
Instruction Level Loop De-optimization

Loop Rerolling and Software De-pipelining

Erh-Wen Hu, Bogong Su and Jian Wang

Abstract Instruction level loop optimization has been widely used in modern com-
pilers. Decompilation—the reverse of compilation—has also generated much inter-
est for its applications in porting legacy software written in assembly language to
new architectures, re-optimizing assembly code, and more recently, in detecting and
analyzing malware. However, little work has been reported on loop decompilation
at instruction level. In this paper, we report our work on loop de-optimization at
instruction level. We demonstrate our approach with a practical working example
and carried out experiments on TIC6x, a digital signal processor with a compiler sup-
porting instruction level parallelism. The algorithms developed in this paper should
help interested readers gain insight especially in the difficult tasks of loop rerolling
and software de-pipelining, the necessary steps to decompile loops at instruction
level.

Keywords Decompilation · Instruction level loop de-optimization ·Loop rerolling ·
Software de-pipelining

Abbreviations

DSP Digital signal processor
DDG Data dependency graph

VLIW Very long instruction word
ILP Instruction level parallelism

TI Texas Instruments

E.-W. Hu · B. Su (B)

Department of Computer Science, William Paterson University, Wayne, NJ, USA
e-mail: sub@wpunj.edu

E.-W. Hu
e-mail: hue@wpunj.edu

J. Wang
Mobile Broadband Software Design, Ericsson, Ottawa, ON, Canada
e-mail: jian.z.wang@ericsson.com

© Springer International Publishing Switzerland 2016
R. Lee (ed.), Computer and Information Science 2015,
Studies in Computational Intelligence 614, DOI 10.1007/978-3-319-23467-0_15

221

222 E.-W. Hu et al.

1 Introduction

Decompilation techniques [8, 9] have been applied to many areas such as porting
legacy software written in assembly language to new architectures, re-optimizing
assembly code [1], detecting bugs [6] and malware [7]. Decompilation is a complex
process typically involves operations such as unpredication and unspeculation [16],
reconstructing control structures [21], resolution of branch delays [3], loop rerolling
[17] and software de-pipelining [4, 5, 18].

Software pipelining [13] is a loop parallelization technique used to speed up loop
execution. It is widely implemented in optimizing compilers for very long instruction
word (VLIW) architecture such as IA-64, Texas Instruments (TI) C6X digital signal
processors (DSP) that support instruction level parallelism (ILP). To further enhance
the performance of DSP applications, software pipelining is often combined with
loop unrolling [14]. Therefore, it is often necessary to perform both loop rerolling
and software de-pipelining in order to de-optimize loops at instruction level.

Recently Kroustek investigated the decompilation of VLIW executable files and
presented the decompression of VLIW assembly code bundles [11]. However the
paper did not address the de-optimization of the code at instruction level. In general,
loop de-optimization is much more difficult at instruction level than at higher levels
because processors that support ILP tend to have more complicated architectures
and instruction sets. Furthermore, compilers for these processors often apply various
optimization techniques during different phases of compilation in order to better
utilize the ILP features of the processors. For example, TIC6x DSP processor contains
two data paths and each of which consists of four functional units and one memory
port. Thus, TIC6x DSP processor may issue up to eight instructions including two
memory fetches at the same time [20].

In the following sections, we first introduce our observation on selected three
loops from the functions of EEMBC Telecommunication benchmark [10] and five
loops from SMV benchmark [19] and their optimized assembly code generated by the
TI C64 compiler. The algorithms used for de-pipelining and rerolling are presented
in Sect. 3. A working example along with the experimental results is presented in
Sects. 4 and 5. Sections 6 and 7 are related work and our summary.

2 Observation

We use data dependency graph (DDG) to represent a loop and follow graph theory
to check whether or not a loop is re-rollable and if so, loop rerolling is performed. It
is noted that if a loop is unrolled by a compiler, original DDG of the loop is always
duplicated, resulting in an identical set of subgraphs referred to as subDDGs in this
paper. To facilitate the discussion, we introduce some concepts below:

Instruction Level Loop De-optimization 223

Two subDDGs G and H are said to be isomorphic if and only if the two subDDGs
have the same node sets and any two nodes have a data dependence edge in G,
their corresponding nodes in H have the same dependence edge. Isomorphism is an
important concept in graph theory. If a DDG can be split into n isomorphic subDDGs,
then the loop is re-rollable.

However, compilers often perform addition optimizations after loop unrolling
which almost always cause changes to some subDDGs such that not all subDDGs are
isomorphic. For example, TI compiler replaces single-word instructions with more
efficient double-word instructions. It also uses peephole optimization to remove some
instructions in some subDDGs. In fact, after analyzing the TI compiler optimized
assembly code of the eight selected unrolled loops from SMV and EEMBC telecom-
munication benchmarks, we observed that not all subDDGs of the eight loops are
isomorphic. In order to reroll the loop, all altered subDDGs must be converted back
to isomorphic form.

To systematically tackle the complexity of the conversion process, we subdivide
the loops into five different types.

0. A loop whose subDDGs are all isomorphic and all use the same index register
and have the same operations on their corresponding nodes.

1. A loop that contains some memory fetch instructions using an additional index
register for accessing the same array due to the limitation of instruction format
when unrolling too many times.

2. A loop that uses two index registers to access the same array and an additional
instruction in some subDDGs to move data across datapath, because memory
fetch instruction must use the index register from its own datapath in the TI
processor.

3. A loop that uses complex instructions of the TI processor to replace some simple
instructions. For example, for performance enhancement a complex double-word
LDDW instruction is used by the TI compiler to replace two single-word LDW
instructions resulting in two subDDGs to share a single source node.

4. A loop with some of its instructions missing in its subDDGs due to peephole
optimization.

Note that except for type_0, loops of all other types contain non-isomorphic
subDDGs. As will be discussed in the following section, it is always possible to
convert these non-isomorphic subDDGs back to isomorphic form. We name these
non-isomorphic subDDGs isomorphicable in the following sections.

Figure 1 shows the categorization of subDDGs. Table 1 summarizes the charac-
teristics of the eight unrolled loops selected as the target of the study in this paper.
Table 2 lists subDDG features of the selected unrolled loops.

224 E.-W. Hu et al.

subDDGs

Isomorphic
subDDGs

Isomorphicable
subDDGs

type_0 type_1 type_2 type_3 type_4

use two
index registers

use complex
instructions

use two
index registers

and extra
instructions

instructions
 missing

Fig. 1 Category of subDDGs

Table 1 Characteristics of unrolled loops

Function

Name

Source code Asm code Loop optimization applied

N
es

t l
ev

el
s Loop count

N
es

t l
ev

el
s Loop count

ou
te

r

m
id

in
ne

r

ou
te

r

m
id

in
ne

r

1 Dot product 1 - - 100 1 - - 50 unroll x2, then s/w pipelining

2
Viterbi
Decoder

1 - - 31 0 - - 0 unroll x31

3
Viterbi
StorePaths

1 - - 32 1 - - 7
unroll x4,
then s/w pipelining

4
SMV
LSF_1

1 - - 7 0 - - 0 unrolling x7

5
SMV
LSF_2

3 9 128 10 2 9 128 0 innermost unrolling x10

6
SMV
LSF_3

3 9 128 7 2 9 128 0 innermost unrolling x7

7
SMV
LSF_4

2 7 - 10 1 7 - 0
inner unrolling x10
then outer s/w pipelining

8 SMV FLT 2 170 - 9 1 85 - 0
1.inner unrolling x10
2.outer unrolling x2
3.s/w pipelining

outer_0

outer_1

3 Methodologies and Algorithms

Our methodologies for solving loop rerolling and software de-pipelining are described
below:

1. Perform software de-pipelining first, then perform rerolling if the loop has been
software pipelined after unrolling.

2. Build data dependency graphs of subDDGs based on the analysis of innermost
loops in assembly code. The process begins from the last_instructions [18] to
help reduce the search space.

3. Find clusters of potential unrolled copies including all isomorphic subDDGs and
isomorphicable subDDGs.

4. Convert all isomorphicable subDDGs to isomorphic subDDGs using symbolic
calculation, instruction replacing, de-peephole optimization and other tech-
niques.

5. Use single loop to represent all isomorphic subDDGs, which is the rerolled loop.

Instruction Level Loop De-optimization 225

Table 2 SubDDG features and de-optimization solution

Function

Name
Loop Optimization

Applied

Sub
DDGs Features of

Isomorphicable
subDDGs

Solution of
Loop De-optimization

nu
m

be
rs

ty
pe

1
Dot
product

unroll x2,
then s/w pipelining

gninilepip-ederawtfos02

2
Viterbi
Decoder

unroll x31 31 1 two index registers symbolic calculation

3
Viterbi
StorePaths

unroll x4,
then s/w pipelining

4 2
one extra MV instruction
and two index registers

1. software de-pipelining
2. subDDG adjustment
3. symbolic calculation

4
SMV
LSF_1

unrolling x7 7 3 use complex instructions
use simple instructions to
replace complex instruction

5
SMV
LSF_2

innermost unrolling
x10

10 3 use complex instructions
use simple instructions to
replace complex instruction

6
SMV
LSF_3

innermost unrolling x7 7 4
one less instruction due to
peephole optimization

de-peephole optimization

7
SMV
LSF_4

inner unrolling x10
outer s/w pipelining

10 2
one extra MV instruction
and two index registers

1. software de-pipelining
2. subDDG adjustment
3. symbolic calculation

8 SMV FLT

1. inner unrolling
x10

2. outer unrolling
x2

3. s/w pipelining

ou
te

r_
0

10 3 use complex instructions
1. software de-pipelining
2. use simple instructions to

replace complex instruction

ou
te

r_
1

10 4

1. use complex instructions
2. two subDDGs have no

load instruction due to
peephole optimization

3. some subDDGs have ex-
tra MV instructions

1. software de-pipelining
2. use simple instructions to

replace complex instruction
3. de-peephole optimization
4. subDDG adjustment

Figure 2 shows the flowchart of our loop de-optimization technique. Besides the
normal control flow analysis and data flow analysis, we introduce the following 11
functions:

The natural_loop_analysis function:
From a given segment of assembly code and its control flow graph, the function finds
the dominators, loop nest tree, loop headers, bodies, branches, nested loops, and the
lengths of inner bodies. The algorithms of the function are very similar to that of [2].

The software_pipelined_loop_checking function:
The function checks all loops to find out whether the inner loop bodies are software-
pipelined. If not, the execution of the software de-pipelining function is skipped.

Algorithm:
The algorithm checks for any pair of instructions opi and opj in the body of the

inner loop and determines if the following conditions are true: (1) if opi writes to a
register which is to be read by opj and opj is located not earlier than opi in the loop
body and (2) if the latency of opi is greater than the distance from opi to opj. If both
of the conditions are true, then this loop has been software-pipelined because opi
and opj cannot be in the same iteration.

The software de-pipelining function:
The function converts software pipelined loops to de-pipelined loop, the detailed
description of the algorithm can be found in [5, 18].

226 E.-W. Hu et al.

natural_loop
_analysis

control_flow
_analysis

dependence
_analysis

find_
last_instructiions

software
_de-pipelining

build_subDDGs

software_pipelined
_loop_checking

categorize
_subDDGs

type_3type_1type_0 type_4type_2

subDDGs of de-pipelined
assembly code

subDDGs

last_instructions

subDDG
_adjustment

Instruction
_replacing

de-peephole
_optimizing

symbolic
_calculation

forming
_rerolled_loop

Data
dependency

graph

Instruction level
parallel assembly code

Control flow
graph

Sequential assembly code

Isomorphic
subDDGs

Isomorphicable
subDDGs

Fig. 2 Flow chart of loop de-optimization technique

Instruction Level Loop De-optimization 227

The find_last_instructions function:
The function performs a bottom-up search of all de-pipelined loops for all
last_instructions. A last_instruction belongs to either of the following two categories:
(1) instructions that write to registers involving live variables with transferred values
to be used after loop exits and (2) All memory store instructions.

The build_subDDGs function:
The function builds subDDGs for the bodies of all inner loops.

Algorithm:

1. Set subDDGj = {last_instructionj} for each last_instructionj in subDDGj,
2. Define instruction poolj as the set of all instructions in de-pipelined loop body.
3. Add instructionk to subDDGj by performing a bottom up search for instructionk

in instruction poolj from last_instructionj where data precedes any instruction in
subDDGj with true dependence, output dependence, or antidependence.

4. Repeat 3 until the first instruction in de-pipelined loop body has been reached.

The categorize_subDDGs function:
The function analyzes subDDGs and determines their types. It then selectively calls
other functions depending on the type of the subDDG as described below.

Algorithm:
If subDDGs are isomorphic (i.e., type_0)

{
Use the same index registers and call forming_rerolled_loop function to

reroll all isomorphic subDDGs;
}

Else subDDGs are isomorphicable
{
If type_1, call symbolic_calculation function;
If type_2, call call subDDGs_adjustment and symbolic_calculation

functions;
If type_3, call instruction_replacing;
If type_4, call de-peephole_optimization function and other functions;
}

The symbolic_calculation function:
This function merges two different index registers. It does so by tracing back to
the original source index register, replace it by a virtual register and recalculate all
indexes.

The instruction_replacing function:
The function replaces a complex 32-bit instruction by two16-bit instructions with
the same source and destination registers.

The subDDG_adjustment function:
The function applies to type_2 subDDG that uses a MV instruction to move data
across datapath. This subDDG is semantically equivalent to the rest of subDDGs,
therefore removing that MV instruction does not change the semantics.

228 E.-W. Hu et al.

The de-peephole_optimizing function:
The function recovers removed nodes and converts type_4 isomorphicable subDDG
to isomorphic subDDG as some isomorphicable subDDGs have some of their nodes
removed due to peephole optimization. For example, in one isomorphicable sub-
DDG of SMV FLT a multiplication instruction node misses a load instruction node
to provide its operand because peephole optimization removed this load instruc-
tion and the operand of that multiplication instruction is provided by another load
instruction shared with another multiplication instruction. Another example is with
SMV LSF_3 one isomorphicable subDDG in which one node of MV instruction is
removed because the destination register of that MV instruction is dead.

Algorithm:
Compare a type_4 subDDGk with the isomorphic subDDG

1. If nodei is found in isomorphicable subDDGk and its preceding node is missing
in subDDGk, then:

i. Find nodej’ that precedes nodei’ in isomorphic subDDG where the corre-
sponding nodej in subDDGk is missing.

ii. Copy nodej’ and attach it to isomorphicable subDDGk such that the attached
node precedes nodei.

2. If nodei is found in isomorphicable subDDGk with its succeeding node missing,
then:

i. Find nodej’ that succeeds nodei’ in isomorphic subDDG but nodej is missing
in isomorphicable subDDGk as a succeeding node to nodei.

ii. Make a copy of nodej’ and add it to isomorphicable subDDGk as a suc-
ceeding node to nodei. If the destination register of nodej is dead in isomor-
phicable subDDGk, then convert isomorphicable subDDGk to isomorphic
subDDG.

The forming_rerolled_loop function:
The function performs the following operations:

1. Replace all isomorphic subDDGs by a single subDDG.
2. Use list scheduling from last_instructions to arrange the partial order list of this

subDDG in a bottom-up manner.
3. Add a backward branch instruction to form the rerolled loop body if no branch

instruction in found in this subDDG.
4. Adjust loop count

4 Working Example

We have selected the StorePaths function in Viterbi of EEMBC telecommunication
benchmark as a working example to demonstrate our loop rerolling and de-software
pipelining techniques.

Instruction Level Loop De-optimization 229

Figure 3a is its assembly code generated by TI C64 complier where each line is
an instruction group and all instructions in one instruction group are executed at the
same time in parallel.

1 C21: LDW *+DP(_BufSelector),B4

2 MVKL _BufPtr,B5

3 MVKH _BufPtr,B5

4 MVK 7,A0

5 MVK 0x1,A1

6 LDW *+B5[B4],B4

7 SUB A4,8,B7

8 NOP 3

9 SUB B4,16,B5

10 NOP 1

11 MV B5,A3

12 CL4: ; PIPED LOOP PROLOG

13 CL5: ; PIPED LOOP KERNEL

14 NOP 3

15 SHR A5,5,A4

16 [!A1] STH A4,*++B7(8)

17 [!A1] LDH *+A3(4),B6

18 NOP 1

19 EXTU A5,27,27,A4

20 NOP 1

21 MV A4,B4

22 [!A1] STH B4,*++B5(16) SHR B6,5,B4

23 [!A1] STH B4,*+B7(2)

24 [!A1] LDH *+A3(8),A5

25 NOP 3

26 EXTU B6,27,27,B4

27 [!A1] STH B4,*+B5(4) SHR A5,5,B4

28 [!A1] STH B4,*+B7(4)

29 [!A1] LDH *+A3(12),A4

30 NOP 2

31 [A0] BDEC CL5,A0

32 NOP 1

33 EXTU A5,27,27,A5 SHR A4,5,B4

34 [!A1] STH A5,*+A3(8) EXTU A4,27,27,A4 [!A1] STH B4,*+B7(6)

35 LDH *++A3(16),A5

36 [A1] SUB A1,1,A1 [!A1]STH A4,*-A3(4)

37 CL6: ; PIPED LOOP EPILOG

38 NOP 3

39 SHR A5,5,A4

40 STH A4,*++B7(8)

41 LDH *+A3(4),B6

42 EXTU A5,27,27,A4

43 NOP 2

44 MV A4,B4

45 STH B4,*++B5(16) SHR B6,5,B4

46 STH B4,*+B7(2) EXTUB6,27,27,B4

47 STH B4,*+B5(4) LDH *+A3(8),A4

48 NOP 4

49 SHR A4,5,B4

50 STH B4,*+B7(4)

51 LDH *+A3(12),A5

52 EXTU A4,27,27,A4

53 RETNOP B3,2

54 SHR A5,5,B4

55 STH A4,*+A3(8) STH B4,*+B7(6) EXTU A5,27,27,A5

56 STH A5,*+A3(12)

57 ; BRANCH OCCURS

1 CDW$21 LDW *+DP(_BufSelector),B4

2 MVKL _BufPtr,B5

3 MVKH _BufPtr,B5

4 MVK 8,A0

5 MVK 0x1,A1

6 LDW *+B5[B4],B4

7 SUB A4,8,B7

8 NOP 3

9 SUB B4,16,B5

10 NOP 1

11 MV B5,A3

12 CL5: ; de-PIPED LOOP KERNEL

13 LDH *++A3(16),A5

14 NOP 4

15 SHR A5,5,A4

16 STH A4,*++B7(8)

17 LDH *+A3(4),B6

18 NOP 1

19 EXTU A5,27,27,A4

20 NOP 1

21 MV A4,B4

22 STH B4,*++B5(16) SHR B6,5,B4

23 STH B4,*+B7(2)

24 LDH *+A3(8),A5

25 NOP 3

26 EXTU B6,27,27,B4

27 STH B4,*+B5(4) SHR A5,5,B4

28 STH B4,*+B7(4)

29 LDH *+A3(12),A4

30 NOP 2

31 [A0] BDEC CL5,A0

32 NOP 1

33 EXTU A5,27,27,A5 SHR A4,5,B4

34 STH A5,*+A3(8) EXTU A4,27,27,A4 STH B4,*+B7(6)

35 NOP 1

36 STH A4,*A3(4)

(a)

(b)

Fig. 3 Working example. a Assembly code of Viterbi StorePaths. b After software de-pipelining.
c SubDDGs. d subDDGs adjustment. e Indexes of memory load and store instructions. f Rerolled
loop of Viterbi StorePaths

230 E.-W. Hu et al.

1 13. LDH *++A3(16),A5

15. SHR A5,5,A4 19. EXTU A5,27,27,A4

16. STH A4,*++B7(8) 21. MV A4,B4

22. STH B4,*++B5(16)

2 17. LDH *+A3(4),B6

22. SHR B6,5,B4 26. EXTU B6,27,27,B4

23. STH B4,*+B7(2) 27. STH B4,*+B5(4)

3 24. LDH *+A3(8),A5

27. SHR A5,5,B4 33. EXTU A5,27,27,A5

28. STH B4,*+B7(4) 36. STH A5,*+A3(8)

4 29. LDH *+A3(12),A4

33. SHR A4,5,B4 34. EXTU A4,27,27,A4

34. STH B4,*+B7(6) 36. STH A4,*-A3(4)

LDH *++A3(16),A5

SHR A5,5,A4 EXTU A5,27,27,A4

STH A4,*++B7(8) MV A4,B4

STH B4,*++B5(16)

LDH *++A3(16),A5

SHR A5,5,A4 EXTU A5,27,27,A4

STH A4,*++B7(8) STH A4,*++B5(16)

old new

*+A3(4) *+B7(2) *+B5(4) *+A3(4)

*+A3(8) *+B7(4) *+A3(8) *+A3(8)

*+A3(12) *+B7(6) *-A3(4) *+A3(12)

*++A3(16) *++B7(8) *++B5(16) *++A3(16)

Store_2
Load Store_1

1 CDW$21 LDW *+DP(_BufSelector),B4

2 MVKL _BufPtr,B5

3 MVKH _BufPtr,B5

4 MVK 32 ,A0

5 MVK 0x1,A1

6 LDW *+B5[B4],B4

7 SUB A4,8,B7

8 NOP 3

9 SUB B4,16,B5

10 NOP 1

11 MV B5,A3

12 CL5: ; Rerolled LOOP KERNEL

13 LDH *+A3(4),B6

14 [A0] BDEC CL5,A0

15 NOP 3

16 SHR B6,5,B4 EXTU B6,27,27,B4

17 STH B4,*+B7(2) STH B4,*+A3(4)

18 CL6: RETNOP B3,2

(c)

(d)

(e)

(f)

Fig. 3 (continued)

The iteration number of this loop body is seven. By using software_pipelined_
loop_checking function, it is determined that this loop is software pipelined because
register A5 is written by instruction LDH *++A3(16), A5 at line 35 and register A5
is read by instructions SHR A5,5,A4 and EXTU A5,27,27,A4 at lines 15 and 19,
respectively; both instructions occur earlier than instruction LDH *++A3(16),A5.

Figure 3b shows the result of the software_de-pipelining function where the iter-
ation number of de-pipelined loop body changes to eight. There are eight STH store
instructions as last_instructions found by the find_last_instructions function.

Figure 3c is the result generated by build_subDDGs function. From the catego-
rize_subDDGs function, we find that Viterbi StorePaths has four unrolled loop copies
of type_2. The instruction numbers in Fig. 3c tie to the line numbers of instructions
in Fig. 3b.

Among the four loop copies, one isomorphicable subDDG has one additional
MV instruction generated by TI compiler for the purpose of moving data to another

Instruction Level Loop De-optimization 231

datapath. Figure 3d shows the semantically equivalent subDDGs before and after the
removal of the MV instruction by the subDDGs_adjustment function.

After the above operations, we now have four type_1 subDDGs that are not yet
isomorphic. This is because there are one load instruction and two store instructions
in each unrolled copy, and the second store instructions of the four unrolled copies use
different index registers. After the execution of symbolic_calculation function, all
unrolled copies use the same index register for the second store instruction. Figure 3e
lists the indexes of all memory load and store instructions, indicating that all subD-
DGs are now isomorphic and thus rerollable.

Figure 3f is the rerolled loop after the execution of forming_rerolled_loop func-
tion, which is semantically equivalent to the original assembly code shown in Fig. 3a.
The iteration number of rerolled loop body changes to 32. The comparison before
and after loop de-optimization is shown in Table 3, which is discussed in more detail
in Sect. 5.

5 Experiment

We have chosen eight loop examples to conduct experiments manually. The original
sets of assembly code are generated by TIC64 compiler, which are then optimized by
loop unrolling and/or software pipelining. Their characteristics are summarized in
Table 1. Their subDDG features and the solutions of de-optimization are summarized
in Table 2.

Besides Dot product, Viterbi Decoder and Viterbi StorePaths are from Viterbi
function of EEMBC Telecommunication benchmark. The other five kernels are from
LSF_Q_New_ML_search_fx and FLT_filterAP_fx functions of the SMV bench-
mark. Table 1 presents the number of nested levels and loop counts of the source
code and assembly code; it also shows the optimization methods applied by TI C64
compiler. All examples have loop unrolling; some involve both loop unrolling and
software pipelining. In addition, Table 2 presents the characteristics of subDDGs,
the types of isomorphicable subDDGs, the causes for their occurrences, as well as
the solution for loop de-optimization. Dot product is the simplest example; all its
subDDGs are isomorphic subDDGs using the same index register. The function
categorize_subDDGs determines it is type_0 and the forming_rerolled_loop func-
tion can thus be called immediately. The remaining examples need conversion from
isomorphicable subDDGs to isomorphic subDDGs. SMV FLT is the most compli-
cated case, in which the compiler unrolls the inner loop first, and then unrolls the
code of outer loops, and finally software pipelines them. Moreover, peephole opti-
mization is used to reduce some instructions, which further complicates the rerolling
process. In general, loop de-optimization requires a range of activities and techniques
including software_de-pipelining, instruction_replacing, subDDG_adjustment, de-
peephole_optimizing, and finally forming_loop_rerolling.

Table 3 presents our experimental results, where #I denotes number of instructions;
#IG number of instruction groups; #CC clock cycles which represents the execution

232 E.-W. Hu et al.

Table 3 Experimental results

Function
name

Original After de-pipelining After rerolling

#I #IG #CC #LC #I #IG #CC #LC #I #IG #CC #LC

1 Dot
product

44 19 113 50 14 12 552 50 11 8 802 100

2 Viterbi
Find-
Metrics

50 38 38 0 – – – – 21 15 204 32

3 Viterbi
Store-
Paths

65 4 208 7 40 35 211 8 8 6 243 32

4 SMV
LSF_1

13 3 13 0 – – – – 6 6 37 7

5 SMV
LSF_2

86 3 40 0 – – – – 13 11 120 10

6 SMV
LSF_3

37 9 19 0 – – – – 21 11 48 6

7 SMV
LSF_4

144 5 125 7 71 38 146 7 10 8 630 70

8 SMV
FLT

237 92 2997 85 171 60 5100 85 29 38 13260 outer 170

inner 9

time of specific code used in the experiment; and #LC loop count. There are three
sections in Table 3, the leftmost one is original assembly code, and the rightmost
section is the final result of the semantically equivalent sequential code after loop
de-optimization. The second section lists certain kernels that have been optimized by
software pipelining after loop unrolling by the compiler. Based on the final results of
loop de-optimization, it is obvious that code sizes, including both instruction count
and number of instruction groups, are reduced while the number of clock cycles is
increased.

6 Related Work

Since Cifuences and her colleagues presented their work [9], many decompilation
techniques have been published [1, 8, 12]. However, few papers tackle deoptimiza-
ton technique and fewer still investigate loops with instruction-level parallel archi-
tectures.

Snavely et al. [16] present instruction level deoptimization approaches on Intel
Itanium including unpredication, unscheduling and unspeculation. However they did
not tackle loop de-optimization and software de-pipelining. Wang et al. [21] apply

Instruction Level Loop De-optimization 233

un-speculation technique on modulo scheduled loops to make the code easier to
understand, however they do not tackle software de-pipelining and loop rerolling.

Loop rerolling has been implemented at source code level in LLVM compiler
[15]. Stitt and Vahid [17] use loop rerolling technique for binary-level coprocessor
generation, which is the reverse of loop unrolling. They use character string to rep-
resent instruction sequence, and then use the suffix tree to represent the character
string for efficient pattern matching unrolled loop copies. However, their techniques
are applicable only to decompiling assembly code such as MIPS and ARM without
instruction level parallelism.

Bermudo et al. present an algorithm for reconstruction of the control flow graph
for assembly language program with delayed instructions which was used in a reverse
compiler for TI DSP processors [4]. Su et al. present software de-pipelined technique
[18] for single-level loops. Their method based on building linear data dependency
graph in software pipelined loop can convert the complicated software pipelined loop
code to a semantically equivalent sequential loop. Bermudo et al. extend software
de-pipelined technique to nested loops [5].

7 Summary

We present our instruction level loop de-optimization algorithms which involve soft-
ware de-pipelining and loop rerolling. Instruction level loop de-optimization can
be very complicated, particularly when the assembly code after loop unrolling is
combined with peephole optimization. It is noted that although different compil-
ers may generate different optimized assembly code, our approach can be a useful
technique to help interested readers gain insight especially in the difficult tasks of
loop rerolling and software de-pipelining, the necessary steps to decompile loops at
instruction level. In this paper, we consider only loop independent dependency and
plan to extend it to handle loop carried dependency in the future.

Acknowledgments Su would like to thank the ART awards of William Paterson University.

References

1. Anand, K., et al.: Decompilation to compiler high IR in a binary rewriter. Technical report,
University of Maryland (2010)

2. Aho, A., et al.: Compilers: Principles, Techniques, and Tools, 2nd edn. Addison-Wesley (2007)
3. Bermudo, N., et al.: Control flow graph reconstruction for reverse compilation of assembly

language programs with delayed instructions. In: Proceedings of SCAM2005, pp. 107–118
(2005)

4. Bermudo, N.: Low-level reverse compilation techniques. Ph.D. thesis. Technische Universität
Wien (2005)

5. Bermudo, N., et al.: Software de-pipelining for nested loops. In: Proceedings of IMCEEME’12,
pp. 39–44 (2012)

234 E.-W. Hu et al.

6. Cesare, S.: Detecting bugs using decompilation and data flow analysis. In: Black Hat USA
2013, https://media.blackhat.com/.../US-13-Cesare-Bugalyze.com (Accessed 2013)

7. Cesare, S., et al.: Malwise—an effective and efficient classification system for packed and
polymorphic malware. IEEE Trans. Comput. 1193–1206 (2013)

8. Chen, G., et al.: A refined decompiler to generate C code with high readability. In: Proceedings
of the 17th Working Conference on Reverse Engineering (2010)

9. Cifuentes, C.: Reverse compilation techniques. Ph.D. Dissertation, Queensland University of
Technology, Department of CS (1994)

10. Hu, E., et al.: New DSP benchmark based on selectable mode vocoder (SMV). In: Proceedings
of the 2006 International Conference on Computer Design, pp. 175–181 (2006)

11. Křoustek, J.: Decompilation of VLIW executable files—caveats and pitfalls. In: Proceedings
of Theoretical and Applied Aspects of Cybernetics (TAAC’13), pp. 287–296. TSNUK, Kyiv
(2013)

12. Křoustek, J., Kolář, D.: Preprocessing of binary executable files towards retargetable decompi-
lation. In: Proceedings of the 8th International Multi-Conference on Computing in the Global
Information Technology (ICCGI’13), pp. 259–264. IARIA, Nice (2013)

13. Lam, M.: Software pipelining: an effective scheduling technique for VLIW machines. In:
Proceedings of the SIGPLAN 88 Conference on PLDI, pp. 318–328 (1988)

14. Lavery, L., Hwu, H.: Unrolling based optimizations for modulo scheduling. Proc. MICRO 28,
328–337 (1995)

15. LLVM: LoopRerollPass.cpp Source File. http://llvm.org/docs/doxygen/html/LoopRerollPass_
8cpp.html (Accessed 2014)

16. Snavely, N., Debray, S.: Unpredication, unscheduling, unspeculation: reverse engineering Ita-
nium executables. IEEE Trans. Softw. Eng. 31(2) (2005)

17. Stitt, G., Vahid, F.: New decompilation techniques for binary-level co-processor generation.
In: Proceedings of the International Conference on Computer Aided Design—ICCAD, pp.
547–554 (2005)

18. Su, B., et al.: Software de-pipelining technique. In: Proceedings of the SCAM2004, pp. 7–16
(2004)

19. TELE BENCH, an EEMBC Bench, http://www.eembc.org/benchmark/telecom_sl.php
(Accessed 2015)

20. TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide, SPRU732H (2008)
21. Wang, M., et al.: Un-speculation in modulo scheduled loops. In: Proceedings of the 2nd Inter-

national Multisymposium on Computer and Computational Sciences, pp. 486–489 (2008)

https://media.blackhat.com/.../US-13-Cesare-Bugalyze.com
http://llvm.org/docs/doxygen/html/LoopRerollPass_8cpp.html
http://llvm.org/docs/doxygen/html/LoopRerollPass_8cpp.html
http://www.eembc.org/benchmark/telecom_sl.php

	Instruction Level Loop De-optimization
	1 Introduction
	2 Observation
	3 Methodologies and Algorithms
	4 Working Example
	5 Experiment
	6 Related Work
	7 Summary
	References

