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Abstract In this paper we present a weak limit theorem for a numerical approxima-
tion of Brownian semi-stationary processes studied in [14]. In the original work of
[14] the authors propose to use Fourier transformation to embed a given one dimen-
sional (Lévy)Brownian semi-stationary process into a two-parameter stochastic field.
For the latter they use a simple iteration procedure and study the strong approxima-
tion error of the resulting numerical scheme given that the volatility process is fully
observed. In this work we present the corresponding weak limit theorem for the
setting, where the volatility/drift process needs to be numerically simulated. In par-
ticular, weak approximation errors for smooth test functions can be obtained from
our asymptotic theory.
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1 Introduction

Recently, the mathematical theory of ambit fields has been intensively studied in
the literature. Ambit fields is a class of spatio-temporal stochastic processes that has
been originally introduced by Barndorff-Nielsen and Schmiegel in a series of papers
[9–11] in the context of turbulencemodelling, but which foundmanifold applications
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in mathematical finance and biology among other sciences; see e.g. [4, 8]. In full
generality they are described via the formula

Xt (x) = μ+
∫

At (x)

g(t, s, x, ξ)σs(ξ)L(ds, dξ)+
∫

Dt (x)

q(t, s, x, ξ)as(ξ)dsdξ (1)

where t typically denotes timewhile x gives the position in space. Furthermore, At (x)

and Dt (x) are ambit sets, g and q are deterministic weight functions, σ represents
the volatility or intermittency field, a is a drift field and L denotes a Lévy basis. We
recall that a Lévy basis L = {L(B) : B ∈ S }, where S is a δ-ring of an arbitrary
non-empty set S such that there exists an increasing sequence of sets (Sn) ⊂ S with
∪n∈NSn = S, is an independently scattered random measure.

An important purely temporal subclass of ambit fields are the so called Lévy
(Brownian) semi-stationary processes, which are defined as

Xt = μ +
∫ t

−∞
g(t − s)σs L(ds) +

∫ t

−∞
q(t − s)asds, (2)

where now L is a two-sided one dimensional Lévy (Brownian) motion and the ambit
sets are given via At = Dt = (−∞, t). The notion of a semi-stationary process refers
to the fact that the process (Xt )t∈R is stationarywhenever (at , σt )t∈R is stationary and
independent of (Lt )t∈R. In the past years stochastic analysis, probabilistic properties
and statistical inference for Lévy semi-stationary processes have been studied in
numerous papers.We refer to [2, 3, 6, 7, 11, 12, 15, 17, 20, 25] for the mathematical
theory as well as to [5, 26] for a recent survey on theory of ambit fields and their
applications.

For practical applications in sciences numerical approximation of Lévy (Brown-
ian) semi-stationary processes, or, more generally, of ambit fields, is an important
issue. We remark that due to a moving average structure of a Lévy semi-stationary
process (cf. (2)) there exists no simple iterative Euler type approximation scheme. For
this reason the authors of [13, 14] have proposed two different embedding strategies
to come up with a numerical simulation. The first idea is based on the embedding
of a Lévy semi-stationary process into a certain two-parameter stochastic partial
differential equation. The second one is based upon a Fourier method, which again
interprets a given Lévy semi-stationary process as a realization of a two-parameter
stochastic field. We refer to the PhD thesis of Eyjolfsson [18] for a detailed analysis
of both methods and their applications to modeling energy markets. We would also
like to mention a very recent work [16], which investigates numerical simulations of
spatio-temporal ambit fields.

The aim of this paper is to study the weak limit theory of the numerical scheme
associated with the Fourier method proposed in [14, 18]. In the original work [14]
the authors have discussed the strong approximation error (in the L2 sense) of the
numerical scheme for Lévy semi-stationary processes, where the volatility process
(σt )t∈R is assumed to be observed.We complement their study by analyzing theweak
limit of the error process in the framework of Brownian semi-stationary processes,
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where the drift and the volatility processes need to be numerically simulated. This
obviously gives a more precise assessment of the numerical error associated with the
Fourier method.

The paper is organised as follows. In Sect. 2wedescribe the Fourier approximation
scheme forBrownian semi-stationaryprocesses andpresent themain results on strong
approximation error derived in [14, 18]. Section3 is devoted to a weak limit theorem
associated with a slight modification of the Fourier method.

2 Basic Assumptions and Fourier Approximation Scheme

We start with a complete filtered probability space (Ω,F , (F )t∈R, P), on which all
processes are defined. We consider a Brownian semi-stationary process of the form

Xt = μ +
∫ t

−∞
g(t − s)σs W (ds) +

∫ t

−∞
q(t − s)asds, (3)

where g and q are deterministic kernels, (at )t∈R and (σt )t∈R are adapted càdlàg
processes, and W is a two sided Brownian motion. To guarantee the finiteness of the
first integral appearing in (3), we assume throughout the paper that

∫ t

−∞
g2(t − s)σ 2

s ds < ∞ almost surely (4)

for all t ∈ R. When (σt )t∈R is a square integrable stationary process, the above
condition holds if g ∈ L2(R≥0). The presence of the drift process (at )t∈R will be
essentially ignored in this section.

Now, we describe the Fourier approximation method introduced in [14, 18]
applied to the framework of Brownian semi-stationary processes. We start with the
following assumptions on kernels involved in the description (3):

Assumption (A):

(i) The kernel functions g and q have bounded support contained in [0, τ ] for some
τ > 0.

(ii) g, q ∈ C(R≥0).

In some cases these conditions are rather restrictive. We will give remarks on them
below. For any given λ > 0, we define

h(x) := g(|x |) and hλ(x) := h(x) exp(λ|x |). (5)
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Notice that g = h on [0, τ ]. We introduce the Fourier transform of hλ via

ĥλ(y) :=
∫
R

hλ(x) exp(−i xy)dx .

Furthermore, if we assume that ĥλ ∈ L1(R), the inverse Fourier transform exists and
we obtain the identity

h(x) = exp(−λ|x |)
2π

∫
R

ĥλ(y) exp(i xy)dy.

Since the Fourier transform maps L1(R) functions into the space of continuous
functions, we require that h ∈ C(R). This fact explains the Assumption (A)(ii) for
the kernel function g. Since h is an even function, for a given number N ∈ N, we
deduce an approximation of h via

h(x) ≈ hN (x) := exp(−λ|x |)
(

b0
2

+
N∑

k=1

bk cos(
kπx

τ
)

)
(6)

with

bk = ĥλ(kπ/τ)

τ
. (7)

Obviously, the above approximation is an L2-projection onto the linear subspace
generated by orthogonal functions {cos(kπx/τ), sin(kπx/τ)}N

k=0, hence we deal
with a classical Fourier expansion of the function h (recall that the function h is even
by definition, thus the sinus terms do not appear at (6)). Now, the basic idea of the
numerical approximation method proposed in [14, 18] is based upon the following
relationship:

∫ t

u
g(t − s)σs W (ds) ≈

∫ t

u
hN (t − s)σs W (ds)

=
∫ t

u
exp(−λ(t − s))

{
b0
2

+
N∑

k=1

bk cos(
kπ(t − s)

τ
)

}
σs W (ds)

= b0
2

X̂λ,u(t, 0) + Re
N∑

k=1

bk X̂λ,u(t,
kπ

τ
), (8)

where the complex valued stochastic field X̂λ,u(t, y) is defined via

X̂λ,u(t, y) :=
∫ t

u
exp{(−λ + iy)(t − s)}σs W (ds) (9)
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and u ∈ [t −τ, t]. In a second step, for a δ > 0 small, we observe the approximation

X̂λ,u(t + δ, y) = exp{(−λ + iy)δ}
(

X̂λ,u(t, y) +
∫ t+δ

t
exp{(−λ + iy)(t − s)}σs W (ds)

)

≈ exp{(−λ + iy)δ} (
X̂λ,u(t, y) + σt (Wt+δ − Wt )

)
. (10)

Hence, we obtain a simple iterative scheme for simulating the stochastic field
X̂λ,u(t, y) in the variable t . Assume for themoment that the drift process a is zero and
we wish to simulate the trajectory of Xt0 , . . . , XtM given the information available
at time t0. Then, the numerical simulation procedure is as follows:

(a) Simulate the independent increments Wti − Wti−1 ∼ N (0, ti − ti−1) for i =
1, . . . , M .

(b) For each i = 1, . . . , M and k = 0, . . . , N , simulate X̂λ,u(ti , kπ/τ) from
X̂λ,u(ti−1, kπ/τ), Wti − Wti−1 and σti−1 by using (10).

(c) Simulate Xti applying steps (a), (b) and (8) (with u = t0).

Let us explain some properties of the proposed numerical scheme. First of all, there
are two approximation errors, where the first one (N scale) is coming from the Fourier
transformation at (6) and the second one (M scale) is coming from the discretization
error obtained at (10).

It is important to understand the meaning of knowing the information about the
involved processes up to time t0. When the stochastic model for the process (σt )t∈R
is uncoupled with (Xt )t∈R, then we may use u = t − τ at (8). Indeed, in typical
applications such as turbulence andfinance this is the case: (σt )t∈R is usuallymodeled
via a jump diffusion process driven by aLévy process, whichmight be correlatedwith
the Brownian motion W . However, when the process (Xt )t∈R is itself of a diffusion
type, i.e.

Xt = μ +
∫ t

t−τ

g(t − s)σ (Xs)W (ds) +
∫ t

t−τ

q(t − s)a(Xs)ds

it is in general impossible to simulate a trajectory of (Xt )t∈R, since for each value t
the knowledge of the path (Xu)u∈(t−τ,t) is required to compute Xt . But, in case we
do know the historical path, say, (Xu)u∈[−τ,0], the simulation of values Xt , t ≥ 0,
becomes possible.

The main advantage of the numerical scheme described above is that it separates
the simulation of the stochastic ingredients (σ and W ) and the approximation of
the deterministic kernel g (or h). In other words, the stochastic field X̂λ,u(t, y) is
simulated via a simple recursive scheme without using the knowledge of g, while
the kernel g is approximated via the Fourier transform at (6). This is in contrast to a
straightforward discretization scheme

∫ t j

t0
g(t − s)σs W (ds) ≈

j−1∑
i=1

g(t j − ti )σti (Wti+1 − Wti ).
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This numerical property is useful when considering a whole family of kernel func-
tions (gθ )θ∈
, since for any resulting model Xt (θ) only one realization of the sto-
chastic field X̂λ,u(t, y) needs to be simulated. This can be obviously useful for the
simulation of parametric Brownian semi-stationary processes.

We may now assess the strong approximation error of the proposed numerical
scheme. We start with the analysis of the error associated with the approximation of
the deterministic kernel g by the function hN . We assume for the moment that the
volatility process (σt )t∈R is square integrable with bounded second moment. Then
a straightforward computation (see e.g. [14, Eq. (4.5)]) implies that

E

[( ∫ t

t0
{g(t − s) − hN (t − s)}σs W (ds)

)2] ≤ C
1 − exp{−2λ(t − t0)}

λ

⎛
⎝ ∞∑

k=N+1

|bk |
⎞
⎠
2

,

(11)

where C is a positive constant and the Fourier coefficients bk have been defined
at (7). We remark that (1 − exp{−2λ(t − t0)})/λ → 2(t − t0) as λ → 0, while
(1 − exp{−2λ(t − t0)})/λ ∼ λ−1 as λ → ∞. Thus, it is preferable to choose the
parameter λ > 0 large.

Remark 1 A standard model for the kernel function g in the context of turbulence
is given via

g(x) = xα exp(−λ̄x)

with λ̄ > 0 and α > −1/2. Obviously, this function has unbounded support and for
the values α ∈ (−1/2, 0) it is also discontinuous at 0, hence it violates the statement
of the Assumption (A). However, one can easily construct an approximating function
gT
ε , which coincides with g on the interval [ε, T ] and satisfies the Assumption (A).

Assuming again the boundedness of the second moment of the process (σt )t∈R, the
approximation error is controlled via

E

[( ∫ t

−∞
{g(t − s) − gT

ε (t − s)}σs W (ds)
)2] ≤ C‖g − gT

ε ‖2L2((0,ε)∪(T,∞))

Such error can be made arbitrary small by choosing ε small and T large. Clearly,
this is a rather general approach, which is not particularly related to a given class
of kernel functions g. In a second step one would apply the Fourier approxima-
tion method described above to the function gT

ε . At his stage it is important to note
that the parameter λ > 0 introduced at (5) is naturally restricted through the con-
dition λ < λ̄; otherwise the kernel hλ would have an explosive behaviour at ∞.
Thus, the approximation error discussed at (11) cannot be made arbitrarily small
in λ. �

Remark 2 The Fourier coefficients bk can be further approximated under stronger
conditions on the function h, which helps to obtain an explicit bound at (11). More
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specifically, when h ∈ C2n(R) and h(2 j−1)
λ (τ ) = 0 for all j = 1, . . . , n, then it holds

that
|bk | ≤ Ck−2n .

This follows by a repeated application of integration by parts formula (see [14,
Proposition 4.1] for a detailed exposition). In fact, the original work [14] defines
another type of smooth interpolation functions h, rather than themere identity h(x) =
g(|x |), to achieve that the relationship h(2 j−1)

λ (τ ) = 0 holds for all j = 1, . . . , n and
some n ∈ N. �

Now, let us turn our attention to the discretization error introduced at (10).We assume
that t0 < · · · < tM is an equidistant grid with ti − ti−1 = Δt . According to (10) the
random variable

η j (y) :=
j∑

i=1

exp{(−λ + iy)( j + 1 − i)Δt}σti−1(Wti − Wti−1) (12)

is an approximation of X̂λ,t0(t j , y) for any y ∈ R whenever the drift process a is
assumed to be absent. When (σt )t∈R is a weak sense stationary process, a straight-
forward computation proves that

E[|X̂λ,t0(t j , y) − η j (y)|2] ≤ C(t j − t0)
(
(λ2 + y2)(Δt)2 + E[|σt1 − σt0 |2]

)
. (13)

We refer to [14, Lemma 4.2] for a detailed proof.

Remark 3 Assume that the process (σt )t∈R is a continuous stationary Itô semimartin-
gale, i.e.

dσt = ãtdt + σ̃tdBt ,

where B is a Brownian motion and (̃at )t∈R, (̃σt )t∈R are stochastic processes with
bounded second moment. Then the Itô isometry implies that

E[|σt1 − σt0 |2] ≤ CΔt.

Hence, in this setting Δt becomes the dominating term in the approximation error
(13). �

Combining the estimates at (11) and (13), we obtain the strong approximation error
of the proposed Fourier method, which is the main result of [14] (see Propositions
4.1 and 4.3 therein).

Proposition 1 Let t0 < · · · < tM be an equidistant grid with ti −ti−1 = Δt . Assume
that condition (A) holds and (σt )t∈R is a weak sense stationary process. Then the L2

approximation error associated with the Fourier type numerical scheme is given via
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E

[∣∣∣
∫ t j

t0
g(t j − s)σs W (ds) −

(b0
2

η j (0) +
N∑

k=1

bkη j (
kπ

τ
)
)∣∣∣2

]
(14)

≤ C

(
1 − exp{−2λ(t − t0)}

λ

( ∞∑
k=N+1

|bk |
)2

+ (t j − t0)

{
λ2

( |b0|
2

+
N∑

k=1

|bk |
)2

(Δt)2 + (
π

τ
)2

( N∑
k=1

k|bk |
)2

(Δt)2

+
( |b0|

2
+

N∑
k=1

|bk |
)2

E[|σt1 − σt0 |2]
})

for a positive constant C.

3 A Weak Limit Theorem for the Fourier
Approximation Scheme

As we mentioned earlier, the Fourier approximation scheme investigated in [14, 18]
basically ignored the need of simulating the volatility process (σt )t∈R in practical
applications (the same holds for the drift process (at )t∈R). As in the previous section
we fix a time t0 and assume the knowledge of all processes involved up to that
time. Here we propose a numerical scheme for simulating the path (Xt )t∈[t0,T ] for
a given terminal time T > t0, which is a slightly modified version of the original
Fourier approach. We recall the imposed condition (A), in particular, the weight
functions g and q are assumed to have bounded support contained in [0, τ ]. First
of all, we assume that we have càdlàg estimators (aM

t , σ M
t )t∈[t0,T ] of the stochastic

process (at , σt )t∈[t0,T ] and the convergence rate νM → ∞ as M → ∞ such that the
following functional stable convergence holds:

νM

(
aM − a, σ M − σ

)
dst−→ U = (U 1, U 2) on D2([t0, T ]), (15)

where the convergence is on the space of bivariate càdlàg functions defined on [t0, T ]
equipped with the Skorohod topology D2([t0, T ]). Let us briefly recall the notion of
stable convergence, which is originally due to Rényi [27]. We say that a sequence of
random variables Y n with values in a Polish space (E,E ) converges stably in law
to Y , where Y is defined on an extension (Ω ′,F ′, P

′) of the original probability
(Ω,F , P) if and only if

lim
n→∞ E[ f (Y n)Z ] = E

′[ f (Y )Z ]
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for any bounded and continuous function f and any boundedF -measurable random

variable Z . In this case we write (Y n dst−→ Y ). In the following we will deal with the
space of càdlàg processes equipped with the Skorohod topology or with the space
of continuous processes equipped with the uniform topology. We refer to [1, 23] or
[27] for a detailed study of stable convergence. Note that stable convergence is a
stronger mode of convergence than weak convergence, but it is weaker than uniform
convergence in probability.

We remark that the estimators (aM
t )t∈[t0,T ] and (σ M

t )t∈[t0,T ] might have a different
effective convergence rate. In this case we will have either U1 ≡ 0 or U2 ≡ 0.

Now, we basically follow the Fourier type approach, which refers to (5) and the
definition of the function ĥλ, described in the previous section, but we replace the
Fourier transform approximation proposed at (6) by a Riemann sum approximation.
More specifically, we introduce the approximation

h(x) = exp(−λ|x |)
2π

∫
R

ĥλ(y) exp(i xy)dy

≈ h̃N (x) := exp(−λ|x |)
π N

cN∑
k=0

ĥλ

(
k

N

)
cos

(
kx

N

)
, (16)

where cN is a sequence of numbers in N satisfying cN /N → ∞ as N → ∞. In
the following we will also assume that the sequence cN additionally satisfies the
condition

N
∫ ∞

cN /N
|̂hλ(y)|dy → 0 as N → ∞. (17)

Clearly, such a sequence exists, since ĥλ ∈ L1(R).When introducing the approxima-
tion at (16), we obviously obtain two types of error: TheRiemann sum approximation
error and tail approximation error. Condition (17) guarantees that the Riemann sum
approximation error will dominate.

Remark 4 Under some stronger conditions the tail integral at (17) can be bounded
from above explicitly. Assume that h ∈ C2([−τ, τ ]) such that h′(τ ) = 0 (cf. Remark
2). Then a repeated application of integration by parts formula implies the identity

ĥλ(y) =
∫
R

hλ(x) cos(yx)dx = − 1

y2

∫ τ

−τ

h′′
λ(x) cos(yx)dx

for any y > 0. Thus, for any u > 0, we deduce the inequality

∫ ∞

u
|̂hλ(y)|dy ≤ C‖h′′‖L1

∫ ∞

u
y−2dy ≤ C‖h′′‖L1u−1.

Hence, condition (17) holds whenever N 2/cN → 0 as N → ∞. �
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Remark 5 We remark that the Fourier transform used at (6) comes from the L2

theory. Thus, in contrast to the L2-distance ‖h − hN ‖L2 , the limiting behaviour of a
standardized version of h(x)−hN (x) is difficult to study pointwise. This is precisely
the reason why we use the Riemann sum approximation instead, for which we will
show the convergence of N (h(x) − h̃N (x)).

If one can freely choose the simulation rates N and M , the Fourier transform of
(6) is numerically more preferable. According to the estimate (11) and the upper
bound for the Fourier coefficient of Remark 2 applied for n = 1, we readily deduce
the rate N−1 for the L2-error approximation connected to (6). On the other hand, the
effective sample size of the Riemann approximation at (16) is cN . In the setting of
the previous remark the overall Riemann approximation error is max(N−1, N/cN ).
Recalling that cN /N → ∞, the obtained rate is definitely slower than the one
associated with Fourier approximation proposed at (6).

Nevertheless, as our aim is to precisely determine the asymptotics associated with
the N scale, we will discuss the Riemann approximation approach in the sequel. A
statement about the Fourier transform (6) will be presented in Remark 8. �

Now, we essentially proceed as in the steps (8)–(10). First of all, it holds that

∫ t

u
g(t − s)σs W (ds) ≈

∫ t

u
h̃N (t − s)σs W (ds)

=
∫ t

u
exp(−λ(t − s))

{ cN∑
k=0

b̃k cos(
k(t − s)

N
)

}
σs W (ds)

= Re
cN∑

k=0

b̃k X̂λ,u(t,
k

N
), (18)

where the complex valued stochastic field X̂λ,u(t, y) is defined at (9) and b̃k =
ĥλ(k/N )/(π N ). In a second step, for δ > 0, we obtain the approximation

X̂λ,u(t + δ, y) = exp{(−λ + iy)δ}
(

X̂λ,u(t, y) +
∫ t+δ

t
exp{(−λ + iy)(t − s)}σs W (ds)

)

≈ exp{(−λ + iy)δ}
(

X̂λ,u(t, y) +
∫ t+δ

t
exp{(−λ + iy)(t − s)}σ M

s W (ds)

)
.

(19)

When the estimator σ M is assumed to be constant on intervals [si−1, si ), i =
1, . . . , M , the last integral at (19) can be easily simulated (cf. (10)). We remark
that this approximation procedure slightly differs from (10) as now we leave the
exponential term unchanged.
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In summary, given that the information up to time t0 is available, we arrive at the
simulated value

X N ,M
t :=

∫ t

t0
h̃N (t − s)σ M

s W (ds) +
∫ t

t0
q(t − s)aM

s ds (20)

of the random variable

X0
t =

∫ t

t0
g(t − s)σs W (ds) +

∫ t

t0
q(t − s)asds. (21)

Note that the drift part of the Brownian semi-stationary process X is estimated in a
direct manner, although other methods similar to the treatment of the Brownian part
are possible. Now, we wish to study the asymptotic theory for the approximation
error X N ,M

t − X0
t . Our first result analyzes the limiting behaviour of the function

N (h(x) − h̃N (x)).

Lemma 1 Define the function ψN (x) := N (h(x) − h̃N (x)). Let us assume that the
condition

ŷhλ(y) ∈ L1(R), ̂y2hλ(y) ∈ L1(R) (22)

holds. Then, under Assumption (A), (17) and (22), it holds that

ψN (x) → ψ(x) = − ĥλ(0)

2π
exp(−λ|x |) as N → ∞ (23)

for any x ∈ R. Furthermore, it holds that

sup
N∈N, x∈[0,T ]

|ψN (x)| ≤ C

for any T > 0.

Proof First, we recall a well known result from Fourier analysis (see e.g.
[19, Theorem 8.22]): The condition (22) implies that

ĥ′
λ ∈ L1(R), ĥ′′

λ ∈ L1(R). (24)

Now, observe the decomposition

ψN (x) = N exp(−λ|x |)
π

cN∑
k=0

∫ (k+1)/N

k/N

(
κx (y) − κx (

k

N
)

)
dy

+ N exp(−λ|x |)
π

∫ ∞

(cN +1)/N
κx (y)dy

= N exp(−λ|x |)
π

cN∑
k=0

∫ (k+1)/N

k/N

(
κx (y) − κx (

k

N
)

)
dy + o(1),
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where κx (y) = ĥλ(y) cos(yx) and the approximation follows by the inequality
|κx (y)| ≤ |̂hλ(y)| and condition (17). Let us denote by κ ′

x (y) the derivative of
κx (y) with respect to y. Since κ ′

x (·), κ ′′
x (·) ∈ L1(R≥0) because of (24), we deduce

that

ψN (x) = N exp(−λ|x |)
π

cN∑
k=0

∫ (k+1)/N

k/N
κ ′

x (
k

N
)

(
y − k

N

)
dy + o(1)

= exp(−λ|x |)
2π N

cN∑
k=0

κ ′
x (

k

N
) + o(1)

→ exp(−λ|x |)
2π

∫ ∞

0
κ ′

x (y)dy as N → ∞.

But, since ĥλ vanishes at infinity, we readily obtain that

∫ ∞

0
κ ′

x (y)dy = −ĥλ(0).

In order to prove the second assertion of the lemma, we observe the inequality

|ψN (x)| ≤ exp(−λ|x |)
π

cN∑
k=0

∫ (k+1)/N

k/N
|κ ′

x (ζk,N (y))|dy + N
∫ ∞

cN /N
|̂hλ(y)|dy,

where ζk,N (y) is a certain value with ζk,N (y) ∈ (k/N , y). Clearly, the second term
in the above approximation is bounded in N , since it converges to 0. On the other
hand, we have that |κ ′

x (y)| ≤ |x ||̂hλ(y)| + |̂h′
λ(y)|, and since ĥλ, ĥ′

λ ∈ L1(R≥0), we
readily deduce that

sup
N∈N, x∈[0,T ]

|ψN (x)| ≤ C.

This completes the proof of the lemma. �

At this stagewe need a further condition on the kernel function g to prove tightness
later.

Assumption (B):

(i) The kernel function g has the form

g(x) = xα f (x)

for some α ≥ 0 and function f satisfying f (0) �= 0.
(ii) f ∈ C1(R≥0) has bounded support contained in [0, τ ].
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Notice that the assumptionα ≥ 0 is in accordancewith the condition (A)(ii).Assump-
tion (B) implies the following approximation result:

∫ 1

0
|g(x + δ) − g(x)|4dx ≤

{
Cδ4 α = 0
Cδmin(4,4α+1) α > 0

(25)

for δ ∈ [0, T ]. The case α = 0 is trivial, while the other one follows along the lines
of the proof of [20, Lemma 4.1]. As a matter of fact, we also require a good estimate
of the left side of (25) when the kernel g is replaced by the function ψN defined in
Lemma 1. In the following we will assume that

sup
N∈N

∫ 1

0
|ψN (x + δ) − ψN (x)|4dx ≤ Cδ1+ε (26)

for some ε > 0 and δ ∈ [0, T ].
Remark 6 Unfortunately, we have not been able to show the statement of (26) under
the mere assumption of, say, condition (B). Obviously, as in the case of function g,
condition (26) would hold if

ψN (x) = xα fN (x),

where fN ∈ C1(R≥0) with uniformly bounded derivative in N ∈ N and x in a
compact interval. We can prove condition (26) explicitly when the function g is
differentiable. Assume that yĥλ(y), yĥ′

λ(y) ∈ L1(R≥0) and cN is chosen in such a
way that the condition

N
∫ ∞

cN /N
|yĥλ(y)|dy → 0 as N → ∞

is satisfied. As in Lemma 1 we conclude that (|∂x∂yκx (y)| ≤ (|̂hλ(y)|+|yxĥλ(y)|+
|yĥ′

λ(y)|) and, as in the proof of Lemma 1, we deduce that

sup
x∈[0,T ]

|ψ ′
N (x)| ≤ C

(
N

∫ ∞

cN /N
|yĥλ(y)|dy + N

∫ ∞

cN /N
|̂hλ(y)|dy

+
cN∑

k=0

∫ (k+1)/N

k/N
|∂yκx (ζk,N (y))|dy +

cN∑
k=0

∫ (k+1)/N

k/N
|∂x∂yκx (̃ζk,N (y))|dy

)

for certain values ζk,N (y), ζ̃k,N (y) in the interval (k/N , y). Then, due to our inte-
grability conditions, we obtain

sup
N∈N, x∈[0,T ]

|ψ ′
N (x)| < ∞.
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Moreover, condition (26) is trivially satisfied due to mean value theorem. However,
showing (26) under Assumption (B) seems to be a much harder problem for α ∈
(0, 1). �

The next result is the main theorem of our paper.

Theorem 1 Assume that conditions (A), (B), (17), (22) and (26) hold, and the
processes (σt )t∈[t0,T ] and (σ M

t )t∈[t0,T ] has finite fourth moment with supt∈[t0,T ] E[σ 4
t ]

< ∞ and supt∈[t0,T ] supM∈N E[(σ M
t )4] < ∞. We also assume that the process

U M
t = νM (σ M

t − σt ) satisfies

sup
t∈[t0,T ]

sup
M∈N

E[(U M
t )4] < ∞. (27)

Then we obtain the decomposition

X N ,M
t − X0

t = AN ,M
t + B M

t

such that

N AN ,M u.c.p.=⇒ A = ĥλ(0)

2π

∫ ·

t0
exp(−λ(· − s))σs W (ds) as N , M → ∞, (28)

where ucp convergence means that supt∈[t0,T ] |AN
t − At | P−→ 0, and

νM B M dst−→ B =
∫ ·

t0
g(· − s)U 2

s W (ds) +
∫ ·

t0
q(· − s)U 1

s ds as M → ∞, (29)

where the stable convergence holds on the space C([t0, T ]) equipped with the uniform
topology.

Proof We start with the decomposition X N ,M
t − X0

t = AN ,M + B M
t , where

AN ,M
t =

∫ t

t0
{̃hN (t − s) − g(t − s)}σ M

s W (ds),

B M
t =

∫ t

t0
g(t − s){σ M

s − σs}W (ds) +
∫ t

t0
q(t − s){aM

s − as}ds.

Webegin by proving the stable convergence in (29). Let us first recall a classical result
about weak convergence of semimartingales (see [23, Theorem VI.6.22] or [24]):

Let (Y n
s )s∈[t0,T ] be a sequence of càdlàg processes such that Y n dst−→ Y on D([t0, T ])

equipped with the Skorohod topology. Then we obtain the weak convergence

∫ ·

t0
Y n

s W (ds) =⇒
∫ ·

t0
Ys W (ds) on C([t0, T ])
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equipped with the uniform topology. This theorem is an easy version of the general
result, since the integratorW does not depend onn and hence automatically fulfills the
P-UTproperty. The stable nature of the aforementionedweak convergence follows by
joint convergence (

∫ ·
0 Y n

s W (ds), Y n, W ) =⇒ (
∫ ·
0 Ys W (ds), Y, W ) (cf. [24]). Hence,

we deduce that
∫ ·

0
Y n

s W (ds)
dst−→

∫ ·

0
Ys W (ds) on C([t0, T ]) (30)

equipped with the uniform topology. It is important to note that this result can not
be directly applied to the process B M

t , since this process is not a semimartingale
in general. Thus, we will prove the stable convergence (29) by showing the stable
convergence of finite dimensional distributions and tightness.

We fix u1, . . . , uk ∈ [t0, T ]. Due to the condition (15), the finite dimensional
version of (30) and continuousmapping theorem for stable convergence,we conclude
the joint stable convergence

({
νM

∫ u j

t0
g(u j − s){σ M

s − σs}W (ds)
}

j=1,...,k
, νM

∫ ·

t0
q(· − s){aM

s − as}ds

)

dst−→
({ ∫ u j

t0
g(u j − s)U 2

s W (ds)
}

j=1,...,k
,

∫ ·

t0
q(· − s)U 1

s ds

)
(31)

as M → ∞. Here we remark that the stable convergence for the second compo-
nent indeed holds, since the mapping F : C([t0, τ ]) × D([t0, T ]) → C([t0, T ]),
F(q, a) = ∫ ·

t0
q(· − s)asds is continuous. Hence, we are left with proving tightness

for the first component of the process B M
t . We fix u, t ∈ [t0, T ] with t > u and

observe the decomposition

νM

(∫ t

t0
g(t − s){σ M

s − σs}W (ds) −
∫ u

t0
g(u − s){σ M

s − σs}W (ds)

)

= νM

(∫ t

u
g(t − s){σ M

s − σs}W (ds)

+
∫ u

t0
{g(t − s) − g(u − s)}{σ M

s − σs}W (ds)

)
:= R(1)

M (t, u) + R(2)
M (t, u).

Using Burkholder and Cauchy-Schwarz inequalities and (27), we have

E[|R(1)
M (t, u)|4] ≤ C(t − u)

∫ t

u
|g(t − s)|4ds.

Thus, we conclude that

E[|R(1)
M (t, u)|4] ≤ C(t − u)2. (32)
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Now, using the same methods we conclude that

E[|R(2)
M (t, u)|4] ≤ C

∫ u

t0
|g(t − s) − g(u − s)|4ds ≤ C(t − u)min(4,4α+1), (33)

where we used the inequality (25). Thus, applying (32), (33) and the Kolmogorov’s
tightness criteria, we deduce the tightness of the first component of the process B M

t .
This completes the proof of (29).

Now, we show the pointwise convergence at (28). Recalling the notation from
(23), we need to show that

∫ t

t0
{ψN (t − s) − ψ(t − s)}σ M

s W (ds)
P−→ 0 as N , M → ∞

for a fixed t . The Itô isometry immediately implies that

sup
M∈N

E

[∣∣∣
∫ t

t0
{ψN (t − s) − ψ(t − s)}σ M

s W (ds)
∣∣∣2

]
≤ C

∫ t

t0
{ψN (t − s) − ψ(t − s)}2ds

→ 0 as N → ∞,

which follows by Lemma 1 and the dominated convergence theorem. Hence, we
obtain pointwise convergence at (28). Since the limiting process A is continuous, we
now need to show that

sup
N ,M∈N

E[N 4(AN ,M
t − AN ,M

u )4] ≤ C(t − u)1+ε

for t0 < u < t , to conclude ucp convergence from pointwise convergence in proba-
bility. Applying the same methods as in (32), (33) we deduce the inequality

sup
N ,M∈N

E[N 4(AN ,M
t − AN ,M

u )4]

≤ C

(
(t − u)

∫ t

u
|ψN (t − s)|4ds +

∫ u

t0
|ψN (t − s) − ψN (u − s)|4ds

)

≤ C(t − u)1+ε,

which follows by Lemma 1 and condition (26). This completes the proof of
Theorem 1. �

Remark 7 We remark that the stronger conditions (B) and (26) are not required to
prove the finite dimensional version of convergence (28) and (29). �

Theorem1 immediately applies to theweak approximation error analysis.Assume for
simplicity that M = M(N ) is chosen such that νM/N → 1, so that the Riemann sum
approximation error and the simulation error from (15) are balanced. We consider a
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bounded test function ϕ ∈ C1(R) with bounded derivative. The mean value theorem
implies the identity

ϕ(X N ,M
t ) − ϕ(X0

t ) = ϕ′(ξN ,M )(X N ,M
t − X0

t ),

where ξN ,M is a randomvalue between X0
t and X N ,M

t with ξN ,M
P−→ X0

t as N → ∞.

By properties of stable convergence we deduce that (ξN ,M , N (X N ,M
t − X0

t ))
dst−→

(X0
t , At + Bt ). Hence, given the existence of the involved expectations, we conclude

that
E[ϕ(X N ,M

t )] − E[ϕ(X0
t )] = N−1e′[ϕ′(X0

t )(At + Bt )] + o(N−1). (34)

(Recall that the limit At + Bt is defined on the extended probability space
(Ω ′,F ′, P

′)).

Remark 8 The results of Theorem 1 may also apply to the original Fourier approxi-
mated method proposed in [14, 18]. Let us keep the notation of this section and still
denote the approximated value of X0

t by X N ,M
t . Recalling the result of (11) (see also

Remark 2) and assuming that M = M(N ) is chosen such that
∑∞

k=N+1 |bk | � νM ,
we readily deduce that

νM (X N ,M
t − X0

t )
dst−→ Bt . �

Remark 9 The results of Theorem 1 might transfer to the case of Lévy semi-
stationary processes

Xt = μ +
∫ t

−∞
g(t − s)σs L(ds) +

∫ t

−∞
q(t − s)asds

under suitable moment assumptions on the driving Lévy motion L (cf. [14]). How-
ever, when L is e.g. a β-stable process with β ∈ (0, 2), it seems to be much harder
to access the weak limit of the approximation error. �

In the followingwewill present some examples of convergence at (15) to highlight
the most prominent results. For simplicity we assume that a ≡ 0 in all cases.

Example 1 Let us consider a continuous diffusion model for the volatility process
σ , i.e.

dσt = ã(σt )dt + ṽ(σt )dBt , σt0 = x0,

where B is aBrownianmotionpossibly correlatedwithW .Weconsider an equidistant
partition t0 = s0 < s1 < · · · < sM = T of the interval [t0, T ] and define the
continuous Euler approximation of σt via

σ M
t = σ M

sk
+ ã(σ M

sk
)(t − sk) + ṽ(σ M

sk
)(Bt − Bsk ), t ∈ [sk, sk+1].
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When the functions ã and ṽ are assumed to be globally Lipschitz and continuously
differentiable, it holds that

√
M(σ M − σ)

dst−→ U 2 on C([t0, T ]),

where U 2 is the unique solution of the stochastic differential equation

dU 2
t = ã′(σt )U

2
t dt + ṽ′(σt )U

2
t dBt − 1√

2
ṽṽ′(σt )dW ′

t ,

where W ′ is a new Brownian motion independent of F . We refer to [22, Theorem
1.2] for a detailed treatment of this result. �

Example 2 Let us now consider a discontinuous diffusion model for the volatility
process σ , i.e.

dσt = ṽ(σt−)dLt , σt0 = x0,

where L is a purely discontinuous Lévy process. In this framework we study the
discretized Euler scheme given via

σ M
sk+1

= ṽ(σ M
sk

)(Lsk+1 − Lsk ), k = 0, . . . , M − 1.

We define the process U M
t = σ M[t M]/M − σ[t M]/M . In [21] several classes of Lévy

processes L has been studied. For the sake of exposition we demonstrate the case of a
symmetric β-stable Lévy process L with β ∈ (0, 2). Let us assume that ṽ ∈ C3(R).
Then, it holds that

(M/ log(M))1/βU M dst−→ U 2 on D([t0, T ]),

where U 2 is the unique solution of the linear equation

dU 2
t = ṽ′(σt−)U 2

t−dLt − ṽṽ′(σt−)dL ′
t

and L ′ is another symmetric β-stable Lévy process (with certain scaling para-
meter) independent of F . We note that this result does not directly correspond
to our condition (15) as the discretized process σ[t M]/M is used in the definition
of U M

t . �
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