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Abstract The aim of this work is to use a numerical scheme based on the
discontinuous Galerkin method for finding deterministic (non stochastic) solutions
of the electron Boltzmann transport equation in graphene. The same methods has
been already successfully applied to a more conventional semiconductor material
like Si (Cheng et al., Comput Methods Appl Mech Eng 198(37–40):3130–3150,
2009; Cheng et al., Boletin de la Sociedad Espanola deMatematica Aplicada 54:47–
64, 2011). A n-type doping or equivalently a high value of the Fermi potential is
considered. Therefore we neglect the inter band scatterings but retain all the main
electron-phonon scatterings. Simulations in graphene nano-ribbons are presented
and discussed.
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1 The Mathematical Model

Graphene is a gapless semiconductor made of a sheet composed of a single layer
of carbon atoms arranged into a honeycomb hexagonal lattice [1]. In view of
application in graphene-based electron devices, it is crucial to understand the basic
transport properties of this material.

A physically accurate model is given by a semiclassical transport equation whose
scattering terms have been deeply analyzed recently [2–4]. Due to the computa-
tional difficulties, the most part of the available solutions have been obtained by
direct Monte Carlo simulations. A different approach has been employed in [5].
Macroscopic models can be found in [6–8].

The aim of this work is to use a numerical scheme based on the discontinuous
Galerkin method for finding deterministic (non stochastic) solutions of the electron
Boltzmann equation in graphene. The same methods has been already successfully
applied to a more conventional semiconductor material like Si [9, 10].
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The electron energy in graphene depends on a two dimensional wave vector k
belonging to a bi-dimensional Brillouin zone which has an hexagonal shape. The
most part of electrons are in the valleys, around the vertexes of the Brillouin zone,
called Dirac points or K and K0 points. Usually the three K-valley are treated as a
single equivalent one and similarly the three K0-valleys.

In a semiclassical kinetic setting, the charge transport in graphene is described
by four Boltzmann equations, one for electrons in the valence (�) band and one for
electrons in the conductions (��) band, that in turn can belong to the K or K0 valley,
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where f`;s.t; x;k/ represents the distribution function of charge carriers in the valley
` (K or K0), band � or �� (s D �1 or s D 1) at position x, time t and wave-vector k.
We denote by rx and rk the gradients with respect to the position and wave vector,
respectively. The microscopic velocity v`;s is related to the energy band "`;s by

v`;s D 1

„ rk "`;s :

With a very good approximation [1] a linear dispersion relation holds for the energy
bands "`;s around the equivalent Dirac points; so that "`;s D s„ vF jk � k`j, where
vF is the (constant) Fermi velocity, „ the Planck constant divided by 2 � , and k`

is the position of the Dirac point `. The elementary (positive) charge is denoted
by e, and E is the electric field obtained by the Poisson equation, which must
be coupled with the above system. The right hand side of Eq. (1) is the collision
term representing the interaction of electrons with acoustic, optical and K phonons.
Acoustic phonon scattering is intra-valley and intra-band. Optical phonon scattering
is intra-valley and can be longitudinal optical (LO) and the transversal optical (TO);
it can be intra-band, that is leaves the electron in the same band, or inter-band
pushing the electron from an initial band to the other one. Scattering with optical
phonon of type K pushes electrons from a valley to a neighbor one (inter-valley
scattering). We assume that phonons are at thermal equilibrium. Hence, the general
form of the collision term can be written as

df`;s

dt
.t; x;k/

ˇ
ˇ
ˇ
ˇ
e�ph

D
X

`0 ;s0

�Z

S`0;s0;`;s.k0;k/ f`0 ;s0.t; x;k0/ .1 � f`;s.t; x;k// dk0

�
Z

S`;s;`0;s0.k;k0/ f`;s.t; x;k/
�

1 � f`0 ;s0.t; x;k0/
�

dk0
�

where the total collision term is given by the sum of the contributions of several
types of scatterings
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The index � labels the �th phonon mode,G.�/

`0 ;s0;`;s.k
0;k/ is the scattering rate, which

describes the scattering mechanism, due to phonons �, between electrons belonging
to valley `0 and band s0, and electron belonging to valley ` and band s. The symbol
ı denotes the Dirac distribution function, !

.�/
q the �th phonon frequency, n.�/

q is the
Bose-Einstein distribution for the phonon of type �

n.�/
q D 1

e„ !
.�/
q =kBT � 1

;

kB is the Boltzmann constant and T the constant graphene lattice temperature.When,
for a phonon ��, „ !

.��/
q � kBT, then the scattering with the phonon �� can be

assumed elastic. In this case, we eliminate in Eq. (2) the term „ !
.��/
q inside the

delta distribution and we use the approximation n.��/
q C 1 � n.��/

q .

1.1 The Model with Only One Distribution Function

In this paper we consider a numerical no stochastic technique, based on the
discontinuous Galerkin method, for solving the kinetic model described in Sect. 1.
In this first application, we study the case of a single distribution function f . This
corresponds to a physical case, where a n-type doping or equivalently a high value of
the Fermi potential is considered, and the electrons, belonging to a conduction band,
do not move to the valence band. Moreover K and K0 are considered equivalent. A
reference frame centered in the K-point will be used. Of course, we simplify the
notation, omitting the indexes s and `. Now, we write the scattering rates used in our
simulations, explicitly.

For acoustic phonons, usually one considers the elastic approximation, and
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where Dac is the acoustic phonon coupling constant, vp is the sound speed in
graphene, �m the graphene areal density, and #k ;k0 is the convex angle between k
and k0.

There are three relevant optical phonon scatterings: the longitudinal optical (LO),
the transversal optical (TO) and the K (K) phonons. The scattering rates are
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whereDO is the optical phonon coupling constant, !O the optical phonon frequency,
DK is the K-phonon coupling constant and !K the K-phonon frequency. The angles
#k ;k0�k and #k0 ;k0�k denote the convex angles between k and k0 � k and between k0
and k0 � k, respectively.

2 The Numerical Method

We look for spatially homogeneous solutions to Eq. (1) with a constant electric field.
Now, the Boltzmann equation reduces to
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We take a Fermi-Dirac distribution, as initial condition,
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	 ;

where T D 300K, and � is the chemical potential, that is determined by choosing
the initial charge density
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Z

f .0;k/ dk : (8)

Equation (7) is discretized by adopting a discontinuousGalerkin scheme.We choose
a bounded domain ˝ � R

2 such that f .t;k/ � 0 for every k … ˝ and t > 0, and we
introduce a finite decomposition fC˛g of ˝ , with C˛ appropriate open set, such that

C˛ \ Cˇ D ; if ˛ ¤ ˇ; and
N[

˛D1

C˛ D ˝ :

We assume that the distribution function is constant in each cell C˛ . If we denote
by �˛.k/ the characteristic function over the cell C˛ , then the approximation of the
distribution function f is given by

f .t;k/ � f ˛.t/ 8 k 2 C˛ ” f .t;k/ �
NX

˛D1

f ˛.t/ �˛.k/ 8 k 2
N[
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This assumption replaces the unknown f , which depends on the two variables t and
k, in a set of N unknowns f ˛ , which depend only on time t. In order to obtain a set
of N equations for the new unknowns f ˛, we integrate Eq. (7) with respect to k over
every cell C˛ and replace f with its approximation. The derivative of f with respect
to the time is treated easily. We have

Z

C˛

@f .t;k/

@t
dk � M˛

d f ˛

dt

whereM˛ is the measure of the cell C˛ . It is clear that the numerical method yields
a system of ordinary differential equations. This is achieved by discretizing the
collision operator and the drift term.

2.1 Discretization of the Collision Operator

Since, for each k 2 C˛ , we have
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Now, if we define
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So, the integral collision operator is replaced by quadratic polynomials.We note that
the numerical coefficients A˛;ˇ depend only on the scattering terms and the domain
decomposition.
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2.2 Discretizaton of the Force Term

We must approximate the term

� e

„ E �
Z

C˛

rkf .t;k/ dk D � e

„ E �
Z

@C˛

f .t;k/ n d�

where n is the normal to the boundary @C˛ of the cell C˛ . Since, due to the Galerkin
method, the approximation of f is not defined on the boundary of the cells, we
must introduce a numerical flux, that furnishes reasonable values of f on every @C˛ ,
depending on the values of the approximation of f in the nearest neighborhood of
the cell C˛ and on the sign of E � n. In Fig. 1 we show a simple picture of the cells
that can be involved to find the numerical flux. The simplest numerical flux is given
by the upwind rule, that use only four nearest adjacent cells.

3 Numerical Simulations

We consider a circle as domain ˝ . We used the same physical parameters of [3].
The charge density is taken equal to 1012 cm�2. A TVD third Runge-Kutta scheme
is used to solve the resulting ODE system. The numerical scheme is very similar
to [11]. We remark that the numerical scheme guarantees the mass conservation.
We solve Eq. (7) for different value of the applied electric field. In Fig. 2 we show
the macroscopic velocity and energy, defined by

2

.2 �/2 �.0/

Z

f .t;k/ vF
k

jkj dk ;
2

.2 �/2 �.0/

Z

f .t;k/ ".k/ dk :

Fig. 1 Cells employed for
the numerical flux in the case
of a simple rectangular grid

Cα
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Fig. 2 Left figure: the mean velocity in 107 cm/s versus time (in ps). Right figure: the mean energy
in eV versus time (in ps)
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Fig. 3 Left figure: The distribution function (electric field equal to 50 kV/cm) at 1 ps. Right figure:
the section at ky D 0 of the distribution function (electric field equal to 50 kV/cm) at the initial
time and at 1 ps

We note that the asymptotic mean velocity and energy increase by increasing the
applied voltage. In Fig. 3 we show the distribution function f for the highest electric
field.
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