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Abstract A hydrodynamical model for the charge and the heat transport in
graphene is presented. The state variables are moments of the electron, hole and
phonon distribution functions, and their evolution equations are derived from the
respective Boltzmann equations by integration. The closure of the system is obtained
by means of the maximum entropy principle and all the main scattering mechanisms
are taken into account. Numerical simulations are presented in the case of a
suspended graphene monolayer.

Keywords Charge transport • Electro-thermal hydrodynamical model • Maxi-
mum entropy principle

1 Introduction

Graphene is among the most promising materials for future applications in nano-
electronics devices. It is two dimensional and consists of a single layer of carbon
atoms arranged into a honeycomb hexagonal lattice. Graphene has very good
mechanical properties and is an excellent heat and electricity conductor. In order
to formulate comprehensive transport models it is necessary to take into account the
electronic and phonon bandstructure and the most relevant scattering mechanisms
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between electrons and phonons. The case of a suspended sheet of graphene is
considered here.

2 Kinetic Description

Electrons which contribute to the charge transport in graphene are those in the
conduction and valence band, and it is preferable to treat the latter as holes
for insuring integrability of the distribution function. Electrons and holes mostly
populate the states near to the K and K0 Dirac points situated at the boundary of
the first hexagonal Brillouin zone, the respective neighborhoods being called K and
K0 valleys. In these valleys, the energies �i, i D e; h; (e and h respectively stay for
electrons and holes) are, with a good approximation, linear in the wave vector k:
�i D „vF jkj; k 2 R

2; i D e; h; „ being the reduced Planck constant, and vF the
Fermi velocity. K and K0 valleys will be treated as equivalent.

A semiclassical kinetic description of the charge transport in graphene is based
on the two Boltzmann equations for electrons and holes (approaches which make
use of the Wigner transport equations are also present in the literature, for example,
see [1])

@fi
@t

C vi � rrfi C ei
„ E � rk fi D Ci; i D e; h; (1)

where fi.r;k; t/, i D e; h, represent the state occupation numbers of electrons and
holes at position r, time t and with wave-vector k. rr and rk are the gradients
with respect to the position and the wave vector respectively, ei, i D e; h, are the
particle charges (negative for electrons and positive for holes), and E is the electric
field obtained by the Poisson equation, which must be coupled with the above

system. The group velocity v is related to the band energy by v D 1

„rk"i D vF
k

jkj :
Ci, i D e; h, are the scattering operators representing both the intra and inter-
band interactions of electrons and holes with acoustic and optical phonons. Its
complete expression is rather involved, here, for simplicity, we report only the
generic contribution relative to the intra-conduction band scattering and refer the
interested readers to [2, 3]

Ce.k/D 1

.2�/2

Z
R2

h
wee.k0;k/fe.k0/ .1 � fe.k//„ ƒ‚ …

gain

�wee.k;k0/fe.k/
�
1 � fe.k0/

�
„ ƒ‚ …

loss

i
dk0;

where wee.k0;k/ is the transition rate from the state k to the state k0. In this case,
the detailed balance principle implies wee.k;k0/ D e."�"0/=kBTwee.k0;k/, with kB the
Boltzmann constant and T the lattice temperature.

We consider interactions with acoustic phonons, longitudinal optical phonons
(� -LO), transversal optical phonons (� -TO), and K-phonons.
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In the elastic approximation, the production term relative to acoustic phonon
(intraband) transitions simplifies into

Ci.k/ D 1

.2�/2

Z
R2

A.ac/.1C cos � 00/ı."0
i � "i/

�
fi.k0/ �fi.k// dk0:

where A.ac/ can be found in [4–6] and � 00 is the angle between k and k0.
For the optical and the K-phonons, in the Einstein approximation („! D cost,

with ! phonon frequency), one has

ws
ee.k

0;k/ D ssee.k
0;k/

2
64�

g�
s C 1

�
ı

�
"e � "0

e C „!s
�

„ ƒ‚ …
emission

C gC
s ı

�
"e � "0

e � „!s
�

„ ƒ‚ …
absorption

3
75 ;

s D LO;TO;K;

with sKee.k
0;k/ D AKD2K .1 � cos � 00/ for the K-phonons and s�ee.k

0;k/ D A�D2�
�
1

� cos.� C � 0/
�

respectively for the LO and TO phonons. AK and A� can be found
in [5, 6], and � and � 0 respectively denote the angle between k and k0 � k and that
between k0 and k0 � k.

If phonons are considered as a thermal bath at the constant temperature TL

gṡ �
h
e„!s=kBTL � 1

i�1
; equilibrium Bose-Einstein;

otherwise gṡ D gs.r; t;q˙/, with the phonon wave vector given by q˙ D ˙.k0�k/,
in agreement with the momentum conservation.

Moreover, if we consider the phonon dynamics, the evolution of the phonon
occupation number is governed by the following Boltzmann equations

@gs
@t

C rq!s.q/„ ƒ‚ …
�0

�rrgs D Cs; s D LO;TO;K;

@gac
@t

C rq!ac.q/ � rrgac D Cac;

Cs D�
�
gs � g0s

�
�OA

C
X
ij

C ij
s ; i; j D e; h; s D LO;TO;K;

Cac D � 3

�OA

�
gac � g0ac

� C
X
i

C i
ac; i D e; h;

where �OA is the relaxation time for the decay of an optical phonon into two acoustic
phonons, and g0s , s D LO; TO; K, g0ac are the equilibrium occupation number of the
optical and acoustic phonons corresponding to the temperature they would have if
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they were at the local equilibrium relative to their total average energy [7]. In the
acoustic phonon scattering, normal and umpklapp types of intra-mode interactions
as well as interactions with defects/impurities should also be considered.

Direct simulations based on the above-written semiclassical kinetic equations
have been performed by MC methods, see e.g. [5], or with suitable numerical
schemes [6], but they, even if very accurate, are too heavy from a computational
point of view. Therefore models based on integrated quantities are preferable for
computer aided design (CAD) purposes in view of a possible use of graphene in
electron devices like MOSFETs or DG-MOSFETs.

3 Carrier Moment Equations

Macroscopic quantities can be defined as moments of the distribution functions with
respect to some suitable weight functions  .k/, assuming a sufficient regularity
for the existence of the involved integrals. In particular for electrons and holes
we propose a set of moment equations consisting of the balance equations of the
quantities (i D e; h)

average density �i D 4

.2 �/2

Z
R2

fi.r;k; t/ dk;

average velocity �iVi D 4

.2 �/2

Z
R2

fi.r;k; t/ v dk;

average energy �iWi D 4

.2 �/2

Z
R2

fi.r;k; t/ " dk;

average energy-flux �iSi D 4

.2 �/2

Z
R2

fi.r;k; t/ "v d k;

where the factor 4 arises from taking into account both the spin states and the two
equivalent valleys.

By integrating the Boltzmann equations with respect to k, one has the following
balance equations for the above-defined macroscopic quantities

@

@t
�i C rr � .�i Vi/ D �i Ci;

@

@t
.�i Vi/C r r �

�
�i F

.0/
i

�
� ei �iG

.0/
i � E D �iCVi ;

@

@t
.�iWi/C rr � .�i Si/� ei�iE � Vi D �iCWi ;

@

@t
.�i Si/C r r �

�
�iF

.1/
i

�
� ei�iG

.1/
i � E D �iCSi ;



An Electro-Thermal Hydrodynamical Model for Charge Transport in Graphene 725

where the G’s and F’s are extra-fluxes and the terms at the right hand sides are
productions [3].

4 The Phonon Moment System

Similarly for each type of phonons we have

@

@t
Wp C rr � Qp D CWp ; energy balance equation;

@

@t
Qp C rr � Tp D CQp ; energy-flux balance equation;

where for each phonon mode

Wp D
Z
B

„!pgp dq; average energy;

Qp D
Z
B

„!pvpgp dq; average energy-flux;

B is the hexagonal Brillouin zone and p D LO;TO;K; ac, the T’s are extra-fluxes,
and the terms at the right hand sides are productions [3]. More general moment
systems can be considered, that we consider here is the minimal one for a reasonable
description of the thermo-electrical effects.

5 The Closure Problem

The extra fluxes and the production terms are additional unknown quantities. For
them constitutive relations in terms of the fundamental variables are needed in order
to get a closed system of balance equations. A well theoretically founded way to get
the desired closure relations is to resort to the Maximum Entropy Principle (MEP)
[8], according to which the electron, hole and phonon distribution functions can
be estimated by the distributions fe;MEP; fh;MEP, gp;MEP which solve the following
problem:

. fe;MEP ; fh;MEP ; gp;MEP/D max
fe;fh ;gp2L1.R2/

SŒ fe; fh; gp�;
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under the constraints

�
�i
�iWi

�
D 2

.2 �/2

Z
R2

�
1

"

�
fi.r;k; t/ dk;

�
�iVi

�iSi

�
D 2

.2 �/2

Z
R2

fi.r;k; t/
�

v
"v

�
dk;

Wp D
Z
R2

„!pgp dq; Qp D
Z
R2

„!pvpgp dq;

where SŒ fe; fh; gp� is the total entropy of the system given by

�kB

�
4

.2�/2

Z
R2

Œ f e ln f e C .1 � f e/ ln .1 � f e/� d k C 4

.2�/2

Z
R2

	
f h ln f hC

�
1� f h

�
ln

�
1 � f h

�

d k C

X
p

yp
Z
B

�
1C gp

yp

�
ln

�
1C gp

yp

��
dq

)
;

yp being the phonon densities of states and L1.R2/ the usual Banach space.
By solving the above maximization problem we get

fi D 1

1C exp .	i C 	Wi"i C vi � .	Vi C "i	Si//
; gp D 1

exp
�
	Wp"p C "p vp � 	Qp

� � 1 :

As in [9–12] we linearize the distributions around their anisotropic part, obtaining

fi� 1

e	iC	Wi "i C 1

"
1 � e	iC	Wi "i

e	iC	Wi "i � 1
vi � .	Vi C "i	Si /

#
; i D e; h;

gp � 1

e	Wp "p � 1

"
1 � e	Wp "p

e	Wp "p � 1 �p vp � 	Qp

#
; p D LO;TO;K; ac;

where the 	’s are Lagrange multipliers which have to be expressed as functions of
the state variables by taking into account the constraints.

After that, these distributions are inserted into the kinetic definitions of the
additional variables, so closing the system of the balance equations. For example,
for the optical phonons we obtain CWs D P

ij C
ij
Ws

C Cac
Ws
; where the sum is for
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.i; j/ 2 f.e; h/; .e; e/; .h; h/g; and

Ceh
Ws

D 2D2s
2�2�„3v4F

Z �s

0

".�s � "/
ehs
��s � "

"

�
g0.�s/

�F e
FD."/F

h
FD.�s � "/

"
e�s	Ws � e	eC	hC	We " e	Wh .�s�"/

#
d";

Cee
Ws

D 1

�2�„3v4F
D2s

Z 1

0

"."C �s/

ee
s

��s C "

"

�
g0.�s/

�F e
FD."/F

e
FD."C �s/

"
e�s	WsC	eC	We " � e	eC	We" e	We �s

#
d";

Cac
Ws

D A �s
�OA

"
g0

�
�s;

1

kBTOA

�
�g0

�
�s; 	Ws

�#
;

� being the area density of graphene, A the area of the first Brillouin zone, FFD

the equilibrium Fermi-Dirac occupation number, TOA the phonon local equilibrium
temperature, �s the optical phonon energy, while the functions 
ijs ; i; j D e; h; s D
LO;TO;K; and the relaxation time �OA can be found in [3]. Neglecting the acoustic
phonon dynamics, the simplest way to study the effect of lattice heating is to use a
temperature T which empirically depends on the total current, that is T D TL C� IU

L ,
where I is the total current, U the applied voltage bias, L the device length, and �
can be found in [6].

6 Numerical Simulations

In the literature there are several values for the coupling constants entering into the
collision terms. For example for the acoustic deformation potential one can find
values ranging from 2.6 to 29 eV. Similar degree of uncertainty is found for the
optical and K phonon coupling constants as well. We have performed numerical
simulations of a suspended graphene monolayer by considering the parameters used
in [13], see Figs. 1 and 2.

For moderate applied fields the asymptotic value of the electron velocity
increases with the applied field, while for high electric fields the velocity decreases
(negative differential conductivity) but there is no velocity saturation. The results
are consistent with the Monte Carlo simulations presented in [14].



728 V.D. Camiola et al.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time (ps)

ve
lo

ci
ty

 (
10

8  c
m

/s
ec

)

 

 
1 kV/cm
2 kV/cm
4 kV/cm
10 kV/cm
20 kV/cm

Fig. 1 Average velocity for the electric fields E D 1 kV/cm, E D 2 kV/cm, E D 4 kV/cm,
E D 10 kV/cm, E D 20 kV/cm by using the same values of the scattering parameters as in [13],
by considering a constant lattice temperature of 300 K and a carrier density equal to 1012 cm�2
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Fig. 2 Average energy for the electric fields E D 1 kV/cm, E D 2 kV/cm, E D 4 kV/cm, E D
10 kV/cm, E D 20 kV/cm by using the same values of the scattering parameters as in [13], by
considering a constant lattice temperature of 300 K and a carrier density equal to 1012 cm�2



An Electro-Thermal Hydrodynamical Model for Charge Transport in Graphene 729

References

1. Zamponi, N., Barletti, L.: Quantum electronic transport in graphene: a kinetic and fluiddynam-
ical approach. Math. Methods Appl. Sci. 34, 807–818 (2011)

2. Camiola, V.D., Romano, V.: Hydrodynamical model for charge transport in graphene. J. Stat.
Phys. 157(6), 1114–1137 (2014)

3. Mascali, G., Romano, V.: A comprehensive hydrodynamical model for charge transport in
graphene. In: 2014 International Workshop on Computational Electronics, Paris (2014). doi:
10.1109/IWCE.2014.6865866

4. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic
properties of graphene. Rev. Modern Phys. 81, 109 (2009)

5. Fang, T., Konar, A., Xing, H., Jena, D.: High-field transport in two-dimensional graphene.
Phys. Rev. B 84, 125450 (2011)

6. Lichtenberger, P., Morandi, O., Schürrer, F.: High-field transport and optical phonon scattering
in graphene. Phys. Rev. B 84, 045406 (2011)

7. Mascali, G.: A hydrodynamic model for silicon semiconductors including crystal heating. Eur.
J. Appl. Math. 26(4), 477–496 (2015)

8. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. B 106, 620 (1957)
9. Alì, G., Mascali, G., Romano, V., Torcasio, R.C.: A hydrodynamical model for covalent

semiconductors with a generalized energy dispersion relation. Eur. J. Appl. Math. 25, 255–
276 (2014)

10. Muscato, O., Di Stefano, V.: Modeling heat generation in a submicrometric n+-n-n+ silicon
diode. J. Appl. Phys. 104, 124501 (2008)

11. Alì, G., Mascali, G., Romano, V., Torcasio, R.C.: A hydrodynamic model for covalent
semiconductors with applications to GaN and SiC. Acta Applicandae Maetamicae 122, 335
(2012)

12. Camiola, V.D., Mascali, G., Romano, V.: Simulation of a double-gate MOSFET by a
nonparabolic hydrodynamical subband model for semiconductors based on the maximum
entropy principle. Math. Comput. Model. 58, 321 (2013)

13. Borysenko, K.M., Mullen, J.T., Barry, E.A., Paul, S., Semenov, Y.G., Zavada, J.M., Buongiorno
Nardelli, M., Kim, K.W.: First-principles analysis of electron–phonon interactions in graphene.
Phys. Rev. B 11, 121412(R) (2010)

14. Rengel, R., Couso, C., Martin, M.J.: A Monte Carlo study of electron transport in suspended
monolayer graphene. In: Spanish Conference on Electron Devices (CDE) 2013, IEEEXplore

http://dx.doi.org/10.1109/IWCE.2014.6865866

	An Electro-Thermal Hydrodynamical Model for Charge Transport in Graphene
	1 Introduction
	2 Kinetic Description
	3 Carrier Moment Equations
	4 The Phonon Moment System
	5 The Closure Problem
	6 Numerical Simulations
	References


