On conjugacy classes in a reductive group

George Lusztig

Dedicated to David Vogan on the occasion of his 60th birthday

Abstract Let G be a connected reductive group over an algebraically closed field. We define a decomposition of G into finitely many strata such that each stratum is a union of conjugacy classes of fixed dimension; the strata are indexed purely in terms of the Weyl group and the indexing set is independent of the characteristic.

Key words: Conjugacy class, Springer correspondence, reductive group, Weyl group

MSC (2010): Primary 20G99

Introduction

0.1 Let **k** be an algebraically closed field of characteristic $p \ge 0$ and let *G* be a connected reductive algebraic group over **k**. Let *W* be the Weyl group of *G*. Let cl(W) be the set of conjugacy classes of *W*.

In [St] Steinberg defined the notion of regular element in G (an element whose conjugacy class has dimension as large as possible, that is $\dim(G) - \operatorname{rk}(G)$) and showed that the set of regular elements in G form an open dense subset G_{reg} . The goal of this paper is to define a partition of G into finitely many strata, one of which is G_{reg} . Each stratum of G is a union of conjugacy classes of G of the same dimension. The set of strata is naturally indexed by a set which depends only on W

G. Lusztig (🖂)

© Springer International Publishing Switzerland 2015

M. Nevins, P.E. Trapa (eds.), *Representations of Reductive Groups*, Progress in Mathematics 312, DOI 10.1007/978-3-319-23443-4_12

Department of Mathematics, M.I.T., Cambridge, MA 02139 e-mail: gyuri@math.mit.edu

as a Coxeter group, not on the underlying root system and not on the ground field **k**. We give two descriptions of the indexing set above:

- (i) one in terms of a class of irreducible representations of W which we call 2-special representations (they are obtained by truncated induction from special representations of certain reflection subgroups of W);
- (ii) one in terms of cl(W) (modulo a certain equivalence relation).

In the case where W is irreducible we give a third description of the indexing set above:

(iii) in terms of the sets of unipotent classes in the various versions of G over $\overline{\mathbf{F}}_r$ for a variable prime number r, glued together according to the set of unipotent classes in the version of G over **C**.

The definition of strata in the form (i) and (iii) are based on Springer's correspondence (see [Spr] when p = 0 or $p \gg 0$ and [L3] for any p) connecting irreducible representations of W with unipotent classes; when W is irreducible, the definition of strata in the form (iii) is related to that in the form (ii) by the results of [L8, L10] connecting cl(W) with unipotent classes in G.

Since (i),(ii) are two incarnations of our indexing set, they are in canonical bijection with each other. In particular we obtain a canonical map from cl(W) to the set of irreducible representations of W whose image consists of the 2-special representations (when G is $GL_n(\mathbf{k})$ this is a bijection). We also show that the dimension of a conjugacy class in a stratum of G is independent of the ground field. (This statement makes sense since the parametrization of the strata is independent of the ground field.) In particular, we see that if $n \ge 1$, then the following three conditions on an integer k are equivalent:

- there exists a conjugacy class of dimension k in $SO_{2n+1}(C)$;
- there exists a conjugacy class of dimension k in $\text{Sp}_{2n}(\mathbb{C})$;
- there exists a conjugacy class of dimension k in $\operatorname{Sp}_{2n}(\overline{\mathbf{F}}_2)$.

The proof shows that the following fourth condition is equivalent to the three conditions above: there exists a unipotent conjugacy class of dimension k in $\text{Sp}_{2n}(\overline{\mathbf{F}}_2)$.

In Section 5 we sketch an alternative approach to the definition of strata which is based on an extension of the ideas in [L8], and Springer's correspondence does not appear in it.

In Section 6 we dicuss extensions of our results to the Lie algebra of G and to the case where G is replaced by a disconnected reductive group. We also define a partition of the set of compact regular semisimple elements in a loop group into strata analogous to the partition of G into strata. Moreover, we give a conjectural description of the strata of G (assuming that $\mathbf{k} = \mathbf{C}$) which is based on an extension of a construction in [KL].

0.2 Notation. For an algebraic group H over \mathbf{k} , we denote by H^0 the identity component of H. For a subgroup T of H we denote by $N_H T$ the normalizer of T in H. Let \mathfrak{g} be the Lie algebra of G. For $g \in G$ we denote by $Z_G(g)$ the centralizer of g in G and by g_s (resp. g_u) the semisimple (resp. unipotent) part of g. Let \mathcal{B} be

the variety of Borel subgroups of G. Let $\mathcal{B}_g = \{B \in \mathcal{B}; g \in B\}$. Let l be a prime number $\neq p$. For an algebraic variety X over **k** we denote by $H^i(X)$ the l-adic cohomology of X in degree i; if X is projective let $H_i(X) = \text{Hom}(H^i(X), \mathbf{Q}_l)$.

For any (finite) Weyl group Γ , we denote by Irr Γ a set of representatives for the isomorphism classes of irreducible representations of Γ over **Q**. For any $\tau \in \text{Irr}W$ let n_{τ} be the smallest integer $i \geq 0$ such that τ appears with > 0 multiplicity in the *i*-th symmetric power of the reflection representation of W; if this multiplicity is 1, we say that τ is *good*.

A bipartition is a sequence $\lambda = (\lambda_1, \lambda_2, \lambda_3, ...)$ in **N** such that $\lambda_m = 0$ for $m \gg 0$ and $\lambda_1 \ge \lambda_3 \ge \lambda_5 \ge ..., \lambda_2 \ge \lambda_4 \ge \lambda_6 \ge ...$ We write $|\lambda| = \lambda_1 + \lambda_2 + \lambda_3 + ...$ We say that λ is a bipartition of n if $|\lambda| = n$. Let BP^n be the set of bipartitions of n. Let $e, e' \in \mathbf{N}$. We say that a bipartition $(\lambda_1, \lambda_2, \lambda_3, ...)$ has excess (e, e') if $\lambda_i + e \ge \lambda_{i+1}$ for i = 1, 3, 5, ... and $\lambda_i + e' \ge \lambda_{i+1}$ for i = 2, 4, 6, ... Let $BP_{e,e'}^n$ be the set of bipartitions of n which have excess (e, e').

A partition is a sequence $\lambda = (\lambda_1, \lambda_2, \lambda_3, ...)$ in **N** such that $\lambda_m = 0$ for $m \gg 0$ and $\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge ...$ Thus a partition is the same as a bipartition of excess (0,0). On the other hand, a bipartition is the same as an ordered pair of partitions $((\lambda_1, \lambda_3, \lambda_5, ...), (\lambda_2, \lambda_4, \lambda_6, ...)).$

Let $\mathcal{P} = \{2, 3, 5, ...\}$ be the set of prime numbers.

1 The 2-special representations of a Weyl group

1.1 Let V, V^* be finite-dimensional **Q**-vector spaces with a given perfect bilinear pairing $\langle , \rangle : V \times V^* \to \mathbf{Q}$. Let R (resp. \check{R}) be a finite subset of $V - \{0\}$ (resp. $V^* - \{0\}$ with a given bijection $\alpha \leftrightarrow \check{\alpha}, R \leftrightarrow \check{R}$, such that $\langle \alpha, \check{\alpha} \rangle = 2$ for any $\alpha \in R$ and $\langle \alpha, \check{\beta} \rangle \in \mathbb{Z}$ for any $\alpha, \beta \in R$; it is assumed that $\beta - \langle \beta, \check{\alpha} \rangle \alpha \in R$, $\check{\beta} - \langle \alpha, \check{\beta} \rangle \check{\alpha} \in \check{R}$ for any $\alpha, \beta \in R$ and that $\alpha \in R \implies \alpha/2 \notin R$. Thus, (V, V^*, R, \check{R}) is a reduced root system. Let V_0 (resp. V_0^*) be the **Q**-subspace of V (resp. V^*) spanned by R (resp. \dot{R}). Let $rk(R) = \dim V_0 = \dim V_0^*$. Let W be the (finite) subgroup of GL(V) generated by the reflections $s_{\alpha} : x \mapsto x - \langle x, \check{\alpha} \rangle \alpha$ in V for various $a \in R$; it may be identified with the subgroup of $GL(V^*)$ generated by the reflections ${}^{t}s_{a}: x' \mapsto x' - \langle \alpha, x' \rangle \check{\alpha}$ in V^{*} for various $\alpha \in R$. For any $e \in V$ let $R_e = \{ \alpha \in R; \langle e, \check{\alpha} \rangle \in \mathbf{Z} \}, \check{R}_e = \{ \check{\alpha}; \alpha \in R_e \}$; note that $(V, V^*, R_e, \check{R}_e)$ is a root system with Weyl group $W_e = \{ w \in W; w(e) - e \in \sum_{\alpha \in R} \mathbb{Z}\alpha \}$. Similarly, for any $e' \in V^*$ let $R_{e'} = \{\alpha \in R; \langle \alpha, e' \rangle \in \mathbf{Z} \}$, $\check{R}_{e'} = \{\check{\alpha}; \alpha \in R_{e'}\}$; note that $(V, V^*, R_{e'}, \check{R}_{e'})$ is a root system with Weyl group $W_{e'} = \{w \in W; w(e') - e' \in W\}$ $\sum_{\alpha \in \mathbb{R}} \mathbb{Z}\check{\alpha}\}.$ For any $(e, e') \in V \times V^*$ let $R_{e,e'} = R_e \cap R_{e'}, \check{R}_{e,e'} = \check{R}_e \cap \check{R}_{e'}.$ Then $(V, V^*, R_{e,e'}, \check{R}_{e,e'})$ is a root system; let $W_{e,e'}$ be its Weyl group (a subgroup of $W_e \cap W_{e'}$). Note that $W_{0,e'} = W_{e'}, W_{e,0} = W_e, W_{0,0} = W$. For $E \in Irr(W_{e,e'})$ let n_E be as in 0.2.

Let $(e_1, e'_1) \in V \times V^*$, $(e_2, e'_2) \in V \times V^*$ be such that $R_{e_1, e'_1} \subset R_{e_2, e'_2}$ (so that $W_{e_1, e'_1} \subset W_{e_2, e'_2}$). In this case, if $E \in \operatorname{Irr}(W_{e_1, e'_1})$ is good, there is a unique

 $E_0 \in \operatorname{Irr}(W_{e_2,e'_2})$ such that E_0 appears in $\operatorname{Ind}_{W_{e_1,e'_1}}^{W_{e_2,e'_2}}(E)$ and $n_{E_0} = n_E$, see [LS1, 3.2]; moreover, E_0 is good. We set $E_0 = j_{W_{e_1,e'_1}}^{W_{e_2,e'_2}}(E)$. Note that if we have also $R_{e_2,e'_2} \subset R_{e_3,e'_3}$ where $(e_3,e'_3) \in V \times V^*$, then we have the transitivity property:

(a)
$$j_{W_{e_1,e_1'}}^{W_{e_3,e_3'}}(E) = j_{W_{e_2,e_2'}}^{W_{e_3,e_3'}}(j_{W_{e_1,e_1'}}^{W_{e_2,e_2'}}(E)).$$

Let $S(W_{e,e'}) \subset \operatorname{Irr}(W_{e,e'})$ be the set of *special* representations of $W_{e,e'}$, see [L1]; note that any $E \in S(W_{e,e'})$ is good. Hence $j_{W_{e,e'}}^W(E) \in \operatorname{Irr}(W)$ is defined. We say that $E_0 \in \operatorname{Irr}(W)$ is 2-*special* if $E_0 = j_{W_{e,e'}}^W(E)$ for some $(e, e') \in V \times V^*$ and some $E \in S(W_{e,e'})$. Let $S_2(W)$ be the set of all 2-special representations of W (up to isomorphism). From the definition we see that

(b) $S_2(W)$ is unchanged when (V, V^*, R, \check{R}) is replaced by (V^*, V, \check{R}, R) .

Let $S_1(W)$ (resp. $S_1(W)$) be the set of all $E_0 \in Irr(W)$ such that $E_0 = j_{W_e}^W(E)$ (resp. $E_0 = j_{W_{e'}}^W(E)$) for some $e \in V$, $E \in S(W_e)$ (resp. $e' \in V^*$, $E \in S(W_{e'})$). The analogue of (b) with $S_2(W)$ replaced by $S_1(W)$ is not true in general; instead, if (V, V^*, R, \check{R}) is replaced by (V^*, V, \check{R}, R) , then $S_1(W)$ becomes $S_1(W)$ and $S_1(W)$ becomes $S_1(W)$.

Now, for any $e' \in V^*$ the subset $S_1(W_{e'}) \subset \operatorname{Irr}(W_{e'})$ is defined; it consists of all $E' \in \operatorname{Irr}(W_{e'})$ such that $E' = j_{W_{e,e'}}^{We'}(E)$ for some $e \in V$ and some $E \in S(W_{e,e'})$. Note that any $E' \in S_1(W_{e'})$ is good. From (a) we see that

(c) $S_2(W)$ consists of all $E_0 \in Irr(W)$ such that $E_0 = j_{W_{e'}}^W(E')$ for some $e' \in V^*$ and some $E' \in S_1(W_{e'})$.

We say that $e' \in V^*$ (resp. $(e, e') \in V \times V^*$) is *isolated* if $rk(R_{e'}) = rk(R)$ (resp. $rk(R_{e,e'}) = rk(R)$). We show:

(d) $S_2(W)$ consists of all $E_0 \in Irr(W)$ such that $E_0 = j_{W_{e,e'}}^W(E)$ for some isolated $(e, e') \in V \times V^*$ and some $E \in S(W_{e,e'})$.

Let $E_0 \in S_2(W)$. By definition, we can find $(e, e') \in V \times V^*$ and $E \in S(W_{e,e'})$ such that $E_0 = j_{W_{e,e'}}^W(E)$. We can find an isolated $e'_1 \in V^*$ such that $R_{e'}$ is rationally closed in $R_{e'_1}$ that is, $R_{e'_1} \cap \sum_{\alpha \in R_{e'}} \mathbf{Q}\alpha = R_{e'}$. Applying the analogous statement to $(V^*, V, \check{R}_{e'_1}, R_{e'_1})$, e, instead of (V, V^*, R, \check{R}) , e', we can find $e_1 \in V$ such that $\operatorname{rk}(R_{e_1} \cap R_{e'_1}) = \operatorname{rk}(R_{e'_1})$ and $R_e \cap R_{e'_1}$ is rationally closed in $R_{e_1} \cap R_{e'_1}$. It follows that (e_1, e'_1) is isolated and $R_e \cap R_{e'}$ is rationally closed in $R_{e_1} \cap R_{e'_1}$; hence $E_1 := j_{W_{e,e'}}^{W_{e_1,e'_1}}(E)$ is in $S(W_{e_1,e'_1})$, see [L1]. By (a), we have $E_0 = j_{W_{e_1,e'_1}}^W(E_1)$. This proves (d). We have the following variant of (d):

(e) $S_2(W)$ consists of all $E_0 \in Irr(W)$ such that $E_0 = j_{W_{ol}}^W(\widetilde{E})$ for some isolated $e' \in V^*$ and some $\widetilde{E} \in \mathcal{S}_1(W_{e'})$.

Let $E_0 \in \mathcal{S}_2(W)$. Let E, e, e' be as in (d). We have $E = j_{W_{e'}}^W(\widetilde{E})$ where $\widetilde{E} = j_{W_{e'}e'}^{W_{e'}}(E) \in S_1(W_{e'})$ and $\operatorname{rk}(R_{e'}) = \operatorname{rk}(R)$. Conversely, if $e' \in V^*$ and $\widetilde{E} \in S_1(W_{e'})$, then, by (c), $j_{W_{e'}}^W(\widetilde{E}) \in S_2(W)$ (even without the assumption that $\operatorname{rk}(R_{e'}) = \operatorname{rk}(R)$). This proves (e).

Let $R' \subset R$ be such that (if \check{R}' is the image of R' under $R \leftrightarrow \check{R}$), (V, V^*, R', \check{R}') is a root system (with Weyl group W') and R' is rationally closed in R. Note that $R' = R_e$ for some $e \in V$ and $R' = R_{e'}$ for some $e' \in V^*$. We show:

- (f) If $E \in S_1(W')$, then $j_{W'}^W(E) \in S_1(W)$. (g) If $E \in S_2(W')$, then $j_{W'}^W(E) \in S_2(W)$.

We prove (f). Let $e' \in V^*$ be such that $R' = R_{e'}$. We have $E = j_{W_{e,e'}}^{W_{e'}}(E')$ for some $e \in V$ and some $E' \in \mathcal{S}(W_{e,e'})$. Hence $j_{W'}^W(E) = j_{W_{e,e'}}^W(E') = j_{W_e}^W(E'')$ where $E'' = j_{W_{e,e'}}^{W_e}(E')$. Now $R_{e,e'}$ is rationally closed in R_e , hence $E'' \in \mathcal{S}(W_e)$, see [L1]. We see that $j_{W'}^W(E) \in \mathcal{S}_1(W)$.

We prove (g). Let $e \in V$ be such that $R' = R_e$. We have $E = j_{W_e, e'}^{W_e}(E')$ for some $e' \in V^*$ and some $E' \in S_1(W_{e,e'})$. Hence $j_{W'}^W(E) = j_{W_{e,e'}}^W(E') = j_{W_{e'}}^W(E'')$ where $E'' = j_{W_{e'}}^{W_{e'}}(E')$. Now $R_{e,e'}$ is rationally closed in $R_{e'}$, hence $E'' \in \mathcal{S}(W_{e'})$, see (f). We see that $j_{W'}^W(E) \in \mathcal{S}_2(W)$.

1.2 There are unique direct sum decompositions $V_0 = \bigoplus_{i \in I} V_i, V_0^* = \bigoplus_{i \in I} V_i^*$ such that $R = \bigsqcup_{i \in I} (R \cap V_i)$, $\check{R} = \bigsqcup_{i \in I} (\check{R} \cap V_i)$ and for any $i \in I$, $(V_i, V_i^*, R \cap V_i)$ $V_i, \check{R} \cap V_i$ is an irreducible root system for (with Weyl group W_i); the bijection $R \cap V_i \leftrightarrow \check{R} \cap V_i$ is induced by $R \leftrightarrow \check{R}$). We have canonically $W = \prod_{I \in I} W_i$ and $S_2(W) = \prod_{i \in I} S_2(W_i)$ (via external tensor product).

1.3 In this subsection we assume that (V, V^*, R, \check{R}) is irreducible. Now W acts naturally on the set of subgroups W' of W of form $W_{e'}$ for various isolated $e' \in V^*$. The types of various W' which appear in this way are well known and are described below in each case.

- (a) R of type $A_n, n \ge 0$: W' of type A_n .
- (b) *R* of type $B_n, n \ge 2$: *W'* of type $B_a \times D_b$ where $a \in \mathbb{N}, b \in \mathbb{N} \{1\}, a+b = n$.
- (c) *R* of type C_n , $n \ge 2$: *W'* of type $C_a \times C_b$ where $a, b \in \mathbb{N}$, a + b = n.
- (d) R of type $D_n, n \ge 4$: W' of type $D_a \times D_b$ where $a, b \in \mathbb{N} \{1\}, a + b = n$.
- (e) R of type E_6 : W' of type E_6 , A_5A_1 , $A_2A_2A_2$.
- (f) R of type E_7 : W' of type E_7 , D_6A_1 , A_7 , A_5A_2 , $A_3A_3A_1$.
- (g) R of type E_8 : W' of type E_8 , E_7A_1 , E_6A_2 , D_5A_3 , A_4A_4 , $A_5A_2A_1$, A_7A_1 , $A_{8}, D_{8}.$

- (h) *R* of type F_4 : *W'* of type F_4 , B_3A_1 , A_2A_2 , A_3A_1 , B_4 .
- (i) R of type G_2 : W' of type G_2 , A_2 , A_1A_1 .

(We use the convention that a Weyl group of type B_n or D_n with n = 0 is {1}.)

1.4 In this subsection we assume that (V, V^*, R, \tilde{R}) is irreducible. Now W acts naturally on the set of subgroups W' of W of form $W_{e,e'}$ for various isolated $(e, e') \in V \times V^*$. The types of various W' which appear in this way are described below in each case. (For type F_4 and G_2 we denote by τ a non-inner involution of W).

- (a) R of type A_n : W' of type A_n .
- (b) R of type B_n or C_n : W' of type $B_a \times B_b \times D_c \times D_d$ where $a, b \in \mathbb{N}, c, d \in \mathbb{N} \{1\}, a + b + c + d = n$.
- (c) R of type D_n : W' of type $D_a \times D_b \times D_c \times D_d$ where $a, b, c, d \in \mathbf{N} \{1\}, a+b+c+d = n$.
- (d) R of type E_6 : W' as in 1.3(e).
- (e) R of type E_7 : W' as in 1.3(f) and also W' of type $D_4A_1A_1A_1$.
- (f) R of type E_8 : W' as in 1.3(g) and also W' of type D_6D_2 , D_4D_4 , $A_3A_3A_1A_1$, $A_2A_2A_2A_2$.
- (g) R of type F_4 : W' as in 1.3(h), the images under τ of the subgroups W' of type A_3A_1 , B_4 in 1.3(h) and also W' of type B_2B_2 .
- (h) R of type G_2 : W' as in 1.3(i) and the image under τ of the subgroup W' of type A_2 in 1.3(i).

1.5 If $R' \subset R$, $\check{R}' \subset \check{R}$ are such that (V, V^*, R', \check{R}') is a root system (with the bijection $R' \leftrightarrow \check{R}'$ being induced by $R \leftrightarrow \check{R}$) then, setting $\overline{R}' = R \cap \sum_{\alpha \in R'} \mathbf{Q}\alpha$, $\check{\overline{R}}' = \check{R} \cap \sum_{\alpha \in R'} \mathbf{Q}\check{\alpha}$, we obtain a root system $(V, V^*, \overline{R}', \check{\overline{R}}')$. We set

$$N_{R'} = \sharp (\sum_{\alpha \in \overline{R}'} \mathbf{Z} \alpha / \sum_{\alpha \in R'} \mathbf{Z} \alpha) \in \mathbf{Z}_{\geq 1}.$$

For any $e' \in V^*$ we set $N_{e'} = N_{R_{e'}}$.

Now let $r \in \mathcal{P}$. Let $\mathcal{S}_2^r(W)$ be the set of all $E_0 \in \operatorname{Irr}(W)$ such that for some isolated $e' \in V^*$ with $N_{e'} = r^k$ for some $k \in \mathbb{N}$ and for some $E \in \mathcal{S}_1(W_{e'})$ we have $E_0 = j_{W_{e'}}^W(E)$. Note that $\mathcal{S}^1(W) \subset \mathcal{S}_2^r(W) \subset \mathcal{S}_2(W)$.

Now assume that (V, V^*, R, \check{R}) is irreducible. We show:

- (a) If R is of type $A_n, n \ge 0$, then $S_2^r(W) = S_2(W) = S_1(W) = S(W)$.
- (b) If R is of type B_n or C_n , $n \ge 2$, then $S_2^r(W) = S_1(W)$ if $r \ne 2$ and $S_2^2(W) = S_2(W)$.
- (c) If R is of type D_n , $n \ge 4$, then $S_2^r(W) = S_1(W)$ if $r \ne 2$ and $S_2^2(W) = S_2(W)$.
- (d) If *R* is of type E_6 , then $\mathcal{S}_2^r(W) = \mathcal{S}_2(W) = \mathcal{S}_1(W)$.
- (e) If R is of type E_7 , then $S_2^{\overline{r}}(W) = S_1(W)$ if $r \neq 2$ and $S_2^2(W) = S_2(W)$.
- (f) If R is of type E_8 , then $\mathcal{S}_2^{\tilde{r}}(W) = \mathcal{S}_1(W)$ if $r \notin \{2, 3\}$ and $\mathcal{S}_2^2(W) \cup \mathcal{S}_2^3(W) = \mathcal{S}_2(W)$.

- (g) If R is of type F_4 , then $S_2^r(W) = S_1(W)$ if $r \neq 2$ and $S_2^2(W) = S_2(W)$.
- (h) If R is of type G_2 , then $\tilde{\mathcal{S}}_2^r(W) = \mathcal{S}_1(W)$ if $r \neq 3$ and $\tilde{\mathcal{S}}_2^3(W) = \mathcal{S}_2(W)$.

We prove (a). In this case for any isolated $e' \in V^*$ we have $N_{e'} = 1$ and the result follows from 1.1(d),(e), 1.3.

We prove (b), (c). In these cases for any isolated $e' \in V^*$, $N_{e'}$ is a power of 2 (see 1.3) and the equality $S_2^2(W) = S_2(W)$ follows from 1.1(e). Moreover, if e' is isolated and $N_{e'}$ is not divisible by 2, then $W_{e'} = W$ so that for $r \neq 2$ we have $S_2^r(W) = S_1(W)$.

In cases (d), (e), (f) we shall use the fact that for any $e' \in V^*$:

(i) we can find $e \in V$ such that $W_{e'} = W_e$, so that if $E \in \mathcal{S}(W_{e'})$, then $j_{W_{e'}}^W(E) \in \mathcal{S}_1(W)$.

(This property does not always hold in cases (g),(h).)

We prove (d). If $e' \in V^*$ is isolated and $W_{e'} \neq W$, then from 1.3 we see that $W_{e'}$ is of type $A_2A_2A_2$ or A_5A_1 so that $S_1(W_{e'}) = S(W_{e'})$; using this and 1.1(e) we see that $S_2(W) = S'_2 = S_1(W)$. (We have used (i).)

We prove (e). If $e' \in V^*$ is isolated and $W_{e'}$ is not of type E_7 (with $N_{e'} = 1$) or D_6A_1 (with $N_{e'} = 2$), then from 1.3 we see that $W_{e'}$ is of type A_7 or A_5A_2 or $A_3A_3A_1$ so that $S_1(W_{e'}) = S(W_{e'})$. We see that $S_2^r(W) = S_1(W)$ if $r \neq 2$ and $S_2^2(W) = S_2(W)$. (We have used (i).)

We prove (f). If $e' \in V^*$ is isolated and $W_{e'}$ is not of type E_8 (with $N_{e'} = 1$) or E_7A_1 (with $N_{e'} = 2$) or E_6A_2 (with $N_{e'} = 3$) or D_5A_3 (with $N_{e'} = 4$) or D_8 (with $N_{e'} = 2$), then from 1.3 we see that $W_{e'}$ is of type A_4A_4 or $A_5A_2A_1$ or A_7A_1 or A_8 , so that $S_1(W_{e'}) = S(W_{e'})$; we see that $S_2^r(W) = S_1(W)$ if $r \notin \{2, 3\}$ and $S_2^2(W) \cup S_3^3(W) = S_2(W)$. (We have used (i).)

We prove (g). If $e' \in V^*$ is isolated and $W_{e'}$ is not of type F_4 (when $N_{e'} = 1$) or B_3A_1 (with $N_{e'}$ a power of 2) or B_4 (with $N_{e'}$ a power of 2), then from 1.3 we see that $W_{e'}$ is of type A_2A_2 (with $N_{e'} = 3$) or A_3A_1 (with $N_{e'}$ a power of 2) so that $S_1(W_{e'}) = S(W_{e'})$. Moreover, if $e' \in V^*$ is isolated and $W_{e'}$ is of type A_2A_2 , then (i) holds for this e'. We see that $S_2^r(W) = S_1(W)$ if $r \neq 2$ and $S_2^2(W) = S_2(W)$.

We prove (h). If $e' \in V^*$ is isolated and $W_{e'}$ is not of type G_2 (with $N_{e'} = 1$), then from 1.3 we see that $W_{e'}$ is of type A_2 (with $N_{e'} = 3$) or A_1A_1 (when $N_{e'} = 2$) so that $S_1(W_{e'}) = S(W_{e'})$. Moreover, if $e' \in V^*$ is isolated and $W_{e'}$ is of type A_1A_1 , then (i) holds for this e'. We see that $S_2^r(W) = S_1(W)$ if $r \neq 3$ and $S_2^3(W) = S_2(W)$.

This proves (a)–(h). From (a)–(h) we deduce:

(j) We have $S_2(W) = S_2^2(W) \cup S_2^3(W)$. If $r \in \mathcal{P} - \{2, 3\}$, then $S_2^r(W) = S_1(W)$.

The following result can be verified by computation.

(k) If *R* is of type E_7 , then $S_2^2(W) - S_1(W) = \{84_{15}\}$. If *R* is of type E_8 , then $S_2^2(W) - S_1(W) = \{1050_{10}, 840_{14}, 168_{24}, 972_{32}\}$ and $S_2^3(W) - S_1(W) = \{175_{12}\}$. If *R* is of type F_4 , then $S_2^2(W) - S_1(W) = \{9_6, 4_7, 4_8, 2_{16}\}$. If *R* is of type G_2 , then $S_2^3(W) - S_1(W) = \{1_3\}$.

(In each case we specify a representation *E* by a symbol d_n where *d* is the degree of *E* and $n = n_E$. For type F_4 and G_2 the specified representations are uniquely determined by the additional condition that they are not in $S_1(W)$.)

(1)
$$S_2^2(W) \cap S_2^3(W) = S_1(W).$$

The inclusion $S_1(W) \subset S_2^2(W) \cap S_2^3(W)$ is obvious. The reverse inclusion for *R* of type $\neq E_8$ follows from the fact that for such *R* we have either $S_2^2(W) = S_1(W)$ or $S_2^3(W) = S_1(W)$, see (a)–(h). Thus we can assume that *R* is of type E_8 . In this case the result follows from (k).

1.6 Let $r \in \mathcal{P}$. Let $V_r^* = \{e' \in V^*; N_{e'}/r \notin \mathbb{Z}\}$. Let $\widetilde{\mathcal{S}}_2^r(W)$ be the set of all $E_0 \in Irr(W)$ such that for some $e' \in V_r^*$ and some $E \in \mathcal{S}_2^r(W_{e'})$ we have $E_0 = j_{W_{e'}}^W(E)$. (Note that any $E \in \mathcal{S}_2^r(W_{e'})$ is good.) Note that $\mathcal{S}_2^r(W) \subset \widetilde{\mathcal{S}}_2^r(W)$ (take e' = 0 in the definition of $\widetilde{\mathcal{S}}_2^r(W)$). We show:

(a) $\mathcal{S}_2(W) \subset \widetilde{\mathcal{S}}_2^r(W).$

We can assume that (V, V^*, R, \check{R}) is irreducible. Let $E_0 \in S_2(W)$. We must show that $E_0 \in \widetilde{S}_2^r(W)$. By 1.1(e) we can find an isolated $e' \notin V^*$ and $\widetilde{E} \in S_1(W_{e'})$ such that $E_0 = j_{W_{e'}}^W(\widetilde{E})$. If $N_{e'}/r \notin \mathbb{Z}$ then we have $E_0 \in \widetilde{S}_2^r(W)$ since $S_1(W_{e'}) \subset$ $S_2^r(W_{e'})$. If $N_{e'}$ is a power of r, then from definitions we have $E_0 \in S_2^r(W)$, hence $E_0 \in \widetilde{S}_2^r(W)$. Thus we may assume that $N_{e'}$ is not a power of r and is $N_{e'}/r \in$ \mathbb{Z} . This forces R to be of type E_8 and $W_{e'}$ to be of type $A_5A_2A_1$ (see 1.3); we then have $N_{e'} = 6$ and $r \in \{2, 3\}$. In particular we must have $\widetilde{E} \in S(W_{e'})$. If \widetilde{E} is not the sign representation of $W_{e'}$, then we have $\widetilde{E} = j_{W_{e'_1}}^{W_{e'_1}}(\text{sign})$ for some $e'_1 \in V^*$ such that $W_{e'_1}$ is a proper parabolic subgroup of $W_{e'}$. Replacing $W_{e'_1}$ by a W-conjugate we can assume that $W_{e'_1}$ is a proper parabolic subgroup of W so that $j_{W_{e'}}^W(\text{sign}) \in S(W)$ and in particular, $E_0 \in \widetilde{S}_2^r(W)$. Thus we can assume that \widetilde{E} is the sign representation of $W_{e'}$. We have $W_{e'} \subset W_{e'_2}$ where $W_{e'_2}$ is of type E_7A_1 and by the definition of $S_1(W_{e'_2})$ we have

$$\widetilde{E}_2 := j_{W_{e'}}^{W_{e'_2}}(\operatorname{sign}) \in \mathcal{S}_1(W_{e'_2}).$$

If r = 3, we have $e'_2 \in V_r^*$ hence $E_0 = j^W_{W_{e'_2}}(\widetilde{E}_2) \in \widetilde{S}_2^r(W)$. We have $W_{e'} \subset W_{e'_3}$ where $W_{e'_3}$ is of type E_6A_2 and by the definition of $S_1(W_{e'_3})$, we have $\widetilde{E}_3 := j^{W_{e'_3}}_{W_{e'}}(\text{sign}) \in S_1(W_{e'_3})$. If r = 2, we have $e'_3 \in V_r^*$ hence $E_0 = j^W_{W_{e'_3}}(\widetilde{E}_3) \in \widetilde{S}_2^r(W)$. This completes the proof of (a).

We show:

(b) $\widetilde{\mathcal{S}}_2^r(W) \subset \mathcal{S}_2(W)$.

We can assume that (V, V^*, R, \check{R}) is irreducible. Let $E_0 \in \widetilde{S}_2^r(W)$. We must show that $E_0 \in S_2(W)$. Assume first that $r \notin \{2, 3\}$. Then by results in 1.5 we have

 $E \in S_1(W_{e'})$, hence by 1.1(c) we have $E_0 \in S_2(W)$. Next we assume that r = 3. If $W_{e'} \neq W$, then by results in 1.5 we have $E \in S_1(W_{e'})$ hence by 1.1(c) we have $E_0 \in S_2(W)$. Thus we can assume that $W_{e'} = W$ so that $E_0 = E \in S_2^r(W)$. Since $S_2^r(W) \subset S_2(W)$ we see that $E_0 \in S_2(W)$.

We now assume that r = 2. We can find $e' \in V_r^*$ and $E \in S_2^r(W_{e'})$ such that $E_0 = j_{W_{e'}}^W(E)$. We can find an isolated $e'_1 \in V^*$ such that $N_{e'_1}$ is odd, $R_{e'} \subset R_{e'_1}$ and $R_{e'}$ is rationally closed in $R_{e'_1}$. Let $E' = j_{W_{e'_1}}^{W_{e'_1}}(E)$. Since $E \in S_2(W_{e'_1})$ we have $E' \in S_2(W_{e'_1})$, see 1.1(g) and $E_0 = j_{W_{e'_1}}^W(E')$. It is then enough to prove the following statement:

(c) If $e' \in V_r^*$ is isolated (r = 2) and $E \in \mathcal{S}_2(W_{e'})$, then $E_0 = j_{W_{e'}}^W(E) \in \mathcal{S}_2(W)$.

If $W_{e'} = W$, then $E_0 = E \in S_2(W)$, as required. If R is of type A_n, B_n, C_n, D_n , then in (c) we have automatically $W_{e'} = W$ hence (c) holds in these cases. Thus we can assume in (c) that R is of exceptional type and $W_{e'} \neq W$. Then $W_{e'}$ is of the following type: $A_2A_2A_2$ (if R is of type E_6); A_5A_2 (if R is of type E_7); A_4A_4 or A_8 or E_6A_2 (if R is of type E_8); A_2A_2 , as in 1.3(h) (if R is of type F_4); A_2 , as in 1.3(i) (if R is of type G_2). In each case we have $S_2(W_{e'}) = S_1(W_{e'})$, see 1.5. Thus $E \in S_1(W_{e'})$. Using 1.1(e) we see that $E_0 \in S_2(W)$. This proves (c) hence (b).

Combining (a), (b) we obtain

(d) $\widetilde{\mathcal{S}}_2^r(W) = \mathcal{S}_2(W).$

In the case where r = 0, we set $V_0^* = V^*$, $\mathcal{S}_2^0(W) = \mathcal{S}_1(W)$, $\widetilde{\mathcal{S}}_2^0(W) = \mathcal{S}_2(W)$.

2 The strata of G

2.1 We return to the setup of the introduction. Thus *G* is a connected reductive algebraic group over **k**. Let \mathcal{T} be "the" maximal torus of *G*; let $X = \text{Hom}(\mathcal{T}, \mathbf{k}^*)$, $Y = \text{Hom}(\mathbf{k}^*, \mathcal{T}), V = \mathbf{Q} \otimes X, V^* = \mathbf{Q} \otimes Y$. We have an obvious perfect bilinear pairing $\langle , \rangle : V \times V^* \to \mathbf{Q}$. Let $R \subset V$ be the set of roots and let $\check{R} \subset V^*$ be the set of corrots. Then (V, V^*, R, \check{R}) is as in 1.1. The associated Weyl group *W* (as in 1.1) that is, the Weyl group of *G*, can be viewed as an indexing set for the orbits of *G* acting diagonally on $\mathcal{B} \times \mathcal{B}$; we denote by \mathcal{O}_w the orbit corresponding to $w \in W$. Note that *W* is naturally a Coxeter group.

Let $g \in G$. Let W_g be the Weyl group of the connected reductive group $H := Z_G(g_s)^0$. We can view W_g as a subgroup of W as follows. Let β be a Borel subgroup of H and let T be a maximal torus of β . We define an isomorphism $b_{T,\beta} : N_H T/T \xrightarrow{\sim} W_g$ by $n'T \mapsto H$ -orbit of $(\beta, n'\beta n'^{-1})$. Similarly for any $B \in \mathcal{B}$ such that $T \subset B$ we define an isomorphism $a_{T,B} : N_G T/T \xrightarrow{\sim} W$ by $n'T \mapsto G$ -orbit of $(B, n'Bn'^{-1})$. Now assume that $B \in \mathcal{B}$ is such that $B \cap H = \beta$.

We define an embedding $c_{T,\beta,B} : W_g \to W$ as the composition $W_g \xrightarrow{b_{T,\beta}^{-1}} N_H T/T \to N_G T/T \xrightarrow{a_{T,B}} W$ where the middle map is the obvious embedding. If $B' \in \mathcal{B}$ also satisfies $B' \cap H = \beta$, then we have $B' = nBn^{-1}$ for some $n \in N_G T$ and from the definitions we have $c_{T,\beta,B'}(w) = a_{T,B}(nT)c_{T,\beta,B}(w)a_{B,T}(nT)^{-1}$ for any $w \in W_g$. Thus $c_{T,\beta,B}$ depends (up to composition with an inner automorphism of W) only on T, β and we can denote it by $c_{T,\beta}$. Since the set of pairs T, β as above form a homogeneous space for the connected group H, we see that $c_{T,\beta}$ is independent of T, β (up to composition with an inner automorphism of W) hence it does not depend on any choice. We see that there is a well-defined collection C of embeddings $W_g \to W$ so that any two of them differ only by composition by an inner automorphism of W.

Define $\rho \in \operatorname{Irr}(W_g)$ by the condition that under the Springer correspondence for H, ρ corresponds to the H-conjugacy class of g_u and the trivial local system on it. We choose $f \in C$; then we can view ρ as an irreducible representation of $f(W_g)$, a subgroup of W such that $f(W_g) = W_{e'}$ for some $e' \in V_p^*$, see 1.6. By [L5, 1.4] we have $\rho \in S_2^p(f(W_g))$, see 1.5, 1.6. Hence $\tilde{\rho} := j_{f(W_g)}^W(\rho) \in \tilde{S}_2^p(W)$ is well defined. Since $\tilde{S}_2^p(W) = S_2(W)$, see 1.6, we have $\tilde{\rho} \in S_2(W)$. This is independent of the choice of f since f is well defined up to composition by an inner automorphism of W.

2.2 Let $g \in G$. Let $d = d_g = \dim \mathcal{B}_g$. The embedding $h_g : \mathcal{B}_g \to \mathcal{B}$ induces a linear map $h_{g*} : H_{2d}(\mathcal{B}_g) \to H_{2d}(\mathcal{B})$. Now $H^{2d}(\mathcal{B}_g), H^{2d}(\mathcal{B})$ carry natural *W*-actions, see [L3], and this induces natural *W*-actions on $H_{2d}(\mathcal{B}_g), H_{2d}(\mathcal{B})$ which are compatible with h_{g*} . Hence *W* acts naturally on the subspace $h_{g*}(H_{2d}(\mathcal{B}_g))$ of $H_{2d}(\mathcal{B})$.

The following result gives an alternative description of the map $g \mapsto \tilde{\rho}$ (in 2.1) from *G* to Irr*W*.

(a) The W-submodule h_{g*}(H_{2d}(B_g)) of H_{2d}(B) is isomorphic to the W-module Q_l ⊗ ρ where ρ, ρ are associated to g as in 2.1.

First, we note that $h_{g*}(H_{2d}(\mathcal{B}_g)) \neq 0$; indeed it is clear that for any irreducible component D of \mathcal{B}_g (necessarily of dimension d), the image of the fundamental class of D under h_{g*} is nonzero (we ignore Tate twists). Let \mathcal{B}' be the variety of Borel subgroups of $Z_G(g_s)^0$. Let $\mathcal{B}'_{g_u} = \{\beta \in \mathcal{B}'; g_u \in \beta\}$. Then dim $\mathcal{B}' = d$ and W_g (see 2.1) acts naturally on $H_{2d}(\mathcal{B}'_{g_u})$; from the definitions, the W-module $H_{2d}(\mathcal{B}_g)$ is isomorphic to $\operatorname{Ind}_{W_g}^W H_{2d}(\mathcal{B}'_{g_u})$. From the definitions we have $n_{\rho} = d$ and the W_g -module $H_{2d}(\mathcal{B}'_{g_u})$ is of the form $\bigoplus_{i \in [1,s]} (\overline{\mathbb{Q}}_l \otimes E_i)^{\bigoplus c_i}$ where $E_i \in$ $\operatorname{Irr}(W_g)$, $c_i \in \mathbb{N}$ satisfy $E_1 = \rho$, $c_1 = 1$ and $n_{E_i} > d$ for i > 1. It follows that the W-module $H_{2d}(\mathcal{B}_g)$ is of the form $\bigoplus_{i \in [1,s]} (\operatorname{Ind}_{W_g}^W(\overline{\mathbb{Q}}_l \otimes E_i))^{\oplus c_i}$. Now $\operatorname{Ind}_{W_g}^W(\overline{\mathbb{Q}}_l \otimes E_1)$ contains $\overline{\mathbb{Q}}_l \otimes \widetilde{\rho}$ with multiplicity 1 and all its other irreducible constituents are of the form $\overline{\mathbb{Q}}_l \otimes E$ with $n_E > d$; moreover, for i > 1, any irreducible constituent E of $\operatorname{Ind}_{W_g}^W(\overline{\mathbb{Q}}_l \otimes E_i)$ satisfies $n_E > d$. Thus the W-module $H_{2d}(\mathcal{B}_g)$ contains $\overline{\mathbb{Q}}_l \otimes \widetilde{\rho}$ with multiplicity 1 and all its other irreducible constituents $\overline{\mathbb{Q}}_l \otimes \widetilde{\mathbb{Q}_l}$ with multiplicity 1 and all its other irreducible $H_{2d}(\mathcal{B}_g)$ contains $\overline{\mathbb{Q}}_l \otimes \widetilde{\mathbb{Q}}$ with multiplicity 1 and all its other irreducible constituents are of the form $\overline{\mathbf{Q}}_l \otimes E$ with $n_E > d$; these other irreducible constituents are necessarily mapped to 0 by h_{g*} and the irreducible constituent isomorphic to $\overline{\mathbf{Q}}_l \otimes \widetilde{\rho}$ is mapped injectively by h_{g*} since $h_{g*} \neq 0$. It follows that the image of h_{g*} is isomorphic to $\overline{\mathbf{Q}}_l \otimes \widetilde{\rho}$ as a *W*-module. This proves (a).

2.3 By 2.1, 2.2 we have a well-defined map $\phi : G \to S_2(W)$, $g \mapsto \tilde{\rho}$ where $\mathbf{Q}_l \otimes \tilde{\rho} = h_{g*}((H_{2d_g}(\mathcal{B}_g)))$ (notation of 2.1, 2.2). The fibres $G_E = \phi^{-1}(E)$ of ϕ ($E \in S_2(W)$) are called the *strata* of *G*. They are clearly unions of conjugacy classes of *G*. Note the strata of *G* are indexed by the finite set $S_2(W)$ which depends only on the Weyl group *W* and not on the underlying root system (see 1.1(b)) or on the characteristic of **k**.

One can show that any stratum of G is a union of pieces in the partition of G defined in [L3, 3.1]; in particular, it is a constructible subset of G.

2.4 We have the following result.

(a) Any stratum G_E ($E \in S_2(W)$) of G is a (non-empty) union of G-conjugacy classes of fixed dimension, namely $2 \dim \mathcal{B} - 2n$ where $n = n_E$, see 0.2. At most one G-conjugacy class in G_E is unipotent.

Since $S_2(W) = \widetilde{S}_2^p(W)$, see 1.6, we have $E \in \widetilde{S}_2^p(W)$. Hence there exists $e' \in V_p^*$ and $\rho \in S_2^p(W_{e'})$ such that $E = j_{W_{e'}}^W(\rho)$. We can find a semisimple element of finite order $s \in G$ such that W_s (viewed as a subgroup of W as in 2.1) is equal to $W_{e'}$. By [L5, 1.4] we can find a unipotent element u in $Z_G(s)^0$ such that ρ is the Springer representation of W_s defined by u and the trivial local system on its $Z_G(s)^0$ -conjugacy class. Then $E = \phi(su)$ so that $G_E \neq \emptyset$. Let γ be a G-conjugacy class in G_E . Let $g \in \gamma$. Let ρ (resp. $\widetilde{\rho}$) be the irreducible representation of W_g (resp. W) defined by g_u as in 2.1. Let $n_\rho, n_{\widetilde{\rho}}$ be as in 0.2. By the definition of $\widetilde{\rho}$ we have $n_\rho = n_{\widetilde{\rho}}$. By assumption we have $\widetilde{\rho} = E$, hence $n_{\widetilde{\rho}} = n$ and $n_\rho = n$. By a known property of Springer's representations, n_ρ is equal to the dimension of the variety of Borel subgroups of $Z_G(g_s)^0$ that contain g_u ; hence by a result of Steinberg (for p = 0) and Spaltenstein [Spa, 10.15] (for any p), n_ρ is equal to

$$(\dim(Z_{Z_G(g_s)^0}(g_u)^0 - \operatorname{rk}(Z_G(g_s)^0))/2 = (\dim(Z_G(g)^0) - \operatorname{rk}(G))/2.$$

It follows that $(\dim(Z_G(g)^0) - \operatorname{rk}(G))/2 = n$ and the desired formula for dim γ follows. Now assume that γ, γ' are two unipotent *G*-conjugacy classes contained in G_E . Then the Springer representation of *W* associated to γ is the same as that associated to γ' , namely *E*. By properties of Springer representations, it follows that $\gamma = \gamma'$. This proves (a).

2.5 In this and the next subsection we assume that W is irreducibble. Let $r \in \mathcal{P} \cup \{0\}$. Let G^r be a connected reductive group of the same type as G over an algebraically closed field of characteristic r, whose Weyl group is identified with W. Let \mathcal{U}^r be the set of unipotent classes of G^r . By [L5, 1.4] we have a canonical bijection

$$\psi^r : \mathcal{U}^r \xrightarrow{\sim} \mathcal{S}_2^r(W)$$

which, to a unipotent class γ , associates the Springer representation of W corresponding to γ and the constant local system on γ . We define an embedding $h^r : \mathcal{U}^0 \to \mathcal{U}^r$ as the composition

$$\mathcal{U}^0 \xrightarrow{\psi^0} \mathcal{S}_2^0(W) = \mathcal{S}_1(W) \to \mathcal{S}_2^r(W) \xrightarrow{(\psi^r)^{-1}} \mathcal{U}^r$$

where the unnamed map is the inclusion.

Consider the relation \cong on $\sqcup_{r \in \mathcal{P}} \mathcal{U}^r$ for which $x \in \mathcal{U}^r$, $y \in \mathcal{U}^{r'}$ (where $r, r' \in \mathcal{P}$) satisfy $x \cong y$ if either r = r' and x = y or $r \neq r'$ and $x = h^r(z)$, $y = h^{r'}(z)$ for some $z \in \mathcal{U}^0$. We show that \cong is an equivalence relation. It is enough to show that if $x \in \mathcal{U}^r$, $y \in \mathcal{U}^{r'}$, $u \in \mathcal{U}^{r''}$ are such that $r \neq r', r' \neq r''$ and $x = h^r(z)$, $y = h^{r'}(z)$, $y = h^{r'}(\tilde{z})$, $u = h^{r''}(\tilde{z})$ for some $z \in \mathcal{U}^0, \tilde{z} \in \mathcal{U}^0$, then $x \cong u$. From $h^{r'}(z) = h^{r'}(\tilde{z})$ and the injectivity of $h^{r'}$ we have $z = \tilde{z}$. Thus, if $r \neq r''$, we have $x \cong u$, while if r = r'', we have x = u. Thus, \cong is indeed an equivalence relation.

Let \mathcal{U}^* be $\sqcup_{r \in \mathcal{P}} \mathcal{U}^r$ modulo the equivalence relation \cong . Let $\sqcup_{r \in \mathcal{P}} \mathcal{U}^r \to \mathcal{S}_2(W)$ be the map whose restriction to \mathcal{U}^r is ψ^r followed by the inclusion $\mathcal{S}_2^r(W) \subset \mathcal{S}_2(W)$ (for any *r*). We show:

(a) This map induces a bijection $\psi^* : \mathcal{U}^* \xrightarrow{\sim} S_2(W)$.

To show that ψ^* is a well-defined map it is enough to verify that if $z \in \mathcal{U}^0$, then for any $r, r' \in \mathcal{P}$, we have $\psi^r h^r(z) = \psi^{r'} h^{r'}(z)$ in $\mathcal{S}_2(W)$; but both sides of the equality to be verified are equal to $\psi^0(z)$. Let $E \in \mathcal{S}_2(W)$. By 1.5(j) there exists $r \in \mathcal{P}$ such that $E \in \mathcal{S}_2^r(W)$, hence $E = \psi^r(x)$ for some $x \in \mathcal{U}^r$. It follows that ψ^* is surjective. We show that ψ^* is injective. It is enough to show that

(b) if $x \in \mathcal{U}^r$, $y \in \mathcal{U}^{r'}(r, r' \in \mathcal{P}$ distinct) satisfy $\psi^r(x) = \psi^{r'}(y)$, then there exists $z \in \mathcal{U}^0$ such that $x = h^r(z)$, $y = h^{r'}(z)$.

If $r \neq \{2, 3\}$, then $S_2^r(W) = S_1(W)$, hence $\psi^r(x) = \psi^0(z)$ for some $z \in \mathcal{U}^0$. We then have $\psi^{r'}(y) = \psi^0(z)$. It follows that $h^r(z) = x$, $h^{r'}(z) = y$, as required. Similarly, if $r' \neq \{2, 3\}$, then the conclusion of (b) holds. Thus we can assume that $r \in \{2, 3\}, r' \in \{2, 3\}$. Since $r \neq r'$ we have $\{r, r'\} = \{2, 3\}$. Hence $\psi^r(x) = \psi^{r'}(y) \in S_2^2(W) \cap S_2^3(W) = S_1(W)$; the last equality follows from 1.5(1). Thus we have $\psi^r(x) = \psi^{r'}(y) = \psi^0(z)$ for some $z \in \mathcal{U}^0$. It follows that $h^r(z) = x$, $h^{r'}(z) = y$, as required.

From (a) we deduce the following:

(c) The strata of G are naturally indexed by the set \mathcal{U}^* .

The proof of (a) shows also that \mathcal{U}^* is equal to $\mathcal{U}^2 \sqcup \mathcal{U}^3$ with the identification of $h^2(z), h^3(z)$ for any $z \in \mathcal{U}^0$.

We can now state the following result.

(d) Let $E \in S_2(W)$. Then for some $r \in \mathcal{P}$, the stratum G_E^r contains a unipotent class. In fact, r can be assumed to be 2 or 3.

Under (a), *E* corresponds to an element of \mathcal{U}^* which is the equivalence class of some element $\gamma \in \mathcal{U}^r$ with $r \in \{2, 3\}$. Let $g \in G^r$ be an element in the unipotent conjugacy class γ . From the definitions we see that $g \in G_E^r$. This proves (d).

2.6 We show that the set \mathcal{U}^* has a natural partial order. If $\mathcal{S}_2^r(W) = \mathcal{S}_1(W)$ (type A and E_6), we have $\mathcal{U}^* = \mathcal{U}^0$ which has a natural partial order defined by the closure relation of unipotent classes in G^0 . If $\mathcal{S}_1(W) \neq \mathcal{S}_2^r(W)$ for a unique $r \in \mathcal{P}$ (type $\neq A, E_6, E_8$), we have $\mathcal{U}^* = \mathcal{U}^r$ which has a natural partial order defined by the closure relation of unipotent classes in G^r . Assume now that G is of type E_8 . Then we can identify $\mathcal{U}^2, \mathcal{U}^3$ with subsets of \mathcal{U}^* whose union is \mathcal{U}^* and whose intersection is \mathcal{U}^0 . Both subsets $\mathcal{U}^2, \mathcal{U}^3$ have natural partial orders defined by the closure relation of unipotent classes in G^3 . If $\gamma, \gamma' \in \mathcal{U}^*$, we say that $\gamma \leq \gamma'$ if there exists a sequence $\gamma = \gamma_0, \gamma_1, \ldots, \gamma_s = \gamma'$ in \mathcal{U}^* such that for any $i \in [1, s]$ there exists $r \in \{2, 3\}$ such that

(a) $\gamma_{i-1} \in \mathcal{U}^r, \gamma_i \in \mathcal{U}^r, \gamma_{i-1} \leq \gamma_i$ in the partial order of unipotent classes in G^r ;

note that if for some *i*, (a) holds for both r = 2 and r = 3, then we have $\gamma_{i-1} \in \mathcal{U}^0$, $\gamma_i \in \mathcal{U}^0$, $\gamma_{i-1} \leq \gamma_i$ in the partial order of unipotent classes in G^0 . One can show that this partial order on \mathcal{U}^* induces the usual partial orders on the subsets \mathcal{U}^2 , \mathcal{U}^3 , \mathcal{U}^0 .

2.7 Let W_a be the semidirect product of W with the subgroup of V generated by R (an affine Weyl group); let W_a be the semidirect product of W with the subgroup of V^* generated by \tilde{R} (another affine Weyl group). We consider four triples:

(a) $(S(W), X_0, Z_0)$ (b) $(S_1(W), X_1, Z_1)$ (c) $(S_1(W), 'X_1, 'Z_1)$ (d) $(S_2(W), X_2, Z_2)$

where $X_0, X_1, 'X_1$ is the set of two-sided cells in $W, W_a, 'W_a$ respectively, Z_0 is the set of special unipotent classes in G with $p = 0, Z_1$ is the set of unipotent classes in G with $p = 0, 'Z_1$ is the set of unipotent classes in the Langlands dual G^* of Gwith $p = 0, Z_2$ is the set of strata of G with p = 0 and X_2 remains to be defined. The three sets in each of these four triples are in canonical bijection with each other (assuming that X_2 has been defined). Moreover, each set in (a) is naturally contained in the corresponding set in (b) and (replacing G by G^*) in the corresponding set in (c); each set in (b) is contained in the corresponding set in (d) and (replacing G by G^*) each set in (c) is contained in the corresponding set in (d).

It remains to define X_2 . It seems plausible that the (trigonometric) double affine Hecke algebra **H** associated by Cherednik to W has a natural filtration by two-sided ideals whose successive subquotients can be called two-sided cells and form the desired set X_2 . The inclusion of the Hecke algebra of W_a and that of $'W_a$ into **H** should induce the embeddings $X_1 \subset X_2$, $'X_1 \subset X_2$ and X_2 should be in natural bijection with $S_2(W)$ and with the set of strata of G.

3 Examples

3.1 We write the adjoint group of *G* as a product $\prod_i G_i$ where each G_i is simple with Weyl group W_i so that $W = \prod_i W_i$. Let $E \in S_2(W)$. We have $E = \boxtimes_i E_i$ where $E_i \in S_2(W_i)$. Now G_E is the inverse image of $\prod_i (G_i)_{E_i}$ under the obvious map $G \to \prod_i G_i$.

When E is the sign representation of W, then G_E is the centre of G; when E is the unit representation of W, G_E is the set of elements of G which are regular in the sense of Steinberg [St].

By 2.5(a) and 2.6 applied to G_i , the set $S_2(W_i)$ has a natural partial order. Since $S_2(W)$ can be identified as above with $\prod_i S_2(W_i)$, $S_2(W)$ is naturally a partially ordered set (a product of partially ordered sets). Hence by 2.3 the set of strata of *G* is naturally a partially ordered set.

3.2 Assume that G = GL(V) where V is a **k**-vector space of dimension $n \ge 1$. Let $g \in G$. For any $x \in \mathbf{k}^*$ let V_x be the generalized x-eigenspace of $g: V \to V$ and let $\lambda_1^x \ge \lambda_2^x \ge \lambda_3^x \ge \ldots$ be the sequence in **N** whose nonzero terms are the sizes of the Jordan blocks of $x^{-1}g: V_x \to V_x$. Let ${}^g\lambda$ be the sequence ${}^g\lambda_1 \ge {}^g\lambda_2 \ge {}^g\lambda_3 \ge \ldots$ given by ${}^g\lambda_j = \sum_{x \in \mathbf{k}^*} \lambda_j^x$. Now $g \mapsto {}^g\lambda$ defines a map from G onto the set of partitions of n. From the definitions we see that the fibres of this map are exactly the strata of G. If $g \in G$ and ${}^g\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots)$, then

$$\dim(\mathcal{B}_g) = \sum_{k \ge 1} (n - (\lambda_1 + \lambda_2 + \dots + \lambda_k)).$$

3.3 Repeating the definition of sheets in a semisimple Lie algebra over C (see [Bo]), one can define the sheets of G as the maximal irreducible subsets of G which are unions of conjugacy classes of fixed dimension. One can show that if G is as in 3.2, the sheets of G are the same as the strata of G, as described in 3.2. (In this case, the sheets of G, or rather their Lie algebra analogue, are described in [Pe]. They are smooth varieties.) This is not true for a general G (the sheets of G do not usually form a partition of G; the strata of G are not always irreducible). In [Ca] it is shown that if p is 0 or a good prime for G, then any stratum is a union of sheets and that the closure of a stratum is not necessarily a union of strata, even if G is of type A.

3.4 In the next few subsections we will describe explicitly the strata of G when G is a symplectic or special orthogonal group.

Given a partition $v = (v_1 \ge v_2 \ge ...)$, a *string* of v is a maximal subsequence $v_i, v_{i+1}, ..., v_j$ of v consisting of equal > 0 numbers; the string is said to have an odd origin if i is odd and an even origin if i is even.

For an even $N \in \mathbf{N}$, let Z_N^1 be the set of partitions $\nu = (\nu_1 \ge \nu_2 \ge ...)$ of N such that any odd number appears an even number of times in ν . We show:

(a) There is a canonical bijection $Z_N^1 \leftrightarrow BP_{1,1}^{N/2}$ (notation of 0.2).

To $v \in Z_N^1$ we associate $\lambda = (\lambda_1, \lambda_2, \lambda_3, ...)$ as follows: each string 2a, 2a, ..., 2ain v is replaced by a, a, ..., a of the same length; each string 2a + 1, 2a + 1, ..., 2a + 1 (necessarily of even length) in v is replaced by a, a + 1, a, a + 1, ..., a, a + 1 of the same length. The resulting entries form a bipartition $\lambda \in BP_{1,1}^{N/2}$. Now $v \mapsto \lambda$ establishes the bijection (a).

For an even $N \in \mathbf{N}$, let Z_N^2 be the set of partitions $\nu = (\nu_1 \ge \nu_2 \ge ...)$ of N such that any odd number appears an even number of times in ν and any even > 0 number which appears an even > 0 number of times in ν has an associated label 0 or 1. We show:

(b) There is a canonical bijection $Z_N^2 \leftrightarrow BP_{2,2}^{N/2}$ (notation of 0.2).

To $v \in Z_N^2$ we associate $\lambda = (\lambda_1, \lambda_2, \lambda_3, ...)$ as follows: each string 2a, 2a, ..., 2a of odd length or of even length and label 1 in v is replaced by a, a, ..., a of the same length; each string 2a, 2a, ..., 2a of even length and label 0 in v is replaced by a - 1, a + 1, a - 1, a + 1, ..., a - 1, a + 1 of the same length; each string 2a + 1, 2a + 1, ..., 2a + 1 (necessarily of even length) in v is replaced by a, a + 1, a, a + 1, ..., a, a + 1 of the same length. The resulting entries form a bipartition $\lambda \in BP_{2,2}^{N/2}$. Now $v \mapsto \lambda$ establishes the bijection (b).

Assume for example that N = 6. The bijection (b) is:

$$(6...) \leftrightarrow (3...)$$

$$(42...) \leftrightarrow (21...)$$

$$(411...) \leftrightarrow (201...)$$

$$(33...) \leftrightarrow (12...)$$

$$(222...) \leftrightarrow (111...)$$

$$((22)_{1}11...) \leftrightarrow (1101...)$$

$$((21)_{1}11...) \leftrightarrow (10101...)$$

$$(111111...) \leftrightarrow (010101...)$$

Here we write ... instead of 000.... (Compare [LS2, 6.1].)

3.5 Assume that G = Sp(V) where V is a k-vector space of dimension N with a fixed nondegenerate symplectic form.

Let $g \in G$. For any $x \in \mathbf{k}^*$ let V_x be the generalized x-eigenspace of $g: V \to V$. Let $d_x = \dim V_x$. For any $x \in \mathbf{k}^*$ such that $x^2 \neq 1$ let $\lambda_1^x \ge \lambda_2^x \ge \lambda_3^x \ge \dots$ be the partition of d_x whose nonzero terms are the sizes of the Jordan blocks of $x^{-1}g: V_x \to V_x$.

For $x \in \mathbf{k}^*$ such that $x^2 = 1$, let $v^x \in Z^1_{d_x}$ (if $p \neq 2$) and $v^x \in Z^2_{d_x}$ (if p = 2) be again the partition of d_x whose nonzero terms are the sizes of the Jordan blocks of the unipotent element $x^{-1}g \in \operatorname{Sp}(V_x)$. (When p = 2, v^x should also

include a labelling with 0 and 1 associated to $x^{-1}g \in \text{Sp}(V_x)$ as in [L10, 1.4].) Let $\lambda^x = (\lambda_1^x, \lambda_2^x, \lambda_3^x, ...)$ be the bipartition of $d_x/2$ associated to v^x by 3.4(a),(b). Thus $\lambda^x \in BP_{1,1}^{d_x/2}$ (if $p \neq 2$), $\lambda^x \in BP_{2,2}^{d_x/2}$ (if p = 2). Note that λ^x is the bipartition such that the Springer representation attached to the unipotent element $x^{-1}g \in \text{Sp}(V_x)$ (an irreducible representation of the Weyl group of type $B_{d_x/2}$) is indexed in the standard way by λ^x . Define ${}^g\lambda = ({}^g\lambda_1, {}^g\lambda_2, {}^g\lambda_3, ...)$ by ${}^g\lambda_j = \sum_x \lambda_j^x$ where x runs over a set of representatives for the orbits of the involution $a \mapsto a^{-1}$ of \mathbf{k}^* . Note that ${}^g\lambda \in BP_{2,2}^{N/2}$. Thus we have defined a (surjective) map $g \mapsto {}^g\lambda, G \to BP_{2,2}^{N/2}$. From the definitions we see that the fibres of this map are exactly the strata of G.

If $g \in G$ and ${}^{g}\lambda = (\lambda_1, \lambda_2, \lambda_3, \dots)$, then

(a) dim(
$$\mathcal{B}_g$$
) = $\sum_{k\geq 1} ((N/2) - (\lambda_1 + \lambda_2 + \dots + \lambda_k)).$

We now consider the case where N = 4. In this case we have $S_2(W) = \text{Irr}(W)$; hence there are five strata. One stratum is the union of all conjugacy classes of dimension 8 (it corresponds to the unit representation); one stratum is the union of all conjugacy classes of dimension 6 (it corresponds to the reflection representation of W). There are two strata which are unions of conjugacy classes of dimension 4 (they correspond to the two one-dimensional representations of W other than unit and sign); if p = 2, both these strata are single unipotent classes; if $p \neq 2$, one of these strata is a semisimple class and the other is a unipotent class times the centre of G. The centre of G is a stratum (it corresponds to the sign representation of W). The results in this subsection show that under the standard identification $\text{Irr}(W) = BP^{N/2}$, we have

(b) $S_2(W) = BP_{2,2}^{N/2}$.

Under this identification the map $g \mapsto {}^{g}\lambda, G \to BP_{2,2}^{N/2}$ becomes the map $g \mapsto E$ where $g \in G_E$.

3.6 For $N \in \mathbf{N}$, let Z_N^1 be the set of partitions $\nu = (\nu_1 \ge \nu_2 \ge ...)$ such that any even > 0 number appears an even number of times in ν and $\nu_1 + \nu_2 + \cdots = N$.

(a) If N is odd, then there is a canonical bijection $Z_N^1 \leftrightarrow BP_{2,0}^{(N-1)/2}$.

To $\nu \in {}^{\prime}Z_{N}^{1}$ we associate $\lambda = (\lambda_{1}, \lambda_{2}, \lambda_{3}, ...)$ as follows: each string 2a, 2a, ..., 2aof ν (necessarily of even length) is replaced by a - 1, a + 1, a - 1, a + 1, ..., a - 1, a + 1 of the same length (if the string has odd origin) or by a, a, ..., a of the same length (if the string has even origin); each string 2a + 1, 2a + 1, ..., 2a + 1 of ν is replaced by a, a + 1, a, a + 1, ... of the same length (if the string has odd origin) or by a + 1, a, a + 1, a, ... of the same length (if the string has even origin). The resulting entries form a bipartition $\lambda \in BP_{2,0}^{(N-1)/2}$. Now $\nu \mapsto \lambda$ establishes the bijection (a).

(b) If N is even, then there is a canonical bijection $Z_N^1 \leftrightarrow BP_{0,2}^{N/2}$.

To $v \in {}'Z_N^1$ we associate $\lambda = (\lambda_1, \lambda_2, \lambda_3, ...)$ as follows: each string 2a, 2a, ..., 2a of v (necessarily of even length) is replaced by a - 1, a + 1, a - 1, a + 1, ..., a - 1, a + 1 of the same length (if the string has even origin) or by a, a, ..., a of the same length (if the string has odd origin); each string 2a + 1, 2a + 1, ..., 2a + 1 of v is replaced by a, a + 1, a, a + 1, ... of the same length (if the string has even origin) or by a + 1, a, a + 1, a, ... of the same length (if the string has odd origin). The resulting entries form a bipartition $\lambda \in BP_{0,2}^{N/2}$. Now $v \mapsto \lambda$ establishes the bijection (b).

3.7 Assume that $p \neq 2$ and that G = SO(V) where V is a k-vector space of odd dimension $N \ge 1$ with a fixed nondegenerate quadratic form.

Let $g \in G$. For any $x \in \mathbf{k}^*$, let V_x be the generalized x-eigenspace of $g: V \to V$. Let $d_x = \dim V_x$. For any $x \in \mathbf{k}^*$ such that $x^2 \neq 1$ let $\lambda_1^x \ge \lambda_2^x \ge \lambda_3^x \ge \ldots$ be the partition of d_x whose nonzero terms are the sizes of the Jordan blocks of $x^{-1}g: V_x \to V_x$.

For $x \in \mathbf{k}^*$ such that $x^2 = 1$ let $v^x \in {}'Z_{d_x}^1$ again be the partition of d_x whose nonzero terms are the sizes of the Jordan blocks of the unipotent element $x^{-1}g \in$ SO(V_x). Let $\lambda^x = (\lambda_1^x, \lambda_2^x, \lambda_3^x, \ldots)$ be the bipartition of $d_x/2$ associated to v^x by 3.6(a) if x = 1 and by 3.6(b) if x = -1. Thus $\lambda^x \in BP_{2,0}^{(d_x-1)/2}$ if x = 1, $\lambda^x \in BP_{0,2}^{d_x/2}$ if x = -1. Note that λ^x is the bipartition such that the Springer representation attached to the unipotent element $x^{-1}g \in$ SO(V_x) (an irreducible representation of the Weyl group of type $B_{(d_x-1)/2}$, if x = 1, or of type $D_{d_x/2}$, if x = -1) is indexed by λ^x . Define ${}^g\lambda = ({}^g\lambda_1, {}^g\lambda_2, {}^g\lambda_3, \ldots)$ by ${}^g\lambda_j = \sum_x \lambda_j^x$ where x runs over a set of representatives for the orbits of the involution $a \mapsto a^{-1}$ of \mathbf{k}^* . Note that ${}^g\lambda \in BP_{2,2}^{(N-1)/2}$. Thus we have defined a (surjective) map $g \mapsto {}^g\lambda$, $G \to BP_{2,2}^{(N-1)/2}$. From the definitions we see that the fibres of this map are exactly the strata of G. Under the identification $S_2(W) = BP_{2,2}^{(N-1)/2}$, see 3.5(b), the map $g \mapsto {}^g\lambda, G \to BP_{2,2}^{(N-1)/2}$ becomes the map $g \mapsto E$ where $g \in G_E$. If $g \in G$ and ${}^g\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots)$, then

$$\dim(\mathcal{B}_g) = \sum_{k \ge 1} ((N-1)/2 - (\lambda_1 + \lambda_2 + \dots + \lambda_k)).$$

3.8 Assume that p = 2 and that G = SO(V) where V is a k-vector space of odd dimension $N \ge 1$ with a given quadratic form, such that the associated symplectic form has radical \mathbf{r} of dimension 1 and the restriction of the quadratic form to \mathbf{r} is nonzero. In this case there is an obvious morphism from G to the symplectic group G' of V/\mathbf{r} which is an isomorphism of abstract groups. From the definitions we see that this morphism maps each stratum of G bijectively onto a stratum of G' (which has been described in 3.5).

3.9 For an even $N \in \mathbf{N}$, let Z_N^2 be the set of partitions with labels $\nu = (\nu_1 \ge \nu_2 \ge ...)$ in Z_N^2 (see 3.4) such that the number of nonzero entries of ν is even.

(a) If N is even, then there is a canonical bijection $Z_N^2 \leftrightarrow BP_{0,4}^{N/2}$.

To $v \in {}'Z_N^2$ we associate $\lambda = (\lambda_1, \lambda_2, \lambda_3, ...)$ as follows: each string 2a, 2a, 2a, 2a, ... of v of odd length or of even length and label 1 is replaced by a - 1, a + 1, a - 1, a + 1, ... of the same length (if the string has even origin) or a + 1, a - 1, ... of the same length (if the string has odd origin); each string 2a, 2a, 2a, ... of v of even length and label 0 is replaced by a - 2, a + 2, a - 2, a + 2, ... of the same length (if the string has even origin) or a, a, a, a, ... of the same length (if the string has odd origin); each string 2a + 1, 2a + 1, 2a + 1, ... of v (necessarily of even length) is replaced by a - 1, a + 2, a - 1, a + 2, ... of the same length (if the string has even origin) or a + 1, a, a + 1, a, ... of the same length (if the string has odd origin). The resulting entries form a bipartition $\lambda \in BP_{0,4}^{N/2}$. Now $v \mapsto \lambda$ establishes the bijection (a).

Assume for example that N = 8. The bijection (a) is:

$$(62...) \leftrightarrow (40...)$$
$$((44)_1...) \leftrightarrow (31...)$$
$$((44)_0...) \leftrightarrow (22...)$$
$$(4211...) \leftrightarrow (3010...)$$
$$(3311...) \leftrightarrow (2110...)$$
$$((2222)_1...) \leftrightarrow (2020...)$$
$$((2222)_0...) \leftrightarrow (1111...)$$
$$((22)_1111...) \leftrightarrow (201010...)$$
$$((22)_01111...) \leftrightarrow (111010...)$$
$$(11111111...) \leftrightarrow (10101010...).$$

Here we write ... instead of 000... (Compare [LS2, 6.2].)

3.10 Assume that G = SO(V) where V is a **k**-vector space of even dimension N with a fixed nondegenerate quadratic form. Let $g \in G$. For any $x \in \mathbf{k}^*$ let V_x be the generalized x-eigenspace of $g: V \to V$. Let $d_x = \dim V_x$. For any $x \in \mathbf{k}^*$ such that $x^2 \neq 1$ let $\lambda_1^x \ge \lambda_2^x \ge \lambda_3^x \ge \ldots$ be the partition whose nonzero terms are the sizes of the Jordan blocks of $x^{-1}g: V_x \to V_x$. For $x \in \mathbf{k}^*$ such that $x^2 = 1$ let $v^x \in 'Z_{d_x}^1$ (if $p \neq 2$) and $v^x \in 'Z_{d_x}^2$ (if p = 2) be again the partition of d_x whose nonzero terms are the sizes of the Jordan blocks of the Jordan blocks of the unipotent element $x^{-1}g \in SO(V_x)$. (When p = 2, v^x should also include a labelling with 0 and 1 associated to $x^{-1}g$ viewed as an element of $Sp(V_x)$ as in [L10, 1.4].) Let $\lambda^x = (\lambda_1^x, \lambda_2^x, \lambda_3^x, \ldots)$ be the bipartition of $d_x/2$ associated to v^x by 3.6(b), 3.9(a). Thus $\lambda^x \in BP_{0,2}^{d_x/2}$ (if $p \neq 2$), $\lambda^x \in BP_{0,2}^{d_x/2}$ (if p = 2). Note that λ^x is the bipartition

such that the Springer representation attached to the unipotent element $x^{-1}g \in$ SO(V_x) (an irreducible representation of the Weyl group of type $D_{d_x/2}$) is indexed by λ^x . Define ${}^g\lambda = ({}^g\lambda_1, {}^g\lambda_2, {}^g\lambda_3, ...)$ by ${}^g\lambda_j = \sum_x \lambda_j^x$ where x runs over a set of representatives for the orbits of the involution $a \mapsto a^{-1}$ of \mathbf{k}^* . Note that ${}^g\lambda \in BP_{0,4}^{N/2}$ and that $g \mapsto {}^g\lambda$ defines a (surjective) map $G \to BP_{0,4}^{N/2}$. From the definitions we see that the fibres of this map are exactly the strata of G (except for the fibre over a bipartition $(\lambda_1, \lambda_2, \lambda_3, ...)$ with $\lambda_1 = \lambda_2, \lambda_3 = \lambda_4, ...$ in which case the fibre is a union of two strata). If $g \in G$ and ${}^g\lambda = (\lambda_1, \lambda_2, \lambda_3, ...)$, then

(a) dim(
$$\mathcal{B}_g$$
) = $\sum_{k\geq 1} ((N/2) - (\lambda_1 + \lambda_2 + \dots + \lambda_k)).$

Viewing *W* as a subgroup of index 2 of a Weyl group *W'* of type B_n , we can associate to any $\lambda \in BP^{N/2}$ one or two irreducible representations of *W* which appear in the restriction to *W* of the irreducible representation of *W'* indexed by λ ; the representation(s) of *W* associated to $\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4, ...)$ are the same as those associated to $\iota(\lambda) := (\lambda_2, \lambda_1, \lambda_4, \lambda_3, ...)$; here $\iota : BP^{N/2} \to BP^{N/2}$ is an involution and the set of orbits is denoted by $BP^{N/2}/\iota$. This gives a surjective map $f : \operatorname{Irr}(W) \to BP^{N/2}/\iota$ whose fibre at the orbit of λ has one element if $\lambda \neq \iota(\lambda)$ and two elements if $\lambda = \iota(\lambda)$. Let $\iota' : \operatorname{Irr}(W) \to \operatorname{Irr}(W)$ be the involution whose orbits are the fibres of *f* and let $S_2(W)/\iota'$ be the set of orbits of the restriction of ι' to $S_2(W)$. The results in this subsection show that *f* induces a bijection

(b)
$$\mathcal{S}_2(W)/\iota' \xrightarrow{\sim} BP_{0,4}^{N/2}$$
.

We have used the fact that the intersection of $BP_{0,4}^{N/2}$ with an orbit of $\iota: BP^{N/2} \rightarrow BP^{N/2}$ has at most one element; more precisely,

$$\{\lambda \in BP^{N/2}; \lambda \in BP_{0,4}^{N/2} \text{ and } \iota(\lambda) \in BP_{0,4}^{N/2}\} = \{\lambda \in BP^{N/2}; \lambda = \iota(\lambda)\}.$$

Under the identification (b), the map $g \mapsto {}^{g}\lambda, G \to BP_{0,4}^{N/2}$ becomes the map $g \mapsto E$ (up to the action of ι') where $g \in G_E$.

3.11 Assume that $p \neq 2$ and $n \geq 3$. If $G = SO_{2n+1,k}$ then the stratum of minimal dimension > 0 consists of a semisimple class of dimension 2n; if $G = Sp_{2n,k}/\pm 1$ then the stratum of minimal dimension > 0 consists of a unipotent class of dimension 2n (that of transvections). The corresponding $E \in Irr(W)$ is one-dimensional.

3.12 Assume that G is simple of type E_8 . In this case G has exactly 75 strata. If $p \neq 2, 3$ then exactly 70 strata contain unipotent elements. If p = 2 (resp. p = 3) then exactly 74 (resp. 71) strata contain unipotent elements. The unipotent class of dimension 58 is a stratum. If $p \neq 2$, there is a stratum which is a union of a semisimple class and a unipotent class (both of dimension 128); in particular this stratum is disconnected.

4 A map from conjugacy classes in W to 2-special representations of W

4.1 In this subsection we shall define a canonical surjective map

(a)
$${}^{\prime} \Phi : \operatorname{cl}(W) \to \mathcal{S}_2(W).$$

We preserve the setup of 2.5. We will first define the map (a) assuming that G is simple. In [L8] we have defined for any $r \in \mathcal{P}$ a surjective map $cl(W) \to \mathcal{U}^r$; we denote this map by Φ^r . Let $C \in cl(W)$. We define an element $\Phi(C) \in \mathcal{U}^*$ as follows. If $\Phi^r(C) \in h^r(z_r)$ (with $z_r \in \mathcal{U}^0$) for all $r \in \mathcal{P}$, then $z_r = z$ is independent of r (see [L10, 0.4]) and we define $\Phi(C)$ to be the equivalence class of $h^r(z)$ for any $r \in \mathcal{P}$. If $\Phi^r(\mathcal{C}) \notin h^r(\mathcal{U}^0)$ for some $r \in \mathcal{P}$, then r is unique. (The only case where r can be possibly not unique is in type E_8 in which case we use the tables in [L10, 2.6].) We then define $\Phi(C)$ to be the equivalence class of $\Phi^r(C)$. Thus we have defined a surjective map $\Phi : \operatorname{cl}(W) \to \mathcal{U}^*$. By composing Φ^r with $\psi^r : \mathcal{U}^r \xrightarrow{\sim} \mathcal{S}_2^r(W)$, see 2.5, and with the inclusion $\mathcal{S}_2^r(W) \subset \mathcal{S}_2(W)$, we obtain a map ${}^{\prime} \Phi^{r}$: cl(W) $\rightarrow S_{2}(W)$. Similarly, by composing Φ with ψ^{*} : $\mathcal{U}^* \xrightarrow{\sim} \mathcal{S}_2(W)$, see 2.5(a), we obtain a surjective map $\Phi : \mathrm{cl}(W) \to \mathcal{S}_2(W)$. Note that for $C \in cl(W)$, ${}^{\prime} \Phi(C)$ can be described as follows. If ${}^{\prime} \Phi^{r}(C) \in S_{1}(W)$ for all $r \in \mathcal{P}$, then $\Phi^{r}(C)$ is independent of r, and we have $\Phi^{r}(C) = \Phi^{r}(C)$ for any r. If ${}^{\prime}\Phi^{r}(C) \notin \mathcal{S}_{1}(W)$ for some $r \in \mathcal{P}$, then such r is unique and we have $'\Phi(C) = '\Phi^r(C).$

We return to the general case. We write the adjoint group of G as a product $\prod_i G_i$ where each G_i is simple with Weyl group W_i . We can identify $W = \prod_i W_i$, $cl(W) = \prod_i cl(W_i), S_2(W) = \prod_u S_2(W_i)$ (via external tensor product). Then ${}^{\prime}\Phi_i : cl(W_i) \rightarrow S_2(W_i)$ is defined as above for each *i*. We set ${}^{\prime}\Phi = \prod_i {}^{\prime}\Phi_i$: $cl(W) \rightarrow S_2(W)$.

For *C*, *C'* in cl(*W*) we write $C \sim C'$ if ${}^{\prime} \Phi(C) = {}^{\prime} \Phi(C')$. This is an equivalence relation on cl(*W*). Let <u>cl</u>(*W*) be the set of equivalence classes. Note that:

(b) ${}^{\prime} \Phi$ induces a bijection $\underline{cl}(W) \to S_2(W)$.

We see that, via (b),

(c) the strata of G are naturally indexed by the set $\underline{cl}(W)$.

4.2 We preserve the setup of 2.5. Now $'\Phi$ in 4.1(a) is a map between two sets which depend only on W, not on the underlying root system, see 1.1(b). We show that

(a) Φ itself depends only on W, not on the underlying root system.

We can assume that *G* is adjoint, simple. We can also assume that *G* is not of simply laced type. In this case there is a unique $r \in \mathcal{P}$ such that $S_2(W) = S_2^r(W)$ so that we have simply $'\Phi = '\Phi^r : cl(W) \to S_2(W)$. Thus $'\Phi$ is the composition

(b)
$$\operatorname{cl}(W) \xrightarrow{\Phi'} \mathcal{U}^r \xrightarrow{\psi'} \mathcal{S}_2(W).$$

We now use the fact the maps in (b) are compatible with the exceptional isogeny between groups G^2 of type B_n and C_n or of type F_4 and F_4 (resp. between groups G^3 of type G_2 and G_2). This implies (a).

4.3 Assume that *G* is simple. The map ${}^{\prime}\Phi$ in 4.1 is defined in terms of ${}^{\prime}\Phi^{r}$ which is the composition of Φ^{r} : cl(*W*) $\rightarrow \mathcal{U}^{r}$ (which is described explicitly in each case in [L10]) and $\psi^{r} : \mathcal{U}^{r} \leftarrow \mathcal{S}_{2}^{r}(W)$ which is given by the Springer correspondence. Therefore ${}^{\prime}\Phi$ is explicitly computable. In this subsection we describe this map in the case where *W* is of classical type.

If W is of type A_n , $n \ge 1$, then cl(W) can be identified with the set of partitions of n: to a conjugacy class of a permutation of n objects we associate the partition whose nonzero terms are the sizes of the disjoint cycles of which the permutation is a product. We identify $S_2(W) = Irr(W)$ with the set of partitions in the standard way (the unit representation corresponds to the partition (n, 0, 0...)). With these identifications the map ' Φ is the identity map.

Assume now that W is a Weyl group of type B_n or C_n , $n \ge 2$. Let X be a set with 2n elements with a given fixed point free involution τ . We identify W with the group of permutations of X which commute with τ . To any $w \in W$, we can associate an element $v \in Z_{2n}^2$ (see 3.4) as follows. The nonzero terms of the partition v are the sizes of the disjoint cycles of which w is a product. To each string c, c, \ldots, c of v of even length with c > 0 even we attach the label 1 if at least one of its terms represents a cycle which commutes with τ ; otherwise we attach to it the label 0. This defines a (surjective) map $cl(W) \to Z_{2n}^2$ which by results of [L10] can be identified with the map $\Phi^2 : cl(W) \to U^2$. Composing this with the bijection 3.4(b) we obtain a surjective map $cl(W) \to BP_{2,2}^n$ or equivalently (see 3.5(b)) $cl(W) \to S_2(W)$. This is the same as $'\Phi$.

Next we assume that W is a Weyl group of type D_n , $n \ge 4$. We can identify W with the group of *even* permutations of X (as above) which commute with τ (as above). To any $w \in W$ we associate an element $v \in Z_{2n}^2$ as for type B_n above. This element is actually contained in Z_{2n}^2 (see 3.9) since w is an even permutation. This defines a (surjective) map $cl(W) \rightarrow Z_{2n}^2$ which by results of [L10] can be identified with the composition of Φ^2 : $cl(W) \rightarrow U^2$ with the obvious map from U^2 to the set of orbits of the conjugation action of the full orthogonal group on U^2 . Composing this with the bijection 3.9(a) we obtain a surjective map $cl(W) \rightarrow BP_{0,4}^n$ or equivalently (see 3.10(b)) a surjective map $cl(W) \rightarrow S_2(W)/\iota'$ (notation of 3.10). This is the same as the composition of ${}^{\prime}\Phi$ with the obvious map $S_2(W) \rightarrow S_2(W)/\iota'$.

4.4 In this and the next five subsections we describe the map ${}^{\prime} \Phi : cl(W) \to S_2(W)$ in the case where W is of exceptional type. The results will be expressed as diagrams $[a, b, \ldots] \mapsto d_n$ where a, b, \ldots is the list of conjugacy classes in W (with notation of [C]) which are mapped by ${}^{\prime} \Phi$ to an irreducible representation E denoted d_n (here d denotes the degree of E and the index $n = n_E$ as in 0.2). We also mark by $*_r$ those E which are in $S_2(W) - S_1(W)$; here r is the unique prime such that $E \in S_2^r(W)$. Note that the notation d_n does not determine E for types G_2 and F_4 ; for these types it may happen that there are two E's with same d_n .

Type G_2

 $\begin{array}{ll} [G_2]\mapsto 1_0 & \qquad [A_1+\widetilde{A}_1]\mapsto 2_2 & \qquad [A_1]\mapsto 1_3 \\ [A_2]\mapsto 2_1 & \qquad [\widetilde{A}_1]\mapsto 1_3, \ast_3 & \qquad [A_0]\mapsto 1_6 \end{array}$

4.5 Type *F*₄.

4.6 Type
$$E_6$$
.

4.7 Type *E*₇.

$$\begin{split} & [E_7] \mapsto 1_0 & [E_7(a_4)] \mapsto 315_7 \\ & [E_7(a_1)] \mapsto 7_1 & [D_5] \mapsto 189_7 \\ & [E_7(a_2)] \mapsto 27_2 & [E_6(a_2)] \mapsto 405_8 \\ & [E_7(a_3)] \mapsto 56_3 & [D_6(a_2) + A_1, D_6(a_2)] \mapsto 280_8 \\ & [E_6] \mapsto 21_3 & [A_5 + A_2, (A_5 + A_1)'] \mapsto 70_9 \\ & [E_6(a_1)] \mapsto 120_4 & [(A_5 + A_1)'', A_5''] \mapsto 216_9 \\ & [D_6 + A_1, D_6] \mapsto 35_4 & [D_5(a_1)] \mapsto 420_{10} \\ & [A_6] \mapsto 105_6 & [A_4 + A_2] \mapsto 210_{10} \end{split}$$

$$[D_6(a_1)] \mapsto 210_6 \qquad [A_4 + A_1] \mapsto 512_{11} \\ [D_5 + A_1] \mapsto 168_6 \qquad [A'_5] \mapsto 105_{12}$$

$$\begin{split} [D_4 + 3A_1, D_4 + 2A_1, D_4 + A_1] &\mapsto 84_{12} \\ & [A_4] &\mapsto 420_{13} \\ [2A_3 + A_1, A_3 + A_2 + A_1] &\mapsto 210_{13} \\ & [A_3 + A_2] &\mapsto 378_{14} \\ & [D_4] &\mapsto 105_{15} \\ & [D_4(a_1) + A_1] &\mapsto 405_{15} \\ & [A_3 + A_2] &\mapsto 84_{15}, *_2 \\ & [A_3 + 3A_1, (A_3 + 2A_1)'] &\mapsto 216_{16} \\ & [D_4(a_1)] &\mapsto 315_{16} \\ & [(A_3 + 2A_1)'', (A_3 + A_1)''] &\mapsto 280_{17} \\ & [3A_2, 2A_2 + A_1] &\mapsto 70_{18} \\ & [(A_3 + A_1)'] &\mapsto 189_{20} \end{split}$$

$[A_2] \mapsto 56_{30}$
$[(4A_1)'', (3A_1)''] \mapsto 35_{31}$
$[(3A_1)']\mapsto 21_{36}$
$[2A_1]\mapsto 27_{37}$
$[A_1] \mapsto 7_{46}$
$[A_0] \mapsto 1_{63}$

4.8 Type *E*₈

$$\begin{split} & [E_7(a_2) + A_1, E_7(a_2)] \mapsto 1344_8 & [D_6(a_1)] \mapsto 5600_{15} \\ & [E_6 + A_2, E_6 + A_1] \mapsto 448_9 & [E_8(a_8)] \mapsto 4480_{16} \\ & [D_8(a_2)] \mapsto 3240_9 & [D_5 + 2A_1, D_5 + A_1] \mapsto 3200_{16} \\ & [D_7(a_1)] \mapsto 1050_{10}, *_2 & [E_7(a_4) + A_1, E_7(a_4)] \mapsto 7168_{17} \\ & [A_7''] \mapsto 175_{12}, *_3 & [2D_4, D_6(a_2) + A_1, D_6(a_2)] \mapsto 4200_{18} \\ & [A_8] \mapsto 2240_{10} & [E_6(a_2) + A_2, E_6(a_2) + A_1] \mapsto 3150_{18} \end{split}$$

$$[A_5 + A_2 + A_1, A_5 + A_2, A_5 + 2A_1, (A_5 + A_1)''] \mapsto 2016_{19}$$
$$[D_5(a_1) + A_3, D_5(a_1) + A_2] \mapsto 1344_{19}$$

$[D_5] \mapsto 2100_{20}$	$[A_4 + A_2 + A_1] \mapsto 2835_{22}$
$[2A_4, A_4 + A_3] \mapsto 420_{20}$	$[A_4 + A_2] \mapsto 4536_{23}$
$[E_6(a_2)]\mapsto 5600_{21}$	$[A_4 + 2A_1] \mapsto 4200_{24}$
$[D_4 + A_3] \mapsto 4200_{21}$	$[D_4 + A_2] \mapsto 168_{24}, *_2$
$[(A_5 + A_1)'] \mapsto 3200_{22}$	$[D_5(a_1)]\mapsto 2800_{25}$
$[D_5(a_1) + A_1] \mapsto 6075_{22}$	$[A_4 + A_1] \mapsto 4096_{26}$

$$\begin{split} [2D_4(a_1), D_4(a_1) + A_3, (2A_3)''] \mapsto 840_{26} \\ [D_4 + 4A_1, D_4 + 3A_1, D_4 + 2A_1, D_4 + A_1] \mapsto 700_{28} \\ [D_4(a_1) + A_2] \mapsto 2240_{28} \\ [2A_3 + 2A_1, A_3 + A_2 + 2A_1, 2A_3 + A_1, A_3 + A_2 + A_1] \mapsto 1400_{29} \\ [A_4] \mapsto 2268_{30} \\ [(2A_3)'] \mapsto 3240_{31} \\ [D_4(a_1) + A_1] \mapsto 1400_{32} \\ [A_3 + A_2] \mapsto 972_{32}, *_2 \\ [A_3 + 4A_1, A_3 + 3A_1, (A_3 + 2A_1)''] \mapsto 1050_{34} \end{split}$$

4.9 In the tables in 4.4–4.8 the *E* which are not marked with $*_r$ are in $S_1(W)$; they are expressed explicitly in the form $j_{W_{e'}}^W(E')$ with $e' \in V^*$, $E' \in S(W_{e'})$ in the tables of [L6].

We now consider the E in the tables 4.4–4.8 which are marked with $*_r$.

Type G_2 : $1_3 = j_{W'}^W$ (sign) where W' is of type A_2 but not of form $W_{e'}, e' \in V^*$.

Type F_4 :

 $\begin{array}{l} 9_6 = j_{W'}^W(\mathrm{E'}) \text{ where } W' \text{ is of type } B_4 \text{ but not of form } W_{e'}, e' \in V^* \text{ and} \\ \dim E' = 6, n_{E'} = 6; \\ 4_7 = j_{W'}^W(\mathrm{sign}) \text{ where } W' \text{ is of type } A_3 A_1 \text{ but not of form } W_{e'}, e' \in V^*; \\ 4_8 = j_{W'}^W(\mathrm{sign}) \text{ where } W' \text{ is of type } B_2 B_2; \\ 2_{12} = j_{W'}^W(\mathrm{sign}) \text{ where } W' \text{ is of type } B_4 \text{ but not of form } W_{e'}, e' \in V^*. \end{array}$

Type E_7 :

 $84_{15} = j_{W'}^W$ (sign) where W' is of type $D_4A_1A_1A_1$.

Type E_8 :

 $1050_{10} = j_{W'}^{W}(E') \text{ where } W' \text{ is of type } D_6A_1A_1 \text{ and } \dim E' = 30, n_{E'} = 10;$ $175_{12} = j_{W'}^{W}(\text{sign}) \text{ where } W' \text{ is of type } A_2A_2A_2A_2.$ $840_{14} = j_{W'}^{W}(\text{sign}) \text{ where } W' \text{ is of type } A_3A_3A_1A_1.$ $168_{24} = j_{W'}^{W}(\text{sign}) \text{ where } W' \text{ is of type } D_4D_4.$ $972_{32} = j_{W'}^{W}(\text{sign}) \text{ where } W' \text{ is of type } D_6A_1A_1.$

4.10 For any $C \in cl(W)$ let m_C be the dimension of the 1-eigenspace of an element in *C* in the reflection representation of *W*. We have the following result.

(a) For any $E \in S_2(W)$, the restriction of $C \mapsto m_C$ to ${}^{\prime}\Phi^{-1}(E) \subset cl(W)$ reaches its minimum at a unique element of ${}^{\prime}\Phi^{-1}(E)$, denoted by C_E .

We can assume that G is simple. When G is of exceptional type, (a) follows from the tables 4.4-4.8. When G is of classical type, (a) follows from [L10, 0.2].

Note that $E \mapsto C_E$ is a cross section of the surjective map $\Phi : \operatorname{cl}(W) \to \mathcal{S}_2(W)$. It defines a bijection of $\mathcal{S}_2(W)$ with a subset $\operatorname{cl}_0(W)$ of $\operatorname{cl}(W)$.

5 A second approach

5.1 In this section we sketch another approach to defining the strata of *G* in which Springer representations do not appear. Let cl(G) be the set of conjugacy classes in *G*. Let $\underline{l}: W \to \mathbf{N}$ be the length function of the Coxeter group *W*. For $w \in W$ let

$$G_w = \{g \in G; (B, gBg^{-1}) \in \mathcal{O}_w \text{ for some } B \in \mathcal{B}\}.$$

For $C \in cl(W)$ let

$$C_{\min} = \{ w \in C; \underline{l} : C \to \mathbf{N} \text{ reaches minimum at } w \}$$

and let $G_C = G_w$ where $w \in C_{\min}$.

As pointed out in [L8, 0.2], from [L8, 1.2(a)] and [GP, 8.2.6(b)] it follows that G_C is independent of the choice of w in C_{\min} . From [L8] it is known that G_C contains unipotent elements; in particular, $G_C \neq \emptyset$. Clearly, G_C is a union of conjugacy classes. Let

$$\delta_C = \min_{\substack{\gamma \in cl(G); \gamma \subset G_C}} \dim \gamma,$$
$$\boxed{G_C} = \bigcup_{\substack{\gamma \in cl(G); \\ \gamma \subset G_C, \dim \gamma = \delta_C}} \gamma.$$

Then G_C is $\neq \emptyset$, a union of conjugacy classes of fixed dimension, δ_C . We have the following result.

5.2 Theorem Let $C \in cl(W)$, $E \in S_2(W)$ be such that ${}^{\prime} \Phi(C) = E$, see 4.1. We have $\overline{G_C} = G_E$.

We can assume that G is almost simple and that **k** is an algebraic closure of a finite field. The proof in the case of exceptional groups is reduced in 5.3 to a computer calculation. The proof for classical groups, which is based on combining the techniques of [L8], [L9] and [L12], will be given elsewhere.

5.3 In this subsection we assume that **k** is an algebraic closure of a finite field \mathbf{F}_q and that G is simply connected, defined and split over \mathbf{F}_q with Frobenius map $F: G \to G$.

Let γ be an *F*-stable conjugacy class of *G*. Let $\gamma' = \{g_s; g \in \gamma\}$, an *F*-stable semisimple conjugacy class in *G*. For every $s \in \gamma'$ let $\gamma(s) = \{u \in Z_G(s); u \text{ unipotent}, us \in \gamma\}$, a unipotent conjugacy class of $Z_G(s)$. We fix $s_0 \in \gamma'^F$ and we set $H = Z_G(s_0), \gamma_0 = \gamma(s_0)$. Let W_H be the Weyl group of *H*. As in 2.1, we can regard W_H as a subgroup of *W* (the embedding of W_H into *W* is canonical up to composition with an inner automorphism of *W*).

By replacing if necessary F by a power of F, we can assume that H contains a maximal torus which is defined and split over \mathbf{F}_q . For any F-stable maximal torus

T of *G*, R_T^1 is the virtual representation of G^F defined as in [DL, 1.20] (with $\theta = 1$ and with *B* omitted from notation). Replacing *T*, *G* by *T'*, *H* where *T'* is an *F*-stable maximal torus of *H*, we obtain a virtual representation $R_{T',H}^1$ of H^F .

For any $z \in W$ we denote by R_z^1 the virtual representation R_T^1 of G^F where T is an F-stable maximal torus of G of type given by the conjugacy class of z in W. For any $z' \in W_H$ we denote by $R_{z',H}^1$ the virtual representation $R_{T',H}^1$ of H^F where T' is an F-stable maximal torus of H of type given by the conjugacy class of z' in W_H . For $E' \in \operatorname{Irr} W$ we set $R_{E'} = |W|^{-1} \sum_{y \in W} \operatorname{tr}(y, E') R_y^1$. Then for any $z \in W$, we have $R_z^1 = \sum_{E' \in \operatorname{Irr} W} \operatorname{tr}(z, E') R_{E'}$.

Let $w \in W$. We show the following:

(a)

$$|\{(g, B) \in \gamma^{F} \times \mathcal{B}^{F}; (B, gBg^{-1}) \in \mathcal{O}_{w}\}| = |G^{F}||H^{F}|^{-1} \sum_{\substack{E \in IrrW, E' \in IrrW, \\ E'' \in IrrW_{H}, y}} tr(T_{w}, E_{q})(\rho_{E}, R_{E'}) \times (E'|_{W_{H}} : E'')|Z_{W_{H}}(y)|^{-1}tr(y, E'') \sum_{u \in \gamma_{0}^{F}} tr(u, R_{y,H}^{1}),$$

where y runs over a set of representatives for the conjugacy classes in W_H and T_w, E_q, ρ_E are as in [L8, 1.2]. Let N be the left-hand side of (a). As in [L8, 1.2(c)] we see that

$$N = \sum_{E \in \operatorname{Irr} W} \operatorname{tr}(T_w, E_q) A_E$$

with

$$A_E = |G^F|^{-1} \sum_{g \in \gamma^F} \sum_T |T^F|(\rho_E, R_T^1) \operatorname{tr}(g, R_T^1),$$

where T runs over all maximal tori of G defined over \mathbf{F}_q . We have

$$A_{E} = |G^{F}|^{-1} \sum_{s \in \gamma'^{F}, u \in \gamma(s)^{F}} \sum_{T} |T^{F}| (\rho_{E}, R_{T}^{1}) \operatorname{tr}(su, R_{T}^{1})$$
$$= |H^{F}|^{-1} \sum_{u \in \gamma_{0}^{F}} \sum_{T} |T^{F}| (\rho_{E}, R_{T}^{1}) \operatorname{tr}(s_{0}u, R_{T}^{1}).$$

By [DL, 4.2] we have

$$\operatorname{tr}(s_0 u, R_T^1) = |H^F|^{-1} \sum_{x \in G^F; x^{-1}Tx \subset H} \operatorname{tr}(u, R_{x^{-1}Tx, H}^1),$$

hence

$$\begin{split} A_E &= |H^F|^{-2} \sum_{u \in \gamma_0^F} \sum_T |T^F|(\rho_E, R_T^1) \sum_{x \in G^F; x^{-1}T x \subset H} \operatorname{tr}(u, R_{x^{-1}T x, H}^1) \\ &= |G^F| |H^F|^{-2} \sum_{T' \subset H} |T'^F|(\rho_E, R_{T'}^1) \sum_{u \in \gamma_0^F} \operatorname{tr}(u, R_{T', H}^1), \end{split}$$

where T' runs over the maximal tori of H defined over \mathbf{F}_q . Using the classification of maximal tori of H defined over \mathbf{F}_q , we obtain

$$A_{E} = |G^{F}||H^{F}|^{-1}|W_{H}|^{-1} \sum_{z \in W_{H}} (\rho_{E}, R_{z}^{1}) \sum_{u \in \gamma_{0}^{F}} \operatorname{tr}(u, R_{z,H}^{1})$$

= $|G^{F}||H^{F}|^{-1}|W_{H}|^{-1} \sum_{z \in W_{H}} \sum_{E' \in \operatorname{Irr}W} \operatorname{tr}(z, E')(\rho_{E}, R_{E'}) \sum_{u \in \gamma_{0}^{F}} \operatorname{tr}(u, R_{z,H}^{1}).$

This clearly implies (a).

Now assume that G is almost simple of exceptional type and that w has minimal length in its conjugacy class in W. We can also assume that q - 1 is sufficiently divisible. Then the right-hand side of (a) can be explicitly determined using a computer. Indeed, it is an entry of the product of several large matrices whose entries are explicitly known. In particular the quantities $tr(T_w, E_q)$ (known from the works of Geck and Geck–Michel, see [GP, 11.5.11]) are available through the CHEVIE package [GH]. The quantities $(\rho_E, R_{E'})$ are coefficients of the nonabelian Fourier transform in [L2, 4.15]. The quantities $(E'|_{W_H} : E'')$ are available from the induction tables in the CHEVIE package. The quantities $tr(u, R_{y,H}^1)$ are Green functions; I thank Frank Lübeck for providing me with the tables of Green functions for groups of rank ≤ 8 in GAP format. I also thank Gongqin Li for her help with programming in GAP to perform the actual computation using these data.

Thus the number $|\{(g, B) \in \gamma^F \times \mathcal{B}^F; (B, gBg^{-1}) \in \mathcal{O}_w\}|$ is explicitly computable. It turns out that it is a polynomial in q. Note that the set $\{(g, B) \in \gamma \times \mathcal{B}; (B, gBg^{-1}) \in \mathcal{O}_w\}$ is nonempty if and only if this polynomial is non zero. Thus the condition that $\gamma \subset G_w$ can be tested. This can be used to check that Theorem 5.2 holds for exceptional groups.

5.4 If *C* is the conjugacy class containing the Coxeter elements of *W*, then $G_C = \overline{G_C}$ is the union of all conjugacy classes of dimension dim G - rk(G), see [St].

6 Variants

6.1 The results in this subsection will be proved elsewhere. In this subsection we assume that G is simple and that G' is a disconnected reductive algebraic group G over **k** with identity component G, such that G'/G is cyclic of order r and such

that the homomorphism $\epsilon : G'/G \to \operatorname{Aut}(W)$ (the automorphism group of W as a Coxeter group) induced by the conjugation action of G'/G on G is injective. Note that (G, r) must be of type $(A_n, 2)$ $(n \ge 2)$ or $(D_n, 2)$ $(n \ge 4)$ or $(D_4, 3)$ or $(E_6, 2)$. Let D be a connected component of G' other than G. We will give a definition of the strata of D, extending the definition of strata of G. Let $\epsilon_D : W \to W$ be the image of D under ϵ . Let $cl_D W$ be the set of conjugacy classes in W twisted by ϵ_D (as in [L12, 0.1]). Let cl(D) be the set of G-conjugacy classes in D. For $w \in W$ let

$$D_w = \{g \in D; (B, gBg^{-1}) \in \mathcal{O}_w \text{ for some } B \in \mathcal{B}\}.$$

For $C \in cl_D(W)$ let

 $C_{\min} = \{ w \in C; l : C \to \mathbb{N} \text{ reaches minimum at } w \}.$

and let $D_C = D_w$ where $w \in C_{\min}$. This is independent of the choice of w in C_{\min} . One can show that $D_C \neq \emptyset$. Clearly, D_C is a union of G-conjugacy classes in D. Let

$$\delta_C = \min_{\substack{\gamma \in cl(D); \gamma \subset D_C}} \dim \gamma,$$
$$\boxed{D_C} = \bigcup_{\substack{\gamma \in cl(D); \\ \gamma \subset D_C, \dim \gamma = \delta_C}} \gamma.$$

Then D_C is $\neq \emptyset$, a union of G-conjugacy classes of fixed dimension, δ_C . One can show that $\bigcup_{C \in cl_D(W)} D_C = D$; moreover, one can show that if $C, C' \in cl_D(W)$, then D_C , $D_{C'}$ are either equal or disjoint. (Some partial results in this direction are contained in [L12].) Let ~ be the equivalence relation on $cl_D(W)$ given by $C \sim C'$ if $D_C = D_{C'}$ and let $\underline{cl}_D(W)$ be the set of equivalence classes. We see that there is a unique partition of D into pieces (called *strata*) indexed by $\underline{cl}_{D}(W)$ such that each stratum is of the form D_C for some $C \in cl_D(W)$. One can show that the equivalence relation \sim on $\operatorname{cl}_{D}(W)$ and the function $C \mapsto d_{C}$ on $\operatorname{cl}_{D}(W)$ depend only on W and its automorphism ϵ_D ; in particular they do not depend on **k**. When p = r, each stratum of D contains a unique unipotent G-conjugacy class in D; this gives a bijection $\underline{cl}_D(W) \leftrightarrow \mathcal{U}_D^r$ where \mathcal{U}_D^r is the set of unipotent Gconjugacy classes in D (with p = r). This bijection coincides with the bijection $\underline{cl}_D(W) \leftrightarrow \mathcal{U}_D^r$ described explicitly in [L11]. Thus the strata of D can also be indexed by \mathcal{U}_D^r . We can also index them by a certain set of irreducible representations of W^{ϵ_D} (the fixed point set of $\epsilon_D : W \to W$) using the bijection [L4, II] between \mathcal{U}_D^r and a set of irreducible representations of W^{ϵ_D} (an extension of the Springer correspondence).

6.2 Assume that *G* is adjoint. We identify \mathcal{B} with the variety of Borel subalgebras of \mathfrak{g} . For any $\xi \in \mathfrak{g}$ let $\mathcal{B}_{\xi} = \{\mathfrak{b} \in \mathcal{B}; \xi \in \mathfrak{b}\}$ and let $d = \dim \mathcal{B}_{\xi}$. The subspace of $H_{2d}(\mathcal{B})$ spanned by the images of the fundamental classes of the irreducible components of \mathcal{B}_{ξ} is an irreducible *W*-module denoted by τ_{ξ} . We also denote by τ_{ξ}

the corresponding *W*-module over **Q**. Thus we have a well-defined map $\mathfrak{g} \to \operatorname{Irr} W$, $\xi \mapsto \tau_{\xi}$. The nonempty fibres of this map are called the *strata* of \mathfrak{g} . Each stratum of \mathfrak{g} is a union of adjoint orbits of fixed dimension; exactly one of these orbits is nilpotent. The image of the map $\xi \mapsto \tau_{\xi}$ is the subset of $\operatorname{Irr}(W)$ denoted by \mathcal{T}_W^p in [L7]; when p = 0 this is $S_1(W)$.

6.3 In this subsection we assume that G is semisimple simply connected. Let Kbe the field of formal power series $\mathbf{k}((\epsilon))$ and let $\hat{G} = G(K)$. Let $\hat{\mathcal{B}}$ be the set of Iwahori subgroups of \hat{G} viewed as an increasing union of projective algebraic varieties over **k**. Let \hat{W} be the affine Weyl group associated to \hat{G} viewed as an infinite Coxeter group. Let $G(K)_{rsc}$ be the set of all $g \in G(K)$ that are compact (that is such that $\hat{\mathcal{B}}_g = \{B \in \hat{\mathcal{B}}; g \in B\}$ is nonempty) and regular semisimple. If $g \in G(K)_{rsc}$, then $\hat{\mathcal{B}}_g$ is a union of projective algebraic varieties of fixed dimension $d = d_g$ (see [KL] for a closely related result) hence the homology space $H_{2d}(\hat{\mathcal{B}}_g)$ is well defined and it carries a natural \hat{W} -action (see [L13]). Similarly the homology space $H_{2d}(\hat{\mathcal{B}})$ is well-defined and it carries a natural \hat{W} -action. The embedding $\hat{h}_g: \hat{\mathcal{B}}_g \to \hat{\mathcal{B}}$ induces a linear map $h_{g*}: H_{2d}(\hat{\mathcal{B}}_g) \to H_{2d}(\hat{\mathcal{B}})$ which is compatible with the \hat{W} -actions. Hence \hat{W} acts naturally on the (finite-dimensional) subspace $E_g := h_{g*}(H_{2d}(\hat{\beta}_g))$ of $H_{2d}(\hat{\beta})$, but this action is not irreducible in general. Note that E_g is the subspace of $H_{2d}(\hat{\beta})$ spanned by the images of the fundamental classes of the irreducible components of $\hat{\mathcal{B}}_g, \overline{\mathbf{Q}}_l$ (we ignore Tate twists), hence is $\neq 0$. For $g, g' \in G(K)_{rsc}$ we say that $g \sim g'$ if $d_g = d_{g'}$ and $E_g = E_{g'}$. This is an equivalence relation on $G(K)_{rsc}$. The equivalence classes for \sim are called the strata of $G(K)_{rsc}$. Note that $G(K)_{rsc}$ is a union of countably many strata and each stratum is a union of conjugacy classes of G(K) contained in $G(K)_{rsc}$.

6.4 In this subsection we state a conjectural definition of the strata of *G* in the case where $\mathbf{k} = \mathbf{C}$ based on an extension of a construction in [KL]. Let *K* be as in 6.3. Let $g \in G$. Let $\mathfrak{z} \subset \mathfrak{g}$ be the Lie algebra of $Z_G(g_s)$ and let $\mathfrak{\xi} = \log(g_u) \in \mathfrak{z}$. Let \mathfrak{p} be a parahoric subalgebra of $\mathfrak{g}_K := K \otimes \mathfrak{g}$ with pro-nilradical \mathfrak{p}_n such that $\mathfrak{p} = \mathfrak{z} \oplus \mathfrak{p}_n$ as **C**-vector spaces. By the last corollary in [KL, §6], there exists a non-empty subset \mathfrak{U} of $\mathfrak{\xi} + \mathfrak{p}_n$ (open in the power series topology) and $\sigma \in \mathrm{cl}(W)$ such that for any $x \in \mathfrak{U}$, x is regular semisimple in a Cartan subalgebra of \mathfrak{g}_K of type σ (see [KL, §1,§6]). Note that σ does not depend on the choice of \mathfrak{U} . We expect that it does not depend on the choice of \mathfrak{p} and that $g \mapsto \sigma$ is a map $G \to \mathrm{cl}(W)$ whose fibres are exactly the strata of *G*. By the identification 4.1(c) this induces an injective map $\underline{\mathrm{cl}}(W) \to \mathrm{cl}(W)$ whose image is expected to be the subset $\mathrm{cl}_0(W)$ in 4.10 and whose composition with the obvious map $\mathrm{cl}(W) \to \underline{\mathrm{cl}}(W)$ is expected to be the identity map of $\mathrm{cl}(W)$.

Acknowledgements This research is supported in part by National Science Foundation grant DMS-1303060.

References

- [Bo] W. Borho, Über Schichten halbeinfacher Lie-Algebren, Invent. Math. 65 (1981), 283–317.
- [Ca] G. Carnovale, Lusztig's partition and sheets (with an appendix by M.Bulois), Mathematical Research Letters Vol. 22 (2015), 645–664.
- [C] R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1–59.
- [DL] P. Deligne and G. Lusztig, *Representations of reductive groups over finite fields*, Ann. Math. 103 (1976), 103–161.
- [GH] M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput. 7 (1996), 1175–1210.
- [GP] M. Geck and G. Pfeiffer, *Characters of finite Coxeter groups and Iwahori-Hecke algebras*, Clarendon Press Oxford, 2000.
- [KL] D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Isr. J. Math. 62 (1988), 129–168.
- [L1] G. Lusztig, A class of irreducible representations of a Weyl group, Proc. Kon. Nederl. Akad, A82 (1979), 323–335.
- [L2] G. Lusztig, Characters of reductive groups over a finite field, Ann. Math. Studies 107, Princeton U. Press, 1984.
- [L3] G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), 205–272.
- [L4] G. Lusztig, Character sheaves on disconnected groups II, Represent. Th. 8 (2004), 72-124.
- [L5] G. Lusztig, Unipotent elements in small characteristic, Transform. Groups 10 (2005), 449–487.
- [L6] G. Lusztig, Unipotent classes and special Weyl group representations, J. Alg. 321 (2009), 3418–3449.
- [L7] G. Lusztig, Remarks on Springer's representations, Represent. Th. 13 (2009), 391-400.
- [L8] G. Lusztig, From conjugacy classes in the Weyl group to unipotent classes, Represent. Th. 15 (2011), 494–530.
- [L9] G. Lusztig, On C-small conjugacy classes in a reductive group, Transform. Groups, 16 (2011), 807–825.
- [L10] G. Lusztig, From conjugacy classes in the Weyl group to unipotent classes II, Represent. Th. 16 (2012), 189–211.
- [L11] G. Lusztig, From conjugacy classes in the Weyl group to unipotent classes III, Represent. Th. 16 (2012), 450–488.
- [L12] G. Lusztig, Distinguished conjugacy classes and elliptic Weyl group elements, Represent. Th. 18 (2014), 223–277.
- [L13] G. Lusztig, Unipotent almost characters of simple *p*-adic groups, to appear in Vol. 1 of *De la géométrie algébrique aux formes automorphes (une collectiond'articles en l'honneur du soixantième anniversaire de Gérard Laumon)*, Astérisque, Société Mathématique de France.
- [LS1] G. Lusztig and N. Spaltenstein, *Induced unipotent classes*, J. Lond. Math. Soc. 19, (1979), 41–52.
- [LS2] G. Lusztig and N. Spaltenstein, On the generalized Springer correspondence for classical groups, in Algebraic groups and related topics, Adv. Stud. Pure Math. 6, North Holland and Kinokuniya, (1985), 289–316.
- [Pe] D. Peterson, Geometry of the adjoint representation of a complex semisimple Lie algebra, Ph.D. Thesis, Harvard Univ., 1978.
- [Spa] N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Math. 946, Springer Verlag, 1982.
- [Spr] T.A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207.
- [St] R. Steinberg, Regular elements of semisimple algebraic groups, Publications Math. 25 (1965), 49–80.