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Abstract Let G be a connected reductive group over an algebraically closed field.
We define a decomposition of G into finitely many strata such that each stratum is a
union of conjugacy classes of fixed dimension; the strata are indexed purely in terms
of the Weyl group and the indexing set is independent of the characteristic.
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Introduction

0.1 Let k be an algebraically closed field of characteristic p � 0 and let G be a
connected reductive algebraic group over k. Let W be the Weyl group of G. Let
cl.W / be the set of conjugacy classes of W .

In [St] Steinberg defined the notion of regular element in G (an element whose
conjugacy class has dimension as large as possible, that is dim.G/ � rk.G/) and
showed that the set of regular elements in G form an open dense subset Greg. The
goal of this paper is to define a partition of G into finitely many strata, one of
which is Greg. Each stratum of G is a union of conjugacy classes of G of the same
dimension. The set of strata is naturally indexed by a set which depends only on W
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as a Coxeter group, not on the underlying root system and not on the ground field k.
We give two descriptions of the indexing set above:

(i) one in terms of a class of irreducible representations of W which we call
2-special representations (they are obtained by truncated induction from spe-
cial representations of certain reflection subgroups of W );

(ii) one in terms of cl.W / (modulo a certain equivalence relation).

In the case where W is irreducible we give a third description of the indexing set
above:

(iii) in terms of the sets of unipotent classes in the various versions of G over Fr
for a variable prime number r , glued together according to the set of unipotent
classes in the version of G over C.

The definition of strata in the form (i) and (iii) are based on Springer’s correspon-
dence (see [Spr] when p D 0 or p � 0 and [L3] for any p) connecting irreducible
representations of W with unipotent classes; when W is irreducible, the definition
of strata in the form (iii) is related to that in the form (ii) by the results of [L8, L10]
connecting cl.W / with unipotent classes in G.

Since (i),(ii) are two incarnations of our indexing set, they are in canonical bij-
ection with each other. In particular we obtain a canonical map from cl.W / to the
set of irreducible representations of W whose image consists of the 2-special repre-
sentations (when G is GLn.k/ this is a bijection). We also show that the dimension
of a conjugacy class in a stratum of G is independent of the ground field. (This
statement makes sense since the parametrization of the strata is independent of the
ground field.) In particular, we see that if n � 1, then the following three conditions
on an integer k are equivalent:

� there exists a conjugacy class of dimension k in SO2nC1.C/;
� there exists a conjugacy class of dimension k in Sp2n.C/;
� there exists a conjugacy class of dimension k in Sp2n.F2/.

The proof shows that the following fourth condition is equivalent to the three con-
ditions above: there exists a unipotent conjugacy class of dimension k in Sp2n.F2/.

In Section 5 we sketch an alternative approach to the definition of strata which is
based on an extension of the ideas in [L8], and Springer’s correspondence does not
appear in it.

In Section 6 we dicuss extensions of our results to the Lie algebra of G and to
the case where G is replaced by a disconnected reductive group. We also define a
partition of the set of compact regular semisimple elements in a loop group into
strata analogous to the partition of G into strata. Moreover, we give a conjectural
description of the strata of G (assuming that k D C) which is based on an extension
of a construction in [KL].

0.2 Notation. For an algebraic group H over k, we denote by H 0 the identity
component of H . For a subgroup T of H we denote by NHT the normalizer of T
inH . Let g be the Lie algebra of G. For g 2 G we denote by ZG.g/ the centralizer
of g in G and by gs (resp. gu) the semisimple (resp. unipotent) part of g. Let B be
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the variety of Borel subgroups of G. Let Bg D fB 2 BIg 2 Bg. Let l be a prime
number ¤ p. For an algebraic variety X over k we denote by H i .X/ the l-adic
cohomology of X in degree i ; if X is projective let Hi .X/ D Hom.H i .X/;Ql /.

For any (finite) Weyl group � , we denote by Irr � a set of representatives for the
isomorphism classes of irreducible representations of � over Q. For any � 2 IrrW
let n� be the smallest integer i � 0 such that � appears with > 0 multiplicity in the
i -th symmetric power of the reflection representation of W ; if this multiplicity is 1,
we say that � is good.

A bipartition is a sequence � D .�1; �2; �3; : : : / in N such that �m D 0 for
m � 0 and �1 � �3 � �5 � : : : , �2 � �4 � �6 � : : : . We write j�j D
�1 C �2 C �3 C : : : . We say that � is a bipartition of n if j�j D n. Let BP n be
the set of bipartitions of n. Let e; e0 2 N. We say that a bipartition .�1; �2; �3; : : : /
has excess .e; e0/ if �i C e � �iC1 for i D 1; 3; 5; : : : and �i C e0 � �iC1 for
i D 2; 4; 6; : : : . Let BP ne;e0 be the set of bipartitions of n which have excess .e; e0/.

A partition is a sequence � D .�1; �2; �3; : : : / in N such that �m D 0 form� 0

and �1 � �2 � �3 � : : : . Thus a partition is the same as a bipartition of excess
.0; 0/. On the other hand, a bipartition is the same as an ordered pair of partitions
..�1; �3; �5; : : : /; .�2; �4; �6; : : : //.

Let P D f2; 3; 5; : : : g be the set of prime numbers.

1 The 2-special representations of a Weyl group

1.1 Let V; V � be finite-dimensional Q-vector spaces with a given perfect bilinear
pairing h; i W V � V � ! Q. Let R (resp. LR) be a finite subset of V � f0g (resp.
V � � f0g) with a given bijection ˛ $ L̨ , R $ LR, such that h˛; L̨ i D 2 for any
˛ 2 R and h˛; Ľi 2 Z for any ˛; ˇ 2 R; it is assumed that ˇ � hˇ; L̨ i˛ 2 R,
Ľ � h˛; Ľi L̨ 2 LR for any ˛; ˇ 2 R and that ˛ 2 R H) ˛=2 … R. Thus,
.V; V �; R; LR/ is a reduced root system. Let V0 (resp. V �

0 ) be the Q-subspace of V
(resp. V �) spanned by R (resp. LR). Let rk.R/ D dimV0 D dimV �

0 . Let W be the
(finite) subgroup of GL.V / generated by the reflections s˛ W x 7! x � hx; L̨ i˛ in V
for various a 2 R; it may be identified with the subgroup of GL.V �/ generated by
the reflections t sa W x0 7! x0 � h˛; x0i L̨ in V � for various ˛ 2 R. For any e 2 V
let Re D f˛ 2 RI he; L̨ i 2 Zg, LRe D f L̨ I˛ 2 Reg; note that .V; V �; Re; LRe/ is a
root system with Weyl group We D fw 2 W Iw.e/ � e 2 P

˛2R Z˛g. Similarly,
for any e0 2 V � let Re0 D f˛ 2 RI h˛; e0i 2 Zg, LRe0 D f L̨ I˛ 2 Re0g; note that
.V; V �; Re0 ; LRe0/ is a root system with Weyl group We0 D fw 2 W Iw.e0/ � e0 2P
˛2R Z L̨ g. For any .e; e0/ 2 V � V � let Re;e0 D Re \ Re0 , LRe;e0 D LRe \ LRe0 .

Then .V; V �; Re;e0 ; LRe;e0/ is a root system; let We;e0 be its Weyl group (a subgroup
of We \We0). Note that W0;e0 D We0 , We;0 D We , W0;0 D W . For E 2 Irr.We;e0/

let nE be as in 0.2.
Let .e1; e0

1/ 2 V � V �, .e2; e0
2/ 2 V � V � be such that Re1;e0

1
� Re2;e0

2
(so

that We1;e0

1
� We2;e0

2
). In this case, if E 2 Irr.We1;e0

1
/ is good, there is a unique
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E0 2 Irr.We2;e0

2
/ such that E0 appears in Ind

W
e2;e

0

2

W
e1;e

0

1

.E/ and nE0
D nE , see [LS1,

3.2]; moreover, E0 is good. We set E0 D j
W

e2;e
0

2

W
e1;e

0

1

.E/. Note that if we have also

Re2;e0

2
� Re3;e0

3
where .e3; e0

3/ 2 V � V �, then we have the transitivity property:

(a) j
W

e3;e
0

3

W
e1;e

0

1

.E/ D jWe3;e
0

3

W
e2;e

0

2

.j
W

e2;e
0

2

W
e1;e

0

1

.E//:

Let S.We;e0/ � Irr.We;e0/ be the set of special representations ofWe;e0 , see [L1];
note that any E 2 S.We;e0/ is good. Hence jWWe;e0

.E/ 2 Irr.W / is defined. We say

that E0 2 Irr.W / is 2-special if E0 D jWWe;e0
.E/ for some .e; e0/ 2 V � V � and

some E 2 S.We;e0/. Let S2.W / be the set of all 2-special representations of W (up
to isomorphism). From the definition we see that

(b) S2.W / is unchanged when .V; V �; R; LR/ is replaced by .V �; V; LR;R/.
Let S1.W / (resp. 0S1.W /) be the set of all E0 2 Irr.W / such that E0 D jWWe

.E/

(resp. E0 D jWWe0
.E/) for some e 2 V , E 2 S.We/ (resp. e0 2 V �, E 2 S.We0/).

The analogue of (b) with S2.W / replaced by S1.W / is not true in general; instead,
if .V; V �; R; LR/ is replaced by .V �; V; LR;R/, then S1.W / becomes 0S1.W / and
0S1.W / becomes S1.W /.

Now, for any e0 2 V � the subset S1.We0/ � Irr.We0/ is defined; it consists of all
E 0 2 Irr.We0/ such that E 0 D jW e

0

We;e0
.E/ for some e 2 V and some E 2 S.We;e0/.

Note that any E 0 2 S1.We0/ is good. From (a) we see that

(c) S2.W / consists of all E0 2 Irr.W / such that E0 D jWWe0
.E 0/ for some e0 2 V �

and some E 0 2 S1.We0/.

We say that e0 2 V � (resp. .e; e0/ 2 V � V �) is isolated if rk.Re0/ D rk.R/ (resp.
rk.Re;e0/ D rk.R/). We show:

(d) S2.W / consists of allE0 2 Irr.W / such thatE0 D jWWe;e0
.E/ for some isolated

.e; e0/ 2 V � V � and some E 2 S.We;e0/.

Let E0 2 S2.W /. By definition, we can find .e; e0/ 2 V � V � and E 2 S.We;e0/

such that E0 D jWWe;e0
.E/. We can find an isolated e0

1 2 V � such that Re0 is rat-

ionally closed in Re0

1
that is, Re0

1
\P

˛2Re0
Q˛ D Re0 . Applying the analogous

statement to .V �; V; LRe0

1
; Re0

1
/, e, instead of .V; V �; R; LR/, e0, we can find e1 2 V

such that rk.Re1\Re0

1
/ D rk.Re0

1
/ andRe\Re0

1
is rationally closed inRe1\Re0

1
. It

follows that .e1; e0
1/ is isolated andRe\Re0 is rationally closed inRe1\Re0

1
; hence

E1 WD j
W

e1;e
0

1

We;e0
.E/ is in S.We1;e0

1
/, see [L1]. By (a), we have E0 D jWW

e1;e
0

1

.E1/.

This proves (d).
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We have the following variant of (d):

(e) S2.W / consists of all E0 2 Irr.W / such that E0 D jWWe0
.eE/ for some isolated

e0 2 V � and some eE 2 S1.We0/.

Let E0 2 S2.W /. Let E; e; e0 be as in (d). We have E D jWWe0
.eE/ where

eE D j
We0

We;e0
.E/ 2 S1.We0/ and rk.Re0/ D rk.R/. Conversely, if e0 2 V � and

eE 2 S1.We0/, then, by (c), jWWe0
.eE/ 2 S2.W / (even without the assumption that

rk.Re0/ D rk.R/). This proves (e).

LetR0 � R be such that (if LR0 is the image ofR0 under R$ LR), .V; V �; R0; LR0/
is a root system (with Weyl group W 0) and R0 is rationally closed in R. Note that
R0 D Re for some e 2 V and R0 D Re0 for some e0 2 V �. We show:

(f) If E 2 S1.W 0/, then jWW 0.E/ 2 S1.W /.
(g) If E 2 S2.W 0/, then jWW 0.E/ 2 S2.W /.

We prove (f). Let e0 2 V � be such that R0 D Re0 . We have E D j
We0

We;e0
.E 0/ for

some e 2 V and some E 0 2 S.We;e0/. Hence jWW 0.E/ D jWWe;e0
.E 0/ D jWWe

.E 00/
where E 00 D jWe

We;e0
.E 0/. Now Re;e0 is rationally closed in Re , hence E 00 2 S.We/,

see [L1]. We see that jWW 0.E/ 2 S1.W /.
We prove (g). Let e 2 V be such that R0 D Re . We have E D j

We

We;e0
.E 0/ for

some e0 2 V � and some E 0 2 S1.We;e0/. Hence jWW 0.E/ D jWWe;e0
.E 0/ D jWWe0

.E 00/

where E 00 D jWe0

We;e0
.E 0/. Now Re;e0 is rationally closed inRe0 , hence E 00 2 S.We0/,

see (f). We see that jWW 0.E/ 2 S2.W /.
1.2 There are unique direct sum decompositions V0 D ˚i2IVi , V �

0 D ˚i2IV �
i

such that R D ti2I .R \ Vi /, LR D ti2I . LR \ Vi / and for any i 2 I , .Vi ; V �
i ; R \

Vi ; LR \ Vi / is an irreducible root system for (with Weyl group Wi ); the bijection
R\ Vi $ LR\ Vi is induced by R$ LR). We have canonically W DQ

I2I Wi and
S2.W / DQ

i2I S2.Wi / (via external tensor product).

1.3 In this subsection we assume that .V; V �; R; LR/ is irreducible. Now W acts
naturally on the set of subgroupsW 0 ofW of formWe0 for various isolated e0 2 V �.
The types of variousW 0 which appear in this way are well known and are described
below in each case.

(a) R of type An, n � 0: W 0 of type An.
(b) R of type Bn, n � 2:W 0 of type Ba�Db where a 2 N, b 2 N�f1g, aCb D n.
(c) R of type Cn, n � 2: W 0 of type Ca � Cb where a; b 2 N, aC b D n.
(d) R of type Dn, n � 4: W 0 of type Da �Db where a; b 2 N � f1g, aC b D n.
(e) R of type E6: W 0 of type E6, A5A1, A2A2A2.
(f) R of type E7: W 0 of type E7, D6A1, A7, A5A2, A3A3A1.
(g) R of type E8: W 0 of type E8, E7A1, E6A2, D5A3, A4A4, A5A2A1, A7A1,

A8;D8.
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(h) R of type F4: W 0 of type F4, B3A1, A2A2, A3A1, B4.
(i) R of type G2: W 0 of type G2, A2, A1A1.

(We use the convention that a Weyl group of type Bn or Dn with n D 0 is f1g.)
1.4 In this subsection we assume that .V; V �; R; LR/ is irreducible. Now W acts
naturally on the set of subgroups W 0 of W of form We;e0 for various isolated
.e; e0/ 2 V � V �. The types of various W 0 which appear in this way are described
below in each case. (For type F4 and G2 we denote by � a non-inner involution
of W ).

(a) R of type An: W 0 of type An.
(b) R of type Bn or Cn: W 0 of type Ba � Bb �Dc �Dd where a; b 2 N, c; d 2

N � f1g, aC b C c C d D n.
(c) R of type Dn: W 0 of type Da � Db � Dc � Dd where a; b; c; d 2 N � f1g,

aC b C c C d D n.
(d) R of type E6: W 0 as in 1.3(e).
(e) R of type E7: W 0 as in 1.3(f) and also W 0 of type D4A1A1A1.
(f) R of type E8: W 0 as in 1.3(g) and also W 0 of type D6D2, D4D4, A3A3A1A1,

A2A2A2A2.
(g) R of type F4: W 0 as in 1.3(h), the images under � of the subgroups W 0 of type

A3A1, B4 in 1.3(h) and also W 0 of type B2B2.
(h) R of type G2:W 0 as in 1.3(i) and the image under � of the subgroupW 0 of type

A2 in 1.3(i).

1.5 If R0 � R, LR0 � LR are such that .V; V �; R0; LR0/ is a root system (with the
bijection R0 $ LR0 being induced by R $ LR) then, setting R

0 D R \P
˛2R0 Q˛,

L
R

0 D LR \P
˛2R0 Q L̨ , we obtain a root system .V; V �; R0

;
L
R

0
/. We set

NR0 D ].
X

˛2R0

Z˛=
X

˛2R0

Z˛/ 2 Z�1:

For any e0 2 V � we set Ne0 D NRe0
.

Now let r 2 P . Let Sr2.W / be the set of all E0 2 Irr.W / such that for some
isolated e0 2 V � with Ne0 D rk for some k 2 N and for some E 2 S1.We0/ we
have E0 D jWWe0

.E/. Note that S1.W / � Sr2.W / � S2.W /.
Now assume that .V; V �; R; LR/ is irreducible. We show:

(a) If R is of type An, n � 0, then Sr2.W / D S2.W / D S1.W / D S.W /.
(b) If R is of type Bn or Cn, n � 2, then Sr2.W / D S1.W / if r ¤ 2 and

S22 .W / D S2.W /.
(c) If R is of type Dn, n � 4, then Sr2.W / D S1.W / if r ¤ 2 and S22 .W / D

S2.W /.
(d) If R is of type E6, then Sr2.W / D S2.W / D S1.W /.
(e) If R is of type E7, then Sr2.W / D S1.W / if r ¤ 2 and S22 .W / D S2.W /.
(f) If R is of type E8, then Sr2.W / D S1.W / if r … f2; 3g and S22 .W /[S32 .W / D

S2.W /.
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(g) If R is of type F4, then Sr2.W / D S1.W / if r ¤ 2 and S22 .W / D S2.W /.
(h) If R is of type G2, then Sr2.W / D S1.W / if r ¤ 3 and S32 .W / D S2.W /.

We prove (a). In this case for any isolated e0 2 V � we have Ne0 D 1 and the result
follows from 1.1(d),(e), 1.3.

We prove (b), (c). In these cases for any isolated e0 2 V �, Ne0 is a power of 2
(see 1.3) and the equality S22 .W / D S2.W / follows from 1.1(e). Moreover, if e0 is
isolated and Ne0 is not divisible by 2, then We0 D W so that for r ¤ 2 we have
Sr2.W / D S1.W /.

In cases (d), (e), (f) we shall use the fact that for any e0 2 V �:

(i) we can find e 2 V such that We0 D We , so that if E 2 S.We0/, then
jWWe0

.E/ 2 S1.W /.

(This property does not always hold in cases (g),(h).)
We prove (d). If e0 2 V � is isolated and We0 ¤ W , then from 1.3 we see that

We0 is of type A2A2A2 or A5A1 so that S1.We0/ D S.We0/; using this and 1.1(e)
we see that S2.W / D Sr2 D S1.W /. (We have used (i).)

We prove (e). If e0 2 V � is isolated and We0 is not of type E7 (with Ne0 D 1)
or D6A1 (with Ne0 D 2), then from 1.3 we see that We0 is of type A7 or A5A2 or
A3A3A1 so that S1.We0/ D S.We0/. We see that Sr2.W / D S1.W / if r ¤ 2 and
S22 .W / D S2.W /. (We have used (i).)

We prove (f). If e0 2 V � is isolated and We0 is not of type E8 (with Ne0 D 1)
or E7A1 (with Ne0 D 2) or E6A2 (with Ne0 D 3) or D5A3 (with Ne0 D 4) or D8
(with Ne0 D 2), then from 1.3 we see thatWe0 is of type A4A4 or A5A2A1 or A7A1
or A8, so that S1.We0/ D S.We0/; we see that Sr2.W / D S1.W / if r … f2; 3g and
S22 .W / [ S32 .W / D S2.W /. (We have used (i).)

We prove (g). If e0 2 V � is isolated and We0 is not of type F4 (when Ne0 D 1) or
B3A1 (with Ne0 a power of 2) or B4 (with Ne0 a power of 2), then from 1.3 we see
that We0 is of type A2A2 (with Ne0 D 3) or A3A1 (with Ne0 a power of 2) so that
S1.We0/ D S.We0/. Moreover, if e0 2 V � is isolated and We0 is of type A2A2, then
(i) holds for this e0. We see that Sr2.W / D S1.W / if r ¤ 2 and S22 .W / D S2.W /.

We prove (h). If e0 2 V � is isolated and We0 is not of type G2 (with Ne0 D 1),
then from 1.3 we see that We0 is of type A2 (with Ne0 D 3) or A1A1 (when
Ne0 D 2) so that S1.We0/ D S.We0/. Moreover, if e0 2 V � is isolated and We0

is of type A1A1, then (i) holds for this e0. We see that Sr2.W / D S1.W / if r ¤ 3

and S32 .W / D S2.W /.
This proves (a)–(h). From (a)–(h) we deduce:

(j) We have S2.W / D S22 .W /[S32 .W /. If r 2 P�f2; 3g, then Sr2.W / D S1.W /.

The following result can be verified by computation.

(k) If R is of type E7, then S22 .W / � S1.W / D f8415g. If R is of type E8, then
S22 .W / � S1.W / D f105010; 84014; 16824; 97232g and S32 .W / � S1.W / D
f17512g. If R is of type F4, then S22 .W / � S1.W / D f96; 47; 48; 216g. If R is
of type G2, then S32 .W / � S1.W / D f13g.
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(In each case we specify a representation E by a symbol dn where d is the degree
of E and n D nE . For type F4 and G2 the specified representations are uniquely
determined by the additional condition that they are not in S1.W /.)

(l) S22 .W / \ S32 .W / D S1.W /.

The inclusion S1.W / � S22 .W /\S32 .W / is obvious. The reverse inclusion forR of
type ¤ E8 follows from the fact that for such R we have either S22 .W / D S1.W /
or S32 .W / D S1.W /, see (a)–(h). Thus we can assume that R is of type E8. In this
case the result follows from (k).

1.6 Let r 2 P . Let V �
r D fe0 2 V �INe0=r … Zg. Let eSr2.W / be the set of all E0 2

Irr.W / such that for some e0 2 V �
r and some E 2 Sr2.We0/ we have E0 D jWWe0

.E/.

(Note that any E 2 Sr2.We0/ is good.) Note that Sr2.W / � eSr2.W / (take e0 D 0 in
the definition of eSr2.W /). We show:

(a) S2.W / � eSr2.W /.

We can assume that .V; V �; R; LR/ is irreducible. Let E0 2 S2.W /. We must show
that E0 2 eSr2.W /. By 1.1(e) we can find an isolated e0 … V � and eE 2 S1.We0/ such
that E0 D jWWe0

.eE/. If Ne0=r … Z then we have E0 2 eSr2.W / since S1.We0/ �
Sr2.We0/. If Ne0 is a power of r , then from definitions we have E0 2 Sr2.W /, hence
E0 2 eSr2.W /. Thus we may assume that Ne0 is not a power of r and is Ne0=r 2
Z. This forces R to be of type E8 and We0 to be of type A5A2A1 (see 1.3); we
then have Ne0 D 6 and r 2 f2; 3g. In particular we must have eE 2 S.We0/. If
eE is not the sign representation of We0 , then we have eE D j

We0

W
e0

1

.sign/ for some

e0
1 2 V � such that We0

1
is a proper parabolic subgroup of We0 . Replacing We0

1
by a

W -conjugate we can assume that We0

1
is a proper parabolic subgroup of W so that

jWWe0
.sign/ 2 S.W / and in particular, E0 2 eSr2.W /. Thus we can assume that eE is

the sign representation of We0 . We have We0 � We0

2
where We0

2
is of type E7A1 and

by the definition of S1.We0

2
/ we have

eE2 WD j
W

e0

2

We0
.sign/ 2 S1.We0

2
/:

If r D 3, we have e0
2 2 V �

r hence E0 D jWW
e0

2

.eE2/ 2 eSr2.W /. We have We0 � We0

3

where We0

3
is of type E6A2 and by the definition of S1.We0

3
/, we have eE3 WD

j
W

e0

3

We0
.sign/ 2 S1.We0

3
/. If r D 2, we have e0

3 2 V �
r hence E0 D jWW

e0

3

.eE3/ 2
eSr2.W /. This completes the proof of (a).

We show:

(b) eSr2.W / � S2.W /.

We can assume that .V; V �; R; LR/ is irreducible. Let E0 2 eSr2.W /. We must show
that E0 2 S2.W /. Assume first that r … f2; 3g. Then by results in 1.5 we have
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E 2 S1.We0/, hence by 1.1(c) we have E0 2 S2.W /. Next we assume that r D 3.
If We0 ¤ W , then by results in 1.5 we have E 2 S1.We0/ hence by 1.1(c) we have
E0 2 S2.W /. Thus we can assume that We0 D W so that E0 D E 2 Sr2.W /. Since
Sr2.W / � S2.W / we see that E0 2 S2.W /.

We now assume that r D 2. We can find e0 2 V �
r and E 2 Sr2.We0/ such that

E0 D jWWe0
.E/. We can find an isolated e0

1 2 V � such that Ne0

1
is odd, Re0 � Re0

1

and Re0 is rationally closed in Re0

1
. Let E 0 D j

W
e0

1

We0
.E/. Since E 2 S2.We0/ we

have E 0 2 S2.We0

1
/, see 1.1(g) and E0 D jWW

e0

1

.E 0/. It is then enough to prove the

following statement:

(c) If e0 2 V �
r is isolated .r D 2/ andE 2 S2.We0/, thenE0 D jWWe0

.E/ 2 S2.W /.

If We0 D W , then E0 D E 2 S2.W /, as required. If R is of type An; Bn; Cn;Dn,
then in (c) we have automaticallyWe0 D W hence (c) holds in these cases. Thus we
can assume in (c) that R is of exceptional type and We0 ¤ W . Then We0 is of the
following type: A2A2A2 (if R is of type E6); A5A2 (if R is of type E7); A4A4 or
A8 or E6A2 (if R is of type E8); A2A2, as in 1.3(h) (if R is of type F4); A2, as in
1.3(i) (if R is of type G2). In each case we have S2.We0/ D S1.We0/, see 1.5. Thus
E 2 S1.We0/. Using 1.1(e) we see that E0 2 S2.W /. This proves (c) hence (b).

Combining (a), (b) we obtain

(d) eSr2.W / D S2.W /.

In the case where r D 0, we set V �
0 D V �, S02 .W / D S1.W /, eS02.W / D S2.W /.

2 The strata of G

2.1 We return to the setup of the introduction. Thus G is a connected reductive
algebraic group over k. Let T be “the” maximal torus of G; let X D Hom.T ;k�/,
Y D Hom.k�; T /, V D Q˝X , V � D Q˝Y . We have an obvious perfect bilinear
pairing h; i W V � V � ! Q. Let R � V be the set of roots and let LR � V � be the
set of corrots. Then .V; V �; R; LR/ is as in 1.1. The associated Weyl group W (as in
1.1) that is, the Weyl group of G, can be viewed as an indexing set for the orbits of
G acting diagonally on B�B; we denote by Ow the orbit corresponding to w 2 W .
Note that W is naturally a Coxeter group.

Let g 2 G. Let Wg be the Weyl group of the connected reductive group
H WD ZG.gs/

0. We can view Wg as a subgroup of W as follows. Let ˇ be a
Borel subgroup of H and let T be a maximal torus of ˇ. We define an isomor-

phism bT;ˇ W NHT=T ��! Wg by n0T 7! H -orbit of .ˇ; n0ˇn0�1/. Similarly for

any B 2 B such that T � B we define an isomorphism aT;B W NGT=T ��! W by
n0T 7! G-orbit of .B; n0Bn0�1/. Now assume that B 2 B is such that B \H D ˇ.
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We define an embedding cT;ˇ;B W Wg ! W as the composition Wg
b�1
T;ˇ���!

NHT=T ! NGT=T
aT;B���! W where the middle map is the obvious embedding. If

B 0 2 B also satisfies B 0 \H D ˇ, then we have B 0 D nBn�1 for some n 2 NGT
and from the definitions we have cT;ˇ;B0.w/ D aT;B.nT /cT;ˇ;B.w/aB;T .nT /

�1
for any w 2 Wg . Thus cT;ˇ;B depends (up to composition with an inner automor-
phism of W ) only on T; ˇ and we can denote it by cT;ˇ . Since the set of pairs T; ˇ
as above form a homogeneous space for the connected group H , we see that cT;ˇ
is independent of T; ˇ (up to composition with an inner automorphism ofW ) hence
it does not depend on any choice. We see that there is a well-defined collection C
of embeddings Wg ! W so that any two of them differ only by composition by an
inner automorphism of W .

Define � 2 Irr.Wg/ by the condition that under the Springer correspondence
for H , � corresponds to the H -conjugacy class of gu and the trivial local system
on it. We choose f 2 C; then we can view � as an irreducible representation of
f .Wg/, a subgroup of W such that f .Wg/ D We0 for some e0 2 V �

p , see 1.6. By
[L5, 1.4] we have � 2 Sp2 .f .Wg//, see 1.5, 1.6. Hencee� WD jW

f.Wg/
.�/ 2 eSp2 .W /

is well defined. Since eSp2 .W / D S2.W /, see 1.6, we have e� 2 S2.W /. This is
independent of the choice of f since f is well defined up to composition by an
inner automorphism of W .

2.2 Let g 2 G. Let d D dg D dimBg . The embedding hg W Bg ! B induces a
linear map hg� W H2d .Bg/! H2d .B/. Now H 2d .Bg/;H 2d .B/ carry natural W -
actions, see [L3], and this induces natural W -actions on H2d .Bg/;H2d .B/ which
are compatible with hg�. Hence W acts naturally on the subspace hg�.H2d .Bg//
of H2d .B/.

The following result gives an alternative description of the map g 7! e� (in 2.1)
from G to IrrW .

(a) The W -submodule hg�.H2d .Bg// of H2d .B/ is isomorphic to the W -module
Ql ˝e� where �;e� are associated to g as in 2.1.

First, we note that hg�.H2d .Bg// ¤ 0; indeed it is clear that for any irreducible
component D of Bg (necessarily of dimension d ), the image of the fundamental
class of D under hg� is nonzero (we ignore Tate twists). Let B0 be the variety of
Borel subgroups of ZG.gs/0. Let B0

gu
D fˇ 2 B0Igu 2 ˇg. Then dimB0 D d

and Wg (see 2.1) acts naturally on H2d .B0
gu
/; from the definitions, the W -module

H2d .Bg/ is isomorphic to IndWWg
H2d .B0

gu
/. From the definitions we have n� D d

and the Wg -module H2d .B0
gu
/ is of the form ˚i2Œ1;s�.Ql ˝ Ei /˚ci where Ei 2

Irr.Wg/, ci 2 N satisfy E1 D �, c1 D 1 and nEi
> d for i > 1. It follows

that the W -module H2d .Bg/ is of the form ˚i2Œ1;s�.IndWWg
.Ql ˝ Ei //

˚ci . Now

IndWWg
.Ql ˝ E1/ contains Ql ˝e� with multiplicity 1 and all its other irreducible

constituents are of the form Ql ˝ E with nE > d ; moreover, for i > 1, any
irreducible constituent E of IndWWg

.Ql˝Ei / satisfies nE > d . Thus theW -module

H2d .Bg/ contains Ql˝e�with multiplicity 1 and all its other irreducible constituents
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are of the form Ql ˝ E with nE > d ; these other irreducible constituents are
necessarily mapped to 0 by hg� and the irreducible constituent isomorphic to Ql˝e�
is mapped injectively by hg� since hg� ¤ 0. It follows that the image of hg� is
isomorphic to Ql ˝e� as a W -module. This proves (a).

2.3 By 2.1, 2.2 we have a well-defined map � W G ! S2.W /, g 7! e� where
Ql ˝e� D hg�..H2dg .Bg// (notation of 2.1, 2.2). The fibres GE D ��1.E/ of
� (E 2 S2.W /) are called the strata of G. They are clearly unions of conjugacy
classes ofG. Note the strata ofG are indexed by the finite set S2.W /which depends
only on the Weyl group W and not on the underlying root system (see 1.1(b)) or on
the characteristic of k.

One can show that any stratum of G is a union of pieces in the partition of G
defined in [L3, 3.1]; in particular, it is a constructible subset of G.

2.4 We have the following result.

(a) Any stratum GE (E 2 S2.W /) of G is a (non-empty) union of G-conjugacy
classes of fixed dimension, namely 2 dimB � 2n where n D nE , see 0.2. At
most one G-conjugacy class in GE is unipotent.

Since S2.W / D eSp2 .W /, see 1.6, we have E 2 eSp2 .W /. Hence there exists e0 2 V �
p

and � 2 Sp2 .We0/ such that E D jWWe0
.�/. We can find a semisimple element of

finite order s 2 G such that Ws (viewed as a subgroup of W as in 2.1) is equal
to We0 . By [L5, 1.4] we can find a unipotent element u in ZG.s/0 such that � is
the Springer representation of Ws defined by u and the trivial local system on its
ZG.s/

0-conjugacy class. ThenE D �.su/ so thatGE ¤ ;. Let � be aG-conjugacy
class inGE . Let g 2 � . Let � (resp.e�) be the irreducible representation ofWg (resp.
W ) defined by gu as in 2.1. Let n�; ne� be as in 0.2. By the definition ofe� we have
n� D ne�. By assumption we havee� D E, hence ne� D n and n� D n. By a known
property of Springer’s representations, n� is equal to the dimension of the variety
of Borel subgroups of ZG.gs/0 that contain gu; hence by a result of Steinberg (for
p D 0) and Spaltenstein [Spa, 10.15] (for any p), n� is equal to

.dim.ZZG.gs/0
.gu/

0 � rk.ZG.gs/
0//=2 D .dim.ZG.g/

0/ � rk.G//=2:

It follows that .dim.ZG.g/0/ � rk.G//=2 D n and the desired formula for dim �

follows. Now assume that �; � 0 are two unipotent G-conjugacy classes contained
in GE . Then the Springer representation of W associated to � is the same as that
associated to � 0, namelyE. By properties of Springer representations, it follows that
� D � 0. This proves (a).

2.5 In this and the next subsection we assume that W is irreducibble. Let r 2
P [ f0g. Let Gr be a connected reductive group of the same type as G over an
algebraically closed field of characteristic r , whose Weyl group is identified with
W . Let U r be the set of unipotent classes of Gr . By [L5, 1.4] we have a canonical
bijection

 r W U r ��! Sr2.W /
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which, to a unipotent class � , associates the Springer representation of W cor-
responding to � and the constant local system on � . We define an embedding
hr W U0 ! U r as the composition

U0  0

��! S02 .W / D S1.W /! Sr2.W /
. r /�1

�����! U r

where the unnamed map is the inclusion.
Consider the relationŠ on tr2PU r for which x 2 U r , y 2 U r 0

(where r; r 0 2 P)
satisfy x Š y if either r D r 0 and x D y or r ¤ r 0 and x D hr .´/, y D hr

0

.´/

for some ´ 2 U0. We show that Š is an equivalence relation. It is enough to show
that if x 2 U r , y 2 U r 0

, u 2 U r 00

are such that r ¤ r 0, r 0 ¤ r 00 and x D hr .´/,
y D hr

0

.´/, y D hr
0

.é/, u D hr
00

.é/ for some ´ 2 U0;é 2 U0, then x Š u. From
hr

0

.´/ D hr 0

.é/ and the injectivity of hr
0

we have ´ D é. Thus, if r ¤ r 00, we have
x Š u, while if r D r 00, we have x D u. Thus, Š is indeed an equivalence relation.

Let U� be tr2PU r modulo the equivalence relation Š. Let tr2PU r ! S2.W /
be the map whose restriction to U r is  r followed by the inclusion Sr2.W / �
S2.W / (for any r). We show:

(a) This map induces a bijection  � W U� ��! S2.W /.

To show that  � is a well-defined map it is enough to verify that if ´ 2 U0, then
for any r; r 0 2 P , we have  rhr .´/ D  r

0

hr
0

.´/ in S2.W /; but both sides of the
equality to be verified are equal to  0.´/. Let E 2 S2.W /. By 1.5(j) there exists
r 2 P such that E 2 Sr2.W /, hence E D  r .x/ for some x 2 U r . It follows that
 � is surjective. We show that  � is injective. It is enough to show that

(b) if x 2 U r , y 2 U r 0

(r; r 0 2 P distinct) satisfy  r .x/ D  r
0

.y/, then there
exists ´ 2 U0 such that x D hr .´/, y D hr 0

.´/.

If r ¤ f2; 3g, then Sr2.W / D S1.W /, hence  r .x/ D  0.´/ for some ´ 2 U0.
We then have  r

0

.y/ D  0.´/. It follows that hr .´/ D x, hr
0

.´/ D y, as required.
Similarly, if r 0 ¤ f2; 3g, then the conclusion of (b) holds. Thus we can assume that
r 2 f2; 3g, r 0 2 f2; 3g. Since r ¤ r 0 we have fr; r 0g D f2; 3g. Hence  r .x/ D
 r

0

.y/ 2 S22 .W / \ S32 .W / D S1.W /; the last equality follows from 1.5(l). Thus
we have  r .x/ D  r

0

.y/ D  0.´/ for some ´ 2 U0. It follows that hr .´/ D x,
hr

0

.´/ D y, as required.

From (a) we deduce the following:

(c) The strata of G are naturally indexed by the set U�.

The proof of (a) shows also that U� is equal to U2 t U3 with the identification of
h2.´/; h3.´/ for any ´ 2 U0.

We can now state the following result.

(d) Let E 2 S2.W /. Then for some r 2 P , the stratum GrE contains a unipotent
class. In fact, r can be assumed to be 2 or 3.
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Under (a), E corresponds to an element of U� which is the equivalence class of
some element � 2 U r with r 2 f2; 3g. Let g 2 Gr be an element in the unipotent
conjugacy class � . From the definitions we see that g 2 GrE . This proves (d).

2.6 We show that the set U� has a natural partial order. If Sr2.W / D S1.W / (typeA
and E6), we have U� D U0 which has a natural partial order defined by the closure
relation of unipotent classes in G0. If S1.W / ¤ Sr2.W / for a unique r 2 P (type
¤ A;E6; E8), we have U� D U r which has a natural partial order defined by the
closure relation of unipotent classes in Gr . Assume now that G is of type E8. Then
we can identify U2;U3 with subsets of U� whose union is U� and whose intersection
is U0. Both subsets U2;U3 have natural partial orders defined by the closure relation
of unipotent classes in G2 and G3. If �; � 0 2 U�, we say that � � � 0 if there exists
a sequence � D �0; �1; : : : ; �s D � 0 in U� such that for any i 2 Œ1; s� there exists
r 2 f2; 3g such that

(a) �i�1 2 U r ; �i 2 U r , �i�1 � �i in the partial order of unipotent classes in Gr ;

note that if for some i , (a) holds for both r D 2 and r D 3, then we have �i�1 2 U0;
�i 2 U0, �i�1 � �i in the partial order of unipotent classes inG0. One can show that
this partial order on U� induces the usual partial orders on the subsets U2; U3, U0.

2.7 LetWa be the semidirect product ofW with the subgroup of V generated by R
(an affine Weyl group); let 0Wa be the semidirect product of W with the subgroup
of V � generated by LR (another affine Weyl group). We consider four triples:

(a) .S.W /;X0; Z0/
(b) .S1.W /;X1; Z1/
(c) .0S1.W /; 0X1; 0Z1/
(d) .S2.W /;X2; Z2/

whereX0; X1; 0X1 is the set of two-sided cells inW;Wa; 0Wa respectively,Z0 is the
set of special unipotent classes in G with p D 0, Z1 is the set of unipotent classes
in G with p D 0, 0Z1 is the set of unipotent classes in the Langlands dual G� of G
with p D 0, Z2 is the set of strata of G with p D 0 and X2 remains to be defined.
The three sets in each of these four triples are in canonical bijection with each other
(assuming thatX2 has been defined). Moreover, each set in (a) is naturally contained
in the corresponding set in (b) and (replacing G by G�) in the corresponding set in
(c); each set in (b) is contained in the corresponding set in (d) and (replacing G by
G�) each set in (c) is contained in the corresponding set in (d).

It remains to define X2. It seems plausible that the (trigonometric) double affine
Hecke algebra H associated by Cherednik toW has a natural filtration by two-sided
ideals whose successive subquotients can be called two-sided cells and form the
desired set X2. The inclusion of the Hecke algebra of Wa and that of 0Wa into H
should induce the embeddings X1 � X2, 0X1 � X2 and X2 should be in natural
bijection with S2.W / and with the set of strata of G.
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3 Examples

3.1 We write the adjoint group of G as a product
Q
i Gi where each Gi is simple

with Weyl group Wi so that W D Q
i Wi . Let E 2 S2.W /. We have E D �iEi

where Ei 2 S2.Wi /. Now GE is the inverse image of
Q
i .Gi /Ei

under the obvious
map G !Q

i Gi .
When E is the sign representation of W , then GE is the centre of G; when E is

the unit representation of W , GE is the set of elements of G which are regular in
the sense of Steinberg [St].

By 2.5(a) and 2.6 applied to Gi , the set S2.Wi / has a natural partial order. Since
S2.W / can be identified as above with

Q
i S2.Wi /, S2.W / is naturally a partially

ordered set (a product of partially ordered sets). Hence by 2.3 the set of strata of G
is naturally a partially ordered set.

3.2 Assume thatG D GL.V /where V is a k-vector space of dimension n � 1. Let
g 2 G. For any x 2 k� let Vx be the generalized x-eigenspace of g W V ! V and let
�x1 � �x2 � �x3 � : : : be the sequence in N whose nonzero terms are the sizes of the
Jordan blocks of x�1g W Vx ! Vx . Let g� be the sequence g�1 � g�2 � g�3 � : : :
given by g�j D P

x2k� �xj . Now g 7! g� defines a map from G onto the set of
partitions of n. From the definitions we see that the fibres of this map are exactly
the strata of G. If g 2 G and g� D .�1; �2; �3; : : : /, then

dim.Bg/ D
X

k�1
.n � .�1 C �2 C 	 	 	 C �k//:

3.3 Repeating the definition of sheets in a semisimple Lie algebra over C (see [Bo]),
one can define the sheets of G as the maximal irreducible subsets of G which are
unions of conjugacy classes of fixed dimension. One can show that if G is as in 3.2,
the sheets of G are the same as the strata of G, as described in 3.2. (In this case,
the sheets of G, or rather their Lie algebra analogue, are described in [Pe]. They are
smooth varieties.) This is not true for a general G (the sheets of G do not usually
form a partition of G; the strata of G are not always irreducible). In [Ca] it is shown
that if p is 0 or a good prime for G, then any stratum is a union of sheets and that
the closure of a stratum is not necessarily a union of strata, even if G is of type A.

3.4 In the next few subsections we will describe explicitly the strata of G when G
is a symplectic or special orthogonal group.

Given a partition 	 D .	1 � 	2 � : : : /, a string of 	 is a maximal subsequence
	i ; 	iC1; : : : ; 	j of 	 consisting of equal > 0 numbers; the string is said to have an
odd origin if i is odd and an even origin if i is even.

For an even N 2 N, let Z1N be the set of partitions 	 D .	1 � 	2 � : : : / of N
such that any odd number appears an even number of times in 	. We show:

(a) There is a canonical bijection Z1N $ BP
N=2
1;1 (notation of 0.2).
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To 	 2 Z1N we associate � D .�1; �2; �3; : : : / as follows: each string 2a; 2a; : : : ; 2a
in 	 is replaced by a; a; : : : ; a of the same length; each string 2a C 1; 2a C
1; : : : ; 2a C 1 (necessarily of even length) in 	 is replaced by a; a C 1; a; a C
1; : : : ; a; a C 1 of the same length. The resulting entries form a bipartition � 2
BP

N=2
1;1 . Now 	 7! � establishes the bijection (a).
For an even N 2 N, let Z2N be the set of partitions 	 D .	1 � 	2 � : : : / of N

such that any odd number appears an even number of times in 	 and any even > 0

number which appears an even > 0 number of times in 	 has an associated label 0
or 1. We show:

(b) There is a canonical bijection Z2N $ BP
N=2
2;2 (notation of 0.2).

To 	 2 Z2N we associate � D .�1; �2; �3; : : : / as follows: each string 2a; 2a; : : : ; 2a
of odd length or of even length and label 1 in 	 is replaced by a; a; : : : ; a of the
same length; each string 2a; 2a; : : : ; 2a of even length and label 0 in 	 is rep-
laced by a � 1; a C 1; a � 1; a C 1; : : : ; a � 1; a C 1 of the same length; each
string 2a C 1; 2a C 1; : : : ; 2a C 1 (necessarily of even length) in 	 is replaced by
a; a C 1; a; a C 1; : : : ; a; a C 1 of the same length. The resulting entries form a
bipartition � 2 BPN=22;2 . Now 	 7! � establishes the bijection (b).

Assume for example that N D 6. The bijection (b) is:

.6 : : : /$ .3 : : : /

.42 : : : /$ .21 : : : /

.411 : : : /$ .201 : : : /

.33 : : : /$ .12 : : : /

.222 : : : /$ .111 : : : /

..22/111 : : : /$ .1101 : : : /

..22/0110 : : : /$ .0201 : : : /

.21111 : : : /$ .10101 : : : /

.111111 : : : /$ .010101 : : : /:

Here we write : : : instead of 000 : : : . (Compare [LS2, 6.1].)

3.5 Assume that G D Sp.V / where V is a k-vector space of dimension N with a
fixed nondegenerate symplectic form.

Let g 2 G. For any x 2 k� let Vx be the generalized x-eigenspace of g W V ! V .
Let dx D dimVx . For any x 2 k� such that x2 ¤ 1 let �x1 � �x2 � �x3 � : : :

be the partition of dx whose nonzero terms are the sizes of the Jordan blocks of
x�1g W Vx ! Vx .

For x 2 k� such that x2 D 1, let 	x 2 Z1
dx

(if p ¤ 2) and 	x 2 Z2
dx

(if
p D 2) be again the partition of dx whose nonzero terms are the sizes of the Jordan
blocks of the unipotent element x�1g 2 Sp.Vx/. (When p D 2, 	x should also
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include a labelling with 0 and 1 associated to x�1g 2 Sp.Vx/ as in [L10, 1.4].) Let
�x D .�x1 ; �

x
2 ; �

x
3 ; : : : / be the bipartition of dx=2 associated to 	x by 3.4(a),(b).

Thus �x 2 BP dx=21;1 (if p ¤ 2), �x 2 BP dx=22;2 (if p D 2). Note that �x is the
bipartition such that the Springer representation attached to the unipotent element
x�1g 2 Sp.Vx/ (an irreducible representation of the Weyl group of type Bdx=2) is
indexed in the standard way by �x . Define g� D .g�1;

g�2;
g�3; : : : / by g�j DP

x �
x
j where x runs over a set of representatives for the orbits of the involution

a 7! a�1 of k�. Note that g� 2 BPN=22;2 . Thus we have defined a (surjective) map

g 7! g�, G ! BP
N=2
2;2 . From the definitions we see that the fibres of this map are

exactly the strata of G.
If g 2 G and g� D .�1; �2; �3; : : : /, then

(a) dim.Bg/ D
X

k�1
..N=2/ � .�1 C �2 C 	 	 	 C �k//:

We now consider the case where N D 4. In this case we have S2.W / D Irr.W /;
hence there are five strata. One stratum is the union of all conjugacy classes of
dimension 8 (it corresponds to the unit representation); one stratum is the union of
all conjugacy classes of dimension 6 (it corresponds to the reflection representation
of W ). There are two strata which are unions of conjugacy classes of dimension 4
(they correspond to the two one-dimensional representations of W other than unit
and sign); if p D 2, both these strata are single unipotent classes; if p ¤ 2, one of
these strata is a semisimple class and the other is a unipotent class times the centre
of G. The centre of G is a stratum (it corresponds to the sign representation of W ).

The results in this subsection show that under the standard identification Irr.W / D
BPN=2, we have

(b) S2.W / D BPN=22;2 :

Under this identification the map g 7! g�, G ! BP
N=2
2;2 becomes the map g 7! E

where g 2 GE .

3.6 For N 2 N, let 0Z1N be the set of partitions 	 D .	1 � 	2 � :::/ such that any
even > 0 number appears an even number of times in 	 and 	1 C 	2 C 	 	 	 D N .

(a) If N is odd, then there is a canonical bijection 0Z1N $ BP
.N�1/=2
2;0 .

To 	 2 0Z1N we associate �D.�1; �2; �3; : : : / as follows: each string 2a; 2a; : : : ; 2a
of 	 (necessarily of even length) is replaced by a � 1; aC 1; a � 1; aC 1; : : : ; a �
1; a C 1 of the same length (if the string has odd origin) or by a; a; : : : ; a of the
same length (if the string has even origin); each string 2a C 1; 2a C 1; : : : ; 2a C 1
of 	 is replaced by a; a C 1; a; a C 1; : : : of the same length (if the string has odd
origin) or by aC1; a; aC1; a; : : : of the same length (if the string has even origin).
The resulting entries form a bipartition � 2 BP .N�1/=2

2;0 . Now 	 7! � establishes
the bijection (a).
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(b) If N is even, then there is a canonical bijection 0Z1N $ BP
N=2
0;2 .

To 	 2 0Z1N we associate �D.�1; �2; �3; : : : / as follows: each string 2a; 2a; : : : ; 2a
of 	 (necessarily of even length) is replaced by a � 1; aC 1; a � 1; aC 1; : : : ; a �
1; a C 1 of the same length (if the string has even origin) or by a; a; : : : ; a of the
same length (if the string has odd origin); each string 2a C 1; 2a C 1; : : : ; 2a C 1
of 	 is replaced by a; a C 1; a; a C 1; : : : of the same length (if the string has even
origin) or by aC 1; a; aC 1; a; : : : of the same length (if the string has odd origin).
The resulting entries form a bipartition � 2 BPN=20;2 . Now 	 7! � establishes the
bijection (b).

3.7 Assume that p ¤ 2 and that G D SO.V / where V is a k-vector space of odd
dimension N � 1 with a fixed nondegenerate quadratic form.

Let g 2 G. For any x 2 k�, let Vx be the generalized x-eigenspace of
g W V ! V . Let dx D dimVx . For any x 2 k� such that x2 ¤ 1 let �x1 � �x2 �
�x3 � : : : be the partition of dx whose nonzero terms are the sizes of the Jordan
blocks of x�1g W Vx ! Vx .

For x 2 k� such that x2 D 1 let 	x 2 0Z1
dx

again be the partition of dx whose

nonzero terms are the sizes of the Jordan blocks of the unipotent element x�1g 2
SO.Vx/. Let �x D .�x1 ; �

x
2 ; �

x
3 ; : : : / be the bipartition of dx=2 associated to 	x

by 3.6(a) if x D 1 and by 3.6(b) if x D �1. Thus �x 2 BP .dx�1/=2
2;0 if x D 1,

�x 2 BP dx=20;2 if x D �1. Note that �x is the bipartition such that the Springer
representation attached to the unipotent element x�1g 2 SO.Vx/ (an irreducible
representation of the Weyl group of type B.dx�1/=2, if x D 1, or of type Ddx=2, if
x D �1) is indexed by �x . Define g� D .g�1;

g�2;
g�3; : : : / by g�j D P

x �
x
j

where x runs over a set of representatives for the orbits of the involution a 7! a�1
of k�. Note that g� 2 BP .N�1/=2

2;2 . Thus we have defined a (surjective) map g 7! g�,

G ! BP
.N�1/=2
2;2 . From the definitions we see that the fibres of this map are exactly

the strata of G. Under the identification S2.W / D BP
.N�1/=2
2;2 , see 3.5(b), the map

g 7! g�, G ! BP
.N�1/=2
2;2 becomes the map g 7! E where g 2 GE .

If g 2 G and g� D .�1; �2; �3; : : : /, then

dim.Bg/ D
X

k�1
..N � 1/=2 � .�1 C �2 C 	 	 	 C �k//:

3.8 Assume that p D 2 and that G D SO.V / where V is a k-vector space of odd
dimension N � 1 with a given quadratic form, such that the associated symplectic
form has radical r of dimension 1 and the restriction of the quadratic form to r is
nonzero. In this case there is an obvious morphism from G to the symplectic group
G0 of V=r which is an isomorphism of abstract groups. From the definitions we see
that this morphism maps each stratum of G bijectively onto a stratum of G0 (which
has been described in 3.5).
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3.9 For an even N 2 N, let 0Z2N be the set of partitions with labels 	 D .	1 �
	2 � : : : / in Z2N (see 3.4) such that the number of nonzero entries of 	 is even.

(a) If N is even, then there is a canonical bijection 0Z2N $ BP
N=2
0;4 .

To 	 2 0Z2N we associate � D .�1; �2; �3; : : : / as follows: each string 2a; 2a; 2a; : : :
of 	 of odd length or of even length and label 1 is replaced by a�1; aC1; a�1; aC
1; : : : of the same length (if the string has even origin) or aC1; a�1; aC1; a�1; : : :
of the same length (if the string has odd origin); each string 2a; 2a; 2a; : : : of 	 of
even length and label 0 is replaced by a � 2; a C 2; a � 2; a C 2; : : : of the same
length (if the string has even origin) or a; a; a; a; : : : of the same length (if the string
has odd origin); each string 2a C 1; 2a C 1; 2a C 1; : : : of 	 (necessarily of even
length) is replaced by a� 1; aC 2; a� 1; aC 2; : : : of the same length (if the string
has even origin) or a C 1; a; a C 1; a; : : : of the same length (if the string has odd
origin). The resulting entries form a bipartition � 2 BPN=20;4 . Now 	 7! � establishes
the bijection (a).

Assume for example that N D 8. The bijection (a) is:

.62 : : : /$ .40 : : : /

..44/1 : : : /$ .31 : : : /

..44/0 : : : /$ .22 : : : /

.4211 : : : /$ .3010 : : : /

.3311 : : : /$ .2110 : : : /

..2222/1 : : : /$ .2020 : : : /

..2222/0 : : : /$ .1111 : : : /

..22/11111 : : : /$ .201010 : : : /

..22/01111 : : : /$ .111010 : : : /

.11111111 : : : /$ .10101010 : : : /:

Here we write : : : instead of 000 : : : . (Compare [LS2, 6.2].)

3.10 Assume that G D SO.V / where V is a k-vector space of even dimension N
with a fixed nondegenerate quadratic form. Let g 2 G. For any x 2 k� let Vx be
the generalized x-eigenspace of g W V ! V . Let dx D dimVx . For any x 2 k�
such that x2 ¤ 1 let �x1 � �x2 � �x3 � : : : be the partition whose nonzero terms are
the sizes of the Jordan blocks of x�1g W Vx ! Vx . For x 2 k� such that x2 D 1

let 	x 2 0Z1
dx

(if p ¤ 2) and 	x 2 0Z2
dx

(if p D 2) be again the partition of dx
whose nonzero terms are the sizes of the Jordan blocks of the unipotent element
x�1g 2 SO.Vx/. (When p D 2, 	x should also include a labelling with 0 and 1
associated to x�1g viewed as an element of Sp.Vx/ as in [L10, 1.4].) Let �x D
.�x1 ; �

x
2 ; �

x
3 ; : : : / be the bipartition of dx=2 associated to 	x by 3.6(b), 3.9(a). Thus

�x 2 BP dx=20;2 (if p ¤ 2), �x 2 BP dx=20;4 (if p D 2). Note that �x is the bipartition
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such that the Springer representation attached to the unipotent element x�1g 2
SO.Vx/ (an irreducible representation of the Weyl group of type Ddx=2) is indexed
by �x . Define g� D .g�1;

g�2;
g�3; : : : / by g�j D P

x �
x
j where x runs over

a set of representatives for the orbits of the involution a 7! a�1 of k�. Note that
g� 2 BPN=20;4 and that g 7! g� defines a (surjective) map G ! BP

N=2
0;4 . From the

definitions we see that the fibres of this map are exactly the strata of G (except for
the fibre over a bipartition .�1; �2; �3; : : : / with �1 D �2; �3 D �4; : : : in which
case the fibre is a union of two strata). If g 2 G and g� D .�1; �2; �3; : : : /, then

(a) dim.Bg/ D
X

k�1
..N=2/ � .�1 C �2 C 	 	 	 C �k//:

Viewing W as a subgroup of index 2 of a Weyl group W 0 of type Bn, we can
associate to any � 2 BPN=2 one or two irreducible representations of W which
appear in the restriction to W of the irreducible representation of W 0 indexed by �;
the representation(s) of W associated to � D .�1; �2; �3; �4; : : : / are the same as
those associated to 
.�/ WD .�2; �1; �4; �3; : : : /; here 
 W BPN=2 ! BPN=2 is an
involution and the set of orbits is denoted by BPN=2=
. This gives a surjective map
f W Irr.W / ! BPN=2=
 whose fibre at the orbit of � has one element if � ¤ 
.�/

and two elements if � D 
.�/. Let 
0 W Irr.W / ! Irr.W / be the involution whose
orbits are the fibres of f and let S2.W /=
0 be the set of orbits of the restriction of 
0
to S2.W /. The results in this subsection show that f induces a bijection

(b) S2.W /=
0
��! BP

N=2
0;4 :

We have used the fact that the intersection of BPN=20;4 with an orbit of 
 W BPN=2 !
BPN=2 has at most one element; more precisely,

f� 2 BPN=2I� 2 BPN=20;4 and 
.�/ 2 BPN=20;4 g D f� 2 BPN=2I� D 
.�/g:

Under the identification (b), the map g 7! g�, G ! BP
N=2
0;4 becomes the map

g 7! E (up to the action of 
0) where g 2 GE .

3.11 Assume that p ¤ 2 and n � 3. If G D SO2nC1;k then the stratum of minimal
dimension > 0 consists of a semisimple class of dimension 2n; if G D Sp2n;k=˙ 1
then the stratum of minimal dimension > 0 consists of a unipotent class of dimen-
sion 2n (that of transvections). The corresponding E 2 Irr.W / is one-dimensional.

3.12 Assume that G is simple of type E8. In this case G has exactly 75 strata. If
p ¤ 2; 3 then exactly 70 strata contain unipotent elements. If p D 2 (resp. p D 3)
then exactly 74 (resp. 71) strata contain unipotent elements. The unipotent class
of dimension 58 is a stratum. If p ¤ 2, there is a stratum which is a union of a
semisimple class and a unipotent class (both of dimension 128); in particular this
stratum is disconnected.
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4 A map from conjugacy classes in W to 2-special
representations of W

4.1 In this subsection we shall define a canonical surjective map

(a) 0˚ W cl.W /! S2.W /:

We preserve the setup of 2.5. We will first define the map (a) assuming that G is
simple. In [L8] we have defined for any r 2 P a surjective map cl.W / ! U r ;
we denote this map by ˚ r . Let C 2 cl.W /. We define an element ˚.C/ 2 U�
as follows. If ˚ r .C / 2 hr .´r / (with ´r 2 U0) for all r 2 P , then ´r D ´ is
independent of r (see [L10, 0.4]) and we define ˚.C/ to be the equivalence class
of hr .´/ for any r 2 P . If ˚ r .C / … hr .U0/ for some r 2 P , then r is unique.
(The only case where r can be possibly not unique is in type E8 in which case we
use the tables in [L10, 2.6].) We then define ˚.C/ to be the equivalence class of
˚ r .C /. Thus we have defined a surjective map ˚ W cl.W / ! U�. By composing

˚ r with  r W U r ��! Sr2.W /, see 2.5, and with the inclusion Sr2.W / � S2.W /,
we obtain a map 0˚ r W cl.W / ! S2.W /. Similarly, by composing ˚ with  � W
U� ��! S2.W /, see 2.5(a), we obtain a surjective map 0˚ W cl.W /! S2.W /. Note
that for C 2 cl.W /, 0˚.C/ can be described as follows. If 0˚ r .C / 2 S1.W / for
all r 2 P , then 0˚ r .C / is independent of r , and we have 0˚.C/ D 0˚ r .C / for
any r . If 0˚ r .C / … S1.W / for some r 2 P , then such r is unique and we have
0˚.C/ D 0˚ r .C /.

We return to the general case. We write the adjoint group of G as a productQ
i Gi where each Gi is simple with Weyl group Wi . We can identify W DQ

i Wi ,
cl.W / D Q

i cl.Wi /, S2.W / D Q
u S2.Wi / (via external tensor product). Then

0˚i W cl.Wi / ! S2.Wi / is defined as above for each i . We set 0˚ D Q
i

0˚i W
cl.W /! S2.W /.

For C;C 0 in cl.W / we write C 
 C 0 if 0˚.C/ D 0˚.C 0/. This is an equivalence
relation on cl.W /. Let cl.W / be the set of equivalence classes. Note that:

(b) 0˚ induces a bijection cl.W /! S2.W /.

We see that, via (b),

(c) the strata of G are naturally indexed by the set cl.W /.

4.2 We preserve the setup of 2.5. Now 0˚ in 4.1(a) is a map between two sets which
depend only on W , not on the underlying root system, see 1.1(b). We show that

(a) 0˚ itself depends only on W , not on the underlying root system.

We can assume thatG is adjoint, simple. We can also assume thatG is not of simply
laced type. In this case there is a unique r 2 P such that S2.W / D Sr2.W / so that
we have simply 0˚ D 0˚ r W cl.W /! S2.W /. Thus 0˚ is the composition
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(b) cl.W /
˚r

��! U r  r

��! S2.W /.

We now use the fact the maps in (b) are compatible with the exceptional isogeny
between groups G2 of type Bn and Cn or of type F4 and F4 (resp. between groups
G3 of type G2 and G2). This implies (a).

4.3 Assume that G is simple. The map 0˚ in 4.1 is defined in terms of 0˚ r which
is the composition of ˚ r W cl.W /! U r (which is described explicitly in each case
in [L10]) and  r W U r  Sr2.W / which is given by the Springer correspondence.
Therefore 0˚ is explicitly computable. In this subsection we describe this map in
the case where W is of classical type.

If W is of type An, n � 1, then cl.W / can be identified with the set of partitions
of n: to a conjugacy class of a permutation of n objects we associate the partition
whose nonzero terms are the sizes of the disjoint cycles of which the permutation
is a product. We identify S2.W / D Irr.W / with the set of partitions in the standard
way (the unit representation corresponds to the partition .n; 0; 0 : : : /). With these
identifications the map 0˚ is the identity map.

Assume now that W is a Weyl group of type Bn or Cn, n � 2. Let X be a
set with 2n elements with a given fixed point free involution � . We identify W
with the group of permutations of X which commute with � . To any w 2 W , we
can associate an element 	 2 Z22n (see 3.4) as follows. The nonzero terms of the
partition 	 are the sizes of the disjoint cycles of which w is a product. To each string
c; c; : : : ; c of 	 of even length with c > 0 even we attach the label 1 if at least
one of its terms represents a cycle which commutes with � ; otherwise we attach to
it the label 0. This defines a (surjective) map cl.W / ! Z22n which by results of
[L10] can be identified with the map ˚2 W cl.W / ! U2. Composing this with the
bijection 3.4(b) we obtain a surjective map cl.W / ! BP n2;2 or equivalently (see
3.5(b)) cl.W /! S2.W /. This is the same as 0˚ .

Next we assume that W is a Weyl group of type Dn, n � 4. We can identify
W with the group of even permutations of X (as above) which commute with � (as
above). To any w 2 W we associate an element 	 2 Z22n as for type Bn above.
This element is actually contained in 0Z22n (see 3.9) since w is an even permutation.
This defines a (surjective) map cl.W / ! 0Z22n which by results of [L10] can be
identified with the composition of ˚2 W cl.W / ! U2 with the obvious map from
U2 to the set of orbits of the conjugation action of the full orthogonal group on
U2. Composing this with the bijection 3.9(a) we obtain a surjective map cl.W / !
BP n0;4 or equivalently (see 3.10(b)) a surjective map cl.W / ! S2.W /=
0 (notation
of 3.10). This is the same as the composition of 0˚ with the obvious map S2.W /!
S2.W /=
0.
4.4 In this and the next five subsections we describe the map 0˚ W cl.W /! S2.W /
in the case whereW is of exceptional type. The results will be expressed as diagrams
Œa; b; : : : � 7! dn where a; b; : : : is the list of conjugacy classes in W (with notation
of [C]) which are mapped by 0˚ to an irreducible representationE denoted dn (here
d denotes the degree of E and the index n D nE as in 0.2). We also mark by
�r those E which are in S2.W / � S1.W /; here r is the unique prime such that
E 2 Sr2.W /. Note that the notation dn does not determine E for types G2 and F4;
for these types it may happen that there are two E’s with same dn.
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Type G2

ŒG2� 7! 10 ŒA1 CeA1� 7! 22 ŒA1� 7! 13

ŒA2� 7! 21 ŒeA1� 7! 13;�3 ŒA0� 7! 16

4.5 Type F4.

ŒF4� 7! 10 ŒA2 CeA1� 7! 47

ŒB4� 7! 41 ŒeA2 C A1� 7! 47;�2
ŒF4.a1/� 7! 92 ŒB2� 7! 48;�2
ŒD4; B3� 7! 83 ŒeA2� 7! 89

ŒC3 C A1; C3� 7! 83 ŒA2� 7! 89

ŒD4.a1/� 7! 124 Œ4A1; 3A1; 2A1 CeA1; A1 CeA1� 7! 910

ŒA3 CeA1� 7! 165 Œ2A1� 7! 413

ŒA3� 7! 96 ŒA1� 7! 216

ŒB2 C A1� 7! 96;�2 ŒeA1� 7! 216;�2
ŒeA2 CeA2� 7! 66 ŒA0� 7! 124

4.6 Type E6.

ŒE6� 7! 10 ŒD4� 7! 246 Œ2A2� 7! 2412

ŒE6.a1/� 7! 61 ŒA4� 7! 816 ŒA2 C A1� 7! 6413

ŒD5� 7! 202 ŒD4.a1/� 7! 807 ŒA2� 7! 3015

ŒE6.a2/� 7! 303 ŒA3 C 2A1; A3 C A1� 7! 608 Œ4A1; 3A1� 7! 1516

ŒA5 C A1; A5� 7! 154 Œ3A2; 2A2 C A1� 7! 109 Œ2A1� 7! 2020

ŒD5.a1/� 7! 644 ŒA3� 7! 8110 ŒA1� 7! 625

ŒA4 C A1� 7! 605 ŒA2 C 2A1� 7! 6011 ŒA0� 7! 136

4.7 Type E7.

ŒE7� 7! 10 ŒE7.a4/� 7! 3157

ŒE7.a1/� 7! 71 ŒD5� 7! 1897

ŒE7.a2/� 7! 272 ŒE6.a2/� 7! 4058

ŒE7.a3/� 7! 563 ŒD6.a2/C A1;D6.a2/� 7! 2808

ŒE6� 7! 213 ŒA5 C A2; .A5 C A1/0� 7! 709

ŒE6.a1/� 7! 1204 Œ.A5 C A1/00; A00
5� 7! 2169

ŒD6 C A1;D6� 7! 354 ŒD5.a1/C A1� 7! 3789

ŒA7� 7! 1895 ŒD5.a1/� 7! 42010

ŒA6� 7! 1056 ŒA4 C A2� 7! 21010
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ŒD6.a1/� 7! 2106 ŒA4 C A1� 7! 51211

ŒD5 C A1� 7! 1686 ŒA0
5� 7! 10512

ŒD4 C 3A1;D4 C 2A1;D4 C A1� 7! 8412

ŒA4� 7! 42013

Œ2A3 C A1; A3 C A2 C A1� 7! 21013

ŒA3 C A2� 7! 37814

ŒD4� 7! 10515

ŒD4.a1/C A1� 7! 40515

ŒA3 C A2� 7! 8415;�2
ŒA3 C 3A1; .A3 C 2A1/0� 7! 21616

ŒD4.a1/� 7! 31516

Œ.A3 C 2A1/00; .A3 C A1/00� 7! 28017

Œ3A2; 2A2 C A1� 7! 7018

Œ.A3 C A1/0� 7! 18920

ŒA3� 7! 21021 ŒA2� 7! 5630

Œ2A2� 7! 16821 Œ.4A1/
00; .3A1/00� 7! 3531

ŒA2 C 3A1� 7! 10521 Œ.3A1/
0� 7! 2136

ŒA2 C 2A1� 7! 18922 Œ2A1� 7! 2737

ŒA2 C A1� 7! 12025 ŒA1� 7! 746

Œ7A1; 6A1; 5A1; .4A1/
0� 7! 1528 ŒA0� 7! 163

4.8 Type E8

ŒE8� 7! 10 ŒE7.a3/� 7! 226810

ŒE8.a1/� 7! 81 ŒE6.a1/C A1� 7! 409611

ŒE8.a2/� 7! 352 ŒD8.a3/� 7! 140011

ŒE8.a4/� 7! 1123 ŒE6� 7! 52512

ŒE7 C A1; E7� 7! 844 ŒD7.a2/� 7! 420012

ŒE8.a5/� 7! 2104 ŒD6 C 2A1;D6 C A1;D6� 7! 97212

ŒD8� 7! 5605 ŒE6.a1/� 7! 280013

ŒE7.a1/� 7! 5676 ŒA7 C A1� 7! 453613

ŒE8.a3/� 7! 7006 ŒA0

7� 7! 607514

ŒD8.a1/;D7� 7! 4007 ŒA6 C A1� 7! 283514

ŒE8.a7/� 7! 14007 ŒD5 C A2� 7! 84014;�2
ŒE8.a6/� 7! 14008 ŒA6� 7! 420015
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ŒE7.a2/C A1; E7.a2/� 7! 13448 ŒD6.a1/� 7! 560015

ŒE6 C A2; E6 C A1� 7! 4489 ŒE8.a8/� 7! 448016

ŒD8.a2/� 7! 32409 ŒD5 C 2A1;D5 C A1� 7! 320016

ŒD7.a1/� 7! 105010;�2 ŒE7.a4/C A1; E7.a4/� 7! 716817

ŒA00

7� 7! 17512;�3 Œ2D4;D6.a2/C A1;D6.a2/� 7! 420018

ŒA8� 7! 224010 ŒE6.a2/C A2; E6.a2/C A1� 7! 315018

ŒA5 C A2 C A1; A5 C A2; A5 C 2A1; .A5 C A1/00� 7! 201619

ŒD5.a1/C A3;D5.a1/C A2� 7! 134419

ŒD5� 7! 210020 ŒA4 C A2 C A1� 7! 283522

Œ2A4; A4 C A3� 7! 42020 ŒA4 C A2� 7! 453623

ŒE6.a2/� 7! 560021 ŒA4 C 2A1� 7! 420024

ŒD4 C A3� 7! 420021 ŒD4 C A2� 7! 16824;�2
Œ.A5 C A1/0� 7! 320022 ŒD5.a1/� 7! 280025

ŒD5.a1/C A1� 7! 607522 ŒA4 C A1� 7! 409626

Œ2D4.a1/;D4.a1/C A3; .2A3/00� 7! 84026

ŒD4 C 4A1;D4 C 3A1;D4 C 2A1;D4 C A1� 7! 70028

ŒD4.a1/C A2� 7! 224028

Œ2A3 C 2A1; A3 C A2 C 2A1; 2A3 C A1; A3 C A2 C A1� 7! 140029

ŒA4� 7! 226830

Œ.2A3/
0� 7! 324031

ŒD4.a1/C A1� 7! 140032

ŒA3 C A2� 7! 97232;�2
ŒA3 C 4A1; A3 C 3A1; .A3 C 2A1/00� 7! 105034

ŒD4� 7! 52536 ŒA2 C 2A1� 7! 56047

Œ4A2; 3A2 C A1; 2A2 C 2A1� 7! 17536 ŒA2 C A1� 7! 21052

ŒD4.a1/� 7! 140037 Œ8A1; 7A1; 6A1; 5A1; .4A1/
00� 7! 5056

Œ.A3 C 2A1/0; A3 C A1� 7! 134438 ŒA2� 7! 11263

Œ3A2; 2A2 C A1� 7! 44839 Œ.4A1/
0; 3A1� 7! 8464

Œ2A2� 7! 70042 Œ2A1� 7! 3574

ŒA2 C 4A1; A2 C 3A1� 7! 40043 ŒA1� 7! 891

ŒA3� 7! 56746 ŒA0� 7! 1120
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4.9 In the tables in 4.4–4.8 the E which are not marked with �r are in S1.W /; they
are expressed explicitly in the form jWWe0

.E 0/ with e0 2 V �, E 0 2 S.We0/ in the
tables of [L6].

We now consider the E in the tables 4.4–4.8 which are marked with �r .

Type G2:

13 D jWW 0.sign/ where W 0 is of type A2 but not of form We0 ; e0 2 V �.

Type F4:

96 D jWW 0.E’/ where W 0 is of type B4 but not of form We0 ; e0 2 V � and
dimE 0 D 6, nE 0 D 6;

47 D jWW 0.sign/ where W 0 is of type A3A1 but not of form We0 ; e0 2 V �;
48 D jWW 0.sign/ where W 0 is of type B2B2;
212 D jWW 0.sign/ where W 0 is of type B4 but not of form We0 ; e0 2 V �.

Type E7:

8415 D jWW 0.sign/ where W 0 is of type D4A1A1A1.

Type E8:

105010 D jWW 0.E’/ where W 0 is of type D6A1A1 and dimE 0 D 30, nE 0 D 10;
17512 D jWW 0.sign/ where W 0 is of type A2A2A2A2.
84014 D jWW 0.sign/ where W 0 is of type A3A3A1A1.
16824 D jWW 0.sign/ where W 0 is of type D4D4.
97232 D jWW 0.sign/ where W 0 is of type D6A1A1.

4.10 For anyC 2 cl.W / letmC be the dimension of the 1-eigenspace of an element
in C in the reflection representation of W . We have the following result.

(a) For any E 2 S2.W /, the restriction of C 7! mC to 0˚�1.E/ � cl.W / reaches
its minimum at a unique element of 0˚�1.E/, denoted by CE .

We can assume that G is simple. When G is of exceptional type, (a) follows from
the tables 4.4-4.8. When G is of classical type, (a) follows from [L10, 0.2].

Note that E 7! CE is a cross section of the surjective map 0˚ W cl.W / !
S2.W /. It defines a bijection of S2.W / with a subset cl0.W / of cl.W /.
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5 A second approach

5.1 In this section we sketch another approach to defining the strata of G in which
Springer representations do not appear. Let cl.G/ be the set of conjugacy classes in
G. Let l W W ! N be the length function of the Coxeter group W . For w 2 W let

Gw D fg 2 GI .B; gBg�1/ 2 Ow for some B 2 Bg:
For C 2 cl.W / let

Cmin D fw 2 C I l W C ! N reaches minimum at wg
and let GC D Gw where w 2 Cmin.

As pointed out in [L8, 0.2], from [L8, 1.2(a)] and [GP, 8.2.6(b)] it follows that
GC is independent of the choice of w in Cmin. From [L8] it is known that GC con-
tains unipotent elements; in particular,GC ¤ ;. Clearly,GC is a union of conjugacy
classes. Let

ıC D min
�2cl.G/I��GC

dim �;

GC D
[

�2cl.G/I
��GC ;dim�DıC

�:

Then GC is ¤ ;, a union of conjugacy classes of fixed dimension, ıC . We have
the following result.

5.2 Theorem Let C 2 cl.W /, E 2 S2.W / be such that 0˚.C/ D E, see 4.1. We
have GC D GE .

We can assume that G is almost simple and that k is an algebraic closure of
a finite field. The proof in the case of exceptional groups is reduced in 5.3 to a
computer calculation. The proof for classical groups, which is based on combining
the techniques of [L8], [L9] and [L12], will be given elsewhere.

5.3 In this subsection we assume that k is an algebraic closure of a finite field
Fq and that G is simply connected, defined and split over Fq with Frobenius map
F W G ! G.

Let � be an F -stable conjugacy class of G. Let � 0 D fgsIg 2 �g, an
F -stable semisimple conjugacy class in G. For every s 2 � 0 let �.s/ D fu 2
ZG.s/Iu unipotent, us 2 �g, a unipotent conjugacy class of ZG.s/. We fix s0 2
� 0F and we set H D ZG.s0/, �0 D �.s0/. Let WH be the Weyl group of H . As
in 2.1, we can regard WH as a subgroup of W (the embedding of WH into W is
canonical up to composition with an inner automorphism of W ).

By replacing if necessary F by a power of F , we can assume that H contains a
maximal torus which is defined and split over Fq . For any F -stable maximal torus
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T of G, R1T is the virtual representation of GF defined as in [DL, 1.20] (with � D
1 and with B omitted from notation). Replacing T;G by T 0;H where T 0 is an
F -stable maximal torus of H , we obtain a virtual representation R1T 0;H of HF .

For any ´ 2 W we denote by R1´ the virtual representation R1T of GF where
T is an F -stable maximal torus of G of type given by the conjugacy class of ´ in
W . For any ´0 2 WH we denote by R1´0;H the virtual representation R1T 0;H of HF

where T 0 is an F -stable maximal torus ofH of type given by the conjugacy class of
´0 in WH . For E 0 2 IrrW we set RE 0 D jW j�1Py2W tr.y;E 0/R1y . Then for any
´ 2 W , we have R1´ D

P
E 02IrrW tr.´;E 0/RE 0 .

Let w 2 W . We show the following:

(a)

jf.g; B/ 2 �F � BF I .B; gBg�1/ 2 Owgj
D jGF jjHF j�1

X

E2IrrW;E 02IrrW;
E 002IrrWH ;y

tr.Tw ; Eq/.�E ; RE 0/

� .E 0jWH
W E 00/jZWH

.y/j�1tr.y;E 00/
X

u2�F
0

tr.u;R1y;H /;

where y runs over a set of representatives for the conjugacy classes in WH and
Tw ; Eq; �E are as in [L8, 1.2]. Let N be the left-hand side of (a). As in [L8, 1.2(c)]
we see that

N D
X

E2IrrW

tr.Tw ; Eq/AE

with

AE D jGF j�1
X

g2�F

X

T

jT F j.�E ; R1T /tr.g;R1T /;

where T runs over all maximal tori of G defined over Fq . We have

AE D jGF j�1
X

s2� 0F ;u2�.s/F

X

T

jT F j.�E ; R1T /tr.su;R1T /

D jHF j�1
X

u2�F
0

X

T

jT F j.�E ; R1T /tr.s0u;R1T /:

By [DL, 4.2] we have

tr.s0u;R
1
T / D jHF j�1

X

x2GF Ix�1Tx�H
tr.u;R1

x�1Tx;H
/;
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hence

AE D jHF j�2
X

u2�F
0

X

T

jT F j.�E ; R1T /
X

x2GF Ix�1Tx�H
tr.u;R1

x�1Tx;H
/

D jGF jjHF j�2
X

T 0�H
jT 0F j.�E ; R1T 0/

X

u2�F
0

tr.u;R1T 0;H /;

where T 0 runs over the maximal tori of H defined over Fq . Using the classification
of maximal tori of H defined over Fq , we obtain

AE D jGF jjHF j�1jWH j�1
X

´2WH

.�E ; R
1
´/

X

u2�F
0

tr.u;R1´;H /

D jGF jjHF j�1jWH j�1
X

´2WH

X

E 02IrrW

tr.´;E 0/.�E ; RE 0/
X

u2�F
0

tr.u;R1´;H /:

This clearly implies (a).
Now assume that G is almost simple of exceptional type and that w has minimal

length in its conjugacy class in W . We can also assume that q � 1 is sufficiently
divisible. Then the right-hand side of (a) can be explicitly determined using a com-
puter. Indeed, it is an entry of the product of several large matrices whose entries
are explicitly known. In particular the quantities tr.Tw ; Eq/ (known from the works
of Geck and Geck–Michel, see [GP, 11.5.11]) are available through the CHEVIE
package [GH]. The quantities .�E ; RE 0/ are coefficients of the nonabelian Fourier
transform in [L2, 4.15]. The quantities .E 0jWH

W E 00/ are available from the induc-
tion tables in the CHEVIE package. The quantities tr.y;E 00/ are available through
the CHEVIE package. The quantities tr.u;R1y;H / are Green functions; I thank Frank
Lübeck for providing me with the tables of Green functions for groups of rank � 8
in GAP format. I also thank Gongqin Li for her help with programming in GAP to
perform the actual computation using these data.

Thus the number jf.g; B/ 2 �F � BF I .B; gBg�1/ 2 Owgj is explicitly com-
putable. It turns out that it is a polynomial in q. Note that the set f.g; B/ 2
� � BI .B; gBg�1/ 2 Owg is nonempty if and only if this polynomial is non zero.
Thus the condition that � � Gw can be tested. This can be used to check that The-
orem 5.2 holds for exceptional groups.

5.4 If C is the conjugacy class containing the Coxeter elements of W , then GC D
GC is the union of all conjugacy classes of dimension dimG � rk.G/, see [St].

6 Variants

6.1 The results in this subsection will be proved elsewhere. In this subsection we
assume that G is simple and that G0 is a disconnected reductive algebraic group G
over k with identity component G, such that G0=G is cyclic of order r and such
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that the homomorphism � W G0=G ! Aut.W / (the automorphism group of W as a
Coxeter group) induced by the conjugation action of G0=G on G is injective. Note
that .G; r/must be of type .An; 2/ (n � 2) or .Dn; 2/ (n � 4) or .D4; 3/ or .E6; 2/.
Let D be a connected component of G0 other than G. We will give a definition of
the strata of D, extending the definition of strata of G. Let �D W W ! W be the
image of D under �. Let clDW be the set of conjugacy classes in W twisted by �D
(as in [L12, 0.1]). Let cl.D/ be the set of G-conjugacy classes in D. For w 2 W let

Dw D fg 2 DI .B; gBg�1/ 2 Ow for some B 2 Bg:
For C 2 clD.W / let

Cmin D fw 2 C I l W C ! N reaches minimum at wg:
and let DC D Dw where w 2 Cmin. This is independent of the choice of w in Cmin.
One can show that DC ¤ ;. Clearly, DC is a union of G-conjugacy classes in D.
Let

ıC D min
�2cl.D/I��DC

dim �;

DC D
[

�2cl.D/I
��DC ;dim�DıC

�:

Then DC is¤ ;, a union ofG-conjugacy classes of fixed dimension, ıC . One can

show that [C2clD.W / DC D D; moreover, one can show that if C;C 0 2 clD.W /,

then DC ; DC 0 are either equal or disjoint. (Some partial results in this direc-
tion are contained in [L12].) Let 
 be the equivalence relation on clD.W / given by
C 
 C 0 if DC D DC 0 and let clD.W / be the set of equivalence classes. We see
that there is a unique partition of D into pieces (called strata) indexed by clD.W /
such that each stratum is of the form DC for some C 2 clD.W /. One can show
that the equivalence relation 
 on clD.W / and the function C 7! dC on clD.W /
depend only on W and its automorphism �D; in particular they do not depend on
k. When p D r , each stratum of D contains a unique unipotent G-conjugacy class
in D; this gives a bijection clD.W / $ U rD where U rD is the set of unipotent G-
conjugacy classes in D (with p D r). This bijection coincides with the bijection
clD.W / $ U rD described explicitly in [L11]. Thus the strata of D can also be in-
dexed by U rD . We can also index them by a certain set of irreducible representations
of W �D (the fixed point set of �D W W ! W ) using the bijection [L4, II] between
U rD and a set of irreducible representations of W �D (an extension of the Springer
correspondence).

6.2 Assume that G is adjoint. We identify B with the variety of Borel subalgebras
of g. For any  2 g let B� D fb 2 BI  2 bg and let d D dimB� . The subspace
of H2d .B/ spanned by the images of the fundamental classes of the irreducible
components of B� is an irreducible W -module denoted by �� . We also denote by ��
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the corresponding W -module over Q. Thus we have a well-defined map g! IrrW ,
 7! �� . The nonempty fibres of this map are called the strata of g. Each stratum
of g is a union of adjoint orbits of fixed dimension; exactly one of these orbits is
nilpotent. The image of the map  7! �� is the subset of Irr.W / denoted by T pW in
[L7]; when p D 0 this is S1.W /.
6.3 In this subsection we assume that G is semisimple simply connected. Let K
be the field of formal power series k..�// and let OG D G.K/. Let OB be the set
of Iwahori subgroups of OG viewed as an increasing union of projective algebraic
varieties over k. Let OW be the affine Weyl group associated to OG viewed as an
infinite Coxeter group. Let G.K/rsc be the set of all g 2 G.K/ that are compact
(that is such that OBg D fB 2 OBIg 2 Bg is nonempty) and regular semisimple. If
g 2 G.K/rsc , then OBg is a union of projective algebraic varieties of fixed dimension
d D dg (see [KL] for a closely related result) hence the homology spaceH2d . OBg/ is
well defined and it carries a natural OW -action (see [L13]). Similarly the homology
space H2d . OB/ is well-defined and it carries a natural OW -action. The embedding
hg W OBg ! OB induces a linear map hg� W H2d . OBg/! H2d . OB/which is compatible
with the OW -actions. Hence OW acts naturally on the (finite-dimensional) subspace
Eg WD hg�.H2d . OBg// of H2d . OB/, but this action is not irreducible in general.
Note that Eg is the subspace of H2d . OB/ spanned by the images of the fundamental
classes of the irreducible components of OBg ;Ql (we ignore Tate twists), hence is
¤ 0. For g; g0 2 G.K/rsc we say that g 
 g0 if dg D dg0 and Eg D Eg0 . This
is an equivalence relation on G.K/rsc . The equivalence classes for 
 are called the
strata of G.K/rsc . Note that G.K/rsc is a union of countably many strata and each
stratum is a union of conjugacy classes of G.K/ contained in G.K/rsc .

6.4 In this subsection we state a conjectural definition of the strata of G in the case
where k D C based on an extension of a construction in [KL]. Let K be as in 6.3.
Let g 2 G. Let z � g be the Lie algebra of ZG.gs/ and let  D log.gu/ 2 z.
Let p be a parahoric subalgebra of gK WD K ˝ g with pro-nilradical pn such that
p D z ˚ pn as C-vector spaces. By the last corollary in [KL, �6], there exists a
non-empty subset U of  C pn (open in the power series topology) and � 2 cl.W /
such that for any x 2 U, x is regular semisimple in a Cartan subalgebra of gK of
type � (see [KL, �1,�6]). Note that � does not depend on the choice of U. We expect
that it does not depend on the choice of p and that g 7! � is a map G ! cl.W /
whose fibres are exactly the strata of G. By the identification 4.1(c) this induces an
injective map cl.W /! cl.W / whose image is expected to be the subset cl0.W / in
4.10 and whose composition with the obvious map cl.W / ! cl.W / is expected to
be the identity map of cl.W /.
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