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Abstract. Even though modularity has been studied extensively in con-
ventional logic programming, there are few approaches on how to incor-
porate modularity into Answer Set Programming, a prominent rule-based
declarative programming paradigm. A major approach is Oikarinnen
and Janhunen’s Gaifman-Shapiro-style architecture of program modules,
which provides the composition of program modules. Their module the-
orem properly strengthens Lifschitz and Turner’s splitting set theorem
for normal logic programs. However, this approach is limited by module
conditions that are imposed in order to ensure the compatibility of their
module system with the stable model semantics, namely forcing output
signatures of composing modules to be disjoint and disallowing positive
cyclic dependencies between different modules. These conditions turn out
to be too restrictive in practice and after recently discussing alternative
ways of lifting the first restriction [17], we now show how one can allow
positive cyclic dependencies between modules, thus widening the appli-
cability of this framework and the scope of the module theorem.

1 Introduction

Over the last few years, answer set programming (ASP) [2,6,12,15,18] emerged
as one of the most important methods for declarative knowledge representation
and reasoning. Despite its declarative nature, developing ASP programs resem-
bles conventional programming: one often writes a series of gradually improving
programs for solving a particular problem, e.g., optimizing execution time and
space. Until recently, ASP programs were considered as integral entities, which
becomes problematic as programs become more complex, and their instances
grow. Even though modularity is extensively studied in logic programming, there
are only a few approaches on how to incorporate it into ASP [1,5,8,19] or other
module-based constraint modeling frameworks [11,22]. The research on modular
systems of logic program has followed two main-streams [3], one is program-
ming in-the-large where compositional operators are defined in order to combine
different modules [8,14,20]. These operators allow combining programs alge-
braically, which does not require an extension of the theory of logic programs.
The other direction is programming-in-the-small [10,16], aiming at enhancing
logic programming with scoping and abstraction mechanisms available in other
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programming paradigms. This approach requires the introduction of new logical
connectives in an extended logical language. The two mainstreams are thus quite
divergent.

The approach of [19] defines modules as structures specified by a program
(knowledge rules) and by an interface defined by input and output atoms which
for a single module are, naturally, disjoint. The authors also provide a module
theorem capturing the compositionality of their module composition operator.
However, two conditions are imposed: there cannot be positive cyclic dependen-
cies between modules and there cannot be common output atoms in the modules
being combined. Both introduce serious limitations, particularly in applications
requiring integration of knowledge from different sources. The techniques used
in [5] for handling positive cycles among modules are shown not to be adaptable
for the setting of [19].

In this paper we discuss two alternative solutions to the cyclic dependencies
problem, generalizing the module theorem by allowing positive loops between
atoms in the interfaces of the modules being composed. A use case for this
requirement can be found in the following example.

Example 1. Alice wants to buy a safe and inexpensive car; she preselected 3 cars,
namely c1, c2 and c3. Her friend Bob says that car c2 is expensive and Charlie says
that car c3 is expensive. Meanwhile, she consulted two car magazines reviewing
all three cars. The first considered c1 safe and the second considered c1 to be
safe while saying that c3 may be safe if it has an optional airbag. Furthermore,
if a friend declares that a car is expensive, then she will consider it safe. Alice
is very picky regarding safety, and so she seeks some kind of agreement between
the reviews.

The described situation can be captured with five modules, one for Alice,
other three for her friends, and another for each magazine. Alice should conclude
that c1 is safe since both magazines agree on this. Therefore, one would expect
Alice to opt for car c1 since it is not expensive, and it is safe. �

In summary, the fundamental results of [19] require a syntactic operation to
combine modules – basically corresponding to the union of programs –, and a
compositional semantic operation joining the models of the modules. The module
theorem states that the models of the combined modules can be obtained by
applying the semantics of the natural join operation to the original models of
the modules – which is compositional.

This paper proceeds in Section 2 with an overview of the modular logic pro-
gramming paradigm, identifying some of its shortcomings. In Section 3 we dis-
cuss alternative methods for lifting the restriction that disallows positive cyclic
dependencies. We finish with conclusions and a general discussion.

2 Modularity in Answer Set Programming

Modular aspects of ASP have been clarified in recent years, with authors describ-
ing how and when two program parts (modules) can be composed [5,11,19] under
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the stable model semantics. In this paper, we will make use of Oikarinen and
Janhunen’s logic program modules defined in analogy to [8] which we review
after presenting the syntax of ASP.

Answer Set Programming Logic programs in the ASP paradigm are formed by
finite sets of rules r having the following syntax:

L1 ← L2, . . . , Lm, not Lm+1, . . . , not Ln. (n ≥ m ≥ 0)(1)

where each Li is a logical atom without the occurrence of function symbols –
arguments are either variables or constants of the logical alphabet.

Considering a rule of the form (1), let HeadP (r) = L1 be the literal in
the head, Body+

P (r) = {L2, . . . , Lm} be the set with all positive literals in the
body, Body−

P (r) = {Lm+1, . . . , Ln} be the set containing all negative literals in
the body, and BodyP (r) = {L2, . . . , Ln} be the set containing all literals in the
body. If a program is positive we will omit the superscript in Body+

P (r). Also,
if the context is clear we will omit the subscript mentioning the program and
write simply Head(r) and Body(r) as well as the argument mentioning the rule.
The semantics of stable models is defined via the reduct operation [9]. Given an
interpretation M (a set of ground atoms), the reduct PM of a program P with
respect to M is program PM = {Head(r) ← Body+(r) | r ∈ P,Body−(r)∩M =
∅}. An interpretation M is a stable model (SM) of P iff M = LM(PM ), where
LM(PM ) is the least model of program PM .

The syntax of logic programs has been extended with other constructs,
namely weighted and choice rules [18]. In particular, choice rules have the fol-
lowing form:

{A1, . . . , An} ← B1, . . . Bk, not C1, . . . , not Cm.(n ≥ 1)(2)

As observed by [19], the heads of choice rules possessing multiple atoms can be
freely split without affecting their semantics. When splitting such rules into n
different rules

{ai} ← B1, . . . Bk, not C1, . . . , not Cm where 1 ≤ i ≤ n,

the only concern is the creation of n copies of the rule body

B1, . . . Bk, not C1, . . . , not Cm.

However, new atoms can be introduced to circumvent this. There is a translation
of these choice rules to normal logic programs [7], which we assume is performed
throughout this paper but that is omitted for readability. We deal only with
ground programs and use variables as syntactic place-holders.

2.1 Modular Logic Programming (MLP)

Modules in the sense of [19] are essentially sets of rules with Input/Output
interfaces:
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Definition 1 (Program Module). A logic program module P is a tuple
〈R, I,O,H〉 where:

1. R is a finite set of rules;
2. I, O, and H are pairwise disjoint sets of input, output, and hidden atoms;
3. At(R) ⊆ At(P) defined by At(P) = I ∪ O ∪ H; and
4. Head(R) ∩ I = ∅.

The set of atoms in Atv(P) = I ∪ O are considered to be visible and hence
accessible to other modules composed with P either to produce input for P
or to make use of the output of P. We use Ati(P) = I and Ato(P) = O to
represent the input and output signatures of P, respectively. The hidden atoms
in Ath(P) = At(P)\Atv(P) = H are used to formalize some auxiliary concepts of
P which may not be sensible for other modules but may save space substantially.
The condition head(R) �∈ I ensures that a module may not interfere with its own
input by defining input atoms of I in terms of its rules. Thus, input atoms are
only allowed to appear as conditions in rule bodies.

Example 2. The use case in Example 1 is encoded into the five modules shown
here:

PA =< { buy(X) ← car(X), safe(X), not exp(X).
car(c1). car(c2). car(c3).},

{ safe(c1), safe(c2), safe(c3), exp(c1), exp(c2), exp(c3)},
{ buy(c1), buy(c2), buy(c3)},
{ car(c1), car(c2), car(c3)} >

PB =< { exp(c2).}, {}, {exp(c2), exp(c3)}, {} >
PC =< { exp(c3).}, {}, {exp(c1), exp(c2), exp(c3)}, {} >
Pmg1 =< { ← not safe(c1). airbag(C) ← safe(C).},

{ safe(C)},
{ airbag(C)},
{ } >

Pmg2 =< { safe(X) ← car(X), airbag(X).
car(c1). car(c2). car(c3). ← not airbag(c1). {← not airbag(c3)}. },

{ airbag(C)},
{ safe(c1), safe(c2), safe(c3)},
{ airbag(c1), airbag(c2), airbag(c3), car(c1), car(c2), car(c3)} > �

In Example 2, module PA encodes the rule used by Alice to decide if a car should
be bought. The safe and expensive atoms are its inputs, and the buy atoms
its outputs; it uses hidden atoms car/1 to represent the domain of variables.
Modules PB, PC and Pmg1 captures the factual information in Example 1 and
depends on input literal safe to determine if its output states that a car has
an airbag or not. They have no input and no hidden atoms, but Bob has only
analyzed the price of cars c2 and c3. The ASP program module for the second
magazine is more interesting1, and expresses the rule used to determine if a car
1 car belongs to both hidden signatures of PA and Pmg2 which is not allowed when

composing these modules, but for clarity we omit a renaming of the car/1 predicate.
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is safe, namely that a car is safe if it has an airbag; it is known that car c1 has
an airbag, c2 does not, and the choice rule states that car c3 may or may not
have an airbag.

Next, the SM semantics is generalized to cover modules by introducing a
generalization of the Gelfond-Lifschitz’s fixpoint definition. In addition to weakly
negated literals (i.e., not ), also literals involving input atoms are used in the
stability condition. In [19], the SMs of a module are defined as follows:

Definition 2 (Stable Models of Modules). An interpretation M ⊆
At(P) is a SM of an ASP program module P = 〈R, I,O,H〉, iff M =
LM

(
RM ∪ {a.|a ∈ M ∩ I}). The SMs of P are denoted by AS(P).

Intuitively, the SMs of a module are obtained from the SMs of the rules part,
for each possible combination of the input atoms.

Example 3. Program modules PB , PC , and Pmg1 have each a single answer set:
AS(PB) = {{exp(c2)}}, AS(PC) = {{exp(c3)}}, and AS(Pmg1) = {{safe(c1),

airbag(c1)}}.
Module Pmg2 has two SMs, namely:
{safe(c1), car(c1), car(c2), car(c3), airbag(c1)}, and
{safe(c1), safe(c3), car(c1), car(c2), car(c3), airbag(c1), airbag(c3)}.
Alice’s ASP program module has 26 = 64 models corresponding each to an

input combination of safe and expensive atoms. Some of these models are:

{ buy(c1), car(c1), car(c2), car(c3), safe(c1) }
{ buy(c1), buy(c3), car(c1), car(c2), car(c3), safe(c1), safe(c3) }
{ buy(c1), car(c1), car(c2), car(c3), exp(c3), safe(c1), safe(c3) }�

2.2 Composing Programs from Models

The composition of models is obtained from the union of program rules and by
constructing the composed output set as the union of modules’ output sets, thus
removing from the input all the specified output atoms. [19] define their first
composition operator as follows: Given two modules P1 = 〈R1, I1, O1,H1〉 and
P2 = 〈R2, I2, O2,H2〉, their composition P1 ⊕ P2 is defined when their output
signatures are disjoint, that is, O1∩O2 = ∅, and they respect each others hidden
atoms, i.e., H1 ∩ At(P2) = ∅ and H2 ∩ At(P1) = ∅. Then their composition is

P1 ⊕ P2 = 〈R1 ∪ R2, (I1\O2) ∪ (I2\O1), O1 ∪ O2,H1 ∪ H2〉
However, the conditions given for ⊕ are not enough to guarantee composi-

tionality in the case of answer sets and as such they define a restricted form:

Definition 3 (Module Union Operator �). Given modules P1,P2, their
union is P1 � P2 = P1 ⊕ P2 whenever (i) P1 ⊕ P2 is defined and (ii) P1 and P2

are mutually independent meaning that there are no positive cyclic dependencies
among rules in different modules, defined as loops through input and output
signatures.
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Natural join (��) on visible atoms is used in [19] to combine the stable models
of modules as follows:

Definition 4 (Join). Given modules P1 and P2 and sets of interpretations
A1 ⊆ 2At(P1) and A2 ⊆ 2At(P2), the natural join of A1 and A2 is:

A1 �� A2 = { M1 ∪ M2 | M1 ∈ A1, M2 ∈ A2 and M1 ∩ Atv(P2) = M2 ∩ Atv(P1)}

This leads to their main result, stating that:

Theorem 1 (Module Theorem). If P1,P2 are modules such that P1 � P2 is
defined, then:

AS(P1 � P2) = AS(P1) �� AS(P2)

Still according to [19], their module theorem also straightforwardly general-
izes for a collection of modules because the module union operator � is commu-
tative, associative, and has the identity element < ∅, ∅, ∅, ∅ >.

Example 4. Consider the composition Q = (PA � Pmg1) � PB . First, we have

PA � Pmg1 =

〈
{buy(X) ← car(X), safe(X), not exp(X).

car(c1). car(c2). car(c3). safe(c1).},
{exp(c1), exp(c2), exp(c3)},
{buy(c1), buy(c2), buy(c3), safe(c1), safe(c2), safe(c3)},
{car(c1), car(c2), car(c3)}

〉

It is immediate to see that the module theorem holds in this case. The visible
atoms of PA are safe/1, exp/1 and buy/1, and the visible atoms for Pmg1 are
{safe(c1), safe(c2)}. The only model for Pmg1 = {safe(c1)} when naturally
joined with the models of PA, results in eight possible models where safe(c1),
not safe(c2), and not safe(c3) hold, and exp/1 vary. The final ASP program
module Q is

〈
{buy(X) ← car(X), safe(X), not exp(X).
car(c1). car(c2). car(c3). exp(c2). safe(c1).},
{exp(c1)},
{buy(c1), buy(c2), buy(c3), exp(c2), safe(c1), safe(c2), safe(c3)},
{car(c1), car(c2), car(c3)}

〉

The SMs of Q are thus:
{safe(c1), exp(c1), exp(c2), car(c1), car(c2), car(c3)} and
{buy(c1), safe(c1), exp(c2), car(c1), car(c2), car(c3)}

2.3 Shortcomings

The conditions imposed in these definitions bring about some shortcomings such
as the fact that the output signatures of two modules must be disjoint which dis-
allows many practical applications e.g., we are not able to combine the results of
program module Q with any of PC or Pmg2 , and thus it is impossible to obtain
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the combination of the five modules. Also because of this, the module union
operator � is not reflexive. By trivially waiving this condition, we immediately
get problems with conflicting modules. The compatibility criterion for the oper-
ator �� also rules out the compositionality of mutually dependent modules, but
allows positive loops inside modules or negative loops in general. We illustrate
this in Example 5, which has been solved recently in [17] and the issue with
positive loops between modules in Example 6 .

Example 5 (Common Outputs). Given PB and PC , which respectively have:
AS(PB) = {{exp(c2)}} and AS(PC)={{exp(c3)}},

the single SM of their union AS(PB � PC) is: {exp(c2), exp(c3)}. However, the
join of their SMs is AS(PB) �� AS(PC) = ∅, invalidating the module theorem.�

Example 6 (Cyclic Dependencies). Take the following two program modules (a
simplification of the magazine modules in Example 2):

P1 = 〈{airbag ← safe.}, {safe}, {airbag}, ∅〉
P2 = 〈{safe ← airbag.}, {airbag}, {safe}, ∅〉

Their SMs are: AS(P1) = AS(P2) = {{}, {airbag, safe}} while the single SM
of the union AS(P1 � P2) is the empty model {}. Therefore AS(P1 � P2) �=
AS(P1) �� AS(P2) = {{}, {airbag, safe}}, also invalidating the module theorem.

�

3 Positive Cyclic Dependencies Between Modules

To attain a generalized form of compositionality we need to be able to deal
with both restrictions identified previously and in particular cyclic dependencies
between modules. In the literature, [5] presents a solution based on a model
minimality property. It forces one to check for minimality on every comparable
models of all program modules being composed. It is not applicable to our setting
though, which can be seen in Example 7 where logical constant ⊥ represents value
false. Example 7 shows that [5] is not compositional in the sense of Oikarinen
and Janhunen.

Example 7. Given modules P1 = 〈{a ← b. ⊥ ← not b.}, {b}, {a}, {}〉 with one
SM {a, b}, and P2 = 〈{b ← a.}, {a}, {b}, {}〉 with SMs {} and {a, b}, their
composition has no inputs and no intended SMs while their minimal join contains
{a, b}. �

Another possible solution requires the introduction of extra information in
the models to allow detecting mutual positive dependencies. This route has been
identified before [21] and is left for future work.
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3.1 Model Minimization

We present a model join operation that requires one to look at every model of
both modules being composed in order to check for minimality on models com-
parable on account of their inputs. However, this operation is able to distinguish
between atoms that are self supported through positive loops and atoms with
proper support, allowing one to lift the condition in Definition 3 disallowing
positive dependencies between modules.

Definition 5 (Minimal Join). Given modules P1 and P2, let their composition
be PC = P1 ⊕P2. Define AS(P1) ��min AS(P2) = {M | M ∈ AS(P1) �� AS(P2)
such that �M ′∈AS(P1)��AS(P2) : M ′ ⊂ M and M ∩ Ati(PC) = M ′ ∩ Ati(PC)}
Example 8 (Minimal Join). A car is safe if it has an airbag and it has an airbag
if it is safe and the airbag is an available option. This is captured by two modules,
namely: P1 = 〈{airbag ← safe, available option.}, {safe, available option},
{airbag}, ∅〉 and P2 = 〈{safe ← airbag.}, {airbag}, {safe}, ∅〉 which respec-
tively have AS(P1) = {{}, {safe}, {available option}, {airbag, safe, available
option}} and AS(P2) = {{}, {airbag, safe}}. The composition has
as its input signature {available option} and therefore its answer set
{airbag,safe,available option} is not minimal regarding the input signature of
the composition because {available option} is also a SM (and the only intended
model among these two). Thus AS(P1 ⊕ P2) = AS(P1) ��min AS(P2) =
{{}, {available option}}. �

This join operator allows us to lift the prohibition of composing mutually depen-
dent modules under certain situations. Integrity constraints containing only
input atoms in their body are still a problem with this approach as these would
exclude models that would otherwise be minimal in the presence of unsupported
loops.

Theorem 2 (Minimal Module Theorem). If P1,P2 are modules such that
P1⊕P2 is defined (allowing cyclic dependencies between modules), and that only
normal rules are used in modules, then:

AS(P1 ⊕ P2) = AS(P1) ��min AS(P2)

3.2 Annotated Models for Composing Mutualy Dependent Modules

Because the former operator is not general and it forces us to compare one model
with every other model for minimality, thus it is not local, we present next an
alternative that requires adding annotations to models. We start by looking at
positive cyclic dependencies (loops) that are formed by composition. It is known
from the literature (e.g. [21]) that in order to do without looking at the rules of
the program modules being composed, which in the setting of MLP we assume
not having access to, we need to have extra information incorporated into the
models.



Allowing Cyclic Dependencies in Modular Logic Programming 371

Definition 6 (Dependency Transformation). Let P be an MLP. Its depen-
dency transformation is defined as the set of rules (RP)A obtained from RP by
replacing each clause L1 ← L2, . . . , Lm, not Lm+1, . . . , not Ln.(n �= m) in RP
with the following clause, where n �= m and D = D2 ∪ . . . ∪ Dm is a set of
dependency sets:

(1) L1 : D ← L2 : D2, . . . , Lm : Dm, not Lm+1 : Dm+1, . . . , not Ln : Dn.

Definition 7 (Annotated Model). Given a module P = 〈RA, I, O,H〉, its
set of annotated models is constructed as before: An interpretation M ⊆ AtA(P)
is an annotated answer set of an ASP program module P = 〈R, I,O,H〉, if and
only if:

M = LM
(
(RA)M ∪ {a : {{a}}. | a : D ∈ M ∩ I}) ,

where (RA)M
I is the version of the Gelfond-Lifschitz reduct allowing weighted

and choice rules, of the dependency transformation of R, and LM is the operator
returning the least model of the positive program argument. The set of annotated
stable models of P is denoted by ASA(P).

Semantic of Annotated Programs. An annotated interpretation maps every
atom into a set of subsets of input atoms, tracking the dependencies of the atom
in combinations of input atoms. The semantics of annotated programs is obtained
by iterating an immediate consequences monotonic operator applied to a definite
program, defined as follows:

TP (I)(L1) =
⋃{

TP (I)(L2) ∪ . . . ∪ TP (I)(Lm) | L1 ← L2, . . . Lm ∈ RA
}

starting from the interpretation mapping every atom into the empty set. In order
to consider input atoms in modules we set I(a) = {{a}} for every a ∈ M ∩ I,
and {} otherwise.

Collapsed Annotated Models. Previous Definition 7 generates equivalent
models for each alternative rule where atoms from the model belong to the head
of the rule. We need to merge them into a collapsed annotated model where
the alternatives are listed as sets of annotations, in order to retain a one to
one correspondence between these and the SMs of the original program. As
we are only interested in this collapsed form, we will henceforth take collapsed
annotated models as annotated models.

Definition 8 (Collapsed Annotated Model). Let M ′ and M ′′ be two anno-
tated models such that for every atom a ∈ M ′, it is also the case that a ∈ M ′′

and vice-versa. A collapsed annotated model M of M ′ and M ′′ is constructed as
follows:

M = {a : {D′,D′′} | a : D′ ∈ M ′and a : D′′ ∈ M ′′}
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Given a module P, a program P (M) can conversely be constructed from
one of the module’s annotated models M simply by adding rules of the form
a ← D1, . . . , Dm. for each annotated atom a{D1,...,Dm} ∈ M . Such constructed
program P (M) will be equivalent (but not strongly equivalent [13]) to taking
the original program and adding facts that belong to the annotated model M ,
intersected with the input signature of P, correspondingly.

Example 9 (Annotated Model). Let P = 〈{a ← b, c. b ← d, not e, not f.}, {d, f},
{a, b}, ∅〉 be a module. P has one annotated model as per Definition 7: {b{{d}}, d}.

�
In the previous example, the first rule a ← b, c. can never be activated because

c is not an input atom (c /∈ I) and it is not satisfied by the rules of the module
(RP �|= c). Thus, the only potential positive loop is identified by {b{d},d}. If
we compose P with a module containing e.g., rule d ← b. and thus with an
annotated model {d{b}, b}, then it is easy to identify this as being a loop and if
any atoms in the loop are satisfied by the module composition then there will
be a stable model reflecting that. Also notice that since e is not a visible atom,
it does not interfere with other modules, as long as it is respected, and thus it
does not need to be in the annotation.

Cyclic Compatibility. We define next the compatibility of mutually dependent
models. We assume that the outputs are disjoint as per the original definitions.
The compatibility is defined as a two step criterion. The first is similar to the
original compatibility criterion, only adapted to dealing with annotated models
by disregarding the annotations. This first step makes annotations of negative
dependencies unnecessary. The second step takes models that are compatible
according to the first step and, after reconstructing two possible programs from
the compatible annotated models, implies computing the minimal model of the
union of these reconstructed programs and see if the union of the compatible
models is a model of the union of the reconstructed programs.

Definition 9 (Basic Model Compatibility). Let P1 and P2 be two mod-
ules. Let ASA(P1), respectively ASA(P2) be their annotated models. Let now
M1 ∈ ASA(P1) and M2 ∈ ASA(P2) be two models of the modules, they will be
compatible if:

M1 ∩ Atv(P2) = M2 ∩ Atv(P1)

Now, for the second step of the cyclic compatibility criterion one takes mod-
els that passed the basic compatibility criterion and reconstruct their respective
possible programs as defined previously. Then one computes the minimal model
of the union of these reconstructed programs and see if the union of the origi-
nating models is a model of the union of their reconstructed programs.

Definition 10 (Annotation Compatibility). Let P1 and P2 be two modules.
Let ASA(P1), respectively ASA(P2) be their annotated models. Let now M1 ∈
ASA(P1) and M2 ∈ ASA(P2) be two compatible models according to Definition
9. They will be compatible annotated models if ASA(P1 ∪ P2) = M1 ∪ M2.
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3.3 Attaining Cyclic Compositionality

After setting the way by which one can deal with positive loops by using annota-
tions in models, the join operator needs to be redefined. The original composition
operators are applicable to annotated modules after applying Definition 6. This
way, their atoms positive dependencies are added to their respective models.

Definition 11 (Modified Join). Given two compatible annotated (in the sense
of Definition 10) modules P1,P2, their composition is P1⊗P2 = P1⊕P2 provided
that (i) P1 ⊕ P2 is defined. This way, given modules P1 and P2 and sets of
annotated interpretations AA

1 ⊆ 2At(P1) and AA
2 ⊆ 2At(P2), the natural join of

AA
1 and AA

2 , denoted by AA
1 ��A AA

2 , is defined as follows for intersecting output
atoms:

{M1 ∪ M2| M1 ∈ A1,M2 ∈ A2, s.t. M1 and M2 are compatible.}

Theorem 3 (Cyclic Module Theorem). If P1,P2 are modules with anno-
tated models such that P1 � P2 is defined, then:

ASA(P1 � P2) = ASA(P1) ��A ASA(P2)

3.4 Shortcomings Revisited

By adding the facts contained in stable models of one composing module to
the other composing module, through a program transformation, one is able to
counter the fact that the inputs of the composed module are removed if they
are met by the outputs of either composing modules [17]. As for positive loops,
going back to Example 6, the new composition operator also produces desired
results:

Example 10 (Cyclic Dependencies Revisited). Take again the two program mod-
ules in Example 6:

P1 = 〈{airbag ← safe.}, {safe}, {airbag}, ∅〉
P2 = 〈{safe ← airbag.}, {airbag}, {safe}, ∅〉

which respectively have annotated models ASA(P1)= {{}, {airbag{safe}, safe}}
and ASA(P2)={{},{airbag, safe{airbag}}} while ASA(P1 ⊗ P2) = {{},
{airbag{safe}, safe{airbag}}}. Because of this, ASA(P1 ⊗ P2) = ASA(P1) ��A

ASA(P2). Now, take P3 = 〈{airbag.}, {}, {airbag}, ∅〉 and compose it with
P1 ⊗ P2. We get ASA(P1 ⊗ P2 ⊗ P3)= {{airbag, safe}}. �

4 Conclusions and Future Work

We lift the restriction that disallows composing modules with cyclic dependen-
cies in the framework of Modular Logic Programming [19]. We present a model
join operation that requires one to look at every model of two modules being
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composed in order to check for minimality of models that are comparable on
account of their inputs. This operation is able to distinguish between atoms that
are self supported through positive loops and atoms with proper support, allow-
ing one to lift the condition disallowing positive dependencies between modules.
However, this approach is not local as it requires comparing every models and,
as it is not general because it does not allow combining modules with integrity
constraints, it is of limited applicability.

Because of this lack of generality of the former approach, we present an
alternative solution requiring the introduction of extra information in the models
for one to be able to detect dependencies. We use models annotated with the way
they depend on the atoms in their module’s input signature. We then define their
semantics in terms of a fixed point operator. After setting the way by which one
deals with positive loops by using annotations in models, the join operator needs
to be redefined. The original composition operators are applicable to annotated
modules after applying Definition 7. This way, their positive dependencies are
added to their respective models. This approach turns out to be local, in the
sense that we need only look at two models being joined and unlike the first
alternative we presented, it works well with integrity constraints.

As future work we can straightforwardly extend these results to probabilistic
reasoning with ASP by applying the new module theorem to [4], as well as to
DLP functions and general stable models. An implementation of the framework
is also foreseen in order to assess the overhead when compared with the original
benchmarks in [19].

Acknowledgments. The work of João Moura was supported by grant SFRH/BD/
69006/2010 from Fundação para a Ciência e Tecnologia (FCT) from the Portuguese
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