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Abstract Gene signatures are lists of genes used for summarizing high-throughput
gene expression profiling experiments. Various routines for obtaining and analyzing
gene signatures in molecular biology studies exist, including statistical testing with
false discovery corrections and annotations by gene ontology keywords. Despite the
presence of well established routines there are still challenges in efficient application
of gene signatures, which include gene signature instability, problems in defining
optimal sizes and possible unreliability of inference results. Therefore there are con-
tinuous attempts towards improving algorithms for constructing meaningful gene
signatures. In this paper we are introducing a methodology for constructing gene
signatures, based on the fusion of information coming from statistical tests for dif-
ferential gene expression analysis and resulting from statistical tests for GO terms
enrichment analysis. On the basis of the DNA microarray datasets we are demonstrat-
ing that the proposed algorithm for fusion of expression and ontology information
leads to improvement of the composition of gene signatures.
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1 Introduction

DNA microarrays originally developed to study differential gene expression using
diverse populations of RNA undergo continuous refinements and developments,
such as disease diagnosis, gene discovery, drug discovery or toxicological research,
with regard to gene expression profiling, comparative genomic hybridization, SNP
detection and many others. DNA microarray technology also becomes an impor-
tant element of integrative ‘omics’ studies, complementary to other methods of high
throughput molecular measurements, e.g., sequencing [21, 27].
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DNA microarrays measure expression of tens of thousands of genes or gene prod-
ucts simultaneously. They are often summarized by gene signatures [9], which are
lists of genes exhibiting certain patterns of expression across experiments. Gene sig-
natures are frequently treated as a starting point for further downstream analysis,
where biological conclusions from experimental results are drawn. Therefore, ana-
lyzes of gene signatures are an important area of research in bioinformatics. Searching
for information concerning genes in signatures can be based annotations stored in
dedicated databases, Gene Ontology (GO) [3], KEGG Pathways [17], motifs from
InterPro database [15], keywords describing entries from the UniProt database [22]
and many others [11].

Gene Ontology is a special source of gene annotation information, due to its
hierarchical structure and controlled vocabulary, used by biologists as a standardized
nomenclature for many specialized, large biological databases. GO terms are divided
into three domains: biological process (BP), molecular function (MF) and cellular
component (CC). Genes and gene products have been annotated to the categories of
GO using the best currently available knowledge [7]. A hierarchical structure of GO
terms, described by the directed acyclic GO graph (DAG) allows for representing
biological knowledge at different levels of detail (GO edition from 30/11/2014 has
15 levels in the BP, 15 levels in MF and 13 levels in CC DAG).

A very common approach is that the functional analysis based on GO terms is
performed for the domain of interest and level selected arbitrarily. However, two
terms located at the same level in the GO graph can provide very different level of
detail. Therefore, in the present article the ratio of Information Content (IC) [5] is
used to characterize the accuracy of a GO term instead of the graph level.

There is a wide range of tools and algorithms to determine which GO terms are
significantly overrepresented considering the given list of gene signatures. The basic
approach implemented in many tools for GO terms enrichment/depletion evaluation
is based on computation of frequencies, separately for each of the GO terms. In this
approach, named classic [2] no dependencies related to the topology of the GO graph
are taken into account. On the contrary, more advanced algorithms take into account
dependencies resulting from the topology of the GO graph. These types of algorithms
address the inheritance problem, related to the fact that annotations assigned to more
general, ancestral GO terms are inherited from more specific, descendant GO terms,
which can mislead the biological interpretation of GO signatures. To overcome this
problem a new approach to GO signatures analyses includes additional steps of
decorrelation of the GO DAG graph (named elim, weight, weight01, lea, parentchild
[2, 12]).

All these algorithms for enrichment/depletion analysis of GO terms take into
account exclusively binary information on gene selection (genes in the signature,
all annotated genes, all genes of the considered organism etc.), but drop the full
information from expression analysis from the previous steps. In this paper we want
to point out that the gene signature construction can be stated as the problem of
integrating data derived from gene expression analysis and GO terms assigned to
genes.
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In this paper we are presenting an approach, where information on the statistical
significance of the differential gene expression is fused with the information con-
cerning enrichment/depletion of GO terms assigned to genes. Such an approach does
not overlook the valuable information that has been obtained during the differential
expression analysis, namely the p-value for each gene. It also allows us to filter out
GO terms of low Information Content (IC), which is crucial for many applications,
e.g. tumors classification. Unbiased comparison of methods for determining the over-
representation of GO Terms and assessing the quality of the results is a challenging
task. Therefore, we have applied multiple complementary approaches. To this end
biological consistency, the number of reduced GO terms and the characteristics of
the IC ratio in the remaining GO terms were assessed. In addition to providing a
robustness of our comparison we have focused on testing the accuracy of the classi-
fication and stability of gene signatures. A side effect of reducing the list of enriched
GO terms is limiting the size of the gene signature. We have thus also assessed the
impact of the used methods on the size of the gene signatures and its repeatability.

2 Data

Unbiased comparison of our method with the state-of-the-art algorithms for GO
Terms enrichment analysis has been performed on two real datasets. We have used
multiple DNA microarray experiments related to astrocyte cancer and leukemia.

2.1 Dataset I

Astrocytic brain tumors are cancers of the primary central nervous system (CNS),
which develop from astrocytes and are most common glial tumors. They can be
divided into two groups according to the way of growth, diffused or localized. In
our study we are focusing on the astrocytic brain tumors with the diffused growth,
which give poorer prognosis and are assigned to a higher grade according to the
World Health Organization (WHO) [20]. We are further confining the research to the
two most common tumors from this group, namely anaplastic astrocytoma (AA) and
glioblastoma multiforme (GBM). Additionally, there are two different forms of the
GBM, primary GBM arising de novo and secondary GBM arising from lower grade
diffuse astrocytoma [23]. Primary and secondary glioblastomas are histologically
indistinguishable, except the facts that the frequency of extensive necrosis is higher
for the primary GBM and the frequency of oligodendroglioma components is higher
for the secondary GBM [14]. Similar histopathology of glioblastomas may be due
to similarity of genetic alterations behind their growths.

On the basis of the biological and clinical characteristics of astrocytoma and
primary and secondary glioblastomas, it seems an interesting issue to design an
experiment, aimed to highlight both the differences and similarities between these
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cancers. We have explored the Gene Expression Omnibus (GEO) database [4] for
experiments where gene expression profiling corresponding to the above-mentioned
tumors and their comparisons to normal tissues was performed. The datasets found
in GEO originate from three studies [6, 13, 19], which relied on comparisons of
the three types of brain tumors, AA, primary GBM (GBM.P) and secondary GBM
(GBM..S) with the normal brain tissues (NBT).

2.2 Dataset I1

Although the first data set is very compelling, it lacks the sufficient number of samples
for statistically significant classification procedure. In order to be able to perform
such classification another data set has been compiled. Here we have focused on a
more frequently studied disease (leukemia), so that we were able to collects sufficient
number of microarray samples to perform the classification.

Leukemia is a group of cancers that usually begins in the bone marrow and results
in a high numbers of abnormal white blood cells, which are called blasts. It is part of
a broader group of neoplasms which affect the blood, bone marrow, and lymphoid
system, known as tumors of the hematopoietic and lymphoid tissues [26]. But the
exact cause of developing leukemia is unknown, it is even believed that each type of
leukemia has a different cause [16].

There are four main types of leukemia: acute lymphoblastic leukemia (ALL),
acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL) and chronic
myeloid leukemia (CML), as well as a number of less common types [25]. In this
article we have focused on studies where ALL and AML were investigated.

ALL is the most common type of leukemia in young children. This disease also
affects adults, especially those aged 65 and older, whereas AML occurs more com-
monly in adults than in children.

We searched the GEO database for the experiments related to these two types of
leukemia. The gene expression datasets originating from three studies were selected
[10, 18]. We have chosen 84 samples from these experiments—42 samples for each
type of leukemia respectively.

3 Methods

3.1 DATA Normalization and Differential Expression Analysis

All microarray analyses were performed with use of state of the art academic process-
ing software. A custom CDF file for RefSeq annotation from BrainArray [8, 24] was
used as it provides the latest genome and transcriptome information. GC Robust
Multi-array Average (GCRMA) was used as background adjustment on Affymetrix
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microarray probe-level data. In this method the sequence information is summarized
by base types at each probe position, in a more complex way than the simple GC con-
tent. Variance Stabilization and Normalization (VSN) has been used for normalizing
microarray intensity. It ensures that the variance remains nearly constant over the
whole intensity spectrum. VSN has been used for normalization within experiments
and normalization of all microarrays together (also to remove batch effect). As a
summarization step the Affymetrix Probe-Level Modeling (affyPLM) was used. The
next step was to create a model of comparison between case and control, after which
data was fitted to the model. For this purpose Linear Models for Microarray Data
(limma) were used, which provide the ability to analyze comparisons between many
RNA targets simultaneously. Holm correction has been applied in order to correct
statistical test results for multiple comparison, with threshold equal to 0.05. As a
result, gene signatures were obtained, which allow for enrichment analysis of GO
terms.

3.2 Enrichments Analysis of GO Terms

R package ‘tfopGO’ [1] is an effective tool for semi-automatic enrichment analysis
of GO terms. The package includes a set of ready-to-use functions for carrying out
GO enrichments analysis. Not all combinations between algorithms and statistical
tests currently supported by topGO are allowed [1].

The elim and weight algorithms were introduced by Alexa et al. [2]. Both methods
investigate the nodes in the GO DAG from bottom to top and introduce weights for
genes. In e/im method the weighting process boils down to assigning 0 or 1 to genes.
This means that the elim method eliminates the genes from the list of significant
genes in ascendant GO terms, once they have been found to be associated with a
statistically significant GO term. In weight method the process of assigning weights
to genes is described as a function which always attains a value in the interval [0, 1].
The default algorithm used by the ropGO package is weightO1, which is a mixture of
the elim and the weight algorithms. The parentChild algorithm was introduced by
Grossmann et al. [12]. It measures overrepresentation of the GO term in the context
of gene annotations to the parents of the term, not to the root.

During our analysis Fisher’s Exact Test was used exclusively for simplicity of
the comparison. It belongs to the class of exact tests, because the significance of the
deviation from a null hypothesis can be calculated exactly, rather than relying on an
approximation, as with many statistical tests.

3.3 Enrichment Analysis by Fusion

Our new heuristic approach for measuring overrepresentation of GO terms can
be described as a method for filtering results obtained by the classic annotation
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routine. The method requires as input data results of the classic algorithm and results
of differentiation tests (in the form of a list of genes with corresponding p-values).
Output data for each GO term are two indexes, namely enrichment index (EI) and
differentiation index (DI). Fisher’s combined probability test was used as a pattern of
conduct to transform p-values from the enrichment test for the GO term and to fuse
p-values from differentiation tests for genes annotated to this GO term. For standard-
ization purposes indexes for each GO term are scaled to O—1 range, which provides
the method’s applicability for any dataset. The methods of indexes’ calculation are
shown in formulae (1) and (2).

EIGOTerms,' = —2In (E TGOTerm;) (1)

where,
ET—enrichment test (classic method).

-2 Z =1 In ( gene )
DIGOTerm,- = n (2)

where,
DT—differentiation test and
n—number of annotation genes to i-th GO term.

The filtering condition is the distance on two-dimensional plane of indexes
between each GO term and the point (1,1). Exemplary result of our new approach
are shown in the diagrams below (Fig. 1).

Our goal was to fuse information coming from the enrichment analysis of GO
terms and differentiation analysis. Therefore, the cut-off was set as on arc of a circle of
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Fig. 1 Diagram presents an example of results for the new method. The x-axis is the enrichment
index (EI) and y-axis is the differentiation index (DI). Color and size of the dots describe the
information content (IC) ratio (dark grey—highest, light grey—lowest) and the number of significant
genes associated with the GO term (the more genes the larger dot). Filtering condition is distance
between each GO Term and the point (1,1) which correspond to perfect, maximal enrichment. Cut-
off value has been chosen empirically and set to 1 (GO terms with higher distance are filtered out).
The black line is the boundary cut-off. a AA, b GBM.P, ¢ GBM.S
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radius equal to 1. This contributes to the rejection of GO terms with low information
content. However, in the analyzed cases, there were a few GO terms, which, despite
low information content (IC) had a high rate of EI. They can be an integral part of
the particular case and the method allows to retain them.

3.4 Criteria for Comparison of Algorithms

The Dataset I was used to investigate the characteristic of results of each method for
enrichment analysis of GO Terms. First step was to check the cohesion of results
with biological knowledge. More precisely, we assume that both tumors GBM.P and
GBM..S should have a common part of the significant genes as well as have acommon
part of enriched GO Terms, which is expected to be larger than the common parts of
GBM and AA.

Another step in the comparison is to check the quality of the results by examining
the information content (IC) of enriched GO Terms. Dataset I will also provide us
information on the number of reduced GO Terms, which entails a reduction in the
size of the gene signature.

The Dataset II was used then for classification and stability analysis of gene
signatures. As a validation method k-fold cross validation algorithm was selected.
Therefore Dataset IT was divided into 6 subsets, each of which contained 7 samples of
both types of leukemia. We used this kind of division to maintain equal participation
of both leukemia samples from different experiments. Training and validation sets
were then subjected to data normalization, differential expression analysis, enrich-
ment analysis of GO Terms and re-annotation of the significant GO Terms back to
the genes to obtain gene signatures (features). K-nearest neighbors’ algorithm was
used as a classification method. Classification was carried out for different neigh-
borhood sizes (from 1 to 6) and accuracy was the parameter determining the quality
of a classifier.

The second metric calculated on the basis of Dataset II is gene signature stability.
It assesses the reproducibility of the gene signature at all steps of classification. We
chose two primary methods: the basic method of calculating this measure and the
method, which introduces the adjustment related to the size of the reduced genes [9].
As this article presents new approaches for reduction of gene signatures based on
GO and comparing it with other commonly used methods, therefore, the use of the
second measure gene signature stability seems to be more appropriate.



244 W. Labaj and A. Polanski

4 Results

4.1 Reduction Assessment

Differential expression analysis (see. Methods) of Dataset I has provided a list of
significant genes for each tumor. Not all of these genes are annotated to GO Terms
therefore, these reduced gene signatures were used for comparison of classic routine
of GO terms enrichment analysis with selected reduction methods for AA, GBM.P
and GBM.S tumor experimental data.

The classic approach gives results in line with biological backgrounds of diseases,
with numerous GO terms shared by GBM.P and GBM.S (Table 1) and few GO terms
shared between AA and GBM. Our method completely removes common GO terms
between AA and GBM, where the other methods with decorrelation step preserve a
certain proportion of these terms. Some of the GO terms may be linked to different
tumors, which is associated with low biological information. Removal of such GO
terms can be useful in the tumor classification tasks, or for better understanding the
characteristics of the specific tumor. As a result, the filtering performed by our new
algorithm leaves only GO terms specific to the particular case.

The summarization of the major changes in resulted lists of GO terms for GBM
tumors can be seen in Table 1. We present here what fraction of overrepresented GO
terms is reduced for GBM.P, GBM.S and the common part. Additionally, it may be
seen that our method radically reduced the common part of GBM, which can be
helpful in tumour classification or retrieving important information related to the
inspected diseases. In this way, it can be helpful eg. in drug discovery.

More details about influence of the reduction method can be seen on distribution of
information content (IC, see Methods) for each of the used methods (Fig. 2). Table 2
presents complementary information with the percentage of enriched GO Terms
which have IC ratio greater than 0.7. This threshold has been selected empirically

Table 1 Summary of size and reduced fraction of overrepresented GO terms for GBM.P, GBM.S
and the common part

Method GBM.P Reduced Common Reduced GBM.S Reduced
GBM.P (%) | part of common GBM.S (%)
GBM part of
GBM (%)

Classic 409 - 160 - 251 -

Elim 154 62.3 41 74.4 69 72.5
Weight 101 75.3 26 83.8 41 83.7
Weight01 114 72.1 32 80 45 82.1

Lea 129 68.5 35 78.1 55 78.1
Parentchild | 244 40.3 79 50.6 149 40.6
New 20 95.1 5 96.9 16 93.6




Integrative Construction of Gene Signatures ... 245

(a) ()
o
2]
© 1 wn
@]
2o =
‘@ ‘@
& & 2
[l [
|
N o —, [}
@]
o——M 1 o
o
00 02 04 06 08 10 1.2 00 02 04 06 08 10 12 00 02 04 06 08 10 1.2
Ic IC Ic

Fig. 2 Probability density function for all methods for each tumor. To estimate the probability
density function of the random variable we used nonparametric methods, known as Kernel density
estimation (KDE). a AA, b GBM.P, c GBM.S

Table 2 Table contains the percentage of enriched GO terms which have IC ratio greater than 0.7
for all methods and tumors

IC> 0.7 | Classic Elim (%) | Weight WeightO1 | Lea (%) | Parentchild | New (%)
(%) (%) (%) (%)

AA 48.2 714 78.3 76.6 76.6 41.0 85.7

GBM.P |[324 53.6 65.0 62.8 56.8 374 87.5

GBM.S |20.1 373 45.0 43.2 333 21.7 86.7

Mean 33.6 54.1 62.8 60.9 55.6 334 86.6

and reflects the separation of GO terms with high information content from ones
with low information content.

It is clear that the shape of PDF for our method is distinct and the least similar to
other methods. It has a clear shift of the main peak towards higher IC values, which
reflects the reduction of the fraction of GO terms with low information content. This
can be clearly seen in Table 2.

Reduction of GO Terms as a side effect leads to reduction of gene signature sizes,
which is convenient as it reduces dimensionality of any follow-up analysis. Table 3
presents a summary of gene signature sizes and their reduction for GBM.P, GBM.S
and the common part.

4.2 Classification Quality

Comparison based on Dataset II was performed on the reduced size of the gene sig-
natures. Data after summarization steps was used as input features for classification
and validation. (see. Methods) Accuracy of classification was presented in the form
of a table (Table4).

Analysis of classification accuracy has shown that the method hierarchy is highly
dependent on the neighborhood size we have used (Table 4). Interestingly, our method
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Table 3 Summary of size and reduced fraction of gene signatures for GBM.P, GBM.S and the
common part

Method GBM.P Reduced Common Reduced GBM.S Reduced
GBM.P part of GBM | common GBM.S
(%) part of (%)
GBM (%)
Base 66 - 36 - 48 -
Classic 64 3.0 29 194 41 14.6
Elim 53 19.7 23 36.1 35 27.1
Weight 49 25.8 21 41.7 33 31.3
Weight01 | 51 22.7 22 38.9 34 29.2
Lea 60 9.1 23 36.1 35 27.1
Parentchild | 62 6.1 25 30.6 37 22.9
New 27 59.1 9 75.0 25 47.9

Table4 Summary of classification results of accuracy for each method and different neighborhood
sizes

Classic Elim (%) | Weight WeightO1 | Lea (%) | Parentchild | New (%)
(%) (%) (%) (%)

1 64.3 75.0 72.6 64.3 64.3 64.3 85.7

2 70.2 76.2 774 714 70.2 70.2 83.3

3 82.1 84.5 84.5 81.0 83.3 82.1 81.0

4 84.5 85.7 84.5 83.3 85.7 84.5 81.0

5 85.7 84.5 84.5 85.7 85.7 85.7 79.8

6 91.7 88.1 86.9 88.1 90.5 89.3 86.9

has the smallest variability of classification accuracy for all investigated sizes of
the neighborhood. It is important to note that accuracy for the neighborhood equal
to or greater than 3 for all methods is very similar. Therefore, based just on the
accuracy metric, it is hard to determine which method gives the optimal signature
for classification purposes.

For this reason, an additional approach was examined—stability of the gene sig-
natures. This measure allows to assess reproducibility of gene signatures, taking into
account all steps of the validation process. Results for all methods are shown in
Table 5.

The highest score for adjusted stability (stabA) was obtained with our method.
The best signature stability together with the lowest accuracy sensitivity to the neigh-
borhood size and with not worse overall accuracy level, indicate that applying our
new method provides an improvement toward the composition of the gene signatures.
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Table 5 Summary for gene signature stability measures

Classic Elim (%) | Weight WeightO1 | Lea (%) | Parentchild | New (%)
(%) (%) (%) (%)

StabA 26.18 30.21 30.70 28.16 27.41 26.58 32.69

5 Discussion

In the post genomic era, there is an enormity of publicly available molecular biology
data, which originates from a variety of biological research projects. These data often
include overlapping fields of science. The present state of molecular biology knowl-
edge indicates the possibility of using comprehensive and integrative approaches to
understand the biological processes. Therefore, methods for high-throughput data
integration are a hot topic of research for molecular biology.

In this article, we have compared our new method with the reference, state-of-
the-art algorithms for GO terms enrichment analysis. All reference methods take
into account solely information concerning the size of sets (all investigated genes,
significant genes and annotated number of genes from first and second group to
each GO term). In contrast, our approach takes into account additional information
originating from analysis of differential expression of genes. Thanks to this approach
we do not omit the valuable information that has been obtained during the differential
expression analysis, namely the p-value for each gene.

As previously mentioned there is no well-established procedure for comparison
of methods for enrichment analysis of GO terms. Therefore, we have applied several
possible approaches aiming at more robust conclusions. On Dataset I we have verified
the characteristic of results for each method by means of the cohesion of the results
with biological knowledge and quality of the results by examining the information
content (IC) of enriched GO terms. Impact of GO terms reduction on gene signatures
size reduction was also investigated. We have shown that the all of the methods for
enrichment analysis of GO terms with decorrelation step both reduce number of
enriched GO terms and maintain fraction of GO terms shared between AA and
GBM. The common part of GO terms shared between AA and GBM is completely
removed by our method, which in addition filters out GO terms of low Information
Content (IC), leaving in only the GO terms which are specific to the particular case.
In the end, it can help in tumor classification or can provide more information about
characteristic of the tumors by reducing the dimensionality of the follow up analysis.

One of the major aims in molecular biology is to obtain a stable gene signature,
which will be helpful in many areas of research. Still there are existing problems such
as defining the sizes (numbers of genes) of gene signatures and possible unreliability
of results of inference based on gene signatures. For this reason, in the last stage of our
comparison we were investigating Dataset II for the classification accuracy as well
as the stability of gene signatures. We have shown that our method is characterized
by the best signature stability. Together with the lowest sensitivity of classification
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accuracy to the used neighborhood size and with not worse overall accuracy level,
it indicates that the proposed reduction approach provides an improvement in the
composition of the gene signatures in comparison to other methods.

‘We have shown that our method reduces the number of enriched GO terms, focus-
ing on the meaningful ones. Thus, it facilitates the analysis and biological interpre-
tation. It also contributed to reducing the dimensionality of gene signatures, which
ultimately improved accuracy of classification and stability of gene signatures.
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