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Abstract During the last years, alternative drive technologies, for example electri-
cally powered vehicles (EV), have gained more and more attention, mainly caused
by an increasing awareness of the impact of CO2 emissions on climate change and
by the limitation of fossil fuels. However, these technologies currently come with
new challenges due to limited lithium ion battery storage density and high battery
costs which lead to a considerably reduced range in comparison to conventional
internal combustion engine powered vehicles. For this reason, it is desirable to
increase the vehicle range without enlarging the battery. When the route and the
road slope are known in advance, it is possible to vary the vehicles velocity within
certain limits in order to reduce the overall drivetrain energy consumption. This
may either result in an increased range or, alternatively, in larger energy reserves for
comfort functions such as air conditioning.
In this presentation, we formulate the challenge of range extension as a multi-
objective optimal control problem. We then apply different numerical methods to
calculate the so-called Pareto set of optimal compromises for the drivetrain power
profile with respect to the two concurrent objectives battery state of charge and mean
velocity. In order to numerically solve the optimal control problem by means of a
direct method, a time discretization of the drivetrain power profile is necessary. In
combinationwith a vehicle dynamics simulation model, the optimal control problem
is transformed into a high dimensional nonlinear optimization problem. For the
approximation of the Pareto set, two different optimization algorithms implemented
in the software package GAIO are used. The first one yields a global optimal
solution by applying a set-oriented subdivision technique to parameter space. By
construction, this technique is limited to coarse discretizations of the drivetrain
power profile. In contrast, the second technique, which is based on an image space
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continuation method, is more suitable when the number of parameters is large while
the number of objectives is less than five. We compare the solutions of the two
algorithms and study the influence of different discretizations on the quality of the
solutions.
A MATLAB/Simulink model is used to describe the dynamics of an EV. It is based
on a drivetrain efficiency map and considers vehicle properties such as rolling
friction and air drag, as well as environmental conditions like slope and ambient
temperature. The vehicle model takes into account the traction battery too, enabling
an exact prediction of the batterys response to power requests of drivetrain and
auxiliary loads, including state of charge.

Keywords Cruise control • Multiobjective optimal control • Pareto set

1 Introduction

Electrically powered vehicles (EV) have gained more and more attention during
the last years due to an increasing awareness of the impact of CO2 emissions on
climate change and the limitation of fossil fuels. New research challenges arise
due to limited battery storage densities, high battery costs and a considerably
reduced range in comparison to conventionally powered vehicles. Therefore, range
increasing driving strategies play an important role in electromobility (cf. e.g. [8]).

Different control and optimization strategies have been suggested for vehicle
applications in the past, see [16] for an overview [7, 9] for model predictive control
for trucks [5] for an application of dynamic programming [13] for indirect or [4] for
direct optimal control methods.

In this paper, an “intelligent cruise control” is developed by taking into account
topographic data of a given travel route. We formulate the challenge of range
extension as a multiobjective optimal control problem, transforming it into a
multiobjective optimization problem by using a direct approach. We then use
numerical methods to compute the so-called Pareto set of optimal compromises
between the concurrent objectives “maximize battery charge” and “maximize driven
distance”. Pareto optimal accelerator pedal position profiles of the EV are computed
by using two different multiobjective optimization methods.

The paper is organized as follows: In Sect. 2, the mathematical problem formu-
lation and solution methods for multiobjective optimal control problems are given.
The EV model and computational results are presented in Sect. 3 followed by a
conclusion in Sect. 4.
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2 Multiobjective Optimal Control

Searching for a control strategy of an EV which maximizes the driving distance
is an example of an optimal control problem. In general, the technical system is
represented by a model, typically of the form Px.t/ D f .x.t/; u.t//. Further, the
objectives subject to optimization have to be modeled. By convention, we always
consider minimization problems. Typically, objective functionals are of the form

J.x; u/ D
Z T

0

C.x; u/dt C �.x.T// (1)

with running costs C.�; �/ depending on the system’s states x and controls u and
a final cost �.�/ depending on the final state x.T/. Finally, there might be different
kinds of constraints, e.g. boundary conditions g.x.0/; x.T// D 0 and box constraints

bl �
�
x.t/
u.t/

�
� bu for all t 2 Œ0;T�.

In many applications, there arise several objective functionals that have to
be minimized simultaneously. This leads to vector-valued objective functionals,
denoted by J.x; u/ with J D .J1; : : : ; Jk/, k � 1 and, for all i 2 f1; : : : ; kg, Ji as
in (1). Altogether, we obtain a multiobjective optimal control problem (MOCP)

min
u

J.x; u/ w.r.t. Px D f .x; u/; g.x.0/; x.T// D 0; bl �
�
x.t/
u.t/

�
� bu 8t 2 Œ0;T�:

The minimization of the vector valued functional J.x; u/ is understood w.r.t. the
partial order <p on R

k, defined as follows: Let v;w 2 R
k, then the vector v is

less than w (v <p w), if vi < wi for all i 2 f1; : : : ; kg. The relation �p is defined
analogously. By this relation, we can introduce the concept of dominance and Pareto
optimality (cf. [6], for instance).

Definition 1 (Dominated and Pareto Optimal Solutions) Let .x; u/ and .x�; u�/

be admissible points, i.e. they satisfy the restrictions of the MOCP.

a) The point .x; u/ is dominated by the point .x�; u�/ w.r.t. J.x; u/, if J.x�; u�/ �p

J.x; u/ and J.x; u/ ¤ J.x�; u�/, otherwise .x; u/ is non-dominated by .x�; u�/.
b) The point .x�; u�/ is called Pareto optimal if there exists no admissible .x; u/

which dominates .x�; u�/.
c) The set of all Pareto optimal points .x�; u�/ is called the Pareto set and its image

under J the Pareto front.

For classical, i.e. single-objective optimal control problems, direct methods have
shown to be well suitable in many applications (cf. [1], for instance). Such methods
transform the control problem into a high dimensional optimization problem by
a time discretization. For solving MOCPs, multiobjective optimization techniques
have to be applied to the discretized problem, cf. e.g. [10, 12, 15]. A number of
methods exist for the computation of single Pareto points (cf. [6] for an overview).
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To approximate the whole Pareto front, methods such as evolutionary algorithms
(cf. [2]), set-oriented techniques, or path following methods (cf. [3, 14, 15] and the
short overview given below) can be applied.

To transform the MOCP into an optimization problem with multiple objectives,
we introduce a discrete time grid �t D ft0 D 0; t1; : : : ; tN D Tg. The control u is
approximated by a discrete control ud D fukgN�1

kD0 with uk being an approximation
of u on the interval Œtk; tkC1� for k D 0; : : : ;N � 1. A discrete state trajectory
xd D fxkgNkD0 with xk � x.tk/ can be obtained by a numerical integration scheme,
xkC1 D ˚

tkC1
tk .xk; uk/ with x0 D x.0/ and for k D 0; : : : ;N � 1. Together with

an approximation of all objective functionals on the discrete time grid, we obtain a
multiobjective optimization problem

min
ud

Jd.xd; ud/ D
N�1X
kD0

Cd.xk; uk/ C �d.xN/; (2)

w.r.t. xkC1 D ˚
tkC1
tk .xk; uk/; 8 k < N; gd.x0; xN/ D 0; bl �

�
xk
uk

�
� bu8 k � N:

(3)

2.1 Set-Oriented Subdivision

The aim of the subdivision method is to approximate the Pareto set by a successive
refinement and selection of boxes, cf. [3, 15]. The procedure starts with a box
that covers the admissible set of optimization parameters. Then, subdivision and
selection steps are applied alternatingly. In a subdivision step, all active boxes
are subdivided into smaller boxes. For the selection, a number of test points are
chosen in all boxes and the objective functions are evaluated. Then, all boxes not
containing any non-dominated test points are deleted and one proceeds with the next
subdivision step (cf. Fig. 1, left). This a gradient-free sampling technique which,
amongst other set-oriented algorithms, is implemented in the software package
GAIO [3, 15].

2.2 Scalarization by Reference Point Techniques

A discretization with a fine time grid �t leads to a high number of optimization
parameters ud D fu0; : : : ; uN�1g in the transformed MOCP (2), (3). In this case,
scalarization techniques have shown to be well suitable, cf. e.g. [10, 14]. More
concretely, we apply a reference point method which defines auxiliary scalar
optimization problems. To this aim, nonadmissible target points P in image space
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Fig. 1 Left: Subdivision method. Alternatingly, dominated boxes are removed and non-dominated
boxes are subdivided. Right: Image space continuation method. If two points are known (say yi�1

and yi), a target TiC1 is calculated. Then, the scalar minimization problem with initial guess xpiC1

yields yiC1

are defined, and the distance to the image of the admissible set is minimized,

min
ud

kJd.xd; ud/ � Pk w.r.t. constraints as in (3):

As a result, single Pareto points on the boundary of the admissible set can be
found. The target points are defined iteratively by a continuation method in image
space as depicted in Fig. 1 to the right. These points are not necessarily Pareto
optimal. However, dominated points can be easily eliminated by a subsequent non-
dominance test. The auxiliary optimization problems can be efficiently solved by
sequential quadratic programming (SQP) methods (cf. e.g. [1, Sect. 5.4] and the
references therein).

While the set-oriented subdivision method works globally but it is restricted to
moderate dimensions of the parameter space, SQP methods are suitable for high
numbers of optimization parameters.

3 Application to the Electric Vehicle

A Matlab/SIMULINK model is used to describe the EV dynamics. It is based on
a drivetrain efficiency map and considers vehicle properties such as rolling friction
and air drag, as well as environmental conditions like slope and ambient tempera-
ture. The model holds several state variables such as position, velocity and state
of charge. These variables depend on the input variables accelerator pedal position
profile u and the inclination profile ˛. For a more detailed model description, we
refer to [4, 11].

Since we aim to compute the Pareto set for the objectives “final state of charge
SOC.T/” and “driven distance s.T/” with a fixed final time T, we set the vector of
objective functionals (cf. Eq. (1)) to J.x; u/ D �.x.T// D .SOC.T/; s.T//. As an
example scenario we choose a track with a periodic inclination profile superimposed
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by a linear increase:

˛.s/ D 4ı sin
�
360ı s

2000 m

�
C 1ı s

2000 m
:

This defines the height profile h. In this way, we ensure that most of the Pareto points
(except for the solutions with very short driven distances) are computed for tracks
with both uphill and downhill sections.

To compute the Pareto set we apply the algorithms presented in Sect. 2. The two
solutions u.t/ D 0 and u.t/ D 100, respectively, correspond to the two endpoints
of the Pareto front, where one objective becomes minimal while the other becomes
maximal. To improve numerical accuracy, these values have been used to normalize
both objectives to the interval Œ0; 1� with the optimum being 0. For the results shown
in the following, the normalization has been reversed. In this case, a maximization
of both objectives is desired.

We start the subdivision algorithm with a box of dimension n (number of
parameters) with the center at 50 and a radius of 50 so that it covers the whole pedal
position profile ui 2 Œ0; 100�; i D 1; : : : ; n. We then apply 4n subdivision steps.
Figure 2 shows the resulting Pareto front for different pre-image dimensions on the
left and one EV simulation with a Pareto optimal pedal position profile and the
resulting velocity profile on the right. As has been observed before (cf. [4]), a high
engine torque on positive slopes but lower torque on negative slopes is beneficial to
the energy consumption.

It is obvious that solutions with a higher pre-image space dimension always have
to be at least as good as the lower dimensional solutions (cf. Fig. 2). Additionally,
the difference between the solutions is largest in the middle section. This is due to a
higher variability in this part while near the ends of the front, the pedal position has
to be close to the maximal or minimal value at all times.

When looking at the Pareto points around SOC.T/ � 0:745 (as well as SOC �
0:725 for u 2 R

10), one observes a gap which is caused by the EV’s recuperation
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Fig. 2 Left: Pareto front computed by the subdivision algorithm for different pre-image dimen-
sions (boxes represented by their center points). Right: EV simulation with a Pareto optimal pedal
position profile (u 2 R

10, SOC.T/ D 0:6914, s.T/ D 5800m)
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technique. The last point at the low distance part of the Pareto front corresponds to
a stop at the top of a hill. Increasing the pedal position profile only slightly results in
a final position with a negative inclination ˛.s.T//. Since the EV can roll down the
slope and recharge its battery via recuperation, a slight reduction of the objective
SOC.T/ leads to a huge increase of the second objective s.T/ which then results in
a gap in the front. The varying inclination of the Pareto front is a result of the track
slope alternating between positive and negative values.

It should be mentioned that due to the relatively long EV simulation time (�1 s),
the number of testpoints for each box was set to a comparably low value of 30 which
may cause boxes to be either eliminated or identified as non-dominated by mistake.
The first case leads to spurious gaps in the Pareto front (cf. e.g. the Pareto front of
u 2 R

10 in Fig. 2 for SOC.T/ � 0:68) while the second case leads to boxes apart
from the Pareto front.

A comparison of the results of the subdivision and the image space continuation
algorithm (cf. Fig. 3, left) shows good agreement for the case u 2 R

10, indicating
that the image space continuation method also yields good results despite its local
nature. Having shown the continuation algorithm’s applicability, Pareto sets of
higher dimension are computed (cf. Fig. 3, left).

To improve the simulation time and convergence rate, each Pareto point from
a lower pre-image space dimension serves as the initial guess for the next higher
dimensional solution. As can be seen in Fig. 3, the resulting improvements become
smaller quickly. The choice of the pre-image space dimension should be consid-
ered carefully since computation time increases significantly with the number of
optimization variables. This effect is even strengthened by an observed decreasing
convergence rate for high-dimensional cases, presumably caused by inaccuracies in
the numerical differentiation of the EV model required for the SQP method.
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Fig. 3 Left: Pareto front computed by the image space continuation algorithm for different
dimensions of pre-image space. Right: EV simulation with a Pareto optimal pedal position profile
(u 2 R

50, SOC.T/ D 0:6934, s.T/ D 5750m)
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4 Conclusion

In this paper, we apply two MOCP algorithms for the development of an intelligent
cruise control. Pedal position profiles can be chosen as optimal compromises
between energy consumption and travel distance.

For future work, it will be interesting to compute the Pareto set with a constant
travel distance instead of a constant driving time. Moreover, Model Predictive
Control methods can be applied to realize real time optimization.
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