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Abstract. Online evolution of controllers on real robots typically
requires a prohibitively long evolution time. One potential solution is to
distribute the evolutionary algorithm across a group of robots and evolve
controllers in parallel. No systematic study on the scalability properties
and dynamics of such algorithms with respect to the group size has,
however, been conducted to date. In this paper, we present a case study
on the scalability of online evolution. The algorithm used is odNEAT,
which evolves artificial neural network controllers. We assess the scala-
bility properties of odNEAT in four tasks with varying numbers of sim-
ulated e-puck-like robots. We show how online evolution algorithms can
enable groups of different size to leverage their multiplicity, and how
larger groups can: (i) achieve superior task performance, and (ii) enable
a significant reduction in the evolution time and in the number of eval-
uations required to evolve controllers that solve the task.

Keywords: Evolutionary robotics · Artificial neural network · Evolu-
tionary algorithm · Online evolution · Robot control · Scalability

1 Introduction

Evolutionary computation has been widely studied and applied to synthesise
controllers for autonomous robots in the field of evolutionary robotics (ER).
In online ER approaches, an evolutionary algorithm (EA) is executed onboard
robots during task execution to continuously optimise behavioural control. The
main components of the EA (evaluation, selection, and reproduction) are per-
formed by the robots without any external supervision. Online evolution thus
enables addressing tasks that require online learning or online adaptation. For
instance, robots can evolve new controllers and modify their behaviour to
respond to unforeseen circumstances, such as changes in the task or in the envi-
ronment.
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Research in online evolution started out with a study by Floreano and Mon-
dada [1], who conducted experiments on a real mobile robot. The authors success-
fully evolved navigation and obstacle avoidance behaviours for a Khepera robot.
The study was a significant breakthrough as it demonstrated the potential of
online evolution of controllers. Researchers then focused on how to mitigate the
issues posed by evolving controllers directly on real robots, especially the pro-
hibitively long time required [2]. Watson et al. [3] introduced an approach called
embodied evolution in which an online EA is distributed across a group of robots.
The main motivation behind the use of multirobot systems was to leverage the
potential speed-up of evolution due to robots that evolve controllers in parallel
and that exchange candidate solutions to the task.

Over the past decade, numerous approaches to online evolution in multirobot
systems have been developed. Examples include Bianco and Nolfi’s open-ended
approach for self-assembling robots [4], mEDEA by Bredeche et al. [5], and
odNEAT by Silva et al. [6]. When the online EA is decentralised and distributed
across a group of robots, one common assumption is that online evolution inher-
ently scales with the number of robots [3]. Generally, the idea is that the more
robots are available, the more evaluations can be performed in parallel, and the
the faster the evolutionary process [3]. The dynamics of the online EA itself, and
common issues that arise in EAs from population sizing such as convergence rates
and diversity [7] have, however, not been considered. Furthermore, besides ad-
hoc experiments with large groups of robots, see [5] for examples, there has been
no systematic study on the scalability properties of online EAs across different
tasks. Given the strikingly long time that online evolution requires to synthesise
solutions to any but the simplest of tasks, the approach remains infeasible on
real robots [8].

In this paper, we study the scalability properties of online evolution of robotic
controllers. The online EA used in this case study is odNEAT [9], which opti-
mises artificial neural network (ANN) controllers. One of the main advantages of
odNEAT is that it evolves both the weights and the topology of ANNs, thereby
bypassing the inherent limitations of fixed-topology algorithms [9]. odNEAT is
used here as a representative efficient algorithm that has been successfully used
in a number of simulation-based studies related to adaptation and learning in
robot systems, see [6,8–11] for examples. We assess the scalability properties and
performance of odNEAT in four tasks involving groups of up to 25 simulated e-
puck-like robots [12]: (i) an aggregation task, (ii) a dynamic phototaxis task, and
(iii, iv) two foraging tasks with differing complexity. Overall, our study shows
how online EAs can enable groups of different size to leverage their multiplicity
for higher performance, and for faster evolution in terms of evolution time and
number of evaluations required to evolve effective controllers.

2 Online Evolution with odNEAT

This section provides an overview of odNEAT; for a comprehensive introduc-
tion see [9]. odNEAT is an efficient online neuroevolution algorithm designed
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for multirobot systems. The algorithm starts with minimal networks with no
hidden neurons, and with each input neuron connected to every output neuron.
Throughout evolution, topologies are gradually complexified by adding new neu-
rons and new connections through mutation. In this way, odNEAT is able find
an appropriate degree of complexity for the current task, and a suitable ANN
topology is the result of a continuous evolutionary process [9].

odNEAT is distributed across multiple robots that exchange candidate solu-
tions to the task. The online evolutionary process is implemented according to a
physically distributed island model. Each robot optimises an internal population
of genomes (directly encoded ANNs) through intra-island variation, and genetic
information between two or more robots is exchanged through inter-island migra-
tion. In this way, each robot is potentially self-sufficient and the evolutionary pro-
cess opportunistically capitalises on the exchange of genetic information between
multiple robots for collective problem solving [9].

During task execution, each robot is controlled by an ANN that represents
a candidate solution to a given task. Controllers maintain a virtual energy level
reflecting their individual performance. The fitness value is defined as the mean
energy level. When the virtual energy level of a robot reaches a minimum thresh-
old, the current controller is considered unfit for the task. A new controller is
then created via selection of two parents from the internal population, crossover
of the parents’ genomes, and mutation of the offspring. Mutation is both struc-
tural and parametric, as it adds new neurons and new connections, and optimises
parameters such as connection weights and neuron bias values.

odNEAT has been successfully used in a number of simulation-based stud-
ies related to long-term self-adaptation in robot systems. Previous studies have
shown: (i) that odNEAT effectively evolves controllers for robots that oper-
ate in dynamic environments with changing task parameters [11], (ii) that the
controllers evolved are robust and can often adapt to changes in environmental
conditions without further evolution [9], (iii) that robots executing odNEAT can
display a high degree of fault tolerance as they are able to adapt and learn new
behaviours in the presence of faults in the sensors [9], (iv) how to extend the algo-
rithm to incorporate learning processes [11], and (v) how to evolve behavioural
building blocks prespecified by the human experimenter [8,10]. Given previous
results, odNEAT is therefore used in our study as a representative online EA.
The key research question of our study is if and how online EAs can enable
robots to leverage their multiplicity. That is, besides performance and robust-
ness criteria, we are interested in studying scalability with respect to the group
size, an important aspect when large groups of robots are considered.

3 Methods

In this section, we define our experimental methodology, including the simulation
platform and robot model, and we describe the four tasks used in the study:
aggregation, phototaxis, and two foraging tasks with differing complexity.
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3.1 Experimental Setup

We use JBotEvolver [13] to conduct our simulation-based experiments. JBotE-
volver is an open-source, multirobot simulation platform and neuroevolution
framework. In our experiments, the simulated robots are modelled after the e-
puck [12], a 7.5 cm in diameter, differential drive robot capable of moving at
speeds up to 13 cm/s. Each robot is equipped with infrared sensors that mul-
tiplex obstacle sensing and communication between robots at a range of up to
25 cm.1 The sensor and actuator configurations for the tasks are listed in Table 1.
Each sensor and each actuator are subject to noise, which is simulated by adding
a random Gaussian component within ± 5% of the sensor saturation value or of
the current actuation value.

The robot controllers are discrete-time ANNs with connection weights in the
range [-10,10]. odNEAT starts with simple networks with no hidden neurons,
and with each input neuron connected to every output neuron. The ANN inputs
are the readings from the sensors, normalised to the interval [0,1]. The output
layer has two neurons whose values are linearly scaled from [0,1] to [-1,1] to set
the signed speed of each wheel. In the two foraging tasks, a third output neuron
sets the state of a gripper. The gripper is activated if the output value of the
neuron is higher than 0.5, otherwise it is deactivated. If the gripper is activated,
the robot collects the closest resource within a range of 2 cm, if there is any.
Depending on the foraging task (see below), the robot may need to actively
select which type of resources to collect and to avoid other types.

Aggregation Task. In an aggregation task, dispersed robots must move close
to one another to form a single cluster. Aggregation combines several aspects of
multirobot tasks, including distributed individual search, coordinated movement,
and cooperation. Furthermore, aggregation plays an important role in robotics
because it is a precursor of other collective behaviours such as group transport
of heavy objects [14]. In our aggregation task, robots are evaluated based on
criteria that include the presence of robots nearby, and the ability to explore the
arena and move fast, see [9] for details. The initial virtual energy level E of each
controller is set to 1000 and limited to the range [0, 2000] units. At each control
cycle, the update of the virtual energy level, E, is given by:

ΔE

Δt
= α(t) + γ(t) (1)

where t is the current control cycle, α(t) is a reward proportional to the num-
ber n of different genomes received in the last P = 10 control cycles. Because
robots executing odNEAT exchange candidate solutions, the number of different

1 The original e-puck infrared range is 2-3 cm [12]. In real e-pucks, the liblrcom library,
see http://www.e-puck.org, extends the range up to 25 cm and multiplexes infrared
communication with proximity sensing.

http://www.e-puck.org
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Table 1. Controller details. Light sensors have a range of 50 cm (phototaxis task).
Other sensors have a range of 25 cm.

Aggregation task – controller details

Input neurons: 18
8 for IR robot detection
8 for IR wall detection
1 for energy level reading
1 for reading the number of
different genomes received

Output neurons: 2 Left and right motor speeds

Phototaxis task – controller details

Input neurons: 25
8 for IR robot detection
8 for IR wall detection
8 for light source detection
1 for energy level reading

Output neurons: 2 Left and right motor speeds

Foraging tasks – controller details

Input neurons: 25
4 for IR robot detection
4 for IR wall detection
1 for energy level reading
8 for resource A detection
8 for resource B detection

Output neurons: 3
2 for left and right motor speeds
1 for controlling the gripper

genomes received is used to estimate the number of robots nearby. γ(t) is a factor
related to the quality of movement computed as:

γ(t) =

{
-1 if vl(t) · vr(t) < 0
Ωs(t) · ωs(t) otherwise

(2)

where vl(t) and vr(t) are the left and right wheel speeds, Ωs(t) is the ratio
between the average and maximum speed, and ωs(t) =

√
vl(t) · vr(t) rewards

controllers that move fast and straight at each control cycle.

Phototaxis Task. In a phototaxis task, robots have to search and move towards
a light source. Following [9], we use a dynamic version of the phototaxis task
in which the light source is periodically moved to a new random location. As a
result, robots have to continuously search for and reach the light source, which
eliminates controllers that find the light source by chance. The virtual energy
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level E ∈ [0, 100] units, and controllers are assigned an initial value of 50 units.
At each control cycle, E is updated as follows:

ΔE

Δt
=

⎧⎪⎨
⎪⎩

Sr if Sr > 0.5
0 if 0 < Sr ≤ 0.5
-0.01 if Sr = 0

(3)

where Sr is the maximum value of the readings from light sensors, between 0 (no
light) and 1 (brightest light). Light sensors have a range of 50 cm and robots are
therefore only rewarded if they are close to the light source. Remaining sensors
have a range of 25 cm.

Foraging Tasks. In a foraging task, robots have to search for and pick up
objects scattered in the environment. Foraging is a canonical testbed in cooper-
ative robotics domains, and is evocative of tasks such as toxic waste clean-up,
harvesting, and search and rescue [15].

We setup a foraging task with different types of resources that have to be
collected. Robots spend virtual energy at a constant rate and must learn to find
and collect resources. When a resource is collected by a robot, a new resource
of the same type is placed randomly in the environment so as to keep the num-
ber of resource constant throughout the experiments. We experiment with two
variants of a foraging task: (i) one in which there are only type A resources,
henceforth called standard foraging task, and (ii) one in which there are both
type A and type B resources, henceforth called concurrent foraging task. In the
concurrent foraging task, resources A and B have to be consumed sequentially.
That is, besides learning the foraging aspects of the task, robots also have to
learn to collect resources in the correct order. The energy level of each controller
is initially set to 100 units, and limited to the range [0,1000]. At each control
cycle, E is updated as follows:

ΔE

Δt
=

⎧⎪⎨
⎪⎩

reward if right type of resource is collected
penalty if wrong type of resource is collected
-0.02 if no resource is consumed

(4)

where reward = 10 and penalty = -10. The constant decrement of 0.02 means
that each controller will execute for a period of 500 seconds if no resource is
collected since it started operating. Note that the penalty component applies
only to the concurrent foraging task. To enable a meaningful comparison of
performance when groups of different size are considered, the number of resources
of each type is set to the number of robots multiplied by 10.

3.2 Experimental Parameters and Treatments

We analyse the impact of the group size on the performance of odNEAT by
conducting experiments with groups of 5, 10, 15, 20, and 25 robots. For each
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experimental configuration, we conduct 30 independent evolutionary runs. Each
run lasts 100 hours of simulated time. odNEAT parameters are set as in previous
studies [9], including a population size of 40 genomes per robot and a control
cycle frequency of 100 ms. Robots operate in a square arena surrounded by
walls. In the aggregation and phototaxis tasks, the area of the arena is increased
proportionally to the number of robots (5 robots: 9 m2, 10 robots: 18 m2, ...,
25 robots: 45 m2). Notice that if we maintained the same size of the environment,
comparisons would not be meaningful. For instance, in the aggregation task, with
the increasing density of robots in the environment, the task becomes easier
to solve simply because robots encounter each other more frequently. In the
phototaxis task, the number of light sources in the environment is also increased
proportionally to the number of robots.

4 Experimental Results and Discussion

In this section, we present our experimental results. We analyse: (i) the task per-
formance of controllers in terms of their individual fitness score, (ii) the number
of evaluations, that is, the number of controllers tested by each robot before
a solution to the task is found, and (iii) the corresponding evolution time. We
use the two-tailed Mann-Whitney U test to compute statistical significance of
differences between results because it is a non-parametric test, and therefore no
strong assumptions need to be made about the underlying distributions.

4.1 Quality of the Solutions and Population-Mixing

We first compare the individual fitness scores of the final controllers. In the
aggregation task and in the phototaxis tasks, groups of 5 robots are typically

(a) Aggregation task (b) Phototaxis task

Fig. 1. Distribution of the fitness score of the final controllers in: (a) aggregation task,
and (b) phototaxis task.
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Table 2. Summary of the individual fitness score of final solutions in the two foraging
tasks.

Task Robots Mean Std. dev. Minimum Maximum

Standard foraging

5 96.03 45.62 41.88 268.02
10 105.31 62.31 29.57 396.47
15 107.98 119.79 33.64 981.34
20 112.06 109.29 36.69 968.27
25 136.37 158.39 39.03 994.47

Concurrent foraging

5 104.02 73.11 32.62 459.83
10 112.02 115.61 39.67 949.35
15 144.54 153.29 38.85 975.81
20 165.39 165.82 38.77 971.42
25 179.29 196.58 38.08 978.56

outperformed by larger groups (ρ < 0.001, see Fig. 1). In the phototaxis task,
groups of 25 robots also perform significantly better than groups with 20 robots
(ρ < 0.01). Specifically, results suggest that a minimum of 10 robots are necessary
for high-performing controllers to be evolved in a consistent manner.

A summary of the results obtained in the two foraging tasks is shown in
Table 2. Given the dynamic nature of task, especially as the number of robots
increases, the fitness score of the final controllers displays a high variance. The
results, however, further show that larger groups typically yield better perfor-
mance both in terms of the mean and of the maximum fitness scores, and is
an indication that decentralised online approaches such as odNEAT can indeed
capitalise on larger groups to evolve more effective solutions to the current task.

To quantify to what extent is a robot dependent on the candidate solutions
it receives from other robots, we analyse the origin of the information stored
in the population of each robot. In the phototaxis task, when capable solutions
have been evolved approximately 86.85% (5 robots) to 93.95% (25 robots) of
genomes maintained in each internal population originated from other robots,
whereas the remaining genomes stored were produced by the robots themselves
(analysis of the results obtained in the other tasks revealed a similar trend).
The final solutions executed by each robot to solve the task have on average
from 87.26% to 89.10% matching genes. Moreover, 39.73% (5 robots) to 47.70%
(25 robots) of these solutions have more than 90% of their genes in common. The
average weight difference between matching connection genes varies from 2.48 to
4.37, with each weight in [-10, 10], which indicates that solutions were refined by
the EA on the receiving robot. Local exchange of candidate controllers therefore
appears to be a crucial part in the evolutionary dynamics of decentralised online
EAs because it serves as a substrate for collective problem solving. In the fol-
lowing section, we analyse how the exchange of such information enables online
EAs to capitalise on increasingly larger groups of robots for faster evolution of
solutions to the task.
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(a) Aggregation task (b) Phototaxis task

(c) Standard foraging task (d) Concurrent foraging task

Fig. 2. Distribution of evaluations in: (a) aggregation task, (b) phototaxis task,
(c) standard foraging task, and (d) concurrent foraging task.

4.2 Evaluations and Time Analysis

The distribution of evaluations with respect to the group size is shown in Fig. 2.
In the aggregation task, the number of evaluations required to evolve solutions
to the task decreases as the group size is increased, and becomes significantly
lower when the group size is increased from 10 to 15 robots (ρ < 0.001). On
average, the number of evaluations decreases from 104 for groups of 5 robots
to 55 for groups of 25 robots. The mean evolution time is of 6.22 hours for
groups of 5 robots, 2.34 hours for 10 robots, 1.80 hours for 15 robots, 1.48 hours
for 20 robots, and 1.12 hours for 25 robots. Hence, adding more robots also
enables a significant reduction of the evolution time (ρ < 0.01 for every group
increment). With the increase in the size of the environment, there is a larger
area to search for other robots and to explore. Task conditions become more
challenging because, in relative terms, each robot senses a smaller portion of the
environment. Robots are, however, still able to evolve successful controllers in
fewer evaluations and less evolution time.
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Fig. 3. Operation time of intermediate controllers in the concurrent foraging task. 67%
to 96% of intermediate controllers operate for few minutes before they fail (not shown
for better plot readability).

The speed up of evolution with the increase of group size also occurs in the
phototaxis task. The number of evaluations is significantly reduced (ρ < 0.001)
with the increase of the group size from 5 to 10 robots (mean number of evalua-
tions of 39 and 14, respectively). The mean evolution time is of 39.16 hours for
groups of 5 robots, 9.51 hours for 10 robots, 7.20 hours for 15 robots, 6.30 hours
for 20 robots, and 5.27 hours for 25 robots. Similarly to the number of evalua-
tions, the evolution time yields on average a 4-fold-decrease when the group is
enlarged from 5 to 10 robots (ρ < 0.001). Larger groups enable further improve-
ments (ρ < 0.001 for increases up to 20 robots, ρ < 0.01 when group size is
changed from 20 to 25 robots), but at comparatively smaller rates. Chiefly, the
results of the aggregation task and of the phototaxis task show quantitatively
distinct speed-ups of evolution when groups are enlarged.

With respect to the two foraging tasks, the distribution of the number of
evaluations shown in Fig. 2 is inversely proportional, with a gentle slope, to
the number of robots in the group. For both tasks, differences in the number
of evaluations are significant across all comparisons (ρ < 0.001). In effect, the
number of evaluations is reduced on average: (i) from 115 evaluations (5 robots)
to 15 evaluations (25 robots) in the standard foraging task, which corresponds
to a 7.67-fold decrease in terms of evaluations, and (ii) from 82 evaluations (5
robots) to 8 evaluations in the concurrent foraging task, which amounts to a
10.25-fold decrease. These results show that decentralised online evolution can
scale well in terms of evaluations, even when task complexity is increased.

Regarding the evolution time, results show a similar trend for both foraging
tasks. On average, the evolution time varies from approximately 35 and 36 hours
for groups of 5 robots to 21 and 23 hours for groups of 25 robots. That is, despite
significant improvements in terms of the number of evaluations, the evolution
time required to evolve the final controllers to the task is still prohibitively long.
This result is due to the controller evaluation policy. Online evolution approaches
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typically employ a policy in which robots substitute controllers at regular time
intervals, see [5] for an example. This approach has been shown to lead to incon-
gruous group behaviour and to poor performance in collective tasks that explic-
itly require continuous collective coordination and cooperation [9]. odNEAT, on
the other hand, adopts a different approach by allowing a controller to remain
active as long as it is able to solve the task. A new controller is thus only synthe-
sised if the current one fails. As shown in Fig. 3 for the concurrent foraging task,
the evaluation policy results in intermediate controllers that operate for a signifi-
cant amount of time (the standard foraging task displays a similar trend). While
67% to 96% of intermediate controllers only operate for a few minutes (data
not shown for better plot readability), there are a few intermediate controllers
that operate up to 20 hours of consecutive time before they fail. Although such
controllers yield high fitness scores comparable to those of the final solutions,
typically 1% to 4% less, they delay the synthesis of more effective solutions.

5 Concluding Discussion and Future Work

In this paper, we presented a case study on the scalability properties and per-
formance of online evolutionary algorithms. We used odNEAT, a decentralised
online evolution algorithm in which robots optimise controllers in parallel and
exchange candidate solutions to the task. We conducted experiments with groups
of up to 25 e-puck-like-robots [12] in four tasks: (i) aggregation, (ii) dynamic
phototaxis, and (iii, iv) two foraging tasks with differing complexity.

We showed that larger groups of robots typically enable: (i) superior task
performance in terms of the fitness score, and (ii) significant improvements both
in terms of the number of evaluations required to evolve solutions to the task and
of the corresponding evolution time. There are, however, specific conditions in
which intermediate controllers are able to operate up to 20 hours of consecutive
time. These controllers yield high performance levels as their fitness score is
typically 1% to 4% less than the fitness score of the final solutions. In addition,
while additional robots may further speed up evolution, there are specific group
sizes after which speed-ups are comparatively smaller. One key research question
regarding scalability is therefore how to best leverage all robots so that they
can learn appropriate behaviours, constitute differentiated groups, and perform
cooperative or competitive actions reflecting the structure of the task.

The immediate follow-up work includes studying novel evaluation policies
for online evolution of robotic controllers. Regarding odNEAT, the algorithm
typically enables a significant reduction in the number of evaluations as the
group increases. Hence, if intermediate controllers that operate for long periods
of time can be detected and discarded via, for instance, established methods
such as early stopping algorithms or racing techniques, there is the potential to
enable timely and efficient online evolution in real robots.
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