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Abstract Adaptive Algebraic Multigrid (or Multilevel) Methods (˛AMG) are
introduced to improve robustness and efficiency of classical algebraic multigrid
methods in dealing with problems where no a priori knowledge or assumptions on
the near-null kernel of the underlined matrix are available. Recently we proposed
an adaptive (bootstrap) AMG method, ˛AMG, aimed to obtain a composite solver
with a desired convergence rate. Each new multigrid component relies on a current
(general) smooth vector and exploits pairwise aggregation based on weighted
matching in a matrix graph to define a new automatic, general-purpose coarsening
process, which we refer to as “the compatible weighted matching”. In this work,
we present results that broaden the applicability of our method to different finite
element discretizations of elliptic PDEs. In particular, we consider systems arising
from displacement methods in linear elasticity problems and saddle-point systems
that appear in the application of the mixed method to Darcy problems.
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1 Introduction

Algebraic Multigrid Methods (AMG) were introduced in the mid-1980s as plug-in
solvers for large and sparse linear systems of equations Ax D b, with the final aim
to define automatic coarsening process only depending on the coefficient matrix
[4, 15]. These methods are particularly efficient for systems arising from scalar
second-order elliptic partial differential equations (PDEs), where a characterization
of the algebraically smooth error, which is the error component not reduced by a
simple relaxation scheme (such as Gauss-Seidel relaxation), is available [9]. This
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error, corresponding to the eigenvectors of A with small associated eigenvalues
(near-null kernel of A), must be nearly exactly represented in the coarse-space in
order to be eliminated by the coarse-grid correction process. Therefore, a main
focus in the current state-of-the-art AMGmethods is to define strategies for building
coarse variables and intergrid operators which are able to adapt themselves to
the properties of the near-null kernel of the problem at hand in order to preserve
efficiency and robustness for dealing with more general classes of problems than
the traditional scalar elliptic PDEs, including systems of elliptic PDEs, convection-
diffusion equations and also more general non-PDE problems. In this direction,
Adaptive AlgebraicMultigrids (˛AMG) have been proposed [6, 8], where main idea
is to use appropriate adaptive steps aimed to “identify” smooth error components
which the current solver is not able to efficiently handle so that they can be used
to improve the solver by modifying the coarsening scheme without using any
specific a priori knowledge about these error components. In [11] we proposed
a new ˛AMG method which relies on a bootstrap strategy aimed to compute a
composite solver with a desired convergence rate. We demonstrated its effectiveness
when applied to symmetric positive definite (s.p.d.) systems arising from finite
element discretization of highly anisotropic scalar elliptic PDEs on structured and
unstructured meshes. Here, we extend the application of the method to systems
of elliptic PDEs coming from linear elasticity and Darcy flow in porous media in
mixed setting. In Sect. 2 we outline the ˛AMG based on the compatible weighted
matching; in Sect. 3 we describe the model problems and introduce the Bramble-
Pasciak transformation used for extending our method in dealing with symmetric
indefinite systems stemming from the mixed finite element discretization of Darcy
problems; finally, in Sect. 4 we present results obtained by a prototype Matlab
version of our ˛AMG solver.

2 Main Features of ˛AMG Based on Compatible Weighted
Matching

In [11], we proposed a bootstrap process aimed to build a composite solver of the
following form:

xk D
2mC1Y

rD0

.I � B�1
r A/xk�1; k D 1; 2; : : : ; (1)

with BmCr D BmC1�r; r D 1; : : : ; m C 1. Each Br is an AMG-cycle built with
its own aggregation procedure of unknowns driven by a weighted matching for
the original matrix graph with weights depending on the most recently computed
algebraically smooth vector xk with respect to the current composite solver. In
more details, starting from a general (random) given vector, we build an initial
AMG-cycle represented by the operator B0 and apply it to the homogeneous system
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Ax D 0, starting with a nonzero random initial iterate x0, and successively com-
puting xk WD .I � B�1

0 A/xk�1 for a fixed number of iterations. The iterative process
provides an approximation to the eigenvector of B�1

0 A corresponding to the minimal
eigenvalue of B�1

0 A, i.e., of the algebraically smooth vector corresponding to the
current solver. This last vector is then used to build a new AMG-cycle represented
by the operator B1 to be composed as in (1) and tested on the homogeneous system.
The bootstrap process is stopped when the process represented by (1) reaches a
desired convergence rate.

Each new AMG operator Br is built by using pairwise aggregation of unknowns
driven by weighted matching algorithms for the matrix graph. Such matching
algorithms are widely exploited in sparse matrix computations to enhance matrix
diagonal dominance [12]. More aggressive coarsening (than pairwise aggregation)
can be obtained by combining multiple steps of the pairwise aggregation. Our
main idea was to exploit the concept of compatible relaxation introduced in [5] for
selecting the coarse-vector space. Since for the coarse space, we choose piecewise
constant interpolant (that interpolates exactly the current smooth vector), we choose
a complementary space such that on each aggregate (of pair of vertices) it is
spanned by a vector orthogonal to the restriction of the smooth vector to that
(pairwise) aggregate. To actually choose the aggregates, we use weights based on
these orthogonal vectors so that the resulting Af matrix corresponding to the space
complementary to the coarse space havemaximal product of its diagonal entries. For
the actual details on the respective algorithms and results on scalar PDEs, we refer to
[11]. Here, we investigate the use of more accurate interpolation operators obtained
by weighted-Jacobi smoothing of the piecewise constant interpolation operators
coupled with aggressive coarsening. This leads to smoothed aggregation type
adaptive AMG method [7], which exhibits improved convergence and scalability
properties with general reduction of setup costs.

Our coarsening process, which we referred to as compatible weighted matching,
has the advantage to be independent of user-defined parameters; furthermore, it
overcomes the limitations of the characterization of strength of connectivity between
pairs of unknowns, well motivated only for algebraic systems with M-matrices.
The latter concept is generally used in both the coarse space selection and in the
interpolation scheme for classical AMG schemes. We stress that computing optimal
matching has a super-linear computational complexity, whereas we are interested
in (optimal) AMG with linear complexity, that is why we apply an approximate
algorithm to find sub-optimal weighted matchings in a graph [13]; this approachwas
demonstrated to be effective in computing suitable compatible weighted matchings
in the difficult case of highly non-grid aligned anisotropic scalar elliptic PDEs.

3 Case Studies: Linear Elasticity and Darcy Problems

We focus on two types of elliptic PDEs particularly relevant for many engineering
applications, such as Lamé equations for linear elasticity and Darcy equations for
flow in porous media in mixed system setting. Of main interest is to demonstrate
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the feasibility of our method on general s.p.d linear systems, where the coefficient
matrix is not an M-matrix, as well as, on some symmetric but indefinite systems of
saddle-point form.

The most widely used mathematical model for studying deformation of materials
due to the application of external forces are the following Lamé equations, which
are equilibrium equations written in terms of the displacement field u:

��u C .� C �/ grad.divu/ D f x 2 ˝ (2)

where u D u.x/ is the displacement vector, ˝ is the 3D spatial domain, and � and
� are the Lamé constants. A mix of Dirichlet boundary conditions and so-called
traction conditions are usually applied to have a unique solution. Discretization of
(2) by finite element method, if each scalar component of the displacement vector
u D .u; v;w/ is considered separately (unknown-based [14] discretization), leads to
s.p.d. systems of equations whose coefficient matrix can be written in the following
block form:

A D
2

4
Auu Auv Auw

Avu Avv Avw

Awu Awv Aww

3

5

We note that if � >> �, the above matrix is spectrally equivalent to its block
diagonal, corresponding to the matrix coming from discretization of Laplace
equation per each unknown component. In this case, block-wise version of the
classical AMG are efficient solver. In general, A is not strongly block-diagonally
dominant and problem-dependent multigrid operators have to be considered to
improve convergence of AMG [1]. In the present work we demonstrate that our
˛AMG is able to obtain a solver with a desired convergence rate for general
elasticity problems, without any a priori information on the problem neither on the
discretization scheme.

The second type of systems of PDEs we considered in this work comes from the
Darcy problem of flows in porous media. It is a boundary value problem associated
to the following second order elliptic equation:

� divk.x/ grad p D f .x/ x 2 ˝; (3)

where p D p.x/ is the flow pressure, ˝ is the spatial domain, and k.x/ is the
permeability coefficient. In a mixed finite-element formulation, the flow velocity
field u D �krp is introduced and Eq. (3) becomes divu D f . The resulting problem
is a system of two first order vector equations which can be discretized by using a
pair of finite element spaces leading to the following indefinite system of saddle-
point form:

�
A BT

B 0

� �
u
p

�
D

�
f
f

�
;
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where A is an s.p.d. matrix. Such linear systems, especially for highly variable or
discontinuous permeability coefficient, are very challenging for general iterative
solvers, and more specifically for algebraic multigrid (see [2, 16]). Here we
propose to use an approach based on the Bramble-Pasciak preconditioner [3] which
transforms the saddle-point matrix into a s.p.d. matrix. They utilize a preconditioner
matrix M for the A block, such that A � M is s.p.d., and transform the saddle-point
matrix into the following s.p.d. one:

bA D
�
AM�1 � I 0

BM�1 �I

� �
A BT

B 0

�
D

�
AM�1A � A .AM�1 � I/BT

B.M�1A � I/ BM�1BT

�
: (4)

A good choice in practice is a diagonal matrixM assembled from the local element-
based diagonal matrices diag.Mfem/, where Mfem D 1=2�minDfem and Dfem D
diag.Afem/. Here, Afem is the local element mass matrix for each finite element
and �min is the minimal eigenvalue of the generalized local eigenvalue problem
Afemq D �Dfemq. In this case the transformed matrix (4) can be explicitly computed
at a cost of a moderate increase in the total number of nonzero elements. In the
following Section we report some numerical results related to the application of our
adaptive AMG on Darcy problems discretized by the mixed finite-element method,
in the above transformed s.p.d. form.

4 Numerical Results

In this Section we report some preliminary results which illustrate the ability of our
method to solve the systems of equations introduced in Sect. 3 both in 2D and in 3D
domains. We investigate the convergence behavior and the setup cost for increasing
mesh size of the discretization. The setup cost is measured in terms of AMG
components nstages built by the bootstrap process to reach a desired convergence
rate set to 0:7. The obtained convergence rate � was estimated by applying the solver
in (1) for 15 iterations at each new built. We also report, per each test case and per
each mesh with n nodes, the average number of levels nlev of all solver components
and the average of their operator complexity cmpx, which gives information on the
cost of the application of one cycle; cmpx is defined as the ratio between the sum
of nonzero entries of the matrices of all levels and the number of nonzero entries
of the fine-grid matrix. Each AMG component, built on the base of the compatible
weighted matching coarsening method, is a general �-fold cycle [16], where one-
sweep is alternated with three sweeps in the next level; In this way, we ensure linear
cost per cycle since our coarsening is based on pairwise aggregation. Symmetric
Gauss-Seidel relaxation (one iteration) is employed as pre/post smoothing while
direct solver (based on LU factorization) is used at the coarsest level. In order
to achieve aggressive coarsening we combine four steps of pairwise aggregation
based on compatible matching, which allows us to define coarse matrices with a
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Table 1 Linear elasticity problems: setup cost when unsmoothed (on the left) and smoothed
aggregation (on the right) are used

Composite ˛AMG setup

n nstages � nlev cmpx
beam 2D 4386 8 0:61 3 1:12

16,962 10 0:69 3 1:12

66,690 12 0:69 4 1:12

264,450 20 0:68 5 1:10

beam 3D 2475 9 0:61 3 1:20

15,795 11 0:67 3 1:20

111,843 16 0:67 4 1:23

839,619 25 0:57 5 1:09

Composite ˛AMG setup

n nstages � nlev cmpx
beam 2D 4386 5 0:69 3 1:25

16,962 7 0:63 3 1:20

66,690 9 0:68 4 1:23

264,450 12 0:70 5 1:19

beam 3D 2475 8 0:53 3 1:53

15,795 10 0:60 3 1:78

111,843 12 0:64 4 2:40

839,619 17 0:61 5 1:34

coarsening ratio of at most 16 at each level; the process is stopped when the size of
the coarsest matrix is at most 100.

As test case for linear elasticity, we consider Eq. (2) on a beam characterized
by � D 0:42 and � D 1:7; one side of the beam is considered fixed and the
opposite end is pushed downward. The problem is discretized using linear finite
elements on triangular (2D) and tetrahedral meshes (3D) on different mesh sizes,
obtained by uniform refinement, with the software package MFEM (http://mfem.
googlecode.com). In Table 1, we summarize our results obtained both in the case
of constant piecewise interpolation, i.e., unsmoothed aggregation, (on the left) and
with smoothed aggregation (on the right). We observe that our method is able to
achieve convergence factors less than the desired one for all the cases, although
no a priori information on the spectral properties of the matrices neither on the
particular features of the system of PDEs and of its discretization were used. We
notice that the number of the necessary bootstrap steps generally increases with
increasing the mesh size, especially for 3D problems; the largest size mesh requires
five more bootstrap steps with respect to the medium size mesh. The total number
of bootstrap steps, as expected, is reduced if the smoothed aggregation is applied;
furthermore, smoothed aggregation coupled with our aggressive coarsening based
on a combination of more steps of pairwise aggregation produces a moderate
increase in the operator complexity, leading to a general reduction both in the setup
and the application cost of the method.

For the Darcy problems, we consider saddle-point systems stemming from a
realistic problem with highly variable permeability coefficients, describing a 3D
petroleum reservoir obtained from the 10th Society of Petroleum Engineers (SPE)
Comparative Solution Project [10]. We present results for Dirichlet problems (i.e.
pressure given on the boundary) discretized by using MFEM with structured
hexahedral meshes. For discretization, we used first-order Raviart-Thomas spaces
[16] for velocity and piecewise-constant functions for pressure. We apply the
Bramble-Pasciak transformation described in Sect. 3 to obtain the corresponding
s.p.d. matrix (4). We observe that for the considered test case and the employed

http://mfem.googlecode.com
http://mfem.googlecode.com
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Table 2 Darcy problems: setup cost when unsmoothed (on the left) and smoothed aggregation
(on the right) are used

Composite ˛AMG Setup

n nstages � nlev cmpx
SPE10 1403 2 0:50 2 1:07

10,652 3 0:68 3 1:12

33,645 5 0:65 4 1:13

88,800 7 0:65 4 1:14

Composite ˛AMG Setup

n nstages � nlev cmpx
SPE10 1403 2 0:57 2 1:12

10,652 3 0:69 3 1:34

33,645 5 0:66 4 1:46

88,800 6 0:69 4 1:54

mesh sizes, the number of nonzeros in the transformed matrix has an increase of
about 80% with respect to the original saddle-point matrix. In Table 2 we report
results for different mesh sizes (note that here n is the size of the saddle-point
matrix) for both unsmoothed and smoothed aggregation, when the algorithmic
choices were the same as in the elasticity problems. We observe that the adaptive
solver is able to obtain the required convergence rate with a moderate number of
setup steps, demonstrating the potential of the coupling between Bramble-Pasciak
transformation and the adaptive solver to handle well indefinite systems of saddle-
point type coming from realistic flow problems. The increase in the number of
bootstrap steps needed to obtain the desired convergence rate for increasing mesh
size is moderate, showing good scalability properties also in the case of unsmoothed
aggregation. We also observe that in this case the impact of smoothed aggregation
based on a weighted Jacobi smoother on the convergence behaviour and scalability
is not as significant.
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