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Abstract Let G be a connected reductive group over an algebraically closed field.
We define a decomposition of G into finitely many strata such that each stratum is a
union of conjugacy classes of fixed dimension; the strata are indexed purely in terms
of the Weyl group and the indexing set is independent of the characteristic.
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Introduction

0.1 Let k be an algebraically closed field of characteristic p > 0 and let G be a
connected reductive algebraic group over k. Let W be the Weyl group of G. Let
cl(W) be the set of conjugacy classes of W.

In [St] Steinberg defined the notion of regular element in G (an element whose
conjugacy class has dimension as large as possible, that is dim(G) — rk(G)) and
showed that the set of regular elements in G form an open dense subset Gre,. The
goal of this paper is to define a partition of G into finitely many strata, one of
which is Gee. Each stratum of G is a union of conjugacy classes of G of the same
dimension. The set of strata is naturally indexed by a set which depends only on W
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as a Coxeter group, not on the underlying root system and not on the ground field k.
We give two descriptions of the indexing set above:

(i) one in terms of a class of irreducible representations of W which we call
2-special representations (they are obtained by truncated induction from spe-
cial representations of certain reflection subgroups of W);

(i1) one in terms of cl(W) (modulo a certain equivalence relation).

In the case where W is irreducible we give a third description of the indexing set
above:

(iii) in terms of the sets of unipotent classes in the various versions of G over F,
for a variable prime number r, glued together according to the set of unipotent
classes in the version of G over C.

The definition of strata in the form (i) and (iii) are based on Springer’s correspon-
dence (see [Spr] when p = 0 or p > 0 and [L3] for any p) connecting irreducible
representations of W with unipotent classes; when W is irreducible, the definition
of strata in the form (iii) is related to that in the form (ii) by the results of [LS8, L10]
connecting cl(W) with unipotent classes in G.

Since (i),(ii) are two incarnations of our indexing set, they are in canonical bij-
ection with each other. In particular we obtain a canonical map from cl(W) to the
set of irreducible representations of W whose image consists of the 2-special repre-
sentations (when G is G L, (K) this is a bijection). We also show that the dimension
of a conjugacy class in a stratum of G is independent of the ground field. (This
statement makes sense since the parametrization of the strata is independent of the
ground field.) In particular, we see that if n > 1, then the following three conditions
on an integer k are equivalent:

e there exists a conjugacy class of dimension & in SO2,+1(C);
e there exists a conjugacy class of dimension & in Sp,, (C);
o there exists a conjugacy class of dimension k in Sp,,, (F2).

The proof shows that the following fourth condition is equivalent to the three con-
ditions above: there exists a unipotent conjugacy class of dimension k in Sp,,, (F).

In Section 5 we sketch an alternative approach to the definition of strata which is
based on an extension of the ideas in [L8], and Springer’s correspondence does not
appear in it.

In Section 6 we dicuss extensions of our results to the Lie algebra of G and to
the case where G is replaced by a disconnected reductive group. We also define a
partition of the set of compact regular semisimple elements in a loop group into
strata analogous to the partition of G into strata. Moreover, we give a conjectural
description of the strata of G (assuming that k = C) which is based on an extension
of a construction in [KL].

0.2 Notation. For an algebraic group H over k, we denote by H° the identity
component of H. For a subgroup T of H we denote by Ny T the normalizer of T
in H. Let g be the Lie algebra of G. For g € G we denote by Z(g) the centralizer
of g in G and by g (resp. g,,) the semisimple (resp. unipotent) part of g. Let B be
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the variety of Borel subgroups of G. Let B, = {B € B; g € B}. Let [ be a prime
number # p. For an algebraic variety X over k we denote by H'(X) the /-adic
cohomology of X in degree i; if X is projective let H;(X) = Hom(H'(X), Q;).

For any (finite) Weyl group I", we denote by Irr I a set of representatives for the
isomorphism classes of irreducible representations of I" over Q. For any t € IrrW
let n, be the smallest integer i > 0 such that t appears with > 0 multiplicity in the
i-th symmetric power of the reflection representation of W; if this multiplicity is 1,
we say that 7 is good.

A bipartition is a sequence A = (A1,Az,A3,...) in N such that A,, = 0 for
m > 0and Ay > A3 > As > ..., Ay > A4 > Ag > .... We write |A| =
A1 4+ A2 + Az + .... We say that A is a bipartition of n if |[A| = n. Let BP" be
the set of bipartitions of n. Let e, ¢’ € N. We say that a bipartition (11, A5, A3,...)
has excess (e,e’) if A; + e > Aj4q fori = 1,3,5,... and A; + ¢’ > A;41 for
i =2,4,6,....Let BP;,e' be the set of bipartitions of n which have excess (e, ¢’).

A partition is a sequence A = (A1, A2,A43,...)inNsuchthatA,, = 0form > 0
and Ay > A, > A3 > .... Thus a partition is the same as a bipartition of excess
(0, 0). On the other hand, a bipartition is the same as an ordered pair of partitions
((A1,A3,45,...), (A2, A4, As, .. 2).

Let P = {2,3,5,...} be the set of prime numbers.

1 The 2-special representations of a Weyl group

1.1 Let V, V* be finite-dimensional Q-vector spaces with a given perfect bilinear
pairing {,) : V x V* = Q. Let R (resp. R) be a finite subset of V' — {0} (resp.
V* —{0}) with a given bijection @ <> &, R <> R, such that (@,@) = 2 for any
o € R and (a,ﬁ) € Z for any o, B € R; it is assumed that 8 — (8,@)a € R,
,é — (a,/é)o? € R for any «,f € Randthat« €¢ R — «/2 ¢ R. Thus,
(V,V* R, Ié) is a reduced root system. Let Vj (resp. VO*) be the Q-subspace of V
(resp. V*) spanned by R (resp. R). Let tk(R) = dim Vy = dim Vg Let W be the
(finite) subgroup of GL (V') generated by the reflections sy : x = x — (x,&)a in V
for various a € R; it may be identified with the subgroup of GL(V *) generated by
the reflections s, : x’ = x’ — (&, x")a& in V* for various @« € R. Forany e € V
let R, = {o € R;(e,a) € Z}, ée = {&;a € R.}; note that (V, V*,Re,lée) is a
root system with Weyl group W, = {w € W;w(e) —e € > ,cg Zo}. Similarly,
forany ¢/ € V*let Ry = {@ € R;{a,¢') € Z}, Iéer = {a;a € R.}; note that
(V,V*, Rer, Rer) is a root system with Weyl group W, = {w € W;w(e') — e’ €
> wer La}. For any (e,e’) € V. x V*let Reer = R N Ry, ]?e,e/ = R, N Ry.
Then (V. V*, Ree, Iée,e/) is a root system; let W, . be its Weyl group (a subgroup
of W, N We). Note that Wy or = Wer, We o = We, Wo,0 = W. For E € Irr(W, /)
let ng be asin 0.2.

Let (e1,€}) € V x V*, (e2,€5) € V x V* be such that Re1,ei C Rez,e/z (so
that Wel,e’l C Wez,e’z)' In this case, if £ € IIT(Wel,e’l) is good, there is a unique



336 G. Lusztig
Wy,

Ey € Irr(Wez,e/z) such that E appears in Ind, = >(E)and ng, = ng, see [LSI,
(3] ‘81

WC’ L’/ .
3.2]; moreover, Eq is good. We set Eq = jy, > 2(E). Note that if we have also
ey.eq
R, ., CR

e2.¢} A where (e3,e5) € V x V*, then we have the transitivity property:

e3,e
Wesely Wesey  Weyel
@ Jjy 7 (E)=Jw Uy J(E)).
er.e] ep.e5 er.e]
Let S(We,er) C Itr(W, ) be the set of special representations of W, ., see [L1];
note that any E € S(W, ) is good. Hence jW J(E) € Irr(W) is defined. We say

that Eg € Irr(W) is 2-special if Ey = ]I?,/ ,(E) for some (e,e’) € V x V* and

some E € S(We,er). Let So(W) be the set of all 2-special representations of W (up
to isomorphism). From the definition we see that

(b) S»(W) is unchanged when (V, V*, R, R) is replaced by (V*,V, R, R).

Let S; (W) (resp. 'S (W)) be the set of all Ey € Irr(W) such that Eg = ;¥ w, (E)
(resp. Eog = jW/(E)) forsomee € V, E € S(W,) (resp. ¢’ € V*, E € S(We ).
The analogue of (b) with S, (W) replaced by S;(W) is not true in general; instead,
it (V,V* R,R) is replaced by (V*,V, R, R), then S;(W) becomes 'Sy (W) and
'S1 (W) becomes S;(W).

Now, for any ¢’ € V* the subset 81 (Wer) C Irr(Wer) is defined; it consists of all
E’ € Trr(W,) such that E' = ]We (E) for some e € V and some E € S(W, ).

Note that any E’ € S;(W,) is good From (a) we see that

(¢) S>(W) consists of all Eg € Trr(W) such that Eg = jVV[K, (E’) for some ¢’ € V*
and some E' € Sy (W,/).

We say that ¢’ € V* (resp. (e,e’) € V x V*) is isolated if tk(R.’) = rk(R) (resp.

tk(Re,er) = rk(R)). We show:

(d) Sa(W) consists of all Eg € Irr(W) such that Ey = jg{‘,’ L (E) for some isolated
(e,e') € VxV*and some E € S(We ¢).

Let Eg € S2(W). By definition, we can find (e,e’) € Vx V* and E € S(W, )

such that Eq = jvl{y ,(E). We can find an isolated ej € V* such that R, is rat-

ionally closed in Rei that is, Rei N he Ry Qo = R.. Applying the analogous

statement to (V*, V, Ry, Ry ) e, instead of (V,V*, R, R), ¢/, wecan find e; € V

such that tk(Re, N R,/ ) = rk(R ) and RN R 1s rationally closed in R, N R, 1t

follows that (eq, €}) i 1s isolated and R, N R, is ratlonally closedin Re; N R,/ hence

We .E/ . . .
Ey = jy "U(E)isin S(W,, o), see [L1]. By (a), we have Eq = iw (E1).
e.e ’ ey e
This proves (d). 1
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We have the following variant of (d):

(e) Sa(W) consists of all Ey € Irt(W) such that Eg = ] (E)for some isolated
¢’ € V* and some E € S1(We).

Let Eg € S;(W). Let E,e,e’ be as in (d). We have E = juvz,(f) where
F = -We’ (E) € Si(We) and tk(Rer) = tk(R). Conversely, if ¢’ € V* and

E e Sl(We) then, by (c), j (E) € S>(W) (even without the assumption that
rk(R,’) = rk(R)). This proves (e).

Let R' C R be such that (if R’ is the image of R’ under R < Ié), (V,V* R, é’)
is a root system (with Weyl group W’) and R’ is rationally closed in R. Note that
R' = R, forsome e € V and R’ = R, for some ¢’ € V*. We show:

() If E € S;(W'), then jIV.(E) € S;(W).
(g) If E € S;(W'), then ), (E) € Sx(W).

We prove (f). Let ¢’ € V* be such that R = R,. We have E = /W " (E') for
some e € V and some E’' € S(W, ). Hence ]W,(E) = ]W (E) = ]W(E”)
where E” = ]W ,(E"). Now R, . is rationally closed in R,, hence E" € S(W,),
see [L1]. We see that Jw W(E) e S;(W).

We prove (g). Let e € V be such that R = R,. We have E = ] ¢ (E') for
some e’ € V* and some E’ € Sy (W,,). Hence j )}, (E) = ]W (E") = ]WVE’/(E”)
where E” = j (E ’). Now R, . is rationally closed in R,, hence E" € S(Wy),
see (f). We see that ]W/(E) e S;(W).

1.2 There are unique direct sum decompositions Vo = ®ie; Vi, V§' = ®ier V"
such that R = U;er (RN V;), R = Ujer (RN V;) and forany i € I, (Vi, V;*, RN
Vi,RN Vi) is an irreducible root system for (with Weyl group W;); the bijection
RNYV; + RNV, isinduced by R <> R). We have canonically W = [[,.; Wi and
Sa(W) = [1,e; S2(W;) (via external tensor product).

1.3 In this subsection we assume that (V, V*, R, Ié) is irreducible. Now W acts
naturally on the set of subgroups W’ of W of form W, for various isolated e’ € V*.
The types of various W’ which appear in this way are well known and are described
below in each case.

(a) Roftype A,,n > 0: W’ of type Ay,.

(b) Roftype B,,n > 2: W of type By x Dy wherea € N,b e N—{1},a+b = n.

(¢) Roftype C,,n >2: W of type C, x Cp, where a,b € N,a + b = n.

(d) Roftype D,,n > 4: W’ of type Dy X Dp where a,b € N—{1},a + b = n.

(e) Roftype Eg: W' of type E¢, AsAy, Az A A>.

(f) Roftype E7: W’ of type E7, DgAy, A7, A5As, A3A3A;.

(2) R of type Eg: W’ of type Eg, E7A1, E¢A, DsAs, A4As, AsAz Ay, A7A1,
Ag, Dg.
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(h) R of type Fy: W' of type Fy, B3A1, A2 As, A3A1, Ba.
(i) R of type Go: W’ of type G,, Az, A1A;.

(We use the convention that a Weyl group of type B, or D, withn = 01is {1}.)

1.4 In this subsection we assume that (V, V* R, R) is irreducible. Now W acts
naturally on the set of subgroups W’ of W of form W, . for various isolated
(e,e’) € V x V*. The types of various W’ which appear in this way are described
below in each case. (For type F4 and G, we denote by t a non-inner involution
of W).

(a) R of type A,: W' of type Ap.

(b) R of type By or C,: W’ of type B, X Bp x Do X Dg where a,b € N, ¢, d €
N—-{1},a+b+c+d=n.

(¢) R of type D,: W’ of type D, x Dy x D, x Dy where a,b,c,d € N — {1},
a+b+c+d=n.

(d) R oftype E¢: W' as in 1.3(e).

(e) Roftype E7: W’ as in 1.3(f) and also W’ of type D4 A1 A1 A;.

(f) R oftype Eg: W’ as in 1.3(g) and also W' of type Dg D>, D4Dy4, A3A3A41 A4,
Ar Az Az As.

(g) R of type F4: W’ as in 1.3(h), the images under 7 of the subgroups W’ of type
A3A1, By in 1.3(h) and also W’ of type B, B>.

(h) R of type G,: W’ as in 1.3(i) and the image under 7 of the subgroup W' of type
Ay in 1.3(1).

1.5 If R C R, R’ C R are such that (V,V*, R, R) is a root system (with the
bl_]eCthIl R < R being induced by R < R) then, setting R = RN ,ep Qu,

R =Rn Y wcr Qa, we obtain a root system (V, V*, R, R ). We set

Np =4#()_ Za/ ) Za) € Z=;.

acR a€R’

For any e’ € V* we set No» = Ng,,.

Now let r € P. Let SJ(W) be the set of all Eg € Irr(W) such that for some
isolated ¢/ € V* with N, = r¥ for some k € N and for some E € S1(Wer) we
have Ey = jVI{z, (E). Note that S (W) C S5(W) C Sa(W).

Now assume that (V, V*, R, Ié) is irreducible. We show:

(a) If Ris of type Ay, n > 0, then SS(W) = Sa(W) = S1(W) = S(W).

(b) If R is of type B, or C,, n > 2, then (W) = S (W) if r # 2 and
S2W) = Sa(W).

(c) If R is of type Dy, n > 4, then S5(W) = S;(W) if r # 2 and S3(W) =
S, (W).

(d) If Ris of type E¢, then S5 (W) = Sa (W) = S1(W).

(e) If R is of type E7, then S5 (W) = S1(W) if r # 2 and SZZ(W) = S, (W).

() If R is of type Eg, then S5 (W) = S;(W)if r ¢ {2,3}and SZ(W)US3 (W) =
S, (W).
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(g) If R is of type Fy, then S5 (W) = S (W) if r # 2 and S2(W) = S,(W).
(h) If R is of type G, then SJ(W) = S1(W) if r # 3 and Sﬁ"(W) = S (W).

We prove (a). In this case for any isolated ¢’ € V* we have N, = 1 and the result
follows from 1.1(d),(e), 1.3.

We prove (b), (). In these cases for any isolated ¢’ € V*, N, is a power of 2
(see 1.3) and the equality S2(W) = S,(W) follows from 1.1(e). Moreover, if ¢’ is
isolated and N, is not divisible by 2, then W, = W so that for r # 2 we have
S5(W) = S1(W).

In cases (d), (e), (f) we shall use the fact that for any ¢’ € V*:

(i) we can find e € V such that W,, = W,, so that if E € S(W,), then
W (E) € Si(W).

(This property does not always hold in cases (g),(h).)

We prove (d). If ¢/ € V* is isolated and W, # W, then from 1.3 we see that
W, is of type A, A3 A or AsAq so that S (W) = S(W,r); using this and 1.1(e)
we see that S, (W) = S5 = S1(W). (We have used (i).)

We prove (e). If ¢/ € V* is isolated and W, is not of type E7 (with Nor = 1)
or DgA; (with N = 2), then from 1.3 we see that W, is of type A7 or AsA, or
A3A3A;1 so that §1(Wer) = S(W,r). We see that SS(W) = Si(W) if r # 2 and
82(W) = S,(W). (We have used (i).)

We prove (f). If ¢’ € V* is isolated and W, is not of type Eg (with No» = 1)
or E7A1 (with Noo = 2) or E¢A, (with N,y = 3) or D5sA3 (with N,y = 4) or Dg
(with N» = 2), then from 1.3 we see that W,/ is of type A4 A4 or AsA3A; or A7A4;
or Ag, so that S1(W,r) = S(Wer); we see that S;(W) = S1(W) if r ¢ {2,3} and
S2(W)U S5 (W) = Sa(W). (We have used (i).)

We prove (g). If ¢/ € V* is isolated and W, is not of type F4 (when Nos = 1) or
B3 Aq (with N,/ a power of 2) or By (with N,/ a power of 2), then from 1.3 we see
that W is of type A, A, (with Nos = 3) or A3A; (with N, a power of 2) so that
S1(Wyr) = S(W,r). Moreover, if ¢’ € V* is isolated and W, is of type A2 A5, then
(i) holds for this e’. We see that S5 (W) = S1(W) if r # 2 and S2(W) = S;(W).

We prove (h). If ¢/ € V* is isolated and W,/ is not of type G, (with N = 1),
then from 1.3 we see that W, is of type A, (with N = 3) or A1A; (when
N = 2) so that S;(W,r) = S(Wer). Moreover, if ¢/ € V* is isolated and W,/
is of type A1 A1, then (i) holds for this ¢’. We see that S (W) = Si(W) if r # 3
and S;’(W) = S, (W).

This proves (a)—(h). From (a)—(h) we deduce:

(j) Wehave S;(W) = SZ2(W)US5;(W).If r € P—{2,3}, then S5 (W) = S (W).
The following result can be verified by computation.

(k) If R is of type E7, then S3(W) — S1(W) = {84;5}. If R is of type Eg, then
SZZ(W) — 81 (W) = {105010, 84014, 16824, 97232} and SS(W) — Sl(W) =
{17512} If R is of type F4, then Szz(W) — 81 (W) = {96’ 47, 487 216}. If Ris
of type G, then S3(W) — S1 (W) = {13}.
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(In each case we specify a representation E by a symbol d,, where d is the degree
of E and n = ng. For type F4 and G, the specified representations are uniquely
determined by the additional condition that they are not in S3(W).)

) S2(W) NSI(W) = S (W).

The inclusion Sy (W) C S3(W)NS; (W) is obvious. The reverse inclusion for R of
type # Eg follows from the fact that for such R we have either S3(W) = S;(W)
or S3(W) = S;1(W), see (a)—(h). Thus we can assume that R is of type Es. In this
case the result follows from (k).

1.6 Letr e P.Let V¥ ={e’ € V*; Ny /r ¢ Z}. Let gg(W) be the set of all Eg €
Irr(W) such that for some ¢’ € V,* and some E € S5 (W) we have Eq = jvlg//(E)

(Note that any E_€ S;(W,) is good.) Note that S5 (W) C s L(W) (take ¢’ = 0 in
the definition of S, 5(W)). We show:

(a) S2(W) C S5(W).

We can assume that (V, V*, R, Ié) is irreducible. Let Eg € S»(W). We must show
that E¢ € S’(W) . By 1.1(e) we can find an isolated e ¢ V*and E € S1(Wer) such
that Eg = (E) If Nes/r ¢ Z then we have Ej € S’(W) since S1(W,) C
Sy (Wer). If Ne/ is a power of r, then from definitions we have Ey € S5 (W), hence
Eo € S4(W). Thus we may assume that N, is not a power of r and is N/ /r €
Z. This forces R to be of type Eg and W,/ to be of type AsA4,A1 (see 1.3); we
then have No» = 6 and r € {2, 3}. In particular we must have E € S(We). If

E is not the sign representation of W/, then we have E = j;,Vg (sign) for some

e} € V* such that W/ is a proper parabolic subgroup of W,. Replacmg W by a
W -conjugate we can assume that Wr is a proper parabolic subgroup of W so that

JWVZ, (sign) € S(W) and in particular, Ey € gg(W) Thus we can assume that E is
the sign representation of W,/. We have W,/ C We, where We, is of type E7A; and
by the definition of S; (We/z) we have

Ey:= ;VVVV (sign) € 8 ().
If r = 3, we have e} € V,* hence Eg = (E2) €S, L(W). We have W, C Wr
where Weé is of type EgA, and by the deﬁmtlon of Sl(Weg), we have E; :=
j;:e,g (sign) € Sl(Weg)- If r = 2, we have e} € V" hence Ey = jVIIZ% (E3) €

gg(W). This completes the proof of (a).
We show:

(b) SL(W) C Sp(W).

We can assume that (V, V*, R, R) is irreducible. Let Eq € gg(W). We must show
that Eg € S»(W). Assume first that » ¢ {2,3}. Then by results in 1.5 we have
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E € §1(W,), hence by 1.1(c) we have Ey € Sp(W). Next we assume that r = 3.
If Wer # W, then by results in 1.5 we have E € S;(W,/) hence by 1.1(c) we have
Ey € S;(W). Thus we can assume that W, = W so that Eq = E € SJ(W). Since
SH(W) C S2(W) we see that Eg € S»(W).

We now assume that r = 2. We can find ¢’ € V,* and E € S)(W,) such that
Ey = ijIZ/ (E). We can find an isolated ] € V* such that N is odd, R C R,

W,
and R is rationally closed in R,;. Let E'" = jy '(E). Since E € S;(Wer) we
have E" € S(W;), see 1.1(g) and Eo = jVI{Z’l (E’). It is then enough to prove the

following statement:
(c) Ife’ € V¥ isisolated (r = 2) and E € S3(W,), then Eg = juvy), (E) e S(W).

If Wpr = W, then Eg = E € S3(W), as required. If R is of type A,, By, Cy, Dy,
then in (c) we have automatically W,» = W hence (c) holds in these cases. Thus we
can assume in (c) that R is of exceptional type and W, # W. Then W, is of the
following type: A, A» A, (if R is of type Eg); AsA, (if R is of type E7); A4A4 or
Ag or EgA, (if R is of type Eg); A2 A», as in 1.3(h) (if R is of type F4); A», as in
1.3(3i) (if R is of type G3). In each case we have Sp (W) = S1(W,/), see 1.5. Thus
E € §1(W,). Using 1.1(e) we see that Eg € S, (W). This proves (c) hence (b).

Combining (a), (b) we obtain
(d) S5W) = S (W).
In the case where r = 0, we set Vg = V*, SY(W) = S;(W), gg(W) = S, (W).

2 The strata of G

2.1 We return to the setup of the introduction. Thus G is a connected reductive
algebraic group over k. Let 7 be “the” maximal torus of G; let X = Hom(7, k*),
Y = Hom(k*,7),V =Q® X, V* = Q® Y. We have an obvious perfect bilinear
pairing (,) : V x V* — Q. Let R C V be the set of roots and let R C V* be the
set of corrots. Then (V, V*, R, Ié) is asin 1.1. The associated Weyl group W (as in
1.1) that is, the Weyl group of G, can be viewed as an indexing set for the orbits of
G acting diagonally on B x B; we denote by Oy, the orbit corresponding to w € W.
Note that W is naturally a Coxeter group.

Let g € G. Let Wy be the Weyl group of the connected reductive group
H = Zg(gs)°. We can view Wg as a subgroup of W as follows. Let 8 be a
Borel subgroup of H and let 7 be a maximal torus of 8. We define an isomor-

phism brg : NyT/T 5 Wg by n'T + H-orbit of (8, n’Bn’~1). Similarly for
any B € Bsuch that T C B we define an isomorphism ar,g : NgT/T Sw by
n'T + G-orbit of (B,n'Bn’~!). Now assume that B € Bis such that BN H = f.
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b—l

We define an embedding crgp : Wy — W as the composition W SN
NyT/T — NgT/T % W where the middle map is the obvious embedding. If
B’ € Balso satisfies B’ N H = B, then we have B’ = nBn~! for some n € NgT
and from the definitions we have cr.g p/(w) = ar,g(nT)cr g,g(w)ap,r(nT)™!
for any w € Wy. Thus cr g p depends (up to composition with an inner automor-
phism of W) only on T, 8 and we can denote it by c7 g. Since the set of pairs T, 8
as above form a homogeneous space for the connected group H, we see that c7,g
is independent of T, B (up to composition with an inner automorphism of W) hence
it does not depend on any choice. We see that there is a well-defined collection C
of embeddings Wy, — W so that any two of them differ only by composition by an
inner automorphism of W.

Define p € Irr(Wy) by the condition that under the Springer correspondence
for H, p corresponds to the H-conjugacy class of g, and the trivial local system
on it. We choose f € C; then we can view p as an irreducible representation of
f(Wyg), a subgroup of W such that f(W,) = W, for some ¢’ € V, see 1.6. By

[L5, 1.4] we have p € SZ(f(Wy)), see 1.5, 1.6. Hence 7 := j}‘EWg)(p) € gg(W)
is well defined. Since gg(W) = S;(W), see 1.6, we have p € Sp(W). This is

independent of the choice of f since f is well defined up to composition by an
inner automorphism of W.

2.2 Letg € G.Letd = d; = dim B,. The embedding &, : B, — B induces a
linear map hgy : Hoq(Bg) — Ha4(B). Now H?4 (Byg). H?%(B) carry natural W-
actions, see [L3], and this induces natural W-actions on H,4(Bg), H4(B) which
are compatible with hg,. Hence W acts naturally on the subspace /g« (H24(Bg))
of Hy4(B).

The following result gives an alternative description of the map g + 9 (in 2.1)
from G to IrrW.

(a) The W-submodule hg«(H24(Bg)) of Haq(B) is isomorphic to the W -module
Q; ®p where p,’p are associated to g as in 2.1.

First, we note that hg«(H24(Bg)) # 0; indeed it is clear that for any irreducible
component D of B, (necessarily of dimension ), the image of the fundamental
class of D under /g is nonzero (we ignore Tate twists). Let 5 be the variety of
Borel subgroups of Zg(gs)°. Let By, = {B € B';gu € B}. ThendimB' = d
and W, (see 2.1) acts naturally on Hyg4 (Bigu); from the definitions, the W -module
H»4(Bg) is isomorphic to Ind%g Hy, (B;;'u)' From the definitions we have n, = d
and the Wg-module H,4 (Bigu) is of the form ®;e[y s (6, ® E;)®¢ where E; €
Irr(Wg), ¢; € Nsatisfy Ey = p,¢c; = 1l and ng; > d fori > 1. It follows
that the W-module H,4(Bg) is of the form @ie[l,s](Ind%g (Q; ® E;))®¢i. Now
Ind%g (Q; ® E;) contains Q; ® 7 with multiplicity 1 and all its other irreducible
constituents are of the form 61 ®_E with ng > d; moreover, for i > 1, any
irreducible constituent £ of Ind%g (Q; ® E;) satisfies ng > d. Thus the W-module

H»4(Bg) contains 61 ®p with multiplicity 1 and all its other irreducible constituents
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are of the form 6, ® E with ng > d; these other irreducible constituents are
necessarily mapped to 0 by /4« and the irreducible constituent isomorphic to Q,®p
is mapped injectively by /g4 since hgy # 0. It follows that the image of hgy is
isomorphic to Q; ® 7 as a W-module. This proves (a).

2.3 By 2.1, 2.2 we have a well-defined map ¢ : G — S,(W), ¢ — p where
Q; ® D = hgs((Hz4,(Bg)) (notation of 2.1, 2.2). The fibres Gg = ¢~ (E) of
¢ (E € 5,(W)) are called the strata of G. They are clearly unions of conjugacy
classes of G. Note the strata of G are indexed by the finite set S, (W) which depends
only on the Weyl group W and not on the underlying root system (see 1.1(b)) or on
the characteristic of k.

One can show that any stratum of G is a union of pieces in the partition of G
defined in [L3, 3.1]; in particular, it is a constructible subset of G.

2.4 We have the following result.

(a) Any stratum Gg (E € S;(W)) of G is a (non-empty) union of G-conjugacy
classes of fixed dimension, namely 2dim B — 2n where n = ng, see 0.2. At
most one G-conjugacy class in Gg is unipotent.

Since Sy (W) = SZ (W), see 1.6, we have E € S?(W). Hence there exists ¢’ € vy
and p € 87 (W,) such that E = ju"y), (p). We can find a semisimple element of
finite order s € G such that W (vie\;/ed as a subgroup of W as in 2.1) is equal
to W,. By [L5, 1.4] we can find a unipotent element u in Zg(s)° such that p is
the Springer representation of W defined by u and the trivial local system on its
Z (s)°-conjugacy class. Then E = ¢ (su) so that Gg # @. Let y be a G-conjugacy
classin Gg.Let g € y. Let p (resp. p) be the irreducible representation of Wy (resp.
W) defined by gy as in 2.1. Let n,, ry be as in 0.2. By the definition of o we have
n, = ;. By assumption we have p = E, hence ny =nandn, = n. By a known
property of Springer’s representations, 7, is equal to the dimension of the variety
of Borel subgroups of Zg(g,)° that contain g, ; hence by a result of Steinberg (for
p = 0) and Spaltenstein [Spa, 10.15] (for any p), n, is equal to

(dim(Z 7 (g,)0 (8u)° — 1k(Z 6 (g5)"))/2 = (dim(Zg(g)°) — 1k(G))/2.

It follows that (dim(Zg(g)°?) — rk(G))/2 = n and the desired formula for dim y
follows. Now assume that y,y’ are two unipotent G-conjugacy classes contained
in Gg. Then the Springer representation of W associated to y is the same as that
associated to y’, namely E. By properties of Springer representations, it follows that
y = y’. This proves (a).

2.5 In this and the next subsection we assume that W is irreducibble. Let r €
P U {0}. Let G" be a connected reductive group of the same type as G over an
algebraically closed field of characteristic 7, whose Weyl group is identified with
W. Let U be the set of unipotent classes of G”. By [L5, 1.4] we have a canonical
bijection

YU S SHW)



344 G. Lusztig

which, to a unipotent class y, associates the Springer representation of W cor-
responding to y and the constant local system on y. We define an embedding
h" : U® — U" as the composition
0 V’O 0 r (wr)il r
U —SWwW)=8§W)—-SWwW)——uU
where the unnamed map is the inclusion.

Consider the relation 2 on LI, epU” for whichx e U", y € ur' (wherer, 1’ € P)
satisfy x o y if either r = r’ and x = yorr # r' and x = h"(z), y = h"'(2)
for some z € U°. We show that = is an equivalence relation. It is enough to show
thatif x e U™, y € U, u € U are such that r #r',r #r"and x = h"(2),
y=h"(z),y =h" @), u =h" (@) for some z € U°,Z € U°, then x = u. From
h"'(z) = h"'(Z) and the injectivity of 4" we have z = Z. Thus, if r # r”, we have
x == u, while if » = r”, we have x = u. Thus, = is indeed an equivalence relation.

Let U* be U,epU™ modulo the equivalence relation . Let U,epU” — Sr(W)

be the map whose restriction to U" is " followed by the inclusion S (W) C
S>(W) (for any r). We show:

(a) This map induces a bijection ¥* : U* = S, (W).

To show that ¥* is a well-defined map it is enough to verify that if z € U, then
for any r,r’ € P, we have Y h"(z) = V"' h"' (2) in S,(W); but both sides of the
equality to be verified are equal to ¥°(z). Let E € S»(W). By 1.5(j) there exists
r € P suchthat E € S§(W), hence E = " (x) for some x € U". It follows that
Y* is surjective. We show that ¥ * is injective. It is enough to show that

() if x e U, y € U (r,r € P distinct) satisfy ¥” (x) = ¥ (y), then there
exists z € U such that x = h"(z), y = h’/(z).

If r # {2,3}, then S5(W) = S1(W), hence " (x) = ¥°(z) for some z € U°.
We then have ¥ (y) = ¥°(z). It follows that 4" (z) = x, k" (z) = y, as required.
Similarly, if " # {2, 3}, then the conclusion of (b) holds. Thus we can assume that
r € {2,3}, r’ € {2,3}. Since r # r’ we have {r,r’} = {2,3}. Hence " (x) =
v (y) € S2(W) NS3(W) = S1(W); the last equality follows from 1.5(1). Thus
we have ¢ (x) = W'/(y) = ¥%(z) for some z € U°. It follows that 4" (z) = x,
h'(z) =y, as required.

From (a) we deduce the following:
(¢c) The strata of G are naturally indexed by the set U*.

The proof of (a) shows also that U/* is equal to U? LI U with the identification of
h?(z),h3(z) for any z € U°.
We can now state the following result.

(d) Let E € S;(W). Then for some r € P, the stratum G, contains a unipotent
class. In fact, r can be assumed to be 2 or 3.
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Under (a), E corresponds to an element of U/* which is the equivalence class of
some element y € U" with r € {2,3}. Let g € G” be an element in the unipotent
conjugacy class y. From the definitions we see that g € G%. This proves (d).

2.6 We show that the set /* has a natural partial order. If SJ (W) = S; (W) (type A4
and Eg), we have {* = 1/° which has a natural partial order defined by the closure
relation of unipotent classes in G°. If S; (W) # S5 (W) for a unique r € P (type
# A, Eg, Eg), we have U* = U" which has a natural partial order defined by the
closure relation of unipotent classes in G”. Assume now that G is of type Eg. Then
we can identify U2, U3 with subsets of L{* whose union is &/* and whose intersection
is U°. Both subsets 142, /> have natural partial orders defined by the closure relation
of unipotent classes in G2 and G3. If y, y’ € U*, we say that y < y’ if there exists
a sequence y = Yo, ¥1,-..,Ys = ¥’ in U* such that for any i € [1, 5] there exists
r € {2, 3} such that

(@) yi—1 €U, y; € U", yi—1 < y; in the partial order of unipotent classes in G”;

note that if for some 7, (a) holds for both r = 2 and r = 3, then we have y;_; € U 0
vi €U, yi_1 < y;inthe partial order of unipotent classes in GPY. One can show that
this partial order on Z/* induces the usual partial orders on the subsets U2, U3, U°.

2.7 Let W, be the semidirect product of W with the subgroup of V' generated by R
(an affine Weyl group); let "W, be the semidirect product of W with the subgroup
of V* generated by R (another affine Weyl group). We consider four triples:

(@) (S(W), Xo, Zo)
(®) (S1 (W), X1, Z1)
© (Si(W),'X1,'Zy)
(d) (S2(0), X2, Z3)

where Xg, X1, X} is the set of two-sided cells in W, W,,’ W, respectively, Z is the
set of special unipotent classes in G with p = 0, Z; is the set of unipotent classes
in G with p = 0,’Z; is the set of unipotent classes in the Langlands dual G* of G
with p = 0, Z, is the set of strata of G with p = 0 and X, remains to be defined.
The three sets in each of these four triples are in canonical bijection with each other
(assuming that X, has been defined). Moreover, each set in (a) is naturally contained
in the corresponding set in (b) and (replacing G by G*) in the corresponding set in
(c); each set in (b) is contained in the corresponding set in (d) and (replacing G by
G*) each set in (c) is contained in the corresponding set in (d).

It remains to define X5. It seems plausible that the (trigonometric) double affine
Hecke algebra H associated by Cherednik to W has a natural filtration by two-sided
ideals whose successive subquotients can be called two-sided cells and form the
desired set X,. The inclusion of the Hecke algebra of W, and that of ‘W, into H
should induce the embeddings X; C X5, 'X; C X» and X, should be in natural
bijection with S, (W) and with the set of strata of G.
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3 Examples

3.1 We write the adjoint group of G as a product [[; G; where each G; is simple
with Weyl group W; so that W = [[; W;. Let E € S,(W). We have E = K; E;
where E; € S,(W;). Now G is the inverse image of [ [;(G;) g, under the obvious
map G — []; G;.

When E is the sign representation of W, then G is the centre of G; when E is
the unit representation of W, G is the set of elements of G which are regular in
the sense of Steinberg [St].

By 2.5(a) and 2.6 applied to G;, the set S(W;) has a natural partial order. Since
S>(W) can be identified as above with []; S2(W;), S2(W) is naturally a partially
ordered set (a product of partially ordered sets). Hence by 2.3 the set of strata of G
is naturally a partially ordered set.

3.2 Assume that G = GL(V) where V is a k-vector space of dimensionn > 1. Let
g € G.Forany x € k* let V, be the generalized x-eigenspace of g : V' — V and let
Af > A3 > A > ... be the sequence in N whose nonzero terms are the sizes of the
Jordan blocks of x"!g : Vi — V. Let& A be the sequence $A; > 81, > 13 > ...
givenby §A; = 3 i« A7. Now g > £ defines a map from G onto the set of
partitions of n. From the definitions we see that the fibres of this map are exactly
the strata of G. If g € G and 8 A = (A1, A2, A3,...), then

dim(Bg) = Y (n = (A1 + A2 + -+ ).
k>1

3.3 Repeating the definition of sheets in a semisimple Lie algebra over C (see [Bo]),
one can define the sheets of G as the maximal irreducible subsets of G which are
unions of conjugacy classes of fixed dimension. One can show that if G is as in 3.2,
the sheets of G are the same as the strata of G, as described in 3.2. (In this case,
the sheets of G, or rather their Lie algebra analogue, are described in [Pe]. They are
smooth varieties.) This is not true for a general G (the sheets of G do not usually
form a partition of G; the strata of G are not always irreducible). In [Ca] it is shown
that if p is O or a good prime for G, then any stratum is a union of sheets and that
the closure of a stratum is not necessarily a union of strata, even if G is of type A.

3.4 In the next few subsections we will describe explicitly the strata of G when G
is a symplectic or special orthogonal group.

Given a partition v = (v; > v, > ...), a string of v is a maximal subsequence
Vi, Vit1,...,V; of v consisting of equal > 0 numbers; the string is said to have an
odd origin if i is odd and an even origin if i is even.

For an even N € N, let Z11v be the set of partitions v = (v; > v, > ...)of N
such that any odd number appears an even number of times in v. We show:

(a) There is a canonical bijection Z}V <~ BPljjll/2 (notation of 0.2).
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Tov € Z}\, we associate A = (A1, A2, A3,...) as follows: each string 2a, 24, ..., 2a
in v is replaced by a,a,...,a of the same length; each string 2a + 1,2a +
1,...,2a + 1 (necessarily of even length) in v is replaced by a,a + l,a,a +
1,...,a,a + 1 of the same length. The resulting entries form a bipartition A €
BP{Y 1/ 2 Now v > A establishes the bijection (a).

For an even N € N, let Z12v be the set of partitions v = (v; > v, > ...)of N
such that any odd number appears an even number of times in v and any even > 0
number which appears an even > 0 number of times in v has an associated label 0
or 1. We show:

(b) There is a canonical bijection ZIZ\, <~ BP;Yz/z (notation of 0.2).

Tov € ZIZV we associate A = (A1, A2, A3, ...) as follows: each string 2a, 24, . .., 2a
of odd length or of even length and label 1 in v is replaced by a,a,...,a of the
same length; each string 2a, 2a,...,2a of even length and label O in v is rep-
lacedbya —1l,a + l,a —1l,a+ 1,...,a — 1,a + 1 of the same length; each
string 2a + 1,2a 4+ 1,...,2a 4 1 (necessarily of even length) in v is replaced by
a,a+ l,a,a +1,...,a,a + 1 of the same length. The resulting entries form a
bipartition A € Ble\,] 2/ 2 Now v > A establishes the bijection (b).
Assume for example that N = 6. The bijection (b) is:

6...)«<>@3...)
42...)<(21...)
(411...) < (201...)
33...) < (12...)
(222...) < (111...)
((22)111...) < (1101...)
((22)0110...) < (0201 ...)
Q21111...) < (10101...)
(111111...) < (010101...).

Here we write . .. instead of 000. ... (Compare [LS2, 6.1].)

3.5 Assume that G = Sp(V') where V is a k-vector space of dimension N with a
fixed nondegenerate symplectic form.

Let g € G.Forany x € k* let Vy be the generalized x-eigenspaceof g : V — V.
Let dy = dim V4. For any x € k* such that x2 # 1let A] > A3 > A3 > ...
be the partition of d, whose nonzero terms are the sizes of the Jordan blocks of
x g Vy = Vi

For x € k* such that x2 = 1, let v° € Zév Gf p # 2) and V¥ € Z;x @if
p = 2) be again the partition of d, whose nonzero terms are the sizes of the Jordan
blocks of the unipotent element x 'g € Sp(Vy). (When p = 2, v* should also
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include a labelling with 0 and 1 associated to x'g € Sp(Vy) as in [L10, 1.4].) Let
A% = (A1,A3,A%,...) be the bipartition of d,/2 associated to v* by 3.4(a),(b).
Thus A* € BP;/? (f p # 2), 2* € BPJ3/* (if p = 2). Note that A is the
bipartition such that the Springer representation attached to the unipotent element
x~'g € Sp(Vy) (an irreducible representation of the Weyl group of type By, /2) is
indexed in the standard way by A*. Define 81 = (841,81,,813,...) by 84; =
2 x A} where x runs over a set of representatives for the orbits of the involution

a — a~ ' of k*. Note that £} € BPZA’[ 2/2. Thus we have defined a (surjective) map

g—>80, G — BP21Y 2/2. From the definitions we see that the fibres of this map are
exactly the strata of G.
Ifg € Gand 8A = (A1, A2, A3,...), then

(@) dim(Bg) = D ((N/2) = (ki + Az + -+ Xp).
k>1

We now consider the case where N = 4. In this case we have S, (W) = Irr(W);
hence there are five strata. One stratum is the union of all conjugacy classes of
dimension 8 (it corresponds to the unit representation); one stratum is the union of
all conjugacy classes of dimension 6 (it corresponds to the reflection representation
of W). There are two strata which are unions of conjugacy classes of dimension 4
(they correspond to the two one-dimensional representations of W other than unit
and sign); if p = 2, both these strata are single unipotent classes; if p # 2, one of
these strata is a semisimple class and the other is a unipotent class times the centre
of G. The centre of G is a stratum (it corresponds to the sign representation of W).

The results in this subsection show that under the standard identification Irr(W) =
BPN/2 we have

(b) S:(W) = BP,'}”.

Under this identification the map g — 1, G — BPZI\,IZ/2 becomes the map g +— E
where g € Gg.

3.6 For N € N, let ’Z}\, be the set of partitions v = (v; > v, > ...) such that any

even > 0 number appears an even number of timesin v and v; + v, +--- = N.
(a) If N is odd, then there is a canonical bijection ’Z}V <~ BPZ(fX_l)/Z.

Tov € ’Z}V we associate A=(A1, Az, A3, ...) as follows: each string 2a, 2a, ..., 2a
of v (necessarily of even length) is replacedbya — 1,a + l,a—l,a+1,...,a —

1,a + 1 of the same length (if the string has odd origin) or by a,a,...,a of the
same length (if the string has even origin); each string 2a + 1,2a + 1,...,2a + 1
of v is replaced by a,a + 1,a,a + 1,... of the same length (if the string has odd
origin)orbya+1,a,a+1,a,... of the same length (if the string has even origin).
P

The resulting entries form a bipartition A € B . Now v +— A establishes

the bijection (a).
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(b) If N is even, then there is a canonical bijection’ Z1lv <~ BPOIY 2/ 2

Tov € ’Z}V we associate A=(A1, A2, A3,...) as follows: each string 2a, 24, ..., 2a
of v (necessarily of even length) is replaced bya — 1,a + 1,a—1l,a +1,...,a —
1,a + 1 of the same length (if the string has even origin) or by a,a, ..., a of the

same length (if the string has odd origin); each string 2a + 1,2a + 1,...,2a + 1
of visreplaced by a,a + 1,a,a + 1, ... of the same length (if the string has even
origin)orbya + 1,a,a + 1,a, ... of the same length (if the string has odd origin).
The resulting entries form a bipartition A € BP(fY 2/ 2 Now v > A establishes the

bijection (b).

3.7 Assume that p # 2 and that G = SO(V') where V is a k-vector space of odd
dimension N > 1 with a fixed nondegenerate quadratic form.

Let g € G. For any x € Kk*, let Vi be the generalized x-eigenspace of
g:V — V.Letdy = dimVy. For any x € k* such that x* # 1 let A} > A} >
A3 > ... be the partition of d, whose nonzero terms are the sizes of the Jordan
blocks of x™1g : V, — V.

For x € k* such that x2 = 1let v* €’ chlx again be the partition of d, whose
nonzero terms are the sizes of the Jordan blocks of the unipotent element x~'g €
SO(Vy). Let A* = (A{,A3,A%,...) be the bipartition of d,/2 associated to v*
by 3.6(a) if x = 1 and by 3.6(b) if x = —1. Thus A* € BPG "2 ifx = 1,
AY € BP(;{ ’5/ 2 if x = —1. Note that A~ is the bipartition such that the Springer
representation attached to the unipotent element x~!'g € SO(V%) (an irreducible
representation of the Weyl group of type By, —1)/2,if x = 1, or of type Dy, /2, if
x = —1) is indexed by A*. Define 1 = (811,81,,813,...) by €A; = > . )Lj?
where x runs over a set of representatives for the orbits of the involution @ > a~!

of k*. Note that A € sz(’zg—l)/z. Thus we have defined a (surjective) map g +> 8 A,
G — BPZ(z ~D/2 From the definitions we see that the fibres of this map are exactly
the strata of G. Under the identification Sy (W) = BPZ(Z_I)/ 2, see 3.5(b), the map

g—>31,G — BPZ(’];LI)/2 becomes the map g — E where g € Gg.
Ifge Gand8A = (A1,42,43,...), then

dim(Bg) = Y (N = 1)/2 = (A + Az + -+ + Ap)).
k>1

3.8 Assume that p = 2 and that G = SO(V') where V is a k-vector space of odd
dimension N > 1 with a given quadratic form, such that the associated symplectic
form has radical r of dimension 1 and the restriction of the quadratic form to r is
nonzero. In this case there is an obvious morphism from G to the symplectic group
G’ of V/r which is an isomorphism of abstract groups. From the definitions we see
that this morphism maps each stratum of G bijectively onto a stratum of G’ (which
has been described in 3.5).
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3.9 Foraneven N € N, let’ ZIZv be the set of partitions with labels v = (v; >
vy >...)inZ 12\, (see 3.4) such that the number of nonzero entries of v is even.

(a) If N is even, then there is a canonical bijection ’ZIZV <~ BPOIY 4/ 2

Tov € /lev we associate A = (A1, A3, A3, ...) as follows: each string 2a, 2a, 2a, . ..
of v of odd length or of even length and label 1 is replacedbya—1,a+1,a—1,a+
1,... of the same length (if the string has even origin)ora+1,a—1,a+1,a—1,...

of the same length (if the string has odd origin); each string 2a, 2a, 2a, ... of v of
even length and label O is replaced by a —2,a + 2,a —2,a + 2, ... of the same
length (if the string has even origin) or a, a, a, a, . . . of the same length (if the string
has odd origin); each string 2a + 1,2a + 1,2a + 1,... of v (necessarily of even
length) is replaced by a — 1,a +2,a —1,a + 2, ... of the same length (if the string
has even origin) or a + 1,a,a + 1,a, ... of the same length (if the string has odd
origin). The resulting entries form a bipartition A € BPOIY 4/ 2 Now v > A establishes
the bijection (a).

Assume for example that N = 8. The bijection (a) is:

(62...) <> (40...)
((44);...) < (31...)
((44)9...) < (22...)
(4211...) < (3010...
(3311...) < (2110...

((2222)1 ...) < (2020...

((2222)0...) < (1111...
((22)11111...) < (201010...)
((22)01111...) < (111010...)
(11111111...) < (10101010...).

Here we write . . . instead of 000. ... (Compare [LS2, 6.2].)

3.10 Assume that G = SO(V') where V is a k-vector space of even dimension N
with a fixed nondegenerate quadratic form. Let g € G. For any x € k* let V, be
the generalized x-eigenspace of g : V' — V. Let dy = dim Vy. For any x € k*
such that x2 # 1let A7 > A > A} > ... be the partition whose nonzero terms are
the sizes of the Jordan blocks of x g : Vy — V. For x € k* such that x2 = 1
let v* € /Zollx (f p # 2) and v* € ’Zﬁx (if p = 2) be again the partition of d,
whose nonzero terms are the sizes of the Jordan blocks of the unipotent element
x~1g € SO(Vy). (When p = 2, v* should also include a labelling with 0 and 1
associated to x_lg viewed as an element of Sp(Vy) as in [L10, 1.4].) Let A*¥ =
(A1,A3,A%,...) be the bipartition of d /2 associated to v* by 3.6(b), 3.9(a). Thus

A € BRSSP G p # 2, 2% € BP3/? (f p = 2). Note that A~ is the bipartition
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such that the Springer representation attached to the unipotent element x~!g €
SO(Vx) (an irreducible representation of the Weyl group of type Dy, /») is indexed
by A*. Define $A = (811,812,843,...) by 81; = Zx )VJ? where x runs over
a set of representatives for the orbits of the involution a + a~! of k*. Note that
) € BPOIY 4/ % and that g — &1 defines a (surjective) map G — BP(fY 4{ 2. From the
definitions we see that the fibres of this map are exactly the strata of G (except for
the fibre over a bipartition (A1, A5, A3,...) with A1 = A;,A3 = A4,... in which
case the fibre is a union of two strata). If g € G and A = (A1, A5,A3,...), then

(@ dim(Bg) = D ((N/2) = (A1 + Az + -+ + Ap)).
k>1

Viewing W as a subgroup of index 2 of a Weyl group W' of type B, we can
associate to any A € BPYN /2 one or two irreducible representations of W which
appear in the restriction to W of the irreducible representation of W’ indexed by A;
the representation(s) of W associated to A = (41, A2, A3, A4, ...) are the same as
those associated to t(1) := (A2, A1, A4, A3,...); here t : BPN/2 s BPN/2 jgan
involution and the set of orbits is denoted by BP™/2 /1. This gives a surjective map
£ Irr(W) — BP™N/2/, whose fibre at the orbit of A has one element if A # ((1)
and two elements if A = ¢(A). Let ¢/ : Irr(W) — Irr(W) be the involution whose
orbits are the fibres of f and let S, (W) /(' be the set of orbits of the restriction of ¢/
to Sz (W). The results in this subsection show that f induces a bijection

b) W)/ = BPy.

We have used the fact that the intersection of BP(fv 4{ 2 with an orbit of ¢ : BPN/2
BPN/2 has at most one element; more precisely,

(€ BPN2) e BPyY/> and (1) € BPy}"} = {A € BPN2 0 = (M)},
N/2

Under the identification (b), the map g — 84, G — BP,,~ becomes the map
g — E (up to the action of (") where g € GE.

3.11 Assumethat p # 2andn > 3. If G = SO3, 41 k then the stratum of minimal
dimension > 0 consists of a semisimple class of dimension 2n;if G = Sp,,, ./ £ 1
then the stratum of minimal dimension > 0 consists of a unipotent class of dimen-
sion 2n (that of transvections). The corresponding E € Irr(W) is one-dimensional.

3.12 Assume that G is simple of type Eg. In this case G has exactly 75 strata. If
p # 2,3 then exactly 70 strata contain unipotent elements. If p = 2 (resp. p = 3)
then exactly 74 (resp. 71) strata contain unipotent elements. The unipotent class
of dimension 58 is a stratum. If p # 2, there is a stratum which is a union of a
semisimple class and a unipotent class (both of dimension 128); in particular this
stratum is disconnected.
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4 A map from conjugacy classes in W to 2-special
representations of W

4.1 In this subsection we shall define a canonical surjective map
@) '@ :cl(W) — Sy(W).

We preserve the setup of 2.5. We will first define the map (a) assuming that G is
simple. In [L8] we have defined for any r € P a surjective map cl(W) — U”;
we denote this map by @”. Let C € cl(W). We define an element &(C) € U*
as follows. If ®"(C) € h"(z,) (with z, € U°) for all r € P, then z, = z is
independent of r (see [L10, 0.4]) and we define @(C) to be the equivalence class
of h"(z) for any r € P.If ®"(C) ¢ h"(UU°) for some r € P, then r is unique.
(The only case where r can be possibly not unique is in type Eg in which case we
use the tables in [L10, 2.6].) We then define @(C) to be the equivalence class of
@7 (C). Thus we have defined a surjective map @ : cl(W) — U*. By composing
@ with ¥ : U" 5 S5(W), see 2.5, and with the inclusion S5 (W) C S»(W),
we obtain a map '@" : cl(W) — Sy(W). Similarly, by composing @ with ¥ * :
u* S S, (W), see 2.5(a), we obtain a surjective map '@ : cl(W) — S,(W). Note
that for C € cl(W), '®(C) can be described as follows. If '®@"(C) € S;(W) for
all r € P, then '®"(C) is independent of r, and we have '®(C) = '&"(C) for
any r. If '@"(C) ¢ S;(W) for some r € P, then such r is unique and we have
'®(C) ="'d"(C).

We return to the general case. We write the adjoint group of G as a product
[1; Gi where each G; is simple with Weyl group W;. We can identify W =[], W;,
(W) = []; (W), Sa(W) = [, S2(W;) (via external tensor product). Then
'®; 1 cl(W;) — S2(W;) is defined as above for each i. We set '@ = [[,'®; :
(W) — S (W).

For C, C’ in cl(W) we write C ~ C’if '®&(C) ='®(C’). This is an equivalence
relation on cl(W). Let cl(W) be the set of equivalence classes. Note that:

(b) '@ induces a bijection cl(W) — Sy(W).
We see that, via (b),
(c) the strata of G are naturally indexed by the set cl(W).

4.2 We preserve the setup of 2.5. Now '@ in 4.1(a) is a map between two sets which
depend only on W, not on the underlying root system, see 1.1(b). We show that

(a) 'O itself depends only on W, not on the underlying root system.

We can assume that G is adjoint, simple. We can also assume that G is not of simply
laced type. In this case there is a unique r € P such that S, (W) = S5 (W) so that
we have simply '® = '®" : cl(W) — S»(W). Thus '@ is the composition
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) W) 25 ur s s,om).

We now use the fact the maps in (b) are compatible with the exceptional isogeny
between groups G2 of type B, and C, or of type F4 and F, (resp. between groups
G3 of type G, and G»). This implies (a).

4.3 Assume that G is simple. The map '@ in 4.1 is defined in terms of '@” which
is the composition of @ : cl(W) — U" (which is described explicitly in each case
in [L10]) and ¥" : U" < S5 (W) which is given by the Springer correspondence.
Therefore '@ is explicitly computable. In this subsection we describe this map in
the case where W is of classical type.

If W is of type Ay, n > 1, then cl(W) can be identified with the set of partitions
of n: to a conjugacy class of a permutation of n objects we associate the partition
whose nonzero terms are the sizes of the disjoint cycles of which the permutation
is a product. We identify S, (W) = Irr(W') with the set of partitions in the standard
way (the unit representation corresponds to the partition (r,0,0...)). With these
identifications the map '@ is the identity map.

Assume now that W is a Weyl group of type B, or C,, n > 2. Let X be a
set with 2n elements with a given fixed point free involution 7. We identify W
with the group of permutations of X which commute with 7. To any w € W, we
can associate an element v € Z%n (see 3.4) as follows. The nonzero terms of the
partition v are the sizes of the disjoint cycles of which w is a product. To each string
¢,c,...,c of v of even length with ¢ > 0 even we attach the label 1 if at least
one of its terms represents a cycle which commutes with 7; otherwise we attach to
it the label 0. This defines a (surjective) map cl(W) — Z%n which by results of
[L10] can be identified with the map ®2 : cl(W) — U?. Composing this with the
bijection 3.4(b) we obtain a surjective map cl(W) — BP;, or equivalently (see
3.5(b)) cl(W) — S»(W). This is the same as '®.

Next we assume that W is a Weyl group of type D,, n > 4. We can identify
W with the group of even permutations of X (as above) which commute with t (as
above). To any w € W we associate an element v € Z2, as for type B, above.
This element is actually contained in'Z gn (see 3.9) since w is an even permutation.
This defines a (surjective) map cl(W) — 'Z2, which by results of [L10] can be
identified with the composition of ®? : cl(W) — U? with the obvious map from
U? to the set of orbits of the conjugation action of the full orthogonal group on
U?. Composing this with the bijection 3.9(a) we obtain a surjective map cl(W) —
BPyg , or equivalently (see 3.10(b)) a surjective map cl(W) — S2(W)/ ¢’ (notation
of 3.10). This is the same as the composition of '@ with the obvious map S, (W) —
S(W)/!.

4.4 1In this and the next five subsections we describe the map '® : cl(W) — S, (W)
in the case where W is of exceptional type. The results will be expressed as diagrams
[a,b,...]+ d, where a, b, ... is the list of conjugacy classes in W (with notation
of [C]) which are mapped by '@ to an irreducible representation E denoted d,, (here
d denotes the degree of E and the index n = ng as in 0.2). We also mark by
%, those E which are in S;(W) — S;(W); here r is the unique prime such that
E € SJ(W). Note that the notation d,, does not determine E for types G, and Fy;
for these types it may happen that there are two E’s with same d,,.
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Type G,

[G2] = 1o
[A2] = 21

4.5 Type Fjy.

[F4] = 1
[B4] — 44
[Fa(ar)] = 92
[D4, B3] — 83

[Da(ar)] = 124
[A3 + A)] > 165
[A3 = 96

[A; + A1) = 2,

[Zl] = 13» *3

G. Lusztig

[A1] = 13
[Ao] = 16

[Ay + A1] > 44

[Ay + A1] > 47, %5
[B2] > 4s, *2
[4,] — 8o
[A2] = 8

[4A41.3A41,241 + A1, A1 + A1) = 910

[B2 + A1] + 96, *2

]
]
]
]
[C3 + A41,C3] > 83
]
]
]
]
]

[A; + A5] > 66
4.6 Type Es.

[Es] = 1o
[Ec(a1)] — 61
[Ds] = 20,
[Es(az)] = 303
[As + A1, As] = 154
[Ds(a1)] = 644
[A4 + A1] — 605

4.7 Type E7.

[E7] —

[D4] = 246

[A4] > 816

[Da(ar)] — 80,

[A3 + 241, A3 + A1] = 60g
[342,245 + A1] — 10
[A3] — 8119

[A2 +2A41] — 601,

lo

[E7(a1)] — T1

[E7(a2)] [ 272
[E7(a3)] = 563
[Es] = 213

[EG(al)] = 1204

[De + A1, Dg] = 354

[2A1] = 443
[Al] axd 216
[A1] = 216, *2

[Ao] = 124

[245] — 2415
[A2 + A1] = 6413
[A2] — 3015
[441,3A41] — 1546
[241] 2049

[A1] — 625

[Ao] = 136

[E7(aq)] = 3157
[D5] > 1897
[Es(az)] = 4053

[D6(612) + Al, D6(a2)] = 2808
[45 + Az, (A5 + A1)'] — 709

[(AS + Al)// A ] = 2169

[D5(a1) + Al] — 3789

[A7] > 1895
[AG] = 1056

[Ds(al)] = 42010
[A4 + A2] — 21010
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[Des(ar)] = 2106 [A4 + A1] = 5121
[Ds + A] — 1686 [4L] > 1055

[Da + 341, Da + 24,1, Dy + A1] > 8415
[A4] = 42013
245 + A1, As + As + A1] > 21015
[As + A5] > 37814
[Da] > 1055
[Da(ar) + A1] — 4055
[A3 + Az] > 8415, %2
[A3 + 341, (A3 +241)] = 21616
[D4(ay)] +— 31516
[(A3 4+ 241)". (A3 + A1)"] — 28017
[342,245 + A1) — 7013
[(A3 + A1)'] = 189,

[43] — 2102 [A3] = 5630
[245] = 1685 [(441)". (341)"] = 353
[As + 341] — 1055, [341)] = 2136
[As + 241] — 189y, [241] — 2737
[Ay + A1] > 12055 [41] = Ta6
[7A1,6A1,5A41, (441)] — 1528 [Ao] — le3
4.8 Type Eg
[Eg] = 1o [E7(a3)] — 226810
[Eg(a1)] — 81 [Ee(ar) + A1] — 40961,
[Eg(az2)] = 352 [Dg(a3)] — 14001,
[Eg(as)] — 1123 [Es] — 52512
[E7 + A1, E7] — 844 [D7(az)] — 420012
[Es(as)] — 2104 [De + 241, D¢ + A1, Dg] — 97212
[Dg] = 5605 [Ec(a1)] = 280013
[E7(a1)] = 5676 [A7 + A1] = 453613
[Eg(az)] = 7006 [45] > 607514
[Ds(a1), D7] = 4007 [As + A1] — 283514
[Eg(a7)] = 14007 [Ds + As] > 84014, %2

[Es(ac)] — 14008 [A6] — 4200;5
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[E7(az2) + A1, E7(a2)] = 1344g [De(ar)] — 560015
[Es + Ao, Eg + A1] > 4480 [Es(as)] — 448016
[Dg(az)] > 32409 [D5 +2A41,D5 + A]] — 320016

[D7(a1)] = 105010, *2 [E7(as) + A1, E7(as)] = 716817

[A7] = 17512,%3  [2D4, Dg(az) + A1, De(az)] — 42003

[Ag] = 224010 [E6(az) + Az, Eg(az) + A1] = 315013

[As + Az + A1, As + Az, As + 241, (As + A1)"] > 201619
[Ds(a1) + Az, Ds(a1) + Az] — 134419

[Ds] — 210040 [As + Ay + Aq] — 28355,
[244, Ag + As] — 42040 [As + As] > 45363
[E¢(az)] = 56005 [Ag + 241] > 420054

[Ds + As] > 42005, [Ds + As] > 16854, %2
[(As + A1)'] = 32002, [Ds(a1)] — 28005
[Ds(ar) + A1] — 60752, [As + A1] > 40966

[2D4(ar), Dalar) + As, (243)"] > 84056
[Dg+4A1, D4+ 3A1, Dy +2A1, Dy + A1] > 70058
[Da(ar) + Az] > 2240,
243 + 241, A3 + Ay + 241,245 + Ay, A3 + Ay + A1] > 14005
[A4] > 226830
[(243)] = 32403,
[Da(ar) + Ay] — 14003,
[A3 + Az] = 97235, %3
[A3 +4A1, A3 + 341, (43 +2A41)"] = 105034

[D4] > 52536 [A2 + 2A41] + 56047
[445,3A45 + A1,245 + 2A41] — 17536 [A2 + A1] — 2105,
[D4(ay)] — 140037 [8A1,7A1,6A41,5A1,(441)"] — 5056
[(A3 +24;1), Az + A1] — 134434 [A2] > 11263
[345,245 + A1) > 44839 [(441),3A1] — 84¢4
[245] +— 70042 [241] + 3574
[A2 +4A1, Ay + 3A41] > 40043 [A1] = 891
]

[A3] = 56746 [AO = 1120
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4.9 In the tables in 4.4-4.8 the E which are not marked with %, are in Sy (W); they
are expressed explicitly in the form jj (E') withe’ € V*, E’ € S(W,) in the
tables of [L6]. ‘

We now consider the E in the tables 4.4—4.8 which are marked with ,..

Type G:

13 = j¥,(sign) where W' is of type A5 but not of form W/, e’ € V*.

Type Fa:

9 = ji¥,(E’) where W' is of type By but not of form W/, e’ € V* and
dimE’' = 6,ng = 6;

47 = j ¥ (sign) where W' is of type A3A4; but not of form W/, e’ € V*;

4g = jy(sign) where W'is of type B; B;

212 = jy,(sign) where W' is of type B4 but not of form W, e’ € V*.

Type E7:

8415 = jv,(sign) where W' is of type Dy A1 A1 Ay.

Type Es:

105010 = j,(E’) where W' is of type DA A; and dim E' = 30, ng: = 10;
17515 = jy,(sign) where W' is of type A» A> A2 As.

84014 = Jjy,(sign) where W’ is of type A3 A3 A1 A;.

16824 = jyi,,(sign) where W’ is of type D4 Dy.

97233 = jy/(sign) where W' is of type DsA1A;.

4.10 Forany C € cl(W) let mc be the dimension of the 1-eigenspace of an element
in C in the reflection representation of W. We have the following result.

(@) Forany E € S;(W), the restriction of C +— mc¢ to'®V(E) C cl(W) reaches
its minimum at a unique element of'® 1 (E), denoted by CE.

We can assume that G is simple. When G is of exceptional type, (a) follows from
the tables 4.4-4.8. When G is of classical type, (a) follows from [L10, 0.2].

Note that E — Cg is a cross section of the surjective map '® : cl(W) —
S>(W). It defines a bijection of S, (W) with a subset clo (W) of cl(W).
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5 A second approach

5.1 In this section we sketch another approach to defining the strata of G in which
Springer representations do not appear. Let cl(G) be the set of conjugacy classes in
G.Letl : W — N be the length function of the Coxeter group W. For w € W let

Gy ={g € G;(B,gBg™ ') € O, for some B € B}.
For C € cl(W) let
Chin = {w € C;I : C — N reaches minimum at w}

and let G¢ = Gy, where w € Cpyp.

As pointed out in [L8, 0.2], from [L8, 1.2(a)] and [GP, 8.2.6(b)] it follows that
G is independent of the choice of w in Cy,,. From [L8] it is known that G¢ con-
tains unipotent elements; in particular, G¢ # @. Clearly, G¢ is a union of conjugacy
classes. Let

min dim y,
yecl(G);yCGc

[Ge]= U »

yecl(G);
yCGc,dimy=§¢c

Then is # @, a union of conjugacy classes of fixed dimension, §c. We have
the following result.

5.2 Theorem Let C € cl(W), E € S;(W) be such that’®(C) = E, see 4.1. We

have =Gg.

We can assume that G is almost simple and that k is an algebraic closure of
a finite field. The proof in the case of exceptional groups is reduced in 5.3 to a
computer calculation. The proof for classical groups, which is based on combining
the techniques of [L8], [L9] and [L12], will be given elsewhere.

5.3 In this subsection we assume that Kk is an algebraic closure of a finite field
F, and that G is simply connected, defined and split over F, with Frobenius map
F:G—G.

Let y be an F-stable conjugacy class of G. Let Y/ = {gs;g € y}, an
F-stable semisimple conjugacy class in G. For every s € y’ let y(s) = {u €
Z(s); u unipotent, us € y}, a unipotent conjugacy class of Zg(s). We fix 59 €
y'F and we set H = Zg(so), Yo = y(so). Let Wy be the Weyl group of H. As
in 2.1, we can regard Wy as a subgroup of W (the embedding of Wy into W is
canonical up to composition with an inner automorphism of W).

By replacing if necessary F by a power of F', we can assume that H contains a
maximal torus which is defined and split over F,. For any F-stable maximal torus
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T of G, R} is the virtual representation of G¥ defined as in [DL, 1.20] (with 8 =
1 and with B omitted from notation). Replacing 7,G by T', H where T’ is an
F-stable maximal torus of H, we obtain a virtual representation RlT, g of H F,

For any z € W we denote by R; the virtual representation RIT of GF where
T is an F-stable maximal torus of G of type given by the conjugacy class of z in
W . For any 7/ € Wy we denote by R! o.m the virtual representation RT, p of HF
where T’ is an F-stable maximal torus of H of type given by the conjugacy class of
Z/in Wy For E' € InW we set Rgr = |W|™' 3_ py tr(y, E")R},. Then for any

z € W,wehave R} =¥ o/ tr(z, E)Rpr.
Let w € W. We show the following:

{(g. B) € y© x BF; (B, gBg™") € Ou}|

=|GFIIHFI™" Y w(Tw. Eg)(pE. RE)

(a) EcItW,E’ €It W,
E"elrWg,y

< (E'lwy = ENZwy )y, E”) Y @, R}, ).

ueyl

where y runs over a set of representatives for the conjugacy classes in Wg and
Tw, E4, pg are as in [L8, 1.2]. Let N be the left-hand side of (a). As in [L8, 1.2(c)]
we see that

N = Z (T, Eg)AE
EelrrW

with
Ap = 1GT1TH 370 D IT  |(pr, RY)u(g, RY),
geylt T
where T runs over all maximal tori of G defined over F,. We have

Ap =160 Y Y IT ok, Ry)u(su, RY)

sey’Fuey)f T

= [HFIT" Y D IT (o, Rp)tr(sou, RY).

ueyl T
By [DL, 4.2] we have

tr(sou, Ry) = |[HF |7} Z tr(u’Rglc—lTx,H)’

xeGFi;x—1TxCcH
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hence
Ap =|H"I2 3 3 T ox RY) Y v Riip, )
ueyl T xeGF;x—1TxcH
=|GTIHT [ Y \T" (pr. R) ) wu. Ry ).
T'cH ueyl

where T’ runs over the maximal tori of H defined over F,;. Using the classification
of maximal tori of H defined over Fy, we obtain

e=|GTIHT T Wr ™" Y (op.Ry) ) w(u. Ry )

2€WH ueyl
=|GFH [T We™ Y Y w2 ENps. Re) Y t(u, RY ).
zeWy E’€ltW uey{

This clearly implies (a).

Now assume that G is almost simple of exceptional type and that w has minimal
length in its conjugacy class in W. We can also assume that ¢ — 1 is sufficiently
divisible. Then the right-hand side of (a) can be explicitly determined using a com-
puter. Indeed, it is an entry of the product of several large matrices whose entries
are explicitly known. In particular the quantities tr(7Ty,, £,) (known from the works
of Geck and Geck—Michel, see [GP, 11.5.11]) are available through the CHEVIE
package [GH]. The quantities (pg, Rg/) are coefficients of the nonabelian Fourier
transform in [L2, 4.15]. The quantities (E’|w,, : E") are available from the induc-
tion tables in the CHEVIE package. The quantities tr(y, E”') are available through
the CHEVIE package. The quantities tr(u, R ; ) are Green functions; I thank Frank
Liibeck for providing me with the tables of Green functions for groups of rank < 8
in GAP format. I also thank Gonggqin Li for her help with programming in GAP to
perform the actual computation using these data.

Thus the number |{(g, B) € y¥ x BF;(B,gBg™") € Oy} is explicitly com-
putable. It turns out that it is a polynomial in ¢. Note that the set {(g, B) €
y x B;(B,gBg™') € Oy} is nonempty if and only if this polynomial is non zero.
Thus the condition that y C Gy, can be tested. This can be used to check that The-
orem 5.2 holds for exceptional groups.

5.4 If C is the conjugacy class containing the Coxeter elements of W, then G¢ =
is the union of all conjugacy classes of dimension dim G — tk(G), see [St].

6 Variants

6.1 The results in this subsection will be proved elsewhere. In this subsection we
assume that G is simple and that G’ is a disconnected reductive algebraic group G
over k with identity component G, such that G’/ G is cyclic of order r and such
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that the homomorphism € : G'/G — Aut(W) (the automorphism group of W as a
Coxeter group) induced by the conjugation action of G’/ G on G is injective. Note
that (G, r) must be of type (A4,,2) (n > 2) or (Dy,2) (n > 4) or (Dy, 3) or (Eg, 2).
Let D be a connected component of G’ other than G. We will give a definition of
the strata of D, extending the definition of strata of G. Let ep : W — W be the
image of D under €. Let clp W be the set of conjugacy classes in W twisted by €p
(asin [L12, 0.1]). Let cI(D) be the set of G-conjugacy classes in D. For w € W let

Dy ={ge D:;(B,gBg ') e O for some B € B}.
For C € clp(W) let
Cnin = {w € C;[ : C — N reaches minimum at w}.

and let D¢ = Dy, where w € Cpy,. This is independent of the choice of w in Cpp,.
One can show that D¢ # 0. Clearly, D¢ is a union of G-conjugacy classes in D.
Let

dc = min dim y,
yecl(D);yCDc

b= U »

yecl(D);
yCDc, dimy=8c

Then is # @, a union of G-conjugacy classes of fixed dimension, ¢ . One can
show that UcEch(W) = D; moreover, one can show that if C, C’ € clp (W),

then , are either equal or disjoint. (Some partial results in this direc-
tion are contained in [L.12].) Let ~ be the equivalence relation on clp (W) given by

C ~C'if = and let clj, (W) be the set of equivalence classes. We see

that there is a unique partition of D into pieces (called strata) indexed by ¢l (W)
such that each stratum is of the form for some C € clp(W). One can show
that the equivalence relation ~ on clp (W) and the function C + d¢ on clp(W)
depend only on W and its automorphism €p; in particular they do not depend on
k. When p = r, each stratum of D contains a unique unipotent G-conjugacy class
in D; this gives a bijection cl, (W) < U}, where UJ, is the set of unipotent G-
conjugacy classes in D (with p = r). This bijection coincides with the bijection
clp (W) < Uj, described explicitly in [L11]. Thus the strata of D can also be in-
dexed by U},. We can also index them by a certain set of irreducible representations
of W€D (the fixed point set of ep : W — W) using the bijection [L4, II] between
U7, and a set of irreducible representations of WP (an extension of the Springer
correspondence).

6.2 Assume that G is adjoint. We identify 53 with the variety of Borel subalgebras
of g. Forany § € glet B = {b € B:£ € b} and let d = dim Bg. The subspace
of H,;4(B) spanned by the images of the fundamental classes of the irreducible
components of B is an irreducible W -module denoted by z¢. We also denote by z¢
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the corresponding W -module over Q. Thus we have a well-defined map g — Irr W,
& — 7. The nonempty fibres of this map are called the strata of g. Each stratum
of g is a union of adjoint orbits of fixed dimension; exactly one of these orbits is
nilpotent. The image of the map & — ¢ is the subset of Irr(W/) denoted by Tu’; in
[L7]; when p = O this is S1(W).

6.3 In this subsection we assume that G is semisimple simply connected. Let K
be the field of formal power series k((€)) and let G = G(K). Let B be the set
of Iwahori subgroups of G viewed as an increasing union of projective algebraic
varieties over k. Let W be the affine Weyl group associated to G viewed as an
infinite Coxeter group. Let G(K),s. be the set of all g € G(K) that are compact
(that is such that B’g ={B ¢ B: g € B} is nonempty) and regular semisimple. If
g € G(K)rsc, then l§g is a union of projective algebraic varieties of fixed dimension
d = d, (see [KL] for a closely related result) hence the homology space H,4 (l’;'g) is
well defined and it carries a natural W -action (see [L13]) Similarly the homology
space Hyy (B) is well-defined and it carries a natural W -action. The embedding

B — Binduces a linear ‘map hgs : Hag (B ) — Hyy (B) which is compatible
W1th the W -actions. Hence W acts naturally on the (finite-dimensional) subspace
Ey; = hg«(Hag (B ) of Hay (B), but this action is not irreducible in general.
Note that E, is the subspace of Hy4 (B) spanned by the images of the fundamental
classes of the irreducible components of Bg,al (we ignore Tate twists), hence is
# 0. For g, 8" € G(K)rsc we say that g ~ g’ if dg = dg and E; = E,. This
is an equivalence relation on G(K),s.. The equivalence classes for ~ are called the
strata of G(K)ysc. Note that G(K),sc is a union of countably many strata and each
stratum is a union of conjugacy classes of G(K) contained in G(K ).

6.4 In this subsection we state a conjectural definition of the strata of G in the case
where k = C based on an extension of a construction in [KL]. Let K be as in 6.3.
Let g € G. Let 3 C g be the Lie algebra of Zg(gs) and let £ = log(gy) € 3.
Let p be a parahoric subalgebra of gx := K ® g with pro-nilradical p, such that
p = 3 @ p, as C-vector spaces. By the last corollary in [KL, §6], there exists a
non-empty subset  of & 4+ p, (open in the power series topology) and o € cl(W)
such that for any x € i, x is regular semisimple in a Cartan subalgebra of gx of
type o (see [KL, §1,§6]). Note that o does not depend on the choice of l. We expect
that it does not depend on the choice of p and that g — o isamap G — cl(W)
whose fibres are exactly the strata of G. By the identification 4.1(c) this induces an
injective map cl(W) — cl(W) whose image is expected to be the subset clyg(W) in
4.10 and whose composition with the obvious map cl(W) — cl(W) is expected to
be the identity map of cl(W).
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