
Chapter 11
Additional Programming Tools

As the last several chapters have shown, R offers users flexibility and opportunities
for advanced data analysis that cannot be found in many programs. In this final
chapter, we will explore R’s programming tools, which allow the user to create
code that addresses any unique problem he or she faces.

Bear in mind that many of the tools relevant to programming have already been
introduced earlier in the book. In Chap. 10, the tools for matrix algebra in R were
introduced, and many programs require matrix processing. Additionally, logical
(or Boolean) statements are essential to programming. R’s logical operators were
introduced in Chap. 2, so see Table 2.1 for a reminder of what each operator’s
function is.

The subsequent sections will introduce several other tools that are important for
programming: probability distributions, new function definition, loops, branching,
and optimization (which is particularly useful for maximum likelihood estimation).
The chapter will end with two large applied examples. The first, drawing from
Monogan (2013b), introduces object-oriented programming in R and applies several
programming tools from this chapter to finding solutions from an insoluble game
theoretic problem. The second, drawing from Signorino (1999), offers an example
of Monte Carlo analysis and more advanced maximum likelihood estimation in R.1

Together, the two applications should showcase how all of the programming tools
can come together to solve a complex problem.

Electronic supplementary material: The online version of this chapter
(doi: 10.1007/978-3-319-23446-5_11) contains supplementary material, which is available
to authorized users.
1See also: Signorino (2002) and Signorino and Yilmaz (2003).
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Table 11.1 Using probability distributions in R

Prefix Usage Suffix Distribution

p Cumulative distribution function norm Normal

d Probability density function logis Logistic

q Quantile function t t

r Random draw from distribution f F

unif Uniform

pois Poisson

exp Exponential

chisq Chi-squared

binom Binomial

11.1 Probability Distributions

R allows you to use a wide variety of distributions for four purposes. For each
distribution, R allows you to call the cumulative distribution function (CDF),
probability density function (PDF), quantile function, and random draws from the
distribution. All probability distribution commands consist of a prefix and a suffix.
Table 11.1 presents the four prefixes, and their usage, as well as the suffixes for
some commonly used probability distributions. Each distribution’s functions take
arguments unique to that probability distribution’s parameters. To see how these are
specified, use help files (e.g., ?punif, ?pexp, or ?pnorm).2

If you wanted to know the probability that a standard normal observation will be
less than 1.645, use the cumulative distribution function (CDF) command pnorm:

pnorm(1.645)

Suppose you want to draw a scalar from the standard normal distribution: to draw
a � N .0; 1/, use the random draw command rnorm:

a <- rnorm(1)

To draw a vector with ten values from a �2 distribution with four degrees of freedom,
use the random draw command:

c <- rchisq(10,df=4)

Recall from Chap. 10 that the sample command also allows us to simulate values,
whenever we provide a vector of possible values. Hence, R offers a wide array of
data simulation commands.

2Other distributions can be loaded through various packages. For example, another useful
distribution is the multivariate normal. By loading the MASS library, a user can sample from the
multivariate normal distribution with the mvrnorm command. Even more generally, the mvtnorm
package allows the user to compute multivariate normal and multivariate t probabilities, quantiles,
random deviates, and densities.
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Suppose we have a given probability, 0.9, and we want to know the value of a �2

distribution with four degrees of freedom at which the probability of being less than
or equal to that value is 0.9. This calls for the quantile function:

qchisq(.9,df=4)

We can calculate the probability of a certain value from the probability mass
function (PMF) for a discrete distribution. Of a Poisson distribution with intensity
parameter 9, what is the probability of a count of 5?

dpois(5,lambda=9)

Although usually of less interest, for a continuous distribution, we can calculate the
value of the probability density function (PDF) of a particular value. This has no
inherent meaning, but occasionally is required. For a normal distribution with mean
4 and standard deviation 2, the density at the value 1 is given by:

dnorm(1,mean=4,sd=2)

11.2 Functions

R allows you to create your own functions with the function command. The
function command uses the basic following syntax:

function.name <- function(INPUTS){BODY}

Notice that the function command first expects the inputs to be listed in round
parentheses, while the body of the function is listed in curly braces. As can be
seen, there is little constraint in what the user chooses to put into the function, so a
function can be crafted to accomplish whatever the user would like.

For example, suppose we were interested in the equation y D 2 C 1
x2 . We could

define this function easily in R. All we have to do is specify that our input variable
is x and our body is the right-hand side of the equation. This will create a function
that returns values for y. We define our function, named first.fun, as follows:

first.fun<-function(x){
y<-2+x^{-2}
return(y)
}

Although broken-up across a few lines, this is all one big command, as the curly
braces ({}) span multiple lines. With the function command, we begin by
declaring that x is the name of our one input, based on the fact that our equation
of interest has x as the name of the input variable. Next, inside the curly braces,
we assign the output y as being the exact function of x that we are interested in.
As a last step before closing our curly braces, we use the return command,
which tells the function what the output result is after it is called. The return
command is useful when determining function output for a couple of reasons: First,
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Fig. 11.1 Plot of the function y D 2 C 1
x2

if we define multiple objects inside of a command, this allows us to specify what
should be printed in the output versus what was strictly internal to the function.
Second, return allows us to report a list of items as an output, if we would like.
Alternatively, we could have substituted the command invisible, which works
the same way as return, except that it does not print the output on the screen, but
simply stores the output.

With this function, if we want to know what value y takes when x D 1, we need
only type: first.fun(1). Since we used return instead of invisible, the
printout simply reads:

[1] 3

Of course, the result that y D 3 here can easily be verified by hand. Similarly, we
know that if x D 3, then y D 2 1

9
. To verify this fact, we can type: first.fun(3).

R will give us the corresponding printout:

[1] 2.111111

As a final task with this function, we can plot what it looks like by inserting a vector
of x values into it. Consider the code:

my.x<-seq(-4,4,by=.01)
plot(y=first.fun(my.x),x=my.x,type="l",

xlab="x",ylab="y",ylim=c(0,10))

This will produce the graph featured in Fig. 11.1.
As a more complicated example, consider a function that we will use as part

of a larger exercise in Sect. 11.6. The following is an expected utility function for
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a political party in a model of how parties will choose an issue position when
competing in sequential elections (Monogan 2013b, Eq. (6)):

EUA.�A; �D/ D �f�.m1 � �A/2 C .m1 � �D/2 C Vg (11.1)

Cı�f�.m2 � �A/2 C .m2 � �D/2g

In this equation, the expected utility to a political party (party A) is the sum of
two cumulative logistic distribution functions (the functions �), with the second
downweighted by a discount term (0 � ı � 1). Utility depends on the positions
taken by party A and party D (�A and �D), a valence advantage to party A (V), and
the issue position of the median voter in the first and second election (m1 and m2).
This is now a function of several variables, and it requires us to use the CDF of the
logistic distribution. To input this function in R, we type:

Quadratic.A<-function(m.1,m.2,p,delta,theta.A,theta.D){
util.a<-plogis(-(m.1-theta.A)^2+

(m.1-theta.D)^2+p)+
delta*plogis(-(m.2-theta.A)^2+
(m.2-theta.D)^2)

return(util.a)
}

The plogis command computes each relevant probability from the logistic CDF,
and all of the other terms are named self-evidently from Eq. (11.1) (except that p
refers to the valence term V). Although this function was more complicated, all we
had to do is make sure we named every input and copied Eq. (11.1) entirely into the
body of the function.

This more complex function, Quadratic.A, still behaves like our simple
function. For instance, we could go ahead and supply a numeric value for every
argument of the function like this:

Quadratic.A(m.1=.7,m.2=-.1,p=.1,delta=0,theta.A=.7,theta.D=.7)

Doing so prints an output of:

[1] 0.5249792

Hence, we now know that 0.52 is the expected utility to party A when the terms
take on these numeric values. In isolation, this output does not mean much. In game
theory, we are typically interested in how party A (or any player) can maximize its
utility. Hence, if we take all of the parameters as fixed at the above values, except
we allow party A to choose �A as it sees fit, we can visualize what A’s best choice
is. The following code produces the graph seen in Fig. 11.2:

positions<-seq(-1,1,.01)
util.A<-Quadratic.A(m.1=.7,m.2=-.1,p=.1,delta=0,

theta.A=positions,theta.D=.7)
plot(x=positions,y=util.A,type="l",

xlab="Party A’s Position",ylab="Utility")
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Fig. 11.2 Plot of an advantaged party’s expected utility over two elections contingent on issue
position

In the first line, we generate a range of positions party A may choose for �A. On the
second line, we calculate a vector of expected utilities to party A at each of the issue
positions we consider and setting the other parameters at their previously mentioned
value. Lastly, we use the plot function to draw a line graph of these utilities.
It turns out that the maximum of this function is at �A D 0:7, so our previously
mentioned utility of 0.52 is the best party A can do after all.

11.3 Loops

Loops are easy to write in R and can be used to repeat calculations that are either
identical or vary only by a few parameters. The basic structure for a loop using the
for command is:

for (i in 1:M) {COMMANDS}

In this case, M is the number of times the commands will be executed. R also
supports loops using the while command which follow a similar command
structure:

j <- 1
while(j < M) {

COMMANDS
j <- j + 1
}
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Whether a for loop or a while loop works best can vary by situation, so the
user must use his or her own judgment when choosing a setup. In general, while
loops tend to be better for problems where you would have to do something until
a criterion is met (such as a convergence criterion), and for loops are generally
better for things you want to repeat a fixed number of times. Under either structure,
R will allow a wide array of commands to be included in a loop; the user’s task is
how to manage the loop’s input and output efficiently.

As a simple demonstration of how loops work, consider an example that illus-
trates the law of large numbers. To do this, we can simulate random observations
from the standard normal distribution (easy with the rnorm) command. Since the
standard normal has a population mean of zero, we would expect the sample mean
of our simulated values to be near zero. As our sample size gets larger, the sample
mean should generally be closer to the population mean of zero. A loop is perfect
for this exercise: We want to repeat the calculations of simulating from the standard
normal distribution and then taking the mean of the simulations. What differs from
iteration to iteration is that we want our sample size to increase.

We can set this up easily with the following code:

set.seed(271828183)
store <- matrix(NA,1000,1)
for (i in 1:1000){

a <- rnorm(i)
store[i] <- mean(a)
}

plot(store, type="h",ylab="Sample Mean",
xlab="Number of Observations")

abline(h=0,col=’red’,lwd=2)

In the first line of this code, we call the command set.seed, in order to make our
simulation experiment replicable. When R randomly draws numbers in any way,
it uses a pseudo-random number generator, which is a list of 2.1 billion numbers
that resemble random draws.3 By choosing any number from 1 to 2,147,483,647,
others should be able to reproduce our results by using the same numbers in their
simulation. Our choice of 271,828,183 was largely arbitrary. In the second line of
code, we create a blank vector named store of length 1000. This vector is where
we will store our output from the loop. In the next four lines of code, we define our
loop. The loop runs from 1 to 1000, with the index of each iteration being named
i. In each iteration, our sample size is simply the value of i, so the first iteration
simulates one observation, and the thousandth iteration simulates 1000 observations.
Hence, the sample size increases with each pass of the loop. In each pass of the
program, R samples from a N .0; 1/ distribution and then takes the mean of that
sample. Each mean is recorded in the ith cell of store. After the loop closes, we
plot our sample means against the sample size and use abline to draw a red line

3Formally, this list makes-up draws from a standard uniform distribution, which is then converted
to whatever distribution we want using a quantile function.
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Fig. 11.3 The law of large numbers and loops in action

at the population mean of zero. The result is shown in Fig. 11.3. Indeed, our plot
shows the mean of the sample converging to the true mean of zero as the sample
size increases.

Loops are necessary for many types of programs, such as if you want to do a
Monte Carlo analysis. In some (but not all) cases, however, loops can be slower than
vectorized versions of commands. It may be worth trying the apply command, for
instance, if it can accomplish the same goal as a loop. Which is faster often depends
on the complexity of the function and the memory overhead for calculating and
storing results. So if one approach is too slow or too complicated for your computer
to handle, it may be worth trying the other.

11.4 Branching

R users have the option of executing commands conditional on a Boolean statement
using the if command. This can be handy whenever the user only wants to
implement something for certain cases, or if different data types should be treated
differently. The basic syntax of an if statement is:

if (logical_expression) {
expression_1
...

}
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In this framework, the logical_expression is some Boolean statement, and
expression_1 represents whatever commands the user would like to apply
whenever the logical expression is true.

As a toy example of how this works, suppose we wanted to simulate a process
in which we draw two numbers from 1 to 10 (with repeated numbers allowed). The
sample command allows us to simulate this process easily, and if we embed it in a
for loop we can repeat the experiment several times (say, 100 trials). If we wanted
to know in how many trials both numbers came up even, we could determine this
with an if statement. Our code comes together like this:

even.count<-0
for (i in 1:100){

a<-sample(c(1:10),2,replace=TRUE)
if (sum(a%%2)==0){

even.count<-even.count+1
}

}
even.count

The first line creates a scalar named even.count and sets it at zero. The next
line starts the loop that gives us 100 trials. The third line creates our sample of
two numbers from 1 to 10, and names the sample a. The fourth line defines our
if statement: We use the modulo function to find the remainder when each term
in our sample is divided by two.4 If the remainder for every term is zero, then all
numbers are even and the sum is zero. In that case, we have drawn a sample in which
numbers are even. Hence, when sum(a%%2)==0 is true, then we want to add one
to a running tally of how many samples of two even numbers we have. Therefore
the fifth line of our code adds to our tally, but only in cases that meet our condition.
(Notice that a recursive assignment for even.count is acceptable. R will take the
old value, add one to it, and update the value that is saved.) Try this experiment
yourself. As a hint, probability theory would say that 25 % of trials will yield two
even numbers, on average.

Users also may make if. . .else branching statements such that one set of
operations applies whenever an expression is true, and another set of operations
applies when the expression is false. This basic structure looks like this:

if (logical_expression) {
expression_1
...

} else {
expression_2
...

}

4Recall from Chap. 1 that the modulo function gives us the remainder from division.
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In this case, expression_1 will only be applied in cases when the logical
expression is true, and expression_2 will only be applied in cases when the
logical expression is false.

Finally, users have the option of branching even further. With cases for which
the first logical expression is false, thereby calling the expressions following else,
these cases can be branched again with another if. . .else statement. In fact, the
programmer can nest as many if. . .else statements as he or she would like. To
illustrate this, consider again the case when we simulate two random numbers from
1 to 10. Imagine this time we want to know not only how often we draw two even
numbers, but also how often we draw two odd numbers and how often we draw
one even number and one odd. One way we could address this is by keeping three
running tallies (below named even.count, odd.count, and split.count)
and adding additional branching statements:

even.count<-0
odd.count<-0
split.count<-0
for (i in 1:100){

a<-sample(c(1:10),2,replace=TRUE)
if (sum(a%%2)==0){

even.count<-even.count+1
} else if (sum(a%%2)==2){

odd.count<-odd.count+1
} else{

split.count<-split.count+1
}

}
even.count
odd.count
split.count

Our for loop starts the same as before, but after our first if statement, we follow
with an else statement. Any sample that did not consist of two even numbers is
now subject to the commands under else, and the first command under else
is. . . another if statement. This next if statement observes that if both terms in the
sample are odd, then the sum of the remainders after dividing by two will be two.
Hence, all samples with two odd entries now are subject to the commands of this
new if statement, where we see that our odd.count index will be increased by
one. Lastly, we have a final else statement—all samples that did not consist of two
even or two odd numbers will now be subject to this final set of commands. Since
these samples consist of one even and one odd number, the split.count index
will be increased by one. Try this out yourself. Again, as a hint, probability theory
indicates that on average 50 % of samples should consist of one even and one odd
number, 25 % should consist of two even numbers, and 25 % should consist of two
odd numbers.
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11.5 Optimization and Maximum Likelihood Estimation

The optim command in R allows users to find the minimum or maximum of
a function using a variety of numerical optimization methods.5 In other words,
optim has several algorithms that efficiently search for the highest or lowest value
of a function, several of which allow the user to constrain the possible values of input
variables. While there are many uses of optimization in Political Science research,
the most common is maximum likelihood estimation (MLE).6

The optim command, paired with R’s simple function definition (discussed in
Sect. 11.2), allows R to use readily the full flexibility of MLE. If a canned model
such as those described in Chaps. 1–7 does not suit your research, and you want to
derive your own estimator using MLE, then R can accommodate you.

To illustrate how programming an MLE works in R, consider a simple example—
the estimator for the probability parameter (�) in a binomial distribution. By way
of reminder, the motivation behind a binomial distribution is that we are interested
in some trial that takes on one of two outcomes each time, and we repeat that trial
multiple times. The simplest example is that we flip a coin, which will come up
heads or tails on each flip. Using this example, suppose our data consist of 100 coin
flips, and 43 of the flips came up heads. What is the MLE estimate of the probability
of heads? By intuition or derivation, you should know that O� D 43

100
D 0:43. We still

will estimate this probability in R to practice for more complicated cases, though.
To more formally define our problem, a binomial distribution is motivated by

completing n Bernoulli trials, or trials that can end in either a success or a failure.
We record the number of times we succeed in our n trials as y. Additionally, by
definition our probability parameter (�) must be greater than or equal to zero and
less than or equal to one. Our likelihood function is:

L.�jn; y/ D �y.1 � �/n�y (11.2)

For ease of calculation and computation, we can obtain an equivalent result by
maximizing our log-likelihood function:

`.�jn; y/ D log L.�jn; y/ D y � log.�/ C .n � y/ log.1 � �/ (11.3)

We can easily define our log-likelihood function in R with the function
command:

binomial.loglikelihood <- function(prob, y, n) {
loglikelihood <- y*log(prob) + (n-y)*log(1-prob)
return(loglikelihood)

}

5See Nocedal and Wright (1999) for a review of how these techniques work.
6When using maximum likelihood estimation, as an alternative to using optim is to use the
maxLik package. This can be useful for maximum likelihood specifically, though optim has
the advantage of being able to maximize or minimize other kinds of functions as well, when
appropriate.
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Now to estimate O� , we need R to find the value of � that maximizes the log-
likelihood function given the data. (We call this term prob in the code to avoid
confusion with R’s use of the command pi to store the geometric constant.) We can
do this with the optim command. We compute:

test <- optim(c(.5), # starting value for prob
binomial.loglikelihood, # the log-likelihood function
method="BFGS", # optimization method
hessian=TRUE, # return numerical Hessian
control=list(fnscale=-1), # maximize instead of minimize
y=43, n=100) # the data

print(test)

Remember that everything after a pound sign (#) is a comment that R ignores,
so these notes serve to describe each line of code. We always start with a vector
of starting values with all parameters to estimate (just � in this case), name the
log-likelihood function we defined elsewhere, choose our optimization method
(Broyden-Fletcher-Goldfarb-Shanno is often a good choice), and indicate that we
want R to return the numerical Hessian so we can compute standard errors later.
The fifth line of code is vitally important: By default optim is a minimizer, so we
have to specify fnscale=-1 to make it a maximizer. Any time you use optim
for maximum likelihood estimation, this line will have to be included. On the sixth
line, we list our data. Often, we will call a matrix or data frame here, but in this case
we need only list the values of y and n.

Our output from print(test) looks like the following:

$par
[1] 0.4300015

$value
[1] -68.33149

$counts
function gradient

13 4

$convergence
[1] 0

$message
NULL

$hessian
[,1]

[1,] -407.9996
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To interpret our output: The par term lists the estimates of the parameters, so our
estimate is O� D 0:43 (as we anticipated). The log-likelihood for our final solution
is �68:33149, and is presented under value. The term counts tells us how often
optim had to call the function and the gradient. The term convergence will
be coded 0 if the optimization was successfully completed; any other value is an
error code. The message item may return other necessary information from the
optimizer. Lastly, the hessian is our matrix of second derivatives of the log-
likelihood function. With only one parameter here, it is a simple 1 � 1 matrix. In
general, if the user wants standard errors from an estimated maximum likelihood
model, the following line will return them:

sqrt(diag(solve(-test$hessian)))

This line is based on the formula for standard errors in maximum likelihood
estimation. All the user will ever need to change is to replace the word test with
the name associated with the call to optim. In this case, R reports that the standard
error is SE. O�/ D 0:0495074.

Finally, in this case in which we have a single parameter of interest, we have
the option of using our defined log-likelihood function to draw a picture of the
optimization problem. Consider the following code:

ruler <- seq(0,1,0.01)
loglikelihood <- binomial.loglikelihood(ruler, y=43, n=100)
plot(ruler, loglikelihood, type="l", lwd=2, col="blue",

xlab=expression(pi),ylab="Log-Likelihood",ylim=c(-300,-70),
main="Log-Likelihood for Binomial Model")

abline(v=.43)

The first line defines all values that � possibly can take. The second line inserts into
the log-likelihood function the vector of possible values of � , plus the true values of
y and n. The third through fifth lines are a call to plot that gives us a line graph of
the log-likelihood function. The last line draws a vertical line at our estimated value
for O� . The result of this is shown in Fig. 11.4. While log-likelihood functions with
many parameters usually cannot be visualized, this does remind us that the function
we have defined can still be used for purposes other than optimization, if need be.

11.6 Object-Oriented Programming

This section takes a turn towards the advanced, by presenting an application in
object-oriented programming. While this application does synthesize many of the
other tools discussed in this chapter, novice users are less likely to use object-
oriented programming than the features discussed so far. That said, for advanced
uses object-oriented work can be beneficial.
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Fig. 11.4 Binomial log-likelihood across all possible values of probability parameter � when the
data consist of 43 successes in 100 trials

As was mentioned in Chap. 1, R is an object-oriented environment. This means
that you, as a researcher, have the opportunity to use sophisticated programming
tools in your own research. In object-oriented programming, you create a class of
item that has a variety of features. You then can create items within the class (called
objects or variables) that will have unique features. In R, you can create classes
from the object systems S3 or S4.

To illustrate, a “linear model” is a class of objects created by the lm command. It
is an S3 class. Back in Chap. 6, we estimated a model that we named mod.hours,
which was an object of the linear model class. This object had features including
coefficients, residuals, and cov.unscaled. In all S3-class objects,
we can call a feature by writing the object name, the dollar sign, and the name
of the feature we want. For example, mod.hours$coefficients would list
the vector of coefficients from that model. (S4 uses slightly different referencing,
described later.) When you define your own objects, you may use either S3 or S4
object system. The following example saves our outputs in the S3 object system,
though footnotes illustrate how you could use the S4 object system if you preferred.
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11.6.1 Simulating a Game

As a working example of object-oriented programming, we consider a somewhat
simplified version of the work presented in Monogan (2013b).7 We touched on this
model in Sect. 11.2, introducing one actor’s utility function. In brief, this article
develops a game theoretic model of how two parties will choose a position on
an issue according to the spatial proximity model of politics. The spatial model,
described somewhat in Chap. 7, assumes that issue positions can be represented as
locations in space. Voters choose parties that take issue positions closer to their own
position in issue space, so parties try to maximize votes by strategically choosing
their issue positions.

In the game we consider, the substantive motivation is the fact that public opinion
shows strong trends on certain policy issues because of demographic trends or
generational differences. Issues like this include environmental policy, immigration
policy, and protections for gay rights. We assume that two parties will compete in
two elections. However, to consider the fact that parties should be mindful of the
future and may be held to account for past issue positions, the position they take in
the first election is the position they are stuck with in the second election. We also
assume that the issue position of the median voter changes from one election to the
next in a way that parties anticipate, since on these issues public opinion trends are
often clear.

Another feature is that one party has an advantage in the first election (due
to incumbency or some other factor), so for this reason the players are party A
(a party with a non-issue valence advantage in the first election) and party D
(a disadvantaged party). The second election is assumed to be less valuable than
the first, because the reward is farther away. Finally, voters also consider factors
unknown to the parties, so the outcome of the election is probabilistic rather than
certain. In this game, then, parties try to maximize their probability of winning each
of the two elections. How do they position themselves on an issue with changing
public opinion?

The tricky feature of this game is that it cannot be solved algebraically (Monogan
2013b, p. 288). Hence, we turn to R to help us find solutions through simulation.
The first thing we need to do is clean up and define the expected utility functions for
parties A and D:

rm(list=ls())
Quadratic.A<-function(m.1,m.2,p,delta,theta.A,theta.D){

util.a<-plogis(-(m.1-theta.A)^2+
(m.1-theta.D)^2+p)+

delta*plogis(-(m.2-theta.A)^2+

7To see the full original version of the program, consult http://hdl.handle.net/1902.1/16781. Note
that here we use the S3 object family, but the original code uses the S4 family. The original
program also considers alternative voter utility functions besides the quadratic proximity function
listed here, such as an absolute proximity function and the directional model of voter utility
(Rabinowitz and Macdonald 1989).

http://hdl.handle.net/1902.1/16781
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(m.2-theta.D)^2)
return(util.a)
}

Quadratic.D<-function(m.1,m.2,p,delta,theta.A,theta.D){
util.d<-(1-plogis(-(m.1-theta.A)^2+

(m.1-theta.D)^2+p))+
delta*(1-plogis(-(m.2-theta.A)^2+
(m.2-theta.D)^2))

return(util.d)
}

We already considered the function Quadratic.A in Sect. 11.2, and it is formally
defined by Eq. (11.1). Quadratic.D is similar in structure, but yields differing
utilities. Both of these functions will be used in the simulations we do.

Our next step is to define a long function that uses our utility functions to run a
simulation and produces an output formatted the way we want.8 All of the following
code is one big function definition. Comments after pound signs (#) again are
included to help distinguish each party of the function body. The function, called
simulate, simulates our game of interest and saves our results in an object of
class game.simulation:

simulate<-function(v,delta,m.2,m.1=0.7,theta=seq(-1,1,.1)){

#define internal parameters, matrices, and vectors
precision<-length(theta)
outcomeA<-matrix(NA,precision,precision)
outcomeD<-matrix(NA,precision,precision)
bestResponseA<-rep(NA,precision)
bestResponseD<-rep(NA,precision)
equilibriumA<- ’NA’
equilibriumD<- ’NA’

#matrix attributes
rownames(outcomeA)<-colnames(outcomeA)<-rownames(outcomeD)<-

colnames(outcomeD)<-names(bestResponseA)<-
names(bestResponseD)<-theta

#fill-in the utilities for all strategies for party A
for (i in 1:precision){

for (j in 1:precision){
outcomeA[i,j]<-Quadratic.A(m.1,m.2,v,delta,

theta[i],theta[j])
}

8If you preferred to use the S4 object system for this exercise instead, the next thing we
would need to do is define the object class before defining the function. If we wanted
to call our object class simulation, we would type: setClass("simulation",
representation(outcomeA="matrix", outcomeD="matrix",
bestResponseA="numeric", bestResponseD="numeric",
equilibriumA="character", equilibriumD="character")). The S3 object
system does not require this step, as we will see when we create objects of our self-defined
game.simulation class.
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}

#utilities for party D
for (i in 1:precision){

for (j in 1:precision){
outcomeD[i,j]<-Quadratic.D(m.1,m.2,v,delta,

theta[i],theta[j])
}

}

#best responses for party A
for (i in 1:precision){

bestResponseA[i]<-which.max(outcomeA[,i])
}

#best responses for party D
for (i in 1:precision){

bestResponseD[i]<-which.max(outcomeD[i,])
}

#find the equilibria
for (i in 1:precision){

if (bestResponseD[bestResponseA[i]]==i){
equilibriumA<-dimnames(outcomeA)[[1]][

bestResponseA[i]]
equilibriumD<-dimnames(outcomeD)[[2]][

bestResponseD[bestResponseA[i]]]
}

}

#save the output
result<-list(outcomeA=outcomeA,outcomeD=outcomeD,

bestResponseA=bestResponseA,bestResponseD=bestResponseD,
equilibriumA=equilibriumA,equilibriumD=equilibriumD)

class(result)<-"game.simulation"
invisible(result)

}

As a general tip, when writing a long function, it is best to test code outside
of the function wrapper. For bonus points and to get a full sense of this code,
you may want to break this function into its components and see how each piece
works. As the comments throughout show, each set of commands does something
we normally might do in a function. Notice that when the arguments are defined,
both m.1 and theta are given default values. This means that in future uses, if we
do not specify the values of these inputs, the function will use these defaults, but if
we do specify them, then the defaults will be overridden. Turning to the arguments
within the function, it starts off by defining internal parameters and setting their
attributes. Every set of commands thereafter is a loop within a loop to repeat certain
commands and fill output vectors and matrices.

The key addition here that is unique to anything discussed before is in the
definition of the result term at the end of the function. Notice that in doing this,
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we first define the output as a list, in which each component is named. In this
case, we already named our objects the same as the way we want to label them
in the output list, but that may not always be the case.9 We then use the class
command to declare that our output is of the game.simulation class, a concept
we are now creating. The class command formats this as an object in the S3
family. By typing invisible(result) at the end of the function, we know that
our function will return this game.simulation-class object.10

Now that this function is defined, we can put it to use. Referring to the terms
in Eq. (11.1), suppose that V D 0:1, ı D 0, m1 D 0:7, and m2 D �0:1. In the
code below, we create a new object called treatment.1 using the simulate
function when the parameters take these values, and then we ask R to print the
output:

treatment.1<-simulate(v=0.1,delta=0.0,m.2=-0.1)
treatment.1

Notice that we did not specify m.1 because 0.7 already is the default value for
that parameter. The output from the printout of treatment.1 is too lengthy to
reproduce here, but on your own screen you will see that treatment.1 is an
object of the game.simulation class, and the printout reports the values for
each attribute.

If we are only interested in a particular feature from this result, we can ask R to
return only the value of a specific slot. For an S3 object, which is how we saved our
result, we can call an attribute by naming the object, using the $ symbol, and then
naming the attribute we want to use. (This contrasts from S4 objects, which use the
@ symbol to call slots.) For example, if we only wanted to see what the equilibrium
choices for parties A and D were, we could simply type:

treatment.1$equilibriumA
treatment.1$equilibriumD

Each of these commands returns the same output:

[1] "0.7"

So, substantively, we can conclude that the equilibrium for the game under these
parameters is �A D �D D 0:7, which is the ideal point of the median voter in the first

9For example, in the phrase outcomeA=outcomeA, the term to the left of the equals sign states
that this term in the list will be named outcomeA, and the term to the right calls the object of this
name from the function to fill this spot.
10The code would differ slightly for the S4 object system. If we defined our simulation
class as the earlier footnote describes, here we would replace the definition of
result as follows: result<-new("simulation",outcomeA=outcomeA,
outcomeD=outcomeD,bestResponseA=bestResponseA,
bestResponseD=bestResponseD, equilibriumA=equilibriumA,
equilibriumD=equilibriumD). Replacing the list command with the new command
assigns the output to our simulation class and fills the various slots all in one step. This means
we can skip the extra step of using the class command, which we needed when using the S3
system.
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election. Substantively, this should make sense because setting ı D 0 is a special
case when the parties are not at all concerned about winning the second election, so
they position themselves strictly for the first election.11

To draw a contrast, what if we conducted a second simulation, but this time
increased the value of ı to 0.1? We also could use finer-grained values of the
positions parties could take, establishing their position out to the hundredths decimal
place, rather than tenths. We could do this as follows:

treatment.2<-simulate(v=0.1,delta=0.1,m.2=-0.1,
theta=seq(-1,1,.01))

treatment.2$equilibriumA
treatment.2$equilibriumD

We accomplished the finer precision by substituting our own vector in for theta.
Our output values of the two equilibrium slots are again the same:

[1] "0.63"

So we know under this second treatment, the equilibrium for the game is �A D �D D
0:63. Substantively, what happened here is we increased the value of winning the
second election to the parties. As a result, the parties moved their issue position a
little closer to the median voter’s issue preference in the second election.

11.7 Monte Carlo Analysis: An Applied Example

As an applied example that synthesizes several of the tools developed in this
chapter, we now conduct a Monte Carlo analysis. The basic logic of Monte Carlo
analysis is that the researcher generates data knowing the true population model.
The researcher then asks whether a certain method’s sample estimates have good
properties, given what the population quantities are. Common treatments in a
Monte Carlo experiment include: choice of estimator, sample size, distribution of
predictors, variance of errors, and whether the model has the right functional form
(e.g., ignoring a nonlinear relationship or omitting a predictor). By trying various
treatments, a user can get a comparative sense of how well an estimator works.

In this case, we will introduce Signorino’s (1999) strategic multinomial probit
model as the estimator we will use in our Monte Carlo experiment. The idea behind
this approach is that, when a recurring political situation can be represented with
a game (such as militarized international disputes), we can develop an empirical
model of the outcomes that can occur (such as war) based on the strategy of the
game. Each possible outcome has a utility function for each player, whether the
player be an individual, a country, or another actor. The utility represents how much

11If we had instead saved treatment.1 as an S4 simulation object as the
prior footnotes described, the command to call a specific attribute would instead be:
treatment.1@equilibriumA.
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U1(∼A)+

U1(SQ)

α1∼A

U2(∼D)+ α2∼D U2(D)+α2D

U1(C), U2(C) U1(W), U2(W)

U1(A) + α1A

1

2

Fig. 11.5 Strategic deterrence model

benefit the player gets from the outcome. In this setup, we use observable predictors
to model the utilities for each possible outcome. This kind of model is interesting
because the population data-generating process typically has nonlinearities in it that
are not captured by standard approaches. Hence, we will have to program our own
likelihood function and use optim to estimate it.12

To motivate how the strategic multinomial probit is set up, consider a substantive
model of behavior between two nations, an aggressor (1) and a target (2). This
is a two-stage game: First, the aggressor decides whether to attack (A) or not
(�A); then, the target decides whether to defend (D) or not (�D). Three observable
consequences could occur: if the aggressor decides not to attack, the status quo
holds; if the aggressor attacks, the target may choose to capitulate; finally, if
the target defends, we have war. The game tree is presented in Fig. 11.5. At the
end of each branch are the utilities to players (1) and (2) for status quo (SQ),
capitulation (C), and war (W), respectively. We make the assumption that these
players are rational and therefore choose the actions that maximize the resulting
payoff. For example, if the target is weak, the payoff of war U2.W/ would be terribly
negative, and probably lower than the payoff for capitulation U2.C/. If the aggressor
knows this, it can deduce that in the case of attack, the target would capitulate. The
aggressor therefore would know that if it chooses to attack, it will receive the payoff
U1.C/ (and not U1.W/). If the payoff of capitulation U1.C/ is bigger than the payoff
of the status quo U1.SQ/ for the aggressor, the rational decision is to attack (and the
target’s rational decision is to capitulate). Of course, the goal is to get a sense of
what will happen as circumstances change across different dyads of nations.

In general, we assume the utility functions respond to observable specific
circumstances (the value of the disputed resources, the expected diplomatic price
due to sanctions in case of aggression, the military might, and so forth). We

12Readers interested in doing research like this in their own work should read about the games
package, which was developed to estimate this kind of model.
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will also assume that the utilities for each country’s choice are stochastic. This
introduces uncertainty into our payoff model, representing the fact that this model is
incomplete, and probably excludes some relevant parameters from the evaluation. In
this exercise, we will consider only four predictors Xi to model the utility functions,
and assume that the payoffs are linear in these variables.

In particular, we consider the following parametric form for the payoffs:

U1.SQ/ D 0

U1.C/ D X1ˇ1

U1.W/ D X2ˇ2 (11.4)

U2.C/ D 0

U2.W/ D X3ˇ3 C X4ˇ4

˛ � N .0; 0:5/

Each nation makes its choice based on which decision will give it a bigger utility.
This is based on the known information, plus an unknown private disturbance (˛) for
each choice. This private disturbance adds a random element to actors’ decisions.
We as researchers can look at past conflicts, measure the predictors (X), observe
the outcome, and would like to infer: How important are X1, X2, X3, and X4 in the
behavior of nation-dyads? We have to determine this based on whether each data
point resulted in status quo, capitulation, or war.

11.7.1 Strategic Deterrence Log-Likelihood Function

We can determine estimates of each Ǒ using maximum likelihood estimation. First,
we have to determine the probability (p) the target (2) will defend if attacked:

p D P.D/ D P.U2.D/ C ˛2D > U2.� D/ C ˛2�D/

D P.U2.D/ � U2.� D/ > ˛2�D � ˛2D/ (11.5)

D ˚.X3ˇ3 C X4ˇ4/

Where ˚ is the cumulative distribution function for a standard normal distribution.
If we know p, we can determine the probability (q) that the aggressor (1) will attack:

q D P.A/ D P.U1.A/ C ˛1A > Ua.� A/ C ˛1�A/

D P.U1.A/ � U1.� A/ > ˛1�A � ˛1A/ (11.6)

D ˚.pX2ˇ2 C .1 � p/X1ˇ1/

Notice that p is in the equation for q. This nonlinear feature of the model is not
accommodated by standard canned models.
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Knowing the formulae for p and q, we know the probabilities of status quo,
capitulation, and war. Therefore, the likelihood function is simply the product of
the probabilities of each event, raised to a dummy of whether the event happened,
multiplied across all observations:

L.ˇjy; X/ D
nY

iD1

.1 � q/DSQ � .q.1 � p//DC � .pq/DW (11.7)

Where DSQ, DC, and DW are dummy variables equal to 1 if the case is status quo,
capitulation, or war, respectively, and 0 otherwise. The log-likelihood function is:

`.ˇjy; X/ D
nX

iD1

DSQ log.1 � q/ C DC log q.1 � p/ C DW log.pq/ (11.8)

We are now ready to begin programming this into R. We begin by cleaning up and
then defining our log-likelihood function as llik, which again includes comments
to describe parts of the function’s body:

rm(list=ls())

llik=function(B,X,Y) {
#Separate data matrices to individual variables:
sq=as.matrix(Y[,1])
cap=as.matrix(Y[,2])
war=as.matrix(Y[,3])
X13=as.matrix(X[,1])
X14=as.matrix(X[,2])
X24=as.matrix(X[,3:4])

#Separate coefficients for each equation:
B13=as.matrix(B[1])
B14=as.matrix(B[2])
B24=as.matrix(B[3:4])

#Define utilities as variables times coefficients:
U13=X13 %*% B13
U14=X14 %*% B14
U24=X24 %*% B24

#Compute probability 2 will fight (P4) or not (P3):
P4=pnorm(U24)
P3=1-P4

#Compute probability 1 will attack (P2) or not (P1):
P2=pnorm((P3*U13+P4*U14))
P1=1-P2

#Define and return log-likelihood function:
lnpsq=log(P1)
lnpcap=log(P2*P3)
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lnpwar=log(P2*P4)
llik=sq*lnpsq+cap*lnpcap+war*lnpwar
return(sum(llik))

}

While substantially longer than the likelihood function we defined in Sect. 11.5, the
idea is the same. The function still accepts parameter values, independent variables,
and dependent variables, and it still returns a log-likelihood value. With a more
complex model, though, the function needs to be broken into component steps.
First, our data are now matrices, so the first batch of code separates the variables
by equation from the model. Second, our parameters are all coefficients stored in
the argument B, so we need to separate the coefficients by equation from the model.
Third, we matrix multiply the variables by the coefficients to create the three utility
terms. Fourth, we use that information to compute the probabilities that the target
will defend or not. Fifth, we use the utilities, plus the probability of the target’s
actions, to determine the probability the aggressor will attack or not. Lastly, the
probabilities of all outcomes are used to create the log-likelihood function.

11.7.2 Evaluating the Estimator

Now that we have defined our likelihood function, we can use it to simulate data and
fit the model over our simulated data. With any Monte Carlo experiment, we need
to start by defining the number of experiments we will run for a given treatment
and the number of simulated data points in each experiment. We also need to define
empty spaces for the outputs of each experiment. We type:

set.seed(3141593)
i<-100 #number of experiments
n<-1000 #number of cases per experiment
beta.qre<-matrix(NA,i,4)
stder.qre<-matrix(NA,i,4)

We start by using set.seed to make our Monte Carlo results more replicable.
Here we let i be our number of experiments, which we set to be 100. (Though
normally we might prefer a bigger number.) We use n as our number of cases. This
allows us to define beta.qre and stder.qre as the output matrices for our
estimates of the coefficients and standard errors from our models, respectively.

With this in place, we can now run a big loop that will repeatedly simulate a
dataset, estimate our strategic multinomial probit model, and then record the results.
The loop is as follows:

for(j in 1:i){
#Simulate Causal Variables
x1<-rnorm(n)
x2<-rnorm(n)
x3<-rnorm(n)
x4<-rnorm(n)
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#Create Utilities and Error Terms
u11<-rnorm(n,sd=sqrt(.5))
u13<-x1
u23<-rnorm(n,sd=sqrt(.5))
u14<-x2
u24<-x3+x4+rnorm(n,sd=sqrt(.5))
pR<-pnorm(x3+x4)
uA<-(pR*u14)+((1-pR)*u13)+rnorm(n,sd=sqrt(.5))

#Create Dependent Variables
sq<-rep(0,n)
capit<-rep(0,n)
war<-rep(0,n)
sq[u11>=uA]<-1
capit[u11<uA & u23>=u24]<-1
war[u11<uA & u23<u24]<-1
Nsq<-abs(1-sq)

#Matrices for Input
stval<-rep(.1,4)
depvar<-cbind(sq,capit,war)
indvar<-cbind(x1,x2,x3,x4)

#Fit Model
strat.mle<-optim(stval,llik,hessian=TRUE,method="BFGS",

control=list(maxit=2000,fnscale=-1,trace=1),
X=indvar,Y=depvar)

#Save Results
beta.qre[j,]<-strat.mle$par
stder.qre[j,]<-sqrt(diag(solve(-strat.mle$hessian)))

}

In this model, we set ˇ D 1 for every coefficient in the population model. Otherwise,
Eq. (11.4) completely defines our population model. In the loop the first three
batches of code all generate data according to this model. First, we generate four
independent variables, each with a standard normal distribution. Second, we define
the utilities according to Eq. (11.4), adding in the random disturbance terms (˛)
as indicated in Fig. 11.5. Third, we create the values of the dependent variables
based on the utilities and disturbances. After this, the fourth step is to clean our
simulated data; we define starting values for optim and bind the dependent and
independent variables into matrices. Fifth, we use optim to actually estimate our
model, naming the within-iteration output strat.mle. Lastly, the results from the
model are written to the matrices beta.qre and stder.qre.

After running this loop, we can get a quick look at the average value of our
estimated coefficients ( Ǒ) by typing:

apply(beta.qre,2,mean)

In this call to apply, we study our matrix of regression coefficients in which each
row represents one of the 100 Monte Carlo experiments, and each column represents
one of the four regression coefficients. We are interested in the coefficients, so we
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type 2 to study the columns, and then take the mean of the columns. While your
results may differ somewhat from what is printed here, particularly if you did not
set the seed to be the same, the output should look something like this:

[1] 1.0037491 1.0115165 1.0069188 0.9985754

In short, all four estimated coefficients are close to 1, which is good because 1 is the
population value for each. If we wanted to automate our results a little more to tell
us the bias in the parameters, we could type something like this:

deviate <- sweep(beta.qre, 2, c(1,1,1,1))
colMeans(deviate)

On the first line, we use the sweep command, which sweeps out (or subtracts)
the summary statistic of our choice from a matrix. In our case, beta.qre is our
matrix of coefficient estimates across 100 simulations. The 2 argument we enter
separately indicates to apply the statistic by column (e.g., by coefficient) instead
of by row (which would have been by experiment). Lastly, instead of listing an
empirical statistic we want to subtract away, we simply list the true population
parameters to subtract away. On the second line, we calculate the bias by taking
the Mean deviation by column, or by parameter. Again, the output can vary with
different seeds and number generators, but in general it should indicate that the
average values are not far from the true population values. All of the differences are
small:

[1] 0.003749060 0.011516459 0.006918824 -0.001424579

Another worthwhile quantity is the mean absolute error, which tells us how much
an estimate differs from the population value on average. This is a bit different in
that overestimates and underestimates cannot wash out (as they could with the bias
calculation). An unbiased estimator still can have a large error variance and a large
mean absolute error. Since we already defined deviate before, now we need only
type:

colMeans(abs(deviate))

Our output shows small average absolute errors:

[1] 0.07875179 0.08059979 0.07169820 0.07127819

To get a sense of how good or bad this performance is, we should rerun this
Monte Carlo experiment using another treatment for comparison. For a simple
comparison, we can ask how well this model does if we increase the sample size.
Presumably, our mean absolute error will decrease with a larger sample, so in each
experiment we can simulate a sample of 5000 instead of 1000. To do this, rerun all
of the code from this section of the chapter, but replace a single line. When defining
the number of cases—the third line after the start of Sect. 11.7.2—instead of typing
n<-1000, type instead: n<-5000. At the end of the program, when the mean
absolute errors are reported, you will see that they are smaller. Again, they will vary
from session to session, but the final output should look something like this:
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[1] 0.03306102 0.02934981 0.03535597 0.02974488

As you can see, the errors are smaller than they were with 1000 observations. Our
sample size is considerably bigger, so we would hope that this would be the case.
This gives us a nice comparison.

With the completion of this chapter, you now should have the toolkit necessary
to program in R whenever your research has unique needs that cannot be addressed
by standard commands, or even user-contributed packages. With the completion of
this book, you should have a sense of the broad scope of what R can do for political
analysts, from data management, to basic models, to advanced programming. A true
strength of R is the flexibility it offers users to address whatever complexities and
original problems they may face. As you proceed to use R in your own research,
be sure to continue to consult with online resources to discover new and promising
capabilities as they emerge.

11.8 Practice Problems

1. Probability distributions: Calculate the probability for each of the following
events:

a. A standard normally distributed variable is larger than 3.
b. A normally distributed variable with mean 35 and standard deviation 6 is

larger than 42.
c. X < 0:9 when x has the standard uniform distribution.

2. Loops: Let h.x; n/ D 1 C x C x2 C � � � C xn D Pn
iD0 xi. Write an R program to

calculate h.0:9; 25/ using a for loop.
3. Functions: In the previous question, you wrote a program to calculate h.x; n/ DPn

iD0 xi for x D 0:9 and n D 25. Turn this program into a more general function
that takes two arguments, x and n, and returns h.x; n/. Using the function,
determine the values of h.0:8; 30/, h.0:7; 50/, and h.0:95; 20/.

4. Maximum likelihood estimation. Consider an applied example of Signorino’s
(1999) strategic multinomial probit method. Download a subset of nineteenth
century militarized interstate disputes, the Stata-formatted file war1800.dta,
from the Dataverse (see page vii) or this chapter’s online content (see page 205).
These data draw from sources such as EUGene (Bueno de Mesquita and Lalman
1992) and the Correlates of War Project (Jones et al. 1996). Program a likelihood
function for a model like the one shown in Fig. 11.5 and estimate the model
for these real data. The three outcomes are: war (coded 1 if the countries went
to war), sq (coded 1 if the status quo held), and capit (coded 1 if the target
country capitulated). Assume that U1.SQ/ is driven by peaceyrs (number of
years since the dyad was last in conflict) and s_wt_re1 (S score for political
similarity of states, weighted for aggressor’s region). U1.W/ is a function of
balanc (the aggressor’s military capacity relative to the combined capacity of
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the dyad). U2.W/ is a function of a constant and balanc. U1.C/ is a constant,
and U2.C/ is zero.

a. Report your estimates and the corresponding standard errors.
b. Which coefficients are statistically distinguishable from zero?
c. Bonus: Draw the predicted probability of war if balanc is manipulated from

its minimum of 0 to its maximum of 1, while peaceyrs and s_wt_re1 are held
at their theoretical minima of 0 and �1, respectively.

• Just for fun: If you draw the same graph of predicted probabilities, but
allow balanc to go all the way up to 5, you can really illustrate the kind
of non-monotonic relationship that this model allows. Remember, though,
that you do not want to interpret results outside of the range of your data.
This is just a fun illustration for extra practice.

5. Monte Carlo analysis and optimization: Replicate the experiment on Signorino’s
(1999) strategic multinomial probit from Sect. 11.7. Is there much difference
between your average estimated values and the population values? Do you get
similar mean absolute errors to those reported in that section? How do your
results compare when you try the following treatments?

a. Suppose you decrease the standard deviation of x1, x2, x3, and x4 to 0.5 (as
opposed to the original treatment which assumed a standard deviation of 1).
Do your estimates improve or get worse? What happens if you cut the standard
deviation of these four predictors even further, to 0.25? What general pattern
do you see, and why do you see it? (Remember: Everything else about these
treatments, such as the sample size and number of experiments, needs to be
the same as the original control experiment. Otherwise all else is not being
held equal.)

b. Bonus: What happens if you have an omitted variable in the model? Change
your log-likelihood function to exclude x4 from your estimation procedure,
but continue to include x4 when you simulate the data in the for loop. Since
you only estimate the coefficients for x1, x2, and x3, how do your estimates
in this treatment compare to the original treatment in terms of bias and mean
absolute error?
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