
Chapter 6
Linear Models and Regression Diagnostics

The linear regression model estimated with ordinary least squares (OLS) is a
workhorse model in Political Science. Even when a scholar uses a more advanced
method that may make more accurate assumptions about his or her data—such as
probit regression, a count model, or even a uniquely crafted Bayesian model—
the researcher often draws from the basic form of a model that is linear in the
parameters. By a similar token, many of the R commands for these more advanced
techniques use functional syntax that resembles the code for estimating a linear
regression. Therefore, an understanding of how to use R to estimate, interpret, and
diagnose the properties of a linear model lends itself to sophisticated use of models
with a similar structure.

This chapter proceeds by describing the lm (linear model) command in R, which
estimates a linear regression model with OLS, and the command’s various options.
Then, the chapter describes how to conduct regression diagnostics of a linear model.
These diagnostics serve to evaluate whether critical assumptions of OLS estimation
hold up, or if our results may be subject to bias or inefficiency.

Throughout the chapter, the working example is an analysis of the number of
hours high school biology teachers spend teaching evolution. The model replicates
work by Berkman and Plutzer (2010, Table 7.2), who argue that this policy outcome
is affected by state-level factors (such as curriculum standards) and teacher attributes
(such as training). The data are from the National Survey of High School Biology
Teachers and consist of 854 observations of high school biology teachers who were
surveyed in the spring of 2007. The outcome of interest is the number of hours a
teacher devotes to human and general evolution in his or her high school biology
class (hrs_allev), and the twelve input variables are as follows:
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80 6 Linear Models and Regression Diagnostics

phase1: An index of the rigor of ninth & tenth grade evolution standards in 2007
for the state the teacher works in. This variable is coded on a standardized scale
with mean 0 and standard deviation 1.

senior_c: An ordinal variable for the seniority of the teacher. Coded �3 for 1–2
years experience, �2 for 3–5 years, �1 for 6–10 years, 0 for 11–20 years, and 1
for 21+ years.

ph_senior: An interaction between standards and seniority.
notest_p: An indicator variable coded 1 if the teacher reports that the state does

not have an assessment test for high school biology, 0 if the state does have such
a test.

ph_notest_p: An interaction between standards and no state test.
female: An indicator variable coded 1 if the teacher is female, 0 if male. Missing

values are coded 9.
biocred3: An ordinal variable for how many biology credit hours the teacher has

(both graduate and undergraduate). Coded 0 for 24 hours or less, 1 for 25–
40 hours, and 2 for 40+ hours.

degr3: The number of science degrees the teacher holds, from 0 to 2.
evol_course: An indicator variable coded 1 if the instructor took a specific college-

level course on evolution, 0 otherwise.
certified: An indicator coded 1 if the teacher has normal state certification, 0

otherwise.
idsci_trans: A composite measure, ranging from 0 to 1, of the degree to which the

teacher thinks of him or herself as a scientist.
confident: Self-rated expertise on evolutionary theory. Coded �1 for “less” than

many other teachers, 0 for “typical” of most teachers, 1 for “very good”
compared to most high school biology teachers, and 2 for “exceptional” and on
par with college-level instructors.

6.1 Estimation with Ordinary Least Squares

To start, we need to load the survey data, which we will name evolution. In
this example, we load a Stata-formatted data set. This is easily possible through the
foreign library, which provides us with the read.dta command:1

rm(list=ls())
library(foreign)
evolution<-read.dta("BPchap7.dta",convert.factors=FALSE)

1Berkman and Plutzer’s data file, named BPchap7.dta, is available from the Dataverse linked
on page vii or the chapter content linked on page 79. Remember that you may need to use the
setwd command to point to where you have saved the data.
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As a rule, we want to start by viewing the descriptive statistics from our data
set. At minimum, use the summary command, and perhaps some of the other
commands described in Chaps. 3 and 4:

summary(evolution)

In addition to the descriptive statistics summary gives us, it will also list the number
of missing observations we have on a given variable (under NA’s), if any are
missing. The default condition for most modeling commands in R is to delete any
case that is missing an observation on any variable in a model. Hence, the researcher
needs to be aware not only of variation in relevant variables, but also how many
cases lack an observation.2 Additionally, researchers should be careful to notice
anything in the descriptive statistics that deviates from a variable’s values that are
listed in the codebook. For example, in this case the variable female has a maximum
value of 9. If we know from our codebook that 0 and 1 are the only valid observed
values of this variable, then we know that anything else is either a miscode or (in this
case) a missing value.

Before proceeding, we need to reclassify the missing observations of female:

evolution$female[evolution$female==9]<-NA
summary(evolution)
evolution<-subset(evolution,!is.na(female))

This command recodes only the values of female coded as a 9 as missing. As the
subsequent call to summary shows, the 13 values coded as a 9 are now listed as
missing, so they will automatically be omitted in our subsequent analysis. To make
sure any computations we make focus only on the observations over which we fit
the model, we subset our data to exclude the missing observations. As an alternative
to using subset here, if we had missing values on multiple variables, we instead
may have wanted to type: evolution<-na.omit(evolution).

Having cleaned our data, we now turn to the model of hours spent teaching
evolution described at the start of the chapter. We estimate our linear model
using OLS:

mod.hours<-lm(hrs_allev~phase1*senior_c+phase1*notest_p+
female+biocred3+degr3+evol_course+certified+idsci_trans+
confident,data=evolution)

summary(mod.hours)

The standard syntax for specifying the formula for a model is to list the
outcome variable to the left of the tilde (~), and the input variables on the
right-hand side separated by plus signs. Notice that we did include two special
terms: phase1*senior_c and phase1*notest_p. Considering the first,
phase1*senior_c, this interactive notation adds three terms to our model:
phase1, senior_c, and the product of the two. Such interactive models allow for

2A theoretically attractive alternative to listwise deletion as a means of handling missing data is
multiple imputation. See Little and Rubin (1987), Rubin (1987), and King et al. (2001) for more
details.
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conditional effects of a variable.3 The data option of lm allows us to call variables
from the same dataset without having to refer to the dataset’s name with each
variable. Other prominent options for the lm command include subset, which
allows the user to analyze only a portion of a dataset, and weights, which allows
the user to estimate a linear model with weighted least squares (WLS). Observe that
we had to name our model upon estimation, calling it mod.hours by choice, and
to obtain the results of our estimation, we need to call our model with the summary
command. The output of summary(mod.hours) looks like this:

Call:
lm(formula=hrs_allev~phase1*senior_c+phase1*notest_p+

female+biocred3+degr3+evol_course+certified+idsci
_trans+

confident,data=evolution)

Residuals:
Min 1Q Median 3Q Max

-20.378 -6.148 -1.314 4.744 32.148

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.2313 1.1905 8.594 < 2e-16 ***
phase1 0.6285 0.3331 1.886 0.0596 .
senior_c -0.5813 0.3130 -1.857 0.0636 .
notest_p 0.4852 0.7222 0.672 0.5019
female -1.3546 0.6016 -2.252 0.0246 *
biocred3 0.5559 0.5072 1.096 0.2734
degr3 -0.4003 0.3922 -1.021 0.3077
evol_course 2.5108 0.6300 3.985 7.33e-05 ***
certified -0.4446 0.7212 -0.617 0.5377
idsci_trans 1.8549 1.1255 1.648 0.0997 .
confident 2.6262 0.4501 5.835 7.71e-09 ***
phase1:senior_c -0.5112 0.2717 -1.881 0.0603 .
phase1:notest_p -0.5362 0.6233 -0.860 0.3899
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 8.397 on 828 degrees of freedom
Multiple R-squared: 0.1226,Adjusted R-squared: 0.1099
F-statistic: 9.641 on 12 and 828 DF, p-value: < 2.2e-16

3See Brambor et al. (2006) for further details on interaction terms. Also, note that
an equivalent specification of this model could be achieved by replacing phase1*
senior_c and phase1*notest_p with the terms phase1+senior_c+ph_senior+
notest_p+ph_notest_p. We are simply introducing each of the terms separately in this way.
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Table 6.1 Linear model of hours of class time spent teaching evolution by high
school biology teachers (OLS estimates)

Predictor Estimate Std. Error t value Pr(> jtj)
Intercept 10:2313 1.1905 8:59 0.0000

Standards index 2007 0:6285 0.3331 1:89 0.0596

Seniority (centered) �0:5813 0.3130 �1:86 0.0636

Standards � seniority �0:5112 0.2717 �1:88 0.0603

Believes there is no test 0:4852 0.7222 0:67 0.5019

Standards � believes no test �0:5362 0.6233 �0:86 0.3899

Teacher is female �1:3546 0.6016 �2:25 0.0246

Credits earned in biology (0–2) 0:5559 0.5072 1:10 0.2734

Science degrees (0–2) �0:4003 0.3922 �1:02 0.3077

Completed evolution class 2:5108 0.6300 3:99 0.0001

Has normal certification �0:4446 0.7212 �0:62 0.5377

Identifies as scientist 1:8549 1.1255 1:65 0.0997

Self-rated expertise (�1 to +2) 2:6262 0.4501 5:84 0.0000

Notes: N D 841. R2 D 0:1226. F12;828 D 9:641 (p < 0:001). Data from
Berkman and Plutzer (2010)

The top of the printout repeats the user-specified model command and then
provides some descriptive statistics for the residuals. The table that follows presents
the results of primary interest: The first column lists every predictor in the model,
including an intercept. The second column presents the OLS estimate of the partial
regression coefficient. The third column presents the t-ratio for a null hypothesis
that the partial regression coefficient is zero, and the fourth column presents a two-
tailed p-value for the t-ratio. Finally, the table prints dots and stars based on the
thresholds that the two-tailed p-value crosses.4 Below the table, several fit statistics
are reported: The standard error of regression (or residual standard error), the R2

and adjusted R2 values, and the F-test for whether the model as a whole explains
a significant portion of variance. The results of this model also are presented more
formally in Table 6.1.5

4Users are reminded that for one-tailed tests, in which the user wishes to test that the partial
coefficient specifically is either greater than or less than zero, the p-value will differ. If the sign of
the coefficient matches the alternative hypothesis, then the corresponding p-value is half of what is
reported. (Naturally, if the sign of the coefficient is opposite the sign of the alternative hypothesis,
the data do not fit with the researcher’s hypothesis.) Additionally, researchers may want to test a
hypothesis in which the null hypothesis is something other than zero: In this case, the user can
construct the correct t-ratio using the reported estimate and standard error.
5Researchers who write their documents with LATEX can easily transfer the results of a linear
model from R to a table using the xtable library. (HTML is also supported by xtable.)
On first use, install with: install.packages("xtable"). Once installed, simply entering
library(xtable); xtable(mod.hours) would produce LATEX-ready code for a table
that is similar to Table 6.1. As another option for outputting results, see the rtf package about
how to output results into Rich Text Format.
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Many researchers, rather than reporting the t-ratios and p-values presented in
the default output of lm will instead report confidence intervals of their estimates.
One must be careful in the interpretation of confidence intervals, so readers
unfamiliar with these are urged to consult a statistics or econometrics textbook for
more information (such as Gujarati and Porter 2009, pp. 108–109). To construct
such a confidence interval in R, the user must choose a confidence level and use the
confint command:

confint(mod.hours,level=0.90)

The level option is where the user specifies the confidence level. 0.90 corre-
sponds to 90 % confidence, while level=0.99, for instance, would produce a
99 % confidence interval. The results of our 90 % confidence interval are reported
as follows:

5 % 95 %
(Intercept) 8.27092375 12.19176909
phase1 0.07987796 1.17702352
senior_c -1.09665413 -0.06587642
notest_p -0.70400967 1.67437410
female -2.34534464 -0.36388231
biocred3 -0.27927088 1.39099719
degr3 -1.04614354 0.24552777
evol_course 1.47336072 3.54819493
certified -1.63229086 0.74299337
idsci_trans 0.00154974 3.70834835
confident 1.88506881 3.36729476
phase1:senior_c -0.95856134 -0.06377716
phase1:notest_p -1.56260919 0.49020149

Among other features, one useful attribute of these is that a reader can examine a
90 % (for instance) confidence interval and reject any null hypothesis that proposes
a value outside of the interval’s range for a two-tailed test. For example, the interval
for the variable confident does not include zero, so we can conclude with 90 %
confidence that the partial coefficient for this variable is different from zero.6

6.2 Regression Diagnostics

We are only content to use OLS to estimate a linear model if it is the Best Linear
Unbiased Estimator (BLUE). In other words, we want to obtain estimates that
on average yield the true population parameter (unbiased), and among unbiased

6In fact, we also could conclude that the coefficient is greater than zero at the 95 % confidence
level. For more on how confidence intervals can be useful for one-tailed tests as well, see Gujarati
and Porter (2009, p. 115).
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estimators we want the estimator that minimizes the error variance of our estimates
(best or efficient). Under the Gauss–Markov theorem, OLS is BLUE and valid for
inferences if four assumptions hold:

1. Fixed or exogenous input values. In other words the predictors (X) must be inde-
pendent of the error term. Cov.X2i; ui/ D Cov.X3i; ui/ D � � � D Cov.Xki; ui/ D 0.

2. Correct functional form. In other words, the conditional mean of the disturbance
must be zero.

E.uijX2i; X3i; : : : ; Xki/ D 0.
3. Homoscedasticity or constant variance of the disturbances (ui). Var.ui/ D �2.
4. There is no autocorrelation between disturbances. Cov.ui; uj/ D 0 for i ¤ j.

While we never observe the values of disturbances, as these are population terms,
we can predict residuals (Ou) after estimating a linear model. Hence, we typically will
use residuals in order to assess whether we are willing to make the Gauss–Markov
assumptions. In the following subsections, we conduct regression diagnostics to
assess the various assumptions and describe how we might conduct remedial
measures in R to correct for apparent violations of the Gauss–Markov assumptions.
The one exception is that we do not test the assumption of no autocorrelation
because we cannot reference our example data by time or space. See Chap. 9 for
examples of autocorrelation tests and corrections. Additionally, we describe how
to diagnose whether the errors have a normal distribution, which is essential for
statistical inference. Finally, we consider the presence of two notable data features—
multicollinearity and outlier observations—that are not part of the Gauss–Markov
assumptions but nevertheless are worth checking for.

6.2.1 Functional Form

It is critical to have the correct functional form in a linear model; otherwise, its
results will be biased. Therefore, upon estimating a linear model we need to assess
whether we have specified the model correctly, or whether we need to include
nonlinear aspects of our predictors (such as logarithms, square roots, squares, cubes,
or splines). As a rule, an essential diagnostic for any linear model is to do a
scatterplot of the residuals (Ou). These plots ought to be done against both the fitted
values ( OY) and against the predictors (X). To construct a plot of residuals against
fitted values, we would simply reference attributes of the model we estimated in a
call to the plot command:

plot(y=mod.hours$residuals,x=mod.hours$fitted.values,
xlab="Fitted Values",ylab="Residuals")

Notice that mod.hours$residuals allowed us to reference the model’s
residuals (Ou), and mod.hours$fitted.values allowed us to call the predicted
values ( OY). We can reference many features with the dollar sign ($). Type
names(mod.hours) to see everything that is saved. Turning to our output
plot, it is presented in Fig. 6.1. As analysts, we should check this plot for a few
features: Does the local average of the residuals tend to stay around zero? If the
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Fig. 6.1 Scatterplot of residuals against fitted values from model of hours of teaching evolution

residuals show a clear pattern of rising or falling over any range, then the functional
form of some variable may be wrong. Does the spread of the residuals differ at any
portion in the graph? If so, there may be a heteroscedasticity issue. One apparent
feature of Fig. 6.1 is that the residuals appear to hit a diagonal “floor” near the
bottom of the cloud. This emerges because a teacher cannot spend fewer than zero
hours teaching evolution. Hence, this natural floor reflects a limit in the dependent
variable. A functional form limitation such as this is often best addressed within the
Generalized Linear Model framework, which will be considered in the next chapter.

Another useful tool is to draw figures of the residuals against one or more
predictors. Figure 6.2 shows two plots of the residuals from our model against the
composite scale of the degree to which the teacher self-identifies as a scientist.
Figure 6.2a shows the basic plot using the raw data, which a researcher should
always look at. In this case, the predictor of interest takes on 82 unique values,
but many observations take on the same values, particularly at the upper end of the
scale. In cases like this, many points on the plot will be superimposed on each other.
By jittering the values of idsci_trans, or adding a small randomly drawn number,
it becomes easier to see where a preponderance of the data are. Figure 6.2b shows
a revised plot that jitters the predictor. The risk of the jittered figure is that moving
the data can distort a true pattern between the predictor and residuals. However,
in a case of an ordinal (or perhaps semi-ordinal) input variable, the two subfigures



6.2 Regression Diagnostics 87

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

20
30

Identifies as Scientist

R
es

id
ua

ls

−
20

−
10

0
10

20
30

R
es

id
ua

ls

a) Raw Data

Identifies as Scientist (Jittered)

b) Jittered Data

Fig. 6.2 Scatterplot of residuals against the degree to which a teacher identifies as a scientist.
(a) Raw data. (b) Jittered data

can complement each other to offer the fullest possible picture. The two scatterplots
from Fig. 6.2 are produced as follows:

plot(y=mod.hours$residuals,x=evolution$idsci_trans,
xlab="Identifies as Scientist",ylab="Residuals")

plot(y=mod.hours$residuals,x=jitter(evolution$idsci_trans,
amount=.01),xlab="Identifies as Scientist (Jittered)",
ylab="Residuals")

Much like the residual-to-fitted value plot of Fig. 6.1, we examine the residual-to-
predictor plots of Fig. 6.2 for changes in the local mean as well as differences in the
spread of the residuals, each contingent on the predictor value. On functional form,
there is little to suggest that the running mean is changing markedly across values.
Hence, as with the residual-to-fitted plot, we see little need to respecify our model
with a nonlinear version of this predictor. However, the spread of the residuals looks
a bit concerning, so we will revisit this issue in the next section.

In addition to graphical methods, one common test statistic for diagnosing a
misspecified functional form is Ramsey’s RESET test (regression specification error
test). This test proceeds by reestimating the original model, but this time including
the fitted values from the original model in some nonlinear form (such as a quadratic
or cubic formula). Using an F-ratio to assess whether the new model explains
significantly more variance than the old model serves as a test of whether a different
form of one or more predictors should be included in the model. We can conduct
this test for a potential cubic functional form as follows:

evolution$fit<-mod.hours$fitted.values
reset.mod<-lm(hrs_allev~phase1*senior_c+phase1*notest_p+

female+biocred3+degr3+evol_course+certified+idsci_trans+
confident+I(fit^2)+I(fit^3), data=evolution)

anova(mod.hours, reset.mod)
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The first line of code saves the fitted values from the original model as a variable in
the data frame. The second line adds squared and cubed forms of the fitted values
into the regression model. By embedding these terms within the I function (again
meaning, “as is”), we can algebraically transform the input variable on the fly as we
estimate the model. Third, the anova command (for analysis of variance) presents
the results of an F-test that compares the original model to the model including
a quadratic and cubic form of the fitted values. In this case, we get a result of
F2826 D 2:5626, with a p-value of p D 0:07772. This indicates that the model
with the cubic polynomial of fitted values does fit significantly better at the 90 %
level, implying another functional form would be better.

To determine which predictor could be the culprit of the misspecified functional
form, we can conduct Durbin–Watson tests on the residuals, sorting on the predictor
that may be problematic. (Note that traditionally Durbin–Watson tests sort on time
to test for temporal autocorrelation. This idea is revisited in Chap. 9.) A discernible
result indicates that residuals take similar values at similar values of the input—a
sign that the predictor needs to be respecified. The lmtest library (users will need
to install with install.packages the first time) provides commands for several
diagnostic tests, including the Durbin–Watson test. Sorting the residuals on the rigor
of evolution standards (phase1), we run the test:

install.packages("lmtest")
library(lmtest)
dwtest(mod.hours, order.by=evolution$phase1)

This yields a statistic of d D 1:8519 with an approximate p-value of p D
0:01368, indicating that the residuals are similar based on the value of the covariate.
Therefore, we might proceed to respecify our functional form by adding polynomial
terms for phase1:

mod.cubic<-lm(hrs_allev~phase1*senior_c+phase1*notest_p+
female+biocred3+degr3+evol_course+certified+idsci_trans+
confident+I(phase1^2)*senior_c+I(phase1^3)*senior_c+
I(phase1^2)*notest_p+I(phase1^3)*notest_p,data=evolution)

As with the RESET test itself, our new model (mod.cubic) illustrates how we can
use additional features of the lm command. Again, by using the I function, we can
perform algebra on any input variable within the model command. As before, the
caret (^) raises a variable to a power, allowing our polynomial function. Again, for
interaction terms, simply multiplying two variables with an asterisk (*) ensures that
the main effects and product terms of all variables in the interaction are included.
Hence, we allow seniority and whether there is no assessment test each to interact
with the full polynomial form of evolution standards.
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6.2.2 Heteroscedasticity

When the error variance in the residuals is not uniform across all observations,
a model has heteroscedastic error variance, the estimates are inefficient, and
the standard errors are biased to be too small. The first tool we use to assess
whether the error variance is homoscedastic (or constant for all observations)
versus heteroscedastic is a simple scatterplot of the residuals. Figure 6.1 offered
us the plot of our residuals against the fitted values, and Fig. 6.2 offers an example
plot of the residuals against a predictor. Besides studying the running mean to
evaluate functional form, we also assess the spread of residuals. If the dispersion
of the residuals is a constant band around zero, then we may use this as a visual
confirmation of homoscedasticity. However, in the two panels of Fig. 6.2, we can
see that the preponderance of residuals is more narrowly concentrated close to zero
for teachers who are less inclined to self-identify as a scientist, while the residuals
are more spread-out among those who are more inclined to identify as a scientist.
(The extreme residuals are about the same for all values of X, making this somewhat
tougher to spot, but the spread of concentrated data points in the middle expands at
higher values.) All of this suggests that self-identification as a scientist corresponds
with heteroscedasticity for this model.

Besides visual methods, we also have the option of using a test statistic in
a Breusch–Pagan test. Using the lmtest library (which we loaded earlier), the
syntax is as follows:

bptest(mod.hours, studentize=FALSE)

The default of bptest is to use Koenker’s studentized version of this test. Hence,
the studentize=FALSE option gives the user the choice of using the original
version of the Breusch–Pagan test. The null hypothesis in this chi-squared test is
homoscedasticity. In this case, our test statistic is �2

12df D 51:7389 (p < 0:0001).
Hence, we reject the null hypothesis and conclude that the residuals are not
homoscedastic.

Without homoscedasticity, our results are not efficient, so how might we correct
for this? Perhaps the most common solution to this issue is to use Huber–White
robust standard errors, or sandwich standard errors (Huber 1967; White 1980). The
downside of this method is that it ignores the inefficiency of the OLS estimates and
continues to report these as the parameter estimates. The upside, however, is that
although OLS estimates are inefficient under heteroscedasticity, they are unbiased.
Since the standard errors are biased, correcting them fixes the biggest problem
heteroscedasticity presents us. Computing Huber–White standard errors can be
accomplished using the sandwich (needing a first-time install) and lmtest
libraries:

install.packages("sandwich")
library(sandwich)
coeftest(mod.hours,vcov=vcovHC)
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The lmtest library makes the coeftest command available, and the
sandwich library makes the variance-covariance matrix vcovHC available within
this. (Both libraries require installation on first use.) The coeftest command will
now present the results of mod.hours again, with the same OLS estimates as
before, the new Huber–White standard errors, and values of t and p that correspond
to the new standard errors.

Finally, we also have the option to reestimate our model using WLS. To do this,
the analyst must construct a model of the squared residuals as a way of forecasting
the heteroscedastic error variance for each observation. While there are a few ways
to do this effectively, here is the code for one plan. First, we save the squared
residuals and fit an auxiliary model of the logarithm of these squared residuals:

evolution$resid2<-mod.hours$residuals^2
weight.reg<-lm(log(resid2)~phase1*senior_c+phase1*notest_p+

female+biocred3+degr3+evol_course+certified+idsci_trans+
confident, data=evolution)

A key caveat of WLS is that all weights must be nonnegative. To guarantee this, the
code here models the logarithm of the squared residuals; therefore, the exponential
of the fitted values from this auxiliary regression serve as positive predictions of
the squared residuals. (Other solutions to this issue exist as well.) The auxiliary
regression simply includes all of the predictors from the original regression in
their linear form, but the user is not tied to this assumption. In fact, WLS offers
the BLUE under heteroscedasticity, but only if the researcher properly models the
error variance. Hence, proper specification of the auxiliary regression is essential. In
WLS, we essentially want to highly weight values with a low error variance and give
little weight to those with a high error variance. Hence, for our final WLS regression,
the weights command takes the reciprocal of the predicted values (exponentiated
to be on the original scale of the squared residuals):

wls.mod<-lm(hrs_allev~phase1*senior_c+phase1*notest_p+
female+biocred3+degr3+evol_course+certified+idsci_trans+
confident,data=evolution,
weights=I(1/exp(weight.reg$fitted.values)))

summary(wls.mod)

This presents us with a set of estimates that accounts for heteroscedasticity in the
residuals.

6.2.3 Normality

While not part of the Gauss–Markov theorem, an important assumption that we
make with linear regression models is that the disturbances are normally distributed.
If this assumption is not true, then OLS actually is still BLUE. The normality
assumption is, however, essential for our usual inferential statistics to be accurate.
Hence, we test this assumption by examining the empirical distribution of the
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Fig. 6.3 Histogram of residuals from model of hours teaching evolution

predicted residuals. An easy first place to start is to examine a histogram of
the residuals.

hist(mod.hours$residuals,xlab="Residuals",main="")

This histogram is reported in Fig. 6.3. Generally, we would like a symmetric bell
curve that is neither excessively flat nor peaked. If both skew (referring to whether
the distribution is symmetric or if the tails are even) and kurtosis (referring to the
distribution’s peakedness) are similar to a normal distribution, we may use this
figure in favor of our assumption. In this case, the residuals appear to be right-
skewed, suggesting that normality is not a safe assumption in this case.

A slightly more complex figure (albeit potentially more informative) is called
a quantile–quantile plot. In this figure, the quantiles of the empirical values of
the residuals are plotted against the quantiles of a theoretical normal distribution.
The less these quantities correspond, the less reasonable it is to assume the residuals
are distributed normally. Such a figure is constructed in R as follows:

qqnorm(mod.hours$residuals)
qqline(mod.hours$residuals,col="red")

The first line of code (qqnorm) actually creates the quantile–quantile plot. The
second line (qqline) adds a guide line to the existing plot. The complete graph is
located in Fig. 6.4. As can be seen, at lower and higher quantiles, the sample values
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Fig. 6.4 Normal quantile–quantile plot for residuals from model of hours of teaching evolution

deviate substantially from the theoretical values. Again, the assumption of normality
is questioned by this figure.

Besides these substantively focused assessments of the empirical distribution,
researchers also can use test statistics. The most commonly used test statistic in this
case is the Jarque–Bera test, which is based on the skew and kurtosis of the residuals’
empirical distribution. This test uses the null hypothesis that the residuals are
normally distributed and the alternative hypothesis that they are not.7 The tseries
library can calculate this statistic, which we install on first use:

install.packages("tseries")
library(tseries)
jarque.bera.test(mod.hours$residuals)

In our case, �2 D 191:5709, so we reject the null hypothesis and conclude that the
residuals are not normally distributed. Like diagnostics for heteroscedasticity, we
would prefer a null result since we prefer not to reject the assumption.

All three diagnostics indicate a violation of the normality assumption, so how
might we respond to this violation? In many cases, the best answer probably lies
in the next chapter on Generalized Linear Models (GLMs). Under this framework,
we can assume a wider range of distributions for the outcome variable, and we
also can transform the outcome variable through a link function. Another somewhat

7In other words, if we fail to reject the null hypothesis for a Jarque–Bera test, then we conclude
that there is not significant evidence of non-normality. Note that this is different from concluding
that we do have normality. However, this is the strongest conclusion we can draw with this test
statistic.
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similar option would be to transform the dependent variable somehow. In the case
of our running example on hours spent on evolution, our outcome variable cannot
be negative, so we might add 1 to each teacher’s response and take the logarithm
of our dependent variable. Bear in mind, though, that this has a bigger impact on
the model’s functional form (see Gujarati and Porter 2009, pp. 162–164), and we
have to assume that the disturbances of the model with a logged dependent variable
are normally distributed for inferential purposes.

6.2.4 Multicollinearity

Although it is not a statistical assumption of the linear model, we now turn to
diagnosing the presence of multicollinearity among predictors. Multicollinearity
means that a predictor is a function of one or more other predictors. If a predictor is
an exact function of other predictors, then there is perfect multicollinearity in the set
of regressors. Under perfect multicollinearity, the model cannot be estimated as is
and must be respecified. For example, if a researcher included both “year of birth”
and “age” of a survey respondent in a cross-sectional analysis, one variable would
be a perfect function of the other and therefore the model would not be estimable.

A common situation is for a predictor to have high, but not perfect, multi-
collinearity. The issue that emerges is that standard errors for regression coefficients
will start to become large. Importantly, though, OLS is still BLUE in the case of high
but imperfect multicollinearity. In other words, the large standard errors are accurate
and still reflective of the most efficient estimator that is possible. Nevertheless, it is
often a good idea to get a sense of whether multicollinearity is present in a regression
model.

The general approach for assessing multicollinearity relies on auxiliary regres-
sions of predictors. Among the summary measures of these results is the variance
inflation factor (VIF). For each predictor, the VIF gives us some idea of the
degree to which common variance among predictors increases the standard error
of the predictor’s coefficient. VIFs can take any non-negative value, and smaller
values are more desirable. A common rule of thumb is that whenever a VIF exceeds
10, it can be concluded that multicollinearity is shaping the results.8

In R, VIFs can be computed for all coefficients using the car library, installed
in Chap. 2:

library(car)
vif(mod.hours)

8A VIF of 10 means that 90 % of the variance in a predictor can be explained by the other
predictors, which in most contexts can be regarded as a large degree of common variance.
Unlike other diagnostic tests, though, this rule of thumb should not be regarded as a test statistic.
Ultimately the researcher must draw a substantive conclusion from the results.
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Table 6.2 Variance inflation
factors for predictors of hours
spent teaching evolution

Predictor VIF

Standards index 2007 1.53

Seniority (centered) 1.12

Standards � seniority 1.10

Believes there is no test 1.12

Standards � believes no test 1.63

Teacher is female 1.08

Credits earned in biology (0–2) 1.15

Science degrees (0–2) 1.11

Completed evolution class 1.17

Has normal certification 1.03

Identifies as scientist 1.12

Self-rated expertise (�1 to +2) 1.20

The VIFs calculated in this way are presented in Table 6.2. As can be seen in the
table, all of the VIFs are small, implying that multicollinearity is not a major issue
in this model. In situations where multicollinearity does emerge, though, sometimes
the best advice is to do nothing. For a discussion of how to decide whether doing
nothing is the best approach or another solution would work better, see Gujarati and
Porter (2009, pp. 342–346).

6.2.5 Outliers, Leverage, and Influential Data Points

As a final diagnostic, it is a good idea to determine whether any observations
are exerting excessive influence on the results of a linear model. If one or two
observations drive an entire result that otherwise would not emerge, then a model
including these observations may be misleading. We consider three types of
problematic data points: outliers (for which the residual is exceedingly large),
leverage points (which take a value of a predictor that is disproportionately distant
from other values), and influence points (outliers with a lot of leverage). The most
problematic of these are influence points because they have the greatest ability to
distort partial regression coefficients.

A simple diagnostic for these features of observations again is to simply examine
scatterplots of residuals, such as those reported in Figs. 6.1 and 6.2. If an observation
stands out on the predictor’s scale then it has leverage. If it stands out on the
residual scale then it is an outlier. If it stands out on both dimensions, then it is an
influence point. Neither of the figures for this model show any warning signs in this
respect. Another option for assessing these attributes for observations is to calculate
the quantities of Studentized residuals to detect outliers, hat values to detect leverage
points, and Cook’s distances to detect influential data points. The car library again
offers a simple way to view these quantities for all observations.
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Fig. 6.5 Cook’s distances, Studentized residuals, and hat values from model of hours teaching
evolution

influenceIndexPlot(mod.hours,
vars=c("Cook","Studentized","hat"),id.n=5)

The values of these three quantities are reported in Fig. 6.5, which shows Cook’s
distances, Studentized residuals, and hat values, respectively. In any of these
plots, an extreme value relative to the others indicates that an observation may
be particularly problematic. In this figure, none of the observations stand out
particularly, and none of the values of Cook’s distance are remotely close to 1
(which is a common rule-of-thumb threshold for this quantity). Hence, none of the
observations appear to be particularly problematic for this model. In an instance
where some observations do appear to exert influence on the results, the researcher
must decide whether it is reasonable to keep the observations in the analysis or if
any of them ought to be removed. Removing data from a linear model can easily be
accomplished with the subset option of lm.
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We now have considered how to fit linear models in R and how to conduct several
diagnostics to determine whether OLS presents us with the BLUE. While this is a
common model in Political Science, researchers frequently need to model limited
dependent variables in the study of politics. To address dependent variables of this
nature, we turn in the next chapter to GLMs. These models build on the linear model
framework but allow outcome variables that are bounded or categorical in nature.

6.3 Practice Problems

This set of practice problems will draw from Owsiak’s (2013) work on democrati-
zation, in which he shows that states that settle all of their international borders tend
to become more democratic. Please load the foreign library and then download a
subset of Owsiak’s data, saved in the Stata-formatted file owsiakJOP2013.dta.
This file can be downloaded from the Dataverse linked on page vii or the chapter
content linked on page 79. These are panel data that include observations for 200
countries from 1918 to 2007, with a total of 10,434 country-years forming the data.
The countries in these data change over time (just as they changed in your history
book) making this what we call an unbalanced panel. Hence, our subsequent model
includes lagged values of several variables, or values from the previous year. See
Chap. 8 for more about nested data, and Chap. 9 for more about temporal data. For
this exercise, our standard OLS tools will work well.

1. Start by using the na.omit command, described on page 81, to eliminate
missing observations from these data. Then compute the descriptive statistics
for the variables in this data set.

2. To replicate Model 2 from Owsiak (2013), estimate a linear regression with
OLS using the following specification (with variable names in parentheses): The
dependent variable is Polity score (polity2), and the predictors are an indicator
for having all borders settled (allsettle), lagged GDP (laggdpam), lagged change
in GDP (laggdpchg), lagged trade openness (lagtradeopen), lagged military
personnel (lagmilper), lagged urban population (lagupop), lagged pervious non-
democratic movement (lagsumdown), and lagged Polity score (lagpolity).

3. Plot the residuals against the fitted values.
4. Is there heteroscedasticity in the residuals? Based on scatterplots and a Breusch–

Pagan test, what do you conclude?

a. Estimate Huber–White standard errors for this model with the sandwich
library and coeftest command.

b. For bonus credit, you can reproduce Owsiak’s (2013) results exactly by
computing clustered standard errors, clustering on country (variable name:
ccode). You can do this in three steps: First, install the multiwayvcov
library. Second, define an error variance-covariance matrix using the
cluster.vcov command. Third, use that error variance-covariance matrix
as an argument in the coeftest command from the lmtest library.
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5. Determine whether multicollinearity is a concern by calculating the VIFs for the
predictors in this model.

6. Are the residuals of this model normally distributed? Use any of the discussed
methods to draw a conclusion.

7. For bonus credit, you can evaluate whether there is autocorrelation in the
residuals, as will be discussed further in Chap. 9. To to this, first install the plm
library. Second, refit your model using the plm command. (Be sure to specify
model="pooling" as an option in the command to estimate with OLS.)
Third, use the pbgtest to conduct a panel Breusch–Godfrey test to evaluate
whether there is serial correlation in the residuals. What conclusion do you draw?
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