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Abstract. Multi-resolution representation has been successfully used for index-
ing and retrieval of time series. In a previous work we presented Tight-MIR, a 
multi-resolution representation method which speeds up the similarity search by 
using distances pre-computed at indexing time. At query time Tight-MIR ap-
plies two pruning conditions to filter out non-qualifying time series. Tight-MIR 
has the disadvantage of storing all the distances corresponding to all resolution 
levels, even those whose pruning power is low. At query time Tight-MIR also 
processes all stored resolution levels. In this paper we optimize the Tight-MIR 
algorithm by enabling it to store and process only the resolution levels with the 
maximum pruning power. The experiments we conducted on the new optimized 
version show that it does not only require less storage space, but it is also faster 
than the original algorithm. 
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1 Introduction 

A time series is a chronological collection of observations. The particular nature of 
these data makes them more appropriate to be handled as whole entities rather than 
separate numeric observations. In the last decade a great deal of research was devoted 
to the development of time series data mining because of its various applications in 
finance, medicine, engineering, and other domains.  

Time series are usually represented by Dimensionality Reduction Techniques which 
map the time series onto low-dimension spaces where the query is processed.  

Several dimensionality reduction techniques exist in the literature, of those we men-
tion: Piecewise Linear Approximation (PLA) [1], and Adaptive Piecewise Constant 
Approximation (APCA) [2].  

Multi-resolution dimensionality reduction techniques map the time series to several 
spaces instead of one. In a previous work [3] we presented a multi-resolution indexing 
and retrieval method of time series called Weak-MIR. Weak-MIR uses pre-computed 
distances and two filters to speed up the similarity search. In [4] we presented another 
multi-resolution indexing and retrieval method, MIR-X, which associates our multi-
resolution approach with another dimensionality reduction technique. In a third work 
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[5] we introduced Tight-MIR which has the advantages of the two previously men-
tioned methods. Tight-MIR, however, stores distances corresponding to all resolution 
levels, even though some of them might have a low pruning power. In this paper we 
present an optimized version of Tight-MIR which stores and processes only the reso-
lution levels with the maximum pruning power.   

The rest if the paper is organized as follows: Section 2 is a background section. The 
optimized version is presented in Section 3 and tested in Section 4. We conclude this 
paper with Section 5.  

2 Background 

In [3] we presented Multi-resolution Indexing and Retrieval Algorithm (Weak-MIR). 
The motivation behind this method is that traditional dimensionality reduction tech-
niques use a “one-resolution” approach to indexing and retrieval, where the dimen-
sion of the low-dimension space is selected at indexing time, so the performance of 
the algorithm at query time depends completely on the choice made at indexing time. 
But in practice, we do not necessarily know a priori the optimal dimension of the low-
dimension space.  

Weak-MIR uses a multi-resolution representation of time series. During indexing 
time the algorithm computes and stores distances corresponding to a number of reso-
lution levels, with lower resolution levels having lower dimensions. The algorithm 
uses these pre-computed distances to speed up the retrieval process. The basis of 
Weak-MIR is as follows: let ܷ  be the original n-dimension space and ܴ  be a 2݉-
dimension space, where 2݉ ൑ ݊. At indexing time each time series ݑ א ܷ is divided 
into ݉ segments each of which is approximated by a function (we used a first degree 
polynomial in [3]) so that the approximation error between each segment and the 
corresponding polynomial is minimal. The ݊-dimension vector whose components are 
the images of all the points of all the segments of a time series on that approximating 
function is called the image vector and denoted by ݑത . The images of the two end 
points of the segment are called the main image of that segment. The 2݉ main images 
of each time series are the projection vector ݑோ.  

Weak-MIR uses two distances, the first is ݀ which is defined on a n-dimension 
space, so it is the distance between two time series in the original space, i.e. ݀൫ݑ௜,  ,௝൯ݑ
or the distance between the original time series and its image vector, i.e. ݀ሺݑ௜,  .ത௜ሻݑ
The second distance is ݀ோ which is defined on a 2݉-dimension space, so it is the 
distance between two projection vectors, i.e. ݀ோ൫ݑ௜ோ,  ௝ோ൯. We proved in [3] that  ݀ோ isݑ
a lower bound of d when the Minkowski distance is used.  

The resolution level ݇ is an integer related to the dimensionality of the reduced 
space R. So the above definitions of the projection vector and the image vector can be 
extended to further segmentation of the time series using different values ൑ ݉௞ . The 
image vector and the projection vector at level ݇  are denoted by ݑതሺ௞ሻ and ݑோሺ௞ሻ,  
respectively.  
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Given a queryሺݍ, തݑ ሻ, letߝ   respectively, on ,ݍ ,ݑ ത be the projection vectors ofݍ ,
their approximating functions, where ݑ א ܷ. By applying the triangle inequality we 
get: 

   |݀ሺݑ, തሻݑ െ ݀ሺݍ, |തሻݍ ൐  (1)                                            ߝ

This relation represents a pruning condition which is the first filter of Weak-MIR.  
By applying the triangle inequality again we get: 
 
                       ݀ோ൫ݑோሺ௞ሻ, ோሺ௞ሻ൯ݍ ൐ ߝ ൅ ݀൫ݍ, തሺ௞ሻ൯ݍ ൅ ݀൫ݑ,  തሺ௞ሻ൯                            (2)ݑ

 
This relation is the second filter of Weak-MIR. 

In [4] we introduced MIR-X which combines a representation method with a multi-
resolution time series. MIR-X uses one of the two filters that Weak-MIR uses togeth-
er with the low-dimension distance of a time series dimensionality reduction  
technique. We showed how MIR-X can boost the performance of Weak-MIR.  

In [5] we presented Tight-MIR which has the advantages of both Weak-MIR and 
MIR-X in that it is a standalone method, like Weak-MIR, yet it has the same competi-
tive performance of MIR-X. In Tight-MIR instead of using the projection vector to 
construct the second filter, we access the raw data in the original space directly using 
a number of points that corresponds to the dimensionality of the reduced space at that 
resolution level. In other words, we use 2݉ raw points, instead of 2݉ main images, to 
compute ݀ோ. There are several advantages to this modification; the first is that the 
new ݀ோ is obviously tighter than ݀ோas computed in [4]. The second is that when using 
a Minkowski distance ݀ோ is a lower bound of the original distance in the original 
space. The direct consequence of this is that the two distances ݀൫ݍ, , തሺ௞ሻ൯ݍ ݀൫ݑ,   തሺ௞ሻ൯ݑ
become redundant, so the second filter is overwritten by the usual lower bounding 
condition ݀ோ൫ݑோሺ௞ሻ, ோሺ௞ሻ൯ݍ ൐   .ݎ

At indexing time the distances ݀൫ݑ, ݑ ׊   തሺ௞ሻ൯ݑ א ܷ  are computed and stored. At 
query time the algorithm starts at the lowest level and applies (1) to the first time 
series in ܷ. If the time series is filtered out the algorithm moves to the next time se-
ries, if not, the algorithm applies equation (2). If all the time series in the database 
have been pruned the algorithm terminates, if not, the algorithm moves to a higher 
level.  

Finally, after all levels have been exploited, we get a candidate answer set which 
we then scan sequentially to filter out all the non-qualifying time series and return the 
final answer set. 

3 An Optimized Multi-resolution Indexing and Retrieval Scheme  

The disadvantage of the indexing scheme presented in the previous section is that it is 
“deterministic”, meaning that at indexing time the time series are indexed using a top-
down approach, and the algorithm behaves in a like manner at query time. If some 
resolution levels have low utility in terms of pruning power, the algorithm will still 
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use the pre-computed distances related to these levels, and at query time these levels 
will also be examined. Whereas the use of the first filter does not require any query 
time distance evaluation, applying the second does include calculating distances and 
thus we might be storing and calculating distances for little pruning benefit. 

We propose in this paper an optimized multi-resolution indexing and retrieval 
scheme. Taking into account that the time series to which we apply equations (1) and 
(2) are those which have not been filtered out at lower resolution levels, this opti-
mized scheme should determine the optimal combination of resolution levels the algo-
rithm should keep at indexing time and consequently use at query time.   

The optimization algorithm we use to solve this problem is the Genetic Algorithm. 
The Genetic Algorithm (GA) is a famous evolutionary algorithm that has been ap-
plied to solve a variety of optimization problems. GA is a population-based global 
optimization algorithm which mimics the rules of Darwinian selection in that weaker 
individuals have less chance of surviving the evolution process than stronger ones. 
GA captures this concept by adopting a mechanism that preserves the “good” features 
during the optimization process.  

In GA a population of candidate solutions (chromosomes) explores the search space 
and exploits this by sharing information. These chromosomes evolve using genetic 
operations (selection, crossover, mutation, and replacement). 

GA starts by randomly initializing a population of chromosomes inside the search 
space. The fitness function of these chromosomes is evaluated. According to the val-
ues of the fitness function new offspring chromosomes are generated through the 
aforementioned genetic operations. The above steps repeat for a number of genera-
tions or until a predefined stopping condition terminates the GA. 

The new algorithm, which we call Optimized Multi-Resolution Indexing and Re-
trieval – O-MIR, works as follow; we proceed in the same manner described for 
Tight-MIR to produce ݇ candidate resolution levels. The next step is handled by the 
optimizer to select ݌݋ resolution levels of the ݇ resolution levels, where these ݌݋  
levels provide the maximum pruning power. For the current version of our algorithm 
the number of resolution levels to be kept, ݌݋, is chosen by the user according to the 
storage and processing capacity of the system. In other words, our algorithm will 
decide which are the ݌݋ optimal resolution levels to be kept out of the ݇ resolution 
levels produced by the indexing step. 

Notice that when ݌݋ ൌ 1 we have one resolution level, which is the case with tradi-
tional dimensionality reduction techniques. 

 The optimization stage of O-MIR starts by randomly initializing a population of 
chromosomes ௝ܸ ൌ〈ݒଵ௝ ଶ௝ݒ , ௢௣௝ݒ ,…, 〉  where ݆ ൌ 1, … , ଵ௝ݒ and where ݁ݖ݅ܵ݌݋݌ ൏ ଶ௝ݒ ൏ڮ ൏ ௢௣௝ݒ . Each chromosome represents a possible configuration of the resolution 
levels to be kept. The fitness function of our optimization problem is the pruning 
power of this configuration. As in [5], the performance criterion is based on the laten-
cy time concept presented in [6]. The latency time is calculated by the number of 
cycles the processor takes to perform the different arithmetic operations (>,+ - ,*,abs, 
sqrt) which are required to execute the similarity search query. This number for each 
operation is multiplied by the latency time of that operation to get the total latency 
time of the similarity search query.  The latency time is 5 cycles for (>, + -), 1 cycle 
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5 Conclusion  

In this paper we presented an optimized version of our previous Tight-MIR multi-
resolution indexing and retrieval method of time series. Whereas the original method 
stores and processes all the resolution levels the indexing step produces, the new algo-
rithm, O-MIR, optimizes this process by applying the genetic algorithms to choose 
the resolution levels with the maximum pruning power. The experiments we con-
ducted show that O-MIR is faster than Tight-MIR, and it also has the advantage of 
requiring less storage space.  

We believe that the main advantage of the new method is that it reduces the storage 
space requirement of the original method which can be a burden when applying such 
multi-resolution methods to large datasets.  
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