On conjugacy classes in a reductive group

George Lusztig

Dedicated to David Vogan on the occasion of his 60th birthday

Abstract Let G be a connected reductive group over an algebraically closed field. We define a decomposition of G into finitely many strata such that each stratum is a union of conjugacy classes of fixed dimension; the strata are indexed purely in terms of the Weyl group and the indexing set is independent of the characteristic.

Key words: Conjugacy class, Springer correspondence, reductive group, Weyl group

MSC (2010): Primary 20G99

Introduction

0.1 Let **k** be an algebraically closed field of characteristic $p \ge 0$ and let G be a connected reductive algebraic group over **k** Let W be the Weyl group of G. Let connected reductive algebraic group over **k**. Let W be the Weyl group of G. Let $cl(W)$ be the set of conjugacy classes of W.

In $[St]$ Steinberg defined the notion of regular element in G (an element whose conjugacy class has dimension as large as possible, that is $dim(G) - rk(G)$ and showed that the set of regular elements in G form an open dense subset G_{res} . The goal of this paper is to define a partition of G into finitely many strata, one of which is G_{res} . Each stratum of G is a union of conjugacy classes of G of the same dimension. The set of strata is naturally indexed by a set which depends only on W

G. Lusztig (\boxtimes)

© Springer International Publishing Switzerland 2015

M. Nevins, P.E. Trapa (eds.), *Representations of Reductive Groups*, Progress in Mathematics 312, DOI 10.1007/978-3-319-23443-4 12

Department of Mathematics, M.I.T., Cambridge, MA 02139 e-mail: gyuri@math.mit.edu

as a Coxeter group, not on the underlying root system and not on the ground field **k**. We give two descriptions of the indexing set above:

- (i) one in terms of a class of irreducible representations of W which we call 2-special representations (they are obtained by truncated induction from special representations of certain reflection subgroups of W);
- (ii) one in terms of $cl(W)$ (modulo a certain equivalence relation).

In the case where W is irreducible we give a third description of the indexing set above:

(iii) in terms of the sets of unipotent classes in the various versions of G over $\overline{\mathbf{F}}_r$ for a variable prime number r , glued together according to the set of unipotent classes in the version of G over **C**.

The definition of strata in the form (i) and (iii) are based on Springer's correspon-dence (see [\[Spr\]](#page-30-1) when $p = 0$ or $p \gg 0$ and [\[L3\]](#page-30-2) for any p) connecting irreducible representations of W with unipotent classes; when W is irreducible, the definition of strata in the form (iii) is related to that in the form (ii) by the results of $[LS, L10]$ $[LS, L10]$ connecting $cl(W)$ with unipotent classes in G.

Since (i),(ii) are two incarnations of our indexing set, they are in canonical bijection with each other. In particular we obtain a canonical map from $cl(W)$ to the set of irreducible representations of W whose image consists of the 2-special representations (when G is $GL_n(\mathbf{k})$ this is a bijection). We also show that the dimension of a conjugacy class in a stratum of G is independent of the ground field. (This statement makes sense since the parametrization of the strata is independent of the ground field.) In particular, we see that if $n \ge 1$, then the following three conditions
on an integer k are equivalent: on an integer k are equivalent:

- there exists a conjugacy class of dimension k in $SO_{2n+1}(\mathbb{C});$
- there exists a conjugacy class of dimension k in $Sp_{2n}(\mathbb{C});$
- there exists a conjugacy class of dimension k in $Sp_{2n}(\overline{F}_2)$.

The proof shows that the following fourth condition is equivalent to the three conditions above: there exists a unipotent conjugacy class of dimension k in $\text{Sp}_{2n}(\overline{F}_2)$.

In Section 5 we sketch an alternative approach to the definition of strata which is based on an extension of the ideas in [\[L8\]](#page-30-3), and Springer's correspondence does not appear in it.

In Section 6 we dicuss extensions of our results to the Lie algebra of G and to the case where G is replaced by a disconnected reductive group. We also define a partition of the set of compact regular semisimple elements in a loop group into strata analogous to the partition of G into strata. Moreover, we give a conjectural description of the strata of G (assuming that $\mathbf{k} = \mathbf{C}$) which is based on an extension of a construction in [\[KL\]](#page-30-5).

0.2 Notation. For an algebraic group H over **k**, we denote by H^0 the identity component of H. For a subgroup T of H we denote by $N_H T$ the normalizer of T in H. Let g be the Lie algebra of G. For $g \in G$ we denote by $Z_G(g)$ the centralizer of g in G and by g_s (resp. g_u) the semisimple (resp. unipotent) part of g. Let B be

the variety of Borel subgroups of G. Let $B_g = \{B \in \mathcal{B} : g \in B\}$. Let l be a prime number $\neq p$. For an algebraic variety X over **k** we denote by $H^i(X)$ the l-adic cohomology of X in degree i: if X is projective let $H_i(X) = \text{Hom}(H^i(X), \mathbf{O}_i)$ cohomology of X in degree i; if X is projective let $H_i(X) = \text{Hom}(H^i(X), \mathbf{Q}_l)$.
For any (finite) Weyl group Γ , we denote by Irr Γ a set of representatives for t

For any (finite) Weyl group \varGamma , we denote by Irr \varGamma a set of representatives for the isomorphism classes of irreducible representations of Γ over **Q**. For any $\tau \in \text{Irr}W$
let n_{τ} be the smallest integer $i > 0$ such that τ appears with > 0 multiplicity in the let n_{τ} be the smallest integer $i \geq 0$ such that τ appears with > 0 multiplicity in the *i*-th symmetric power of the reflection representation of W; if this multiplicity is 1 i-th symmetric power of the reflection representation of W ; if this multiplicity is 1, we say that τ is *good*.

A *bipartition* is a sequence $\lambda = (\lambda_1, \lambda_2, \lambda_3,...)$ in **N** such that $\lambda_m = 0$ for $m \gg 0$ and $\lambda_1 \geq \lambda_3 \geq \lambda_5 \geq \ldots, \lambda_2 \geq \lambda_4 \geq \lambda_6 \geq \ldots$. We write $|\lambda| = \lambda_1 + \lambda_2 + \lambda_3 + \ldots$ We say that λ is a binartition of *n* if $|\lambda| = n$. Let RP^n be $\lambda_1 + \lambda_2 + \lambda_3 + \ldots$ We say that λ is a bipartition of n if $|\lambda| = n$. Let BP^n be the set of bipartitions of *n*. Let $e, e' \in \mathbb{N}$. We say that a bipartition $(\lambda_1, \lambda_2, \lambda_3, \dots)$ has excess (e, e') if $\lambda_i + e \geq \lambda_{i+1}$ for $i = 1, 3, 5, ...$ and $\lambda_i + e' \geq \lambda_{i+1}$ for $i = 2, 4, 6$. Let $R P^n$, be the set of binartitions of *n* which have excess (e, e')

 $i = 2, 4, 6, \ldots$ Let $BP_{e,e'}^n$ be the set of bipartitions of *n* which have excess (e, e') .
A *partition* is a sequence $\lambda = (\lambda_1, \lambda_2, \lambda_3)$ in N such that $\lambda_m = 0$ for $m \gg 0$. A *partition* is a sequence $\lambda = (\lambda_1, \lambda_2, \lambda_3, \dots)$ in **N** such that $\lambda_m = 0$ for $m \gg 0$ and $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \ldots$. Thus a partition is the same as a bipartition of excess (0, 0). On the other hand a bipartition is the same as an ordered pair of partitions $(0, 0)$. On the other hand, a bipartition is the same as an ordered pair of partitions $((\lambda_1, \lambda_3, \lambda_5, \ldots), (\lambda_2, \lambda_4, \lambda_6, \ldots)).$

Let $P = \{2, 3, 5, \dots\}$ be the set of prime numbers.

1 The 2**-special representations of a Weyl group**

1.1 Let V, V^* be finite-dimensional **Q**-vector spaces with a given perfect bilinear pairing $\langle , \rangle : V \times V^* \to \mathbf{Q}$. Let R (resp. R) be a finite subset of $V - \{0\}$ (resp. $V^* = \{0\}$) with a given bijection $\alpha \leftrightarrow \alpha \leq R \leftrightarrow \beta$ such that $\langle \alpha \alpha \rangle = 2$ for any $V^* - \{0\}$ with a given bijection $\alpha \leftrightarrow \check{\alpha}$, $R \leftrightarrow R$, such that $\langle \alpha, \check{\alpha} \rangle = 2$ for any
 $\alpha \in R$ and $\langle \alpha, \check{\beta} \rangle \in \mathbb{Z}$ for any $\alpha, \beta \in R$; it is assumed that $\beta = \langle \beta, \check{\alpha} \rangle \alpha \in R$ $\alpha \in R$ and $\langle \alpha, \check{\beta} \rangle \in \mathbb{Z}$ for any $\alpha, \beta \in R$; it is assumed that $\beta - \langle \beta, \check{\alpha} \rangle \alpha \in R$, $\check{\beta} - \langle \alpha, \check{\beta} \rangle \check{\alpha} \in \check{R}$ for any $\alpha, \beta \in R$ and that $\alpha \in R \implies \alpha/2 \notin R$. Thus, (V, V^*, R, R) is a reduced root system. Let V_0 (resp. V_0^*) be the **Q**-subspace of V (resp. V^*) spanned by R (resp. R). Let $rk(R) = \dim V_0 = \dim V_0^*$. Let W be the reflections $s : Y \mapsto Y - \langle Y, \check{\alpha} \rangle \alpha$ in V (finite) subgroup of $GL(V)$ generated by the reflections $s_{\alpha}: x \mapsto x - \langle x, \check{\alpha} \rangle \alpha$ in V for various $a \in R$; it may be identified with the subgroup of $GL(V^*)$ generated by
the reflections $^t s : Y' \mapsto Y' = (\alpha, Y')\alpha$ in V^* for various $\alpha \in R$. For any $e \in V$ the reflections ${}^{t}S_{a}$: $x' \mapsto x' - \langle \alpha, x' \rangle \tilde{\alpha}$ in V^* for various $\alpha \in R$. For any $e \in V$
let $R_{-} - \{ \alpha \in R : (e, \tilde{\alpha}) \in \mathbb{Z} \}$, $\tilde{R}_{-} - \{ \tilde{\alpha} : \alpha \in R \}$; note that $(V, V^* | R \cap \tilde{R})$ is a let $R_e = \{ \alpha \in R; \langle e, \check{\alpha} \rangle \in \mathbb{Z} \}, R_e = \{ \check{\alpha}; \alpha \in R_e \};$ note that (V, V^*, R_e, R_e) is a root system with Weyl group $W = \{w : w(e) = e \in \sum_{e} Z_e \}$. Similarly root system with Weyl group $W_e = \{w \in W; w(e) - e \in \sum_{\alpha \in R} \mathbb{Z}\alpha\}$. Similarly,
for any $e' \in V^*$ let $P_{\alpha} = \{w \in P : |w|e'\} \subseteq \mathbb{Z}$, $\check{P}_{\alpha} = \{\check{\alpha} : \alpha \in P_{\alpha}\}$, note that for any $e' \in V^*$ let $R_{e'} = \{\alpha \in R; \langle \alpha, e' \rangle \in \mathbb{Z}\}, R_{e'} = \{\alpha; \alpha \in R_{e'}\};$ note that $(V, V^* | R, \mu, \tilde{R}, \epsilon)$ is a root system with Weyl group $W_{\epsilon} = \{w : \mu(e') = e' \in R_{e'}\}$ $(V, V^*, R_{e'}, R_{e'})$ is a root system with Weyl group $W_{e'} = \{w \in W; w(e') - e' \}$
 $\sum_{e} \mathbf{Z}^{\times 1}_{e}$ For any $(e, e') \in V \times V^*$ let $R_{e'} = R_{e} \cap R_{e'}$, $\check{R}_{e'} = \check{R}_{e} \cap \check{R}_{e'}$ $\sum_{\alpha \in R} Z\check{\alpha}$. For any $(e, e') \in V \times V^*$ let $R_{e,e'} = R_e \cap R_{e'}, \check{R}_{e,e'} = \check{R}_e \cap \check{R}_{e'}$.
Then $(V, V^* \circ R_{e'}, \check{R}_{e'})$ is a rest system: let $W_{e'}$ be its Wayl group (a subgroup) Then $(V, V^*, R_{e,e'}, R_{e,e'})$ is a root system; let $W_{e,e'}$ be its Weyl group (a subgroup of $W_e \cap W_{e'}$). Note that $W_{0,e'} = W_{e'}, W_{e,0} = W_e, W_{0,0} = W$. For $E \in \text{Irr}(W_{e,e'})$ let n_E be as in 0.2.

Let $(e_1, e'_1) \in V \times V^*$, $(e_2, e'_2) \in V \times V^*$ be such that $R_{e_1, e'_1} \subset R_{e_2, e'_2}$ (so $W \times \subset W \times V$) In this case if $E \in \text{Irr}(W \times V)$ is good there is a unique that $W_{e_1,e'_1} \subset W_{e_2,e'_2}$). In this case, if $E \in \text{Irr}(W_{e_1,e'_1})$ is good, there is a unique $E_0 \in \text{Irr}(W_{e_2,e'_2})$ such that E_0 appears in $\text{Ind}_{W_{e_1,e'_1}^{e_2,e'_2}}^{W_{e_2,e'_2}^{e_2}(E)$ and $n_{E_0} = n_E$, see [\[LS1,](#page-30-6) 20 C $H(W_{e_2,e'_2})$ such that E_0 appears in $\lim_{\substack{W_{e_1,e'_1}(E) \text{ and } H_{e_0} = h_E, \text{ see [ES1]}}}$
3.2]; moreover, E_0 is good. We set $E_0 = j_{W_{e_1,e'_1}}^{W_{e_2,e'_2}}(E)$. Note that if we have also $R_{e_2,e'_2} \subset R_{e_3,e'_3}$ where $(e_3,e'_3) \in V \times V^*$, then we have the transitivity property: $\frac{1}{1}$

(a)
$$
j_{W_{e_1,e'_1}}^{W_{e_3,e'_3}}(E) = j_{W_{e_2,e'_2}}^{W_{e_3,e'_3}}(j_{W_{e_1,e'_1}}^{W_{e_2,e'_2}}(E)).
$$

Let $S(W_{e,e'}) \subset \text{Irr}(W_{e,e'})$ be the set of *special* representations of $W_{e,e'},$ see [\[L1\]](#page-30-7);
re that any $F \in S(W, \mathcal{L})$ is good. Hence $i\frac{W}{E}(F) \in \text{Irr}(W)$ is defined. We say note that any $E \in \mathcal{S}(W_{e,e'})$ is good. Hence $j_{W_{e,e'}}^W(E) \in \text{Irr}(W)$ is defined. We say that $E_0 \in \text{Irr}(W)$ is 2*-special* if $E_0 = j_{W_{e,e'}}^W(E)$ for some $(e, e') \in V \times V^*$ and
some $E \in S(W_{e, e})$. Let $S_e(W)$ be the set of all 2 special representations of $W_e(w)$ some $E \in \mathcal{S}(W_{e,e'})$. Let $\mathcal{S}_2(W)$ be the set of all 2-special representations of W (up to isomorphism). From the definition we see that

(b) $S_2(W)$ is unchanged when (V, V^*, R, R) is replaced by (V^*, V, R, R) .

Let $S_1(W)$ (resp. $S_1(W)$) be the set of all $E_0 \in \text{Irr}(W)$ such that $E_0 = j_{W_e}^W(E)$
can $E = j_{W_e}^W(E)$ for some $s \in V$, $E \in S(W)$ (resp. $s' \in V^*$, $E \in S(W)$) (resp. $E_0 = j_{W_{e'}}^W(E)$) for some $e \in V$, $E \in \mathcal{S}(W_e)$ (resp. $e' \in V^*$, $E \in \mathcal{S}(W_{e'})$).
The analogue of (b) with $\mathcal{S}_e(W)$ replaced by $\mathcal{S}_e(W)$ is not true in general; instead The analogue of (b) with $S_2(W)$ replaced by $S_1(W)$ is not true in general; instead, if (V, V^*, R, R) is replaced by (V^*, V, R, R) , then $S_1(W)$ becomes $S_1(W)$ and $S_1(W)$ becomes $S_1(W)$. ${}^{\prime}S_1(W)$ becomes $S_1(W)$.

Now, for any $e' \in V^*$ the subset $S_1(W_{e'}) \subset \text{Irr}(W_{e'})$ is defined; it consists of all $\in \text{Irr}(W)$ such that $F' = i\frac{We'}{(F)}$ for some $e \in V$ and some $F \in S(W)$ $E' \in \text{Irr}(W_{e'})$ such that $E' = j_{W_{e,e'}}^{W e'}(E)$ for some $e \in V$ and some $E \in \mathcal{S}(W_{e,e'})$.
Note that spy $F' \subseteq \mathcal{S}(W)$ is good. From (a) we see that Note that any $E' \in S_1(W_{e'})$ is good. From (a) we see that

(c) $S_2(W)$ *consists of all* $E_0 \in \text{Irr}(W)$ *such that* $E_0 = j_{W_{e'}}^W(E')$ *for some* $e' \in V^*$ *and some* $F' \in S_2(W_1)$ *and some* $E' \in S_1(W_{\alpha'})$ *.*

We say that $e' \in V^*$ (resp. $(e, e') \in V \times V^*$) is *isolated* if $rk(R_{e'}) = rk(R)$ (resp. $rk(R_{e'}) = rk(R)$) We show: $rk(R_{e,e'}) = rk(R)$). We show:

(d) $S_2(W)$ *consists of all* $E_0 \in \text{Irr}(W)$ *such that* $E_0 = j_{W_{e,e'}}^W(E)$ *for some isolated* $(e, e') \in V \times V^*$ and some $E \in S(W_{e,e'})$ *.*

Let $E_0 \in S_2(W)$. By definition, we can find $(e, e') \in V \times V^*$ and $E \in S(W_{e,e'})$
such that $F_e = i^W$ (F) We can find an isolated $e' \in V^*$ such that R_e is rat. such that $E_0 = j_{W_{e,e'}}^W(E)$. We can find an isolated $e'_1 \in V^*$ such that $R_{e'}$ is rat-
ionally closed in $P_{e'}$ that is $P_{e'} \circ \sum_{e'} Q_{e'} = P_{e'}$. Applying the angles gypionally closed in $R_{e'_1}$ that is, $R_{e'_1} \cap \sum_{\alpha \in R_{e'}} \mathbf{Q} \alpha = R_{e'}$. Applying the analogous statement to $(V^*, V, R_{e'_1}, R_{e'_1})$, e, instead of (V, V^*, R, R) , e', we can find $e_1 \in V$
such that $\mathbf{rk}(R \cap R) = \mathbf{rk}(R)$ and $R \cap R$ is rationally closed in $R \cap R$. such that $rk(R_{e_1} \cap R_{e'_1}) = rk(R_{e'_1})$ and $R_e \cap R_{e'_1}$ is rationally closed in $R_{e_1} \cap R_{e'_1}$. It
follows that (e_1, e'_1) is isolated and $P_{e_1} \cap P_{e_1}$ is rationally closed in $P_{e_1} \cap R_{e'_1}$. It follows that (e_1, e'_1) is isolated and $R_e \cap R_{e'}$ is rationally closed in $R_{e_1} \cap R_{e'_1}$; hence $E_1 := j_{W_{e,e'}^{(e')}}^{W_{e_1,e'_1}(E)}$ is in $\mathcal{S}(W_{e_1,e'_1})$, see [\[L1\]](#page-30-7). By (a), we have $E_0 = j_{W_{e_1,e'_1}}^W(E_1)$.
This proves (d) This proves (d).

We have the following variant of (d):

(e) $S_2(W)$ *consists of all* $E_0 \in \text{Irr}(W)$ *such that* $E_0 = j_{W_{e'}}^W(\tilde{E})$ *for some isolated* $\tilde{E} \subset K^*$ and some $\tilde{E} \subset S$. (W.) $e' \in V^*$ and some $E \in S_1(W_{e'}).$

Let $E_0 \in S_2(W)$. Let E, e, e' be as in (d). We have $E = j_{W_{e'}}^W(\tilde{E})$ where \approx $\widetilde{E} = j_{W_{e'}}^{W_{e'}}(E) \in S_1(W_{e'})$ and $\text{rk}(R_{e'}) = \text{rk}(R)$. Conversely, if $e' \in V^*$ and $\widetilde{E} \in S_e(W)$, then he (c), if $W_e(\widetilde{E}) \in S_e(W)$ (we without the example that $E \in S_1(W_{e'})$, then, by (c), $j_{W_{e'}}^W(\overline{E}) \in S_2(W)$ (even without the assumption that $E \in O_1(\mathcal{W}_e^{\prime})$, then, by (c), $J_{W_{e'}}(E)$
rk $(R_{e'}) = \text{rk}(R)$). This proves (e).

Let $R' \subset R$ be such that (if R' is the image of R' under $R \leftrightarrow R$), (V, V^*, R', R') is a root system (with Weyl group W') and R' is rationally closed in R. Note that R', R')
Jota that $R' = R_e$ for some $e \in V$ and $R' = R_{e'}$ for some $e' \in V^*$. We show:

- (f) If $E \in S_1(W')$, then $j_{W'}^W(E) \in S_1(W)$.
(g) If $E \in S_2(W')$, then $j_{W}^W(E) \in S_2(W)$.
- (g) If $E \in S_2(W')$, then $j_{W'}^W(E) \in S_2(W)$.

We prove (f). Let $e' \in V^*$ be such that $R' = R_{e'}$. We have $E = j_{W_{e,e'}(E')}^{W_{e'}}(E')$ for e^{\prime} some $e \in V$ and some $E' \in \mathcal{S}(W_{e,e'})$. Hence $j_{W'}^W(E) = j_{W_{e,e'}}^W(E') = j_{W_e}^W(E'')$ e,e' where $E'' = j_{W_{e,e'}}^{W_e} (E')$. Now $R_{e,e'}$ is rationally closed in R_e , hence $E'' \in \mathcal{S}(W_e)$, where $E = J_{W_{e,e'}}(E)$. Now $R_{e,e'}(E)$ is to
see [\[L1\]](#page-30-7). We see that $j_{W'}^{W}(E) \in S_1(W)$.
We group (c) Let $e \in V$ be such the

We prove (g). Let $e \in V$ be such that $R' = R_e$. We have $E = j_{W_e,e'}^{W_e}(E')$ for e^{\prime} . e^{\prime} some $e' \in V^*$ and some $E' \in S_1(W_{e,e'})$. Hence $j_{W'}^W(E) = j_{W_{e,e'}}^W(E') = j_{W_{e'}}^W(E'')$ $e_{e,e'}(L) - JW_{e'}$ where $E'' = j_{W_{e,e'}^{\vee}}^{W_{e'}}(E')$. Now $R_{e,e'}$ is rationally closed in $R_{e'}$, hence $E'' \in \mathcal{S}(W_{e'})$, see (f). We see that $j_{W'}^W(E) \in S_2(W)$.

1.2 There are unique direct sum decompositions $V_0 = \bigoplus_{i \in I} V_i$, $V_0^* = \bigoplus_{i \in I} V_i^*$
such that $P_0 = \bigcup_{i \in I} (P_0 \cap V_i)$, $\check{P}_0 = \bigcup_{i \in I} (\check{P}_0 \cap V_i)$ and for any $i \in I$, $(V, V^* \cap P_0)$ such that $R = \bigcup_{i \in I} (R \cap V_i)$, $R = \bigcup_{i \in I} (R \cap V_i)$ and for any $i \in I$, $(V_i, V_i^*, R \cap V_i \to \mathbb{R})$. V_i , $\check{R} \cap V_i$) is an irreducible root system for (with Weyl group W_i); the bijection $R \cap V_i \leftrightarrow R \cap V_i$ is induced by $R \leftrightarrow R$). We have canonically $W = \prod_{I \in I} W_i$ and $S_{\Omega}(W) = \prod_{I \in S_{\Omega}} (W)$ (via external tensor product) $S_2(W) = \prod_{i \in I} S_2(W_i)$ (via external tensor product).

1.3 In this subsection we assume that (V, V^*, R, R) is irreducible. Now W acts naturally on the set of subgroups W' of W of form $W_{e'}$ for various isolated $e' \in V^*$.
The types of various W' which appear in this way are well known and are described The types of various W' which appear in this way are well known and are described below in each case.

- (a) R of type A_n , $n \ge 0$: W' of type A_n .

(b) R of type R_n , $n \ge 2$: W' of type R_n .
- (b) R of type B_n , $n \ge 2$: W' of type $B_a \times D_b$ where $a \in \mathbb{N}$, $b \in \mathbb{N} \{1\}$, $a+b=n$.

(c) R of type C_n , $n > 2$: W' of type $C_n \times C_n$ where $a, b \in \mathbb{N}$, $a+b=n$.
- (c) R of type C_n , $n \geq 2$: W' of type $C_a \times C_b$ where $a, b \in \mathbb{N}, a + b = n$.

(d) R of type D_n , $n \geq 4$: W' of type $D_n \times D_1$, where $a, b \in \mathbb{N} 41$, $a + b$
- (d) R of type D_n , $n \geq 4$: W' of type $D_a \times D_b$ where $a, b \in \mathbb{N} \{1\}$, $a + b = n$.
(e) R of type F_c : W' of type F_c , $4cA_1$, $4aA_2A_3$.
- (e) R of type E_6 : W' of type E_6 , A_5A_1 , $A_2A_2A_2$.
- (f) R of type E_7 : W' of type E_7 , D_6A_1 , A_7 , A_5A_2 , $A_3A_3A_1$.
- (g) R of type E_8 : W' of type E_8 , E_7A_1 , E_6A_2 , D_5A_3 , A_4A_4 , $A_5A_2A_1$, A_7A_1 , $A_8, D_8.$
- (h) R of type F_4 : W' of type F_4 , B_3A_1 , A_2A_2 , A_3A_1 , B_4 .
- (i) R of type G_2 : W' of type G_2 , A_2 , A_1A_1 .

(We use the convention that a Weyl group of type B_n or D_n with $n = 0$ is {1}.)

1.4 In this subsection we assume that (V, V^*, R, R) is irreducible. Now W acts naturally on the set of subgroups W' of W of form $W_{e,e'}$ for various isolated $(e, e') \in V \times V^*$. The types of various W' which appear in this way are described
below in each case. (For type F_4 and G_2 we denote by τ a non-inner involution below in each case. (For type F_4 and G_2 we denote by τ a non-inner involution of W).

- (a) R of type $A_n: W'$ of type A_n .
- (b) R of type B_n or C_n : W' of type $B_a \times B_b \times D_c \times D_d$ where $a, b \in \mathbb{N}, c, d \in \mathbb{N}$ $N - \{1\}, a + b + c + d = n.$
- (c) R of type D_n : W' of type $D_a \times D_b \times D_c \times D_d$ where $a, b, c, d \in \mathbb{N} \{1\}$, $a + b + c + d = n$.
- (d) R of type E_6 : W' as in 1.3(e).
- (e) R of type E_7 : W' as in 1.3(f) and also W' of type $D_4A_1A_1A_1$.
- (f) R of type E_8 : W' as in 1.3(g) and also W' of type D_6D_2 , D_4D_4 , $A_3A_3A_1A_1$, $A_2A_2A_2A_2.$
- (g) R of type F_4 : W' as in 1.3(h), the images under τ of the subgroups W' of type A_3A_1 , B_4 in 1.3(h) and also W' of type B_2B_2 .
- (h) R of type G_2 : W' as in 1.3(i) and the image under τ of the subgroup W' of type A_2 in 1.3(i).

1.5 If $R' \subset R$, $R' \subset R$ are such that (V, V^*, R', R') is a root system (with the bijection $P' \sim \tilde{P}'$ being induced by $P \leftrightarrow \tilde{P}'$ then setting $\overline{P}' = P \cap \sum_{i=1}^{\infty} Q_i$ bijection $R' \leftrightarrow \tilde{R}'$ being induced by $R \leftrightarrow \tilde{R}$) then, setting $\overline{R}' = R \cap \sum_{\alpha \in R'} Q\alpha$, $\overline{R}' = \check{R} \cap \sum_{\alpha \in R'} \mathbf{Q} \check{\alpha}$, we obtain a root system $(V, V^*, \overline{R}', \overline{R}')$. We set

$$
N_{R'} = \sharp \left(\sum_{\alpha \in \overline{R}'} \mathbf{Z} \alpha / \sum_{\alpha \in R'} \mathbf{Z} \alpha \right) \in \mathbf{Z}_{\geq 1}.
$$

For any $e' \in V^*$ we set $N_{e'} = N_{R_{e'}}$.
Now let $r \in \mathcal{D}$ Let $S^r(W)$ be t

Now let $r \in \mathcal{P}$. Let $\mathcal{S}_2^r(W)$ be the set of all $E_0 \in \text{Irr}(W)$ such that for some lated $e' \in V^*$ with $N_f - r^k$ for some $k \in \mathbb{N}$ and for some $F \in \mathcal{S}_r(W_f)$ we isolated $e' \in V^*$ with $N_{e'} = r^k$ for some $k \in \mathbb{N}$ and for some $E \in S_1(W_{e'})$ we
have $F_2 = i^W(F)$. Note that $S^1(W) \subset S'(W) \subset S_2(W)$. have $E_0 = j_{W_{e'}}^W(E)$. Note that $S^1(W) \subset S_2(W) \subset S_2(W)$.

Now assume that (V, V^*, R, R) is irreducible. We show:

- (a) If R is of type A_n , $n \ge 0$, then $S_2^r(W) = S_2(W) = S_1(W) = S(W)$.

(b) If R is of type B or C $n \ge 2$, then $S'(W) = S_2(W)$ if r.
- (b) If R is of type B_n or C_n , $n \ge 2$, then $S_2^r(W) = S_1(W)$ if $r \ne 2$ and $S_2^2(W) = S_2(W)$ $S_2^2(W) = S_2(W)$.
If *R* is of type *D*.
- (c) If R is of type D_n , $n \geq 4$, then $S_2^r(W) = S_1(W)$ if $r \neq 2$ and $S_2^2(W) = S_2(W)$. $S_2(W)$.
- (d) If R is of type E_6 , then $S_2^r(W) = S_2(W) = S_1(W)$.

(e) If R is of type F_7 , then $S^r(W) = S_1(W)$ if $r \neq 2$ and
- (e) If R is of type E_7 , then $S_2^r(W) = S_1(W)$ if $r \neq 2$ and $S_2^2(W) = S_2(W)$.

(f) If R is of type F_2 , then $S^r(W) = S_1(W)$ if $r \neq 2$, 3) and $S^2(W) + S^3(W)$
- (f) If R is of type E_8 , then $S_2^{\mathcal{F}}(W) = S_1(W)$ if $r \notin \{2, 3\}$ and $S_2^2(W) \cup S_2^3(W) = S_2(W)$ $S_2(W)$.
- (g) If R is of type F_4 , then $S_2^r(W) = S_1(W)$ if $r \neq 2$ and $S_2^2(W) = S_2(W)$.

(b) If R is of type G_2 , then $S_2^r(W) = S_2(W)$ if $r \neq 3$ and $S_2^3(W) = S_2(W)$.
- (h) If R is of type G_2 , then $S_2^r(W) = S_1(W)$ if $r \neq 3$ and $S_2^3(W) = S_2(W)$.

We prove (a). In this case for any isolated $e' \in V^*$ we have $N_{e'} = 1$ and the result follows from 1 1(d) (e) 1 3 follows from $1.1(d)$, (e), 1.3 .

We prove (b), (c). In these cases for any isolated $e' \in V^*$, $N_{e'}$ is a power of 2 is a 13) and the equality $S^2(W) = S_2(W)$ follows from 1.1(e) Moreover if e' is (see 1.3) and the equality $S_2^2(W) = S_2(W)$ follows from 1.1(e). Moreover, if e' is isolated and $N_{\gamma'}$ is not divisible by 2, then $W_{\gamma'} = W$ so that for $r \neq 2$ we have isolated and $N_{e'}$ is not divisible by 2, then $W_{e'} = W$ so that for $r \neq 2$ we have $S_2^r(W) = S_1(W)$.

In cases (d) (e)

In cases (d), (e), (f) we shall use the fact that for any $e' \in V^*$:

(i) we can find $e \in V$ such that $W_{e'} = W_e$, so that if $E \in S(W_{e'})$, then $j_{W_{e'}}^W(E) \in S_1(W)$.

(This property does not always hold in cases (g),(h).)

We prove (d). If $e' \in V^*$ is isolated and $W_{e'} \neq W$, then from 1.3 we see that e' is of type $A_2 A_3 A_2$ or $A_5 A_1$ so that $S_1(W_1) = S(W_1)$; using this and 1.1(e) $W_{e'}$ is of type $A_2A_2A_2$ or A_5A_1 so that $S_1(W_{e'}) = S(W_{e'})$; using this and 1.1(e) we see that $S_2(W) = S_2^r = S_1(W)$. (We have used (i).)
We prove (e) If $e' \in V^*$ is isolated and W_{λ} is not

We prove (e). If $e' \in V^*$ is isolated and $W_{e'}$ is not of type E_7 (with $N_{e'} = 1$)
 D_6A_1 (with $N_{e'} = 2$) then from 1.3 we see that $W_{e'}$ is of type A_7 or A_5A_2 or or D_6A_1 (with $N_{e'} = 2$), then from 1.3 we see that $W_{e'}$ is of type A_7 or A_5A_2 or $A_3A_3A_1$ so that $S_1(W_{e'}) = S(W_{e'})$. We see that $S_2^r(W) = S_1(W)$ if $r \neq 2$ and $S^2(W) = S_2(W)$. We have used (i) $S_2^2(W) = S_2(W)$. (We have used (i).)
We prove (f) If $e' \in V^*$ is isolate

We prove (f). If $e' \in V^*$ is isolated and $W_{e'}$ is not of type E_8 (with $N_{e'} = 1$)
 $E_7 A_1$ (with $N_f = 2$) or $E_6 A_2$ (with $N_f = 3$) or $D_5 A_2$ (with $N_f = 4$) or D_8 or E_7A_1 (with $N_{e'} = 2$) or E_6A_2 (with $N_{e'} = 3$) or D_5A_3 (with $N_{e'} = 4$) or D_8 (with $N_{e'} = 2$), then from 1.3 we see that $W_{e'}$ is of type A_4A_4 or $A_5A_2A_1$ or A_7A_1 or A_8 , so that $S_1(W_{e'}) = S(W_{e'})$; we see that $S_2(W) = S_1(W)$ if $r \notin \{2, 3\}$ and $S_2(W) \cup S_3(W) = S_2(W)$. We have used (i) $S_2^2(W) \cup S_2^3(W) = S_2(W)$. (We have used (i).)
We prove (g) If $e' \in V^*$ is isolated and W , i

We prove (g). If $e' \in V^*$ is isolated and $W_{e'}$ is not of type F_4 (when $N_{e'} = 1$) or A_1 (with $N_{e'}$ a nower of 2) then from 1.3 we see B_3A_1 (with $N_{e'}$ a power of 2) or B_4 (with $N_{e'}$ a power of 2), then from 1.3 we see that $W_{e'}$ is of type A_2A_2 (with $N_{e'} = 3$) or A_3A_1 (with $N_{e'}$ a power of 2) so that $S_1(W_{e'}) = S(W_{e'})$. Moreover, if $e' \in V^*$ is isolated and $W_{e'}$ is of type A_2A_2 , then
(i) holds for this e' . We see that $S^r(W) = S_1(W)$ if $r \neq 2$ and $S^2(W) = S_2(W)$. (i) holds for this e'. We see that $S_2^P(W) = S_1(W)$ if $r \neq 2$ and $S_2^2(W) = S_2(W)$.
We prove (b) If $e' \in V^*$ is isolated and W_i is not of type G_2 (with $N_i = 1$)

We prove (h). If $e' \in V^*$ is isolated and $W_{e'}$ is not of type G_2 (with $N_{e'} = 1$),
n from 1.3 we see that $W_{e'}$ is of type A_2 (with $N_{e'} = 3$) or $A_2 A_3$ (when then from 1.3 we see that $W_{e'}$ is of type A_2 (with $N_{e'} = 3$) or A_1A_1 (when $N_{e'} = 2$) so that $S_1(W_{e'}) = S(W_{e'})$. Moreover, if $e' \in V^*$ is isolated and $W_{e'}$ is of type A_1, A_2 , then (i) holds for this e' . We see that $S'(W) = S_1(W)$ if $r \neq 3$ is of type A_1A_1 , then (i) holds for this e'. We see that $S_2^r(W) = S_1(W)$ if $r \neq 3$
and $S_2^3(W) = S_2(W)$ and $S_2^3(W) = S_2(W)$.
This proves (a)–(b)

This proves (a)–(h). From (a)–(h) we deduce:

(j) We have $S_2(W) = S_2^2(W) \cup S_2^3(W)$. If $r \in \mathcal{P} - \{2, 3\}$, then $S_2^r(W) = S_1(W)$.

The following result can be verified by computation.

(k) If R is of type E_7 , then $S_2^2(W) - S_1(W) = \{84_{15}\}\$. If R is of type E_8 , then $S_2^2(W) - S_1(W) - \{1050\}$ and $S_2^2(W) - S_1(W) - S_1(W)$ $S_2^2(W) - S_1(W) = \{1050_{10}, 840_{14}, 168_{24}, 972_{32}\}$ and $S_2^3(W) - S_1(W) =$
 $S_1^2(175_{12})$ If *R* is of type *F_t* then $S^2(W) - S_1(W) - S_2$ *A_n A_n A_n A_n A_n 2₁₂* If *R* is $\{175_{12}\}\.$ If *R* is of type F_4 , then $S_2^2(W) - S_1(W) = \{96, 47, 48, 216\}.$ If *R* is of type G_2 , then $S_2^3(W) - S_1(W) - 11_2$ of type G_2 , then $S_2^3(W) - S_1(W) = \{1_3\}.$

(In each case we specify a representation E by a symbol d_n where d is the degree of E and $n = n_E$. For type F_4 and G_2 the specified representations are uniquely determined by the additional condition that they are not in $S_1(W)$.)

$$
(1) S_2^2(W) \cap S_2^3(W) = S_1(W).
$$

The inclusion $S_1(W) \subset S_2^2(W) \cap S_2^3(W)$ is obvious. The reverse inclusion for R of
type $\neq F_0$ follows from the fact that for such R we have either $S_2(W) = S_1(W)$ type $\neq E_8$ follows from the fact that for such R we have either $S_2^2(W) = S_1(W)$
or $S_2^3(W) = S_1(W)$ see (a)–(b). Thus we can assume that R is of type F_8 . In this or $S_2^3(W) = S_1(W)$, see (a)–(h). Thus we can assume that R is of type E_8 . In this case the result follows from (k) case the result follows from (k).

1.6 Let $r \in \mathcal{P}$. Let $V_r^* = \{e' \in V^*; N_{e'}/r \notin \mathbb{Z}\}$. Let $\overline{\mathcal{S}}_2^r(W)$ be the set of all $E_0 \in \text{Irr}(W)$ such that for some $e' \in V^*$ and some $F \in \mathcal{S}^r(W_\lambda)$ we have $F_0 = i\frac{W}{W_\lambda}(F)$ Irr (W) such that for some $e' \in V_r^*$ and some $E \in S_2^r(W_{e'})$ we have $E_0 = j_{W_{e'}}^W(E)$. $e¹$ (Note that any $E \in S_2^r(W_{e'})$ is good.) Note that $S_2^r(W) \subset \widetilde{S}_2^r(W)$ (take $e' = 0$ in the definition of $\widetilde{S}_k^r(W)$). We show: the definition of $\widetilde{\mathcal{S}}_2^r(W)$). We show:

(a) $S_2(W) \subset \widetilde{S}_2^r(W)$.

We can assume that (V, V^*, R, R) is irreducible. Let $E_0 \in S_2(W)$. We must show that $F_0 \in \widetilde{S}_1(W)$. By 1.1(e) we can find an isolated $e' \notin V^*$ and $\widetilde{F} \in S_1(W)$ such that $E_0 \in \overline{\mathcal{S}}_2^r(W)$. By 1.1(e) we can find an isolated $e' \notin V^*$ and $\overline{E} \in \mathcal{S}_1(W_e)$ such that $F_0 = iW$. (\overline{F}) if $N_e/r \notin \mathbb{Z}$ then we have $F_0 \in \overline{\mathcal{S}}_1^r(W)$ since $\mathcal{S}_2(W_e) \subset$ that $E_0 = j_{W_{e'}}^W(\tilde{E})$. If $N_{e'}/r \notin \mathbb{Z}$ then we have $E_0 \in \tilde{S}_2^r(W)$ since $S_1(W_{e'}) \subset S^r(W)$ is a power of r, then from definitions we have $F_c \subset S^r(W)$ hance $S_2^r(W_{e'})$. If $N_{e'}$ is a power of r, then from definitions we have $E_0 \n\in S_2^r(W)$, hence $F_0 \in \widetilde{S}_2^r(W)$. Thus we may assume that N_L is not a power of r and is N_L/r $E_0 \in \widetilde{\mathcal{S}}_2^r(W)$. Thus we may assume that $N_{e'}$ is not a power of r and is $N_{e'}/r \in$
Z. This forces R to be of type F_0 and W_t to be of type A_0A_0 (see 1.3); we **Z**. This forces R to be of type E_8 and $W_{e'}$ to be of type $A_5A_2A_1$ (see 1.3); we then have $N_{e'} = 6$ and $r \in \{2, 3\}$. In particular we must have $\widetilde{E} \in \mathcal{S}(W_{e'})$. If \widetilde{E} is not the sign representation of $W_{e'}$, then we have $\widetilde{E} = j_{W_{e'_1}}^{W_{e'}}$ (sign) for some $e_1 \in V^*$ such that W_{e_1} is a proper parabolic subgroup of W_{e_1} . Replacing W_{e_1} by a
 W -conjugate we can assume that W_{e_1} is a proper parabolic subgroup of W_{e_1} by a
 W -conjugate we can assume tha W-conjugate we can assume that $W_{e'_1}$ is a proper parabolic subgroup of W so that $\widetilde{W}_{e'_2}$ is $W_{e'_1}$ is a proper parabolic subgroup of W so that $j_{W_{e'}}^W$ (sign) $\in \mathcal{S}(W)$ and in particular, $E_0 \in \widetilde{\mathcal{S}}_2^r(W)$. Thus we can assume that \widetilde{E} is the sign representation of $W \in \mathbb{W}_k$. We have $W \subset W$, where $W_{e'}$ is of type $F_{\sigma}A_{e}$ and $U_{W_{e'}}$, sign) \subset $O(W)$ and in particular, $E_0 \subset O_2(W)$. Thus we can assume that E is
the sign representation of $W_{e'}$. We have $W_{e'} \subset W_{e'_2}$ where $W_{e'_2}$ is of type E_7A_1 and
by the definition of $S_1(W)$ we hav by the definition of $S_1(W_{e'_2})$ we have

$$
\widetilde{E}_2 := j_{W_{e'}}^{W_{e'_2}}(\text{sign}) \in \mathcal{S}_1(W_{e'_2}).
$$

If $r = 3$, we have $e_2 \in V_r^*$ hence $E_0 = j_{W_{e_2}}^W(\widetilde{E}_2) \in \widetilde{\mathcal{S}}_2^r(W)$. We have $W_{e'} \subset W_{e_2'}$ where $W_{e'_3}$ is of type E_6A_2 and by the definition of $S_1(W_{e'_3})$, we have $\widetilde{E}_3 := W$, $j_{W_{e'_3}}^{W_{e'_3}}$ (sign) $\in S_1(W_{e'_3})$. If $r = 2$, we have $e'_3 \in V_r^*$ hence $E_0 = j_{W_{e'_3}}^W(\widetilde{E}_3) \in \widetilde{\mathcal{E}}$ $\widetilde{\mathcal{S}}_2^r(W)$. This completes the proof of (a). We show:

(b) $\widetilde{S}_2^r(W) \subset S_2(W)$.

We can assume that (V, V^*, R, \tilde{R}) is irreducible. Let $E_0 \in \tilde{S}_2^r(W)$. We must show that $E_0 \in S_2(W)$. Assume first that $r \notin \{2,3\}$. Then by results in 1.5 we have

 $E \in S_1(W_{e'})$, hence by 1.1(c) we have $E_0 \in S_2(W)$. Next we assume that $r = 3$. If $W_{e'} \neq W$, then by results in 1.5 we have $E \in S_1(W_{e'})$ hence by 1.1(c) we have $E_0 \in S_2(W)$. Thus we can assume that $W_{e'} = W$ so that $E_0 = E \in S_2(W)$. Since $S'(W) \subset S_2(W)$ we see that $E_0 \in S_2(W)$. $S_2^r(W) \subset S_2(W)$ we see that $E_0 \in S_2(W)$.
We now assume that $r = 2$. We can find

We now assume that $r = 2$. We can find $e' \in V_r^*$ and $E \in S_2^r(W_{e'})$ such that $E = i\frac{W}{r}$. (*F*) We can find an isolated $e' \in V^*$ such that $N \neq i$ is odd. $R \neq \emptyset$. $E_0 = j_{W_{e'}}^W(E)$. We can find an isolated $e'_1 \in V^*$ such that $N_{e'_1}$ is odd, $R_{e'} \subset R_{e'_2}$ and $R_{e'}$ is rationally closed in $R_{e'_{1}}$. Let $E' = j_{W_{e'}}^{W_{e'}}(E)$. Since $E \in S_2(W_{e'})$ we
have $E' \subseteq S_2(W_{e'})$ and $E = j_{W_{e'}}^{W_{e'}}(E)$. Liet then appear to prove the have $E' \in S_2(W_{e'_1})$, see 1.1(g) and $E_0 = j_{W_{e'_1}}^W(E')$. It is then enough to prove the following statement:

(c) If $e' \in V_r^*$ is isolated $(r = 2)$ and $E \in S_2(W_{e'})$, then $E_0 = j_{W_{e'}}^W(E) \in S_2(W)$.

If $W_{e'} = W$, then $E_0 = E \in S_2(W)$, as required. If R is of type A_n, B_n, C_n, D_n , then in (c) we have automatically $W_{e'} = W$ hence (c) holds in these cases. Thus we can assume in (c) that R is of exceptional type and $W_{e'} \neq W$. Then $W_{e'}$ is of the following type: $A_2A_2A_2$ (if R is of type E_6); A_5A_2 (if R is of type E_7); A_4A_4 or A_8 or E_6A_2 (if R is of type E_8); A_2A_2 , as in 1.3(h) (if R is of type F_4); A_2 , as in 1.3(i) (if R is of type G_2). In each case we have $S_2(W_{e'}) = S_1(W_{e'})$, see 1.5. Thus $E \in S_1(W_{e'})$. Using 1.1(e) we see that $E_0 \in S_2(W)$. This proves (c) hence (b).

Combining (a), (b) we obtain

(d)
$$
\widetilde{\mathcal{S}}_2^r(W) = \mathcal{S}_2(W)
$$
.

In the case where $r = 0$, we set $V_0^* = V^*$, $S_2^0(W) = S_1(W)$, $\overline{S_2^0(W)} = S_2(W)$.

2 The strata of G

2.1 We return to the setup of the introduction. Thus G is a connected reductive algebraic group over **k**. Let \mathcal{T} be "the" maximal torus of G; let $X = \text{Hom}(\mathcal{T}, \mathbf{k}^*)$,
 $Y = \text{Hom}(\mathbf{k}^* | \mathcal{T})$, $V = \textbf{O} \otimes X$, $V^* = \textbf{O} \otimes Y$, We have an obvious perfect bilinear $Y = \text{Hom}(\mathbf{k}^*, \mathcal{T}), V = \mathbf{Q} \otimes X, V^* = \mathbf{Q} \otimes Y$. We have an obvious perfect bilinear $\mathbf{Q} \times V \times V^* \to \mathbf{Q} \times V$ be the set of roots and let $\tilde{R} \subset V^*$ be the pairing $\langle , \rangle : V \times V^* \to \mathbf{Q}$. Let $R \subset V$ be the set of roots and let $R \subset V^*$ be the set of corrots. Then $(V V^* R, \tilde{R})$ is as in 1.1. The associated Weyl group W (as in set of corrots. Then (V, V^*, R, R) is as in 1.1. The associated Weyl group W (as in 1.1) that is the Weyl group of C can be simple as independent for the orbital of 1.1) that is, the Weyl group of G, can be viewed as an indexing set for the orbits of G acting diagonally on $B \times B$; we denote by \mathcal{O}_w the orbit corresponding to $w \in W$. Note that W is naturally a Coxeter group.

Let $g \in G$. Let W_g be the Weyl group of the connected reductive group $H := Z_G(g_s)^0$. We can view W_g as a subgroup of W as follows. Let β be a Borel subgroup of H and let T be a maximal torus of β . We define an isomorphism $b_{T,\beta}: N_H T/T \xrightarrow{\sim} W_g$ by $n'T \mapsto H$ -orbit of $(\beta, n' \beta n'^{-1})$. Similarly for any $B \in \mathcal{B}$ such that $T \subset B$ we define an isomorphism $a_{T,B} : N_G T / T \xrightarrow{\sim} W$ by $n' T \mapsto G$ -orbit of $(B, n' B n'^{-1})$. Now assume that $B \in \mathcal{B}$ is such that $B \cap H = B$. $n'T \mapsto G$ -orbit of $(B, n'Bn'^{-1})$. Now assume that $B \in \mathcal{B}$ is such that $B \cap H = \beta$.

We define an embedding $c_{T,\beta,B}$: $W_g \to W$ as the composition W_g
 $W_g \to W_g$ $b_{T,\beta}^{-1}$! $N_{H} T/T \rightarrow N_{G} T/T \xrightarrow{a_{T,B}} W$ where the middle map is the obvious embedding. If \overrightarrow{X} W where the middle map is the obvious embedding. If $R' \cap H = \beta$ then we have $R' = nRn^{-1}$ for some $n \in N \subset T$ $B' \in \mathcal{B}$ also satisfies $B' \cap H = \beta$, then we have $B' = nBn^{-1}$ for some $n \in N_G T$
and from the definitions we have $Cx \circ p(w) = ax \cdot p(nT)cx \circ p(w)a \cdot p(xT)^{-1}$ and from the definitions we have $c_{T,\beta,B'}(w) = a_{T,B}(nT) c_{T,\beta,B}(w) a_{B,T}(nT)$ ⁻¹ for any $w \in W_g$. Thus $c_{T,\beta,B}$ depends (up to composition with an inner automorphism of W) only on T, β and we can denote it by $c_{T,\beta}$. Since the set of pairs T, β as above form a homogeneous space for the connected group H, we see that $c_{T,\beta}$ is independent of T, β (up to composition with an inner automorphism of W) hence it does not depend on any choice. We see that there is a well-defined collection *C* of embeddings $W_g \to W$ so that any two of them differ only by composition by an inner automorphism of W .

Define $\rho \in \text{Irr}(W_g)$ by the condition that under the Springer correspondence for H, ρ corresponds to the H-conjugacy class of g_u and the trivial local system on it. We choose $f \in \mathcal{C}$; then we can view ρ as an irreducible representation of $f(W_g)$, a subgroup of W such that $f(W_g) = W_{e'}$ for some $e' \in V_p^*$, see 1.6. By [\[L5,](#page-30-8) 1.4] we have $\rho \in S_2^p(f(W_g))$, see 1.5, 1.6. Hence $\tilde{\rho} := j_{(W_g)}^W(\rho) \in \tilde{S}_2^p(W)$. is well defined. Since $\tilde{S}_2^p(W) = S_2(W)$, see 1.6, we have $\tilde{\rho} \in S_2(W)$. This is independent of the choice of f since f is well defined up to composition by an independent of the choice of f since f is well defined up to composition by an inner automorphism of W .

2.2 Let $g \in G$. Let $d = d_g = \dim \mathcal{B}_g$. The embedding $h_g : \mathcal{B}_g \to \mathcal{B}$ induces a linear map h_{g*} : $H_{2d}(\mathcal{B}_g) \to H_{2d}(\mathcal{B})$. Now $H^{2d}(\mathcal{B}_g)$, $H^{2d}(\mathcal{B})$ carry natural W-
actions, see [1,3], and this induces natural W-actions on $H_{2d}(\mathcal{B})$, $H_{2d}(\mathcal{B})$ which actions, see [\[L3\]](#page-30-2), and this induces natural *W*-actions on $H_{2d}(\mathcal{B}_g)$, $H_{2d}(\mathcal{B})$ which are compatible with h_{g*} . Hence W acts naturally on the subspace $h_{g*}(H_{2d}(\mathcal{B}_g))$ of $H_{2d}(\mathcal{B})$.

The following result gives an alternative description of the map $g \mapsto \tilde{\rho}$ (in 2.1) from G to $IrrW$.

(a) The W-submodule $h_{g*}(H_{2d}(\mathcal{B}_g))$ of $H_{2d}(\mathcal{B})$ is isomorphic to the W-module $\mathbf{Q}_l \otimes \widetilde{\rho}$ where ρ , $\widetilde{\rho}$ are associated to g as in 2.1.

First, we note that $h_{g*}(H_{2d}(\mathcal{B}_g)) \neq 0$; indeed it is clear that for any irreducible
component D of B (pecessarily of dimension d) the image of the fundamental component D of \mathcal{B}_g (necessarily of dimension d), the image of the fundamental class of D under h_{g*} is nonzero (we ignore Tate twists). Let *B*⁰ be the variety of Borel subgroups of $Z_G(g_s)^0$. Let $B'_{gu} = \{\beta \in \mathcal{B}'; g_u \in \beta\}$. Then dim $\mathcal{B}' = d$
and *W* (see 2.1) acts naturally on $H_{2,l}(\mathcal{B}')$ is from the definitions the *W*-module and W_g (see 2.1) acts naturally on $H_{2d}(\mathcal{B}'_{g_u})$; from the definitions, the W-module $H_{2d}(\mathcal{B}_g)$ is isomorphic to $\text{Ind}_{W_g}^W H_{2d}(\mathcal{B}_{gu}')$. From the definitions we have $n_\rho = d$ and the W_g -module $H_{2d}(\mathcal{B}'_{g_u})$ is of the form $\bigoplus_{i\in [1,s]} (\overline{\mathbf{Q}}_l \otimes E_i)^{\oplus c_i}$ where $E_i \in$
Irr(*W*) $c_i \in \mathbb{N}$ satisfy $E_i = 0$, $c_i = 1$ and $n_E \ge d$ for $i > 1$. It follows Irr(W_g), $c_i \in \mathbb{N}$ satisfy $E_1 = \rho$, $c_1 = 1$ and $n_{E_i} > d$ for $i > 1$. It follows that the W-module $H_{2d}(\mathcal{B}_g)$ is of the form $\bigoplus_{i\in [1,s]} (\text{Ind}_{W_g}^W(\overline{Q}_l \otimes E_i))^{\oplus c_i}$. Now Ind W_{W_g} ($\overline{Q}_l \otimes E_1$) contains $\overline{Q}_l \otimes \overline{\rho}$ with multiplicity 1 and all its other irreducible constituents are of the form $\overline{Q}_l \otimes E$ with $n_E > d$; moreover, for $i > 1$, any irreducible constituent E of Ind W_g $(\overline{Q}_l \otimes E_l)$ satisfies $n_E > d$. Thus the W-module $H_{2d}(\mathcal{B}_g)$ contains $\mathbf{Q}_l \otimes \widetilde{\rho}$ with multiplicity 1 and all its other irreducible constituents are of the form $\overline{Q}_l \otimes E$ with $n_E > d$; these other irreducible constituents are necessarily mapped to 0 by h_{g*} and the irreducible constituent isomorphic to $\mathbf{Q}_l \otimes \widetilde{\rho}$
is manned injectively by h_{g*} since $h_{g*} \neq 0$. It follows that the image of h_{g*} is is mapped injectively by h_{g*} since $h_{g*} \neq 0$. It follows that the image of h_{g*} is
isomorphic to \overline{O} . $\otimes \widetilde{O}$ as a *W*, module. This proves (a) isomorphic to $\overline{Q}_l \otimes \widetilde{\rho}$ as a W-module. This proves (a).

2.3 By 2.1, 2.2 we have a well-defined map $\phi : G \rightarrow S_2(W), g \mapsto \widetilde{\rho}$ where $\mathbf{Q}_l \otimes \widetilde{\rho} = h_{g*}((H_{2d_g}(\mathcal{B}_g)))$ (notation of 2.1, 2.2). The fibres $G_E = \phi^{-1}(E)$ of ϕ ($E \in \mathcal{S}_2(W)$) are called the *strata* of G. They are clearly unions of conjugacy ϕ ($E \in S_2(W)$) are called the *strata* of G. They are clearly unions of conjugacy classes of G. Note the strata of G are indexed by the finite set $S_2(W)$ which depends only on the Weyl group W and not on the underlying root system (see 1.1(b)) or on the characteristic of **k**.

One can show that any stratum of G is a union of pieces in the partition of G defined in $[L3, 3.1]$ $[L3, 3.1]$; in particular, it is a constructible subset of G.

2.4 We have the following result.

(a) *Any stratum* G_E ($E \in S_2(W)$) of G is a (non-empty) union of G-conjugacy *classes of fixed dimension, namely* $2 \dim \mathcal{B} - 2n$ *where* $n = n_E$ *, see 0.2. At most one* G -conjugacy class in G_F is unipotent.

Since $S_2(W) = \widetilde{S}_2^p(W)$, see 1.6, we have $E \in \widetilde{S}_2^p(W)$. Hence there exists $e' \in V_p^*$ and $\rho \in S_2^p(W_{e'})$ such that $E = j_{W_{e'}}^W(\rho)$. We can find a semisimple element of the order $s \in G$ such that $W_{e'}(y)$ we are subgroup of W_{e} as in 2.1) is equal finite order $s \in G$ such that W_s (viewed as a subgroup of W as in 2.1) is equal to W_t . By II 5, 1.41 we can find a uninotent element u in $Z_G(s)^0$ such that α is to $W_{e'}$. By [\[L5,](#page-30-8) 1.4] we can find a unipotent element u in $Z_G(s)^0$ such that ρ is the Springer representation of W_s defined by u and the trivial local system on its $Z_G(s)^0$ -conjugacy class. Then $E = \phi(su)$ so that $G_E \neq \emptyset$. Let γ be a G -conjugacy class in G_E . Let $g \in \gamma$. Let ρ (resp. $\tilde{\rho}$) be the irreducible representation of W_g (resp. W) defined by g_u as in 2.1. Let n_ρ, n_{ρ}^- be as in 0.2. By the definition of $\widetilde{\rho}$ we have $n_\rho = n_{\widetilde{\rho}}$. By assumption we have $\widetilde{\rho} = E$, hence $n_{\widetilde{\rho}} = n$ and $n_\rho = n$. By a known $n_{\rho} = n_{\rho}$. By assumption we have $\tilde{\rho} = E$, hence $n_{\rho} = n$ and $n_{\rho} = n$. By a known property of Springer's representations, n_o is equal to the dimension of the variety of Borel subgroups of $Z_G(g_s)^0$ that contain g_u ; hence by a result of Steinberg (for $p = 0$) and Spaltenstein [\[Spa,](#page-30-9) 10.15] (for any p), n_o is equal to

$$
(\dim(Z_{Z_G(g_s)^0}(g_u)^0 - \text{rk}(Z_G(g_s)^0))/2 = (\dim(Z_G(g)^0) - \text{rk}(G))/2.
$$

It follows that $(\dim(Z_G(g)^0) - \text{rk}(G))/2 = n$ and the desired formula for dim γ follows. Now assume that γ , γ' are two unipotent G-conjugacy classes contained in G_F . Then the Springer representation of W associated to γ is the same as that associated to γ' , namely E. By properties of Springer representations, it follows that $\gamma = \gamma'$. This proves (a).

2.5 In this and the next subsection we assume that W is irreducibble. Let $r \in \mathbb{R}$ $P \cup \{0\}$. Let G^r be a connected reductive group of the same type as G over an algebraically closed field of characteristic r , whose Weyl group is identified with W. Let U^r be the set of unipotent classes of G^r . By [\[L5,](#page-30-8) 1.4] we have a canonical bijection

$$
\psi^r: \mathcal{U}^r \overset{\sim}{\to} \mathcal{S}_2^r(W)
$$

which, to a unipotent class γ , associates the Springer representation of W corresponding to γ and the constant local system on γ . We define an embedding $h^r : U^0 \to U^r$ as the composition

$$
\mathcal{U}^0 \xrightarrow{\psi^0} \mathcal{S}_2^0(W) = \mathcal{S}_1(W) \to \mathcal{S}_2^r(W) \xrightarrow{(\psi^r)^{-1}} \mathcal{U}^r
$$

where the unnamed map is the inclusion.

Consider the relation \cong on $\sqcup_{r \in \mathcal{D}} \mathcal{U}^r$ for which $x \in \mathcal{U}^r$, $y \in \mathcal{U}^{r'}$ (where $r, r' \in \mathcal{P}$) Consider the relation \cong on $\sqcup_{r \in \mathcal{P}} U^r$ for which $x \in U^r$, $y \in U^r$ (where $r, r' \in \mathcal{P}$) satisfy $x \cong y$ if either $r = r'$ and $x = y$ or $r \neq r'$ and $x = h^r(z)$, $y = h^{r'}(z)$ for some $z \in \mathcal{U}^0$. We show that for some $z \in U^0$. We show that \cong is an equivalence relation. It is enough to show that if $x \in U^r$, $y \in U^{r'}$, $y \in U^{r''}$ are such that $r \neq r'$, $r' \neq r''$ and $x = h^r(z)$ that if $x \in U^r$, $y \in U^{r'}$, $u \in U^{r''}$ are such that $r \neq r'$, $r' \neq r''$ and $x = h^r(z)$,
 $v = h^{r'}(z)$, $v = h^{r'}(\tilde{z})$, $u = h^{r''}(\tilde{z})$ for some $z \in \mathcal{U}^0$, $\tilde{z} \in \mathcal{U}^0$, then $x \approx u$. From $y = h^{r'}(z), y = h^{r'}(\overline{z}), u = h^{r''}(\overline{z})$ for some $z \in \mathcal{U}^0, \overline{z} \in \mathcal{U}^0$, then $x \cong u$. From $h^{r'}(z) - h^{r'}(\overline{z})$ and the injectivity of $h^{r'}$ we have $z - \overline{z}$. Thus, if $r \neq r''$ we have $h^{r'}(z) = h^{r'}(\overline{z})$ and the injectivity of $h^{r'}$ we have $z = \overline{z}$. Thus, if $r \neq r''$, we have $x \simeq u$ while if $r = r''$ we have $x = u$. Thus \approx is indeed an equivalence relation $x \approx u$, while if $r = r''$, we have $x = u$. Thus, \approx is indeed an equivalence relation.

Let U^* be $\sqcup_{r \in \mathcal{P}} U^r$ modulo the equivalence relation \cong . Let $\sqcup_{r \in \mathcal{P}} U^r \to S_2(W)$
the man whose restriction to U^r is ψ^r followed by the inclusion $S^r(W) \subset$ be the map whose restriction to U^r is ψ^r followed by the inclusion $S_2^r(W) \subset S_2(W)$ (for any r) We show: $S_2(W)$ (for any r). We show:

(a) *This map induces a bijection* $\psi^* : U^* \xrightarrow{\sim} S_2(W)$ *.*

To show that ψ^* is a well-defined map it is enough to verify that if $z \in \mathcal{U}^0$, then
for any $r r' \in \mathcal{D}$ we have $\psi^r h^r(z) = \psi^{r'} h^{r'}(z)$ in $\mathcal{S}_2(W)$; but both sides of the for any $r, r' \in \mathcal{P}$, we have $\psi^r h^r(z) = \psi^{r'} h^{r'}(z)$ in $\mathcal{S}_2(W)$; but both sides of the equality to be verified are equal to $\psi^0(z)$. Let $F \in \mathcal{S}_2(W)$. By 1.5(i) there exists equality to be verified are equal to $\psi^0(z)$. Let $E \in S_2(W)$. By 1.5(j) there exists $r \in \mathcal{P}$ such that $E \in \mathcal{S}_2^r(W)$, hence $E = \psi^r(x)$ for some $x \in \mathcal{U}^r$. It follows that ψ^* is surjective. We show that ψ^* is injective. It is enough to show that ψ^* is surjective. We show that ψ^* is injective. It is enough to show that

(b) if $x \in U^r$, $y \in U^{r'}$ $(r, r' \in \mathcal{P}$ distinct) satisfy $\psi^r(x) = \psi^{r'}(y)$, then there exists $z \in \mathcal{U}^0$ such that $x = h^r(z)$, $y = h^{r'}(z)$ exists $z \in \mathcal{U}^0$ such that $x = h^r(z)$, $y = h^{r'}(z)$.

If $r \neq \{2, 3\}$, then $S_2^r(W) = S_1(W)$, hence $\psi^r(x) = \psi^0(z)$ for some $z \in \mathcal{U}^0$.
We then have $\psi^{r'}(x) = \psi^0(z)$, It follows that $\psi^r(z) = x \psi^{r'}(z) = y$ as required. We then have $\psi^{r'}(y) = \psi^0(z)$. It follows that $h^{r}(z) = x$, $h^{r'}(z) = y$, as required.
Similarly if $r' \neq \{2, 3\}$ then the conclusion of (b) holds. Thus we can assume that Similarly, if $r' \neq \{2, 3\}$, then the conclusion of (b) holds. Thus we can assume that $r \in \{2, 3\}, r' \in \{2, 3\}.$ Since $r \neq r'$ we have $\{r, r'\} = \{2, 3\}.$ Hence $\psi^r(x) = \psi^{r'}(x) \in S^2(W) \cap S^3(W) = S_r(W)$; the last equality follows from 1.5(1). Thus $\psi^{r'}(y) \in S_2^2(W) \cap S_2^3(W) = S_1(W)$; the last equality follows from 1.5(l). Thus we have $\psi^{r}(x) = {\psi^{r}}^{r}(y) = \psi^{0}(z)$ for some $z \in \mathcal{U}^{0}$. It follows that $h^{r}(z) = x$, $h^{r'}(z) = y$ as required $h^{r'}(z) = y$, as required.

From (a) we deduce the following:

(c) The strata of G are naturally indexed by the set \mathcal{U}^* .

The proof of (a) shows also that U^* is equal to $U^2 \sqcup U^3$ with the identification of $h^2(\tau)$ $h^3(\tau)$ for any $\tau \in U^0$ $h^2(z)$, $h^3(z)$ for any $z \in \mathcal{U}^0$.

We can now state the following result.

(d) Let $E \in S_2(W)$. Then for some $r \in P$, the stratum G_E^r contains a unipotent class. In fact, r, can be assumed to be 2 or 3 *class. In fact,* r *can be assumed to be* 2 *or* 3*.*

Under (a), E corresponds to an element of \mathcal{U}^* which is the equivalence class of some element $\gamma \in \mathcal{U}^r$ with $r \in \{2, 3\}$. Let $g \in G^r$ be an element in the unipotent conjugacy class γ . From the definitions we see that $g \in G_F^r$. This proves (d).

2.6 We show that the set U^* has a natural partial order. If $S_2^r(W) = S_1(W)$ (type A and F_2) we have $U^* = U^0$ which has a natural partial order defined by the closure and E_6), we have $U^* = U^0$ which has a natural partial order defined by the closure
relation of uninotent classes in G^0 . If $S_U(W) \neq S'_U(W)$ for a unique $r \in \mathcal{D}$ (type relation of unipotent classes in G^0 . If $S_1(W) \neq S_2(W)$ for a unique $r \in \mathcal{P}$ (type $\neq A$, F_C , F_S) we have $\mathcal{U}^* = \mathcal{U}^r$ which has a natural partial order defined by the $\neq A$, E_6 , E_8), we have $U^* = U^r$ which has a natural partial order defined by the closure relation of unipotent classes in G^r . Assume now that G is of type F_6 . Then closure relation of unipotent classes in G^r . Assume now that G is of type $E₈$. Then we can identify U^2 , U^3 with subsets of U^* whose union is U^* and whose intersection is \mathcal{U}^0 . Both subsets \mathcal{U}^2 , \mathcal{U}^3 have natural partial orders defined by the closure relation of unipotent classes in G^2 and G^3 . If γ , $\gamma' \in \mathcal{U}^*$, we say that $\gamma \leq \gamma'$ if there exists a sequence $\gamma = \gamma_0$, γ_1 , $\gamma_2 = \gamma'$ in \mathcal{U}^* such that for any $i \in [1, s]$ there exists a sequence $\gamma = \gamma_0, \gamma_1, \ldots, \gamma_s = \gamma'$ in \mathcal{U}^* such that for any $i \in [1, s]$ there exists $r \in \{2, 3\}$ such that $r \in \{2, 3\}$ such that

(a) $\gamma_{i-1} \in \mathcal{U}^r$, $\gamma_i \in \mathcal{U}^r$, $\gamma_{i-1} \leq \gamma_i$ in the partial order of unipotent classes in G^r ;

note that if for some i, (a) holds for both $r = 2$ and $r = 3$, then we have $\gamma_{i-1} \in \mathcal{U}^0$, $\gamma_i \in \mathcal{U}^0$, $\gamma_{i-1} \leq \gamma_i$ in the partial order of unipotent classes in G^0 . One can show that this partial order on \mathcal{U}^* induces the usual partial orders on the subsets \mathcal{U}^2 , \mathcal{U}^3 , \mathcal{U}^0 .

2.7 Let W_a be the semidirect product of W with the subgroup of V generated by R (an affine Weyl group); let W_a be the semidirect product of W with the subgroup of V^* generated by R (another affine Weyl group). We consider four triples:

(a) $(S(W), X_0, Z_0)$ (b) $(S_1(W), X_1, Z_1)$ (c) $({}^{\prime}S_1(W), {}^{\prime}X_1, {}^{\prime}Z_1)$ (d) $(S_2(W), X_2, Z_2)$

where $X_0, X_1, 'X_1$ is the set of two-sided cells in W, $W_a, 'W_a$ respectively, Z_0 is the set of special unipotent classes in G with $p = 0$, Z_1 is the set of unipotent classes in G with $p = 0$, Z_1 is the set of unipotent classes in the Langlands dual G^* of G
with $p = 0$, Z_2 is the set of strata of G with $p = 0$ and X_2 remains to be defined with $p = 0$, Z_2 is the set of strata of G with $p = 0$ and X_2 remains to be defined. The three sets in each of these four triples are in canonical bijection with each other (assuming that X_2 has been defined). Moreover, each set in (a) is naturally contained in the corresponding set in (b) and (replacing G by G^*) in the corresponding set in (c); each set in (b) is contained in the corresponding set in (d) and (replacing G by G^*) each set in (c) is contained in the corresponding set in (d).

It remains to define X_2 . It seems plausible that the (trigonometric) double affine Hecke algebra **H** associated by Cherednik to W has a natural filtration by two-sided ideals whose successive subquotients can be called two-sided cells and form the desired set X_2 . The inclusion of the Hecke algebra of W_a and that of W_a into **H** should induce the embeddings $X_1 \subset X_2, 'X_1 \subset X_2$ and X_2 should be in natural
bijection with $S_2(W)$ and with the set of strata of G bijection with $S_2(W)$ and with the set of strata of G.

3 Examples

3.1 We write the adjoint group of G as a product $\prod_i G_i$ where each G_i is simple with Weyl group W_i so that $W = \prod_i W_i$. Let $E \in S_2(W)$. We have $E = \boxtimes_i E_i$
where $E_i \in S_2(W_i)$. Now G_E is the inverse image of $\Pi_i(G_i)_{E_i}$ under the obvious where $E_i \in S_2(W_i)$. Now G_E is the inverse image of $\prod_i (G_i)_{E_i}$ under the obvious man $G \to \prod_i G_i$. map $G \to \prod_i G_i$.
When E is the

When E is the sign representation of W, then G_E is the centre of G; when E is the unit representation of W , G_E is the set of elements of G which are regular in the sense of Steinberg [\[St\]](#page-30-0).

By 2.5(a) and 2.6 applied to G_i , the set $S_2(W_i)$ has a natural partial order. Since $S_2(W)$ can be identified as above with $\prod_i S_2(W_i)$, $S_2(W)$ is naturally a partially ordered set (a product of partially ordered sets). Hence by 2.3 the set of strata of G is naturally a partially ordered set.

3.2 Assume that $G = GL(V)$ where V is a **k**-vector space of dimension $n \ge 1$. Let $g \in G$. For any $x \in \mathbf{k}^*$ let V, be the generalized x-eigenspace of $g: V \to V$ and let $g \in G$. For any $x \in \mathbf{k}^*$ let V_x be the generalized x-eigenspace of $g : V \to V$ and let $\lambda^x > \lambda^x > \lambda^x$ be the sequence in N whose nonzero terms are the sizes of the $\lambda_1^x \geq \lambda_2^x \geq \lambda_3^x \geq \ldots$ be the sequence in **N** whose nonzero terms are the sizes of the $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \ldots$ be the sequence in it whose honzero terms are the sizes of the
Jordan blocks of $x^{-1}g : V_x \to V_x$. Let ${}^g\lambda$ be the sequence ${}^g\lambda_1 \geq {}^g\lambda_2 \geq {}^g\lambda_3 \geq \ldots$
given by ${}^g\lambda_1 = \sum_{x \in \lambda} \lambda^x$. given by ${}^g \lambda_j = \sum_{x \in \mathbf{k}^*} \lambda_j^x$. Now $g \mapsto {}^g \lambda$ defines a map from G onto the set of partitions of *n*. From the definitions we see that the fibres of this man are exactly partitions of n . From the definitions we see that the fibres of this map are exactly the strata of G. If $g \in G$ and ${}^g \lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots)$, then

$$
\dim(\mathcal{B}_g) = \sum_{k \ge 1} (n - (\lambda_1 + \lambda_2 + \dots + \lambda_k)).
$$

3.3 Repeating the definition of sheets in a semisimple Lie algebra over **C** (see [\[Bo\]](#page-30-10)), one can define the sheets of G as the maximal irreducible subsets of G which are unions of conjugacy classes of fixed dimension. One can show that if G is as in 3.2, the sheets of G are the same as the strata of G , as described in 3.2. (In this case, the sheets of G , or rather their Lie algebra analogue, are described in $[Pe]$. They are smooth varieties.) This is not true for a general G (the sheets of G do not usually form a partition of G ; the strata of G are not always irreducible). In $[Ca]$ it is shown that if p is 0 or a good prime for G, then any stratum is a union of sheets and that the closure of a stratum is not necessarily a union of strata, even if G is of type A .

3.4 In the next few subsections we will describe explicitly the strata of G when G is a symplectic or special orthogonal group.

Given a partition $v = (v_1 \ge v_2 \ge ...)$, a *string* of *v* is a maximal subsequence
 v_1, \ldots, v_k of *v* consisting of equal > 0 numbers; the string is said to have an v_i , v_{i+1}, \ldots, v_j of v consisting of equal > 0 numbers; the string is said to have an odd origin if i is odd and an even origin if i is even.

For an even $N \in \mathbb{N}$, let Z_N^1 be the set of partitions $v = (v_1 \ge v_2 \ge ...)$ of N is that any odd number annears an even number of times in v. We show: such that any odd number appears an even number of times in ν . We show:

(a) *There is a canonical bijection* $Z_N^1 \leftrightarrow BP_{1,1}^{N/2}$ (notation of 0.2).

To $v \in Z_N^1$ we associate $\lambda = (\lambda_1, \lambda_2, \lambda_3, ...)$ as follows: each string $2a, 2a, ..., 2a$ in v is replaced by $a, a, ..., a$ of the same length; each string $2a + 1, 2a +$ $1, \ldots, 2a + 1$ (necessarily of even length) in v is replaced by $a, a + 1, a, a + 1$ $1, \ldots, a, a + 1$ of the same length. The resulting entries form a bipartition $\lambda \in$ $BP_{1,1}^{N/2}$. Now $\nu \mapsto \lambda$ establishes the bijection (a).

For an even $N \in \mathbb{N}$, let Z_N^2 be the set of partitions $v = (v_1 \ge v_2 \ge ...)$ of N such that any odd number appears an even number of times in ν and any even > 0 number which appears an even > 0 number of times in ν has an associated label 0 or 1. We show:

(b) There is a canonical bijection $Z_N^2 \leftrightarrow BP_{2,2}^{N/2}$ (notation of 0.2).

To $v \in Z_N^2$ we associate $\lambda = (\lambda_1, \lambda_2, \lambda_3, \dots)$ as follows: each string $2a, 2a, \dots, 2a$ of odd length or of even length and label 1 in ν is replaced by a, a, \ldots, a of the same length; each string $2a, 2a, \ldots, 2a$ of even length and label 0 in ν is replaced by $a-1, a+1, a-1, a+1, \ldots, a-1, a+1$ of the same length; each string $2a + 1, 2a + 1, \ldots, 2a + 1$ (necessarily of even length) in v is replaced by $a, a + 1, a, a + 1, \ldots, a, a + 1$ of the same length. The resulting entries form a bipartition $\lambda \in BP_{2,2}^{N/2}$. Now $\nu \mapsto \lambda$ establishes the bijection (b).

Assume for example that $N = 6$. The bijection (b) is:

$$
(6...)\leftrightarrow(3...)
$$

\n
$$
(42...)\leftrightarrow(21...)
$$

\n
$$
(411...) \leftrightarrow (201...)
$$

\n
$$
(33...) \leftrightarrow (12...)
$$

\n
$$
(222...) \leftrightarrow (111...)
$$

\n
$$
((22)_111...) \leftrightarrow (1101...)
$$

\n
$$
((22)_0110...) \leftrightarrow (0201...)
$$

\n
$$
(21111...) \leftrightarrow (10101...)
$$

\n
$$
(111111...) \leftrightarrow (010101...)
$$

Here we write \dots instead of 000 \dots (Compare [LS2, 6.1].)

3.5 Assume that $G = Sp(V)$ where V is a k-vector space of dimension N with a fixed nondegenerate symplectic form.

Let $g \in G$. For any $x \in \mathbf{k}^*$ let V_x be the generalized x-eigenspace of $g: V \to V$. Let $d_x = \dim V_x$. For any $x \in \mathbf{k}^*$ such that $x^2 \neq 1$ let $\lambda_1^x \geq \lambda_2^x \geq \lambda_3^x \geq \ldots$ be the partition of d_x whose nonzero terms are the sizes of the Jordan blocks of $x^{-1}g: V_x \to V_x.$

For $x \in \mathbf{k}^*$ such that $x^2 = 1$, let $v^x \in Z_{d_x}^1$ (if $p \neq 2$) and $v^x \in Z_{d_x}^2$ (if $p = 2$) be again the partition of d_x whose nonzero terms are the sizes of the Jordan blocks of the unipotent element $x^{-1}g \in Sp(V_x)$. (When $p = 2$, v^x should also include a labelling with 0 and 1 associated to $x^{-1}g \in Sp(V_x)$ as in [\[L10,](#page-30-4) 1.4].) Let $\lambda^x = (\lambda_1^x, \lambda_2^x, \lambda_3^x, \dots)$ be the bipartition of $d_x/2$ associated to ν^x by 3.4(a),(b).
Thus $\lambda^x \in \mathbb{R}^{nd_x/2}$ (if $x \neq 2$), $\lambda^x \in \mathbb{R}^{nd_x/2}$ (if $x = 2$). Note that λ^x is the Thus $\lambda^x \in BP_{1,1}^{d_x/2}$ (if $p \neq 2$), $\lambda^x \in BP_{2,2}^{d_x/2}$ (if $p = 2$). Note that λ^x is the binartition such that the Springer representation attached to the unipotent element bipartition such that the Springer representation attached to the unipotent element $x^{-1}g \in Sp(V_x)$ (an irreducible representation of the Weyl group of type $B_{d_x/2}$) is indexed in the standard way by λ^x . Define ${}^g \lambda = ({}^g \lambda_1, {}^g \lambda_2, {}^g \lambda_3,...)$ by ${}^g \lambda_j = \nabla \lambda^x$ where x runs over a set of representatives for the orbits of the involution $\sum_{x} \lambda_i^x$ where x runs over a set of representatives for the orbits of the involution $a \mapsto a^{-1}$ of \mathbf{k}^* . Note that ${}^g \lambda \in BP_{2,2}^{N/2}$. Thus we have defined a (surjective) map $g \mapsto {^g \lambda}, G \to BP_{2,2}^{N/2}$. From the definitions we see that the fibres of this map are exactly the strata of G exactly the strata of \ddot{G} .

If $g \in G$ and ${}^g \lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots)$, then

(a)
$$
\dim(\mathcal{B}_g) = \sum_{k \geq 1} ((N/2) - (\lambda_1 + \lambda_2 + \dots + \lambda_k)).
$$

We now consider the case where $N = 4$. In this case we have $S_2(W) = \text{Irr}(W)$; hence there are five strata. One stratum is the union of all conjugacy classes of dimension 8 (it corresponds to the unit representation); one stratum is the union of all conjugacy classes of dimension 6 (it corresponds to the reflection representation of W). There are two strata which are unions of conjugacy classes of dimension 4 (they correspond to the two one-dimensional representations of W other than unit and sign); if $p = 2$, both these strata are single unipotent classes; if $p \neq 2$, one of these strata is a semisimple class and the other is a unipotent class times the centre of G. The centre of G is a stratum (it corresponds to the sign representation of W). The results in this subsection show that under the standard identification $\text{Irr}(W) =$ $BP^{N/2}$, we have

(b) $S_2(W) = BP_{2,2}^{N/2}$.

Under this identification the map $g \mapsto {}^g \lambda$, $G \to BP_{2,2}^{N/2}$ becomes the map $g \mapsto E$
where $g \in G_F$ where $g \in G_E$.

3.6 For $N \in \mathbb{N}$, let Z_N^1 be the set of partitions $v = (v_1 \ge v_2 \ge ...)$ such that any even > 0 number appears an even number of times in y and $v_1 + v_2 + \cdots = N$ even > 0 number appears an even number of times in ν and $\nu_1 + \nu_2 + \cdots = N$.

(a) If N is odd, then there is a canonical bijection $Z_N^1 \leftrightarrow BP_{2,0}^{(N-1)/2}$.

To $v \in \nZ_N^1$ we associate $\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots)$ as follows: each string $2a, 2a, \ldots, 2a$
of y (pecessarily of even length) is replaced by $a - 1$, $a + 1$, $a - 1$, $a + 1$, $a - 1$ of v (necessarily of even length) is replaced by $a - 1$, $a + 1$, $a - 1$, $a + 1$, ..., $a 1, a + 1$ of the same length (if the string has odd origin) or by a, a, \ldots, a of the same length (if the string has even origin); each string $2a + 1$, $2a + 1$, ..., $2a + 1$ of v is replaced by $a, a + 1, a, a + 1, \ldots$ of the same length (if the string has odd origin) or by $a + 1$, a , $a + 1$, a ,... of the same length (if the string has even origin).
The resulting ortrine form a binerition $\lambda \in \mathcal{B}(\mathbb{R}^{(N-1)/2})$. Now $y \mapsto \lambda$ acteblishes The resulting entries form a bipartition $\lambda \in BP_{2,0}^{(N-1)/2}$. Now $\nu \mapsto \lambda$ establishes the bijection (a) the bijection (a).

(b) If N is even, then there is a canonical bijection $Z_N^1 \leftrightarrow BP_{0,2}^{N/2}$.

To $v \in \nZ_N^1$ we associate $\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots)$ as follows: each string $2a, 2a, \ldots, 2a$
of v (pecessarily of even length) is replaced by $a - 1$, $a + 1$, $a - 1$, $a + 1$, $a - 1$ of v (necessarily of even length) is replaced by $a - 1$, $a + 1$, $a - 1$, $a + 1$, ..., $a 1, a + 1$ of the same length (if the string has even origin) or by a, a, \ldots, a of the same length (if the string has odd origin); each string $2a + 1$, $2a + 1$, ..., $2a + 1$ of ν is replaced by $a, a + 1, a, a + 1, \ldots$ of the same length (if the string has even of v is replaced by $a, a + 1, a, a + 1, \ldots$ of the same length (if the string has even
origin) or by $a + 1, a, a + 1, a$ of the same length (if the string has odd origin) origin) or by $a + 1$, $a, a + 1, a, ...$ of the same length (if the string has odd origin).
The resulting entries form a binarition $a \in BP^{N/2}$. Now $y \mapsto a$ establishes the The resulting entries form a bipartition $\lambda \in BP_{0,2}^{N/2}$. Now $\nu \mapsto \lambda$ establishes the bijection (b) bijection (b).

3.7 Assume that $p \neq 2$ and that $G = SO(V)$ where V is a **k**-vector space of odd dimension $N \ge 1$ with a fixed nondegenerate quadratic form.
Let $\sigma \in G$ For any $x \in \mathbf{k}^*$ let V , be the general

Let $g \in G$. For any $x \in \mathbf{k}^*$, let V_x be the generalized x-eigenspace of $V \to V$ Let $d_y = \dim V_y$. For any $x \in \mathbf{k}^*$ such that $x^2 \neq 1$ let $\lambda^x > \lambda^x > 1$. $g: V \to V$. Let $d_x = \dim V_x$. For any $x \in \mathbf{k}^*$ such that $x^2 \neq 1$ let $\lambda_1^x \geq \lambda_2^x \geq \lambda_1^x$. $2\lambda_3^2 \geq \ldots$ be the partition of d_x whose nonzero terms are the sizes of the Jordan blocks of $x^{-1}g : V_x \to V_x$.
For $x \in \mathbf{k}^*$ such that x^2

For $x \in \mathbf{k}^*$ such that $x^2 = 1$ let $v^x \in \ell Z_{d_x}^1$ again be the partition of d_x whose nonzero terms are the sizes of the Jordan blocks of the unipotent element $x^{-1}g \in$ SO(V_x). Let $\lambda^x = (\lambda_1^x, \lambda_2^x, \lambda_3^x, ...)$ be the bipartition of $d_x/2$ associated to ν^x by 3.6(a) if $x = 1$ and by 3.6(b) if $x = -1$. Thus $\lambda^x \in BP_{2,0}^{(d_x-1)/2}$ if $x = 1$, $\lambda^x \in BP_{0,x}^{d_x/2}$ if $x = -1$. Note that λ^x is the bipartition such that the Springer
representation attached to the unipotent element $x^{-1}a \in SO(V)$ (on irreducible representation attached to the unipotent element $x^{-1}g \in SO(V_x)$ (an irreducible representation of the Weyl group of type $B_{(d_x-1)/2}$, if $x = 1$, or of type $D_{d_x/2}$, if representation of the Weyl group of type $B_{(d_x-1)/2}$, if $x = 1$, or of type $D_{d_x/2}$, if $x = -1$) is indexed by λ^x . Define $\lambda^x = \lambda^x$, $\lambda^y = \lambda^y$ $x = -1$) is indexed by λ^x . Define ${}^g \lambda = ({}^g \lambda_1, {}^g \lambda_2, {}^g \lambda_3, ...)$ by ${}^g \lambda_j = \sum_x \lambda_j^x$
where y guess verte exists for presentatives for the orbits of the involution $g \lambda_j = -1$ where x runs over a set of representatives for the orbits of the involution $a \mapsto a^{-1}$ of **k**^{*}. Note that ${}^g \lambda \in BP_{2,2}^{(N-1)/2}$. Thus we have defined a (surjective) map $g \mapsto {}^g \lambda$, $G \rightarrow BP_{2,2}^{(N-1)/2}$. From the definitions we see that the fibres of this map are exactly the strata of G. Under the identification $S_2(W) = BP_{2,2}^{(N-1)/2}$, see 3.5(b), the map $g \mapsto g \lambda$, $G \to BP_{2,2}^{(N-1)/2}$ becomes the map $g \mapsto E$ where $g \in G_E$.
If $g \in G$ and $g \lambda = (\lambda_1, \lambda_2, \lambda_3)$, then If $g \in G$ and ${}^g \lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots)$, then

$$
\dim(\mathcal{B}_g) = \sum_{k\geq 1} ((N-1)/2 - (\lambda_1 + \lambda_2 + \cdots + \lambda_k)).
$$

3.8 Assume that $p = 2$ and that $G = SO(V)$ where V is a **k**-vector space of odd dimension $N \ge 1$ with a given quadratic form, such that the associated symplectic form has radical **r** of dimension 1 and the restriction of the quadratic form to **r** is form has radical **r** of dimension 1 and the restriction of the quadratic form to **r** is nonzero. In this case there is an obvious morphism from G to the symplectic group G' of V/r which is an isomorphism of abstract groups. From the definitions we see that this morphism maps each stratum of G bijectively onto a stratum of G' (which has been described in 3.5).

3.9 For an even $N \in \mathbb{N}$, let Z_N^2 be the set of partitions with labels $\nu = (\nu_1 \geq$ $v_2 \geq \ldots$) in Z_N^2 (see 3.4) such that the number of nonzero entries of v is even.

(a) If N is even, then there is a canonical bijection $Z_N^2 \leftrightarrow BP_{0.4}^{N/2}$.

To $v \in \angle Z_N^2$ we associate $\lambda = (\lambda_1, \lambda_2, \lambda_3, \dots)$ as follows: each string $2a, 2a, 2a, \dots$ of v of odd length or of even length and label 1 is replaced by $a-1$, $a+1$, $a-1$, $a+1$ 1,... of the same length (if the string has even origin) or $a+1$, $a-1$, $a+1$, $a-1$,... of the same length (if the string has odd origin); each string $2a, 2a, 2a, \ldots$ of v of even length and label 0 is replaced by $a-2$, $a+2$, $a-2$, $a+2$,... of the same length (if the string has even origin) or a, a, a, a, \ldots of the same length (if the string has odd origin); each string $2a + 1$, $2a + 1$, $2a + 1$, ... of v (necessarily of even length) is replaced by $a-1$, $a+2$, $a-1$, $a+2$,... of the same length (if the string has even origin) or $a + 1, a, a + 1, a, \ldots$ of the same length (if the string has odd origin). The resulting entries form a bipartition $\lambda \in BP_{0.4}^{N/2}$. Now $\nu \mapsto \lambda$ establishes the bijection (a).

Assume for example that $N = 8$. The bijection (a) is:

$$
(62...) \leftrightarrow (40...)
$$

\n
$$
((44)_{1}...) \leftrightarrow (31...)
$$

\n
$$
((44)_{0}...) \leftrightarrow (22...)
$$

\n
$$
(4211...) \leftrightarrow (3010...)
$$

\n
$$
(3311...) \leftrightarrow (2110...)
$$

\n
$$
((2222)_{1}...) \leftrightarrow (2020...)
$$

\n
$$
((2222)_{0}...) \leftrightarrow (1111...)
$$

\n
$$
((22)_{1}1111...) \leftrightarrow (201010...)
$$

\n
$$
((22)_{0}1111...) \leftrightarrow (111010...)
$$

\n
$$
(11111111...) \leftrightarrow (10101010...)
$$

Here we write \dots instead of 000 \dots (Compare [LS2, 6.2].)

3.10 Assume that $G = SO(V)$ where V is a k-vector space of even dimension N with a fixed nondegenerate quadratic form. Let $g \in G$. For any $x \in \mathbf{k}^*$ let V_x be the generalized x-eigenspace of $g: V \to V$. Let $d_x = \dim V_x$. For any $x \in \mathbf{k}^*$ such that $x^2 \neq 1$ let $\lambda_1^x \geq \lambda_2^x \geq \lambda_3^x \geq \ldots$ be the partition whose nonzero terms are the sizes of the Jordan blocks of $x^{-1}g: V_x \to V_x$. For $x \in \mathbf{k}^*$ such that $x^2 = 1$ let $v^x \in 'Z^1_{d_x}$ (if $p \neq 2$) and $v^x \in 'Z^2_{d_x}$ (if $p = 2$) be again the partition of d_x whose nonzero terms are the sizes of the Jordan blocks of the unipotent element $x^{-1}g \in SO(V_x)$. (When $p = 2$, v^x should also include a labelling with 0 and 1 associated to $x^{-1}g$ viewed as an element of $Sp(V_x)$ as in [L10, 1.4].) Let $\lambda^x =$ $(\lambda_1^x, \lambda_2^x, \lambda_3^x, \dots)$ be the bipartition of $d_x/2$ associated to v^x by 3.6(b), 3.9(a). Thus $\lambda^x \in BP_{0,2}^{d_x/2}$ (if $p \neq 2$), $\lambda^x \in BP_{0,4}^{d_x/2}$ (if $p = 2$). Note that λ^x is the bipartition such that the Springer representation attached to the unipotent element $x^{-1}g \in$ SO(V_x) (an irreducible representation of the Weyl group of type $D_{d_x/2}$) is indexed by λ^x . Define $g\lambda = (g\lambda_1, g\lambda_2, g\lambda_3,...)$ by $g\lambda_j = \sum_x \lambda_j^x$ where x runs over a set of representatives for the orbits of the involution $a \mapsto a^{-1}$ of \mathbf{k}^* . Note that $g \mapsto g \cdot a^{-1} \cdot a^{-1}$ of \mathbf{k}^* . $g \in BP_{0,4}^{N/2}$ and that $g \mapsto g \lambda$ defines a (surjective) map $G \to BP_{0,4}^{N/2}$. From the definitions we see that the fibres of this map are exactly the strata of G (except for definitions we see that the fibres of this map are exactly the strata of \ddot{G} (except for the fibre over a bipartition $(\lambda_1, \lambda_2, \lambda_3, \ldots)$ with $\lambda_1 = \lambda_2, \lambda_3 = \lambda_4, \ldots$ in which case the fibre is a union of two strata). If $g \in G$ and $g \lambda = (\lambda_1, \lambda_2, \lambda_3, \dots)$, then

(a)
$$
\dim(\mathcal{B}_g) = \sum_{k \ge 1} ((N/2) - (\lambda_1 + \lambda_2 + \dots + \lambda_k)).
$$

Viewing W as a subgroup of index 2 of a Weyl group W' of type B_n , we can associate to any $\lambda \in BP^{N/2}$ one or two irreducible representations of W which appear in the restriction to W of the irreducible representation of W' indexed by λ ; the representation(s) of W associated to $\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4, ...)$ are the same as those associated to $\iota(\lambda) := (\lambda_2, \lambda_1, \lambda_4, \lambda_3, ...)$; here $\iota : BP^{N/2} \rightarrow BP^{N/2}$ is an involution and the set of orbits is denoted by $RP^{N/2$ involution and the set of orbits is denoted by $BP^{N/2}/\iota$. This gives a surjective map $f : \text{Irr}(W) \to BP^{N/2}/\iota$ whose fibre at the orbit of λ has one element if $\lambda \neq \iota(\lambda)$
and two elements if $\lambda = \iota(\lambda)$. Let $\iota' : \text{Irr}(W) \to \text{Irr}(W)$ be the involution whose and two elements if $\lambda = \iota(\lambda)$. Let ι' : $\text{Irr}(W) \to \text{Irr}(W)$ be the involution whose
orbits are the fibres of f and let $S_2(W)/\iota'$ be the set of orbits of the restriction of ι' orbits are the fibres of f and let $S_2(W)/\ell'$ be the set of orbits of the restriction of ℓ' to $S_2(W)$. The results in this subsection show that f induces a bijection

(b)
$$
S_2(W)/\iota' \stackrel{\sim}{\rightarrow} BP_{0,4}^{N/2}
$$
.

We have used the fact that the intersection of $BP_{0,4}^{N/2}$ with an orbit of $\iota: BP^{N/2} \rightarrow PP^{N/2}$ has at most ang alamants mana amazinaly. $BP^{N/2}$ has at most one element; more precisely,

$$
\{\lambda \in BP^{N/2}; \lambda \in BP_{0,4}^{N/2} \text{ and } \iota(\lambda) \in BP_{0,4}^{N/2}\} = \{\lambda \in BP^{N/2}; \lambda = \iota(\lambda)\}.
$$

Under the identification (b), the map $g \mapsto {}^g \lambda$, $G \to BP_{0,4}^{N/2}$ becomes the map $g \mapsto F$ (up to the action of ι') where $g \in G_F$ $g \mapsto E$ (up to the action of ι') where $g \in G_E$.

3.11 Assume that $p \neq 2$ and $n \geq 3$. If $G = SO_{2n+1,k}$ then the stratum of minimal dimension > 0 consists of a semisimple class of dimension $2n$; if $G = Sn_{2k+1}$ dimension > 0 consists of a semisimple class of dimension $2n$; if $G = Sp_{2n,k}/\pm 1$ then the stratum of minimal dimension > 0 consists of a unipotent class of dimension 2n (that of transvections). The corresponding $E \in \text{Irr}(W)$ is one-dimensional.

3.12 Assume that G is simple of type E_8 . In this case G has exactly 75 strata. If $p \neq 2$, 3 then exactly 70 strata contain unipotent elements. If $p = 2$ (resp. $p = 3$) then exactly 74 (resp. 71) strata contain unipotent elements. The unipotent class of dimension 58 is a stratum. If $p \neq 2$, there is a stratum which is a union of a semisimple class and a unipotent class (both of dimension 128); in particular this stratum is disconnected.

4 A map from conjugacy classes in W **to** 2**-special representations of** W

4.1 In this subsection we shall define a canonical surjective map

(a)
$$
\forall \Phi : cl(W) \rightarrow S_2(W)
$$
.

We preserve the setup of 2.5. We will first define the map (a) assuming that G is simple. In [\[L8\]](#page-30-3) we have defined for any $r \in \mathcal{P}$ a surjective map cl(W) $\rightarrow U^r$; we denote this map by Φ^r . Let $C \in cl(W)$. We define an element $\Phi(C) \in \mathcal{U}^*$
as follows If $\Phi^r(C) \in h^r(z)$ (with $z_n \in \mathcal{U}^0$) for all $r \in \mathcal{P}$ then $z_n = z$ is as follows. If $\Phi^r(C) \in h^r(z_r)$ (with $z_r \in \mathcal{U}^0$) for all $r \in \mathcal{P}$, then $z_r = z$ is independent of r (see [\[L10,](#page-30-4) 0.4]) and we define $\Phi(C)$ to be the equivalence class of $h^r(z)$ for any $r \in \mathcal{P}$. If $\Phi^r(C) \notin h^r(u^0)$ for some $r \in \mathcal{P}$, then r is unique. (The only case where r can be possibly not unique is in type E_8 in which case we use the tables in [\[L10,](#page-30-4) 2.6].) We then define $\Phi(C)$ to be the equivalence class of $\Phi^r(C)$. Thus we have defined a surjective map $\Phi : cl(W) \to U^*$. By composing Φ^r , with $\Phi^r: U^r \to SU(W)$ are 2.5, and with the inclusion $SU(W) \subset SU(W)$. Φ^r with $\psi^r : \mathcal{U}^r \xrightarrow{\sim} S_2^r(W)$, see 2.5, and with the inclusion $S_2^r(W) \subset S_2(W)$,
we obtain a man $\Phi^r : cl(W) \to S_2(W)$. Similarly, by composing Φ with ψ^* . we obtain a map $\Phi' \cdot \text{cl}(W) \to S_2(W)$. Similarly, by composing Φ with ψ^*
 $W^* \sim S(W)$ and $S_2(S_2)$ we obtain a qualitative map $\Phi : \text{cl}(W) \to S(W)$. No $u^* \xrightarrow{\sim} S_2(W)$, see 2.5(a), we obtain a surjective map $\Phi : cl(W) \to S_2(W)$. Note that for $C \in cl(W)$, $\phi(C)$ can be described as follows. If $\phi^r(C) \in S_1(W)$ for all $r \in \mathcal{D}$ then $\phi^r(C)$ is independent of r and we have $\phi^r(C) - \phi^r(C)$ for all $r \in \mathcal{P}$, then $\Phi^r(C)$ is independent of r, and we have $\Phi^r(C) = \Phi^r(C)$ for any r. If $\Phi^r(C) \notin S_2(W)$ for some $r \in \mathcal{P}$ then such r is unique and we have any *r*. If $\Phi^r(C) \notin S_1(W)$ for some $r \in \mathcal{P}$, then such *r* is unique and we have $\Phi^r(C) = \Phi^r(C)$. $\Phi(C) = \Phi^r(C)$.
We return to the

 $\prod_i G_i$ where each G_i is simple with Weyl group W_i . We can identify $W = \prod_i W_i$,
cl(W) $\equiv \prod_i G(W)$, $S_2(W) = \prod_i S_2(W_i)$ (via external tensor product). Then We return to the general case. We write the adjoint group of G as a product $cl(W) = \prod_i cl(W_i), S_2(W) = \prod_i$
' $\Phi_i : cl(W_i) \rightarrow S_2(W_i)$ is defined $cl(W) = \prod_i cl(W_i), S_2(W) = \prod_u S_2(W_i)$ (via external tensor product). Then $\langle \phi_i : cl(W_i) \to S_2(W_i) \rangle$ is defined as above for each i. We set $\langle \phi \rangle = \prod_i \langle \phi_i \rangle$. Φ_i : $\text{cl}(W_i) \to S_2(W_i)$ is defined as above for each *i*. We set $\Phi = \prod_i \Phi_i$:
 $\text{cl}(W) \to S_2(W)$ $cl(W) \rightarrow S_2(W)$.

For C, C' in cl(W) we write $C \sim C'$ if $\Phi(C) = \Phi(C')$. This is an equivalence ation on $cl(W)$. Let $cl(W)$ be the set of equivalence classes. Note that: relation on $cl(W)$. Let $cl(W)$ be the set of equivalence classes. Note that:

(b) ${}' \Phi$ *induces a bijection* $\underline{\text{cl}}(W) \to S_2(W)$ *.*

We see that, via (b),

(c) *the strata of* G *are naturally indexed by the set* $cl(W)$ *.*

4.2 We preserve the setup of 2.5. Now Φ in 4.1(a) is a map between two sets which depend only on W , not on the underlying root system, see 1.1(b). We show that

(a) ' Φ itself depends only on W, not on the underlying root system.

We can assume that G is adjoint, simple. We can also assume that G is not of simply laced type. In this case there is a unique $r \in \mathcal{P}$ such that $\mathcal{S}_2(W) = \mathcal{S}_2(W)$ so that we have simply $\langle \Phi - \langle \Phi^r : cl(W) \rangle \to \mathcal{S}_2(W)$. Thus $\langle \Phi \rangle$ is the composition we have simply ${}' \Phi = {}' \Phi^r : cl(W) \to S_2(W)$. Thus ${}' \Phi$ is the composition

(b)
$$
cl(W) \xrightarrow{\Phi^r} \mathcal{U}^r \xrightarrow{\psi^r} \mathcal{S}_2(W)
$$
.

We now use the fact the maps in (b) are compatible with the exceptional isogeny between groups G^2 of type B_n and C_n or of type F_4 and F_4 (resp. between groups $G³$ of type $G₂$ and $G₂$). This implies (a).

4.3 Assume that G is simple. The map ϕ in 4.1 is defined in terms of ϕ ^r which is the composition of Φ^r : $cl(W) \to U^r$ (which is described explicitly in each case in [\[L10\]](#page-30-4)) and $\psi^r : U^r \leftarrow S_2^r(W)$ which is given by the Springer correspondence.
Therefore ' ϕ is explicitly computable. In this subsection we describe this man in Therefore ϕ is explicitly computable. In this subsection we describe this map in the case where W is of classical type.

If W is of type A_n , $n \ge 1$, then cl(W) can be identified with the set of partitions $n:$ to a conjugacy class of a permutation of *n* objects we associate the partition of *n*: to a conjugacy class of a permutation of *n* objects we associate the partition whose nonzero terms are the sizes of the disjoint cycles of which the permutation is a product. We identify $S_2(W) = \text{Irr}(W)$ with the set of partitions in the standard way (the unit representation corresponds to the partition $(n, 0, 0, ...)$). With these identifications the map ϕ is the identity map.

Assume now that W is a Weyl group of type B_n or C_n , $n \geq 2$. Let X be a with 2n elements with a given fixed point free involution τ . We identify W set with 2n elements with a given fixed point free involution τ . We identify W with the group of permutations of X which commute with τ . To any $w \in W$, we can associate an element $v \in Z_{2n}^2$ (see 3.4) as follows. The nonzero terms of the negative network of which w is a product. To each string partition ν are the sizes of the disjoint cycles of which w is a product. To each string c, c,..., c of v of even length with $c>0$ even we attach the label 1 if at least one of its terms represents a cycle which commutes with τ ; otherwise we attach to it the label 0. This defines a (surjective) map $cl(W) \rightarrow Z_{2n}^2$ which by results of $\overline{Cl(10)}$ can be identified with the map $\Phi^2 : cl(W) \rightarrow l^2$. Composing this with the [\[L10\]](#page-30-4) can be identified with the map Φ^2 : $\text{cl}(W) \rightarrow \mathcal{U}^2$. Composing this with the bijection 3.4(b) we obtain a surjective map $cl(W) \rightarrow BP_{2,2}^n$ or equivalently (see 3.5(b)) $cl(W) \rightarrow S_2(W)$. This is the same as ' Φ $3.5(b)$) cl(W) \rightarrow $S_2(W)$. This is the same as ' Φ .
Next we assume that W is a Weyl group of

Next we assume that W is a Weyl group of type D_n , $n \geq 4$. We can identify with the group of *even* permutations of X (as above) which commute with τ (as W with the group of *even* permutations of X (as above) which commute with τ (as above). To any $w \in W$ we associate an element $v \in Z_{2n}^2$ as for type B_n above.
This element is actually contained in Z^2 (see 3.9) since w is an even permutation This element is actually contained in Z_{2n}^2 (see 3.9) since w is an even permutation. This defines a (surjective) map $cl(W) \rightarrow 'Z_{2n}^2$ which by results of [\[L10\]](#page-30-4) can be identified with the composition of $\Phi^2 : cl(W) \rightarrow l^2$ with the obvious map from identified with the composition of Φ^2 : $\text{cl}(W) \to \mathcal{U}^2$ with the obvious map from U^2 to the set of orbits of the conjugation action of the full orthogonal group on U^2 . Composing this with the bijection 3.9(a) we obtain a surjective map cl(W) \rightarrow $BP_{0,4}^n$ or equivalently (see 3.10(b)) a surjective map $cl(W) \rightarrow S_2(W)/l'$ (notation of 3.10). This is the same as the composition of ϕ with the obvious map $S_2(W) \rightarrow$ of 3.10). This is the same as the composition of Φ with the obvious map $S_2(W) \to S_2(W)/I'$ $S_2(W)/\iota'.$

4.4 In this and the next five subsections we describe the map Φ : $cl(W) \rightarrow S_2(W)$
in the case where W is of exceptional type. The results will be expressed as diagrams in the case where W is of exceptional type. The results will be expressed as diagrams $[a, b, \dots] \mapsto d_n$ where a, b, \dots is the list of conjugacy classes in W (with notation of [\[C\]](#page-30-14)) which are mapped by ϕ to an irreducible representation E denoted d_n (here d denotes the degree of E and the index $n = n_E$ as in 0.2). We also mark by $*_r$ those E which are in $S_2(W) - S_1(W)$; here r is the unique prime such that $E \in S_2^r(W)$. Note that the notation d_n does not determine E for types G_2 and F_4 ;
for these types it may happen that there are two F 's with same d for these types it may happen that there are two E's with same d_n .

Type G_2

 $[G_2] \mapsto 1_0$ $[A_1 + \widetilde{A}_1] \mapsto 2_2$ $[A_1] \mapsto 1_3$ $[\widetilde{A}_1] \mapsto 1_3$, *3 $[A_0] \mapsto 1_6$ $[A_2] \mapsto 2_1$

4.5 Type F_4 .

$$
[F_4] \mapsto 1_0
$$
\n
$$
[B_4] \mapsto 4_1
$$
\n
$$
[F_4(a_1)] \mapsto 9_2
$$
\n
$$
[D_4, B_3] \mapsto 8_3
$$
\n
$$
[C_3 + A_1, C_3] \mapsto 8_3
$$
\n
$$
[D_4(a_1)] \mapsto 12_4
$$
\n
$$
[A_1, 3A_1, 2A_1 + \tilde{A}_1, A_1 + \tilde{A}_1] \mapsto 9_{10}
$$
\n
$$
[A_3 + \tilde{A}_1] \mapsto 16_5
$$
\n
$$
[A_3] \mapsto 9_6
$$
\n
$$
[B_2 + A_1] \mapsto 9_6
$$
\n
$$
[A_4] \mapsto 9_6
$$
\n
$$
[A_1] \mapsto 2_{16}
$$
\n
$$
[A_1] \mapsto 2_{16}
$$
\n
$$
[A_2] \mapsto 8_9
$$
\n
$$
[A_1] \mapsto 9_6
$$
\n
$$
[A_1] \mapsto 2_{16}
$$
\n
$$
[A_2] \mapsto 6_6
$$
\n
$$
[A_1] \mapsto 2_{16}
$$

4.6 Type
$$
E_6
$$
.

$$
[E_6] \rightarrow 1_0
$$
\n
$$
[D_4] \rightarrow 24_6
$$
\n
$$
[2A_2] \rightarrow 24_{12}
$$
\n
$$
[E_6(a_1)] \rightarrow 6_1
$$
\n
$$
[D_5] \rightarrow 20_2
$$
\n
$$
[D_4(a_1)] \rightarrow 80_7
$$
\n
$$
[A_2 + A_1] \rightarrow 64_{13}
$$
\n
$$
[E_6(a_2)] \rightarrow 30_3
$$
\n
$$
[A_3 + 2A_1, A_3 + A_1] \rightarrow 60_8
$$
\n
$$
[4A_1, 3A_1] \rightarrow 15_{16}
$$
\n
$$
[A_5 + A_1, A_5] \rightarrow 15_4
$$
\n
$$
[3A_2, 2A_2 + A_1] \rightarrow 10_9
$$
\n
$$
[2A_1] \rightarrow 20_{20}
$$
\n
$$
[D_5(a_1)] \rightarrow 64_4
$$
\n
$$
[A_3] \rightarrow 81_{10}
$$
\n
$$
[A_1] \rightarrow 6_{25}
$$
\n
$$
[A_4 + A_1] \rightarrow 60_5
$$
\n
$$
[A_2 + 2A_1] \rightarrow 60_{11}
$$
\n
$$
[A_0] \rightarrow 1_{36}
$$

4.7 Type E_7 .

$$
[E_7(a_1)] \mapsto 1_0
$$
\n
$$
[E_7(a_1)] \mapsto 7_1
$$
\n
$$
[E_7(a_2)] \mapsto 27_2
$$
\n
$$
[E_7(a_3)] \mapsto 56_3
$$
\n
$$
[E_6] \mapsto 21_3
$$
\n
$$
[E_6(a_1)] \mapsto 120_4
$$
\n
$$
[D_6 + A_1, D_6] \mapsto 35_4
$$
\n
$$
[A_7] \mapsto 189_5
$$
\n
$$
[A_8] \mapsto 189_5
$$
\n
$$
[A_9] \mapsto 120_6
$$
\n
$$
[A_1] \mapsto 189_5
$$
\n
$$
[A_1] \mapsto 105_6
$$
\n
$$
[A_4 + A_2] \mapsto 210_{10}
$$

$$
[D_6(a_1)] \mapsto 210_6
$$

\n
$$
[D_5 + A_1] \mapsto 168_6
$$

\n
$$
[A_4 + A_1] \mapsto 512_{11}
$$

\n
$$
[A'_5] \mapsto 105_{12}
$$

$$
[D_4 + 3A_1, D_4 + 2A_1, D_4 + A_1] \rightarrow 84_{12}
$$

\n
$$
[A_4] \rightarrow 420_{13}
$$

\n
$$
[2A_3 + A_1, A_3 + A_2 + A_1] \rightarrow 210_{13}
$$

\n
$$
[A_3 + A_2] \rightarrow 378_{14}
$$

\n
$$
[D_4] \rightarrow 105_{15}
$$

\n
$$
[D_4(a_1) + A_1] \rightarrow 405_{15}
$$

\n
$$
[A_3 + A_2] \rightarrow 84_{15}, *_{2}
$$

\n
$$
[A_3 + 3A_1, (A_3 + 2A_1)'] \rightarrow 216_{16}
$$

\n
$$
[D_4(a_1)] \rightarrow 315_{16}
$$

\n
$$
[(A_3 + 2A_1)'', (A_3 + A_1)''] \rightarrow 280_{17}
$$

\n
$$
[3A_2, 2A_2 + A_1] \rightarrow 70_{18}
$$

\n
$$
[(A_3 + A_1)'] \rightarrow 189_{20}
$$

4.8 Type E_8

$$
[E_8] \rightarrow 1_0
$$
\n
$$
[E_8(a_1)] \rightarrow 8_1
$$
\n
$$
[E_8(a_2)] \rightarrow 35_2
$$
\n
$$
[E_8(a_3)] \rightarrow 112_3
$$
\n
$$
[E_7 + A_1, E_7] \rightarrow 84_4
$$
\n
$$
[E_8(a_5)] \rightarrow 210_4
$$
\n
$$
[E_8(a_7)] \rightarrow 560_5
$$
\n
$$
[E_7(a_1)] \rightarrow 567_6
$$
\n
$$
[E_8(a_3)] \rightarrow 700_6
$$
\n
$$
[D_8(a_7)] \rightarrow 1400_7
$$
\n
$$
[D_8(a_8)] \rightarrow 700_6
$$
\n
$$
[D_8(a_9)] \rightarrow 140_7
$$
\n
$$
[D_8(a_9)] \rightarrow 700_7
$$
\n
$$
[E_8(a_9)] \rightarrow 1400_7
$$
\n
$$
[E_8(a_9)] \rightarrow 1400_8
$$
\n
$$
[E_8(a_9)] \rightarrow 1400_8
$$
\n
$$
[A_9] \rightarrow 840_{14}, *_{2}
$$
\n
$$
[E_9(a_1)] \rightarrow 1400_8
$$
\n
$$
[A_9] \rightarrow 4200_{15}
$$

$$
[E_7(a_2) + A_1, E_7(a_2)] \mapsto 1344_8
$$

\n
$$
[E_6 + A_2, E_6 + A_1] \mapsto 448_9
$$

\n
$$
[D_8(a_2)] \mapsto 3240_9
$$

\n
$$
[D_7(a_1)] \mapsto 1050_{10}, *_{2}
$$

\n
$$
[E_7(a_4) + A_1, E_7(a_4)] \mapsto 7168_{17}
$$

\n
$$
[A_7'] \mapsto 175_{12}, *_{3}
$$

\n
$$
[2D_4, D_6(a_2) + A_1, D_6(a_2)] \mapsto 4200_{18}
$$

\n
$$
[A_8] \mapsto 2240_{10}
$$

\n
$$
[E_6(a_2) + A_2, E_6(a_2) + A_1] \mapsto 3150_{18}
$$

$$
[A_5 + A_2 + A_1, A_5 + A_2, A_5 + 2A_1, (A_5 + A_1)'] \mapsto 2016_{19}
$$

$$
[D_5(a_1) + A_3, D_5(a_1) + A_2] \mapsto 1344_{19}
$$

$$
[2D_4(a_1), D_4(a_1) + A_3, (2A_3)] \mapsto 840_{26}
$$

\n
$$
[D_4 + 4A_1, D_4 + 3A_1, D_4 + 2A_1, D_4 + A_1] \mapsto 700_{28}
$$

\n
$$
[D_4(a_1) + A_2] \mapsto 2240_{28}
$$

\n
$$
[2A_3 + 2A_1, A_3 + A_2 + 2A_1, 2A_3 + A_1, A_3 + A_2 + A_1] \mapsto 1400_{29}
$$

\n
$$
[A_4] \mapsto 2268_{30}
$$

\n
$$
[2A_3'] \mapsto 3240_{31}
$$

\n
$$
[D_4(a_1) + A_1] \mapsto 1400_{32}
$$

\n
$$
[A_3 + A_2] \mapsto 972_{32}, *_2
$$

\n
$$
[A_3 + 4A_1, A_3 + 3A_1, (A_3 + 2A_1)] \mapsto 1050_{34}
$$

$$
[D_4] \mapsto 525_{36}
$$
\n
$$
[A_2 + 2A_1] \mapsto 560_{47}
$$
\n
$$
[A_2 + 2A_1] \mapsto 210_{52}
$$
\n
$$
[D_4(a_1)] \mapsto 1400_{37}
$$
\n
$$
[8A_1, 7A_1, 6A_1, 5A_1, (4A_1)'] \mapsto 50_{56}
$$
\n
$$
[(A_3 + 2A_1)', A_3 + A_1] \mapsto 1344_{38}
$$
\n
$$
[3A_2, 2A_2 + A_1] \mapsto 448_{39}
$$
\n
$$
[2A_2] \mapsto 700_{42}
$$
\n
$$
[A_2 + 4A_1, A_2 + 3A_1] \mapsto 400_{43}
$$
\n
$$
[A_3] \mapsto 567_{46}
$$
\n
$$
[A_0] \mapsto 1_{120}
$$

4.9 In the tables in 4.4–4.8 the E which are not marked with $*_r$ are in $S_1(W)$; they are expressed explicitly in the form $j_{W_{e'}}^W(E')$ with $e' \in V^*$, $E' \in \mathcal{S}(W_{e'})$ in the tables of II 61 tables of $[L6]$.

We now consider the E in the tables 4.4–4.8 which are marked with $*_r$.

Type
$$
G_2
$$
:
\n $1_3 = j_{W'}^W(\text{sign})$ where W' is of type A_2 but not of form $W_{e'}, e' \in V^*$.

Type F_4 :

 $96 = j_{W'}^{W}(E')$ where W' is of type B_4 but not of form $W_{e'}$, $e' \in V^*$ and dim $F' = 6$, $n_{W'} = 6$. $\dim E' = 6, n_{E'} = 6;$
= $i\frac{W}{2}$ (sign) where W $47 = j_{W'}^{W}$ (sign) where W' is of type A_3A_1 but not of form $W_{e'}, e' \in V^*$;
 $49 = i_{W}^{W}$ (sign) where W' is of type B_2B_3 ; $4_8 = j_{W'}^W(\text{sign})$ where W' is of type B_2B_2 ;
 $2_{12} = j_{W}^W(\text{sign})$ where W' is of type B_4 by $2_{12} = \hat{j}_{W'}^W(\text{sign})$ where W' is of type B_4 but not of form $W_{e'}, e' \in V^*$.

Type E_7 :

 $84_{15} = j_{W'}^{W}(\text{sign})$ where W' is of type $D_4A_1A_1A_1$.

Type E_8 :

 $1050_{10} = j_{W}^{W}(E')$ where W' is of type $D_6A_1A_1$ and dim $E' = 30$, $n_{E'} = 10$;
 $175_{12} = j_{W}^{W}$ (sign) where W' is of type $A_2A_2A_3A_1$ $175_{12} = j_{W'}^{W'}(\text{sign})$ where W' is of type $A_2A_2A_2A_2$.
 $840_{14} - j_{W}^{W'}(\text{sign})$ where W' is of type $A_2A_2A_1A_2$. $840_{14} = j_{W'}^{W}$ (sign) where W' is of type $A_3A_3A_1A_1$.
168₂₄ = i^W (sign) where W' is of type D_1D_2 . $168_{24} = j_{W'}^{W}$ (sign) where W' is of type D_4D_4 .
972₃₂ - i^W (sign) where W' is of type D_6A_1 972₃₂ = $j_{W'}^W$ (sign) where W' is of type $D_6A_1A_1$.

4.10 For any $C \in cl(W)$ let m_C be the dimension of the 1-eigenspace of an element in C in the reflection representation of W . We have the following result.

(a) *For any* $E \in S_2(W)$ *, the restriction of* $C \mapsto m_C$ *to* ' $\Phi^{-1}(E) \subset cl(W)$ *reaches*
its minimum at a unique element of ' $\Phi^{-1}(F)$ *denoted by* C_F its minimum at a unique element of $\ell \Phi^{-1}(E)$, denoted by C_E .

We can assume that G is simple. When G is of exceptional type, (a) follows from the tables 4.4-4.8. When G is of classical type, (a) follows from $[L10, 0.2]$ $[L10, 0.2]$.

Note that $E \mapsto C_E$ is a cross section of the surjective map $\Phi : cl(W) \rightarrow$
(W) It defines a bijection of $S_2(W)$ with a subset $cl_2(W)$ of $cl(W)$ $S_2(W)$. It defines a bijection of $S_2(W)$ with a subset $\text{cl}_0(W)$ of $\text{cl}(W)$.

5 A second approach

5.1 In this section we sketch another approach to defining the strata of G in which Springer representations do not appear. Let $cl(G)$ be the set of conjugacy classes in G. Let $l: W \to \mathbb{N}$ be the length function of the Coxeter group W. For $w \in W$ let

$$
G_w = \{ g \in G; (B, gBg^{-1}) \in \mathcal{O}_w \text{ for some } B \in \mathcal{B} \}.
$$

For $C \in cl(W)$ let

$$
C_{\min} = \{w \in C; \underline{l} : C \to \mathbb{N} \text{ reaches minimum at } w\}
$$

and let $G_C = G_w$ where $w \in C_{\text{min}}$.

As pointed out in $[L8, 0.2]$ $[L8, 0.2]$, from $[L8, 1.2(a)]$ and $[GP, 8.2.6(b)]$ $[GP, 8.2.6(b)]$ it follows that G_C is independent of the choice of w in C_{min} . From [\[L8\]](#page-30-3) it is known that G_C contains unipotent elements; in particular, $G_C \neq \emptyset$. Clearly, G_C is a union of conjugacy classes. Let

$$
\delta_C = \min_{\gamma \in cl(G); \gamma \subset G_C} \dim \gamma,
$$

$$
\boxed{G_C} = \bigcup_{\substack{\gamma \in cl(G); \\ \gamma \subset G_C, \dim \gamma = \delta_C}} \gamma.
$$

Then $|G_C|$ is $\neq \emptyset$, a union of conjugacy classes of fixed dimension, δ_C . We have the following result.

5.2 Theorem Let $C \in cl(W)$, $E \in S_2(W)$ be such that $\Phi(C) = E$, see 4.1. We have $[G \circ] = G$. have $\boxed{G_C} = G_E$.

We can assume that G is almost simple and that **k** is an algebraic closure of a finite field. The proof in the case of exceptional groups is reduced in 5.3 to a computer calculation. The proof for classical groups, which is based on combining the techniques of $[L8]$, $[L9]$ and $[L12]$, will be given elsewhere.

5.3 In this subsection we assume that **k** is an algebraic closure of a finite field \mathbf{F}_q and that G is simply connected, defined and split over \mathbf{F}_q with Frobenius map $F: G \to G$.

Let γ be an F-stable conjugacy class of G. Let $\gamma' = \{g_s : g \in \gamma\}$, an F-stable semisimple conjugacy class in G. For every $s \in \gamma'$ let $\gamma(s) = \{u \in$ $Z_G(s)$; u unipotent, $us \in \gamma$, a unipotent conjugacy class of $Z_G(s)$. We fix $s_0 \in$ $\gamma^{\prime F}$ and we set $H = Z_G(s_0), \gamma_0 = \gamma(s_0)$. Let W_H be the Weyl group of H. As in 2.1, we can regard W_H as a subgroup of W (the embedding of W_H into W is canonical up to composition with an inner automorphism of W).

By replacing if necessary F by a power of F , we can assume that H contains a maximal torus which is defined and split over \mathbf{F}_q . For any F-stable maximal torus T of G, R_T^1 is the virtual representation of G^F defined as in [\[DL,](#page-30-19) 1.20] (with $\theta =$
1 and with B omitted from notation) Replacing T G by T' H where T' is an 1 and with B omitted from notation). Replacing T, G by T', H where T' is an *F*-stable maximal torus of *H*, we obtain a virtual representation $R_{T',H}^1$ of H^F .

For any $z \in W$ we denote by R_z^1 the virtual representation R_T^1 of G^F where is an *F*-stable maximal torus of G of type given by the conjugacy class of z in T is an F-stable maximal torus of G of type given by the conjugacy class of ζ in W. For any $z' \in W_H$ we denote by $R_{z',H}^1$ the virtual representation $R_{T',H}^1$ of H^F where T' is an F -stable maximal torus of H of type given by the conjugacy class of where T' is an F-stable maximal torus of H of type given by the conjugacy class of z' in W_H . For $E' \in \text{Irr}W$ we set $R_{E'} = |W|^{-1} \sum_{y \in W} \text{tr}(y, E') R_y^1$. Then for any $z \in W$, we have $R_z^1 = \sum_{E' \in \text{IrrW}} \text{tr}(z, E') R_{E'}$.

Let $w \in W$. We show the following:

$$
|\{(g, B) \in \gamma^{F} \times \mathcal{B}^{F}; (B, gBg^{-1}) \in \mathcal{O}_{w}\}|
$$

\n
$$
= |G^{F}| |H^{F}|^{-1} \sum_{\substack{E \in \text{Irr}W, E' \in \text{Irr}W, \\ E'' \in \text{Irr}W_{H}, y}} \text{tr}(T_{w}, E_{q})(\rho_{E}, R_{E'})
$$

\n(a)
\n
$$
\times (E'|_{W_{H}} : E'') |Z_{W_{H}}(y)|^{-1} \text{tr}(y, E'') \sum_{u \in \gamma_{0}^{F}} \text{tr}(u, R_{y,H}^{1}),
$$

where y runs over a set of representatives for the conjugacy classes in W_H and T_w , E_q , ρ_E are as in [\[L8,](#page-30-3) 1.2]. Let N be the left-hand side of (a). As in [L8, 1.2(c)] we see that

$$
N = \sum_{E \in \text{IrrW}} \text{tr}(T_w, E_q) A_E
$$

with

$$
A_E = |G^F|^{-1} \sum_{g \in \gamma^F} \sum_T |T^F| (\rho_E, R^1_T) \text{tr}(g, R^1_T),
$$

where T runs over all maximal tori of G defined over \mathbf{F}_q . We have

$$
A_E = |G^F|^{-1} \sum_{s \in \gamma'^F, u \in \gamma(s)^F} \sum_T |T^F| (\rho_E, R^1_T) \text{tr}(su, R^1_T)
$$

= $|H^F|^{-1} \sum_{u \in \gamma_0^F} \sum_T |T^F| (\rho_E, R^1_T) \text{tr}(s_0u, R^1_T).$

By [\[DL,](#page-30-19) 4.2] we have

$$
\text{tr}(s_0u, R_T^1) = |H^F|^{-1} \sum_{x \in G^F; x^{-1}T} \text{tr}(u, R_{x^{-1}Tx, H}^1),
$$

hence

$$
A_E = |H^F|^{-2} \sum_{u \in \gamma_0^F} \sum_T |T^F| (\rho_E, R_T^1) \sum_{x \in G^F; x^{-1}T x \subset H} \text{tr}(u, R_{x^{-1}T x, H}^1)
$$

= |G^F||H^F|⁻² $\sum_{T' \subset H} |T'^F| (\rho_E, R_{T'}^1) \sum_{u \in \gamma_0^F} \text{tr}(u, R_{T', H}^1),$

where T' runs over the maximal tori of H defined over \mathbf{F}_q . Using the classification of maximal tori of H defined over \mathbf{F}_q , we obtain

$$
A_E = |G^F||H^F|^{-1}|W_H|^{-1} \sum_{z \in W_H} (\rho_E, R_z^1) \sum_{u \in \gamma_0^F} tr(u, R_{z,H}^1)
$$

= $|G^F||H^F|^{-1}|W_H|^{-1} \sum_{z \in W_H} \sum_{E' \in \text{IrrW}} tr(z, E')(\rho_E, R_{E'}) \sum_{u \in \gamma_0^F} tr(u, R_{z,H}^1).$

This clearly implies (a).

Now assume that G is almost simple of exceptional type and that w has minimal length in its conjugacy class in W. We can also assume that $q - 1$ is sufficiently divisible. Then the right-hand side of (a) can be explicitly determined using a computer. Indeed, it is an entry of the product of several large matrices whose entries are explicitly known. In particular the quantities $tr(T_w, E_q)$ (known from the works of Geck and Geck–Michel, see $[GP, 11.5.11]$ $[GP, 11.5.11]$ are available through the CHEVIE package [\[GH\]](#page-30-20). The quantities (ρ_E, R_{E}) are coefficients of the nonabelian Fourier transform in [\[L2,](#page-30-21) 4.15]. The quantities $(E'|_{W_H}: E'')$ are available from the induction tables in the CHEVIE package. The quantities $tr(v, E'')$ are available through tion tables in the CHEVIE package. The quantities $tr(y, E'')$ are available through the CHEVIE package. The quantities $tr(u, R_{y,H}^1)$ are Green functions; I thank Frank Lübeck for providing me with the tables of Green functions for groups of rank ≤ 8 in GAP format. I also thank Gongqin Li for her help with programming in GAP to perform the actual computation using these data.

Thus the number $|\{(g, B) \in \gamma^F \times \mathcal{B}^F; (B, gBg^{-1}) \in \mathcal{O}_w\}|$ is explicitly computable. It turns out that it is a polynomial in q. Note that the set $\{(g, B) \in$ $\gamma \times \mathcal{B}$; $(B, gBg^{-1}) \in \mathcal{O}_w$ is nonempty if and only if this polynomial is non zero. Thus the condition that $\gamma \subset G_w$ can be tested. This can be used to check that Theorem 5.2 holds for exceptional groups.

5.4 If C is the conjugacy class containing the Coxeter elements of W, then $G_C =$ $|G_C|$ is the union of all conjugacy classes of dimension dim $G - \text{rk}(G)$, see [\[St\]](#page-30-0).

6 Variants

6.1 The results in this subsection will be proved elsewhere. In this subsection we assume that G is simple and that G' is a disconnected reductive algebraic group G over **k** with identity component G, such that G'/G is cyclic of order r and such

that the homomorphism $\epsilon: G'/G \to Aut(W)$ (the automorphism group of W as a Coxeter group) induced by the conjugation action of G'/G on G is injective. Note Coxeter group) induced by the conjugation action of G'/G on G is injective. Note that (G, r) must be of type $(A_n, 2)$ $(n \ge 2)$ or $(D_n, 2)$ $(n \ge 4)$ or $(D_4, 3)$ or $(E_6, 2)$.
Let D be a connected component of G' other than G. We will give a definition of Let D be a connected component of G' other than G. We will give a definition of the strata of D, extending the definition of strata of G. Let $\epsilon_D : W \to W$ be the image of D under ϵ . Let cl_DW be the set of conjugacy classes in W twisted by ϵ_D (as in [\[L12,](#page-30-18) 0.1]). Let $cl(D)$ be the set of G-conjugacy classes in D. For $w \in W$ let

$$
D_w = \{ g \in D; (B, gBg^{-1}) \in \mathcal{O}_w \text{ for some } B \in \mathcal{B} \}.
$$

For $C \in \text{cl}_D(W)$ let

 $C_{\min} = \{w \in C; l : C \to \mathbb{N} \text{ reaches minimum at } w\}.$

and let $D_C = D_w$ where $w \in C_{\text{min}}$. This is independent of the choice of w in C_{min} . One can show that $D_C \neq \emptyset$. Clearly, D_C is a union of G-conjugacy classes in D. Let

$$
\delta_C = \min_{\gamma \in cl(D); \gamma \subset D_C} \dim \gamma,
$$

$$
D_C = \bigcup_{\substack{\gamma \in cl(D); \\ \gamma \subset D_C, \dim \gamma = \delta_C}} \gamma.
$$

Then $\overline{D_C}$ is $\neq \emptyset$, a union of G-conjugacy classes of fixed dimension, δ_C . One can show that $\bigcup_{C \in \text{cl}_D(W)} \big| \overline{D_C} \big| = D$; moreover, one can show that if $C, C' \in \text{cl}_D(W)$, then $\overline{D_C}$, $\overline{D_{C'}}$ are either equal or disjoint. (Some partial results in this direc-tion are contained in [\[L12\]](#page-30-18).) Let \sim be the equivalence relation on cl_D(W) given by
 $C = C'$ if $D_{\text{max}} = D_{\text{max}}$ and let al. (W) he the set of equivalence classes. We see $C \sim C'$ if $D_C = D_{C'}$ and let $d_D(W)$ be the set of equivalence classes. We see that there is a unique partition of D into pieces (called *strata*) indexed by $\mathcal{cl}_D(W)$ such that each stratum is of the form D_C for some $C \in \text{cl}_D(W)$. One can show that the equivalence relation \sim on cl_D(W) and the function $C \mapsto d_C$ on cl_D(W) denend only on W and its automorphism ϵ_0 ; in particular they do not denend on depend only on W and its automorphism ϵ_D ; in particular they do not depend on **k**. When $p = r$, each stratum of D contains a unique unipotent G-conjugacy class in D; this gives a bijection $\underline{\text{cl}}_D(W) \leftrightarrow U_D^r$ where U_D^r is the set of unipotent G-
conjugacy classes in D (with $n = r$). This bijection coincides with the bijection conjugacy classes in D (with $p = r$). This bijection coincides with the bijection $\underline{\text{cl}}_D(W) \leftrightarrow U_D^r$ described explicitly in [\[L11\]](#page-30-22). Thus the strata of D can also be in-
deved by U^r. We can also index them by a certain set of irreducible representations dexed by U_D^r . We can also index them by a certain set of irreducible representations of W^{ϵ_D} (the fixed point set of $\epsilon_D : W \to W$) using the bijection [\[L4,](#page-30-23) II] between U_D^r and a set of irreducible representations of W^{ϵ_D} (an extension of the Springer correspondence).

6.2 Assume that G is adjoint. We identify *B* with the variety of Borel subalgebras of g. For any $\xi \in \mathfrak{g}$ let $\mathcal{B}_{\xi} = \{\mathfrak{b} \in \mathcal{B}; \xi \in \mathfrak{b}\}\$ and let $d = \dim \mathcal{B}_{\xi}$. The subspace of $H_{2d}(\mathcal{B})$ spanned by the images of the fundamental classes of the irreducible components of B_{ξ} is an irreducible W-module denoted by τ_{ξ} . We also denote by τ_{ξ} the corresponding W-module over **Q**. Thus we have a well-defined map $g \rightarrow \text{IrrW}$, $\xi \mapsto \tau_{\xi}$. The nonempty fibres of this map are called the *strata* of g. Each stratum of g is a union of adjoint orbits of fixed dimension; exactly one of these orbits is nilpotent. The image of the map $\xi \mapsto \tau_{\xi}$ is the subset of Irr(W) denoted by \mathcal{T}_{W}^{p} in
[[7] when $p = 0$ this is $S_{1}(W)$ [\[L7\]](#page-30-24); when $p = 0$ this is $S_1(W)$.

6.3 In this subsection we assume that G is semisimple simply connected. Let K be the field of formal power series $\mathbf{k}(\epsilon)$ and let $\hat{G} = G(K)$. Let $\hat{\beta}$ be the set of Iwahori subgroups of \hat{G} viewed as an increasing union of projective algebraic varieties over **k**. Let \hat{W} be the affine Weyl group associated to \hat{G} viewed as an infinite Coxeter group. Let $G(K)_{rsc}$ be the set of all $g \in G(K)$ that are compact infinite Coxeter group. Let $G(K)_{rsc}$ be the set of all $g \in G(K)$ that are compact (that is such that $\hat{B}_r = \{B \in \hat{B} : \sigma \in R\}$ is nonempty) and regular semisimple. If (that is such that $B_g = \{B \in \mathcal{B}; g \in B\}$ is nonempty) and regular semisimple. If $g \in G(K)$ then $\hat{\mathcal{B}}$ is a union of projective algebraic verieties of fixed dimension $g \in G(K)_{rsc}$, then B_g is a union of projective algebraic varieties of fixed dimension
 $d = d$ (see [KI] for a closely related result) bance the homology space $H_{-d}(\hat{R})$ is $d = d_g$ (see [\[KL\]](#page-30-5) for a closely related result) hence the homology space $H_{2d}(\mathcal{B}_g)$ is
well defined and it certise a natural \hat{W} action (see [L131). Similarly the homology well defined and it carries a natural \hat{W} -action (see [\[L13\]](#page-30-25)). Similarly the homology space $H_{2d}(\hat{\beta})$ is well-defined and it carries a natural \hat{W} -action. The embedding $h_g: \mathcal{B}_g \to \mathcal{B}$ induces a linear map $h_{g*}: H_{2d}(\mathcal{B}_g) \to H_{2d}(\mathcal{B})$ which is compatible
with the \hat{W} actions. Hence \hat{W} acts naturally on the (finite dimensional) subspace with the \hat{W} -actions. Hence \hat{W} acts naturally on the (finite-dimensional) subspace $E_g := h_{g*}(H_{2d}(\mathcal{B}_g))$ of $H_{2d}(\mathcal{B})$, but this action is not irreducible in general. Note that E_g is the subspace of $H_{2d}(\hat{\beta})$ spanned by the images of the fundamental classes of the irreducible components of B_g , Q_l (we ignore Tate twists), hence is $\neq 0$. For $g, g' \in G(K)_{rsc}$ we say that $g \sim g'$ if $d_g = d_{g'}$ and $E_g = E_{g'}$. This is an equivalence relation on $G(K)_{rsc}$. The equivalence classes for \sim are called the is an equivalence relation on $G(K)_{rsc}$. The equivalence classes for \sim are called the strata of $G(K)_{rsc}$. Note that $G(K)_{rsc}$ is a union of countably many strata and each *strata* of $G(K)_{rsc}$. Note that $G(K)_{rsc}$ is a union of countably many strata and each stratum is a union of conjugacy classes of $G(K)$ contained in $G(K)_{rsc}$.

6.4 In this subsection we state a conjectural definition of the strata of G in the case where \bf{k} = \bf{C} based on an extension of a construction in [\[KL\]](#page-30-5). Let K be as in 6.3. Let $g \in G$. Let $\lambda \subset g$ be the Lie algebra of $Z_G(g_s)$ and let $\xi = \log(g_u) \in \lambda$. Let p be a parahoric subalgebra of $g_K := K \otimes g$ with pro-nilradical p_n such that $p = \mathfrak{z} \oplus p_n$ as **C**-vector spaces. By the last corollary in [\[KL,](#page-30-5) §6], there exists a non-empty subset \mathfrak{U} of $\xi + \mathfrak{p}_n$ (open in the power series topology) and $\sigma \in \text{cl}(W)$ such that for any $x \in \mathfrak{U}$, x is regular semisimple in a Cartan subalgebra of \mathfrak{g}_K of type σ (see [\[KL,](#page-30-5) §1,§6]). Note that σ does not depend on the choice of \mathfrak{U} . We expect that it does not depend on the choice of p and that $g \mapsto \sigma$ is a map $G \to cl(W)$ whose fibres are exactly the strata of G . By the identification 4.1(c) this induces an injective map $cl(W) \to cl(W)$ whose image is expected to be the subset $cl_0(W)$ in 4.10 and whose composition with the obvious map $cl(W) \rightarrow cl(W)$ is expected to be the identity map of $cl(W)$.

Acknowledgements This research is supported in part by National Science Foundation grant DMS-1303060.

References

- [Bo] W. Borho, *Uber Schichten halbeinfacher Lie-Algebren ¨* , Invent. Math. **65** (1981), 283–317.
- [Ca] G. Carnovale, *Lusztig's partition and sheets (with an appendix by M.Bulois)*, Mathematical Research Letters Vol. **22** (2015), 645–664.
- [C] R. W. Carter, *Conjugacy classes in the Weyl group*, Compositio Math. **25** (1972), 1–59.
- [DL] P. Deligne and G. Lusztig, *Representations of reductive groups over finite fields*, Ann. Math. **103** (1976), 103–161.
- [GH] M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, *A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras*, Appl. Algebra Engrg. Comm. Comput. **7** (1996), 1175–1210.
- [GP] M. Geck and G. Pfeiffer, *Characters of finite Coxeter groups and Iwahori-Hecke algebras*, Clarendon Press Oxford, 2000.
- [KL] D. Kazhdan and G. Lusztig, *Fixed point varieties on affine flag manifolds*, Isr. J. Math. **62** (1988), 129–168.
- [L1] G. Lusztig, *A class of irreducible representations of a Weyl group*, Proc. Kon. Nederl. Akad, A**82** (1979), 323–335.
- [L2] G. Lusztig, *Characters of reductive groups over a finite field*, Ann. Math. Studies **107**, Princeton U. Press, 1984.
- [L3] G. Lusztig, *Intersection cohomology complexes on a reductive group*, Invent. Math. **75** (1984), 205–272.
- [L4] G. Lusztig, *Character sheaves on disconnected groups II*, Represent.Th. **8** (2004), 72–124.
- [L5] G. Lusztig, *Unipotent elements in small characteristic*, Transform. Groups **10** (2005), 449–487.
- [L6] G. Lusztig, *Unipotent classes and special Weyl group representations*, J. Alg. **321** (2009), 3418–3449.
- [L7] G. Lusztig, *Remarks on Springer's representations*, Represent. Th. **13** (2009), 391–400.
- [L8] G. Lusztig, *From conjugacy classes in the Weyl group to unipotent classes*, Represent. Th. **15** (2011), 494–530.
- [L9] G. Lusztig, *On C-small conjugacy classes in a reductive group*, Transform. Groups, **16** (2011), 807–825.
- [L10] G. Lusztig, *From conjugacy classes in the Weyl group to unipotent classes II*, Represent. Th. **16** (2012), 189–211.
- [L11] G. Lusztig, *From conjugacy classes in the Weyl group to unipotent classes III*, Represent. Th. **16** (2012), 450–488.
- [L12] G. Lusztig, *Distinguished conjugacy classes and elliptic Weyl group elements*, Represent. Th. **18** (2014), 223–277.
- [L13] G. Lusztig, Unipotent almost characters of simple p-adic groups, to appear in Vol. 1 of *De* la géométrie algébrique aux formes automorphes (une collectiond'articles en l'honneur du *soixantième anniversaire de Gérard Laumon*), Astérisque, Société Mathématique de France.
- [LS1] G. Lusztig and N. Spaltenstein, *Induced unipotent classes*, J. Lond. Math. Soc. **19**, (1979), 41–52.
- [LS2] G. Lusztig and N. Spaltenstein, *On the generalized Springer correspondence for classical groups*, in *Algebraic groups and related topics*, Adv. Stud. Pure Math. **6**, North Holland and Kinokuniya, (1985), 289–316.
- [Pe] D. Peterson, *Geometry of the adjoint representation of a complex semisimple Lie algebra*, Ph.D. Thesis, Harvard Univ., 1978.
- [Spa] N. Spaltenstein, *Classes unipotentes et sous-groupes de Borel*, Lecture Notes in Math. **946**, Springer Verlag, 1982.
- [Spr] T.A. Springer, *Trigonometric sums, Green functions of finite groups and representations of Weyl groups*, Invent. Math. **36** (1976), 173–207.
- [St] R. Steinberg, Regular elements of semisimple algebraic groups, Publications Math. **25** (1965), 49–80.