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Preface

This volume is an outgrowth of the conference Representations of Reductive Groups:
A conference dedicated to David Vogan on his 60th birthday, which took place at
MIT from May 19–23, 2014. This celebratory conference showcased developments
in the representation theory of reductive Lie groups and algebraic groups over finite
and local fields, as well as connections of this theory with other subjects, such as
number theory, automorphic forms, algebraic geometry and combinatorics. It was
an occasion to mark the 60th birthday of David Vogan, who has inspired and shaped
the development of this field for almost 40 years. A list of conference speakers ap-
pears on page xiii.

David Vogan has proven himself a leader in the field in many ways. The most
evident of these are his vast and influential mathematical contributions, an overview
of which appears in the chapter The Mathematical Work of David A. Vogan, Jr. in
this volume. Also, of significant importance to so many — and to us personally —
has been David’s mentorship, insight and guidance. We include a subset of those
who have benefitted from working closely with David — namely, his PhD students
to date, as well as some of his mathematical descendants who were able to attend
the conference — on pages xvi to xviii.

AMS Centennial Fellow (1977), Plenary Lecturer of the International Congress
of Mathematicians (1986), Herman Weyl Lecturer (IAS, 1986), Member of the
American Academy of Arts and Sciences (1996), Robert E. Collins Distinguished
Scholar, MIT, (2007–2012), winner of the Levi L. Conant Prize (2011) for his paper
“The character table of E8”, Member of the National Academy of Science (2013),
and current Norbert Weiner Chair at MIT (2014–2019), David Vogan has been often
been distinguished by his peers and by the mathematical community. Significantly,
he has also given back through substantial work in academic service, including as
Head of the MIT Department of Mathematics (1999–2004) and President of the
American Mathematical Society (2013–2015).

This volume represents a step towards expressing our thanks.

ix
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The Mathematical Work of David A. Vogan, Jr.

William M. McGovern and Peter E. Trapa

To David, with gratitude and respect

Abstract Over four decades David Vogan’s groundbreaking work in representation
theory has changed the face of the subject. We give a brief summary here.

Key words: unitary representations, semisimple Lie groups

MSC (2010): 22E46

It is difficult to give a complete overview in a few short pages of the impact of the
work of David Vogan, but it is easy to identify the starting point: his 1976 MIT Ph.D.
thesis [V76], completed at the age of 21 under the direction of Bertram Kostant, was
a striking advance in the subject. It paved the way for an algebraic classification of
irreducible (not necessarily unitary) representations for a reductive Lie group G at
a time when the existing approaches to such classification problems (in the work
of Harish-Chandra, Langlands, Knapp–Zuckerman, and others) were heavily ana-
lytic. David’s classification (published as an announcement in [V77] and partially
in [V79d]) was later streamlined and extended with Zuckerman using Zuckerman’s
new technology of cohomological induction, which complemented the Lie algebra
cohomology techniques developed in David’s thesis. A full exposition, including an
influential list of problems, appeared in [V81a], completed in 1980.

W.M. McGovern
Department of Mathematics, University of Washington
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2 W.M. McGovern and P.E. Trapa

Harish-Chandra developed the theory of non-unitary representations in large part
to study unitary representations, and indeed unitary representation theory emerged
as the central thread in virtually all of David’s work. Along the way, David naturally
proved many results about non-unitary representations, but rarely without consider-
ation of their relevance for unitarity. This is beautifully laid out in [V83a]; in [V87],
an exposition of David’s Weyl Lectures at the Institute in 1986; and in [V87], the
notes from David’s 1986 Plenary ICM address.

As he was completing his algebraic classification, David tackled a description of
irreducible characters, which he solved in [V83] and [LV83] with Lusztig before the
completed manuscript [V81a] went to press. David’s approach to computing irre-
ducible characters involved expressing them as explicit linear combinations of char-
acters of certain standard parabolically induced representations. Since the latter, in
principle, can be computed from Harish-Chandra’s results on the discrete series and
the tractable effect of parabolic induction on characters, this gives the irreducible
characters. The problem is therefore parallel to expressing an irreducible highest
weight module as a virtual sum of Verma modules, the subject of the Kazhdan–
Lusztig conjectures, and so the irreducible character problem for Harish-Chandra
modules became informally known as the “Kazhdan–Lusztig algorithm for real
groups”. David constructed this algorithm, modulo a judicious technical conjecture
about the semisimplicity of certain modules arising from wall-crossing translation
functors, in [V79c].

A substantial part of [V79a, V79c] (and its exposition in [V81a]) relied on un-
derstanding how irreducible characters behave under coherent continuation. This
was also the starting point for the earlier work with Speh [SV80] which addressed
fundamental problems of the reducibility of standard modules, clearly of impor-
tance to both the classification and irreducible character problem (and to unitarity
questions). The intricate arguments in [SV80] were simplified in [V79a] which fur-
ther made a key connection with dimensions of certain Ext groups in the category
of Harish-Chandra modules. This latter connection became an extremely power-
ful tool in the computation of irreducible characters, culminating in the Kazhdan–
Lusztig algorithm for real groups in [V79c]. (When applied to the setting of highest
weight modules, the algorithm of [V79c] in fact reduced to the original algorithm
of Kazhdan–Lusztig.) The technical conjecture mentioned above, though entirely
algebraic in its formulation, was ultimately only surmounted by geometric methods
in positive characteristic [LV83] and partly based on the new localization theory of
Beilinson–Bernstein and its connection to the cohomological methods in David’s
classification [V83]. (Particular cases of the Lusztig–Vogan geometry and related
settings are considered in the contributions of Graham–Li and McGovern in this
volume.) David gave a very accessible “roadmap” to the Kazhdan–Lusztig conjec-
tures for real groups in [V83b], including complete recursion formulas for the poly-
nomials of [LV83] which came to be known as Kazhdan–Lusztig–Vogan, or KLV,
polynomials.

Thus, in the span of just of a few spectacularly productive years, the irreducible
character problem was solved by a vast array of new techniques. There was much
more to be done with these powerful new ideas.
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Because one is often interested in extracting less complete (but more accessi-
ble) information about irreducible representations than their characters, David was
led to consider various invariants of Harish-Chandra modules. His influential paper
[V78a] (see also [V80b]) lays the foundation of Gelfand–Kirillov dimension for
Harish-Chandra modules and classifies those representations which are generic in
the sense that they admit Whittaker models. The contribution of Wallach to this
volume discusses GK dimension for smaller discrete series.

Connections to Kazhdan–Lusztig theory and Joseph’s theory of primitive ideal
cells, as well as weaker formulations of quantization, naturally led to fundamen-
tal questions in the theory of primitive ideals in enveloping algebras of com-
plex semisimple Lie algebras initiated by Dixmier, Duflo, Joseph, and others. In
[V79b], David studied primitive ideals directly by understanding their behavior
under coherent continuation restricted to rank-two root subsystems, generalizing
the Borho–Jantzen � -invariant which considered rank-one subsystems. (The paper
of Bonnafé and Geck in this volume takes up many of these ideas.) Later, work-
ing with Garfinkle, he proved analogous results for restricting to the root system
of type D4 [GaV92], necessary for any systematic analysis of branched Dynkin
diagrams. These turned out to be very powerful computational tools which were
exploited to great effect in the work of Garfinkle and others. In [V80a], David rel-
ated the ordering of primitive ideals to a preorder arising in the original paper of
Kazhdan–Lusztig. He and Barbasch carried out the classification of primitive ideals
in complex semisimple Lie algebras [BV82, BV83a]. Along the way, they showed
that representations of the Weyl group that arise in Joseph’s Goldie rank construc-
tion are exactly the special ones in the sense of Lusztig, and related them to Fourier
inversion of certain unipotent orbital integrals.

As he was developing his algebraic theory, David was naturally led to under-
stand its relation with Langlands’ original classification and the larger context of
the Local Langlands Conjectures. The dual group makes a fundamental appearance
in the technical tour de force [V82] where David uncovered an intricate symmetry
in his Kazhdan–Lusztig algorithm for real groups: he proved that computing irre-
ducible characters of real forms G of a complex connected reductive group GC is
dual, in a precise sense, to computing irreducible characters of real forms of the
dual group G_

C
. (When applied to the case of complex groups, it can be interpreted

as the equality (up to sign) of the Kazhdan–Lusztig polynomials Px;y and Pw0y;w0x

proved by Kazhdan–Lusztig in their original paper; here w0 is the long element of
the Weyl group.) The full significance of this deep and beautiful symmetry, now
known as Vogan duality, was only fully realized later in [ABV92]. In order to get
a perfectly symmetric statement, one must consider multiple real forms at the same
time. This immediately leads to the question of when two collections of representa-
tions of multiple real forms should be considered equivalent, and eventually to the
definition of strong real forms [ABV92], differing in subtle and interesting ways
from the classical notion of real forms. On the dual side, it led Adams, Barbasch,
and Vogan (building on earlier ideas of Adams and Vogan [AV92a, AV92b]) to re-
formulate the space of Langlands parameters.
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Like the space of classical Langlands parameters, the reformulated space of ABV
parameters is a complex algebraic variety on which the complex dual groups acts.
Unlike the space of Langlands parameters in the real case, the orbits of the dual
group on the ABV space have closures with nontrivial singularities. The main result
of [ABV92] is a refinement of the representation-theoretic part of the Local Lang-
lands Conjecture for real groups where K-groups of representations of strong real
forms are dual to K-groups of appropriate categories of equivariant perverse sheaves
on the space of ABV parameters. This incredibly intricate correspondence is ulti-
mately deduced from [V82]. Using it, [ABV92] makes precise and establishes a
series of conjectures of Arthur (for real groups), at the same time providing a differ-
ent perspective on the Langlands–Shelstad theory of endoscopy. In the ABV theory,
Arthur packets of representations are defined in terms of characteristic cycles of per-
verse sheaves on the space of ABV parameters. Such cycles are still mysterious and
poorly understood. (Some related complications are on display in the new examples
of Williamson in this volume.) For classical groups, Arthur has recently defined
Arthur packets and established his conjectures from a different point of view; com-
paring his results in the real case to those of [ABV92] is still to be done. Meanwhile,
Soergel (generalizing Beilinson–Ginzburg–Soergel) formulated a still-open conjec-
ture extending the main result of [ABV92] (established on the level of K-groups) to
a categorical statement. Using the real case as a model, David proposed refinements
of the Local Langlands Conjectures in the much more difficult p-adic case as well
([V93a]). This has played an increasingly important role in recent years.

The paper [V84] is most often remembered for its long sought-after proof that
cohomological induction preserves unitarity under fairly general hypotheses. As a
consequence, certain representations (the so-called Aq.�/ modules) constructed by
Zuckerman from unitary characters are indeed unitary. Earlier, Vogan and Zuck-
erman [VZ84] had classified all unitary representations with nonzero relative Lie
algebra cohomology as Aq modules, modulo the conjecture that the modules they
had classified were indeed unitary. For the applications to the cohomology of locally
symmetric spaces discussed in [VZ84] (and [V97b]), this was not important, but for
unitary representation theory it was a central question at the time.

In later work, David clarified the role of the Aq.�/ in the discrete spectrum of
symmetric spaces [V88b], as well as how they appear as isolated representations
[V07a]. Basic questions about explicitly constructing the unitary inner product geo-
metrically on minimal globalizations are still open (as explained in [V08]). He
returned to the Dirac operator methods of [VZ84] in an influential series of lec-
tures [V97] that spawned an entire new area of investigation, still developing today
(for example in the contribution of Huang to this volume).

Striking examples of complete classifications of unitary representations include
David’s description of the unitary dual of GL.n;R/ (obtained in 1984 and appearing
in [V86a]), and later the unitary dual of G2 [V94] (dedicated to Borel). The descrip-
tion of the unitary duals given in these cases was organized in terms of system-
atic procedures (like cohomological induction and construction of complementary
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series) applied to certain building blocks. The systematic role of cohomological
induction was clarified later in his deep work with Salamanca-Riba [SaV98],
[SaV01]; see also the exposition [V00b]. The groundwork for systematizing the
construction of complementary series is [BV84]. But abstracting a general defini-
tion of the mysterious building blocks, which came to be known (somewhat im-
precisely) as unipotent representations, proved to be more difficult and is a major
theme in David’s work. The overviews [V93b], [V97a], [V00c] contain many ideas.
At the heart of the notion of unipotent is the connection to nilpotent coadjoint orbits
in semisimple Lie algebras and modern approaches to geometric quantization pio-
neered by Kirillov and Kostant. The paper with Graham [GrV98] makes significant
progress in the setting of complex groups.

Early on, David proved that the annihilator of an irreducible unitary Harish-
Chandra module for a complex group was completely prime. He then formulated
a conjectural kind of Nullstellensatz for such ideals in [V86b] in which finite alge-
bra extensions of primitive quotients of the enveloping algebra play a crucial role.
Such algebra extensions, sometimes called Dixmier algebras, were further studied
in [V90] and the notion of induced ideal was extended to them. Many beautiful
facets of David’s conception of the orbit method are explained in [V88a].

One of the fundamental ways in which nilpotent orbits appear in the represen-
tation theory of real groups is through the asymptotics of the character expansion
discovered in [BV80]. In this construction, each Harish-Chandra module gives rise
to a real linear combination of real nilpotent coadjoint orbits. Nilpotent orbits also
arise through David’s construction of the associated cycle of a Harish-Chandra
module [V91], a positive integral combination of complex nilpotent coadjoint orb-
its for symmetric pairs (the setting originally investigated by Kostant–Rallis). The
Barbasch–Vogan conjecture, proved by Schmid and Vilonen, asserted that the two
kinds of linear combinations coincide perfectly under the Kostant–Sekiguchi bijec-
tion. David used these invariants to define conditions on a class of unipotent repre-
sentation in [V91]. A beautiful example of the explicit desiderata in a case of great
interest is given in [AHV98].

A weaker version of the quantization of nilpotent orbits instead focuses on con-
structing Harish-Chandra modules with prescribed annihilator. Barbasch and Vogan
long ago identified a set of interesting infinitesimal characters and sought to un-
derstand Harish-Chandra modules annihilated by maximal primitive ideals with
those infinitesimal characters, conjecturing that such Harish-Chandra modules were
unitary. (This generalizes the study of minimal representations [V81b], where the
maximal primitive ideals are the Joseph ideals.) In [BV85], Barbasch and Vogan
discovered that many of their interesting infinitesimal characters — conjecturally
those arising as the annihilators of unitary representations with automorphic appli-
cations — fit perfectly into the framework of the ideas proposed by Arthur. The
paper [BV85] gives strikingly simple character formulas for these so-called spe-
cial unipotent representations in the setting of complex groups (and the ideas make
sense for real groups too). An aspect of the proof of the character formulas relied
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on ways to count special unipotent representations using the decomposition of the
coherent continuation representation into cells. The theory of Kazhdan–Lusztig cells
for complex groups was extended to real groups with Barbasch in [BV83b].

The theory of [BV85] was generalized in the important closing chapter of
[ABV92], where it can be understood entirely in terms of the principle of Langlands
functoriality. A central theme in David’s work is the extent to which functoriality
extends to organize all unitary representations, not just automorphic ones. (A very
accessible introduction to this set of ideas is contained in [V01]). The Shimura-type
lifting in [ABPTV97] can also be understood in these terms as part of an aim to
extend functoriality to certain nonalgebraic groups.

The interaction between the philosophy of the orbit method and the construction
of associated varieties was developed further in [V00a], culminating in a general
(still unrealized) approach toward proving the unitarity of the special unipotent rep-
resentations defined in [BV85] and [ABV92]. One facet of this involved relating the
KC equivariant K-theory of the nilpotent cone in the symmetric space setting to the
tempered dual of G. David conjectured a precise relationship (independently and
earlier conjectured by Lusztig for complex groups) that was later proved in special
cases by Achar and by Bezrukavnikov. The article of Achar in this volume provides
an up-to-date look at work in this direction.

The unitarity of Aq.�/ in [V84] is a deep and important result, but the theory of
signature characters of Harish-Chandra modules that David developed to obtain it
has proved to be even more influential. It immediately led Wallach to a shorter proof
of the unitarity of the Aq.�/ modules, for example, and was adapted to unramified
representations of split p-adic groups by Barbasch and Moy. But for David it was
part of an approach to determining the entire unitary dual of a reductive group. The
paper [V84] proposes an algorithm (heavily rooted in his Kazhdan–Lusztig theory
for real groups and the theory of the Jantzen conjecture) to determine if an irre-
ducible representation specified in the Langlands classification is in fact unitary. The
algorithm was predicated on determining certain signs that, at the time, were inac-
cessible. Determining the signs in the algorithm of [V84] was finally surmounted in
[ALTV12], giving a finite effective algorithm to locate the unitary dual of a reductive
Lie group in the Langlands classification.

The paper [ALTV12] relies on relating classical invariant Hermitian forms on
irreducible Harish-Chandra modules (the object of study in unitary representation
theory) to forms with a different, more canonical invariance property. Once this
latter invariance property was uncovered, its importance was immediately recog-
nized in other settings (for example in the geometric setting of Schmid and Vilonen
explained in their contribution to this volume and the analogous p-adic setting in
the contribution of Barbasch and Ciubotaru). Translating between the two kinds
of forms in [ALTV12] immediately leads one to certain extended groups which
are not the real points of a connected reductive algebraic group, and which are
outside the class of groups for which [V83] established a Kazhdan–Lusztig algo-
rithm. In recent work, Lusztig and Vogan [LV14] (generalizing their earlier work
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[LV83, LV12]) provide the geometric foundations of Kazhdan–Lusztig theory for
such extended groups. In particular, they define a Hecke algebra action on an
appropriate Grothendieck group. This action characterizes the “twisted” Kazhdan–
Lusztig polynomials in this setting. [LV14] gives explicit formulas for individual
Hecke operators, but they depended on certain choices. The effect of these choices
is completely understood in the paper by Adams and Vogan in this volume. Mean-
while, Lusztig and Vogan in this volume provide an extension of the results of
[LV12] to the setting of arbitrary Coxeter groups using the new theory of Elias and
Williamson.

Over the last fifteen years, David has been deeply involved in the atlas project,
the goal of which is to translate much of the mathematics described above into
the computer software package atlas in the generality of the real points of any
complex connected reductive algebraic group. This has involved his close collabo-
ration with many people, but especially with Adams, du Cloux, and van Leeuwen.
David’s Conant Prize winning article [V07b] gives an overview of the first step: the
implementation of the computation of irreducible characters and, in particular, the
computation of the KLV polynomials for the split real form of E8. His paper [V07c]
is devoted to algorithms at the heart of computing theK-spectrum of any irreducible
Harish-Chandra module. At present the software is able to test the unitarity of any
irreducible Harish-Chandra module specified in the Langlands classification. The
results of [V84] imply that testing a finite number of such representations suffices
to determine the entire unitary dual. The implementation of this will almost cer-
tainly be complete in the next year or two, a remarkable achievement that no one
could have predicted was possible even just a decade ago. In many ways, it is the
culmination of David’s seminal contributions to unitary representation theory.

The above captures a sliver of the mathematics developed in David’s papers.
It says little of his influential expositions that have, by now, educated generations.
It also says nothing of the immense number of mathematical ideas David gave freely
to others, nor of his selfless devotion to the profession of mathematics. But, we hope,
it points to the breadth of his influence to date, as well as some of the exciting work
left to be done.

References

[ABV92] J. Adams, D. Barbasch and D. A. Vogan, Jr., The Langlands classification and irr-
educible characters for real reductive groups, Progress in Mathematics, Vol. 104.
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Abstract Exotic sheaves are certain complexes of coherent sheaves on the cotan-
gent bundle of the flag variety of a reductive group. They are closely related to
perverse-coherent sheaves on the nilpotent cone. This expository article includes
the definitions of these two categories, applications, and some structure theory, as
well as detailed calculations for SL2.
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1 Introduction

Let G be a reductive algebraic group. Let N be its nilpotent cone, and let eN be the
Springer resolution. This article is concerned with two closely related categories
of complexes of coherent sheaves: exotic sheaves on eN , and perverse-coherent
sheaves on N . These categories play key roles in Bezrukavnikov’s proof of the
Lusztig–Vogan bijection [18] and his study of quantum group cohomology [19]; in
the Bezrukavnikov–Mirković proof of Lusztig’s conjectures on modular represen-
tations of Lie algebras [21]; in the proof of the Mirković–Vilonen conjecture on
torsion on the affine Grassmannian [7]; and in various derived equivalences related
to local geometric Langlands duality, both in characteristic zero [11, 20] and, more
recently, in positive characteristic [8, 36].
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In this expository article, we will introduce these categories via a relatively ele-
mentary approach. But we will also see that they each admit numerous alternative
descriptions, some of which play crucial roles in various applications. The paper
also touches on selected aspects of their structure theory, and it concludes with de-
tailed calculations for G D SL2. Some proofs are sketched, but many are omitted.
There are no new results in this paper.

My interest in these notions began when David Vogan pointed out to me, in
2001, the connection between the papers [17, 18] and my own Ph.D. thesis [1]. It
is a pleasure to thank David for suggesting a topic that has kept me interested and
busy for the past decade and a half!

2 Definitions and preliminaries

2.1 General notation and conventions

Let k be an algebraically closed field, and let G be a connected reductive group
over k. We assume throughout that the following conditions hold:

� The characteristic of k is zero or a JMW prime for G.
� The derived subgroup of G is simply connected.
� The Lie algebra g of G admits a nondegenerate G-invariant bilinear form.

Here, a JMW prime is a prime number that is good for G and such that the main
result of [31] holds for G. That result, which is concerned with tilting G-modules
under the geometric Satake equivalence, holds for quasisimple G at least when p
satisfies the following bounds1:

An, Bn, Dn, E6, F4, G2 Cn E7 E8
p good for G p > n p > 19 p > 31

:

The condition that g admit a nondegenerateG-invariant bilinear form is satisfied for
GL.n/ in all characteristics, and for quasisimple, simply connected groups not of
type A in all good characteristics.

Fix a Borel subgroup B � G and a maximal torus T � B . Let X be the character
lattice of T , and let XC � X be the set of dominant weights corresponding to the
positive system opposite to the roots of B . (In other words, we think of B as a
“negative” Borel subgroup.) Let u � g be the Lie algebra of the unipotent radical
of B . LetW be the Weyl group, and let w0 2 W be the longest element. For � 2 X,
let

ı� D minf`.w/ j w� 2 XCg and ı�� D ıw0�:

1 These bounds have recently been improved by Mautner–Riche; see Remark 2.1.
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For any weight � 2 X, let dom.�/ be the unique dominant weight in its Weyl group
orbit. Two partial orders on X will appear in this paper. For �;� 2 X, we write

� � � if � � � is a sum of positive roots;
� � � if dom.�/ � dom.�/, or else if dom.�/ D dom.�/ and � � �.

Let Xmin � XC be the set of minuscule weights. Elements of �Xmin are called
antiminuscule weights. For any � 2 X, there is a unique minuscule, resp. antimi-
nuscule, weight that differs from � by an element of the root lattice, denoted

C

m.�/; resp. Nm.�/:

Note that Nm.�/ D w0C

m.�/.
Let Rep.G/ and Rep.B/ denote the categories of finite-dimensional algebraic

G- and B-representations, respectively. Let indGB W Rep.B/ ! Rep.G/ and resGB W
Rep.G/ ! Rep.B/ denote the induction and restriction functors. For any � 2 X,
let k� 2 Rep.B/ be the 1-dimensional B-module of weight �, and let

H i .�/ D Ri indGB k�:

If � 2 XC, then H 0.�/ is the dual Weyl module of highest weight �, and the other
H i .�/ vanish. On the other hand, we put

V.�/ D H dimG=B.w0� � 2�/ Š H 0.�w0�/�:
This is the Weyl module of highest weight �.

Let N � g be the nilpotent cone of G, and let eN D G �B u. Any weight � 2 X
gives rise to a line bundle O

eN .�/ on eN . The Springer resolution is denoted by

� W eN ! N :

Let the multiplicative group Gm act on g by ´ 	 x D ´�2x, where ´ 2 Gm and
x 2 g. This action commutes with the adjoint action ofG. It restricts to an action on
N or on u; the latter gives rise to an induced action on eN . We write CohG�Gm.N /
for the category of .G � Gm/-equivariant coherent sheaves on N , and likewise for
the other varieties. Recall that there is an “induction equivalence”

CohB�Gm.u/ Š CohG�Gm.eN /: (1)

The Gm-action on g corresponds to equipping the coordinate ring kŒg� with a
grading in which the space of linear functions g� � kŒg� is precisely the space
of homogeneous elements of degree 2. Thus, a .G � Gm/-equivariant coherent
sheaf on g is the same as a finitely-generated graded kŒg�-module equipped with
a compatible G-action. Similar remarks apply to CohG�Gm.N / and CohB�Gm.u/.
If V D L

n2Z Vn is a such a graded module (or more generally, a graded vector
space), we define V hni to be the graded module given by .V hmi/n D VmCn. Given
two graded vector modules V;W , we define a new graded vector space
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Hom.V;W / D
M

n2Z
Hom.V;W /n where Hom.V;W /n D Hom.V;W hni/:

We extend the notation F 7! Fhni to CohG�Gm.eN / via the equivalence (1).

Remark 2.1. In [35, 36], Mautner and Riche prove that all good primes are JMW
primes. Those papers also give new proofs of the foundational results in Sections 2.2
and 2.4 below, placing them in the context of the affine braid group action on
DbCohG�Gm.eN / introduced in [24]. The main result of [36] appears in this paper
as Theorem 4.3.

2.2 Exotic sheaves

This subsection and the following one introduce the two t -structures we will study.
On a first reading, the descriptions given here are, unfortunately, rather opaque. We
will see some other approaches in Section 4; for explicit examples, see Section 6.

For � 2 X, let DbCohG�Gm.eN /�� be the full triangulated subcategory of
DbCohG�Gm.eN / generated by line bundles O

eN .�/hmi with � � � and m 2 Z.
The category DbCohG�Gm.eN /<� is defined similarly.

Proposition 2.2. For any � 2 X, there are objects b��;br� 2 DbCohG�Gm.eN / that
are uniquely determined by the following properties: there are canonical distin-
guished triangles

b�� ! O
eN .�/hı�i ! K� ! and K0� ! O

eN .�/hı�i ! br� !

such that K� 2 DbCohG�Gm.eN /<�, K0
�
2 DbCohG�Gm.eN /<w0dom.�/, and

Hom�.b��;F/ D Hom�.F ;br�/ D 0 for all F 2 DbCohG�Gm.eN /<�.

Proof (sketch). This is mostly a consequence of the machinery of “mutation of ex-
ceptional sets,” discussed in [19, 	2.1 and 	2.3]. The general results of [19, 	2.1.4]
might at first suggest that K� and K0

�
both lie just in DbCohG�Gm.eN /<�. To obtain

the stronger constraint on K0
�

, one first shows that line bundles already have a strong
Hom-vanishing property with respect to �:

Hom�.O
eN .�/;OeN .�// D 0 if � 6
 �. (2)

The result is obtained by combining this with a study of the br� based on Proposi-
tion 2.5 below. ut

The preceding proposition says, in part, that the br� constitute a “graded excep-
tional set” in the sense of [19, 	2.3]. In the extreme cases of dominant or antidomi-
nant weights, equation (2) actually implies that
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br� Š O
eN .�/ and b�w0� Š O

eN .w0�/hıw0�i for � 2 XC. (3)

The proposition also implies that the composition b�� ! O
eN .�/hı�i ! br� is

nonzero for all � 2 X. This is the morphism b�� ! br� appearing in the following
statement.

Theorem 2.3. There is a unique t -structure on DbCohG�Gm.eN / whose heart

ExCohG�Gm.eN / � DbCohG�Gm.eN /

is stable under h1i and contains b�� and br� for all � 2 X. In this category, every
object has finite length. The objects

E�hni WD im.b��hni ! br�hni/
are simple and pairwise nonisomorphic, and every simple object is isomorphic to
one of these.

This t -structure is called the exotic t -structure on DbCohG�Gm.eN /. The b�� and
br� are called standard and costandard objects, respectively. Further properties of
these objects will be discussed in Section 3.1.

Proof (sketch). The existence of the t -structure follows from [19, Proposition 4],
which describes a general mechanism for constructing t -structures from exceptional
sets. However, that general mechanism does not guarantee that the b�� and br� lie in
the heart. One approach to showing that they do lie in the heart (see [8]) is to deduce
it from the derived equivalences that we will see in Sections 4.1 (for k D C) or 4.2
(in general). ut

2.3 Perverse-coherent sheaves

For any � 2 X, let

A� D ��O
eN .�/:

For � 2 XC, we defineDbCohG�Gm.N /�� to be the full triangulated subcategory of
DbCohG�Gm.N / generated by the objectsA�hmiwith� 2 XC,� � �, andm 2 Z.
The categoryDbCohG�Gm.N /<� is defined similarly. Note that these categories are
defined only for dominant weights, unlike in the exotic case.

One basic property of the A�, often called Andersen–Jantzen sheaves, is that if
s˛ 2 W is a simple reflection such that s˛� � �, then there is a natural map

As˛� ! A�h�2i (4)

whose cone lies in DbCohG�Gm.N /<dom.�/ [3, Lemma 5.3].
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For a dominant weight � 2 XC, we introduce the following additional notation:

�� D Aw0�hı��i; r� D A�h�ı��i: (5)

It follows from (4) that there is a natural nonzero map

�� ! r�
whose cone lies in DbCohG�Gm.N /<�. This morphism appears in the following
statement.

Theorem 2.4. There is a unique t -structure on DbCohG�Gm.N / whose heart

PCohG�Gm.N / � DbCohG�Gm.N /

is stable under h1i and contains �� and r� for all � 2 XC. In this category, every
object has finite length. The objects

IC�hni WD im.��hni ! r�hni/
are simple and pairwise nonisomorphic, and every simple object is isomorphic to
one of these.

This t -structure is called the perverse-coherent t -structure on DbCohG�Gm.N /.
The justification for this terminology will be discussed in Section 4.3.

Proof (sketch). The first step is to show that the �� and r� satisfy Ext-vanishing
properties similar to (but somewhat weaker than) those in Proposition 2.2. (To be
precise, the r� constitute a “graded quasiexceptional set,” but not an exceptional
set. See [18, 	2.2 and Remark 8].) The existence of the t -structure follows from a
general mechanism, as in Theorem 2.3. In this case, the fact that the �� and the
r� lie in the heart can be checked by direct computation; see [18, Lemma 9] or
[3, Lemma 5.2]. ut

2.4 The relationship between exotic and perverse-coherent sheaves

In this subsection, we briefly outline a proof of the t -exactness of ��, following [19,
		2.3–2.4]. Let ˛ be a simple root, and let P˛ � B be the corresponding parabolic
subgroup. Let u˛ � u be the Lie algebra of the unipotent radical of P˛ . The cotan-
gent bundle T �.G=P˛/ can be identified with G �P˛ u˛ . On the other hand, let
eN ˛ D G �B u˛ . There are natural maps

T �.G=P˛/
�˛ �� eN ˛

i˛�! eN ;

where i˛ is an inclusion of a smooth subvariety of codimension 1, and �˛ is a
smooth, proper map whose fibers are isomorphic to P˛=B Š P1.
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Let � D 1
2

P

˛2˚C ˛, where ˚C is the set of positive roots. In general, � need
not lie in X, but because G has a simply-connected derived group, there exists a
weightb� 2 X such that .ˇ_;b�/ D 1 for all simple coroots ˇ_.

Let 
˛ W DbCohG�Gm.eN /! DbCohG�Gm.eN / be the functor


˛.F/ D i˛�� �̨�˛�i �̨.F ˝O
eN .b� � ˛//˝O

eN .�b�/h1i:
This coincides with the functor denoted F˛h�1iŒ1� or F 0̨ h1iŒ�1� in [19, 	2.3]. (Note
that the statement of [19, Lemma 6(b)] contains a misprint.)

Proposition 2.5. 1. The functor 
˛ is self-adjoint.
2. If s˛� D �, then 
˛.b��/ D 
˛.br�/ D 0.
3. If s˛� � �, then


˛.b�s˛�/ Š 
˛.b��/h�1iŒ1� and 
˛.brs˛�/ Š 
˛.br�/h1iŒ�1�:
4. If s˛� � �, then there are natural distinguished triangles

b�s˛� ! b��h1i ! 
˛.b��/Œ1�!; 
˛.br�/Œ�1�! br�h�1i ! brs˛� ! :

Proof (sketch). For costandard objects, parts (1), (3), and (4) appear in [19, Lemma 6
and Proposition 7]. In fact, the proofs of those statements also establish part (2).
Similar arguments apply in the case of standard objects. ut

It is likely that the distinguished triangles in part (4) above are actually short
exact sequences in ExCohG�Gm.eN /; see Section 5.3.

Proposition 2.6. The functor �� W DbCohG�Gm.eN / ! DbCohG�Gm.N / restricts
to an exact functor �� W ExCohG�Gm.eN /! PCohG�Gm.N /. It satisfies

��b�� Š �dom.�/h�ı��i;
��br� Š rdom.�/hı��i;

��E� Š
(

ICw0� if � 2 �XC,

0 otherwise.

Proof (sketch). One first shows that �� ı
˛ D 0 for all simple roots ˛. The formula
for ��b�� (resp. ��br�) is clear when � is dominant (resp. antidominant), so it fol-
lows for general � from Proposition 2.5. The t -exactness of �� follows immediately
from its behavior on standard and costandard objects.

Since E� is the image of a nonzero map h W b�� ! br�, ��E� is the image of
��h W �dom.�/h�ı��i ! rdom.�/hı��i. But it follows from the definition of a graded
quasiexceptional set (see Theorem 2.4) that Hom.�dom.�/hni;rdom.�/hmi/ D 0

unless n D m. Thus, ��h D 0 unless ı�
�
D 0. In other words, ��E� D 0 if

� … �XC.
Assume now that � 2 �XC. To show that ��E� Š ICdom.�/, it suffices to

show that ��h is nonzero. Recall that b�� Š O
eN .�/hı�i. We may assume that

h is the map appearing in the second distinguished triangle from Proposition 2.2:

K0
�
! b��

h! br� !. Since K0
�

lies in DbCohG�Gm.eN /<�, our computation of ��
on standard and costandard objects implies that
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��K0� 2 DbCohG�Gm.N /<dom.�/: (6)

If ��h D 0, then ��K0� Š �dom.�/ ˚ rdom.�/Œ�1�, contradicting (6). Thus,
��h ¤ 0, as desired. ut

2.5 Remarks on grading choices

Equation (5) involves a choice of normalization in the grading shifts. The choice we
have made here (which is consistent with [3, 37, 7]) has the desirable property that
it behaves well under Serre–Grothendieck duality (see Section 4.3).

Proposition 2.2 also involves such a choice. Our choice agrees with [8] but differs
from [19]. The choice we have made here has two advantages: (i) it is compatible
with the choice in (5), in the sense that the formula for ��E� involves no grading
shift; and (ii) it behaves well under Verdier duality via the derived equivalence of
Section 4.2. The reader should bear this in mind when comparing statements in this
paper to [19].

One can also drop the Gm-equivariance entirely and carry out all the construc-
tions in the preceding sections in DbCohG.eN / or DbCohG.N /. Simple objects
in ExCohG.eN / are parametrized by X rather than by X � Z, and likewise for
PCohG.N /. Almost all results in the paper have analogues in this setting, obtained
just by omitting grading shifts hni and by replacing all occurrences of Hom by Hom.
In most cases, we will not treat these analogues explicitly.

However, there are a handful of exceptions. The proof of Theorem 3.3 is different
in the graded and ungraded cases. Theorem 4.3 does not (yet?) have an ungraded
version in positive characteristic. Although Theorems 4.1, 4.7, and 4.10 have graded
analogues, the focus in the literature and in applications is on the ungraded case, and
their statements here reflect that.

3 Structure theory I

3.1 Properly stratified categories

In this subsection, we let k be an arbitrary field. Let A be a k-linear abelian category
that is equipped with an automorphism h1i W A! A, called the Tate twist. Assume
that this category has the following properties:

1. Every object has finite length.
2. For every simple object L 2 A, we have End.L/ Š k.

Let ˝ be the set of isomorphism classes of simple objects up to Tate twist. For
each � 2 ˝, choose a representative L� . Assume that ˝ is equipped with a
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partial order �. For any finite order ideal � � ˝, let A� � A be the full sub-
category consisting of objects all of whose composition factors are isomorphic to
some L� hni with � 2 � .

Such a category is of particular interest when for each � 2 � , there exist four
morphisms �� ! L� , L� ! r� , �� ! L� , L� ! r� such that:

3. If  6� � , then Hom.�� ; L�/ D Ext1.�� ; L�/ D 0 and Hom.L� ;r� / D
Ext1.L� ;r� / D 0.

4. The kernel of �� ! L� and the cokernel of L� ! r� both lie in A<� .
5. If � is a maximal element in an order ideal � � ˝, then in A� , �� ! L�

is projective cover of L� , and L� ! r� is an injective envelope. Moreover,
�� has a filtration whose subquotients are of the form �� hni, and r� has a
filtration whose subquotients are of the form r� hni.

6. Ext2.�� ;r�/ D 0 and Ext2.�� ;r�/ D 0 for all �;  2 ˝.

A category satisfying (1)–(6) is called a graded properly stratified category. If it
happens that�� Š �� and r� D r� for all � 2 � , then instead we call it a graded
quasihereditary category or a highest-weight category.

Objects of the form�� hni (resp.r� hni) are called proper standard (resp. proper
costandard) objects. Those of the form�� hni (resp.r� hni) are called true standard
(resp. true costandard) objects. In the quasihereditary case, there is no distinction
between proper standard objects and true standard objects; we simply call them
standard, and likewise for costandard.

There are obvious ungraded analogues of these notions: we omit the Tate twist,
and replace all occurences of Hom and Ext above by ordinary Hom and Ext.

Remark 3.1. Some sources, such as [3, 18], use the term quasihereditary to refer to
a category that only satisfies properties (1)–(4) above.

3.2 Quasihereditarity and derived equivalences

Let us now return to the assumptions on k from Section 2.1. Our next goal is
to see that the exotic and perverse-coherent t -structures fit the framework intro-
duced above. Because of a subtlety in the perverse-coherent case, the statements in
this subsection explicitly mention the Gm-equivariant and non-Gm-equivariant cases
separately.

Theorem 3.2. The category ExCohG.eN / is quasihereditary, and ExCohG�Gm.eN /
is graded quasihereditary. There are equivalences of categories

DbExCohG.eN / �! DbCohG.eN /; DbExCohG�Gm.eN / �! DbCohG�Gm.eN /:

Proof (sketch). The fact that these categories are (graded) quasihereditary is an
immediate consequence of Theorem 2.3 and basic properties of exceptional sets.
For the derived equivalences, one can imitate the argument of [16, Corollary 3.3.2].



20 P.N. Achar

Specifically, both DbExCohG�Gm.eN / and DbCohG�Gm.eN / are generated by both
standard objects and the costandard objects. To establish the derived equivalence, it
suffices to show that the natural map

Extk
ExCohG�Gm .eN /.

b��;br�hni/! HomDbCohG�Gm .eN /.b��;br�hniŒk�/ (7)

is an isomorphism for all �;� 2 X, k � 0, and n 2 Z. When k D 0, this map is
an isomorphism by general properties of t -structures. When k > 0, the left-hand
side vanishes by general properties of quasihereditary categories, while the right-
hand side vanishes by general properties of exceptional sets. Thus, (7) is always an
isomorphism, as desired. The same argument applies to ExCohG.eN /. ut
Theorem 3.3. The category PCohG.N / is properly stratified, and the category
PCohG�Gm.N / is graded properly stratified. There are equivalences of categories

DbPCohG�Gm.N / �! DbCohG�Gm.N /; DbPCohG.N / �! DbCohG.N /:

Proof (sketch). It was shown in [18, 3] that PCohG�Gm.N / satisfies axioms (1)–(4)
of Section 3.1 (cf. Remark 3.1), with the objects of (5) playing the roles of the proper
standard and proper costandard objects.

The proof of axioms (5) and (6) is due to Minn-Thu-Aye [37, Theorem 4.3]. His
argument includes a recipe for constructing the true standard and true costandard
objects. This recipe is reminiscent of Proposition 2.2: specifically, by [37, Defini-
tion 4.2], there are canonical distinguished triangles

�� ! V.�/˝ON hı��i ! K� ! and K0� ! H 0.�/˝ON h�ı��i ! r� !

with K�;K0� 2 DbCohG�Gm.N /<�.
The derived equivalences are more difficult here than in the exotic case, mainly

because there may be nontrivial higher Ext-groups between proper standard and
proper costandard objects. In the .G � Gm/-equivariant case, the result is proved
in [3]. The proof makes use of the Gm-action in an essential way; it cannot simply
be copied in the ungraded case. However, by [13, Lemma A.7.1], the following
diagram commutes up to natural isomorphism:

DbPCohG�Gm.N / � ��

U

��

DbCohG�Gm.N /

U

��
DbPCohG.N / �� DbCohG.N /:

Here, both vertical arrows are the functors that forget the Gm-equivariance. It is not
difficult to check that these vertical arrows are degrading functors as in [16, 	4.3].
Thus, for any �;� 2 X, we have a commutative diagram
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M

n2Z
Extk

PCohG�Gm .N /.��;r�hni/
� ��

o
��

M

k2Z
HomDbCohG�Gm .N /.��;r�hkiŒn�/

o
��

Extk
PCohG.N /.U.��/; U.r�// �� HomDbCohG.N /.U.��/; U.r�/Œk�/:

Since the top arrow and both vertical arrows are isomorphisms, the bottom arrow
must be as well. That map is analogous to (7), and, as in the proof of the preceding
theorem, it implies that DbPCohG.N / Š DbCohG.N /. ut

3.3 Costandard and tilting objects

The abstract categorical framework of Section 3.1 places standard and costandard
objects on an equal footing, but in practice, the following result makes costandard
objects considerably easier to work with explicitly.

Theorem 3.4. 1. For all � 2 X, br� is a coherent sheaf.
2. For all � 2 XC, r� is a coherent sheaf.

In contrast, even for SL2, many standard objects are complexes with cohomology in
more than one degree.

Proof (sketch). The first assertion is proved in [8], using Theorem 4.3 below to
translate it into a question about the dual affine Grassmannian. The second asser-
tion is due to Kumar–Lauritzen–Thomsen [29], although in many cases it goes back
to much older work of Andersen–Jantzen [9]. ut

Recall that a tilting object in a quasihereditary category is one that has both a
standard filtration and a costandard filtration. The isomorphism classes of indecom-
posable tilting objects are in bijection with the isomorphism classes of simple (or
standard, or costandard) objects. Let

OT� 2 ExCohG�Gm.eN /

denote the indecomposable tilting object corresponding to E�.
In a properly stratified category that is not quasihereditary, there are two distinct

versions of this notion: an object is called tilting if it has a true standard filtration
and a proper costandard filtration, and cotilting if it has a proper standard filtration
and a true costandard filtration. These notions need not coincide in general. See [7,
	2.2] for general background on (co)tilting objects in this setting.

Proposition 3.5 ([37]). In PCohG�Gm.N /, the indecomposable tilting and cotilting
objects coincide, and they are all of the form T .�/˝ON hni.
Proposition 3.6. In ExCohG�Gm.eN /, every tilting object is a coherent sheaf. For
� 2 XC, we have OT� Š T .�/˝O

eN .
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Proof (sketch). This can be deduced by adjunction from Proposition 3.5 using the
fact that ��ON Š � ŠON Š O

eN and the criterion from [19, Lemma 4]. ut
At the moment, there is no comparable statement describing OT� for nondomi-

nant �. A better understanding of tilting exotic sheaves is highly desirable; in par-
ticular, it would shed light on the question below. An affirmative answer would have
significant consequences for the geometry of affine Grassmannians and for modular
representation theory. In Section 6, we will answer this question for SL2.

Question 3.7 (Positivity for tilting exotic sheaves). Is it true that Hom. OT�; OT�/ is
concentrated in nonnegative degrees for all �;� 2 X?

4 Applications

Many of the applications of exotic and perverse-coherent sheaves rely on the fact
that these t -structures can be constructed in several rather different ways.

Quasiexceptional sets This refers to the construction that was carried out in Sec-
tion 2. (For an explanation of this term and additional context, see [18, 	2.2]
and [19, 	2.1].)

Whittaker sheaves In this approach, we transport the natural t -structure across a
derived equivalence relating our category of coherent sheaves to a suitable cat-
egory of Iwahori–Whittaker perverse sheaves on the affine flag variety for the
Langlands dual group LG.

Affine Grassmannian This approach, Koszul dual to the preceding one, involves
Iwahori-monodromic perverse sheaves on the affine Grassmannian for LG.

Local cohomology In the perverse-coherent case, there is an algebro-geometric
construction in terms of local cohomology that superficially resembles the defi-
nition of ordinary (constructible) perverse sheaves. Indeed, this description is the
reason for the name “perverse-coherent.”

Braid positivity In the exotic case, the t -structure is uniquely determined by cer-
tain exactness properties, the most important of which involves the affine braid
group action of [24].

In this section, we briefly review these various approaches and discuss some of their
applications. Some of these are (for now?) available only in characteristic zero.

4.1 Whittaker sheaves and quantum group cohomology

Let p be a prime number, and let K D NFp..t// and O D NFpŒŒt ��. Let LG be the Lang-
lands dual group to G over NFp , and let LB�; LB � LG be opposite Borel subgroups
corresponding to negative and positive roots, respectively. (Note that our convention
for LG differs from that for G, where B � G denotes a negative Borel subgroup.)
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These groups determine a pair I� D e�1. LB�/, I D e�1. LB/ of oppposite Iwahori
subgroups, where e W LGO ! LG is the map induced by t 7! 0. Recall that the affine
flag variety is the space F l D LGK=I .

Let LU� � LB� be the unipotent radical, and for each simple root ˛, let LU �̨ � LU�
be the root subgroup corresponding to�˛. The quotient LU�=Œ LU�; LU�� can be iden-
tified with the product

Q

˛
LU �̨. For each ˛, fix an isomorphism  ˛ W LU �̨ Š Ga. Let

I�u D e�1. LU�/ be the pro-unipotent radical of I�, and let  W I�u ! Ga be the
composition

I�u
e�! LU� ! LU�=Œ LU�; LU�� Š

Y

˛

U �̨
Q

 ˛���!
Y

˛

Ga

P

�! Ga:

Finally, let X D  �AS, where AS denotes an Artin–Schreier local system on Ga.
Let ` be a prime number different from p. The Iwahori–Whittaker derived cate-

gory of F l , denoted Db
IW.F l; NQ`/, is defined to be the .I�u ;X /-equivariant derived

category of NQ`-sheaves on F l . (In many sources, this is simply called the .I�u ;  /-
equivariant derived category. For background on this kind of equivariant derived
category, see, for instance, [5, Appendix A].) We also have the abelian category
PervIW.F l; NQ`/ of Iwahori–Whittaker perverse sheaves on F l .

Theorem 4.1 ([11, 19]). Assume that k D NQ`. There is an equivalence of triangu-
lated categories

DbCohG.eN / Š Db
IW.F l; NQ`/:

This equivalence is t -exact for the exotic t -structure on the left-hand side and the
perverse t -structure on the right-hand side. In particular, there is an equivalence of
abelian categories

ExCohG.eN / Š PervIW.F l; NQ`/:
There is an equivalence of categories DbPervIW.F l; NQ`/ �! Db

IW.F l; NQ`/ (see
[11, Lemma 1]), so Theorem 4.1 can be restated in a way that matches the exotic
t -structure with the natural t -structure on DbPervIW.F l; NQ`/.

This equivalence plays a key role in Bezrukavnikov’s computation of the
cohomology of tilting modules for quantum groups at a root of unity [19]. Specifi-
cally, after relating DbCohG�Gm.eN / to the derived category of the principal block
of the quantum group, the desired facts about quantum group cohomology are re-
duced to the following statement about exotic sheaves, called the positivity lemma
[19, Lemma 9]:

Exti .b��hni;E�/ D Exti .E�;br�h�ni/ D 0 if i > n. (8)

To prove the positivity lemma, one uses Theorem 4.1 to translate it into a question
about Weil perverse sheaves on F l . The latter can be answered using the powerful
and well-known machinery of [14].

We will not discuss the proof of Theorem 4.1, but as a plausibility check, let us
review the parametrization of simple objects in PervIW.F l; NQ`/. Iwahori–Whittaker
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perverse sheaves are necessarily constructible along the I�-orbits on F l , which,
like the I -orbits, are naturally parametrized by the extended affine Weyl group Wext

forG. However, not every I�-orbit supports an X -equivariant local system: accord-
ing to [11, Lemma 2], those that do correspond to the set fWext � Wext of minimal-
length coset representatives for W nWext. Thus, simple objects in PervIW.F l; NQ`/
are parametrized by fWext, which is naturally in bijection with X.

For w 2 fWext, let Lw 2 PervIW.F l; NQ`/ denote the corresponding simple
object. Let fW f

ext be the set of minimal-length representatives for the double cosets
W nWext=W , and form the Serre quotient

PervfIW.F l; NQ`/ D PervIW.F l; NQ`/
��

the Serre subcategory generated
by the Lw with w … fW f

ext

�

:

Theorem 4.2 ([20]). Assume that k D NQ`. There is an equivalence of triangulated
categories

DbCohG.N / Š DbPervfIW.F l; NQ`/:
This equivalence is t -exact for the perverse-coherent t -structure on the left-hand
side and the natural t -structure on the right-hand side. In particular, there is an
equivalence of abelian categories

PCohG.N / Š PervfIW.F l; NQ`/:
It seems likely that analogous statements to the theorems in this subsection hold

when k has positive characteristic.

4.2 The affine Grassmannian and the Mirković–Vilonen conjecture

Recall that the affine Grassmannian is the space Gr D LGK= LGO. Here, we may
either define K and O as in the previous subsection, and work with étale sheaves
on Gr , or we may instead put K D C..t// and O D CŒŒt �� and equip Gr with
the classical topology. (For a discussion of how to compare the two settings, see,
e.g., [40, Remark 7.1.4(2)].) In this subsection, we will work with a certain category
of “mixed” I -monodromic perverse k-sheaves on Gr , denoted Pervmix

.I /.Gr;k/. If k
has characteristic zero, this category should be defined following the pattern of [16,
Theorem 4.4.4] or [4, 	6.4]: Pervmix

.I /.Gr; NQ`/ is not the category of all mixed per-
verse sheaves in the sense of [14], but rather the full subcategory in which we allow
only Tate local systems and require the associated graded of the weight filtration
to be semisimple. For k of positive characteristic, this category is defined in [6] in
terms of the homological algebra of parity sheaves.

In both cases, the additive category Parity.I /.Gr;k/ of Iwahori-constructible par-
ity sheaves can be identified with a full subcategory ofDbPervmix

.I /.Gr;k/. In the case

where k D NQ`, Parity.I /.Gr;k/ is identified with the category of pure semisimple
complexes of weight 0.
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Theorem 4.3 ([12] for k D NQ`; [8, 36] in general). There is an equivalence of
triangulated categories

P W DbCohG�Gm.eN / �! DbPervmix
.I /.Gr;k/

such that P.Fhni/ Š P.F/.n
2
/Œn�. This equivalence is not t -exact, but it does

induce an equivalence of additive categories

Tilt.ExCohG�Gm.eN // �! Parity.I /.Gr;k/:

Note that the exotic t -structure can be recovered from the class of tilting objects
in its heart. When k D NQ`, there is also an “unmixed” version of this theorem [12].
In positive characteristic, a putative unmixed statement is equivalent to a “modular
formality” property for Gr that is currently still open.

The next theorem is a similar statement for the perverse-coherent t -structure.
This result does not, however, extend to an equivalence involving the full derived
category DbCohG�Gm.N /.

Theorem 4.4 ([7]). There is an equivalence of additive categories

Tilt.PCohG�Gm.N // �! Parity
. LGO/

.Gr;k/:

An important consequence of the preceding theorem is the following result,
known as the Mirković–Vilonen conjecture (see [38, Conjecture 6.3] or [39, Con-
jecture 13.3]). In bad characteristic, the conjecture is false [30].

Theorem 4.5 ([7]). Under the geometric Satake equivalence, the stalks (resp. co-
stalks) of the perverse sheaf on Gr corresponding to a Weyl module (resp. dual Weyl
module) of G vanish in odd degrees.

Proof (sketch). The statement we wish to prove can be rewritten as a statement
about the vanishing of certain Ext-vanishing groups in the derived category of con-
structible complexes of k-sheaves on Gr . Theorem 4.4 lets us translate that question
into one about Hom-groups in the abelian category PCohG�Gm.N / instead. The lat-
ter question turns out to be quite easy; it is an exercise using basic properties of
properly stratified categories. ut

4.3 Local cohomology and the Lusztig–Vogan bijection

The following theorem describes PCohG�Gm.N / in terms of cohomology-vanish-
ing conditions on a complex F and on its Serre–Grothendieck dual D.F/, given
by D.F/ D RHom.F ;ON /. These conditions closely resemble the definition of
ordinary (constructible) perverse sheaves; indeed, this theorem is the justification
for the term “perverse-coherent.”
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Theorem 4.6 ([18]; see also [3]). Let F 2 DbCohG�Gm.N /. The following condi-
tions are equivalent:

1. F lies in PCohG�Gm.N /.
2. We have dim suppHi .F/ � dimN � 2i and dim suppHi .DF/ � dimN � 2i

for all i 2 Z.
3. Whenever x 2 N is a generic point of a G-orbit, we have H i .Fx/ D 0 if
i > 1

2
codim Nx, and H i

x.F/ D 0 if i < 1
2

codim Nx.

(In the last assertion, Fx is just the stalk of F at x, while H i
x.�/ is cohomology

with support at x.)

Proof (sketch). In [18], condition (3) was taken as the definition of the category
PCohG�Gm.N /, following [17, 10], while the t -structure of Theorem 2.4 is consid-
ered separately and initially given no name. According to [18, Corollary 3], the two
t -structures coincide; the proof consists of showing that theA� satisfy condition (3).

Condition (3) can be used to define “perverse-coherent” t -structures on vari-
eties or stacks in considerable generality, not just on the nilpotent cone of a red-
uctive group. This theory is developed in [17, 10]. The equivalence of conditions
(2) and (3) holds in this general framework; see [10, Lemma 2.18]. ut

As with ordinary perverse sheaves, there is a special class of perverse-coherent
sheaves satisfying stronger dimension bounds. Let C � N be a nilpotent orbit, and
let E be a .G �Gm/-equivariant vector bundle on C . There is an object

IC.C; E/ 2 PCohG�Gm.N /;

called a coherent intersection cohomology complex, that is uniquely characterized
by the following two conditions:

1. IC.C; E/ is supported on C , and IC.C; E/jC Š E Œ�1
2

codimC �.
2. We have dim suppHi .F/ < dimN � 2i and dim suppHi .DF/ < dimN � 2i

for all i > 1
2

codimC .

Moreover, when E is an irreducible vector bundle, IC.C; E/ is a simple object of
PCohG�Gm.N /, and every simple object arises in this way.

Theorem 4.6 has an obvious G-equivariant analogue (omitting the Gm-equivari-
ance), as does the notion of coherent intersection cohomology complexes. The latter
yields a bijection

�

simple objects
in PCohG.N /

�

� !
�

.C; E/
ˇ

ˇ

ˇ

C a G-orbit, E an irreducible
G-equivariant vector bundle on C

�

(9)

that looks very different from the parametrization of simple objects in 	2.3. Com-
paring the two yields the following result of Bezrukavnikov.

Theorem 4.7 ([18]). There is a canonical bijection

XC � ! f.C; E/g:
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The existence of such a bijection was independently conjectured by Lusztig [33]
and Vogan. For G D GLn, the Lusztig–Vogan bijection was established earlier [1]
(see also [2]) by an argument that provided an explicit combinatorial description of
the bijection.

In general, it is rather difficult to carry out computations with coherent IC’s, and
the problem of computing the Lusztig–Vogan bijection explicitly remains open in
most cases. The extreme cases corresponding to the regular and zero nilpotent orbits
are discussed below, following [2, Proposition 2.8]. Let

Nreg � N and C0 � N

denote the regular and zero nilpotent orbits, respectively.

Proposition 4.8. The bijection of Theorem 4.7 restricts to a bijection

Xmin
� ! f.Nreg; E/g

Proof (sketch). Since the elements of Xmin are precisely the minimal elements of
XC with respect to � (or �), the proper costandard objects fr� j � 2 Xming are
simple. Every A� has nonzero restriction to Nreg (since � is an isomorphism over
Nreg), so for � 2 Xmin, the simple object IC� D r� must coincide with some
IC.Nreg; E/. Thus, the bijection of Theorem 4.7 at least restricts to an injective map
Xmin ,! f.Nreg; E/g. The fact that it is also surjective can be deduced from the well-
known relationship between minuscule weights and representations of the center
of G. ut
Proposition 4.9. The bijection of Theorem 4.7 restricts to a bijection

XC C 2� � ! f.C0; E/g:
Here, 2� D P

˛2˚C ˛, as in Section 2.4. The proof of this will be briefly dis-
cussed at the end of Section 5.2.

4.4 Affine braid group action and modular representation theory

In [21], Bezrukavnikov and Mirković proved a collection of conjectures of Lusztig
[34] involving the equivariant K-theory of Springer fibers and the representation
theory of semisimple Lie algebras in positive characteristic. In this work, which
builds on the localization theory developed in [22, 23], a key ingredient is the non-
commutative Springer resolution, a certain kŒN �-algebra A0 equipped with a G-
action, along with a derived equivalence

Db.A0-modG/ Š DbCohG.eN /: (10)
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Here, we will just discuss one small aspect of the argument. At a late stage in [21],
one learns that Lusztig’s conjectures follow from a certain positivity statement about
graded A0-modules, and that, moreover, it is enough to prove that positivity state-
ment in characteristic 0. From then on, the proof follows the pattern we saw with (8):
by composing (10) with Theorem 4.1, one can translate the desired positivity state-
ment into a statement about Weil perverse sheaves on the affine flag variety F l , and
then use the machinery of weights from [14].

To carry out the “translation” step, one needs an appropriate description of
the t -structure on Db.A0-modG/ that corresponds to the natural t -structure on
DbPervIW.F l; NQ`/, or, equivalently, to the exotic t -structure2 onDbCohG.eN /. Un-
fortunately, the exceptional set construction of Section 2 is ill-suited to this purpose.

The theorem below gives a new characterization of ExCohG.eN / that does adapt
well to the setting of A0-modules. Its key feature is the prominent role it gives to the
affine braid group action on DbCohG.eN / that is constructed in [24]. Specifically,
it involves the following notion: a t -structure on DbCohG.eN / is said to be braid-
positive if, in the aforementioned affine braid group action, the action of positive
words in the braid group is right t -exact. (The definition of the ring A0 also involves
braid positivity, and the t -structure on DbCohG.eN / corresponding to the natural
t -structure on Db.A0-modG/ is braid-positive.)

Before stating the theorem, we need some additional notation and terminology.
Given a closed G-stable subset Z � N , let Db

ZCohG.eN / � DbCohG.eN / be the
full subcategory consisting of objects supported set-theoretically on ��1.Z/. For a
nilpotent orbit C � N , let Db

CCohG.eN / be the quotient category

Db
C

CohG.eN /=Db
CXCCohG.eN /:

A t -structure on DbCohG.eN / is said to be compatible with the support filtration
if for every nilpotent orbit C , there are induced t -structures on Db

C
CohG.eN / and

Db
CCohG.eN / such that the inclusion and quotient functors, respectively, are t -exact.

Theorem 4.10 ([21, 	6.2.2]). Assume that the characteristic of k is zero or larger
than the Coxeter number of G. The exotic t -structure onDbCohG.eN / is the unique
t -structure with all three of the following properties:

1. It is braid-positive.
2. It is compatible with the support filtration.
3. The functor �� is t -exact with respect to this t -structure and the perverse-

coherent t -structure on DbCohG.N /.

See [28, 35] for comprehensive accounts of the role of the affine braid group
action in the study of the exotic t -structure.

2 A caveat about terminology: most of [21] is concerned with nonequivariant coherent sheaves
or A0-modules. In that paper, the term exotic t-structure refers to a certain t-structure in the
nonequivariant setting, and not to the t-structure of Theorem 2.3. In [21], the latter t-structure
is instead called perversely exotic.
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5 Structure theory II

5.1 Minuscule objects

As noted above, exotic sheaves do not, in general, admit a “local” description like
that of perverse-coherent sheaves in Section 4.3. Nevertheless, when we look at the
set of regular elements

eN reg WD ��1.Nreg/;

compatibility with the support filtration from Theorem 4.10 lets us identify a handful
of simple exotic sheaves. Recall that � is an isomorphism over Nreg, so eN reg, like
Nreg, is a single G-orbit.

Lemma 5.1. 1. If � 2 �Xmin, then E� Š O
eN .�/hı�i.

2. If � … �Xmin, then E�j
eN reg
D 0.

This lemma says that we can detect antiminuscule composition factors in an ex-
otic sheaf by restricting to eN reg.

Proof. The first assertion follows from the observation that elements of �Xmin are
minimal with respect to �, so the standard objects b�� D O

eN .�/hı�i are simple.
Now take an arbitrary � 2 X, and suppose that E�j

eN reg
¤ 0. Since � is an

isomorphism over Nreg, ��E� has nonzero restriction to Nreg. A fortiori, ��E� is
nonzero. By Proposition 2.6, � must be antidominant, and ��E� Š ICw0�. Then
Proposition 4.8 tells us that w0� 2 Xmin, so � 2 �Xmin, as desired. ut
Lemma 5.2. Let �;� 2 X, and suppose that � � � lies in the root lattice. Then
O
eN .�/h.2�_; � � �/ijeN reg

Š O
eN .�/jeN reg

.

Proof. Since � � � is a linear combination of simple roots, it suffices to prove the
lemma in the special case where � D 0 and � is a simple root, say ˛. In this case,
.2�_;�˛/ D �2.

Let eN ˛ be as in Section 2.4. As explained in [19, Lemma 6] or [3, Lemma 5.3],
there is a short exact sequence of coherent sheaves

0! O
eN .˛/h�2i ! O

eN ! i˛�O
eN˛
! 0: (11)

Recall that eN ˛ does not meet eN reg—indeed, its image under � is the closure of the
subregular nilpotent orbit. So when we restrict to eN reg, that short exact sequence

gives us the desired isomorphism O
eN .˛/h�2ijeN reg

�! O
eN jeN reg

. ut

Proposition 5.3. For all � 2 XC, r� is a torsion-free coherent sheaf on N .

Proof. Let Y D N X Nreg, and let s W Y ,! N be the inclusion map. Since Nreg

is the unique open G-orbit, any coherent sheaf with torsion must have a subsheaf
supported on Y . If r� had such a subsheaf, then H0.sŠr�/ would be nonzero. But
this contradicts the local description of PCohG�Gm.N / from Section 4.3. ut
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Proposition 5.4. Let � 2 Xmin. For any � 2 X, we have

ŒA� W IC�hni� D
(

1 if � D C

m.�/ and n D .2�_; �/,
0 otherwise.

Proof. Proposition 4.8 implies that we can determine the multiplicities of minuscule
objects in any perverse-coherent sheaf by considering its restriction to Nreg. By
Lemmas 5.1 and 5.2, we have

A�jNreg Š ��OeN .�/jNreg Š ��OeN . Nm.�//h.2�_; � � Nm.�//ijNreg

Š ��E Nm.�/h.2�_; � � Nm.�// � ı Nm.�/ijNreg

Š ICC

m.�/
h.2�_; � � Nm.�// � ı�

C

m.�/
ijNreg :

Consider the special case where � 2 Xmin. In other words, � D C

m.�/, and AC

m.�/
Š

rC

m.�/
hı�

C

m.�/
i Š ICC

m.�/
hı�

C

m.�/
i. Comparing with the formula above, we see that

.2�_;
C

m.�/ � Nm.�// � ı�
C

m.�/
D ı�

C

m.�/

for any � 2 X. Since .2�_;
C

m.�// D �.2�_; Nm.�//, we deduce that

.2�_;
C

m.�// D .2�_;� Nm.�// D ı Nm.�/ D ı�C
m.�/

: (12)

The result follows. ut
Corollary 5.5. 1. Let � 2 XC and � 2 Xmin. We have

Œr� W IC�hni� D
(

1 if � D C

m.�/ and n D .2�_; �/ � ı�
�

,

0 otherwise.

2. Let � 2 X and � 2 �Xmin. We have

Œbr� W E�hni� D
(

1 if � D Nm.�/ and n D .2�_;dom.�// � ı�,

0 otherwise.

Proof. The first part is just a restatement of Proposition 5.4. Next, Proposition 2.6
implies that Œbr� W E�hni� D Œrdom.�/hı��i W ICw0�hni�. Using the observation that
ı�
�
� ı�dom.�/ D �ı�, the second part follows from the first. ut
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5.2 Character formulas

In this subsection, we work with the group ring ZŒX�, along with its extension
ZŒX�ŒŒq��Œq�1� D ZŒX� ˝Z ZŒŒq��Œq�1�. For � 2 X, we denote by e� the cor-
responding element of ZŒX� or ZŒX�ŒŒq��Œq�1�. If V D L

n2Z Vn is a graded
T -representation (or a representation of some larger group, such as B or G) with
dimVn <1 for all n and Vn D 0 for n 0, we put

chV D
X

n2Z

X

	2X

.dimV 	n /q
ne	

where V 	n is the �-weight space of Vn. More generally, if V is a chain complex of
graded representations, we put

chV D
X

i2Z
.�1/i chH i .V /:

Next, for any � 2 XC, we put

�.�/ D chH 0.�/ D
P

w2W .�1/`.w/ew.�C
/�

Q

˛2˚C.1 � e�˛/ for � 2 XC.

(The right-hand side is, of course, the Weyl character formula.)
Let � 2 XC and � 2 X, and let M�

�
.q/ be Lusztig’s q-analogue of the weight

multiplicity. Recall (see [32, (9.4)] or [27, (3.3)]) that this is given by

M
�

�
.q/ D

X

w2W
.�1/`.w/Pw.�C
/�.�C
/.q/;

where P	.q/ is a q-analogue of Kostant’s partition function, determined by

Y

˛2˚C

1

1 � qe˛ D
X

	2X

P	.q/e
	 :

Kostant’s multiplicity formula says that M�

�
.1/ is the dimension of the �-weight

space of the dual Weyl module H 0.�/.
It is clear from the definition that P	.q/ D 0 unless � 
 0, and of course

P0.q/ D 1. From this, one can deduce that

M
�

�
.q/ D 0 if � 6� �. (13)

It is known that when � 2 XC, all coefficients in M�

�
.q/ are nonnegative, but this

is not true for general �. Indeed, for nondominant �, it may happen that M�

�
.q/ is

nonzero but M�

�
.1/ D 0.
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Lemma 5.6 ([27, Lemma 6.1]). Let � 2 X. We have

chA� D
X

�2XC; ���
M�
� .q/�.�/:

The proof of this lemma in [27] seems to assume that k D C, but this actually
plays no role in the proof.

Theorem 5.7. Let �;� 2 XC. As a G-module, A� has a good filtration, and

X

n	0
ŒA� W H 0.�/h�2ni�qn DM�

� .q/:

Proof. For dominant �, recall that A� is actually a coherent sheaf on N . The fact
that A� has a good filtration is due to [29]. The character of any G-module with a
good filtration is, of course, a linear combination of various �.�/ (with � 2 XC),
and the coefficient of �.�/ is the multiplicity of H 0.�/. ut

If M is a G-module with a good filtration, then we also have

dim HomG.V .�/;M/ D ŒM W H 0.�/�:

This observation can be used to reformulate the preceeding theorem: for �;� 2 XC,

M�
� .q/ D

X

n	0
dim HomG�Gm.V .�/h�2ni; A�/qn:

This can be generalized to arbitrary � 2 X, using Lemma 5.6 and the fact that ch
gives an embedding of the Grothendieck group of PCohG�Gm.N / in ZŒX�ŒŒq��Œq�1�.

Theorem 5.8. Let � 2 X. For any � 2 XC, we have

X

i	0
.�1/i

X

n	0
dim ExtiG�Gm

.V .�/h�2ni; A�/qn DM�
� .q/:

S. Riche has communicated to me another proof of this fact, based on Broer’s
treatment [26] of the M�

� .q/ rather than Brylinski’s.
We conclude this subsection with a sketch of the proof of Proposition 4.9. We

begin with a lemma about characters of Andersen–Jantzen sheaves.

Lemma 5.9. Let � 2 XC. We have

�.�/ D
 

X

w2W
.�1/`.w/ chA�C
�w


!ˇ

ˇ

ˇ

ˇ

ˇ

qD1
:
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Proof. Fix a dominant weight � 2 XC, and consider the following calculation:

X

w2W
.�1/`.w/M�C
�w


� .q/ D
X

w;v2W
.�1/`.w/.�1/`.v/Pv.�C
/�.�C2
�w
/.q/

D
X

v2W
.�1/`.v/

 

X

w2W
.�1/`.w/Pw
�.�C
�v.�C
/C
/.q/

!

D
X

v2W
.�1/`.v/M�C
�v.�C
/

0 .q/:

Now evaluate this at q D 1. We have M�C
�v.�C
/
0 .1/ D 0 unless �C � � v.�C

�/ D 0. But since � and � are both dominant, �C � and �C � are both dominant
regular, and the condition � C � � v.� C �/ D 0 implies that v D 1 and � D �.
Thus,

 

X

w2W
.�1/`.w/M�C
�w


� .q/

!ˇ

ˇ

ˇ

ˇ

ˇ

qD1
D
(

1 if � D �,

0 otherwise.

The left-hand side is the coefficient of �.�/ in
�P

.�1/`.w/ chA�C
�w

� ˇ

ˇ

qD1. ut
Proof (sketch for Proposition 4.9). We first describe a way to interpret the expres-
sion “.ch IC�/jqD1” for arbitrary � 2 XC. Although there are typically infinitely
many qn with nonzero coefficient in ch IC�, it can be shown that there is a (possibly
infinite) sum

ch IC� D
X

	2XC

c	.q/�.�/;

where each c	.q/ is a Laurent polynomial in ZŒq; q�1�. The collection of integers
fc	.1/g	2XC can be regarded as a function XC ! Z. In an abuse of notation, we let
.ch IC�/jqD1 denote that function.

A key point is that in the space of functions XC ! Z, the various f.ch IC�/jqD1g
remain linearly independent. (This fact was explained to me in 1999 by David Vo-
gan. It is closely related to the ideas in [41, Lecture 8].)

Since IC�C2
h`.w0/i occurs as a composition factor in A�C2
 but not in any
A�C
�w
 with w ¤ w0, Lemma 5.9 implies that for some integers a�, we have

�.�/ D .�1/`.w0/.ch IC�C2
/jqD1 C
X

�<�C2

a�.ch IC�/jqD1: (14)

On the other hand, any simple G-representation L.�/ gives rise to a coherent inter-
section cohomology complex IC.C0; L.�//. For some b� 2 Z, we have

�.�/ D .�1/`.w0/.ch IC.C0; L.�///jqD1 C
X

�<�

b�.ch IC.C0; L.�///jqD1: (15)

An induction argument comparing (14) and (15) yields the result. ut
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5.3 Socles and morphisms

In this subsection, we study the socles of standard objects, the cosocles of cos-
tandard objects, and Hom-spaces between them. The results for PCohG�Gm.N /
strongly resemble classical facts about category O for a complex semisimple Lie
algebra, or about perverse sheaves on a flag variety (see, for instance, [15, 	2.1]).
In the case of ExCohG�Gm.eN /, the corresponding picture is partly conjectural.

Proposition 5.10. Let � 2 XC.

1. The socle of �� is isomorphic to ICC

m.�/
h�.2�_; �/ C ı�

�
i, and the cokernel

of ICC

m.�/
h�.2�_; �/C ı�

�
i ,! �� contains no composition factor of the form

IC�hmi with � 2 Xmin.
2. The cosocle of r� is isomorphic to ICC

m.�/
h.2�_; �/ � ı�

�
i, and the kernel

of r� � ICC

m.�/
h.2�_; �/ � ı�

�
i contains no composition factor of the form

IC�hmi with � 2 Xmin.

Proof. Because r� is a coherent sheaf, the local description of PCohG�Gm.N /
from Section 4.3 implies that it has no quotient supported on N X Nreg. (See [17,
Lemma 6] or [10, Lemma 4.1] for details.) Therefore, its cosocle must contain only
composition factors of the form IC.Nreg; E/. The claims about r� then follow from
Propositions 4.8 and 5.4. Finally, we apply Serre–Grothendieck duality to deduce
the claims about �� . ut
Lemma 5.11. Let �;� 2 X. We have

dim Hom.O
eN .�/;OeN .�/hni/ D

(

1 if � 
 � and n D .2�_; � � �/,
0 otherwise.

Proof. We have already seen in (2) that this Hom-group vanishes unless � 
 �.
Assume henceforth that � 
 �. We may also assume without loss of generality that
� D 0. Because O

eN is a torsion-free coherent sheaf, the restriction map

Hom.O
eN .�/;OeN hni/! Hom.O

eN .�/jeN reg
;O
eN hnijeN reg

/ (16)

is injective. The latter is a Hom-group between two equivariant line bundles on a
.G � Gm/-orbit. This group has dimension 1 if those line bundles are isomorphic,
and 0 otherwise. In particular, Hom.O

eN .�/jeN reg
;O
eN hnijeN reg

/ can be nonzero for
at most one value of n, and hence likewise for Hom.O

eN .�/;OeN hni/.
Note that if Hom.O

eN .�1/;OeN hn1i/ and Hom.O
eN .�2/;OeN hn2i/ are known to

be nonzero (and hence 1-dimensional), then taking their tensor product shows that

Hom.O
eN .�1 C �2/;OeN hn1 C n2i/
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is nonzero. Therefore, we can reduce to the case where � is a simple positive root,
say ˛. Note that .2�_; ˛/ D 2. Thus, to finish the proof, it suffices to exhibit a
nonzero map O

eN .˛/! O
eN h2i. We have seen such a map in (11). ut

Theorem 5.12. Let �;� 2 XC. We have

dim Hom.r�;r�hni/ D
(

1 if � � � and n D .2�_; � � �/ � ı�
�
C ı��,

0 otherwise.

Proof. It is clear that this Hom-group vanishes if � 6� �. If � � � but n ¤ .2�_; ��
�/�ı�

�
Cı��, then by Proposition 5.10,r�hni has no composition factor isomorphic

to the cosocle of r�, and again the Hom-group vanishes.
Assume henceforth that � � � and n D .2�_; � � �/ � ı�

�
C ı��. Let K be the

kernel of the map r�hni ! EC

m.�/
h.2�_; �/� ı�

�
i, and consider the exact sequence

	 	 	 ! Hom.r�;K/! Hom.r�;r�hni/
c! Hom.r�;EC

m.�/
h.2�_; �/ � ı��i/! 	 	 	 :

The first term vanishes because K contains no composition factor isomorphic to the
cosocle of r�. Therefore, the map labeled c is injective. The last term clearly has
dimension 1, so dim Hom.r�;r�hni/ � 1. To finish the proof, it suffices to show
that Hom.r�;r�hni/ ¤ 0.

By Lemma 5.11, there is a nonzero map O
eN .�/h�ı��i ! O

eN .�/hn�ı��i. Recall
from (16) that that map has nonzero restriction to eN reg. Applying ��, we obtain a
map r� ! r�hni that is nonzero, because its restriction to Nreg is nonzero. ut

It is likely that statements of a similar flavour hold in the exotic case. Corol-
lary 5.5 lets us predict what the socles of standard objects and cosocles of costan-
dard objects should look like. In Section 6, we will confirm the following statement
for G D SL2.

Conjecture 5.13. Let � 2 X.

1. The socle of b�� is isomorphic to E Nm.�/h�.2�_;dom.�//C ı�i, and the coker-
nel of E Nm.�/h�.2�_;dom.�//C ı�i ,! b�� contains no composition factor of
the form E�hmi with � 2 �Xmin.

2. The cosocle of br� is isomorphic to E Nm.�/h.2�_;dom.�//� ı�i, and the kernel

of br� � E Nm.�/h.2�_;dom.�// � ı�i contains no composition factor of the
form E�hmi with � 2 �Xmin.

It may be possible to prove this conjecture using the affine braid group technol-
ogy developed in [24, 35]. Below is an outline of another possible approach:
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1. Consider the pair of functors

DbCohG�Gm.eN /
˘˛ ��

DbCohG�Gm.eN ˛/
˘˛

��

given by ˘˛.F/ D �˛�i �̨.F.b�� ˛// and ˘˛.F/ D .i˛�� �̨F/.�b�/h1i, where
b� is as in Section 2.4. Note that 
˛ Š ˘˛ ı˘˛ . Check that ˘˛ is left adjoint
to ˘˛h�1iŒ1� and right adjoint to ˘˛h1iŒ1�.

2. Define an “exotic t -structure” on DbCohG�Gm.eN ˛/. Its heart should be a
graded quasihereditary category whose standard (resp. costandard) objects are
˘˛.b��/ (resp. ˘˛.br�/) with � � s˛�. The functor ˘˛ should be t -exact.

3. Now imitate the strategy of [15, 	2.1] or [25, Lemma 4.4.7], with the functors
˘˛ and ˘˛ playing the role of push-forward or pullback along the projection
from the full flag variety to a partial flag variety associated to a simple root.

One would likely have to show along the way that the distinguished triangles of
Proposition 2.5(4) are actually short exact sequences in ExCohG�Gm.eN /:

0! b�s˛� ! b��h1i ! 
˛.b��/Œ1�! 0;

0! 
˛.br�/Œ�1�! br�h�1i ! brs˛� ! 0
if s˛� � �. (17)

There should also be an equivalence like that in Theorem 4.1 relating ExCohG.eN ˛/

to Iwahori–Whittaker sheaves on a partial affine flag variety LGK=J˛ , where J˛ � LGO

is the parahoric subgroup corresponding to ˛.
If these expectations hold, we would obtain the following analogue of Theo-

rem 5.12.

Theorem 5.14. Assume that Conjecture 5.13 holds, and that the sequences in (17)
are exact. Let �;� 2 X. Then dim Hom.br�;br�hni/ � 1, and

dim Hom.br�;br�hni/ D 0 if � 6� �, or

if n ¤ .2�_;dom.�/ � dom.�// � ı� C ı�:

If � 2 XC and � � �, then dim Hom.br�;br�h.2�_; � � dom.�//C ı�i/ D 1.

In contrast with Theorem 5.12, we do not expect the Hom-group to be nonzero
for arbitrary weights � � �. Rather, it should only be nonzero when � is smaller
than � in the finer partial order coming from the geometry of F l or Gr . See, for
instance, [19, Footnote 5].

Proof. To show that this Hom-group vanishes if � 6� � or n ¤ .2�_;dom.�/ �
dom.�//� ı� C ı�, and that it always has dimension at most 1, one can repeat the
arguments from the proof of Theorem 5.12.
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Suppose now that � 2 XC, � � �, and n D .2�_; � � dom.�//C ı�. We must
show that Hom.br�;br�hni/ ¤ 0. If � happens to be dominant as well, then the
claim follows from Lemma 5.11. Otherwise, note that � � dom.�/ � �. By the
previous case, we have a nonzero map u W br� ! brdom.�/h.2�_; � � dom.�//i.
That map must be surjective, as can be seen by considering cosocles. Next, the exact
sequences in (17) imply that there is a surjective map v W brdom.�/ ! br�hı�i. The

composition vh.2�_; � � dom.�//i ı u is the desired nonzero map br� ! br�hni.
ut

6 Explicit computations for SL2

For the remainder of the paper, we focus on G D SL2. In keeping with the assump-
tions of Section 2.1, we assume that the characteristic of k is not 2. We identify
X D Z and XC D Z	0. Note that neither of the partial orders of Section 2.1 agrees
with the usual order on Z. In this section, � will mean the usual order on Z. We
write �X and �X for those from Section 2.1. Thus, for n;m 2 Z, we have

n �X m if m � n 2 2Z	0,
n �X m if jnj < jmj, or else if jnj D jmj and n � m.

6.1 Standard and costandard exotic sheaves

Throughout, we will work in terms of the left-hand side of the equivalence (1).
Typically, “writing down an object of CohG�Gm.eN /” will mean writing down the
underlying graded B-module for an object of CohB�Gm.u/. For instance, the struc-
ture sheaf O

eN looks like

grading degree: 	 	 	 �2 �1 0 1 2 3 4 5 6 7 8 	 	 	
B-representation: 	 	 	 � � k0 � k2 � k4 � k6 � k8 	 	 	

Of course, an indecomposable object of CohB�Gm.u/ must be concentrated either
in even degrees or in odd degrees. In the computations below, we will often omit
grading labels for degrees in which the given module vanishes.

We will also make use of notation from Section 2.4 such as eN ˛ , P˛ , etc., where
˛ D 2 is the unique positive root of G. Note that eN ˛ can be identified with the zero
section G=B � eN . As in (1), we have an equivalence

CohB�Gm.pt/ Š CohG�Gm.eN ˛/:

The composition of �˛� W DbCohG�Gm.eN ˛/! DbCohG�Gm.pt/ with this equiva-
lence is the induction functor R indGB W DbCohB�Gm.pt/! DbCohG�Gm.pt/.
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If V is a B-representation, then i˛�V denotes the object

i˛�V Š 0 2 4 6 8 10 	 	 	
V � � � � � 	 	 	

in CohB�Gm.u/. In this section, we will generally suppress the notation for resGB and
tensor products. For instance, in the following statement, H 0.�n � 1/k�1 should
be understood as the B-representation resGB H

0.�n � 1/˝ k�1.

Lemma 6.1. If n < 0, then


˛.O
eN .n// Š i˛�.V .�n � 1/k�1/h1iŒ�1�

Š
� �1 1 3 5 7 9 	 	 	
V.�n � 1/k�1 � � � � � 	 	 	

�

Œ�1�:

If n > 0, then


˛.O
eN .n// Š i˛�.H 0.n � 1/k�1/h1i Š �1 1 3 5 7 9 	 	 	

H 0.n � 1/k�1 � � � � � 	 	 	 :

Finally, 
˛.O
eN / D 0.

Proof. Recall that 
˛.O
eN .n// Š i˛�� �̨�˛�i �̨.OeN .n� 1//˝O

eN .�1/h1i. In par-
ticular, we have

�˛�i �̨.O
eN .n � 1// Š R indGB kn�1 Š

8

ˆ

<

ˆ

:

H 0.n � 1/ if n > 0,

V.�n � 1/Œ�1� if n < 0,

0 if n D 0.

The result follows. ut
Proposition 6.2 (Costandard exotic sheaves). If n < 0, then

brn Š �1 1 3 5 7 9 	 	 	
H 0.�n � 1/k�1 k�n k�nC2 k�nC4 k�nC6 k�nC8 	 	 	

If n � 0, then

brn Š 0 2 4 6 8 10 	 	 	
kn knC2 knC4 knC6 knC8 knC10 	 	 	 :

Proof. For dominant weights n � 0, this is just a restatement of the fact from (3)
that brn Š O

eN .n/. Suppose now that n < 0, and consider the distinguished tri-

angle br�nh�1i ! brn ! 
˛.br�n/ ! from Proposition 2.5(4). We have already
determined the first term, and the last term is given in Lemma 6.1. Combining those
gives the result. ut
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Proposition 6.3 (Standard exotic sheaves). If n � 0, then b�n is a coherent sheaf,
given by

b�0 Š 0 2 4 6 8 10 	 	 	
k0 k2 k4 k6 k8 k10 	 	 	

b�n Š �1 1 3 5 7 9 	 	 	
kn knC2 knC4 knC6 knC8 knC10 	 	 	 if n < 0.

If n > 0, there is a distinguished triangle H0.b�n/! b�n ! H1.b�n/Œ�1�! with

�2 0 2 4 6 8 	 	 	
H1.b�n/ Š V.n � 1/k�1 � � � � � 	 	 	
H0.b�n/ Š � k�n k�nC2 k�nC4 k�nC6 k�nC8 	 	 	

Proof. For n � 0, this is again just a restatement of (3), while for n > 0, it fol-
lows from the distinguished triangle b��nh�1i ! b�n ! 
.b��n/ ! of Proposi-
tion 2.5(4). ut

6.2 Auxiliary calculations

In this subsection, we collect a number of minor results that will be needed later for
the study of simple and tilting objects.

Lemma 6.4. For any V; V 0 2 Rep.G/, we have RHomRep.B/.V; V
0k�1/ D 0.

Proof. By adjunction, RHom.V; V 0k�1/ Š RHomRep.G/.V;R indGB .V
0k�1//. The

latter vanishes because R indGB .V
0k�1/ Š V 0 ˝R indGB k�1 D 0. ut

Lemma 6.5. For any V 2 Rep.G/, i˛�.V k�2/ lies in ExCohG�Gm.eN /.

Proof. It suffices to show that

Hom.b�mŒ�k�; i˛�V k�2/ D Hom.i˛�V k�2;brmŒk�/ D 0 for all k < 0.

The vanishing of the latter is obvious, since i˛�V k�2 and brm are both coherent
sheaves. Likewise, the vanishing of the former is obvious when m � 0, or when
k < �1. When m > 0 and k D �1, using Lemma 6.4, we have

Hom.b�mŒ1�; i˛�V k�2/ Š Hom.i˛�V.m � 1/k�1h2i; i˛�V k�2/
Š HomRep.B/.V .m � 1/k�1; V k�2/h�2i

Š HomRep.B/.V .m � 1/; V k�1/h�2i D 0: ut
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Lemma 6.6. For n > 0, there are short exact sequences of B-representations

0! H 0.n � 1/k�1 ! H 0.n/! kn ! 0;

0! k�n ! V.n/! V.n � 1/k1 ! 0:

Proof. This can be checked by direct computation using, say, the realization of
H 0.n/ as the space of homogeneous polynomials of degree n on A2. ut
Lemma 6.7. For n � �2, there is a short exact sequence in ExCohG�Gm.eN /:

0! i˛�H 0.�n � 2/k�2h1i ! brn ! br�n�2h1i ! 0:

Proof. Note that for any G-representation V , there are natural isomorphisms

HomCohG�Gm .eN /.V ˝O
eN hki;OeN .m// Š HomRep.B�Gm/.V hki;km ˝ kŒu�/

Š
(

HomRep.B/.V;km�k/ if k � 0 and k is even,

0 otherwise.
(18)

For instance, we can see in this way that

Hom.H 0.�n � 1/˝O
eN .1/h�2i;OeN .�n � 2//;

Hom.H 0.�n � 1/˝O
eN .�1/;OeN .�n � 2//

(19)

are both 1-dimensional. Consider the following exact sequence, induced by (11):

0! H 0.�n � 1/˝O
eN .1/h�2i

i! H 0.�n � 1/˝O
eN .�1/

! i˛�.H 0.�n � 1/k�1/! 0: (20)

The map i induces an isomorphism between the two Hom-groups in (19).
By similar reasoning, we find that

Ext1.H 0.�n � 1/˝O
eN .�1/;OeN .�n � 2//

Š Ext1Rep.B/.H
0.�n � 1/k�1;k�n�2/ Š Ext1Rep.B/.H

0.�n � 1/;k�n�1/
Š Ext1Rep.G/.H

0.�n � 1/;H 0.�n � 1// D 0: (21)

Now apply Ext�.�;O
eN .�n�2// to (20) to obtain a long exact sequence. From (19)

and (21), we deduce that

Ext1.i˛�.H 0.�n � 1/k�1/;O
eN .�n � 2// D 0: (22)

Now apply Hom.�;O
eN .�n � 2/h1i/ to the distinguished triangle

O
eN .�n/h�1i ! brn ! i˛�H 0.�n � 1/k�1h1i ! (23)
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from Proposition 2.5(4). It is clear that Hom.i˛�H 0.�n � 1/k�1h1i;O
eN .�n �

2/h1i/ vanishes. Combining this with (22), we find that

Hom.brn;O
eN .�n � 2/h1i/

�! Hom.O
eN .�n/h�1i;OeN .�n � 2/h1i/

is an isomorphism. The latter is 1-dimensional (by (18)), so the former is as well.
We have constructed a nonzero map h W brn ! br�n�2h1i. We claim that as a

map of coherent sheaves, h is surjective. By construction, its image at least con-
tains the image of br�nh�1i Š O

eN .�n/h�1i, i.e., the submodule containing all
homogeneous elements in degrees � 1. The only question is whether h is surjective
in grading degree �1. If it were not, then br�nh�1i would be a quotient of brn as
a coherent sheaf. This would imply the splitting of the distinguished triangle (23),
contradicting the indecomposability of brn. Thus, h is surjective.

Restricting h to the space of homogeneous elements of degree �1, we get a sur-
jective map of B-representations H 0.�n � 1/k�1 ! k�n�2. Lemma 6.6 identifies
the kernel of that map for us. We therefore have a short exact sequence of coherent
sheaves

0! i˛�H 0.�n � 2/k�2h1i ! brn ! br�n�2h1i ! 0:

Lemma 6.5 tells us that this is also a short exact sequence in ExCohG�Gm.eN /. ut
Lemma 6.8. For n � �2, there is a short exact sequence in ExCohG�Gm.eN /:

0! b��n�2h�1i ! b�n ! i˛�V.�n � 2/k�2 ! 0:

We omit the proof of this lemma, which is quite similar to Lemma 6.7. Note that
in grading degree �1, we have the distinguished triangle of B-representations

V.�n � 3/k�1Œ�1�! kn ! V.�n � 2/k�2 !
obtained from Lemma 6.6 by tensoring with k�2.

Lemma 6.9. For any V 2 Rep.G/, i˛�.V k�1/Œ�1� lies in ExCohG�Gm.eN /.

Proof. As in Lemma 6.5, it suffices to show that for k < 0, we have

Hom.b�mŒ�k�; i˛�V k�1Œ�1�/ D Hom.i˛�V k�1Œ�1�;brmŒk�/ D 0:
The vanishing of the former is easily seen in terms of the natural t -structure on
DbCohG�Gm.eN /. The vanishing of the latter is also clear when k � �2. If k D �1
and m � �1, then this Hom-group vanishes because brm is a torsion-free coher-
ent sheaf, while i˛�V k�1 is torsion. Finally, if k D �1 and m � �2, we use
Lemma 6.7. Consider the exact sequence

0! Hom.i˛�V k�1; i˛�H 0.�m � 2/k�2/! Hom.i˛�V k�1;brm/
! Hom.i˛�V k�1;br�m�2h1i/! 	 	 	 : (24)
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We have already seen that the last term vanishes. The first term is isomorphic to

HomRep.B�Gm/
.V k�1;H 0.�m � 2/k�2/

Š HomRep.B�Gm/
.V;H 0.�m � 2/k�1/;

and this vanishes by Lemma 6.4. So the middle term in (24) vanishes as well, and
i˛�V k�1h2iŒ�1� lies in ExCohG�Gm.eN /, as desired. ut
Lemma 6.10. We have

��.b�n ˝O
eN .1// Š

(

��.b�nC1/ if n � �2,

��.b��n�1/h1i if n � �1.

��.brn ˝O
eN .1// Š

(

��.br�n�1/h1i if n < 0,

��.brnC1/ if n � 0.

Proof. If n � 0, then it is clear that brn ˝O
eN .1/ Š brnC1. Similarly, for n D �1,

we have br�1 ˝O
eN .1/ Š br0h1i. If n � �2, we use Lemma 6.7 together with the

fact that ��.i˛�H 0.�n � 2/k�1/ D 0 to deduce that

��.brn ˝O
eN .1// Š ��.br�n�2h1i ˝O

eN .1// Š ��.br�n�1/h1i:
The proof for standard objects is similar. ut

6.3 Socles and morphisms

In this subsection, we verify Conjecture 5.13 and the conclusions of Theorem 5.14
for G D SL2.

Proposition 6.11. In ExCohG�Gm.eN /, we have the following short exact sequences
for each n > 0:

0! b��n ! b�nh1i ! 
˛.b�n/Œ1�! 0;

0! 
˛.brn/Œ�1�! brnh�1i ! br�n ! 0:

Proof. In view of Proposition 2.5, all we need to do is check that 
˛.b�n/Œ1� and

˛.brn/Œ�1� lie in ExCohG�Gm.eN /. By Lemma 6.1, we have


˛.b�n/Œ1� Š 
˛.b��n/h1i Š 
˛.O
eN .�n//h2i Š i˛�V.n � 1/k�1h3iŒ�1�;


˛.brn/Œ�1� Š 
˛.O
eN .n//Œ�1� Š i˛�H 0.n � 1/k�1h1iŒ�1�:

By Lemma 6.9, these both lie in ExCohG�Gm.eN /. ut
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Proposition 6.12. Let m; n 2 Z. Then

dim Hom.brm;brnhki/ D
(

1 if m �X n and k D jmj � jnj � ım C ın,

0 otherwise.

Moreover, any nonzero map brm ! brnhki is surjective.

Proof. The dimension of Hom.brm;brnhki/ can be determined by direct compu-
tation using Proposition 6.2. Note that each costandard object is generated as
a kŒu�-module by a single homogeneous component (lying in grading degree 0
or �1). Moreover, the costandard objects associated to dominant weights are free
over kŒu�. With these observations, the problem of computing Hom.brm;brnhki/ can
be reduced to that of computing Hom-groups between certain B-representations.
The latter is quite straightforward.

We now consider the surjectivity claim. Suppose m �X n. If m � 0, then

m �X �m �X m � 2 �X �mC 2 �X 	 	 	 �X n:

Lemma 6.7 and Proposition 6.11 together give us a collection of surjective maps

brm � br�mh1i� brm�2h2i� br�mC2h3i� 	 	 	� brnhm � jnj C ıni:

Their composition is a nonzero element of Hom.brm;brnhm � jnj C ıni/, and it is
surjective. Similar reasoning applies if m < 0. ut
Proposition 6.13. Let n 2 Z.

1. The socle of b�n is isomorphic to E Nm.n/h�jnj C ıni, and the cokernel of the

inclusion map E Nm.n/h�jnj C ıni ,! b�n contains no composition factor of the
form Emhki with m 2 f0;�1g.

2. The cosocle of brn is isomorphic to E Nm.n/hjnj � ıni, and the kernel of the sur-

jective map brn � E Nm.n/hjnj � ıni contains no composition factor of the form
Emhki with m 2 f0;�1g.

Proof. We will treat only the costandard case. Proposition 6.12 tells us that there is a
surjective mapbrn � br Nm.n/hjnj�ıni Š E Nm.n/hjnj�ıni. Corollary 5.5 already tells

us that brn can have no other antiminuscule composition factor. To finish the proof,
we must show that brn has no simple quotient Emhki with m … f0;�1g. If it did,
then the composition brn ! Emhki ! brmhki would be a nonzero, nonsurjective
map, contradicting Proposition 6.12. ut

6.4 Simple and tilting exotic sheaves

We are now ready to determine the simple exotic sheaves En and the indecompos-
able tilting objects OTn for all n 2 Z.
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Proposition 6.14 (Simple exotic sheaves). We have

En Š

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

i˛�L.�n � 2/k�2h1i if n � �2,

O
eN .�1/h1i if n D �1,

O
eN if n D 0,

i˛�L.n � 1/k�1h2iŒ�1� if n � 1.

Proof. The weights n D 0 and n D �1 are antiminuscule, so in those cases, En is
given by Lemma 5.1.

By Lemmas 6.5 and 6.9, respectively, we know that i˛�L.�n � 2/k�2h1i and
i˛�L.n�1/k�1h2iŒ�1� belong to ExCohG�Gm.eN /. One can show by induction with
respect to the partial order �X that they are simple, using our explicit description of
the standard and costandard objects. We omit further details. ut
Proposition 6.15 (Tilting exotic sheaves). We have

OTn Š
(

T .�n � 1/˝O
eN .�1/h1i if n < 0,

T .n/˝O
eN if n � 0.

Proof. For n � 0, this is just a restatement of Proposition 3.6. Assume henceforth
that n < 0. To show that the T .�n � 1/˝O

eN .�1/ are tilting objects, we will use
the criterion of [19, Lemma 4], which says that it is enough to check that for all
k > 0, we have

Hom.b�mŒ�k�; T .�n�1/˝O
eN .�1// D Hom.T .�n�1/˝O

eN .�1/;brmŒk�/ D 0;
or, equivalently,

Hom.b�m ˝O
eN .1/Œ�k�; T .�n � 1/˝O

eN / D
Hom.T .�n � 1/˝O

eN ;brm ˝O
eN .1/Œk�/ D 0:

By adjunction and the fact that ��ON Š � ŠON Š O
eN , this is in turn equivalent to

the vanishing of the following Hom-groups in DbCohG�Gm.N /:

Hom.��.b�m ˝O
eN .1//Œ�k�; T .�n � 1/˝ON / D

Hom.T .�n � 1/˝ON ; ��.brm ˝O
eN .1//Œk�/ D 0:

These equalities hold because T .n � 1/˝ON is a tilting object in PCohG�Gm.N /
(Proposition 3.5), while ��.b�m˝O

eN .1// is proper standard and ��.brm˝O
eN .1//

is proper costandard (by Lemma 6.10 and Proposition 2.6).
There is an obvious morphism b�n ! T .�n� 1/˝O

eN .�1/h1i, and this shows
that OTn Š T .�n � 1/˝O

eN .�1/h1i, as desired. ut
Proposition 6.16. If k D C, then every standard object and every costandard object
in ExCohG�Gm.eN / is uniserial.
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Proof. This holds by induction with respect to �X, using the short exact sequences
in Lemmas 6.7 and 6.8 and Proposition 6.11. ut

For example, the composition series of brn looks like this:

n � 0 W

cosocle: E Nm.n/hni
:::

E�nC2h3i
En�2h2i
E�nh1i

socle: En

n < 0 W

cosocle: E Nm.n/h�n � 1i
:::

E�n�4h3i
EnC2h2i
E�n�2h1i

socle: En

:

We conclude by answering Question 3.7 for G D SL2.

Proposition 6.17 (Positivity for tilting exotic sheaves). For any n;m 2 Z, the
graded vector space Hom. OTn; OTm/ is concentrated in nonnegative degrees.

Proof. We must show that Hom. OTn; OTmhki/ D 0 for all k < 0. From Proposi-
tion 6.15, this is obvious if n < 0 or if m � 0. It is also obvious if n � 0, m < 0,
and k � �2. It remains to consider the case where n � 0, m < 0, and k D �1.
Using Lemma 6.4, we find that

Hom.T .n/˝O
eN ; T .�m � 1/˝O

eN .�1//
Š HomRep.B/.T .n/; T .�m � 1/k�1/ D 0;

as desired. ut

6.5 Perverse-coherent sheaves

After the hard work of the exotic case, the calculations in the perverse coherent case
are relatively easy.

Proposition 6.18. For n 2 Z	0, rn is given by

r0 Š 0 2 4 6 8 10 	 	 	
H 0.0/ H 0.2/ H 0.4/ H 0.6/ H 0.8/ H 0.10/ 	 	 	

rn Š 1 3 5 7 	 	 	
H 0.n/ H 0.nC 2/ H 0.nC 4/ H 0.nC 6/ 	 	 	 if n > 0.

For n 2 f0; 1g, we have �n Š rn, whereas for n � 2, we have

n� 3 n� 1 nC 1 nC 3
�1 1 
 
 
 � C

m.n/ � C

m.n/ � C

m.n/ � C

m.n/ 
 
 

H1.�n/ Š V.n� 2/ V.n� 4/ 
 
 
 V.C

m.n// � � 
 
 

H0.�n/ Š � � 
 
 
 � H0. Nm.n// H0. Nm.n/C 2/ H0. Nm.n/C 4/ 
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Proof. Apply R indGB to the formulas from Propositions 6.2 and 6.3. ut
With a bit more effort, it is possible to give a finer description of the kŒN �-action

on these modules. Recall that for SL2, the nilpotent cone N is isomorphic as an
SL2-variety to the quotient A2=.Z=2/, where the nontrivial element of Z=2 acts by
negation. This gives rise to an isomorphism

kŒN � Š kŒx2; xy; y2�;

where the right-hand side is the subring of .Z=2/-invariant elements in the polyno-
mial ring kŒx; y�. For n 2 Z	0, let

Mn D kŒx2; xy; y2� 	 .xn; xn�1y; : : : ; yn/ � kŒx; y�:

Thus, Mn consists of polynomials whose terms have degrees � n and � n

.mod 2/.

Lemma 6.19. There is an isomorphism of kŒN �-modules brn ŠMnhn � ı�ni.
Proof. For n D 0, we haveM0 Š ON Š r0, and there is nothing to prove. For n D
1, recall that r1 is a simple perverse-coherent sheaf, and up to grading shift, it is
the unique simple object that is a torsion-free coherent sheaf not isomorphic to ON .
It is easy to check from Proposition 6.18 that M1 is isomorphic as a .G � Gm/-
representation tor1 (and that it is not isomorphic tor0), so to prove thatM1 Š r1,
it suffices to show that M1 is a simple perverse-coherent sheaf. This can be done by
computing its local cohomology at 0, and then using the criterion described after
Theorem 4.6.

For n � 2, Proposition 5.10 gives us a map

rn ! rC

m.n/
hn � 1i

that is surjective as a morphism in PCohG�Gm.N /. We claim that it is also injective
as a morphism in CohG�Gm.N /. Indeed, the map is an isomorphism over Nreg, so
its kernel would have to be supported on N X Nreg. But rn is a torsion-free co-
herent sheaf (see Proposition 5.3), so that kernel must be trivial. In other words, as
a coherent sheaf, rn can be identified with a certain submodule of rC

m.n/
hn � 1i.

Proposition 6.18 shows us that the desired submodule is precisely Mn. ut
Let i0 W f0g ,! N be the inclusion map of the origin into the nilpotent cone.

Proposition 6.20 (Simple perverse-coherent sheaves). We have

ICn Š

8

ˆ

<

ˆ

:

ON if n D 0,

�1 Š r1 ŠM1 if n D 1,

i0�L.n � 2/h1iŒ�1� if n � 2.
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Proof. The local description of PCohG�Gm.N / from Section 4.3 makes it clear that
the list of objects above is an exhaustive list of simple perverse-coherent sheaves up
to grading shift. To check the parametrization in the cases where n � 2, we simply
note that there is a nonzero map �n ! i0�L.n � 2/h1iŒ�1�. ut

Recall that the tilting objects in PCohG�Gm.N / have been completely described
in Proposition 3.5. We will not repeat that description here.

Proposition 6.21. In PCohG�Gm.N /, we have the following short exact sequences
for each n � 2:

0! i0�H 0.n � 2/h1iŒ�1�! rn ! rn�2h1C ı�n�2i ! 0;

0! �n�2h�1 � ı�n�2i ! �n ! i0�V.n � 2/h1iŒ�1�! 0:

Proof. We know from Theorem 5.12 that dim Hom.rn;rn�2h1 C ı�n�2i/ D 1.
Lemma 6.19 lets us identify the cone of any such map (up to grading shift) with
the space of homogeneous polynomials in kŒx; y� of degree n � 2: in other words,
with H 0.n � 2/. The local description of PCohG�Gm.N / implies that i0�H 0.n �
2/h1iŒ�1� is indeed a perverse-coherent sheaf, and this gives us the first short exact
sequence above. The second is then obtained by applying the Serre–Grothendieck
duality functor D. ut
Proposition 6.22. If k D C, then every standard object and every costandard object
in PCohG�Gm.eN / is uniserial.

Proof. This is immediate from Proposition 6.21. ut
For example, the composition series of rn for n > 0 looks like this:

n even and � 2:

cosocle: IC0hn � 1i
IC2hn � 2i
IC4hn � 4i

:::

ICn�4h4i
ICn�2h2i

socle: ICn

n odd:

cosocle: IC1hn � 1i
IC3hn � 3i
IC5hn � 5i

:::

ICn�4h4i
ICn�2h2i

socle: ICn

Finally, since PCohG�Gm.N / is properly stratified but not quasihereditary, it also
has true standard and true costandard objects. The following proposition describes
them.

Proposition 6.23. We have �0 Š r0 Š ON . If n > 0, there are short exact
sequences

0! rn ! rn ! rnh2i ! 0; 0! �nh�2i ! �n ! �n ! 0:
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Abstract The main result of [4] is the description of an algorithm to compute the
signature of the Hermitian form on an irreducible representation of a real reductive
Lie group G, and therefore determine if it is unitary. This paper concerns an im-
portant ingredient of the algorithm. If the inner class of G is defined by an outer
automorphism ı, so that G does not have discrete series representations, it is neces-
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1 Introduction

One of the central problems in representation theory is understanding irreducible
unitary representations. The reason is that in many applications of linear algebra
(like those of representation theory to harmonic analysis) the notion of length of
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The paper [4] provides an algorithm for calculating the irreducible unitary rep-
resentations of a real reductive Lie group G. The starting point for this algorithm is
the Langlands classification, which provides a parameter space for the irreducible
admissible representations of G. In order to determine the unitary representations,
it is necessary to pass to a larger extended group ıG containing G of index 2, and
construct a parameter space for the representations of ıG. The purpose of this paper
is to address the following problem: when a parameter for G extends to ıG in two
ways, there is no canonical way to choose one of the extensions. Consequently the
theory for G does not carry over to ıG in a simple way, and it is necessary to define
parameters for ıG and study their properties in some detail.

In order to explain this we need to describe briefly (or at least more briefly than
[4]) the nature of the unitarity algorithm. In order to minimize technicalities, we will
provide in the introduction complete details only for finite-dimensional representa-
tions. For a real reductive Lie group, the theory of Harish-Chandra modules provides
a complete way to deal with the complications attached to infinite-dimensional rep-
resentations.

To study unitary representations it is natural to study the larger class of represen-
tations with invariant Hermitian forms. Here is the underlying formalism.

Definition 1.1. Suppose V and W are complex vector spaces. A sesquilinear pair-
ing is a map

h	; 	iWV �W ! C

that is linear in V and conjugate-linear in W :

hav1Cbv2; wi D ahv1; wiCbhv2; wi; hv; cw1Cdw2i D chv;w1iCd hv;w2i:
In case V D W , the pairing is called Hermitian if in addition

hv1; v2i D hv2; v1i:
If h; i is a nondegenerate Hermitian pairing on a finite-dimensional vector space

V , then there is a one-to-one correspondence between linear maps A 2 Hom.V; V /
and sesquilinear pairings h; iA on V , defined by

hv;wiA D hv;Awi:
In this correspondence, h; iA is Hermitian if and only ifA is self-adjoint with respect
to h; i.
Definition 1.2. Suppose .�; V / is a representation of a group G1 on a finite-
dimensional complex vector space V . An invariant Hermitian form on V is a Her-
mitian pairing

h	; 	iWV � V ! C

with the property that

h�.g/v; �.g/wi D hv;wi .v; w 2 V; g 2 G1/:
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The representation � is Hermitian if it is endowed with a nondegenerate invariant
Hermitian form, and unitary if in addition this form is positive definite.

If G1 is a connected real Lie group with Lie algebra g1, then � is determined by
its differential (still called �)

� W g1 ! End.V /;

a Lie algebra representation. The condition for the Hermitian form to be invariant is
equivalent to

h�.X/v;wi C hv; �.X/wi D 0 .v;w 2 V; X 2 g1/I
that is, that the real Lie algebra g1 acts by skew-Hermitian operators.

A Hermitian form on a finite-dimensional vector space V has a signature which
for us will be a triple .p; q; ´/ 2 N3: here p is the dimension of a maximal positive-
definite subspace of V , q is the dimension of a maximal negative-definite subspace,
and ´ is the dimension of the radical. Sylvester’s law of inertia says that p, q, and ´
are well-defined, and that

p C q C ´ D dim.V /: (1)

Proposition 1.3 (Schur’s Lemma). Suppose .�; V / 2 .cG1/fin (notation (4)). Then
any two nonzero invariant Hermitian forms on V are nondegenerate, and differ by
a real nonzero scalar. In particular, the signature .p.�/; q.�// is well-defined up to
interchanging p and q.

Here is an outline of the algorithm in [4] for determining the unitary irreducible
representations of a real reductive group.

Algorithm. Suppose G1 is the group of real points of a complex connected reduc-
tive algebraic group.

1. List all the irreducible representations of G1 admitting a nonzero invariant Her-
mitian form.

2. For each such irreducible � , choose a nonzero invariant form h; i� .
3. For each form h; i� , calculate the signature .p.�/; q.�//.
4. Check whether one of p.�/ and q.�/ is zero; in this case, � is an irreducible

unitary representation.

We have explained this algorithm in the case of finite-dimensional representa-
tions. For infinite-dimensional representations step 1 is the Langlands classification,
and what it means to calculate the signature of an invariant form on an infinite-
dimensional representation is discussed in [4].

Of these steps, (1) was carried out by Knapp and Zuckerman about 1976; there is
an account in [7, Chapter 16]. Their argument was a reduction of the problem to the
special case of representations with real infinitesimal character. We will not recall
the precise definition (see [4, Definition 5.5] or [14, Definition 5.4.11]). The nature
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of the reduction provided at the same time a reduction of (2)–(4): the entire problem
of understanding unitary irreducible representations was reduced to the case of real
infinitesimal character. We will therefore concentrate henceforth on this case. (If
G1 is real semisimple, then every finite-dimensional representation of G1 has real
infinitesimal character; so the reduction is invisible on the level of finite-dimensional
representations.)

Before we look at an example, one more general idea is useful. A fundamental
idea in the representation theory of a real Lie group (or Lie algebra) is to complexify
the group (or Lie algebra), and take advantage of the (simpler and stronger) struc-
tural results available for complex Lie algebras and groups. This is particularly easy
for Lie algebras: any real Lie algebra g1 has a natural complexification

g Ddef g1 ˝R C D g1 ˚ ig1: (2a)

(The distinction between g1 and g in this notation seems a little obscure and hard to
remember. In the body of the paper, G1 will usually be something like G.R/, and
g1 will be g.R/.) The extra structure on the complex Lie algebra g that remembers
g1 is a real form: a conjugate-linear real Lie algebra automorphism of order two

�1W g! g; �1.X C iY / D X � iY .X; Y 2 g1/: (2b)

Any real Lie algebra representation �R of g1 on a complex vector space V gives
rise to a complex Lie algebra representation

�C.X C iY / D �R.X/C i�R.Y / .X; Y 2 g1/I (2c)

and of course �R can be recovered from �C by restriction. This is so elementary and
fundamental that it usually goes unsaid, and the subscripts R and C on � are not
used.

The reason we make this explicit now is that an invariant Hermitian form for �R

is almost never invariant for �C; if h�R.X/v;wiChv; �R.X/wi D 0 .x 2 g1/, then

h�C.iX/v;wi C hv; �C.iX/wi D i.h�R.X/v;wi � hv; �R.X/wi/
and there is no reason for this to be 0. What is true is that the Hermitian form h	; 	i
on V is �R-invariant (see 1.2) if and only if

h�C.Z/v;wi C hv; �C.�1.Z//wi D 0 .v;w 2 V; Z 2 g/: (2d)

That is, we require that �C should carry the complex conjugation on g to minus
Hermitian transpose on operators. In this case we call h	; 	i a �1-invariant form for
the representation �C of g.

The point to remember is that the definition of invariant Hermitian form on a
complex representation of a complex Lie algebra g requires a choice of real form
on g. Changing the real form changes everything: whether an invariant form exists,
and what its signature is.
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Example 1.4. Suppose G1 D SL.3;R/. The finite-dimensional representations of
G1 are precisely those of the complex Lie algebra sl.3;C/. The corresponding real
form of sl.3;C/ is

�1.Z/ D Z .Z 2 sl.3;C//;

complex conjugation of matrices.
Irreducible finite-dimensional representations of sl.3;C/ are indexed by highest

weights

� D .�1; �2; �3/; �1 C �2 C �3 D 0; �p � �q 2 Z; �1 � �2 � �3:
For example, E.2=3;�1=3;�1=3/ is the tautological representation on C3 and E.1;0;�1/
is the 8-dimensional adjoint representation. It turns out that the only representations
with a nonzero invariant �1-invariant Hermitian form are the “Cartan powers of the
adjoint representation”:

E.m;0;�m/ D irreducible representation of dimension .mC 1/3.

(This follows from the Knapp–Zuckerman result explained in [7, Chapter 16], but
for finite-dimensional representations is probably much older.)

We would like to understand �1-invariant Hermitian forms on E.m;0;�m/. Acco-
rding to the program described after Proposition 1.3, we need first to choose one of
the two possible forms. For this (and for much more!) we will use the restriction of
representations of G1 to the maximal compact subgroup

K1 D SO.3/:

Because each irreducible representation of a compact group has a positive-definite
invariant Hermitian form, the positive and negative parts of an invariant form forG1
may be understood not just as vector spaces (with dimensions) but as representa-
tions of K1 (sums of irreducible representations with multiplicity). It turns out that
E.m;0;�m/ contains either the trivial representation F1 of K1 (if m is even), or the
tautological three-dimensional representation F3 (if m is odd), but not both. This
representation appears with multiplicity one, so any invariant Hermitian form is ei-
ther positive or negative definite on the subspace F1 or F3. We fix our choice of
�1-invariant form on E.m;0;�m/ by requiring

form is positive on F1 and negative on F3.

For example, the adjoint representation E.1;0;�1/ ' g has a Cartan decomposition
(more precisely, the complexification of the Cartan decomposition of g1)

g D k˚ p D F3 ˚ F5
(skew-symmetric and symmetric traceless matrices), the sum of irreducible repre-
sentations of K1 of dimensions 3 and 5. We can choose for our invariant Hermitian
form the trace form
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hX; Y i D tr.XY �/ .X; Y 2 sl.3;C//:

This form is easily seen to be positive definite on the space of real symmetric ma-
trices (since these have real eigenvalues), and negative definite on the real skew-
symmetric matrices (since these have purely imaginary eigenvalues). In particular,
it is negative on F3. In this way we see that the form on E.1;0;�1/ has signature
.5; 3/; even better, the signature is .F5; F3/ as a representation of SO.3/.

Here are a few more signatures. We are for the moment simply claiming that
these formulas are correct, not explaining where they come from. Always we write
F2kC1 for the unique irreducible representation of SO.3/ of dimension 2k C 1,
endowed with a positive-definite invariant Hermitian form.

signature of E.3;0;�3/ D .ŒF13 C F9 C F7�C F5; ŒF11 C F9 C F7�C F3/I
that is,

sig.E.3;0;�3// D .ŒF13 C F9 C F7�; ŒF11 C F9 C F7�/C sig.E.1;0;�1//:

Similarly we can compute

sig.E.5;0;�5// D .ŒF21 C F17 C F15 C F13 C F11�;
ŒF19 C F17 C F15 C F13 C F11�/C sig.E.3;0;�3//:

At this point perhaps the pattern is evident: we get the signature forE.2mC1;0;�2m�1/
from that for E.2m�1;0;�2mC1/ by adding to the positive and negative parts sums of
2mC1 irreducible representations ofK1. The two added strings are identical except
for the first terms, which differ in dimension by two. (The pattern applies even to
getting the signature of E.1;0;�1/ from that of the (zero) representation E.�1;0;1/.)

In the same way, it turns out that

sig.E.0;0;0// D .F1; 0/
sig.E.2;0;�2// D .ŒF9 C F5�; ŒF7 C F5�/C sig.E.0;0;0//

sig.E.4;0;�4// D .ŒF17 C F13 C F11 C F9�;
ŒF15 C F13 C F11 C F9�/C sig.E.2;0;�2//:

The pattern is essentially the same as in the odd case: we get the signature for
E.2mC2;0;�2m�2/ from that for E.2m;0;�2m/ by adding to the positive and negative
parts sums of 2mC 2 irreducible representations of K1. The two added strings are
identical except for the first terms, which differ in dimension by two.

As a consequence of this inductive description of the signature as a representation
of K1, or more directly, one can show that

sig.E.m;0;�m// D .Œ.mC 1/3 C .mC 1/�=2; Œ.mC 1/3 � .mC 1/�=2/:
In particular, E.m;0;�m/ is unitary if and only if m D 0: the trivial representation is
the only finite-dimensional unitary representation of SL.3;R/. (The last statement
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of course has many extremely short proofs; the point of explaining this long argu-
ment is that the ideas apply to infinite-dimensional representations of general real
reductive groups.)

This is the shape of the calculation made possible by [4]: we find enormous detail
about the precise signatures of invariant Hermitian forms, and then (for the purposes
of questions about unitarity) throw almost all of this information away. Of course we
would be very happy to learn what interesting questions this discarded information
is actually addressing.

We now describe how the calculation of signatures is related to a more classical
representation-theoretic problem of Clifford theory: how to extend an irreducible
representation of a normal subgroup.

We do not wish to use all of the somewhat complicated and delicate hypotheses
under which we finally work (involving real algebraic groups and L-groups just as
a point of departure). On the other hand, we would like to use notation that is close
to being consistent with that of the body of the paper. Here is a compromise.

A key object to consider will be a group extension

1! G ! exG ! f1; ıg ! 1; (3a)

which we call an extended group forG. In the body of the paper,G will very often be
a complex connected reductive algebraic group. Perhaps the most familar example
of such an extension, and one that we will certainly use (often behind the scenes),
is Langlands L-group (12h); there the role of G is played by a (complex connected
reductive algebraic) dual group, and f1; ıg is the Galois group of C=R.

Here is a concrete way to construct such a group extension. Begin with an auto-
morphism � 2 Aut.G/, with the property that �2 is inner:

�2 D Int.g0/ .g 2 G/: (3b)

(Only the coset g0Z.G/ is determined by � .) Then we can define exG by genera-
tors and relations, as the group generated by G and a single additional element h0,
satisfying

h20 D g0; h0gh
�1
0 D �.g/ .g 2 G/: (3c)

(This presentation does depend on the choice of representative g0 for the coset
g0Z.G/.) Two automorphisms � and � 0 of G are said to be inner to each other
if � 0 ı ��1 is an inner automorphism. Now it is clear that

fInt.h/jG j h 2 exG �Gg is an inner class in Aut.G/. (3d)

This is how we will use extended groups: as a place to keep track of and compare
representatives of various automorphisms of G.

An extended subgroup of exG is a subgroup exG1 mapping surjectively to f1; ıg.
In this case we define G1 D G \ exG1, so that

1! G1 ! exG1 ! f1; ıg ! 1: (3e)

Often we will consider several such subgroups exG1, exG2, and so on.
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In the body of the paper, the (complex) group G will be a very useful tool, but
we will be interested actually in representations only of a real form G.R/; then this
will be a typical G1. A little more precisely, if exG is a complex Lie group, then a
real form means an antiholomorphic automorphism of order two of real extended
Lie groups

�1W exG ! exG; �1.G/ D G; exG1 Ddef Œ
exG��1 : (3f)

(“Antiholomorphic” means that if f is a local holomorphic function on exG, then
f ı �1 is holomorphic as well. This implies in particular that the differential of �1
(still denoted �1) is a real form of g in the sense of (2b)).

Our main results are about the problems of Clifford theory (Proposition 1.5): the
relationship between representations of G and of exG. Here is a classical statement
of Clifford theory for finite-dimensional representations; in the world of Harish-
Chandra modules, the extension to infinite-dimensional representations is easy.
Write

.bG/fin D equiv. classes of fin.-diml. irreducible representations. (4)

Proposition 1.5 (Clifford). Suppose G � exG is an extended group (3a).

1. The quotient exG=G D f1; ıg acts on bGfin, by

ı 	 .�;E/ D .�h; E/; �h.g/ D �.hgh�1/I
here h is any fixed element of exG �G (the non-identity coset of G in exG). The
equivalence class of �h is independent of the choice of h.

2. Define

�W exG ! f˙1g; �.h/ D
(

1 .h 2 G/
�1 .h … G/:

Then the group of characters f1; �g of exG=G acts on .bexG/fin by

� 	˘ D ˘ ˝ �:
3. Because these are actions of two-element groups, we have

� 2 bGfin either is fixed by ı, or has a two-element orbit f�; ı 	 �g.
Similarly,

˘ 2 .bexG/fin either has a two-element orbit f˘; � 	˘g, or is fixed by �.

4. The two-element orbits of ı on bGfin are in one-to-one correspondence (by in-

duction from G to exG) with the �-fixed elements of .bexG/fin. These are the rep-
resentations˘ of exG whose characters vanish on exG�G; their characters on
G are the sum of the two corresponding characters of G.
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5. The two-element orbits of � on .bexG/fin are in one-to-one correspondence (by
restriction toG) with the ı-fixed elements of bGfin. The two extensions˘ and˘ 0
of such a � have characters on exG � G differing by sign; their characters on
G agree with that of � .

6. Suppose .�;E/ is a ı-fixed element of bGfin. Then an extension of � to exG may
be constructed as follows. Fix any element h0 2 exG �G. Let A� be a nonzero
intertwining operator from � to �h:

A��.g/ D �.h0gh�10 /A� :
This requirement determines A� up to a multiplicative scalar. Write g0 D h20 2
G. After modifying A� by an appropriate scalar, we may arrange

A2� D �.g0/I
with this additional condition, A� is determined up to multiplication by ˙1.
Each choice of A� determines an extension ˘ of � , by the requirement

˘.h0/ D A� :
Suppose we understand the character theory of the smaller group G. Because

of this proposition, in order to understand the character theory of exG, we must
understand, for each ı-fixed irreducible representation of G, the character of some
extension of it on exG � G. There are always exactly two such extensions, whose
characters on exG�G differ by sign; our task will be to find a way (for the particular
groups of interest) to specify one of these two extensions.

Suppose now (as we will for the body of this paper) that G is a complex con-
nected reductive algebraic group, and that

� WG ! G (5a)

is a real form: an antiholomorphic automorphism of order two of real Lie groups.
The corresponding real reductive algebraic group is

G.R; �/ D G.R/ Ddef G
� ; (5b)

a real Lie group with Lie algebra

g.R/ Ddef g
� : (5c)

Now G has one particularly interesting (conjugacy class of) real form(s), the com-
pact real form �c . It is characterized up to conjugation by G by the requirement
that

G.R; �c/ is compact. (5d)

Elie Cartan showed that �c may be chosen to commute with the real form � , and
that this requirement determines �c up to conjugation by G.R; �/. Because of the
commutativity, the composition
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� D � ı �c D �c ı � (5e)

is an algebraic involution of G of order two called the Cartan involution; it is deter-
mined by � up to conjugation by G.R; �/. The group of fixed points

K D G (5f)

is a (possibly disconnected) complex reductive algebraic subgroup of G. The two
real forms � and �c of G both preserve K, and act the same way there; the corre-
sponding real form

K.R/ D G.R; �/ \K D G.R; �/ \G.R; �c/ D G.R; �c/ \K (5g)

is a maximal compact subgroup of G.R; �/ and a maximal compact subgroup (the
compact real form) of K.

We wish to understand � -invariant Hermitian forms on representations of G.R/.
The next proposition recalls the classical solution (by Cartan and Weyl) of a related
problem, and then relates the two problems.

Proposition 1.6. Suppose we are in the setting (5).

1. Finite-dimensional algebraic representations ofK may be identified with finite-
dimensional continuous representations of the compact real form K.R/.

2. Finite-dimensional algebraic representations of G may be identified with finite-
dimensional continuous representations of the compact real form G.R; �c/.

3. Every finite-dimensional irreducible algebraic representation .�;E/ of G ad-
mits a positive-definite �c-invariant Hermitian form h	; 	ic , unique up to positive
scalar multiple:

h�.g/v;wic D hv; �.�c.g//�1wic :
4. The finite-dimensional irreducible algebraic representation .�;E/ of G admits

a � -invariant Hermitian form h	; 	i if and only if there is a nonzero linear oper-
ator, self-adjoint with respect to the form h; ic ,

A� WE ! E; A�� D A�
with the property that

A��.g/ D �.�.g//A� .g 2 G/:
In particular,A� commutes with the action ofK. These requirements determine
A� up to a real multiplicative scalar. In this case the � -invariant form is

hv;wi D hv;A�wic :
5. In the setting of (4), A2� must commute with the action of � , and so must be a

nonzero scalar. BecauseA� is self-adjoint with respect to the positive Hermitian
form h; ic , the scalar is necessarily positive real:

A2� D r�IE ; r� 2 RC;�:
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6. The signature of this � -invariant form is

sig.E/ D .C1 eigenspace of .r�1=2� /A�//;�1 eigenspace of .r�1=2� /A�/I
here the positive and negative parts are representations of K.

The conditions on A� in Proposition 1.6 look like conditions in Proposition 1.5
for defining a representation of an extended group. We deduce easily

Corollary 1.7. In the setting (5), suppose also that G is part of an extended group
as in (3); and that

� D Int./;  2 exG �G; 2 D ´ 2 Z.G/:
Then a finite-dimensional irreducible algebraic representation .�;E/ of G admits
a � -invariant Hermitian form if and only if � has an extension ˘ to exG. In that
case define a nonzero complex scalar ´� so that

�.´/ D ´�IE ;
and choose a square root !� of ´� . Then the � -invariant Hermitian form on E may
be taken to be

hv;wi D hv; !�1� ˘./wic :
The signature of this � -invariant form is

sig.E/ D .C1 eigenspace of !�1� ˘./;�1 eigenspace of !�1� ˘.//:

In particular, the difference between the dimensions of the positive and negative
parts is equal to !�1� times the character value tr.˘.//.

There is no difficulty in finding the extended group needed in this corollary: one
can use for example

exG D G Ì f1; g; (6)

with  acting on G by the Cartan involution � . In this case ´ D 1, so the statement
of the corollary simplifies a bit. We allow for more general extended groups because
those will turn out to be useful for the bookkeeping we want to do.

Corollary 1.7 says that understanding the existence and signatures of � -invariant
Hermitian forms on algebraic representations of G is equivalent to understand-
ing the algebraic representations of the disconnected (complex reductive algebraic)
group exG. Here is what happens in the case of SL.3/.

Proposition 1.8. Suppose G D SL.3/, with the real form G.R; �/ D SL.3;R/
given by complex conjugation of matrices. Then a compact real form of SL.3/ is
SU.3/, with complex conjugation given by inverse Hermitian transpose:

�c.g/ D tg�1 .g 2 SL.3;C//:

Then �c and � commute, so the Cartan involution is
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�.g/ D tg�1; K D SO.3;C/; K.R/ D SO.3/:

Twisting by � carries the representation of highest weight .�1; �2; �3/ (see Example
1.4) to the one of highest weight .��3;��2;��1/. In particular, the only represen-
tations fixed are the various .�m; E.m;0;�m//.

For such a representation, we can therefore find an operator

AmWE.m;0;�m/ ! E.m;0;�m/; Am�m.g/ D �m.tg�1/ .g 2 SL.3//:

This requirement specifies Am up to a scalar; we can specify it precisely by requir-
ing that Am act by C1 on the unique largest SO.3/ representation F4mC1 inside
E.m;0;�m/.

With this choice, we can extend �m to a representation ˘m of the disconnected
group exSL.3/ of (6), by defining

˘m./ D Am:
The semisimple conjugacy classes of SL.3/ on the non-identity component of

exSL.3/ are represented by
8

<

:

h.´/ D
0

@

0 0 ´

0 1 0

�´�1 0 0

1

A 

9

=

;

I

here h.´/ is conjugate to h.´�1/. By a version of the Weyl character formula (for ex-
ample [16, Theorem 1.43]), the trace of this element in the extended representation
˘m is

tr.˘m.h.´/// D .�1/m.´2mC2 � ´�2m�2/=.´2 � ´�2/
for ´ not a fourth root of 1. The element  is conjugate to h.˙i/; so by L’Hôpital’s
rule,

tr.˘m.// D tr.˘m.h.i/// D mC 1:
The difference between the positive and negative parts of the signature of the � -
invariant Hermitian form defined by˘m is thereforemC1, so this is the same form
described in Example 1.4.

Perhaps the most challenging part of proving this proposition is to verify that 
is conjugate to h.˙i/, but this can be done.

Kazhdan–Lusztig theory for computing irreducible characters typically takes
place in a free ZŒq�-module with basis indexed by the irreducible characters of
interest. This ZŒq� modules carries a representation of the Hecke algebra, and the
Kazhdan–Lusztig polynomials are determined by the Hecke module structure.

In something like the setting of Proposition 1.5 (where we already understand
characters onG, and so wish to understand just characters on exG�G) this suggests
that we will be interested in a free ZŒq�-module having a basis fm˘ g indexed by one
irreducible representation ˘ from each pair ˘ ¤ ˘ 0 D ˘ ˝ �. In this module, we
will think of
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m˘ 0 D �m˘
(corresponding to the fact that the characters of˘ and˘ 0 sum to zero on exG�G).
All of this is explained more precisely in Section 7.

The computational problem in implementing the Kazhdan–Lusztig algorithm is
that we know precisely how to parametrize the ı-fixed irreducibles � of the smaller
group G; but a ı-fixed irreducible corresponds only to a pair f˘;˘ 0g, and so only
to a basis vector of the Hecke module defined up to sign. We need an equally precise
parametrization of irreducibles of exG; that is, of how to specify one of the two pos-
sible extensions of � to exG. In Proposition 1.8 this happened with the requirement
that Am act byC1 on F4mC1. This amounts to a condition involving the action of a
particular element of the larger group exG on a highest weight vector.

Corollary 1.7 shows that (in the setting (5)) understanding � -invariant Hermitian
forms on finite-dimensional representations is closely related to understanding the
extensions to exG.R; �/ of irreducible representations of G.R; �/.

An important special case is when  of (6) acts by an inner involution of G. In
this case write .g/ D xgx�1 for some x 2 G. Then the map  ! .x; �/ induces
an isomorphism

exG D G Ì f1; g ' G � Z=2Z D G � f1; �g: (7)

In this, the equal rank case, there is no essential new information in the representa-
tion theory of exG, and it is enough to work with G itself.

With the appropriate generalizations, this can be made to work for infinite-
dimensional representations as well. This is discussed in detail in [4]. Just as in
the case of finite-dimensional representations, it is not necesary to use the extended
group in the case of an equal rank group. See [4, Section 11].

In the unequal rank case, this requires (at least implicitly) understanding the ana-
logues of highest weights—Lie algebra cohomology for maximal nilpotent subal-
gebras n—by which infinite-dimensional representations .�;E/ of real reductive
groups are classified. A little more precisely, one looks at the normalizer Gn of
n in G. This group acts by a character �� on a Lie algebra cohomology space
H�.n; E/, and the character �� determines the representation � . To specify an ex-
tension .˘;E/ of � to exG, one needs an extension �˘ of �� to the normalizer
exGn of n in exG. To get that, we can fix any element

hn 2 exGn �Gn: (8a)

Necessarily
h2n D gn 2 Gn: (8b)

An extension ˘ of of � to exG is specified by specifying the single character value
�˘ .hn/, which may be either square root of ��.gn/:

extension ˘ of �  ! square root �˘ .hn/ of ��.gn/. (8c)
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What makes matters difficult is that the cohomology classes needed for differ-
ent representations involve different maximal nilpotent subalgebras, and (as it turns
out) necessarily different elements hn. Even worse, for a single n, there may be no
preferred choice of hn. We need to have a way to keep track of choices of these
elements hn, and of the square roots �˘ .hn/.

A natural way to reduce choices would be to try to arrange for hn to have or-
der two; in that case gn D 1, so ��.gn/ D 1, and the choice �˘ .hn/ must be
˙1. This is more or less what happened in Proposition 1.8, and we were then able
to make the “natural” choice �˘ .hn/ D 1. But in general we cannot always ar-
range for hn to have order 2. It turns out that there is behavior like the example of
G D Z=4Z D f˙1;˙ig sitting inside the quaternion group exG of order 8: every
element f˙j;˙kg of the non-identity coset has order exactly 4. Once we are forced
to consider a case when ��.gn/ D �1, it is easy to believe that there can be no
preferred choice of square root.

This gives a hint at the difficulties we face. To explain in more detail their res-
olution, we begin with the extension of the Cartan–Weyl highest weight theory to
parametrize representations. This is provided by the Langlands classification, which
is phrased in terms of the complex reductive dual group. Langlands’ results in their
original form parametrize not individual representations but “L-packets,” which are
collections of finite sets of irreducible representations for each of several different
real forms of G. To use the construction of (6) would require introducing a different
extended group for each of these different real forms. This is inconvenient at best,
and is inconsistent with the cleanest formulation of the Langlands classification.

A glimpse of this inconvenience is the description of conjugacy classes in the
extended group given in Proposition 1.8. What is good about the elements h.´/
defined there is that they normalize the standard Borel subgroup (consisting of upper
triangular matrices) in SL.3/; the element  does not. It is this good property that
allows one to write a nice Weyl character formula for the elements h.´/. We recall
next the notion of pinning for a reductive algebraic group, and the derived notion of
distinguished automorphism; these are required for the formulation of the Langlands
classification made in Section 3.

Definition 1.9. Suppose G is a complex connected reductive algebraic group. A
pinning of G consists of

1. a Borel subgroup B � G;
2. a maximal torus H � B; and
3. for each simple root ˛, a choice of basis vector X˛ 2 g˛ .

The pair H � B is determined by fX˛g, so we can just write .G; fX˛g/ for the
pinning.

An algebraic automorphism ı0 of G is called distinguished (with respect to this
pinning) if the differential of ı0 permutes the chosen simple root vectors X˛ . (As a
consequence, ı0 must preserve H and B .)

If �0 is a distinguished automorphism of order one or two, we define the distin-
guished extended group to be the algebraic group �G generated byG and one more
element 0, subject to the relations
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20 D 1; 0g D �0.g/0 .g 2 G/:
Recall that two automorphisms ı and ı0 of G are said to be inner to each other if

ı0 ı ı�1 is an inner automorphism.

Proposition 1.10 ([11, Corollary 2.14]). Suppose .G; fX˛g/ is a complex con-
nected reductive algebraic group with a pinning. Then any automorphism ı of G
is inner to a unique distinguished automorphism ı0. Necessarily the order of ı0
divides the order of ı (where we make the conventions that any nonzero natural
number divides infinity, and infinity divides itself). If in addition ı is semisimple
(for example, if ı has finite order), then ı is conjugate by G to an automorphism
Ad.h/ı0, for some (usually not unique) h 2 H .

In case �0 has order one or two, the proposition says that every automorphism
� of G inner to �0 may be realized by the conjugation action of an element  of
the nonidentity coset G0 of the corresponding distinguished extended group. The
difference from (6) is that, even if �2 D 1, the element 2 may be a nontrivial
element of Z.G/. This turns out to be a small price to pay for having a single
extended group to work with (as � varies over an inner class).

The Cartan involution � (and therefore the extended group exG) is playing a dou-
ble role in Corollary 1.7: first, specifying the real formG.R/; and second, specifying
an automorphism ofG.R/ by which we wish to twist representations. It will be con-
venient to separate these two roles: to study the twisting of representations of G.R/
by a second automorphism ı.

Section 2 establishes the required notation for “doubly extended groups,” and
recalls also Langlands’ L-group. Section 3 recalls from [3] a formulation of the
Langlands classification well-suited to calculation. Section 4 computes the twisting
action of ı on representations. The idea here (exactly as in the original work of
Knapp and Zuckerman recorded in [7]) is that this is a fairly elementary inspection
of the twisting action on parameters for representations.

Section 5 describes a way to add information to a ı-fixed parameter—essentially
choices of elements hn and �˘ .hn/ discussed in (8)—to specify a representation of
the corresponding extended group ıG.R/. Particularly because the extended group
element hn is not unique, the question of when two of these extended representations
are equivalent is a bit subtle; Section 6 answers this question.

In this way we are able to write explicitly a basis (not just a basis defined up
to sign) for the Hecke module considered in [10], and the Kazhdan–Lusztig poly-
nomials are determined by this Hecke module. Precise formulas for the action of
Hecke algebra generators on the basis are written in Section 7. Each such formula
involves one to four basis vectors in the module. In [10] it was shown that these one
to four basis vectors could be chosen so that the action of the generator was given
by a specified matrix (of size one to four). A typical example (the only example in
the original paper [6]) is

�

0 q

1 q � 1
�

: (9)
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The technical problem that led to this paper, mentioned at the beginning of the
introduction, is that these nice choices of basis vectors cannot be made consistently
as the Hecke algebra generator varies. The result is that if we fix a single choice of
basis for the Hecke module, then the actions of some of the Hecke algebra generators
will be given by matrices made of blocks not only like (9), but also by conjugates of
such a matrix by a diagonal matrix with entries ˙1. A typical example is

�

0 �q
�1 q � 1

�

: (10)

The point of the formulas in Section 7 is to say precisely where the minus signs must
go. In order to do this, one needs to say how to manipulate our extended parameters
to get the nice basis vectors discussed in [10]. There are two cases where this manip-
ulation is somewhat more complicated, and they are described in detail in Sections
8 and 9. Ultimately this gives an explicit algorithm for computing the polynomi-
als of [10], which is being implemented in the atlas of Lie groups and
Representations software [17]. The application to our computation of Hermi-
tian forms is [4, Theorem 19.4].

A guiding principle in formulating these results is the fundamental duality
theorem originating in [6, Theorem 3.1], and extended to Harish-Chandra modules
in [15]. Section 11 describes how to prove this for the Hecke modules in the twisted
setting. The heart of the proof in every case is that a “transpose” of one Hecke alge-
bra action is equal to another Hecke algebra action; explicitly, that the transpose of
the matrix giving an action of a generator is equal to the matrix giving the action of
the same generator on a different module. That such a statement is true up to signs
was clear from [10]; with the specification of the signs in this paper we are able to
prove it completely.

2 Setting

Our first goal is to understand which representations are fixed by a given outer au-
tomorphism, and how to to write down the corresponding representations of the
extended group. We begin by setting up some notation in this section, discuss the
atlas parametrization of representations in Section 3, and the action of twisting
on these parameters in Section 4.

We start with a connected complex reductive algebraic group G, equipped with
a pinning (Definition 1.9). Acting on this we have two commuting distinguished
involutive automorphisms:

0W .G;B;H/! .G;B;H/; ı0W .G;B;H/! .G;B;H/; (11a)

satisfying

0.X˛/ D X�0.˛/; ı0.X˛/ D Xı0.˛/ .˛; .˛/; ı0.˛/ 2 ˘/: (11b)

See Definition 1.9 and [1, p. 34 or p. 51].
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The automorphism 0 defines the inner class of real forms under consideration;
it is the unique Cartan involution in the inner class which is distinguished, and is
the Cartan involution of the “most compact” real form in the inner class. The au-
tomorphism ı0 defines the twisting of representations that we will consider. Since
any automorphism is inner to a distinguished one there is no loss in assuming ı0 is
distinguished.

We will abuse notation and use these automorphisms to define a semidirect prod-
uct of G with the Klein 4-group .Z=2Z/2:

�G D G Ì f1; 0; ı0; 0ı0g: (11c)

The superscript � is supposed to suggest “double.” The abuse of notation is that
from now on 0 may denote an element of �G (which by definition is never the
identity) or an automorphism of G (which is the identity exactly when 0 defines
the equal rank inner class).

It is helpful to use also the corresponding large ([1, p. 51]) involutive automor-
phism. As in [1] we write

eW h! H; e.X/ D exp.2�iX/I (11d)

this is a surjective homomorphism from the Lie algebra onto H , with kernel equal
to X�.H/. Also we write

� D 1

2

X

ˇ2RC.G;H/

ˇ; �_ D 1

2

X

ˇ2RC.G;H/

ˇ_: (11e)

Then ˛.e.�_=2// D �1 for every simple root ˛; so if we define

1 D e.�_=2/0 2 H0; (11f)

then this element of �G acts on G as an involutive automorphism satisfying

1jH D 0jH; 1.X˛/ D �X�.˛/; .˛ 2 ˘/: (11g)

This element satisfies

21 D e.�_/ Ddef ´.�
_/ 2 Z.G/; (11h)

a central element of order (one or) two.
Our torus H � G has a well-defined (that is, uniquely defined up to unique

isomorphism) dual torus
_H D X�.H/˝Z C�: (12a)

The characters and cocharacters of _H are naturally identified with the cocharacters
and characters of H :

X�._H/ ' X�.H/; X�._H/ ' X�.H/: (12b)

The isomorphisms here are canonical, and respect the pairings into Z.
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The automorphisms 0 and ı0 of H (cf. (11)) define automorphisms t0 and tı0
of X�.H/, and therefore

_0 Ddef �w0t0; _ı0 Ddef
tı0 (12c)

of X�.H/ and of _H . Here we write

w0 2 W.G;H/ ' W._G; _H/ (12d)

for the unique longest element, which carriesRC.G;H/ to�RC.G;H/. Notice the
presence of a minus sign in the definition of _0 (partly “corrected” by the factor
of w0) and its absence in the definition of _ı0. This is the way things are. One
way to understand it is that  is related to the Cartan involution for G, which is less
fundamental and natural than the Galois action for a real form. The Cartan involution
acts on the root datum (with respect to a real � -stable Cartan) by the negative of the
Galois action on the root datum; and it is this minus sign which accounts for the
minus sign in (12c).

Now we construct a dual group _G � _H , whose root datum is dual to that
of G:

_G � _B D _H_N; RC._G; _H/ D fˇ_ j ˇ 2 RC.G;H/g: (12e)

We choose also a pinning: nonzero root vectors

fX˛_ j ˛_ 2 ˘_g � _n: (12f)

Such a choice of dual group and pinning is unique up to unique isomorphism. Be-
cause the automorphisms _0 and _ı0 respect the based root datum, they extend
uniquely to (distinguished) automorphisms

_0W ._G; _G; _H/! ._G; _B; _H/; _0.X˛_/ D X�w0�0.˛/_

_ı0W ._G; _B; _H/! ._G; _B; _H/; _ı0.X˛_/ D Xı0.˛/_ :
(12g)

Automatically _ı0 and _0 commute. By definition the L-group of G is the semidi-
rect product

LG D _G Ì f1; _0g: (12h)

(A little more precisely, it is this group endowed with the _G-conjugacy class of
._B; fX˛_g; _0/.)

Just as for G, it is convenient to have in hand also the large representative

_1 D e.�=2/0; _1.X˛_/ D �X�w0�0.˛/_ : (12i)

Again this element satisfies

_21 D e.�/ Ddef ´.�/ 2 Z._G/; (12j)

a central element of order (one or) two.
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We say a little more about the identification of Weyl groups in (12d). Define

s˛ 2 Aut.X�.H//; s˛.t/ D t � h˛; ti˛_
W.G;H/ D hs˛ j ˛ 2 ˘i � Aut.X�.H//:

(12k)

Then the identification

Aut.X�.H// � W.G;H/ ' W._G; _H/ � Aut.X�.H//

is given by
s˛ 7! s˛_ ; w 7! tw�1: (12l)

3 Atlas parameters

The basic reference for this section is [3].
As explained after Proposition 1.10, we are going to represent involutive auto-

morphisms of G (briefly, involutions) by the conjugation action of elements of G0.
For this purpose we introduce the set of strong involutions:

I D f 2 G0 j 2 2 Z.G/g: (13a)

If  2 I, then
�� D int./; K� D G� D CentG./: (13b)

is an involutive automorphism of G, in the inner class of 0; and every such invo-
lutive automorphism arises this way. We need to allow 2 2 Z.G/ (and not merely
2 D 1) because not every involution in the inner class of 0 arises from an element
 of order 2. (But we can easily arrange for  to have order a power of 2.) The
central element

´ D 2 2 Z.G/ (13c)

is called the central cocharacter of the strong involution  .
A strong real form of G is a G-conjugacy class C � I. The central cocharacter

is constant on C, so we may write it as

´.C/ D 2 2 Z.G/ . 2 C/: (13d)

The various involutions f�� j  2 Cg form a single G-conjugacy class of involutive
automorphisms of G, so the subgroups fK� j  2 Cg are a single G-conjugacy class
as well. If G is adjoint, then these three G-conjugacy classes (strong involutions,
involutions, and fixed point subgroups) are identified by the natural maps

 ! �� ! K� :

IfG is not adjoint, however, the first of these maps need not be one-to-one: choosing
a strong involution is more restrictive than choosing an involution.

Here is the reason that strong involutions and strong real forms are useful.
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Proposition 3.1. Suppose  and  0 are strong involutions in the same strong real
form—that is, conjugate byG ((13)). Then there is a canonical bijection from equiv-
alence classes of irreducible .g; K�/-modules to equivalence classes of irreducible
.g; K�0/-modules.

Proof. Suppose g 2 G conjugates  to  0. Then twisting by g carries .g; K�/-
modules to .g; K�0/-modules. So far this would have worked using just involutive
automorphisms � and � 0. What is special about strong involutions is that the sta-
bilizer of  in G is precisely K� (whereas the stabilizer of �� can be bigger). This
means that the coset gK� is uniquely determined. Because twisting by K� acts triv-
ially on equivalence classes of .g; K�/-modules, it follows that the bijection we have
defined is unique. ut

Using these unique bijections, one can make a well-defined set of equivalence
classes of irreducible modules attached to each strong real form C. These equiva-
lence classes are what we will study.

In classical representation theory, one fixes once and for all a Cartan involution �
ofG, defining a single symmetric subgroupK D G . The theory of .g; K/-modules
proceeds by defining and studying (for example) various maximal tori preserved
by � . A central idea in the atlas algorithms is instead to fix the maximal torus
H � G, and to study various Cartan involutions preserving it. There are hints of
this idea in the classical theory. For example, it is common in introductory texts to
describe the principal series representations of SL.2;R/, because these are closely
related to the standard (diagonal) split maximal torus. When discussing the dis-
crete series, it is common to consider instead the (isomorphic) real group SU.1; 1/,
because the discrete series are closely related to the standard (diagonal) compact
maximal torus of SU.1; 1/.

In order to pursue this idea, we need to single out the strong involutions preserv-
ing our fixed H . These are

eX D I \ NormG�0
.H/ D f 2 NormG�0

.H/ j 2 2 Z.G/g
X D eX=H (quotient by conjugation action of H ):

(14a)

If ´ 2 Z.G/, we write

eX ´ D f 2 NormG�0
.H/ j 2 D ´g

X´ D eX ´=H (quotient by conjugation action of H )
(14b)

for the subset of elements of central cocharacter ´.
Write p W eX ! X for the projection map.
For x 2 X let �x be the restriction of �� to H for any  2 p�1.x/. The central

technical difficulty we face is that the involution �x ofH only depends on x, but the
extension �� to G depends on the choice of representative  .
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It is easy to check that

�x D wx0 2 Aut.H/ .wx 2 W.G;H// (14c)

for some twisted involution wx with respect to 0:

wx0.wx/ D 1: (14d)

Conversely, if w 2 W is any twisted involution with respect to 0, then

�w Ddef w0 2 Aut.H/ (14e)

is an involutive automorphism of H (or, equivalently, of X�.H/). We define

Xw D fx 2 X j wx D wg; eXw D p�1Xw ; (14f)

so that X is the disjoint union over twisted involutions w of the various Xw .
The definition (14c) of wx can be restated as

 D s1�wx
0 (some s1 2 H ). (14g)

Here �wx
is the Tits group representative of wx (see (53f)). We call s1 the unnor-

malized torus part of  . We compute

2 D s1�wx
0s1�wx

0

D s1�wx
.s1/�wx

��0.wx/

D s1�wx
.s1/�wx

�w�1
x

D s1�wx
.s1/e..�

_ � �x�_/=2/ (by Proposition 12.1)

D .s1e.��_=2//�wx
.s1e.��_=2//e.�_/:

(14h)

We call s D s1e.��_=2/ the normalized torus part of :

 D se.�_=2/�wx
0 D sw (some s 2 H ).

2 D s�wx
.s/´.�_/:

(14i)

Here we have used the definition of w in the following proposition.

Proposition 3.2. For every 0-twisted involution w 2 W.G;H/ there is a basepoint
(the one with trivial normalized torus part)

w Ddef e.�
_=2/�w0 2 eX

of central cocharacter ´.�_/ (see (13c)):

2w D e.�_/ D ´.�_/:
This basepoint is conjugate by G to the large representative 1 of (11f).
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Proof. The formula for 2w is immediate from (14h). We omit the argument that w
is conjugate to 1. ut

Fix a set S of representatives of the set of strong real forms:

eX � S 1�1 ! I=G: (15)

Proposition 3.3 ([3, Corollary 9.9]). There is a canonical bijection

X  !
Y

�02S
K�0nG=B:

The bijection restricts to classes on both sides of any fixed central cocharacter (see
(13c)), in which case both sides are finite sets.

Because of this proposition, we refer to X as the KGB-space, and say x 2 X is a
KGB-class.

The KGB classes are parametrized first by a twisted involution w 2 W (see
(14c)), and then (for each w) by the allowed (twisted H -conjugacy classes of) nor-
malized torus parts. Our next task is to describe those torus parts. It is convenient to
fix also a central element ´ 2 Z.G/, and to restrict attention to strong involutions
of central cocharacter ´. According to (14i), we are therefore seeking to solve the
equation

s�w.s/ D ´´.��_/ . D sw/: (16a)

Conjugation by h 2 H replaces the torus part s by

s.h�w.h/
�1/;

so the solutions we want—elements of the KGB space X—are cosets of the con-
nected torus

.1 � �w/H D identity component of H�w D H�w

0 : (16b)

In order to keep track of such elements, we would like to have nice representatives
for the cosets H=.1 � �w/H . Because the Lie algebra is the direct sum of the C1
and �1 eigenspaces of �w , we get

H D ŒH w

0 �ŒH
�w

0 �; ŒH
w

0 � \ ŒH�w

0 � � ŒH w

0 �.2/ (16c)

(the elements of order 2).
This says that every coset of H�w

0 has a representative in H w

0 ; and that this

representative is unique up to multiplication by the finite 2-group ŒH w

0 �\ ŒH�w

0 �.

We call a coset representative in H w

0 preferred. Our immediate goal is therefore to

write down all solutions s 2 H w

0 of (16a).



Parameters for twisted representations 73

As with many calculations in Lie theory, solving this equation is easier on the
Lie algebra. We will use the exponential map isomorphisms

eW h=X�.H/! H; eW hw=X�.H/w ! H
w

0 (16d)

of (11d). In order to do that, we first choose a logarithm g of the central cocharacter ´:

´ D e.g/ .g 2 h D X�.H/˝Z C/: (16e)

We say that a strong real form of central cocharacter ´ has infinitesimal cocharacter
g. It is convenient (and easy) to arrange also

h˛; gi 2 Z>0 .˛ 2 RC.G;H//: (16f)

(Because ´ is assumed central, roots take integer values on g.)
Next, we choose a logarithm v for the normalized torus part s:

s D e.v/ .v 2 hw /: (16g)

Now (16a) can be written

2v D v C �w.v/ D g � �_ � ` .some ` 2 X�.H//; (16h)

or
v D .g � �_ � `/=2: (16i)

Conversely, if ` 2 X�.H/ has the property that

g � �_ C ` 2 hw ; (16j)

then e..g � �_ � `/=2/ is a preferred representative for a normalized torus part (of
some  2 eX of central cocharacter ´).

We have proven the following proposition.

Proposition 3.4. Fix an infinitesimal cocharacter g and a 0-twisted involution w.
Let �w D w ı 0 2 Aut.H/. The set Xw

g of KGB classes of infinitesimal cocharacter
g (equivalently, of central cocharacter ´ D e.g/) with wx D w (cf. (14c)) is in
one-to-one correspondence with

n

` 2 X�.H/=.1C �w/X�.H/ j .1 � �w/` D .1 � �w/.g � �_/
o

:

This set is either empty (if .1� �w/.g� �_/ does not belong to .1� �w/X�), or has
a simply transitive action of

Xw� =.1C �w/X�:
This latter group is a vector space over Z=2Z, of dimension at most the rank of X�.



74 J. Adams and D.A. Vogan, Jr.

The corresponding x has a preferred representative (cf. (16c))  with unnormal-
ized torus part

s1 D e..g � `/=2/;
(see (14g)) or normalized torus part

s D e..g � �_ � `/=2/
(see (14i)). Here ` 2 X�.H/ is a representative of `. If we modify the element ` in
its coset by adding .1C�w/f (for some f 2 X�.H/), then s (or s1) is multiplied by
e..1C�w/f =2/. That is, this preferred choice of torus part is unique up to the image
of 1C �w acting on the elements H.2/ of order 2 in H . Another formulation is that
these preferred representatives  of x are a single conjugacy class under H.2/.

The KGB classes in this proposition usually represent several different strong real
forms (all of a fixed central cocharacter); that is, they are usually not conjugate byG.
The parametrization of KGB classes is so beautiful and simple precisely because of
this inclusion of several real forms. For example, ifG D GL.n/, 0 D 1, andw D 1
(so that we are talking about compact maximal tori in equal rank real forms), then
the KGB classes amount to discrete series for strong real forms. If we choose g D
�_, then the proposition says that the KGB classes are indexed by X�.H/=2X�.H/,
an n-dimensional vector space over Z=2Z. There are n C 1 different strong real
forms appearing in this list: the various U.p; n� p/ with 0 � p � n. Such a strong
real form has

�

n
p

�

discrete series; only when we take the union over p do we get
something as simple as 2n.

We turn now to writing down Langlands parameters for representations of real
forms of G, in the form described in [1]. These are constructed in a manner roughly
parallel to the strong involutions above, but in the L-group of (12h) rather than in
the extended group for G.

Definition 3.5. A Langlands parameter for representations of real forms of G is a
pair ._; �/ such that

(a) _ 2 _G_0;
(b) � 2 _g is semisimple; and
(c) _2 D e.�/.
Two Langlands parameters are called equivalent if they are conjugate by _G.
The semisimple group element _́ D _2 2 _G is called the central character
of the Langlands parameter, and the Lie algebra element � is called the infinitesimal
character.

Because Langlands parameters matter only up to conjugation by _G, it is conve-
nient to consider representatives aligned with our fixed _H � _B . The Langlands
parameter is said to be of type _H if

_ 2 Norm_G_�0
._H/; and � 2 _h:
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Finally, a Langlands parameter of type _H is said to be integrally dominant if it is
dominant for the integral root system:

h�; _̨ i 2 Z H) h�; _̨ i � 0 .˛ 2 RC.G;H//: (17)

Harish-Chandra’s theorem guarantees that representation-theoretic infinitesimal
characters—homomorphisms from the center of U.g/ to C—are in one-to-one cor-
respondence with _G orbits of semisimple elements in _g. The infinitesimal charac-
ter defined here of the Langlands parameter will turn out to correspond exactly to
the representation-theoretic infinitesimal characters of the corresponding represen-
tations of real forms of G. Unfortunately the central character defined here bears no
such simple relationship to the representation-theoretic central characters.

Here is the original statement of the Langlands classification (with the notion of
Langlands parameter modified in accordance with [1]).

Theorem 3.6 ([9, Proposition 4.1]). In the setting of Definition 3.5, fix a strong real
form  ofG. Attached to each equivalence class of Langlands parameters ._; �/ for
G there is a finite set˘_�;� ./ of equivalence classes of irreducible .g; K�/-modules
of infinitesimal character � . These finite sets partition the full set of equivalence
classes of such representations.

Langlands called the finite sets˘_�;� ./ L-packets, because of their role in auto-
morphic representation theory.

Because of this theorem, we want to understand in more detail what Langlands
parameters can look like; and for a fixed Langlands parameter, we want to under-
stand the structure of the L-packet ˘_�;� .

Proposition 3.7. Any Langlands parameter is equivalent to an integrally dominant
one of type _H . If the infinitesimal character � 2 _h is regular, then two Langlands
parameters of type _H and infinitesimal character � are equivalent (that is, conju-
gate by _G) if and only if they are conjugate by _H . In other words, a collection of
all equivalent Langlands parameters of type _H and infinitesimal character � is a
single _H -conjugacy class.

This is an elementary consequence of the definition, and we omit the proof.
Here is some structure theory for Langlands parameters analogous to that given

for strong involutions in (14).
We begin with a dual torus element—not assumed central as in (13c)—

_´ D e.�/ 2 _H: (18a)

We always wish to assume that � is integrally dominant (17). Almost all of our
results will be about the case of regular infinitesimal character, so we will assume

h�; _̨ i 2 Z H) h�; _̨ i > 0 .˛ 2 RC.G;H// (18b)

or in other words

h�; ˛_i … f0;�1;�2;�3; : : :g .˛ 2 RC.G;H//: (18c)
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Define _G._´/ D centralizer of _´ in _G � _H: (18d)

(This closed reductive subgroup of _G may be disconnected, a point which will
require some attention; we write _G._́ /0 for its identity component.) An atlas
dual strong involution of central character _´ is an element

_ 2 _G_0; _2 D _´;
and an atlas dual strong real form of central character _´ is a _G._´/-conjugacy
class _C of such elements. The automorphism

_�_� D int._/ (18e)

of _G preserves _G._́ /, and acts on this group (not in general on all of _G) as
an involutive automorphism. It is therefore real forms of _G._́ / that are under
discussion.

Keeping in mind the case _́ 2 _H , we define the dual KGB space—now a space
of equivalence classes of Langlands parameters—by

_
eX D f_ 2 Norm_G_�0

._H/ j _2 2 _H g
_X D _eX=_H I (18f)

just as in (14a), we are dividing by the conjugation action of _H . We also write

_
eX_´ D _eX � D f_ 2 Norm_G_�0

._H/ j _2 D _́ D e.�/g;
_X_´ D _X� D _eX �=

_H:
(18g)

According to Definition 3.5, a Langlands parameter of type _H and infinitesimal
character � is a pair ._; �/, with _ 2 _eX � . According to Proposition 3.7, an equiv-
alence class of Langlands parameters of infinitesimal character � is a pair .y; �/,
with y 2 _X� .

Associated to y 2 _X is an involution of _H (conjugation by the element _ 2
Norm_G_�0

._H/—that is, the restriction to _H of _�_�—for any representative _
of y). We denote this involution _�y :

_�y D _wy_0 2 Aut._H/ ' Aut.X�.H// ._wy 2 W._G; _H//:
Write

_ D _s1�_wy

_0 (18h)

(compare (14g)). The fact that ._�y/2 D 1 is equivalent to

_wy_0._wy/ D 1; (18i)

i.e., _wy is a twisted involution (in W ) with respect to the automorphism _0. Just
as in (14f), we define

_X_w D fy 2 _X j _wy D _wg: (18j)
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Exactly as in Proposition 3.4, we can now describe the set of Langlands parame-
ters attached to a given twisted involution.

Proposition 3.8. Fix an infinitesimal character � and a _0-twisted involution _w.
Let _�_w D _w ı 0 2 Aut.H/. The set X_w

� of dual KGB classes of infinitesi-
mal character � (equivalently, of central character _́ D e.�/) with _wy D _w
(cf. (18h)) is in one-to-one correspondence with

n

� 2 X�.H/=.1C _�_w/X
�.H/ j .1 � _�_w/� D .1 � _�_w/.� � �/

o

:

This set is either empty (if .1� _�_w/.� � �/ does not belong to .1� _�_w/X
�), or

has a simply transitive action of

.X�/__w=.1C _�_w/X
�:

This latter group is a vector space over Z=2Z, of dimension at most the rank of X�.
The corresponding y has a preferred representative (defined by analogy with

(16c)) _ with unnormalized torus part

_s1 D e..� � �/=2/;
(see (18h)) or normalized torus part

_s D e..� � � � �/=2/
(defined by analogy with (14i)). Here � 2 X�.H/ is a representative of �. If we
modify the element � in its coset by adding .1 C _�_w/� (for some � 2 X�.H/),
then _s (or _s1) is multiplied by e..1C _�_w/�=2/. That is, this preferred choice of
torus part is unique up to the image of 1 C _�_w acting on the elements _H.2/ of
order 2 in _H . Another formulation is that these preferred representatives _ of y
are a single conjugacy class under _H.2/.

The proof is identical to that of Proposition 3.4, and we omit it.
Because the set is parametrized by certain (cosets of) characters of H , it is easy

and useful to reformulate the result as follows.

Corollary 3.9. In the setting of Proposition 3.8, the set of dual KGB classes _X_w
�

is naturally in bijection with the set of (automatically one-dimensional) irreducible
.h;H w /-modules of differential equal to � � �.

Proof. By definition, an .h;H w /-module is a vector space carrying an algebraic
action of the group H w , and a representation of the abelian Lie algebra h, so that
the differential of the former is the restriction to hw of the latter. In the corollary,
we want h to act by � � �, so there is nothing to say about that. The characters of
H w are the restrictions to H w of characters of H ; so they are indexed by

� 2 X�.H/=.1 � t�w/X�.H/; (19)
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the denominator being the characters trivial onH w . Now it is clear that the modules
we want are indexed exactly by such cosets �, subject to the requirement

.1C t�w/� D .1C t�w/.� � �/
(that the differential of � is the restriction of � � �). This is exactly the condition on
� written in Proposition 3.8. ut
Definition 3.10. A KGB class x and a dual KGB class y are said to be aligned if

�t�x D _�y 2 Aut.X�.H//

((14c), (18h)). Equivalently, we require the twisted involutions to satisfy

wxw0 D _wy :
In this case we call the pair .x; y/ an atlas parameter for G. We write

Z D f.x; y/ 2 X � _X j �t�x D _�yg;
for the set of all atlas parameters. If ´ D e.g/ 2 Z.G/ and _́ D e.�/ 2 _H
(with g and � regular and integrally dominant), we write

Z´;_´ D Zg;� D f.x; y/ 2 Z j x2 D ´; y2 D _́ g
for the subset of parameters of infinitesimal cocharacter g and infinitesimal char-
acter � . If w 2 W is a 0-twisted involution, we define _w D ww0 (a _0-twisted
involution, and write

Zw D Xw � _X_w ;

so that Z is the disjoint union over 0-twisted involutions w of the subsets Zw .

We are now in a position to sharpen the Langlands classification Theorem 3.6,
by parametrizing each L-packet.

Theorem 3.11 ([1, Theorem 1.18]). In the setting of Definition 3.5, fix a regular
and integrally dominant infinitesimal character � 2 _h, and a regular integral dom-
inant g 2 h (so that e.g/ 2 Z.G/). Then there is a natural bijection between
irreducible admissible representations of infinitesimal character � of strong real
forms of G having infinitesimal cocharacter g; and the set of pairs .x; y/ 2 Zg;�
of atlas parameters of infinitesimal cocharacter g and infinitesimal character � .
In this bijection, the strong real form may be taken to be any representative  of the
first factor x. The Langlands parameter (Definition 3.5) may be taken to be ._; �/,
with _ any representative of the second factor y. We write

J.x; y; �/

for the irreducible module of infinitesimal character � attached to .x; y/.
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The notation requires some explanation, because we have not even said of what
group J.x; y; �/ is a representation. If  is any representative of x, then �� D int./
is a well-defined involutive automorphism of G, with fixed point group K� as in
(13b). Then J.x; y; �/ is an irreducible .g; K�/-module. A different choice  0 of
representative of x gives rise to a (necessarily different, because K�0 is different)
.g; K�0/-module J 0.x; y; �/. Part of what the theorem means is that these two dif-
ferent modules are identified by the canonical bijection of Proposition 3.1.

Corollary 3.12. Suppose ._; �/ is a Langlands parameter of type _H and regular
infinitesimal character � . Fix a dominant regular infinitesimal cocharacter g as in
(16f). Then the union (over strong real forms of infinitesimal cocharacter g) of the
L-packets ˘_�;� ./ (Theorem 3.6) may be identified with the set Xw

g of Proposition
3.4. (Here w is the twisted involution dual to the one for _ .) In particular, this L-
packet is either empty (if .1� �w/.g � �_/ does not belong to .1� �w/X�), or has
a simply transitive action of

Xw� =.1C �w/X�:
Notice that if we consider real forms of infinitesimal cocharacter �_ (which includes
the quasisplit real form), then this union of L-packets is never empty. This is consis-
tent with Langlands’ result that every L-packet is nonempty for the quasisplit real
form.

This classical corollary is the most familiar way of thinking about ambiguity in
the Langlands classification: starting with a Langlands parameter, and enumerating
the various (strong) real forms where it can give a representation. We are in fact
going to be interested mostly in the dual problem: starting with a strong real form of
typeH and and an infinitesimal character � , and enumerating the various Langlands
parameters giving a representation. For example, if we start with a split maximal
torus, then the Langlands parameters in question just index the characters of the
split maximal torus of differential � . These admit a simply transitive action of the
group .Z=2Z/n of characters of the component group of the split torus.

Corollary 3.13. Suppose  is a strong real form of type H and dominant regular
infinitesimal cocharacter g. Fix a dominant regular infinitesimal character � 2 h�.
Then the collection of Langlands parameters ._; �/ of type _H aligned with 
(Definition 3.10) may be identified with the set _X_w

� of Proposition 3.4. (Here
_w D ww0 is the twisted involution dual to w D w� .) In particular, this set of
parameters is either empty (if .1� _�_w/.� � �/ does not belong to .1� _�_w/X

�),
or has a simply transitive action of

.X�/__w=.1C _�_w/X
�:

We are going to need a slightly more precise understanding of how the paramet-
rization of representations in Theorem 3.11 actually works. So let us fix an atlas
parameter .x; y/ (Definition 3.10) of (integrally dominant regular) infinitesimal
character � 2 h�. Choose a strong real form representative  for x, so that what



80 J. Adams and D.A. Vogan, Jr.

we are seeking to construct is an irreducible .g; K�/-module J.x; y; �/. The con-
struction begins with the �� -stable Cartan subgroup H . The Cartan involution ��
acts on H by �w , so

H \K� D H w : (20a)

By definition of atlas parameter, y 2 _X_w
� ; so by Corollary 3.9, y defines

C.y; �/ D irreducible .h;H \K�/-module of differential � � �. (20b)

We want to construct a .g; K�/-module using the character C.y; �/. This is a large
and complicated problem, solved by work of Zuckerman reported in [14], but here
is a sketch. (Shorthand for this construction is cohomological induction, and we will
use that phrase to refer to it.)

Now we extend C.y; �/ to a .b;H \K�/-module by making n act trivially, and
then form the (dual to Verma) .g;H \K�/-module

M.y; �/ D Homb.U.g/;C.y; �/˝ C.2�//: (20c)

Here C.2�/ is the representation of B on the top exterior power of the Lie algebra:
the sum of the positive roots. The weight of h by which we are “producing” is �C�,
so this is the lowest weight of M.y; �/. By the theory of Verma modules, M.y; �/
has infinitesimal character � . Now we apply the Zuckerman right derived functor
([8, (2.113)])

	

�
g;K�

g;H\K�


S W .g;H \K�/-modules! .g; K�/-modules; (20d)

with S D dim n \ k� , obtaining what is called the standard .g; K�/-module

I quo.x; y; �/ D
	

�
g;K�

g;H\K�


S

.M.y; �//: (20e)

This module has finite length, and has a unique irreducible quotient J.x; y; �/.
Proofs may be found in [8, Theorem 11.129].

4 Twisting parameters

We want to consider the action of ı0 on representations. In terms of parameters, we
need to study the action of ı0 on X (and _ı0 on _X ). We do this in the setting of
Propositions 3.8 and 3.4.

Of course a ı0-fixed representation of infinitesimal character � can exist only if
the infinitesimal character � is itself fixed by ı0; that is, if and only if

_ı0.�/ D ´ 	 � (some ´ 2 W ). (21)
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Because of the integrally dominant condition (18b) that we impose on � (and which
is automatically inherited by _ı0.�/), it follows that

´ 	RC.�/ D RC._ı0.�// � RCI (22)

here RC.�/ is the set of positive integral roots defined by � . If � is integral (so that
RC.�/ D RC), such a condition forces ´ D 1, i.e., _ı0.�/ D � . If � is not integral,
however, we can draw no such conclusion. Here is a convenient substitute.

Lemma 4.1. Suppose � 2 h�, and that _ı0 preserves the W orbit of � . Then this
orbit has an integrally dominant representative � 0 with the property that

_ı0.� 0/ D � 0:
We omit the (elementary) proof. Because of this lemma, it is sufficient to study

representations of infinitesimal character represented by a _ı0-fixed integrally dom-
inant weight

_ı0.�/ D �; h�; ˇ_i … f0;�1;�2; : : : g .ˇ 2 RC.G;H//: (23)

The situation for real forms is a bit more subtle, because the infinitesimal cochar-
acter is not an invariant of a real form, but merely a useful extra parameter that we
attach to the real form. Here is what we would like to know.

Conjecture 4.2. Suppose  is a strong involution for G (see (13a)), of (dominant
regular integral) infinitesimal cocharacter g. Assume that the involution ı0 ı �� ı ı0
is equivalent (that is, conjugate by G) to �� . Then there is a ı0-fixed regular integral
g0, and a strong involution  0 of infinitesimal cocharacter g0, such that �� D ��0 .

Unfortunately this statement is false.

Example 4.3. Suppose G D SL.4/, endowed with the trivial distinguished auto-
morphism 0 (so that we are considering equal rank real forms) and the nontrivial
distinguished automorphism ı0. On the diagonal torus,

ı0.a1; a2; a3; a4/ D .a�14 ; a�13 ; a�12 ; a�11 /:

Let ! D exp.2�i=8/ be a primitive eighth root of 1, and define

 D diag.!; !; !; !5/ D !Œdiag.1; 1; 1;�1/�:
Then 2 D !2I D iI , a central element of order 4; and

K� D S.GL.3/ � GL.1//;

the complexified maximal compact subgroup for the real form SU.3; 1/ of G.
The infinitesimal cocharacter of this strong real form is any weight of the form
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g D .g1; g2; g3; g4/ 2 Q4;
X

gj D 0; g1 > g2 > g3 > g4;

exp.2�igj / D j I
that is,

gj Š
(

1=8 .mod Z/ .g D 1; 2; 3/
5=8 .mod Z/ .g D 4/;

These conditions are easily satisfied (for example by .17=8; 9=8; 1=8;�27=8/); but
it is easy to see that they cannot be satisfied by a ı0-fixed g. The reason is that

ı0.g/ D .�g4;�g3;�g2;�g1/:
If this is equal to g, then g3 D �g2, which contradicts the requirements g3 Š
g2 Š 1=8 .mod Z/. On the other hand, ı0 ı �� ı ı0 is conjugate to �� (by a cyclic
permutation matrix).

One might hope that in this example none of the representations of SU.3; 1/ is
fixed by ı0, and indeed none of the four discrete series representations is fixed;
but there is a spherical principal series representation (of infinitesimal character �)
which is fixed.

In any case, we are going to consider only cases when Conjecture 4.2 is true;
that is, we are going to consider only real forms of G of infinitesimal cocharacter g
satisfying

ı0.g/ D g; hˇ; gi … f0;�1;�2; : : : g .ˇ 2 RC.G;H//: (24)

In general there will be an extra twist by the central element ´, (�I in the example),
satisfying ı0.2/ D ´2.

Suppose x 2 X , and  2 p�1.x/. Then ı0.x/ D x if and only if ı0./ D
h�1h for some h 2 H (we cannot necessarily choose  so that h D 1). This is
equivalent to

.hı0/
�1 D hı0;

i.e.,
.ı0H/� D hH x ; hı0i:

Suppose  corresponds to ` 2 X�.H/=.1 C �x/X�.H/ by Proposition 3.4, and
` 2 X�.H/ is a representative. Then x is ı0-fixed if and only if

ı0` 2 `C .1C �x/X�.H/:
Here is a precise statement.

Proposition 4.4. Suppose g is an infinitesimal cocharacter as in (16f). Suppose
x 2 X has infinitesimal cocharacter g, and let w D wx be the underlying twisted
involution (14c). Assume
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ı0.g/ D g; ı0.w/ D w: (24a)

Suppose that x corresponds via Proposition 3.4 to ` 2 X�.H/=.1 C �x/X�.H/.
Choose ` 2 X�.H/ representing `, so x has a representative with unnormalized
torus part s1 D e..g � `/=2/, or normalized torus part s D e..g � ` � �_/=2/.

1. The class x is fixed by ı0 if and only if

.ı0 � 1/` D .1C �x/t (some t 2 X�.H/): (24b)

2. The element t is uniquely defined by ` up to adding X�.H/�x ; if also ` is
modified in its coset, then t changes by .1 � ı0/X�.H/.

3. The corresponding special representative

 D e..g � `/=2/�w0 (24c)

satisfies
ı0ı

�1
0 D e..1 � �x/t=2/ D e.t=2/e.�t=2/I (24d)

that is,  is conjugate to its ı0 twist using the element e.t=2/ of H.2/.
4. Condition (24d) is equivalent to

.ı0H/� D hH x ; e.�t=2/ı0i: (24e)

Here is the version for _G.

Proposition 4.5. Suppose � is an infinitesimal character as in (18b). Suppose
y 2 _X has infinitesimal character � , and let w D wy be the underlying twisted
involution (18h). Assume

_ı0.�/ D �; _ı0.w/ D w: (25a)

Suppose that y corresponds via Proposition 3.8 to � 2 X�.H/=.1 C �x/X�.H/.
Choose � 2 X�.H/ representing �, so y has a representative with unnormalized
torus part e..� � �/=2/, and normalized torus part e..� � � � �/=2/.

1. The class y is fixed by _ı0 if and only if

._ı0 � 1/.�/ D .1C _�y/� (some � 2 X�.H/): (25b)

2. The element � is uniquely defined by � up to adding X�.H/�_y ; if also ` is
modified in its coset, then t changes by .1 � ı0/X�.H/.

3. The corresponding special representative

_ D e..� � �/=2/_�w_0 (25c)

satisfies

_ı0._/_ı�10 D e..1 � _�y/�=2/ D e.�=2/_e.��=2/I (25d)

that is, _ is conjugate to its _ı0 twist using the element e.�=2/ of _H.2/.
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4. Condition (24d) is equivalent to

.
_ı0_H/__� D hH_y ; e.��=2/_ı0i: (25e)

5 Extended parameters

We now define parameters for .g; ı0K/-modules. Suppose .x; �; �/ is a ı0-fixed
parameter. If  2 p�1.x/ 2 eX , then J.x; �; �/ is a ı0-fixed .g; K�/-module. As
discussed in the introduction this can be extended in two ways to give a .g; ı0K�/-
module.

Lemma 5.1. Suppose .x; �; �/ is a ı0-fixed parameter. Choose hı0 2 .ı0H/�

as in Proposition 4.4. The two extensions of J.x; �; �/ to a .g; ı0K�/-module are
parametrized by the two extensions of the character � of H x to

.ı0H/� D hH x ; hı0i;
whose values at hı0 are the two square roots of �.hı0.h//.

We now begin to assemble the data—the extended parameters of Definition 5.4—
that we will use to construct one of the square roots required in Lemma 5.1. We will
consider representations with a fixed regular infinitesimal character, for real forms
with a fixed infinitesimal cocharacter. So fix an integrally dominant infinitesimal
character � :

� 2 X�.H/C � h�; h�; _̨ i … Z<0 .˛ 2 RC.G;H// (26a)

and an integral dominant infinitesimal cocharacter g:

g 2 X�.H/Q � h; hg; ˛i 2 Z>0 .˛ 2 RC.G;H//: (26b)

We require (see Lemma 4.1 and Conjecture 4.2)

ı0.g/ D g; tı0.�/ D �: (27)

Definition 5.2. Suppose .x; y; �/ is a parameter for a ı0-fixed representation. De-
fine � 2 X�.H/=.1��x/X�.H/ ' X�.H x / (from y) by Proposition 3.8. Choose
a preferred representative  for x, and define ` 2 X�.H/=.1 C �x/X�.H/ cor-
responding to  , by Proposition 3.4. Choose a representative ` 2 X�.H/ for `,
and choose t 2 X�.H/ satisfying (24b). Set h D e.t=2/ so hı0 2 .ı0H/� and
.hı0/

2 D hı0.h/ 2 H x . Define

�.x; y/ D �.hı0.h//: (27a)
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Lemma 5.3.

1. �.x; y/ D .�1/h�;.1Cı0/ti,
2. �.x; y/ is independent of the choices of  , `, `, and t (for fixed g and � ).

Proof. The first statment is immediate. By (24b), t is determined by ` up to adding
elements of X�.H/�x , and by ` up to .1 � ı0/X�.H/. Therefore

t is determined by x up to adding X�.H/�x C .1 � ı0/X�.H/:
We have

.�1/h�;.1Cı0/ti D .�1/h�;.1˙ı0/ti

D .�1/h.1˙t ı0/�;ti

D .�1/h.1˙_y/�;ti

D .�1/h�;.1˙x/ti:

(28)

The second equality shows this sign is unchanged by adding to t an element of
.1 � ı0/X�.H/, and the last one shows it is unaffected by adding elements of
X�.H/�x . ut

We need to choose a square root of �.x; y/. Just as for the parameters .x; y/
for representations of real forms of G, it is helpful to symmetrize the picture with
respect to G and _G.

Definition 5.4. Fix �; g as in (26), and a 0-twisted involution w 2 W . Let � D
�w D w0 2 Aut.H/ and _� D _�ww0

D �t� .
An extended parameter (for the twisted involution w and the specified infinitesi-

mal character and cocharacter) is a set

E D .�; �; `; t/
where

1. � 2 X�.H/ satisfies .1 � _�/� D .1 � _�/.� � �/;
2. ` 2 X�.H/ satisfies .1 � �/` D .1 � �/.g � _�/;
3. � 2 X�.H/ satisfies ._ı0 � 1/� D .1C _�/� ;
4. t 2 X�.H/ satisfies .ı0 � 1/` D .1C �/t .

Associated to an extended parameter E D .�; �; `; t/ are the following elements:

(a) .E/ 2 eX corresponds to � by Proposition 3.8;
(b) _.E/ 2 f_X corresponds to ` by Proposition 3.4;
(c) x.E/ Ddef p..E// 2 X , x.E/2 D e.g/;
(d) y.E/ Ddef p.

_.E// 2 _X , y.E/2 D e.�/;
(e) h.E/ı0 D e.t=2/ı0 2 .ı0H/� (cf. (24e));
(f) _h.E/_ı0 D e.�=2/_ı0 2 ._ı0_H/__� (cf. (25e)).

We say E is an extended parameter for .x.E/; y.E//.
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Definition 5.5. Suppose .�; �; `; t/ is an extended parameter for .x; y/. Define

´.�; �; `; t/ D i h�;.1Cx/ti.�1/h�;ti: (29)

By (28) we have
´.�; �; `; t/2 D �.x; y/: (30)

Associated to .�; �; `; t/ is an extension of J.x; y; �/ defined as follows.

Definition 5.6. Suppose .�; �; `; t/ is an extended parameter for .x; y/. Set  D
.�; �; `; t/ and h D h.�; �; `; t/ D e.t=2/. Define an extension of � to .ı0H/�

(see Lemma 5.1) by having it take the value ´.�; �; `; t/ at hı0. This defines an
extension of J.x; y; �/ to a .g; ı0K�/-module, denoted J´.�; �; `; t/. (The subscript
´ refers to the particular formula chosen in Definition 5.5.)

We deal with the question of equivalence of parameters in the next section.
For later use we record precisely how these elements depend on the various

choices. Suppose we are given .x; y/ 2 Z . Choose representatives  for x and
_ for y by Propositions 3.4 and 3.8, respectively. That is

 D e..g � `/=2/�w0
_ D e..� � �/=2/_�ww0

_0:
(31)

Then
` is determined by  up to 2Xx�
` is determined by x up to .1C �x/X�
� is determined by _ up to 2.X�/_y

� is determined by y up to .1C _�y/X�:

(32)

It is helpful to write in addition

f D .ı0 � 1/` D .1C �x/t
� D ._ı0 � 1/� D .1C _�y/�: (33)

Because (for example) t is evidently determined by f up to X�x� , the correspond-
ing uniqueness statements are

f is determined by  up to 2.1 � ı0/Xx�
f is determined by x up to .1 � ı0/.1C �x/X�
t is determined by  up to .1 � ı0/.1C �x/Xx� CX�x�
t is determined by x up to .1 � ı0/X� CX�x�
� is determined by _ up to 2.1 � _ı0/.X�/_y

� is determined by y up to .1 � _ı0/.1C _�y/X�
� is determined by _ up to .1 � _ı0/.X�/_y C .X�/�_y

� is determined by y up to .1 �_ ı0/.1C_ �y/X� C .X�/�_y :

(34)
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Eventually we will want a parallel choice of square root of � related to the dual
group _G. This is

�.�; �; `; t/ Ddef i
h�;f i.�1/h�;`i

D ´.�; �; `; t/.�1/h�;ti.�1/h�;`i: (35)

6 Equivalences of extended parameters

In this section we record how to tell when two of the extended modules defined in
Definition 5.6 are equivalent.

Fix � and g as usual, and suppose .x; y/ is a ı0-fixed parameter. Choose two
extended parameters

E D .�; �; `; t/; E 0 D .�0; � 0; `0; t 0/ (36a)

for .x; y/ (Definition 5.4). Set  D .E/,  0 D .E 0/, and define

K� D CentG./;
ı0K� D CenthG;ı0i./; (36b)

and similarly with primes. Because  and  0 are assumed to be conjugate by G,
Proposition 3.1 provides a canonical identification

irreducible .g; K�/-modules ' irreducible .g; K�0/-modules (36c)

(by twisting the action by Ad.g/). Exactly the same argument applies to irreducible
.g; ı0K�/-modules.

Definition 6.1. We say E is equivalent to E 0 if J´.E/ and J´.E 0/ correspond by
this canonical identification.

Define sgn.E;E 0/ D 1 if J´.E/ � J´.E 0/, or �1 otherwise.
In other words, if Œ � denotes the image of a representation of an extended group

in the module M (see the Introduction or Section 7), then

ŒJ´.E/� D sgn.E;E 0/ŒJ´.E 0/�: (36d)

The Langlands classification attaches to .; y/ an irreducible .g; K�/-module
J.; y/. The construction of J.; y; �/ begins with a one-dimensional .h;H � /-
module Cy;� . Cohomological induction produces a “standard” .g; K�/-module
I.; y; �/, with unique irreducible quotient J.; y; �/. The nature of this construc-
tion makes it obvious that the identification of (36c) carries I.; y; �/ to I. 0; y; �/,
and consequently J.; y; �/ to J. 0; y; �/.

Here is more detail on how the extended group representation of Definition 5.6
is constructed. First, the element e.t=2/ı0 is a generator for the extended Cartan:

.ı0H/� D he.t=2/ı0;H � i: (37a)
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The one-dimensional module Cy;� extends to a one-dimensional .h; .ı0H/� /-
module by declaring

e.t=2/ı0 acts by the scalar ´.�; �; `; t/: (37b)

Cohomological induction from this one-dimensional representation provides an ex-
tension of I.; y; �/ to a .g; ı0K�/-module I´.�; �; `; t/, and then J´.�; �; `; t/
is its unique irreducible quotient. Of course exactly the same words describe
J´.�

0; � 0; `0; t 0/.
So how do we decide whether these two modules are equivalent? According to

(32), we can find u 2 X�.H/ so that

`0 D `C .�x C 1/u
f 0 D f C .�x C 1/.ı0 � 1/u: (37c)

It follows that
e.u=2/ 	  	 e.�u=2/ D  0: (37d)

If we define
t2 D t C .ı0 � 1/u; (37e)

then .`0; t2/ is another choice of representative for x as in (26), and in fact conjugate
to .`; t/ by e.u=2/:

e.u=2/ 	 e.t=2/ı0 	 e.�u=2/ D e.t2=2/ı0: (37f)

Consequently,

i Ddef t
0 � t2 2 X�x� ; t 0 D t C .ı0 � 1/uC i: (37g)

In exactly the same way, we find

�0 D �C ._�y C 1/! (some ! 2 X�.H/)
� 0 D � C ._ı0 � 1/! C � (some � 2 X�.H/�y )

�0 D � C ._ı0 � 1/._�y C 1/!:
(37h)

Proposition 6.2. Suppose E D .�; �; `; t/ and E 0 D .�0; `0; � 0; t 0/ are extended
parameters for .x; y/. Then

sgn.E;E 0/ D .�1/h.1C_ı0/�;ui.�1/h�;t 0i:
Here u and � are defined in (37c), (37g), and (37h).

Proof. We change the parameter .�; �; `; t/ to .�0; `0; � 0; t / in three steps:

E D .�; �; `; t/! F D .�; �; `0; t2/!
G D .�; �; `0; t 0/! E 0 D.�0; � 0; `0; t 0/: (38a)



Parameters for twisted representations 89

In the first step we have conjugated by e.u=2/. It follows easily that the ex-
tended representations correspond if and only if the scalars chosen for the actions
of e.t=2/ı0 and e.t2=2/ı0 agree. That is,

sgn.E; F / D ´.E/=´.F /: (38b)

At the second step of (38a), we are keeping the group ı0K�0 the same, but changing
the representative of the extended Cartan from e.t2=2/ı0 to e.t 0=2/ı0. This gives an
equivalent extended parameter exactly if we multiply the scalar by

.�1/h�;t 0�t2i D .�1/h�;ii:
Therefore

sgn.F;G/ D ´.F /

´.G/
.�1/h�;ii: (38c)

Finally, in the last step of (38a) the group and the extended Cartan representative
remain the same; all that may change is the scalar ´. Therefore

sgn.G;E 0/ D ´.G/=´.E 0/: (38d)

Combining (38b)–(38d), we find

sgn.E;E 0/ D ´.E/

´.F /

´.F /

´.G/
.�1/h�;ii ´.G/

´.E 0/
D ´.E/

´.E 0/
.�1/h�;ii: (38e)

It remains to compute ´.E/=´.E 0/. We do this in two steps. First of all we have
from (29)

´.E/=´.G/ D i h�;.1Cx/.t�t 0/i.�1/h�;t�t 0i: (38f)

With u and i given by (37g) this gives

´.E/=´.G/ D i h�;.1Cx/Œ.1�ı0/wCi�i.�1/h�;.ı0�1/uCii (38g)

and a short computation using the identities gives

´.E/=´.G/ D .�1/h._ı0C_y/�;ui.�1/h.1C_y/�;ui.�1/h�;ii
D .�1/h.1C_ı0/�;ui.�1/h�;ii:

(38h)

Next we compute

´.G/=´.E 0/ D i h��� 0;.1Cx/t
0i.�1/h���0;t 0i: (38i)

Using (37h) this gives

´.G/=´.E 0/ D i h._ı0�1/!C�;.1Cx/t
0i.�1/h.1C_y/!;t

0i

D .�1/h!;.1Cx/t
0i.�1/h�;t 0i.�1/h!;.1Cx/t

0i

D .�1/h�;t 0i:
(38j)
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Multiplying (h) and (i) gives

´.E/=´.E 0/ D .�1/h.1C_ı0/�;ui.�1/h�;ii.�1/h�;t 0i: (38k)

Multiplying both sides by .�1/h�;iii and using (38e) gives the result. ut

6.1 Duality for extended parameters

We offer some remarks about duality in the sense of [15]. Define a group (called
_G.e.�//0 in (18d)):

_G.�/ D ŒCent_G.e.�//�0 � _H; (39a)

a connected reductive group with root system

_R.�/ D f˛_ 2 R_ j h�; ˛_i 2 Zg; (39b)

the integral roots for the infinitesimal character � . The adjoint action of the repre-
sentative

_ D e..� � �/=2/_�y_0 (39c)

defines an involutive automorphism of _G.�/, so

_K_� D Cent_G.�/.
_/ (39d)

is a symmetric subgroup of _G.�/. By symmetry, the parameter .y; x/ defines an
irreducible ._g.�/; _K_�/-module _J.x; y/, with infinitesimal character g. (To be
precise, we need to introduce a covering group related to the difference in �-shifts
between _G and _G.�/, but we will overlook this technicality.) As in (24e), we find
that

_h_ı0 D e.�=2/_ı0 (39e)

is a representative for an extended Cartan. As in Definition 5.2 we need to take a
square root of

`.._h_ı0/2/ D .�1/h`;.1C_ı0/�i (39f)

which by (28) is precisely the sign �.x; y/ of Definition 5.2.
Therefore we may define an extended representation by making e.�=2/_ı0 act

by any desired square root of �. It turns out that duality dictates choosing a different
square root than we did earlier; we choose � as in (35):

�.�; �; `; t/ D i h�;f i.�1/h�;`i D ´.�; �; `; t/.�1/h�;ti.�1/h`;�i: (39g)

Then define an extended representation _J� .�; �; `; t/ by

e.�=2/_ı0 7! �.�; �; `; t/: (39h)
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The point of this choice of sign is that it makes the next result hold. Recall that
if E;E 0 are parameters for .x; y/, then sgn.E;E 0/ is defined by the identity

ŒJ´.E/� D sgn.E;E 0/ŒJ´.E 0/�;

and a formula for it is given in Proposition 6.2.

Proposition 6.3. Suppose E;E 0 are extended parameters for .x; y/. Then

Œ_J� .E/� D sgn.E;E 0/Œ_J� .E 0/�;

where sgn.E;E 0/ is defined in Definition 6.1. Equivalently,

J´.E/ ' J´.E 0/ if and only if _J� .E/ ' _J� .E 0/: (40)

The proof is identical to that of Proposition 6.2. What matters for us, and what is
by no means automatic, is that the sign is the same as the sign in Definition 6.1. We
deduce

Corollary 6.4. In the setting (26), there is a natural bijection from ı0-fixed ex-
tended representations (of strong real forms of infinitesimal cocharacter g) of G,
of infinitesimal character � ; to _ı0-fixed representations of (strong real forms of
infinitesimal cocharacter � ) of _G.�/, of infinitesimal character g. The bijection
sends J´.�; �; `; t/ to _J� .�; �; `; t/.

The fact that this map is well defined on equivalence classes is precisely (40). In
Section 11 we use this to extend the duality of [15] to the twisted setting.

The formulations of these results are designed to allow a theoretical analysis of
all possible parameters for extended representations. For computational purposes,
one may simply want to ask when two given parameters are equivalent. To answer
that question using the results above requires calculating elements u and ! by solv-
ing their defining equations (37c) and (37h). This is not enormously difficult, but
it is not necessary. We therefore conclude this section with a simpler formula for
sgn.E;E 0/.

Proposition 6.5. Suppose E and E 0 are extended parameters for .x; y/. Then

sgn.E;E 0/
D i h._ı0�1/�;t 0�tiCh� 0��;.ı0�1/`0i.�1/h�;`0�`i.�1/h�0��;t 0i.�1/h�;t 0�ti
D i h� 0;.ı0�1/`0i�h�;.ı0�1/`i.�1/h�;`0�`i.�1/h�0��;t 0i:

Here the two expressions on the right are automatically equal, and the powers of i
appearing are automatically even.

The proof is similar to the proofs of Propositions 6.2 and 6.3. We omit the details.
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7 Hecke algebra action

Our goal is to compute the Hecke algebra action defined in [10]. We begin by sum-
marizing the definition of this Hecke algebra module. We then explain what extra
information is needed, beyond the formulas of [10, Sections 7.5–7.7], to carry out
the computation.

In Sections 7 through 9 we consider the case of integral infinitesimal character.
In Section 10 we discuss the modification necessary to treat the general case.

We start with our group G and a pair of commuting involutions ı0; 0 as in Sec-
tion 2. Fix a regular, integral infinitesimal character � 2 h�. As always we assume
� is integrally dominant as in Definition 3.5; since � is integral this means � is
dominant: _̨ .�/ 2 Z>0 for all ˛ > 0. Let H be the twisted Hecke algebra of
[10, Section 4], and set A D ZŒq

1
2 ; q� 1

2 �. Fix a strong involution  inner to 0, and
setK D K� . Associated to � is an H-moduleM , defined in [10, Section 2.3]. In our
setting this is a quotient of the Grothendieck group over A of .g; ı0K/-modules with
infinitesimal character � . Write ŒX� for the image in M of a .g; ı0K/-module X .
Let � be the non-trivial extension of the trivial representation of a one-dimensional
.g; ı0K/-module. In M we have the relation

ŒX�C ŒX ˝ �� � 0:
Therefore M has a basis consisting of one extension to .g; ı0K/ of each irreducible
ı0-fixed .g; K/-module with infinitesimal character � . Furthermore if J is irre-
ducible, and is not the extension of an irreducible .g; K/-module, then ŒJ � � 0.

Associated to a ı0-orbit � of simple roots is a generator T� of H. Suppose I is
a standard, ı0-fixed .g; K/-module with infinitesimal character � , and eI is an ex-
tension of I to a .g; ı0K/-module. Then formulas for T�.ŒeI �/ given in [10, Sections
7.5–7.7] are of the following form. There is a set fIi j 1 � i � ng (with n � 3) of
standard, ı0-fixed .g; K/-modules, such that the appropriate formula

T�.ŒeI �/ D
X

i

ai ŒeI i � (41)

of [10] holds for some choices of extension of each Ii to a .g; ı0K/-module eI i . If
we choose each extensioneI i arbitrarily, then (41) holds with a factor of˙1 in front
of each term on the right.

It is natural to ask if it is possible to choose theeI i uniformly, so that the formulas
(41) hold for all I and �. The fact that in the 2i12 and 2r21 cases there is a term
with a negative sign is a hint that this might not be the case, and it turns out not to
be possible in general.

Instead, we carry over the Hecke module structure to our extended parameters,
and compute the Hecke operators in this setting, keeping the extra information of
which extensions (i.e., signs) appear in the formulas. This is straightforward except
when � is of type 2i12f, 2r21f, 2Ci or 2Cr.
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Definition 7.1. Let M be the A-module spanned by the extended parameters of
infinitesimal character � , modulo the relation

ŒE� � sgn.E;E 0/ŒE 0�:

By (36d) the map ŒJ´.E/� ! ŒE� is a well-defined A-module isomorphism. Using
this we carry over the H-module structure on M to define M as an H-module.

To interpret the formulas of [10, Sections 7.5–7.7] in terms of M we need the
notion of Cayley transform (defined only for certain particular �) and cross action
(defined for every �) of extended parameters (defined in that reference). The rows of
Tables 2–4 corresponding to Cayley transforms are labeled Cay, and those for cross
action crx.

In addition, when � is of type 2i12, 2r21, 2Ci or 2Cr, the formulas in
[10] make use of one more transform, given (on the level of parameters for G) by
the cross action of just one of the two simple roots comprising �. On most parame-
ters, this cross action will not give a ı0-fixed parameter; like the Cayley transforms,
the definition makes sense only when � is of one of these four special types. The
corresponding rows of Table 3 are labeled cr1x.

These formulas are given in Tables 2–4. Except in the cases noted above, this
gives the formulas for the Hecke algebra action (see Proposition 7.2).

Here are some notes for interpreting the tables. Always we start with a ı0-fixed
representation of (_ı0-fixed) infinitesimal character � , for a strong real form of ı0-
fixed infinitesimal cocharacter g, with atlas parameter .x; y/. Let .�; �; `; t/ be
an extended parameter for .x; y/ (Definition 5.4).

We also fix a _ı0-orbit � on the set of simple roots, consisting of either

one root f˛ D _ı0.˛/g (type 1); or

two roots f˛; ˇ D _ı0.˛/g; h˛; ˇ_i D 0 (type 2); or

two roots f˛; ˇ D _ı0.˛/g; h˛; ˇ_i D �1 (type 3).

(42a)

We will sometimes write

� Ddef ˛ C ˇ 2 X�; �_ D ˛_ C ˇ_ 2 X� (42b)

in types 2 and 3. (The weight � is a root in type 3, but not in type 2.) Let

w� D

8

ˆ

<

ˆ

:

s˛ type 1

s˛sˇ type 2

s˛sˇ s˛ D s� type 3:

(42c)

Then W ı0 is a Coxeter group with these elements as Coxeter generators.
We will write .x1; y1/ for the atlas parameters defining (one of) the other ı0-

fixed representations appearing in the action of the Hecke algebra generator T� on
.x; y/, given by a (possibly iterated) cross action or Cayley transform. The point of
the tables is to calculate new extended parameters, denoted E1 D .�1; �1; `1; t1/,
for .x1; y1/ in terms of E D .�; �; `; t/.
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Writew��E for the cross action onE (described in the crx rows of Tables 2–4).
Write

w� �1 E .� of type 2i12 or 2r21/ (42d)

for the element extending s˛ � .�; `/ defined in the cr1x rows of Table 3. Finally,
write

c�.E/ D E� or c�.E/ D fE� ; E 0�g (42e)

for the (possibly multi-valued) Cayley transform defined by the Cay rows of
Tables 2–4.

We will write
�˛ Ddef h�; ˛_i; g˛ Ddef h˛; gi; (42f)

and similarly for � and `; these quantities are all integers. The ı0-fixed requirement
means that

�˛ D �ˇ ; g˛ D gˇ (types 2 and 3): (42g)

The ı0-fixed requirement on � and ` is more subtle, and with the details depending
on the case. For example, we have

�˛ C �ˇ D 2.�˛ � 1/; `˛ D `ˇ (type 2Ci): (42h)

A few (but not many) such conditions are recorded in the notes column.
The notes column of the tables includes additional notation peculiar to some

cases. For example, the case 1i1 corresponds to a discrete series in a block for A1
with two discrete series and just one principal series. This turns out to mean that the
root ˛ must be trivial on the fixed points H x1 for the more split Cartan; and this in
turn is equivalent to the existence of � 2 X�.H/ so that

˛ D .1C _�y1
/�: (42i)

That is the meaning of the note in the 1i1 row; the weight � (which one needs to
find by solving (42i) to implement the algorithm) appears in the formula for �1.

The terminology here is more compact than that of [10]. See Table 1.

Proposition 7.2. Suppose .x; y/ is a ı0-fixed parameter, and E is an extended pa-
rameter for .x; y/. Let � be a ı0-orbit of simple roots.

Suppose � is not of type 2i12, 2r21, 2Ci or 2Cr. Then the formulas for
the action of the Hecke operator T� from [10] apply, using the Cayley transforms
and cross actions from Tables 2–4, to give a formula for T�.ŒE�/.

This is a direct translation of the calculations of [10, Sections 7.5–7.7] to our
setting. We treat the excluded cases in the next two sections.

Example 7.3. Suppose � is a two-imaginary noncompact type I-I ascent for .x; y/
(in the terminogy of [10]), i.e., of type 2i11 (in our terminology). Suppose E1 is
an extended parameter for .x; y/, and set E2 D w� � E1, and set E 0 D c�.E1/, as
defined by Table 3. Then formula [10, (7.6)(e0)] gives:
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T�.ŒE1�/ D ŒE2�C ŒE 0�
T�.ŒE2�/ D ŒE1�C ŒE 0�
T�.ŒE

0�/ D .q � 1/.ŒE1�C ŒE2�/C .q � 2/ŒE 0�:

8 The 2i12 case

If � is of type 2i12f or 2r21f, then the formulas for the Hecke operator T� do
not carry over directly from [10, (7.6)(i00) and (j00)]. We start with a special case.

Lemma 8.1. Suppose � is of type 2i12f for E0 D .�; �; `; t/. Assume

�˛ D �ˇ D 0
t˛ D tˇ D 0
g˛ � `˛ D gˇ � `ˇ D 1
�˛ � �˛ D �ˇ � �ˇ D 1:

(43)

LetE 00 D w��1E0 as given by Table 3. (Recall that this is a certain extension of the
parameter s˛ � .�; `/ for G. The Cayley transform c�.E0/ is double-valued; write
c�.E0/ D fF0; F 00g, where the parameter for F0 is .�; �; `; t/, and F 00 D w� �1 F0.

The action of T� on the space spanned by E0; E 00; F0; F 00 is

T�.E0/ D E0 C F0 C F 00
T�.E

0
0/ D E 00 C F0 � F 00

T�.F0/ D .q2 � 1/.E0 CE 00/C .q2 � 2/F0
T�.F

0
0/ D .q2 � 1/.E0 �E 00/C .q2 � 2/F 00:

(44)

Explicitly the extended parameters are:

E0 W .�; �; `; t/ E 00 W .�; �; `C ˛_; t � s/
F0 W .�; �; `; t/ F 00 W .�C ˛; � � �; `; t/

(45)

with � and s given in Table 3.
When the parameters are in this form, this is simply a direct translation of the

proof of [10, (7.6)(i00)].

Lemma 8.2. Suppose E is an extended parameter for .x; y/, and � is of type
2i12fr for E. Set E 0 D w� �1 E. Write c�.E/ D c�.E

0/ D fF;F 0g. Possi-
bly after switching E and E 0, and possibly also switching F and F 0, we can find
E0; E

0
0; F0; F

0
0 as in the previous lemma, such that E and E0 are extensions of the

same parameter, and similarly .E 0; E 00/; .F; F0/ and .F 0; F 00/.

Proof. Write E D .�; �; `; t/, so E 0 D .�; �; `C ˛; t � s/. After replacing � with
a different solution of its defining equation:
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� ! � C �ˇ� C 1

2
.�˛ C �ˇ /˛

where ˛ � ˇ D .1C _�y1
/� , we can assume �˛ D �ˇ D 0.

Since 2˛_; 2ˇ_ and ˛_�ˇ_ are all in .1C �x/X�, a˛_Cbˇ_ is in .1C �x/X�
provided aCb 2 2Z. By adding such a term to `we can arrange that g˛�`˛�1 D 0
and gˇ�`ˇ�1 D 0 or 2. Make the corresponding change t ! tC 1

2
.b�a/.˛_�ˇ_/.

If gˇ � `ˇ � 1 D 2, replace E with E 0 D w� �1 E, and now we have

g˛ � `˛ � 1 D gˇ � `ˇ � 1 D 0:
Since g˛ D gˇ this implies `˛ D `ˇ . Then Conditions (a) and (d) of Definition 5.4
imply �˛ � �˛ � 1 D �ˇ � �ˇ � 1 D 0 and t˛ D tˇ D 0. Table 3 then says that
F D .�; �; `; t/ is one of the two Cayley transforms of E, and that our parameters
now have the form (45). ut
Proposition 8.3. In the setting of the previous lemma we have

T�.E/ D E C sgn.E;E0/.sgn.F; F0/F C sgn.F 0; F 00/F 0/
T�.E

0/ D E 0 C sgn.E 0; E 00/.sgn.F; F0/F � sgn.F 0; F 00/F 0/
T�.F / D .q2 � 1/sgn.F; F0/.sgn.E;E0/E C sgn.E 0; E 00/E 0/C .q2 � 2/F
T�.F

0/ D .q2 � 1/sgn.F 0; F 00/.sgn.E;E0/E � sgn.E 0; E 00/E 0/C .q2 � 2/F 0:
This formula is independent of the choice of E0; E 00; F0; F 00.

This is immediate.

9 The 2Ci case

Now we describe the Hecke algebra action in the 2Ci case. So fix a type 2 root
� D f˛; ˇg, and an extended parameter

E D .�; �; `; t/ (46a)

as in 5.4. Assume that � is of type 2Ci forE: that is, that ˛ and ˇ are complex roots
interchanged by

�x D Ad.e..g � `/=2/�w0/: (46b)

This means in turn that

w0˛ D ˇ; w0ˇ D ˛: (46c)

Proposition 12.2 says that

�w0X˛ D Xˇ ; �w0Xˇ D X˛; (46d)
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and therefore that

�x.X˛/ D .�1/gˇ�`ˇXˇ ; �x.Xˇ / D .�1/g˛�`˛Xˇ : (46e)

The requirement (27) implies that

�˛ D �ˇ ; g˛ D gˇ : (46f)

Similarly, the requirements for an extended parameter to be ı0-fixed imply among
other things that

�˛ C �ˇ D 2.�˛ � 1/; �˛ � �ˇ D �ˇ � �˛; `˛ D `ˇ ; t˛ D �tˇ : (46g)

In particular, we can define a sign

� D �.E/ D .�1/g˛�`˛ D .�1/gˇ�`ˇ : (46h)

Writing
g D k˚ s (46i)

for the eigenspace decomposition under �x , we get from (46e)

X˛ C �Xˇ Ddef Xk 2 k; X˛ � �Xˇ Ddef Xs 2 s; (46j)

and also
�x.�˛/ D ��ˇ : (46k)

The Weyl group element s˛sˇ is represented by

�E D �˛��ˇ 2 Gx D K: (46l)

Finally, the extended group ı0K is generated by K and the element

h D e.t=2/ı0 (46m)

(Definition 5.4(e)).
Table 3 constructs from E a second extended parameter:

E1 D .�1; �1; `1; t1/
D .s˛�C .�˛ � 1/˛; s˛� � .�˛ � �˛ C 1/˛;

s˛`C .g˛ � 1/˛_; s˛t C .`˛ � g˛ C 1/˛_/:
(46n)

The root � is of type 2Cr for the parameter E1. The element `1 is chosen so that
the corresponding Cartan involution (on all of G, not just H ) is

�x1
D ��1˛ �x�˛: (46o)

Proposition 9.1. Suppose we are in the setting (46).
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1. Applying the formula in Table 3 to the 2Cr parameterE1 gives exactly the same
parameter E with which we started.

2. The action of the Hecke algebra generator T� ([10, 7.6(c00)]) is

T�.E/ D qE C .�1/Œ.�˛C�ˇ/=2�.g˛�`˛�1/.q C 1/E1:
Here the sign may be regarded as specifying a renormalization of E1 (whose
existence is asserted in [10]).

3. The corresponding formula for the case 2Cr is

T�.E1/ D .q2 � q � 1/E1 C .�1/.�1;˛��1;˛C�1;˛�1/Œ.t1;ˇ�t1;˛/=2�.q2 � q/E:
The sign is exactly the same as the one for T�.E/, written in terms of the pa-
rameter E1.

Proof. The first assertion can be verified by applying the formulas for passing from
2Ci to 2Cr and from 2Cr to 2Ci in succession, then simplifying; we omit the
details.

For the second assertion, we need to understand representation-theoretically the
relationship between the extended parameters E and E1, and how this relates to the
Hecke algebra action. For this question it is easiest to think of .g; K/-modules with
a fixed K; that is, to conjugate �x1

back to �x , and to correspondingly change E1
into a parameter

E2 D .�2; �2; `2; t2/
D .� � .�˛ � 1/˛; � C .�˛ � �˛ C 1/˛;

` � .g˛ � 1/˛_; t � .`˛ � g˛ C 1/˛_/
(47a)

related to the Borel subgroup

B 0 D �˛B��1˛ : (47b)

(The atlas decision to prefer E1 to E2 is just a bookkeeping convenience. Ev-
erything about representation theory, and also most things about perverse sheaves,
are calculated with a fixed Cartan involution, and so refer to the relationship be-
tween E and E2. The atlas formulas for Hecke algebra actions index bases by
E1 rather than E2, so we will occasionally mention E1 below; but mostly we will
be concerned about E and E2.)

The distinguished automorphism corresponding to ı0 for B 0 is

ı00 D �˛ı0��1˛ D �˛��1ˇ ı0: (47c)

The generator for the extended Cartan defined by E2 is

h2 D e.t2=2/ı00 D e.t=2/m`˛�g˛C1
˛ �˛�

�1
ˇ ı0 D e.t=2/���E ı0 (47d)
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(with �E 2 K as in (46l). Now we can start to talk about representation theory: that
is, about .g; K/-modules M and their extensions to .g; ı0K/-modules M 0. Write

P D LU � B; B 0 (47e)

for the parabolic subgroup with L generated by H and the simple roots ˛ and ˇ.
Then

Mj D Hj .u;M/; M 0j D Hj .u;M 0/ (47f)

are .l; L\K/- and .l; ı0.L\K//-modules respectively; and the relationship between
representations and parameters (which uses n-homology) factors through this con-
struction by means of the Hochschild–Serre spectral sequence. In this way (omitting
details) one can reduce the questions we are studying to the case

G D L; R D f˙˛;˙ˇg: (47g)

In the setting (47g), here is what the representation theory looks like. The groupL is
locally SL.2/ � SL.2/, and K is approximately a “diagonal” copy of SL.2/. (More
precisely, the “diagonal” copy is

SL.2/K D
���

a b

c d

�

;

�

a �b

�c d

��ˇ

ˇ

ˇ

ˇ

�

a b

c d

�

2 SL.2;C/

�

; (47h)

with � as in (46h). Furthermore K, and even its intersection with the derived group
of L, may be disconnected.

Attached to E is an irreducible principal series .g; ı0K/-module I.E/. The re-
striction of I.E/ to ı0K is

I.E/ D Ind
ı0K
ı0 .H\K/.�E C 2�n/: (47i)

Here �E is the character of H \ K defined by the first term � in E, extended to
ı0.H \K/ by making h (from (46m)) act by (29). The twist 2�n is the character by
which ı0.H \K/ acts on (the top exterior power of) n\ s; that is, on the vector Xs

from (46j).
The reason for the last twist is that for fundamental series modules M , the char-

acter of H \ K in the parameter is a weight on Hdim.nop\s/.nop;M/, specifically
appearing in the image of a natural map

H0.n
op \ k;M/˝Vdim.nop\s/

.nop \ s/! Hdim.nop\s/.nop;M/:

The conclusion is that the weight of H \K on the parameter is equal to the n \ k-
highest weight of the lowest K-type, minus 2�n. The coroot for K is

˛_ C ˇ_; (47j)

which acts on Xs by 2. The dimension of the lowest K-type is therefore
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�˛ C �ˇ C 2C 1 D 2�˛ C 1I (47k)

the 1 comes from the �-shift in the Weyl dimension formula, and we have used (46g)
to convert � to � . In particular, we find that

I.E/jSL.2/K D sum of irreducibles of dimensions 2�˛ C 1, 2�˛ C 3,. . . : (47l)

In the same fashion, attached to E2 is a reducible principal series .g; ı0K/-
module I.E2/. The restriction of I.E2/ to ı0K is

I.E2/ D Ind
ı0K
ı0 .H\K/.�E2

/: (47m)

The reason for the absence of a twist on�E2
is that for principal series modulesM2

for quasisplit groups, the parameter appears as a weight on H0.nop;M2/; and for
(almost) spherical representations, this weight space is precisely the image of the
(almost) spherical vector. In particular,

I.E2/jSL.2/K D sum of irreducibles of dims 1, 3,. . . : (47n)

The principal series representation I.E2/ has a unique irreducible quotient rep-
resentation J.E2/:

J.E2/jSL.2/K D sum of irreducibles of dims 1, 3,. . . , 2�˛ � 1;
dimJ.E2/ D �2˛ :

(47o)

We get a short exact sequence

0!I.E 0/! I.E2/! J.E2/! 0;

I.E 0/jSL.2/K D sum of irreducibles of dims 2�˛ C 1, 2�˛ C 3,. . . :
(47p)

This extended parameter E 0 with I.E 0/ appearing as a composition factor of I.E2/
is the one on which the Hecke algebra action gives E1 (remember that this is essen-
tially just another label for E2) with positive coefficient. (This is a consequence of
the Beilinson–Bernstein localization theory relating perverse sheaves to representa-
tions, and the perverse sheaf definition of the Hecke algebra action in [10].) So we
need to understand the relationship between the extended parameters E and E 0.

Because the spherical composition factor J.E2/ is a unique quotient of I.E2/,
the spherical vector in I.E2/ is cyclic. The action of Xs carries highest weight
vectors for K to highest weight vectors for K; so we deduce

X�˛
s .spherical vector in I.E2//

D highest weight vector for lowest K-type of I.E 0/: (48a)

Because �E 2 SL.2/K acts trivially on the (one-dimensional) lowest K-type of
J.E2/, the formula (47d) shows that
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�E2
.h2/ D action of e.t=2/ı0 on J.E2/ lowest K-type: (48b)

It is easy to calculate

Ad.e.t=2/ı0/.Xs/ D ��.�1/t˛ D .�1/g˛�`˛�1Ct˛ :

Combining (48b) with (48a), we find that the

action of h D e.t=2/ı0 on I.E 0/ lowest K-type

D �E2
.h2/.��/�˛ .�1/�˛ t˛

D �E2
.h2/.�1/�˛..g˛�`˛�1/Ct˛/:

(48c)

Using the description of the parameter for E 0 given before (47j), we get

�E 0.h/ D �E2
.h2/.�1/.�˛�1/..g˛�`˛�1/Ct˛/: (48d)

Now we compare this “desired” relationship between �E 0.h/ and �E2
.h2/ with

the actual relationship between �E .h/ and �E2
.h2/. We find (using (29) and the

formulas in Table 3 for E1)

�E .h/�
�1
E2
.h2/ D �E .h/��1E1

.h1/

D i h�;.ı0�1/`i.�1/h�;ti
i�h��Œ.�˛C�ˇ/=2��˛;.ı0�1/.`C.g˛�`˛�1/˛_i

.�1/h.�C.�˛��˛�1/˛;tC.`˛�g˛�t˛C1/˛_i

D i hŒ.�˛C�ˇ/=2�˛;.ı0�1/.`C.g˛�`˛�1/˛_i

i�h�;.ı0�1/.g˛�`˛�1/˛i

.�1/h.�˛��˛�1/˛;tC.`˛�g˛�t˛C1/˛_i

.�1/h�;.`˛�g˛�t˛C1/˛_i:

(48e)

There are four factors on the right. In the first,

h˛; .ı0 � 1/`i D `˛ � `ˇ D 0
by (46g). In the third, h˛; ˛_i D 2 contributes an even power of .�1/, so can be
dropped. We are left with

�E .h/�
�1
E2
.h2/ D i hŒ.�˛C�ˇ/=2�˛;.ı0�1/..g˛�`˛�1/˛_/ii�h�;.ı0�1/..g˛�`˛�1/˛/i

.�1/h.�˛��˛�1/˛;ti.�1/h�;.`˛�g˛�t˛C1/˛_i

D .�1/Œ.�˛C�ˇ/=2�.g˛�`˛�1/�.�1/Œ.�˛��ˇ/=2�.g˛�`˛�1/ (48f)

.�1/.�˛��˛�1/t˛ .�1/�˛.`˛�g˛�t˛C1/

D .�1/�˛.g˛�`˛�1/.�1/.�˛��˛�1/t˛ .�1/�˛.`˛�g˛�t˛C1/:
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Splitting the last factor between the first two gives

�E .h/�
�1
E2
.h2/ D .�1/.�˛C�˛/.g˛�`˛�1/

.�1/.�˛�1/t˛ :
(48g)

Now use the first two formulas from (46g) to write �˛ D .�˛ � 1/C .�ˇ � �˛/=2.
We get

�E .h/�
�1
E2
.h2/ D .�1/Œ.�˛�1/C.�˛C�ˇ/=2�.g˛�`˛�1/.�1/.�˛�1/t˛

D .�1/.�˛�1/.g˛�`˛Ct˛�1/.�1/Œ.�˛C�ˇ/=2�.g˛�`˛�1/:
(48h)

The first factor here is exactly the one from (48d), so we deduce

�E .h/ D �E 0.h/.�1/Œ.�˛C�ˇ/=2�Œg˛�`˛�1�: (48i)

The sign on the right has to appear in front of the [10] Hecke algebra formula for the
coefficient of E1 in T�E. This proves the second assertion of the proposition. For
the third, we just rewrite exactly the same formula in terms of the parameter E1; by
the first assertion of the proposition, the formulas in Table 3 tell us how to do that.
We omit the algebraic details. ut

We summarize the results of Sections 7–9.

Theorem 9.2. If the infinitesimal character � is integral, then the action of H on M
(Definition 7.1) is given by Propositions 7.2, 8.3 and 9.1.

10 Nonintegral infinitesimal character

Suppose the infinitesimal character � is not necessarily integral. As always we as-
sume it is integrally dominant (17). Set

_R.�/ D f_̨ 2 _R j h�; _̨ i 2 Zg (49a)

as in (39b), and set
R.�/ D f˛ 2 R j _̨ 2 _R.�/g
R.�/C D RC \R.�/: (49b)

We say ˛ 2 R is integral if ˛ 2 R.�/. We say an integral root is simple (respectively
integral-simple) if it is simple for RC (respectively R.�/C).

The Weyl group W.�/ of R.�/ satisfies

W.�/ D fw 2 W j w� � � 2 ZRg: (49c)
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We now assume _ı0.�/ D � (see Lemma 4.1), so _ı0 acts on R.�/. Then _ı0
preserves both the simple and integral-simple roots, so the notions of integral and
integral-simple apply to a _ı0-orbit � D f˛; _ı0.˛/g of roots. Let H.�/ be the Hecke
algebra of [10, (4.7)] applied to .R.�/; ı0/.

Let M� be the module of Definition 7.1. The construction of [10] gives a rep-
resentation of H.�/ on M� . (More precisely, the construction of [10] concerns ge-
ometry related by base change (to compare a base field of finite characteristic with
C) and Beilinson–Bernstein localization (to relate K-equivariant perverse sheaves
to .g; K/-modules) to the module of Definition 7.1. In order to make a parallel iden-
tification in the case of nonintegral infinitesimal character, one needs a discussion
like that in [1, Chapter 17]. We omit the details.)

Suppose � is a _ı0-orbit of roots that are integral (for � ) and simple (for G).
Then the formulas of Tables 2–4 apply to give a formula for the action T� on M.
The technical issue we have to deal with here is what to do if � is integral-simple
(for � ) but not simple (for G).

Definition 10.1. Let ID be the set of integrally dominant elements of h�:

ID D f� 2 h� j ˛ 2 R.�/C H) h�; _̨ i � 0g:
If � 2 h�, then � is W.�/-conjugate to a unique element of ID. If � 2 ID and

w 2 W , let w � � be the unique element of ID which is W.w�/ conjugate to w� .

It is easy to see that w � � is the unique element satisfying

(a) w � � 2 ID
(b) w � � is W -conjugate to �
(c) w � � 2 w� C ZR.

Condition (c) is equivalent (in the presence of (a) and (b)) to

(c0) w � � D xw� for some x 2 W.w�/.
Lemma 10.2. The map .w; �/! w � � is an action of W on ID. It satisfies:

1. StabW .�/ D W.�/ ;
2. The W -orbit of � under � is in bijection with W=W.�/;
3. w � � D xw� for some x 2 W.w�/;
4. Suppose ˛ is simple for RC. Then

s˛ � � D
(

� ˛ 2 R.�/
s˛.�/ ˛ 62 R.�/:

Proof. If x; y 2 W , then .xy/ � � is the unique element satisfying conditions (a–c)
above with respect to xy. On the other hand x � .y � �/ obviously satisfies (a) and
(b). Condition (c) holds as well:

x � .y � �/ 2 x.y � �/C ZR

2 x.y� C ZR/C ZR D .xy/� C ZR:
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Assertions (1–3) are straightforward, and (4) is clear if ˛ is integral for � , so assume
this is not the case. Obviously s˛.�/ satisfies the conditions (b) and (c) for s˛ � � ,
and (a) follows from the fact that s˛ permutes RC � f˛g. We leave the details to the
reader. ut

If � is integral, the formulas for the cross action in Tables 2–4 define an action of
W ı0 on M. With a small change the same holds in general. To indicate the role of
� , write .�; �; `; t; �/ for an extended parameter.

Definition 10.3. Suppose � is a _ı0-orbit of simple roots. Suppose � 2 ID and
.�; �; `; t; �/ is an extended parameter. Use the formulas for the cross action of �
from Tables 2–4, applied to .�; �; `; t/, to define .�1; �1; `1; t1/. Then define

w� � .�; �; `; t; �/ D .�1 C .w� � � � �/; �1; `1; t1; w� � �/:
Define the cross action of any element of W ı0 by writing it as a product of w�s.

If � is integral then w� � � D � , and Definition 10.3 agrees with the definition
of the cross action in Tables 2–4. The main point is that even if � is not integral,
the formula in Definition 10.3 gives a valid extended parameter. In particular the
relation

.1 � _�1/.�1/ D .1 � _�1/.� � �/
holds exactly as in the integral case. What we need to know is that

.1 � _�1/.�1 C .w� � � � �// D .1 � _�1/.w� � � � �/
which follows immediately. Furthermore in the integral case �1 2 X�. In the non-
integral case it follows readily from the definitions that �1 C .w� � � � �/ 2 X�
(even though this doesn’t hold separately for �1 and w� � � � � ).

Proposition 10.4. Suppose � 2 ID is not necessarily integral. Then the action of
H.�/ on M� is given by the formulas in Table 5, with the following changes.

Suppose � is integral-simple, w 2 W ı0 , and these satisfy: w� is integral, simple
(for RC), and the Cayley transform cw�.w � E/ is defined by Tables 2–4. Then
define c�.E/ to be

c�.E/ D w�1 � cw�.w �E/
where the cross action is that of Definition 10.3.

On the other hand, supposew� is of type 2i11,2i12,2r11,2r12 forw�E,
so w� � .w �E/ is defined by Table 3. Define

w� �E D w�1 � Œw� � .w �E/�:
It is helpful to reformulate the action of W .

Lemma 10.5. Suppose E D .�; �; `; t; �/ is an extended parameter, and w 2 W ı0 .
Then w �E D .�0; � 0; `0; t 0; w � �/ where
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�0 D w � � � w.� � �/C .w� � �/ � .w�r .x/ � �r .wxw�1//
� 0 D w� � ._ı0 � 1/.w�r .x/ � �r .wxw�1//=2
`0 D g � w.g � `/C .w_� � _�/ � .w�r .y/ � �r .wyw�1/
t 0 D wt � .ı0 � 1/.w�r .y/ � �r .wyw�1//=2:

The proof is that these formulas agree with those Definition 10.3 when w D w� .
We omit the details.

To apply the proposition we need the following lemma.

Lemma 10.6. Suppose � is a _ı0-orbit of integral-simple roots. Then there exists
w 2 W ı0 such that w� is simple, unless � D f˛g is of length 1 and (the simple
factor of) G is locally isomorphic to SL.2nC 1;R/.

This follows from the facts that the “quotient” root system R=ı0 [12] consisting
of the restrictions of roots to H ı0 , is a (possibly non-reduced) root system, with
Weyl group W ı0 ; and in a reduced root system every root is conjugate to a simple
root. The excluded case in the lemma is type A2n, in which case R=ı0 is the non-
reduced system of type BCn, and a ı0-fixed root restricts to twice a root.

Extending Proposition 10.4 to this excluded case requires just a calculation in
SL.3;R/, which we omit.

11 Duality

Definition 11.1. Let � be the anti-automorphism of H given by

q�.T�/ D �q`T �1� D �T� C .q` � 1/ .` D length.�//: (50)

Suppose � is a representation of H on an A-module V . The dual representation
��, on HomA.V;A/ is given by

��.T�/.�/.v/ D �.�.�.T�/v/:
In the setting of Section 2 let H be the Hecke algebra for .G; ı0/ (see [10]

and Section 7). Let _H be the algebra given by the same construction applied to
._G; _ı0/. If � is a ı0-orbit of simple roots for G, then _� is a _ı0-orbit of simple
roots for _G, and the map T� ! T_� induces a Hecke algebra isomorphism.

Fix (regular, rational) infinitesimal character � and (regular, integral) infinitesi-
mal character cocharacter g as in (26).

We now assume that � is integral. Let M be the H-module of Definition 7.1,
applied to G, ı0, and � . Recall M is spanned by equivalence classes ŒE�, for E
an extended parameter with infinitesimal character � , and ŒI´.E/� ! ŒE� is an
isomorphism of Hecke modules.

Let _M be the _H-module obtained by applying the same construction to _G; _ı0
and g. If E is an extended parameter, write _E for the same parameter, viewed as
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an extended parameter for _G. The map ŒI� ._E/� ! Œ_E� is an isomorphism of
_H-modules. Write ŒE�0 2 HomA.V;A/ for the dual basis vector.

Proposition 11.2. The map ŒE�0 ! .�1/length.E/Œ_E� is an isomorphism of H '
_H-modules.

Proof. The statement is equivalent to the following assertion. For all �, and ext-
ended parameters E;F :

the coefficient of ŒE� in � T�.ŒF �/C .u`.�/ � 1/sgn.E; F / (51a)

is equal to

.�1/`.E/�`.F / � the coefficient of Œ_F � in T_�.Œ
_E�/: (51b)

In (a) sgn.E; F / is defined to be 0 if E;F are not extensions of the same parameter.
Up to signs, all of these formulas can be read off easily from the formulas for the

Hecke algebra action on parameters. See Table 5. The fact that the signs are correct
is due to the symmetry of Table 5. This is best illustrated by an example.

Example 11.3. Suppose � is type 1i1 for an extended parameter F . Then � is also
of type 1i1 for w� � F . According to Table 5,

the coefficient of Œw� � F � in � T�.ŒF �/ is � 1: (52a)

We need to show this equals

� 1.the coefficient of Œ_F � in T_�.Œ
_.w� � F /�/: (52b)

From the same line in Table 5, applied to _G, we know that

� .the coefficient of Œ_F � in T_�.Œw� � _F �/ D �1: (52c)

So we need to know that

.w� � F /_ � w� � _F: (52d)

This identity reflects a symmetry of the tables. Here w� �F is a cross action of type
1i1,w��_F is of type 1r1. Switching the roles of �$ `, and � $ t interchanges
these two formulas.

The necessary symmetry holds for all Cayley transforms and cross actions; in
Table 5 the dual operations are listed on the same line. This completes the proof of
the proposition. ut
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12 Appendix

We collect a few technical results about the Tits group [13], which will be needed
for our study of parameters for representations in Section 3. We continue with the
notation of (11). For each simple root ˛, the pinning defines a canonical homomor-
phism

�˛W .SL.2/; diag/! .G;H/ d�˛

�

0 1

0 0

�

D X˛: (53a)

Similarly,

�˛_ W .SL.2/; diag/! ._G; _H/ d�˛_

�

0 1

0 0

�

D X˛_ : (53b)

It is sometimes convenient to define also

H˛ D d�˛
�

1 0

0 �1
�

; X�˛ D d�˛
�

0 0

1 0

�

I (53c)

the first element (because ˛.H˛/ D 2) “is” the coroot ˛_. The second is a preferred
root vector for �˛, characterized by the last of the three relations

ŒH˛; X˛� D 2X˛; ŒH˛; X�˛� D �2X�˛; ŒX˛; X�˛� D H˛: (53d)

In this way we get a distinguished representative

�˛ Ddef �˛

�

0 1

�1 0
�

D exp.
�

2
.X˛ �X�˛//

�2˛ D m˛ Ddef ˛
_.�1/

(53e)

for the simple reflection s˛ . These representatives satisfy the braid relations (see
[13]) and therefore define distinguished representatives

�w Ddef �˛1
�˛2
	 	 	 �˛r

.w D s˛1
s˛2
	 	 	 s˛r

reduced/ (53f)

for each Weyl group element w. (That �w is independent of the choice of reduced
decomposition is a consequence of the fact that the �˛ satisfy the braid relations.)
If � is any distinguished (that is, pinning-preserving) automorphism of .G;B;H/,
then

�.�w/ D ��.w/: (53g)

The braid relations imply, for any w 2 W and simple root ˛

�w�˛ D
(

�ws˛ length.ws˛/ D length.w/C 1
�ws˛m˛ length.ws˛/ D length.w/ � 1 (53h)

and a similar result for �˛�w (with m˛ on the left).
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In exactly the same way, we get a distinguished representative in _G:

_�w Ddef �˛_

1
�˛_

2
	 	 	 �˛_

r
.w D s˛1

s˛2
	 	 	 s˛r

reduced/: (53i)

The main fact we need about these representatives is

Proposition 12.1. In the setting of (53),

�w�w�1 D .w�_ � �_/.�1/
D e..�_ � w�_/=2/
D

Y

ˇ2RC.G;H/

w�1ˇ…RC.G;H/

mˇ :

The proof is an easy induction on `.w/. See [2, Lemma 5.4].

Proposition 12.2. In the setting (11), suppose w 2 W , ˛; ˇ 2 ˘ are simple roots,
and w˛ D ˇ. Write X˛ and Xˇ for the simple root vectors given by the pinning,
and �w 2 N.H/ for the Tits representative of w defined in (53f). Then

�w�˛�
�1
w D �ˇ

and

Ad.�w/.X˛/ D Xˇ ; Ad.�w/.X�˛/ D X�ˇ : (54)

Proof. Since ˇ D w˛, sˇw D ws˛ . If length.ws˛/ D length.sˇw/ D length.w/C
1, then the first case of (53h) implies

�w�˛ D �ws˛ D �sˇw D �ˇ�w :
If the lengths are decreasing, we see

�w�˛ D �ws˛m˛
D �sˇwm˛
D mˇ�ˇ�wm˛
D mˇmsˇw˛�ˇ�w
D �ˇ�w (since sˇw˛ D �ˇ):

For the second statement we observe that Ad.�w/.X˛/ is some multiple of Xˇ .
The Tits group preserves the Z-form of g generated by the various X˙˛ , so this
scalar is˙1; we need to show it is 1. We compute

�w�˛�
�1
w D �w.exp

�

2
.X˛ �X�˛//��1w

D exp.
�

2
Ad.�w/.X˛ �X�˛//:
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On the other hand, by what we just proved this equals

�ˇ D exp.
�

2
.Xˇ �X�ˇ //:

Setting these equal gives the two equalities in the second statement. ut
Corollary 12.3. In the setting (11), suppose w 2 W , ˛; ˇ 2 ˘ are simple roots,
and w˛ D �ˇ. Write X˛ and Xˇ for the simple root vectors given by the pinning,
and �w 2 N.H/ for the Tits representative of w defined in (53f). Then

�w�˛�
�1
w D �ˇ

and
Ad.�w/.X˛/ D �X�ˇ ; Ad.�w/.X�˛/ D �Xˇ :

Proof. Let w0 D ws˛ . The first assertion follows from the previous lemma applied
to �w0 , using the fact that �w0 D �w�˛ (since w0 D ws˛ is a reduced expression).
As in the proof of the previous proposition we conclude that

exp.
�

2
.Ad.�w/.X˛ �X�˛// D exp.

�

2
.Xˇ �X�ˇ //;

and in this case this implies Ad.�w/.X˛/ D �X�ˇ and Ad.�w/.X�˛/ D �Xˇ . ut
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Table 5 Action of Hecke operators

�-type(E ) T�.E/ �-type(E ) T�.E/

1C+ w� �E 1C- .q � 1/E C q.w� �E/
1i1 w� �E CE� 1r2 .q � 1/E �w� �E C .q � 1/E�

1i2f E CE1
� CE2

� 1r1f .q � 2/E C .q � 1/.E1
� CE2

� /

1i2s �E 1r1s qE

1ic qE 1rn �E
2C+ w� �E 2C- .q2 � 1/E C q2.w� �E/
2Ci qE ˙ .qC 1/E� 2Cr .q2 � q � 1/E ˙ .q2 � q/E�

(see Section 9) (see Section 9)

2i22 E CE1
� CE2

� 2r11 .q2 � 2/E C .q2 � 1/.E1
� CE2

� /

2i11 w� �E CE� 2r22 .q2 � 1/E �w� �E C .q2 � 1/E�

2i12f w� �E ˙E1
� ˙E2

� 2r21f .q2 � 2/E C .q2 � 1/.˙E1
� ˙E2

� /

(see Section 8) (see Section 8)

2i12s �E 2r21s q2E

2ic q2E 2rn �E
3C+ w� �E 3C- .q3 � 1/E C q3.w� �E/
3Ci qE C .qC 1/E� 3Cr .q3 � q � 1/E C .q3 � q/E�

3i qE C .qC 1/E� 3r .q3 � q � 1/E C .q3 � q/E�

3ic q3E 3rn �E
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Borel–Casselmann equivalence of categories [Bo] composed with the reduction to
the graded affine Hecke algebra of [Lu1] to the ladder representations defined and
studied in [LM] and [Ta] for GL.n;Qp/.

The classification of the unitary dual of real and p-adic reductive groups is one
of the central problems of representation theory. Typically, by results of Harish-
Chandra, this problem is reduced to an algebraic one, the study of admissible repre-
sentations of an algebra endowed with a star operation. In the case of real groups,
this algebra is the Hecke algebra R.g; K/ introduced in [KV]. In the case of p-adic
groups, it is an Iwahori–Hecke type algebra with parameters. In both cases, the star
operation is derived from the anti-automorphism g 7! g�1. In the real case, David
Vogan and his collaborators [ALTV] made a deep study of signatures of hermitian
forms of admissible modules by exploiting the relationship between two different
star operations, one related to the real form of the reductive group, the other rel-
ated to the compact form of the group. Motivated by this, we study the analogues
of these star operations for graded affine Hecke algebras. The star operation com-
ing from the p-adic group is made explicit in [BM2]. In [BC1], we introduce and
study another star operation which we denote by ~, the analogue of the star ope-
ration for a compact form. The problem of the unitarity of representations for ~
seemed an artificial one. Motivated by the study of spherical eigenfunctions for in-
variant differential operators on symmetric spaces, Opdam [Op] studied two graded
Hecke algebra modules C1c .a/ (a being a Euclidean space) and C1.T / (T being
a compact torus). The modules C1.T / are related to the compact symmetric case,
and are unitary for ~ (denoted C in [Op]). The modules C1c .a/ are related to the
noncompact symmetric spaces, are unitary for �, and are studied further in [Od].

The unitary dual for ~ is a central topic of this paper. The first set of results
is a connection between ~-unitary representations, and representations which are
A-semisimple. This is the content of Theorem 2.11. This provides a connection to
the work of [Ch],[KR], and [Ra].

In ongoing research we are planning to determine the entire ~-unitary dual for
graded affine Hecke algebras of arbitrary type. The most complete results to date
are for type A. In the process we found the links to the ladder representations in the
title, and the results of [LM], [CR], and [Ta].

A seminal idea, pioneered by D. Vogan, was to try to make a connection between
the unitary dual of real and p-adic groups via intertwining operators, petiteK-types
andW -types. This was developed systematically by the authors of this paper, jointly
and separately, in particular to determine the full spherical unitary dual of split p-
adic (and split real) classical groups. We follow this approach in this paper. We relate
the unitary (star for the compact form of the Lie algebra) dual of Verma modules to
the ~-unitary dual of the graded affine Hecke algebra using the functors introduced
by Arakawa and Suzuki, [AS, Su]. The advantage of this method is that it provides
interesting connections between the Bernstein–Gelfand–Gelfand resolution and re-
sults about character formulas of ladder representations.
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Some time ago, motivated by conjectures of Arthur concerning unipotent rep-
resentations, D. Barbasch, S. Evens, and A. Moy conjectured the existence of an
action of the Iwahori–Hecke algebra on the cohomology of the incidence variety of
a pair of nilpotent elements whose sl.2/-triples commute. More details are at the
end of Section 5.2. In Section 5 we provide new evidence for this conjecture, and
establish connections to the work of [Gi] and [EP].

2 The star operation ~

2.1 Graded affine Hecke algebra

Let ˚ D .V;R; V _; R_; ˘/ be a reduced based R-root system. In particular,
V and V _ are finite-dimensional R-vector spaces in perfect duality
. ; / W V � V _ ! R: Let W � GL.V / be the Weyl group generated by the
simple reflections fs˛ W ˛ 2 ˘g: The positive roots are RC and the positive coroots
are R_;C: The complexifications of V and V _ are denoted by VC and V _

C
, respec-

tively, and we denote by N the complex conjugations of VC and V _
C

induced by V
and V _, respectively. Extend linearly the pairing . ; / to VC � V _C .

Let k W ˘ ! R>0 be a function such that k˛ D k˛0 whenever ˛; ˛0 2 ˘ are
W -conjugate. Let CŒW � denote the group algebra of W and S.VC/ the symmetric
algebra over VC: The group W acts on S.VC/ by extending the action on V: For
every ˛ 2 ˘; denote the difference operator by

� W S.VC/! S.VC/; �˛.a/ D a � s˛.a/
˛

; for all a 2 S.VC/: (1)

If a 2 VC, then �˛.a/ D .a; ˛_/.
Definition 2.1 ([Lu1]). The graded affine Hecke algebra H D H.˚; k/ is the unique
associative unital algebra generated by fa W a 2 S.VC/g and ftw W w 2 W g such
that

(i) the assignment twa 7! w ˝ a gives an isomorphism of .CŒW �; S.VC//-
bimodules between H and CŒW �˝ S.VC/;

(ii) ats˛ D ts˛ s˛.a/C k˛�˛.a/; for all ˛ 2 ˘ , a 2 S.VC/:
The center of H is S.VC/W ([Lu1]). By Schur’s Lemma, the center of H acts by

scalars on each irreducible H-module. The central characters are parameterized by
W -orbits in V _

C
: If X is an irreducible H-module, denote by cc.X/ 2 V _

C
(actu-

ally in W nV _
C

) its central character.
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2.2 Star operations

Let w0 denote the long Weyl group element, and let ı be the involutive automor-
phism of H determined by

ı.tw/ D tw0ww0
; w 2 W; ı.!/ D �w0.!/; ! 2 VC: (2)

When w0 is central in W , ı D Id.

Definition 2.2. Let � W H ! H be a conjugate linear involutive algebra anti-auto-
morphism. An H-module .�;X/ is said to be �-hermitian if X has a hermitian form
. ; / which is �-invariant, i.e.,

.�.h/x; y/ D .x; �.�.h//y/; x; y 2 X; h 2 H:

A hermitian module X is �-unitary if the �-hermitian form is positive definite.

Definition 2.3. Define a conjugate linear algebra anti-involution � of H by

t�w D tw�1 ; w 2 W; !� D Ad tw0
.ı.a// D �tw0

	 w0.!/ 	 tw0
; ! 2 VC: (3)

Similarly, define ~ by

t~w D tw�1 ; w 2 W; !~ D !; ! 2 VC: (4)

The operations � and ~ are related by

� D Ad tw0
ı~ ı ı; for all h 2 H: (5)

Remark 2.4. In [BC1], it is proved that � and ~ are the only star operations of H
that satisfy certain natural conditions. When H is obtained by grading the Iwahori–
Hecke algebra of a reductive p-adic group, � corresponds to the natural star ope-
ration of the p-adic group. The operation ~ is the analogue of the compact star
operation defined for real reductive groups in [ALTV].

2.3 Semisimplicity

In the rest of this section, suppose the parameters k˛ are positive, but arbitrary. Let
.�;X/ be a finite-dimensional H-module. For every � 2 V _

C
, define

X� D fx 2 X W �.!/x D .!; �/x; for all ! 2 VCg;
X

gen
�
D fx 2 X W .�.!/ � .!; �//nx D 0 for some n 2 N; for all ! 2 VCg:

(6)

A functional � 2 V _
C

is called a weight of X if X� ¤ 0: Let Wt.X/ denote the set
of weights of X . It is straightforward that Wt.X/ � W 	 cc.X/:
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Definition 2.5. The module .�;X/ is called A-semisimple if X� D Xgen
�

for all �:

Lemma 2.6 (see [KR]). If X is A-semisimple, then .˛; �/ ¤ 0 for all ˛ 2 ˘ and
� 2Wt.X/:

Proof. We actually prove more. For every ˛ 2 ˘ , define (as in [Lu1]) the element

R˛ D ts˛˛ � k˛; (7)

with the properties

a 	R˛ D R˛ 	 s˛.a/; a 2 S.VC/; R2˛ D k2˛ � ˛2: (8)

In particular, if x� 2 X�, then R˛x� 2 Xs˛.�/ (possibly zero).

Let ˛ 2 ˘ be given, and let H˛ be the subalgebra generated by t˛; ˛. This is a
graded Hecke algebra of type A1 with parameter k˛ . Given the H-module .�;X/
and a vector 0 ¤ x� 2 X�; the span of fx�; �.ts˛ /x�g is an H˛-module. There are
two cases:

1. Suppose �.R˛/x� D 0: Also �.R2˛/x˛ D 0; which implies that .˛; �/ D �˛k˛
for some �˛ 2 f˙1g: Moreover �.ts˛ /x� D �˛x�: The H˛-module gener-
ated by x� is either the trivial (when �˛ D 1) or the Steinberg module (when
�˛ D �1.)

2. Suppose �.R˛/x� ¤ 0: Then there are two subcases:

a. .˛; �/ D 0; in which case �.R˛/x� D �k˛x�: Set y� D �.ts˛ /x�:

Then �.˛/y� D 2k˛x�, so spanfx�; y�g is a two-dimensional H˛-module
isomorphic to the irreducible tempered principal series at 0. In particular,
A does not act semisimply.

b. .˛; �/ ¤ 0; in which case �.R˛/x� is a weight vector with weight s˛.�/.
The spanfx�; y�g is a two dimensional H˛-module isomorphic to an irre-
ducible non-tempered principal series, and A acts semisimply on it.

ut
Proposition 2.7. Assume .�;X/ is a ~-unitary finite-dimensional H-module. Then
X is A-semisimple.

Proof. Let . ; /X be the positive definite ~-form on X . Let � be a weight of X and
x� ¤ 0 a weight vector. Define

fx�g? D fy 2 X W .x�; y/X D 0g:
Let y 2 fx�g? be given. We get, for ! 2 VC,

0 D .!; �/.x�; y/X D .�.!/x�; y/X D .x�; �.!~/y/X D .x�; �.!/y/X ;
so .x�; �.!/y/X D 0: It follows that fx�g? is A-invariant. Since the form . ; /X is
positive definite, we haveX D Cx�˚fx�g? as A-modules. By induction, it follows
that X is a direct sum of one-dimensional A-modules, thus A-semisimple. ut
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Remark 2.8. The above proposition can also be interpreted as the following linear
algebra statement: if J is a hermitian matrix, andN a nonzero nilpotent matrix such
that

JN D N �J; where N � the transpose conjugate of N;

then J is not positive definite.

Remark 2.9. The proof and statement of Proposition 2.7 can be easily generalized
by replacing A with any parabolic subalgebra of H:

In light of Proposition 2.7, we need to record certain facts about A-semisimple
modules. The following easy properties can be found in [KR].

Theorem 2.10 ([KR]). Assume .�;X/ is a finite-dimensional A-semisimple
H-module.

1. If .�;X/ is irreducible, then dimX� � 1:
2. Suppose .�;X/ is a simple A-semisimple module. Then there exists a basis
fx� W � 2Wt.X/g of X such that the W -action is

�.ts˛ /x� D
(

k˛

.˛;�/
x�; if s˛.�/ …Wt.X/;

k˛

.˛;�/
x� C

	

1C k˛

.˛;�/




xs˛.�/; if s˛.�/ 2Wt.X/;
(9)

for every ˛ 2 ˘: (Recall that .˛; �/ ¤ 0 by Lemma 2.6.)

We can now prove a characterization of ~-unitary modules.

Theorem 2.11. A simple H-module .�;X/ with real central character is ~-unitary
if and only if it is A-semisimple, and

j.˛; �/j � k˛ (10)

for every ˛ 2 ˘ and � 2Wt.X/:
In particular, if H has equal parameters k˛ D 1 and X has integral central

character, then X is ~-unitary if and only if it is A-semisimple.

Proof. Suppose first that .�;X/ is simple ~-unitary with form . ; /X . By Propo-
sition 2.7, it is A-semisimple. Let � 2 Wt.X/ and let x� a corresponding weight
vector be given. Set y� WD �.R˛/x�. Using R~

˛ D �R˛ , we have

0 � .y�; y�/X D .�.R˛/x˛; �.R˛/x˛/X D �.�.R2˛/x�; x�/X
D �.˛; �/2 � k2˛

�

.x�; x�/X ;
(11)

which implies (10). Notice that in fact, if y� ¤ 0, which is the case when s˛.�/ 2
Wt.X/, the inequality is strict, and so j.˛; �/j > k˛:

For the converse, suppose that X is an irreducible A-semisimple and that (10)
holds. We construct a ~-hermitian form . ; / on X which is positive definite. Let
fx�g be a basis of X as in Theorem 2.10(3). Clearly, we need to set
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.x�; x�/ D 0; if � ¤ �;
and with this condition, the form is automatically A-invariant. Set .x�; x�/ D a�.
We need to check using theW -invariance that the scalars a� can be chosen to be all
positive in a consistent way.

Let ˛ be a simple root. We use the formula in Theorem 2.10 repeatedly. If
� ¤ �; s˛.�/; then

.�.ts˛ /x�; x�/ D 0 D .x�; �.ts˛ /x�/:
Next

.�.ts˛ /x�; x�/ D
k˛

.˛; �/
a� D .x�; �.ts˛ /x�/:

It remains to check that .�.ts˛ /x�; xs˛.�// D .x�; �.ts˛ /xs˛.�//: If s˛.�/ is not a
weight, there is nothing to check, so suppose both � and s˛.�/ are weights. Then

.�.ts˛ /x�; xs˛.�// D
�

1C k˛

.˛; �/

�

as˛.�/

.x�; �.ts˛ /xs˛.�// D
�

1C k˛

.˛; s˛.�//

�

a� D
�

1 � k˛

.˛; �/

�

a�:

(12)

So we need that

as˛.�/ D
.˛; �/ � k˛
.˛; �/C k˛ a�;

and this is positive if a� > 0 by (10). ut

3 Ladder representations: definitions

We consider the graded Hecke algebra of type A. More precisely the data
.V;R; V _; R_/ correspond to the Hecke algebra of GL.n/: We will denote this
algebra by Hn. More generally, if P DMN � G is a standard parabolic subgroup,
we will write HM for the Hecke algebra corresponding to .V;R.M/;R.M/_; V _/
viewed as a subalgebra of the Hecke algebra H for G:

In the case of GL.n/; we will classify the ~-unitary dual. We begin by recalling
Zelevinsky’s classification [Ze1] of the simple modules. We will phrase the classifi-
cation “with quotients” rather than “submodules”, cf. [Ze1, 	10].
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3.1 Multisegments

We restrict to H-modules with real central character. By [BC2, Corollary 4.3.2 or
Corollary 5.1.3], every simple H-module with real central character admits a non-
degenerate ~-invariant hermitian form.

A segment is a set � D fa; a C 1; a C 2; : : : ; bg, where a; b 2 R and a � b

(mod Z). We will write � D Œa; b� and j�j D b � aC 1 for the length. A multiseg-
ment is an ordered collection .�1; �2; : : : ; �r / of segments. Following [Ze1, 	4.1],
two segments �1 and �2 are called

(a) linked, if �1 6� �2, �2 6� �1, and �1 [�2 is a segment;
(b) juxtaposed, if �1; �2 are linked and �1 \�2 D ;.
One says that

(c) �1 precedes �2 if �1; �2 are linked and a1 < a2:

For every segment � with m D b � a C 1, let h�i denote the one-dimensional
Hm-module which extends the sign W -representation and on which A acts by the
character CŒa;b�: If .�1; �2; : : : ; �r / is a multisegment, denote by

h�1i � h�2i � 	 	 	 � h�ri (13)

the induced module Hn ˝Hm1
�Hm2

�


�Hmr
.h�1i � h�2i � 	 	 	 � h�ri/, where

mi D bi � ai C 1 and n DP

mi : Here Hm1
� 	 	 	 �Hmr

� Hm is the subalgebra
HM � Hn corresponding to the standard parabolic subgroup P D MN � G with
Levi component GL.m1/ � 	 	 	 � GL.mr / � GL.n/:

We need two of the main results from [Ze1].

Theorem 3.1 ([Ze1, Theorem 4.2]). The following conditions are equivalent:

1. The module h�1i � 	 	 	 � h�ri is irreducible.
2. For each i; j D 1; : : : ; r , the segments �i and �j are not linked.

Theorem 3.2 ([Ze1, Theorem 6.1]).

(a) Let .�1; : : : ; �r / be a multisegment. Suppose that for each i < j , �i does not
precede�j . Then the representation h�1i� 	 	 	 � h�ri has a unique irreducible
quotient denoted by h�1; : : : ; �ri:

(b) The modules h�1; : : : ; �ri and h�01; : : : ; �0si are isomorphic if and only if the
corresponding multisegments are equal up to a rearrangement.

(c) Every simple Hn-module with real central character is isomorphic to one of the
form h�1i � 	 	 	 � h�ri.

Remark 3.3. For the most part, the above results are instances of the Langlands
classification. A multisegment corresponds to data .M; �; �/ where

M D GL.b1 � a1 C 1/ � 	 	 	 � GL.br � ar C 1/
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is a Levi component, the tempered representation � is the Steinberg representa-
tion, and the .ai ; bi / determine the �: The fact that �i precedes �j is the usual
dominance condition for �: The remaining results are sharpenings of the Langlands
classification in the case of GL.n/:

Definition 3.4 (Ladder representations [LM]). Let �i D Œai ; bi � 1 � i � r be
Zelevinsky segments. If a1 > a2 > 	 	 	 > ar and b1 > b2 > 	 	 	 > br , call the
irreducible representation h�1; �2; : : : ; �ri a ladder representation.

Example 3.5 (Speh representations [BM1]). Let �i , 1 � i � r be segments as
in Definition 3.4, such that bi � ai C 1 D d for a fixed d and ai � aiC1 D 1

for all i . Then h�1; : : : ; �ri is irreducible as an Sn-representation, isomorphic to
the Sn-representation parameterized by the rectangular Young diagram with r rows
and d columns. These modules are both ~-unitary and �-unitary ([BM1, CM]) and
correspond to the (I -fixed vectors) of Speh representations.

3.2 Cherednik’s construction

As in Definition 3.4, let h�1; : : : ; �ri, a1 > a2 > 	 	 	 > ar , b1 > b2 > 	 	 	 > br
be a ladder representation. The interesting case is when �i is linked to �iC1 for
all i . In fact, since tensoring with a character of the center of H does not change
A-semisimplicity, we may even assume that ai ; bi 2 Z for all i . From now on, this
type of ladder representations will be called integral.

Following [Ch], we give a combinatorial construction of integral ladder repre-
sentations. Let h�1; : : : ; �ri be an integral ladder representation with the notation
as above. Set

� D .a1; : : : ; b1; a2; : : : ; b2; : : : ; ar ; : : : ; br / 2 Zn (14)

viewed as an element of V _
C
Š Cn. The underlying multisegment .�1; : : : ; �r /

gives a skew-Young diagram, where each box in the Young diagram corresponds to
an integer in one of the multisegments. More precisely, the underlying skew diagram
is formed as follows. The first segment �1 gives the top row with j�1j boxes, each
box for one of the integers in �1 in order. The segment �2 gives the second row
with j�2j boxes, immediately below the first, etc. The rows are aligned so that

1. the two boxes are in the same column if and only if they correspond to the same
integer in the multisegment, and

2. two boxes in two adjacent columns correspond to two consecutive integers in
the multisegment.

For example, if the multisegment is .Œ2; 4�; Œ0; 2�; Œ�2;�1�/, the resulting skew-
Young diagram is

.

(15)
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Notice that the skew-Young diagram does not recover the integral ladder represen-
tation uniquely, only up to tensoring with a character of H that is trivial on W .
However, if we specify an integer a such that the first segment starts with a, then
the multisegment is determined.

We fix a skew-Young diagram as above and we will form skew-Young tableaux
with that shape. Let Œ1 : : : n� be the set of integers 1; 2; : : : ; n. Let Y1 be the skew-
Young tableau with entries in Œ1 : : : n� such that in the first row, the entries are, in
order, 1; 2; : : : ; b1 � a1 C 1, in the second row, b1 � a1 C 2; b1 � a1 C 3; : : : ;

b1 C b2 � a1 � a2 C 2, etc. In our example,

Y1 =
1 2 3

4 5 6
7 8

.

(16)

Consider all skew-Young tableaux with entries in Œ1 : : : n� subject to the
requirements:

1. the entries are increasing left-right on each row;
2. the entries are increasing up-down on each 45ı-diagonal.

Denote every such tableau by Yw , wherew 2 Sn is the permutation transforming
.1; 2; : : : ; n/ to the entries of the tableau read in order from the top row to the bottom
row and on each row from left to right. Let

W.�1; : : : ; �r / D the set of w 2 Sn parameterizing the tableaux Yw
for .�1; : : : ; �r /:

(17)

Theorem 3.6 (Cherednik [Ch, Theorem 4], see also Ram [Ra]). The set fYwg
defined above is a basis of a simple H-module C.�1; : : : ; �r / such that

1. Yw is an A-weight vector with weight w.�/:
2. the action of W on fYwg is as follows:

�.ts˛ /Yw D
(

1
.˛;w.�//

Yw ; if s˛w … W.�1; : : : ; �r /
1

.˛;w.�//
Yw C .1C 1

.˛;w.�//
/Ys˛w ; if s˛w 2 W.�1; : : : ; �r /;

(18)
for every ˛ 2 ˘:

The weight � is such that it determines the Langlands parameter of the irreducible
ladder representation h�1; : : : ; �ri: See [Ev] for relevant details on the Langlands
classification for representations of the graded Hecke algebras. Thus

h�1; : : : ; �ri Š C.�1; : : : ; �r /; (19)

for every integral ladder representation.
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4 Ladder representations: functors from category
O to H-modules

In this section, we apply some constructions of Zelevinsky [Ze2] and Arakawa and
Suzuki [AS, Su] to the study of ~-unitary representations.

4.1 Category O

Let g be a complex reductive Lie algebra with universal enveloping algebra U.g/.
Fix a Cartan subalgebra h � g, and a Borel subalgebra b D h ˚ n: Let R � h�
denote the roots of g with respect to h; and let RC be the positive roots with respect
to b: Let W D NG.h/=ZG.h/ be the Weyl group with length function `:

Let n� be the nilradical of the opposite Borel subalgebra. Let ˘ be the sim-
ple roots defined by RC, and for every root ˛, let ˛_ 2 h be the coroot. Let ˛i ,
i D 1; : : : ; j˘ j denote the simple roots, and !_i the corresponding fundamental
coweights. Set � D 1

2

P

˛2RC ˛: We denote by h ; i the pairing between h� and h:
Define

� D f� 2 h� W h�; ˛_i 2 Z; for all ˛ 2 RgI
�C D f� 2 h� W h�; ˛_i 2 Z	0; for all ˛ 2 RCg:

Let O denote the category of finitely generated U.g/-modules, which are n-locally
finite and h-semisimple. IfX is a module inO , let˝.X/ denote the set of h-weights
of X .

For every � 2 h�, let M.�/ D U.g/˝U.b/ Cv� denote the Verma module with
highest weight � and infinitesimal character �C �. Then M.�/ 2 O has a unique
simple quotient, the highest weight module L.�/: As it is well known, L.�/ is a
simple finite-dimensional module if and only if � 2 �C:

For every w 2 W; � 2 h�, define

w ı � D w.�C �/ � �:
For X 2 O; let

H0.n
�; X/ D X=n�X (20)

denote the 0-th n�-homology space, viewed as an h-module. For every � 2 �C and
every finite-dimensional g-module V , define the functor

F�;V W O ! Vect; F�;V.X/ D H0.n�; X ˝ V/�; (21)

where the subscript stands for the �-weight space, and Vect denotes the category of
C-vector spaces.
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Remark 4.1. In general,F�;V need not be an exact functor. However, if one assumes
that �C � 2 �C, then F�;V is exact. See for example [AS, Proposition 1.4.2].

Let L.�/ be a simple finite-dimensional module. Recall that there exists a reso-
lution of L.�/ in O defined by Bernstein–Gelfand–Gelfand:

0! CN ! CN�1 ! 	 	 	 ! C1 ! C0 ! L.�/! 0; (22)

where
Ci D

M

w2W;`.w/Di
Mwı�:

In particular, applying the Euler–Poincaré principle, the identity

L.�/ D
X

w2W
sgn.w/Mwı� (23)

holds in the Grothendieck group of O .

Proposition 4.2 ([Ze2, Proposition 1]). Fix � 2 �C, � 2 �C, � 2 �, and a
finite-dimensional representation V .

1. The functor F�;V transforms the BGG resolution (22) into an exact sequence.
2. There are natural C-linear isomorphisms

F�;V.M.�// D V��� and F�;V.L.�// D V���Œ��; (24)

where V��� denotes the .� � �/-weight space of V , and

V���Œ�� D fv 2 V��� W eh�C
;˛_i
˛ v D 0; for all ˛ 2 ˘g:

Here e˛ 2 n denotes a fixed root vector for ˛ 2 ˘:
As a corollary, one can transfer formula (23) via F�: This is particularly interest-

ing when the images of modules in O under F� admit actions by a different group
(such as in the classical Schur–Weyl duality) or other algebras.

4.2 The Arakawa–Suzuki functor

We specialize to g D gl.n;C/: Let Ei;j denote the matrix with 1 in the .i; j /-
position and 0 elsewhere. Let sij 2 Sn denote the transposition. Fix a positive inte-
ger `, and set

V` D .Cn/˝`; (25)

with the diagonal g-action.

Remark 4.3. If ` D n, the finite-dimensional g-module Vn has the property that its
0-weight space is naturally isomorphic to the standard representation of Sn.
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For every 0 � i < j � `, consider the operator

˝i;j D
X

1�k;m�n
.Ek;m/i ˝ .Em;k/j 2 End.X ˝ V`/; (26)

where . /i means that the corresponding element acts on the i -th factor of the tensor
product. It is well known that ˝i;j , 1 � i < j � n flips the i; j factors of tensor
product, i.e.,

˝i;j .x˝v1˝	 	 	˝vi˝	 	 	˝vj˝	 	 	˝v`/ D x˝v1˝	 	 	˝vj˝	 	 	˝vi˝	 	 	˝v`:
Lemma 4.4 ([AS, Theorem 2.2.2], [Su, Lemma 3.1.1]). For every X 2 O , the
assignment

si;iC1 7! �˝i;iC1; 1 � i � ` � 1;
�_j 7!

X

0�i<j
˝i;j C n � 1

2
; 1 � j � `;

extends to an action of the graded Hecke algebra H` of gl.`/ on X ˝ V`:

Notice the presence of the minus sign in the action of si;iC1 which is not the
convention in [AS]. We make this adjustment so that the results fit with the previous
sections. This is because the standard modules for H` are induced from Steinberg
modules to conform with the Langlands classification, not the trivial modules as
in [AS].

In this way, the functor F�;V`
from (21) maps to H`-modules. Since we will

consider � such that �C � 2 �C, this will be an exact functor.
In [AS] and [Su], the images of Verma modules and highest weight modules are

computed. We recall their results now.

Let P.V`/ � h� denote the set of weights of V`. If we identify h� with Cn; then
these weights are of the form .`1; : : : ; `n/ where

P

`i D ` and `i � 0.
Assume that �C � 2 �C and let � 2 h� be such that ��� 2 P.V`/: Define the

multisegment [Su, (2.2.7)]

˚�;� D .�1; : : : ; �n/; �i D Œh�C �; �_i i; h�C �; �_i i � 1�; (27)

and the standard H`-module

M.�; �/ D h�1; : : : ; �ni D H`˝H`1
�


�H`n

.St˝C�1
/˝	 	 	˝.St˝C�n

/: (28)

Let L.�; �/ denote the unique simple quotient of M.�; �/: The lowest S`-type of
L.�; �/ is parameterized by the partition of ` obtained by ordering
� � � D .`1; : : : ; `n/ in decreasing order.
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Theorem 4.5 ([Su, Theorems 3.2.1 and 3.2.2]). Assume that � C � 2 �C and
� 2 � � P.V`/.

1. F�;V`
.M.�// DM.�; �/ as H`-modules.

2. If � satisfies the condition

h�C �; ˛_i 2 Z�0 for all ˛ 2 RC satisfying h�C �; ˛_i D 0; (29)

then
F�;V`

.L.�// D L.�; �/:
3. If � does not satisfy condition (29), then

F�;V`
.L.�// D 0:

Notice that if � in the theorem is such that h�C �; ˛_i � 1 for all simple roots

˛; then condition (29) is vacuously true.

4.3 A character formula

We apply the previous results to the ladder representations. Consider segments
�i D Œai ; bi �, i D 1; n, such that a1 > a2 > : : : and b1 > b2 > : : : : Let
C.�1; : : : ; �n/ denote the ladder representation for H`: Identify .a1; a2; : : : ; an/
and .b1; b2; : : : ; bn/ with elements of h� Š Cn. Set

� D .a1; : : : ; an/ � �; � D .b1 C 1; : : : ; bn C 1/ � �: (30)

In coordinates � D .n�1
2
; n�3
2
; : : : ;�n�1

2
/.

Assume from now on that .a1; : : : ; an/ � � mod Z. Then � and � just defined
satisfy the conditions of Theorem 4.5 and, in fact, h� C �; ˛_i � 1 for all simple
roots ˛:

Theorem 4.6. With the notation as above,

F�;V`
.L.�// D C.�1; : : : ; �n/:

In other words ladder representations correspond to finite-dimensional representa-
tions highest weight modules.

Proof. This follows immediately from Theorem 4.5(2). ut
Corollary 4.7 (see also [Su, 	5.1]).

C.�1; : : : ; �n/ D
X

w2Sn

sgn.w/hw 	�1; : : : ; w 	�ni;

where w 	�i WD Œaw.i/; bi �, and the standard representation hw 	�1; : : : ; w 	�ni is
understood to be 0 if aw.i/ > bi for some i .
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Proof. We first apply the functor F�;V`
to the BGG formula (23), and then identify

the images of the Verma modules as in Theorem 4.5(1). ut
Remark 4.8. Corollary 4.7(2) recovers the known “determinantal” character for-
mula for ladder representations of Tadić [Ta], and Lapid–Minguez [LM, Theorem 1],
see also [CR]. This approach also provides a resolution of the ladder representations
which is the image of the BGG resolution under the functor.

4.4 Invariant forms

The functor F�;V`
behaves well with respect to invariant hermitian (or symmetric

bilinear) forms, and in fact, this is an ingredient in the proof of Theorem 4.5(2). We
recall the results in the setting of hermitian rather than symmetric forms, with the
obvious modifications.

Recall that g D gl.n;C/ viewed as a Lie algebra admits a complex conjugate
linear anti-automorphism � W A 7! AT : A module X 2 O is called hermitian if it
admits an invariant form . ; /X satisfying

.Ax; y/X D .x; A�y/X ; for all A 2 g D gl.n/: (31)

The standard representation Cn is hermitian, the usual inner product

.x; y/Cn D
X

i

xiyi

has property (31).

If X admits an invariant hermitian form, then X ˝ V` D X ˝ .Cn/˝` can be
endowed with the product form. The following lemma is straightforward.

Lemma 4.9 ([Su, Lemma 4.1.4]). Suppose X admits a g-invariant form as in (31).
Then the form on X ˝V` is H`-invariant with respect to the star operation ~ of H`
(see Definition 2.2).

If the form on X is nondegenerate (positive definite), then the form obtained on
F�;V`

.X/ is nondegenerate (positive definite).

Combining Lemma 4.9 with Theorem 4.6, we obtain as a consequence the known
semisimplicity result for ladder representations [LM].

Proposition 4.10. Every ladder representation C.�1; : : : ; �n/ is ~-unitary, and
therefore HM -semisimple for every parabolic Hecke subalgebra HM :

Proof. Apply Lemma 4.9 withX D L.�/, where � and � are as in Theorem 4.6(1).
ut



132 D. Barbasch and D. Ciubotaru

Remark 4.11. The HM -semisimplicity of ladder representations from Proposition
4.10 is the Hecke algebra equivalent of the semisimplicity of the Jacquet modules
of ladder representations proved in [LM].

5 Ladder representations: pairs of commuting nilpotent
elements

We relate the A-semisimple H-modules to the geometry of pairs of commuting
nilpotent elements considered by [Gi]. Let g be a complex semisimple Lie algebra
and G D Ad.g/.

Definition 5.1 ([Gi], [EP]). A pair e D .e1; e2/ 2 g � g is called a nilpotent
pair if Œe1; e2� D 0 and for all .t1; t2/ 2 C� � C�, there exists g 2 G such that
Ad.g/.e1; e2/ D .t1e1; t2e2/. In addition:

1. e is called principal if dim zg.e/ D rank g;
2. e is called distinguished if

a. zg.e/ contains no semisimple elements, and
b. there exists a semisimple pair h D .h1; h2/ 2 g�g such that ad.h1/; ad.h2/

have rational eigenvalues,

Œh1; h2� D 0; Œhi ; ej � D ıij ej ;
and zg.h/ is a Cartan subalgebra.

3. e is called rectangular if e1; e2 can be embedded in commuting sl.2/ triples.

By [Gi, Theorem 1.2], every principal nilpotent pair e is distinguished, and in
fact, the associated semisimple pair h has the property that the eigenvalues of ad hi
are integral.

5.1 Principal nilpotent pairs

We summarize some of the results from [Gi].

Theorem 5.2 ([Gi, Theorem 3.7, Theorem 3.9, Corollary 3.6]).

1. Any two principal nilpotent pairs e and e0 with the same associated semisimple
pair h are conjugate to each other by the maximal torus T D ZG.h/:

2. There are finitely many adjoint G-orbits of principal nilpotent pairs.
3. For every principal nilpotent pair e, the centralizer ZG.e/ is connected.
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The construction of principal pairs is as follows. Let p D l ˚ u be a parabolic
subalgebra and e1 2 l a principal nilpotent element. Assume that e2 2 zu.e1/ is a
Richardson element for p: Set e D .e1; e2/. The following are equivalent:

1. e is a principal nilpotent pair.
2. The orbit Ad ZP .e1/ 	 e2 is Zariski open dense in zu.e1/.

Every principal nilpotent pair is of this form. More precisely, for a given principal
pair e, let h D .h1; h2/ be the associated semisimple pair. Let g D ˚p;qgp;q be the
bigradation of g defined by the adjoint action of h: Define

gp;� D ˚qgp;q and g�;q D ˚pgp;q; (32)

and the parabolic subalgebras

peast D ˚p	0gp;� and psouth D ˚q	0g�;q (33)

with Levi subalgebras g1 D g�;0 and g2 D g0;�, respectively. Then .e1; e2/ are
given by the above construction for p D psouth and l D g1:

The notation is motivated by the example g D sl.n/: In this case let � be a Young
diagram visualized as in the following example:

Enumerate the boxes 1; 2; : : : ; n in some order and label the basis of Cn by the
box with the corresponding number. Let e1; e2 2 End.Cn/ be defined as follows:
e1: sends a basis vector corresponding to a box to the vector corresponding to the

next box on the row (to the east) or 0 if it’s the last row box;
e2: same as e1 except the direction is down (south) on the columns.

Theorem 5.3 ([Gi]). Suppose g D sl.n/. Every adjoint G-orbit of principal nilpo-
tent pairs has a representative obtained from a Young diagram by the procedure
described above.

The classification of the larger class of distinguished nilpotent pairs has a similar
flavor. Consider � to be a skew-Young diagram, i.e., the set difference of two Young
diagrams as before with the same corner. Moreover, assume that � is connected,
i.e., for every square there is another square which shares a corner with the first
one. Define e D .e1; e2/ as in the Young diagram case, but for the skew diagram �:

Theorem 5.4 ([Gi, Theorem 5.6]). The adjoint G-orbits of distinguished nilpotent
pairs are in one to one correspondence, via the construction above, with connected
skew diagrams �:

The rectangular distinguished nilpotent pairs (in the sense of Definition 5.1(3))
correspond to rectangular Young diagrams, i.e., usual Young diagrams in the shape
of rectangles (Example 3.5).
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5.2 Weights and ladder representations

We make the connection with ladder representations. Given an a 2 Z and � a
connected skew diagram, we associate an integral ladder representation C.�; a/ as
follows.

Form a skew-Young tableau as follows: the leftmost box of the first row of �
gets content (the number in the box) a, then the contents increase to the right and
decrease to the left on rows, and stay constant on the columns. In the following
example, a D 2:

σ = −→
2 3 4

1 2 3
0 1

.

(34)

Suppose a0i is the leftmost content in row i , while b0i is the rightmost content.
Define the segments:

�i D Œai ; bi �; where ai D �.i � 1/C a0i and bi D �.i � 1/C b0i : (35)

In other words, move the i -th row .i�1/-units to the left, for every i . In our example,

(Δ1, Δ2, Δ3) = ([2, 4], [0, 2], [−2,−1])=
2 3 4

0 1 2
−2 −1

.

(36)

Definition 5.5. The integral ladder representation defined above will be called

C.�; a/ WD h�1; : : : ; �ri: (37)

Consider the variety B.e; h/ of Borel subalgebras of g containing the elements
.e1; e2; h1; h2/. When e is distinguished, B.e; h/ is 0-dimensional. More precisely,
suppose b 2 B.e; h/. Since h1; h2 2 b; also zg.h/ � b: As e is distinguished,
h WD zg.h/ is a Cartan subalgebra. This means that every b 2 B.e; h/ contains the
Cartan subalgebra h. Let W be the Weyl group of h in g: If b0 is a Borel subalgebra
containg h such that e1; e2 2 b0, then

B.e; h/ D fwb0 W w 2 W.e; b0/g; where

W.e; b0/ D fw 2 W W w�1e1 2 b0; w
�1e2 2 b0g:

(38)

Clearly, if b00 D ub0 is another Borel subalgebra in B.e; h/, with u 2 W , then
W.e; b00/ D W.e; b0/u�1:
Proposition 5.6. Suppose g D sl.n;C/. Let � be a connected skew diagram. Let e
be a distinguished nilpotent pair with associated semisimple pair h, such that e is
attached to � by Theorem 5.4. Let .�1; : : : ; �r / be the multisegment constructed
from � by procedure (35). Then, for every Borel subalgebra b0 2 B.e; h/; we have
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W.e; b0/ D W.�1; : : : ; �r /u�1; for some u 2 W; (39)

where W.e/, W.�1; : : : ; �r / are defined in (38) and (17), respectively.

Proof. It is sufficient to prove that if b0 is the lower triangular Borel subalgebra
and h is the diagonal Cartan subalgebra, then W.e; b0/ D W.�1; : : : ; �r /: If we
assign to the boxes of � the standard basis elements of Cn in row order, e.g., the
boxes of the first row correspond to x1; x2; : : : ; xm1

, where m1 D j�1j, etc., then
the nilpotent element e1 2 b0 is a sum

e1 D
r
X

iD1
Xi ; where X1 D E21 CE32 C 	 	 	 CEm1;m1�1; etc. (40)

Since w 	 Eij D Ew.i/;w.j /; for w 2 Sn, it is clear that the condition w�1 	 e1 2 b0
translates to the same rule as the “row rule” (1) used in defining W.�1; : : : ; �r /:

Similarly, e2 is defined using the columns of � . Then the restrictions imposed
by the condition w�1 	 e2 2 b0 are the same as the “45ı-diagonal rule” (2) used
in the definition of W.�1; : : : ; �r /: Recall that .�1; : : : ; �r / is obtained from �

by shifting each row to the left and therefore the column relations become diagonal
relations. ut

Proposition 5.6 has the following immediate corollary.

Corollary 5.7. Keep the notation in Proposition 5.6. For every a 2 Z, the A-weights
of the ladder representation C.�; a/ defined in (37) are in one-to-one correspon-
dence with the points of the variety B.e; h/.

Remark 5.8. In [KL] and [CG], a standard module (possibly zero) for the Hecke
algebra is defined for each conjugacy class of pairs .s; e; �/ where e is a nilpotent
element, s is semisimple satisfying Ad s.e/ D qe; and � a character of the compo-
nent group of the centralizer G.e/. An analogue for the graded affine Hecke algebra
is defined by [Lu2] on the homology H�.Be/� : The A-character satisfies an ana-
logue of Theorem 8.2.1 in [CG]. In unpublished work, D. Barbasch, S. Evens and
A. Moy considered the incidence variety H�.Be/ for a pair of nilpotent elements
e D .e1; e2/ belonging to commuting sl.2/-triples, and defined an action of A, anal-
ogous to the aforementioned one, Theorem 8.2.1 in [CG]. They conjectured that this
action can be extended to an action of H: More details and relations to the Arthur
conjectures were presented by D. Barbasch in a series of seminar talks at IAS in
1995, entitled The local Langlands conjectures and characteristic cycles.

Corollary 5.7 provides evidence for these conjectures for more general pairs of
commuting nilpotent elements.
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Abstract Let k be a field, let G be a reductive group, and let V be a linear repre-
sentation of G. Let V==G D Spec.Sym�.V �//G denote the geometric quotient and
let � W V ! V==G denote the quotient map. Arithmetic invariant theory studies the
map � on the level of k-rational points. In this article, which is a continuation of
the results of our earlier paper “Arithmetic invariant theory”, we provide necessary
and sufficient conditions for a rational element of V==G to lie in the image of � ,
assuming that generic stabilizers are abelian. We illustrate the various scenarios that
can occur with some recent examples of arithmetic interest.
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1 Introduction

Geometric invariant theory involves in particular the study of invariant polynomials
for the action of a reductive algebraic group G on a linear representation V over
a field k, and the relation between these invariants and the G-orbits on V , usually
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under the hypothesis that the base field k is separably closed. In favorable cases,
one can determine the geometric quotient V==G D Spec.Sym�.V _//G and identify
certain fibers of the morphism V ! V==G with certain G-orbits on V . For general
fields k the situation is more complicated. The additional complexity in the orbit
picture, when k is not separably closed, is what we refer to as arithmetic invariant
theory.

In a previous paper [4], we studied the arithmetic invariant theory of a reductive
group G acting on a linear representation V over a general field k. Let ks denote a
separable closure of k. When the stabilizer Gv of a vector v is smooth, the k-orbits
inside of the ks-orbit of v are parametrized by classes in the kernel of the map of
pointed sets in Galois cohomology � W H 1.k;Gv/! H 1.k;G/ (cf. [23]).

We produced elements in the kernel of � for three representations of the split odd
orthogonal groupG D SO.W / D SO.2nC1/: the standard representation V D W ,
the adjoint representation V D ^2.W /, and the symmetric square representation
V D Sym2W . For all three representations the ring of G-invariant polynomials
on V is a polynomial ring and the categorical quotient V==G is isomorphic to an
affine space. Furthermore, in each case there is a natural section of the morphism
� W V ! V==G, so the k-rational points of V==G lift to k-rational orbits of G on V .

Such a section may not exist for the action of the odd orthogonal groups G0 D
SO.W 0/ that are not split over k. The corresponding representations V 0 D W 0,
^2.W 0/, and Sym2W 0 have the same ring of polynomial invariants, so V 0==G0 D
V==G, but there may be rational points in this affine space that do not lift to rational
orbits of G0 on V 0.

The groups G0 D SO.W 0/ are the pure inner forms of G. These are the forms
of G over k corresponding to cohomology classes c in the pointed set H 1.k;G/,
as opposed to inner forms of G which correspond to classes in H 1.k;Gad/. We
show that any representation V of G determines a representation V 0 of G0 which
becomes isomorphic to V over ks (this is not true for general inner forms). Suppose
that the image of v in V==G is equal to f , and that G.ks/ acts transitively on the
ks-rational points of the fiber above f . Then we show that the k-orbits for G0 on
V 0 with invariant f are parametrized by the elements in the fiber of the map � W
H 1.k;Gv/! H 1.k;G/ above the class c.

We also consider representations where there is an obstruction to lifting k-rational
invariants in V==G to k-rational orbits on V , for all pure inner forms of G. Let f
be a rational invariant in V==G, and assume that there is a single orbit over ks with
invariant f , whose stabilizers Gv are abelian. We show that these stabilizers are
canonically isomorphic to a fixed commutative group scheme Gf , which is deter-
mined by f and is defined over k. We then construct a class df in the cohomology
group H 2.k;Gf /, whose non-vanishing obstructs the descent of the orbit to k, for
all pure inner forms of G. On the other hand, if df D 0, we show that there is least
one pure inner form of G that has k-rational orbits with invariant f .

When the stabilizer Gv is trivial, so the action of G.ks/ on elements with inv-
ariant f over ks is simply transitive, the obstruction df clearly vanishes. In this
case, we show that there is a unique pure inner form G0 for which there exists a
unique k-rational orbit on V 0 with invariant f . We give a number of examples of
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such representations, such as the action of SO.W / D SO.nC 1/ on n copies of the
standard representation W , and the action of SL.W / D SL.5/ on three copies of
the exterior square representation ^2.W /.

It is also possible that the stabilizer Gv is abelian and nontrivial, and yet the
obstruction df still vanishes. This scenario occurs frequently; for example, it occurs
for all representations arising in Vinberg’s theory of � -groups (see [20] and [18]).
These representations are remarkable in that the morphism � W V ! V==G has an
(algebraic) section (called the Kostant section). This implies that the obstruction df
vanishes. The representations^2.W / and Sym2W of the odd split orthogonal group
SO.W / studied in [4] indeed shared this property. (For a treatment of many such
representations of arithmetic interest, involving rational points and Selmer groups
of Jacobians of algebraic curves, see [7], [5], [11], [25], and [26].)

Finally, it is possible that the stabilizer Gv of a stable vector v is abelian and
nontrivial, and the obstruction class df is also nontrivial in H 2.k;Gv/. Fewer
such representations occur in the literature, but they too appear to be extremely
rich arithmetically especially when the generic stabilizers are naturally subgroup
schemes of abelian varieties. In this paper, we give a detailed study of such a
representation, namely the action of G D SL.W / D SL.n/ on the vector space
V D Sym2W

� ˚ Sym2W
� of pairs of symmetric bilinear forms on W . Like the

representation Sym2W of SO.W /, the ring of polynomial invariants is a polyno-
mial ring, and there are stable orbits in the sense of geometric invariant theory. In
fact, the stabilizer Gv of any vector v in one of the stable orbits is a finite commu-
tative group scheme isomorphic to .Z=2Z/n�1 over ks , and G.ks/ acts transitively
on the vectors in V.ks/ with the same invariant f as v. However, when the dimen-
sion n D 2g C 2 of W is even, it may not be possible to lift k-rational points f of
the quotient V==G to k-rational orbits of G on V . We relate this obstruction to the
arithmetic of 2-coverings of Jacobians of hyperellipic curves of genus g over k.

In [3], this connection with hyperelliptic curves was used to show that most hyp-
erelliptic curves over Q of genus g � 2 have no rational points. In a forthcoming
paper [6], we will use the full connection with 2-coverings of Jacobians of hyper-
elliptic curves to study the arithmetic of hyperelliptic curves; in particular, we will
prove that a positive proportion of hyperelliptic curves over Q have points locally
over Q	 for all places � of Q, but have no points globally over any odd degree
extension of Q.

This paper is organized as follows. In Section 2, we describe the notion of a pure
inner form G0 of a reductive group G over a field k, and the corresponding twisted
form V 0 of a given representation V of G. We also discuss in detail the problem
of lifting k-rational points of V==G to k-rational orbits of G (and its pure inner
forms) in the case where the generic stabilizer Gv is abelian, and we describe the
cohomological obstruction to lifting invariants lying inH 2.k;Gf /. The obstruction
element in H 2.k;Gf / can also be deduced from the theory of residual gerbes on
algebraic stacks (see [10] and [15, Chapter 11]). Since we have not seen any concise
reference to the specific results needed in this context, we felt it would be useful to
give a self-contained account here.
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In Section 3, we then consider three examples of representations where the sta-
bilizer Gv is trivial. These representations are:

1. the split orthogonal group SO.W / acting on n copies of W , where dim.W / D
nC 1;

2. SL.W / acting on three copies of ^2W , where dim.W / D 5;
3. the unitary group U.n/ acting on the adjoint representation of U.nC 1/.

In each of these three cases, the cohomological obstruction clearly vanishes and we
see explicitly how the orbits, over all pure inner forms of the group G, are classified
by the elements of the space V==G of invariants. The third representation and its
orbits have played an important role in the work of Jacquet–Rallis [14] and Wei
Zhang [30] in connection with the relative trace formula approach to the conjectures
of Gan, Gross, and Prasad [12].

In Section 4, we study three examples of representations where the stabilizer Gv
is nontrivial and abelian, and where there are cohomological obstructions to lifting
invariants. These representations are:

1. Spin.W / acting on n copies of W , where dim.W / D nC 1;
2. SL.W / acting on Sym2W

� ˚ Sym2W
�;

3. .SL =�2/.W / acting on Sym2W
� ˚ Sym2W

� (this group acts only when
dim.W / is even).

In the first case, we show that the obstruction is the Brauer class of a Clifford algebra
determined by the invariants. In the second and third cases, we show that when n is
odd, there is no cohomological obstruction to lifting invariants, but when n is even,
the obstruction can be nontrivial. We parametrize the orbits for both groups in terms
of arithmetic data over k, and describe the resulting criterion for the existence of
orbits over k. We describe the connection between the cohomological obstruction
and the arithmetic of two-covers of Jacobians and hyperelliptic curves over k, which
will play an important role in [6]. Finally we give a description of the integral orbits
for the second case and, as we will see, new techniques are required to study them.

As in [4], the heart of this paper lies in the examples that illustrate the various
scenarios that can occur, and how one can treat each scenario in order to classify
the orbits, over a field that is not necessarily separably closed, in terms of suitable
arithmetic data.

We thank Jean-Louis Colliot-Thélène, Bas Edixhoven, Wei Ho, Bjorn Poonen,
and Jean-Pierre Serre for useful conversations and for their help with the literature.
It is a great pleasure to submit this paper to a volume in honor of David Vogan, who
taught one of us (BHG) about pure inner forms in 1991, and used them to give an
elegant reformulation of the local Langlands conjecture.

2 Lifting results

In this section, we assume that G is a reductive group with a linear representation
V over the field k. We will study the general problem of lifting k-rational points of
V==G to k-rational orbits of pure inner formsG0 ofG on the corresponding twists V 0
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of V . For stable orbits over the separable closure ks with smooth abelian stabilizers
Gv , we will show how these stabilizers descend to a group scheme Gf over k and
describe a cohomological obstruction to the lifting problem lying in H 2.k;Gf /.

2.1 Pure inner forms

We begin by recalling the notion of a pure inner form Gc of G and the action of Gc

on a twisted representation V c ([23, Ch 1 	5]).
Suppose .� ! c� / is a 1-cocycle on Gal.ks=k/ with values in the group G.ks/.

That is, c�� D c� 	 �c� for any �; � 2 Gal.ks=k/. We define the pure inner form Gc

of G over k by giving its ks-points and describing a Galois action. Let Gc.ks/ D
G.ks/ with action

�.h/ D c��hc�1� (1)

for any � 2 Gal.ks=k/ and any h 2 G.ks/. Since c is a cocycle, we have
��.h/ D �.�.h//.

Let g be an element of G.ks/. If b� D g�1c��g is a cocycle in the same coho-
mology class as c, then the map on ks-points Gb ! Gc defined by h ! ghg�1
commutes with the respective Galois actions, so defines an isomorphism over k.
Hence the isomorphism class of the pure inner form Gc over k depends only on the
image of c in the pointed set H 1.k;G/.

2.2 Twisting the representation

If we compose the cocycle c with values in G.ks/ with the homomorphism
� W G ! GL.V /, we obtain a cocycle �.c/ with values in GL.V /.ks/. By the gen-
eralization of Hilbert’s Theorem 90, we have H 1.k;GL.V // D 1 ([24, Ch X]).
Hence there is an element g in GL.V /.ks/, well-defined up to left multiplication by
GL.V /.k/, such that

�.c� / D g�1�g (2)

for all � in Gal.ks=k/.
We use the element g to define a twisted representation of the group Gc on the

vector space V over k. The homomorphism

�g W Gc.ks/! GL.V /.ks/;

defined by �g.h/ D g�.h/g�1, commutes with the respective Galois actions, and
so defines a representation over k. We emphasize that the Galois action on Gc.ks/
is as defined in (1), whereas the Galois action on GL.V /.ks/ is the usual action.

The isomorphism class of the representation �g W Gc ! GL.V / over k is ind-
ependent of the choice of g in (2) which trivializes the cocycle. If g0 D ag is
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another choice, with a in GL.V /.k/, then conjugation by a gives an isomorphism
from �g to �0g . Since the isomorphism class of this representation depends only on
the cocycle c, we will write V c for the representation �g of Gc .

The fact that the cocycle c� takes values in G, and not in the adjoint group, is
crucial to defining the twist V c of the representation V . For 1-cocycles c with val-
ues in Gad ,! Aut.G/, one can define the inner form Gc , but one does not always
obtain a twisted representation V c . For example, consider the case ofG D SL2 with
V the standard two-dimensional representation. The nontrivial inner forms of G are
obtained from nontrivial cohomology classes inH 1.k;PGL2/. These are the groups
Gc of invertible elements of norm 1 in quaternion division algebras D over k. The
group Gc does not have a faithful two-dimensional representation over k—this rep-
resentation is obstructed by the quaternion algebra D. Since H 1.k;SL2/ is trivial,
there are no nontrivial pure inner forms of G.

2.3 Rational orbits in the twisted representation

We now fix a rational point f in the canonical quotient V==G, and let Vf be the
fiber in V . For the rest of this subsection, we assume that the set Vf .k/ of ratio-
nal points in the fiber is nonempty, and that G.ks/ acts transitively on the points
in Vf .ks/. In particular, this orbit is closed (as it is defined by the values of the
invariant polynomials). Let v be a point in Vf .k/ and let Gv denote its stabilizer
in G.

The group G.k/ acts on the rational points of the fiber over f . In Proposition 1
of [4] we showed that the orbits of G.k/ on the set Vf .k/ correspond bijectively to
elements in the kernel of the map

� W H 1.k;Gv/! H 1.k;G/

of pointed sets in Galois cohomology. In this section, we will generalize this to a
parametrization of certain orbits of Gc.k/, where c 2 H 1.k;G/. Note that by our
hypothesis and the definition of Gc , the group Gc.ks/ D G.ks/ acts transitively on
the set gVf .ks/ in V.ks/, where g is as in (2). We define the set

V cf .k/ WD V.k/ \ gVf .ks/;
which admits an action of the rational points of the pure inner form Gc .

Here is a simple example, which illustrates many elements of the theory of orbits
for pure inner twists with a fixed rational invariant f . Assume that the characteristic
of k is not equal to 2, and let G be the étale group scheme �2 of order 2 over k.
Let V be the nontrivial one-dimensional representation of G on the field k. (This is
the standard representation of the orthogonal group O.1/ over k.) The polynomial
invariants of this representation are generated by q.x/ D x2, so the canonical quo-
tient V==G is the affine line. Let f be a rational invariant in k with f ¤ 0. Then the
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fiber Vf is the subscheme of V defined by fx W x2 D f g, so Vf .k/ is nonempty if
and only if f is a square in k�. This is certainly true over the separable closure ks

of k, and the group G.ks/ acts simply transitively on Vf .ks/.
An element c in k� defines a cocycle c� D �

p
c=
p
c with values in G.ks/,

whose class in the cohomology group H 1.k;G/ D k�=k�2 depends only on the
image of c modulo squares. The element g D pc in GL.V /.ks/ trivializes this
class in the group H 1.k;GL.V //. Although the inner twist Gc and the representa-
tion V c remain exactly the same, we find that

V cf .k/ D V.k/ \ gVf .ks/ D fx 2 k� W x2 D fcg:
Hence the set V c

f
.k/ is nonempty if and only if the element fc is a square in k�.

Note that there is a unique inner twist Gc where the fiber V c
f

has k-rational points,
and in that case the group Gc.k/ acts simply transitively on V c

f
.k/.

Returning to the general case, we have the following generalization of Proposi-
tion 1 in [4] (which is the case c D 1 below).

Proposition 2.1. Let G be a reductive group with representation V . Suppose there
exists v 2 V.k/ with invariant f 2 .V==G/.k/ and stabilizer Gv such that G.ks/
acts transitively on Vf .ks/. Then there is a bijection between the set ofGc.k/-orbits
on V c

f
.k/ and the fiber ��1.c/ of the map

� W H 1.k;Gv/! H 1.k;G/

above the class c 2 H 1.k;G/. In particular, the image of H 1.k;Gv/ in H 1.k;G/

determines the set of pure inner forms of G for which the k-rational invariant f
lifts to a k-rational orbit of Gc on V c .

Before giving the proof, we illustrate this with an example from [4]. Let W be
a split orthogonal space of dimension 2n C 1 and signature .n C 1; n/ over k D
R, let G D SO.W / D SO.n C 1; n/. The pure inner forms of G are the groups
Gc D SO.p; q/ with p C q D 2nC 1 and q � n (mod 2), and the representation
W c of Gc is the standard representation on the corresponding orthogonal space
W.p; q/ of signature .p; q/. The group G D SO.W / acts faithfully on the space
V D Sym2.W / of self-adjoint operators T on W . For this representation, the inner
twists Gc of G are exactly the same, and the twisted representation V c of Gc is
isomorphic to Sym2W c . The polynomial invariants f in .V==G/.R/ are given by
the coefficients of the characteristic polynomial of T . Assume that this characteristic
polynomial is separable, with 2mC 1 real roots. Then the stabilizer of a point v0 2
Vf .R/ is the finite commutative group scheme .�2mC12 � .ResC=R �2/n�m/ND1.
HenceH 1.R; Gv0

/ is an elementary abelian 2-group of order 22m. This group maps
under � to the pointed set H 1.R;SO.W //, which is finite of cardinality nC 1. The
fiber over the class of SO.p; q/ is nonempty if and only if both p and q are greater
than or equal to n�m. In this case, write q D n�mCa, with a � m (mod 2). Then
the fiber has cardinality

�

2mC1
a

�

. For example, the kernel has cardinality
�

2mC1
m

�

.
When pq D 0, the space W c D W.p; q/ is definite and there are orbits in V c

f
.R/
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only in the case when m D n, so the characteristic polynomial splits completely
over R. In that case there is a single orbit. This is the content of the classical spectral
theorem.

Proof of Proposition 2.1: Suppose c is a 1-cocycle with values in G.ks/ and fix
g 2 GL.V /.ks/ such that c� D g�1�g for all � 2 Gal.ks=k/: When V c

f
.k/ is

nonempty we must show that c is in the image of H 1.k;Gv/: Indeed, suppose
gw 2 V c

f
.k/ for some w 2 Vf .ks/: By our assumption on the transitivity of the

action on ks points, there exists h 2 G.ks/ such thatw D hv: The rationality condi-
tion on gw translates into saying that, for any � 2 Gal.ks=k/, we have c��hv D hv.
That is, h�1c��h 2 Gv for any � 2 Gal.ks=k/. In other words, c is in the image
of � .

Now suppose c 2 H 1.k;G/ is in the image of � . Without loss of generality,
assume that c� 2 Gv.ks/ for any � 2 Gal.ks=k/. Pick any g 2 GL.V /.ks/ as in
(2) above and set w D gv 2 V c

f
.ks/: Then for any � 2 Gal.ks=k/, we have

�w D gc�v D gv D w:
This shows that w 2 V c

f
.k/: Hence there is a bijection between Gc.k/nV c

f
.k/ and

ker �c where �c is the natural map of sets H 1.k;Gcw/ ! H 1.k;Gc/: To prove
Proposition 2.1, it suffices to establish a bijection between ��1.c/ and ker �c : Con-
sider the following two maps:

��1.c/! ker �c ker �c ! ��1.c/
.� ! d� / 7! .� ! d�c

�1
� / .� ! a� / 7! .� ! a�c� /:

We need to check that these maps are well-defined. First, suppose .� ! d� / 2
��1.c/: Then we need to show that .� ! d�c

�1
� / is a 1-cocycle in the kernel of �c :

Note that, for any �; � 2 Gal.ks=k/; we have

.d�c
�1
� / 	 �.d�c�1� / 	 .d��c�1�� /�1 D d�c�1� .c�

�d�
�c�1� c�1� /.d��c

�1
�� /
�1 D 1:

Moreover, there exists h 2 G.ks/ such that d� D h�1c��h for any � 2 Gal.ks=k/;
and thus

h�1�.h/ D h�1c��hc�1� D d�c�1� :

This shows that .� ! d�c
�1
� / is in the kernel of �c : Likewise, one can show that

the second map is also well-defined. The composition of these two maps in either
order yields the identity map, and this completes the proof. �

2.4 A cohomological obstruction to lifting invariants

Suppose f 2 .V==G/.k/ is a rational invariant. We continue to assume that the
group G.ks/ acts transitively on the set Vf .ks/. In this section, we consider the
problem of determining when the set V c

f
.k/ is nonempty for some c 2 H 1.k;G/.
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That is, when does a rational invariant lift to a rational orbit for some pure inner form
of G? We resolve this problem under the additional assumption that the stabilizer
Gv of any point in the orbit Vf .ks/ is abelian.

For � 2 Gal.ks=k/, the vector �v also lies in Vf .ks/, so there is an element g�
with g��v D v. The element g� is well-defined up to left multiplication by an ele-
ment in the subgroup Gv . Since we are assuming that the stabilizers are abelian, the
homomorphism �� W G�v ! Gv defined by mapping ˛ to g�˛g�1� is independent
of the choice of g� . This gives a collection of isomorphisms

�� W �.Gv/! Gv

that satisfy the 1-cocycle condition ��� D �� ı ��� , and hence provide de-
scent data for the group scheme Gv . We let Gf be the corresponding commu-
tative group scheme over k which depends only on the rational invariant f . Let

�v W Gf .ks/ ��! Gv denote the canonical isomorphisms. More precisely, if h 2
G.ks/ and v 2 Vf .ks/, then

�hv.b/ D h�v.b/h�1 8 b 2 Gf .ks/: (3)

The descent data translates into saying that for any � 2 Gal.ks=k/ and v 2 Vf .ks/;
we have

�.�v.b// D ��v.�b/ 8 b 2 Gf .ks/: (4)

Before constructing a class in H 2.k;Gf / whose vanishing is intimately related
to the existence of rational orbits, we give an alternate method (shown to us by Brian
Conrad) to obtain the finite group scheme Gf over k using fppf descent. Suppose
G is a group scheme of finite type over k such that the orbit map G � Vf ! Vf
is fppf. Suppose also that the stabilizer Gv 2 G.ka/ for any v 2 Vf .ka/ is abelian
where ka denotes an algebraic closure of k. Let H denote the stabilizer subscheme
ofG�Vf . In other words,H is the pullback of the action map G�Vf ! Vf �Vf
over the diagonal of Vf . Note that H is a Vf -scheme and its descent to k will be
Gf . The descent datum amounts to a canonical isomorphism p�1H ' p�2H where
p1; p2 denote the two projection maps Vf �Vf ! Vf : The commutativity ofGv for
any v 2 Vf .ka/ implies the commutativity of .GR/x for any k-algebra R and any
element x 2 Vf .R/. Therefore, there are canonical isomorphisms .GR/x ! .GR/y
for any x; y 2 Vf .R/: This gives canonical isomorphisms p�1H ' p�2H locally
over Vf �Vf . Being canonical, these local isomorphisms patch together to a global
isomorphism and hence yield the desired descent datum.

We now construct a class df inH 2.k;Gf / that will be trivial whenever a rational
orbit exists. Choose v and g� as above, with g��v D v. Define

d�;� D ��1v .g��g�g�1�� /:
Standard arguments show that d�;� is a 2-cocycle whose image df in H 2.k;Gf /

does not depend on the choice of g� . We also check that the 2-cochain d�;� does
not depend on the choice of v 2 Vf .ks/. Suppose v0 D hv 2 Vf .ks/ for some
h 2 G.ks/: For any � 2 Gal.ks=k/, we have
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hg�
�h�1�v0 D hg��v D hv D v0:

Moreover, for any �; � 2 Gal.ks=k/; we compute

hg�
�h�1 �.hg� �h�1/ .hg����h�1/�1 D hg��g�g�1�� h�1I

hence, by (3), we have

��1v0 .hg�
�h�1 �.hg� �h�1/ .hg����h�1/�1/ D ��1v .g��g�g�1�� /:

If Vf .k/ is nonempty, then one can take v in Vf .k/. Then one can take g� D 1 and
hence df D 0: We have therefore obtained the following necessary condition for
lifting invariants to orbits.

Proposition 2.2. Suppose that f is a rational invariant, and that G.ks/ acts tran-
sitively on Vf .ks/ with abelian stabilizers. If Vf .k/ is nonempty, then df D 0 in
H 2.k;Gf /.

This necessary condition is not always sufficient. As shown by the following
cocycle computation, the class df in H 2.k;Gf / does not depend on the pure inner
form of G. Indeed, suppose c 2 H 1.k;G/ and g 2 GL.V /.ks/ such that c� D
g�1�g for all � 2 Gal.ks=k/: Note that gv 2 V c

f
.ks/ and

.gg�c
�1
� g�1/ 	 �.gv/ D gv:

A direct computation then gives

.g�c
�1
� / 	 �.g�c�1� / 	 .c��g�1�� / D g��g�g�1�� :

The fact that df is independent of the pure inner form suggests that df D 0 might
be sufficient for the existence of a rational orbit for some pure inner twist. Indeed,
this is the case.

Theorem 2.3. Suppose that f is a rational invariant, and that G.ks/ acts transi-
tively on Vf .ks/ with abelian stabilizers. Then df D 0 in H 2.k;Gf / if and only
if there exists a pure inner form Gc of G such that V c

f
.k/ is nonempty. That is, the

condition df D 0 is necessary and sufficient for the existence of rational orbits
for some pure inner twist of G. In particular, when H 1.k;G/ D 1, the condition
df D 0 inH 2.k;Gf / is necessary and sufficient for the existence of rational orbits
of G.k/ on Vf .k/.

Proof. Necessity has been shown in Proposition 2.2 and the above computation. It
remains to prove sufficiency. Fix v 2 Vf .ks/ and g� such that g��v D v for any
� 2 Gal.ks=k/: The idea of the proof is that if df D 0; then one can pick g� so
that .� ! g� / is a 1-cocycle and that rational orbits exist for the pure inner twist
associated to this 1-cocycle.
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Suppose df D 0 in H 2.k;Gf /. Then there exists a 1-cochain .� ! b� / with
values in Gf .ks/ such that

g�
�g�g

�1
�� D �v.b��b�b�1�� / 8�; � 2 Gal.ks=k/:

Lemma 2.4. There exists a 1-cochain e� with values in Gv.ks/ such that .� !
e�g� / is a 1-cocycle.

To see how Lemma 2.4 implies Theorem 2.3, we consider the twist of G and V
using the 1-cocycle c D .� ! e�g� / 2 H 1.k;G/: Choose any g 2 GL.V /.ks/
such that g�1�g D e�g� for any � 2 Gal.ks=k/: Then gv 2 V c

f
.k/. Indeed,

�.gv/ D ge�g��v D ge�v D gv 8 � 2 Gal.ks=k/:

We now prove Lemma 2.4. Consider e� D �v.b
�1
� / for any � 2 Gal.ks=k/:

Since g��v D v; we have by (3) and (4) that

g�
�.�v.b//g

�1
� D �v.�b/ 8� 2 Gal.ks=k/; b 2 Gf .ks/:

Hence for any �; � 2 Gal.ks=k/; we have

.e�g� /
�.e�g� /.e��g�� /

�1 D �v.b�1� /g�
�.�v.b

�1
� //�g�g

�1
�� �v.b�� /

D �v.b�1� /�v.
�b�1� /g�

�g�g
�1
�� �v.b�� /

D �v.b�1� /�v.
�b�1� /�v.b�

�b�b
�1
�� /�v.b�� /

D 1
where the last equality follows because Gf .ks/ is abelian. ut
Corollary 2.5. Suppose that f is a rational orbit and that G.ks/ acts simply tran-
sitively on Vf .ks/. Then there is a unique pure inner form Gc of G such that V c

f
.k/

is nonempty. Moreover, the group Gc.k/ acts simply transitively on V c
f
.k/.

Proof. SinceGf D 1, we haveH 2.k;Gf / D 0, and so the cohomological obstruc-
tion df vanishes. We conclude that rational orbits exist for some pure inner twist
Gc . Let v0 2 V cf .k/ denote any k-rational lift. Since H 1.k;Gf / D 0, the image of

� W H 1.k;Gcv0
/! H 1.k;Gc/ is a single point, and hence no other pure inner twist

has a rational orbit with invariant f . Since the kernel of � has cardinality 1, there is
a single orbit of Gc.k/ on V c

f
.k/. ut

3 Examples with trivial stabilizer

In this section, we give several examples of representations G ! GL.V / over k
where there are stable orbits which are determined by their invariants f in V==G
and which have trivial stabilizer over ks . Thus G.ks/ acts simply transitively on the
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set Vf .ks/. When f is rational, Corollary 2.5 implies that there is a unique pure
inner formG0 ofG over k for which V 0

f
.k/ is nonempty, and thatG0.k/ acts simply

transitively on V 0
f
.k/.

We will describe this pure inner form, using the following results on classical
groups [13]. Since H 1.k;GL.W // and H 1.k;SL.W // are both pointed sets with a
single element, there are no nontrivial pure inner forms of GL.W / and SL.W /. On
the other hand, when the characteristic of k is not equal to 2 and W is a nondegen-
erate quadratic space over k, the pointed set H 1.k;SO.W // classifies the quadratic
spaces W 0 with dim.W 0/ D dim.W / and disc.W 0/ D disc.W /. The corresponding
pure inner form is the group G0 D SO.W 0/. Similarly, if W is a nondegenerate
Hermitian space over the separable quadratic extension E of k, then the pointed set
H 1.k;U.W // classifies Hermitian spaces W 0 over E with dim.W 0/ D dim.W /,
and the corresponding pure inner form of G is the group G0 D U.W 0/.

3.1 SO.n C 1/ acting on the direct sum of n copies
of the standard representation

In this subsection, we assume that k is a field of characteristic not equal to 2.
We first consider the action of the split group G D SO.W / D SO.4/ on three

copies of the standard representation V D W ˚W ˚W . Let q.w/ D hw;wi=2 be
the quadratic form onW and let v D .w1; w2; w3/ be a vector in V . The coefficients
of the ternary quadratic form f .x; y; ´/ D q.xw1C yw2C ´w3/ give six invariant
polynomials of degree 2 on V , which freely generate the ring of polynomial invari-
ants, and an orbit is stable if the discriminant�.f / of this quadratic form is nonzero
in ks . In this case, the group G.ks/ acts simply transitively on Vf .ks/. Indeed, the
quadratic space U0 of dimension 3 with form f embeds isometrically into W over
ks , and the subgroup of SO.W / that fixes U0 acts faithfully on its orthogonal com-
plement, which has dimension 1. The condition that the determinant of an element
in SO.W / is equal to 1 forces it to act trivially on the orthogonal complement.

The set Vf .k/ is nonempty if and only if the quadratic form f represents zero
over k. Indeed, if v D .w1; w2; w3/ is a vector in this orbit over k, then the vectors
w1; w2; w3 are linearly independent and span a 3-dimensional subspace of W . This
subspace must have a nontrivial intersection with a maximal isotropic subspace of
W , which has dimension 2. Conversely, if the quadratic form f represents zero, let
U0 be the 3-dimensional quadratic space with this bilinear form, and U the orthogo-
nal direct sum of U0 with a line spanned by a vector u with hu; ui D det.U0/. Then
U is a quadratic space of dimension 4 and discriminant 1 containing an isotropic
line (from U0). It is therefore split, and isomorphic over k to the quadratic space
W . Choosing an isometry � W U ! W , we obtain three vectors .w1; w2; w3/ as
the images of the basis elements of U0, and this gives the desired element in Vf .k/.
Note that � is only well-defined up to composition by an automorphism of W , so
we really obtain an orbit for the orthogonal group of W . Since the stabilizer of this
orbit is a simple reflection, we obtain a single orbit for the subgroup SO.W /.
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If the form f does not represent zero, letW 0 be the quadratic space of dimension
4 that is the orthogonal direct sum of the subspace U0 of dimension 3 with quadratic
form f and a nondegenerate space of dimension 1, chosen so that the discriminant
of W 0 is equal to 1. Then G0 D SO.W 0/ is the unique pure inner form of G (guar-
anteed to exist by Corollary 2.5) where V 0

f
.k/ is nonempty. The construction of an

orbit for G0 is the same as above.
The same argument works for the action of the groupG D SO.W / D SO.nC1/

on n copies of the standard representation: V D W ˚W ˚	 	 	˚W . The coefficients
of the quadratic form f .x1; x2; : : : ; xn/ D q.x1w1 C x2w2 C 	 	 	 C xnwn/ give
polynomial invariants of degree 2, which freely generate the ring of invariants. The
orbit of v D .w1; w2; : : : ; wn/ is stable, with trivial stabilizer, if and only if the
discriminant�.f / is nonzero in ks . IfW 0 is the quadratic space of dimension nC1
with disc.W 0/ D disc.W /, that is the orthogonal direct sum of the space U0 of
dimension n with quadratic form f and a nondegenerate space of dimension 1, then
G0 D SO.W 0/ is the unique pure inner form with V 0

f
.k/ nonempty.

3.2 SL.5/ acting on 3 copies of the representation ^2.5/

Let k be a field of characteristic not equal to 2, U a k-vector space of dimension 3,
and W a k-vector space of dimension 5. In this subsection, we consider the action
of G D SL.W / on V D U ˝^2W .

Choosing bases for U and W , we may identify U.k/ and W.k/ with k3 and
k5, respectively, and thus V.k/ with ^2k5˚^2k5˚^2k5. We may then represent
elements of V.k/ as a triple .A;B; C / of 5�5 skew-symmetric matrices with entries
in k. For indeterminates x, y, and ´, we see that the determinant of AxCByCC´
vanishes, being a skew-symmetric matrix of odd dimension.

To construct the G-invariants on V , we consider instead the 4 � 4 principal sub-
Pfaffians of AxCByCC´; this yields five ternary quadratic forms Q1; : : : ;Q5 in
x, y, and ´, which are generically linearly independent over k. In basis-free terms,
we obtain a G-equivariant map

U ˝^2W ! Sym2 U ˝W �: (5)

Now an SL.W /-orbit on Sym2 U ˝W � may be viewed as a five-dimensional sub-
space of Sym2 U ; hence we obtain a natural G-equivariant map

Sym2 U ˝W � ! Sym2 U �: (6)

The composite map � W U˝^2W ! Sym2 U � is thus alsoG-equivariant, but since
G acts trivially on the image of � , we see that the image of � gives (a 6-dimensional
space of) G-invariants, and indeed we may identify V==G with Sym2 U �. A vector
v 2 V is stable precisely when det.�.v// ¤ 0.
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Now since SL.W / acts with trivial stabilizer on W �, it follows that SL.W / acts
with trivial stabilizer on Sym2 U ˝W � as well. Since the map (5) is G-equivariant,
it follows that the generic stabilizer in G.k/ of an element in V.k/ is also trivial!

Since SL.W / has no other pure inner forms, by Corollary 2.5 we conclude that
every f 2 Sym2 U � of nonzero determinant arises as the set of G-invariants for a
unique G.k/-orbit on V.k/.

3.3 U.n � 1/ acting on the adjoint representation u.n/ of U.n/

In this subsection, we assume that the field k does not have characteristic 2 and that
E is an étale k-algebra of rank 2. Hence E is either a separable quadratic extension
field, or the split algebra k � k. Let � be the nontrivial involution of E that fixes k.

Let Y be a free E-module of rank n � 2, and let

h ; i W Y � Y ! E

be a nondegenerate Hermitian symmetric form on Y . In particular hy; ´i D �h´; yi.
Let e be a vector in Y with he; ei ¤ 0, and let W be the orthogonal complement of
e in Y . Hence Y D W ˚Ee. The unitary group G D U.W / D U.n�1/ embeds as
the subgroup of U.Y / that fixes the vector e. In particular, it acts on the Lie algebra
u.Y / D u.n/ via the restriction of the adjoint representation.

Define the adjoint T � of an E-linear map T W Y ! Y by the usual formula
hTy; ´i D hy; T �´i. The elements of the group U.Y / are the maps g that satisfy
g� D g�1. Differentiating this identity, we see that the elements of the Lie algebra
are those endomorphisms of Y that satisfy T C T � D 0. The group acts on the
space of skew self-adjoint operators by conjugation: T ! gTg�1 D gTg�. If T
is skew self-adjoint and ı is an invertible element in E satisfying ı� D �ı, then
the scaled operator ıT is self-adjoint. Hence the adjoint representation of U.Y / on
its Lie algebra is isomorphic to its action by conjugation on the vector space V , of
dimension n2 over k, consisting of the self-adjoint endomorphisms T W Y ! Y .
In this subsection, we consider the restriction of this representation to the subgroup
G D U.W /.

The ring of polynomial invariants for G D U.W / on V is a polynomial ring,
freely generated by the n coefficients ci .T / of the characteristic polynomial of T
(which are invariants for the larger group U.Y /) as well as the n� 1 inner products
he; T j ei for j D 1; 2; : : : ; n�1 ([30, Lemma 3.1]). Note that all of these coefficients
and inner products take values in k, as T is self-adjoint. In particular, the space
V==G is isomorphic to the affine space of dimension 2n � 1. Note that the inner
products hT ie; T j ei are all polynomial invariants for the action of G. Let D be
the invariant polynomial that is the determinant of the n � n symmetric matrix with
entries hT ie; T j ei for 0 � i; j � n � 1. Clearly D is nonzero if and only if the
vectors fe; Te; T 2e; : : : ; T n�1eg form a basis for the space Y over E. Rallis and
Shiffman [21, Theorem 6.1] show that the condition D.f / ¤ 0 is equivalent to
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the condition that G.ks/ acts simply transitively on the points of Vf .ks/. We can
therefore conclude that whenD.f / is nonzero, there is a unique pure inner formG0
of G D U.W / that acts simply transitively on the corresponding points in V 0

f
.k/,

and that these spaces are empty for all other pure inner forms. To determine the
pure inner form G0 D U.W 0/ for which V 0

f
.k/ is nonempty, it suffices to determine

the Hermitian space W 0 over E of rank n � 1. The rational invariant f determines
the inner products hT ie; T j ei, and hence a Hermitian structure on Y 0 D Ee C
E.Te/ C 	 	 	 C E.T n�1e/. Since the nonzero value he; ei is fixed, this gives the
Hermitian structure on its orthogonal complement W 0 in Y 0, and hence the pure
inner form G0 such that V 0

f
.k/ is nonempty.

When the algebra E is split, the Hermitian space Y D X C X_ decomposes as
the direct sum of an n-dimensional vector space X over k and its dual. The group
U.Y / is isomorphic to GL.X/ D GL.n/. The vector e gives a nontrivial vector x in
X as well as a nontrivial functional f inX_ with f .x/ ¤ 0. LetX0 be the kernel of
f , so X D X0 C kx. The subgroup U.W / is isomorphic to GL.X0/ D GL.n� 1/.
In this case, the representation of U.W / on the space of self-adjoint endomorphisms
of Y is isomorphic to the representation of G D GL.n � 1/ by conjugation on the
space V D End.X/ of all k-linear endomorphisms of X . Since GL.n � 1/ has no
pure inner forms, Corollary 2.5 implies that GL.n � 1/ acts simply transitively on
the points of Vf .k/ whenever D.f / ¤ 0.

Once we have chosen an invertible element ı in E of trace zero, the rational
invariants for the action of U.W / D U.n � 1/ on the Lie algebra of U.n/ match
the rational invariants for the action of GL.X/ D GL.n � 1/ on the Lie algebra
of GL.n/. Since the stable orbits for the pure inner forms U.W 0/ and GL.X/ are
determined by these rational invariants, we obtain a matching of orbits. This gives
a natural explanation for the matching of orbits that plays an important role in the
work of Jacquet and Rallis [14] on the relative trace formula, where they establish
a comparison of the corresponding orbital integrals, and in the more recent work of
Wei Zhang [30] on the global conjecture of Gan, Gross, and Prasad [12].

4 Examples with nontrivial stabilizer and nontrivial obstruction

In this section, we will provide some examples of representations with a nontrivial
abelian stabilizerGf , and calculate the obstruction class df inH 2.k;Gf /. The first
example is a simple modification of a case we have already considered, namely, the
non-faithful representation V of Spin.W / D Spin.nC1/ on n copies of the standard
representationW of the special orthogonal group SO.W /. In this case, the stabilizer
Gf of the stable orbits is the center �2. We will also describe the stable orbits
for the groups G D SL.W / and H D SL.W /=�2 acting on the representation
V D Sym2W

� ˚ Sym2W
�. (The group H exists and acts when the dimension of

W is even.) In these cases, the stabilizer Gf is a finite elementary abelian 2-group,
related to the 2-torsion in the Jacobian of a hyperelliptic curve.
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4.1 Spin.n C 1/ acting on n copies of the standard
representation of SO.n C 1/

In this subsection, we reconsider the representation V D W n of SO.W / studied
in 	3:1. There we saw that the orbits of vectors v D .w1; w2; : : : ; wn/, where the
quadratic form f D q.x1w1Cx2w2C	 	 	Cxnwn/ has nonzero discriminant, have
trivial stabilizer. If we consider V as a representation of the two-fold covering group
G D Spin.W /, then these orbits have stabilizer Gf D �2.

In the former case, we found that the unique pure inner form SO.W 0/ for which
V 0
f
.k/ is nonempty corresponded to the quadratic space W 0 of dimension n C 1

and disc.W 0/ D disc.W / that is the orthogonal direct sum of the subspace U0 with
quadratic form f and a nondegenerate space of dimension 1. The group Spin.W 0/
will have orbits with invariant f , but this group may not be a pure inner form of
the group G D Spin.W /. If it is not a pure inner form, the invariant df must be
non-trivial in H 2.k;Gf /.

Assume, for example, that the orthogonal spaceW is split and has odd dimension
2mC 1, so that the spin representation U of G D Spin.W / of dimension 2m is de-
fined over k. Then a necessary and sufficient condition for the groupG0 D Spin.W 0/
to be a pure inner form of G is that the even Clifford algebra CC.W 0/ of W 0 is a
matrix algebra over k. In this case, the spin representation U 0 of G0 can also be
defined over k. Hence the obstruction df is given by the Brauer class of the even
Clifford algebra of the space W 0 determined by f . Note that the even Clifford al-
gebra CC.W 0/ has an anti-involution, so its Brauer class has order 2 and lies in the
group H 2.k;Gf / D H 2.k; �2/.

4.2 SLn acting on Sym2.n/ ˚ Sym2.n/

Let k be a field of characteristic not equal to 2 and let W be a vector space of
dimension n over k. Let e be a basis vector of the one-dimensional vector space
^nW . The group G D SLn acts linearly on W and trivially on ^nW .

The action of G on the space Sym2W
� of symmetric bilinear forms hv;wi on

W is given by the formula

g 	 hv; v0i D hgv; gv0i:
This action preserves the discriminant of the bilinear form A D h ; i, which is
defined by the formula

disc.A/ D .�1/n.n�1/=2he; ein:
Here h ; in is the induced symmetric bilinear form on ^n.W /. If fw1; w2; : : : ; wng
is any basis of W with w1 ^ w2 ^ : : : ^ wn D e, then he; ein D det.hwi ; wj i/.
The discriminant is a polynomial of degree n D dim.W / on Sym2W

� which freely
generates the ring of G-invariant polynomials.
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Now consider the action ofG on the representation V D Sym2W
�˚Sym2W

�.
If A D h ; iA and B D h ; iB are two symmetric bilinear forms on W , we define
the binary form of degree n over k by the formula

f .x; y/ D disc.xA � yB/ D f0xn C f1xn�1y C 	 	 	 C fnyn:
The coefficients of this form are each polynomial invariants of degree n on V , and
the n C 1 coefficients fj freely generate the ring of polynomial invariants for G
on V . (This will follow from our determination of the orbits ofG over ks in Theorem
4.1.) We call f .x; y/ the invariant binary form associated to (the orbit of) the vector
v D .A;B/.

The discriminant �.f / of the binary form f is defined by writing f .x; y/ D
Q

.˛ix � ˇiy/ over the algebraic closure of k and setting

�.f / D
Y

i<j

.˛iˇj � ˛jˇi /2:

Then �.f / is a homogeneous polynomial of degree 2n � 2 in the coefficients fj ,
so is a polynomial invariant of degree 2n.n � 1/ on V . For example, the binary
quadratic form ax2 C bxy C cy2 has discriminant � D b2 � 4ac and the binary
cubic form ax3 C bx2y C cxy2 C dy3 has discriminant � D b2c2 C 18abcd �
4ac3 � 4b3d � 27a2d2.

The first result shows how the invariant form and its discriminant determine the
stable orbits for G on V over ks .

Theorem 4.1. Let ks be a separable closure of k, and let f .x; y/ be a binary form
of degree n over ks with f0 ¤ 0 and �.f / ¤ 0. Then there are vectors .A;B/
in V.ks/ with invariant form f .x; y/, and these vectors all lie in a single orbit
for G.ks/. This orbit is closed, and the stabilizer of any vector in the orbit is an
elementary abelian 2-group of order 2n�1.

To begin the proof, we make a simple observation. Let A and B denote two
symmetric bilinear forms on W over ks with disc.xA � yB/ D f .x; y/. Then
both A and B give ks-linear maps W ! W �. Our assumption that f0 is nonzero
implies that the linear map A W W ! W � is an isomorphism, so we obtain an
endomorphism T D A�1B W W ! W . The fact that both A and B are symmetric
with respect to transpose implies that T is self-adjoint with respect to the bilinear
form h ; iA on W .

Write f .x; 1/ D f0g.x/ with g.x/ monic of degree n. The characteristic poly-
nomial det.xI �T / is equal to the monic polynomial g.x/, and our assumption that
the discriminant of f .x; y/ is nonzero in k implies that the polynomial g.x/ is sepa-
rable. Hence the endomorphism T of V is regular and semisimple. The groupG.ks/
acts transitively on the bilinear forms with discriminant f0, and the stabilizer of A
is the orthogonal group SO.W;A/. Since the group SO.W;A/.ks/ acts transitively
on the self-adjoint operators T with a fixed separable characteristic polynomial
g.x/, there is a singleG.ks/-orbit on the vectors .A;B/with invariant form f .x; y/.
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The stabilizer is the centralizer of T in SO.W;A/, which is an elementary abelian
2-group of order 2n�1. For proofs of these assertions, see [4, Prop. 4].

Having classified the stable orbits of G on V over the separable closure, we
now turn to the problem of classifying the orbits with a fixed invariant polynomial
f .x; y/ over k.

Theorem 4.2. Let f .x; y/ D f0x
n C f1xn�1y C 	 	 	 C fnyn be a binary form of

degree n over k whose discriminant � and leading coefficient f0 are both nonzero
in k. Write f .x; 1/ D f0g.x/ and let L be the étale algebra kŒx�=.g/ of degree n
over k. Then there is a canonical bijection (constructed below) between the set of
orbits .A;B/ of G.k/ on V.k/ having invariant binary form f .x; y/ and the equiv-
alence classes of pairs .˛; t/ with ˛ 2 L� and t 2 k�, satisfying f0N.˛/ D t2.
The pair .˛; t/ is equivalent to the pair .˛�; t�/ if there is an element c 2 L� with
c2˛� D ˛ and N.c/t� D t .

The group scheme Gf obtained by descending the stabilizers GA;B for .A;B/ 2
Vf .k

s/ to k is the finite abelian group scheme .ResL=k �2/ND1 of order 2n�1
over k.

As a corollary, we see that the set of orbits with invariant form f .x; y/ is
nonempty if and only if the element f0 2 k� lies in the subgroup N.L�/k�2.
In this case, we obtain a surjective map (by forgetting t ) from the set of orbits to
the set .L�=L�2/N�f0

, where the subscript indicates that the norm is congruent to
f0 in the group k�=k�2. This map is a bijection when there is an element c 2 L�
that satisfies c2 D 1 and N.c/ D �1. Such an element c will exist if and only if
the polynomial g.x/ has a monic factor of odd degree over k. If no such element c
exists, then the two orbits .˛; t/ and .˛;�t / are distinct and map to the same class
˛ in .L�=L�2/N�f0

. In that case, the map is two-to-one.
When n D 2g C 1 is odd, the set of orbits is always nonempty and has a natural

base point .˛; t/ D .f0; f
.nC1/=2
0 /. Using this base point, and the existence of an

element c with c2 D 1 andN.c/ D �1, we can identify the set of orbits with invari-
ant form f .x; y/ with the group .L�=L�2/N�1. This group classifies the principal
homogeneous spaces for the group scheme .ResL=k �2/ND1. In fact, each orbit with
invariant form f .x; y/ gives rise to a (geometrically) abelian cover of P1 of degree
22g with an action of this group scheme, which is ramified to order 2 at the 2g C 1
points cut out by the equation f .x; y/ D 0 and unramified elsewhere. The principal
homogeneous space is the fiber over the point1 of P1, which is unramified in the
cover by our hypothesis that f0 ¤ 0.

When n D 2gC2 is even, f0 may not lie in the subgroupN.L�/k�2 of k�. In this
case, there may be no orbits over k with invariant polynomial f .x; y/. For example,
when n D 2 there are no orbits over R with invariant form f .x; y/ D �x2 � y2.
However, there is a close relation between the existence of an orbit with invariant
f .x; y/ and the arithmetic of the smooth hyperelliptic curve C of genus g over k,
defined by the equation ´2 D f .x; y/ in the weighted projective plane P.1; 1; gC1/.
For example, every k-rational point P D .u; 1; v/ on C with v ¤ 0 (so P is not a
Weierstrass point) gives rise to an orbit [3, 	2]. Indeed, write f .x; 1/ D f0 	 g.x/
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and let � be the image of x in the algebra L D kŒx�=.g.x//. The orbit associated to
P has ˛ D u � � 2 L� and t D v 2 k�. Then N.˛/ D g.u/, so t2 D f0 	 N.˛/.
This is the association used in [3] to show that most hyperelliptic curves over Q
have no rational points.

Proof of Theorem 4.2: Assume that we have a vector .A;B/ in V.k/ with disc.xA�
yB/ D f .x; y/. Using the k-linear maps W ! W � given by the bilinear forms A
and B and the assumption that f0 is nonzero, we obtain an endomorphism T D
A�1B W W ! W which is self-adjoint for the pairing h; iA and has characteristic
polynomial g.x/. Since �.f / is nonzero, the polynomial g.x/ is separable and W
has the structure of a free L D kŒT � D kŒx�=.g/ module of rank one. Let ˇ denote
the image of x in L, and let f1; ˇ; ˇ2; 	 	 	 ; ˇn�1g be the corresponding power basis
of L over k.

The k-bilinear forms A and B both arise as the traces of L-bilinear forms on
the rank-one L module W . Choose a basis vector m of W over L and consider
the k-linear map L ! k defined by � ! hm;�miA. Since g.x/ is separable, the
element g0.ˇ/ is a unit in L and the trace map from L to k is nonzero. Hence there
is a unique element � in L� such that

hm;�miA D Trace.��=g0.ˇ//

for all � in L. Since all elements of L are self-adjoint with respect to the form h; iA,
we find that the formula

h�m; �miA D Trace.���=g0.ˇ//

holds for all � and � in L. Since the discriminant f0 of the bilinear form h; iA is
nonzero in k, we conclude that � is a unit in the algebra L, so is an element of the
group L�. We define ˛ D ��1 2 L�; so that

h�m; �miA D Trace.��=˛g0.ˇ//:

A famous formula due to Euler [24, Ch III, 	6] then shows that for all � and � in L,
the value h�m; �miA is the coefficient of ˇn�1 in the basis expansion of the product
��=˛. It follows that the value h�m; �miB is the coefficient of ˇn�1 in the basis
expansion of the product ˇ��=˛.

We define the element t 2 k� by the formula

t .m ^ ˇm ^ ˇ2m ^ : : : ^ ˇn�1m/ D e
in the one-dimensional vector space ^n.W /. Then he; ein D t2 det.hˇim;ˇjmiA/.
Since he; ein D .�1/n.n�1/=2f0 and det.hˇim;ˇjmiA/ D .�1/n.n�1/=2N.˛/�1,
we have that t2 D f0N.˛/.

We have therefore associated to the binary form f .x; y/ an étale algebra L, and
to the vector .A;B/ with discriminant f .x; y/ an element ˛ 2 L� and an element
t 2 k� satisfying t2 D f0N.˛/. The definition of ˛ and t required the choice
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of a basis vector m for W over L. If we choose instead m� D cm with c in L�,
then ˛ D c2˛� and t D N.c/t�. Hence the vector .A;B/ only determines the
equivalence class of the pair .˛; t/ as defined above.

It is easy to see that every equivalence class .˛; t/ determines an orbit. Since the
dimension n of L over k is equal to the dimension n of W , we can choose a linear
isomorphism � W L ! W that maps the element 1 ^ ˇ ^ ˇ2 : : : ^ ˇn�1 in ^n.L/
to the element t�1e in ^n.V /. Every other isomorphism with this property has the
form h� , where h is an element in the subgroup G D SL.W /. Using � we define
two bilinear forms on W :

h�.�/; �.�/iA D Trace.��=.˛g0.ˇ///

h�.�/; �.�/iB D Trace.ˇ��=.˛g0.ˇ///:

The G.k/-orbit of the vector .A;B/ in V.k/ is well-defined and has invariant poly-
nomial f .x; y/.

To complete the proof, we need to determine the stabilizer of a point .A;B/ 2
V.ks/ in an orbit with binary form f .x; y/. Let Ls D ksŒx�=.g.x// denote the
ks-algebra of degree n. Since the bilinear form h ; iA is nondegenerate, the stabi-
lizer of A inG is the special orthogonal group SO.W;A/ of this form. The stabilizer
of B in the special orthogonal group SO.W;A/ is the subgroup of those g that com-
mute with the self-adjoint transformation T . Since T is regular and semisimple, the
centralizer of T inGL.W / is the subgroup ksŒT �� D Ls�, and the operators inLs�
are all self-adjoint. Hence the intersection of Ls� with the special orthogonal group
SO.W;A/.ks/ consists of those elements g that are simultaneously self-adjoint and
orthogonal, so consists of those elements g in Ls� with g2 D 1 and N.g/ D 1.
The same argument works over any ks-algebra E. The elements in G.E/ stabiliz-
ing .A;B/ are the elements h in .E ˝ Ls/� with h2 D 1 and N.h/ D 1. Hence the
stabilizer GA;B is isomorphic to the finite étale group scheme .ResLs=ks �2/ND1
over ks .

To show that these group schemes descend to .ResL=k �2/ND1, it remains to
construct isomorphisms �v W .ResL=k �2/ND1.ks/ ! Gv compatible with the de-
scent data for every v 2 Vf .ks/, i.e., satisfying (3) and (4). Let ˛1; : : : ; ˛n 2 ks
denote the roots of g.x/. For any i D 1; : : : ; n, define

hi .x/ D g.x/

x � ˛i ; gi .x/ D 1 � 2 hi .x/
hi .˛i /

:

For any linear operator T on W with characteristic polynomial g.x/, the opera-
tor gi .T / acts as �1 on the ˛i -eigenspace of T and acts trivially on all other
eigenspaces. Then for any v D .A;B/ 2 Vf .k

s/, the map �v sends an n-tuple
.m1; : : : ; mn/ of 0’s or 1’s, such that

P

mi is even, to

�v.m1; : : : ; mn/ D
n
Y

iD1
gi .T /

mi ;

where T D A�1B as before. �
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In [29], Wood classified the elements of the representation Sym2R
n˚ Sym2R

n

for any base ring (or even any base scheme) R, in terms of suitable algebraic data
involving ideal classes of “rings of rank n” over R; see 	4.6 for more details on the
case R D Z. The special case where R is a field, and a description of the resulting
orbits under the action of SLn.R/, is given by Theorem 4.2.

4.3 Some finite group schemes and their cohomology

To give a cohomological interpretation of Theorem 4.2 and to make preparations
for studying the orbits of the action of SLn =�2 on Sym2.n/˚ Sym2.n/ in the next
two subsections, we collect some results on the cohomology of ResL=k�2 and other
closely related finite group schemes. A good reference for much of this material is
Section 6 the recent preprint [9].

Fix an integer n � 1, and consider the action of the symmetric group Sn on the
vector space N D .Z=2Z/n by permutation of the natural basis elements ei . The
nondegenerate symmetric bilinear form

hn;mi D
X

nimi

is Sn-invariant. We have the stable subspace N0 of elements with
P

ni D 0, and
on this subspace the bilinear form is alternating. It is also nondegenerate when n is
odd.

When n is even, the kernel of the form onN0 is the one-dimensional subspaceM
spanned by the vector n D .1; 1; : : : ; 1/, and we obtain a nondegenerate alternating
pairing

N0 �N=M ! Z=2Z:

This induces an alternating duality which is Sn-invariant on the subquotientN0=M .
We want to translate these results on finite elementary abelian 2-groups with an

action of Sn to finite étale group schemes over a field k whose characteristic is not
equal to 2. Let L be an étale k-algebra of rank n, and let R be the finite group
scheme ResL=k �2. Let ks be a fixed separable closure of k. The Galois group of
ks over k permutes the n distinct homomorphisms L ! ks , and this determines
a homomorphism Gal.ks=k/ ! Sn up to conjugacy. We have an isomorphism
R.ks/ Š N of Gal.ks=k/ modules. If L D kŒx�=g.x/ D kŒˇ� with g.x/ monic
and separable of degree n, then the distinct homomorphisms L ! ks are obtained
by mapping ˇ to the distinct roots ˇi of g.x/ in ks . Hence the points of R over an
extension K of k correspond bijectively to the monic factors h.x/ of g.x/ over K.

LetR0 D .ResL=k �2/ND1 be the subgroup scheme of elements of norm 1 to�2.
The above isomorphism mapsR0.ks/ to the Galois moduleN0, and the points ofR0
over an extension K correspond to the monic factors h.x/ of g.x/ of even degree
over K.
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The diagonally embedded �2 ! R corresponds to the trivial Galois submodule
M of N , and the points of R=�2 over K correspond to the monic factorizations
g.x/ D h.x/j.x/ that are rational over K. This means that either h.x/ and j.x/
have coefficients in K, or that they have conjugate coefficients in some quadratic
extension of K.

When n is even, the subgroup �2 of R is actually a subgroup of R0. The points
of R0=�2 over K correspond to the monic factorizations g.x/ D h.x/j.x/ of even
degree that are rational over K.

Since the pairings defined above are all Sn-invariant, we obtain Cartier dualities

R �R! �2;

R0 �R=�2 ! �2:

Since the Cartier dual of R0 is the finite group scheme R=�2, we obtain a cup
product pairing

H 2.k;R0/ �H 0.k;R=�2/ �! H 2.k;Gm/Œ2� D H 2.k; �2/:

When n is odd, we obtain an alternating duality onR0 Š R=�2. When n is even,
we obtain an alternating duality

R0=�2 �R0=�2 ! �2:

We now consider the Galois cohomology of these étale group schemes. For
R D ResL=k �2 we have

H 0.k;R/ D L�Œ2�; H 1.k;R/ D L�=L�2; H 2.k;R/ D Br.L/Œ2�:

For R0 D .ResL=k �2/ND1, we have H 0.k;R0/ D L�Œ2�ND1 and the long exact
sequence in cohomology gives an exact sequence

1! h˙1i=N.L�Œ2�/!H 1.k;R0/! L�=L�2

! k�=k�2 ! H 2.k;R0/! Br.L/Œ2�: (7)

The groupH 1.k;R0/maps surjectively to the subgroup .L�=L�2/N�1 of elements
in L�=L�2 whose norm to k�=k�2 is a square. The kernel of this map has order
one if �1 is the norm of an element of L�Œ2�, or equivalently if g.x/ has a factor of
odd degree. If g.x/ has no factor of odd degree, then the kernel has order two.

This computation allows us to give a cohomological interpretation to Theorem
4.2. For each rational invariant f .x; 1/ D f0g.x/ with nonzero �.f / and f0, the
stabilizer Gf is isomorphic to the finite group scheme .ResL=k �2/ND1 D R0.
The quotient group k�=k�2.NL�/ is the kernel of the map from H 2.k;R0/ to
H 2.k;R/. In Theorem 4.4, we will show that the class of f0 2 k�=k�2N.L�/maps
to the class df 2 H 2.k;R0/ defined in 	2.4. Since H 1.k;SLn/ D 0; by Theorem
2.3 the nontriviality of df in H 2.k;R0/ is the only obstruction to the existence of
an SLn.k/-orbit with invariant form f .x; y/. This gives another proof that rational
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orbits with invariant f .x; y/ exist if and only if f0 2 N.L�/k�2: When the class
df vanishes, the orbits of SLn.k/ with this rational invariant f form a principal
homogeneous space for the group H 1.k;R0/.

4.4 SLn =�2 acting on Sym2.n/ ˚ Sym2.n/

When the dimension n of W is odd, we have obtained a bijection from the set of
orbits for SL.W / with invariant f to the elements of the group .L�=L�2/N�1

In this section, we consider the more interesting situation when the dimension
n of W is even. In this case, the central subgroup �2 in SL.W / acts trivially on
V D Sym2W

� C Sym2W
�, and we can consider the orbits of the group H D

SL.W /=�2 on V over k. Since H 1.k;SL.W // D 1, the group of k-rational points
of H lies in the exact sequence

1! SL.W /.k/=h˙1i ! H.k/! k�=k�2 ! 1:

A representative in H.k/ of the coset of d in k�=k�2 can be obtained as follows.
Lift d 2 k�=k�2 to an element d 2 k� and let K D k.

p
d/ be the corresponding

quadratic extension. Let � be the nontrivial involution of K over k and let g.d/ be
any element of SL.W /.K/ whose conjugate �.g.d// is equal to �g.d/. For exam-
ple, one can take a diagonal matrix with n=2 entries equal to

p
d and n=2 entries

equal to 1=
p
d . Then the image of g.d/ in the quotient groupH.K/ gives a rational

element inH.k/. The elements g.d/ for d in k�=k�2 give coset representatives for
the subgroup SL.W /.k/=h˙1i of H.k/.

If v is any vector in Vf .k/ and d represents a coset of k�=k�2, then

�.g.d/.v// D �.g.d//.v/ D �g.d/.v/ D g.d/.v/;
so the vector g.d/.v/ is also an element of Vf .k/. Since the coset of g.d/ is well-
defined, and g.d/2 is an element of SL.W /.k/, we see that the action of g.d/ gives
an involution (possibly trivial) on the orbits of SL.W /.k/ D G.k/ on Vf .k/.

We have seen that the orbits of G.k/ with invariants f .x; y/ are determined by
two invariants: ˛ 2 L� and t 2 k� that satisfy f0N.˛/ D t2. The pair .˛; t/ is
equivalent to the pair .c2˛;N.c/t/. Under this bijection, the element represented
by g.d/ in H.k/ maps the equivalence class of .˛; t/ to the equivalence class
.d˛; dn=2t /. This gives the following result.

Theorem 4.3. Assume that n is even and let f .x; y/ D f0x
n C f1xn�1y C 	 	 	 C

fny
n be a binary form of degree n over k whose discriminant � and leading co-

efficient f0 are both nonzero in k. Write f .x; 1/ D f0g.x/ and let L be the étale
algebra kŒx�=.g/ of degree n over k. Then there is a bijection between the set of
orbits .A;B/ of H.k/ on V.k/ having invariant binary form f .x; y/ and the set of
equivalence classes of pairs .˛; t/ with ˛ 2 L� and t 2 k� satisfying f0N.˛/ D t2.
The pair .˛; t/ is equivalent to the pair .˛�; t�/ if there is an element c 2 L� and
an element d 2 k� with c2d˛� D ˛ and N.c/dn=2t� D t .
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The group schemeHf obtained by descending the stabilizersHA;B for .A;B/ 2
Vf .k

s/ to k is the finite abelian group scheme .ResL=k �2/ND1 D R0=�2 of order
2n�2 over k.

Theorem 4.3 implies that orbits forH.k/ exist with invariant binary form f .x; y/ if
and only if the leading coefficient f0 lies in the subgroup k�2N.L�/ of k�. When
orbits do exist, we can associate to each H.k/-orbit the class of ˛ in the set

.L�=L�2k�/N�f0
:

This is a surjective map, which is a bijection when there are elements c 2 L�
and d 2 k� satisfying c2d D 1 and N.c/dn=2 D �1. Such a pair .c; d/ exists
if and only if the monic polynomial g.x/ has an odd factorization over k. If g.x/
has a rational factor of odd degree, then there is a pair with c2 D 1 and d D 1.
On the other hand, if g.x/ has no rational factor of odd degree, but has a rational
factorization, then n=2 is odd and the factorization occurs over the unique quadratic
extensionK D k.pd/ which is a subalgebra of L. If g.x/ has no odd factorization,
the two orbits .˛; t/ and .˛;�t / are distinct and the surjective map from the set of
H.k/-orbits to the set .L�=L�2k�/N�f0

is two-to-one.
We can also reinterpret this result in terms of the Galois cohomology of the sta-

bilizer Hf D R0=�2. We assume that there exists rational .A;B/ 2 V.k/ with
invariant binary form f .x; y/. In the next subsection, we study the obstruction to
this existence. The set of rational orbits with invariant f is in bijection with the ker-
nel of the composite map � W H 1.k;HA;B/! H 1.k;H/ ,! H 2.k; �2/ of pointed
sets. We now give another description of � and in particular show that it is a group
homomorphism; hence the set of H.k/-orbits forms a principal homogenous space
for ker � . Note that even though both the source and target of � are groups, there is
a priori no reason for � to be a group homomorphism. The short exact sequence

1! �2 ! R0 ! R0=�2 ! 1 (8)

of finite abelian group schemes over k gives rise to the long exact sequence in co-
homology

1! h˙1i ! R0.k/! R0=�2.k/!k�=k�2 !
! H 1.k;R0/!H 1.k;R0=�2/

ı�! H 2.k; �2/DBr.k/Œ2�:

By definition of the connecting homomorphism, we see that ı D �: Let the kernel
be denoted H 1.k;R0=�2/ker WD ker ı. Then we have the following short exact
sequence

1! k�=k�2hH i ! H 1.k;R0/! H 1.k;R0=�2/ker ! 1; (9)

where hH i denotes the image of R0=�2.k/ in k�=k�2. The group hH i can be
nontrivial only when n is divisible by 4; in this case hH i is a finite elementary
abelian 2-group corresponding to the quadratic field extensions K of k that are
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contained in the algebra L. In that case, a factorization of g.x/ into two even degree
polynomials conjugate over K gives a rational point of R0=�2.k/ which is not in
the image ofR0.k/. Recall thatR0 D Gf is the stabilizer for the action of the group
G D SL.W / (Theorem 4.2). Therefore, (9) describes howG.k/-orbits combine into
H.k/-orbits and reflects the extra relations in Theorem 4.3.

We now give a more concrete description of H 1.k;R0=�2/ker in terms of the
algebras L and k. The above short exact sequence maps surjectively to the short
exact sequence

1! k�=k�2hI i ! .L�=L�2/N�1 ! .L�=L�2k�/N�1 ! 1;

where hI i is the finite elementary abelian subgroup corresponding to all of the
quadratic extensions K of k that are contained in L. We have hI i D hH i ex-
cept in the case when n is not divisible by 4 and there is a (unique) quadratic
extension field K contained in L, in which case the kernel of the map from
H 1.k;R0/ to .L�=L�2/N�1 has order 2, whereas the map from H 1.k;R0=�2/ker

to .L�=L�2k�/N�1 is a bijection. In all other cases, these maps have isomorphic
kernels (of order 1 or 2).

We note that the existence and surjectivity of the map from H 1.k;R0=�2/ker

to .L�=L�2k�/N�1 in the above paragraph follows formally from exactness.
More canonically, the group .L�=L�2k�/N�1 can be viewed as the subgroup of
H 1.k;R=�2/ consisting of elements that map to 0 inH 2.k; �2/ under the connect-
ing homomorphism in Galois cohomology and to 0 in H 1.k; �2/ under the map
induced by N W R=�2 ! �2. The natural map H 1.k;R0=�2/ ! H 1.k;R=�2/

sends H 1.k;R0=�2/ker to this subgroup. The kernel of this map is generated by a
class WH 2 H 1.k;R0=�2/: The points of the principal homogeneous space WH
over an extension field E are the odd factorizations of g.x/ that are rational over E.

Since the finite group scheme HA;B D R0=�2 is self-dual, we obtain a cup
product pairing

H 1.k;R0=�2/ �H 1.k;R0=�2/! H 2.k; �2/:

The connecting homomorphism ı W H 1.k;R0=�2/ ! H 2.k; �2/ (and hence
also � ) is given by the cup product against the class WH in H 1.k;R0=�2/ ([19,
Proposition 10.3]).

Theorems 4.2 and 4.3 have a number of applications to the arithmetic of hyper-
elliptic curves, which we study in a forthcoming paper [6]. A binary form f .x; y/

of degree n D 2gC 2 with nonzero discriminant determines a smooth hyperelliptic
curve C W ´2 D f .x; y/ of genus g. Here we view C as embedded in the weighted
projective space P.1; 1; gC1/: Denote the Jacobian of C by J . Then J Œ2� is canon-
ically isomorphic to R0=�2: Under this isomorphism, the self-duality of R0=�2 is
given by the Weil pairing on J Œ2�: In [6], we use this connection to show that a pos-
itive proportion of hyperelliptic curves over Q of a fixed genus g have points locally
at every place of Q, but have no points over any odd degree extension of Q.
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4.5 Obstructions for the existence of orbits

In the previous section, we assumed that rational orbits with invariant f exist and
studied the set of H.k/-orbits on Vf .k/. By Theorem 2.3, we know that there are
two obstructions to existence of a H.k/-orbit with invariant f : the nonvanishing
of a class df 2 H 2.k;Hf /, and the possibility that we are not working with the
correct pure inner form. In this subsection, we compute the class df 2 H 2.k;Hf /

and when df D 0, and describe the set of pure inner forms H c of H for which
V c
f
.k/ is nonempty.

Theorem 4.4. Let f .x; y/ D f0xnC 	 	 	 C fnyn be a binary form of even degree n
such that �.f / and f0 are both nonzero. Write f .x; 1/ D f0g.x/ for some monic
polynomial g.x/ and let L D k.x/=.g/ D kŒˇ� be the associated étale algebra of
rank n over k. The groups G D SLn and H D SLn =�2 act on V D Sym2.n/ ˚
Sym2.n/. The stabilizer Gf (resp. Hf ) associated to an element of Vf .ks/ is the
finite group scheme .ResL=k�2/ND1 (resp. .ResL=k�2/ND1=�2). Let ı0 denote
the connecting homomorphism H 1.k; �2/ ! H 2.k;Gf / appearing in (7). Let
dG
f
2 H 2.k;Gf / (resp. dH

f
2 H 2.k;Hf /) denote the obstruction class for the

existence of G.k/– (resp. H.k/–) orbits with invariant f as defined in 	2.4. Then
dG
f

is the image of f0 under ı0; and the natural map H 2.k;Gf / ! H 2.k;Hf /

sends dG
f

to dH
f

.

Proof. The statement regarding the stabilizer schemes Gf andHf has been proved
in Theorems 4.2 and 4.3, respectively. We now compute dG

f
following its defini-

tion given in 	2.4. Let A0 denote the matrix with 1’s on the anti-diagonal and
0’s elsewhere. Let h.x/ 2 ksŒx� be a polynomial such that NLs=ks .h.ˇ// D f0:

Let T be a k-rational linear operator on W that is self-adjoint with respect to
A0 and has characteristic polynomial g.x/ ([25, 	2.2]). Then the element v D
.A0h.T /; A0T h.T // 2 Vf .ks/ has invariant f . We need to pick g� 2 G.ks/ such
that g��v D v for every � 2 Gal.ks=k/. We take g� to be of the form g� D j� .T /
for some polynomial j� .x/ 2 ksŒx� such that j� .ˇ/2 D .�h/.ˇ/=h.ˇ/: By writ-
ing .�h/.ˇ/, we wish to emphasize that � is not acting on ˇ, and hence for any
polynomial h0.x/ 2 ksŒx�, we have

�.NLs=ks .h0.ˇ/// D NLs=ks ..�h0/.ˇ//:

Let
p
h.x/ 2 ksŒx� denote a polynomial such that .

p
h.ˇ//2 D h.ˇ/: Set j� .x/ 2

ksŒx� to be the polynomial such that j� .ˇ/ D .�
p
h/.ˇ/=

p
h.ˇ/: By definition, dG

f

is then the 2-cocycle

.�; �/ 7! j� .ˇ/
�.j� .ˇ//j�� .ˇ/

�1:

On the other hand, let
p

f0 denote the square root of f0 such that

p

f0 D NLs=ks .
p
h.ˇ//:
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Then the 1-cocycle � 7! �
p

f0=
p

f0 corresponds to the class of f0 2 k�=k�2: To
compute ı0.f0/; for each � 2 Gal.ks=k/ we need to find an element in Ls whose
norm to ks is �

p

f0=
p

f0. A natural choice is j� .ˇ/: The equality dG
f
D ı0.f0/ is

then clear. The second statement is also clear from the above computation for dG
f

.
ut

Since G has no nontrivial pure inner forms, the vanishing of dG
f

is sufficient for
the existence of rational orbits. For H , there is a second (Brauer-type) obstruction
coming from the pure inner forms of H .

Theorem 4.5. Let f .x; y/ D f0x
n C 	 	 	 C fnyn be a binary form of even degree

n such that �.f / is nonzero. Let dG
f
2 H 2.k;Gf / (resp. dH

f
2 H 2.k;Hf /)

denote the obstruction class for the existence of G.k/- (resp. H.k/-) orbits with
invariant f . Consider the following diagram:

H1(k, H)

δ2

H1(k, Hf )
δ

H2(k, μ2)
α

H2(k, Gf),

where ı; ı2 are the connecting homomorphisms in Galois cohomology and ˛ is ind-
uced by the diagonal inclusion �2 ! Gf : Suppose dH

f
D 0: Then dG

f
is the image

of some d 2 H 2.k; �2/, where d lies in the image of ı2: The pure inner forms ofH
for which rational orbits exist with invariant f correspond to classes c 2 H 1.k;H/

such that ˛ı2.c/ D dGf in H 2.k;Gf /.

Proof. Fix any v 2 Vf .ks/: Choose g� 2 H.ks/ for each � 2 Gal.ks=k/ such that
g�
�v D v: Since dH

f
D 0; by Lemma 2.4 we may pick g� such that c D .� ! g� /

is a 1-cocycle inH 1.k;H/. Lift each g� arbitrarily toeg� 2 G.ks/: Since the center
of G.ks/ acts trivially on V , we have eg��v D v for every � 2 Gal.ks=k/. The
2-cocycle dG

f
in H 2.k; �2/ is then given by

.dGf /�;� Deg��eg�eg�1�� ; (10)

which is exactly the image of c under ı2.
For the second statement, choose g 2 GL.V /.ks/ such that g� D g�1�g for

every � 2 Gal.ks=k/. From the definition of g� , we see that gv 2 V c
f
.k/: For every

v0 2 Vf .ks/, let �v0 W Hf .ks/ ! Hv0 denote the canonical isomorphism. Then we
have a Galois invariant isomorphism Hf .k

s/ ! H c
gv.k

s/ sending b 2 Hf .ks/ to
�v.b/: Let � denote the following composition:

� W H 1.k;Hf /
��! H 1.k;H c

gv/! H 1.k;H c/
��! H 1.k;H/;

where the last map is the bijection given by .� ! d� / 7! .� ! d�g� /:
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Lemma 4.6. For any b 2 H 1.k;Hf /, we have

ı2.�.b// D ı.b/C ı2.c/:
This lemma follows from a direct computation similar to the proof of Lemma 2.4.

Proposition 2.1 states that the set of pure inner forms of H for which ratio-
nal orbits exist with invariant f is in bijection with the image of H 1.k;Hf /

under �. Since ı2 is injective, Lemma 4.6 implies that this set is in bijection with
ı.H 1.k;Hf //C ı2.c/, which equals ˛�1.˛ı2.c// by exactness. Theorem 4.5 now
follows since, by (10), we have dG

f
D ˛ı2.c/. ut

4.6 Integral orbits

In this section, we discuss the orbits of the group G.Z/ D SLn.Z/ on the free
Z-module V.Z/ D Sym2 Z

n ˚ Sym2 Z
n of symmetric matrices .A;B/ having ent-

ries in Z. Even though Galois cohomology was very useful in the previous sections
to study rational orbits, we will see in this section that one will generally need
different techniques to study integral orbits.

Associated to an integral orbit we have the invariant binary n-ic form f .x; y/ D
disc.xA � yB/ D f0x

n C 	 	 	 C fny
n with integral coefficients. We assume as

above that the integers�.f / and f0 are both nonzero, and write f .x; 1/ D f0g.x/.
The polynomial g.x/ is separable over Q, but its coefficients will not necessarily
be integers (when f0 ¤ ˙1). In this case, the image � of x in the étale algebra
L D QŒx�=g.x/ will not necessarily be an algebraic integer.

The rational orbits with this binary form f correspond to equivalence classes
of pairs .�; t/. Here � is an invertible element in the étale algebra L and t is an
invertible element of Q satisfying t2 D f0N.�/. The equivalence relation is .�; t/ �
.c2�;N.c/t/ for all c 2 L�. In this section, we specify the additional data that
determines an integral orbit in this rational orbit.

Recall that an order R in L is a subring that is free of rank n over Z and gen-
erates L over Q. The ring ZŒ� � generated by � will not be an order in L when the
coefficients of g.x/ are not integers. However, there is a natural order Rf contained
in L which is determined by the integral binary form f .x; y/. This order Rf as a
Z-module was first introduced by Birch and Merriman [8] and proved to be an order
by Nakagawa [17]. A basis-free description was discovered by Wood [28], namely,
Rf is the ring of the global sections of the structure sheaf of the subscheme Sf of
P1 defined by the homogeneous equation f .x; y/ D 0 of degree n. The ring Rf
possesses a natural Z-basis, namely,

Rf D SpanZf1; �1; �2; : : : ; �n�1g;
where

�k D f0�k C f1�k�1 C 	 	 	 C fk�1�: (11)
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Note that the �k are all algebraic integers, even though � might not be. One easily
checks ([8]) the remarkable equality disc.f / D disc.Rf /.

A fractional ideal I for an order R is a free abelian subgroup of rank n in L,
which is stable under multiplication by R. The norm N.I / is defined to be the
positive rational number that is the quotient of the index of I in M by the index of
R in M , where M is any lattice in L that contains both I and R. If the fractional
ideal I is contained in R, and so defines an ideal of R in the usual sense, then N.I /
is its index in R. An oriented fractional ideal for an order R is a pair .I; "/, where
I is any fractional ideal of R and " D ˙1 gives the orientation of I . The norm of
an oriented ideal .I; "/ is defined to be the nonzero rational number "N.I /. For an
element � 2 L�, the product �.I; "/ is defined to be the oriented fractional ideal
.�I; sgn.N.�//"/: Then N.�.I; "// D N.�/N.I; "/ in Q�. In practice, we denote
an oriented ideal .I; "/ simply by I , with the orientation " D ".I / on I being
understood.

We say that a fractional ideal I is based if it comes with a fixed ordered basis
over Z. If the order R and the fractional ideal I are both based, then we can define
the orientation of I as the sign of the determinant of the Z-linear transformation
taking the chosen basis of I to the basis of R. The norm of this oriented fractional
ideal is then equal to the actual determinant. Changing the basis by an element of
SLn.Z/ does not change the orientation " of I or the norm N.I / in Q�.

The binary form f .x; y/ not only defines an order Rf in L, but also a col-
lection of based fractional ideals If .k/ for k D 0; 1; 2 : : : ; n � 1 (see [28]). The
ideal If .0/ D Rf and for k > 0 the ideal If .k/ has a Z-basis f1; �; �2; : : : ; �k ;
�kC1; : : : ; �n�1g: This gives If .k/ an orientation relative to Rf , and the norm of
the oriented ideal If .k/ is equal to 1=f k0 . We have inclusions Rf � If .1/ � If
.2/ � 	 	 	 � If .n � 1/.

Let If D If .1/. Then we find by explicit computation that If .k/ D I k
f

. As
shown by Wood [28], abstractly the fractional ideal If is the module of global sec-
tions of the pullback of the line bundle O.1/ on P1 to the subscheme Sf defined
by the equation f .x; y/ D 0, and the ideals If .k/ are the global sections of the
pullbacks of the line bundles O.k/. We say that the form f .x; y/ is primitive if the
greatest common divisor of its coefficients is equal to 1. When f .x; y/ is primi-
tive, the scheme Sf D Spec.Rf / has no vertical components and is affine. In this
case, the pullbacks of these line bundles have no higher cohomology, and the ideals
If .k/ D I kf are all projective Rf -modules.

The oriented fractional ideal If .n � 1/ has a power basis f1; �; �2; : : : ; �n�1g.
When the form f .x; y/ is primitive, this fractional ideal is a projective, hence a
proper, Rf -module. In this case, the ring Rf has a simple definition as the endo-
morphism ring of the lattice SpanZf1; �; �2; : : : ; �n�1g in the algebra L.

There is also a nice interpretation of the oriented fractional ideal If .n � 2/ D
I n�2
f

in terms of the trace pairing on L. Define a nondegenerate bilinear pairing

h ; if W Rf � I n�2f
! Z by taking h�;�if as the coeffiecient of �n�1 in the
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product ��. Define f 0.�/ in L� by the formula f 0.�/ D f0g
0.�/. Then f 0.�/

lies in the fractional ideal I n�2
f

. A computation due to Euler shows that the above
bilinear pairing is given by the formula

h�;�if D Trace.��=f 0.�//;

where the trace is taken from L to Q. We have an inclusion Rf � .1=f 0.�//I n�2f

and the index is the absolute value of �.f /. In fact, the oriented fractional ideal
.1=f 0.�//I n�2

f
has norm 1=�.f /. This is precisely the “inverse different”—the

dual module toRf in L under the trace pairing. When f .x; y/ is primitive, the dual
module is projective and the ring Rf is Gorenstein.

The oriented fractional ideal If .n � 3/ D I n�3
f

appears in the study of int-
egral orbits. Before introducing the action of SLn.Z/, we first describe the ele-
ments in V.Z/ using a general theorem of Wood (see [29, Theorems 4.1 & 5.7], or
[1, Theorem 16] and [2, Theorem 4] for the special cases n D 2 and n D 3):

Theorem 4.7 (Wood). The elements of Sym2.Z
n/˚ Sym2.Z

n/ having a given inv-
ariant binary n-ic form f with nonzero discriminant � and nonzero first coefficient
f0 are in bijection with the equivalence classes of pairs .I; ˛/, where I � L is
a based fractional ideal of Rf , ˛ 2 L�, I 2 � ˛I n�3

f
as fractional ideals, and

N.I /2 D N.˛/N.I n�3
f

/ D N.˛/=f n�30 2 Q�. Two pairs .I; ˛/ and .I �; ˛�/ are

equivalent if there exists � 2 L� such that I � D �I and ˛� D �2˛:
The way to recover a pair .A;B/ of symmetric n � n matrices from a pair .I; ˛/

above is by taking the coefficients of �n�1 and �n�2 in the image of the map

1

˛
� W I � I ! I n�3f (12)

in terms of the Z-basis of I .
Next, note that the group G.Z/ D SLn.Z/ acts naturally on the set V.Z/ D

Sym2.Z
n/˚ Sym2.Z

n/. It also acts on the bases of the based fractional ideals I in
the corresponding pairs .I; ˛/, and preserves the norm and orientation. Thus, when
considering SLn.Z/-orbits, we may drop the bases of I and view I simply as an
oriented fractional ideal ideal. We thus obtain:

Corollary 4.8. The orbits of SLn.Z/ on Sym2.Z
n/˚ Sym2.Z

n/ having a given in-
variant binary n-ic form f with nonzero discriminant� and nonzero first coefficient
f0 are in bijection with equivalence classes of pairs .I; ˛/, where I � L is an ori-
ented fractional ideal ofRf , ˛ 2 L�, I 2 � ˛I n�3

f
, andN.I /2 D N.˛/N.I n�3

f
/ D

N.˛/=f n�30 . Two pairs .I; ˛/ and .I �; ˛�/ are equivalent if there exists � 2 L�
such that I � D �I and ˛� D �2˛: The stabilizer in SLn.Z/ of a nondegenerate
element in Sym2.Z

n/˚ Sym2.Z
n/ having invariant binary form f is the finite ele-

mentary abelian 2-group S�Œ2�ND1, where S is the endomorphism ring of I in L.

We can specialize this result to the case when the order Rf is maximal in L
(which occurs, for example, when the discriminant �.f / is squarefree). Then the
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set of oriented fractional ideals of Rf form an abelian group under multiplication,
and the principal oriented ideals form a subgroup. The oriented class group C � is
then defined as the quotient of the group of invertible oriented ideals by the subgroup
of principal oriented ideals. The elements of this group are called the invertible
oriented ideal classes of Rf , and two oriented ideals .I; "/ and .I 0; "0/ of Rf are
in the same oriented ideal class if .I 0; "0/ D � 	 .I; "/ for some � 2 L�. Note that
the oriented class group is isomorphic to the usual class group of Rf if there is an
element of R�

f
with norm �1; otherwise, it is an extension of the usual class group

by Z=2Z, where the generator of this Z=2Z is given by the oriented ideal .Rf ;�1/
ofRf . (In the case of a binary form with positive discriminant, whenRf is an order
in a real number field, the oriented class group coincides with what is usually called
the narrow class group).

When Rf is maximal, integral orbits .A;B/ with invariant f will exist if and
only if the class of the oriented ideal If .n � 3/ D I n�3

f
is a square in the oriented

ideal class group (this will certainly hold when n is odd). If the class of I n�3
f

is a

square, we can find a pair .I; ˛/ satisfying I 2 D ˛I n�3
f

and N.I /2 D N.˛/=f n�30 .
In this case, the set of orbits is finite and forms a principal homogeneous space for
an elementary abelian 2-group that is an extension of the group of elements of order
2 in the oriented class group by the group .R�

f
=R�2

f
/ND1. The number of distinct

integral orbits with binary form f .x; y/ is given by the formula

2r1Cr2�1#C �Œ2�

where r1 and r2 are the number of real and complex places of L respectively and
C �Œ2� is the subgroup of elements of order 2 in the oriented class group C �.

We end with a comparison of the integral and rational orbits with a fixed invariant
form f for the action of G D SLn on V D Sym2.n/ ˚ Sym2.n/: Let f .x; y/ D
f0x

nCf1xn�1yC	 	 	Cfnyn be an integral binary form of degree nwith�.f / ¤ 0
and f0 ¤ 0. Write f .x; 1/ D f0g.x/ with g.x/ 2 QŒx� and let L D QŒx�=.g.x//.
Recall from 	4.1 that the orbits v D .A;B/ of SLn.Q/ on V.Q/ with invariant f
correspond bijectively to the equivalence classes of pairs .�; t/, with � 2 L� and
t 2 Q� satisfying t2 D f0N.�/. More precisely, the SLn.Q/-orbit of the bilinear
form A is given by the pairing

h�;�i� D Trace.��=�g0.�//:

using the oriented basis t .1^ � ^ �2 ^ : : :^ �n�1/ of ^nL. It follows that h�;�iA
is equal to the coefficient of �n�1 in the expansion of the product ��=� using this
oriented basis.

On the other hand, an integral orbit .A;B/ is given by the equivalence class of the
pair .I; ˛/ with I 2 � ˛I n�3

f
andN.I /2 D N.˛/=f n�30 . For � and � in the oriented

fractional ideal I , the bilinear form h�;�iA is equal to the coefficient of �n�1 in the
expansion of the product ��=˛ with respect to the natural basis of If .n� 3/. Since
�n�1 D f0�n�1Cf1�n�2C	 	 	Cfn�2� inL, we see that the corresponding rational
orbit has parameters
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� D f0˛;
t D f n�10 N.I /:

Similarly, the bilinear form h�;�iB is equal to the coefficient of �n�2 in the expan-
sion of the product ��=˛ with respect to the natural basis of If .n � 3/. Note that
we obtain Gram matrices for these two bilinear forms by using the basis of the ideal
I that maps to the basis element

N.I /.1 ^ �1 ^ �2 ^ : : : ^ �n�1/ D N.I /f n�10 .1 ^ � ^ �2 ^ : : : �n�1/
D t .1 ^ � ^ �2 ^ : : : �n�1/

of the top exterior power of I over Z.
If we fix a rational orbit with integral form f .x; y/, then the parameters .�; t/

determine both ˛ and N.I / by the above formulae. The rational orbit has an inte-
gral representative if and only if one can find an oriented fractional ideal I for Rf
satisfying I 2 � ˛I n�3

f
and N.I / D N.˛/N.I n�3

f
/ D N.˛/=f n�30 . The distinct

integral orbits in this rational orbit correspond to the different possible choices for
the oriented fractional ideal I satisfying these two conditions. We note that there is
at most one choice when the order Rf is maximal in L. In that case, the fractional
ideal I is determined by the identity I 2 D ˛I n�3

f
, and its orientation by the identity

N.I / D N.˛/=f n�30 .
When n is odd, there is a canonical integral orbit with invariant binary n-ic form

f .x; y/. This has parameters .I; ˛/ D .I
.n�3/=2
f

; 1/. The corresponding rational

orbit has parameters .�; t/ D .f0; f .nC1/=20 /.
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Hecke algebras with unequal parameters
and Vogan’s left cell invariants

Cédric Bonnafé and Meinolf Geck

To David Vogan on the occasion of his 60th birthday

Abstract In 1979, Vogan introduced a generalised � -invariant for characterising
primitive ideals in enveloping algebras. Via a known dictionary this translates to
an invariant of left cells in the sense of Kazhdan and Lusztig. Although it is not a
complete invariant, it is extremely useful in describing left cells. Here, we propose a
general framework for defining such invariants which also applies to Hecke algebras
with unequal parameters.

Key words: Coxeter groups, Hecke algebras, Kazhdan–Lusztig cells
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1 Introduction

Let W be a finite Weyl group. Using the corresponding generic Iwahori–Hecke
algebra and the “new” basis of this algebra introduced by Kazhdan and Lusztig
[16], we obtain partitions of W into left, right, and two-sided cells. Analogous not-
ions originally arose in the theory of primitive ideals in enveloping algebras; see
Joseph [15]. This is one of the sources for the interest in knowing the cell partitions
ofW ; there are also deep connections [19] with representations of reductive groups,

C. Bonnafé
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singularities of Schubert cells, and the geometry of unipotent classes. Vogan [24],
[25] introduced invariants of left cells which are computable in terms of certain
combinatorially defined operators T˛ˇ , S˛ˇ where ˛; ˇ are adjacent simple roots of
W . In the case where W is the symmetric group Sn, these invariants completely
characterise the left cells; see [16, 	5], [24, 	6]. Although Vogan’s invariants are
not complete invariants in general, they have turned out to be extremely useful in
describing left cells.

Now, the Kazhdan–Lusztig cell partitions are not only defined and interesting
for finite Weyl groups, but also for affine Weyl groups and Coxeter groups in gen-
eral; see, e.g., Lusztig [18], [20]. Furthermore, the original theory was extended by
Lusztig [17] to allow for the possibility of attaching weights to the simple reflec-
tions. The original setting then corresponds to the case where all weights are equal
to 1; we will refer to this case as the “equal parameter case”. Our aim here is to
propose analogues of Vogan’s invariants which work in general, i.e., for arbitrary
Coxeter groups and arbitrary (positive) weights.

In Sections 2 and 3 we briefly recall the basic setup concerning Iwahori–Hecke
algebras, cells in the sense of Kazhdan and Lusztig, and the concept of induction
of cells. In Section 4 we introduce the notion of left cellular maps; a fundamental
example is given by the Kazhdan–Lusztig �-operations. In Section 5, we discuss the
equal parameter case and Vogan’s original definition of a generalised � -invariant.
As this definition relied on the theory of primitive ideals, it only applies to finite
Weyl groups. In Theorem 5.2, we show that this works for arbitrary Coxeter groups
satisfying a certain boundedness condition. (A similar result has also been proved by
Shi [22, 4.2], but he uses a definition slightly different from Vogan’s; our argument
seems to be more direct.) In Sections 6 and 7, we develop an abstract setting for
defining such invariants; this essentially relies on the concept of induction of cells
and is inspired by Lusztig’s method of strings [18, 	10]. As a bi-product of our
approach, we obtain that the �-operations also work in the unequal parameter case.
We conclude by discussing examples and stating open problems.

Remark. In [4, Cor. 6.2], the first author implicitly assumed that the results on the
Kazhdan–Lusztig �-operations [16, 	4] also hold in the unequal parameter
context — which was a serious mistake at the time. Corollary 6.4 below justifies
a posteriori this assumption.

Notation. We fix a Coxeter system .W; S/ and we denote by ` W W ! Z>0 the
associated length function. We also fix a totally ordered abelian group A . We use
an exponential notation for the group algebra A D ZŒA �:

A D ˚
a2A

Zva where vava
0 D vaCa0

for all a, a0 2 A :

We write A60 WD f˛ 2 A j ˛ 6 0g and A60 WD ˚a2A60
Zva; the symbols

A>0, A>0 etc. have analogous meanings. We denote by W A ! A the involutive
automorphism such that va D v�a for all a 2 A .
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2 Weight functions and cells

Let p W W ! A ,w 7! pw , be a weight function in the sense of Lusztig [20], that is,
we have ps D pt whenever s; t 2 S are conjugate inW , and pw D ps1 C	 	 	Cpsk
if w D s1 	 	 	 sk (with si 2 S ) is a reduced expression for w 2 W . The original
setup in [16] corresponds to the case where A D Z and ps D 1 for all s 2 S ; this
will be called the “equal parameter case”. We shall assume throughout that ps > 0

for all s 2 S . (There are standard techniques for reducing the general case to this
case [3, 	2].)

Let H D HA.W; S; p/ be the corresponding generic Iwahori–Hecke algebra.
This algebra is free over A with basis .Tw/w2W , and the multiplication is given by
the rule

TsTw D
�

Tsw if sw > w;
Tsw C .vps � v�ps /Tw if sw < w;

where s 2 S and w 2 W ; here, 6 denotes the Bruhat–Chevalley order on W .
Let .C 0w/w2W be the “new” basis of H introduced in [16, (1.1.c)], [17, 	2].

(These basis elements are denoted cw in [20].) For any x; y 2 W , we write

C 0x C 0y D
X

´2W
hx;y;´ C

0́ where hx;y;´ 2 A for all x; y; ´ 2 W :

We have the following more explicit formula for s 2 S , y 2 W (see [17, 	6],
[20, Chap. 6]):

C 0s C 0y D
8

<

:

.vps C v�ps / C 0y if sy < y;

C 0sy C
X

´2W W s´<´<y
M s
´;yC

0́ if sy > y;

where C 0s D Ts C v�psT1 and M s
´;y DM s

´;y 2 A is determined as in [17, 	3].
As in [20, 	8], we write x  L y if there exists some s 2 S such that

hs;y;x ¤ 0, that is, C 0x occurs with a nonzero coefficient in the expression of
C 0s C 0y in the C 0-basis. The Kazhdan–Lusztig left pre-order 6L is the transitive clo-
sure of  L. The equivalence relation associated with 6L will be denoted by �L
and the corresponding equivalence classes are called the left cells of W . Note that
H Cw �Py ACy where the sum runs over all y 2 W with y 6L w.

Similarly, we can define a pre-order 6R by considering multiplication by C 0s on
the right in the defining relation. The equivalence relation associated with 6R will
be denoted by �R and the corresponding equivalence classes are called the right
cells of W . We have

x 6R y ” x�1 6L y�1I (1)

see [20, 5.6, 8.1]. Finally, we define a pre-order 6LR by the condition that x 6LR y
if there exists a sequence x D x0; x1; : : : ; xk D y such that, for each i 2 f1; : : : ; kg,
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we have xi�1 6L xi or xi�1 6R xi . The equivalence relation associated with 6LR
will be denoted by �LR and the corresponding equivalence classes are called the
two-sided cells of W .

Definition 2.1. A (non-empty) subset � of W is called left-closed if, for any
x; y 2 � , we have f´ 2 W j x 6L ´ 6L yg � � .

Note that any such subset is a union of left cells. A left cell itself is clearly left-
closed with respect to 6L. It immediately follows from these definitions that, given
any left-closed subset � � W , the A-submodules

I� D hC 0w j w 6L ´ for some ´ 2 � iA;
OI� D hC 0w j w 62 �;w 6L ´ for some ´ 2 � iA;

are left ideals in H . Hence we obtain an H -module Œ� �A WD I� = OI� , which is
free over A with basis given by .ex/x2� , where ex denotes the residue class of C 0x
in Œ� �A. The action of C 0w (w 2 W ) is given by the formula

C 0w 	 ex D
X

y2�
hw;x;y ey :

3 Cells and parabolic subgroups

A key tool in this work will be the process of induction of cells. Let I � S and
consider the parabolic subgroup WI � W generated by I . Then

XI WD fw 2 W j ws > w for all s 2 I g
is the set of distinguished left coset representatives of WI in W . The map XI �
WI ! W , .x; u/ 7! xu, is a bijection and we have `.xu/ D `.x/ C `.u/ for all
x 2 XI and u 2 WI ; see [13, 	2.1]. Thus, given w 2 W , we can write uniquely
w D xu where x 2 XI and u 2 WI . In this case, we denote prI .w/ WD u. Let 6L;I
and �L;I be respectively the pre-order and equivalence relations for WI defined
similarly as 6L and �L are defined in W .

Theorem 3.1. Let I � S . If x, y 2 W are such that x 6L y (resp. x �L y), then
prI .x/ 6L;I prI .y/ (resp. prI .x/ �L;I prI .y/). In particular, if � is a left cell of
WI , then XI� is a union of left cells of W .

This was first proved by Barbasch–Vogan [1, Cor. 3.7] for finite Weyl groups
in the equal parameter case (using the theory of primitive ideals); see [9] for the
general case.

Example 3.2. Let � be a left-closed subset of WI . Then the subset XI� of W is
left-closed (see Theorem 3.1). Let HI � H be the parabolic subalgebra spanned
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by all Tw where w 2 WI . Then we obtain the HI -module Œ� �A, with standard
basis .ew/w2� , and the H -module ŒXI� �A, with standard basis .exw/x2XI ;w2� .
By [10, 3.6], we have an isomorphism of H -modules

ŒXI� �A
�! IndSI .Œ� �A/; eyv 7!

X

x2XI ;w2�
p�xu;yv

�

Tx ˝ eu
�

;

where p�xu;yv 2 A are the relative Kazhdan–Lusztig polynomials of [9, Prop. 3.3]

and, for any HI -module V , we denote by IndSI .V / WD H ˝HI
V the induced

module, with basis .Tx ˝ ew/x2XI ;w2� . (In [10, 	3], it is not stated explicitly that
� D XI� is left-closed, but this condition is used implicitly in the discussion
there.)

A first invariant of left cells is given as follows. For any w 2 W , we denote by
R.w/ WD fs 2 S j ws < wg the right descent set of w (or � -invariant of w in the
language of primitive ideals; see [1]). The next result has been proved in [16, 2.4]
(for the equal parameter case) and in [20, 8.6] (for the unequal parameter case).

Proposition 3.3 (Kazhdan–Lusztig, Lusztig). Let x; y 2 W .

(a) If x 6L y, then R.y/ � R.x/.
(b) If x �L y, then R.x/ D R.y/.
(c) For any I � S , the set fw 2 W j R.w/ D I g is a union of left cells of W .

We show how this can be deduced from Theorem 3.1. First, note that (b) and (c)
easily follow from (a), so we only need to prove (a). Let x; y 2 W be such that
x 6L y. Let s 2 R.y/ and set I D fsg. Then prI .y/ D s and so prI .x/ 6L;I
prI .y/ D s 2 WI D f1; sg. Since ps > 0, the definitions immediately show that
s 6I;L 1 but s 6�L;I 1. Hence, we must have prI .x/ D s and so s 2 R.x/. Thus
we have R.y/ � R.x/.

4 Left cellular maps

Definition 4.1. A map ı W W ! W is called left cellular if the following condi-
tions are satisfied for every left cell � � W (with respect to the given weights
fps j s 2 Sg):
(A1) ı.� / also is a left cell.
(A2) The map ı induces an H -module isomorphism Œ� �A Š Œı.� /�A.

A prototype of such a map is given by the Kazhdan–Lusztig �-operations. We
briefly recall how this works. For any s; t 2 S such that st ¤ ts, we set

DR.s; t/ WD fw 2 W jR.w/ \ fs; tg has exactly one elementg
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and, for any w 2 DR.s; t/, we set Ts;t .w/ WD fws;wtg \ DR.s; t/. (See [16,
	4], [24, 	3].) Note that Ts;t .w/ consists of one or two elements; in order to have
uniform notation, we consider Ts;t .w/ as a multiset with two identical elements if
fws;wtg \DR.s; t/ consists of only one element.

If st has order 3, then the intersection fws;wtg \ DR.s; t/ consists of only one
element which will be denoted by w�. Thus, we have Ts;t .w/ D fw�; w�g in this
case. With this notation, we can now state:

Proposition 4.2 (Kazhdan–Lusztig �-operations [16, 	4]). Assume that we are in
the equal parameter case and that st has order 3. Then we obtain a left cellular
map ıWW ! W by setting

ı.w/ D
�

w� if w 2 DR.s; t/;
w otherwise:

In particular, if � � DR.s; t/ is a left cell, then so is � � WD fw� j w 2 � g.
(In Corollary 6.4 below, we extend this to the unequal parameter case.)
If st has order > 4, then the set Ts;t .w/ may contain two distinct elements. In

order to obtain a single-valued operator, Vogan [25, 	4] (for the casem D 4; see also
McGovern [21, 	4]) and Lusztig [18, 	10] (for any m > 4) propose an alternative
construction, as follows.

Remark 4.3. Let s; t 2 S be such that st has any finite order m > 3. Let
Ws;t D hs; ti, a dihedral group of order 2m. For any w 2 W , the coset wWs;t
can be partitioned into four subsets: one consists of the unique element x of min-
imal length, one consists of the unique element of maximal length, one consists
of the .m � 1/ elements xs; xst; xsts; : : : and one consists of the .m � 1/ ele-
ments xt; xts; xtst; : : :. Following Lusztig [18, 10.2], the last two subsets (ordered
as above) are called strings. (Note that Lusztig considers the coset Ws;tw but, by
taking inverses, the two versions are clearly equivalent.) Thus, if w 2 DR.s; t/,
then w belongs to a unique string which we denote by �w ; we certainly have
Ts;t .w/ � �w � DR.s; t/ for all w 2 DR.s; t/.

We define an involution DR.s; t/ ! DR.s; t/, w 7! Qw, as follows. Let w 2
DR.s; t/ and i 2 f1; : : : ; m � 1g be the index such that w is the i th element of the
string �w . Then Qw is defined to be the .m� i/th element of �w . Note that, ifm D 3,
then Qw D w�, with w� as in Proposition 4.2.

Let us write TxTy D P

´2W fx;y;´T´ where fx;y;´ 2 A for all x; y; ´ 2 W .
Following [20, 13.2], we say that H is bounded if there exists some positiveN 2 A
such that v�Nfx;y;´ 2 A60 for all x; y; ´ 2 W . We can now state:

Proposition 4.4 (Lusztig [18, 10.7]). Assume that we are in the equal parameter
case and that H is bounded. If � � DR.s; t/ is a left cell, then so is

Q� WD f Qw j w 2 � g:
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(It is assumed in [18, 10.7] that W is crystallographic, but this assumption is
now superfluous thanks to Elias–Williamson [6]. The boundedness assumption is
obviously satisfied for all finite Coxeter groups. It also holds, for example, for affine
Weyl groups; see the remarks following [20, 13.4].)

In Corollary 6.4 below, we shall show thatw 7! Qw also gives rise to a left cellular
map and that this works without any assumption, as long as ps D pt .

5 Vogan’s invariants

Hypothesis. Throughout this section, and only in this section, we assume that
we are in the equal parameter case.

We recall the following definition.

Definition 5.1 (Vogan [24, 3.10, 3.12]). For n > 0, we define an equivalence rela-
tion�n on W inductively as follows. Let x; y 2 W .

� For n D 0, we write x �0 y if R.x/ D R.y/.
� For n > 1, we write x �n y if x �n�1 y and if, for any s; t 2 S such that x, y 2

DR.s; t/ (where st has order 3 or 4), the following holds: if Ts;t .x/ D fx1; x2g
and Ts;t .y/ D fy1; y2g, then either x1 �n�1 y1, x2 �n�1 y2 or x1 �n�1 y2,
x2 �n�1 y1.

If x �n y for all n > 0, then x, y are said to have the same generalised � -invariant.

The following result was originally formulated and proved for finite Weyl groups
by Vogan [24, 	3], in the language of primitive ideals in enveloping algebras. It
then follows for cells as defined in Section 2 using a known dictionary (see, e.g.,
Barbasch–Vogan [1, 	2]). The proof in general relies on Proposition 4.2 and results
on strings as defined in Remark 4.3.

Theorem 5.2 (Kazhdan–Lusztig [16, 	4], Lusztig [18, 	10], Vogan [24, 	3]).
Assume that H is bounded and recall that we are in the equal parameter case. Let
� be a left cell ofW . Then all elements in � have the same generalised � -invariant.

Proof. We prove by induction on n that if y;w 2 W are such that y �L w, then
y �n w. For n D 0, this holds by Propositon 3.3. Now let n > 0. By induction,
we already know that y �n�1 w. Then it remains to consider s; t 2 S such that
st ¤ ts and y;w 2 DR.s; t/. If st has order 3, then Ts;t .y/ D fy�; y�g and
Ts;t .w/ D fw�; w�g; furthermore, by Proposition 4.2, we have y� �L w� and
so y� �n�1 w�, by induction. Now assume that st has order 4. In this case, the
argument is more complicated (as it is also in the setting of [24, 	3].) Let I D fs; tg
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and � be the left cell containing y;w. Since all elements in � have the same right
descent set (by Proposition 3.3), we can choose the notation such that xs < x and
xt > x for all x 2 � . Then, for x 2 � , we have x D x0s, x D x0ts or x D x0sts
where x0 2 XI . This yields that

.�/ Ts;t .x/ D
8

<

:

fx0st; x0stg if x D x0s;
fx0t; x0tstg if x D x0ts;
fx0st; x0stg if x D x0sts:

We now consider the string �x and distinguish two cases.

Case 1. Assume that there exists some x 2 � such that x D x0s or x D x0sts. Then
�x D .x0s; x0st; x0sts/ and so the set � � WD �S

w2� �w
� n � contains elements

with different right descent sets. On the other hand, by [18, Prop. 10.7], � � is the
union of at most two left cells. (Again, the assumption in [18, Prop. 10.7] that W is
crystallographic is now superfluous thanks to [6].) We conclude that � � D �1 [�2
where �1, �2 are left cells such that:

� all elements in �1 have s in their right descent set, but not t ;
� all elements in �2 have t in their right descent set, but not s.

Now consider y;w 2 � ; we write Ts;t .y/ D fy1; y2g � � � and Ts;t .w/ D
fw1; w2g � � �. By (�), all the elements y1; y1; w1; w2 belong to �2. In particular,
y1 �L w1, y2 �L w2 and so, by induction, y1 �n�1 w1, y2 �n�1 w2.

Case 2. We are not in Case 1, that is, all elements x 2 � have the form x D x0ts
where x0 2 XI . Then �x D .x0t; x0ts; x0tst/ for each x 2 � . Let us label the
elements in such a string as x1; x2; x3. Then x D x2 and Ts;t .x/ D fx0t; x0tstg D
fx1; x3g.

Now consider y;w 2 � . There is a chain of elements which connect y to w
via the elementary relations L, and vice versa. Assume first that y;w are directly
connected as y  L w. Using the labelling y D y2, w D w2 and the notation of
[18, 10.4], this means that a22 ¤ 0. Hence, the identities “a11 D a33”, “a13 D a31”,
“a22 D a11 C a13” in [18, 10.4.2] imply that

.y1  L w1 and y3  L w3/ or .y1  L w3 and y3  L w1/:

Now, in general, there is a sequence of elements y D y.0/; y.1/; : : : ; y.k/ D w in �
such that y.i�1/  L y

.i/ for 1 6 i 6 k. At each step, the elements in the strings
corresponding to these elements are related as above. Combining these steps, one
easily sees that

.y1 6L w1 and y3 6L w3/ or .y1 6L w3 and y3 6L w1/:

(See also [22, Prop. 4.6].) Now, all elements in a string belong to the same right cell
(see [18, 10.5]); in particular, all the elements yi ; wj belong to the same two-sided
cell. Hence, [18, Cor. 6.3] implies that either y1 �L w1, y3 �L w3 or y1 �L w3,
y3 �L w1. (Again, the assumption in [18, Cor. 6.3] that W is crystallographic is
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now superfluous thanks to [6].) Consequently, by induction, we have either y1 �n�1
w1, y3 �n�1 w3 or y1 �n�1 w3, y3 �n�1 w1. ut

One of the most striking results about this invariant has been obtained by Gar-
finkle [8, Theorem 3.5.9]: two elements of a Weyl group of type Bn belong to the
same left cell (equal parameter case) if and only if the elements have the same
generalised � -invariant. This fails in general; a counterexample is given by W of
type Dn for n > 6 (as mentioned in the introduction of [7]).

Remark 5.3. Vogan [25, 	4] also proposed the following modification of the above
invariant. Let s; t 2 S be such that st has finite order m > 3. Let us set QTs;t .w/ WD
f Qwg for any w 2 DR.s; t/, with Qw as in Remark 4.3. Then we obtain a new invariant
by exactly the same procedure as in Definition 5.1, but using QTs;t instead of Ts;t
and allowing any s; t 2 S such that st has finite order > 3. (Note that Vogan only
considered the case where m D 4, but then Lusztig’s method of strings shows how
to deal with the general case.) In any case, this is the model for our more general
construction of invariants below.

6 Induction of left cellular maps

We return to the general setting of Section 2, where fps j s 2 Sg are any positive
weights for W .

Definition 6.1. A pair .I; ı/ consisting of a subset I � S and a left cellular map
ıWWI ! WI is called KL-admissible. We recall that this means that the following
conditions are satisfied for every left cell � � WI (with respect to the weights
fps j s 2 I g):
(A1) ı.� / also is a left cell.
(A2) The map ı induces an HI -module isomorphism Œ� �A Š Œı.� /�A.

We say that .I; ı/ is strongly KL-admissible if, in addition to .A1/ and .A2/, the
following condition is satisfied:

(A3) We have u �R;I ı.u/ for all u 2 WI .

If I � S and if ı W WI ! WI is a map, we obtain a map ıL W W ! W by

ıL.xw/ D xı.w/ for all x 2 XI and w 2 WI :
The map ıL will be called the left extension of ı to W .

Theorem 6.2. Let .I; ı/ be a KL-admissible pair. Then the following hold.

(a) The left extension ıL W W ! W is a left cellular map for W .
(b) If .I; ı/ is strongly admissible, then we have w �R ıL.w/ for all w 2 W .
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Proof. (a) By Theorem 3.1, there is a left cell � 0 of WI such that � � XI� 0. By
condition (A1) in Definition 6.1, the set � 01 WD ı.� 0/ is also a left cell of WI and,
by condition (A2), the map ı induces an HI -module isomorphism Œ� 0�A Š Œ� 01�A.
By Example 3.2, the subsets XI� 0 and XI� 01 of W are left-closed and, hence, we
have corresponding H -modules ŒXI� 0�A and ŒXI� 01�A. These two H -modules
are isomorphic to the induced modules IndSI .Œ�

0�/ and IndSI .Œ�
0
1�/, respectively,

where explicit isomorphisms are given by the formula in Example 3.2. Now, by
[10, Lemma 3.8], we have

p�xu;yv D p�xu1;yv1
for all x; y 2 XI and u; v 2 � 0;

where we set u1 D ı.u/ and v1 D ı.v/ for u; v 2 � 0. By [10, Prop. 3.9], this
implies that ıL maps the partition of XI� 0 into left cells of W onto the analogous
partition of XI� 01. In particular, since � � XI� 0, the set ıL.� / � XI� 01 is a left
cell of W ; furthermore, [10, Prop. 3.9] also shows that ıL induces an H -module
isomorphism Œ� �A Š ŒıL.� /�A.

(b) Since condition (A3) in Definition 6.1 is assumed to hold, this is just a res-
tatement of [20, Prop. 9.11(b)]. ut

We will now give examples in which jI j D 2. Let us first fix some notation. If s,
t 2 S are such that s ¤ t and st has finite order, let ws;t denote the longest element
of Ws;t D hs; ti and let

� s;ts D fw 2 Ws;t j `.ws/ < `.w/ and `.wt/ > `.w/g;
�
s;t
t D fw 2 Ws;t j `.ws/ > `.w/ and `.wt/ < `.w/g:

Example 6.3 (Dihedral groups with equal parameters). Let s, t 2 S be such that
s ¤ t , ps D pt and st has finite order. It follows from [20, 	8.7] that f1g, fws;tg,
�
s;t
s and � s;tt are the left cells ofWs;t . Let �s;t be the unique group automorphism of
Ws;t which exchanges s and t . Now, let ıs;t denote the mapWs;t 7! Ws;t defined by

ıs;t .w/ D
�

w if w 2 f1;ws;tg,
�s;t .w/ws;t otherwise.

Then, by [20, Lemma 7.2 and Prop. 7.3], the pair .fs; tg; ıs;t / is strongly KL-
admissible. Therefore, by Theorem 6.2,

ıLs;t WW ! W is a left cellular map.

In particular, this means that

x �L y if and only if ıLs;t .x/ �L ıLs;t .y/ (2)

for all x, y 2 W . Note also the following facts:

� If st has odd order, then ıs;t exchanges the left cells � s;ts and � s;tt .
� If st has even order, then ıs;t stabilizes the left cells � s;ts and � s;tt .
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For example, if st has order 3, then � s;ts D fs; tsg and � s;tt D ft; stg; furthermore,
ıs;t .s/ D st and ıs;t .ts/ D t . The matrix representation afforded by Œ� s;ts �A with
respect to the basis .es; ets/ is given by

C 0s 7!
�

vps C v�ps 1

0 0

�

; C 0t 7!
�

0 0

1 vpt C v�pt

�

.ps D pt /:

The fact that ıs;t is left cellular just means that we obtain exactly the same matrices
when we consider the matrix representation afforded by Œ� ts;t �A with respect to the
basis .est ; et /.

Let us explicitly relate the above discussion to the �-operations in Proposition 4.2
and the extension in Proposition 4.4. In particular, this yields new proofs of these
two propositions and shows that they also hold in the unequal parameter case, with-
out any further assumptions, as long as ps D pt . (Partial results in this direction are
obtained in [23, Cor. 3.5(4)].)

Corollary 6.4. Let s; t 2 S be such that st has finite order > 3 and assume that
ps D pt . Then, with the notation in Remark 4.3, we obtain a left cellular map
ıWW ! W by setting

ı.w/ D
� Qw if w 2 DR.s; t/;
w otherwise:

(If st has order 3, then this coincides with the map defined in Proposition 4.2.)

Proof. Just note that if w 2 DR.s; t/, then ıLs;t .w/ D Qw. Thus, the assertion simply
is a restatement of the results in Example 6.3. Furthermore, if st has order 3, then
Qw D w� for all w 2 DR.s; t/, as noted in Remark 4.3. ut

Example 6.5 (Dihedral groups with unequal parameters). Let s; t 2 S be such
that st has finite even order > 4 and that ps < pt . Then it follows from [20, 	8.7]
that f1g, fws;tg, fsg, fws;tsg, � s;ts n fsg and � s;tt n fws;tsg are the left cells of Ws;t .
Now, let ıs;t denote the map Ws;t 7! Ws;t defined by

ı<s;t .w/ D
�

w if w 2 f1;ws;t ; s; ws;tsg,
ws otherwise.

Then, again by [20, Lemma 7.5 and Prop. 7.6] (or [13, Exc. 11.4]), the pair
.fs; tg; ı<s;t / is strongly KL-admissible. Therefore, again by Theorem 6.2,

ı
<;L
s;t WW ! W is a left cellular map.

In particular, this means that

x �L y if and only if ı<;Ls;t .x/ �L ı<;Ls;t .y/ (3)

for all x, y 2 W . Note also that ı<s;t exchanges the left cells � s;ts n fsg and � s;tt n
fws;tsg while it stabilizes all other left cells in Ws;t .
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For example, if st has order 4, then �1 WD � s;ts nfsg D fts; stsg and �2 WD � s;tt n
fws;tsg D ft; stg; furthermore, ı<s;t .ts/ D t and ı<s;t .sts/ D st . As before, the fact
that ı<s;t is left cellular just means that the matrix representation afforded by Œ�1�A
with respect to the basis .ets; ests/ is exactly the same as the matrix representation
afforded by Œ�2�A with respect to the basis .et ; est /.

The next example shows that left extensions from dihedral subgroups are, in
general, not enough to describe all left cellular maps.

Example 6.6. Let W be a Coxeter group of type Br (r > 2), with diagram and
weight function as follows:

Br �

b
4

�

a
�

a
� � � �

a
b > .r � 1/a > 0.

This is the asymptotic case studied by Iancu and the first-named author [2], [5]. In
this case, the left, right and two-sided cells are described in terms of a Robinson–
Schensted correspondence for bi-tableaux. Using results from [2], [5], it is shown
in [10, Theorem 6.3] that the following hold:

(a) If �1 and �2 are two left cells contained in the same two-sided cell, then there
exists a bijection ı W �1 ��! �2 which induces an isomorphism of H -modules

Œ�1�A
��! Œ�2�A.

(b) The bijection ı in (a) is uniquely determined by the condition that w; ı.w/ lie in
the same right cell.

However, one can check that for r 2 f3; 4; 5g, the map ı does not always arise from
a left extension of a suitable left cellular map of a dihedral subgroup of W . It is
probable that this observation holds for any r > 3.

Example 6.7. Let W be an affine Weyl group and let W0 be the finite Weyl group
associated with W . Then there is a well-defined “lowest” two-sided cell, which
consists of precisely jW0j left cells; see Guilhot [14] and the references there. It is
likely that these jW0j left cells are all related by suitable left cellular maps.

7 An extension of the generalised �-invariant

Notation. We fix in this section a set � of KL-admissible pairs, as well as a
surjective map � W W ! E (where E is a fixed set) such that the fibers of �
are unions of left cells. We then denote by V� the group of permutations ofW
generated by the family .ıL/.I;ı/2�.

Note that giving a surjective map � as above is equivalent to giving an equivalence
relation on W which is coarser than �L.
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Then, each w 2 W defines a map ��;
w W V� �! E as follows:

��;
w .�/ D �.�.w// for all � 2 V�:

Definition 7.1. Let x, y 2 W . We say that x and y have the same ��;
-invariant if
�
�;

x D �

�;

y (as maps from V� to E). The equivalence classes for this relation are

called the left Vogan .�; �/-classes.

An immediate consequence of Theorem 6.2 is the following:

Theorem 7.2. Let x, y 2 W be such that x �L y. Then x and y have the same
��;
-invariant.

Remark 7.3. There is an equivalent formulation of Definition 7.1 which is more
in the spirit of Vogan’s Definition 5.1. We define by induction on n a family of
equivalence relations��;
n on W as follows. Let x; y 2 W .

� For n D 0, we write x ��;
0 y if �.x/ D �.y/.
� For n > 1, we write x ��;
n y if x ��;
n�1 y and ıL.x/ ��;
n�1 ıL.y/ for all
.I; ı/ 2 �.

Note that the relation ��;
n is finer than ��;
n�1. It follows from the definition that
x; y have the same ��;
-invariant if and only if x ��;
n y for all n > 0.

This inductive definition is less easy to write than Definition 7.1, but it is more
efficient for computational purpose. Indeed, if one finds an n0 such that the relations
��;
n0

and ��;
n0C1 coincide, then x and y have the same ��;
-invariant precisely

when x ��;
n0
y. Note that such an n0 always exists if W is finite. Also, even in

small Coxeter groups, the group V� can become enormous (see Example 7.6 below)
while n0 is reasonably small and the relation��;
n0

can be computed quickly.

Example 7.4 (Enhanced right descent set). One could take for � the map R W
W ! P.S/ (power set of S ); see Proposition 3.3. Assuming that we are in the
equal parameter case, we then obtain exactly the invariant in Remark 5.3. In the
unequal parameter case, we can somewhat refine this, as follows. Let

Sp D S [ fsts j s; t 2 S such that ps < ptg
and, for w 2 W , let

Rp.w/ D fs 2 Sp j `.ws/ < `.w/g � Sp:
Then it follows from the description of left cells of Ws;t in Example 6.5 and from
Theorem 3.1 (by using the same argument as for the proof of Proposition 3.3 given
in 	3) that

if x 6L y, then Rp.y/ � Rp.x/.
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In particular,
if x �L y, then Rp.x/ D Rp.y/.

So one could take for � the map Rp W W !P.Sp/.

Let �2 be the set of all pairs .I; ı/ such that I D fs; tg with s ¤ t and ps 6
pt ; furthermore, if ps D pt , then ı D ıs;t (as defined in Example 6.3) while, if
ps < pt , then ı D ı<s;t (as defined in Example 6.5). Then the pairs in �2 are all
strongly KL-admissible. With the notation in Example 7.4, we propose the following
conjecture:

Conjecture 7.5. Let x, y 2 W . Then x �L y if and only if x �LR y and x; y have
the same ��2;R

p
-invariant.

If W is finite and we are in the equal parameter case, then Conjecture 7.5 is
known to hold except possibly in type Bn;Dn; see the remarks at the end of
[12, 	6]. We have checked that the conjecture also holds for F4, Bn (n 6 7) and
all possible weights, using PyCox [11].

By considering collections � with subsets I � S of size larger than 2, one
can obtain further refinements of the above invariants. In particular, it is likely that
the results of [2], [5] can be interpreted in terms of generalised ��;
-invariants for
suitable �; �. This will be discussed elsewhere.

Example 7.6. Let .W; S/ be of type H4. Then it can be checked by using computer
computations in GAP that

jV�2
j D 240 	 320 	 58 	 74 	 112:

On the other hand, the computation of left Vogan .�2;Rp/-classes using the alt-
ernative definition given in Remark 7.3 takes only a few minutes on a standard
computer.
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The smooth loci of spiral Schubert varieties
of type zA2

William Graham and Wenjing Li

To David Vogan for his 60th birthday, with thanks

Abstract Spiral Schubert varieties are conjecturally the only Schubert varieties
in type zA2 for which rational smoothness at a torus-fixed point is not detected by
the number of torus-invariant curves passing through that point. In this paper we
determine the locus of smooth points of a spiral Schubert variety of type zA2. This
continues the study begun in [7], where the locus of rationally smooth points was
determined. The main result describes the smooth locus in terms of the action of
the Weyl group on R2; using this result, we identify the maximal singular points of
these varieties. We make key use of the results of [7] relating the Bruhat order to the
Weyl group action on R2.

Key words: Schubert variety, spiral, Weyl group, Bruhat order, smoothness
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1 Introduction

This paper determines the locus of smooth points of spiral Schubert varieties of type
zA2. Although this is a special case of a general problem, there are several reasons

to study it. First, the spiral Schubert varieties form a distinguished class in type
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zA2: computer evidence indicates that they are the only Schubert varieties in zA2 for
which rational smoothness at a torus-fixed point is not detected by the number of
torus-invariant curves passing through that point. Second, our results form a further
application of the results of [7] relating the Bruhat order to the action of the Weyl
group W on the plane R2. In [7], this relationship was used to describe the set
of torus-fixed points in a spiral Schubert variety, as well as the locus of rationally
smooth points. Here we extend these methods to calculate subtler invariants called
equivariant multiplicities, which can detect smoothness. The W -action on the plane
is central both to the formulation of the main result and its proof, and we believe
that these methods will be useful in other types besides type zA2.

To describe our results in more detail, we need some background. The Weyl
group W of type zA2 is generated by three elements s1; s2 and s3, called simple
reflections, subject to the relations s2i D .sisj /

3 D 1; the reflections in W are the
W -conjugates of the simple reflections. The length `.w/ of w 2 W is the smallest
number n such that w D si1 	 	 	 sin . Each w 2 W corresponds to a Schubert variety
Xw for the affine Kač–Moody group G of type zA2; Xw is an algebraic variety of
dimension `.w/. If w D sisj sksisj 	 	 	 (with ` terms), for some permutation i; j; k
of 1; 2; 3, then w and Xw are called spiral (see [7] for a discussion of this term).
By symmetry, to obtain results for general spiral elements, it is enough to study the
particular spiral elements w.`/ D s1s2s3s1s2 	 	 	 .

The group W is equipped with a partial order called the Bruhat order which can
be defined algebraically (see [8]), and satisfies the property that ifw 2 W , then each
element x 2 W satisfying x � w corresponds to a point xB 2 Xw ; moreover, the
point xB is fixed by the standard maximal torus T of G. In this case, let Rwx denote
the set of reflections r 2 W such that rx � w, and let qwx D jRwx j�`.w/. The num-
bers qwx are always nonnegative [6]. The geometric significance of qwx is that it is the
difference of the number of T -invariant curves in Xw through xB and the minimum
number `.w/ of such curves through any T -fixed point (cf. [9, Prop. 12.1.7]). Car-
rell and Peterson proved that xB is rationally smooth in Xw if and only if qwy D 0

for all y 2 W with x � y � w (see [9, Theorem 12.2.14]). Computer calcula-
tions done by the authors for many elements w 2 W indicate that for a non-spiral
Schubert variety Xw of type zA2, the integer qwx by itself is enough to detect rational
smoothness at xB. This distinguishes the spiral elements, and motivated their study
in [7], where the rationally smooth locus of Xw.`/ was described. Not all the ratio-
nally smooth points ofXw.`/ are smooth, and in this paper we determine the smooth

locus by computing the equivariant multiplicity ew.`/x for appropriate x. However,
e
w.`/
x is substantially more difficult to compute than qw.`/x . Thus, while in [7] we

described qw.`/x for any x � w.`/, here we compute ewx .`/ only for a relatively
small number of x which we need to describe the smooth locus.

The Bruhat order is central to the computation of both qw.`/x and ew.`/x , and the
main idea of [7] was to use the action of the Weyl group on the plane R2 to better
understand this order. The reflections in W act as reflections across certain lines
in R2; the complement of these lines is a union of connected components called
alcoves. There is a particular alcove A0 called the fundamental alcove, with center
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denoted by q, and the map w 7! wq gives a bijection between W and the set of
center points of alcoves. The W -orbit of q is denoted by Wq; this is a discrete
set in R2. A powerful tool for studying the Bruhat order is the endpoint theorem
([7, Theorem 5.5]), which states that if x; y and ´ are elements of W such that the
points xq; yq and ´q lie on a line parallel to a root, and if yq is between xq and ´q,
then y � x or y � ´ (or both).

The main results of [7] about spiral varieties answer the questions of how to
determine when xB is inXw.`/—that is, when x � w.`/—and, if xB 2 Xw.`/, how
to determine if xB is a rationally smooth point. They are formulated in terms of the
W -action on R2. For any ` � 1, we define a region �.`/ � R2 consisting of a
triangle with its interior, and set �.`/ D Wq \�.`/. We define R.`/ to equal �.`/
if ` is even, and �.`/ with two particular points removed if ` is odd. We answer the
above questions in [7] by proving that for x 2 W , we have x � w.`/ if and only
if xq 2 R.`/, and moreover, that xB is rationally smooth in Xw.`/ if and only if
xq 2 R.`/ n�.` � 3/. See the figures in Section 3.

Since every smooth point is rationally smooth, if xB is a smooth point of Xw.`/,
then xq is in the set R.`/ n �.` � 3/. To understand the smooth locus we must
examine this set more closely. We observe that this set is a union of certain sets,
each of which is the intersection of a line segment parallel to a root with the setWq.
We call these intersections “rationally smooth edges” (although they are finite sets,
since Wq is a discrete set), and their extreme points we call endpoints. These edges
are defined in Definition 3.5; there are four edges if ` is even, and five if ` is odd.
The main result of this paper is the following theorem, which describes the smooth
locus of Xw.`/ in terms of these edges. See the figures in Section 4.

Theorem 4.1 Let ` � 6 and let x � w.`/. Then xB is smooth in Xw.`/ if and only
if there is a rationally smooth edge of R.`/ n 4.` � 3/ containing xq as either an
endpoint, or a point adjacent to an endpoint.

As a consequence of our main theorem, we obtain a description of the maximal
elements x 2 W such that xB is a singular point of Xw.`/ (see Theorem 7.1). This
gives an alternative description of the singular locus of Xw.`/.

Here is an outline of the proof of Theorem 4.1. Since smooth points are rationally
smooth, we may assume xq lies on a rationally smooth edge. Next, we claim that if
xq is an endpoint or adjacent to an endpoint, then xB is smooth, and that if xq is
the second point from an endpoint, then xB is not smooth. This suffices to prove the
theorem. Indeed, suppose xq is on an edge but is not an endpoint or adjacent to one.
Let yq and y0q be the second points from the two endpoints. The claim implies that
yB and y0B are not smooth. Since the singular locus is closed, the Schubert varieties
Xy and Xy0 are contained in the singular locus of Xw.`/. Since xq is between yq
and y0q, the endpoint theorem implies that x � y or x � y0 (or both), so xB is in
Xy [Xy0 and hence is singular in Xw.`/.

In proving the claim, we first use some properties of the invariants ewx (Propo-
sition 2.5) to reduce the number of x for which we must prove xB is smooth or
non-smooth (see Section 4). The discussion preceding Definition 4.2 implies that
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we only need to prove this for 8 elements ofW . (To be precise, we need to consider
the x 2 W such that xq is one of the three points nearest to either end on one of
the edges E1.`/, or nearest to one particular end of the edge E3.`/; of these points,
one is contained in both E1.`/ and E3.`/, yielding a total of 8.) We then need to
determine the subexpressions of the unique reduced expression S for w.`/ which
multiply to these x. It turns out that all of the x we need to consider have length
`, ` � 1, or ` � 2, except for one element m.`/ of length ` � 3 (Proposition 5.1).
In Section 5, we determine all the elements x � w satisfying `.x/ � ` � 2, along
with all subexpressions of S multiplying to such an x (Propositions 5.2 and 5.3),
or to m.`/ (Proposition 5.5). This data shows that for each x for which we need
to show xB is smooth, there is only one subexpression of S multiplying to x; a
general result (Theorem 2.3) then yields smoothness. Next, there are only three ele-
ments x for which we need to show that xB is non-smooth. From the enumeration
of subexpressions, we see that all three have the property that there are m subex-
pressions of S multiplying to x, where m > 1 is explicitly determined. Because
these xB are rationally smooth in Xw.`/, results of Kumar (Theorem 2.2) imply that

e
w.`/
x D .�1/`.w/�`.x/ k

Q

ˇ2�w
x
ˇ

, and moreover, that xB is smooth in Xw.`/ if and

only if k D 1. Here 
wx is a set of roots (see Definition 2.1) which can be calculated
using the results of [7]. We show (see Proposition 4.5) that for these three elements,
the numerator k is equal to the number of subexpressionsm; sincem > 1, these xB
are not smooth inXw.`/, completing the proof of the claim. The proof of Proposition
4.5, by induction and explicit calculation, is given in Section 7.

2 Preliminaries

We begin by briefly recalling some results we will need about Kač–Moody algebras
and groups, as well as the corresponding Schubert varieties. Our main reference for
these results is [9].

2.1 Root systems and Weyl groups associated
to Kač–Moody Lie algebras

Suppose g is the Kač–Moody Lie algebra constructed from a generalized Car-
tan matrix .aij /1�i;j�n. Thus, we have dual vector spaces h and h�, with subsets
� D f˛1; : : : ; ˛ng � h� and �_ D f˛_1 ; : : : ; ˛_n g � h of simple roots and co-
roots respectively, satisfying ˛j .˛_i / D aij . For each i 2 1; : : : ; n, define a lin-
ear transformation si of the real vector space spanned by the ˛i by the formula
si .�/ D � � .�; ˛_i /˛i . The Weyl group W can be viewed as the group of linear
transformations generated by the si , which are called simple reflections. The set�re

of real roots is the union of theW -orbits of the ˛i , and�Cre consists of those ˇ 2 �re
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which can be written as a nonnegative linear combination of the ˛i . If ˇ D w˛i , then
there is a reflection sˇ D wsiw

�1, and then for u 2 W , we have usˇu�1 D su.ˇ/.
If A is a set of roots, then

Q

A denotes the product of the elements of A.
A reduced expression for w 2 W is a sequence S D .si1 ; : : : ; sin/, where n is

as small as possible such that si1 	 	 	 sin D w; in this case the length `.w/ of w is n.
A subexpression of S is a sequence T D .�1; : : : ; �n/, where each �k equals 1
or sik . Define

Q

T D Q

�i ; we say T multiplies to x if
Q

T D x. Let S .x/

denote the set of subexpressions of S multiplying to x. The Bruhat order on W
is the partial order characterized by the property that x � w if and only for any
reduced expression S for w, the set S .x/ is nonempty. If w 2 W has a unique
reduced expression S (for example, if w D w.`/), we say T is a subexpression of
w if T is a subexpression of S .

We will be interested in the case where g is the affine Lie algebra associated
to a finite-dimensional semisimple Lie algebra with root system ˚ contained in
a Euclidean space V (that is, V is a real vector space with a positive definite inner
product). We can describe the set of real roots for g as follows (cf. [9, Section 13.1]).
Given ˛ 2 ˚ , the corresponding coroot is ˛_ D 2˛=.˛; ˛/, and ˚_ denotes the set
of coroots. Let ˚C be a positive system for ˚ , with simple roots ˛1; : : : ; ˛n�1, and
let z̨ denote the highest root. Form real vector spaces V ˚ R 	 ı and V ˚ R 	 c,
equipped with a degenerate pairing .v1 C aı; v2 C bc/ D .v1; v2/. (These spaces
are contained in h� and h, respectively, but are not equal to them.) Define ˛n D ı�z̨
and ˛_n D c � z̨_. The simple roots for g are the set � D f˛1; : : : ; ˛n�1; ˛ng, and
the simple coroots are the set �_ D f˛_1 ; : : : ; ˛_n�1; ˛_n g. The positive real roots for
g are �Cre D ˚C [ fˇ C jı j ˇ 2 ˚; j 2 Z>0g. The space V ˚ Rı is the span of
the simple roots, and W can be viewed as a group of linear transformations of this
space. The finite Weyl group Wf is the subgroup of W generated by s1; : : : ; sn�1.
Note that if ˛ 2 ˚ , then s˛ preserves the subspace V , and we will use the notation
s˛ both for the linear transformation of V ˚ Rı, and its restriction to V .

Let L.˚_/ denote the set of Z-linear combinations of elements of ˚_. We view
L.˚_/ as a group of translations of V ; t .�/ W V ! V denotes the translation
corresponding to � in L.˚_/. The group Wf acts on L.˚_/ and the affine Weyl
group Waff is the semidirect product L.˚_/ Ì Wf , which we view as a group of
isometries of V . Given ˛ 2 ˚ , letH˛;n D fv 2 V j .˛; v/ D ng, and let s˛;n denote
the reflection across the affine hyperplane H˛;n. Thus, s˛;0 equals s˛ as defined
above, and

s˛;n D t .n˛_/s˛: (2.1)

Hence each s˛;n is in Waff; also, since wt.�/w�1 D t .w�/ for w 2 Wf , � 2
L.˚_/, we have

t .˛_/s˛;nt .�˛_/ D s˛;nC2: (2.2)

There is an isomorphism W ! Waff defined by si 7! s˛i
for 1 � i � n � 1, and

sn 7! sz̨;1. Using this, we will identify W and Waff. If ˚ has only one root length,
then under this identification, the reflections in W are exactly the affine reflections
s˛;n for ˛ 2 ˚ , n 2 Z (see [7]). In Proposition 2.6 we describe this correspondence
precisely for the affine root system of type zA2.
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The set V n .[H˛;n/, where the union is over ˛ 2 ˚C and n 2 Z, is a union of
connected components called alcoves. The fundamental alcove Aı is the subset of
v 2 V satisfying ˛i .v/ > 0 for 1 � i � n�1 and z̨.v/ < 1. Let q denote the center
point ofAı. There are bijectionsW ! falcovesg ! Wq given byw 7! xAı 7! xq.

2.2 Schubert varieties for Kač–Moody groups

In this section we recall some results about Schubert varieties for Kač–Moody
groups. In particular we recall Kumar’s criteria for smoothness and rational smooth-
ness of such varieties at torus-fixed points. There is one new result, Theorem 2.3,
concerning smoothness of Xw at rationally smooth points xB where there is only
one subexpression multiplying to x.

Let G be any Kač–Moody group with Lie algebra g, and B � T a standard Borel
subgroup and maximal torus of G. The flag variety G=B has the structure of an ind-
variety. For any w 2 W , there is a Schubert variety Xw D tBxB � G=B, where
the union is over all x 2 W satisfying x � w; Xw is a finite-dimensional algebraic
variety of dimension `.w/.

Definition 2.1. Given x � w in W , define 
wx D fˇ 2 �Cre j sˇx � wg, and define
Rwx D fs˛ j ˛ 2 
wx g. Define qwx D j
wx j � `.w/.

Note that the definition of 
wx is the same as in [3, (1.1)], but different from
[7], where 
wx is what we have here denoted by Rwx . Since 
wx and Rwx have
the same cardinality, either can be used to define qwx . Each qwx is nonnegative; the
Carrell–Peterson criterion states that xB is rationally smooth in Xw if and only if
qwy D 0 for all y 2 W satisfying x � y � w. However, the integers qwx cannot
distinguish between smoothness and rational smoothess; for this we need certain
elements ewx in the quotient field of S.h�/, which, following [4], we call equivariant
multiplicities. (In Kumar’s notation [9], ewx D cw;x .) Given a reduced expression
S D .si1 ; : : : ; sin/ for w,

ewx D .�1/`.w/
X

.�1;:::;�n/2S .x/

n
Y

jD1

1

�1 	 	 	 �j .˛j / (2.3)

(see [9, Theorem 11.1.2]).
The following theorem is due to Kumar (see [9], Theorems 12.2.16 and 12.1.11).

Theorem 2.2. Let x � w be elements of W .

(1) The point xB is rationally smooth in Xw , for all y 2 W with x � y � w,

ewy D
kw;y
Q


wx
, where .�1/`.w/�`.y/kw;y 2 ZC.

(2) The point xB is smooth in Xw , ewx D
.�1/`.w/�`.x/

Q


wx
.
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As a consequence, we deduce the following result about smoothness of Xw at
rationally smooth points xB where there is only one subexpression multiplying to x.

Theorem 2.3. Let x � w be inW . Suppose xB is rationally smooth inXw . Suppose
that S D .si1 ; : : : ; sin/ is a reduced expression for W , and suppose that there is
only one subexpression .�1; : : : ; �n/ of S multiplying to x. Then xB is smooth
in Xw .

Proof. Suppose x and w are as in the statement of the theorem. Theorem 2.2

implies that ewx D .�1/`.w/�`.x/k
Q

�w
x

, where k is a positive integer. We must show
that k D 1. Since .�1; : : : ; �n/ is the only subexpression of S multiplying to x,
(2.3) implies that ewx D .�1/`.w/ 1

Q

ˇ2P ˇ
, where P D f�1.˛1/; �1�2.˛2/; 	 	 	 g.

Since our two expressions for ewx are equal, we have in CŒ˛1; : : : ; ˛n� the equality
.�1/`.x/kQˇ2P ˇ D

Q

˛2�w
x
˛. Each root is a degree 1 (and hence irreducible)

element of the ring CŒ˛1; : : : ; ˛n�. Since CŒ˛1; : : : ; ˛n� is a unique factorization
domain, each ˛ in 
wx is a multiple of some ˇ 2 P: The only multiples of ˛
which are roots are ˙˛ ([9, Corollary 1.3.6]), so

Q

ˇ2P ˇ D ˙
Q

˛2�w
x
˛. There-

fore k D ˙1: But k > 0; so k D 1: Therefore xB is smooth in Xw . ut
Remark 2.4. We do not know if the hypothesis that xB is rationally smooth in Xw
is necessary for the conclusion of the theorem to hold.

The next proposition will reduce the number of points where we need to com-
pute rational smoothness or smoothness. The first two parts are essentially in
[3, Section 4]; see also [7, Prop. 2.1]. Although [7, Prop. 2.1] is stated only for
the case sw < w, as noted there, the analogous results hold in the case ws < w.

Recall that if s is a simple reflection and sw < w (resp. ws < w), then x � w iff
sx � w (resp. xs � w) ([8, Prop. 5.9]). Also, if ˇ is a root, jˇj denotes the positive
root of the pair fˇ;�ˇg.
Proposition 2.5. Let x � w be inW , let s D s˛ be a simple reflection, and suppose
that sw < w (resp. ws < w). Then:

(a) 
wsx D s.
wx / n f�˛g [ f˛g (resp. 
wxs D 
wx ). Hence qwx D qwsx (resp. qwx D
qwxs).

(b) InXw , xB is rationally smooth, sxB is rationally smooth (resp. xsB is ration-
ally smooth).

(c) ewx D s.ewsx/ (resp. ewx D �ewxs).
(d) In Xw , xB is smooth, sxB is smooth (resp. xsB is smooth).

Proof. For (a) and (b), see [7, Prop. 2.1] (that 
wsx D s.
wx / n f�˛g [ f˛g follows
from the bijection Rwx ! Rwsx given by r 7! srs�1).

We prove (c). Let S D .si1 ; : : : ; sin/ denote a reduced expression for w. If
sw < w, we may choose S so that si1 D s, and then there is a bijection S .x/ !
S .sx/ taking .�1; : : : ; �n/ to .s�1; : : : ; �n/. The equality ewx D s.ewsx/ follows from
the definition of the equivariant multiplicities, since

�1.˛i1/ 	 �1�2.˛i2/ 	 	 	 �1 	 	 	 �j .˛ij / D s.s�1.˛i1/ 	 s�1�2.˛i2/ 	 	 	 s�1 	 	 	 �j .˛ij //:



196 W. Graham and W. Li

Similarly, if ws < s, we may choose S so that sin D s, and then there is a
bijection S .x/ ! S .xs/ taking .�1; : : : ; �n/ to .�1; : : : ; �ns/. Again, the equal-
ity ewx D �ewxs follows from the definition of the equivariant multiplicities, since
s.˛in/ D �˛in .

We now prove (d). It is enough to prove the implication .)/; the other impli-
cation follows by interchanging the roles of x and sx (resp. xs). First, consider the
case sw < w. We have xB is smooth in Xw , ewx D .�1/`.w/�`.x/ 1

Q

ˇ2�w
x
ˇ

, ewsx D .�1/`.w/�`.x/ 1
s.
Q

ˇ2�w
x
ˇ/
D .�1/`.w/�`.x/ 1

Q

ˇ2�w
sx
ˇ

by (a) , sxB is

smooth in Xw . Similarly, if ws < w, then xB is smooth in Xw , �ewxs D ewx D
.�1/`.w/�`.x/ 1

Q

ˇ2�w
x
ˇ
, ewxs D .�1/`.w/�`.xs/ 1

Q

ˇ2�w
sx
ˇ

by (a), xs is smooth.

ut

2.3 Type zA2

For the remainder of this paper, we will assume our Kač–Moody Lie algebra is the
affine Lie algebra type zA2. Thus, � is the affine root system constructed from the
finite root system ˚ of type A2. We can take V D f.a1; a2; a3/ 2 R3 jP ai D 0g,
with the inner product which is the restriction of the usual inner product on R3,
and ˚ D f�i � �j j i ¤ j; 1 � i; j � 3g. We will often simply write R2 for V .
We choose the positive system for ˚ such that the simple roots are ˛1 D �1 � �2,
˛2 D �2 � �3; then the highest root is z̨ D ˛1 C ˛2. The simple roots of � are
˛1; ˛2; ˛3. The Weyl group W is generated by s1; s2; s3, subject to the relations
s2i D .sisj /3 D 1, and we have si .˛i / D �˛i and si .˛j / D ˛i C ˛j for i ¤ j .

Under the identification of W with Waff, the translations by simple coroots are
expressed in terms of simple reflections by

t .˛_1 / D s3s2s3s1; t .˛_2 / D s3s1s3s2; t .z̨_/ D s3s1s2s1 (2.4)

(see [7, Section 3.2]). Moreover, the reflections sˇ inW correspond to affine reflec-
tions s˛;k for ˛ 2 ˚ and k 2 Z, so given ˛ 2 ˚ and integers a � b D a C n � 1,
there are positive real roots ˇ1; : : : ; ˇn 2 �Cre such that sˇi

D s˛;aCi�1. We de-
fine Œa; b�˛ D fˇ1; : : : ; ˇng. (This differs from [7], where Œa; b�˛ denoted the set
fs˛;a; s˛;aC1; : : : ; s˛;bg.) If a > b, then Œa; b�˛ is the empty set. We write fag˛ for
Œa; a�˛ .

Proposition 2.6. The following formulas for fng˛ (resp. f�ng˛) hold when n � 1
(resp. n � 0), ˛ 2 ˚C.

fng˛1
D .n � 1/˛1 C n˛2 C n˛3; f�ng˛1

D .nC 1/˛1 C n˛2 C n˛3
fng˛2

D n˛1 C .n � 1/˛2 C n˛3; f�ng˛2
D n˛1 C .nC 1/˛2 C n˛3

fngz̨ D .n � 1/˛1 C .n � 1/˛2 C n˛3; f�ngz̨ D .nC 1/˛1 C .nC 1/˛2 C n˛3:
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Proof. The proposition is proved by verifying the assertion for two consecutive val-
ues of n, and then using induction together with the equation t .˛_/s˛;nt .�˛_/ D
s˛;nC2 (see (2.2)). We illustrate by proving the formulas for the root z̨, leaving the
remaining formulas to the reader. We first consider sz̨;n for n � 1. By definition,
sz̨;1 D s3 D s˛3

. Next,

sz̨;2 D t .z̨_/sz̨;1 Ds3s1s2s1s3
Ds3s1.s˛2

/.s3s1/
�1 D ss3s1.˛2/ D s˛1C˛2C2˛3

:

This verifies the desired formula for n D 1; 2. Suppose the formula holds for n.
Then taking u D t .z̨_/ D s3s1s2s1, we have sz̨;nC2 D us�u

�1 D su.�/, where
� D .n�1/˛1C.n�1/˛2Cn˛3. Then u.�/ D .nC1/˛1C.nC1/˛2C.nC2/˛3, as
follows by direct calculation, so the result holds for nC 2. This proves the formula
for sz̨;n for n � 1. Next, we consider sz̨;�n for n � 0. For n D 0, since z̨ D ˛1C˛2,
we have s�z̨;0 D sz̨ D s˛1C˛2

. Next, for n D 1,

s�z̨;1 D sz̨;�1 D t .�2z̨_/sz̨;1 D .s1s2s1s3/.s1s2s1s3/s3
D .s1s2s1/s3.s1s2s1/�1 D ss1s2s1.˛3/ D s2˛1C2˛2C˛3

:

This verifies the desired formula for n D 0; 1. Suppose the formula holds for n.
Then taking v D t .�z̨_/ D s1s2s1s3, we have sz̨;�.nC2/ D vs�v

�1 D sv.�/,
where � D .n C 1/˛1 C .n C 1/˛2 C n˛3. Direct calculation shows that v.�/ D
.nC3/˛1C .nC3/˛2C .nC2/˛3, so the formula for sz̨;�n holds for all n � 0. ut

2.4 A parametrization of the alcoves

In this section we recall from [7, Section 4] a parametrization of the set of alcoves
in type zA2, along with some useful results related to this parametrization. Recall
that the alcoves are by definition the set of connected components of R2 n .[H˛;n/,
where the union is over ˛ 2 ˚C and n 2 Z. The parametrization of alcoves is as
follows. Let ˇ1 D ˛1; ˇ2 D ˛2; ˇ3 D �z̨: Let

E.a1; a2; a3/ D fp j .p; ˇi / � Ai for i D 1; 2; 3g;
O.a1; a2; a3/ D fp j .p; ˇi / � Ai for i D 1; 2; 3g

where Ai D ai C "i , and "1 D "2 D 0; "3 D �1. These are pictured in Figure 1.
When we writeX.a1; a2; a3/, we meanX is equal to eitherE orO . The alcoves are
exactly the interiors of the X.a1; a2; a3/, where

P

ai D 0 if X D E, and
P

ai D
2 if X D O . We will abuse terminology and refer to X.a1; a2; a3/ as an alcove
(rather than an alcove closure). The fundamental alcove isAı D E.0; 0; 0/, and q D
1
3
.˛_1 C ˛_2 / is its center point. As noted in the previous section, we have bijections
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W ! falcovesg ! Wq given by w 7! xAı 7! xq. If xAı D X.a1; a2; a3/, we
will say that X.a1; a2; a3/ is the alcove formula for x. By [7, Prop. 4.8], the center
point of X.a1; a2; a3/ is

1

3
.a1˛

_
1 C a2˛_2 � .a3 � 1/z̨_/: (2.5)

Hβ2,A2

Hβ2,A2

H
β

3 ,A
3

H
β

3 ,A
3

H
β 1

,A
1

H
β 1

,A
1

O(a1,a2,a3)

E(a1,a2,a3)

Figure 1 E.a1; a2; a3/ andO.a1; a2; a3/

The action of W on R2 restricts to an action on the set of alcoves, which can be
described as follows. If � 2 L.˚_/, then

t .�/X.a1; a2; a3/ D X.a1 C .ˇ1; �/; a2 C .ˇ2; �/; a3 C .ˇ3; �// (2.6)

Also, if fi; j; kg D f1; 2; 3g, then

siX.a1; a2; a3/ D X 0.b1; b2; b3/ (2.7)

where X 0 is of opposite type to X , and bi D �ai ; bj D �ak C 1; bk D �aj C 1. If
xAı D X.a1; a2; a3/, we say the length of the alcove is `.X.a1; a2; a3// D `.x/.
We have

`.X.a1; a2; a3// D
(

ja1j C ja2j C ja3j if X D E
ja1 � 1j C ja2 � 1j C ja3 � 1j if X D O: (2.8)

See [7, Propositions 4.7 and 4.11] for these results.
Because the set Wq is in bijection with W , there is a right action of W on Wq

defined by .xq/w D xwq for x;w 2 W . However, this action is not the restriction
of an action on the plane by isometries. Given any subset S of Wq, and w 2 W ,
define wS D fwxq j x 2 W; xq 2 Sg and Sw D fxwq j x 2 W; xq 2 Sg.
Remark 2.7. The right action by any simple reflection r D si takes an alcove A D
xA0 (for x 2 W ) to the alcove xrA0. This alcove is obtained by reflecting A across
one of the lines which bound A. To see this, observe that r acts on R2 by reflection
across a line H , which is one of the lines bounding the fundamental alcove A0.
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If x 2 W , then xH is a line bounding the alcove A D xA0, and xrx�1 is the
reflection across xH . The alcove xrA0 is obtained by reflecting A across xH , since
xrA0 D xrx�1xA0. From this we see that the right action by r is not the restriction
of an isometry, since different alcoves may be reflected across different lines.

3 The rationally smooth loci of spiral Schubert varieties

There are subsets R.`/ and�.`/ of R2, such that the set of rationally smooth points
xB in Xw.`/ is in bijection with R.`/ n�.` � 3/. In this section we recall the defi-
nitions of these sets from [7], along with some results from that paper that we will
need here. We conclude the section with two results (Proposition 3.4 and Lemma
3.6) about the set R.`/ n�.` � 3/.

Recall from the introduction that w.`/ denotes the spiral element of length `
defined by w.`/ D s1s2s3s1 	 	 	 (with ` factors). Our convention will be that in a
statement such as “let w.`/ D s1s2 	 	 	 sisj sk”, the right-hand side is assumed to be
a reduced expression, and the indices i , j and k indicate the last three reflections
which appear in this reduced expression (where the values of i , j and k depend
on ` mod 3). Observe that w.`/ has a unique reduced expression, since any other
reduced expression would be obtainable from the one just given by applying the
relations sasbsa D sbsasb , but the reduced expression for w.`/ does not contain the
string sasbsa.

It is useful in certain proofs to know that the elementw.6n/ D t .n.�2˛_1 �˛_2 //
is a translation (see [7, (6.1)]). From [7, Prop. 6.2] we have the formulas

w.`/Aı D E.�`
2
; 0;

`

2
/ and w.`/q D 1 � `

3
˛_1 C

2 � `
6

˛_2 if ` is even (3.1)

w.`/Aı D O.1 � `
2

; 1;
`C 1
2

/ and w.`/q D 1 � `
3

˛_1 C
3 � `
6

˛_2 if ` is odd:

(3.2)

The formal definitions of 4.`/ and R.`/ from [7] are recalled in Definition 3.1
below; here is an informal description. We first define a subset 4.`/ of the plane
consisting of a triangle and its interior. The set Wq consists of the center points of
the alcoves, and 4.`/ consists of the points in Wq which are contained in 4.`/. If
` is even and x 2 W , then x � w if and only if xq 2 4.`/. However, if ` is odd,
then there are two elements Ai .`/ (for i D 1; 2) of W such that Ai .`/q 2 4.`/
but Ai .`/ 6� w.`/, and therefore we define a set R.`/ consisting of 4.`/ with the
two elements Ai .`/q removed. (If ` is even, we let R.`/ equal4.`/.) Thus, the sets
4.`/ and R.`/ give geometric interpretations of the set of x 2 W with x � W.`/.
They are also used in describing the set of non-rationally smooth xB in Xw.`/; see
Theorem 3.3.

If ´ D a1˛_1 C a2˛_2 , set �1.´/ D a1; �2.´/ D a2; �21.´/ D a2 � a1.
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Definition 3.1. Let ` be an integer.

(1) Define4.`/ to be the set of all ´ 2 R2 satisfying the inequalities

.I1.`// W �21.´/ � `

6
C "; .I2.`// W �1.´/ � `

6
C ";

.I3.`// W �2.´/ � �`
6
C 1

3
C ";

where " D 0 if ` is even, " D 1
6

if ` is odd. Let 4.`/ D Wq \4.`/. Note that
we have4.`C 1/ � 4.`/ for all ` � 1 ([7, Prop. 7.3]).

(2) If ` is even, letR.`/ D 4.`/. If ` � 1 is odd, defineA1.`/ WD t . `�12 z̨_/w.`/ D
sz̨w.`C 1/, and A2.`/ WD s1A1.`/. If ` � 3 is odd, let

R.`/ D 4.`/ n fA1.`/q; A2.`/qg:
Let R.1/ D 4.1/. Note that R.`C 1/ � R.`/ for all ` � 1 ([7, Prop. 7.3]).

(3) For each i D 1; 2; 3, define Li .`/ to be the line consisting of all ´ 2 R2 such
that ´ satisfies Ik.`/ with equality holding.

(4) Let Ei .`/ D Li .`/ \ R.`/ for i D 1; 2; 3. We will refer to the Ei .`/ as
edges. If Li .`/ is parallel to ˇ, and ´ 2 Li .`/, the endpoints of Ei .`/,
denoted EPi .`/, are defined to be the points on Ei .`/ of the form ´ C t1ˇ

and ´ C t2ˇ where t1 and t2 are chosen as small (respectively, large) as pos-
sible. They are given by EP1.`/ D fw.`/q; sz̨w.`/qg, EP2.`/ D s1EP1.`/,
EP3.`/ D fw.`/q; s1w.`/qg (see [7, Prop. 7.6]). Two points on an edge are
said to be adjacent if there is no point on that edge between them.

Observe that if ` � 0, then 4.`/ is empty. Hence the related sets 4.`/, R.`/,
Ei .`/, EPi .`/ are empty as well.

Figures 2 and 3 show 4.`/ and R.`/ for ` D 7 and ` D 6. The dots are the
center points of alcoves, and4.`/ consists of the center points lying in the triangular
region. In case ` is odd, R.`/ is defined by removing two points Ai .`/q from4.`/;
these appear on the top left of Figure 2. The sets Ei .`/ are the center points in R.`/
which lie on the lines Li .`/ bounding R.`/.

Remark 3.2. We will often write xq is on an edge when we mean xq is an element
of the edge (for us, an edge is a finite set, since it is the intersection of Wq with a
line segment). Also, for convenience we will often omit the symbol q and write that
x 2 W is on an edge, is an endpoint, etc., when we mean that xq 2 R2 is on an
edge, is an endpoint, etc. There is no ambiguity in doing this, since the edges are
subsets of Wq and the map W ! Wq given by w 7! wq is a bijection.

Note that if ` D 3 (for ` even) or i D 1; 2 (for ` odd), then the proof of Proposi-
tion 3.4 shows that

Li .` � 1/ \R.`/ D Li .` � 1/ \R.` � 1/ D Ei .` � 1/:
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Figure 2 4.`/ andR.`/ for ` odd .` D 7/
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Figure 3 4.`/ D R.`/ for ` even .` D 6/

The next theorem restates some of the main results of [7] (see Theorems 8.1
and 10.4).

Theorem 3.3. Let x 2 W and ` � 1.

(a) We have x � w.`/, xq 2 R.`/.
(b) The point xB 2 Xw.`/ is not rationally smooth, xq 2 4.` � 3/.
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Figure 4 R.`/n4.`�3/ as a unionE1.`/[E2.`/[E3.`/[E3.`�1/ of rationally smooth
edges, for ` even
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Figure 5 R.`/ n 4.`� 3/ as a union E1.`/[E2.`/[E3.`/[E1.`� 1/[E2.`� 1/ of
rationally smooth edges, for ` odd
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We now give a more precise description of the set R.`/ n 4.` � 3/.
Proposition 3.4. (1) If ` is even, then

R.`/ n 4.` � 3/ D E1.`/ [E2.`/ [E3.`/ [E3.` � 1/: (3.3)

If ` is odd, then

R.`/ n 4.` � 3/ D E1.`/ [E2.`/ [E3.`/ [E1.` � 1/ [E2.` � 1/: (3.4)

(2) For i D 1; 2; 3, we have Li .`/ \ .R.`/ n 4.` � 3// D Ei .`/.
(3) Suppose ` � 2. For i D 3 if ` is even, and i D 1; 2 if ` is odd, we have

Li .` � 1/ \ .R.`/ n 4.` � 3// D Ei .` � 1/:
Proof. (1) If ` is even, (3.3) holds by [7, Proposition 7.11(a)] and [7, Remark
7.12]. If ` is odd, then by [7, Proposition 7.6], E3.`/ n E3.` � 1/ D EP3.`/ D
fw.`/q; s1w.`/qg � E1.`/ [ E2.`/, so the right-hand side of (3.4) is unchanged
if we replace E3.`/ with E3.` � 1/. The resulting statement then follows from [7,
Proposition 7.11(b)].

(2) The intersection Li .`/ \ 4.` � 3/ is empty by [7, Lemma 7.8] (note that
4.`� 3/ � 4.`� 2/). Hence Li .`/\ .R.`/n4.`� 3// D Li .`/\R.`/ D Ei .`/.

(3) If ` is even, then R.`/ D R.` � 1/ t .E3.`/[ fA1.` � 1/q; A2.` � 1/qg/
by [7, Proposition 7.9(2)]. Since L3.` � 1/ does not intersect E3.`/ (as the lines
L3.` � 1/ and L3.`/ are parallel but not equal), or contain Ai .` � 1/q, we have
L3.`� 1/\R.`/ D L3.`� 1/\R.`� 1/ D E3.`� 1/, as desired. If ` is odd, by
[7, Proposition 7.9(1)], R.`/ D R.` � 1/ t fE1.`/; E2.`/g. For i D 1; 2, the line
Li .`�1/ does not intersectEi .`/ (asLi .`�1/ andLi .`/ are parallel but not equal).
Also, we have L1.`/\L2.`�1/ D A1.`/q and L2.`/\L1.`�1/ D A2.`/q; since
` � 3, Ai .`/q 62 R.`/, and therefore Li .` � 1/ \ Ej .`/ D ¿ for fi; j g D f1; 2g.
Therefore, we have Li .` � 1/ \ R.`/ D Li .` � 1/ \ R.` � 1/ D Ei .` � 1/, as
desired. ut
Definition 3.5. The edges of R.`/ n 4.` � 3/ are Ei .`/ for i D 1; 2; 3, together
with E3.`� 1/ (if ` is even), or E1.`� 1/ and E2.`� 1/ (if ` is odd). We will refer
to these as the “rationally smooth” edges. See Figures 4 and 5.

The proof of part (1) of the next lemma is simpler than the proof of (2), because
given a reflection s 2 W , the map Wq ! Wq given by xq 7! sxq is the restriction
of an isometry V ! V , but the map xq 7! xsq is not (cf. Remark 2.7).

Lemma 3.6. Let ` � 1, and let w.`/ D s1s2s3 	 	 	 sk be a reduced expression.

(1) There are bijections

E1.`/! E2.`/ ´ 7! s1´

E3.`/! E3.`/ ´ 7! s1´

E1.`/! E1.`/ ´ 7! sz̨´:
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(2) Let i D 3 if ` is even, and i D 1 if ` is odd. There is a bijection Ei .` � 1/ !
Ei .`/, ´ 7! ´sk .

Each of the bijections in (1) and (2) preserves the set of endpoints and takes the n-th
point from an endpoint to the n-th point from the other endpoint.

Proof. (1) By [7, Prop. 7.5], s1E1.`/ D E2.`/ and s1EP1.`/ D EP2.`/. Let
p0; p1; p2; : : : be the points on E1.`/, listed in order starting from the endpoint
p 2 EP1.`/.Then s1p 2 EP2.`/ and the points s1p0; s1p1; s1p2; : : : are all in
E2.`/. Moreover, each point in this list is adjacent to the next, since if there were
´ 2 E2.`/ between s1pn and s1pnC1, then s1´ 2 E1.`/ would be between pn
and pnC1, contradicting our assumption. This proves the part of the statement inv-
olving E1.`/ ! E2.`/; the part involving E3.`/ ! E3.`/ is proved similarly.
Finally, although [7, Prop. 7.5] does not discuss the symmetry of E1.`/ under sz̨,
this symmetry can be deduced from the fact that sz̨ switches the endpoints of E1.`/
(see Definition 3.1), and then the part of the statement involving E1.`/ ! E1.`/

follows by arguments similar to the arguments for other parts.
(2) Suppose ` is even. We have EP3.`/ D fw.`/q; s1w.`/qg and since w.` �

1/ D w.`/sk , we have EP3.` � 1/ D EP3.`/sk . Also, E3.`/ (resp. E3.` � 1/)
consists of the points in L3.`/ (resp. L3.` � 1/) between the endpoints. Let q0
(resp. q00) denote the endpoint w.`/q 2 EP3.`/ (resp. w.` � 1/q 2 EP3.` �
1//. By (3.1) and (3.2), these correspond to the alcoves E.� `

2
; 0; `

2
/ and O.� `

2
C

1; 1; `
2
/, respectively, so by [7, Corollary 4.7], both q0 and q00 lie between H

˛1;� `
2

and H˛1;� `
2C1.

Let q0; q1; : : : (resp. q00; q01; : : :) be the points on E3.`/ (resp. E3.` � 1/) listed
in order starting at q0 (resp. q00). By [7, Theorem 5.3] and its proof, qi (resp.
q0i ) is the unique point of the form uq (for u 2 W ) lying between H˛1;� `

2Ci
and H˛1;� `

2CiC1, and moreover, qi D wiq (resp. q0i D wiskq), where wi D
s
˛1;� `

2Ci 	 	 	 s˛1;� `
2C2s˛1;� `

2C1w.`/. Hence the map ´ 7! ´sk takes the n-th point

qn from q0 to the n-th point q0n from q00. A similar argument shows that the map
takes the n-th point from the endpoint s1w.`/q to the n-th point from the endpoint
s1w.` � 1/q. This proves the result if ` is even. The proof is similar if ` is odd; we
omit the details. ut

4 Description of the smooth locus

The main result of the paper is the following theorem, which describes the smooth
locus of a spiral Schubert variety in type zA2. See Figures 6 and 7.

Theorem 4.1. Let ` � 6 and let x � w.`/. Then xB is smooth in Xw.`/ if and only
if there is a rationally smooth edge of R.`/ n 4.` � 3/ containing xq as either an
endpoint, or a point adjacent to an endpoint.
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As explained in the introduction, to prove the theorem, it suffices to show that for
x 2 W on a rationally smooth edge (recall from Remark 3.2 that this means xq is
an element of the edge), if xq is an endpoint or adjacent to an endpoint, then xB is
smooth in Xw.`/, and that if xq is the second point from an endpoint, then xB is not
smooth in Xw.`/. Proposition 2.5 implies that if y � w, then in Xw.`/, the points
yB; s1yB, and yskB (with w.`/ D s1s2 	 	 	 sk) are either all smooth or all singular.
By Lemma 3.6, s1E2.`/ D E1.`/, s1E2.` � 1/ D E1.` � 1/, and s1E3.`/ D
E3.`/. Also, if ` is even, E3.` � 1/sk D E3.`/; if ` is odd, E1.` � 1/sk D E1.`/.
Combining these observations with the definition of the rationally smooth edges
(Definition 3.5) shows that we may assume x is on E1.`/ or E3.`/, and moreover,
that if x is on E3.`/, then x is either the endpoint w.`/q or one of the next two
points from that endpoint.

Hα2,0

H
α
1
,0

H
α̃

,1

w(12)

y
1 y

2

x1

x2

sα̃x2

sα̃x1
sα̃w(12)

E1
(�)

E
2 (�)

E
3 (�)

E
3 (� − 1)

α
1

α̃

α
2

Figure 6 Smooth locus for Xw.`/ for ` even .` D 12/. Here xi D pi .E1.`//; yi D
pi .E3.`//. The center points of the shaded alcoves correspond to smooth points ofXw.`/.

It will be convenient to introduce some notation for these points.

Definition 4.2. Let p.E1.`// D p.E3.`// be the endpoint w.`/ of E1.`/ and
E3.`/. (This endpoint is an element of each of the sets EP1.`/ and EP3.`/;
see Definition 3.1.) Let the next two points from this endpoint on Ei .`/ (for
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Hα2,0
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1
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sα̃x1
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x1

x2

w(11)

E1
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E
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3 (�)

E1
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1)
E

2 (�−
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α
1
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2

Figure 7 Smooth locus for Xw.`/ for ` odd .` D 11/. Here xi D pi .E1.`//; yi D
pi .E3.`//. The center points of the shaded alcoves correspond to smooth points ofXw.`/.

i D 1; 3) be denoted (in order) by p1.Ei .`//, p2.Ei .`//. The other endpoint of
E1.`/ is sz̨p.E1.`// and the next two points are sz̨p1.E1.`//, sz̨p2.E1.`// (see
Lemma 3.6).

Formulas for these points are given in Proposition 5.1.
Theorem 4.1 will follow from the next two propositions. In the next proposi-

tion, by a subexpression of w.`/ we mean a subexpression of the unique reduced
expression for w.`/.

Remark 4.3. In the next proposition, as well as in some of the later propositions,
some small values of ` are excluded. One reason is that for small values of `, the set
R.`/ may be too small for certain elements to be defined. For example, if ` D 3,
then E1.`/ has only two points, so p2.E1.`// is not defined. Also, some of the
length formulas fail for small values of `: for example, if ` D 4, then sz̨p2.E1.`//
has length 3, but for ` � 6, this element has length ` � 3. Similarly, some of the
subexpression formulas hold only if the reduced expression for w.`/ has enough
terms.
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Proposition 4.4.

(1) Let ` � 3. Let x be the endpoint p.E1.`// D p.E3.`//, the endpoint
sz̨p.E1.`//, or a point on E1.`/ or E3.`/ adjacent to one of these endpoints.
Then there is one subexpression of w.`/ multiplying to x.

(2) Let x be equal to p2.E1.`//, sz̨p2.E1.`//, or p2.E3.`//, and assume that ` �
4, 6, or 3, respectively, depending on x. There are m subexpressions of w.`/
multiplying to x. If ` is even, then m D `

2
� 1. If ` is odd, then m D `�1

2
if xq

lies on E3.`/ and m D `�3
2

if x lies on E1.`/.

The second proposition concerns equivariant multiplicities.

Proposition 4.5. Let ` be as in Proposition 4.4. Let x be the endpoint p.E1.`// D
p.E3.`//, the endpoint sz̨p.E1.`//, or one of the next two points onE1.`/ orE3.`/
starting from one of these endpoints. Then

ew.`/x D .�1/`.w.`//�`.x/ m
Q

ˇ2�w.`/
x

ˇ
;

where m is the number of subexpressions of s1s2 	 	 	 sk multiplying to x.

These two propositions, combined with the smoothness criterion in terms of
equivariant multiplicities of Theorem 2.2, imply that if x is one of the endpoints
p.E1.`// or sz̨p.E1.`//, or adjacent to one of these endpoints on E1.`/, (resp. x is
the endpoint p.E3.`//, or adjacent to this endpoint on E3.`/), then xB is smooth in
Xw.`/, and if x is the second point onE1.`/ from p.E1.`// or sz̨p.E1.`// (resp. the
second point on E3.`/ from p.E3.`//), then xB is singular in Xw.`/. As explained
above, this proves Theorem 4.1.

Proposition 4.4 is proved in Section 5. Observe that once we have proved this
proposition, the part of Proposition 4.5 concerning the endpoints or points adjacent
to endpoints follows easily. Indeed, since xB is rationally smooth inXw.`/ and there
is only one subexpression of w.`/ multiplying to such a point, Theorem 2.3 implies
that xB is smooth in Xw.`/. The statement about equivariant multiplicities then fol-
lows from Theorem 2.2. Therefore, in proving Proposition 4.5, we may assume that
x is one of p2.E1.`//, sz̨p2.E1.`//, or p2.E3.`//. The proof of the proposition in
the cases p2.E1.`// and p2.E3.`// is given in Section 7; the case sz̨p2.E1.`// is
discussed briefly.

Remark 4.6. The part of Proposition 4.5 concerning the point sz̨p2.E1.`// is not
necessary to prove our main theorem identifying the set of smooth points. Indeed,
Proposition 5.1 implies that for ` � 6, sz̨p2.E1.`// < p2.E1.`// (since these two
elements differ by a reflection, and the length of the second is greater). Since the
singular locus is closed, once we know that p2.E1.`// corresponds to a singular
point of Xw.`/, this implies that sz̨p2.E1.`// does as well, without the need to
calculate the equivariant multiplicity at that point (cf. the discussion of the proof
of Theorem 4.1 in the introduction). For this reason, and because it is similar to
the case of p2.E1.`//, we omit most of the proof of Proposition 4.5 in the case
sz̨p2.E1.`//.
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5 Subexpressions

In this section we prove Proposition 4.4, which describes the number of subexpres-
sions of w.`/ multiplying to each element x listed in Definition 4.2. In fact, we
obtain more information than this. All of the elements listed in Definition 4.2 have
length `� 2 or greater, except for sz̨p2.E1.`//, which has length `� 3 (see Propo-
sition 5.1). Motivated by this, in Propositions 5.2 and 5.3 we identify all the subex-
pressions of w.`/ which multiply to elements of length ` � 2 or greater, along with
the elements to which they multiply. Proposition 4.4 follows immediately from this,
except for the element sz̨p2.E1.`//, which is handled separately in Proposition 5.5.

In the next proposition we will calculate alcove formulas for some elements of
W . These are used in determining elements to which subexpressions multiply, and
also in computing the sets 
w.`/x (the alcove formula for x yields a formula for xq,
which is the main ingredient in computing 
w.`/x ).

Before stating the proposition we briefly discuss the proofs of the alcove formu-
las. In general, if we know the alcove formula for x 2 W , the alcove formulas for
any sˇ;kx can be computed by expressing sˇ;k as a composition of a translation and
a simple reflection (using (2.1)) and then using the description of the W -action on
alcoves given in (2.6) and (2.7). Now suppose we know the alcove formula for xAı,
and letL be a line in R2 parallel to ˇ 2 ˚ and passing through xq. If x 2 W is such
that xq lies on L, we can determine from the alcove formula for x the value of i
such that xq lies between the linesHˇ;i andHˇ;iC1. The next two points on the line
L starting from xq in the direction ˇ are sˇ;iC1xq and sˇ;iC2sˇ;iC1xq D t .ˇ_/xq
(see the proof of Theorem 5.3 in [7]). The alcove formulas for these points can be
computed from the alcove formula for x, as discussed above. Replacing ˇ by �ˇ
gives the results for the points in the direction of �ˇ. We apply this method to prove
the alcove formulas in the proposition, starting with the alcove formulas for w.`/
from (3.2) and (3.1).

Proposition 5.1. Let ` � 4. The following table gives the alcove formula for xAı
and the length `.x/ for an element x from Definition 4.2 (the length formula for the
element sz̨p2.E3.`// requires ` � 6). In addition, p1.Ei .`// D w.` � 1/, where
i D 3 if ` is odd, and i D 1 if ` is even. Also, if ` is even, then p1.E3.`// D
s˛1;� `�2

2
w.`/, and if ` is odd, then p1.E1.`// D sz̨;� `�3

2
w.`/.

Proof. To prove the formulas in the table involving E1.`/, write p D p.E1.`// D
w.`/, pi D pi .E1.`/. The alcove formulas for p in the table are those given in
(3.1) and (3.2). Write ˇ3 D �˛ to be consistent with the notation of [7]. By [7,
Cor. 4.7] applied to the alcove formulas for p, we have i < .p; ˇ3/ < i C 1, where
i D `�2

2
if ` is even, or i D `�3

2
if ` is odd. Since sz̨p � p is a negative multiple of

ˇ3 D �z̨, the points p; p1; p2 are listed in the direction of �ˇ3. Now the method
discussed above gives the formulas for p1 and p2. The proofs of the other formulas
in the table as well as the expressions for p1.E3.`// (` even) and p1.E1.`// (` odd)
are similar, and we omit them. The equations p1.Ei .`// D w.` � 1/, where i D 3
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if ` is odd, and i D 1 if ` is even, follow from comparing the alcove formulas of the
table with the corresponding formulas for w.`� 1/. The lengths are computed from
the alcove formulas using (2.8). ut

Point Alcove Length

` even ` odd

OnE1.`/

p.E1.`// E.� `
2
; 0;

`

2
/ O.

1� `
2

; 1;
1C `
2

/ `

p1.E1.`// O.
2� `
2

; 1;
`

2
/ E.

1� `
2

; 1;
`� 3
2

/ `� 1

p2.E1.`// E.
2� `
2

; 1;
`� 4
2

/ O.
3� `
2

; 2;
`� 3
2

/ `� 2

sz̨p.E1.`// O.0;
`

2
;
4� `
2

/ E.�1; `� 1
2

;
3� `
2

/ `� 1

sz̨p1.E1.`// E.�1; `� 2
2

;
4� `
2

/ O.�1; `� 1
2

;
7� `
2

/ `� 2

sz̨p2.E1.`// O.�1; `� 2
2

;
8� `
2

/ E.�2; `� 3
2

;
7� `
2

/ `� 3 .` 	 6/

OnE3.`/

p.E3.`// E.� `
2
; 0;

`

2
/ O.

1� `
2

; 1;
1C `
2

/ `

p1.E3.`// O.
4� `
2

; 0;
`

2
/ E.

1� `
2

; 0;
`� 1
2

/ `� 1

p2.E3.`// E.
4� `
2

;�1; `� 2
2

/ O.
5� `
2

; 0;
`� 1
2

/ `� 2

The next proposition describes the elements x � w.`/ of length ` � 1, and the
subexpressions of w.`/ multiplying to each such element.

Proposition 5.2. Let ` � 4. There are 4 elements x 2 W of length ` � 1 such that
x � w.`/. There is exactly one subexpression of w.`/ multiplying to each such x.
The 4 elements and the corresponding subexpressions are:

(a) The subexpression T1 D .1; s2; s3; s1; s2; s3; : : : ; si ; sj ; sk/ multiplies to
s1w.`/ 2 s1E1.`/ D E2.`/.

(b) The subexpression T2 D .s1; 1; s3; s1; s2; s3; : : : ; si ; sj ; sk/ multiplies to
sz̨w.`/ D sz̨p.E1.`//.
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(c) The subexpression T3 D .s1; s2; s3; s1; s2; s3; : : : ; si ; 1; sk/ multiplies to
p1.E3.`// if ` is even and p1.E1.`// if ` is odd, and equals s

˛1;� `�2
2
w.`/ if

` is even, sz̨;� `�3
2
w.`/ if ` is odd.

(d) The subexpression T4 D .s1; s2; s3; s1; s2; s3; : : : ; si ; sj ; 1/ multiplies to the el-
ement w.`� 1/, which equals p1.E1.`// if ` is even, and p1.E3.`// if ` is odd.

Proof. Write w.`/ D s1s2s3s1s2 	 	 	 sisj sk . If we delete a reflection sc that is not
one of the first two or last two reflections, then the resulting element has length
� ` � 2, since deleting sc from sasbscsasb yields sasbsasb D sbsa. Hence the
only possible subexpressions of w.`/ which multiply to length ` � 1 elements are
T1;T2;T3;T4.

We verify the assertions in (a)–(d) about the elements to which these subexpres-
sions multiply. (a) is immediate from the definitions. For (d), it is immediate that
T4 multiplies to w.` � 1/. By (3.1) and (3.2), w.` � 1/ equals O.2�`

2
; 1; `

2
/ if ` is

even, and E.1�`
2
; 0; `�1

2
/ if ` is odd. From Proposition 5.1, we see w.` � 1/ equals

p1.E1.`// if ` is even and p1.E3.`// if ` is odd. This proves (d). Part (b) holds since
sz̨w.`/ D .s1s2s1/.s1s2 	 	 	 sk/ D s1s3w.` � 3/, which is what T3 multiplies to.

We now prove (c). The subexpression T3 multiplies to w.` � 2/sk . We must
calculate the alcove w.` � 2/skAı, and show that it agrees with the formula for
p1.E3.`// (if ` is even) or p1.E1.`// (if ` is odd) given in Proposition 5.1. The
alcove w.` � 2/skAı can be calculated using the fact that w.6n/ D t .n.�2˛_1 �
˛_2 // is a translation (see Section 3), together with the formulas of (2.6) and (2.7)
describing theW -action on alcoves. Indeed, since ` � 4, ` is of the form 6nC i , for
some n � 1 and i 2 f�2;�1; 0; 1; 2; 3g. Suppose first that i D �2 so ` D 6n � 2.
Then w.`/ D s1s2s3 	 	 	 s1s2s3s1, so k D 1, and w.` � 2/sk D w.6n/s3s2s1s3s1.
Then using (2.6) and (2.7), we have

w.` � 2/s1Aı D t .n.�2˛_1 � ˛_2 //s3s2s1s3s1Aı
D t .n.�2˛_1 � ˛_2 //O.3; 0;�1/
D O.�3nC 3; 0; 3n � 1/ D O.�`

2
C 2; 0; `

2
/:

which equals p1.E3.`// (which equals s˛1;� `�2
2
w.`/ as ` is even, by Proposition

5.1). This proves (c) in case ` D 6nC i , i D �2; the calculation for the other values
of i is similar, and we omit it.

Finally, observe that all the elements in (a)–(d) coincide with elements listed in
Proposition 5.1 and from that proposition we see that they have length ` � 1, as
claimed. ut

The next proposition identifies the length ` � 2 elements x � w.`/ and the
subexpressions of w.`/ multiplying to them.

Proposition 5.3. Let ` � 5. The number of elements x 2 W of length `�2 such that
x � w.`/ is 7 if ` is even, and 8 if ` is odd. If ` is even (resp. odd) the following 5
(resp. 6) elements of length `�2 each have exactly one subexpression Si multiplying
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to that element, for i D 1; : : : ; 5 (resp. i D 1; : : : ; 6). The subexpressions Si and
the corresponding elements are listed in the table below. (If ` is even, S6 multiplies
to sz̨p1.E1.`//, which has length ` � 4, so we have omitted it from the table.)

subexpression multiplies to

if ` even if ` odd

S1 .1; s2; s3; : : : ; si ; sj ; 1/ s1p1.E1.`// s1p1.E3.`//

S2 .1; s2; s3; : : : ; si ; 1; sk/ s1p1.E3.`// s1p1.E1.`//

S3 .1; 1; s3; : : : ; si ; sj ; sk/ s1sz̨p.E1.`//

S4 .s1; 1; s3; : : : ; si ; sj ; 1/ sz̨p1.E1.`// sz̨p1.E3.`//

S5 .s1; s2; s3; : : : ; si ; 1; 1/ p1.E3.`� 1// p1.E1.`� 1//
S6 .s1; 1; s3; : : : ; si ; 1; sk/ sz̨p1.E1.`//

The other two elements of length ` � 2 are p2.E3.`// D t .˛_1 /w.`/ and
p2.E1.`// D t .z̨_/w.`/. The set of subexpressions multiplying to p2.E3.`// is

f.1; s2; 1; s1; : : : ; sk/; .s1; s2; 1; s1; 1; s3; : : : ; sk/; : : :g (5.1)

The set of subexpressions multiplying to p2.E1.`// is

f.s1; 1; s3; 1; s2; : : : ; sk/; .s1; s2; s3; 1; s2; 1; : : : ; sk/; : : :g: (5.2)

Proof. First, we show that the subexpressions listed are the only possibilities for
length ` � 2 elements, that is, that no other subexpression can multiply to a length
` � 2 element of W . Later, we will show these subexpressions actually do multiply
to length ` � 2 elements (except for S6 when ` is even).

Suppose S D .�1; �2; : : : ; �`/ is a subexpression of w.`/ (so each �i is a ref-
lection or 1) multiplying to an element x of length ` � 2. If exactly one �i were
equal to 1 then `.x/ would be congruent to ` � 1 (mod 2), and if 3 or more of the
�i were equal to 1, then `.x/ � ` � 3. Hence exactly two of the �i are equal to
1. If all such �i satisfy i 2 f1; 2; n � 1; ng, then S is one of the subexpressions
S1-S6 listed in the table. Otherwise, �i D 1 for some i … f1; 2; ` � 1; `g. We
claim that either �i�2 D 1 or �iC2 D 1. Indeed, there is exactly one j ¤ i with
�j D 1: If j D i � 1, then S contains the sequence .: : : ; �i�2; 1; 1; �iC1; : : :/.
Since �i�2 D �iC1; `.x/ � ` � 4, contradicting our hypothesis that `.x/ D ` � 2.
Hence j ¤ i � 1; a similar argument shows j ¤ i C 1. If j j � i j> 2, then
S contains the sequence .: : : ; �i�2; �i�1; 1; �iC1; �iC2; : : :/. Since �i�2 D �iC1 and
�i�1 D �iC2, we have �i�2�i�1�iC1�iC2 D �i�1�i�2, so `.x/ � ` � 4, again a
contradiction. Thus j 2 fi � 2; i C 2g, proving the claim. We conclude that S is
one of the subexpressions listed in (5.1) and (5.2).

We conclude that the only possible subexpressions which multiply to length `�2
elements are those listed in the statement of the proposition.

We now verify the entries in the table. Let Ti be as in Proposition 5.2. By ins-
pection (noting that sz̨ D s1s2s1), we see (with notation as in Section 2) that
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Q

S1 D s1w.` � 1/, QS2 D s1
Q

T3,
Q

S3 D s2s1w.`/ D s1sz̨w.`/,
Q

S4 D sz̨
Q

T4,
Q

S5 D w.` � 2/, and
Q

S6 D sz̨
Q

T4. The remaining
entries in the last two columns of the table follow from the above calculations
and Proposition 5.2. Note that if ` is even, then by Proposition 5.2, this equals
sz̨p1.E3.`// D sz̨O.4�`2 ; 0;

`
2
/ D E.0; `�4

2
; �`C4

2
/, which by (2.8) has length

` � 4, so the entry for S6 is omitted.
We now verify that each of S1; : : : ;S5 (and S6 if ` is odd) multiplies to an

element of length `�2. This holds for S1;S3 and S5 since these multiply to spiral
elements. It holds for S4, and S6 if ` is odd, by Proposition 5.1. If S2 multiplies to
x, then `.x/ D `.x�1/ and x�1 is of the form S4 (under some permutation of the
simple reflections s1; s2; s3). Since permuting the simple reflections does not change
the length, we conclude by the result for S4 that `.x/ D ` � 2.

We now turn to the subexpressions listed in (5.1) and (5.2). Observe that the
subexpressions .1; sj ; 1; si ; sj / and .si ; sj ; 1; si ; 1/ of .si ; sj ; sk ; si ; sj ; sk/ both
multiply to the same element. Hence the subexpressions in (5.1) all multiply to the
same element, which equals s2w.`�3/ (as is seen by looking at the first subexpres-
sion in the list). Since t .˛_1 / D s2s3s2s1, we see that s2w.` � 3/ D t .˛_1 /w.`/ D
p2.E3.`//. Similarly, the subexpressions in (5.2) all multiply to s1s3s2s3w.` � 6/,
which equals t .z̨_/w.`/ D p2.E1.`// (as t .z̨_/ D s3s1s2s1). Both p2.E3.`// and
p2.E1.`// have length `�2 by Proposition 5.1. One can check that all the elements
x 2 W listed in the statement of the proposition are distinct by computing the center
points xq and observing that these points are distinct. This completes the proof. ut
Remark 5.4. Proposition 5.3 remains true if ` D 4, except that some of the subex-
pressions coincide, so there are not as many distinct elements. In particular, S2 coi-
ncides with (5.1) and S4 coincides with (5.2). Also, if ` D 3, the statement about
p2.E3.`// remains true: indeed, p2.E3.`// D s2 and there is one subexpression
.1; s2; 1/ multiplying to this.

As explained in Section 4, one of the elements x such that we need to determine
e
w.`/
x is x D sz̨p2.E1.`//. Since this element has length ` � 3, the subexpressions

of w.`/ multiplying to x are not listed above. We list them in the next proposition.

Proposition 5.5. Let ` � 5. The element sz̨p2.E1.`// has length ` � 3. The subex-
pressions of w.`/ multiplying to sz̨p2.E1.`// are as follows:

.s1; s2; s3; 1; s2; s3; s1; s2; s3; s1; : : : ; si ; sj ; sk/

.s1; 1; s3; 1; s2; 1; s1; s2; s3; s1; : : : ; si ; sj ; sk/

.s1; 1; s3; s1; s2; 1; s1; 1; s3; s1; : : : ; si ; sj ; sk/

.s1; 1; s3; s1; s2; s3; s1; 1; s3; 1; : : : ; si ; sj ; sk/

	 	 	 :

Proof. For brevity, write m.`/ D sz̨p2.E1.`//. We must show that all the subex-
pressions listed in the statement multiply to m.`/. First, we observe that they all
multiply to the same element. Indeed, this holds for the first and second subexpres-
sions, since they agree after the first 6 terms, and s1s2s3s2s3 D s1s3s2. For all the
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subexpressions except the first, if we remove the first two entries (that is, s1 and 1)
we are left with a subexpression that is of the form (5.2) up to a permutation of
the simple reflections. Since all the subexpressions in (5.2) multiply to the same ele-
ment, we see that all the subexpressions in the statement of this proposition multiply
to the same element.

Since p2.E1.`// D t .z̨_/w.`/ by the discussion preceding Proposition 5.1, and
sz̨ D s1s2s1, t .z̨_/ D s3s1s2s1 (see (2.4)), we can compute m.`/ directly from
its definition, and after simplifying, we obtain s1s3s2w.` � 6/. Since the second
subexpression listed in the statement of the proposition multiplies to this element,
we see that all the subexpressions in the statement multiply to m.`/.

To complete the proof we must show that these are the only subexpressions of
w.`/ multiplying to m.`/. Observe that `.s3s2m.`// D ` � 1. Indeed, from the
alcove formulas for m.`/ given in Proposition 5.1, we see that the alcove formula
for s3s2m.`/ is E. `�1

2
; 7�`
2
;�3/ if ` is odd, and O.2; `

2
� 1; 1 � `

2
/ if ` is even. In

either case, (2.8) shows that `.x/ D ` � 1.
Now suppose that S is a subexpression of w.`/ multiplying to m.`/. We want

to show that S is one of the subexpressions in the statement of the proposition. We
claim that the first two entries of S cannot both be 1. Indeed, suppose both are 1.
Then the third is s3: otherwise S would multiply to an element which is less than
or equal to w.` � 3/ in the Bruhat order (cf. Section 2), but the only such element
of length ` � 3 is w.` � 3/ ¤ m.`/. Hence m.`/ D s3x, where x � w.` � 3/ and
x D s3m.`/. If ` is even, then s3m.`/Aı D E.0; `

2
� 1; 1 � `

2
/ which has length

` � 2, contradicting x � w.` � 3/. If ` is odd, then s3m.`/Aı D O.5�`
2
; 3; `�7

2
/,

which has length `� 4. Since x � w.`� 3/, Proposition 5.2 implies x is one of the
elements s1w.`� 3/; sz̨w.`� 3/; w.`� 4/ or s˛1;� `�5

2
w.`� 3/. One can compute

the alcove formulas for these four elements and verify that none equals s3m.`/Aı;
this is a contradiction. The claim follows.

Next, the first entry of S cannot be 1. Indeed, if this entry were 1, then by the
previous claim, the second term would be s2, so the first three entries would be
1; s2; s3 or 1; s2; 1. Thenm.`/ would equal s2s3x or s2x, where x � w.`�3/. Then
x D s3s2m.`/ or x D s2m.`/. In either case, `.x/ � ` � 2 (since `.s3s2m.`// D
` � 1), which is impossible, since the length of w.` � 3/ is ` � 3.

We have shown that the first entry of S is s1. The second entry is either 1
or s2. Suppose that the second entry is 1. Then s1x D m.`/, so x D s1m.`/.
Using the second subexpression in the statement of the proposition for m.`/,
we see x D s31s21s1s2 	 	 	 sisj sk , so x < s3s1s2 	 	 	 sisj sk . Hence f .x/ D
p2.E1.`// < f .s3s1s2 	 	 	 sisj sk/ D w.` � 2/, where f is the automorphism
of W such that f .s3/ D s1; f .s1/ D s2; f .s2/ D s3. By Proposition 5.2, the
only subexpressions of w.` � 2/ multiplying to p2.E1.`// are .s1; 1; s3; 1 : : : ; /,
.s1; s2; s3; 1; s2; 1; : : :/, : : :, so, writing g D f �1, we see that the only subexpres-
sions of .s3; s1; s2; : : :/ multiplying to x are .g.s1/; 1; g.s3/; 1; : : : ; /, .g.s1/; g.s2/;
g.s3/; 1; g.s2/; 1; : : :/, : : :, that is, .s3; 1; s2; 1; : : :/, .s3; s1; s2; 1; s1; 1; : : :/, : : :. We
conclude that S is one of the subexpressions in the statement of the proposition.

Finally, suppose that the second entry of S is s2. Then s1s2x D m.`/, where
x D s2s1m.`/ � y WD s3s1s2s3 	 	 	 . We have s2s1m.`/Aı D E. `�3

2
; 5�`
2
;�1/

(resp. O. `
2
� 1; 3 � `

2
; 0/) if ` is even (resp. ` is odd), so (2.8) implies that
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`.x/ D ` � 3. With f as above, we have f .y/ D w.` � 2/, and, by reasoning
similar to the previous paragraph, we deduce from Proposition 5.2 that all 4 length
`� 3 subexpressions of .s3; s1; s2; s3; : : :/ multiply to different elements. Hence the
only subexpression of y multiplying to x is .s3; 1; s2; s3; s1; : : :/. This implies that
S D .s1; s2; s3; 1; s2; s3; s1; : : :/, completing the proof. ut

6 Some lemmas

In order to perform the calculations of equivariant multiplicities in the next section,
we need to know the sets
w.`/x for various x, and also to identify certain roots of the
form x.˛/, where ˛ is simple. These results are given (respectively) in Lemma 6.4
and Lemma 6.6. The reader may wish to read the next section, where these results
are used, before reading this section.

We will compute the sets 
w.`/x (and thus prove Lemma 6.4) by computing rel-
ated sets �w.`/x and adjusting. The reason we use �w.`/x is that if we know the point
xq 2 R2 (that is, the center point of the alcove corresponding to x), then we can
use [7, Proposition 9.6] to compute�w.`/x . The formulas for xq are given in Lemma
6.1, and the adjustment to obtain 
w.`/x in Lemma 6.2. Note that there is some
duplication in the table in Lemma 6.1, since by Proposition 5.2, w.` � 1/ equals
p1.E1.`// if ` is even, and p1.E3.`// if ` is odd.

Lemma 6.1. The following table lists the center points xq for certain x 2 W . For `
odd, among the elements listed in the table, p1.E1.`// and sz̨p2.E1.`// are of the
form sz̨;mAi .`/ for some i D 1; 2 and some m 2 Z; the others are not.

Element x Center Point xq

` even ` odd

w.`� 1/ 2� `
3

˛_

1 C 4� `6 ˛_

2

2� `
3

˛_

1 C 3� `6 ˛_

2

p1.E1.`//
2� `
3

˛_

1 C 4� `6 ˛_

2

3� `
3

˛_

1 C 7� `6 ˛_

2

p2.E1.`//
4� `
3

˛_

1 C 8� `6 ˛_

2

4� `
3

˛_

1 C 9� `6 ˛_

2

p1.E3.`//
3� `
3

˛_

1 C 2� `6 ˛_

2

2� `
3

˛_

1 C 3� `6 ˛_

2

p2.E3.`//
4� `
3

˛_

1 C 2� `6 ˛_

2

4� `
3

˛_

1 C 3� `6 ˛_

2

sz̨p1.E1.`//
`� 4
6

˛_

1 C `� 23 ˛_

2

`� 7
6

˛_

1 C `� 33 ˛_

2

sz̨p2.E1.`//
`� 8
6

˛_

1 C `� 43 ˛_

2

`� 9
6

˛_

1 C `� 43 ˛_

2
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Proof. By [7, Proposition 4.8], if ˇ1 D ˛1, ˇ2 D ˛2 and ˇ3 D �.˛1 C ˛2/, then
the center point of X.a1; a2; a3/ is

1

3
.a1ˇ

_
1 C a2ˇ_2 C .a3 � 1/ˇ_3 / D

1

3
..a1 � a3 C 1/˛_1 C .a2 � a3 C 1/˛_2 /:

Applying this to the alcove formulas in Proposition 5.1 gives the center points in the
table.

We now verify the assertion about elements of the form sz̨;mAi .`/ for ` odd.
Since p2.E3.`//q � Ai .`/q is not a multiple of z̨, p2.E3.`// is not of the form
sz̨;mAi .`/. Since A2.`/ D t . `�1

2
z̨_/w.` � 1/ and A1.`/ D s1A2.`/, we see that

w.` � 1/ is not of the form sz̨;mA2.`/ or sz̨;mA1.`/.
The other elements in the table are all on E1.`/. By [7, Proposition 10.2] and its

proof, an element x onE1.`/ is of the form sz̨;mAi .`/, x is of the form sz̨;kw.`/;
because reflections and translations have opposite parity, this does not hold if x is
of the form t .c z̨_/w.`/. Therefore, which of the elements on E1.`/ are of the form
sz̨;mAi .`/ can be determined by inspection from the equations below.

p2.E1.`// D t .z̨_/w.`/
sz̨p2.E1.`// D sz̨;�1w.`/
p1.E1.`// D sz̨; 3�k

2
w.`/

sz̨p1.E1.`// D t .k � 3
2
z̨_/w.`/:

These equations can be verified by computing the alcove formulas (cf. the remarks
before Proposition 5.1); we omit the calculations. ut

If ` is odd, we define �w.`/x D 

w.`/
x t f˛ 2 �Cre j s˛x D Ai .`/; i D 1; 2g. As

with the sets 
w.`/x , this definition has been modified from the definition in [7] by
replacing reflections by the corresponding roots. If xq D a1˛_1 Ca2˛_2 , then�w.`/x

is a union of intervals of the form Œa; b�˛ (cf. Section 2.3), which can be computed
from a1 and a2 by [7, Prop. 9.6]. The next lemma tells us how to obtain 
w.`/x from
�
w.`/
x for x as in the previous lemma (except for x D p2.E3.`//, which is not on

E1.`/ or E1.` � 1/, and so is considered in Remark 6.3).

Lemma 6.2. Suppose ` is odd. Write w D w.`/, and suppose that x � w. Suppose
that xq 2 E1.`/ or E1.` � 1/, and that �wx D Œa1; b1�˛1

[ Œa2; b2�˛2
[ Œza; zb�z̨. If

sz̨;zbx D Ai .`/ for i D 1 or i D 2, then 
wx D Œa1; b1�˛1
[ Œa2; b2�˛2

[ Œza; zb � 1�z̨ .
Otherwise, 
wx D �wx .

Proof. If there are no reflections r such that rx D Ai .`/, then �wx D 
wx . Suppose
then that rx D Ai .`/ for some i 2 f1; 2g and some reflection r . If xq 2 E1.`/, we
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claim that A1.`/ D sz̨;mx for some m. Indeed, [7, Prop. 10.2] implies that x is of
the form sz̨;kw.`/, butw.`/ D t .1�`

2
˛_/A1.`/. Substituting and simplifying (using

(2.1)) implies the claim. Our hypothesis implies m 2 Œza; zb�. Since sz̨;mC1xq D
t .z̨_/sz̨;mxq D t .z̨_/A1.`/q … 4.`/, we have mC 1 … Œza; zb�. Hence m D zb, so


wx � �wx n fzbgz̨: (6.1)

Since by [7, Lemma 9.4], j
wx j � j�wx j � 1, we conclude that (6.1) is an equality.
Next suppose that xq 2 E1.` � 1/. Again using [7, Prop. 10.2], we deduce that

A2.`/ D sz̨;mx for some m. The rest of the argument proceeds as in the previous
paragraph; we omit the details. This proves the lemma. ut
Remark 6.3. If ` is odd and x D p2.E3.`//, then 
w.`/x D �

w.`/
x . The reason is

that for i D 1; 2, xq�Ai .`/q is not a multiple of a root. Hence there is no reflection
r with rx D Ai .`/.
Lemma 6.4. Let ` � 4.

(1)



w.`/

w.`�1/ D
(

Œ1 � `
2
; 0�˛1

[¿˛2
[ Œ1 � `

2
; 0�z̨ if ` is even

Œ1�`
2
; 0�˛1

[¿˛2
[ Œ3�`

2
; 0�z̨ if ` is odd.

(2)



w.`/

p2.E1.`//
D
(

Œ2 � `
2
; 0�˛1

[ f1g˛2
[ Œ2 � `

2
; 1�z̨ if ` is even

Œ3�`
2
; 0�˛1

[ f1g˛2
[ Œ5�`

2
; 1�z̨ if ` is odd.

(3)



w.`/

p2.E3.`//
D
(

Œ2 � `
2
; 1�˛1

[ f0g˛2
[ Œ2 � `

2
; 0�z̨ if ` is even

Œ3�`
2
; 1�˛1

[ f0g˛2
[ Œ5�`

2
; 0�z̨ if ` is odd.

(4)



w.`/

s
z̨
p1.E1.`//

D
(

f0g˛1
[ Œ1; `

2
� 1�˛2

[ Œ0; `
2
� 1�z̨: if ` is even

Œ�1; 0�˛1
[ Œ1; `�3

2
�˛2
[ Œ0; `�3

2
�z̨ if ` is odd.

(5)



w.`/

s
z̨
p2.E1.`//

D
(

Œ�1; 0�˛1
[ Œ1; `

2
� 2�˛2

[ Œ�1; `
2
� 2�z̨ if ` is even

Œ�1; 0�˛1
[ Œ1; `�3

2
�˛2
[ Œ�1; `�5

2
�z̨: if ` is odd.

(6) (a) 
w.`/
p1.E3.`//

D Œ1 � `
2
; 0�˛1

[ f0g˛2
[ Œ2 � `

2
; 0�z̨ if ` is even

(b) 
w.`/
p1.E1.`//

D Œ3�`
2
; 0�˛1

[ f1g˛2
[ Œ3�`

2
; 0�z̨ if ` is odd.
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Proof. Let x 2 W be one of the elements for which we want 
w.`/x . The formula
for xq is given in Lemma 6.1. From this, we can calculate �1.xq/, �2.xq/ and
�21.xq/, and then use [7, Proposition 9.6] to obtain �wx . Lemma 6.1 tells us if x is
of the form sz̨;mAi .`/, and then Lemma 6.2 and Remark 6.3 tell us how to obtain



w.`/
x from�wx . To illustrate, we carry this out for the case x D p1.E1.`//, (` odd),

the other cases being similar. If x D p1.E1.`//, then xq D 6�2`
6
˛1 C 7�`

6
˛2, so

�1.xq/ D 6�2`
6

, �2.xq/ D 7�`
6

, �21.xq/ D `C1
6

. So by [7, Proposition 9.6],
�wx D Œ� `�32 ; 0�˛1

[f1g˛2
[ Œ� `�3

2
; 1�z̨ . Since x is of the form sz̨;mAi .`/, we have



w.`/
x D Œ� `�3

2
; 0�˛1

[ f1g˛2
[ Œ� `�3

2
; 0�z̨ . ut

Remark 6.5. The formula for 
w.`/
p2.E3.`//

remains true for ` D 3 (the root interval
Œ2; 0�z̨ is the empty set).

Lemma 6.6. Let w.`/ D s1s2 	 	 	 sisj sk .

(1) Let ` � 2 be even and write y.`/ D t .z̨_/w.`/. (If ` � 6, then y.`/ D
p2.E1.`//.) Then

(a) y.`/.˛i / D f� `2 C 1g˛1

(b) y.`/.˛j / D �f1g˛2

(c) y.`/.˛i C ˛j / D f� `2 C 2gz̨ .
(2) Let ` � 2 be even. Write m.`/ D sz̨y.`/. Then

(a) m.`/.˛i / D f `2 � 1g˛2

(b) m.`/.˛j / D �f�1g˛1
.

(c) m.`/.˛i C ˛j / D f `2 � 2gz̨ .
(3) Let ` � 3 be odd. Write u.`/ D t .˛_1 /w.`/. (If ` � 7, then u.`/ D p2.E3.`//.)

(a) u.`/.˛i / D f� `�32 gz̨
(b) u.`/.˛j / D �f0g˛2

.
(c) u.`/.˛i C ˛j / D f� `�32 g˛1

.

Proof. (1) We first prove (a) and (b). First, by Proposition 2.6, f1g˛2
D ˛1 C ˛3,

and if ` � 2 is even, f� `
2
C 1g˛1

D `
2
.˛1 C ˛2 C ˛3/ � .˛2 C ˛3/. Also, by (2.4),

y.`/ D t .z̨_/w.`/ D s3s1s2s3w.`/. By direct calculation, assertions (a) and (b)
hold for ` D 2, ` D 4, and ` D 6. (For ` D 2, w.`/ D s1s2 and our convention is
i D 3, j D 1, k D 2.) We now show that if these assertions hold for `, then they
hold for `C 6. Observe that

y.`C 6/ D t .z̨_/w.`C 6/ D t .z̨_/w.6/w.`/ D w.6/t.z̨_/w.`/ D w.6/y.`/;
since w.6/ is a translation and therefore commutes with t .z̨_/. Also, in passing
from ` to ` C 6, the roles of i; j and k remain unchanged. Hence y.` C 6/˛i D
w.6/y.`/˛i , which by our inductive hypothesis equals w.6/. `

2
.˛1 C ˛2 C ˛3/ �

.˛2C˛3//. This can be calculated directly since w.6/ D s1s2s3s1s2s3, and is equal
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to . `C6
2
/.˛1C˛2C˛3/� .˛2C˛3/ D f� .`C6/2

C1g˛1
, as desired. (The calculation

is simplified by the fact that sa.˛1 C ˛2 C ˛3/ D ˛1 C ˛2 C ˛3 for a D 1; 2; 3.)
Similarly, we have y.` C 6/˛j D w.6/y.`/˛j D w.6/.�.˛1 C ˛3//, which by
direct calculation equals �.˛1 C ˛3/ D �f1g˛2

. This proves (a) and (b). Part (c)
follows from (a) and (b), since by Proposition 2.6 we have f� `

2
C 1g˛1

C�f1g˛2
D

f� `
2
C 2gz̨ .

(2) The formula for each m.`/.ˇ/ follows by applying sz̨ to the formula from
(1) for y.`/.ˇ/ and using Proposition 2.6; we omit the details.

(3) Observe that f� `�3
2
gz̨ D `�1

2
.˛1 C ˛2 C ˛3/ � ˛3. We prove (a) and (b) by

induction on `. The result is true for ` D 3, ` D 5 and ` D 7 by direct computation.
Assume that assertions (a) and (b) hold for `; we prove they hold for `C 6. Observe
that as in part (1), u.`C 6/ D w.6/u.`/, and the roles of i; j , and k are unchanged
when we pass from ` to `C 6. Our inductive hypothesis implies that

u.`C 6/.˛i / D w.6/u.`/.˛i / D w.6/.` � 1
2

.˛1 C ˛2 C ˛3/ � ˛3/;

which equals `C5
2
.˛1 C ˛2 C ˛3/ � ˛3, so (a) holds for ` C 6. Similarly, since

f0g˛2
D ˛2, we have u.` C 6/˛j D w.6/u.`/.˛j / D w.6/.�˛2/ D �˛2, so

(b) holds for ` C 6 as well. This proves (a) and (b); part (c) then follows by using
Proposition 2.6 as in (1). ut

7 Calculation of equivariant multiplicities

In this section we prove Proposition 4.5 and thereby complete the proof of The-
orem 4.5. We need to calculate ew.`/x , where x is one of the elements p2.E1.`//,
sz̨p2.E1.`//, or p2.E3.`//. We consider these three elements separately. The pat-
tern of the arguments is almost identical for the first two elements p2.E1.`// and
sz̨p2.E1.`//, but is slightly different for the third element p2.E3.`//. As discussed
in Remark 4.6, we omit most of the proof in the case sz̨p2.E1.`//.

To simplify the notation in the proofs, we will use the same notation for a set
of roots and the product of the elements in that set (which is a polynomial in the
roots). For example, 
w.3/

u.3/
is the set f˛1; ˛2; ˛2 C ˛3g, but it will be convenient to

write simply 
w.3/
u.3/

instead of
Q

ˇ2�w.3/

u.3/

ˇ for the product of the elements of this

set. Similarly, Œ0; 1�˛1
Œ1; 3�z̨ denotes the product of the roots in the union of these

two root intervals.
If S is a subexpression, let .S ; sa/ (resp. .S ; sa; sb/) denote S with sa

(resp. sa; sb) appended to the end.
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7.1 p2.E1.`//

For brevity, write y.`/ D p2.E1.`// D t .z̨_/w.`/. Since Proposition 4.4 has been
proved, we can reformulate the assertion of Proposition 4.5 for ew.`/

y.`/
as saying that

for n � 2, if ` D 2n or 2nC 1, then

e
w.`/

y.`/
D n � 1


w.`/

y.`/

: (7.1)

First, we show (7.1) for ` D 2n. If n D 2, then w.4/ D s1s2s3s1 and by
Proposition 5.3, y.4/ D s11s31, so

e
w.4/

y.4/
D .s1.˛1/s1.˛2/s1s3.˛3/s1s3.˛1//�1 D .˛1.˛1 C ˛2/.˛1 C ˛3/˛3/�1:

On the other hand, Lemma 6.4 and Proposition 2.6 imply that



w.4/

y.4/
D f0g˛1

f1g˛2
Œ0; 1�z̨ D ˛1.˛1 C ˛3/.˛1 C ˛2/˛3:

Hence the result holds for n D 2.
Assume now that (7.1) holds for ` D 2n. We will show it holds for ` D 2nC 2.

Write w.`/ D s1s2 	 	 	 sisj sk and w.`C 2/ D s1s2 	 	 	 sksisj . If S is a subexpres-
sion of w.`/ multiplying to y.`/, then .S ; si ; sj / is a subexpression of w.` C 2/
multiplying to y.` C 2/. Proposition 5.3 implies that all the subexpressions of
w.` C 2/ multiplying to y.` C 2/ are of this form, except for .s1; : : : ; 1; si ; 1/.
Therefore, we can write ew.`C2/

y.`C2/ as a sum of two terms. The first term is the sum
of all contributions from the subexpressions .S ; si ; sj / and the second term is the
contribution from the subexpression .s1; : : : ; 1; si ; 1/.

We now calculate these terms separately. The formula (2.3) for equivariant mul-

tiplicities implies that the first term is ew.`/
y.`/
	 1

y.`/si .˛i /
	 1

y.`/sisj .˛j /
. Since

si .˛i / D �˛i and sisj .˛j / D �.˛i C ˛j /, this equals

e
w.`/

y.`/
	 1

y.`/.˛i C ˛j / 	
1

y.`/.˛i /
:

Recall from Lemma 6.6 that

y.`/.˛i / D f�nC 1g˛1
; y.`/.˛j / D �f1g˛2

and y.`/.˛i C ˛j / D f�nC 2gz̨:
Combining this with our inductive hypothesis, we see that the first term is

n � 1


w.`/

y.`/

	 1

f�nC 2gz̨ 	
1

f�nC 1g˛1

: (7.2)
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We claim that the second term, which is the contribution from the subexpression
.s1; : : : ; 1; si ; 1/, is equal to

e
w.`/

w.`�1/ 	
1

w.` � 1/si .˛i / 	
1

w.` � 1/si .˛j / :

Indeed, this second term is a product of `C 2 factors, each of the form 1
ˇ

for some

root ˇ. The product of the first ` factors is ew.`/
w.`�1/, since by Proposition 5.2, the

only subexpression of w.`/ multiplying to w.` � 1/ is .s1; : : : ; si ; sj ; 1/. The last
two factors correspond to ˇ D w.`�1/si .˛i / and ˇ D w.`�1/si .˛j /. This proves
the claim.

We can rewrite the expression for the second term as follows. Since w.` � 1/ D
y.`/sisj si , we have

w.` � 1/si .˛i / D y.`/.˛j / and w.` � 1/si .˛j / D �y.`/.˛i C ˛j /:
Also, by Theorem 2.3, w.` � 1/B is a smooth point of Xw.`/, so by Theorem 2.2,

e
w.`/

w.`�1/ D �1=
w.`/w.`�1/. Hence the second term is equal to

� 1



w.`/

w.`�1/
	 1

f1g˛2

	 1

f�nC 2gz̨ : (7.3)

Let A D Œ�nC 2; 0�˛1
Œ�nC 2; 0�z̨ . By Lemma 6.4,



w.`/

y.`/
D Œ�nC 2; 0�˛1

f1g˛2
Œ�nC 2; 1�z̨ D Af1g˛2

f1gz̨


w.`/

w.`�1/ D Œ�nC 1; 0�˛1
Œ�nC 1; 0�z̨ D Af�nC 1g˛1

f�nC 1gz̨


w.`C2/
y.`C2/ D Œ�nC 1; 0�˛1

f1g˛2
Œ�nC 1; 1�z̨

D f�nC 1g˛1
f1g˛2

f�nC 1gz̨f1gz̨A:

Since ew.`C2/
y.`C2/ is the sum of (7.2) and (7.3), we have

e
w.`C2/
y.`C2/ D

1

Af1g˛2
f�nC 1g˛1

f�nC 2gz̨
	n � 1
f1gz̨ �

1

f�nC 1gz̨



: (7.4)

We want to show that

e
w.`C2/
y.`C2/ D

n



w.`C2/
y.`C2/

D n

Af�nC 1g˛1
f1g˛2

f�nC 1gz̨f1gz̨ : (7.5)

To prove this, we show that the right-hand sides of (7.4) and (7.5) are equal. Clearing
denominators, we see that we must show

.n � 1/f�nC 1gz̨ � f1gz̨ D nf�nC 2gz̨:
This follows by substituting the formulas of Proposition 2.6. This proves (7.1) in
case ` D 2n.
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We now prove (7.1) for ` D 2nC1. Withw.2n/ as above, we have w.2nC1/ D
s1s2 	 	 	 sj sksi . By Proposition 5.3, the map S 7! .S ; si / is a bijection between
subexpressions of w.2n/ multiplying to y.2n/ and subexpressions of w.2n C 1/
multiplying to y.2nC 1/. Hence using the formula (2.3) for equivariant multiplici-
ties, (7.1) for ` D 2n, and the fact that y.2nC1/.˛i / D �y.2n/.˛i / D f�nC1g˛1

,
we have

e
w.2nC1/
y.2nC1/ D �ew.2n/y.2n/

	 1

y.2nC 1/.˛i / D
n � 1


w.2n/

y.2n/

	 1

f�nC 1g˛1

:

Lemma 6.4 implies that 
w.2nC1/
y.2nC1/ D 
w.2n/y.2n/

	 f�nC 1g˛1
; (7.1) follows.

7.2 x D s z̨p2.E1.`//

Write m.`/ D sz̨p2.E1.`// D sz̨t .z̨_/w.`/. Using Proposition 4.4, we can refor-
mulate the assertion of Proposition 4.5 for ew.`/

y.`/
as saying that for n � 3, if ` D 2n

or 2nC 1,

e
w.`/

m.`/
D � n � 1



w.`/

m.`/

:

As discussed in Remark 4.6, we omit most of the proof, giving only a brief outline.
The statement is first proved for ` D 2n by induction on n, the case ` D 2nC1 being
deduced from this. The inductive step involves knowing 
w.`/

m.`/
and 
w.`/

´.`/
, where

´.`/ D sz̨p1.E1.`//. These are given in Lemma 6.4. We also need the calculations
given in part (2) of Lemma 6.6. We omit further details.

7.3 x D p2.E3.`//

Write u.`/ D p2.E3.`// D t .˛_1 /w.`/. Using Proposition 4.4, we can reformulate

the assertion of Theorem 4.5 for ew.`/
u.`/

as saying that for n � 2, if ` D 2n � 1 or
` D 2n, then

e
w.`/

u.`/
D n � 1
Q

ˇ2�w.`/

u.`/

ˇ
: (7.6)

Although this computation is similar to the computation of the previous subsec-
tions, there are two main differences. First, here we show the result for odd ` by
induction, and from this deduce the result for even `; in the other subsections the
roles of odd and even were reversed. Second, when we break up ew.`C2/

u.`C2/ into two
terms, in the analogous places in the previous subsections, we would express the
second term using ew.`/x for some x (here x would be x D w.` � 1/). In this case,
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that would lead to more complicated calculations, so instead we express the second
term using ew.`C1/

v.`C1/ , where by definition v.`C 1/ D p1.E3.`C 1//.
We begin by showing the result for ` D 2n � 1. The case n D 2 can be ver-

ified as in the previous subsections (using Remark 6.5); we omit the details. Now
we assume the result holds for ` D 2n � 1, and show it holds for ` D 2n C 1.
Write w.`/ D s1s2 	 	 	 sisj sk and w.` C 2/ D s1s2 	 	 	 sksisj . As in the previous

subsections, we can write ew.`C2/
u.`C2/ as a sum of two terms. The first term is the sum

of all contributions from the subexpressions .S ; si ; sj / where S is a subexpres-
sion of w.`/ multiplying to u.`/, and the second term is the contribution from the
subexpression .s1; : : : ; sj ; 1; si ; 1/.

We now calculate these terms separately. The formula for equivariant multiplici-
ties implies that the first term is

e
w.`/

u.`/
	 1

u.`/si .˛i /
	 1

u.`/sisj .˛j /
D ew.`/

u.`/
	 1

u.`/.˛i C ˛j / 	
1

u.`/.˛i /
:

Recall from Lemma 6.6 that

u.`/.˛i / D f�nC 2gz̨; u.`/.˛j / D �f0g˛2

and u.`/.˛i C ˛j / D f�nC 2g˛1
:

Combining this with our inductive hypothesis, we see that the first term is

n � 1


w.`/

u.`/

	 1

f�nC 2gz̨ 	
1

f�nC 2g˛1

: (7.7)

The second term corresponds to the subexpression .s1; : : : ; sj ; 1; si ; 1/. By Prop-
osition 5.2, .s1; : : : ; sj ; 1; si / is the unique subexpression of w.` C 1/ multiply-
ing to v.` C 1/ D p1.E3.` C 1//. Hence, from the formula (2.3) for equivariant
multiplicities, the second term is equal to �ew.`C1/

v.`C1/
1

v.`C1/.˛j /
. (The negative sign

occurs because the lengths of w.`C 2/ and w.`C 1/ have opposite parity.) Since
v.`C 1/ D u.`/sisj , we have v.`C 1/.˛j / D �u.`/.˛i C ˛j /. Since v.`C 1/B
is a smooth point of Xw.`C1/, Theorem 2.2 implies that ew.`C1/

v.`C1/ D �1=
w.`C1/v.`C1/ .
Hence, the second term is

�1


w.`C1/
v.`C1/ f�nC 2g˛1

: (7.8)

Let A D Œ�nC 2; 0�˛1
f0g˛2

Œ�nC 3; 0�z̨ . Then Lemma 6.4 implies that



w.`/

u.`/
D Œ�nC 2; 1�˛1

f0g˛2
Œ�nC 3; 0�z̨ D Af1g˛1



w.`C1/
v.`C1/ D Œ�nC 1; 0�˛1

f0g˛2
Œ�nC 2; 0�z̨ D A 	 f�nC 1g˛1

	 f�nC 2gz̨


w.`C2/
u.`C2/ D Œ�nC 1; 1�˛1

f0g˛2
Œ�nC 2; 0�z̨ D Af1g˛1

f�nC 1g˛1
f�nC 2gz̨:
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Therefore adding (7.7) and (7.8), we see that

e
w.`C2/
u.`C2/ D

1

Af�nC 2g˛1
f�nC 2gz̨ 	

	n � 1
f1g˛1

� 1

f�nC 1g˛1




: (7.9)

We want to show that

e
w.`C2/
u.`C2/ D

n



w.`C2/
u.`C2/

D n

Af1g˛1
f�nC 1g˛1

f�nC 2gz̨ : (7.10)

In other words, we must show that the right-hand sides of (7.9) and (7.10) are equal.
Clearing denominators, we see that we must show

.n � 1/f�nC 1g˛1
� f1g˛1

D nf�nC 2g˛1
;

which follows from the formulas of Proposition 2.6. This proves (7.6) for
` D 2n � 1.

We now prove (7.6) for ` D 2n. With w.2n � 1/ as above, we have w.2n/ D
s1s2 	 	 	 sj sksi . Proposition 5.3 implies that the map S 7! .S ; si / is a bijection
between subexpressions of w.2n� 1/ multiplying to u.2n� 1/ and subexpressions
of w.2n/ multiplying to u.2n/. Hence by (7.6) for ` D 2n � 1, (2.3), and the fact
that u.2n/.˛i / D �u.2n � 1/˛i D f�nC 2gz̨ , we have

e
w.2n/

u.2n/
D �ew.2n�1/

u.2n�1/ 	
1

u.2n/.˛i /
D n � 1


w.2n�1/
u.2n�1/

1

f�nC 2gz̨ :

Lemma 6.4 implies that 
w.2n/
u.2n/

D 

w.2n�1/
u.2n�1/ f�n C 2gz̨; (7.6) follows. This com-

pletes the proof of Proposition 4.5, and with it, Theorem 4.5. ut

7.4 The maximal singular points of Xw.`/

In this section we describe the set of elements x 2 W which are maximal in the
Bruhat order subject to the condition that xB is a singular point of Xw.`/. For sim-
plicity, we will refer to such an x 2 W as a maximal singular point in Xw.`/. We
will also follow the convention of Remark 3.2 by identifying x 2 W with the point
xq 2 R2.

Recall that we defined p2.Ei .`// for i D 1; 3 as the second point on Ei .`/
from the endpoint w.`/q. We have p2.E1.`// D t .z̨_/w.`/ and p2.E3.`// D
t .˛_1 /w.`/, as can be shown using arguments similar to those used in the proof
of Proposition 5.1. These elements each have length ` � 2 by Proposition 5.1;
expressions for these elements in terms of simple reflections can be obtained by
using (2.4). Recall also the element A1.`/ D sz̨w.` � 2/ from Definition 3.1.
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For later use, we observe that

w.` � 3/ < p2.E1.`//: (7.11)

To see this, note that because the length of w.` � 3/ is ` � 3, and the length of
p2.E1.`// is ` � 2, it suffices to show that

w.` � 3/ D s˛2;1p2.E1.`//: (7.12)

This is apparent in Figure 6. For an algebraic proof, observe that the right-hand side
equals

s˛2;1t .z̨_/w.`/ D t .˛_2 /s2t .z̨_/w.`/;
and by (2.4),

t .˛_2 /s2t .z̨_/ D .s3s1s3s2/s2.s3s1s2s1/ D s3s2s1;
from which (7.12) follows.

The maximal singular points of Xw.`/ given in the next theorem are located in
Figures 6 and 7 as follows. In Figure 7, they are the points labelled x2 and y2. In
Figure 6, they are the points labelled x2 and y2, along with the top point on the top
edge of the inner triangle.

Theorem 7.1. Let ` � 6. The set of maximal singular points of Xw.`/ is equal to

fp2.E1.`//; p2.E3.`//; A1.` � 3/g
if ` is even, and

fp2.E1.`//; p2.E3.`//g (7.13)

if ` is odd.

Proof. Write w.`/ D s1s2s3 	 	 	 sk . Let A denote the set of y 2 W such that y
is either a maximal nonrationally smooth (nrs) point of Xw.`/, or y is the second
point from the endpoint on a rationally smooth edge. (For simplicity, we will refer
to these points simply as “second points”.) The elements y 2 A correspond to
singular points yB of Xw.`/, and moreover, any x 2 W such that xB is singular in
Xw.`/ satisfies x � y for some y 2 A (cf. the discussion of the proof of Theorem
4.1 in the introduction). Hence, the set of maximal singular points of Xw.`/ is the
set of maximal elements of A.

First, suppose ` is even. The maximal nrs points of Xw.`/ are w.` � 3/ and
A1.`�3/ (see [7, Corollary 10.5]). By Proposition 3.4 and Lemma 3.6, the rationally
smooth edges are E1.`/, E2.`/ D s1E1.`/, E3.`/, and E3.` � 1/ D E3.`/sk .
Among the second points on these edges, we must identify the maximal elements.

We claim that among the subset of these points which lie on E1.`/ or E2.`/,
the maximal element is p2.E1.`//. Indeed, as noted in Remark 4.6, this element
is greater than sz̨p2.E1.`//, which is the other second point on E1.`/. Next, by
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Lemma 3.6, the map E1.`/ ! E2.`/, ´ ! s1´, takes the second points on
E1.`/ to the second points on E2.`/. From the alcove formulas for p2.E1.`// and
s˛p2.E1.`// given in Proposition 5.1, along with the formulas for the W -action on
alcoves given in Section 2.4, one can see that the alcove formulas for these elements
are given (respectively) by O. `�2

2
; 6�`
2
; 0/ and E.1; `

2
� 3; 2 � `

2
/. By (2.8), the

lengths of these elements are (respectively) `� 3 and `� 4. Comparing with Propo-
sition 5.1, we see that `.s1p2.E1.`/// < `.p2.E1.`///, and hence in the Bruhat
order, s1p2.E1.`// < p2.E1.`//. Similarly, s1s˛p2.E1.`// < s˛p2.E1.`//. This
proves the claim.

Next, we claim that among the subset of points of A on E3.`/ or E3.` � 1/ D
E3.`/sk , the maximal element is p2.E3.`//. The proof of this claim is very similar
to the proof in the preceding paragraph, so we only sketch the calculations. We need
alcove formulas for p2.E3.`// and p2.E3.` � 1//, and for the other second points
on E3.`/ and E3.` � 1/, which by Lemma 3.6, are given by applying s1 to these
two points. The alcove formulas for the first two points are given in Proposition
5.1; the formulas for the second two points can be calculated from these as in the
preceding paragraph. We can then calculate the lengths of each of these elements,
and reasoning as in the preceding paragraph, shows that p2.E3.`// is greater in the
Bruhat order than the other three second points, proving the claim.

What we have shown so far implies that the set of maximal elements of A is the
set of maximal elements among the 4 elements p2.E1.`//, p2.E3.`//, w.` � 3/
and A1.` � 3/. The first two elements each have length ` � 2 and are therefore
incomparable. We have w.` � 3/ < p2.E1.`// by (7.11). We claim that A1.` � 3/
is not less than p2.E1.`// or p2.E3.`//; this suffices to complete the proof of the
theorem for ` even. Since A1.` � 3/ has length ` � 3, and the other two elements
have length `�2, the element A1.`�3/ could be less than p2.E1.`// or p2.E3.`//
only if it were equal to a reflection times one of these elements. Since the reflections
in W are the elements s˛;k for ˛ 2 f˛1; ˛2; z̨g (cf. Section 2.3), this would mean
that the point A1.` � 3/q 2 R2 would differ from the center points corresponding
to p2.E1.`// or p2.E3.`// by a multiple of one of the roots ˛1; ˛2 or z̨. However,
this is not true, as can be seen by calculating the relevant points using the alcove
formulas and (2.5). This proves the claim, and with it the theorem in case ` is even.

If ` is odd, the argument is similar, and we only sketch it. The maximal nrs
point of Xw.`/ is w.` � 3/. The rationally smooth edges are E1.`/, E1.`/sk ,
E2.`/ D s1E1.`/,E2.`/sk , andE3.`/. As in the case where ` is even, we show that
every point on a rationally smooth edge is less than either p2.E1.`// or p2.E3.`//.
Therefore the set of maximal elements of A is the set of maximal elements among
the elements p2.E1.`//, p2.E3.`// and w.`� 3/. Since the first two elements have
length `� 2, they are incomparable. Since w.`� 3/ < p2.E1.`// by (7.11), the set
of maximal elements of A is equal to the set in (7.13), proving the theorem. ut
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in Mathematics, Vol. 204, Birkhäuser Boston, Boston, MA, 2002.



Centers and cocenters of 0-Hecke algebras

Xuhua He

Dedicated to David Vogan on his 60th birthday

Abstract In this paper, we give explicit descriptions of the centers and cocenters of
0-Hecke algebras associated to finite Coxeter groups.
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1 Introduction

Iwahori–Hecke algebrasHq are deformations of the group algebras of finite Coxeter
groups W (with nonzero parameters q). They play an important role in the study of
representations of finite groups of Lie type.

In 1993, Geck and Pfeiffer [4] discovered some remarkable properties of the
minimal length elements in their conjugacy classes in W (see Theorem 2.2). Based
on these properties, they defined the “character table” for Iwahori–Hecke algebras.
They also gave a basis of the cocenter of Iwahori–Hecke algebras, using mini-
mal length elements. Later, Geck and Rouquier [6] gave a basis of the center of
Iwahori–Hecke algebras. It is interesting that both centers and cocenters of Iwahori–
Hecke algebras are closely related to minimal length elements in the finite Coxeter
groups and their dimensions both equal the number of conjugacy classes of the finite
Coxeter groups.
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The 0-Hecke algebra H0 was used by Carter and Lusztig in [2] in the study of
p-modular representations of finite groups of Lie type. It is a deformation of the
group algebras of finite Coxeter groups (with zero parameter). In this paper, we
study the center and cocenter of 0-Hecke algebras H0. We give a basis of the center
of H0 in Theorem 5.4 and a basis of the cocenter of H0 in Theorem 6.5.

It is interesting to compare the (co)centers of Hq and H0. Let Wmin be the set of
minimal length elements in their conjugacy classes inW . There are two equivalence
relations � and �, on Wmin (see 	2.1 for the precise definition). Hence we have the
partition ofWmin into�-equivalence classes and�-equivalence classes. The second
partition is finer than the first one.

The center and cocenter of Hq have basis sets indexed by the set of conjugacy
classes of W , which are in natural bijection with Wmin= �. The cocenter of H0
has a basis set indexed by Wmin= � and the center of H0 has a basis set indexed
by Wmax= �. Here Wmax= � is defined using maximal length elements instead and
there is a natural bijection between Wmax= � with the set of �-equivalence classes
of minimal length elements in their “twisted” conjugacy classes in W . In general,
the number of elements in Wmax= � is different from the number of elements in
Wmin= �.

The paper is organized as follows. In Section 2, we recall some properties of the
minimal length and maximal length elements. In Section 3, we recall the results on
the center and cocenter ofHq . We give parameterizations ofWmin= � andWmax= �
in Section 4. In Section 5, we give a basis of the center of H0 and in Section 6,
we give a basis of the cocenter of H0. In Section 7, we describe the image of a
standard element tw in the cocenter of H0 and discuss some applications to the
class polynomials of Hq .

2 Finite Coxeter groups

2.1 Definitions

Let S be a finite set. A Coxeter matrix .ms;s0/s;s02S is a matrix with entries in
N [ f1g such that mss D 1 and ms;s0 D ms0;s > 2 for all s ¤ s0 in S . The
Coxeter groupW associated to the Coxeter matrix .ms;s0/ is the group generated by
S with relations .ss0/ms;s0 D 1 for s; s0 2 S with ms;s0 <1. The Coxeter group W
is equipped with the length function ` W W ! N and the Bruhat order 6.

For any J � S , let WJ be the subgroup of W generated by elements in J . Then
WJ is also a Coxeter group.

Let ı be an automorphism of W with ı.S/ D S . We say that the elements
w;w0 2 W are ı-conjugate if there exists x 2 W such that w0 D xwı.x/�1.
Let cl.W /ı be the set of ı-conjugacy classes of W . We say that a ı-conjugacy class
O is elliptic if O \WJ D ; for any J D ı.J / ¤ S .
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For any w 2 W , let supp.w/ be the set of simple reflections that appear in some
(or equivalently, any) reduced expression of w. Set suppı.w/ D

S

i>0 ı
i .supp.w//.

Then O 2 cl.W /ı is elliptic if and only if suppı.w/ D S for any w 2 O.

Forw;w0 2 W and s 2 S , we writew
s�!ı w

0 ifw0 D swı.s/ and `.w0/ 6 `.w/.
We write w !ı w

0 if there exists a sequence w D w0; w1; : : : ; wn D w0 of ele-

ments in W such that for any k, wk�1
s�!ı wk for some s 2 S . We write w �ı w0

if w !ı w
0 and w0 !ı w.

We say that the two elements w;w0 2 W are elementarily strongly ı-conjugate
if `.w/ D `.w0/ and there exists x 2 W such that w0 D xwı.x/�1, and
`.xw/ D `.x/ C `.w/ or `.wı.x/�1/ D `.x/ C `.w/. We say that w;w0 are
strongly ı-conjugate if there exists a sequence w D w0; w1; : : : ; wn D w0 such that
for each i , wi�1 is elementarily strongly ı-conjugate to wi . We write w �ı w0 if w
and w0 are strongly ı-conjugate. It is easy to see the following.

Lemma 2.1. If w;w0 2 W with w �ı w0, then w �ı w0.
Note that �ı and �ı are both equivalence relations. For any O 2 cl.W /, let

Omin be the set of minimal length elements in O and let Omax be the set of maximal
length elements in O. Since�ı and�ı are compatible with the length function, both
Omin and Omax are unions of �ı -equivalence classes and unions of �ı -equivalence
classes.

LetWı;min D
F

O2cl.W /ı
Omin and letWı;max D

F

O2cl.W /ı
Omax: LetWı;min= �ı

be the set of �ı -equivalence classes in Wmin. We define Wı;min= �ı , Wı;max= �ı
and Wı;max= �ı in a similar way.

If ı is the identity map, then we may omit ı in the subscript.

The following result is proved in [4, Theorem 1.1], [3, Theorem 2.6] and
[7, Theorem 7.5] (see also [9] for a case-free proof).

Theorem 2.2. Let W be a finite Coxeter group and let O be a ı-conjugacy class
of W . Then

(1) For any w 2 O, there exists w0 2 Omin such that w !ı w
0.

(2) Omin is a single strongly ı-conjugate class.
(3) If O is elliptic, then Omin is a single�ı -equivalence class.

As a consequence of Theorem 2.2, it is proved in [7, Corollary 4.5] that the set
of minimal length elements in O coincides with the set of minimal elements in O
with respect to the Bruhat order 6.

Corollary 2.3. LetW be a finite Coxeter group and O be a ı-conjugacy class ofW .
Then Omin D fw 2 OIw0 – w for any w0 2 Og.
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2.2 A variation

One may transfer the results on minimal length elements to results on maximal
length elements via the trick in [3, 	2.9]. Let w0 be the longest element in W and
let ı0 D Ad.w0/ ı ı be the automorphism on W . Then the map

W ! W; w 7! ww0

reverses the Bruhat order and sends a ı-conjugacy class O to a ı0-conjugacy
class O0. Moreover, w1 !ı w2 if and only if w2w0 !ı0 w1w0. Thus

Theorem 2.4. Let W be a finite Coxeter group and O be a ı-conjugacy class ofW .
Then

(1) For any w 2 O, there exists w0 2 Omax such that w0 !ı w.
(2) Omax D fw 2 OIw – w0 for any w0 2 Og.

3 Finite Hecke algebras

In the rest of this paper, we assume that W is a finite Coxeter group.
Let q be an indeterminate and� D CŒq�. The generic Hecke algebra (with equal

parameters) H of W is the �-algebra generated by fTw Iw 2 W g subject to the
relations:

1. Tw 	 Tw0 D Tww0 , if `.ww0/ D `.w/C `.w0/.
2. .Ts C 1/.Ts � q/ D 0 for s 2 S .

Given q 2 C, let Cq be the�-module where q acts by q. LetHq D H˝�Cq be
a specialization of H.

In particular, H1 D CŒW � is the group algebra. The algebra H0 is called the
0-Hecke algebra. We will discuss it in details in the next section.

For any w 2 W , we denote by Tw;q D Tw ˝ 1 2 Hq . We simply write tw
for Tw;0.

Let ŒH;H�ı be the ı-commutator of H, that is, the�-submodule of H spanned by
Œh; h0� D hh0 � h0ı.h/ for h; h0 2 H. Let Hı D H=ŒH;H�ı be the ı-cocenter of H.

For any q 2 C, we define the ı-cocenter Hq;ı in the same way. Notice that if
q ¤ 0, then Tw;q is invertible in Hq for any w 2 W . However, if q D 0, then tw
is invertible in Hq if and only if w D 1. This makes a difference in the study of the
cocenter of Hq (for q ¤ 0) and the cocenter of H0.

Proposition 3.1. Let w;w0 2 W . If w �ı w0, then the image of Tw and Tw0 in Hı
are the same.

Proof. It suffices to prove the case where w
s�!ı w

0 and `.w/ D `.w0/. Without
loss of generality, we may assume furthermore that sw < w. Then Tw D TsTsw
and Tw0 D TswTı.s/. Hence the image of Tw and Tw0 are the same. ut
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For q ¤ 0, a similar argument shows that if w �ı w0, then the image of Tw;q
and Tw0;q inHq;ı are the same. By Theorem 2.2 (2), for any ı-conjugacy class O of
W , Omin is a single strongly ı-conjugacy class. Thus

Proposition 3.2 ([4, 	1] and [3, 7.2]). If q ¤ 0, then for any O 2 cl.W /ı and
w;w0 2 Omin, the image of Tw;q and Tw0;q in Hq;ı are the same.

Remark 3.3. We denote this image by TO;q .

Theorem 3.4 ([4, 	1] and [3, Theorem 7.4 (1)]). If q ¤ 0, then fTO;qgO2cl.W /ı

form a basis of Hq;ı .

Proposition 3.5 ([4, 	1.2] and [3, Theorem 7.4 (2)]). If q ¤ 0, then there exists
a unique polynomial fw;O 2 ZŒq� for any w 2 W and O 2 cl.W /ı such that the
image of Tw in Hq;ı equals

P

O2cl.W /ı
fw;OTO;q .

Remark 3.6. The polynomials fw;O are called the class polynomials. They play an
important role in the study of characters of Hecke algebras.

Theorem 3.7 ([6, Theorem 5.2]). Let q ¤ 0. Let

Z.Hq/ı D fh 2 HqIh0h D hı.h0/ for any h0 2 Hqg
be the ı-center of Hq . For any O 2 cl.W /ı , set

´O D
X

w2W
q�`.w/fw;OTw�1 :

Then f´OgO2cl.W /ı form a basis of Z.Hq/ı .

As a consequence of the results above, we have

Corollary 3.8. If q ¤ 0, then

dimZ.Hq/ı D dimHq;ı D ]cl.W /ı :

4 Parameterizations of Wı;min= �ı and Wı;max= �ı

4.1 Parameterizations

Notice that for q ¤ 0, both Hq;ı and Z.Hq/ı have basis sets indexed by cl.W /ı ,
which is in natural bijection with Wı;min= �ı . As we will see later in this paper, for
H0;ı and Z.H0/ı , we need to use Wı;min= �ı and Wı;max= �ı instead. We give
parameterizations of these sets here.
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Let �ı D f.J; C /IJ D ı.J / � S;C 2 cl.WJ /ı is ellipticg. There is a natural
map

f W �ı ! cl.W /ı ; .J; C / 7! O;
where O is the unique ı-conjugacy class of W that contains C .

We say that .J; C / is equivalent to .J 0; C 0/ if there exists x 2 W ı and the
conjugation by x sends J to J 0 and sends C to C 0. By [1, Proposition 5.2.1], f
induces a bijection from the equivalence classes of �ı to cl.W /ı .

Proposition 4.1. Let O 2 cl.W /ı . Then

Omin D
G

.J;C/2�ı

with f .J;C/DO

Cmin:

Proof. If .J; C / 2 �ı with f .J; C / D O, we haveCmin � Omin by [7, Lemma 7.3].
Let w 2 Omin. Let J D suppı.w/ and C 2 cl.WJ /ı with w 2 C . By

[7, Theorem 7.5 (P1)], C is an elliptic ı-conjugacy class of WJ . Since w 2 Omin

and w 2 C , w 2 Cmin. ut

Corollary 4.2. The map

f W �ı ! Wı;min= �ı ; .J; C / 7! Cmin

is a bijection.

Proof. Let .J; C / 2 �ı and w 2 Cmin. If w
s�!ı w

0, then w0 D w or sw < w or
wı.s/ < w. In the latter two cases, s 2 J . Therefore w0 2 C . Since w 2 Cmin and
`.w0/ 6 `.w/, w0 2 Cmin.

By definition of �ı , v 2 Cmin for any v 2 W with w �ı v. On the other hand,
by Theorem 2.2, Cmin is a single �ı -equivalence class. Hence the map .J; C / 7!
Cmin 2 Wı;min= �ı is well-defined.

It is obvious that this map is injective. The surjectivity follows from
Proposition 4.1. ut

Using the argument in 	2.2, we also obtain

Corollary 4.3. Set ı0 D Ad.w0/ ı ı. The map

�ı0 ! Wı;max= �ı ; .J; C / 7! Cminw0

is a bijection.

Example 4.4. Let W D S3. Then ]cl.W / D 3, ]� D 4 and ]�Ad.w0/ D 3. There-
fore ].Wmin= �/ ¤ ]cl.W / and ].Wmin= �/ ¤ ].Wmax= �/ for W D S3.
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5 Centers of 0-Hecke algebras

Let ˙ 2 Wı;max= �ı . Set

W6˙ D fx 2 W I x 6 w for some w 2 ˙g;
t6˙ D

X

x2W6˙

tx :

Now we recall the following known result on the Bruhat order (see, for example,
[12, Lemma 2.3]).

Lemma 5.1. Let x; y 2 W with x 6 y. Let s 2 S . Then

(1) minfx; sxg 6 minfy; syg and maxfx; sxg 6 maxfy; syg.
(2) minfx; xsg 6 minfy; ysg and maxfx; xsg 6 maxfy; ysg.
Lemma 5.2. Let ˙ 2 Wı;max= �ı and s 2 S . Then

fx 2 W I x … W6˙ ; sx 2 W6˙g D fx 2 W I x … W6˙ ; xı.s/ 2 W6˙g:
Proof. Let x 2 W with x … W6˙ ; sx 2 W6˙ . By definition, sx 6 w for some
w 2 ˙ . Since x Š w, we have sx < x and sw > w by Lemma 5.1. Thus
`.swı.s// > `.sw/ � 1 D `.w/. Since w 2 Wı;max, `.swı.s// D `.w/ and
sws 2 ˙ . Moreover, swı.s/ < sw.

Since sx 6 w and w < sw, x 6 sw. By Lemma 5.1, minfx; xı.s/g 6 swı.s/.
Since x … W6˙ , xı.s/ 2 W6˙ . ut
Lemma 5.3. Let ˙ 2 Wı;max= �ı . Then t6˙ 2 Z.H0/ı .
Proof. Let s 2 S . Then

tst6˙ D
X

x2W6˙

tstx D
X

x;sx2W6˙

tstx C
X

y2W6˙ ;
sy…W6˙

tstx :

If x; sx 2 W6˙ , then tstx C tstsx D 0. If y 2 W6˙ ; sy … W6˙ , then y < sy

and tsty D tsy . Therefore

tst6˙ D
X

x2W Ix…W6˙ ;
sx2W6˙

tx :

Similarly,

t6˙ tı.s/ D
X

x2W Ix…W6˙ ;
xı.s/2W6˙

tx :

By Lemma 5.2, tst6˙ D t6˙ tı.s/ for any s 2 S . Thus t6˙ 2 Z.H0/ı . ut
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Theorem 5.4. The elements ft6˙g˙2Wı;max=�ı
form a basis of Z.H0/ı .

Proof. For any h D P

w2W aw tw 2 H0, we write supp.h/ D fw 2 W I aw ¤ 0g.
Let supp.h/max be the set of maximal length elements in supp.h/. We show:

(a) If h 2 Z.H0/ı andw 2 supp.h/max, then swı.s/ 2 supp.h/max and aswı.s/Daw
for any s 2 S with sw > w or ws > w.

Without loss of generality, we assume that sw > w. Then sw 2 supp.tsh/ D
supp.htı.s// and

supp.tsh/max D fsxI x 2 supp.h/max; sx > xg;
supp.htı.s//max D fyı.s/Iy 2 supp.h/max; yı.s/ > yg:

Therefore swı.s/ 2 supp.h/max and `.swı.s// D `.w/. The coefficient of tsw
in tsh is aw and the coefficient of tsw D t.swı.s//ı.s/ in htı.s/ is aswı.s/. Thus
aw D aswı.s/.
(a) is proved.

Now we show the following:

(b) If h 2 Z.H0/ı , then supp.h/max � Wı;max.

If w … Wı;max, then by Theorem 2.4, there exists w0 with `.w0/ D `.w/C 2 and
s 2 S with w0 !ı sw

0ı.s/ �ı w. By (a), sw0ı.s/ 2 supp.h/max since sw0ı.s/ �ı
w. Since sw0 < w0, by (a) again, w0 2 supp.h/max. This is a contradiction.
(b) is proved.

Now suppose that
L

˙2Wı;max=�ı
Ct6˙ ¤ Z.H0/ı . Let h be an element in

Z.H0/ı �
L

˙2Wı;max=�ı
Ct6˙ and maxw2supp.h/ `.w/ 6 maxw2supp.h0/ `.w/ for

any h0 2 Z.H0/ı �
L

˙2Wı;max=�ı
Ct6˙ .

By (a) and (b), supp.h/max is a union of˙ with˙ 2 Wı;max= �ı . By (a), if˙ �
supp.h/max, then aw D aw0 for any w;w0 2 ˙ . We set a˙ D aw for any w 2 ˙ .
Set h0 D h�P˙supp.h/max

a˙ t6˙ . Then h0 2 Z.H0/ı �
L

˙2Wı;max=�ı
Ct6˙ . But

maxw2supp.h0/ `.w/ < maxw2supp.h/ `.w/. This is a contradiction. ut

In fact, Theorem 5.4 also holds for the 0-Hecke algebras associated to any affine
Weyl group and the proof is similar (the only difference is that one uses [14, Main
Theorem 1.1] instead of Theorem 2.4).

On the other hand, there are other explicit descriptions of the centers of finite and
affine Hecke algebras.

� Geck and Rouquier [6, Theorem 5.2] gave a basis of the centers of finite Hecke
algebras with parameter q ¤ 0.

� Bernstein, and Lusztig [11, Proposition 3.11] gave a basis of the centers of affine
Hecke algebras with parameter q ¤ 0.

� Vignéras [15, Theorem 1.2] gave a basis of the centers of affine 0-Hecke algebras
and pro-p Hecke algebras.
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It is interesting to compare Theorem 5.4 (for finite and affine 0-Hecke algebras)
with the above results.

6 Cocenters of 0-Hecke algebras

For any ˙ 2 Wı;min= �ı , we denote by T˙ the image of Tw in Hı for any w 2 ˙ .
By Proposition 3.1, the element T˙ is well-defined. Similar to the proof of Theorem
3.4, we have

Proposition 6.1. The set fT˙g˙2Wı;min=�ı
spans Hı .

Via the natural bijection f W �ı ! Wı;min= �ı in Corollary 4.2, we may write
T.J;C/ for Tf .J;C/. We also write t.J;C/ D tf .J;C/ for T.J;C/ ˝ 1 2 H0;ı D
Hı ˝� C0.

It is worth mentioning that Hı is not a free module over � by Theorem 3.4
and Theorem 6.5 we will prove later. This is because dimHq;ı D ]cl.W /ı for any
q ¤ 0 and dimH0;ı D ]Wı;min= �ı . These numbers do not match in general
(see Example 4.4).

6.1 Cocenter

Now we come to the cocenter of 0-Hecke algebras.
We first recall the Demazure product.
By [8], for any x; y 2 W , the set fuvIu 6 x; v 6 yg contains a unique maximal

element. We denote this element by x � y and call it the Demazure product of x
and y. It is easy to see that supp.x � y/ D supp.x/[ supp.y/. The following result
is proved in [8, Lemma 1].

Lemma 6.2. Let x; y 2 W . Then

txty D .�1/`.x/C`.y/�`.x�y/tx�y :

Lemma 6.3. For any J D ı.J / � S , set H suppıDJ
0 DLsuppı.w/DJ Ctw . Then

ŒH0;H0�ı D
M

JDı.J /S

�

H
suppıDJ
0 \ ŒH0;H0�ı

�

:

Proof. By Lemma 6.2, for any x; y 2 W ,

txty D .�1/`.x/C`.y/�`.x�y/tx�y ;
ty tı.x/ D .�1/`.x/C`.y/�`.y�.ı.x//ty�ı.x/:
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Also, suppı.x � y/ D suppı.x/ [ suppı.y/ D suppı.y � .ı.x//. Thus

txty ; ty tı.x/ 2 H suppıDsuppı.x�y/
0 and txty � ty tı.x/ 2 H suppıDsuppı.x�y/

0 :

ut

Another result we need here is that the elliptic conjugacy classes never “fuse”.

Theorem 6.4 ([5, Theorem 3.2.11] and [1, Theorem 5.2.2]). 1 Let J D ı.J / � S .
Let C;C 0 be two distinct elliptic ı-conjugacy classes ofWJ . Then C and C 0 are not
ı-conjugate in W .

Now we come to the main theorem of this section.

Theorem 6.5. The elements ft.J;C/g.J;C/2�ı
form a basis of H0;ı .

Proof. Suppose that
P

.J;C/2�ı
a.J;C/t.J;C/ D 0 in H0;ı for some a.J;C/ 2 C.

Then by Lemma 6.3, for any J D ı.J / � S ,

X

C2cl.WJ /ı is elliptic

a.J;C/t.J;C/ D 0:

Fix J D ı.J / � S . We show that

(a) The set fT.J;C/gC2cl.WJ /ı is elliptic is a linearly independent set in Hı .

Suppose that
X

C2cl.WJ /ı is elliptic

bCT.J;C/ D 0 2 Hı

for some bC 2 �. Then
X

C2cl.WJ /ı is elliptic

bC jqDqT.J;C/ D 0 2 Hq;ı

for any q ¤ 0. By Theorem 3.4, the set fT.J;C/;qgC2cl.WJ /ı is elliptic is a linearly
independent set in Hq;ı for any q ¤ 0. Hence bC jqDq D 0 for any q ¤ 0. Thus
bC D 0.

(a) is proved.
In other words,

P

C2cl.WJ /ı is elliptic�T.J;C/ is a free submodule of H with

basis T.J;C/. Thus
P

C2cl.WJ /ı is elliptic Ct.J;C/ is a free submodule of H0;ı with
basis t.J;C/. Therefore aJ;C D 0. ut

1 The proof in [5] and [1] are based on a characterization of elliptic conjugacy classes using char-
acteristic polynomials [5, Theorem 3.2.7 (P3)] and [7, Theorem 7.5 (P3)], which is proved via a
case-by-case analysis. It is interesting to find a case-free proof of these results.
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6.2 Cocenter and representations

Now we relate the cocenter of H0 to the representations of H0.
For any J � S , let �J be the one-dimensional representation of H0 defined by

�J .ts/ D
(

�1; if s 2 J I
0; if s … J:

By [13], the set f�J gJS is the set of all the irreducible representations of H0.
Let R.H0/ be the Grothendieck group of finite-dimensional representations

of H0. Then R.H0/ is a free group with basis f�J gJS . Consider the trace map

Tr W H0 ! R.H0/
�; h 7! .V 7! tr.h; V //:

It is easy to see that for any .J; C / 2 � and K � S ,

tr.tJ;C ; �K/ D
(

.�1/`.C/; if J � KI
0; otherwise:

Here `.C / is the length of any minimal length element in C .
By [10, Proposition 6.10], for any J � S and any two elliptic conjugacy classes

C and C 0 of WJ , `.C / � `.C 0/ mod 2. Therefore,

Proposition 6.6. The trace map Tr W H0 ! R.H0/
� is surjective and the kernel

equals

M

JS;
C;C 02cl.WJ / are elliptic

Cft.J;C/ � t.J;C 0/g:

7 A partial order on Wı;min= �ı

Let w 2 W and ˙ 2 Wı;min= �ı , we write ˙ � w if there exists w0 2 ˙ with
w0 6 w. For w 2 W and O 2 cl.W /ı , we define O � w in the same way.

We define a partial order on Wı;min= �ı as follows.
For ˙;˙ 0 2 Wı;min= �ı , we write ˙ 0 � ˙ if ˙ 0 � w for some w 2 ˙ . By [7,

Corollary 4.6], ˙ 0 � ˙ if and only if ˙ 0 � w for any w 2 ˙ . In particular, � is
transitive. This defines a partial order on Wı;min= �ı .

We define a partial order on cl.W /ı in a similar way.

Proposition 7.1. Let O;O0 2 cl.W /ı . The following conditions are equivalent:

(1) For any w 2 Omin, there exists w0 2 O0min such that w0 6 w.
(2) There exists w 2 Omin and w0 2 O0min such that w0 6 w.
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Remark 7.2. We write O0 � O if the conditions above are satisfied. Then the map
Wı;min= �ı! cl.W /ı is compatible with the partial orders �.

Proof. Let w;w1 2 Omin and w0 2 O0min with w0 6 w. Let J D suppı.w/, J1 D
suppı.w1/ and J 0 D suppı.w

0/. Let C 2 cl.WJ /ı and C1 2 cl.WJ1
/ı with w 2 C

and w01 2 C1. By 	4.1, there exists x 2 W ı and the conjugation of x sends J to J1
and sends C to C1. Since w0 6 w, J 0 � J . As the conjugation by x sends simple
reflections in J to simple reflections in J1, we have xw0x�1 6 xwx�1. Moreover,
xwx�1 2 C1 is a minimal length element. By Theorem 2.2, xwx�1 �ı w0. By [7,
Lemma 4.4], there exists w01 2 O0min with w01 6 w1. ut

Proposition 7.3. Let w 2 W . Then

(1) The set f˙ 2 Wı;min= �ı I˙ � wg contains a unique maximal element ˙w .
(2) The image of tw in H0;ı equals .�1/`.w/�`.˙w/t˙w

.

Remark 7.4. By Theorem 6.5, part (2) of the Proposition gives another characteri-
zation of ˙w .

Proof. We argue by induction on `.w/.
If w 2 Wı;min, we denote by ˙w the �ı -equivalence class that contains w. By

definition, for any ˙ 2 Wı;min= �ı with ˙ � w, ˙ � ˙w . Also by definition, the
image of tw in H0;ı is t˙w

.
Now suppose that w 2 Wı;min. By Theorem 2.2 (1), there exists w0 2 W and

s 2 S such that w � w0 and `.sw0ı.s// < `.w0/. Let ˙ 2 Wı;min= �ı with
˙ � w. By [7, Lemma4.4], ˙ � w0. In other words, there exists x 2 ˙ with
x 6 w0.

Now we prove that

(a) ˙ � ˙sw0 .

If x < sx, then by Lemma 5.1, x 6 sw0 and ˙ � sw0.
If sx < x, then `.sxı.s// 6 `.sx/C 1 D `.x/. Hence sxı.s/ 2 ˙ . By Lemma

5.1, sx 6 sw0. Since sw0ı.s/ < sw0, by Lemma 5.1 again, we have sxı.s/ 6 sw0.
Thus ˙ � sw0.

Since `.sw0/ < `.w/, by inductive hypothesis, ˙sw0 is defined and ˙ � ˙sw0 .
(a) is proved.
Since˙sw0 � sw0,˙sw0 � w0. By [7, Lemma 4.4],˙sw0 � w. Thus˙sw0 is the

unique maximal element in f˙ 2 Wı;min= �ı I˙ � wg.
We also have

tw � tw0 � tstsw0 D tsw0 tı.s/ D �tsw0 mod ŒH0;H0�ı :

By inductive hypothesis, the image of tsw0 in H0;ı is .�1/`.sw0/�`.˙sw0 /t˙sw0
.

Hence the image of tw in H0;ı is .�1/`.w/�`.˙sw0 /t˙sw0
. ut
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7.1 Class polynomials

For any w 2 W , we denote by Ow the image of ˙w under the map Wı;min= �ı!
cl.W /ı . Then Ow is the maximal element in fO 2 cl.W /ı IO � wg.

Now we discuss some application to class polynomials.
Let w 2 W . By Proposition 3.5, for any q ¤ 0,

Tw;q D
X

O2cl.W /ı

fw;OTO;q 2 Hq;ı :

By the same argument as in Proposition 7.3, fw;O D 0 unless O � Ow .
Moreover, by Proposition 6.1, there exists aw;˙ 2 � such that

Tw D
X

˙2Wı;min=�ı

aw;˙T˙ 2 Hı :

Let p W Wı;min= �ı! cl.W /ı be the natural map. Then for any q ¤ 0,

Tw;q D
X

˙2Wı;min=�ı

aw;˙ jqDqTp.˙/;q 2 Hq;ı :

Therefore for any O 2 cl.W /ı ,
P

p.˙/DO aw;˙ D fw;O.
By Proposition 7.3,

aw;˙ 2
(

.�1/`.w/�`.˙w/ C q�; if ˙ D ˙w I
q�; otherwise:

Therefore

fw;O 2
(

.�1/`.w/�`.˙w/ C qZŒq�; if ˙w � OI
qZŒq�; otherwise:
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Dirac cohomology, elliptic representations
and endoscopy
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To David Vogan for his 60th birthday

Abstract The first part (Sections 2–7) of this paper is a survey of some of the
recent developments in the theory of Dirac cohomology, especially the relationship
of Dirac cohomology with .g; K/-cohomology and nilpotent Lie algebra cohomol-
ogy; the second part (Sections 8–13) is devoted to understanding the unitary elliptic
representations and endoscopic transfer by using the techniques in Dirac cohomol-
ogy. A few problems and conjectures are proposed for further investigations.

Key words: Dirac cohomology, Harish-Chandra module, elliptic representation,
pseudo-coefficient, endoscopy
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1 Introduction

Since its appearance in the literature [HP1], Dirac cohomology has been playing
an active role in many of the recent developments in representation theory. Back
in late 1990s, Vogan made a conjecture on the property of the Dirac operator in the
setting of a reductive Lie algebra and its associated Clifford algebra [V3]. This prop-
erty implies that the standard parameter of the infinitesimal character of a Harish-
Chandra module X and the infinitesimal character of its Dirac cohomologyHD.X/
are conjugate under the Weyl group. Vogan’s conjecture was consequently verified
in [HP1], and it has been extended to several other settings by many authors (see the
remark at the end of Section 2).
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Dirac cohomology of various classes of representations is intimately related to
several classical subjects of representation theory like global characters and geomet-
ric construction of the discrete series (see [HP2]). The Dirac cohomology of several
families of Harish-Chandra modules has been determined. These modules include
finite-dimensional modules and irreducible unitary Aq.�/-modules [HKP]. It was
proved that if X is a unitary Harish-Chandra module, then

H�.g; KIX ˝ F �/ Š Hom.HD.F /;HD.X//

for any irreducible finite-dimensional module F . It is evident that unitary represen-
tations with nonzero Dirac cohomology are closely related to automorphic repre-
sentations. In [HP2] we used Dirac cohomology to extend the Langlands formula
on dimensions of automorphic forms [L1] to a slightly more general setting.

Another aspect of Dirac cohomology is its connection with u-cohomology. In
particular, when G is Hermitian symmetric and u is unipotent radical of a parabolic
subalgebra with Levi subgroup K, [HPR] showed that for a unitary representa-
tion its Dirac cohomology is isomorphic to its u-cohomology up to a twist of a
one-dimensional character. In particular, Enright’s calculation of u-cohomology [E]
gives the Dirac cohomology of the irreducible unitary highest weight modules. The
Dirac cohomology of unitary lowest weight modules of scalar type is calculated
more explicitly in [HPP]. The Euler characteristic of Dirac cohomology gives the
K-character of the Harish-Chandra module. As an application, we generalized the
classical theorem of Littlewood on branching rules in [HPZ] and some of the other
classical branching rules in [H2].

Kostant extended Vogan’s conjecture to the setting of the cubic Dirac operator
and proved a nonvanishing result on Dirac cohomology for highest weight modules
in the most general setting [Ko3]. He also determined the Dirac cohomology of
finite-dimensional modules in the equal rank case. The Dirac cohomology for all irr-
educible highest weight modules was determined in [HX] in terms of coefficients of
Kazhdan–Lusztig polynomials. The general formula relating the Dirac cohomology
and u-cohomology for irreducible highest weight modules is also proved in [HX].

The aim of this paper is twofold: First, we review some of the recent develop-
ments of Dirac cohomology, in particular its relationship with .g; K/-cohomology
and u-cohomology. Second, we use Dirac cohomology as a tool to study a class of
irreducible unitary representations, called elliptic representations. Harish-Chandra
showed that the characters of irreducible or more generally admissible representa-
tions are locally integrable functions and smooth on the open dense subset of regular
elements [HC1]. An elliptic representation has a global character that does not van-
ish on the elliptic elements in the set of regular elements. For real reductive Lie
groups with compact Cartan subgroups, the irreducible tempered elliptic represen-
tations are showed to be representations with nonzero Dirac cohomology, and they
are precisely the discrete series and some of the limits of discrete series. The char-
acters of the irreducible tempered elliptic representations are associated in a natural
way to the supertempered distributions defined by Harish-Chandra [HC4]. We con-
jecture that in general the elliptic unitary representations are precisely the unitary
representations with nonzero Dirac cohomology.
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We show that an irreducible admissible (not necessarily unitary) representation
is elliptic if and only if its Dirac index is not zero. We prove that under the con-
dition of regular infinitesimal character, the Dirac index is zero if and only if the
Dirac cohomology is zero. We conjecture that this equivalence holds in general
without the regularity condition. We also show that the Harish-Chandra modules of
irreducible elliptic unitary representations with regular infinitesimal characters are
Aq.�/-modules for a real reductive algebraic group G.R/.

We also observe a connection between Labesse’s calculation of the endoscopic
transfer of pseudo-coefficients of discrete series and the calculation of the characters
of the Dirac index of discrete series. It offers a new point of view for understanding
the endoscopic transfer in the framework of Dirac cohomology and the Dirac index.
To classify irreducible unitary representations with nonzero Dirac cohomology rem-
ains an open and interesting problem. We conjecture at the end of the paper that any
irreducible unitary representation which does not have nonzero Dirac cohomology
is induced from one with nonzero Dirac cohomology.

2 Vogan’s conjecture on Dirac cohomology

For a real reductive groupG with a Cartan involution � , denote by g0 its Lie algebra
and assume that K D G is a maximal compact subgroup of G. Let g D k ˚ p
be the Cartan decomposition for the complexified Lie algebra of G. Let B be a
nondegenerate invariant symmetric bilinear form on g, which restricts to the Killing
form on the semisimple part Œg; g� of g.

Let U.g/ be the universal enveloping algebra of g and C.p/ the Clifford algebra
of p with respect to B . Then one can consider the following version of the Dirac
operator:

D D
n
X

iD1
Zi ˝Zi 2 U.g/˝ C.p/I

here Z1; : : : ; Zn is an orthonormal basis of p with respect to the symmetric bilinear
form B . It follows that D is independent of the choice of the orthonomal basis
Z1; : : : ; Zn and it is invariant under the diagonal adjoint action of K.

The Dirac operator D is a square root of the Laplace operator associated to the
symmetric pair .g; k/. To explain this, we start with a Lie algebra map

˛ W k! C.p/;

which is defined by the adjoint map ad W k! so.p/ composed with the embedding
of so.p/ into C.p/ using the identification so.p/ ' V2 p. The explicit formula for
˛ is (see [HP2, 	2.3.3])

˛.X/ D �1
4

X

j

ŒX;Zj �Zj : (2.1)
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Using ˛ we can embed the Lie algebra k diagonally into U.g/˝ C.p/, by

X 7! X� D X ˝ 1C 1˝ ˛.X/:
This embedding extends to U.k/. We denote the image of k by k�, and then the
image of U.k/ is the enveloping algebra U.k�/ of k�.

Let˝g be the Casimir operator for g, given by˝g DPZ2i �
P

W 2
j , whereWj

is an orthonormal basis for k0 with respect to the inner product �B , where B is the
Killing form. Let ˝k D �PW 2

j be the Casimir operator for k. The image of ˝k

under � is denoted by ˝k	
.

Then

D2 D �˝g ˝ 1C˝k	
C .k�ck2 � k�k2/1˝ 1; (2.2)

where � and �c are half sums of positive roots and compact positive roots
respectively.

The Vogan conjecture says that every element ´˝ 1 of Z.g/˝ 1 � U.g/˝C.p/
can be written as

�.´/CDaC bD
where �.´/ is in Z.k�/, and a; b 2 U.g/˝ C.p/.

A main result in [HP1] is introducing a differential d on the K-invariants in
U.g/˝ C.p/ defined by a super bracket with D, and determining the cohomology
of this differential complex. As a consequence, Pandžić and I proved the following
theorem. In the following we denote by h a Cartan subalgebra of g containing a
Cartan subalgebra t of k so that t� is embedded into h�, and byW andWK the Weyl
groups of .g; h/ and .k; t/ respectively.

Theorem 2.1 ([HP1]). Let � W Z.g/ ! Z.k/ Š Z.k�/ be the algebra homomor-
phism that is determined by the following commutative diagram:

Z.g/
������! Z.k/

�

?

?

y
�k

?

?

y

P.h�/W Res�����! P.t�/WK ;

where P denotes the polynomial algebra, and vertical maps � and �k are Harish-
Chandra isomorphisms. Then for each ´ 2 Z.g/ one has

´˝ 1 � �.´/ D DaC aD; for some a 2 U.g/˝ C.p/:
For any admissible .g; K/-module X , Vogan [V3, HP1]) introduced the notion

of Dirac cohomology HD.X/ of X . Consider the action of the Dirac operator D on
X ˝ S , with S the spinor module for the Clifford algebra C.p/. The Dirac coho-
mology is defined as follows:

HD.X/ WD KerD= ImD \ KerD:
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It follows from the identity (2.2) that HD.X/ is a finite-dimensional module for the
spin double cover eK of K. In case X is unitary, HD.X/ D kerD D kerD2 since
D is self-adjoint with respect to a natural Hermitian inner product on X ˝ S . As
a consequence of the above theorem, we have that HD.X/, if nonzero, determines
the infinitesimal character of X .

Theorem 2.2 ([HP1]). Let X be an admissible .g; K/-module with standard inf-
initesimal character parameter � 2 h�. Suppose that HD.X/ contains a represen-
tation of eK with infinitesimal character �. Then � and � 2 t� � h� are conjugate
under W .

The above theorem is proved in [HP1] for a connected semisimple Lie group G.
It is straightforward to extend the result to a possibly disconnected reductive Lie
group in Harish-Chandra’s class [DH2].

Vogan’s conjecture implies a refinement of Parthasarathy’s celebrated Dirac ine-
quality, which is an extremely useful tool for the classification of irreducible unitary
representations of reductive Lie groups.

Theorem 2.3 (Extended Dirac Inequality [P], [HP1]). Let X be an irreducible
unitary .g; K/-module with infinitesimal character �. Fix a representation of K
occurring in X with a highest weight � 2 t�, and a positive root system �C.g/ for
t in g. Here t is a Cartan subalgebra of k. Write

�c D �.�C.k//; �n D �.�C.p//:
Fix an element w 2 WK such that w.� � �n/ is dominant for �C.k/. Then

hw.� � �n/C �c ; w.� � �n/C �ci � h�;�i:
The equality holds if and only if someW conjugate of� is equal tow.���n/C�c .
Remark 2.4. Dirac cohomology becomes a useful tool in representation theory and
related areas with Vogan’s conjecture being extended to various different settings,
most notably Kostant’s generalization to the setting of the cubic Dirac operator,
which will be discussed in detail in Section 5. We also mention the following
extensions.

(i) Alekseev and Meinrenken proved a version of Vogan’s conjecture in their study
of Lie theory and the Chern–Weil homomorphism [AM].

(ii) Kumar proved a similar version of Vogan’s conjecture in Induction functor in
non-commutative equivariant cohomology and Dirac cohomology [Ku].

(iii) Pandžić and I extended Vogan’s conjecture to the symplectic Dirac operator in
Lie superalgebras [HP3].

(iv) Kac, Möseneder Frajria and Papi extended Vogan’s conjecture to the affine
cubic Dirac operator in affine Lie algebras [KMP].

(v) Barbasch, Ciubotaru and Trapa extended Vogan’s conjecture to the setting of
graded affine Hecke algebras [BCT].

(vi) Ciubotaru and Trapa proved a version of Vogan’s conjecture for studying Weyl
group representations in connection with Springer theory [CT].
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3 Dirac cohomology of Harish-Chandra modules

We now describe the Dirac cohomology of finite-dimensional modules and irre-
ducible unitary representations with strongly regular infinitesimal characters which
are Aq.�/-modules. These results are proved in [HKP].

Recall that t0 is a Cartan subalgebra of k0 and h0 � t0 is a fundamental Cartan
subalgebra of g0. Then h0 D t0 ˚ a0 with a0 the centralizer of t0 in p0. Passing to
complexifications, we will view t� as a subspace of h� by extending the functionals
to act as 0 on a.

We denote by �.g; h/ (respectively �.g; t/) the root system of g with respect to
h (respectively t). The root system of k with respect to t will be denoted by �.k; t/.
Note that �.g; h/ and �.k; t/ are reduced, while �.g; t/ is in general not reduced.
The Weyl groups corresponding to the above root systems are denoted by

W D W.g; h/; W.g; t/; and WK D W.k; t/:
Throughout this section we fix compatible choices of positive roots �C.g; h/,

�C.g; t/ and �C.k; t/. As usual, we denote by � the half sum of positive roots for
.g; h/, by �c the half sum of positive roots for .k; t/, and by �n the difference ���c .
Then �; �c ; �n 2 t�.

We let t�
R
D i t�0 and let h�

R
D i t�0 C a�0 . Our fixed form B on g induces inner

products on t�
R

and h�
R

.
We denote by Cg.h

�
R
/ (respectively Cg.t

�
R
/, Ck.t

�
R
/) the closed Weyl chamber

corresponding to �C.g; h/ (respectively �C.g; t/, �C.k; t/). Then Cg.t
�
R
/ is con-

tained in Cg.h
�
R
/. Namely, if � 2 t�

R
� h�

R
has nonnegative inner product with every

element of �C.g; t/, then for any ˛ 2 �C.g; h/
h�; ˛i D h�; ˛jti C h�; ˛jai � 0;

because � is orthogonal to a�.
We define

W.g; t/1 D fw 2 W.g; t/ j w.Cg.t
�
R
// � Ck.t

�
R
/g:

It is clear that W.k; t/ is a subgroup of W.g; t/, and that the multiplication map
induces a bijection from W.k; t/ � W.g; t/1 onto W.g; t/. Thus the set W.g; t/1 is
in bijection with W.k; t/nW.g; t/. Let E� denote the irreducible representation of
k with highest weight �. The following fact can be found in [P] (see also [BW, II,
Lemma 6.9], or [W, Lemma 9.3.2]):

Lemma 3.1. We have the following isomorphism for k-modules:

S Š
M

w2W.g;t/1
2Œl0=2�Ew
�
c

;

where l0 D dim a and mE� means a direct sum of m copies of E�.

Clearly, S is isomorphic to the Dirac cohomology HD.C/ of the trivial repre-
sentation C.
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Let V� be the irreducible finite-dimensional .g; K/-module with highest weight
� 2 h�. If Dirac cohomology of V� is nonzero, then � C � 2 t� and thus � 2 t�.
We have to identify highest weights � of QK-submodules of V� ˝ S that satisfy
k� C �ck D k�C �k.
Theorem 3.2 (Theorem 4.2 [HKP]). Let V� be an irreducible finite-dimensional
.g; K/-module with highest weight �. If � ¤ ��, then the Dirac cohomology of V�
is zero. If � D ��, then as a k-module the Dirac cohomology of V� is

HD.V�/ D
M

w2W.g;t/1
2Œl0=2�Ew.�C
/�
c

:

We now describe the Dirac cohomology of a unitary Aq.�/-module. Recall that
a � -stable parabolic subalgebra

q D l˚ u

of g is by definition the sum of nonnegative eigenspaces of ad.H/, whereH is some
fixed element of i t0 (and consequently ad.H/ is semisimple with real eigenvalues).
The Levi subalgebra l of q is the zero eigenspace of ad.H/, while the nilradical u
of q is the sum of positive eigenspaces of ad.H/. Note that clearly l � h. Since
�.H/ D H , l; u and q are all invariant under � . Furthermore, l is real, i.e., l is the
complexification of a subalgebra l0 of g0. LetL denote the connected subgroup ofG
corresponding to l0. We will assume that our fixed choice of positive roots�C.g; h/
is compatible with q in the sense that the set of roots

�.u/ D f˛ 2 �.g; h/ j g˛ � ug
is contained in �C.g; h/. Note that �.l; h/ � �.g; h/, and we set �C.l; h/ D
�.l; h/ \ �C.g; h/. Likewise, �.l; t/ � �.g; t/, and we set �C.l; t/ D �.l; t/ \
�C.g; t/.

Let � 2 l� be admissible. In other words, � is the complexified differential of a
unitary character of L, satisfying the following positivity condition:

h˛; �jti � 0; for all ˛ 2 �.u/:
Then � is orthogonal to all roots of l, so we can view � as an element of h�.

Given q and � as above, define

�.q; �/ D �jt C 2�.u \ p/:

Here �.u \ p/ D �.�.u \ p// is the half sum of all elements of �.u \ p/, i.e., of
all t-weights of u\ p, counted with multiplicity. We will use analogous notation for
other t-stable subspaces of g.

The following result of Vogan and Zuckerman characterizes the Aq.�/-modules
we wish to consider.
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Theorem 3.3 ([VZ], [V2]). Let q be a � -stable parabolic subalgebra of g and let
� 2 h� be admissible as defined above. Then there is a unique unitary .g; K/-
module Aq.�/ with the following properties:

(i) The restriction of Aq.�/ to k contains the representation with highest weight
�.q; �/ defined as above;

(ii) Aq.�/ has infinitesimal character �C �;
(iii) If the representation of k occurs in Aq.�/, then its highest weight is of the form

�.q; �/C
X

ˇ2�.u\p/
nˇˇ (3.1)

with nˇ nonnegative integers. In particular, �.q; �/ is the lowest K-type of
Aq.�/ (and its multiplicity is 1).

We denote the Weyl groups for�.l; t/ and �.l; h/ byW.l; t/ andW.l; h/ respec-
tively. Clearly, these are subgroups of W.g; t/, respectively W.g; h/.

Theorem 3.4 (Theorem 5.1 [HKP]). If � ¤ ��, then the Dirac cohomology of
Aq.�/ is zero. If � D ��, then the Dirac cohomology of the unitary irreducible
.g; K/-module Aq.�/ is

HD.Aq.�// D kerD D
M

w2W.l;t/1
2Œl0=2�Ew.�C
/�
c

:

Remark 3.5. Dirac cohomology has been calculated for other families of represen-
tations (see [BP1, BP2, MP]).

4 Dirac cohomology and .g; K/-cohomology

Let F be an irreducible finite-dimensional G-module with highest weight �. By re-
sults of Vogan and Zuckerman [VZ], the irreducible unitary .g; K/-modules X such
thatH�.g; KIX ˝F �/ ¤ 0 are certain Aq.�/-modules with the same infinitesimal
character as F . Moreover, if X is such an Aq.�/-module, then

H i .g; KIX ˝ F �/ D HomL\K.
Vi�dim.u\p/

.l \ p/;C/;

where L is the Levi subgroup of G corresponding to q.
Recall that the above .g; K/-cohomology can be defined as the cohomology of

the complex

Hom�
K.
V�
.p/; X ˝ F �/;

with differential

df .X1 ^ 	 	 	 ^Xk/ D
X

i

.�1/i�1Xi 	 f .X1 ^ 	 	 	 bX i 	 	 	 ^Xk/:
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To show how this is related to our results, let us first show that .g; K/-cohomology
is related to Dirac cohomology, as stated in the introduction. As we mentioned
above, if .g; K/-cohomology is nonzero, then X must have the same infinitesimal
character as F . We assume this in the following.

Consider first the case when dim p is even. Then we can write p as a direct sum
of isotropic subspaces U and NU Š U �. Then we have the spinor spaces S D V�

U

and S� DV� NU , and

S ˝ S� ŠV�
.U ˚ NU / DV�p:

It follows that we can identify the .g; K/-cohomology of X ˝ F � with

H�.Hom�
QK.S ˝ S�; X ˝ F �// Š H�.Hom�

QK.F ˝ S;X ˝ S//:
IfX is unitary, Wallach has proved that the differential of this complex is 0 (see [W,
Proposition 9.4.3], or [BW]). So taking the cohomology can be omitted in the above
formula. It follows that

H�.g; KIX ˝ F �/ D Hom�
QK.HD.F /;HD.X//:

Namely, the eigenvalues ofD2 are nonpositive on F ˝S and nonnegative onX˝S
(see [W, 9.4.6]). Also, since the infinitesimal characters of X and F are the same,
the eigenvalue ofD2 on a eK-type in either of the two variables depends only on the
value of the Casimir element ˝k	

on that eK-type. In particular, the action of D2

on isomorphic eK-types must have the same eigenvalue. It follows from the Dirac
inequality that the same eK-type can appear in both F ˝ S and X ˝ S only if it is
in the kernel of D2 in each variable, and KerD2 is equal to the Dirac cohomology
for these cases.

Now we consider the case when dim p is odd. In this case,
V�p is isomorphic to

the direct sum of two copies of S˝S�. Therefore,H�.g; KIX˝F �/ is isomorphic
to the direct sum of two copies of Hom�

QK.HD.F /;HD.X//.
If we now use the formulas for HD.Aq.�// and HD.F / from Section 3, we

immediately get

dimH�.g; KIX ˝ F �/ D 2l0 jW.l; t/=W.l \ k; t/j:
This agrees with the results of [VZ].

5 Dirac cohomology of highest weight modules

We describe Dirac cohomology of irreducible highest weight modules. As men-
tioned in Section 3, Kostant extended Vogan’s conjecture to the setting of the cubic
Dirac operator [Ko3]. Fix a Cartan subalgebra h in a Borel subalgebra b. The cat-
egory O introduced by Bernstein, Gelfand and Gelfand [BGG] is the category of
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all g-modules, which are finitely generated, locally b-finite and semisimple under
the h-action. Kostant proved a nonvanishing result on Dirac cohomology for high-
est weight modules in the most general setting. His theorem implies that for the
equal rank case all highest weight modules have nonzero Dirac cohomology. He
also determined the Dirac cohomology of finite-dimensional modules in this case.
The connection of Dirac cohomology of .g; K/-modules and that of highest weight
modules was studied in [DH1] using the Jacquet functor. In [HX] we determined the
Dirac cohomology of all irreducible highest weight modules in terms of Kazhdan–
Lusztig polynomials.

We first recall the definition of Kostant’s cubic Dirac operator and the basic prop-
erties of the corresponding Dirac cohomology. Let g be a semisimple complex Lie
algebra with Killing formB . Let r � g be a reductive Lie subalgebra such thatBjr�r
is nondegenerate. Let g D r˚ s be the orthogonal decomposition with respect to B .
Then the restriction Bjs is also nondegenerate. Denote by C.s/ the Clifford algebra
of s with

uu0 C u0u D �2B.u; u0/
for all u; u0 2 s. The above choice of sign is the same as in [HP2], but different
from the definition in [Ko1], as well as in [HPR]. The two different choices of signs
make no essential difference since the two bilinear forms are equivalent over C.
Now fix an orthonormal basis Z1; : : : ; Zm of s. Kostant [Ko1] defines the cubic
Dirac operator D by

D D
m
X

iD1
Zi ˝Zi C 1˝ v 2 U.g/˝ C.s/:

Here v 2 C.s/ is the image of the fundamental 3-form w 2V3
.s�/,

w.X; Y;Z/ D 1

2
B.X; ŒY;Z�/;

under the Chevalley map
V

.s�/ ! C.s/ and the identification of s� with s by the
Killing form B . Explicitly,

v D 1

2

X

1�i<j<k�m
B.ŒZi ; Zj �; Zk/ZiZjZk :

The cubic Dirac operator has a good square in analogy with the Dirac operator
associated with the symmetric pair .g; k/ in Section 3. We have a similar Lie algebra
map

˛ W r! C.s/

which is defined by the adjoint map ad W r ! so.s/ composed with the embedding
of so.s/ into C.s/ using the identification so.s/ 'V2 s. The explicit formula for ˛
is (see [HP2, 	2.3.3])
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˛.X/ D �1
4

X

j

ŒX;Zj �Zj ; X 2 r: (5.1)

Using ˛ we can embed the Lie algebra r diagonally into U.g/˝ C.s/, by

X 7! X� D X ˝ 1C 1˝ ˛.X/:
This embedding extends to U.r/. We denote the image of r by r�, and then the
image of U.r/ is the enveloping algebra U.r�/ of r�. Let ˝g (resp. ˝r) be the
Casimir elements for g (resp. r). The image of ˝r under � is denoted by ˝r	

.
Let hr be a Cartan subalgebra of r which is contained in h. It follows from

Kostant’s calculation ([Ko1, Theorem 2.16]) that

D2 D �˝g ˝ 1C˝r	
� .k�k2 � k�rk2/1˝ 1; (5.2)

where �r denote the half sum of positive roots for .r; hr/. We also note the sign dif-
ference with Kostant’s formula due to our choice of bilinear form for the definition
of the Clifford algebra C.s/.

We denote by W the Weyl group associated to the root system �.g; h/ and Wr

the Weyl group associated to the root system �.r; hr/. The following theorem due
to Kostant is an extension of Vogan’s conjecture on the symmetric pair case which
is proved in [HP1]. (See [Ko3, Theorems 4.1 and 4.2] or [HP2, Theorem 4.1.4]).

Theorem 5.1. There is an algebra homomorphism � W Z.g/! Z.r/ Š Z.r�/ such
that for any ´ 2 Z.g/ one has

´˝ 1 � �.´/ D DaC aD for some a 2 U.g/˝ C.s/:
Moreover, � is determined by the following commutative diagram:

Z.g/
������! Z.r/

�

?

?

y
�r

?

?

y

P.h�/W Res�����! P.h�r /Wr :

Here the vertical maps � and �r are Harish-Chandra isomorphisms.

Definition 5.2. Let S be a spin module of C.s/. Consider the action ofD on V ˝S
D W V ˝ S ! V ˝ S (5.3)

with g acting on V and C.s/ on S . The Dirac cohomology of V is defined to be the
r-module

HD.V / WD KerD=KerD \ ImD:

The following theorem is a consequence of the above theorem.
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Theorem 5.3 ([Ko3], [HP2]). Let V be a g-module with Z.g/ infinitesimal charac-
ter ��. Suppose that an r-module N is contained in the Dirac cohomology HD.V /
and has Z.r/ infinitesimal character �� . Then � D w� for some w 2 W .

Suppose that V� is a finite-dimensional representation with highest weight � 2 h�.
Kostant [Ko2] calculated the Dirac cohomology of V� with respect to any equal rank
quadratic subalgebra r of g. Assume that h � r � g is the Cartan subalgebra for
both r and g. DefineW.g; h/1 to be the subset of the Weyl groupW.g; h/ defined by

W.g; h/1 D fw 2 W.g; h/ j w.�/ is �C.r; h/-dominantg:
This is the same as the subset of elements w 2 W.g; h/ that map the positive Weyl
g-chamber into the positive r-chamber. There is a bijection

W.r; h/ �W.g; h/1 ! W.g; h/

given by .w; �/ 7! w� . Kostant proved [Ko2] that

HD.V�/ D
M

w2W.g;h/1
Ew.�C
/�
r :

The above result of Kostant on Dirac cohomology of finite-dimensional modules
has been extended to the unequal rank case by Mehdi and Zierau [MZ]. We now
show how to calculate the Dirac cohomology of a simple highest weight module of
possibly infinite dimension. We need to recall the definition and some of the basic
properties of the category Oq associated with an arbitrary parabolic subalgebra q
of g.

Recall that if g is a complex semisimple Lie algebra with Cartan subalgebra h,
we denote by ˚ D �.g; h/ � h� the root system of (g, h). For ˛ 2 ˚ , let g˛ be the
root subspace of g corresponding to ˛. We fix a choice of the set of positive roots
˚C and let � be the corresponding subset of simple roots in ˚C. Note that each
subset I � � generates a root system˚I � ˚ , with positive roots˚CI D ˚I \˚C.

The parabolic subalgebras of g up to conjugation are in one-to-one correspon-
dence with the subsets of �. We let

lI D h˚
X

˛2˚I

g˛

be the Levi subalgebra and let

uI D
X

˛2˚Cn˚C

I

g˛; NuI D
X

˛2˚Cn˚C

I

g�˛

be the nilpotent radical and its dual space with respect to the Killing form B . Then
qI D lI ˚ uI is the standard parabolic subalgebra associated with I . We set
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� D �.g/ D 1

2

X

˛2˚C

˛; �.lI / D 1

2

X

˛2˚C

I

˛; and �.uI / D 1

2

X

˛2˚Cn˚C

I

˛:

Then we have �.NuI / D ��.uI /. We note that once I is fixed, there is little use for
other subsets of �. We will omit the subscript if a subalgebra is clearly associated
with I .

Definition 5.4. The category Oq is defined to be the full subcategory of U.g/-
modules M that satisfy the following conditions:

(i) M is a finitely generated U.g/-module;
(ii) M is a direct sum of finite-dimensional simple U.l/-modules;

(iii) M is locally finite as a U.q/-module.

We adopt the notation of [Hum2]. Let �CI be the set of ˚CI -dominant integral
weights in h�, namely,

�CI WD f� 2 h� j h�; ˛_i 2 Z	0 for all ˛ 2 ˚CI g:
Here h; i is the bilinear form on h� (induced from the Killing form B) and ˛_ D
2˛=h˛; ˛i.

Let F.�/ be the finite-dimensional simple l-module with highest weight �. Then
� 2 �CI . We consider F.�/ as a q-module by letting u act trivially on it. Then the
parabolic Verma module with highest weight � is the induced module

MI .�/ D U.g/˝U.q/ F.�/:
The module MI .�/ is a quotient of the ordinary Verma module M.�/. Using
Theorem 1.2 in [Hum2], we can write unambiguously L.�/ for the unique sim-
ple quotient of MI .�/ and M.�/. Furthermore, since every nonzero module in Oq

has at least one nonzero vector of maximal weight, Proposition 9.3 in [Hum2] im-
plies that every simple module in Oq is isomorphic to L.�/ for some � 2 �CI and
is therefore determined uniquely up to isomorphism by its highest weight.

Recall that MI .�/ and all its subquotients including L.�/ have the same in-
finitesimal character

��WZ.g/! C:

Here �� is an algebra homomorphism such that ´ 	v D ��.´/v for all ´ 2 Z.g/ and
all v 2 M.�/. We note that the standard parameter for the infinitesimal character
�� is the Weyl group orbit of �C � 2 h� due to the �-shift in the Harish-Chandra
isomorphism Z.g/! S.h/W .

It follows from Corollary 1.2 in [Hum2] that every nonzero moduleM 2 Oq has
a finite filtration with nonzero quotients each of which is a highest weight module
in Oq. Then the action of Z.g/ on M is finite. We set

M� WD fv 2M j .´ � �.´//nv D 0 for some n > 0 depending on ´g:
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Then ´ � �.´/ acts locally nilpotently on M� for all ´ 2 Z.g/ and M� is a U.g/-
submodule of M . Let Oq

� denote the full subcategory of Oq whose objects are the
modules M for which M D M�. By the above discussion we have the following
direct sum decomposition:

Oq D
M

�

Oq
�;

where � is of the form � D �� for some � 2 h�.
Let W be the Weyl group associated to the root system ˚ . We define the dot

action of W on h� by w 	 � D w.� C �/ � � for � 2 h�. Then �� D �� if and
only if � 2 W 	� by the Harish-Chandra isomorphismZ.g/! S.h/W . An element
� 2 h� is called regular if the isotropy group of � in W is trivial. In other words,
� is regular if h�C �; ˛_i ¤ 0 for all ˛ 2 ˚ . A nonregular element in h� will be
called singular.

Denote by � the set of all Z	0-linear combinations of simple roots in �. Let X
be the additive group of functions f W h� ! Z whose support lies in a finite union
of sets of the form � � � for � 2 h�. Define the convolution product on X by

.f � g/.�/ WD
X

�C	D�
f .�/g.�/:

We regard e.�/ as a function in X which takes value 1 at � and value 0 at � ¤ �.
Then e.�/ � e.�/ D e.� C �/. It is clear that X is a commutative ring under
convolution, with e.0/ as its multiplicative identity. Let

M� WD fv 2M j h 	 v D �.h/v for all h 2 hg:
We say that a weight module (semisimple h-module) M has a character if

chM WD
X

�2h�

dimM� e.�/ (5.4)

is contained in X . In this case, chM is called the formal character of M . Notice
that all the modules in Oq have characters, as do all finite-dimensional semisimple
h-modules. In particular, if M has a character and dimL < 1, then M ˝ L has a
character

ch.M ˝ L/ D chM � chL:

In addition, for semisimple h-modules which have characters, their direct sums,
submodules and quotients also have characters.

As a consequence of the established Vogan’s conjecture for the cubic Dirac op-
erators, we have the following proposition (see also [DH1, Theorem 4.3]).

Proposition 5.5. Suppose that V is in Oq
�


. Then the Dirac cohomologyHD.V / is a
completely reducible finite-dimensional l-module. Moreover, if the finite-dimensional
l-module F.�/ is contained in HD.V /, then �C �l D w.�C �/ for some w 2 W .
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It is shown in [HX] that determining HD.L.�// is equivalent to determining
chL.�/ in terms of chMI .�/, which is solved by the Kazhdan–Lusztig algorithm.
Namely, if

chL.�/ D
X

.�1/�.�;�/m.�;�/ chMI .�/;

then we have

HD.L.�// D
M

m.�;�/F.�/˝ C
.u/:

Using the known results on Kazhdan–Lusztig polynomials, we can calculate explic-
itly the Dirac cohomology of all irreducible highest weight modules. We recall the
main result from [HX] here. Recall that W D W.g; h/ is the Weyl group associated
to the root system ˚ . We define

˚Œ�� WD f˛ 2 ˚ j h�; ˛_i 2 Zg:
Then it is the root system of integral roots associated to �. We also set

WŒ�� WD fw 2 W j w� � � 2 �rg;
where �r is the Z-span of ˚ . Then WI is contained in WŒ��. We also define

W I D fw 2 WŒ�� j w < s˛w for all ˛ 2 I g;
where the ordering onW is given by the Bruhat ordering. Denote by�Œ�� the simple
system corresponding to the positive system ˚Œ��\˚C in ˚Œ��. Let � be the unique
anti-dominant weight inWŒ��	�. The set of singular simple roots in�Œ�� is defined by

J D f˛ 2 �Œ�� j h�C �; ˛_i D 0g:
Then WJ D fw 2 W j w.�C �/ D �C �g � WŒ�� is the isotropy group of �. Put

JW I D fw 2 W I j w < ws˛ and ws˛ 2 W I for all ˛ 2 J g:
Following Boe and Hunziker [BH] we define

JP Ix;w.q/ D
X

i	0
q

l.w/�l.x/�i
2 dim ExtiOp.Mx ; Lw/; for all x;w 2 JW I :

It is shown to be a polynomial and is called the relative Kazhdan–Lusztig–Vogan
polynomial.

Theorem 5.6 (Theorem 6.16 [HX]). If L.�/ is the simple highest weight module
in Op

� of weight � D wIw 	 � with wI the longest element in WI , then one has an
l-module decomposition

HD.L.�// '
M

x2JW I

JP Ix;w.1/F.wIx 	 �C �.u//:
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Remark 5.7. Applying the action of the Chevalley automorphism (see Section 7) on
Dirac cohomology, we can also determine the Dirac cohomology of simple lowest
weight modules.

6 Dirac cohomology and u-cohomology

In this section we review the results on Dirac cohomology and pC-cohomology
of unitary representations for the Hermitian symmetric case. Then we discuss the
simple highest weight modules in Oq. We use quite different techniques for these
two cases.

Suppose that G is simple and Hermitian symmetric, with maximal compact sub-
group K. In this case the k-module g decomposes as g D k˚ p D k˚ pC˚ p�. We
can choose the basis bi of p in the following special way. Let �Cn D fˇ1; : : : ; ˇmg.
For each ˇi we choose a root vector ei 2 pC. Let fi 2 p� be the root vector
for the root �ˇi such that B.ei ; fi / D 1. Then for the basis bi of p we choose
e1; : : : ; emI f1; : : : ; fm. The dual basis is then f1; : : : ; fmI e1; : : : ; em. Thus the
Dirac operator is

D D
m
X

iD1
ei ˝ fi C fi ˝ ei :

We also note that in this case G is of equal rank and in particular p is even-
dimensional. Therefore, there is a unique irreducible C.p/-module, the spin module
S , which we choose to construct as S D V

pC. It is also a module for the double
cover eK of K. Let X be a .g; K/-module. Since pC Š .p�/�, we have

X ˝ S Š X ˝VpC Š Hom.
V

p�; X/ (6.1)

as vector spaces. Note that the underlying vector space
V

pC of the spin module
S carries the adjoint action of k, but the relevant k-action on S is the spin action
defined using the map (5.1). The spin action is equal to the adjoint action shifted by
the character ��n of k (see [Ko2, Proposition 3.6]). So as a k-module, X˝S differs
fromX˝VpC and Hom.

V

p�; X/ by a twist of the 1-dimensional k-module C�
n
.

Let C D Pm
iD1 fi ˝ ei and C� D Pm

iD1 ei ˝ fi ; so D D C C C�. Then,
under the identifications (6.1), C acts on X ˝ S as the p�-cohomology differential,
whileC� acts by 2 times the pC-homology differential (see [HP2, Proposition 9.1.6]
or [HPR]). Furthermore, C and C� are adjoints of each other with respect to the
Hermitian inner product on X ˝ S mentioned above (see [HP2, Lemma 9.3.1] or
[HPR]). It was proved that Dirac cohomology is isomorphic to p�-cohomology up
to a one-dimensional character by using a version of Hodge decomposition.

Theorem 6.1 ([HPR], Theorem 7.11). Let X be a unitary .g; K/-module. Then

HD.X/ Š H�.p�; X/˝ C�
.pC/ Š H�.pC; X/˝ C�
.pC/
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as k-modules. Moreover, the above isomorphisms hold for a parabolic subalgebra
q D lC u as long as l � k and u � pC, that is

HD.X/ Š H�.u�; X/˝ C�
.u/ Š H�.u; X/˝ C�
.u/

as l-modules.

Note that we may use
V

p� instead of
V

pC to construct the spin module S .
Then we have

HD.X/ Š H�.pC; X/˝ C
.pC/ Š H�.p�; X/˝ C
.pC/: (6.2)

Namely, the Dirac operator is independent of the choice of positive roots. Thus, we
also have

H�.pC; X/˝ C
.pC/ Š H�.p�; X/˝ C�
.pC/;

and

H�.pC; X/˝ C�
.pC/ Š H�.p�; X/˝ C
.pC/:

It also follows that we know the Dirac cohomology of all irreducible unitary highest
weight modules explicitly from Enright’s calculation of pC-cohomology [E].

Now suppose q D lC u is a parabolic subalgebra of g as in Section 5. We recall
the result from [HX] on the relation between Dirac cohomology with respect to
D.g; l/ and u-cohomology. We note that the spin action ˛.l/ on S makes it a finite-
dimensional l-module. If V 2 Oq, then V ˝ S is a direct sum of finite-dimensional
simple l-modules. Hence, any submodule, quotient or subquotient of V ˝ S is also
a direct sum of finite-dimensional simple l-modules.

Then the Casimir element˝g acts semisimply on V . We have shown thatHD.V /
is isomorphic to u-homology up to a character in [HX]. We recall here the main
steps in the proof of this isomorphism ([HX, Theorem 5.12]). The u-homology is
Z2-graded as follows:

HC.u; V / D
M

iD0
H2i .u; V / and H�.u; V / D

M

iD0
H2iC1.u; V /:

Then there are injective l-module homomorphisms ([HX, Proposition 4.8]):

HḊ .V /! H˙.u; V /˝ C
. Nu/:

Note that we also have ([HX, Proposition 5.2])

chHCD .V / � chH�D.V / D .chHC.u; V / � chH�.u; V // � chC
. Nu/:

Then the properties of KLV polynomials (see [HX, Proposition 6.14]) imply the fol-
lowing parity condition: HC.u; V / and H�.u; V / have no common l-submodules,
namely,

Homl.HC.u; V /;H�.u; V // D 0:
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This is the key lemma in [HX] (Lemma 5.11). It follows that the embeddings

HḊ .V /! H˙.u; V /˝ C
. Nu/

are isomorphisms.

Theorem 6.2 (Theorem 5.12, Corollary 5.13 [HX]). Let V be a simple highest
weight module in Op. Then we have the following l-module isomorphisms:

HD.V / ' H�.u; V /˝ C�
.u/ ' H�.Nu; V /˝ C�
.u/:

As mentioned, in the special case when q contains pC in the Hermitian symmetric
setting, the above theorem is proved for unitary Harish-Chandra modules in [HPR].
The argument in [HPR] depends on the existence of the positive definite Hermitian
form on these modules. This argument cannot be extended to any simple highest
weight modules.

For a Harish-Chandra module X for G of Hermitian symmetric type, we have
similar injective homomorphisms of

HḊ .X/! H˙.pC; X/˝ C�
.pC/:

Conjecture 6.3. Suppose that X is a simple Harish-Chandra module. Then

Hom
eK
.HC.pC; X/;H�.pC; X// D 0:

In particular, it implies the above injective homomorphisms are actually isomor-
phisms. In other words, we conjecture that Theorem 6.1 holds for any simple .g; K/-
module X .

We note that Dirac cohomology for unitary lowest weight modules is an impor-
tant ingredient for generalizing classical branching rules [HPZ, H2].

Remark 6.4. It is obvious that all the proofs for the theorems in this section on
highest weight modules can be done for lowest weight modules.

We review a result about the action of an automorphism on Dirac cohomology
[HPZ]. The above remark is a consequence of taking the Chevalley automorphism.
Let � be an automorphism of G preserving K. Then �

ˇ

ˇ

K
is an automorphism of K.

Also, � induces automorphisms of g0 and g, denoted again by � , and � preserves
the Cartan decomposition g D k ˚ p. Finally, �

ˇ

ˇ

p
extends to an automorphism of

the Clifford algebra C.p/, denoted again by � . Let X be a .g; K/-module. If we set
X � D X , then .� ı �;X � / is also a .g; K/-module. Similarly, for any K-module
.';E/, if we set E� D E, then .' ı �; E� / is also a K-module. The same is true if
we replace K by eK. The following property of Dirac cohomology was proved for
any unitary .g; K/-module in [HPZ] (Prop. 5.1 of [HPZ]). The same proof extends
straightforwardly to any .g; K/-module ([H2, Prop. 3.12]).
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Proposition 6.5. Let X be a .g; K/-module. Then

HD.X
� / Š .HD.X//� :

7 Calculation of Dirac cohomology in stages

In this section we review another technique for calculating Dirac cohomology,
namely calculation in stages. This technique is needed to study the Dirac coho-
mology of elliptic representations. Recall that g0 is the Lie algebra of G with a
compact subalgebra k0, the Lie algebra of K. We assume k0 is of equal rank with
g0. Then a Cartan subalgebra t0 of k0 is also a Cartan subalgebra of g0. We drop
the subscripts for their complexification. The bilinear form B on g is nondegen-
erate and the restriction Bjt remains nondegenerate. Then we have an orthogonal
decomposition g D t˚ s with s the orthogonal complement of t with respect to B .
It follows that Bjs is also nondegenerate. The cubic Dirac operator D.g; t/ due to
Kostant [Ko2] is in U.g/ ˝ C.s/. Let fYigniD1 be an orthonormal basis of s. Then
we can write (see [HP2, 4.1.1])

D.g; t/ D
n
X

iD1
Yi ˝ Yi C 1

2

X

i<j<k

B.ŒYi ; Yj �; Yk/˝ YiYjYk :

Let g D k˚ p be the complexification of the Cartan decomposition and let s1 be
the orthogonal complement of t in k. Then s D s1 ˚ p. As in [HP2, 	9.3] we write
the Dirac operator D.g; t/ in terms of D.g; k/ and D.k; t/ by using an orthonormal
basis for s formed by orthonormal bases Zi for p and Z0j for s1.

Identifying U.g/ ˝ C.s/ with U.g/ ˝ C.p/ N̋ C.s1/, where N̋ denotes the
Z2-graded tensor product, we can write

D.g; t/ DP

i Zi ˝Zi ˝ 1C
P

j Z
0
j ˝ 1˝Z0j

C1
2

P

i<j

P

k B.ŒZi ; Zj �; Z
0
k
/˝ZiZj ˝Z0k

C1
2

P

i<j<k B.ŒZ
0
i ; Z

0
j �; Z

0
k
/˝ 1˝Z0iZ0jZ0k :

(7.1)

Regarding U.g/˝C.k/ as the subalgebra U.g/˝C.k/˝1 of U.g/˝C.k/ N̋ C.s1/,
the first summand in (7.1) gives D.g; k/ and the remaining three summands in (7.1)
come from the cubic Dirac operator corresponding to t � k. However, this is an
element of the algebra U.k/ ˝ C.s1/, and this algebra has to be embedded into
U.g/˝ C.p/ N̋ C.s1/ diagonally, by

� W U.k/˝ C.s1/ Š U.k�/ N̋ C.s1/ � U.g/˝ C.p/ N̋ C.s1/:
HereU.k�/ is embedded intoU.g/˝C.p/ by a diagonal embedding while the factor
C.s1/ remains unchanged. We denote the image �.D.k; t// by D�.k; t/.
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Theorem 7.1 (Theorem 3.2 [HPR], Theorem 9.4.1 [HP2]). With notation as above,
D.g; t/ decomposes as D.g; k/ C D�.k; t/. Moreover, the summands D.g; k/ and
D�.k; t/ anti-commute.

The above decomposition holds in a slightly more general setting as it is stated
and proved in Theorem 3.2 of [HPR] and in an even more general setting in [HP2,
Theorem 9.4.1]. The anti-commuting property given here can be applied to calculate
Dirac cohomology in stages. For convenience, we define the cohomology of any
linear operator A on a vector space V to be the vector space

H.A/ D KerA=.ImA \ KerA/:

We also denote by H.AIV / the cohomology when we emphasize the space V . We
call the operator A semisimple if V is the (algebraic) direct sum of the eigenspaces
of A.

Let S be the simple module of the Clifford algebra C.s/. IfX is a .g; K/-module,
then D.g; t/ acts on X ˝ S . We denote by HD.g; tIX/ the cohomology of X ˝ S
with respect to D.g; t/; analogous notation will be used for other Dirac operators.
We note thatHD.g; tIX/ is in fact the cohomology of the operatorD.g; t/ onX˝S ,
namely

HD.g; tIX/ D H.D.g; t/IX ˝ S/:
Lemma 7.2 (Lemma 5.3 [HPR]). Let A and B be anti-commuting linear opera-
tors on an arbitrary vector space V . Assume that A2 and B are semisimple. Then
H.AC B/ is the cohomology (i.e., the kernel) of B acting on H.A/.

The above theorem and lemma imply the following theorem for calculating Dirac
cohomology in stages.

Theorem 7.3 (Theorem 6.1 [HPR], Theorem 9.4.4 [HP2]). Let X be an admissi-
ble .g; K/-module with ˝g acting semisimply. Then we have

HD.g; tIX/ D HD.k; tIHD.g; kIX//:
Also, we can reverse the order to have

HD.g; tIX/ D H.D.g; k/jHD.k;tIX//:

The above theorem is proved in [HPR] and in [HP2] for a slightly more general case
when t is any subalgebra of k. In the following we use the theorem to calculate the
Dirac cohomology of the discrete series as an example.

Example 7.4. Suppose that G is a connected semisimple Lie group with finite cen-
ter. Let X� be the Harish-Chandra module of a discrete series representation with
Harish-Chandra parameter �. Then the Dirac cohomology of X� with respect to
D.g; k/ consists of a single eK-module E�, whose highest weight is � D � � �c .
Here �c is half the sum of roots of t in k positive on �. We note that the highest
weight � is obtained from the highest weight � � �c C �n of the lowest K-type
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of X� by adding ��n (the lowest weight of the spin module S for C.p/). The fact
HD.X�/ D E� follows from Theorem 3.4, since X� D Ab.� � �/ for a � -stable
Borel subalgebra b. This fact can also be proved directly without using Theorem 3.4
as follows. By [HP1, Prop.5.4], the eK-type � is clearly contained in the Dirac coho-
mology. SinceX� has a unique lowestK-type, and since��n is the lowest weight of
the spin module S for C.p/, with multiplicity one, it follows that any other eK-type
has strictly larger highest weight, and thus cannot contribute to the Dirac coho-
mology. We now apply Kostant’s formula from Section 5 to calculate the Dirac
cohomology of E� with respect to D.k; t/:

HD.k; tIE�/ D kerD.k; t/ D
M

w2WK

Cw.�C
c/:

It follows from �C �c D � that

HD.g; tIX�/ D
M

w2WK

Cw�:

Remark 7.5. In [CH] a modified Dirac operator is defined as follows:

eD.g; t/ D D.g; k/C iD�.k; t/:
This is used for the geometric quantization and construction of models of discrete
series. Let X be a unitary .g; K/-module. There is a Hermitian form on the spin
module S [HP2, 	2.3.9]. Together with the g0 invariant Hermitian form on V , it
induces a Hermitian form on X ˝ S . It follows from the unitarity of V and the
property of the Hermitian form on S [HP2, Prop. 2.3.10] that D.g; k/ is symmetric
and D�.k; t/ is skew-symmetric with respect to this form. Then the modified Dirac
operator eD.g; t/ is symmetric. Note that both D.g; k/2 and �D�.k; t/2 are positive
definite, so eD.g; t/2 D D.g; k/2 �D�.k; t/2 is also positive definite. Then eD.g; t/
is an elliptic differential operator. This is the purpose of introducing this modified
version of the Dirac operator. We also note that iD�.k; t/ and D�.k; t/ define the
same Dirac cohomology.

8 Elliptic representations and Dirac Index

Suppose that G.F / is a real or p-adic group. That is, G is a connected reduc-
tive algebraic group over a local field F of characteristic 0. Arthur [A1] studied
a subset ˘temp;ell.G.F // of tempered representations of G.F /, namely elliptic tem-
pered representations. The set of tempered representations ˘temp.G.F // includes
the discrete series and in general the irreducible constituents of representations in-
duced from the discrete series. These are exactly the representations which occur in
the Plancherel formula for G.F /. In Harish-Chandra’s theory, the character of an
infinite-dimensional representation � is defined as a distribution
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#.�; f / D tr
�

Z

G.F /

f .x/�.x/dx
�

; f 2 C1c .G.F //;

which can be identified with a function on G.F /. In other words,

#.�; f / D
Z

G.F /

f .x/#.�; x/dx; f 2 C1c .G.F //;

where #.�; x/ is a locally integrable function on G.F / that is smooth on the open
dense subset Greg.F / of regular elements. A representation � is called elliptic if
#.�; x/ does not vanish on the set of elliptic elements in Greg.F /.

The central objects in [A1] are the normalized characters ˚.�; �/, namely the
functions defined by

˚.�; �/ D jD.�/j 12#.�; �/; � 2 ˘temp;ell.G.F //; � 2 Greg.F /;

where

D.�/ D det.1 � Ad.�//g=g�
;

is the Weyl discriminant. We will show how this normalized character ˚.�; �/ is
related to the Dirac cohomology of the Harish-Chandra module of � for a real
group G.R/.

From now on we only deal with the real group G.R/. Note that G.R/ has elliptic
elements if and only if it is of equal rank withK.R/. We also assume this equal rank
condition. Induced representations from proper parabolic subgroups are not elliptic.
Consider the quotient of the Grothendieck group of the category of finite length
Harish-Chandra modules by the subspace generated by induced representations. Let
us call this quotient group the elliptic Grothendieck group. Arthur [A1] found an
orthonormal basis of this elliptic Grothendieck group in terms of elliptic tempered
(possibly virtual) characters. Those characters are the supertempered distributions
defined by Harish-Chandra [HC4].

We assume that G.R/ is connected. The tempered elliptic representations for the
real groupG.R/ are the representations with nonzero Dirac index, which are studied
in [Lab1]. Labesse shows that the tempered elliptic representations are precisely the
fundamental series. We deal with the general elliptic representations and show that
any elliptic representation has nonzero Dirac index.

Recall that ifX is an admissible .g; K/-module withK-type decompositionX D
L

�m�E�, then the K-character of X is the formal series

chX D
X

�

m� chE�;

where chE� is the character of the irreducible K-module E�. Moreover, this def-
inition also makes sense for virtual .g; K/-modules X ; in that case, the integers
m� can be negative. In the following we will often deal with representations of the
spin double cover eK of K, and not K, but we will still denote the corresponding
character by ch.
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Since p is even-dimensional, the spin module S decomposes as SC ˚ S�, with
the k-submodules S˙ being the even respectively odd part of S Š V

pC. Let X D
X� be the Harish-Chandra module of an irreducible admissible representation � of
G.R/. We consider the following difference of eK-modules, the spinor index of X :

I.X/ D X ˝ SC �X ˝ S�:
This is a virtual eK-module, an integer combination of finitely many eK-modules.
The Dirac operator D induces the action of the following eK-equivariant operators:

D˙ W X ˝ S˙ ! X ˝ S�:
Since D2 acts by a scalar on each eK-type, most of the eK-modules in X ˝ SC are
the same as in X ˝ S�.

Lemma 8.1. The spinor index is equal to the Euler characteristic of Dirac coho-
mology, i.e.,

I.X/ D HCD .X/ �H�D.X/:
Proof. As we mentioned above, X ˝ S is decomposed into a direct sum of eigen-
spaces for D2:

X ˝ S D
X

�

.X ˝ S/� D .X ˝ SC/� ˚ .X ˝ S�/�:

It follows that

X ˝ SC �X ˝ S� D .X ˝ SC/0 � .X ˝ S�/0:
SinceD is a differential on KerD2 and the corresponding cohomology is exactly the
Dirac cohomology HD.X/, the lemma follows from the Euler–Poincaré principle.

ut
The spinor index I.X/ is also called the Dirac index of X , since it is equal to the

index ofDC, in the sense of the index for a Fredholm operator. It is also identical to
the Euler characteristic of the Dirac cohomology HD.X/. We denote by �.X/ the
character of I.X/. In terms of characters, this reads as

�.X/ D ch I.X/ D chX.chSC � chS�/ D chHCD .X/ � chH�D.X/:

If we view chE� as functions on K, then the series

chX D
X

�

m� chE�

converges to a distribution onK and it coincides with#.X/ onK\Greg, according
to Harish-Chandra [HC1]. Then the absolute value j�� j coincides with the absolute
value j˚.�; �/j D jD.�/j 12 j#.�; �/j on regular elliptic elements. We write it as a
lemma.
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Lemma 8.2. For any regular elliptic elements � , we have

j��.�/j D j˚.�; �/j:
Theorem 8.3. Let � be an irreducible admissible representation of G.R/ with
Harish-Chandra module X� . Then � is elliptic if and only if the Dirac index
I.X�/ ¤ 0.

Proof. The theorem follows immediately from the lemma. ut

9 Orthogonality relations and supertempered distributions

We keep the notation from the previous section. We assume thatG.R/ is cuspidal, in
the sense that the (regular) elliptic set Gell is nonempty. Let AG.R/ be the split part
of the center of G.R/. The cuspidal condition on G.R/ amounts to the condition
thatG.R/ has a maximal torus Tell.R/ that is compact modulo AG.R/. Suppose#�
and #� 0 are two irreducible characters with the same central character on AG.R/.
We form the elliptic inner product by the following formula:

.#� ; #� 0/ell D jW.G.R/; Tell.R//j�1
Z

Tell.R/=AG.R/

jD.�/j#�.�/#� 0.�/d�;

where W.G.R/; Tell.R// is the Weyl group of .G.R/; Tell.R//, and d� is the nor-
malized Haar measure on the compact Abelian group Tell.R/=AG.R/. The inner
product (bilinear over R/) is extended linearly to any two characters of admissible
representations. Then we have the following theorem.

Theorem 9.1. We have
.#� ; #� 0/ell D .�� ; �� 0/;

where the pairing on the right-hand side is the standard pairing of virtual characters
on K or eK defined by

.�� ; �� 0/ D
Z

K

�� 	 �� 0 dk:

Proof. It follows from Lemma 8.2 that

.#� ; #�/ell D .�� ; ��/
for irreducible characters and therefore for all admissible characters, in particular
for any sum of two irreducible characters. Then the theorem follows from a standard
argument of polarization for the inner product. ut

In [DH2], the set of equivalence classes of irreducible tempered representa-
tions � with nonzero Dirac cohomology is determined. It turns out the irreducible
tempered representations with nonzero Dirac cohomology are exactly those with
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nonzero Dirac index. Therefore, this set of representations coincides with the set
of irreducible tempered elliptic representations, and it consists of the discrete series
and some of limits of the discrete series, Moreover, any elliptic tempered representa-
tion is isomorphic to an Ab.�/-module for some � -stable Borel subalgebra b and its
Dirac cohomology is a single eK-module. As a consequence, we have the following
corollary.

Corollary 9.2. Elliptic tempered characters satisfy orthogonality relations. That is
for any two tempered irreducible elliptic representations � and � 0,

.#� ; #� 0/ell D ˙1 or 0:

It is also clear that the characters of the discrete series form an orthonormal set
on the (regular) elliptic set Gell.R/ in G.R/. Harish-Chandra defined the space of
supertempered distributions in [HC4] (the last paper of his Collected Papers Volume
IV). If D is a distribution on G, we denote by De the restriction of D on Gell

(De D 0 by convention when Gell is empty).

Theorem 9.3 (Theorem 5 [HC4]). Let # be a Z.g/-finite tempered distribution.
Suppose that # is supertempered. Then #e D 0 implies that # D 0.

Theorem 9.4 (Theorem 9 [HC4]). For � 21T .R/, there is a unique supertempered
distribution #�, such that

0�.�/#�.�/ D
X

w2WK

�.w/ew�;

where 0� is the Weyl denominator (see [HC2, Section 27]).

Theorem 9.5 (Theorem 14 [HC4]). If �1; �2 are irreducible tempered elliptic
representations, then either .#�1

; #�2
/ell D 0 or ˚�1

D ˙˚�2
.

As mentioned earlier in the previous section, Arthur found an orthonormal basis
for the space of supertempered distributions consisting of the virtual characters of
tempered representations. It is clear from the orthogonality relation (Corollary 9.2)
and the above theorems of Harish-Chandra (Theorems 9.3–9.5) that Arthur’s basis
consists of characters of the discrete series and appropriate linear combinations of
the characters of the limits of discrete series with the same Dirac index up to a sign.
We summarize it as the following corollary.

Corollary 9.6. The characters of the discrete series and the appropriate linear com-
binations of the characters of the limits of discrete series with the same Dirac
index (up to a sign) form an orthonormal basis of the space of supertempered
distributions.
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10 Elliptic representations with regular infinitesimal
characters

In this section we still assume that G.R/ � K.R/ is of equal rank and T .R/ is a
maximal torus forK.R/. We consider the case where X is a simple Harish-Chandra
module with regular infinitesimal character.

Theorem 10.1. Suppose that an irreducible Harish-Chandra module X has regular
infinitesimal character. Then we have

Hom
eK
.HCD .X/;H

�
D.X// D 0: (10.1)

In particular, it follows that the Dirac index I.X/ D 0 (equivalently, its character
�X D 0) if and only if the Dirac cohomology HD.X/ D 0.

Proof. Let b D tC u be a � -stable Borel subalgebra. Then t is contained in k. We
need to consider the Dirac cohomology HD.g; tIX/ of X with respect to the cubic
Dirac operator D.g; t/. Calculating in stages (see Section 7), we have

HD.g; tIX/ D HD.k; tIHD.X//:
It follows that

HCD .g; tIX/ � HCD .k; tIHCD .X//
and

H�D.g; tIX/ � HCD .k; tIH�D.X//:
Clearly, the following condition

Hom
eT
.HCD .g; tIX/;H�D.g; tIX// D 0 (10.2)

implies (10.1). It remains to prove (10.2). We note that it follows from a theorem of
Vogan ([V1, Theorem 7.2]) that

HomT .H
C.u; X/;H�.u; X// D 0;

for any irreducible Harish-Chandra module X with regular infinitesimal character.
Then (10.2) follows from the above parity condition on u-cohomology if we have
the following embeddings

HḊ .g; tIX/ � H˙.u; X/˝Z
. Nu/: (10.3)

Indeed, this can be done with slightly more deliberation using the same argument as
in [HX, Proposition 4.8]. There are only finitely many eK-types in X ˝ S that can
possibly contribute to the Dirac cohomology with respect to D.g; k/, and therefore
also finitely many to the Dirac cohomology with respect to

D D D.g; t/ D D.g; k/CD�.k; t/
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by calculating in stages. Recall in the proof of [HX, Proposition 4.8] one has
D D d C 2@ and D2 D 2@d C 2d@ and the decomposition

X ˝ S D KerD2 ˚ ImD2;

where @ and d are the differentials for u-homology and u-cohomology. We note that
an irreducible .g; k/-module may not be t-admissible, and KerD2 can be infinite-
dimensional. To make the argument in [HX, Proposition 4.8] still works in this case,
we consider

eD.g; t/ D D.g; k/C iD�.k; t/
as in Remark 7.5. It follows from ŒeD;D2� D 0 that KerD2 is stable under the action
of eD. We restrict eD to KerD2 and have the following decomposition:

KerD2 D .ker eD
2 \ KerD2/˚ .Im eD

2 \ KerD2/:

It is clear that U D Ker eD
2 \ KerD2 D KerD.g; k/2 \ KerD.k; t/2 is finite-

dimensional. We set
V D U ˚ @U ˚ dU ˚ @dU:

Then V is finite-dimensional. It follows from @d D �d@ on KerD2 that V is stable
under the action of @ and d , as well as D D d C 2@. If we replace KerD2 by
V in the final step of the proof of [HX, Proposition 4.8], then the same argument
works here. Precisely, we restrict all operators D, @ and d to V . We have D2 D 0

and thus ImD � KerD. Note that KerD2=KerD ' ImD. Denote by @0 the map
@ restricted to V . Then KerD2=Ker @0 ' Im @0. Recall that ch denotes the formal
t-characters. We obtain

ch ImD C ch KerD D ch Im @0 C ch Ker @0:

Moreover, one has Im @0 � Ker @0 since @2 D 0. Therefore,

ch Ker @0= Im @0 � ch KerD= ImD D 2.ch Ker @0 � ch KerD/: (10.4)

Then all the modules here are direct sums of finite-dimensional t-modules. It follows
from Lemma 4.6 of [HX] and (10.4) there is an injective t-module homomorphism

KerD= ImD ! Ker @0= Im @0:

Note that the right side can be naturally embedded into Ker @= Im @. This gives the
embedding of Dirac cohomology into u-homology and we get the embedding into
u-cohomology similarly. ut

We note that in the above proof we conclude that the embeddings (10.3) are
actually isomorphisms

HḊ .g; tIX/ Š H˙.u; X/˝Z
. Nu/:
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Remark 10.2. We remark that the parity condition

HomT .H
C.u; X/;H�.u; X// D 0

may fail if the infinitesimal character of X is not regular. I learned the following
example from the lecture by Wilfried Schmid at the Vogan Conference at MIT
(in May of 2014) and the lecture notes by Dragan Miličić at a recent conference
(in the summer of 2014) at Jacobs University in Bremen. Let G be SU.2; 1/ and b a
� -stable parabolic which contains neither pC nor p�. Let X be the degenerate limit
of discrete series with infinitesimal character 0. Then X fails to satisfy the parity
condition.

We note that in the above example, if X is the limit of discrete series of G D
SU.2; 1/ with infinitesimal character 0, then the Dirac cohomology ofX is zero and
the embeddings

HḊ .g; tIX/ � H˙.u; X/˝Z
. Nu/
are not isomorphisms. However, the parity condition for Dirac cohomology is still
true. All the examples we know indicate that this is perhaps true in general.

Conjecture 10.3. Let X be an irreducible .g; K/-module. Then

Hom
eK
.HCD .X/;H

�
D.X// D 0:

As we have already mentioned in the previous section, the above conjecture is true
if X is a tempered Harish-Chandra module.

It is a natural question to classify irreducible unitary elliptic representations of
G.R/ and to classify irreducible unitary representations with nonzero Dirac coho-
mology. We can solve this problem under the condition that the infinitesimal char-
acter be regular. We first recall a theorem of Salamanca-Riba.

Theorem 10.4 (Salamanca-Riba [S]). LetG be a connected reductive Lie group. If
X is an irreducible unitary .g; K/-module with strongly regular infinitesimal char-
acter, then X Š Aq.�/ for certain � -stable parabolic q and �.

Theorem 10.5. Suppose � is an irreducible unitary elliptic representation of G.R/
with a regular infinitesimal character. Then X� Š Aq.�/.

Proof. Since X� has nonzero Dirac cohomology, its infinitesimal character is ana-
lytically integral for K.R/ as well as for a compact real form of G.C/, and hence
it is integral in �.g; t/. Then the regular infinitesimal character of X� is strongly
regular, and X� Š Aq.�/ follows from Salamanca-Riba’s theorem. ut

Suppose that � is an irreducible unitary representation. It is a natural question
to ask to what extent the Dirac cohomology HD.X�/ determines the representa-
tion � itself. For representations with singular infinitesimal characters, it is easy to
give examples of two non-isomorphic limits of discrete series �1 and �2 such that
HD.X�1

/ D HD.X�2
/. The above theorem says under the condition of regular
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infinitesimal character, the question is reduced to Aq.�/-modules. Now the ques-
tion is: if two unitary Aq.�/-modules have isomorphic Dirac cohomology, would
these two modules be isomorphic? The answer is not always affirmative. For exam-
ple, whenG is SO.2n; 1/, there are many non-isomorphic Aq.�/-modules that have
isomorphic Dirac cohomology.

11 Pseudo-coefficients of the discrete series

Many important questions on non-commutative Lie groups boil down to questions
in invariant harmonic analysis: the study of distributions on groups that are invariant
under conjugacy. The fundamental objects of invariant harmonic analysis are orbital
integrals as the geometric objects and characters of representations as the spectral
objects. The correspondence of these two kinds of objects reflects the core idea of
harmonic analysis.

The orbital integrals are parameterized by the set of regular semisimple conju-
gacy classes in G. Recall for such a � the orbital integral is defined as

O� .f / D
Z

G=G�

f .x�1�x/dx; f 2 C1c .G/;

and the stable orbital integral is defined as

SO� .f / D
X

� 02S.�/
O� 0.f /;

where S.�/ is the stable conjugacy class.
Let 11 denote the trivial representation of G and �11 the character of the Dirac

index of the trivial representation. That is

�11 D chHCD .11/ � chH�D.11/ D chSC � chS�:

We note that

�11 D .�1/q.chSC � chS�/ D .�1/q�11;
where q D 1

2
dimG.R/=K.R/.

Recall that �� denotes the character of the Dirac index of � . If � is the discrete
series representation with Dirac cohomology E�, then

�� D .�1/q��:
Labesse showed that there exists a function f� so that for any admissible represen-
tations � 0,

tr� 0.f�/ D
Z

K

#� 0.k/�11 	 ��dk:
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Let � 0 be a discrete series representation with Dirac cohomology E�0 . It follows
that

tr� 0.f�/ D .��0 ; ��/ D dim HomK.E�0 ; E�/:

Then we have the following theorem.

Theorem 11.1 (Labesse [Lab1]). The function f� is a pseudo-coefficient for the
discrete series � , i.e., for any irreducible tempered representation � 0,

tr� 0.f�/ D
(

1 if � Š � 0
0 otherwise:

Remark 11.2. The orbital integrals of the pseudo-coefficient f� are easily com-
puted for � regular semisimple:

O� .f�/ D
(

#�.�
�1/ if � is elliptic

0 if � is not elliptic:

12 Endoscopic transfer

In the Langlands program a cruder form of conjugacy called stable conjugacy plays
an important role. The study of Langlands functoriality often leads to correspon-
dence that is defined only up to stable conjugacy. The endoscopy theory investigates
the difference between ordinary and stable conjugacy and how to understand ordi-
nary conjugacy within stable conjugacy. The aim is to recover orbital integrals and
characters from endoscopy groups.

Recall that G is a connected reductive algebraic group defined over R. Denote
byG_ the complex dual group and LG the L-group which is the semidirect product
of G_ and the Weil group WR. A Langlands parameter is an L-homomorphism

�WWR ! LG:

Two Langlands parameters are equivalent if they are conjugated by an inner au-
tomorphism of G_. An equivalence class of Langlands parameters is associated
to a packet of irreducible admissible representations of G.R/ [L2]. The L-packets
of Langlands parameters with bounded image consist of tempered representations.
Temperedness is respected by L-packets, but not unitarity.

The discrete series L-packets are in bijection with the irreducible finite-dimen-
sional representations of the same infinitesimal character. One can construct all tem-
pered irreducible representations using unitary parabolic induction and by taking
subrepresentations. Two tempered irreducible representations � and � 0 are in the
same L-packet if up to equivalence, � and � 0 are subrepresentations of paraboli-
cally induced representations from discrete series � and � 0 in the same L-packets.
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A stable distribution is any element of the closure of the space spanned by all
distributions of the form

P

�2˘ #� for ˘ any tempered L-packet. Such distribu-
tions can be transferred to inner forms of G via the matching of the stable orbital
integrals, while unstable distributions cannot be.

For the non-tempered case we need Arthur packets, which are parameterized by
mappings

 WWR � SL.2;C/! LG

for which the projection onto the dual group G_ of  .WR/ is relatively com-
pact. Adams and Johnson [AJ] constructed some A-packets consisting of unitary
Aq.�/-modules. Determining the Dirac cohomology of Aq.�/-modules may have
some bearing on answering Arthur’s questions (see [A2, Section 9]) on the Arthur
packet ˘ .

In the setting of the endoscopic embedding

 W LH ! LG;

one has a map from Langlands parameters forH to that forG. The Langlands func-
toriality principle asserts that there should be a map from the Grothendieck group
of virtual representations of H.R/ to that of G.R/, compatible with L-packets.

The endoscopy theory for real groups has been established by Shelstad in a series
of papers [Sh1-5]. Recasting Shelstad’s work explicitly in terms of the general trans-
fer factors defined later by Langlands and Shelstad [LS] is the first of the Problems
for Real Groups proposed by Arthur [A2].

We follow Labesse [Lab2, 	6.7] for the description of the endoscopic transfer. Let
T be an elliptic torus of G and � an endoscopic character. Let H be the endoscopic
group defined by .T; �/. Let BG be a Borel subgroup of G containing T . Set

�B.�/ D
Y

˛>0

.1 � ��˛/;

where the product is over the positive roots defined by B . There is only one choice
of a Borel subgroup BH inH , containing TH and compatible with the isomorphism
j WTH Š T .

Assume �WLH ! LG is an admissible embedding (see [Lab2, 	6.6]). Then for
any pseudo-coefficent f of a discrete series of G, there is a linear combination f H

of pseudo-coefficents of discrete series of H such that for � D j.�H / regular in
T .R/ (see [Lab2, Prop. 6.7.1]), one has

SO�H
.f H / D �.�H ; �G/O�

�G
.f /; (12.1)

where the transfer factor

�.�H ; �G/ D .�1/q.G/�q.H/�G;H .�/�B.��1/�BH
.��1H /�1: (12.2)
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The transfer f 7! f H of the pseudo-coefficents of discrete series can be
extended to all of functions in C1c .G.R// with extension of the correspondence
� 7! �H (see [Lab2, Theorem 6.7.2]) so that the above identity (12.1) holds for
all f .

The geometric transfer f 7! f H is dual of a transfer for representations. Given
any admissible irreducible representation � of H.R/, it corresponds to an element
�G in the Grothendieck group of virtual representations of G.R/ as follows. Let
� be the Langlands parameter for � . Let ˙ be the L-packet of the admissible irr-
educible representations of H.R/ corresponding to a Langlands parameter � and
˘ the L-packet of representations of G.R/ corresponding to � ı � (that can be an
empty set if this parameter is not relevant for G).

Theorem 12.1 (Theorem 4.1.1 [Sh5], Theorem 6.7.3 [Lab2]). There is a function

�W˘ !˙1
such that, if we consider �G in the Grothendieck group defined by

�G D
X

�2˘
�.�/�;

then the transfer � 7! �G satisfies

tr �G.f / D tr �.f H /:

In the following we suppose that G.R/ has a compact maximal torus T .R/, and
that � � �H , the difference of half sum of positive roots for G and H respectively,
defines a character of T .R/. In [Lab2, 	7.2] Labesse shows that the canonical trans-
fer factor

�.��1/ D .�1/q.G/�q.H/
P

w2W.g/ �.w/�w

P

w2W.h/ �.w/�w
H

is a well-defined function. Then the transfer factor can be expressed more explicitly
if H is a subgroup of G. Suppose that g D h˚ s is the orthogonal decomposition
with respect to a nondegenerate invariant bilinear form so that the form is nonde-
generate on s. We write S.g=h/ for the spin-module of the Clifford algebra C.s/.
Then

�.��1/ D chSC.g=h/ � chS�.g=h/:

In other words, �.��1/ is equal to the character of the Dirac index of the trivial
representation with respect to the Dirac operator D.g; h/. If #� is the character of
a finite-dimensional representation � , then

�.��1/#�

is the character of the Dirac index of � . This character can be calculated easily
from the Kostant formula in Section 5. We denote by F� the irreducible finite-
dimensional representation of G.R/ with highest weight � and by E� irreducible
finite-dimensional representation of H.R/ with highest weight �. Then
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�.��1/#F�
D

X

w2W 1

#Ew.�C
/�
h :

Here W 1 is a subset of elements in W corresponding to WhnW as before.
In view of Remark 11.2, the right-hand side of (12.1) is the Dirac index of a com-

bination of the discrete series of G.R/ and the left-hand side is a linear combination
of the discrete series of H.R/. It follows from the Harish-Chandra formula for the
character of discrete series and supertempered distributions (see Theorem 9.4) that
the Dirac index of a discrete series �� with Harish-Chandra parameter � is

�.��1/#�� D
X

w2W 1
K

sign.w/#�w�
:

Here �w� denotes the discrete series for H.R/ with Harish-Chandra parameter w�,
and W 1

K is a subset of elements in WK corresponding to WH\KnWK . This cal-
culation is compatible with Labesse’s calculation of the transfer of the pseudo-
coefficients of the discrete series in [Lab2, 	7.2].

The above interpretation of the transfer factors in certain cases of endoscopy as
the difference of the even and odd parts of the spin modules is clearly useful for
calculation. It is also reminiscent of the transfer factors for the metaplectic groups,
which is given by the formal difference of the metaplectic representations, in the
work by Jeff Adams [A], David Renard [R] and Wen-Wei Li [Li]. It is worthwhile
investigating the Dirac cohomology and Dirac index with respect to the symplectic
Dirac operators in connection with the Weyl algebras and the oscillator representa-
tions of metapletic groups.

13 Hypoelliptic representations

In this final section we assume that G.R/ � K.R/ is not necessarily of equal rank.
IfG.R/ is indeed not of equal rank, then there is no elliptic representation forG.R/.
Still, we know G.R/ has representations with nonzero Dirac cohomology. The nat-
ural generalization of the concept of elliptic representation for unequal rank G.R/
is the following.

Definition 13.1. A representation is called hypoelliptic if its global character is not
identically zero on the set of regular elements in a fundamental Cartan subgroup.

By definition, an elliptic representation is hypoelliptic.
It is a natural question to ask the relationship between hypoelliptic representa-

tions and representations with nonzero Dirac cohomology.

Conjecture 13.2. Suppose that � is an irreducible admissible representation. Then
HD.X�/ ¤ 0 implies that � is hypoelliptic.



274 J.-S. Huang

Recall that if G.R/ is of equal rank with K.R/, then an irreducible tempered
representation is either elliptic or induced from a tempered elliptic representation
by parabolic induction.

Conjecture 13.3. A unitary representation either has nonzero Dirac cohomology
or is induced from a unitary representation with nonzero Dirac cohomology by
parabolic induction.

The above conjecture holds for GL.n;R/, GL.n;C/, GL.n;H/ as well as
fGL.n;R/ (the two-fold covering group of GL.n;R/).

A recent preprint of Adams–van Leeuwen–Trapa–Vogan [ALTV] gives an alg-
orithm to determine the irreducible unitary representations. The above conjecture
means that one may regard unitary representations with nonzero Dirac cohomology
as ‘cuspidal’ ones.
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[HP2] J.-S Huang and P. Pandžić, Dirac Operators in Representation Theory, Math. Theory
Appl., Birkhäuser, 2006.
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1 Program — ABC for branching problems

From the viewpoint of analysis and synthesis, one of the fundamental problems in
representation theory is to classify the smallest objects (e.g., irreducible representa-
tions), and another is to understand how a given representation can be built up from
the smallest objects (e.g., irreducible decomposition). A typical example of the lat-
ter is the branching problem, by which we mean the problem of understanding how
irreducible representations � of a group G behave when restricted to subgroups G0.
We write �jG0 for a representation � regarded as a representation of G0. Our pri-
mary concern is with real reductive Lie groups. We propose a program for branching
problems in the following three stages:

Stage A. Abstract features of the restriction �jG0 .
Stage B. Branching laws.
Stage C. Construction of symmetry breaking operators.

Here, by a symmetry breaking operator we mean a continuousG0-homomorphism
from the representation space of � to that of an irreducible representation � of the
subgroup G0.

Branching problems for infinite-dimensional representations of real reductive
groups involve various aspects. Stage A involves several aspects of the branching
problem, among which we highlight that of multiplicity and spectrum here:

A.1. Estimates of multiplicities of irreducible representations of G0 occurring
in the restriction �jG0 of an irreducible representation � of G. (There are several
“natural” but inequivalent definitions of multiplicities, see Sections 3.1 and 4.2.)
Note that:

� multiplicities of the restriction �jG0 may be infinite even when G0 is a maximal
subgroup in G;
� multiplicities may be at most one (e.g., Howe’s theta correspondence [18],

Gross–Prasad conjecture [14], visible actions [39], etc.).

A.2. Spectrum of the restriction �jG0 :

� (discretely decomposable case) branching problems may be purely algebraic
and combinatorial ([12, 13, 15, 26, 28, 29, 32, 49, 50, 59]);
� (continuous spectrum) branching problems may have analytic features [8, 52,

57, 63]. (For example, some special cases of branching laws of unitary represen-
tations are equivalent to a Plancherel-type theorem for homogeneous spaces.)

The goal of Stage A in branching problems is to analyze the aspects A.1 and A.2
in complete generality. A theorem in Stage A would be interesting on its own, but
might also serve as a foundation for further detailed study of the restriction �jG0

(Stages B and C). An answer in Stage A may also suggest an approach depending
on specific features of the restrictions. For instance, if we know a priori that the
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restriction �jG0 is discretely decomposable in Stage A, then one might use alge-
braic methods (e.g., combinatorics, D-modules, etc.) to attack Stage B. If the res-
triction �jG0 is known a priori to be multiplicity-free in Stage A, one might expect
to find not only explicit irreducible decompositions (Stage B) but also quantitative
estimates such as Lp � Lq estimates, and Parseval–Plancherel type theorems for
branching laws (Stage C).

In this article, we give some perspectives of the subject based on a general theory
of A.1 and A.2, and recent progress in some classification theory:

� the multiplicities to be finite [bounded, one, 	 	 	 ],
� the spectrum to be discrete / continuous.

We also discuss a new phenomenon (localness theorem, Theorem 7.18) and open
questions.

Stage B concerns the irreducible decomposition of the restriction. For a finite-
dimensional representation such that the restriction �jG0 is completely reducible,
there is no ambiguity on the meaning of the irreducible decomposition. For a unitary
representation � , we can consider Stage B by using the direct integral of Hilbert
spaces (Fact 3.1). However, we would like to treat a more general setting where �
is not necessarily a unitary representation. In this case, we may consider Stage B as
the study of

HomG0.�jG0 ; �/ or HomG0.�; �jG0/ (1.1)

for irreducible representations � and � of G and G0, respectively.
Stage C is more involved than Stage B as it asks for concrete intertwining opera-

tors (e.g., the projection operator to an irreducible summand) rather than an abstract
decomposition; it asks for the decomposition of vectors in addition to that of repre-
sentations. Since Stage C depends on the realizations of the representations; it often
interacts with geometric and analytic problems.

We organize this article not in the natural order, Stage A) Stage B) Stage
C, but in an opposite order, Stage C) Stages A and B. This is because it is only
recently that a complete construction of all symmetry breaking operators has been
carried out in some special settings, and because such examples and new methods
might yield yet another interesting direction of branching problems in Stages A to C.
The two spaces in (1.1) are discussed in Sections 4–6 from different perspectives
(Stage A). The last section returns to Stage C together with comments on the general
theory (Stages A and B).

2 Two concrete examples of Stage C

In this section, we illustrate Stage C in the branching program with two recent
examples, namely, an explicit construction and a complete classification of differen-
tial symmetry breaking operators (Section 2.1) and continuous symmetry breaking
operators (Section 2.2). They have been carried out only in quite special situations



280 T. Kobayashi

until now. In this section we examine these new examples by making some obser-
vations that may contain some interesting hints for future study. In later sections,
we discuss to what extent the new results and methods apply to other situations and
what the limitations of the general theory for Stage A would be.

2.1 Rankin–Cohen bidifferential operators for the tensor
products of SL2-modules

Taking the SL2-case as a prototype, we explain what we have in mind for Stage C
by comparing it with Stages A and B. We focus on differential symmetry breaking
operators in this subsection, and point out that there are some missing operators even
in the classical SL2-case ([9, 62], see also van Dijk–Pevzner [11], Zagier [76]).

First, we begin with finite-dimensional representations. For every m 2 N, there
exists the unique .m C 1/-dimensional irreducible holomorphic representation of
SL.2;C/. These representations can be realized on the space PolmŒ´� of polynomials
in ´ of degree at most m, by the following action of SL.2;C/ with � D �m:

.��.g/f /.´/ D .c´C d/��f . a´C b
c´C d / for g�1 D

�

a b

c d

�

: (2.1)

The tensor product of two such representations decomposes into irreducible repre-
sentations of SL.2;C/ subject to the classical Clebsch–Gordan formula:

PolmŒ´�˝ PolnŒ´� ' PolmCnŒ´�˚ PolmCn�2Œ´�˚ 	 	 	 ˚ Poljm�njŒ´�: (2.2)

Secondly, we recall an analogous result for infinite-dimensional representations
of SL.2;R/. For this, let HC be the Poincaré upper half plane f´ 2 C W Im ´ > 0g.
Then SL.2;R/ acts on the space O.HC/ of holomorphic functions on HC via ��
(� 2 Z). Further, we obtain an irreducible unitary representation of SL.2;R/ on the
following Hilbert space V� (the weighted Bergman space) via �� for � > 1:

V� WD ff 2 O.HC/ W
Z

HC

jf .x Cp�1y/j2y��2dxdy <1g;

where the inner product is given by
Z

HC

f .x Cp�1y/g.x Cp�1y/y��2dxdy for f; g 2 V�:

Repka [63] and Molchanov [57] obtained the irreducible decomposition of the
tensor product of two such unitary representations, namely, there is a unitary equiv-
alence between unitary representations of SL.2;R/:
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V�1
b˝V�2

'
1
X

aD0
˚V�1C�2C2a; (2.3)

where the symbols b˝ and
P˚ denote the Hilbert completion of the tensor product

˝ and the algebraic direct sum ˚, respectively. We then have:

Observation 2.1. (1) (multiplicity) Both of the irreducible decompositions (2.2)
and (2.3) are multiplicity-free.

(2) (spectrum) There is no continuous spectrum in either of the decompositions
(2.2) or (2.3).

These abstract features (Stage A) are immediate consequences of the decomposition
formulæ (2.2) and (2.3) (Stage B); however, one could tell these properties without
explicit formulæ from the general theory of visible actions on complex manifolds
[34, 39] and a general theory of discrete decomposability [26, 28]. For instance, the
following holds:

Fact 2.2. Let � be an irreducible unitary highest weight representation of a real
reductive Lie group G, and G0 a reductive subgroup of G.

(1) (multiplicity-free decomposition) The restriction �jG0 is multiplicity-free if �
has a scalar minimal K-type and .G;G0/ is a symmetric pair.

(2) (spectrum) The restriction �jG0 is discretely decomposable if the associated Rie-
mannian symmetric spaces G=K and G0=K 0 carry Hermitian symmetric struc-
tures such that the embedding G0=K 0 ,! G=K is holomorphic.

Stage C asks for a construction of the following explicit SL2-intertwining opera-
tors (symmetry breaking operators):

PolmŒ´�˝ PolnŒ´�! PolmCn�2aŒ´� for 0 � a � min.m; n/,

V�1
b˝V�2

! V�1C�2C2a for a 2 N;

for finite-dimensional and infinite-dimensional representations, respectively. We
know a priori from Stages A and B that such intertwining operators exist uniquely
(up to scalar multiplications) by Schur’s lemma in this setting. A (partial) answer to
this question is given by the classical Rankin–Cohen bidifferential operator, which
is defined by

RC�1C�2C2a
�1;�2

.f1; f2/.´/

WD
a
X

lD0

.�1/l
lŠ.a � l/Š

.�1 C a � 1/Š.�2 C a � 1/Š
.�1 C a � l � 1/Š.�2 C l � 1/Š

@a�lf1
@´a�l

.´/
@lf2

@´l
.´/

for a 2 N, �1; �2 2 f2; 3; 4; : : :g, and f1, f2 2 O.HC/. Then RC�1C�2C2a
�1;�2

is an

operator which intertwines ��1
b˝��2

and ��1C�2C2a.
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More generally, we treat non-unitary representations �� on O.HC/ of the uni-
versal covering group SL.2;R/� of SL.2;R/ by the same formula (2.1) for � 2 C,
and consider a continuous linear map

T W O.HC �HC/! O.HC/ (2.4)

that intertwines ��1
˝ ��2

and ��3
, where SL.2;R/� acts on O.HC � HC/ via

��1
˝ ��2

under the diagonal action. We denote by H.�1; �2; �3/ the vector space
of symmetry breaking operators T as in (2.4).

Question 2.3. (1) (Stage B) Find the dimension of H.�1; �2; �3/ for .�1; �2;
�3/ 2 C3.

(2) (Stage C) Explicitly construct a basis of H.�1; �2; �3/ when it is nonzero.

Even in the SL2-setting, we could not find a complete answer to Question 2.3 in the
literature, and thus we explain our solution below.

Replacing �Š by � .�C 1/, we can define

RC�3

�1;�2
.f1; f2/.´/ WD

a
X

lD0

.�1/l
lŠ.a � l/Š

� .�1Ca/� .�2Ca/
� .�1 C a � l/� .�2Cl/

@a�lf1
@´a�l

.´/
@lf2

@´l
.´/;

(2.5)

where a WD 1
2
.�3 � �1 � �2/ as long as .�1; �2; �3/ belongs to

˝ WD f.�1; �2; �3/ 2 C3 W �3 � �1 � �2 D 0; 2; 4; : : :g:
We define a subset ˝sing of ˝ by

˝sing WD f.�1; �2; �3/ 2 ˝ W �1; �2; �3 2 Z; �3�j�1��2j � 2 � �1C�2C�3g:
Then we have the following classification of symmetry breaking operators by using
the “F-method” ([51, Part II]). Surprisingly, it turns out that any symmetry breaking
operator (2.4) is given by a differential operator.

Theorem 2.4. (1) H.�1; �2; �3/ ¤ f0g if and only if .�1; �2; �3/ 2 ˝.

From now on, we assume .�1; �2; �3/ 2 ˝.
(2) dimCH.�1; �2; �3/ D 1 if and only if RC�3

�1;�2
¤ 0, or equivalently,

.�1; �2; �3/ 62 ˝sing. In this case, H.�1; �2; �3/ D CRC�3

�1;�2
.

(3) The following three conditions on .�1; �2; �3/ 2 ˝ are equivalent:

(i) dimCH.�1; �2; �3/ D 2.
(ii) RC�3

�1;�2
D 0.

(iii) .�1; �2; �3/ 2 ˝sing.

In this case, the two-dimensional vector space H.�1; �2; �3/ is spanned by

RC�3

2��1;�2
ı .. @

@´1
/1��1 ˝ id/ and RC�3

�1;2��2
ı .id˝. @

@´2
/1��2/:

Theorem 2.4 answers Question 2.3 (1) and (2). Here are some observations.
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Observation 2.5. (1) (localness property) Any symmetry breaking operator from
��1
˝ ��2

to ��3
is given by a differential operator in the holomorphic rea-

lization of ��j
(j D 1; 2; 3).

(2) (multiplicity-two phenomenon) The dimension of the space of symmetry break-
ing operators jumps up exactly when the holomorphic continuation of the
Rankin–Cohen bidifferential operator vanishes.

The localness property in Observation 2.5 (1) was recently proved in a more
general setting (see Theorem 7.18 and Conjecture 7.23).

Remark 2.6 (higher multiplicities at ˝sing).

(1) From the viewpoint of analysis (or the “F-method” [40, 47, 51]), the multiplicity-
two phenomenon in Observation 2.5 (2) can be derived from the fact that ˝sing

is of codimension two in ˝ and from the fact that f @
@�1

RC�3

�1;�2
; @
@�2

RC�3

�1;�2
g

forms a basis inH.�1; �2; �3/when RC�3

�1;�2
D 0, namely, when .�1; �2; �3/ 2

˝sing.
(2) The basis given in Theorem 2.4 (3) is different from the basis in Remark 2.6

(1), and clarifies the representation-theoretic reason for the multiplicity-two phe-
nomenon as it is expressed as the composition of two intertwining operators.

(3) Theorem 2.4 (3) implies a multiplicity-two phenomenon for Verma modules
M.�/ D U.g/˝U.b/ C� for g D sl.2;C/:

dimC Homg.M.��3/;M.��1/˝M.��2// D 2 for .�1; �2; �3/ 2 ˝sing:

Again, the tensor product M.��1/ ˝ M.��2/ of Verma modules decom-
poses into a multiplicity-free direct sum of irreducible g-modules for generic
�1; �2 2 C, but not for singular parameters. See [51, Part II] for details.

(4) In turn, we shall get a two-dimensional space of differential symmetry breaking
operators at ˝sing for principal series representations with respect to SL.2;R/�
SL.2;R/ # diag.SL.2;R//, see Remark 7.15 in Section 7.

2.2 Symmetry breaking in conformal geometry

In contrast to the localness property for symmetry breaking operators in the holo-
morphic setting (Observation 2.5 (1)), there exist non-local symmetry breaking ope-
rators in a more general setting. We illustrate Stage C in the branching problem by
an explicit construction and a complete classification of all local and non-local sym-
metry breaking operators that arise from conformal geometry. In later sections, we
explain a key idea of the proof (Section 7) and present potential settings where we
could expect that this example might serve as the prototype of analogous questions
(Section 6). For full details of this subsection, see the monograph [52] joint with
Speh.
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For � 2 C we denote by I.�/1 the smooth (unnormalized) spherical principal
series representation ofG D O.nC1; 1/. In our parametrization, � 2 n

2
Cp�1R is

the unitary axis, � 2 .0; n/ gives the complementary series representations, and
I.�/1 contains irreducible finite-dimensional representations as submodules for
� 2 f0;�1;�2; : : :g and as quotients for � 2 fn; nC 1; nC 2; : : :g.

We consider the restriction of the representation I.�/1 and its subquotients to
the subgroup G0 WD O.n; 1/. As we did for I.�/1, we denote by J.�/1 for � 2 C,
the (unnormalized) spherical principal series representations of G0 D O.n; 1/. For
.�; �/ 2 C2, we set

H.�; �/ WD HomG0.I.�/1; J.�/1/;

the space of (continuous) symmetry breaking operators. Similar to Question 2.3,
we ask:

Question 2.7. (1) (Stage B) Find the dimension of H.�; �/ for .�; �/ 2 C2.
(2) (Stage C) Explicitly construct a basis for H.�; �/.
(3) (Stage C) Determine when H.�; �/ contains a differential operator.

The following is a complete answer to Question 2.7 (1).

Theorem 2.8. (1) For all �; � 2 C, we have H.�; �/ ¤ f0g.
(2) dimCH.�; �/ D

(

1 if .�; �/ 2 C2 n Leven;

2 if .�; �/ 2 Leven;

where the “exceptional set” Leven is the discrete subset of C2 defined by

Leven WD f.�; �/ 2 Z2 W � � � � 0; � � � mod 2g:
The role of Leven in Theorem 2.8 is similar to that of ˝sing in Section 2.1. For

Stage C, we use the “N -picture” of the principal series representations, namely,
realize I.�/1 and J.�/1 in C1.Rn/ and C1.Rn�1/, respectively. For x 2 Rn�1,
we set jxj D .x21 C 	 	 	 C x2n�1/

1
2 . For .�; �/ 2 C2 satisfying Re.� � �/ � 0 and

Re.� C �/� 0, we construct explicitly a symmetry breaking operator (i.e., contin-
uous G0-homomorphism) from I.�/1 to J.�/1 as an integral operator given by

.A�;	f /.y/ WD
Z

Rn

jxnj�C	�n.jx � yj2 C x2n/�	f .x; xn/dxdxn (2.6)

D restxnD0 ı.jxnj�C	�n.jxj2 C x2n/�	 �Rn f /:

One might regard A�;	 as a generalization of the Knapp–Stein intertwining ope-
rator (G D G0 case), and also as the adjoint operator of a generalization of the
Poisson transform.

The symmetry breaking operator A�;	 extends meromorphically with respect to
the parameter .�; �/, and if we normalize A�;	 as

eA�;	 WD 1

� .�C	�nC1
2

/� .��	
2
/
A�;	 ;
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then eA�;	 W I.�/1 ! J.�/1 is a continuous symmetry breaking operator that
depends holomorphically on .�; �/ in the entire complex plane C2, and eA�;	 ¤ 0 if
and only if .�; �/ 62 Leven ([52, Theorem 1.5]).

The singular set Leven is most interesting. To construct a symmetry breaking op-
erator at Leven, we renormalize eA�;	 for � 2 �N, by

e

eA�;	 WD � .� � �
2

/eA�;	 D 1

� .�C	�nC1
2

/
A�;	 :

In order to construct differential symmetry breaking operators, we recall that the
Gegenbauer polynomial C ˛

l
.t/ for l 2 N and ˛ 2 C is given by

C ˛l .t/ WD
Œ l

2 �
X

kD0
.�1/k � .l � k C ˛/

� .˛/� .l � 2k C 1/kŠ .2t/
l�2k :

We note that C ˛
l
.t/ � 0 if l � 1 and ˛ D 0;�1;�2; : : : ;�Œ l�1

2
�. We renormalize

C ˛
l
.t/ by setting eC ˛

l
.t/ WD � .˛/

� .˛CŒ lC1
2 �/

C ˛
l
.t/; so that eC ˛

l
.t/ is a nonzero polynomial

in t of degree l for all ˛ 2 C and l 2 N. We inflate it to a polynomial of two variables
u and v by

eC ˛k.u; v/ WD u
k
2 eC ˛k.

vp
u
/:

For instance, eC ˛0.u; v/ D 1, eC ˛1 .u; v/ D 2v, eC ˛2 .u; v/ D 2.˛ C 1/v2 � u, etc.

Substituting u D ��Rn�1 D �Pn�1
jD1 @2

@x2
j

and v D @
@xn

, we get a differential

operator of order 2l :

eC�;	 WD restxnD0 ıeC ��
n�1

2

2l
.��Rn�1 ;

@

@xn
/:

This closed formula of the differential operator eC�;	 was obtained by Juhl [21]
(see also [47] for a short proof by the F-method, and [40] for yet another proof by
using the residue formula), and the closed formula (2.6) of the symmetry breaking
operator eA�;	 was obtained by Kobayashi and Speh [52].

The following results answer Question 2.7 (2) and (3); see [52, Theorems 1.8 and
1.9]:

Theorem 2.9. (1) With notation as above, we have

H.�; �/ D
(

CeA�;	 if .�; �/ 2 C2 n Leven

CeeA�;	 ˚ CeC�;	 if .�; �/ 2 Leven:

(2) H.�; �/ contains a nontrivial differential operator if and only if � � � D
0; 2; 4; 6; : : :. In this case eA�;	 is proportional to eC�;	 , and the proportional-
ity constant vanishes if and only if .�; �/ 2 Leven.
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From Theorem 2.9 (2) and Theorem 2.8 (1), we have the following:

Observation 2.10. (1) Unlike the holomorphic setting in Section 2.1, the localness
property fails.

(2) Even if an irreducible smooth representation �1 D I.�/1 is unitarizable as
a representation of G, the condition HomG0.�1jG0 ; �1/ ¤ f0g does not imply
that the irreducible smooth representation �1 D J.�/1 is unitarizable as a
representation of G0 (see Section 3.2 for the terminology).

For � 2 fn; n C 1; n C 2; : : :g, I.�/1 contains a unique proper infinite-
dimensional closed G-submodule. We denote it by Aq.� � n/1, which is the
Casselman–Wallach globalization of Zuckerman’s derived functor module
Aq.� � n/ (see [69, 71]) for some � -stable parabolic subalgebra q of g. It is unita-
rizable ([70, 74]) and has nonzero .g; K/-cohomologies (Vogan–Zuckerman [73]).

By using the explicit formulæ of symmetry breaking operators and certain identi-
ties involving these operators, we can identify precisely the images of every subquo-
tient of I.�/1 under these operators. In particular, we obtain the following corollary
for the branching problem ofAq.�/modules. We note that in this setting, the restric-
tion Aq.�/jg0 is not discretely decomposable as a .g0; K 0/-module (Definition 4.3).

Corollary 2.11 ([52, Theorem 1.2]). With notation as above, we have

dimC HomG0.Aq.i/
1jG0 ; Aq0.j /1/ D

(

1 if i � j and i � j mod 2;

0 if i < j and i 6� j mod 2:

There are some further applications of the explicit formulæ (2.6) (Stage C in
the branching problems). For instance, J. Möllers and B. Ørsted recently found an
interesting application of the explicit formulæ (2.6) to Lp �Lq estimates of certain
boundary-value problems, and to some questions in automorphic forms [58].

3 Preliminary results and basic notation

We review quickly some basic results on (infinite-dimensional) continuous repre-
sentations of real reductive Lie groups and fix notation. There are no new results in
this section.

By a continuous representation � of a Lie group G on a topological vector space
V we shall mean that � W G ! GLC.V / is a group homomorphism from G into the
group of invertible endomorphisms of V such that the induced map G � V ! V ,
.g; v/ 7! �.g/v is continuous. We say � is a (continuous) Hilbert [Banach, Fréchet,
	 	 	 ] representation if V is a Hilbert [Banach, Fréchet, 	 	 	 ] space. A continuous
Hilbert representation � of G is said to be a unitary representation when all the
operators �.g/ (g 2 G) are unitary.
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3.1 Decomposition of unitary representations

One of the most distinguished features of unitary representations is that they can be
built up from the smallest objects, namely, irreducible unitary representations. To
be precise, let G be a locally compact group. We denote by bG the set of equivalence
classes of irreducible unitary representations of G (the unitary dual), endowed with
the Fell topology.

Fact 3.1 (Mautner–Teleman). For every unitary representation � of a locally com-
pact group G, there exist a Borel measure d� on bG and a measurable function
n� W bG ! N [ f1g such that � is unitarily equivalent to the direct integral of
irreducible unitary representations:

� '
Z ˚

bG

n�.�/� d�.�/; (3.1)

where n�.�/� stands for the multiple of an irreducible unitary representation �
with multiplicity n�.�/.

The decomposition (3.1) is unique if G is of type I in the sense of von Neumann
algebras, in particular, if G (or G0 in later notation) is a real reductive Lie group
or a nilpotent Lie group. Then the multiplicity function n� is well-defined up to a
measure zero set with respect to d�. We say that � is multiplicity-free if n�.�/ � 1
almost everywhere, or equivalently, if the ring of continuous G-endomorphisms of
� is commutative.

The decomposition (3.1) splits into a direct sum of the discrete and continuous
parts:

� ' .�/disc ˚ .�/cont; (3.2)

where .�/disc is a unitary representation defined on the maximal closed G-invariant
subspace that is isomorphic to a discrete Hilbert sum of irreducible unitary repre-
sentations and .�/cont is its orthogonal complement.

Definition 3.2. We say a unitary representation � is discretely decomposable
if � D .�/disc.

3.2 Continuous representations and smooth representations

We would like to treat non-unitary representations as well for branching problems.
For this we recall some standard concepts of continuous representations of Lie
groups.

Suppose � is a continuous representation of G on a Banach space V . A vector
v 2 V is said to be smooth if the map G ! V , g 7! �.g/v is of C1-class.
Let V1 denote the space of smooth vectors of the representation .�; V /. Then V1
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carries a Fréchet topology with a family of semi-norms kvki1


ik WD kd�.Xi1/ 	 	 	
d�.Xik /vk, where fX1; : : : ; Xng is a basis of the Lie algebra g0 ofG. Then V1 is a
G-invariant dense subspace of V , and we obtain a continuous Fréchet representation
.�1; V1/ of G. Similarly, we can define a representation �! on the space V ! of
analytic vectors.

Suppose now that G is a real reductive linear Lie group, K a maximal compact
subgroup of G, and g the complexification of the Lie algebra g0 of G. Let HC
denote the category of Harish-Chandra modules whose objects and morphisms are
.g; K/-modules of finite length and .g; K/-homomorphisms, respectively.

Let � be a continuous representation of G on a Fréchet space V . Suppose that
� is of finite length, namely, there are at most finitely many closed G-invariant
subspaces in V . We say � is admissible if

dim HomK.�; �jK/ <1
for any irreducible finite-dimensional representation � of K. We denote by VK
the space of K-finite vectors. Then VK � V ! � V1 and the Lie algebra g
leaves VK invariant. The resulting .g; K/-module on VK is called the underlying
.g; K/-module of � , and will be denoted by �K .

For any admissible representation � on a Banach space V , the smooth representa-
tion .�1; V1/ depends only on the underlying .g; K/-module. We say .�1; V1/
is an admissible smooth representation. By the Casselman–Wallach globalization
theory, .�1; V1/ has moderate growth, and there is a canonical equivalence of
categories between the category HC of .g; K/-modules of finite length and the cate-
gory of admissible smooth representations ofG ([74, Chapter 11]). In particular, the
Fréchet representation �1 is uniquely determined by its underlying .g; K/-module.
We say �1 is the smooth globalization of �K 2 HC.

For simplicity, by an irreducible smooth representation, we shall mean an irre-
ducible admissible smooth representation of G. We denote by bGsmooth the set of
equivalence classes of irreducible smooth representations of G. Using the category
HC of .g; K/-modules, we may regard the unitary dual bG as a subset of bGsmooth.

4 Two spaces: HomG 0.�; �jG 0/ and HomG 0.�jG 0; �/

Given irreducible continuous representations � of G and � of a subgroup G0, we
may consider two settings for branching problems:
Case I. (embedding) continuous G0-homomorphisms from � to �jG0 ;
Case II. (symmetry breaking) continuous G0-homomorphisms from �jG0 to � .

We write HomG0.�; �jG0/ and HomG0.�jG0 ; �/ for the vector spaces of such con-
tinuous G0-homomorphisms, respectively. Needless to say, the existence of such
G0-intertwining operators depends on the topology of the representation spaces of
� and � .
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Cases I and II are related to each other by taking contragredient representations:

HomG0.�; �jG0/ �HomG0.�_jG0 ; �_/;
HomG0.�jG0 ; �/ �HomG0.�_; �_jG0/:

Thus they are equivalent in the category of unitary representations (see Theorem 4.1
(3)). Furthermore, we shall use a variant of the above duality in analyzing differen-
tial symmetry breaking operators (Case II) by means of “discretely decomposable
restrictions” of Verma modules (Case I); see the duality (7.3) for the proof of Theo-
rem 7.13 below.

On the other hand, it turns out that Cases I and II are significantly different if
we confine ourselves to irreducible smooth representations (see Section 3.2). Such
a difference also arises in an analogous problem in the category HC of Harish-
Chandra modules where no topology is specified.

Accordingly, we shall discuss some details for Cases I and II separately, in Sec-
tions 5 and 6, respectively.

4.1 K -finite vectors and K 0-finite vectors

Let G be a real reductive linear Lie group, and G0 a reductive subgroup. We take
maximal compact subgroups K and K 0 of G and G0, respectively, such that K 0 D
K \G0.

We recall that for an admissible representation � of G on a Banach space V ,
any K-finite vector is contained in V1, and the underlying .g; K/-module �K is
defined on

VK WD VK-finite .� V1/:
When we regard .�; V / as a representation of the subgroup G0 by restriction, we
denote by .V jG0/1 the space of smooth vectors with respect to the G0-action, and
write .�jG0/1 for the continuous representation of G0 on .V jG0/1. In contrast to
the case G D G0, we remark that K 0-finite vectors are not necessarily contained in
.V jG0/1 if G0 ¤ G, because the G0-module .�jG0 ; V jG0/ is usually not of finite
length. Instead, we can define a .g0; K 0/-module on

VK0 WD VK0-finite \ .V jG0/1;

which we denote simply by �K0 . Obviously we have the following inclusion rela-
tions:

VK � VK0

\ \ (4.1)

V1 � .V jG0/1 � V:
None of them coincides in general (e.g., VK D VK0 if and only if �K is discretely

decomposable as .g0; K 0/-module, as we shall see in Theorem 4.5 below.
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We set

HK.�; �/ WDHomg0;K0.�K0 ; �K jg0/;

HK0.�; �/ WDHomg0;K0.�K0 ; �K0 jg0/:

According to the inclusion relation (4.1), for irreducible representations � of G0 we
have:

HK.�; �/ � HK0.�; �/:

In the case where � is a unitary representation ofG, the latter captures discrete sum-
mands in the branching law of the restriction �jG0 (see, Theorem 4.1 (3)), whereas
the former vanishes even if the latter is nonzero when the continuous part .�jG0/cont

is not empty (see Theorem 4.5). The spaces of continuousG0-homomorphisms such
as HomG0.�; �jG0/ or HomG0.�1; �1jG0/ are in-between.

We begin with a general result:

Theorem 4.1. Suppose that � and � are admissible irreducible Banach representa-
tions of G and G0.

(1) We have natural inclusions and an isomorphism:

HK.�; �/ ,! HomG0.�1; �1jG0/

,! HomG0.�1; .�jG0/1/ �! HK0.�; �/: (4.2)

(2) There are canonical injective homomorphisms:

HomG0.�jG0 ; �/ ,! HomG0.�1jG0 ; �1/
,! HomG0.�! jG0 ; �!/ ,! Homg0;K0.�K ; �K0/: (4.3)

(3) (unitary case) If � and � are irreducible unitary representations of G0 and G,
respectively, then we have natural isomorphisms (where the last isomorphism is
conjugate linear):

HK0.�; �/
� HomG0.�1; .�jG0/1/

� HomG0.�; �jG0/ ' HomG0.�jG0 ; �/: (4.4)

We writem�.�/ for the dimension of one of (therefore, any of) the terms in (4.4).
Then the discrete part of the restriction �jG0 (see Definition 3.2) decomposes
discretely as

.�jG0/disc '
X

�2bG0

˚m�.�/�:

Remark 4.2. Even if � and � are irreducible unitary representations of G and G0,
respectively, the canonical injective homomorphism

HomG0.�jG0 ; �/ ,! HomG0.�1jG0 ; �1/ (4.5)

is not surjective in general.
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In fact, we can give an example where the canonical homomorphism (4.5) is not
surjective by using the classification of HomG0.�1jG0 ; �1/ for the pair .G;G0/ D
.O.nC 1; 1/;O.n; 1// in Section 2.2 as follows. Recall HomG0.I.�/1jG0 ; J.�/1/
¤ f0g for all .�; �/ 2 C2 with the notation therein. However, for a fixed � 2 bG ,
there exist at most countably many � 2 cG0 that occur in the discrete part of the
restriction �jG0 , and therefore f� 2 cG0 W HomG0.�jG0 ; �/ ¤ f0gg is an infinite set
because we have the following bijection:

f� 2cG0 W HomG0.�jG0 ; �/ ¤ f0gg ' f� 2cG0 W HomG0.�; �jG0/ ¤ f0gg:
Hence, by taking �1 D I.�/1 for a fixed � 2 n

2
C p�1R (unitary axis) or

� 2 .0; n/ (complementary series), we see that the canonical homomorphism (4.5)
must be zero when we take �1 to be a representation I.�/1 for � 2 C such that
� 62 n�1

2
Cp�1R and � 62 R.

Let us give a proof of Theorem 4.1.

Proof. (1) To see the first inclusion, we prove that any .g0; K 0/-homomorphism
� W �K0 ! �K jg0 extends to a continuous map �1 ! �1jG0 . We may assume that
� is nonzero, and therefore, is injective. Since �.�K0/ � �K � �1, we can define a
Fréchet space W to be the closure of �.�K0/ in �1, on which G0 acts continuously.
Its underlying .g0; K 0/-module is isomorphic to �.�K0/ ' �K0 .

Since the continuous representation �1 of G is of moderate growth, the Fréchet
representationW of the subgroupG0 is also of moderate growth. By the Casselman–

Wallach globalization theory, there is a G0-homomorphism �1 �! �.�K0/ .D W /

extending the .g0; K 0/-isomorphism � W �K0

�! �.�K0/. Hence we have obtained a
natural map Homg0;K0.�K0 ; �K jg0/ ! HomG0.�1; �1jG0/, which is clearly injec-
tive because �K0 is dense in �1.

The second inclusion is obvious.
To see the third inclusion, it suffices to show that any � 2 Homg0;K0.�K0 ; �K0 jg0/

extends to a continuous G0-homomorphism from �1 to .�jG0/1. Since �K0 is an
irreducible .g0; K 0/-module, � is injective unless � is zero and �.�K0/ is isomorphic
to �K0 as .g0; K 0/-modules.

Let V be the Banach space on which G acts via � , and W1 and W2 the clo-
sures of �.�K0/ in the Banach space V and the Fréchet space .V jG0/1, respectively.
Then the underlying .g0; K 0/-modules of W1 and W2 are both isomorphic to �K0 .
Moreover, W2 � W1 \ .V jG0/1 by definition, and W2 is closed in W1 \ .V jG0/1
with respect to the Fréchet topology. Since the subspace �.�K0/ of W2 is dense
in W1 \ .V jG0/1, we conclude that W2 coincides with W1 \ .V jG0/1, which
is the Casselman–Wallach globalization of the .g0; K 0/-module �.�K0/ ' �K0 .
By the uniqueness of the Casselman–Wallach globalization [74, Chapter 11], the

.g0; K 0/-isomorphism �K0

�! �.�K0/ extends to an isomorphism between Fréchet

G0-modules �1 �! W2.D W1 \ .V jG0/1/.
(2) If � W �jG0 ! � is a continuous G0-homomorphism, then

�.�1jG0/ � �..�jG0/1/ � �1;
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and thus we have obtained a continuous G0-homomorphism �1 W �1jG0 ! �1
between Fréchet representations. Furthermore � 7! �1 is injective because V1 is
dense in V . This shows the first inclusive relation of the statement (2). The proof for
other inclusions are similar.
(3) The last isomorphism in (4.4) is given by taking the adjoint operator. The other
isomorphisms are easy to see. The last statement follows from the fact that if ' 2
HomG0.�; �jG0/ then ' is a scalar multiple of an isometric G0-homomorphism. ut

The terms in (4.2) do not coincide in general. In order to clarify when they coin-
cide, we recall from [29] the notion of discrete decomposability of g-modules.

Definition 4.3. A .g; K/-module X is said to be discretely decomposable as a
.g0; K 0/-module if there is a filtration fXigi2N of .g0; K 0/-modules such that

� S

i2NXi D X and
� Xi is of finite length as a .g0; K 0/-module for any i 2 N.

The idea was to exclude “hidden continuous spectrum” in an algebraic setting, and
discrete decomposability here does not imply complete reducibility. Discrete deco-
mposability is preserved by taking submodules, quotients, and the tensor product
with finite-dimensional representations.

Remark 4.4 (see [29, Lemma 1.3]). Suppose that X is a unitarizable .g; K/-
module. Then X is discretely decomposable as a .g0; K 0/-module if and only if
X is isomorphic to an algebraic direct sum of irreducible .g0; K 0/-modules.

We get much stronger results than Theorem 4.1 in this setting:

Theorem 4.5 (discretely decomposable case). Assume � is an irreducible admis-
sible representation of G on a Banach space V . Let �K be the underlying .g; K/-
module. Then the following five conditions on the triple .G;G0; �/ are equivalent:

(i) There exists at least one irreducible .g0; K 0/-module �K0 such that
Homg0;K0.�K0 ; �K/ ¤ f0g:

(ii) �K is discretely decomposable as a .g0; K 0/-module (see Definition 4.3).
(iii) All the terms in (4.2) are the same for any irreducible admissible Banach rep-

resentation � of G0.
(iv) All the terms in (4.2) are the same for some irreducible admissible Banach

representation � of G0.
(v) VK D VK0 .

Moreover, if .�; V / is a unitary representation, then one of (therefore, any of) the
equivalent conditions (i) – (v) implies that the continuous part .�jG0/cont of the
restriction �jG0 is empty.

Proof. See [29] for the first statement, and [32] for the second statement. ut
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4.2 Some observations on HomG 0.�1; �1jG 0/

and HomG 0.�1jG 0; �1/

For a unitary representation .�; V / of G, Fact 3.1 gives an irreducible decomposi-
tion of the restriction �jG0 into irreducible unitary representations of G0. However,
symmetry breaking operators may exist between unitary and non-unitary represen-
tations:

Observation 4.6. Suppose � is a unitary representation of G, and .�;W / an irre-
ducible admissible representation of a reductive subgroup G0.

(1) If HomG0.�1; �1jG0/ ¤ f0g, then �1 is unitarizable. Actually, � occurs as a
discrete part of .�jG0/disc (see (3.2)).

(2) It may well happen that HomG0.�1jG0 ; �1/ ¤ f0g even when �1 is not unita-
rizable.

In fact, the first assertion is obtained by taking the completion of '.W1/ in the
Hilbert space V for ' 2 HomG0.�1; �1jG0/ as in the proof of Theorem 4.1 (3),
where we considered the case .�jG0/1 instead of �1jG0 . Theorem 2.9 gives an
example of Observation 4.6 (2).

Here is another example that indicates a large difference between the two spaces,
HomG0.�1; �1jG0/ and HomG0.�1jG0 ; �1/.

Example 4.7. SupposeG is a real simple connected Lie group, andG0 is a noncom-
pact closed subgroup ofG. Let � be any irreducible unitary representation such that
dim� D 1 and HomG.�

1; C1.G=G0// ¤ f0g. Then by Howe–Moore [20] we
have

HomG0.1; �1jG0/ D f0g ¤ HomG0.�1jG0 ; 1/:

5 Features of the restriction, I : HomG 0.�; �jG 0/ (embedding)

In this section, we discuss Case I in Section 4, namely G0-homomorphisms from
irreducible G0-modules � into irreducible G-modules � . We put emphasis on its
algebraic analogue in the category HC of Harish-Chandra modules.

The goals of this section are

(1) (criterion) to find a criterion for the triple .G;G0; �/ such that

Homg0;K0.�K0 ; �K jg0/ ¤ f0g for some � I (5.1)

(2) (classification theory) to classify the pairs .G;G0/ of reductive groups for
which (5.1) occurs for at least one infinite-dimensional � 2 bG .
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We also discuss recent progress in this direction as a refinement of (2):

(2)0 (classification theory) Classify the triples .G;G0; �/ for which (5.1) occurs in
typical cases (e.g., �K is Zuckerman’s Aq.�/ module, or a minimal represen-
tation).

In Section 7 we shall explain two new applications of discretely decomposable
restrictions: one is a dimension estimate of differential symmetry breaking operators
(Theorem 7.13), and the other is a proof of the “localness property” of symmetry
breaking operators (Theorem 7.18); see Observation 2.5 (1).

5.1 Criteria for discrete decomposability of restriction

We review a necessary and sufficient condition for the restriction of Harish-Chandra
modules to be discretely decomposable (Definition 4.3), which was established in
[28] and [29].

An associated variety Vg.X/ is a coarse approximation of the g-modules X ,
which we recall now from Vogan [72]. We shall use the associated variety for the
study of the restrictions of Harish-Chandra modules.

Let fUj .g/gj2N be the standard increasing filtration of the universal enveloping
algebraU.g/. SupposeX is a finitely generated g-module. A filtration

S

i2NXi D X
is called a good filtration if it satisfies the following conditions:

� Xi is finite-dimensional for any i 2 N;
� Uj .g/Xi � XiCj for any i; j 2 N;
� There exists n such that Uj .g/Xi D XiCj for any i � n and j 2 N.

The graded algebra grU.g/ WDLj2N Uj .g/=Uj�1.g/ is isomorphic to the sym-
metric algebra S.g/ by the Poincaré–Birkhoff–Witt theorem and we regard the
graded module grX WDLi2NXi=Xi�1 as an S.g/-module. Define

AnnS.g/.grX/ WD ff 2 S.g/ W f v D 0 for any v 2 grXg;
Vg.X/ WD fx 2 g� W f .x/ D 0 for any f 2 AnnS.g/.grX/g:

Then Vg.X/ does not depend on the choice of a good filtration and is called the asso-
ciated variety of X . We denote by N .g�/ the nilpotent variety of the dual space g�.
We have then the following basic properties of the associated variety [72].

Lemma 5.1. Let X be a finitely generated g-module.

(1) If X is of finite length, then Vg.X/ � N .g�/.
(2) Vg.X/ D f0g if and only if X is finite-dimensional.
(3) Let h be a Lie subalgebra of g. Then Vg.X/ � h? if h acts locally finitely on X ,

where h? WD fx 2 g� W xjh D 0g.
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(1) and (3) imply that if X is a .g; K/-module of finite length, then Vg.X/ is a
KC-stable closed subvariety of N .p�/ because k? D p�.

Dual to the inclusion g0 � g of the Lie algebras, we write

pr W g� ! .g0/�

for the restriction map.
One might guess that irreducible summands of the restriction �jG0 would be

“large” if the irreducible representation � of G is “large”. The following theorem
shows that such a statement holds if the restriction of the Harish-Chandra module is
discretely decomposable (Definition 4.3); however, it is false in general (see Coun-
terexample 5.4 below).

Fact 5.2. Let X be an irreducible .g; K/-module.

(1) If Y is an irreducible .g0; K 0/-module such that Homg0;K0.Y;X jg0/ ¤ f0g, then

pr.Vg.X// � Vg0.Y /:

(2) If Y .j / are irreducible .g0; K 0/-modules such that Homg0;K0.Y .j /; X jg0/ ¤ f0g
.j D 1; 2/, then

Vg0.Y1/ D Vg0.Y2/:

In particular, the Gelfand–Kirillov dimension GK-dim.Y / of all irreducible
.g0; K 0/-submodules Y of X jg0 are the same.

(3) (necessary condition [29, Corollary 3.5]) If X is discretely decomposable as a
.g0; K 0/-module, then pr.Vg.X// � N ..g0/�/, where N ..g0/�/ is the nilpotent
variety of .g0/�.

An analogous statement fails if we replace Homg0;K0.�K0 ; �K jg0/ by the space
HomG0.�; �jG0/ of continuous G0-intertwining operators:

False Statement 5.3 Let � be an irreducible unitary representation of a real reduc-
tive Lie group G.

(1) If � 2cG0 satisfies HomG0.�; �jG0/ ¤ f0g, then pr.Vg.�K// � Vg0.�K0/:

(2) If � .j / 2 cG0 satisfy HomG0.� .j /; �jG0/ ¤ f0g (j D 1; 2), then Vg0.�
.1/
K0 / D

Vg0.�
.2/
K0 /:

Here are counterexamples to the “False Statement 5.3”:

Counterexample 5.4 (1) There are many triples .G;G0; �/ such that � 2 bG sat-
isfies .�jG0/cont ¤ 0; see [26, Introduction], [33, Section 3.3], and Theorem
5.14, for instance. In this case, pr.Vg.�K// 6� Vg0.�K0/ for any � 2cG0 by Fact
5.2 (3).
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(2) Let .G;G0/ D .G1 � G1; diag.G1// with G1 D Sp.n;R/ (n � 2). Take an
irreducible unitary spherical principal series representation �1 induced from
the Siegel parabolic subgroup of G1, and set � D �1 � �1. Then there exist
discrete series representations � .1/ and � .2/ of G0 .' Sp.n;R//, where � .1/

is a holomorphic discrete series representation and � .2/ is a non-holomorphic
discrete series representation, such that

HomG0.� .j /; �/ ¤ f0g .j D 1; 2/ and GK-dim.� .1// < GK-dim.� .2//:

In fact, it follows from Theorem 5.14 below that HomG0.�; �/ ¤ f0g if and
only if � is a discrete series representation for the reductive symmetric space
Sp.n;R/=GL.n;R/. Then using the description of discrete series representations
[55, 71], we get Counterexample 5.4 (2).

We now turn to an analytic approach to the question of discrete decomposability
of the restriction. For simplicity, assume K is connected. We take a maximal torus
T of K, and write t0 for its Lie algebra. Fix a positive system �C.k; t/ and denote
by CC (� p�1t�0) the dominant Weyl chamber. We regard bT as a subset of

p�1t�0 ,
and set �C WD CC \ bT . Then Cartan–Weyl highest weight theory gives a bijection

�C ' bK; � 7! ��:

We recall for a subset S of RN , the asymptotic cone S1 is the closed cone
defined by

S1 WD fy 2 RN W there exists a sequence .yn; "n/ 2 S � R>0 such that

lim
n!1 "nyn D y and lim

n!1 "n D 0g:

The asymptotic K-support ASK.X/ of a K-module X is defined by Kashiwara and
Vergne [22] as the asymptotic cone of the highest weights of irreducibleK-modules
occurring in X :

ASK.X/ WD SuppK.X/1;
where SuppK.X/ is the K-support of X given by

SuppK.X/ WD f� 2 �C W HomK.��; X/ ¤ f0gg:
For a closed subgroup K 0 of K, we write k00 for its Lie algebra, and regard

.k00/? D Ker.pr W k�0 ! .k00/�/ as a subspace of k0 via a K-invariant inner product
on k0. We set

CK.K
0/ WD CC \

p�1Ad�.K/.k00/?:

An estimate of the singularity spectrum of the hyperfunction K-character of X
yields a criterion of “K 0-admissibility” of X for a subgroup K 0 of K ([28, Theorem
2.8] and [33]):

Fact 5.5. Let G � G0 be a pair of real reductive linear Lie groups with compatible
maximal compact subgroups K � K 0, and X an irreducible .g; K/-module.
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(1) The following two conditions on the triple .G;G0; X/ are equivalent:

(i) X is K 0-admissible, i.e., dim HomK0.�; X jK0/ <1 for all � 2cK 0 .
(ii) CK.K 0/ \ ASK.X/ D f0g.

(2) If one of (therefore either of) (i) and (ii) is satisfied, then X is discretely decom-
posable as a .g0; K 0/-module.

5.2 Classification theory of discretely decomposable pairs

We begin with two observations.
First, for a Riemannian symmetric pair, that is, .G;G0/ D .G;K/ where

G0 D K 0 D K, the restriction X jg0 is obviously discretely decomposable as a
.g0; K 0/-module for any irreducible .g; K/-module X , whereas the reductive pair
.G;G0/ D .SL.n;C/;SL.n;R// is an opposite extremal case as the restriction X jg0

is never discretely decomposable as a .g0; K 0/-module for any infinite-dimensional
irreducible .g; K/-module X ([29]). There are also intermediate cases such as
.G;G0/ D .SL.n;R/;SO.p; n � p// for which the restriction X jg0 is discretely
decomposable for some infinite-dimensional irreducible .g; K/-modules X and is
not for some other X .

Secondly, Harish-Chandra’s admissibility theorem [16] asserts that

dimC HomK.�; �jK/ <1
for any � 2 bG and � 2 bK .

This may be regarded as a statement for a Riemannian symmetric pair .G;G0/ D
.G;K/. Unfortunately, there is a counterexample to an analogous statement for the
reductive symmetric pair .G;G0/ D .SO.5;C/;SO.3; 2//, namely, we proved in
[32] that

dimC HomG0.�; �jG0/ D1 for some � 2 bG and � 2cG0 :
However, it is plausible [32, Conjecture A] to have a generalization of Harish-
Chandra’s admissibility in the category HC of Harish-Chandra modules in the fol-
lowing sense:

dim Homg0;K0.�K0 ; �K jg0/ <1
for any irreducible .g; K/-module �K and irreducible .g0; K 0/-module �K0 .

In view of these two observations, we consider the following conditions (a) – (d)
for a pair of real reductive Lie groups .G;G0/, and raise a problem:

Problem 5.6. Classify the pairs .G;G0/ of real reductive Lie groups satisfying the
condition (a) below (and also (b), (c) or (d)).
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(a) there exist an infinite-dimensional irreducible unitary representation � ofG and
an irreducible unitary representation � of G0 such that

0 < dim Homg0;K0.�K0 ; �K jg0/ <1I
(b) there exist an infinite-dimensional irreducible unitary representation � ofG and

an irreducible unitary representation � of G0 such that

0 < dim Homg0;K0.�K0 ; �K jg0/I
(c) there exist an infinite-dimensional irreducible .g; K/-module X and an irre-

ducible .g0; K 0/-module Y such that

0 < dim Homg0;K0.Y;X jg0/ <1I
(d) there exist an infinite-dimensional irreducible .g; K/-module X and an irre-

ducible .g0; K 0/-module Y such that

0 < dim Homg0;K0.Y;X jg0/:

Obviously we have the following implications:

(a))(b)

+ +
(c))(d):

The vertical (inverse) implications (c) ) (a) and (d) ) (b) will mean finite-
multiplicity results like Harish-Chandra’s admissibility theorem.

For symmetric pairs, Problem 5.6 has been solved in [50, Theorem 5.2]:

Theorem 5.7. Let .G;G0/ be a reductive symmetric pair defined by an involutive
automorphism � of a simple Lie group G. Then the following five conditions (a),
(b), (c), (d), and

�ˇ ¤ �ˇ (5.2)

are equivalent. Here ˇ is the highest noncompact root with respect to a “.��/-
compatible” positive system. (See [50] for a precise definition.)

Example 5.8. (1) � D � (Cartan involution). Then (5.2) is obviously satisfied
because �ˇ D ˇ. Needless to say, the conditions (a)–(d) hold when G0 D K.

(2) The reductive symmetric pairs .G;G0/D .SO.p1Cp2; q/;SO.p1/�SO.p2; q//,
.SL.2n;R/;Sp.n;C//, .SL.2n;R/;T 	 SL.n;C// satisfy (5.2), and therefore
(a)–(d).

The classification of irreducible symmetric pairs .G;G0/ satisfying one of (therefore
all of) (a)–(d) was given in [50]. It turns out that there are fairly many reductive
symmetric pairs .G;G0/ satisfying the five equivalent conditions in Theorem 5.7
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when G does not carry a complex Lie group structure, whereas there are a few such
pairs .G;G0/ when G is a complex Lie group. As a flavor of the classification, we
present a list in this particular case. For this, we use the following notation, which is
slightly different from that used in other parts of this article. Let GC be a complex
simple Lie group, andGR a real form. Take a maximal compact subgroupKR ofGR,
and let KC be the complexification of KR in GC. We denote by g, k, and gR the Lie
algebras of GC, KC, and GR, respectively, and write g D kC p for the complexified
Cartan decomposition.

Example 5.9 ([50, Corollary 5.9]). The following five conditions on the pairs
.GC; GR/ are equivalent:

(i) .GC; KC/ satisfies (a) (or equivalently, (b), (c), or (d)).
(ii) .GC; GR/ satisfies (a) (or equivalently, (b), (c), or (d)).

(iii) The minimal nilpotent orbit of g does not intersect gR.
(iv) The minimal nilpotent orbit of g does not intersect p.
(v) The Lie algebras g, k, and gR are given in the following table:

g sl.2n;C/ so.m;C/ sp.p C q;C/ fC4 eC6

k sp.n;C/ so.m � 1;C/ sp.p;C/C sp.q;C/ so.9;C/ fC4

gR su�.2n/ so.m � 1; 1/ sp.p; q/ f4.�20/ e6.�26/
where m � 5 and n; p; q � 1.

Remark 5.10. The equivalence (iv) and (v) was announced by Brylinski–Kostant
in the context that there is no minimal representation of a Lie group GR with the
Lie algebra gR in the above table (see [7]). The new ingredient here is that this
condition on the Lie algebras corresponds to a question of discretely decomposable
restrictions of Harish-Chandra modules.

For nonsymmetric pairs, there are a few nontrivial cases where (a) (and therefore
(b), (c), and (d)) holds, as follows.

Example 5.11 ([26]). The nonsymmetric pairs .G;G0/ D .SO.4; 3/;G2.2// and
.SO.7;C/;GC

2 / satisfy (a) (and also (b), (c), and (d)).

Once we classify the pairs .G;G0/ such that there exists at least one irre-
ducible infinite-dimensional .g; K/-module X which is discretely decomposable as
a .g0; K 0/-module, then we would like to find all such Xs.

In [49] we carried out this project for X D Aq.�/ by applying the general cri-
terion (Facts 5.2 and 5.5) to reductive symmetric pairs .G;G0/. This is a result in
Stage A of the branching problem, and we think it will serve as a foundational result
for Stage B (explicit branching laws). Here is another example of the classification
of the triples .G;G0; X/ when G ' G0 �G0, see [50, Theorem 6.1]:

Example 5.12 (tensor product). Let G be a noncompact connected simple Lie
group, and let Xj (j D 1; 2) be infinite-dimensional irreducible .g; K/-modules.

(1) Suppose G is not of Hermitian type. Then the tensor product representation
X1 ˝X2 is never discretely decomposable as a .g; K/-module.
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(2) SupposeG is of Hermitian type. Then the tensor product representationX1˝X2
is discretely decomposable as a .g; K/-module if and only if bothX1 andX2 are
simultaneously highest weight .g; K/-modules or simultaneously lowest weight
.g; K/-modules.

5.3 Two spaces HomG 0.�; �jG 0/ and Homg0;K 0.�K 0; �K jg0/

There is a canonical injective homomorphism

Homg0;K0.�K0 ; �K jg0/ ,! HomG0.�; �jG0/;

however, it is not bijective for � 2cG0 and � 2 bG. In fact, we have:

Proposition 5.13. Suppose that � is an irreducible unitary representation of G. If
the restriction �jG0 contains a continuous spectrum and if an irreducible unitary
representation � of G0 appears as an irreducible summand of the restriction �jG0 ,
then we have

Homg0;K0.�K0 ; �K jg0/ D f0g ¤ HomG0.�; �jG0/:

Proof. If Homg0.�K0 ; �K jg0/ D Homg0;K0.�K0 ; �K jg0/ were nonzero, then the
.g; K/-module �K would be discretely decomposable as a .g0; K 0/-module by The-
orem 4.5. In turn, the restriction �jG0 of the unitary representation � would de-
compose discretely into a Hilbert direct sum of irreducible unitary representations
of G0 by [32, Theorem 2.7], contradicting the assumption. Hence we conclude
Homg0;K0.�K0 ; �K jg0/ D f0g: ut

An example of Proposition 5.13 may be found in [45, Part II] where � is the
minimal representation of G D O.p; q/ and � is the unitarization of a Zuckerman
derived functor module Aq.�/ for G0 D O.p0; q0/ � O.p00; q00/ with p D p0 C p00
and q D q0 C q00 (p0; q0; p00; q00 > 1 and p C q even).

Here is another example of Proposition 5.13:

Theorem 5.14. Let G be a real reductive linear Lie group, and let � D IndGP .C�/
be a spherical unitary degenerate principal series representation of G induced from
a unitary character C� of a parabolic subgroup P D LN of G.

(1) For any irreducible .g; K/-module �K , we have

Homg;K.�K ; �K ˝ �K/ D f0g:
(2) Suppose now G is a classical group. If N is abelian and P is conjugate to the

opposite parabolic subgroup P D LN , then we have a unitary equivalence of
the discrete part:

L2.G=L/disc '
X

�2bG

˚ dimC HomG.�; �b˝�/ �: (5.3)
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In particular, we have

dimC HomG.�; �b˝�/ � 1
for any irreducible unitary representation � ofG. Moreover there exist countably
many irreducible unitary representations � of G such that

dimC HomG.�; �b˝�/ D 1:
A typical example of the setting in Theorem 5.14 (2) is the Siegel parabolic sub-
group P D LN D GL.n;R/ Ë Sym.n;R/ in G D Sp.n;R/.

Proof. (1) This is a direct consequence of Example 5.12.
(2) Take w0 2 G such that w0Lw�10 D L and w0Nw�10 D N . Then the G-orbit
through .w0P; eP / in G=P � G=P under the diagonal action is open dense, and
therefore Mackey theory gives a unitary equivalence

L2.G=L/ ' ��b˝�� (5.4)

because Ad�.w0/� D ��, see [30] for instance. Since N is abelian, .G;L/ forms a
symmetric pair (see [64]). Therefore the branching law of the tensor product repre-
sentation �b˝� reduces to the Plancherel formula for the regular representation on
the reductive symmetric spaceG=L, which is known; see [10]. In particular, we have
the unitary equivalence (5.3), and the left-hand side of (5.3) is nonzero if and only if
rankG=L D rankK=L \K due to Flensted-Jensen and Matsuki–Oshima [55]. By
the description of discrete series representation for G=L by Matsuki–Oshima [55]
and Vogan [71], we have the conclusion. ut

5.4 Analytic vectors and discrete decomposability

Suppose � is an irreducible unitary representation ofG on a Hilbert space V , andG0
is a reductive subgroup of G as before. Any G0-invariant closed subspace W in V
contains G0-analytic vectors (hence, also G0-smooth vectors) as a dense subspace.
However, W may not contain nonzero G-smooth vectors (hence, also G-analytic
vectors). In view of Theorem 4.5 in the category HC of Harish-Chandra modules, we
think that this is related to the existence of a continuous spectrum in the branching
law of the restriction �jG0 . We formulate a problem related to this delicate point
below. As before, �1 and �1 denote the space ofG-smooth vectors andG0-smooth
vectors for representations � and � ofG andG0, respectively. An analogous notation
is applied to �! and �! .

Problem 5.15. Let .�; V / be an irreducible unitary representation of G, and G0 a
reductive subgroup of G. Are the following four conditions on the triple .G;G0; �/
equivalent?
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(i) There exists an irreducible .g0; K 0/-module �K0 such that

Homg0;K0.�K0 ; �K jg0/ ¤ f0g:
(ii) There exists an irreducible unitary representation � of G0 such that

HomG0.�! ; �! jG0/ ¤ f0g:
(iii) There exists an irreducible unitary representation � of G0 such that

HomG0.�1; �1jG0/ ¤ f0g:
(iv) The restriction �jG0 decomposes discretely into a Hilbert direct sum of irre-

ducible unitary representations of G0.

Here are some remarks on Problem 5.15.

Remark 5.16. (1) In general, the implication (i)) (iv) holds ([32, Theorem 2.7]).
(2) If the restriction �jK0 is K 0-admissible, then (i) holds by [29, Proposition 1.6]

and (iv) holds by [26, Theorem 1.2].
(3) The implication (iv)) (i) was raised in [32, Conjecture D], and some affirma-

tive results have been announced by Duflo and Vargas in a special setting where
� is Harish-Chandra’s discrete series representation (cf. [12]). A related result
is given in [77].

(4) Even when the unitary representation �jG0 decomposes discretely (i.e., (iv) in
Problem 5.15 holds), it may happen that V1 ¤ .V jG0/1. The simplest example
for this is as follows. Let .� 0; V 0/ and .� 00; V 00/ be infinite-dimensional unitary
representations of noncompact Lie groups G0 and G00, respectively. Set G D
G0�G00, withG0 realized as a subgroup of G as G0�feg, and set � D � 0�� 00.
Then V1 ¤ .V jG0/1 because .V 00/1 ¤ V 00.

6 Features of the restriction, II : HomG 0.�jG 0; �/ (symmetry
breaking operators)

In the previous section, we discussed embeddings of irreducible G0-modules � into
irreducible G-modules � (or the analogous problem in the category HC of Harish-
Chandra modules); see Case I in Section 4. In contrast, we consider the oppo-
site order in this section, namely, continuous G0-homomorphisms from irreducible
G-modules � to irreducible G0-modules � , see Case II in Section 4. We highlight
the case where � and � are admissible smooth representations (Casselman–Wallach
globalization of modules in the category HC). Then it turns out that the spaces
HomG0.�1jG0 ; �1/ or Homg0;K0.�K jg0 ; �K0/ are much larger in general than the
spaces HomG0.�1; �1jG0/ or Homg0;K0.�K0 ; �K jg0/ considered in Section 5. Thus
the primary concern here will be with obtaining an upper estimate for the dimen-
sions of those spaces.
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It would make reasonable sense to find branching laws (Stage B) or to construct
symmetry breaking operators (Stage C) if we know a priori the nature of the mul-
tiplicities in branching laws. The task of Stage A of the branching problem is to
establish a criterion and to give a classification of desirable settings. In this section,
we consider:

Problem 6.1. (1) (finite multiplicities) Find a criterion for when a pair .G;G0/ of
real reductive Lie groups satisfies

dim HomG0.�1jG0 ; �1/ <1 for any �1 2 bGsmooth and �1 2cG0smooth.

Classify all such pairs .G;G0/.
(2) (uniformly bounded multiplicities) Find a criterion for when a pair .G;G0/ of

real reductive Lie groups satisfies

sup
�12bGsmooth

sup
�12bG0

smooth

dim HomG0.�1jG0 ; �1/ <1:

Classify all such pairs .G;G0/.

One may also think of variants of Problem 6.1. For instance, we may refine Problem
6.1 by considering it as a condition on the triple .G;G0; �/ instead of a condition
on the pair .G;G0/:

Problem 6.2. (1) Classify the triples .G;G0; �1/ with G � G0 and �1 2 bGsmooth

such that

dim HomG0.�1jG0 ; �1/ <1 for any �1 2cG0smooth. (6.1)

(2) Classify the triples .G;G0; �1/ such that

sup
�12bG0

smooth

dim HomG0.�1jG0 ; �1/ <1: (6.2)

Problem 6.1 has been solved recently for all reductive symmetric pairs .G;G0/;
see Sections 6.3 and 6.4. On the other hand, Problem 6.2 has no complete solution
even when .G;G0/ is a reductive symmetric pair. Here are some partial answers to
Problem 6.2 (1):

Example 6.3. (1) If .G;G0/ satisfies (PP) (see the list in Theorem 6.14), then the
triple .G;G0; �/ satisfies (6.1) whenever �1 2 bGsmooth.

(2) If � isK 0-admissible, then (6.1) is satisfied. A necessary and sufficient condition
for the K 0-admissibility of �jK0 , Fact 5.5, is easy to check in many cases. In
particular, a complete classification of the triples .G;G0; �/ such that �jK0 is
K 0-admissible was recently accomplished in [49] in the setting where �K D
Aq.�/ and where .G;G0/ is a reductive symmetric pair.

We give a conjectural statement concerning Problem 6.2 (2).
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Conjecture 6.4. Let .G;G0/ be a reductive symmetric pair. If � is an irreducible
highest weight representation of G or if � is a minimal representation of G, then
the uniform boundedness property (6.2) would hold for the triple .G;G0; �1/.

Some evidence was given in [35, Theorems B and D] and in [45, 46].

6.1 Real spherical homogeneous spaces

A complex manifold XC with an action of a complex reductive group GC is called
spherical if a Borel subgroup ofGC has an open orbit inXC. Spherical varieties have
been studied extensively in the context of algebraic geometry and finite-dimensional
representation theory. In the real setting, in search of a broader framework for global
analysis on homogeneous spaces than the usual (e.g., reductive symmetric spaces),
we propose the following:

Definition 6.5 ([27]). Let G be a real reductive Lie group. We say a connected
smooth manifold X withG-action is real spherical if a minimal parabolic subgroup
P of G has an open orbit in X , or equivalently #.P nX/ <1.

The equivalence in Definition 6.5 was proved in [5] by using Kimelfeld [23] and
Matsuki [54]; see [48, Remark] and references therein for related earlier results.

Here are some partial results on the classification of real spherical homogeneous
spaces.

Example 6.6. (1) If G is compact, then all G-homogeneous spaces are real
spherical.

(2) Any semisimple symmetric space G=H is real spherical. The (infinitesimal)
classification of semisimple symmetric spaces was accomplished by Berger [3].

(3) G=N is real spherical where N is a maximal unipotent subgroup of G.
(4) For G of real rank one, real spherical homogeneous spaces of G are classified

by Kimelfeld [23].
(5) Any real form G=H of a spherical homogeneous space GC=HC is real spherical

[48, Lemma 4.2]. The latter were classified by Krämer [53], Brion, [6], and Mik-
ityuk [56]. In particular, ifG is quasi-split, then the classification problem of real
spherical homogeneous spaces G=H reduces to that of the known classification
of spherical homogeneous spaces.

(6) The triple product space .G � G � G/= diagG is real spherical if and only if
G is locally isomorphic to the direct product of compact Lie groups and some
copies of O.n; 1/ (Kobayashi [27]).

(7) Real spherical homogeneous spaces of the form .G�G0/= diagG0 for symmetric
pairs .G;G0/ were recently classified. We review this in Theorem 6.14 below.

The second and third examples form the basic geometric settings for analysis on
reductive symmetric spaces and Whittaker models. The last two examples play a
role in Stage A of the branching problem, as we see in the next subsection.
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The significance of this geometric property is that the groupG controls the space
of functions on X in the sense that the finite-multiplicity property holds for the
regular representation of G on C1.X/:

Fact 6.7 ([48, Theorems A and C]). SupposeG is a real reductive linear Lie group,
and H is an algebraic reductive subgroup.

(1) The homogeneous space G=H is real spherical if and only if

HomG.�
1; C1.G=H// is finite-dimensional for all �1 2 bGsmooth.

(2) The complexification GC=HC is spherical if and only if

sup
�12bGsmooth

dimC HomG.�
1; C1.G=H// <1:

See [48] for upper and lower estimates of the dimension, and also for the non-
reductive case. The proof uses the theory of regular singularities of a system of
partial differential equations by taking an appropriate compactification with normal
crossing boundaries.

6.2 A geometric estimate of multiplicities : (PP) and (BB)

Suppose thatG0 is an algebraic reductive subgroup ofG. For Stage A in the branch-
ing problem for the restriction G # G0, we apply the general theory of Section 6.1
to the homogeneous space .G �G0/= diagG0.

Let P be a minimal parabolic subgroup of G, and P 0 a minimal parabolic sub-
group of G0.

Definition-Lemma 6.8 ([48]) We say the pair .G;G0/ satisfies the property (PP) if
one of the following five equivalent conditions is satisfied:
(PP1) .G �G0/= diagG0 is real spherical as a .G �G0/-space.
(PP2) G=P 0 is real spherical as a G-space.
(PP3) G=P is real spherical as a G0-space.
(PP4) G has an open orbit in G=P �G=P 0 via the diagonal action.
(PP5) #.P 0nG=P / <1.

Since the above five equivalent conditions are determined by the Lie algebras g and
g0, we also say that the pair .g; g0/ of reductive Lie algebras satisfies (PP), where g
and g0 are the Lie algebras of the Lie groups G and G0, respectively.

Remark 6.9. If the pair .g; g0/ satisfies (PP), in particular, (PP5), then there are
only finitely many possibilities for SuppT for symmetry breaking operators T W
C1.G=P;V/! C1.G0=P 0;W/ (see Definition 7.9 below). This observation has
become a guiding principle to formalise a strategy in classifying all symmetry break-
ing operators used in [52], as we shall discuss in Section 7.2.
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Next we consider another property, to be denoted (BB), which is stronger than
(PP). Let GC be a complex Lie group with Lie algebra gC D g ˝R C, and G0

C
a

subgroup of GC with complexified Lie algebra g0
C
D g0 ˝R C. We do not assume

either G � GC or G0 � G0
C

. Let BC and B 0
C

be Borel subgroups of GC and G0
C

,
respectively.

Definition-Lemma 6.10 We say the pair .G;G0/ (or the pair .g; g0/) satisfies the
property (BB) if one of the following five equivalent conditions is satisfied:
(BB1) .GC �G0C/= diagG0

C
is spherical as a .GC �G0C/-space.

(BB2) GC=B
0
C

is spherical as a GC-space.
(BB3) GC=BC is spherical as a G0

C
-space.

(BB4) GC has an open orbit in GC=BC �GC=B
0
C

via the diagonal action.
(BB5) #.B 0

C
nGC=BC/ <1.

The above five equivalent conditions (BB1) – (BB5) are determined only by the
complexified Lie algebras gC and g0

C
.

Remark 6.11. (1) (BB) implies (PP).
(2) If both G and G0 are quasi-split, then (BB), (PP).

In fact, the first statement follows immediately from [48, Lemmas 4.2 and 5.3],
and the second statement is clear.

6.3 Criteria for finiteness/boundedness of multiplicities

In this and the next subsections, we give an answer to Problem 6.1. The follow-
ing criteria are direct consequences of Fact 6.7 and a careful consideration of the
topology of representation spaces, and are proved in [48].

Theorem 6.12. The following three conditions on a pair of real reductive algebraic
groups G � G0 are equivalent:

(i) (Symmetry breaking) HomG0.�1jG0 ; �1/ is finite-dimensional for any pair
.�1; �1/ of irreducible smooth representations of G and G0.

(ii) (Invariant bilinear form) There exist at most finitely many linearly indepen-
dent G0-invariant bilinear forms on �1jG0b˝�1, for any �1 2 bGsmooth and
�1 2cG0smooth.

(iii) (Geometry) The pair .G;G0/ satisfies the condition (PP) (Definition-Lemma
6.8).

Theorem 6.13. The following three conditions on a pair of real reductive algebraic
groups G � G0 are equivalent:

(i) (Symmetry breaking) There exists a constant C such that

dimC HomG0.�1jG0 ; �1/ � C

for any �1 2 bGsmooth and �1 2cG0smooth.
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(ii) (Invariant bilinear form) There exists a constant C such that

dimC HomG0.�1jG0b˝�1;C/ � C

for any �1 2 bGsmooth and �1 2cG0smooth.
(iii) (Geometry) The pair .G;G0/ satisfies the condition (BB) (Definition-Lemma

6.10).

6.4 Classification theory of finite-multiplicity branching laws

This section gives a complete list of the reductive symmetric pairs .G;G0/ such
that dim HomG0.�1jG0 ; �1/ is finite or bounded for all �1 2 bGsmooth and �1 2
cG0smooth. Owing to the criteria in Theorems 6.12 and 6.13, the classification is re-
duced to that of (real) spherical homogeneous spaces of the form .G�G0/= diagG0,
which was accomplished in [44] by using an idea of “linearization” :

Theorem 6.14. Suppose .G;G0/ is a reductive symmetric pair. Then the following
two conditions are equivalent:

(i) HomG0.�1jG0 ; �1/ is finite-dimensional for any pair .�1; �1/ of admissible
smooth representations of G and G0.

(ii) The pair .g; g0/ of their Lie algebras is isomorphic (up to outer automorphisms)
to a direct sum of the following pairs:

A) Trivial case: g D g0.
B) Abelian case: g D R, g0 D f0g.
C) Compact case: g is the Lie algebra of a compact simple Lie group.
D) Riemannian symmetric pair: g0 is the Lie algebra of a maximal compact

subgroup K of a noncompact simple Lie group G.
E) Split rank one case (rankRG D 1):

E1) .o.p C q; 1/; o.p/C o.q; 1// .p C q � 2/,
E2) .su.p C q; 1/; s.u.p/C u.q; 1/// .p C q � 1/,
E3) .sp.p C q; 1/; sp.p/C sp.q; 1// .p C q � 1/,
E4) .f4.�20/; o.8; 1//.

F) Strong Gelfand pairs and their real forms:
F1) .sl.nC 1;C/; gl.n;C// .n � 2/,
F2) .o.nC 1;C/; o.n;C// .n � 2/,
F3) .sl.nC 1;R/; gl.n;R// .n � 1/,
F4) .su.p C 1; q/; u.p; q// .p C q � 1/,
F5) .o.p C 1; q/; o.p; q// .p C q � 2/.

G) Group case: .g; g0/ D .g1 C g1; diag g1/ where
G1) g1 is the Lie algebra of a compact simple Lie group,
G2) .o.n; 1/C o.n; 1/; diag o.n; 1// .n � 2/.
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H) Other cases:
H1) .o.2n; 2/; u.n; 1// .n � 1/.
H2) .su�.2nC 2/; su.2/C su�.2n/C R/ .n � 1/.
H3) .o�.2nC 2/; o.2/C o�.2n// .n � 1/.
H4) .sp.p C 1; q/; sp.p; q/C sp.1//.
H5) .e6.�26/; so.9; 1/C R/.

Among the pairs .g; g0/ in the list (A)–(H) in Theorem 6.14 describing finite
multiplicities, those pairs having uniform bounded multiplicities are classified as
follows.

Theorem 6.15. Suppose .G;G0/ is a reductive symmetric pair. Then the following
two conditions are equivalent:

(i) There exists a constant C such that

dimC HomG0.�1jG0 ; �1/ � C

for any �1 2 bGsmooth and �1 2cG0smooth.
(ii) The pair of their Lie algebras .g; g0/ is isomorphic (up to outer automorphisms)

to a direct sum of the pairs in (A), (B) and (F1) – (F5).

Proof. Theorem 6.14 follows directly from Theorem 6.12 and [44, Theorem 1.3].
Theorem 6.15 follows directly from Theorem 6.13 and [44, Proposition 1.6]. ut
Example 6.16. In connection with branching problems, some of the pairs appeared
earlier in the literature. For instance,

(F1), (F2) 	 	 	 finite-dimensional representations (strong Gelfand pairs) [53];

(F2), (F5) 	 	 	 tempered unitary representations (Gross–Prasad conjecture) [14];

(G2) 	 	 	 tensor product, trilinear forms [8, 27];

(F1)–(F5) 	 	 	 multiplicity-free restrictions [2, 68].

7 Construction of symmetry breaking operators

Stage C in the branching problem asks for an explicit construction of intertwining
operators. This problem depends on the geometric models of representations of a
group G and its subgroup G0. In this section we discuss symmetry breaking opera-
tors in two models, i.e., in the setting of real flag manifolds (Sections 7.1–7.3) and
in the holomorphic setting (Sections 7.4–7.5).
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7.1 Differential operators on different base spaces

We extend the usual notion of differential operators between two vector bundles on
the same base space to those on different base spaces X and Y with a morphism
p W Y ! X as follows.

Definition 7.1. Let V ! X and W ! Y be two vector bundles, and p W
Y ! X a smooth map between the base manifolds. A continuous linear map
T W C1.X;V/! C1.Y;W/ is said to be a differential operator if

p.Supp.Tf // � Suppf for all f 2 C1.X;V/; (7.1)

where Supp stands for the support of a section.

The condition (7.1) shows that T is a local operator in the sense that for any open
subset U of X , the restriction .Tf /jp�1.U / is determined by the restriction f jU .

Example 7.2. (1) If X D Y and p is the identity map, then the condition (7.1) is
equivalent to the condition that T is a differential operator in the usual sense,
due to Peetre’s theorem [61].

(2) If p W Y ! X is an immersion, then any operator T satisfying (7.1) is locally of
the form

X

.˛;ˇ/2NmCn

g˛ˇ .y/
@j˛jCjˇ j

@y˛@´ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´1D


D´nD0
(finite sum);

where f.y1; : : : ; ym; ´1; : : : ; ´n/g are local coordinates ofX such that Y is given
locally by the equation ´1 D 	 	 	 D ´n D 0, and g˛ˇ .y/ are matrix-valued
functions on Y .

7.2 Distribution kernels for symmetry breaking operators

In this section, we discuss symmetry breaking operators in a geometric setting,
where representations are realized in the space of smooth sections for homogeneous
vector bundles.

Let G be a Lie group, and V ! X a homogeneous vector bundle, namely, a
G-equivariant vector bundle such that the G-action on the base manifold X is tran-
sitive. Likewise, let W ! Y be a homogeneous vector bundle for a subgroup G0.
The main assumption of our setting is that there is aG0-equivariant map p W Y ! X .
For simplicity, we also assume that p is injective, and do not assume any relation-
ship between p�V and W . Then we have continuous representations of G on the



310 T. Kobayashi

Fréchet space C1.X;V/ and of the subgroup G0 on C1.Y;W/, but it is not obv-
ious if there exists a nonzero continuous G0-homomorphism (symmetry breaking
operator)

T W C1.X;V/! C1.Y;W/:

In this setting, a basic problem is:

Problem 7.3. (1) (Stage A) Find an upper and lower estimate of the dimension of
the space HomG0.C1.X;V/; C1.Y;W// of symmetry breaking operators.

(2) (Stage A) When is HomG0.C1.X;V/; C1.Y;W// finite-dimensional for any
G-equivariant vector bundle V ! X and any G0-equivariant vector bundle
W ! Y ?

(3) (Stage B) Given equivariant vector bundles V ! X and W ! Y , determine
the dimension of HomG0.C1.X;V/; C1.Y;W//.

(4) (Stage C) Construct explicit elements in HomG0.C1.X;V/; C1.Y;W//.

Here are some special cases:

Example 7.4. Suppose G D G0, X is a (full) real flag manifold G=P where P is a
minimal parabolic subgroup of G, and Y is algebraic.

(1) In this setting, Problem 7.3 (1) and (2) were solved in [48]. In particular, a nec-
essary and sufficient condition for Problem 7.3 (2) is that Y is real spherical, by
Fact 6.7 (1) (or directly from the original proof of [48, Theorem A]).

(2) Not much is known about precise results for Problem 7.3 (3), even when
G D G0. On the other hand, Knapp–Stein intertwining operators or Poisson
transforms are examples of explicit intertwining operators when Y is a real flag
manifold or a symmetric space, respectively, giving a partial solution to Problem
7.3 (4).

Example 7.5. Let G be the conformal group of the standard sphere X D Sn, let G0
be the subgroup that leaves the totally geodesic submanifold Y D Sn�1 invariant,
and let V ! X , W ! Y be G-, G0-equivariant line bundles, respectively. Then
V and W are parametrized by complex numbers � and �, respectively, up to signa-
tures. In this setting Problem 7.3 (3) and (4) were solved in [52]. This is essentially
the geometric setup for the classification of HomO.n;1/.I.�/

1; J.�/1/ which was
discussed in Section 2.2.

We return to the general setting. Let H be an algebraic subgroup of G, .�; V /
a finite-dimensional representation of H , and V WD G �H V ! X WD G=H

the associatedG-homogeneous bundle. Likewise, let .�;W / be a finite-dimensional
representation of H 0 WD H \ G0, and W WD G0 �H 0 W ! Y WD G0=H 0 the asso-
ciated G0-equivariant bundle. Denote by C2
 the one-dimensional representation of
H defined by h 7! j det.Ad.h/ W g=h ! g=h/j�1: Then the volume density bundle
˝G=H of G=H is given as a homogeneous bundle G �H C2
. Let .�_; V _/ be the
contragredient representation of the finite-dimensional representation .�; V / of H .
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Then the dualizing bundle V� WD V_˝˝G=H is given by V� ' G �H .V _˝C2
/

as a homogeneous vector bundle.

By the Schwartz kernel theorem, any continuous operator T W C1.X;V/ !
C1.Y;W/ is given by a distribution kernel kT 2 D0.X � Y;V� � W/. We write

m W G �G0 ! G; .g; g0/ 7! .g0/�1g;

for the multiplication map. If T intertwines G0-actions, then kT is G0-invariant un-
der the diagonal action, and therefore kT is of the form m�KT for some KT 2
D0.X;V�/˝W . We have shown in [52, Proposition 3.1] the following proposition:

Proposition 7.6. Suppose X is compact. Then the correspondence T 7! KT in-
duces a bijection:

HomG0.C1.X;V/; C1.Y;W//
�! .D0.X;V�/˝W /�.H 0/:

Using Proposition 7.6, we can give a solution to Problem 7.3 (2) when X is a real
flag manifold:

Theorem 7.7. Suppose P is a minimal parabolic subgroup of G, X D G=P , and
Y D G0=.G0 \ P /. Then HomG0.C1.X;V/; C1.Y;W// is finite-dimensional for
any G-equivariant vector bundle V ! X and any G0-equivariant vector bundle
W ! Y if and only if G=.G0 \ P / is real spherical.

Proof. We set eY WD G=.G0 \ P / and eW WD G �.G0\P/ W . Then Proposition 7.6
implies that there is a canonical bijection:

HomG.C
1.X;V/; C1.eY ; eW//

�! HomG0.C1.X;V/; C1.Y;W//:

We apply [48, Theorem A] to the left-hand side, and get the desired conclusion for
the right-hand side. ut
The smaller X is, the more likely it will be that there exists Y satisfying the finite-
ness condition posed in Problem 7.3 (2). Thus one might be interested in replacing
the full real flag manifold by a partial real flag manifold in Theorem 7.7. By apply-
ing the same argument as above to a generalization of [48] to a partial flag manifold
in [41, Corollary 6.8], we get

Proposition 7.8. Suppose P is a (not necessarily minimal) parabolic subgroup of
G and X D G=P . Then the finiteness condition for symmetry breaking operators in
Problem 7.3 (2) holds only if the subgroup G0 \ P has an open orbit in G=P .

Back to the general setting, we endow the double coset space H 0nG=H with the
quotient topology via the canonical quotient G ! H 0nG=H . Owing to Proposition
7.6, we associate a closed subset of H 0nG=H to each symmetry breaking operator:



312 T. Kobayashi

Definition 7.9. Given a continuous symmetry breaking operator T W C1.X;V/ !
C1.Y;W/, we define a closed subset SuppT in the double coset space H 0nG=H
as the support of KT 2 D0.X;V�/˝W .

Example 7.10. If H D P , a minimal parabolic subgroup of G, and if H 0 has an
open orbit in G=P , then #.H 0nG=P / < 1. In particular, there are only finitely
many possibilities for Supp T .

Definition 7.11. Let T W C1.X;V/ ! C1.Y;W/ be a continuous symmetry
breaking operator.

1) We say T is a regular symmetry breaking operator if SuppT contains an interior
point of H 0nG=H . We say T is singular if T is not regular.

2) We say T is a differential symmetry breaking operator if SuppT is a singleton in
H 0nG=H .

Remark 7.12. The terminology “differential symmetry breaking operator” in Defi-
nition 7.11 makes reasonable sense. In fact, T is a differential operator in the sense
of Definition 7.1 if and only if SuppT is a singleton in H 0nG=H (see [51, Part I,
Lemma 2.3]).

The strategy of [52] for the classification of all symmetry breaking operators for
.G;G0/ satisfying (PP) is to use the stratification ofH 0-orbits inG=H by the closure
relation. To be more precise, the strategy is:

� to obtain all differential symmetry breaking operators, which corresponds to the
singleton in H 0nG=H , or equivalently, to solve certain branching problems for
generalized Verma modules (see Section 7.3 below) via the duality (7.3),

� to construct and classify fT 2 H.�; �/ W SuppT � Sg modulo fT 2 H.�; �/ W
SuppT � @Sg for S 2 G0nG=H inductively.

The “F-method” [38, 40, 47, 51] gives a conceptual and a practical tool to construct
differential symmetry breaking operators in Step 1. The second step may involve
analytic questions such as the possibility of an extension of an H 0-invariant distri-
bution on an H 0-invariant subset of G=H satisfying a differential equation to an
H 0-invariant distribution solution on the whole of G=H (e.g., [52, Chapter 11, Sect.
4]), and an analytic continuation and residue calculus with respect to some natural
parameter (e.g., [52, Chapters 8 and 12]).

We expect that the methods developed in [52] for the classification of symmetry
breaking operators for the pair .G;G0/ D .O.n C 1; 1/;O.n; 1// would work for
some other pairs .G;G0/ such as those satisfying (PP) (see Theorem 6.14 for the
list), or more strongly those satisfying (BB) (see Theorem 6.15 for the list).
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7.3 Finiteness criterion for differential symmetry
breaking operators

As we have seen in Theorem 7.7 and Proposition 7.8, it is a considerably strong
restriction on the G0-manifold Y for the space HomG0.C1.X;V/; C1.Y;W// of
symmetry breaking operators to be finite-dimensional, which would be a substantial
condition for further study in Stages B and C of the branching problem. On the other
hand, if we consider only differential symmetry breaking operators, then it turns out
that there are much broader settings for which the finite-multiplicity property (or
even the multiplicity-free property) holds. The aim of this subsection is to formulate
this property.

In order to be precise, we write HomG0.C1.X;V/; C1.Y;W// for the space of
continuous symmetry breaking operators, and DiffG0.C1.X;V/; C1.Y;W// for
that of differential symmetry breaking operators. Clearly we have

DiffG0.C1.X;V/; C1.Y;W// � HomG0.C1.X;V/; C1.Y;W//: (7.2)

We now consider the problem analogous to Problem 7.3 by replacing the right-
hand side of (7.2) with the left-hand side.

For simplicity, we consider the case where V ! X is aG-equivariant line bundle
over a real flag manifold G=P , and write L� ! X for the line bundle associated
to a one-dimensional representation � of P . We use the same letter � to denote the
corresponding infinitesimal representation of the Lie algebra p, and write � � 0 if
h�jj; ˛i � 0 for all ˛ 2 �.nC; j/ where j is a Cartan subalgebra contained in the
Levi part l of the parabolic subalgebra p D lC nC.

We say a parabolic subalgebra p of g is g0-compatible if p is defined as the sum
of eigenspaces with nonnegative eigenvalues for some hyperbolic element in g0.
Then p0 WD p \ g0 is a parabolic subalgebra of g0 and we have compatible Levi
decompositions p D lC nC and p0 D .l\ g0/C .nC \ g0/. We are ready to state an
answer to a question analogous to Problem 7.3 (1) and (2) for differential symmetry
breaking operators (cf. [40]).

Theorem 7.13 (local operators). LetG0 be a reductive subgroup of a real reductive
linear Lie group G, X D G=P and Y D G0=P 0 where P is a parabolic subgroup
of G and P 0 D P \ G0 such that the parabolic subalgebra p D l C nC of g is
g0-compatible.
(1) (finite multiplicity) For any finite-dimensional representations V andW of the
parabolic subgroups P and P 0, respectively, we have

dimC DiffG0.C1.X;V/; C1.Y;W// <1;
where V D G �P V and W D G0 �P 0 W are equivariant vector bundles over X
and Y , respectively.
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(2) (uniformly bounded multiplicity) If .g; g0/ is a symmetric pair and nC is
abelian, then for any finite-dimensional representation V of P ,

CV WD sup
W

dimC DiffG0.C1.X;V/; C1.Y;W// <1:

HereW runs over all finite-dimensional irreducible representations of P 0. Further-
more, CV D 1 if V is a one-dimensional representation � of P with �� 0.

Proof. The classical duality between Verma modules and principal series represen-
tations in the case G D G0 (e.g., [17]) can be extended to the context of the restric-
tion of reductive groups G # G0, and the following bijection holds (see [51, Part I,
Corollary 2.9]):

Hom.g0;P 0/.U.g
0/˝U.p0/ W

_; U.g/˝U.p/ V _/
' DiffG0.C1.G=P;V/; C1.G0=P 0;W//: (7.3)

Here .�_; V _/ denotes the contragredient representation of .�; V /. The right-hand
side of (7.3) concerns Case II (symmetry breaking) in Section 4, whereas the left-
hand side of (7.3) concerns Case I (embedding) in the BGG category O. An analo-
gous theory of discretely decomposable restriction in the Harish-Chandra category
HC (see Sections 4 and 5) can be developed more easily and explicitly in the BGG
category O, which was done in [37]. In particular, the g0-compatibility is a suffi-
cient condition for the “discrete decomposability” of generalized Verma modules
U.g/ ˝U.p/ F when restricted to the reductive subalgebra g0. Thus the proof of
Theorem 7.13 is reduced to the next proposition.

Proposition 7.14. Let g0 be a reductive subalgebra of g. Suppose that a parabolic
subalgebra p D lC nC is g0-compatible.
(1) For any finite-dimensional p-module F and p0-module F 0,

dim Homg0.U.g0/˝U.p0/ F
0; U.g/˝U.p/ F / <1:

(2) If .g; g0/ is a symmetric pair and nC is abelian, then

sup
F 0

dim Homg0.U.g0/˝U.p0/ F
0; U.g/˝U.p/ C�/ D 1

for any one-dimensional representation � of p with �  0. Here the supremum is
taken over all finite-dimensional simple p0-modules F 0.

Proof. (1) The proof is parallel to [37, Theorem 3.10] which treated the case where
F and F 0 are simple modules of P and P 0, respectively.
(2) See [37, Theorem 5.1]. ut

Hence Theorem 7.13 is proved. ut



A program for branching problems in the representation theory of real reductive groups 315

Remark 7.15. If we drop the assumption � � 0 in Theorem 7.13 (2) or �  0

in Proposition 7.14 (2), then the multiplicity-free statement may fail. In fact, the
computation in Section 2.1 gives a counterexample where .g; g0/ D .sl.2;C/ C
sl.2;C/; diag.sl.2;C///; see Remark 2.6 (3).

Remark 7.16. (1) (Stage B) In the setting of Proposition 7.14 (2), Stage B in the
branching problem (finding explicit branching laws) have been studied in [35,
37] in the BGG category O generalizing earlier results by Kostant and Schmid
[65].

(2) (Stage C) In the setting of Theorem 7.13 (2), one may wish to find an explicit
formula for the unique differential symmetry breaking operators. So far, this
has been done only in some special cases; see [9, 11] for the Rankin–Cohen
bidifferential operator, Juhl [21] in connection with conformal geometry, and
[47, 51] using the Fourier transform (“F-method” in [38]).

We end this subsection by applying Theorem 7.13 and Theorem 6.12 to the red-
uctive symmetric pair .G;G0/ D .GL.n1 C n2;R/;GL.n1;R/ � GL.n2;R//, and
observe a sharp contrast between differential and continuous symmetry breaking
operators, i.e., the left-hand and right-hand sides of (7.2), respectively.

Example 7.17. Let n D n1 C n2 with n1, n2 � 2. Let P , P 0 be minimal parabolic
subgroups of

.G;G0/ D .GL.n;R/;GL.n1;R/ � GL.n2;R//;

respectively, and set X D G=P and Y D G0=P 0. Then:

(1) For all finite-dimensional representations V of P and W of P 0,

dimC DiffG0.IndGP .V /
1; IndG

0

P 0.W /
1/ <1:

Furthermore if V is a one-dimensional representation C� with � � 0 in the
notation of Theorem 7.13, then the above dimension is 0 or 1.

(2) For some finite-dimensional representations V of P and W of P 0,

dimC HomG0.IndGP .V /
1; IndG

0

P 0.W /
1/ D1:

7.4 Localness theorem in the holomorphic setting

In the last example (Example 7.17) and also Theorem 2.9 in Section 2.2, we have
seen in the real setting that differential symmetry breaking operators are “very
special” among continuous symmetry breaking operators. In this subsection we
explain the remarkable phenomenon in the holomorphic framework that any con-
tinuous symmetry breaking operator between two representations under certain
special geometric settings is given by a differential operator; see Observation 2.5
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(1) for the SL.2;R/ case. A general case is formulated in Theorem 7.18 below. The
key idea of the proof is to use the theory of discretely decomposable restrictions
[26, 28, 29], briefly explained in Section 5. A conjectural statement is given in the
next subsection.

Let G � G0 be real reductive linear Lie groups, K � K 0 their maximal com-
pact subgroups, and GC � G0C connected complex reductive Lie groups containing
G � G0 as real forms, respectively. The main assumption of this subsection is that
X WD G=K and Y WD G0=K 0 are Hermitian symmetric spaces. To be more pre-
cise, let QC and Q0

C
be parabolic subgroups of GC and G0

C
with Levi subgroups

KC and K 0
C

, respectively, such that the following commutative diagram consists of
holomorphic maps:

Y D G0=K 0 � X D G=K

Borel embedding \ \ Borel embedding (7.4)

G0
C
=Q0

C
� GC=QC:

Theorem 7.18 ([51, Part I]). Let V ! X , W ! Y be G-equivariant, G0-
equivariant holomorphic vector bundles, respectively.

(1) (localness theorem) Any G0-homomorphism from O.X;V/ to O.Y;W/ is given
by a holomorphic differential operator, in the sense of Definition 7.1, with re-
spect to a holomorphic embedding Y ,! X .

We extend V and W to holomorphic vector bundles over GC=QC and G0
C
=Q0

C
,

respectively.

(2) (extension theorem) Any differential symmetry breaking operator in (1) defined
on Hermitian symmetric spaces extends to a G0

C
-equivariant holomorphic dif-

ferential operator O.GC=QC;V/! O.G0
C
=Q0

C
;W/ with respect to a holomor-

phic map between the flag varieties G0
C
=Q0

C
,! GC=QC.

Remark 7.19. The representation � on the Fréchet space O.G=K;V/ is a maximal
globalization of the underlying .g; K/-module �K in the sense of Schmid [66], and
contains some other globalizations having the same underlying .g; K/-module �K
(e.g., the Casselman–Wallach globalization �1). One may ask whether an analo-
gous statement holds if we replace .�;O.G=K;V// and .�;O.G0=K 0;W// by other
globalizations such as �1 and �1. This question was raised by D. Vogan during
the conference at MIT in May 2014. We gave an affirmative answer in [51, Part I]
by proving that the natural inclusions

HomG0.�; �/ � HomG0.�1; �1/ � Homg0;K0.�K ; �K0/

are actually bijective in our setting.
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7.5 Localness conjecture for symmetry breaking
operators on cohomologies

It might be natural to ask a generalization of Theorem 7.18 to some other holo-
morphic settings, from holomorphic sections to Dolbeault cohomologies, and from
highest weight modules to Aq.�/ modules.

Problem 7.20. To what extent does the localness and extension theorem hold for
symmetry breaking operators between Dolbeault cohomologies?

In order to formulate the problem more precisely, we introduce the following ass-
umption on the pair .G;G0/ of real reductive groups:

K has a normal subgroup of positive dimension which is contained in K 0. (7.5)

Here, K and K 0 D K \ G0 are maximal compact subgroups of G and G0, res-
pectively, as usual. We write K.2/ for the normal subgroup in (7.5), k.2/0 for the
corresponding Lie algebra, and k.2/ for its complexification. Then the assumption
(7.5) means that we have direct sum decompositions

k D k.1/ ˚ k.2/; k0 D k0.1/ ˚ k.2/

for some ideals k.1/ of k and k0.1/ of k0, respectively. The point here is that k.2/ is
common to both k and k0.

We take H 2 p�1k.2/0 , define a � -stable parabolic subalgebra of g by

q � q.H/ D lC u

as the sum of eigenspaces of ad.H/ with nonnegative eigenvalues, and set L WD
G\QC whereQC D NGC

.q/ is the parabolic subgroup ofGC. ThenL is a reductive
subgroup of G with complexified Lie algebra l, and we have an open embedding
X WD G=L � GC=QC through which G=L carries a complex structure. The same
element H defines complex manifolds Y WD G0=L0 � G0

C
=Q0

C
with the obvious

notation.
In summary, we have the following geometry that generalizes (7.4):

Y D G0=L0 � X D G=L

open \ \ open

G0
C
=Q0

C
� GC=QC:

It follows from the assumption (7.5) that the compact manifoldK=L\K coincides
with K 0=L0 \ K 0. Let S denote the complex dimension of the complex compact
manifolds K=L \K ' K 0=L0 \K 0.
Example 7.21. (1) (Hermitian symmetric spaces) Suppose that K.2/ is abelian.

Then Y � X are Hermitian symmetric spaces, S D 0, and we obtain the geo-
metric setting of Theorem 7.18.
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(2) .G;G0/ D .U.p; qIF/;U.p0IF/ � U.p00; qIF// with p D p0 C p00 for F D R,
C, or H, and K.2/ D U.qIF/. Then neither G=L nor G0=L0 is a Hermitian
symmetric space but the assumption (7.5) is satisfied. Thus the conjecture below
applies.

For a finite-dimensional holomorphic representation V ofQC, we define a holomor-
phic vector bundle GC �QC

V over the generalized flag variety GC=QC, and write
V WD G �L V for the G-equivariant holomorphic vector bundle over X D G=L as
the restriction .GC �QC

V /jG=L. Then the Dolbeault cohomology H j
N@ .X;V/ natu-

rally carries a Fréchet topology by the closed range theorem of the N@-operator, and
gives the maximal globalization of the underlying .g; K/-modules, which are iso-
morphic to Zuckerman’s derived functor modules Rj

q.V ˝C�
/ [69, 75]. Similarly
for G0, given a finite-dimensional holomorphic representation W of Q0

C
, we form a

G0-equivariant holomorphic vector bundle W WD G0 �L0 W over Y D G0=L0 and
define a continuous representation ofG0 on the Dolbeault cohomologiesH j

N@ .Y;W/.
In this setting we have the discrete decomposability of the restriction by the general
criterion (see Fact 5.5).

Proposition 7.22. The underlying .g; K/-modules H j
N@ .X;V/K are K 0-admissible.

In particular, they are discretely decomposable as .g0; K 0/-modules.

Explicit branching laws in some special cases (in particular, when dimV D 1)
of Example 7.21 (1) and (2) may be found in [35] and [15, 25], respectively.

We are now ready to formulate a possible extension of the localness and exten-
sion theorem for holomorphic functions (Theorem 7.18) to Dolbeault cohomologies
that gives geometric realizations of Zuckerman’s derived functor modules.

Conjecture 7.23. Suppose we are in the above setting, and let V and W be finite-
dimensional representations of QC and Q0

C
, respectively.

(1) (localness theorem) Any continuous G0-homomorphism

HSN@ .X;V/! HSN@ .Y;W/

is given by a holomorphic differential operator with respect to a holomorphic
embedding Y ,! X .

(2) (extension theorem) Any such operator in (1) defined on the open subsets Y � X
ofG0

C
=Q0

C
� GC=QC, respectively, extends to aG0

C
-equivariant holomorhic dif-

ferential operator with respect to a holomorphic map between the flag varieties
G0

C
=Q0

C
,! GC=QC.

The key ingredient of the proof of Theorem 7.18 for Hermitian symmetric spaces
was the discrete decomposability of the restriction of the representation (Fact 2.2
(2)). Proposition 7.22 is a part of the evidence for Conjecture 7.23 in the general
setting.
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53. M. Krämer, Multiplicity free subgroups of compact connected Lie groups, Arch. Math. (Basel)
27, (1976), 28–36.

54. T. Matsuki, Orbits on flag manifolds, Proceedings of the International Congress of Mathemati-
cians, Kyoto 1990, Vol. II (1991), Springer-Verlag, 807–813.

55. T. Matsuki and T. Oshima, A description of discrete series for semisimple symmetric spaces,
Adv. Stud. Pure Math. 4, (1984), 331–390.

56. I. V. Mikityuk, Integrability of invariant Hamiltonian systems with homogeneous configura-
tion spaces, Math. USSR-Sbornik 57, (1987), 527–546.

57. V. F. Molchanov, Tensor products of unitary representations of the three-dimensional Lorentz
group, Math. USSR, Izv. 15, (1980), 113–143.
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Equations for a filtration of sheets
and the variety of singular elements
of a complex semisimple Lie algebra
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Abstract This paper connects results on Amitsur–Levitski identities for simple Lie
algebras, ideals in Borel subalgebras, commutative Lie subalgebras in simple Lie
algebras, filtration of sheets, and recent work with Nolan Wallach on the variety of
singular elements in a complex semisimple Lie algebra.
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singular elements
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1 Main concepts, basic definitions, and results

Let g be a complex semisimple Lie algebra. The two papers, [4] and [5], were writ-
ten independently of each other; also neither references the other. The paper [4],
among other things, deals with equations for a filtration of sheets in g, denoted by
VarRk.g/. The paper [5], a joint work with Nolan Wallach, deals with equations for
the variety of singular elements in g. One of the main points in this paper, previously
overlooked, is that the leading term in the filtration of sheets is VarRr .g/; where r
is given by (27) as noted in Remark 4.4.

To begin with we recall some basic definitions and earlier results.
The Amitsur–Levitski theorem is a famous result. The field F is denoted subse-

quently by F . It states that for any field F , any 2n elements of the n � n matrix
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algebra M.n; F / satisfy an identity well known as the standard identity. To discuss
the standard identity, let R be an associative ring and for any k 2 Z and xi ; : : : ; xk ;
in R one defines an alternating sum of products

ŒŒx1; : : : xk�� D
X

�2Symk
sg.�/ x�.1/ 	 	 	 x�.k/: (1)

Now R satisfies the standard identity of degree k if ŒŒx1; : : : ; xk�� D 0 for any
choice of the xi 2 R. Of course R is commutative if and only if it satisfies the
standard identity of degree 2.

Now for any n 2 Z and field F , let M.n; F / be the algebra of n � n matrices
over F . The following is the famous Amitsur–Levitski theorem.

Theorem 1.1. M.n; F / satisfies the standard identity of degree 2n.

Remark 1.2. By restricting to matrix units, for a proof it suffices to take F D C.

Without any knowledge that it was a known theorem, we came upon Theorem 1.1
in [1] a long time ago from the point of Lie algebra cohomology. In fact the result
follows from the fact that if g D M.n;C/, then the restriction to g of the primitive
cohomology class of degree 2nC 1 of M.nC 1;C/ to g vanishes.

Of course g1 � g where g1 D Lie SO.n;C/. Assume n is even. One proves that
the restriction to g1 of the primitive class of degree 2n � 1 (highest primitive class)
of g vanishes on g1. This leads to a new standard identity, namely

Theorem 1.3.
ŒŒx1; : : : ; x2n�2�� D 0 (2)

for any choice of xi 2 g1:

Remark 1.4. Theorem 1.3 is immediately evident when n D 2.

Theorems 1.1 and 1.3 suggest that standard identities can be viewed as a subject
in Lie theory. Theorem 1.5 below offers support for this idea. Let r be a complex
reductive Lie algebra and let

� W r! EndV (3)

be a finite-dimensional complex completely reducible representation. If w 2 r is
nilpotent, then �.w/k D 0 for some k 2 Z. Let ".�/ be the minimal integer k such
that �.w/k D 0 for all nilpotent w 2 r. In case � is irreducible, one can easily give
a formula for ".�/ in terms of the highest weight. If g (resp. g1) is given as above
and � (resp. �1/ is the defining representation, then ".�/ D n and ".�1/ D n � 1.
Consequently the following theorem (see [4]) generalizes Theorems 1.1 and 1.3.

Note that suprisingly the theorem relates the standard identity to the action of the
nilcone under � .
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Theorem 1.5. Let r be a complex reductive Lie algebra and let � be as above. Then
for any xi 2 r; i D 1; : : : ; 2".�/; one has

ŒŒ Ox1; : : : ; Ox2 ".�/�� D 0; (4)

where Oxi D �.xi /.

2 The nilcone and standard identities

Henceforth g, until mentioned otherwise, will be an arbitrary reductive complex
finite-dimensional Lie algebra. Let T .g/ be the tensor algebra over g and let S.g/ �
T .g/ (resp. A.g/ � T .g// be the subspace of symmetric (resp. alternating) tensors
in T .g/. The natural grading on T .g/ restricts to a grading on S.g/ and A.g/. In
particular, where multiplication is tensor product, one notes

Proposition 2.1. Aj .g/ is the span of ŒŒx1; : : : ; xj �� over all choices of xi ; i D
1; : : : ; j; in g:

Now let U.g/ be the universal enveloping algebra of g. Then U.g/ is the quotient
algebra of T .g/ so that there is an algebra epimorphism

� W T .g/! U.g/:

LetZ D CentU.g/ and letE � U.g/ be the graded subspace spanned by all powers
ej ; j D 1; : : : ; where e 2 g is nilpotent. In [2, Theorem 21] we proved that

U.g/ D Z ˝E: (5)

where tensor product identifies with multiplication.
In [4, Theorem 3.4] we proved

Theorem 2.2. For any k 2 Z one has

�.A2k.g// � Ek : (6)

Theorem 1.5 is then an immediate consequence of Theorem 2.2. Indeed, using
the notation of Theorem 1.5, let �U W U.g/! EndV be the algebra extension of �
to U.g/. One then has

Theorem 2.3. If Ek � Ker�U , then

ŒŒ Ox1; : : : ; Ox2k �� D 0 (7)

for any xi ; : : : ; x2k in g.
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3 Quotients of the tensor algebra

The Poincaré–Birkhoff–Witt theorem says that the restriction � W S.g/! U.g/ is a
linear isomorphism. Consequently, given any t 2 T .g/ there exists a unique element
t in S.g/ such that

�.t/ D �.t/: (8)

Let Aeven.g/ be the span of alternating tensors of even degree. Restricting to
Aeven.g/, one has a g-module map

�T W Aeven.g/! S.g/

defined so that if a 2 Aeven.g/, then

�.a/ D �.�T .a//: (9)

Now the (commutative) symmetric algebra P.g/ over g and exterior algebra ^g
are quotient algebras of T .g/. The restriction of the quotient map clearly induces
g-module isomorphisms

�S W S.g/! P.g/

�A W Aeven.g/! ^eveng; (10)

where ^eveng is the commutative subalgebra of ^g spanned by elements of even
degree.

We may complete the commutative diagram defining

� W ^eveng! P.g/ (11)

so that on Aeven.g/; one has

�S ı �T D � ı �A: (12)

By (6) one notes that for k 2 Z, one has

� W ^2kg! P k.g/: (13)

The Killing form extends to a nonsingular symmetric bilinear form on P.g/ and
^g. This enables us to identify P.g/ with the algebra of polynomial functions on g
and to identify ^g with its dual space ^g� where g� is the dual space to g.

Let Rk.g/ be the image of (13), i.e., the image of � , so that Rk.g/ is a g-module
of homogeneous polynomial functions of degree k on g. The significance of Rk.g/
has to do with the dimensions of Ad g adjoint (= coadjoint) orbits. Any such orbit is
symplectic and hence is even dimensional. For j 2 Z; let

g.2j / D fx 2 g j dim Œg; x� D 2j g:
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We recall that a 2j g-sheet is an irreducible component of g.2j /. Let

VarRk.g/ D fx 2 g j p.x/ D 0; 8p 2 Rk.g/g:
In [4, Proposition 3.2] we prove

Theorem 3.1. One has

VarRk.g/ D [2j<2k g.2j / (14)

or that VarRk.g/ is the union of all 2j g-sheets for j < k.

Let � be the transpose of � . Thus

� W P.g/! ^eveng; (15)

and one has for p 2 P.g/ and u 2 ^g,

.�.p/; u/ D .p; � .u//: (16)

One also notes

� W P k.g/! ^2kg: (17)

A proof of Theorem 3.1 depends upon establishing some nice algebraic properties of
� . Since we have, via the Killing form, identified g with its dual,^g is the underlying
space for a standard cochain complex .^g; d / where d is the coboundary operator
of degreeC1. In particular, if x 2 g, then dx 2 ^2g. Identifying g here with P 1.g/,
one has a map

P 1.g/! ^2g: (18)

Theorem 3.2. The map (15) is the homomorphism of commutative algebras extend-
ing (18). In particular, for any x 2 g

�.xk/ D .�dx/k : (19)

The connection with Theorem 3.1 follows from

Proposition 3.3. Let x 2 g. Then x 2 g.2k/ if and only if k is maximal such that
.dx/k ¤ 0, in which case there is a scalar c 2 C� such that

.dx/k D c w1 ^ 	 	 	 ^ w2k (20)

where wi ; i D 1; : : : ; 2k, is a basis of Œx; g�.

For a proof of Theorem 3.2 and Proposition 3.3, see [4, Theorem 1.4 and Propo-
sition 1.3].

We wish to explicitly describe the g-module Rk.g/. (See [4, 	1.2]). Let J D
P.g/g so that J is the ring of Ad g polynomial invariants. Let DiffP.g/ be the
algebra of differential operators on P.g/ with constant coefficients. One then has an
algebra isomorphism
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P.g/! DiffP.g/; q 7! @q

where for p; q; f 2 P.g/, one has

.@qp; f / D .p; qf / (21)

and @x , for x 2 g, is the partial derivative defined by x.
Let JC � J be the J -ideal of all p 2 J with zero constant term and let

H D fq 2 P.g/ j @pq D 0 8p 2 JCg:
H is a graded g-module whose elements are called harmonic polynomials. Then
one knows (see [2, Theorem 11]) that

P.g/ D J ˝H; (22)

where tensor product is realized by polynomial multiplication.
It is immediate from (21) that H is the orthocomplement of the ideal JCP.g/ in

P.g/. However since � is an algebra homomorphism one has

JCP.g/ � Ker �

since one easily has that JC � Ker � . Indeed this is clear since

�.JC/ � d.^ g/ \ .^ g/g D 0: (23)

But then (16) implies

Theorem 3.4. For any k 2 Z one has

Rk.g/ � H:
Let Sym.2k; 2/ be the subgroup of the symmetric group Sym.2k/ defined by

Sym.2k; 2/ D f� 2 Sym.2k/ j � permutes the set of unordered pairs .1; 2/, .3; 4/,
: : :, ..2k� 1/; 2k/g. That is, if � 2 Sym.2k; 2/ and 1 � i � k, there exists 1 � j �
k such that as unordered sets

.�.2i � 1/; �.2i// D ..2j � 1/; 2j /:
It is clear that Sym.2k; 2/ is a subgroup of order 2k 	 kŠ. Let ˘.k/ be a cross-

section of the set of left cosets of Sym.2k; 2/ in Sym.2k/ so that one has a disjoint
union

Sym.2k/ D [ � Sym.2k; 2/ (24)

indexed by � 2 ˘.k/.
Remark 3.5. One notes that the cardinality of ˘.k/ is .2k � 1/.2k � 3/ 	 	 	 1 and
the correspondence

� 7! ..�.1/; �.2//; .�.3/; �.4//; : : : ; .�..2k � 1//; �.2k///
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sets up a bijection of ˘.k/ with the set of all partitions of .1; 2; : : : ; 2k/ into a
union of subsets each of which has two elements. We also observe that ˘.k/ may
be chosen — and will be chosen — such that sg � D 1 for all � 2 ˘.k/. This is
clear since the sg character is not trivial on Sym.k; 2/ for k � 1.

The following is a restatement of the results in [4, 	3.2] (see especially [4, (3.25)
and (3.29)]).

Theorem 3.6. For any k 2 Z there exists a nonzero scalar ck such that for any
xi i D 1; : : : ; 2k; in g,

� .x1 ^ 	 	 	 ^ x2k/ D ck
X

	2˘.k/
Œx	.1/; x	.2/� 	 	 	 Œx	.2k�1/; x	.2k/�: (25)

Furthermore the homogeneous polynomial of degree k on the right side of (25) is
harmonic and Rk.g/ is the span of all such polynomials for an arbitrary choice of
the xi .

4 On the variety of singular elements – joint with Nolan Wallach

Let h be a Cartan sublgebra of g and let ` D dim h so ` D rank g. Let � be the set
of roots of .h; g/ and let �C � � be a choice of positive roots. Let r D card�C
so that n D `C 2r where we fix n D dim g. We assume a well ordering is defined
on �C. For any ' 2 � let e' be a corresponding root vector. The choices will be
normalized only insofar as .e' ; e�'/ D 1 for all ' 2 �. From Proposition 3.3 one
recovers the well-known fact that g.2k/ D 0 for k > r and g.2r/ is the set of all
regular elements in g. One also notes then that (16) implies VarRr .g/ reduces to 0
if k > r whereas Theorem 3.1 implies

VarRr .g/ is the set of all singular elements in g: (26)

The paper [5] is mainly devoted to a study of a special construction of Rr .g/ and a
determination of its remarkable g-module structure.

It is a classic theorem of C. Chevalley that J is a polynomial ring in ` homoge-
neous generators pi so that we can write

J D CŒp1; : : : ; p`�:

Let di D degpi . Then if we putmi D di�1, themi are referred to as the exponents
of g, and one knows that

X̀

iD1
mi D r: (27)
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Henceforth assume g is simple so that the adjoint representation is irreducible.
Let yj ; j D 1; : : : ; n; be the basis of g. One defines an `� n matrixQ D Qij ; i D
1; : : : ; `; j D 1; : : : ; n by putting

Qij D @yj
pi : (28)

Let Si ; i D 1; : : : ; `, be the span of the entries ofQ in the i th row. The following
is immediate.

Proposition 4.1. Si � Pmi .g/. Furthermore Si is stable under the action of g and
as a g-module Si transforms according to the adjoint representation.

If V is a g-module, let Vad be the set of all vectors in V which transform according
to the adjoint representation. The equality (24) readily implies P.g/ad D J ˝Had.

I proved the following result some time ago (See [2, 	5.4]. Especially see
[2, (5.4.6) and (5.4.7) in 	5.4]).

Theorem 4.2. The multiplicity of the adjoint representation in Had is `. Further-
more the invariants pi can be chosen so that Si � Had for all i and the Si ; i D
1; : : : ; `; are indeed the ` occurrences of the adjoint representation in Had.

Clearly there are
�

n
`

�

` � ` minors in the matrix Q. The determinant of any of
these minors is an element of P r .g/ by (27). In [5] we offer a different formulation
of Rr .g/ by proving the following.

Theorem 4.3. The determinant of any ` � ` minor of Q is an element of Rr .g/ and
indeed Rr .g/ is the span of the determinants of all these minors.

Remark 4.4. In effect, Theorem 4.3 achieves the goal in Section 1, namely that

1. Rrg arises from the matrix Q, and
2. VarRr .g/ is the leading term in the filtration VarRk.g/ of sheets in g.

5 The g-module structure of Rr.g/

The adjoint action of g on ^g extends to U.g/ so that ^g is a U.g/-module. If s � g
is any subpace and k D dim s, let Œs� D ^ks so that Œs� is a 1-dimensional subspace
of ^kg. Let Mk � ^kg be the span of all Œs� where s is any k-dimensional commu-
tative Lie subalgebra of g. If no such subalgebra exists, put Mk D 0. It is clear that
Mk is a g-submodule of ^kg. Let Cas 2 Z be the Casimir element corresponding
to the Killing form. The following theorem was proved as [3, Theorem (5)].

Theorem 5.1. For any k 2 Z; let �k be the maximal eigenvalue of Cas on ^kg.
Then �k � k. Moreover �k D k if and only if Mk ¤ 0 in which case Mk is the
eigenspace for the maximal eigenvalue k.
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Let ˚ be a subset of �. Write, in increasing order,

˚ D f'1; : : : ; 'kg; (29)

where k D card˚:
Let

e˚ D e'1
^ 	 	 	 ^ e'k

so that e˚ 2 ^kg is an (h) weight vector with weight

h˚i D
k
X

iD1
'i :

Let n be the Lie algebra spanned by e' for ' 2 �C and let b the Borel subalgebra
of g defined by putting b D h C n. Now a subset ˚ � �C will be called an ideal
in �C if the span n˚ of e' for ' 2 ˚ is an ideal of b. In such a case Ce˚ is stable
under the action of b and hence if V˚ D U.g/ 	 e˚ then, where k D card˚ ,

V˚ � ^kg
is an irreducible g-module of highest weight h˚i having Ce˚ as the highest weight
space. We will say ˚ is abelian if n˚ is an abelian ideal of b. Let

A.k/ D f˚ j ˚ be an abelian ideal of cardinality k in �Cg:
The following theorem was established in [3]. (See especially [3, Theorems (7)

and (8)].)

Theorem 5.2. If ˚;
 are distinct ideals in �C, then V˚ and V� are inequivalent
(i.e.,h˚i ¤ h
 i). Furthermore if Mk ¤ 0; then

Mk D ˚˚2A.k/V˚ (30)

so that, in particular, Mk is a multiplicity-1 g-module.

We now focus on the case where k D `. Clearly M` ¤ 0 since gx is an abelian
subalgebra of dimension ` for any regular x 2 g. Let I.`/ be the set of all ideals of
cardinality `. The following theorem giving the remarkable structure of Rr .g/ as a
g-module is one of the main results in [4].

Theorem 5.3. One has I.`/ D A.`/ so that

M` D ˚˚2I.`/V˚ : (31)

Moreover as g-modules one has the equivalence

Rr .g/ ŠM` (32)
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so that Rr .g/ is a multiplicity-1 g-module with card I.`/ irreducible components
and Cas takes the value ` on each and every one of the I.`/ distinct components.

Example 5.4. If g is of type A`, then the elements of I.`/ can be identified with
Young diagrams of size `. In this case therefore the number of irreducible compo-
nents in Rr .g/ is P.`/ where P here is the classical partition function.

Acknowledgments. I want to thank the referee for his thoughtful and helpful
comments.
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Abstract Let G be a connected reductive group over an algebraically closed field.
We define a decomposition of G into finitely many strata such that each stratum is a
union of conjugacy classes of fixed dimension; the strata are indexed purely in terms
of the Weyl group and the indexing set is independent of the characteristic.
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Introduction

0.1 Let k be an algebraically closed field of characteristic p � 0 and let G be a
connected reductive algebraic group over k. Let W be the Weyl group of G. Let
cl.W / be the set of conjugacy classes of W .

In [St] Steinberg defined the notion of regular element in G (an element whose
conjugacy class has dimension as large as possible, that is dim.G/ � rk.G/) and
showed that the set of regular elements in G form an open dense subset Greg. The
goal of this paper is to define a partition of G into finitely many strata, one of
which is Greg. Each stratum of G is a union of conjugacy classes of G of the same
dimension. The set of strata is naturally indexed by a set which depends only on W
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as a Coxeter group, not on the underlying root system and not on the ground field k.
We give two descriptions of the indexing set above:

(i) one in terms of a class of irreducible representations of W which we call
2-special representations (they are obtained by truncated induction from spe-
cial representations of certain reflection subgroups of W );

(ii) one in terms of cl.W / (modulo a certain equivalence relation).

In the case where W is irreducible we give a third description of the indexing set
above:

(iii) in terms of the sets of unipotent classes in the various versions of G over Fr
for a variable prime number r , glued together according to the set of unipotent
classes in the version of G over C.

The definition of strata in the form (i) and (iii) are based on Springer’s correspon-
dence (see [Spr] when p D 0 or p � 0 and [L3] for any p) connecting irreducible
representations of W with unipotent classes; when W is irreducible, the definition
of strata in the form (iii) is related to that in the form (ii) by the results of [L8, L10]
connecting cl.W / with unipotent classes in G.

Since (i),(ii) are two incarnations of our indexing set, they are in canonical bij-
ection with each other. In particular we obtain a canonical map from cl.W / to the
set of irreducible representations of W whose image consists of the 2-special repre-
sentations (when G is GLn.k/ this is a bijection). We also show that the dimension
of a conjugacy class in a stratum of G is independent of the ground field. (This
statement makes sense since the parametrization of the strata is independent of the
ground field.) In particular, we see that if n � 1, then the following three conditions
on an integer k are equivalent:

� there exists a conjugacy class of dimension k in SO2nC1.C/;
� there exists a conjugacy class of dimension k in Sp2n.C/;
� there exists a conjugacy class of dimension k in Sp2n.F2/.

The proof shows that the following fourth condition is equivalent to the three con-
ditions above: there exists a unipotent conjugacy class of dimension k in Sp2n.F2/.

In Section 5 we sketch an alternative approach to the definition of strata which is
based on an extension of the ideas in [L8], and Springer’s correspondence does not
appear in it.

In Section 6 we dicuss extensions of our results to the Lie algebra of G and to
the case where G is replaced by a disconnected reductive group. We also define a
partition of the set of compact regular semisimple elements in a loop group into
strata analogous to the partition of G into strata. Moreover, we give a conjectural
description of the strata of G (assuming that k D C) which is based on an extension
of a construction in [KL].

0.2 Notation. For an algebraic group H over k, we denote by H 0 the identity
component of H . For a subgroup T of H we denote by NHT the normalizer of T
inH . Let g be the Lie algebra of G. For g 2 G we denote by ZG.g/ the centralizer
of g in G and by gs (resp. gu) the semisimple (resp. unipotent) part of g. Let B be
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the variety of Borel subgroups of G. Let Bg D fB 2 BIg 2 Bg. Let l be a prime
number ¤ p. For an algebraic variety X over k we denote by H i .X/ the l-adic
cohomology of X in degree i ; if X is projective let Hi .X/ D Hom.H i .X/;Ql /.

For any (finite) Weyl group � , we denote by Irr � a set of representatives for the
isomorphism classes of irreducible representations of � over Q. For any � 2 IrrW
let n� be the smallest integer i � 0 such that � appears with > 0 multiplicity in the
i -th symmetric power of the reflection representation of W ; if this multiplicity is 1,
we say that � is good.

A bipartition is a sequence � D .�1; �2; �3; : : : / in N such that �m D 0 for
m � 0 and �1 � �3 � �5 � : : : , �2 � �4 � �6 � : : : . We write j�j D
�1 C �2 C �3 C : : : . We say that � is a bipartition of n if j�j D n. Let BP n be
the set of bipartitions of n. Let e; e0 2 N. We say that a bipartition .�1; �2; �3; : : : /
has excess .e; e0/ if �i C e � �iC1 for i D 1; 3; 5; : : : and �i C e0 � �iC1 for
i D 2; 4; 6; : : : . Let BP ne;e0 be the set of bipartitions of n which have excess .e; e0/.

A partition is a sequence � D .�1; �2; �3; : : : / in N such that �m D 0 form� 0

and �1 � �2 � �3 � : : : . Thus a partition is the same as a bipartition of excess
.0; 0/. On the other hand, a bipartition is the same as an ordered pair of partitions
..�1; �3; �5; : : : /; .�2; �4; �6; : : : //.

Let P D f2; 3; 5; : : : g be the set of prime numbers.

1 The 2-special representations of a Weyl group

1.1 Let V; V � be finite-dimensional Q-vector spaces with a given perfect bilinear
pairing h; i W V � V � ! Q. Let R (resp. LR) be a finite subset of V � f0g (resp.
V � � f0g) with a given bijection ˛ $ L̨ , R $ LR, such that h˛; L̨ i D 2 for any
˛ 2 R and h˛; Ľi 2 Z for any ˛; ˇ 2 R; it is assumed that ˇ � hˇ; L̨ i˛ 2 R,
Ľ � h˛; Ľi L̨ 2 LR for any ˛; ˇ 2 R and that ˛ 2 R H) ˛=2 … R. Thus,
.V; V �; R; LR/ is a reduced root system. Let V0 (resp. V �0 ) be the Q-subspace of V
(resp. V �) spanned by R (resp. LR). Let rk.R/ D dimV0 D dimV �0 . Let W be the
(finite) subgroup of GL.V / generated by the reflections s˛ W x 7! x � hx; L̨ i˛ in V
for various a 2 R; it may be identified with the subgroup of GL.V �/ generated by
the reflections t sa W x0 7! x0 � h˛; x0i L̨ in V � for various ˛ 2 R. For any e 2 V
let Re D f˛ 2 RI he; L̨ i 2 Zg, LRe D f L̨ I˛ 2 Reg; note that .V; V �; Re; LRe/ is a
root system with Weyl group We D fw 2 W Iw.e/ � e 2 P˛2R Z˛g. Similarly,
for any e0 2 V � let Re0 D f˛ 2 RI h˛; e0i 2 Zg, LRe0 D f L̨ I˛ 2 Re0g; note that
.V; V �; Re0 ; LRe0/ is a root system with Weyl group We0 D fw 2 W Iw.e0/ � e0 2
P

˛2R Z L̨ g. For any .e; e0/ 2 V � V � let Re;e0 D Re \ Re0 , LRe;e0 D LRe \ LRe0 .
Then .V; V �; Re;e0 ; LRe;e0/ is a root system; let We;e0 be its Weyl group (a subgroup
of We \We0). Note that W0;e0 D We0 , We;0 D We , W0;0 D W . For E 2 Irr.We;e0/

let nE be as in 0.2.
Let .e1; e01/ 2 V � V �, .e2; e02/ 2 V � V � be such that Re1;e

0

1
� Re2;e

0

2
(so

that We1;e
0

1
� We2;e

0

2
). In this case, if E 2 Irr.We1;e

0

1
/ is good, there is a unique
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E0 2 Irr.We2;e
0

2
/ such that E0 appears in Ind

W
e2;e0

2

W
e1;e0

1

.E/ and nE0
D nE , see [LS1,

3.2]; moreover, E0 is good. We set E0 D j
W

e2;e0

2

W
e1;e0

1

.E/. Note that if we have also

Re2;e
0

2
� Re3;e

0

3
where .e3; e03/ 2 V � V �, then we have the transitivity property:

(a) j
W

e3;e0

3

W
e1;e0

1

.E/ D jWe3;e0

3

W
e2;e0

2

.j
W

e2;e0

2

W
e1;e0

1

.E//:

Let S.We;e0/ � Irr.We;e0/ be the set of special representations ofWe;e0 , see [L1];
note that any E 2 S.We;e0/ is good. Hence jWWe;e0

.E/ 2 Irr.W / is defined. We say

that E0 2 Irr.W / is 2-special if E0 D jWWe;e0
.E/ for some .e; e0/ 2 V � V � and

some E 2 S.We;e0/. Let S2.W / be the set of all 2-special representations of W (up
to isomorphism). From the definition we see that

(b) S2.W / is unchanged when .V; V �; R; LR/ is replaced by .V �; V; LR;R/.
Let S1.W / (resp. 0S1.W /) be the set of all E0 2 Irr.W / such that E0 D jWWe

.E/

(resp. E0 D jWWe0
.E/) for some e 2 V , E 2 S.We/ (resp. e0 2 V �, E 2 S.We0/).

The analogue of (b) with S2.W / replaced by S1.W / is not true in general; instead,
if .V; V �; R; LR/ is replaced by .V �; V; LR;R/, then S1.W / becomes 0S1.W / and
0S1.W / becomes S1.W /.

Now, for any e0 2 V � the subset S1.We0/ � Irr.We0/ is defined; it consists of all
E 0 2 Irr.We0/ such that E 0 D jW e

0

We;e0
.E/ for some e 2 V and some E 2 S.We;e0/.

Note that any E 0 2 S1.We0/ is good. From (a) we see that

(c) S2.W / consists of all E0 2 Irr.W / such that E0 D jWWe0
.E 0/ for some e0 2 V �

and some E 0 2 S1.We0/.

We say that e0 2 V � (resp. .e; e0/ 2 V � V �) is isolated if rk.Re0/ D rk.R/ (resp.
rk.Re;e0/ D rk.R/). We show:

(d) S2.W / consists of allE0 2 Irr.W / such thatE0 D jWWe;e0
.E/ for some isolated

.e; e0/ 2 V � V � and some E 2 S.We;e0/.

Let E0 2 S2.W /. By definition, we can find .e; e0/ 2 V � V � and E 2 S.We;e0/

such that E0 D jWWe;e0
.E/. We can find an isolated e01 2 V � such that Re0 is rat-

ionally closed in Re0

1
that is, Re0

1
\P˛2Re0

Q˛ D Re0 . Applying the analogous

statement to .V �; V; LRe0

1
; Re0

1
/, e, instead of .V; V �; R; LR/, e0, we can find e1 2 V

such that rk.Re1
\Re0

1
/ D rk.Re0

1
/ andRe\Re0

1
is rationally closed inRe1

\Re0

1
. It

follows that .e1; e01/ is isolated andRe\Re0 is rationally closed inRe1
\Re0

1
; hence

E1 WD j
W

e1;e0

1

We;e0
.E/ is in S.We1;e

0

1
/, see [L1]. By (a), we have E0 D jWW

e1;e0

1

.E1/.

This proves (d).
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We have the following variant of (d):

(e) S2.W / consists of all E0 2 Irr.W / such that E0 D jWWe0
.eE/ for some isolated

e0 2 V � and some eE 2 S1.We0/.

Let E0 2 S2.W /. Let E; e; e0 be as in (d). We have E D jWWe0
.eE/ where

eE D j
We0

We;e0
.E/ 2 S1.We0/ and rk.Re0/ D rk.R/. Conversely, if e0 2 V � and

eE 2 S1.We0/, then, by (c), jWWe0
.eE/ 2 S2.W / (even without the assumption that

rk.Re0/ D rk.R/). This proves (e).

LetR0 � R be such that (if LR0 is the image ofR0 under R$ LR), .V; V �; R0; LR0/
is a root system (with Weyl group W 0) and R0 is rationally closed in R. Note that
R0 D Re for some e 2 V and R0 D Re0 for some e0 2 V �. We show:

(f) If E 2 S1.W 0/, then jWW 0.E/ 2 S1.W /.
(g) If E 2 S2.W 0/, then jWW 0.E/ 2 S2.W /.

We prove (f). Let e0 2 V � be such that R0 D Re0 . We have E D j
We0

We;e0
.E 0/ for

some e 2 V and some E 0 2 S.We;e0/. Hence jWW 0.E/ D jWWe;e0
.E 0/ D jWWe

.E 00/
where E 00 D jWe

We;e0
.E 0/. Now Re;e0 is rationally closed in Re , hence E 00 2 S.We/,

see [L1]. We see that jWW 0.E/ 2 S1.W /.
We prove (g). Let e 2 V be such that R0 D Re . We have E D j

We

We;e0
.E 0/ for

some e0 2 V � and some E 0 2 S1.We;e0/. Hence jWW 0.E/ D jWWe;e0
.E 0/ D jWWe0

.E 00/

where E 00 D jWe0

We;e0
.E 0/. Now Re;e0 is rationally closed inRe0 , hence E 00 2 S.We0/,

see (f). We see that jWW 0.E/ 2 S2.W /.
1.2 There are unique direct sum decompositions V0 D ˚i2IVi , V �0 D ˚i2IV �i
such that R D ti2I .R \ Vi /, LR D ti2I . LR \ Vi / and for any i 2 I , .Vi ; V �i ; R \
Vi ; LR \ Vi / is an irreducible root system for (with Weyl group Wi ); the bijection
R\ Vi $ LR\ Vi is induced by R$ LR). We have canonically W DQI2I Wi and
S2.W / DQi2I S2.Wi / (via external tensor product).

1.3 In this subsection we assume that .V; V �; R; LR/ is irreducible. Now W acts
naturally on the set of subgroupsW 0 ofW of formWe0 for various isolated e0 2 V �.
The types of variousW 0 which appear in this way are well known and are described
below in each case.

(a) R of type An, n � 0: W 0 of type An.
(b) R of type Bn, n � 2:W 0 of type Ba�Db where a 2 N, b 2 N�f1g, aCb D n.
(c) R of type Cn, n � 2: W 0 of type Ca � Cb where a; b 2 N, aC b D n.
(d) R of type Dn, n � 4: W 0 of type Da �Db where a; b 2 N � f1g, aC b D n.
(e) R of type E6: W 0 of type E6, A5A1, A2A2A2.
(f) R of type E7: W 0 of type E7, D6A1, A7, A5A2, A3A3A1.
(g) R of type E8: W 0 of type E8, E7A1, E6A2, D5A3, A4A4, A5A2A1, A7A1,

A8;D8.
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(h) R of type F4: W 0 of type F4, B3A1, A2A2, A3A1, B4.
(i) R of type G2: W 0 of type G2, A2, A1A1.

(We use the convention that a Weyl group of type Bn or Dn with n D 0 is f1g.)
1.4 In this subsection we assume that .V; V �; R; LR/ is irreducible. Now W acts
naturally on the set of subgroups W 0 of W of form We;e0 for various isolated
.e; e0/ 2 V � V �. The types of various W 0 which appear in this way are described
below in each case. (For type F4 and G2 we denote by � a non-inner involution
of W ).

(a) R of type An: W 0 of type An.
(b) R of type Bn or Cn: W 0 of type Ba � Bb �Dc �Dd where a; b 2 N, c; d 2

N � f1g, aC b C c C d D n.
(c) R of type Dn: W 0 of type Da � Db � Dc � Dd where a; b; c; d 2 N � f1g,

aC b C c C d D n.
(d) R of type E6: W 0 as in 1.3(e).
(e) R of type E7: W 0 as in 1.3(f) and also W 0 of type D4A1A1A1.
(f) R of type E8: W 0 as in 1.3(g) and also W 0 of type D6D2, D4D4, A3A3A1A1,

A2A2A2A2.
(g) R of type F4: W 0 as in 1.3(h), the images under � of the subgroups W 0 of type

A3A1, B4 in 1.3(h) and also W 0 of type B2B2.
(h) R of type G2:W 0 as in 1.3(i) and the image under � of the subgroupW 0 of type

A2 in 1.3(i).

1.5 If R0 � R, LR0 � LR are such that .V; V �; R0; LR0/ is a root system (with the
bijection R0 $ LR0 being induced by R $ LR) then, setting R

0 D R \P˛2R0 Q˛,
L
R
0 D LR \P˛2R0 Q L̨ , we obtain a root system .V; V �; R0; LR0/. We set

NR0 D ].
X

˛2R0

Z˛=
X

˛2R0

Z˛/ 2 Z	1:

For any e0 2 V � we set Ne0 D NRe0
.

Now let r 2 P . Let Sr2.W / be the set of all E0 2 Irr.W / such that for some
isolated e0 2 V � with Ne0 D rk for some k 2 N and for some E 2 S1.We0/ we
have E0 D jWWe0

.E/. Note that S1.W / � Sr2.W / � S2.W /.
Now assume that .V; V �; R; LR/ is irreducible. We show:

(a) If R is of type An, n � 0, then Sr2.W / D S2.W / D S1.W / D S.W /.
(b) If R is of type Bn or Cn, n � 2, then Sr2.W / D S1.W / if r ¤ 2 and

S22 .W / D S2.W /.
(c) If R is of type Dn, n � 4, then Sr2.W / D S1.W / if r ¤ 2 and S22 .W / D

S2.W /.
(d) If R is of type E6, then Sr2.W / D S2.W / D S1.W /.
(e) If R is of type E7, then Sr2.W / D S1.W / if r ¤ 2 and S22 .W / D S2.W /.
(f) If R is of type E8, then Sr2.W / D S1.W / if r … f2; 3g and S22 .W /[S32 .W / D

S2.W /.
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(g) If R is of type F4, then Sr2.W / D S1.W / if r ¤ 2 and S22 .W / D S2.W /.
(h) If R is of type G2, then Sr2.W / D S1.W / if r ¤ 3 and S32 .W / D S2.W /.

We prove (a). In this case for any isolated e0 2 V � we have Ne0 D 1 and the result
follows from 1.1(d),(e), 1.3.

We prove (b), (c). In these cases for any isolated e0 2 V �, Ne0 is a power of 2
(see 1.3) and the equality S22 .W / D S2.W / follows from 1.1(e). Moreover, if e0 is
isolated and Ne0 is not divisible by 2, then We0 D W so that for r ¤ 2 we have
Sr2.W / D S1.W /.

In cases (d), (e), (f) we shall use the fact that for any e0 2 V �:
(i) we can find e 2 V such that We0 D We , so that if E 2 S.We0/, then

jWWe0
.E/ 2 S1.W /.

(This property does not always hold in cases (g),(h).)
We prove (d). If e0 2 V � is isolated and We0 ¤ W , then from 1.3 we see that

We0 is of type A2A2A2 or A5A1 so that S1.We0/ D S.We0/; using this and 1.1(e)
we see that S2.W / D Sr2 D S1.W /. (We have used (i).)

We prove (e). If e0 2 V � is isolated and We0 is not of type E7 (with Ne0 D 1)
or D6A1 (with Ne0 D 2), then from 1.3 we see that We0 is of type A7 or A5A2 or
A3A3A1 so that S1.We0/ D S.We0/. We see that Sr2.W / D S1.W / if r ¤ 2 and
S22 .W / D S2.W /. (We have used (i).)

We prove (f). If e0 2 V � is isolated and We0 is not of type E8 (with Ne0 D 1)
or E7A1 (with Ne0 D 2) or E6A2 (with Ne0 D 3) or D5A3 (with Ne0 D 4) or D8
(with Ne0 D 2), then from 1.3 we see thatWe0 is of type A4A4 or A5A2A1 or A7A1
or A8, so that S1.We0/ D S.We0/; we see that Sr2.W / D S1.W / if r … f2; 3g and
S22 .W / [ S32 .W / D S2.W /. (We have used (i).)

We prove (g). If e0 2 V � is isolated and We0 is not of type F4 (when Ne0 D 1) or
B3A1 (with Ne0 a power of 2) or B4 (with Ne0 a power of 2), then from 1.3 we see
that We0 is of type A2A2 (with Ne0 D 3) or A3A1 (with Ne0 a power of 2) so that
S1.We0/ D S.We0/. Moreover, if e0 2 V � is isolated and We0 is of type A2A2, then
(i) holds for this e0. We see that Sr2.W / D S1.W / if r ¤ 2 and S22 .W / D S2.W /.

We prove (h). If e0 2 V � is isolated and We0 is not of type G2 (with Ne0 D 1),
then from 1.3 we see that We0 is of type A2 (with Ne0 D 3) or A1A1 (when
Ne0 D 2) so that S1.We0/ D S.We0/. Moreover, if e0 2 V � is isolated and We0

is of type A1A1, then (i) holds for this e0. We see that Sr2.W / D S1.W / if r ¤ 3

and S32 .W / D S2.W /.
This proves (a)–(h). From (a)–(h) we deduce:

(j) We have S2.W / D S22 .W /[S32 .W /. If r 2 P�f2; 3g, then Sr2.W / D S1.W /.

The following result can be verified by computation.

(k) If R is of type E7, then S22 .W / � S1.W / D f8415g. If R is of type E8, then
S22 .W / � S1.W / D f105010; 84014; 16824; 97232g and S32 .W / � S1.W / D
f17512g. If R is of type F4, then S22 .W / � S1.W / D f96; 47; 48; 216g. If R is
of type G2, then S32 .W / � S1.W / D f13g.
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(In each case we specify a representation E by a symbol dn where d is the degree
of E and n D nE . For type F4 and G2 the specified representations are uniquely
determined by the additional condition that they are not in S1.W /.)

(l) S22 .W / \ S32 .W / D S1.W /.

The inclusion S1.W / � S22 .W /\S32 .W / is obvious. The reverse inclusion forR of
type ¤ E8 follows from the fact that for such R we have either S22 .W / D S1.W /
or S32 .W / D S1.W /, see (a)–(h). Thus we can assume that R is of type E8. In this
case the result follows from (k).

1.6 Let r 2 P . Let V �r D fe0 2 V �INe0=r … Zg. LeteSr2.W / be the set of all E0 2
Irr.W / such that for some e0 2 V �r and some E 2 Sr2.We0/ we have E0 D jWWe0

.E/.

(Note that any E 2 Sr2.We0/ is good.) Note that Sr2.W / � eSr2.W / (take e0 D 0 in
the definition ofeSr2.W /). We show:

(a) S2.W / � eSr2.W /.
We can assume that .V; V �; R; LR/ is irreducible. Let E0 2 S2.W /. We must show
that E0 2 eSr2.W /. By 1.1(e) we can find an isolated e0 … V � and eE 2 S1.We0/ such
that E0 D jWWe0

.eE/. If Ne0=r … Z then we have E0 2 eSr2.W / since S1.We0/ �
Sr2.We0/. If Ne0 is a power of r , then from definitions we have E0 2 Sr2.W /, hence
E0 2 eSr2.W /. Thus we may assume that Ne0 is not a power of r and is Ne0=r 2
Z. This forces R to be of type E8 and We0 to be of type A5A2A1 (see 1.3); we
then have Ne0 D 6 and r 2 f2; 3g. In particular we must have eE 2 S.We0/. If
eE is not the sign representation of We0 , then we have eE D j

We0

W
e0

1

.sign/ for some

e01 2 V � such that We0

1
is a proper parabolic subgroup of We0 . Replacing We0

1
by a

W -conjugate we can assume that We0

1
is a proper parabolic subgroup of W so that

jWWe0
.sign/ 2 S.W / and in particular, E0 2 eSr2.W /. Thus we can assume that eE is

the sign representation of We0 . We have We0 � We0

2
where We0

2
is of type E7A1 and

by the definition of S1.We0

2
/ we have

eE2 WD j
W

e0

2

We0
.sign/ 2 S1.We0

2
/:

If r D 3, we have e02 2 V �r hence E0 D jWW
e0

2

.eE2/ 2 eSr2.W /. We have We0 � We0

3

where We0

3
is of type E6A2 and by the definition of S1.We0

3
/, we have eE3 WD

j
W

e0

3

We0
.sign/ 2 S1.We0

3
/. If r D 2, we have e03 2 V �r hence E0 D jWW

e0

3

.eE3/ 2
eSr2.W /. This completes the proof of (a).

We show:

(b) eSr2.W / � S2.W /.

We can assume that .V; V �; R; LR/ is irreducible. Let E0 2 eSr2.W /. We must show
that E0 2 S2.W /. Assume first that r … f2; 3g. Then by results in 1.5 we have
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E 2 S1.We0/, hence by 1.1(c) we have E0 2 S2.W /. Next we assume that r D 3.
If We0 ¤ W , then by results in 1.5 we have E 2 S1.We0/ hence by 1.1(c) we have
E0 2 S2.W /. Thus we can assume that We0 D W so that E0 D E 2 Sr2.W /. Since
Sr2.W / � S2.W / we see that E0 2 S2.W /.

We now assume that r D 2. We can find e0 2 V �r and E 2 Sr2.We0/ such that
E0 D jWWe0

.E/. We can find an isolated e01 2 V � such that Ne0

1
is odd, Re0 � Re0

1

and Re0 is rationally closed in Re0

1
. Let E 0 D j

W
e0

1

We0
.E/. Since E 2 S2.We0/ we

have E 0 2 S2.We0

1
/, see 1.1(g) and E0 D jWW

e0

1

.E 0/. It is then enough to prove the

following statement:

(c) If e0 2 V �r is isolated .r D 2/ andE 2 S2.We0/, thenE0 D jWWe0
.E/ 2 S2.W /.

If We0 D W , then E0 D E 2 S2.W /, as required. If R is of type An; Bn; Cn;Dn,
then in (c) we have automaticallyWe0 D W hence (c) holds in these cases. Thus we
can assume in (c) that R is of exceptional type and We0 ¤ W . Then We0 is of the
following type: A2A2A2 (if R is of type E6); A5A2 (if R is of type E7); A4A4 or
A8 or E6A2 (if R is of type E8); A2A2, as in 1.3(h) (if R is of type F4); A2, as in
1.3(i) (if R is of type G2). In each case we have S2.We0/ D S1.We0/, see 1.5. Thus
E 2 S1.We0/. Using 1.1(e) we see that E0 2 S2.W /. This proves (c) hence (b).

Combining (a), (b) we obtain

(d) eSr2.W / D S2.W /.

In the case where r D 0, we set V �0 D V �, S02 .W / D S1.W /,eS02.W / D S2.W /.

2 The strata of G

2.1 We return to the setup of the introduction. Thus G is a connected reductive
algebraic group over k. Let T be “the” maximal torus of G; let X D Hom.T ;k�/,
Y D Hom.k�; T /, V D Q˝X , V � D Q˝Y . We have an obvious perfect bilinear
pairing h; i W V � V � ! Q. Let R � V be the set of roots and let LR � V � be the
set of corrots. Then .V; V �; R; LR/ is as in 1.1. The associated Weyl group W (as in
1.1) that is, the Weyl group of G, can be viewed as an indexing set for the orbits of
G acting diagonally on B�B; we denote by Ow the orbit corresponding to w 2 W .
Note that W is naturally a Coxeter group.

Let g 2 G. Let Wg be the Weyl group of the connected reductive group
H WD ZG.gs/

0. We can view Wg as a subgroup of W as follows. Let ˇ be a
Borel subgroup of H and let T be a maximal torus of ˇ. We define an isomor-

phism bT;ˇ W NHT=T ��! Wg by n0T 7! H -orbit of .ˇ; n0ˇn0�1/. Similarly for

any B 2 B such that T � B we define an isomorphism aT;B W NGT=T ��! W by
n0T 7! G-orbit of .B; n0Bn0�1/. Now assume that B 2 B is such that B \H D ˇ.
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We define an embedding cT;ˇ;B W Wg ! W as the composition Wg
b�1

T;ˇ���!
NHT=T ! NGT=T

aT;B���! W where the middle map is the obvious embedding. If
B 0 2 B also satisfies B 0 \H D ˇ, then we have B 0 D nBn�1 for some n 2 NGT
and from the definitions we have cT;ˇ;B0.w/ D aT;B.nT /cT;ˇ;B.w/aB;T .nT /

�1
for any w 2 Wg . Thus cT;ˇ;B depends (up to composition with an inner automor-
phism of W ) only on T; ˇ and we can denote it by cT;ˇ . Since the set of pairs T; ˇ
as above form a homogeneous space for the connected group H , we see that cT;ˇ
is independent of T; ˇ (up to composition with an inner automorphism ofW ) hence
it does not depend on any choice. We see that there is a well-defined collection C
of embeddings Wg ! W so that any two of them differ only by composition by an
inner automorphism of W .

Define � 2 Irr.Wg/ by the condition that under the Springer correspondence
for H , � corresponds to the H -conjugacy class of gu and the trivial local system
on it. We choose f 2 C; then we can view � as an irreducible representation of
f .Wg/, a subgroup of W such that f .Wg/ D We0 for some e0 2 V �p , see 1.6. By
[L5, 1.4] we have � 2 Sp2 .f .Wg//, see 1.5, 1.6. Hencee� WD jW

f.Wg/
.�/ 2 eSp2 .W /

is well defined. Since eSp2 .W / D S2.W /, see 1.6, we have e� 2 S2.W /. This is
independent of the choice of f since f is well defined up to composition by an
inner automorphism of W .

2.2 Let g 2 G. Let d D dg D dimBg . The embedding hg W Bg ! B induces a
linear map hg� W H2d .Bg/! H2d .B/. Now H 2d .Bg/;H 2d .B/ carry natural W -
actions, see [L3], and this induces natural W -actions on H2d .Bg/;H2d .B/ which
are compatible with hg�. Hence W acts naturally on the subspace hg�.H2d .Bg//
of H2d .B/.

The following result gives an alternative description of the map g 7! e� (in 2.1)
from G to IrrW .

(a) The W -submodule hg�.H2d .Bg// of H2d .B/ is isomorphic to the W -module
Ql ˝e� where �;e� are associated to g as in 2.1.

First, we note that hg�.H2d .Bg// ¤ 0; indeed it is clear that for any irreducible
component D of Bg (necessarily of dimension d ), the image of the fundamental
class of D under hg� is nonzero (we ignore Tate twists). Let B0 be the variety of
Borel subgroups of ZG.gs/0. Let B0gu

D fˇ 2 B0Igu 2 ˇg. Then dimB0 D d

and Wg (see 2.1) acts naturally on H2d .B0gu
/; from the definitions, the W -module

H2d .Bg/ is isomorphic to IndWWg
H2d .B0gu

/. From the definitions we have n
 D d

and the Wg -module H2d .B0gu
/ is of the form ˚i2Œ1;s�.Ql ˝ Ei /˚ci where Ei 2

Irr.Wg/, ci 2 N satisfy E1 D �, c1 D 1 and nEi
> d for i > 1. It follows

that the W -module H2d .Bg/ is of the form ˚i2Œ1;s�.IndWWg
.Ql ˝ Ei //

˚ci . Now

IndWWg
.Ql ˝ E1/ contains Ql ˝e� with multiplicity 1 and all its other irreducible

constituents are of the form Ql ˝ E with nE > d ; moreover, for i > 1, any
irreducible constituent E of IndWWg

.Ql˝Ei / satisfies nE > d . Thus theW -module

H2d .Bg/ contains Ql˝e�with multiplicity 1 and all its other irreducible constituents
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are of the form Ql ˝ E with nE > d ; these other irreducible constituents are
necessarily mapped to 0 by hg� and the irreducible constituent isomorphic to Ql˝e�
is mapped injectively by hg� since hg� ¤ 0. It follows that the image of hg� is
isomorphic to Ql ˝e� as a W -module. This proves (a).

2.3 By 2.1, 2.2 we have a well-defined map � W G ! S2.W /, g 7! e� where
Ql ˝e� D hg�..H2dg

.Bg// (notation of 2.1, 2.2). The fibres GE D ��1.E/ of
� (E 2 S2.W /) are called the strata of G. They are clearly unions of conjugacy
classes ofG. Note the strata ofG are indexed by the finite set S2.W /which depends
only on the Weyl group W and not on the underlying root system (see 1.1(b)) or on
the characteristic of k.

One can show that any stratum of G is a union of pieces in the partition of G
defined in [L3, 3.1]; in particular, it is a constructible subset of G.

2.4 We have the following result.

(a) Any stratum GE (E 2 S2.W /) of G is a (non-empty) union of G-conjugacy
classes of fixed dimension, namely 2 dimB � 2n where n D nE , see 0.2. At
most one G-conjugacy class in GE is unipotent.

Since S2.W / D eSp2 .W /, see 1.6, we have E 2 eSp2 .W /. Hence there exists e0 2 V �p
and � 2 Sp2 .We0/ such that E D jWWe0

.�/. We can find a semisimple element of
finite order s 2 G such that Ws (viewed as a subgroup of W as in 2.1) is equal
to We0 . By [L5, 1.4] we can find a unipotent element u in ZG.s/0 such that � is
the Springer representation of Ws defined by u and the trivial local system on its
ZG.s/

0-conjugacy class. ThenE D �.su/ so thatGE ¤ ;. Let � be aG-conjugacy
class inGE . Let g 2 � . Let � (resp.e�) be the irreducible representation ofWg (resp.
W ) defined by gu as in 2.1. Let n
; n

e
 be as in 0.2. By the definition ofe� we have
n
 D n

e
. By assumption we havee� D E, hence n
e
 D n and n
 D n. By a known

property of Springer’s representations, n
 is equal to the dimension of the variety
of Borel subgroups of ZG.gs/0 that contain gu; hence by a result of Steinberg (for
p D 0) and Spaltenstein [Spa, 10.15] (for any p), n
 is equal to

.dim.ZZG.gs/0
.gu/

0 � rk.ZG.gs/
0//=2 D .dim.ZG.g/

0/ � rk.G//=2:

It follows that .dim.ZG.g/0/ � rk.G//=2 D n and the desired formula for dim �

follows. Now assume that �; � 0 are two unipotent G-conjugacy classes contained
in GE . Then the Springer representation of W associated to � is the same as that
associated to � 0, namelyE. By properties of Springer representations, it follows that
� D � 0. This proves (a).

2.5 In this and the next subsection we assume that W is irreducibble. Let r 2
P [ f0g. Let Gr be a connected reductive group of the same type as G over an
algebraically closed field of characteristic r , whose Weyl group is identified with
W . Let U r be the set of unipotent classes of Gr . By [L5, 1.4] we have a canonical
bijection

 r W U r ��! Sr2.W /
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which, to a unipotent class � , associates the Springer representation of W cor-
responding to � and the constant local system on � . We define an embedding
hr W U0 ! U r as the composition

U0  0

��! S02 .W / D S1.W /! Sr2.W /
. r /�1

�����! U r

where the unnamed map is the inclusion.
Consider the relationŠ on tr2PU r for which x 2 U r , y 2 U r 0

(where r; r 0 2 P)
satisfy x Š y if either r D r 0 and x D y or r ¤ r 0 and x D hr .´/, y D hr

0

.´/

for some ´ 2 U0. We show that Š is an equivalence relation. It is enough to show
that if x 2 U r , y 2 U r 0

, u 2 U r 00

are such that r ¤ r 0, r 0 ¤ r 00 and x D hr .´/,
y D hr

0

.´/, y D hr
0

.é/, u D hr
00

.é/ for some ´ 2 U0;é 2 U0, then x Š u. From
hr

0

.´/ D hr 0

.é/ and the injectivity of hr
0

we have ´ D é. Thus, if r ¤ r 00, we have
x Š u, while if r D r 00, we have x D u. Thus, Š is indeed an equivalence relation.

Let U� be tr2PU r modulo the equivalence relation Š. Let tr2PU r ! S2.W /
be the map whose restriction to U r is  r followed by the inclusion Sr2.W / �
S2.W / (for any r). We show:

(a) This map induces a bijection  � W U� ��! S2.W /.

To show that  � is a well-defined map it is enough to verify that if ´ 2 U0, then
for any r; r 0 2 P , we have  rhr .´/ D  r

0

hr
0

.´/ in S2.W /; but both sides of the
equality to be verified are equal to  0.´/. Let E 2 S2.W /. By 1.5(j) there exists
r 2 P such that E 2 Sr2.W /, hence E D  r .x/ for some x 2 U r . It follows that
 � is surjective. We show that  � is injective. It is enough to show that

(b) if x 2 U r , y 2 U r 0

(r; r 0 2 P distinct) satisfy  r .x/ D  r
0

.y/, then there
exists ´ 2 U0 such that x D hr .´/, y D hr 0

.´/.

If r ¤ f2; 3g, then Sr2.W / D S1.W /, hence  r .x/ D  0.´/ for some ´ 2 U0.
We then have  r

0

.y/ D  0.´/. It follows that hr .´/ D x, hr
0

.´/ D y, as required.
Similarly, if r 0 ¤ f2; 3g, then the conclusion of (b) holds. Thus we can assume that
r 2 f2; 3g, r 0 2 f2; 3g. Since r ¤ r 0 we have fr; r 0g D f2; 3g. Hence  r .x/ D
 r

0

.y/ 2 S22 .W / \ S32 .W / D S1.W /; the last equality follows from 1.5(l). Thus
we have  r .x/ D  r

0

.y/ D  0.´/ for some ´ 2 U0. It follows that hr .´/ D x,
hr

0

.´/ D y, as required.

From (a) we deduce the following:

(c) The strata of G are naturally indexed by the set U�.

The proof of (a) shows also that U� is equal to U2 t U3 with the identification of
h2.´/; h3.´/ for any ´ 2 U0.

We can now state the following result.

(d) Let E 2 S2.W /. Then for some r 2 P , the stratum GrE contains a unipotent
class. In fact, r can be assumed to be 2 or 3.
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Under (a), E corresponds to an element of U� which is the equivalence class of
some element � 2 U r with r 2 f2; 3g. Let g 2 Gr be an element in the unipotent
conjugacy class � . From the definitions we see that g 2 GrE . This proves (d).

2.6 We show that the set U� has a natural partial order. If Sr2.W / D S1.W / (typeA
and E6), we have U� D U0 which has a natural partial order defined by the closure
relation of unipotent classes in G0. If S1.W / ¤ Sr2.W / for a unique r 2 P (type
¤ A;E6; E8), we have U� D U r which has a natural partial order defined by the
closure relation of unipotent classes in Gr . Assume now that G is of type E8. Then
we can identify U2;U3 with subsets of U� whose union is U� and whose intersection
is U0. Both subsets U2;U3 have natural partial orders defined by the closure relation
of unipotent classes in G2 and G3. If �; � 0 2 U�, we say that � � � 0 if there exists
a sequence � D �0; �1; : : : ; �s D � 0 in U� such that for any i 2 Œ1; s� there exists
r 2 f2; 3g such that

(a) �i�1 2 U r ; �i 2 U r , �i�1 � �i in the partial order of unipotent classes in Gr ;

note that if for some i , (a) holds for both r D 2 and r D 3, then we have �i�1 2 U0;
�i 2 U0, �i�1 � �i in the partial order of unipotent classes inG0. One can show that
this partial order on U� induces the usual partial orders on the subsets U2; U3, U0.

2.7 LetWa be the semidirect product ofW with the subgroup of V generated by R
(an affine Weyl group); let 0Wa be the semidirect product of W with the subgroup
of V � generated by LR (another affine Weyl group). We consider four triples:

(a) .S.W /;X0; Z0/
(b) .S1.W /;X1; Z1/
(c) .0S1.W /; 0X1; 0Z1/
(d) .S2.W /;X2; Z2/

whereX0; X1; 0X1 is the set of two-sided cells inW;Wa; 0Wa respectively,Z0 is the
set of special unipotent classes in G with p D 0, Z1 is the set of unipotent classes
in G with p D 0, 0Z1 is the set of unipotent classes in the Langlands dual G� of G
with p D 0, Z2 is the set of strata of G with p D 0 and X2 remains to be defined.
The three sets in each of these four triples are in canonical bijection with each other
(assuming thatX2 has been defined). Moreover, each set in (a) is naturally contained
in the corresponding set in (b) and (replacing G by G�) in the corresponding set in
(c); each set in (b) is contained in the corresponding set in (d) and (replacing G by
G�) each set in (c) is contained in the corresponding set in (d).

It remains to define X2. It seems plausible that the (trigonometric) double affine
Hecke algebra H associated by Cherednik toW has a natural filtration by two-sided
ideals whose successive subquotients can be called two-sided cells and form the
desired set X2. The inclusion of the Hecke algebra of Wa and that of 0Wa into H
should induce the embeddings X1 � X2, 0X1 � X2 and X2 should be in natural
bijection with S2.W / and with the set of strata of G.
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3 Examples

3.1 We write the adjoint group of G as a product
Q

i Gi where each Gi is simple
with Weyl group Wi so that W D Q

i Wi . Let E 2 S2.W /. We have E D �iEi
where Ei 2 S2.Wi /. Now GE is the inverse image of

Q

i .Gi /Ei
under the obvious

map G !Q

i Gi .
When E is the sign representation of W , then GE is the centre of G; when E is

the unit representation of W , GE is the set of elements of G which are regular in
the sense of Steinberg [St].

By 2.5(a) and 2.6 applied to Gi , the set S2.Wi / has a natural partial order. Since
S2.W / can be identified as above with

Q

i S2.Wi /, S2.W / is naturally a partially
ordered set (a product of partially ordered sets). Hence by 2.3 the set of strata of G
is naturally a partially ordered set.

3.2 Assume thatG D GL.V /where V is a k-vector space of dimension n � 1. Let
g 2 G. For any x 2 k� let Vx be the generalized x-eigenspace of g W V ! V and let
�x1 � �x2 � �x3 � : : : be the sequence in N whose nonzero terms are the sizes of the
Jordan blocks of x�1g W Vx ! Vx . Let g� be the sequence g�1 � g�2 � g�3 � : : :
given by g�j D P

x2k� �xj . Now g 7! g� defines a map from G onto the set of
partitions of n. From the definitions we see that the fibres of this map are exactly
the strata of G. If g 2 G and g� D .�1; �2; �3; : : : /, then

dim.Bg/ D
X

k	1
.n � .�1 C �2 C 	 	 	 C �k//:

3.3 Repeating the definition of sheets in a semisimple Lie algebra over C (see [Bo]),
one can define the sheets of G as the maximal irreducible subsets of G which are
unions of conjugacy classes of fixed dimension. One can show that if G is as in 3.2,
the sheets of G are the same as the strata of G, as described in 3.2. (In this case,
the sheets of G, or rather their Lie algebra analogue, are described in [Pe]. They are
smooth varieties.) This is not true for a general G (the sheets of G do not usually
form a partition of G; the strata of G are not always irreducible). In [Ca] it is shown
that if p is 0 or a good prime for G, then any stratum is a union of sheets and that
the closure of a stratum is not necessarily a union of strata, even if G is of type A.

3.4 In the next few subsections we will describe explicitly the strata of G when G
is a symplectic or special orthogonal group.

Given a partition � D .�1 � �2 � : : : /, a string of � is a maximal subsequence
�i ; �iC1; : : : ; �j of � consisting of equal > 0 numbers; the string is said to have an
odd origin if i is odd and an even origin if i is even.

For an even N 2 N, let Z1N be the set of partitions � D .�1 � �2 � : : : / of N
such that any odd number appears an even number of times in �. We show:

(a) There is a canonical bijection Z1N $ BP
N=2
1;1 (notation of 0.2).
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To � 2 Z1N we associate � D .�1; �2; �3; : : : / as follows: each string 2a; 2a; : : : ; 2a
in � is replaced by a; a; : : : ; a of the same length; each string 2a C 1; 2a C
1; : : : ; 2a C 1 (necessarily of even length) in � is replaced by a; a C 1; a; a C
1; : : : ; a; a C 1 of the same length. The resulting entries form a bipartition � 2
BP

N=2
1;1 . Now � 7! � establishes the bijection (a).
For an even N 2 N, let Z2N be the set of partitions � D .�1 � �2 � : : : / of N

such that any odd number appears an even number of times in � and any even > 0

number which appears an even > 0 number of times in � has an associated label 0
or 1. We show:

(b) There is a canonical bijection Z2N $ BP
N=2
2;2 (notation of 0.2).

To � 2 Z2N we associate � D .�1; �2; �3; : : : / as follows: each string 2a; 2a; : : : ; 2a
of odd length or of even length and label 1 in � is replaced by a; a; : : : ; a of the
same length; each string 2a; 2a; : : : ; 2a of even length and label 0 in � is rep-
laced by a � 1; a C 1; a � 1; a C 1; : : : ; a � 1; a C 1 of the same length; each
string 2a C 1; 2a C 1; : : : ; 2a C 1 (necessarily of even length) in � is replaced by
a; a C 1; a; a C 1; : : : ; a; a C 1 of the same length. The resulting entries form a
bipartition � 2 BPN=22;2 . Now � 7! � establishes the bijection (b).

Assume for example that N D 6. The bijection (b) is:

.6 : : : /$ .3 : : : /

.42 : : : /$ .21 : : : /

.411 : : : /$ .201 : : : /

.33 : : : /$ .12 : : : /

.222 : : : /$ .111 : : : /

..22/111 : : : /$ .1101 : : : /

..22/0110 : : : /$ .0201 : : : /

.21111 : : : /$ .10101 : : : /

.111111 : : : /$ .010101 : : : /:

Here we write : : : instead of 000 : : : . (Compare [LS2, 6.1].)

3.5 Assume that G D Sp.V / where V is a k-vector space of dimension N with a
fixed nondegenerate symplectic form.

Let g 2 G. For any x 2 k� let Vx be the generalized x-eigenspace of g W V ! V .
Let dx D dimVx . For any x 2 k� such that x2 ¤ 1 let �x1 � �x2 � �x3 � : : :

be the partition of dx whose nonzero terms are the sizes of the Jordan blocks of
x�1g W Vx ! Vx .

For x 2 k� such that x2 D 1, let �x 2 Z1
dx

(if p ¤ 2) and �x 2 Z2
dx

(if
p D 2) be again the partition of dx whose nonzero terms are the sizes of the Jordan
blocks of the unipotent element x�1g 2 Sp.Vx/. (When p D 2, �x should also
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include a labelling with 0 and 1 associated to x�1g 2 Sp.Vx/ as in [L10, 1.4].) Let
�x D .�x1 ; �

x
2 ; �

x
3 ; : : : / be the bipartition of dx=2 associated to �x by 3.4(a),(b).

Thus �x 2 BP dx=2
1;1 (if p ¤ 2), �x 2 BP dx=2

2;2 (if p D 2). Note that �x is the
bipartition such that the Springer representation attached to the unipotent element
x�1g 2 Sp.Vx/ (an irreducible representation of the Weyl group of type Bdx=2) is
indexed in the standard way by �x . Define g� D .g�1;

g�2;
g�3; : : : / by g�j D

P

x �
x
j where x runs over a set of representatives for the orbits of the involution

a 7! a�1 of k�. Note that g� 2 BPN=22;2 . Thus we have defined a (surjective) map

g 7! g�, G ! BP
N=2
2;2 . From the definitions we see that the fibres of this map are

exactly the strata of G.
If g 2 G and g� D .�1; �2; �3; : : : /, then

(a) dim.Bg/ D
X

k	1
..N=2/ � .�1 C �2 C 	 	 	 C �k//:

We now consider the case where N D 4. In this case we have S2.W / D Irr.W /;
hence there are five strata. One stratum is the union of all conjugacy classes of
dimension 8 (it corresponds to the unit representation); one stratum is the union of
all conjugacy classes of dimension 6 (it corresponds to the reflection representation
of W ). There are two strata which are unions of conjugacy classes of dimension 4
(they correspond to the two one-dimensional representations of W other than unit
and sign); if p D 2, both these strata are single unipotent classes; if p ¤ 2, one of
these strata is a semisimple class and the other is a unipotent class times the centre
of G. The centre of G is a stratum (it corresponds to the sign representation of W ).

The results in this subsection show that under the standard identification Irr.W / D
BPN=2, we have

(b) S2.W / D BPN=22;2 :

Under this identification the map g 7! g�, G ! BP
N=2
2;2 becomes the map g 7! E

where g 2 GE .

3.6 For N 2 N, let 0Z1N be the set of partitions � D .�1 � �2 � :::/ such that any
even > 0 number appears an even number of times in � and �1 C �2 C 	 	 	 D N .

(a) If N is odd, then there is a canonical bijection 0Z1N $ BP
.N�1/=2
2;0 .

To � 2 0Z1N we associate �D.�1; �2; �3; : : : / as follows: each string 2a; 2a; : : : ; 2a
of � (necessarily of even length) is replaced by a � 1; aC 1; a � 1; aC 1; : : : ; a �
1; a C 1 of the same length (if the string has odd origin) or by a; a; : : : ; a of the
same length (if the string has even origin); each string 2a C 1; 2a C 1; : : : ; 2a C 1
of � is replaced by a; a C 1; a; a C 1; : : : of the same length (if the string has odd
origin) or by aC1; a; aC1; a; : : : of the same length (if the string has even origin).
The resulting entries form a bipartition � 2 BP .N�1/=22;0 . Now � 7! � establishes
the bijection (a).
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(b) If N is even, then there is a canonical bijection 0Z1N $ BP
N=2
0;2 .

To � 2 0Z1N we associate �D.�1; �2; �3; : : : / as follows: each string 2a; 2a; : : : ; 2a
of � (necessarily of even length) is replaced by a � 1; aC 1; a � 1; aC 1; : : : ; a �
1; a C 1 of the same length (if the string has even origin) or by a; a; : : : ; a of the
same length (if the string has odd origin); each string 2a C 1; 2a C 1; : : : ; 2a C 1
of � is replaced by a; a C 1; a; a C 1; : : : of the same length (if the string has even
origin) or by aC 1; a; aC 1; a; : : : of the same length (if the string has odd origin).
The resulting entries form a bipartition � 2 BPN=20;2 . Now � 7! � establishes the
bijection (b).

3.7 Assume that p ¤ 2 and that G D SO.V / where V is a k-vector space of odd
dimension N � 1 with a fixed nondegenerate quadratic form.

Let g 2 G. For any x 2 k�, let Vx be the generalized x-eigenspace of
g W V ! V . Let dx D dimVx . For any x 2 k� such that x2 ¤ 1 let �x1 � �x2 �
�x3 � : : : be the partition of dx whose nonzero terms are the sizes of the Jordan
blocks of x�1g W Vx ! Vx .

For x 2 k� such that x2 D 1 let �x 2 0Z1
dx

again be the partition of dx whose

nonzero terms are the sizes of the Jordan blocks of the unipotent element x�1g 2
SO.Vx/. Let �x D .�x1 ; �

x
2 ; �

x
3 ; : : : / be the bipartition of dx=2 associated to �x

by 3.6(a) if x D 1 and by 3.6(b) if x D �1. Thus �x 2 BP .dx�1/=2
2;0 if x D 1,

�x 2 BP dx=2
0;2 if x D �1. Note that �x is the bipartition such that the Springer

representation attached to the unipotent element x�1g 2 SO.Vx/ (an irreducible
representation of the Weyl group of type B.dx�1/=2, if x D 1, or of type Ddx=2, if
x D �1) is indexed by �x . Define g� D .g�1;

g�2;
g�3; : : : / by g�j D P

x �
x
j

where x runs over a set of representatives for the orbits of the involution a 7! a�1
of k�. Note that g� 2 BP .N�1/=22;2 . Thus we have defined a (surjective) map g 7! g�,

G ! BP
.N�1/=2
2;2 . From the definitions we see that the fibres of this map are exactly

the strata of G. Under the identification S2.W / D BP
.N�1/=2
2;2 , see 3.5(b), the map

g 7! g�, G ! BP
.N�1/=2
2;2 becomes the map g 7! E where g 2 GE .

If g 2 G and g� D .�1; �2; �3; : : : /, then

dim.Bg/ D
X

k	1
..N � 1/=2 � .�1 C �2 C 	 	 	 C �k//:

3.8 Assume that p D 2 and that G D SO.V / where V is a k-vector space of odd
dimension N � 1 with a given quadratic form, such that the associated symplectic
form has radical r of dimension 1 and the restriction of the quadratic form to r is
nonzero. In this case there is an obvious morphism from G to the symplectic group
G0 of V=r which is an isomorphism of abstract groups. From the definitions we see
that this morphism maps each stratum of G bijectively onto a stratum of G0 (which
has been described in 3.5).
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3.9 For an even N 2 N, let 0Z2N be the set of partitions with labels � D .�1 �
�2 � : : : / in Z2N (see 3.4) such that the number of nonzero entries of � is even.

(a) If N is even, then there is a canonical bijection 0Z2N $ BP
N=2
0;4 .

To � 2 0Z2N we associate � D .�1; �2; �3; : : : / as follows: each string 2a; 2a; 2a; : : :
of � of odd length or of even length and label 1 is replaced by a�1; aC1; a�1; aC
1; : : : of the same length (if the string has even origin) or aC1; a�1; aC1; a�1; : : :
of the same length (if the string has odd origin); each string 2a; 2a; 2a; : : : of � of
even length and label 0 is replaced by a � 2; a C 2; a � 2; a C 2; : : : of the same
length (if the string has even origin) or a; a; a; a; : : : of the same length (if the string
has odd origin); each string 2a C 1; 2a C 1; 2a C 1; : : : of � (necessarily of even
length) is replaced by a� 1; aC 2; a� 1; aC 2; : : : of the same length (if the string
has even origin) or a C 1; a; a C 1; a; : : : of the same length (if the string has odd
origin). The resulting entries form a bipartition � 2 BPN=20;4 . Now � 7! � establishes
the bijection (a).

Assume for example that N D 8. The bijection (a) is:

.62 : : : /$ .40 : : : /

..44/1 : : : /$ .31 : : : /

..44/0 : : : /$ .22 : : : /

.4211 : : : /$ .3010 : : : /

.3311 : : : /$ .2110 : : : /

..2222/1 : : : /$ .2020 : : : /

..2222/0 : : : /$ .1111 : : : /

..22/11111 : : : /$ .201010 : : : /

..22/01111 : : : /$ .111010 : : : /

.11111111 : : : /$ .10101010 : : : /:

Here we write : : : instead of 000 : : : . (Compare [LS2, 6.2].)

3.10 Assume that G D SO.V / where V is a k-vector space of even dimension N
with a fixed nondegenerate quadratic form. Let g 2 G. For any x 2 k� let Vx be
the generalized x-eigenspace of g W V ! V . Let dx D dimVx . For any x 2 k�
such that x2 ¤ 1 let �x1 � �x2 � �x3 � : : : be the partition whose nonzero terms are
the sizes of the Jordan blocks of x�1g W Vx ! Vx . For x 2 k� such that x2 D 1

let �x 2 0Z1
dx

(if p ¤ 2) and �x 2 0Z2
dx

(if p D 2) be again the partition of dx
whose nonzero terms are the sizes of the Jordan blocks of the unipotent element
x�1g 2 SO.Vx/. (When p D 2, �x should also include a labelling with 0 and 1
associated to x�1g viewed as an element of Sp.Vx/ as in [L10, 1.4].) Let �x D
.�x1 ; �

x
2 ; �

x
3 ; : : : / be the bipartition of dx=2 associated to �x by 3.6(b), 3.9(a). Thus

�x 2 BP dx=2
0;2 (if p ¤ 2), �x 2 BP dx=2

0;4 (if p D 2). Note that �x is the bipartition
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such that the Springer representation attached to the unipotent element x�1g 2
SO.Vx/ (an irreducible representation of the Weyl group of type Ddx=2) is indexed
by �x . Define g� D .g�1;

g�2;
g�3; : : : / by g�j D P

x �
x
j where x runs over

a set of representatives for the orbits of the involution a 7! a�1 of k�. Note that
g� 2 BPN=20;4 and that g 7! g� defines a (surjective) map G ! BP

N=2
0;4 . From the

definitions we see that the fibres of this map are exactly the strata of G (except for
the fibre over a bipartition .�1; �2; �3; : : : / with �1 D �2; �3 D �4; : : : in which
case the fibre is a union of two strata). If g 2 G and g� D .�1; �2; �3; : : : /, then

(a) dim.Bg/ D
X

k	1
..N=2/ � .�1 C �2 C 	 	 	 C �k//:

Viewing W as a subgroup of index 2 of a Weyl group W 0 of type Bn, we can
associate to any � 2 BPN=2 one or two irreducible representations of W which
appear in the restriction to W of the irreducible representation of W 0 indexed by �;
the representation(s) of W associated to � D .�1; �2; �3; �4; : : : / are the same as
those associated to �.�/ WD .�2; �1; �4; �3; : : : /; here � W BPN=2 ! BPN=2 is an
involution and the set of orbits is denoted by BPN=2=�. This gives a surjective map
f W Irr.W / ! BPN=2=� whose fibre at the orbit of � has one element if � ¤ �.�/

and two elements if � D �.�/. Let �0 W Irr.W / ! Irr.W / be the involution whose
orbits are the fibres of f and let S2.W /=�0 be the set of orbits of the restriction of �0
to S2.W /. The results in this subsection show that f induces a bijection

(b) S2.W /=�0
��! BP

N=2
0;4 :

We have used the fact that the intersection of BPN=20;4 with an orbit of � W BPN=2 !
BPN=2 has at most one element; more precisely,

f� 2 BPN=2I� 2 BPN=20;4 and �.�/ 2 BPN=20;4 g D f� 2 BPN=2I� D �.�/g:

Under the identification (b), the map g 7! g�, G ! BP
N=2
0;4 becomes the map

g 7! E (up to the action of �0) where g 2 GE .

3.11 Assume that p ¤ 2 and n � 3. If G D SO2nC1;k then the stratum of minimal
dimension > 0 consists of a semisimple class of dimension 2n; if G D Sp2n;k=˙ 1
then the stratum of minimal dimension > 0 consists of a unipotent class of dimen-
sion 2n (that of transvections). The corresponding E 2 Irr.W / is one-dimensional.

3.12 Assume that G is simple of type E8. In this case G has exactly 75 strata. If
p ¤ 2; 3 then exactly 70 strata contain unipotent elements. If p D 2 (resp. p D 3)
then exactly 74 (resp. 71) strata contain unipotent elements. The unipotent class
of dimension 58 is a stratum. If p ¤ 2, there is a stratum which is a union of a
semisimple class and a unipotent class (both of dimension 128); in particular this
stratum is disconnected.
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4 A map from conjugacy classes in W to 2-special
representations of W

4.1 In this subsection we shall define a canonical surjective map

(a) 0˚ W cl.W /! S2.W /:

We preserve the setup of 2.5. We will first define the map (a) assuming that G is
simple. In [L8] we have defined for any r 2 P a surjective map cl.W / ! U r ;
we denote this map by ˚ r . Let C 2 cl.W /. We define an element ˚.C/ 2 U�
as follows. If ˚ r .C / 2 hr .´r / (with ´r 2 U0) for all r 2 P , then ´r D ´ is
independent of r (see [L10, 0.4]) and we define ˚.C/ to be the equivalence class
of hr .´/ for any r 2 P . If ˚ r .C / … hr .U0/ for some r 2 P , then r is unique.
(The only case where r can be possibly not unique is in type E8 in which case we
use the tables in [L10, 2.6].) We then define ˚.C/ to be the equivalence class of
˚ r .C /. Thus we have defined a surjective map ˚ W cl.W / ! U�. By composing

˚ r with  r W U r ��! Sr2.W /, see 2.5, and with the inclusion Sr2.W / � S2.W /,
we obtain a map 0˚ r W cl.W / ! S2.W /. Similarly, by composing ˚ with  � W
U� ��! S2.W /, see 2.5(a), we obtain a surjective map 0˚ W cl.W /! S2.W /. Note
that for C 2 cl.W /, 0˚.C/ can be described as follows. If 0˚ r .C / 2 S1.W / for
all r 2 P , then 0˚ r .C / is independent of r , and we have 0˚.C/ D 0˚ r .C / for
any r . If 0˚ r .C / … S1.W / for some r 2 P , then such r is unique and we have
0˚.C/ D 0˚ r .C /.

We return to the general case. We write the adjoint group of G as a product
Q

i Gi where each Gi is simple with Weyl group Wi . We can identify W DQi Wi ,
cl.W / D Q

i cl.Wi /, S2.W / D Q

u S2.Wi / (via external tensor product). Then
0˚i W cl.Wi / ! S2.Wi / is defined as above for each i . We set 0˚ D Q

i
0˚i W

cl.W /! S2.W /.
For C;C 0 in cl.W / we write C � C 0 if 0˚.C/ D 0˚.C 0/. This is an equivalence

relation on cl.W /. Let cl.W / be the set of equivalence classes. Note that:

(b) 0˚ induces a bijection cl.W /! S2.W /.

We see that, via (b),

(c) the strata of G are naturally indexed by the set cl.W /.

4.2 We preserve the setup of 2.5. Now 0˚ in 4.1(a) is a map between two sets which
depend only on W , not on the underlying root system, see 1.1(b). We show that

(a) 0˚ itself depends only on W , not on the underlying root system.

We can assume thatG is adjoint, simple. We can also assume thatG is not of simply
laced type. In this case there is a unique r 2 P such that S2.W / D Sr2.W / so that
we have simply 0˚ D 0˚ r W cl.W /! S2.W /. Thus 0˚ is the composition
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(b) cl.W /
˚r

��! U r  r

��! S2.W /.

We now use the fact the maps in (b) are compatible with the exceptional isogeny
between groups G2 of type Bn and Cn or of type F4 and F4 (resp. between groups
G3 of type G2 and G2). This implies (a).

4.3 Assume that G is simple. The map 0˚ in 4.1 is defined in terms of 0˚ r which
is the composition of ˚ r W cl.W /! U r (which is described explicitly in each case
in [L10]) and  r W U r  Sr2.W / which is given by the Springer correspondence.
Therefore 0˚ is explicitly computable. In this subsection we describe this map in
the case where W is of classical type.

If W is of type An, n � 1, then cl.W / can be identified with the set of partitions
of n: to a conjugacy class of a permutation of n objects we associate the partition
whose nonzero terms are the sizes of the disjoint cycles of which the permutation
is a product. We identify S2.W / D Irr.W / with the set of partitions in the standard
way (the unit representation corresponds to the partition .n; 0; 0 : : : /). With these
identifications the map 0˚ is the identity map.

Assume now that W is a Weyl group of type Bn or Cn, n � 2. Let X be a
set with 2n elements with a given fixed point free involution � . We identify W
with the group of permutations of X which commute with � . To any w 2 W , we
can associate an element � 2 Z22n (see 3.4) as follows. The nonzero terms of the
partition � are the sizes of the disjoint cycles of which w is a product. To each string
c; c; : : : ; c of � of even length with c > 0 even we attach the label 1 if at least
one of its terms represents a cycle which commutes with � ; otherwise we attach to
it the label 0. This defines a (surjective) map cl.W / ! Z22n which by results of
[L10] can be identified with the map ˚2 W cl.W / ! U2. Composing this with the
bijection 3.4(b) we obtain a surjective map cl.W / ! BP n2;2 or equivalently (see
3.5(b)) cl.W /! S2.W /. This is the same as 0˚ .

Next we assume that W is a Weyl group of type Dn, n � 4. We can identify
W with the group of even permutations of X (as above) which commute with � (as
above). To any w 2 W we associate an element � 2 Z22n as for type Bn above.
This element is actually contained in 0Z22n (see 3.9) since w is an even permutation.
This defines a (surjective) map cl.W / ! 0Z22n which by results of [L10] can be
identified with the composition of ˚2 W cl.W / ! U2 with the obvious map from
U2 to the set of orbits of the conjugation action of the full orthogonal group on
U2. Composing this with the bijection 3.9(a) we obtain a surjective map cl.W / !
BP n0;4 or equivalently (see 3.10(b)) a surjective map cl.W / ! S2.W /=�0 (notation
of 3.10). This is the same as the composition of 0˚ with the obvious map S2.W /!
S2.W /=�0.
4.4 In this and the next five subsections we describe the map 0˚ W cl.W /! S2.W /
in the case whereW is of exceptional type. The results will be expressed as diagrams
Œa; b; : : : � 7! dn where a; b; : : : is the list of conjugacy classes in W (with notation
of [C]) which are mapped by 0˚ to an irreducible representationE denoted dn (here
d denotes the degree of E and the index n D nE as in 0.2). We also mark by
�r those E which are in S2.W / � S1.W /; here r is the unique prime such that
E 2 Sr2.W /. Note that the notation dn does not determine E for types G2 and F4;
for these types it may happen that there are two E’s with same dn.
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Type G2

ŒG2� 7! 10 ŒA1 CeA1� 7! 22 ŒA1� 7! 13

ŒA2� 7! 21 ŒeA1� 7! 13;�3 ŒA0� 7! 16

4.5 Type F4.

ŒF4� 7! 10 ŒA2 CeA1� 7! 47

ŒB4� 7! 41 ŒeA2 C A1� 7! 47;�2
ŒF4.a1/� 7! 92 ŒB2� 7! 48;�2
ŒD4; B3� 7! 83 ŒeA2� 7! 89

ŒC3 C A1; C3� 7! 83 ŒA2� 7! 89

ŒD4.a1/� 7! 124 Œ4A1; 3A1; 2A1 CeA1; A1 CeA1� 7! 910

ŒA3 CeA1� 7! 165 Œ2A1� 7! 413

ŒA3� 7! 96 ŒA1� 7! 216

ŒB2 C A1� 7! 96;�2 ŒeA1� 7! 216;�2
ŒeA2 CeA2� 7! 66 ŒA0� 7! 124

4.6 Type E6.

ŒE6� 7! 10 ŒD4� 7! 246 Œ2A2� 7! 2412

ŒE6.a1/� 7! 61 ŒA4� 7! 816 ŒA2 C A1� 7! 6413

ŒD5� 7! 202 ŒD4.a1/� 7! 807 ŒA2� 7! 3015

ŒE6.a2/� 7! 303 ŒA3 C 2A1; A3 C A1� 7! 608 Œ4A1; 3A1� 7! 1516

ŒA5 C A1; A5� 7! 154 Œ3A2; 2A2 C A1� 7! 109 Œ2A1� 7! 2020

ŒD5.a1/� 7! 644 ŒA3� 7! 8110 ŒA1� 7! 625

ŒA4 C A1� 7! 605 ŒA2 C 2A1� 7! 6011 ŒA0� 7! 136

4.7 Type E7.

ŒE7� 7! 10 ŒE7.a4/� 7! 3157

ŒE7.a1/� 7! 71 ŒD5� 7! 1897

ŒE7.a2/� 7! 272 ŒE6.a2/� 7! 4058

ŒE7.a3/� 7! 563 ŒD6.a2/C A1;D6.a2/� 7! 2808

ŒE6� 7! 213 ŒA5 C A2; .A5 C A1/0� 7! 709

ŒE6.a1/� 7! 1204 Œ.A5 C A1/00; A005� 7! 2169

ŒD6 C A1;D6� 7! 354 ŒD5.a1/C A1� 7! 3789

ŒA7� 7! 1895 ŒD5.a1/� 7! 42010

ŒA6� 7! 1056 ŒA4 C A2� 7! 21010
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ŒD6.a1/� 7! 2106 ŒA4 C A1� 7! 51211

ŒD5 C A1� 7! 1686 ŒA05� 7! 10512

ŒD4 C 3A1;D4 C 2A1;D4 C A1� 7! 8412

ŒA4� 7! 42013

Œ2A3 C A1; A3 C A2 C A1� 7! 21013

ŒA3 C A2� 7! 37814

ŒD4� 7! 10515

ŒD4.a1/C A1� 7! 40515

ŒA3 C A2� 7! 8415;�2
ŒA3 C 3A1; .A3 C 2A1/0� 7! 21616

ŒD4.a1/� 7! 31516

Œ.A3 C 2A1/00; .A3 C A1/00� 7! 28017

Œ3A2; 2A2 C A1� 7! 7018

Œ.A3 C A1/0� 7! 18920

ŒA3� 7! 21021 ŒA2� 7! 5630

Œ2A2� 7! 16821 Œ.4A1/
00; .3A1/00� 7! 3531

ŒA2 C 3A1� 7! 10521 Œ.3A1/
0� 7! 2136

ŒA2 C 2A1� 7! 18922 Œ2A1� 7! 2737

ŒA2 C A1� 7! 12025 ŒA1� 7! 746

Œ7A1; 6A1; 5A1; .4A1/
0� 7! 1528 ŒA0� 7! 163

4.8 Type E8

ŒE8� 7! 10 ŒE7.a3/� 7! 226810

ŒE8.a1/� 7! 81 ŒE6.a1/C A1� 7! 409611

ŒE8.a2/� 7! 352 ŒD8.a3/� 7! 140011

ŒE8.a4/� 7! 1123 ŒE6� 7! 52512

ŒE7 C A1; E7� 7! 844 ŒD7.a2/� 7! 420012

ŒE8.a5/� 7! 2104 ŒD6 C 2A1;D6 C A1;D6� 7! 97212

ŒD8� 7! 5605 ŒE6.a1/� 7! 280013

ŒE7.a1/� 7! 5676 ŒA7 C A1� 7! 453613

ŒE8.a3/� 7! 7006 ŒA0

7� 7! 607514

ŒD8.a1/;D7� 7! 4007 ŒA6 C A1� 7! 283514

ŒE8.a7/� 7! 14007 ŒD5 C A2� 7! 84014;�2

ŒE8.a6/� 7! 14008 ŒA6� 7! 420015
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ŒE7.a2/C A1; E7.a2/� 7! 13448 ŒD6.a1/� 7! 560015

ŒE6 C A2; E6 C A1� 7! 4489 ŒE8.a8/� 7! 448016

ŒD8.a2/� 7! 32409 ŒD5 C 2A1;D5 C A1� 7! 320016

ŒD7.a1/� 7! 105010;�2 ŒE7.a4/C A1; E7.a4/� 7! 716817

ŒA00

7� 7! 17512;�3 Œ2D4;D6.a2/C A1;D6.a2/� 7! 420018

ŒA8� 7! 224010 ŒE6.a2/C A2; E6.a2/C A1� 7! 315018

ŒA5 C A2 C A1; A5 C A2; A5 C 2A1; .A5 C A1/00� 7! 201619

ŒD5.a1/C A3;D5.a1/C A2� 7! 134419

ŒD5� 7! 210020 ŒA4 C A2 C A1� 7! 283522

Œ2A4; A4 C A3� 7! 42020 ŒA4 C A2� 7! 453623

ŒE6.a2/� 7! 560021 ŒA4 C 2A1� 7! 420024

ŒD4 C A3� 7! 420021 ŒD4 C A2� 7! 16824;�2
Œ.A5 C A1/0� 7! 320022 ŒD5.a1/� 7! 280025

ŒD5.a1/C A1� 7! 607522 ŒA4 C A1� 7! 409626

Œ2D4.a1/;D4.a1/C A3; .2A3/00� 7! 84026

ŒD4 C 4A1;D4 C 3A1;D4 C 2A1;D4 C A1� 7! 70028

ŒD4.a1/C A2� 7! 224028

Œ2A3 C 2A1; A3 C A2 C 2A1; 2A3 C A1; A3 C A2 C A1� 7! 140029

ŒA4� 7! 226830

Œ.2A3/
0� 7! 324031

ŒD4.a1/C A1� 7! 140032

ŒA3 C A2� 7! 97232;�2
ŒA3 C 4A1; A3 C 3A1; .A3 C 2A1/00� 7! 105034

ŒD4� 7! 52536 ŒA2 C 2A1� 7! 56047

Œ4A2; 3A2 C A1; 2A2 C 2A1� 7! 17536 ŒA2 C A1� 7! 21052

ŒD4.a1/� 7! 140037 Œ8A1; 7A1; 6A1; 5A1; .4A1/
00� 7! 5056

Œ.A3 C 2A1/0; A3 C A1� 7! 134438 ŒA2� 7! 11263

Œ3A2; 2A2 C A1� 7! 44839 Œ.4A1/
0; 3A1� 7! 8464

Œ2A2� 7! 70042 Œ2A1� 7! 3574

ŒA2 C 4A1; A2 C 3A1� 7! 40043 ŒA1� 7! 891

ŒA3� 7! 56746 ŒA0� 7! 1120
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4.9 In the tables in 4.4–4.8 the E which are not marked with �r are in S1.W /; they
are expressed explicitly in the form jWWe0

.E 0/ with e0 2 V �, E 0 2 S.We0/ in the
tables of [L6].

We now consider the E in the tables 4.4–4.8 which are marked with �r .

Type G2:

13 D jWW 0.sign/ where W 0 is of type A2 but not of form We0 ; e0 2 V �.

Type F4:

96 D jWW 0.E’/ where W 0 is of type B4 but not of form We0 ; e0 2 V � and
dimE 0 D 6, nE 0 D 6;

47 D jWW 0.sign/ where W 0 is of type A3A1 but not of form We0 ; e0 2 V �;
48 D jWW 0.sign/ where W 0 is of type B2B2;
212 D jWW 0.sign/ where W 0 is of type B4 but not of form We0 ; e0 2 V �.

Type E7:

8415 D jWW 0.sign/ where W 0 is of type D4A1A1A1.

Type E8:

105010 D jWW 0.E’/ where W 0 is of type D6A1A1 and dimE 0 D 30, nE 0 D 10;
17512 D jWW 0.sign/ where W 0 is of type A2A2A2A2.
84014 D jWW 0.sign/ where W 0 is of type A3A3A1A1.
16824 D jWW 0.sign/ where W 0 is of type D4D4.
97232 D jWW 0.sign/ where W 0 is of type D6A1A1.

4.10 For anyC 2 cl.W / letmC be the dimension of the 1-eigenspace of an element
in C in the reflection representation of W . We have the following result.

(a) For any E 2 S2.W /, the restriction of C 7! mC to 0˚�1.E/ � cl.W / reaches
its minimum at a unique element of 0˚�1.E/, denoted by CE .

We can assume that G is simple. When G is of exceptional type, (a) follows from
the tables 4.4-4.8. When G is of classical type, (a) follows from [L10, 0.2].

Note that E 7! CE is a cross section of the surjective map 0˚ W cl.W / !
S2.W /. It defines a bijection of S2.W / with a subset cl0.W / of cl.W /.
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5 A second approach

5.1 In this section we sketch another approach to defining the strata of G in which
Springer representations do not appear. Let cl.G/ be the set of conjugacy classes in
G. Let l W W ! N be the length function of the Coxeter group W . For w 2 W let

Gw D fg 2 GI .B; gBg�1/ 2 Ow for some B 2 Bg:
For C 2 cl.W / let

Cmin D fw 2 C I l W C ! N reaches minimum at wg
and let GC D Gw where w 2 Cmin.

As pointed out in [L8, 0.2], from [L8, 1.2(a)] and [GP, 8.2.6(b)] it follows that
GC is independent of the choice of w in Cmin. From [L8] it is known that GC con-
tains unipotent elements; in particular,GC ¤ ;. Clearly,GC is a union of conjugacy
classes. Let

ıC D min
�2cl.G/I��GC

dim �;

GC D
[

�2cl.G/I
��GC ;dim�DıC

�:

Then GC is ¤ ;, a union of conjugacy classes of fixed dimension, ıC . We have
the following result.

5.2 Theorem Let C 2 cl.W /, E 2 S2.W / be such that 0˚.C/ D E, see 4.1. We
have GC D GE .

We can assume that G is almost simple and that k is an algebraic closure of
a finite field. The proof in the case of exceptional groups is reduced in 5.3 to a
computer calculation. The proof for classical groups, which is based on combining
the techniques of [L8], [L9] and [L12], will be given elsewhere.

5.3 In this subsection we assume that k is an algebraic closure of a finite field
Fq and that G is simply connected, defined and split over Fq with Frobenius map
F W G ! G.

Let � be an F -stable conjugacy class of G. Let � 0 D fgsIg 2 �g, an
F -stable semisimple conjugacy class in G. For every s 2 � 0 let �.s/ D fu 2
ZG.s/Iu unipotent, us 2 �g, a unipotent conjugacy class of ZG.s/. We fix s0 2
� 0F and we set H D ZG.s0/, �0 D �.s0/. Let WH be the Weyl group of H . As
in 2.1, we can regard WH as a subgroup of W (the embedding of WH into W is
canonical up to composition with an inner automorphism of W ).

By replacing if necessary F by a power of F , we can assume that H contains a
maximal torus which is defined and split over Fq . For any F -stable maximal torus
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T of G, R1T is the virtual representation of GF defined as in [DL, 1.20] (with � D
1 and with B omitted from notation). Replacing T;G by T 0;H where T 0 is an
F -stable maximal torus of H , we obtain a virtual representation R1T 0;H of HF .

For any ´ 2 W we denote by R1´ the virtual representation R1T of GF where
T is an F -stable maximal torus of G of type given by the conjugacy class of ´ in
W . For any ´0 2 WH we denote by R1´0;H the virtual representation R1T 0;H of HF

where T 0 is an F -stable maximal torus ofH of type given by the conjugacy class of
´0 in WH . For E 0 2 IrrW we set RE 0 D jW j�1Py2W tr.y;E 0/R1y . Then for any
´ 2 W , we have R1´ D

P

E 02IrrW tr.´;E 0/RE 0 .

Let w 2 W . We show the following:

(a)

jf.g; B/ 2 �F � BF I .B; gBg�1/ 2 Owgj
D jGF jjHF j�1

X

E2IrrW;E 02IrrW;
E 002IrrWH ;y

tr.Tw ; Eq/.�E ; RE 0/

� .E 0jWH
W E 00/jZWH

.y/j�1tr.y;E 00/
X

u2�F
0

tr.u;R1y;H /;

where y runs over a set of representatives for the conjugacy classes in WH and
Tw ; Eq; �E are as in [L8, 1.2]. Let N be the left-hand side of (a). As in [L8, 1.2(c)]
we see that

N D
X

E2IrrW

tr.Tw ; Eq/AE

with

AE D jGF j�1
X

g2�F

X

T

jT F j.�E ; R1T /tr.g;R1T /;

where T runs over all maximal tori of G defined over Fq . We have

AE D jGF j�1
X

s2� 0F ;u2�.s/F

X

T

jT F j.�E ; R1T /tr.su;R1T /

D jHF j�1
X

u2�F
0

X

T

jT F j.�E ; R1T /tr.s0u;R1T /:

By [DL, 4.2] we have

tr.s0u;R
1
T / D jHF j�1

X

x2GF Ix�1Tx�H
tr.u;R1

x�1Tx;H
/;
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hence

AE D jHF j�2
X

u2�F
0

X

T

jT F j.�E ; R1T /
X

x2GF Ix�1Tx�H
tr.u;R1

x�1Tx;H
/

D jGF jjHF j�2
X

T 0�H
jT 0F j.�E ; R1T 0/

X

u2�F
0

tr.u;R1T 0;H /;

where T 0 runs over the maximal tori of H defined over Fq . Using the classification
of maximal tori of H defined over Fq , we obtain

AE D jGF jjHF j�1jWH j�1
X

´2WH

.�E ; R
1
´/
X

u2�F
0

tr.u;R1´;H /

D jGF jjHF j�1jWH j�1
X

´2WH

X

E 02IrrW

tr.´;E 0/.�E ; RE 0/
X

u2�F
0

tr.u;R1´;H /:

This clearly implies (a).
Now assume that G is almost simple of exceptional type and that w has minimal

length in its conjugacy class in W . We can also assume that q � 1 is sufficiently
divisible. Then the right-hand side of (a) can be explicitly determined using a com-
puter. Indeed, it is an entry of the product of several large matrices whose entries
are explicitly known. In particular the quantities tr.Tw ; Eq/ (known from the works
of Geck and Geck–Michel, see [GP, 11.5.11]) are available through the CHEVIE
package [GH]. The quantities .�E ; RE 0/ are coefficients of the nonabelian Fourier
transform in [L2, 4.15]. The quantities .E 0jWH

W E 00/ are available from the induc-
tion tables in the CHEVIE package. The quantities tr.y;E 00/ are available through
the CHEVIE package. The quantities tr.u;R1y;H / are Green functions; I thank Frank
Lübeck for providing me with the tables of Green functions for groups of rank � 8
in GAP format. I also thank Gongqin Li for her help with programming in GAP to
perform the actual computation using these data.

Thus the number jf.g; B/ 2 �F � BF I .B; gBg�1/ 2 Owgj is explicitly com-
putable. It turns out that it is a polynomial in q. Note that the set f.g; B/ 2
� � BI .B; gBg�1/ 2 Owg is nonempty if and only if this polynomial is non zero.
Thus the condition that � � Gw can be tested. This can be used to check that The-
orem 5.2 holds for exceptional groups.

5.4 If C is the conjugacy class containing the Coxeter elements of W , then GC D
GC is the union of all conjugacy classes of dimension dimG � rk.G/, see [St].

6 Variants

6.1 The results in this subsection will be proved elsewhere. In this subsection we
assume that G is simple and that G0 is a disconnected reductive algebraic group G
over k with identity component G, such that G0=G is cyclic of order r and such
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that the homomorphism � W G0=G ! Aut.W / (the automorphism group of W as a
Coxeter group) induced by the conjugation action of G0=G on G is injective. Note
that .G; r/must be of type .An; 2/ (n � 2) or .Dn; 2/ (n � 4) or .D4; 3/ or .E6; 2/.
Let D be a connected component of G0 other than G. We will give a definition of
the strata of D, extending the definition of strata of G. Let �D W W ! W be the
image of D under �. Let clDW be the set of conjugacy classes in W twisted by �D
(as in [L12, 0.1]). Let cl.D/ be the set of G-conjugacy classes in D. For w 2 W let

Dw D fg 2 DI .B; gBg�1/ 2 Ow for some B 2 Bg:
For C 2 clD.W / let

Cmin D fw 2 C I l W C ! N reaches minimum at wg:
and let DC D Dw where w 2 Cmin. This is independent of the choice of w in Cmin.
One can show that DC ¤ ;. Clearly, DC is a union of G-conjugacy classes in D.
Let

ıC D min
�2cl.D/I��DC

dim �;

DC D
[

�2cl.D/I
��DC ;dim�DıC

�:

Then DC is¤ ;, a union ofG-conjugacy classes of fixed dimension, ıC . One can

show that [C2clD.W / DC D D; moreover, one can show that if C;C 0 2 clD.W /,

then DC ; DC 0 are either equal or disjoint. (Some partial results in this direc-
tion are contained in [L12].) Let � be the equivalence relation on clD.W / given by
C � C 0 if DC D DC 0 and let clD.W / be the set of equivalence classes. We see
that there is a unique partition of D into pieces (called strata) indexed by clD.W /
such that each stratum is of the form DC for some C 2 clD.W /. One can show
that the equivalence relation � on clD.W / and the function C 7! dC on clD.W /
depend only on W and its automorphism �D; in particular they do not depend on
k. When p D r , each stratum of D contains a unique unipotent G-conjugacy class
in D; this gives a bijection clD.W / $ U rD where U rD is the set of unipotent G-
conjugacy classes in D (with p D r). This bijection coincides with the bijection
clD.W / $ U rD described explicitly in [L11]. Thus the strata of D can also be in-
dexed by U rD . We can also index them by a certain set of irreducible representations
of W �D (the fixed point set of �D W W ! W ) using the bijection [L4, II] between
U rD and a set of irreducible representations of W �D (an extension of the Springer
correspondence).

6.2 Assume that G is adjoint. We identify B with the variety of Borel subalgebras
of g. For any  2 g let B� D fb 2 BI  2 bg and let d D dimB� . The subspace
of H2d .B/ spanned by the images of the fundamental classes of the irreducible
components of B� is an irreducible W -module denoted by �� . We also denote by ��
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the corresponding W -module over Q. Thus we have a well-defined map g! IrrW ,
 7! �� . The nonempty fibres of this map are called the strata of g. Each stratum
of g is a union of adjoint orbits of fixed dimension; exactly one of these orbits is
nilpotent. The image of the map  7! �� is the subset of Irr.W / denoted by T pW in
[L7]; when p D 0 this is S1.W /.
6.3 In this subsection we assume that G is semisimple simply connected. Let K
be the field of formal power series k..�// and let OG D G.K/. Let OB be the set
of Iwahori subgroups of OG viewed as an increasing union of projective algebraic
varieties over k. Let OW be the affine Weyl group associated to OG viewed as an
infinite Coxeter group. Let G.K/rsc be the set of all g 2 G.K/ that are compact
(that is such that OBg D fB 2 OBIg 2 Bg is nonempty) and regular semisimple. If
g 2 G.K/rsc , then OBg is a union of projective algebraic varieties of fixed dimension
d D dg (see [KL] for a closely related result) hence the homology spaceH2d . OBg/ is
well defined and it carries a natural OW -action (see [L13]). Similarly the homology
space H2d . OB/ is well-defined and it carries a natural OW -action. The embedding
hg W OBg ! OB induces a linear map hg� W H2d . OBg/! H2d . OB/which is compatible
with the OW -actions. Hence OW acts naturally on the (finite-dimensional) subspace
Eg WD hg�.H2d . OBg// of H2d . OB/, but this action is not irreducible in general.
Note that Eg is the subspace of H2d . OB/ spanned by the images of the fundamental
classes of the irreducible components of OBg ;Ql (we ignore Tate twists), hence is
¤ 0. For g; g0 2 G.K/rsc we say that g � g0 if dg D dg0 and Eg D Eg0 . This
is an equivalence relation on G.K/rsc . The equivalence classes for � are called the
strata of G.K/rsc . Note that G.K/rsc is a union of countably many strata and each
stratum is a union of conjugacy classes of G.K/ contained in G.K/rsc .

6.4 In this subsection we state a conjectural definition of the strata of G in the case
where k D C based on an extension of a construction in [KL]. Let K be as in 6.3.
Let g 2 G. Let z � g be the Lie algebra of ZG.gs/ and let  D log.gu/ 2 z.
Let p be a parahoric subalgebra of gK WD K ˝ g with pro-nilradical pn such that
p D z ˚ pn as C-vector spaces. By the last corollary in [KL, 	6], there exists a
non-empty subset U of  C pn (open in the power series topology) and � 2 cl.W /
such that for any x 2 U, x is regular semisimple in a Cartan subalgebra of gK of
type � (see [KL, 	1,	6]). Note that � does not depend on the choice of U. We expect
that it does not depend on the choice of p and that g 7! � is a map G ! cl.W /
whose fibres are exactly the strata of G. By the identification 4.1(c) this induces an
injective map cl.W /! cl.W / whose image is expected to be the subset cl0.W / in
4.10 and whose composition with the obvious map cl.W / ! cl.W / is expected to
be the identity map of cl.W /.
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in Coxeter groups
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Abstract Let W be a Coxeter group and let M be the free ZŒv; v�1�-module with
basis indexed by the involutions of W . We show how the recent results of Elias and
Williamson on Soergel bimodules can be used to give an alternative definition of an
action of the Hecke algebra of W on M.
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Introduction

Let W be a finitely generated Coxeter group with a fixed involutive automorphism
w 7! w� which leaves stable the set of simple reflections. An element w 2 W is
said to be a �-twisted involution ifw�1 D w�. Let I D fw 2 W Iw�1 D w�g be the
set of �-twisted involutions of W . Let A0 D ZŒv; v�1� where v is an indeterminate.
In [LV] we have defined (geometrically) an action of the Hecke algebra of W (with
parameter v2) on the free A0-module M with basis faw Iw 2 Ig, assuming that W
is a Weyl group. In [L3] a definition of the Hecke algebra action on M was given
in a purely algebraic way, without assumption on W . The purpose of this paper is
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to give a more conceptual approach to the definition of the Hecke algebra action on
M, based on the theory of Soergel bimodules [S] and on the recent results of Elias
and Williamson [EW] in that theory.

In this paper we interpret M as a (modified) Grothendieck group associated to
the category of Soergel bimodules corresponding to W and to a 2-periodic functor
of this category to itself, defined using � and by switching left and right multiplica-
tion in a bimodule. The action of the Hecke algebra appears quite naturally in this
interpretation; however, we must find a way to compute explicitly the action of a
generator Ts C 1 of the Hecke algebra (s is a simple reflection) on a basis element
aw of M so that we recover the formulas of [LV], [L3]. The formula has four cases
depending on whether sw is equal to ws� or not and on whether the length of sw
is smaller or larger than that of w. In each case, .Ts C 1/aw is a linear combination
c0aw0 C c00aw00 of two basis elements aw0 ; aw00 where one of w0; w00 is equal to w,
the other is sw or sws� and the length of w0 is smaller than that of w00. We cannot
prove the formulas directly. Instead we compute directly the coefficient c0 and then
observe that if c0 is known, then c00 is automatically known from the fact that we
have a Hecke algebra action. The computation of c0 occupies Sections 4 and 5 (see
Theorem 5.2). It has two cases (depending on whether sw0 is equal to w0s� or not).
The two cases require quite different proofs.

As an application of Theorem 6.2 (which is essentially a corollary of Theorem
5.2) we outline a proof (6.3) of a positivity conjecture ([L3, Conjecture 9.12]) stating
that, if y;w 2 I and ı 2 f1;�1g, then the polynomial P �y;w introduced in [L3] (and
earlier in [LV] in the case of Weyl groups) satisfies .Py;w.u/ C ıP �y;w.u//=2 2
NŒu� where Py;w is the polynomial introduced in [KL]. This is a refinement of the
statement [EW] that Py;w.u/ 2 NŒu� which holds for any y;w 2 W . In Section 7
we show as another application of our results that M admits a filtration by Hecke
algebra submodules whose subquotients are indexed by the two-sided cells of W.
Under a boundedness assumption we show that the Hecke algebra acts on such a
subquotient by something resembling a W -graph.
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1 2-periodic functors

1.1 In this section we review some results from [L1, 	11].

Let k be a field of characteristic zero. Let C be a k-linear category, that is a category
in which the space of morphisms between any two objects has a given k-vector
space structure such that the composition of morphisms is bilinear and such that
finite direct sums exist. A functor from one k-linear category to another is said to
be k-linear if it respects the k-vector space structures.

Let K.C/ be the Grothendieck group of C that is, the free abelian group generated
by symbols ŒA� for each A 2 C (up to isomorphism) with relations ŒA ˚ B� D
ŒAj C ŒB� for any A;B 2 C. A k-linear functor M 7! M ], C ! C is said to be
2-periodic if M 7! .M ]/] is the identity functor C ! C. Assuming that such a
functor is given we define a new k-linear category C] as follows. The objects of C]
are pairs .A; �/ where A 2 C and � W A] ! A is an isomorphism in C such that the

composition .A]/]
�]

�! A]
��! A is the identity map ofA. Let .A; �/, .A0; �0/ be two

objects of C]. We define a k-linear map HomC.A;A
0/ ! HomC.A;A

0/ by f 7!
f Š WD �0f ]��1. Note that .f Š/Š D f . By definition, HomC]

..A; �/; .A0; �0// D
ff 2 HomC.A;A

0/If D f Šg, a k-vector space. The direct sum of two objects
.A; �/, .A0; �0/ is .A ˚ A0; � ˚ �0/. Clearly, if .A; �/ 2 C], then .A;��/ 2 C].
An object .A; �/ of C] is said to be traceless if there exists an object B of C and an

isomorphismA Š B˚B] under which � corresponds to an isomorphismB]˚B ��!
B ˚ B] which carries the first (resp. second) summand of B] ˚ B onto the second
(resp. first) summand of B ˚ B].

Let K].C/ be the quotient of K.C]/ by the subgroup K0.C]/ generated by the
elements ŒB; �� where .B; �/ is any traceless object of C]. We show that

(a) ŒA;��� D �ŒA; �� for any .A; �/ 2 C].

Indeed, if we define �0 W A] ˚ A! A˚ A] by .x; y/ 7! .y; x/ and � W A˚ A!
A˚ A] by .x; y/ 7! .x C y; ��1.x/ � ��1.y//, then � defines an isomorphism of
.A; �/˚ .A;��/ with the traceless object .A˚ A]; �0/.

2 A review of Soergel modules

2.1 In this section we review some results of Soergel [S] and of Elias–Williamson
[EW].

Recall that W is a Coxeter group. The canonical set of generators (assumed to be
finite) is denoted by S . Let x 7! l.x/ be the length function on W and let � be the
Bruhat order on W . Let h be a reflection representation of W over the real numbers
R, as in [EW]; for any s 2 S we fix a linear form ˛s W h! R whose kernel is equal
to the fixed point set of s W h ! h. Let R be the algebra of polynomial functions
h! R with the Z-grading in which linear functions h! R have degree 2. Note that
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W acts naturally on R; we write this action as w W r 7! wr , and for s 2 S we set
Rs D fr 2 RI sr D rg, a subalgebra of R. Let R>0 D fr 2 RI r.0/ D 0g. Let bR be
the completion of R with respect to the maximal ideal R>0.

Let R be the category whose objects are Z-graded .R;R/-bimodules such that
the left action of R is the same as the right action of R, in which for M;M 0 2 R,
HomR.M;M 0/ is the space of homomorphisms of .R;R/-bimodules M ! M 0
compatible with the Z-gradings. ForM 2 R and n 2 Z, the shiftMŒn� is the object
of R equal in degree i to M in degree i C n. For M;M 0 in R we set MM 0 D
M ˝R M 0; this is naturally an object of R. For M;M 0 in R we set

M 0M D ˚n2ZHomR.M;M 0Œn�/;

viewed as an object of R with .rf /.m/ D f .rm/, .f r/.m/ D f .mr/ for m 2
M;f 2 M 0M ; r 2 R. For any M 2 R we set M D M=MR>0 D M ˝R R where
R is identified with R=R>0. We view M as a Z-graded R-vector space. For any
M 2 R we set

cM DM^ DM ˝R bR;
viewed as a Z-graded right bR-module.

For s 2 S let Bs D R ˝Rs RŒ1� 2 R. More generally, for any x 2 W , Soergel
[S, Bemerkung 6.16] shows that there is an object Bx of R (unique up to isomor-
phism) such that Bx is an indecomposable direct summand of Bs1Bs2 	 	 	Bsq for
some/any reduced expression w D s1s2 	 	 	 sq (si 2 S ) and such that Bx is not a
direct summand of Bs0

1
Bs0

2
	 	 	Bs0

p
whenever s01; : : : ; s0p 2 S; p < q. Let eC be the

full subcategory of R whose objects are isomorphic to finite direct sums of shifts
of objects of the form Bx for various x 2 W . Let C be the full subcategory of R
whose objects are isomorphic to finite direct sums of objects of the form Bx for
various x 2 W . From [S] it follows that for M;M 0 2 eC we have MM 0 2 eC .

(In the case where W is a Weyl group of a reductive group G, C can be thought
of as the category of semisimple G-equivariant perverse sheaves on the product
B2 of two copies of the flag manifold and eC can be thought of as the category
whose objects are complexes of sheaves on B2 which are (non-canonically) direct
sums of objects of semisimple G-equivariant perverse sheaves with shifts. Then
M;M 0 7!MM 0 corresponds to convolution of complexes of sheaves.)

For any x 2 W let Rx be the object of R such that Rx D R as a left R-module
and such that for m 2 Rx ; r 2 R we have mr D .xr/m. The following result
appears in [S, Bemerkung 6.15]:

(a) For any M 2 eC , RMx is a finitely generated graded free right R-module; hence
dimRR

M
x <1.

Note that for any i; n 2 Z we have RMŒn�
x i

D RMx i�n.

(In the case where W is a Weyl group of a reductive group G then RMx i
can be

thought of as the dual of a stalk of a cohomology sheaf of a complex of sheaves on
B2 at a point in the G-orbit on B2 corresponding to x.)

Let t 2 HomR.BsŒ�1�; Rs/ D .RBs
s /1 be the unique element such that
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t .1˝ ˛s C 1˝ ˛s/ D 0; t.1˝ 1/ D 1:
The image of t inRBs

s 1
is an R-basis of this one-dimensional R-vector space. Hence

we have canonically RBs
s 1
D R.

2.2 Let x 2 W . From [EW] it follows that HomR.Bx ; Bx/ D R and from [S,
Bemerkung 6.16] it follows that dimR

Bx
x l.x/

D 1. Thus RBx
x l.x/

˝RBx is an object
of C isomorphic to Bx and defined up to unique isomorphism (even though Bx was
defined only up to non-unique isomorphism). From now on we will use the notation
Bx for this new object. It satisfies

RBx
x l.x/

D R:

When x D s 2 S , this agrees with the earlier description of Bs .

2.3 Let x; x0 2 W , x ¤ x0. From [EW] it follows that HomR.Bx0 ; Bx/ D 0. This,
together with the equality HomR.Bx ; Bx/ D R, implies that the objects Bx are
simple in C . Conversely, it is clear that any simple object of C is isomorphic to
some Bx .

2.4 Let A D ZŒu; u�1� where u is an indeterminate. Let H be the free A-module
with basis Tw ; w 2 W . It is known that there is a unique associative A-algebra
structure on H such that TwTw0 D Tww0 whenever l.ww0/ D l.w/ C l.w0/ and
T 2s D u2T1C.u2�1/Ts for s 2 S . Note that T1 is a unit element. Let fcw Iw 2 W g
be the A-basis of H which in [KL] was denoted by fC 0w Iw 2 W g. Recall that

(a) cw D u�l.w/
X

y�w
Py;w.u

2/Ty

where Py;w D 1 if y D w and Py;w is a polynomial of degree� .l.w/�l.y/�1/=2
if y < w. We regard K.eC/ as an A-module by unŒM � D ŒM Œ�n�� for M 2 eC ; n 2
Z. Note that K.eC/ is an associative A-algebra with product defined by ŒM �ŒM 0� D
ŒMM 0� for M 2 eC ;M 0 2 eC . From [S, Theorems 1.10 and 5.3] we see that

(b) the assignment M 7!P

y2W;i2Z dim.RMy /
i
u�iTy defines an A-algebra

isomorphism � W K.eC/ ��! H.

From [EW, Theorem 1.1] it follows that

(c) �.Bx/ D cx :

3 The H-module M

3.1 In this section we preserve the setup of Section 2.

Recall that w 7! w� is an involutive automorphism W
��! W leaving S stable.

We can assume that there exists an involutive R-linear map h ! h (denoted again
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by x 7! x�) which satisfies .wx/� D w�x� for w 2 W; x 2 h and satisfies
˛s� D .˛s/

� for s 2 S . We fix such a linear map. It induces a ring involution
R ! R denoted again by r 7! r�. For M 2 R let M ] be the object of R which is
equal toM as a graded R-vector space, but left (resp. right) multiplication by r 2 R
on M ] equals right (resp. left) multiplication by r� on M . Clearly, .M ]/] D M .
If f W M1 ! M2 is a morphism in R, then f can be also viewed as a morphism
M
]
1 ! M

]
2 in R. Note that M 7! M ] is an R-linear, 2-periodic functor R ! R.

Hence R] is well-defined; see 1.1.

If M1;M2 2 R, then we have an obvious identification M ]
1M

]
2 D .M2M1/

] as
objects in R; it is given by x1 ˝ x2 7! x2 ˝ x1.

Let s 2 S . The R-linear isomorphism !s W Bs� Œ�1� ��! BsŒ�1� given by x˝Rs�

y 7! y�˝Rs x� for x; y 2 R can be viewed as an isomorphismB
]
s� Œ�1� ��! BsŒ�1�

in R or as an isomorphism B
]
s�

��! Bs in R.
Now let x 2 W and let s1s2 	 	 	 sk be a reduced expression for x. Since Bx is

an indecomposable direct summand of Bs1Bs2 	 	 	Bsk (and k is minimal with this

property) we see that B]x is an indecomposable direct summand of

.Bs1Bs2 	 	 	Bsk /] D B]sk 	 	 	B]s2B]s1 Š Bs�

k
	 	 	Bs�

2
Bs�

1

(and k is minimal with this property), hence by [S, Bemerkung 6.16] we have

(a) B]x Š B.x�/�1 :

(We use that s�
k
	 	 	 s�2 s�1 is a reduced expression for .x�/�1.) In particular we have

B
]
x 2 C . It follows that M 2 C H) M ] 2 C and M 2 eC H) M ] 2 eC .

Note that M 7! M ] are R-linear, 2-periodic functors C ! C and eC ! eC . Hence
C];eC ] are defined as in 1.1 and K].C /, K].eC/ are well-defined abelian groups.

3.2 Recall that I D fy 2 W Iy�1 D y�g. Let x 2 W . We define

fx W R]x ! R.x�/�1 by r 7! fx.r/ D .x�1

r/�:

This is an isomorphism in R.
Now assume that x 2 I; then fx W R]x ! Rx is given by r 7! fx.r/ D x.r�/ and

.Rx ; fx/ 2 R]; thus .RxŒi �; fx Œi �/ 2 R] for any i 2 Z. Hence, if .M; �/ 2 eC ] and
i 2 Z, then f 7! f Š, HomR.M;Rx Œi �/ ! HomR.M;Rx Œi �/ is defined as in 1.1.
Taking the direct sum over i 2 Z, we obtain a map f 7! f Š, RMx ! RMx such that
.f Š/Š D f . (We always write RMx instead of .Rx/M .) From the definitions, for f 2
RMx ; r 2 R, we have .f r/Š D r�f Š, .rf /Š D f Šr�. Since for r 2 R; b 2 Rx we
have rb D b.x�1

r/, we see thatR>0Rx D RxR>0 so thatR>0.RMx / D .RMx /R>0;
we see that f 7! f Š induces an R-linear (involutive) map RMx ! RMx and (for any

i ) an R-linear involutive map RMx i
! RMx i

denoted by YMx;�;i . Let



Hecke algebras and involutions in Coxeter groups 371

�xi .M; �/ D trR.YMx;�;i ; RMx / 2 Z:

We now take M D Bx (still assuming x 2 I so that .Bx ; �/ 2 eC ] for some �).

Then RBx
x l.x/

D R, hence �x
l.x/
.Bx ; �/ D ˙1. We can normalize � W B]x ! Bx

uniquely so that �x
l.x/
.Bx ; �/ D 1. We shall denote this normalized � by �x .

Due to 2.3, we can apply [L1, 	11.1.8] to C; ]; we see that

(a) K].C / is a free abelian group with basis fŒBx ; �x�I x 2 Ig:
3.3 It will be convenient to introduce a square root of u. Let A0 D ZŒv; v�1� where
v is an indeterminate. We view A D ZŒu; u�1� as a subring of A0 by setting u D v2.
Note that K].eC/ can be viewed as an A0-module with vnŒM; �� D ŒM Œ�n�; �� for
.M; �/ 2 eC ], n 2 Z. We show:

(a) The map q W A0 ˝K].C /! K].eC/, vn ˝ ŒM; �� 7! ŒM Œ�n�; �� is an isomor-
phism of A0-modules.

The map q is clearly well-defined. To prove that it is surjective we shall use the
functors M 7! ��iM from eC to eC (resp. M 7! HiM from eC to C ) defined in
[EW, 	6.2]. (Here i 2 Z.) These define in an obvious way functors eC ] ! eC ] (resp.
eC ] ! C]) denoted again by ��i (resp. Hi ). Let .M; �/ 2 eC � . From the definition
we have an exact sequence in eC (with morphisms in eC ])

0! ��i�1M
e�! ��iM

e0

�! HiMŒ�i �! 0

which is split, but the splitting is not necessarily given by morphisms in eC ]. Thus
there exist morphisms

��i�1M
f � ��iM f 0

 � HiMŒ�i �
in eC such that e0f 0 D 1, fe D 1, f 0e0 C ef D 1. Now f Š; f 0Š are defined as in
1.1 and, since eŠ D e; e0Š D e0 (notation of 1.1), we have e0f 0Š D 1, f Še D 1,
f 0Še0 C ef Š D 1; hence setting ef D .f C f Š/=2, ef 0 D .f 0 C f 0Š/=2, we have
e0ef 0 D 1, ef e D 1, ef 0e0 C eef D 1 and ef Š D ef , ef 0Š D ef 0. Thus we obtain a new
splitting of the exact sequence above which is given by morphisms in eC ]. It follows
that

.��iM;�/ Š .��i�1M;�/˚ .HiMŒ�i �; �/
in eC ] (the maps � are induced by M ] ! M ). Hence Œ��iM;�� D Œ��i�1M;��C
ŒHiMŒ�i �; �� in K].eC/. Since ŒM; �� D Œ��iM;�� for i � 0 and 0 D Œ��iM;��
for �i � 0 we deduce that ŒM; �� DPi ŒHiMŒ�i �; ��. This proves the surjectivity
of q.

We define K.eC ]/! A0 ˝ K.C]/ by ŒM; �� 7!P

n2Z v
�nŒHnM;�n� where �n

is induced by �. This clearly induces a homomorphism q0 W K].eC/! A0 ˝K].C /
which satisfies q0q D 1. It follows that q is injective, completing the proof of (a).

ut
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3.4 Using 3.2(a) and 3.3(a), we see that

(a) K].eC/ is a free A0-module with basis fŒBx ; �x�I x 2 Ig;
(notation of 3.2).

3.5 Let M be the free A0-module with basis fax I x 2 Ig. For any .M; �/ 2 eC ] and
any y 2 I we set

�y.M; �/ D
X

i2Z

�
y
i .M; �/v

�i 2 A0:

The homomorphism K.eC ]/!M,

ŒM; �� 7!
X

y2I

�y.M; �/ay

clearly factors through an A0-module homomorphism

(a) �0 W K].eC/!M:

We show that

(b) �0 is an isomorphism:

For x 2 I leteAx D �0.ŒBx ; �x �/. We can writeeAx DPy2I fy;xay where fy;x 2 A0
are zero for all but finitely many y. In view of 3.4(a), to prove (b) it is enough to
show:

(c) Let y 2 I. If y 6� x, then fy;x D 0. If y � x, then fy;x D v�l.x/eP y;x.u/ where
eP y;x D 1 if y D x and eP y;x is a polynomial with integer coefficients of degree
� .l.x/ � l.y/ � 1/=2 if y < x.

Assume that fy;x ¤ 0. Then for some i we have �yi .Bx ; �x/ ¤ 0, hence RBx
y ¤ 0.

Using 2.4(b), (c) we deduce that the coefficient of Ty in cx is nonzero; thus we
have y � x, as required. Next we assume that y � x. We have vl.x/fy;x D
P

i �
y
i .Bx ; �x/v

�iCl.x/, hence it is enough to show that

�
y
i .Bx ; �x/ ¤ 0 implies �i C l.x/ 2 2N and �i C l.x/ � l.x/ � l.y/

with strict inequality unless x D y.

Now �
y
i .Bx ; �x/ ¤ 0 implies RBx

y
i
¤ 0. Hence it is enough to show that

R
Bx
y
i
¤ 0 implies �i C l.x/ 2 2N and �i C l.x/ � l.x/ � l.y/ with

strict inequality unless x D y.

By 2.4(a), (b), (c) we have

X

j2Z

dimRBx
y
j
u�jCl.x/ D Py;x.u2/
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and the desired result follows from the properties of Py;x (see 2.4(a)). This proves
(c) hence also (b). ut

Next we note that for y 2 I; y � x and ı 2 f1;�1g the following holds:

(d) .Py;x.u/C ıeP y;x.u//=2 2 NŒu�:

We have

Py;x.u/C ıeP y;x.u/ D
X

j2Z

dimRBx
y
j
v�jCl.x/ C ı

X

j2Z

�
y
j .Bx ; �x/v

�jCl.x/I

hence it is enough to show that

dimRBx
y
j
C ı�yj .Bx ; �x/ 2 2N:

This follows from the fact that for an involutive automorphism � of a real vector
space V , we have dim.V /C ıtr.�; V / 2 2N.

3.6 For any M 2 eC we define a functor FM W eC ] ! eC ] by

.M 0; �/ 7! .MM 0M ]; �0/

where �0 W .MM 0M ]/] DMM 0]M ] !MM 0M ] is given by

m1 ˝m0 ˝m2 7! m2 ˝ �.m0/˝m1:
Note that FM induces an A0-linear map K.eC ]/ ! K.eC ]/ which clearly maps
K0.eC ]/ into itself, hence it induces an A0-linear map FM W K].eC/ ! K].eC/. If
M1;M2 2 eC , we have FM1M2

D FM1
FM2

, hence FM1M2
D FM1

FM2
; moreover

for any .M; �/ 2 eC ] we have

FM1˚M2
.M; �/ D ..M1 ˚M2/M.M

]
1 ˚M ]

2 /; �
0/

D FM1
.M; �/˚ FM2

.M; �/˚ .fM;e�/

(for a suitable �0) where fM D M2MM
]
1 ˚M1MM

]
2 and e� W fM ] ! fM are such

that .fM;e�/ is a traceless object of eC ]. It follows that FM1˚M2
D FM1

CFM2
. We

see that ŒM � 7! FM makes K].eC/ into a (left) K.eC/-module. From the definitions,
for any M 2 eC ; .M 0; �/ 2 eC ]; n 2 Z, we have FMŒn�.M

0; �/ D FM .M
0Œ2n�; �/.

Hence for h 2 K.eC/, h0 2 K].eC/, n 2 Z, we have .unh/h0 D v2n.hh0/ D un.hh0/.
Via the isomorphism � W K.eC/ ��! H in 2.4(b) and the isomorphism �0 W K].eC/ ��!
M in 3.5(a), (b), M becomes a (left) H-module (with u 2 H acting on M as
multiplication by u D v2).
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4 Some exact sequences

4.1 In this section we fix s 2 S and we write ˛ instead of ˛s so that ˛� D ˛s� .
Let Rs

�;>0 D Rs
� \ R>0. Let R D R=Rs

�;>0R, a Z-graded R-algebra which can
be naturally identified with RŒ˛��=.˛�2/ (it is zero except in degree 0 and 2). Let R
be the category whose objects are Z-graded right R-modules. For any M 0 2 R we

write M 0 DM 0=M 0Rs�;>0 DM 0 ˝Rs� R, where R D Rs�

=Rs
�;>0 is viewed as a

Rs
�

-algebra in the obvious way. Note that M 0 is naturally an object of R.

4.2 For any M 2 R we write R:M (resp. M:R) instead of R ˝Rs M 2 R (resp.
M ˝Rs� R 2 R); for r 2 R;m 2M we write

r:m (resp. m:r) instead of r ˝m 2 R:M (resp. m˝ r 2M:R):

Note that any element of R:M (resp. M:R) can be written uniquely in the form
P

i2f0;1g ˛i :mi (resp.
P

i2f0;1gmi˛�i ) where mi 2M.
ForM;N 2 R let 0 hom.M;N / (resp. hom0.M;N /) be the set of mapsM ! N

which are homomorphisms of .Rs; R/-bimodules (resp. .R;Rs
�

/-bimodules) and
are compatible with the Z-gradings; let

0 hom�.M;N / D ˚i2Z
0 hom.M;N Œi �/;

hom0 �.M;N / D ˚i2Z hom0.M;N Œi �/:

The statements (i)–(ii) below are easily verified.

(i) There is a unique group isomorphism

0 hom�.M;N / ��! NR:M (resp. hom0 �.M;N / ��! NM:R/;

f 7! F , such that for m 2M we have

F.1:m/ D f .m/; F.˛:m/ D f̨ .m/;

(resp. F.m:1/ D f .m/, F.m:˛�/ D f .m/˛�); this is in fact an isomorphism in
R, provided that 0 hom�.M;N / (resp. hom0 �.M;N // is viewed as an object
of R with .rf /.m/ D r.f .m//, .f r/.m/ D .f .m//r for m 2 M; r 2 R and
f 2 0 hom�.M;N / (resp. f 2 hom0 �.M;N /).

(ii) The map
f 7! G; G.m/ D ˛:f .m/C 1:f .˛m/

(resp. G.m/ D f .m/:˛� C f .m˛�/:1) is an isomorphism

00 hom�.M;N Œ�2�/ ��! .R:N /M (resp. hom00 �.M;N Œ�2�/! .N:R/M

in R, provided that 0 hom�.M;N / (resp. hom0 �.M;N /) is viewed as an object
of R with .rf /.m/ D f .rm/, .f r/.m/ D f .mr/ for m 2 M; r 2 R and
f 2 0 hom�.M;N / (resp. f 2 hom0 �.M;N /).
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Combining (i), (ii) we see that

(iii) The map F 7! G,

G.m/ D ˛:F.1:m/C 1:F.1:˛m/
(resp. G.m/ D F.m:1/:˛� C F.m˛�:1/:1) is an isomorphism

.N Œ�2�/R:M ��! .R:N /M (resp. .N Œ�2�/M:R ��! .N:R/M /

of .Rs; R/-bimodules (resp. of .R;Rs
�

/-bimodules).

(We use that the two .R;R/-bimodule structures on 0 hom�.M;N / described in
4.2(i), (ii) restrict to the same .Rs; R/-bimodule structure and that the two .R;R/-
bimodule structures on hom0 �.M;N / described in 4.2(i), (ii) restrict to the same
.R;Rs

�

/-bimodule structure.)

4.3 For any M 0 2 R we write

R:M 0:R instead of R˝Rs M 0 ˝Rs� R 2 RI
for r; r 0 in R andm0 2M 0 we write r:m0:r 0 instead of r ˝m0˝ r 0 2 R:M 0:R. Note
that any element  2 R:M 0:R can be written uniquely in the form

X

i;j2f0;1g
˛i :ij :a

�j ;

where ij 2M 0.
ForM;N 2 R let hom.M;N / be the set of mapsM ! N which are homomor-

phisms of .Rs; Rs
�

/-bimodules and which are compatible with the Z-gradings; let
hom�.M;N / D ˚i2Z hom.M;N Œi �/.

We view hom�.M;N / as an object of R in two ways: for f 2 hom�.M;N /; r 2
R;m 2M we set either

.rf /.m/ D r.f .m//; .f r/.m/ D .f .m//r I(a)

or .rf /.m/ D f .rm/; .f r/.m/ D f .mr/:(b)

The statements (i), (ii) below are easily verified.

(i) There is a unique group isomorphism hom�.M;N / ��! NR:M:R in R, f 7! F

such that for any m 2 M , we have F.1:m:1/ D f .m/, F.˛:m:1/ D f̨ .m/,
F.1:m:˛�/ D f .m/˛�, F.˛:m:˛�/ D f̨ .m/˛�; this is in fact an isomorphism
in R provided that hom�.M;N / is viewed as an object of R as in (a).

(ii) The map f 7! G,

G.m/ D 1:f .˛m˛�/:1C ˛:f .m˛�/:1C 1:f .˛m/:˛� C ˛:f .m/:˛�

is an isomorphism hom�.M;N Œ�4�/ ��! .R:N:R/M in R provided that
hom�.M;N / is viewed as an object of R as in (b).
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Combining (i), (ii) we see that

(iii) The map F 7! G,

G.m/ D ˛:F.1:m:1/:˛�C˛:F.1:m˛�:1/:1
C 1:F.1:˛m:1/:˛� C 1:F.1:˛m˛�:1/:1

is an isomorphism .N Œ�4�/R:M:R ��! .R:N:R/M of .Rs; Rs
�

/-bimodules.

(We use that the two .R;R/-bimodule structures on hom�.M;N / described in (a),
(b) restrict to the same .Rs; Rs

�

/-bimodule structure.)

4.4 Let M 2 eC and let ! 2 W . We define an exact sequence

(a) 0! RM!
c�! RR:M!

d�! RMs! Œ2�

as follows. We identify RR:M! D 0 hom�.M;R!/ as objects of R as in 4.2(i); then c
is the obvious inclusion RM! � 0 hom�.M;R!/ and d W 0 hom�.M;R!/ ! RMs! Œ2�

is given by f 7! f 0, where f 0.m/ D s.f .˛m/ � f̨ .m//. (The kernel of d is
clearly RM! .) Now (a) induces sequences

(b) 0! RM! ! RR:M! ! RMs! Œ2�! 0;

(c) 0! RM! ! RR:M! ! RMs! Œ2�! 0:

We state the following result.

(d) If l.!/ < l.s!/, then the sequences (b), (c) are exact.

For (b) this is implicit in the proof in [S, Proposition 5.7, Corollary 5.16] of the fact
that, under the assumption of (d) the alternating sum of dimensions of the terms of
(b) is zero (in each degree). The statement for (c) can be reduced to that for (b) as
follows. The R-modules in (c) are free of finite rank (we use 2.1(a)) and the ker-
nel and cokernel of right multiplication by ˛� in these R-modules form sequences
which can be identified with the sequence (b) which are already known to be exact;
it follows that the sequence (c) is exact. ut

Next we define an exact sequence

(e) 0! RM!
c0

�! RM:R!

d 0

�! RM!s� Œ2�

as follows. We identify RM:R! D hom0 �.M;R!/ as objects of R as in Prop-
erty 4.2(i); then c0 is the obvious inclusion RM! � hom0 �.M;R!/ and d 0 W
hom0 �.M;R!/ ! RM!s� Œ2� is given by f 7! f 0, where f 0.m/ D f .m˛�/ �
f .m/˛� (the product f .m/˛� is computed in the right R-module structure of R!).
(The kernel of d 0 is clearly RM! .) Now (e) induces sequences

(f) 0! RM! ! RM:R! ! RM!s� Œ2�! 0;
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(g) 0! RM! ! RM:R! ! RM!s� Œ2�! 0:

We now state the following result.

(h) If l.!/ < l.!s�/, then the sequences (f), (g) are exact.

For any x 2 W we have an isomorphism

(i) RMx
��! RM

]

x�1

as R-vector spaces (not in R) given by f 7! ef where .ef /.m/ D x�1
.f .m// for

any m 2 M (we identify M;M ] as sets). It carries RMx R
>0 onto RM

]

x�1R
>0, hence

it induces an isomorphism RMx
��! RM

]

x�1 of graded R-vector spaces. Applying an

isomorphism like (i) to each term of the sequence (f) we get a sequence

0! RM
]

!�1 ! R
R˝Rs�

M ]

!�1 ! RM
]

s�!�1 Œ2�! 0I

(we use that .M:R/] D R˝Rs�
M ]). This sequence is a special case of the sequence

(b) (with M;!; s replaced by M ]; !�1; s�); hence, by (d), it is exact (we use that
l.!/ < l.s�!�1/). It follows that the sequence (f) is exact. From this we deduce
the exactness of (g) in the same way as we deduced the exactness of (c) from that
of (b). ut
4.5 Let w 2 W . We set

N D Rw :
For r 2 R and b 2 N , we write b ı r for the element of N given by the right
R-module structure on N . We define some subsets of R:N:R as follows:

Y D f1:˛b:1C ˛:b:1C 1:˛b0:˛� C ˛:b0:˛�I b; b0 2 N g;
Y 0 D f1:b0 ı ˛�:1C ˛:b ı ˛�:1C 1:b0:˛� C ˛:b:˛�I b; b0 2 N g;
V D f1:˛b ı ˛�:1C ˛:b ı ˛�:1C 1:˛b:˛� C ˛:b:˛�I b 2 N g D Y \ Y 0;
Z D f1:.˛b C b0 ı ˛� � ˛b00 ı ˛�/:1C˛:b:1C 1:b0:˛�C˛:b00:˛�I b; b0; b00 2 N g
D Y C Y 0:

It is easy to verify that Y; Y 0 are subobjects of R:N:R in R. Hence V;Z are subob-
jects of R:N:R in R.
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By a straightforward computation we see that (a)–(d) below hold:

(a) the map �1 W V ! NŒ�4�, 1:˛b ı ˛�:1C ˛:b ı ˛�:1C 1:˛b:˛� C ˛:b:˛� 7! b

is an isomorphism in R;
(b) the map Y ! Rws� Œ�2�, 1:˛b:1C ˛:b:1C 1:˛b0:˛�C ˛:b0:˛� 7! b � b0 ı ˛�,

induces an isomorphism �2 W Y=V ��! Rws� Œ�2� in R;
(c) the map Y 0 ! Rsw Œ�2�, 1:b0 ı ˛�:1 C ˛:b ı ˛�:1 C 1:b0:˛� C ˛:b:˛� 7!

s.b0 � ˛b/, induces an isomorphism �3 W Y=V 0 ��! Rsw Œ�2� in R;
(d) the map R:N:R! Rsws� ,

1:b0:1C ˛:b1:1C 1:b2:˛� C ˛:b3:˛� 7! s.�b0 C ˛b1 C b2 ı ˛� � ˛b3 ı ˛�/;

induces an isomorphism �4 W R:N:R=Z ��! Rsws� .

The proof is a straightforward computation.

In the remainder of this section we fix M 2 eC .

Lemma 4.6. Assume that l.w/ < l.ws�/. The obvious sequence

(a) 0! VM ! YM ! .Y=V /M ! 0

is exact.

We can identify N:RŒ�2� D Y (as objects of R) by b:r 7! ˛:b:r C 1:˛b:r (for
b 2 N; r 2 R). We can identify NŒ�4� D V via �1 in 4.5(a) and Rws� Œ�2� D Y=V
via �2 in 4.5(b) Then (a) becomes a sequence

0! .N Œ�4�/M ! .N:RŒ�2�/M ! .Rws� Œ�2�/M ! 0:

By 4.2(iii) we can identify .N:RŒ�2�/M D .N Œ�4�/M:R (as R-vector spaces). The

previous sequence becomes a sequence

0! NMŒ4� ! NMŒ4�:R ! .Rws�/MŒ4�Œ2�! 0:

This is of the type appearing in 4.4(c) with M replaced by MŒ4� hence is exact by
4.4(d). ut
Lemma 4.7. Assume that l.sw/ < l.sws�/. The obvious sequence

(a) 0! .Z=Y /M ! .R:N:R=Y /M ! .R:N:R=Z/M ! 0

is exact.

Consider the exact sequence 0 ! NŒ�2� c�! R:N
c0

�! Rsw ! 0 in which c is
b 7! ˛:b C ˛b:1 and c0 maps r 0:b to r 0sb (where r 0 2 R; b 2 N ). Applying
˝Rs�R we obtain an exact sequence 0 ! N:RŒ�2� ! R:N:R ! Rsw :R ! 0.
Here we identify N:RŒ�2� D Y as in the proof of Lemma 4.6 and we obtain an
exact sequence 0 ! Y ! R:N:R ! Rsw :R ! 0 in R. Hence we obtain an
identification R:N:R=Y D Rsw :R under which r 0:b:r 2 R:N:R=Y corresponds to
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r 0sb:r 2 Rsw :R. We identify Z=Y D .Y C Y 0/=Y D Y 0=V D Rsw Œ�2� via the
isomorphism �3 in 4.5(c) andR:N:R=Z D Rsws� via the isomorphism �4 in 4.5(d).
Then (a) becomes

0! .Rsw Œ�2�/M ! .Rsw :R/
M ! RMsws� ! 0:

By 4.2(iii) we can identify .Rsw :R/M D .Rsw Œ�2�/M:R. The previous sequence
becomes

0! .Rsw Œ�2�/M ! .Rsw Œ�2�/M:R ! RMsws� ! 0:

This sequence is (up to shift) of the type appearing in 4.4(g) (with ! replaced by
sw) hence is exact by 4.4(h). ut
Lemma 4.8. Assume that l.w/ < l.sw/. The obvious sequence

(a) 0! YM ! .R:N:R/M ! .R:N:R=Y /M ! 0

is exact.

We identify Y D N:RŒ�2� as in the proof of Lemma 4.6 and R:N:R=Y D Rsw :R

as in the proof of Lemma 4.7. Then (a) becomes the sequence

0! .N:RŒ�2�/M ! .R:N:R/M ! .Rsw :R/
M ! 0:

By 4.2(iii) and 4.3(iii) we can identify

.N:RŒ�2�/M D .N Œ�4�/M:R; .R:N:R/M D .N Œ�4�/R:M:R;
.Rsw :R/

M D .Rsw Œ�2�/M:R
and the previous sequence becomes

0! .N Œ�4�/M:R ! .N Œ�4�/R:M:R ! .Rsw Œ�2�/M:R ! 0:

This sequence is of the type appearing in 4.4(c) with M replaced by M:RŒ4�, hence
is exact by 4.4(d). ut
4.9 With M;N as in 4.5, we set P D hom�.M;N / regarded as an object of R as
in 4.3(a). We define subsets V;Y;Y 0;Z of P as follows:

V D ff 2 P If .˛m/ D f̨ .m/; f .m˛�/ D f .m/ ı ˛� for all m 2M gI
Y D ff 2 P If .˛m/ D f̨ .m/ for all m 2M gI
Y 0 D ff 2 P If .m˛�/ D f .m/ ı ˛� for all m 2M gI
Z D ff 2 P If .˛m˛�/ � f̨ .m˛�/ � f .˛m/ ı ˛� C f̨ .m/ ı ˛� D 0

for all m 2M g:
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Note that V;Y;Y 0;Z are subobjects of P in R. Under the bijection

P $ .R:N:R/M Œ4�

in 4.3(ii), V;Y;Y 0;Z correspond respectively to the subsets VM , YM , Y 0M , ZM

of .R:N:R/M . Thus we have natural bijections V $ VM , Y $ YM , Y 0 $ Y 0M ,
Z $ ZM as .Rs; Rs

�

/-bimodules. From the definitions it is clear that

(a) V D NM

as objects of R. Since P Š NR:M:R as objects of R, we see from 2.1(a) that P
is a finitely generated right R-module. Since R is a Noetherian ring, it follows that
V;Y;Y 0;Z (which are subobjects of P ) are also finitely generated rightR-modules.

Lemma 4.10. Assume that l.w/ < l.ws�/. The map (in R)

(a) Y ! .Rws� Œ2�/M ; f 7! f 0; where f 0.m/ D f .m˛�/ � f .m/ ı ˛�;

induces an isomorphism Y=V ��! .Rws� Œ2�/M and an isomorphism .Y=V/^ ��!
..Rws� Œ2�/M /^ (notation of 2.1).

The map (a) is clearly a well-defined morphism in R and its kernel is clearly equal
to V . Thus we have an exact sequence 0 ! V ! Y ! .Rws� Œ2�/M (in R). Using
4.9(a) and the identification Y D NM:R (see 4.2(i)) this exact sequence becomes
an exact sequence 0 ! NM ! NM:R ! .Rws� Œ2�/M (in R) which induces the
exact sequence 0! NM ! NM:R ! .Rws� Œ2�/M ! 0 (a special case of 4.4(c),

(d)) that is an exact sequence 0 ! V ! Y ! .Rws� Œ2�/M ! 0. Applying ˝RR
to the exact sequence 0 ! V ! Y ! Y=V ! 0 we deduce an exact sequence
V ! Y ! Y=V ! 0. It follows that both .Rws� Œ2�/M and Y=V can be identi-

fied with the cokernel of the map V ! Y . Thus, Y=V ��! .Rws� Œ2�/M . Now the

injective homomorphism Y=V ! .Rws� Œ2�/M induces an injective homomorphism
.Y=V/^ ! ..Rws� Œ2�/M /^ which becomes surjective after applying ˝

bR
R; hence,

by the Nakayama lemma, it is surjective before applying ˝
bR

R. ut
Lemma 4.11. Assume that l.w/ < l.sw/. The map (in R)

(a) Y 0 ! .Rsw Œ2�/
M ; f 7! f 0; where f 0.m/ D s.f .˛m/ � f̨ .m//;

induces an isomorphism Y 0=V ��! .Rsw Œ2�/
M and an isomorphism .Y 0=V/^ ��!

..Rsw Œ2�/
M /^.

The proof is almost a repetition of that of Lemma 4.10. The map (a) is clearly a
well-defined morphism in R and its kernel is clearly equal to V . Thus we have an
exact sequence 0 ! V ! Y 0 ! .Rsw Œ2�/

M (in R). Using 4.9(a) and the iden-
tification Y 0 D NR:M (see 4.2(i)) this exact sequence becomes an exact sequence
0 ! NM ! NR:M ! .Rsw Œ2�/

M (in R) which induces the exact sequence
0 ! NM ! NR:M ! .Rsw Œ2�/

M ! 0 (a special case of 4.4(b), (d)) that is
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an exact sequence 0 ! V ! Y 0 ! .Rsw Œ2�/
M ! 0. Applying ˝RR to the

exact sequence 0 ! V ! Y 0 ! Y 0=V ! 0, we deduce an exact sequence
V ! Y 0 ! Y 0=V ! 0. It follows that both .Rsw Œ2�/M and Y 0=V can be iden-

tified with the cokernel of the map V ! Y 0. Thus, Y 0=V ��! .Rsw Œ2�/
M . Now the

injective homomorphism Y 0=V ! .Rsw Œ2�/
M induces an injective homomorphism

.Y 0=V/^ ! ..Rsw Œ2�/
M /^ which becomes surjective after applying ˝

bR
R; hence,

by the Nakayama lemma, it is surjective before applying ˝
bR

R. ut
Lemma 4.12. Assume that l.w/ < l.sw/. Let P 0 D hom0 �.M;Rsw/; we view P 0
as an object of R as in 4.2(i). The map (in R)

(a) P ! P 0Œ2�; f 7! f 0; f 0.m/ D s.f .˛m/ � f̨ .m//;

induces an isomorphism P=Y ��! P 0Œ2� (hence, using P 0 D RM:Rsw , see 4.2(i)) an

isomorphism P=Y ��! .Rsw Œ2�/
M:R; it also induces an isomorphism .P=Y/^ ��!

..Rsw Œ2�/
M:R/^.

The map (a) is clearly a well-defined morphism in R and its kernel is clearly equal
to Y . Thus we have an exact sequence 0 ! Y ! P ! P 0Œ2� in R. By 4.2(i)
we can identify Y D NM:R and our exact sequence becomes the exact sequence
0 ! NM:R ! NR:M:R ! .Rsw Œ2�/

M:R in R which induces an exact sequence
0! NM:R ! NR:M:R ! .Rsw Œ2�/

M:R ! 0 (a special case of 4.4(b), (d) with M
replaced by M:R). Thus we have an exact sequence 0 ! Y ! P ! P 0Œ2� ! 0.

Applying ˝RbR to the exact sequences

0! Y ! P ! P=Y ! 0; 0! Y ! P ! P 0Œ2�;

we obtain exact sequences

0! bY ! bP ! bP=Y ! 0; 0! bY ! bP ! bP 0Œ2�:

From the surjectivity of P ! P 0Œ2� and the Nakayama lemma it follows that bP !
bP 0Œ2� in the last exact sequence is surjective. Hence the obvious map bP=Y ! bP 0Œ2�
is an isomorphism (both sides can be identified with coker.bY ! bP /). Applying
˝
bR

R we deduce that the obvious map P=Y ! P 0Œ2� is an isomorphism. Thus,

P=Y ��! .Rsw Œ2�/
M:R. Now the injective homomorphism P=Y ! .Rsw Œ2�/

M in-

duces an injective homomorphism .P=Y/^ ! ..Rsw Œ2�/
M /^ which becomes sur-

jective after applying ˝
bR

R; hence, by the Nakayama lemma, it is surjective before
applying ˝

bR
R. ut

Lemma 4.13. Assume that l.w/ < l.sw/ < l.sws�/. Then the map (in R) P !
.Rsws� Œ4�/M ,

(a) f 7! f 0; f 0.m/ D s.f .˛m˛�/� f̨ .m˛�/� f .˛m/ ı ˛�C f̨ .m/ ı ˛�/;
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induces an isomorphism P=Z ��! .Rsws� Œ4�/M and an isomorphism .P=Z/^ ��!
..Rsws� Œ4�/M /^.

The map (in R) Z ! .Rsw Œ2�/
M ,

(b) f 7! f 0; f 0.m/ D s.f .˛m/ � f̨ .m//

induces an isomorphism Z=Y ��! .Rsw Œ2�/
M and an isomorphism .Z=Y/^ ��!

..Rsw Œ2�/
M /^.

The map (a) is clearly a well-defined morphism in R and its kernel is clearly equal to
Z . Thus we have an exact sequence 0! Z=Y ! P=Y ! .Rsws� Œ4�/M . Applying
˝RbR gives again an exact sequence

(c) 0! bZ=Y ! bP=Y ! ..Rsws� Œ4�/M /^:

From 4.4(f), (h) we have an exact sequence

(d) 0! .Rsw Œ2�/
M ! .Rsw Œ2�/

M:R ! .Rsws� Œ4�/M ! 0:

Hence .Rsw Œ2�/M:R ! .Rsws� Œ4�/M is surjective, that is (using Lemma 4.12)

P=Y ! RMsws� is surjective. Using this and the Nakayama lemma, we see that

bP=Y ! .RMsws�/
^ is surjective. This is just the last map in (c); thus, (c) becomes

an exact sequence

0! bZ=Y ! bP=Y ! ..Rsws� Œ4�/M /^ ! 0:

This exact sequence of bR-modules splits since, according to 2.1(a), the bR-module
..Rsws� Œ4�/M /^ is free. Hence, applying ˝

bR
R gives an exact sequence

(e) 0! Z=Y ! P=Y ! .Rsws� Œ4�/M ! 0:

From the obvious exact sequence 0 ! Z=Y ! P=Y ! P=Z ! 0 we de-
duce an exact sequence Z=Y ! P=Y ! P=Z ! 0. Using this and (d), we

see that both P=Z and .Rsws� Œ4�/M can be identified with the cokernel of the

map Z=Y ! P=Y . Using (d) and (e), where we identify .Rsw Œ2�/M:R D P=Y
(see Lemma 4.12), we see that both Z=Y and .Rsw Œ2�/M can be identified with

the kernel of the map P=Y ! P=Z . Thus, we have P=Z ��! .Rsws� Œ4�/M and

Z=Y ��! .Rsw Œ2�/
M . Now, the injective homomorphism P=Z ! .Rsws� Œ4�/M

(resp. Z=Y ! .Rsw Œ2�/
M ) induces an injective homomorphism .P=Z/^ !

..Rsws� Œ4�/M /^ (resp. .Z=Y/^ ! ..Rsw Œ2�/
M /^) which becomes surjective after

applying ˝
bR

R; hence, by the Nakayama lemma, it is surjective before applying
˝
bR

R. ut
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Lemma 4.14. Assume that l.w/ < l.sw/ D l.ws�/. The obvious sequence

0! V ! P ! P=V ! 0

is exact.

From the exact sequence 0 ! Y=V ! P=V ! P=Y ! 0 we deduce an exact
sequence 0 ! .Y=V/^ ! .P=V/^ ! .P=Y/^ ! 0 in which .Y=V/^ is a
free bR-module (by Lemma 4.10 and 2.1(a)) and .P=Y/^ is a free bR-module (by
Lemma 4.12 and 2.1(a)). It follows that

(a) .P=V/^ is a free bR-module.

From the obvious exact sequence 0 ! V ! P ! P=V ! 0 we deduce an exact
sequence 0! bV ! bP ! .P=V/^ ! 0 which is split, due to (a). It follows that it
remains exact after applying ˝

bR
R. ut

Lemma 4.15. Assume that l.w/ < l.sw/ < l.sws�/. The obvious sequence

0! Z=V ! P=V ! P=Z ! 0

is exact.

From the obvious exact sequence 0 ! Z=V ! P=V ! P=Z ! 0 we deduce an
exact sequence 0 ! .Z=V/^ ! .P=V/^ ! .P=Z/^ ! 0 which is split, since
the bR-module .P=Z/^ is free, by Lemma 4.13 and 2.1(a). It follows that it remains
exact after applying ˝

bR
R. ut

Lemma 4.16. Assume that l.w/ < l.sw/ < l.sws�/. The sum of the obvious

homomorphisms Y=V c�! Z=V and Y 0=V c0

�! Z=V is an isomorphism

Y=V ˚ Y 0=V ��! Z=V :

From the obvious exact sequence 0 ! Y=V ! Z=V ! Z=Y ! 0 we deduce an
exact sequence 0! .Y=V/^ ! .Z=V/^ ! .Z=Y/^ ! 0 which is split, since the
bR-module .Z=Y/^ is free, by Lemma 4.13 and 2.1(a). It follows that after applying
˝
bR

R we get an exact sequence

0! Y=V c�! Z=V d�! Z=Y ! 0:

We consider the composition dc0 W Y 0=V ! Z=Y . By Lemma 4.11 we can identify

Y 0=V D .Rsw Œ2�/
M and by Lemma 4.13 we can identify Z=Y D .Rsw Œ2�/

M .

Under these identifications the map dc0 becomes the identity map of .Rsw Œ2�/M .
In particular, dc0 is an isomorphism. This implies immediately the statement of the
lemma. ut
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5 Trace computations

5.1 To simplify notation, for x 2 W; r 2 R we shall write xr� instead of x.r�/.
Recall that if x 2 I, then r 7! xr� is an involution R ! R (as an R-vector space)
denoted by fx in 3.2.

In this section we fix .M; �/ 2 eC ], s 2 I and w 2 I such that l.w/ < l.sw/;
we have automatically l.w/ < l.ws�/. As in 4.5 we set N D Rw and define the
notation b ı r for b 2 N; r 2 R as in 4.5. In the case where sw D ws�, we set
N 0 D Rsw . In the case where sw ¤ ws�, we set N 00 D Rsws� .

For b 2 N; r 2 R we have

fw.b ı r/ D r�fw.b/; fw.rb/ D fw.b/ ı r�:
The involution f 7! f Š, NM ! NM , given by f Š.m/ D fw.f .�.m//, induces an
involution

# W NM ! NM :

In the case where sw D ws�, we have sw 2 I and the involution f 7! f Š, N 0M !
N 0M , given by f Š.m/ D fsw.f .�.m//, induces an involution

#0 W N 0M ! N 0M :

In the case where sw ¤ ws�, we have sws� 2 I and the involution f 7! f Š,
N 00M ! N 00M , given by f Š.m/ D fsws�.f .�.m//, induces an involution

#00 W N 00M ! N 00M :

Now # (or #0 or #00, if defined) induces a degree-preserving involution of NM (or
N 0M , or N 00M ) denoted again by # (or #0 or #00).

By 3.6 we have .R:M:R; �0/ 2 eC ] where

�0 W R:M:R! R:M:R

is the R-linear map such that r1:m:r2 7! r�2 :�.m0/:r�1 for r1; r2 2 R, m 2 M .
(Recall that R:M:R 2 eC is defined in 4.3.) We have �02 D 1. Let 
 W NR:M:R !
NR:M:R be the R-linear involution such that for any F 2 NR:M:R and any r1; r2 2
R, m 2M , we have


.F /.r1:m:r2/ D fw.F.�
0.r1:m:r2/// D fw.F.r

�
2 :�.m/:r

�
1 //:

(This is a special case of the definition of f 7! f Š in 1.1.) It induces a degree-
preserving involution of NR:M:R denoted again by 
 .

We now state the main result of this section. (In this section all traces are taken
over R.)

Theorem 5.2. Recall that w 2 I, l.w/ < l.sw/. Let i 2 Z. If sw ¤ ws�, then

(a) tr.
;NR:M:R
i / D tr.#;NM

i /C tr.#00; N 00M iC4/:

If sw D ws�, then
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tr.
;NR:M:R
i / D tr.#;NM

i /C tr.#;NM
iC2/(b)

� tr.#0; N 0M iC2/C tr.#0; N 0M iC4/:

Note that the following identities (with �0 as in 5.1) are equivalent to the theorem.

(c) �w.R:M:R; �0/ D �w.M; �/C �sws�

.M; �/v4 if sw ¤ ws�;

(d) �w.R:M:R; �0/ D �w.M; �/.v2 C 1/C �sw.M; �/.v4 � v2/ if sw D ws�:
The proof will occupy the remainder of this section.

5.3 We identify NR:M:R with P D hom�.M;N / (as objects of R) as in 4.3(i).
Then 
 becomes an involution of P denoted again by 
 . It is given by f 7! f Š

where f Š.m/ D fw.f .�.m///. This induces a degree-preserving involution of P
denoted again by 
 . For any i we clearly have

(a) tr.
;NR:M:R
i / D tr.
; P i /:

5.4 In this subsection we assume that sw ¤ ws� so that l.w/ < l.sw/ < l.sws�/
and sws� 2 I.

Let V;Y;Y 0;Z be the subobjects of P defined in 4.9. From the definition we
see that 
 W P ! P preserves V and Z; it interchanges Y and Y 0. Now for any
 2 P , we have 
.R>0/ D R>0
./ D 
./R>0. (We use that R>0b D b ıR>0
for b 2 N .) It follows that VR>0;ZR>0 are preserved by 
 and YR>0;Y 0R>0
are interchanged by 
 . Hence 
 induces involutions of V i ; P=Z i ;Z=V i (denoted
again by 
 ) and the two summands Y=V

i
, Y 0=V

i
of Z=V

i
(see Lemma 4.16) are

interchanged by 
 W Z=V
i
! Z=V

i
. Hence we have tr.
;Z=V

i
/ D 0 and (using

Lemmas 4.14 and 4.15) we have

(a) tr.
; P i / D tr.
;V i /C tr.
; P=V
i
/ D tr.
;V i /C tr.
; P=Z

i
/:

We now show that the map (say � ), P ! Rsws� Œ4� in 4.13(a) satisfies

(b) �.
.f // D #00.�.f //
for any f 2 P . For m 2M we have

�.
.f //.m/ D s.fw.f .�.˛m˛
�/// � ˛fw.f .�.m˛�///

� fw.f .�.˛m/// ı ˛� C ˛fw.f .�.m/// ı ˛�/;
and

#00.�.f //.m/ D fsws�.�.f /.�.m///

D fsws�.s.f .˛�.m/˛�/ � f̨ .�.m/˛�/
� f .˛�.m// ı ˛� C f̨ .�.m// ı ˛�//:
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It is enough to show that for any m0 2M , we have

s.fw.f .m
0/// D fsws�.s.f .m0///

or that
s.w.f .m0/�// D sws�

.s
�

.f .m0/�//:

This is clear; (b) is proved. Using (b) and Lemma 4.13 we deduce that

(c) tr.
; P=Z
i
/ D tr.#00; N 00M iC4/:

We clearly have V D NM and tr.
;V i / D tr.#;NM
i /. Introducing this and (c)

into (a) and using 5.3(a) we obtain 5.2(a) and (equivalently) 5.2(c).

5.5 For the remainder of this section we assume that sw D ws� so that sw 2 I.
Note that we have w˛� D ˛, hence b ı ˛� D ˛b for b 2 N .

In this case the involution 
 W P ! P preserves PRs
�;>0 (more precisely, we

have 
.fRs
�;>0/ D 
.f /Rs

�;>0 for any f 2 P ), hence it induces an involution
of P denoted again by 
 . (We use that w.Rs

�

/ D Rs , hence w.Rs
� \ R>0/ D

Rs \R>0). Moreover the involution 
 of P is R-linear. (We use that w˛� D ˛.)

Let ˚ W .R:N:R/M ! .R:N:R/M be the R-linear involution which corresponds

to 
 W P ! P under the bijection P Œ�4� ��! .R:N:R/M in 4.3(ii). Since that
bijection is compatible with the .Rs; Rs

�

/-bimodule structures, it follows that ˚
preserves the subset .R:N:R/MRs

�;>0; more precisely we have

(a) ˚.Rs
�;>0/ D ˚./Rs�;>0 for any  2 .R:N:R/M ;

hence ˚ induces an R-linear involution of .R:N:R/M (which is not necessarily

R-linear). For any i we have from the definition:

(b) tr.˚; .R:N:R/M
i
/ D tr.
; P

i�4/:

Note that P is a free right RŒ˛��=.˛�2/-module. Hence we have exact an sequence
of R-vector spaces

0! P i�6
c�! P

i�4
d�! P i�4 ! 0;

where c is induced by right multiplication by ˛� and we have d# D #d , c# D #c.
It follows that we have

tr.
; P
i�4/ D tr.
; P i�4/C tr.#;P i�6/:

Introducing this in (b), we obtain

(c) tr.˚; .R:N:R/M
i
/ D tr.
; P i�4/C tr.
; P i�6/:

5.6 We define a map  7! L, R:N:R! R:N:R by



Hecke algebras and involutions in Coxeter groups 387

1:b0:1C ˛:b1:1C 1:b2:˛� C ˛:b3:˛�(a)

7! 1:fw.b0/:1C ˛:fw.b2/:1C 1:w fw.b1/:˛� C ˛:fw.b3/:˛�

where bi 2 N . Then  7! L is an involution of the R-vector space R:N:R such that
.r1:b:r2/

_ D r�2 :fw.b/:r�1 for r1; r2 2 R; b 2 N . Hence in the .R;R/-bimodule
structure of R:N:R we have .r/_ D Lr�, .r/_ D r� L for r 2 R,  2 R:N:R.
Thus .R:N:R;  7! L/ 2 R].

From the definitions we see that ˚ W .R:N:R/M ! .R:N:R/M is given explic-
itly by G 7! GŠ, where for any G 2 .R:N:R/M and any m 2M we have

(b) GŠ.m/ D .G.�.m///_:
(This is a special case of the definition of f 7! f Š in 1.1.)

5.7 Let V; Y be the subsets of R:N:R defined as in 4.5. (They are subobjects in R.)
In addition to the subsets V; Y we shall need the following subsets of R:N:R:

X D f1:˛b0 ı ˛�:1C ˛:b:1C 1:b:˛� C ˛:b0:˛�I b; b0 2 N g;
U D f1:.˛b � b0 ı ˛� C ˛b00 ı ˛�/:1C ˛:b:1C 1:b0:˛� C ˛:b00:˛�I b; b0; b00 2 N g
D X C Y:

Note that X \ Y D V . Using our assumptions on w, it is easy to verify that X is a
subobject of R:N:R in R, hence U D X C Y is a subobject of R:N:R in R.

By a straightforward computation we see that (a), (b) below hold:

(a) the map X ! NŒ�2�, 1:˛b0 ı ˛�:1C ˛:b:1C 1:b:˛� C ˛:b0:˛� 7! s.b � ˛b0/
induces an isomorphism X=V

��! NŒ�2� in R;
(b) the map R:N:R! N 0,

1:b0:1C ˛:b1:1C 1:b2:˛� C ˛:b3:˛� 7! s.�b0 C ˛b1 � ˛b2 C ˛2b3/;

induces an isomorphism R:N:R=U
��! N 0 in R.

Lemma 5.8. The obvious sequence

(a) 0! .U=Y /M ! .R:N:R=Y /M ! .R:N:R=U /M ! 0

is exact.

Note that N 0:R D N:R. Indeed, it is enough to show that N D N 0 as .R;Rs
�

/-
bimodules. It is also enough to show that if r 2 Rs�

, then wr D ws�

r ; this follows
from s�

r D r . We identify R:N:R=Y D Rsw :R D N 0:R (hence R:N:R=Y D
N:R) as in the proof of Lemma 4.7, U=Y D .X C Y /=Y D X=V D NŒ�2� as in
5.7(a), and R:N:R=U D N 0 as in 5.7(b). Then (a) becomes a sequence

0! .N Œ�2�/M ! .N:R/M ! N 0M ! 0

or equivalently, a sequence
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0! .N Œ�2�/M ! .N Œ�2�/M:R ! N 0M ! 0

which is exact by 4.4(g), (h). ut
5.9 We write N 0 D Rs , N 1 D ˛Rs D Rs ı ˛� so that N D N 0 ˚ N 1 as
an .Rs; Rs

�

/-bimodule. For b 2 N we can write uniquely b D b0 C b1 where
bi 2 N i . For i 2 f0; 1g let

.R:N:R/i D f1:b0:1C ˛:b1:1C 1:b2:˛� C ˛:b3:˛� 2 R:N:RI
bj 2 N i for j D 0; 1; 2; 3g:

Using the fact that ˛2 2 Rs we see that .R:N:R/i is a subobject of R:N:R in R.
Thus, we have R:N:R D .R:N:R/0 ˚ .R:N:R/1 as objects of R. For i 2 f0; 1g
we set

X i D X \ .R:N:R/i D f1:˛b0 ı ˛�:1C ˛:b:1C 1:b:˛� C ˛:b0:˛�I b; b0 2 N ig;
.R:N:R=X/i D .R:N:R/i=X i :

Then X i is a subobject of X in R, .R:N:R=X/i is a subobject of R:N:R=X in R
and we have

(a) X D X0 ˚X1; R:N:R=X D .R:N:R=X/0 ˚ .R:N:R=X/1

as objects of R. We have

(b) X D V ˚X0;

(c) R:N:R=X D U=X ˚ .R:N:R=X/0:
We prove (b). We must show that for any b; b0 2 N there are unique ˇ 2 N 0; ˇ0 2
N 0; b00 2 N such that

1:˛b0 ı ˛�:1C ˛:b:1C 1:b:˛� C ˛:b0:˛� D 1:˛ˇ0 ı ˛�:1C ˛:ˇ:1C 1:ˇ:˛�
C ˛:ˇ0:˛� C 1:˛b00 ı ˛�:1C ˛:˛b00:1C ˛:b00:˛� C 1:˛b00:˛�

or equivalently, b D ˇ C ˛b00; b0 D ˇ0 C b00. Setting b00 D b � ˇ0 we see that we
must show that there are unique ˇ 2 N 0; ˇ0 2 N 0 such that b � ˛b0 D ˇ � ˛ˇ0.
This is obvious.

We prove (c). It is enough to show that

(i) R:N:R D U C .R:N:R/0,
(ii) U \ ..R:N:R/0 CX1/ D X .

For (i) we must show that given b1; b2; b3; b4 2 N , there exist b; b0; b00 2 N and
ˇ1; ˇ2; ˇ3; ˇ4 2 N 0 such that

b1 D b C ˇ1; b2 D b0 C ˇ2; b3 D b00 C ˇ3; b4 D ˛b � b0 ı ˛� C ˛b00 ı ˛� C ˇ4:
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Setting ˇ2 D ˇ3 D 0, b D b1 � ˇ1; b0 D b2; b
00 D b3, we see that it is enough to

show that there exist ˇ1; ˇ4 2 N 0 such that

b4 � ˛b1 C ˛b2 � ˛2b3 D ˇ4 � ˛ˇ1:
This is obvious.

For (ii) we must show that given b; b0; b00 2 N and ˇ; ˇ0 2 N 1 such that

1:.˛b � b0 ı ˛�C˛b00 ı ˛�/:1C ˛:b:1C 1:b0:˛� C ˛:b00:˛�
� .1:˛ˇ0 ı ˛�:1C ˛:ˇ:1C 1:ˇ:˛� C ˛:ˇ0:˛�/ 2 .R:N:R/0;

we have b D b0. Our assumption implies b1 D ˇ, b01 D ˇ, b001 D ˇ0, .˛b �
˛b0 C ˛2b00/1 D ˛2ˇ0 (that is .b � b0 C ˛b00/0 D ˛ˇ0). Thus, .b � b0/1 D 0 and
.b � b0/0 D 0, so that b � b0 D 0. This proves (c). ut

Now (a), (b) yield isomorphisms (in R)

X0 ! X=V; X1
��! V I

the first one is induced by the identity map, the second one is the restriction to X1

of the first projection X D V ˚ X0 ! V . Moreover, (a), (c) yield isomorphisms
(in R)

.R:N:R=X/0 ! R:N:R=U; .R:N:R=X/1 ! U=X I
the first one is induced by the identity map, the second one is the restriction to
.R:N:R/1 of the first projection R:N:R=X D U=X ˚ .R:N:R=X/0 ! U=X .

Lemma 5.10. The obvious sequence

(a) 0! XM ! .R:N:R/M ! .R:N:R=X/M ! 0

is exact.

Consider the obvious commutative diagram with exact horizontal and vertical lines

0 0 0
?

?

y

?

?

y

?

?

y

0 �����! V �����! X �����! U=Y �����! 0
?

?

y

?

?

y

?

?

y

0 �����! Y �����! R:N:R �����! R:N:R=Y �����! 0
?

?

y

?

?

y

?

?

y

0 �����! Y=V �����! R:N:R=X �����! R:N:R=U �����! 0
?

?

y

?

?

y

?

?

y

0 0 0
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Here the non-middle horizontal maps are split as exact sequences in R. Indeed
by the results in Section 5.9 they can be identified with the obvious split exact
sequences

0! X1 ! X0 ˚X1 ! X0 ! 0;

0! .R:N:R=X/1 ! .R:N:R=X/0 ˚ .R:N:R=X/1 ! .R:N:R=X/0 ! 0:

From this we deduce the commutative diagram

0 0 0
?

?

y

?

?

y

?

?

y

0 �����! VM �����! XM �����! .U=Y /M �����! 0
?

?

y

?

?

y

?

?

y

0 �����! YM �����! .R:N:R/M �����! .R:N:R=Y /M �����! 0
?

?

y

?

?

y

?

?

y

0 �����! .Y=V /M �����! .R:N:R=X/M �����! .R:N:R=U /M �����! 0
?

?

y

?

?

y

?

?

y

0 0 0

in which the middle horizontal line and the non-middle vertical lines are exact se-
quences (see Lemmas 4.8, 4.6 and 5.8) and in which the non-middle horizontal lines
are (split) exact sequences. This implies, by diagram chasing, that the middle verti-
cal line is an exact sequence. ut
5.11 From 5.6(a) we see that X , .R:N:R/0, .R:N:R/1 are stable under the in-
volution  7! L of R:N:R. Hence that involution induces involutions on X , on
.R:N:R/=X , on X i and on .R:N:R=X/i (for i D 0; 1) which in turn induce (by
formulas like 5.6(b)) involutions on XM , on ..R:N:R/=X/M , on .X i /M and on
..R:N:R=X/i /M (for i D 0; 1) which are denoted again by ˚ . Using 5.5(a) we see
that each of these involutions preserve the image of right multiplication by Rs

�;>0,
hence we have induced involutions on XM , on ..R:N:R/=X/M , on .X i /M and on

..R:N:R=X/i /M (for i D 0; 1) which are denoted again by ˚ .

Using the definitions we see that the exact sequence 5.10(a) is compatible with
the involutions ˚ on each of its terms. Using the definitions we also see that the
obvious direct sum decompositions

XM D .X0/M ˚ .X1/M ;

.R:N:R=X/M D ..R:N:R=X/0/M ˚ ..R:N:R=X/1/M
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are compatible with the involutions ˚ on each of their terms. It follows that for
i 2 Z we have

tr.˚; .R:N:R/M
i
/ D tr.˚;XM

i
/C tr.˚; .R:N:R=X/M

i
/(a)

D tr.˚; .X0/M
i
/C tr.˚; .X1/M

i
/

C tr.˚; ..R:N:R=X/0/M
i
/C tr.˚; ..R:N:R=X/1/M

i
/:

5.12 By a straightforward computation we see that the maps ti in (a)–(d) below are
isomorphisms in R:

(a) t1 W X1 ! NŒ�4�, given by

1:˛ˇ0 ı ˛�:1C ˛:ˇ:1C 1:ˇ:˛� C ˛:ˇ0:˛� 7! ˛�1ˇ C ˇ
with ˇ; ˇ0 2 N 1;

(b) t1 W X0 ! NŒ�2�, given by

1:˛ˇ0 ı ˛�:1C ˛:ˇ:1C 1:ˇ:˛� C ˛:ˇ0:˛� 7! ˇ C ˛ˇ0

with ˇ; ˇ0 2 N 0;
(c) t3 W .R:N:R=X/1 ! N 0Œ�2� induced by

1:ˇ0:1C ˛:ˇ1:1C 1:ˇ2:˛� C ˛:ˇ3:˛� 7! ˇ1 � ˇ2 C ˛�1ˇ0 � ˛ˇ3
with ˇ0; ˇ1; ˇ2; ˇ3 2 N 1;

(d) t4 W .R:N:R=X/0 ! N 0 induced by

1:ˇ0:1C ˛:ˇ1:1C 1:ˇ2:˛� C ˛:ˇ3:˛� 7! ˛ˇ1 � ˛ˇ2 C ˇ0 � ˛2ˇ3
with ˇ0; ˇ1; ˇ2; ˇ3 2 N 0.

5.13 The identities (a)–(d) below express a connection between  7! L and the
isomorphisms tj in 5.12:

(a) if  2 X1, then t1. L/ D w.t1.//
�;

(b) if  2 X0, then t2. L/ D w.t2.//
�;

(c) if  2 .R:N:R=X/1, then t3. L/ D sw.t3.//
�;

(d) if  2 .R:N:R=X/0, then t4. L/ D sw.t4.//
�.

Here ti ./ is viewed as an element of R and the shift is ignored.
We prove (a). Let  D 1:˛ˇ0 ı ˛�:1 C ˛:ˇ:1 C 1:ˇ:˛� C ˛:ˇ0:˛� 2 X1 be as in
Section 5.9. Then

L D 1:˛wˇ0� ı ˛�:1C ˛:wˇ�:1C 1:wˇ�:˛� C ˛:wˇ0�:˛�

and we must show that ˛�1wˇ� C wb0� D w.˛�1ˇ C ˇ0/�. This follows from the
equality w˛� D ˛.



392 G. Lusztig and D.A. Vogan, Jr.

We prove (b). In this case we must show that wˇ� C ˛wb0� D w.ˇ C ˛ˇ0/� for
ˇ; ˇ0 2 N 0. This again follows from the equality w˛� D ˛.

We prove (c). Let  D 1:ˇ0:1C˛:ˇ1:1C1:ˇ2:˛�C˛:ˇ3˛� be as in Section 5.9.
Then L D 1:wˇ�0 :1C ˛:wˇ�2 :1C 1:wˇ�1 :˛� C ˛:wˇ�3 :˛� and we must show that

wˇ�2 � wˇ�1 C ˛�1wˇ�0 � ˛wˇ�3 D sw.ˇ1 � ˇ2 C ˛�1ˇ0 � ˛ˇ3/�:
Since ˇi 2 N 1 we have s

�

ˇ�i D �b�i ; we have also s�

˛� D �˛� and sw D ws�.
Thus

sw.ˇ1 � ˇ2 C ˛�1ˇ0 � ˛ˇ3/� D w.s
�

ˇ�1 � s
�

ˇ�2 � .˛�/�1s
�

ˇ�0 C ˛�s
�

ˇ�3 /
D w.�ˇ�1 C ˇ�2 C .˛�/�1ˇ�0 � ˛�ˇ�3 /;

as desired.
We prove (d). In this case we must show that

˛wˇ�2 � ˛wˇ�1 � wˇ�0 C ˛2wˇ�3 D sw.˛ˇ1 � ˛ˇ2 � ˇ0 C ˛2ˇ3/�

for ˇi 2 N0. We have s
�

ˇ�i D b�i ; we have also s
�

˛� D �˛� and sw D ws�. Thus

sw.˛ˇ1 � ˛ˇ2 � ˇ0 C ˛2ˇ3/�
D w.�˛�s�

ˇ�1 C ˛�s
�

ˇ�2 � s
�

ˇ�0 C ˛�2s
�

ˇ�3 /
D w.�˛�ˇ�1 C ˛�ˇ�2 � ˇ�0 � ˛�2ˇ�3 /;

as desired. ut
5.14 The involution f 7! f Š, NM ! NM , given by f Š.m/ D fw.f .�.m///,
induces an involution # W NM ! NM (see 5.1) and also an involution NM !
NM denoted again by #. The involution f 7! f Š, N 0M ! N 0M , given by

f Š.m/ D fsw.f .�.m//, induces an involution #0 W N 0M ! N 0M (see 5.1) and
also an involution N 0M ! N 0M denoted again by #0. Using that w

�1
˛ D ˛� and

.sw/�1
˛ D �˛�, we see that:

(a) # W NM ! NM is RŒ˛��=.˛�2/-linear; #0 W N 0M ! N 0M is only R-linear

and satisfies #0.f ˛�/ D �#0.f /˛� for f 2 N 0M .

Note that NM , N 0M are free right RŒ˛��=.˛�2/-modules. Hence for any i we have
exact sequences of R-vector spaces

0! NM
i�2

c�! NM

i

d�! NM
i ! 0;

0! N 0Mi�2
c0

�! N 0M
i

d 0

�! N 0M i ! 0;

where c; c0 are induced by right multiplication by ˛� and we have d# D #d ,
d 0#0 D #0d , c# D #c, c0#0 D �#0c0. (We use (a).) It follows that for any i 2 Z
we have
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(b) tr.#;NM

i
/ D tr.#;NM

i /C tr.#;NM
i�2/;

(c) tr.#0; N 0M
i
/ D tr.#;N 0M i / � tr.#;N 0M i�2/:

Using the isomorphisms in 5.12 and the identities in 5.13, we see that for any i 2 Z
we have

tr.˚; .X0/M
i
/ D tr.#;NM

i�4/;

tr.˚; .X1/M
i
/ D tr.#;NM

i�2/;

tr.˚; ..R:N:R=X/0/M
i
/ D tr.#0; N 0M

i�2/;

tr.˚; ..R:N:R=X/1/M
i
/ D tr.#0; N 0M

i
/:

Introducing this into 5.11(a) we deduce

tr.˚; .R:N:R/M
i
/ D tr.#;NM

i�4/C tr.#;NM

i�2/

C tr.#0; N 0M
i�2/C tr.#0; N 0M

i
/;

from which (taking into account (b), (c) and 5.5(c)) we deduce

tr.
;P i�4/C tr.
; P i�6/
D tr.#;NM

i�4/C tr.#;NM
i�6/C tr.#;NM

i�2/C tr.#;NM
i�4/

C tr.#0; N 0M i�2/ � tr.#0; N 0M i�4/C tr.#0; N 0Mi / � tr.#0; N 0M i�2/:

We multiply this equality by v�i and sum over all i . We get

X

i

tr.
; P i�4/v�i C
X

i

tr.
; P i�6/v�i

D
X

i

tr.#;NM
i�4/v�i C

X

i

tr.#;NM
i�6/v�i C

X

i

tr.#;NM
i�2/v�i

C
X

i

tr.#;NM
i�4/v�i C

X

i

tr.#0; N 0M i�2/v�i �
X

i

tr.#0; N 0Mi�4/v�i

C
X

i

tr.#0; N 0Mi /v
�i �

X

i

tr.#0; N 0M i�2/v�i ;

that is (using also 5.3(a)):

�w .R:M:R; �0/v�4 C �w .R:M:R; �0/v�6
D �w .M; �/v�4 C �w .M; �/v�6 C �w .M; �/v�2 C �w .M; �/v�4
C �sw .M; �/v�2 � �sw .M; �/v�4 C �sw .M; �/ � �sw .M; �/v�2;



394 G. Lusztig and D.A. Vogan, Jr.

where �0 is as in 5.1. We divide both sides by v�4 C v�6; we obtain

�w.R:M:R; �0/ D �w.M; �/C �w.M; �/v2 � �sw.M; �/v2 C �sw.M; �/v4:
This proves 5.2(d) and (equivalently 5.2(b)). Theorem 5.2 is proved.

6 Applications

6.1 Theorem 6.2 below describes the action of Ts C 1 2 H in the H-module M
(see 3.5, 3.6) for a fixed s 2 S . We set

I0 D f´ 2 I; l.´/ < l.s´/g; I00 D f´ 2 I; l.´/ > l.s´/g:
Ie D f´ 2 II s´ D ´s�g; In D f´ 2 II s´ ¤ ´s�g;

I0e D I0 \ Ie; I0n D I0 \ In; I00e D I00 \ Ie; I00n D I00 \ In:

We denote by w 7! ew the involution of I given by w 7! sw if w 2 Ie and w 7!
sws� if w 2 In.

Theorem 6.2. In the H-module M the following identities hold for any ´ 2 I:

.Ts C 1/a´ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

.uC 1/.a´ C a
é

/ if ´ 2 I0e;
.u2 � u/.a´ C a

é

/ if ´ 2 I00e ;
a´ C a

é

if ´ 2 I0n;
u2.a´ C a

é

/ if ´ 2 I00n:

(Recall that u D v2.) We define a map I! I0, ´ 7! b́by ´ 7! ´ if ´ 2 I0 and ´ 7! é

if ´ 2 I00. For any ´ 2 I we set

.Ts C 1/a´ D
X

y2I

cy;´ay

where cy;´ 2 A0. The following equality (for any .M; �/ 2 eC ]) is a reformulation
of Theorem 5.2:

X

y2I0

X

´2I

�´.M; �/cy;´ay D
X

y2I0

n

.�ey.M; �/v4 C �y.M; �//ay

C
X

y2I0

e

.�ey.M; �/v4 � �ey.M; �/v2 C �y.M; �/v2 C �y.M; �//ay :

Taking .M; �/ D .Bx ; �x/ (see 3.2) we see that for any x 2 I, we have

X

´2I

�´.Bx ; �x/cy;´ D
(

�ey.Bx ; �x/v
4 C �y.Bx ; �x/ if y 2 I0n

�ey.Bx ; �x/.v
4 � v2/C �y.Bx ; �x/.v2 C 1/ if y 2 I0e:
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Since the functions ´ 7! Œx 7! �´.Bx ; �x/� from I to the set of maps I ! A0 are
linearly independent (see 3.4, 3.5), we deduce that for y 2 I0n, ´ 2 I we have

cy;´ D v4 if y D éI cy;´ D 1 if y D ´I cy;´ D 0 if ´ … fy;eygI
and for y 2 I0e , ´ 2 I we have

cy;´ D v4 � v2 if y D éI cy;´ D v2 C 1 if y D ´I cy;´ D 0 if ´ … fy;eyg:
Thus for any ´ 2 I we have

(a) .Ts C 1/a´ D r´a
b́

C
X

y2I00

cy;´ay

where r´ D v4 if ´ 2 I00n, r´ D 1 if ´ 2 I0n, r´ D v4 � v2 if ´ 2 I00e , r´ D v2 C 1 if
´ 2 I0e .

We apply .TsC1/ to both sides of (a) and we use that .TsC1/2 D .u2C1/.TsC1/
in H. We obtain

.u2 C 1/r´a
b́

C
X

y2I00

.u2 C 1/cy;´ay

D r´r
b́

a
b́

C r´
X

y2I00

c
y;b́
ay C

X

y2I00

rycy;´a
ey C

X

y2I00;y02I00

cy;´cy0;yay0

for any ´ 2 I. Taking the coefficients of ay with y 2 I0 in the two sides of the last
equality we obtain

.u2 C 1/r´ı
b́;y
D r´r

b́

ı
b́;y
C r
eycey;´:

We see that if y 2 I0, then c
ey;´ D 0 unless y D b́ in which case we have c

ey;´ D
r�1
ey
r´..u

2 C 1/ � r
b́

/. The theorem follows. ut
6.3 By Theorem 6.2, the H-module M is identified with the H-module denoted in
[L3, 	0.3] byM in such a way that to ay 2M corresponds to ay 2M in [L3]. The
duality functor M 7! D.M/ [S, proof of Proposition 5.9] can be used to define a
Z-linear map N W K].eC/! K].eC/ which satisfies

� vn D v�n for  2 K].eC/, n 2 Z,
� ŒBx ; �x � D ŒBx ; �x� for any x 2 I and
� u�1.Ts C 1/ D u�1.Ts C 1/ for any s 2 S and any  2 K].eC/.
It follows that the operator N W K].eC/! K].eC/ corresponds under the bijection �0
in 3.5(a), (b) to the operator N W M ! M given by [L3, Theorem 0.2]. It follows
that for x 2 I, eAx D v�l.x/

P

y2IIy�w eP y;x.u/ay 2 M (see 3.5) is fixed by the
operator N W M ! M in [L3, Theorem 0.2] where eP y;x are as in 3.5(c). Using
[L3, Theorem 0.4], it follows that for x 2 I we have eAx D Ax (notation of [L3,
Theorem 0.4]) and that for y 2 I; y � x, eP y;x coincides with the polynomial P �x;y
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introduced in [L3, Theorem 0.4]. Using now 3.5(d), we see that for y 2 I, y � x
and ı 2 f1;�1g, the following holds:

(a) .Py;x.u/C ıP �y;x.u//=2 2 NŒu�:

This proves Conjecture 9.12 in [L3]. (In the case where W is a Weyl group this was
already known from [LV].)

6.4 For x; y 2 W we have cxcy D P

´2W hx;y;´.u/c´ where hx;y;´.u/ 2
NŒu; u�1�. Hence for ´;w 2 W , we have c´cwc.´�/�1 D P

w02W eh´;w;w0.u/cw
where

eh´;w;w0.u/ D
X

´02W
h´;w;´0.u/h´0;´��1;w0.u/ D

X

´02W
hw;´��1;´0.u/h´;´0;w0.u/:

For ´ 2 W;w 2 I, we write

c´Aw D
X

w02I

b´;w;w0.v/Aw0

where b´;w;w0.v/ 2 A0. For ´ 2 W , w;w0 2 I and ı 2 f1;�1g the following holds:

(a) .eh´;w;w0.u/C ıb´;w;w0.u//=2 2 NŒu; u�1�:

The proof is analogous to that of 6.3(a). (In the case where W is a Weyl group and
� D 1 this was stated in [LV, 	5.1].)

7 The H-module Mc

7.1 Let �L;�LR be the preorders on W defined as in [KL, after Theorem 1.3]; let
�L;�LR be the associated equivalence relations on W . In this section we fix an
equivalence class c for �LR that is, a two-sided cell of W . For w 2 W we write
w �LR c if w �LR w0 for some w0 2 c; we write w <LR c if w �LR c and w … c.
Let M�c (resp. M<c) be the A0-submodule of M generated by the elements Ax
with x 2 I such that x �LR c (resp. x <LR c). We show:

(a) M�c is an H-submodule of M.

With the notation in 6.4 it is enough to show that if ´ 2 W and w;w0 2 I satisfy
b´;w;w0.v/ ¤ 0 and w �LR c, then w0 �LR c. Using 6.4(a) we haveeh´;w;w0.u/ ¤
0, hence

P

´02W h´;w;´0.u/h´0;´�1;w0.u/ ¤ 0. It follows that for some ´0 2 W ,
we have h´;w;´0.u/ ¤ 0 and h´0;´�1;w0.u/ ¤ 0, hence w0 �LR ´0 �LR w and
w0 �LR w so that w0 �LR c, as required. ut

A similar proof shows:

(b) M<c is an H-submodule of M.
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We now define Mc D M�c=M<c . From (a), (b) we see that Mc inherits an
H-module structure from M�c . For x 2 I \ c we denote the image of Ax 2M�c
in Mc again by Ax . Note that fAx I x 2 I \ cg is an A0-basis of Mc .

7.2 In the remainder of this paper we assume that .W; l/ satisfies the boundedness
property in [L2, 	13.2]. (This holds automatically whenW is finite or an affine Weyl
group, and it probably holds in general.) Then the function a W W ! N is defined
as in [L2, 	13.6].

We recall the following properties:

(i) if ´; ´0 in W satisfy ´ �LR ´0, then a.´/ D a.´0/;
(ii) if ´; ´0 in W satisfy ´ �L ´0 and a.´/ D a.´0/, then ´ �L ´0.

(See [L2, Conjectures 14.2, P4, P9] and [L2, Ch.15]; the assumptions 15.1(a), (b) in
[L2, Ch.15] are satisfied by [EW].)

In this subsection we fix s 2 S . For w 2 W we set �w D .�1/l.w/. Let y;w 2 I.
As in [LV, 	4.1], [L3, 	6.1], we set

(a) v�l.w/Cl.y/P �y;w.v/ D ıy;w C �0y;wv�1 C �00y;wv�2 mod v�3ZŒv�1�;

where �0y;w 2 Z; �00y;w 2 Z. (When y 6� w we set P �y;w D 0.)
As in [LV, 	4.3], [L3, 	6.2], for any y;w 2 I such that sy < y < sw > w,

�y D �w , we define Ms
y;w 2 A0 by

Ms
y;w D �00y;w �

X

x2IIy<x<w;sx<x
�0y;x�0x;w � ısw;ws��0y;sw C �0sy;wısy;ys� :

We have the following result.

Let w 2 I \ c. In the H-module Mc we have the following identities:

(b) if sw < w, then csAw D .uC u�1/Aw ;
(c) if sw > w, then csAw D $ CP´2I\cIs´<´<sw;�´D�w

Ms
´;wA´,

where $ is given by

$ D
(

Asws� if sw ¤ ws� > w and sws� 2 c;
0 otherwise:

To prove (b), (c) we make use of the formula for csAw given in [LV, Theorem
4.4] (for Weyl groups) and [L3, Theorem 6.3] in the general case and show that all
terms of that formula which involve .vC v�1/ belong to M<c and can therefore be
neglected. It is enough to prove the following statements:

(d) If sw D ws� > w, then sw <LR c.
(e) If sw > w and ´ 2 I, �´ D ��w , s´ < ´ < sw, �0́ ;w ¤ 0, then ´ <LR c.

We prove (d). Since sw > w we have sw �L w. If sw �L w, then by [KL,
(2.4)], for any t 2 S such that .sw/t < sw, we have wt < w; in particular, since
sws� D w < sw we have ws� < w, a contradiction. Thus, we have sw 6�L w.
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From sw �L w, sw 6�L w, we deduce that sw 6�LR w. (If sw �LR w, then
a.sw/ D a.w/, see (i); from sw �L w; a.sw/ D a.w/ we deduce sw �L w by (ii),
a contradiction.) Now (d) follows.

We prove (e). Since �0́ ;w ¤ 0, the coefficient of vl.w/�l.´/�1 in P �´;w.v/ is¤ 0.
Using 6.3(a) we deduce that the coefficient of vl.w/�l.´/�1 in P´;w.v/ is¤ 0. Since
s´ < ´ < sw > w, the last coefficient is known to be equal to hs;w;´ (an integer),
see [KL]. Thus we have hs;w;´ ¤ 0 so that ´ �L w. If ´ �L w, then by [KL, (2.4)],
for any t 2 S such that ´t < ´ we have wt < w; but from s´ < ´, ´ 2 I, we
deduce ´s� < ´, hence ws� < w. From ws� < w and w 2 I we deduce sw < w,
a contradiction. Thus we have ´ 6�L w. From ´ �L w, ´ 6�L w, we deduce that
´ 6�LR w. (If ´ �LR w, then a.´/ D a.w/ by (i); from ´ �L w; a.´/ D a.w/ we
deduce ´ �L w by (ii), a contradiction.) Now (e) follows.

This completes the proof of (b) and (c). ut
7.3 For ı 2 f1;�1g let Mı

c be the A0-submodule of Mc generated by

fAx I x 2 I \ c; �x D ıg:
From 7.2(b), (c) we see that Mı

c is an H-submodule of M. Clearly, we have
Mc DM1

c ˚M�1
c as H-modules.

7.4 The formulas 7.2(b), (c) for the action of cs in the basis fAx I x 2 I \ cg of
Mc are similar to those in a W -graph (see [KL]) since the coefficients in the right-
hand side of 7.2(c) are integer constants. (Unlike the case of W -graph these integer
constants can in principle depend on s, although we do not know an example when
they do.) Note that the action of left multiplication by cs in the basis fAx I x 2 Ig of
M is not given by a W -graph, due to the appearence of terms involving v C v�1.
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1 Introduction

Let .W; S/ be a Coxeter system and write H for its associated Iwahori–Hecke
algebra. This algebra has a “standard basis” indexed by the elements of W , whose
structure constants have a simple inductive formula. The Kazhdan–Lusztig basis of
H is the unique basis which is invariant under a certain antilinear map H ! H,
referred to as the “bar involution,” and whose elements are each unitriangular lin-
ear combinations of standard basis elements with respect to the Bruhat order. The
standard basis and bar involution of H are an example of what Webster [22] calls a
pre-canonical structure, relative to which the Kazhdan–Lusztig basis is a canonical
basis. This terminology, whose precise definition we review in Section 2.1, is useful
for organizing several similar constructions attached to Coxeter systems. Webster’s
idea of a canonical basis is closely related to Du’s notion of an IC basis [4] and also
to Stanley’s notion of a P -kernel [19], and in Section 2.2 we discuss the relationship
between these three concepts.

In [13, 14, 15], Lusztig and Vogan study a representation of a modified Iwahori–
Hecke algebra H2 on the free ZŒv; v�1�-module generated by the set of twisted
involutions I D I.W; S/ in a Coxeter group. (See Section 2.4 for the definition
of this set; though we mean something more general, in this introduction one can
simply take I D fw 2 W W w2 D 1g.) They show that this module has a unique pre-
canonical structure which is compatible with the action of H2, and that this structure
admits a canonical basis, of which the Kazhdan–Lusztig basis can be viewed as a
special case.

The definition of Lusztig and Vogan’s H2-representation has a particularly sim-
ple form, and gives an example of a generic .H2; I/-structure as defined in Section
3.4. It turns out that there are a number of slight modifications one can make to this
definition which produce other H2-module structures on the free ZŒv; v�1�-algebra
generated by I; some (but not all) of these modules likewise possess a unique pre-
canonical structure compatible with the action of H2; in each such case there is a
unique associated canonical basis. We review Lusztig and Vogan’s results in Sec-
tion 4.1, and derive from them a family of analogous theorems (along the lines just
described) in Section 4.2. In Section 4.3 we present another variation of these re-
sults, in which the role of the modified Iwahori–Hecke algebra H2 is replaced by
the usual algebra H. These constructions give three canonical bases indexed by the
twisted involutions in a Coxeter group; these bases all can be seen as generalizations
of the Kazhdan–Lusztig basis of H, but, somewhat unexpectedly, they do not appear
to be related to each other in any simple way.

In Sections 3.3 and 3.4 we describe a precise sense in which these three bases
account for all canonical bases on this space. Specifically, we define in Section 3.1 a
category whose objects are pre-canonical structures on free ZŒv; v�1�-modules. Our
definition of morphisms in this category has the following appealing properties:

(i) Canonical bases arising from isomorphic pre-canonical structures are always
related in a simple way; in particular, their coefficients (when written as sums
of standard basis elements) are equal up to a change of sign or the variable
substitution v 7! �v; see Corollary 3.9.
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(ii) Assume the free ZŒv; v�1�-module generated by W has a pre-canonical struc-
ture in which the natural basis W is standard. If this structure satisfies a natural
compatibility condition with an H-representation on the ambient space, then it
is isomorphic to the pre-canonical structure on H itself, and so it has a unique
canonical basis which can be identified in the sense of (i) with the Kazhdan–
Lusztig basis; see Theorem 3.12.

With respect to these definitions, our main results are as follows. Suppose we are
given a pre-canonical structure on the free ZŒv; v�1�-module generated by the set of
twisted involutions in W , in which the natural basis I is the standard one. We prove
that

(1) If the structure is compatible with any representation of H of a certain natural
form, then it is isomorphic to the pre-canonical structure we define in Section
4.3; see Theorem 3.16.

(2) If the structure is compatible (in a certain natural sense) with a representation
of the modified Iwahori–Hecke algebra H2, then it is isomorphic to one of four
pre-canonical structures: the one Lusztig and Vogan define in [13, 14], the one
we define in Section 4.2, or one of two non-isomorphic structures derived from
the one given in Section 4.3; see Theorem 3.20.

These results provide some formal justification for considering the pre-canonical
structures described in Sections 4.1, 4.2, and 4.3 to be particularly natural objects.
Lusztig and Vogan have given two interpretations of the first structure, in terms of
the geometry of an associated algebraic group when W is a Weyl group [14] and
in terms of the theory of Soergel bimodules for general W [15]. It remains an open
problem to give similar interpretations of the two other pre-canonical structures.

2 Preliminaries

2.1 Canonical bases

Throughout we let A D ZŒv; v�1� denote the ring of Laurent polynomials with
integer coefficients in a single indeterminant. We write f 7! f for the ring invo-
lution of A with v 7! v�1 and say that a map ' W U ! V between A-modules is
A-antilinear if '.f u/ D f 	'.u/ for f 2 A and u 2 U . Let V be a free A-module.

Definition 2.1. A (balanced) pre-canonical structure on V consists of

� a “bar involution”  given by an A-antilinear map V ! V with  2 D 1.
� a “standard basis” facg with partially ordered index set .C;�/ such that

 .ac/ 2 ac C
X

c0<c

A 	 ac0 :
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This is equivalent to Webster’s definition of a balanced pre-canonical structure
[22, Definition 1.5]. In this work we will only consider pre-canonical structures
which are balanced in this sense, and from this point on we drop the adjective “bal-
anced” and just refer to “pre-canonical structures.” The reader should note, however,
that in [22] a pre-canonical structure refers to a slightly more general construction
which includes Definition 2.1 as a special case.

Assume V has a pre-canonical structure . ; facg/; we then have this accom-
panying notion.

Definition 2.2. A set of vectors fbcg in V indexed by .C;�/ is a canonical basis if

(C1) each vector bc in the basis is invariant under  .
(C2) each vector bc in the basis is in the set bc D ac CPc0<c v

�1ZŒv�1� 	 ac0 .

This definition of a canonical basis is slightly different from the one which Web-
ster gives [22, Definition 1.7], but is equivalent when the pre-canonical structure on
V is balanced (which we assume everywhere in this work) by [22, Lemma 1.8].

Example 2.3. We view the ring A itself as possessing the pre-canonical structure in
which the bar involution is the map f 7! f and the standard basis is the singleton
set f1g. This structure admits a canonical basis, which is again just f1g.

The following crucial property of a canonical basis appears in the introduction of
[22]; its elementary proof is an instructive exercise.

Proposition 2.4 (Webster [22]). A pre-canonical structure admits at most one
canonical basis.

It is usually difficult to describe elements of a canonical basis explicitly. How-
ever, one can often at least guarantee that a canonical basis exists. Continue to as-
sume V is a free A-module with a pre-canonical structure . ; facg/ whose standard
basis is indexed by .C;�/.
Theorem 2.5 (Du [4]). If all lower intervals .�1; x� D fc 2 C W c � xg in the
partially ordered index set .C;�/ are finite, then the pre-canonical structure on V
admits a canonical basis.

Proof. The result is equivalent to [4, Theorem 1.2 and Remark 1.2.1(1)]. One can
also adapt the argument Lusztig gives in [13, Section 4.9], which proves the exis-
tence of a canonical basis in one particular pre-canonical structure but makes sense
in greater generality. ut

Webster lists several examples of pre-canonical structures from representation
theory in the introduction of [22]. Pre-canonical structures, such as in these ex-
amples, arise naturally from graded categorifications, by which we broadly mean
isomorphisms

V
���! ŒC � (2.1)
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where C is an additive category with Z-graded objects, and ŒC � denotes its split
Grothendieck group: this is the A-module generated by the symbols ŒC � for objects
C 2 C , subject to the relations ŒA�CŒB� D ŒC �wheneverA˚B Š C and vnŒC � D
ŒC.n/� where C.n/ is the object C 2 C with its grading shifted down by n. The bar
involution of a pre-canonical structure on V should then correspond via (2.1) to a
duality functor on C , and elements of the standard basis should arise as some set
of easily located objects in C , each of which contains a unique indecomposable
summand not found in smaller objects. A canonical basis in turn should correspond
to a representative set of indecomposable objects which are self-dual with respect
to some choice of grading shift.

Example 2.6. The pre-canonical structure on V D A comes from the categorifica-
tion taking C to be the category of finitely generated Z-graded freeR-modules (with
R any commutative ring), with morphisms given by grading preserving R-linear

maps. For this category, there is a unique ring isomorphism A ��! ŒC � identifying
1 2 A with Œ11� 2 ŒC �, where 11 denotes the graded R-module whose nth com-
ponent is R when n D 0 and is 0 otherwise. The bar involution f 7! f on A is
the decategorification of the duality functor M 7! Hom.M; 11/ where Hom.M; 11/
denotes the graded R-module whose nth component is the set of grading preserving
R-linear maps M ! 11.n/.

In general, confronted with some natural pre-canonical structure, it is an inter-
esting problem (which in the present work we do not address) to identify a cate-
gorification which can explain the existence and special properties of an associated
canonical basis.

2.2 Comparison with IC bases and P-kernels

Webster’s definition of canonical bases is similar to two concepts appearing earlier
in the literature: IC bases as formalized by Du in [4] and P -kernels as introduced
by Stanley in [19]. We review this terminology here, and explain how one may view
canonical bases as special cases of IC bases, and P -kernels as special cases of pre-
canonical structures. We remind the reader that for us, all pre-canonical structures
(as specified by Definition 2.1) are what Webster [22, Definition 1.5] calls balanced
pre-canonical structures.

To begin, we recall the following definition from [4], studied elsewhere, for
example, in [3, 6].

Definition 2.7. Let V be a free A-module with

� a “bar involution”  given by an A-antilinear map V ! V with  2 D 1.
� a “standard basis” facg with index set C .
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A set of vectors fbcg of V is an IC basis relative to . ; facg/ if it is the unique basis
such that

 .bc/ D bc and bc 2 ac C
X

c02C
v�1ZŒv�1� 	 ac0 for each c 2 C .

Remark 2.8. In [3, 4, 6], this definition is formulated slightly differently. There, one
begins with a bar involution , a basis fmcgc2C of V , and a function r W C ! Z. An
IC basis of V is then defined exactly as above relative to  and the standard basis
facg given by setting ac D v�r.c/mc . One passes to our definition by assuming
r D 0; there is clearly no loss of generality in this reduction.

The initial data in the definition of an IC basis is more general than a pre-
canonical structure in two aspects: there is no condition on the action of the bar
involution on the standard basis, and the index set C is no longer required to be
partially ordered. When the initial data . ; facg/ is a pre-canonical structure, the
notions of a canonical basis and an IC basis are equivalent:

Proposition 2.9. Let V be a free A-module with a pre-canonical structure . ; facg/.
Relative to . ; facg/, a set of vectors fbcg in V is a canonical basis if and only if it
is an IC basis.

Proof. Suppose fbcg is an IC basis relative to . ; facg/. Let fx;y 2 v�1ZŒv�1�
for x; y 2 C be the polynomials such that by D ay CP

x2C fx;yax . To show
that fbcg is a canonical basis, we must check that fx;y D 0 whenever x 6< y.
This follows since if y 2 C is fixed and x 2 C is maximal among all elements
x 6< y with fx;y ¤ 0, then the equality by D  .by/ together with the unitriangular
formula for  implies that fx;y D fx;y , which is impossible for a nonzero element
of v�1ZŒv�1�.

Now suppose conversely that fbcg is a canonical basis. This basis automatically
has both desired properties of an IC basis, so it remains only to show that it is
the unique basis with these properties. This follows from Proposition 2.4, since the
argument in the previous paragraph shows that any other basis fb0cg with the desired
properties of an IC basis is a canonical basis. ut

Stanley first introduced in [19] the concept of a P -kernel for any locally finite
poset P , which Brenti studied subseqently in [2, 3]. To define P -kernels we must
review some terminology for partially ordered sets; [20, Chapter 3] serves as the
standard reference for this material.

Let P be a partially ordered set (i.e., a poset) and let Int.P / D f.x; y/ 2 P 2 W
x � yg. Assume the poset P is locally finite, i.e., that ft 2 P W x � t � yg is finite
for all x; y 2 P . Let R be a commutative ring and let q be an indeterminate. The
incidence algebra I.P IRŒq�/ is the set of functions f W Int.P /! RŒq�; with sums
and scalar multiplication given pointwise and products given by

.fg/.x; y/ D
X

x�t�y
f .x; t/g.t; y/ for f; g W Int.P /! RŒq�:
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This algebra has a unit given by the function ıP W Int.P /! RŒq� with ıP .x; y/ D
ıx;y for x; y 2 P . A function f W Int.P /! RŒq� is invertible if and only if f .x; x/
is a unit in RŒq� for all x 2 P . We adopt the convention of setting f .x; y/ D 0

whenever f W Int.P /! RŒq� and x; y 2 P are elements such that x 6� y.
Finally, let r W P ! Z be a function such that r.x/ < r.y/ if x < y, and

define r.x; y/ D r.y/ � r.x/ for x; y 2 P . Relative to the initial data .P;R; q; r/,
we have the following definition, which can be found as [19, Definition 6.2] or in
[3, Section 2].

Definition 2.10. An element K 2 I.P IRŒq�/ is a P -kernel if

(1) K.x; x/ D 1 for all x 2 P .
(2) There exists an invertible f 2 I.P IRŒq�/ such that

.Kf /.x; y/ D qr.x;y/f .x; y/ for x; y 2 P .

An invertible element f 2 I.P / satisfying (2) is called K-totally acceptable.

Brenti proves the following result as [2, Theorem 6.2]. This statement strengthens
an earlier result [19, Corollary 6.7] due to Stanley.

Theorem 2.11 (Brenti [2]). Suppose K 2 I.P IRŒq�/ is a P -kernel. If P is locally
finite, then there exists a unique K-totally acceptable element � 2 I.P IRŒq�/ such
that

�.x; x/ D 1 and degq.�.x; y// <
1
2
r.x; y/

for all x; y 2 P with x < y. Call � the KLS-function of K. (Here “KLS” abbrevi-
ates “Kazhdan–Lusztig–Stanley.”)

Returning to our earlier convention, we let C be an index set with a partial order
�. Assume the hypothesis of Theorem 2.5 (i.e., that all lower intervals in C are
finite) and let V be the free A-module with a basis given by the symbols ac for
c 2 C . To translate the language of P -kernels into pre-canonical structures, assume
P D .C;�/ and R D Z and q D v2. Given a P -kernel K, we may then define
 K W V ! V as the A-antilinear map with

 K.ay/ D
X

x2C
vr.x;y/ 	K.x; y/ 	 ax for y 2 C .

Note that our assumption that C has finite lower intervals ensures that the sum on
the right side of this formula is well-defined.

In [2], Brenti proves that P -kernels are equivalent to IC bases of a special form.
It turns out that this special form is essentially the requirement that the initial data
. ; facg/ of an IC basis form a pre-canonical structure. Brenti’s results thus translate
via Proposition 2.9 into the following statement relating P -kernels and canonical
bases.

Theorem 2.12 (Brenti [2]). Assume P D .C;�/ and R D Z and q D v2.
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(a) The map K 7!  K is a bijection from the set of P -kernels to the set of maps  
such that . ; facg/ is a pre-canonical structure on V with the property that

 .ay/ 2 ZŒv�2�-spanfvr.x;y/ax W x 2 C g for y 2 C .

(b) If � is the KLS-function of a P -kernel K and fbcg is the canonical basis of V
relative to the pre-canonical structure . K ; facg/, then

by D
X

x2C
v�r.x;y/ 	 �.x; y/ 	 ax for y 2 C .

Remark 2.13. Note that part (b) is only a meaningful statement if the KLS-function
� and the canonical basis fbcg both exist, but this follows from Theorems 2.5 and
2.11 since we assume all lower intervals in P D .C;�/ are finite. Observe that
since �.x; y/ 2 ZŒv2� for all x; y 2 C , this result shows that not all canonical bases
correspond to KLS-functions of P -kernels.

Proof. The definition of  K makes sense for any K 2 I.P;RŒq�/, and part (a) is
equivalent to the statement that . K ; facg/ is a pre-canonical structure if and only
if K is a P -kernel. Clearly . K ; facg/ is a pre-canonical structure if and only if
K.x; x/ D 1 for all x 2 P and  2K D 1. The assertion that these two properties
hold if and only if K is a P -kernel is precisely [2, Proposition 3.1], since the map
� defined in part (ii) of that result is just  K�1 (with mc D vr.c/ac). Part (b) is
equivalent to [2, Theorem 3.2] by Proposition 2.9. ut

2.3 Pre-canonical module structures

In this short section we introduce a useful variant of Definition 2.1. Suppose B is an
A-algebra with a pre-canonical structure; write b for the image of b 2 B under the
corresponding bar involution. (For us, all algebras are unital and associative.) Let V
be a B-module which is free as an A-module.

Definition 2.14. A pre-canonical B-module structure on V is a pre-canonical struc-
ture whose bar involution  W V ! V commutes with the bar involution of B in the
sense that

 .bx/ D b 	  .x/ for all b 2 B and x 2 V:
Observe that a pre-canonical structure is thus the same thing as a pre-canonical

A-module structure. The additional compatibility condition satisfied by a pre-
canonical B-module structure can be useful for proving uniqueness statements. In
particular, we have the following lemma.

Lemma 2.15. Suppose V has a basis facg with partially ordered index set .C;�/. If
V is generated as a B-module by the minimal elements of the basis facg, then there
exists at most one pre-canonical B-module structure on V in which facg serves as
the “standard basis.”
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Proof. Suppose  and  0 are two A-antilinear maps V ! V which, together with
facg, give V a pre-canonical B-module structure. Let U � V be the set of elements
on which  and  0 agree. Then U is a B-submodule which contains the minimal
elements of the basis facg. Since these elements generate V , we have U D V , so
 D  0. ut

2.4 Twisted involutions

We review here the definition of the set of twisted involutions attached to a Coxeter
system. This set has many interesting combinatorial properties; see [7, 8, 9, 10,
11, 18]. Let .W; S/ be any Coxeter system. Write ` W W ! N for the associated
length function and � for the Bruhat order. We denote by Aut.W; S/ the group of
automorphisms � W W ! W such that �.S/ D S , and define

W C D f.x; �/ W x 2 W and � 2 Aut.W; S/g:
We extend the length function and Bruhat order to W C by setting `.x; �/ D `.x/

and by setting .x; �/ � .x0; � 0/ if and only if � D � 0 and x � x0. The set W C has
the structure of a group, in which multiplication of elements is given by

.x; ˛/.y; ˇ/ D .x 	 ˛.y/; ˛ˇ/:
We view W � W C as a subgroup by identifying x 2 W with the pair .x; 1/.
Likewise, we view Aut.W; S/ � W C as a subgroup by identifying � 2 Aut.W; S/
with the pair .1; �/. With respect to these inclusions, W C is a semidirect product
W Ì Aut.W; S/.

Definition 2.16. The set of twisted involutions of a Coxeter system .W; S/ is

I D I.W; S/ D fw 2 W C W w D w�1g:
A pair .x; �/ 2 W C belongs to I if and only if � D ��1 and �.x/ D x�1. In
this situation, often in the literature the element x 2 W is referred to as a twisted
involution, relative to the automorphism � . We have defined twisted involutions
slightly more generally as ordinary involutions of the extended groupW C, since all
of the results we will state are true relative to any choice of automorphism � .

If s 2 S and w D .x; �/ 2 I, then sws D .s 	 x 	 �.s/; �/ is also a twisted
involution. The latter may be equal to w; in particular, sws D w if and only if
sw D ws, in which case sw 2 I. Let s Ë w denote whichever of sws or sw is in
I n fwg; i.e., define

s Ë w D
(

sws if sw ¤ ws
sw if sw D ws for s 2 S and w 2 I: (2.2)

While s Ë .s Ë w/ D w, the operation Ë does not extend to an action of W of I.
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The restriction of the Bruhat order on W to I forms a poset with many special
properties. Concerning this, we will just need the following result, which rephrases
[7, Theorem 4.8].

Theorem 2.17 (Hultman [7]). The poset .I;�/ is graded, and its rank function
� W I! N satisfies

�.sËw/ D �.w/�1 , `.sËw/ < `.w/ , `.sw/ D `.w/�1
for all s 2 S and w 2 I.

We reserve the notation � in all later sections to denote the rank function of .I;�/.
Note that �.1/ D 0, and so one can compute �.w/ inductively using the equivalent
identities in the theorem. As with `, there are explicit formulas for � when W is a
classical Weyl group; see [10, 11].

2.5 Kazhdan–Lusztig basis

In this final preliminary section we recall briefly the definition of the Kazhdan–
Lusztig basis of the Iwahori–Hecke algebra of a Coxeter system. As references for
this material, we mention [1, 12, 21]. Continue to let .W; S/ be a Coxeter system
with length function ` W W ! N and Bruhat order �. We write H D H.W; S/ to
denote the free A-module with a basis given the symbols Hw for w 2 W . There is
a unique A-algebra structure on H such that

HsHw D
(

Hsw if sw > w

Hsw C .v � v�1/Hw if sw < w
for s 2 S and w 2 W:

The Iwahori–Hecke algebra of .W; S/ is H equipped with this structure.
The unit of H is the basis element H1, which often we write as 1 or simply

omit. Observe that H�1s D Hs C .v�1 � v/ and that Hw D Hs1 	 	 	Hsk whenever
w D s1 	 	 	 sk is a reduced expression. Hence every basis element Hw for w 2 W
is invertible. We denote by H 7! H the A-antilinear map H ! H with Hw D
.Hw�1/�1 for w 2 W . One checks that this map is a ring involution, and we have
the following result from Kazhdan and Lusztig’s seminal work [12].

Theorem 2.18 (Kazhdan and Lusztig [12]). Define

� the “bar involution” of H to be the map H 7! H .
� the “standard basis” of H to be fHwg with partially ordered index set .W;�/.
This is a pre-canonical structure on H and it admits a canonical basis fHwg.

The canonical basis fHwg is the Kazhdan–Lusztig basis of H. It is a simple
exercise to show for s 2 S that H s D Hs C v�1: Define hy;w 2 ZŒv�1� for
y;w 2 W such that Hw D

P

y2W hy;wHy . We note the following well-known
property of these polynomials.
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Proposition 2.19 (Kazhdan and Lusztig [12]). If y � w, then

v`.w/�`.y/hy;w 2 1C v2ZŒv2�:
Remark 2.20. Define q D v2 and Py;w D v`.w/�`.y/hy;w for y;w 2 W . The
polynomials Py;w 2 ZŒq� are usually called the Kazhdan–Lusztig polynomials of
the Coxeter system .W; S/.

The Kazhdan–Lusztig basis has several remarkable positivity properties; for
example, it is now known from work of Elias and Williamson [5] that for all
x; y 2 W one has hx;y 2 NŒv�1� and HxHy 2 NŒv; v�1�-spanfH ´ W ´ 2 W g.
Available proofs of such phenomena make extensive use of the interpretation of
the Iwahori–Hecke algebra H as the split Grothendieck of an appropriate category
(in [5], the category of Soergel bimodules). This is an important motivation for the
problem of constructing categorifications which give rise to pre-canonical structures
of interest.

3 Characterizations

The results of Kazhdan and Lusztig in the previous section give us a canonical basis
for the free A-module generated by any Coxeter group W . In turn, recent results
of Lusztig and Vogan [13, 14, 15] construct a canonical basis of the free A-module
generated by the set of twisted involutions in W . In this section our goal, broadly
speaking, is to characterize the ways one can modify such constructions to get other
canonical bases, and to explain how such bases differ from each other.

3.1 Morphisms for pre-canonical structures

To this end, our first task is to describe what it means for two pre-canonical struc-
tures to be the same. This amounts to defining what should comprise a morphism
between pre-canonical structures on free A-modules. In this pursuit we are guided
by the principle that if a morphism exists from one pre-canonical structure to an-
other, and if the first structure admits a canonical basis, then the second structure
should admit a canonical basis which can be described explicitly in terms of the first
basis.

The following is a natural but rigid notion of (iso)morphism compatible with this
philosophy. Suppose V and V 0 are free A-modules with respective pre-canonical
structures . ; facg/ and . 0; fa0cg/. We say that an A-linear map ' W V ! V 0 is a
strong isomorphism of pre-canonical structures if ' restricts to an order-preserving
bijection facg ! fa0cg between standard bases and ' commutes with bar involutions
in the sense that ' ı  D  0 ı ': Under these conditions, ' is necessarily invert-
ible as an A-linear map. The inverse and composition of strong isomorphisms of
pre-canonical structures are again strong isomorphisms of pre-canonical structures.
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Moreover, if ' W V ! V 0 is a strong isomorphism of pre-canonical structures and
V admits a canonical basis fbcg, then f'.bc/g is a canonical basis of V 0.

There are other situations in which we would like to consider two pre-canonical
structures to be “the same” besides when they are strongly isomorphic. We illustrate
this as follows. Continue to let V be a free A-module with a pre-canonical struc-
ture . ; facg/ whose standard basis is indexed by .C;�/. Suppose for each index
c 2 C we have an element dc 2 A. Let uc D dcac and consider the set of rescaled
basis elements fucg, likewise indexed by .C;�/. These elements are linearly in-
dependent if and only if each dc ¤ 0, so assume this condition holds and define
U D A-spanfuc W c 2 C g. One naturally asks when . ; fucg/ is a pre-canonical
structure on the submodule U � V . Since we have

 .uc/ 2 dc

dc
	 uc C

X

c0<c

A 	 dc

dc0

	 uc0

it follows that . ; fucg/ is a pre-canonical structure on U at least when (i) each
dc D dc and (ii) dc D qc0;cdc0 for some qc0;c 2 A whenever c0 < c in C . Moreover,
the first of these sufficient conditions is also necessary. Note that if (i) and (ii) hold,
then qc0;c D qc0;c and so qc0;c 2 ZŒv C v�1� since ZŒv C v�1� is the set of bar
invariant elements of A.

Assume conditions (i) and (ii) hold and further that V admits a canonical basis
fbcg with respect to the pre-canonical structure . ; facg/. If U also has a canonical
basis, then one asks how it is related to the basis facg; in particular, when does some
rescaling of fbcg give a canonical basis for U ? By condition (C2) in Definition 2.2,
it follows that the only possible such basis would be given by fdcbcg. Since

dcbc 2 uc C
X

c0<c

v�1ZŒv�1� 	 qc0;c 	 uc0 ;

it follows that fdcbcg is a canonical basis for U at least when qc0;c 2 ZŒv�1�. Since
Z D ZŒv�1� \ ZŒv C v�1�, we may summarize this discussion with the following
lemma.

Lemma 3.1. For each index c 2 C let dc 2 A and define

uc D dcac and U D A-spanfuc W c 2 C g:
Suppose the following conditions hold:

(i) dc 2 ZŒv C v�1� and dc ¤ 0 for all c 2 C .
(ii) dc=dc0 2 Z whenever c0 < c.

Then . ; fucg/ is a pre-canonical structure on U . If fbcg is a canonical basis of V ,
then fdcbcg is a canonical basis of U .

Morphisms between pre-canonical structures should at least include strong iso-
morphisms and also the A-linear maps D W V ! V 0 given by D.ac/ D dcac when
the conditions hold in the preceding proposition. There is a third kind of map which
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should form a morphism; in particular, it is natural to consider the map ˚ given by
(3.1) to be a morphism between the pre-canonical structures on H and H2, as we
will see in the following lemma.

Let � be a ring endomorphism of A. Such a map is Z-linear and completely deter-
mined by its value at v 2 A, which must be a unit, since �.v/�.v�1/ D �.vv�1/ D
�.1/ D 1. It follows that �.v/ D ˙vn for some n 2 Z. Call n the degree of the
endomorphism �. We say that a map ' WM ! N between A-modules is �-linear if
'.f m/ D �.f /'.m/ for f 2 A and m 2M .

Lemma 3.2. Let � be a ring endomorphism of A and write � W V ! V and � W
V ! V for the respective �-linear and A-antilinear maps with

�.ac/ D ac and �.ac/ D � ı  .ac/ for c 2 C .

Then .�; facg/ is another pre-canonical structure on V . If fbcg is a canonical basis
of V relative to f ; facg/ and � has positive degree, then f�.bc/g is a canonical
basis of V relative to .�; facg/.
Proof. That .�; facg/ is a pre-canonical structure is clear from the definitions, and
checking that f�.bc/g is a canonical basis relative to this structure is straightforward.

ut
Motivated by the preceding lemmas, we adopt the following definition. Let V

and V 0 be free A-modules with pre-canonical structures . ; facg/ and . 0; fa0cg/.
Assume the standard bases facg and fa0cg have the same partially ordered index set
.C;�/.
Definition 3.3. A map ' W V ! V 0 is a morphism of pre-canonical structures if

(i) The map ' is �-linear for a positive degree ring endomorphism � W A! A.
(ii) There are nonzero polynomials dc 2 A for c 2 C with dc=dc0 2 Z whenever

c0 < c, such that if D W V ! V is the A-linear map with D.ac/ D dcac for
c 2 C , then  0 ı ' D ' ı  D , where we define  D D D�1 ı  ıD:

Remark 3.4. The polynomials dc in condition (ii) belong to ZŒv C v�1� since the
coefficients of ac in '�1 ı 0 ı'.ac/ and in  D.ac/, which must be equal, are 1 and
dc=dc respectively. This observation and the fact that dc=dc0 2 Z whenever c0 < c

in C ensure that  D is a well-defined map V ! V , even though D�1 may not be.

If ' W V ! V 0 is a morphism of pre-canonical structures, then we call a map
D W V ! V of the form in condition (ii) of Definition 3.3 a scaling factor of '.
If V 0 � V and ' is equal to one of its scaling factors, then we call ' a scaling
morphism. We define the degree of any morphism ' to be the degree of the ring
endomorphism � in condition (i). If V D V 0 and facg D fa0cg and the identity is a
scaling factor of ', then we call ' a parametric morphism.

In the rest of this section we describe some properties of morphisms in this sense.
We fix some notation. Let V and V 0 and V 00 be free A-modules with pre-canonical
structures .facg;  / and .fa0cg;  0/ and .fa00c g;  00/. Assume the standard bases of
these structures all have the same partially ordered index set .C;�/, and suppose
' W V ! V 0 and '0 W V 0 ! V 00 are morphisms of pre-canonical structures.
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Proposition 3.5. The composition V
'�! V 0

'0

�! V 00 is a morphism of pre-canonical
structures. The collection of pre-canonical structures on free A-modules forms a
category.

The proposition follows in an elementary way from the definitions; we omit its
proof.

Proposition 3.6. Every morphism of pre-canonical structures is equal to some com-
position � ı � ı � where � is a strong isomorphism, � is a scaling morphism, and �
is a parametric morphism.

Proof. Let � be the A-endomorphism of positive degree such that ' is �-linear.
Define � W V ! V and � W V ! V , relative to . ; facg/ and �, as in Lemma 3.2.
Then . ; facg/ and .�; facg/ are both pre-canonical structures on V and � W V ! V

is a parametric morphism from the first to the second.
Let D be a scaling factor of ' so that D.ac/ D dcac for some dc 2 ZŒv C v�1�

for each c 2 C . Let d 0c D �.dc/ and write � W V ! V for the A-linear map with
�.ac/ D d 0cac . Define uc D d 0cac and U D A-spanfuc W c 2 C g as in Lemma
3.1. Then .�; fucg/ is a pre-canonical structure on U and the map � W V ! U is a
scaling morphism from .�; facg/ to .�; fucg/.

Finally, define � W U ! V 0 as the A-linear map with �.uc/ D a0c for c 2 C . This
is a strong isomorphism, since for any c 2 C we have

� ı �.uc/ D d 0c 	 � ı � ı .ac/ D ' ı D.ac/ D  0 ı '.ac/ D  0.a0c/ D  0 ı �.uc/:
As both � ı  and  0 ı � are A-antilinear, this identity shows that the two maps are
equal. The composition � ı � ı � agrees with ' at each basis element ac , and both
maps are �-linear, so they are equal. ut
Proposition 3.7. Suppose the pre-canonical structure on V admits a canonical ba-
sis fbcg. Then the pre-canonical structure on V 0 also admits a canonical basis fb0cg.
If D is a scaling factor of ' and ˇ W V ! V is the A-linear map with ˇ.ac/ D bc
for each c 2 C , then the composition

' ıD�1 ı ˇ ıD ı ˇ�1

is a well-defined map V ! V 0 which restricts to an order-preserving bijection
fbcg ! fb0cg.
Proof. Let b0c D ' ıD�1 ı ˇ ıD ı ˇ�1.bc/. It suffices to check that this element
satisfies the defining conditions of a canonical basis. This is a simple exercise which
is left to the reader. ut
Proposition 3.8. A morphism of pre-canonical structures is an isomorphism (that
is, there exists a morphism of pre-canonical structures which is its left and right
inverse) if and only if it has degree 1 and it has a scaling factor whose eigenvalues
are each ˙1.
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Proof. If ' has degree 1 and a scaling factor D whose eigenvalues are each ˙1,
then D D D�1 and ' is an �-linear bijection (where � D ��1 is a ring involution
of A) and it follows that the inverse map '�1 is well-defined and a morphism of
pre-canonical structures with scaling factor ' ı D ı '�1. Hence in this case ' is
an isomorphism of pre-canonical structures. Suppose conversely that D is a scaling
factor for ' and that '�1 exists and is a morphism with scaling factor D0. Then '
must have degree 1 since otherwise ' is not invertible. To show that ' has some
scaling factor all of whose eigenvalues are˙1, let D00 D ' ıD ı '�1. Then

 0 D 'ı.'�1ı 0ı'/ı'�1 D D00�1ı.'ı ı'�1/ıD00 D .D0D00/�1ı 0ı.D0D00/:
For each c 2 C let dc and d 0c be the elements of ZŒvCv�1� such thatD.ac/ D dcac
and D0.a0c/ D d 0ca0c . Now, write � for the minimal equivalence relation on C such
that c � c0 whenever c; c0 2 C are such that the coefficient fc0;c of a0c0 in  0.a0c/ is
nonzero. The equation above implies

fc0;c D dc=dc0 	 d 0c=d 0c0 	 fc0;c ;

so since dc=dc0 and d 0c=d 0c0 are both integers, these quotients must each be ˙1.
Hence if K is an equivalence class under �, then dc=dc0 2 f˙1g for any c; c0 2 K.
For each such equivalence class K, choose an arbitrary c 2 K and let dK D dc .
Now let E W V ! V be the A-linear map with E.ac/ D dKac where K is the
equivalence class of c 2 C . We claim that

 D E�1 ı  ıE:
This follows since if the coefficient of ac0 in  .ac/ is some polynomial f 2 A,
then the coefficient of ac0 in E�1 ı  ı E.ac/ is dK=dK0 	 f where K and K 0 are
the equivalence classes of c and c0. If f D 0, then these coefficients are both zero,
and if f ¤ 0, then the coefficient of a0c0 in  0.a0c/ is also nonzero, so K D K 0 and
our coefficients are again equal. From this claim, we conclude thatE�1D is another
scaling factor of '. The eigenvalues of this scaling factor are each ˙1 since if K is
the equivalence class of c 2 C , then dc=dK 2 f˙1g. ut

The following corollary shows that the structure constants of canonical bases
arising from isomorphic pre-canonical structures differ only by a factor of ˙1 or
the substitution v 7! �v.

Corollary 3.9. Suppose the pre-canonical structures on V and V 0 are isomorphic
and admit canonical bases fbcg and fb0cg. Define fx;y.t/; gx;y.t/ 2 ZŒt � such that

by D
X

x�y
fx;y.v

�1/ax and b0y D
X

x�y
gx;y.v

�1/a0x :

Then for each x; y 2 C there are "i 2 f˙1g such that fx;y.t/ D "1 	 gx;y."2t /.
Proof. Let ' W V ! V 0 be an isomorphism of pre-canonical structures. By the
previous proposition, ' has a scaling factor D whose eigenvalues are all ˙1, and '
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is �-linear where � 2 End.A/ is either the identity or the ring homomorphism with
v 7! �v. Given these considerations, the corollary follows from Proposition 3.7.

ut

3.2 Generic structures on group elements

In this and the two sections which follow, we consider Hecke algebra modules of a
certain generic form. We are interested in classifying such generic structures, saying
which structures admit compatible pre-canonical structures, and identifying when
such pre-canonical structures are isomorphic in the sense of Definition 3.3. The
solutions to these problems will recover some constructions already studied in the
literature, but will also reveal other structures not previously examined. The unex-
pected existence of these “extra” solutions is the primary motivation for our results.

In this section, the type of generic module structure which we study is a natural
generalization of the regular representation of a Hecke algebra. Our results here are
useful mostly for comparison with the theorems in the next sections. The proofs in
this section are only sketched, since they are just simpler versions of the arguments
we use to establish the results in Sections 3.3 and 3.4.

If X is a set, then we write AX for the free A-module generated by X , and let
End.AX/ denote the A-module of A-linear maps AX ! AX . A representation
of H in some A-module M is an A-algebra homomorphism H ! End.M/. Now
consider a 2�2matrix � D .�ij / with entries in A. Given a Coxeter system .W; S/,
we let �� W fHs W s 2 Sg ! End.AW / denote the map with

�� .Hs/.w/ D
(

�11 	 sw C �12 	 w if sw > w

�21 	 sw C �22 	 w if sw < w
for s 2 S and w 2 W :

Definition 3.10. The matrix � is an .H;W /-structure if for every Coxeter system
.W; S/, the map �� extends to a representation of H D H.W; S/ in AW .

An .H;W /-structure � D .�ij / is trivial if �11 D �21 D 0 and �12 D �22 2
fv;�v�1g. Such a structure defines an H-representation which decomposes as a di-
rect sum of irreducible submodules given by free A-modules of rank one. The def-
inition of H affords an obvious example of a nontrivial .H;W /-structure: namely,
the matrix � with �11 D �21 D 1 and �12 D 0 and �22 D v � v�1.

Theorem 3.11. Every nontrivial .H;W /-structure is equal to
�

˛ 0

˛�1 v � v�1
�

or

�

˛ v � v�1
˛�1 0

�

for some unit ˛ in A. All nontrivial .H;W /-structures define isomorphic
H-representations.

Recall that the units in the ring A are the monomials of the form˙vn for n 2 Z.
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Proof (sketch). The given matrices are .H;W /-structures, since those on the left
(respectively, right) describe the action of Hs for s 2 S on the basis f˛�`.w/Hw W
w 2 W g (respectively, f˛�`.w/Hw W w 2 W g) of H. The corresponding H-
representations are evidently all isomorphic to the regular representation of H on
itself. That there are no other nontrivial .H;W /-structures follows by a simpler ver-
sion of the argument used in the proof of Theorem 3.15. ut

An .H;W /-structure � defines an H-module structure on AW for every Coxeter
system .W; S/. We say that � is pre-canonical if each of these H-modules has a pre-
canonical H-module structure in which W , partially ordered by the Bruhat order, is
the “standard basis.” It follows from the preceding theorem and Lemma 2.15 that if
� is nontrivial and pre-canonical, then there is a unique bar involution  W AW !
AW such that . ;W / is a pre-canonical H-module structure. By Theorem 2.5, this
pre-canonical structure always admits a canonical basis.

Theorem 3.12. Exactly 4 nontrivial .H;W /-structures are pre-canonical. The 4 as-
sociated pre-canonical structures on AW are all isomorphic (in the sense of Defi-
nition 3.3) to the pre-canonical structure on H given in Theorem 2.18.

Proof (sketch). The proof is similar to that of Theorem 3.16. Let � be a nontrivial,
pre-canonical .H;W /-structure. Then � must be one of the two matrices in The-
orem 3.11 for some unit ˛ 2 A. One first argues that ˛ D ˛ so that ˛ 2 f˙1g.
Next, one observes that � remains pre-canonical if ˛ is replaced with �˛, and that
the pre-canonical structures associated to these two .H;W /-structures are always
isomorphic. One may therefore assume ˛ D 1. It remains to prove that if � is the
right-hand matrix in Theorem 3.11 then its associated pre-canonical structure is iso-
morphic to the pre-canonical structure on H given in Theorem 2.18. This can be
deduced from [12, Lemma 2.1(i)], after noting that the A-linear map with w 7! Hw
defines an isomorphism between AW viewed as an H-module via � and H viewed
as a left module over itself. ut

3.3 Generic structures on twisted involutions

In this section we introduce a second kind of generic structure, which concerns
Hecke algebra modules on the space of twisted involutions in a Coxeter group. Quite
nontrivial results of Lusztig and Vogan [13, 14, 15] provide interesting examples of
this type of generic structure, which is what motivates their study. Our results here
depend on Lusztig and Vogan’s work, which we review in Section 4. For this reason,
we defer most proofs to Section 5.

Consider a 4 � 2 matrix � D .�ij / with entries in A. Given a Coxeter system
.W; S/, writing I D I.W; S/, we let �� W fHs W s 2 Sg ! End.AI/ denote the
map with
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�� .Hs/.w/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�11 	 sws C �12 	 w if s Ë w D sws > w
�21 	 sws C �22 	 w if s Ë w D sws < w
�31 	 sw C �32 	 w if s Ë w D sw > w
�41 	 sw C �42 	 w if s Ë w D sw < w

for s 2 S and w 2 I.

Definition 3.13. The matrix � is an .H; I/-structure if for every Coxeter system
.W; S/, the map �� extends to a representation of H D H.W; S/ in AI D
AI.W; S/.

It would make sense to view �� as a map fHs W s 2 Sg ! End.AW / by the
same formula. However, combining some computations with the analysis in Section
5.1, one can show that �� only extends to a representation of H in AW for every
Coxeter system .W; S/ when � is trivial, where we say that � D .�ij / is trivial if
�11 D �21 D �31 D �41 D 0 and �12 D �22 D �32 D �42 2 fv;�v�1g. Before we
can classify the nontrivial .H; I/-structures, we need to describe the following basic
notation of equivalence between structures:

Lemma 3.14. LetA;B;C;D;E; F;G;H 2 A and suppose ˛; ˇ 2 Q.v/�f0g such
that A˛�1 and C˛ and Eˇ�1 and Gˇ all belong to A. Let

� D

2

6

6

4

A B

C D

E F

G H

3

7

7

5

and �Œ˛; ˇ� D

2

6

6

4

A˛�1 B
C˛ D

Eˇ�1 F
Gˇ H

3

7

7

5

:

If � is a .H; I/-structure, then so is �Œ˛; ˇ�. In this case, we say that � and �Œ˛; ˇ�
are diagonally equivalent. If ˛; ˇ 2 A, then � and �Œ˛; ˇ� define isomorphic repre-
sentations of H.

Proof. Assume � is an .H; I/-structure. The H-representation �� extends to a rep-
resentation in the larger A-module Q.v/I by linearity. Define T W Q.v/I ! Q.v/I
as the Q.v/-linear map with

T .w/ D ˛`.w/�
.w/ 	 ˇ2
.w/�`.w/ 	 w for w 2 I

where on the right � W I ! N is defined as in Theorem 2.17. Then �Œ˛; ˇ� is an
.H; I/-structure since ��Œ˛;ˇ�.H/ D T �1 ı �� .H/ ı T for all H 2 H. ut

Let u D v � v�1 and define four 4 � 2 matrices as follows:

� D

2

6

6

4

1 0

1 u

1 1

u u � 1

3

7

7

5

; � 0 D

2

6

6

4

1 u

1 0

1 u � 1
u 1

3

7

7

5

; � 00 D

2

6

6

4

1 0

1 u

1 �1
�u uC 1

3

7

7

5

; � 000 D

2

6

6

4

1 u

1 0

1 uC 1
�u �1

3

7

7

5

:

The proof of the following theorem will be given in Section 5.1.
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Theorem 3.15. Each of � , � 0, � 00, and � 000 is an .H; I/-structure and every non-
trivial .H; I/-structure is diagonally equivalent to one of these.

An .H; I/-structure � defines an H-module structure on AI for every Coxeter
system .W; S/. Analogous to our definition for .H;W /-structures, we say that � is
pre-canonical if each of these H-modules has a pre-canonical H-module structure
in which I, partially ordered by the Bruhat order, is the “standard basis.” We have
the same remark as concerned pre-canonical .H;W /-structures: by the preceding
theorem and Lemma 2.15, if � is a nontrivial, pre-canonical .H; I/-structure, then
for each choice of Coxeter system .W; S/ there is a unique bar involution  W AI!
AI such that . ; I/ is a pre-canonical H-module structure, and this structure always
admits a canonical basis. We have this analogue of Theorem 3.12, whose proof will
be given in Section 5.1.

Theorem 3.16. Exactly 16 nontrivial .H; I/-structures are pre-canonical; in par-
ticular, each of � , � 0, � 00, and � 000 is pre-canonical. However, the 16 associated
pre-canonical structures on AI are all isomorphic (in the sense of Definition 3.3).

3.4 Generic structures for a modified Iwahori–Hecke algebra

Let H2 be the free A-module with a basis given the symbols Kw for w 2 W , with
the unique A-algebra structure such that

KsKw D
(

Ksw if sw > w

Ksw C .v2 � v�2/Kw if sw < w
for s 2 S and w 2 W:

We call this the Iwahori–Hecke algebra of .W; S/ with parameter v2. We again
denote by K 7! K the A-antilinear map H2 ! H2 with Kw D K�1w�1 for w 2 W .
This “bar involution” together with the “standard basis” fKwg indexed by .W;�/
forms a pre-canonical structure on H2, which admits a canonical basis fKwg. The
Z-linear map

˚ W H! H2 (3.1)

with ˚.vnHw/ D v2nKw is an injective ring homomorphism and Kw D ˚.Hw/

for all w 2 W .
We adapt the definition of an .H; I/-structure to the modified Iwahori–Hecke

algebra H2 in the following natural way. Consider a 4 � 2 matrix � D .�ij / with
entries in A. Define ��;2 W fKs W s 2 Sg ! End.AI/ again by the formula (3.3)
except with Hs replaced by Ks; that is, let ��;2 be the composition of �� with the
obvious bijection fKs W s 2 Sg ! fHs W s 2 Sg.
Definition 3.17. The matrix � is an .H2; I/-structure if for every Coxeter system
.W; S/, the map ��;2 extends to a representation of H2 D H2.W; S/ in AI D
AI.W; S/.
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Despite the formal similarity of this definition to Definition 3.13, there are at
least two good reasons to consider .H2; I/-structures in addition to .H; I/-structures.
First, the generic structures which have so far been uncovered “in nature,” through
the work of Lusztig and Vogan [13, 14, 15], are in fact .H2; I/-structures, and we
will actually deduce the existence of the .H; I/-structures in the previous section
from the existence of such .H2; I/-structures. Second, we will find that a more com-
plicated and interesting classification applies to “pre-canonical” .H2; I/-structures,
which does not follow directly from the theorems in Section 3.3.

Given a matrix � over A, define Œ��2 by applying the ring endomorphism of A
with v 7! v2 to the entries of � . The following observation motivates this notation.

Lemma 3.18. If � is an .H; I/-structure, then Œ��2 is an .H2; I/-structure.

As before, we say that an .H2; I/ structure � is trivial if �11 D �21 D �31 D
�41 D 0 and �12 D �22 D �32 D �42 2 fv2;�v�2g. Lemma 3.14 holds mutatis
mutandis with “.H; I/-structure” replaced by “.H2; I/-structure” and “H” replaced
by “H2.” Define two .H2; I/-structures to be diagonally equivalent as in that result.
The classification of .H2; I/-structures up to diagonal equivalence is no different
than for .H; I/-structures:

Theorem 3.19. Let � , � 0, � 00, and � 000 be the .H; I/-structures defined before The-
orem 3.15. Then every nontrivial .H2; I/-structure is diagonally equivalent to Œ� �2;
Œ� 0�2, Œ� 00�2, or Œ� 000�2.

The proof of this result will be sketched in Section 5.1. Define an .H2; I/-
structure � to be pre-canonical exactly as for .H; I/-structures: namely, say that
� is pre-canonical if, for every Coxeter system .W; S/, there exists a pre-canonical
H2-module structure on AI (relative to the H2-module structure defined by � ) in
which I, partially ordered by the Bruhat order, is the “standard basis.” Just like for
.H;W /-structures and .H; I/-structures, if an .H2; I/-structure is nontrivial and pre-
canonical, then by Lemma 2.15 it associates a unique pre-canonical H2-structure to
AI for each Coxeter system .W; S/.

To classify the pre-canonical .H2; I/-structures, we define � and �0 as the ma-
trices

� D

2

6

6

4

1 0

1 v2 � v�2
v C v�1 1

v � v�1 v2 � 1 � v�2

3

7

7

5

and �0 D

2

6

6

4

1 0

1 v2 � v�2
v�1 C v �1
v�1 � v v2 C 1 � v�2

3

7

7

5

:

In addition, let
�00 D Œ� �2 and �000 D Œ� 00�2:

Observe that � and �00 (respectively, �0 and �000) are diagonally equivalent,
which is how we deduce that � and �0 are .H2; I/-structures. Note, however, the
H2-module structures defined by the pairs � and �00 (respectively, �0 and �000) are
technically not isomorphic, although they would be if all of our algebras and mod-
ules were defined over the field Q.v/ instead of the ring A. We have this analogue
of Theorems 3.12 and 3.16.
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Theorem 3.20. Exactly 32 nontrivial .H2; I/-structures are pre-canonical; in par-
ticular, each of �, �0, �00, and �000 is pre-canonical. The 32 associated pre-
canonical structures on AI are each isomorphic (in the sense of Definition 3.3)
to one of the structures arising from �, �0, �00, or �000.

The proof of this theorem appears at the end of Section 5.1.

Remark 3.21. The pre-canonical structures on AI defined by the .H; I/-structures
� and � 00 are isomorphic by Theorem 3.16, and one might expect this to imply
that the pre-canonical structures defined by �00 D Œ� �2 and �000 D Œ� 00�2 are
likewise isomorphic. The reason this does not follow is that the latter structures
admit canonical bases fbwg and fb0wg of the form bw D P

y�w fy;w.v�2/y and
b0w D

P

y�w fy;w.�v�2/y for some polynomials fy;w.t/ 2 ZŒt �. Corollary 3.9
shows that such canonical bases cannot arise from isomorphic pre-canonical struc-
tures, provided fy;w.t/ are sufficiently complicated polynomials.

It will follow from the discussion in Sections 4.3 and 4.2 (or more concretely,
from small computations) that the pre-canonical structures which �, �0, �00, and
�000 associate to AI are generally not isomorphic. Thus, we are left with the int-
eresting question of explaining where these four structures come from. The struc-
ture � is what has appeared naturally from geometric considerations in the work
of Lusztig and Vogan [13, 14, 15], and one can account for �00 and �000 as the
two distinct “extensions” of the unique isomorphism class of pre-canonical .H; I/-
structures. The origins of the remaining pre-canonical .H2; I/-structure �0 remains
more mysterious.

4 Existence proofs

The results in Sections 3.3 and 3.4 assert, in one direction, that certain generic
structures exist, or equivalently, that certain formulas define H- or H2-modules
structures on AI (and sometimes also admit compatible pre-canonical structures)
for all Coxeter systems .W; S/. In this section we prove some existence statements
of this type, which we require for the proofs of Theorems 3.15, 3.16, 3.19, and 3.20
given in Section 5.1.

4.1 A canonical basis for twisted involutions

Our starting point is the following result of Lusztig and Vogan, first proved in [14]
in the case that W is a Weyl group or affine Weyl group, then extended in [13]
to arbitrary Coxeter systems by elementary methods. Lusztig and Vogan’s preprint
[15] provides another proof of this result, using the machinery of Soergel bimodules
developed by Elias and Williamson in [5].
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Theorem 4.1 (Lusztig and Vogan [14, 15]; Lusztig [13]). There is a unique H-
module

L D L.W; S/
which, as an A-module, is free with a basis given by the symbols Lw for w 2 I, and
which satisfies

KsLw D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

Lsws C if sw ¤ ws > w
Lsws C .v2 � v�2/Lw if sw ¤ ws < w

.v C v�1/Lsw C Lw if sw D ws > w
.v � v�1/Lsw C .v2 � 1 � v�2/Lw if sw D ws < w

for s 2 S and w 2 I.

Proof. This is [13, Theorem 0.1], where v2 D u andKs D u�1Ts and Lw D a0w D
v�`.w/aw . ut

The preceding theorem shows that the matrix � in Section 3.4 is an .H2; I/-
structure. The following result, which combines [13, Theorem 0.2, Theorem 0.4,
and Proposition 4.4], shows that this .H2; I/-structure is pre-canonical. Here, for
x 2 W we write sgn.x/ D .�1/`.x/.
Theorem 4.2 (Lusztig and Vogan [14]; Lusztig [13]). Define

� the “bar involution” of L to be the A-antilinear map L ! L, denoted L 7! L,
with

L.x;/ D sgn.x/ 	Kx 	 L.x�1;/ for .x; �/ 2 I:

� the “standard basis” of L to be fLwg with the partially ordered index set .I;�/.
This is a pre-canonical H2-module structure on L, and it admits a canonical basis
fLwg.

Observe, by Lemma 2.15, that the pre-canonical H2-module structure thus de-
fined on L is the unique one in which fLwg serves as the “standard basis.” Fol-
lowing the convention in [13], we define �y;w 2 ZŒv�1� for y;w 2 I such that
Lw D

P

y2I �y;wLy . Note that �y;w D ıy;w if y 6< w. We note the following
degree bound from [13, Section 4.9(c)].

Proposition 4.3 (Lusztig [13]). If y;w 2 I such that y � w, then

v`.w/�`.y/�y;w 2 1C v2ZŒv2�:
Remark 4.4. The polynomials v`.w/�`.y/�y;w are denoted P �y;w in [13, 14, 16, 17].
Lusztig proves an inductive formula [13, Theorem 6.3] for the action of Ks D
Ks C v�2 2 H2 on Lw which can be used to compute these polynomials; see
[17, Section 2.1].
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While the polynomials �y;w may have negative coefficients, they still possess
certain positivity properties. Recall that hy;w 2 NŒv�1� are the polynomials such
that Hw D

P

y2W hy;wHy . Given y;w 2 W and �; � 0 2 Aut.W; S/, define
h.y;/;.w; 0/ to be hy;w if � D � 0 and zero otherwise. Lusztig [13, Theorem 9.10]
has shown that

1
2

�

hy;w ˙ �y;w
� 2 ZŒv�1� for all y;w 2 I

and has conjectured that these polynomials actually belong to NŒv�1�. Lusztig and
Vogan provide a geometric proof of this conjecture when W is a Weyl group (see
[14, Section 3.2]) and outline a proof for arbitrary Coxeter systems in [15]. The
canonical basis fLwg conjecturally displays some other positivity properties, which
are considered in detail in [16, 17].

4.2 Another pre-canonical H2-module structure

Here we deduce from the results in the previous section that the matrix�0 in Section
3.20 is a pre-canonical .H2; I/-structure. The pre-canonical H2-module structure on
AI associated to this generic structure admits a canonical basis which is not related
in any obvious way to the basis fLwg in the previous section, although it has similar
properties. It is an open problem to find an interpretation of this new canonical basis
along the lines of [14, 15].

First we have this analogue of Theorem 4.1, showing that�0 is in fact an .H2; I/-
structure.

Theorem 4.5. There is a unique H2-module

L0 D L0.W; S/

which, as an A-module, is free with a basis given by the symbols L0w for w 2 I, and
which satisfies

KsL
0
w D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

L0sws C if sw ¤ ws > w
L0sws C .v2 � v�2/L0w if sw ¤ ws < w

.v�1 C v/L0sw � L0w if sw D ws > w

.v�1 � v/L0sw C .v2 C 1 � v�2/L0w if sw D ws < w
for s 2 S and w 2 I.

Proof. Define f ´x;y 2 A for x 2 W and y; ´ 2 W such that

.�1/
.y/KxLy D
X

´2I

.�1/
.´/f ´x;yL´:
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It is a straightforward exercise to check, using the well-known relations defining
H2 (see, e.g., [13, Section 2.1]), that there is a unique H2-module structure on L0
in which KxL0y D sgn.x/

P

´2I f
´
x;yL

0́ for x 2 W and y 2 I. In this H2-module
structure, the generatorsKs for s 2 S act on the basis elements L0w according to the
given formula. ut

We have this analogue of Theorem 4.2, which shows that �0 is pre-canonical.

Theorem 4.6. Define

� the “bar involution” of L0 as the A-antilinear map L0 ! L0, denoted L0 7! L0,
with

L0
.x;/
D Kx 	 L0.x�1;/

for .x; �/ 2 I:

� the “standard basis” of L0 to be fL0wg with the partially ordered index set .I;�/.
This is a pre-canonical H2-module structure on L0, and it admits a canonical basis
fL0wg.

By Lemma 2.15, this is the unique pre-canonical H2-module structure on L0 in
which fL0wg is the “standard basis.”

Proof. Define ry;w 2 A for y;w 2 I such that Lw D P

y2I ry;wLy and let f ´x;y
be as in the proof of Theorem 4.5. Let L 7! eL be the A-antilinear map with fL0w D
P

y2I.�1/
.w/�
.y/ 	 ry;w 	 L0y for w 2 I. We claim that eL D L for all L 2 L0. To
prove this, we note that if w D .x; �/ 2 I, then

Kx�1
fL0w D sgn.x/

X

y2I

X

´2I

.�1/
.´/�
.y/ 	 ry;w 	 f ´x�1;y
	 L0́ ;

while

Lw D sgn.x/Kx�1Lw

D sgn.x/
X

y2I

X

´2I

.�1/
.´/�
.y/ 	 ry;w 	 f ´x�1;y
	 L´:

We deduce thatKx�1
fL0w D L0w D Kx�1L0w since the right side of the first equation

is the image of the right side of the second under the A-antilinear map L! L0 with
L´ 7! L0́ for ´ 2 I. Since Kx�1 is invertible this shows that fL0w D L0w for w 2 I
which suffices to prove our claim.

Given the claim, it follows from Theorem 4.2 that the bar involution and standard
basis of L0 form a pre-canonical structure, and it is easy to show that the identity
KsLw D Ks 	 Lw implies KsL0w D Ks 	 L0w for s 2 S and w 2 I. Hence the
bar involution and standard basis of L0 form a pre-canonical H2-module structure,
which admits a canonical basis fL0wg by Theorem 2.5. ut

We spend the rest of this section establishing a few properties of the canoni-
cal basis fL0wg. Define � 0y;w 2 ZŒv�1� for y;w 2 I as the polynomials such that
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L0w D
P

y2I �
0
y;wL

0
y . We introduce some notation to state a recurrence for comput-

ing these polynomials. First, for y;w 2 I let

�0.y; w/ D .the coefficient of v�1 in � 0y;w/;
�00.y; w/ D .the coefficient of v�2 in � 0y;w/C .v C v�1/�0.y; w/:

Next, for s 2 S and y;w 2 I, define

�0.s; y; w/ D ısy<y 	 �00.y; w/C ısy;ys 	 .`.y/ � `.sy// 	 �0.sy;w/
�

X

y<´<w
s´<´

�0.y; ´/�0.´; w/:

Here ısy<y is 1 if sy < y and 0 otherwise. In what follows, recall that Ks D
Ks C v�2 for s 2 S .

Proposition 4.7. Let w 2 I and s 2 S such that w < sw.

(a) If sw ¤ ws, then KsL
0
w D L0sws C

P

y<sws �
0.s; y; w/L0y .

(b) If sw D ws, then

KsL
0
w D .v C v�1/L0sw � L0w C

X

y<sw

.�0.s; y; w/ � �0.y; sw//L0y :

Remark 4.8. Lusztig [13, Theorem 6.3(c)] shows that the canonical basis fLwg �
L in the previous section is such thatKsLw D .v2Cv�2/Lw if s 2 S andw 2 I and
sw < w. This property has no simple analogue for the canonical basis fL0wg � L0.

Proof. Each part of the proposition follows by showing that the difference be-
tween the two sides of the desired equality both (i) is an element of the set
P

y<sËw v
�1ZŒv�1� 	 L0y and (ii) is invariant under the bar operator of L0. Since

the only such element with these two properties is 0, the given identities must hold.
The observation (ii) follows in either case from Theorem 4.6, while showing that
property (i) holds is a straightforward exercise from Theorem 4.5. ut

Write f � g .mod 2/ if f; g 2 A are such that f � g 2 2A, and define �y;w
and hy;w for y;w 2 I as in the previous section. We note the following relationship
between � 0y;w , �y;w , and hy;w .

Proposition 4.9. For all y;w 2 I it holds that � 0y;w � �y;w � hy;w .mod 2/.

Proof. The second congruence is [13, Theorem 9.10]. For F 2 L and G 2 L0,
we write F � G .mod 2/ if F D P

y2I fyLy and G D P

y2I gyL
0
y for some

polynomials fy ; gy 2 A with fy � gy .mod 2/ for all y 2 I. To prove the first
congruence we must show that Lw � L0w .mod 2/ for all w 2 I. This automatically
holds if �.w/ D 0. Let w 2 I and s 2 S be such that w < sw and assume
Ly � L0y .mod 2/ if y < s Ë w. It suffices to show under this hypothesis that

LsËw � L0sËw .mod 2/: (4.1)
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Towards this end, define �.y;w/ 2 Z for y;w 2 I as the coefficient of v�1 in �y;w ,
and let

Xs;w D
(

Lsws if sw ¤ ws
.v C v�1/Lsw �

P

y<sw �.y; sw/Ly if sw D ws

and

X 0s;w D
(

L0sws if sw ¤ ws
.v C v�1/L0sw �

P

y<sw �
0.y; sw/L0y if sw D ws:

We claim that to prove the congruence (4.1) it is enough show that Xs;w �
X 0s;w .mod 2/. This is obvious if sw ¤ ws so assume sw D ws and Xs;w �
X 0s;w .mod 2/. We must check that � 0y;sw � �y;sw .mod 2/ for all y � sw; to this
end we argue by induction on �.sw/ � �.y/. By definition � 0sw;sw D �sw;sw D 1.
Fix y < sw and suppose � 0́ ;sw � �´;sw .mod 2/ for y < ´ � sw. The congruence
Xs;w � X 0s;w .mod 2/ implies

.v C v�1/�y;sw �
X

y�´<sw
�.´; sw/�y;´

� .v C v�1/� 0y;sw �
X

y�´<sw
�0.´; sw/� 0y;´ .mod 2/:

By hypothesis, the terms indexed by ´ > y in the sums on either side of this con-
gruence cancel, and we obtain

.v C v�1/�y;sw � �.y; sw/ � .v C v�1/� 0y;sw � �0.y; sw/ .mod 2/:

It is an elementary exercise, noting that �y;sw and � 0y;sw both belong to v�1ZŒv�1�,
to show that this congruence implies �y;sw � � 0y;sw .mod 2/, and so we conclude
by induction that (4.1) holds. This proves our claim.

We now argue that Xs;w � X 0s;w .mod 2/. For this we observe that there are
unique polynomials as;y;w ; a0s;y;w 2 A such that

Xs;w D KsLw �
X

y<sËw
as;y;wLy and X 0s;w D KsL0w �

X

y<sËw
a0s;y;wL0y :

Indeed, the polynomials a0s;y;w are given by Proposition 4.7, and an entirely anal-
ogous statement decomposing the product KsLw gives the polynomials as;y;w .
It is not difficult to show, by deriving a formula for as;y;w similar to the one
for �0.s; y; w/, that the hypothesis Ly � L0y .mod 2/ for y < s Ë w implies
as;y;w � a0s;y;w .mod 2/. Hence to prove Xs;w � X 0s;w .mod 2/ we need only
check that KsLw � KsL

0
w .mod 2/. As we assume Lw � L0w .mod 2/, this

follows by comparing Theorems 4.1 and 4.5, which shows more generally that
KsF � KsG .mod 2/ whenever F 2 L andG 2 L0 such that F � G .mod 2/. ut

The polynomials � 0y;w also satisfy the same degree bound as �y;w and hy;w .
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Proposition 4.10. If y;w 2 I such that y � w, then v`.w/�`.y/� 0y;w 2 1Cv2ZŒv2�.
Proof. The proposition holds if �.w/ D 0 since then � 0y;w D ıy;w . Let w 2 I
and s 2 S such that w < sw and assume v`.´/�`.y/� 0y;´ 2 1 C v2ZŒv2� for all
y � ´ < s Ë w. It suffices to show under this hypothesis that

v`.sËw/�`.y/� 0y;sËw 2 1C v2ZŒv2� for all y 2 I with y � s Ë w. (4.2)

To this end, define X 0s;w as in the proof of Proposition 4.9 and let py 2 A for y 2 I
be such that X 0s;w D

P

y�sËw pyL0y : We claim that to prove (4.2) it is enough to
show that

v`.w/�`.y/C2py 2 1C v2ZŒv2� for all y 2 I with y � s Ë w. (4.3)

This follows when sw ¤ ws as then `.s Ë w/ D `.w/ C 2 and py D � 0y;sËw .
Alternatively, suppose that sw D ws and (4.3) holds. We then have

py D .v C v�1/� 0y;sw � �0.y; sw/ �
X

y<´<sw

�0.´; sw/� 0y;´: (4.4)

To deduce (4.2), we argue by induction on `.sw/�`.y/. If y D sw, then the desired
containment holds automatically. Let y < sw and suppose v`.sw/�`.´/� 0́ ;sw 2 1C
v2ZŒv2� for y < ´ � sw. Then �0.´; sw/ is nonzero for ´ > y only if `.w/ � `.´/
is even, so if we multiply both sides of (4.4) by v`.w/�`.y/C2, then it follows from
(4.3) via our inductive hypothesis that

.v2 C 1/v`.sw/�`.y/� 0y;sw � v`.sw/�`.y/C1�0.y; sw/ 2 1C v2ZŒv2�:

Since we always have � 0y;sw 2 v�1ZŒv�1� and �0.y; sw/ 2 Z, this containment can
only hold if �0.y; sw/ D 0 whenever `.sw/ � `.y/ is even. We deduce from this
that in fact

.v2 C 1/v`.sw/�`.y/� 0y;sw 2 1C v2ZŒv2�;
and it is easy to see that this implies v`.sw/�`.y/� 0y;sw 2 1Cv2ZŒv2�, which is what
we needed to show. We conclude by induction that (4.3) implies (4.2).

We now argue that (4.3) holds. Fix y � s Ë w. Proposition 4.7 then implies

py D .aC ısw;ws/ 	 � 0y;w C b 	 � 0sËy;w �˙
where

.a; b/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

.v�2; 1/ if sy ¤ ys > y

.v2; 1/ if sy ¤ ys < y

.v�2 � 1; v�1 � v/ if sy D ys > y

.v2 C 1; v�1 C v/ if sy D ys < y
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and
˙ D

X

´<sËw
�0.s; ´; w/� 0y;´:

Since we assume that v`.´
0/�`.´/� 0́ ;´0 2 1 C v2ZŒv2� for ´ � ´0 � w, inspecting

our definition shows that �0.s; ´; w/ is an integer when `.w/ � `.´/ is even and an
integer multiple of v C v�1 when `.w/ � `.´/ is odd. Consequently, it follows that

v`.w/�`.y/C2˙ 2 v2ZŒv2�:
In turn, since y � s Ëw, [9, Lemma 2.7] implies that s Ë y � w if sy < y and that
y � w if sy > y. Using this fact and the hypothesis stated in the second sentence
of this proof, one checks that

v`.w/�`.y/C2
�

.aC ısw;ws/ 	 � 0y;w C b 	 � 0sËy;w
� 2 1C v2ZŒv2�:

Combining these observations, we conclude that (4.3) holds. ut
Despite these results, there does not appear to be any simple relationship between

the polynomials �y;w and � 0y;w , and it is unclear what positivity properties the latter
polynomials possess, if any. In general, � 0y;w may have both positive and negative
coefficients. The combination of Propositions 2.19, 4.3, 4.9, and 4.10 shows that

1
2

�

hy;w ˙ � 0y;w
�

and 1
2

�

�y;w ˙ � 0y;w
�

(4.5)

are polynomials in v�1 with integer coefficients, which become polynomials in v2

when multiplied by v`.w/�`.y/. Unlike the analogous polynomials 1
2

�

hy;w ˙ �y;w
�

discussed at the end of the previous section (which conjecturally belong to NŒv�1�),
the four polynomials in (4.5) can each have both positive and negative coefficients.

4.3 A third canonical basis for twisted involutions

We finally prove here that the matrix � from Section 3.3 is a pre-canonical .H; I/-
structure. This provides us with another a canonical basis indexed by the twisted
involutions in a Coxeter group, but not related in any transparent way to our other
bases fLwg and fL0wg. It is an open problem to find an interpretation of this third
basis.

Theorem 4.11. There is a unique H-module

I D I.W; S/

which, as an A-module, is free with a basis given by the symbols Iw for w 2 I, and
which satisfies
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HsIw D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

Isws C if s Ë w D sws > w
Isws C .v � v�1/Iw if s Ë w D sws < w
Isw C Iw if s Ë w D sw > w

.v � v�1/Isw C .v � 1 � v�1/Iw if s Ë w D sw < w
for s 2 S and w 2 I.

Proof. Define Jw D .v C v�1/2
.w/�`.w/Lw 2 L and let

J D ZŒv2; v�2�-spanfJw W w 2 Ig:
Define � W I ! J as the Z-linear bijection with vnIw 7! v2nJw for w 2 I. With
˚ W H ! H2 the ring homomorphism (3.1), the multiplication formula HI D
��1.˚.H/�.I // forH 2 H and I 2 I makes I into an H-module, and one checks
that relative to this structure, the action of Hs on Iw is described by precisely the
given formula. This H-module structure is unique since the elements Hs for s 2 S
generate H as an A-algebra. ut

Theorem is equivalent to the assertion that � defined before Theorem 3.15 is an
.H; I/-structure. In turn we have this analogue of Theorems 4.2 and 4.6 showing
that � is pre-canonical.

Theorem 4.12. Define

� the “bar involution” of I as the A-antilinear map I ! I, denoted I 7! I , with

I.x;/ D sgn.x/ 	Hx 	 I.x�1;/ for .x; �/ 2 I.

� the “standard basis” of I to be fIwg with the partially ordered index set .I;�/.
This is a pre-canonical H-module structure on I and it admits a canonical basis
fIwg.

Again by Lemma 2.15, this is the unique pre-canonical H-module structure on I
in which fIwg serves as the “standard basis.”

Proof. Define J and ˚ W H ! H2 and � W I ! J as in the proof of Theorem
4.11. The bar involution given in Theorem 4.2 for L restricts to an A-antilinear
map J ! J . Denote this restricted map by  0, and write  W I 7! I for the bar
involution of I. Since ˚.Hx/ D Kx for all x 2 W , it follows that  D ��1 ı
 0 ı �, and from this identity, the claim that . ; fIwg/ is a pre-canonical H-module
structure on I follows as a consequence of Theorem 4.2. Given this, we conclude
that a canonical basis fIwg exists by Theorem 2.5. ut
Remark 4.13. Suppose .W 0; S 0/ is a Coxeter system such that W D W 0 �W 0 and
S D S 0 t S 0. Let � 2 Aut.W; S/ be the automorphism with �.x; y/ D .y; w/.
There is then an injective A-module homomorphism H.W 0; S 0/! I.W; S/ with

Hw 7! I..w;w�1/;/ which also maps Hw 7! I ..w;w�1/;/ for w 2 W 0:
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Via this map, one may view the canonical basis of I as a generalization of the
Kazhdan–Lusztig basis of H. The canonical bases of L and L0 generalize the canon-
ical basis of H2 in an entirely analogous fashion.

Define �y;w 2 ZŒv�1� for y;w 2 I such that Iw D
P

y2I �y;wIy and let

�.s; y; w/ D

8

ˆ

<

ˆ

:

the coefficient of v�1 in �y;w if sy < y

the coefficient of v�1 in �sy;w if sy D ys > y
0 otherwise

for s 2 S and y;w 2 I. Recall that H s D Hs C v�1 for s 2 S .

Proposition 4.14. If s 2 S and w 2 I such that w < sw, then

H sIw D I sËw C ısw;wsIw C
X

y<w

�.s; y; w/I y :

Remark 4.15. Unlike the canonical basis fLwg (see the remark after Proposition
4.7), there is no simple formula for H sIw when s 2 S such that sw < w.

Proof. The difference between the two sides of the desired identity is invariant un-
der the bar involution of I and is also an element of

P

y<sËw v
�1ZŒv�1� 	 Iy , as is

straightforward to check from the definition of �.s; y; w/ and Theorem 4.11. The
only such element in I is 0. ut

We note one more result. Recall the definition of � W I! N from Theorem 2.17.

Proposition 4.16. If y;w 2 I such that y � w, then v
.w/�
.y/�y;w 2 1C vZŒv�.
Proof. The proof is by induction on �.w/ using Proposition 4.14. We omit the
details, which are similar to and somewhat simpler than those in the proof of
Proposition 4.10. ut

Computations indicate that there is no obvious relationship between the polyno-
mials �y;w and the other polynomials hy;w ; �y;w ; � 0y;w 2 ZŒv�1� we have seen so
far. For example, suppose jS j D 2 so that .W; S/ is a dihedral Coxeter system. Then
the values of v`.w/�`.y/hy;w (for y;w 2 W ) and v`.w/�`.y/�y;w (for y;w 2 I)
are all 0 or 1; see [17, Theorem 4.3]. However, the polynomials v
.w/�
.y/�y;w for
y;w 2 I can achieve any of the values 0, 1, 1Cv, 1�v, or 1�v2. The polynomials
�y;w may thus have negative coefficients, and do not in general satisfy any parity
condition analogous to Proposition 4.9.

This means that the pre-canonical structure on I does not arise from a P -kernel,
since by the preceding proposition it is not in the image of the bijection in Theorem
2.12 for any choice of function r W I ! Z. By contrast, it follows from [12, 	2],
[13, Proposition 4.4(b)], and the proof of Theorem 4.6, respectively, that the pre-
canonical structures on H, L, and L0 are all in the image of this bijection relative to
the function r D `, and so correspond to P -kernels.
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5 Uniqueness proofs

In this section we at last give the proofs to the main results in Sections 3.3 and 3.4.
Throughout, we recall our earlier definitions of .H; I/- and .H2; I/-structures, and
what it means for such structures to be pre-canonical.

5.1 Proofs for results on generic structures

We first prove Theorem 3.15, classifying all nontrivial .H; I/-structures, after stating
two lemmas. Denote by# the A-algebra automorphism of H with#.Hs/ D �HsC
v�v�1 for s 2 S . Observe that more generally#.Hw/ D sgn.w/ 	Hw for w 2 W .

Lemma 5.1. The involution of the set of 4 � 2 matrices with entries in A given by
the map

# W

2

6

6

4

A B

C D

E F

G H

3

7

7

5

7!

2

6

6

4

�A v C v�1 � B
�C v C v�1 �D
�E v C v�1 � F
�G v C v�1 �H

3

7

7

5

restricts to an involution of the set of .H; I/-structures.

Proof. Observe that if � is an .H; I/-structure, then ��.�/ is the H-representation
�� ı#. ut

The next lemma is more technical. Fix a choice of parameters A, B , C , D, E,
F , G, H 2 A and define � as in Lemma 3.14.

Lemma 5.2. If � is an .H; I/-structure, then the following properties hold:

(a) .B � v/.B C v�1/ D .D � v/.D C v�1/ D �AC .
(b) .F � v/.F C v�1/ D .H � v/.H C v�1/ D �EG.
(c) If A or C is nonzero, then B CD D v � v�1 and D �H 2 f˙1g.
(d) If E or G is nonzero, then F CH D v � v�1 and B � F 2 f˙1g.
(e) If A;C;E;G are all nonzero, then B 2 f0; v � v�1g.
Proof. In this proof we abbreviate by letting � D �� . Suppose s; t 2 S are such that
st has order 3. Since � defines a representation of H, we have .�.Hs/�v/.�.Hs/C
v�1/w D 0 for all w 2 I. Expanding the left side of this identity for the elements
w 2 f1; s; t; stsg � W \ I yields the equations in parts (a) and (b), and also the
identities

X.B CD C v�1 � v/ D 0 and Y.F CH C v�1 � v/ D 0
forX 2 fA;C g and Y 2 fE;Gg. It follows that ifA or C is nonzero, then BCD D
v � v�1 and that if E or G is nonzero, then F CH D v � v�1.
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We also have �.Hs/�.Ht /�.Hs/w D �.Ht /�.Hs/�.Ht /w for all w 2 I.
Expanding both sides of this identity for w 2 f1; s; t; stsg � W \ I and then
comparing coefficients yields the identities

X.D2 C .B �D/H �EG/ D 0 and Y.F 2 C B.H � F / � AC/ D 0 (5.1)

again for X 2 fA;C g and Y 2 fE;Gg. Assume A or C is nonzero, so that we can
takeX to be nonzero. ThenB�D D v�v�1�2D and�EG D .H�v/.HCv�1/.
Substituting these identities into the first equation in (5.1) and dividing both sides
by X produces the equation

D2 C .v � v�1 � 2D/H C .H � v/.H C v�1/ D 0:
The left-hand sides simplifies to the expression .D �H/2 � 1, and thus D �H 2
f˙1g. This establishes part (c). In a similar way one finds that if E or G is nonzero,
then B � F 2 f˙1g, which establishes part (d).

To prove part (e), suppose now that s; t 2 S are such that st has order 4. Then
.�.Hs/�.Ht //

2w D .�.Ht /�.Hs//
2w for all w 2 I. Expanding both sides of

this equation for w D 1 and comparing the coefficients of sts yields the identity
AE.DF C BH � EG/ D 0. Assume A, C , E, G are all nonzero. Then, after di-
viding both sides by AE and applying the substitutions D D v � v�1 � B and
H D v � v�1 �F and �EG D .F � v/.F C v�1/, our previous identity becomes

.v � v�1 � B/B C .B � F /2 � 1 D 0:
Since .B �F /2 � 1 D 0 by part (d), either B D 0 or B D v � v�1, as claimed. ut
Proof (of Theorem 3.15). We first show that � , � 0, � 00, � 000 are all .H; I/-structures.
The matrices � and � 000 are .H; I/-structures since the corresponding representa-
tions just describe the action of H on the respective bases fIwg and fIwg of I, as
defined in Theorem 4.11. The matrices � 0 and � 00 are .H; I/-structures by Lemmas
3.14 and 5.1, since � 0 D #.� /Œ�1;�1� and � 00 D #.� 000/Œ�1;�1�.

Fix a choice of parameters A;B;C;D;E; F;G;H 2 A and define the 4 � 2
matrix � as in Lemma 3.14. Assume � is an .H; I/-structure. We show that � is
diagonally equivalent to � , � 0, � 00, or � 000. There are four cases to consider:

� Suppose AC D EG D 0. Then B;D;F;H 2 f�v�1; vg by Lemma 5.2, and
by Lemma 3.14 we may assume that A;C;E;G 2 f0; 1g. There are 144 choices
of parameters satisfying these conditions. With the aid of the computer algebra
system MAGMA, we have checked that the only matrices � of this form that are
.H; I/-structures are the two trivial ones. (For this calculation, it suffices just to
consider finite Coxeter systems of rank three.)

� Suppose AC ¤ 0 and EG D 0. By Lemma 3.14 we may then assume that
E;G 2 f0; 1g. By the second and third parts of Lemma 5.2, it follows that
F;H 2 f�v�1; vg and D 2 fH ˙ 1g and B D v � v�1 � D. By Lemma
3.14 and the first part of Lemma 5.2, finally, we may assume that A D 1 and
C D �.D � v/.D C v�1/ ¤ 0. This leaves 8 possible choices of parameters,
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and we have checked (again with the help of a computer) that for each of the
resulting matrices � , there are finite Coxeter systems .W; S/ for which �� fails
to define an H.W; S/-representation. Hence it cannot occur that AC ¤ 0 and
EG D 0.

� It follows by similar considerations that it cannot happen that AC D 0 and
EG ¤ 0.

� Finally suppose AC ¤ 0 and EG ¤ 0 so that A;C;E;G are all nonzero. By
Lemma 5.2 we then have B 2 f0; v � v�1g and D D v � v�1 � B and F 2
fB ˙ 1g and H D v � v�1 � F and AC D 1 and EG 2 f˙.v � v�1/g; more
specifically, Lemma 5.2 implies that EG D v � v�1 when B D 0 D F � 1 or
B D v � v�1 D F � 1 while in all other cases EG D v�1 � v. There are thus
four choices for the quadruple .B;D; F;H/ and it is easy to see by Lemma 3.14
that in each case � is diagonally equivalent to one of � , � 0, � 00, or � 000.

This completes the proof of the theorem. ut
The property of an .H; I/-structure being pre-canonical is preserved under the

operations in Lemmas 3.14 and 5.1, in the following precise sense.

Lemma 5.3. If � is a nontrivial, pre-canonical .H; I/-structure, then �Œ�1;�1� is
also, and the (unique) associated pre-canonical structures on AI are isomorphic
via the identity map, which has as a scaling factor the A-linear map AI! AI with
w 7! .�1/
.w/w for w 2 I.

Proof. Let � be a nontrivial, pre-canonical .H; I/-structure, and let � 0 D �Œ�1;�1�.
Let . ; I/ be the unique pre-canonical structure on AI such that  

�

��
�

H
�

I
� D

��
�

H
�

 .I / forH 2 H and I 2 AI. Let  0 D D�1 ı ıD whereD W AI ! AI
is the A-linear map with D.w/ D .�1/
.w/w for w 2 I. Since �� 0.H/ D D�1 ı
�� .H/ ı D for H 2 H, it follows that . 0; I/ is a pre-canonical structure on AI
such that

 0
�

�� 0

�

H
�

I
� D �� 0

�

H
�

 0.I / for H 2 H and I 2 AI:

Thus � 0 is pre-canonical. Moreover, the identity map AI ! AI is evidently an
isomorphism between the pre-canonical structures . ; I/ and . 0; I/, with D as a
scaling factor. ut
Lemma 5.4. If � is a nontrivial, pre-canonical .H; I/-structure, then so is #.�/,
and the (unique) associated pre-canonical structures on AI are strongly isomorphic
via the identity map.

Proof. Let � be a nontrivial, pre-canonical .H; I/-structure, and define � 0 D #.�/.
Let . ; I/ be the unique pre-canonical structure on AI such that  

�

��
�

H
�

I
� D ��

�

H
�

 .I / for H 2 H and I 2 AI. Then it also holds that  
�

�� 0

�

H
�

I
� D

�� 0

�

H
�

 .I / for H 2 H and I 2 AI since �� 0.H/ D �.#.H// and #.H/ D #

.H/. Thus � 0 is also pre-canonical and its associated pre-canonical structure is
strongly isomorphic to the one associated to � . ut



432 E. Marberg

Before we can prove Theorem 3.16, we require an additional lemma. For this, let

I; I 0; I 00; and I 000

be the free A-modules with a basis given by the symbols Iw , I 0w , I 00w , and I 000w re-
spectively for w 2 I. View these as H-modules relative to the .H; I/-structure � ,
� 0, � 00, and � 000 respectively. Of course, I defined in this way is the same thing as
I defined by Theorem 4.11. In addition, let � denote the ring endomorphism of A
with �.v/ D �v.

Lemma 5.5. There are unique pre-canonical H-module structures on I, I 0, I 00, I 000,
respectively, in which fIwg, fI 0wg, fI 00wg, fI 000w g indexed by .I;�/ are the “standard
bases.” Moreover, these pre-canonical structures are all isomorphic; the following
maps are isomorphisms:

(a) The A-linear map I ! I 0 with Iw 7! I 0w for w 2 I.
(b) The A-linear map I 00 ! I 000 with I 00w 7! I 000w for w 2 I.
(c) The �-linear map I ! I 000 with Iw 7! I 000w for w 2 I.

Finally, the morphisms in (a), (b), (c) have as respective scaling factors the A-linear
maps with

Iw 7! .�1/
.w/Iw and I 00w 7! .�1/
.w/I 00w and Iw 7! Iw for w 2 I:

Remark 5.6. The “bar involution” of I in the pre-canonical structure mentioned
in this result is the one defined before Theorem 4.11. One can show, though we
omit the details here, that the “bar involutions” of I 0, I 00, and I 000 are the respective
A-antilinear maps with

I 0.x;/ 7! Hx 	 I 0.x�1;/
and I 00.x;/ 7! Hx 	 I 00.x�1;/

and I 000.x;/ 7! sgn.x/ 	Hx 	 I 000.x�1;/

for twisted involutions .x; �/ 2 I.

Proof. The uniqueness of the pre-canonical H-module structures is clear from
Lemma 2.15. From Theorem 4.12 we already have a bar involution I 7! I on I
which forms a pre-canonical H-module structure with fIwg as the standard basis.
Define ry;w 2 A for y;w 2 I such that Iw DPy2I ry;wIy . In addition, for x 2 W
and y; ´ 2 I, let f xy;´ 2 A be such that HxIy DP´2I f

x
y;´I´.

Let J be the free A-module with a basis given by the symbols Jw for w 2 I.
View this as an H-module relative to the .H; I/-structure � D � 00Œ�1;�1� D
# .� 000/, and define J 7! J as the A-antilinear map J ! J with Jw D
P

y2I �.ry;w/Jy for w 2 I. It is immediate that this bar involution forms a
pre-canoncal structure on J with fJwg as the standard basis. Since HsJy D
�P´2I �.f

s
y;´/J´ for all s 2 S and y 2 I, it follows moreover thatHsJy D Hs 	Jy ,

which suffices to show that H 	 J D HJ for all H 2 H and J 2 J . We thus have
a pre-canonical H-module structure on J . It is clear that the �-linear map I ! J
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with Iw 7! Jw is an isomorphism of the pre-canonical structures on I and J , which
has the identity map as a scaling factor.

One deduces the remaining assertions in the lemma from the existence of these
isomorphic pre-canonical structures on I and J , using Lemmas 5.3 and 5.4 and the
fact that

� 0 D #.� /Œ�1;�1� and � 00 D �Œ�1;�1� and � 000 D #.�/: ut
Proof (of Theorem 3.16). Let � be a nontrivial .H; I/-structure which is pre-
canonical, and write  W AI ! AI for the associated bar involution. We claim
that �11 and �31 must then belong to ZŒv C v�1�. To see this, let � 2 Aut.W; S/ be
an involution and let s 2 S . If s ¤ �.s/, then w D .s 	 �.s/; �/ 2 I and we have

�11 	  .w/C �12 	 � D  .�.Hs/�/
D �.Hs C v�1 � v/� D �11 	 w C .�12 C v�1 � v/ 	 �:

On the other hand, if s D �.s/, then w D .s; �/ 2 I and we have

�31 	  .w/C �32 	 � D  .�.Hs/�/
D �.Hs C v�1 � v/� D �31 	 w C .�32 C v�1 � v/ 	 �:

These equations, compared with the unitriangular property of the bar involution,
imply that �11 D �11 and �31 D �31; hence these two parameters must belong to
ZŒv C v�1� as claimed. Since Theorem 3.15 implies that

�11 	 �21 D 1 and �31 	 �41 2 f˙.v � v�1/g;
it necessarily follows that �11; �31 2 f˙1g. From Theorem 3.15 we conclude that
for some "i 2 f˙1gwe have �Œ"1; "2� 2 f�; � 0; � 00; � 000g. Thus � must be one of 16
different .H; I/-structures. It is a simple exercise to show that � is pre-canonical if
and only if �Œ"1; "2� is pre-canonical; moreover, the associated pre-canonical struc-
tures are isomorphic. Hence, by Lemma 5.5 we conclude that all 16 possibilities for
� are pre-canonical, and that the associated pre-canonical structures are all isomor-
phic to the one in Theorem 4.12. ut

Finally, we return to Theorems 3.19 and 3.20. These results follow by arguments
similar to the ones just given, and so we only sketch the main ideas to their proofs.

Proof (Sketch of Theorem 3.19’s proof). The result follows by nearly the same argu-
ment as in the proof Theorem 3.15, using three lemmas analogous to Lemmas 3.14,
5.1, and 5.2, mutatis mutandis. We omit the details. ut
Proof (Sketch of Theorem 3.20’s proof). One deduces that at most 32 nontrivial
.H2; I/-structures are pre-canonical exactly as in the proof of Theorem 3.16: first
argue that any such structure � has �11 D �11 and �31 D �31, and then appeal to
Theorem 3.19. The claim that these .H2; I/-structures are in fact all pre-canonical,
along with the second sentence in the theorem, follows from Lemmas 5.3 and 5.4,
which hold mutatis mutandis with “.H; I/-structure” replaced by .H2; I/-structure”
and # replaced by a slightly different involution on 4 � 2 matrices. ut
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5.2 Application to inversion formulas

In this last section, we use the lemmas in the previous section to prove an inversion
formula for the canonical bases introduced in Section 4. Let V be a free A-module
of finite rank, with a pre-canonical structure . ; facg/, the standard basis indexed
by .C;�/. Define V � as the set of A-linear maps V ! A. This is naturally a free
A-module: a basis is given by the A-linear maps a�c W V ! V for c 2 C defined by

a�c .ac0/ D ıc;c0 for c0 2 C:
Define  � W V � ! V � as the A-antilinear map such that

 �.f /.v/ D f ı  .v/ for f 2 V � and v 2 V:
Also let �op denote the partial order on C with c �op c0 if and only if c0 � c. The
following appears in a slightly more general form as [22, Proposition 7.1].

Proposition 5.7 (Webster [22]). The “bar involution”  � and “standard basis”
fa�c g, indexed by the partially ordered set .C;�op/, form a pre-canonical structure
on V �. If V has a canonical basis fbcg, then the dual basis fb�c g of V � is canonical
relative to . �; fa�c g/.

Let B denote a free A-algebra with a pre-canonical structure; write b for the
image of b 2 B under the corresponding bar involution. Suppose V is a B-module
and . ; facg/ is a pre-canonical B-module structure. Assume B has a distinguished
A-algebra antiautomorphism b 7! b�. We may then view V � as a B-module by
defining bf for b 2 B and f 2 V � to be the map with the formula

.bf /.v/ D f .b�v/ for v 2 V: (5.2)

Proposition 5.8. Suppose the maps b 7! b� and b 7! b commute. Then the pre-
canonical structure . �; fa�c g/ on V � is a pre-canonical B-module structure.

Proof. One just needs to check that if b 2 B and f 2 V �, then  �.bf / D
b 	  �.f /, and this is straightforward from the commutativity hypothesis in the
proposition. ut

Assume .W; S/ is a finite Coxeter system, so that W has a longest element w0.
Recall that since the longest element is unique, we have w0 D w�10 D �.w0/ for all
� 2 Aut.W; S/. Write �0 for the inner automorphism of W given by w 7! w0ww0.
This map is an automorphism of the poset .W;�/ and in particular is length-
preserving [1, Proposition 2.3.4(ii)]; thus it belongs to Aut.W; S/. In fact, �0 lies
in the center of Aut.W; S/. Let wC0 D .w0; �0/ 2 W C. Observe that wC0 is a central
involution in W C, and so if w D .x; �/ 2 I, then wwC0 D .xw0; ��0/ 2 I.

We may use the results in the previous sections to prove an inversion formula for
the structure constants of the canonical bases of L, L0, and I given in Theorems 4.2,
4.6, and 4.12.
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Theorem 5.9. Let F 2 f�; � 0; �g. Then

X

w2I

.�1/
.x/C
.w/ 	 Fx;w 	 FywC

0
;ww

C

0

D ıx;y for x; y 2 I.

Lusztig proves the version of this statement with F D � as [13, Theorem 7.7].

Proof. We only consider the case F D �, as the argument in the other cases is
similar. There is a unique antiautomorphism H 7! H � of H with Hw 7! Hw�1 for
w 2 W . We make I� into an H-module relative to this antiautomorphism via the
formula (5.2). Let s 2 S and w 2 I. Since wC0 is central, we have sw D ws if and
only if swwC0 D wwC0 s. Since x � y if and only if yw0 � xw0 for any x; y 2 W
(see [1, Proposition 2.3.4(i)]), it follows that sw < w if and only if swwC0 > sww

C
0 ,

and also that �.xwC0 /� �.ywC0 / D �.y/� �.x/ for x; y 2 I. Given these facts it is
straightforward to check that if I 0 is the H-module defined before Lemma 5.5, then
the A-linear map ' W I 0 ! I� with '.I 0w/ D I �wwC

0

for w 2 I is an isomorphism of

H-modules.
We have a pre-canonical H-module structure on I 0 from Lemma 5.5. Likewise,

since the maps H 7! H � and H 7! H commute, we have a pre-canonical H-
module structure on I� from Proposition 5.8. Write  � for the bar involution of
I� in this structure. Then .'�1 ı  � ı '; fI 0wg/ is another pre-canonical H-module
structure on I 0, so the uniqueness assertion in Lemma 5.5 implies that '�1 ı � ı'
is equal to the bar involution I 7! I on I 0, and thus ' is a strong isomorphism
between the pre-canonical structures on I 0 and I�. Composing ' with the map in
Lemma 5.5(a), it follows that the A-linear map I ! I� with Iw 7! I �

ww
C

0

is an

isomorphism of pre-canonical structures (though not of H-modules), having as a
scaling factor the A-linear map D W I ! I with D.Iw/ D .�1/
.w/Iw for w 2 I.

From Proposition 3.7, we deduce that elements of the canonical basis fI �wg of I�
have the form I �y D I �yC

P

w>y.�1/
.y/�
.w/�ywC

0
;ww

C

0

	I �w . Since I �y.I x/ D ıx;y
for x; y 2 I by Proposition 5.7, we deduce that MN D 1 where M and N are the
.I � I/-indexed matrices with My;w D .�1/
.y/�
.w/�

ww
C

0
;yw

C

0

and Nw;x D �w;x .

Since M and N are finite square matrices, MN D 1 implies NM D 1; the desired
inversion formula is equivalent to the second equality. ut
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Upper semicontinuity of KLV polynomials
for certain blocks of Harish-Chandra modules

William M. McGovern

To David Vogan on his 60th birthday

Abstract We show that the coefficients of Kazhdan–Lusztig–Vogan polynomials
attached to certain blocks of Harish-Chandra modules satisfy a monotonicity prop-
erty relative to the closure order on K-orbits in the flag variety.

Key words: Kazhdan–Lusztig–Vogan polynomial, Harish-Chandra module, upper
semicontinuity
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Let G be a complex connected reductive group with Lie algebra g and Borel sub-
group B . Recall that the flag variety G=B decomposes into finitely many B-orbits
Ow , which are indexed by elements w of the Weyl group W of G. The closure Ow
of an orbit Ow is called a Schubert variety. Kazhdan and Lusztig introduced poly-
nomials Pv;w in one variable q, indexed by pairs v;w of elements in W in [KL79],
which, as they later showed, measure the singularities of Schubert varieties [KL80].
More precisely, they showed that the coefficient ci of qi in Pv;w satisfies

ci D dim IH 2i
x .Ow IQp/

for any x 2 Ov , where the right side denotes the local 2i th intersection cohomol-
ogy group with values in the constant sheaf Qp; p is a prime, and w0 is the longest
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element of W [KL80]. A fundamental result of Irving, first proved in [I88], using
results of [GJ81], asserts that the singularities of Ow increase as one goes down;
more precisely, if cv;wi denotes the coefficient of qi in Pv;w , then cv;wi � c

v0;w
i

whenever v � v0 � w in the Bruhat order on W . (Following Li and Yong
[LY11], we call this property upper semicontinuity.) Irving’s proof uses representa-
tion theory; later Braden and MacPherson gave a geometric argument in [BM01].
Braden and MacPherson’s proof applies to many stratified varieties with a torus
action (not just Schubert varieties), but not to closures of orbits of a symmetric sub-
group on G=B . The purpose of this note is to establish the corresponding inequality
in some cases for coefficients of Kazhdan–Lusztig–Vogan (KLV) polynomials at-
tached to such orbit closures.

So let � be an involutive automorphism of G and K the fixed points of � acting
on G. If O;O0 are twoK-orbits in G=B with O � O0 and if �; � 0 areK-equivariant
sheaves of one-dimensional Qp vector spaces on O;O0, respectively (more briefly,
one-dimensional sheaves), then Lusztig and Vogan have constructed a polynomial
P�;� 0 such that the coefficient di of qi in P�;� 0 equals the dimension of the local 2i th
intersection cohomology sheaf of the Deligne–Goresky–MacPherson extension of
� 0 to the closure of O0, supported at a point in O [LV83, V83]. If � and � 0 are
trivial, then we write PO;O0 instead of P�;� 0 . We then ask under what conditions,
given three orbits O1;O2;O3 with O1 � O2 � O3, do we have

d
O1;O3

i � dO2;O3

i

for all i , where the terms denote the coefficients of qi in the polynomials corre-
sponding to the pair of orbits in the superscripts. In general, this fails, for example
if G D SL.3/ (as we will observe in an example below). The problem stems from
the existence of nontrivial sheaves � , even though the inequality is stated for trivial
� only. Now we can state our result.

Theorem 1 With notation as above, assume that all K-orbits O admit only the
trivial sheaf (equivalently, all orbits O are simply connected, or (as is well known)
all Cartan subgroups of the real form G0 of G corresponding to K are connected).
If O1 � O2 � O3, then dO1;O3

i � dO2;O3

i .

Proof. The proof follows Irving’s proof in [I88] for Schubert varieties closely,
supplemented by basic facts on block equivalence for Harish-Chandra modules
from [V83] and [V81]. We begin by observing that the hypothesis on G and K
implies that none of the roots of g relative to any K-orbit (or to the correspond-
ing � -stable Cartan subgroup of G) are of type II, whence the recursion formulas
of [V83, 6.14,(a,b,c,e)] imply that the constant term of PO;O0 equals 1 whenever
O � O0. Moreover, applying the circle action of [V83, 	5], we find that whenever
any orbit lying in the image of a simple reflection applied to a given orbit has closure
containing that of the orbit, then this image is single-valued and the simple root in
question is either complex or noncompact imaginary type I. As every orbit can be
obtained from a closed orbit by repeated application of simple reflections raising it
in the closure order, it follows that there is a single block B containing all simple
.g; K/ modules of trivial infinitesimal character.
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Now we appeal to “IC4 duality”. Vogan has shown in [V82] that there is another
(possibly disconnected) complex group G0 with symmetric subgroup K 0 and Lie
algebra g0 and a block B0 of .g0; K 0/-modules, which we may take to have triv-
ial infinitesimal character, such that there is a bijection D between the set S of
K-orbits inG=B and a set S 0 of one-dimensional sheaves � overK 0-orbits inG0=B 0
that is order-reversing on the underlying orbits relative to the closure order. (The
sheaves in S 0 parametrize the irreducible modules in B0.) In particular, since there
is a unique maximal (open) K-orbit in G=B , there is a unique orbit minimal among
the orbits corresponding to the sheaves in S 0. Moreover, the values of the KLV
polynomials for B at 1 count the multiplicities of composition factors in standard
.g0; K 0/-modules for B0; both the irreducible and the standard modules in B0 are
indexed by elements of S 0.

Casian and Collingwood have refined this result along the lines of the Gabber–
Joseph refinement of the Kazhdan–Lusztig conjecture for Verma modules: they
showed that the coefficients of KLV polynomials count multiplicities of compo-
sition factors in the layers of the weight filtrations of standard modules in B0 [CC89,
1.12], with standard modules indexed by sheaves on lower orbits occurring further
down than those indexed by sheaves on higher orbits. (Here the standard modules in
B0 are normalized to have unique irreducible quotients, not unique irreducible sub-
modules.) In particular, all standard modules in B0 have a single copy of the unique
simple standard module in this block at the lowest layer of the weight filtration.
Now the proofs of Theorem 2.6.3 and Lemma 2.6.5 of [CI92] carry over to show
that the simple standard module is the unique simple subquotient of any standard
module in B0 of largest GK dimension and is the socle of that module. It then fol-
lows from [C89] that all standard modules in B0 are rigid, so that their socle and
weight filtrations coincide.

We now show inductively that whenever �; � 0 are two elements of S 0 with
� D D.O1/; � 0 D D.O2/ and O2 � O1 , then the standard module X� indexed by
� embeds in X� 0 . (This condition on �; � 0 is not equivalent to requiring that � � � 0
in the Bruhat order.) We have just shown that this embedding holds if X� is simple.
In general we assume inductively that this result holds for all pairs �1; �2 with either
�2 < �

0 in the closure order, or else �2 D � 0; �1 < � . As in the proof of Proposition
6.14 of [V83], locate a simple reflection s D s˛ such that either �; � 0, or both may
be realized as the single-valued image of s applied via the circle action of W to an
appropriate element of S . For definiteness assume that � D s ı�1 while ˛ is real for
� 0 and does not satisfy the parity condition, so that s ı � 0 is empty; the other cases
are similar.

Applying the wall-crossing operator corresponding to s to the standard module
X�1

, we get a module having X�1
as a submodule with quotient specified by either

Proposition 8.2.7 or Proposition 8.4.5 of [V81], depending on whether ˛ is complex
or noncompact imaginary type I for �1. Applying the same operator to X� 0 , we get
a module having X� 0 as a submodule whose quotient is again X 0� , by Proposition
8.4.9 of [V81]. Hence the embedding of X�1

into X� 0 induces an embedding of the
image T˛.X�1

/ of X�1
under the wall-crossing operator T˛ into T˛.X� 0/, which

induces a map from the quotient of T˛.X�1
/ by its submodule isomorphic to X�1
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to the corresponding quotient of T˛.X� 0/, which is X� 0 . This induced map between
the quotients is injective when restricted to the socle of its domain, since there is
exactly one copy of the unique irreducible standard module in B0 inside X�1

, at the
lowest level of the socle filtration, and exactly two copies of the irreducible standard
module in T˛.X�1

/, one at the lowest and the other at the next-to-lowest level of the
socle filtration. Hence the induced map is injective, and we get an embedding of X�
into X� 0 , as desired.

We now conclude the proof in exactly the same way that Irving did in the Schu-
bert variety case [I88, Corollary 4]: dO1;O3

i counts the multiplicity of a suitable
composition factor in the 2i th level of the socle filtration of a suitable standard
module X for .g0; K 0/, while dO2;O3

i counts the multiplicity of the same composi-
tion factor in the 2i th level of the socle filtration of a submodule of X . The desired
inequality follows at once from the definition of the socle filtration. Notice that
the Bruhat order of [V83] coincides with the order by containment of closures for
K-orbits in G=B , in contrast to the situation for K 0-orbits in G0=B 0, thanks to
[RS90, 7.11,(vii)]. ut

We remark that the theorem extends to KLV polynomials for principal blocks
(containing the trivial representation) of .g; K/-modules even if not all Cartan sub-
groups of the real form G0 of G are connected, provided that: there is only a single
conjugacy class of disconnected Cartan subgroups, the groups in this class have
only two components, and all modules attached to trivial sheaves on orbits lie in
the principal block. This covers the cases

G D GL.2p/; K D GL.p/ � GL.p/I
G D SO.2n/; K D GL.n/I
G D E7; K D E6 � C:

On the other hand, the case G D G2, K D SL.2/ � SL.2/ does not work: there
is only one conjugacy class of disconnected Cartan subgroups, but the groups in it
have four components. Here the theorem holds for the nonprincipal block, which
has only one simple module, but fails for the principal one.

A more subtle failure occurs for G D SL.3/, K D SO.3/: here there is only one
conjugacy class of disconnected Cartan subgroups and the groups in it have only
two components, but not all modules attached to trivial sheaves on orbits lie in the
same block. There is a nontrivial sheaf � attached to the open orbit O1 in G=B and
a lower orbit O2 (admitting only the trivial sheaf), such that the KLV polynomial
attached to the pair ..O1; �/;O2/ is 0, but the one attached to ..O1; �/; .O1; �//
is 1.

We further remark that Collingwood and Irving have explored the properties of
Harish-Chandra modules in the block B (rather than its dual block B0), in the special
case where the real formG0 has only one conjugacy class of Cartan subgroups. Here
the standard modules do not satisfy inclusion relations corresponding to inclusion
of orbit closures, but many other familiar properties of modules in category O do
carry over [CI92].
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Abstract We describe our conjecture about the irreducible unitary representations
of reductive Lie groups, in the special case of SL.2;R/.
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In our paper [4] we formulated a conjecture on unitary representations of reductive
Lie groups. We are currently working towards a proof; the technical difficulties are
formidable. It has been suggested that an explicit description in the case of SL.2;R/
would be helpful. The unitary representations of SL.2;R/ have been worked out in
great detail, of course, but even in this special case our construction of the inner
product in terms of the D-module realization is not obvious.

We begin with a quick summary of our conjecture in the general case of a
reductive, linear, connected Lie group GR, with maximal compact subgroup KR.
We let G and K denote the complexifications. The complex group G contains a
unique compact real form UR such that UR \ GR D KR. Then UR acts transi-
tively on the flag variety X of G, and K acts with finitely many orbits. The points
of X correspond to Borel subalgebras b of the Lie algebra g of G. The quotients
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h D b=Œb; b� constitute the fibers of a flat vector bundle. Since X is simply con-
nected, we can think of h as a fixed vector space. This is the “universal Cartan”, and
is acted on by the “universal Weyl group” W . Its dual h� contains the “universal
root system” ˚ and the system of positive roots ˚C, chosen so that Œb; b� becomes
the direct sum of the negative root spaces; h� also contains the “universal weight
lattice”�. Further notation: lower case Fraktur letters, such as gR, kR, g, refer to the
Lie algebras of GR, KR, G, etc.

Via the Harish Chandra isomorphism, h� parameterizes the characters �� of the
center of the universal enveloping algebra, with �� D �� if and only if � D w�

for some w 2 W . We shall say that a Harish Chandra module M has a real inf-
initesimal character if it is of the form �� with � 2 R ˝Z �. David Vogan, many
years ago, pointed out that to understand the irreducible unitary representations of
GR it suffices to treat the case of real infinitesimal character [3]. Let then M� be
an irreducible Harish Chandra module with real infinitesimal character ��. Since �
is determined only up to the Weil group action, we may and shall assume that � is
dominant, i.e.,

.˛; �/ � 0 for all ˛ 2 ˚C: (1)

To determine whether or not M� underlies an irreducible unitary representation,
one needs to know if it carries a nonzero gR-invariant hermitian form . ; /gR — this
question has a simple answer, see below — and, when that is the case, if . ; /gR has
a definite sign.

Vogan and his coworkers [5] made the important observation that the condition of
having a real infinitesimal character ensures the existence of a nonzero uR-invariant
hermitian form . ; /uR

. If both types of hermitian forms exist, they are explicitly
related: the Cartan involution � W g ! g then acts also on the Harish Chandra
module M�, and after suitable rescaling of the hermitian forms,

.v1; v2/uR
D .�v1; v2/gR : (2)

The uR-invariant form is easier to deal with, both computationally and from a geo-
metric point of view. At the same time the action of � onM� can be described quite
concretely. Thus, if one understands the hermitian form . ; /uR

, one can decide if
M� is unitarizable.

As usual we write � for the half sum of the positive roots. We let D denote the
sheaf of linear differential operators, with algebraic coefficients, on the flag variety
X ; here X is equipped with the Zariski topology. The sheaf of algebras D can be
twisted by G-equivariant line bundles, and more generally, by any � 2 h�. It is
convenient to parameterize the twists so that D�, for � 2 �C �, acts on sections of
theG-equivariant line bundle L��
 ! X with Chern class ��� 2 � Š H 2.X;Z/;
for arbitrary � 2 h, one then defines D� by a process of analytic continuation. The
sheaves D� are G-equivariant, in the Zariski sense locally isomorphic to D, and
every � 2 g acts as an infinitesimal automorphism and thus defines a global section
of D�. Note that D
 D D, and that D�
 acts on sections L�2
 = canonical bundle
of X .
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The Beilinson-Bernstein construction1realizes the irreducible Harish Chandra
module M�, with � real and dominant as in (1), as the space of global sections

M� D H 0.X;M�/ (3)

of an irreducible, K-equivariant sheaf of D�-modules M� — or for short, an
irreducible, K-equivariant D�-module. Then g acts on M� D H 0.X;M�/ via
the inclusion g ,! H 0.X;D�/. The correspondence between the Harish Chandra
module M� and the “Harish Chandra sheaf” M� extends functorially to all Har-
ish Chandra modules of finite length, with infinitesimal character ��. Irreducible
Harish Chandra sheaves M� are easy to describe: they arise from direct images,
in the category of D�-modules, under the embedding j W Q ,! X of a K-orbit
Q in X , applied to a K-equivariant “twisted local system” CQ;� on Q, with twist
���. A formal, general definition of CQ;� would lead too far; in the special case of
GR D SL.2;R/ we describe it implicitly in (12) below, where its generating section

will be denoted by �
��1

2

0 . In any case, the tensor product OQ˝CCQ;� has the struc-
ture of a DQ;�-module on the K-orbit Q, and the direct image j�.OQ ˝C CQ;�/

that of a Harish Chandra sheaf: a K-equivariant D�-module on X . In general the
direct image is not irreducible, but it contains a unique irreducible D�-submodule2,
and

M� D unique irreducible submodule of j�.OQ ˝C CQ;�/ : (4)

The realization (4) of irreducible Harish Chandra sheaves is unique. It almost sets
up a bijection between irreducible Harish Chandra modules M�, with the param-
eter � of the infinitesimal character as in (1), and K-equivariant, irreducible local
systems CQ;�, with twist � � �, on K-orbits Q � X — the qualifier “almost” is
necessary because when � is singular, certain irreducible Harish Chandra sheaves
have no nonzero global sections. This phenomenon explains why the classification
of irreducible Harish Chandra modules with regular infinitesimal character looks
simpler than that of irreducible Harish Chandra modules with singular infinitesimal
character.

We shall not attempt to summarize Saito’s theory of mixed Hodge modules here.
Rather, we shall state the relevant facts, which apply to all members of the cate-
gory of “geometrically constructible” Harish Chandra sheaves M�; this includes
in particular the sheaves obtained by the standard D-module operations applied to
D�-modules of the type j�.OQ ˝C CQ;� / and their D�-subsheaves. A mild gener-
alization of Saito’s theory3puts three additional structures on each object M� . First,
the weight filtration, a functorial, finite increasing filtration

0 � W0M� � W1M� � 	 	 	 � WkM� � 	 	 	 � WnM� D M�

1 A more detailed summary of the Beilinson-Bernstain construction of Harish Chandra modules
can be found in [2].
2 Since we assumedGR, and hence alsoK, to be connected, any D�-subsheaf of a Harish Chandra
sheaf is automaticallyK-equivariant and is therefore also a Harish Chandra sheaf.
3 Without the assumption of an underlying rational structure, which Saito requires.
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by D�-subsheaves, with completely reducible quotients WkM�=Wk�1M� which
are themselves objects in the category of Harish Chandra sheaves. Secondly, the
Hodge filtration, a typically infinite, increasing filtration

0 � FaM� � 	 	 	 � FpM� � FpC1M� � 	 	 	 � M� D [p	a FpM�

by OX -coherent, K-equivariant, OX -submodules. This is a good filtration in the
sense of D-module theory: let .D�/d � D� denote the OX -subsheaf of differential
operators of degree at most d ; then

.D�/d FpM� � FpCdM� ; with equality holding if p � 0 :

The third ingredient, the polarization on any irreducible Harish Chandra sheaf M�,
is a nontrivial D� �D�-bilinear pairing

P W M� �M� �! C�1.XR/ : (5)

Here C�1.XR/ refers to the sheaf of distributions on X , considered as a C1 man-
ifold, and M� is the complex conjugate of M�, viewed as a D�-module on X ,
equipped with the complex conjugate algebraic structure.

Morphisms in the category of mixed Hodge modules preserve both filtrations
strictly: if T W M ! N is a morphism, then T .FpM/ D .T M/ \ .FpN /, and
analogously for the weight filtration. We should also mention Saito’s normalization
of the indexing of the two filtrations. Going back to (4), the Hodge filtration on the
sheaf OQ˝CCQ;� onQ is trivial, in the sense thatF0.OQ˝CCQ;�/ D OQ˝CCQ;�
and F�1.OQ˝C CQ;�/ D 0. As a sheaf onQ it is irreducible and has weight equal
to dimQ. The process of direct image shifts the lowest index of the Hodge filtration
to a D codimQ, and puts the weights into degrees � dimQ, with the irreducible
subsheaf M� having weight equal to dimQ.

The polarization leads to a geometric description of the uR-invariant hermitian
form on any irreducible Harish Chandra moduleM�. Let ! denote the — unique, up
to scaling — UR-invariant measure on XR. Like any smooth measure on a compact
C1 manifold it can be integrated against any distribution. When M� is realized as
the space of global sections of the corresponding Harish Chandra sheaf M� as in
(3), then

.s1; s2/uR
D
Z

XR

P.s1; Ns2/ ! for s1; s2 2 H 0.X;M�/ ;

does indeed define a uR-invariant hermitian form, as can be checked readily [4].
The Cartan involution � acts on X and on the set of K-orbits in X . If � fixes a
particular K-orbit Q, then it acts on the twisted local systems on Q, and if it fixes
also the twisted local system CQ;� as in (4), then it acts on the sections of the direct
image j�.OQ ˝C CQ;�/ and of its unique irreducible subsheaf M�. In this sense,
the action of � on the Harish Chandra module M�, which relates . ; /uR

to . ; /gR
as in (2), is visible geometrically.
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Via the global section functor the Hodge and weight filtrations induce filtrations
onM�, the space of global sections of the Harish Chandra sheaf M�, wether or not
the latter is irreducible:

0 � W0M� � W1M� � 	 	 	 � WkM� � 	 	 	 � WnM� D M� ;

0 � FaM� � 	 	 	 � FpM� � FpC1M� � 	 	 	 � M� D [p	a FpM� :

TheWkM� are Harish Chandra submodules ofM�, and the FpM� are finite dimen-
sional, K-invariant subspaces. In the irreducible case the weight filtration collapses
as was mentioned earlier,M� in (3,4) has weight dimQ, and the lowest index in the
Hodge filtration is a D codimQ. We can now state our conjecture. It asserts that if
M� is irreducible, the uR-invariant hermitian form is nondegenerate on each FpM�,
and

.�1/p�a .s; s/uR
> 0 for all nonzero s 2 FpM� \ .Fp�1M�/

? :

Whenever M� also admits a gR-invariant hermitian form, it would be related to a
uR-invariant one via (2), and the resulting hermitian form . ; /gR would then have a
definite sign if and only if M� is unitarizable.

The significance of the conjecture is discussed in [4]. While it does not amount
to a description of the unitary dual of GR in terms of representation parameters, it
puts the study of the irreducible unitary representation into a functorial context.

We now turn to the example of SL.2;R/. It is conjugate to SU.1; 1/ under an
inner automorphism of SL.2;C/, and various formulas have a simpler appearance
for SU.1; 1/. Thus we suppose G D SL.2;C/,

GR D SU.1; 1/ D
��

˛ ˇ

� Ň N̨
� ˇ

ˇ

ˇ

ˇ

˛; ˇ 2 C ; j˛j2 � jˇj2 D 1
�

;

KR D
��

˛ 0

0 N̨
� ˇ

ˇ

ˇ

ˇ

˛ 2 C ; j˛j D 1
�

; K D
��

˛ 0

0 ˛�1
� ˇ

ˇ

ˇ

ˇ

˛ 2 C�
�

;

(6)

and UR D SU.2/. These groups act on the flag variety of G,

X D P1 D C [ f1g ; (7)

by linear fractional transformations, and K acts with three orbits, namely f0g, f1g,
and C�. In the notation of (6,7), K acts on C� by ˛2, so C� admits two irreducible
K-equivariant local systems, corresponding to the trivial and the nontrivial character
of the (component group of the) generic isotropy group f˙1g. This is true both in the
scalar, i.e., non-twisted, and twisted case. SinceK is connected, the two point orbits
admit only the trivial irreducibleK-equivariant local system. The Cartan involution,

� D conjugation by

�

i 0

0 �i
�

;
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is inner; it preserves each of the three orbits and the K-equivariant local systems on
them. Thus all irreducible Harish Chandra modules with real infinitesimal character
admit both uR- and gR-invariant hermitian forms.

The dual h� of the universal Cartan can be identified with C so that � Š Z,
˚ Š f˙2g, and � Š 1. With this identification an infinitesimal character �� is real
in the earlier sense if and only if � 2 R, and � 2 R is dominant if and only if � � 0.
The standard SL2-triple

eC D
�

0 1

0 0

�

; e� D
�

0 0

1 0

�

; h D
�

1 0

0 �1
�

spans g over C, with k spanned by h, and satisfies the conjugation relations eC D e� ,
h D �h. The elements of this triple operate on the sheaf of algebraic functions on
C[ f1g by infinitesimal left translation. One computes readily that via this action,

eC Š � d
d´

; e� Š ´2
d

d´
; h Š �2´ d

d´
: (8)

For example, eC acts on f .´/ by the derivative with respect to t , at the origin, of
f .exp.�t eC/´/ D f .´ � t /, resulting in the formula .eCf /.´/ D �´dfd´ .´/; the
other cases are treated similarly.

The G-equivariant line bundle L2 coincides with the tangent bundle of P1, so
we can identify (8) with a basis of the space of global sections of L2. However, for
notational reasons, we choose the new symbols �2, �0, ��2, corresponding to eC,
h, e�, in that order. Then �2 vanishes to the second order at1, ��2 vanishes to the
second order at 0, and �0 has first-order zeros at both 0 and 1, and these are the
only zeroes in each case. Moreover,

eC �2 D 0 ; h �2 D 2�2 ; e� �2 D ��0 D 1
2
´ �2 ;

eC �0 D �2�2 D �´�1�0 ; h �0 D 0 ; e� �0 D 2 ��2 D �´�0 ;
eC ��2 D �0 D �12 ´�1��2 ; h ��2 D �2��2 ; e� ��2 D 0 ;

(9)
as can be read off from (8). The UR-invariant measure on P1 is

! D . 1 C j´j2 /�2 d´ d Ń : (10)

The coefficient of d´ d Ń in this formula can be interpreted as the squared length of
d
d´

with respect to the UR-invariant hermitian metric, or equivalently, the squared
length of �2 relative to the UR-invariant hermitian metric on the line bundle L2.
Thus

k�2k D 1

1 C j´j2 ; k�0k D
2 j´j

1 C j´j2 ; k��2k D
j´j2

1 C j´j2 (11)

describes the length, as measured by the UR-invariant metric on L2, of the three
sections �2, �0, ��2.
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As was mentioned already, there exist two irreducibleK-invariant local systems,
with twist � � �, on the K-orbit C�, corresponding to the trivial and the nontrivial
character of the generic isotropy subgroup f˙1g of K. The corresponding Harish
Chandra sheaves can be realized as

MC�; �;even D ff .´/ �
��1

2

0 j f 2 C.´/ g ;
MC�; �;odd D ff .´/ ´1=2 �

��1
2

0 j f 2 C.´/ g :
(12)

These are Zariski-locally defined algebraic functions, multiplied by the “section”

�
��1

2

0 of the formal power L
��1

2

2 , either on C� (in the even case), where the section
is well defined, or its twofold cover (in the odd case). As such they are naturally
D�-modules on C�, and then, via the direct image functor corresponding to the
open embedding C� � C[f1g, on all of C[f1g. How D� acts is not so relevant
for us, but the action of g � �D� is. That action is given by the product rule, with g
acting on f .´/ or ´1=2 f .´/ according to the formulas (8), and on the formal powers
of �0 according to (9). Since �0 has first order zeroes at 0 and1,

f .´/ �
��1

2

0 � f .´/ ´
��1

2 near the origin, and

f .´/ �
��1

2

0 � f .´/ ´���1
2 near1 :

(13)

In particular, MC�; �;even is reducible if and only if � is an odd integer, whereas
MC�; �;odd reduces if and only if � is even.

We recall that the sheaves (12), when restricted to C�, are irreducible and have
weight one, which is the dimension of C�. That remains correct for these sheaves
on all of C [ f1g when they are irreducible:

W0MC�; �;even D 0 and W1MC�; �;even D MC�; �;even if � … 2ZC 1 ;
W0MC�; �;odd D 0 and W1MC�; �;odd D MC�; �;odd if � … 2Z :

In the reducible case,

W0MC�; 2mC1;even D 0 ; W1MC�; 2mC1;even D OP1.L2m/ ;
and W2MC�; 2mC1;even D MC�; 2mC1;even I

W0MC�; 2m;odd D 0 ; W1MC�; 2m;odd D OP1.L2m�1/ ;
and W2MC�; 2m;odd D MC�; 2m;odd :

To justify these descriptions of the weight filtrations one should notice that �m0 can

be viewed as a section of Lm2 D L2m, and ´1=2�1=20 as a meromorphic section
of L1. The quotients grW;2MC�; 2mC1;even and grW;2MC�; 2m;odd are Harish Chan-
dra sheaves supported on f0;1g. We shall discuss these later.

The Hodge filtration for the sheaves (12) starts at level a D 0, since that is
the codimension. In general the Hodge filtration of the direct image under an open
embedding is governed by the — not necessarily integral — order of poles. The case
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of C� ,! C, and analogously for C� ,! C� [ f1g, is especially simple: poles of
order � 1 have Hodge level 0, those of order � 2 have Hodge level 1, and so forth.
Thus, in view of (12,13), for n 2 Z and p � 0,

´n �
��1

2

0 2 FpMC�; �;even ” ��C1
2
� p � n � �C1

2
C p ; (14)

´nC1=2�
��1

2

0 2 FpMC�; �;odd ” ��C1
2
� p � nC 1

2
� �C1

2
C p ;

for all n 2 Z and p � 0. In the reducible case, there is a connection between the
induced Hodge filtrations on the quotient sheaves and the intrinsic Hodge filtrations
on the quotients; this too will be described later.

We now turn to the polarizations of the sheaves MC�; 2nC1;even, MC�; 2nC1;odd

and the resulting hermitian forms on their spaces of global sections. On the K-orbit
C� these sheaves are always irreducible, and the only possible hermitian pairing of
the type (5) on C� is, up to scaling,

P

�

f .´/ �
��1

2

0 ; g.´/ �
��1

2

0

�

D f .´/ g.´/ k�0k��1 ;

which is a real analytic function, and thus distribution, on C�. This is correct in both
cases, if we take f; g 2 C.´/ in the case of MC�; 2nC1;even, and f; g 2 ´1=2C.´/ in
the case of MC�; 2nC1;odd; (11) makes the last factor on the right explicit. The two
sheaves were defined as the D�-module direct image under the open embedding
C� ,! C [ f1g which, as always in the case of open embeddings, coincides with
the O-module direct image. The general theory ensures that

f .´/ g.´/ k�0k��1 (15)

makes sense as global distribution on C [ f1g, for all global sections f .´/ �
��1

2

0 ,

g.´/ �
��1

2

0 , provided the sheaf in question is irreducible.
To see how this works out in the current setting, applied to the spaces of global

sections MC�; 2nC1;even, MC�; 2nC1;odd of the two sheaves, we note that

MC�; �;even has basis f ´n � ��1
2

0 j n 2 Z g ; and

MC�; �;odd has basis f ´n � ��1
2

0 j n 2 ZC 1=2 g :
(16)

For reasons of radial symmetry we only need to consider the integral of the expres-
sion (15) over C [ f1g against the UR-invariant measure ! when f and g are the
same basis element. With the convention of (16), with n denoting either an integer
or a true half integer, and using (10,11), we find that
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.´n �
��1

2

0 ; ´n �
��1

2

0 /uR
D
Z

C[f1g
j´j2n k�0k��1 !

D
Z

C[f1g
4 j´j2nC��1
.1C j´j2/�C1 d´ d Ń D 8�

Z 1

0

r2nC� dr
.1C r2/�C1

D 4�

Z 1

0

unC.��1/=2 du
.1C u/�C1 :

(17)

This integral converges if and only if �.� C 1/=2 < n < .� C 1/=2. Since the
integrand is positive, the integral has a strictly positive value in the range of conver-
gence.

To continue the integral meromorphically beyond the range of convergence, one
uses integration by parts. Formally, for s; t 2 R,

s

Z 1

0

us�1 du
.1C u/t D t

Z 1

0

us du

.1C u/tC1 :

Applying this identity with s D n C .� C 1/=2 and t D � C 1, one finds that
the integral changes sign and becomes strictly negative for �.� C 3/=2 < n <

�.�C 1/=2. The same argument, with �n substituted for n, shows that the integral
is also strictly negative for .�C 1/=2 < n < .�C 3/=2. Then the pattern continues:
when n is negative and decreased by one, or if n is positive and increased by one,
the integral changes sign. Poles occur when � is an odd integer in the even case, or
an even integer in the odd case, i.e., exactly when the module becomes reducible.
That is what must happen, of course; the polarization is well defined only in the
irreducible range. The preceding discussion can be summarized succinctly in terms
of the Hodge filtration: with � referring to either the even or the odd parity, in the
irreducible range,

s 2 F0MC�;�;� H) the integral defining .s; s/uR
converges

s 2 FpMC�;�;� \ .FpMC�;�;�/
?; s ¤ 0 H) .�1/p .s; s/uR

> 0 I
cf. (14). The second statement is the assertion of our conjecture in the case of the
open K-orbit C�

The change in sign is directly related to a change in the weight filtration. Let �0 >
0 be a reduction point — i.e., a positive odd or even integer, depending on whether
the parity is even or odd. In terms of the basis (16), with the same convention of
letting n refer to an integer or true half integer, depending on the parity,

W1MC�; �0;� has basis f ´n � ��1
2

0 j �.� � 1/ � 2n � � � 1 g :
Thus, as the parameter � crosses the reduction point �0 going from left to right,
the sign of .´n �0; ´n �0/uR

remains the same if and only if ´n �0 2 W1MC�; �0;� .
This is one instance of a general fact. As the parameter for a family of induced
representations crosses a reduction point, the sign changes of . ; / are governed
by the weight filtration; that is the assertion of the Jantzen conjecture proved by
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Beilinson–Bernstein [1]. The jumps of the Hodge filtration at the reduction point
line up with the weight filtration to produce exactly the sign changes predicted by
our conjecture.

When � D m > 0 is a positive integer and � denotes the opposite parity, i.e.,
the parity of m C 1, the Harish Chandra module W1MC�;m;� has dimension m,
and the integral (17) converges for all basis elements: this is the usual description
of the positive definite UR-invariant inner product on the irreduciblem-dimensional
representation. For � D 0 and � odd, W1MC�;m;� reduces to zero. The correspond-
ing sheaf W1MC�; 0;odd is the one and only irreducible Harish Chandra sheaf for
GR D SU.1; 1/ without nonzero sections.

The two singleton orbits f0g, f1g are related by an outer automorphism ofGR D
SU.1; 1/. Thus it is only necessary to discuss the orbit f0g. SinceK fixes the origin,
it must act on the geometric fiber of any D�-module supported at f0g, and that forces
an integral twisting parameter:

� D m 2 Z	0 :

In the untwisted case, the only irreducible D-module supported at the origin in C is
the one generated by the “holomorphic delta function”,

DC ı0 D CŒ´; ´�1�=CŒ´� :

Thus ı0 Š ´�1, and the SL2-triple (8) acts according to the formulas

h ı0 D 2ı0 ; e� ı0 D 0 ; (18)

with eC acting freely, by normal differentiation. The section �2 of L2 in (8) is
nonzero at the origin and is K-invariant, and this leads to a description of the sheaf
Mf0g;m, or equivalently, to its space of global sections Mf0g;m ,

Mf0g;m has basis f . dn

d´n ı0/ �
.m�1/=2
2 j n � 0 g I

here � .m�1/=22 can be viewed as a section of Lm�1, a section that is regular and
nonzero except at1. The SL2-triple eC; h; e� acts by the product rule, on dn

d´n ı0

according to (8) and (18), and on � .m�1/=22 according to (9). In particular,

eC
	

. d
n

d´n ı0/ �
.m�1/=2
2




D � . dnC1

d´nC1 ı0/ �
.m�1/=2
2 ;

h
	

. d
n

d´n ı0/ �
.m�1/=2
2




D .2nCmC 1/. dnC1

d´nC1 ı0/ �
.m�1/=2
2 ;

e�
	

. d
n

d´n ı0/ �
.m�1/=2
2




D n.nC 1/. dn�1

d´n�1 ı0/ �
.m�1/=2
2 ;

as can be checked readily.
The inclusion f0g ,! C [ f1g is a very special case of a closed embedding.

In general the D-module direct image of an irreducible module under a closed em-
bedding remains irreducible, so the weight filtration collapses. The effect of closed
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embeddings on the Hodge filtration also has a simple description: the Hodge index
is increased by the order of normal derivative. In the case of Mf0g;m this means that

W0Mf0g;m D Mf0g;m ;

FpMf0g;m has basis f . dn

d´n ı0/ �
.m�1/=2
2 j 0 � n � p � 1 g ;

because the weight equals the dimension of the support, and the Hodge filtration
starts at the codimension of the support.

The polarization pairs ı0 and ı0 into ıR;0, the delta function in the usual sense

on C Š R2. It also pairs � .m�1/=22 and its complex conjugate into k� .m�1/=22 k2 D
k�2km�1 D .1C j´j2/�mC1, as follows from (11). Thus

. . d
k

d´k
ı0/�

.m�1/=2
2 ; . d

`

d´`
ı0/�

.m�1/=2
2 /uR

D
Z

C[f1g
dk

d´k
d`

d Ń` k�
.m�1/=2
2 k2 ıR;0 !

D
Z

C[f1g
dk

d´k
d`

d Ń` .1C j´j
2/�m�1 ıR;0 d´ d Ń D dk

d´k
d`

d Ń` .1C j´j
2/�m�1

ˇ

ˇ

ˇ

´D0

vanishes unless k D `, in which case

. . d
k

d´k ı0/�
.m�1/=2
2 ; . d

k

d´k ı0/�
.m�1/=2
2 /uR

D .�1/k kŠ
Yk

jD1 .mC j / :

That, of course, is consistent with our conjecture in this particular instance.
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Abstract This paper is concerned with the structure of packets of representations
and some refinements that are helpful in endoscopic transfer for real groups. It
includes results on the structure and transfer of packets of limits of discrete series
representations. It also reinterprets the Adams–Johnson transfer of certain non-
tempered representations via spectral analogues of the Langlands–Shelstad factors,
thereby providing structure and transfer compatible with the associated transfer of
orbital integrals. The results come from two simple tools introduced here. The first
concerns a family of splittings of the algebraic group G under consideration; such
a splitting is based on a fundamental maximal torus of G rather than a maximally
split maximal torus. The second concerns a family of Levi groups attached to the
dual data of a Langlands or an Arthur parameter for the group G. The introduced
splittings provide explicit realizations of these Levi groups. The tools also apply to
maps on stable conjugacy classes associated with the transfer of orbital integrals. In
particular, they allow for a simpler version of the definitions of Kottwitz–Shelstad
for twisted endoscopic transfer in certain critical cases. The paper prepares for spec-
tral factors in twisted endoscopic transfer that are compatible in a certain sense with
the standard factors discussed here. This compatibility is needed for Arthur’s global
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1 Introduction

Our main purpose is to continue a study of the coefficients appearing in the spectral
identities of endoscopic transfer for real groups. The coefficients carry information
about the structure of packets of irreducible representations, and in the global theory
of endoscopy this structure plays a central role in determining if certain irreducible
representations are automorphic or not; see [Ar13].

Here we will consider both the standard and the more general twisted versions
of endoscopic transfer. We focus on the fundamental case where the endoscopic
group and the ambient group share, in a certain precise sense, fundamental maximal
tori; see Section 3.3. It includes the case where the ambient group G is cuspidal
and the endoscopic group H1 is elliptic. We call this the cuspidal-elliptic setting;
see Section 3.4. Then G.R/ and H1.R/ share fundamental Cartan subgroups that
are elliptic, i.e., compact modulo the centers of G.R/ andH1.R/ respectively. Thus
there is a discrete series of representations for each of G.R/ and H1.R/ [HC75],
along with limits of discrete series representations (see [KZ82]).

Endoscopic transfer begins with the matching of orbital integrals, the so-called
geometric side. In the standard version we use the transfer factors of Langlands–
Shelstad ([LS87], see also [Sh14]) for the geometric side. Factors with a parallel def-
inition appear in the tempered dual spectral transfer, i.e., as coefficients in the dual
spectral identities for tempered irreducible representations [Sh10, Sh08b]. Proper-
ties of these spectral factors simplify the related harmonic analysis; for example,
inversion of the identities becomes a short exercise (see [Sh08b]).

In preparation for generalizing (in [ShII]) the definition of spectral factors to the
twisted setting of Kottwitz–Shelstad [KS99] we will establish three refinements.
First, we make use of an alternative simpler description of limits of discrete series
packets in terms of elliptic data, i.e., data attached to an elliptic Cartan subgroup
(see Remark 5.6), to simplify transfer and structure in that setting.

Second, introducing the nontempered spectrum to our picture, we reinterpret
the transfer of Adams–Johnson in terms of data attached directly to the associated
Arthur parameters. Here we will consider only parameters that are elliptic in the
sense of Arthur. Our new factors are related very simply to the tempered factors
already defined, and we check that they do provide the transfer that is precisely
dual (i.e., there are no extraneous constants) to that of orbital integrals with the
Langlands–Shelstad factors. The inversion properties of our spectral transfer are
more delicate than for the tempered case ([AJ87], [Ar89] explain why this must
be the case) and will be described in [ShII].

For the third refinement we turn to twisted transfer and the underlying definitions
of [KS99]. The transfer of orbital integrals is based on an abstract norm correspon-
dence .�1; ı/ for suitably regular points �1 in endoscopic H1.R/ and ı in G.R/:
For the fundamental part of the correspondence that concerns us here, we will see
that we may limit the twisting automorphism to a family for which the norm corre-
spondence is well-behaved. The standard spectral factors generalize readily for this
family [ShII] and we have the standard-twisted compatibility needed in Arthur’s
global theory [Ar13].
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To obtain these refinements we introduce two simple tools. The first involves
fundamental splittings. These are particular splittings based on fundamental maxi-
mal tori and exist for any G. They work well with both elliptic data and Whittaker
data; here Vogan’s characterization of generic representations plays a critical role.
See Sections 2.3, 6.1. The second tool involves a family of Levi groups in G. First
we attach to a Langlands or Arthur parameter a family of L-groups and then we use
fundamental splittings to identify their real duals as a family of (nonstandard) Levi
groups in G and its inner forms; see Sections 5.2, 6.1.

We begin the paper with fundamental splittings and their properties. The main
result is Lemma 2.5. In Part 3 we review the norm correspondence and see, in par-
ticular, that the fundamental part of geometric transfer is nonempty if and only if the
twisting automorphism preserves a fundamental splitting up to a further twist by an
element of G.R/. This may be expressed precisely in terms of the norm correspon-
dence itself or in terms of the nonvanishing of geometric transfer factors of [KS99];
see Theorem 3.12, Corollary 3.13. We prove a spectral analogue, but not until Part
9 where we also finish the discussion of Part 4 on certain properties of endoscopic
data that will be used in the definition of twisted spectral factors.

The rest of the paper concerns standard transfer and the first two refinements.
In Part 5 we turn to the Langlands and Arthur parameters attached to the rep-
resentations of interest to us here. In the cuspidal-elliptic setting these are the
s-elliptic Langlands parameters and the elliptic u-regular Arthur parameters of
Sections 5.5–5.7. Given a parameter, we generate data for the various attached pack-
ets of representations by means of pairs .G; �/; where � is an inner twist of G to a
given quasisplit form G�.

For the limits of discrete series representations attached to an s-elliptic Langlands
parameter, we reformulate some well-known properties in terms of our attached
Levi groups. For example, the critical Lemma 6.1 characterizes the pairs .G; �/
for which we obtain a well-defined (i.e., nonzero) representation. Then Lemma 6.2
gives a description of the packet that allows us to attach an elliptic invariant to each
member; see Section 6.4. Lemmas 6.4 and 6.5 describe the application to endoscopic
transfer.

Part 6 has further results on limits of discrete series representations that we will
apply in various places. For example, as in Section 6.7, every s-elliptic parameter
factors through a totally degenerate parameter for an attached Levi group. We will
check in [ShII] that this gives a simple characterization of those pairs .G; �/ for
which the distribution character of the attached representation is elliptic.

The representations attached to elliptic u-regular Arthur parameters are the
derived functor modules of Vogan and Zuckerman [Vo84] from the main setting
in [AJ87]; we allow without harm a nontrivial split component in the center of G.
In the case of regular infinitesimal character they are discussed in [Ar89, Ko90]; see
the last paragraph of Section 7.1. Generalizing some familiar L-group constructions
we attach directly to the Arthur parameter the following: elliptic data, a family of
Levi groups, and an s-elliptic Langlands parameter with the same infinitesimal char-
acter and central behavior. We will use these again in [ShII] in the twisted setting.
In the present paper we pursue only the case of regular infinitesimal character so
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that the attached Langlands parameter is elliptic. Lemma 7.5 describes the Arthur
packet by means of pairs .G; �/: In Part 8 we introduce spectral transfer factors for
the Arthur packet by tethering the packet to the elliptic Langlands packet via rela-
tive factors with good transitivity properties [Sh10]. We then verify in Section 8.3
that the corresponding absolute factors are correct, in the sense already mentioned,
for endoscopic transfer with Langlands–Shelstad factors on the geometric side.

To finish this brief sketch we refer to Sections 3.5, 4.1, 4.2, 6.4 and 6.5 where
there are further remarks on the properties of transfer factors that are crucial for our
approach to work.

Note This paper is an expanded version of part of the preprint “On spectral transfer
factors in real twisted endoscopy” posted on the author’s website, May 2011.

2 Automorphisms and inner forms

Here we introduce notation to be used throughout the paper, along with definitions
and properties related to fundamental splittings. We finish with an application to the
inner forms of a quasisplit pair.

2.1 Quasi-split pairs and inner forms

By a quasisplit pair we mean a pair .G�; ��/; where G� is a connected, reductive
algebraic group defined and quasisplit over R, and �� is an R-automorphism of G�
that preserves an R-splitting spl� D .B�; T �; fX˛g/ of G�. We assume that the
restriction of �� to the identity component of the center of G� is semisimple or,
equivalently, that �� has finite order.

Recall from [KS99, Appendix B] that .G; �; �/ is defined to be an inner form of
.G�; ��/ if G is connected, reductive and defined over R, � is an isomorphism from
G to G� that is an inner twist, � is an R-automorphism of G, and � coincides with
the transport of �� to G via � up to an inner automorphism. Notice that if �� is the
identity, then � must be an inner automorphism ofG defined over R, i.e., � must act
on G as an element of Gad.R/:

Let .G; �; �/ be an inner form of .G�; ��/. By the inner class of .�; �/ we will
mean the set of all pairs .� 0; �0/ where .G; � 0; �0/ is an inner form of .G�; ��/ such
that

(i) �0 ı ��1 is inner and
(ii) the automorphism � 0 ı ��1 of G; which is inner and acts as an element of

Gad.R/ by (i), is induced by an element ofG.R/, i.e., acts as an element of the
image of G.R/ in Gad.R/ under the natural projection.

We will see that replacing .�; �/ by a member of its inner class has no effect on our
final results.
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Let .G; �; �/ be an inner form of .G�; ��/. Then we choose u.�/ 2 G�sc such that

� ı �.�/�1 D Int.u.�//: (2.1)

Here and throughout the paper we use � to denote the nontrivial element of � D
Gal.C=R/: The action of � on a � -set X will be denoted by �X or by � itself when
X is evident.

2.2 Fundamental splittings

While R-splittings exist only for quasisplit groups, fundamental splittings may be
constructed for any connected, reductive G defined over R. We recall the definition
(see [Sh12]).

Consider a pair .B; T /, where T is a maximal torus in G defined over R and B
is a Borel subgroup of G containing T . We call .B; T / a fundamental pair if

(i) T is fundamental, i.e., T is minimally R-split or, equivalently, T has no roots
fixed by �T and

(ii) the set of (simple) roots of T in B is preserved by ��T :
The existence of fundamental pairs is noted in [Ko86, Section 10.4].

Lemma 2.1. The set of all fundamental pairs for G forms a single stable conjugacy
class in the sense that another fundamental pair .B 0; T 0/ is conjugate to .B; T / by
an element g of G for which Int.g/ W T ! T 0 is defined over R:

Proof. Observe that .B 0; T 0/ is conjugate to .B; T / under some element g of G;
and then g�1�.g/ acts as an element of the Weyl group of T preserving the roots of
B; i.e., as the identity element. ut

To prescribe a fundamental splitting we start with a fundamental pair .B; T / and
pick an sl2-triple fX˛;H˛; X�˛g for each simple root ˛ of T in B: Here we identify
the Lie algebra of T with X�.T / ˝ C and require H˛ be the element identified
with the coroot ˛_ of ˛I X˛; X�˛ are to be root vectors for ˛;�˛ respectively.
There is an attached splitting spl D .B; T; fX˛g/ for G: Conversely, each splitting
for G determines uniquely a collection of sl2-triples of the above form. We call spl
fundamental if the Galois action satisfies: �X˛ D X�T ˛ in the case �T ˛ ¤ �˛; and
�X˛ D "˛X�˛ in the case �T ˛ D �˛, where "˛ D ˙1.

If �T ˛ D �˛, then such a triple fH˛; X˛; X�˛g determines an R-homomor-
phism from a real form of SL.2/ into GI examples are written in [Sh79a]. The
isomorphism class of that real form, split or anisotropic, is uniquely determined
by ˛: If the real form is split, then "˛ D 1 and ˛ is called noncompact. If the real
form is anisotropic, then "˛ D �1 and ˛ is compact.

Lemma 2.2. Each fundamental pair .B; T / extends to a fundamental splitting spl D
.B; T; fX˛g/. Moreover, two fundamental splittings extending .B; T / are conjugate
under Tsc.R/.
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Proof. For each simple root ˛ of T in B , pick an sl2-triple fX˛;H˛; X�˛g. If
�T ˛ ¤ �˛, then we may arrange that �X˛ D X�T ˛ and �X�˛ D X��T ˛ since
˛; �T ˛ are distinct. If �T ˛ D �˛, then calculation shows that �X˛ D �X�˛ and
�X�˛ D ��1X˛ , where � is real. Then we can adjust the choice of X˛ and X�˛ to
arrange that �X˛ D "˛X�˛ and �X�˛ D "˛X˛ , where "˛ D ˙1:

Suppose we have two such splittings. Then they are conjugate under Tad.R/ since
if X˛ is replaced by Int.t/X˛ for each B-simple root ˛; where t 2 Tsc, then our
requirements on the action of � imply that ˛.�.t/t�1/ D 1: Because Tsc; Tad are
fundamental, Tsc.R/ and Tad.R/ are connected; see [Ko86, Section 10] and [Sh12,
Section 6]. Then the projection Tsc.R/ ! Tad.R/ is surjective, and the desired
conjugation exists. ut
Corollary 2.3. Each fundamental splitting spl0 D .B 0; T 0; fX 0̨ g/ is conjugate to spl
by an element g of G for which Int.g/ W T ! T 0 is defined over R.

2.3 Fundamental splittings of Whittaker type

We return to a quasisplit pair .G�; ��/: Recall that �� preserves the R-splitting
spl� D .B�; T �; fX˛g/ of G�. From now on we will typically use the same notation
fX˛g for the root vectors in any splitting. We will say a fundamental pair .B; T /;
or a fundamental splitting splf D .B; T; fX˛g/ of G�; is of Whittaker type if all
imaginary simple roots of .B; T / are noncompact. We use this terminology because
of Vogan’s classification theorem [Vo78, Corollary 5.8, Theorem 6.2] for represen-
tations with Whittaker model, i.e., for generic representations. It is not difficult to
check directly that a group G has a fundamental pair of Whittaker type if and only
if G is quasisplit over R, although this characterization is naturally part of Vogan’s
classification.

Lemma 2.4.

(i) There exists a fundamental pair of Whittaker type preserved by �� and
(ii) each fundamental pair of Whittaker type preserved by �� has an extension to a

fundamental splitting splWh of G� preserved by ��.

Proof. (i) We use Steinberg’s structure theorems as described in [KS12, Section 3]
and [KS99, Section 1.3]. First, attach to spl� an R-splitting for .G�sc/

�

sc :We may then
find h in .G�sc/

�

sc conjugating the pair determined by this R-splitting to a fundamen-
tal pair in .G�sc/

�

sc of Whittaker type; such a pair exists since .G�sc/
�

sc is quasisplit.
This pair determines uniquely a pair .B; T / for G� preserved by ��: Then .B; T / is
fundamental because T can have no real roots; see the proof of Lemma 3.8 below.
An examination of root vectors shows further that .B; T / is of Whittaker type.

(ii) Now attach to any fundamental .B; T / of Whittaker type a fundamental pair
in .G�sc/

�

sc also of Whittaker type, and define h in .G�sc/
�

sc as in (i). Extend .B; T / to
a fundamental splitting splf D .B; T; fX˛g/ for G�. There is t 2 T �sc such that th
transports spl� to splf : Then
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�f D Int.th/ ı �� ı Int.th/�1 D Int.t��sc.t/
�1/ ı �� (2.2)

preserves splf and coincides with �� on T: A calculation on root vectors shows
that �.�f / D �f . For this, note that the Whittaker property of .B; T / implies
that �X˛ D X�˛; for each imaginary root vector X˛ in splf . Thus �f is defined
over R. Then Int.t��sc.t/

�1/ lies in Tad.R/: Since Tsc.R/ ! Tad.R/ is surjective,
we may take t��sc.t/

�1 in V.R/ D Tsc.R/ \ V , where V D Œ1 � ��sc�.Tsc/. Now
we claim that for fundamental T; the kernel of H 1.�; .Tsc/

�

sc / ! H 1.�; Tsc/ is
trivial. From the Tate–Nakayama isomorphisms it is enough to show the kernel
of H�1.�; ŒX�.Tsc/�

�

sc / ! H�1.�;X�.Tsc// is trivial. This is immediate since
both ��T and ��sc preserve a base for the coroot lattice X�.Tsc/. Triviality of the
kernel implies that V.R/ is connected. Thus we may assume t 2 Tsc.R/: Then
�� D Int.t�1/ ı �f ı Int.t/ preserves the splitting Int.t�1/.splf / which is funda-
mental and of Whittaker type. ut

2.4 An application

We continue with an inner form .G; �; �/ of the quasisplit pair .G�; ��/: Follow-
ing [KS99, Chapter 3] we say an element ı of G.R/ is � -semisimple if Int.ı/ ı �
preserves a pair .B; T /: We will say that the � -semisimple element ı of G.R/ is
� -fundamental if Int.ı/ ı � preserves a fundamental pair .B; T /:

Recall thatG is cuspidal if and only if a fundamental maximal torus T is elliptic,
i.e., T is anisotropic modulo the center ZG of G: In a setting where G is assumed
cuspidal, we will use the term � -elliptic interchangeably with � -fundamental. For
strongly � -regular � -semisimple elements there is another definition of � -ellipticity
(which does not require G to be cuspidal) in [KS99, Introduction]. We observe that
a strongly � -regular � -semisimple element ı of cuspidal G.R/ is � -elliptic in our
present sense if and only if it is � -elliptic in the sense of [KS99]; see Lemma 3.8(i).
In the general setting we will use exclusively the term � -fundamental. The strongly
� -regular � -semisimple elements of G.R/ that are � -elliptic in the sense of [KS99]
are � -fundamental; this is another consequence of the observation about real roots
in the proof of Lemma 3.8(i).

Following Lemma 2.4, we choose a fundamental splitting splWh of G� of Whit-
taker type preserved by ��.

Lemma 2.5.

(i) There exists a � -fundamental element inG.R/ if and only if there is .�f ; �f / in
the inner class of .�; �/ such that �f preserves a fundamental splitting for G.

(ii) If such .�f ; �f / exists and �f preserves the fundamental splitting splG , then
we may further assume �f transports splG to splWh and �f to ��.

Proof. Assume that there exists a � -fundamental element in G.R/: Then we may
multiply � by an element of Int.G.R// to obtain an R-automorphism � 0 preserving
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a fundamental pair. Now apply Lemma 2.2 to extend this pair to a fundamental
splitting splG : Since � 0 carries splG to another fundamental splitting, the lemma
also shows that a further multiplication by an element of Int.G.R// provides an
R-automorphism �f which preserves splG : We choose �f W G ! G� in the inner
class of � carrying splG to splWh: Then �f ı �f ı ��1f and �� are automorphisms of
G� which preserve splWh and differ by an inner automorphism. Hence they coincide.
The converse assertion in (i) is immediate, and so the lemma is proved. ut

For �f as in (ii) of the lemma, write �f ı�.�f /�1 as Int.uf .�//: Then, applying
� to the equation

�f ı �f ı ��1f D ��; (2.3)

we see that Int.uf .�// lies in the torus .Tad/
�

ad : Since .Tsc/
�

sc ! .Tad/
�

ad is surjec-
tive (both are connected; see [KS99, Section 1.1]) we may now assume

uf .�/ 2 .Tsc/
�

sc : (2.4)

3 Norms and the fundamental case

Here we include notation and review, and show that the norm correspondence is
well-behaved in the fundamental case.

3.1 Endoscopic data

We now consider as quasisplit data, a triple .G�; ��; a/; where .G�; ��/ is a quasis-
plit pair as above, and a is a 1-cocycle of the Weil group WR of C=R in the center
of the connected Langlands dual group G_: Then $ will denote the character on
G�.R/; or on the real points of an inner form of G�, attached to a: As always, and
without harm, we provide an explicit transition of data between G� and its Lang-
lands dual LG D G_ ÌWR by the choice of R-splitting spl� D .B�; T �; fX˛g/ of
G� preserved by �� and dual � -splitting spl_ D .B; T ; fX˛_g/ for G_: The action
ofWR onG_ factors throughWR ! �: Then �_ is the � -automorphism ofG_ that
preserves spl_ and is dual to �� as automorphism of the dual based root data. We
write L�a for the extension

g � w ! a.w/:�_.g/ � w
of �_ to an automorphism of LG:

We assume e´ is a supplemented set of endoscopic data (SED) for .G�; ��; a/
and its inner forms. The SED consists of a set e D .H;H; s/ of endoscopic data for
.G�; ��; a/ and a ´-pair .H1; 1/ for e in the sense of [KS99], although we avoid
the additional choice a0 from Section 2.1 of [KS99] by adjusting s: There is no harm
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in assuming e´ is bounded in the sense of [Sh14, Section 2]. Recall that H1 is what
we call the endoscopic group defined by the SED; Z1 will denote the kernel of the
´-extension H1 ! H: We remark that SEDs exist for .G�; ��; a/ precisely when
there are Langlands parameters preserved by L�aI see Section 9.1.

As noted in the introduction, we will be concerned mainly with the fundamental
case for which we make an ad hoc definition in Section 3.3, and more particularly
with the cuspidal-elliptic setting of Section 3.4.

3.2 Norm correspondence

A norm correspondence for G.R/ and an endoscopic group H1.R/ is defined via
maps on (twisted) conjugacy classes [KS99, Chapter 3, Section 5.4]. In general, the
correspondence is not uniquely determined by .�; �/ and there are examples where
it is empty on all or much of the very regular set defined in the paragraph following
(3.1) below. In preparation for the fundamental case to be introduced in Section 3.3,
we review two simpler settings indicated as I, II.

(I) Assume that � preserves a fundamental splitting or, more precisely, that .�; �/
is of the form .�f ; �f / from (ii) in Lemma 2.5.

The equation (2.3) allows us to attach a unique norm correspondence to .�; �/. To
begin, there is no need to choose the datum g of [KS99, Chapter 3]; in the formulas
there, set g D 1: To compute the cochain ´� of Lemma 3.1.A of [KS99], write
u.�/ from (2.1) above as u1.�/ 	 ´.�/, where u1.�/ 2 .Tsc/

�

sc as in (2.4) and ´.�/
is central inG�sc. Thus ´� D .1���sc/ ´.�/: Then, by (2) of Lemma 3.1.A in [KS99],
� determines uniquely a � -equivariant bijective map from the set Cl-ss.G; �/ of
� -twisted conjugacy classes of � -semisimple elements inG.C/ to the corresponding
set Cl�-ss.G

�; ��/ for .G�; ��/: This map provides the first step in defining the
norm correspondence. By restriction, we obtain a � -equivariant bijective map from
the set Clstr -reg.G; �/ of � -twisted conjugacy classes of strongly � -regular elements
in G.C/ to the corresponding set Clstr �-reg.G

�; ��/ for .G�; ��/:
For the second step, the endoscopic datum e provides a unique � -equivariant

surjective map from the set Clss.H/ of semisimple conjugacy classes in H.C/ to
Cl�-ss.G

�; ��/: The inverse image of Clstr �-reg.G
�; ��/ is, by definition, the set

ClstrG-reg.H/ of strongly G-regular conjugacy classes in H.C/I see [KS99, Lemma
3.3.C].

Third, the ´-extension H1 ! H provides a � -equivariant surjective map from
Clss.H1/ to Clss.H/; and then by restriction, a � -equivariant surjective map from
ClstrG-reg.H1/ to ClstrG-reg.H/:

In summary, we have established the following diagram with all arrows
� -equivariant.
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Clstr -reg.G; �/

&
Clstr �-reg.G

�; ��/
-

x

?

?

?

ClstrG-reg.H1/

.
ClstrG-reg.H/

(3.1)

Turning now to real points, by the very regular set in H1.R/ � G.R/, we mean
the set of all pairs .�1; ı/ where �1 2 H1.R/ is strongly G-regular and ı 2 G.R/ is
strongly � -regular. Restricting to the real points of the classes in (3.1), we obtain
maps from stable � -twisted conjugacy classes of strongly � -regular elements in
G.R/ to stable ��-twisted conjugacy classes of strongly ��-regular elements in
G�.R/, from stable conjugacy classes of strongly G-regular elements in H.R/ to
stable ��-twisted conjugacy classes of strongly ��-regular elements in G�.R/, and
from the set of stable classes of strongly regular elements in H1.R/ to the sta-
ble conjugacy classes of strongly regular elements in H.R/: Because H1 ! H

is a ´-extension, the last map is surjective and remains surjective when we rep-
lace“strongly regular” by “strongly G-regular”. As in [KS99, Section 3.3], we now
define a norm correspondence on the very regular set: ı 2 G.R/ has norm �1 in
H1.R/; i.e., .�1; ı/ lies in the norm correspondence, if and only if the images of the
respective stable classes of �1; ı have the same image among the stable ��-twisted
conjugacy classes of strongly ��-regular elements in G�.R/:

To attach data to the norm correspondence as in [KS99, Section 4.4], consider
strongly � -regular ı 2 G.R/. Then unraveling the definition of the last paragraph
shows that ı has norm �1 in H1.R/ if and only if there exist a ��-stable pair .B; T /
in G� with T defined over R and elements g in G�sc; ı

� in T such that

ı� D g:�.ı/:��.g/�1; (3.2)

and the image � of ı� under some admissible T ! T� ! TH coincides with the
image of �1 under H1 ! H: See [KS99, Section 3.3]. This is summarized in the
following diagram, where N denotes the projection T ! T� to coinvariants.

G.R/ 3 ı �! ı� 2 T
?

?

?

y

�1 2 H1.R/
.

Nı� 2 T�.R/ �! � 2 TH .R/
As in [KS99, Section 3.3], we say a maximal torus T in G� is ��-admissible

if there exists a ��-stable pair .B; T / in G�: Also, TH and its inverse image T1 in
H1 are ��-norm groups for T if there exists an admissible T ! T� ! TH . Then
write T1 for the inverse image of TH in H1: Every maximal torus over R in H1 is
a ��-norm group for some ��-admissible maximal torus T in G� [KS99, Lemma
3.3.B].
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In regard to (3.2) we note the following for use in calculations.

Remark 3.1. Suppose .Bı ; Tı/ is preserved by Int.ı/ ı � , where ı is a strongly
� -regular element of G.R/ as above. Then Tı is the centralizer in G of the abelian
reductive subgroup Cent .ı; G/ ofG:We may arrange that Int.g/ı� carries .Bı ; Tı/
to .B; T / and Cent .ı; G/ to T 

�

with the restriction of Int.g/ ı � to Tı defined
over R.

(II) Replace � in (I) by � 0 of the form Int.gR/ ı �; gR 2 G.R/:
The norm correspondence is no longer canonical but there is a quick and transpar-
ent definition in this case. Namely, the map ı ! ı 	 gR carries strongly � 0-regular
elements in G.R/ to strongly � -regular elements in G.R/; providing a bijection
between the stable classes of strongly � 0-regular elements and the stable classes of
strongly � -regular elements. We then extend the definition of the norm correspon-
dence on stable classes to this case in the obvious way. This norm for � 0 depends on
our choice of gR and so we use the terminology gR-norm. The dependence is that
gR may be replaced by ´RgR; with ´R 2 ZG.R/: Then a strongly G-regular �1 in
the endoscopic group H1.R/ is a gR-norm of ı if and only if �1 is a ´RgR-norm of
ı´R: See Section 4.2 for the role of ´R in transfer statements.

3.3 Fundamental case

Let .G�; ��/ be a quasisplit pair. A fundamental maximal torus T1 in H1 is a
��-norm group for some ��-admissible maximal torus T in G�; see Section 3.2.
It will be convenient to call .G�; ��; e´/ fundamental if we may choose T to be
fundamental; see Remark 3.4 below.

In general, write StrReg.G�; ��/ for the set of all strongly ��-regular elements in
G�.R/ and StrReg.G�; ��/f for the subset of ��-fundamental elements as defined
in Section 2.4.

Lemma 3.2. StrReg.G�; ��/f is nonempty and a union of stable ��-twisted conju-
gacy classes.

Proof. There is a fundamental pair .B; T / in G� preserved by ��; see the proof of
Lemma 3.8 below. Then T .R/ contains (many) elements in StrReg.G�; ��/f . The
rest is immediate from definitions. ut

Write StrRegG�.H1/ for the set of all strongly G�-regular elements in H1.R/
and StrRegG�.H1/f for the subset of elements �1 such that the maximal torus
Cent.�1;H1/ is fundamental in H1: We call .�1; ı/ in the very regular set, i.e.,
in StrRegG�.H1/ � StrReg.G�; ��/; a related pair if it lies in the uniquely defined
norm correspondence for .G�; ��/; i.e., if �1 is a norm of ı:



On elliptic factors in real endoscopic transfer I 467

Lemma 3.3.

(i) .G�; ��; e´/ is fundamental if and only if

StrRegG�.H1/f � StrReg.G�; ��/f

contains a related pair.

Now assume .G�; ��; e´/ is fundamental. Then

(ii) each ı in StrReg.G�; ��/f has a norm �1 inH1.R/ and �1 2 StrRegG�.H1/f ;

(iii) if �1 2 StrRegG�.H1/f is a norm of strongly � -regular ı in G�.R/, then
ı 2 StrReg.G�; ��/f :

Proof. (i) Assume that .G�; ��; e´/ is fundamental and choose an admissible
T ! T� ! TH with both T; TH fundamental. This provides related pairs in
StrRegG�.H1/f � StrReg.G�; ��/f : Conversely, a related pair in StrRegG�.H1/f
� StrReg.G�; ��/f provides an admissible T ! T� ! TH with both T; TH fun-
damental, and .G�; ��; e´/ is fundamental. To check (ii), we may replace ı with
a twisted conjugate by an element of G�.R/ and assume that Tı D T . The result
then follows easily; see [KS99, Lemma 4.4.A]. For (iii), suppose .�1; ı/ is a related
pair with attached TH fundamental. Then Remark 3.1 implies that the stable class
of attached ��-admissible T is uniquely determined by �1, and (iii) follows. ut
Remark 3.4. The argument for (iii) shows that .G�; ��; e´/ is fundamental if and
only if every ��-admissible maximal torus T in G� with a fundamental maximal
torus in H1 as ��-norm group is fundamental.

Now consider an inner form .G; �; �/; and define StrReg.G; �/f in the same way
as StrReg.G�; ��/f . In general, we modify StrRegG�.H1/f slightly as in Section
5.4 of [KS99]. Namely, we replace H1.R/ by a suitable coset H1.R/� of H1.R/
in H1.C/: Then we define a subset StrRegG�.H1/

�

f
of this coset H1.R/� which

may be empty. For .�; �/ as in (ii) of the next lemma we take, as we may,
H1.R/

� D H1.R/:
Lemma 3.5. Assume that .G�; ��; e´/ is fundamental. Then the following are equiv-
alent for an inner form .G; �; �/ of .G�; ��/:

(i) there exists a � -fundamental element in G.R/;
(ii) there is .�f ; �f / in the inner class of .�; �/ such that �f preserves a funda-

mental splitting for G;
(iii) there exists a related pair in StrRegG�.H1/

�

f
� StrReg.G; �/f :

Proof. We have proved (i) ) (ii) in Lemma 2.5. For (ii) ) (iii) we may further
assume that � D �f and � transports � to ��: Then the assertion follows easily. (iii)
) (i) is immediate. ut
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Lemma 3.6. Assume any one of the equivalent conditions from Lemma 3.5 is satis-
fied. Then:

(i) each ı in StrReg.G; �/f has a norm �1 in H1.R/ and moreover �1 lies in
StrRegG�.H1/f ;

(ii) if �1 2 StrRegG�.H1/f is a norm of strongly � -regular ı in G.R/, then ı lies
in StrReg.G; �/f :

Proof. We may assume that � preserves fundamental splitting splG ; that �� pre-
serves fundamental splitting splWh of Whittaker type, and that � transports � to ��.
Recall that Int.ı/ ı � preserves the fundamental pair .Bı ; Tı/: Extend the pair to a
fundamental splitting splı : Then there is tı in .Tı/sc.R/ such that Int.tıı/ ı � pre-
serves splı : Here, as usual, we have used the same notation tı for the image of tı in
.Tı/.R/ under Gsc ! G. We now choose g in Gsc such that Int.g/ carries splı to
splG : Let TG be the elliptic maximal torus specified by splG : Then g� D g�.g/�1
lies in .TG/sc; tG D gt�1

ı
g�1 lies in .TG/sc.R/ and ıG D gı�.g/�1 is of the form

´tG ; where ´ is central. Also

�.´/�1´ D �.ıG/�1ıG D .1 � �/g� ; (3.3)

so that N .´/ lies in .TG/ .R/: Now apply the twist � which carries splG to splWh:

Then (i), (ii) follow; see Lemma 4.4.A of [KS99]. ut
Example 3.7. For general .G�; ��/, consider a basic SED e´; i.e., assume that
s D 1: Then an argument along the same lines as that for Lemma 3.3 shows that
.G�; ��; e´/ is fundamental.

3.4 Cuspidal-elliptic setting

By the cuspidal-elliptic setting we mean that G�, or equivalently an inner form of
G�, is cuspidal and that the endoscopic datum e is elliptic in the sense that the
identity component of the � -invariants in the center of H_ lies in the center of G_
[KS99]. We then call H1 an elliptic endoscopic group.

Lemma 3.8.

(i) Assume G� is cuspidal. Then .G�/�

is cuspidal and there exists an elliptic
��-admissible maximal torus T in G�.

(ii) Assume also that e is elliptic. Then H1 is cuspidal and each elliptic T1 in H1
is a ��-norm group for each elliptic ��-admissible T in G�.

Proof. There is no harm, for both (i) and (ii), in assuming that G� is semisimple
and simply-connected, so that I D .G�/�

is connected (as well as reductive) as
algebraic group. Consider a pair .B1; T 1/; where T 1 is a fundamental maximal
torus defined over R in I and B1 is any Borel subgroup of I containing T 1: Set
T D Cent.T 1; G�/ and B D Norm.B1; G�/; so that .B; T / is a ��-stable pair
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for G�. Then T must be fundamental, for otherwise T would have a real root and
then a multiple of the restriction of this root to T 1 D T 

�

would provide us with a
real root for T 1 in I ; no such root exists since T 1 is fundamental. (i) then follows.
For (ii), let TH be a fundamental maximal torus inH: Then there is some admissible
isomorphism TH ! T� associated to a ��-admissible T . Attach toH the standard
endoscopic group J for I as in Section 4.2 of [KS99]. Then T 1 is (isomorphic to)
a fundamental maximal torus in J; and moreover J is elliptic because H is. Thus,
by (ii) in the case of standard endoscopy, T 1 is anisotropic modulo ZI : Since T
is then anisotropic modulo ZG� as in (i), TH is anisotropic modulo ZH ; and (ii)
follows. ut
Corollary 3.9. .G�; ��; e´/ is fundamental in the sense of Section 3.3.

Consider an inner form .G; �; �/. We write sr-ell.G; �/ for the set of all � -elliptic
strongly � -regular elements in G.R/ and sGr-ell.H1/� for the set of all strongly G-
regular elliptic elements in H1.R/�:

Corollary 3.10. The following are equivalent:

(i) there exists a � -elliptic element in G.R/;
(ii) there is .�f ; �f / in the inner class of .�; �/ such that �f preserves a funda-

mental splitting for G;
(iii) there exists a related pair in sGr-ell.H1/� � sr-ell.G; �/:

Proof. By Lemma 3.8, this is a special case of Lemma 3.5. ut
Corollary 3.11. Assume any one of the conditions of Corollary 3.10 is satisfied.
Then:

(i) each ı in sr-ell.G; �/ has a norm �1 in H1.R/ and �1 2 sGr-ell.H1/;
(ii) if �1 2 sGr-ell.H1/ is a norm of strongly � -regular ı in G.R/, then

ı 2 sr-ell.G; �/:

Proof. By Lemma 3.8, this is a special case of Lemma 3.3. ut

3.5 Consequences for geometric transfer factors

We conclude by summarizing some of the results of Section 3.3 and 3.4 in terms of
the transfer factor � of [KS99] (see also [KS12, Sh14]) for the matching of orbital
integrals, i.e., for geometric twisted transfer [Sh12]. The factor � is defined on the
very regular set of Section 3.2. By construction, �.�1; ı/ ¤ 0 if and only if .�1; ı/
is a related pair, i.e., �1 is a norm of ı: We consider

(i) transfer for quasisplit data .G�; ��/ with SED e´ and
(ii) transfer for an inner form of the quasisplit data in (i) when e´ is fundamental.
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Then Lemmas 3.3, 3.6 imply that:

Theorem 3.12.

(i) There exists fundamental �1 and ��-fundamental ı such that �.�1; ı/ ¤ 0 if
and only if .G�; ��; e´/ is fundamental.

(ii) Assume .G�; ��; e´/ is fundamental and that .G; �; �/ is an inner form. Then
there exist fundamental �1 and � -fundamental ı such that �.�1; ı/ ¤ 0 if and
only if there exists a � -fundamental element in G.R/:

From this and Lemma 3.8 we conclude:

Corollary 3.13. In the cuspidal-elliptic setting:

(i) there exist elliptic �1 and ��-elliptic ı such that �.�1; ı/ ¤ 0 and
(ii) for an inner form .G; �; �/; there exist elliptic �1 and � -elliptic ı such that

�.�1; ı/ ¤ 0 if and only if there exists a � -elliptic element in G.R/:

We will return to the results of Sections 3.3 and 3.4 in [ShII].

4 Formulating spectral factors

We turn now to some remarks on transfer statements in the setting from Lemma 2.5.
We have checked that this setting captures all nontrivial geometric transfer on the
fundamental very regular set. There is an analogous statement for the spectral side
which we will introduce now but make precise and verify later; see Part 9. We will
limit our discussion in the present part to the cuspidal-elliptic setting as the general
fundamental case follows quickly.

4.1 Transfer statements

For the main case I, we consider an inner form .G; �; �/ of .G�; ��/ for which

(i) the transport of splWh to G by � is fundamental and
(ii) � is the transport of �� to G by �.

We have assumed for convenience that G is cuspidal and the endoscopic datum e is
elliptic. Also for convenience, we will discuss transfer for the tempered rather than
the essentially tempered spectrum.

First recall geometric transfer. Test functions are Harish-Chandra Schwartz
functions; we consider functions f 2 C.G.R/; �/ and f1 2 C.H1.R/;$1/ [Sh12,
Section 1]. We may also use C1c .G.R/; �/ and C1c .H1.R/;$1/ by Bouaziz’s
Theorem (see [Sh12, Section 2]), as we will need in Section 8.2 for the generally
nontempered transfer of Adams–Johnson. Measures and integrals will be defined
and normalized as in [Sh12]. To be more careful, we should use test measures in
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place of test functions throughout, in order to have the transfer depend only on the
normalization of transfer factors. However, this will be ignored here; see instead the
note [Sh].

Theorem 2.1 of [Sh12] shows that for all f 2 C.G.R/; �/ there exists f1 2
C.H1.R/;$1/ such that

SO.�1; f1/ D
X

ı; -conj

�.�1; ı/ O
;$ .ı; f / (4.1)

for all strongly G-regular �1 inH1.R/: HereO;$ denotes a .�;$/-twisted orbital
integral and SO denotes a standard (untwisted) stable orbital integral. We write
f1 2 Trans;$ .f /:

Suppose �1 is a tempered irreducible admissible representation of H1.R/ and
˘1 is its packet. We will assume, usually without further mention, that �1.Z1.R//
acts by the character$1I recall Z1 is the central torus Ker.H1 ! H/: Let St- Tr�1
be the stable tempered distribution

f1 !
X

� 0

1
2˘1

Trace� 01.f1/:

Because f1 2 C.H1.R/;$1/ we have taken �1.f1/ as the operator
Z

H1.R/=Z1.R/

f1.h1/�1.h1/
dh1

d´1
:

Following the case of standard endoscopic transfer we may consider the linear form
f ! St- Tr�1.f1/ on C.G.R/; �/, where f1 is attached to f as in (4.1). For
the present discussion we restrict the form to C1c .G.R/; �/: It is well-defined by
Lemma 5.3 of [Sh79a], and results of Waldspurger [Wa14] (see also [Me13]) show
that it is a linear combination of twisted traces of representations of G.R/: Our
purpose is different. We want to describe certain coefficients closely related to the
geometric factors and then later establish that they are correct for such a spectral
transfer. Our interest in the spectral transfer statement (4.3) below is in certain con-
straints it places on our factors. With these constraints in mind we will verify various
lemmas before making our definitions. For example, Lemma 9.2 will be the spectral
analogue of Corollary 3.10, namely that our present assumption on .G; �; �/ cap-
tures all nonempty twistpackets of discrete series representations for inner forms of
.G�; ��/. Other results require more effort and for these we will introduce further
tools.

Let � be a tempered irreducible admissible representation ofG.R/ and˘ denote
its packet. We use the same notation for a representation and its isomorphism class;
we may also work with unitary representations and unitary isomorphisms. For a
related pair of Langlands parameters (see Part 9) we consider the corresponding
packets˘1 forH1.R/ and˘ forG.R/. The construction of endoscopic data ensures
that the packet ˘ is preserved under the map

� ! $�1 ˝ .� ı �/:
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This last property is a simple condition on the Langlands parameter of˘ ; whenever
it is satisfied we call the attached packet .�;$/-stable. Thus we may define a twisted
trace on ˚� 02˘ � 0: Only those � 0 fixed by the map will contribute nontrivially. We
then define ˘;$ to be the subset of ˘ consisting of such � 0 and call ˘;$ a
twistpacket for .�;$/:

Suppose � belongs to the twistpacket˘;$ and that the unitary operator �.�;$/
on the space of � interwines � ı � and $ ˝ � or, more precisely, that

�.�.g// ı �.�;$/ D $.g/:.�.�;$/ ı �.g//; (4.2)

for g 2 G.R/. Then by the twisted trace of � , we mean the linear form

f ! Trace�.f / ı �.�;$/:
Note that we have not fixed a normalization of the operator �.�;$/: Also, if f is
replaced by g ! f .xg�.x/�1/, then Trace�.f / �.�;$/ is multiplied by $.x/;
for x 2 G.R/.

Spectral transfer factors will be nonzero complex coefficients�.�1; �/ such that

St- Trace�1.f1/ DP�2˘�;$�.�1; �/ Trace�.f / �.�;$/: (4.3)

The factors�.�1; �/ depend on how we normalize the geometric factors�.�1; ı/
that prescribe the correspondence .f; f1/: Following the method for standard trans-
fer, we will introduce a geometric-spectral compatibility factor. For standard transfer
this factor was canonical. In the twisted case there is a new dependence: the choice
of normalization for the operators �.�;$/, � 2 ˘;$ : We may multiply �.�;$/
by a nonzero complex number � (of absolute value one since we have required uni-
tarity). In standard endoscopy, the term �II in �.�1; �/ comes from the explicit
local representation of f ! Trace�.f / around the identity. In the twisted case,
we consider a similar twisted term for f ! Trace�.f /�.�;$/ around a certain
point, in general not the identity element. We will then see that multiplying �.�;$/
by � has the effect of dividing�II by �: No other term in�.�1; �/ will depend on
�.�;$/ and so

�.�1; �/ Trace�.f / �.�;$/

will be independent of the choice for �.�;$/: Then the (geometric-spectral) com-
patibility factor �.�1; � I �1; ı/ will depend on �.�;$/ but the quotient

�.�1; �/=�.�1; � I �1; ı/
will not. We conclude that we may define geometric-spectral compatibility as in the
standard case [Sh10, Section 12].
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4.2 Additional twist by an element of G.R/

We now consider the setting II where we twist an automorphism � as in I by an
element gR of G.R/. This yields no new twistpackets but it will be useful to have a
precise formulation for transfer with the twisted automorphism.

Denote by �gR the geometric transfer factors defined using gR-norms. Suppose
we replace gR by ´RgR; where ´R lies in the center of G.R/: Then the relative
factors

�gR.�1; ıI � 01; ı0/
and

�´RgR.�1; ı´RI � 01; ı0´R/
coincide. Indeed we see quickly from the definitions that the only difference bet-
ween the two is that the element ´R is inserted in the element D constructed for
�III (see p. 33 of [KS99]) where it clearly has no effect. This property of the
relative factors allows us to normalize absolute factors so that

�´RgR.�1; ı´R/ D �gR.�1; ı/
for all very regular related pairs .�1; ı/ for the gR-norm.

The choice of ´R affects the correspondence on test functions. If f1 2 Trans.f /
for gR-norms, then clearly f1 2 Trans.f´R/ for ´RgR-norms, where f´R denotes the
translate of f by .´R/�1: The extended version of Lemma 5.1.C at the bottom of
p. 53 of [KS99] applies also to gR-norms since it is easily rewritten as a statement
about relative factors. Thus, if ´1 2 ZH1

.R/ has image inZH .R/ equal to the image
of ´R underN , i.e., if .´1; ´R/ belongs to the group C.R/ from (5.1) of [KS99], then
there is quasicharacter $C on C.R/ such that

�gR.´1�1; ı´R/ D $C .´1; ´R/
�1�gR.�1; ı/:

A calculation with (4.1) now shows that

$C .´1; ´R/:.f1/´1
2 Trans.f /

for ´RgR-norms.
In Lemma 9.5 we will prove that the central characters $�1

;$� for a related
pair .�1; �/ have the property that

$�1
.´1/:$�.´/

�1 D $C .´1; ´R/ (4.4)

for all .´1; ´R/ in C.R/: This and (4.2) imply that if the spectral factors�gR.�1; �/
and�´RgR.�1; �/ are compatible with geometric�gR and�´RgR respectively, then

�gR.�1; �/ D �´RgR.�1; �/
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for all pairs .�1; �/ as in Section 4.1. Here if �.�;$/ is used in the definition on
the left, then$�.´R/:�.�;$/ is to be used on the right. Our conclusion is then that
the spectral factors will be independent of the choice for gR:

5 Packets and parameters I

Next we review briefly Langlands parameters and Arthur parameters for real groups
[La89, Ar89]. We make a construction in Section 5.2 that attaches a c-Levi group
to a parameter. We will show in subsequent sections how this group provides useful
additional information about the parameters we are concerned with. Twisting will
be ignored until Part 9.

5.1 Langlands parameters, Arthur parameters

Consider a homomorphism of the form

 D .'; �/ W WR � SL.2;C/! LG;

where ' W WR ! LG is an essentially bounded admissible homomorphism and � is
a continuous homomorphism of SL.2;C/ into G_. The conditions on ' mean that
'.w/ D '0.w/�w; w 2 WR; where '0 is a continuous 1-cocycle ofWR in G_ and
'0.WR/ is a group of semisimple elements in G_ that is bounded mod center in the
sense that the image of '0.WR/ in the adjoint form G_ad under the natural projection
G_ ! G_ad is bounded.

An element g ofG_ acts on the set of such ' by conjugation: ' ! Int.g/ı'. The
G_-orbits are the essentially bounded Langlands parameters for G�I see [La89].
Similarly, G_ acts on the set of such  and the orbits are the Arthur parameters for
G�I see [Ar89].

When we replaceG� by an inner twist .G; �/ in our considerations, we will often
limit our attention to Langlands parameters which are relevant to .G; �/ in the usual
sense that the image of a representative is contained only in parabolic subgroups of
LG relevant to .G; �/ [La89]. The essentially bounded Langlands parameters rele-
vant to .G; �/ parametrize the essentially tempered packets of irreducible admissible
representations of G.R/ [La89].

Notation. Occasionally we distinguish between a homomorphism '; and its
G_-orbit ''';   respectively, but much of the time we use the symbols ' or  for
both.

Let  D .'; �/ be a Arthur parameter and let S D S denote the centralizer in
G_ of the image of  : Recall that Arthur calls  elliptic if the identity component
of S is central in G_ and that this is equivalent to requiring that the image of  be
contained in no proper parabolic subgroup of LG [Ar89].
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For calculations with the Weil group WR we fix an element w� of WR such that
w� maps to � under WR ! � and .w� /2 D �1:

5.2 c-Levi group attached to a parameter

Let  D .'; �/ be an Arthur parameter. Set

M_ D Cent.'.C�/; G_/:

Then M_ D M_ is a connected reductive subgroup of G_. Because '.C�/ is a
torus, M_ is Levi in the sense that there is a parabolic subgroup of G_ with M_
as a Levi subgroup. Notice that '.WR/ normalizes M_: We define M to be the
subgroup of LG generated by M_ and '.WR/: Then M is a split extension of WR

by M_: Notice that M contains S :
While M is typically not endoscopic, i.e., it is not the group H in some set

.H;H; s/ of standard endoscopic data for G, we may extract an L-action on M_ in
the same way as for the endoscopic case. For this, recall the fixed splitting spl_ D
.B; T ; fX˛_g/ for G_. There is no harm in assuming that '0.C�/ lies in T and that
'0.w� / normalizes T [La89]. Then T � M_ and a simple root ˛_ for M_ \ B
is also simple for B. We then use the same root vector X˛_ . Write spl_M for this
splitting .M_ \ B; T ; fX˛_g/ for M_. To define an L-action on M_ we need only
to specify an automorphism �M of M_ that preserves spl_M and has order at most
two. Since Int'.w� / preserves M_ and has order at most two as automorphism
of T ; it is clear that there is a unique such �M of the form IntŒm� 	 '.w� /�; with
m� 2M_: For the L-action itself,WR acts throughWR ! � I in particular, w� acts
as �M and C� acts trivially.

Write LM D LM for the correspondingL-groupM_ ÌWR andM for a group

defined and quasisplit over R that is dual to LM . In Section 5.4 we will describe
explicitly the L-isomophisms M W LM ! M in the critical case, where we
have the property � of the next section. In Section 6.2 we will define an embedding
over R of the quasisplit group M in the quasisplit form G� in that case (and the
general case follows quickly). For now, however, the following observation will be
sufficient: in the same sense and by the same arguments as for an endoscopic group
(see [KS99, Lemma 3.3.B]), the groupM shares various maximal tori over R with
an inner form G of G� and all maximal tori over R in M are shared with G�.

The groups M and M attached to Arthur parameter  D .'; �/ depend only
on '. We may make the same definitions for any Langlands parameter ' and then
we use the notationM' . We call the groupM' a c-Levi group ofG�. We will define
c-Levi groups in an inner form via inner twists; see Section 6.2. In Section 7.4 we
will see M in a more familiar setting, namely as a Levi subgroup defined over R
of a parabolic subgroup preserved by a Cartan involution.
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The group M' also appears indirectly in the dual version of the Knapp–Zucker-
man decomposition of unitary principal series (see [Sh82, Sections 4, 5]), as we will
recall briefly in Part 6. For certain Arthur parameters  ; a family of inner forms of
M is introduced in [Ko90, Section 9].

5.3 A property for Arthur parameters

Let  D .'; �/ be an Arthur parameter. As above, we choose a representative  
such that '0.C�/ lies in T and '0.w� / normalizes T . Consider the property:

� there is an element of M \ .G_ � w� / that normalizes T and acts as �1 on all
roots of G_.

Notice that � is true if and only if both G�; M are cuspidal and share an elliptic
maximal torus T; i.e., a maximal torus that is anisotropic modulo the center of G�:
Here we may replace G� by an inner form .G; �/ if we wish; we then write TG in
place of T and assume harmlessly that � maps TG to T over R.

5.4 L-isomorphisms for attached c-Levi group

We describe next the L-isomorphisms M W LM ! M for the case that � is true.
There will be no harm in working with standard �-data and we do so as it returns
us to a familiar setting. In particular, Lemma 5.1 below is well known; much of it
is stated in [AJ87], [Ar89] without details of proof. We give a quick proof based
on some explicit calculations we will need. These calculations also pinpoint depen-
dence on the critical Lemma 3.2 in [La89].

The element described in � may be written as n � w� ; where n 2 G_ normal-
izes T and represents the longest element of the Weyl group of T in G_: Since
n � w� 2M, our construction of LM D M_ ÌWR yields nM � w� in the group
LM normalizing T and acting as �1 on the roots of M_: Then nM 2M_ normal-
izes T and represents the longest element of the Weyl group of T in M_: Because
M_ is Levi, we may multiply n by an element of T \ .M_/der � T \ .G_/der to
obtain n0 such that the action of n0 � w� 2 LG on the entire group M_ coincides
with that of nM � w� 2 LM: Notice that

n0�.n0/ D n�.n/; (5.1)

where � denotes the action of 1�w� 2 LG on G_; and that the action of 1�w� 2
LM on M_ is given by conjugation by

.nM /
�1n0 � w� 2M: (5.2)
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Returning to the construction of an L-isomorphism M W LM !M, we require
M to act as the identity on M_. It remains to define M on WR: There is no harm
in assuming that the element n above, and thus also n0, belongs toG_der; and that nM
belongs to M_der: Then set

M .w� / D .nM /�1n0 � w� :
Let � denote one-half the sum of the coroots for T in B, and let �M be the cor-
responding term for the coroots in M_ \ B. Notice that because M_ is Levi, we
have

˝

� � �M ; ˛_
˛ D 0 (5.3)

for all roots ˛_ of T in M_: This, together with �, implies that �M acts on � � �M
as �1: For ´ 2 C�; define the element M .´/ of T � ´ by

M .´/ D .´=´/���M � ´:
Lemma 5.1.

(i) The map M extends to a well-defined homomorphism M W WR ! M and
thence to an L-isomophism M W LM !M:

(ii) An L-isomophism  0M W LM !M extending the identity onM_ is of the form
 0M D a˝ M ; where a is a 1-cocycle of WR in the center ZM_ of M_:

Proof. Following (5.1) and (5.2) in our construction above, we see that

Œ.nM /
�1n0 � w� �2

may be rewritten as
.nM�M .nM //

�1:n�.n/ � .�1/:
By [La89, Lemma 3.2], this is

.�1/�2�M .�1/2� � .�1/;
and (i) then follows. Also, (ii) is immediate. ut

5.5 u-regular Arthur parameters

We continue with an Arthur parameter  D .'; �/. Notice that the image of � lies
inM_: From now on we will limit our attention to u-regular Arthur parameters. By
this we mean a parameter  for which the image of � contains a regular unipotent
element of M_: Then � maps regular unipotent elements of SL.2;C/ to regular
unipotent elements ofM_:We include the case thatM_ is abelian. Then � is trivial
so that  D .'; triv/; where ' is a Langlands parameter that is regular in the sense
of [Sh10, Section 2]. Representations in the attached essentially tempered packet
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have regular infinitesimal character. On the other hand, if M_ is nonabelian, then
there are u-regular Arthur parameters where representations in the attached Arthur
packet have singular infinitesimal character; see Lemma 7.4.

Observe that for a u-regular Arthur parameter  ; the centralizer S of the image
of  in G_ consists exactly of the �M -invariants in ZM_ .

Lemma 5.2. A u-regular Arthur parameter  is elliptic if and only if � is true.

Proof. There is no harm in assumingG is simply-connected and semisimple, so that
ZG_ is trivial. Then a nontrivial torus in the �M -invariants of ZM_ determines a
nontrivial R-split torus in a fundamental maximal torus of M , and conversely. ut

In the next lemma we assume  is elliptic since we have yet to describe M in
general (see [ShII]). By construction, we have '.WR/ contained in M, and so we
may factor ' through M W LM ! M: Define the Langlands parameter 'M by
' D M ı 'M : Set LZM D ZM_ ÌWR � LM:

Lemma 5.3. The Langlands parameter 'M factors through LZM :

Proof. By (5.3), 'M .C�/ lies in LZM :Because 1�w� 2 LM preserves the splitting
spl_M ofM_ we may adjust by an element ofM_ to arrange also that �.SL.2;C//
contains a regular unipotent element ofM_ that is fixed by 1�w� :Writing 'M .w� /
as m.w� / � w� ; we have then that the semisimple element m.w� / commutes with
a regular unipotent element and hence is central in M_: ut
Remark 5.4. By (ii) of Lemma 5.1 we may replace M by ' itself. Then ' factors
through the trivial parameter w ! 1 � w; this factoring is used for the parameters
in [Ko90, Section 9].

5.6 Langlands parameters for discrete series

Discrete series parameters are defined in [La89, Section 3]. They are precisely the
Langlands parameters ''' that are elliptic as Arthur parameters, i.e., such that  D
.'; triv/ is elliptic, and then M' is just the elliptic torus T of Section 5.3.

We recall that there is a representative ' for ''' such that

'0.´/ D ´�´�T�; ´ 2 C�; (5.4)

and
'0.w� / D e2�i�n: (5.5)

Here n is the element of the derived group ofG_ constructed from spl_ to represent
the longest element of the Weyl group of T (see [LS87, Section 2.6]). Then '.w� /
acts on T as �T : Also �; � 2 X�.T /˝ C and

1

2
.� � �T�/ � � � �C �T � modX�.T /; (5.6)
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where � is one-half the sum of the coroots for T in the Borel subgroup B provided
by spl_. Notice that the congruence implies that

˝

�; ˛_
˛ 2 Z

for all roots ˛_ of T in G_: We require � to be strictly dominant for spl_. Thus �
is determined uniquely by ''', while � is determined uniquely modulo K, where

K D X�.T /C f� 2 X�.T /˝ C W �T � D ��g:
Finally, the representative '.�; �/ for ''' is determined uniquely up to the action
of T .

5.7 Langlands parameters for limits of discrete series

As in [Sh82], we may use (5.4) and (5.5) above to construct a Langlands parameter'''
with representative ' D '.�; �/; where .�; �/ satisfy (5.6) but the strict dominance
condition on � is relaxed to dominance.

Notice that if �0 2 X�.T / is dominant, then we obtain another such parameter
'.�C�0; �C 1

2
�0/. This will provide a translation by the rational character �0 in

the character data of Parts 6 and 7.
Also, because h�C �T�; ˛_i D 0 for all roots ˛_ of T in G_; the image of

'0 D '0.�; �/ is bounded mod center. Thus ''' is essentially bounded.

Remark 5.5. We will now use the term s-elliptic for any Langlands parameter '''
with representative of the form ' D '.�; �/. By construction, � is true, so that
the attached c-Levi group M' is cuspidal and shares an elliptic maximal torus T
with G.

Remark 5.6. Langlands’ definition of the packet attached to relevant ''' involves
components of principal series representations [La89]. Theorem 4.3.2 of [Sh82]
shows that '.�; �/ may be used directly to identify these components as limits of
discrete series characters, nondegenerate or not.

6 Packets of limits of discrete series

We pause for a more detailed analysis of the packet of tempered irreducible repre-
sentations attached to an s-elliptic parameter ''' with representative ' D '.�; �/.
Namely, we expand on Remark 5.6 using the attached c-Levi group M' and the
strong generic base-point property from [Sh08b, Section 11] which is based on
Vogan’s classification of generic representations.
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6.1 Character data, Whittaker data

Let C denote the closed Weyl chamber in X�.T / ˝ C dominant for spl_. Recall
that � 2 C: We choose an inner automorphism of G� carrying spl� D .spl_/_ to a
fundamental splitting splWh D .B; T; fX˛g/ forG� of Whittaker type. We thus have
a transport to T of .�; �; C/: Then .�; �; C/ becomes character data for a generic
discrete series or limit of discrete series representation �� of G�.R/.

To fix Whittaker data for G�, by which we mean aG�.R/-conjugacy class of the
pairs .B; �/ of [KS99, Section 5.3], we choose an additive character  R for R and
use the conjugacy class of the pair determined by  R and spl�. We may adjust the
fundamental splitting splWh to arrange that �� is generic for the chosen Whittaker
data. We then say that the splitting is aligned with the data. This determines splWh
uniquely up to G�.R/-conjugacy.

Let .G; �/ be an inner twist and let splf be a fundamental splitting for G: We
use a twist �0 in the inner class of � to transport splf to splWh: This provides us
with a further transport of .�; �; C/ to the maximal torus specified by splf : The
transported triple serves as character data .�� ; �� ; C�/ for a discrete series or limit
of discrete series representation � of G.R/ which is determined uniquely by the
G.R/-conjugacy class of splf : In the case of limits of discrete series we must now
allow � D 0; i.e., that the distribution attached to the character data is zero. We
write splf D spl� D .B� ; T� ; fX˛g/, �0 D �� and the character data for � as
.�� ; �� ; C�/:

By Lemma 2.1 and the theorem cited in Remark 5.6, as splf varies we generate
the packet of essentially tempered representations attached to ' D '.�; �/ and
possibly some zeros. By the same theorem we obtain all zeros if and only if ' is
irrelevant to G.

6.2 Characterizing nonzero limits

Our first concern will be to detect when � D 0. There is a well-known character-
ization, in terms of roots, for a limit of discrete series to be nonzero; see [KZ82,
Theorem 1.1 (b)]. The precise statement is noted in the next proof. We want a char-
acterization in terms of the c-Levi group M' :

Consider the subgroup M � generated by T and the root vectors X˛ from splWh
for which ˛ is the transport to T of the coroot of a simple root of T in M_ \ B:
Because splWh is of Whittaker type, i.e., the simple roots are all noncompact, the
groupM � is quasisplit over R. Moreover, we may identify the L-group ofM � with
the L-group LM' constructed in Section 5.2. For this, we reverse the construction
of Section 6.1 to determine an R-splitting spl�M for M � from the fundamental split-
ting splWh;M attached to splWh and the additive character  R: Then spl�M is unique
up to M �.R/-conjugacy. Each such spl�M determines a unique isomorphism from
L.M �/ to LM' . In summary, M � provides a concrete realization of the quasisplit
group M' .
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By definition, �� carries spl� to splWh. LetM�D��1� .M �/: Then �� WM� !M

is an inner twist in the inner class of � that carries T� to T � over R. We say thatM�

is an elliptic c-Levi group for .G; �/.

Lemma 6.1. � is nonzero if and only if the inner twist �� W M� ! M � is an
R-isomorphism.

Proof. The characterization cited (in sufficient generality for our setting) is that
� ¤ 0 if and only if all C� -simple roots ˛ such that h�� ; ˛_i D 0 are noncompact.
In other words, � ¤ 0 if and only if the splitting of M� determined by spl� is of
Whittaker type. Let ���.��/�1 D Int.u�.�//; where u�.�/ 2 Tsc: Then because
splWh is of Whittaker type and spl� is fundamental, a calculation with root vectors
shows that this is the same as requiring that ˛.u�.�// D 1 for all B�-simple roots
˛ of T in M �; i.e., that u�.�/ lies in the center of M �

.sc/
: Here M �

.sc/
denotes the

inverse image of M � in G�sc under the natural projection G�sc ! G�: The lemma
then follows. ut

6.3 Generating packets

Fix an inner form .G; �/ and assume s-elliptic ' D '.�; �/ is relevant to .G; �/:
We consider the packet ˘ of representations of G.R/ attached to '.

Let � 2 ˘ and assume � ¤ 0. Then:

Lemma 6.2.

(i) spl� 0 yields character data for nonzero � 0 in ˘ if and only if

�� 0 D Int.g�/ ı �� ı Int.g/;

where g 2 G.R/ and where g� 2 G�sc normalizes T and is such that the
restriction of Int.g�/ to M � is defined over R.

(ii) Further, � 0 D � if and only if �� 0 is of the form �� ı Int.g/; where g 2 G.R/:
Proof. The second assertion is just a restatement of a well-known property of limits
of discrete series; see [Sh82, Section 4] or [KZ82, Theorem 1.1(c)]. The first asser-
tion follows from Lemma 6.1. ut

6.4 An elliptic invariant

We return now to using the notation � only for nonzero representations. Again fix
an inner form .G; �/ for which s-elliptic ' D '.�; �/ is relevant and consider � in
the attached packet ˘ of representations of G.R/: Recall u�.�/; u�.�/ 2 G�sc; we
have ��.�/�1 D Int.u�.�// and ���.��/�1 D Int.u�.�//: Since �� is in the inner
class of �; we write �� D Int.x�/ ı � and
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u�.�/ D x� Œu�.�/��.x�/�1;
where x� 2 G�sc.

If we may choose u�.�/; and thence u�.�/; to be a cocycle, then we will say
that .G; �/ is of quasisplit type because .G; �/ then occurs as a component of an
extended group of quasisplit type. An extended group (introduced by Kottwitz) con-
sists of several pairs .G; �/; .G0; �0/, : : : and conditions on the twists �; �0 ensure the
property (6.3) below; see [Sh08b] for a review and examples. There is a quasisplit
component if and only the coboundaries in (6.3) are trivial. Then we say the ext-
ended group is of quasisplit type. The quasisplit component, if it exists, is unique
[Sh08b].

For pairs .G; �/; .G0; �0/ in the same extended group, relative factors for tem-
pered spectral transfer are defined in [Sh08b] (the relative geometric factors were
introduced by Kottwitz). When the extended group is of quasisplit type, our already
chosen Whittaker data provides a unique normalization �Wh of the absolute trans-
fer factors for each component .G; �/; see [KS99]. The spectral factors�Wh possess
the strong base-point property [Sh08b]. In particular, we have the formula (6.4) for
discrete series representations. For a general extended group, the results of Kaletha
[Ka13] provide a natural normalization for the absolute factors. The setting, and in
particular the definition of extended group, is modified with additional structure.
For our purposes it is convenient to work with the minimal extended groups of the
present setting, and we will allow any normalization of the absolute factors that pos-
sesses geometric-spectral compatibility in the sense of [Sh10, Sh08b]. The extended
groups will play a more central role when we come to finer structure on packets in
[ShII].

We begin our definition of elliptic invariants with the case that .G; �/ is of quasis-
plit type. In this setting we define an absolute invariant inv.�/ in H 1.�; T /: Recall
that T is the elliptic maximal torus in G� specified by splWh. First we have by
Lemma 6.2 that u�.�/ lies in the center ZM�

.sc/
of M �

.sc/
and so defines an element

of H 1.�;ZM�

.sc/
/: It depends only on � , i.e., only on the G.R/-conjugacy class

of spl� . Now inv.�/ is defined to be the image of this class under

H 1.�;ZM�

.sc/
/! H 1.�;ZM�/! H 1.�; T / (6.1)

given by the composition of the obvious map ZM�

.sc/
! ZM� and inclusion

ZM� ! T: From the diagram

ZM�

.sc/
�! Tsc

# #
ZM� �! T

(6.2)

we conclude that inv.�/ lies in the image E.T / of H 1.�; Tsc/ in H 1.�; T /.
We will also make use of the following.

Lemma 6.3. Suppose that T is a fundamental maximal torus in a connected reduc-
tive group G over R. Then H 1.�;ZG/! H 1.�; T / is injective.
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Proof. Because T is fundamental, both Tsc.R/, Tad.R/ are connected and hence
Tsc.R/! Tad.R/ is surjective; see the proof of Lemma 2.2 for references. A calcu-
lation then shows that the kernel of H 1.�;ZG/! H 1.�; T / is trivial. ut

In general, we define a relative invariant inv.�; � 0/ when .G; �/; .G0; �0/ are
components of the same extended group and �; � 0 belong to packets ˘;˘ 0 for
G.R/; G0.R/ attached to relevant s-elliptic parameters ' D '.�; �/; '0 D '.�0; �0/
respectively. We follow the method introduced in [LS87, LS90]; see also [KS99,
Section 4.4]. First, recall that

@u� D @u� D @u�0 D @u� 0 (6.3)

takes values in ZG�

sc
as subgroup of T , the elliptic maximal torus in G� specified by

splWh. As in the references, set

Usc D U.Tsc; Tsc/ D Tsc � Tsc�f.´�1; ´/ W ´ 2 ZG�

sc
g

and
U D U.T; T / D T � T�f.´�1; ´/ W ´ 2 ZG�g:

Also consider

U.ZM�

.sc/
/ D ZM�

.sc/
�ZM�

.sc/
�f.´�1; ´/ W ´ 2 ZG�

sc
g

and
U.ZM�/ D ZM� �ZM��f.´�1; ´/ W ´ 2 ZG�g:

Then we replace (6.1) above by

H 1.�; U.ZM�

.sc/
//! H 1.�; U.ZM�//! H 1.�; U /;

and use the cocycle that is the image in U.ZM�

.sc/
/ of the pair .u�.�/�1; u� 0.�//

in ZM�

.sc/
� ZM�

.sc/
. Then we obtain inv.�; � 0/ in the image of H 1.�; Usc/ in

H 1.�; U /. If the extended group is of quasisplit type, then inv.�; � 0/ is the image
of .inv.�/�1, inv.� 0// under the evident homomorphismH 1.�; T /�H 1.�; T /!
H 1.�; U /:

6.5 Application to endoscopic transfer

We consider standard endoscopic transfer in the cuspidal elliptic setting. If '1 is an
s-elliptic Langlands parameter for H1, then its transport ' to G is also s-elliptic;
see [Sh08a, Section 11] for how to transport attached character data from the
´-extension H1. If '1 is elliptic, then ' may, of course, fail to be elliptic, but '
is at least s-elliptic and moreover the associated triples of nonzero character data
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are nondegenerate. It is then straightforward to define spectral transfer factors via
the Zuckerman translation principle; this is recalled in Section 14 of [Sh10].

For a general s-elliptic related pair .'1; '/, however, neither side of the spectral
transfer statement has support on the regular elliptic set. Then we have defined the
associated transfer factors via an L-group version of the Knapp–Zuckerman (non-
degenerate) decomposition of unitary principal series; see [Sh10, Sh08b]. In that
form, the factors display desired structure on the packet; see [Sh08b, Section 11].

Our purpose now is to note a simpler description, based on the elliptic invariant
of Section 6.4, of the transfer factors for a general s-elliptic related pair. Whittaker
data for G� has been fixed. First, we transport a �T -invariant sT in the complex
dual T _ of T to an element s of the maximal torus T in G_ via the method of
Section 6.1. To the pair .s; '/ we attach the endoscopic data e.s/ of Section 7 of
[Sh08b], now writing e´.s/ since it is already supplemented, as well as the related
pair of parameters .'s; '/. The attached endoscopic group will be denoted H .s/:

When ' is singular we have used a different representative, say '0, to display the
structure on the packet via Knapp–Zuckerman theory. The conjugacy of ' and '0
under G_ determines a canonical isomorphism of the attached abelian groups S'
and S'0 (see Section 6.6 or 6.7). To examine the effect of this isomorphism on trans-
fer, see [Sh08b, Section 2] for passage to isomorphic endoscopic data and [Sh08b,
Section 11] for related results. For present needs, the results of Sections 6.6–6.8 will
be sufficient.

Recall from Section 6.4 that our Whittaker data also determine absolute trans-
fer factors �Wh for any inner form .G; �/ of quasisplit type. We use �s to denote
a representation in the packet for H .s/.R/ attached to 'sI the choice within the
packet will not matter. Finally, h�;�itn will be the Tate–Nakayama pairing between
H 1.�; T / and �0..T

_/� /; and the image of sT in �0..T
_/� / will again be

written sT :

Lemma 6.4. Suppose .G; �/ is of quasisplit type and '.�; �/ is an s-elliptic param-
eter relevant to .G; �/: Then

�Wh.�s; �/ D hinv.�/; sT itn (6.4)

for each limit of discrete series representation � of G.R/ attached to '.�; �/:

Proof. Although not necessary, we reduce easily to the case that the derived group
of G is simply-connected as this allows us to refer directly to the first half of the
argument for the proof of Theorem 11.5 in [Sh08b]. There a totally degenerate par-
ameter as in Section 6.6 was needed; now we apply the coherent continuation argu-
ment to any relevant s-elliptic '; so obtaining the transfer identity in the middle of
p. 400. The formula (6.4) then follows from its truth in the case ' is elliptic. ut

Returning to the notation of Section 6.4, recall from [LS90] that we identify
.Usc/

_ with Tsc � Tsc�f.´; ´/ W ´ 2 ZG_

sc
g and define sU as there. Now h ; itn will

denote the Tate–Nakayama pairing for U . The following requires a minor variant of
the last proof but it will be convenient to have a separate statement.
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Lemma 6.5. Suppose .G; �/; .G0; �0/ are components of an extended group and that
� is an absolute transfer factor for the extended group. Then

�.�s; �/��.�s; �
0/ D ˝inv.�; � 0/; sU

˛

tn

for all limits of discrete series representations �; � 0 of G.R/; G0.R/:

Remark 6.6. We use transfer factors � for the classic version of the Langlands
correspondence for real groups. See [Sh14] for (simple) transition to the alternate
factors �D .

6.6 Example: totally degenerate parameters

First, the notion of totally degenerate character data of Carayol and Knapp [CK07]
extends to reductive groups, and since our data are generated by a Langlands pa-
rameter we consider the parameter instead. We call an s-elliptic parameter ' D
'.�; �/ totally degenerate if h�; ˛_i D 0 for all roots ˛_ of T in G_; see
[Sh08b, Section 12].

This definition implies that a totally degenerate parameter is relevant to .G; �/;
i.e., there is a packet for G.R/ attached to the parameter, if and only if G is quasis-
plit. Thus we may as well assume that G D G� and � D id.

Further, an examination of the congruences for�; � shows that totally degenerate
parameters exist only for certain cuspidal quasisplit groups. For example, if Gder is
simply-connected, then such .�; �/ do exist: they are the data for an extension of
the rational character � on Tder; regarded as character on Tder.R/, to a continuous
quasicharacter on T .R/; see [Sh08b]. Then an elliptic endoscopic group for G also
has totally degenerate parameters [Sh08b]. So also does each cuspidal standard or
c-Levi group X for G because Xder is also simply-connected. A ´-extension G´
of any cuspidal quasisplit group G has totally degenerate characters for the same
reason.

Suppose now that ' D '.�; �/ represents a totally degenerate parameter for
G D G�: The congruences for �; � further show that the parameter ''' is uniquely
determined by G up to multiplication by element of H 1.WR; ZG_/; and hence
that the attached packet is uniquely determined up to twisting by a quasicharacter
on G.R/:

To describe the packet ˘ attached to totally degenerate ' in terms of the elliptic
character data provided by .�; �/ and the Whittaker data, we may proceed as fol-
lows. Recall the fixed R-splitting spl� D .B�; T �; fX˛g/ for G: There is another
representative ' for ''' attached to the maximally split maximal torus T �: We obtain
it by applying a sequence of dual Cartan transforms to ' D '.�; �/I the sequence
is prescribed by a suitable set of strongly orthogonal roots and the transforms are
defined as in the proof of Lemma 4.3.5 in [Sh82]. Write ' D '.�; �/ relative to
T �: These data determine an essentially unitary minimal principal series represen-
tation for G.R/: By definition of the Langlands correspondence, ˘ consists of the
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components of this representation. By Vogan’s classification of generic represen-
tations [Vo78], these components include generic �� with attached fundamental
splitting splWh: Then Lemma 6.2 shows that we obtain the other components by
applying Int.g�/ to splWh; where g� 2 Gsc and the automorphism Int.g�/ of G is
defined over R. Each such element g� determines an element of H 1.�;Zsc/; where
Zsc denotes the center of Gsc. Conversely, each element of H 1.�;Zsc/ has trivial
image in H 1.�;Gsc/ [Sh08b, Lemma 12.3] and so determines g� such that Int.g�/
is defined over R. Finally, two elements of H 1.�;Zsc/ determine the same com-
ponent if and only if they differ by an element of KerŒH 1.�;Zsc/ ! H 1.�;Z/�,
where Z denotes the center of G; so that we have bijections

˘ $ Gad.R/� Int.G.R//$ ImageŒH 1.�;Zsc/! H 1.�;Z/�: (6.5)

If we map the image of � inH 1.�;Z/ toH 1.�; T / under the injectiveH 1.�;Z/!
H 1.�; T /, then we recover the elliptic invariant inv.�/ defined in Section 6.4.

The group S' D Cent.'.WR/; G
_/ consists of the fixed points in G_ for the

action of � 2 � by � D Int.'.w� //: Thus

S' WD S'�Œ.ZG_/� :S0' � D .G_/��Œ.ZG_/� :..G_/� /0�:

Notice that S' is isomorphic to Langlands’ R-group R' for ''' in this setting; see
[Sh82, Section 5.3]. Combining this with the pairing obtained via nondegenerate
Knapp–Zuckerman theory (see [Sh08b, Sh10]), we have that˘ determines a perfect
pairing of

ImageŒH 1.�;Zsc/! H 1.�;Z/� (6.6)

with

.G_/��.ZG_/� :..G_/� /0:

In particular, if G is semisimple and simply-connected, then our pairing for the
unique totally degenerate packet for G.R/ exhibits a perfect pairing of H 1.�;Z/

with �0Œ.G_/� �.

6.7 General limits: factoring parameters

We return to general s-elliptic ' D '.�; �/ W WR ! LG: Since the image of ' lies
in M; we factor ' through LM; and write ' D M ı'M ; where 'M is the s-elliptic
parameter '.�M ; �M / for M �; with

�M D � � .� � �M /; �M D �:
Clearly 'M is totally degenerate. In summary:

Lemma 6.7. An s-elliptic parameter ' determines a well-defined totally degenerate
parameter for the c-Levi group attached to ':



On elliptic factors in real endoscopic transfer I 487

Turning to packets, we start with the quasisplit form G� and generic �� whose
character data is the transport of .�; �; C/ to T provided by splWh: Our realization
ofM' asM � in Section 6.2 determines a fundamental splitting splWh;M and cham-
ber CM for T: We use the same notation for the inverse transport of this chamber to
M_: The transport by splWh;M of dual data .�M ; �M ; CM / attached to 'M deter-
mines a totally degenerate limit of discrete series representation ��M of M �.R/: By
construction, ��M is generic relative to the Whittaker data attached to  R and the
R-splitting spl�M D .BM ; TM ; fX˛g/ for M � from Section 6.1.

Consider now general .G; �/ for which '.�; �/ is relevant. Let˘ be the attached
packet and consider � 2 ˘: Recall that �� W M� ! M � is an R-isomorphism.
Define the representation �M of M�.R/ by transport: �M D ��M ı �� : Then �M
lies in the totally degenerate packet ˘M�

of representations of M�.R/ attached
to 'M :

We return to the elliptic invariants of Section 6.4 and consider the subgroup

Image.H 1.�;ZM�

sc
/! H 1.�; T //

of
Image.H 1.�;ZM�

.sc/
/! H 1.�; T //:

From (6.5) and Lemma 6.3, we have an isomorphism of this subgroup with

Mad.R/� Int.M.R//:

On the other hand, notice that S' D Cent.'.WR/; G
_/ is contained in M_ and

hence
S' D S'M

D Cent.'M .WR/;M
_/

which is the group of fixed points of M_ under either of the automorphisms
Int.'.w� //; Int.'M .w� //; we arranged in Section 5.4 that these automorphisms
act the same way on M_: Again write S' for the quotient S'�.ZG_/� S0' . Then

S'M
D S'�.ZM_/� S0'

and since .ZM_/� \..M_/� /0 is contained in .ZG_/� we have an exact sequence

1! .ZM_/��.ZG_/� ! S' ! S'M
! 1:

6.8 General limits: companion standard Levi group

We continue with the packet ˘ of the last section. It consists of the components of
several essentially tempered principal series representations of G.R/: To describe
them, we return to the representative 'M D '.�M ; �M / for '''M in Section 6.6 and
set ' D M ı 'M : Then ' also represents ''':



488 D. Shelstad

We may replace splWh by a G�.R/-conjugate and then M � by its conjugate rel-
ative to the same element to arrange that the maximal torus TM in M � provided by
spl�M is a standard maximal torus in G�. We then drop the subscript M in notation
for this torus. Here by standard we mean that the maximal split torus S in T is
contained in T � provided by spl� D .spl_/_. Let M be the standard Levi group
Cent.S;G�/. Then LM will denote the dual standard Levi group in LG; naturally
embedded by inclusion.

Lemma 6.8. The image of ' lies in LM and defines an elliptic parameter for M:

Proof. We return to the notation of Section 5.4. We have arranged that �T D �M
on T . Then the element nM � w� in LG coincides with M .w� / up to an ele-
ment of T \ G_der: It follows that '.w� / 2 LM and then that '.WR/ � LM . Since

�M˛
_ D �T ˛_ D �˛_ for each root ˛_ of T in M

_
, it is clear that ' is s-elliptic

as Langlands parameter for M . If we write ' D '.�; �/ relative to M; then � is
M -regular for otherwise T would have an imaginary root in M �: ut

We continue with ' D '.�; �/ and consider the quasisplit form G�. The Whit-
taker data Wh for G� determines, by restriction, Whittaker data WhM for M: We
choose a corresponding fundamental splitting splWh

M
D .BM ; T ; fX˛g/ of Whit-

taker type for M , and then transport .�; �/ to discrete series character data on T .
Via unitary parabolic induction, each discrete series representation in the packet for
M.R/ attached to ' determines an essentially tempered principal series representa-
tion ofG�.R/: Then˘ consists of the irreducible components of all principal series
representations so obtained. Consider next an inner form .G; �/ for which ' is rel-
evant. Recall that for � 2 ˘; �� transports elliptic character data for � to that for
��: By (6.5) and Lemma 6.2 we may choose � so that �M D ��M ı�� is isomorphic
to ��M . We then adjust our discussion for G� to describe the packet for G.R/; we
will not need details here.

From definitions (recalled in [Sh82, Section 5.3]) it is clear that Langlands’ ver-
sion of the R-group is unchanged by passage from LM to LG:

R' D R'M
:

Also there is a surjective homomorphism S' ! R' with kernel that may be iden-
tified with the dual of E.T / (see [Sh82, Sections 5.3, 5.4]). Because 'M is totally
degenerate we have that S'M

! R'M
D R' is an isomorphism. Then by the

discussion around (6.6) we have a perfect pairing of R' with

Image.H 1.�;ZM�

sc
/! H 1.�; T // 'Mad.R/� Int.M.R//:
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7 Packets and parameters II

7.1 Data for elliptic u-regular parameters

Suppose that  D .'; �/ is an elliptic u-regular Arthur parameter. Continuing from
Section 5.5, we may assume that ' takes the following form:

'.´/ D ´�´�M� � ´
for ´ 2 C�; and

'.w� / D e2�i�:M .w� /:
Here �; � 2 X�.T /˝ C and

˝

�; ˛_
˛ D 0; ˝�; ˛_˛ 2 Z (7.1)

for all roots ˛_ of T in M_: The element � is uniquely determined by the
T -conjugacy class of the representative ', and � is determined uniquely modulo

KM D X�.T /C f� 2 X�.T /˝ C W �M � D ��g:
We will use the notation ' D 'Œ�; ��: Notice that in the case M D T , where ' is
elliptic, we return to the pair .�; �/ from Section 5.6.

From our construction of M and the equation '.w� /2 D '.�1/, we have imm-
ediately the following congruence:

1

2
.� � �M�/ � .� � �M / � �C �M� modX�.T /: (7.2)

The properties (7.1) allow us to replace �M by �T in (7.2) and then to rewrite the
congruence as

1

2
Œ�C �M � �T .�C �M /� � � � �C �T � modX�.T /: (7.3)

For the second component � of  we turn to Section 5.5 and the u-regularity
property. With first component ' prescribed as above, we may assume that � W
SL.2;C/!M_ is in standard form with cocharacter 2�M . Then

�.diag.jwj1=2 ; jwj�1=2// D .´´/�M ; w 2 WR;

where w D ´ or ´w� ; ´ 2 C�, as in [Ar89]. We write � D �.�M /:
We observe that (7.3) implies that �C �M 2 X�.T /˝ C is integral, i.e.,

˝

�C �M ; ˛_
˛ 2 Z; (7.4)

for all roots of T in G_.
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Remark 7.1. � is at least half-integral; � is integral if the derived group of G is
simply-connected since �M is integral in that case.

Recall that B denotes the Borel subgroup that is part of spl_:

Lemma 7.2. Let    be an elliptic u-regular Arthur parameter. Then there exists a
representative  D .'; �/ for    , where ' D 'Œ�; �� and � D �.�M /; with both �
and �C �M B-dominant:

Proof. First, we observe that it is sufficient to arrange that � C �M is dominant.
SinceM_ is Levi we have that h�M ; ˛_i � 0 for each B-simple ˛_ that is not a root
of T in M_: Then dominance of �C �M implies h�; ˛_i � 0 for all such ˛_ and
so by (7.1), � is dominant.

Second, suppose we pick ' D 'Œ�; ��; � D �.�M / as in the paragraphs above.
There is ! in the Weyl group of T in G_ such that !.�C �M / is B-dominant. Let
x 2 G_ normalize T and act on T as !. SetM_! D xM_x�1 and  x D Int.x/ı :
If ˛_ is a B-positive root of in T in M_! , then !�1˛_ is a root in M_ and so

˝

�M ; !
�1˛_

˛ D ˝�C �M ; !�1˛_
˛ D ˝!.�C �M /; ˛_

˛ � 0:
Then !�1˛_ must be B-positive. It now follows that �M!

D !�M . Then after mul-
tiplying x by an element of T , we may replace  by  x in our constructions to
complete the proof. ut
From now on we choose representative  D .'; �/ as in Lemma 7.3.

From (7.3) we conclude that:

Lemma 7.3. �C �M ; � are data for an s-elliptic Langlands parameter

b' D '.�C �M ; �/:

Finally, we set
�M D � � .� � �M /; �M D �: (7.5)

As one of the ingredients [La89] of the Langlands correspondence for M �, the
parameter 'M W WR ! LZM from Section 5.5 defines a quasicharacter �M� on
M �.R/. Because of (5.3) and (7.1) the restriction of �M� to each Cartan subgroup
in M �.R/ takes the form

�.�M ; �M / (7.6)

in the Langlands correspondence for real tori [La89]; see [Sh81, Section 9] for a dis-
cussion and [Sh10, Section 7] for notation. Further, for an inner twist � WM� !M �
we may replaceM � byM� D ��1.M �/. Then the new quasicharacter �� onM�.R/

depends only on the inner class of �.
On the other hand,b' factors through the discrete series parameter

b'M D '.�M C �M ; �M /
for M �:
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From (7.5) and (7.4) we see that �M is integral for G_: Clearly:

Lemma 7.4.

(i) �C �M is regular, i.e.,b' is elliptic, if and only if �M is B-dominant.
(ii) �C �M is singular if and only if h�M ; ˛_i D �1 for some B-simple root ˛_

of T .

Assume that � C �M is regular and G has anisotropic center; this is the setting
of [Ar89, Section 5], [Ko90, Section 9]. Here we recover the same parameters, but
now with data for use in canonical transfer factors; see, for example, Section 8.2.
Our parameter b' coincides with the discrete series parameter constructed slightly
differently in [Ko90, Section 9].

7.2 Character data and elliptic u-regular parameters

We combine the setting of Section 7.1 with that of Section 6.1. ThusG� is cuspidal,
and we have fixed Whittaker data forG� together with an aligned fundamental split-
ting splWh D .BWh; T; fX˛g/ for G�. We now transport the data .�C �M ; �; C/ for
T � G_ of Section 7.1 to data for T � G�; by the means described in Section 6.1.
Recall that M � is the subgroup of G� generated by T and the root vectors fX˛g;
for ˛_ a simple root of T in M_ \ B. We use the same notation for the transported
data, except that now we write �M� for the transport of �M ; i.e., for one-half the sum
of the roots of T in BWh \M �.

7.3 Elliptic u-regular data: attached s-elliptic packet

We start with the case that � C �M is regular. Consider an inner form .G; �/:

Replacing � by a member of its inner class if necessary, we assume that the transport
spl� D ��1.splWh/ of splWh to G is a fundamental splitting. As in Part 6, to each
G.R/-conjugacy class of fundamental splittings forG is attached to a discrete series
representation b� of G.R/ in the packet b˘G forb'; and conversely. Again write spl

b�
for a representative of this conjugacy class and �

b�
D Int.x

b�
/ ı � for the inner twist

carrying spl
b�

to splWh: Set M
b�
D ��1

b�
.M �/: By definition, �

b�
transports character

data .�
b�
C �M

b�

; �
b�
; C
b�
/ for b� to the data .�C �M� ; �; C/ for the elliptic torus T

in G� that is part of splWh. Recall that the latter triple serves as character data for
the Wh-generic discrete series representation of G�.R/ in the packet b˘G� attached
tob':

Now allow �C �M to be singular. Then we assume thatb' D '.�C �M ; �/ is rel-
evant toG so that b˘G is nonempty. As in Section 6.2, there is attached tob' a c-Levi
group which we will call E�: Notice that E� \M � D T: Each G.R/-conjugacy
class of fundamental splittings of G again has a representative spl

b�
, but now b�
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(or, more precisely, the attached distribution character) may be zero. We obtain pre-
cisely the members b� of b˘G by requiring that �

b�
W E
b�
! E� be defined over R

(Lemma 6.1).

7.4 Elliptic u-regular data: attached Arthur packet

For the rest of Parts 7 and 8 we will limit our attention to the case that � C �M
is regular as we will need it to structure our arguments for the singular case. For
convenience we could also require the center of G to be anisotropic, but the general
case requires no extra notation and so we will at least write it here. Finally, there is
the matter of how we treat ´-extensions. We will continue to use the construction
needed for the twisted case (see Section 3.1) but defer checking that the Adams–
Johnson results may be extended in this manner until we come to the general twisted
case.

Consider an inner form .G; �/; where spl� D .B�; T�; fX˛g/ is fundamental and
� carries spl� to splWh: We may fix a Cartan involution c on G of the form Int.t�/;
where t� 2 T�.R/ and .t�/2 is central in G. Then B�; M� together generate a
c-stable parabolic subgroup P� of G with M� as Levi subgroup defined over R.
We have the quasicharacter � D �� on M�.R/ described in Section 7.1. Because
of (7.6), it is clear that �� is unitary modulo the center of G.R/. As usual, we will
identify a representation with its (appropriate) isomorphism class. Define �.�/ to
be the irreducible essentially unitary representation of G.R/ attached to �� by the
method of [Vo84, Theorems 1.2, 1.3]; see Lemma 2.10 of [AJ87].

Suppose we replace � by �� within its inner class and that �� also carries a fun-
damental splitting of G to splWh: It is convenient to write �� in the form

�� D Int.m�/ ı � ı Int.g/;

where m� 2 M �sc and g 2 Gsc: Let m D ��1sc .m
�/. Then we insist also that Int.m/

transports spl� to another fundamental splitting of G. Since we are concerned with
splittings only up to G.R/-conjugacy there is no harm in considering only those ��

for which T� D T� , and requiring that both Int.m/ and Int.g/ preserve T�:
We define �.��/ by replacing B�;M�; �� from the definition of �.�/ with

B� ;M� ; �� . Then:

Lemma 7.5.

(i) �.��/ lies in same Arthur packet˘G prescribed by Adams–Johnson (enlarged
packet in their terminology) as �.�/, and all members of the packet are so
obtained.

(ii) �.��/ D �.�/ if and only if �� is of the form Int.m�/ ı � ı Int.g/; where
m� 2M �sc and g 2 G.R/:

Let !M ; !G be the elements of the complex Weyl group ˝.G; T�/ of T� in G
defined by the restrictions of Int.m/; Int.g/ to T� . Then (ii) says �.��/ D �.�/ if
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and only if we may arrange that !G lies in the subgroup ˝R.G; T�/ of ˝.G; T�/
consisting of those elements that are realized in G.R/:

Proof. To compare explicitly with Lemma 2.10 of [AJ87], first note that since we
do not assume that the center of G is anisotropic, our elliptic data have an extra
component, namely � as above. The “�; �” of [AJ87] are our �M ; �. Note that (7.5)
says that

�M C � D �C �M :
We further have the alternative short definition after Remark 7.4 for the quasichar-
acter ��; but it is clear from calculations of Section 2 of [AJ87] (or see [Sh79b,
Lemma 9.2], [Sh81, Section 9]) that we obtain the same character when we require
the center of G to be anisotropic. The claim (i) now follows. More accurately, we
have adapted the definitions of Adams–Johnson to the case where there is no restric-
tion on the center for G while retaining (i) of their Lemma 2.10. Because �C �M is
regular, the claim (ii) follows easily from the character formulas that we will recall
in Section 8.3. ut

8 Standard factors for elliptic u-regular packets

Here by standard factors we mean the spectral transfer factors for standard en-
doscopy. We introduce these, with a two-fold purpose, for the elliptic u-regular
Arthur packets ˘G of the last section. First, we will check that the Adams–Johnson
transfer can be recast in terms of these factors and thereby made compatible with
the transfer of orbital integrals using the canonical factors of [LS87]. Second, we
will write the factors in a way that allows quick generalization to the twisted
setting [ShII].

8.1 Canonical relative factor: setting

We continue with the setting at the end of Part 7. In summary, D .'; �/ is an ellip-
tic u-regular Arthur parameter with ' D 'Œ�; �� and � D �.�M / as in Lemma 7.2.
We assume �C �M� is regular as well as dominant. Thenb' is the attached elliptic
parameter '.�C �M� ; �/:

To introduce elliptic endoscopic groups as in Section 6.5, we turn to the
� -invariants in the maximal torus T from spl_: We use the elliptic action of � ,
so that � acts by Intb'.w� /: Consider the elliptic SED e´.s/ as in Section 6.5,
using the notation .H;H; s/ for the endoscopic data and H .s/ for the endoscopic
group. It will be sufficient for our purposes in [ShII] to consider the case that
the � -invariant s lies in the center ZM_ of M_. This is the same as requiring
that H_ WD Cent.s; G_/0 contain M_. Thus we place ourselves in the setting of
Adams–Johnson; see [AJ87, 2.16].
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Because  is elliptic, the subgroup M DM of LG may be generated by M_
and either '.WR/ or b'.WR/. Thus H; generated by H_ and b'.WR/; contains M.
Since the endoscopic group H .s/ is a ´-extension of the endoscopic datum H; we
will need to thicken M.

Recall that .ZM_/� D S WD Cent.Image. /;G_/: Thus the image of  lies
in M � H. As a component of the SED e´.s/; we have .s/ W H! LH .s/ and thus
an elliptic u-regular Arthur parameter forH .s/ represented by  .s/ D .s/ı . Now
we attach M.s/ to  .s/ in the same way we attached M to  : Then M.s/ is what
we mean by the thickened version of M. We will thicken various other subgroups
when needed, again using the super- or subscript .s/ to indicate this.

We now describe transfer factors attached to the pair . .s/;  /I see [Sh10, Sec-
tion 9], [Sh08b, Sections 7, 11] for the tempered analogue. Recall  D .'; �/: Then
we write  .s/ as .'.s/; �/:

First, '.s/ D 'Œ�.s/; �.s/� and

�.s/ D � � ��; �.s/ D � � ��: (8.1)

The pair .��; ��/ is from [Sh81]; it is typically nontrivial and is critical for a well-
defined transfer of orbital integrals. Here we need its construction for general stan-
dard transfer with ´-extensions; see Section 11 of [Sh08a]. Also see Section 9.3
below for a detailed contruction in the general twisted case. The formula (8.1) fol-
lows from combining the construction with that in Lemma 7.2.

Second, the component � of  .s/ may be written again as �.�M /. For this we
recall the splittings involved in our constructions: we have spl_ D .B; T ; fX˛_g/ for
G_ with attached spl_M D .B \M_; T ; fX˛_g/ for M_; along with spl_H D .B \
H_; T ; fX˛_g/ for H_ and thickened spl_.s/ D .B.s/; T .s/; fX˛_g/ for .H .s//_:
Then �M is one-half the sum of the coroots of T in B \M_ D B \M. Each such
coroot is naturally identified as a coroot of T .s/ in B.s/ \M.s/ and conversely,
which justifies our use of �M for � as component of  .s/.

The c-Levi group M .s/ in H .s/ is the analogue for  .s/ of the c-Levi group M �
in G� attached to  . There is a c-Levi group MH in H such that M .s/ ! MH is
a ´-extension with kernel Z1, i.e., with same kernel as the ´-extension H .s/ ! H

provided by the SED e´.s/:
Our next step is to define an R-isomorphism MH ! M � uniquely up to com-

position with an element of IntŒM �.R/�, and thence a surjective homomorphism
M
.s/
H ! M � with kernel Z1: For this, recall that in the construction of M � at the

beginning of Section 6.2 we also determined an R-splitting for M � uniquely up to
M �.R/-conjugacy. The same is then true forMH : There is a unique R-isomorphism
MH ! M � transporting the latter splitting to the former. We may further assume
the isomorphism carries chosen elliptic maximal torus TH in H to chosen T in
G�I recall that each torus is part of an appropriate fundamental splitting of Whit-
taker type. If T .s/ is the inverse image of TH in M .s/

H , then we have now have a
well-defined transport to T of our various data attached to T .s/.
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8.2 Canonical relative factor: definition

We now define a relative transfer factor in preparation for a nontempered supple-
ment for Section 6.5. Thus .G; �/ is an inner form of G� such that � transports
fundamental splitting spl�; of G to splWh: Let � 2 ˘G (Arthur packet for G.R/

attached to  / and let b� 2 b˘G (discrete series packet for G.R/ attached to  /:
Also let �s 2 ˘H .s/ and b�s 2 b˘H .s/ (packets for H .s/.R/ attached to  .s//: Then
our first concern will be a relative factor �.�s; � I b�s; b�/:

Attach the cochain x
b�
.�/ 2 Tsc to the discrete series representationb� as in (6.4));

recall that �
b�
D Int.x

b�
/ ı � and x

b�
.�/ D x

b�
:u�.�/:�.x

b�
/�1: Again we write

E.T / for the image of H 1.�; Tsc/ in H 1.�; T / under the homomorphism induced
by Tsc ! T: Then if .G; �/ is a component of an extended group of quasisplit type,
so that u�.�/ is a cocycle, we map the class of x

b�
.�/ inH 1.�; Tsc/ toH 1.�; T / to

obtain the element inv.b�/ of E.T /:
Turning to � in the Arthur packet for G.R/; we pick a twist �� such that � D

�.��/ as in Section 7.4. We write �� as Int.x�/ ı � and form the cochain x�.�/ D
x� 	 u�.�/ 	 �.x�/�1: Recall the torus Usc from Section 6.4. The image in Usc of the
cochain .x�.�/�1; x

b�
.�// in Tsc � Tsc is a cocycle whose class in H 1.�; Usc/ we

denote by xsc.�
�;b�/: Then x.��;b�/ is the image of this class in H 1.�; U /: Recall

sU from (6.4) and that in the present setting we assume that the � -invariant s lies in
the center of M_:

Lemma 8.1.
˝

x.��;b�/; sU
˛

tn depends only on �;b�:

Then we define

pair.s/.�;b�/ WD
D

x.��;b�/; sU
E

tn
:

Before proving Lemma 8.1 we examine x�.�/ in the case that .G; �/ is a compo-
nent of an extended group of quasisplit type. Then x�.�/ is a cocycle and so defines
an element x.��/ of E.T /: We have T � M � � G�: Then EM�.T / is the image of
H 1.�; TM�

sc
/! H 1.�; T /: It is a subgroup of E.T /:

Lemma 8.2. The image of x.��/ in E.T /�EM�.T / depends only on �:

Proof. There is no harm in replacing x�.�/ by its inverse. The twist �� may be re-
placed only by Int.m�/ ı � ı Int.g/; where m�; g are as specified in Section 7.4.
Then x�.�/�1 is replaced by �.m�/.m�/�1 	 m�x�.�/�1 	 .m�/�1: Our assump-
tions on m� ensure that �.m�/.m�/�1 is a cocycle in TscI its class then has image
in EM�.T /: Finally, the R-automorphism Int.m�/ W Tsc ! Tsc induces a homo-
morphism H 1.�; Tsc/ ! H 1.�; Tsc/. Passing to T; we may then define a homo-
morphism E.T / ! E.T /�EM�.T /. From the Tate–Nakayama isomorphism of
H 1.�; Tsc/ with H�1.�;X�.Tsc//, we see that the homomorphism coincides with
the natural projection, and the lemma follows. ut
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Now define
inv.�/ WD x.��/ 	 EM�.T /

Because s is a � -invariant in the center of M_; we have that

hEM�.T /; sT itn D 1;
and so the Tate–Nakayama pairing for T determines a well-defined sign we will
write as

hinv.�/; sT i :
We may view h ; i as a pairing between E.T /�EM�.T / and .ZM_/� or, better,
between E.T /�EM�.T / and .ZM_/��.ZG_/� . In the latter case we identify sT
with its image in .ZM_/��.ZG_/� without change in notation. We will say more
about the pairing in [ShII].

Notice that Lemma 8.1 is now proved in this setting, i.e., for an extended group
of quasisplit type, because

D

x.��;b�/; sU
E

tn
D pair.s/.�;b�/ D hinv.�/; sT i�1 : hinv.b�/; sT itn : (8.2)

Proof (of Lemma 8.1). A factoring via the method for the proof of Lemma 8.2, but
now in Usc instead of Tsc; may be applied to the cocycle defining xsc.�

�;b�/: Then
we follow closely the rest of the argument to complete the proof. ut

Next, we recall the sign

".G/ WD .�1/q.G/ � q.G�/;

where 2q.G/ is the rank of the symmetric space attached toGsc. It is well-defined in
general and appears in the tempered character identities for transfer from the inner
form .G; �/ to G�; see [Sh79a, Theorem 6.3]. This sign is recast by Kottwitz in
[Ko83, p.295] in terms of Galois cohomology. Notice that the choice of inner twist
does not matter; see [Ko83, p.292]. In our present setting we have � D �.��/:

Let M� D .��/�1.M �/: Then it is clear from either definition that ".M�/ is
independent of the various choices for �� and so we write it as "M .�/.

We conclude then that the relative factor

�.�s; � Ib�s;b�/ WD "M .�/:pair.s/.�;b�/ (8.3)

is well-defined, i.e., depends only on s; � and b�: This factor and others similarly
defined have useful transitivity properties (see [LS87, Section 4.1], [Sh10, Section
4]). We will ignore them for now except to remark that if the discrete series repre-
sentation b� has the property that �

b�
serves as ��, then

�.�s; � Ib�s;b�/ D "M .�/: (8.4)

To define an absolute factor �.�s; �/, assume that we have absolute geometric
factors and absolute spectral factors for the essentially tempered spectrum that are
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compatible in the sense of [Sh10, Section 12]. This notion of compatibility is defined
via another canonical relative factor, and compatible factors are easily shown to exist
for all inner forms .G; �/; see [Sh10, Section 4]. We then set

�.�s; �/ WD �.�s; � Ib�s;b�/:�.b�s;b�/: (8.5)

In particular if M � is a torus, so that .�s; �/ is a related pair of discrete series
representations, we return the original constructions for the (essentially) tempered
spectrum; see [Sh10, Section 9].

Consider an extended group of quasisplit type and use the Whittaker normaliza-
tion �Wh of absolute factors attached to our choice of Whittaker data [KS99, Sec-
tion 5.3]. Then (8.5), (8.3), (8.2) and the strong base-point property of Whittaker
normalization [Sh08b, Theorem 11.5] (recall Section 6.5) imply:

Lemma 8.3.
�Wh.�s; �/ D "M .�/: hinv.�/; sT i :

8.3 Application to the transfer of Adams–Johnson

Continuing in the same setting, we write the correspondence of test functions (more
precisely, test measures) as .f; f .s//: Then

SO.�; f .s// D
X

ı;conj

�.�; ı/ O.ı; f / (8.6)

for all strongly G-regular � in H .s/.R/ and

St- Traceb�s.f
.s// DP

b�
�.b�s;b�/ Traceb�.f /: (8.7)

Now to consider the pair .�s; �/; we observe that the Adams–Johnson stable
combination [AJ87, Theorem 2.13] agrees with

St- Trace�s.f
.s// WDP� 0

s2˘H.s/
"M .�

0
s/ Trace� 0s.f .s//;

up to the sign .�1/�.M�/ defined in [AJ87, 2.12].
Next we claim the following transfer for .�s; �/ W

St- Trace�s.f
.s// DP�2˘G

�.�s; �/ Trace�.f /: (8.8)

Here .f; f .s// is any pair of test functions related by the geometric transfer (8.6)
and �.�s; �/ is given by (8.3), (8.5) (or by (8.9) below).

Suppose G has anisotropic center, so that we may apply the main transfer
theorem of Adams–Johnson directly. We recast the geometric transfer of [AJ87,
Section 2] as the correspondence .f; f .s// above; see [LS90, Theorem 2.6.A].
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Also, because we must work with C1c -functions, we have applied Bouaziz’s Theo-
rem as in [Sh12, Sections 1, 2]. From [AJ87, Theorem 2.21], we then have that the
transfer (8.8) is true for some choice of the coefficients, say �0.�s; �/: With a little
more effort we may show that our choice of�.�s; �/ is correct up to a constant, but
we will not need that. Instead, we turn to the transfer (8.7) in the case of the discrete
series pairs .b�s;b�/ from Sections 7.3 and 8.2.

For each pair .�s; �/; where � D �.��/; we consider all pairs .b�s;b�/ such that
�
b�

serves as ��. From (8.4) and (8.5) we have that

�.�s; �/ D "M .�/:�.b�s;b�/: (8.9)

Now we choose .f; f .s// with support within the very regular elliptic set (see Sec-
tion 3.4). We follow the comparison in [Ko90, Section 9] of the Vogan–Zuckerman
character formula for � on the regular elliptic set with the Harish-Chandra formulas
for the discrete series characters b� attached to � . From this we deduce that

Trace�.f / D .�1/q.M� /
P

b�
Traceb�.f / (8.10)

for our particular pairs .f; f .s//: Multiply across (8.7) by .�1/q.M�/: From that
identity, together with (8.9) and (8.10), we then have that

P

�2˘G
Œ�.�s; �/ ��0.�s; �/�Trace�.f / D 0

for all f supported in the strongly regular elliptic set. It now follows that the coeffi-
cients �.�s; �/ ��0.�s; �/ are all zero; we could also argue this directly with the
transfer of characters as functions. We conclude then that our choice of the constants
�.�s; �/ in (8.8) is correct.

9 Parameters and twistpackets

We now return to the general twisted setting of Section 3.1 and finish the proof of
various assertions made earlier.

9.1 Twistpackets

Attached to the triple .G�; ��; a/ is the automorphism L�a of LG. We are interested
in Langlands parameters ''' preserved by L�a; i.e., those ''' for which

S tw' WD fs 2 G_ W L�a ı ' D Int.s/ ı 'g
is nonempty, for some, and hence any, representative '. Then we may construct sup-
plemented endoscopic data for .G�; ��; a/ following the last paragraphs of [KS99,
Chapter 2]; see Section 3.1.
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Let .G; �; �/ be an inner form of .G�; ��/. It follows quickly from the Langlands
classification, at least in the essentially tempered case, that theL-packet˘ forG.R/
attached to ' is stable under the operation � ! $�1˝.�ı�/:As in Section 4.1, we
then say˘ is .�;$/-stable. Conversely, the parameter for a .�;$/-stable packet is
preserved by L�a. In general, this operation on a .�;$/-stable packet ˘ need have
no fixed points, i.e., the twistpacket ˘;$ introduced in Section 4.1 may be empty.
We examine this further for ' elliptic.

Suppose ''' is elliptic and preserved by L�a: We use the standard representative
' D '.�; �/ from Section 5.6 and define data .�a; �a/ for the cocycle a in the usual
manner: a.´/ D ´�a´��a for ´ 2 C�; and a.w� / D e2�i�a : First, we observe that
because ' is regular, each element s of S tw' must normalize T . Then because �_
preserves spl_; s lies in T , so that S tw' � T : We conclude then that

�_� D �C �a and �_� � �C �a modKf ; (9.1)

where
Kf D X�.T /C Œ1 � '.w� /�X�.T /˝ C.

Returning to Section 6.1, we now assume the chosen Whittaker data forG� is ��-
stable (see [KS99, Section 5.3]). We have a uniquely defined transport of .�; �; C/ to
character data for the generic discrete series representation �� attached to ': Then
(9.1) implies that ��ı�� � $˝��; or we could argue this directly from Whittaker
properties.

9.2 Nonempty fundamental twistpackets

Since the general fundamental case requires only a trivial modification, we continue
with the elliptic setting of Section 9.1. We have attached a fundamental splitting
spl� to a discrete series representation � of G.R/ in Section 6.1. It is unique up to
G.R/-conjugacy.

Lemma 9.1. Suppose that � is a discrete series representation of G.R/ such that
� ı � � $ ˝ �: Then there exists ı� 2 G.R/ such that Int.ı�/ ı � preserves spl� :
If spl� is replaced by another fundamental splitting Int.x/:spl� ; where x 2 G.R/;
then ı� is replaced by an element ı0� of the form ´xı��.x/

�1; where ´ 2 ZG.R/.
Proof. Since � transports spl� to a fundamental splitting for � ı � and we may use
spl� as splitting for $ ˝ �; the existence of ı� is clear. Now, with spl� fixed, ı�
may be replaced only by an element ofZG.R/ı� : Next replace spl� by Int.x/:spl� ;
where x 2 G.R/: Then

Int.x/ ı .Int.ı�/ ı �/ ı Int.x/�1 D Int.xı��.x/
�1/ ı �

preserves Int.x/:spl� ; and the lemma follows. ut
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Lemma 9.2. If there exist nonempty twistpackets of discrete series (or fundamental
series) representations of G.R/, then there is .�f ; �f / in the inner class of .�; �/
such that �f preserves a fundamental splitting for G. The converse is also true in
the case that there exists an elliptic (fundamental) Langlands parameter preserved
by L�a.

Proof. A nonempty twistpacket provides us with a � -fundamental element ı� , and
so Lemma 2.5 applies. For the converse, we may assume that � is as in (ii) of
Lemma 2.5. We then apply the remarks of Section 9.1 using the transport of data to
G provided by the inner twist �: ut

We see then that, as on the geometric side, to capture the elliptic (fundamental)
contribution we may assume that, up to a twist by an element of G.R/; � is the
transport of �� to G by an inner twist � which also carries splWh to a fundamental
splitting for G, i.e., that we are in the setting I of Section 3.2. We will need further
information about the element ı� of Lemma 9.1.

Lemma 9.3.

(i) ı� 2 G.R/ has a norm �� in H1.R/:
(ii) �� lies in ZH1

.R/ and its image in ZH .R/ under the projection H1 ! H is
determined uniquely by ı� :

(iii) If ı� is replaced by ı0� D ´xı��.x/�1; where ´ 2 ZG.R/ and x 2 G.R/; then
�� is replaced by an element � 0� D ´1�� ; where .´1; ´/ 2 C.R/:

We will explain what we mean by (i) in the proof. The group C.R/ is from
Section 5.1 of [KS99]; it was recalled in Section 4.2.

Proof. We may as well assume that we are in the setting I of Section 3.2 since
the modifications for a further twist by an element of G.R/ are immediate. Sup-
pose Int.x�/ ı � carries spl� to splWh: Then a calculation shows that the element
ı�� D x��.ı�/��.x�/�1 has the property that Int.ı��/ı�� preserves splWh: Because
�� also preserves splWh; we conclude that ı�� lies in ZG� : Further, we calculate
that �.ı��/�1:ı�� 2 .1 � ��/T: As in (5.1) of [KS99], we regard the coinvariants
.ZG�/�of ZG� as a subgroup of the coinvariants T� of T: Then under the projec-
tion N W T ! T� ; ı�� maps into .ZG�/� : Since N.�.ı��/�1:ı��/ D 1; we have
that N.ı��/ 2 .ZG�/�.R/: We identify .ZG�/�.R/ as a subgroup of ZH .R/ and
then as a subgroup of TH .R/: Let �� be an element of ZH1

.R/ whose image under
p W H1 ! H coincides with the image of N.ı��/ in ZH .R/: Then �� is a T1-norm
of ı� in the sense of Section 6 of [Sh12]. In general, �� is determined up to stable
conjugacy by ı� [Sh12]. Since �� 2 ZH1

.R/; it is uniquely determined by ı� : The
rest is immediate. ut

9.3 Elliptic related pairs of parameters

Let e´ be a supplemented set of endoscopic data for .G�; ��; a/ as in Section 3.1. We
may define related pairs of essentially tempered parameters .'1; '/ as in Section 2
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of [Sh10] for the standard case. The arguments there, and accompanying definitions,
apply word-for-word apart from the shift in notation to $1 for the character on the
central subgroup Z1.R/ of H1.R/:

We return to the cuspidal-elliptic setting of Section 3.4 since the general funda-
mental case follows quickly from this. If an elliptic parameter '1 for the endoscopic
group H1 satisfies the stronger requirement of G-regularity [Sh10], then there is
an elliptic parameter ' for G� providing us with a related pair .'1; '/: Here it is
assumed that '1 factors, in the sense of [Sh10, Section 2], through the group H
included in the chosen SED.

We now recall explicit data attached to such pairs .'1; '/. To the �_-stable
� -splitting splG_ D .B; T ; fXg/ of G_ we attach a � -splitting spl

_

G_ for the
identity component of .G_/_

in the standard manner (see, for example, p. 61 of
[KS99]). We adjust the endoscopic datum e D .H;H; s/ within its isomorphism
class so that s 2 T , and then fix a � -splitting splH_ D .BH_ ; TH_ ; fY g/ for H_;
where BH_ D B \ H_ and TH_ D T \ H_ D .T _

/0: Embed H_ in H_1
and extend splH_ to splH_

1
D .B1; T1; fY g/ by taking B1 D Norm.BH_ ;H_1 /

and T1 D Cent.TH_ ;H_1 /: None of these choices will matter for transfer factors.
Nor will the choice of �-data (this choice does matter for the construction of geo-
metric �II and �III /: We will thus define all Langlands data �1; �1; and so on,
for packets in familiar terms [La89]; this amounts to the choice of �-data such that
�.˛_/res D .´=´/1=2, where .˛_/res denotes the restriction to .T _

/0 of a root ˛_ of
T in B.

We follow the approach of Section 11 of [Sh08a] for standard endoscopy. To
splH_ , we attach the representative '1 D '.�1; �1/ as in Section 5.6. Now consider
an elliptic parameter ' D '.�; �/ for G�: We alter the construction slightly. To fix
an element of G_der Ì WR acting on T \ G_der as t ! t�1; we may use either
nG �w� defined relative to splG_ or nG; �w� defined relative to spl

_

G_ : It is more
convenient to choose the latter. Thus ' D '.�; �/ will mean that

'.w� / D e2�i�:nG; � w� :
We may also drop the dominance requirement on �. We do require that �1 be
B1-dominant. While G-regularity of '1 requires that � be regular when '.�1; �1/
and '.�; �/ are related, B1-dominance of �1 does not ensure that � is B-dominant.
That case, however, is the only one that will matter to us (in general, an extra sign
is needed in transfer factors, see Sections 7, 9 of [Sh10]). Thus we call '1 well-
positioned relative to ' if � is B-dominant, and make that our assumption through-
out. Given ' we can always find such '1 and it is unique up to T -conjugacy. It
is not difficult to check that this notion is independent of the choices made in its
formulation; again see [Sh10].

Finally, we determine the conditions on .�1; �1/ and .�; �/ for '1.�1; �1/ and
'.�; �/ to be related. First, for w 2 WR, pick u.w/ 2 H projecting to w; as fol-
lows. For ´ 2 C�; u.´/ is to act trivially and u.´w� / is to act on TH and T1 as
nH � w� 2 LH: Since 1 (part of the chosen SED) embeds H in LH1, we may
define

1.u.´w� // D t�1
.´w� /:nH � ´w�
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and

1.u.´// D t�1
.´/ � ´;

where each t�1
.w/ lies in T1: On the other hand, in LG we have that u.w� / acts as

nG; � ´w� : Write
u.w/ D t .w/ 	 u0.w/;

where

u0.´/ D 1 � ´; u0.´w� / D nG; � w�
for ´ 2 C�: Then t .w/ 2 T . Let

T2 D .T1 � T /�TH ;

where TH is embedded by t ! .t�1; t /: On T2 we use the elliptic action �2 of �
inflated to WR: �2 acts as nH �w� on the first component and as nG; �w� on the
second. Let t2.w/ denote the image in T2 of .t�1

.w/�1; t .w// 2 T1 � T : Then we
define

.��; ��/ 2 .X�.T2/˝ C/2

by

t2.´/ D ´��

:´�2�
� � ´

for ´ 2 C�, and

t2.w� / D e2�i�� � w� :
Notice that we have constructed .��; ��/ independently of '1; ': The cochain

t2.w/ is not the cocycle aT .w/ of (4.4) in [KS99]; aT .w/ requires a �-shift (�-shift
in our notation) to be applied to the datum ��. See Section 11 of [Sh08a] for the
case of standard endoscopy, where the torus T2 collapses to T1.

Recall that '1.WR/ is assumed to lie in 1.H/. Identify �1; � with their images
in X�.T2/˝ C under the componentwise embeddings. We may write

'1.w/ D tH .w/ 	 1.u.w//
and

'.w/ D tH .w/ 	 t .w/ 	 u0.w/;
where tH .w/ 2 TH : We now conclude that:

Lemma 9.4. An elliptic pair .'1.�1; �1/, '.�; �// as above is related if and only if

�1 C �� D � and �1 C �� � �modKf :
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9.4 An application

We finish with a proof of the formula (4.4) from our discussion on properties
required of spectral factors.

Lemma 9.5.
$C ..´1; ´// D $�1

.´1/:$�.´/
�1;

for all .´1; ´/ 2 C.R/:
Proof. There is no harm in arguing in G� since $�1

, $� may be calculated there.
Thus we embed ZG� in fundamental T and write ´ 2 ZG�.R/ in the form ´ D
expY 	 exp i��_; where Y lies in the Lie algebra zG�.R/ viewed as a subspace
of X�.T / ˝ C and �_ 2 X�.T / is �T -invariant. Then it follows easily from the
Langlands parametrization that

$�.´/ D e<�;Y>e2i�<�;�_>:

Here we have, as usual, identified X�.T / ˝ C with X�.T / ˝ C. Similarly, for
´1 D expY1 	 exp i��_1 ; with Y1 2 zH1

.R/ � X�.T1/ ˝ C and �_1 2 X�.T /�T1 ;

we have

$�1
.´1/ D e<�1;Y1>e2i�<�1;�

_

1
>:

Now identify the torus T2 from Section 9.2 as the dual of the torus T2: Then if ´; ´1
have the same image in ZH .R/; i.e., if .´1; ´/ 2 C.R/; it follows from our remarks
in Section 9.2 that

$�1
.´1/ 	$�.´/

�1 D e� <��;Y2>e� 2i�<��;�_

2
>;

where Y2 D .Y1; Y / and �_2 D .�_1 ; �_/: On the other hand, it is clear from the
definitions of $C and .��; ��/; and from the relation of the cochain t2.w/ to the
cocycle aT .w/ of p. 45 of [KS99] (see Section 9.2), that this last expression is
the same as $C ..´1; ´//: ut
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On the Gelfand–Kirillov dimension of a discrete
series representation

Nolan R. Wallach

To David Vogan with admiration

Abstract Lower bounds to the Gelfand–Kirillov dimension of discrete series are
given for semisimple Lie groups with finite center by showing that the K-finite
vectors are torsion free with respect to enveloping algebras of certain unipotent
subgroups. In particular we prove two folk theorems about the Gelfand–Kirillov
dimension. The first is that the holomorphic (or anti-holomorphic) discrete series
are the “smallest” and representations with Whittaker models for minimal parabolic
subgroups are the “largest” (a more precise result in the quasi-split case is due to
Kostant). We also show that if G is quaternionic and not of type A or C, then the
quaternionic discrete series is the “smallest”.

Key words: Gelfand–Kirillov dimension, representation, Whittaker models
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1 Introduction

In this short paper we give proofs of several folk theorems that we (and probably
everyone else in the field) have believed for many years. One is that a represen-
tation of a real reductive group with a Whittaker model for a minimal parabolic
must be of maximal Gelfand–Kirillov (GK) dimension (equal to the dimension of
the unipotent radical of the parabolic subgroup). In the quasi-split case this is a
theorem of Kostant [K], which uses results of Vogan [V]. The other is the “well-
known” folk theorem: the holomorphic (or conjugate holomorphic) discrete series
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is the smallest (in the sense of GK-dimension) discrete series of a group that admits
such representations. In addition, we will prove an analogous theorem for quater-
nionic real forms not of type C. That is, the GK-dimension of a discrete series is at
least that of a quaternionic discrete series if the representation is not holomorphic
or antiholomorphic. This implies that for quaternionic real forms, not of type A, the
minimal GK-dimension of a discrete series is 1 C d

2
with d the real dimension of

the corresponding symmetric space.
The proofs that we give are, perhaps, more interesting than the results. They

are based on a simple consequence, proved in [W1], of the vanishing theorem of
Kostant [K] and Lynch [L] which guaranties that representations with “nice” gener-
alized Whittaker models are torsion free with respect to the enveloping algebra of a
corresponding nilpotent Lie algebra. Thus representations with a Whittaker model
with respect to a minimal parabolic subgroup are torsion free with respect to the
enveloping algebra of the unipotent radical of the parabolic. We also give a general
conjecture.

This paper is a slight expansion of a manuscript written by the author in 2010 and
then totally forgotten. No doubt the conjecture can be proved using the all-knowing
ATLAS.

2 A class of representations of a nilpotent Lie algebra

We recall a result from [W1]. Let n denote a nilpotent Lie algebra over C with
universal enveloping algebra U.n/. We consider U.n/� as an n-module under the
action xf .n/ D f .nx/ for f 2 U.n/� and n; x 2 U.n/. We set

T .n/ D ff 2 U.n/� j f .U.n/nk/ D 0 for some kg:
Proposition 2.1. Let M be an n-module such that

H 1.n;M/ D 0
and such that the elements of n act locally nilpotently (that is, if v 2M there exists
k depending on v such that nkv D 0). ThenM is isomorphic with the tensor product
module T .n/˝ V with n acting trivially on V .

Corollary 2.2. Let V be an n-module satisfying the two conditions:

1. The canonical pairing between V and V �n D f� 2 V � j nk� D 0 for some kg is
nondegenerate.

2. H 1.n; V �n / D 0.

Then V is torsion free as a U.n/-module.

Proof. The proposition above implies (see [W1] ) that as an n-module

V �n Š lim
k!1

.U.n/=nkU.n//� ˝W
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with n acting trivially onW . The nondegeneracy of the pairing and the finite dimen-
sionality of U.n/=nkU.n/ imply that V is isomorphic with a submodule of

lim
1 �k

U.n/=nkU.n/˝W �

which is torsion free. ut

3 Application to certain .g; K/-modules

Let G be a real reductive group and set g D Lie.G/. Fix K to be a maximal com-
pact subgroup. Let Po D MoAoNo be a minimal parabolic subgroup with given
Langlands decomposition. Let n be a Lie subalgebra of no D Lie.No/. Then we
will say that n is nice if there exists a parabolic subalgebra p of gC (here subscript
C stands for complexification) such that nC is the nilradical of p and p is nice in the
sense of [BW] (that is, gC has a Z-grading as a Lie algebra, gC D ˚j2Zgj , such that
nC D ˚j>0gj , ŒnC; nC� D ˚j>1gj and there is a Richardson element for p in g1/.
We note that this does not imply that n is the nilradical of a parabolic subalgebra
of g.

We will now explain an implication of this condition. Let � W nC ! C be a
homomorphism such that fX 2 p j � ı adX D 0g is of minimal dimension (i.e., �
is generic). We use the notation C� for the n-module C with n acting by �. If M is
a g-module and � is a homomorphism of nC to C, then we set

M �� D ff 2M � j .X � �.X//kf D 0 for some k and all X 2 ng:
Then M �

�
is a g-submodule of M �. The condition of niceness implies that if � is

generic, then by a slight extension of the theorem in [L] we have

H 1.n;M �� ˝ C��/ D 0:
The result of the previous section implies:

Theorem 3.1. Let M be an irreducible .g; K/-module. Let n be a nice subalgebra
of no and let � be a generic homomorphism of n to C. Assume that there exists
f 2 M � such that f .Xv/ D ��.X/f .v/ for v 2 M , X 2 n. Then M is torsion
free as a U.nC/-module.

Proof. We note that the canonical pairing of M with M � induces a nonsingular
n-invariant pairing between M ˝ C� and M �

�
˝ C��. Thus Corollary 2.2 implies

that M ˝ C� is torsion free as a U.nC/-module. We now show that if V is torsion
free as a U.nC/-module and if � is a homomorphism of n to C, then V ˝ C� is
torsion free as a U.nC/-module. This will complete the proof of the theorem.

Obviously we may assume � ¤ 0. We observe that nC D ker� ˚ CX with
�.X/ D 1. Suppose that n 2 U.nC/ and n.v ˝ 1/ D 0. Using the Poincaré–
Birkhoff–Witt theorem we can write n D Pm

kD0Xknk with nk 2 U.ker �/. Thus
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n.v˝ 1/ D .Pk;l

�

k
l

�

Xk�lnkv/˝ 1. So (
P

k;l

�

k
l

�

Xk�lnk/v D 0. We assume that
n ¤ 0. Hence we may assume that nm ¤ 0. The highest power of X appearing in
P

k;l

�

k
l

�

Xk�lnk is Xm with coefficient nm. Hence we see that
P�

k
l

�

Xk�lnk ¤ 0.
Since V is torsion free, this implies v D 0: ut

We will use the notation Wh�.M/ for the space

ff 2M � j f .Xv/ D ��.X/f .v/ for v 2M , X 2 ng:
As usual, we define the Gelfand–Kirillov (GK) dimension of a finitely generated

U.g/-module, V , as follows: Let W be a finite-dimensional generating set of V .
Then if U j .g/ � U jC1.g/ is the canonical filtration, the GK-dimension of V is

lim
j!1

log dim.U j .g/W /

log j
:

Corollary 3.2. Under the hypotheses of Theorem 3.1, the GK-dimension of M is at
least dim n.

Proof. Since M is irreducible as a .g; K/-module, it is admissible and gener-
ated as a U.g/-module by one K-type, V.�/, � 2 OK. Let v 2 V.�/, v ¤ 0.
Then dimU j .g/V .�/ � dimU j .n/v D dimU j .n/: The Poincaré–Birkhoff–Witt
theorem implies that dimU j .n/ D �dCj

d

�

with d D dim n. ut
Corollary 3.3. Under the hypothesis of Theorem 3.1, if n D no, then the GK-
dimension of M is dim no (the maximal possible).

Proof. The above result implies that the GK-dimension is at least dim no. Since
an admissible finitely generated .g; K/-module is finitely generated as a U..no/C/-
module, dim no is also an upper bound. ut

We also have the following consequence (using Theorem 16 of [W2]).

Corollary 3.4. Let G be a finite covering of the quaternionic real form of a simple
Lie group not of type C over C: Then if .�;H/ is a quaternionic discrete series
representation and if P is a parabolic subgroup of G with unipotent radical N of
Heisenberg type (up to conjugation it is unique), then the underlying .g; K/-module
HK is torsion free as a U.Lie.N /C/-module, and hence the GK-dimension of HK
is at least dimN D 1

2
dimG=K C 1:

Remark 3.5. Using the results in [GW] one can show that a quaternionic discrete
series has GK-dimension equal to dimN .

4 Nice abelian ideals in the Hermitian symmetric case

LetG be a connected simple Lie group over R with finite center, letK be a maximal
compact subgroup, and let B denote the Killing form on gC D Lie.G/C, normalized
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so that the square of the length of a long root is 2. We assume that G=K has a
G-invariant complex structure. This occurs if and only if K has a one-dimensional
center. We retain the notation of the previous section. Let H 2 kC D Lie.K/C be
such that kC D ker adH and adH has eigenvalues 0 and˙1: We set

V ˙ D fX 2 gC j ŒH;X� D ˙Xg:
Then kC ˚ V C is a parabolic subalgebra of gC. Let h denote a Cartan subalgebra of
kC that is the complexification of a maximal abelian subspace of Lie.K/.

We choose a system of positive roots ˚C for the root system ˚ of .gC; h/ such
that if ˛.H/ D 1, then ˛ 2 ˚C. We recall Harish-Chandra’s construction of a
maximal set of strongly orthogonal roots. We choose a linear order on the span over
R of the roots compatible with ˚C. Let �1 be the lowest element of ˚C such that
˛.H/ D 1. This is the unique simple root in ˚0 D f˛ 2 ˚ j ˛.H/ D 1g. We set
˚1 D f˛ 2 ˚0 � f�1g j ˛ ˙ �1 … ˚g. Assume that we have found �1; : : : ; �j
and ˚jC1. If ˚jC1 is empty, then �1; : : : ; �j is the desired ordered set. Otherwise,
let �jC1 be the lowest element of ˚jC1 and let ˚jC2 D f˛ 2 ˚jC1 � f�jC1g j
˛˙�jC1 … ˚g. The procedure terminates after ` steps and yields the ordered set of
Harish-Chandra’s strongly orthogonal roots. If � 2 h�, then we define H� 2 h by
�.h/ D B.H�; h/ for h 2 h. We set h� DP`

iD1 CH�i
.

For each ˛ 2 ˚o, we set s˛ equal to the span of H˛ and the ˛ and �˛ root
spaces. Then s˛ is a Lie subalgebra of gC that is isomorphic with Lie.SL.2;C//.
We set sR˛ D s˛ \ g. Then sR˛ is isomorphic with Lie.SL.2;R//. Let S˛ (resp.
SR
˛ ) be the connected subgroup of the inner automorphisms Int.gC/ of gC (resp.
G) with Lie algebra s˛ (resp. sR˛ ). We set si ; sRi ; Si ; S

R

i to be the objects defined
as above that correspond to ˛ D �i . Let �i W si ! Lie.SL.2;C// be such that

H�i
7�! H D

�

0 i

�i 0
�

, si \V C ! C

�

1 �i
�i �1

�

; and si \V � ! C

�

1 i

i �1
�

: Let

Ci be the element of Si � Aut.gC/ corresponding to

c D 1p
2

�

1 i

i 1

�

.

Then

Ad.c/H D
�

1 0

0 1

�

:

We set hi D Ad.Ci /H�i
and a DP`

iD1 Rhi . The general theory implies that a is
Lie.A/ with A the center of a Levi factor for a minimal parabolic subgroup over R.
Set C D C1 	 	 	C`. Let h DP`

iD1 hi .
If H D 1

2

P`
iD1H�i

, then G=K is said to be of tube type. The following two
propositions are easily derived from the general theory of Hermitian symmetric
spaces.

Proposition 4.1. If G=K is of tube type and if M D fg 2 G j Ad.g/h D hg and
n D fX 2 g j ad.h/X D Xg, then n is abelian and Ad.C /V C D nC.
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Proposition 4.2. Assume that G=K is not of tube type. Then the eigenvalues of adh
on g are 0;˙1;˙2. Let M D fg 2 G j Ad.g/h D hg. Let n1 and n2 denote
respectively the eigenspaces for adh with eigenvalues 1 and 2. Furthermore, n D
Ad.C /V C \ n1 ˚ n2 is a real form of Ad.C /V C.

We can thus combine the above two propositions to prove the following.

Theorem 4.3. If G is simple and G=K has a G-invariant complex structure and if
Po D MoAoNo is a minimal parabolic with given Langlands decomposition, then
Lie.No/ has a nice abelian ideal of dimension equal to

1

2
dimRG=K D dimC V

C.

Proof. We may take Lie.Ao/ D a and take Po to be a minimal parabolic subgroup
containingM exp.n2˚n1/ (in the case of tube type n1 D 0). Then Ad.C /.kC˚V C/
is a parabolic subalgebra whose nilradical is the complexification of the Lie algebra
n as in the propositions above. Since all parabolic subalgebras with commutative
nilradical are nice in the sense of [BW], the theorem follows. ut

5 Applications to the discrete series

In this section we consider G to be a real reductive group with compact center that
admits an irreducible square integrable representation. Fix Po D MoAoNo to be a
minimal parabolic subgroup of G.

Theorem 5.1. Let n be an abelian subalgebra of Lie.No/ and let N be the corre-
sponding connected subgroup of No. Let .�;H/ be a square integrable represen-
tation of G and let H1 be its space of C1 vectors. Then there exists an open
non-empty set of characters � of N such that

Wh�.H
1/ D ff 2 .H1/0 j f .�.n/�/ D �.n/�1f .�/; n 2 N; � 2 H1g ¤ 0:

(Here .H1/0 is the continuous dual space of H1 endowed with the usual Fréchet
topology.)

Proof. Let v 2 HK and � 2 H1. Then the matrix coefficient defined by c�;v.g/ D
h�.g/�; vi is an element of C.G/ (see the appendix) and the map Tv W H1 !
C.G/, Tv.�/ D c�;v is a continuous map of Fréchet spaces. We fix v ¤ 0. Since n
is abelian, the observations in the appendix imply that the integrals

F.�/.�/ D
Z

N

�.n/c�;v.n/dn
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are absolutely convergent for � 2 bN . The Plancherel theorem for the Fourier trans-
form implies that F.�/ defines a continuous function on bN that is nonzero if and
only if Tv.�/ ¤ 0. Since � is irreducible there exists � such that Tv.�/ ¤ 0, hence
the set of � such that there exists � for which F.�/.�/ ¤ 0 must have non-empty
interior. The theorem now follows from the results in the appendix, and the fact that
� 7�! F.�/.�/ defines an element of Wh�.H1/. ut
Corollary 5.2. If n is a nice abelian subalgebra of Lie.No/ and if .�;H/ is an
irreducible square integrable representation of G, then the action of U.nC/ on the
K-finite C1 vectors HK is torsion free.

Proof. Since n is nice, the set of linear maps � W n ! iR that are generic is
open and dense in in�. Thus the set of differentials shown to exist in the previous
theorem must have a non-empty intersection with these generic functionals. Now
Corollary 2.2 implies this corollary. ut
Corollary 5.3. If n is a nice abelian subalgebra of Lie.No/ and if .�;H/ is an
irreducible square integrable representation of G, then GK dim.HK/ � dim n.

Theorem 3.1 combined with this implies:

Corollary 5.4. Assume thatG=K has an invariant complex structure. Let .�;H/ be
an irreducible square integrable representation of G: Then

GK dim.HK/ � 1

2
dimRG=K:

Conjecture 5.5. Let G be simple with finite center and let K be a maximal com-
pact subgroup. If there exists an irreducible square integrable representation � of
GK-dimension equal to 1

2
dimG=K, then

1. G=K admits a G-invariant complex structure and
2. � is either holomorphic or antiholomorphic.

We will prove this conjecture for quaternionic real forms of type other than C.
Malcev [M] classified the maximal abelian Lie subalgebras of the simple Lie

algebras over C. The result has an interesting overlap with the theorems above. He
showed that if the Lie algebra is not of type B4, D4 or G2, then there is up to inner
conjugacy exactly one such algebra (and hence of necessity, using the Borel fixed
point theorem, an abelian ideal in a Borel subalgebra). For the case An, n � 1,

the maximal dimension is
j

.nC1/2
4

k

(i.e., floor) which is half of the real dimension

of the symmetric space SU.


n
2

˘

;
˙

n
2

�

/=S.U.


n
2

˘

/ � U.
˙

n
2

�

//. In the case Cn the

maximal dimension is n.nC1/
2

, which is exactly half of the real dimension of the
associated Hermitian symmetric space. In the case of Dn (n � 4), the maximal
dimension is n.n�1/

2
, which is half of the real dimension of the symmetric space

SO�.2n/=U.n/ (this space is of tube type if and only if n is even). For E6 and
E7 the dimensions are 16 and 27, which are also one half of the dimensions of
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the corresponding Hermitian symmetric space. Thus, in these cases we see that the
conjugacy class of maximal abelian subalgebras contains an element defined over R
for a (unique for all Dn) Hermitian symmetric real form. For Bn the only Hermitian
real form is (locally) SO.2n�1; 2/ and half of the real dimension is 2n�1. If n D 3
or 4, then Malcev gave the maximal dimension to be 5 and 7 respectively, which fits
with the other Hermitian symmetric cases. However, if n > 4, he gives n.n�1/

2
C 1.

For the other simple Lie algebras, we record that for E8, F4 and G2 Malcev gave
dimensions respectively of 36, 9 and 3.

6 Quaternionic real forms

Let G be simple with finite center, not of type C, and equal to the quaternionic
real form of its complexification. In this section we will show that if .�;H/ is an
irreducible square integrable representation of G that is not holomorphic or anti-
holomorphic (this is a condition only in type A), thenH has a generalized Whittaker
model for the Heisenberg parabolic subgroup.

Let G be as above and let K be a maximal compact subgroup. Let P D MAN

be a parabolic subgroup ofG such thatN is of Heisenberg type (that is a Heisenberg
parabolic). Since G is not of type C (see [W2]) there exists a group homomorphism
� of a group locally isomorphic with SU.2; 1/ into G with the following properties.

� d� is injective and if G1 is the image of �, then G1 \ K is a maximal compact
subgroup of G1.

� G1 \ P is a Heisenberg parabolic for G1 and N \G1 contains the center of N .
� SU.2; 1/ contains a subgroup locally isomorphic with SU.1; 1/ such that if L is

its image under �, then L\N is the center of N and L\K is maximal compact
in L.

Our key result in this context is

Theorem 6.1. Assume that G is quaternionic and not of type C. Let .�;H/ be
a square integrable representation of G such that if U is the unipotent radi-
cal of a proper parabolic subgroup of L and if v;w 2 HK and g 2 G, then
R

U h�.gu/v;wi du D 0 (du a choice of invariant measure). Then G must be of
type A and .�;H/ is a holomorphic or antiholomorphic discrete series for G:

Proof. Let v;w 2 HK . Then the function f .g/ D cv;w.g/ D h�.g/v;wi de-
fines a right and left K-finite element of C.G/. Thus LgfjL is an element of C.L/,
where Lgf .x/ D f .g�1x/. Thus, Harish-Chandra’s characterization of the span
of L \ K-finite linear combinations of matrix coefficients of discrete series (cf.
[W4, 13.4.2 (2), p.241]) implies that, in particular, the function fjL is a finite linear
combination of matrix coefficients of discrete series for L since f is right and left
K \ L-finite. Now K \ L is a one-dimensional compact torus, so we will identify
it with S1 D f´ 2 C j j´j D 1g. We write u.´/ for the element of K \ L cor-
responding to ´.We assume that u.´/ acts on v by ´ko . Since G is quaternionic,
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g D Lie.G/C decomposes as g�2˚g�1˚g0˚g1˚g2 with Ad.u.´// acting as ´j

on gj . We note that the discrete series of L consists of holomorphic and antiholo-
morphic representations, that is, all characters of L \ K that occur are of the form
u.´/ 7! ´k in the holomorphic case with k < 0 or k > 0 in the antiholomorphic
case and there are infinitely many characters. Thus, if ko > 0 (resp. ko < 0), then
fjL is in the span of matrix coefficients of antiholomorphic (resp. holomorphic) dis-
crete series. Since we can replace our parametrization of L \ K with the inverses
of the parameters, we may assume that ko < 0. We see that if g 2 U.g/ is such that
Ad.u.´//g D ´jg, then all of the characters that occur inU.Lie.L/C/	cgv;wjL (here
L is acting by the right regular action) are bounded above by j . This implies that
all of the weights of L\K occurring inHK are negative. Let v 2 HK be of weight
ko (which is maximal). If u D g1 ˚ g2, then uv D 0. We note that g0 � Lie.K/C,
hence dimU.g0/v <1. Let M be a nonzero irreducible g0-submodule of U.g0/v.
Then we note that uM D 0, thus M is a q D g0 ˚ u module. By irreducibility we
have a surjective U.g/-module homomorphism

U.g/˝U.q/M ! HK

via g˝m 7�! gm. This implies that HK is a square integrable highest weight rep-
resentation. So G=K is Hermitian symmetric and .�;H/ is a holomorphic (or anti-
holomorphic) discrete series. ut
Theorem 6.2. Assume that G is quaternionic and not of type C. Let .�;H/ be an
irreducible representation of G and if G is of type A, then assume that .�;H/ is
not holomorphic or antiholomorphic. Then the set of unitary (one-dimensional)
characters � of N (the unipotent radical of a Heisenberg parabolic) such that
Wh�.H1/ ¤ 0 has non-empty interior.

Proof. Let L be as in the proof of the previous theorem. The theorem implies that
there exist v 2 HK and w 2 H1 such that

Z

L\N
h�.n/v;wi dn ¤ 0.

Fix such a w. We note that if x 2 N , then Fubini’s theorem implies that if ´ 2 HK ,
then

f´.x/ D
Z

L\N
h�.xn/´;wi du

defines a function in L1.N=N \ L/. Since N=N \ L is abelian we can use the
methods of the previous section to complete the proof. ut
Corollary 6.3. Conjecture 5.5 is true if G is quaternionic and not of type C.
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Appendix : the convergence of some integrals

In this section we will prove some convergence results used in this paper. Let G
be a real reductive group with compact center and let K be a maximal compact
subgroup and let Po D MoAoNo be a minimal parabolic subalgebra. Let $ be the
Harish-Chandra basic spherical function (cf. [W3, 4.5]). Recall that a norm on G is
a continuous function, k:::k from G to R	1 satisfying

1. kgk D ��g�1��,
2. kghk � kgk khk,
3. for each r � 1, fg 2 G j kgk � rg is compact.

In [W3, 7.2.1] we defined a norm such that kk1gk2k D kgk, k1; k2 2 K and proved
that there exist positive constants C1; C2; q1; q2 such that

C1 kgk�1 .1C log kgk/�q1 � $.g/ � C2 kgk�1 .1C log kgk/q2 : (�)

Let C.G/ denote Harish-Chandra’s Schwartz space. That is the space of C1 func-
tions f on G such that if x; y 2 U.Lie.G// and r > 0, then

supg2G
jRxLyf .g/j.1C log kgk/r

$.g/
<1:

HereL andR are respectively the left and right regular representations ofU.Lie.G//.
Let px;y;r.f / denote the sup in the above inequality. Then following Harish-
Chandra, C.G/ is endowed with the topology defined by these semi-norms. Thus
we have

jRxLyf .g/j � px;y;r.f /$.g/.1C log kgk/�r :
We note that (�) implies that if we define for f 2 C.G/

qx;y:r .f / D supg2G jRxLyf .g/ kgk j.1C log kgk/r ;
then the semi-norms qx;y;r define the same (Fréchet) topology on C.G/. The point
of this appendix is to prove

Proposition A.1 Let n be a subalgebra of No and let N be the connected subgroup
of No corresponding to n. Then if dn denotes a choice of Haar measure on N ,

q.f / D
Z

N

jf .n/jdn

defines a continuous semi-norm on C.G/.

Proof. We note that if r D dimNo=N , then there exist X1; : : : ; Xr 2 Lie.No/ such
that

Pr
iD1 RXi C n D Lie.N0/ and if we set

Pr
i	s RXi C n D ns�1 (so nr D n),

then ŒXi�1; ni�1� � ni�1. This implies that we have a diffeomorphism

Rr �N ! No; .x; n/ 7! exp.x1X1/ 	 	 	 exp.xrXr /n:
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Relative to this diffeomorphism dx1 	 	 	 dxrdn is Haar measure, which we denote
dno, on No. Harish-Chandra has shown that there exists r > 0 such that

Z

No

$.no/.1C log knok/�rdg <1:

Thus, in the notation above we have
Z

No

knok�1 .1C log knok/�q1�rdno <1.

Fubini’s theorem implies that there exists v D exp.x1X1/ 	 	 	 exp.xrXr / such that
Z

N

kvnk�1 .1C log kvnk/�q1�rdn <1:

Using the properties of k: : :k above, we have

kvnk � kvk knk I
thus since kgk � 1 for all g 2 G,

1C log kvnk � 1C log kvk C log knk � .1C log kvk/.1C log knk/:
Putting this together we have that if s � 0,

kvk .1C log kvk/s knk .1C log knk/s � kvnk .1C log kvnk/s :
We have

knk�1 .1C log knk/�s � kvk .1C log kvk/s kvnk�1 .1C log kvnk/�s :
This implies the proposition since

jf .n/j � q1;1;s knk�1 .1C log knk/�s :
ut
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A reducible characteristic variety in type A

Geordie Williamson

Dedicated to David Vogan on the occasion of his
60th birthday

Abstract We show that simple highest weight modules for sl12.C/ may have
reducible characteristic variety. This answers a question of Borho–Brylinski and
Joseph from 1984. The relevant singularity under Beilinson–Bernstein localiza-
tion is the (in)famous Kashiwara–Saito singularity. We sketch the rather indirect
route via the p-canonical basis,W -graphs and decomposition numbers for perverse
sheaves that led us to examine this singularity.

Key words: Characteristic variety; characteristic cycle; irreducibility; Schubert
varieties; Kazhdan–Lusztig cells.
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1 Introduction

Let G � B � T denote respectively a complex reductive group, a Borel sub-
group and maximal torus. Let W denote its Weyl group, X D G=B the flag variety
and T �X its cotangent bundle. Given x 2 W we denote by Cx the corresponding
Schubert cell and T �x X � T �X its conormal bundle. Let DX denote the sheaf of
algebraic differential operators on X and by Ly the IC extension of the trivial local
system on Cy . We can write the characteristic cycle of Ly as
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CC.Ly/ D
X

x2W
mx;y ŒT �x X�:

We have mx;y 2 Z	0 and mx;y D 0 unless x � y in the Bruhat order.
The calculation of the multiplicities mx;y is an important and difficult problem.
The question we address in this note is:

Question 1.1. (See [BB85, Conjecture 4.5] and [Jos84, 	10.2]) Suppose that G D
SLn.C/. Is mx;y D 0 if x ¤ y and x and y lie in the same two-sided Kazhdan–
Lusztig cell?

This question is equivalent to asking whether the characteristic variety of a
simple highest weight module for sln.C/ is irreducible [BB85, Proposition 6.9].
(A sketch: if � W T �.G=B/ ! sln.C/

� denotes the moment map, then the char-
acteristic variety of the global sections of Ly (a simple highest weight module)
agrees with the image of the characteristic variety of Ly under � [BB85, Corollary
1.5]. The condition on two-sided cells occurs because if x <LR y (�LR denotes
the Kazhdan–Lusztig two-sided cell preorder), then �.T �x G=B/ has strictly smaller
dimension than �.T �y G=B/ and hence cannot contribute a reducible component,
because characteristic varieties of simple modules are equidimensional [Gab82].)
It is known that reducible characteristic varieties occur in other types (e.g., B2, B3,
C3) thanks to calculations of Kashiwara and Tanisaki [KT84] and Tanisaki [Tan88].

Kazhdan and Lusztig conjectured (still for G D SLn.C/) that the characteristic
varieties of all Ly are irreducible [KL80a] (that is, that mx;y D 0 if x ¤ y).
Of course this would imply an affirmative answer to the above question. However
Kashiwara and Saito [KS97] showed that their conjecture was true if n < 8 but false
for n � 8. They discovered a singularity (the Kashiwara–Saito singularity) which
occurs as a normal slice to a Schubert variety in the flag variety of SL8.C/, and
for which the characteristic variety is reducible. In their example, x and y do not
lie in the same two-sided cell, and hence do not provide an example of a reducible
characteristic variety of a highest weight module.

In this note we give two permutations x � y in S12 which lie in the same right
cell and such that a normal slice to the Schubert variety corresponding to y along the
Schubert cell corresponding to x is isomorphic to the Kashiwara–Saito singularity.
This implies that mx;y ¤ 0, and hence that Question 1.1 has a negative answer.

1.1 Structure of the paper

In 	2 we discuss the p-canonical basis and prove a result relating characteristic cycle
multiplicities and the p-canonical basis. This result is a simple consequence of an
observation of Vilonen and the author [VW12]. We then discuss how positivity prop-
erties of the p-canonical basis and computer code of Howlett–Nguyen allows one to
narrow the search for potential counterexamples. (Indeed, with 12! = 479 001 600
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Schubert varieties in the flag variety of GL12, the challenge is in the finding rather
than in the verifying!) In 	3 we give the singularity in the GL12 flag variety and
perform a straightforward calculation to obtain the Kashiwara–Saito singularity.

1.2 Comments on the literature

In [Mel93] a proof is proposed for the irreducibility of characteristic varieties in type
A. As we have already remarked, this would imply that Question 1.1 has a positive
answer. The faulty step in [Mel93] occurs in the proof of [Mel93, Proposition 3.2]
where it is tacitly assumed that [Jos84, 9.12] extends to characteristic varieties; this
is false, as our example in 	3.5 shows. A statement equivalent to Melnikov’s claim
is made in the remark on page 54 of [BB85].

2 Motivation from modular representation theory

In this section we sketch the route which led us to consider the singularity in 	3.5.
We have tried to provide enough details and references that a motivated reader could
adapt these techniques to find other interesting (counter)examples. Most of the ideas
are already contained in [Wil12], which has more detail than the discussion below.

2.1 The p-canonical basis

Let G;B; T be as in the introduction. Let W denote the Weyl group, S its simple
reflections, � its Bruhat order and ` its length function. Consider the flag variety
G=B with its stratification by B-orbits (the Schubert stratification):

G=B D
G

w2W
Cw :

Fix a field k of characteristic p � 0 and let Db
.B/
.G=BIk/ denote the bounded

derived category of constructible sheaves on G=B which are constructible with
respect to the Schubert stratification. For w 2 W denote by IC.wIk/ the inter-
section cohomology sheaf and E.wIk/ the parity sheaf (for the constant pariversity)
[JMW09, Wil12] corresponding to Cw . We will drop the k from the notation if it is
clear from the context. If k is of characteristic 0, then E.wIk/ D IC.wIk/.

Let H denote the Hecke algebra of .W; S/. It is a free ZŒv˙1�-module with basis
fHw j w 2 W g and multiplication determined by
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HsHw D
(

Hsw if `.sw/ > `.w/,

.v�1 � v/Hw CHsw if `.sw/ < `.w/.

Let fHwg denote the Kazhdan–Lusztig or “canonical” basis of H. We use the nor-
malizations of [Soe97]. For example H s D Hs C vHid.

Given a finite-dimensional Z-graded vector space V DLV i , let

chV D
X

i2Z
dimV �ivi 2 ZŒv˙1�

denote its Poincaré polynomial. Given F 2 Db
.B/
.G=BIk/ define

chF D
X

x2W
chH�.Fx/v�`.x/Hx 2 H

where Fx denotes the stalk of F at the point xB=B 2 Cx � G=B . It is a clas-
sical theorem of Kazhdan and Lusztig [KL80b] (see also [Spr82]) that if k is of
characteristic zero, then

ch IC.wIk/ D Hw : (2.1)

For any w 2 W we define
pHw WD chE.wIk/:

(One can show that pHw only depends on the characteristic p of k, which ex-
plains the notation.) We call the fpHwg the p-canonical basis for reasons which
the following proposition should make clear:

Proposition 2.1.

(i) pHw D Hw C
P

x<w
phx;wHx with phx;w 2 Z	0Œv˙1� (hence fpHw j w 2

W g is a basis),
(ii) pHw D

P

pmx;wHx for self-dual pmx;w 2 Z	0Œv˙1�,
(iii) if pmx;w are as in (ii), then pmx;w D 0 unless L.x/ � L.w/ and R.x/ �

R.w/ where L and R denote left and right descent sets,
(iv) pHx

pHy D
P

p�´xy
pH ´ for self-dual p�´x;y 2 Z	0Œv˙1�,

(v) for p � 0, pHw D 0Hw D Hw .

Proof (Sketch of proof). By definition, the parity sheaf E.w/ is supported on Cw
and its restriction to Cw is isomorphic to a shifted constant sheaf. (i) now follows
easily from the definition of ch.

Each E.wIFp/ admits a lift E.wIZp/, a parity sheaf with coefficients in Zp .
Then E.w;Zp/ ˝Zp

Qp is a parity sheaf with coefficients in Qp , and is hence
isomorphic to a direct sum of intersection cohomology complexes. (ii) now follows
from (2.1) and the fact that E.wIFp/, E.w;Zp/ and E.w;Zp/˝Zp

Qp all have the
same character (see [Wil12, Theorem 3.10]).

For fixed w, the parity sheaf E.wIFp/ may be obtained via pull-back from the
partial flag variety G=P where P � B is the parabolic subgroup determined by
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R.w/ � S (see [JMW09, Proposition 4.10]). Hence R.x/ � R.w/ as claimed. The
statement for left descent sets follows because pmx;w D pmx�1;w�1 by [Wil12, 	3
eq. (4)].

Each parity sheaf admits a lift to theB-equivariant derived categoryDb
B.G=B;k/

where there is a convolution formalism categorifying the multiplication in the Hecke
algebra. (iv) then follows because the convolution of two parity sheaves is isomor-
phic to a direct sum of shifts of parity sheaves [JMW09, Theorem 4.8].

Finally (v) follows from (2.1) and [JMW09, Proposition 2.41] which asserts that
E.wIFp/ D IC.wIFp/ for all but finitely many primes p. ut
Warning 2.2. The p-canonical basis depends on the root system ofG, not just on its
Weyl group. (For example the 2-canonical basis differs in types B3 and C3.) Hence
one should think about the p-canonical basis as a basis of the Hecke algebra attached
to a root system or Cartan matrix rather than a Coxeter system. Kashiwara and Saito
observed the same phenomenon for characteristic cycles [KT84, Example 5.4].

2.2 The p-canonical basis and decomposition numbers

We briefly recall the notion of a decomposition number for perverse sheaves. An
excellent reference is [Jut09].

Let X denote a complex variety, Z � X a locally closed smooth subvariety,
and L a local system of free Z-modules on X . One may consider the intersection
cohomology extension1 IC.ZIL/. It is a perverse sheaf with Z-coefficients on X .
One has

IC.ZIL/˝Z Q D IC.ZIL˝Z Q/;

and so IC.ZIL/ can be thought of as a Z-form of IC.ZIL˝Q/. In general,

IC.ZIL/˝L
Z
Fp 2 Db

c .X IFp/
is perverse but no longer simple. The decomposition matrix encodes the Jordan–
Hölder multiplicities of the simple perverse sheaves occurring in IC.ZIL/˝L

Z
Fp .

In this paper we will be concerned with the flag variety together with its Schubert
stratification, as in 	2.1. In this case all the strata are simply connected and the
decomposition matrix takes the form .dy;x/y;x2W where

dy;x WD ŒIC.Cy IZ/˝Z Fp W IC.Cx IFp/�:
The relation between the characters of the parity sheaves (i.e., the p-canonical

basis) and the decomposition matrix is subtle. For example, recent papers of Achar

1 For the perversity p, see [Jut09].
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and Riche [AR14a, AR14b] prove that knowledge of the p-canonical basis gives (a
q-refinement of) the decomposition matrix for perverse sheaves on the Langlands
dual flag variety.

Here we will be concerned with a much more limited but simpler relationship.
Roughly it says that the first time the p-canonical basis differs from the canonical
basis corresponds to the first nontrivial decomposition number (see Proposition 2.1
and above for notation):

Proposition 2.3. Fix y 2 W and suppose that x < y is maximal in the Bruhat order
such that pmx;y ¤ 0. If pmx;y 2 Z, then dy;x D pmx;y .

Proof. Fix x and y as in the proposition. Set

X D
G

´	x
B´B=B; Z D BxB � X; U D X n U

and denote by i (resp. j ) the closed (resp. open) embedding of Z (resp. U ) into X .
Note that X is open in G=B .

For k 2 fFp;Zp;Qpg let ICk (resp. Ek) denote the intersection cohomology
(resp. parity) sheaf corresponding to the stratum ByB=B � X . We have EQp

Š
ICQp

and our assumptions guarantee that E is perverse with

ICkjU Š EkjU :

Hence we need to examine the difference between ICFp
and EFp

over the closed
stratum Z.

Our main tool will be [JMW09, Lemma 2.18] which gives a bijection between
isomorphism classes of extensions of a fixed F on U toX , and isomorphism classes
of distinguished triangles on Z of the form

A! i�j�F! B
Œ1�! :

If F0 is such an extension, then A and B are given by

i�F0 Š A and i ŠF0 Š BŒ�1�: (2.2)

Let us examine the triangle corresponding to the extension EZp
of ICZp jU . It has

the form

A! i�j�.ICZp jU /! B
Œ1�! : (2.3)

Because Z is contractible we can view (2.3) as a distinguished triangle of Zp-
modules. By (2.2) and the fact that E is a parity sheaf, we deduce:

(1) Hm.A/ and Hm.B/ are free Zp-modules;
(2) Hm.A/ D 0 if m � `.y/ is odd, and Hm.B/ D 0 if m � `.y/ is even.

The assumptions of the proposition and (2.2) guarantee that

(3) Hm.A/ vanishes for m > �`.x/ and Hm.B/ vanishes for m < �`.x/ � 1;
(4) H�`.x/.A/ is free of rank pmx;y (in particular `.y/ � `.x/ is even).
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Because Zp is hereditary, each of the terms in (2.3) is isomorphic to its cohomology.
Hence we can turn the triangle and rewrite it as

H�.B/Œ�1�! H�.A/! H�.i�j�F/
Œ1�! :

By (3) above the only nonzero map component of the first map is

˛ W H�`.x/�1.B/! H�`.x/.A/:

Because E is indecomposable, ˛ does not map any summand of H�`.x/�1.B/ iso-
morphically onto a summand of H�`.x/.A/ by [JMW09, Lemma 2.21]. In other
words, ˛ ˝Zp

Fp D 0. On the other hand, we have

E˝Zp
Qp Š ICQp

˚ IC.Z/˚.pmx;y/;

and hence ˛ is an isomorphism over Qp . In other words, ker˛ D 0 and the domain
and codomain of ˛ are free of the same rank.

By the long exact sequence of cohomology we deduce that:

Hm.i�j�ICFp jU / D

8

ˆ

<

ˆ

:

Hm.A/˝ Fp if m < `.x/ � 1,

H�`.x/.A/˝ Fp if m D �`.x/ � 1 or m D �`.x/;
Hm.B/˝ Fp if m > �`.x/:

Hm.i�j�ICQp jU / D

8

ˆ

<

ˆ

:

Hm.A/˝ Fp if m < `.x/ � 1,

0 if m D �`.x/ � 1 or m D �`.x/;
Hm.B/˝ Fp if m > �`.x/:

By the Deligne construction [BBD82, Proposition 2.1.11], we have

i�ICk D i��<�`.x/j�ICk D �<�`.x/i�j�ICk

where �<m denotes truncation. Hence if � denotes the Euler characteristic at any
point in Z, we have

�.ICFp
/ D �.ICQp

/ � .�1/�`.x/.pmx;y/:
Now we are done: if we write

ŒICZp
˝L

Zp
Fp� D ŒICFp

�C aŒIC.Z/�

in the Grothendieck group of Fp-perverse sheaves on X , then taking Euler charac-
teristics over Z yields a D pmx;y as claimed. ut

As in the introduction we write mx;y for the the characteristic cycle multiplic-
ities. The following is an immediate consequence of the previous proposition, and
[VW12, Theorem 2.1].
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Corollary 2.4. Suppose that x < y are as in the previous proposition. Then

mx;y � pmx;y :

2.3 Searching for a counterexample

Consider the following variant of Question 1.1 (with notation as in Proposition 2.1):

Question 2.5. Suppose that G D SLn.C/ and let p be a prime. Is pmx;y D 0 if
x ¤ y and x and y lie in the same two-sided cell?

It will become clear below that a positive answer to Question 1.1 implies a
positive answer to Question 2.5. Question 2.5 is also important for modular rep-
resentation theory, with connections to Lusztig’s conjecture around the Steinberg
weight [Soe00], amongst other things.

One can show (using Soergel calculus [EW13] or Schubert calculus [HW14])
that the counterexample in 	3 also gives a counterexample to Question 2.5. We
found the examples by pursuing a naive idea, which is the main theme of [Wil12]:
the p-canonical basis has remarkable positivity properties (summarized in Propo-
sition 2.1) and these positivity properties are enough to rule out many potential
counterexamples.

Asume that W is an arbitrary Weyl group. For any left cell C � W we can
consider the corresponding cell module

MC D
M

x2C
ZŒv˙1�Mx WD

M

x�LC

ZŒv˙1�H x

ı

.
M

x<LC

ZŒv˙1�H x/:

The H-module structure in the basis fMxg is encoded in the W -graph of C . Fix a
prime p and assume that the p-canonical basis satisfies

for all y 2 C if pmx;y ¤ 0; then x �L y: (2.4)

Then we may define pMy as the image of pHy in MC and obtain in this way a
p-canonical basis for the cell module MC . By Proposition 2.1 it satisfies the fol-
lowing properties:

(1) (positive upper-triangularity) we have

pMy DMy C
X

C3x<y
pmx;yMx with pmx;y 2 Z	0Œv˙1� self-dual;

(2) (positive structure constants) for any x 2 W ,

pH x 	 pMy 2
M

´2C
Z	0Œv˙1�.pM´/:
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Example 2.6. Suppose that W is of type B2 with simple reflections s; t . Consider
the left cell C D fs; ts; stsg. The W -graph is

fsg ftg fsg:
In this case there are two possible bases for MC satisfying (1) and (2). The first is
the Kazhdan–Lusztig basis fMxg. The second is the basis fM 0xg withM 0x DMx for
x 2 fs; tsg and M 0sts WD Msts CMs . In this case M 0 agrees with the image of the
2-canonical basis for B2 (for an appropriate choice of long and short root).

Now assume thatW is of typeAn�1. In this case two-sided cells are parametrized
by partitions � of n. Also, all left cells in a fixed two-sided cell have isomorphicW -
graphs and hence afford isomorphic (based) representations of the Hecke algebra H.

Lemma 2.7. Let � be a partition of n and E� � W the corresponding two-sided
cell. Then there exists a left cell C � E� satisfying (2.4).

Proof (Sketch of proof). Letw� denote the longest element of the standard parabolic
subgroup W� � W determined by �. Then w� 2 E�. We claim that the left cell C
containing w� satisfies (2.4). First, pHw�

D Hw�
by (i) and (iii) of Proposition 2.1

and a simple induction then shows that

pHy D
X

x�Lw�

pmx;yHx :

for all y 2 C . Hence (2.4) holds. ut
It follows that any left cell representation in type A admits a p-canonical basis

satisfying the above positive conditions. One can apply computer searches in order
to isolate potential counterexamples and then use Soergel calculus [EW13] or Schu-
bert calculus [HW14] to check whether one has indeed found a counterexample.

In order to implement this approach one needs the W -graphs of the left cell
representations in type A. These are provided by the wonderful code of Howlett and
Nguyen [HN13] for magma [BCP97].

Remark 2.8.

1. Using the recent results of Achar–Riche [AR14a, AR14b] one can show that if
there is a counterexample for a left cell corresponding to �, then there is also
a counterexample for the left cell corresponding to the transposed partition �t .
This allows one to roughly halve the number of left cells which one needs to
consider. Experimentally, the above positivity properties are more restrictive in
left cells corresponding to partitions “near the top” of the dominance order. (For
example for S4 there is only one solution for the left cell corresponding to the
partition .3; 1/, whereas there are two for the partition .2; 1; 1/.)
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2. Lusztig has given a beautiful description of the J -ring for a fixed two-sided
cell in Sn as a (based) matrix ring. Using this result, one can show that if the
p-canonical basis is trivial (i.e., equal to the image of the Kazhdan–Lusztig
basis) in a fixed left cell, then Question 2.5 has a positive answer for that two-
sided cell.

3. The above methods yielded another counterexample to Question 2.5, this time
in GL13:

x D 12132156543765438798765ba98c;
y D 121321546543765438798765aba9876cba98

Here we write x and y as words in the simple transpositions 1; : : : 9; a; b; c of
S13. Yoshihisa Saito has informed me that in this case one again obtains the
Kashiwara–Saito singularity as a normal slice!

3 Two realisations of the Kashiwara–Saito singularity

3.1 Notation

Fix a positive integer n � 1.
Let Sn denote the symmetric group, which we regard as permutations of the

set f1; : : : ; ng. We view Sn as a Coxeter group with Coxeter generators the simple
transpositions si D .i; i C 1/ for 1 � i � n � 1. We write ` for the length function
on Sn and � for the Bruhat order.

We will usually write permutations in “string notation,” i.e., we write x D
x1x2 : : : xn to mean that x is the permutation in Sn which sends 1 7! x1, 2 7! x2,
etc. To avoid confusion when using string notation we extend our alphabet of digits
1; : : : ; 9 by the letters a; b : : : with a D 10, b D 11 : : : .

LetG D GLn.C/ denote the general linear group of invertible complex matrices.
Given x D x1x2 : : : xn 2 Sn, we will denote by Px the corresponding permutation
matrix. That is Px.ei / D exi

if e1; e2; : : : ; en denotes the standard basis of Cn.
Let B � G denote the Borel subgroup of upper triangular matrices. Let G=B

denote the flag variety. Given y 2 Sn we denote by

Cy D B PyB=B � G=B
its Schubert cell and by Zy the corresponding Schubert variety

Zy WD B PyB=B D Cy :
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3.2 Equations for slices to Schubert cells

We recall how to explicitly write down equations for slices to Schubert cells in
Schubert varieties. Everything here can be checked reasonably easily by hand with
the (possible) exception of the fact that the equations (3.1) are complete.

Let U�; U � GLn.C/ the subgroups of unipotent lower and upper triangular
matrices respectively. The natural map U� ! G=B is an open immersion, giving
a coordinate patch isomorphic to A.

n
2/ around the basepoint B 2 G=B . Hence for

any x 2 Sn the natural map � W PxU� ! G=B gives a coordinate patch around
PxB 2 G=B . For a permutation x D x1 : : : xn we have

PxU� D fg D .gi;j / 2 GLn.C/ j gxi ;i D 1 and gxi ;j D 0 for j > ig:
For y 2 Sn the inverse image ��1.Zy/ � PxU� is given by the equations (see
[Ful92], [WY08, 	3.2] and [WY12, 	2.2]):

rank..gi;j /a�i�n
1�j�b

/ � rank.. Pyi;j /a�i�n
1�j�b

/ for all 1 � a; b � n: (3.1)

We have
��1.Cx/ WD fg 2 PxU� j gi;j D 0 for i > xj g:

Hence if we set
Nx D fg 2 PxU� j gi;j D 0 for i < xj g;

then Nx is a normal slice to Cx in PxU�. Hence the singularity of Zy along Cx is
given by Nx \��1.Zy/ which is given by intersecting the linear equations describ-
ing Nx with the equations (3.1).

Example 3.1. Perhaps an example will help decipher the notation. Consider n D 4

and let x D 2143 and y D 4231. We have

Nx D

8

ˆ

ˆ

<

ˆ

ˆ

:

0

B

B

@

0 1 0 0

1 0 0 0

a b 0 1

c d 1 0

1

C

C

A

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a; b; c; d 2 C

9

>

>

=

>

>

;

and the rank conditions (3.1) reduce in this case to the single equation ad �bc D 0.

3.3 The Kashiwara–Saito singularity

Let M2.C/ denote the space of 2 � 2-complex matrices with coefficients in C.
Consider the space S of matrices Mi 2 M2.C/ for i 2 Z=4Z satisfying the two
conditions:

detMi D 0 for i 2 Z=4Z,
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MiMiC1 D 0 for i 2 Z=4Z:

Clearly S is an affine variety. One can show that it is irreducible of dimension 8.
We call S (or more precisely the singularity of S at 0 WD .0; 0; 0; 0/ 2 S ) the
Kashiwara–Saito singularity. In [KS97] it is shown that the conormal bundle to 0 is
a component of the characteristic cycle of the intersection cohomology D-module
on S . In particular, the characteristic cycle is reducible.

3.4 Realisation in GL8

Now let n D 8 and consider the permutations

u WD 21654387; v WD 62845173:
Then u is the maximal element in the standard parabolic subgroup hs1; s3; s4; s5; s7i
of length `.u/ D 8. We have u � v and `.v/ D 16.

The following is stated without proof in [KS97, 	8.3]. We give the proof here
because it is a good warm-up for the calculation in GL12 which we need to perform
next.

Proposition 3.2. The singularity of Zv along Cu is isomorphic to S .

Proof. If J WD
�

0 1

1 0

�

, we have (as a matrix of block 2 � 2-matrices):

Nu WD

8

ˆ

ˆ

<

ˆ

ˆ

:

0

B

B

@

J 0 0 0

A1 0 J 0

A2 J 0 0

A0 A3 A4 J

1

C

C

A

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ai 2M2.C/

9

>

>

=

>

>

;

:

Now

Pv D

0

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

A
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and after some checking, one sees that the rank conditions (3.1) reduce to the
following equations:

A0 D 0;
rank

�

A2 J

0 A3

�

� 2; (3.2)

rank

�

A1
A2

�

� 1; (3.3)

rank
�

A3 A4
� � 1; (3.4)

rank

0

@

A1 0 J

A2 J 0

0 A3 A4

1

A � 4: (3.5)

Now
�

A2 J

0 A3

��

I 0

�JA2 J
�

D
�

0 I

�A3JA2 A3J
�

;

and so (3.2) is equivalent to A3JA2 D 0. Similarly, one may show that together
(3.2) and (3.5) are equivalent to the conditions

A3JA2 D 0 and A4JA1 D 0:

If we let K WD
�

0 �1
1 0

�

, then (3.3) is equivalent to the conditions:

A2KA
t
1 D 0 and detA1 D detA2 D 0:

Similarly, (3.4) is equivalent to the conditions

At4KA3 D 0 and detA3 D detA4 D 0
Hence if we set

A01 WD At1J; A02 WD A2K; A03 WD A3J; A04 WD At4K;
then the relations become

detA0i D 0 for i 2 f1; 2; 3; 4g,
A02A01 D A03A02 D A04A03 D A01A04 D 0:

This is clearly isomorphic to the Kashiwara–Saito singularity. ut
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3.5 Realisation in GL12

We will see how to realise the Kashiwara–Saito singularity as a normal slice in Zy
to a Schubert cell Cx . This time x and y belong to the same right cell.

Now let n D 12. Consider the permutations in S12:

x D 438721a965cb; y D 4387a2c691b5:
(Remember that we use string notation and a D 10, b D 11; c D 12.) The
Robinson–Schensted P and Q symbols of x are (following the conventions of
[Ari00]):

P.x/ D
1 5 9 b

2 6 a c

3 7

4 8

and Q.x/ D
1 3 7 b

2 4 8 c

5 9

6 a

:

The P and Q symbols of y are

P.y/ D
1 5 9 b

2 6 a c

3 7

4 8

and Q.y/ D
1 3 5 7

2 4 9 b

6 8

a c

:

In particular, we conclude that x and y are in the same two-sided cell (even the same
right cell).

Reduced expressions for x and y are given by

x D sbs5s6s7s8s9s5s6s7s8s7s1s2s3s4s5s1s2s3s4s3s1
y D s5s6s7s8s9sasbsas1s2s3s4s5s6s7s8s9s7s8s4s5s6s7s1s2s3s4s5s3s1:

We have x � y, `.x/ D 22 and `.y/ D 30.
Recall the Kashiwara–Saito singularity S from the previous section.

Proposition 3.3. The singularity of Zy along Cx is isomorphic to S .

Proof. The normal slice Nx to Cx inside the full flag variety is given by the space
of matrices

0

B

B

B

B

B

B

@

0 0 J 0 0 0

J 0 0 0 0 0

B1 0 A1 0 J 0

B2 J 0 0 0 0

B3 B5 A2 J 0 0

B4 B6 B7 A3 A4 J

1

C

C

C

C

C

C

A

where J WD
�

0 1

1 0

�

as above and theAi ,Bi are inM2.C/. Now, after some checking

one sees that the rank conditions (3.1) give that the intersection of Nx and Zy is cut
out by the equations:



A reducible characteristic variety in type A 531

Bi D 0;
rank

�

A3 A4
� � 1;

rank

0

@

0 A1
J 0

0 A2

1

A � 3 , rank

�

A1
A2

�

� 1;

rank

�

A2 J

0 A3

�

� 2;

rank

0

B

B

@

0 A1 0 J

J 0 0 0

0 A2 J 0

0 0 A3 A4

1

C

C

A

� 6 , rank

0

@

A1 0 J

A2 J 0

0 A3 A4

1

A � 4:

Looking at the proof of Proposition 3.2 it is now clear that N \ Zy Š S , the
Kashiwara–Saito singularity. ut
Acknowledgements This paper also owes a significant debt to Leticia Barchini
who asked me repeatedly about Question 1.1, and answered questions during and
following her visit to the MPI last year. Thanks also to Peter Trapa for some
explanations and Anna Melnikov, Yoshihisa Saito, Toshiyuki Tanisaki and the
referee for useful correspondence. The examples were found using Howlett and
Nguyen’s software [HN13] for magma [BCP97] which produces the irreducibleW -
graphs for the symmetric group, implementing an algorithm described in [HN12, 	6].

During a visit to MIT last year David Vogan asked me whether the results of
[VW12] could produce new examples of reducible characteristic cycles, and asked
about Question 1.1. It is a pleasure to dedicate this paper to David, thank him for
his many wonderful contributions to Lie theory and to wish him a happy birthday!

References

[AR14a] P. Achar and S. Riche, Modular perverse sheaves on flag varieties I: tilting and par-
ity sheaves (with an appendix by G. Williamson), preprint arXiv:1401.7245, to
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