains separated by valleys in an intensity
landscape, see Fig. 4b. The segmentation task is then to find the mountains in the
landscape.

A segmentation algorithm that has proven to be very useful for many areas of
image segmentation where landscape-like image models can be used is watershed
segmentation. The method was originally suggested by Digabel and Lantuéjoul,
and extended to a more general framework by Beucher et al. [2]. Watershed
segmentation has then been refined and used in many situations; see, e.g., Meyer
and Beucher [22] or Vincent [34] for an overview. The watershed algorithm works
through intensity layer by intensity layer and splits the image into regions similar
to the drainage regions of a landscape. If the intensity of the image is thought of
as height of a landscape, watershed segmentation can be described as submerging
the image landscape in water, and allowing water to rise from each minimum in the
landscape. Each minimum will thus give rise to a catchment basin, and when the
water rising from two different catchment basins meet, a watershed, or border, is
built in the image landscape. All pixels associated with the same catchment basin are
assigned the same label. Watershed segmentation can be implemented with sorted
pixel lists [35] so that essentially only one pass through the image is required. This
implies that the segmentation can be done very fast.

In the case where we want to find bright mountains separated by less bright
valleys, we simply turn the landscape up-side-down, inverting the image, and think

Fig. 4 Image segmentation by watershed segmentation. (a) Fluorescence stained cytoplasms
of cultured cells. (b) The intensity of (a) plotted as a landscape. (c) The result of watershed
segmentation of the inverted image
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Fig. 5 Shape-based watershed segmentation. (a) Free and clustered cell nuclei. (b) Distance
transformation applied to a thresholded version of (a). The distance from each object pixel to
the image background is coded as intensity and displayed as height in a landscape. (¢) The result
of watershed segmentation of (b) together with (a)

of the mountains as lakes separated by ridges instead of mountains separated by
valleys. The result after applying watershed segmentation to the image of the
cytoplasms can be seen in Fig. 4c.

2.3 Shape-Based Watershed Segmentation

If the clustered objects are not separated by less intense borders, they may have some
other feature, or combination of features, that can be included in the segmentation
model. One example of such a feature is roundness. The cell nuclei in Fig. Sa are
all fairly round in shape, but have internal intensity variations that are sometimes
greater than those between the individual nuclei. The clustered nuclei can easily
be separated from the background using thresholding. The thresholded image can
then be transformed into a distance image, where the intensity of each object pixel
corresponds to the distance to the nearest background pixel. Calculation of the
distance transformation is very fast, calculated by two passes through the image
[3,4]. The result will be an image showing bright cones, each corresponding to
a round object, see Fig. 5b. Watershed segmentation can then be applied to the
inverted distance image, and the clustered objects are separated based on roundness,
see result in Fig. 5c. Shape-based segmentation has proven useful for segmentation
of cell nuclei in a number of studies [13, 20, 24, 27].

2.4 [Edge-Based Watershed Segmentation

Intensity variations in the image background often make it difficult to separate the
objects from the image background using thresholding. In some cases, it is possible
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Fig. 6 Edge-based watershed segmentation. (a) Fluorescence stained cell nuclei in a section from
tumor tissue. Due to background variation, separation of nuclei and background by thresholding is
not possible. (b) The gradient magnitude of (a). (c) Result after applying watershed segmentation
to the gradient magnitude and overlaying the result with the original image

to reduce these background variations by pre-processing steps that computationally
reduce these variations [15, 26]. In other cases, a more advanced model saying that
the transition between objects and background is marked by a fast change in image
intensity may be applied. In Fig. 6a, the background pixels in the upper left corner
of the image have the same intensity as the object pixels in the lower right corner of
the image. The objects are still visually clearly detectable as their local intensity is
different from the local background.

Intensity changes can be described as the magnitude of the image gradient. The
magnitude of the gradient expresses the local contrast in the image, i.e., sharp edges
have a large gradient magnitude, while more uniform areas in the image have a
gradient magnitude close to zero. The local maximum of the gradient amplitude
marks the position of the strongest edge between object and background. The
commonly used Sobel operators [32] are a set of linear filters for approximating
gradients in the x, y (and z) directions of an image. Adding the absolute values of
the convolutions of the image with the different Sobel operators approximates the
gradient magnitude image. Figure 6b shows the gradient magnitude, where large
magnitude is shown as high image intensity. If watershed segmentation is applied
to the gradient magnitude image, the water will rise and meet at the highest points
of the ridges, as shown in Fig. 6¢. This corresponds to the location of the fastest
change in intensity, just as in our segmentation model.

2.5 Merging

When watershed segmentation is applied to an image, water will rise from every
minimum in the image, i.e., a unique label will be given to each image minimum. In
many cases, not all image minima are relevant. Only the larger intensity variations
mark relevant borders of objects. This means that applying watershed segmentation



Fig. 7 Edge-based merging. (a) Fluorescence labeled cytoplasms with internal intensity variations
leading to over-segmentation. (b) Result after merging on minimum height of separating ridge.
Some over-segmentation still remains. (¢) Result after further merging of all small objects with the
neighbor towards which it has its weakest ridge

will lead to over-segmentation, i.e., objects in the image will be divided into several
parts, see Fig. 7a. Over-segmentation can be reduced by a pre-processing step
reducing the number of local image minima, e.g., by smoothing the image with a
mean or median filter. Smoothing may, however, remove important structures, such
as edges, in the image. An alternative to pre-processing is post-processing. After
applying watershed segmentation, over-segmented objects can be merged.

Merging can be performed according to different rules, based on the segmen-
tation model. One example is merging based on the height of the ridge separating
two catchment basins, as compared to the depth of the catchment basins. The model
says that a true separating ridge must have a height greater than a given threshold.
All pairs of lakes that at some point along their separating ridge have a height lower
than the threshold are merged. The result of merging Fig. 7a at height 10 is shown
in Fig. 7b.

Other merging criteria may also be used. For example, if we know that an object
must have a certain size, we can include this in our model and say that every object
smaller than this size should be merged with one of its neighbors. If there are several
neighbors to choose from, we say that merging should be with the neighbor towards
which the small object has, e.g., its weakest ridge [37]. The result of this merging
method applied to Fig. 7b is shown in (c). The length of the border between two
objects can also been used to decide if neighboring objects should be merged or not
[33]. Defining the strength of a border as the weakest point along the border may
lead to merging of many correctly segmented objects due to single weak border
pixels or weak border parts originating from locally less steep gradients. Another
simple measure, which is less sensitive to noise and local variations, is the mean
value of all pixels along the object border [38].
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2.6 Seeded Watershed Segmentation

Including a priori information in our model before applying watershed segmentation
can also reduce both over- and under-segmentation. Seeded watershed segmentation
[1, 22, 34] means that starting regions, called seeds, are given as input to the
watershed segmentation. Water is then only allowed to rise from these seeded
regions, and the water rising from the seeds floods all other image minima. The
water will continue to rise until the water rising from one seeded region meets
the water rising from another seeded region, or a pre-defined object/background
threshold. This means that we will always end up with exactly as many regions as
we had input seeds.

Seeds can be set manually [19], or in an automated way. For example, we may
know that, despite variations in both object and background, each object has a
certain contrast compared to its local neighborhood. Such regions can be detected
using morphological filters. One example is the extended h-maxima transform,
which filters out the relevant maxima using a contrast criterion [31]. All maxima
are compared to their local neighborhood, and only those maxima greater than a
given threshold 4 are kept. A low & will result in many seeds, often more than one
seed per object. A high £ will result in fewer seeds, and some objects may not get a
seed at all. An example is shown in Fig. 8. The intensity along a pixel row in Fig. 8a
is shown in (b), and the h-maxima are marked in gray. Note that maxima that do not
contain gray markers do so in a different image row. Despite background variation,
h-maxima are found in all cells, as shown in (c). Seeded watershed segmentation
is very useful if we perform our segmentation in the gradient magnitude of the
image. We can find seeds in object and background regions based on intensity
information in the original image, and then let the water rise from these seeds
placed in the gradient magnitude image. Object and background seeds are shown
in Fig. 8d and the result after watershed segmentation is shown in (e). The result
of this segmentation approach, combined with merging based on edge-strength is
shown in Fig. 8f.

Seeds may also come from a parallel image. Cells often vary very much in shape
and size, and touch each other. Watershed segmentation will not always give a
satisfactory result, as seen in Fig. 9a. If we have a single seed per cell, the task
of finding the borders of the cell is greatly simplified. The h-maxima transformation
results in useless seeds due to great intensity variations within the cells. The nice
thing about cells is, however, that each cytoplasm has a natural marker that may
be included in the segmentation model: the nucleus. If the nuclei, which are fairly
round in shape and usually nicely separated, are stained and imaged in parallel with
the cells, they can be used as seeds for watershed segmentation of the cells. The
nuclei of the cells in Fig. 9a are shown in (b), and the result of seeded watershed
segmentation using the nuclei as seeds is shown in (c).
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Fig. 8 Seeded watershed segmentation. (a) Fluorescence stained cell nuclei in tumor tissue. Due
to background variation, separation of nuclei and background by thresholding is not possible. (b)
Intensity profile across one row of pixels of (a), and h-maxima at 4 =15 shown as vertical bars in
gray. Nuclei without h-maxima have h-maxima in a different row. (¢) The original image with the
h-maxima overlaid. (d) Object seeds found by h-maxima transformation (white) and background
seeds found by h-minima transformation of the gradient magnitude image of (c) followed by
removal of small objects (black). (e) Result after seeded watershed segmentation of the gradient
magnitude image. More than one seed per object leads to over-segmentation. (f) Merging on edge
strength reduces over-segmentation. Also poorly focused objects may be removed by this step

Fig. 9 Cell segmentation using nuclei as seeds. (a) Clustered fluorescence labeled cells with
varying shapes and intensities are difficult to separate from each other. Watershed segmentation
will result in both over- and under-segmentation (white lines). (b) A parallel image showing the
cell nuclei can be used as a seed for watershed segmentation of the cells. (¢) The result of watershed
segmentation (white lines) using the nuclei (black lines) as seeds
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2.7 Extension to Volume Images and Time-Lapse Experiments

Most of the discussed methods can be extended to volume (three dimensional)
images. For most methods, the only difference is that instead of working with
two-dimensional pixel neighborhoods, we work with three-dimensional voxel
neighborhoods. For example, seeded watershed segmentation can be applied to
three-dimensional images of fluorescence stained cell nuclei in tumor samples
[33, 34]. Here, the 26 side-, edge- and corner- neighbors surrounding each pixel
(or voxel) in 3D are considered in each step, starting with finding h-maxima to the
final merging of weak edges.

In time-lapse experiments, nuclear stains are often undesirable as they may
interfere with the natural behavior of living cells. A nuclear stain may, however,
still be used for image segmentation if the cells are fairly stationary. The stain is
simply added after the completed experiment, and the same image of the nuclei is
thereafter used for segmentation of all time-lapse images [16]. If the cells move, an
image of the nuclei can be used as a starting point for backtracking of cell motion.

2.8 Other Segmentation Methods

Many other models for cell segmentation exist, such as iteratively refined active
shape models [11] and snake algorithms [25]. A comprehensive review of cell
segmentation approaches can be found in Meijering [21]. However, the approaches
described here (and summarized in [38]) are used in a wide range of commercially
available software for microscopy image analysis, and they are also available in a
range of free and open source software, as reviewed by Eliceiri et al. [8]. Free and
open source solutions make it easy to share methods between labs, and are valuable
for the reproducibility of research. The methods described here are fast and allow
large scale screening studies.

3 Feature Extraction and Classification in Large-Scale
Image Based Biomedical Screening

Once the objects of interest have been segmented from each other and from
the image background, a large number of descriptive features can be extracted
from the individual objects in the image, see [28] for an overview. Features may
include object size, shape, distribution of sub-structures such as membranes and
signals from specific molecular detection methods, local intensity patterns (texture),
number of protrusions, number of nearby neighboring cells etc. All features that we
can extract are based on the actual pixel values and their spatial arrangements within
the object. Features may also include relationships between objects (such as number
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of neighbors within a fixed distance), or relationships between larger objects (e.g.
cells) and sub-objects (e.g. organelles).

Morphometric, or shape features are features that are based solely on the spatial
arrangements of pixels/voxels and include for example area, which is the number of
pixels belonging to the object. Perimeter is another morphometric feature, defined as
the sum of steps taken when walking around the edge pixels of a 2D object [6, 14],
and compactness index is a measure of how compact the object is, described as the
object perimeter squared divided by the area. Densitometric, or intensity features
are features that describe the gray-level values (without considering the spatial
distribution), and include for example the integrated intensity, which is the sum of
the intensity values of all pixels/voxels belonging to the object, and the mean object
intensity. Another group of features are the more complex textural or structural
features that combine spatial and gray-level information. Examples are the gray-
level co-occurrence measurement [23] and mass displacement, which is the distance
between the center of mass given by the gray-level image of the object and the center
of mass given by a binary mask of the object.

The numerical data produced by feature extraction may not always be the desired
end result, and it may be difficult to interpret. A simple example is if the goal of the
analysis is to decide the percentage of small, medium-sized and large objects in an
image. Numerical data representing the area of each object does not provide the final
answer. The numerical data has to be analyzed, and each object has to be classified
as small, medium, or large in order to calculate the desired percentages. In many
cases, the goal of the analysis is to retrieve more complicated information from
the images, and a single feature like area is not sufficient for object description
and classification. Figure 10 illustrates an example where cells are segmented,
features are extracted, and cells are classified into three different classes based on
the two most discriminatory feature measurements. If the phenotypes of interest
are complex, a larger number of features may be needed, and the different classes
have to be separated by multivariate statistic analysis. It is very important to note
that increasing the number of features for object classification will not necessarily
improve the classification result. It has been observed that, beyond a certain point,
inclusion of additional features leads to worse rather than better performance [7].
One should instead try to pick a limited set of features that can discriminate between
the relevant populations as well as possible, or use automated feature selection
methods. In fact, a very efficient way of automated selection and reduction of
features is by iterative feedback and machine learning [10].

Image processing and analysis is often used in high-content analysis/high-
throughput screening (HCA/HTS) experiments, searching large libraries of chemi-
cal or genetic perturbants, to find new treatments for a disease or to better understand
disease pathways. Automated image segmentation, processing and analysis has also
more recently shown to be a powerful tool for grouping chemical compounds based
on their mechanism of action [17] and to predict the potential performance of
novel chemicals in compound libraries [36]. Large-scale experiments analyzed by
automated methods require robust models for object detection, such as the ones
described here. Robust and diverse staining approaches also increase the chance of
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Fig. 10 Illustration of object classification based on feature measurement. The image comes from
a translocation assay (image set BBBCO13v1 provided by Ilya Ravkin, available from the Broad
Bioimage Benchmark Collection, [18]) where one can observe a cytoplasm to nucleus translocation
of the Forkhead (FKHR-EGFP) fusion protein in stably transfected human osteosarcoma cells,
U20S. In proliferating cells, FKHR is localized in the cytoplasm. Even without stimulation,
Forkhead is constantly moving into the nucleus, but is transported out again by export proteins.
Upon inhibition of nuclear export, FKHR accumulates in the nucleus. In this assay, export is
inhibited by blocking PI3 kinase/PKB signaling by incubating cells for 1 h with Wortmannin.
Nuclei are stained with DRAQ, a DNA stain. The goal is to classify cells into three phenotypes;
cells with nuclear GFP (i.e. FKHR-EGFP), cytoplasmic GFP, or no GFP expression. Input images
are segmented into cell nuclei and surrounding cytoplasm, where the cytoplasm is defined as any
pixels within a fixed distance of a nucleus. Next, a large number of different feature measurements
are extracted from each cell. In the classification step, cells are classified into the three classes
nuclear GFP (blue box), cytoplasmic GFP (green box), or no GFP expression (magenta box) based
on two feature measurements, namely integrated intensity of GFP at the edge of the cell and
correlation of GFP and DNA stain within the cell. The distribution of feature measurements is
shown as a scatter plot, and the final classification result as small colored squares overlaid the
segmented cells

detecting subtle changes of cellular states [9]. Different methods for quantification
of image quality are also desirable, especially if the number of images is very large,
and system failures such as errors in autofocusing, image saturation and debris may
introduce errors in the final screening results [5].

In the most common case, cultured cells model biological processes and disease
pathways. Studying disease by culturing cells allows for efficient analysis and explo-
ration. However, many diseases and biological pathways can be better studied in
whole animals—particularly diseases that involve organ systems and multicellular
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interactions, such as metabolism and infection. The worm Caenorhabditis elegans
(C. elegans) is a well-established and effective model organism, used by thousands
of researchers worldwide to study complex biological processes. Samples of C.
elegans can be robotically prepared and imaged by high-throughput microscopy,
just as with cells, mathematical models of worm shape and appearance are required
for efficient analysis [39, 40].

Automated analysis of cells as well as model organisms are typical examples
where biological questions and their real-life constraints together with the possi-
bilities and limitations of mathematical models require expertise from biologists as
well as mathematicians. Image based research as such requires different scientific
communities to closely engage and communicate, and there is broad potential for
new discoveries in this fast growing field of science.
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