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Preface

Life scientists are not always fully aware of the powerful role that mathematical
models have in both answering biological research questions and in making
predictions. Scientists have a clear view of the problem; they know the questions;
they have identified ways to answer; and they produce the data to be analysed. Novel
high throughput technologies are utilized that give rise to an unprecedented quantity
of data. However, the data is ‘noisy’, and the answer to each question can be well
hidden under terabytes of incomprehensible text files.

It is here that the mathematicians can help: they know ‘how’ to do things;
they love the huge, ugly text files; they foresee hundreds of statistics that could
be calculated; they want to try all of them because there is always uncertainty.
Mathematicians see paths, trends, connections, and correlations. Ultimately the need
to identify the beautiful biological mechanisms that are hidden, must come to light.
Indeed, mathematicians too, get stuck, lost among protein sticks, bubbles, helices,
and sheets.

During the ‘Bringing Maths to Life’ workshop, held in Naples, Italy, October
27–29, 2014, biologists and mathematicians joined forces to address key areas in
biology that face demanding mathematical challenges. A list of invited speakers and
participants came from leading European universities and the international scientific
community; especially computational biologists, mathematicians, and researchers in
the life sciences. Interdisciplinary discussions surrounded existing cases in an effort
to identify gaps or to share existing solutions. Finding the best mathematical resolu-
tion to interpret data from a biological perspective, or—inversely—understanding
the biological issue and its real-life constraints from a mathematical viewpoint,
required both communities to closely engage. The present volume gathers a number
of chapters selected from the most interesting contributions to the workshop.

The workshop had featured three main sessions. ‘Zoom inside the cell:
microscopy images processing’ had been the topic of the first session. Biological
visualization provides the means through which to place genomic and proteomic
information in a cellular or tissue context. While existing software enables particular
assays for distinct cell types, high throughput image analysis has, to this point, been
impractical unless an image analysis expert develops a customized solution, or
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vi Preface

unless commercial packages are used with their built-in algorithms for limited sets
of cellular features and cell types. There exists a clear need for powerful, flexible
tools for high throughput cell image analysis. Computer vision researchers have
contributed new algorithms to the project so that their theoretical work can be
applied to practical biological problems.

The session on ‘Genetic variability and differential expression: sequence
data analysis’ had addressed the recent revolution in DNA sequencing technology
brought by the sequencing of an increasing number of genomes. Changes in data
quantity and format (large numbers of short reads or pairs of short reads versus
relatively long reads produced by traditional Sanger sequencing) imply changes of
sequence data management, storage, and visualization, and provide a challenge for
bioinformatics.

‘Deciphering complex relationships: networks and interactions’ had dealt
with biological systems composed of thousands of different types of components
and the problems related to the huge networks that comprise numerous non-linearly
interacting dimensions, from which, in turn, biological functions emerge. The
networks are far too complex to be understood by the unassisted human mind
and therefore to analyze these complex biological systems and to obtain relevant
answers, biology requires quantitative models that draw from modern computer
science and mathematics.

Additionally, there had been three invited sessions. The first one was on
‘Molecular Dynamics and Modelling of Protein Structure and Function via
High Performance Computing Simulations’ (organized by Alessandro Grottesi
from CINECA, Italy). Molecular dynamics simulations are computational tools
aimed at studying protein structure and dynamics as well as protein-protein inter-
actions at the atomic level. The high performance computing of current computer
architectures, as well as the developing of valid force fields for the mathematical
modelling of biochemical interactions, have provided new tools to help biologists
studying and testing hypotheses to understand biochemical phenomena in a new
perspective. This session has highlighted the advantages and limitations of this
powerful computational technique.

In the second invited session, ‘Statistical challenges in omics research within
Life Sciences’ (organized by J.J. Houwing-Duistermaat from Leiden University
Medical Center, The Netherlands and Luciano Milanesi from Institute of Biomed-
ical Technologies, CNR, Italy), several statistical issues in omics datasets were
addressed, from preprocessing up to building statistical models for joint interpreta-
tion of the datasets. These datasets contain information about different aspects of the
same biological processes. Therefore in many studies, multiple omics datasets are
nowadays available and integrated analyses of these omics datasets is the ultimate
goal to understand biological mechanisms underlying traits. However integration
of these datasets is not straightforward since they vary in measurement error
distributions, scale, sparseness and size. In this session challenges were addressed
in single omics datasets analysis as well as combined analysis of multiple omics
datasets.
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The third invited session had been dedicated to ‘Artificial neurons and realistic
simulation of neuronal functions’ (organized by Angela Tino from Institute
of Cybernetics, CNR, Italy). Modern neuroscience research has generated vast
volumes of experimental data, and large scale initiatives launched in recent years
will gather much more. Nonetheless, much of the knowledge needed to build
multilevel atlases and unifying models of the brain is still missing. Brains are a
large network composed of many neurons with their synaptic connections, each
expressing different proteins on the cell membrane and each with its own complex
internal structure. Despite huge advances, there is no technology that allows us to
characterize more than a tiny part of this complexity. The session had shed light
on novel solutions from neural-inspired artificial models and software, realistic
neuronal function simulation, and functional and molecular neurobiology and had
aimed to gather scientists from diverse disciplines to foster integrated approaches to
unravel complex brain functions.

Naples, Italy Valeria Zazzu
Rome, Italy Maria Brigida Ferraro
Naples, Italy Mario R. Guarracino
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Image Segmentation, Processing and Analysis
in Microscopy and Life Science

Carolina Wählby

Abstract Microscopes have been used for more than 400 years to understand
biological and biomedical processes by visual observation. Science is the art of
observing, but science also requires measuring, or quantifying, what is observed.
Research based on microscopy image data therefore calls for methods for quantita-
tive, unbiased, and reproducible extraction of meaningful measurements describing
what is observed. Digital image processing and analysis is based on mathematical
models of the information contained in image data, and allows for automated
extraction of quantitative measurements. Automated methods are reproducible and,
if applied consistently and accurately across experiments with positive as well as
negative controls, also unbiased. Digital image processing is further motivated by
the development of scanning microscopes and digital cameras that can capture
image data in multiple spatial-, time-, and spectral-dimensions, making visual
assessment cumbersome or even impossible due to the complexity and size of the
collected data.

The process of analyzing a digital image is usually divided into several steps,
where the objects of interest are first identified, or ‘segmented’, followed by
extraction of measurements and statistical analysis. This chapter starts from the
basics of describing images as matrices of pixel intensities. Emphasis is thereafter
put on image segmentation, which is often the most crucial and complicated step.
A number of common mathematical models used in digital image processing of
microscopy images from biomedical experiments are presented, followed by a brief
description of large-scale image-based biomedical screening.

Keywords Image cytometry • Fluorescence microscopy • Cell segmentation •
Image analysis
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1 Pixels and Color Channels

A digital image is not continuous, but consists of discrete picture elements, or
pixels. A typical fluorescencemicroscopy image is built up of multiple fluorescence
channels, each representing a separate fluorescence stain, usually bound to DNA
or an antibody probing a specific protein or subcellular structure. Figure 1 shows
a fluorescence microscopy image where cell nuclei are stained with DAPI binding
DNA, and red and green dots representing mRNA molecules (for details see [12]).
Imagine that the goal of the analysis is to count the number of red and green dots
per cell. The color image in Fig. 1 can be split into its constituent image channels,
leading to one image representing the red, green and blue fluorescence respectively.
If we take a closer look at the red channel, and zoom in on one of the dots, we
can see that the image is built up of square picture elements, or ‘pixels’ for short,
see Fig. 2. Each of these pixels is represented as a number in the computer, where
a higher number means a brighter pixel, and the whole image can be thought of
as a matrix of numbers. In a color image, the three image channels represent the

Fig. 1 Using three different filter sets, three different fluorescence labels were imaged using
fluorescence microscopy. Top left is a composite image of all three image channels; cell nuclei are
stained with DAPI binding DNA, and red and green dots represent mRNA molecules (for details
see [12]). Due to autofluorescence and unspecific fluorophore binding, the cells’ cytoplasms can
be seen as a weak background staining in the red and green image channels
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Fig. 2 An image is built up of pixels. If we zoom in on a sub part of the larger image, we see
that the image is built up of square pixels, where the graylevel, or intensity of each pixel, can be
represented as a number in the computer memory. Image segmentation thresholding (left) assigns
the maximum value (white) to all pixels above a given threshold (in this case intensities > 50),
while other pixels are assigned the minimum value (black)

amount of red, green and blue respectively, and any image analysis operation can
work either on a single image channel, or a combination of multiple image channels
in two or more spatial dimensions, as well as with time sequences. Here we focus
on operations that work on a single channel in two dimensions, but the general idea
of images as matrices of pixels, each represented by a number, holds true in any
number of dimensions.

2 Image Segmentation

Segmentation is the process in which an image is divided into its constituent objects
or parts, and background. It is often the most vital and most difficult step in an
image analysis task. The segmentation result usually determines eventual success of
the analysis. For this reason, many segmentation techniques have been developed,
and there exist almost as many segmentation algorithms as there are segmentation
problems. The construction of a segmentation algorithm can be thought of as
defining a model of the objects that we want to detect in the image. This model
is then the basis for the segmentation algorithm.

2.1 Thresholding

In the simplest case, we create a model that says that objects are brighter than
the image background, and individual objects are well separated from each other.
If we can find a suitable intensity threshold that separates the bright objects from
the dark background, the segmentation is completed. We simply find all connected
pixels brighter than the threshold, and say that they are our objects, as shown
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in Fig. 2, left, where all pixels above a given threshold (in this case intensities
> 50) are assigned the maximum value (white) while other pixels are assigned the
minimum value (black). The tricky part is to find a suitable threshold. There are
many different automated thresholding methods, see [29, 30] for a review. One
approach is to look for valleys in the image histogram. Plotting the number of pixels
per intensity-level against intensity-level creates an image histogram. If objects are
bright and background is dark, the histogram will have one peak for objects and one
for background, and a valley will be present between the peaks. Figure 3a shows
an image of fluorescence labeled nuclei of cultured cells. The image histogram is
shown in Fig. 3b, and a threshold is placed at intensity 30. In Fig. 3c, the intensity
variation along a row in (a) is plotted against x-position, and the threshold is shown
as a horizontal line. The result of thresholding the image at this level, and labeling
the different connected components, is shown in Fig. 3d. Clustered objects will not
be separated by simple intensity thresholding.

Fig. 3 Image segmentation by thresholding. (a) Fluorescence stained nuclei of cultured cells. (b)
Image histogram of (a). A threshold is placed where the histogram shows a local minimum. The
vertical line corresponds to a threshold at intensity 30. (c) An intensity profile along the row
y D 300 of (a), with the intensity threshold represented by a horizontal line. (d) The result after
thresholding and labeling of connected pixels. Note that not all nuclei are separated by thresholding



Image Segmentation, Processing and Analysis in Microscopy and Life Science 5

2.2 Watershed Segmentation

If all the objects are brighter than the image background, but clustered, as in the
image of cytoplasms in Fig. 4a, thresholding will only separate the objects from the
image background, and not separate the individual objects from each other. There
is no single threshold that will separate all cells and at the same time find all cells.
We can, however, create a model that says that objects have high intensity, and are
less intense at borders towards other objects. If image intensity is thought of as
height, the cells can be thought of as mountains separated by valleys in an intensity
landscape, see Fig. 4b. The segmentation task is then to find the mountains in the
landscape.

A segmentation algorithm that has proven to be very useful for many areas of
image segmentation where landscape-like image models can be used is watershed
segmentation. The method was originally suggested by Digabel and Lantuéjoul,
and extended to a more general framework by Beucher et al. [2]. Watershed
segmentation has then been refined and used in many situations; see, e.g., Meyer
and Beucher [22] or Vincent [34] for an overview. The watershed algorithm works
through intensity layer by intensity layer and splits the image into regions similar
to the drainage regions of a landscape. If the intensity of the image is thought of
as height of a landscape, watershed segmentation can be described as submerging
the image landscape in water, and allowing water to rise from each minimum in the
landscape. Each minimum will thus give rise to a catchment basin, and when the
water rising from two different catchment basins meet, a watershed, or border, is
built in the image landscape. All pixels associated with the same catchment basin are
assigned the same label. Watershed segmentation can be implemented with sorted
pixel lists [35] so that essentially only one pass through the image is required. This
implies that the segmentation can be done very fast.

In the case where we want to find bright mountains separated by less bright
valleys, we simply turn the landscape up-side-down, inverting the image, and think

Fig. 4 Image segmentation by watershed segmentation. (a) Fluorescence stained cytoplasms
of cultured cells. (b) The intensity of (a) plotted as a landscape. (c) The result of watershed
segmentation of the inverted image
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Fig. 5 Shape-based watershed segmentation. (a) Free and clustered cell nuclei. (b) Distance
transformation applied to a thresholded version of (a). The distance from each object pixel to
the image background is coded as intensity and displayed as height in a landscape. (c) The result
of watershed segmentation of (b) together with (a)

of the mountains as lakes separated by ridges instead of mountains separated by
valleys. The result after applying watershed segmentation to the image of the
cytoplasms can be seen in Fig. 4c.

2.3 Shape-Based Watershed Segmentation

If the clustered objects are not separated by less intense borders, they may have some
other feature, or combination of features, that can be included in the segmentation
model. One example of such a feature is roundness. The cell nuclei in Fig. 5a are
all fairly round in shape, but have internal intensity variations that are sometimes
greater than those between the individual nuclei. The clustered nuclei can easily
be separated from the background using thresholding. The thresholded image can
then be transformed into a distance image, where the intensity of each object pixel
corresponds to the distance to the nearest background pixel. Calculation of the
distance transformation is very fast, calculated by two passes through the image
[3, 4]. The result will be an image showing bright cones, each corresponding to
a round object, see Fig. 5b. Watershed segmentation can then be applied to the
inverted distance image, and the clustered objects are separated based on roundness,
see result in Fig. 5c. Shape-based segmentation has proven useful for segmentation
of cell nuclei in a number of studies [13, 20, 24, 27].

2.4 Edge-Based Watershed Segmentation

Intensity variations in the image background often make it difficult to separate the
objects from the image background using thresholding. In some cases, it is possible
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Fig. 6 Edge-based watershed segmentation. (a) Fluorescence stained cell nuclei in a section from
tumor tissue. Due to background variation, separation of nuclei and background by thresholding is
not possible. (b) The gradient magnitude of (a). (c) Result after applying watershed segmentation
to the gradient magnitude and overlaying the result with the original image

to reduce these background variations by pre-processing steps that computationally
reduce these variations [15, 26]. In other cases, a more advanced model saying that
the transition between objects and background is marked by a fast change in image
intensity may be applied. In Fig. 6a, the background pixels in the upper left corner
of the image have the same intensity as the object pixels in the lower right corner of
the image. The objects are still visually clearly detectable as their local intensity is
different from the local background.

Intensity changes can be described as the magnitude of the image gradient. The
magnitude of the gradient expresses the local contrast in the image, i.e., sharp edges
have a large gradient magnitude, while more uniform areas in the image have a
gradient magnitude close to zero. The local maximum of the gradient amplitude
marks the position of the strongest edge between object and background. The
commonly used Sobel operators [32] are a set of linear filters for approximating
gradients in the x, y (and z) directions of an image. Adding the absolute values of
the convolutions of the image with the different Sobel operators approximates the
gradient magnitude image. Figure 6b shows the gradient magnitude, where large
magnitude is shown as high image intensity. If watershed segmentation is applied
to the gradient magnitude image, the water will rise and meet at the highest points
of the ridges, as shown in Fig. 6c. This corresponds to the location of the fastest
change in intensity, just as in our segmentation model.

2.5 Merging

When watershed segmentation is applied to an image, water will rise from every
minimum in the image, i.e., a unique label will be given to each image minimum. In
many cases, not all image minima are relevant. Only the larger intensity variations
mark relevant borders of objects. This means that applying watershed segmentation
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Fig. 7 Edge-based merging. (a) Fluorescence labeled cytoplasms with internal intensity variations
leading to over-segmentation. (b) Result after merging on minimum height of separating ridge.
Some over-segmentation still remains. (c) Result after further merging of all small objects with the
neighbor towards which it has its weakest ridge

will lead to over-segmentation, i.e., objects in the image will be divided into several
parts, see Fig. 7a. Over-segmentation can be reduced by a pre-processing step
reducing the number of local image minima, e.g., by smoothing the image with a
mean or median filter. Smoothing may, however, remove important structures, such
as edges, in the image. An alternative to pre-processing is post-processing. After
applying watershed segmentation, over-segmented objects can be merged.

Merging can be performed according to different rules, based on the segmen-
tation model. One example is merging based on the height of the ridge separating
two catchment basins, as compared to the depth of the catchment basins. The model
says that a true separating ridge must have a height greater than a given threshold.
All pairs of lakes that at some point along their separating ridge have a height lower
than the threshold are merged. The result of merging Fig. 7a at height 10 is shown
in Fig. 7b.

Other merging criteria may also be used. For example, if we know that an object
must have a certain size, we can include this in our model and say that every object
smaller than this size should be merged with one of its neighbors. If there are several
neighbors to choose from, we say that merging should be with the neighbor towards
which the small object has, e.g., its weakest ridge [37]. The result of this merging
method applied to Fig. 7b is shown in (c). The length of the border between two
objects can also been used to decide if neighboring objects should be merged or not
[33]. Defining the strength of a border as the weakest point along the border may
lead to merging of many correctly segmented objects due to single weak border
pixels or weak border parts originating from locally less steep gradients. Another
simple measure, which is less sensitive to noise and local variations, is the mean
value of all pixels along the object border [38].
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2.6 Seeded Watershed Segmentation

Including a priori information in our model before applying watershed segmentation
can also reduce both over- and under-segmentation. Seeded watershed segmentation
[1, 22, 34] means that starting regions, called seeds, are given as input to the
watershed segmentation. Water is then only allowed to rise from these seeded
regions, and the water rising from the seeds floods all other image minima. The
water will continue to rise until the water rising from one seeded region meets
the water rising from another seeded region, or a pre-defined object/background
threshold. This means that we will always end up with exactly as many regions as
we had input seeds.

Seeds can be set manually [19], or in an automated way. For example, we may
know that, despite variations in both object and background, each object has a
certain contrast compared to its local neighborhood. Such regions can be detected
using morphological filters. One example is the extended h-maxima transform,
which filters out the relevant maxima using a contrast criterion [31]. All maxima
are compared to their local neighborhood, and only those maxima greater than a
given threshold h are kept. A low h will result in many seeds, often more than one
seed per object. A high h will result in fewer seeds, and some objects may not get a
seed at all. An example is shown in Fig. 8. The intensity along a pixel row in Fig. 8a
is shown in (b), and the h-maxima are marked in gray. Note that maxima that do not
contain gray markers do so in a different image row. Despite background variation,
h-maxima are found in all cells, as shown in (c). Seeded watershed segmentation
is very useful if we perform our segmentation in the gradient magnitude of the
image. We can find seeds in object and background regions based on intensity
information in the original image, and then let the water rise from these seeds
placed in the gradient magnitude image. Object and background seeds are shown
in Fig. 8d and the result after watershed segmentation is shown in (e). The result
of this segmentation approach, combined with merging based on edge-strength is
shown in Fig. 8f.

Seeds may also come from a parallel image. Cells often vary very much in shape
and size, and touch each other. Watershed segmentation will not always give a
satisfactory result, as seen in Fig. 9a. If we have a single seed per cell, the task
of finding the borders of the cell is greatly simplified. The h-maxima transformation
results in useless seeds due to great intensity variations within the cells. The nice
thing about cells is, however, that each cytoplasm has a natural marker that may
be included in the segmentation model: the nucleus. If the nuclei, which are fairly
round in shape and usually nicely separated, are stained and imaged in parallel with
the cells, they can be used as seeds for watershed segmentation of the cells. The
nuclei of the cells in Fig. 9a are shown in (b), and the result of seeded watershed
segmentation using the nuclei as seeds is shown in (c).
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Fig. 8 Seeded watershed segmentation. (a) Fluorescence stained cell nuclei in tumor tissue. Due
to background variation, separation of nuclei and background by thresholding is not possible. (b)
Intensity profile across one row of pixels of (a), and h-maxima at h D 5 shown as vertical bars in
gray. Nuclei without h-maxima have h-maxima in a different row. (c) The original image with the
h-maxima overlaid. (d) Object seeds found by h-maxima transformation (white) and background
seeds found by h-minima transformation of the gradient magnitude image of (c) followed by
removal of small objects (black). (e) Result after seeded watershed segmentation of the gradient
magnitude image. More than one seed per object leads to over-segmentation. (f) Merging on edge
strength reduces over-segmentation. Also poorly focused objects may be removed by this step

Fig. 9 Cell segmentation using nuclei as seeds. (a) Clustered fluorescence labeled cells with
varying shapes and intensities are difficult to separate from each other. Watershed segmentation
will result in both over- and under-segmentation (white lines). (b) A parallel image showing the
cell nuclei can be used as a seed for watershed segmentation of the cells. (c) The result of watershed
segmentation (white lines) using the nuclei (black lines) as seeds
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2.7 Extension to Volume Images and Time-Lapse Experiments

Most of the discussed methods can be extended to volume (three dimensional)
images. For most methods, the only difference is that instead of working with
two-dimensional pixel neighborhoods, we work with three-dimensional voxel
neighborhoods. For example, seeded watershed segmentation can be applied to
three-dimensional images of fluorescence stained cell nuclei in tumor samples
[33, 34]. Here, the 26 side-, edge- and corner- neighbors surrounding each pixel
(or voxel) in 3D are considered in each step, starting with finding h-maxima to the
final merging of weak edges.

In time-lapse experiments, nuclear stains are often undesirable as they may
interfere with the natural behavior of living cells. A nuclear stain may, however,
still be used for image segmentation if the cells are fairly stationary. The stain is
simply added after the completed experiment, and the same image of the nuclei is
thereafter used for segmentation of all time-lapse images [16]. If the cells move, an
image of the nuclei can be used as a starting point for backtracking of cell motion.

2.8 Other Segmentation Methods

Many other models for cell segmentation exist, such as iteratively refined active
shape models [11] and snake algorithms [25]. A comprehensive review of cell
segmentation approaches can be found in Meijering [21]. However, the approaches
described here (and summarized in [38]) are used in a wide range of commercially
available software for microscopy image analysis, and they are also available in a
range of free and open source software, as reviewed by Eliceiri et al. [8]. Free and
open source solutions make it easy to share methods between labs, and are valuable
for the reproducibility of research. The methods described here are fast and allow
large scale screening studies.

3 Feature Extraction and Classification in Large-Scale
Image Based Biomedical Screening

Once the objects of interest have been segmented from each other and from
the image background, a large number of descriptive features can be extracted
from the individual objects in the image, see [28] for an overview. Features may
include object size, shape, distribution of sub-structures such as membranes and
signals from specific molecular detection methods, local intensity patterns (texture),
number of protrusions, number of nearby neighboring cells etc. All features that we
can extract are based on the actual pixel values and their spatial arrangements within
the object. Features may also include relationships between objects (such as number
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of neighbors within a fixed distance), or relationships between larger objects (e.g.
cells) and sub-objects (e.g. organelles).

Morphometric, or shape features are features that are based solely on the spatial
arrangements of pixels/voxels and include for example area, which is the number of
pixels belonging to the object. Perimeter is another morphometric feature, defined as
the sum of steps taken when walking around the edge pixels of a 2D object [6, 14],
and compactness index is a measure of how compact the object is, described as the
object perimeter squared divided by the area. Densitometric, or intensity features
are features that describe the gray-level values (without considering the spatial
distribution), and include for example the integrated intensity, which is the sum of
the intensity values of all pixels/voxels belonging to the object, and the mean object
intensity. Another group of features are the more complex textural or structural
features that combine spatial and gray-level information. Examples are the gray-
level co-occurrence measurement [23] and mass displacement, which is the distance
between the center of mass given by the gray-level image of the object and the center
of mass given by a binary mask of the object.

The numerical data produced by feature extraction may not always be the desired
end result, and it may be difficult to interpret. A simple example is if the goal of the
analysis is to decide the percentage of small, medium-sized and large objects in an
image. Numerical data representing the area of each object does not provide the final
answer. The numerical data has to be analyzed, and each object has to be classified
as small, medium, or large in order to calculate the desired percentages. In many
cases, the goal of the analysis is to retrieve more complicated information from
the images, and a single feature like area is not sufficient for object description
and classification. Figure 10 illustrates an example where cells are segmented,
features are extracted, and cells are classified into three different classes based on
the two most discriminatory feature measurements. If the phenotypes of interest
are complex, a larger number of features may be needed, and the different classes
have to be separated by multivariate statistic analysis. It is very important to note
that increasing the number of features for object classification will not necessarily
improve the classification result. It has been observed that, beyond a certain point,
inclusion of additional features leads to worse rather than better performance [7].
One should instead try to pick a limited set of features that can discriminate between
the relevant populations as well as possible, or use automated feature selection
methods. In fact, a very efficient way of automated selection and reduction of
features is by iterative feedback and machine learning [10].

Image processing and analysis is often used in high-content analysis/high-
throughput screening (HCA/HTS) experiments, searching large libraries of chemi-
cal or genetic perturbants, to find new treatments for a disease or to better understand
disease pathways. Automated image segmentation, processing and analysis has also
more recently shown to be a powerful tool for grouping chemical compounds based
on their mechanism of action [17] and to predict the potential performance of
novel chemicals in compound libraries [36]. Large-scale experiments analyzed by
automated methods require robust models for object detection, such as the ones
described here. Robust and diverse staining approaches also increase the chance of
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Fig. 10 Illustration of object classification based on feature measurement. The image comes from
a translocation assay (image set BBBC013v1 provided by Ilya Ravkin, available from the Broad
Bioimage Benchmark Collection, [18]) where one can observe a cytoplasm to nucleus translocation
of the Forkhead (FKHR-EGFP) fusion protein in stably transfected human osteosarcoma cells,
U2OS. In proliferating cells, FKHR is localized in the cytoplasm. Even without stimulation,
Forkhead is constantly moving into the nucleus, but is transported out again by export proteins.
Upon inhibition of nuclear export, FKHR accumulates in the nucleus. In this assay, export is
inhibited by blocking PI3 kinase/PKB signaling by incubating cells for 1 h with Wortmannin.
Nuclei are stained with DRAQ, a DNA stain. The goal is to classify cells into three phenotypes;
cells with nuclear GFP (i.e. FKHR-EGFP), cytoplasmic GFP, or no GFP expression. Input images
are segmented into cell nuclei and surrounding cytoplasm, where the cytoplasm is defined as any
pixels within a fixed distance of a nucleus. Next, a large number of different feature measurements
are extracted from each cell. In the classification step, cells are classified into the three classes
nuclear GFP (blue box), cytoplasmic GFP (green box), or no GFP expression (magenta box) based
on two feature measurements, namely integrated intensity of GFP at the edge of the cell and
correlation of GFP and DNA stain within the cell. The distribution of feature measurements is
shown as a scatter plot, and the final classification result as small colored squares overlaid the
segmented cells

detecting subtle changes of cellular states [9]. Different methods for quantification
of image quality are also desirable, especially if the number of images is very large,
and system failures such as errors in autofocusing, image saturation and debris may
introduce errors in the final screening results [5].

In the most common case, cultured cells model biological processes and disease
pathways. Studying disease by culturing cells allows for efficient analysis and explo-
ration. However, many diseases and biological pathways can be better studied in
whole animals—particularly diseases that involve organ systems and multicellular
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interactions, such as metabolism and infection. The worm Caenorhabditis elegans
(C. elegans) is a well-established and effective model organism, used by thousands
of researchers worldwide to study complex biological processes. Samples of C.
elegans can be robotically prepared and imaged by high-throughput microscopy,
just as with cells, mathematical models of worm shape and appearance are required
for efficient analysis [39, 40].

Automated analysis of cells as well as model organisms are typical examples
where biological questions and their real-life constraints together with the possi-
bilities and limitations of mathematical models require expertise from biologists as
well as mathematicians. Image based research as such requires different scientific
communities to closely engage and communicate, and there is broad potential for
new discoveries in this fast growing field of science.
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Winckler, W., Golub, T.R., Carpenter, A.E., Shamji, A.F., Schreiber, S.L., Clemons, P.A.:
Toward performance-diverse small-molecule libraries for cell-based phenotypic screening
using multiplexed high-dimensional profiling. Proc. Natl. Acad. Sci. U. S. A. 111(30),
10911–10916 (2014)



16 C. Wählby

37. Wählby, C., Lindblad, J., Vondrus, M., Bengtsson, E., Björkesten, L.: Algorithms for cytoplasm
segmentation of fluorescence labeled cells. Anal. Cell. Pathol. 24(2–3), 101–111 (2002)

38. Wählby, C: Algorithms for applied digital image cytometry. PhD thesis Uppsala University,
Sweden (2003)

37. Wählby, C., Sintorn, I.-M., Erlandsson, F., Borgefors, G., Bengtsson, E.: Combining intensity,
edge, and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J.
Microsc. 215(1), 67–76 (2004)

39. Wählby, C., Kamentsky, L., Liu, Z.H., Riklin-Raviv, T., Conery, A.L., O’Rourke, E.J.,
Sokolnicki, K.L., Visvikis, O., Ljosa, V., Irazoqui, J.E., Golland, P., Ruvkun, G., Ausubel,
F.M., Carpenter, A.E.: An image analysis toolbox for high-throughput C. elegans assays. Nat.
Methods 9(7), 714–716 (2012)

40. Wählby, C., Conery, A.L., Bray, M.A., Kamentsky, L., Larkins-Ford, J., Sokolnicki, K.L.,
Veneskey, M., Michaels, K., Carpenter, A.E., O’Rourke, E.J.: High- and low-throughput
scoring of fat mass and body fat distribution in C. elegans. Methods 68(3), 492–499 (2014)



Image Analysis and Classification
for High-Throughput Screening
of Embryonic Stem Cells

Laura Casalino, Pasqua D’Ambra, Mario R. Guarracino, Antonio Irpino,
Lucia Maddalena, Francesco Maiorano, Gabriella Minchiotti,
and Eduardo Jorge Patriarca

Abstract Embryonic Stem Cells (ESCs) are of great interest for providing a
resource to generate useful cell types for transplantation or novel therapeutic studies.
However, molecular events controlling the unique ability of ESCs to self-renew as
pluripotent cells or to differentiate producing somatic progeny have not been fully
elucidated yet. In this context, the Colony Forming (CF) assay provides a simple,
reliable, broadly applicable, and highly specific functional assay for quantifying
undifferentiated pluripotent mouse ESCs (mESCs) with self-renewal potential. In
this paper, we discuss first results obtained by developing and using automatic soft-
ware tools, interfacing image processing modules with machine learning algorithms,
for morphological analysis and classification of digital images of mESC colonies
grown under standardized assay conditions. We believe that the combined use of
CF assay and the software tool should enhance future elucidation of the mechanisms
that regulate mESCs propagation, metastability, and early differentiation.
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1 Introduction

Application of image analysis and machine learning algorithms and tools to cell
biology is a very active research field aimed to provide fast and objective methods
for analyzing the large amount of images produced by modern high-throughput
screening platforms available in biological research laboratories [3, 20, 22, 25].

In this work we describe first results related to the development of a multi-
component software framework devoted to define automated morphological
analysis and classification of Embryonic Stem Cells (ESCs) colonies. The colony-
forming (CF) assay is widely used for monitoring the quality of ESC cultures as
it currently offers the most sensitive and specific method to quantify the frequency
of undifferentiated cells present in a culture. Moreover, it provides a reliable tool
also for evaluating quantitative changes in pluripotent cell numbers, following
manipulations that may affect the self-renewal and differentiation properties of the
treated cells. In a clonogenic assay, under specific supportive conditions, pluripotent
mouse embryonic stem cells (mESCs) form tridimensional round-shaped (domed)
colonies. After the exposure to conditions that affect their metastability promoting
an Epiblast-like phenotype [4] or induce differentiation, cells loose the ability to
grow tridimensionally and form irregular and flattened (flat) colonies. The 4-day CF
assay, by detecting the ability of mESCs to form domed or flat colonies, allows the
composition of test cell populations to be quantified at the single cell level. However,
to achieve acceptable statistical accuracy, a high number of cell colonies is required.
In this regard, manual counting and classification are tedious, time-consuming,
resource-intensive and subjective (operator-dependent). Therefore, the development
of a reliable automated colony counter and classifier for such clonogenic assays
would reduce time and resources required, while allowing greater statistical
accuracy, standardization and reproducibility, thus offering the possibility for
greater throughput over extended periods. To this aim, we proposed an experimental
software tool which is able to automatically discriminate and quantify domed
colonies, raising from undifferentiated self-renewing mESCs, and flat colonies,
derived from undifferentiated Epiblast-like or differentiating cells. It is a multi-
component framework interfacing different general-purpose software modules,
implementing highly accurate algorithms for image pre-processing (spanning from
region of interest identification to background removal), segmentation, and feature-
based classification. Trained on untreated reference samples as well as on samples
treated with reference compounds, the prototypal version of the software has been
tested on a dataset of 40 microscopy images of single wells containing cells grown in
different conditions. Comparison of the first results from automated versus manual
colony segmentation and classification on randomly chosen images proved that the
proposed tool is promising to be used as blind tool to support reliable analysis of
molecular screening.
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The paper is organized as follows. In Sect. 2 we describe the software com-
ponents, both in terms of functionality and of main models and algorithms. In
Sect. 3 we present first results and provide a quantitative performance analysis
referring to usual performance metrics for segmentation and classification problems.
Conclusions are drawn in Sect. 4.

2 Software System Components

According to the typical image analysis pipeline for High-Content Analysis [22],
the proposed steps for automatically discriminating domed and flat colonies in
microscopy images can be summarized as follows:

1. Pre-processing, to reduce image artifacts caused by imperfections in the image
acquisition process.

2. Segmentation, to separate the cell colonies in each well image.
3. Feature computation, to provide numerical descriptors of each segmented

colony.
4. Classification, to finally provide the discrimination and quantification of domed

and flat colonies, based on the most discriminating features.

2.1 Pre-Processing

Input images are initially pre-processed, in order to allow an easier and more
accurate segmentation of ESC colonies.

First of all, the well area is extracted by the whole image, in order to focus on the
actual region of interest (ROI) in all subsequent steps, as exemplified in Fig. 1. This
allows us to reduce not only the computational complexity of the entire procedure,
but also the potentially misleading influence of non interesting image details (e.g.,
shadows and dark areas around the well, as shown in Fig. 1-a).

Fig. 1 Extraction of the ROI: (a) original image; (b) circular ROI of the well; (c) obtained sub-
image, which will be the input for subsequent steps (non interesting pixels shown in black)
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Relying on the strong intensity discontinuities (edges) provided by the well
borders, the circular ROI is accurately obtained through the Hough Transform [10],
a powerful tool for the detection of parametric curves in images. It implements
a voting process that maps image edge points into manifolds in an appropriately
defined parameter space; peaks in this space correspond to the parameters of
detected curves. Specifically, the Circle Hough Transform is designed to determine
the parameters of a circle when a number of points that fall on its perimeter
are known. A circle with radius r and center (x0; y0) can be described with the
parametric equations

�
x D x0 C r cos �

y D y0 C r sin �
:

When the angle � sweeps through the full 360 degree range, the points (x; y)
trace the perimeter of the circle. An image edge point (x; y) is mapped to the 3D
parameter space (x0; y0; r), voting for all the circles that it could lie on. These votes
are accumulated in a 3D array, whose maxima provide the parameters of most
prominent circles. In the case of our single-well images, the accumulator maximum
provides the well center pixel coordinates and the radius.

The next pre-processing step estimates and then removes the well background,
in order to avoid the influence of eventual uneven illumination, as exemplified in
Fig. 2. The goal is achieved through mathematical morphology operations [21],
that, based on set theory, provide a tool to extract image components useful for
the representation and description of region shape, and for pre- and post-processing
of images.

Specifically, we relied on closing top-hat filtering, an operation that extracts small
elements and details from a given image. Let f be a grayscale image, and let b be a
grayscale structuring element. The closing top-hat transform of f (sometimes called
the bottom-hat transform or the black top-hat transform) is given by:

Tb.f / D f � b � f ;

Fig. 2 Background estimation and removal: (a) input image (green color band of the image in
Fig. 1-c); (b) estimated background; (c) obtained image, with background removed
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where � indicates the closing operation. It returns an image containing the objects
that are smaller than the structuring element and are darker than their surroundings.
In the case of our images, morphological closing f � b using a structuring element
b having size greater than any expected cell colony removes all the colonies,
thus providing a faithful approximation of the well background (see Fig. 2-b). The
subsequent subtraction of the original image by the estimated background provides
a uniformly illuminated image of the cell colonies, as shown in the normalized result
reported in Fig. 2-c.

2.2 Segmentation

In order to partition each well image into its constituent objects (ESC colonies and
background), we devised two different approaches. In the first approach, the image
resulting from pre-processing is binarized through Otsu’s method [17] (see Fig. 3-b)
and then refined through binary morphological operations. Specifically, refinement
involves morphological closing for removing small holes, hole-filling for removing
internal holes, and removal of very small objects, i.e., small cell colonies or generic
particles of no biological interest (see Fig. 3-c).

A second approach is based on a well-known variational model, for which we
recently proposed efficient numerical solvers [9] with the final aim to develop
software modules for modern high-performance environments [8]. In the following
we briefly describe the model and the main features of the numerical approach and
discuss the subsequent refinement of variational-based segmentation for application
to the cell identification problem.

The image segmentation problem can be mathematically formulated in terms of
a variational model, i.e., in terms of an energy minimization criterion. We look for a
piecewise smooth function u which approximates the original image function f , with
u discontinuous across a closed set K that is included in the image domain ˝ and
represented by a suitable function z. In more details, let ˝ � <2 be a bounded open

Fig. 3 First approach to ESC colonies segmentation: (a) input image (the pre-processed image of
Fig. 2-c); (b) binarized image; (c) refined binarized image
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set and f 2 L1.˝/ the observed gray-level image. The problem can be described
in terms of the minimization of the following functional:

E�.u; z/ D
Z

˝

.u � f /2dxdy C ˇ

Z
˝

z2jruj2dxdy C ˛

Z
˝

�
�jrzj2 C .z � 1/2

4�

�
dxdy;

where u 2 C1.˝ n K/, 0 � z � 1 is a function which controls jruj and gives an
approximate representation of the set K, ˛ and ˇ are positive coefficients and � is
a positive sufficiently small parameter. The choice of the parameter set, especially
of �, affects the accuracy in the detection of K and it is a main drawback in the
numerical solution of 1. Our approach for the solution of 1, known as the Ambrosio-
Tortorelli model or phase-field approximation of the Mumford-Shah model [1],
is based on the classical approach of Calculus of Variations which consists in
writing the corresponding Euler-Lagrange equations, representing the necessary
conditions for the minimizer. Euler-Lagrange equations for 1 are a non-linear system
of elliptic partial differential equations coupled with Neumann conditions, which
can be solved by finite-difference discretization. We proposed to apply a second-
order finite-difference scheme and, starting from a block form of the resulting
algebraic equations, we applied a first-order alternating minimization scheme based
on the non-linear Gauss-Seidel method, accelerated by inner linear iterations. Our
numerical results and comparisons with standard numerical techniques show the
efficiency and the robustness of our solution approach for increasing sizes of cell
colony images. Details on the numerical scheme and on the above results are
discussed in [9]. Here, we only point out that results discussed in the following have
been obtained, starting from the preprocessed image obtained by the green band
of the original RGB image, when the parameters in 1 were set as follows: ˛ D 1,
ˇ D 2 and � D 10�3.

The obtained function z (see Fig. 4-a), also known as the edge set of the image,
represents the set K where the piecewise smooth function u (also known as the
restored image) is discontinuous and allow us to identify the borders of the cell
colonies. Indeed, starting from the edge set, we applied subsequent refinements,

Fig. 4 Second approach to ESC colonies segmentation: (a) edge set of the preprocessed image of
Fig. 2-c; (b) binarized version of the edge set; (c) refined binarized image



Image Analysis and Classification HTS of Embryonic Stem Cells 23

Fig. 5 Examples of ESC colonies extracted from the image in Fig. 1: (a) a domed colony (size
about 4 % of the original image); (b) a flat colony (size about 7 % of the original image)

based on binarization (see Fig. 4-b), hole-filling for removing internal holes, and
finally removal of very small objects, analogous to those of the previously described
approach, which leads to the cell colony segmentation (see Fig. 4-c).

2.3 Features Computation

In order to classify the ESC colonies and be able to differentiate between domed
and flat ones, we designed a general approach to feature selection and classification,
based only on distinctive feature estimates that can be computed by the available
images.

The most distinctive features that allow the biologist to discriminate the two
kinds of colonies concern their shape: domed colonies appear compact and rounded,
as opposed to flat colonies that spread more or less throughout the well (see Fig. 5)
This prior knowledge is exploited by using geometric models locally estimated for
each colony in a well. Among the considered shape features, the most significative
are those reported in Table 1. The Area A.X/ provides the number of pixels of the
object (colony) X and the Perimeter P.X/ is computed as the sum of the distances
between consecutive pairs of boundary pixels of X. Solidity S.X/ is given by the
ratio of the area A.X/ of the object X and the area A.CH.X// of its convex hull [5].
Solidity ranges in [0,1], producing low values when the shape of the object shows
many concavities (as in the flat colonies) and high values when the shape of the
object shows few or zero concavities (as in the domed colonies). The irregularity of
a contour is expressed through Compactness C.X/ [7], given by the ratio between
the area A.X/ of the object and P2.X/=4� , the area of a circle having the same
perimeter P.X/ as the object. Indeed, this feature, ranging in [0, 1], provides low
values for scarcely compact shapes (as in the flat colonies) and high values for
compact shapes (as in the domed colonies), reaching its maximum for the most
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Table 1 Some of the adopted shape (S) and texture (T) features and their values for
the ESC colonies of Fig. 5

Feature Description
Value for
Fig. 5-a

Value for
Fig. 5-b

(S) Area A.X/ = # pixels of object X 1512 3258

(S) Perimeter P.X/ = length of border of object X 153:09 496:54

(S) Solidity S.X/ = A.X/=A.CH.X// 0:93 0:65

(S) Compactness C.X/ = 4�A.X/=P2.X/ 0:81 0:18

(T) Entropy H.X/ = �P
i

P
j M.i; j/ log2 M.i; j/ 6:75 6:96

(T) Contrast CN.X/ =
P

i

P
j.i � j/2M.i; j/ 0:28 0:30

(T) Energy E.X/ =
P

i

P
j M.i; j/2 0:37 0:14

(T) Correlation CR.X/ =
P

i
P

j.i��i/.j��j/M.i;j/p
.�2

i /.�2
j /

0:96 0:95

compact shape: the circle. Other adopted shape features are: Eccentricity, that is
the eccentricity of the minimum area ellipse including the colony image; Min and
Max axis length, that are the minimum and the maximum axis length of the ellipse
containing the colony image, respectively; Nsegments, that gives the ratio of the
number of contour segments and the area of a colony image.

Besides shape estimates, textures have also been considered. In an image, the
intensity variations which define a texture are mostly related to physical variations
in the scene (such as pebbles on the ground). It is very difficult to model these
variations and no precise definition of texture is present in computer vision literature
[6]. For this reason, textures are usually characterized by intensity value variations
in the two-dimensional space of an image. The adopted texture features of each
object can be described in terms of the gray-level co-occurrence matrix (GLCM)
[13], that allows us to capture the spatial dependence of gray-level values which
contribute to the perception of texture, by showing how often different combinations
of pixel brightness values occur in an image. The GLCM matrix is a square matrix
M of dimension n, where n is the number of different gray levels in the image.
Each element M.i; j/ is generated by counting the number of times a pixel in X
with gray value i is adjacent to a pixel in X having gray value j. Each element
M.i; j/ is then normalized so that the sum of all elements of M is equal to 1, and can
thus be considered as the probability of occurrence of adjacent pixel pairs having
gray level values i and j in the image. Among the considered texture features, the
most significant are those reported in Table 1. The Entropy H.X/ measures the
randomness of the gray-level distribution in the colony image X, while the Contrast
CN.X/ is a measure of the intensity contrast between a pixel and its neighbors
over X, assuming null value for a constant image. The Energy E.X/ yields the
smallest value when all entries in M are equal; it is 1 for a constant image. The
Correlation CR.X/ measures the dependency of gray levels on those of neighboring
pixels. Further texture features that have been considered are the Homogeneity,
that measures the closeness of the distribution of elements in the GLCM to the
GLCM diagonal, and Centropy and Bentropy, that measure the entropy of color and
grayscale colony image, respectively.
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2.4 Classification

In machine learning, supervised classification methods aim at inferring a classi-
fication rule from a class-labeled set of examples described by a set of features.
The inferred rule is then used for predicting the class of further unlabeled data.
Therefore, a classifier can be considered as a mapping from a feature space to a set
of classes. There exist several classifiers in literature, since there are several ways
of building up such a mapping. For example, the mapping can be described by a
set of induction rules, like in the tree-based classifiers, or the classifiers may be
expressed as a linear separator in the original feature space, like for the perceptron
or the support vector machines (SVM) classifiers. The choice of a good classifier is
not a simple task, as it depends on several choices [14], including the complexity of
the classification rule, the size of the training set, and the number of features.

For the classification of ESC colonies into domed and flat ones, we trained a
set of binary classifiers from a set of labeled images described by the selected
features (see Sect. 2.3). The classifiers have been chosen based on the criterion that
the classification rule can be expressed either by a set of induction rules or by an
easy interpretable mathematical function, where the importance of each feature in
the classification rule is easily interpretable. This suggests which features are more
relevant for labeling an image.

Specifically, we adopted three classifiers based on decision trees, that return
induction rules for deciding the label of an instance: CART [2], J48 [19] and
Adaboost [11] using as weak learners CART classifiers (AdaboostCCART). Among
the classifiers searching for a linear separator in the feature space between instances
with different labels, we used two versions of the SVM classifier: the SVM linear
[24] and the SVM linear with hinge loss [18]. Finally, we adopted the Naïve Bayes
classifier [15], a probabilistic algorithm which assigns a probability to each instance
for each label, according to the highest label probability. All the above classifiers are
available through the open source Weka software [12], that allows testing several
classifiers in a very user friendly way.

3 Experimental Results

The proposed software framework has been tested on images of a CF assay done
by plating mESCs in 96-well plates at the density of 500 cells=cm2 in medium
for propagation of undifferentiated cells (with Lif and serum). After cell adhesion
(4 h), cells were treated with reference compounds controlling their metastability
or differentiation, L-Proline [4] and Retinoic Acid [23], respectively, added at three
different concentrations and allowed to grow for 4 days. Single well bright field
images were acquired under a Leica MZ16FA stereo microscope.
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Randomly chosen images of treated and untreated wells have been manually
annotated, in order to provide the ground-truths for objective evaluation of the
software components.

3.1 Performance Metrics

Validation of all the system modules has been performed in terms of different
metrics frequently adopted in the literature [16], namely Precision and Recall

Recall D TP

TP C FN
; Precision D TP

TP C FP
;

where TP; FN; and FP indicate the total number of true positives, false negatives,
and false positives, respectively. Recall, also known as detection rate or sensitivity,
gives the percentage of detected true positives as compared to the total number of
true positives in the ground truth. Precision, also known as positive prediction, gives
the percentage of detected true positives as compared to the total number of items
detected by the method. Using the above mentioned metrics, generally a method
is considered good if it reaches high Recall values, without sacrificing Precision.
A further metric F1, also known as F-score or F-measure, given by the weighted
harmonic mean of Precision and Recall

F1 D 2 � Recall � Precision

Recall C Precision
;

provides a single measure that can be used to “rank” different methods.
For validating the classification accuracy, we adopted also the False Positive Rate

(FPR)

FPR D FP

FP C TN
;

where TN indicates the total number of true negatives.

3.2 Evaluation of the Segmentation Step

For the segmentation step, Recall, Precision, and F1 metrics have been adopted both
as pixel-based and as object-based measures, depending on wether true positives
(resp. false negatives) are intended as true positive (resp. false negative) pixels or
objects (colonies), respectively. While the pixel-based measures provide hints on
the fine-grain segmentation accuracy, the object-based measures provide hints on the
colony counting ability of the proposed modules. Average segmentation accuracy of
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Table 2 Average segmentation accuracy of the two segmentation
approaches

Approach1 Approach 2

Metric Pixel-based Object-based Pixel-based Object-based

Recall 0.7246 0.9194 0.8793 0.8387

Precision 0.9663 0.9344 0.8826 0.9630

F1 0.8282 0.9268 0.8809 0.8966

Fig. 6 Evaluation of the segmentation step: details of the original image of Fig. 1 (first column),
of the ground truth (second column), and of corresponding results obtained by the first and second
segmentation approaches (third and fourth column, respectively). Green pixels superimposed on
the original image indicate pixels included into the segmentation

the two segmentation approaches in term of the above metrics is reported in Table 2
and some details of the achieved results are reported in Fig. 6. The higher pixel-
based accuracy values of the second approach (fourth column of Table 2) indicate
a better ability of the variational model-based segmentation to precisely detect the
colony contours (e.g., compare Figs. 6-g and 6-h). However, this ability leads also
to fuse different colonies that are very close (e.g., see Fig. 6-d), resulting in lower
object-based accuracy values (fifth column of Table 2).

Both the approaches report very few false positives and false negatives. Examples
of false positives, e.g., segmented colonies that have no interest for the biologist, are
reported in Figs. 6-g and 6-h, where the detected small colony has been excluded by
the biologist in the ground truth reported in Fig. 6-f. Most of the false negatives
are linked to adjacent colonies, barely distinguishable by an untrained human
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eye, that are segmented as a single colony. An example is given in the third row
of Fig. 6, where the adjacent colonies of the original image (Fig. 6-i) have been
manually segmented in the ground truth as two separate colonies (Fig. 6-j) based
only on the biologist experience. The two approaches, instead, both provide a
single segmented colony (Figs. 6-k and 6-l). This analysis of false positives and
false negatives suggests that features other than contrast or edges, able to better
describe the discrimination ability of the trained eye, could help avoiding the few
segmentation errors reported. Hints could be provided by the subsequent steps of
feature computation and feature-based classification.

Although the segmentation results are quite accurate for both the proposed
approaches, a suitable combination of them, together with a feedback from the
subsequent steps of feature computation and classification, could help further
improving segmentation accuracy.

3.3 First Classification Results

Each of the selected classifiers (see Sect. 2.4) has been trained using the selected
features (see Sect. 2.3) of the colonies included into the constructed ground truths.
The statistical validation of results has been obtained using a 10-fold cross
validation. This procedure consists in splitting the training set in ten parts; at each
step, one of those parts is used for testing and the remaining nine are used for
training. Therefore, the performance metrics have been evaluated as the average
among the one hundred repetitions of the ten-fold cross validation. Table 3 reports
the classification performance values for each classifier, suggesting that all the six
classifiers are very accurate in predicting the label of an instance. In the case of
SVM with hinge loss, the number of false positives is reduced up to 1 %. This
is exemplified in Fig. 7, where we compare the manual classification provided by
the biologist with the automatic classification computed using the SVM with hinge
loss for the well of Fig. 1. Table 4 reports the weights (one for each feature) of
the normalized equation of the hyperplane that separates domed vs. flat colonies in
the feature space. Positive weights are associated to domed colonies. The higher the
absolute value of the weights, the more the feature is relevant for discriminating

Table 3 10-fold cross validation of classification results

Classifier FPR Recall Precision F-measure

CART 0.040 0.96585 0.96593 0.96587

J48 0.032 0.96585 0.96635 0.96589

Adaboost+CART 0.024 0.97561 0.97563 0.97560

SVM linear 0.038 0.97073 0.97097 0.97076

SVM linear with hinge loss 0.010 0.98537 0.98540 0.98536
Naïve Bayes 0.024 0.97561 0.97568 0.97562
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Fig. 7 Example of classification results: (a) manual classification; (b) automatic classification
using SVM with hinge loss

Table 4 SVM with hinge loss: shape (S) and texture (T) features ordered by the absolute value
of (normalised) weights

Feature Weight Feature Weight Feature Weight

(S) Solidity 8.3231 (S) Eccentricity 3.4247 (T) Contrast 1.8952

(S) Compactness 7.5965 (T) Color �2.7622 (S) Perimeter �1.8120

(T) Correlation �6.4780 (S) Min axis length �2.6790 (T) Homogeneity 1.6923

(S) Nsegments 5.9170 (T) Centropy �2.4002 (S) Area �0.7793

(T) Energy 5.1318 (S) Max axis length �2.1554 (T) Bentropy 0.3709

the classes. Also the other classifiers1 confirmed that, as expected, Solidity and
Compactness shape features are the most discriminant features for our binary
classification. Among texture features, Correlation is the most relevant.

4 Concluding Remarks

In this paper we present a novel software framework for the segmentation and
classification of microscopic images obtained by CF assays of mESCs and suitable
for high-throughput applications. Our main aims were to use general-purpose soft-
ware components for image processing and machine learning, eventually developed
in different projects, to support biological experiments within a multidisciplinary
context. First results show that our approach is promising to be used as blind tool

1Detailed results may be supplied on demand.
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to support reliable analysis of molecular high-throughput screening. Future works
will include comparisons in terms of efficiency, reliability and flexibility with some
existing application-specific software tools and the development of a user-friendly
software interface for biologists without deep knowledge in computer programming.
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Exploiting “Mental” Images in Artificial Neural
Network Computation

Massimo De Gregorio and Maurizio Giordano

Abstract In Artificial Neural Network (ANN) computing the learned knowledge
about a problem domain is “implicitly” used by ANN-based system to carry
on Machine Learning, Pattern Recognition and Reasoning in several application
domains. In this work, by adopting a Weightless Neural Network (WNN) model of
computation called DRASiW, we show how the knowledge of a problem, internally
stored in a data representation called “Mental” Image (MI), can be made “explicit”
both to perform additional and useful tasks in the same domain, and to better tune
and adapt WNN behavior in order to improve its performance in the target domain.
In this paper, three case studies of MI processing in the realm of WNN applications
are discussed with the aim of proving the viability and the potentialities of exploiting
internal knowledge of WNNs to self-adapt and improve their performance.

Keywords Weightless systems - Mental images

1 Introduction

In traditional ANNs the knowledge about a problem domain is coded in the
configuration of synaptic weights between neurons. The goal of the ANN training
phase is to find the optimal configuration of weights that allows the network to
properly generate the expected outputs in the classification/recognition phase. The
configuration of weights can be considered as the internal state of the network. How
it is obtained and changed during the network operation is a matter of the particular
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ANN model adopted. What is important is that, once the network architecture
(i.e., layers, number of neurons per layer, and connection paths) is set, the ANN
configuration of weights fully characterizes its behavior.

RAM-based neural networks are alternative models of ANNs in which the
learned knowledge about the problem domain is coded inside RAM-neuron contents
rather than on their interconnections. As in the classical weight-based ANNs, the
particular configuration of RAM cells is obtained in the training phases, either
if they are carried out in super-, semi- or unsupervised manner. At any time
during a RAM-based neural network operation, the configuration of RAM contents
represents the internal state of the network. Once we have set the RAM-based ANN
architecture (i.e., layers, number of neurons per layer, RAM bit address, type of
data stored, etc.), the “image” (snapshot) of RAM contents fully characterizes the
internal state of the ANN and, as a consequence, the image represents the knowledge
and the behavior of the ANN functioning.

Generally in ANN models this internal state is implicit. Although the internal
state of the learning process is coded by the information stored in the ANN
data structures (either weights or RAM contents), this information may not be
accessible by the neural-based system to be exploited in a computational meta-
level. In the RAM-based model of the ANN adopted in this work, the DRASiW
weightless model, this is possible thanks to a particular feature: the contents of
RAM-neurons not only characterize the network behavior, but they are also an
additional information explicitly available to the neural-based system, in such a way
that the ANN can process this information in a computing meta-level in order to
adapt and to tune its future behavior.

As in [10], our approach tries to make explicit the internal representation of
knowledge of an ANN with the aim of facilitating an interpretation (that can be
geometrical, physical, symbolic, etc.) of the learning process and of discovering its
correlation to the input. While authors do not suggest applications of the ANN inner
knowledge processing, in our work we prove with real case studies how to exploit
this knowledge to adapt to domain changes as well as to improve ANN performance
in the target domain.

Works like [13, 18] propose methods to interpret and to make explicit the ANN
internal knowledge by extracting the knowledge in form of rules (either symbolic
or fuzzy) with the only aim of using such rules to simulate the ANN behavior.
On the contrary, in our approach we exploit learned knowledge of an ANN to
improve and/or to adapt the performance of the same ANN, automatically and/or
with the user feedback, to a data domain which may change in time or may contain
incomplete and/or ambiguous information.

The fact that we start from an already trained ANN and we refine its performance,
by extracting and exploiting its internal knowledge, makes our approach also
different from others, like [21], in which the knowledge of an ANN trained on a
problem domain is used to extract a set of concise and intelligible symbolic rules
that can be used to “refine” an already existing rule-based system, which may have
an incomplete or even incorrect initial knowledge of the target problem.
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Another close topic is how to integrate explicit and implicit knowledge in neuro-
symbolic (hybrid) processing [15]. In this perspective the solution presented in our
work can be considered hybrid too. Regardless of how we explicitly represent the
mental images of ANNs, our intent is to exploit high-order characteristics of the
learned knowledge (macro quantities, invariants, etc.) as an additional information
to the neural-based system to improve its performance.

This chapter is organised as follows. Sections 2 and 3 are devoted to the
introduction of the DRASiW model and its internal knowledge representation
(“Mental” Images). Section 4 shows and discusses three different applications in
which the use of “Mental” Images in the computational process improves the
performance of the DRASiW systems. Finally, Sect. 5 sums up concluding remarks
and perspectives.

2 DRASiW Model

Weightless Neural Networks (WNNs) [1, 12], differently from classical ANNs,
adopt a RAM-based model of neuron by which learning information about a
data domain is stored into RAM contents instead of computed weights of neuron
connections. A RAM-neuron receives an n-bit input that is interpreted as a unique
address (stimulus) of a RAM cell, and used to access it either in writing (learning)
or reading (classification) mode. WNNs have proved to provide fast and flexible
learning algorithms [2].

WiSARD systems are a particular type of WNN, that can be developed directly
on reprogrammable hardware [3]. A WiSARD is composed by a set of classifiers,
called discriminators, each one assigned to learn binary patterns belonging to a
particular class. The WiSARD, also called multi-discriminator architecture, has as
many discriminators as the number of classes it should be able to distinguish.

Each discriminator consists of a set of RAM-neurons, which store the informa-
tion of occurrences of binary patterns during the learning stage. Given a binary
pattern of size s, the so-called retina, it can be classified by a set of WiSARD
discriminators, each one having m RAMs with 2n cells such that s D m � n. Since
each RAM cell is uniquely addressed by an n-tuple of bits, the input pattern can be
partitioned into a set of n-tuples of bits, each one addressing one cell of a RAM.
n-tuples of bits are pseudo-randomly selected and biunivocally mapped to RAMs
(see right part of Fig. 1), in such a way that the input binary pattern is completely
covered.

The WiSARD training phase works as follows:

1. Initialization: all RAMs cells for each discriminator are set to 0.
2. Training set selection: a training set of binary patterns, all with the same size, is

selected; each pattern is known to belong to (and to represent) only one class.



36 M. De Gregorio and M. Giordano

Fig. 1 RAM-neuron (left) and WiSARD discriminator (right)

3. Training: for each training pattern the discriminator assigned to the belonging
class is selected; the pseudo-random mapping is used to define, from the binary
pattern, all n-tuples; each n-tuple forms a unique address of a RAM cell of the
discriminator, whose content is set to 1.

After training, if a RAM cell is set to 0 then the n-tuple of bits in the retina,
corresponding to physical address (in binary notation) of that memory cell, never
occurred across all samples in the training set, otherwise it occurred at least in one
sample.

The WiSARD classification phase works as follows:

1. Test set selection: a test set of binary patterns, all with the same size, is selected;
for each sample of the test set we want to know which category it belongs to.

2. Classification: the pseudo-random mapping is used to extract, from each test
pattern, the n-tuples of bits in such a way to identify RAM cells to be accessed
across all discriminators; contents of accessed cells are summed by an adder (†)
so giving the number r of RAMs that output 1; r is called discriminator response.

It is easy to see that r D m if the input pattern belongs to the training set. While
r D 0 if no n-tuple of bits in the input pattern appears in the training set. Intermediate
values of r express a “similarity measure” of the input pattern with respect to
training patterns. The adder enables a network of RAM-neurons to exhibit (like
ANN models based on synaptic weights) generalization and noise tolerance [2].

DRASiW [8] is an extension of WiSARD: instead of having RAM cells set to 1
once accessed during training, they are incremented by 1 at each access. Thus, after
training, RAM contents store the number of occurrences (frequency) of a specific
n-tuple of bits across training patterns. The new domain of memory cells contents
(non negative integers) produces the same classification capability of a WiSARD
provided that † counts the number of addressed non-zero memory cells.

The DRASiW model augments the WiSARD model adding a backward classifi-
cation capability by which it is possible to generate prototypes (i.e., representative
samples) of classes learned from training patterns [11, 19]. In DRASiW, RAM-
neuron cells act as access counters, whose contents can be reversed to an internal
“retina” storing a “Mental” Image (MI). Memory cell contents of DRASiW
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discriminators can hence be interpreted as sub-pattern frequencies in the training set.
The MI and the internal “retina” metaphors were originally explored and discussed
with respect to their cognitive plausibilities in [6].

3 Mental Images

There are two different ways a DRASiW system can produce MIs: statically and
dynamically. Static MIs are generated after the training phase and do not change
anymore. They represent a pictorial representation of the discriminator internal
information. Let consider the 12 instances of black “7”s, reported in Fig. 2a, as the
training set for the class “seven”. An example of static MI produced by a DRASiW
system trained on this training set, is reported in Fig. 2b. This gray level, non-
crisp example of class “seven” is the result of how the sub-patterns appear in the
training set. In fact, the gray levels are generated taking into account the sub-pattern
frequencies.

Another way of producing MIs is to update them each time the system receives
a new training set pattern. This mode, also called online training, is by far one
of the more interesting operation mode of a DRASiW system. There are many
applications in which the system has to adapt to the new and changing appearance
of the pattern to classify. The only way to face this problem is to update and store
the new information in the MIs. The system updates the MIs each time it receives a
new pattern. In Fig. 2c, the reader can notice how the MI changes with respect to the
input of patterns. The first MI is produced just with the first “7”. The second one is
produced by increasing the gray level of those pixels in common with the previous
pattern (more frequent pixels). All the other MIs are the result of applying this
procedure each time a new pattern is presented to the system. The MI in Fig. 2d is
the result at the end of the process. To sum up, RAM contents corresponding to sub-
patterns of the binary input on the retina are increased by one (reinforcement), while
RAM contents corresponding to those sub-patterns which were not present in the
binary input image on the retina are decremented by one (forgetting). In other words,

Fig. 2 Static and dynamic mental images: (a) training patterns; (b) static MI; (c) dynamic MI after
each training pattern; (d) dynamic MI at the end of training
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the Reinforcement & Forgetting strategy (RF) allows to store the frequency of sub-
patterns occurrences during training time. In this way the MI stored and updated in
time represents a sort of dynamic prototype (history) of the corresponding class.

4 Improving DRASiW Performance

The first two applications reported in the following subsections deal with the
problems of tracking deformable objects and of isolating the background in video
sequences. Both of these applications take advantage of dynamic MIs. The third
application faces the problem of classification through features. In this case,
the information coded in MIs is exploited by the system to identify a set of
“metaclasses” used to better refine and improve the classification process.

4.1 Tracking Deformable Objects

In the realm of object tracking systems [22], many real life scenarios, which span
from domestic interaction to industrial manufacturing processes, pose hard chal-
lenges. In particular, when the object is non-rigid, deformable, and/or manipulated
during the tracking, both its position and deformation have to be followed.

In [20] we present a DRASiW system designed and implemented for tracking
deformable objects. It supports online training on texture and shape of the object,
with the aim of adapting in real-time to changes and of coping with occlusions.
This object tracking system deals with Pizza Making problem. Pizza is a non-rigid
deformable object that can assume whatever shape we want. Hence, it is not possible
to define a model for the tracking. In this context, the system should be able to
dynamically identify the pizza dough and robustly track it without prior knowledge.

At the beginning, the tracking system is fed with an image representing the
object to follow with its initial shape and position. This image is used to train a set
of DRASiW discriminators: one discriminator is placed at the target position, the
remaining discriminators are placed all around the target position with increasing
displacements in the XY directions. The configured set of discriminators forms
the so called prediction window of the tracking system. When the object starts
moving, the DRASiW-based tracking system tries to localize the object through
the discriminator responses. The higher is the response the more probable the object
is in that part of the prediction window processed by that discriminator. Once the
system localizes the object in a new position, it uses this image to train again the set
of discriminators in the prediction window which is also displaced jointly to the
target. So doing, the MI of the object is updated and, hence, it will represent the
more recent object shapes.

Figure 3 shows snapshots of pizza making actions: manipulation, dough stretch-
ing, seasoning, and backing. The outputs of the DRASiW system are represented
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Fig. 3 Sketches of the DRASiW tracking system results in a frame sequence (top row), and
corresponding MIs (bottom row)

by colored crosses. The green cross represents the retina center of the discriminator
with the higher response; while the red cross is the mass center of the current MI.

As one can notice, the tracking results improve if the DRASiW system takes
into account the information given by the updated MI. We could not reach the same
performance if the information contained in the current MI had not been exploited
by the system tracking procedure.

4.2 Generating Background Models

Change Detection (CD) is the problem of separating foreground objects from
background areas in a video sequence. Several techniques and solutions have been
proposed to face the CD problem. Evaluation and comparison surveys of existing
techniques can be found in [5, 14, 16, 17]. Regardless of the specific applied
method,1 most approaches share the basic idea of insulating moving objects from the
background by comparing image areas of new video frames with respect to either a
background model or a model of the target moving objects. Background models can
also be classified as pixel-based or region-based depending on whether computation
is based on only the pixel color or a neighborhood of pixels.

In [9] a CD method based on DRASiW is proposed. It exploits a pixel-based
background model built around the notion of MI. In the approach, pixel processing is
carried out by a DRASiW discriminator. The information stored in neurons is related
to the evolution of changeable pixel color in the video timeline. The dynamic MI
associated to each pixel represents the dynamic background model of it, that is the
storing in time of more frequent and up-to-date RGB values assumed by that pixel in
video frames. The RF mechanism (see Sect. 3) allows to dynamically adapt the MI
in such a way that, during the video timeline, not up-to-date RGB values gradually
disappear from the background model while new and stable colors of recent frames

1Just to mentions a fews: physical models, statistical methods with Gaussian mixtures, pixel
clustering, image filtering (Kalman, Grabcut, etc.), particle filters and neuron network modeling.
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Fig. 4 Outputs of the DRASiW-based CD method: (a) original frame; (b) moving objects
highlighting; and (c) MI background model

will contribute more in the background model. The dynamic MI of pixels allows
to better adapt the background model to gradual changes in brightness of lights
and shadows as well as to natural background noise. Foreground object detection
is carried out by evaluating whether the difference between the current pixel color
and the stored MI model of the background overcomes a certain threshold. A queue
of more recent foreground samples is used to control the time the pixel stays in the
foreground. When the queue is full it means that an object was moved to a position
of the scene and it has become part of the background.

In Fig. 4 snapshots showing the outputs of the DRASiW-based CD method2 are
reported. As one can notice, MIs are not only used to fully control the change
detection process, but also to filter the input video in order to accomplish two
important tasks in video surveillance: 1) moving objects highlighting (see Fig. 4b);
2) subtracting changeable areas from video frames (see Fig. 4c).

4.3 Improving Classification

Activity Recognition aims at identifying the actions carried out by a person given a
set of observations of itself and the surrounding environment [7]. Recognition can
be accomplished, for example, by exploiting the information retrieved from inertial
sensors, such as accelerometers. In some smartphones these sensors are embedded
by default and one can benefit from this to classify a set of physical activities
(standing, sitting, laying, walking, walking upstairs and walking downstairs) by

2The proposed method participated in the international competition of CD methods on the video
repository ChangeDetection.net in 2014, reporting the 3rd best score.

http://www.changedetection.net
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processing inertial body signals through a supervised Machine Learning algorithm
for hardware with limited resources [4].

We tried to classify this set of physical activities with DRASiW trained and tested
on the HAR3 (Human Activity Recognition) data set of the UCI Machine Learning
Repository. The data set consists of 10,299 instances: 7352 for the training set,
and 2947 for the test set. Each instance is formed by 561 features with time and
frequency domain variables.

The confusion matrix obtained with the best DRASiW system configuration
(16-bit addressing for RAM cells) performing an F-measure of 89.7, is shown in
Table 1a. The confusion matrix of the Table 1b reports the F-measure obtained by
the same DRASiW system configuration but exploiting the information content of
the static MIs. The DRASiW system automatically analyses the MIs to identify
features with a very high discriminating power. The analysis outcome is that the six
classes can be grouped in three different “metaclasses”: walking (classes 1, 2, and 3),
vertical activity (classes 4 and 5), horizontal activity (class 6). This is automatically
discovered by the DRASiW system finding out MI overlappings. For the above
metaclasses, the MIs have no intersection (no confusion). At this point, when the
DRASiW system has to classify a test sample, it first selects the best-matched
metaclass, then it classifies the test sample using only discriminators belonging to
that metaclass. The result of this new two-level classification approach is that the
confusion matrix is now almost diagonalized (see italic values in Table 1b), and the
F-measure reaches the value of 94.1, that is, the system improved its classification
power by 4.4 %.

5 Conclusions

The DRASiW model makes available the learned knowledge in form of an internal
data structure called “Mental” Image. This information, which is the synthesis of the
learning process, is explicitly available at the programming level and it can be used
in several application domains. In this paper we showed how exploitation of MIs, in
the context of a DRASiW computational process, allows to pursue different goal-
s/tasks: 1) using global metrics and/or invariants of MIs as additional information
(feedback) the system can take advantage of in order to control its functioning (self-
healing); 2) verifying the correctness of a training procedure; 3) tuning/adapting
classification process by detecting and exploiting more discriminating regions in
MIs; 4) facilitating user-system interface and communication.

3https://archive.ics.uci.edu/ml/machine-learning-databases/00240/.

https://archive.ics.uci.edu/ml/machine-learning-databases/00240/
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We are aware that the natural unfolding of this work is looking for new ways
of using MIs in the context of neurosymbolic systems. Indeed, this is the main
investigation direction we will pursue in the next future on this topics. Although it
would be nice to have a general formalism and/or (rule-based) high-order language
to express the information contained in MIs, we are afraid that any choice would be
inevitably effective only in a specific (or class of) problem domains.
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Applying Design of Experiments Methodology
to PEI Toxicity Assay on Neural Progenitor Cells
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Antonella Lanati, and Giovanna L. Liguori

Abstract Design of Experiments (DoE) statistical methodology permits the
simultaneous evaluation of the effects of different factors on experimental
performance and the analysis of their interactions in order to identify their optimal
combinations. Compared to classical approaches based on changing only one factor
at a time (OFAT), DoE facilitates the exploration of a broader range of parameters
combinations, as well as providing the possibility to select a limited number of
combinations covering the whole frame. The advantage of DoE is to maximise the
amount of information provided and to save both time and money. DoE has been
primarily used in industry to maximise process robustness, but recently it has also
been applied in biomedical research to different types of multivariable analyses,
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from determination of the best cell media composition to the optimisation of entire
multi-step laboratory protocols such as cell transfection.

Our case study is the optimisation of a transfection protocol for neural progenitor
cell lines. These cells are very hard to transfect and are refractory to lipidic reagents,
so we decided to set-up a protocol based on the non-lipidic Poliethylenimine (PEI)
reagent. However, the effect of PEI toxicity on cells has to be correctly evaluated in
the experimental design, since it can affect output computation. For this reason,
we decided to apply DoE methodology to investigate the effect of PEI, both
concentration and type, on cell viability and its interaction with other factors, such
as DNA and cell density. The statistics-based DoE approach allowed us to express
analytically the neural cell viability dependence on PEI amount/cell and efficiently
identify the dose levels of PEI suitable for transfection experiments.

Keywords Design of experiments • PEI toxicity • Neural cell transfection
• Factorial analysis

1 Design of Experiments as a Method
for Protocol Optimization

Design of experiments (DoE) or experimental design is a methodology whose
purpose is planning experiments and analysing their results by optimising the use of
resources and time. At the same time, DoE is an effective tool for both maximising
the amount of information and minimising the amount of data to be collected.
In DoE, a process is seen as an input–output system with a measurable output
that depends on the variations of multiple factors. Given a process or system,
changes are made to the input variables and the effects on response variables
(output) are measured. On this formal basis, factorial experimental designs allow
the investigation of the effects of factors by varying them simultaneously instead of
changing only one factor at a time (OFAT). OFAT is the most immediate approach
to experimentation and is carried out by performing one or more tests for each
value (level) of the independent variable (factor), leaving all the other conditions
unchanged. The evaluation of the output effects induced by the variation of other
factors should thus be obtained by repeating the same type of procedure for every
single factor. Moreover, the evaluation of the effect of each factor, in correspondence
with a precise combination of all the others, does not consider the interactions
between the modelled factors. Therefore, a procedure based uniquely on the OFAT
scientific method would omit the study of the effects of contemporary variations
of two or more factors. Otherwise, a full OFAT model including all the possible
interactions would require an uneven expense of time and resources. For this reason,
choosing DoE methodology is the best option to optimise laboratory practices, such
as transfection protocols, quickly and efficiently. A figurative representation of the
two different methodological approaches is reported in Fig. 1.
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Fig. 1 One factor at a time (OFAT) vs. Design of Experiments (DoE) methodology. Figurative
representation of two different approaches to finding the optimal configuration of factors for the
same process. System outputs are portrayed with a colour scale (from white to red) in a continuous
bi-dimensional space that is to be explored by experimentation. The four-pointed stars represent
all of the attempts made by researchers. Every attempt is a combination of two values, one for each
factor, and the ordinal number associated with each attempt refers to the experimental step in which
it is made. By varying one factor at a time, a stronger exploitation of attempts, steps and time is
needed. Moreover, the results suffer from a higher risk of sub-optimality because of the possibility
of arriving at a relative maximum without gaining a general understanding of the system

Candidate factors and their specific levels are selected, depending on the
magnitude of their effect on the final result. The possibility of succeeding in arriving
at a thorough comprehension of a biological process is strongly connected to the
capability of identifying the most influential factors. DoE gives an estimate of the
sensitivity of the output as a function of each factor, as well as of the combined
effect of two or more factors, in a reduced number of trials (treatments or runs).
A treatment corresponds to a determined set of factor levels, and the total number
of runs depends on: (1) the experimental design, (2) the number of factors and
(3) the replication factor of each experiment.

2 Main Aspects of DoE Methodology

DoE is mainly used for:

• Screening many factors and selecting the most relevant ones
• Discovering interactions among factors
• Executing an experiment lowering the risk of biases
• Verifying experimental assumptions and data consistency
• Analysing, interpreting and presenting the results
• Designing statistically robust protocols
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• Establishing and maintaining Quality control, possibly by re-iteration of DoE
and refinement of the underlying mathematical model

Some principles of DoE are Randomisation, Replication, Blocking, Orthogo-
nality and Factorial experimentation. When applied, these characteristics/principles
contribute to improve the robustness of scientific investigation and help researchers
in developing experimental settings, so that successive trials can validate previous
experimentations in a rigorous way.

Randomisation is accomplished by randomising the testing sequence. In this way,
experimental results are protected against biases (e.g. temporal, order, operator-
dependent).

Replication is a fundamental operation by which estimation precision is
increased and uncontrollable noise is reduced at the same time. Signal-to-noise
ratio is augmented by means of a replicate which is a complete repetition of the
same experimental treatments and conditions, possibly in a randomised order. The
higher costs due to an increase in the number of tests are thus balanced by a more
accurate model parameters estimation.

Blocking improves accuracy by removing the effect of known nuisance factors
when it is known that identical procedures are applied to each batch. The differ-
ence between two procedures is not influenced by the batch-to-batch differences.
Blocking is a restriction of complete randomisation that, thanks to the subtraction
of batch-to-batch variability from the “experimental error”, increases estimation
precision.

Orthogonality is used to generate results whose effects are uncorrelated and
therefore can be more easily interpreted. The factors in an orthogonal experiment
design are varied independently of each other. This makes it possible to summarise
the collected data by taking differences of averages and to show main results
graphically by using simple plots of suitably chosen sets of averages.

Finally, factorial experimentation requires that experimental designs include
simultaneous, independent and orthogonal variations of all the factors. Since the
total number of combinations increases exponentially with the number of factors
studied, fractions of the full factorial design can also be constructed. The drawback
of a reduction of tests in a fractional factorial design is the possibility of confounding
between main effects and factors combinations effects.

Different experimental designs suitable for an experiment are: Plackett–Burman
design, Box–Wilson (central composite) designs, Box–Behnken design, Factorial
designs, equiradial designs (among them, Dohelert design), mixture designs and
combined designs. The full factorial designs [3, 26] allow to estimate primary
effects together with the effects of combinations of factors, called interactions, with
a limited experimental and statistical complexity. Due to its experimental simplicity
coupled with improved statistical efficiency [17], the full factorial design seems to
be one of the most eligible approach in biological studies, in which the analysis of
interactions between factors (e.g. genetic interactions, protein-protein interactions,
gene-protein interactions) is becoming increasingly crucial. In this study we chose
a full factorial design, constructing at least a twofold replicate design by keeping at
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the same time the number of total runs as reasonably low as possible, without the
risk of confounding effects. Non linearities were not studied in this initial phase, so
a two-level full factorial approach was used.

In a two-level factorial screening experiment, every chosen factor varies between
two levels: qualitative factors have two categorical values (e.g. low/high, A/B,
left/right), while quantitative factors vary between two numeric values. Given this
design, if N is the number of candidate factors, the number of requested different
runs is r D 2N. The number of different runs r must always be greater than the rank
of the design matrix X that has to be estimated. Finally the number of total runs t
is obtained by multiplying the number of treatments by the replication factor k, that
is the number of times each single treatment is repeated, leading to t D k*r D k*2N.
The coefficient k is 1 if the experiment is not replicated. The treatments are then
executed in a randomised order to avoid having uncontrolled variables (i.e. not
modelled as factors) contribute to the repeatability variance, affecting the results
in a systematic way [3, 17, 26]. This method relies upon the statistical estimation of
parameters, which are factors with main effects and factorial interactions. Every
parameter is estimated by a mathematical model whose aim is to explain the
variability of the output by a combination of factor effects and their interactions,
in the form y D ax1 C bx2 C ..cx1x2 : : : where xi are the modelled factors and a,
b, c the parameters identified (e.g. a, b: main effects; c: factors interaction). The
accuracy of parameter estimation is calculated by the coefficient of determination
R2, that is a measure of the percentage of data variability explained by the model
and it is used in the multiple linear regression analysis.

An additional measure is adjusted R2, that integrates knowledge on the number
of modelled variables into a score for the goodness of fit. Its choice is suggested
when two models with a different number of factors are compared.

The appropriateness of the estimated mathematical model can be effectively
visualised by means of simple plots that show magnitude, whiteness and distribution
of residuals. Residual distribution analysis is a way to visualize the mathematical
model’s fitness for the system under study. Residuals must be low in magnitude and
distributed normally. A model’s failure to fit must lead to a redefinition of factor
levels or to revision of the design itself. An ANOVA analysis can be associated with
the DoE analysis, enriching the statistical evaluation of the experiment.

3 DoE Applications from Industry to Biological Research

DoE methodology has been widely used in the field of industrial design for the
development of processes in order to improve performance. In this field, the primary
objectives of these experiments were to: (1) determine the most influential variables
on the response, (2) increase product volume, (3) reduce variability. Factorial design
has been used for the optimisation of protocols in a variety of industrial fields
including manufacturing [10, 11, 13, 25], as well as for pharmaceutical studies
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within the Quality-by-design approach to define the design space for standardised
production processes (ICH Q8 2009; [28].

Recently, DoE has been playing an important role also in scientific research areas
such as food science [15], chemistry [4] and engineering [22]. The application of
DoE has brought very good results in biological fields, among them chromatography
[17], metabolomics [29] and especially cellular biology and tissue engineering
[2, 4, 7, 12, 18–21, 23, 24]. Optimising the conditions for a specific process in
an OFAT manner is a time consuming operation and does not take into account
interdependency between factors, which is likely to play a role in most biological
processes. Moreover, since the definition of biological protocols has to deal with
different environmental conditions, robust estimations of variable parameters and
easy visualisation of results are needed to really understand the biological system
under observation.

In cellular biology, DoE-based strategies have been applied to develop and
optimise serum-free media for culturing mesenchymal stem cell (MSC) spheroids
by systematically evaluating media mixtures and a panel of different components
for their effects on cell proliferation [2]. Moreover, a factorial Quality-by-design
approach has been combined with other approaches such as high-throughput mRNA
profiling of a customised chondrogenesis-related gene set as a tool to study in vitro
chondrogenesis of human bone marrow derived MSC. The analysis identified the
best of the tested differentiation cocktails 21. Scientists have taken advantage of
DoE methodology not just to screen different components of a culture medium, but
also to apply it to optimise an entire protocol, such as specific cell line transfection
and protein production, obtaining promising results. It has been shown that DoE
significantly improves transfection efficiency by a global economy of materials
and time [5]. Transfection is the transient or stable introduction of exogenous
molecules and genetic material, DNA or RNA, into cultured mammalian cells and is
commonly utilised in biological laboratories to study gene function, modulation of
gene expression, biochemical mapping, mutational analysis, and protein production.
No single delivery method or transfection reagent can be applied to all types of
cells, and neural cells are among the most difficult cells to transfect [9, 20]. Very
importantly, cellular cytotoxicity and transfection efficiencies vary dramatically
depending on the reagent, protocol and cell type being utilised.

4 Our Case Study: The Set-Up and Optimisation
of a Transfection Protocol for Neural Progenitor Cells

A groundbreaking project named Quality and Project Management OpenLab
(qPMO), inspired by Quality and Project Management principles, has been imple-
mented by a network of Italian National Research Council (CNR) Institutes with the
aim of realising and disseminating within the scientific community an innovative
way to plan and organise research activity (http://quality4lab.cnr.it) [6].

In this context, we selected the DoE model as a very interesting and promising
methodology suitable for different kinds of scientific experiments, and we planned

http://quality4lab.cnr.it
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to apply it to both simple assays and medium-high throughput experiments with the
final aim of identifying a general guideline for the application of DoE to the set-up
and optimisation of scientific protocols.

Our case study is the optimisation of a transfection protocol for neural progenitor
for mes-c-myc A1 cell line to obtain a standardised and reproducible laboratory
procedure. Mes-c-myc A1 cells are immortalised neural progenitor cells (NPCs)
derived from mesencephalon of mouse embryos at 11 days of development which
have the characteristics of self-renewal and multipotency [8]. It has been shown
that mes-c-myc A1 cells, as is typical of all neural cells, are difficult to transfect
and are low-responding to traditional lipidic transfection methods [20]. For this
reason, Polyethyleneimine (PEI) was chosen as a transfection reagent because
PEI is a cationic non-lipidic transfection reagent normally chosen to achieve
higher transfection efficiencies in cell lines that are refractory to liposome-based
transfection [19]. A number of PEI molecules have been described in detail with
varying molecular size or structure: branched (B) PEI with an average molecular
weight of 800 kDa (PEI800) and 25 kDa (PEI25) and a linear (L) form with an
average molecular weight of 22 kDa (PEI22) with high transfection activity in vitro
and in vivo [28].

Among the factors relevant for transfection efficiency, we selected three quan-
titative factors: (1) concentration of PEI, (2) DNA amount, (3) cell density and
a qualitative one, the type of PEI, L (22 kDa) vs. B (25 kDa). PEI transfectant,
as a polyethyleneimine molecule, binds DNA by the presence of nitrogen positive
cations (N) in its structure that attract phosphate negative ions (P) of DNA. N/P
ratios, depending on PEI amount, have a dramatic impact on transfection efficiency
and cytotoxicity [14]. A high concentration of PEI provides a high number of
nitrogen cations that can bind DNA efficiently, but which can also be toxic for cells.
For this reason, it is important to investigate the correct proportions of PEI and
DNA amount, depending of cell line and cell density. Likewise, PEI concentration
as well as PEI structure play an important role in both transfection efficiency and
cytotoxicity. B conformation of PEI provides a large amount of amine groups that
bind DNA more efficiently with respect to the L type. B-PEIs have stronger binding
affinity which can condense DNA more efficiently, but they have a less effective
release, leading to reduced transfection efficiency. B-PEIs are also more toxic,
reducing the viability of cells for transgene expression [19].

To evaluate the percentage of transfected cells, we used ImageJ software to
minimise error and variation in downstream analysis [1]. A DNA plasmid containing
a green fluorescent protein (GFP) reporter was chosen for transfection to help
the output calculation: cells expressing pIRES-EGFP (transfected cells) were
visualised directly by fluorescence microscope after PFA 4 % fixation and Hoechst
counterstaining for nuclei (all cells). ImageJ java-based image processing software
was used for images processing. A plug-in was created to automate and standardize
cell counting of total cells (blue labelled nuclei). GFP positive cells (Green labelled,
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Fig. 2 Transfection efficiency calculation through ImageJ software. Transfected Mes-c-myc A1
cells were visualized by fluorescence microscope. (A) Hoechst-labelled mes-c-myc A1 cells (all
cells) and (B) cells expressing GFP (transfected cells). (A’) a plug-in was created using ImageJ
java-based image processing program to automate and standardize cell counting of total cells.
GFP positive cells (transfected cells) were counted by summing the number of cells captured by
the threshold (red cells, B’) and the cells presenting a weak signal undetectable for the threshold
calculated by the software (B, B’)

transfected cells) were counted by summing the number of cells captured by the
default threshold calculated by the software (red cells) and the cells presenting a
weak signal undetectable for the threshold (Fig. 2).

5 DoE Methodology Applied to Toxicity Assay

In transfection experiments an important issue to consider is the cell toxicity of the
transfectant agent. In our case, for example, a low transfection efficiency could be
due to two opposite conditions, an inadequate amount of transfectant and/or DNA
or too much transfectant, which can be toxic for the cells.

For this reason, we decided to apply DoE methodology to evaluate cell viability
depending on PEI concentration and PEI type in the culture medium, which are
the most critical factors, and their interactions with other important factors, such as
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Fig. 3 Proliferation Chart. Proliferation trend the of mes-c-myc-A1 cell line related to the number
of cells seeded. The four lines are parallel, indicating that the proliferation rate does not vary with
the increase of cell density

DNA concentration and cell density. Before that, we verified that between 10,000
and 50,000 cells/cm2 the proliferation rate was constant and corresponded to the
expected one [8]. In this interval, the cells are in a logarithmic phase of proliferation
(Fig. 3), and this behaviour is fundamental for DNA uptake efficiency.

Here we show a flowchart describing every experimental and analytical phase
of our DoE approach (Fig. 4). Once the calculation of the output (cell viability)
was defined, factors and their levels were chosen, the design of the experiment was
generated by means of Minitab

®
Statistical Software and stored in a worksheet.

Cells were seeded into 24-well plates (each well is approximately 2 cm2) the day
before the treatment. The treatment was performed by adding to cells a solution
made with an appropriate PEI amount, with and without DNA, according to the
design created, in a finale volume of 100 �l of MEM/F12 culture medium without
antibiotic and serum. The incubation lasted over night at 37 ıC in 5 % CO2. The next
day, culture medium containing the testing amount of PEI and DNA was replaced
with fresh complete culture medium. Twenty-four hours after the treatment, viability
(output) was calculated as percentage of alive cells respect to the total ones. Alive
and dead cells were calculated as follows: culture medium from each condition was
collected in different 1.5 ml tubes in order to draw up dead cells in suspension.
Next, attached-alive cells were treated with 0.1 % Trypsin for 1 min at 37 ıC;
thereafter, cells were collected together with their correspondent cells suspension
in the same tube. Subsequently, each tube was centrifuged at 900 times gravity for
3 min and the pellet was re-suspended in 200–400 �l of culture medium. At the
end, 10 �l of cell suspension were mixed with 10 �l of Trypan Blue (Dye of dead
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Fig. 4 (continued)
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cells) and placed into a haemocytometer. Alive (unstained) and dead cells (stained)
were counted under a microscope at 10� magnification. The number of total cells
for each well was calculated by summing up alive and dead cells. After collecting
data, a linear model was fitted to the data and graphs were generated to evaluate
the effects. Residuals plot graphs allowed the evaluation of how accurately the
model (model with full factors and interactions) fitted the data. Main Effects and
Interaction Effects Plots were analysed to understand the effects on the response of
each factor and their interactions. Subsequently the full factor model was compared
with a refined model that included only significant factors and interactions.

The model chosen was validated by random experiments using different PEI
concentrations and cell densities. After the executions of these experiments, we
calculate the amount of PEI/cell used in each condition. Once calculated the
output of the random conditions experimented (cell viability) we plotted the results
together with the refined model to verify the accuracy of the model constructed by
DoE approach.

5.1 Factorial Designs and Residual Analysis

Different open source and commercial software are available to create factorial
designs and analyse the responses: e.g. Minitab

®
Statistical Software, DOECC,

Design-ease, JMP, Develve, MaxStat professional, MacANOVA. Among them we
chose Minitab

®
Statistical Software which offers four types of experimental designs:

factorial, response surface, mixture and Taguchi (robust). By default, Minitab
®

Statistical Software randomises the run order of all design types. Randomisation
helps to ensure that the model meets certain statistical assumptions and allows the
reduction of the effects of factors not included in the study. Four factors were put
under study: (1) PEI concentration, (2) PEI type, (3) presence or absence of DNA
and (4) cell density. We chose a two level (each factor varies between two levels)
full (all combinations are included; no reduction of the design) factorial design
(all factors are varied at the same time) to analyse the effects of the four factors
considered on the output. The execution order of each treatment was performed
according to a ‘RunOrder’ column, which insures the correct randomisation of runs
(16 combinations in duplicate). The worksheet and the rough results obtained are
shown in Fig. 5.

J
Fig. 4 DoE experimental flowchart. Schematic representation of the experimental workflow for
DoE statistical analysis. To create the experimental design and analyse the results, Minitab

®
Sta-

tistical Software was used. Rectangles represent processes; rhombuses represent flow checkpoints.
Two main checkpoint are considered: Residual Analysis and Factors and interactions significance
analysis. KO indicate that checkpoint has not been overcome. Type 1 KO: residuals have not a
normal distribution with mean 0. Type 2 KO: residual analysis shows presence of bias or outliers.
At the end of the analysis the refined model was validated



56 S. Mancinelli et al.

Fig. 5 (continued)



Applying Design of Experiments Methodology to PEI Toxicity Assay. . . 57

For the statistical analysis of the results, a regressive linear model was fitted to
the observations and residuals were analysed (Fig. 6). The distribution appeared to
fit the linear model: the Histogram, the graph that correlates the residuals with their
frequency, appears to be approximately symmetric and bell-shaped, confirming the
normal distribution of residuals (Fig. 6A). The Versus Order plot showed randomly
scattered residuals with the absence of significant patterns in the distribution: this
demonstrates the time independence of residuals, non-constant variance and missing
higher-order terms (Fig. 6B). Once the normality distribution of the residuals was
determined, the analysis of factor interactions was performed.

5.2 Factors and Interactions Significance Analysis

To verify the significance of the factors and their interactions, a Pareto Chart
was generated in which any effect extending beyond the reference red line was
significant at the default level of 0.05 (Fig. 6C). As shown by the graphs, three
different factors were found to be significant (PEI type, PEI concentration and cell
density) and only one two-factor interaction (between PEI concentration and cell
density). The presence of DNA did not influence the response. This observation
might support the idea that negatively charged DNA molecules do not balance
positive charges of PEI transfectant, affecting toxicity in some way.

To interpret the results, Main Effects Plots and an Interactions Plot were analysed
(Fig. 7). A main Effects Plot shows the one-factor effect called main effect (Fig. 7A).
The horizontal line, corresponding to about 60 (60 % of cell viability), represents
the mean of the response of all the runs. The line for DNA confirmed what was
shown in the Pareto Chart, that is, in both conditions of absence (no) or presence
(yes) of DNA the mean of all conditions was approximately 60 %, resulting in a
line with slope close to 0 that indicates the non-influence of the factor. The most
important factor was PEI amount. The effect of this factor was the line with the
highest slope. In detail, all runs in which 6 mg/L of PEI transfectant were utilised
showed a higher cell viability (close to 100 %, total cell viability) with respect to
the condition with 18 mg/L. PEI type and cell density have a similarly low slope,
indicating that these factors had a comparable small effect on the response. The PEI
type plot shows that the mean output of all the runs performed with L-PEI is higher
if compared to the one of all the runs performed with B-PEI, confirming the lower

J
Fig. 5 Toxicity assay performed with a two-level full factorial experimental design. (A) Work-
sheet created by Minitab

®
Statistical Software representing combinations of tested factors and

levels. Standard order indicates the order in which combinations are generated according to the
design chosen. Run order corresponds to the randomisation of generated combinations. DNA,
PEI type, PEI concentration and Cell density are the factors analysed. Viability represents the
calculated output. (B) Graphical representation of the results, in which the two series represent the
two replicates (black, replicate 1; gray, replicate 2)
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Fig. 6 Residual and distribution analysis for Toxicity assay. (A) Histogram shows that the
distribution of the residuals in the experiment is normal. (B) Versus order plot illustrates that
observation order of the residual is well randomised, due to the absence of a repetitive pattern
in the plot. (C) Pareto Chart of the Standardized Effects graphically represents the significant
factors and interactions. Any significant factor or interaction is characterised by columns that
extend beyond the red line; the greater the distance from the line, the higher the influence of that
factor. Significant factors and interactions were, in order: PEI concentration (factor C), cell density
(factor D), interaction between PEI concentration and cell density (CD) and PEI type (factor B)

toxicity of linear conformation of the PEI molecule with respect to the branched one
[19]. In the cell density plot, all runs with the factor of 25,000 cells/cm2 showed a
lower cell viability with respect to runs with 50,000 cells/cm2, demonstrating cell
viability depended on the amount of transfectant per cell. This analysis confirmed
PEI concentration as the most critical parameter and identified PEI type and cell
density as influencing factors.

To identify significant interactions among factors, the Interactions Plot showing
the effect of multiple factors was also analysed (Fig. 7B). Evaluating interactions is
extremely important because an interaction can magnify or diminish main effects.
All the interactions were not significant because the two lines had the same slope,
except for the plot showing the interaction between PEI (mean of the values
of both L and B) concentration and cell density. In this case, the two different
levels of PEI concentration exhibited two different behaviours: at the lower PEI
concentration (black line), cell viability was always approximately 100 % for both
cell density conditions, while with the higher PEI concentration (red line), cell
viability was higher when cell density was 50,000 cells/cm2 (around 40–50 %) and
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lower when cell density was 25,000 cells/cm2 (approximately 0 %, corresponding
to full mortality). These data show that the minimum amount of PEI used (6 mg/L)
never affected cell viability, while the maximum amount (18 mg/L) decreased cell
viability between 0 and 50 %, depending on cell density.

5.3 Model Refining and Validation

A refined model was constructed discarding all the not significant main effects and
interactions: only the significant factors PEI type (B), PEI concentration (C), cells
density (D) and the interaction between these last two factors (C*D) were saved for
the model refinement. Subsequently, the full factors model and the refined model
were compared. Since full factors model had given as a fitness measure R2 adjusted
of 96.24 % and the refined model gave R2 adjusted of 95.96 %, the loss of explained
variance was considered minimal and the refined model was chosen for further
investigations. The analysis of R2, including the adjustment of extra explanatory
variables, gave us additional evidence to exclude from the analysis not significant
factors, such as DNA amount, and irrelevant factors interactions.

6 Conclusions

The DoE approach applied to our Toxicity assay let us clearly determine which
factors most influenced the output of the process under study: PEI concentration
and cell density. Moreover, the simultaneous variation of these factors and the
subsequent statistical analysis let us identify a significant interaction between PEI
concentration and cell density, unmasking the real significant factor influencing cell
viability, that is PEI amount per cell. By relating cell viability measured in the
Toxicity assay to the amount of PEI, both B and L, per cell tested (PEI pg/cell)
we could finally generate a refined model (Fig. 8). To validate this model, we
determined cell viability at different levels of PEI pg/cell in the examined interval.
All the conditions tested were reasonably close to the line, indicating that the model
generated by the factorial analysis had good accuracy and could be used to predict
cell viability variation connected to the dose of PEI per cell. The Toxicity assay
let us select the upper value of PEI pg/cell to be tested in following transfection
experiments, in order to obtain the maximum transfection efficiency avoiding
extreme cell death. Thus, we decided to set the maximum level at a concentration of
PEI in the culture medium of 12 mg/L, corresponding to 30 PEI pg/cell (cell density
50,000 cells/cm2), which would not reduce cell viability more than 50 %.

In summary, taking advantage of statistics-based factorial experimental design
we could express analytically mes-c-myc A1 cell viability dependence on PEI
amount per cell. Application of DoE allowed to determine the maximum amount
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Fig. 8 Dependence of cell viability on PEI amount/cell. A polynomial model was fitted with
Toxicity assay viability results, y D � 1.05x C 93.19 where x: PEI/cell, y: viability (R2 D 0.9104).
Red rhombuses correspond to experimental conditions chosen to test the factorial analysis

of PEI usable in mes-c-myc A1 cells transfection experiments coupled to the higher
cell viability. The main advantages of using DoE were saving time and resources
for the complete experimental plan (leading to efficiency), the evaluation of both
main and interaction effects of the selected factors in an easy graphical way, and
statistical information that allows data to be robust and reliable (both of which
lead to effectiveness). Nowadays, with an increasing scientific competition asking
researchers to produce in a short time reliable and reproducible results, our data
support the application of DoE to scientific studies for obtaining the best results and
optimising the use of resources.
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A Design of Experiment Approach to Optimize
an Image Analysis Protocol for Drug Screening
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Abstract The Design of Experiment, DoE, was applied to support the development
of an innovative optical platform for ion channel drug screening. In this work,
DoE was exploited to investigate a set of software parameters instead of process
variables, an approach that has been only rarely explored. In particular, it was used
to define a standard analytical configuration for a MatLab-based image analysis
software that has been developed in the laboratory to extract information from
images acquired under the drug screening conditions. Since the choice of the type
of analysis and filtering, as well as their interactions, was known to affect the final
result, the aim was to identify a robust set of conditions in order to obtain reliable
concentration-response (sigmoidal) curves in an automated way. We considered
five parameters as factors (all qualitative) and two characteristics of the sigmoidal
curve as reference outputs. A first DoE screening was performed to reduce the
number of needed levels for one factor (an unconventional approach) and a second
optimization study to define the best configuration setting. Image stacks from three
different experimentation days were used for the analysis and modelled by blocks
to investigate inter-day variations. The optimized set of parameters identified in this
way was successfully validated on different cell lines exposed to their references
drugs. Thanks to this study, we were able to: find the optimized configuration for the
analysis, with a reduced number of trials compared to the classical “One Variable at
A Time” approach; acquire information about the interactions of different analytical
conditions as well as the inter-day influence; and, finally, obtain statistical evidence
to make results more robust.
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1 Introduction

1.1 Use of Design of Experiment in Research

The design of experiment (DOE), also known as experimental design, was devel-
oped by Ronald Fisher in the early 1920s. It is a statistical method aimed to plan
and analyze experiments, in order to extract the maximum amount of information
with the fewest possible number of runs. It allows also to build regression models
and to optimize the output by choosing proper variable settings. The traditional way
of conducting experiments is intended to change One Variable at A Time (OVAT),
thus accepting the risks to become trapped in a local optimum, missing the global
optimum. The DoE allows changing simultaneously all the variables, helping in
finding their best combination [6, 12, 14]. Moreover, it provides a regression model
that, in the range of variables used to build it, can make predictions for values
different from those used in the study (see: [1, 18]).

During the last decades, DOE has been successfully applied to optimize pro-
cesses in chemistry and engineering [13] as well as in pharmaceutical and bio-
pharmaceutical industry, both in development and production [2, 7, 9–11, 14, 22,
25, 26]. New applications are emerging in biomedical research, specifically in
medium-high throughput assays and in the optimization of laboratory protocols
[3, 4]. In particular, DoE has recently been used in drug screening, where progress
in molecular biology and advanced technologies has given new opportunities to
test large chemical libraries against biological targets. However, the introduction
of combinatorial chemistry and high-throughput screening has not met the expec-
tations, rather it has been accompanied by a decline in productivity [20]. This can
be ascribed to a number of reasons, including the fact that the process of selection
leaves behind many potentially interesting molecules [16, 23]. This has drawn the
attention to cell-based assays and to more robust screening approaches in order to
increase R&D efficiency/efficacy, and thus productivity. In this respect, attention has
also grown toward methods for an efficient development and setup of the assays.
In the last decades, there are several examples of the application of DoE in drug
screening [5, 11, 15, 17, 24], mainly related to the optimization of biological and
biochemical process condition. Other examples are oriented to optimization of data
processing in metabolomics [8, 27]. The use of experimental design for optimizing
software parameters is still poorly explored (e.g. [21]).

In this paper, we report the use of DoE for the fine set up of the analytical
processing in a newly developed drug screening approach.
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1.2 Dedicated Image Analysis Software for a New Drug
Screening Approach

An innovative optical platform for ion channel drug screening, based on a pro-
prietary approach, has been developed by a multidisciplinary team. Briefly, cells
expressing the channel of interest are loaded with a fluorescent voltage-sensitive
dye and the effect of a drug is revealed by the fluorescence values recorded before
and during exposure to electrical stimulation (see EP2457088 patent for more
details). Images acquired under the above conditions are processed by a MatLab-
based Image Analysis (MaLIA; a program developed in the laboratory) that offers
the possibility to employ different filters, parameters and types of analysis. Data
representative of the cellular response to the electric pulses are used to extrapolate
changes in resistance/conductance; these values are put in relation with increasing
concentrations of the molecule of interest, thereby obtaining a typical sigmoidal
Concentration-Response (CR) curve defined by a set of qualitative and quantitative
parameters. In the course of the project, the MaLIA has progressively evolved,
gaining in flexibility, to explore multiple analytical options. In this development
phase, different analysis configurations were experimented: the parameter space
was narrowed to a set of five, four of which varying between two values only. The
final goal of the project was to define the optimized values of these parameters, in
order to perform a standard analysis in full automation, without external, arbitrary
interventions. To this end, we employed the DoE to evaluate the effects of different
parameters/filters implemented in the MaLIA as well as their interactions.

2 The Design of Experiment (DoE) Method

The different values assumed by each factor (the experimental variables) are called
levels (typically only two, codified as �1 or C1) and can be either qualitative or
quantitative. The DoE allows evaluating both the influence of single variables (main
factors) and the interplay among factors (interactions), i.e. when the effect of a
factor depends on the level of one or more other factors. A specific combination of
levels is called treatment (or run). Each treatment is evaluated in terms of outputs or
responses, which are representative of the behaviour of the system. The magnitude
of a change in response, when factors are varied, is called effect.

In order to achieve statistically relevant conclusions from experiments, it is
necessary to adopt different statistical principles: randomization (i.e. scrambling
the running order of treatments), replication (i.e. repeating each treatment twice or
more) and blocking (i.e. modelling extraneous sources of variation as special vari-
ables). These principles minimize experimental bias that may mask the responses of
the significant factors (see [18]).
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The term factorial design identifies the most used set of treatments employed to
investigate the effects of factors on a response. The simplest factorial design is called
two-level factorial design, and is used in two forms: full factorial and fractional
factorial design. Full factorial design requires 2K runs, where K is the number of
factors, and generates, with the increasing number of factors, a considerable (even
unmanageable) amount of runs. In case of many factors (e.g. >5), we can reduce
the number of requested runs, based on specific assumptions, such as ignoring
interaction of more than three factors: in this way we perform a fractional factorial
design. Experimental designs reduced to 2K�1 runs are called Resolution V designs.
In these designs, no main effect or two-factor interaction is aliased with any other
main effect or two-factor interaction, but two-factor interactions are aliased with
three-factor interactions. There is also the possibility to consider more than two
levels for each factor, and to create a general factorial design [1].

After performing experiments according to the planned design, results are ana-
lyzed through a graphical interpretation (Factorial Plots and Statistical Plots) and a
set of statistical parameters. The Factorial Plots include the Main Effect Plot and the
Interactions Plot. The former is represented as a straight line: the slope indicates
the direction while its magnitude the strength of the effect. On the other hand,
the Interactions Plot shows how different combinations of factor settings affect the
response: non-parallel lines show interaction between couple of factors. The Normal
Probability Plot (one of the Statistical Plots) is a different representation of a
distribution, with the cumulative percentage on the logarithmic Y-axis and the
ordered values of the observations on the X-axis. In this representation, the Gaussian
distribution appears as a straight line. It is used to check normality of the data and to
find out the most significant ones: non-significant data are dispersed along a straight
line, whereas significant data are apart. In the experimental design, the Normal
Probability Plot is used to evaluate significance and normality of both main and
interaction effects. The Pareto Plot (another Statistical Plot) displays the absolute
values of main and interaction effects: a reference line shows statistically significant
values (P < 0.05). The Normal Plot for Residuals is conceptually the same as the one
used for effects and interactions and estimates the difference (residuals) between
actual and predicted values (calculated by the regression model obtained from the
DoE analysis), to verify whether the data have a Gaussian distribution.

This analysis can be complemented by a number of statistical parameters,
including a regression model describing each response as a function of the selected
factors and information coming from the ANOVA analysis (see: [18]).

As a general approach, a screening analysis is first performed with less stringent
conditions to identify the most significant factors. Subsequently, an optimization
analysis is applied to a narrower set of factors to find the best condition that
optimizes the output(s).

Along with the factorial designs, DoE offers a rich set of other designs, to suit
most requirements. Few examples are:

1. Plackett–Burman design, which evaluates the effects of main factors only, with a
small set of runs. It is mainly used in the screening phase;
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2. Response surface designs (e.g. Central Composite, Box–Behnken), which are
used to identify points of absolute maximum, and to highlight possible nonlin-
earities (for quantitative factors only). They are mainly used in the optimization
phase.

3. Mixture design, which is used when factors are components of a blend, and the
output depends on their relative proportion.

3 Experimental Setup

Experiments were performed on a Chinese hamster ovary (CHO) cell line express-
ing the human transient receptor potential (TRPV1) channel (kindly provided by
Axxam S.p.A) using capsaicin as reference agonist. CHO-TRPV1 cells were stained
with a voltage sensitive dye (VSD; di-4-ANEPPS), and exposed to a square electric
pulse. Local fluorescence values were measured before and during the pulse (Fig. 1,
left and right, respectively) both in the absence and in the presence of capsaicin. As
expected from the poor sensitivity of the VSD ( 8 % fluorescence variation/100 mV),
changes are hardly appreciated at first sight and a sophisticated analysis is necessary
to automatically isolate and evaluate subcellular responsive areas. Further details are
available on the patent EP2457088 and will be reported in a full paper on this new
approach (Menegon et al. in preparation).

Among the different types of DoE designs, we decided to use factorial designs
for two reasons. On the one hand, we needed to evaluate second order interactions

Fig. 1 CHO-TRPV1 cells images before (a) and during (b) exposure to an electrical square
pulse. The signal (differences in fluorescence intensity in specific subcellular regions) is not easily
appreciable without proper data processing
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and Plackett–Burman was not suitable. On the other hand, our factors were typically
at two levels, making inappropriate other analyses such as response surface designs.

The very same stack of images was processed many times with MaLIA, to
cover all the combinations of parameters indicated by the experimental design.
Randomization was not required, because no external bias factors could affect
the running of the software analysis. For DoE analysis, we selected, among the
parameters implemented in MaLIA, the following five factors (variables) that
appeared to influence the output data:

a. Binning: to reduce image noise by combining cluster of pixels into single pixels;
b. Shape-mask (ShapeM): to select the membrane responsive areas;
c. Minimum responses filtering (MinRespFilt): to discard signal values lying inside

the noise range;
d. Response calculation (RespCalc): Fold Change (FC) or Normalized Fold Change

(NFC);
e. Output data filtering (OutputDataFilt): pure statistical or functional (to exclude

variations not coherent with the expected biological response)

We defined also two outputs to evaluate the influence of these parameters on CR
curves:

1. R-squared (Rsq), as a measure of good fitting of the sigmoidal curve;
2. Top minus bottom (T-B), as the difference between highest and lowest values in

the sigmoidal curve (a measure of the efficacy of tested drug).

Finally, in order to account for possible inter-day variations (due to biological
variability and/or changes in the process), we repeated the same set of treatments
on image stacks obtained in three different experimental days, and modelled each
of these replications by blocks.

The MaLIA parameters are qualitative and at two levels only, with the sole
exception of Binning that has three possible levels: for a full evaluation, a general
factorial design with five factors should be employed. According to Anderson and
Whitcomb (see Chap. 7, pp. 133–134): (1) a general factorial design is to be avoided
when the number of factors increases (typically higher than 3), (2) a reduction of
a general factorial design requires ad hoc elaboration. The same authors suggest
making preliminary tests to attempt to reduce the analysis to a two-level factorial.
In our case, a complete general factorial design (5 factors, one of them at 3 levels)
would require 2(5�1) � 3 D 48 runs per replicate that, multiplied by the 3 foreseen
replicates, give a total of 144 runs. As expected, the DoE software we use does
not allow for reducing general factorial designs. In line with the suggestions of
Anderson and Whitcomb, we evaluated the possibility to reduce the number of
levels for Binning. Therefore, we first set an unconventional screening analysis,
by considering the sole two factors directly involved in the extraction of data from
images: Binning (three levels) and Shape Mask (two levels), by using a standard
set of the other parameters. Thanks to the reduction of Binning to two levels, in the
second analysis we were able to evaluate all factors at two levels with a fractional
factorial design. In this way, it was possible to perform the analysis with only 6 C 16
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runs for each replicate. Finally, we made a validation to verify: (1) that there is
no significant interaction between Binning and the other factors; and (2) that the
discarded Binning level was less suitable for optimal results.

We generated Normal Plot and Pareto Plot, to identify statistically significant
factors and interactions, as well as the Main Effect Plot and the Interaction Plot
to evaluate factors influence on each output. Goodness of fit was judged by
the Residuals Plots and other statistical parameters. Blocks provided information
about the influence of different experimental days (inter-day variations). All the
DoE analysis was performed by Minitab, a statistics package developed at the
Pennsylvania State University (Minitab Inc., State College, PA, USA).

4 Results of the First Analysis (Screening)

The first analysis was aimed to find the two most significant values out of the three
possible levels of image Binning and was performed considering the Shape-Mask
as the sole factor able to interact significantly with the Binning. In fact, only these
two variables are directly related to the pixels of the image. Factors and their levels
were as follows:

1. Binning (1 � 1, i.e. no binning; 2 � 2; 4 � 4; referred to as 1, 2 and 4, respec-
tively);

2. Shape-mask (yes; no).

Because of the three-levels Binning factor, a General full factorial design
was used (18 runs, 3 replicates). The screening analysis clearly demonstrates an
interaction between Binning and Shape Mask on the Rsq output (Fig. 2) but not on
the T-B output (Fig. 3).

Figure 2a indicates that residuals for Rsq are normally distributed—i.e. very
close to the line representing the normal distribution—a condition necessary to
proceed with a standard analysis without doing a variable transformation (see: [1]).
The analysis shows a significantly lower Rsq for Binning 1 compared with Binning
2 and even more with Binning 4 (P D 0.04, Fig. 2d). An improvement in Rsq is
observed when Shape Mask is applied (Fig. 2b). The interaction Plot (Fig. 2c)
confirms that Binning 1 gives lower Rsq while Binning 2 and 4 show the best
results. The influence of Shape Mask is maximal with Binning 1, moderate with 2
and negligible with 4. A P-value D 0.248 for the variable Blocks shows no influence
of inter-day conditions for Rsq.

Figure 3a indicates that residuals are normally distributed also for T-B. The effect
of Binning on the T-B output confirms Binning 1 as the worst condition, but also
shows a trend, with Binning 4 better than 2 (see Fig. 3b); interestingly, Shape
Mask has no influence on the T-B considered alone or even in combination with
Binning as shown by the interaction plot (Fig. 3c), where lines are almost parallel.
A P-value < 0.001 for the variable Blocks indicates a significant influence of inter-
day conditions on T-B. Overall, Binning was the sole significant factor (P < 0.01,
Fig. 3d).
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Fig. 2 Minitab graphs of the screening analysis for Rsq: Normal probability plot for Residuals
(a), Main Effect Plot (b) and Interaction Plot (c). The table in (d) shows P for the chosen factors
and their interactions

Fig. 3 Minitab graphs of the screening analysis for T-B: Normal probability plot for Residuals
(a), Main Effect Plot (b) and Interaction Plot (c). The table in (d) shows P values for the chosen
factors and their interactions
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5 Results of the Second Analysis (Optimization)

The aim of the second analysis was to define an optimal parameter configuration,
by considering the following factors/levels:

1. Binning (2; 4);
2. Shape-mask (yes; no);
3. Minimum response filtering (yes; no);
4. Output data filtering (Stat; Funct);
5. Response calculation (NFC; FC).

Under these conditions, a Full Factorial design would have required 32 runs per
replicate, i.e. the same number of runs needed for an OVAT approach, however, with
the advantage of providing information about interactions. Considering that we were
interested also on the influence of inter-day variability, a minimum of 3 replicates
(performed on image stacks produced in different days) had to be performed. This
would have required a total of 96 runs. In order to reduce this number, we made
the assumption that the interactions of the second order (i. e. interactions of two
factors at a time) were sufficient for a correct approximation in our analysis, also
considering that higher interactions (three factors at a time or more) are expected to
be negligible in most cases (see [19]). Based on these considerations, we reduced
the number of trials by employing the fractional factorial design with resolution V,
which required 48 runs for 3 replicates, at the expenses of the assessment of third
order interactions. Figure 4 shows the results of DoE Analysis for the Rsq output.
Normal probability Plot (Fig. 4a) for Residuals show good fitting. The Pareto Chart
of the Standardized Effects (Fig. 4b) indicates that the only statistically significant
factor is Shape Mask (P D 0.001) while the only significant interaction is Shape
Mask with Response Calculation (P D 0.029).

Taking into consideration the results shown in Fig. 5a, b, we can assume that,
as far as Rsq is concerned, best results are obtained with: Shape-mask, Binning 4,
no Minimum response filtering, Statistical Output data filtering and NFC Response
calculation.

Similar analysis was performed considering T-B as the Output. Normal probabil-
ity Plot (Fig. 6a) for residuals show good fitting. The Pareto chart of the standardized
effects indicates that all the main factors, but Minimum response filtering, are sta-
tistically significant (Fig. 6b): Output data filtering (P < 0.001); Binning (P < 0.001);
Shape-mask (P D 0.002); and Response calculation (P D 0.004). Minimum response
filtering has a significant interaction with Output Data Filtering (P D 0.021).

Considering the Main Effects Plot (Fig. 7a) and the Interaction Plot (Fig. 7b)
for T-B, we can infer that best results are obtained with Shape-mask, Binning 4,
Statistical Output data filtering, no Minimum response filtering and NFC Response
calculation.

Based on the above results, we were able to define an optimized configuration
(Table 1) and a suboptimal one (Table 2).
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Fig. 4 Minitab graphs for Rsq optimization analysis: the Normal Probability Plot for Residuals
(a) indicates an suitable distribution of residuals; the Pareto of the Standardized Effects (b) indi-
cates that there are only two significant effects (i. e. laying beyond the vertical line that marks the
threshold for Alpha D 0.05): Shape Mask and the interaction between Shape Mask and Response
Calculation

C-R curves were then calculated with both the optimized and the suboptimal set
on the same data used for DoE analysis. Figure 8 illustrates an example in which
the C-R curve obtained with the optimized set exhibits an Rsq value improved
from 0.91 to 0.99 and a T-B value from 0.28 to 0.49, which represent a percent
improvement (defined as (PSopt � PSsubopt)/PSsubopt, where PS D parameter set) of
respectively C8.8 % (Rsq) and C75 % (T-B).

As a final consideration, P-value for BLOCKS showed an influence of inter-day
conditions that is significant for T-B (P < 0.001) but not for Rsq (P D 0. 147).
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Fig. 5 Minitab graphs for Rsq optimization analysis (factorial plots): the Main Effects Plot
(a) confirms that the Shape Mask effect is the most important among single factors and that best
results are obtained when the mask is applied: the Interaction Plot (b), shows the best combination
for Shape Mask and Response Calculation (if ShapeM D yes, both values for RespCalc are
suitable)



76 A. Lanati et al.

Fig. 6 Minitab graphs for T-B optimization analysis: the Normal Probability Plot for Residuals
(a) indicates a suitable distribution of residuals; the Pareto of the Standardized Effects (b) shows
that all single factors, but the Minimum Response Filter (MinRespFilt), are significant, while only
one interaction, the one between MinRespFilt and OutputDataFilt, lays beyond the vertical line
(threshold for Alpha D 0.05)

6 Validation of Obtained Optimized Configuration

The optimized parameter configuration we obtained with the previous analysis was
then validated.

As a first step, we verified the initial hypothesis that Binning had no significant
interactions with factors other than ShapeM. Indeed, Figs. 4a and 6a show that
the interactions between Binning and the other factors do not reach statistical
significance. Of note, in the same Fig. 4a we can appreciate that ShapeM has a
significant interaction with RespCalc, clearly indicating that it is not possible to
separate the pixel-related factors from the others.
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Fig. 7 Minitab graphs for T-B optimization analysis (factorial plots): the Main Effects Plot
(a) indicates the best values for the significant factors: Binning D 4, ShapeM D yes, Output-
DataFilt D Statist and RespCalc D NFC. In the Interaction Plot (b), the value MinRespFilt D no
together with OutputDataFilt D Statist are the significant interacting factors values that optimize
the output T-B
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Table 1 Optimized parameter set for Rsq and T-B

Optimized configuration

Factor
Optimized
level for Rsq

Optimized
level for T-B

Optimized
choice

Binning n.i. 4 4
ShapeMask YES YES YES
Minimum response filtering n.i. NO NO
Output data filtering n.i. Stat Stat
Response calculation NFC NFC NFC

n.i. not influent

Table 2 Suboptimal parameter set for Rsq and T-B

Suboptimal configuration

Factor
Suboptimal
level for Rsq

Suboptimal
level for T-B

Suboptimal
choice

Binning n.i 2 2
ShapeMask NO NO NO
Minimum response filtering n.i. YES YES
Output data filtering n.i. Funct Funct
Response calculation FC FC FC

n.i. not influent

Afterwards, to validate the rejection of Binning D 1 in the first analysis, we ran
MaLIA on 8 different image stacks with the same parameters employed in the
optimized (Table 1) and suboptimal (Table 2) configurations, with the exception
of Binning value set to 1. The substitution of Binning D 1 worsened the value
of Rsq and T-B in both the optimized (�6 % and �30 %, respectively) and the
suboptimal configuration (�17 % and �54 %, respectively). We can conclude that,
as suggested by the experience during the development of the MaLIA program and
assumed during the design of the first analysis, Binning D 1 minimized the overall
performance. This ex post validation also confirms the validity of the assumptions
we made in the first analysis of this unconventional DoE design.

Afterward, we produced C-R curves with both the optimized and the suboptimal
sets on data from different experiments in order to validate the results in a wide
range of cell and drug types (see Table 3).

Experimental data were randomly selected within a time interval of 2 years,
representing five cellular lines exposed to their reference drugs. Two experiments
for each cell line were considered. Such a wide time interval was used to take into
account also changes due to the evolution of both biological protocols and screening
processes.

The Rsq and the T-B values of the C-R curves obtained with the optimized
and suboptimal parameters sets are compared in Fig. 9a, b and shown as percent
variation ((PSopt � PSsubopt)/PSsubopt) in Fig. 9c. The charts clearly indicate that
the optimized set consistently produces better CR curve: Rqs benefits of a slight
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Fig. 8 CR curves obtained with optimized and suboptimal parameter sets: the CR curve shows
the fractional changes of the membrane resistance at different drug concentrations (log). The CR
curves obtained with the suboptimal (a) and with the optimized (b) parameter sets, on the same
images stack, are compared to put in evidence the marked improvement: Rsq from 0.91 to 0.99,
T-B from 0.28 to 0.49

improvement (up to 4.3 %), while T-B takes much more advantage (up to 90.4 %).
The only exception is represented by an experiment (HEK-293 GABA-A exp. 1), in
which Rsq is lower (�1.2 %) with the optimized set, even though the T-B response
maintains a positive performance of C9.3 %.
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Fig. 9 (continued)
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Table 3 Pharmacological targets used to validate the optimized parameter set

Pharmacological target Reference drug

CHO-K1/TRPV1 Chinese hamster ovary K1 cells expressing
the transient receptor potential cation
channel subfamily V member 1

Capsaicin

HEK-293/TRPM2 Human Embryonic Kidney 293 cells
expressing the transient receptor potential
cation channel, subfamily M, member 2

(agonist)

HEK-293/GABAAR Human Embryonic Kidney 293 cells
expressing the ”-aminobutyric acid type A
receptor

”-aminobutyric acid

U-2 OS/TRPV1 human osteosarcoma U2OS cell line
expressing the transient receptor potential
cation channel subfamily V member 1

Capsaicin

HEK-293/P2X7R Human Embryonic Kidney 293 cells
expressing the purinergic receptor subclass
P2X7

BzATP, (20(30)-O-
(4-Benzoylbenzoyl)
adenosine-50 -triphosphate
tri(triethylammonium)

7 Discussion and Conclusions

DoE was performed to optimize the set of analytical parameters used in a new drug
screening procedure. This is a simple application of the method that provided useful
results with good efficiency (time and resources vs results).

We adopted an unconventional DoE approach: the screening design, instead of
being employed to reduce the number of factors, was used to reduce the number
of levels of one of the factors, taking advantage of the specific knowledge of the
image analysis process. This simplification made possible, in a second analysis,
a direct and simpler comparison among all main parameters, thereby avoiding
the more complex General Factorial design. This second design, which we called
optimization in this study, was performed with a Resolution V Fractional Factorial
design. A standard Response Surface design could not been employed since all
factors are qualitative and intermediated values could not be envisaged (see: [18]).
The choice of using a Fractional Factorial design, which ignores third order
interactions, is largely supported by the evidence that results are little influenced by
pairs of factors (interaction of the second order), validating the initial assumption of
a negligible contribution of higher order interactions.

J
Fig. 9 Validation of the optimized set on different cells/drugs (see Table 2): Rsq (a) and T-B
(b) values are always improved with the optimized set of parameters (black columns) rather than
with the suboptimal one (gray columns), with a single exception (HEK-293 GABAAR exp.1,
Rsqopt < Rsqsubopt). The percent variations are shown in (c), where Rsq variations refer to the right
y-axis, while the T-B variations to the left y-axis
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The unconventional choice of a general full factorial, followed by a fractional
factorial design, allowed us to downsize the number of runs. A traditional general
factorial, with 4 factors at 2 levels and 1 at 3 levels, would have required 48 (24 � 3)
runs for each replicate. With our approach, we made 6 (3 � 2) runs for the first
phase and 16 (2(5–1)) for the second analysis, with a total of 22 and a saving of
26 runs with respect to a single general factorial design. Considering 3 replicates,
we saved 78 runs. Each MaLIA run (inputting data, setting parameters, waiting
for analysis elaboration and collecting results) takes at list 7–10 min to a skilled
operator. Accordingly, we saved up to 13 h on a total forecasted effort of 24 h,
i.e. 54 % saving. Overall, by this DoE approach, we saved time, gaining more
information.

Finally, the use of the Blocking reveals that the impact of the experimental day
could not be neglected in this study, which embraces 2 years’ work of development
of the drug screening platform. Interestingly, only the T-B, but not the Rsq, was
subjected to inter-day variation. This result can lead to two conclusions: first,
this influence may deserve further analysis after final validation of the screening
platform. Secondly, experimental data could have been transformed to correct
for blocks, thus obtaining a result independent of day-to-day variability (see [1];
Chap. 2). However, the excellent validation of the optimized set of parameter
demonstrates that the result is robust enough to make a more sophisticated analysis
not necessary. Further investigation might involve a refinement of the quantitative
thresholds used for some of the parameters (e.g. threshold for Minimum response
filtering). If we consider the results in terms of the final application, the observed
inter-day variation appears to reflect the process of optimization of the biologi-
cal and biochemical conditions during the progressive development of the drug
screening platform. On the other hand, they provide direct evidence that also in
sub-optimal experimental conditions, the set of choice guarantees the best possible
result. This evidence receives further confirmation by the fact that a consistent
improvement was observed independently of the cell lines and drug type. Overall,
this is an important prerequisite to consider this new approach for the study of
different pharmacological targets, in an unbiased way and in an industrial context.

In conclusion, our work demonstrates that the application of DoE on the selection
of software parameters, although still poorly exploited, can provide very useful
results by reducing the number of trials compared to a complete OVAT approach.
In this respect, it is worth noticing how a conscious introduction of constraints
to reduce the degrees of interactions, along with a two-stage design, can greatly
simplify the modelling and thus the obtaining of the result.
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Computational Modeling of miRNA Biogenesis

Brian Caffrey and Annalisa Marsico

Abstract Over the past few years it has been observed, thanks in no small part
to high-throughput methods, that a large proportion of the human genome is
transcribed in a tissue- and time-specific manner. Most of the detected transcripts are
non-coding RNAs and their functional consequences are not yet fully understood.
Among the different classes of non-coding transcripts, microRNAs (miRNAs) are
small RNAs that post-transcriptionally regulate gene expression. Despite great
progress in understanding the biological role of miRNAs, our understanding of
how miRNAs are regulated and processed is still developing. High-throughput
sequencing data have provided a robust platform for transcriptome-level, as well
as gene-promoter analyses. In silico predictive models help shed light on the tran-
scriptional and post-transcriptional regulation of miRNAs, including their role in
gene regulatory networks. Here we discuss the advances in computational methods
that model different aspects of miRNA biogeneis, from transcriptional regulation to
post-transcriptional processing. In particular, we show how the predicted miRNA
promoters from PROmiRNA, a miRNA promoter prediction tool, can be used to
identify the most probable regulatory factors for a miRNA in a specific tissue.
As differential miRNA post-transcriptional processing also affects gene-regulatory
networks, especially in diseases like cancer, we also describe a statistical model
proposed in the literature to predict efficient miRNA processing from sequence
features.

Keywords Mirna regulation • Promoter prediction • Mirna processing • Gene
regulatory networks

1 The Role of miRNAs in Gene-Regulatory Networks

In biological research, diverse high-throughput techniques enable the investigation
of whole systems at the molecular level. One of the main challenges for computa-
tional biologists is the integrated analysis of gene expression, interactions between
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genes and the associated regulatory mechanisms. The two most important types of
regulators, Transcription Factors (TFs) and microRNA (miRNAs) often cooperate
in complex networks at the transcriptional level and at the post-transcriptional
level, thus enabling a combinatorial and highly complex regulation of cellular
processes [1].

While TFs regulate genes at the transcriptional level by binding to proximal or
distal regulatory elements within gene promoters [1], microRNAs (miRNAs) act at
the post-transcriptional level on roughly half of the human genes. These short non-
coding RNAs of 18–24 nucleotides in length which can bind to the 30-untranslated
regions (30 UTRs) or coding regions of target genes, leading to the degradation of
target mRNAs or translational repression [2].

MiRNAs are associated with an array of biological processes, such as embryonic
development and stem cell functions in mammals [3], and a crucial role of miRNAs
in gene regulatory networks has been recognized in the last decade in the context
of cancer and other diseases [4, 5]. Altered miRNA expression profiles have often
been associated with cancer development, progression and prognosis [6]. MiRNAs
which negatively regulate tumor suppressor genes can be amplified in association
with cancer development. On the other hand, deletions or mutations in miRNAs
targeting oncogenes can lead to the over-expression of their targets [5, 6].

MiRNAs also affect several aspects of the immune system response [7]. For
example, cells of the hematopoietic system can be distinguished from other tissues
by their miRNA expression profiles, including, among the others, the highly
expressed miRNA hsa-miR-155 [7]. Other immune system-related miRNAs are
activated in response to viral or bacterial infections (e.g. hsa-miR-146a) and they
affect the expression of several cytokines downstream [8].

Given the growing prevalence of miRNA functions in contributing to the control
of gene expression, gene regulatory networks have been expanded to become
rather complex incorporating the involvement of miRNAs. The general framework
for inferring gene regulatory networks involving Transcription Factors (TFs) and
miRNAs is usually built using the following steps:

• 1: When expression data are available under a certain condition, the first step is
to identify those genes which are mostly expressed in that particular condition or
de-regulated compared to a control experiment.

• 2: miRNAs responsible for the observed co-expression or de-regulation of a set
of genes are identified by identifying enriched miRNA binding sites in the 30-
UTRs of such genes. This is usually done by mining publicly available databases
for miRNA-target interactions [9, 10].

• 3: MiRNA-target interactions are filtered based on the miRNA expression level
(when available) or by using a cutoff score indicating the reliability of the
predicted interaction. In addition, it is expected that when a miRNA regulates a
gene, the miRNA and the gene show typical correlated expression patterns across
multiple samples. This can be used as a criterium to further filter miRNA-gene
interactions which do not show any such correlation [9].
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Fig. 1 Cooperative action of
miRNAs and TFs in gene
regulatory networks. miRNAs
are colored in blue, TFs in red
and their regulated target
genes, as well as genes
involved in potential
protein–protein interactions
are colored in green. Dotted
red arrows indicate potential
regulators of miRNAs and
purple lines indicate
protein–protein interactions
extracted from databases.
A typical feedback loop is
highlighted in grey

• 4: TFs regulating this set of genes can be inferred by means of prediction
algorithms which scan for known TF binding sites in the proximal gene promoter
regions using Position Weight Matrices (PWMs) [11].

• 5: Protein–protein interaction databases, such as STRING, BioGrid and KEGG
can be inspected to find possible interactors of such genes and the cellular
pathways that they affect.

These steps give rise to a network as depicted in Fig. 1. In this schematic rep-
resentation nodes represent the significant set of genes, miRNAs and transcription
factors in the process under study and the links between them represent predicted
regulatory interactions.

It is well known that miRNAs are involved in negative regulation and/or positive
feedback loops which can also involve the transcription factors that regulate
their activity [12]. The knowledge of the transcription factors which regulated
the miRNAs in question often provide the missing links in the aforementioned
regulatory network (Fig. 1, red dotted arrows). The identification of TF-miRNA
interactions remains a difficult task without which a full understanding of the
underlying processes is hampered. In recent years there has been an increase in
the development of computational methods to predict miRNA promoters and their
regulating TFs in order to unravel the TF-miRNA interactions missing in such
typical regulatory networks.

2 MiRNA Transcriptional Regulation

2.1 Challenges of in silico miRNA Promoter Identification

MiRNA promoter recognition is a crucial step towards the understanding of miRNA
regulation. Knowing the location of the miRNA transcription start site (TSS) enables
the location of the core promoter, the region upstream of the TSS which contains
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the TFs binding sites necessary to initiate and regulate transcription. Predictions
of binding sites in the core promoter elements can enable the identification of
regulatory factors for a specific miRNA (or a class of miRNAs), greatly improving
our understanding of miRNA function, and their role in tissue-specific feedback
loops.

Genome-wide identification of miRNA promoters has been hindered for many
years by two main factors. The first reason is the deficit in mammalian promoter
sequence characterization, which makes promoter prediction a challenging task in
general [13]. Although promoter regions contain short conserved sequence features
that distinguish them from other genomic regions, they lack overall sequence
similarity, preventing detection by sequence-similarity-based search methods such
as BLAST. Promoter recognition methods in the early 90s exploited the fact that
promoters contain few specific sequence features or TF binding sites that distinguish
them from other genomic features [13]. This observation could be used to build a
consensus model, such as Position Weight Matrices (PWMs) or Logos to search for
new promoters in the genome. It soon became clear that such methods could not
be generalized to all existing promoters and more advanced strategies for pattern
recognition utilized machine learning models trained on sequence k-mers.

The second reason for the lack of knowledge in miRNA transcriptional regulation
is due to the complexity of the miRNA biogenesis pathway: miRNAs, whether they
are located in intergenic regions or within introns of protein-coding genes, often
referred to as host genes, are generally generated from long primary transcripts
which are rapidly cleaved in the nucleus by the enzyme Drosha [2]. This presents
a technical barrier for large-scale identification of miRNA TSSs as they can be
located in regions far away from the mature miRNA and cannot be inferred simply
from the annotation of the processed mature miRNA, as done for stable protein
coding gene transcripts [14]. In addition, the situation is further complicated by
the fact that recent studies indicate that several alternative miRNA biogenesis
pathways exist, especially for intragenic miRNAs. Indeed, if co-transcription with
the host gene were the only mechanism to generate intragenic miRNAs, then
the mirna and hostgene expression should be highly correlated among different
tissues or conditions. Many recent studies, however, show many instances of poor
correlation between mirna and host gene, pointing to an independent regulation
of the mirna, utilizing an alternative intronic promoter [15]. There is evidence
that intragenic miRNAs may act as negative feedback regulatory elements of their
hosts interactomes [16] but the contribution of host gene promoter versus intronic
miRNA promoters, and the mechanisms that control intronic promoter usage are
still interesting open questions in the biology of miRNA biogenesis.

Although overall similarity in promoters is not a general phenomena, it does exist
in the form of phylogenetic footprinting. Based on this observation, one of the first
methods for miRNA promoter detection identifies about 60 miRNA transcriptional
start regions by scanning for highly conserved genomic blocks within 100 kb of
each mature miRNA and searching for a core promoter element in the consensus
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sequence regions extracted from these blocks [17]. Although this method proved to
be valid in the identification of evolutionary conserved promoters, the sensitivity of
such an evolutionary approach is very low, given the high number of non-conserved
miRNAs annotated in MiRBase [18].

2.2 Next Generation Sequencing (NGS) Technology Leads
to Significant Advances in miRNA Promoter Prediction

Recently, thanks to the advent of next-generation sequencing technologies
combined with Chromatin Immunoprecipitation (CHIP-Seq technology [19]) and
nascent transcript capturing methods, such as Cap Analysis of Gene Expression
coupled to NGS sequencing (deepCAGE) [20] or Global run on sequencing
(GRO-seq) [21], several computational methods for miRNA promoter prediction
genome-wide have been developed, providing valuable understanding in the
detailed mechanisms of miRNA transcriptional regulation. For example, the
epigenetic mark H3K4me3 has been identified as a hallmark of active promoters,
and computational methods for promoter recognition have begun exploiting this
information systematically.

The deepCAGE technique enables the mapping of the location of TSSs genome-
wide. In the FANTOM4 Consortium this technique was applied across various
different tissues and conditions in order to profile transcriptional activities and
promoter usage among different libraries.

GRO-seq is a technique to capture nascent RNAs genome-wide by quantifying
the signal of transcriptionally engaged PolII at gene promoters. Both deepCAGE
and GRO-seq read density is sharply peaked around transcripts TSS and it can be
successfully used to locate the TSSs of miRNA primary transcripts [14, 22]. Finally,
recent RNA-seq studies with increased sequencing depth can also be used to identify
the transient and lowly expressed pri-miRNA transcripts [22].

2.3 Classification and Comparison of miRNA Promoter
Prediction Methods

A limited number of miRNA promoter recognition methods have been developed
in the past few years and can be classified either according to the methodology
used, supervised versus unsupervised learning approaches, or based on the nature of
their predictions, tissue specific versus general promoter predictions and intergenic
versus all predicted promoters, including intronic promoters. The main features of
existing miRNA promoter prediction methods can be summarized in Table 1.

According to the model used to describe the data one can distinguish two
categories of miRNA promoter recognition methods:



90 B. Caffrey and A. Marsico

T
ab

le
1

C
om

pa
ri

so
n

of
di

ff
er

en
t

m
et

ho
ds

fo
r

m
iR

N
A

pr
om

ot
er

pr
ed

ic
ti

on

Fu
ji

ta
[1

7]
O

zs
ol

ak
[2

5]
M

ar
so

n
[2

3]
B

ar
sk

i[
24

]
S-

Pe
ak

er
:

M
eg

ra
w

[2
7]

m
iR

S
ta

rt
:

C
hi

en
[2

6]
PR

O
m

iR
N

A
:

M
ar

si
co

[1
4]

m
ic

ro
T

SS
:

G
eo

rg
ak

il
as

[2
2]

C
el

ll
in

e
–

U
A

C
C

62
,

M
A

L
M

E
,

M
C

F
ce

ll
s

m
E

SC
,h

E
SC

ce
ll

s
C

D
4C

T
ce

ll
s

–
36

di
ff

er
en

t
ti

ss
ue

s
33

di
ff

er
en

t
ti

ss
ue

s
m

E
SC

,h
E

SC
,

IM
R

90
ce

ll
s

D
at

a
us

ed
B

la
st

z
ge

no
m

ic
al

ig
nm

en
ts

fr
om

U
C

SC

N
uc

le
os

om
e

po
si

ti
on

s
fr

om
C

hI
P-

ch
ip

da
ta

H
3K

4m
e3

C
hI

P-
se

q
da

ta
H

3K
4m

e3
,

H
3K

9a
c,

H
2A

Z
,a

nd
Po

lI
I

C
hI

p-
se

q
da

ta

C
A

G
E

da
ta

(F
A

N
T

O
M

4)
36

de
ep

C
A

G
E

li
br

ar
ie

s
(F

A
N

T
O

M
4)

an
d

14
T

SS
-s

eq
li

br
ar

ie
s

33
de

ep
C

A
G

E
li

br
ar

ie
s

(F
A

N
T

O
M

4)

R
N

A
-s

eq
da

ta
,

H
eK

4m
e2

,
Po

lI
I

C
hI

P-
se

q
an

d
D

N
A

se
-s

eq

M
et

ho
do

lo
gy

U
ns

up
er

vi
se

d
ap

pr
oa

ch
:

id
en

ti
fic

at
io

n
of

co
ns

er
ve

d
bl

oc
ks

up
st

re
am

of
m

iR
N

A
s

U
ns

up
er

vi
se

d
ap

pr
oa

ch
:

em
pi

ri
ca

l
sc

or
e

of
nu

cl
eo

so
m

e-
fr

ee
re

gi
on

s
ba

se
d

on
se

qu
en

ce
fe

at
ur

es
(T

FB
s)

U
ns

up
er

vi
se

d
ap

pr
oa

ch
:

em
pi

ri
ca

l
sc

or
e

ba
se

d
on

H
eK

4m
e3

,
co

ns
er

va
ti

on
an

d
pr

ox
im

it
y

to
th

e
m

at
ur

e
m

iR
N

A

U
ns

up
er

vi
se

d
ap

pr
oa

ch
:

sc
or

e
ac

co
un

ti
ng

fo
r

ev
id

en
ce

of
pe

ak
s

fr
om

fo
ur

C
hI

P-
se

q
si

gn
al

s,
pl

us
E

ST
ev

id
en

ce

Su
pe

rv
is

ed
ap

pr
oa

ch
:

L
1-

lo
gi

st
ic

re
gr

es
si

on
m

od
el

tr
ai

ne
d

on
ge

ne
pr

om
ot

er
T

FB
s

Su
pe

rv
is

ed
m

od
el

:S
V

M
tr

ai
ne

d
on

pr
ot

ei
n

co
di

ng
ge

ne
s

Se
m

i-
su

pe
rv

is
ed

m
ix

tu
re

m
od

el
bu

il
to

n
C

A
G

E
da

ta
an

d
se

qu
en

ce
fe

at
ur

es

Su
pe

rv
is

ed
m

od
el

:S
V

M
tr

ai
ne

d
on

ch
ro

m
at

in
fe

at
ur

es
at

ge
ne

pr
om

ot
er

s
an

d
th

en
us

ed
to

sc
or

e
m

iR
N

A
R

N
A

-s
eq

en
ri

ch
ed

re
gi

on
s

In
te

rg
en

ic
pr

om
ot

er
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

In
tr

on
ic

pr
om

ot
er

s
N

ot
re

po
rt

ed
ye

s
no

no
no

no
tr

ep
or

te
d

ye
s

no



Computational Modeling of miRNA Biogenesis 91

• De novo approaches, which identify and score miRNA TSS in an unsupervised
manner. These include models based on experimentally determined histone mark
profiles [23, 24] or nucleosome positioning patterns [25]. For example Marson
[23] and Barski [24] consider regions enriched in H3K4me3 signal as putative
promoters and assign them a score. Ozsolak [25] combine nucleosome posi-
tioning patterns with ChIP-chip screens to score putative transcription initiation
regions upstream of active miRNAs.

• Supervised methods, based on the evidence that miRNA promoters present the
typical characteristics of Polymerase II transcription and therefore trained on
protein coding gene promoter features and subsequently used to predict miRNA
promoters. Such methods include mirStart [26] and microTSS [22] (Table 1).
MirStart trains a SVM model on protein coding gene features (CAGE tags,
TSS-Seq and HeK4me3 ChIP-Seq data), and uses the trained model to identify
putative miRNA promoters [26]. microTSS also uses a combination of three
SVM models trained on HEK4me3 and PolII occupancy at protein-coding gene
promoters to score putative initial miRNA TSSs candidates derived from deeply
sequenced RNA-Seq data [22].

One of the latest miRNA promoter prediction tools, PROmiRNA, is a method
in between these two categories [14]. PROmiRNA is based on a semi-supervised
classification model which does not make any assumption about the nature of
miRNA promoters and their similarities to protein-coding genes. On the contrary,
PROmiRNA tries to learn the separation between putative miRNA promoters and
transcriptional noise based on few features, such as CAGE tag clusters upstream of
annotated miRNAs and sequence features.

Each of the described methods has advantages and disadvantages. Methods
for miRNA promoter recognition based solely on sequence features, such as the
evolutionary framework proposed by Fujita [17] or S-Peaker [27], based on TF
binding sites and proposed by Megraw et al., are very accurate in identifying
putative promoter regions. MiRNAs are, however, known to mediate gene regulation
in a highly tissue-specific manner, therefore it is expected that their regulation
also happens in a tissue-specific way. Such methods cannot distinguish between
promoters potentially active in different tissues, given that sequence features are
invariant features, but merely suggest possible locations for miRNA promoters.
On the other hand, methods based on chromatin features have been designed for
specific cell lines, therefore providing a snapshot of the active promoters. Histone
mark-based methods provide a broad view of promoter regions, rather than high-
resolution predictions, hampering the detection of multiple TSSs close to each other
in the genome. In addition, most chromain-based methods can predict the promoters
of independently transcribed intergenic miRNAs, but lack sensitivity in discovering
alternative or intronic promoters.

MicroTSS overcomes the problem of the non-informative broad predictions by
making use of deep-coverage RNA-seq data and pre-selecting RNA-seq islands of
transcription upstream of intergenic pre-miRNAs at single-nucleotide resolution.
Such initial miRNA promoter candidates are then given as input to the SVM model
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which returns the predictions. Due to the nature of the RNA-seq used to pre-select
candidate TSSs, microTSS works well for intergenic miRNAs but is not suitable for
identifying intronic promoters due to the difficulty in discriminating transcription
initiation events from the read coverage signal corresponding to the host transcript.

The method from Ozsolak [25] and PROmiRNA [14] are the only two method-
ologies which report predictions of intronic promoters. In particular, in PROmiRNA
miRNA promoter predictions are derived from multiple high-coverage deepCAGE
libraries, and correspond to highly expressed, as well as lowly expressed tissue-
specific intronic promoters.

Figure 2 shows seven predicted TSSs for hsa-miR-155, six of which are intronic
promoters in a leukemia cell line, indicating that alternative promoters are able
to drive the expression of this miRNA in this cell line. However, due to the low
expression of alternative intronic promoters, compared to intergenic promoters, and
to the difficulty of validating such promoter predictions (a gold standard data-set for
miRNA promoters is missing), predictions of intronic promoters may suffer from
higher false discovery rates compared to intergenic promoters.

MIR155HG
hsa-miR-155

MRPL39

10 kb hg19chr21: 

leukemia cell line

Rep1 Minus signal

Rep2 Minus signal

Rep1 Plus signal

Rep2 Plus signal

0

300

300

300

0

0

0

300

Fig. 2 PROmiRNA predicted promoters for hsa-miR-155, a human miRNA located in the non-
coding BIC host transcript (also called MIR155HG). The red arrow indicates the TSS of the
host gene and the other arrows point to the predicted alternative intronic promoters located in
the genomic range between 677 bp and 12 kb upstream of the mature miRNA. The promoter
predictions where consistent in two different CAGE replicates
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2.3.1 miRNA-Mediated Regulatory Network Reconstruction

Here we show an application of PROmiRNA to the derivation of the tissue-specific
miRNA-mediated regulatory network in three immune cell line libraries from the
FANTOM4 CAGE data. For simplicity we include in this network only two of
the main human miRNAs which are highly expressed and known to play a role
in the Immune System: hsa-miR-146a and hsa-miR-155. MiR-146a is an intergenic
miRNA known to be involved in regulation of inflammation and other processes
related to innate immune response [8]. Mir-155 resides in the non-coding host gene
MIR155HG and is known to play a role in cancer, as well as viral and bacterial
infection processes [28]

PROmiRNA predicts two alternative promoters in the leukemia cell line for hsa-
miR-146a, one located 17 kb upstream of the mature miRNA and the other 16.6 kb,
and six alternative intronic promoters (in addition to the host gene promoter) for hsa-
miR-155 (as already shown in Fig. 2). Starting from these predictions, we scanned
the 1000 bp regions around each predicted miRNA TSSs for putative transcription
factor binding sites with the TRAP tool [29]. Given a database of TFBs motif
models, TRAP computes the affinity of each factor for a certain genomic sequence.
For each predicted promoter we ranked the TFs based on their computed binding
affinities. The top ten factors regulating each miRNA are selected and included
in the network if they are expressed in Immune System cell lines, according to
the Human Protein Atlas database [30]. Potential regulatory factors are connected
by means of edges to the corresponding miRNA (Fig. 3). Also potential miRNA
targets extracted from TargetScan and other miRNA target databases [9], as well
as interactions between gene–gene and gene-TF are extracted from the STRING
database [31] and, if expressed in the Immune system, added to the network (Fig. 3).
This partial reconstruction of the regulatory network involving hsa-mir-146a and
hsa-mir-155 in the Immune System shows that a portion of the top target predictions
is shared between the two miRNAs, while other targets are specific to one or the
other miRNA. Also, hsa-miR-146a and hsa-miR-155 seem to be targeted by a set
of common transcription factors, among which we find the NFKB1, a well known
Immune System factor.

3 Predictive Models of miRNA Processing

Global mature miRNA expression is not only regulated at transcriptional level, but
several post-transcriptional steps influence the final miRNA expression level and
contribute to define a particular phenotype. In detail, miRNA initially generated
in the nucleus as long primary transcripts are processed by the Microprocessor
complex (Drosha/DGCR8) to produce stem-loop structured precursors which are
then further processed in the cytoplasm by Dicer [32]. While signatures of miRNA
expression may be used as biomarkers for cancer diagnosis and stratification in sev-
eral cancers, it has become clear in recent years that specifically aberrant processing,
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rather than altered transcription, correlates with cell invasion or progression of
inflamation. The method by which the Microprocessor is able to distinguish miRNA
hairpins from random hairpin structures along the genome and efficiently process
them is still a subject of investigation. Recent studies have shown that sequence
motifs flanking precursor miRNAs play a significant role in primary transcript
cleavage [33].

In a recent study [34] we have quantified the effect of different sequence motifs
on the Microprocessor activity in an endogenous setting. We have performed high-
throughput RNA sequencing experiments of nascent transcripts associated to the
chromatin fraction in different cell lines. Since processing of primary miRNA
transcripts occurs co-transcriptionally, while the transcript is still associated to
chromatin, the read coverage pattern at miRNA loci shows the typical Micropro-
cessor signature, where Drosha cleavage is reflected in a significant drop in the
read coverage in the precursor region. We have defined a quantitative measure of
processing efficiency called Microprocessing Index (MPI), as the logarithm of the
ratio between the read density adjacent to the pre-miRNA and the read density in
the precursor region. On the basis of MPI values, miRNAs could be divided into
efficiently processed (Fig. 4a MPI <D �1:0, also called positive examples) and
non-efficiently processed (Fig. 4b MPI >D �0:4, also called negative examples).

N L P

HeLa rep1 normalized

94.4 _

0 _

chr11
hg19100 bases

hsa-miR-100

Positive example

HeLa rep1 normalized

342 _

0 _

100 bases hg19

hsa-miR-573

Negative example

a

b
chr4

Fig. 4 Genomic regions around miRNAs hsa-miR-100 (a) and hsa-miR-573 (b), respectively, and
normalized read coverage at the miRNA loci. The significant drop in read coverage at the miR-100
precursor indicates that this miRNA is efficiently processed in HeLa cells (a), while miR-573 is not
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A classification model based on sequence features was built in order to discriminate
between these two classes. We used L1-regularized logistic regression for training
and classification of the miRNA in positives and negatives. In detail, given a binary
variable Y, where yi D 0 or yi D 1 for each data point i, the probability of the
outcome of Y, given the data X, is given by the following sigmoid function:

P.y D 1jx; �/ D 1

1 C exp.��Tx/
(1)

where � is the parameter vector of the logistic regression model. The optimization
problem (Maximum Likelihood Estimate of �) in the case of L1-regularization is
formulated as the following:

min� .

MX
iD1

�logP.yijxi; �/ C ˇk�k1/ (2)

In our case the features used in the model were either dinucleotide counts
(dinucleotide-based model) or counts of short motifs (motif-based model) in the
regions upstream and downstream of miRNA precursors. L1-regularized logistic
regression performs automatic feature selection penalizing dinucleotides or motifs
which are not significant in distinguishing efficiently processed miRNAs from non-
efficiently processed. We found that the most important features associated with
enhanced processing are: a GNNU motif (N indicates any nucleotide) directly
upstream of the 50 of the miRNA, a CNNC motif between 17 and 21 positions
downstream of 30 of the miRNAs and dinucleotides GC and CU enriched at the base
of the miRNA stem loop.

4 Conclusions

In silico methods for studying miRNA biogenesis, ranging from statistical models
of promoter recognition and transcription factor binding site prediction to predictive
models of miRNA processing, enable a better understanding of miRNA-mediated
regulation in tissue-specific networks. Recent progress in the field of NGS resulted
in a plethora of high-throughput and high-quality datasets in the last few years.
This enabled the development of data-driven computational approaches which make
use of such data and combine them with traditional sequence signals, in order
to get more accurate prediction of miRNA promoters. Although the basics of the
miRNA biogenesis pathway are known, there are still many unsolved questions.
For example, several regulatory factors might be involved in miRNA regulation at
different levels. Although some regulators of miRNA transcription and processing
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have been predicted and experimentally validated, more sophisticated in silico
methods are needed to discover more of these factors and predict how they affect
miRNA biogenesis.

RNA binding proteins interact with both pri-miRNAs in addition to intermediate
miRNA products at different stages of their regulation. High-throughput sequencing
of RNA sites bound by a particular protein will reveal more aspects about miRNA
regulation, as well as enable more reliable identification of targets which are
physiologically relevant.

Although observations from different sources need to be unified in a coherent
framework, it is clear that targeted computational approaches can help linking
different evidence from several genomic datasets and give a significant contribution
to discover additional details about miRNA-mediated regulation.
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Tunicate Neurogenesis: The Case of the SoxB2
Missing CNE

Evgeniya Anishchenko and Salvatore D’Aniello

Abstract The discovery of the SoxB2/Sox21 regulatory element, conserved from
basal metazoa to human, opened novel perspectives to study the conservation
among distant related genomes. This discovery represents exceptional maintenance
of an almost identical enhancer structure controlling a gene that is fundamental
for nervous system development. The activity of metazoan SoxB2 enhancers was
previously demonstrated in zebrafish embryos by cross-species experiments.

Here we tested the activity of human and amphioxus orthologue cis-regulatory
sequences in embryos of the tunicate Ciona intestinalis through a transgenic
approach, and found out that SoxB2 enhancers retained their activity in neuronal
differentiation even in a non-vertebrate chordate.

This result was unexpected since the conserved SoxB2 enhancer was not found
in Ciona in previous studies. Nevertheless, we adopted a different comparative
approach and performed a phylogenetic footprinting analysis using two congeneric
tunicate species, C. intestinalis and Ciona savignyi, that, in fact, evidenced a
conserved SoxB2 30 element. The discovered element could potentially be the
missing orthologous SoxB2 enhancer previously identified in human, zebrafish, and
amphioxus.

A detailed search for possible transcription factors revealed the massive presence
of Sox, Pou and Fox binding sites as found in other deuterostomes. Nevertheless,
whether the conserved SoxB2 element of Ciona possesses a functional ability as
gene transcriptional enhancer remains to be demonstrated experimentally.
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1 Introduction

One of the most intriguing mechanisms of nervous system (NS) development is
related to the neuronal lineage specification, which is of great interest to science
and subject of numerous and intensive studies. Nevertheless, we are still far from
a complete understanding of these processes. The discovery of an evolutionary
conserved non-coding element (CNE) in the animal kingdom by Royo et al. [16]
started a discussion about this key aspect of neural state regulation in animal
development. It was found to be an example of gene regulatory element conservation
in all metazoans, from the cnidarian Nematostella to human. Only the exonic regions
of genes were known to have such a degree of conservation among animals so
different in body shape and complexity, diverging from a common ancestor around
600 My ago [14].

Royo and colleagues discovered a highly conserved CNE that regulates the
SoxB2 gene (SRY-box B), recognizable at the sequence level within metazoans,
and explored its functional significance in transphyletic cis-regulatory DNA exper-
iments. The invertebrate SoxB2, and the orthologous gene in vertebrates Sox21,
are involved in neuronal development, differentiation and regeneration, indicat-
ing that these genes are responsible for the pluripotent features of presumptive
neuronal tissues in animal [7, 9, 10, 15, 17–19, 21]. The sequence comparison
of SoxB2/Sox21 CNE among human (Homo sapiens), zebrafish (Danio rerio),
amphioxus (Branchistoma floridae), acorn worm (Saccoglossus kowalevskii), sea
urchin (Strongylocentrotus purpuratus) and cnidarian (Nematostella vectensis)
showed an evolutionary conserved region of 200 bp, located at the 30 of the
gene in all analysed loci [16]. Royo and collaborators demonstrated trough trans-
genic experiments on zebrafish embryos that CNEs from diverse animal genomes
were functional regulative elements for different stages of neurogenesis, including
patterning and development of the vertebrate forebrain. Similarly, the reporter gene
expression driven by human SOX21 CNE and sea urchin SoxB2 CNE was functional
in developing the nervous system of Drosophila, despite absence of clear sequence
orthology. This was the first study pointing to the fact that the regulatory state
recognized by a conserved DNA sequence may have been redeployed at different
levels of the developmental regulatory program during evolution of the complex
central nervous system (CNS).

A detailed study focused on the regulation of Sox21b (fish ortholog of SoxB2)
expression highlighted 19 regulatory DNA elements conserved between vertebrates
(human, chicken, mouse, frog, zebrafish and fugu) [13]. Transgenic experiments
using conserved fragments from the fugu genome in zebrafish showed that the
majority of these CNEs were able to generate tissue-specific expression patterns
in the CNS and sensory organs, in agreement with Sox21b expression domains.
As expected, one of the enhancers analysed in this study corresponded to the
evolutionary conserved element discovered by Royo and colleagues, the CNE17 in
the Sox21b locus [13]. Nevertheless, CNE17 and CNE6 were the only enhancer
elements able to drive the expression of the reporter gene in the lens, which



Tunicate Neurogenesis: The Case of the SoxB2 Missing CNE 101

represents an innovation in vertebrates. A possible explanation for this could be that
CNE17, orthologous to the highly conserved metazoan CNE, was co-opted in the
fish lineage for the lens expression, as a consequence of the sub-functionalization of
the two fish paralogs, Sox21a and Sox21b [10].

An evolutionary puzzling case remained to be solved. As mentioned above,
one of SoxB2/Sox21 enhancer was found to be conserved in highly distant related
animals and transcriptionally active during CNS development, indicating a key role
in nervous system evolution. Nevertheless, in previous studies it was not possible
to detect any trace of the SoxB2 enhancer conservation in the lineage of tunicates,
the sister group of vertebrates [5] which are considered important model systems
for the study of evolution and development in chordates. Tunicates, differently from
cephalochordates, are highly diverged from the common chordate ancestor, both
morphologically and genetically, and this represents an additional difficulty for
evolutionary biologists that take advantage of homologies between body structures
and sequence conservation as main principles. Here we tried, therefore, to reveal the
potentiality of tunicates in our understanding of deuterostome NS evolution.

The ascidian C. intestinalis represents a very useful animal model to perform in
vivo transgenic assays because it possesses most of the molecular pathways and
gene repertoire as the rest of chordates. Nevertheless, the Ciona genome shows
divergent characteristics that sometimes can represent a limitation to experimental
approaches and on the other hand species-specific genomic events, such as gene
loss, can be considered an experimental advantage in evolutionary devoted studies.

2 Results

Two main evolutionary questions prompted us to choose C. intestinalis as the model
organism for this study, taking into account the advantage of the easy application of
transgenesis approaches that are very well established for Ciona.

First, is the ascidian embryonic transcription factors (TF) machinery able to
recognize the transcriptional information contained in cross-species enhancers,
considering the loss of the evolutionary conserved SoxB2 CNE? Second, could the
presence of the conserved SoxB2 CNE be masked at sequence level by the highly
divergent genome of ascidians?

To answer these questions, that are interesting per se from an evolutionary point
of view, we performed a series of computational and transgenic experiments. To
understand whether the regulation of the SoxB2 enhancer is maintained in Ciona,
despite the loss of the orthologous region, we carried out transgenic experiments
in C. intestinalis, introducing exogenous DNA regulative fragments in developing
embryos. More in detail, we used the technique of transgenesis by electroporation of
a purified plasmid containing the putative enhancer with a GFP reporter gene into
fertilized eggs. In the first series of in vivo experiments we used CNE fragments,
amplified by PCR on genomic DNA, corresponding to SoxB2/Sox21 CNEs from
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Fig. 1 Transgenic larvae using human and amphioxus cnes driving GFP expression in neural
territories. (a) Ciona intestinalis 20 hpf larvae body plan in a schematic representation: a anterior,
p posterior, d dorsal, v ventral. The CNS is indicated in grey. (b) Magnification of larval tail. Pairs
of caudal epidermal neurons are indicated in green. (c, d) amphioxus SoxB2 CNE drives GFP
expression in Ciona ectodermal neurons in the tail (red arrows). (e, f) Human Sox21 CNE resulted
active in Ciona ectodermal neurons in the tail (red arrows) and in the head (red arrowhead)

different animal models: acorn worm S. kovalewskii (hemichordate), sea urchin
S. purpuratus (echinoderm), B. floridae (cephalochordate) and human H. sapiens
(vertebrate). These DNA fragments correspond to the enhancers previously used in
transgenic experiments on zebrafish by Royo et al. [16].

Transgenic experiments using B. floridae and human H. sapiens CNEs gave
positive results as shown in Fig. 1. The SoxB2 enhancer from B. floridae was able
to drive the expression of the GFP reporter gene in paired tail epidermal neurons in
about 70 % of the larvae (red arrows in Fig. 1c, d). This result was confirmed by the
human SOXB2 enhancer activity in about 60 % of the larvae (red arrow in Fig. 1f),
albeit that we recorded fainter signals. Interestingly, the human DNA construct was
also able to drive the GFP expression in another neuronal compartment in the head
region (arrowhead in Fig. 1e). In Fig. 1a we present a diagram of the Ciona larval
body plan with the central nervous system in grey. Figure 1b is a magnification of
the tail region showing in green the paired epidermal neurons, GFP positive with
both the human and cephalochordate exogenous DNA constructs.
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To answer the second evolutionary question we performed phylogenetic foot-
printing analyses that showed an extremely low degree of conservation between C.
intestinalis and other deuterostomal orthologous regions containing the conserved
SoxB2 CNE. Nevertheless, to go deeper into this comparative analysis and trying
to find the orthologous CNE in tunicates, we compared two congeneric species that
diverged 180 My ago [1], with the aim to reveal conserved non-coding regions that
were unrecognizable when searched between tunicates and distant related species.
We therefore performed a Vista analysis that allowed to discover three main regions
highly conserved between C. intestinalis and C. savignyi in the 30 of SoxB2 (Fig. 2a),
that could correspond to the orthologous region previously found conserved in other
deuterostomes. A local alignment was performed showing a very high degree of
sequence conservation between the two Ciona species, at least 70 % identical in
non-coding regions (Fig. 2b). Hence, a detailed in silico analysis was performed
using Jaspar software in order to reveal potential transcription factor binding sites
(TFBS), and compare them with those predicted in sea urchin, amphioxus and
human SoxB2 enhancers [16]. This allowed the identification of a cluster of several
Sox and Fox binding sites in the 30 CNE-1 peak, which was not detected in other 50
and 30 CNEs (Figs. 2b and 3a–c).

Fig. 2 Phylogenetic footprinting and Ciona’s CNE alignment. (a) Vista analysis between SoxB2
loci of Ciona intestinalis and Ciona savignyi. Dark blue peaks represent conserved non-coding
elements between the two species, pink indicates the SoxB2 50 and 30 UTRs and blue the exons.
(b) Alignment of Ciona’s SoxB2 30CNE-1. Potential binding sites for Pou, Sox and Fox are
highlighted by frames
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Fig. 3 Diagrams of TF binging sequences conserved in deuterostomes. Ciona’s SoxB2 30CNE-1
contains Sox and Fox (a, b) and Sox (c) binding sites that are found in orthologous sequences from
Ciona savignyi, amphioxus, zebrafish and human. Black background indicates a 100 % match of
identity between all species considered

Three short sequence fragments were found to be highly conserved in 30 CNE-1,
which could be the potential binding targets for Sox and Fox (Fig. 3a–c). The level of
conservation of the multiple sequence alignment using other chordates (amphioxus,
zebrafish and human) was 67 % (Fig. 3a ), 56 % (Fig. 3b) and 63 % (Fig. 3c).

3 Discussion

The regulatory landscape of genes involved in developmental processes is con-
strained by enhancers that remained conserved during evolution. Therefore, cis-
regulatory elements conserved between orthologous genes in vertebrates have been
readily recognized in comparative genomic studies as soon as multiple genomes
sequencing projects become available. The exceptional case of the discovery of an
ancient enhancer retained in metazoans has opened new perspectives in the research
field of cis-regulatory elements.

The direct comparison between distantly related animals can be inconclusive
when the degree of nucleotide conservation is low, while on the contrary the
choice of congeneric species is often fruitless because the high homology becomes
uninformative in the search for non-coding active elements. In this perspective,
the availability of genomes from numerous metazoan species help greatly in
reconstruction of metazoan evolution. We applied a transgenic approach using
human SOX21 and amphioxus SoxB2 enhancers exogenously in C. intestinalis
embryos and more important we demonstrated that they were functional in pro-
neural tissues, as previously demonstrated in a related study on zebrafish and
Drosophila embryos. Here we found the putative ancestral enhancer of the SoxB2
gene by comparing two tunicates, which was thought to be lost in such fast evolving
genomes. A detailed bioinformatics search in the conserved non-coding regions on
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Ciona’s SoxB2 loci revealed a cluster of four TFBS of the Sox and Fox class in the
30 CNE-1 (Figs. 2b and 3a–c), who correspond to the SoxB2 CNEs reported by Royo
et al. [16].

However recent studies demonstrated that the ancestral regulatory function of
SoxB2 CNE is still conserved, despite the lack of sequence similarity among
different phyla [6, 11]. Furthermore, similar to our results of Ciona transgenic
experiments, the human SOX21 and sea urchin SoxB2 CNEs were demonstrated
to be functional in the neuroblasts of the presumptive brain and ventral nerve
cord of D. melanogaster embryos [16]. These transgenic approaches highlighted
the deep functional conservation of metazoan SoxB2 CNEs in neurogenesis, not
only in species possessing high sequence similarity but also in animals showing
significantly divergent SoxB2 regulatory elements. Recently a finding was reported
of so called FCNEs (Functional Conserved Non-coding Elements) concerning those
cis-regulatory elements that, despite a low sequence similarity across distant related
species, still keep the ancestral function during developmental processes [20].

The potential transcriptional activity of the SoxB2 CNEs identified in the present
study in two Ciona species, despite missing a high degree of sequence similarity
with other deuterostomes, remains to be experimentally confirmed in future studies.

4 Materials and Methods

4.1 Animals and Embryos

Adult individuals of C. intestinalis used in this study were collected from the Gulf
of Naples (Italy) and kept in tanks at 18 ıC until further use. To prevent spontaneous
spawning in captivity, ripe animals were exposed to continuous light. Gametes were
collected from the gonoducts of several animals and used for in vitro fertilization.

4.2 Comparative Genomics

To obtain DNA sequences for SoxB2 loci, a series of databases was used: ANISEED
database (www.aniseed.cnrs.fr/) for C. intestinalis and C. savignyi sequences;
SpBase (www.spbase.org) for sea urchin S. purpuratus; JGI (http://genome.jgi-psf.
org/Brafl1/Brafl1.home.html) for amphioxus B. floridae, and NCBI (http://www.
ncbi.nlm.nih.gov/) for human and acorn worm S. kowalevskii sequences.

www.aniseed.cnrs.fr/
www.spbase.org
http://genome.jgi-psf.org/Brafl1/Brafl1.home.html
http://genome.jgi-psf.org/Brafl1/Brafl1.home.html
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
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4.3 Phylogenetic Footprinting and in Silico Analyses

Genomic sequences from the two congeneric Ciona species, including SoxB2 locus
plus 5 kb upstream and 5 kb downstream, were aligned using the AVID software [2].
Sequences were compared using mVISTA ([8]; http://genome.lbl.gov/vista/mvista/
submit.shtml), with the following parameters: 100 bp of fragment length with 70 %
of sequence identity.

In order to reveal TFBSs in SoxB2 CNEs, dna sequences were analysed using
Jaspar (http://jaspar.genereg.net/), a TF binding profile database [12]. Diagrams of
POU, Sox and Fox binding sequences conserved between two Cionas, human and
amphioxus were generated using WebLogo software [3].

4.4 Transgenic Experiments

Four CNEs from S. kovalewskii, S. purpuratus, B. floridae and H. sapiens, were
amplified by PCR and cloned in the pSP72:CNE:2XGFP:SV40 vector, contain-
ing the GFP reporter gene and SV40 polyadenylation sequence. C. intestinalis
transgenic embryos were obtained via electroporation experiments, as previously
described [4], and observed with confocal microscopy after immunohistochemical
detection. Each experiment was performed in triplicate, comparing at least 100
embryos for each single construct. Briefly, eggs were dechorionated, before fertil-
ization to be ready to incorporate the exogenous DNA using a solution containing:
1 % sodium thioglycolate, 0.05 % proteinase E and 1N sodium hydroxide (NaOH),
and afterwards washed in filtered sea water (FSW). The 200 �l of dechorionated and
fertilized eggs were transferred into Bio-Rad Gene Pulser 0.4 cm cuvettes contain-
ing a 0.77 M mannitol solution and 100 �g of the exogenous DNA plasmids, and
subsequently electroporated using a Bio-Rad Gene Pulser II™ with the following
settings: constant 50 V and 800 �F. Electroporated eggs were transferred into petri
dishes with 1 % agarose bottom with FSW and let develop at 18 ıC until the desired
developmental stage.

4.5 Whole Mount Immunohistochemistry

Embryos were fixed in 4 % formaldehyde during 30 min at room temperature and
washed with PBT (PBS 1x, 0.1 % Tween20). Embryos were dehydrated gradually
in 70 % ethanol, followed by rehydration in PBS 1x four times. To permeabilize the
embryos, they were incubated in PBS containing 0.01 % Triton-100 for 30 min.
Embryos were incubated in blocking buffer (PBS 1x, 0.01 % Triton-100, 30 %
goat serum) over night. Next, embryos were kept in blocking buffer with 1:300
polyclonal anti-GFP Ab from rabbit (TP401; Torrey Pines Bionabs) and 1:300

http://genome.lbl.gov/vista/mvista/submit.shtml
http://genome.lbl.gov/vista/mvista/submit.shtml
http://jaspar.genereg.net/
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monoclonal anti-Acetylated Tubulin (AcTubulin) Ab from mice (T7451; Sigma)
for 2 days at 4 ıC and subsequently washed with PBT changing the solution every
15 min for 4 h. Then, embryos were incubated with the secondary anti-mouse Alexa
488 Ab or anti-rabbit Alexa 633 Ab in PBT (1:500), over night at 4 ıC, then washed
in PBT and incubated with DAPI (D9542; Sigma) 1:104 in PBT for 10 min. Laser
scanning confocal images were obtained with a Zeiss LSM 510 META confocal
microscope.
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MECP2: A Multifunctional Protein Supporting
Brain Complexity

Marcella Vacca, Floriana Della Ragione, Kumar Parijat Tripathi,
Francesco Scalabrì, and Maurizio D’Esposito

Abstract After more than 20 years from its discovery, MECP2 roles are far from
the fully understanding. MeCP2 binds the genome globally, with the need of a
single, methylated CG and is enriched in heterochromatic foci. Early hypothesis
proposed it as a generalized repressor and modulator of genome architecture that
keeps down the transcriptional noise. Its modulation of L1 retrotransposition and
the regulation of pericentric heterochromatin condensation might be conceivably
associated with this function. Interestingly, MECP2 is mutated in the paradigmatic
chromatin disease Rett syndrome, an X linked neurodevelopmental disease affecting
females. This highlighted a different function of MECP2, as repressor of down-
stream genes and the identification of few downstream genes corroborated this
hypothesis. Rather recently, however, with the help of high throughput technologies
and a number of appropriate mouse models finely dissecting MECP2 functional
domains, new and somehow unexpected roles for MECP2 have been highlighted.
Expression profiling studies of specific brain areas support a role of MeCP2 not
only as a transcriptional silencer but also as activator of gene expression. Beyond
its binding to DNA, MeCP2 is also able to influence alternative splicing, promoting
inclusion of hypermethylated exons in alternatively spliced transcripts. MeCP2 has
been also found to bind non CG methylated residues in brain. Overall, MECP2
appears to be a multifunctional protein, exquisitely adapted to support the functional
complexity of the brain.
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1 Mouse Models and Their Contributions to Disentangle
MECP2 Functions

MeCP2 (methyl-CG binding protein 2) is an ubiquitous transcription factor encod-
ing two different splicing isoforms, MeCP2A and MeCP2B (Fig. 1a), both con-
taining two main domains, Methyl-Binding Domain (MBD) and Transcriptional
Repression Domain (TRD) and predominantly expressed in brain [8]. It is mutated
in Rett syndrome (RTT, OMIM 321750), a progressive neurodevelopmental dis-
order affecting almost exclusively females [36]. The first murine model carrying
constitutive ablation of Mecp2 gene showed embryonic lethality [41], but, just
after the cloning of RTT causative gene [3] several new mouse models have been
generated helping to depict MECP2 biological role. By crossing floxed animals
with Cre deleter mice, ubiquitously expressing Cre transgene, mice lacking MeCP2
in all tissues were provided. Floxed mice were crossed also with Nestin-Cre
mice, generating a progeny lacking MeCP2 selectively in the brain. Both Mecp2-
null constitutive and Nestin-Cre conditional mutants recapitulate symptomatic
manifestations of RTT: they are apparently healthy and fertile for the first few weeks
of age but develop neurological phenotype at 5–6 weeks and die at 10–12 weeks of
age. These findings strongly suggest a primary role of MeCP2 in the brain [13, 18].
Female mice, representing the true RTT model, develop symptoms at 12 weeks of
age and survive beyond 12 months. The overall brain structure is conserved in the
absence of MeCP2 but brains are smaller than age-matched controls due to reduced
neuronal size [13] and neural dendritic arborization [34] as observed in humans.
MECP2 absence impairs both excitatory and inhibitory transmission in neurons.
Like many other X-linked intellectual disability genes [5], MECP2 impacts also on
dendritic spine density and synaptic plasticity.

A helpful model to study the effect of truncating mutation similar to those found
in RTT patients is the Mecp2-308/Y mouse, carrying a mutation that introduces
a premature stop codon. This model shows progressive RTT-like neurological
phenotypes as well, but symptoms onset and age of death are significantly delayed.
Moreover, these mice show hyperacethylation of histone H3, suggesting again that
MeCP2 dysfunction has an effect on chromatin architecture [38]. Noteworthy, in the
last years, murine models have been generated carrying Mecp2 mutations for loss
and/or gain of function in specific brain regions or sub-neuronal populations. This
detailed analysis allowed to hypothesize that specific phenotypes observed in RTT
models may be ascribed to different brain compartments [10].

Lately, also knock-in (KI) mice carrying disease causing point mutations or
MeCP2 derivatives (i.e. protein forms no more phosphorylable in specific amino
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acids) have been generated. For example, mice expressing MeCP2 with the common
RTT causing mutation R306C or those carrying phosphorylation-defective T308A
derivative have been useful to demonstrate the importance of the interaction
between MeCP2 and the NCoR complex and how this is regulated by the activity
dependent T308 phosphorylation. MeCP2 R306C mutant cannot neither binds
the NCoR complex nor be phosphorylated in T308, whereas the MeCP2 T308A
phosphorylation-defective derivative constitutively binds the NCoR complex, inde-
pendently from neuronal activity [15]. It has been noticed that MECP2 R306C KI
mice, compatible with a model of MECP2 loss of function, are more dramatically
affected than T308A KI mice, compatible with a model of MECP2 gain of function,
even if both models exhibit Rett like features [26].

2 MECP2 Deficiency and Changes
in Transcriptional Profiling

Despite the hypothesized role of MeCP2 as a transcriptional repressor, transcrip-
tome profiling of total brains from Mecp2-null mice revealed only slight changes in
gene expression [11]. On the contrary, dysregulation of thousands of genes came
out by profiling specific brain regions relevant to RTT symptoms, such as the
hypothalamus and cerebellum of Mecp2-null and -overexpressing animals (Fig. 1b,
left panel, i). Interestingly, these studies support a role of MeCP2 not only as
a transcriptional silencer but also as an activator of gene expression, through its
association with the transcriptional activator CREB1 [6, 12] (Fig. 1b, left panel, ii).
The brain-derived neurotrophic factor (Bdnf) gene, encoding a signalling molecule
with crucial roles in brain development and neuronal plasticity has been found
consistently deregulated in the absence of MeCP2 and is thus considered a bona
fide MeCP2 target gene. It has been shown that in resting neurons MeCP2 is bound
to methylated promoter of BDNF, while in depolarized neurons, which cause BDNF
activation, MeCP2 become phosphorylated in Ser421 and dissociates from BDNF
promoter [14, 27]. More recently it has becoming clear that a dual operation model
could explain the MeCP2 dependent-BDNF expression control [24].

Not surprisingly, among the MeCP2 targets identified in two different tran-
scriptional profiling studies of Mecp2-null brains there are several non-coding
RNAs, including hundreds of miRNAs [19] and long non-coding RNAs (lncRNAs)
[35]. Even if a major challenge is to understand the molecular consequences of
deregulated lncRNAs, the GABA receptor subunit Rho 2 gene was proposed as an
interesting target. Altogether, these findings suggest a global role of MeCP2 in the
transcriptional regulation of many classes of genes, underlying the importance of its
integrity and the devastating effect of its mutations in RTT patients.
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3 MECP2 Global Role in Genome Architecture

A clue to understand the crucial role of MeCP2 for brain functions has been
provided by large-scale analysis of MeCP2 distribution. Skene and co-workers [39]
reported that in neuronal nuclei, as opposed to other cell-types, MeCP2 is very
abundant: its levels approach those of the histone octamer allowing the protein to
be genome-wide bound in these cells, tracking methylated-CG moieties (Fig. 1b,
right panel, iv). In neurons, MeCP2 may therefore act as a global organizer of
chromatin structure, which is also supported by the fact that brains of Mecp2-null
mice are characterized by increased histone acetylation and a doubling of histone
H1 levels. Moreover, an intriguing finding is that the lack of MeCP2 in neurons
from mature brain is responsible for the de-repression of spurious transcription of
repetitive elements, such as L1 retrotransposon [32, 39].

The association of MeCP2 with chromatin seems also to be involved in gener-
ating higher order chromatin structures. In part, the silencing of an imprinted gene
cluster on chromosome 6, including Dlx5 and Dlx6, was proposed to depend on the
formation of a MeCP2-dependent chromatin loop enriched in methylated H3 lysine
9 (H3K9), a mark of silent chromatin (Fig. 1b, left panel, iii) [8]. Moreover, MeCP2
accumulates at pericentromeric heterochromatin containing densely methylated
major satellite DNA, forming specific chromatin structures called chromocenters
[23]. It was revealed a crucial role of MeCP2 and the necessity of the MBD for the
condensation of these chromatin structures during myogenic differentiation [9], and
later this has been demonstrated also during neural differentiation (Fig. 1b, right
panel, v) [7]. Furthermore, mutated MeCP2 forms (carrying different mutations
frequently found in RTT) fail to correctly localize in heterochromatin, and many
of them are unable to induce a correct chromocenter clustering [2].

More recently, MeCP2 has been proposed to be the major 5-hydroxymethyl-
cytosine (5hmC)-binding protein in brain [31]; the high abundance of 5hmC in
neurons and in particular in the gene body of transcribed genes probably ensures
a cell specific epigenetic control of MeCP2 on chromatin structure and gene
expression (see also Chap. 5). These findings parallel new discoveries suggesting
that post-translational modifications of MeCP2 (i.e. phosphorylation) in response to
multiple stimuli may provide novel keys to understand how MeCP2 can specifically
modulate neuronal chromatin remodelling in response to neuronal activity [15].

4 MECP2 and Regulation of Alternative Splicing

An exciting developing area of research is highlighted by the complex relationships
between epigenetics and splicing regulation. 5-hydroxymethylcytosine is highly
enriched at the exon-intron junction in the brain, while 5-methyl cytosine (5-mC)
is enriched at the exon-intron junction in non-neuronal cells [44]. Interestingly,
in non-neuronal context MeCP2 has been found enriched in highly methylated
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Fig. 1 (a) Schematic representation of MECP2 gene structure (upper panel). The main protein
domains are indicated with different colors. Alternative splicing producing the two isoforms,
MeCP2A or MeCP2-beta (486 amino acids) and MeCP2B or MeCP2-alpha (498 amino acids),
is indicated by solid lines. (b) Main MeCP2 functions are schematized. The left panel reassumes
locus-specific roles: MeCP2 is able to repress the transcription of specific target genes by recruiting
co-repressors and histone deacetylases (i) [14, 22, 33], to activate the transcription of target genes
in the hypothalamus by binding co-activators and CREB1 (ii) [12] and to silence Dlx5/6 imprinted
locus by promoting the formation of a higher order chromatin loop (iii) [20]. The right panel
summarizes the main global roles: MeCP2 is globally distributed in the mouse neurons tracking
the methyl-CG density (iv) [39], it plays a crucial role for the chromocenter clustering during neural
differentiation of mouse ES cells (v) [7] and is important for the correct sub-nuclear localization of
ATRX protein in the brain (vi) [4]

included alternatively spliced exons [28]. Also histone modifications can influence
alternative splicing: it was proposed that loss of HDAC1 activity increased histone
H4 acetylation surrounding alternative exons [44]. In Rett patients, expression
of MECP2 mutated alleles is specifically associated with an increased mono-
acetylation level of H4 [42]. In turn, this phenomenon may result in over-expression
of MeCP2 target genes providing functional implications in RTT pathogenesis.

Interestingly, tri-methylation of H3 lysine 9 (H3K9-me3) is a functional histone
mark to recruit the heterochromatin protein HP1 and foster the inclusion of
alternative exons [44]. Remarkably, MeCP2 physically interacts with HP1 proteins
[1] and H3K9-me3 is mainly enriched at pericentric heterochromatin, an already
known landscape for MeCP2 binding.
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Recent findings highlighted that chromatin remodeling is mediated also by
lncRNAs [37]. LncRNAs are involved, indeed, in the recruitment of epigenetic
factors to specific genomic loci [43]. In brain tissues MeCP2 binds a number
of lncRNAs as RNCR3 and MALAT1, this latter interacts with splicing factors
too [29]. These data provide evidence that MeCP2 could be a bridge between
epigenetic modification and alternative splicing regulation, taking also into account
that MeCP2 binds several spliceosome components [29].

5 MECP2 Functions and the Brain DNA
Methylation Landscape

Emergence of new experimental approaches analyzing the genome-wide single
base resolution profiling of DNA methylation and hydroxymethylation [25] has
made feasible to reconsider reading-mechanisms of DNA methylation signature.
Not surprisingly, spotlight has been focusing on MECP2 to better define its role
both in physiological and pathological conditions, such as Rett syndrome.

Lister and co-workers report an extensive DNA methylation re-assessment during
postnatal mouse development. New roles are emerging for non CG methylation,
such as CH methylation (mCH, in which H = A, C or T) and hydroxymethylation.
In the latter case, genes losing CG methylation thus acquiring hmC signature,
become active. Conversely, CH-methylation in neurons is depleted in expressed
genes, representing an additional marker of gene repression.

In human and mouse CNS neurons mCH level significantly rises during brain
postnatal development, reaching levels as abundant as methylated CGs [21, 25].
DNA hydroxymethylation is also enriched in neurons, 10 times more than in embry-
onic stem cells, with a postnatal increase. 5hmC profiling revealed its enrichment in
gene bodies of expressed genes concomitantly to depletion around transcriptional
start sites. If 5hmC represents a stable epigenetic mark or an intermediate molecule,
tagging active sites of DNA demethylation, remains to be clarified [21, 25].

Quantitative modulation of CG and non-CG methylation in brain mirrors those of
specific epigenetic factors, primarily methyl binding proteins. For instance, MeCP2
level increases synchronously with mCH and 5hmC rate [21, 39]. Additionally,
MeCP2 is capable to bind mCH and repress transcription [17], in contrast to earlier
experiments reporting a strong preference for mCG [30]. This discrepancy has been
recently clarified by testing the binding capacity of MeCP2 towards all known
forms of methylated DNA. Gabel and colleagues demonstrated that MeCP2 binds
efficiently mCG and poorly 5hmCG in contrast to what reported previously [31];
actually, it shows higher affinity binding to mCA and hmCA [16]. Furthermore,
MeCP2 binding to mCA is biased towards long genes expressed in brain; these
genes become up-regulated upon MECP2 mutations, possibly causing neurological
symptoms of Rett syndrome [16]. Similarly, neuronal overexpression of long genes
has been already noticed in a MeCP2-loss of function mouse model [40]. Thus,
transcriptional up-regulation of long genes is becoming a specific feature of Rett
brain, over other neurological pathologies [16].
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DNA Barcode Classification Using General
Regression Neural Network with Different
Distance Models

Massimo La Rosa, Antonino Fiannaca, Riccardo Rizzo, and Alfonso Urso

Abstract The “cythosome c oxidase subunits 1” (COI) gene is used for
identification of species, and it is one of the so-called DNA barcode genes.
Identification of species, even using DNA barcoding can be difficult if the
biological examples are degraded. Spectral representation of sequences and the
General Regression Neural Network (GRNN) can give some interesting results in
these difficult cases. The GRNN is based on the distance between the memorized
examples of sequence and the input unknown sequence, both represented using a
vector space spectral representation. In this paper we will analyse the effectiveness
of different distance models in the GRNN implementation and will compare the
obtained results in the classification of full length sequences and degraded samples.

Keywords Barcode classification • Alignment-free • GRNN

1 Introduction

The so-called DNA barcode sequence is a small segment (�650 bp) of DNA, usually
from “cythosome c oxidase subunits 1” mitochondrial gene (COI) [8, 13]. The
sequence is a good marker for DNA and is widely used for identification and
taxonomic rank assignment of many species [5].

DNA barcoding is difficult if the biological samples under analysis are degraded:
in this case only fragments of the barcode sequence is available. A suitable solution
for this problem is studied in [14]: in this work the barcode sequence is analysed in
order to find small subsequences that are still useful for identification of the sample
specie.

We started from a different point of view: we addressed the identification and
rank assignment of degraded barcode sequences, usually sequence fragments of
about 200 bp, building a robust classifier based on the spectral representation and
a modified version of the General Regression Neural Network (GRNN).
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Using spectral representation the DNA barcode sequence is represented using the
frequency of very short strings of length k D 3; 4; : : : , called k-mers. This sequence
representation is often addressed as k-mers decomposition or, more generally, as
alignment-free sequence decomposition. In this representation the order of k-mers in
the sequence is discarded and only their count is considered; if a sequence fragment
has a k-mers frequency distribution similar to the one of the whole barcode sequence
then the two will have a similar representation.

The set of the frequencies of the k-mers in a sequence constitutes the representing
vector for the sequence in a vector space. The dimension of the representation space
is 4k and the distance among these representing vector can be calculated using
Euclidean norm in <4k

.
The GRNN is a neural network originally developed for regression and adapted

to classification of DNA sequences in [17]. This modification made the network a
prototype-based classification tool that classifies a new input looking at the distance
from the memorized training samples. It is clear that different distance models, like
Euclidean, manhattan and so on, can change the performances of the network, as
we found in [17].

In this paper we want to go further in this study and analyse and compare the
performances of other distance models on the GRNN, considering classification
results of both full length sequences and degraded samples.

With regards to barcode classification, very interesting results have been obtained
in the works presented in [10, 15, 20]. In particular both the algorithms described
in [15, 20] propose alignment-based methods in order to classify barcode specimen.
In [20], after the training sequences are aligned, a set of logic rules are extracted
in the form “if pos35 is G and pos300 is A then the sequence is classified as
. . . ”, where posX represents a sequence locus. In [15], first a phylogenetic tree of
input sequences is computed; then at each branching node, a set of “characteristic
attributes” (CA) is identified for the corresponding leaf nodes. Considering a branch
node, CAs are single nucleotide position or multiple nucleotide positions that are
shared only by one of the branch descending from that node. Another alignment-free
approach more similar to our proposed method is the one presented in [10]. There
authors introduce the spectral representation for the barcode sequences and they
use two machine learning algorithms, k-Nearest Neighbour (kNN) [2] and Support
Vector Machine (SVM) [18], to train different classifiers. In this paper we are
going to compare our GRNN approach with the classifiers proposed in [10] because
they represent alignment-free approaches, differently from [15] and [20], that also
implement the spectral representation. The comparison between our GRNN method
and the SVM classifier has been already done in [17], where we demonstrated our
method outperforms SVM when dealing with sequence fragments. Therefore in this
paper we compare our GRNN method against the k-NN classifier.
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2 Methods

Prototype-based classification tools are based on sequence distance; there are many
algorithm to evaluate sequence distance besides the evolutionary distance, for
example the compression distance used in [11, 12]. The vector space representation
is obtained by considering the frequency of all possible 5-letters substring in the
DNA barcode sequence (k-mers), these k-mers are obtained by using a sliding
window on the sequence. A deeper discussion on this representation can be found
in [3, 10]. In the following sections the GRNN modified algorithm is explained and
the different distance measures applied are described; moreover the barcode dataset
used is introduced.

2.1 The General Regression Neural Network

Artificial neural networks (ANN) are a set of algorithms used to approximate
functions or cluster large sets of input values. A neural network usually have a
very large set of parameters (the network weights) adapted using a set of training
examples and a specific learning algorithm (the training algorithm). The training
phase is aimed at reducing the error of the network on a specific task, classification
or regression, by changing the weight values.

Among the neural networks the GRNN [19] is a network created for regression
i.e. the approximation of the values of a dependent continuous variable y given a set
of samples .xi; yi/ i D 1; 2; : : : N.

In the following we will discuss the one dimensional output case, the extension
to an output vector y being straightforward (see [19] for details).

The GRNN do not have a training phase, it is based on the memorization of all
the training examples in the hidden layer: one neural unit for each training samples
(see Fig. 1). When a new pattern x0 is presented to the network input the output y is
calculated using the following equation:

y0 D
P

wi � yiP
wi

: (1)

where the weight wi are obtained from each hidden unit as

wi D exp

�
�d.x0; xi/

2�2

�
(2)

The � value, called spread factor, is the only parameter of the GRNN network.
The weight wi is considered by some literature the excitation level of the neural unit
i corresponding to the input x0.
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Fig. 1 The representation of
the GRNN neural network.
The hidden layer contains all
the training patterns and
calculates the wi considering
the distance from the input
pattern x. These weights are
used to calculate the output.
On the right there is the
output layer composed by
three units: the upper one
collects all the terms wi � yi

and the lower one collects the
terms wi: these terms are
combined in the third unit
that generates the output

There are some studies on the optimal value of � that can be a single value for
the whole network or a specific value for each hidden unit. In [7] it is suggested
a formula that depends on the maximum distance and number of patterns in the
training set.

The GRNN can be used in classification problems: considering a set of classifi-
cation examples .xi; ch/ where xi (with i D 1; 2; : : : N) is the input pattern and ch

(with h D 1; 2; : : : H; H is the number of available classes) is the class assigned to
the pattern xi it is possible to build a set of training examples for a GRNN network
as .xi; yi/ were yi D Œyi;1; yi;2; : : : ; yi;H� is given by

yi;j D
�

0 if j ¤ h
1 if j D h

(3)

where ch is the class of the pattern xi.
The set of couples .xi; yi/ can be used as a training set for the GRNN and the

class of the new input x0 can be calculated as

ch.x0/ D arg max
j

fy0
jj j D 1; 2; : : : Hg (4)

In order to implement our classification tool for DNA sequences, we obtained the
vector representation of the DNA sequences using a k-mer decomposition, as shown
in [10], in which sequences are coded as fixed size vectors whose components are
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the number of occurrences of short DNA snippets of k fixed-length, called k-mers.
Considering k D 5, as proposed in [10], we have vectors of dimension 45 D 1024

to represent genomic sequences.
The GRNN is used with different distance models, in particular some of the Lp

norms, the correlation norm and the cosine norm.

2.2 The Distance Models

In this section the Lp norms used are introduced, together with the cosine and
correlation distances.

2.2.1 Lp Norms

The norm is a function that assigns a strict positive number to a vector in a vector
space f W .x/ ! < that satisfies the following properties:

f .˛x/ D j˛j f .x/ (5)

f .x C y/ � f .x/ C f .y/ (6)

if f .x/ D 0 then x is the vector zero (7)

the Lp family norms, or p-norms, defined as:

kxkp D
 X

i

jxijp

! 1
p

: (8)

The most common norm is the Euclidean norm with p D 2, but are also used the
p D 1 norm namely City-block or Manhattan, and the Chebyshev norm, or L1.
Although should be p 	 1 there are also fractional norms with p < 1, that are
interesting in the case of high dimensional spaces.

In case of high-dimensionality data, such as the 1024 sized vectors representing
DNA sequences, the Euclidean norm used to define the distance tend to concentrate
[4]. That means all pairwise distances between high-dimensional objects appear
to be very similar. Authors in [4] also state that the concentration phenomenon is
intrinsic to the norm. In order to overcome this phenomenon, fractional norms can be
used in place of Euclidean norm [1, 9]; whereas with 0 < p < 1 Lp norms are called
fractional norms, which induce fractional distances. Moreover, fractional norms are
able to deal with non-Gaussian noise [4]. In this work we adopted fractional norms,
considering different values of p, in order to compute Eq. (2) and to limit the effects
of the curse of dimensionality.
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If p D 1 in Eq. (8) the norm is called the Manhattan norm, or taxicab norm, and
is defined as

L1 D
X

i

ˇ̌
x0

i � xi

ˇ̌
: (9)

both the names are related to the distance a taxi as to drive in a city with a rectangular
grid.

The Chebyshev distance is obtained from the formula:

d.x0; xi/ D max
i

.
ˇ̌
x0

i � xi

ˇ̌
/: (10)

this is usually considered as L1 norm.

2.2.2 Cosine and Correlation Distance

Cosine and correlation distance are both based on scalar product x0 
 xi, instead of
the difference x0 � xi. The cosine distance is defined by the following equation:

d.x0; xi/ D 1 � x0 
 xi

kx0k kxik (11)

where the k:k is the Euclidean norm. The correlation distance is defined by:

d.x0; xi/ D 1 � .x0 � x0/ 
 .xi � xi/

kx0 � x0k kxi � xik
(12)

where x0 is the mean of the input vectors x0 and xi is the mean of the training
samples.

2.3 Barcode Dataset

We downloaded barcode sequences from the Barcode of Life Database (BOLD)
[16]. In our study, we considered 10 barcode datasets belonging to different BOLD
projects and living organisms. These datasets have been selected according to some
criteria: we chose only barcode compliant dataset, i.e certified by BOLD as true
barcode sequences, with sequence length not shorter than 500 bp and not longer
than 800 bp. These datasets differ each other on the basis of the number of species
and specimen, the sequence length and the sequence quality (in terms of undefined
nucleotides). Following these criteria, we collected 2210 sequences. The dataset
composition, in terms of number of different taxa and number of specimen for
each taxa, is summarized in Table 1, where it is possible to note how the dataset
is unbalanced.
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Table 1 Barcode dataset composition at each taxonomic level

Sequence distribution for each taxa

Phylum Class Order

# Classes # Seqs % Seqs # Classes # Seqs % Seqs # Classes # Seqs % Seqs

1 1361 61.9 % 1 1361 61.9 % 1 1049 47.46 %

2 [219,386] 27.4 % 2 [219,286] 22.85 % 3 [209,286] 32.30 %

2 [111,133] 11.0 % 3 [100,133] 15.56 % 4 [100,133] 20.22 %

Family Genus Species

# Classes # Seqs % Seqs # Classes # Seqs % Seqs # Classes # Seqs % Seqs

1 885 40.04 % 1 386 17.46 % 1 279 12.64 %

3 [209,274] 31.76 % 3 [209,290] 32.48 % 4 [105,140] 22.30 %

4 [103,164] 23.12 % 6 [103,164] 35.15 % 30 [14,92] 49,50 %

7 [4,46] 5:06 % 15 [4,71] 14.91 % 35 [1,11] 15.56 %

Numbers between square brackets represent range of values

3 Results and Discussion

In this section, we describe the parameter setup for the GRNN algorithm and the
adopted training/testing procedure. Then we report classification results in terms of
accuracy, precision and recall scores, and finally we discuss those results.

3.1 Experimental Setup

The only parameter of the GRNN algorithm is the spread factor � (Eq. 2). In our
experiments, we tuned the � value by means of a ten fold cross validation procedure,
considering as training set the dataset composed of the full length sequences. This
procedure has been carried out implementing each distance model (see Sect. 2.2),
and for values of � ranging from 0:5 to 0:8, with a step of 0:1. For each value of �

we noticed that the behaviour of the GRNN was substantially the same regardless
the distance model, and the best results, in terms of error rate, were obtained with
� D 0:6. As for the fractional distances, Eq. (8) with p < 1, we considered three
values for p: 0.3, 0.5, 0.7. All the experiments have been done using Python scripts
on a Windows 7 machine equipped with i7 Intel CPU at 2.8 GHz with 8 GB of
RAM. Computational times of the GRNN algorithm are about 1 min for a single
experiment.

The classification performances of the GRNN algorithm have been tested con-
sidering full length barcode sequences and sequence fragments of 200 consecutive
bp randomly extracted from the original sequences. We want to assess the GRNN
predictive power and its robustness with regards to the sequence sizes. In fact, in
the study of environmental species, for example, usually only small portions of the
barcode sequences are available.
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For each distance model, the training and testing procedures have been done
in two ways. In the first case, we adopted a ten fold cross validation method:
in each fold, we trained the GRNN with the 90 % of the full-length sequences
and we used as test set the remaining 10 % of both the full-length sequences
and their corresponding sequence fragments of 200 bp. In the second case, we
trained the GRNN with the whole dataset of the full-length sequences and then we
tested it with all the sequence fragments. In the first scenario, we want to assess
the classification performances of the GRNN considering full-length sequences
and its generalization degree when used to classify sequence fragments whose
corresponding original sequence does not belong to the training set. In the second
scenario, we supposed the GRNN is used to recognize small random fragments,
by “knowing” all the original full-length sequences. Comparison with the k-NN
classifier has been carried out following the same training and testing procedure.
We used the k-NN implementation provided by the Weka Experimenter Platform
[6], considering k D 1 and k D 3, as done similarly in [10].

3.2 Classification Results

Classification scores have been evaluated by means of the accuracy, precision and
recall performance measures.

These scores are summarized in Tables 2, 3, and 4, respectively. Each table
is composed of three parts, according to the adopted training/testing procedure.
“Full-length” means the classification results are obtained through a ten fold cross
validation scheme considering full length sequences both for training and testing;
the scores are averaged over the ten folds. “Full vs. 200-bp” means the classification
results are obtained through a ten fold cross validation scheme considering full-
length sequences for training and 200 bp fragments for testing; once again the
scores are averaged over the ten folds. “200-bp” means the classification results are
obtained training with the whole dataset of full-length sequences and tested with all
the sequence fragments. In each table, in the first column there is the distance model
used to train the GRNN, and in the second row there is the taxonomic level, from
Phylum to Species. The last two rows of each table part show the results obtained
from the k-NN classifiers.

3.3 Discussion

From the classification results shown in Tables 2, 3, and 4, it is evident that the
GRNN and the k-NN algorithms are able to correctly classify full-length barcode
sequences, with scores around 100 % at each taxonomic level. The GRNN reaches
those scores with all the distance models except for the correlation and the cosine
distances.
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Table 2 Accuracy scores at each taxonomic level the GRNN algorithm, considering
each distance model, and the k-NN classifier
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Table 3 Precision scores at each taxonomic level the GRNN algorithm, considering
each distance model, and the k-NN classifier
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Table 4 Recall scores at each taxonomic level the GRNN algorithm, considering
each distance model, and the k-NN classifier
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Fig. 2 Accuracy scores at each taxonomic level for the “Full vs. 200-bp” training/testing scheme
of the GRNN classifier with different distance models

Using those distances, the performances of the GRNN drop significantly,
reaching about 62 % in terms of accuracy at phylum level, and only about 20 and
12 % in terms of recall and precision respectively. That means distances based on
scalar product of the patterns are not suitable with the GRNN algorithm. The most
interesting results are therefore the ones obtained during the classification evaluation
of the sequence fragments. First of all, the performances decrease with respect to
taxonomic level, as it is also evident in the chart of Fig. 2. As the taxonomic rank
goes down, indeed, the number of categories to classify increases (see Table 1) and,
as a consequence, it is more difficult to correctly classify the patterns. Considering
the “Full vs. 200-bp” part, the only meaningful scores are provided by the GRNN
implementing fractional and city block distances. In particular while the correlation
and the cosine distances keep on giving low scores as in the case of full-length
sequences, the Chebyshev and the Euclidean distance have a strong drop of
performances, with scores about 40 % for Euclidean distance at Phylum level and
about 20 % for Chebyshev distance at Phylum level. The same drop of performances
also affects the k-NN classifiers, with very similar scores regardless the value of k.
On the other hand, considering fractional and city block distances, the GRNN is still
able to provide acceptable classification results for sequence fragments, with scores
ranging from about 85 % at phylum level to abut 57 % at Species level. These results
further confirm that fractional norms contrast the effects of distance concentration.
It is important to remember that in the case of “Full vs. 200-bp” the GRNN network
classify the sequence fragments without “knowing” the corresponding full length
sequences during the training phase. It is interesting to note (see Fig. 2) that at the
family level there are the best scores: that because the distribution of specimen
at family level is very unbalanced, with one family collecting about the 40 % of
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available samples, as reported in Table 1. Finally, considering the “200-bp” part of
Tables 2, 3, and 4, once again only the GRNN implementing the fractional and
the city block distances are able to provide a proper classification for sequence
fragments. In this last case, the performance scores are higher than the “Full vs. 200-
bp” scenario, because in this situation we carried out a complete training procedure
of the GRNN considering all full-length sequences. Of course, because the spectral
representation of full-length and sequence fragments are different from each other,
no sequence fragment used in the test set belong to the training set.

4 Conclusion

In this work, a modified version of the GRNN algorithm implementing different
distance models for barcode sequence classification is presented. The GRNN
classification performances have been assessed with regards to sequence sizes.
Experimental trials have been carried out considering full-length sequences and
sequence fragments that simulate a very common scenario in which only environ-
mental samples are available. In the case of full-length sequences, 6 out of 8 distance
models provided near perfect results, in terms of accuracy, precision and recall, with
scores ranging between 100 % at Phylum level and 90 % at Species level. The same
scores are reached using the k-NN classifier. Only correlation and cosine distance
did not provide acceptable results. In the case of sequence fragments, fractional
and city block distances only gave meaningful results: in the “Full vs. 200-bp”
scenario, accuracy ranged from 85 % at Phylum level to 57 % at Species level; in the
“200-bp” scenario, accuracy ranged from 95 to 100 % at Phylum level to 70–79 %
at Species level. In both scenarios our GRNN approach outperformed the k-NN
classifier. That means GRNN implementing fractional and city block distances was
able to correctly predict the similarity between original full-length sequences and
their corresponding sequence fragments. All the other distance model were affected
by a strong classification performance drop.
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First Application of a Distance-Based Outlier
Approach to Detect Highly Differentiated
Genomic Regions Across Human Populations
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Luca Pagani, and Claudio Sartori

Abstract Genomic scans for positive selection or population differentiation are
often used in evolutionary genetics to shortlist genetic loci with potentially adaptive
biological functions. However, the vast majority of such tests relies on empirical
ranking methods, which suffer from high false positive rates. In this work we
computed a modified genetic distance on a 10,000 bp sliding window between
sets of three samples each from CHB, CEU and YRI samples from the 1000
Genomes Project. We applied SOLVINGSET, a distance-based outlier detection
method capable of mining hundreds of thousands of multivariate entries in a
computationally efficient manner, to the average pairwise distances obtained from
each window for each CHB-CEU, CHB-YRI and CEU-YRI to compute the top-n
genic windows exhibiting the highest scores for the three distances. The outliers
detected by this approach were screened for their biological significance, showing
good overlap with previously known targets of differentiation and positive selection
in human populations.

Keywords Distance-based outlier • Whole-Genome scan

S. Lodi (�) • C. Sartori
Department of Computer Science and Engineering, University of Bologna, 40136 Bologna, Italy
e-mail: stefano.lodi@unibo.it

F. Angiulli
Department of Computer Engineering, Modelling, Electronics, and Systems,
University of Calabria, 87036 Rende, Italy

S. Basta
Institute of High Performance Computing and Networking, Italian National Research Council,
87036 Rende, Italy

D. Luiselli
Department of Biological, Geological and Environment Sciences, University of Bologna,
40126 Bologna, Italy

L. Pagani
Department of Archaeology and Anthropology, University of Cambridge, Cambridge, UK

© Springer International Publishing Switzerland 2015
V. Zazzu et al. (eds.), Mathematical Models in Biology,
DOI 10.1007/978-3-319-23497-7_10

133

mailto:stefano.lodi@unibo.it


134 S. Lodi et al.

1 Introduction

Homo sapiens is one of the most widespread species in the world, inhabiting
environments that span from the arid Savannah to the icy Siberia [25]. During
their journey to the colonization of most of the emerged lands, humans developed
cultural and genetic adaptation to cope with the diverse challenges posed by the
many environments they encountered.

While the “smoking-gun” non-synonymous mutations are relatively easy to
detect in genes for which a specific genotype-phenotype relationship is already
established, genome wide scans for signatures of positive selection pose a higher
degree of complexity. Firstly, the managing of whole genome sequences needs
the development of specific tools capable of handling millions of positions in a
computationally effective manner. Secondly, the random processes responsible for
the neutral accumulation of mutations and their frequency in a population (genetic
drift) constitute the major confounder in this kind of quest. Some of the most
popular selection tests in the field of human evolutionary genetics (FST [32], iHS
[31], XP-EHH [28], PBS [33]), designed to detect signature of positive selection
in the genome of a given population, indeed rely on the empirical ranking of the
statistic they calculate. While genomic loci that underwent positive selection would
surely fall in the top ranking regions for any carefully designed statistic, the same
distribution subset would also be populated by merely drifted regions. Furthermore
should a population show no signs of positive selection, it would still be possible to
define a set of top ranking regions, which would obviously be simply representing
genetic drift in that population. Therefore more accurate tools capable of efficiently
managing whole genome data and of focussing on highly differentiated regions
without relying on empirical ranking, are crucial to the development of the field.
Additionally, as sequencing efforts are gradually shifting from a “many samples,
low coverage” to a “few samples, high coverage” strategy, high accuracy when
dealing with as little as 5 samples per population would be desirable feature of such
tools. The deployment of units of samples per each population would also reduce
the accuracy of popular frequentist methods, such as FST , for which such a number
of individuals would not be sufficient to generate reliable frequency estimates.

Outliers, or anomalies, are observations which deviate significantly from the
remaining data [18]. The occurrence of outliers signals the presence of a different
data generating mechanism, which in turn may be correlated to harmful conditions,
economic losses, malfunctioning devices, but also interesting novelties from which
new knowledge can be extracted. Outlier detection is an important data mining
problem, which is computationally difficult to solve for large data sets meeting the
temporal requirements of its typical applications, which include fraud detection,
intrusion detection, data cleaning, medical diagnosis, mechanical failure forecast-
ing, and network analysis.

In this paper we will be concerned with the unsupervised outlier detection
problem, in which exceptional and normal data must be separated without the
help of training examples. A prominent approach to the unsupervised problem is
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distance-based outlier detection, which bases the distinction on distances to a subset
of all data set objects [4, 6, 7, 10, 17, 21, 26, 30]. Most of these approaches define a
weight or score for every object, which summarizes its dissimilarity to its k nearest
neighbors by means of a function of their distances.

Distance-based outlier detection is non-parametric, in that no assumption is
required on the distribution of data. It is thus more widely applicable than model-
based approaches, which base the identification of an object as outlier on the
probability of suitably defined tail regions of the assumed distribution. Distance-
based outlier detection is also computationally more difficult than model-based
outlier detection. For this reason, numerous parallel and distributed distance-
based outlier detection methods have been proposed obtaining large speed-up
over sequential ones. Some of these contributions present algorithms for Graphic
Processing Units, which contain thousands of computing cores that can execute
general purpose programs and cost a fraction of a computer cluster. Therefore, we
believe that distance-based outlier detection is mature for application to the genomic
domain, and, in particular, to the analysis of the human genome. In this study we set
out to apply SOLVINGSET, a multidimensional outlier detection method, to search
for genomic regions highly differentiated among modern human populations.

2 Related Work

To the best of our knowledge, no widely adopted test to detect signatures of positive
selection relies on multi-dimensional outlier detection. The tests available so far can
be divided into three major classes. SNP based tests (such as FST [32] or PBS [33]
tests) focus on genetic signals stemming from a single genetic position which can
be subsequently used to calculate the average or maximum value over a genetic
window of a given size. Haplotype based test, which include iHS [28, 31] and XP-
EHH [28], evaluate the length and frequency of haplotypes in a given populations,
flagging out genomic regions showing outstanding haplotype patterns. The third
class of tests (Tajima’s D [29], Fay and Wu’s H [16]) relies on the site frequency
spectrum (calculated per each genomic window of a given length) and still flags
outstanding regions based on their overall genomic ranking.

Many methodologies for outlier detection have been proposed in the literature
of statistics, machine learning and data mining; [19] and [12] are comprehensive
reviews of work in the field. In the sequel we recall the most relevant contributions.

Barnett and Lewis [9] present a large collection of univariate, distribution-based
outlier tests. More recently, many works in the data mining field have addressed
the issue of efficiency of outlier detection in very large data sets motivated by its
usefulness in information technology, finance, medicine and mechanics.

Knorr and Ng proposed the NL algorithm [21], in which an outlier is defined as an
object o such that the fraction of all objects belonging to a closed ball of radius D and
center o is smaller than a fixed threshold s. The authors proved elsewhere that their
definition can be unified to a distribution-based one. In fact, for popular distributions
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and appropriate choices of D and p, the outlier property is equivalent to membership
in parametrically defined outlier tail regions. Such outliers are distance-based; they
are also related to local density, in that the outlier property of an object depends the
number of objects in its neighbourhood. This approach was improved in later works.
Ramaswamy et al. [27] estimate local density as the kth nearest neighbour distance
and base a ranking of outliers on such distance. Breunig et al. [11] also define a
degree for the property of being an outlier, the Local Outlier Factor (LOF), but in
contrast to previous proposals, the degree is relative to the density of neighbouring
objects. Therefore, in their approach two objects may have similar degree even if
their distance to the nearest cluster is very different, because such clusters have very
different densities. Bay and Schwabacher [10] first introduced an outlier detection
framework in which a running threshold on an object’s score allows to exclude
objects that cannot be outliers from the computation.

In many applications, the running time of an outlier detection implementation
must fall into a feasible range, due to the size of data sets, and, in many cases,
because it is instrumental in prompt user intervention. For this reason, there has
been an increasing interest in parallel and distributed methods for outlier detection.
Hung and Cheung [20] proposed the PENL algorithm, which is a parallelization
of NL [21]. PENL transfers the entire dataset among nodes; therefore it has
limited applicability in distributed mining. Lozano and Acuna [23] proposed a
parallel version of Bay’s algorithm [10] which showed restricted scalability in
some experiments. Support-based methods for distributed high-dimensional data
sets, have been proposed by Otey et al. [24] and Koufakou and Georgiopoulos
[22]. Finally, Dutta et al. [14] proposed a top-k outlier detection method which
discovers objects that are exceptions to the overall correlation structure of the data,
as presented by its principal components.

3 Methods

Here we adopt the average pairwise difference (APD) as the most basic yet
stable statistic, considering over a given number of base pairs the total number of
differences between two individuals and dividing by the total number of explored
sequence. APD was calculated per each 10,000 bp region in all possible .p1i; p2j/

pairs between populations, where i and j are the i-th and j-th individuals of
population 1 (p1) and population 2 (p2), taking five individuals for each CEU
(European), CHB (Asian), YRI (African) populations, of the ones available from
the 1000 Genomes Project. To the APD between populations was then subtracted
the APD within populations and the total divided by the APD between:

APD D APD between populations � APD within populations

APD between populations
(1)
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Fig. 1 Definition of the top-n outliers of a data set

The same window approach was also taken to calculate FST [32] between pairs of
the same populations, taking 80 samples for each group. The genomic distribution
of APD calculated using only 5 genomes per population was then compared with
the FST distribution calculated on 80 samples and taken as the benchmark. We
also simulated 50 genomic regions of 200 kbp each in three populations using the
MSMS algorithm [15] (command line: -ms 120 1 -t 136 -r 80 -N 10000 -SF 0 1
1 -Sc 0 1 10000 100 0 -I 3 40 40 40 10 Smark) applying the specified selection
strength only at the beginning of the first two regions on population 1 (labelled as
YRI). The remaining 48 regions were run without the selection flags and allowed to
differentiate only through genetic drift.

Each 10,000 bp window was then processed for its APD searching for distance-
based outliers. To this end, we adopted the outlier definition given in [4], which we
briefly recall; a formal definition is given in Fig. 1.

Every data set object is associated to a weight, that is, the sum of the distances
from the object to its k nearest neighbors. Object weight measures the degree of
anomaly of an object. Note that the weight of an object can be large even if the
object has one ore more close neighbours, if the number of such neighbours is
much smaller than k. Object weight induces an ordering of all objects according to
their degree of anomaly. Rather than fixing a threshold on weight to select outliers,
only the top-n objects having largest weights are selected as outliers, where n is an
additional integer parameter of the definition.

The computation of the top-n outliers of a data set is straightforward by the
following basic algorithm. Compute a n � k matrix A in which Ajr is a pair .qjr; djr/

where qjr is the r-th neighbour of object pj and djr is its distance to pj. Compute
a weight vector w by wj D Pk

rD1 djr, sort it in descending order, finally select
elements from w1 to wn. Such an algorithm is however expensive for large data
sets both in terms of computation time and occupied memory, due to the size of
matrix A and the complexity of computing nearest neighbours.

The SOLVINGSET family of algorithms [2, 3, 5, 6] allows for an efficient
computation of top-n outliers in a variety of sequential, parallel (GPU), and
distributed computing environments, with or without GPU parallel co-processing.
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Algorithm 1 SOLVINGSET

Input: Multivariate data set D, distance function d, positive integers k, n, m.
Output: The top-n outliers of D.
1: Select m objects randomly from D and insert them into an initially empty candidate set C
2: while C ¤ ; do
3: Move all candidates in C from the data set D to the solving set S
4: for all p 2 D do
5: for all c 2 C do
6: Compute the distance d between c and p
7: Update the max-heap Hc of c with .p; d/

8: Update the max-heap Hp of c with .c; d/

9: end for
10: Compute the weight w of p from the distances in Hp

11: if w is smaller than the smallest weight in T then
12: Remove p from D
13: end if
14: Update the min heap NC of candidates for the next iteration with .p; w/

15: end for
16: for all c 2 C do
17: Update the min-heap T of top-n outliers with .c; w/

18: end for
19: Copy the m objects with largest weights from NC to C
20: end while

Large data sets, with a number of objects of order 106, can be processed by the
distributed version several times in a few minutes, allowing for a broader exploration
of the .k; n/ parameter space.

The sequential SOLVINGSET algorithm [6] for computing top-n outliers is
described in Algorithm 1. In contrast to the basic algorithm, SOLVINGSET computes
neighbours for all jDj objects in batches: At each iteration, the algorithm computes
the k nearest neighbours in D of only a fresh set C of candidate objects of size
m, where m is a parameter (lines 4–7). The algorithm ensures at the end of each
iteration that the top n objects by weight among all processed candidates are stored
in T (line 16). At termination, T clearly contains the top-n outliers.

Computing the top-n outliers in batches allows to discard many objects in the
course of the computation. Line 8 ensures that the k nearest neighbours in the set of
all current and past candidates of any object p 2 D are stored in Hp at the end of
each iteration. The distance sum in Hp is thus monotonically non increasing during
the computation; it is also an upper bound to the actual weight of p. Storing both
T and Hp allows for a large reduction in the number of objects that can be elected
as candidates at each iteration. In fact, the weight of the n-th object in T is a lower
bound to the weight of the n-th lightest object among the actual top-n outliers of D.
All objects having a smaller weight than the weight of the n-th object in T cannot
be top-n outliers; thus, they can be removed from the data set (line 10–13).

Storing provisional k-neighbourhoods in Hp also allows to make an informed
choice of the candidates for the next iteration. Lines 14 and 19 ensure that C
contains the m objects having largest weight, basing weight on the distances in Hp
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at the previous iteration. Such a selection of C accelerates the increase speed of the
smallest weight in T, thereby allowing for a more effective removal of objects that
cannot be outliers at lines 10–13.

4 Experimental Results

A distributed version of the SOLVINGSET algorithm was applied to a six-column
data table with schema (chr,start,end,CHB-CEU,CHB-YRI,CEU-YRI),
where chr, start, and end are the chromosome, the start base and the end base
position of a region, respectively, and CHB-CEU, CHB-YRI, CEU-YRI are the
average pairwise differences between the Asian and European, Asian and African,
and European and African populations.

The preliminary run on simulated data showed the ability of SOLVINGSET to
capture 100 % of true positive when taking the 50 windows above the elbow of
the ranked distribution of weights. Furthermore we noticed that the � 50 % false
positives present in the above set could be further reduced, since the true positives
all fell in the top of the weight distribution.

Figure 2 shows instead a plot of the genetic distances calculated on empirical
data. We chose to focus only on autosomic regions, to avoid spurious results due to
the different demographic dynamics of sex-chromosomes and mtDNA. The distance
between regions was computed as the Euclidean distance in the three-dimensional
space having coordinates CHB-CEU, CHB-YRI, CEU-YRI. The number n of
regions to retrieve as distance-based outliers was set to 260, which is about 0:1 % of
the total number of regions (264;908). The number of k of nearest neighbours was
set to 50. Therefore, groups of outliers which are close to each other but separated
from the rest of the data will have a weight that decreases as their size increases and
will eventually become flatter at sizes 	 50.

144 out of the 261 (55 %) outlier regions, each spanning 10,000 base pairs (bp),
contained at least 1 gene. After inspecting all 10,000 bp autosomal windows against
the human GTF file at Ensemble we observed that 16 % of windows contained at
least 1 gene. Therefore the 3:44 folds enrichment in the number of gene-containing
and, accordingly, functionally meaningful windows accounts for the biological
relevance of the obtained outliers as a whole. The 98 unique genes covered by the
144 windows mentioned above were searched for protein-protein interactions using
String 9.1 (www.string-db.org). Four protein-protein networks where identified
(Fig. 3) of which one (Fig. 3a) contained the TCF7L2 and THADA genes, known
to be associated with Type II Diabetes [8] and showed an increased presence
(among others) of genes linked with the positive regulation of macromolecules
metabolism. Another network (Fig. 3b) linked OCA2 and SLC45A2, known to
regulate the skin pigmentation phenotype [25]. When compared with the top 1 %
of the FST results obtained for the CEU-YRI, CEU-CHB and YRI-CHB pairs, 31,
28, and 23 % of the 98 genes were found respectively. Furthermore, 16 % of these

www.string-db.org
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Fig. 2 Plot of average pairwise differences between the Asian and European, Asian and African,
and European and African populations. (a) CHB-CEU and CHB-YRI; (b) CHB-CEU and
CEU-YRI; (c) CHB-YRI and CEU-YRI

genes were already reported in the literature as known target of positive selection
[1, 13, 25]. Combining the FST and literature evidences, 55 % of the 98 genes
characterized by SOLVINGSET (our method) were validated as putative candidate
of positive selection in worldwide human populations. Finally, note that simple
methods which exclude all windows having a value in the difference columns
CHB-CEU, CHB-YRI, CEU-YRI below a given threshold are not equivalent to
ours, when the number of retrieved windows is the same. In fact, in our experiment
the set union of all top 0.1 % windows in the CHB-CEU, CHB-YRI, CEU-YRI
does not cover entirely the set of outlier windows which have been found by our
method, which is shown in Fig. 4; red points represent the subset of such windows
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Fig. 3 Protein-protein interaction network (from string-db.org) of the genes covered by
the outlier regions. The 98 unique genes covered by the outlier regions were inputted into the
string-db.org database to search for protein-protein interaction networks. Twenty-one of
these genes formed 4 distinct networks. The first (a) encompassed 15 genes including TCF7L2 and
THADA, associated with Type-II Diabetes, and showed significant enrichment of genes involved in
the metabolism of macromolecules. The second (b) network includes two of the best characterized
genes involved in skin pigmentation, while the other 2 genes (c and d) did not offer a biologically
univocal interpretation

which are outside the top 0:1 % windows in all three difference columns CHB-CEU,
CHB-YRI, CEU-YRI. Such windows missed by threshold methods include in
particular network c of Fig. 3.

Discussion The outlier windows detected with our method, as a whole, must be
seen as genomic regions which either underwent extreme differentiation in one of
the three assessed populations or experienced different genetic pressures in those
populations. As a result, the gene list identified with this approach is not necessarily
linked with putative selective pressure acting on a specific population. On the
contrary, such list should be intended as an overview on the genomic regions which
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Fig. 4 Plot of outlier windows found by our method; red points are windows which are not
included in the top 0:1 % of any of the three axes CHB-CEU, CHB-YRI, CEU-YRI. (a) CHB-CEU
and CHB-YRI; (b) CHB-CEU and CEU-YRI; (c) CHB-YRI and CEU-YRI

are mostly differentiated across continents. In this light it is remarkable to note
how these regions show a 3:44 folds enrichment in gene contents. Furthermore
they feature protein-protein interaction networks such as the ones involving type-
II diabetes or skin pigmentation genes, both known to have played a major role in
the genetic adaptation to the various environments encountered during the human
worldwide expansion.
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5 Conclusions

We have presented a first application of SOLVINGSET, a distance-based outlier
detection algorithm to the problem of extracting outliers from a three-dimensional
data set in which each dimension records differences in base pairs between
homologous windows over the genomes of individuals from two populations
among CHB, CEU, and YRI from the 1000 Genomes Project, to the purpose
of identifying candidate genes for positive selection. The outlier windows found
by our method have been compared with the results of FST taken as benchmark
and have been examined for their biological significance; the comparison yielded
a validation of 55 % of the genes contained in the found outlier windows as
putative candidates of positive selection. Furthermore, its computational efficiency
in tackling a multidimensional problem makes SOLVINGSET a tool capable of
improving the current knowledge on highly differentiated genomic regions across
multiple populations.
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Abstract Metagenomics is a technique for the characterization and identification
of microbial genomes using direct isolation of genomic DNA from the environment
without cultivation. One of the key step in this process is the taxonomic classifica-
tion and clustering of the DNA fragments, process also known as binning . To date,
the most common practice is classifying through alignments to public databases.
When a representing specie is present in this database the process is simple and
successful, if not, an underestimation of taxonomic abundances is produced. In this
work we propose a alignment-free method capable of assign taxa to each read in the
sample by analyzing the statistical properties of the reads. Given an environment, we
collect genomes from public available databases and generate genomic fragments
libraries. Then, statistics of k-mer frequencies, GC ratio and GC skew are computed
for each read and stored in an environment-associated dataset used to build a robust
machine learning procedure based on multiple CART trees. Finally, for each read
the CART trees are asked about their taxa and the most voted ones are selected. The
method was tested using simulated and public human gut microbiome data sets. The
database was constructed using 98 genera present in Gastrointestinal Tract available
at Human Microbiome Project. A multiple CART tree with 558-trees predictor
was generated, capable to estimate the genus and abundance in the sample with
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1 Background

During the last years, metagenomics has consolidated as the technique to charac-
terize and identify microbial genomes using a direct isolation of genomic DNA
sequences from the environment [12, 24]. A common metagenomics project begins
with the selection of an environment where genomic DNA from the microorganisms
is obtained and transformed into digital information by high-throughput sequenc-
ing technologies like 454 pyrosequencing [18] and Illumina [22]. Using several
algorithms and bioinformatics tools, metagenomics attempt to answer three main
questions:

Who is out there? know what microorganisms live in that specific environment
and estimate the relative abundance of each taxa.

What are they doing?, to identify genes and metabolic profiles of the samples.
Who is doing what? to associate gene functions to the different microorganisms

present in the sample.
Consequently, a bioinformatics pipeline could be divided into the following

steps:
Pre-processing and normalization, the results obtained from sequencing are

filtered from low quality reads and sequencing artifacts, in order to conserve only
the high quality data.

Binning and assembly, consist in the taxonomic classification of the reads (Who
is out there?) and assembly to extend the reads into contigs or scaffolds.

Annotation process to find coding regions and assign a function to the reads
(contigs, scaffolds) using public databases (What are they doing?) and finally the
storage to retrieve the results and associate microorganisms and genes (Who is doing
what?).

An emblematic example is the study of the Sargasso sea [27] in which researchers
discover new bacteria species and adaptation mechanisms. More recently, the study
of the human microbiome and its relation with infections and chronic diseases
[19] has emerged as a new approach for diagnosis and treatments in medicine [1].
Other studies demonstrate how the unbalances in microbiota are associated with
modulation of complex diseases such as some types of cancer (e.g. [26]). The
list of examples, projects and metagenomics data is extensive and it is growing
very fast. Nevertheless, the computational methods for metagenome analysis still
present many problems. In contrast, genomic sequences of single species can
usually be assembled and analyzed by many available methods. In metagenomics,
the coexistence of different microorganisms and the short length of the DNA
reads make difficult their assignments and assembly [7, 23]. Thus, the main
difficulties arise while binning, to face this challenge, a variety of tools and methods
have been developed, the most common consists in alignment matching against
protein/nucleotide databases. Unsupervised methods for clustering (CompostBin
[5], AbundanceBin [29]) coupled with the alignment matching and semi-supervised
methods (like phymmBL for 454 technology [3]) are able to process reads of short
lengths and also, phymmBL can improve results using higher taxonomy levels for
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reads of unknown genus. Although that tool is accurate at genus-level, is still based
on computationally intensive alignments.

An alignment-free method is proposed. This method assigns a taxa to each read
by analyzing its statistical properties. Given a studied environment, the method
receives as input a list of possible taxa that should cohabitate within the environment
and a sample of DNA reads. With the list of possible taxa synthetic libraries of
DNA reads from known genome sequences are simulated using 454-Sim [16]. For
each synthetic read, k-mer frequencies (k from 1 to 4), GC ratio and GC skew are
computed, generating the environment-associated training and validation dataset.
Both datasets are used to build a machine learning procedure based on multiple
CART trees [4, 11]. For each tree the training data set is used to iteratively ask about
specific pattern frequencies, until obtain a tree with high taxonomic homogeneity
leaves. Afterward, the tree is pruned to improve homogeneity of leaves using the
validation dataset. Subsequently, for each read within the sample, the same pattern
frequencies are computed and then, the multiple CART trees are interrogated about
the taxa. The most voted taxon is chosen for the read, subsequently the abundance
consists in the sum of reads classified in a taxon. In addition, the importance of each
DNA pattern for the built predictor is obtained.

The approach was applied to the human gut microbiome. Given a set of new
samples of DNA reads from a human gut, the method is able to estimate the genus
of each read and consequently the abundance of each genera. Among the most
important pattern predictors outstand GC ratio, GC, 3-mers GCG and its reverse
complementary CGC. The method was constructed using simulated data from 454-
sim, tested using BEAR [13] simulated dataset and one public real datasets of guts
from geographically distributed children [30]. The accuracy of the method reach
47 % in total read assignments, confusing mostly by closed related genera.

1.1 Organization of the Paper

The following section, Methods, provides a brief explanation about the data,
techniques and algorithms used in this work. Next in Sect. 3, Results, we show
and analyze the classifications on real and simulated data. Finally in Sect. 4,
Conclusions, we discuss the scopes of our results and future developments.

2 Methods

This alignment-free classification method based on CART trees [4] was generated
using a three step methodology.

First, a compilation of the genomic sequences available from putative candidate
bacteria present within the studied environment is obtained, then, we produce
simulated datasets from these taxa. The second step consist in using a priori
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chosen DNA pattern statistics (explanatory variables) and computing these over
the simulated and real data sets. The predictor is built using the statistics of these
simulated data set. Then is interrogated for each data set in order to retrieve the taxa
and finally obtain the abundance.

The definition of the classification problem, the process of data acquisition and
preprocessing, the construction of CART trees, the implementation, the estimation
of DNA-pattern importance and the validation are described in Sects. 2.1–2.6.

2.1 The Classification Problem: Two Cases

The classification problem consists in assign a taxon to a read given the frequency
of DNA-patterns. The class to predict is the taxon, the explanatory variables are 342

consisting in k-mer frequencies (with k 2 f1; : : : ; 4g), GC ratio, and GC skew. The
frequencies are computed for each variable and standardized to avoid the effect of
the read length.

In this manuscript we consider two training data set to choose the taxa:

• The set of taxa consists of 17 genera that were early studied at the gastroin-
testinal tract: Acidaminococcus, Akkermansia, Alistipes, Bacteroides, Bifidobac-
terium, Coprococcus, Eggerthella, Escherichia, Eubacterium, Faecalibacterium,
Megasphaera, Parabacteroides, Prevotella, Roseburia, Ruminococcus, Shigella,
Streptococcus.

• The 98 genera available to date in the gastrointestinal tract from the Human
Microbiome Project. More details in Sect. 2.2. This list is available at http://
metagenomics.cmm.uchile.cl/CART.

2.2 Metagenomics Data Acquisition and Processing

In order to produce taxon-associated training and pruning datasets. Four hundred
and fifty four genomes comprising 98 genera available as projects for Gastroin-
testinal Tract in the Human Microbiome Project (HMPGIT) [25] were downloaded,
every genome was fragmented using fragsim ( -l 1000 -c 10000 ). All fragments
were filter to remove ambiguous nucleotides. Next, using GATB (Genome Assem-
bly & Analysis Tool Box) [8] and in-house PERL scripts, statistics of k-mer
(1,2,3,4-mer) frequencies, GC ratio and GC skew were computed for each fragment.

To construct the synthetic test dataset BEAR (Better Emulation for Artificial
Reads) was used. Briefly, BEAR can emulate reads from various sequencing
platforms, using a unique method for deriving run-specific error rates extracting
useful statistics from the metagenomic data itself, such as quality-error models [13].
Consequently, to generate the error model the input for BEAR were reads from a real
454-GS Junior experiment, using high complexity abundance flag and the HMPGIT

http://metagenomics.cmm.uchile.cl/CART
http://metagenomics.cmm.uchile.cl/CART
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data set as genome database, the maximum and minimum lengths for synthetic test
dataset were set to 50 and 1000 basepair respectively. After the creation of the
metagenomics synthetic sample, artificial duplicates were removed using CD-HIT-
454 [9] (default parameters). The low quality reads were also removed using FASTX
toolkit [10] (phred quality 	 20, minimum read length 300). The next step consist
in compute the statistics for each read and finally the classification with Multiple
CART trees.

2.3 Building Multiple CART Trees

The classification method CART (Classification And Regression Trees [4, 11]) was
used as prediction tool. This machine learning method is based on simple questions
about explanatory variables which generate a decision tree. Starting at the root
with training data, reads are iteratively asked about specific pattern frequencies
until obtaining nodes with low class impurity. The class impurity of a given node
is computed by the Gini index, and the class is chosen minimizing the node
classification error (Fig. 1).

To decrease overtraining, the trees were pruned to improve the results on pruning
data. During the pruning process we began with a deep tree and sequentially pruned
it until minimize the misclassification of the tree. In addition, multiple trees were
generated by randomly choosing of training and pruning datasets. Thus, the same
classification problem (with the whole set of taxa) was solved independently by each
tree. The set of trees, forest, is the final predictor.

Consequently (see Sect. 2.1) two multiple CART predictors were built:

• CART17 assigns the taxon among the 17 genera early described in literature.
• CART98 assigns the taxon among the whole set of genera at the gastrointestinal

tract database.

2.4 Implementation

Trees are built using the R-package rpart. In order to control each tree and run
them in parallel, RandomForest was not used. Three implementation levels were
considered: Data generation, Construction, Prediction (Fig. 2). Multiple trees were
built separately and packed into a R-list object. The structure of the implementation
of each tree is summarized in the Fig. 3. Processing times were reduced computing
each tree in parallel. In the prediction steps, for each read the pattern frequencies are
computed and the genus predicted over the a-priori built forest. Every tree vote for
a taxon and the read is assigned to the most voted taxa. This three-level separation
allows to store the forest within a host server and calling genus predictions from
local machines.
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Fig. 1 Classification tree. Using the training data, each node of the tree is iteratively subdivided
into two finer nodes depending on values of variables until obtaining lowest impurities. After that,
trees are pruned to improve accuracy on pruning data. Majority class is assigned at each terminal
node
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Fig. 2 Multiple CART trees method. Three implementation levels: Data generation, Construction,
and Prediction. Specification for the microbiome application
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Fig. 3 Implementation of tree generation with R. Function readData.R builds a R list of genus-
associated statistics, which is used by dataSplit.R to create the construction data.frame with random
selection of reads assuring equal genus representation. In makeTree.R the construction data.frame
is randomly separated into two data.frames for building the tree and pruning it

2.5 DNA-Patterns Importance

The importance of each DNA-pattern to classify reads by genera was computed
as the number of times a pattern is used to split a node and the classification-
improvements were measured by decreasing impurity due to these splits (Fig. 1).
Classification improvements were averaged across the CART trees produced by the
method.
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2.6 Validation and Comparison with Other Binning Methods

Validation datasets were generated independently from training and pruning data.
They were composed by:

• Metasim generated training and pruning data sets for the 17 taxa [20],
• 454-Sim generated training and pruning data sets for the 98 taxa [16],
• BEAR-generated test data sets [13],
• Geographically distributed (GD) data sets, three random samples were taken

from children of Venezuela (Amazonia), Malawi and United States of America
[30].

In silico generated datasets (first, second and third) have known genera. In case of
the fourth dataset [30], estimated abundances predicted by MG-RAST [17] were
considered..

Thus, the classification methods that we considered to compare are:

• MG-RAST [17].
• PhymmBL [3].

3 Results

As described in Sect. 2.1, two predictors were built: one with 17 genera early studied
at the gastrointestinal tract, and the current 98 genera of the gastrointestinal tract
currently available at The Human Microbiome Project. The last case was deeply
cover. R codes for building our predictor, data sets for building it and validating it
are available in http://metagenomics.cmm.uchile.cl/CART.

3.1 Results for CART17

A set of 150;000 reads were generated for training and pruning using the MetaSim
software [20] emulating 454-reads. Distribution of reads per genus was cho-
sen according to available sequences: 245 Acidaminococcus, 256 Akkermansia,
2406 Alistipes, 40;981 Bacteroides, 31;404 Bifidobacterium, 1277 Coprococcus,
331 Eggerthella, 29;118 Escherichia, 2378 Eubacterium, 4468 Faecalibacterium,
220 Megasphaera, 427 Parabacteroides, 1693 Prevotella, 4401 Roseburia, 2731

Ruminococcus, 4340 Shigella, 23;324 Streptococcus.
For this case, 1500 trees predictor CART17 with accuracy of 77 % was generated.

Read assignments for each genus are shown in Table 1. The highest misclassification
rate is due to Shigella-Escherichia confusion, which are often declared within the
same genus [14, 31].

http://metagenomics.cmm.uchile.cl/CART
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3.2 Results for CART98

The training dataset considered for CART98 consist in fragment libraries composed
by 4,540,000 reads equally distributed in 450 species forming 98 genera (considered
as classes). The predictor was formed by 558 CART trees. The classification-
importance of DNA patterns is shown in Fig. 4. Only 17 from 342 patterns show
to be important. The GC ratio (GC Per) appears as the most important variable to
discriminate between genera, being a key pattern to decreasing Gini impurity in first
node separations. Other patterns that out-stand are GC and TA duples and codons
such as CGA and CGC (and its reverse complements). Only the tetranucleotide
GATC appears among the 10 most important patterns.

Our method reaches accuracy 47 % in read-genus assignments for fragsim 454-
simulated data sets. For most important microorganisms (Fig. 5), our method mostly
recovers abundance of BEAR-generated data sets, coinciding with PhymmBL [3].

For GD reads from human gut microbiomes, we observed that, excepting
Bacteroides, most significant abundance order differences reported by Yatsunenko
et al. [30] (using MG-RAST) are also obtained with our method. In particular,
results show that Bifidobacterium are more abundant in the sample from Malawi,
and Prevotella are more abundant in the sample from Venezuela. We obtained the
same behavior for Paraprevotella, which was not reported by Meyer et al. [17] and
using PhymmBL [3] (Table 2).

4 Conclusions and Discussion

Multiple CART trees approach stands out as an accurate new way to predict the
taxa present in a environment and their abundance. Restricted to 17 representative
genera, our method has accuracy 77 % in read assignments. Read assignment results
strengthen with the hypothesis of Shigella belonging to Escherichia genus [14, 31].

GC ratio is recognized as the most important DNA pattern in genus assignments,
also the importance of this pattern in taxa discrimination is widely known. Due
to GC par are connected by three hydrogen bonds, GC ratio is higher in coding
sequences than in non-coding zones [2]. Thus, bacteria showing more zones with
high GC ratio have higher proportions of coding sequences. In fact, GC content
is used to characterize some bacteria from phylum Actinobacteria, those present
high GC ratio (70 %) and Plasmodium falciparum with very low GC ratio (20 %).
In addition, two of our most important classification patterns (GATC and CG)
are regions of DNA methylation in bacteria. The GATC tetranucleotide has some
important physical properties [21]. Currently, approaches to identify GATC regions
in the microbiome are being performed [15] and how different human associated
bacteria interacts with their host in these regions [6] should provide diversity of
bacterial functions between healthy and disease states [15].
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Fig. 4 Classification-
importance (relative
percentage) of DNA patterns
for CART98 predictor. Only
17 from 342 patterns are
relevant. GC Per appears as
the most important
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Fig. 5 Genus abundances (%) for first 50 genera with CART98 predictor. Reference values from
BEAR-generated data sets, results using PhymmBL, and results using CART98 method
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Table 2 Comparison of abundance estimations

Venezuela Malawi USA

Microorganism [17] [3] Our [17] [3] CART98 [17] [3] Our

Bacteroides 19.8 % 11.8 % 2.7 % 26 % 24.5 % 3.8 % 35.2 % 15.7 % 2.7 %

Bifidobacterium 1.2 % 3.9 % 0.9 % 35.2 % 32.8 % 6 % 0.3 % 2.5 % 0.5 %

Escherichia 0.6 % 4.6 % 0.3 % 1.8 % 4.2 % 0.5 % 0 % 4.2 % 0.1 %

Prevotella 12 % 0 % 4.2 % 5.5 % 0 % 2.4 % 1.7 % 0 % 1.7 %

Paraprevotella 0 % 0 % 5.2 % 0 % 0 % 4 % 0 % 0 % 5.1 %

Methods: MG-RAST [17], PhymmBL [3], and Multiple CART trees (CART98). Testing data set:
geographically distributed children

For 98 genera, our predictor shows accuracy of 47 % on 454-Sim-generated DNA
reads. For real samples, we recovered phenotype differences across gut microbiomes
from Venezuela, Malawi and USA. Results are comparable with those obtained
by MG-RAST and PhymmBL methods. For BEAR-generated data sets, in which
genera are known, we obtained abundance predictions so accurate as those obtained
using PhymmBL.

The alignment-free feature of the classifier allows to use it on non-assembled or
unknown species. Actually we are working in a way to improve genus predictions
using a variant of our method using hierarchical classification, thus reaching deeper
taxonomies on target microorganisms. The next challenges we will face are incorpo-
rating other alignment-free distances [28], and focusing on target micrrorganisms-
diseases to discriminate sick from healthy patients.
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A Statistical Approach to Infer 3D Chromatin
Structure

Claudia Caudai, Emanuele Salerno, Monica Zoppè, and Anna Tonazzini

Abstract We propose a new algorithm to estimate the 3D configuration of a
chromatin chain from the contact frequency data provided by HI-C experiments.
Since the data originate from a population of cells, we rather aim at obtaining a
set of structures that are compatible with both the data and our prior knowledge.
Our method overcomes some drawbacks presented by other state-of-the-art meth-
ods, including the problems related to the translation of contact frequencies into
Euclidean distances. Indeed, such a translation always produces a geometrically
inconsistent distance set. Our multiscale chromatin model and our probabilistic
solution approach allow us to partition the problem, thus speeding up the solution,
to include suitable constraints, and to get multiple feasible structures. Moreover, the
density function we use to sample the solution space does not require any translation
from contact frequencies into distances.

Keywords 3D chromatin structure • Chromosome Conformation Capture •
Quaternions

1 Introduction

The nuclear DNA is arranged in a 30 nm fiber called chromatin, and in human cells
has a length of about 2 m in total, folded in 46 chromosomes. Its spatial organization
ensures the continuous accessibility of DNA to translation, replication, regulation
and repair machinery. Understanding how DNA is organized will help to discover
its functional features and the epigenetic mechanisms involved. A first important
step in describing the organization of DNA within the nucleus was done with the
experiments of fluorescence in situ hybridization (FISH) [1], a technique used to
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detect and localize specific DNA sequences. Recently, high resolution techniques
have been developed, called Chromosome Conformation Capture (3C) [4], which
provide contact frequencies between pairs of DNA fragments in the whole genome.
The latest such technique, called HI-C [17], has a very high genomic resolution,
reaching a few kbp, depending on the enzyme used in the procedure.

From HI-C information, it is possible to formulate hypotheses about the three-
dimensional chromatin configurations. Many approaches have been proposed to
address this problem. They can be divided into three main categories, each offering
specific advantages and criticalities: constrained optimization, Bayesian inference,
and polymer models. The new reconstruction method we propose in this chapter
was conceived to exploit the benefits of the state-of-the-art methods while avoiding
some of their drawbacks.

All the constrained optimization strategies proposed to introduce a model for
the solution, a set of constraints, and a cost function to be optimized against
the available data. As mentioned, the 3C data available are contact frequencies
evaluated over the whole population of cells in the experiment, typically many
millions. The first attempts to translate these data into geometrical information
assume that the chromatin configurations are not very different throughout the
population, and that pairs of fragments often found in contact are closer than pairs
with low contact frequencies. On this basis, most of the existing methods propose
some formula to translate the contact frequencies into Euclidean distances, to be
fitted by the reconstructed structures. Duan et al. [7] propose a three-dimensional
model of yeast genome, in which chromatin is modeled as a bead chain, with
partially impenetrable beads, forced to stay in a spherical nucleus of 1 �m. The
objective function to be minimized exploits an inverse proportionality relationship
between contacts and distances. The same deterministic law is also adopted by
Fraser et al. [8] and Dekker et al. [4]. In Sect. 2, we show how this translation
leads to severe geometric inconsistencies. Baù and Marti-Renom [2] translate the
contact frequencies into harmonic forces, calibrating the distances between beads.
The constrained optimization approach has the advantage of introducing geometric
and biophysical constraints into the model, but has two big disadvantages: the high
dimensionality of the systems and the absence of confidence intervals to evaluate
the uncertainty of the solutions obtained.

The data are affected by errors and biases and, as mentioned, derive from
experiments on millions of cells. This makes necessary the adoption of a proba-
bilistic approach to sample the space of the feasible solutions. The first probabilistic
approach has been published by Rousseau et al. [16], who use a Markov Chain
Monte Carlo sampling on a Gaussian likelihood, built through an inverse-quadratic
law between contacts and distances (MCMC5C). Hu et al. [9] use the same
relationship, proposing an algorithm called BACH (Bayesian 3D Constructor for
HI-C data), to build consensus 3D structures. The novelty of the cited Bayesian
approaches is the possibility to introduce biases into the data model (as in BACH).
Another important advantage is the possibility of sampling the solution space: this
aspect is essential, since it is more meaningful to search for sets of possible solutions
rather than a single consensus. The major drawbacks of BACH are its computational
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complexity, due to the large number of parameters to be estimated, and the absence
of suitable topological constraints.

Another interesting approach is the integration of polymer physics into the 3D

chromatin structure model. This has the advantage of not requiring the translation
from frequencies into distances, and permits the adoption of iterative adaptive
methods. Meluzzi and Arya [14] propose a coarse-grained bead-chain polymer
model approximating the physical behavior of a 30 nm chromatin fiber; the system
evolves adjusting iteratively the model parameters, until a match with contact
frequency data is reached. This approach is highly reliable but very expensive
computationally. For this reason, it cannot yet be applied to experimental data:
a validation has only been performed against reference data sets obtained from
simulations of systems with up to 45 beads.

An analysis of the different solutions mentioned above reveals a number of
drawbacks that must be overcome to obtain more reliable results. Our main point
is the questionable adequacy of the translation of contact frequencies into Euclidean
distances. In Sect. 2, we show that this strategy produces a set of distances often
severely incompatible with the Euclidean geometry. Then, in Sect. 3, we briefly
describe our solution model, our cost function, which does not include an explicit
contact-to-distance relationship, and the stochastic algorithm we used to sample the
solution space. Section 4 concludes the chapter, with some reference to our first
experimental results.

2 Geometrical Consistency of the Frequency-Distance
Translation

The problem of the geometrical inconsistencies derived from translating contact
frequencies into Euclidean distances has been overlooked by almost all groups that
have worked with contact frequency data. An exception is the work of Duggal et al.
[6], who propose a filtering technique to select subsets of interactions obeying to
metric constraints. This method is very interesting, but has a high computational
cost.

It is important to exert some caution with the extraction of topological informa-
tion (measurements, distances) from interaction data, because contacts are discrete
events (sums of dichotomous events) with causal and random components, whereas
spatial distances are continuous quantities forced to undergo precise geometric laws.
It is necessary to check whether the distances meet the basic geometrical consistency
conditions, e.g. the triangular inequality. The non-violation of these conditions is
a necessary but not sufficient condition for geometric consistency. If geometric
consistency conditions are severely violated, the set of distances cannot be used
as a target to achieve sensible geometric conformations of chromatin. However, the
fact that these inequalities are not violated, or are violated slightly, does not ensure
the geometrical consistency of the system. For example, if we have a set of equal
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distances (e.g. all equal to 1), the triangular inequalities would never be violated,
but no structure in the 3D Euclidean space can show such a distance set, unless it is
made of no more than 4 points.

Let us consider a chromatin chain made of N elements, and any subsequence S
of it, with M elements, identified by the index set I D f1; 2; : : : ; Mg. Let us now
consider a partition P of S, that is, any set of L � M consecutive segments that sum
up to S, identified by the set of index pairs K D f.1; k2/; .k2; k3/; : : : ; .kL; M/g, with
1 < k2 < k3 < : : : < kL < M. A necessary condition for the Euclidean distances
between all the possible pairs in S to be consistent with the 3D Euclidean geometry
is that, for any possible K:

d1;M �
X

.i;j/2K

di;j (1)

where di;j is the distance between the i-th and the j-th elements of S.
In our preliminary study, we considered two sets of experimental data made

available in the literature, from the entire human genome in GM06690 [13] and
GSE18199 cells [18], both with genomic resolution of 1 Mbp. Then, for both data
sets, for any possible subsequence of all the chromosomes, and for 13 different
frequency-to-distance relationships, we evaluated the number and the extent of the
violations to condition (1). The results of this analysis are summarized in Table 1,
whereas the contributions of each individual chromosome are plotted in Figs. 1
and 2. The number of violations and their weights rapidly decrease by applying
the laws 1= n

p
x, with n 2 f1; 2; ::; 5g. This does not mean that these laws are suitable

to build a good target function, since they actually tend to produce a set of nearly
equal distances, which normally lead to impossible structures.

Also considered from another viewpoint, the inversion process from contact
frequencies into distances presents a heuristic gap, because the measured contact
frequencies do not depend exclusively on geometric properties, but also on other
factors, such as the presence of topological barriers, energy conditions, and random
events. In summary, we think that assuming that pairs with many contacts are
likely to be close to each other can be justified, whereas pairs with a few contacts
are not warranted to be distant from each other. Our analysis demonstrates that
experimental frequency data very often lead to distances that are more or less
severely incompatible with real configurations in the 3D Euclidean space. For this
reason, such distances cannot be used as rigid targets for structure estimation.
Indeed, any consistent distance system identifies a precise structure in the Euclidean
space (for a general introduction to Distance Geometry, see for example [12]), but
3C data are produced by many distinct cells, so it is very unlikely that a single
relationship is able to generate geometrically consistent distances from the contact
matrix.
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Table 1 Frequency-distance conversion laws for dataset available in [13, 18]

Lieberman-Aiden et al. [13] Yaffe and Tanay [18]

Transformation laws
Number of
violationsa

Average
percentage
violation

Transformation
lawsb

Number of
violationsa

Average
percentage
violation

x �! d D 1
x3 28003.8 3458:5 x �! d D 1

x3 2464:6 4 � 108

x �! d D 1
x2 [9, 16] 26502.8 424 x �! d D 1

x2 1439:6 6 � 105

x �! d D 1
x [4, 7, 8] 8954,1 42:4 x �! d D 1

x 766:7 1501.8

x �! d D 1
p

x 72,3 8:6 x �! d D 1
p

x 604:9 99.4

x �! d D 1
3
p

x
2.7 1:5 x �! d D 1

3
p

x
287:9 32

x �! d D 1
4
p

x
0 0 x �! d D 1

4
p

x
55:9 16.3

x �! d D 1
5
p

x
0 0 x �! d D 1

5
p

x
9:1 4.6

x �! d D 1
log2.x/

65.4 8:7 x �! d D log2.x/ 1143 1095.5

x �! d D 1
log.x/

0.3 0:3 x �! d D jlog.x/j 566:7 72.8

x �! d D 1
p

log.x/
0 0 x �! d D pjlog.x/j 34 28

x �! d D 1
3
p

log.x/
0 0 x �! d D 3

pjlog.x/j 7:1 18.5

x �! d D 1
4
p

log.x/
0 0 x �! d D 4

pjlog.x/j 2:2 8.5

x �! d D 1
5
p

log.x/
0 0 x �! d D 5

pjlog.x/j 0:7 5.2

In the formulas x represents the contact frequency and d the Euclidean distance
a Averaged on chromosomes
b Contact frequency values normalized to 1

Fig. 1 Percent contributions of the different chromosomes to the total number of geometric
violations, for the 13 transformation laws considered. Left: data from [13]. Right: data from
[18]. For each column, the contributions of the chromosomes have always the same order: from
chromosome 1 at the bottom to chromosomes 22 and X at the top of the column
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Fig. 2 Percent contributions of the different chromosomes to the average extent of the geometric
violations, for the 13 transformation laws considered. Left: data from [13]. Right: data from
[18]. For each column, the contributions of the chromosomes have always the same order: from
chromosome 1 at the bottom to chromosomes 22 and X at the top of the column

3 Our Approach

Each of the studies that proposed methods for 3D chromatin reconstruction from
contact data presents problems and advantages, summarized in Table 2. As a
contribution to the field, we propose a new algorithm that includes a list of desirable
features:

1. Possibility to enforce geometrical constraints on the solutions.
2. Computational efficiency, including partitioning and parallel processing

capabilities.
3. No deterministic translation from contact frequencies to distances.
4. Possibility to get multiple configurations compatible with the data.

To obtain features (1) and (2), we rely on our chromatin model. If we model the
chromatin fiber as a bead chain, we can first impose that it must remain connected,
that is, that the beads must maintain their genomic locations, and then introduce
constraints on the distances between adjacent beads and on the angles formed
by any two consecutive bead pairs. This amounts to constrain the length of any
subchain and its maximum curvature. Of course, the appropriate values for these
constraints must be decided on the basis of the relevant biological knowledge.
Partitioning the problem can enable us to speed up the estimation process. We
reach this goal by taking into account the existence of chromatin segments, called
topological domains [5], that have no important interactions with other genomic
regions, and exploiting the multiscale capabilities of our chromatin model. The
structure of each topological domain can be estimated from the data coming
exclusively from the fragments belonging to it. The resulting structure is then
considered as a bead in a lower resolution chain, whose contact frequencies are
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Table 2 Chart of problems and advantages in the previous state of the art

Problems Advantages

Constrained
Optimization
Dekker et al. [4]
Fraser et al. [8]
Duan et al. [7]
Baù and Marti-Renom [2]

Very high dimensionality
No confidence intervals can be
computed to measure the
uncertainty of the structure
obtained

First attempt of conversion of a
set of noisy contact frequencies
measurements into more
interpretable data
Introduction of constraints
based on the structure of the
chromatin fiber

Bayesian
Inference
Russeau et al. [16]
(MCMC5C)
Hu et al. [9]
(BACH)

Any evaluation of structural
variations of chromatin at
different resolution scales
No geometrical constraints
Geometrical inconsistencies
given by translation of contact
frequencies into distances

Bayesian approach to sample
the whole space of solutions
Introduction of systematic
biases into the data model
(BACH)

Polymer
Models
Nagano et al. [15]
Meluzzi and Arya [14]

Complexity of the system Conversion from frequencies
into distances not required
Integration of polymer physics
into the 3D chromatin structure
model

evaluated along with possible higher-level isolated domains. The structures of these
new topological domains are reconstructed by the same strategy described above.
This process can continue recursively, until a data set with a single domain is found.
The full-resolution structure is then reconstructed by substituting, recursively, the
lower-resolution beads with the subchains reconstructed at finer resolutions. Except
for the finest resolution available, our beads are not spheres, but are equipped
with the macroscopic properties of the subchains they represent, each being a
non-deformable triplet identified by the centroid of the related subchain and its
endpoints. Figure 3 depicts an example of this model for two consecutive scales.

Requirement (3) is reached through our cost function. We first observe that,
as mentioned in Sect. 2, fragment pairs characterized by high contact frequencies
can reliably be considered in close proximity, but the converse does not need to
be true: pairs with low contact frequencies do not need to be far apart. We thus
avoid to consider the lowest frequencies in our cost function, which, anyway, can
sufficiently determine the problem by exploiting the geometrical constraints. The
resulting expression is:

ˆ.C / D
X

i;j2L
ni;j 
 di;j (2)

where C is the configuration of the subchain being estimated, L is the set of bead
pairs that are likely to be close to each other, and ni;j is the contact frequency
characterizing the .i; j/-th pair. Thus, no target distance is included in the formula:
the contact frequency data are directly used to weight the contributions of the
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Fig. 3 (a)–(d) Consecutive fragments of the chromatin fiber, represented as bead sequences (red
balls linked by yellow segments), and as centroid-endpoints triples (blue balls linked by blue
segments). The larger spheres represent the assumed sizes for the beads at the lower resolution.
(e) Lower-resolution chain composed by the fragments in (a)–(d)
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individual pairs in the summation. It is apparent that an unconstrained optimization
of this cost function would find global minima in each configuration with di;j D 0

for all .i; j/ 2 L . The constraints, however, make these solutions unfeasible.
Finally, requirement (4) is satisfied by our estimation algorithm. Although the

configurations that are not compatible with the constraints are not feasible solutions,
it is expected that the cost function reaches minimum values for many different
feasible configurations. To be able to sample the solution space, we treat the
objective function as a negative log-density, and use a Monte Carlo approach
to find high-probability configurations. In practice, we use a classical simulated
annealing procedure [11], where the model updates are proposed through quaternion
operators [10]. This choice allows us to maintain automatically the coherence of
the reconstructed chain at each update, thus avoiding to check the fit to most
of the constraints before continuing with the iteration. Indeed, the compatibility of
the current solution with the constraints must only be checked against possible
spatial interferences between pairs of beads. Since so many configurations fit well
the data and the constraints, different runs of this stochastic procedure will produce
different highly reliable results, whose structures should reproduce the variety of the
configurations assumed by the chromatin chain in the experimental cell population.
Our multiscale approach can also be exploited to generate different configurations
of the subchains at any resolution, and then combine them to produce, recursively,
different configurations of the overall chain.

4 Conclusions

In this chapter, we propose a new approach for the estimation of chromatin
configurations starting from HI-C contact frequency data. The main characteristics
of our approach are:

– The data-fit function does not require the translation of frequencies into
Euclidean distances.

– The multiscale bead-chain model can be equipped with biophysical constraints;
any prior information available must be translated into geometrical constraints.

– The probabilistic procedure samples the solution space so that multiple configu-
rations compatible with both the data and the constraints can be found.

– The model evolution during the iterations is obtained through quaternion
operators.

Thanks to these features, our procedure avoids some of the drawbacks in the
algorithms proposed so far in the literature. Also, our algorithm is conceptually
simple, and amenable to be speeded up by exploiting several levels of parallelism.
As a proof of principle, we have performed some tests on real HI-C data from human
cells [3]. In these tests, we obtained a number of different structures characterized
by similar values of the cost function but showing a few distinct spatial behaviors
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Fig. 4 Two typical configurations resulting from our experiments (measurements in nm): (a) more
expanded, (b) more compact

(two examples are shown in Fig. 4, from data related to the long arm of the human
chromosome 1 [13]). The macroscopic appearance of these structures is compatible
with the expected shape of a portion of chromosome.

In conclusion, we have generated an algorithm that can substantially contribute
to the elucidation of chromosomal structure, by producing families of structures
compatible with biological information. Our procedure is also innovative in the use
of quaternions to evolve the model during the estimation process.
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Basic Exploratory Proteins Analysis
with Statistical Methods Applied
on Structural Features

Eugenio Del Prete, Serena Dotolo, Anna Marabotti, and Angelo Facchiano

Abstract Exploratory Data Analysis (EDA) is an approach for summarizing and
visualizing the important characteristics of a data set, in order to make a prearranged
data screening and display multivariate data in a graphical way, to render them
more comprehensible. Moreover, it reveals hidden aspects within the simple
evaluations. In particular, EDA is suitable for datasets with comparable variables,
as structural-geometrical protein features. In this work, we analyzed some proteins
belonging to ten different architectural families. After retrieval, feature selection and
normalization stages, the dataset has been processed by means of simple correlation,
partial correlation and principal component analysis (PCA), highlighting family-
independent or family-specific relationships, and possible outliers for the dataset
itself. The results can be useful to connect these features to functional protein
properties.

Keywords Correlation • Exploratory data analysis • Global features • Principal
component analysis • Protein structure

1 Background

Exploratory Data Analysis (EDA) is the process of looking through data to get a
basic idea of their structures and attributes, often with visualizations. EDA is a
graphical-statistical approach, almost a philosophy of research, applied to data in
order to make some aspects clearer and answer some questions about them. It is like
a magnifying glass that helps in:
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• leading towards a right interpretation of data;
• showing and summarizing data in a clear way;
• finding underlying relationships among observations and, main thing, among

variables.

It can be univariate or multivariate and can use graphical or not graphical
methods. A historical explanation can be found in [1]. Main point is that EDA
is essential in understanding data, because it can reinforce or undermine a priori
knowledge about observations and prepare data for the following inference step.

In the analysis of large data sets, an inevitable phase that must anticipate the
statistical analysis concerns getting and cleaning data. Data can be obtained from
a variety of sources: downloaded from online repositories, streamed on-demand
from online sources, automatically generated by physical apparatus interfaced to
a computer, generated by a computer software, manually entered in a spreadsheet
or text file. Data origin, management and storage are other issues related to the
getting part of the data analysis. Raw data retrieved are probably not in a convenient
format, because of semantic errors, missing entries, inconsistent formatting. Thus,
it is recommended to make a control on all variables and, if necessary, integrate
new ones from different sources that are coherent with the previous ones, in order
to create a tidy final dataset [2].

Investigations on protein structure and function represent a field of research in
which experimental techniques as well as computational methods are widely applied
[3–6]. Nevertheless, many aspects are still unsolved, in particular concerning the
relationships between structure and function of proteins. While successful methods
have been developed to “predict” the complex three-dimensional structure of a
protein from a simple structural information as the amino acid sequence, and are
largely applied in literature and by our research group [7–9], it is less investigated
the deep nature of the structural features and their relationships with protein
function. In other words, evolution may modify the amino acid sequence of an
ancestral protein at a large extent among living species, thus affecting the lower level
of structural organization of a protein family member. This has low impact on the
three-dimensional structure, i.e. the higher level of structural organization, so that
the protein family maintains its specific biochemical function over the species. On
the other hand, a single amino acid substitution within a protein can strongly affect
structure and function, as in human pathologies due to genetic diseases [10–12].
However, it is still unclear in detail how the modification of amino acid sequence is
softened or emphasized when it is reflected at the functional level. In this context, we
are interested to exploit graphical and mathematical methods, poorly used in protein
science up to now, in order to explore protein structure and function relationships
from a new point of view.

In this study, multivariate graphical methods have been used, because of tabular
(observations—variables) data type. Data are composed of protein families chosen
for their functional similarity; it is interesting to examine protein structure and
analyze conformational features within a family and among the families, in order to
find relationships that could be related to functional properties. Ten protein families
have been chosen, depending on CATH different architectural classification [13].
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2 Materials and Methods

2.1 Analysis Workflow

The workflow (Fig. 1) consists of four steps, of which the first three concern getting
and cleaning data, whereas the fourth step is the real EDA. More in details:

• Step 1. 153 crystallographic structures (Table 1) have been retrieved from RCSB
PDB [14]. The structures have been selected to represent ten structural protein
families, and different architectural classes in CATH. Rules applied to select
structures to be analyzed are: families for which a similar number of structures is
available (i.e., in the range 13–19); within each family, only one chain per protein
(in homo-multimeric proteins, A chain), and structures which differ for less than
50 residues in length;

• Step 2. Different online and local tools have been used to extract protein
structural properties from PDB files: Vadar [15], for secondary structure (also
confirmed with DSSP [16]), hydrogens bonds, accessible surface areas, torsion
angles, packing defects, charged residues numbers, free energy of folding; McVol
[17] for volumes, with a mean difference of 4 % from that extracted from
Vadar, but using a more robust algorithm; an in-house-developed R-script for
automatic search of salt bridges conditions [18]. Parsing of Vadar results has
been performed by means of regular expression commands in R;

• CATH CLASSES
• PDB CODE

SELECTING
FAMILIES

PARSING
FEATURES

CREATING
DATABASE

PLOTTING
GRAPHICS

• A CHAIN

• VADAR & DSSP
• MCVOL VOLUME
• SALT BRIDGES

• FEATURES CHOICE
• PERCENTAGE
• STANDARDIZATION

• CORRELATION & DISSIMILARITY
• FEATURES NETWORK
• PCA

Fig. 1 Analysis graphical workflow. There are four simply identifiable steps: steps 1–3 composed
the getting and cleaning data part, step 4 is the Exploratory Data Analysis



176 E. Del Prete et al.

T
ab

le
1

Pr
ot

ei
n

fa
m

il
ie

s
an

d
PD

B
st

ru
ct

ur
es

C
A

T
H

co
de

PD
B

fil
es

B
et

a-
L

ac
ta

m
as

e
(B

L
A

)
3.

30
.4

50
,’

/“
2-

la
ye

r
sa

nd
w

ic
h

1D
1J

,1
E

W
0,

1F
2K

,1
N

9L
,1

P0
Z

,2
V

9A
,2

V
K

3,
2V

V
6,

2Z
O

H
,3

B
W

6,
3B

Y
8,

3C
I6

,3
C

W
F,

3E
E

H
C

at
he

ps
in

B
(C

T
S)

3.
90

.7
0,

’
/“

co
m

pl
ex

1A
E

C
,1

B
5F

,1
S4

V
,2

B
1M

,2
B

D
Z

,2
D

C
6,

2P
7U

,2
W

B
F,

3A
I8

,2
B

C
N

,3
C

H
2,

3L
X

S,
3P

5U

Fe
rr

it
in

(F
T

L
)

1.
20

.1
26

0,
’

up
-d

ow
n

bu
nd

le
1J

I4
,1

Q
G

H
,1

R
03

,1
S2

Z
,1

T
JO

,2
FK

Z
,2

X
JM

,2
Y

W
6,

3A
K

8,
3E

1J
,3

K
A

3,
3M

PS
,3

R
2H

,3
R

A
V

G
ly

co
sy

lt
ra

ns
fe

ra
se

(G
T

F)
1.

50
.1

0,
’

-’
ba

rr
el

1G
A

H
,1

H
V

X
,1

K
R

F,
1K

S8
,1

N
X

C
,1

R
76

,1
X

9D
,2

N
V

P,
2P

0V
,2

X
FG

,2
Z

Z
R

,3
P2

C
,3

Q
R

Y

H
em

og
lo

bi
n

(H
G

B
)

1.
10

.4
90

,’
or

th
og

on
al

bu
nd

le
1C

G
5,

1F
L

P,
1G

C
W

,1
H

L
M

,1
R

Q
A

,1
U

V
X

,2
C

0K
,2

Q
SP

,2
V

Y
W

,3
B

J1
,3

N
G

6,
3Q

Q
R

,3
W

C
T,

4I
R

O
,4

N
K

1
L

ip
oc

al
in

2
(L

C
N

)
2.

40
.1

28
,“

-“
ba

rr
el

1A
Q

B
,1

B
E

B
,1

C
B

I,
1C

B
S,

1G
G

L
,1

G
M

6,
1I

IU
,1

JY
D

,1
K

Q
W

,1
K

T
6,

1L
PJ

,1
O

PB
,1

Q
W

D
,

2C
B

R
,2

N
N

D
,2

R
C

Q
,2

X
ST

,3
S2

6,
4T

L
J

Ly
so

zy
m

e
(L

Y
S)

1.
10

.5
30

,’
or

th
og

on
al

bu
nd

le
1B

B
6,

1F
K

V
,1

G
D

6,
1G

H
L

,1
H

H
L

,1
II

Z
,1

JU
G

,1
Q

Q
Y

,1
R

E
X

,1
T

E
W

,2
E

Q
L

,2
G

V
0,

2I
H

L
,

2Z
2F

,3
Q

Y
4

Pr
ol

if
er

at
in

g
C

el
lN

uc
le

ar
A

nt
ig

en
(P

C
N

A
)

3.
70

.1
0,

’
/“

bo
x

1A
X

C
,1

B
77

,1
C

Z
D

,1
D

M
L

,1
T

6L
,1

U
D

9,
1U

L
1,

1H
II

,1
IJ

X
,2

O
D

8,
3H

I8
,3

L
X

1,
3P

83
,3

P9
1,

4C
S5

Pu
ri

ne
N

uc
le

os
id

e
Ph

os
ph

or
yl

as
e

(P
N

P)
3.

40
.5

0,
’

/“
3-

la
ye

r
sa

nd
w

ic
h

1A
9O

,1
JP

7,
1M

73
,1

O
D

K
,1

PK
9,

1Q
E

5,
1T

C
U

,1
V

4N
,1

V
M

K
,1

X
E

3,
1Z

33
,2

P4
S,

3K
H

S,
3O

Z
E

,3
SC

Z
,3

T
L

6,
3U

A
V

,4
D

98
Su

pe
ro

xi
de

D
is

m
ut

as
e

(S
O

D
)

1.
10

.2
87

,’
or

th
og

on
al

bu
nd

le
2.

60
.4

0,
“

sa
nd

w
ic

h
1B

SM
,1

ID
S,

1J
C

V
,1

M
A

1,
1M

M
M

,1
M

Y
6,

1Q
0E

,1
W

B
8,

2A
D

P,
2J

L
P,

2W
7W

,3
B

FR
,3

E
C

U
,

3E
V

K
,3

L
IO

,3
Q

V
N

,3
SD

P

L
ef

tc
ol

um
n

re
po

rt
s

th
e

na
m

e
of

th
e

pr
ot

ei
n,

sh
or

tn
am

e,
C

A
T

H
co

de
,a

nd
ar

ch
it

ec
tu

re
;r

ig
ht

co
lu

m
n

re
po

rt
s

th
e

PD
B

co
de

s



Basic Exploratory Proteins Analysis with Statistical Methods Applied. . . 177

• Step 3. Among all the variables extracted by means of Vadar, percent features
have been preferred for their intrinsic homogeneity. More in details, the features
related to residues have been transformed in a percent form by means of protein
sequence length; on the other hand, the ones related to surfaces have been
transformed by means of total accessible surface area. Furthermore, they have
been normalized in a standard score form for a better stability relative to the
EDA. That is, mean value has been subtracted from the data and the result has
been divided by the standard deviation: details are described in the Sect. 2.3.
Redundant features, as expected values, have been ignored;

• Step 4. Variables have been transformed into correlation and dissimilarity
matrices, through the procedures explained under Sect. 2.3.1. Then, they have
been used as features for an overall PCA, in order to verify the existence of
common information. A comparison with a features network has been showed.

All the work has been executed with R [19] inside R Studio IDE, using some
specific R packages to perform getting and cleaning phase and EDA. In particular:
stringr, to rearrange file names [20]; RCurl, to manage connection for downloading
[21]; bio3d, to compute DSSP inside R and read PDB files [22]; corrplot, to plot
graphical correlation matrix [23]; Hmisc, to calculate correlation matrix with p-
value [24]; ppcor, to calculate partial and semi-partial correlations with p-value [25];
dendroextras, to readjust and color dendrogram [26]; ggplot2, to plot PCA clustering
[27]; GeneNet: to plot features network [28].

2.2 Statistical Methods

As part of EDA, two proven statistical procedures have been chosen for our work:
correlation and principal component analysis [29], with different developments and
additional interpretations.

Correlation has been performed as Pearson’s correlation coefficients between
pairwise features. Its practice must be carefully implemented, because of a batch
of well-known traps (causality, multi-collinearity, outliers and so on). Statistical
validation, performed here, procures only a quantitative robustness: an incisive
analysis, together with a knowledge of data, allows to reach non-misleading
conclusions. Partial correlation can helps with collinearity problem, taking away the
effects of another variable, or several other variables, on a relationship. Moreover, it
can be used to detect possible redundant features.

Principal component analysis (PCA) is a very common multivariate statistical
method, simple and powerful: it is an unsupervised approach and it is considered
an EDA method. It allows summarizing initial variables in new ones, so-called
components, which represent data in a more compact way and their tendency.
Furthermore, given the intrinsic orthogonality of the components, PCA can be
applied to obtain a kind of clustering [30], depending on inner information derived
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from explained variance. This grouping helps in seeking possible outliers when
executed on a dataset (it is a good habit searching for outliers, because they could
polarize inferred results).

2.3 Mathematical Overview

2.3.1 Correlation, Partial Correlation and Dissimilarity

Given two variables with continuous values X D .x1; : : : ; xr/ and Y D .y1; : : : ; yr/.,
where r is rows-observations number and c column-variables number, the density
f (xi, yj) is represented by a single element in the normalized data table, and it is
just a sort of bivariate distribution in a numerical form. A measure of strength and
direction of association between the variables is provided by the covariance:

�xy D E
�
.X � �x /

�
Y � �y

�	 D E ŒXY� � �x�y (1)

where

E ŒXY� D
rX

iD1

cX
jD1

xiyjf
�
xi; yj

�
(2)

where �x, �y are the expected values for a single variable. An index of covariation
between X and Y is provided by the correlation coefficient:

	xy D �xy

�x�y
(3)

where �x, �y are the standard deviations for a single variable. Given a third
variable Z, the partial correlation coefficient between X and Y after removing the
effect of Z is:

	yx�z D 	yz � 	yx	zxq
1 � 	2

yx

p
1 � 	2

zx

(4)

and it is possible to extend the formula in case of removing the effect of all
the variables but one [31, 32]. Furthermore, a transformation from correlation to
dissimilarity, by means of the formula:

dxy D 1 � ˇ̌
	xy

ˇ̌
(5)
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allows to obtain a distance matrix, consistent with a cluster dendrogram on the
variables themselves. dxy is also known as Pearson’s distance [33, 34]. Finally,
every correlation coefficient has been validated with a t-test for significance, with
the statistic:

t D 	

s
n � 2

1 � 	2
(6)

where 	 is a generic correlation and n � 2 are the degrees of freedom [32].

2.3.2 Principal Component Analysis

Give a data table in a matrix form, it is possible to create new variables as linear
combination of the old ones:

8̂̂
<
ˆ̂:

PC1 D a11X1 C a12X2 C 
 
 
 C a1cXc

PC2 D a21X1 C a22X2 C 
 
 
 C a2cXc

: : :

PCl D al1X1 C al2X2 C 
 
 
 C alcXc

(7)

that have the largest variance. For a single principal component loading vector am D
.a11; : : : ; a1c/

T ; with m D 1; : : : ; l, it is required to resolve an optimization problem:

max
am

8̂
<
:̂

1

r

rX
iD1

0
@ cX

jD1

a1cxij

1
A

2
9>=
>; (8)

subject to
cX

jD1

a2
1j D 1. This is an eigenvalues-eigenvectors problem, numerical and

computationally resolvable with Single Value Decomposition factorization, with am

determined by:

.† � 
mI/ am D 0 (9)

where ˙ is the covariance/correlation matrix of the original data, 
m are eigenvalues
in descending order associated with am eigenvectors and I is the identity matrix.

After calculating the contribution of every eigenvalue 
m=

lX
kD1


n, it is possible to

choose the first several 
m that cover a preset quantity of explained variability. In
other words, the new data table composed by scores PCk, always in matrix form,
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represents the old one with a reduced dimensionality. Scores and loading vectors
are plotted in a single biplot display [35, 36]. The challenge with this method is the
new variables interpretation in the reality: that is, they are not so intuitive and their
understanding is often delegated to investigator’s experience.

2.3.3 Standardized Variables

Also known as z-score or standard score, a standardized variable has a mean equal
to zero and a variance (standard deviation) equal to one, and it is possible to obtain
it by means of the linear transformation:

zx D x � �x

�x
(10)

useful for comparing same variables from different distributions or variables with
different units of measurement. This kind of normalization is recommended when
correlations have to be used [32].

3 Results

Dendrogram in Fig. 2, obtained following formula (5), highlights relationships
between the features chosen for the entire proteins dataset: it is the landmark about
structural and geometrical features, but only in reference to the proteins chosen for
assembling the dataset. There are four evident clusters: from the left, the first and
the third concern torsion angles, the second concerns volume, free energy of folding
and residues buried for the most part, and the fourth concerns secondary structures
and residues convolved in hydrogen bonds.

Features network in Fig. 3 has been plotted by means of partial correlations and
graphical Gaussian model (GGM) [37]: it helps in seeking spurious correlations
and pruning excessive features. For this dataset, torsion angles information results
peripheral in the network, therefore they can be considered as unnecessary for the
purpose of the work.

PCA, performed on the whole dataset, allows to extract the real important
features in term of variability, producing a sort of clustering. In Fig. 4, the
first principal component is composed by structural features (%A, %RHB) and
second principal component by energy-geometrical ones (VOL, FEF, %RB95). This
statistical technique is useful for outliers detection: for example, in the same plot, an
isolated protein results so distant that it must be consider an outlier not only for its
family (SOD), but also for the entire dataset. PCA performed only on SOD family
has confirmed the result.
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Fig. 2 Dissimilarity dendrogram for proteins dataset. Every number (and color) indicates a cluster
for the features. Cut-off has been put at 0.4, as deduced from the grafico. Legend: ROx omega angle
core/allowed/generous, PD packing defect, BC buried charge, NPA non polar accessible surface
area, T turn, RB95 buried 95 %, VOL volume, FEF free energy folding, RHB hydrogen bond, A
alpha helix, B beta sheet, RPx phi-psi angles core/allowed/generous, PA polar accessible surface
area, RSB salt bridge

Moreover, previous plot questions if some relationships between the features
are family-independent. A graphical correlation matrix for a single family protein
may answer to this query. For example, choosing SOD family in Fig. 5 as test,
it is possible to notice a strong family-specific “four-relationship” in the bottom
left corner, between buried charged residues, secondary structure and free energy
of folding. In this work, strong correlation threshold is 0.65, deduced from data.
By contrast, some relationships are family-independent: for example, because
of intrinsic physical-conformational connection (secondary structure and residues
involved in hydrogen bonds) or prediction formula (volume and free energy of
folding [15]).
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Fig. 3 Features network for proteins dataset. Continuous line represent partial correlation, dotted
line represent partial anticorrelation (with the support of GGM). Peripheral subnetworks have been
showed in the squares, which contain phi, psi and omega angle features. Meaning of acronyms as
in Fig. 2

4 Conclusions and Perspectives

All the procedures that are part of EDA are well-suited for this kind of multivariate
data: (a) distance dendrogram shows an overview about features interactions; (b)
partial correlation indicates some possible redundant feature, if integrated in a
network algorithm; (c) simple correlation helps in seeking family-specific features
relationships; (d) principal component analysis is useful in finding family-specific
connections to features and possible outliers. Therefore, these graphical multivariate
procedures may be good tools in order to create a sort of fingerprint for the protein
families themselves.
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Fig. 4 PCA for protein dataset. Centralizing ellipses enclosed each protein family. GTF family is
polarized near positive PC2, FTL family near positive PC1 and SOD family is wide open. Bottom
left arrow points to an outlier: Pseudomonas putida SOD A chain (PDB code: 3SDP). Protein
families short names refer to legend in Table 1

As future perspective, there are two directions of work enhancement: using
advanced regression analysis to make a more robust features selection—partial
correlation aids to do this, on the other hand PCA is not a real feature selection
technique: it is rather a sort of “compression features” method—and integrating
functional information (for example, by the analysis of protein interaction networks,
as shown in Fig. 6) to highlight connections with the structural-geometrical ones.
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Fig. 5 Circular (lower) triangular correlation matrix for SODs. Circle dimension represents
correlation strength, while circle color represent correlation direction (blue: correlation, red:
anticorrelation). In the green square, there is a closed family-specific “four-relationship”. Numbers
in the matrix show correlation statistically non-significant (p-value > 0.05)
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Fig. 6 SODs partial interaction network. IPOA is an alternative name of SOD1 soluble; every
SOD2 mitochondrial has its gene connections taken from different online database. Network has
been drawn with Cytoscape [38]
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Modelling of Protein Surface Using Parallel
Heterogeneous Architectures

Daniele D’Agostino, Andrea Clematis, Emanuele Danovaro, and Ivan Merelli

Abstract A proper representation of protein surfaces is an important task in
bioinformatics and biophysics. In a previous work we described a parallel workflow,
based on the isosurface extraction and the CUDA architecture, able to produce
high-resolution molecular surfaces based on the Van der Waals, Solvent Accessible,
Richards-Connolly and Blobby definitions. In particular it is able to create surfaces
composed by hundred millions triangles in less than 30 s using a Nvidia GTX 580,
with speedup values up to 88. However in most application such number of triangles
can be difficult to manage. In this paper we present an extension able to reduce the
size of the surfaces by performing a simplification step, keeping however an high
quality of the results. In particular the focus of the paper is on the efficient use
of heterogeneous compute capabilities available on present workstations: the large
surface produced using the CUDA device is progressively transferred and simplified
on the host using the multicore CPU.

Keywords Protein surface • Heterogeneous architectures

1 Introduction

Superficial complementarities play a significant role to determine the possible binds
between pairs of molecules [1–3] because mechanisms such as enzyme catalysis
and recognition of signals by specific binding sites rely on macromolecular external
morphological characteristics [4].

From the physical point of view, in fact, protein–protein interactions occur in
two stages [5]. There is a first stage of molecular recognition, where the two
macromolecules diffuse near each other until their interfaces come sufficiently close

D. D’Agostino (�) • A. Clematis • E. Danovaro
Institute of Applied Mathematics and Information Technologies, National Research Council
of Italy, 16149 Genoa, Italy
e-mail: dagostino@ge.imati.cnr.it; clematis@ge.imati.cnr.it; danovaro@ge.imati.cnr.it

I. Merelli
Institute for Biomedical Technologies, National Research Council of Italy, 20090 Segrate, Italy
e-mail: ivan.merelli@itb.cnr.it

© Springer International Publishing Switzerland 2015
V. Zazzu et al. (eds.), Mathematical Models in Biology,
DOI 10.1007/978-3-319-23497-7_14

189

mailto:dagostino@ge.imati.cnr.it
mailto:clematis@ge.imati.cnr.it
mailto:danovaro@ge.imati.cnr.it
mailto:ivan.merelli@itb.cnr.it


190 D. D’Agostino et al.

to begin the binding stage, when high affinity interactions are formed by modifica-
tion of the side-chain and backbone conformations. It means that macromolecular
interactions are driven at first by the conformation of the protein surfaces and just
in a second phase the local physicochemical properties of the macromolecules are
involved in minimizing the free energy of the system.

These interactions are usually analyzed using energetic approaches, but they
are computational intensive, therefore a fast pre-processing screening based on the
surface characteristics is very useful to reduce the set of the binding possibilities
and to speedup the analysis.

Therefore, modeling macromolecular surfaces is an important task in many fields
of bioinformatics and biophysics. Also visualization is very important, since a
user is interested in the overall rendering quality of the molecular model: classical
paradigms triangulate the surface and then visualize the mesh [6] or they are based
on analytical models [7].

A molecular structure is represented through its 3D atomic coordinates. This
is the format adopted by the Protein Data Bank (PDB) [8], the most important
repositories for crystallography and nuclear magnetic resonance (NMR) structural
analyses, that is commonly accepted as a standard. Such format well suits structural
descriptions and it is the starting point for many other molecular surface definitions
presented in the literature, each of them designed to some specific goals.

In this paper, we consider four among them, the most used ones, which are:
the Van der Waals, the Solvent Accessible, the Richards-Connolly and the Blobby
surfaces. We present an improved parallel algorithm based on the isosurface extrac-
tion and simplification operations, able to produce high-resolution surfaces for very
large molecules using parallel heterogeneous architectures. Current workstations in
fact can offer really amazing raw computational power, in the order of TFlops, on
a single machine equipped with multiple CPU and GPU devices. The drawback is
that the available computational cores, memories, and communication bandwidth
can be extremely heterogeneous. The true challenge in using a similar system is
the programming of parallel applications that are able to exploit in a efficient and
effective way the different levels and capabilities [9].

These aspects represent the main contribution of the paper, that is an extension
of [10, 11]. In [10] we presented the parallel workflow, originally designed for
traditional homogeneous HPC cluster and therefore based on the message-passing
paradigm. In [11] we improved the surface generation operation using the CUDA
architecture, obtaining surfaces composed by hundred millions triangles with very
high performance figures. However in most applications such number of triangles
can be difficult to manage, therefore in this paper we exploit both accelerators
and multicore processors to speedup the complete workflow including also the
simplification operation.

The paper is organized as follows. Section 2 presents the four operations of
the parallel workflow. Experimental results are discussed in Sect. 3, followed by
Conclusions and possible future developments.
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2 The Parallel Workflow for Molecular Surface Generation

The architecture of the workflow is represented in Fig. 1. The main input of the
system is a PDB file containing the atomic coordinates of the atoms that form
a molecule, while the output is represented by the isosurface corresponding to
one of the four supported surface definitions. The workflow is composed by
four operations: Grid Generation, Connolly Correction, Isosurface Extraction and
Simplification.

Fig. 1 The four stages of the parallel workflow for the reconstruction of molecular surfaces. The
isosurface extraction and the simplification steps are executed concurrently, respectively on the
CUDA device and the multicore CPU
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2.1 Grid Generation

The first step for obtaining one of the four considered kinds of molecular surfaces
through the isosurface extraction operation is the generation of a volumetric data
set representing it. A volumetric data set can be viewed as a set of Z elements
represented by XY slices. The values of X, Y and Z are calculated as the bounding
box of the molecule considering the minimum and the maximum atomic coordinates
for each axis and taking into account the occupation volume of the bound atoms.
The size of this grid is deeply influenced by the space sampling step, that typically
varies between 0.7 and 0.1 Å. Smaller step values correspond to dense grids and
high resolution surfaces, and vice versa.

The Van der Waals, the Solvent Accessible and the Richard-Connolly surfaces
are obtained by modelling atoms as spheres that assumes negative inner values and
increases gradually outwards, changing the sign just in correspondence of the Van
der Waals surface. For example, in the volume that contains an oxygen atom, sign
inversion occurs at 1.52 Å from the atom centre. These objects are positioned in a
uniform space grid coherently with the PDB coordinates and are added in a point-
wise fashion.

The blobby surface S is instead defined as
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In particular, B is a negative parameter (the blobbyness) that plays the role of the
probe radius when compared with the previous surfaces.

Following the CUDA name convention, the GPU card is called device and the
CPU is called host. From the computational point of view, the value of each grid
point is the result of the influence of all the atoms on it. For large molecules (e.g.
105 atoms), this means to consider several million points: therefore the device is
the most suitable choice to perform this step. Due to performance consideration and
hardware limitations it is not possible to generate a thread for each atom-point pair,
therefore the parallelization has to be performed by subdividing or the points or the
atoms among the CUDA threads. We experimented that even if the partitioning on
the number of points allows a greater scalability and parallelism degree, the achieved
performance is much lower than with the alternative strategy. This is due to the large
number of non-local memory accesses and by the fact that each atom influences in
a significant way only the points within a limited bounding box surrounding it, so
the subdivision of the atoms results in a lower number of operations.
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2.2 Connolly Correction

This step is performed only when the Connolly surface is required. This surface
consists of the border of the molecule that could be accessed by a probe sphere
representing the solvent. When this sphere rolls around a pair of atoms closer than
its radius, it traces out a saddle-shaped toroidal patch of reentrant surface. If the
probe sphere is tangent to three atoms, the result is a concave patch of reentrant
surface. The main difference with respect to the Van der Waals and the Solvent
Accessible surfaces is that these patches close the superficial small cavities.

The Connolly Correction operation consists in changing the values of the points
of the volume that become internal (and so with a negative value) considering these
new patches. It is performed in two steps, the identification of the pairs of close
atoms and the modification of the values of the points in the neighbourhood of these
pairs.

Both of them are executed on the device. Even a middle-sized molecule such as
1GKI, described in Table 1, requires to analyze more than 381 million pairs for
identifying which are sufficiently close, while with the largest one this number
becomes greater than 8 billion. The resulting number or real pairs is obviously
smaller, but much larger than that of the atoms, and this allows a better exploitation
of the device compute capabilities with higher speedups. Also in this case the grid
update is performed by subdividing the atoms’ pair among the Cuda cores.

2.3 Isosurface Extraction

The third operation is the extraction of the isosurface representing the molecular
shape. The Marching Cubes algorithm [12] is the most popular method used to
extract triangulated isosurfaces from volumetric datasets. In the Marching Cubes
algorithm, the triangular mesh representing the isosurface is defined piecewise over
the cells in which the grid is partitioned. A cell is intersected by the isosurface
represented by the isovalue if the isovalue is between the minimum and the
maximum of the values assumed by the eight points of the grid that define each cell.

Table 1 This table summarises the main characteristics of the three considered molecules and
the two grid resolutions

Molecule Atoms Pairs Grid Blobby triangles Connolly triangles

1GKI-0.5 19,536 413,983 226 � 235 � 237 1,410,816 2,082,492

1GKI-0.1 19,536 413,983 1132 � 1177 � 1185 36,583,252 61,272,696

1AON-0.5 58,674 1,179,430 312 � 477 � 469 4,256,936 6,412,276

1AON-0.1 58,674 1,179,430 1563 � 2385 � 2346 110,392,108 181,218,988

3G71-0.5 90,898 1,981,810 379 � 474 � 491 6,485,168 8,543,516

3G71-0.1 90,898 1,981,810 1894 � 2367 � 2458 167,548,496 258,570,660
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This kind of cells is called active cells. An active cell contributes to approximate the
isosurface for a patch made of triangles, and the union of all the patches represents
the isosurface.

The Connolly surface is extracted considering the isovalue 0 if the Connolly
Correction is performed. Otherwise the Van der Waals and the Solvent Accessible
surfaces are extracted considering, respectively, the isovalues 0 and 1.4 [13]. Both
the surfaces share the same geometric features with the difference that the Solvent
Accessible surface increase the atomic radii with the probe radius, typically of a
water molecule, that allows to minimize the probability of internal interstices and,
somehow, takes into account the size and the presence of the solvent molecules.

As regards the Blobby surface, the definition given in Eq. (1) means that this
surface can be obtained with the isosurface extraction operation considering the
isovalue 1.0.

The parallelization of the original algorithm for the CUDA architecture is quite a
straightforward task, because it is achieved by assigning one cell for each thread. But
it presents some issues, as the duplication of the triangles vertexes and the need to
transfer up to several Gigabytes of results. In [11] we discussed in details an efficient
implementation able to produce high-resolution molecular surfaces by overlapping
computation and data transfer. A further advantage of this implementation is that it
can act as a component in a workflow, because it produces an output suitable for
both the direct visualization and the reuse of the generated molecular surface for
following analyses.

This implementation is included in the pseudocode for the protein surface
generation for heterogeneous architectures presented in Listing 1.

A key feature of the Isosurface extraction operation, as well as of the above two
operations, is that they are executed on the device and in a iterative way. As we
said before, the size of the grid is determined on the basis of the coordinates of the
atomic centres and the required sampling step. Smaller step values correspond to
dense grids and high resolution surfaces, and vice versa. As show in Table 1, the
size of volumetric data sets can be of several GBs, while the size of most of the
device is more limited. Considering that the isosurface extraction operation requires
to process a pair of slices at a time, we implemented this part of the workflow in an
iterative way for increasing values of the Z coordinate, as shown in the pseudocode.
This means that one slice is created at each iteration (except for the first one, where
the slices for Z = 0 and 1 are created) in order to replace the slice having the lowest
Z value. In this way, we are able to process very large data sets if the size of a pair of
slices does not exceed the device memory. Moreover, we overlapped computation
and the transfer of the result from the device to the host, in order to hide this
overhead as much as possible. Considering that the size of the largest isosurface
is of about 5 GB, the data transfer time would otherwise represent a major issue for
the performance.
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Listing 1 Pseudocode of the workflow for the parallel protein surface generation for heteroge-
neous architecture.

#pragma omp p a r a l l e l s e c t i o n s {
/ * ** PRODUCER ** * /
#pragma omp s e c t i o n {
i f (CONNOLLY) C o n n o l l y p a i r s ( atoms , p a i r s ) ;
for ( z = 0 ; z < ZDIM ; z ++) {

i f ( z == 0) { S l i c e C r e a t i o n <<<dimG , dimB>>>( s l i c e I n f ,
z , atoms )

i f (CONNOLLY) C o r r e c t i o n <<<dimG , dimB>>>( s l i c e I n f ,
z , p a i r s )}

e l s e { s l i c e I n f = s l i c e S u p ;
S l i c e C r e a t i o n <<<dimG , dimB>>>( s l i c e S u p , z +1 , atoms )
i f (CONNOLLY) C o r r e c t i o n <<<dimG , dimB >>>( s l i c e S u p ,

z +1 , p a i r s )}
/ * ** S t a r t Over lap 1 ** * /
V e r t i c e s C a l c <<<dimG , dimB , s t ream1 >>>( S l i c e i n f , S l i c e s u p ,

x l a b e l , : : : , z )
i f ( z != 0 ) copy_async ( r e s t r i [ num t r i found ] ,TOHOST, s t r eam 2 )
/ * ** S t op Overlap 1 ** * /
i f ( num t r i found > THRESHOLD) / * a c t i v a t e t h e consumers * /
xscan = Scan ( x i ndex ) : : : zscan = Scan ( z i ndex )
/ * The number o f r e s u l t i n g v e r t i c e s i s numvertfound * /
num ver t p re = numvert , numver t += numver t found
V er t i ce sCom pac t <<<dimG , dimB>>>( xscan , : : : , r e s v e r t ,

num ver t p re )
/ * ** S t a r t Over lap 2 ** * /
T r i a n g l e s C a l c <<<dimG , dimB , s t ream3 >>>( S l i c e i n f , S l i c e s u p ,

t r i v e c t , t r i n u m v e c t )
copy_async ( r e s v e r t [ numver t found ] ,TOHOST, s t r eam 4 )
/ * ** S t op Overlap 2 ** * /
r e s t r i n u m v e c t = Scan ( t r i n u m v e c t )
/ * ** The number o f r e s u l t i n g t r i a n g l e s i s numtrifound ** * /
Tr i ang l e sCom pac t <<<dimG , dimB , s t ream5 >>>( t r i v e c t ,

r e s t r i n u m v e c t , r e s t r i )
/ * The t r a n s f e r o f t r i a n g l e s o f t h e l a s t p a i r * /
i f ( z == ZDIM�1) copy ( r e s t r i [ num t r i found ] ,TOHOST)
/ * S t o p s t h e consumer a t t h e end o f t h e s i m p l i f i c a t i o n

o f t h e l a s t b l o c k o f t r i a n g l e s * /
} }

/ * ** CONSUMERS ** * /
#pragma omp s e c t i o n {

whi le ( ! s t o p ) {
/ * Wai t f o r a b l o c k o f t r i a n g l e s * /
ReadModel ( r e s v e r t , r e s t r i , model ) / / Done i n p a r a l l e l
Simpl ( model , p e r c s i m p l ) / / Done i n p a r a l l e l
WriteModel ( model )

} } }
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Fig. 2 A comparison of two different representations of the FAB complex [PDB:1A5F] composed
by 1.3 million triangles. The left image is obtained considering a grid step of 0.3 Å, while the left
one is obtained with a grid step of 0.1 Å combined with the simplification of 90 % of the produced
triangles. The latter requires more computing time but the surface quality is higher

2.4 Simplification

The Marching Cubes algorithm has the characteristics of producing a large number
of small planar triangles, and this results in very large triangular meshes without
any advantage in terms of available information. With the simplification operation it
is possible to tackle this issue because this operation allows to obtain a smaller but
equivalent surface by exactly merging small, planar triangles.

If the objective is only the reduction of triangles, the selection of a bigger step
for Grid Generation can represent an alternative. However in this case the resulting
mesh will have an uniform coarse grain level of detail, while a simplified mesh is
characterized by the non-uniform level of detail, where the most irregular zones
are represented using more triangles than the regular ones. In Fig. 2 two Connolly
surfaces of the same molecule made up by about 1,300,000 triangles are presented.
If the left one, obtained using a finer grid and the simplification operation with a
simplification percentage of 90 %, is compared with the right one, obtained using
a coarser grid, it appears that the best result is obtained using the simplification
operation.

This operation is performed on the CPU, because irregular data structures do
not suit well on devices, and it is based on the MPI-based parallel simplification
algorithm described in [14, 15]. In the present system we re-implemented it using
OpenMP, because we exploit the shared memory paradigm where a concurrent
set of threads cooperate to update a single, shared mesh representation when an
edge collapse operation occurs. The main achievement of this implementation is
represented by the fact that the isosurface extraction and this operation work in
a producer-consumer way (see Listing 1): when a given number of triangles is
produced, the simplification operation is activated on them on the CPU while the
device continues its iterative process. Such strategy is based on [16], that is a sliding-
window approach that has the advantage to allow the simplification of also the
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border regions between the execution of the operation on different sets of triangles.
This strategy has the further major advantage to allow overlapping the computation
performed on both the heterogeneous computational resources of a workstation,
with an important advantage in terms of execution times.

3 Experimental Results

Experimental results were collected using a workstation equipped with dual six-
cores Intel Xeon E5645 CPUs and one NVIDIA GTX580 device.

Three molecules of the PDB repository, chosen on the basis of their size, and
two grid spacings, 0.5 and 0.1 Å corresponding to a medium-detailed and a high-
detailed resolution, were considered for the scalar field generation operation. Their
characteristics and the resulting volumetric datasets are shown in Table 1. We
presented also the size of the resulting Blobby and the Connolly surfaces, because
the size of the Van der Waals and Solvent Accessible surfaces are very close to the
Blobby one in all cases.

For sake of brevity Table 2 shows the performance of the sequential and parallel
implementations for the Blobby surface definition. We can see that about 80 %
of the sequential time is spent in the simplification operation. The performance
for its parallel version are limited by the fact that the adopted data structure
for representing the model contains several explicit representations of elements
relations (i.e vertexes, triangles and edges), therefore a large number of “critical”
regions is required. Nevertheless, a good overlap occurs with the operations
performed on the CUDA device: in the largest case we produced a mesh composed
by 80 million triangles in about 20 min instead of 1 h.

4 Conclusions and Future Developments

In this work we presented a parallel workflow for the modeling of protein surfaces
based on the Van der Waals, Solvent Accessible, Richards-Connolly and Blobby
definitions. The main characteristics is represented by the fact that the workflow
is able to exploit at a time the heterogeneous compute capabilities of present
workstation to overlap computations both on multicore CPUs and devices.

In particular the Marching Cubes algorithm used in the isosurface extraction
operation has the drawback to produce large triangular meshes composed by
small, planar triangles. The execution of the simplification operation allows to get
smaller surfaces with higher quality, and the implementation presented here has the
advantage to overlap isosurface extraction and simplification operations, in the sense
that the large isosurface produced using the device is progressively transferred and
simplified on the host using the multicore CPU available on present workstations.
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In the present implementation the simplification is the most computational
intensive part, requiring about 80 % of the sequential execution time. In a future
work we will explore possible alternative data structures to speed up the algorithm,
in order to have a better overlap and thus improving the overall performance.

The possibility of performing a fast screening of possible macromolecular
interactions using this surface matching algorithm is very important, since it can
be the core of a full docking procedure. The perspective is to analyse possible
interactions between biological macromolecules, starting from the knowledge of
their structures, but working mainly on surface descriptions, which seem to bring
effective information about their functional capabilities.
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